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Usually quantum chains with quantum group symmetry are associated with repre-
sentations of quantized universal algebrasUq(g). Here we propose a method for
constructing quantum chains withCq(G) global symmetry, whereCq(G) is the
algebra of functions on the quantum group. In particular we will construct a quan-
tum chain with GLq~2! symmetry which interpolates between two classical Ising
chains. It is shown that the Hamiltonian of this chain satisfies the generalized braid
group algebra. ©1996 American Institute of Physics.@S0022-2488~95!02912-8#

I. INTRODUCTION

Almost all integrable models in two-dimensional statistical models, quantum field theories in
111 dimensions, and quantum chains1 owe their integrability to some quantum group symmetry.
For example, in lattice models, if one assigns the local Boltzman weights of a vertex or an IRF
model to be the elements of theR matrix corresponding to a quantum group, then the model will
be integrable due to the existence of a one-parameter family of commuting transfer matrices. In a
sense one can say that local quantum group symmetry ensures integrability. Although global
quantum group symmetry does not mean integrability, construction of models with such symme-
tries may be interesting and important as a first step toward understanding the mechanism of
integrability.

Recently new types of two- and three-state quantum chains were constructed and shown to
possessUq„sl~2!… symmetry.2–4 The strategy followed in Ref. 4 was to define the Hamiltonian as

H5(
j51

L

id^ ••• id^Hj ^ id....^ id, ~1!

whereHj acts on sitesj and j11 as

Hj5~p j ^ p j11!@Qj„D~C!…#. ~2!

Here j denotes the site of the lattice,C is the quadratic Casimir ofUq„sl~2!…, D is the coproduct,
pj is a typical typeb representation

5 of Uq„sl~2!… assigned to sitej , and finallyQj is a polynomial
function of degreed<m where the integerm is characterized by the value ofq(qm51). This
Hamiltonian is by constructionUq„sl~2!… invariant. The invariance is due to the centrality of the
Casimir. For the particular form of the Hamiltonian of the two-state and three-state quantum
chains see Ref. 4.

As is well known any quantum group is characterized by two algebras,6,7 the first being the
deformation of the universal enveloping algebra which is denoted byUq(g) and the second one
which is the deformation of the algebra of functions on the group which is denoted byCq(G). So
far everything which has been done concerning the construction of physical models with quantum
group symmetry have been based on representation theory ofUq(g). However, in the quantum
case the second algebra,Cq(G), has also a representation theory which is completely different
from that ofUq(g).

8,9

a!Electronic mail address: alimohmd@irearn.bitnet

0022-2488/96/37(1)/1/5/$6.00
1J. Math. Phys. 37 (1), January 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The novelty of the representations ofCq(G) is best understood when one considers the
classical~q→1! limit of Cq(G). In this limit, representations ofUq(g) approach those of the
classical Lie algebrag while those ofCq(G) collapse to trivial one-dimensional representations,
sinceCq(G) will become a commutative algebra. Therefore there is no parallelism between the
representation theories in the deformed and the undeformed case. Naively one expects that paying
attention to physical models which areCq(G) invariant may open up a new road in the study of
integrable models. At the present stage this is only a hope and real justification for it will exist if
one can somehow gauge a global symmetry of this kind in a particular physical model.

In this letter we construct a quantum chain which has a globalCq„GL~2!… symmetry, hereafter
called GLq~2! symmetry for simplicity.

II. THE QUANTUM GROUP GLq(2) AND IT’S CYCLIC REPRESENTATIONS

The quantum group GLq~2! is defined by the generators 1,a, b, c, andd, collected in the form
of a quantum matrix7

T5S a b

c dD
and relations

ab5qba, ac5qca, bd5qdb,
~3!

cd5qdc, bc5cb, ad2da5~q2q21!bc.

The coproduct which is used in tensor multiplication of representations is defined by

DS a b

c dD 5S a b

c dD ^ S a b

c dD . ~4!

The quantum determinantDq5ad2qbc is central and grouplike; that is,

DDq5Dq^Dq . ~5!

If q is a root of unity~qp51!, in addition to the determinant, all the elementsap, bp, cp, anddp

are central. In this case the algebra has ap-dimensional cyclic representation which is constructed
as follows:8 One first defines a stateu0& which is a common eigenvector ofb andc with eigen-
valuesm andn, respectively:

bu0&5mu0&, cu0&5nu0&,

and then builds up the representation spaceV as the linear span of vectors$un&[dnu0&, 0<n<p
21%. It is then easy to show thatV is invariant under the action of GLq~2!:

dun&5un11&, dup21&5hu0&, bun&5mqnun&, cun&5nqnun&,
~6!

aun&5~j1q2n21mn!un21&, au0&5
1

h
~j1mnq21!up21&.

Hereh is the central value ofdp andj is the value of theq-determinantDq .
It can be easily checked that the parametersh, j, m, andn are all independent and hence each

representation is characterized by the values of these parameters and is denoted byp~h,j,m,n!.
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III. QUANTUM CHAINS WITH GL q(2) SYMMETRY

We construct the quantum chains with GLq~2! symmetry as follows: To each site 1< j<L, we
assign a representationp j5p(h j ,j j ,m j ,n j ), the Hilbert space is the tensor product^ j51

L Vj ,
whereVj is thep-dimensional representation space ofpj .

At first glance it seems that the analogue of the construction of Ref. 4 in the case of
Cq„GL~2!… is to replace the CasimirC in Eq. ~2! by the quantum determinantDq . However, this
procedure leads to a trivial Hamiltonian due to the grouplike property ofDq @Eq. ~5!#, which
makesp j ^ p j11~Qj„D~D!…! proportional to the identity. However, there is one interesting possi-
bility and it is to defineHj as

Hj5p j ^ p j11~Qj„D~ap!,D~bp!,D~cp!,D~dp!…!. ~7!

Here the crucial point is that although in an irreducible representationap, bp, cp, and dp are
proportional to the identity, in a tensor product of representations they are not so due to the mixing
of the generators in their coproducts@Eq. ~4!#. The Hamiltonian constructed in this way is GLq~2!
invariant by construction.

A. Two-state quantum chains

Now we restrict ourselves to the casep52 ~q521!. From Eq. ~6! we obtain the two-
dimensional cyclic representation of GLq~2!, which in the explicit matrix notation takes the form

p~a!5S 0 g/h

g 0 D , p~b!5S m 0

0 2m D ,
~8!

p~c!5S n 0

0 2n
D , p~d!5S 0 1

h 0D ,
whereg5j2mn. This represents a continuous four-parameter family of two-dimensional repre-
sentations for GLq~2! ~for q521!. If t stands fora, b, c, or d, then a straightforward calculation
shows that

~p j ^ p j11!Dt
25 l t1^11ntsx^ sx1ptsy^ sy2 iqtsx^ sy2 ir tsy^ sx , ~9!

where

nt5
1
4~12h j2h j111h jh j11!mt , pt52 1

4~11h j1h j111h jh j11!mt ,
~10!

qt5
1
4~211h j2h j111h jh j11!mt , r t5

1
4~212h j1h j111h jh j11!mt ,

and

ma5
2g jg j11m jn j11

h jh j11
, mb522

m jm j11g j

h j
,

~11!

mc522
n jn j11g j11

h j11
, md52m j11n j .

The explicit expressions ofl ts are not necessary in this stage. As the simplest choice for the
polynomial @in Eq. ~7!# we set

Q05aaa
21abb

21acc
21add

2, ~12!
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whereats are arbitrary constants. Combination of Eqs.~9! and~12! leads to the following Hamil-
tonian:

Hj5Asx
jsx

j111Bsy
j sy

j1112 iCsx
jsy

j112 iDsy
j sx

j11, ~13!

where

A5b j~12h j2h j111h jh j11!,

B52b j~11h j1h j111h jh j11!,
~14!

C5b j~211h j2h j111h jh j11!,

D5b j~212h j1h j111h jh j11!,

andb j5aama1abmb1acmc1admd . If the factorbj is site independent, then modulo a constant
overall factor the Hamiltonian becomes

H05(
j

$~12h j2h j111h jh j11!sx
jsx

j112~11h j1h j111h jh j11!sy
j sy

j112 i ~211h j

2h j111h j r j11!sx
jsy

j112 i ~212h j1h j111h jh j11!sy
j sx

j11%. ~15!

Now the condition of Hermiticity of the Hamiltonian restricts the parametershj andhj11 to the
following form:

h j5a1 iA12a2,
~16!

h j115h j* ,

wherea is a real parameter. Under this condition the Hamiltonian takes the following simple form:

H05(
j

$~12a!sx
jsx

j112~11a!sy
j sy

j111A12a2~sx
jsy

j112sy
j sx

j11!%. ~17!

This is the desired Hamiltonian with GLq~2! symmetry.
Imposing the condition of site independence onbj in Eq. ~14!, themts are restricted to be site

independent, asats are arbitrary constants. Solving these conditions and using Eq.~16! results in
the following relation between the parameters of the different representations of the sites:

g j5g j12 , n j5n j12 , m j5m j12 ,
~18!

g j

h j
5

g j11

h j11
,

m j

n j
5

m j11

n j11
.

So the whole representations of the sites specify only by four complex parametersn1, m1, n2, g1,
and one real parametera.

There are several observations on the above Hamiltonian@Eq. ~17!#:

~1! Instead of the original continuous parameterq, the Hamiltonian depends on the continuous
parametera, which comes from the representation.

~2! In the two limits a51 anda521, this Hamiltonian degenerates into an exactly solvable
chain, that is( j51

L s n̂
j s n̂

j11. So our GLq~2! invariant Hamiltonian interpolates between twoxx
andyy classical Ising chains, whena is changed continuously from21 to 1.
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~3! It is crucial to note that the Hamiltonian~17! is not equivalent to ann̂n̂ chain wheren̂ is a new
unit vector in thex2y plane. That is, the transformationssx→asx1bsy andsy→csx1dsy

cannot diagonalize the Hamiltonian.
~4! If one definesUi521Hi , then there exists the following interesting relations betweenUi ’s:

Ui
254Ui ,

~19!~UiUi61Ui2Ui61UiUi61!~Ui2Ui61!564~12a2!.
The above equation is the generalized braid group algebra.2

~5! The simplest situation in whichH0 can be solved exactly is the case of a two-site lattice. In
this case there are four states with eigenvalues 2, 2,22, and22. It can be shown that the
degenerate orthonormal states~u2&6 andu22&6! are two-dimensional representations ofD(t)s.

B. Higher-state quantum chains

Choosingp53, one may expect to obtain a three-state GLq~2! invariant quantum chain.
However, forq351 it is seen by computation that

Da35a3^a31b3^c3, Db35a3^b31b3^d3,

Dc35c3^b31d3^d3, Dd35c3^a31d3^c3,

which means that the Hamiltonian~7! is proportional to the identity. This phenomena may occur
for all odd integersp.
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This paper shows that there is a correspondence between quasi-exactly solvable
models in quantum mechanics and sets of orthogonal polynomials$Pn%. The
quantum-mechanical wave function is the generating function for thePn(E), which
are polynomials in the energyE. The condition of quasi-exact solvability is re-
flected in the vanishing of the norm of all polynomials whose indexn exceeds a
critical valueJ. The zeros of the critical polynomialPJ(E) are the quasi-exact
energy eigenvalues of the system. ©1996 American Institute of Physics.@S0022-
2488~96!03201-X#

In quantum mechanics there exist potentials for which it is possible to find a finite portion of
the energy spectrum and associated eigenfunctions exactly and in closed form. These systems are
said to be quasi-exactly solvable.1–5 In such systems the potential depends on a parameterJ; for
positive integer values ofJ one can findJ eigenvalues and eigenfunctions exactly. The usual
approach to the analysis of quasi-exactly solvable systems is an algebraic one in which the
Hamiltonian is expressed as a nonlinear combination of generators of a Lie algebra, not belonging
to the center of the corresponding enveloping algebra.4 This technique is a modification of the
dynamical symmetry approach to exactly solvable quantum-mechanical systems, in which one can
find by algebraic means theentire spectrum in closed form.6

In this paper we propose an alternative approach to quasi-exact solvability. We show that the
solutionc to the Schro¨dinger equation for a quasi-exactly solvable model,

Hc5Ec, ~1!

is the generating function for a set of polynomials$Pn(E)% in the energy variableE. These
polynomials satisfy a three-term recursion relation and therefore form an orthogonal set with
respect to some weight functionw(E). For positive integer values of the parameterJ, correspond-
ing to quasi-exact solvability, we find that the norm ofPn(E) vanishesfor n>J. Moreover, all
polynomialsPn(E) beyond a critical polynomialPJ(E), factor into a product of two polynomials,
one of which isPJ(E):

Pn1J~E!5PJ~E!Qn~E! ~n>0!. ~2!

The zeros of the critical polynomialPJ(E) are precisely the quasi-exact energy eigenvalues of the
quantum-mechanical model.

We illustrate these features of quasi-exactly solvable models with the following infinite class
of Hamiltonians first discussed by A. Turbiner:1

H52
d2

dx2
1

~4s21!~4s23!

4x2
2~4s14J22!x21x6. ~3!

0022-2488/96/37(1)/6/6/$6.00
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Here,s is an arbitrary parameter. Whens lies between14 and
3
4, there is an attractive centrifugal

term; fors outside this range the centrifugal term is repulsive. Whens5 1
4 or s53

4, the centrifugal
core term disappears leaving a nonsingular sextic oscillator Hamiltonian

H52
d2

dx2
2~4s14J22!x21x6. ~4!

When the parameterJ in Eq. ~3! is a nonnegative integer, the corresponding Schro¨dinger equation
hasJ exact, closed-form solutions for any value ofs.

We seek a solutionc(x) to the Schro¨dinger equation forH in Eq. ~3! of the form

c~x!5 expS 2
1

4
x4D x2s21/2(

n50

` S 2
1

4D
n Pn~E!

n!G~n12s!
x2n. ~5!

Observe that whens5 1
4 this solution becomes an even-parity wave function of the oscillator

Hamiltonian~4!; whens53
4, c(x) becomes an odd-parity wave function ofH in ~4!.

Demanding thatc(x) in Eq. ~5! obey the Schro¨dinger equation~1! leads to the following
recursion relation for the expansion coefficientsPn(E):

Pn~E!5EPn21~E!116~n21!~n2J21!~n12s22!Pn22~E! ~n>2!, ~6!

subject to the initial conditions

P0~E!51 and P1~E!5E. ~7!

From these initial conditions the recursion relation~6! generates a set of monic7 polynomials, the
next four of which are

P2~E!5E21~32232J!s,

P3~E!5E31@~160296J!s232J164#E,
~8!

P4~E!5E41@~4482192J!s2128J1352#E21~3072J2212288J19216!s~s11!,

P5~E!5E51@~9602320J!s2320J11120#E31@~15360J2281920J191136!s2

1~25600J22141312J1164864!s16144J2236864J149152#E.

These polynomials have a number of noteworthy properties. First, for all values of the pa-
rameterss andJ they form an orthogonal set. This follows from the fact that they are generated by
a second-order~three-term! recursion relation.8 The appearance of a three-term recursion relation
is a consequence of the form of the potential in Eq.~3!. For example, the corresponding recursion
relation for anx4 anharmonic oscillator potential, whose Hamiltonian is not quasi-exactly solv-
able, is a higher-order recurrence relation. The harmonic oscillator system leads to a two-term
recursion relation; this system is exactly solvable rather than quasi-exactly solvable.

Second, from the expansion~5! we can see that the wave functionc(x,E) is the generating
function for the polynomialsPn(E).

The third and most significant property of the polynomialsPn(E) is that, when the parameter
J takes positive integer values, the polynomials exhibit the factorization property in Eq.~2!. This
factorization occurs because the third term in the recursion relation~6! vanishes whenn5J11, so
that all subsequent polynomials have the common factorPJ(E). This factorization property holds
for all values of the parameters. Furthermore, this factorization leads to the result that the zeros
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of the critical polynomialPJ(E) are just the quasi-exact energy eigenvalues. This is true because
the expansion in~5! truncates whenE is a zero ofPJ(E); when this series truncates the wave
functionc(x) is automatically normalizable.

To illustrate this factorization we list in factored form the first six polynomialsPn(E) for the
caseJ53:

P0~E!51, P1~E!5E, P2~E!5E2264s,

P3~E!5E32~128s132!E, P4~E!5@E32~128s132!E#E, ~9!

P5~E!5@E32~128s132!E#~E21128s1192!.

Observe thatP3(E) is a common factor ofPn(E) for n>3. The zeros ofP3(E) are

E50, E56A128s132, ~10!

which are the three exact energy eigenvalues for the quasi-exactly solvable Hamiltonian~3! when
J53. The corresponding exact eigenfunctions are obtained by evaluatingc(x) in Eq. ~5! at these
values ofE:

c0~x!5 expS 2
1

4
x4D x2s21/2

G~2s! S 12
x4

2s11D ,
c1~x!5 expS 2

1

4
x4D x2s21/2

G~2s!
S 12

A128s132

8s
x21

x4

2sD , ~11!

c2~x!5 expS 2
1

4
x4D x2s21/2

G~2s!
S 11

A128s132

8s
x21

x4

2sD .
Note that the energy levels may be ordered by the number of nodes of the corresponding wave
function.

A fourth property of the polynomialsPn(E) concerns their norms. The norm~squared! gn of
Pn(E) is defined as an integral:

gn5E dEw~E!@Pn~E!#2. ~12!

It is possible to determine the norms of an orthogonal set of polynomials directly from the
recursion relation; it is not necessary to know explicitly the weight functionw(E) with respect to
which the polynomials are orthogonal.9 The procedure is simply to multiply the recursion relation
~6! by w(E)En22 and to integrate with respect toE. Using the fact thatPn(E) is orthogonal to
Ek, k,n, we obtain a simple, two-term recursion relation forgn :

gn516n~J2n!~2s1n21!gn21 . ~13!

The solution to this equation withg051 is

gn5
16nn!G~J!G~2s1n!

G~J2n!G~2s!
. ~14!

This equation reveals that the space of orthogonal polynomials arising from a quasi-exactly
solvable model is associated with a nonpositive definite norm. In particular, we can see from Eq.
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~14! that gn vanishes forn>J if J is a positive integer. The appearance of a vanishing norm
coincides with the factorization mentioned above and is an alternative characterization of quasi-
exact solvability.

It is interesting that while the polynomialsPn1J(E) for n>0 have vanishing norm whenJ is
a positive integer, the quotient polynomialsQn(E) in Eq. ~2! form a new orthogonal set of
polynomials for each value ofJ.

Having determined the normsgn of the polynomialsPn(E) it is natural to evaluate the
integral of the square of the generating function~wave function! with respect to the weight
functionw(E):

G~x!5E dEw~E!@c~x,E!#2, ~15!

wherec(x,E) is given in Eq.~5!. Using the orthogonality of the polynomialsPn(E), we can
expressG(x) as a confluent hypergeometric function:

G~x!5
G~J!

G~2s!
expS 2

1

2
x4D (

n50

`
x4n14s21

n!G~n12s!G~J2n!
. ~16!

WhenJ is a positive integer, this sum truncates and we find thatG(x) can be expressed as a linear
combination of the squares of theJ quasi-exact eigenfunctions of the HamiltonianH in Eq. ~3!.
For example, whenJ53, we have

G~x!5
1

G~2s!
expS 2

1

2
x4D x4s21F11

x4

s
1

x8

2s~2s11!G
5G~2s!S 2s11

4s11
@c0~x!#21

s

4s11
@c1~x!#21

s

4s11
@c2~x!#2D , ~17!

wherec0(x) andc6(x) are taken from Eq.~11!. We emphasize that this result is highly non-
trivial. ExpressingG(x) as a linear combination of the squares of the eigenfunctions requires that
one solve an overdetermined system of 2J21 equations forJ expansion coefficients.

Let us now investigate the properties of the weight functionw(E). From the polynomials
Pn(E) we can calculate the moments ofw(E). Let an represent the 2nth moment ofw(E):

an5E dEw~E!E2n. ~18!

~Because the polynomials have parity symmetry we know that the odd moments vanish.! We are
free to normalizew(E) so that its zeroth moment is unity:

a051. ~19!

The remaining moments can then be determined algebraically:

a1532~J21!s,

a25322~J21!s~3Js25s1J22!,

a35323~J21!s~15J2s2260Js2161s2115J2s267Js174s14J2219J122!,
~20!

a45324~J21!s~105J3s32735J2s311743Js321385s31210J3s221596J2s214038Js2
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23372s21147J3s21179J2s13114Js22688s134J32282J21765J2674!,

a55325~J21!s~945J4s4210080J3s4140950J2s4274400Js4150521s413150J4s3

235910J3s31153990J2s32292154Js31205228s314095J4s2248960J3s21218337J2s2

2427524Js21307860s212370J4s229306J3s1134373J2s2269085Js1197206s1496J4

26272J3129292J2259531J144134!.

These moments have some interesting mathematical properties. For example, all the moments
an , n>1, have a factor of (J21)s. Furthermore, in the residual factor the coefficient of
(Js)n21 is (2n21)!! and thecoefficient ofsn21 is thenth Euler numberEn .

10

The outstanding property of the momentsan concerns their rapid rate of growth. This rate of
growth can be determined using the fact that there is a simple relationship between the moments
an and the coefficientsbn21 of Pn22(E) in the recursion relation~6!. Specifically, the Taylor
series

f ~z!5 (
n50

`

anz
n, ~21!

whose coefficients are the moments in Eq.~18!, is equivalent to a continued fraction

f ~z!51/~12b1z/~12b2z/~12b3z/~12 . . . !!!!, ~22!

whose coefficients arebn .
11 Sincebn is a cubic polynomial inn we deduce that the moments

an grow like (3n)!. 11

It is unusual to find orthogonal polynomials whose weight functions have moments that grow
so rapidly. The classical orthogonal polynomials, such as the Hermite polynomials, typically have
moments that grow liken!. This is also true of discrete versions of the classical orthogonal
polynomials, such as the Hahn polynomials.12 The Euler and Bernoulli polynomials are
distinctive13 in that their moments grow like (2n)!. However, the polynomialsPn(E) associated
with quasi-exact solvability are of an entirely new type due to the rapid rate of growth of their
moments. Carleman’s condition states that when the moments grow faster than (2n)!, the moment
problem is not guaranteed to have a unique solution.15Almost certainly, the weight functionw(E)
is not unique! This nonuniqueness corresponds to a kind of gauge invariance that underlies these
quasi-exactly solvable systems. Indeed one may conjecture that the nonuniqueness of the weight
function is related to the Lie algebraic symmetry of quasi-exact solvability.
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A free massless field coupled to a background chargeQ is considered. The confor-
mal blocks of the theory are adequately described by theN-point vertexVN;0 which
is, up to a multiplicative constant, completely determined by the Knizhnik–
Zamolodchikov equations and a set of Ward identities on the sphere. TheN-point
g-loop vertexVN;g for compact Riemann surfacesSg of genusgÞ0 is constructed
by a sewing procedure. The main new result is a rigorous proof of the fact thatVN;0
is trace class for nonoverlapping disks. This allows one to show that the set of all
N-point vertices~for all N! is a modular functor. ©1996 American Institute of
Physics.@S0022-2488~96!01301-3#

I. INTRODUCTION

In two-dimensional conformal invariant quantum field theory, the minimal models of Belavin,
Polyakov, and Zamolodchikov1 belong to the simplest ones. They are built upon a finite set of
irreducible highest weight modulesL(h,c) of the Virasoro algebra with central charge
c5126(p82p)2/pp8 parametrized by two positive and relatively prime integersp andp8. It has
been realized in Ref. 2 that these models can be constructed using a free field in a background
charge. More precisely, the spacesL(h,c) are isomorphic to the BRST-cohomologies of certain
complexes of free field Hilbert spaces. This connection allowed the computation of conformal
blocks of minimal models on Riemann surfaces.3,4

In this paper, we study free field theories for their own sake. We present a rigorous construc-
tion of theN-point vertexVN;g on compact Riemann surfaces of arbitrary genusg. Out of it, it is
easy to construct the conformal blocks~i.e., the holomorphic correlation functions! which contain
all the information of the theory. One simply has to saturate the vertex with the states

) t i8~0!2b i ~b i2Q!/2u0&b i
.

Our guideline throughout the paper is Segal’s axiomatic framework5 ~Sec. VII!. Starting with the
N-point vertex on the sphere, we construct theN-point g-loop vertex by a sewing procedure. Our
main new result is Theorem 13 which proves the validity of the whole construction. We also show
that the result we get does not depend on our particular way of sewing. If this were the case, we
would have a contradiction with Segal’s fourth axiom. Finally, we establish the validity of the
other axioms in Sec. X. An important remark is that the axiom~iii ! is not true in the presence of
a background charge, which implies a lack of physical positivity. In order for our construction to
be really complete, we would still have to check that we can obtain all Riemann surfaces~up to
equivalence! by only sewing disks together on the sphere. Whether this is true or not is not known
to the author, but is an interesting open question.

Although this paper is organized in a self-consistent way, the interested reader can find more
background and computational details in Ref. 6.

0022-2488/96/37(1)/12/27/$6.00
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II. FREE BOSONIC THEORY

For the sake of clarity and to fix the notation, we briefly review some properties of a free
massless field. The coupling to a background chargeQ will only play a role when we later
introduce correlators.

We define the Heisenberg algebra (an)nPZ through the commutation relations

@an ,am#5ndn1m,0 . ~1!

It is useful to know that for fixedn.0, the operatorsan/An anda2n/An satisfy the canonical
commutation relations

F anAn
,
a2n

An G51.

a0 is called the zero mode of the algebra. The algebra~1! has infinite dimensional representations
pm characterized by a real numberm, a highest weight vectoru0&m , and the relations

a0u0&m5mu0&m , anu0&m50, n.0.

We further defineen as the multiindex with 1 at positionn and 0 otherwise. A basis ofpm is given
by

ufb&m5
a

21
b1 •••a

2k
bk

Ab!AI b
u0&m ,

whereb5~b1,...,bk! is a finite multiindex,b!5Pbi !, I
b 5 P i b i. Moreover we setibi5(ib i . We

now have the relations

anufb&m5Anbnufb2en
&m , n.0,

a2nufb&m5An~bn11!ufb1en
&m , n.0,

where we setufb&m50 if b has one or more negative components. The spacepm of all finite linear
combinations of basis vectors possesses a scalar product which is uniquely determined by the
requirementsan* 5 a2n for all nPZ and thatu0&m has norm one. We denote the completion ofpm

with respect to this scalar product bypm̄. The vectorsufb&m form an orthonormal basis ofpm̄.
We next introduce the operator

L05
1

2
a0~a02Q!1 (

n51

`

a2nan ,

where the real numberQ is called the background charge of the theory.L0 is a well defined
symmetric operator onpm and is bounded below.

Definition 1: For R.0 we define HR
m as the completion ofpm with respect to the scalar

product

~w,c!R5~R2L0w,R2L0c!.

It is easy to see that

pm # HR
m # HR8

m
# H1

m5pm̄ # HR9
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for 0,R<R8<1<R9. An orthonormal basis ofHR
m is given by the vectorsRL0ufa&m . The

fundamental fields of the theory are

J~z!5 (
nPZ

a2nz
n215a0z

211 (
nÞ0

Aunu
a2n

Aunu
zn21

and

Vb~z!5Tbz
ba0 expS b (

n51

`
a2n

n
znD expS 2b (

n51

`
an
n
z2nD , b P R,

whereTb :pm→pm1b is the linear map sendingufa&m to ufa&m1b for all finite multi-indicesa.
Definition 2: We define TCm

m1b as the space of all operators A with the following properties:
~a! A(z):HR

m→HR8
m1b is an analytic (possibly many-valued) trace class operator for

0,R,uzu,R8.
~b! The operator J(z1)A(z2):HR

m→HR8
m1b has a (possibly many-valued) trace class analytic

continuation to the whole domain R,uz1u,uz2u,R8 with a possible pole at z15z2 .
~c! The analytic continuation is radial ordering foruz1uÞuz2u.
It is not too hard to show thatJ P TCm

m. Using generalized Laguerre polynomials,6 it is
possible to show the following result:

Proposition 3: VbPTCm
m1b

To give the reader an idea of the techniques involved, we sketch the proof of property~a!. The
square of the Hilbert–Schmidt norm ofVb(z):HR

m→HR8
m1b is given by

(
iai,`

iR82L0Vb~z!RL0ufa&i25c (
iai,`

S RR8D
2iai

expS (
k51

` ubu2

k S uzu
R8D

2kD
3)

k51

`

LakS 2
u12~ uzu/R8!2ku2

~k/ubu2!~ uzu/R8!2kD ,
where we have introduced the Laguerre polynomials

Ln~x!5 (
m50

n S nmD ~2x!n2m

~n2m!!
~2!

The constantc comes from the purely zero mode contributions, and is therefore unimportant here.
The expression we have in the sum is finite if and only ifuzu,R8. Using the generating function

(
n50

`

tnLn~2x!5
1

12t
expS tx

12t D , utu,1 ~3!

we can compute the sum and find

(
iai,`

iR82L0Vb~z!RL0ufa&i25c expS (
k51

` ubu2

k S uzu
R8D

2kD )
k51

`
1

12~R/R8!2k

3expS ~ ubu2/k!~R/uzu!2ku12~ uzu/R8!2ku2

12~R/R8!2k D .
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It is not too hard to see that this sum is finite if and only ifR,uzu,R8. Therefore,
Vb(z):HR

m→HR8
m1b is a Hilbert–Schmidt operator forR,uzu,R8. A part of this result was found

independently by Ref. 7~albeit without the use of Laguerre polynomials!. By a deformation
argument similar to the one used in Theorem 16, we can prove thatVb is actually a trace class
operator.

Considering radially ordered products ofJ’s with Vb , we get new operators which have radial
ordering as analytic continuation. We want to make this idea rigorous with the following:

Definition 4: We define the linear map j:pb→TCm
m1b recursively by the relations

j u0&b5Vb ,

~ j ~anc!!~z!5
1

2p i R
z
dz~z2z!nJ~z!~ jc!~z!, ;c P pb , ;n P Z,

where the arguments z andz are implicitly radially ordered.
As an operatorHR→HR8, ( j (anc))(z) can be practically computed as

~ j ~anc!!~z!5
1

2p i R
uzu5r 8

dz~z2z!nJ~z!~ jc!~z!2
1

2p i R
uzu5r

dz~z2z!n~ jc!~z!J~z!,

whereR,r,uzu,r 8,R8. All the operatorsjf with fÞu0&b are called descendant fields.
Proposition 5:
(a) j is well defined;

(b) ( ja2n1
•••a2nk

u0&b)(z)5
:]n121J•••]nk21JVb :(z)

(n121)!•••(nk21)!
.

The dots ‘‘:’’ in ~b! denote Wick ordering~it bringsTb and all thean with negativen to the left!.
What ~a! says is thatj respects the commutation relations [an ,am]5ndn1m;0 of the Heisenberg
algebra, and thatjc is really inTCm

m1b for all cPpb , which can be easily proved by induction. An
immediate consequence is that our operator algebra contains all fields of the form

:P~J,]J,]2J,...!Vb :,

whereP is an arbitrary polynomial. That it contains no other operators is the content of Theorem
6.

Theorem 6:For all w P pb1
, c P pb2

the product( jw)(z1)( jc)(z2) is analytic (but possibly
many-valued) in z1, z2 if R8.uz1u.uz2u.R and has a (possibly many-valued) analytic trace class
continuation to R8.uz1u,uz2u.R, z1Þz2 . This analytic continuation can be expanded in the form

~ jw!~z1!~ jc!~z2!5~z12z2!
b1b2 (

n>2N
~z12z2!

ncn~z2!,

where Nis finite andcn P TCm
m1b11b2 are (finite sums of) descendant fields. The sum converges in

the trace norm and therefore also in the operator norm if

uz12z2u,min~R82uz2u,uz2u2R!.

What this theorem means is that if we allow the valuesb of Vb to sit in a latticeL, we have a
closed operator algebra in the following sense: the product of any two fields in the algebra can be
expanded in a power series whose Laurent coefficients are again fields in the algebra. The operator
algebra consists of all vertex operatorsVb and their descendants. The properties we require of the
latticeL are the following:

~a! L , R;
~b! b1 ,b2 P L ⇒ b11b2 P L;
~c! b P L ⇒ 2b P L;
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~d! Q P L;
~e! L is a countable set.

III. DUAL SPACES

In order to define theN-point vertexVN;0 in Sec. IV, and to extend the theory to Riemann
surfaces, it is necessary to introduce the concept of dual module. The spacepb is graded by the
eigenspaces ofL0:

pb5 % n50
` pb,n ,

where the subspacepb,n with L0 eigenvalue
1
2b(b2Q)1n has dimensionp(n), the number of

partitions ofn. As a space, the dual modulepb* is just the sum of the duals of the homogeneous
components

pb*5 % n50
` pb,n* .

In addition,pb* is both a left and a right Heisenberg module. To see this, we have to define a left
and a right action of the generators of the Heisenberg algebra on a general covectorv P pb* . By
definition

~van!~w!5v~anw!

and

~anv!~w!5v~~Qdn;02a2n!w!,

wherew P pb and where~ !~ ! denotes duality. It is easy to check the relations

@an ,am#5@Qdm;02a2m ,Qdn;02a2n#

establishing the left module structure ofpb* . Let us define

Ll5
1

2 (
m P Z

:amal2m :2
1

2
Q~ l11!al ~4!

which satisfy the Virasoro commutation relations

@Ln ,Lm#5~n2m!Ln1m1
c

12
n~n221!dn1m;0

with c5123Q2. Now pb* also carries a left and right Virasoro structure. Indeed, using the
definition ofLn , we find

~vLn!~w!5v~Lnw!

and

~Lnv!~w!5v~L2nw!.

The vectorb^0u P pb,0* with b^0u0&b51 is the highest weight vector ofpb* with L0 ~left or right!
eigenvalue12b~b2Q!. Since we will later work with the spaces%b P Lpb , it is natural to define

a^0u0&b5da;b . ~5!

16 Pierre-Alain Bovier: A rigorous treatment of conformal blocks

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Note that vectors inpb* have lefta0 eigenvalueQ2b. As a consequence, the spacespb* andpQ2b

are isomorphic as left Heisenberg modules, the isomorphism being

an1•••ankb^0u ° an1•••anku0&Q2b . ~6!

IV. THE N-POINT VERTEX VN;0

The purpose of this section is to introduce theN-point vertexVN;0 for a free bosonic theory
coupled to a background chargeQ. It depends on N coordinate systems
t1(z)5z1z1 ,...,tN(z)5z1zN on the Riemann sphere. In a later section, we will generalize it to
arbitrary projective coordinatest1 ,...,tN .

In any field theory, it is important to know the vacuum expectation value of a product of fields.
In our case, this means the value of

Q^0u~ j uc1&!~z1!•••~ j ucN&)~zN!u0&0 ~7!

for uc i& P pb i
and uz1u.•••.uzNu. We interpret the out vacuumQ^0u as having a chargeQ. In

other words, we couple the system to a chargeQ sitting in the point̀ . We know from Sec. II that
Eq. ~7! has an analytic~possibly many-valued! continuation to noncoinciding points. Moreover, by
the equality ~5!, the vacuum expectation value vanishes unless( ib i5Q. We define
VN;0(t1 ,...,tN) by

VN;0~ t1 ,...,tN!uc1&•••ucN&5Q^0u~ j uc1&!~z1!•••~ j ucN&)~zN!u0&0 .

It is a multilinear form acting onpb1
^ ••• ^ pbN

. The next proposition states thatVN;0 is com-
pletely determined by its value onu0&b1

•••u0&bN
. Before we can state the proposition, we define

M as the space of meromorphic functions which are regular at` and have poles only at the points
t1(0)5z1 ,...,tN(0)5zN with uz1u.•••.uzNu. In other wordsM consists of all finite linear com-
binations of functions of the type (z2zi)

m, m<0 an integer. Forf P M we define

azi~ f !5
1

2p i R
zi

dz f ~z!J~z2zi !,

where the contour encircles the pointzi , but no other pointzj , jÞ i . Since f has at most a pole
singularity atz5zi , azi( f ) leavespb i

invariant. By the definition ofj , we can also write

~ jazi~ f !w!~zi !5
1

2p i R
zi

dz f ~z!J~z!~ jw!~zi ! ~8!

because Eq.~8! is true for all f of the form f (z)5(z2zi)
m. Now comes a fundamental proposi-

tion:
Proposition 7: Let fP M, uw i& P pb i

, (bi5Q, uz1u.•••.uzNu. Then

(
i51

N

Q^0u~ j uw1&!~z1!•••~ j ~azi~ f !uw i&!~zi !)•••~ j uwN&)~zN!u0&0

5Qf~`!Q^0u~ j uw1&!~z1!•••~ j uwN&)~zN!u0&0 , ~9!

where f~`!5limz→` f (z).
These equalities are called Ward identities and reflect theU~1! Kac–Moody symmetry gen-

erated byJ. The proof of the proposition is a straightforward argument of contour deformation.
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With Eq. ~9!, we can successively build down the degrees of theuwi& until we get a product of
vacua~here, the degree ofa2n1

•••a2nk
u0&b is defined as(ini!. With the help of this proposition,

it is possible to prove Proposition 8.
Proposition 8: We have

VN;05d(b i ;Q b1
^0u•••bN

^0uexpS (
i , j51
i, j

N

(
m,n50

`

an
~ i !am

~ j !
]zi
n

n!

]zj
m

m!
log~zi2zj !D .

Here, the upper index( i ) means that the action is on thei th factor of the tensor product̂ pb j
.

V. THE KNIZHNIK–ZAMOLODCHIKOV EQUATIONS

In this paragraph, we want to extend theN-point vertexVN;0 to general projective coordinates
using the Knizhnik–Zamolodchikov equations. Let us start by defining the energy-momentum
tensor

T~z!5 1
2:~]f!2:~z!2 1

2Q]2f~z!

with the expansion

T~z!5 (
n P Z

Lnz
n22, ~10!

where the modesLn are given by Eq.~4!. Using the explicit formula we have forj ~Proposition
5b! as well as the Leibniz rule for differentiating a product, we can check Proposition 9.

Proposition 9: We have the following operator equation (both sides are operators:
HR

a→HR8
a1b , R,uzu,R8):

~ jL21c!~z!5]z~ jc!~z!, c P pb .

This proposition immediately implies that

]ziVN;0~ t1 ,...,tN!5VN;0~ t1 ,...,tN!L21
~ i ! . ~11!

Actually, Eq.~11! together with the Ward identities~9! uniquely characterizeVN;0 up to a multi-
plicative constant. The Ward identities fix its dependence on the states it acts on, while Eq.~11!
fixes its dependence ont i . From now on, we would like to admit more general projective trans-
formationst i . Proposition 9 tells us what happens toVN;0 under translations. With the idea in
mind that the energy-momentum tensor is the infinitesimal generator of conformal transforma-
tions, we would like to describe howVN;0 changes under an infinitesimal projective transforma-
tion. The collectiont1 ,...,tN of projective coordinate systems is called admissible ift i(0)Þt j (0)
wheneveriÞ j . Consider a connected, simply connected open neighbourhoodU of one such
collection t1

0 ,...,tN
0 which contains only admissible collections of coordinates. LetMLN be the

space of multilinear forms

V:pb1
^ ••• ^ pbN

→ C

which depend holomorphically onN coordinate systemst1 ,...,tN in U ~for arbitrary but fixedbi

satisfying(bi5Q!. Let us now look at a coordinate change inU:

t̃ i~z!5t i~z!1ev~z!
d

dz
ti~z!,
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wherev(z)d/dz is some holomorphic vector field on the Riemann sphere, i.e., of the form

v~z!
d

dz
5 (

n521

1

vnz
n11

d

dz

ande is a real parameter. We define an action ofv on pb i
by

p~v !uh&52 (
n521

1

vnLnuh&.

Only finitely many terms in the expansion

1

2 (
kPZ

:akan2k :

of Ln contribute for a givenuh& P pb i
, and the action is well defined. With the Lie bracket

F2zn11
d

dz
,2zm11

d

dzG52~n2m!zn1m11
d

dz

for vector fields, this becomes a Lie algebra action in correspondence with the Virasoro algebra
commutation relations

@Ln ,Lm#5~n2m!Ln1m

for n,mP$21,0,1%. We further define

]v
~ i !V~ t1 ,...,tN!5

d

de
V~ t1 ,...,t̃ i ,...,tN!ue50

and

“v
~ i !V5]v

~ i !V1Vp~v !~ i !

for V P MLN . Both ]v
( i ) and “v

( i ) are linear maps:MLN → MLN . Let MN be the space of
holomorphic functions

f :U 3 Ĉ → Ĉ

satisfying f21(`),ø i51
N $(t1 ,...,tN ,z)uz5t i(0)%. We emphasize thatf should have only pole

singularities@in no other hyperplanes thanz5t i(0)#. This space carries a Lie algebra structure
under the bracket

@ f ,g#5(
i51

N
1

2p i R
zi

g d f50,

whered f denotes the differential off with respect toz. The expression is zero because the 1-form
gd f has no poles outsidez5zi(5t i(0)!. We now define an action off P MN on the spaceMLN
by

~ f •V!~ t1 ,...,tN!5V~ t1 ,...,tN!S (
i51

N

ati
~ i !~ f !2Qf~ t1 ,...,tN ,`!D , ~12!
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where the upper index( i ) again means that the action is on the ith f actorpb i
and where

at( f ) is implicitly defined by the equation

j tat~ f !w5
1

2p i R
t~0!

f ~z!J~z! j tw dz. ~13!

For t(z)5z1zi , we haveat( f ) 5 azi( f ) by Eq. ~8!. By analyzing infinitesimal coordinate
changes, we see that Eq.~13! is a good definition forat( f ) which means thatat( f ) mapspb to
itself. Using the operator product

J~z!J~z!5
1

~z2z!2
1regular terms

we can show that Eq.~12! defines a Lie algebra action ofMN onMLN . We would now like to
define theN-point vertexVN;0PMLN as a solution to the Knizhnik–Zamolodchikov equations

“v
~ i !V50 ~14!

for all vector fieldsv and to the Ward identities

~ f •V!50 ~15!

for all f P MN . That Eq.~14! is compatible is a consequence of Proposition 10.
Proposition 10: The connection“ is flat, i.e.,

@“u
~ i ! ,“v

~ j !#5d i j“ @u,v#
~ i ! .

Proof: For iÞ j this is true because“v
( i ) and“u

( j ) act on different factors. Ifi5 j , the relation
is an immediate consequence of

@]u ,]v#5]@u,v#

and the fact that we have a Lie algebra action of vector fields. j

We know from the previous section that the Ward identities

f •V~ t1 ,...,tN!50, ; f P MN

for the fixed collection of coordinate systemst i
0(z)5z1zi determine the multilinear formV ~for

these particulart i
0! uniquely up to a scalar multiple. The Knizhnik–Zamolodchikov equation~14!

being first-order compatible differential equations allow us to extend thisV uniquely to other
coordinatest i along each path starting att i

0 in our space of coordinate systems. The solution we
get will be holomorphic in admissible (t1 ,...,tN)PU. Moreover, it is sufficient to impose“vV50
for v~z!51,z,z2. Let us call the solution we get theN-point vertex and denote it byVN;0 ~0 is the
genus of the surface, which is 0 for the Riemann sphere!. For all f P MN we have

~ f •VN;0!~ t1 ,...,tN!uh1&•••uhN&

5Q^0u(
i51

N

j t1uh1&••• j t iati
~ i !~ f !uh i&••• j tNuhN&u0&02Qf~ t1 ,...,tN ,`!VN;0uh1&•••uhN&

5(
i51

N

Q^0u(
i51

N

j t1uh1&•••
1

2p i R
t i ~0!

f ~z!J~z! j t iuh i&dz••• j tNuhN&u0&0

2Qf~ t1 ,...,tN ,`!VN;0uh1&•••uhN&
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5Q^0u
1

2p i R
uzu@1

f ~z!J~z!dz jt1uh1&••• j tNuhN&u0&0

2Q^0u j t1uh1&••• j tNuhN&
1

2p i R
0
f ~z!J~z!dzu0&02Qf~ t1 ,...,tN ,`!VN;0uh1&•••uhN&

50

soVN;0 automatically satisfies Eqs.~15! in all coordinate systems. Let us summarize what we have
found in the following:

Proposition 11: The Ward identities (15) for a particular collection of admissible coordinate
systems, together with the Knizhnik–Zamolodchikov equations (14) for all admissible t1 ,...,tN
andv~z!51,z,z2, determine VP MLN uniquely up to a scalar multiple. We call this V the N-point
vertex and denote it by VN;0. It is analytic (but possibly many-valued) in t1 ,...,tN . Moreover, it
satisfies the Ward identities (15) for all admissible t1 ,...,tN .

The next proposition gives an explicit form forVN;0:
Proposition 12: Up to a multiplicative constant, VN;0 is given by

VN;05d(
i51
N b i ;Q

b1^0u•••bN
^0uexpS 2 (

i , j51
i, j

N

(
n,m50

`

an
~ i !Dnm~si t j !am

~ j !D , ~16!

where ti are projective coordinates, i.e., have the form

ti~z!5
Az1B

Cz1D
, AD2BC51.

si t j denotes composition of the maps si and tj , and

an5H a0 , n50

an

Aunu
, nÞ0

,

si~z!5
1

t i
21~z!

,

Dnm~g!5
Am
An

]m

m!
g~z!nU

z50

, n, mÞ0,

D00~g!5 1
2 log~g8~z!!uz50 ,

Dn0~g!5
1

An
g~z!nU

z50

, nÞ0,

D0m~g!5
1

2
Am

]m

m!
log g8~z!U

z50

, mÞ0.
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The proof splits into two parts. First, we must show that this expression agrees, up to a multipli-
cative constant, with the one we have found in the special case wheret i(z)5z1zi . This is easy to
check. The more lengthy but nevertheless straightforward part consists in checking the KZ equa-
tions.

VI. THE SCHOTTKY REPRESENTATION OF A RIEMANN SURFACE

In this section we describe how we can, starting from a punctured sphere, obtain compact
Riemann surfaces. This will ultimately help us to extend theN-point vertexVN;0 from the Rie-
mann sphere to more general Riemann surfaces. LetSm ~m51,...,g! be a set ofg projective
transformations, i.e.,

Sm~z!5
amz1bm

cmz1dm
, amdm2bmcm51 ~17!

having some characteristic circles~see below! all exterior to one another. The Schottky groupG g

is the subgroup of PSL~2,C! generated by theSm’s. Therefore, an elementT P G g , except for the
identity, can be written in the form

T5Sm1

n1 •••Smr

nr , r51,2,..., ni P Z\$0%, m iÞm i11 .

A more convenient way to specify the generatorsSm than Eq.~17! is by their multiplierskm and
fixed pointsjm andhm defined by

Sm~z!2hm

Sm~z!2jm
5km

z2hm

z2jm
, 0,ukmu,1.

Since for anyz P Ĉ\$jm ,hm% we have

lim
n→`

Sm~z!n5hm , lim
n→`

Sm~z!2n5jm

we callhm the attractive fixed point andjm the repulsive fixed point. Theg generatorsSm and their
inverse identify in the extended complex plane 2g circles C m and C m8 for m51,...,g, called
isometric circles and defined, respectively, by

UdSm

dz U
21

5ucmz1dmu251, UdSm
21

dz
U21

5ucmz2amu251.

It is easy to verify that the projective transformationSm mapsC m ontoC m8 and that of course the
inverseSm

21 mapsC m8 onto C m . Moreover, the exterior ofC m will be mapped bySm into the
interior of C m8 whereas the interior ofC m will be mapped into the exterior ofC m8 . In particular,
this implies that the attractive fixed pointhm is inside the circleC m8 while the repulsive fixed point
jm is inside the circleC m . If we require these isometric circles to be all exterior to each other, we
can deduce that the fundamental region of the Schottky groupG g is precisely the part of the
extended complex plane which is exterior to all the circles. If we identify these circles in couple,
g handles are formed and we obtain a Riemann surfaceSg of genusg. More precisely, we have

Sg5
Ĉ2L~G g!

G g
,

whereL~G g! is the limit set of the Schottky group, i.e., the set of accumulation points of its
orbits.8 Going around a cycleam of the canonical homology basis of the Riemann surface corre-
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sponds, in the Schottky representation, to going aroundC m clockwise orC m8 anticlockwise while
moving on a path that brings from a pointz to the pointSm(z) P C m8 corresponds to going around
a bm cycle. Instead of choosing isometric circles, we could, for example, take a smaller circleC̃ m

instead ofC m , which is then mapped into a circleC̃ m8 larger thanC m8 . All the properties ofC m

andC m8 ~apart from being isometric! remain true forC̃ m and C̃ m8 . In particular, we can require
these new circles to be all exterior to each other, and forget about the old ones. Conversely, every
compact Riemann surfaceSg with a given homology basis can be obtained with a group of
Schottky type~Ref. 9, retrosection theorem p. 222 of Ref. 10!. A group of Schottky type, unlike a
Schottky group, identifies pairs of analytic closed curves instead of pairs of circles, but it is still a
group of projective transformations. The closed curves just mentioned correspond to the given
homology basis. Unfortunately, not every group of Schottky type is a Schottky group as is shown
in Ref. 11. Therefore, it is probably not true that we obtain all Riemann surfaces by sewing
together pairs of circles~it may even not be true that we obtain a representative for each point in
the moduli space of compact Riemann surfaces!. Since we only consider Riemann spheres withN
disjoint projective diskst1(D),...,tN(D) ~D being the closed unit disk! and not spheres with
general embedded disks, the whole discussion will be restricted to the Riemann surfacesSg

obtained by identifying pairs of circlest i(S
1).

VII. AXIOMATIC APPROACH

In Ref. 5, Segal formulated a set of properties or axioms which he thinks are characteristic of
a conformal field theory. We now want to list these axioms in a slightly different setting, taking
into account many-valuedness and the fact that we possibly do not get all compact Riemann
surfaces using Schottky groups.

For Segal,5 the basic object of a conformal field theory is a representation of the categoryC

which we now want to describe. The starting point for definingC is a Riemann sphere with
pairwise disjoint embedded disks~also called legs! t1(D),...,tN1M(D) where t1 ,...,tN1M are
projective transformations. We can change the orientation of the diskstN11(D),...,tN1M(D) by
complex conjugation. We then get a Riemann sphere with legst1(D),...,tN(D),
t N̄11(D),...,t̄N1M(D) which we interpret as a morphism fromN in-disksCN toM out-disksCM .
A new morphism, i.e., a new Riemann surface, can be obtained by cutting outg pairs of in- and
out-disks and sewing their boundary circles together. This is done using a Schottky group. More
precisely, the sewing together of the circlest i(S

21) and t̄ j (S
1) is via the Schottky generatort isj .

We thus getg generators, and obtain a surface of genusg which carries a canonical homology
basis, where thea cycles correspond to the pairs of circles that have been sewn together, and a
path from a point on one circle to the corresponding point on its image circle corresponds to ab
cycle. We will show later that there is a unique way to choose the homology class of theb cycle.
The objects ofC are therefore Cartesian productsCN of N unit disksD in the complex plane, and
a morphismCN→CM is a compact~not necessarily connected! Riemann surfaceS with N in-legs
andM out-legs. Each connected component ofS is a Riemann surfaceX without boundary with
a certain number of embedded diskst i(D) or t̄ j (D) and a fixed canonical homology basis (a,b).
Theset i are local projective coordinates onX. Moreover, we associate to each unordered pair of
distinct coordinates onX an integerl i j P Z. Likewise, if the genus ofX is not zero, we associate
integersl i

Q ,lm
Q to eacht i ~or t̄ i! and eacham ,l im to every pairt i ,am , andlmn5 l nmP$0,1% to every

pair am ,an ~where this timem andn can be equal!. In the case of the sphere, these integers fix a
branch for each logarithm appearing inVN;0. More precisely, the integers are defined so that

p l i j<Im~D00~si t j !!,p~ l i j11!

making VN;0 single-valued. In the same way,VN;g will be single-valued if the integers
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l im ,l i j ,lmn ,l i
Q ,lm

Q are specified along with a canonical homology basis@see the discussion after
Eq. ~28!#. Two morphismsS andS8 which carry the same set of integers are identified whenever
there exists a biholomorphic map

f :S → S8

with f +(t, t̄)5(t8, t̄8) andf (am) 5 am8 , f (bm) 5 bm8 for all mP$1,...,g%. The last two equalities are to
be understood in a homological sense.

Under composition of morphisms, the genus is additive, and as we will see later, the integers
associated to the new surface, as well as the new homology basis are uniquely determined by the
integers and homology basis we had before the sewing. The simplest example is provided by the
semigroup of morphismsC0→C0 . It is just the space of isomorphism classes of Riemann surfaces
with a fixed homology basis and a fixed set of integers, the operation being disjoint union.

Let us consider the compositionS of two morphisms corresponding to connected Riemann
surfaces both coming from a Riemann sphere under the action of a Schottky group.S itself can be
obtained from a Schottky group acting on a Riemann sphere because we can first sew both spheres
together and then act with the larger Schottky group. Our space of morphisms consists of all finite
unions of Riemann surfaces that we get from a sphere and a Schottky group, and what we have
just shown is that a composition of morphisms is again a morphism. We are now in a position to
define a conformal field theory. It consists of a complex Hilbert spaceH ~the space of states! and
of a continuous functorV from C to a category of Hilbert spaces.V is required to possess the
following properties:

~i! V(CN)5H
^N.

~ii ! For each morphismS:CN→CM , the operatorV:H^N→H^M is trace class.
~iii ! V is a * -functor, i.e., V(S)*5V(S̄) for each (S,a,b):CN → CM where

(S̄,a,2b):CM → CN is the Riemann surface complex conjugate toS carrying the same set of
integers asS but with the opposite sign.

~iv! V has the collapsing property that if a morphismS:CN1R → CM1R is made into a
morphismŜ:CN → CM by attaching the firstR outgoing circles to the firstR ingoing circles, then
V(Ŝ)5Tr V~S! where the trace is taken overH^R.

~v! Let S̃:CN21 → CM11 be the morphism obtained fromS:CN → CM by reversing one
leg ~while keeping the homology basis and the integers fixed!. If we interpretV~S! as an operator
from HN21 to H*^H^M, then V(S̃)5(w ^ Id)+V(S) where w:H*→H is a ~fixed! linear
isomorphism.

A word of explanation is in order for the fourth property. By the remarks before the axioms,
it is enough to know whichb cycles and integers to select in the case where we sew togetherg
pairs of circles on the sphere. What property~iv! says is thatV(Ŝ) is independent of the particular
sewing used to obtain it.

The functorV is sometimes called modular because it only depends on the Riemann surface
S through a homology basis, a set of integers, and the local projective coordinatest i around the
embedded disks. In the literature, modularity generally means more than this. One usually con-
siders holomorphic and antiholomorphic sectors together and requires independence of the homol-
ogy basis.

VIII. EXTENSION TO RIEMANN SURFACES

In this section, we would like to extend theN-point vertexVN;0 from a sphere withN legs to
other compact Riemann surfaces with legs by a sewing procedure. The extension will be such that
the set of allN-point vertices so obtained~for all N! is a modular functor in the sense of the
axioms above.

We would first like to associateVN;0 to a Riemann sphere withN legs. The legs aret i(D),
i51,...,N. Let us see how to get theN-point g-loop vertexVN;g starting withVN12g;0. For
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notational simplicity, we label the firstN legs ofVN12g;0 with an indexi running from 1 toN and
divide the remaining 2g legs into ‘‘odd’’ legs labeled by 2m21 and ‘‘even’’ legs labeled by 2m,
m51,...,g. This choice is particularly convenient because we will later sew together leg 2m21
with leg 2m, m51,...,g, thus generatingg handles. The first operation we have to make is reverse
the even legs. This means identifyingH* with H with the linear isomorphism~6!, i.e.,

bm1Q^0uan1•••ank ° ~Qdnk ;02a2nk
!•••~Qdn1 ;02a2n1

!u0&2bm

since

bm1Q^0uan1•••ank5~Qdnk ;02a2nk
!•••~Qdn1 ;02a2n1

!bm1Q^0u.

Due to the special form ofVN;0, this corresponds to the prescription

bm1Q^0u°u0&2bm
, an

~m!°an
1~m!52a2n

~m!1Qdn,0 . ~18!

This operation is motivated by the fact that by sewing together two spheres withN11 andM11
legs along a boundary circle, one gets a sphere withM1N legs, i.e.,

VN11;0~1,2,...,N,E!VM11;0~F
1,N11,...,N1M !5VN1M ;0~1,...,N1M !, ~19!

whereF1 means that the legF has been reversed according to Eq.~18!. Here, the Hilbert spaces
of the two legsE andF have been identified. By conservation of charge, we must have

bE52(
i51

N

b i1Q52bF1Q, bF52 (
i5N11

N1M

b i1Q

so that the left-hand side of Eq.~19! can be written as

b1
^0u,...,bN1M

^0ud(
i51
N1Mb i ;Q

expS 2 (
i , j51
i, j

N

(
n,m50

`

an
~ i !Dnm~si t j !am

~ j !D
3expS 2 (

i , j5N11
i, j

N1M

(
n,m50

`

an
~ i !Dnm~si t j !am

~ j !D
3bE

^0uexpS 2(
i51

N

(
n,m50

`

an
~ i !Dnm~si tE!am

~E!D
3expS 2 (

j5N11

N1M

(
n,m50

`

an
1~E!Dnm~sFt j !am

~ j !D u0&bE
. ~20!

We compute the last two lines as follows: we interchange the two exponentials using the formula

eAeB5e@A,B#eBeA

and writea0
(E)5( j5N11

N1M b j , a0
1(E)5( i51

N b i . That way, we get

expS 2(
i51

N

(
j5N11

N1M

(
n,m50

`

(
l51

`

an
~ i !Dnl~si tE!Dlm~sFt j !am

~ j !D
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expS 2(
i51

N

(
n50

`

an
~ i !Dn0~si tE! (

j5N11

N1M

b j D expS 2(
i51

N

b i (
j5N11

N1M

(
m50

`

D0m~sFt j !am
~ j !D

5expS 2(
i51

N

(
j5N11

N1M

(
n,m50

`

an
~ i !Dnm~si tEsFt j !am

~ j !D ,
where we have used the property

Dnm~g1g2!5(
l51

`

Dnl~g1!Dlm~g2!1Dn0~g1!dm,01D0m~g2!dn,0 . ~21!

Together with the first two lines of Eq.~20! we get

b1
^0u•••bN1M

^0ud(
i51
N1Mb i ;Q

expS 2 (
i , j51
i, j

N1M

(
n,m50

`

an
~ i !Dnm~ s̃i t̃ j !am

~ j !D
with the new coordinates

s̃i5 H si , i5N11,...,N1M
sitEGtF

21, i51,...,N ,

~22!

t̃ i5 H t i , i5N11,...,N1M
tFGtE

21t i , i51,...,N ,

whereG(z)51/z. We now understand the precise meaning of Eq.~19!. The transformationtEGtF
21

maps the ‘‘unit circle’’tF(S
1) into the unit circletE(S

1). The transformationG makes sure that the
exterior of the circletF(S

1) is mapped into the interior oftE(S
1). In view of the key role played

by the identity~21!, we check it forn,mÞ0. By the explicit form ofDnm , we have to prove that

1

m!

Am
An

]z
m~g1g2~z!!n5 lim

w→0
(
l51

`
1

l !

Al
An

]w
l ~g1~w!!n

1

m!

Am
Al

]z
m~g2~z!! l

for uzu → 0. It is enough to show the equality

~g1g2~z!!n5(
l51

`
1

l !
]w
l ~g1~w!!nU

w50

~g2~z!! l1~g1~0!!n.

The right-hand side is nothing but the Taylor expansion of the left-hand side. Let us return to the
case of genusg>1. According to Segal’s last axiom, we have to take the partial trace

VN:g5 )
m51

g

Tr~2m21,2m!VN12g;0
1

to get theg-loop vertex. The trace is to be understood as a sum over both zero and nonzero modes.
More precisely, we now interpret theN-point vertexVN;0 as acting on theN-fold tensor product

H^N where the Hilbert spaceH is a direct sum ofpb̄’s:

H5 % b P Lpb̄.

Here,L is the lattice of allowed zero modes. We rewrite theN-point vertex as
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VN;05 (
b1 ,...,bN P L

d(
i51
N b i ;Q b1

^0u•••bN
^0uexpS 2 (

i , j51
i, j

N

(
n,m50

`

an
~ i !Dnm~si t j !am

~ j !D . ~23!

Reversing the even legs, we get the expression

VN12g;0
1 5 (

b1 ,...,bN P L
(

r1 ,...,r g P L
d(

i51
N b i1~g21!Q;0 b1

^0u•••bN
^0u

3expS 2
1

2 (
i , j51
iÞ j

N

(
n,m50

`

an
~ i !Dnm~si t j !am

~ j !D )
m51
odd

g

2rm
^0u

3expS 2(
i51

N

(
m51

g

(
n,m50

`

an
~ i !~Dnm~si t2m21!am

~2m21!1Dnm~si t2m!am
1~2m!!D

3expS 2
1

2 (
m,n51
mÞn

g

(
n,m50

`

an
~2m21!Dnm~s2m21t2n21!am

~2n21!

1an
1~2m!Dnm~s2mt2n!am

1~2n!D
3expS 2 (

m,n51

g

(
n,m50

`

an
1~2m!Dnm~s2mt2n21!am

~2n21!D )
m51
even

g

u0&2rm
, ~24!

where we have setb2m5rm1Q, b2m2152rm . Care is required here because thebi still appearing
in the formula correspond to the unsewn legs and are not fixed by the identities just given. Some
exponents in our expression have a1

2 factor in front because we have used the property

Dnm~sI tJ!5Dmn~sJtI !.

The main result of this paper is Theorem 13.
Theorem 13:VN;0:H

^N→ C is trace class as soon as the closed disks ti(D) are all pairwise
disjoint. If any two open disks ti(D̊),t j (D̊) overlap, the operator VN;0 gets unbounded (i.e., cannot
be extended to allH^N by the closed graph theorem).
We will prove Theorem 13 in Sec. IX. SinceVN52g;0

1 is the composition ofVN12g;0 ~which we
here interpret as an operatorH^N1g→H* ^g! and Eq.~18!, and since Eq.~18!: H* →H is an
isometry, the same statements withVN12g;0

1 instead ofVN12g;0 are also true. This allows us to
choose a basis to compute

VN:g5 )
m51

g

Tr~2m21,2m!VN12g;0
1 .

We first compute the trace over the nonzero modes using the coherent states method. In one
dimension, the Hamiltonian of the harmonic oscillator isH5a* a with a*51/&(x2d/dx), a51/
&(x1d/dx) the creation and annihilation operators, respectively. A coherent stateua& is an
eigenstate ofa with eigenvaluea. Explicitly

ua&5eaa* u0&,
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whereu0& 5 p21/4e2x2/2 is the ground state ofH. Recall that ifT:L2~R!→L2~R! is a trace class
operator, its trace is equal to

Tr T5
1

p E d2a e2uau2^auTua&,

where the integral is over alla P C. VN;g is therefore given by

VN:g5E )
m51

g

)
n51

` S d2an
m

p D expF2 (
m51

g

(
n51

`

uan
mu2G ^auVN12g;0

1 ua&5 (
r1 ,...,r gPL

ṼN:g

which is a Gaussian functional integral. We first computeṼN:g . The trace calculation amounts to
the substitutions

an
~2m21!→an

m , an
1~2m!→2ān

m ~n.0!;

a0
~2m21!→2rm , a0

1~2m!→rm1Q.

In order to write our formulas in a more compact way, we adopt the following vectorlike notation:

~X1X2!SY1

Y2
D5 (

m51

g

(
n51

`

~~X1!n
m~Y1!n

m1~X2!n
m~Y2!n

m!

and get a result of the form

ṼN:g5 (
b1 ,...,bN P L

b1
^0u•••bN

^0ud(
i51
N b i1~g21!Q;0 exp~A!E )

m51

g

)
n51

` S d2an
m

p D
3expS ~B1B2!S a

ā D 2
1

2
~ āa!~12H !S a

ā D D , ~25!

whereA denotes all the terms which do not depend onan
m, nÞ0. The 1 in the matrix~12H! comes

from the Gaussian measure with respect to which we integrate. The integration overan
m yields

ṼN;g5det~12H !2~1/2!
b1

^0u•••bN
^0ud(

i51
N b i1~g21!Q;0 expSA1

1

2
~B1B2!~12H !21SB2

B1
D D .

~26!

If we use the explicit expressions forA, B1, andB2, it becomes clear that the exponent in the last
expression can be separated into three pieces that are respectively quadratic, linear and indepen-
dent of the zero modesrm . In other words, we can rewriteṼN;g as

ṼN:g5 (
b1 ,...,bN P L

b1
^0u•••bN

^0ud(
i51
N b i1~g21!Q;0 det~12H !2~1/2!

3expS 12 (
m,n51

g

rmCmn
~1!r n1 (

m51

g

rmCm
~2!1C~3!D . ~27!

It is a lengthy, but straightforward task to compute the coefficientsCmn
(1) ,Cm

(2) ,C(3) and the deter-
minant. The more difficult part consists in identifying the results with some geometric objects
associated to the Riemann surface. A detailed account of the computation can be found in Ref. 12.
In Ref. 6, the same computation was carried out more rigorously. The result is
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ṼN:g5b1
^0u•••bN

^0ud(
i51
N b i1~g21!Q;0N expS p i

2 (
m,n51

g

rm~2tmn1 lmn!r nD
3expS 2 (

m51

g

rmS (
i51

N

(
m50

` am
~ i !

m!
]z
mS Ez0t i ~z!

vmD U
z50

12p iQS Dm
z01

1

2D D D
3expS 2

1

2 (
i , j51
iÞ j

N

(
n,m50

`

an
~ i !Dnm~si t j !am

~ j !D
3expS 12 (

i , j51

N

(
n,m50

`

an
~ i !

]z
n

n!

]y
m

m!
log

E~ t i~z!,t j~y!!

t i~z!2t j~y! U
y,z50

am
~ j !D

3expS 2
1

2
Q(
i51

N

(
m50

`

am
~ i !

]z
m

m!
$ log t i8~z!12 log s~ t i~z!!%U

z50

D . ~28!

The coefficientN 5det~12H!2~1/2! is related to the inverse of the determinant of the scalar
Laplacian on the Riemann surfaceSg calculated in the subspace of the nonzero modes, and its
dependence on the period matrixtmn is only through det~Im t!,13 which is independent of theb
cycles. The abelian differentialsvm only depend on the Riemann surfaceSg through thea cycles.
The prime formE remains invariant if its arguments are moved alonga cycles, and is therefore
also independent of our particular choice ofb, but depends on the local coordinatest i . Theg/2
differentials with no zeros or poles depends onSg only through the coordinatest i .

14 If we require
0<Im~log km!,2p for all multiplierskm , we find that the vector of Riemann constantsDm

z0 is fixed
modulo 1

2. Thez0 dependence ofṼN:g drops out due to the Kronecker delta. The way Sciutoet al.
obtained the period matrixtmn is ambiguous because the computation involved logarithms.

12 As a
consequence, each matrix element is only clearly defined modulo1

2. If we fix a branch for each
logarithm in the definition ofVN;0, i.e., if we fix eachl i j , this corresponds to a unique choice of
b cycles. More precisely, ifVN;0 is unambiguously defined, the same is automatically true for
VN;g . The ambiguities ofVN;g can be labeled by the set of integersl̃m

Q , l̃ im , l̃ i
Q , l̃ i j corresponding to

an unambiguous choice of the value of

Dm
z0,E

z0

t i ~0!

vm , log t i8~0!12 log s~ t i~0!!

and

D00~si t j !2 log
E~ t i~0!,t j~0!!

t i~0!2t j~0!
,

respectively, and by the choice oflmn andb cycles. All these integers as well as theb cycles can
of course be expressed in terms of thel i j on the sphere. Conversely, one can show that any choice
of b cycles and of integers can be attained by a suitable choice of constantsl i j on the sphere. If we
specify the latticeL of allowed zero modes, we can compute the sum overr 1 ,...,r gPL, which
leads to a theta function. What we have found is Proposition 14.

Proposition 14: VN;g is independent of the particular sewing used to obtain it. Therefore, the
given construction of the g-loop vertex is consistent with axiom (iv).Indeed, the expression we get
for VN;g depends on the Riemann surfaceSg only through the coordinatest i as well as a homology
basis (a,b) and a set of integers.
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IX. THE NONZERO MODE PROBLEM

In this section, we prove the analogous of Theorem 13 in the case of fixed zero modes. This
provides a first step~the most important one! towards a proof of Segal’s axioms. We start with a
technical proposition

Proposition 15: Let a* and a satisfy the commutation relation@a,a* #51. We have the fol-
lowing equalities:

~a! emar a* a5r a* aemra,

~b! ela* r a* a5r a* ae~l/r !a* ,

~c! em(n51
` gnanr L05r L0em(n51

` gnr nan,

~d! el(n51
` gna2nr L05r L0el(n51

` gnr2na2n.

Proof: The core of the proposition is~a!. ~b!, ~c! and ~d! are easy consequences thereof. We
first observe that

d

dk
e2ka* aa eka* a5e2ka* a@a,a* a#eka* a5e2ka* aa eka* a.

Sincee2ka* aa eka* auk50 5 a, the solution of this differential equation is

e2ka* aa eka* a5eka.

Taking thenth power of this equation we get

e2ka* aan eka* a5~eka!n.

Summing over alln with suitable coefficients leads to

e2ka* a ema eka* a5ee
kam.

If we setek5r we get~a!. We prove~b! in exactly the same way, the only difference being the
commutator [a* ,a* a]52a* . ~c! and ~d! are infinite products of~a! and ~b!, respectively. j

We now come to the main result. Let us considerVN;0 as an operator from̂ pb i
to C for fixed

zero modesb1,...,bN . We have Theorem 16.
Theorem 16:Let Dr denote the closed disk of radius r centered around the origin. Then VN;0

can be extended to Hr1
b1 ^ ••• ^ HrN

bN if the numbers r i satisfy the following geometric condition:

t i~Dr i
!ùt j~Dr j

!5B, iÞ j

Moreover, the extended map

VN;0 :Hr1

b1^ ••• ^HrN

bN → C

is trace class (meaning that(VN;0* VN;0)
1/2 is trace class).

Proof: We proceed in three steps. We first show that we can neglect all the contributions
coming from the zero modes. Then, we show that the non zero mode core ofVN;0 is Hilbert–
Schmidt and therefore bounded onHr i

^ ••• ^ HrN
. Finally, we use a deformation argument to

show thatVN;0 is trace class.
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We can forget the purely zero mode contributions inVN;0 because they yield an overall
constant factor. We next show that we can neglect the contributions coming from the coupling of
the zero modes to the oscillators. More precisely, we claim that the map

expS 2 (
n51

`

an
~ i !Dn0~si t j !a0

~ j !D :Hr
~ i ! → Hr̃

~ i !

is Hilbert–Schmidt, and therefore bounded, as soon asr̃.r . Using multiindex notation, we can
write

expS (
n51

`
an

An
vn

1D ufa&5 (
g<a

v1a2g

~a2g!!

Aa!

Ag!
ufg&, ~29!

wherea! 5 Pa i ,v
1a

5 Pv i
1a i , and whereg<ameansg j<a j for all j . To simplify the notation,

we drop the superscript( i ) and seta0
( j )52b. We apply the exponential to a normed basis element

of Hr and use Proposition 15~c! to get

expS b (
n51

`

anDn0~si t j !D r L0ufa&5r L0 expS b (
n51

`
an

An
~si t j~0!!nr nD ufa&

5
~29!

r L0(
g<a

v1a2g

~a2g!!

Aa!

Ag!
ufg&,

wherevn
15b(si t j (0))

nr n/An. With igi5S jg j , the square of the Hilbert–Schmidt norm of the
map is~we forget the zero mode factor coming fromL0!

(
a

(
g<a

S rr̃ D
2igi uv1u2~a2g!

~a2g!! 2
a!

g!
5
~2!

(
a

S rr̃ D
2iai

)
n

LanS 2uvn
1u2S r̃r D

2nD
5
~3!

)
n

1

12~r / r̃ !2n
expS uvn

1u2

12~r / r̃ !2n
D .

This is convergent ifSnuvn
1u2 converges, which is the case ifr,ut i

21(t j (0))u. This last inequality
is a consequence of the geometric condition. Similarly, the map

expS 2 (
n51

`

a0
~ i !D0n~si t j !an

~ j !D :Hr
~ j !→Hr̃

~ j !

is Hilbert–Schmidt ifr̃.r . We are now left with the oscillatory part ofVN;0 which we denote by
ṼN;0.

An orthonormal basis ofHr1

b1 ^ ••• ^ HrN

bN is given by the vectors

r
1
L0

~1!

•••r
N

L0
~N!

ufg1&•••ufgN&,

where eachgi ranges over all possible finite multi-indices. Using proposition 15~c!, we get~for-
getting the zero modes ofL0

( i )!

31Pierre-Alain Bovier: A rigorous treatment of conformal blocks

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ṼN;0r 1
L0

~1!

•••r
N

L0
~N!

ufg1&•••ufgN&

5^0u•••^0uexpS 2 (
i , j51
i, j

N

(
n,m51

`

an
~ i !Dnm~si t j !r i

nr j
mam

~ j !D ufg1&•••ufgN&. ~30!

We now introduce a useful representation of the algebraa,a* of the harmonic oscillator. This
algebra can be realized on the space of polynomials inc as follows:

a f~c!5
]

]c
f ~c!, a* f ~c!5c f ~c!.

Obviously, we have@a,a* #51. The vacuum is represented by the functionf ~c!51 and more
generallyuk& 5 (a* )k/Ak! u0& is represented by the functionck/Ak!. The scalar product is repre-
sented by

^ f ,g&5 f̄ S ]̄

]c D g~c!uc50

because it is antilinear in the first and linear in the second factor and because

^ku l &5
1

Ak!
S ]

]c D k c l

Al !U
c50

5dk,l .

For expression~30!, we introduce a variablecn
i for each oscillatora2n

( i ) , so we have the scalar
product of

f ~c1,...,cN!5
~c1!g1

Ag1!
•••

~cN!gN

AgN!

with

g~c1,...,cN!5expS 2 (
i , j51
i, j

N

(
n,m51

`

cn
i Dnm~si t j !r i

nr j
mcm

j D
which is nothing else than

1

Ag1! S ]

]c1D g1

•••
1

AgN! S ]

]cND gN

expS 2 (
i , j51
i, j

N

(
n,m51

`

Dnm~si t j !r i
nr j

mcn
i cm

j D U
c50

.

The square of the Hilbert–Schmidt norm is given by

(
g1,...,gN

1

g1! •••gN! US ]

]c1D g1

•••S ]

]cND gN

expS 2 (
i , j51
i, j

N

(
n,m51

`

Dnm~si t j !r i
nr j

mcn
i cm

j DU
c50

U2.
It is finite if
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(
g1,...,gN

1

g1! •••gN! US ]

]c1D g1

•••S ]

]cND gN

expS 2 (
i , j51
i, j

N

(
n,m51

`

Dnm~si t j !r i
nr j

mcn
i cm

j DU
c50

U
is. We can rewrite the sum as

)
i , j51
i, j

N

)
n,m51

`

(
b,g50

`
1

b!g! US ]

]c D bS ]

]k D g

exp~2Dnm~si t j !r i
nr j

mck!U
c5k50

U
5 )

i , j51
i, j

N

)
n,m51

`

(
b,g50

`
1

b!g! S ]

]c D bS ]

]k D g

exp~ uDnm~si t j !ur i
nr j

mck!U
c5k50

5expS (
i , j51
i, j

N

(
n,m51

`

uDnm~si t j !ur i
nr j

mD .
It remains to show the finiteness of the sums

(
n,m51

` U 1m! ]m~si~ t j~z!!!nU
z50

r i
nr j

mU ~31!

for all i , j with i, j ~we absorbed a factorAm by makingr j slightly bigger!. For a functiong(z)
which is analytic in a neighborhood of zero, we can write

1

m!
]mg~z!U

z50

5
1

2p i R
0

g~z!

zm11 dz,

where we integrate over a circle of radiusR around zero withR smaller than the radius of
convergence of the series

(
m

1

m!
]mg~z!U

z50

zm.

Doing this for the functiong(z)5(si t j (z))
n we get the estimate

U 1m! ]m~si~ t j~z!!!nU
z50

U< 1

Rm sup
uzu5R

u~si~ t j~z!!!nu

so that our double sum~31! gets smaller than

(
n,m51

`

~ sup
uzu5R

u~si~ t j~z!!!u!nr i
nS r jRDm.

We must chooseR smaller than the absolute value of the pole ofsi t j , which means that the circle
t j (DR) must not containt i~0!. In particular we may takeR to be slightly bigger thanr j but still
satisfying the geometric conditiont i(Dr i

)ùt j (DR) 5 B. Such anR ensures the convergence of the
m-sum above. As to then-sum, it converges becauser i,infuzu5Rut i

21(t j (z))u. Therefore,

VN;0 :Hr1
^ ••• ^HrN

→ C
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is bounded. Letr̃ i.r i( i51,...,N) be such that thet i(Dr̃ i
) are still pairwise disjoint. We can

decompose the mapVN;0 : ^ Hr i
→ C according to

^Hr i
→
Id

^ iHr̃ i
——→
VN;0

C,

whereId is the embedding of̂ Hr i
in ^ Hr̃ i

. SinceId is trace class and since the second map is
bounded, the composition is trace class. j

The next proposition shows that the result we got is the best possible.
Proposition 17: Let D˚ r denote the open disk with radius r around the origin. Then the map

VN;0 :Hr1

b1^ ••• ^HrN

bN → C

gets unbounded as soon as there exists i, j , iÞ j with

t i~D̊r i
!ùt j~D̊r j

!ÞB.

In other words VN;0 cannot be extended to all Hr1
b1 ^ ••• ^ HrN

bN if the disks ti(D̊r i
) are not disjoint.

Proof: The effect of increasing oner i is simply multiplication of the basis vectors

r
1
L0

~1!

•••r
N

L0
~N!

ufg1&•••ufgN&

with a constant whose norm is greater than one. Since we want to show thatVN;0 applied to these
basis vectors are complex numbers whose norm is unbounded ing1,...,gN, we can suppose without
loss of generality thatt1(D̊r1

) and t2(D̊r2
) are the only disks that overlap. Moreover, we can

suppose thatr i51 for all i51,...,N because the change from 1 tor i is nothing else than the
coordinate changet i(z) ° t̃ i(z)5t i(r iz) @since Dnm(sj t i)r i

n5Dnm(sj t̃ i) and Dnm(si t j )r i
n

5Dnm( s̃i t j )#. It is enough to treat the case of small overlap, by which we mean that

g~z!:5s1t2~z!

has the property

ug~0!u,1.

We are now ready to compute

VN;0ufen
&b1

ufem
&b2

u0&b3
•••u0&bN

5constb2^0ub1^0uexp~2an
~1!Dnm~s1t2!am

~2!!expS 2(
jÞ1

an
~1!Dn0~s1t j !b j D

3expS 2(
jÞ2

am
~2!Dm0~s2t j !b j D ufen

&b1
ufem

&b2

5constS 2Dnm~s1t2!1(
jÞ1

(
kÞ2

Dn0~s1t j !Dm0~s2tk!b jbkD
5constS 2Dnm~g!1S (

jÞ1
Dn0~s1t j !b j D S (

kÞ2
Dm0~s2tk!bkD D ,
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where const is a nonvanishing constant independent ofn andm coming from the purely zero mode
contributions. We want to show that this expression is unbounded inn andm. First of all, since
usi t j (0)u,1, ; iÞ j , we see that

Dn0~si t j ! → 0, n → `

so it is enough to show thatDnm~g! is unbounded inn andm. Suppose it were bounded, i.e.,

uDnm~g!u<c, ;n,m

for some constantc. Then for allq,q̃,1 and allw P R, we would have convergence of the double
sum

(
n,m50

`
1

m!
]m~g~z!!nU

z50

q̃n~q eiw!m.

Them-sum yields

(
n50

`

g~q eiw!nq̃n.

For a suitable choice ofq andw, we have

ug~q eiw!u.1

by the overlap assumption, so then-sum cannot converge for allq̃,1, a contradiction. j

X. VERIFICATION OF THE AXIOMS

We now prove the axioms. We start with the proposition:
Proposition 18: V is a* functor (i.e., the third axiom is true) if and only if Q50.
Proof: We first check the proposition for the sphere~for notational simplicity, we restrict

ourselves to the caseH^N→ C!. It is easy to see that

D̄nm~si t j !5Dnm~si t j !

so that

~VN;0!*5 (
b1 ,...,bN P L S d(

i51
N b i ;Q b1

^0u•••bN
^0uexpS 2 (

i , j51
i, j

N

(
n,m50

`

an
~ i !Dnm~si t j !am

~ j !D D *
5 (

b1 ,...,bN P L
d(

i51
N b i ;Q

expS 2 (
i , j51
i, j

N

(
n,m50

`

an
~ i !* D̄nm~si t j !am

~ j !* D u0&bN
•••u0&b1

5 (
b1 ,...,bN P L

d(
i51
N b i ;Q

expS 2 (
i , j51
i, j

N

(
n,m50

`

~2a2n
~ i ! !Dnm~si t j !~2a2m

~ j ! !D u0&bN
•••u0&b1

5 (
b1 ,...,bN P L

d(
i51
N b i ;Q

expS 2 (
i , j51
i, j

N

(
n,m50

`

~2~a2n
~ i ! 2Qdn;0!!Dnm~si t j !~2~a2m

~ j !
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2Qdm;0!!D u0&bN1Q •••u0&b11Q

5 (
b1 ,...,bN P L

d(
i51
N b i ;~N11!Q expS 2 (

i , j51
i, j

N

(
n,m50

`

an
~ i !1Dnm~si t j !am

~ j !1D
3u0&bN

•••u0&b1

which is theN-point vertex for the complex conjugate sphere with differently oriented boundary
if and only if Q50 ~the sum of the ‘‘in-charges’’ must be equal to the sum of the
‘‘outcharges’’1Q!. Under the changeD00°D̄00, all the integersl i j change sign. Because the
g-loop vertex is an appropriate trace of the zero-loop vertex, the results still hold for arbitrary
genus. We finally note that taking the adjoint of Eq.~28! leads to the transformation

ip~rm~2tmn1 lmn!r n! ° ip~rm~22t̄mn2 lmn!r n!,

where2t̄mn corresponds to the period matrix of the complex conjugate surface with cycles (a,
2b) because

E
2bn

v̄m5E
2bn

vm522p i t̄mn .

j

It can be shown that the axiom~iii ! implies Osterwalder–Schrader positivity for symmetric sur-
faces~the only ones where ‘‘time reversal’’ has a meaning!, so a scalar massless field coupled to
a background chargeQÞ0 is not a good field theory in that sense. However, it is useful in the
context of minimal models.2 We next prove Theorem 13, and then extend it to Riemann surfaces.

Proof:What we actually need is the special caser i51 for all i . The second part of the theorem
follows from Proposition 17. It remains to show the first part. We note that any operator

A:H^N → C

A:h ° ~c,h!, c P H^N

is trace class. Indeed,

A*Ah5~c,h!c

is a projection~times a constant!. Its square root is also a projection, and projections on finite
dimensional subspaces are trace class. Therefore, all we have to prove is that

(
b1 ,...,bN P L

d(
i51
N b i ;Qb1

^0u•••bN
^0uexpS 2

1

2 (
i , j51
iÞ j

N

(
n,m50

`

an
~ i !Dnm~si t j !am

~ j !D
3 (

g1 ,...,gN P L
expS 2

1

2 (
i , j51
iÞ j

N

(
n,m50

`

a2n
~ i ! D̄nm~si t j !a2m

~ j ! D u0&gN
•••u0&g1

~32!

is finite. Without the b- and g-sums, we know by theorem 16 that the expression is
db1 ,g1

•••dbN ,gN
times something finite, namely the square of the Hilbert–Schmidt norm of the

mapVN;0 for the fixed zero modesb1,...,bN .
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Let us consider the caseQ50 first. By the proposition we have just proven, the second line of
Eq. ~32! represents the complex conjugate Riemann sphere with ‘‘out-legs’’

t̄ i~D !, i51,...,N.

It is the mirror image of the sphere with ‘‘in-legs’’

t i~D !, i51,...,N,

where the mirror symmetry is given by reflection about thex axis. The expression we have is
therefore what we get by sewing together a sphere with its mirror image along the boundaries of
the embedded disks. We can do the sewing in two steps: first, we only identify the legs numberN.
This gives us a Riemann sphere with 2N22 legs. Therefore, the summand of Eq.~32! is the trace
over the nonzero modes of

b1
^0u•••bN21

^0uexpS 2
1

2 (
m,n51

N21

(
n,m50

`

an
~2m21!Dnm~ s̃2m21t̃2n21!am

~2n21!

1an
1~2m!Dnm~ s̃2m t̃2n!am

1~2n!D
3expS 2 (

m,n51

N21

(
n,m50

`

an
1~2m!Dnm~ s̃2m t̃2n21!am

~2n21!D u0&bN21
•••u0&b1

~33!

@see Eq.~24!#, the new sum being overb1,...,bN21 P L. Here,an
(2m21) acts on a vacuum to the

left while an
(2m) acts on a vacuum to the right. By Eq.~22!, the new coordinates are

t̃2m215tm , s̃2m215sm ,

t̃2m5 t̄NGtN
21tm , s̃2m5smtNG t̄N

21.

The trace is to be understood as an identification of even and odd legs. Its calculation is a special
case of what we have already done, namely the case where all the legs are sewn. We can read off
the result~28!, which means that Eq.~32! can be written as

(
b1 ,...,bN21 P L

det~12H !2~1/2! expS 12 (
m,n51

N21

bmCmn
~1!bn1 (

m51

N21

bmCm
~2!1C~3!D .

SinceCmn
(1)52p i tmn modulop i , and since period matrices have positive definite imaginary part,15

theb-sum is finite. Let us now turn to the more complicated caseQÞ0. The second exponential
of Eq. ~32! still represents the complex conjugate surface if we add an exponential which takes
into account thata0

15Q2a0. Instead of Eq.~33!, we then find

b1
^0u•••bN21

^0uexpS 2
1

2 (
m,n51
mÞn

N21

(
n,m50

`

~an
~2m21!Dnm~ s̃2m21t̃2n21!am

~2n21!

1an
1~2m!Dnm~ s̃2m t̃2n!am

1~2n!!D expS 2Q(
m>0 S (

m51

N21

D0m~sNtm!am
~2m21!1D0m~sNtm!~Q

2am
1~2m!!D D expS 2 (

m,n51

N21

(
n,m50

`

an
1~2m!Dnm~ s̃2m t̃2n21!am

~2n21!D u0&bN21
•••u0&b1

.
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We can forget the exponential with the factorQ2, because it has no influence on the convergence
of theb sums. The two new exponentials with a factorQ have the effect of translating the factors
B1 andB2 in the trace calculation by an amount independent of the zero modes, and of increasing
the factorA by an amount linear in the zero modes. The contribution of Eq.~26! to Cmn

~1! is
therefore unchanged, and the sum overb1,...,bN21 still converges. j

Now axiom~ii ! is true for the Riemann surfaces we have constructed becauseVN;g is a partial
trace of the trace class operatorVN12g;0, and partial traces are trace class. Finally, we have
constructedVN;g so that axiom~iv! holds. More precisely, we have found thatVN;g depends only
on a canonical homology basis (a,b) and on local projective coordinatest i associated to the
Riemann surface, and is thus independent of the particular sewing used to obtain it. Identifying
boundary circles onSg is the same as initially identifying more pairs of circles on the sphere.
Therefore, property~iv! holds and we have proved thatV is a modular functor from a category of
Riemann surfaces to a category of trace class operators over a Hilbert space.
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Integrable quantum systems related with two-dimensional two- and one-sheeted
hyperboloid are considered. The explicit expressions of the Green’s functions of the
free particles on the those homogenous spaces are given. ©1996 American Insti-
tute of Physics.@S0022-2488~95!03012-1#

I. INTRODUCTION

There exists a number of exact results about the complete systems of quantum commuting
observables~quantum integrals of motion! wave functions, spectra, and so on. The review1 pre-
sents, from a general point of view, the results obtained in these subject. The dynamics of some of
these systems is closely related to free motion in the symmetric space~SS!. It is known that~SS!
can be realized as a set of cossetsK/G of connected Lie groupG on its compact subgroupK. For
example, the two-sheeted hyperboloid SO~2!/SO~1,2!: [x,x]5x0

22x1
22x2

2, x0.0, constitutes the
~SS! spaceK5SO~2! keeping the pointx5~1,0,0! fixed. The distancer between the fixed point
x5~1,0,0! and an arbitrary point x5(x0 ,x1 ,x2) on this ~SS! defined by formula
coshKr5[x, x]5x0.1 is real. However, in the case of one-sheeted hyperboloid
[x, x]5x0

22x1
22x2

2521, stationary subgroup of fixed pointx5~0,0,1! is a noncompact group
SO~1,1! and the distancer5coshKr5u[x,x] u5ux2u.0 is piecewise defined, real when coshKr
.1 and imaginary when coshKr,1.

This is the reason why the quantum systems related to~SS! K/G have only continuous spectra
of scattering states, and the quantum systems related to homogeneous spacesH/G with noncom-
pact stationary subgroup have continuous and discrete spectra.

This report carries on the research reviewed in Ref. 2. The key point of the relation between
the theory of homogeneous spaces and quantum systems is the existence of a simple transforma-
tion of Laplace–Beltrami operators on homogeneous spaces to some Hamiltonious quantum sys-
tems.

We consider different coordinate systems on hyperboloids which reduce to three different
quantum systems.

The paper is organized as follows: an introduction and three sections and two appendices.
Sections I and II are devoted to quantum systems related to two- and one-sheeted hyperboloids
correspondingly. The review of the results concerning the two-sheeted hyperboloid is introduced
for complement and also for comparison with the case of the one-sheeted hyperboloid. In Sec. III
the explicit expressions of the Green’s function of the free particle on two- and one-sheeted
hyperboloids are calculated. The Appendices are devoted to the basic facts of the representation
theory of the group SO~1,2!.

II. THE QUANTUM SYSTEMS RELATED TO TWO-SHEETED HYPERBOLOID

Consider the problem, inside the cone in the three-dimensional space, on three different
coordinate systems.

a!On leave of absence from Physical Institute of Academic Sciences of Azerbaijan Republic.
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A. Spherical polar coordinates

The spherical polar coordinates are given by

x05r cosha,

x15r sin a sin w, ~2.1!

x25r sin a cosw,

whereaP@0,̀ ! andwP@0, 2p#.
By ~2.1! we have

~gab!5 diag ~1,2r 2,2r 2 sinh 2 a!, ~2.2!

Ag5„det ~gab!…
1/25r 2 sinha. ~2.3!

The component of the Laplace–Beltrami operator

DLB5
21

Ag
]ag

abAg]b , a,b51,2,3,..., ~2.4!

on the hyperboloid [x, x]51 is in the following form:

Da,w5
1

sinha

]

]a S sinha
]

]a D1
1

sinh 2 a

]2

]w2 . ~2.5!

The radial part of the Laplace equation,

Da,wF~a,w!5s~s11!F~a,w!, ~2.6!

where

F~a,w!5q~a!einw, ~2.7!

has the form

F ]2

]a2 1
cosha

sinha

]

]a
2

n

sinh 2 a Gq~a!5s~s11!q~a! ~2.8!

using

dx5Agda dw5 sinhada dw, ~2.9!

and making the transformation

q~a!5~sinha!21/2C~a! ~2.10!

Eq. ~2.8! becomes

]2C~a!

]a2 1F2
1

4
2s~s11!2

n22~1/4!

sinh 2 a GC~a!50. ~2.11!

Equivalently, defining
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E52 1
22s~s11!, s52 1

21 iAE, E.0, ~2.12!

V~a!5
n22~1/4!

sinh 2 a
, ~2.13!

Eq. ~2.8! becomes the Schro¨dinger equation

]2C~a!

]a2 1@E2V~a!#C~a!50. ~2.14!

By considering the sign of the potential function~2.13! it is seen that only scattering takes place
and thatE takes positive values only. In Eq.~2.8! if the transformation

q~a!5S cosha

2 D 2nS sinha

2 D nW~a! ~2.15!

is applied, the following equation is reached:

F d2da2 1
2n1 cosha

sinha

d

da GW~a!5s~s11!W~a!. ~2.16!

In this equation, applying change of the variable

z52 sinh 2 a/2, ~2.17!

the hyper-geometric equation

z~z21!
d2W~z!

dz2
1@~n11!22z#

dW~z!

dz
2@2s~s11!#W~z!50 ~2.18!

is obtained. One solution of Eq.~2.18! is

W15FS 121 iAE,
1

2
2 iAE, n11;2 sinh 2

a

2 D . ~2.19!

By ~2.10! and ~2.15! the regular solution of the Schro¨dinger equation ata50 is given by

C~a,r!5
G~ 1

21n1 ir!

G~ 1
21 ir!G~n11!

S sinha

2 D 1/21nS cosha

2 D 1/22n

3FS 121 ir,
1

2
2 ir,n11;2 sinh 2

a

2 D , ~2.20!

whereAE5r. On the other hand, using the relation~Ref. 3, p. 1043!,

F~a,b,c;z!5
G~c!G~b2a!

G~b!G~c2a!
~2z!2aFS a,a2c11,b2a11;

1

zD
1

G~c!G~a2b!

G~a!G~c2a!
~2z!2bFS b,b2c11,b2a11;

1

zD , ~2.21!

we find the asymptotic expression of~2.20! as

41C. Dane and Y. A. Verdiyev: Integrable systems and Green’s functions

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



C~a,r!
a→`

>A~r,n!e2 ira1A~r,n!eira, ~2.22!

where

A~r,n!5
G~n11!G~22ir!

G~ 1
22 ir!G~ 1

22 ir1n!
. ~2.23!

From ~2.22! it follows that the normalizing factor is chosen to satisfy the condition

E
2`

`

C~a,r!C~a,r8!da5
1

r tanhpr
d~r2r8!. ~2.24!

TheS-matrix is found to be given by

S5
A

Ā
5

G~22ir!G~ 1
21 ir!G~ 1

21 ir1n!

G~2ir!G~ 1
22 ir!G~ 1

22 ir1n!
. ~2.25!

B. Hyperbolic coordinates

The hyperbolic coordinates are given as

x05r coshg coshb,

x15r coshg sinhb,
~2.26!

x25r sinhg,

gP~2`,`!, bP~2`,`!.

By ~2.26!, we have

~gab!5 diag ~1,2r 2,2r 2 cosh2 g!, ~2.27!

Ag5„det ~gab!…
1/25r 2 coshg. ~2.28!

The component of the Laplace–Beltrami operator~2.4! on the hyperboloid [x, x]51 is

Dg,b5
1

coshg

]

]g S coshg
]

]g D1
1

cosh2 g

]2

]b2 . ~2.29!

On the other hand, the equation

Dg,bF~g,b!5s~s11!F~g,b! ~2.30!

is given by

S ]2

]g2 1
sinhg

coshg

]

]g
2

n2

cosh2 g Dq~g!5s~s11!q~g!, ~2.31!

where

F~g,b!5q~g!einb. ~2.32!
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Utilizing

dx5Ag dgdb5 coshg dgdb ~2.33!

and making the transformation

q~g!5~coshg!21/2c~g!, ~2.34!

Eq. ~2.31! reduces to

d2c~g!

dg2 1F2
1

4
2s~s11!2

n21~1/4!

cosh2 g Gc~g!50 ~2.35!

or, to the Schro¨dingers equation~2.14! with

E52 1
42s~s11!, s52 1

22 iAE, ~2.36!

V~g!5
n21~1/4!

cosh2 g
. ~2.37!

Applying the transformation

q~g!5~coshg!sw~g! ~2.38!

in Eq. ~2.31!, we obtain

d2w~g!

dg2 1~2s11! tanhg
dw~g!

dg
2

g21s2

cosh2 g
w~g!50. ~2.39!

In Eq. ~2.39!, applying the change of variable

z5 tanh2 g ~2.40!

we arrive at the hyper-geometric equation

z~12z!
d2w~z!

dz2
1F122~12s!zG dw~z!

dz
2
1

4
~n21s2!w~z!50. ~2.41!

A solution to this equation is

W15FS 142
iAE
2

2
in

2
,
1

4
2
iAE
2

1
in

2
;
1

2
; tanh2 g D . ~2.42!

The regular solution of the Schro¨dinger equation ata50 with AE5r satisfying the condition

E
2`

`

c~g,r!c~g,r8!dg5
1

r tanhrp
d~r2r8! ~2.43!

is found to be
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c~g,r!5S coshpr

4p3 D 1/2GS 141
ir

2
1
in

2 DGS 141
ir

2
1
in

2 D ~coshg! ir

3FS 142
ir

2
2
in

2
,
1

4
2
ir

2
1
in

2
;
1

2
; tanh2 g D . ~2.44!

On the other hand, considering

F~a,b,c;z!5
G~c!G~c2a2b!

G~c2a!G~c2b!
~z!2aFS a,a2c11,a1b2c11;12

1

zD1
G~c!G~a1b2c!

G~a!G~b!

3~12z!c2a2b~z!a2cFS c2a,12a,c2a2b11;12
1

zD ,
~2.45!

u arg zu,p, u arg ~12z!u,p, c2a2bÞm, m50,61,62,...,

the asymptotic expression for~2.44! is

c~g,r!5A~r,n!e2 irg1A~r,n!eirg, ~2.46!

where

A~r,n!5
G~ 1

2!G~2 ir!

GS 142
ir

2
2
in

2 DGS 142
ir

2
1
in

2 D 2ir. ~2.47!

TheS-matrix is

S5
A

Ā
5

G~ ir!GS 1
4

2
ir

2
2
in

2
D GS 1

4
2
ir

2
1
in

2
D

G~2 ir!GS 1
4

1
ir

2
1
in

2
D GS 1

4
1
ir

2
2
in

2
D . ~2.48!

C. Parabolic coordinates

The parabolic coordinates are given by

x05r @cosh 1
2t1

1
2e

~1/2!tq2#, x15r @sinh 1
2t1

1
2e

~1/2!tq2#,

x25re~1/2!tq, tP~2`,`!, qP~2`,`!. ~2.49!

From ~2.49!, we have

~gab!5 diag ~1,2 1
4r
2,2r 2et!, ~2.50!

Ag5„det ~gab!…
1/25 1

2r
2e~1/2!t. ~2.51!

The component of the Laplace–Beltrami operator on parabola [x, x]51 is given as

D t,q54
]2

]t2
12

]

]t
1
1

et
]2

]q2
. ~2.52!
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On the other hand, the equation

D t,qF~ t,q!5s~s11!F~ t,q!, ~2.53!

where

F~ t,q!5q~ t !einq ~2.54!

is equivalent to

F4 ]2

]t2
12

]

]t
2

n2

et Gq~ t !5s~s11!q~ t !. ~2.55!

Making use of

dx5Agdtdq5 1
2e

~1/2!t dtdq ~2.56!

and applying the transformation

q~ t !5e2~1/4!tc~ t !, ~2.57!

Eq. ~2.55! becomes

d2c~ t !

dt2
1F2

1

16
2
1

4
s~s11!2

~1/4!n2

et Gc~ t !50, ~2.58!

which reduces to the Schro¨dinger equation where

E52 1
162

1
4s~s11!, ~2.59!

V~ t !5
~1/4!n2

et
. ~2.60!

Applying the change of variables

z5e2~1/2!t ~2.61!

in Eq. ~2.58!, we arrive at the equation

z2
d2c~z!

dz2
1z

dc~z!

dz
2@n2z21~ ir!2#c~z!50. ~2.62!

Equation~2.62! is reduced to

z2
d2c~z!

dz2
1z

dc~z!

dz
2@z21~ ir!2#c~z!50, ~2.63!

the modified Bessel equation. Insertingz85vz the solution satisfying the condition

E
2`

`

c~ t,r!c~ t,r8!dt5
1

r tanhpr
d~r2r8! ~2.64!

is found to be
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c~ t,r!5S 2 coshpr

p D 1/2Kir~ne2~1/2!t!. ~2.65!

On the other hand, considering the asymptotic expression ofKm(z) at z→`, we havec→0 for
t→2`. The expression forc as t→` can be found by regarding

Km5
p

2 sinhpm
@ I2m~z!2Im~z!# ~2.66!

and

Im~z!5
~z/2!me2z

G~m11!
F1~m1 1

2;2m11;2z!, ~2.67!

we have

c~ t,r! >
t→`

A~r,n!e2~1/2!irt1A~r,n!e~1/2!irt. ~2.68!

Here

A~r,n!5S 2 coshpr

p D 1/2 2p~n/2! ir

2i sinhprG~11 ir!
~2.69!

and theS-matrix is given by

S5
A

Ā
5S n

2
D 2ir G~12 ir!

G~11 ir!
. ~2.70!

The quantum system related to the two-sheeted hyperboloid was also considered in Refs. 4
and 5.

III. THE QUANTUM SYSTEMS RELATED TO ONE-SHEETED HYPERBOLOID

Consider the problem outside the cone~[x, x],0! in three-dimensional space on three differ-
ent coordinate systems.

A. Spherical polar coordinates

The spherical polar coordinates are given by

x05r sinha, x15r cosha sin w,

x25r cosha cosw, r.0, aP~2`,`!, wP@0,2p#. ~3.1!

By ~3.1! we have

~gab!5 diag ~21,r 2,2r 2 cosh2 a!, ~3.2!

Ag5„det~gab!…
1/25r 2 cosha. ~3.3!

The component of the Laplace–Beltrami operator on the hyperboloid [x, x]521, is

Da,w5
]2

]a2 1tanha
]

]a
2

1

cosh2 a

]2

]w2 . ~3.4!
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On the other hand, the equation

Da,wF~a,w!5s~s11!F~a,w!, ~3.5!

where

F~a,w!5q~a!einw, ~3.6!

becomes

F ]2

]a2 1tanha
]

]a
1

n2

cosh2 a Gq~a!5s~s11!q~a!. ~3.7!

Using

dx5cosha da dw ~3.8!

and applying the transformation

q~a!5~cosha!21/2c~a!, ~3.9!

Eq. ~3.7! takes the form

]2c~a!

]a2 1F2
1

4
2s~s11!1

n22~1/4!

cosh2 a Gc~a!50, ~3.10!

or inserting

E52 1
42s~s11!, s52 1

21 iAE, ~3.11!

V~a!52
n22~1/4!

cosh2 a
, ~3.12!

reduces the equation to the Schro¨dinger equation. As can be seen from~3.12!, E takes positive and
negative values. Let us seek solutions for positive values ofE first. Making the transformation

q~a!5~cosha!sw~a! ~3.13!

in Eq. ~3.7!, we arrive at the equation

d2w~a!

da2 1~2s11! tanha
dw~a!

da
1

n22s2

cosh2 a
w~a!50. ~3.14!

Changing to variablez5tanh2 a in Eq. ~3.14!, we obtain the equation

z~z21!
d2w~z!

dz2
1F122~12s!zG dw~z!

dz
2
1

4
~s22n2!]w~z!50. ~3.15!

The solutions of this equation are given by

w15FS 142
iAE
2

2
n

2
,
1

4
2
iAE
2

1
n

2
;
1

2
;zD , ~3.16!
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w25z~1/2!FS 342
iAE
2

2
n

2
,
3

4
2
iAE
2

1
n

2
;
3

2
;zD . ~3.17!

The functionF(x) on the hyperboloid [x, x]521 with respect to reflectionRx52x has even
and odd components. We consider only the even components.

The regular solution of the Schro¨dinger equation ata50 with AE5r, satisfying the condition

E
2`

`

C~a,r!C~a,r8!da5
1

r tanhpr
d~r2r8!,

are found to be

c1~a,r!5
1

&

GS 141
ir

2
1
n

2D
GS 342

ir

2
1
n

2D
~cosha! irFS 142

ir

2
2
n

2
,
1

4
2
ir

2
1
n

2
,
1

2
; tanh2 a D

~3.18!

for n52k, k51,2,3,...,

c2~a,r!52
1

2

GS 341
ir

2
1
n

2D
GS 141

ir

2
1
n

2D
~ tanha!~cosha! irFS 342

ir

2
2
n

2
,
3

4
2
ir

2
1
n

2
,
3

2
; tanh2 a D

~3.19!

for n52k11, k51,2,3,... .
Using the relation~2.21!, we find the asymptotic solution of~3.18!,

c1~a,r!5A~r,n!e2 ira1A~r,n!eira, ~3.20!

where

A~r,n!5

GS 12DG~2 ir!

GS 142
ir

2
2
n

2DGS 142
ir

2
1
n

2D
2ir. ~3.21!

Similarly, the asymptotic expression for~3.19! is

c2~a,r!5A8~r,n!e2 ira1A8~r,n!eira, ~3.22!

where

A8~r,n!5

GS 32DG~2 ir!

GS 342
ir

2
2
n

2DGS 342
ir

2
1
n

2D
2ir. ~3.23!

TheS-matrices for~3.20! and ~3.22! are
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S5

G~2 ir!GS 141
ir

2
2
n

2DGS 141
ir

2
1
n

2D
G~ ir!GS 142

ir

2
2
n

2DGS 142
ir

2
1
n

2D
, n52k, ~3.24!

and

S5

G~2 ir!GS 341
ir

2
2
n

2DGS 341
ir

2
1
n

2D
G~ ir!GS 342

ir

2
2
n

2DGS 342
ir

2
1
n

2D
, n52k11. ~3.25!

The square integrable solutions for the negatives values ofE are obtained from~3.18! and
~3.19!. By substituting

s52 1
22 iAE5212l , ~3.26!

we have

c1~a,l !5c1~cosha!2unu11/212kF~2k,unu2k; 12; tanh
2 a! ~3.27!

for unu2l 52k11, k50,1,2,..., and

c2~a,l !52c2~ tanha!~cosha!2unu13/212kF~2k,unu2k; 32; tanh
2 a! ~3.28!

for unu2l 52k12, k50,1,2,...
Here the normalization factorsc1 andc2,

uc1u25
2

2l 11

G~ 1
21k!G~2unu1k1 1

2!G~ unu2k!

pG~11k!G~2unu12k1 1
2!G~ unu22k2 1

2!
~3.29!

and

uc2u25
8

2l 11

G~ 3
21k!G~2unu1k1 3

2!G~ unu2k!

pG~11k!G~2unu12k1 3
2!G~ unu22k1 3

2!
, ~3.30!

are chosen to satisfy the condition

E uC i u2 da5
1

l 1~1/2!
, i51,2. ~3.31!

The calculating of the normalization factorsc1 andc2 are given in Appendix B.

B. Hyperbolic coordinates

The hyperbolic coordinates forux2u.1 are given as

x05r sinhg coshb,

x15r sinhg sinhb,
~3.32!
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x25r e coshg,

gP~2`,`!, bP~2`,`!, e561.

By ~3.32!, we have

~gab!5 diag ~21,r 2,2r 2 sinh 2 g!, ~3.33!

Ag5„det ~gab!…
1/25r 2 sinhg. ~3.34!

The component of the Laplace–Beltrami operator on the hyperboloid [x, x]521 is

Dg,b5
]2

]g2 1 cothg
]

]g
1

1

sinh 2 g

]2

]b2 . ~3.35!

The equation

Dg,bF~g,b!5s~s11!F~g,b! ~3.36!

is given by

S ]2

]g2 1cothg
]

]g
1

n2

sinh 2 g Dq~g!5s~s11!q~g!, ~3.37!

where

F~g,b!5q~g!einb. ~3.38!

Utilizing

dx5sinhgdg db ~3.39!

and making the transformation

q~g!5~sinhg!21/2c~g!, ~3.40!

Eq. ~3.37! reduces to

d2c~g!

dg2 1F2
1

4
2s~s11!1

n21~1/4!

sinh 2 g Gc~g!50, ~3.41!

or to the Schro¨dinger’s equation~2.14! with

E52 1
42s~s11!, s52 1

21 iAE, AE5r, ~3.42!

V~g!52
n21~1/4!

sinh 2 g
. ~3.43!

Applying the transformation

q~g!5S coshg

2D 2 inS sinhg

2D 2 in

w~g! ~3.44!

in Eq. ~3.37!, we obtain
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F d2dg2 1
2in1coshg

sinhg

d

dgGw~g!5s~s11!w~g!. ~3.45!

In Eq. ~3.45!, applying the change of variable

z52sinh2
g

2
, ~3.46!

we arrive at the hyper-geometric equation

z~12z!
d2w~z!

dz2
1@~ in11!22z#

dw~z!

dz
2@2s~s11!#w~z!50. ~3.47!

The regular solutions of the Schro¨dinger equation atg50 are found to be

c6~g,s!5S coshg

2D 1/2S sinhg

2D 1/2Ps
6 in~coshg!, ~3.48!

where

Ps
6 in~coshg!5

1

G~17 in! S coshg

2D 6 inS sinhg

2D 7 in

FS s11,2s,17 ig,2 sinh2
g

2D .
~3.49!

Satisfying the condition Eq.~2.43! the solutions of the equation~3.41! have the form2

C~g,s!5S coshg

2D 1/2S sinhg

2D 1/2@q~n,s!Ps
2 in~coshg!1q~2n,s!Ps

in~coshg!#, ~3.50!

where

q~n,s!5qn5
1

p&

p

i sinh
2n

2
p

AG~s11!G~2s!G~s111 in!G~2s1 in!

3A cos
s

2
p sin

s

2
p cos S s

2
1
in

2 Dp sin S s

2
2
in

2 Dp, ~3.51!

we find the asymptotic expression of~3.50! with s521
21ir, r5AE as

C~g,r!
g→`

>~qnAn1q2nA2n!e2 irg1~qnBn1q2nB2n!eirg, ~3.52!

where

An5
G~22ir!

G~ 1
22 ir!G~ 1

22 ir1 in!
22ir, ~3.53!

Bn5
G~2ir!

G~ 1
21 ir!G~ 1

21 ir1 in!
222ir. ~3.54!

Using the conditions
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uqnu2uAnu21uq2nu2uA2nu21qnAnq2nA2n1q2nA2nqnAn1uqnu2uBnu21uq2nu2uB2nu2

1qnBnq2nB2n1q2nB2nqnBn5
p

2r tanhpr
~3.55!

it can be verified that the condition~2.43! for C~g,s! is satisfied.
TheS-matrix is found to be given by

S5
qnAn1q2nA2n

qnBn1q2nB2n
. ~3.56!

The square integrable solution of Eq.~3.41! is found from~3.49! by settings5l50,1,2:

C~g,l !5q~ l ,n!S coshg

2D 1/2S sinhg

2D 1/2FPl
in~ t !2

G~11 l1 in!

G~11 l2 in!
Pe

2 in~ t !G , ~3.57!

where

q~ l ,g!52ApAcot g
ipn

2
AG~11s2 in!G~2s2 in!,

~3.58!
t5coshg.

Using the relation between Legendre functions3

Qg
m~z!sin mp5

p

2
eimpFPn

m~z!2
G~n1m11!

G~n2m11!
Pn

2m~z!G ~3.59!

we have

C~g,l !5
2

p
sin inpe2 ipnq~ l ,n!S coshg

2D 1/2S sinhg

2D 1/2Ql
in~coshg!, ~3.60!

where

Ql
in~coshg!52l~coshg11!2 l211 in/2~coshg21!2 in/2

G~11 l !G~11 l1 in!

G~212l !

3FS 11 l2 in,11 l ,212l ;
2

11 coshg D . ~3.61!

The condition

E
2`

`

C~g,l !C~g,l 8!dg5
1

l1~1/2!
d l l 8 ~3.62!

follows from the condition

E
2`

`

C~g,s!C~g,s8!dg5
1

2~s1 1
2!tanh~s1 1

2!p
d~s2s8! ~3.63!

by the analytic continuation.
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C. Parabolic coordinates

The parabolic coordinates are given as

x05r @sinh 1
2t2

1
2e

~1/2!tq2#,

x15r @cosh 1
2t1

1
2e

~1/2!tq2#,

~3.64!
x25re~1/2!tq,

tP~2`,`!, qP~2`,`!.

By ~3.64!, we have

~gab!5 diag ~21,14r
2,2r 2et!. ~3.65!

The component of the operator~2.14! on the hyperboloid [x, x]521 is

D t,q54
]2

]t2
12

]

]t
2
1

et
]2

]q2
. ~3.66!

The equation

D t,qF~ t,q!5s~s11!F~ t,q!, ~3.67!

where

F~ t,q!5q~ t !einq ~3.68!

becomes

F4 ]2

]t2
12

]

]t
1

n2

et Gq~ t !5s~s11!q~ t !. ~3.69!

Using ~2.56! and making the transformation~2.57!, Eq. ~3.37! becomes

d2C~ t !

dt2
1F2

1

16
2
1

4
s~s11!1

~1/4!n2

et GC~ t !50 ~3.70!

or reduces to the Schro¨dinger equation with

E52 1
162

1
4s~s11!, ~3.71!

V~ t !52
~1/4!n2

et
. ~3.72!

Changing variables to~2.61! in Eq. ~3.70! with s521
21ir we obtain

z2
d2C~z!

dz2
1z

dC~z!

dz
1@n2z21r2#C~z!50. ~3.73!

The solution which tends to zero fort→` and satisfies the condition~2.64!,
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C~ t,r!5S 2 coshrp

p D 1/2Kir~ ine2~1/2!t! ~3.74!

The square integrable solution of Eq.~3.73! with s~s11!5l ( l11) is

C l~ t !5Jl11/2~ne2~1/2!t!. ~3.75!

The orthonormality condition of Bessel functions has the form

E
0

`

Jl11/2~z!Jl 811/2~z!
dz

z
5

l

l1 1
2

d l l 8. ~3.76!

IV. THE EXPLICIT EXPRESSIONS ON THE GREEN’S FUNCTION OF THE FREE
PARTICLE ON TWO- AND ONE-SHEETED HYPERBOLOIDS

A. Calculate Green’s function of the free particle on hyperboloid [ x , x ]51

First we consider the decomposition of the unitary representation

T~g!F~x!5F~xg!, gPSO~1,2!, ~4.1!

in the space

^F1 ,F2&5E F1~x!F2~x!dx ~4.2!

of function on hyperboloid. The irreducible representationTs(g), gPSO~1,2!, can be realized in
the space of the homogenous functions on cone

@y, y#5y0
22y1

22y2
250, y0.0

~see Appendix A!. Consider the functions [x, y] s, which for fixedx homogenous functions on
cone

@x, dy#s5as@x, y#s. ~4.3!

Since [xg21, y]5[x, yg], we have

@xg21, s#s5~sg!0
s@x,sg#s, ~4.4!

wherey5eas, s5~1,sinw,cosw!. The Fourier componentsF̃(s;r) of the functionF(x) we define
by formula

F̃~s,r!5E F~x!@x,s#21/21 ir dx. ~4.5!

For the functionFg(x)5F(xg) we have

F̃g~s,r!5E Fg~x!@x,s#21/21 ir dx5E F~x!@xg21,s#21/21 ir dx5~sg!0
21/21 irF~sg,r!.

~4.6!

Here we used Eq.~4.4! and the invariance of the volume elementdx5dxg. Hence representation
in the space of functionsF(s,r) is irreducible.

The expansion of the functionF(x) in an elementary harmonics reads2
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F~x!5
1

p2 E F̃~s,r!@x,s#21/21 irr tanhpr dr ds. ~4.7!

The function [x, s] s is an eigenfunction of the Laplace–Beltrami operator,

DL,B@x,s#s5s~s11!@x,s#s. ~4.8!

Therefore the Green’s function of the quantum system with Hamiltonian

H52
1

2mR2
DLB ~4.9!

reads

G~x1 ,x2 ;E!5
1

p2 E E
S

@x1 ,s#
21/21 ir@x2 ,s#

21/22 ir

1

2mR2 S r21
1

4D2E

r tanhpr dr ds. ~4.10!

Using the addition theorem~see Appendix A!,

E @x1 , s#
21/21 ir@x2 , s#

21/22 ir ds52pE @ ẋgx1gx2
21,s#21/21 ir dw, ~4.11!

and integral representation of first kind Legendre function,

Ps~cosha!5
1

2p E @x, s#sds5
1

2p E ~cosha2sinha cosw!sdw, ~4.12!

and the relation between first kind and second kind Legendre functions~Ref. 3, p. 819!,

E
0

` x tanhpx

a21x2
P2~1/2!1 ix~coshy!dx5Qa2~1/2!~coshy!, ~4.13!

we obtain

G~x1 ,x2 ;E!58mR2QiA2mR2E2~1/4!2~1/2!~ @x1 , x2# !. ~4.14!

The same results were obtained by the path integral method in Refs. 6 and 7.
By a Fourier transformation we obtain the time-dependent propagator:

K~x1 ,x2 ;T!5
1

2pR2 E
0

`

exp F2 iT~r21 1
4!

2mR2
GP2~1/2!1 ir~@x1 , x2# !r tanhpr dr. ~4.15!

The eigenfunction representation in terms of the Legendre function of the propagator is ‘‘equiva-
lent to the integral over classical parts.’’4,7

Indeed, using the integral representation for the Legendre function8

tanh~pr!P2~1/2!1 ir~cosha!5
&

p E
a

` sin rt dt

~cosht2cosha!1/2
~4.16!

and the formula;
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E
0

`

r sin ~rt !exp~2ar2!dr5Ap

a
~ t/4a!exp~2t2/4a! ~4.17!

we obtain

K~x1 ,x2 ;T!5& Re2 ip/8mR2S m

2pTD 3/2E
a

` t exp ~2mRt2/2T!dt

~cosht2cosha!1/2
, ~4.18!

where cosha5[x1 , x2].

B. The Green’s function on one-sheeted hyperbolic [ x , x ]521

There exists the reflection operatorR defined by

RF~x!5F~2x! ~4.19!

which commutes with the representation operator

T~g!F~x!5F~xg!. ~4.20!

Therefore symmetric and antisymmetric partsF6 (x)5 1
2[F(x)6F(2x)] of the functions

F(x) define invariant subspaces. Notice that the one-sheeted hyperboloid [x, x]521 with iden-
tified of the opposite pointsx and2x is called the imaginary Labochevsky space. From the results
concerning the decomposition of the representation~4.20! into the irreducible components2 fol-
lows that the Green’s function in the imaginary Lobachevsky space is defined by

G~x1 ,x2 ;E!5
1

p E
0

`E
S

@x1 , s#
21/21 ir@x2 , s#

21/22 ir

1

2mR2
~r21 1

4!2E

r tanhpr dr ds

1
1

p (
l50

` ~ l1 1
2!* u@x1 ,s#u212 l u@x2 ,s#u l ds

2
1

2mR2
l ~ l11!2E

. ~4.21!

By the addition theorem~see Appendix A! we get

G~x1 ,x2 ;E!52pR2E
0

` P2~1/2!1 ir~ ux1 ,x2u!r tanhpr dr

r22~2mR2E1 1
4!

12mR2(
l50

` ~ l1 1
2!Pl~ ux1 ,x2u!

2 l ~ l11!22mR2
.

~4.22!

In order to calculate the infinite series in~4.22! we use the Sommerfeld–Watson integral trans-
formation

(
l50

` ~ l1 1
2!

2 l ~ l11!2E
Pl~ t !5 i E

C
ds

~s1 1
2! cosps

sin ps@2s~s11!2E#
Ps~ t !

5E
2`

` drr tanhpr

r21 1
41~2E!

P2~1/2!1 ir~ t !, ~4.23!

where contourC encounters the zeros of the function sinpl ,l50,1,2,... .
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For t.1 then apply to last integral the formula~4.13!, but for t,1 we define it by analytic
continuation. Thus we obtain final expression for Green’s function

G~x1 ,x2 ;E!52mR2@QiA~E/2mR2!2~1/4!2~1/2!~ ux1x2u!1QiA~2E/2mR2!2~1/4!2~1/2!~ ux1x2u!#.
~4.24!
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APPENDIX A: THE ORTHOGONALITY, COMPLETENESS CONDITIONS AND ADDITION
THEOREM FOR PLANE VALUES [ x , s ]s

The irreducible representations of group SO~1,2! are constructed9 in the space of infinitely
differentiable homogenous functionsF(y) on the cone [y,y]50; y0.0,

F~ay!5asF~y!, a.0. ~A1!

The representation

Ts~g!F~y!5F~yg!, gPSO~1,2!, ~A2!

can be realized in the space of infinitely differentiable functions on intersections of cone; for
example, on the circle

Ts~g! f ~s!5~sg!0
s f ~sg!, ~A3!

s5yuy0515~1, sinw, cosw!, y5y0s5eas. ~A4!

From y85yg we have

~sg!05ea82a, sg5sg/~sg!05~1, sinw8, cosw8!. ~A5!

The unitary representationTs(g), gPSO~1,2! with respect to scalar product

^ f 1 , f 2&5E f 1~w! f 2~w!dw5E f 1~s! f 2~s!ds ~A6!

is defined bys52~1/2!1ir ~principle series!. The unitary representationTs(g) with respect to
the scalar product

^ f 1 , f 2&5
1

G~2r2 1
2!
E @s,s8#212s f 1~s! f 2~s!ds ds8 ~A7!

is defined by21,s,0 ~complementary series! and bys5212l , l50,1,2 ~discrete series!. The
matrix elements of the representationT0,n

s (g) are defined by the formula

t0,n
s ~g!5^1,Ts~g!einw&5

1

2p E ~sg!0
seinw8 dw8. ~A8!

Using the decomposition of the elementgPSO~1,2! related with the hyperboloid [x, x]51

x5xgx , xK5x, g5Kgx ,

we also have
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t0,n
s ~gx!5^T212s~gx

21!,einw&5
1

2p E ~sgx
21!0

212s̄einw dw. ~A9!

Since

~sgx
21!05@ x̊, sgx

21#5@ x̊gx , s#5@x, s#, x̊5~1,0,0!

we get

t0,n
s ~gx!5

1

2p E @x,s#212s̄einw dw. ~A10!

Laplace–Beltrami operatorDLB on hyperboloid [x, x]51, x0.0, is a Casimir operator of the
quasi-regular representationTg(g)F(x)5F(xg).

So, the matrix elementst0,n
s (gx) satisfy the equation

DLBt0,n
s ~gx!5s~s11!t0,n

s ~gx!, ~A11!

and we have

DLB@x, s#s5s~s11!@x, s#s. ~A12!

The addition theorem for function [x,s]211 ir follows from the relations

(
n

t0,n
s ~gx1!t0,n

s ~gx2!5(
n

t0,n
s ~gx1!t0,n

s ~gx2
21!5t0,0

s ~gx1gx2
21!. ~A13!

Using the integral representation~A10! we have

E @x1 , s#
2~1/2!1 ir@x2 , s#

2~1/2!2 ir ds5
1

2p E @ ẋgx1gx2
21,s#2~1/2!1 ir ds. ~A14!

The orthogonality condition for the matrix elementst0,n
s (gx) reads

E t0,n
2~1/2!1 ir~gx!t0,n

2~1/2!1 ir8~gx!dx5~2p!2uc~r!u2d~r2r8!dnn8 , ~A15!

wherec~r!, the so-called Harish–Chandra function, is defined asymptotically:10

t0,n
s
„a~a!

a→`

…>E
0

2p

~cosha1sinha cosw!s dw5~cosha!sc~s!, ~A16!

where

c~s!52s
G~112s!

uG~11s!u2
. ~A17!

Here we use Eq.~A8! and the fact that

cosw8
a→`

5
sinha1cosha cosw

cosha1sinha cosw
→1. ~A18!

From Eq.~A15! we get to the orthogonality condition for functions [x s]2(1/2)1 ir:
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E @x,s#2~1/2!1 ir@x,s8#2~1/2!2 ir8 dx5p2
1

r tanhpr
d~r2r8!d~s2s8!. ~A19!

The completeness condition

1

p2 E @x1 , s#
2~1/2!1 ir@x2 , s#

2~1/2!2 irr tanhpr dr ds5
1

p
d~x12x2! ~A20!

follows from the fact that quantum systems related to the hyperboloid [x, x]51, x0.0, contain
only scattering states~see Ref. 2!.

In order to present the addition theorem for the eigenfunctionsu[x, s] us of the Laplace–
Beltrami operator on the one-sheeted hyperboloid [x, x]521 because the stationary subgroup of
fixed pointx5~0,0,1! is noncompact SO~1,1![H, we must consider the matrix elements of unitary
representationTs(g) in the basis associated with noncompact subgroupH. Realizing the repre-
sentation~A2! in the space of functionf (p) 5 F(y)ux2561 , wherep5~coshb, sinhb,e!, e561,
we get2

t0,n
s,e~gx!5

1

2p E
S
u@x,s#u212s@x, s#s signe@x,s#H @p1,s#

@p2,s# J
in/2

ds, ~A21!

wheree50,1; p65~1,61,0!. Then from

E
S
t0,0
~s,0!~gx1!t0,n

~s,0!~gx2
21!dn5t0,0

~s,0!~gx1gx2
21! ~A22!

we obtain

E
S
u@x1 ,s#usu@x2 ,s#u212s ds5E

S
u@xgx1gx2

21,s#usu@x,s#u212s ds. ~A23!

Using the decomposition of the elements

g5hg̃h, gPSO~1,2!, ~A24!

whereg̃5a(a) or g̃5K(u) ~see Ref. 2! associated with the hyperboloid [x, x]521. We have

t0,0
~s,0!~g!5t0,0

~s,0!~ g̃!5Ps~ t ! ~A25!

for ut u.1, t5e cosha, e561, for ut u,1, t5cosu.

APPENDIX B: CALCULATION OF THE NORMALIZATION FACTOR

To calculate the normalization factor in~3.27! we perform the change of variablex5tanh2 a
and use the formula@Ref. 11, 2.8~17!#

F~2k,b;c;x!5
G~c!

G~c1k!
x12c~12x!k1c2b

dk

dxk
@xk1c21~12x!b2c#. ~B1!

Then we get

J5
uc1u2Ax
G~ 1

21k!
E
0

1

~12x!21FS 2k,n2k;
1

2
;xD dk

dxk
@xk21/2~12x!n2k21/2#dx. ~B2!
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After k-fold multiple integration by parts and using the formula@Ref. 11, 28~25!#

dk

dxk
@~12x!21F~2k,b;c;x!#5

G~k11!G~c2b1k!G~c!

G~c2b!G~c1k!
~12x!2k21, ~B3!

from J51/@l 1~1/2!# we obtain

uc1u25
2

2l 11

G~ 1
21k!G~2n1k1 1

2!G~n2k!

pG~k11!G~2n12k1 1
2!G~n22k2 1

2!
. ~B4!
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Two-dimensional supersymmetric harmonic oscillator
carrying a representation of the GL(2 z1) graded Lie algebra
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We study a supersymmetric two-dimensional harmonic oscillator which carries a
representation of the general graded Lie algebra GL~2u1!, formulate it on the su-
perspace, and discuss its physical spectrum. ©1996 American Institute of Physics.
@S0022-2488~96!00201-X#

I. INTRODUCTION

Supersymmetry is an interesting symmetry which transforms bosons into fermions and vice
versa.1 Quantum mechanical~or classical! theories which are supersymmetric provide realizations
of graded Lie algebras~GLA!.2 The most familiar GLA is the graded Poincare´ algebra which leads
to relativistic, supersymmetric quantum field theories, which include supergravity.

Examples of simple and extended global supersymmetries based on the grading of space-time
symmetries are abundant in simple quantum mechanical systems—the one-dimensional supersym-
metric harmonic oscillator being the simplest example of such systems.3,4 However, there exist
many other GLAs which involve grading internal symmetry algebras. The most familiar of such
GLAs are the OSp(2mun) and SL(mun).5 While realizations of such algebras arise naturally in
integrable models, there does not yet exist a quantum or classical mechanical realization of the
most general graded Lie algebra, namely, GL(mun). In this paper, we construct a supersymmetric
two-dimensional harmonic oscillator which provides a realization of GL~2u1! as its symmetry
algebra. In Sec. II, we discuss the GL~2u1! algebra with raising and lowering operators. In Sec. III
we present our model of a supersymmetric harmonic oscillator and discuss all the symmetries
associated with this system. We show that the symmetry algebra coincides with GL~2u1!. In Sec.
IV, we discuss the spectrum of states associated with this Hamiltonian and present a superspace
description of this theory. Finally, we discuss our conclusions in Sec. V.

II. GRADED LIE ALGEBRA GL(2 z1)
Graded Lie algebras2 include both bosonic and fermionic generators satisfying commutation

and anticommutation relations, respectively, and have the following general structure:

@Bm ,Bn#25 f mn
k Bk , @Bm ,Fa#25hma

b Fb , @Fa ,Fb#15gab
m Bm , ~1!

with the brackets@...,...#7 denoting commutators and anticommutators, respectively,k,m,n
51,2,...,N, anda,b51,2,...,M . The even or bosonic generatorsBm form the underlying Lie
algebra, while the odd or fermionic generatorsFa provide a grading of this algebra consistent with
the generalized Jacobi identities.

In this section we shall study the graded Lie algebra GL~2u1! whose underlying bosonic
algebra is GL~2!%GL~1!. Here we shall use the boson/fermion representation obtained with the
help of canonical realizations, i.e., realizations in terms of pairs of boson/fermion creation and
annihilation operators satisfying canonical~anti!commutation relations. Consider the set of
bosonic and fermionic operators
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$ak
† ,ak ;k51,2% and $a3

† ,a3% ~2!

satisfying the canonical~anti!commutation relations

@ak ,am
† #25dkm , @a3 ,a3

†#151, ~3!

with all other~anti!commutators vanishing. The four bilinear operatorsB ; ak
†am define the gen-

erators of the underlying GL~2! algebra, which together withB ; a3
†a3 constitute the five bosonic

generators of the GL~2u1! algebra. The four fermionic generators of this algebra are defined by the
bilinear operatorsF ; a3

†ak andF ; ak
†a3 . All together these nine operators generate theZ2 graded

GL~2u1! algebra. It is a simple task to verify that they satisfy the algebra~1!. For instance, if we
denote these nine operators as

~a! bosonic generators:

B15a1
†a1 , B25a1

†a2 , B35a2
†a1 ,

~4!
B45a2

†a2 , B55a3
†a3 ,

~b! fermionic generators:

F15a1
†a3 , F25a2

†a3 ,
~5!

F35a3
†a1 , F45a3

†a2 ,

it is then a simple task to find the nonvanishing structure constants in Eq.~1!.
For future convenience, we introduce a new basis of the fermionic generators as

QR5
1

A2
~a1

†a32 ia2
†a3!, Q̄R5

1

A2
~a3

†a11 ia3
†a2!,

~6!

QL5
i

A2
~a3

†a12 ia3
†a2!, Q̄L5

2 i

A2
~a1

†a31 ia2
†a3!.

The anticommutation relations among these charges are easily computed. We also redefine the five
bosonic operators as

hb5a1
†a11a2

†a2 , hf5a3
†a3 ,

~7!
D15a1

†a12a2
†a2 , iD25a2

†a12a1
†a2 , D35a1

†a21a2
†a1 ,

and introduce the operatorH5hb1hf . The algebra of the fermionic charges~6! becomes

@QR ,Q̄R#15 1
2~H1D21hf !, @QL ,Q̄L#15 1

2~H2D21hf !,
~8!

@QR ,QL#15 1
2~D31 iD1!, @Q̄R ,Q̄L#15 1

2~D32 iD1!.

Similarly, the algebra of the new bosonic charges~7! can be computed straightforwardly, to
give

@Dk ,Dm#252i ekmnDn , @hb ,Dm#250,
~9!

@hf ,Dm#250, @hb ,hf #250,
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while the remaining nonvanishing boson–fermion commutation relations are

@hf ,QR#252@hb ,QR#252QR , @hf ,Q̄R#252@hb ,Q̄R#251Q̄R ,
~10!

@hf ,QL#252@hb ,QL#251QL , @hf ,Q̄L#252@hb ,Q̄L#252Q̄L ;

@D1 ,QR#251 iQ̄L , @D1 ,Q̄R#251 iQL ,
~11!

@D1 ,QL#252 iQ̄R , @D1 ,Q̄L#252 iQR ;

@D2 ,QR#251QR , @D2 ,Q̄R#252Q̄R ,
~12!

@D2 ,QL#251QL , @D2 ,Q̄L#252Q̄L ;

@D3 ,QR#251Q̄L , @D3 ,Q̄R#252QL ,
~13!

@D3 ,QL#252Q̄R , @D3 ,Q̄L#251QR .

Using these relations we can verify that all generators satisfy the generalized Jacobi identities.
Observe from Eqs.~9! and ~10! that all nine generators of the GL~2u1! graded Lie algebra de-
scribed above commute withH which stays in the center of the algebra.

III. TWO-DIMENSIONAL SUPERSYMMETRIC HARMONIC OSCILLATOR

In this section we introduce our model, a two-dimensional supersymmetric harmonic oscilla-
tor which, as mentioned in the Introduction, carries a representation of the graded GL~2u1! algebra
described in Sec. II. This model is described by the following Lagrangian:

L5
1

2
~ q̇Tq̇2qTq!1

i

2
cTS ddt2 is2Dc, ~14!

where

q5S q1q2D ~15!

and

c5S c1

c2
D ~16!

are the oscillator’s bosonic and fermionic coordinates, which are assumed to be real. We have
chosen the mass and the frequency to be unity, for simplicity. Heresk stands for the Pauli matrices
andqT andcT stand for matrix transposition, as usual. Note that up to total derivatives, we can
also write the Lagrangian~14! as

L52
1

2
qTS ddt2 is2D S ddt1 is2Dq1

i

2
cTS ddt2 is2Dc. ~17!

It is important to mention that compared to theusual two-dimensional supersymmetric harmonic
oscillator, the model under investigation here is constructed with half the number of fermionic
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degrees of freedom, i.e., it has two second-order bosonic variables~or four first-order! and two
first-order fermionic variables. In the two-dimensional matrix space of Eqs.~15! and ~16!, let us
denote a complete basis of real,~232! matrices by

ta5~s0 ,s1 ,is2 ,s3!; a50,1,2,3, ~18!

wheres0 is the ~232! identity matrix. It is straightforward to show that the action of the theory
described by Eq.~14! is invariant under the four supersymmetry transformations

dq5eatac, dc5 i S ddt1 is2D eata
Tq, ~19!

with ea being four infinitesimal, constant Grassmann parameters that characterize the transforma-
tions. In the Hamiltonian language,6 which is more appropriate for our purposes, the Hamiltonian
operator is given by

H5 1
2~p

Tp1qTq!2 1
2c

Ts2c ~20!

and enjoys the following set of global invariances:

~A! Supersymmetry

dq5
1

A2
eatac, dc5

i

A2
ea~ta

Tp1 is2ta
Tq!, dp5

i

A2
eatas2c. ~21!

The Noether supercharges generating these transformations are given by

Qa5
1

A2
~pTtac2 iqTtas2c!. ~22!

Indeed, note that given the generalized Dirac brackets@see Eq.~A5!#

$qk ,pm%5dkm , $ca ,cb%52 idab , ~23!

we obtain the supersymmetry transformations~21! above as

dA5$A,eaQa%, ~24!

whereA stands forqk , pk , andca . The invariance of the Hamiltonian implies that$H,Qa%50
which in turn shows that theQa’s are constants of motion. Besides the four supersymmetries
above, this Hamiltonian is also invariant under the following global symmetries.

~B! Rotation on the four-dimensional~bosonic! phase-space
~i! The transformations

dq52 ias2q, dp52 ibs2p, ~25!

with a, b bosonic, constant infinitesimal parameters are clearly symmetries ofH. However, in
order to preserve the canonical commutation relations~23! we must havea5b. These transfor-
mations are generated by the angular momentum operator

J15
i

2
~qTs2p2pTs2q!. ~26!
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Note that these transformations do not mix coordinate and momentum variables.
~ii ! The transformations

dq5latap, dp52lataq, ~27!

with la constant, bosonic, infinitesimal parameters are also a set of symmetries of the Hamiltonian
which preserve the Dirac brackets relations, as long as the indexaÞ2 @see Eq.~18!#. The charges
generating these transformations are

L05
1
2~p

Tp1qTq!, L15
1
2~p

Ts1p1qTs1q!, L35
1
2~p

Ts3p1qTs3q!. ~28!

~C! Rotation on the two-dimensional fermionic phase-space
The generalized rotation in the fermionic phase-space

dc5a–sc ~29!

with a5~a1,a2,a3! being a set of constant bosonic parameters, is another group of symmetries in
the action. Again, preservation of the canonical commutation relations~23! imposesa15a350 as
conditions over the possible values that these parameters can take. These transformations are
generated by the following charge:

J25
1
2c

Ts2c ~30!

representing the fermionic contribution to the total angular momentum.
Now, in order to make contact with the graded algebra GL~2u1! defined in the preceeding

section, let us redefine these charges as

hb5L05
1
2~p

Tp1qTq!, hf52J252 1
2c

Ts2c,

D15L15
1
2~p

Ts1p1qTs1q!, D25J15~ i /2!~qTs2p2pTs2q!, ~31!

D35L35
1
2~p

Ts3p1qTs3q!.

The canonical Dirac bracket algebra of these charges read

$Dk ,Dm%52ekmnDn , $hb ,Dk%50, $hf ,Dk%50, ~32!

and can be seen to agree with the bosonic sector of the GL~2u1! algebra, Eq.~9!, when the classical
Dirac bracket algebra is quantized through the usual replacement$...,...%→2 i [...,...]7 .

Next we redefine the supersymmetry generators~22! as

QR5
1

2
~Q01 iQ2!5

1

A2
~pT1 iqT!T1c,

Q̄R5
1

2
~Q02 iQ2!5

1

A2
~pT2 iqT!T2c,

~33!
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QL5
1

2
~Q11 iQ3!5

1

A2
~pT2 iqT!s1T1c,

Q̄L5
1

2
~Q12 iQ3!5

1

A2
~pT1 iqT!s1T2c,

whereT65 1
2(17s2) is the ‘‘helicity’’ projection operator. Using the generalized Dirac brackets,

Eq. ~23!, we can verify that the nine symmetry generating operators in Eqs.~31! and~33! possess
an algebra whose quantum version is isomorphic to that presented in Sec. II. Moreover, if we
introduce, as usual, the representation of the phase-space variablesqk andpk in terms of creation
and annihilation operators as

ak5
1

A2
~qk1 ipk!, ak

†5
1

A2
~qk2 ipk!, ~34!

and define

a35
i

A2
~c11 ic2!, a3

†5
2 i

A2
~c12 ic2!, ~35!

which, by virtue of Eq.~23! do satisfy Eq.~3!, then we can write the generators of symmetry in
Eqs.~31! and ~33! in the same form as the graded Lie algebra generators~6! and ~7!, defined in
Sec. II. It becomes a matter of simple calculation to verify that these nine charges~five bosonic
and four fermionic! exactly satisfy the graded Lie algebra GL~2u1! found in Sec. II.

IV. SPECTRUM AND SUPERSPACE FORMULATION

Let us examine in this section the action of the GL~2u1! operators, defined in the previous
sections, on the states of the Hilbert space of the quantum mechanical model. The spectrum of the
normal ordered theory is given by$En ,un&%, where the eigenvalues and eigenvectors are

En5n11n21nf , un&5un1 ,n2 ,nf&, ~36!

with n650,1,2,... andnf50,1. Conventionally, the states withnf50(1) arecalled bosonic
~fermionic!. Heren6 andnf are the eigenvalues of the bosonic and fermionic number operators,
N6 5 a6

† a6 andNf 5 a3
†a3 , and

a65
1

A2
~a16 ia2!. ~37!

By inspection we see that the ground state is a nondegenerate bosonic state with zero energy. The
first excited level is threefold degenerate, possessing one fermionic and two bosonic states. The
second excited energy level is fivefold degenerate, with two fermionic and three bosonic states,
and so on. The states of the first few levels are displayed below:
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u0&5u0,0,0&,

u1&5$u1,0,0&,u0,0,1&,u0,1,0&%,
~38!

u2&5$u2,0,0&,u1,0,1&,u1,1,0&,u0,1,1&,u0,2,0&%,

A.

In terms of the raising and lowering~chiral! operators~37!, the GL~2u1! generators~6! and~7! read

QR5a1
† a3 , Q̄R5a1a3

† , QL5 ia2a3
† ,

Q̄L52 ia2
† a3 , D15a1

† a21a2
† a1 , D25a1

† a12a2
† a2 , ~39!

iD35a2
† a12a1

† a2 , hb5a1
† a11a2

† a2 , hf5a3
†a3 .

On the degenerate levels the supersymmetry generators take bosonic states into fermionic ones
and vice versa as

QRun1 ,n2 ,nf&5An111dnf ,1un111,n2 ,nf21&,

Q̄Run1 ,n2 ,nf&5An1dnf ,0un121,n2 ,nf11&,

~40!
QLun1 ,n2 ,nf&5 iAn2dnf0un1 ,n221,nf11&,

Q̄Lun1 ,n2 ,nf&52 iAn211dnf ,1un1 ,n211,nf21&.

Quite clearly the supersymmetry chargeQR(Q̄R) creates~destroys! a right-handed boson and
destroys~creates! a fermion. Similarly theQL(Q̄L) destroys~creates! a left-handed boson while
creating~destroying! a fermion. Note thatQR andQ̄R ~QL andQ̄L! have no effect on then2(n1)
eigenvalues, showing the existence of a chiral supersymmetry which, ultimately, is due to the fact
that we have twice as many bosonic variables as the fermionic ones. The supersymmetry charges
can be used to generate the states in a given level once the highest state is given. Then, starting
from the stateu0,n,0&, one can generate all the states belonging to theEn subspace by consecutive
applications ofQL andQR until the stateun,0,0& is reached:

un,0,0&←
QR

un21,0,1&←
QL

un21,1,0&...u0,n21,1&←
QL

u0,n,0&. ~41!

Similarly, starting with the stateun,0,0& and using consecutively the chargesQ̄R and Q̄L one
generates the whole subspaceEn again.

un,0,0& ——→
Q̄R

un21,0,1& ——→
Q̄L

un21,1,0&...u0,n21,1& ——→
Q̄L

u0,n,0&. ~42!

This action of the supersymmetry charges is easily seen on the set of states shown in Eq.~38!.
On the other hand, the action of the bosonic operators only connect states with the same

fermion number. The operatorshf , hb , andD2 are diagonal in the chiral basis~36!:
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hbun1 ,n2 ,nf&5~n11n2!un1 ,n2 ,nf&,

D2un1 ,n2 ,nf&5~n12n2!un1 ,n2 ,nf&, ~43!

hf un1 ,n2 ,nf&5nf un1 ,n2 ,nf&.

These operators have the usual interpretation as bosonic and fermionic Hamiltonians~hb andhf!,
and chirality operator~D2!. Finally, the nondiagonal bosonic operatorsD1 andD3 play the role of
chirality changing operators:

1
2~D11 iD3!un1 ,n2 ,nf&5A~n211!n1un121,n211,nf&,

~44!
1
2~D12 iD3!un1 ,n2 ,nf&5A~n111!n2un111,n221,nf&.

Concluding, relations~40!, ~43!, and~44! represent the action of all the GL~2u1! generators on the
Hilbert space of the 2D SUSY harmonic oscillator.

We finish this section with a discussion of the superspace formulation of this problem. To this
end we rewrite the supersymmetry transformations~19! in terms of the transformations generated
by the chiral supersymmetry charges~33!, which seem to be more appropriate for this model. The
transformations generated byQR , Q̄R , QL , andQ̄L are, respectively,

dRq5eRT1c, dRc5eRT2D1q, ~45!

d̄Rq5 ēRT2c, d̄Rc5 ēRT1D2q, ~46!

dLq5eLT1s1c, dLc5eLT1s1D2q, ~47!

d̄Lq5 ēLT2s1c, d̄Rc5 ēLT2s1D1q. ~48!

Here we have introduced the notationD65i (] t6 i ). To obtain these four supersymmetries in a
superfield language, we introduce two Grassman variables for each chiral sector asuR , ūR , uL ,
andūL , and define two chiral superfieldsfR andfL . The transformation in the right chiral sector
can be obtained from the following superfield and~differential operator! supercharge:

fR5q1uRT1c1 ūRT2c, QR5T1

]

]uR
2 ūRT2D1 , Q̄R5T2

]

]ūR
2uRT1D2, ~49!

while those in the left chiral sector come from

fL5q1uLT1s1c1 ūLT2s1c, QL5T1

]

]uL
2 ūLT2D2 , Q̄L5T2

]

]ūL
2uLT1D1 .

~50!

These transformations can be organized in a matrixlike structure with the following form:

dF5eTQF, d̄F5 ēTQ̄F, ~51!

where

Q5SQR 0

0 QL
D , ~52!
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Q̄5S Q̄R 0

0 Q̄L
D ~53!

are block-diagonal~434! matrices and

F5S fR

fL
D , ~54!

e5S eR
eL

D ~55!

are~431! column matrices. We notice here that a matrix structure is essential for the superspace
formulation since the GLA, in this case, grades an internal symmetry algebra@e.g., Eq.~8! in-
volves not just the Hamiltonian, but the internal symmetry generators as well which would have a
matrix representation#. The matrix structure ofQ would depend on the internal space upon which
it acts~unlike the usual space-time supersymmetry charges! and the form given here is appropriate
only for the doublet space ofq andc. Next we introduce the four covariant derivatives as

DR5T2

]

]uR
1 ūRT1D1 , D̄R5T1

]

]ūR
2uRT2D2 , ~56!

DL5T2

]

]uL
1 ūLT1D2 , D̄L5T1

]

]ūL
2uLT2D1 , ~57!

and define

D5SDR 0

0 DL
D , ~58!

D̄5S D̄R 0

0 D̄L
D . ~59!

These covariant derivatives can be easily seen to anticommute with all supersymmetry chargesQ
andQ̄. In terms of these covariant derivatives, the Lagrangian of this theory can be written as

L5
1

2 (
A5R,L

E duA dūA@„D̄F!T–~DF!2FT
–D̄DF]

5
1

2 (
A5R,L

E duA dūA@~D̄AfA!T•~DAfA!2fA
T
•D̄ADAfA#. ~60!

V. CONCLUSION

In this work we have studied a supersymmetric harmonic oscillator possessing twice as many
bosonic variables than fermionic ones. The model enjoys a chiral supersymmetry when the fer-
mionic variables are interchanged with either one of the chiral bosonic sectors. Besides the super-
symmetries, we have worked out all the global symmetries of the model and verified that the
generators provide a representation of the general graded Lie algebra GL~2u1!. We have worked
out the physical spectrum of this model and constructed the superspace formulation. It is interest-
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ing to see that in the superspace language the separation of the chiral sectors are clearly displayed,
and the charges and the covariant derivatives carry a matrix structure essentially because the
algebra represents the grading of an internal symmetry group.
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APPENDIX: GENERALIZED DIRAC BRACKETS VIA FADDEEV-JACKIW APPROACH

First-order Lagrangians are constrained systems and must be quantized with Dirac brackets
instead of Poisson brackets.7,8 The Dirac brackets of an arbitrary first-order system can be calcu-
lated with ease using the technique put forward by Faddeev and Jackiw a few years ago.9 Consider
an arbitray system with a finite number of degrees of freedomZA , whose Grassman parity iseA
and is described by

L5ŻAKA~ZA!2V~ZA!. ~A1!

The equations of motion read

ŻBMBA52
]V

]ZA
, ~A2!

where

MAB5
]KB

]ZA
2~21!eAeB

]KA

]ZB
~A3!

is the generalized sympletic matrix.10 If the sympletic matrix is nonsingular, the equation of
motion ~A2! can be solved for the velocities as

ŻA5~21!eAMAB
21 ]V

]ZB
~A4!

and be written in Hamiltonian form with the introduction of some generalized or Dirac bracket as

$ZA ,ZB%5~21!eAMAB
21. ~A5!

The equations of motion then take the following form:

ŻA5$ZA ,V~Z!%. ~A6!

Using Eq.~A5! one can verify that the Dirac brackets for the fermionic variables of the super-
symmetric two-dimensional oscillator are those given in Eq.~23!.11
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Vertex normal ordering as a consequence of nonsymmetric
bilinear forms in Clifford algebras
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We consider Clifford algebras with nonsymmetric bilinear forms. They parametrize
the chosen ideal in the isomorphism class of the standard symmetric ones. Since the
content of physical theories depends on the injection%

n ` nV →CL(V ,Q), one
has to transform to the standard construction. The injection is described by the
antisymmetric part of the bilinear form. This process results in the appropriate
vertex normal ordering terms, which are now obtained from the theory itself and
not addedad hoc via a regularization argument. ©1996 American Institute of
Physics.@S0022-2488~96!01601-1#

I. INTRODUCTION

Nonlinear spinor equations play an important role in high-energy, nuclear or solid state phys-
ics. Examples are the Heisenberg, Nambu, and Jona–Lasinio-like models1,2 of elementary particle
and nuclear physics. Nonlinear sigma models bear an analogous structure.3 In solid state physics
the Hubbard model4 is applied to various phenomena from super conductivity up to spin chains
and so on.

The general structure of such models is of the form

S ( igm]m2mD
II 8

C I 85gVII 8I 9I-C I 8C I 9C I- . ~1!

Here( igm]m is the Dirac operator, with Euclidean or Lorentzian signature. The mass could be
zero. With the multi indexI5$K,L% we represent the spinor and its adjoined byL and the other
algebraic and spatio temporal indices byK.

If the adjoined spinor is fixed, the quadratic form of the Clifford algebra is completely
determined. Usually canonical quantization is applied. The quantization procedure chooses in fact
the ideal which generates the Clifford algebraic structure, i.e., the commutator

$C I ,C I 8%15^C I uC I 8&5d II 8 . ~2!

There are several problems with these equations listed below.

~i! The equations are non-renormalizable.
~ii ! In order to define a unique quantization procedure, one is troubled by the ordering problem.
~iii ! The transition to normal ordered amplitudes yields additional Singularities.~In Fock space

this is the Wick–Dyson normal ordering. The algebraic argument given below is also valid
in the general case, defined in Ref. 5 but then only the two-point correlations are retracted.!

In solid state physics there seems to be no principal problem with~i!, because there may be a
physically motivated cutoff at the Brillouin zone. In the case of particle physics, severalad hoc
regularizations become necessary. An approach to these topics will be given elsewhere6 and we
assume the theory to be regularized.

a!Electronic mail: ptifu01@commlink.zdv.uni-tuebingen.de
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The second point is usually solved using causality arguments. They imply a natural ordering
in the polynomials of the fields at hand. Therefore time-ordered products are used in the covariant
formulation, see for example, Ref. 7. In the Hamilton formalism, the~anti!symmetric ordering
could be used.

Including a somehow given Vacuum stateu0&Ph , which gives the representation of the field
operators)Ph(C I), all quantities are formally~formally, because one has to show uniqueness and
existence of the defined objects too, which is a nontrivial problem! defined, see part III also. One
should be able to calculate this vacuum state in a nonlinear theory, by solving the dynamical
problem at hand in a sort of self consistent problem.

Now the third point causes trouble, because transition from one ordering to another yields
infinities. In Fock space this transformation equals a Wick–Dyson normal ordering of the vertex.8

The Fock space is only appropriate in free theories or in perturbation theory, which proves not
useful in our case. A nonperturbative treatment is given in Ref. 5. This process results in the
desired amplitudes and so-called contractions, which for bilinear and higher-order terms yields
singularities at least on the light cone.

Even if the propagator function is finite on the light cone, the resulting terms would destroy
the accuracy of the theory by additional corrections.

These contractions are related to the finite ground state energies, which become infinite by
field quantization. With the convention that the vacuum has no nonzero quantum numbers, the
vertex regularization is related to finite normal ordered amplitudes.9 The field equations read now

S ( igm]m2mD
II 8

C I 85gVII 8I 9I- :C I 8C I 9C I- : . ~3!

With the physical propagator

PII 8 :5Ph^0uT ~C IC I 8!u0&Ph ~4!

the vertex term changes to

:C I 8C I 9C I- :5C I 8C I 9C I-1PI 8I 9C I-2PI 8I-C I 91PI 9I-C I 8 . ~5!

However, this procedure is nothing but a shift of the problem from one equation into another,
because the time-ordered equation becomes singular. The first proposed theory is then ill defined,
if we require the normal-ordered equation to be finite and vice versa. Changing the ordering thus
yields singularities.

In this paper we want to show how an embedding of the theory in a Clifford algebra structure
can overcome this problem by generating a normal ordering, which does not produce any addi-
tional singular contributions. So above item~iii ! is resolved. We consider nonsymmetric bilinear
forms and the associated Clifford algebras. The transformation from such algebras to the symmet-
ric ones is an isomorphism, but the linear space of antisymmetric p-vectors is moved. As physical
information is coded therein it is therefore altered.

Progress in the relation of states and operators was made in Ref. 10. The relation of Clifford
algebras and quantum mechanics was studied in Ref. 11. The algebraic differences of matrix and
conventional column spinors are analyzed in Ref. 12. Nonsymmetric Clifford algebras where
introduced in a more mathematical way in Ref. 13.

In Sec. II, a brief introduction to the construction of Clifford algebras with arbitrary bilinear-
forms is given. In Sec. III an application is given to quantum field theory. The Appendix gives a
low-dimensional example of the desired algebraic structure.

73Bertfried Fauser: Vertex normal ordering in Clifford algebras

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



II. CLIFFORD ALGEBRAS WITH NONSYMMETRIC BILINEAR FORMS

In this section we will present Clifford algebras with nonsymmetric bilinear forms, and vari-
ous multivector constructions. Choosing the appropriate one, the nonsymmetric part of the form is
removed.

Clifford algebras entered particle physics with Pauli and Dirac,14 who used it to linearize the
Laplacian and the D’Alambertian.

Let V be a vector space overR or C andQ a quadratic form onV . The Clifford map is an
injection fromV into CL(V ,Q) with the property that every square of a vector element of the
Clifford algebra is a scalar:

g:V→CL~V ,Q!, ei°g i5g~ei !
~6!

x25xx5x•x5Q~x!P~R,C!.

With linearization we have on a generating set ofV

~ei1ej !~ei1ej !5ei
21ej

21eiej1ejei ,
~7!

eiej1ejei5Q~ei1ej !2Q~ei !2Q~ej !

5:2G~ei ,ej !P~R,C!.

The bilinear formG is symmetric. The whole algebra is now generated from reduced products of
one-vectors. LetN be the set of ordered partitions of n pieces,uau the cardinality of such a subset,
and include the empty set. If we define 1A5e0 , then an algebra element read

A5 (
aPN

aaea5(
r50

n

(
uau5r

arer5A01A11•••1An,

~8!
ea :5ei1`ei2`•••`ei r, i 1, i 2•••, i r , aPN, uau5r .

TheAr are homogeneous of degreer and the wedge product means antisymmetric multiplication
as in the Grassmann case. Indeed as a linear space these two constructions are identical. Thereby
the Clifford algebra has the direct sum decompositions

CL~V,Q!5CL1 %CL2 as algebra, and
~9!

CL~V,Q!5 %
n`nV as linear space.

However, the Clifford product intermingles the grades. Let^ & r be the projector to the homoge-
neous part of grader . Then one has

ArBs5^AB& ur2su1^AB& ur2s12u1•••1^AB& r1s , ~10!

where in the Grassmann caseArBs5^AB& r1s results.
Physicists consider the anticommuting elements of grader as, e.g., scalars, spinors~vectors!,

spin tensors~tensors!, and so on. That is, the physical content of the theory is coded explicitly in
this structure.

Now let us see in which way it is possible to introduce nonsymmetric bilinear forms. It is
obvious that we have to leave the above construction in favor of a more general one. This can be
done by introducing algebra derivatives as proposed by Chevalley and Riesz15,16 or analogous to
Oziewicz.13
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First of all, we introduce two more algebraic constructions for further use. An involution~a
property sometimes called conjugation! J of period two and the also involutive Reversion˜ by the
rules

JH K2

J~XY!

J~R,C!

:5
:5
:5

idA
j ~X!J~Y!,

~R,C!,
~11!

˜ H ;;

^;&011

~XY!;

:5
:5
:5

idA,
idA01A1

,

Ỹ X̃.

Now wemay introduce the desired formulas (a P V ;B P A)

acB:5 1
2 „aB2J~B!a…, a`̇B:5 1

2 „aB1J~B!a…; ~12!

herewith we may decompose the Clifford product to

aB5acB1a`̇ B. ~13!

The contractionc is a graded derivative of degree 1, as can be seen as follows~graded Leibnitz
rule!:

ac~bc!:5 1
2 „abc2J~bc!a…

5 1
2 „abc2J~b!ac1J~b!ac2J~b!J~c!a…

5~acb!c1J~b!~acc!. ~14!

With bc51 we haveac152ac1, soac(R,C)50, from which we could prove by induction the
homogeneity ofacBr . Obviously the contraction is linear, that is,

~aX1bY!cA5aXcA1bYcA. ~15!

These properties together state thatc is an algebra derivation. One can easy prove the useful
formulas17

~u`v !cX5uc„v c~X!…

ac~xi1`•••`xin!5(
i51

n

~2 ! i21~acxi !~x1`•••` i21`xi11`•••`xn!

~16!
det~xi cxj !5~xn`•••`x1!c~x1`•••`xn!

5xnc~xn21c•••~x1c~x1`•••`xn!!••• !.

Now the asymmetry of this result is obvious, and we may define an arbitrary nondegenerate
bilinear formB exactly as the contraction. In a not-necessarily orthonormalized system of gener-
ating elementsei of V we have

B5G1F5@Bi j #5@ei cej #,
~17!
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GT5G, FT52F.

The injection, introduced by Chevalley,̀ V →CL(V ,Q), is of course known by physicists in the
disguise of the Ka¨hler–Atiyah isomorphism.~See Ref. 17 for an account on that, and for a review
on the historical development.!

We have identified the Clifford algebra as a subalgebra ofEnd( % n ` nV ), the endomorphism
algebra of the Grassmann algebra. A very explicit example will be given in the appendix, in a
manner closely related to the work of Lounesto.

Clearly, if we had chosenJ to be the common use involution onV , that is,J(V )52V , we
would reobtain the original formulas, with a symmetric bilinearform

Gi j5
1
2 „eiej2J~ej !ei…5

1
2 ~eiej1ejei !. ~18!

Thus, if there exists a distinct involution of period two, we have the desired extension.
Now we have from~13!,

ei1`ei25ei1ei22ei1cei25ei1ei22Bi1i2
, ~19!

which is not antisymmetric with respect to the reversion as one can see as follows:

~ei1`ei2!̃ 5~ei1ei22Bi1i2
!̃

5ei2ei12Bi2i1
1~Bi2i1

2Bi1i2
!

5ei2`ei11~Bi1i2
T 2Bi1i2

!

5ei2`ei112Fi1i2
Þei2`ei1. ~20!

HereT means matrix transposition. To avoid such a situation, and for establishing the reversion as
the ~Hermitian! transpose of the matrix representation, we are forced to choose the bi- and mul-
tivectors in a definite way. Withi 1, i 2,•••, we set

ei1`̇ei2:5
1
2 ~ei1`ei22ei2`ei1!

5 1
2 ~ei1ei22Bi1i2

2ei2ei11Bi2i1
!

5 1
2 ~ei1ei22ei2ei1

!2 1
2~Bi1i2

1Bi2i1
!

5ei1`ei22Fi1i2
~21!

whereB is now split into symmetric and antisymmetric partsB5GS1FA , with respect to the
usual matrix transpose. We obtain the following rules, utilizing now thestandardinvolution.

Gi1i2
5 1

2 ~ei1ei21ei1ei2!

ei1`̇ ei25
1
2 ~ei1ei22~ei1ei2!̃ !

5 1
2~ei1ei22ei2ei1! ~22!

5 1
2 ~ei1cei21ei1`ei22ei2cei12ei2`ei1!

5ei1`ei21Fi1i2
,
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and therefore now

~ei1`̇ei2!̃ 5ei2`̇ei152ei1`̇ei2,

~23!
J~ei1`̇ei2!5ei1`̇ei2.

A third-order term will be given as

ei1`̇ei2`̇ei35
1
2 ~ei1ei2`̇ei31ei2`̇ei3ei1!

5ei1`ei2`ei31Fi1i2
ei31Fi2i3

ei12Fi1i3
ei2. ~24!

If we would like to have the transposition to act trivial on the matrix representation of the vector
elements, we have to introduce a dual set of generating elements, as discussed in the Appendix.

We are now able to construct a new generating system of the Clifford algebra, which is

antisymmetric with respect to the reversion, by using the corresponding wedge product`̇.

$e0 ;ei1;ei1`̇ei2;ei1`̇ei2`̇ei3; . . . %, ; i n ; i 1, i 2,••• . ~25!

We finish this section by recalling the main consequences of the analysis done, with respect to the
application in Sec. III.

If there is a nonsymmetric part in the contraction, then the usual multivectors are not the
desired algebraic elements. The nondiagonal part of the contraction leads to a refined treatment of
the algebraic properties. The antisymmetric parts are incorporated in the multivectorial structure,
where as the symmetric part should be handled with dual sets of generating elements. The matrix
transposition is equivalent to the reversion only in this special situation, or ifGi1i2

5 d i1i2 to the
Cartesian case.

By looking at these constructions, we are forced to introduce a new kind of multivector. As a
Clifford algebra, the two constructions prove to be isomorphic, at least in the nondegenerate case.
However, the linear spaces%

n ` nV and%
n span$ei1 . . . i n% are quite differently represented. This

quite general result will be applied as an example to the nonlinear spinor theory, but is not
confined to that case at all.

III. APPLICATION TO THE NONLINEAR SPINOR FIELD MODEL

In this section the vertex normal ordering is given as a consequence of the algebraic formal-
ism. The connection betweenT andN ordered amplitudes is one-to-one, if the construction itself
exists. Noad hocregularization argument is needed.

Now we want to have a look at the vertex term of the nonlinear spinor field theory. This
should correctly be done in the functional space formulation, which exhibits the structure more
clearly.5 For brevity and simplicity, we will give our arguments directly on the level of the field
operators.

We should note that the above construction was made with a finite SetN, where as in field
theory we use the continuum indices (rW,t) also. Therefore we should construct infinite Clifford
algebras and prove their existence. Such things are far from being easy.18 Of course we are still
considering a singular theory before introduction of a here-not-specified regularization. So we
proceed with formal algebraic arguments, valid only if the symbols used are defined. Otherwise
one has to use increasing nets of finite lattices and to study convergence properties.

The quantization of fermionic fields is in effect the introduction of a Clifford algebra, or CAR
algebra as in this context usually named:6,19
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$CK
† ,CK8%15dKK8 . ~26!

With our indexingC I5CKL5$CK1
† ;CK2% we have

$C I ,C I 8%5S 0 1

1 0D
LL8

dKK8 . ~27!

This is, of course, a special basis; we may call it a Witt basis.19 If the Hermitean conjugation is the
usual one, then the connection to Fock space is very close.20 Therefore we will expect to have an
~in this formulation! invisible antisymmetric part. So it is essential to have non-Fock states. This
relation can be rewritten in the form

C I cC I 81C I 8cC I52GII 85d II 8 , ~28!

which now can be extended to an arbitrary bilinear formB. We obtain in this way the antisym-
metric part, exhibiting a new term 2FII 8

@C I ,C I 8#52FII 812C I`C I 8

52C I`̇C I 8 . ~29!

From the Clifford algebraic point of view, this corresponds to the scalar and bivector part, if we
use the usual wedge product.

This entity is in fact related with the propagator of the theory:

PII 85Ph^0uT ~C IC I 8!u0&Ph

5 1
2Ph^0uu~ t I2t I 8!C IC I 82u~ t I 82t I !C I 8C I u0&Ph . ~30!

For equal times we have

PII 8
t

5 1
2Ph^0uC IC I 82C I 8C I u0&Ph,t5t8

5Ph^0uFII 81C I`C I 8u0&Ph,t5t8 . ~31!

Now theFII 8 are ‘‘scalars’’, that is, in field theory a distribution-valued function, and actnot as
operators. We have the trace as the analogous algebra property only in the appropriate basis, which
of course leads to

Ph^0uC I`C I 8u0&Ph50 ~32!

and thus to

PII 8
t

5FII 8 . ~33!

Looking in this way at the vertex term, we have antisymmetric products, and are free to choose the
appropriate one, which absorbs the additional terms, resulting in the normal-ordering procedure.
Of course, this should be done in such a way that the transposition and reversion behave in the
right way, but here we will not bother about that.~See the remarks in the Appendix.!

By comparing the ‘‘dot’’ procedure defining5

:C I 8C I 9C I- : :5C I 8C I 9C I-2PI 8I 9C I-1PI 8I-C I 92PI 9I-C I 8 ~34!

with the derived equation
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ei1`ei2`ei35ei1`̇ei2`̇ei32Fi1i2
ei31Fi1i3

ei22Fi2i3
ei1, ~35!

it is shown, that if we choosePII 8 as the antisymmetric part of the contraction, then we are forced
to introduce the normal-ordering terms in the field equation from the beginning. This is, because
we want the usual conjugation and the multivectorial construction to hold in the algebraic and
matrix case, as the usual normal-ordered field equation.

For the time-ordered field equation this yields

S ( igm]m2mD
II 8

C I 85gVII 8I 9I-C I 8`C I 9`C I- , ~36!

or

S ( igm]m2mD
II 8

C I 81gVII 8I 9I-$PI 8I29C I-2PI 8I-C I 91PI 9I-C I 8%

5gVII 8I 9I-C I 8`̇C I 9`̇C I- . ~37!

Omitting now the interaction term@RHS of~37!# we are left with a still singular equation, but now
the singularity is only the dynamical one. As proposed in the introduction, the dynamical singu-
larities may also be treated in an algebraic manner, which will be shown elsewhere.

The Clifford algebraic point of view should of course be taken from the very beginning.

IV. CONCLUSION

With help of some results obtained by studying Clifford algebras with nonsymmetric bilinear
forms, we are able to understand the process of normal ordering in a new and deeper way. We
noticed the dependence of the multivectorial structure on the antisymmetric part of the contraction.
Without this sort of tool, it seems hardly possible to recognize the algebraic difference betweenT -
and N -ordered transition matrix elements. In fact, they belong to quite different multivector
constructions.

In ordinary treatments the vertex normal ordering is donead hoc, simply motivated by ob-
taining an afterwards finite theory. However, this is nothing but a shift of the singularities in the
T -ordered equation. The ‘‘dot’’ procedure connects singular and regular theories, which is obvi-
ously not an equivalence relation. The theory is altered by hand.

The algebraic method distinguishes the different products in a correct way, and is sensitive to
the redefinition of the multivectorial structure. So a unique and one-to-one correspondence be-
tweenT - andN -ordered equations is established, in the case where the objects do exist.

In the computation of composites one has to expect the appearance of nonsymmetric parts of
the bilinear forms. This stems from the antisymmetric constructions of the composite, in which
case the effective bilinearform should have such a part.

The next step is the observation that the usually obtained divergencies are related to the
dynamical ones. Therefore it is obvious that they are irrelevant to the not yet well-defined theory,
because they evaporate when the theory is regularized.A posteriori the ‘‘dot’’ procedure is thus
justified as a heuristic method. However, the important thing is that we have, even in this case, to
choose another time-ordered equation by introducing wedges between the vertexC ’s. The con-
struction itself gives the hint that we should start from the very beginning with Clifford methods.
Thereby Clifford analysis, or monogenetic function theory, should provide us a finite theory, from
first principles.
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APPENDIX A: PAULI ALGEBRA WITH NONSYMMETRIC BILINEAR FORM

In the Appendix an example is given, in the spirit of Lounesto.17 Because all used quantities
can only be constructed explicitly in very low-dimensional cases, we use the Pauli algebra. It is
well known and the smallest Clifford algebra over the reals which exhibits a three-vector quantity.

The bilinear form is decomposed into symmetric and antisymmetric parts, using matrix trans-
position. We have the linear independent not normalized, not orthogonal set$e1 ,e2 ,e3% spanning
V . The algebra is generated by

$Yi%5$e0 ;e1 ,e2 ,e3 ;e1`e2 ,e2`e3 ,e3`e1 ;e1`e2`e3%. ~A1!

In this basis the bilinear form is (i , j P 1,2,3)

B5@Bi j #5@ei cej #5@gi j #1@ f i j #, @gi j #
T5@gi j #, @ f i j #

T52@ f i j #. ~A2!

Next we search for a matrix representation. This can be done17 by Clifford multiplying from the
right an algebra element with all elements of the algebraic basis and expanding the result in
homogeneous parts. Those are written as columns of the matrices. Matrix multiplication corre-
sponds to the Clifford product. Of course we have

@1#5@d i j #, ~A3!

and we calculate as an example@e1#

e115e1

e1e15g11

e1e25e1ce21e1`e25g121 f 121e1`e2
~A4!

e1e35g131 f 131e1`e3

e1~e1`e2!5e1~e1e22e1ce2!5g11e22~g121 f 12!e1

e1~e2`e3!5~g121 f 12!e32~g131 f 13!e21e1`e2`e3

e1~e3`e1!52g11e31~g131 f 13!e1

e1~e1`e2`e3!5g11e2`e31~g121 f 12!e3`e11~g131 f 13!e1`e2 .

The same can be done for the other elements, which yields
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@e1#53
0 g11 g121 f 12 g131 f 13 0 0 0 0

1 0 0 0 2g122 f 12 0 g131 f 13 0

0 0 0 0 g11 2g132 f 13 0 0

0 0 0 0 0 g121 f 12 2g11 0

0 0 1 0 0 0 0 g131 f 13

0 0 0 0 0 0 0 g11

0 0 0 21 0 0 0 g121 f 12

0 0 0 0 0 1 0 0

4 ,
@e2#53

0 g211 f 21 g22 g231 f 23 0 0 0 0

0 0 0 0 2 f 22 0 g231 f 23 0

1 0 0 0 g212 f 12 2 f 23 0 0

0 0 0 0 0 g22 2g121 f 12 0

0 21 0 0 0 0 0 g231 f 23

0 0 0 1 0 0 0 g122 f 12

0 0 0 0 0 0 0 g22

0 0 0 0 0 0 1 0

4 ,
@e3#53

0 g132 f 13 g232 f 23 g33 0 0 0 0

0 0 0 0 2g231 f 23 0 g33 0

0 0 0 0 g132 f 13 2g33 0 0

1 0 0 0 0 g232 f 23 2g131 f 13 0

0 0 0 0 0 0 0 g33

0 0 21 0 0 0 0 g132 f 13

0 1 0 0 0 0 0 g232 f 23

0 0 0 0 1 0 0 0

4 .
This 838-dimensional representation of the Pauli algebra is not reducible to a real 434 or
complex 232 one. The matrix transposition is not the reversion, because the@ei # are not sym-
metric matrices. Also the trace is not a map in the image of (R,C) in the algebra, because there are
elements with nonvanishing trace beside@d i j #, which means that the trace is not a projection onto
the homogeneous part of degree zero. So the matrix trace is not a linear formin the algebra. The
trace is clearly a linear form on the matrix representation, but into the field (R,C) itself.

Theelemente1 `̇ e2 `̇ e3 reads

@e1`̇e2`̇e3#5@e1`e2`e32 f 12e31 f 13e22 f 23e1#, ~A5!

which yields a matrix not easy to display. The entries are linear, quadratic, and cubic functions of
the f i j andgi j parameters.

The same procedure can be done with the reordered basis, belonging to the dotted wedge
product

$e1 ,e2 ,e3 ;e1`̇e2`̇e3 ;e0 ;e1`̇e2 ,e2`̇e3 ,e3`̇e1%, ~A6!
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ordered in odd and even elements. The vector elements read

@e1#53
0 0 0 0 1 2g12 0 g31

0 0 0 0 0 g11 2g13 0

0 0 0 0 0 0 g12 2g11

0 0 0 0 0 0 1 0

g11 g12 g13 0 0 0 0 0

0 1 0 g13 0 0 0 0

0 0 0 g11 0 0 0 0

0 0 21 g12 0 0 0 0

4 ,
@e2#53

0 0 0 0 0 2g22 0 g23

0 0 0 0 1 g12 2g23 0

0 0 0 0 0 0 g22 2g12

0 0 0 0 0 0 0 1

g12 g22 g23 0 0 0 0 0

21 0 0 g23 0 0 0 0

0 0 1 g12 0 0 0 0

0 0 0 g22 0 0 0 0

4 ,
@e3#53

0 0 0 0 0 2g23 0 g33

0 0 0 0 0 g13 2g33 0

0 0 0 0 1 0 g23 2g13

0 0 0 0 0 1 0 0

g13 g23 g33 0 0 0 0 0

0 0 0 g33 0 0 0 0

0 21 0 g13 0 0 0 0

1 0 0 2g23 0 0 0 0

4 ,
which yields a much more convenient and symmetric form. If the bilinear form is Euclidean, then
this representation becomes symmetric with respect to the trace. In this case transposition and
reversion are identical. The antisymmetric part has been absorbed fully in the multivectorial
construction.

A fully satisfactory representation could be obtained by using a dual set of generating algebra
elements, to the above ones. Therefore let the Volume element be

E:5e1`̇e2`̇e352E˜ ,

E215
E˜

E˜ E
,

E˜ E5detG5uGu5” 0. ~A7!

Then we may construct

ei :5~2 ! i11e1`̇ . . .ei21`̇ei11`̇ . . .enE
21 ~A8!
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which is a generalization to nonsymmetric bilinear forms of the detailed results in Ref. 21.
Now the representation with the algebra basis$Xi% yields via@ejX

i # symmetric matrices, even
if the symmetric part ofB is nontrivial.

This form is the most distinguished and symmetric one. Transposition and conjugation are the
usual operations, but for arbitraryB the representation is still of dimension 838.

In this light, we have to change the ‘‘quantization’’ process, to use these dual elements.
Therefore we should write

C IC I 81C I 8C
I5d I 8

I
52GI 8

I . ~A9!

One can apply only in trivial cases~EuclideanG and vanishingF! ‘‘canonical’’ quantization
without such a dual set and the above dotted wedge product.

In the general case the dual set depends on the possibly varying volume element of the
algebra, and makes the definition of ‘‘creation’’ and ‘‘annihilation’’ operators position dependent.
We may hope to get a better understanding of quantization on curved space in this way.
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Fermionic matter coupled to higher derivative
Chern–Simons theories. II
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and O. S. Zandrona)
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The diagrammatic and the Feynman rules for the higher derivative Chern–Simons
theories in~211! dimensions coupled to fermionic matter are constructed. This is
done by starting from the path-integral quantization. Once the diagrammatic and
the Feynman rules are given, the regularization and renormalization problem of this
higher derivative model is analysed in the framework of the perturbation theory.
The unitarity problem related with the possible appearance of ghost states with
negative norm is also discussed. Finally, the BRST formalism for the model is
constructed and some interesting differences with respect to the formalism applied
to usual Chern–Simons models are presented. ©1996 American Institute of
Physics.@S0022-2488~95!02512-9#

I. INTRODUCTION

In a recent paper,1 we have constructed the classical and quantum formalism for the con-
strained Hamiltonian system with singular higher-order Lagrangian describing the Chern–Simons
~CS! theories in~211! dimensions coupled to matter. To construct the classical generalized Hamil-
tonian formalism we have worked as close as possible to the Dirac algorithm. Then the canonical
Dirac quantization has been performed. The path-integral quantization has also been done by
extending the Faddeev–Senjanovic method,2 to the higher-derivative case under consideration.

The classical and quantum CS theories in~211! dimensions have been investigated from a
long time ago and with increasing interest in the last years.3–9 Many interesting problems are
present in the~211! dimensional physics.

Moreover, the dynamical systems described in terms of higher derivatives constitute an inter-
esting problem of current research in quantum field theory.10

One of the reasons to consider these kinds of theories and in particular those containing higher
derivative terms in the action, is because of their possible application to high-Tc superconductiv-
ity.

Another motivation exists from the point of view of the field theory itself. Maybe these
theories have not been treated intensively not due to a lack of physical interest, but due to the
underdeveloped knowledge on how to treat higher-derivative field theories. As it is well-known,
they have a bad reputation because ghost states with negative norm can be causing unitarity
violation.11

On the other hand, these theories have some kind of attraction, when terms of higher deriva-
tives are added to the Lagrangian; the convergence of the corresponding Feynman diagrams can be
improved.12,13

A natural higher derivative field theory is, for instance, the conformal supergravity in~211!
dimensions which is also described by a CS term.14 The constraints on curvatures make this
feature evident and it is possible to see that the second-order canonical formalism is non-trivial

a!Member of Consejo Nacional de Investigaciones Cientı´ficas y Técnicas—Argentina.
b!Present address: Facultad de Ciencias Exactas Ingenierı´a y Agrimensura de la UNR.
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when it is implemented.15 Moreover, the conformal gravity in three dimensions is finite and
exactly soluble.16

The dynamical unitary, and possible renormalizable topologically massive three-dimensional
gravity, was also investigated.17

The motivation of the present paper is to continue the work developed in Ref. 1, by studying
the diagrammatic and the Feynman rules for that higher derivative CS model. The BRST formal-
ism for the model is also considered.

The paper is organized as follows. In section II, we briefly recall the main results obtained in
Ref. 1, for the Abelian case. In section III, we find the diagrammatic of the model. This is obtained
by defining the propagator for a suitable bosonic object. The unitarity of the model is also
discussed. Finally, in section VI, the BRST formalim is found.

II. DEFINITIONS AND PRELIMINARIES

In Ref. 1, our starting point was the following singular Lagrangian density:

L5L top1Lh1L f1L int , ~2.1!

describing the matter coupled to Abelian CS theories in~211! dimensions. In equation~2.1!,
L top is the electromagnetic Lagrangian density with a topological mass term, i.e. a CS term, and
it is given by

L top52 1
4FmnF

mn1
k

4p
«mnr]mAnAr . ~2.2a!

The part containing higher derivatives is

Lh52
c2

4p
]rFmn]rFmn, ~2.2b!

and the fermionic and interacting pieces are, respectively, given by

L f5 i S a11

2 D c̄gm]mc1 i S a21

2 D ]mc̄gmc2mc̄c, ~2.2c!

L int5ec̄gmcAm . ~2.2d!

The constantk is the topological mass of the gauge field and its dimension is (length)21, the
dimensional constantc has dimension (length)1. We will use the convention«0125«1251, the
Minkowskian metric gmn is gmn5diag(1,21,21) and the Diracg-matrices areg05s3,
g15 is1 andg25 is2 (s8 are the Pauli matrices!.

After the Ostrogradski transformation18 is performed, the momentaPm, Qm, P̄(a) andP (a)

canonically conjugate to the independent field variablesAm , Bm 5 Ȧm , ca andc̄a remain defined
and they are given by

P052
c

p
]0] iF

0i , ~2.3a!

Pi5Fi01
k

4p
« i j Aj1

c

p
~¹2F0i1]0] jF

ji !2]0Q
i , ~2.3b!

Q050, ~2.3c!
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Qi52
c

p
]0F

0i , ~2.3d!

P~a!~x!5 i S a21

2 Dg0c~a! , ~2.3e!

P̄~a!~x!52 i S a11

2 D c̄~a!g0 , ~2.3f!

where the italic indices take the valuesi , j 5 1,2.
The Poisson brackets for pairs of canonical conjugate variables are the usuals. The equations

~2.3! show that the primary constraints are

F1~x!5Q0~x!'0, ~2.4a!

V~a!~x!5P~a!~x!2 i S a21

2 Dg0c~a!'0, ~2.4b!

V̄~a!~x!5P̄~a!~x!1 i S a11

2 D c̄~a!g0'0. ~2.4c!

So, the classical canonical Hamiltonian is given by

Hcan5BmP
m1ḂmQ

m1cG ~a!P
~a!1P̄~a!ċ~a!2L. ~2.5!

The extended HamiltonianHE5*d2xHE generator of time evolution, remains defined in
terms of the following Hamiltonian density:

HE5Hcan1dF11l̄~a!V
~a!1V̄~a!l~a! , ~2.6!

whered is a bosonic Lagrange multiplier andl̄ andl are the fermionic Lagrange multipliers.
Now, going on with the Dirac algorithm,19 the secondary constraints can be easily found.

Once the set of constraints are known, we must find all the first class ones associated with the
gauge symmetries of the system, and write the Dirac brackets. Finally, the Hamiltonian system for
this model is given by the total Hamiltonian,

HT5E d2x~Hcan1baFa!, ~2.7!

whereba (a51,2,3) are three arbitrary parameters andFa are the first class constraints given by

F1~x!5Q0~x!'0, ~2.8a!

F2~x!52P0~x!1] iQ
i~x!'0, ~2.8b!

F3~x!52 ie„c̄~a!~x!P~a!~x!1P̄~a!~x!c~a!~x!…2
k

4p
] iAj~x!« i j2] iP

i~x!'0. ~2.8c!

The equal time commutators~or anticommutators! we have found in the canonical quantum
formalism are
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@Am~x!,Pn~y!#D52
i

\
dm

n d~x2y!, ~2.9a!

@Bm~x!,Qn~y!#D52
i

\
dm

n d~x2y!, ~2.9b!

$c~a!~x!,c̄~b!~y!%D5
i

\
~g0!~a!~b!d~x2y!. ~2.9c!

In the next section we are going to use these results to study the diagrammatic of the model.

III. DIAGRAMMATIC AND FEYNMAN RULES

The partition function for higher derivative theories in the Hamiltonian formalism we have
proposed in Ref. 1 is

Z5E DAmDP
mDBnDQ

nDc̄~a!DP~a!Dc~b!DP̄~b!d~F1!d~F2!d~F3!

3d~ f 1!d~ f 2!d~ f 3!det@F1 ,F2 ,F3 , f 1 , f 2 , f 3#Dd~V~a!!d~V~b!!det@V~a! ,V~b!#

3exp i F E d3x~BmP
m1ḂnQ

n1c̄Ṗ1P̄ċ !2HEG , ~3.1!

where the functional integration is performed over all phase space volume corresponding to the
independent dynamical variablesAm , Bn , P

m andQn.
The quantitiesf 1 , f 2 and f 3 are gauge fixing conditions. A convenient set of such conditions

compatible with the equations of motion and verifiying det@ f a ,Fb#D Þ 0 for all first-class con-
straintsFa , are

f 15] iA
i'0, ~3.2a!

f 25B0'0, ~3.2b!

f 35
k

2p
¹2A01e« ik]

k~ c̄g ic!1hS 12
c2

p
h D ]kAi«

ik'0. ~3.2c!

When in equation~3.1!, the determinants are explicitly computed and the path integral over
the fieldsB0 , P

m, Qm, P̄(a) andP (a) have been made, the partition function results:

Z5E DAmDBiDc̄~a!Dc~b!d~ f 1!d~ f 3!exp i F E d3xLe f fG . ~3.3!

The Lagrangian densityLe f f defined in~3.3! is given by

Le f f52 1
4Fi j F

i j2
c2

4p
Gi jG

i j2 1
2~Bi2] iA0!~Bi2] iA0!2

c2

2p
Ḃi Ḃ

i2
c2

4p
] iF jk]

iF jk1
c2

2p
Bj¹

2Bj

2
c2

p
¹2Bj]

jA02
c2

2p
~¹2A0!

22
k

4p
] iA0Aj«

i j1
k

4p
~] iAj !A0«

i j1
k

4p
BiAj«

i j

1 i S a11

2 D c̄gm]mc1 i S a21

2 D ~]mc̄!gmc2mc̄c1ec̄gmcAm, ~3.4!
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whereGi j 5] iBj2] jBi and¹2 5 ] i]
i .

From equation~3.3! we can see that the quantum problem remains defined in terms of a path
integral in which there are four independent fields. Consequently, it is possible to apply diagram-
matic techniques defining proper Feynman rules for propagators and vertices corresponding to the
fieldsAm , Bi , c̄ (a) andc (a) .

Alternatively, the path integral equation~3.3! can be written:

Z5E DAmDBiDc̄~a!Dc~b!DL1DL3exp i F E d3xL* G , ~3.5!

where

L*5Le f f2L1f 12L3f 3 , ~3.6!

for the Lagrange multipliersL1 andL3 .
As it was carried out in a different context,20 we can define a bosonic vector quantityXS ,

having the same dimension as the vector fieldAm , whose components are given by

XS5SAm ,cBi ,cL1 ,
1

c
L3D , ~3.7!

where the compound indexS takes the seven values 0,1,. . . ,6.
Therefore, when the action is written in terms of the vector quantity~3.7! we can easily

recognise the propagators defined by the quadratic part of the Lagrangian~3.6! and the remaining
part of it can be represented by vertices. Consequently, the equation~3.6! can be seen as the
Lagrangian density which defines the effective action for a system describing the boson vector
field XS coupled to a matter Dirac spinor field. The effective actionS * can be written:

S *5S * ~XS!1S * ~c!1S int* ~XS ,c!, ~3.8!

where, taking into account equation~3.4!, it is

S * ~c!5E d3xL f , ~3.9a!

S * ~XS ,c!5E d3x@ec̄~GSX
S!c#, ~3.9b!

S * ~XS!5E d3x@ 1
2XS~D21!SLXL#. ~3.9c!

The seven matricesGS 5 (GA0
,GAi

,GBi
,GL1

,GL3
), defined in equation~3.9b! are

GA0
5g0 , GAi

5g i , GBi
50, GL1

50, GL3
5cg i« ik]

k. ~3.10!

The 737 matrix (D21)SL defined in equation~3.9c! is the inverse of the propagator of the
bosonic objectXS given in ~3.7!. The matrix (D21)SL is Hermitian and non-degenerate and it can
be invertible and so the propagatorDSL can be evaluated. The computation of the matrix elements
DSL of the propagator in the general case is difficult and very complicated expressions are
obtained. We can conclude that it could be useful to define a mixed propagator of the bosonic
objectXS in order to study the simple casek50, but not the general case.
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To obtain a suitable expression for the bosonic propagator in the generalk Þ 0 case, we are
going to give an alternative approach.

Remarking the arbitrariness of the gauge fixing conditions~3.2!, instead of~3.2c!, we can take
a different gauge fixing conditionf 35] iB

i'0. This new gauge fixing condition is also compatible
with the equation of motion and independent off 1 in the Hamiltonian formalism where the
partition function~3.1! is proposed.

The condition~3.2c! is obtained from the spatial component of the Lagrangian field equation
of Am . The presence of the gauge fixing condition~3.2c! in the partition function equation~3.1!,
allows to come again on the original fieldAm . Now, to come back to the original fieldAm when
the new gauge fixing conditionf 35] iB

i'0 is used, we must add to the action a term of the form
*d3xLm(Bm2Ȧm) with arbitrary multipliersL

m and perform the integration on all their possible
values. Consequently, the partition function~3.1! is written:

Z5E DAmDP
mDBnDQ

nDc̄~a!DP~a!Dc~b!DP̄~b!d~F1!d~F2!d~F3!d~ f 1!

3d~ f 2!d~ f 3!det@F1 ,F2 ,F3 , f 1 , f 2 , f 3#Dd~V~a!!d~V~b!!d~Bm2Ȧm!

3det@V~a! ,V~b!#exp i F E d3x~BmP
m1ḂnQ

n1cG P1P̄ċ !2HEG . ~3.11!

Therefore, in equation~3.11! also the path-integral over the fieldBm can be performed, and
instead of the expression~3.3!, the partition function reads as

Z5E DAmDc̄~a!Dc~b!d~ f 1!d~ f 3!exp i F E d3xLe f fG , ~3.12!

whereLe f f given in ~3.4! must be written in terms ofAm .
As usual, we must transfer the integration measure defined on the surfacef 15] iA

i50, to the
surfacef 185]mA

m50, which defines the Lorentz gauge. The same argument can be used on the
surfacef 3 . Moreover, once the path integral over the fieldBm is performed in the equation~3.11!,
the surfacef 3 becomes the time derivative of the surfacef 1 .

Also in higher derivative models, it is convenient to work in a generalized gauge defined by

]mA
m~x!5a1~x!, ~3.13a!

]mȦ
m~x!5ȧ1~x!5a2~x!, ~3.13b!

wherea1(x) anda2(x) are arbitrary matrices.
Finally, as the partition function~3.12! does not depend neither ona1 nor ona2 , by integrat-

ing over both quantities with a Gaussian weight: exp„il1tr*d
3xa1

2(x)1 ic2l2tr*d
3xa2

2(x)…, the
following extended Lagrangian density remains defined:

L*5Le f f2
l1

2
~]mA

m!22
l2

2
~]mȦ

m!2. ~3.14!

Looking at the Lagrangian density~3.14!, we can see that in this context the inverse of the
Am propagator is given by the 333 matrix (D21)mn, defined again by the quadratic piece in
Am . In the momentum space, this matrix has the following elements:

@D21#005~12c2k2!k22lk0
2,
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@D21#015@D21#10*5~l211c2k2!k0k12 i
k

2p
k2 ,

@D21#025@D21#20*5~l211c2k2!k0k21 i
k

2p
k1 ,

@D21#1152~12c2«!~«2k1
2!2lk1

2, ~3.15!

@D21#125@D21#21*5~12c2«2l!k2k12 i
k

2p
k0 ,

@D21#2252~12c2«!~«2k2
2!2lk2

2 .

In the above equations we have renamed the parameterc in such a way that it is not necessary
to write the constantp explicitly, and we calledk25k1

21k2
2 , « 5 k22k0

2 andl5l11l2c
2k0

2 .
Now, the propagatorDmn can be evaluated and the following matrix elements are obtained:

D005
~12c2«!«

D
@lk22~12c2«!k0

2#2
~k/2p!2k0

2

D
,

D015D10* 52
k0k1
D F ~12c2k22l!~12c2«!«1S k

2p D 2G2 i
kk2
2pD

@2l«1c2k0
4#,

D025D20* 52
k0k2
D F ~12c2k22l!~12c2«!«1S k

2p D 2G1 i
kk1
2pD

@2l«1c2k0
4#,

D1152
k1
2

D F ~12c2k2!~12c2«2l!«1c2k0
4~12c2k22l!1S k

2p D 2G
1
1

D
~12c2k2!c2k2k0

41
l

D
@~c2k221!«22c2k0

6#,

D125D21* 52
k1k2
D F ~12c2k2!~12c2«2l!«1c2k0

4~12c2k22l!1S k

2p D 2G2 il
kk0«

2pD
,

D2252
k2
2

D F ~12c2k2!~12c2«2l!«1c2k0
4~12c2k22l!1S k

2p D 2G
1
1

D
~12c2k2!c2k2k0

41
l

D
@~c2k221!«22c2k0

6#. ~3.16!

In equations~3.16! D5det@D21(k)# and it is given by
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D5lF ~12c2k2!~12c2«!«1S k

2p D 2G«21lc2k0
6~12c2«!«2c2k2k0

4

3F ~12c2k2!~12c2«!«1S k

2p D 2G . ~3.17!

Subsequently, the Feynman rules propagators and vertices can be written.
~i! Propagators: We associate with the propagatorDmn of the bosonic fieldAm , a wavy line

connecting two generic points:

and with a simple line the usual propagator of the fermionic fieldc

~ii ! Vertices: Then, the three legs vertex of the model is:

Moreover, as it is usual we have to take into account a minus sign for every closed fermion
loop and other minus signs for diagrams related to the exchange of two fermion lines, internal or
external. A combinatorial factor correcting for double counting in case that identical particles
occur, also must be taken into account.

IV. PERTURBATIVE METHOD IN HIGHER DERIVATIVE QED. ONE-LOOP STRUCTURE

Now, we proceed to examine the perturbative treatment of this gauge theory which describes
the interaction of the bosonic fieldAm with the Dirac spinor field. Using the above rules, a
power-counting analysis shows that the superficial degrees of divergence G are essentially those of
the usual QED, so we are led to the following one loop diagrams:

which correct the fundamental parameters and fields of the theory.
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If we call Pmn(k), the correction to the boson line or vacuum polarization diagram, it can be
written as

52e2E d3p

~2p!3
1

~p21m2!@~p1k!21m2#

3Tr@gm~g.p1g.k2m!gn~g.p2m!#. ~4.1!

So, the correction to the boson line is similar to the non higher model, therefore the ultraviolet
behavior of the integral~4.1! is the same as in the usual QED, i.e for large momentum p, the
Feynman integral~4.1! behaves as;*dp and so this diagram is linearly divergent. This must be
expected, because this model is a higher derivative only with respect to the boson field, and the
propagator of that field does not appear in the vacuum polarization diagram. Consequently, the
evaluation of the integral~4.1! is carried out by introducing a Feynman parameter and the new
loop momentump85p1kx. We note that in the case in which the complete CS Lagrangian~2.2a!
~with k Þ 0) is considered, the dimensional regularization cannot be used safely due to the pres-
ence of the volume form«mnr. In that case, another gauge invariant regularization method, for
instance a Pauli–Villars one,13 must be used. The renormalization procedure is implemented as in
the usual QED.

Now, we consider the second diagram given above. LetS(p) be the correction to the fermion
line ~suppressing spinor indices!. This diagram is given by the following integral expression:

52 ie2E d3k

~2p!3
gm~g.p2g.k2m!gn

~p2k!21m2 3Dmn~k!. ~4.2!

From equations~3.16!, it can be seen that, for large momentum, the propagatorDmn behaves
like k24. Therefore the new propagator has an ultraviolet behavior in such a manner that the
Feynman integral~4.2! gives a convergent result~for largek the integral behaves as;* dk/k3).

The last one-loop diagram we consider is the vertex correction, which we callVj(p,q), and
is written as

52 ie3E d3k

~2p!3
gm

~g.p1g.k2m!

~p1k!21m2 gj

3
~g.q1g.k2m!

~q1k!21m2 gn3Dmn~k!. ~4.3!
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Once more, by introducing the expressions~3.16! for the boson propagatorDmn , we can see
that the diagram is also convergent, because for large momentum the integral behaves as
;* dk/k4 .

We conclude that in one-loop diagrams in which the propagatorDmn of the fieldAm takes
place, the ultraviolet behavior is improved and the divergence of these diagrams are eliminated.
The remaining diagrammatic with a fermionic loop does not change and the degree of divergence
is that of the usual QED. Therefore, the use of higher derivative terms in the Lagrangian allows us
to improve the behavior of the correspondent propagators at large momentum, rendering the
theory less divergent.

V. UNITARITY

At this stage, another important problem to take into account is the unitarity problem. It is
well known,11 that in higher derivative theories, the unitarity can be violated when ghost states
with negative norm are present. To say something about the unitarity, we must analyze more
carefully the bosonic propagator we have defined.

First we note that the Hermitian matrixDmn(k) defined in~3.16! can be diagonalized and so
its eigenvalues are determined. As it is possible to see, the corresponding secular equation depends
only on k2 andk0 and therefore we can study the problem for a given value of the three-vector
km . Let km5(k0 ,k150,k2) be the value for the three-vector momentum.

From equation~3.17! we see thatD can be written as a six-order polynomial in the parameter
«. As the model is described by a second-order Lagrangian, there are two physical roots which are
the two single poles appearing in the propagator. The remaining roots of the polynomialD are
non-physical ones.

For appropriated values of the parameterc2 and the topological massk, it is possible to obtain
a factorized expression for the polynomialD. Considering the dimensional parameterc2 in the
physical regimes verifying the conditionc2k221.0 ~i.e., k0

2.0) and for values of the topologi-
cal massk verifying c2k2/(c2k221)!1, the polynomialD can be written as

D5~«2a1!~«2a2! f ~l,k,«!, ~5.1!

wherea1 and a2 are the two real roots of the polynomialc2«22«1 @k2/4p2(c2k221)#50.
These roots, which are independent of the gauge parameters, in the above approximation for the
topological mass makes

a1>
1

c2
2

k2

4p2~c2k221!
, a2>

k2

4p2~c2k221!
. ~5.2!

Moreover, f (l,k,«5a1,2) is a finite and different from zero function.
As we can see, in the limitk50, the two poles are displaced to the values«15 1/c2 and

«250, respectively.
In the limit c2→0 the only remaining pole is located at«52 k2/4p2 , as it must be expected.

The propagator~3.16! covariantly written takes the form

Dmn~k!5
1

~«1k2/4p2! Fgmn1S 12
1

l1
2

k2/4p2

l1«
D kmkn

«
2 i

k

2p
«mnr

kr

« G . ~5.3!

Now, the propagator~3.16! can be written as

Dmn5
1

D
3Kmn

R . ~5.4!
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The 333 matrixKmn
R is called matrix residue. It can be diagonalized and it has three different

non-zero eigenvaluesj (a) „(a)51,2,3…, which can be given, for example, as power series of«
with proper coefficients depending onk2.

Consequently, we can define a set of real currentsJm
(a)(k), one for every non-zero eigenvalue,

which are mutually orthogonal and eigenstates of the matrixKmn
R (k),21 i.e.

Jm
~a!~k!Jm

~b!~k!50, if~a!Þ~b!, ~5.5a!

Kmn
R ~k!Jn

~a!~k!5e~a!~k!Jm
~a!~k!. ~5.5b!

For instance, the real bosonic currents for emission of a particle corresponding to incoming
particles of the S-matrix, when all the eigenvalues of the matrixKR are positive, must be normal-
ized in such a way that

Jm
~a!~k!Kmn

R ~k!Jn
~a!~k!511. ~5.6!

The source currents thus defined are properly normalized for emission of a particle~or an
antiparticle!. When absorption of a particle~or an antiparticle! is considered, in the matrixKR

appearing in equation~5.5b!, k must be replaced by2k.
On the other hand, once the matrix residueKmn

R is diagonalized, the above equations~5.5!
imply that the currents are of the form

J~a!5~0,1/Aj~a!,0!,

and obviously results in

(
~a!

J~a!J~a!5@KR#21. ~5.7!

The equation~5.7! holds when the eigenvalues of the matrixKR at the pole are positive, that
is to say when the unitarity is preserved and the normalization~5.6! holds. In the case of negative
eigenvalues, to recover the unitarity, the normalization in~5.6! must be done with a minus one. As
it is well known, when the matrix residueKR has a negative eigenvalue at the pole, it corresponds
to states with negative norm, and they are physically unacceptable. The corresponding particles
are called ghosts. This is the prescription to retrieve the unitarity of the theory and it is usually
called indefinite metric prescription.

Let us consider the secular equation corresponding to the matrixKR, which is written as

j32j2Tr@Dmn#1jDTr@~D21!mn#2D250. ~5.8!

From equation~5.8! it is possible to analyze the residue of the eigenvalues at every pole. The
residue is given by the coefficient ofj2, i.e,Tr@Dmn#. At the polesa1,2 the residues, respectively,
are written as

94 Foussats et al.: Higher derivative Chern–Simons theories

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Tr@Dmn~«5a1!#52
k0
2

~c2k221! Fc4k04k2~c2k221!2
k2

4p2 c
4k0

4

1lS k2~c2k222!~c2k221!1
k2

2p2 c
2k0

2D G , ~5.9a!

Tr@Dmn~«5a2!#52
k0
2

~c2k221! Fc2k04~c2k221!21
k2

4p2 c
4k0

4

1lS c2k4~c2k221!2
k2

2p2 ~c2k211! D G . ~5.9b!

By looking at the equations~5.9!, we can assert that the sign of the residues depend onl. For
instance, the signs can be determined in the physical regionc2k2.2 and in the Feynman gauge
l15l251. In this case, in both equations~5.9! results inTr@Dmn#,0, and therefore the normal-
ization in ~5.6! must be given with the minus one.

Finally, as it is easy to note, when the limitc250 is taken in the model, the set of constraints
are modified. The fermionic constraints do not change, but the bosonic constraints~2.4a! disappear
in this case, leavingP050 as the unique primary bosonic constraint. The consistency condition on
the constraints gives only one secondary constraint. Subsequently, it is possible to find the two first
class constraints characteristic to the usual electrodynamic with the CS term. The two correspon-
dent gauge fixing conditions are given byf 15] iA

i'0 and f 25A0'0. The partition function
analogous to~3.1!, after integrated in the variableA0 by using the functiond( f 2), is reduced to

Z5E DAiDc̄Dcd~ f 2! exp i @Sef f#, ~5.10!

whereSef f is now the effective action for the electrodynamic with the topological CS term.

VI. THE BRST FORMALISM

The BRST formalism for the constrained Hamiltonian system under consideration is con-
tructed by using most of the tools of Refs. 22–27. As it was shown, the Hamiltonian system is
defined by the three first class constraintsFa given in ~2.8!, the Dirac brackets~2.9! and the
Hamiltonian given in equation~2.7!. The Hamiltonian density appearing in~2.7! can be written as
follows:

H5H01laFa , ~6.1!

where we callH0 the quantity given by

H05Hcan1B0F2 . ~6.2!

Therefore, the following equations hold:

@Fa ,Fb#D5Cc
abFc50, ~6.3a!

@H0 ,Fa#D5Va
bFb , ~6.3b!

whereH05*d2xH0 . From now on we will write the Dirac brackets without the sub-script ‘‘D ’’.
We note that in a usual CS theory,24 all the coefficientsVa

b vanish for a suitable choice of the
Hamiltonian densityH0 . In the present case, because of the presence of the higher derivative
terms, there is no possible choice ofH0 that could allow us the elimination of all theVa

b
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components. When we work with the HamiltonianH0 given in ~4.2! it results inV2
3 5 21, and

the other components ofVa
b are all vanishing. This is the choice that allows the elimination of the

greatest number ofVa
b components.

At this stage it is convenient to treat the Lagrange multipliersla defined in~6.1!, on the same
footing as the remainders dynamical variables, and to associate with them an equal number of
canonical momenta, such that

@la,P b#5dab . ~6.4!

With the purpose of not changing the dynamical structure of the theory, classically the mo-
menta are constrained to vanish. The constraintsP a generate the gauge transformationla→la 1
ua of the multipliers, making evident their arbitrariness.

Consequently, from now on our dynamical variables will be

AS5~Am ,Bm ,c̄,c,la!. ~6.5!

The corresponding canonical conjugate momenta are written as

PS5~Pm,Qm,P,P̄,P a!, ~6.6!

and the new set of constraints are given by

GA5~Fa ,P b!, a,b51,2,3 andA51, . . . ,6. ~6.7!

Therefore, the equations~6.3! take the form

@GA ,GB#50, ~6.8a!

@H0 ,GA#5VA
BGB , with V2

3521. ~6.8b!

Now, by introducing the fermionic ghost fields~Majorana spinors! hA and their canonical
conjugate variablespA, the BRST invariant gauge fixed Hamiltonian can be written as

Hx5H01pBVA
BhA1@x,Q#, ~6.9!

wherex 5 pBvB, beingvB the gauge fixing conditions given by the set of quantities,

vB5~la, f b!. ~6.10!

Furthermore, as we deal with an Abelian model, the BRST generatorQ is given by the well
known expression:

Q5hAG
A. ~6.11!

As the constraints~6.7! can be divided in two subsets, we assume that the ghosts and the
antighosts are introduced in such a way that

hA5~ha ,pa!, ~6.12a!

pA5~p̄a,h̄a!. ~6.12b!

Therefore, the following canonical brackets hold:
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@ha ,p̄
b#15da

b , ~6.13a!

@pa ,h̄
b#15da

b , ~6.13b!

that is, we are working in the mixed representation in which both the ghosts and the antighosts are
diagonal.

When an integration in the last term of equation~6.9! is performed, the following Hamiltonian
density can be written:

Hx5H01laFa1 f aP a1p̄apa2p̄3h21h̄a@ f a ,F
b#hb . ~6.14!

Thus, the BRST Lagrangian densityLBRST is given by

LBRST5BmP
m1ḂnQ

n1cG P1P̄ċ1l̇aP a1h̄apa1p̄aḣa2Hx . ~6.15!

As in the present case, when the constrained system has first and second class constraints, the
partition function in the BRST formalism is written by means of the following path integral27:

Z5E DASDP
SDh̄aDhaDp̄aDpad~V~a!!d~V̄~a!!3exp i F E d3xLBRSTG . ~6.16!

Looking at the equation~6.15!, we can see that the variablesPm do not explicitly appear in
LBRST, and so the path integral over this variable must be included in the normalizing factor.
Similarly, this occurs with the field componentsB0 andQ0 , since the HamiltonianH0 in ~6.2!
was chosen precisely to eliminate as dynamical variablesB0 , and so its canonical momentum
Q0.

The path integral over the variablesp̄a, pa andQi are Gaussian and they are easily per-
formed. The path integral over the momentaP̄(a) andP (a) are also elementary by using the two
Dirac’s delta functions appearing in~6.16!. Therefore, the partition function~6.16! takes the form

Z5E DAmDBiDc̄DcDlDPDh̄aDha3exp i F E d3xL* G , ~6.17!

where the Lagrangian density we callL* is written as

L*5Le f f2laFa1~ l̇a2 f a!P a2h̄a@ f a ,F
b#hb2@hG aha1

1
4h̄

2h22
1
2~hG 3h21h̄2ḣ3!#,

~6.18!

and we have calledLe f f the Lagrangian density defined in~3.4!.
With the aim to recover the expression~3.1! for the partition function in the Faddeev–

Senjanovic form, the next task is to go on a relativistic gauge or non-canonical gauge~see Refs. 24
and 26!. To do this we make the following replacement:

f a→
1

t
f a8 , P→tP a , h̄a→th̄8a,

where the two last substitutions represent a change in the corresponding path integral variables.
Later on, the parametert will go to zero by virtue of the Fradkin–Vilkovisky theorem, which has
stated that the transition amplitude does not depend on this parameter. Once this is done, the
partition function results:
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Z5E DAmDBiDc̄DcDlaDP a8Dh̄8aDha

3exp i F E d3x~Le f f2laFa2 f 8aP a82h̄8a@ f a8 ,F
b#hb!G . ~6.19!

After the integration over the path integral variablesla , P a8 , h̄8aandha are performed, the
final form for the partition function we can obtain is

Z5E DAmDBiDc̄Dcd~Fa!d~ f 8a!det@ f 8a, Fb#exp i F E d3xLe f fG . ~6.20!

This last expression for the partition function can be confronted with that written in section
III. Our starting expression used above in the framework of the canonical formalism to construct
the diagrammatic, was proposed following the Faddeev–Senjanovic procedure. So we can con-
clude that both different methods give the same basic results and therefore, they can be considered
as alternatives.

VII. CONCLUSIONS

To go on with the work beginning in Ref. 1, in the present paper we found the diagrammatic
and the Feynman rules for a higher-derivative model coupled to matter. This was done by defining
a suitable propagator of the bosonic field. The fermionic propagator for the matter field is the usual
one. The model has an unique three legs vertex; and all the diagrams are obtained by connecting
vertices and sources by means of the propagators thus defined. Using the perturbative theory, the
one loop structure of the model was analyzed. The results obtained for the one loop diagrams in
which the boson field propagator takes place allows us to guarantee that the ultraviolet behavior is
improved and the divergence of these diagrams are eliminated. Therefore, we conclude that the
presence of higher-derivative terms in the Lagrangian density gives rise to a new bosonic propa-
gator, which yield that the theory is less divergent.

We have also proved, unlike what occurs in the usual quantum electrodynamics, that in this
higher-derivative model there are two single poles; one of them is going to infinity in the limit
c→0; and so the electrodynamic singularity is recovered.

Moreover, the prescription to eliminate the ghost states with negative norm, in such a way that
the unitarity can be preserved, was also given.

Finally, by using well known tools and methods, the BRST formalism was constructed. When
this formalism is applied to theories containing higher-derivative terms in the Lagrangian, there
are some differences contained in the equation~6.3! upon which we have remarked. As it was
shown the partition function of the model, in the BRST formalism written in the relativistic
non-canonical gauge, is consistent with those obtained by means of a suitable extension of the
Faddeev–Senjanovic procedure.
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Asymptotic algebra for charged particles and radiation
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22761 Hamburg, Germany
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A C* -algebra of asymptotic fields which properly describes the infrared structure in
quantum electrodynamics is proposed. The algebra is generated by the null asymp-
totic of electromagnetic field and the time asymptotic of charged matter fields
which incorporate the corresponding Coulomb fields. As a consequence Gauss’ law
is satisfied in the algebraic setting. Within this algebra the observables can be
identified by the principle of gauge invariance. A class of representations of the
asymptotic algebra is constructed which resembles the Kulish–Faddeev treatment
of electrically charged asymptotic fields. ©1996 American Institute of Physics.
@S0022-2488~96!01701-X#

I. INTRODUCTION

It is frequently stated that the excellent experimental confirmation of quantum electrodynam-
ics is not matched by sufficient understanding of its theoretical foundations yet. Indeed, the need
for better understanding of the theory seems to be confirmed by steady fundamental research. One
could even point out that experimental verification has to be considered as provisory, as long as
the theory has no completely firm status. This refers not only to the existing experimental evi-
dence. New experimental arrangements may be needed to test the results of further theoretical
investigations.

This may especially be the case in relation to the problems connected with the long-range
character of the electromagnetic interaction, Gauss’ law, and the proper description of charged
states. These problems manifest themselves in the infrared divergencies of perturbational QED,1

the structure of uncountably many superselection sectors,2,3 the infraparticle problem,4,5 and the
spontaneous breaking of the Lorentz group in charged representations of local observables.5,6 All
these questions have been investigated in various theoretical setups, with varying emphasis on
mathematical rigor on the one hand, and concrete calculations on the other. An important step in
the development of understanding of the long-range structure was the realization that it is the
timelike, resp. lightlike, asymptotic structure that is relevant here.2,7–9 The work of Kulish and
Faddeev deserves special mentioning, as it generalized Dollard’s idea10 of asymptotic dynamics to
the Gupta–Bleuler formulation of quantum electrodynamics. A more careful analysis of asymp-
totical charged states within this formalism was given by Morchio and Strocchi.11 In rigorous
mathematical terms, within the algebraic framework in quantum field theory, the asymptotic elec-
tromagnetic field has been obtained as an LSZ-type limit by Buchholz.3 For reviews see the book
by Jauch and Rohrlich,1 the lecture notes by Morchio and Strocchi,12 and the book by Haag.13

In spite of the progress brought by these works, our understanding of what an electron is is
still not very concrete. So far there only exist abstract, though rigorous, characterizations of
electrically charged particles.14,15 Even more importantly, the concrete algebraic structure of the
asymptotic quantum fields is still unclear. Thus investigations of properties such as the spontane-
ous breaking of the Lorentz group in charged sectors or the nonexistence of sharp masses~infra-
particles! are frequently based onad hocassumptions. Most general results are therefore of the
‘‘no-go’’ type ~see, e.g., Ref. 5!.

a!Alexander von Humboldt Fellow; present address: Institute of Physics, Jagellonian University, Reymonta 4,
30-059 Cracow, Poland; Electronic-mail: herdegen@thrisc.if.uj.edu.pl
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It is the aim of the present work to propose a concrete formulation of the algebraic structure
of asymptotic fields~and observables! of electrons interacting with radiation. This algebra re-
sembles various elements of standard knowledge on the infrared problem. However, we would like
to point out three novel aspects of our formulation.

~i! A clear and consistent algebraic framework is obtained. The asymptotic algebra is a
C* -algebra, thereby placing the problem on firm mathematical grounds.

~ii ! We do not have to consider the fully interacting quantum field theory. In particular, the
canonical quantization~which is taken for granted in the treatment of Kulish and Faddeev!
is avoided. In fact, this heuristic procedure for obtaining the algebraic structure may fail in
the field of long-range problems, as we shall discuss. Instead we base our construction on
the asymptotic structure of classical electrodynamics~Maxwell and Dirac! which has been
established in Ref. 16. These results lead naturally via the correspondence principle to our
quantum algebra.

~iii ! The algebra incorporates the Coulomb fields of the asymptotic~outgoing! particles. In this
respect it resembles the theory of the quantized Coulomb field of Staruszkiewicz.17 How-
ever, the latter is an idealized theory of certain isolated degrees of freedom, and it seems to
have no natural embedding into a larger scheme.

The plan of the paper is as follows. In Sec. II we describe briefly the asymptotic structure of
the classical theory. Part of the material is shifted to the Appendix. In Sec. III this structure is then
quantized according to the correspondence principle. Heuristical physical considerations are pre-
sented which lead to formal algebraic relations for the fields. These relations are made mathemati-
cally precise in Sec. IV, and lead to our asymptoticC* -algebra. A class of representations of the
algebra is constructed in Sec. V. The question of physical relevance of these representations is left
for future work. Section VI brings some final remarks, and comments on future perspectives of
this work.

II. CLASSICAL ASYMPTOTIC STRUCTURE

In this section we give a short account of the asymptotic structure of a classical field theory
with electromagnetic interaction, discussed at length in Ref. 16. For the definiteness we considered
the Dirac field interacting with radiation. Complete rigorous results were obtained along the lines
summarized here for the both external field problems, but the extension to the full theory is
possible, as argued in Ref. 16, under plausible conjectures.~The relation of our asymptotic vari-
ables to those used by Flatoet al.18 in their recent solution of the Cauchy problem and proof of
asymptotic completeness of the Maxwell–Dirac system is an open problem.! The aim of this
summary is also, for the convenience of the reader, to rewrite in the tensor form the properties and
formulas for the asymptotics of the electromagnetic field which were discussed in the two-
component spinor language in Ref. 16. Equivalence to the original formulation is proved in the
Appendix.

The idea of the approach deviates from the standard formulation of the scattering problem as
the limit of constant time configurations with time tending to infinity. Rather, the advantage is
taken of the different propagation velocities of matter and radiation, to consider their asymptotics
in different space–time regions. For the electromagnetic field the known methods of the null
infinity asymptotics19,20are applied, formulated in terms of homogeneous functions~without Pen-
rose’s space–time compactification! and further developed in some specific aspects. For the matter
field a method is developed which leads to the determination of an asymptotic field inside the
forward lightcone—this is sufficient, as eventually every massive particle enters the cone. Plau-
sible arguments then indicate that asymptotics thus defined contain the full information on the
system and the total Poincare´ quantities~energy-momentum and four-dimensional angular mo-
mentum! of the theory may be expressed in terms of them.

The electromagnetic field of the system admits a class of gauges of the potential with the null
asymptotic of the form@Eq. ~2.45! in Ref. 16#
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lim
R→`

RAa~x1Rl!5Va~x• l ,l !. ~2.1!

Herex is any space–time point in Minkowski spaceM and l is a future-pointing null vector. The
functionVa(s,l ) ~s is a real variable! is homogeneous of degree21,

Va~ms,m l !5m21Va~s,l !, ~2.2!

~m.0!, and satisfies

l •V~s,l !5Q, ~2.3!

whereQ is the charge of the field. Itss-derivativeV̇a(s,l ):5(]/]s)Va(s,l ) falls off according to

uV̇a~s,l !u,
const

~11usu!11e ~2.4!

for somee.0, soVa(s,l ) has limits fors→6`, which we denoteVa(6`,l ). @Null vectorsl are
scaled in~2.4! to l 051 in arbitrarily chosen, fixed Minkowski frame; change of frame results only
in change of bounding constant.# Gauge freedom consists of the transformation
Va(s,l )→Va(s,l )1a(s,l ) l a .

Further properties of the limit valuesVa(6`,l ) involve differentiation on cone variables. A
simple and explicitly Lorentz-covariant way to express the differentiations in directions tangent to
the cone is to use the operatorl a]b2 l b]a(]a :5]/] l a). One applies the operator to any differen-
tiable extension to some neighborhood of the cone of a function defined on the cone itself, and
restricts the result again to the cone. The result is independent of the extension used.

The limit valuesVa(6`,l ) are constrained by the following gauge-invariant condition:

l @a]bVc]~6`,l !50 ~2.5!

@this is the tensor form of the conditions~3.32! with ~2.54!–~2.57! in Ref. 16; see also the
Appendix#. The physical content of the condition, which is satisfied in standard scattering situa-
tions, is that it allows the identification of the total angular momentum of the system, as discussed
in Ref. 16. The properties~2.2!, ~2.3!, and~2.5! allow another simple representation ofVa(6`,l ).
It follows from ~2.2! and ~2.3! that (l b]a2 l a]b)V

b(6`,l )1Va(6`,l )} l a . We denote

~ l b]a2 l a]b!V
b~1`,l !1Va~1`,l !52q~ l !l a , ~2.6!

~ l b]a2 l a]b!V
b~2`,l !1Va~2`,l !52k~ l !l a . ~2.7!

Hereq( l ) andk( l ) are homogeneous functions of degree22. If, for the sake of differentiation, the
extensions ofVa(6`,l ) are chosen so as to satisfy~2.3! also in a neighborhood of the cone, then

q~ l !52 1
2]bV

b~1`,l !, k~ l !552 1
2]bV

b~2`,l !. ~2.8!

The charge of the field is recovered from the functionsq( l ) andk( l ) by the formulas

Q5
1

2p E q~ l !d2l5
1

2p E k~ l !d2l . ~2.9!

By d2l we denote that measure on the set of null directions which gives a Lorentz invariant result
when applied to a homogeneous function ofl of degree22 ~see Ref. 16 and references given
there!. The measure itself is homogeneous of degree 2, and forl ’s scaled tol 051 in any fixed
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Minkowski frame it is the rotationally invariant measure on the unit sphere of vectorsl. For future
reference we note that ifa( l ) is differentiable and homogeneous of degree22, then~see Appen-
dix!

E ~ l a]b2 l b]a!a~ l !d2l50. ~2.10!

Now conversely, one can show that ifq( l ) andk( l ) are homogeneous functions of degree22
satisfying ~2.9!, then the vector functionsVa(6`,l ) constrained by~2.2!, ~2.3!, and ~2.5! are
determined by~2.6! and ~2.7! uniquely up to a gauge@Ref. 16, after Eq.~2.61!#.

Physical interpretation ofk( l ) is of importance: this function determines the flux of the
electromagnetic field in spacelike infinity. Explicitly, ifx is any point andy a spacelike vector,
then

lim
R→`

R2Fab~x1Ry!5Ka~y!yb2Kb~y!ya , ~2.11!

where

Ka~y!5
1

2py2
“aE k~ l !sgny• ld2l . ~2.12!

If the potential is decomposed in the standard way into the advanced and the free outgoing
part Aa5Aadv

a1Aout
a , then A

adv
a and Aout

a have again asymptotics of the type~2.1! with
Va(1`,l ) andVout

a(s,l ):5Va(s,l )2Va(1`,l ) replacingVa(s,l ) on the right-hand side~rhs! of
~2.1!, respectively. This brings the physical interpretation ofq( l ): this function determines the
asymptotic Coulomb field of the outgoing currents.

The free outgoing field is completely determined by its asymptotic according to the formula

Aout
a~x!52

1

2p E V̇out
a~x• l ,l !d

2l . ~2.13!

The flux of the fieldFout
ab(x) at the spacelike infinity is again given by the formulas~2.11! and

~2.12! in whichk( l ) is replaced bys( l ):5k( l )2q( l )52(1/2)]bVout
b(2`,l ), which is therefore

interpreted as the infrared characteristic of the free field. The vector functionVout
a(2`,l ) is again

determined up to a gauge bys( l ), but in this case a more explicit representation is possible. One
shows that Eq.~2.5! @satisfied byVout

a(2`,l )# and the conditionl •Vout~2`,l !50 together imply
the existence of a real functionF( l ) homogeneous of degree 0 such that~see the Appendix!

l @aV
out

b]~2`,l !5 l @a]b]F~ l !. ~2.14!

HereF( l ) is determined by this condition up to an additive constant. We make the choice of this
constant characterize classes of gauges ofVout

a(2`,l ) as follows. First, fixF( l ) with some
choice of the constant. Then, choose an antisymmetric real tensor functionGab( l )52Gba( l ),
homogeneous of degree 0, such that

l @aGbc]~ l !50, Gab~ l !l
b5F~ l !l a . ~2.15!

This tensor is then of the formGab( l )5 l agb( l )2 l bga( l ), wherega( l ) is homogeneous of degree
21, satisfies

l •g~ l !5F~ l !, ~2.16!

and is determined byGab( l ) up toga( l )→ga( l )1a( l ) l a . Finally, put
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Vout
a~2`,l !5~ l b]a2 l a]b!g

b~ l !1ga~ l !. ~2.17!

One shows that

~i! ~2.17! satisfies~2.14!;
~ii ! every gauge ofVout

a~2`,l ! may be represented in this way and the correspondence with
the tensorsGab( l ) is 1:1;

~iii ! gauges corresponding to the choices ofGab’s with a fixed constant inF( l ) form equiva-
lence classes with respect to the following equivalence relation:
V1
out

a(2`,l );V2
out

a(2`,l ) iff *a( l )d2l50, whereV1
out

a(2`,l )2V2
out

a(2`,l )5a( l ) l a .
We shall see in Sec. III that the interpretation imposed by the above procedure on the
additive constant inF( l ) is a very natural one from the point of view of the symplectic
form for electromagnetic field.

The asymptotic of the Dirac fieldc(x) inside the forward lightcone is determined by consid-
ering the behavior ofc(lv) for large l, where the four-velocityv lies on the hyperboloid
H:5$vPM uv251, v0.0%. Physically, the most important condition for the validity of our dis-
cussion is such a choice of gauge of the electromagnetic potential, thatuv•A(lv)u,constl212e,
~e.0!. That this is possible in our context is shown in Ref. 16 where further details are also given.
One shows then that if we put

c~lv !52 il23/2e2 i ~ml1p/4!g•v f l~v !

~ga are the Dirac matrices!, then liml→`f l(v)5 f (v). For the external field problem it is shown
that this limit is reached strongly in the Hilbert spaceK of four-component functions on the
hyperboloidH with the scalar product

~ f ,g!5E f ~v !g•vg~v !dm~v !, ~2.18!

where bar denotes the usual Dirac conjugation anddm(v)5d3v/v0 is the invariant measure on the
hyperboloid. Moreover, free outgoing field may be determined by

cout~x!5S m2p D 3/2E e2 imx•vg•vg•v f ~v !dm~v !. ~2.19!

cout(x) has the same asymptotic asc(x). It is argued that the structure is essentially the same in
the full theory. In that case the characteristicq( l ) of the Coulomb field of the outgoing currents is
expressed in terms of their asymptotic

q~ l !5eE f ~v !g•v f ~v !
dm~v !

2~v• l !2
~2.20!

~e is the charge of the electron!.
We note for future use that explicitly Lorentz-covariant differentiation onH may be discussed

with the use of operators defined in exactly the same way as it has been done in the case of the
lightcone in the paragraph preceding~2.5!. In the case of hyperboloid the operator contracted with
vb contains the whole information

daf ~v !:5~]a2vav•]! f ~v !. ~2.21!
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Finally, total Poincare´ quantities are expressed in terms of the outgoing fields. One finds that
these quantities are the sums of the respective quantities for the free fieldsFout

ab(x) andcout(x)
@determined by~2.13! and~2.19!, respectively#, with, however, one additional term in the case of
angular momentum

DMab52
1

2p E q~ l !~ l a]b2 l b]a!F~ l !d2l . ~2.22!

This term is seen to mix the outgoing matter characteristicq( l ) with the infrared characteristic
F( l ). ~It originates from the mixed adv–out terms of the asymptotics in null directions of the
electromagnetic energy-momentum tensor.! This mixing of the long-range degrees of freedom
corresponds to this remnant of interaction which is responsible for the validity of the Gauss’ law.
Its appearance shows that a Poisson bracket structure separating the two fields asymptotically
remains in contradiction not only with the Gauss’ law, but also with the Poincare´ structure of the
theory.

III. QUANTIZATION

We assume now that the asymptotic structure of the quantum theory may be described by
quantum variables analogous toVa(s,l ) and f (v). By that we mean that these analogs generate an
algebra, the states of which may be interpreted as scattering states in quantum electrodynamics. In
the present section we give heuristic arguments which lead us to the formulation of quantization
conditions for these variables. In Sec. IV, then, the appropriate algebra is constructed.

The usual quantization of the free electromagnetic field is achieved by the use of the sym-
plectic form

$F1 ,F2%5
1

4p E
S
~F1

abA2b2F2
abA1b!dsa , ~3.1!

the integration extending over a Cauchy surfaceS. It has been observed by other authors
before18,19 that the integration surface may be shifted so as to become the future null infinity
hypersurface~in the language of the compactified Minkowski space!, as the fields are determined
by their data on this surface. This corresponds in our language~no compactification! to the
integration of ‘‘radiated’’ symplectic form. This is calculated in exactly the same way in which the
radiated energy-momentum and angular momentum were determined in Ref. 16, Eqs.~3.6!–
~3.14!. The explicitly Lorentz-invariant result, denoted by$V1 ,V2%, is

$V1 ,V2%5
1

4p E ~V̇1•V22V̇2•V1!~s,l !ds d2l , ~3.2!

whereVi are asymptotics~2.1!. However, we observe that also in the presence of sources the
electromagnetic field is locally free in the null asymptotic region, so one can try to use the same
symplectic form for the asymptotics of the interacting theory. The form~3.2! is now extended
without formal change to asymptotics of all fields admitted by the framework of Sec. II.@The
reason for taking~3.2! rather than directly the ‘‘radiated’’ analog of~3.1! for general fields as a
basis for generalization is that for charged fields with nonvanishing infrared part the latter form
yields no Lorentz invariant result. If the calculation is performed in a frame with the time-axis
along the positive unit timelike vectort, then the result differs from~3.2! by

Q2

4p E taV1
out

a~2`,l !
d2l

t• l
2
Q1

4p E taV2
out

a~2`,l !
d2l

t• l
,
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whereQi are the charges~2.3!.#
If V’s are split into the free and the Coulomb partVa(s,l )5Vout

a(s,l )1Va(1`,l ), then

$V1 ,V2%5$V1
out,V2

out%1
1

4p E „V1~1`,l !•V2
out~2`,l !2V2~1`,l !•V1

out~2`,l !…d2l .

Substituting in the second term~2.17!, integrating by parts with the use of~2.10!, and finally using
~2.6! and ~2.16! one obtains

$V1 ,V2%5
1

4p E ~V̇1
out
•V2

out2V̇2
out
•V1

out!~s,l !ds d2l1
1

2p E ~q1F22q2F1!~ l !d
2l . ~3.3!

The first term on the rhs is gauge invariant, while the second depends on gauge only through the
choice of the additive constant inF( l ), that is, on the choice of one of the equivalence classes of
Vout

a(2`,l ) discussed after Eq.~2.17!. The above compact form of the second term supplies
justification for our interpretation of the constant inF( l ).

Let nowVop
a(s,l ) be a quantum field andVa(s,l ) a classical test field. The heuristic quanti-

zation rule is

@$V1 ,V
op%,$V2 ,V

op%#5 i $V1 ,V2%,

where the real multiplicative constant on the rhs is fixed by the condition that the quantization
reduces to the standard one for free infrared–regular test fields. In the Weyl exponentiated form
this becomesW(V1)W(V2) 5 e2( ib2/2)$V1 ,V2%W(V1 1 V2), where we putW(V) 5 e2 ib$V,Vop%, with
b a real constant to be determined shortly. The Weyl operators are assumed to depend only on
those variables, which enter nontrivially into the symplectic form~3.3!, that is, they are insensitive
to the gauge ofVout

a(s,l ) for finite s and to the gauge ofVa(1`,l ), and they depend on the gauge
of Vout

a(2`,l ) only through the choice of constant inF( l ). Therefore we shall write sometimes
W(V)5W(j,F,q), wherejab(s,l ):5 l aV

out
b(s,l )2 l bV

out
a(s,l ). @Remember thatF( l ) is deter-

mined byjab(2`,l ) up to an additive constant.# The form~3.3! determines the physical interpre-
tation of the Weyl operator forq50, j50, F5c5const:W(0,c,0) 5 eibcQ

op
, whereQop is the

operator of the charge of the field. From Weyl relations we have then

eibcQ
op
W~V!5W~V!eibc~Qop1bQ!,

whereQ is the charge of the electromagnetic test fieldV. For the interpretation of the classical and
the quantum charge to agree we setb51. Then the Weyl operatorW(V) carries a quantum charge
equal to the classical charge of the test fieldV. More generally, it may be interpreted to carry the
asymptotic field characterized byVa(s,l ). The Weyl algebra

W~V1!W~V2!5e2~ i /2!$V1 ,V2%W~V11V2! ~3.4!

may be considered as a theory of the asymptotic electromagnetic field. The quantization of charge
demands that the space of test fields be restricted to the Abelian additive group of thoseVs which
carry the multiple of the elementary chargeQ5(1/2p)*q( l )d2l5ne. The subgroup of zero-
charge test fields forms a vector space.~For the discussion of an ‘‘adiabatic limit’’ of such a theory,
in which only the long-range characteristics of the field survive, we refer the reader to Ref. 21.!
However, the theory thus formulated is physically incomplete—it admits Coulomb fields, but there
are no particles present to carry these fields. We turn now to the description of these particles.

Let us forget for the moment that there is some ‘‘Gauss coupling’’ between the asymptotic
electromagnetic and Dirac fields which has to modify the Poisson bracket structure~as compared
with the structure of two independent fields!. Then the quantum fieldf op(v) which is to corre-
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spond to the classicalf (v) is quantized in the standard Dirac way. We denote the quantum field
smeared with the test fieldf (v) by B( f ) and replacef op(v) by B(v), so that symbolically
B( f ) 5 * f (v)g•vB(v)dm(v), wheref is inK , the Hilbert space introduced before~2.18!. The
standard quantization law in our notation reads

@B~ f !, B~g!#150, @B~ f !, B~g!* #15~ f ,g!.

It will be convenient for our purposes to have fermionic operators depending onfs linearly. We
introduce notation

B0~ f !5B~ f c!5E B0~v !g•v f ~v !dm~v !, ~3.5!

B̄~ f !5B~ f !*5E B̄~v !g•v f ~v !dm~v !, ~3.6!

where f c is the charge conjugation off defined by

f c5C f̄T, ~3.7!

with C a unitary, antisymmetric matrix inducing the transformationC21gaC52gaT. The invo-
lution law is then

B0~ f !*5B̄~ f c!, ~3.8!

and anticommutation relations

@B0~ f !, B0~g!#150, @B0~ f !, B̄~g!#15~ f c,g!, ~3.9!

or, symbolically,

@B0~v !a , B
0~v !b#150, @B0~v !a ,B̄~u!b#15d~v,u!~C21g•v !ab , ~3.10!

whered(v,u) is the Dirac ‘‘d-function’’ in the two velocities with respect to the measuredm(v).
Physical interpretation ofB( f ) andB0( f ) justified by the Fock representation is that these

operators annihilate an electron and/or create a positron. This means that they locally create charge
2e ~if e is the charge of electron!. More specifically, the operatorsB(v) andB0(v) @resp.B̄(v)#
~forget for the moment mathematical subtleties! create the charge2e ~resp.e! moving with a
constant four-velocityv. However, if the Gauss’ law is again brought into play, creation of a
charged particle must have electromagnetic consequences. Therefore, we want to extend the effect
of Bs in such a way that they create~or annihilate! also the Coulomb field accompanying the
charge. Basing the intuitions on pictures from perturbation calculations and on the algebraic
discussion of superselection sectors of local observables, we want to admit the possibility that
charged particles are in addition accompanied by ‘‘clouds’’ of radiation. Let the potential of the
total field ~Coulomb1radiation! accompanying chargee moving with velocityv be characterized
by the asymptoticVa(v)5Va(v;s,l ). Then for eachv this asymptotic is in the class discussed in
Sec. II, and, moreover, its Coulomb part is, up to a gauge, the asymptotic of the potential
Aa(x)5eva/v•x, that isVa(v;1`,l )5eva/v• l1gauge. Now we seek operatorsB2V1

0 (v) and

B̄V2
(v) analogous toB0(v) andB̄(v) respectively, which, however, beside creating or annihilating

material particles should also carry accompanying electromagnetic fields with asymptotics
2V1(v) andV2(v), respectively, whereV1 andV2 are in the class introduced above. Thus for-
mulated, the problem almost uniquely determines its solution—the objects which do the electro-
magnetic part of the task are already there, the Weyl operatorsW„2V1(v)…, andW„V2(v)… carry
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exactly those charged fields. For the purpose of obtaining commutation relations we imagine the
operatorsB2V1

0 (v) @resp. B̄V2
(v)# to be formed as products ofB0(v) @resp. B̄(v)# and

W„2V1(v)… @resp.W„V2(v)…# ~mutually commuting!. On the other hand, having attached charged
fields to the matter particles in this way, we do not need any longer, as independent objects, the
Weyl operatorsW(V) for test fields with nonvanishing Coulomb part. From now on the asymp-
totic V in W(V) is always a free-field asymptotic@Va(1`,l )50#.

The ~naive! commutation relations resulting from the above discussion are

B2V1
0 ~v !W~V!5e~ i /2!$V1~v !,V%B2V11V

0 ~v !,

B̄V2
~v !W~V!5e2~ i /2!$V2~v !,V%B̄V21V~v !,

e~ i /2!$V1~v !,V2~u!%B2V1
0 ~v !aB2V2

0 ~u!b1e~ i /2!$V2~u!,V1~v !%B2V2
0 ~u!bB2V1

0 ~v !a50,

e2~ i /2!$V1~v !,V2~u!%B2V1
0 ~v !aB̄V2

~u!b1e2~ i /2!$V2~u!,V1~v !%B̄V2
~u!bB2V1

0 ~v !a

5d~v,u!~C21g•v !abW„V2~v !2V1~v !…,

supplemented with the Weyl relations. Note that the asymptotic in the Weyl operator in the last
line is a free-field asymptotic, asV2(v;1`,l )2V1(v;1`,l )50.

For a precise formulation of the above quantization conditions it will not suffice, in contrast to
the case of the Dirac field algebra, to have objects smeared with one-particle test functions as
generating elements. Smeared products ofB2V1

0 (v), B̄V2
(v) andW„V2(v)2V1(v)… have to be

defined, and the phase factors appearing in the above relations must become multipliers in the
space of test fields. This construction is given in Sec. IV.

Before we go over to this task we want to draw attention to a known fact concerning physical
interpretation of Weyl operators, which, however, in our context is of decisive importance and
must not be overlooked. We illustrate our point first on the simplest possible example, the Weyl
algebra of a single pair of canonical variables in quantum mechanics, [x,p]5 i1. The Weyl for-
mulation reads in that case

W~x1 ,p1!W~x2 ,p2!5e2~ i /2!$x1 ,p1 ;x2 ,p2%W~x11x2 ,p11p2!,

wherexi and pi are classical ‘‘test’’-position and momentum variables, the symplectic form is
$x1 ,p1 ;x2 ,p2%5x1p22x2p1 , and the Weyl operator is interpreted asW(x1 ,p1) 5 e2 i $x1 ,p1 ;x,p%.
We want to point out a certain duality in the interpretation ofW(x1 ,p1). Let us set for simplicity
p150. Then, on the one hand, if treated as a function of observables, the Weyl operator
W(x1,0) 5 e2 ix1p ‘‘measures’’ the probability distribution of a state with respect to the momentum.
On the other hand we haveW(x1,0)* xW(x1,0)5x1x1 . Hence, if treated as a unitary transfor-
mation operator,W(x1,0) ‘‘carries’’ the translationx1; that is, when applied to a vector in Hilbert
space it increases its position characteristic by the ‘‘test’’-positionx1. The characteristic which is
‘‘carried’’ by a Weyl operator in this sense is thus the one given by the test-quantity, while the
‘‘measured’’ one is dual to it, in the sense of the symplectic form. Going back to our objects we
see thatB2V1

0 (v), B̄V2
(v) andW(V) carry the respective fields in the above sense, in the case of

W(V) a free field. However, from the symplectic form~3.3! one reads off that the asymptotic of
a free-field potential has as its dual the asymptotic of the total field, which is therefore what is
‘‘measured’’ byW(V).
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IV. THE ALGEBRA

Consider the set ofC` functions Va(s,l ) @differentiations with respect tol in the sense
discussed before Eq.~2.5!, outside some neighborhood of the vertex of the cone# satisfying
conditions ~2.2!–~2.5!. In this set introduce the following equivalence relation:
V2(s,l );V1(s,l ) iff V2(s,l )5V1(s,l )1a(s,l ) l and *„a(2`,l )2a(1`,l )… d2l50 @this is the
equivalence relation for the infrared characteristics of the free field component ofVa , introduced
in ~iii ! after ~2.17!#. The set of equivalence classes with respect to this relation will be denoted by
LQ . Another way of characterizing elements ofLQ is by the triples~j,F,q! introduced in the
paragraph preceding Eq.~3.4!. In order not to burden the notation, the elements ofLQ will be
denoted byVa(s,l ), but always the equivalence classes are understood. The setL̂: 5 ønPZLne has
in a natural way the structure of an Abelian additive group. With the map$.,.%:L̂3L̂→R defined by
~3.2!, it becomes a symplectic group, on which$.,.% is nondegenerate. The subgroupL0,L̂ has the
structure of a vector space. Its subspace consisting of elements satisfying in addition
Va(1`,l )} l a ~no Coulomb field! will be denoted byL. This symplectic space is again nonde-
generate. Without loss of generality it may be assumed that for allVs in L there isVa(1`,l )50.
Elements ofL will be the test functions of Weyl operators.

Consider, next, the class of all functionsVa(v) on the hyperboloidH with values inLe , such
that

~i! Va(v;1`,l )5Ve
a(v,l )1gauge, where Ve

a(v,l ):5eva/v• l , or, equivalently,
q(v,l )5qe(v,l ):5(e/2)(v• l )22;

~ii ! for eachV(v) there is a functionFV(v) such that

$V~v !,V~u!%5FV~v !2FV~u! ~4.1!

for everyv andu;
~iii ! representantsVa(v;s,l ) may be chosen inC

` in v @differentiations in the sense of~2.21!#
and for eachk50,1,... there are constantsCkPR andmkPNø$0% such that

uda1•••dakV̇b~v;s,l !u,Ck~v
0!mk~ usu11!212e

~in a fixed Minkowski frame, with scaling ofls fixed byl 051; the change of frame induces only
a change ofCk!.

Let S ate be a subclass of this family of functions, such that
~iv! if V1(v)PS ate andV0PL, thenV2(v)5V1(v)1V0PS ate ; this condition is fulfilled if

S ate consists of all functions satisfying~i!–~iii !.
Denote, moreover,S at2e :52S ate andRad:5S ate1S at2e . The elements ofS ate and

S at2e will be the fields accompanying particles. Free fields from the classRad will serve to
define smeared Weyl operators.

Physical meaning of the first condition has been explained before. The next two conditions are
of technical nature. The second one will guarantee the boundedness of the fermionic operators.
The third implies that forV1 ,V2PS ateøS at2eøRad the symplectic form$V1(v),V2(u)%, and
phase factors containing it linearly in exponent, areC` functions in both variables, bounded
polynomially in each of them. These properties make them multipliers in the space of Schwartz
functions onH3n. Finally, the fourth condition says that a free field may be added to the cloud of
the particle.

After these preliminaries our algebra may be constructed. We introduce formal symbolsW(V)
for VPL, WV for VPRad, BV

0 for VPS at2e , and B̄V for VPS ate . The symbol to which a
given V is attached determines the class to which it belongs, so there is no need for special
notation ofVs for each case separately. LetD be any finite sequence of these four symbols andx
a Schwartz function having one four-velocity argument for each of the symbolsWV , BV

0, andB̄V ,
and one index taking the valuesa51,...,4, for each of the symbolsBV

0 andB̄V . If the sequenceD

109Andrzej Herdegen: Asymptotic algebra for charged particles

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



containsn symbolsWV , BV
0 and B̄V , andm symbolsBV

0 and B̄V , thenx P S (Hn,C4m). We
introduce a new symbol [D] ~x!, linear by assumption inx. For a symbol consisting of only one of
the operatorsWV , BV

0, or B̄V , the symbolic notation is introduced

WV~x!5E WV~v !x~v !dm~v !, ~4.2!

BV
0~ f !5E BV

0~v !g•v f ~v !dm~v !, ~4.3!

B̄V~ f !5E B̄V~v !g•v f ~v !dm~v !, ~4.4!

@cf. ~3.5! and ~3.6!# and extended by linearity to general symbols [D] ~x!. The set of all formal
finite sums of these symbols forms a vector space. We divide this space by its subspace generated
by the following identifications@GV(v) is any of the symbolsWV(v), BV

0(v), or B̄V(v)#:

e~ i /2!$V1 ,V2%W~V1!W~V2!5W~V11V2!, ~4.5!

e~ i /2!$V1 ,V2~v !%W~V1!GV2
~v !5GV11V2

~v !, ~4.6!

e~ i /2!$V2~v !,V1%GV2
~v !W~V1!5GV11V2

~v !, ~4.7!

e~ i /2!$V1~v !,V2~u!%WV1
~v !GV2

~u!2e~ i /2!$V2~u!,V1~v !%GV2
~u!WV1

~v !50, ~4.8!

e~ i /2!$V1~v !,V2~u!%BV1
] ~v !aBV2

] ~u!b1e~ i /2!$V2~u!,V1~v !%BV2
] ~u!bBV1

] ~v !a50, ~4.9!

e~ i /2!$V1~v !,V2~u!%BV1
0 ~v !aB̄V2

~u!b1e~ i /2!$V2~u!,V1~v !%B̄V2
~u!bBV1

0 ~v !a

5d~v,u!~C21g•v !abWV11V2
~v !; ~4.10!

if V(v)5V05const(v) on the support ofx~...,v,...! in v, the variable connected withWV(v), then

@•••WV•••#~x!5@•••W~V0!•••#S E x~ ...,v,...!dm~v ! D . ~4.11!

In Eq. ~4.9! ]50 or the bar sign, the same at bothBs. The phase factors appearing in~4.5!–~4.10!
are to be understood to multiply test functionsx in the symbols [D] ~x!. The last relation says that
constant smeared Weyl operators are identical with the standard ones.

The elements of the factor space thus obtained will be again denoted by( i51
N [Di ](x i) without

a risk of confusion. This vector space becomes a*-algebraB with the multiplication and invo-
lution laws defined by

@D1#~x1!@D2#~x2!5@D1D2#~x1^ x2!, ~4.12!

@D#~x!*5@D* #~xc!, ~4.13!

and the unit15W~0!. D1D2 is the sequence of symbols formed of the two sequencesD1 andD2,
D2 following D1. xc results fromx by the application of the sequence of three operations:
complex conjugation, reflection of the order of the variables and indices, and the matrix multipli-
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cation byCg0T52g0C applied to each of the indices@cf. ~3.7!#. The sequenceD* results from
D by reflection of its order and subsequent replacements:W(V)→W(2V), WV→W2V ,
BV
0→B̄2V , B̄V→B2V

0 .
In the last step we consider now the problem of introducing aC* -norm on the*-algebraB.

LetR be the class of allC* -seminormsp onB such that
~i! p([D](x)) is continuous inx in the topology ofS for eachD;
~ii !

p„WV~x!…<ixiL1~H,dm! . ~4.14!

A comment on each of the conditions is in place. The second one is a necessary condition for the
admitted representations of the smeared Weyl operatorsWV~x! to be indeed given by integrals of
unitary operators with the test functionx. To see the meaning of the first condition let us compare
our present context with that of the standard algebra of the Dirac field. In the latter case one has
in the algebra the elements@B]1•••B]n#( f 1 ^ ••• ^ f n): 5 B]1( f 1)•••B]n( f n), ~]i50 or the bar
sign!, wheref iPS ~H,C4!,K . These elements are norm continuous in each of the functionsf i in
theS -topology, so by the nuclear theorem for Schwartz functions one obtains in the algebra the
unique linear extension@B]1•••B]n#(x) to the whole ofS (Hn,C4n), norm continuous inx in the
topology ofS . Their analogs in our algebra are symbols [D] ~x!. However, we had to define them
from the beginning for the whole spaceS to be able to formulate the algebraic conditions.
Condition ~i! will guarantee that also here they will be continuous extensions of products of the
basic objects.

Proposition 4.1:The classR contains the maximal elementpmax. A C* -seminormp onB is
in R iff p<pmax.

The second statement is obviously true, if the first is proved. The proof is preceded by two
lemmas.

Lemma 4.2:For any C* -seminormpÞ0 on B there is p„W(V)…51 for all VPL, and
p„BV1

0 ( f )…5 p„B̄V2
( f )…5i f iK for all V1PS at2e ,V2PS ate , andfPS .

Proof: The first statement is the consequence of the Weyl relations. The proof of the second
one is a slightly more involved version of the analogous proof for theC* -norm on the Dirac field
algebra. Let$V(v),V(u)%5F(v)2F(u). Then~4.9! for V15V25V takes the form

eiF ~v !BV
0~v !aBV

0~u!b1eiF ~u!BV
0~u!bBV

0~v !a50.

For x5f ^g this yields BV
0(eiF f )BV

0(g)1BV
0(eiFg)BV

0( f )50, and for g5 f , in particular,
BV
0(eiF f )BV

0( f )50. In the same way one obtains from~4.10!

BV
0~ f !B̄2V~g!1B̄2V~e2 iFg!BV

0~eiF f !5~ f c,g!. ~4.15!

The last two equations imply

BV
0~ f !BV

0~g!*BV
0~ f !5~g, f !BV

0~ f !. ~4.16!

Multiplying this equation on the left byBV
0( f )* and setting g5 f one obtains easily

p„BV
0( f )…5if iK or 0. Assume that there isV andgÞ0 such thatp„BV

0(g)…50. Then from~4.16!
there isu(g, f )up„BV

0( f )…50 for all f , hencep„BV
0( f )…50 for all suchf that (g, f )Þ0. Eachf

may be represented asf5 f 11 f 2 with (g, f i)Þ0, so p„BV
0( f )…50 for all f , which contradicts

~4.15! and ends the proof of the lemma. h

Let x P S (Hn,C4m),m<n. There always exists a representationx5( i51
` f i

1
^ ••• ^ f i

n, where
for a givenk all f i

k are either inS ~H,C! or in S ~H,C4! and the sum converges in the topology of
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S ~e.g., theN-representation22!. There are various orders of spacesS ~H,C! andS ~H,C4! in this
representation possible. Denote a fixed order by[ and the above representation with this order by
x5( i51

` f i
1

^ [••• ^ [ f i
n. Let

d[~x!:5 inf
x5( i51

` f i
1

^ [••• ^ [ f i
n
(
i51

`

i f i
1i ••••i f i

ni • , ~4.17!

wherei f i • 5i f iL1(H,dm) if fPS ~H,C! andi f i •5i f iK if fPS ~H,C4!.
Lemma 4.3: d[ are norms onS (Hn,C4m), continuous in the topology ofS .
Proof:We show first thatd[ is bounded by one of the seminorms defining the topology ofS .

We assume for simplicity thatxPS ~H2,C4! and we are interested in the normd[ for the order of
spaces„S ~H,C!,S ~H,C4!…. The general case differs only by more involved notation. Choose a
Minkowski frame and denotexa8 (v,u)5v0(u0)21/2(b51

4 S21(u)abxb(v,u), where the matrix
S21(u)5„2~u011!…21/2~11g0g•u! induces the transformationf̄g•ug5„S21(u) f …†„S21(u)g…
~the dagger denoting the matrix Hermitian conjugation!. Considerx8 as a function of variables
vW and uW and expand it in theN-representation:xa8 (v,u) 5 ( i51

` f i(vW )gia(uW ), where fs
and gs are multiples of products of the Hermite functions. The sum converges inS

and ( i51
` i f i iL1(R3,d3v)((a51

4 igiaiL2(R3,d3v)) is bounded by one of the fundamental semi-
norms of x8, which in turn may be bounded by one of the seminorms ofx. Now it suffices
to observe that (i51

` (v0)21f i(vW )(u
0)1/2„S(u)gi(uW )…a converges to x in S and

( i51
` i(v0)21f i(vW )iL1(H,dm)i(u0)1/2„S(u)gi(uW )…iK , const(i51

` ifiiL1(R3,d3v)((a51
4 igiaiL2(R3,d3v))

to getd[~x!,r~x!, wherer is one of the fundamental seminorms. The properties of a seminorm
are easily checked ford[ . Thatd[~x!50 impliesx50 is again illustrated in our special case. Let
x5(i51

` f i ^gi , f iPS ~H,C!, giPS ~H,C4!, and also choose anyh1PS ~H,C! andh2PS ~H,C4!.
Then

U E h1~v !h2~u!g•ux~v,u!dm~v !dm~u!U<sup
v

uh1~v !u(
i51

`

i f i iL1igi iK .

Hence, ifd[~x!50, then the lhs vanishes for allh1 andh2 andx50. h

Proof of Proposition 4.1:Let [(D) be the order of spacesS ~H,C! andS ~H,C4! correspond-
ing to the order of symbolsWV andBV

], respectively, in the sequenceD. Then by the assumption
~4.14! and Lemma 4.2 one has for anypPR

p„@D#~ f 1^ [~D !••• ^ [~D ! f
n!…<i f 1i ••••i f ni • .

If x5( i51
` f i

1
^ [(D)••• ^ [(D) f i

n, then by the assumed continuityp([D](x))<( i51
` i f i

1i ••••i f i
ni •.

Hence for any element ofB one has

pS (
k51

N

@Dk#~xk!D<(
k51

N

d[~Dk!~x!.

We define the seminormpmax onB by

pmax~A!5 sup
pPR

p~A!.

There ispmax([D](x))<d[(D)(x), sopmaxPR. h

The answer to the question whetherpmax is a norm onB is not known yet. If it is not, one
dividesB through the idealI of those elements for whichpmax vanishes. The seminormpmax
induces then aC* -norm i.i onB/I in the standard way. The completion ofB/I in this norm is
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a C* -algebra~F ,i.i!. We propose to regard this algebra as the base of a theory of asymptotic
fields. With regard to the interpretation of electromagnetic ingredients of the algebra, one should
have in mind the remarks made at the end of Sec. III.

It is easy to see that representations of the algebra~F ,i•i! are in natural 1:1 correspondence
with those representationsp of B for which p~.!5ip~.!iPR.

In the asymptotic algebra of fields there is no place more for the local gauge transformations.
The only gauge-dependent quantity in the electromagnetic test fields is the additive constant in
F( l ). This freedom is closely connected with the global gauge transformation of the charge
carrying fields, which is implemented in the algebra itself. LetW(V)5W(0,c), c5const,~i.e.,
V5pure gauge,F5c!, and setgc(A)5W(0,c)AW(0,c)* . Then gc(A)5A for A5W(V) or
WV~x!, andgc„BV

0( f )…5e2 iceBV
0( f ), gc„B̄V( f )…5e1 iceB̄V( f ). AlgebraB is the linear span of

its subspacesBk , kPZ, wheregc5eicke id onBk . The subspaceB0 is a *-subalgebra ofB. If
IÞ0, then it is easily seen thatI is the linear span ofI k :5BkùI . The decomposition is
therefore inherited byF , andF 0 is a C* -algebra, which may be interpreted as the algebra of
observablesA[F 0.

The algebraic relations ofB have been obtained by treatingBV
](v) heuristically as products of

B](v) and Weyl operators for charged fieldsW„V(v)…. In Sec. V we shall see that this heuristic
idea may be also used to obtain a class of representations ofB ~andF !.

V. A CLASS OF REPRESENTATIONS

Let W0(V) be a representation in a Hilbert spaceH1 of the Weyl algebra over the test
function spaceL̂ with the symplectic form~3.2!. We assume that for anyV~.!PS ate it satisfies the
following conditions:

~i! for everywPH1 the vectorsW0„V(v)…w, vPH, span a separable subspace;
~ii ! for everyw, cPH1, the function~w,W0„V(v)…c! is measurable inv.

~The class of representations satisfying the conditions is nonempty—this may be shown by an
explicit construction making use of the usual Fock representation and one of representations
discussed in Ref. 21.! It follows that ~w,W0„V1(v1)…...W0„Vn(vn)…c! is also measurable. For
ViPS ateøS at2eøRad, i51,...,n, xPL1(Hn,dmn), we denote

@W0V1
•••W0Vn

#~x!5E W0„V1~v1!…•••W0„Vn~vn!…x~v1 ,...,vn!dm~v1!•••dm~vn!,

the integral in the weak sense. The Weyl algebra relations imply

@W0V1
W0V2

#~x!5@W0V2
W0V1

#~x8!, ~5.1!

wherex8(u,v) 5 e2 i $V1(v),V2(u)%x(v,u). If, in particular,$V1(v),V2(u)%5F12(v)2F12(u), then

W0V1
~x1!W0V2

~x2!5W0V2
~eiF12x2!W0V1

~e2 iF12x1!. ~5.2!

Let furtherB( f ) @andB]( f )# be a concrete realization~representation! of the Dirac field
algebra in a Hilbert spaceH2. We would like to defineBV

0(v) as a product ofW0„V(v)… and
B0(v), that is, to give sense to the expression

BV
0~ f !5E W0„V~v !…^B0~v !g•v f ~v !dm~v !

for fPS ~H,C4!. @When constructing the representation we shall use the simplified notation
BV
0( f ) instead of the more appropriatep„BV

0( f )…, etc., which may be restored at the end of
construction.# Let $ei% be an orthonormal basis of the Hilbert spaceK . If we ‘‘expand’’ B0(v) in
this basis, we are led to the following formulation. Consider a family of bounded operators on
K 1^K 2
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BV
0~ f !n :5(

i51

n

W0V~eiG f ! ^B0~ei !,

where (G f )(v)5g•v f (v).
Proposition 5.1.The sequence of operatorsBV

0( f )n converges*-strongly to a bounded op-
eratorBV

0( f ), with iBV
0( f )i<i f iK .

Proof: Let $V(v),V(u)%5F(v)2F(u). From the Dirac field anticommutation relations and
~5.2! we obtain

„BV
0~ f !n2BV

0~ f !m…* „BV
0~ f !n2BV

0~ f !m…1„BV
0~e2 iF f !n2BV

0~e2 iF f !m…

„BV
0~e2 iF f !n2BV

0~e2 iF f !m…*5S (
i5m11

n

wi*wi D ^1,

wherewi 5 W0V(eiG f ). For any vectorcPH1^H2, there is then

i„BV
0~ f !n2BV

0~ f !m…ci21i„BV
0~e2 iF f !n*2BV

0~e2 iF f !m* …ci25pcS (
i5m11

n

wi*wi D , ~5.3!

wherepc(A):5~c,A^1c! agrees for positiveA with one of the seminorms defining thes-weak
topology on the space of bounded operators onH1. We shall show below that

(
i51

`

wi*wi5i f i21, ~5.4!

and that the series convergess-strongly. HenceBV
0( f )n andBV

0(e2 iF f )n* converge strongly to
bounded operators for allf , which implies the*-strong convergence ofBV

0( f )n for all f . Putting
m50 in ~5.3! and taking the limit inn we obtain the bound of the norm. To prove~5.4! observe
first that for any x, yPH1 we have (y,wix)5*(y,W0„V(v)…x)ei(v)g•v f (v)dm(v)
5(ei ,(y,W0„V(.)…x) f )K , so that

(
i51

`

u~y,wix!u25i~y,W0„V~ .!…x! f iK
2 .

For fixedx let $wj % be an orthonormal basis of the subspace ofH1 spanned byW0„V(v)…x, vPH.
Then

(
i51

`

~x,wi*wix!5 (
i , j51

`

u~w j ,wix!u25(
j51

` E u~w j ,W0„V~v !…x!u2f ~v !g•v f ~v !dm~v !5i f iK
2 ixi2,

the last equality by the Lebesgue theorem. As( i51
n wi*wi is an increasing sequence of positive

operators, the above calculation shows that~5.4! holds in thes-strong sense~e.g., Ref. 23, Lemma
2.4.19!. h

The building blocks of the representation acting onK 1^K 2 are now defined by

W~V!5W0~V! ^1, VPL, ~5.5!

WV~x!5W0V~x! ^1, VPRad, xPS ~H,C!, ~5.6!

114 Andrzej Herdegen: Asymptotic algebra for charged particles

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



BV
]~ f !5(

i51

`

W0V~eiG f ! ^B]~ei !, VPS ateøS at2e , fPS ~H,C4!. ~5.7!

The definition ofBV
] is independent of the choice of the basis$ei%, as it is easily shown that

~x1^ y1 ,BV
]~ f !x2^ y2!5~y1 ,B

]
„~x1 ,W0„V~ .!…x2! f …y2!. ~5.8!

If D is any sequence of the symbolsW(V),WV , andBV
], and (f 1,...,f n) form a sequence of type

[(D), then we define [D]( f 1^ ••• ^ f n) as the product of the ‘‘building blocks.’’ In view of Prop.
5.1 and of the obvious boundiWV(x)i <i xiL1, this element is norm continuous in each off ’s in
the topology ofS . By the nuclear theorem it extends then to the function [D] ~x! norm continuous
in x in the S -topology. The conditions~4.12! and ~4.13! are satisfied, and the operator norm
fulfills the defining conditions of the classR. To complete the proof that we have thus obtained a
representation of the algebraF it remains to show that the relations~4.5!–~4.11! are satisfied.

The conditions~4.5! and ~4.11! are obviously satisfied. It is sufficient to check the other
relations for elements [D] ~x! with Ds being sequences of two symbols. The relations~4.6! and
~4.7! are then quite obvious as well. Equation~4.8! for GV5WV follows from ~5.1!. ForGV5BV

]

it is easy to show that

~x1^ y1 ,@WV1
BV2

] #~x!x2^ y2!5S y1 ,B]S E ~x1 ,W0„V1~v !…W0„V2~ .!…x2!x~v,.!dm~v ! D y2D ,
and similarly in the opposite order of symbols, which implies~4.8!.

To prove ~4.9! and ~4.10! we have to make a digression on the extension of products
B]1( f )B]2(g) in the algebra of the Dirac field. We have mentioned such an extension to the space
of Schwartz functions, but now we need a wider family.

LetK^K be the tensor product Hilbert space. This space consists of measurable functions
xab(v,u), for which

(
a,a8
b,b8

E xab* ~v,u!~g0g•u!aa8~g0g•u!bb8xa8b8~v,u!dm~v !dm~u!,`.

Let, further,K^1K be the subspace ofK^K consisting of thosexPK^K for which

ixi1 :5 inf
x5( i51

` f i ^gi

(
k51

`

i f kiigki,`.

i.i1 is a norm onK^1K , ixi,ixi1 for xPK^1K , and~K^1K ,i.i1! is a Banach space. These
statements follow most simply from the following two observations.

~i! ~K^K ,i.i! is isomorphic with the space of Hilbert–Schmidt operators onK by the map
x→O x , where forx5( i51

` f i ^gi the operatorO x is defined by

O xh5(
i51

`

~hc, f i !gi . ~5.9!

~ii ! Under the same map~K^1K ,i.i1! is isomorphic with the Banach space of trace class
operators onK .24 Thus, if xn→x in K^1K , thenxn→x in K^K .

Extension of the product of fundamental elements in the Dirac field algebra is now easily
achieved. Forx5( i51

n f i ^gi , f i , giPK , we set@B]1B]2#(x) 5 ( i51
n B]1( f i)B

]2(gi). This de-
fines a linear map of the algebraic productK^algK ~densely contained inK^1K ! into the
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algebra, with the norm boundi@B]1B]2#(x)i <ixi 1. Hence the map extends to the whole
K^1K , with the conservation of the bound. ForxPS this reduces to the extension mentioned
previously.

The anticommutation relations may be now extended fromK^algK to the wholeK^1K ,
which gives

@B]B]#~x1xT!50, ~5.10!

@B0B̄#~x!1@B̄B0#~xT!5Tr O x1, ~5.11!

wherexT
ab(v,u)5xba(u,v), and TrO x is the trace of the operator~5.9!, Tr O x5(i51

` ( f i
c ,gi) for

x5( i51
` f i ^gi .
After these preparations we take up the proof of the relations~4.9! and~4.10!. Forx1 ,x2PH1

let wj be an orthonormal basis of the linear span of vectorsW0„V1(v)…*x1 andW0„V1(v)…x2,
vPH. Let, further, cl be an orthonormal basis~not necessarily countable! of H2, and
f ,gPS ~H,C4!. ExpandingBV2

]2(g)x2^ y2 in the basiswj ^cl and using~5.8! one finds

~x1^ y1 ,BV1

]1~ f !BV2

]2~g!x2^ y2!

5(
i51

`

~y1 ,@B
]1B]2#„~x1 ,W0„V1~ .!…w i ! f ^ ~w i ,W0~V2~ .!!x2!g…y2!.

We have

(
i51

`

i~x1 ,W0„V1~ .!…w i ! f iK i~w i ,W0„V2~ .!…x2!giK

<S (
i51

`

i~W0„V1~ .!…* x1 ,w i ! f iK
2 D 1/2S (

i51

`

i~w i ,W0„V2~ .!…x2!giK
2 D 1/2

5ix1iix2ii f iK igiK ,

the last equality by the Lebesgue theorem. Hence, the series

(
i51

`

~x1 ,W0„V1~ .!…w i ! f ^ ~w i ,W0„V2~ .!…x2!g ~5.12!

converges both inK^1K andK^K , to the same element. The limit inK^K is easily found
as the point limit of functions, which yields~x1 ,W0„V1(v)…W0„V2(u)…x2!f (v)g(u). Thus we have
proved that ifxPK^algK , then

~x1 ,W0„V1~ .!…W0„V2~ .!…x2!xPK^ 1K ,
~5.13!

i~x1 ,W0„V1~ .!…W0„V2~ .!…x2!xi1<ix1iix2iixi1 ,

and forxPS ~H,C4!^algS ~H,C4!,K^algK

~x1^ y1 ,@BV1

]1BV2

]2#~x!x2^ y2!5~y1 ,@B
]1B]2#„~x1 ,W0„V1~ .!…W0„V2~ .!…x2!x…y2!. ~5.14!

By continuity ~5.13! remains true forxPK^1K , and ~5.14! for xPS (H2,C42),K^ 1K .
Denotexab8 (v,u) 5 e( i /2)$V1(v),V2(u)%xab(v,u) andxab9 (v,u) 5 e( i /2)$V2(u),V1(v)%xab

T (v,u). Using
the Weyl relations forW0 one obtains from~5.14!
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~x1^ y1 ,„@BV1

]1BV2

]2#~x8!1@BV2

]2BV1

]1#~x9!…x2^ y2!5~y1 ,„@B
]1B]2#~C!1@B]2B]1#~CT!…y2!,

where Cab(v,u)5~x1 ,W0„V1(v)1V2(u)…x2!xab(v,u). The relation ~4.9! follows now from
~5.10!. The proof of~4.10! will be complete by~5.11! and the definition~5.6! if we show that

Tr OC5E ~x1 ,W0„V1~v !1V2~v !…x2!(
a,b

~C21g•v !abxab~v,v !dm~v !.

The rhs may be written as

E ~x1 ,W0„V1~v !…W0„V2~v !…x2!(
a,b

~C21g•v !abxab8 ~v,v !dm~v !.

This formula defines a distribution onx8PS , so it is sufficient to takex85f ^g, f , gPS ~H,C4!.
ThenC is given by~5.12! and

Tr OC5(
i51

`

„~x1 ,W0„V1~ .!…w i ! f
c,~w i ,W0„V2~ .!…x2!g…

5(
i51

` E ~x1 ,W0„V1~ .!…w i !~w i ,W0„V2~ .!…x2! f
c~v !g•vg~v !dm~v !,

which yields the desired relation by the Lebesgue theorem. This ends the proof of the conditions
of our algebra.

VI. DISCUSSION AND OUTLOOK

We have shown how heuristic quantization of the asymptotic structure of classical field elec-
trodynamics leads to the construction of an asymptotic algebra of fields, whose states may be
expected to describe the structure of collision states in quantum electrodynamics, including the
charged states. This algebra is aC* -algebra, so there is no need for the indefinite metric formal-
ism. The charged fields are accompanied by Coulomb fields, which solves the problem of Gauss’
law in charged states. The construction depends on the choice of a class of ‘‘satellite’’ fields. This
choice was left open to some extent. It corresponds to selecting various ‘‘clouds’’ of free radiation
field accompanying the particle in addition to the Coulomb field. Three classes of satellite fields
satisfying the defining conditions~i!–~iv! in Sec. IV are worth mentioning:

~a! the class of all fields satisfying the conditions~i!–~iv!;
~b! the subclass consisting of fields of the formVa(v;s,l )5Vea(v,l )1V0a(s,l ), where

Vea(v,l ), defined in~i!, corresponds to the Coulomb field, andV0aPL;
~c! the subclass of fields for whichVa(v;2`,l ) does not depend onv.

The first choice is the most general one within the limits of our construction. The second possi-
bility is the simplest one. In that case the smeared Weyl elements reduce to the~simple! Weyl
elements, as the spaceRad is then naturally isomorphic withL. We mention as an aside that an
explicit faithful representation of the corresponding algebra can be constructed. The choice (c) has
a clear physical interpretation: the long-range tail of the cloud accompanying the particle is chosen
to compensate the velocity dependence of the tail of the Coulomb field. The total satellite field has
then a velocity independent flux at spatial infinity.

The last possibility seems to be the one closest to the picture emerging from the analysis of
superselection sectors structure in the algebraic framework of local observables. However, we
leave the problem of specifying the physically justified choice of satellite fields open at present.

117Andrzej Herdegen: Asymptotic algebra for charged particles

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The solution of this problem may depend on the answer to the important question of whether
our algebra may be obtained by some limiting procedure from the field algebra of the full theory.
This seems a difficult problem, but the classical theory gives hints, how such a limiting process
could look like. The quantum version of the null infinity limit of the electromagnetic field may be
thought of as an LSZ-type limit in lightlike directions, which brings in mind the construction of
Buchholz.3 For the matter field one would have to choose a gauge in a class supplying a quantum
analog of the class mentioned in Sec. II. An LSZ-type limit on the hyperboloidx25l2, x0.0, with
l→` may then be expected to exist.

Important as the latter problem may be, the asymptotic algebra also deserves further investi-
gations on its own. The following physically interesting problems may be posed within this
framework.

~i! How can the local observables be characterized and what is their relation to the nonlocal
ones? That the latter observables are present may be read off from the properties of the
symplectic form.

~ii ! The Poincare´ group acts naturally on the algebra as a group of automorphisms. Do there
exist irreducible Poincare´-covariant representations of the algebra? If so, which superselec-
tion structure of the algebra of local observables is implied?~We recall that in charged
superselection sectors the Lorentz group has to be spontaneously broken.!

~iii ! What is the measure class of the spectrum of energy-momentum in translation-covariant,
positive energy representations~infraparticle problem!?

Finally, let us mention for completeness that the construction given in this paper may be
reflected in time, yielding the asymptotic ‘‘in’’-algebra. If these two algebras fit into the interacting
theory, the scattering problem may be considered. One may hope, for instance, that the perturba-
tion calculus in a suitable gauge, starting from the quasi-free theory supplied by our algebra,
should be infrared-regular.
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APPENDIX: EQUIVALENCE OF SPINOR AND TENSOR FORMULAS

We prove here the equivalence of tensor and spinor versions of those formulas which appear
in Sec. II, but were given only in the spinor form in Ref. 16.

For l a5oAoA8 in the notation of Ref. 16, ]A5]/]oA and ]a5]/] l a, one has
]Aa( l )5oA8]AA8a( l ), hence

~ l a]b2 l b]a!a~ l !52~eA8B8o~A]B)1eABo~A8]B8)!a~ l !, ~A1!

and the integral identity~2.10! is then equivalent to~A8! of Ref. 16.
The electromagnetic field tensor and spinor are connected byFab5eA8B8wAB1eABw̄A8B8,

hence the field%AA8(x) 5 wAB(x)xA8
B @~2.28! in Ref. 16# is equivalently expressed as

%a(x)5xb2Fba(x), where 2Fba is the anti-selfdual part ofFba . Its null asymptotic

limR→` R%a(x1Rl)5Na(x• l ,l ) is given byNa(s,l )5]A8zA(s,l ), where zA(s,l ) 5 oA8VA
A8 ,

Va(s,l ) defined in~2.1! @see Ref. 16, Eq.~2.44!#. We have

]A8zA52Va1oB8]A8VA
B852Va2

1
2eB8A8o

C8]C8VA
B81o~B8]A8)VA

B8 .
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In view of homogeneity~2.2! and using~A1! this may be written as

Na~s,l !5 1
2„sV̇a~s,l !2Va~s,l !…1

1~ l a]b2 l b]a!V
b~s,l !,

where1( l a]b2 l b]a) is the selfdual part ofl a]b2 l b]a . It was shown in Ref. 16~and may be also
shown without use of spinors! that from ~2.2! and ~2.3! now follows that the limit values
Na(6`,l ) are proportional tol a , that is,

2 1
2Va~1`,l !11~ l a]b2 l b]a!V

b~1`,l !52 l aq~ l !,

2 1
2Va~2`,l !11~ l a]b2 l b]a!V

b~2`,l !52 l ak~ l !,

which corresponds with the equations~2.54! and~2.56! of Ref. 16~there we useds5k2q instead
of k!. The conditions of reality ofq andk @~3.32! in Ref. 16#, and the above equations in that case
are now equivalent to~2.5!, and~2.6! and ~2.7!, respectively.

It was shown in Ref. 16@Eq. ~2.64!# that

oA8Vout
A8A~2`,l !5]AF~ l ! ~A2!

for someF( l ) homogeneous of degree 0. In view of~A1! this is equivalent to~2.14!. The gauge
of Vout

a(2`,l ) ~2.17! is written with the use of~A1! as

Vout
a~2`,l !5]A„o

BgBA8~ l !…1]A8„o
B8gB8A~ l !….

As oBgBA8( l ) are in 1:1 correspondence withGab , the gauge has the form
Vout

a(2`,l )5]AhA8(o,ō)1]A8h̄A(o,ō), where hA8(ao,āō)5ā21hA8(o,ō), hA8(o,ō)o
A8

5F( l ), and in the statements~i!–~iii ! following ~2.17! the tensorGab may be replaced by
hA8(o,ō) satisfying these conditions. This representation satisfies~A2!, so ~i! is proved. We get a
special gauge choosing

hA8~o,ō!5
tA8Ao

A

t• l
F~ l !,

where t is any unit, positive timelike vector. Any other gauge differs byb( l ) l a ,b( l ) homoge-
neous of degree22. Let a( l )5b( l )2c(t• l )22, with such a constantc that *a( l )d2l50. There
exists then a homogeneous of degree 0 functionA( l ), such that]A]A8A( l )5

1
2oAoA8a( l ). A( l ) is

determined up to an additive constant. The new gauge is then determined by

hA8
8 ~o,ō!5

tA8Ao
A

t• l
„F~ l !1c…1]A8A~ l !.

With this formula the statements~ii ! and ~iii ! following ~2.17! are seen to be true.
Finally, the angular momentum termDMab ~2.22! is the tensor version of the angular mo-

mentum spinor term DmAB51/2p*qo(A]B)Fd2l , easily obtained from DMab

5eA8B8DmAB1eABDmA8B8 by the use of~A1!.
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14J. Fröhlich, G. Morchio, and F. Strocchi, Ann. Phys.~NY! 119, 241 ~1979!.
15D. Buchholz, M. Porrmann, and U. Stein, Phys. Lett. B267, 377 ~1991!.
16A. Herdegen, ‘‘Infrared problem, Higgs phenomenon and long range interactions,’’ J. Math. Phys.36, 4044~1995!.
17A. Staruszkiewicz, Ann. Phys.~NY! 190, 354 ~1989!; Acta Phys. Pol. B23, 591 ~1992!.
18M. Flato, J. C. H. Simon, and E. Taflin, Rev. Math. Phys.6, 1071~1994!; ‘‘Asymptotic completeness, global existence
and the infrared problem for the Maxwell–Dirac equations,’’ preprint, Paper No. 9502061 in hep-th electronic archive.

19B. D. Bramson, ‘‘Physics in cone space,’’ inAsymptotic Structure of Space-Time, edited by F. P. Esposito and L. Witten
~Plenum, New York, 1977!, pp. 273–359.

20A. Ashtekar,Asymptotic Quantization~Bibliopolis, Napoli, 1986!;
21A. Herdegen, Phys. Lett. B321, 205 ~1994!.
22M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. I.: Functional Analysis~Academic, New York,
1972!.

23O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics, Vol. I~Springer, New York,
1979!.

24R. Schatten,A Theory of Cross-Spaces, Annals of Mathematical Studies No. 26~Princeton U.P., Princeton, NJ, 1950!.

120 Andrzej Herdegen: Asymptotic algebra for charged particles

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



General properties between the canonical correlation
and the independent-oscillator model
on a partial * -algebra
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We consider a quantum particle in thermal equilibrium with any quantum system in
a finite volume under some conditions. For the Heisenberg operator of the momen-
tum operator of the quantum particle, we show that, on a partial* -algebra, the
Heisenberg operator satisfies a quantum Langevin equation, which is similar to the
work of Fordet al. @ G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. A37,
4419~1988!#. Through the Langevin equation, we show general and mathematical
properties between the canonical correlation and the independent-oscillator model.
© 1996 American Institute of Physics.@S0022-2488~96!02001-5#

I. INTRODUCTION

The independent-oscillator~IO! model is the model of the quantum particle surrounded by a
large number of independent heat bath particles, each attached to the quantum particle by a spring.
The Hamiltonian of the system is given by

H IO

def
5

p2

2m
1V~x!1(

j51

` F pj22mj
1
1

2
mjv j

2~qj2x!2G . ~1!

Here x and p are the coordinate and momentum operators of the quantum particle of massm,
while qj andpj are those of thej th heat bath particle of massmj . Of course, we have the usual
commutation relations:

@x, p#5 i\, @qj , pj 8#5 i\d j j 8. ~2!

Here,V(x) is the potential energy of the external force on the quantum particle. This model
appeared in the literature.1–5 Especially, Ford, Lewis, and O’Connell found the IO model to be
convenient since other heat bath models can generally be related to the IO model in Ref. 4. They
showed in Sec. IV of Ref. 4 that from the IO modelH IO we can derive the generalized quantum
Langevin equation:

d

dt
p~ t !1E

2`

t

ds m~ t2s!
p~s!

m
1V8~x!5F~ t !, ~3!

which is the momentum operator version of~2.1! in Ref. 4, where the prime denotes the derivative
with respect tox. Here,m~t! is the memory function given by

m~ t !5(
j51

`

mjv j
2 cos~v j t !u~ t !, ~4!

whereu(t) is the Heaviside step function, andF(t) is an operator-valued random force with mean
zero, and a mean force characterized by a memory functionm~t!. The symmetrized correlation
function ofF(t) is given by
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1

2
^F~ t !F~s!1F~s!F~ t !&B5

1

2(j51

`

\mjv j
3 coth~\v j /2kT!cos@v j~ t2s!#, ~5!

and the nonequal-time commutator ofF(t) is

@F~ t !, F~s!#52 i(
j51

`

\mjv j
3 sin@v j~ t2s!#. ~6!

Here, for operatorO, ^O&B means that̂O&
B

def
5
tr(Oe2HB /kT)/tr(e2HB /kT), where

HB

def
5 ( jF 1

2mj
pj
21

1

2
mjv j

2qj
2G ,

k is the Boltzmann constant, andT is absolute temperature. The Fourier–Laplace transform of the
memory function is given as

@m#~z!
def
5 E

0

`

dt eitzm~ t !5
i

2(j51

`

mjv j
2F 1

z2v j
1

1

z1v j
G ~7!

for every Imz.0.
Furthermore, Li, Ford, and O’Connell investigated the symmetrized correlation of the coor-

dinate operator and the quantum random force of the generalized quantum Langevin equation in
Ref. 5.

Ford, Lewis, and O’Connell showed that properties~5! and ~6! are characterization of the
operator-valued random forceF(t) by the memory functionm~t! ~see ~2.2!, ~2.3!, ~4.13!, and
~4.14! in Ref. 4!. And besides, in Sec. 3 in Ref. 1 Ford and Kac remarked that, in the generalized
quantum Langevin equation, the correlation and commutator for the operator-valued random force
must have the forms~5! and~6!. Then, in this paper, we prove general properties including~5! and
~6! between canonical correlation and the IO model on a partial* -algebra.6–8The partial* -algebra
which we treat in this paper is given by a completion of a set of quantum operators. The comple-
tion is done by the Bogoliubov scalar product which gives the canonical correlation. In order to
deal directly with bosonic operators which are unbounded, we choose the partial* -algebra, not
C* -algebra, for unbounded operators.

We consider a quantum particle in thermal equilibrium with any quantum system in a finite
volume under conditions~ A.1!–~ A.4! below. From now on, we set the Planck constant\51. Let
Hq,p,s be an arbitrary total Hamiltonian which governs our system of the quantum particle with the
quantum system such thate2bHq,p,s is a trace class operator~whereb[1/kT denotes the inverse
temperature!. Hq,p,s has the form ofHq,p,s5p2/2m1V(x)1Hq,s1Hint , whereHq,s denotes the
Hamiltonian of a quantum system surrounding the quantum particle with (x,p), andHint is the
interaction Hamiltonian between the quantum particle and the quantum system. Here, of course,
the form of Hq,s1H int is unknown now. The canonical correlation functionRp(t1 ,t2! for the
momentum operatorp is defined by

Rp~ t1 ,t2!
def
5

1

btr~e2bHq,p,s!
E
0

b

dl tr~e2~b2l!Hq,p,seiHq,p,st1pe2 iHq,p,st1e2lHq,p,seiHq,p,st2pe2 iHq,p,st2!.

In Secs. II and III, for anyp and Hq,p,s satisfying ~A.1!–~ A.4!, we prove that, on a partial
* -algebra Xc(Hq,p,s! which is called the Liouville space, the Heisenberg operator

p(t)
def
5
eiHq,p,stpe2 iHq,p,st satisfies a quantum Langevin equation with a quantum fluctuationI (t),
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which has the similar form to~3! @see~17! in the main theorem#. Here we note that we cannot
apply theories in Ref. 9 nor Ref. 10 to the momentum operator because of a condition~see Remark
3.2!. We show that the memory functionm~t! for the IO model characterizes a fluctuation–
dissipation relation in our Langevin equation and the canonical correlation functionRp(t1 ,t2! @see
~19! and~20! in the main theorem#, which means thatH int is characterized by@m#~z!. Furthermore
the symmetrized autocorrelation and nonequal-time commutator ofI (t) have the similar represen-
tation to~5! and~6!, which are implied by our fluctuation–dissipation relation@see~21! and~22!
in the main theorem#. They are general results forp andHq,p,s in mathematics, so they give
additional mathematical evidence that the IO model represents the system of the quantum particle
with the most general quantum system, which was indicated by Ford, Lewis, and O’Connell in
Ref. 4. It is a symmetry with respect to the canonical correlation that derives the close relations
between the canonical correlation and the distribution of the memory function of the IO model
~see Lemma 3.8 in this paper!.

As mentioned above, some properties of the IO model was studied in Refs. 1–5. Especially
Ford and Kac say on p.808 in Ref. 1: ‘‘since we have derived the quantum Langevin equation only
for very special oscillator models (i.e. the IO model), one might wonder to what extent we have
demonstrated the universality of the equation. The answer, of course, is that we have not. Rather,
the logic is reversed: if there is a universal description, then it must be of the form we have
obtained.’’ Ford, Lewis, and O’Connell showed in Ref. 4 that a number of other heat-bath models
within the framework of the general macroscopic description of the quantum Langevin equation
are reduced to the IO model by physically adequate reasons. In this paper, for the momentum
operator of our system we shall derive a quantum Langevin equation by the general theory by
Mori,11,12and show general properties between canonical correlation and the IO model. The author
thinks that this argument is valid over not only the momentum operator of our system but also
observables which are realized as self-adjoint operators in some class, which gives a physical and
mathematical proof for Ford and Kac’s remark above.

In Sec. IV B, we give some examples of the HamiltonianHq,p,s and the momentum operator
p satisfying assumptions~ A.1!–~ A.4!.

II. THE STATEMENT OF THE MAIN THEOREM

In this section, in order to introduce canonical correlation functions defined by the Bogoliubov
scalar product, the Liouville space, and explain our main theorem, we set up a general framework.

We consider a quantum particle in thermal equilibrium with any quantum system in the finite
volume. So, we give a state space for our system by a separable infinite-dimensional Hilbert space,
which is denoted simply byF q,p,s . And we denote the inner product ofF q,p,s by ~ , !q,p,s .

Let x andp be the coordinate and momentum operators of the quantum particle of massm and
V(x) be the potential energy of the external force on the quantum particle.

For our system, there exists a HamiltonianHq,p,s whose form is given by
Hq,p,s5p2/2m1V(x)1Hq,s1H int , whereHq,s denotes the Hamiltonian of the quantum system
surrounding the quantum particle with (x,p), andH int is the interaction Hamiltonian between the
quantum particle and the quantum system. Here, of course, the form ofHq,s1H int is unknown
now. SoHq,p,s may be nonquadratic, but must be realized as a self-adjoint operator acting in the
Hilbert spaceF q,p,s . Since we are now considering the thermal equilibrium quantum system,
Hq,p,s is a self-adjoint operator acting inF q,p,s and we have the following assumption.

~ A.1! e2tHq,p,s is a trace class operator onF q,p,s for every tP~0,b#, whereb[1/kT is the
inverse temperature. This condition implies that the spectra ofHq,p,s are purely discrete and the
eigenvectors$wnunPN* % of Hq,p,s form a complete orthonormal system ofF q,p,s , whereN*
def
5 $0,1,•••%. We count the eigenvaluesln ~nPN* ! of Hq,p,s in such a way thatHq,p,swn5lnwn

and 0,l0<l1<•••<ln<ln11<•••↗`.
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For the HamiltonianHq,p,s , we can construct a Liouville spaceXc(Hq,p,s!, which is a set of
adequate quantum operators acting inF q,p,s .

9,13 We denote the linear hull of$wnunPN* % by

Dq,p,s , i.e., Dq,p,s

def
5
L.h.@$wnunPN* %#. From here on, we denote the linear hull of a setS by

L.h.@S#. ObviouslyDq,p,s is dense inF q,p,s . Further, we denote byB~Dq,p,s ,F q,p,s)the space of
bounded linear operators fromDq,p,s to F q,p,s . Every elementA in B~Dq,p,s ,F q,p,s! has a unique
extension to an element inB~F q,p,s!, the space of bounded linear operators onF q,p,s . We denote
the extension ofA by A2, andA* dDq,p,s by A

1, which means that the domain of operatorA* is
restricted toDq,p,s .

We first define a classT~Hq,p,s! of quantum operators, which is a set of quantum operatorsA
satisfying the following conditions:~ T.1! the domain of each operator is equal toDq,p,s , and the
domain of the adjoint operator of each operator includesDq,p,s @i.e., D~A!5Dq,p,s and
D~A* !.Dq,p,s , where D~B! denotes the domain of each operatorB#; ~ T.2! for all t in ~0,b#
operatorse2tHq,p,sA and Ae2tHq,p,s are in B~Dq,p,s ,F q,p,s), furthermore, (e

2tHq,p,sA)2 and
(Ae2tHq,p,s)2 are Hilbert–Schmidt operators onF q,p,s . We must now turn our attention to the
unboundedness of operators because it is known that limits on the precision of the measurement of
observables for bounded operators~e.g., fermion! and unbounded operators~e.g., boson! are
different.14–16For unbounded operators, the problem of their domains is delicate, so we provide
condition ~ T.1!. Condition ~ T.2! addresses convergency with respect to the Bogoliubov scalar
product.9,13,17We note here thatT~Hq,p,s! is a linear space. We can then introduce the Bogoliubov
~Kubo–Mori! scalar product̂ ; & as

^A;B&
def
5

1

bZ~b!
E
0

b

dl tr„~e2~b2l!Hq,p,sA* !2~e2lHq,p,sB!2
…, A,BPT~Hq,p,s!,

whereZ(b)
def
5
tr(e2bHq,p,s). It can be easily proven that^ ; & is an inner product ofT~Hq,p,s! ~see

Ref. 13!. The inner product introduces a norm:iAiHq,p,s

def
5^A;A&

1/2
. We can therefore obtain the

Liouville spaceXc(Hq,p,s! defined by a Hilbert space which is the completion ofT~Hq,p,s! with
respect to the normi iHq,p,s

. It is interesting to note thatXc(Hq,p,s! is a partial* -algebra with a
unit ~see Proposition 3.14 in Ref. 13!. The definition of partial* -algebras is given in Refs. 6–8.
We also note here that an element inXc(Hq,p,s! is not always an operator acting inF q,p,s . It is
noteworthy that Naudtset al. attempted to argue in general about linear response theory on the
Hilbert space which is constructed by a completion of a von Neumann algebra with KMS-state.18

Roughly speaking, the von Neumann algebra with the KMS-state can be regarded as a set of
quantum operators which can be taken as a statistical average with the KMS-condition, however
the operators are bounded. So, for our purpose we do use the partial* -algebra instead of the von
Neumann algebra because the operators we treat are unbounded. And we deal with Mori’s theory
on Xc(Hq,p,s!, which is just the partial* -algebra constructed by the completion concerning the
Bogoliubov scalar product.

In order to introduce the Heisenberg operatorp(t) of the momentum operator, we define here
the Liouville operatorLq,p,s determined by the HamiltonianHq,p,s .

We can define, for adequate operatorsA, the Liouville operator Lq,p,s by

Lq,p,sA
def
5

@Hq,p,s ,A#5Hq,p,sA2AHq,p,s ~see Lemma 3.8 in Ref. 13!. The domain D~Lq,p,s! of

the Liouville operatorLq,p,s then contains a dense subspaceDq,p,s of all elementsAPT~Hq,p,s!
satisfying that Hq,p,sA and AHq,p,sd Dq,p,s are in T~Hq,p,s!; furthermore,
Ax, A1x, Hq,p,sAx, Hq,p,s A1x, AHq,p,sx, andA

1Hq,p,s ,x are inDq,p,s for all x in Dq,p,s .
Actually, the subspaceDq,p,s is a core forLq,p,s @see~66! in Sec. IV B, Lemmas 3.7 and 3.8 in
Ref. 13#.
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For everyAPXc(Hq,p,s!, we denote the Heisenberg operator ofA by A(t) in the Liouville
spaceXc(Hq,p,s!, i.e.,

A~ t !
def
5
eiLq,p,stA.

And we define the canonical autocorrelation function ofA by

RA~ t !
def
5
RA~0,t ![^A~0!;A~ t !&.

Remark 2.1:The time evolutionA(t) coincides with the Heisenberg pictureeiHq,p,stAe2 iHq,p,st for
every quantum operatorA in Dq,p,s and tPR ~see Proposition 3.13 in Ref. 13!.

So, we denote the canonical autocorrelation function of the momentum operatorp by Rp(t).
We define here a function@Rp](z) ~zPC with Im z.0! by the Fourier–Laplace transform as

@Rp#~z!
def
5 E

0

`

dt eitzRp~ t !.

Here, we have the properties concerning poles of [Rp](z):
The spectra ofLq,p,s is given by the closure of the set of alllm2ln’s:

s~Lq,p,s!5$lm2lnum,nPN* % closure, ~8!

which is proved in Lemma 3.1 in the following section.
There exist non-negative constantsAm,n ~m,nPN* ! such that

Rp~ t !5 (
m,nPN*

Am,ne
it ~lm2ln!, ~9!

whose proof is given by Lemma 3.2 in the following section.
We denote the set of all positive poles of [Rp] ~z! by P1

R , and the set of all negative poles of
[Rp](z) by P2

R . Then, by~9! and the following assumption, each poles of [Rp](z) agree with
differences of twoln’s.

~A.2! For P1
R5$«kuk50,1,•••%, infkPN* («k112«k).0. Moreover, for

P2
R5$hkuk50,1,•••%, infkPN* (hk2hk11).0.
We set the last two conditions: Because we consider a system governed by the Hamiltonian

Hq,p,s[p2/2m1V(x)1Hq,s1H int with ~ A.1!, the condition thatpPT~Hq,p,s) is natural assump-
tion.

~ A.3! pPT~Hq,s,p!. Furthermore,

(
k50

` S limz→«k

1

i
~z2«k!@Rp#~z! D «k

2,`,

and

(
k50

` S limz→hk

1

i
~z2hk!@Rp#~z! D ~2hk!

2,`.

~ A.4! limz→0;zPC1 z@Rp#(z)50, whereC1
def
5 $zP CuIm z.0%.
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Here we introduce the symmetrized autocorrelation functionSp(t) by using well-known re-
lation in Theorem 3 in Ref. 19. ForRA(t) „APXc(Hq,p,s!…, sinceRA(t) is continuous and positive-
definite, there exists a unique measureDA

can such that

RA~ t !5E
2`

`

eitvDA
can~dv!

according to Bochner’s theorem. Then, we define the symmetrized autocorrelation functionSA(t)
for APXc(Hq,p,s! by

SA~ t !
def
5 E

2`

`

eitvbEb~v!DA
can~dv!, ~10!

whereEb(v) is the average energy of the harmonic oscillator with the frequencyv at temperature
T51/kb,

Eb~v!5
\v

2
coth

b\v

2
. ~11!

~We note here that we set\51 in this paper.!
For APXc(Hq,p,s !, we define the response functionPA(t) by

PA~ t !
def
5

2b
d

dt
^A;A~ t !&. ~12!

We have another Liouville spaceXb~Hq,p,s! by completion ofT~Hq,p,s! by the following inner
product:20 For A,BPT~Hq,p,s!, we set

^AuB&
def
5
Z~b!21tr~$~Ae2bHq,p,s/2!2%* $~Be2bHq,p,s/2!2%!. ~13!

Then, we can define the Liouville operatorL q,p,s with certain dense domain inXb~Hq,p,s! ~see
Secs. II and III in Ref. 20! in the same way asLq,p,s. So we can get the Heisenberg operator
eiL

q,p,stA for APXb~Hq,p,s!, which denotes

A@ t#
def
5
eiL

q,p,stAPXb~Hq,p,s! ~14!

in order to distinguish it fromA(t)PXc(Hq,p,s!.
We denoteZ(b)21 tr ~Oe2bHq,p,s

) by ^O&. Then, of course, the well-known relation~see
Theorem 3 in Ref. 19! means the following proposition in our Liouville’s spaces: IfA is a
symmetric operator acting inF q,p,s with APXc(Hq,p,s! andAPXb~Hq,p,s!, then

SA~ t !5 1
2^AA@ t#1A@ t#A&. ~15!

We will prove this relation in Proposition 3.3 in the following section.
Furthermore, concerning the response function, of course a well-known fact in our version

holds: If A is a symmetric operator acting inF q,p,s with APXc(Hq,p,s! andAPXb~Hq,p,s!, then

PA~ t !52 i ^@A,A@ t##&, ~16!

where, of course,@A,A[ t]]5AA[ t]2A[ t]A.We will also prove this relation in Proposition 3.4 in
the following section.Now, we can state our main theorem.
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Theorem: Suppose that the total Hamiltonian Hq,p,sof the system of the quantum particle with
the quantum system, and the momentum operator p of the quantum particle, satisfy assumptions
~ A.1!, ~ A.2!, ~ A.3!, and ~ A.4!. Then the function@Rp#~z! can be extended to a meromorphic
function on the complex plane,and the set$v j% j51

` of all positive zero points of@Rp# is counted in
such a way that

v jP~« j21 ,« j !, with « j.0, jPN.

Give the mass mj of the particle of the quantum system by

mj5
2mRp~0!

v j
2i @Rp#8~v j !

, where@Rp#8~z![d@Rp#~z!/dz.

Let m(t) be the memory function of HIO with frequencyvj and mass mj above, i.e.,

m~ t !5(
j51

`

mjv j
2 cos~v j t !u~ t !.

Then, there exist a memory functionkt(t) and quantum fluctuation I(t) such that the Heisenberg
operator p(t)[eiLq,p,stp of the momentum operator satisfies the following quantum Langevin
equation:

d

dt
p~ t !1 lim

t↑t
E

2`

t

ds kt~ t2s!
p~s!

m
5I ~ t ! ~17!

on the Liouville spaceXc(Hq,p,s! with

lim
t→`

kt~ t !5m~ t !, t.0, ~18!

a fluctuation-dissipation relation:

Rp~0!

m
m~ t !5^I ~0!;I ~ t !&, t.0, ~19!

with

^p;I ~ t !&50, tPR,

and

@Rp#~z!5Rp~0!
1

2 iz1@m#~z!/m
, zPC\$v j% j51

` . ~20!

Furthermore, the fluctuation-dissipation relation~19! implies that the symmetrized autocorrelation
function SI(t) of I(t) is

SI~ t !5
1

2kT(j51

`

mjv j
3 cothS v j

2kTD cos~v j t !, ~21!

and response function PI(t) is
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PI~ t !5
Rp~0!

mkT(
j51

`

mjv j
3 sin~v j t !. ~22!

~We note here we set\51 now.!
Remark 2.2: I(t) may be decomposed into a summation ofV8~x! and a certain quantum force

F(t). However, information in the theorem is not enough to decomposeI (t) in such a way. As a
matter of fact, the fluctuationI (t) is Mori’s fluctuation on the Liouville spaceXc(Hq,p,s!, and then
m~t! agrees with Mori’s memory function multiplied by the massm for t>0 @see~42! and Lemma
3.10~c! in the following section#.

III. PROOFS OF THE RESULTS

A. Preliminaries

We first prove some properties concerning the poles of@Rp# ~z!.
The proof of~8! is given by the following lemma:
Lemma 3.1:The spectra ofLq,p,s is the closure of the set of alllm2ln’s:

s~Lq,p,s!5$lm2lnum,nPN* % closure.

Proof: Simple calculation implies that linear operatorsFm,n : Dq,p,s→Dq,p,s , m,nPN* de-
fined by

D~Fm,n!
def
5
Dq,p,s ,

Fm,nx
def
5

b1/2Z~b!1/2Wm,n
1/2 ~wn ,x!q,p,swm , xPDq,p,s ;m,nPN* ,

~23!

are eigenvectors ofLq,p,s ~see Proposition 3.9 in Ref. 9!, where

Wm,n

def
5 H ln2lm

e2blm2e2bln
if lmÞln ,

b21eblm if lm5ln .

The set of allFm,n’s is also a complete orthonormal system ofXc(Hq,p,s! such that

Lq,p,sFm,n5~lm2ln!Fm,n , m,nPN* , Fm,n
1 5Fn,m ,m,nPN* ~24!

~see Proposition 3.9 in Ref. 9!. It must be noted that

Wm,n.0, m,nPN* , Wm,n5Wn,m , m,nPN* . ~25!

The complete orthonormal system,$Fm,n ,um,nPN* %, gives a proof that the set of all spectra of
the Liouville operatorLq,p,s are equal to the closure of the set oflm2ln ~m,n P N* !. Q.E.D.

The proof of~9! is given as follows:
Lemma 3.2:There exist non-negative constantsAm,n ~m,nPN* ! such that

Rp~ t !5 (
m,nPN*

Am,ne
it ~lm2ln!.

Proof: By the proof of Lemma 3.1, we obtain
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Rp~ t !5^p;eiLq,p,stp&5 (
m,nPN*

u^Fm,n ;p&u2eit ~lm2ln!. ~26!

So taking

Am,n5u^Fm,n ;p&u2, ~27!

we get our lemma. Q.E.D.
The proofs of~15! and ~16! are given in the following Propositions 3.3 and 3.4.
Proposition 3.3: If A is a symmetric operator acting inF q,p,s with APXc(Hq,p,s! and

APXb~Hq,p,s!, then

SA~ t !5 1
2^AA@ t#1A@ t#A&5 1

2 $^AuA@ t#&1^A@ t#uA&%.

Proof: According to Sec. III in Ref. 20, we define operatorsCm,n : Dq,p,s→Dq,p,s by

D~Cm,n!
def
5
Dq,p,s ,

Cm,nx
def
5
Z~b!1/2ebln/2~wn ,x!q,p,swm , xPDq,p,s ;m,nPN* ,

~28!

which are eigenvectors ofL q,p,s ~see Proposition 3.9 in Ref. 20!. They make also a complete
orthonormal system ofXb~Hq,p,s) such that

L q,p,sCm,n5~lm2ln!Cm,n ,m,nPN* , Cm,n
1 5eb~ln2lm!/2Cn,m ,m,nPN* ~29!

~see Proposition 3.9 in Ref. 20!. Using expansions ofA andA[ t] by Cm,n’s, we have^AuA[ t] &
5^AA[ t] & and ^A[ t] uA&5^A[ t]A&, where we used the assumption thatA is symmetric.

Since 1
2$^AuA[ t] &1^A[ t] uA&% is continuous and positive-definite, there exists a unique mea-

sureDA
sym such that

1

2
$^AuA@ t#&1^A@ t#uA&%5E

2`

`

eitvDA
sym~dv!

according to Bochner’s theorem.
By using expansions

A~ t !5(
m,n

^Fm,n ;A&eit ~lm2ln!Fm,n in Xc~Hq,p,s!,

A@ t#5(
m,n

^Cm,nuA&eit ~lm2ln!Cm,n in Xb~Hq,p,s!,

we have

DA
can~dv!5(

m,n
u^Fm,n ;A&u2d~lm2ln!~dv!, ~30!

DA
sym~dv!5(

m,n
u^Cm,nuA&u2

1

2
~d~lm2ln!~dv!1d~ln2lm!~dv!!
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5(
m,n

u^Cm,nuA&u21u^Cn,muA&u2

2
d~lm2ln!~dv!. ~31!

We note here

^Fm,n ;A&5b21/2Z~b!21/2Wm,n
21/2~wm ,Awn!q,p,s ~32!

by ~27! in Ref. 9, and

^Cm,nuA&5Z~b!21/2e2bln/2~wm ,Awn!q,p,s

by ~46! in Ref. 20. So, we have

S u^Cm,nuA&u21u^Cn,muA&u2

2 D ~ u^Fm,n ;A&u2!21

5
bWm,n

2
~e2blm1e2bln!

5
b~lm2ln!

2

eb~lm2ln!11

eb~lm2ln!21

5
b~lm2ln!

2
cothS b~lm2ln!

2 D .
Therefore, we obtain

DA
sym~dv!5b

v

2
cothS bv

2 DDA
can~dv!. ~33!

Remember we set\51, and~33! implies our proposition. Q.E.D.
Proposition 3.4: If A is a symmetric operator acting inF q,p,s with APXc(Hq,p,s! and

APXb~Hq,p,s!, then

PA~ t !52 i ^@A,A@ t##&52 i $^AuA@ t#&2^A@ t#uA&%.

Proof: This proposition is proved in the same way as Proposition 3.3. Q.E.D.
By ~26!, it is clear that, for any«k and hk ~kPN* ! there existm1(k),n1(k)PN* ; and

m2(k),n2(k)PN* such that

«k52~lm1~k!2ln1~k!!, ~34!

hk52~lm2~k!2ln2~k!!, ~35!

and for the zero, 0, there existm0(k),n0(k)PN* such that

052~lm0~k!2ln0~k!!. ~36!

For every zPC with zÞ0 and z¹P6
R , there exists a pointcP$0%øP1

RøP2
R such that

uz2cu<uz2c8u for all c8P$0%øP1
RøP2

R by the assumption~ A.2!. So, we have

U E
0

`

dt e2 i tc8eitzU< 1

uz2cu
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if Im z.0. Thus, by applying Lebesgue’s dominated convergence theorem to~26!, we note that for
Im z.0

@Rp#~z!5 i(
k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

Am1~k!,n1~k!D 1

z2«k

1 i(
k50

` S (
m2~k!,n2~k!;

2ln2~k!52hklm2~k!

Am2~k!,n2~k!

1

z2hk

1 i(
k50

` S (
m0~k!,n0~k!;

lm0~k!2ln0~k!50

Am0~k!,n0~k!D 1

z
. ~37!

And, for z¹$0%øP1
RøP2

R ,

U ddzS 1

z2c8D U< 1

uz2cu2
.

Thus, by applying Weierstrass’ M-test to~37!, it is evident that [Rp](z) can be extended into a
meromorphic function on the complex plain with singularities only at points in$0%øP1

RøP2
R by

~A.3! and ~37!.
For instance, for any zPC with uz2«ku,min~«k2«k21,«k112«k!/2, inequalities

uz2«ku<uz2«k8u and uz2«ku<uz2hk8u ~k8PN* ! hold. So, we getu(z2«k)@Rp#(z)u<ipiHq,p,s

2

for thez above. Then, the following lemma is derived from~27! and~37! by Weierstrass’ M-test.
Lemma 3.5:For eachkPN* ,

limz→«k

1

i
~z2«k!@Rp#~z!5 (

m1~k!,n1~k!;
lm1~k!2ln1~k!52«k

Am1~k!,n1~k! ,

limz→hk

1

i
~z2hk!@Rp#~z!5 (

m2~k!,n2~k!;
lm2~k!2ln2~k!52hk

Am2~k!,n2~k! ,

lim
z→0

1

i
z@Rp#~z!5 (

m0~k!,n0~k!;
lm0~k!2ln0~k!50

Am0~k!,n0~k! .

Lemma 3.6: pPD~La,b!.
Proof: Assumption~ A.3! and Lemma 3.5 imply our lemma. Q.E.D.
By using~34!, ~35!, ~36!, and~37!, we can decomposeRp(t) into Rp(t)5R01R1(t)1R2(t),

where

R0

def
5

2 i lim
z→0;zPC1

z@Rp#~z!5 (
k50

` S (
m0~k!,n0~k!;

lm0~k!2ln0~k!50

Am0~k!,n0~k!D ,
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R1~ t !
def
5 (

k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

Am1~k!,n1~k!D e2 i t«k

5 (
k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

u^Fm1~k!,n1~k! ;p&u2eit ~lm1~k!2ln1~k!!D , ~38!

R2~ t !
def
5 (

k50

` S (
m2~k!,n2~k!;

lm2~k!2ln2~k!52hk

Am2~k!,n2~k!D e2 i thk

5 (
k50

` S (
m2~k!,n2~k!;

lm2~k!2ln2~k!52hk

u^Fm2~k!,n2~k! ;p&u2eit ~lm2~k!2ln2~k!!D . ~39!

So, by~ A.4!, we have

Rp~ t !5R1~ t !1R2~ t !. ~40!

Then we define Mori’s frequencyv0 by

v0

def
5

2^p;Lq,p,sp&^p;p&21. ~41!

~We changed the original definition of this frequency11,12 into the above definition, see Sec. IV A.!
Next, we define Mori’s fluctuationI (t) for p by

I ~ t !
def
5
ieiL1t~12P0!Lq,p,sp, tPR, ~42!

whereP0 is an orthogonal projection operator onto the closed subspaceXc
2(Hq,p,s! generated by

p, i.e.,P0Xc(Hq,p,s!5Xc
2(Hq,p,s!

def
5 $apPXc(Hq,p,s)uaPC% i iHq,p,s.9,13We denote here the clo-

sure of a linear subspaceS of Xc(Hq,p,s! by S̄. And L1 is a self-adjoint operator acting in the

Hilbert space~12)0!Xc(Hq,p,s!, which is defined byL1A
def
5

~12P0!Lq,p,sA for APD~L1!

def
5
D~Lq,p,s!ù~12)0!Xc(Hq,p,s!.

10

We now define symmetric operatorV acting inXc(Hq,p,s! by D~V !
def
5
D~Lq,p,s!; and V

def
5

2~P0Lq,p,s1Lq,p,sP0!1P0Lq,p,sP0. We note here thatP0CPD~Lq,p,s! for every

CPXc(Hq,p,s! since pPD~Lq,p,s!. It is evident that ~12P0!Lq,p,s~12P0!5Lq,p,s1V on
D~Lq,p,s!. Let CnPD~Lq,p,s! ~nPN! with conditions supnPNiCniHq,p,s

,`, and
supnPNiLq,p,sCniHq,p,s

,`. Then, there exist subsequences$Ck%k,$Cn%n and vectors
B1 ,B2PXc(Hq,p,s! such that w2limk→`Ck5B1 and w2limk→`Lq,p,sCk5B2 . It follows that
s2limk→`P0Ck5P0B1 and s2limk→`P0Lq,p,sCk5P0B2 sinceP0 is a finite rank operator, so
a compact operator. And besides, we have

Lq,p,sP0Ck5
^p;Ck&

^p,p&
Lq,p,sp→

^p;B1&

^p;p&
Lq,p,sp
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ask→`. Therefore, we have

V Ck→2P0B21
^p;B1&

^p;p&
~2Lq,p,sp1P0Lq,p,sp!

ask→`. Thus,V is relatively compact with respect toLq,p,s , so thatLq,p,s1N is self-adjoint,
andsess~Lq,p,s!5sess~Lq,p,s1V !, wheresess(A) denotes the set of all essential spectra of closed
operatorA. Hence following lemma follows from Lemma 3.1:

Lemma 3.7:The spectrum of projected Liouville operatorL1 has isolated points and their
accumulating points only, and

sess~L1!,$lm2lnum,nPN* % closure.

Remark 3.1:Under the condition ofLq,p,sP0.P0Lq,p,s , the same statement as Lemma 3.7
was proved in Theorem 4.7 in Ref. 9. However, the method in the proof of Lemma 3.7 tells us that
the condition above is superfluous and so strong that the discussion of Mori’s theory~see Erratum
for Ref. 9!. So, arguments in Secs. IV and V in Ref. 9 do not need the condition of
Lq,p,sP0.P0Lq,p,s .

Quite generally, the Heisenberg operatorp(t)
def
5
eiLq,p,stp satisfies Mori’s memory kernel

equation~or Langevin equation!9,11,12 if pPD~Lq,p,s !:

d

dt
p~ t !52 iv0p~ t !2E

0

t

ds f~ t2s!p~s!1I ~ t !, tPR ~43!

on Xc(Hq,p,s! ~see Sec. IV A in this paper!. Mori’s memory kernel equation~43! shows the
existence of Mori’s memory functionf~t! satisfying the fluctuation-dissipation relation. Namely,
Mori’s memory functionf~t! is related to the canonical autocorrelation function of Mori’s fluc-
tuation I (t) by the following fluctuation-dissipation relation:

^p;p&f~ t !5^I ~0!;I ~ t !&, tPR, ~44!

with orthogonality betweenp and I (t) ~tPR!, i.e.,

^p;I ~ t !&50, tPR. ~45!

We note that~43! and ~45! imply that

d

dt
Rp~ t !52 iv0Rp~ t !2E

0

t

ds f~ t2s!Rp~s!, tPR. ~46!

We define here a function@f#~z! ~zPC with Im z.0! by

@f#~z!
def
5 E

0

`

dt eitzf~ t !.

For proving our main theorem, we prepare some lemmas.
The following Lemma 3.8 shows important symmetric properties which the Bogoliubov scalar

product has:
Lemma 3.8:
~a! For eachm,nPN* , u^Fm,n ;p&u25u^Fn,m ;p&u2 holds. Namely,Am,n5An,m .
~b! For every tPR, R1(2t)5R2(t), so Rp(t)5R1(t)1R1(2t) and

R1(0)5R2(0)5Rp(0)/2.
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~c! For every tPR, 2Ṙ1(2t)5Ṙ2(t), where Ṙj (t)
def
5
dRj (t)/dt ~j51,2!. So,

Ṙp(t)5Ṙ1(t)2Ṙ1(2t) and Ṙp(0)50.
~d! For eachkPN* , «k52hk .
Proof: By ~23! and ~25!, we have

b21/2Z~b!21/2Wm,n
21/2^Fm,n ;p&5~wm ,pwn!q,p,s

5~pwm ,wn!q,p,s

5~wn ,pwm!q,p,s

5b21/2Z~b!21/2Wm,n
21/2^Fn,m ;p&,

which implies

^Fm,n ;p&5^Fn,m ;p&, m,nPN* . ~47!

Therefore, we obtain part~a!.
Let N ~Lq,p,s2a! be the space of the all eigenvectors ofLq,p,s with the eigenvaluea. By

part ~a!, if ^Fm1(k),n1(k) ;p&Þ 0, then^Fn1(k),m1(k) ;p&Þ0, and«k5ln1(k)2lm1(k).0. So, by the
expansion~26! of Rp(t), the point2«k must be a negative pole of@Rp#~z!, i.e.,2«kPP2

R . Thus,
for any kPN* there existsk̃PN* such that2«k5h k̃ , i.e.,

2~lm1~k!2ln1~k!!5«k52h k̃5lm2~ k̃!2ln2~ k̃! . ~48!

Conversely, for anyk8PN* there existsk8 P N* such that2hk85«k8 , i.e.,

2~lm2~k8!2ln2~k8!!5hk852« k̄85lm1~ k̄8!2ln1~ k̄8! . ~49!

By assumption~ A.2!, there is a one-to-one correspondencei betweenN* andN* , which induces
a one-to-one correspondenceq betweenP1

R andP2
R , i.e.,

i:N*{k°i~k!
def
5
k̃PN* , i21:N*{k8°i21~k8!

def
5
k̄8PN* ,

q:P1
R{«k°q~«k!

def
5

h k̃52«kPP2
R ,

q21:P2
R{hk8°q21~hk8!

def
5

« k̄852hk8PP1
R .

Moreover, by ~48!, Fn1(k),m1(k) is an eigenvector ofLq,p,s with the eigenvalue
lm2( k̃)2ln2( k̃)52h k̃ , i.e.,

Fn1~k!,m1~k!PN ~Lq,p,s1hi~k!!. ~50!

Similarly, by ~49! we get

Fn2~k8!,m2~k8!PN ~Lq,p,s1«i21~k8!!. ~51!

We define a map J:øaPs(Lq,p,s)
N (Lq,p,s2a)→øaPs(Lq,p,s)

N (Lq,p,s2a) by

JFm,n

def
5

Fn,m . By ~50! and ~51!, we have
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JFm1~k!,n1~k!PN ~Lq,p,s1hi~k!!,

JFm2~i~k!!,n2~i~k!!PN ~Lq,p,s1«i21~i~k!!!5N ~Lq,p,s1«k!.

Hence it follows that

JN ~Lq,p,s1«k!5N ~Lq,p,s1h k̃!, kPN* . ~52!

In the same way, we get

JN ~Lq,p,s1hk8!5N ~Lq,p,s1« k̄8!, k8PN* . ~53!

We have

(
m2~ k̃!,n2~ k̃!;

lm2~ k̃!2ln2~k
˜
!52hk

˜

u^Fn1~k!,m1~k! ;p&u25 (
m2~ k̃!,n2~ k̃!;

lm2~ k̃!2ln2~k
˜
!52hk

˜

u^Fm2~ k̃!,n2~ k̃! ;p&u2 ~54!

since i and q are one-to-one correspondences, equalities~52! and ~53! hold, and the pair
(m2( k̃),n2( k̃)) in the summation of

(
m2~ k̃!,n2~ k̃!;

lm2~ k̃!2ln2~ k̄!52h k̃

u^Fn1~k!,m1~k! ;p&u2

runs over all indices of eigenvectors ofLq,p,s with eigenvalue2h k̃ . So, by using part~a!, ~48!,
the one-to-one correspondences, and~54!, we have

R1~2t !5 (
k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

u^Fm1~k!,n1~k! ;p&u2exp@2 i t ~lm1~k!2ln1~k!!#D
5 (

k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

u^Fn1~k!,m1~k! ;p&u2exp@ i t«k#D
5(

k̃50

` S (
m2~ k̃!,n2~ k̃!;

lm2~ k̃!2ln2~k
˜
!52hk

˜

u^Fn1~k!,m1~k! ;p&u2D exp@2 i th k̃#

5(
k̃50

` S (
m2~ k̃!,n2~ k̃!;

lm2~ k̃!2ln2~k
˜
!52hk

˜

u^Fm2~ k̃!,n2~ k̃!;p&u2D exp@2 i th k̃#

5 (
k50

` S (
m2~k!,n2~k!;

lm2~k!2ln2~k!52hk

u^Fm2~k!,n2~k! ;p&u2D exp@2 i thk#

5 (
k50

` S (
m2~k!,n2~k!;

lm2~k!2ln2~k!52hk

u^Fm2~k!,n2~k! ;p&u2exp@ i t ~lm2~k!2ln2~k!!#D 5R2~ t !,
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thus, we haveR1(2t!5R2(t). Since we know the decomposition ofRp(t)5R1(t)1R2(t) in ~40!
andR1(2t)5R2(t), we getRp(0)5R1(0)1R2(0)52R1(0)52R2(0). So, weobtain part~b!.
Part ~c! depends on part~b!.

Part ~d! follows from ~48!, ~49! and«k,«k11, hk11,hk in ~ A.2!. Q.E.D.
Remark 3.2:The fact, limz→0@Rp#(z)50 in the following Lemma 3.9~a! means that we

cannot deal with the momentum operatorp in our case in the same way as Ref. 9. Furthermore, we
cannot apply the theory KMO-Langevin equation10 to our case.

Lemma 3.9:
~a! v050 holds, and limz→0@Rp#(z)50.
~b! @Rp# ~z! can be extended to a meromorphic function on the complex plane.
~c! @f#~z! can be also extended to a meromorphic function on the complex plane. And the set

of all positive zero points of@Rp# ~z! is equal to the set of all positive poles of@f#~z!. Furthermore,
if g is a pole of@f#~z!, theng is a pole of the first order of@f#~z!, and besides, there existskPN*
such thatgP~«k , «k11! or gP~2«k11,2«k!, and2g is an eigenvalue of the projected Liouville
operatorL1.

Proof: First, we prove part~a!. By Lemma 3.8~c!, we havev0[2^p;Lq,p,sp&^p;p&21

5 iṘp(0)/Rp(0)50, where the dot denotes the derivative with respect tot.
We note here assumption~ A.2! implies that inf$«ku^Fm1(k),n1(k) ;p& Þ 0%5«0.0. Then, by

~38!, ~39!, and~40!, we have by Lemma 3.8

@Rp#~z!5 i(
k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

Am1~k!,n1~k!D S 1

z2«k
1

1

z1«kD , ~55!

and for any zPC with uzu,«0/2 and uzu<infkPN~«k112«k!/2, we get «0/2<uz6«0u<uz6«ku
~kPN* !, so we have

(
k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

Am1~k!,n1~k!D U 1

z6«k
U< 2

«0
(
k50

`

(
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

Am1~k!,n1~k! .

By using the above inequality and Weierstrass’ M-test, we obtain

lim
z→0

@Rp#~z!5 i(
k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

Am1~k!,n1~k!D S 2
1

«k
1

1

«kD 50,

which is a proof of part~a!.
Part ~b! follows from ~55!.
The Fourier–Laplace transform of~46! implies that

@Rp#~z!5
Rp~0!

iv02 iz1@f#~z!
. ~56!

So, by part~a! and ~56!, we have

@f#~z!5 iz1
Rp~0!

@Rp#~z!
. ~57!

We note that@f#~z! is meromorphic on the complex plane by~57!. Let 2g8 be a pole of@f#~z!.
Then2g8 is a zero point of@Rp# ~z! by ~57!, so there existspPN* such that2g8P~«k ,«k11! by
solving the following equation:
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05
1

i
@Rp#~z!5 (

k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

Am1~k!,n1~k!D S Re z2«k
~Re z2«k!

21~ Im z!2

1
Re z1«k

~Re z1«k!
21~ Im z!2D 2 i ~ Im z!(

k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

Am1~k!,n1~k!D
3S 1

~Re z2«k!
21~ Im z!2

1
1

~Re z1«k!
21~ Im z!2D

by ~55!, and

lim
z→2g8

1

i
~z1g8!@f#~z!5 lim

z→2g8
S ~z1g8!z2 iRp~0!

z1g8

@Rp#~z!2@Rp#~2g8! D
52 i

Rp~0!

d

dz
@Rp#~z!dz52g8

by ~57! because@Rp#(2g8)50. And besides, by~55!, we get

d@Rp#~z!

dz
52 i(

k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

Am1~k!,n1~k!D S 1

~z2«k!
2 1

1

~z1«k!
2D ,

which implies

i
d@Rp#~z!

dz
dz52g85 (

k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

Am1~k!,n1~k!D S 1

~g81«k!
2 1

1

~g82«k!
2D .0.

Thus,2g8 is a pole of the first order of@f#~z!.
Let P 1(dj) be the spectral measure ofL1:

L15E
R
j dP j

1 .

Let p̃
def
5
(12P0)Lq,p,sp. The equality

K p̃; 1

2z2L1
p̃L 5 i ^p;p&@f#~z!

follows from ~42!, ~44! and a simple calculation. And, by well-known fact, we have for every
d .0

P 1~~g82d,g8!!5s2 limd2↓0s2 limd1↓0
1

2p i Eg82d1d2

g82d2 S 1

x2 id12L1
2

1

x1 id12L1
Ddx.
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Remember that all poles of@f#~z! are isolated since@f#~z! is meromorphic, and the spectra ofL1
consist of isolated points and their accumulating points by Lemma 3.7. Since2g8 is a pole of the
first order of@f#~z!, the principal part of the Laurent expansion of@f#~z! at z52g8 has the form
of const31/~z1g8!. So, we have for sufficiently smalld .0

^ p̃;P 1
„~g82d,g8!…p̃&5 i ^p;p& limd2↓0limd1↓0

1

2p i Eg82d1d2

g82d2
„@f#~ id12x!2@f#~2 id12x!…dx

50.

Hence it follows thatP 1
„(g82d,g8)…p̃50. In the same way, we haveP 1

„(g8,g81d)…p̃50.
Thus, if2g8 is a pole of@f#~z!, theng8Psp~L1!, wheresp~L1! is the all point spectra ofL1.
Otherwise, suppose here that2g8 is a pole of@f2# ~z! satisfyingP 1~$g8%!50. By the arguments
above, there existsd .0 such thatP 1

„~g82d,g81d!\$g8%…p̃50. Thus, we get

P 1
„~g82d,g81d!…p̃5~P 1~$g8%!1P 1

„~g82d,g81d!\$g8%…! p̃50,

which is a contradiction because2g8 is a pole of@f# ~z!. Therefore, we obtain part~c!. Q.E.D.
Lemma 3.10:
~a! @Rp#(2z)52@Rp#(z), so if g is a zero point of@Rp# ~z!, theng is also a zero point of

@Rp# ~2z!.
~b! @Rp#8(2z)5@Rp#8(z).
~c! Let $v j% j51

` be the set of all positive zero points of@Rp# ~z!. Then,

f~ t !52Rp~0!(
j51

`
1

i @Rp#8~v j !
cos~ tv j !.

So,

@f#~z!5Rp~0!(
j51

`
1

@Rp#8~v j !
S 1

z2v j
1

1

z1v j
D .

Proof: By ~55!, we have

@Rp#~2z!52@Rp#~z!,

which is part~a!.
Part ~b! follows from part~a!.
By Lemma 3.9~c!, there are eigenvectorsF̃ m,n (m,n51,2,•••) of L1 such that

L1 F̃ m,n5mm,n F̃ m,n (mm,nPsp(L1)), and f(t)5^p;p&21(m,n51
` u^ F̃ m,n ;(12P0)

3Lq,p,sp&u2exp@itmm,n#.
Here, let$g j% j51

` be the set of all distinct poles of@f#~z! ~i.e., g j Þ g j 8 if j Þ j 8) with
^ F̃ m,n ;(12P0)Lq,p,sp&Þ0, where, for any jPN, there exist m( j ),n( j )PN such that
2g j5mm( j ),n( j ) . So,

@f#~z!5
i

^p;p& (
m,n51

`

u^ F̃ m,n ;~12P0!Lq,p,sp&u2
1

z1mm,n

5
i

^p;p& (
j ;

^ F̃ m~ j !,n~ j ! ;~12P0!Lq,p,sp&Þ0
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3S (
m~ j !,n~ j !;

2g j5mm~ j !,n~ j !

u^ F̃ m~ j !,n~ j ! ;~12P0!Lq,p,sp&u2D 1

z2g j
. ~58!

Thus, we obtain by~57! and ~58!

(
m~ j !,n~ j !;

mm~ j !,n~ j !52g j

u^ F̃ m~ j !,n~ j ! ;~12P0!Lq,p,sp&u25 limz→g j

1

i
~z2g j !@f#~z!^p;p&

5
1

i
„Rp~0!…2limz→g j

z2g j

@Rp#~z!2@Rp#~g j !

5~Rp~0!!2
1

i @Rp#8~g j !
.0. ~59!

Here, we used the fact that@Rp# ~gj !50 by Lemma 3.9~c!. By ~58!, we have

f~ t !5
1

Rp~0!(j51

` S (
m~ j !,n~ j !;

mm~ j !,n~ j !52g j

u^ F̃ m~ j !,n~ j ! ;~12P0!Lq,p,sp&u2D e2 i tg j .

Therefore, by~59!, we obtain

f~ t !5Rp~0!(
j51

`
1

i @Rp#8~g j !
e2 i tg j . ~60!

By part ~b!, we have

1

@Rp#8~v j !
5

1

@Rp#8~2v j !
. ~61!

And besides, by Lemma 3.9~c! and part ~a!, the set of all poles of@f#~z! is given by
$6v j% j51

` . Therefore, we obtain part~c! from ~60! and ~61!. Q.E.D.

B. Proof of the main theorem

We definekt~t! by

kt~ t !
def
5
mf~ t !x

@0,t#
~ t !, ~62!

wherex@0,t#~t! denotes the characteristic function of@0,t#.
The quantum Langevin equation~17! follows from ~43!, Lemma 3.9~a! and Lemma 3.10~c!.
For t.0, it is evident thatl imt↑`kt(t)5mf(t), which implies~18!.
The fluctuation-dissipation relation follows from~44! and ~45!.
The Fourier–Laplace transform of~46! implies ~20!.
Concerning the proof of~21!, first we get

SI~ t !5E
2`

`

eitvbEb~v!D I
can~dv!

by the definition of symmetrized autocorrelation function~10!, and
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D I
can~dv!5(

j51

`

mjv j
2S dv j

~dv!1d2v j
~dv!

2
D

by ~19!. Thus, sinceEb(v)5Eb(2v), we have

SI~ t !5
1

2(j51

`

mjv j
2b~Eb~v j !e

itv j1Eb~2v j !e
2 i tv j !5(

j51

`

mjv j
2bEb~v j !cos~v j t !,

which implies~21!.
The last equality~22! depends on~19!.
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APPENDIX

1. Mori’s memory kernel equation

In this Appendix, we recall briefly Mori’s memory kernel equation.11,12 Let X be a Hilbert
space with an inner product~,!X , L a self-adjoint operator inX with domain D~L! , andA a
non-zero element in D~L!, where the inner product~,!X is linear in the right vector.

We consider a stationary curve$A(t)utPR% defined byA(t)
def
5
eitLA,t P R , and the autocor-

relation functionRA of A given byRA(t)
def
5
(A(0),A(t))X .

Let X0 be the closed subspace generated byA, andP0 and X1 the orthogonal projection
operator onX0 and the complementary subspace ofX0 in X, respectively. Then we define a linear
operatorL1 on the Hilbert spaceX1 by

D~L1!
def
5

~12P0!XùD~L!

L1x
def
5

~12P0!Lx, xPD~L1! .

From this, we note thatL1 is a self-adjoint operator acting in the Hilbert spaceX1.
10,11And we

define Mori’s frequencyvA , fluctuationI A(t),tPR and memory functionfA by

vA

def
5

2„A~0!,LA~0!…X„A~0!,A~0!…X
21 . I A~ t !

def
5
ieitL1~12P0!LA, tPR,

fA~ t !
def
5
„I A~0!,I A~ t !…X„A~0!,A~0!…X

21 , tPR. ~A1!

We note here that we change the original definition of Mori’s frequency into~A1! to discuss our
argument. Then we have the following theorem.

Theorem A.1 „Refs. 10–12…:
~a! For all tPR,
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d

dt
RA~ t !52 ivARA~ t !2E

0

t

ds fA~ t2s!RA~s!.

~b!Forall zP C1
def
5 $zP CuIm z.0%,

E
0

`

dt eitzRA~ t !5RA~0!
1

ivA2 iz1*0
`dt eitzfA~ t !

.

~c! For all t P R,

d

dt
A~ t !52 ivAA~ t !2E

0

t

ds fA~ t2s!A~s!1I A~ t !. ~A2!

Equation~A2! is Mori’s memory kernel equation, orMori’s Langevin equation.

2. An example of the Hamiltonian and the momentum operator satisfying the
assumptions

Let

Dq,p,s

def
5 $APT~Hq,p,s!uHq,p,sA,AHq,p,sdDq,p,sPT~Hq,p,s!%.

Then, for everyA P Dq,p,s, by ~32!

(
m,n50

`

~lm2ln!
2u^Fm,n ;A&u2<2 (

m,n50

`

~lm
2 1ln

2!u^Fm,n ;A&u2

52 (
m,n50

`

~lm
2 1ln

2!
u~wm ,Awn!q,p,su2

bZ~b!Wm,n

52 (
m,n50

`
1

bZ~b!Wm,n
~ u~wm ,Hq,p,sAwn!q,p,su2

1u~wm ,AHq,p,swn!q,p,su2!

52~ iHq,p,sAiHq,p,s

2 1iAHq,p,siHq,p,s

2 !,`. ~A3!

Therefore, we have

Dq,p,s,Dq,p,s,D~Lq,p,s!. ~A4!

Next, we prepare basic tools from Ref. 21. LetF b
` be the symmetric Fock space, which is the

Hilbert space complete of the symmetric tensor algebra overL2~R!:

F b
`def

5
% n50

`
F n ,

whereF n is the space ofn noninteracting bosons:
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F 0

def
5
C,

We use the standard annihilation and creation operatorsb(k) andb1(k), defined by

„b~k!c…n21~k1 ,...,kn21!
def
5
n1/2cn~k,k1 ,...,kn21!

on the dense subset of vectorsc[$c0 ,c1 ,...% P F b
` with cn50 for largen. And

„b1~k!c…n11~k1 ,...,kn11!
def
5

~n11!21/2(
j51

n11

d~k2kj !cn~k1 ,...,kĵ ,...,kn11).

Herekĵ means thatkj is omitted.
For finite volumeV.0, we define a set of lattice pointsGV by

G
V

def
5 H kuk5

2pn

V
,n50,61,62,...J . ~A5!

We can define the Fock spaceF b
V for volumeV as

F b
Vdef

5
C% l 2~G

V
! % „l 2~G

V
! ^ sl

2~G
V
!…% „l 2~G

V
! ^ sl

2~G
V
! ^ sl

2~G
V
!…... . ~A6!

Then we can identifyF b
V with the subspace ofF b

` consisting of piecewise constant functions
which are constant on each cube of volume~2p/V!j centered about a lattice point
~k1 ,...,kj !PGV3GV ...3GV .

The periodic annihilation and creation operatorsbV(k) andbV
1(k) are defined by

b
V
~k!

def
5 S V

2p D 1/2E
2p/V

p/V

b~k1 l !dl, ~A7!

b
V

1~k!
def
5 S V

2p D 1/2E
2p/V

p/V

b1~k1 l !dl, ~A8!

and can be extended fromF b
V to F b

` . We regardF b
V asF q,p,s .

We define annihilation and creation operators of a quantum harmonic oscillator by

a
def
5
b
V
~0!, a1

def
5
b
V

1~0!,

furthermore annihilation and creation operators of bosons by

bk
def
5
b
V
~k!, bk

1def
5
b
V

1~k!, kPG
V
\$0%.

And let F q,p,s[F b
V.
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Let w0 be a positive number, and$wk%kPGV\$0% a sequence of positive numbers with

(kPG
V
\$0%wk

22,`. We give a free HamiltonianH0 by

H0

def
5
w0a

1a1 (
kPG

V
\$0%

wkbk
1bk .

Let HI be a self-adjoint operator satisfying

HI>0,
Hq,p,s5H01HI is essentially self2adjoint

on a coreC`~H0!ùD~HI !,
D~p!.D~HI !,

@HI ,p#50.
6 ~A9!

For instance, fornPN, let

:f2n:[lE
2`

`

:f
V
~x!2n:g~x!dxdC`Sw0a

1a1 (
kPG

V
\$0%

wkbk
1bkD ,

wherel.0, g is a positive function in Schwartz’s class, and

f
V
~x!

def
5

1

~2V!1/2 (
kPG

V
\$0%

e2 ikx~bk
11b2k!wk

21/2.

It is well known that forF b
V there exist a measure spaceQ and the Gaussian measuredm0 such

that F b
V is unitary equivalent toL2~Q,dm0!. From now on, we identifyF b

V, so F q,p,s with
L2~Q,dm0!. Let P1 andP2 be positive polynomials ofx andx1 ,x2 ,...,xn , respectively, satisfying
P1(p)P2~:f

2:,:f4:,...,:f2:!PL2~Q,dm0!. Then, by Theorem X.59 in Ref. 22,
H01P1(p)P2~:f

2:,:f4:,...,:f2:! is essentially self-adjoint onC`~H0!ùD~H1! and positive. This
P1(p)P2(:f

2:,:f4:,...,:f2n:! is an example ofHI with ~71!.
More concrete example is given as follows: Let

H0,I

def
5

lE
2`

`

:fV~x!4:g~x!dxdC`Sw0a
1a1 (

kPG
V
\$0%

wkbk
1bkD ,

wherel.0, g is a positive function in Schwartz’s class. SinceH0,I is extended to self-adjoint
operator by claim in p.176 of Ref. 23 and Theorem VIII.33 in Ref. 24. And, we can representp
using projection valued measureEj as

p5E
2`

`

j dEj .

We definepK ~K.0! by

p
K
[E

2K

K

j dEj .

Let Hb,I be a bounded symmetric operator acting in
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L.hF H 1

Ank1! •••AnkN!
~bk1

1 !nk1•••~bkN
1 !nkNV0unk1,...,nkNPN* ;k1 ,...,kNPG

V
;NPN* J G .

HereV0 denotes the Fock vacuum. Then, it is clear thatH0,I1pKHb,I is an example ofHI with
~A9!. Here we note that@pK ,Hb,I#50.

For HI with ~A9!, we obtain the following proposition:
Proposition B.1.
~a! e2tHq,p,s is trace class for everyt.0.
~b! pPD~Lq,p,s!.
Remark B.1:By this proposition, we know thatHq,p,s andp argued in this subsection satisfy

our assumptions~ A.1! and ~ A.3!.
Proof of Proposition B.1:First part~a! follows from Golden–Thompson inequality Corollary

on p.320 in Ref. 25.
We note that

@H0 ,q#52 iw0p, @H0 ,p#5 iw0q, ~A10!

and there exist positive constantscn(q) andcn(p) ~n51,2...! such that

iqnxi<cn~q!i~H01I !nxi , ipnxi<cn~p!i~H01I !nxi , ~A11!

for xPC`~H0!.
Here we note that by Proposition 1 in Ref. 26

iH0xi1iHIxi<const1~ iHq,p,sxi1ixi ! ~A12!

for all xPD~H01HI!.
By using inequalities~A11!, ~A12!, and the facts thatD(p).C`~H0!ùD~HI!; C

`~H0!ùD~HI!
is a core forHq,p,s ; and p is closed, we haveD(p)5D~p* !.D~Hq,p,s!, which implies thatp
satisfies ~T.1!, and D~pHq,p,s!.Dq,p,s . In the same way, we get D~q!.Dq,p,s . Since
Hq,p,sp5pHq,p,s1 iw0q, we have D~Hq,p,sp!5D~pHq,p,s1 iw0q!5D~pHq,p,s!ùD~q!.Dq,p,s .
Therefore, we can show thatpHq,p,s andHq,p,sp satisfy ~ T.1!.

Here we put fort.0,

A
def
5
tH0 ,

B
def
5
tHI ,

C
def
5

ie2A/2e2Be2A/2i<e2t infs~HI !ie2Ai .

Remember~A11! and ~A12!. In the same way as the proof of Theorem X.57~Segal’s lemma! in

Ref. 25, since (e222(n11)Ae222nBe222(n11)A)2
n

converges to e2(A1B) as n→`, and

ie222(n11)Ae222nBe222(n11)Ai<C22n
, we have forxPD~p!

ie2~A1B!pxi5 lim
n→`

i~e222~n11!Ae222nBe222~n11!A!2
n
pxi

<c1~p! lim
n→`

C1222n
ie2ASAt 1I D iie~1222~n11!!Aiixi
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<c1~p!e2t infs~HI ! lim
n→`

C222n
ie2ASAt 1I D iie~222~n11!!Aiixi

5c1~p!e2t infs~HI ! lim
n→`

C222n
e~222~n11!!t infs~HI !ie2ASAt 1I D iixi

5c1~p!e2t infs~HI !ie2ASAt 1I D iixi .

Therefore,e2tHq,p,sp is bounded, and similarly,e2tHq,p,sq is also bounded. So, it follows that
e2tHq,p,sp and e2tHq,p,sq are trace class from part~a! and boundedness ofe2tHq,p,sp and
e2tHq,p,sq. Taking adjoint of them, we knowpe2tHq,p,s and qe2tHq,p,s are also trace class. So,
pHq,p,se

2tHq,p,s5pe2tHq,p,s/2Hq,p,se
2tHq,p,s/2 is trace class. Furthermore, since

pHq,p,s5Hq,p,sp2 iw0q,

e2tHq,p,spHq,p,s5e2tHq,p,sHq,p,sp2 iw0e
2tHq,p,sq

5e2tHq,p,s/2Hq,p,se
2tHq,p,s/2p2 iw0e

2tHq,p,sq

is trace class. In the same way,e2tHq,p,sHq,p,sp5e2tHq,p,s/2Hq,p,se
2tHq,p,s/2p is trace class, and

sinceHq,p,sp5pHq,p,s1 iw0q,

Hq,p,spe
2tHq,p,s5pHq,p,se

2tHq,p,s1 iw0qe
2tHq,p,s5pe2tHq,p,s/2Hq,p,se

2tHq,p,s/21 iw0qe
2tHq,p,s

is also trace class. Thus,p,pHq,p,s , andHq,p,sp satisfy ~ T.2!.
Therefore, we obtain thatp P Dq,p,s. So, by~66!, pPD~Lq,p,s!. Q.E.D.
When condition~ A.2! and~ A.4! do not hold, we consider the following smeared momentum

operator. We can expandp as

p5(
m,n

^Fm,n ;p&Fm,n

in Xc(Hq,p,s!.
Definition B.1:By an observation, select«p andhp with ~ A.2!. Then, forp, we define the

smeared momentum operator psm by

psm[psm~«p ,hp ;pPN* !

def
5 (

k50

` S (
m1~k!,n1~k!;

lm1~k!2ln1~k!52«k

^Fm1~k!,n1~k! ;p&Hq,p,sD Fm1~k!,n1~k!

1 (
k50

` S (
m2~k!,n2~k!;

lm2~k!2ln2~k!52hk

^Fm2~k!,n2~k! ;p&Hq,p,sD Fm2~k!,n2~k! .

It is evident thatpsm satisfies~ A.4! automatically.
The HamiltonianHq,p,s and smeared momentum operatorpsm which are argued in this sub-

section satisfy our assumptions~ A.1!-~ A.4!, and more complicated model than the IO model is
included.
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Solution to three-magnon problem for S51/2 periodic
quantum spin chains with elliptic exchange

V. I. Inozemtseva)
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku,
Tokyo 106, Japan

~Received 14 March 1995; accepted for publication 20 September 1995!

The method of solving the three-particle quantum elliptic Calogero–Moser problem
is applied to the description of three-magnon wave functions for theS51/2 quan-
tum Heisenberg chains with the exchange interaction given by the Weierstrass%
function. The Bethe-like algebraic equations for the three-magnon case are pre-
sented in the explicit form. ©1996 American Institute of Physics.@S0022-
2488~96!02101-X#

I. INTRODUCTION

Despite the remarkable progress in studying integrable models of field theory and statistical
mechanics, the universal method of constructing their solutions in the quantum case is not found.
The well-known techniques of the coordinate Bethe ansatz and its algebraic version based on the
Yang–Baxter equation are still not applicable to 1-D problems proposed a long time ago within the
framework of the classical Lax representation and proved also to be quantum integrable.2,3 They
can be interpreted as the systems of particles on a torusTv1 ,v2

5 C/Zv1 1 Zv2, T m~v1v2
21!Þ0,

with the quantum Hamiltonian

Hp
~M !52

1

2 (
j51

M S ]

]xj
D 21n~n21!(

j, l

M

`~xj2xl !, ~1!

where`(x) is the elliptic Weierstrass function with periodsv1 andv2,

`~x!5x221 (
mPZ2,m1

2
1m2

2Þ0

@~x1m1v11m2v2!
222~m1v11m2v2!

22#

5S p

v2
D 2S 2

1

3
1 (

mPZ
FsinS p

x2mv1

v2
D G22

22 (
mPZ1

Fsinmv1

v2
pG22D . ~2!

Moreover, the superintegrability of these systems atnPZ1 was conjectured,4,5 i.e., at least as
v1→` the ring of well-defined operators commuting withHp

(M ) is larger than it is required for
classical integrability in the Liouville sense. Although a number of results have been obtained in
various degenerate cases ofv1,v2→0,̀ ,2,4–8any explicit eigenvectors ofHp

(M ) at arbitraryv1, v2
andM.2 have not been found.

Recently, several approaches have been proposed for explaining the phenomenon of the inte-
grability of elliptic many-body systems and describing the spectrum of the commutative family of
differential operators which includes~1!. One is based on the relationship of integrable many-body
problems to the theory of semisimple and affine Lie groups9 and the use of the quantum Hamil-
tonian reduction described first in Ref. 10. It results in the interpretation of the eigenfunctions of
the trigonometric analog of~1! as traces of the operators which intertwine some representations of
glM .

11 The generalization of the treatment to affine Lie groups leads to the parabolic differential

a!On leave from the Laboratory of Theoretic Physics, JINR, Dubna, Russia.
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equation which is viewed as a reduction of the KZB equations.12 In the case ofM52, it has been
proved in Ref. 12 that the asymptotics of the integral representations of its solutions at critical
level gives the eigenfunctions of~1! at nPZ1 . It has been found also that there is the natural
extension of the systems~1! to the relativistic Hamiltonians13 with the symmetry related to the
gauged WZW theory and quantum groups.14

The important results for the spectrum and eigenfunctions of~1! atM<3, nPR1 , have been
obtained within the framework of the general scheme of the separation of variables.15

The promising way of embedding the systems~1! into the Yang–Baxter structures is related to
the construction of the representations of quadratic Sklyanin algebra with Belavin’s ellipticR
matrix by means of difference operators16 and further reduction to differential ones. Being most
general at the present time, this approach is still not realized completely in writing down the
explicit expressions for the solutions of the eigenvalue problem for the operator~1!.

In this paper, we address mainly to the lattice analogs ofHp
(M ) which are the Hamiltonians of

interactingS51/2 quantum spins,

Hs52
1

2 (
jÞ l

N

`~ j2 l !S sW jsW l21

2 D . ~3!

Here $sj % are the usual Pauli matrices labelled by the indices of lattice sites and`(x) is
defined on the torusTN,v , i.e., the real period of̀ coincides with the total number of spinsN. The
real part ofv has to vanish ifHs is self-adjoint. The corresponding lattice Schro¨dinger equation
reads

L~n1•••nM !5 (
b51

M

(
sÞn1•••nM

N

`~nb2s!c~M !~n1•••nb21 ,s,nb11•••nM !

52F (
aÞb

M

`~na2nb!1EM2ME0Gc~M !~n1•••nM !, ~4!

whereE05( j51
N21 `( j ) andn1•••nM denote the positions of spins turned over the state in which all

spins are aligned identically. TheM -magnon wave functionc(M ) must be symmetric in all its
arguments.

The limits of T mv→0,̀ have been investigated by Bethe17 and Haldane.18 In these limits,
the underlying symmetry of the model has been established by explicit construction of transfer
matrices which satisfy Yang–Baxter relations.19,20The eigenvectors ofHs for infinite spin chains
at arbitrary values ofT mv have been completely described recently.21

However, in the general case of finiteN andvÞ0,̀ , which is of more interest for thermody-
namics, the explicit solutions have been indicated only for the simplest two-magnon sector.22 One
of possible ways of extension of these results toM.2 is in finding the lattice analogs of the
powerful algebraic approaches to continuous elliptic many-particle problems proposed in Refs.
9–12. However, they do not provide useful expressions for the eigenfunctions of~1! and ~3! at
present stage of the development. Hence the search for more simple methods is worth a trial.

In the present paper we would like to show that the eigenfunctions of the particle and spin
Hamiltonians~1! and ~3! can be found explicitly also forM53 by using its analytic properties
without any appeals to the concept of superintegrability.

It is worthwhile to outline the situation atM52, n52 for convenience and introduction of
some basic notation. As for the two-particle interaction, the problem reduces to the well-known
Lamèequation,

F2
1

2 S ddxD
2

1`~x!Gw5Ew. ~5!
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The solutions to~4! were given by Hermite23 more than a century ago,

w~x!5exp~ ikx!
s~x1g!

s~x!
, ~6!

wherek andE are easily expressed through an arbitrary phaseg,

ik52z~g!, E52 1
2`~g!.

Herez(x) ands(x) are the Weierstrass functions related to`(x) as follows:

dz~x!

dx
52`~x!, lim

x→0
@z~x!2x21#50;

d ln s~x!

dx
5z~x!, lim

x→0
s~x!x2151. ~7!

Unlike `, zeta and sigma are not periodic. Nevertheless both these functions can be treated on the
torusTv1 ,v2

due to their quasiperiodicity,

z~x1v j !5z~x!1h j , s~x1v j !5s~x!expFp i1h j S x1
v j

2 D G , j51,2, ~8!

whereh152z~v1/2! andh252z~v2/2! obey the Legendre relation

h1v22h2v152p i . ~9!

As it follows from ~2.7!, the only simple pole ofz(x) and zero ofs(x) on Tv1 ,v2
are located

at x50. The Hermite result~6! is one of the consequences of the addition theorem for`(x) and
z(x):

`~x!1`~y!1`~x1y!5@z~x!1z~y!2z~x1y!#2, x,yPC. ~10!

The two-magnon wave functions, as it was pointed in Ref. 22, also have the Hermite form~6!,
but the connection betweeng and other parameters is not so simple. It will be shown in two
subsequent sections that the analogy of particle and spin dynamics still takes place in the more
complicatedM53 problem.

II. THE SOLUTION TO THREE-PARTICLE PROBLEM AT n52

Let us consider a three-particle equation of Lame` type,

Hp
~3!w5H 2

1

2 (
a51

3 S ]

]xa
D 212@`~x12x2!1`~x22x3!1`~x32x1!#J w5Ew. ~11!

As Hp
(3) commutes with each of the operatorsSj

(a) shifting j th argument ofw to the periodva

of the Weierstrass function, it is natural to search for the solutions of~7! in accordance with the
Floquet–Bloch theory, i.e., as quasiperiodic functions in each argument$xj%:

w~x11 l 1va ,x21 l 2va ,x31 l 3va!5expS i(
j51

3

qj
~a!l j Dw~x1 ,x2 ,x3!, l 1 ,l 2 ,l 3PZ. ~12!

The only singularity of̀ (x) on the torusTv1 ,v2
is the second-order pole atx50. Then it

follows from ~11! that w(x1 ,x2 ,x3) is meromorphic on (Tv1 ,v2
)3 with simple poles atx15x2 ,

x25x3 , x35x1 , i.e., it can be represented in the form
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w~x1 ,x2 ,x3!5
F~x1 ,x2 ,x3!

s~x12x2!s~x22x3!s~x32x1!
, ~13!

whereF(x1 ,x2 ,x3) is analytic on (Tv1 ,v2
)3. One can show that this condition, being combined

with ~12!, determines the structure ofF up to eight arbitrary parameters. In particular, the con-
stantsqa

( j ) in ~12! cannot be chosen independently but are related by

V5(
j51

3

@v1qj
~2!2v2qj

~1!#P2p~Zv11Zv2!.

So it is always possible to choose$qj
(a)% such asV vanishes.

Note that the solutions to~11! of the type~12! contain only four arbitrary parameters~the
common normalization factor and three particle quasimomenta!. Hence finding these solutions is
equivalent to some purely algebraic problem, i.e., extracting some four-dimensional manifold
from $F%. To formulate it in a constructive way, one needs an appropriate parametrization of$F%.
It can be chosen as

F~x1 ,x2 ,x3!5A expF i (
a51

3

kaxaGs~x12x21g12!s~x22x31g23!s~x32x11g31!

3@B1z~x12x21g12!1z~x22x31g23!1z~x32x11g31!#. ~14!

Since the poles ofz(x) coincide with zeroes ofs(x), the functions of the type~14! are analytic on
(Tv1 ,v2

)3 as required. The parametersqj
(a) in ~12! are easily expressed through$k% and$g% with

the use of~8!,

qj
~a!5kjva2 iha~g j l1g jm!, ~15!

where the auxiliary phasesg21,g32,g13 are introduced by the relation

g jm52gmj ~16!

and (j lm) is an arbitrary combination of the numbers from 1 to 3.
Upon substituting~13! and ~14! into ~11! one arrives at the equation

L~x1 ,x2 ,x3!5A expF i (
a51

3

kaxaG s~y12!s~y23!s~y31!

s~z12!s~z23!s~z31!
$@B1z~y12!1z~y23!1z~y31!#@2e

1 i z~z12!~k12k2!1 i z~z23!~k22k3!1 i z~z31!~k32k1!13„z~z12!z~z23!

1z~z12!z~z31!1z~z23!z~z31!…2„z~y12!2z~y31!…„ik12z~z12!1z~z31!…2„z~y23!

2z~y12!…„ik22z~z23!1z~z12!…2„z~y31!2z~y23!…„ik32z~z31!1z~z23!…2z2~y12!

2z2~y23!2z2~y31!1z~y12!z~y23!1z~y12!z~y31!1z~y23!z~y31!1`~y12!1`~y23!

1`~y31!#1@ ik12z~z12!1z~z31!1z~y12!2z~y31!#@`~y12!2`~y31!#1@ ik2

2z~z23!1z~z12!1z~y23!2z~y12!#@`~y23!2`~y12!#1@ ik32z~z31!1z~z23!

1z~y31!2z~y23!#@`~y31!2`~y23!#1`8~y12!1`8~y23!1`8~y31!%50, ~17!

where
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e5E2 1
2~k1

21k2
21k3

2!, zab5xa2xb , yab5xa2xb1gab .

Note thatL(x1 ,x2 ,x3), like w(x1 ,x2 ,x3), is quasiperiodic in each argument. Let us choose
one of them~say,x1! and fix two others. When treated as a function ofx1, L obeys the relations

L~x11v j ,x2 ,x3!5exp~ iq1
~ j !!L~x1 ,x2 ,x3!, j51,2, ~18!

with q1
( j ) given by ~15!. At g122g31úZv11Zv2 one has

q1
~1!v22q1

~2!v1ú2p~Zv11Zv2!. ~19!

The singularities ofL onTv1 ,v2
at fixedx2 ,x3 are second-order poles atx15x2 andx15x3 . Near

these points one can write the Laurent decompositions ofL as

expS 2 i (
a51

3

kaxaD L~x1 ,x2 ,x3!5l22
~ j ! ~z!~x12xj !

221l21
~ j ! ~z!~x12xj !

211l0
~ j !~z,x12xj !,

j52,3,

wherez5x22x3 andl0
( j ) are regular whenx1→xj . If one proves that alll22

( j ) (z),l21
( j ) (z) vanish,

thenL as a function ofx1 will be analytic onTv1 ,v2
. However, according to the Liouville theorem,

the only analytic function on this torus under the conditions~18! and ~19! is zero. Hence~17! is
equivalent to four simpler equations:

l22
~2! ~z!50, l22

~3! ~z!50, ~20!

l21
~2! ~z!50, l21

~3! ~z!50. ~21!

Let us first consider the equations~20!. After calculation of the explicit form of leading singulari-
ties in ~17! they can be written as

@B1z~g12!1z~z1g23!2z~z2g31!#@ i ~k12k2!12z~g12!1z~z2g31!2z~z1g23!#

1`~z2g31!1`~z1g23!22`~g12!50, ~22!

@B1z~g31!1z~z1g23!2z~z2g12!#@ i ~k32k1!12z~g31!1z~z2g12!2z~z1g23!#

1`~z2g12!1`~z1g23!22`~g31!50. ~23!

The left-hand sides of~22! and ~23! are double periodic~i.e., elliptic! functions ofz with the
first-order poles atz52g23,g31 for ~22! andz52g23,g12 for ~23!. If the pole residues and constant
terms in the Laurent decompositions of these functions equal to zero, then, according to the
Liouville theorem, they must vanish identically. These conditions can be expressed in the form of
four purely algebraic equations for the parametersB,$k%,$g%,

B2 i ~k12k2!2z~g12!12z~g311g23!50, ~24!

B2 i ~k32k1!2z~g31!12z~g121g23!50, ~25!

@B1z~g12!1z~g311g23!#@ i ~k12k2!12z~g12!2z~g311g23!#

22`~g12!2`~g311g23!50, ~26!
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@B1z~g31!1z~g121g23!#@ i ~k32k1!12z~g31!2z~g121g23!#

22`~g31!2`~g121g23!50. ~27!

Upon eliminatingk12k2 andk32k1 by ~24! and ~25!, Eqs.~26! and ~27! can be written as

@B1z~g12!1z~g311g23!#
252`~g12!1`~g311g23!, ~28!

@B1z~g31!1z~g121g23!#
252`~g31!1`~g121g23!. ~29!

Since the difference of~28! and ~29! is linear inB, this parameter can also be expressed easily
through the phases$g%,

B52@z~g12!1z~g23!1z~g31!#13@`~g12!2`~g23!#@`~g23!2`~g31!#@`~g31!2`~g12!#

3$`8~g12!@`~g23!2`~g31!#1`8~g23!@`~g31!2`~g12!#1`8~g31!@`~g12!2`~g23!#%
21.

~30!

After the substitution of~30! into one of Eqs.~28! and ~29!, one obtains the nonlinear constraint
for g12,g23,g31. At first sight it seems to be enormously cumbersome but can be essentially
simplified with the use of addition theorems for zeta functions,

z~x!1z~y!1z~z!2z~x1y1z!52@`~x!2`~y!#@`~y!2`~z!#@`~z!2`~x!#$`8~x!@`~y!

2`~z!#1`8~y!@`~z!2`~x!#1`8~z!@`~x!2`~y!#%21,
~31!

`~x!2`~y!5@z~x!2z~y!2z~x1z!1z~y1z!#@z~x!1z~y!1z~z!2z~x1y1z!#,

which are valid for allx,y,zPC. The result of simple but tedious calculations is

@z~g12!1z~g23!1z~g31!2z~g121g231g31!#$9z~g121g231g31!

24@z~g121g23!1z~g231g31!1z~g121g31!#2@z~g12!1z~g23!1z~g31!#%50.

~32!

All zeroes of the first factor in~32! coincide with the poles of the second one as it follows from
the relation

z~x!1z~y!1z~z!2z~x1y1z!5
s~x1y!s~y1z!s~z1x!

s~x!s~y!s~z!s~x1y1z!
. ~33!

Hence this factor must be omitted and one finally obtains the constraint for$g% in the form

z~g12!1z~g23!1z~g31!14@z~g121g23!1z~g231g31!1z~g311g12!#29z~g121g231g31!50.
~34!

The left-hand side of~34! as a function of one of the phases~say,g12! at fixed values of two others
is double periodic and has four simple poles onC/Zv11Zv2. So there are four roots of Eq.~34!
andg12 can be treated as a four-valued function ofg23 andg31 on ~C/Zv11Zv2!

2. The analysis of
degenerate casesv1,v2→` shows that the uniformization problem for the constraint~34! is
relatively complicated and its solution seems to be very nontrivial.

With the use of~24!–~27!, ~30!, and~34! one can express the parameterB and the differences
$ka2kb% through the phases$g%. The result reads

B5 1
2@z~g12!1z~g23!1z~g31!23z~g121g231g31!#, ~35!
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i ~ka2kb!5 1
2@z~gbd!2z~gad!2z~gab!14z~gbd2gad!23z~gab1gbd2gad!#, ~36!

where~abd! is an arbitrary permutation of~123!.
The next step in constructing the solutions to~11! consists in solving Eqs.~21!. The explicit

form of them is as follows:

l21
~2! ~z!5@B1z~g12!1z~z1g23!2z~z2g31!#$2e13`~z!1`~z1g23!2z2~g12!2`~g12!

1z~g12!@z~z1g23!2z~z2g31!#2@z~z1g23!2z~z2g31!#
223@z~z!2z~z2g31!#

3@z~z!2z~z1g23!#1 i ~k12k3!@z~z!2z~g12!2z~z2g31!#1 i ~k22k3!@z~z!

1z~g12!2z~z1g23!#%2`8~g12!1`8~z1g23!1@`~z2g31!2`~z1g23!#@ i ~k32k2!

1z~g12!2z~z2g31!22z~z1g23!13z~z!#50, ~37!

l21
~3! ~z!5@B1z~g31!1z~z1g23!2z~z2g12!#$2e13`~z!1`~z1g23!2z2~g31!2`~g31!

1z~g31!@z~z1g23!2z~z2g12!#2@z~z1g23!2z~z2g12!#
223@z~z!2z~z2g12!#

3@z~z!2z~z1g23!#1 i ~k22k1!@z~z!2z~g31!2z~z2g12!#1 i ~k22k3!@z~z!

1z~g31!2z~z1g23!#%2`8~g31!1`8~z1g23!1@`~z2g12!2`~z1g23!#@ i ~k32k2!

1z~g31!2z~z2g12!22z~z1g23!13z~z!#50. ~38!

It is easy to see that bothl21
~2! (z) and l21

~3! (z) are elliptic functions ofz with poles at
z50,2g23,g31 for ~37! and atz50,2g23,g12 for ~38!. At arbitrary values ofB,$k%,$g% the pole at
z50 is simple and two others are of second order. With the use of~35! and ~36! one can show,
however, thatl21

~2! and l21
~3! are analytic atz50 and the remaining poles are simple. Hence,

according to the Liouville theorem,l21
~2! andl21

~3! must vanish if their residues atz5g23 and values
at z50 are equal to zero. In other words,~37! and ~38! are reduced to four algebraic equations,

e1 i ~k12k3!@2z~g31!1z~g12!#1 i ~k22k3!@z~g311g23!2z~g12!2z~g31!#12`~g311g23!

23`~g31!1`~g12!1z2~g12!1z2~g311g23!13z2~g31!2z~g311g23!@z~g12!13z~g31!#

1@B1z~g12!1z~g311g23!#@2 i ~k12k3!13z~g31!2z~g12!2z~g311g23!#50, ~39!

@B1z~g12!1z~g23!1z~g31!#@2e23`~g31!22`~g23!2`~g12!2z2~g12!2„z~g23!1z~g31!…
2

1z~g12!„z~g23!1z~g31!…13z~g23!z~g31!1 i ~k12k3!„z~g31!2z~g12!…1 i ~k22k3!

3„z~g12!2z~g23!…#1@`~g31!2`~g23!#@ i ~k12k3!1z~g12!1z~g23!22z~g31!#

23`8~g31!22`8~g23!2`8~g12!50, ~40!

e1 i ~k22k1!@2z~g12!1z~g31!#1 i ~k22k3!@z~g121g23!2z~g12!2z~g31!#12`~g121g23!

23`~g12!1`~g31!1z2~g31!1z2~g121g23!13z2~g12!2z~g121g23!@z~g31!13z~g12!#

1@B1z~g31!1z~g121g23!#@2 i ~k22k1!13z~g12!2z~g31!2z~g121g23!#50, ~41!
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@B1z~g12!1z~g23!1z~g31!#@2e23`~g12!22`~g23!2`~g31!2z2~g31!#2„z~g23!1z~g12!…
2

1z~g31!„z~g12!1z~g23!…13z~g23!z~g12!1 i ~k22k1!„z~g12!2z~g31!…1 i ~k22k3!„z~g31!

2z~g23!…]1@`~g12!2`~g23!#@ i ~k22k1!1z~g31!1z~g23!22z~g12!#23`8~g12!

22`8~g23!2`8~g31!50. ~42!

The essential simplification of~40! and ~42! can be made if the formula

`8~x!12`8~y!13`8~z!52@`~z!2`~y!#@z~x!1z~y!2z~x1y!#1@z~x1y1z!2z~x!

2z~y!2z~z!#$6@`~x!1`~y!1`~z!#12@z~x!1z~y!2z~x1y!#

3@z~x1y!1z~x1z!1z~y1z!22z~x!22z~y!22z~z!#%

is taken into account. Finally, with the use of~31!, ~35!, and~36! it is possible after long calcu-
lations to show that all Eqs.~39!–~42! are mutually equivalent. Any extra constraints on the
parameters$g% are absent and~39!–~42! determine the three-particle energy,

E5 1
2~k1

21k2
21k3

2!2 1
2@z2~g12!1z2~g23!1z2~g31!#1 3

2z~g121g231g31!@z~g12!1z~g23!

1z~g31!#22@z~g12!z~g231g31!1z~g23!z~g121g31!1z~g31!z~g121g23!#12@`~g12!

1`~g23!1`~g31!#2 9
4@z~g121g231g31!2z~g12!2z~g23!2z~g31!#

2.

@This result, together with the formulas~35! and ~36!, has been announced in Ref. 24.# Further
simplification ofE can be reached by extracting the energy of the center-of-mass motion with a
total momentumK5k11k21k3 and using expressions for relative quasimomenta$ka2kb% ~36!
in combination with addition theorems~10! and ~31! for the Weierstrass functions,

E5
K2

6
1

1

12
$27̀ ~g121g231g31!28@`~g121g23!1`~g231g31!1`~g121g31!#2@`~g12!

1`~g23!1`~g31!#%. ~43!

Formulas~13!, ~14!, ~35!, ~36!, and ~43! give a complete solution to the problem of finding the
quasiperiodic functionsw(x1 ,x2 ,x3) obeying ~11!. Note also that with the use of~33! one can
write w’s only in terms of sigma functions,

w~x1 ,x2 ,x3!5
A exp~ i(a51

3 kaxa!

s~x12x2!s~x22x3!s~x32x1!

3H s~x12x21g12!s~x22x31g23!s~x32x11g31!

2s~g12!s~g23!s~g31!

1
s~x12x21g122D!s~x22x31g232D!s~x32x11g312D!

s~g122D!s~g232D!s~g312D! J , ~44!

whereD5g121g231g31 and the connections~36! betweenks andgs are implied. The resemblance
of ~44! to the classical Hermite form~6! of the solution to the Lame` equation is evident.
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III. THREE-MAGNON PROBLEM

First, let us note that the lattice equation~4! always has solutions of the type

cd
~M !~n1•••nM !5 (

b51

M

c~M21!~n1•••nb21nb11•••nM !, EM5EM21 , ~45!

wherec (M21)(n1•••nM21) obeys the equation of the type~4! with M replaced byM21. The
wave functions~45! describe theM -magnon states which are generated from~M21!-magnon
ones by the action of the component of total spin operator reducing the absolute value ofSz . The
remainedM -magnon states corresponding to the lowest possible eigenvalue of the total spin are
described bycs which cannot be presented in the form~45!. Now let us construct three-magnon
states of this type in terms of the ansatz which is similar to the symmetrized three-particle wave
function ~13! and ~14!:

c~3!~n1 ,n2 ,n3!5 (
PPp3

exp~ i(a51
3 kanPa!

s~nP12nP2!s~nP22nP3!s~nP32nP1!
FB1

]

]g12
1

]

]g23

1
]

]g31
Gs~nP12nP21g12!s~nP22nP31g23!s~nP32nP11g31!. ~46!

Herep3 is the group of all permutations of the numbers from 1 to 3. The Weierstrass functions are
defined on the torusTN,v . Unlike the particle case,ks andgs have to be restricted by the
periodicity ofc in each argument,

Nka2 ih1~gab1gad!52p l a , l aPZ, ~47!

where the auxiliary phases are defined by~16!.
To calculate the left-hand side of~4! atM53 with the use of~46!, one should represent in a

closed form the sum over lattice sites of the following type,

W~k,$g%,$ l %!5 (
s51;sÞ l1 ,l2

N21

exp~ iks!`~s!
s~s2 l 11g1!s~s2 l 21g2!

s~s2 l 1!s~s2 l 2!
, l 1 ,l 2PZ, ~48!

wherek, g1, and g2 are chosen so as to ensure the periodicity of the summands in~48! with
respect tos,

kN2 ih1~g11g2!50~mod 2p!.

It can be done by using the technique based on the Liouville theorem and described earlier in
Refs. 12 and 13. The result reads

W~k,$g%,$ l %!5F )
a51

2
s~ l a2ga!

s~ l a! G H e~k,g1 ,g2!1 f ~k,g1 ,g2! (
a51

2

@z~ l a!2z~ l a2ga!#

2@z~ l 1!2z~ l 12g1!#@z~ l 2!2z~ l 22g2!#1
1

2 (
a51

2

@`~ l a2ga!2`~ l a!

2„z~ l a!2z~ l a2ga!…2#J 12(
a51

2

exp~ ikl a!F )
bÞa

2
s~ l a2 l b1gb!

s~ l a2 l b! Gs~ga!

3H `~ l a!F f ~k,g1 ,g2!2z~ga!2 (
bÞa

„z~ l a2 l b1gb!2z~ l a2 l b!…G2`8~ l a!J ,
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where

f ~k,g1 ,g2!5z1S 2
kv

2p
1

i

p
zS v

2 D ~g11g2! D1~p i !21F ikz1S v

2 D12z1S 12D zS v

2 D ~g11g2!G ,

e~k,g1 ,g2!5
1

2 F`1S 2
kv

2p
1

i

p
zS v

2 D ~g11g2! D2 f 2~k,g1 ,g2!G ,
and the notatioǹ 1(x),z1(x) is used for the Weierstrass functions defined on the torusT1,v.

Now the lhs of~4! atM53 can be divided into two parts,

L~n1 ,n2 ,n3!5L1~n1 ,n2 ,n3!1L2~n1 ,n2 ,n3!,

where

L1~n1 ,n2 ,n3!5 (
PPp3

(
a51

3

xa~nP1 ,nP2 ,nP3!,

~49!

L2~n1 ,n2 ,n3!5 (
PPp3

(
a51

3

@ma
~1!~nP1 ,nP2 ,nP3!1ma

~2!~nP1 ,nP2 ,nP3!#,

and

x1~ l 1 ,l 2 ,l 3!5expS i (
a51

3

kal aD s~ l 12 l 21g12!s~ l 22 l 31g23!s~ l 32 l 11g31!

s~ l 12 l 2!s~ l 22 l 3!s~ l 32 l 1!
$@B1z~ l 22 l 3

1g23!1z~ l 12 l 21g12!1z~ l 32 l 11g31!#@e~k1 ,g12,g13!1„f ~k1 ,g12,g13!

2z~g12!…„z~ l 12 l 21g12!2z~ l 12 l 2!…1„f ~k1 ,g12,g13!2z~g13!…„z~ l 12 l 31g13!

2z~ l 12 l 3!…2„z~ l 12 l 21g12!2z~ l 12 l 2!…„z~ l 12 l 31g13!2z~ l 12 l 3!…2`~ l 1

2 l 2!2`~ l 12 l 3!2 1
2„z

2~g12!1z2~g13!2`~g12!2`~g13!…#1@z~ l 12 l 21g12!

2z~ l 12 l 2!#@`~g12!2`~ l 12 l 31g13!#1@z~ l 12 l 31g13!2z~ l 12 l 3!#@`~ l 12 l 2

1g12!2`~g13!#2`~ l 12 l 21g12!@ f ~k1 ,g12,g13!2z~g12!#1`~ l 12 l 31g13!

3@ f ~k1 ,g12,g13!2z~g13!#2`~g12!z~g12!1`~g13!z~g13!1 1
2@`8~g13!

2`8~g12!#%, ~50!

m1
~1!~ l 1 ,l 2 ,l 3!5exp@ i „l 2~k11k2!1k3l 3…#

s~ l 22 l 31g23!s~ l 22 l 31g13!

s2~ l 22 l 3!
s~g12!$@B1z~ l 22 l 3

1g23!2z~ l 22 l 31g13!1z~g12!#@`~ l 12 l 2!~ f ~k1 ,g12,g13!2z~g12!2z~ l 22 l 3

1g13!1z~ l 22 l 3!!1`8~ l 12 l 2!#1`~ l 12 l 2!@`~g12!2`~ l 22 l 31g13!#%, ~51!
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m2
~1!~ l 1 ,l 2 ,l 3!5exp@ i ~ l 3~k11k3!1k2l 2!#

s~ l 22 l 31g23!s~ l 22 l 32g12!

s2~ l 22 l 3!
s~g13!$@B1z~ l 22 l 3

1g23!2z~ l 22 l 32g12!2z~g13!#@`~ l 32 l 1!~ f ~k1 ,g12,g13!2z~g13!1z~ l 22 l 3

2g12!2z~ l 22 l 3!!1`8~ l 12 l 3!#1`~ l 32 l 1!@2`~g13!1`~ l 22 l 32g12!#%.

~52!

The quantitiesx2,m2
~1! ,m2

~2! and x3,m3
~1! ,m3

~2! are obtained from~50!–~52! by cyclic permutations
~123!→~231!, ~123!→~312! of the indices in$ka%,$ l a%,$gab%. Note thatL2(n1 ,n2 ,n3) can be
transformed as follows. If, for example,Q is the transposition~1↔2!, then

(
PPp3

m2
~2!~nP1 ,nP2 ,nP3!5 (

PQPp3

m2
~2!~nPQ1 ,nPQ2 ,nPQ3!5 (

PPp3

m2
~2!~nP2 ,nP1 ,nP3!.

Hence the terms in~49! can be combined as

(
PPp3

$@m1
~1!~nP1 ,nP2 ,nP3!1m2

~2!~nP2 ,nP1 ,nP3!#1@m1
~2!~nP1 ,nP2 ,nP3!1m3

~1!~nP3 ,nP2 ,nP1!#

1@m2
~1!~nP1 ,nP2 ,nP3!1m3

~2!~nP1 ,nP3 ,nP2!#%. ~53!

Now one can see with the use of the explicit expressions~51! and ~52! that the terms in all the
three braces of~53! vanish under the conditions which are very similar to the conditions~22! and
~23! for vanishing of the second-order poles in the left-hand side of the three-particle equation
~17!:

@B1z~g12!1z~z1g23!2z~z2g31!#@2 f ~k1 ,g12,g13!1 f ~k2 ,g23,g21!12z~g12!1z~z2g13!

2z~z1g23!#22`~g12!1`~z2g31!1`~z1g23!50, ~54!

@B1z~g31!1z~z1g23!2z~z2g12!#@2 f ~k3 ,g32,g31!1 f ~k1 ,g12,g13!12z~g31!1z~z2g12!

2z~z1g23!#22`~g31!1`~z2g12!1`~z1g23!50,
~55!

z5nP22nP3 .

Really, the equations ~22!, ~23! and ~54!, ~55! exactly coincide after changing
ka→ i f (ka ,gab ,gad). Hence one can use all the techniques of Sec. II for determining the rela-
tions between the parameters of the three-magnon wave function~46!.

SinceL2(n1 ,n2 ,n3) vanishes if the conditions~54! and ~55! are fulfilled, the final step of
construction consists in the investigation of the structure ofL1(n1 ,n2 ,n3). It can be done along
the lines of Sec. II with some minimal changes. One finds thatc(n1 ,n2 ,n3) obeys~4! if B is
expressed through thegs as in ~35!, ks and gs are connected by~36! after changing
ika→2 f (ka ,gab ,gad), and the three-magnon energy is given by

E35«~k1 ,g12,g13!1«~k2 ,g21,g23!1«~k3 ,g31,g32!1 1
6@ f ~k1 ,g12,g13!1 f ~k2 ,g21,g23!

1 f ~k3 ,g31,g32!#
22 1

12$27̀ ~g121g231g31!28@`~g121g23!1`~g231g31!1`~g311g12!#

2`~g12!2`~g23!2`~g31!%,

where
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«~k,g1 ,g2!5
2

v Fz1S v

2 D2NzS v

2 D G2
1

2
`1S 2

kv

2p
1

i

p
zS v

2 D ~g11g2! D .
The relations of the type~36! can be simplified by using the periodicity conditions~47! and
Legendre relation~9!. The result reads

z1S gab1gad2 l av

N D2z1S gba1gbd2 l bv

N D12z1S v

2 D l a2 l b
N

1
2

Nv FNzS v

2 D2z1S v

2 D G~2gab

1gad2gbd!1
1

2
@z~gab!1z~gad!2z~gbd!14z~gad2gbd!13z~gab1gbd2gad!#50,

where ~abg! is an arbitrary combination of~123! and l 1 ,l 2 ,l 3PZ. The corresponding three-
magnon wave functions are determined by the solutions of these three transcendental constraints.
As v→0, ~56! transform to the Bethe-ansatz equations17 for the periodic XXX Heisenberg chain
with nearest-neighbor spin interaction. As it follows directly from the definition, the wave func-
tions of the form~45! for three magnons are expressed through two-magnon ones found earlier in
Ref. 22.

IV. SUMMARY AND DISCUSSION

The results presented above can be treated as a first step to the solution of the most general
integrable 1-D translationally invariant Heisenberg chain with elliptic exchange which might
provide rigorous proof of the validity of the use of asymptotic Bethe ansatz for thermodynamic
description of infinite particle and spin systems with the short-range interaction~sinhar !22. It is
natural to expect that almost all previous results of Bethe, Sutherland, and Haldane in the inte-
grable 1-D quantum chains will be unified by this hypothetical solution. The study of analytic
properties may serve, as it was demonstrated above, as a guide to its construction.

It would be highly desirable to explain the reasons of the appearance of the Bethe-like
transcendental equations~56! by clarifying the algebraic structures which give rise to the integra-
bility of these spin chains. Some progress has been made recently in constructing the family of the
operators which commute with the Hamiltonian~3!.25 The way of their extracting from some
generalized transfer matrix has not yet been found. It is worth noting also that the analogy of spin
and particle dynamics is extended further to give the correspondence between multimagnon wave
functions and their many-particle double quasiperiodic counterparts. The details of the proof will
be given elsewhere.

However, some problems are open even for the three-magnon case. In particular, it will be of
interest to show that the solutions to~56! give a complete set of16N(N21)(N25) three-magnon
eigenvectors of the Hamiltonian~3! with total spinS5Sz5N/223. In the two-magnon case the
answer to the similar question is positive.26 The selection of the ground state inM53 sector for
antiferromagnetic type of coupling still demands nontrivial algebraic ideas and needs further
detailed investigation.
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In this paper we analyze the relationship between operatorial quantization and
deformation quantization for Hamiltonian systems onR2n. We define heuristically
generalized symbols for the operators, which make this connection. We construct
explicitly deformations which are not equivalent to the Moyal one and show that an
infinitesimal, classical canonical transformation does not change the equivalence
class of the deformation. The results are applied to the quantum integrability of
some two dimensional Hamiltonian systems. ©1996 American Institute of Phys-
ics. @S0022-2488~96!01001-6#

I. INTRODUCTION

The relationship between classical and quantum mechanics is not completely understood.
Given a classical Hamiltonian system defined on the 2n dimensional phase spaceR2n, with
coordinates (qi ,pi), i51,...,n, the quantization map is a linear map which sends a real function
fPC`(R2n) on the phase space to an Hermitian operatorf̂ on the Hilbert space of square inte-
grable functions of variablesqi ,L

2(Rn). The usual rule of quantization is to associate Hermitian
operators (q̂i ,p̂ j ) to the basic functions (qi ,pj ) such that,

q̂iC~q!5qiC~q!,
~1!

p̂ jC~q!52 i\
]

]qj
C~q!,

and the constant function 1 is mapped to the identity operator. The Lie bracket of these operators
is related with the Poisson bracket of the corresponding functions on the phase space by

@ q̂i ,p̂ j #5 i\$qi ,pj% ˆ5 i\d i j . ~2!

As it is well known, this rule does not completely determine the quantization map. Consider for
example a polynomialqnpm. We can associate several operators to it, corresponding to different
ordering rules. The first attempt to select an ordering rule is due to Dirac.1 According to the Dirac
rule, one tries to associate Hermitian operators to real functions in phase space in such a way that
the relation between Lie brackets and Poisson brackets~2! is maintained for all functions,

@ f̂ ,ĝ#5 i\$ f ,g% ˆ ; f ,gPC`~Rn!. ~3!

It is also known that this rule is inconsistent~see Ref. 2, Chap. 5, Sec. 4 for a proof!. Dirac itself
noticed this could happen, and proposed to relax the rule by requiring that it were valid only to
first order in\.

There is a wide variety of ordering rules. All of them satisfy the last requirement, and can be
expressed through the formal integral,3

f̂5E dnsdntF S i\ s•t D f̄ ~s,t !expS i\ ~s• p̂1t•q̂! D , ~4!
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where

f̄ ~s,t !5
1

~2p\!2n
E dnqdnp expS 2

i

\
~s•p1t•q! D f ~q,p! ~5!

is the Fourier transform of the classical observable, andF is an arbitrary function. Some of them
associate Hermitian operators to real functions, as for example the Weyl rule, which corresponds
to takeF 51.4

The ordering rule is not the only origin of arbitrariness in the process of quantization. One
could consider quantizing a functiong(q,p,\) whose limit when\→0 is f (q,p). Since the
inverse process to quantization involves taking a limit\→0, the operator associated tog(q,p,\)
is a physically admissible quantization of the classical observablef (q,p).

Finally, let us consider the effect of making a classical canonical transformation,
(q,p)°(Q(q,p),P(q,p)). Let f be a classical observable, and letf̂ and F̂ be the corresponding
quantum observables according to the Weyl rule, in the old and new canonical coordinates respec-
tively. The map f̂°F̂ is not a unitary transformation~or more generally, an isometry5! for a
general canonical transformation, since~3! is inconsistent. So both quantization maps are differ-
ent, and as before, both are physically admissible. Each quantum theory has its own quantum
canonical transformations~i.e. unitary or isometric transformations! but generally the mapf̂°F̂
may not correspond to any of them. This is also true for the map given by different ordering rules.

So there is a big degree of arbitrariness when facing the problem of selecting a quantum
theory once the classical theory is given. The only thing we know for sure is that the classical
theory must be the limit when\→0, and this limit is a sort of collapsing limit, which does not
admit a unique inverse process. In order to make a selection, we must add other criteria, as for
example, maintaining the symmetries present in the classical theory.

There are other methods of approaching the problem of quantization. For instance, a powerful
one is the deformation theory.6 The quantization process is understood as a deformation of the
Poisson bracket of functions on phase space in terms of the parameter\. The deformation is just
an inverse process of the ‘‘contraction’’\→0. A deformation of the Poisson algebra was written by
Moyal,7 and it is indeed a sort of fundamental deformation on a flat Poisson manifold. The Moyal
bracket is related with the Weyl quantization rule through a kind of symbols~Weyl symbols!
associated to pseudodifferential operators. Other deformations are related with operators by means
of other kinds of symbols. The purpose of this paper is to clarify the relationship between both
methods of quantization, the deformation and operatorial approaches.

In Section II we explore the connection between symbols and ordering rules. In Section III we
review some facts about deformations of Poisson algebras, construct explicitly deformations non-
equivalent to the Moyal one and analyze the effect of a classical canonical transformation when
going to the quantum theory. In Section IV we make some applications to the quantum integra-
bility of two dimensional Hamiltonian systems. Finally, in Section V we state our conclusions.

II. SYMBOLS AND ORDERING RULES

A symbol of a pseudodifferential operator is a function associated to it in such a way that the
operator can be obtained if the symbol is known. The product of symbols is defined as the symbol
of the composite operator. The subject of pseudodifferential operators and their symbols is a well
studied subject, and we only make here a rapid survey. Exact statements and proofs concerning
t-symbols can be found for example in Ref. 8.

Let us consider a differential operatorA of orderm which acts onuPC`(Rn) through

Au~q!5 (
uau<m

aa~q!Pau~q!, ~6!
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wherea5~a1,...,an! is a multiindex witha j50,...,m anduau5a11...1an . In what follows a greek
character will denote a multiindex, and a Latin one a simple index.aa(q)PC`(Rn),
P5(P1 ,...,Pn), Pj52 i\(]/]qj ) andPa 5 P1

a1...Pn
an.

Let u(q)PS(Rn), the Schwartz space, and consider the Fourier transform

ū~p!5
1

~2p\!n
E dnq expS 2

i

\
q•pDu~q!,

~7!

u~q!5E dnp expS i\ q•pD ū~p!.

Let us apply the operatorA on the second expression of~7!,

Au~q!5
1

~2p\!n
E dnpdnq8 expS i\ p•~q2q8! DsA~q,p!u~q8!, ~8!

where we have introduced the standard symbol ofA as the function

sA~q,p!5 (
uau<m

aa~q!pa5expS 2
i

\
q•pDA expS 1\ q•pD . ~9!

Equation~8! is valid even for more general functionsu(q) by conveniently regularizing the
integral, so one can consider~8! as the definition of the operatorA through his standard symbol.

One can consider more general operators,

Bu~q!5
1

~2p\!n
E dnpdnq8 expS i\ p•~q2q8! Db~q,q8,p!u~q8!, ~10!

where the functionb(q,q8,p) is the amplitude of the operator belonging to a suitably restricted
class of functions. It is a remarkable fact that an operator like~10! can be uniquely written as

Bu~q!5
1

~2p\!n
E dnpdnq8 expS i\ p•~q2q8! D .sA

t ~~12t!q1tq8,p!u~q8! ~11!

for any tPR. The functionsA
t (x,p) is thet-symbol of the operatorA. The standard symbol~or

left symbol! corresponds to taket50. For t51 it is called the right symbol, and fort51/2 it is
called the Weyl symbol. A differential operator is a special case of~10!, so one can define its
t-symbol for anyt, and not only the standard symbol. Lett1 andt2 be two arbitrary real numbers.
One can obtain thet2-symbol of a differential operator in terms of thet1-symbol through the
formula,

st2~x,p!5(
a

~t12t2!
uau]p

aPast1~x,p!. ~12!

An interesting point about symbols is that they have a composition rule. LetA8 andA9 be
differential operators with symbolss8t ands9t respectively, then the symbol of the composition
A8+A9 has the form

st~x,p!5(
b,g

~21! ubut ubu~12t! ugu

b!g!
~]p

gPbs8t~x,p!!~]p
bPgs9t~x,p!!. ~13!
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The composition formula defines an associative, noncommutative product on the space of sym-
bols, different for eacht which we denote bys8t

* ts9t.
The Weyl symbol has the property

sA
1/2~x,p!5sA†

1/2
~x,p!, ~14!

where the bar means complex conjugation andA† is the adjoint operator. SoA5A† is equivalent
to the real valuedness of the Weyl symbol.

We want now to compute the standard symbol of the operator associated to a function on the
phase space by one of the ordering rules~4!.3 We assume that the functionF (( i /\)s•t), which
determines the ordering rule, is always different from zero, hasF ~0!51 and can be expanded as

F S i\ s•t D5(
m
F mS i\ s•t Dm. ~15!

Using that

expS i\ ~ t•q̂1s• p̂! D5exp
is•t

2\
exp

i t •q̂

\
exp

is• p̂

\
, ~16!

the operatorf̂ in ~4! can be written as

f̂5E dnsdntF S i\ s•t D f̄ ~s,t !exp is•t2\
exp

i t •q̂

\
exp

is• p̂

\
. ~17!

So, according to~9!, the standard symbol of this operator is

s
f̂

0
5E dnsdntF S i\ s•t D f̄ ~s,t !exp is•t2\

exp
i t •q

\
exp

is•p

\
~18!

and substituting the Taylor expansion forF ~15! and for the exponential, it is easy to see that the
standard symbols

f̂

0
(q,p) of f̂ is

s
f̂

0
~q,p!5(

m
~2 i\!mFmS (

i51

n

]pi]qi D mf ~q,p!, ~19!

where

Fm5 (
k50

m

F k

1

~m2k!! S 12D
m2k

, ~20!

that is,

ex/2F ~x!5(
m

Fmx
m. ~21!

For a monomialf5qlpr ,

s
f̂

0
~q,p!5(

m
~2 i\!mFm

1

~ l2m!! l ! ~r2m!! r !
ql2mpr2m. ~22!

Let us see some examples. IfF 5exp(2 is•t/2\), then
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s
f̂

0
~q,p!5 f ~q,p!, ~23!

so quantizing with this ordering rule is equivalent to consider the functions on the phase space as
standard symbols of the quantum operators. More generally, ifF 5exp~( is•t)/2\~t21/2!!, the
t-symbol of the quantum operator is the function itself.

For a general ordering rule, the same interpretation is possible. The classical observable is
considered as a new kind of symbol of the quantum operator. One can express this new symbol in
the same way as~11!. Let us express the action of operatorf̂ through the standard symbol~19!,

f̂ u~q!5
1

~2p\!n
E dnpdnq8 expS i\ p•~q2q8!Ds

f̂

0
~q,p!u~q8!

5
1

~2p\!n
E dnpdnq8 expS i\ p•~q2q8!D •(

m
~2 i\!mFmS (

i51

n

]pi]qi D mf ~q,p!u~q8!.

~24!

Integrating by parts]pi,

f̂ u~q!5(
m

Fm

1

~2p\!n
E dnpdnq8 expS i\ p•~q2q8! D •]r

mf ~q1r~q82q!,p!ur50u~q8!

5(
m

Fm

1

~2p\!n
1

2p\ E dnpdnq8drdz expS i\ p•~q2q8! D
3expS 2

i zr

\ D •S i z\ Dmf ~q1r~q82q!,p!u~q8!, ~25!

and finally,

f̂ u~q!5
1

~2p\!n
E dnpdnq8 expS i\ p•~q2q8! D • 1

2p\ E drdz

3expS 2
i z

\ S r2
1

2D DF S i z\ D f ~q1r~q82q!,p!u~q8!. ~26!

It is easy to see that forF ( is•t/\)5exp~( is•t)/2\~t21/2!!, one getst-symbol. Equation~26! can
also be interpreted in the following way. For eachr, the functionf (q1r(q82q),p) gives, under
the integral, a different operator, and we are taking a linear superposition of all of them, whose
coefficients are a distribution which is the Fourier transform of the functionF( i z/\)5exp~i z/
2\!F ~i z/\!. We will call these symbolsF -symbols, and will denote them bysF .

Let F 1,F 2 be two arbitrary functions. By using the standard symbol, one can obtain the
F 2-symbol of an operator in terms of theF 1-symbol,

sF 2
~q,p!5(

m
~2 i\!mFm

12S (
i51

n

]pi]qi D msF 1
~q,p!, ~27!

where

Fm
125(

r50

m

Fm2r
1 F̃r

2,
1

F2~x!
5(

m
F̃m
2 xm,

F1~x!

F2~x!
5
F 1~x!

F 2~x!
5(

m
Fm
12xm. ~28!
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The composition formula forF -symbols can be computed from the composition formula~13! for
t50 and substituting the standard symbols in terms of theF -symbols,~19!. The result is that the
F -symbol of the composition of operatorsA8+A9 in terms of the symbolss8F ands9F of A8 and
A9, is

sF 5s8F * F s9F 5 (
d1e5m1n

~2 i\! ud1euCd,e,m,n~]p
d]q

ms8F !~]p
e]q

ns9F !, ~29!

where

Cd,e,m,n5 (
b50

min~d,m!

(
g50

min~e,n!

(
a50

min~d2b,n2g!

F̃ ud1e2b2g2auF ubuF ugu

•

~d1eb2g2a!!

b!g! ~m2b!! ~e2g!!a! ~d2b2a!! ~n2g2a!!
. ~30!

It is also easy to see that ifFm50 for oddm, then Hermitian operators have realF -symbols.

III. DEFORMATIONS OF POISSON ALGEBRAS

We consider a symplectic manifoldM with local symplectic coordinates (qi ,pi), i51,...,n,
and symplectic two form,v. On the associative, commutative algebraN5C`(M ) there is a
Poisson algebra structure given by

$ f ,g%5v~Xf ,Xg!, ~31!

where f ,gPN andXf ,Xg are the Hamiltonian vector fields associated tof ,g defined by

d f~• !5v~Xf ,• !. ~32!

Let E(N,l) be the space of formal series inl with coefficients inN. A formal deformation of
the associative commutative algebra of pointwise multiplicationC`(M ) is a bilinear map
* :E(N,l)3E(N,l)→E(N,l) given by a formal series

u* v5(
r50

`

l rCr~u,v ! u,vPE~N,l! ~33!

with Cr(u,v) bidifferential operators,C0(u,v)5uv, and such that it satisfies the associativity
condition

~u* v !*w5u* ~v*w! u,v,wPE~N,l!. ~34!

In general, formal deformations are not commutative. LetM beR2n; the product ofF -symbols
~29! is a formal deformation of the associative algebraC`(R2n), with deformation parameteri\.
The bidifferential operatorsCr(u,v) have constant coefficients and the associativity is guaranteed
by the associativity of the composition of operators. These deformations satisfy the additional
condition

C1~u,v !2C1~v,u!5$u,v%. ~35!

For t-symbols, notice that~13! can be expressed as
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u~q,p!* rv~q,p!5(
m

~ i\!m

m! S ~t21!(
i51

n

]pi8 ]qi9 1t(
i51

n

]pi9 ]qi8 D m~u~q,p!,v~q,p!!, ~36!

where the notation means

]p8]q9~u~q,p!,v~q,p!!5]pu~q,p!]qv~q,p!, ~37!

so formally one can write

u~q,p!* tv~q,p!5exp~ i\!S ~t21!(
i51

n

]pi8 ]qi9 1t(
i51

n

]pi9 ]qi8 D m•~u~q,p!,v~q,p!!. ~38!

For t51/2, the argument in the exponential is~one half of! the Poisson bracket. It has been shown
in Ref. 6 that the exponential is the only function of the Poisson bracket which gives an associative
formal deformation.

The bracket$u,v%(F ) 5 ( i\)21(u* F v 2 v* F u) satisfies the Jacobi Identity,

S$$u,v%~F !,w%~F !50, ~39!

whereSmeans circular symmetrization with respect to the entries,u,v,w. For the formal defor-
mation associated to any ordering rule, the zero order term in\ of this bracket is the Poisson
bracket, so we have a formal deformation of the Poisson bracket. Fort51/2, the corresponding
deformation is the Moyal bracket7

$u,v%~M !52 sinhS n

2 S (
i51

n

]pi9 ]qi8 2(
i51

n

]pi8 ]qi9 D D ~u,v ! ~40!

with n5( i\)2.
Consider an associative formal deformation, for example de Weyl deformation,u*Wv. Let T

be a mapT:E(N,l)→E(N,l), such that it can be expressed by the formal series

T5Id1(
s51

`

lsTs , ~41!

whereTs are differential operators onN. One can construct the formal deformation given by

u* Tv5T~T21u*WT
21v !, ~42!

whereT21 has an obvious meaning. It is associative by construction. One can define theT-symbol
of an operatorf̂ as

s
f̂

T
5Ts

f̂

W
~43!

and the product ofT-symbols is the deformation written above~42!. If the seriesT in l5i\ is
such thatTr50 for oddr , then theT-symbol of an Hermitian operator is real. We must point out
that in order for this definition ofT-symbols to be meaningful, the formal series~43! must be
convergent, so some restrictions onT or on the class of functions which areT-symbols, should be
imposed. We are not going to elucidate this point in this paper.

In general, two associative formal deformations are called equivalent if there is a seriesT
connecting them by means of Eq.~42!. It is easy to see that this is an equivalence relation.

All deformations~29! are equivalent by means of the formal series~27!. The quantization
maps~that is, the interpretation of functions on the phase space as symbols of operators! given by
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two equivalent deformations are not the same, since they associate different operators to the same
classical observable. But there exists a ‘‘classical’’ observableg(q,p,\) related to the classical
observablef (q,p) by g5T f ~in particular,g→ f when\→0! and such that the operator associated
to g with one quantization map is the same as the operator associated tof with the other quanti-
zation map. In this sense, one can say that the quantum theories are essentially equivalent.

The commutator ofT-symbols is also a formal deformation of the Poisson bracket. Following
Ref. 6, two formal deformations

$u,v%~A!5$u,v%1(
r51

`

l rCr
~A!~u,v !,

~44!

$u,v%~B!5$u,v%1(
r51

`

l rCr
~B!~u,v !,

arec-equivalent if there is a formal series~41! such that the relation

T$u,v%~A!5$Tu,Tv%~B! ~45!

is formally satisfied. Two equivalent associative formal deformations can give the same deforma-
tion of the Poisson bracket, and in this case the map sending the operators obtained with one
quantization map to the operators obtained with the other quantization map preserves commuta-
tors, so it is a unitary transformation, irrelevant in the quantum theory. In this way, we can focus
on the easier issue of equivalence of deformations of the Poisson bracket.

We are going to construct inequivalent deformations. Given a formal series like~44!, it is a
formal deformation if the Jacobi identity~39! is satisfied. At each order, the Jacobi identity is

S (
r1s5t

Cs~Cr~u,v !,w!50 r ,s>0, ~46!

which can be written as

]Ct~u,v,w!5SCt~$u,v%,w!1S$Ct~u,v !,w%52S (
r1s5t

Cs~Cr~u,v !,w! r ,s>1. ~47!

The ] symbol in the left hand side of Eq.~47! is the differential operator of the Chevalley
cohomology, acting onp-cochains which are alternatep-differential maps ofNp toN. If the Jacobi
identity is satisfied up to ordert21, then the right hand side of Eq.~47! ~notice that it only
depends onCr , r,t! is a 3-cocycle, and in order for the Jacobi identity to be satisfied up to order
t, it must be a cobord. Fort50 the identity is trivially satisfied and fort51

]C1~u,v,w!50, ~48!

which means thatC1 is a 2-cocycle in the Chevalley cohomology.
Let us write Eq.~45! at ordert,

(
r1s5t

TsCr
~A!~u,v !2 (

r1s1s85t

Cr
~B!~Tsu,Ts8v !50, r ,s,s8>0, ~49!

which can be rewritten as

Ct
~A!~u,v !2Ct

~B!~u,v !1Gt~u,v !5]Tt~u,v !, ~50!
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whereGt collects all terms depending onCr
(A), Cr

(B) andTr for r,t. For our purposes, it will be
enough to say thatGt50 if Tr50 for r,t. Two deformations are equivalent at order 1 if the
difference of the two cocyclesC1

(A)2C1
(B) is a cobord]T1. If the cocycleC1 is itself a cobord, the

deformation is equivalent to the zero deformation at order 1, and we say that the deformation is
trivial to this order. For the Moyal deformationC1

(M ) is a nontrivial 2-cocycle. Indeed, the dimen-
sion of the second order cohomology space is one for a flat Poisson manifold, so we have that at
order one there is only one nontrivial possibility.

Consider a deformation$u,v%(A) as in Eq.~45!. Let us construct another deformation, by
modifying C2

(A) with a term proportional toC1
(A):

C1
~B!5C1

~A! , C2
~B!5C2

~A!1mC1
~A! . ~51!

It can be shown inductively that there is a general solution forCr
(B) satisfying the Jacobi identity,

of the form

Cr
~B!5(

s50

r

msS r2s
s DCr2s

~A! , ~52!

in terms of the binomial coefficients (s
r2s). Notice that at each order the expansion inm is finite.

If we modify the term of ordert11 instead of the order two, then the form of the successiveCr
(B)

is

Cr
~B!5 (

s50

@r /t#

msS r2ts
s DCr2ts

~A! , ~53!

where@r /t# is the integer part ofr /t. If the cocycleC1
(A) is nontrivial, the deformations obtained

in this way are not equivalent, neither to the original deformation, nor equivalent between them.
The Moyal bracket has this feature, so this mechanism produces deformations which are not
equivalent to the Moyal bracket.

Now we are going to consider the effect of making a canonical transformation. The Moyal
bracket can be expressed in a covariant way by writing the differential operatorsCr

(M ) as

Cr
~M !~u,v !5

1

22r~2r11!!
P2r11~u,v !, ~54!

Pr~u,v !5L i1 j 1•••L i r j r¹ i1••• i r
u¹ j 1••• j r

v, ~55!

whereLi j is the 2-tensor which is the inverse matrix of the symplectic form, and¹ is the covariant
derivative associated to a flat symplectic connection, that is, such that¹L50. The bracket satisfies
the Jacobi identity if both conditions are satisfied~See Ref. 6!. In M5R2n, one can choose
coordinates (q,p) in such way that the coefficients of the connection are zero, and we recover the
Moyal bracket as in~40!. If we change the flat connection, the Moyal bracket will be different, but
in some symplectic coordinates (Q,P), it is expressed again in the usual form. Therefore, to
quantize in different global symplectic coordinates corresponds to take the Moyal bracket with
different flat connections. We can ask if the Moyal deformations obtained with different flat
connections are equivalent~notice that the mapT which realizes the equivalence can change even
the basic commutators!. We do not have a rigorous answer to that question, but we are going to
show that making an infinitesimal canonical transformation we stay in the same equivalence class.

Let us make the canonical transformation (q,p)→(Q(q,p),P(q,p)). A function of the phase
spaceF has local representationsf (q,p), andF(Q,P) in the old and new symplectic coordinates
respectively, satisfying
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f ~q,p!5F~Q~q,p!,P~q,p!!. ~56!

If the transformation is infinitesimal with parametere, then

f ~q,p!5F~Q~q,p!,P~q,p!!'F~q,p!1e$F~q,p!,h~q,p!% ~57!

or

F~q,p!' f ~q,p!2e$ f ~q,p!,h~q,p!%, ~58!

where the functionh is the generator of the infinitesimal canonical transformation. We denote by
superindicesA andB the Moyal deformations corresponding to the symplectic coordinates (q,p)
and (Q,P) respectively. LetH(Q,P) be the local representation of$F ,G %(B). Using ~57!

H~Q~q,p!,P~q,p!!'H~q,p!1e$H~q,p!,h~q,p!% ~59!

and

H~q,p!5$F~q,p!,G~q,p!%~A!

'$ f ~q,p!,g~q,p!%~A!2e$$ f ~q,p!,h~q,p!%,g~q,p!%~A!

1e@$ f ~q,p!,$h~q,p!,g~q,p!%%~A!#. ~60!

So in the local representation (q,p),

$F ,G %~B!2$F ,G %~A!5e$$ f ,g%~A!,h%2e@$$ f ,h%,g%~A!2$ f ,$g,h%%~A!#. ~61!

Let us look at this equation order by order inn5( i\)2,

C1
~B!2C1

~A!'e@$C1
~A!~ f ,g!,h%2C1

~A!~$ f ,h%,g!2C1
~A!~ f ,$g,h%!#

5e@]~C1
~A!~ .,h!!~ f ,g!2]C1

~A!~ f ,g,h!#, ~62!

and since]C1
(A)50, thenT15eC1

(A)(.,h). At order r , using that the bracketA satisfies the Jacobi
identity, one can see that

~Cr
~B!2Cr

~A!1Gt!~ f ,g!'e@]~Cr
~A!~ .,h!!~ f ,g!#, ~63!

soTr5eCr
(A)(.,h).

In this way we have shown that for global symplectic coordinates differing by an infinitesimal
transformation, the Moyal brackets belong to the same equivalence class of deformations. It seems
that all deformations used in physics to quantize a Hamiltonian system fall in the same equiva-
lence class, and perhaps other deformations, as the ones we constructed below, inequivalent to the
Moyal bracket, do not admit a representation by Hermitian operators on a Hilbert space, in the
same way that the trivial deformation, the Poisson bracket, does not admit one.

IV. APPLICATIONS TO QUANTUM INTEGRABILITY OF TWO DIMENSIONAL
HAMILTONIAN SYSTEMS

A Hamiltonian system with 2 degrees of freedom is classically integrable if there is a function
I (q,p) independent of the Hamiltonian such that the Poisson bracket$H,I %50. A quantization
map sendsH andI to the operatorsĤ and Î , but in general, these operators do not commute. One
can ask if there exists an ordering rule which makes the corresponding operators commute, or
more generally, if there exists a particular quantization map for which the operators commute. We
have found, when dealing with the examples that the first possibility is not satisfied in most of the
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cases, so we ask for more general quantization maps. This seems possible because one can find a
classical canonical transformation whereH andI are the new momenta, and the Weyl quantization
map brings them to operators which commute trivially. Of course, such canonical transformation
could be very difficult to find, or might not be globally well defined, so this procedure seems to be
impractical in order to analyze the problem of quantum integrability.

But we saw in Section III that infinitesimal classical canonical transformations are reflected in
the commutator of symbols as a change to a equivalent deformation. Assuming that this is true for
finite canonical transformations we can look for deformations, equivalent to the Moyal bracket,
such thatH and I have a vanishing bracket. The corresponding quantization map consists in
interpreting the functions on the phase space asT-symbols of the quantum operators. The Weyl
symbols of the quantum operators are related with theT-symbols by

s
F̂

W
5T21s

F̂

T
5T21F5VF. ~64!

In Ref. 9 the problem of quantum integrability of some two dimensional systems is analyzed
in terms of the Moyal bracket. They found that one has to add, in most of the cases, quantum
correction terms~of orderO~\!! to I , and sometimes toH, in order to write the Weyl symbol of
the commuting quantum operators which make the system quantum integrable. So all we have to
check is if these expansions in\ for the Weyl symbols can be written in the form~64! for a series
of differential operatorsT215V.

We are going to analyze some examples of integrable systems which present quantum correc-
tions. The quantum integrability of all the examples we use has been proved by Hietarinta.9 We
show here explicitly that the quantum corrections come from a seriesV satisfying ~64! and
consequently, that the quantum corrections can be eliminated by an appropriate choice of the
quantization map, in terms ofT-symbols.

Example 1:The following Hamiltonian is classically integrable

H15
1

2
~px

21py
2!1

16

3
y31yx21

a

2
~x2116y2!1mx221nx26, ~65!

with the invariant given by

I 15px
41px

2~2ax214x2y14mx2214nx26!2
4

3
pxpyx

32
4

3
ax4y2

4

3
x4y2

1
8

3
my18nyx242

2

9
x61a2x414~an1m2!x2418mnx2814n2x212. ~66!

In order to the Moyal bracket$H1 ,I 1%
(M ) vanish, the invariant must be corrected with

DI 152\2~6mx24142nx28!, ~67!

so the Weyl symbol of the quantum operator isI 11DI 1 . We want to know if there is a quantiza-
tion map in which the classical observable, without quantum corrections, is the symbol of the
quantum operators. It can be proven that there is no ordering rule satisfying this condition.
Nevertheless, for this particular example, a trick that consists in adding a termaH1

2 to I 1 and
considering a unusual ordering rule works. This is done in Ref. 9, but we obtained a different
numerical result. The value ofa is 24, and the ordering rule must be such that

F 8~0!50; F 9~0!565/128. ~68!
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Both results become the same if in the computation of Ref. 9 the effect of changing the ordering
rule in the new termsH1

2 is taken into account. Nevertheless, this method does not work for other
Hamiltonians, and we are lead to consider more general quantization maps.

The series

V15Id1~ i\!2S 18 ]px
2 ]x

22S a161
y

8D ]px
2 ]x

2]yD , ~69!

when applied toH1 andI 1 reproduces the quantum corrections, so theT-symbols of the quantum
operators areH1 and I 1. Since that the seriesV1 is truncated at order\2, it is easy to get the
inverse seriesT1,

V15Id1~ i\!2A1 ,
~70!

T15Id1(
r51

~21!r~ i\!2rA1
r .

From here, we can see that if the Weyl symbols
F̂

W
of an operator is a polynomial function ofpx ,

then the seriesT1s F̂

W
is truncated at some order in (i\)2. This is a sufficient, although not

necessary, condition for theT-symbol of the operatorF̂ be well defined.
Example 2:This is another example of classically integrable system:

H25
1
2 ~px

21py
2!1x416x2y218y41k~x214y2!1mx221nx261ly22, ~71!

I 25px
414px

2~x416x2y21kx21mx221nx26!216pxpyx
3y14py

2x418ly22x414m2x24

18mnx2818mx2116my214m2x21218nkx2418nx22148n2x24y214k2x418kx6

116kx4y214x8116x6y2116x4y4, ~72!

and the quantum corrections are

DI 252\2~6mx24142nx28112x2!. ~73!

The seriesV2 is,

V25Id1~ i\!2S 18 ]x
2]px

2 1
a

48
]x
3]y]px]py1

y

8
]x
3]px]pyD . ~74!

In this example, the condition for the finiteness of the series is that the Weyl symbol of the
operator must be a polynomial function ofpx andpy .

In the following examples, the Hamiltonian also needs quantum corrections in order to be
quantum integrable. In those cases, it is obvious that no ordering rule will restore the integrability.

Example 3:For the Holt Hamiltonian,10

H35
1
2 ~px

21py
2!1 3

4 x
4/31y2x22/31dx22/3, ~75!

which is classically integrable, the integral is

I 35py
31 3

2 pypx
21py~2 9

2 x
4/313x22/3y213dx22/3!19x1/3ypx . ~76!

The quantum corrections are
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DH352
5

72
\2x22, DI 352

5

72
\2pyx

22. ~77!

The operator reproducing the quantum corrections is

V35Id1~ i\!2
5

144
x24/3]y

2. ~78!

The series is truncated if the Weyl symbol is a polynomial function ofy.
Example 4:The Hamiltonian,11

H45
1
2 ~px

21py
2!1~xy!22/3, ~79!

is classically integrable,11

I 45pypx~xpy2ypx!12~xy!22/3~xpx2ypy!. ~80!

The quantum corrections are

DH452
5

72
\2~x221y22!, DI 452

5

72
\2~xpxy

222ypyx
22!. ~81!

The operator reproducing the quantum corrections is

V45Id1~ i\!2
5

72 S 9~xy!8/3

10y4
]x
21

9~xy!8/3

10x4
]y
2D1~ i\!2

5

72 S 1xy ]px]py1
6y

5x2
]px
2 ]y1

6x

5y2
]py
2 ]xD .

~82!

In this example, it is more difficult to analyze the convergence of the series because the non-
polynomial terms in the coefficients ofV4. But let us make a canonical point transformation,

x5X23/2, px52
2

3
PXX

5/2, x5X23/2, px52
2

3
PXX

5/2. ~83!

The Hamiltonian and the integral have polynomial form,

H55
2

9
~PX

2X51PY
2Y5!1XY,

~84!

I 55
4

3
~PYXY

21PXYX
2!1

8

27
~PX

2PYX
5Y1PY

2PXY
5X!.

The Hamiltonian is now ordering dependent, but the quantum corrections are also polynomial,

DH55\2
5

18
~X31Y3!, DI 55\2

10

27
~PYX

3Y1PXY
3X!, ~85!

and the seriesV5 is now very easy to compute,

V55Id2~ i\!2
1

32
~]X

2]PX
2 1]Y

2]PY
2 !. ~86!
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The series giving theT-symbol in terms of the Weyl symbol is truncated if the Weyl symbol is
polynomial inPX andPY .

V. CONCLUSIONS

In this paper we have analyzed the relationship between the quantum deformations of the
Poisson algebra of classical observables and the operatorial quantization. We have described this
relationship in terms of generalized symbols of operators, not only for different ordering rules but
for more general quantization maps. We have found that the effect of an infinitesimal classical
canonical transformation in the quantum theory is just a change to an equivalent deformation. This
result suggests that all quantization maps currently used fall into the same equivalence class of
deformations. We have explicitly written deformations inequivalent to the Moyal bracket. It is an
open question if these deformations have a representation in terms of operators on a Hilbert space.

We have applied these results to the study of two dimensional integrable systems. For the
examples considered, we have eliminated the quantum corrections which arise when one requires
the preservation of the symmetry in the quantum theory. This procedure could be generalized to
other systems presenting more complicated symmetries.
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In this paper we deal with an alternative approach to the description of massless
particles of arbitrary spin. Within this scheme chiral components of a spinor field
are regarded as fundamental quantities and treated as independent field variables.
The free field Lagrangian is built up from the requirement of chiral invariance. This
formulation is parallel to the neutrino theory and allows for a formulation that
generalizes, to particles of arbitrary spin, the two-component neutrino theory. We
achieve a spinor formulation of electrodynamics. In the case of the photon, the
nonzero helicity components satisfy Weyl’s equations and are associated to observ-
ables~electromagnetic fields! whereas the zero helicity components are related to
nonobservables~electromagnetic potentials!. Within the spinor formulation of elec-
trodynamics the minimal coupling substitution follows as a consequence of the
linearity of the interaction and the preference of nature for chiral components, that
is, of the left–right asymmetry of nature. ©1996 American Institute of Physics.
@S0022-2488~96!01310-4#

I. INTRODUCTION

Nowadays there is plenty of evidence that nature is asymmetric with respect to chirality~left
and right handedness!.1 Within the realm of the fundamental interactions this asymmetry has been
realized since theV-A theory2 of weak interactions and has been verified empirically in 1957 in a
parity violating process occurring as a result of weak processes.3 In this paper we will show that,
within an alternative scheme for treating massless particles, electrodynamics is also a left–right
asymmetric theory. In this way we extend even further the notion that fundamental interactions
violate left–right symmetry.

Within the usual formulation of electrodynamics~the tensorial method! the seemingly asym-
metrical magnetism1 cannot be entirely understood in view of the fact that the electromagnetic
fields are fundamentally symmetrical~the Lagrangians, in terms of these fields, do not exhibit any
left–right asymmetry!. Within the spinor method, the one that will be employed in this paper, one
has an equivalent formulation of electrodynamics allowing us to understand that magnetism and
electrodynamics is, in fact, a basic departure from the left–right asymmetry of nature.

The spinorial formulation proposed here allows us to formulate theories involving massless
spin 1 particles in close analogy with massless spin1

2 particles. The requirement of chiral invari-
ance, at the free field level, leads to Maxwell’s equation in vacuum. The requirement of chiral
asymmetry for the linear interaction of the spinor field with matter leads to Maxwell’s equation in
the presence of matter. Previous spinorial formulations of electrodynamics can be found in Refs.
4 and 5.

In order to generalize the left–right asymmetry to other interactions, as will be done in this
paper, let us recall that for massless spin1

2 particles one can define chiral componentscL andcR

of a basic fieldc as follows:

cR5 1
2~ I1g5!c, cL5 1

2~ I2g5!c.

0022-2488/96/37(1)/174/22/$6.00
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Furthermore, under space reflection (P) these components transform as

cR→
P

cR8 ~x8!5jg0cL~2x,t !, cL→
P

cL8~x8!5jg0cL~2x,t !.

The intriguing aspect of the weak interactions is that, at low energies, the right and left
components interact in a different way with ordinary matter. As a matter of fact, there is no
evidence at all that the right-hand component interacts with ordinary matter. Weak interactions are
definitely asymmetric with regard to left and right. This follows from the fact that right and left
components interact with different strength to matter.

At the Lagrangian level this preference of nature for chiral components can be formulated in
a simple way by stating that the Lagrangian is not invariant under the transformation

cR→cL .

Due to the transformation properties ofcR(cL) under space reflections, the noninvariance of the
Lagrangian under the left–right transformation implies breakdown of space reflection.

The first question that we deal with in this paper is the possibility of extending, to massless
particles of arbitrary spin, the usual neutrino theory. We shall see that the spinor method provides
an approach that permits us such a generalization. Within the spinor method it is possible to
generalize the notion of chiral invariance for particles of arbitrary spin as well as to define chiral
components analogous to the ones associated to massless particles of spin1

2. Within the spinor
method one assigns to a particle of spins a symmetric spinorc of rank 2s. The definition of chiral
components, for a particle of arbitrary spin, is the tensor product of the usual ones.

We propose that these chiral components should be treated as independent variables and that
they satisfy extended Dirac equations analogous to the ones satisfied by the left and right neutrino
field components. These equations, as will be shown later, follow from the requirement that the
free field Lagrangian be chiral invariant.

The generalized chiral components provide a very simple criterion on whether a theory in-
volving masslessness is left–right symmetric or not. The theory is left–right symmetric if the
Lagrangian is invariant under the subscript interchangeL→R ~or R→L!. Otherwise the theory is
L–R asymmetric. The theory is left–right asymmetric if the coupling of the chiral components to
the matter fields occurs with different strengths.

As a byproduct of the formulation of zero-mass particles in terms of chiral components, we
will show that it is possible to generalize the two-component neutrino theory to particles of
arbitrary spin. The generalized two-component fields satisfy generalized Weyl’s equations.

It seems to be worthwhile to analyze whether, besides the neutrinos, there is other evidence in
nature of an asymmetric coupling of chiral components of zero-mass particles to ordinary matter.
The next, nontrivial, zero-mass particles that couple to ordinary particles are the photons. We find
that the coupling of photons reflects some kind of asymmetry between the coupling of chiral
components to ordinary matter. We will show that, as in other theories, in electrodynamics chiral
asymmetry and parity nonconservation are intimately connected. We shall see that, in electrody-
namics, the only consequence of violation of these symmetries is a dynamical one, namely, the
minimal substitution way of coupling the electromagnetic fields to matter.

In Sec. II we present a novel approach to the study of massless particles of arbitrary spin. In
close analogy with the spin12 particles we generalize, to arbitrary spins particles, the usual spin
1
2 chiral components. One can also generalize the two-component neutrino theory to massless
particles of arbitrary spin. This extension is possible in the context of the Bargmann–Wigner
~BW! theory. The totally right~left! components have generalized helicity componentss ~2s! and
obey the generalized Weyl’s equation.

In order to illustrate how the spinor method works we present in Sec. III the BW theory for
spin 1 massive particles. The interesting point here is that clearly BW theory leads to a complete
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description of massive particles by associating to these particles a symmetric rank 2 tensor field
instead of associating particles to a rank 1 tensor~the usual procedure!. The subsidiary condition
]mBm50, for instance, follows naturally from the decomposition of the basic BW field into the
spinor space and the BW equation.

In Sec. IV we present an alternative approach to spin 1 massless particles. We show how
Maxwell’s equation in vacuum emerges from the requirement of chiral invariance and the treat-
ment of the chiral components as independent variables.

In Sec. V we formulate electrodynamics in terms of the chiral componentscRR, cRL , cLR ,
andcLL . Here we show explicitly that one can formulate QED as long as matter couples only to
some components of the chiral fields. That is, QED is manifestly left–right asymmetric.

In Sec. VI we touch on the question of the quantization of the BW fields. This is achieved by
imposing an appropriate commutation relation among the BW components.

We end this paper with a section dedicated to conclusions.

II. ALTERNATIVE METHOD FOR THE DESCRIPTION OF MASSLESS PARTICLES

A. Bargmann–Wigner method—Massive particles

It has long been recognized that spinor quantities can be regarded as fundamental in any
particle description within the field theoretical approach. In this chapter we will describe the
spinor method, proposed by Bargmann and Wigner,6 for studying massive particles and an alter-
native method, based on treating the chiral components of a spinor field as independent variables,
for the description of massless particles.

Before setting the framework it is important to recall that the description of processes involv-
ing particles, within the field theoretic approach, requires the assignment to every particle a set of
basic fields. In order to have Lorentz covariance explicitly the fields should have a well defined
Lorentz transformation property. It just happens that, as in the case of spin 1 particles, the fields
contain more degrees of freedom than the particles they are describing. These extra degrees of
freedom of the field are eliminated by imposing complementary conditions on the fields. The case
of massive~massm! spin 1 particles is a very good example of this situation. In this case one
associates to these particles~three polarization states! a four-component vector fieldBm . In order
to eliminate the extra degree of freedom one imposes the covariant restriction

]mB
m50. ~2.1!

The free field equation is

]mG
mn50, ~2.2!

where

Gmn5]nBm2]mBn . ~2.3!

It was pointed out by Bargmann and Wigner6 that the assignment particle→field is not unique.
In fact, within the Bargmann–Wigner method one assigns to a massive particle of massm and
spin s a spinor field of rank 2s:

ca1a2•••a2s
~x!, ak51,2,3,4. ~2.4!

Since the rank 2s spinor field contains, for particles of spin larger than1
2, much more degrees

of freedom than the particle description requires, one has to impose further restrictions on the field
c. One requires, as proposed by Bargmann–Wigner, thatc be symmetric in its spin indices and
imposes further thatc satisfies a set of 2s Dirac-like equations; that is,
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i ]” akak8ca1•••a
k8•••a2s

~x!5mca1•••ak•••a2s
~x!,

~2.5!
k51...2s.

The set of equations~2.5! can be written under the equivalent form, or permutation of it,

i ]”^ I ^ ••• ^ Ic5mc. ~2.6!

It is then evident, from~2.6!, that the Bargmann–Wigner approach is just an extension of
Dirac’s theory to particles of arbitrary spin.

As a final remark on the whole framework, not only valid for the Bargmann–Wigner method
but also for the generalized four-component and two-component theory that will be presented
next, we would like to emphasize the need for an explicit representation for 2s rank spinors. The
method that will be used is to express the 2s rank spinor fields as linear combinations of sym-
metric 434 matrices~within the four-spinor framework!, or symmetric 232 matrices~for the
two-spinor framework!. The coefficients in these expansions are new fields. The properties of the
new fields allow us to establish the connection of our approach to the usual electrodynamics.

In the four-spinor case the symmetric matrices are, by using the notation of Bjorken and
Drell,7

~smnC! and ~gmC!, ~2.7!

whereas in the two-spinor case the symmetric matrices are

~skC1!, k51,2,3, ~2.8!

whereC is charge conjugation matrix andC1 is the 232 charge conjugation matrix~see Appendix
B!.

As an example, let us write the decomposition of the rank 2 spinor fieldca1a2
associated to a

massm and spin 1 particle in terms of the symmetric matrices~gmC! and~smnC!. ca1a2
admits the

following decomposition:

ca1a2
~x!5AmHBm~x!~gmC!a1a22

1

2m
Gmn~x!~smnC!a1a2J , ~2.9!

where the fieldBm(x) is a vector field~which, as will be shown later, is the usual spin 1 field!, and
Gmn(x) is a field not yet determined and that, in principle, should involve derivatives of theBm(x)
field. This is actually what happens. As will be shown in the next section, from~2.6! and~2.9! it
follows thatGmn in ~2.9! can be written as

Gmn~x!5]nBm~x!2]mBn~x!. ~2.10!

B. Massless particles—Chiral components

For the description of spin12 massless particles~neutrinos! one defines, as usual, the right and
left components of a four-component spinorc̃ as

c̃R5 1
2~ I1g5!c̃, ~2.11a!

c̃L5 1
2~ I2g5!c̃. ~2.11b!

The free field Lagrangian, in terms of the right and left components, is
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L5cD Ri ]”cL1cD Li ]”cR[c̄ i ]”c. ~2.12!

By treating the left and right components independently one gets as equations of motion the
following equations:

i ]”cR50, ~2.13a!

i ]”cL50. ~2.13b!

For the description of massless particles of arbitrary spin we assume, in analogy with the BW
theory for massive particles, that a particle of spins is associated to a symmetric spinor field of
rank 2s:

c̃a1•••ak•••a2s
~x!, ak51,2,3,4. ~2.14!

For the rank 2s spinor field~2.14! one can define a set of chiral components as follows:

c̃R•••R~x![c̃Ra1
•••Ra2s

~x!5 1
2~ I1g5!a1a18

1
2~ I1g5!a2a28

••• 1
2~ I1g5!a2sa2s8

c̃a
18•••a

2s8
~x!,

c̃R•••RL~x![c̃Ra1
•••Ra2s21

La2s
~x!5 1

2~ I1g5!a1a18
••• 1

2~ I1g5!a2s21a2s218 •

1
2~ I2g5!a2sa2s8

c̃a
18•••a

2s8
~x!,

A

c̃L•••L~x![c̃La1
•••La2s

~x!5 1
2~ I2g5!a1a18

••• 1
2~ I2g5!a2sa2s8

c̃a
18•••a

2s8
~x!. ~2.15!

We propose that these components satisfy an equation analogous to~2.13!; that is,

i ]” a1a18c̃Ra18
Ra2

•••Ra2s
~x!50,

i ]” a1a18c̃Ra18
Ra2

•••La2s
~x!50,

A

i ]” a1a18c̃La18
La2

•••La2s
~x!50. ~2.16!

We shall see in Sec. IV A that these equations follows from chiral invariance of the free
Lagrangian.

C. Massless particles—Generalized two-component theory (8)

It is well known that massless particles of spin1
2 can be described by a two-component theory.

We will show that this is also true for massless particles of arbitrary spin. That is, we will show
that one can describe massless particles of arbitrary spin by means of a generalized two-
component theory. Furthermore, we will show that these components satisfy equations analogous
to Weyl’s equations for particles of spin12.

In order to extend the two-component neutrino theory we just recall that one can write a
four-component spinor as

c̃~x!5F j~x!

ẋ~x!G5cR1cL , ~2.17!
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wherej(x) and ḣ(x) are two-component spinors, andcR ,cL are defined in~2.11!.
The set of equations~2.13! for cR andcL is equivalent to the following Weyl’s equations for

the two-component spinorsj and ḣ:

~2 is0]02 is–“ !j~x!50, ~2 is0]01 is–“ !ḣ~x!50. ~2.18!

The two-component spinorsj and ẋ are eigenstates of the helicity operator1
2s–n~n5p/upu!

with eigenvalues61
2.

The formulation of massless particles, in terms of generalized two-component spinors, can
now be implemented by recalling that ifc̃ transforms, under a Poincare´ transformation, as a tensor
product of 2s bispinors,

c̃;F j I
ẋ I

G ^ ••• ^ F j IIS
ẋ IIS

G , ~2.19!

then, in chiral representation, the one that we will use from now on in the massless case,
c̃R•••R,c̃R•••RL,c̃L•••L, will transform like

c̃R•••R;Fj I0 G ^ ••• ^ Fj IIS0 G5F j I•••j IIS
0
A
0

G ,
c̃R•••RL;Fj I

0 G ^ ••• ^ Fj IIS21

0 G ^ F 0
ẋ IIS

G5F 0
j I•••j IIS21

ẋ IIS

0
A
0

G , ~2.20!

A

c̃L•••L;F 0ẋ I
G ^ ••• ^ F 0

ẋ IIS
G5F 0

A
0

ẋ I•••ẋ IIS

G .
From ~2.20!, one can write, by using~2.15!,

c̃R•••R;F w~1!

0
A
0
G ,

c̃R•••RL;F 0
w~2!

0
A
0

G ,
~2.21!

A
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c̃L•••L;F 0
A
0

w~2s!

G ,
wherew~1!,w~2!,...,w(2s), are, respectively, the only nonzero components ofc̃R•••R,c̃R•••RL,...,c̃L•••L

and are two-component spinors of rank 2s:

w~1!5wb1b2•••b2s
,

w~2!5wb1b2•••b2s
8 ,

A ~2.22!

w~2s!5wb1b2•••b2s
~2s21! ,

b1 ,b2 ,...,b2s51,2.

Using Eqs.~2.16! we can see thatw~1! andw(2s) satisfy generalized Weyl’s equations:

~2 is0]02 is–“ ! ^1^ ••• ^1w~1!~x!50, ~2.23a!

~2 is0]01 is–“ ! ^1^ ••• ^1w~2s!~x!50, ~2.23b!

wherew~1! andw(2s) are symmetric two-component spinors of rank 2s. Equation~2.23b! can be
derived from~2.23a! by space reflection, so one can consider just one of the equations~2.23!.

The other componentsw~2!,...,w~2s21! satisfy equations analogous to Weyl’s.
Since the spin operator, in chiral representation, is given by

S5 1
2~S^1^1••• ^11•••11^1^1••• ^ S!, ~2.24!

then the generalized helicity operatorW is

W5n–S. ~2.25!

The eigenvalues ofW~v! lie in the range2s<v<s. In particular, we have

WcR•••R5scR•••R , WcL•••L52scL•••L . ~2.26!

Our proposal for treating massless particles is then parallel to the neutrino theory. For the free
field theory one requires chiral invariance. For massless particles it is sensible to define chiral
components and treat them as independent variables. For free fields, by using four-spinors, these
equations are~2.16!, whereas, by using two-spinors, the basic equations are~2.23!. We shall see
that this leads to Maxwell’s equation in vacuum in the case of spin 1 particles.

III. BW THEORY FOR MASSIVE SPIN 1 PARTICLES

A. Free fields

This chapter shows how one describes massive spin 1 particles with the spinor method pro-
posed by Bargmann and Wigner.

Within the BW method a spin 1 massive particle of massm is described, in the noninteracting
case, by a rank 2 symmetric spinorca1a2

(x) obeying a system of two Dirac-type equations:
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~ i ]”^ I !c5mc, ~ I ^ i ]” !c5mc. ~3.1!

Equations~3.1! may be derived from the following Lagrangian:6

L05c̄H i2 @gm
^ I1I ^ gm#]m2mI^ I J c. ~3.2!

If we treat the fieldca1a2
as the independent variable, one gets, in particular,

$ i ]”2m%a1as8ca
18a2

~x!50. ~3.3!

We replaceca
18a2

in ~3.3! by its decomposition~2.9! and obtain

iga1a18
a

]aHBm~x!~gmC!a
18a2

2
1

2m
Gmn~x!~smnC!a

18a2J
5mHBm~x!~gmC!a1a22

1

2m
Gmn~x!~smnC!a1a2J . ~3.4!

In order to see that~3.4! leads to the usual equations one has to make some simple operations
involving g matrices. For instance, if one multiplies~3.4! by (C21)a2a1 and sums overa1a2 , one
gets

i ]aBm Tr~gagm!50,

from which it follows that

]mB
m50. ~3.5!

It is interesting to see that the subsidiary condition]mB
m50 follows directly from the BW

equation. If, on the other hand, one multiplies~3.4! by (C21gb)a2a1, one gets

2
1

2m
]aGmn Tr~gasmngb!5mBm Tr~gmgb!,

from which one gets

2]mGmb1m2Bb50. ~3.6!

Finally, if we multiply ~3.4! by (C21gbgl)a2a1, one gets

i ]aBm Tr~gagmgbgl!52
1

2m
Gmn Tr~smngbgl!,

from which it follows that

]mB
mgbl1]lBb2]bBl5Gbl. ~3.7!

By using ~3.5! in ~3.7! one gets

Gbl5]lBb2]bBl; ~3.8!

that is, in the decomposition~2.9! of the fieldc, the only acceptable tensor is]nBm2]mBn.
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We have then seen that BW equations lead to the following restrictions upon the fieldsBm and
Gmn:

]mBm50, Gmn5]nBm2]mBn , 2]mGmn1m2Bn50. ~3.9!

In order to see the equivalence between the BW method and the usual approach, in which we
assign to a vector fieldBm a spin 1 particle, let us now writeL0 in terms ofBm .

By using decomposition~2.9! one gets

L054m2BmBm22GmnGmn ~3.10!

or, using~3.8!,

L054m2BmBm14]mBn~]nBm2]mBn!. ~3.11!

If we considerBm as the independent field, then one gets from~3.11! the usual Euler–
Lagrange for theBm field; that is,

m2Bn2]mGmn50, ~3.12!

where

Gmn5]nBm2]mBn .

Equation~3.12! is the same as Eq.~3.6!.

B. Interacting fields

Let us consider the interaction of massive spin 1 particles with massive spin1
2 particles,

described, as usual, by a rank 1 spinor fieldh.
If we restrict ourselves to Lagrangians that are linear in thec fields ~which leads, ultimately,

to renormalizable models!, then the forms that are compatible with Lorentz invariance are

L int5g1c̄a1a2
ha1
c ha2

c 1g2c̄a1a2
ha1
c ha2

c 1h.c.5g1h
cc̄h1g2hc̄h1h.c., ~3.13!

whereg1 andg2 are constants with dimension [L] 1/251/[M ] 1/2.
In the following we shall takeg250. As we shall see later in the zero-mass limit nature seems

to prefer this type of coupling.
We shall study the following total Lagrangian for a spin 1 massive field interacting with a spin

1
2 massive field:

L5c̄$ 1
2~gm

^ I1I ^ gm!]m2mI^ I %c1g1h
cc̄h1h̄~ i ]”2mf !h. ~3.14!

Treating nowc̄a1a2
, ca1a2

, h as independent fields, we obtain using~3.9! and Lagrange
equations

]mG
rm52m2Br1g1

Am
4

h̄grh. ~3.15!

Model ~3.15! leads to equations analogous to Maxwell’s. In fact, in analogy with the massless
case, we name

G0k5Ek, Gjk5e l jkHl . ~3.16!
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We obtain from~3.15! the following set of equations:

“–E1m2B05g1
Am
4

h̄g0h,

]0E2“`H2m2B52g1
Am
4

h̄g0h,

“–H50, ]0H1“`E50. ~3.17!

Equations~3.17! are analogous to Maxwell’s. That is, we get a set of coupled equations of first
order in terms of the observablesE andH.

C. Hamiltonian

We take the form~3.14! of L as a starting point. The two fieldsh andc are independent. We
construct conjugate momenta fromL by the standard prescription, so we obtain

pa1a2
5

]L

]~]0c!a1a2
5c̄a

18a28
i

2
$ga

18a1

0 da
28a2

1da
18a1

ga
28a2

0
%,

~3.18!

pa1
5

]L

]~]0h!a1
5h̄a2

iga2a1
0 .

The Hamiltonian is defined by

H5pa1a2
]0ca1a2

1pa1
]0ha1

2L. ~3.19!

Replacingca1a2
(c̄a1a2

) by its decomposition~2.9!, one gets

H54$G0m]0Bm1]0BmG
0m%24$m2BmBm2 1

2G
mnGmn%

1g1AmHBmh̄gmh2
1

2m
Gmnh̄smnhJ 2h̄~ igk]k2mf !h, ~3.20!

where

k, j51,2,3,

m,n50,1,2,3.

Now, following Bjorken–Drell7 we adopt the notation

Ej5El
j1Et

j52] jB
02]0B

j

and we assume that the fieldsE andH are real, so we obtain

H54~H21Et
2!24El

224m2BmBm1g1AmHB0h̄g0h1Bj h̄g jh2
1

2m
Gmnh̄smnhJ

2h̄~ igk]k2mf !h. ~3.21!
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IV. ALTERNATIVE APPROACH TO SPIN 1 MASSLESS PARTICLES

A. Spin 1 massless particles

In this section we will see how one can apply the two-component and the four-component
spinorial formalism in the description of spin 1 massless particles. In this case one works with a
rank 2 spinor fieldcab . Our starting point could be the zero-mass limit of~3.2!. The Lagrangian
that one gets in this limit is

L05c̄H i ]”2 ^111^
i ]”

2 J c. ~4.1!

Lagrangian~4.1! is not, however, the appropriate Lagrangian for spin 1 massless particles. The
reason why the extension of the Bargmann–Wigner theory, in this case, is not straightforward is
chiral symmetry.L0 defined in~4.1! is not invariant under the generalized chiral transformation

c→c85eiag5^eiag5c. ~4.2!

Only the equivalent Lagrangians

L5c̄~ i ]”^1!c @L85c̄~1^ i ]” !c# ~4.3!

are invariant under the chiral transformations

c→c85~eiag5^1!c @c85~1^eiag5!c#. ~4.4!

Expressions~4.3! suggest that the Lagrangian for massless spin 1 particles is not uniquely
defined. This would be the case if the fieldc is asymmetric. However, for a symmetricc field both
expressions in~4.3! are equivalent. The problem is that we are not able to impose, at the Lagrang-
ian level, the symmetry properties of thec field.

The need to work with asymmetricc fields lead us eventually to difficulties in dealing with
discrete symmetries. This is due to the fact that depending on the Lagrangian we take we might get
a different transformation law for the fieldsc. These transformation laws are equivalent only in
the case of symmetricc fields. This is just to call attention to the fact that some care is needed
when dealing with discrete symmetries.

For the LagrangianL ~L8! one can introduce, in close analogy with the spin1
2 case, the chiral

components

cRR5
~11g5!

2
^

~11g5!

2
c, cRL5

~11g5!

2
^

~12g5!

2
c,

~4.5!

cLR5
~12g5!

2
^

~11g5!

2
c, cLL5

~12g5!

2
^

~12g5!

2
c,

where, by definition,

c5cRL1cRR1cLR1cLL . ~4.6!

These chiral components are eigenstates of the chirality operatorg5^1~1^g5! with eigenval-
ues11 or ~21!. That is, they are polarized either to the right or to the left.

For massless particles the most general decomposition of thec field is now

ca1a2
5C1Am~gmC!a1a22C2Fmn~smnC!a1a2, ~4.7!
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whereC1 andC2 in ~4.7! are arbitrary constants that, in the massless case, cannot be related to
each other as in the massive case@expression~2.9!#, sinceC1 andC2 are dimensional constants
having different dimensions.

The chiral components defined in~4.5! assume, after inserting~4.7! in ~4.5!, the following
form:

~cRR~x!!a1a252C2@
1
2~11g5!s

mnC#a1a2Fmn ,

~cRL~x!!a1a25C1@
1
2~11g5!g

mC#a1a2Am ,

~4.8!

~cLR~x!!a1a25C1@
1
2~12g5!g

mC#a1a2Am ,

~cLL~x!!a1a252C2@
1
2~12g5!s

mnC#a1a2Fmn .

That is,cRL ,cRR are related to potentials whereascRR,cLL are related to observables~electro-
magnetic fields!.

Our proposal for treating massless spin 1 particles is, in close analogy with spin1
2 particles, to

treat all chiral components (cRL ,cLR ,cLL ,cRR) as independent field variables. These chiral
components describe, in principle, different species of spin 1 massless particles. In this way we
consider all chiral components as dynamical variables. This approach leads to a formulation of
QED in which potentials and observable fields are treated on equal footing. It is simple to check
that the substitution of~4.6! into ~4.3! leads to the following Lagrangian density:

L̃05cD RL~ i ]”^ I !c̃RR1cD LR~ i ]”^ I !c̃LL1cD RR~ i ]”^ I !c̃RL1cD LL~ i ]”^ I !c̃LR . ~4.9!

By treating all chiral components as independent field variables one gets the following equa-
tions of motion:

~ i ]”^ I !c̃RR50, ~ i ]”^ I !c̃RL50,
~4.10!

~ i ]”^ I !c̃LR50, ~ i ]”^ I !c̃LL50.

We will be interested in analyzing whether the interaction of photons with matter exhibits any
preference of nature with regard to chiral components and, if this occurs, if there is violation of
parity. The free field Lagrangian is invariant under space reflection~x→2x! if the chiral fields
transform as

cLP→
P

cLR8 ~x8!5j~g0^1!cRR~1x,t !,

cLL→
P

cLL8 ~x8!5j~g0^1!cRL~1x,t !,
~4.11!

cRR→
P

cRR8 ~x8!5j~g0^1!cLR~1x,t !,

cRL→
P

cRL8 ~x8!5j~g0^1!cLL~1x,t !.
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From ~4.11! and ~4.8! one would conclude that the mirror fields of the potentials are the
observable fields~E andH! and vice-versa. This example illustrates, as pointed out before, the
difficulty which we might run into when dealing with discrete symmetries within the spinors
method.

There are two alternatives in dealing with discrete symmetries that can easily be checked
taking the explicit example of space reflection. In the first case one can use the explicitly sym-
metric representation~4.7! in any of the alternative forms in~4.3! and analyze the symmetry
properties of the Lagrangian in terms of the fieldsAm andFmn . The Lagrangian is the standard one
of electromagnetism as we shall see later.

The other alternative is to impose, from the very beginning, thatc is symmetric. Under these
circumstances Lagrangians~4.3! and ~4.1! are equivalent. These equivalent Lagrangians would
now be invariant under space reflections if the chiral fields transform as

cRR8 ~x8!5j~g0
^ g0!cLL~x!, cRL8 ~x8!5j~g0

^ g0!cLR~x!,

cLR8 ~x8!5j~g0
^ g0!cRL~x!, cLL8 ~x8!5j~g0

^ g0!cRR~x!.

It can be checked explicitly that these transformations lead to the proper transformation
properties of theAm andFmn fields.

The generalized helicity operatorW is now

1
2~S–n^ I1I ^ S–n![W, n5

p

upu
. ~4.12!

It is straightforward to show thatcRR,cRL ,cLR ,cLL are eigenstates ofW with eigenvalues
11,0,21; that is,

1
2~S–n^ I1I ^ S–n!c̃RR5cRR,

1
2~S–n^ I1I ^ S–n!c̃RL50,

~4.13!
1
2~S–n^ I1I ^ S–n!c̃LR50, 1

2~S–n^ I1I ^ S–n!c̃LL52cLL .

B. Free electrodynamics

Let us check, finally, that the Lagrangian density~4.9! provides an alternative formulation of
free electrodynamics. By substituting~4.8! into Eqs.~4.10! and furthermore multiplying~4.10! by
(C) and taking the trace, we get

]mAm50; ~4.14!

that is, we get a Lorentz condition. Furthermore, multiplying~4.10! by ~C21gb! we get the
equation of motion for theFmn field,

]mFmn50. ~4.15!

We shall see, by employing the two-spinor approach, thatFmn can be written, in terms of an
antisymmetric field tensionF mn , as

Fmn5F mn1 i F̃ mn , ~4.16!

where

F̃ mn5 1
2e

mnabF ab . ~4.17!
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The equation of motion forF mn and F̃ mn is, from ~4.15!,

]mF
mn50, ]mF̃

mn50. ~4.18!

It should be pointed out at this point that since in the massless casecRL andcRR components
are treated as independent variables there is no connection betweenF mn and the derivatives of the
field Am . That is, in this caseAm andFmn are independent field variables. We shall see, however,
that within the generalized two-component theory of massless spin 1 particles this connection
emerges from Maxwell’s equations for the observable fields. We shall see that, also in this case,
one can write

F mn5]mAn2]nAm ~4.19!

and, as a result, from~4.19! and ~4.14!, it follows that theAm field satisfies, by using~4.18!,

hAm50. ~4.20!

C. Two-component formulation of free electrodynamics

We shall now consider the formulation of free electrodynamics within the generalized two-
component theory presented in Sec. I. In the case of spin 1 particles the fieldc transforms as

c;F j I

ẋ I G ^ F j II

ẋ II G ~4.21!

so that the fieldscRL ,cLR ,cRR,cLL defined in~4.5! transform like

c̃RR;Fj I0 G ^ Fj II0 G , c̃RL;Fj I0 G ^ F 0ẋ II G ,
~4.22!

c̃LR;F 0ẋ I G ^ Fj II0 G , c̃LL;F 0ẋ I G ^ F 0ẋ II G .
The generalized Weyl’s equations satisfied by the nonzero components ofcRR andcLL are

~2 is0]02 is–“ !aa8ja8
I jb

II50,

~4.23!
~2 is0]01 is–“ !aa8ẋa8

I ẋb
II50,

where symmetrization in the spin indices is assumed in Eq.~4.23!.
Equations~4.23! can be written, in terms ofw~1! andw~4! defined in~2.21!, as

~2 is0]02 is–“ !w~1!~x,t !50, ~4.24a!

~2 is0]01 is–“ !w~4!~x,t !50. ~4.24b!

We are now ready to get the field equations of electrodynamics. As in the generalized four-
component approach, one tries to writew~1! andw~4! as a linear combination of 232 symmetric
matrices. In this case, the candidate matrices are the matrices~2.8!, sC1, whereC1 is the 232
charge conjugation matrix. One can then write

w~1!~x!5f~x!~s–C1!, ~4.25!

wheref is a vector that satisfies, after substituting~4.25! into ~4.24!, the following equations:
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“–f50, ~4.26!

i ]0f5“3f. ~4.27!

We have shown in Sec. IV A thatw~1! andw~4! ~or, equivalently,cRR andcLL! should be built
from an antisymmetric tensorFmn . More specifically, it follows from~4.8! and~4.25! that thei th
componentf i can be written as

f i5
1
2 e0iabF

ab5 1
2 e iabF

ab, ~4.28!

with i ,a,b51,2,3.
As pointed out in Ref. 5Fmn in ~4.28! should be self-dual. In this way if one assumes thatF mn

is an antisymmetrical tensor, then one can construct from this tensor a self-dual one by writing

Fmn5F mn1 i F̃ mn, ~4.29!

where

F̃ mn5 1
2e

mnabF ab . ~4.30!

If one defines further,

Ei[F 0i , Hi5F̃ 0i . ~4.31!

It follows that Eqs.~4.26! and~4.27! for f imply Maxwell’s equations for theE andH fields
defined in~4.31!. That is,

“–E50, “–H50,
~4.32!

“3E2]0E50, “3H2]0H50.

Finally, it follows from Maxwell’s equation~4.32! and from~4.31! thatF mn can be written as

F mn5]mAn2]nAm . ~4.33!

It is worth commenting, at this point, on the connection betweenF mn and the derivatives of
the fieldAm in the case of massless particles. In the massive case the connection analogous to
~4.33! follows from the restriction imposed by BW equations. In the massless case the possibility
of writing F mn under the form~4.33! follows from Maxwell’s equations that allows us to write the
observable fields in terms of derivatives of the four-potentials. We will show, in the interaction
case, how expression~4.33! can be derived by adding chiral violating terms to the Lagrangian.

The conclusion is that, within the spinor method proposed here, Maxwell’s equation in
vacuum emerges from the requirement of chiral invariance of the free field Lagrangian. Maxwell’s
equations for the fieldsE andH emerge from the equations analogous to Weyl’s equation in the
two-component neutrino theory.

V. INTERACTING FIELDS—QED

A. Linear interactions

Let us now consider the interaction of massless spin 1 fields. We will mainly be concerned
with the interaction of these particles with ordinary matter. That is, we will be concerned with the
most general interaction Lagrangian describing massless spin 1 particles interacting with spin1

2

massive (mf) particles.
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The most general Lagrangian involving the interaction of the chiral fields~4.5! with ordinary
matter~here represented by the Fermi on fieldh! is

L5c̄RL~ i ]”^1!cRR1c̄LR~ i ]”^1!cLL1c̄RR~ i ]”^1!cRL1c̄LL~ i ]”^1!

3cLR1h̄~ i ]”2m!h1L int~cRR, cRL , cLR , cLL , h!. ~5.1!

By imposing that the Lagrangian is linear in thec fields, then the most general form that is
bilinear in the matter fieldh that we can construct with the four independent fieldscRR, cRL , cLR ,
andcLL is

L int5AcD Ra1Ra2
ha1

ha2
1BcD La1La2

ha1
ha2

1DcD Ra1La2
ha1

ha2
1EcD La1Ra2

ha1
ha2

1FcD Ra1Ra2
ha1
c ha2

1JcD La1La2
ha1
c ha2

1KcD Ra1La2
ha1
c ha2

1LcD La1Ra2
ha1
c ha2

1h.c., ~5.2!

whereA, B, D, E, F, J, K, andL are arbitrary constants.
The reason for so many terms is that we shall assume, to start with, that ordinary matter

couples with different strengths to the chiral components of the fieldc. As a matter of fact, we
shall see that, in this case, only the zero helicity components couple to ordinary matter.

It is trivial to check that if nature is asymmetric with regard to left and right~that is, if it
prefers chiral components!, then the theory violates parity@in the sense that the Lagrangian is not
invariant under transformations~4.11!#. The physical consequences, however, depend on how this
symmetry is broken. We will show that within the field theoretical context the breakdown of
parity, and consequently of left–right symmetry, does not lead always to processes occurring with
different probabilities in the actual system or in its mirror image. That is, for theories in which not
all the fields are observables, the parity symmetry breakdown might not be accompanied by
observable effects. Electrodynamics follow into this category of field theories. In order to illustrate
this relevant aspect let us consider two parity nonconserving Lagrangians:

L1
int5D~cLR!hch, ~5.3!

L2
int5K~cRL1cLR!hch, ~5.4!

whereK andD are coupling constants.
The first Lagrangian leads to left–right asymmetry leading to observable effects as far as

parity breaking is concerned. In fact, Lagrangian~5.3! describes essentially the interaction of a
vector fieldAm coupled to a vector and axial vector current@h̄~12g5!gmh#. As will be shown in the
next section, the Lagrangian~5.4! is an equivalent formulation of QED.

If one wants to ensure that there are no observable effects in the breakdown of parity of
Lagrangian~5.2!, one has to require that

A5B, D5E,
~5.5!

F5J, K5L.

Under restrictions~5.5!, the most general interaction Lagrangian is then

L int5A~cD RRhh1cD LLhh!1D~cD RLhh1cD LRhh!1F~cD RRh
ch1cD LLh

ch!

1K~cD RLh
ch1cD LRhch!. ~5.6!

We now consider the particular interaction Lagrangian obtained by takingA5D5K50:
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L int5F~cD RRh
ch1cD LLh

ch!. ~5.7!

The complete Lagrangian is then

L5cD RL~ i ]”^ I !cD RR1cD LR~ i ]”^ I !cD LL1cD RR~ i ]”^ I !cD RL

1cD LL~ i ]”^ I !cD LR1F~cD RRh
ch1cD LLh

ch!1h̄~ i ]”2mf !h. ~5.8!

Writing Lagrange equations explicitly, one has

i ]”^ IcD LR1Fhch50, ~5.9a!

i ]”^ IcD RL1Fhch50, ~5.9b!

i ]”^ IcD RR50, ~5.9c!

i ]”^ IcD LL50. ~5.9d!

Equations~5.9! and ~4.8! imply, in particular, the following relations:

2iC1]mA
m5Fh̄h, ~5.10!

]mFmn50. ~5.11!

The conclusion is that Lagrangian~5.8! describes the interaction of massless spin 1 particles
with matter but this theory is not electrodynamics.

B. Electrodynamics and chiral asymmetry

Let us consider now the interaction of massless particles with ordinary matter described by the
interaction Lagrangian:

L int5K$cD RLh
ch1cD LRhch%. ~5.12!

By adding the free field Lagrangians we end up with the following total Lagrangian:

L5cD RL~ i ]”^ I !c̃RR1cD LR~ i ]”^ I !c̃LL1cD RR~ i ]”^ I !c̃RL1cD LL~ i ]”^ I !c̃LR

1K$cD RLh
ch1cD LRhch%1h̄~ i ]”2mf !h1acD RRcLL1acD LLcRR. ~5.13!

One of the basic features of this approach is that although only some chiral components
couple with the usual matter, all chiral components should be considered as dynamical variables.
That is, one should write five Lagrange equations, one for each of the independent fields~cRR,
cRL , cLR , cLL , andh!.

With L given by ~5.13!, they lead to

i ]”^ I c̃RL1ac̃LL50, ~5.14a!

i ]”^ I c̃RR1Khch50, ~5.14b!

i ]”^ I c̃LL1Khch50, ~5.14c!

i ]”^ I c̃LR1ac̃RR50, ~5.14d!
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Khc$cD RL1cD LR%2mf h̄2 i ]m~h̄ !gm50. ~5.14e!

From equation~5.14e! it follows that

Kha1
c $cD RL1cD LR%a1a22mf h̄a2

2 i ]mh̄a1
ga1a2

m 50. ~5.15!

Or, replacingcD RL andcD LR by expression~4.8!,

2KC1h̄a1
Am~gm!a1a22mf h̄a2

2 i ]mh̄a1
ga1a2

m 50. ~5.16!

Taking the Hermitian conjugate of~5.16! one gets

~ i ]”2mf !a1a2ha2
5KC1~gm!a1a2Amha2

. ~5.17!

Now adding~5.14b! and ~5.14c! and replacingc̃RR and c̃LL by expressions~4.8! we get

]mF
bm52

K

4C2
h̄gbh. ~5.18!

Similarly, adding~5.14a! and~5.14d! and replacingc̃LR andc̃RL by expressions~4.8! we get
the following constraint:

]mAm50; ~5.19!

that is, one gets the Lorentz condition and

F sr5
C1

2aC2
~]sAr2] rAs!. ~5.20!

This implies the usual relationship if one takes

C1

2aC2
51. ~5.21!

The conclusion is that, by adding chiral asymmetric terms in the Lagrangian, one can get the
usual relation~4.33!.

We have seen in Sec. IV that the most general form forFmn is

Fmn5F mn1 i F̃ mn . ~5.22!

ReplacingFmn given by ~5.22! in Eq. ~5.18! we get an alternative form for Eq.~5.18!. This
alternative form is

H ]mF
bm52

K

4C2
h̄gbh,

]mF̃
bm50.

~5.23!

These are Maxwell’s equations in Lorentz gauge if one writesF mn under the form~4.33! and
imposes the restriction

2
K

4C2
5e. ~5.24!
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In order to see this equivalence in terms of the observablesE andH one writes

f ok5Ek,
~5.25!

f jk5el jkHl , k, j ,l51,2,3.

Equations~5.23! give rise to the following equations;

“–E5eh̄g0h, ]0E2“`H52eh̄gh,
~5.26!

“–H50, ]0H1“`E50.

Equations~5.26! are Maxwell’s equation in the presence of matter.
As a final remark we would like to show the equivalence between the spinor method and the

usual tensor method. In order to show this all one has to do is to substitute in Lagrangian~5.13!
the expression for the chiral components~4.8!. In terms of the fieldsFmn andAm the Lagrangian
density can be written as

L@Fmn, Am#528aC2
2$F* mn~]nAm2]mAn!2Am* ~]nF

mn2]nF
mn!%12KaC2h̄gmhAm*

1h̄~ i ]”2mf !h28aC2
2Fmn* Fmn, ~5.27!

where we have used condition~5.21!.
By treatingFmn* , Am* , andh as independent field variables one gets the following equations:

]nF
mn52

K

4C2
h̄gmh, ~5.28!

~ i ]”2mf !h522KaC2g
mhAm , ~5.29!

F mn5]mAn2]nAm. ~5.30!

Finally, one gets the usual Lagrangian of electrodynamics in terms ofAm if one uses~5.30!
and makes a proper choice of the constanta.

VI. QUANTIZATION

In this section we will consider the quantization of massive fields within the BW theory. We
also propose an extension to the zero-mass case. We show that there is no basic distinction
between this method and the usual approach. The relevant point is that it is possible to quantize the
spinor fields by imposing appropriate commutation relations for these fields.

We quantize the BW fields by imposing the following commutation relations for BW’s mas-
sive fields:

@ca1a2•••a2s
~x!, ca

18a28•••a
2s8

1
~y!#s5~2 i !2s21k(

P

i ~ i ]” x1m!a1a18
••• i ~ i ]” x1m!a2sa2s8

D~x2y!,

a1 ,...,a18 ,...51,2,3,4. ~6.1!

D(x2y) is the Jordan Pauli function,k is a constant to be determined,P denotes all possible
permutations among the spinor indices, and we use, in~6.1!, the following notation:

@f,c#s5fc1~21!2s21fc, ~6.2!
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wheres is the spin of the fields in~6.2!.
In the case of massless particles, and as pointed out in Sec. II, the fundamental objects are

two-component spinors of rank 2s w~1!•••w(2s). For the massless case the quantization is carried
out by imposing the following commutation relations for the two-component Weyl spinorsw:

@wb1•••b2s
~x!, wb

18•••b
2s8

1
~y!#x5~2 i !2s21k(

P

i ~ is0]02 is–“ !b1b18
••• i ~ is0]02 is–“ !b2sb2s8

3D~x2y!, ~6.3!

whereD(x2y) is the Jordan Pauli function for massless particles,k is a constant to be deter-
mined,P denotes all possible permutations among the spinor indices, and where we use conven-
tion ~6.2!.

One can now use, for spin 1 massive particles, the decomposition~2.9! and write the usual
plane wave expansion for the fieldBm . In the case of the photon this decomposition for theAm

field is

Am~x!5
1

~2p!3
E d3p

A2p0 (
l51

2

em~p, l!@A~p, l!e2 ipx1A1~p, l!eipx#, ~6.4!

wherep5~p0, p!.
If one uses the decomposition~4.25! with f given by ~4.28!, then the commutation relations

~6.3! imply the following commutation relations for the creation~A1! and annihilation~A! opera-
tors:

@A~p, l!,A1~p8, l8!#5d3~p2p8!dll8 . ~6.5!

By analyzing the behavior of observables such as the energy, as we did in Sec. III C, and
momentum we would realize that these fields describe particles.

We shall not further analyze the question of the quantization of the spinor fields. We just
wanted to point out that one can provide a quantization method for spinor fields as well Feynman
rules for the interaction of these fields. Most of the questions on computing cross sections for
specific processes and the analysis of renormalization can be carried out in a simpler manner
within the usual approach~tensor method!.

VII. CONCLUSIONS

In this paper we have presented the description of electrodynamics in terms of spinors. The
spinor method provides a description of massless particles in terms of chiral components when
they are treated as independent field variables.

We have shown that, within the spinorial approach proposed here, photons can be described in
close analogy with neutrinos. The requirement of chiral invariance, at the free field level, leads to
Maxwell’s equation in vacuum. The requirement of chiral asymmetry for the linear interaction of
the spinor field with matter fields leads, for a proper choice of chiral components, to Maxwell’s
equations in the presence of matter.

One of the advantages of this approach is that it allows one to formulate electrodynamics in
terms of potentials or, by using two-component spinors, in terms of the observable fields~Maxwell
equation! E andH.

The question is whether electrodynamics is a left–right asymmetric theory. If matter does not
distinguish between chiral components, then it should couple with the fieldc. That is not, how-
ever, the case. On the other hand, if ordinary matter couples only withcRRcLL we would have
electrodynamics formulated entirely in terms of observables. That is not the alternative that nature
chooses either.
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The usual QED is compatible with a theory in which onlycLR1cRL couples with ordinary
matter. From this point of view QED is another example of an asymmetric interaction between
chiral components. The conclusion is that the Lagrangian describing electrodynamics, in this
four-component~chiral components! framework, is

LQED5c̄RL~ i ]”^1!cRR1c̄LR~ i ]”^1!cLL1c̄RR~ i ]”^1!cRL

1c̄LL~ i ]”^ I !cLR1h̄~ i ]”2m!h1F~ c̄RL1c̄LR!hch.

Within this spinor framework it is easy to see that electrodynamics is a parity nonconserving
theory. Although electrodynamics is asymmetric with regard to left and right and usually chiral
asymmetry is connected to parity nonconservation, it is obvious that in this case the consequence
of symmetry does not lead to processes occurring differently in the actual systems or in its mirror
image. There are no observable consequences for the breakdown of parity.

There is a dynamical consequence for the particular way in which nature chooses to break
chiral symmetry. Violation of chiral symmetry in this case reflects the preference of matter in
interacting through the electromagnetic potentials rather than interacting through the electromag-
netic fields. The linear nature of the interaction and the breakdown of the symmetry implies the
minimal coupling substitution.

Our conclusion is that the linearity of the theory and left–right asymmetry implies the mini-
mal substitution way of coupling the electromagnetic fields to matter.

The extension of this method to spin 2 field is under preparation.9,10
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APPENDIX A: RANK 2 s FOUR SPINORS

Remembering that a rank one spinor transforms, under Poincare´ transformation, as

h~x!→h8~x8!5D~ l !h~x!,

a 2s rank spinorc(x) transforms as

Analogously, the 2s rank spinorc̄(x) defined by

transforms like

194 G. C. Marques and D. Spehler: Left–right asymmetry and minimal coupling

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



where we have used the property that

g0D1~ l !g05D21~ l !.

APPENDIX B: NOTATION AND g MATRICES

~1! The metric used isgmn5~1,21,21,21!.
~2! Dirac’s matrices commutation rules are those of Bjorken and Drell.7

~3! In chiral representation

g55F1 0

0 1G , S5Fs 0

0 sG , g
aḃ

m
5F 0 2~sm!aḃ

2~sm!aḃ 0 G .
~4! Charge conjugation matrix

~C!aḃ5F2 is
aḃ

2
5C1 0

0 is
aḃ

2
5C1

G .
~5! Pauli matrices are defined by

s05F1 0

0 1G , s15F0 1

1 0G , s25F0 2 i

i 0 G , s05F1 0

0 21G .
By conventionsm5~s051, s! designates (sm)aḃ .

We have used also the property that

~s0!aḃ5~s0!aḃ , ~sk!aḃ52~sk!aḃ .

C1 denotes the charge conjugation matrix in~2,2! space and obeystC152C1 , C1
15C1
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Some aspects of the algebraic quantization program proposed by Ashtekar are
revisited in this article. It is proven that, for systems with first-class constraints, the
involution introduced on the algebra of quantum operators via reality conditions
can never be projected unambiguously to the algebra of physical observables, i.e.,
of quantum observables modulo constraints. It is nevertheless shown that, under
sufficiently general assumptions, one can still induce an involution on the algebra
of physical observables from reality conditions, though the involution obtained
depends on the choice of particular representatives for the equivalence classes of
quantum observables. ©1996 American Institute of Physics.@S0022-
2488~96!03801-8#

I. INTRODUCTION

Recently, Ashtekaret al.1–3 have elaborated a program for the nonperturbative quantization of
dynamical systems with first-class constraints. This program is specially designed to deal with the
problem of quantizing general relativity, and has already been carried out successfully in a number
of lower dimensional gravitational models, including minisuperspaces4–6and 211 gravity.1,3,7The
program proposed by Ashtekar is an extension, based on the algebraic approach to quantum
mechanics,8 of Dirac’s canonical quantization method.9 One of the main novelties with respect to
Dirac’s procedure is the introduction of a prescription to find the inner product in the space of
quantum states. This allows one to adhere to the standard probabilistic interpretation of quantum
mechanics when the quantization can be achieved.

Ashtekar’s program consists of a series of steps that, after completion, should provide us with
a consistent quantum theory. It can be applied, in principle, to any classical system whose phase
spaceG is a real symplectic manifold.1

One must first choose a subspaceS of the vector space of smooth complex functions onG.
This subspace must contain the unit function and be closed both under complex conjugation and
Poisson brackets.2 In addition,S has to be complete, in the sense that any sufficiently regular
complex function on phase space should be expressable as a sum of products of elements inS ~or
as a limit of this type of sums!.2

Each elementX in S is to be regarded as an elementary classical variable which is unambigu-
ously associated with an abstract operatorX̂. One then constructs the free associative algebraF

generated by these elementary quantum operators. On this algebra, one imposes the commutation
relations that follow from the classical Poisson brackets, namely, ifX,YPS, one must demand that
~at least up to terms proportional to\2!

@X̂,Ŷ#2 i\$X,Ŷ%50̂. ~1.1!

If there exist algebraic relations of the form

f i~X1 ,...,Xn!50 ~ i51,...,m! ~1.2!
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between the elements inS ~e.g., when the dimension ofS is greater than that ofG!, such relations
have also to be imposed on the corresponding quantum operators, with a suitable choice of factor
ordering, if needed.2 The imposition of these commutation and algebraic relations simply amounts
to taking the quotient of the free algebraF by the idealI F generated by the left-hand sides of
Eq. ~1.1! and the quantum counterpart of Eq.~1.2!. The algebra of operators obtained in this way
will be calledA.

At this point one should promote the complex conjugation relations inS to an involution on
A. We recall that an involution! on the algebraA is a map!: A→A that satisfies

~X̂!!!5X̂, ~1.3!

~X̂1lŶ!!5X̂!1l̄Ŷ!, ~X̂Ŷ!!5Ŷ!X̂!, ~1.4!

for all X̂,ŶPA and complex numbersl. Here,l̄ is the complex conjugate tol. To introduce the
desired involution onA, one can proceed in the following manner. For everyX,YPS such thatY
is the complex conjugate toX, defineX̂!5Ŷ, and use properties~1.4! to extend this definition to
all the operators in the free algebraF . It is straightforward to check that one then gets an
involution onA provided that the idealI F of operators which vanish modulo commutation and
algebraic relations is invariant under the!-operation, i.e., thatI F is a !-ideal of F . We will
assume hereafter that this is in fact the case, and denote the resulting!-algebra byA~!!. The
!-relations inA~!! are usually called reality conditions,1 for they capture the complex conjugation
relations between elementary classical variables.

The next step in the quantization consists in finding a faithful representation for the abstract
algebraA by linear operators acting on a complex vector spaceV. If the classical system pos-
sesses first-class constraints$Ci%, these constraints must now be explicitly represented by opera-
tors $Ĉi%. In general, a choice of factor ordering, and of regularization in infinite dimensional
systems,2,3 are needed at this point in order to get a consistent algebra of quantum constraints,9 that
is, to guarantee that

@Ĉi , Ĉj #5 f̂ i j
kĈk , ~1.5!

where f̂ i j
kPA and we use the convention that pairs of contracted indices are summed over.

The kernelVp,V of the constraints$Ĉi% supplies the vector subspace of quantum states. One
must then determine the subalgebraAp,A of operators which leaveVp invariant. These opera-
tors commute weakly with the quantum constraints,

ÂPAp⇔@Â, Ĉi #5ĥi
j Ĉ j ~ ĥi

jPA!. ~1.6!

Let us define now

I C[$X̂i Ĉi ;X̂
iPA%. ~1.7!

Using Eqs.~1.5! and~1.6! one can show thatI C,Ap and that,; ÎPI C and;ÂPAp , both ÂÎ
and Î Â belong toI C , so thatI C is an ideal ofAp . On the other hand, ifÂPAp , all the
operators of the formB̂5Â1 Î , with ÎPI C , have exactly the same action on quantum states, for
Vp is annihilated by the quantum constraints. In order to obtain the algebraAp8 of operators with
a well-defined action onVp , one should therefore take the quotient ofAp by the idealI C :

2

Ap8[Ap /I C . ~1.8!

The operators inAp8 are the quantum physical observables of the system.10

The quantization program presented so far leaves a certain freedom in the following steps:~a!
the selection of the subspaceS of elementary classical variables,~b! the construction of the linear
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representation for the algebraA of quantum operators, and~c! the choice of factor ordering in the
quantum constraints$Ĉi%. The final result of the quantization process will depend on these inputs.

2

In particular, Ashtekar and Tate2 assumed at this stage that, with a judicious choice of such inputs
and at least for a large variety of physical systems, the involution defined onA~!! would induce
an involution onAp8 .

It is worth remarking in this sense that the!-relations will project unambiguously to the
algebra of physical observables only if two conditions are fulfilled. On the one hand,Ap,A
must be invariant under the!-operation:;ÂPAp , Â

!PAp . On the other hand, it is necessary
that I C,Ap be a !-ideal ofAp : ; ÎPI C , Î

!PI C . When this is the case, the!-operation
provides a uniquely defined map between equivalence classes inAp8 which satisfies the properties
~1.3! and~1.4! of an involution. The involution induced onAp8 will be denoted again by!, and the
resulting!-algebra of physical observables byAp8

(!).
The idea suggested by Ashtekar1–3 is to employ the involution onAp8

(!) to select the inner
product^,& on Vp and, therefore, the Hilbert spaceH of physical states~normalizable quantum
states!. More specifically, he proposed to determine the inner product onVp by demanding that the
!-relations between physical observables are realized as adjoint relations on the Hilbert spaceH,
i.e.,

^C,Â8F&5^B̂8C,F& ;F,CPH, ;Â8,B̂85~Â8!!PAp8
~! !. ~1.9!

Rendall showed11 that this condition is such a severe restriction on the inner product that, if an
admissible inner product exists, it is unique~up to a positive global factor! under very general
assumptions.

This completes the quantization program put forward by Ashtekar. If this program can be
carried out for a given classical system, one would arrive at a mathematically consistent quantum
theory in which real physical observables would be represented by self-adjoint operators acting on
a Hilbert space of physical states.

The purpose of this work is to demonstrate however that there exists an impediment to
achieving one of the steps of the above quantization method. We will prove in Sec. II that the
!-relations inA~!! never project unambiguously to the algebra of physical observables. This
problem can be nonetheless overcome by slightly modifying Ashtekar’s program, as we will show
in Sec. III. The price to be paid is to allow a new freedom in the quantization process. A particular
procedure to introduce an involution onAp8 from reality conditions should then be adopted. The
subtleties that arise in defining such an involution are illustrated in Sec. IV by considering some
simple physical systems. We finally discuss the physical implications of our results and conclude
in Sec. V.

II. AMBIGUITIES IN THE REALITY CONDITIONS ON PHYSICAL OBSERVABLES

We want to prove that reality conditions~i.e., the!-relations between quantum operators!
never project unambiguously to the algebra of physical observables when there exist first-class
constraints on the system. We will assume that the faithful, linear representation constructed for
the algebraA of quantum operators is irreducible. Otherwise, one should decompose it in irre-
ducible components, and apply the proof to follow to each component separately.

We have seen that, in order to obtain a uniquely defined involution on physical observables
from reality conditions, it is necessary that bothAp andI C be invariant under the!-operation. In
particular, we should have

; ÎPI C , Î 0[ Î !PI C . ~2.1!
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Select now inI C one of the quantum constraints, e.g.,Ĉ1, and consider also all the operators of
the form Î 15ẐĈ1PI C , with ẐPA. Employing condition~2.1!, and recalling definition~1.7!, we
obtain

Ĉ1
!5Ŷ1

j Ĉ j , ~2.2!

~ Î 1!
!5Ĉ1

!Ẑ!5Ŷ1
j Ĉ j Ẑ

![ Î 1
05X̂1

kĈk , ~2.3!

for someŶ1
j ,X̂1

kPA.
On the other hand, the imageẐ! of all the operatorsẐPA is again the whole algebraA,

because the!-operation is an involution. Relation~2.3! therefore implies that,;ẐPA, there exist
X̂1
kPA such that

Ŷ1
j Ĉ j Ẑ5X̂1

kĈk . ~2.4!

This identity between operators must hold on any element ofV, the vector space on whichA has
been represented. Choosing thenFPVp,V with F different from zero, it follows from Eq.~2.4!
that,;ẐPA,

Ŷ1
j Ĉ j~ ẐF!5X̂1

kĈkF50, ~2.5!

for the physical stateF is annihilated by all quantum constraints. Besides, since the representation
constructed is irreducible andFÞ0, the range ofẐF~;ẐPA! must be the whole vector spaceV.
So, the above equation states thatV is the kernel of the operatorŶ1

j Ĉ j . Being the representation
for A faithful, we then must have

Ŷ1
j Ĉ j50̂. ~2.6!

But this is clearly inconsistent with the fact that the!-operation is an involution, because, using
Eqs.~2.2! and ~2.6!, we get thatĈ15(Ĉ1

!)!50̂. In this way, we conclude that, when there exist
first-class constraints,I C can never be invariant under the!-operation and, therefore, reality
conditions do not project unambiguously to the algebra of physical observables.

Moreover, it is generally the case that the!-image ofI C is not even contained inAp , so that
Ap is not a!-subalgebra ofA. This can be proved, for instance, under the assumptions that~a!
Eq. ~2.2! holds for a certain quantum constraintĈ1 and~b! there exists at least one operatorŴPA
whose commutator withĈ1 does not belong toAp . One can then check that, whileŴ!Ŷ1

j Ĉ j

belongs toI C , its !-conjugate, given byĈ1Ŵ, is not included inAp . Hence, even though one
could find a representativeÂ for a given physical observableÂ8 such that Â!PAp , the
!-conjugates of all other operators in the equivalence classÂ8 ~i.e., the operatorsÂ1 Î , with
ÎPI C! will in general not belong to the algebraAp .

For the sake of an example, let us consider a classical system whose phase space admits a set
of global coordinates of the forms[$t,H,x,p%, with t,H,x,pPR, andH and p the momenta
canonically conjugate tot and x, respectively. Suppose, in addition, that there exists only one
first-class constraint on the system, given byH50. This extremely simple example describes, for
instance, a Kantowski–Sachs model with positive cosmological constant.5

As elementary classical variables, we can choose the complex vector space spanned bys and
the unity. The!-operation on the corresponding algebraA of quantum operators is defined by

t̂!5 t̂, Ĥ!5Ĥ, ~2.7!

x̂!5 x̂, p̂!5 p̂, 1̂!51̂, ~2.8!
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and the properties~1.4! of an involution. The only quantum constraint isĤ50. On the other hand,
it is not difficult to prove that the equivalence classes of the operators 1ˆ, x̂, andp̂ form a complete
set of physical observables. We point out, nevertheless, that the algebraAp is not generated by
$1̂,x̂,p̂,Ĥ%, but contains also operators liket̂ Ĥ and (t̂)2Ĥ which are elements inI C . From Eq.
~2.8! it follows that each equivalence class of observables possesses at least a representative whose
!-conjugate belongs toAp . In general, however, the!-image of different representatives do not
coincide modulo the constraintĤ50, because the!-operation does not leave the idealI C invari-
ant. Namely, from Eqs.~2.7!, ~2.8! and the commutator [t̂,Ĥ]5 i\1̂, we get

~ t̂ Ĥ !!5 t̂ Ĥ2 i\1̂, ~~ t̂ !2Ĥ !!5~ t̂ !2Ĥ22i\ t̂, ~2.9!

so that the!-conjugate tot̂ Ĥ belongs toAp , but not toI C , whereas the!-conjugate to (t̂)
2Ĥ is

not even inAp .

III. INVOLUTIONS ON PHYSICAL OBSERVABLES

We have seen that the!-relations inA~!! do not project unambiguously toAp8 , because the
!-operation never maps all the representatives of a class of physical observables into another
equivalence class. In order to define the!-conjugate to a physical observable, one is therefore
forced to choose first a particular representative for it. We now want to discuss under which
circumstances it is possible to introduce an involution onAp8 by this procedure.

To construct an involution! onAp8 , it actually suffices to define the!-operation on an~over-!
complete set of physical observables, and demand that this operation verifies conditions~1.4!.
Suppose then that$Ûa8% is a complete set inAp8 , that is, thatAp8 can be obtained from the free
associative algebraB8 generated by$Ûa8% by imposing the commutation relations between the
observablesÛa8 , as well as any algebraic relation that could exist between them. Assume also that
one can find representatives$Ûa% of the observables$Ûa8% such that their!-conjugates$Ûa

!%
belong toAp . One might then hope that the!-operation onAp8 could be defined by

~Ûa8!!5~Ûa
!!8, ~3.1!

where (Ûa
!)8 denotes the equivalence class ofÛa

!. However, we will prove that the assumptions
introduced above do not guarantee that Eq.~3.1! leads to a well-defined involution on the algebra
of physical observables.

The proof makes use of the fact that, being$Ûa8% complete inAp8 , any operator in the algebra
Ap should be expressable, modulo an element in the idealI C ~1.7!, as~possibly a limit of! a sum
of products of the representatives$Ûa%. In particular, since everyÛa

!PAp , one gets

Ûa
!5(

n
la
b1•••bnÛb1

•••Ûbn
1X̂a

i Ĉi , ~3.2!

with X̂a
i PA and thela

b1•••bn’s some complex numbers. Hence, from Eq.~3.1!,

~Ûa8!!5(
n

la
b1•••bnÛb1

8 •••Ûbn
8 . ~3.3!

This !-operation will be an involution onAp8 only if (( Ûa8)
!)! 5 Ûa8 for all Ûa8 . This, together

with Eqs.~1.4!, ~3.1!, and~3.3!, implies

Ûa85(
n

l̄a
b1•••bn~Ûbn

! !8•••~Ûb1
! !8. ~3.4!
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On the other hand, we have from Eq.~3.2!

Ûa5(
n

l̄a
b1•••bnÛbn

! •••Ûb1
! 1Ĉi

!X̂a
i!, ~3.5!

since the!-operation is an involution onA~!!. Consistency of Eq.~3.4! with ~3.5! requires then

Ĉi
!X̂a

i!5Ŷa
i Ĉi , ~3.6!

for some operatorsŶa
i PA. This condition will not be satisfied by generic operatorsX̂a

i ĈiPI C ,
because the idealI C is not invariant under the!-operation when there exist first-class constraints
on the system. Therefore, the!-relations~3.3! will not supply in general an involution onAp8 . To
obtain that involution, it is necessary that both conditions~3.2! and ~3.6! are satisfied by the
representatives of our complete set of physical observables.

We will study now the case in which these requirements hold for our particular choice of
representatives. Our previous discussion shows that the!-operation defined by Eqs.~3.3! and~1.4!
is then an involution onB8, the free associative algebra generated by$Ûa8%. Recalling that the
algebraAp8 of physical observables can be obtained fromB8 by imposing on its generators the
commutation relations and any existing algebraic relations, we conclude that the!-operation
introduced onB8 straightforwardly supplies an involution onAp8 provided that such an operation
is compatible with the relations imposed on the generators$Ûa8%. In other words, the ideal ofB8
generated by those relations should be invariant under the!-operation. When this requisite is
fulfilled, one gets an involution onAp8 which captures the reality conditions on quantum opera-
tors.

Notice that the involution at which one arrives depends, nevertheless, on two choices: the
complete set of physical observables and the representatives for them. In general, distinct choices
may lead to different involutions on the algebra of physical observables. We will comment on this
point further in Sec. V.

A situation which is often encountered in physical applications4,5 is that one can find a
complete set inAp8 admitting representatives$Ûa% such that the complex vector space spanned by
them is closed under reality conditions, i.e.,

Ûa
!5la

bÛb . ~3.7!

In this case, assumption~3.2! holds withX̂a
i Ĉi50̂, so that Eq.~3.6! is trivially satisfied. It is then

at least possible to obtain an involution on the free algebraB8 by replacing the operatorsÛa in
Eq. ~3.7! with their corresponding equivalence classes of physical observables.

IV. EXAMPLES

Let us illustrate our discussion by dealing with some examples. Consider, for instance, the
physical system that was analyzed at the end of Sec. II. A complete set of physical observables for
this system isO 8[$1̂8, x̂8,p̂8%, where 1̂8, x̂8, andp̂8 are the equivalence classes of the operators 1ˆ,
x̂, andp̂, respectively. We can select these operators as the representatives ofO 8. The associated
reality conditions, which are given by Eq.~2.8!, have the form~3.7!. So, hypotheses~3.2! and
~3.6! apply. We can therefore try to induce an involution onAp8 by the procedure explained in Sec.
III. Since there exist no algebraic relations inO 8, the only consistency requirement that must be
satisfied in order to get the desired involution is that reality conditions~2.8! are compatible with
the commutators of the physical observables inO 8. There is just one commutator different from
zero: [x̂8,p̂8]5 i\1̂8. On the other hand, we obtain from Eqs.~2.8! and ~3.1!

~ x̂8!!5 x̂8, ~4.1!
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~ p̂8!!5 p̂8, ~ 1̂8!!51̂8. ~4.2!

Taking then the!-conjugate to [x̂8, p̂8], we get

~@ x̂8, p̂8# !!5@~ p̂8!!, ~ x̂8!!#5@ p̂8, x̂8#52 i\1̂8, ~4.3!

which is precisely~i\1̂8!!. All other commutators between~1̂8!!, ~x̂8!!, and ~p̂8!! vanish identi-
cally. Hence, the!-operation constructed is compatible with the structure ofAp8 , and provides an
involution on this algebra.

Let us consider now other choices of representatives ofO 8. Adopt, e.g., the choice
$1̂, x̂1 t̂(Ĥ)2,p̂%. It follows from Eqs.~2.7! and ~2.8! that

~ x̂1 t̂~Ĥ !2!!5 x̂1 t̂~Ĥ !222i\Ĥ, p̂!5 p̂, 1̂!51̂. ~4.4!

These reality conditions are of the type~3.2!, with X̂a
i Ĉi522i\Ĥ for Ûa5 x̂1 t̂(Ĥ)2, vanishing

otherwise. In particular, assumption~3.6! is verified. Therefore, one can introduce a!-operation on
Ap8 by applying Eq.~3.1! to the present case. In this way, one recovers the!-relations~4.1! and
~4.2!, and thus the same involution on the algebra of physical observables that was obtained above.

Choose now the operators 1ˆ, x̂1 t̂ Ĥ, andp̂ as representatives ofO 8. The reality conditions are
then given by

~ x̂1 t̂ Ĥ !!5 x̂1 t̂ Ĥ2 i\1̂, p̂!5 p̂, 1̂!51̂. ~4.5!

These reality conditions are of the form~3.7!, and induce onAp8 the!-operation defined through
Eq. ~4.2! and

~ x̂8!!5 x̂82 i\1̂8. ~4.6!

Since Eqs.~4.2! and~4.6! imply again relation~4.3!, and~1̂8!! commutes with~x̂8!! and~p̂8!!, the
introduced!-operation is compatible with the commutators of the physical observables, and is
therefore an involution onAp8. However, this involution differs from that obtained in Eqs.~4.1!
and ~4.2!. This proves that the involution induced onAp8 from reality conditions depends on the
particular selection of representatives made for the complete set of physical observables under
consideration.

Note, nonetheless, that the two involutions induced onAp8 in the example discussed above are
equivalent in the sense that the two resulting!-algebrasAp8

(!) are isomorphic, as one can easily
check by identifying the physical observablex̂8 in Eq. ~4.1! with x̂82 i ~\/2!1̂8 in ~4.6!. For infinite
dimensional systems, however, one should expect that the involutions constructed by choosing
different complete sets inAp8 and appropriate representatives for them would lead in general to
inequivalent!-algebras of physical observables.

Suppose, on the other hand, that we can represent the!-relations onAp8 as adjoint relations
on a Hilbert space of physical states, as suggested by Ashtekar. From the involution provided by
Eqs.~4.1! and~4.2!, we would then arrive at a quantum theory in which the observablex̂8 would
be self-adjoint. The involution defined through Eqs.~4.2! and ~4.6! would lead instead to a
quantum theory in whichx̂8 would not be represented by a self-adjoint operator, so that it should
not correspond to a real physical observable of the system. In order to resolve this ambiguity one
can insist, for instance, on that the real classical variablex should be represented by the quantum
observablex̂8. One would thus expect that the spectrum ofx̂8 should be real to guarantee that this
observable has always real expectation values. Hence,x̂8 should be self-adjoint. By itself, this
condition supports the use of involution~4.1!, ~4.2! in the quantization, rather than other possible
!-relations onAp8 which, like relation~4.6!, are inconsistent with the identification ofx̂8 as the
quantum physical observable corresponding tox.
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To close this section, we will present an example in which the involution induced onB8 via
reality conditions is not compatible with the structure of the algebra of physical observables. Let
us consider a physical system with a first-class constraint of the formH50, whereHPR is the
momentum canonically conjugate to a certain variabletPR. We will assume that the reduced
phase space of the system is the cotangent bundle over the unit circleS1. As elementary variables,
we can choose the complex vector space spanned by$1, t, H,cu[cosu, su[sinu, pu%. Here,
uPS1, andpuPR is the momentum conjugate tou. The reality conditions on the corresponding
algebraA~!! of quantum operators are given by Eq.~2.7! and

ĉu
!5 ĉu , ŝu

!5 ŝu , p̂u
!5 p̂u , 1̂!51̂. ~4.7!

Besides, since cos2 u1sin2 u51, we will impose the algebraic relation

~ ĉu!21~ ŝu!251̂. ~4.8!

A complete set of physical observables isO 8 [ $1̂8,ĉu8 ,ŝu8 ,p̂u8%, the prime denoting equivalence
classes. The only nonvanishing commutators inO 8 are

@ ĉu8 , p̂u8#52 i\ ŝu8 , @ ŝu8 , p̂u8#5 i\ ĉu8 . ~4.9!

In addition, relation~4.8! implies that the physical observables inO 8 must satisfy

~ ĉu8!21~ ŝu8!251̂8. ~4.10!

If one chooses 1ˆ, ĉu , ŝu , andp̂u as the representatives ofO 8, the procedure explained in Sec.
III allows one to obtain a!-operation onB8 ~the free associative algebra generated byO 8! which
is compatible with the commutators~4.9! and the algebraic relation~4.10!, and hence provides an
involution onAp8 . Let us select instead the representativesO [$1̂,(ĉu1 t̂ Ĥ),ŝu ,p̂u%. From Eqs.
~2.7! and ~4.7! ~and the commutator oft̂ and Ĥ!, we get

1̂!51̂, ~ ĉu1 t̂ Ĥ !!5~ ĉu1 t̂ Ĥ !2 i\1̂, ŝu
!5 ŝu , p̂u

!5 p̂u . ~4.11!

These reality conditions are of the type~3.7!. Thus, we can apply the results of Sec. III to arrive
at an involution onB8 which is defined through the!-relations~4.11!, but imposed on equiva-
lence classes inO 8. However, such a!-operation is incompatible with the algebraic relation
~4.10!, because

~~ ĉu8!21~ ŝu8!221̂!!5~ ĉu82 i\1̂8!21~ ŝu8!221̂8Þ0. ~4.12!

So, the involution introduced onB8 does not supply a well-defined involution on the algebra
Ap8 of physical observables. This example shows that the freedom in choosing representatives of
the complete set of physical observables is in general restricted by the consistency of the algebraic
structures with the!-operation constructed onAp8 .

V. CONCLUSIONS AND FURTHER COMMENTS

We have shown that, in systems with first-class constraints, the involution defined on the
algebraA~!! of quantum operators does not ever project unambiguously to the algebraAp8 of
physical observables. The reason for this is that the!-conjugates of all the representatives of any
class of observables never belong to the same equivalence class inAp , and, in general, not even
toAp .

We have also proved that, under sufficiently general circumstances, it is nevertheless possible
to obtain a well-defined involution onAp8 via reality conditions by making a particular choice of
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representatives for the equivalence classes of physical observables. The procedure to arrive at this
involution is the following. One must first find a complete set of physical observables$Ûa8% in
Ap8 , and select representatives$Ûa% of them such that their!-conjugates$Ûa

!% satisfy require-
ments~3.2! and~3.6!, namely, such that everyÛa

! belongs to the free associative algebra generated
by $Ûa% up to an operator which, as well as its!-conjugate, vanish modulo quantum constraints.
One can then introduce an involution! in the free associative algebraB8 by defining (Ûa8)

! as the
equivalence class of the observableÛa

! @see Eqs.~3.2!,~3.3!#. This involution onB8 straightfor-
wardly supplies an involution onAp8 , provided that the constructed!-operation is compatible
with the commutation and algebraic relations which exist between the physical observables in the
complete set$Ûa8%.

The involution obtained in this way onAp8 depends on the selection of a complete set of
physical observables and of specific representatives for them. While these choices are severely
restricted by the consistency conditions explained above, there is in general some freedom left, so
that, by adopting different choices, one might in principle arrive at nonequivalent involutions on
the algebra of physical observables.

This extra freedom in the quantization method suggested by Ashtekar, rather than being a
supplementary complication, might actually become an additional help when attempting to com-
plete the quantization. This is due to the fact that, given an involution! on the algebraAp8 and a
certain representation forAp8 on a vector spaceVp of quantum states, there isa priori no
guarantee that there exists an inner product onVp with respect to which the!-relations on physical
observables are realized as Hermitian adjoint relations in the resulting Hilbert space. Thus if such
an inner product does not exist for a particular involution onAp8 , one can always try to induce a
different involution on this algebra via reality conditions, and see whether it is possible to then
find an inner product with the desired properties.

We notice, on the other hand, that the introduction of an involution onAp8 amounts essentially
to determine the!-conjugate to a complete set of physical observables. When one expects that a
set of this kind, or at least some of its elements, correspond classically to real observables of the
system, it is reasonable to assume that they should be represented by self-adjoint operators. The
involution defined onAp8 should therefore ensure that these operators coincide with their
!-conjugates. These requirements clearly restrict the physically admissible involutions onAp8 .
Moreover, in the case that this type of physical arguments would apply to a complete set in
Ap8 , one would fully specify the involution on this algebra. In this way, one can use physical
intuition as a guideline to resolve~either partially or totally! the ambiguity encountered when
inducing an involution on the algebra of physical observables from reality conditions.

Finally, an alternative strategy to remove such an ambiguity could consist in adopting a
specific procedure to induce the involution! onAp8 . A procedure of this type might be, e.g., the
following:12 Let us denote byAs,Ap the subalgebra formed by all the strong quantum observ-
ables of the theory~that is, the operators which commute exactly with all the quantum constraints
$Ĉi%!, and defineI s[I CùAs . It is immediate to check thatI s is an ideal ofAs . Suppose then
that, in the system under consideration, the involution! defined onA~!! and the representation
constructed for the algebraA and for the constraints$Ci% are such that:~a! The complex vector
space spanned by the quantum constraints$Ĉi% is closed under reality conditions, i.e.,Ĉi

!5l i
j Ĉ j ,

where theli
j ’s are complex numbers.~b! The algebraAs8 [ As /I s is isomorphic toAp8 . ~c! The

ideal I s is invariant under the!-operation. Notice that hypothesis~c! is in principle compatible
with the fact thatI C is not a!-ideal ofAp . Requirement~b!, on the other hand, guarantees that
each physical observable inAp8 possesses~at least! one representative which is a strong observ-
able.

Using condition~a!, it is possible to prove that the!-operation leavesAs invariant. Assump-
tion ~c! ensures then that the!-relations project unambiguously toAs8 . One hence obtains a
well-defined involution onAs8 which, given condition~b!, supplies a unique involution onAp8
through the existing isomorphism between these two algebras. So, provided that hypotheses~a!–
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~c! are satisfied, the above strategy allows one to induce an unambiguous involution onAp8 from
reality conditions.

In fact, this strategy is partially motivated by the refined version of Ashtekar’s program which
has been recently proposed.13 In this new version of the program, it is supposed that all first-class
constraints can be represented by self-adjoint operators on an auxiliary Hilbert space on which one
has constructed a!-representation ofA~!!. Hypothesis~a! must hence hold. Besides, rather than
considering the whole algebraAp , one restricts one’s attention to a certain!-subalgebra of strong
observablesB phys

~!! ,As .
13 After completion of the quantization, one obtains a physical Hilbert

spaceHphys which carries a!-representation ofB phys
~!! . Let us point out that this representation

will not be faithful in general, for there may exist a subalgebraI B,B phys
~!! that annihilates the

whole space of physical states. It seems reasonable to assume thatI B5I CùB phys
~!! , i.e., that the

operators inB phys
~!! with zero action on physical states are those which vanish modulo

constraints.14 On the other hand, it is possible to show14 that Ashtekar’s refined program can be
consistently implemented only ifI B is a !-ideal ofB phys

~!! , requirement which is the analog of
hypothesis~c! above.

According to our discussion,Hphys should finally provide a faithful representation ofBphys8
[ B phys

(!) /I B. In order that all relevant physical information can be extracted from the quantum
theory obtained, it is then necessary thatBphys8 be isomorphic toAp8 ~or at least to a sufficiently
large subalgebra of it!. This last condition parallels hypothesis~b!. In this sense, the strategy
presented here to induce an involution onAp8 actually is implicitly incorporated in Ashtekar’s
refined program, with the only generalization that one can consider a!-subalgebra of strong
observablesB phys

~!! as the substitute forAs .
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New features of a previously introduced group approach to quantization are pre-
sented. We show that the construction of the symmetry group associated with the
system to be quantized~the ‘‘quantizing group’’! does not require, in general, the
explicit construction of the phase space of the system, i.e., does not require the
actual knowledge of the general solution of the classical equations of motion; in
many relevant cases an implicit construction of the group can be given, directly, on
configuration space. To show an application, we construct the symmetry group for
the conformally invariant massless scalar and electromagnetic fields and the scalar
and Dirac fields evolving in a symmetric curved space-time or interacting with
symmetric classical electromagnetic fields. Further generalizations of the present
procedure are also discussed and in particular the conditions under which non-
Abelian groups~mainly affine groups and more general gauge groups! can be
included. © 1996 American Institute of Physics.@S0022-2488~96!02401-7#

I. INTRODUCTION

The conventional perturbative methods of quantization do not work properly with several
relevant field theories. In addition, even in the case of theories for which a perturbative approach
is possible, some information cannot be obtained by perturbative techniques because of its global
nature. Therefore, it is necessary to look for other nonperturbative methods to extract this infor-
mation from these quantum theories. A quantization method which might be especially suitable to
perform this task is the group approach to quantization~GAQ! formalism.

The GAQ formalism was introduced several years ago~see, e.g., Refs. 1 and 2, and references
therein! as an improved version of the geometric quantization and the Kirillov coadjoint orbit
methods of quantization.3,4 One of the major aims in the construction of the algorithm was to
achieve the quantum solutions of a given physical system without explicitly solving the corre-
sponding classical equation of motion, thus allowing for a quantum system for which a classical
limit is not properly defined or the classical equations do not have a well-defined general solution.
However, the required understanding of the basic symmetry group5 is so accurate that, in many
cases, the effort to finding it could be nearly equivalent to solving the problem. In this sense, GAQ
is perhaps more useful as a tool for associating exactly solved~quantum systems! with already
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classified Lie groups than as a method to quantize physical systems originally defined by a
Lagrangian.

This paper is intended to be a first step in the opposite direction, i.e., towards the construction
of quantizing groups, closely related to actual Lagrangians~or, equivalently, equations of mo-
tions!, and dependent on fields given in configuration space, that is to say, formal groups of
sections of a given fiber bundle on space–time directly attached to the physical system. We shall
call thisconfiguration-space imageof the formalism. As the basic result, prior to this goal, it will
be shown that the construction of the quantizing group does not, in principle, require the previous
step of going to the phase space of the system; i.e., the explicit solution of the classical equations
of motion is not required.

The configuration-space image of the formalism will also provide us a clearer view of the
exact nature of the quantizing group and will clarify the relationship of this formalism with the
Lagrangian and canonical formalisms.

We shall also show some of the advantages of expressing the formalism in the configuration-
space image by constructing the quantizing group for several nontrivial fields in a natural and
straightforward way: the conformally invariant massless scalar and electromagnetic fields, and the
scalar field in symmetric curved space–time or interacting with arbitrary symmetric classical
electromagnetic fields~Sec. III!.

This image of the formalism, as well as the examples presented here, can also serve as a guide
for further generalizations. We shall discuss some of these, arguing that a direct generalization for
non-Abelian affine groups, or more general Kac–Moody groups and gauge groups6,7 ~see also
Refs. 8 and 9!, requires the equations of motion to be of first order. We shall show by means of
two examples that this is not the case for other types of non-Abelian groups~Sec. IV!.

In this article we shall not discuss the subtleties of the proper quantization procedure. The
interested reader may explore these in some of the quoted references.

II. THE HARMONIC OSCILLATOR AND THE KLEIN–GORDON FIELD

In this section we shall use two simples examples, the harmonic oscillator and the Klein–
Gordon field, to present the basic features of the GAQ formalism when the quantizing group can
be written in terms of fields in configuration space.

The group law proposed in Ref. 1 for the one-dimensional harmonic oscillator@the extended
one-dimensional Galilei group, the quantizing group for the nonrelativistic free particle can be
obtained as the limiting casev→0# was

A95A1A8 cosvB1SV8

v D sin vB,

V95V1V8 cosvB2vA8 sin vB, B95B1B8, ~2.1!

z95zz8 exp
i

2 FVSA8 cosvB1
V8

v
sin vBD2A~V8 cosvB2vA8 sin vB!G .

Nevertheless, apart from the fact that the algebra of this group is isomorphic to the algebra of the
basic observables of the harmonic oscillator little has been explained concerning the manner in
which this group is actually associated with the harmonic oscillator~HO!. Let us consider, how-
ever, the harmonic oscillator~HO! from the Lagrangian viewpoint. The action is

SHO5
1

2
mE dt@ q̇22v2q2#. ~2.2!

The equations of motion are
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F d2dt2 1v2Gq50 ~2.3!

with the general solution

q~ t !5q0 cosvt1
q̇0
v

sin vt, ⇒q̇~ t !5q̇0 cosvt2vq0 sin vt. ~2.4!

Hence, by means of the identificationA[q0 , V[q̇0 , t[B; and associating a time evolution to
the coordinates of the phase space in the natural manner, the group law in Eq.~2.1! can be written
in the form

A95A1A8~B!, V95V1V8~B!, B95B1B8,
~2.5!

z95zz8 exp
i

2
m@VA8~B!2AV8~B!#.

Now, taking into account thatq̇[Ȧ5V, this group law can straightforwardly be written on
configuration space:

B95B1B8, q9~ t !5q~ t !1q8~ t1B!,
~2.6!

z95z8z exp
i

2
m@ q̇~ t !q8~ t1B!2q~ t !q̇8~ t1B!# t5t0

.

Instead of discussing here what we can learn from the simple manipulations above and the
results obtained, it is preferable to consider first the case of a field such as the Klein–Gordon field.
The action and equations of motion are

SKG5
1

2 E d4x@]mf]mf2m2f2#, ~2.7!

⇒@h1m2#f50. ~2.8!

The analogy with the harmonic oscillator can serve as a guide to propose a quantizing group
for the fields directly on configuration space~to simplify the discussion we shall not consider here
Lorentz transformations, but only the symmetries associated with space–time translations!. Let us
consider the following composition law:

a95a1a8, a P R4, f9~x!5f~x!1f8~x1a!, ~2.9!

z95z8z exp
i

2
jKG~g8,g![z8z exp

i

2 E
S
dsm~x!T KG

m ~g,g8!~x!,

where

T KG
m ~g,g8!~x!5]mf~x!f8~x1a!2f~x!]mf8~x1a! ~2.10!

andS is any spacelike hypersurface.
Now, let us expand the fieldsf that solve the equation of motion~2.8! in Fourier modes by

means of
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f~x!5E d3k

2k0
~F~k!e2 ikx1F1~k!eikx!. ~2.11!

It is not difficult to see that for the Fourier modesF(k) we get the composition law postulated in
Ref. 10. This implies that the composition law above is actually a group law. Nonetheless, it is
easy to see that we need not use the general solution~2.11! to show that Eqs.~2.9! and ~2.10!
define a group law. In fact, the requirement that the fields in Eq.~2.10! be solutions of the equation
of motion is enough to show that

~a! the quantityj(g8,g) fulfills the cocycle property:

j~g9,g8!1j~g9* g8,g!5j~g9,g8* g!1j~g8,g! ~2.12!

and that
~b! the currentT m is conserved:

]mT
m50. ~2.13!

In fact, in all the cases studied in this paper there is a double implication~a! ⇔ ~b!: Finding a
divergenceless current composed of the fields solution of the equations of motion has consistently
proved sufficient for the quantityj, constructed on it, to fulfill the cocycle property. We do not
know whether this is the general case.

We can, therefore, state the following features of the formalism expressed in configuration
space:

~1! The basic group~the group to be centrally extended! is a group irrespective of whether or
not the fields involved fulfill the equations of motion.

~2! The central extension involves the integral of a divergenceless currentT m over an hyper-
surfaceS. This current has null divergence only over the fields that obey the equations of motion.

Therefore, the centrally extended group, the quantizing group,involves only the fields that are
solutions of the equations of motion. It is constructed upon thephase spaceof the system.@For the
~covariant! description of the phase space of a system as the set of all solutions of the classical
equations of motion see, e.g., Ref. 11, and references therein.#

In this phase space, different coordinates can be chosen. The choice of the Fourier modes
F(k) leads us to the composition law in Ref. 10. Another choice is the familiar one of fields and
timelike derivatives of the fields in the hypersurfaceS. We can write the group law in these
coordinates by using the following propagation property:

f~y!5E
S
dsm~x!@]mD~y2x!f~x!2D~y2x!]mf~x!#, ~2.14!

where the propagatorD obeys the equation of motion:12

@h1m2#D50. ~2.15!

~3! The classical equations of motion,but not their general solution, are required to show that
the quantizing group is, in fact, a group.

~4! The equations of motion are not uniquely determined by the group; Eq.~2.13! implies Eq.
~2.8! for some mbut not for a particularm. Therefore Eq.~2.13! almostimplies Eq.~2.8! but there
is not a complete implication. The groups in configuration space for the harmonic oscillator and
the free particle are the same, whereas the equations of motion are not. It is in terms of phase-
space coordinates that the difference between these systems explicitly appears in the group.
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III. APPLICATIONS

In this section we shall construct the quantizing group for several physically interesting
systems to present an application of the formalism presented above: the conformally invariant
massless scalar and electromagnetic fields, the scalar and Dirac field in a symmetric curved
space–time, and these same fields interacting with symmetric electromagnetic fields.

@Unlike in the previous section, where the semidirect action of the space-time symmetries was
given in a rather unnatural way—a way adapted to the Schro¨dinger representation—in the sequel
we shall write the quantizing groups in the natural way; the other expression can be obtained by
a simple change of coordinates.#

A. Conformally invariant fields

The conformal group, for which the composition law has not, up to now, been given in a
closed form, is made up of compositions of the following actions on the space–time:

~a! space time translations:~ux!a5xa1aa;

~b! Lorentz transformations: ~ux!a5Lm
axm;

~c! dilatations: ~ux!a5elxa;

~d! special conformal tranformations:~ux!a5
xa1cax2

112cx1c2x2
.

1. The massless scalar field

The group law~in four dimensions, in which case the conformal dimension of a scalar field is
l521! is

u95u8* u̇, conformal ~sub!group,
~3.1!

f9~x!5f8~x!1V21~u821,x!f~u821~x!!,

z95z8z exp
i

2
jMS~g8,g!5zz8 exp

i

2 E
S
dsm~x!T MS

m , ~3.2!

where

T MS
m 5f8~x!]m@V21~u821,x!f~u821~x!!#2]mf8~x!@V21~u821,x!f~u821~x!!# ~3.3!

and the functionV is given by

V~u,x!5H 112cx1c2x2 for special conformal transformation
e2l for dilatations
1 for the Poincare´ subgroup

.

The functionV for a general conformal transformation can be obtained by using its property

V~u,x!V~u8,ux!5V~u8u,x! ~3.4!

which is required for Eq.~3.1! to define a group.
It is not difficult to show that iff(x) andf8(x) are solution of the equations of motion

]m]mf~x!50 ~3.5!
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so isf9(x). It is also straightforward to show, by using Eqs.~3.4! and ~3.5!, that the currentT m

is divergenceless and fulfills the cocycle property~2.12!.

2. The electromagnetic field

The group law is given by

u95u8* u, conformal ~sub!group,
~3.6!

Am9 ~x!5Am8 ~x!1
]u821a

]xm Aa~u821x![Am8 ~x!1~S~u821!A!m~x!,

whereS is the representation of the conformal group that acts on the electromagnetic vector field.
This action is the natural one and means that the potential vector has null conformal weight. This
action induces the following one on the tensor fieldFmn :

Fmn9 ~x!5Fmn8 ~x!1
]u821a

]xm

]u821b

]xn Fab~u821x!, ~3.7!

[Fmn8 ~x!1~S~u821!F !mn~x!. ~3.8!

It is easy to show that this action leaves invariant Maxwell’s action:

SM5E d4x FmnF
mn ~3.9!

and, therefore, leaves Maxwell’s equations invariant.
The central extension is given by

z95z8z exp
i

2
jM~g8,g!5z8z exp

i

2 E
S
dsm~x!T M

m ~g8,g!~x! ~3.10!

with divergenceless current

T M
m ~g8,g!~x!5F8mn~x!~S~u821!A!n~x!2An8~x!~S~u821!F !mn~x!. ~3.11!

If we restrict ourselves to the symmetry group of space–time translations, the group is written

a95a1a8, Am9 ~x!5Am8 ~x!1Am~x2a8!,
~3.12!

z95zz8 exp
i

2 E
S
dsm~x!T M

m ~g8,g!~x!,

with a current

T M
m ~g8,g!~x!5F8mn~x!An~x2a8!2An8~x!Fmn~x2a8!. ~3.13!

In this last example, we again see the issue discussed above: The currentT M
m is divergenceless

and fulfills the cocycle property if Maxwell equations are obeyed, but a Proca-like equation
]mF

mn1m2An50, with a non-null massm, is also allowed. This is, however, no longer the case
when the full conformal group is considered.
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B. Matter fields in a symmetric curved space–time

In this section we shall present the quantizing group for matter fields, the Klein–Gordon and
Dirac fields, evolving in a symmetric, but on the other hand arbitrary, curved space–time with
metricgmn .

Let us assume that a set of transformationsv is a group of isometries of the metric~see, e.g.,
Refs. 13 and 14!. Then we have

gmn~vx!
]~vx!m

]xa

]~vx!n

]xb 5gab~x! ~3.14!

and, in the same way,

gmn~vx!5gab~x!
]~vx!m

]xa

]~vx!n

]xb . ~3.15!

1. The scalar field

The equations of motion for a scalar field evolving in this background metric are~see, e.g.,
Refs. 15 and 16!:

@h~x!1aR~x!1m2#f~x!50 ~3.16!

with

h~x!f~x![
1

Ag~x!
]m~Ag~x!gmn~x!]n!f~x!. ~3.17!

The group law that would describe the quantum dynamics of this system is given by

v95v8* v, f9~x!5f8~x!1f~v821~x!!, ~3.18!

z95zz8 exp
i

2 E
S
dsm~x!T SCS

m ~3.19!

with

T SCS
m 5Ag~x!gmn~x!@f8~x!]n@f~v821~x!!#2]nf8~x!f~v821~x!!#. ~3.20!

@Notice that Eq.~3.14! impliesh(x)5h(vx) andR(vx)5R(x) ~see also Ref. 14!.#

2. The Dirac field

Let C be a Dirac field with equations of motion~see, e.g., Refs. 13 and 15!:

@ i ĝm~]m1 1
2iG

a
m
bSab!2m#C50, ~3.21!

where

gmn5habem
aen

b , ~3.22!

ĝm5gaea
m, Sab5

1
4i @ga ,gb#, ~3.23!

Gab
c 5ecnea

m~]meb
n1eb

lGml
n !. ~3.24!
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The transformationsv, being isometries, imply that there exists a set of local Lorentz trans-
formationsL(v,x) such that

eam~vx!
]~vx!m

]xl 5L~v,x!ace
c
l~x!. ~3.25!

On these grounds it can be shown that the following set of transformations is a~super!group:

v95v8* v,
~3.26!

C9~x!5C8~x!1r~L~v821,x!!C~v821~x!!,

C̄9~x!5C̄8~x!1C̄~v821~x!!r~L~v821,x!!21,
~3.27!

z95z8z exp
i

2
jDCS~g8,g!5z8z exp

i

2 E
S
dsm~x!T DCS

m ~g8,g!~x!,

where

T DCS
m ~g8,g!~x!5 i @C̄8~x!ĝm~x!r~L~v821,x!!C~v821x!

2C̄~v821x!r~L~v821,x!!21ĝm~x!C8~x!# ~3.28!

andr is the usual spin representation of the Poincare´ group which verifies

r~L!21gar~L!5La
bg

b. ~3.29!

C. Matter fields coupled to symmetric electromagnetic fields

In this section, we shall present the quantizing group for matter fields, the Klein–Gordon and
Dirac fields, coupled to a symmetric, but on the other hand arbitrary, electromagnetic field.

The space–time in this section will be flat, with a Minkowskian metrichmn . The set of
transformationv will be any subgroup of the Poincare´ group leaving the electromagnetic field
invariant:Am(vx)5Am(x).

1. The Klein –Gordon field

Let the scalar fieldf obeys the equations of motion

~DmD
m1m2!f50 ~3.30!

with Dm[]m2 iAm .
Then the following composition law defines a group:

v95v8* v, ~3.31!

f9~x!5f8~x!1f~v821~x!!, ~3.32!

z95z8z exp
i

2
jSAF~g8,g!5z8z exp

i

2 E
S
dsm~x!T SAF

m ~g8,g!~x! ~3.33!

with

T SAF
m ~g8,g!~x!5Dmf~v821!f* 8~x!2f~v821!~Dmf!* 8~x!
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1~Dmf~v821!!*f8~x!2f~v821!* ~Dmf!8~x!. ~3.34!

2. The Dirac field

Let C be a Dirac field with equations of motion:

~ igmDm2m!C50. ~3.35!

Then the following set of transformations is a group:

v95v8* v,

C9~x!5C8~x!1r~L~v821!!C~v821~x!!, ~3.36!

C̄9~x!5C̄8~x!1C̄~v821~x!!r~L~v821!!21,

z95z8z exp
i

2
jDAF~g8,g!5z8z exp

i

2 E
S
dsm~x!T DAF

m ~g8,g!~x! ~3.37!

with

T DAF
m ~g8,g!~x!5 i @C̄8~x!gmr~L~v821!!C~v821x!2C̄~v821x!r~L~v821!!21gmC8~x!#.

~3.38!

Comments:We should point out here that the requirement of being symmetric for the classical
‘‘source’’ fields considered above, such as the space-time metric or the electromagnetic field in
Secs. III B and III C, respectively, is not a strict requirement: many relevant systems, such as the
one of fields evolving in a Schwarzchild black hole background,15,17 are not excluded by this
constraint.

IV. GENERALIZATIONS. THE VIRASORO GROUP AND THE SCHWARZIAN DERIVATIVE

Let us consider from another perspective the manner in which we arrived at the group law for
the harmonic oscillator in Sec. II, Eq.~2.1!. ~Similar considerations can be made on the group laws
for the other fields mentioned above.! We started with an Abelian gauge group~the group of
functions onR with values in a groupG and pointwise group composition! ~composed in a
semidirect way with the temporal translations which are the zero modes of the group of diffeo-
morphisms of the real line!. From this group, we extracted the subgroup of the functions that obey
certain differential equations~the equations of motion!. The subgroup obtained this way can be
extended, the principal ingredient for the extension being a divergenceless current.

This point of view leads us immediately to a possible generalization: instead of an Abelian
gauge group let us consider more general, non-Abelian gauge groups. However, we should ask
what differential equations~equations of motion! are to be applied to the basic group. In other
words, the question is: what differential equation is there such that ifg(t) andh(t) are solutions
of this equation,g(t)* h(t) is also for a general non-Abelian affine group?~This is a kind of
symmetry that goes beyond those usually considered in the literature.! For the Abelian group, the
solution was obvious: any linear differential equation is such that ifh(t),g(t) are solutions so is
h(t)1g(t). From this simple property, we have constructed the quantizing group for the harmonic
oscillator, the nonrelativistic free particle, the Klein–Gordon and Maxwell fields, etc. We might
ask though what differential equation fulfills this property for, say, a current SU~2! group.

There are strong indications that no equation of order greater than one with this property
exists for any non-Abelian gauge group. In fact, let us consider the Lie algebra of these gauge
groups. For any Abelian gauge group, the basic Lie algebra is
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$wa~x!,wb~y!%50. ~4.1!

From this algebra, we have to extract the subalgebra made up of the tangent fields that obey the
~linearized! equations of motion and further extend it. In the Abelian case, this can be done with
the result

$wa~x!,wb~y!%5Dab~x2y!, ~4.2!

whereDab is the propagator similar to that of Eqs.~2.14! and~2.15!. @If D(x2y) is the propagator
for the Klein–Gordon field, the propagator for the Dirac field isDD(x2y)5( igm]m1m)D(x2y)
and for the electromagnetic~or Proca! field isDMmn

(x 2 y) 5 2hmnD(x 2 y). For the harmonic
oscillator it isDHO(B)5~1/v!sinvB and for the nonrelativistic free particleDFP(B)5B.# This
central extension is consistent with the~linearized! equations of motion for the tangent fields.

For non-Abelian fields, we should start from the basic Lie algebra:

$Ta~x!,Tb~y!%5 f c
abTc~x!d~x2y!. ~4.3!

The Lie bracket of two elements of the Lie algebra

X5E dx fa~x!Ta~x!, Y5E dx ga~x!Ta~x! ~4.4!

is given by

@X,Y#5E dx fa~x!gb~x! f c
abTc~x!. ~4.5!

Therefore the Lie algebra~4.3! can equivalently be written in terms of the coefficient functionsf
as follows:

@ f ,g#c~x!5 f a~x!gb~x! f c
ab . ~4.6!

For any equation of motion that we impose now on the group elements, the induced linearized
equations of motion for the elements of the Lie algebra will, of course, be linear. But, for non-null
structure constantsf c

ab, Eq. ~4.6! implies that no subalgebra can be defined by linear equations of
an order greater than one.

This result is a sort ofno-go theorem which implies that the construction above for Abelian
groups~fields!, with equations of motion of a second order, cannot bedirectly extended to non-
Abelian groups~fields!. This extension would require the equations of motion to be of a typically
Hamiltonian form. Only in the case of Abelian centrally extended gauge groups~fields!, the
splitting of coordinate momentum can be made without breaking the group structure.

Now, we shall show that this obstruction is not present in other kinds of non-Abelian groups.
Let us consider, as an example, the Schwarzian derivativeS( f ):

S~ f !5] tH ] t
2f

] t f
J 2

1

2 S ] t
2f

] t f
D 25] t

3f

] t f
2
3

2 S ] t
2f

] t f
D 2. ~4.7!

This operator fulfills the so-called Cayley property:

S~ f og!5S~ f !og~ ġ!21S~g!, ~4.8!

whereo stands for composition of functions. Therefore we shall find that

S~ f !50, S~g!50⇒ S~ f og!50. ~4.9!
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Therefore, for the Virasoro group, the group of diffeomorphisms of the real line, the vanishing of
the Schwarzian derivative is a differential equation with the property we were seeking.~We will
say that the Schwarzian derivative isclosedunder the Virasoro group.! Since the group of diffeo-
morphismsdoes not havea pointwise composition law, it does not fulfill the hypothesis of the
no-go theorem above, and we shall show that it does not fulfill its thesis either.

The algebra of the group of diffeomorphisms onR is the Lie algebra of all vector fieldsv(t)] t
with the Lie bracket:

$u,v%~ t !52~ u̇~ t !v~ t !2u~ t !v̇~ t !!. ~4.10!

If the functions of the group satisfyS( f )50, by taking variation and taking into account that the
identity function isf (t)5t, we arrive at the following~of course, linear! equation for the functions
in the Lie algebra of the group

] t
3v~ t !50. ~4.11!

It is straightforward to show by applying the linear operator]t
3 to both sides of Eq.~4.10! that the

set of functions which satisfy Eq.~4.11! close into a subalgebra.
The general solution of Eq.~4.11! is a general linear combination of 1,t,t2 which generates the

general solution of the equationS( f )50:

f ~ t !5
at1b

ct1d
with ad2bc51. ~4.12!

Therefore the subgroup of the Virasoro group generated by functions obeyingS( f )50 is the
SL~2,R! group.

A. The Virasoro gauge group and the induced 2D gravity in the light-cone gauge

A construction similar to the one presented above for the Virasoro group can also be made for
the Virasoro gauge group. @This group should not be confused with the affine Virasoro group,
which is a realization of the Virasoro group~generators!, the Sugawara construction, in terms of
currents from an affine~Kac–Moody! algebra~see Ref. 8!.# This is the set of functions

f :R→Virasoro,
~4.13!

s→ f ~s!

with the composition law (f * g)(s)(t)5( f (s)og(s))(t). The elements of this group are, there-
fore, parametrized by two coordinates,s and t, and can be considered to be functions of two
variables,f ~s,t!.

The vanishing of the Schwarzian derivative

$ f ~s,t!,t%50 ~4.14!

is, of course, aclosedequation for this group, thus defining a subgroup, the SL~2,R! affine group
in this case.

The identificationss[x15t1x, t[x25t2x transform Eq.~4.14! into the equation of
motion, $ f ,x2%50, of the induced 2D gravity in the light-cone gauge.11 Moreover, in this gauge,
the symplectic form is the canonical one of the SL~2,R! affine ~sub!group. All this would indicate
that the quantum theory of this system should be described in terms of irreducible, unitary repre-
sentations of the SL~2,R! affine group. However, it is well known that there are no unitary,
standard highest-weight representations with a nonzero central charge. In fact, a more rigorous
analysis of this theory based on a local form of the action shows that its true reduced phase space
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is quite different from that proposed above and cannot be obtained as a constrained version of the
former.11 Therefore, the role played by the SL~2,R! affine symmetry is in any case different from
the one expected from the analysis of the nonlocal theory in the light-cone gauge.

V. DISCUSSION

We have presented the basic features of the GAQ formalism when the quantizing group can be
written in terms of fields given on configuration space. It was not our intention to be exhaustive.
On the contrary: many question have been raised which will have to be addressed in future
publications.

The quantizing groups for several physically relevant systems have been given, albeit most of
them in an implicit form. However, one might question the utility of writing down the quantizing
group in this implicit form. The key point in considering the quantizing group is that it collects all
the information about both the classical and the quantum theories. Of course, we can achieve the
most with it when we know the general solution of the equations of motion, i.e., the phase space
of the theory~and, in fact, there are many important examples in which this is the case!, but we
believe that, even when the general solution is not known, there can still be a large amount of
information of the quantum theory that we can possibly extract from the quantizing group.

An interesting case occurs when we know onlysomeof the classical solutions of the theory.
With the GAQ formalism, we would be able to quantize these solutions, provided that we were
able to find pairs of solutions that are coordinate-momentum conjugates of each other.~In the
GAQ formalism, the cocycle may be viewed as a sort of ‘‘symplectic product’’ which measures the
extent to which two classical solutions are coordinate-momentum conjugates of each other.! This
sort ofminisuperspaceapproach would provide us with a preliminary draft of the quantum theory
and deserves independent study.

In addition, the phase space of any classical theory is, in some sense, always roughly known:
it is characterized by the fields and time derivative of the fields in a Cauchy hypersurface and
evolve in time in accordance with the classical equations of motion. Putting aside topological or,
in general, global issues of the phase space, the GAQ formalism equipped with this rough de-
scription of the phase space must necessarily work better than the familiar canonical quantization
does.

Furthermore, the configuration-space image of the GAQ formalism appears as a well-suited
formalism to deal with gauge theories. Indeed, gauge symmetries, far from being a mere useful
tool to solve a previously given theory, determine the theory, and this philosophy is the same that
inspires the GAQ formalism. However, we have proven in Sec. IV a sort of no-go theorem which
delimits the type of equations of motion in a~nonlinear! system defined by a non-Abelian basic
current group; these equations must be kept in a Hamiltonian-like, first-order form, since the
restriction to the pure coordinate space satisfying second-order equations would destroy the group
structure. This situation resembles that of WZW models18 where the Kac–Moody symmetry
comes out in a natural way when written in a set of coordinates~light-cone coordinates! where the
Lagrangian is not regular, making this way the difference between the modified and ordinary
Hamilton principle.
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Fermion pair production from an electric field varying
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The Hamiltonian describing fermion pair production from an arbitrarily time-
varying electric field in two dimensions is studied using a group-theoretic approach.
We show that this Hamiltonian can be encompassed by two, commuting SU~2!
algebras, and that the two-dimensional problem can therefore be reduced to two
one-dimensional problems. We compare the group structure for the two-
dimensional problem with that previously derived for the one-dimensional prob-
lem, and verify that the Schwinger result is obtained under the appropriate
conditions. ©1996 American Institute of Physics.@S0022-2488~96!01201-4#

I. INTRODUCTION

Fermion pair production takes place in a large number of physical situations; a comprehensive
review of its applications in atomic, nuclear, elementary particle physics, astrophysics, and cos-
mology is given in Ref. 1. Consequently, the problem of pair production from classical external
electric fields has been the subject of considerable theoretical interest.2–17The rate of fermion pair
production from a uniform, static electric field was originally calculated by Schwinger2 to be

v5
aE2

p2 (
n51

`
1

n2
expS 2

npm2

ueEu D , ~1!

wherem is the mass of the produced fermions. To date, an analytic formalism that successfully
addresses the general problem of fields which vary arbitrarily in both time and space has not been
developed. However, numerous approaches have been suggested which address particular special
cases. We previously discussed an approach for predicting the rate of pair production from a
spatially homogeneous but arbitrarily time-varying field, provided the field is constrained to point
in a fixed direction.17 We now investigate an extension to this formalism that allows for a field
varying in two dimensions.

We begin by writing the interaction Hamiltonian for fermions in an electric field. We adopt the
gauge

A050, Ai52E
2`

t

Ei~ t !dt. ~2!

The interaction Hamiltonian is then given by

HI52eAiE d3x c̄ in~x!g ic in~x!, ~3!
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wheregi is the i th 434 Diracg-matrix, and summation over like indices is assumed. The incom-
ing Dirac fieldcin is that of free fermions,

c in5E d3k

~2p!3/2
Am

k0
(
b

@bb~k!ub~k!e2 ik•x1db
†~ k̃!vb~ k̃!eik•x#, ~4!

whereb andd† are the usual fermion creation and antifermion annihilation operators, andu and
v are the two-component fermion and antifermion spinors. We use the symbolk to denote the
four-vector~k0,k! and k̃ to denote~k0,2k!; k represents the initial momentum of the fermions,
and is a time-independent quantity. The mass of the created fermions is given bym, and their
charge bye.

We chose the one-dimensional configuration as a starting point because, if the field varies in
only one direction, the Hamiltonian contains only one Diracg-matrix, and an SU~2! algebra is
sufficient to encompass the Hamiltonian. In the two-dimensional case, the Hamiltonian contains
two Dirac g-matrices. The appropriate algebra is then an SO~4! algebra, which is isomorphic to
two commuting SU~2! algebras, as we illustrate below.

II. PAIR EMISSION FROM A TWO-DIMENSIONAL ELECTRIC FIELD

For an electric field that varies in the plane defined by the directionsi51,2, the interaction
picture Hamiltonian is

H5E d3kH S 2k022e
Aiki
k0

D J0~k!2
em iAi

k0
@J1

~ i !~k!1J2
~ i !~k!#J , ~5!

where summation ofi over indices 1 and 2 is implied.mi in this expression is defined asm i

5 Ak022ki
2. We have defined the operators in analogy to the one-dimensional case:17

J1
~ i !5

m

m i
(
ab

ba
†~k!db

†~ k̃!ūa~k!g ivb~ k̃!, i51,2,

J2
~ i !5@J1

~ i !#†, i51,2, ~6!

J05
1

2 (
a

@ba
†~k!ba~k!2da~ k̃!da

†~ k̃!#.

With an additional operator,

Q5(
ab

@ba
†bbūag3g5ub1dadb

† v̄ag3g5vb#, ~7!

these operators form an SO~4! algebra.
From linear combinations of these operators, we can form two commuting SU~2! algebras,

which we denote byI1,2,0 andT1,2,0, as follows:

I15aJ1
~1!1a* J1

~2! ,

I25@ I1#†, ~8!

I 05
1

2
J01

m

4m
Q,
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T15a* J1
~1!1aJ1

~2! ,
~9!

T25@T1#†,

and

T05
1

2
J02

m

4m
Q,

where

a5A m1m2

8~m1m22k1k2!
1 iA m1m2

8~m1m21k1k2!
, ~10!

and we have definedm 5 Ak022k1
22k2

2. Each of these SU~2! algebras is in thej51
2 representation.

The group-theoretic approach has been previously discussed by Perelemov,18 but the algebras
we have derived are distinct from the algebras he considered. The SU~2! algebras utilized in Ref.
18 are constructed from the Diracg-matrices, whereas the SU~2! commutation relations of the
operators in Eqs.~8! and~9! follow from the completeness and orthogonality of the Dirac spinors
u(p) andv(p).

The Hamiltonian in Eq.~5! can be rewritten as a linear combination of elements of these two
SU~2! algebras, and diagonalized via a Bogoliubov19 transformation. The Bogoliubov transforma-
tion takes the usual form

b̃a~k!5Uab~k!bb~k!1V ab~k!db
†~ k̃!, ~11!

d̃a~ k̃!5X ab~k!db~ k̃!1Yab~k!bb
†~k!, ~12!

where the coefficients are time-dependent, 232 matrices. Requiring that the transformation pre-
serve the canonical commutation relations constrains the coefficients to satisfy the relations

UU†1V V †51, XX †1YY†51,

UV T1V X T50.

We further require that the Bogoliubov transformation yield the diagonal Hamiltonian,

H5E d3k e~k!(
ab

@ b̃a
†~k!b̃a~k!2d̃a~ k̃!d̃a

†~ k̃!#, ~13!

wheree is the total energy

e5Am21~k2eA!2.

This requirement constrains the coefficients to be

U5cosuI ~14!

and

Z5U21V 5
2mAi tan u

Ak02A22~A–k!2
@ ūag ivb#, ~15!
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and summation overi is implied.u is defined by the relations

cosu5Ae1r

2e
, sin u52Ae2r

2e
, ~16!

andr is defined by

r5k02
eA–k

k0
. ~17!

Alternatively, one can write the Bogoliubov transformation as a linear operator,

R5R1R2 , ~18!

such that

b̃5R~ t !bR†~ t !. ~19!

R1 andR2 can each be written in terms of only one of the two commuting SU~2! algebras:

R15exp@hI1#exp@ log~11uhu2!I 0#exp@2h* I2#,
~20!

R25exp@h*T1#exp@ log~11uhu2!T0#exp@2hT2#,

where

h5
21

~a22a* 2! F tan u~am1A12a*m2A2!

Ak02A22~A–k!2
G ~21!

gives the desired diagonal Hamiltonian.
Writing the Bogoliubov transformation as a linear operator is useful when calculating the rate

of pair production from an electric field. The physical vacuum after the field has been turned off
(t.T), uZ(T)&, is related to the vacuum before the field was turned on (t,2T), u0i&, by

uZ~T!&5R~T!u0i&. ~22!

Similarly, the physical creation operators for fermions and antifermions at timest.T are b̃†(k)
and d̃†(k), respectively.17 The probability amplitude of producing no pairs,S0, is therefore given
by

S05 lim
t→`

^ZuUI u0i&5^0i uŨu0i&, ~23!

whereŨ5R†UI . One can solve forŨ directly, through

i
dŨ

dt
5H̃Ũ,

where

H̃5R†HR2 iR†R. ~24!

The probability amplitude for producing no pairs is related to the rate of pair productionv by
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uS0u25e2*v d4x. ~25!

The operatorR1 has the matrix representation

R15S cos
a1

2
sin

a1

2
e2 ig1

2sin
a1

2
e2 ig1 cos

a1

2

D , ~26!

whereh5tan~a/2!e2 ig. R2 is defined analogously. One observes that, to satisfy Eq.~20!, a15a2
andg152g2; the subscripts ona andg are therefore dropped. The matrix representation allows
one to easily calculate the HamiltonianH̃. By substituting Eqs.~8! and~9! into the Hamiltonian of
Eq. ~5!, one can show that this Hamiltonian can be writtenH5H11H2 , where

H15E d3kH S 2k02 2eAiki
k0

D I 012iemF S aA1m2
2
a*A2

m1
D I12S a*A1

m2
2
aA2
m1

D I2G J ~27!

and

H25E d3kH S 2k02 2eAiki
k0

DT012iemF S 2a*A1

m2
1
aA2
m1

DT11S aA1m2
2
a*A2

m1
DT2G J . ~28!

It follows that H̃ can be writtenH̃5H̃11H̃2 , where

H̃15R1
†H1R12 iR1

†Ṙ1 ~29!

and

H̃25R2
†H2R22 iR2

†Ṙ2 . ~30!

The explicit expressions forH̃1 and H̃2 are then

H̃15E d3kH F2e~k!12S ġ sin2
a

2 D G I 02 1

2
@~ i ȧ1ġ sin a!e2 igI11~2 i ȧ1ġ sin a!eigI2#J ,

~31!

H̃25E d3kH F2e~k!22S ġ sin2
a

2 D GT02 1

2
@~ i ȧ2ġ sin a!eigT11~2 i ȧ2ġ sin a!e2 igT2#J .

~32!

If we now write Ũ as a product,Ũ5Ũ1Ũ2 , whereŨ1 and Ũ2 are each written in the most
general form of an element of the respective SU~2! groups:

Ũ15expF2 i E d3k f1I 0GexpF E d3k t1I1GexpF E d3k log~11ut1u2!I 0GexpF2E d3k t1* I2G
~33!

and

Ũ25expF2 i E d3k f2T0GexpF E d3k t2T1GexpF E d3k log~11ut2u2!T0GexpF2E d3k t2*T2G ,
~34!
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then the differential equation forŨ,

i
dŨ

dt
5H̃Ũ,

separates into two independent equations forŨ1 and Ũ2. We show this as follows:

i
dŨ

dt
5 i

dŨ1

dt
Ũ21 iŨ 1

dŨ2

dt
5~H̃11H̃2!Ũ1Ũ2 . ~35!

This is the sum of the two equations:

F i dŨ1

dt
5H̃1Ũ1GŨ2 ~36!

and

Ũ1F i dŨ2

dt
5H̃2Ũ2G . ~37!

These are independent differential equations forŨ1 andŨ2, each equation containing elements of
only one SU~2! algebra. When we insert our ansatz forŨ1 and Ũ2 into the above differential
equations, we obtain differential equations for the coefficientst1, t2, f1, andf2. One can proceed
to solve these differential equations in precisely the same manner as in the one-dimensional case.17

Let

z5t exp~2 if1 ig!. ~38!

The resulting differential equation forz1 is

i ż152 1
2~ ġ sin a1 i ȧ !12@e~k!2ġ cosa#z11

1
2~ ġ sin a2 i ȧ !z1

2. ~39!

The corresponding differential equation forz2 is

i ż252 1
2~2ġ sin a1 i ȧ !12@e~k!1ġ cosa#z21

1
2~2ġ sin a2 i ȧ !z2

2. ~40!

One can writeȧ and ġ explicitly, in terms of the electric field and vector potential. The
expression forȧ is

ȧ5S ee2D @~k2eA!3E#–~k3A!1m2~E–A!

Ak02A22~A–k!2
, ~41!

with ȧ50 at t52`. The expression forġ is

ġ52
mk0uA3Eu

k0
2A22~A–k!2

. ~42!

Note that onlyġ appears explicitly in the equations; when calculatingutu ~see Eq.~43! below!, the
initial condition ong is irrelevant. WhenA andE are parallel~ġ50!, Eqs.~39! and~40! reduce to
the corresponding equation calculated for the one-dimensional case.17 When ġÞ0, the two-
dimensional nature of the equations is manifested.

Finally, one can calculate the rate of pair productionv via S0. The above definitions give
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S05^0i uŨu0i&5expF i E d3kS f11f2

2 D GexpF2E d3k logA~11ut1u2!~11ut2u2!G . ~43!

Then

uS0u25u^0i uŨu0i&u25expH 2E d3k log@~11uz1u2!~11uz2u2!#J . ~44!

Once the differential equations have been solved forz1 and z2 ~in general, this must be done
numerically!, the rate of pair production is easily obtained.

To verify this approach, consider the very simple example of a uniform, static electric field
which is oriented at an angleu to thex-axis. ThenuE3Au50, andġ50. In this case,ȧ reduces to

ȧ5
ek'E0

e2
, ~45!

where

k'5Ak022ki
25Ak0

22
~k–E!2

k2
. ~46!

With these values, the expressions fori ż1 andi ż2 are identical, and each is equal to the expression
which applied in the one-dimensional case.17 With z15z2 , Eq. ~44! reduces to

uS0u25u^0i uŨu0i&u25expF22E d3k log~11uz1u2!G , ~47!

which again is identical to the one-dimensional result.17 In this case, the rate of pair production has
been shown to be equal to that calculated by Schwinger, given in Eq.~1!.

III. CONCLUSIONS

We have shown that the Hamiltonian describing fermion pair production from an arbitrarily
time-varying electric field in two dimensions is encompassed by an SO~4! algebra. We have also
explicitly constructed the two commuting SU~2! algebras in the direct product SU~2!3SU~2!,
which is isomorphic to this SO~4! algebra. The one-dimensional problem is described by an SU~2!
algebra in thej51 representation, while the two-dimensional problem is described by two SU~2!
algebras in thej5 1

2 representation. However, when the one-dimensional problem and the two-
dimensional problem are each considered in the lowest-dimensional representation, one sees that
the off-diagonal elements are real in the one-dimensional case and complex in the two-
dimensional case. The extra degree of freedom present in the two-dimensional case is manifested
in this way. Indeed, it can easily be shown that the factorg in Eq. ~38! is the Berry’s phase.

This group-theoretic approach may simplify the calculation of the rate of fermion pair pro-
duction from the field, since the two-dimensional problem can in this way be reduced to two
one-dimensional problems. We verify our approach by showing that the Schwinger formula for
pair production can be obtained for the special case of a uniform, static electric field.
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Hidden local gauge invariance in the one-dimensional HeisenbergXXZmodel with
the general boundary terms is studied in the framework of the quantum inverse
scattering method. The Bethe ansatz equations are established for the model with
the special boundary terms. Our results show that the Hamiltonian and its eigen-
vectors are explicitly gauge dependent whereas the energy eigenvalues and the
Bethe ansatz equations are gauge invariant. ©1996 American Institute of Physics.
@S0022-2488~95!01512-6#

I. INTRODUCTION

One of the recent developments of the theory of completely integrable quantum systems is
Sklyanin’s work1 on the reflection equations~RE!,2 who showed that there is a variant of the usual
formalism of the quantum inverse scattering method~QISM!3–5 which may be used to describe
systems on a finite interval with independent boundary conditions on each end. Central to his
approach is the introduction of a new algebraic structure-RE called the quantum Sklyanin alge-
bras. The latter plays the same role in the theory of a completely integrable quantum systems with
boundary terms as the quantum Yang–Baxter algebras~QYBA! do in the usual formalism of
QISM. Now much attention has been paid to the solutions of RE which present the boundaryK
matrices compatible with the integrability.6–9 Recently, the general boundaryK matrices have
been constructed by de Vega and Gonza´lez Ruiz6 for the six-vertex model.

On the other hand, de Vega and Lopes10 studied an interesting feature of completely integrable
quantum systems with periodic boundary conditions, i.e., what they referred to as hidden local
gauge invariance~see also, Refs. 5, 11–13!. They showed that the combination of the quantum
integrability, i.e., the existence of theR matrix, with a global gauge transformation group leads to
an Abelian local gauge invariance in the HeisenbergXXZ model. As a consequence, one may
construct a more general family of completely integrable quantum systems. Further, they also
showed that in this model the exact energy spectrum turns out to be gauge invariant whereas the
eigenvectors are explicit gauge dependent. Thus, it seems interesting to explore hidden local gauge
invariance in completely integrable lattice spin systems with boundary terms.

The aim of this article is to give a detailed study of hidden local gauge invariance in the
one-dimensional~1-D! HeisenbergXXZmodel with the general boundary terms. We show that the
Hamiltonian and its eigenvectors are explicitly gauge dependent whereas the energy eigenvalues
and the Bethe ansatz equations are gauge invariant.

The outline of this article is the following. In Sec. II, we define the basic notations for later
use. In Sec. III, we discuss hidden local gauge invariance in the 1-D HeisenbergXXZmodel with
the general boundary terms. In Sec. IV, we present a derivation of the Bethe ansatz equations for

a!Mailing address: Department of Physics, Chongqing University, Chongqing, Sichuan 630044, People’s Republic of
China.
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the gauge-transformed system with the special boundary terms. Lastly, Sec. V is devoted to the
conclusions.

II. BASIC NOTATIONS

To describe completely integrable quantum systems on a finite interval with independent
boundary conditions on each end, Sklyanin1 has introduced two algebrasT 1 andT 2 associated
with a givenR matrix, defined by the generators~T 1!ab and~T 2!ab ~a,b51,2,...,dimW0 ,W0 is
the auxiliary space!, and by the relations~called Sklyanin relations!

R12~u12u2!T
1

2~u1!R12~u11u2!T
2

2~u2!5T

2

2~u2!R12~u11u2!T
1

2~u1!R12~u12u2! ~1!

and

R12~2u11u2!T 1

t1
1

~u1!R12~2u12u222h!T 1

t2
2

~u2!

5T
1

t2
2

~u2!R12~2u12u222h!T 1

t1
1

~u1!R12~u12u2!, ~2!

respectively. HereX
1

[ X ^ idV2,X
2

[ idV1 ^ X for anymatrixXPEnd(V)(V5W0). It follows that
the transfer matricest(u) defined by

t~u!5tr T 1~u!T 2~u! ~3!

commute with each other for different values of the spectral parameteru. Therefore, one may
considert(u) ~3! as a generating function of the integrals of motion for quantum systems defined
by specifying some concrete representations of the algebrasT 6 on the quantum spacesW6 . A
class of important realizations of the algebrasT 6 are provided by the 1-D lattice spin models with
boundary terms. In these cases, the explicit realizations of the algebrasT 6 may be chosen in the
form

T 2~u!5T~u!K2~u!T21~2u! ~4!

and

T 1~u!5K1~u!, ~5!

respectively. HereK6(u) are representations ofT 6 in C1, i.e., C-number matrices, while
T(u)[LN(u)•••L1(u) is the representation of the associative algebraT on the quantum space
H[WN^WN21••• ^W1 . The algebra T is defined by the generatorsTab(u)
~a,b51,2,...,dimW0!, considered as the elements of the square matrixT(u), and by the relations
~QYBA!

R~u12u2!T
1

~u1!T
2

~u2!5T
2

~u2!T
1

~u1!R~u12u2!. ~6!

Here and hereafter, we assume that theL matrix Ln(u) coincides with theR matrix R(u) in the
spaceWn^W0

Ln~u!5Rn0~u!. ~7!

228 H. Zhou and X. Guan: Local gauge invariance in the 1D XXZ open chain

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Further,R(u) andK2(u) satisfyRmn(0)5Pmn andK2~0!51, respectively, andPmn is the per-
mutation operator inWm^Wn , satisfyingP(x^ y)5y^x, for x,yPW. It follows that there exists
a relation between the transfer matrixt(u) and the Hamiltonian for the lattice spin open chain:

t8~0!52H tr K1~0!1tr K18 ~0!, ~8!

where

H5 (
j51

N21

Hj , j111
1

2
tr P10K28 ~0!P10

211
tr K1~0!LN08 ~0!PN0

tr K1~0!
, ~9!

with

Hj , j115L j , j118 ~0!Pj , j11
21 . ~10!

Here the prime denotes the derivative with respect to the spectral parameteru.

III. HIDDEN LOCAL GAUGE INVARIANCE

Let us now study hidden local gauge invariance in the 1-D HeisenbergXXZ open chain with
the general boundary terms. Notice that for a givenR matrix R(u), if there existN3N
~N5dimW0! matricesg andh satisfying

@g^g, R#50, ~11!

@h^h, R#50, ~12!

then the Sklyanin relations~1! and ~2! are invariant under the gauge transformation

L j
~g!~u!5g~kj !L j~u!h21~ l j !. ~13!

Further, the transformed transfer matrixt(g)(u) defined by

t~g!~u!5tr K1~u!T~g!~u!K2~u!„T~g!~2u!…21, ~14!

with

T~g!~u!5LN
~g!~u!•••L1

~g!~u! ~15!

and the transformed HamiltonianH (g) still satisfy Eq.~8!. That is,

t~g!8~0!5 (
j51

N21

Hj , j11
~g! 1

1

2
tr P10

~g!K28 ~0!~P10
~g!!211

tr K1~0!„LN0
~g!~0!…8~PN0

~g!!21

tr K1~0!
, ~16!

where

Hj , j11
~g! 5Pj11,0

~g! L j ,08~g!~0!~Pj ,0
~g!!21~Pj11,0

~g! !21, ~17!

with

Pj ,0
~g!5g~kj !Pj ,0h

21~ l j !. ~18!

For the 1-D HeisenbergXXZ open chain, theL matrix is
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L j~u!5S sinh~u1h!1sinhu

2
1
sinh~u1h!2sinhu

2
s j
z sinhhs j

2

sinhhs j
1 sinh~u1h!1sinhu

2
2
sinh~u1h!2sinhu

2
s j
z
D , ~19!

with the correspondingR matrix

R~u!5S sinh~u1h! 0 0 0

0 sinhu sinhh 0

0 sinhh sinhu 0

0 0 0 sinh~u1h!

D . ~20!

According to de Vega and Gonza´lez,6 the boundaryK matricesK6 may be taken as

K2~u!5K2~u,k2 ,l2 ,u2 ,j2!5S k2 sinh~u1j2! u2 sinh 2u

l2 sinh 2u 2k2 sinh~u2j2!
D , k25

1

sinh j2

~21!

and

K1~u!5K1~u,k1 ,l1 ,u1 ,j1!5S k1 sinh~u1h1j1! u1 sinh 2~u1h!

l1 sinh 2~u1h! 2k1 sinh~u2j11h!
D , ~22!

respectively. From Eqs.~11!, ~12!, and~20!, we get

g~kj !5h~kj !5S eik j 0

0 e2 ik j D , kjPR. ~23!

From Eqs.~14!–~18!, we immediately obtain the transformed Hamiltonian for the 1-D Heisenberg
XXZmodel with the general boundary terms

H ~9!5 (
j51

N21

@coshhs j
zs j11

z 12e2i ~kj2 l j11!s j
2s j11

1 12e22i ~kj2 l j11!s j
1s j11

2 #

1sinhhFcoth j2s1
z1coth j1sN

z 12l2e
2i l 1s1

21
2l1

k1 sinh j1
e2ikNsN

2

12u2e
22i l 1s1

112
u1

k1 sinh j1
e22ikNsN

1G . ~24!

In particular, settingl650, u650, andk151, one gets

H ~g!5 (
j51

N21

@coshhs j
zs j11

z 12e2i ~kj2 l j11!s j
2s j11

1 12e22i ~kj2 l j11!s j
1s j11

2 #

1sinhh~s1
z coth j21sN

z coth j1!. ~25!

This is the transformed Hamiltonian of the model first solved in Ref. 14 by the coordinate Bethe
ansatz approach.
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IV. BETHE ANSATZ EQUATIONS

The diagonalization of the transfer matrix for the model Hamiltonian~24! is not an easy
problem,6 so we restrict ourselves to study the model Hamiltonian~25!. This can be done by using
the algebraic Bethe ansatz approach modified by Sklyanin.1

Repeating the same reasoning as in Ref. 1, we can diagonalize the transfer matrix for the
Hamiltonian~25!

t~g!~u!uv1•••vm&5V~g!~u!uv1•••vm&, ~26!

where the eigenvalueV(g)(u) is given by

V~g!~u!5
~21!N

sinh~2u1h!sinhh2d$T~g!
„2u2~1/2!h…% Fsinh~2u12h!sinh~u1j1!

3sinh~u1j2!sinh2N~u1h! )
m51

M
sinh„u2vm2~1/2!h…sinh„u1vm2~1/2!h…

sinh„u2vm1~1/2!h…sinh„u1vm1~1/2!h…

1sinh 2u sinh~u2j11h!sinh~u2j21h!sinh2N

3u)
m51

M
sinh„u2vm1~3/2!h…sinh„u1vm1~3/2!h…

sinh„u2vm1~1/2!h…sinh„u1vm1~1/2!h…G , ~27!

with d$T(g)(2u2 1
2h)% the quantum determinant of the matrixT(g)(2u2 1

2h)

d$T~g!~2u2 1
2h!%5sinhN~u1h!sinhN~u2h!. ~28!

This result holds, provided that the parameters$v1 ,v2 ,...,vm% satisfy the Bethe ansatz equations

)
k51
kÞm

M
sinh~vm2vk1h!sinh~vm1vk1h!

sinh~vm2vk2h!sinh~vm1vk2h!

5
sinh„vm1j12~1/2!h…sinh„vm1j22~1/2!h…sinh2N„vm1~1/2!h…

sinh„vm2j11~1/2!h…sinh„vm2j21~1/2!h…sinh2N„vm2~1/2!h…
,

~m51,2,...,M !. ~29!

Since the transformed transfer matricest (g)(u) for different values of the spectral parameteru
commute, the eigenvectors areu-independent and then the eigenvalues of the Hamiltonian~25!
can be determined from Eq.~8!. Explicitly, we have

E~g!52
cothh

sinh j2
1coth 2h1

1

2
~11coth j2!2

1

2
tanhh1N cothh

1sinhh (
m51

M
1

sinh„vm1~1/2!h…sinh„vm2~1/2!h…
. ~30!

From this we see that the eigenvalues of the gauge-transformed transfer matrixt (g)(u) and hence
those of the Hamiltonian as well as the Bethe ansatz equations are gauge invariant whereas the
Hamiltonian and its eigenvectors are explicitly gauge dependent. These results are different from
those for the 1-D HeisenbergXXZmodel with the periodic boundary conditions.7 Evidently, this
difference results from the fact that the transfer matrix for the open chain involves bothT(u) and
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T21(2u), while the corresponding transfer matrix in the case of the periodic boundary conditions
involves onlyT(u). This implies that the eigenvalues of the transfer matrix for the open chain on
the pseudovacuum are gauge invariant, while the eigenvalues of the transfer matrix for the peri-
odic chain are not. Thus, our conclusion must be a consequence of the fact that the gauge factors
appearing in the eigenvalues of the transfer matrix as well as in the Bethe ansatz equations only
originate from the eigenvalues of the transfer matrix on the pseudovacuum.

V. CONCLUSION

In this article we have studied hidden local gauge invariance in the 1-D HeisenbergXXZ
model with the general boundary terms in the framework of QISM. The Bethe ansatz equations are
established for the model with the special boundary terms. From this we have concluded that the
Hamiltonian and its eigenvectors are explicitly gauge dependent whereas the energy eigenvalues
and the Bethe ansatz equations are gauge invariant.

In conclusion we would like to point out that the model Hamiltonian~25! may be mapped into
a 1-D lattice model of fermions by the Jordan–Wigner transformation.15–17Since the model~25!
has the quantum symmetry Uq~su2! for a special choice of boundary terms,18–20we may expect
that the 1-D lattice model of fermions~the 1-D small-polaron model! for a special choice of the
boundary terms also has the quantum symmetry Uq~su2!. This requires us to construct a new
realization of the generators of the quantum algebra Uq~su2! in terms of the lattice fermion
operators. Thus, further work is required for an understanding of the unclear algebraic structure of
lattice models of fermions with boundary terms.
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A new solution of the inhomogeneous d’Alembert equation with the point uni-
formly moving charge is found. The comparison of the new solution with the
Kirchhoff formula solution is performed. ©1996 American Institute of Physics.
@S0022-2488~96!00101-0#

I. INTRODUCTION

The problem of determination of a field created by the unaccelerated point charge is the eldest
problem of classical electrodynamics~see Ref. 1, and references therein!. We discuss this problem
from the point of view of the Goursat problem~GP! in which the boundary conditions are given
over the characteristicsj5ct2z and h5ct1z.2,3 In such a formulation of the problem the
fundamental solutions~FS! of the wave equation~WE! ~the so-called Riemann functions! are
classified as belonging to the two-dimensional Minkowski spaceM2.4 In particular, in the timelike
spaceM (1)

2 , wherejh5c2t22z2>0 the Riemann function has a form:5

GR
~1 !5J0~Ajh~2D'!!u i &, ~1!

whereJ0 is the Bessel function of the first kind and zero order,D'5(]2/]x1
2)1(]2/]x2

2! is the
two-dimensional Laplace operator, andu i & is the boundary condition on the characteristicsj50
andh50. Using this boundary value in the form of the two-dimensional delta function we obtain
the Riemann functionGR

(1):4,5

GR
~1 !5

d~Ajh2x'!

2px'

5
d~ utu2r /c!

2pcr
5

1

pc2
d~ t22r 2/c2!, ~2!

wherex' 5 Ax121x2
2.

In spacelikeM (2)
2 where2jh5z22c2t2>0 the Riemann functionGR

(2) is5

GR
~2 !5J0~A~2jh!D'!u i &, ~3!

whereu i & is a nonlocalized and smooth delta function~here we have used the Feinberg terminol-
ogy!. It is constructed from the Macdonald functionK0 :

u i &5
1

2p E
0

`

K0~kx'!k dk5
1

2px'
2 . ~4!

After the substitution of Eq.~4! into Eq. ~3! we can find the FS of WE:5

GR
~2 !5

1

2p

1

~2jh1x'
2 !

5
1

2p

1

~r 22c2t2!
.0. ~5!
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The GP solutions with the Riemann functionGR
(1) for WE with the sourcer:

h2f~x1 ,x2 ,z,t !524pr~x1 ,x2 ,z,t !

and zero boundary conditions on the characteristics have the following form:

f~x1 ,x2 ,z,t !5E
0

ct2z

dj8E
0

ct1z

dh8E ~dx'8 !
d~A~ct2z2j8!~ct1z2h8!2ux'2x'8 u!

2ux'2x'8 u

3Q~x18 ,x28 ,j8,h8! ~6!

in M (1)
2 space and, respectively,

f~x1 ,x2 ,z,t !52
1

2p E
0

z2ct

dj8E
0

ct1z

dh8E d~x'8 !

3
Q~x18 ,x28 ,j8,h8!

~z2ct2j8!~z1ct2h8!1ux'2x'8 u2
~7!

in M (2)
2 space, whereQ(x1 ,x2 ,j,h)5r[x1 ,x2(h2j)/2,(h1j)/2c].
The existence and uniqueness of the GP solutions in the general case should be a subject of

the special consideration and will not be discussed here.
The aim of this paper is to obtain the solutions of the WE on the background of expressions

~6! and~7! for the unaccelerated source and their comparison with the Kirchhoff formula results,
in which only the retarded potential has been used. Special attention will be paid to the perfor-
mance of the Lorentz condition.

II. THE FIELD OF A CHARGE MOVING WITH THE SUBLUMINAL VELOCITY

Let the charge densityr and the current densityJz of the point charge~source! which moves
with a constant velocityv,c have the form

r~x1 ,x2 ,z,t !5ed~x1 ,x2!d~z2vt !, Jz5rv ~8!

or, in the characteristic variables,

r~x1 ,x2 ,z,t !5Q~x1 ,x1 ,j,h!5
2ec

c1v
d~j2ah!d~x1 ,x2!, ~9!

where the parametera is

a5
c2v
c1v

. ~10!

In the following we shall apply either formula~6! or ~7! depending on the signa.
For the charge at rest one has thata51, and the linej5h belongs to theM (1)

2 space. In this
case formula~6! gives the potential of the immovable charge5

f5eQ~Ajh2x'!/r , x'5Ax121x2
2, ~11!

whereQ~t! is the Heaviside step function. The conditionAjh . x' is equivalent to the condition
cutu.r . The potential~11! is not the solution of the Maxwell equations for the charge at rest
because it does not comply with the Lorentz condition (1/c)(]f/]t)50, but it satisfies the more
weak conditionh2[(1/c)(]f/]t)]50.
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The possibility of the existence of electrodynamics with the weak Lorentz condition was
considered by many authors.6–8To satisfy the Lorentz condition we determine the vector potential
A, obeying the homogeneous WE:

A5¹x, div A5Dx52
1

c

]f

]t
52ee~ t !d~Ajh2x'!/x' , ~12!

wheree(t) is the sign function. The scalar functionx of the gauge transformation satisfies not only
the homogeneous wave equation but also the inhomogeneous nonrelativistic Poisson equation
~12!.

Using the FS of the Poisson equation21/4pur2r 8u we obtain the partial solution of Eq.~12!
in the form

x5ee~ t !Fcutu
r

Q~x'2Ajh!1Q~Ajh2x'!G ~13!

with the time derivative (1/c)(]x/]t) 5 eQ(x' 2 Ajh)/r . Next we calculate the field strength
created by the potentialsA andf:

E52
1

c

]A

]t
2“f52“S 1c ]x

]t
1f D 52e“S Q~x'2Ajh!

r
1

Q~Ajh2x'!

r D 5
er

r 3
. ~14!

Thus, the new Coulomb solution~11! differs from the usual Coulomb potential by the gauge.
Next we consider the subluminal source that has the velocityv→c20 ~it is the ultrarelativ-

istic case!. In this case the parametera→10 and formula~6! gives the potential

f5eQ~Ajh2x'!/uju, Az5
v
c

f5f. ~15!

The potential~15! has the singularity on the characteristicsj50. For the point source with the
density r5ed(x1 ,x2)d(z2ct) it should be multiplied byQ~j! @this means that the variables
j5ct2z, h5ct1z in Eq. ~15! belong toM (1)

2 —the future space#, or by2Q~2j! ~the variables
j,h belong toM (1)

2 —the past space!. The solution~15! does not satisfy the Lorentz condition
either because

1

c

]f

]t
1

]Az

]z
5
ed~Ajh2x'!Q~j!

x'

Þ0. ~16!

To satisfy the Lorentz condition in the Lorentz gauge we introduce the transverse vectorA by the
relations

Ai5
]x

]xi
, ] iAi5D'x52

2]f

]h
52

ed~Ajh2x'!

x'

Q~j!, ~17!

where i51,2 and the scalar functionx obeys not only the homogeneous WE but also the two-
dimensional Poisson equation with the fundamental solution

1

2p
logA~x12x18!21~x22x28!2. ~18!

The partial solution of Eq.~17!:
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x52e@ log x'Q~x'2Ajh!1 log AjhQ~Ajh2x'!#Q~j! ~19!

creates the potentials

Ai5
]x

]xi
52e~xi /x'

2 !Q~x'2Ajh!Q~j! ~20!

that enables us to find the strengthsE andH. It will be convenient to introduce the cylindrical
coordinates with the basic unit vectorsx0, c0, z0, by the relations

x05S x1x'

,
x2
x'

,0D , c05S 2
x2
x'

,
x1
x'

,0D , z05~0,0,1!. ~21!

Thus the electric field strengthE is

E5x0Ex1z0Ez , ~22!

where

Ex5eS d~Ajh2x'!

x'

z

x'

Q~j!1
d~j!

x'
D 5eS d~ t2r /c!

cr

z

x'

Q~j!1
d~j!

x'
D , ~23!

Ez52eS d~Ajh2x'!

x'
DQ~j!52e

d~ t2r /c!

cr
Q~j!, ~24!

and the magnetic field strength is

H5rot A5ec0S d~ t2r /c!

cr

ct

x'

Q~j!1
d~ct2z!

x'
D . ~25!

As follows from formulas~23! and ~25!, the field strengths can be rewritten in the form

E5E~0!1E~1!, H5H~0!1H~1!, ~26!

where

E~1!5e
d~Ajh2x'!

x'

Q~j!S x0 z

x'

2z0D5e
d~ t2r /c!

cr
Q~j!~x0 cot u2z0!, ~27!

H~1!5e
d~Ajh2x'!

x'

Q~j!c0
ct

x'

5e
d~ t2r /c!

cr

c0

sin u
Q~j!, ~28!

and

E~0!5e
d~ct2z!

x'

x05e
d~ct2r cosu!

r sin u
x0, ~29!

H~0!5e
d~ct2r cosu!

r sin u
c0, ~30!

whereu is the polar angle between the directions of the vectorsz0 andr05r /r5x0 sinu1z0 cosu.
It is easy to verify that
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uE~1!u5uH~1!u, E~1!5H~1!3r0, H~1!5r03E~1!, ~31!

whereE~1! andH~1! are called the radiation fields. The strengthsE~0! andH~0! which fall off with
the fixedr as 1/r 2 must be called quasistationary. The electric field strengthE~0! plays an impor-
tant role in the validity of Gauss’ theorem

E div E~dr !5 R E~0!r0r 2 dV52peE
0

p

d~ct/r2cosu!sin u du54pe. ~32!

The Poynting vectorSwhich determines the energy flux at large distances from the point charge
is connected with the radiation fieldsE~1! andH~1! only:

S5
c

4p
E~1!3H~1!5

c

4p
E~1!2r0. ~33!

To end with the radiation one needs to consider the energy balance and the force balance following
the Maxwell equations. The energy balance in the integral form for the solution of Eqs.~23!–~25!
is represented by the formula

E ~dr !
]

]t SE21H2

8p D52E ~dr !~JE!2
c

4p R ds, E3H. ~34!

The term on the left-hand side of Eq.~34! represents, by itself, the change of the total electro-
magnetic field energy, besides in the wave zone~r→` or t→`! it tends to zero. The latter means
that the energy losses per time unit are equal to the energy emitted by the ultrarelativistic source

E ~dr !JzEz52
c

4p R ds, E3H. ~35!

The substitution of expressions~23!–~25! into Eq. ~35! shows that the energy losses

E ~dr !JzEz52e2cE
0

`

k dk→2ce2k2 ~36!

and the energy flux per the time unit which is integrated over the sphere of radiusr :

c

4p R ds, E3H5
e2

c
@d~ t2r /c!#2→e2v2/c ~37!

are infinite. Being interpreted in terms of the cutting parametersv andk they become finite. From
Eqs. ~35!–~37! we obtain the relation connecting the cutting parameters. It is valid only for the
electromagnetic waves in vacuum:

k5
v

c
5
2p

l
. ~38!

Let us calculate the volume density of the Lorentz force in the fields~23!–~25!:

f5rE1
1

c
~J3H!5rE~1!1

1

c
~J3H~1!!5z0rEz5r0rEz . ~39!

We recall that
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r5ed~x1 ,x2!d~z2ct!, Ez52e
d~ t2r /c!

cr
Q~ct2z!, J5~0,0,cr!.

In Eq. ~39! we take into account the relation

rE~0!1
1

c
~J3H~0!!50. ~40!

Except this, the multiplication by the above delta functions leads to the relationsz5r5ct and
z~0!5r ~0!.

Thus the Lorentz forcef is indeed the spatial component of the four-dimensional vectorfm :

f m5~ f,irEz!, f m
25 f 22 f 0

250. ~41!

This vector has a zero four-dimensional length, that is, the energy momentum tensorTmv of the
field created by the ultrarelativistic source possesses the correct properties under the Lorentz
transformation.

One can calculate the number of the photonsN of the frequencyv emitted on the pathd5ct:

N5~e2v2/c!~d/c!~1/hv!52p~e2/hc!~d/l!. ~42!

In conclusion to this section we want to note that the solution~15! is absent in the classical
electrodynamics. It appears only in the Goursat problem.8

III. THE FIELD OF SUPERLUMINAL SOURCE

For the point source that moves with the velocityv.c the parametera,0 @see Eq.~10!# and
the characteristic variables of the source belong to the spaceM (2)

2 . Using formula~7! we obtain5

f52~e/R!log~vt2z2R!/~vt2z1R!, Az5~v/c!f, ~43!

where

R5A~vt2z!22~v2/c221!x'
2 . ~44!

Solution ~43! depends onz and t in the combinationz5vt2z so that the Lorentz condition
performs automatically. In solution~43! the wave operator is

h252~v2/c221!
]2

]z2
1D' . ~45!

As v→c10 (R5uvt2zu) solution~43! does not exist because the wave operator is independent
of z andt. This dependence remains in the source density. By the Kirchhoff formula the potential
of the superluminal source is equal to

f5
2e

R
. ~46!

This is the Heaviside–Sommerfeld solution.9 The potential~43! as well as the potential~46!
cannot be created by the source with the densityed(x1 ,x2)d(z2vt). This fact will take place
even if they are multiplied by stepsu(z 2 Av2/c221x')u(z). Let us emphasize that

lim
vt2z→0, x'→0

R~x' ,vt2z!Þ lim
x'→0, vt2z→0

R~x' ,vt2z!. ~47!
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The latter fact induced Sommerfeld to refuse the point source model. The analysis of solutions
~43! and~46! shows that the inhomogeneous WE at the source velocityv>c10 has no solution.

IV. CONCLUSION

Formula ~42! allows us to make the following conclusion: the charged particle that moves
uniformly along the straight line in vacuum emits electromagnetic waves only in the ultrarelativ-
istic case (v→c20). This contradicts the assertion that the free uniformly moving particle in
vacuum can radiate electromagnetic waves atv.c.9
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A complete list of all transitive symplectic manifolds of the Poincare´ and Galilei
group in 112 dimensions is given. ©1996 American Institute of Physics.@S0022-
2488~96!00601-6#

I. INTRODUCTION

Recently the author gave a complete analysis of the projective unitary irreducible representa-
tions of the Poincare´ and Galilei groups in 112 dimensions.1,2 In the context of constant interest
in physics in 112 dimensions, the author believes it useful to provide the same analysis in the
framework of Hamiltonian mechanics. Namely, to provide a complete list of all the transitive
symplectic actions for the Poincare´ and Galilei groups in 112 dimensions. The method used is,
essentially, the orbit method of Kostant, Souriau, and Kirillov.3–6 However, if we want the com-
plete list of these symplectic actions~not only up to a covering like in the usual formulation of the
orbit method! one needs a generalization of this method appearing in Ref. 7.

Section II presents the method following Ref. 7 In Secs. III and IV the method for the
Poincare´ and the Galilei groups, respectively are applied. The first case is rather standard and
offers no surprises. The second case is on the contrary a very good ‘‘laboratory’’ for practically all
the symplectic techniques described in full generality in Sec. II.

After some preliminaries, in Sec. IV C the transitive symplectic manifolds of the~proper
orthochronous! Galilei group in a rather abstract way directly following the method outlined in
Sec. II is described. In Secs. V A–V D to give more explicit realizations of some of these mani-
folds using the coadjoint orbits of the Galilei group and of his central extensions.

Note that some of these coadjoint orbits have appeared in Ref. 8.

II. TRANSITIVE SYMPLECTIC ACTIONS OF LIE GROUPS

A. Basic definitions

Let (Mi ,V i) i51,2 be symplectic manifolds. A diffeomorphismf:M1→M2 is calledsym-
plectic if

f*V25V1 . ~2.1!

Let (M ,V) be a symplectic manifold andG a Lie group~not necessarily connected! acting on
M :G{g°fgPDi f f (M ).

This action is calledsymplecticand (M ,V) is called aG-symplectic manifoldif:

~fg!*V5V, ;gPG. ~2.2!

If (Mi ,V i) i51,2 are twoG-symplectic manifolds, they are calledG-symplectomorphicif
there exists a symplectic mapf:M1→M2 which is alsoG-equivariant.

Physically, aG-symplectic manifold can be considered as the phase space of a given Hamil-
tonian system for whichG is the covariance group. Two such Hamiltonian system are identical
from the physical point of view if the correspondingG-symplectic manifolds are

0022-2488/96/37(1)/240/14/$6.00
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G-symplectomorphic. One can also argue that elementary systems are described by transitive
G-symplectic manifolds. The orbit method describes transitiveG-symplectic manifolds up to
G-symplectomorphisms.

B. The basic theorem

Denote by Lie(G)[Te(G) the Lie algebra ofG, byG { g°Adg P End(Lie(G)) the adjoint
action and byG { g°Adg

# P `(Lie(G)* ) the~dual! action ofG ~see Ref. 6, p. 172!. In particular,
the restriction ofAdg

# to (Lie(G))* is the usual coadjoint action ofG. Call Adg
# the induced

action. A 2-cocyclefor Lie(G) is a bilinear antisymmetric map:s:Lie(G)3Lie(G)→R verifying
the cocycle identity:6

s~@X1 ,X2#,X3!1cyclic permutations50 ; Xi P Lie~G! ~ i51,2,3!. ~2.3!

Denote byZ2(Lie(G),R) the linear space of all 2-cocycles. Ifs P Z2(Lie(G),R) we define:

hs[$XPLie~G!us~X,Y!50,;YPLie~G!% ~2.4!

and one finds out thaths,Lie(G) is a Lie subalgebra. Denote byHs,G the connected Lie
subgroup immersed inG and associated to the Lie subalgebrahs .

The natural action ofG on Z2(Lie(G),R), namely the induced action is given by:

~Adg
#s !~X1 ,X2![ s~Adg21~X1!,Adg21~X2!!. ~2.5!

Denote byGs,G the stability subgroup ofs with respect to this action.Hs is a normal
subgroup ofGs . An Ad

#-orbit O in Z2(Lie(G),R), is calledregular if for somes P O ~then for
all s P O ), the subgroupHs is closed.

If K is a Lie group andN,K is a normal subgroup denote byK/N the factor Lie group. Two
subgroupsQ,Q8,K/N are calledconjugatedif there existsk0 P K such that

Q85$k0kk0
21NukNPQ%. ~2.6!

Now formulate the main theorem7:
Theorem 1:Take one representatives from every regular orbit inZ2(Lie(G),R). LetHs be

the set of discrete subgroups ofGs /Hs and C s the set of conjugacy classes inHs . Let H̄
P Hs be a representative of a given conjugacy class@H̄# P C s and

H[$hPGsuhHsPH̄%. ~2.7!

ThenH,G is a closed subgroup andG/H is aG-symplectic manifold with the symplectic form
Vs uniquely determined by

s5~p*Vs!e . ~2.8!

~Herep:G→G/H is the canonical submersion.!
Every G-symplectic manifold ofG is G-symplectomorphic to a manifold of the form

(G/H,Vs) described above. Moreover, to different couples (s,@H̄#)5(s8,@H̄8#) correspond
G-symplectic manifolds which are notG-symplectomorphic.

This theorem is quite general and affords a complete classification in a very constructive way.
Loosely speaking, the regular orbits classify theG-symplectic manifolds, up to a covering; the
various coverings are classified by the classes of discrete subgroups inGs /Hs . It is an improve-
ment of a similar result from Ref. 6~see p. 178! where it is shown that everyG-symplectic
manifold is covered by amaximal G-symplectic manifold, i.e., a manifold constructed as in the
statement of the theorem forH5Hs .

241D. R. Grigore: Transitive symplectic manifolds in 112 dimensions

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



In applications, one determines for every regular orbit the maximal symplectic manifold. Then
the various symplectic manifolds covered by this maximal manifold will be determined by fac-
torizing (G/Hs ,V

s) to the ~symplectic! action of some suitable chosen discrete subgroup ofG.

C. A particular case

A 2-coboundaryis an element ofZ2(Lie(G),R) of the form

s~X1 ,X2!52^h,@X1 ,X2#&, ;X1 ,X2PLie~G!. ~2.9!

Here ^,& is the duality form between Lie~G! and ~Lie~G!* andhP~Lie~G!* is arbitrary. The
linear space of all 2-coboundaries is denoted byB2(Lie(G),R). We will also need thesecond
cohomology groupwith real coefficients:

H2~Lie~G!,R![Z2~Lie~G!,R!/B2~Lie~G!,R!.

Finally, a 1-cocyclefor Lie~G! is any elementh P (Lie(G))* verifying

^h,@X1 ,X2#&.50, ;X1 ,X2PLie~G!. ~2.10!

Denote by Z1(Lie(G),R) the linear space of all 1-cocycles and byH1(Lie(G),R)
5 Z1(Lie(G),R) thefirst cohomology groupwith real coefficients.

Now consider the coadjoint action ofG in (Lie(G))* defined similarly to Eq.~2.5!:

~Adg*h!~X![h~Adg21~X!!, ~2.11!

and letO,(Lie(G))* be an orbit with respect to this action~i.e., a coadjoint orbit!. For every
X P Lie(G), letXO be the associated vector field onO :

XO[
d

ds
Adexp~2sX!

* us50 . ~2.12!

Then we have Corollary 1.
Corollary 1: Let O,(Lie(G))* be a coadjoint orbit. ThenO becomes a symplectic manifold

with respect to the Kostant–Souriau–Kirillov ~KSK! symplectic formVKSK which is uniquely
determined by

Vh
KSK~XO ,YO !52^h,@X,Y#& ~2.13!

(;hPO ,;X,YPLie(G)).
Two different coadjoint orbits are notG-symplectomorphic.
Suppose thatHi(Lie(G),R) 5 0 (i 5 1,2). If the stability subgroupGh ~hPO arbitrary! is

connected, then every transitiveG-symplectic manifold isG-symplectomorphic with a coadjoint
orbit. If Gh is not connected, then the coadjoint orbits are the minimal symplectic manifolds and
the various symplectic manifolds coveringO are classified by the conjugacy classes in
Gh /(Gh)

0.
~See Theorem 25.2 of Refs. 6 and 7!.
In applications one can use the factorization method outlined at the end of Sec. II B. If

Hi(Lie(G),R) Þ 0 for i51 or i52 then the list of all transitiveG-symplectic manifolds is not
exhausted by the construction outlined above and based on coadjoint orbits.
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D. Extended coadjoint orbits

This section closes with another interesting construction. As seen in Sec. II C, if
Hi(Lie(G),R) 5 0 (i 5 1,2) then one can conveniently describe transitiveG-symplecticmanifolds
as coadjoint orbits ofG ~or their factorization!. One may wonder if something analogous works in
the general case. The answer is positive and the construction works as follows.4,5

Let c be a 2-cocycle for the Lie groupG, i.e., a mapc:G3G→R verifying

c~g1 ,g2! 1 c~g1g2 ,g3! 5 c~g2 ,g3! 1 c~g1 ,g2g3! ~; g1 ,g2 ,g3 P G!, ~2.14!

c~e,g!5c~g,e! 5 0 ~; g P G!. ~2.15!

We construct thecentral extension Gc of G which is set-theoreticallyGc5G3R with the
composition law

~g;z!•~g8;z 8!5~gg8;z 1z 81c~g,g8!!. ~2.16!

Then if c is smooth,Gc is also a Lie group. One identifies Lie(Gc) . Lie(G) 1 R and
(Lie(Gc))* . (Lie(G))* 1 R in a natural way.

Then one can show that the coadjoint action ofGc has the form

Adg;z* ~h;r!5~Adg* ~h!1rag21;r!. ~2.17!

Hereag P (Lie(G))* is given by

^ag ,X&5
d

ds
@c~g,esX!2c~esAdg~X!,g!#us50 . ~2.18!

One notices that the orbits of the action~2.17! are of the form~O ;r! whereO are orbits in
~Lie~G!!* relative to a modified coadjoint action. In particular, we consider the caser51 and
obtain the modified coadjoint action:

Adg
c~h![Adg* ~h!1ag21. ~2.19!

BecauseAdg* is modified only by anh-independent translation, it is clear thatAdg
c will

remain a symplectic transformation with respect toVKSK. It follows that in this way we obtain
modified coadjoint orbits as transitiveG-symplectic manifolds.

One can prove that two constructions of this type, based on the 2-cocyclesc1 and c2 ,
respectively, give the same result~up to aG-symplectomorphism! if c1 andc2 are cohomologous,
i.e.,

c1~g,g8!2c2~g,g8!5d~g!2d~gg8!1d~g8! ~2.20!

for some smoothd:G→R.
In conclusion one can obtain newG-symplectic manifolds~beside the usual coadjoint orbits!,

by classifying all 2-cocycles ofG, up to the equivalence relation~2.20!, selecting a representative
from every cohomology class and working with the central extensionGc.

There is no guarantee that one will obtain all the transitiveG-symplectic manifolds in this
way although this happens, for instance, for the Galilei group in 113 dimensions. In fact the
Galilei group in 112 dimensions provide an example for which one does not obtain all the
transitiveG-symplectic manifolds in this way. However, the list can be completed by some simple
tricks performed on the coadjoint orbits.

Finally, note that if a transitive symplectic manifold can be realized as an~extended! coadjoint
orbit then one can obtain a momentum map in an obvious way.
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III. TRANSITIVE SYMPLECTIC ACTIONS FOR THE POINCARÉ GROUP IN 112
DIMENSIONS

Denote byM the 112-dimensional Minkowski space i.e.,R3 with coordinates (x0,x1,x2) and
with the Minkowski bilinear form

$x,y%[x0y02x1y12x2y2. ~3.1!

One also needs the Minkowski norm:ixi2 [ { x,x%.
The Lorentz group is

L[$LPEnd~M !u$Lx,Ly%5$x,y%,;x,yPM %

considered as a group with respect to operator multiplication.
The proper orthochronous Lorentz group isL1

↑ ,L:

L1
↑ [$LPLudet~L !51,L00.0%.

The proper orthochronous Poincare´ group is a semidirect product: set theoreticallyP1
↑ is

formed from couples (L,a) with L P L1
↑ anda P M and the composition law is

~L,a!•~L8,a8!5~LL8,a1La8!. ~3.2!

It is well known that:Hi(Lie(P1
↑ ),R) 5 0 (i 5 1,2) ~see, e.g. Ref. 6! so we can apply the

corollary from Sec. II 2C.
One can identify (Lie(P1

↑ )* . `2M 1 M ~see Ref. 6!. One can naturally extend to this space
the Minkowski bilinear form$,% and the Minkowski normi•i . Next, one easily computes the
coadjoint action ofP1

↑ in this representation:

AdL,a* ~G,P!5~LG1a`LP,LP!. ~3.3!

HereG→LG is the action of the Lorentz group oǹ 2M ~it is defined in an elementary way
on decomposable elements and afterwards is extended by linearity!.

One can easily compute the coadjoint orbits ofP1
↑ . If e0 ,e1 ,e2 is the canonical base inM ,

then they are:
~a! Mm,s

e [$(G,P)uiPi25m2,sign(P0)5e,G ` P5emse0 ` e1 ` e2% (m P R1 ,s
P R, e 56 );

~b! Ms
e[$(G,P)uiPi25 0,sign(P0)5e ,G ` P 5 e s e0 ` e1 ` e2 % (s PR,e56);

~c! Mm,s[$(G ,P)uiPi252m2,G` P 5ms e0`e1`e2% (mPR1 ,sPR);
~d1! M̃m

e [$(G ,0)u i * G i2 5 m2,sign((*G)00)5e% (mPR1 ,e56);
~d2! M e[$(G ,0)ui * Gi2 50, sign((*G )00)5 e% (e 56 );
~d3! Mm[$(G ,0)u i * G i2 5 2m2% (mPR1).
~Here* is the Hodge operator.!
Computing the stability subgroups for a given reference point from every orbit we obtain only

connected Lie subgroups. Applying the corollary from Sec. II C it follows that~a!–~d! is the
complete list of the transitiveP1

↑ -symplectic manifolds.
A different realization ofMm,s

e also appeared in Ref. 9. It is interesting to establish the
connection between these two realizations. The idea is to identify

`2M{G↔J5* GPM . ~3.4!

Then the action~3.3! becomes

AdL,a* ~J,P!5~LJ1a3LP,LP!, ~3.5!
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where, for anya,b P M we definea3b P M according to

~a3b!r[«rmnambn . ~3.6!

The manifolds~a!–~d! above are mapped into (J,P) P M3M :
~a! Mm,s

e [$(J,P)uiPi25m2,sign(P0)5e,$J,P%5ems% (mPR1 ,sPR,e 5 6);
~b! Ms

e[$(J,P) u i Pi2 5 0,sign(P0) 5 e ,$J,P%5e s% (sPR,e56);
~c! Mm,s[$(J,P)uiPi25m2,$J,P%5ms% (mPR1 ,sPR);
~d1! M̃m

e [$(J,0)uiJi25m2,sign(J0)5e% (mPR1 ,e56);
~d2! M e[$(J,0)uiJi250,sign(J0)5e% (e56);
~d3! Mm[$(J,0)uiJi252m2% (mPR1).
Remark 1: One can investigate now the notion of localizability for the systems described

above following the lines of Ref.10. It is not hard to establish that only the system corresponding
to Mm,s

e can be localizable, namely on the Euclidean spaceR2.
Remark 2: If we compare the actions above with the list of projective unitary irreducible

representations of the same group1 it is apparent that there are representations which do not have
a classical analog.

IV. THE TRANSITIVE SYMPLECTIC ACTIONS FOR THE GALILEI GROUP IN 1 12
DIMENSIONS

A. Notations

We define directly the proper orthochronous Galilei group in 112 dimensionsG 1
↑ as the

group of 434 real matrices of the form

~R,v,t,a![S R v a

0 1 t

0 0 1
D , ~4.1!

wheret P R, RP SO(2) is a 232 real orthogonal matrix and the vectorsv,aP R2 are considered
as column matrices.

As for any matrix group, we identify the Lie algebra Lie(G 1
↑ ) with the linear space of

434 real matrices of the form

~a,u,t,x![S aA u x

0 0 t

0 0 0
D . ~4.2!

Hereu,xP R2,t, a P R, and

A[S 0 1

21 0 D .
One obtains the Lie bracket as

@~a1 ,u1 ,t1 ,x1!,~a2 ,u2 ,t2 ,x2!#5~0,A~a1u22a2u1!,0,A~a1x22a2x1!1t2u12t1u2!.
~4.3!

We have established2 thatH2(Lie(G 1
↑ ),R) Þ 0 ~in fact it is a three-dimensional real space! so

we will have to apply directly the theorem from Sec. II B.
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First we choose a convenient representation for an arbitrary element from the 2-cocycle space
Z2(Lie(G 1

↑ ),R). From Ref. 2 it follows that a generic element is of the form@m,F,S,G,P#
(m,F,SP R,G,PP R2) given by the following formula:

@m,F,S,G,P#5mj01Fj11Sj21@G,P#, ~4.4!

wherej0 ,j1 ,j2 are nontrivial cocycles~i.e., they are not coboundaries! and they have the follow-
ing expressions:

j0~~a1 ,u1 ,t1 ,x1!,~a2 ,u2 ,t2 ,x2!!5x1•u22x1•u2 , ~4.5!

j1~~a1 ,u1 ,t1 ,x1!,~a2 ,u2 ,t2 ,x2!!5^u1 ,u2&, ~4.6!

j2~~a1 ,u1 ,t1 ,x1!,~a2 ,u2 ,t2 ,x2!!5a1t22a2t1 ~4.7!

and @G,P# is a coboundary of the form

@G,P#~~a1 ,u1 ,t1 ,x1!,~a2 ,u2 ,t2 ,x2!!5^P,a1x22a2x1&1P•~ t2u12t1u2!2^G,a1u22a2u1&.
~4.8!

We have denoted the usual scalar product inR2 by x•y and ^,& is the symplectic form on
R2:

^x,y&[x•Ay. ~4.9!

B. Orbits of G 1
↑ in Z2(Lie(G 1

↑ ),R)

First, we compute from Eqs.~4.1! and ~4.2! the adjoint action:

AdR,v,t,a~a,u,t,x!5~R,v,t,a!~a,u,t,x!~R,v,t,a!21

5~a,Ru2aAv,t,Rx1tv1aA~tv2a!2tRu!. ~4.10!

Then, applying Eq.~2.5! we get the desired induced action:

AdR,v,t,a
# @m,F,S,G,P#5@m,F,S,R~G1ma!2tR~P1mv!2FAv,RP1mv#. ~4.11!

It is clear that the structure of the orbits with respect to this induced action will depend onF. In
particular we have two casesF50 andFÞ0.

~I! F50
In this case the orbits are

~a! Om,S
1 [$@m,0,S,G,P#uG,PPR2% mPR* , SPR,

~b! OS,k,l
2 [$@0,0,S,G,P#uP25k2,G`P5lke1`e2% kPR1 , S,lPR,

~c! OS,k
3 [$@0,0,S,G,0#uG25k2% kPR1ø$0%, SPR

~II ! FPR*
The orbits are

~a! Om,F,S
4 [$@m,F,S,G,P#uG,PPR2% mPR* , SPR,

~b! O F,S,k
5 [$@0,F,S,G,P#uGPR2,P25k2% kPR1ø$0%, SPR.

Above we have denoted withe1 ande2 the natural basis inR2.
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C. Computation of the transitive symplectic actions

As indicated in the statement of Theorem 1, one needs to provide a list of subgroups
H,G 1

↑ such thatG 1
↑ /H is a symplectic manifold with the symplectic form given by Eq.~2.8!. Of

course, this is a very implicit way to exhibit the symplectic transitive actions ofG 1
↑ .

As suggested in Sec. IV B, one divides the study in two cases corresponding toF50 and
FÞ0, respectively. One has to take some reference points on every orbitO i ~i51,...,5! and
thereafter to computeGs andHs and the discrete subgroups ofGs /Hs . The computations are
elementary and we provide only the final results. We point out that in all the cases the action of
Gs onGs /Hs is trivial, soC s5Hs ~in the notations of the theorem from Sec. II B!.

~I! F50
~a! s5@m,0,S,0,0#, mPR* , SPR.

One finds two subcases:
~a1! S50

Hs5$~R,0,t,0!uRPSO~2!,tP !R%;

~a2! SÞ0

Hs5$~ 1,0,0,0!%.

In both cases we have

Gs5$~R,0,t,0!uRPSO~2!,tPR%.

So, in the case~a1!, Gs /Hs is trivial and in the case~a2! Gs /Hs.Gs.SO(2) 3 R.
~b! s5@0,0,S,l e1 ,ke2#, kPR1 ,S,lPR.
One finds

Hs5$~1,v,0,a!uv250, a150%,

Gs5$~1,v,0,a!uv, aPR2%,

Gs /Hs.$~1,v,0,a!uv150, a250%.R3R.

~c! s5@0,0,S,k e2 ,0#, kPR1ø$0%,SPR.
Again we have two subcases:
~c1! kPR1:

Hs5H ~1,v,t,a!Uv152
S

k
t,t,v2PR, aPR2J ,

Gs5$~1,v,t,a!utPR, v,aPR2%,

Gs /Hs.$~1,v,0,0!uv250%.R.

~c2! k50
If SÞ0, we have

Hs5$~1,v,0,a!uv,aPR2%,

Gs5G 1
↑ ,

Gs /Hs.$~R,0,t,0!uRPSO~2!,tPR%.SO~2!3R.
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If S50, we haveGs5Hs5G 1
↑ so this case is trivial.

~II ! FPR*
~a! s5@m,F,S, 0,0#, mPR* , S PR.

We obtain the same subgroupsGs andHs as in the caseF50.
~b! s5@0,F,S, 0,ke2#, kPR1ø$0%, SPR.
We have two subcases:
~b1! kPR1.

Hs5H S 1,ve1 ,Fvk ,SSFvk2 1
Fv2

2k De11ae2D Uv,aPRJ ,
Gs5H S 1,ve1 , Fvk ,aD UvPR,aPR2J ,
Gs /Hs5$~ 1,0,0,be1!ubPR%.R.

~b2! k50.
There are two possibilities:
~b2.1! SÞ0.

Hs5$~1,0,0,a!uaPR2%.

~b2.2! S50.

Hs5$~R,0,t,a!uRPSO~2!,tPR,aPR2%.

Regardless of the value ofS we have

Gs5$~R,0,t,a!uRPSO~2!,tPR,aPR2%.

So we have for the first possibility

Gs /Hs5$~R,0,t,0!uRPSO~2!, tPR%.SO~2!3R

and for the second possibility the factor group is trivial.
Regarding the discrete subgroups ofGs /Hs we have only three nontrivial possibilities:R,

R3R, and SO(2)3R as is apparent from the list above. It is well known that the discrete
subgroups are in these casesH̄g[gZ, H̄g1 ,g2

[g1Z3g2Z andH̄r ,g[Zr3gZ, respectively. Here
g,g1 ,g2 P R1ø$0% and Zr P SO(2) is the cyclic group of orderr P N* : Zr
[ $R(2p k/r )uk50,...,r21% ~as usualR(f ) 5 ef A is the rotation of anglef!.

Combining the results obtained above, we can formulate the main result:
Proposition 1: Every transitiveG 1

↑ -symplectic manifold isG 1
↑ -symplectomorphic to one of

the form(G 1
↑ /H,Vs) where H ands can be

(1) H15$~R,0,t,0!uRPSO~2!, tPR%,

s15@m,F,0,0,0# mPR* , FPR;

(2) H25$(R(2p k/r), 0,ng,0)uk50, . . . ,r21,nPZ%,

s25@m,F,S,0,0# m,SPR* , FPR, rPN* , gPR1ø$0%;
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(3) H35$~ 1,ve11g1ne2,0,g2me11ae2!uv,aPR,m,nPZ%,

s35@0,0,S,le1 ,ke2# kPR1 , l,SPR, g 1 ,g 2 PR1 ø $0%;

(4) H45H S 1,ve1 , Fvk ,SSFvk2 1
Fv2

2k2
1gnDe11ae2D Uv,aPR,nPZJ

s45@0,F,S,0,ke2# kPR1 , S PR, FPR* , g PR1ø$0%;

(5) H55H S 1,S ng2
St

k De11ve2 ,t,aD Ut,vPR, aPR2,nPZJ ,
s55@0,0,S,ke2 ,0#, kPR1 , SPR, gPR1ø$0%;

(6) H65$~R~2p k/r !, v,ng,a!uk50,...,r21,v,aPR2,nPZ%,

s65@0,0,S,0,0# SPR* ,rPN* ,gPR1ø$0%;

(7) H75$~R~2p k/r !,0,ng,a!uk50,...,r21,aPR2,nP Z,

s75@0,F,S,0,0# F,SPR* , rPN* , gPR1ø$0%;

(8) H85$~R, 0,t,a!uRPSO~2!,tPR,aPR2%,

s85@0,F,0,0,0# FPR* .

For distinct couples (H,V) Þ (H8,V8) the corresponding manifolds are not
G 1
↑ -symplectomorphic.

V. SOME EXPLICIT REALIZATIONS

In principle, the analysis of the transitive symplectic manifolds forG 1
↑ was completed above.

However, it is interesting to give various realizations of these manifolds. In this way one could
conjecture perhaps a reasonable physical interpretation. One will obtain some of these represen-
tations systematically using the extended action from 2D; this will be done in Secs. V A and V B.
Sections V C and V D contain some unsystematic guesses for some other cases not covered by the
previous analysis.
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A. Central extensions of G 1
↑

As outlined in Sec. II D we first needH2(G 1
↑ ,R). One computes this group taking advantage

of the knowledge ofH2(G̃ 1
↑ ,R) which was determined in Ref. 2. For the definitions ofG̃ 1

↑ and of
the covering mapd:G̃ 1

↑ →G 1
↑ see also Ref. 2.

Let c P Z2(G 1
↑ ,R) be arbitrary. One definesc̃:G̃ 1

↑ 3G̃ 1
↑ →R by

c̃~ g̃,g̃8![c~d ~ g̃!,d~ g̃8!!.

Then it is elementary to show thatc̃ P Z2(G̃ 1
↑ ,R). Applying the result obtained in Ref. 2 it

follows thatc̃ is cohomologous tomc̃0 1 Fc̃1 1 Sc̃2 where:

c̃0~ g̃,g̃8![ 1
2@a•R~x!v82v•R~x!a81t8v•R~x!v8#, ~5.1!

c̃1~ g̃,g̃8![ 1
2^v,R~x!v8&, ~5.2!

c̃2~ g̃,g̃8![tx8. ~5.3!

Here g̃5(x,v,t,a),g̃85(x8,v8,t8,a8). Explicitly one has

c~d~ g̃!,d~ g̃8!!5mc̃0~ g̃,g̃8!1Fc̃1~ g̃,g̃8!1Sc̃2~ g̃,g̃8!1d̃~ g̃!2d̃~ g̃g̃8!1d̃~ g̃8! ~5.4!

with d̃:G̃ 1
↑ →R a smooth function. By redefiningd̃→d̃8 where

d̃8~x,v,t,a!5d̃~x,v,t,a!2
x

2p
d̃~2p,0,0,0!

one still has Eq.~5.4! but the newd̃ also verifies

d̃~0,0,0,0!5d̃~2p,0,0,0!50.

If we makex→x12p in Eq. ~5.4! one gets more, namely that the functiond̃ is periodic inx
with period 2p. Finally, if one makesx8→x812p in Eq. ~5.4! one getsS50. Then it follows
from Eq. ~4.15! that

c~g,g8!5mc0~g,g8!1Fc1~g,g8!1d~g!2d~gg8!1d~g8!,

where

c0~g,g8![ 1
2 ~a•Rv82v•Ra81t8v•Rv8!, ~5.5!

c1~g,g8![ 1
2^v,Rv8& ~5.6!

with g 5 (R,v,t,a), g85(R8,v8,t8,a8) andd is uniquely determined byd + d5d̃.
Proposition 2: H2(G 1

↑ ,R) is a two-dimensional real space. Explicitly, every 2-cocycle of
G 1
↑ is cohomologous to one of the form mc01Fc1 .
Remark 3: In Ref. 8 only the central extensions ofG 1

↑ are considered. So in computing the
corresponding coadjoint orbits one finds out only the case S50 from our analysis.

According to Sec. II D one must consider the central extension (G 1
↑ )c where

c5mc01Fc1 .
It is to be expected that one will obtain only the symplectic manifolds corresponding toS50

from the list included in the statement of Proposition 1.
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B. Coadjoint orbits of ( G 1
↑ )c

First compute the functionag according to Eq.~2.18!. An elementary computation gives

aR,v,t,a~a,u,t,x!5m~R21a•u2R21v•x2a^a,v&2 1
2 tv

2!1F~ 1
2 av21^R21v,u&!. ~5.7!

To compute the extended action~2.17! one identifies (Lie(G 1
↑ ))*.R 1 R2 1 R 1 R2 using

the duality form

^~b, G,E,P!,~a,u,t,x!&52ba2G•u2Et1P•x. ~5.8!

Then Eq.~2.19! gives for the modified coadjoint action:

AdR,v,t,a
c ~b,G,E,P!5~b1^RG1ma,v&2^RP,a&2 1

2Fv
2,

~5.9!
RG1ma2t~RP1mv!2FAv,

E1RP•v1 1
2mv

2,RP1mv).

It is elementary to compute the orbits of this action. They are
~a! Om,s,F,E* 1 [$(b,G,E,P)uiP`G2(FE2mb)e1`e2i5ms,E2 P2/2m5E%, mPR* ,

sPR1ø $0%,F,EPR.

~b! O k,l,F* 2 [$(b,G,E,P)uP`G5(FE2lk)e1`e2 ,P
25k2%, kPR1 , l,F PR.

~c! OE,s,F* 3 [$(b,G,E,0)u2Fb1G25s%, s,E,FPR.
Now it is easy to match these coadjoint orbits with symplectic manifolds appearing in the

statement of Proposition 1 and corresponding toS 5 0. One will get maximal manifolds as it is
easy to anticipate. Namely one has

~1! Om,s,F,E* 1 is for anys,E the maximal manifold of case~1!;
~2! O k,l,F* 2 is the maximal manifold of cases~3! and ~4!, respectively~both forS50!;
~3! OE,s,F* 3 is for anyE, s the maximal manifold of cases~5! ~for S50! and~8!, respectively.
The fact that one can obtain some of the maximal symplectic manifolds ofG 1

↑ using the
actionAdc has an accidental nature as already mentioned at the end of paragraph of Sec. II D.
However it is quite possible that results of a general nature can be established.

C. Maximal symplectic manifolds for SÞ0

To obtain case~1! one gives another realization of case~2!, namelyM5R2 3 R2 with coor-
dinates (q,p), the symplectic form

V5(
i51

2

dqi`dpi1
2F

m2 dp1`dp2 ~5.10!

and the action ofG 1
↑ :

fR,v,t,a~q,p!5SRq1a2
t

m
~Rp1mv!,Rp1mvD . ~5.11!

One can see in Ref. 7 the corresponding 113-dimensional case. Taking a suggestion from this
case one builds case~1! as follows.M 5 R2 3 R2 3 S1 3 R with coordinates (q,p,n,l ), the sym-
plectic form
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V5(
i51

2

dqi`dpi1
2F

m2 dp1`dp21
S

m
dw`dl ~5.12!

wheren 5 (cos(w),sin(w)), and the action

fR,v,t,a~q,p,n,l !5SRq1a2
t

m
~Rp1mv!,Rp1mv,Rn,l1mt D . ~5.13!

In the cases~3!–~5! for SÞ 0, the trick is to modify a little the extended action~5.9!, namely

AdR,v,t,a
c,S ~b,G,E,P!5~b1^RG,v&2^RP,a&2 1

2Fv
22St,RG2tRP2FAv,E1RP•v,RP!

~5.14!

and to keep the KSK-symplectic form unchanged.
Case~6! can be realized byM 5 R 3 S1 with coordinates (T,n), the symplectic form

V5S dw`dT ~5.15!

and the action

fR,v,t,a~T,n!5~T1t,Rn!. ~5.16!

Heren5~cos~w!,sin~w!! as above.
Finally case~7! is given byM5R 3 R2 3 S1 with coordinates~T,V,n!, the symplectic form

V5F dV1`dV21S dw`dT1k~2sin~w!dV11cos~w!dV2!`dT ~5.17!

and the action

fR,v,t,a~T,V,n!5~T1t,RV1v,Rn!. ~5.18!

Of course in Eqs.~5.15! and ~5.17! n5~cos~w!,sin~w!! as in case~1!.

D. Factorized symplectic manifolds

In all cases except~1! and~8! one has, beside the maximal manifolds exhibited above, some
families of factorized manifolds. The results in these remaining cases are indicated briefly.

~2! If g50 andr52, 3,... then modify Eq.~5.13! as follows:

fR,v,t,a~q,p,n,l !5SRq1a2
t

m
~Rp1mv!,Rp1mv,Rrn,l1mt D . ~5.19!

To obtain the cases withg P R1 one factorizes the previous cases by the following action of
Z:

n•~q,p,n,l !5~q,p,n,l1ngm!. ~5.20!

~3! One factorizes the maximal manifolds to an action ofZ3Z, namely,

~n,m!•~b,G,E,P!5~b1mkg2 ,G,E1nkg1 ,P!. ~5.21!

~4!–~5! The maximal manifold is factorized to the following action ofZ:

n•~b,G,E,P!5~b1nkg,G,E,P!. ~5.22!
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~6! If g50 andr52, 3,... proceed as case~2! above, namely modify Eq.~5.16! to

fR,v,t,a~T,n!5~T1t,Rrn!. ~5.23!

The caseg P R1 is obtained factorizing the previous cases to the following action ofZ:

n•~T,n!5~T1ng,n!. ~5.24!

~7! Similarly with ~6!: the action on the variableV is not changed.
Remark 4:The notion of localizability can be investigated as in Ref. 10. It is manifest from

the first part of Sec. V F that cases~1! and ~2! ~i.e., nonzero mass systems! are localizable on
R2. One also finds that the cases~5!–~7! are localizable onS1.
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Dielectric screening in a plasma: Some rigorous results
Bhimsen K. Shivamoggia)
Technische Hochschule Darmstadt, Germany

~Received 31 July 1995; accepted for publication 19 September 1995!

In this article, we give some rigorous results about the properties of the solution of
Poisson’s equation describing dielectric screening by electrons trapped and/or un-
trapped in the Coulomb field of the test charge. ©1996 American Institute of
Physics.@S0022-2488~96!02501-6#

I. INTRODUCTION

Introduction of a test chargeq ~say, atr50! polarizes the plasma and produces a shielding
cloud around the charge. If the plasma were cold and there were no thermal agitation, the shielding
would be perfect and the potential of the test charge would drop to zero outside the cloud. The test
charge would be electrically invisible there! If the plasma were not cold, however, there would be
a few particles at the edge of the cloud which would have enough thermal energy to escape from
the cloud so that the shielding will not be complete.

The effective potential fieldf~r ! around the test chargeq is calculated by taking into account
the dielectric screening produced by other charged particles. Poisson’s equation gives

“

2f524p~ni2ne!24pqd~r !, ~1!

wheren is the number density of the particles and the subscriptsi ande denote the ions and the
electrons, respectively. The ions are assumed not to participate in the shielding process and to form
only a uniform neutralizing background, so

ni5n0 . ~2!

The full ~trapped plus untrapped! electrons subjected to the Coulomb field of the test charge are
assumed to be distributed in space according to the Boltzmann distribution

ne~r !5n0e
~ef!/kTe, ~3!

T being the temperature.
If the plasma is weakly coupled, the coupling parameterG satisfies

G5
mean Coulomb interaction energy

thermal energy
;U ef

KTe
U!1. ~4!

Equation~4!, in conjunction with Eqs.~2! and ~3!, leads to a linearization of Eq.~1!:

“

2f lin5lD
22f lin24pqd~r ! ~5!

with the well-known solution1

f lin5
q

r
e2~r !/lD, ~6!

a!Permanent address: University of Central Florida, Orlando, Florida.
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wherelD is the Debye length

lD5A KTe
4pn0e

2.

On the other hand, the electrons untrapped by the Coulomb field of the test charge are
distributed according to the Maxwell–Boltzmann distribution

f e
~u!~r ,v!5H n0S me

2pKTe
D 3/2 expF2Smen

2

2
2ef D 1

KTe
G , men

2

2
.uefu

0,
men

2

2
,uefu

. ~7!

The number density of the untrapped electrons is then given by

ne
~u!~r !5E

0

`

f e
~u!~r ,v!4pn2 dn5n0H e~ef!/KTeF12er fSA ef

KTe
D G1

2

Ap
A ef

KTe
J . ~8!

The number of the trapped electrons, from Eqs.~3! and ~8!, is thus given by

ne
~ t !~r !5ne~r !2ne

~u!~r !5n0Fe~ef!/KTeer fSA ef

KTe
D 2

2

Ap
A ef

KTe
G . ~9!

In this paper, we propose to give some rigorous results about the properties of the solution of
Eq. ~1! in conjunction with Eq.~3!, ~8!, or ~9!.

II. SCREENING BY THE FULL ELECTRONS

Let us nondimensionalize according to

f̂5
ef

KTe
, r̂5

r

lD
, ~10!

and drop the hats. Equation~1!, on using Eqs.~2! and ~3!, then becomes

~rf!95r ~ef21!2rqd~r !, ~11!

where primes denote differentiation with respect tor .
Lampert and Crandall2 rigorously proved that the solution of Eq.~11! is monotonically de-

creasing. The occurrence of dielectric screening would indicate that this result can be sharpened
further, as given below.

Theorem 1: Let f be a solution of

~rf!95r ~ef21!2rqd~r !. ~11!

Thenf decreases more rapidly than the shieldless decay law 1/r , ;r .
Proof: The proof is adapted from that given by Lampert and Crandall.2

Let f.0, ;r . Upon integrating Eq.~11! once over 0,r 1<r<r 2,`, we obtain

~rf!282~rf!185E
r1

r2
r ~ef21!dr. ~12!
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If we now suppose that (rf) does not decrease monotonically withr , then (rf) must have a
minimum forr 5 r 1* , `. However, since

ef21'f, f!1 ~13!

f must eventually decrease more rapidly than 1/r ; so it is clear that (rf) must have a maximum
for r 5 r 2* with r 1* , r 2* , ` ~seeFig. 1!.

Takingr 1 5 r 1* andr 2 5 r 2* , Eq.~12! gives

05E
r1*

r2* r ~ef21!dr

which is, of course, impossible sincef.0, ;r .
Now, according to Eq.~13!, the dielectric screening by the full electrons resembles, in the far

field ~r@1!, a linearized screening.~Physically this is appreciable because, according to Eqs.~8!
and~9!, the untrapped electrons outnumber the trapped electrons, forr@1.! However, the numeri-
cal work of Lampert and Crandall2 as well as that of Mak3 indicated that the linearization condi-
tion ~4! is unnecessarily stringent and that the exact solution of Eq.~11! remains close to the
linearized solution~6! well after the linearization condition~4! is violated. Actually, the exact
solution is bounded from below by the linearized solution~6!, as shown below.

Lemma 1:The function

f ~f!5ef212f, f.0 ~14!

is positive and monotonically increasing~see Fig. 2!.
Theorem 2: Let f be a solution of

~rf!95r ~ef21!2rqd~r !. ~11!

Then,f is bounded from below,;r , by the linearized solution

FIG. 1. rf vs r.
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f lin5
q

r
e2r. ~6!

Proof: The exact solution of Eq.~11! can be written formally as

~rf!5E
r

`

~r 82r !r 8@f~r 8!1$ef~r 8!212f~r 8!%2qd~r 8!#dr ~15!

from which

~rf!5q e2r1E
r

`

~r 82r !r 8@ef~r 8!212f~r 8!#dr8. ~16!

Using Lemma 1, Eq.~16! then implies that

~rf!>q e2r , ;r .
Q.E.D.

According to Theorem 2, the exact screening of the test change is weaker than linearized
screening for the full electrons.

FIG. 2. f ~f! vs f.
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III. SCREENING BY UNTRAPPED ELECTRONS

On nondimensionalizing according to Eq.~10!, and using Eqs.~2! and ~8!, Eq. ~1! gives for
the untrapped-electron screening

~rf!95r Fef$12er f~Af!%1
2

Ap
Af21G2rqd~r !. ~17!

The occurrence of dielectric screening again implies that the solution of Eq.~17! decreases
more rapidly than the shieldless decay law 1/r , ;r , as deduced below.

Lemma 2:The function

F~f!5ef@12er f~Af!#1
2

Ap
Af21 ~18!

is positive and monotonically increasing~see Fig. 3!.
Theorem 3: Let f be a solution of

~rf!95r Fef$12er f~Af!%1
2

Ap
Af21G2rqd~r !. ~19!

Then,f decreases more rapidly than 1/r , ;r .
Proof: The proof is similar to that for Theorem 1.

FIG. 3. F~f! vs f.
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Let f.0, ;r . Upon integrating Eq.~17! once over 0,r 1<r<r 2,`, we obtain

~rf!282~rf!185E
r1

r2Fef$12er f~Af!%1
2

Ap
Af21Gdr. ~20!

If we now suppose that (rf) does not decrease monotonically withr , then (rf) must have a
minimum forr 5 r 1* , `. However, since

ef@12er f~Af!#1
2

Ap
Af21'f, f!1

we have from Eq.~17! that

f lin;
q

r
e2r , r@1 ~21!

showing thatf eventually decreases more rapidly than 1/r . Therefore, (rf) must have a maxi-
mum for r 5 r 2* with r 1* , r 2* , `.

Takingr 1 5 r 1* andr 2 5 r 2* Eq.~19! then gives

05E
r1*

r2* r Fef$12er f~Af!%1
2

Ap
Af21Gdr

which, from Lemma 2, is impossible.
Therefore, (rf) must decrease monotonically,;r .
Now, in view of Eq.~20!, the dielectric screening by untrapped electrons resembles, in the far

field ~r@1!, a linearized screening. However, the exact screening of the test charge by the un-
trapped electrons turns out to be stronger than linearized screening, as deduced below.

Lemma 3:The function

G~f!5ef@12er f~Af!#1
2

Ap
Af212f ~22!

is negative and monotonically decreasing~see Fig. 4!.
Theorem 4: Let f be a solution of

~rf!95r Fef$12er f~Af!%1
2

Ap
Af21G2rqd~r !. ~19!

Then,f is bounded from above,;r , by the linearized solution

f lin5
q

r
e2r . ~6!

Proof: The exact solution of Eq.~17! can be written formally as

~rf!5E
r

`

~r 82r !r 8Ff~r 8!1H ef~r 8!@12er f~Af~r 8!!#1
2

Ap
Af~r 8!212f~r 8!J

2qd~r 8!Gdr8 ~23!
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from which

~rf!5q e2r1E
r

`

~r 82r !r 8H ef~r 8!@12er f~Af~r 8!!#1
2

Ap
Af~r 8!212f~r 8!J dr8.

~24!

Using Lemma 3, Eq.~24! then implies that

~rf!<q e2r , ;r .
Q.E.D.

According to Theorem 4, the exact screening of the test change is stronger than linearized
screening for the untrapped electrons.

IV. SCREENING BY TRAPPED ELECTRONS

Nondimensionalizing according to Eq.~10!, and using Eqs.~2! and ~9!, Eq. ~1! gives for the
trapped-electron screening,

~rf!95r Fefer f~Af!2
2

Ap
AfG2rqd~r !. ~25!

The solution of Eq.~2! decreases again more rapidly than the shieldless decay law 1/r , ;r , as
deduced below.

FIG. 4. G~f! vs f.
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Lemma 4:The function

H~f!5efer f~Af!2
2

Ap
Af ~26!

is positive and monotonically increasing~see Fig. 5!.
Theorem 5: Let f be a solution of

~rf!95r Fefer f~Af!2
2

Ap
AfG2rqd~r !. ~25!

Then,f decreases more rapidly than 1/r , ;r .
Proof: The proof is entirely similar to that of Theorem 3 and uses Lemma 4. Q.E.D.
Now, since

efer f~Af!2
2

Ap
Af'

2

Ap
f3/2, f!1 ~27!

observe that the dielectric screening by trapped electrons does not resemble, in the far field, a
linearized screening. However, on using Eq.~27!, Eq. ~25! becomes

~rf!9'
2

Ap
rf3/22rqd~r ! ~28!

FIG. 5. H~f! vs f.
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so that the classical trapped-electron dielectric screening process approaches, in the far field
~r@1!, the semiclassical Thomas–Fermi screening~Ashcroft and Mermin4! regime!

V. DISCUSSION

In this paper, we have given some rigorous results about the properties of the solution of
Poisson’s equation describing dielectric screening by electrons trapped and/or untrapped in the
Coulomb field of the test charge. For the full~untrapped! electrons, the exact screening of the test
charge is shown to be weaker~stronger! than linearized screening; this is due to the fact that the
linearized screening overestimates~underestimates! the screening of the test charge for the full
~untrapped! electrons.
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Global cocycle dynamics for infinite mean field quantum
systems interacting with the boson gas
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In the framework of operator algebraic quantum statistical mechanics, the global
nonequilibrium dynamics for a general class of interactions of infinite mean field
quantum lattice systems with the boson field is investigated. The associated inter-
action operators consist of arbitrary powers of the collective density operators of
the mean field system and are linear with respect to the bosonic field operators.
Instead of the usual perturbation expansions, here the interacting dynamics are
studied by means of cocycle techniques. The cocycle methods are more appropriate
to the considered class of interactions, and lead to explicit closed expressions for
the dynamical automorphism groups. The cocycle equations connect the classical,
collective dynamical behavior of the mean field system with the one-boson dynam-
ics. In physical applications such systems are due to collectively ordered finite-level
atoms or the Josephson junction in the thermodynamic limit weakly interacting
with the electromagnetic field. ©1996 American Institute of Physics.@S0022-
2488-~96!00801-4#

I. INTRODUCTION

There is a great variety of papers where~starting from a microscopic quantum description!
many aspects of the usual phenomenological descriptions of the Josephson effect and Josephson
oscillator are obtained in the thermodynamic limit. The limit is performed as the particle number
N becomes infinite with fixed particle density. The commonly accepted interpretation of the
Josephson effect is in terms of a nondissipative process between two weakly linked superconduct-
ors, where the weakness of the interaction is expressed by the factorN21 for each superconductor.

The same weak link also is taken for the Josephson oscillator; here, in addition, the two
superconductors are coupled to the quantized electromagnetic field.1

In quantum optics such a weak coupling has been used for the Dicke model in the thermo-
dynamic limitN→` ~hereN means the number of two-level atoms; the coupling strength also is
rescaled byN21!.2–4

In many theoretical treatments of the BCS model and the Josephson effect the thermodynamic
limit has been performed within the formalism of infinite mean field quantum lattice systems.
However, the Josephson oscillator model in Ref. 1, as well as the infinite atom Dicke model in
Refs. 2 and 5, are not calculated within the mean field setup.

For the coupling of the photon field to some kind of~postulated! finite-dimensional classical
material system in Refs. 2 and 5, Davies used cocycle techniques to obtain an explicit closed form
for the unitary time evolution group in some specific Hilbert space representation. The results of
Refs. 2 and 5 are used in Ref. 1.

Here we generalize the above ‘‘limiting’’ weak couplings and investigate the nonequilibrium
dynamics for a general class of interactions of infinite mean field quantum lattice systems with the
boson field. Inspired by the methods of Davies, we develop cocycle techniques for the description
of the interacting systems. The cocycle equations connect the classical, collective dynamical
behavior of the mean field system with the one-boson dynamics. Each solution of the cocycle
equations leads to a different interaction. And thus, the whole of all solutions gives our treated
class of interactions, which correspond to coupling operators of the form

0022-2488/96/37(1)/263/20/$6.00
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P5 (
k51

l

@Dk^ab* ~fk!1Dk* ^ab~fk!#. ~1.1!

Here the mean field part ofP consists of arbitrary powersDk of the collective density operators,
i.e., theDk are arbitrary classical observables of the mean field system. And theab

#(fk) denote the
bosonic annihilation, resp., creation operators smeared with the one-boson ‘‘test functions’’fk .
Thefk express the coupling constants between the mean field system~e.g., an atomic system, or
some superconductors! and the modes of the boson system~e.g., the electromagnetic field!. In
suitable subrepresentations the interacting cocycle dynamics are approximated by local~finite
volume! expressions in the thermodynamic limit~see Theorem 4.10 below!. Indeed, the above-
mentioned weak couplings for the Josephson oscillator and the Dicke model lead in the thermo-
dynamic limit to a special form of~1.1! for the interaction operators.

In contrast to the Hilbert space ansatz in Refs. 1, 2, and 5, here we use the general operator
algebraic approach. We use the concept of global dynamical descriptions, where the dynamics in
the Schro¨dinger picture is given by a group of affine bijections on some suitable convex subset
~folium!—the physical states—of the state space of the associatedC* -algebra so that the expec-
tation values are time continuous~cf. Definition 1.2 below!. This dynamical concept is more
general than those ofC* - andW* -dynamical systems. Below it is presented in detail. Even for the
free time evolutions of the infinite mean field, as well as of the boson system, it is necessary to
work with the global dynamical concept, if one wants to cover a great variety of states, which
show some continuity concerning their time evolutions.

Recently, great progress has been made concerning the rigorous formulation of the general,
i.e. nonequilibrium dynamics of infinite quantum lattice systems with mean field interactions.6–9

Due to the extremely long range of the interaction, the mean field limiting dynamics is not given
as an automorphism group on the original quasilocalC* -algebra,10 but with the general global
dynamical concept on the folium generated by the perturbation invariant states. The collective
~classical! observables are the continuous functions on a classical phase space, the dynamics of
which is given by a classical phase flow, which is generated by a Hamiltonian functionQ and
which is the restriction of the above limiting mean field dynamics.

The ~quasi-!free boson dynamics is defined in terms of Bogoliubov transformations on~an
enlargement of! the associated bosonic Weyl algebra~CCR algebra!. It is well known that here one
does not have aC* -dynamical system. A global dynamical description with time continuity of the
expectation values is not obtained for all states, but on the folium of states, which are chosen to be
continuous with respect to some topologyt on the one-boson test function space.

Because here we cover such a great variety of states~i.e., very large folia, resp. representa-
tions! for both systems, the infinite mean field systems and the boson gas, the free dynamics are
not given asW* -dynamical systems. But the perturbation expansions~Ref. 11, Sec. 5.4.1! ~with
the interaction operator as perturbation! need theW* -time continuity for the free evolution group.
Hence, it is not possible to introduce interactions by using the perturbation theory. The unbound-
edness of the considered interaction operators~1.1! would be a second problem for the conver-
gence of the perturbational expansion series. The difficulties of introducing the above class of
mean field–boson interactions we overcome by the cocycle techniques. The advantage of the
cocycle methods is that one directly obtains an explicit closed form~and not only an expansion
series, as in the perturbational case! for the coupled time evolution automorphisms. More exactly,
with the cocycle techniques we first construct the class of dynamical groups of interacting auto-
morphisms, and then, in a second step, we determine the associated interactions.

Using the cocycle dynamics of the present investigation in Ref. 12 for very general initial
states of the total system, we consider the infinite time limit~t→`! of the boson field. In the
resulting bosonic time-asymptotic states one partially rediscovers the collective ordering of the
infinite mean field quantum lattice system, which also reflects the influence of the interaction~1.1!
to the bose gas~cf. also Refs. 13 and 14!.
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In Ref. 4 for the special case of the infinite Dicke model in a specific~covariant! GNS
representation, the opposite way has also been carried through. There, by means of Trotter’s
product formula and perturbation techniques the explicit expressions for the unitary time evolu-
tions are derived. The emitted radiation, i.e. the time-asymptotic photon states, turns out to be
quantum optically coherent,15 which follows from the influence of the collective atomic
behavior.3,16

An application of the present investigation and the one of the time-asymptotic boson states12

to the general weakly coupled Dicke model is found in Ref. 17, and an application to the Joseph-
son microwave radiation in Ref. 18.

The preparatory section~II ! is devoted to the considered class of infinite mean field models. In
Sec. III we develop the global dynamical description of the free boson field. In the main part of the
paper~Sec. IV! the global interacting cocycle dynamics is investigated.

We start our exposition with the global dynamical concept we are confrontated in the subse-
quent sections, at the free systems, the mean field lattice, resp. the boson gas, and at the interacting
system.

A. The algebraic dynamical concept

Let A be an arbitraryC* -algebra with state spaceS ~A! describing a physical system.
Denote byMu[Mu~A! the universal envelopingW* -algebra ofA associated with the universal
representationPu, and its center byZu.19,20We do not distinguish between a state onA and its
unique normal extension toMu.

The notion of a folium was introduced by Haaget al.21 ~cf. also Ref. 22!. A folium F of A
is a norm-closed, convex subset ofS ~A!, which is invariant under ‘‘perturbations,’’ in the sense
thatvPF impliesvBPF for all BPA with ^v; B*B&Þ0, wherevB is the state onA given by
^vB ;•&5^v;B* •B&/^v;B*B&.

Folia arise naturally as the set ofP-normal states of any representationP ofA. More exactly,
we have the following well-known results~see, e.g., Refs. 21 and 20!.

Proposition 1.1: There is a one-to-one correspondence between the folia ofA, the
quasiequivalence classes of representations, and the orthogonal projectors in the centerZu,
which preserves the partial orderings, respectively. That is, if for jP$1,2% F j , Pj , and cjPZ

u

are in correspondence, then

F 1#F 2#S ~A!⇔P1<P2<Pu⇔c1<c2<1u.

Moreover, if F , PF , and cF are in correspondence one hasMF :5PF ~A!95cFM
u,

ZF :5MF ùM8F 5cFZ
u, F are just thePF -normal states, that is, MF 5LH~F !* . PF ex-

tends to a normal representationP̃F ofMu with P̃F ~Mu!5MF , P̃F ~Zu!5ZF .
A folium F expresses classical, macroscopic aspects of the physical system, which one also

may refind in the centerZF of the associatedW* -algebraMF . Thus, dealing with a subfolium
of F instead ofF itself, means a restriction of the considered collective, macroscopic aspects of
the physical system. Disjoint folia give macroscopically totally different aspects and define two
superselection sectors, which is also demonstrated by the orthogonality of the associated central
projectors.

In the Schro¨dinger picture Roos24 introduced the following dynamical description on the
folium F of A.

Definition 1.2: Letn[$ntutPR% be a one-parameter group of affine mapsnt :F→F , that is, n0
is the identity andns+ n t5ns1t , ;s,tPR, which obeys the continuity conditions

lim
t→0

^n t~v!;A&5^v;A&, ;vPF , ;APA. ~1.2!

Then the triple~A,F ,n! is denoted a dynamical description of our physical system.
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Obviously, the group property yields eachnt to be an affine bijection onF . By duality, for
eachtPR there exists a unique Jordan automorphismtt onMF ~Ref. 25, Theorem 3.2.8!, such
that

^n t~v!;A&5^v;t t~A!&, ;vPF , ;APMF . ~1.3!

Since in applications the dynamics is motivated by Hamiltonians, in the sequel we always assume
tt to be an automorphism~cf., e.g., Ref. 26 and Subsection 2.3, wherent is approximated by finite
Hamiltonian dynamics!. The groupt[$ttutPR% describes the dynamics in the Heisenberg picture
on theW* -algebraMF , which is denoted by~MF ,t!.

Roos’s dynamical concept is a generalization of Kadison’s classical definition of a dynamical
system;23 the difference is that here the weak* continuity of vPF °nt~v! on A, t fixed, is
dropped. This weak* continuity property is equivalent tott~A!#A, and its failure plays a crucial
role for the mechanisms of symmetry breaking.10

Because of the restricted continuity in time~1.2!, in general~MF ,t! does not define a
W* -dynamical system~e.g. Ref. 11, Definition 2.7.1!. However, ~MF ,t! is a W* -dynamical
system, if~1.2! is also valid for eachAPMF , that is,t°n t~v! is s(MF * ,MF ) continuous for
everyvPF , which by Ref. 25, Corollary 3.1.8 is equivalent to the norm continuity oft°n t~v!.
Then, by duality,t°t t(A) is s(MF ,MF * ) continuous for allAPMF .

TheC* -dynamical system~A,t! is obtained~e.g., Ref. 11, Definition 2.7.1!, if the folium F

is the whole state spaceS ~A!: By duality arguments, eachtt leavesA invariant and the
s~A* ,A! continuity of t°n t~v!, ;vPS ~A! from ~1.2! is equivalent to thes~A,A* ! continu-
ity of t°t t(A), ;APA, which by Ref. 25, Corollary 3.1.8 leads to limt→0it t(A)2Ai50 for
eachAPA.

Definition 1.3: If F 8#F is a n-invariant subfolium, that isnt~F 8!#F 8, ;tPR, then
~A,F 8,n! is called a dynamical subdescription of~A,F ,n!.

If one has the continuity condition, limt→0in t(v)2vi50, ;vPF 8, which is stronger than
(1.2), then the dynamical (sub-)description~A,F 8,n! is called covariant.

~A,F 8,n! to be a dynamical subdescription is equivalent tott~cF 8!5cF 8, ;tPR for the
central projectorcF 8PZF associated with the subfoliumF 8,MF 85cF 8MF , of the above
proposition. The associated dynamics in the Heisenberg picture~MF 8,t! is obtained by restricting
t fromMF toMF 85cF 8MF with the central projectioncF 8.

Consequently, if one wants to consider a very great variety of collective, macroscopic observ-
ables of the physical system~in the centerZF !, which may evolve in time, it is necessary to work
with a dynamical description~A,F ,n! with some foliumF , which is chosen as large as possible.

The covariance of~A,F 8,n! is equivalent for~MF 8,t! to constitute aW* -dynamical system.
In a standard representation ofMF 8 on the standard Hilbert spaceHF 8

std27 then one gets a strongly
continuous unitary groupeitH, tPR, onH

F 8
std , which implements the Heisenberg dynamicst :

t t(M ) 5 eitHMe2 i tH,;M P MF 8,;tPR. However, in general,eitH¹MF 8, that is, the renormal-
ized HamiltonianH is not affiliated withMF 8. These results are proven with the general modular
formalism.28,20,29,30

Selecting in our dynamical description~A,F ,n! thosevPF , which fulfill the norm continu-
ity lim t→0in t(v)2vi50, leads to a subfoliumF cov#F invariant with respect to the Schro¨dinger
dynamicsn. Hence~A,F cov,n! gives the largest covariant dynamical subdescription of~A,F ,n!,
an idea that goes back to Ref. 31~cf. also Refs. 8 and 32!.

If vPF is a n-invariant state, then,nt~F v!5F v , ;tPR, whereF v is the subfolium ofF
generated byv ~the smallest folium containingv!, and~A,F v ,n! is a dynamical subdescription.
Because of the uniqueness of the GNS representation~Pv ,Hv ,Vv! of v up to unitary equiva-
lence, there exist unitary operatorsUt

v onHv with t t(M )5Ut
vMUt

v, ;M P MF v
[ Mv, and

Ut
vVv5Vv for eachtPR. By ~1.2! one easily checks the strong continuity oft°Ut

v. Conse-
quently,F v#F cov, and thusF v defines a covariant subdescription.
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II. INFINITE MEAN FIELD QUANTUM LATTICE SYSTEMS

In this section, we give a short self-contained description of the theory of infinite mean field
systems and their dynamics for the extent necessary for the present purposes. For more informa-
tion and additional references, we refer the reader to the original works.35,6,7,32,8Our notation
resembles the one in Ref. 8.

For the numbering of the spatial lattice we use the natural numbersN. The set of finite subsets
L of N, L:5$L,NuuLu,`%, where uLu denotes the cardinality ofL, is directed by inclusion.
Quantities indexed byLPL are usually called local. The limit of a net of local elements~aL!LPL

we denote by limLPL aL .
At each lattice pointnPN we have the same finite subsystem described by them3mmatrices

Mm as algebra of observables. The observables for the finite lattice regionLPL are given by
A~L!:5^nPLMm , and for the total infinite system by theC* -inductive limit
A: 5 ^ nPNMm .

33,34TheC* -algebraA is simple, and thus any nontrivial representation ofA is
faithful. The local algebrasA~L!, LPL are embedded intoA by adjoining the unit1m of Mm at
the lattice pointsn¹L.

A. Kinematical structure

Denote byF a
p the folium ofA generated by the permutation invariant statesS p~A! @smallest

folium containingS p~A!#, and letPa
p be the associated representation with corresponding von

Neumann algebraMa
p :5Pa

p~A!9 by Proposition 1.1. Then, for everyaPMm the limit

m~a!5s2 lim
LPL

Pa
p
„mL~a!…PZa

p ,

of the local density operators,

mL~a!:5
1

uLu (
nPL

1m^ ••• ^ 1m ^ a

nth place

^ 1m^ 1m^ •••PA~L!, LPL, ~2.1!

exists in the strong operator topology and is an element of the centerZa
p ofMa

p. Let us denote by
N cl theC* -subalgebra of the centerZa

p, which is generated by the set$m(a)uaPMm%, respec-
tively, by $m(a)uaPG %, where

G :5$aPMmua5a* , tr@a#50%,

the Lie algebra corresponding to the Lie groupSU(m).
N cl is a commutativeC* -algebra, which we want to identify with theC* -algebraC(P) of

continuous functions on the state spaceP[S ~Mm! of Mm . We also regardP as a compact, convex
subset of the vector space dualG * of the Lie algebraG , which is a real vector space of dimension
m221. The duality relation̂x;a& for xPG * andaPG,Mm is a restriction of the duality relation
onMm .

aPG°exp$ im(a)%PZa
p is a unitary representation of the additive groupG . Thus, by the

SNAG theorem there exists a unique projection-valued measureP from the Borel subsets ofG *
into the set of orthogonal projections of the centerZa

p such thatm(a)5*G *^x;a&dP (x) for each
aPG , respectively, for eachaPMm . It follows thatP is just the support ofP . Now the spectral
calculus defines the desired isomorphism,

P̂ :C~P!→N cl , j°E
P
j~x!dP ~x!.
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N cl>C(P) is interpreted as theC* -algebra of classical observables for the infinite mean field
system. Let us define the enlargementAe :5A^C(P) of the originalC* -algebraA with the
associated classicalC(P).Ae is isomorphic to theC* -algebraC~P,A! of continuousA-valued
functions onP.

The representationPa
p of A extends to a representation ofAe by defining

Pa
p(X^ j)5Pa

p(X)P̂ ~j!PMa
p for XPA andjPC(P). That is,Pa

p~Ae! is just theC* -subalgebra
ofMa

p, which is generated byPa
p~A! andN cl . Since the foliumF a

p ofA agrees with the normal
states onMa

p, it follows thatF a
p is just the folium ofAe associated with the representationPa

p of
Ae ~cf. Proposition 1.1!.

B. The classical phase space

The state space ofC(P) is the convex setM1
1 (P) of ~positive! probability measures onP.

Thus, the restrictionvuN cl
of vPS p~A! fromMa

p to N cl gives the probability measurevuN cl

+ P̂21 5 :mv onP, which implies the affine bijectionv°mv fromS p~A! ontoM1
1 (P). The point

measure atxPP gives the product statevx 5 ^ nPN x onA. Consequently, the permutation
invariant states S p~A! of A form a Bauer simplex with the extreme boundary
]eS

p~A!5$vxuxPP%. The probability measuremvPM1
1 (P) gives the central decomposition of

vPS p~A!, v5*Pvx dmv(x).
36,8

P is the classical phase space of the considered mean field system. The tangent space at each
point xPP of the manifoldP is just the dualG * , and the cotangent space isG ** , which is
canonically identified withG . With the Lie product onG ~i times the commutator@•,•#! the
Poisson bracket$j,h% of two differentiable, real-valued functionsj,h on the manifoldP is intro-
duced by

$j,h%~x!:5 i ^x;@djx ,dhx#&, ;xPP, ~2.2!

which uses the differentialsdjxPG anddhxPG at xPP. However,~2.2! is not quite a Poisson
bracket in the sense of the theory of classical Hamiltonian mechanics~e.g., Ref. 37!, since the
underlying symplectic form is degenerate~for more details see Refs. 7, 32, and 38!.

C. The limiting dynamics

With a fixed orthonormal base$a1,...,am
221% of G ~with respect to the Hilbert–Schmidt

scalar product!, G * is parametrized, and thusG * > Rm221.
The dynamics is given with an arbitrary real-valued polynomialQ onRm221 > G * in terms of

the local Hamiltonians,

AL :5uLuQ„mL~a1!,...,mL~am
221!…, ;LPL, ~2.3!

which define the local time evolutions,

a t
Q,L~• !5exp$ i tAL%•exp$2 i tAL%, tPR, LPL. ~2.4!

New developments9 generalize to arbitraryC `-functionsQ.

1. The Schrö dinger picture

For eachtPR there exists an affine bijectionn t
Q on the foliumF a

p such that

^n t
Q~v!;X&5 lim

LPL

^v;Pa
p
„a t

Q,L~X!…&, ;XPA, ;vPF a
p .

The groupnQ[$n t
QutPR% induces the dynamical descriptions~A,F a

p ,nQ! and ~Ae ,F a
p ,nQ! in

the sense of Definition 1.2.
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2. The Heisenberg picture

By the duality ~1.3! we get the dynamics~Ma
p ,aQ! in the Heisenberg picture. The group

aQ[$at
QutPR% of automorphisms onMa

p leaves the represented algebraPa
p~A! invariant, if and

only if Q is linear. But aQ leaves theC* -algebraPa
p~Ae!,Ma

p invariant, and lifts to the
C* -dynamical system~Ae ,a

Q! ~since the representationPa
p of Ae is faithful!. We also regard

~Ae ,a
Q! as the dynamics in the Heisenberg picture.

D. The classical (sub-)dynamics

1. The classical Hamiltonian phase flow

With the Poisson bracket~2.2! and the polynomialQ as a Hamiltonian function it is intro-
duced the Hamiltonian vector fieldlQ :P°G * in the standard way, ^lQ(x);a&:
5$Q,a%~x!,;aPG for xPP ~hereaPG5G ** is considered as a mapping onP!. The associated
classical Hamiltonian phase flowwQ[$wt

QutPR% on the classical phase spaceP then is obtained
from the differential equation (d/dt)w t

Q(x)5lQ„wt
Q(x)…,;xPP.

2. The Schrö dinger picture

The group nQ leaves ]eS
p~A! and S p~A! invariant. More exactly, it isn t

Q(vx)
5 vw

t
Q(x) ,;x P P with the above phase flowwQ. The time evolutionnt

Q~v! for vPS p~A! then is

given by mv+w2t
Q 5:(w t

Q)** ~mv! with the associated measuremvPM1
1 (P). This implies

„N cl ,S
p~A!,nQ…>„C(P),M1

1 (P),(wQ)** … to be the dynamical description of the classical part
of the mean field system in the Schro¨dinger picture.

Thus we havein t
Q(vx) 2 vxi 5i vw

t
Q(x) 2 vxi 5 2 for smallt for somexPP, wheneverQ is

not constant~since ivx2vyi52 for xÞy!, which demonstrates that the dynamical description
~A,F a

p ,nQ! is not covariant~cf. Definition 1.3!.

3. The Heisenberg picture

Let us turn to the classical dynamics in the Heisenberg picture. It isat
Q~N cl!5N cl;tPR, and

via the isomorphismP̂ the restriction is given bya t
QuN cl

5 P̂ + (w t
Q)* + P̂21, where

(w t
Q)* (j):5j+w t

Q for jPC(P). Thus theC* -dynamical system~N cl ,a
Q! is isomorphic to

„C(P),(wQ)* …, the well-known classical dynamics of the observables.

III. THE BOSON FIELD

The one-boson test function space~E,s! is a real vector spaceE equipped with the symplectic
form s @i.e., s:E3E→R is bilinear withs( f ,g)52s(g, f ),; f ,gPE#, which may be degener-
ate.

A. The C* -Weyl algebra of the boson field

TheC* -algebra for the boson system is set up as the Weyl algebraW ~E,s! over~E,s!, which
is constructed from unitary elementsW( f ), fPE—the Weyl operators—satisfying for allf ,gPE,

W~ f !W~g!5expH 2
i

2
s~ f ,g!JW~ f1g!, W~ f !*5W~2 f !, ~3.1!

and by means of the minimal regular norm.39,11,40,13W ~E,s! is simple, if and only ifs is
nondegenerate@i.e.,s( f ,g)50,;gPE implies f50#. For the subspaceD#E theC* -subalgebra
of W ~E,s! generated by$W( f )u fPD% just agrees with the Weyl algebraW ~D,s!. It holds
W ~D,s!5W ~E,s!, if and only if D5E.
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A linear mappingb:E→E is denoted a symplectic transformation on~E,s!, if b is bijective
and satisfiess(b f ,bg)5s( f ,g),; f ,gPE. For each symplecticb on ~E,s! there exists a unique
automorphismbb on W ~E,s! with bb„W( f )…5W(b f ),; fPE, which is called the associated
Bogoliubov transformation.

A representationP of W ~E,s! is called regular, if for eachfPE the unitary group
tPR°P„W(t f )… is strongly continuous. Their generatorsFP( f ), fPE, are the so-called field
operators,P„W(t f )…5exp$ i tFP( f )%,;tPR. Obviously, fPE°FP( f ) is linear, and on suit-
able dense domains they fulfill the canonical commutation relationsFP( f )FP(g)
2FP~g!FP~f !5is~f,g!1P ,; f ,gPE.

The characteristic function of the statev onW ~E,s! is defined to be the mappingCv :E→C,
f°^v;W( f )&5Cv( f ). Let us characterize the state space ofW ~E,s! by the characteristic
functions.C~E,s! is the convex set of functionsC:E→C with C~0!51 and for which the map
( f ,g)°exp$( i /2)s( f ,g)%C(g2 f ) constitutes a positive-definite kernelE3E→C.41 From Eqs.
~2.17! and ~3.2! in Ref. 39~cf. also Ref. 15! it follows the affinity and bijectivity of the map

S „W ~E,s!…→C~E,s!, v°Cv . ~3.2!

B. The folium of t-continuous states

Definition 3.1: Denote byT ~E,s! the set of all topologiest on E such that for each fPE the
maps gPE° f1gPE and gPE°s( f ,g)PR are continuous with respect to thet topology.

Proposition 3.2: For eachtPT ~E,s! the set oft-continuous states,

F b
t~E,s!:5$vPS „W ~E,s!…uCv is t continuous%,

is a folium onW ~E,s!.
Proof: Let vPF b

t(E,s). ObviouslyF b
t(E,s) is convex. Using ane/3 argument one easily

checks thatF b
t(E,s) is norm closed. ForvPF b

t(E,s) the map~use the Weyl relations!

fPE°^v;W~g!W~ f !W~h!&5expH 2
i

2
~s~g, f !1s~g1 f ,h!!J ^v;W~g1 f1h!&

is t continuous, from which by ane/3 argument the continuity offPE°^v;B*W( f )B& for each
BPW ~E,s! follows. j

The natural ordering onT ~E,s! obviously carries over to the associated folia:

t1<t2<d ⇒ F b
t1~E,s!#F b

t2~E,s!#F b
d~E,s!5S „W ~E,s!…,

wheredPT ~E,s! means the discrete topology.
Proposition 3.3: LettPT ~E,s!, then fPE°Pb

t
„W( f )…5:Wb

t( f ) is continuous with respect
to the topologyt on E and the strong operator topology onMb

t :5Pb
t
„W ~E,s!…9, wherePb

t is the
representation associated withF b

t(E,s).
Proof: Let vPF b

t(E,s). For f ,g,hPE by the Weyl relations one gets

i~Pv„W~ f !…2Pv„W~g!…!Pv„W~h!…Vvi2

5^v;W~2h!„W~2 f !2W~2g!…„W~ f !2W~g!…W~h!&

5222 Re~exp$~ i /2!s~ f ,g!1 is~h,g2 f !%^v;W~g2 f !&!,

from which by ane/3 argument it follows the continuity offPE°Pv„W( f )…. Now observe that
Pb

t 5 % vPF
b
tPv , and the assertion is proved. j
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We mention, because of Proposition 3.3 the representationPb
t is regular, iftPR°t fPE is t

continuous for eachfPE. Thus, in the case of a vector space topologytPT ~E,s! the field
operatorsFb

t( f ), fPE, associated withPb
t exist.

C. The (quasi-)free boson dynamics

The subsequent definition of a quasi-free dynamics generalizes an idea in Ref. 24.
The single particle dynamics is given by a groupv[$v tutPR% of symplectic transformations

v t on a larger symplectic space~E ,s!$~E,s! ~i.e., v0 is the identity, andvs+v t5vs1t ,;s,tPR!.
Unfortunately, in many physical casesE is a proper subspace ofE , which is notv invariant@i.e.,
v t(E) is not a subset ofE for sometÞ0#.

The group ofv on E is assumed to be connected withE by a topologyt fulfilling
•tPT ~E ,s! is a locally convex topology onE ;
•fPE°v t fPE is t-t continuous for eachtPR;
•tPR°v t fPE is t continuous for eachfPE ;
•E is t-complete, andE is t dense inE .

1. The Schrö dinger picture

By construction for everyvPF b
t(E,s), the characteristic functionCvPC~E,s! t continu-

ously extends toCvPC~E ,s!. Moreover, for eachvPF b
t(E,s) the mappingfPE°Cv(v t f ) is

t continuous and an element ofC~E,s!, and thus by the relation~3.2! and Proposition 3.2 defines
a unique statent

v~v!PF b
t(E,s). One easily checks that the mappingnt

v is affine and bijective on
the foliumF b

t(E,s). The continuity oft°v t and the group property ofv imply nv[$nt
vutPR% to

be a group that satisfies the continuity conditions~1.2!. Summarizing, we have shown the follow-
ing.

Proposition 3.4:„W ~E,s!,F b
t(E,s),nv… is a dynamical description in the sense of Definition

1.2,whereCn
t
v(v) 5 Cv + v t ,;t P R for eachvPF b

t(E,s).

Let us give some physically relevant examples.
Example 3.5: For thermodynamical reasons the Weyl algebraW ~E,s! should have a quasilo-

cal structure.11 Thus one usually takes E5D~Rp! the space of all infinitely differentiable functions
with compact support inRp and s to be the imaginary part of the scalar product^ f ug&
5 *Rp f̄ g dpx. On W ~E,s! the thermodynamic limits for local Gibbs states are performed. The
local Gibbs states are defined on the local algebrasW „D~G!,s…, where theG are open, bounded
regions ofRp (e.g., for the Bose–Einstein condensation, cf. Refs. 42, 43, 11, and 24).

The one-particle dynamics of the bosons isv t5exp$2i tD% on L2~Rp!. It is obtained by the
thermodynamic limit of the local time translationsexp$2i tDG%, where the local Laplacians2DG

obey some boundary conditions for the local regionsG. It is well known that for0ÞfPD~Rp! the
evolvedv t( f ) no longer has compact support, i.e.,v t( f ) ¹D~Rp! for tÞ0.

There are several possibilities for choosing a larger symplectic space~E ,s! and a suitable
topologyt fulfilling the above assumptions. For example, letE be the set of functions with rapid
decrease onRp, equipped with the natural Fre´chet topologytFr , which leads to the foliumF b

Fr of
tFr-continuous states onW ~E,s!. Or, E5L2~Rp! with the scalar product topologyts , which gives
the foliumF b

s of ts-continuous states onW ~E,s!. Sincets,tFr ,F b
s is a proper subfolium of

F b
Fr . And the dynamical description„W ~E,s!,F b

s ,nv… is a dynamical subdescription of
„W ~E,s!,F b

Fr ,nv…. The limiting Gibbs states, however, are elements ofF b
Fr but not ofF b

s. In Sec.
IV C further examples are given.

For photons one has a similar situation,44 where the one-photon Hamiltonians are the square
roots of the Laplacians.

2. The Heisenberg picture

As an immediate consequence of~3.2! and the Propositions 3.2, 3.3, and 3.4 we have that the
restrictions of the states inF b

t~E ,s! from the enlarged Weyl algebraW ~E ,s! to the subalgebra
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W ~E,s! just give the foliumF b
t(E,s), which in the sequel is denoted byF b

t . Moreover, the
representationPb

t of W ~E,s! is the restriction of the representationPb
t of W ~E ,s!, and

Mb
t5Pb

t
„W ~E ,s!…95Pb

t
„W ~E,s!…9.

By the duality~1.3! we get from„W ~E,s!,F b
t ,nv… the dynamics~Mb

t ,bv! in the Heisenberg
picture. The groupbv is just thePb

t-normal extension toMb
t of the group of Bogoliubov trans-

formationsbv[$bt
vutPR% ~denoted by the same symbol! on the enlarged Weyl algebraW ~E ,s!,

bt
v
„W( f )…5W(v t f ),; fPE for every tPR. From iW( f )2W(g)i52 for fÞg it immediately

follows that „W ~E ,s!,bv
… is not aC* -dynamical system~wheneverv is nontrivial!. We also

regard„W ~E ,s!,bv
… as the dynamics in the Heisenberg picture for our boson field.

IV. COCYCLE DYNAMICS FOR THE INTERACTING SYSTEM

Here let us fix an arbitrary polynomialQ for the dynamics of the mean field system and an
arbitrary one-boson dynamicsv[$v tutPR% on the larger symplectic space~E ,s!$~E,s! with the
associated topologyt from Sec. III C.

The free dynamics in the Schro¨dinger picture is the dynamical description~C ,F ,n! on the
C* -algebraC :5A^W ~E,s! of the composite mean field–boson system. HereF :5F a

p
^F b

t is
the folium ofPa

p
^ Pb

t-normal states onC , andn t :5n t
Q

^ n t
v,;tPR.

Let g t :5a t
Q

^ b t
v ,;tPR. The free dynamics in the Heisenberg picture is~M,g!, where

M:5Ma
p

^̄Mb
t5Pa

p
^ Pb

t~C !95Pa
p

^ Pb
t~C e!9, which is obtained from~C ,F ,n! by the duality

relation ~1.3!.
Another formulation of the dynamics in the Heisenberg picture is given in terms of the

extendedC* -algebras. For the mean field we have theC* -dynamical system~Ae ,a
Q!, and for the

bosons we have the time-noncontinuous group of Bogoliubov transformations„W ~E ,s!,bv
…. The

tensor product gives the Heisenberg dynamics~C e ,g! with the extended compositeC* -algebra,

C e :5Ae^W ~E ,s!5A^C~P! ^W ~E ,s!>C„P,A^W ~E ,s!…>A^C„P,W ~E ,s!…

@which is unique sinceA andC(P) are nuclear#, whereC~P,V ! ~V is Banach space! denotes the
Banach space of all continuousV -valued functions with the uniform normiXi`5supxPPiX(x)i
@as usualC(P)[C~P,C!#.

With the help of cocycle techniques we first construct a class of interacting dynamics in the
Heisenberg picture as time-noncontinuous groups of automorphisms onC e . Each solution of the
cocycle equations gives a different interaction. And thus, the whole of all solutions gives our
treated class of interactions.

Then we extend byW* -continuity toM, i.e., in the representationPa
p

^ Pb
t of C e . Here we

need the generalized spectral integral, which is presented in the Appendix. And in a third step we
formulate the above class of interactions in the Schro¨dinger picture as dynamical descriptions~see
Definition 1.2! on the foliumF of C , resp., ofC e .

We investigate the cocycle dynamics in suitable covariant subrepresentations, which leads to
an enlarged system of cocycle equations for the unitary implementation of the cocycle automor-
phism group. We finally turn to some concretizations and realize the cocycle dynamics as a
thermodynamic limit in suitable subrepresentations.

Let us mention that similar to the previous sections it would also be possible to start with the
Schrödinger dynamical description of the interacting systems, and then to turn over to the Heisen-
berg picture.

A. The algebraic cocycle dynamics

1. The Heisenberg dynamics on the extended C * -algebra

Using the above isomorphies forC e we have the following.
Theorem 4.1: Let c:R3P→E , (t,x)°c(t,x) be a function so that xPP°s„c(t,x), f … is

continuous for all tPR and each fPE . Then, for each tPR,
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g t
c~Z!~x!:5@1A^W„c~ t,x!…#@g t~Z!~x!#@1A^W„2c~ t,x!…#, ;xPP, ZPC e ,

defines the automorphismgt
c on C e . c[0 gives the free time evolutionsg t

05g t , ;tPR.
Moreover, ifc(t,x) satisfies the cocycle equations

c~s1t,x!5c~s,x!1vsc~ t,ws
Qx!, ;xPP, ;s,tPR, ~4.1!

thengc[$gt
cutPR% is a group, i.e.,gs

c+g t
c5gs1t

c , ;s,tPR, andg0
c is the identity.

Proof:We define the implementing map forZPC e>C„P,A^W ~E ,s!… and tPR,

x t~Z!:P→A^W ~E ,s!, x°@1A^W„c~ t,x!…#Z~x!@1A^W„2c~ t,x!…#.

By the unitarity of the Weyl operators one getsix t(Z)i`5iZi` . We prove the continuity of the
functionxt(Z). First, letZ5X^W( f ) with XPAe>C~P,A! and fPE . The Weyl relations yield
xt(Z)(x)5exp$2is„c(t,x), f …%X(x)^W( f ), ;xPP, which is continuous inxPP. Now we ap-
proximate an arbitraryZPC e by linear combinations of elementsX^W( f ), and the continuity
follows with ane/3 argument.

xt :C e→C e , Z°x t(Z) obviously is an automorphism onC e , whose inverse is given by
xt

21(Z)(x)5@1A^W„2c(t,x)…#Z(x)@1A^W„c(t,x)…#,;ZPC e , ;tPR,;xPP. Consequently,
g t

c5x t+g t is an automorphism too.
Let ~4.1! be valid. From Sec. II it immediately follows thata t

Q
^ idW (E ,s) maps

1A^YP1A^C„P,W ~E ,s!…,C e onto the continuous function1A^Y„wt
Q~•!…PC e . Now, for

Z5A^Y, whereAPA andYPC„P,W ~E ,s!…, one checks that for alls,tPR and eachxPP,

gs+x t~Z!~x!5@1A^W~vsc„t,ws
Q~x!…!#@gs~Z!~x!#@1A^W~2vsc„t,ws

Q~x!…!#,

which then extends to allZPC e . Using this and the Weyl relations, the group property ofgc is
immediate. Since~4.1! yieldsc~0,x!50, ;xPP, we have thatg0

c is the identity onC e . j

Obviously, for each solutionc of the cocycle equations~4.1! we have a different groupgc of
automorphisms onC e . The cocycle equations define an initial value problem.

Theorem 4.2:For anyfPC~P,E! it holds: The cocycle equations (4.1) with the initial value
(]c/]t)(0,x)5f(x),;xPP are uniquely solvable, with the solutionc:R3P→E ,

c~ t,x!5E
r50

t

v rf~w r
Qx!dr, xPP, tPR. ~4.2!

The integrals and the derivatives are understood with respect to thet topology, where their
existences are ensured by the completeness ofE .

Proof: That ~4.2! fulfills the cocycle equations~4.1! is easily checked. The cocycle equations
imply c(0,x)50,;xPP. t→0 in [c(s1t,x)2c(s,x)]/ t5vsc(t,ws

Q x)/t gives the partial differ-
ential equation (]c/]s)(s,x)5vsf(ws

Qx), which is uniquely solvable with the initial value
c(0,x)50. j

The above theorem characterizes the solutionsc[cf of the cocycle equations by their initial
valuesfPC~P,E!. In the sequel we will call the initial valuef a coupling functionfor our mean
field–boson system. Every coupling functionfPC~P,E! gives rise to an interaction between the
mean field system and the boson field, and the interacting dynamics is given by the groupgc on
C e . And thus, the interactions treated in the present work may be indexed byC~P,E!. In Propo-
sition 4.5 it becomes transparent how the coupling operator corresponding to the coupling function
f looks.
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2. The Heisenberg dynamics on the composite W * -algebra

Here the time-noncontinuous Heisenberg dynamics~C e ,g
c! from Theorem 4.1 for an arbitrary

solution c of the cocycle equations is considered in the representationPa
p

^ Pb
t of

C e5Ae^W ~E ,s!, i.e., on theW* -tensor product,M5Ma
p

^̄Mb
t .

However, we need some preparatories. With the projection-valued measureP of Sec. II A and
the general spectral integral of the Appendix we define

V~z;h!:5E
P
exp$ i z~x!%@1a

p
^Wb

t
„h~x!…#d„P ~x! ^ 1b

t
…PZa

p
^̄Mb

t , ~4.3!

for everyzPC~P,R! andhPC~P,E!. For the existence of the integrals observe the continuity of
xPP°Wb

t
„h(x)… in the strong operator topology by Proposition 3.3.

Lemma 4.3: Letz1,z2,zPC~P,R! andh1,h2,hPC~P,E!. Then
(a) V(z;h) is unitary with V(z;h)*5V(2z;2h).
(b) V(z1 ;h1)V(z2 ;h2)5V(z1,2;h11h2), where

z1,2~x!:5z1~x!1z2~x!2 1
2„h1~x!,h2~x!…, ;xPP.

(c)as
Q

^ b t
v
„V~z;h!…5V„z+ws

Q ;v t(h+ws
Q)…,;s,tPR, where

v t~h+ws
Q!:P→E , x°v th~ws

Qx!.

Proof: The proof is easily checked by the weak definition ofV~z;h! in Theorem A.1 of the
Appendix and by observinga t

Q~*Pj dP !5*Pj+w t
Q dP for jPC(P) ~see Sec. II D!. j

Theorem 4.4: Let c:R3P→E ,(t,x)°c(t,x)5:c t(x) be a continuous function. Then, for
each tPR the automorphismgt

c onC e in the representationPa
p

^ Pb
t W* -continuously extends to

an automorphism onM denoted by the same symbol, which with arbitraryzPC~P,R! (one may
choosez50 ) is given by

g t
c~Z!5V~z;c t!g t~Z!V~z;c t!* , ;ZPM.

Proof: For eachtPR g̃t
c(•):5V(0;c t)g t(•)V(0;c t)* is an automorphism onM. With

Lemma 4.3 andV(0;g)51a
p

^Wb
t(g) ~wheregPE is considered as a constant function onP! one

establishes for eachXPMa
p and fPE ,

V~z;c t!g t„X^Wb
t~ f !…V~z;c t!*5V~z;c t!@a t

Q~X! ^ 1b
t #@1a

p
^Wb

t~v t f !#V~z;c t!*

5@a t
Q~X! ^ 1b

t #@V~z;c t!V~0;v t f !V~2z;2c t!#

5@a t
Q~X! ^ 1b

t #V~2s„c t~• !,v t f …;v t f !

5@a t
Q~X! ^ 1b

t #@V~0;c t!V~0;v t f !V~0;2c t!#

5g̃ t
c
„X^Wb

t~ f !….

We now prove the agreement ofg̃t
c+(Pa

p
^ Pb

t) with (Pa
p

^ Pb
t)+g t

c,

g̃ t
c
„X^Wb

t~ f !…5@a t
Q~X! ^ 1b

t #V„2s~c t~• !,v t f !;v t f …

5@a t
Q~X! ^ 1b

t #S E
P
exp$2 is„c t~x!,v t f …%dP ~x! D ^Wb

t~v t f !

5F E
P
exp$2 is„c t~x!,v t f …%dP ~x! ^ 1b

t G @g t„X^Wb
t~ f !…#.
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On the other sidegt
c
„X^W( f )…(x)5exp$2is„c t(x), v t f …% gt„X^W( f )…(x). j

As a corollary of the above proof we have the explicit evaluation on elements of the form
X^Wb

t( f ), whereXPMa
p and fPE :

3. Coupling functions and interaction operators

Let us first consider an arbitraryC* - orW* -dynamical system~B, t!, which we perturb with
P5P*PB. If d is the generator oft, d5(d/dt)t tu t50, then d1i [P,•# is the generator of the
perturbed dynamical one-parameter grouptP onB. tP may be calculated by the Dyson expansion
~Ref. 11, Proposition 5.4.1!,

t t
P~B!5 (

n50

`

i nE
t150

t

dt1•••E
tn50

tn21
dtn@t tn~P!,†•••@t t1~P!,t t~B!#•••#‡, BPB. ~4.4!

From the unperturbed~free! dynamicst and the perturbed~interacting! dynamicstP, the pertur-
bationP is obtained back byi [P,B]5(d/dt)t t

P
„t2t(B)…ut50,;B5B.

As in the above case of a bounded perturbation of aC* - or W* -dynamical system we now
determine the perturbation~interaction! operatorPf associated with our interacting dynamicsgc

by comparing with the free dynamicsg, wherec5cf is the solution~4.2! of the cocycle equations
~4.1! associated with the coupling functionf PC~P,E!. Formally we have
i [Pf,Z]5(d/dt)g t

c
„g2t(Z)…ut50 for ZPM. Since gt

c
„g2t(Z)…5V(0;c t)ZV(0;c t)* ,;ZPM,

we conclude thatPf is affiliated toM and given~up to an additive term in the center ofM! by

Pf5
d

dt
V~0;c t!u t50 . ~4.5!

Proposition 4.5: The formal calculation of the derivation in (4.5) gives

Pf5E
P
@1a

p
^ Fb

t
„f~x!…#d„P ~x! ^ 1b

t),

which justifies our above notion of a coupling function forfPC~P,E!, and whereFb
t( f ), fPE ,

are the field operators associated with the representationPb
t of W ~E ,s!.

Sketch of Proof:Supposeh:R→E to be continuously differentiable. With the Weyl relations
we obtain, in a regular representation ofW ~E ,s!,

d

dt
W„h~ t !…5 lim

e→0

1

e
~W„h~ t1e!…2W„h~ t !…!

5 lim
e→0

exp$~ i /2!s„h~ t1e!,h~ t !…%21

e
W„h~ t1e!2h~ t !…W„h~ t !…

1 lim
e→0

exp$ iF„h~ t1e!2h~ t !…%21
e

W„h~ t !…

5 i ~ 1
2 s„h8~ t !,h~ t !…1F„h8~ t !…!W„h~ t !…,
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where we have used the formal calculation

exp$ iF„h~ t1e!2h~ t !…%21
e

5 iFS h~ t1e!2h~ t !

e D (
n51

`
i n21

n!
F„h~ t1e!2h~ t !…n21

——→
e→0

iF„h8~ t !….

Now, with c~0,x!50 and (]c/]t)(0,x)5f(x), the differentiation in~4.5! is easily performed.
j

4. The cocycle dynamics in the Schro ¨dinger picture

The unitaryV~z;h!PM from Eq. ~4.3! uniquely defines an affine bijectionk~z;h! on the
folium F , satisfying

^k~z;h!~v!;Z&:5^v;V~z;h!ZV~z;h!* &, ;vPF , ;ZPM.

Thus, for eachtPR the affine bijectionnt
c on the foliumF of normal states onM, which is

obtained fromgt
c by the duality relation~1.3!, is given by

n t
c5k~z,c t!+n t , ;zPC~P,R!.

As an immediate consequence of the weak definition of the spectral integral in Theorem A.1 we
get the following.

Theorem 4.6: Let c:R3P→E ,(t,x)°c(t,x)5:c t(x) be a continuous function. Then
tPR°V(0,c t) is continuous in the strong operator topology.

Thus, ifc satisfies the cocycle equations (4.1), then~C ,F ,nc! and ~C e ,F ,nc! are dynamical
descriptions in the sense of Definition 1.2.

B. Unitary cocycle dynamics

1. The cocycle dynamics in subrepresentations

Let F a#F a
p andF b#F b

t be subfolia, invariant with respect to the free dynamicsnQ andnv,
respectively. Then~A,F a , nQ! and „W ~E,s!,F b ,n

v
… are dynamical subdescriptions. Denote by

caPZa
p andcbPZb

t the associated central projections, and byPa<Pa
p, respPb<Pb

t , the corre-
sponding subrepresentations. Moreover, letMa :5Pa~A!95caMa

p andMb :5Pb„W ~E,s!…9
5cbMb

t ~cf. Proposition 1.1!. The normal states onMa,b :5Ma^̄Mb5(ca^cb)M are given by
F a,b5F a^F b#F .

The central projectionca^cbPZa
p

^̄Zb
t,M is invariant with respect to the Heisenberg

dynamicsgc onM. Consequently,F a,b is nc invariant, and the associated cocycle dynamics in
both, the Schro¨dinger and the Heisenberg picture, are obtained by restrictingnc, resp.gc, toF a,b ,
resp.Ma,b , in the manner described in the Introduction.

Let P a :5caP be the restriction of the projection-valued measureP , which now has values in
the set of orthogonal projections of the centerZa of Ma . From the theory of the infinite mean
field systems, it is well known that the supportPa#P of P a is invariant with respect to the flow
wQ. Denote by1a>ca the unit inMa and 1b>cb the one inMb . Wb( f ):5cbWb

t( f )PMb ,
fPE , are the represented Weyl operators with respect toPb<Pb

t . Then the restriction of the
unitaries~4.3! fromM toMa,b is

Va,b~z;h!:5~ca^cb!V~z;h!5E
Pa

exp$ i z~x!%@1a^Wb„h~x!…#d„P a~x! ^ 1b…PZa^̄Mb .

And thus it suffices that the functionsz andh are defined onPa .
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2. Unitary implementations of the cocycle dynamics

From now on let us suppose that the dynamical~sub-!descriptions ~A,F a ,n
Q! and

„W ~E,s!,F b ,n
v
… are covariant, which is equivalent that~Ma ,a

Q! and ~Mb ,b
v! both are

W* -dynamical systems. By Theorem 4.6,t°V(0;c t) is strongly continuous. Thus, it follows that
the dynamical~sub-!description~C ,F a,b , nc! is covariant, or equivalently, that the Heisenberg
~sub-!dynamics~Ma,b , gc! defines aW* -dynamical system.

Let us assume standard representations ofMa andMb on the Hilbert spacesHa
std and

Hb
std, respectively, such that theW* -groupsaQ and bv are unitarily implementable with the

HamiltoniansAa , resp.Bb ,

a t
Q~X!5eitAaXe2 i tAa, ;XPMa , b t

v~Y!5eitBbYe2 i tBb, ;YPMb . ~4.6!

We now search for a strongly continuous unitary group, which implements~Ma,b , gc!.
Theorem 4.7: Let z:R3P→R, (t,x)°z(t,x)5:z t(x) and c:R3P→E , (t,x)°c(t,x)

5:c t(x) be continuous functions. For each tPR it follows thatgt
c is implemented by the unitary

Ut
c,z :5Va,b~z t ;c t!@e

itAa^eitBb#, ~4.7!

that is, g t
c(Z)5Ut

c,zZ(Ut
c,z)* , ;ZPMa,b .

Moreover, the family Uc,z[$Ut
c,z utPR% defines a strongly continuous group onHa

std

^ Hb
std, if c andz satisfy the cocycle equations,

c~s1t,x!5c~s,x!1vsc~ t,ws
Qx!, ~4.8!

z~s1t,x!5z~s,x!1z~ t,wx
Qx!2 1

2 s„c~s,x!,vsc~ t,ws
Q x!…, ~4.9!

for all s,tPR and each xPPa .
Proof: g t

c(•)5Ut
c,z
•(Ut

c,z)* is obvious. With Lemma 4.3 and~4.6! we get

Us
c,zUt

c,z5Va,b~zs ;cs!@e
isAa^eisBb#Va,b~z t ;c t!@e

itAa^eitBb#

5Va,b~zs ;cs!Va,b„z t+ws
Q ;vs~c t+ws

Q!…@ei ~s1t !Aa^ei ~s1t !Bb#

5Va,b„zs,t ;cs1vs~c t+ws
Q!…@ei ~s1t !Aa^ei ~s1t !Bb#,

with zs,t :5z(s,x)1z(t,ws
Qx)2~1/2!s„c(s,x), vsc(t,ws

Qx!…. This agrees withUs1b
c,z , if the co-

cycle equations~4.8! and ~4.9! are fulfilled. j

The cocycle equations~4.8! are the restriction of~4.1! to thewQ-invariant subsetPa of the
classical phase spaceP. Analogously to Theorem 4.2, the unique solutionc:R3Pa→E of ~4.8!
with initial value (]c/]t)(0,x)5f(x), ;xPPa , wherefPC~Pa , E! is an arbitrary coupling
function, is given by Eq.~4.2!, but for xPPa#P. Using a solutionc for ~4.8! we may solve the
equations~4.9!, that determine the correct phase of the groupUc,z. Similar to Theorem 4.2, one
proves the following.

Theorem 4.8:Letc(t,x)5* r50
t v rf(w r

Qx)dr,;xPPa be the unique solution of (4.8) with the
initial value fPC~Pa ,E! by Theorem 4.2. Then, for arbitrarylPC~Pa ,R! it holds: The cocycle
equations (4.9) with the initial value(]z/]t)(0,x)5l(x),;xPPa are uniquely solvable, and the
solutionz:R3Pa→R is given by

z~ t,x!5E
r50

t

l~w r
Qx!dr2

1

2 E
p50

t E
r50

p

s„v rf~w r
Qx!,vpf~wp

Qx!…dr dp.
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3. The generator of the unitary cocycle dynamics

Here, let us assume the solutionsc andz of the cocycle equations given with the initial values
fP C~Pa ,E! andlP C~Pa ,R! by Theorem 4.8.

Similar to Proposition 4.5, one formally calculates the HamiltonianHf associated with the
unitary groupUc,z of Theorem 4.7,

Hf:52 i
d

dt
Ut

c,zU
t50

5Aa^ 1b11a^Bb1E
Pa

@1a^ Fb„f~x!…#d„P a~x! ^ 1b…1S E
Pa

l dP aD ^ 1b ,

~4.10!

where theFb( f ), fPE , denote the field operators associated with the representationPb of
W ~E ,s!. The central part*Pa

l dP a P Za in Hf is irrelevant for the Heisenberg dynamics
~Ma,b ,g

c!. Thus, in the sequel let us assumel[0. The interacting part ofHf agrees with
(ca^cb)P

f, wherePf is from Proposition 4.5.

C. The cocycle dynamics as a thermodynamic limit

If E and thusE are complex vector spaces~the multiplication with the complexi is t
continuous!, ands is the imaginary part of at-continuous positive sesquilinear form̂•u•& on E ,
then one may introduce the annihilation and creation operators,ab( f ):5~1/&!„Fb( f )
1 iFb( i f )… andab* ( f ) as the adjoint, for the regular representationPb of W ~E ,s!. Throughout
the present section we consider the coupling function

f~x!5&(
k51

l

jk~x!fk , xPP, ~4.11!

for somelPN0, wherejkPC(P) andfkPE . With this f we obtain the familiar form@cf. Eq.
~1.1!# of the interaction operator from Proposition 4.5,

Pf5 (
k51

l F S E
P
jk dP D ^ab* ~fk!1S E

P
jk dP D ^ab~fk!G . ~4.12!

The local time evolutionsaQ,L, LPL, of the mean field system from Eq.~2.4! converge in
the representationPa

p ofA in some sense to the limiting Heisenberg dynamicsaQ. Also, the mean
field parts*Pjk dPPZa

p of the above interactionPf may be approximated by uniformly bounded
~with respect toLPL! local polynomialsJk

L of the local density operatorsmL(b) from Eq.~2.1!.
Thus, it should be possible that the interacting dynamicsgc is approximated by the local time

evolution groupsgc,L, LPL, which are given by the perturbation ofaQ,L
^ bv with the local

interaction

Pf,L5 (
k51

l

@Jk
L

^ab* ~fk!1~Jk
L!* ^ab~fk!#.

For such an approximation procedure we want to use perturbation techniques. Because the field
operators~respectively, the annihilation and creation operators! are unbounded, for general
bosonic representationsPb<Pb

t it is not possible to control the growth of the expansion series
~4.4! uniformly for LPL.

However, for the field, annihilation, and creation operators there exist estimates on the finite
particle vectors in Fock space. This suggests that the necessary growth control of the expansion
series can be done for Fock-like representationsPb of W ~E,s!. A Fock-like representationPb ,
for example, is obtained as the GNS representation of a suitable~nv-invariant! gauge-invariant
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quasi-free factor state onW ~E,s!, where the GNS–Hilbert space is the tensor product of two
Fock spaces.40,11,45Let us outline in more detail a typical situation, where here the temperature
states~without condensation! of the boson system are considered. The associated estimates for the
perturbation expansions are derived in Ref. 47.

E usually is chosen to be a complex pre-Hilbert space with~right-linear! scalar product̂•u•&
~s is the imaginary part of̂•u•&!. The single particle HamiltonianS ~self-adjoint operator on the
completionĒ of E with respect tô •u•&! is positive, not having zero as its eigenvalue. We assume
E#D(S21/2)5:E to be a core forS21/2. Thet topology is chosen to arise from the inner product
^ f ug&t :5^ f ug&1^S21/2f uS21/2g&, which defines the graph norm ofS21/2. The one-boson dynam-
ics is v t :5eitSuE , tPR. That v5$v tutPR% is a strongly continuous unitary group on the Hilbert
spaceE5„D(S21/2), ^•u•&t… is immediate.

Remark 4.9: If E is any subset of the domain D(S21/2), which is invariant with respect to the
one-boson dynamicsv, then by Ref. 46, Theorem 4 E is a core for S21/2.

In the special case, where E5D~Rp! is from Example 3.5, and S52D, resp. S5 A2D, then
E is a core for S21/2 ~cf. Refs. 44, 24, and 42!.

Let Tb :5e2bS~12e2bS!21 for b.0, andT` :50 for b5`. Then by

^vb
b ;W~ f !&5exp$2 1

4 i f i22 1
2 iTb

1/2f i2%, fPE,

the characteristic function of the temperature statevb
b for the inverse temperaturebP#0,̀ # is

given ~for b5` the Fock vacuum state is obtained!. Since for eachbP#0,̀ @ the graph norm for
Tb
1/2 is equivalent to the abovei•it , andD(Tb

1/2)5D(S21/2), it follows thatvb
b is an element of

the foliumF b
t of t-continuous states onW ~E,s!.

Sincevb
b is invariant with respect to the dynamical description„W ~E,s!,F b

t ,nv…, its GNS
representation (Pb

b,Hb
b ,Vb

b) defines a covariant dynamical subdescription~cf. the Introduction!.
The above HamiltonianBb[Bb

b is chosen so thatBb
bVb

b50.
With ~2.3! we define in the representationPa

p
^ Pb

b the local interacting Hamiltonians,

Hf,L:5AL ^ 1b
b11a

p
^Bb

b1Pf,L,

which are essentially self-adjoint.47 Then the local perturbed time evolutions are

g t
c;L~• !:5exp$ i tHf,L%•exp$2 i tHf,L%, LPL.

Sincevb
b is a gauge-invariant quasi-free factor state onW ~E,s!, we are in the above mentioned

situation, and the expansion~4.4! can be controlled uniformly inLPL,47 which gives the fol-
lowing result proven in Ref. 13~( means the algebraic tensor product!.

Theorem 4.10:g t
c(Z)5s2 limLPL gt

c,L(Z), for ZPPa
p~A!(Pb

b
„W ~E ,s!….

The result is also interesting insofar that the perturbation techniques are valid here for the free
dynamicsg onMa

p
^̄Mb

b, which is not aW* -dynamical system.
With the above perturbation techniques using the Fock-like temperature representationPb

b in
addition to the above result it is also possible to make rigorous the differentiation in the formal
sketch of proof of Proposition 4.5; we refer to Refs. 47 and 13.

Theorem 4.11:Let Pa<Pa
p be a covariant subrepresentation foraQ as in Sec. IV D. Then

Hf5Aa^ 1b
b11a^Bb

b1~ca^cb
b!Pf,

where Pf is from (4.12), is essentially self-adjoint, and is indeed the generator of the unitary
group Uc,z onHa

std
^Hb

b [cf. Eq. (4.10)].
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APPENDIX: SPECTRAL INTEGRALS

For integrating general operator-valued functions with respect to a projection-valued measure,
there are very strong conditions48 ~cf. also Ref. 49, Chap. 6!. Here, however, we have some special
cases of such integrals, for which the conditions for existence are weaker.

Let H andK be ~complex! Hilbert spaces,B~K ! the bounded operators ofK , andP a
projection-valued measure from the Borel subsetsB~Rp! of Rp ~pPN! into the orthogonal projec-
tions ofH. Then, the mapDPB~Rp!°P ~D!^1K is a projection-valued measure onH^K . For
operator-valued functionsX:Rp→B~K ! we now develop the theory of the spectral integrals,

E
Rp
„1H^X~x!…d„P ~x! ^ 1K…. ~A1!

We do not give the long proofs here and refer the reader to Ref. 13, Sec. A.4, where the connection
with the direct integral is also pointed out.

Theorem A.1: Let X:Rp→B~K ! be weakly measurable withsup$iX(x)iuxPRp%,`. Then by

K f1^ c1U E
Rp
„1H^X~x!…d„P ~x! ^ 1K…f2^ c2L :5E

Rp
^c1uX~x!c2&d^f1uP ~x!f2&,

;f1 ,f2PH, ;c1 ,c2PK ,

and by linear and continuous extension onH^K the bounded operator (A1) is well defined.
Moreover,

~a!i*Rp„1H^X(x)…d„P (x)^ 1K…i <sup$iX(x)i uxPRp%.
~b!(*Rp„1H^X(x)…d„P (x)^ 1K…)*5*Rp(1K ^ „X(x)…* )d„P (x)^ 1K….
~c! If H andK are separable, then we have the product property

E
Rp
„1H^X~x!Y~x!…d~P ~x! ^ 1K !5E

Rp
„1H^X~x!…d„P ~x! ^ 1K…E

Rp
„1H^Y~x!…d„P ~x! ^ 1K….

~d! If K is separable, then the measurability of xPRp°iX(x)i follows, and for all
jPH^K it is

I E
Rp
„1H^X~x!…d„P ~x! ^ 1K…j I 2<E

Rp
iX~x!i2d^ju„P ~x! ^ 1K…j&.

With some stronger conditions forX:Rp→B~K ! andY:Rp→B~K !, we may drop in~c! the
separability condition for H and K . Let PPB~Rp!. We call X:P→B~K ! with
sup$iX(x)i uxPP%,` a T function, if X is approximable forP—almost allxPP in the strong
operator topology by a sequence of elementary functionsXn :P→B~K ! for which iXn(x)i<c,
;xPP, ;nPN for somec.0 ~cf. Ref. 50, Appendix to IV.5, p. 115!. @An elementary function is
of the form(k51

m xDk
Qk , wherexD is the characteristic function ofDPB(P) andQkPB~K !.# If

X:P→B~K ! and Y:P→B~K ! are T functions, so areXY:P→B~K !, x°X(x)Y(x), and
X* :P→B~K !, x°X(x)* . Especially, each with respect to the strong operator topology piece-
wise continuous functionX:P→B~K ! with sup$iX(x)i uxPP%,` is of classT . EachT func-
tion is weakly measurable, and hence the operator*P„1H^X(x)…d„P (x)^1K… exists.

Proposition A.2: Let X:P→B~K ! be aT function with some associated sequence(Xn)nPN
of elementary functions. Then it follows in the strong operator topology,

E
P
„1H^X~x!…d„P ~x! ^ 1K…5s2 lim

n→`
E
P
„1H^Xn~x!…d„P ~x! ^ 1K….
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Corollary A.3: If X:P→B~K ! and Y:P→B~K ! are T functions, then the product property
is valid in any case concerning the separability or nonseparability ofH andK .

Moreover, in each case, where the product property of Theorem A.1(c) is valid, one has for all
fPH andcPK ,

I E
P
„1H^X~x!…d„P ~x! ^ 1K…f ^ c I 25E

P
iX~x!ci2d^fuP ~x!f&.
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31H.-J. Borchers, ‘‘ÜberC* -Algebren mit lokalkompakten Symmetriegruppen,’’ Nachr. Akad. Wissensch. Go¨ttingen, Heft
1, 1–18~1973!.

32Th. Unnerstall, ‘‘Makroskopische Quantenpha¨nomene in Quantengittermodellen,’’ Tu¨bingen, Thesis, 1990.
33E. Duffner ‘‘Existence of the limiting mean field dynamics in general equilibrium representations,’’ Physica A133,
187–212~1985!.

34S. Sakai,C* -Algebras and W* -Algebras~Springer, Berlin, 1971!.
35G. K. Pedersen,C* -Algebras and Their Automorphism Groups~Academic, London, 1979!.
36E. Stormer, ‘‘Symmetric states of infinite tensor products ofC* -algebras,’’ J. Funct. Anal.3, 48 ~1969!.
37V. I. Arnold, Mathematical Methods of Classical Mechanics~Springer, Berlin, 1985!.
38N. G. Duffield and R. F. Werner, ‘‘Classical Hamiltonian dynamics for quantum Hamiltonian mean field systems,’’ in
Proceedings of Swansea Conference on Stochastic and Quantum Mechanics,August 1990.

39J. Manuceau, M. Sirugue, D. Testard, and A. Verbeure, ‘‘The smallestC* -algebra for canonical commutation relations,’’
Commun. Math. Phys.32, 231–243~1973!.

40H. Araki and E. J. Woods, ‘‘Representations of the canonical commutation relations describing a nonrelativistic infinite
free bose gas,’’ J. Math. Phys.4, 637–662~1963!.

41D. E. Evans and J. T. Lewis, ‘‘Dilations of irreversible evolutions in algebraic quantum theory,’’Communications of the
Dublin Institute for Advanced Studies, Series A~Theoretical Physics!, No. 24, 1977.

42D. A. Dubin,Solvable Models in Algebraic Statistical Mechanics~Clarendon Press, Oxford, 1974!.
43J. T. Cannon, ‘‘Infinite volume limits of the canonical free Bose gas states on the Weyl algebra, Commun. Math. Phys.
29, 89–104~1973!; J. T. Lewis, and J. V. Pule`, ‘‘The equilibrium states of the free boson gas,’’ Commun. Math. Phys.36,
1–18 ~1974!; R. Brendle, ‘‘Einstein condensation in a macroscopic field,’’ Z. Naturforsch a40, 1189–1198~1985!; J.
Hertle, ‘‘Macroscopically inhomogeneous Bose Einstein condensation,’’ inProceedings of the NATO ASI on ‘‘Large-
scale molecular systems: Quantum and stochastical aspects,’’edited by W. Gans, A. Blumen, and A. Amann~Plenum,
London, 1991!.

44J. Hertle and R. Honegger, ‘‘Limiting Gibbs states and dynamics for thermal photons,’’ J. Math. Phys.33, 143–151
~1992!.

45J. Manuceau and A. Verbeure, ‘‘Quasi-free states of the C.C.R.—Algebra and Bogoliubov transformations,’’ Commun.
Math. Phys.9, 293–302~1968!; R. Honegger, ‘‘Decomposition of positive sesquilinear forms and the central decompo-
sition of gauge-invariant quasi-free states on the Weyl–algebra,’’ Z. Naturforsch. a45, 17–28~1990!.
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On stochastic diffusion equations and stochastic Burgers’
equations

A. Truman and H. Z. Zhao
Department of Mathematics, University of Wales Swansea, Singleton Park,
Swansea SA2 8PP, United Kingdom

~Received 26 December 1994; accepted for publication 7 September 1995!

In this paper we construct a strong solution for the stochastic Hamilton Jacobi
equation by using stochastic classical mechanics before the caustics. We thereby
obtain the viscosity solution for a certain class of inviscid stochastic Burgers’
equations. This viscosity solution is not continuous beyond the caustics of the
corresponding Hamilton Jacobi equation. The Hopf–Cole transformation is used to
identify the stochastic heat equation and the viscous stochastic Burgers’ equation.
The exact solutions for the above two equations are given in terms of the stochastic
Hamilton Jacobi function under a no-caustic condition. We construct the heat ker-
nel for the stochastic heat equation for zero potentials in hyperbolic space and for
harmonic oscillator potentials in Euclidean space thereby obtaining the stochastic
Mehler formula. ©1996 American Institute of Physics.@S0022-2488~96!00401-8#

I. INTRODUCTION

Inspired by Maslov’s quasiclassical asymptotics of quantum mechanics,1 Truman,2 Elworthy
and Truman3–5 developed the path-space Hamilton Jacobi theory~elementary formula method or
semiclassical analysis! in order to treat the deterministic heat equation~and Schro¨dinger equation!
to get quasiclassical expansions for their solutions. It was proved that before the caustic time the
Hamilton Jacobi equation has aC1,2 solution which gives the exact solution of the diffusion
equation ~and Schro¨dinger equation! geared to small time asymptotics. From Varadhan’s or
Wentzell–Freidlin’s large deviation theories~Varadhan,6 Freidlin and Wentzell7!, we only know
that the Hamilton Jacobi function gives the leading term. The new method resulted in the discov-
ery of a new ‘‘Brownian Riemannian’’ bridge process on manifolds and an elegant new version of
the Feynman–Kac formula in curved space geared to simplifying small-time and small-\ asymp-
totics. The same methods have been applied to traveling waves for nonlinear reaction diffusion
equations in Elworthy, Truman, and Zhao.8 A generalization of this Brownian Riemannian bridge
process has been obtained in Watling.9 Quite recently we developed the corresponding stochastic
Hamilton Jacobi theory in Truman and Zhao.10 Using these results, certain stochastic partial
differential equations have been solved explicitly and heat kernels and small time asymptotics
have been obtained. The stochastic Hamilton Jacobi theory is the main tool used to obtain the
results in the present paper.

In this paper we first construct a strong solution for the stochastic Hamilton Jacobi equation
and examine the stochastic heat equation with Stratonovich white noise in time. As long as the
map defined by the stochastic Hamiltonian system is a diffeomorphism on the configuration space
the stochastic Hamilton Jacobi equation has a strong solution. Here we simplify the Feynman–Kac
integral for the solution of the stochastic heat equation and get a rigorous semiclassical represen-
tation by changing measures using the stochastic Hamilton Jacobi theory. As applications, we take
the limits m→0 to get WKB expansions for the solutions. We continue by considering the heat
kernel on a complete Riemannian manifold with a pole and using the harmonic oscillator potential
we obtain the stochastic Mehler formula.

By the well known Hopf–Cole transformation, the stochastic heat equation is equivalent to the
viscous stochastic Burgers’ equation which is the KPZ model for the dynamics of the interface
introduced by Kardar, Parisi, and Zhang.11 ~See Sec. V for more details.! In the limit m→0 the
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equation is the inviscid stochastic Burgers’ equation which is the gradient of the stochastic Hamil-
ton Jacobi equation. Using the logarithmic transformation and the stochastic Hamilton Jacobi
theory, we get a rigorous formula relating the solutions for the viscous stochastic Burgers’ equa-
tion and inviscid stochastic Burgers’ equation before the caustic time of the corresponding sto-
chastic classical mechanics. We identify the inviscid limit and semiclassical limit under the no-
caustics condition. Beyond the caustics we show the solution of the inviscid Burgers’ equation is
discontinuous. For certain types of equations we prove the existence and uniqueness of the vis-
cosity solution and generalize Wentzell–Freidlin’s large deviation theory from deterministic heat
equations to stochastic ones as an easy consequence of our theory. Some examples of random
shock waves beyond the caustics are given. Needless to say, the occurrence of caustics for the heat
equation leads to the appearance of shock waves for the corresponding inviscid Burgers’ equation.
Indeed a classification of the caustics could lead to a classification of shock waves~Arnold12!.

In this paper we restrict the Stratonovich white noise term to be white noise in time. We are
currently investigating whether our treatment can be generalized to include white noise in space
and the~much more difficult! white noise in space–time. The method can clearly be extended to
include random initial data but we do not do so here because of restrictions on the length of the
paper.

II. THE STOCHASTIC HAMILTON JACOBI EQUATIONS AND STOCHASTIC DIFFUSION
EQUATIONS

~1! Let M be an n-dimensional Riemannian manifold. ForcPC1,2([0,1`)3M ,R),
S0PC2(M ,R) and kPC1,2([0,1`)3M ,Rm) and anm-dimensional Brownian motionws on
probability space~V,F t ,P!, defineFs :M3V→M by the following stochastic mechanical sys-
tem for eachxPM :

H dḞs~x!52“c„s,Fs~x!…ds2“^k„s,Fs~x!…,dws&
Ḟ0~x!5“S0~x!, F0~x!5x

. ~2.1!

Here^•,•& denotes the inner product inRm. For a mechanical system without noise setk[0. This
shows thatc is a potential energy function.

First we prove a diffeomorphism result:
Proposition 2.1: If M is compact or if M is complete, “c, “2c, “k, “2k, “S0, “

2S0 and the
curvature tensor R of the manifold M are all bounded, then there exists T~v!.0 a.s. such that
Fs(v):M→M is a diffeomorphism for0<s<T~v! for a.e.vPV.

Proof: Integrating Eq.~2.1! we obtain

Ḟs~x!5“S0~x!2E
0

s

“c„s,Fs~x!…ds2E
0

s

“^k„s,Fs~x!…,dws&.

It follows that Ḟs(x) is boundedP-a.s. forsP[0,T* ] for any fixed T*.0. To investigate the
gradients ofFs , for vPTxM andq:(21,1)→M with q(0)5x and q̇(0)5v, we have

d
]

]s

]

]s8
Fs„q~s8!…5

D

]s8
d

]

]s
Fs„q~s8!…1RH ]

]s
Fs„q~s8!…,

]

]s8
Fs„q~s8!…J Ḟs„q~s8!…ds.

Taking s850 and from Eq.~2.1! again we have

d
]

]s
TxFs~v !5R„Ḟs~x!,TxFs~v !…Ḟs~x!ds2“

2cs„Fs~x!…TxFs~v !ds

2“

2^ks„Fs~x!…,dws&TxFs~v !
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with TxF0(v)5I andTxḞ0(v)5“

2S0(x). Note that the above equation forTxFs(v) is a per-
turbed linear one with some perturbation,R„Ḟs(x),TxFs(v)…Ḟs(x) which is boundedP-a.s.
becauseḞs is boundedP-a.s. Therefore, the solutionTxFs(v) is boundedP-a.s. forsP[0,T* ] for
any fixedT*.0. Integration of the above equation gives a semimartingale

TxF t~v !5I1“

2S0~x!t1E
0

tE
0

s

R„Ḟs~x!,TxFs~v !…Ḟs~x!ds ds

2E
0

tE
0

s

“

2cs„Fs~x!…TxFs~v !ds ds2E
0

tE
0

s

“

2^ks„Fs~x!…,dws&TxFs~v !ds.

It is clear now that there existsT~v!.0 ~let T,T* if necessary! such that for 0<t<T~v!, the ma-
trix norm i“2S0(x)t1*0

t *0
sR„Ḟs(x),TxFs(v)…Ḟs(x)ds ds2*0

t *0
s
“

2cs„Fs(x)…TxFs(v)ds ds
2*0

t *0
s
“

2^ks„Fs(x)…,dws&TxFs(v)dsi,1 for a.e.vPV. By a similar argument to the one in
Elworthy and Truman4 we know for 0<t<T~v!, TxF t(v)~v! is nonsingular. The diffeomorphism
follows from the global inverse function theorem.~See, Ref. 4 for example.! j

For t>0, yPM define S̃:[0,1`)3M→R by the following nonanticipating Itoˆ stochastic
integral:

S̃t~y,v!5
1

2 E
0

t

uḞs~y!u2ds1S0~y!2E
0

t

c„s,Fs~y!…ds2E
0

t

^k„s,Fs~y!…,dws&. ~2.2!

We assume a no-caustic condition: there existsT~v!.0 a.s. such that for 0<s<T~v!,
Fs(v):M→M is a diffeomorphism for a.e.vPV. This is always true provided the conditions in
Proposition 2.1 are satisfied. With this assumption we defineSt(v):M→R1 for a.e.vPV and
0<t<T~v! by

St~x!5S̃t„F t
21~x!…. ~2.3!

We proved the following theorem in Truman and Zhao:10

Theorem 2.1 „Truman and Zhao10…: ~i! Let F be defined byEq. ~2.1! and satisfy the
no-caustic condition for0<t<T~v! and St(x) be defined byEq. ~2.3! for a.e.vPV. Then for any
0<t<T~v!, xPM for a.e.vPV:

Ḟt~x!5“St„F t~x!…. ~2.4!

~ii ! For any 0<t<T~v!, xPM for a.e.vPV, S satisfies the following stochastic Hamilton
Jacobi equation:

dSt~x!1@ 1
2i“St~x!i21c~ t,x!#dt1^k~ t,x!,dwt&50. ~2.5!

Note thatS(t,x) is continuous with respect tot andC2 with respect tox for 0<t<T~v!. We
call S(t,x) a strong solution of the stochastic Hamilton Jacobi equation~2.5!. Another useful
identity is the following continuity equation:

Theorem 2.2:Definef t(v):M→R byf(t,x)5udetTxF t
21u ~using the Riemannian metric of

M ! for any0<t<T~v! for a.e.vPV. Thenf satisfies the continuity equation

]f

]t
~ t,x!1div„f~ t,x!“S~ t,x!…50. ~2.6!

Proof: Take anyC` function f :M→R with compact support. Integrating by parts,
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E
M
div„f~ t,2 !“S~ t,2 !…~x! f ~x!dx52E

M
f~ t,x!^“S~ t,x!,“ f ~x!&dx

52E
M

^“S„t,F t~x!…,“ f „F t~x!…&dx

52E
M
d f„Ḟt~x!…dx52

d

dt EM f „F t~x!…dx

52
d

dt EM f ~x!f~ t,x!dx

52E
M
f ~x!

]

]t
f~ t,x!dx

using Eq.~2.4!. As f is an arbitraryC`(M ,R) function then the continuity equation follows.j
~2! Consider the following stochastic diffusion equation:

H dut
m~x!5F12 m2Dut

m~x!1
1

m2 c~ t,x!ut
m~x!Gdt1 1

m2 ut
m~x!^k~ t,x!,]wt&

u0
m~x!5T0~x!expH 2

S0~x!

m2 J , ~2.7!

where xPM , an n-dimensional Riemannian manifold andD its Laplace–Beltrami operator,
cPC1,2(R13M ,R1), kPC1,2(R13M ,Rm) andwt anm-dimensional Brownian motion,] being
the Stratonovich derivative. GivenT0 :M→R1 a bounded measurable function andS0 :M→R1 a
C2 function, letut

m(x) denote the solution of Eq.~2.7!. We do not treat the existence theory of the
solution for the stochastic diffusion equation here. For this we refer the readers to Flandoli.13 In
the following we always suppose the solution to Eq.~2.7! exists and is regular. Clearly the solution
is positive ifT0.0 and in this case for given mild conditions onc andk there is a unique positive
solution to Eq.~2.7!.

For suchcPC1,2([0,1`)3M ,R) andkPC1,2([0,1`)3M ,R) andS0PC2(M ,R), let St(x)
be defined by Eq.~2.3! for 0<t<T~v! for a.e.vPV if the mapF t :M→M satisfies the no-caustic
condition for 0<t<T~v! in configuration spaceM for a.e.vPV.

Here we use some of the results of Eells and Elworthy~Elworthy14!. LetP:O(M )→M be the
orthonormal frame bundle ofM . The Levi-Civita connection ofM determines a map
x:O(M )3Rn→TO(M ) into the tangent space toO(M ), which trivializes the horizontal tangent
bundle ofM . Let Ãt :O(M )→TO(M ) be its horizontal lift: soTP„Ãt~U!…5At„P~U!…, 0<t<t,
UPO(M ), whereTP:TO(M )→TM is the derivative map ofP.

For x0PM take U0PP21~x0! and consider the Stratonovich stochastic equation for
U:[0,jA)3V̂→O(M ) with U~0,v̂!5U0, 0<s<t:

dUs
t,m5mx~Us

t,m!•dBs1Ãs
t ~Us

t,m!ds, ~2.8!

whereBs is ann-dimensional Brownian motion defined on the probability space~V̂,F̂ ,P̂!. Define
F̂ s 5 s$Bs1

:0 < s1 < s%. The solutionUs
t,m with explosion time 0,jA<1` for all v̂PV̂ is F̂ s

measurable. Finally we defineXs
t,m onM by Xs

t,m5P~Us
t,m!. Let $Bs

t,m :0<s<t% be the solution of
Eq. ~2.8! with A[0. Note thatBs

t,m, Xs
t,mPF̂ s .

Given the initial conditionu0
m(x) for Eq. ~2.7!, then by the Feynman–Kac formula we have
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ut
m~x!5ÊT0~Bt

t,m!expH 2
1

m2 S0~Bt
t,m!1

1

m2 E
0

t

c~ t2s,Bs
t,m!ds1

1

m2 E
0

t

^k~ t2s,Bs
t,m!,dwt2s&J .

~2.9!

Given a driftAs
t , we have a solutionXs

t to Eq. ~2.8!. If Xs
t is nonexplosive and the stochastic

integral *0
t ^k„t2s,Xs

t,m(x)…,dwt2s& is well defined in the Itoˆ sense, then we can use the
Maruyama–Girsanov–Cameron–Martin formula to give

ut
m~x!5ÊT0„Xt

t,m~x!…expH 2
1

m2 S0„Xt
t,m~x!…1

1

m2 E
0

t

c„t2s,Xs
t,m~x!…ds

1
1

m2 E
0

t

^k„t2s,Xs
t,m~x!…,dwt2s&JM t

m , ~2.10!

where

M t
m5expH 2

1

m E
0

t

^As
t
„Xs

t,m~x!…,Us
t,mdBs&2

1

2m2 E
0

t

iAs
t
„Xs

t,m~x!…i2dsJ . ~2.11!

On the other hand if we chooseAs
t5“Ys

t for some suitableYs
t :0<s<t, then Itô’s formula yields

Yt„Xt
t,m~x!…2Y0~x!5E

0

t

$^“Ys„Xs
t,m~x!…,mUs

t,m dBs&1@ 1
2m

2DYs„Xs
t,m~x!…

1^“Ys„Xs
t,m~x!…,As„Xs

t,m~x!…&#ds1dYs„Xs
t,m~x!…%. ~2.12!

Substituting*0
t ^“Ys„Xs

t,m(x)…,Us
t,m dBs& in Eq. ~2.11! by solving for*0

t ^“Ys„Xs
t,m(x)…,Us

t,m dBs&
in Eq. ~2.12! we get

M t
m5expH 1

m2 ~Y0~x!2Yt„Xt
t,m~x!…!1

1

2 E
0

t

DYs„Xs
t,m~x!…ds

1
1

m2 E
0

tS dYs„Xs
t,m~x!…1

1

2
iAs

t
„Xs

t,m~x!…i2dsD J . ~2.13!

~3! Denotews* 5 wt2s andF s* to be the enlargement of the filtration$F s
0%, where

F s
05s$wr* :r<s%. ~2.14!

Thenwt2s 5 ws* is F s* measurable andF s1
* ,F s2

* if s1<s2 . See Rogers and Williams15 for the

filtration F s* .
If we takeYs52St2s and if“St2s is F s* measurable for 0<s<t for fixed t, then we have

a F s* measurable solutionXs
t,m(x) to Eq. ~2.8!. Then we have the following theorem:

Theorem 2.3: Assume cPC1,2([0,1`)3M ,R1), kPC1,2([0,1`)3M ,Rm) and
S0PC2(M ,R) and T0 :M→R1 bounded and measurable, wt is an m-dimensional Brownian mo-
tion on probability space~V,F ,P!. Let the map defined by Eq. (2.1) satisfy the no-caustic condi-
tion for 0<t<T(v) for a.e.vPV and let St(x) be the Hamilton Jacobi function defined by Eqs.
(2.2) and (2.3) and Xs

t,m(x) be the Markov process defined by Eq. (2.8) with Ys52St2s . If
Xs
t,m(x) is F s* measurable for fixed t and nonexplosive, then for0<t<T(v) for a.e.vPV,
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ut
m~x!5expH 2

St~x!

m2 J ÊT0„Xt
t,m~x!…expH 2

1

2 E
0

t

DSt2s„Xs
t,m~x!…dsJ . ~2.15!

Proof: Taking Ys52St2s , as long asXs
t,m(x) is F s* measurable and nonexplosive for

0<s<t for any fixedt, from Eqs.~2.10! and ~2.13! we have

ut
m~x!5ÊT0„Xt

t,m~x!…expH 2
1

m2 S0„Xt
t,m~x!…1

1

m2 E
0

t

c„t2s,Xs
t,m~x!…ds

1
1

m2 E
0

t

^k„t2s,Xs
t,m~x!…,dwt2s&J

3expH 1

m2 $2St~x!1S0„Xt
t,m~x!…%2

1

2 E
0

t

DSt2s„Xs
t,m~x!…ds

1
1

m2E
0

tS 2dSt2s„Xs
t,m~x!…1

1

2
i“St2s„Xs

t,m~x!…i2dsD J .
From the stochastic Hamilton–Jacobi equation, i.e.,

2dSt2s„Xs
t,m~x!…1$ 1

2 i“St2s„Xs
t,m~x!…i21c„t2s,Xs

t,m~x!…%ds1^k„t2s,Xs
t,m~x!…,dwt2s&50,

formula ~2.15! follows. j

Remark 2.1:For m51, we get Theorem 2.1 in Truman and Zhao.10

From Theorem 2.2 we have

2DS~ t,x!5
]

]t
log f~ t,x!1^“ log f~ t,x!,“S~ t,x!&. ~2.16!

In particular we obtain

2DS„t2s,zs
t ~x!…52

]

]s
log f„t2s,zs

t ~x!…, ~2.17!

wherezs
t (x)5F t2s„F t

21(x)…. By Eq. ~2.4! we have

]

]s
zs
t ~x!52“St2s„zs

t ~x!…. ~2.18!

For eachvPV, if “St2s is bounded then asm→0, Xs
t,m(x)→zs

t (x) in P̂ probability. Therefore,
applying Lebesgue’s dominated convergence theorem to Eq.~2.15! we have

lim
m→0

expH St~x!

m2 J utm~x!5T0„zt
t~x!…expH 2

1

2 E
0

t

DSt2s„zs
t ~x!…dsJ

for eachvPV. The following theorem follows from Eq.~2.17!.
Theorem 2.4:Assume all the conditions in Theorem2.3 and, for a.e.vPV, “S is bounded

andDS is bounded from below for0<t<T(v),xPM , and T0 is continuous. Then for a.e.vPV,
0<t<T(v):

lim
m→0

expH St~x!

m2 J utm~x!5T0„F t
21~x!…Af t~x!. ~2.19!
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Hereft(x)5udetTxF t
21u

For 0<t<T(v), let

c~ t,x!5T0„F t
21~x!…Af t~x!. ~2.20!

Then if T0 is positive andC1 we have the continuity equation forct(x). It turns out that

]

]t
log c t~x!52

1

2
DSt~x!2^“ log c t~x!,“St~x!&. ~2.21!

Now takeY(s,a)52S(t2s,a)1m2 log ct2s(a) and letXs
t,m(x) be the solution of Eq.~2.8!

for Y. NoteXs is nonexplosive if“S and“ log c are boundedP-a.s. By Eq.~2.13! we calculate
the martingaleM t

m:

M t
m5expH 1

m2 @2St~x!1m2 log c t~x!1S0„Xt
t,m~x!…2m2 log c0„Xt

t,m~x!…#

2
1

2 E
0

t

DSt2s„Xs
t,m~x!…ds1

1

2 E
0

t

m2D log c t2s„Xs
t,m~x!…ds1

1

m2 E
0

tF2dSt2s„Xs
t,m~x!…

1S m2
]

]s
log c t2s„Xs

t,m~x!…1
1

2
i2“St2s„Xs

t,m~x!…1m2
“ log c t2s„Xs

t,m~x!…i2D dsG J
5expH 2

St~x!

m2 J c t~x!expH 1

m2 S0„Xt
t,m~x!…2 log c0„Xt

t,m~x!…2
1

2 E
0

t

DSt2s„Xs
t,m~x!…ds

1
1

2
m2E

0

t

c t2s
21

„Xs
t,m~x!…Dc t2s„Xs

t,m~x!…ds2
1

2 E
0

t

m2i“ log c t2s„Xs
t,m~x!…i2ds

1
1

m2 E
0

t H 2dSt2s„Xs
t,m~x!…1

1

2
i“St2s„Xs

t,m~x!…i2dsJ 1E
0

tF ]

]s
log c t2s„Xs

t,m~x!…

2^“St2s„Xs
t,m~x!…,“ log$c t2s„Xs

t,m~x!…&Gds1 1

2 E
0

t

m2i“ log c t2s„Xs
t,m~x!…i2dsJ .

Therefore by Eqs.~2.21! and ~2.10! and the stochastic Hamilton–Jacobi equation we have the
following formula as long as*0

t ^k„t2s,Xs
t,m(x)…,dwt2s& is well defined.

Theorem 2.5:Assume that c and k and S0 are C
3 with all the conditions of Theorem2.3and

also that“S and“ log ct are bounded andct2s is F s* measurable for any0<s<t and fixed t.
Then for anymÞ0, 0<t<T(v) for a.e.vPV,

ut
m~x!5expH 2

1

m2 St~x!J c t~x!Ê expH 12 m2E
0

t

c t2s
21

„Xs
t,m~x!…Dc t2s„Xs

t,m~x!…dsJ , ~2.22!

where Xs
t,m(x) is defined by Eq.~2.8! with Ys52St2s1m2 log ct2s .

Remark 2.2:For k[0, we get Formula B of Elworthy and Truman.5

As m→0, Xs
t,m(x) converges tozs

t (x) in P̂ probability for eachvPV. As long asc21Dc is
bounded we can apply Lebesgue’s dominated convergence theorem and the Taylor expansion
theorem to give the following post-WKB expansion:

Theorem 2.6: Assume all the conditions of Theorem2.5 and c21Dc is bounded for all
0<t<T(v) for a.e.vPV and xPM . Then for sufficiently smallmÞ0, 0<t<T(v) for a.e.vPV:
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ut
m~x!5expH 2

1

m2 St~x!J c t~x!H 11
1

2
m2E

0

t

c t2s
21

„zs
t ~x!…Dc t2s„zs

t ~x!…ds1+~m2!J .
~2.23!

Remark 2.3:As long as the stochastic integral*0
t ^k(t2s,Xs

t,m),dwt2s& is well defined in Itoˆ’s
sense, Theorems 2.3–2.6 are still true. In most of the situations, this condition is satisfied.

III. THE HEAT KERNEL

~1! Let M be ann-dimensional Riemannian manifold, with global normal coordinates and a
Riemannian metricr ~•,•!. Consider the following stochastic heat equation:

dut~x!5@ 1
2Dut~x!1c~ t,x!ut~x!#dt1ut~x!~^g~ t !,]wt&1^x,h]wt&!, ~3.1!

where xPM , D is a Laplace Beltrami operator,wt is an m-dimensional Brownian motion,
h :Rm→Rn is a linear map,gPC1([0,`),Rm) is bounded. Letpt

l(x,y) be the solution of Eq.~3.1!
with the initial condition

p0
l~x,y!5

1

~2pl!n/2
expH 2

r 2~x,y!

2l J . ~3.2!

Then the heat kernelpt(x,y) of Eq. ~3.1! is given by

pt~x,y!5 lim
l→0

pt
l~x,y!. ~3.3!

SupposeyPM is a pole forM so that expy :TyM→M is a C` diffeomorphism. Denote
x5expy(v). Therefore we have a global system of normal coordinates fromy in which the
geodesics fromy are represented as straight lines from the origin. Letuy(v) be the Jacobian
determinant of expy at v ~Ruses’ invariant!: uy(v)5udetM Tv expyu, where detM indicates that the
inner product ofTyM andT expy(v)M are used to define the determinant. We shall often writeu
for uy .

From now on let the stochastic processXs
t,l be defined in our normal coordinates by Eq.~2.8!

where we takem51 with

As
t,l~x!5hwt2s2

v1*0
t2shws ds

l1t2s
2
1

2
“ log uS v1E

0

t2s

hws ds D . ~3.4!

Let js
t,l5vs

t,l1*0
t2shws ds. Then from Eq.~2.8! j s

t,l satisfies an equation which does not
include the stochastic processw except for the initial conditionj0

t,l5v01*0
t hws ds. Thus we

can writejs
t,l5Fs

t,l(v01*0
t hws ds) for some functionalFs

t,l which is independent ofw. Recall
vs
t,l5js

t,l2*0
t2shws ds5Fs

t,l(v01*0
t hws ds)2*0

t hws ds1* t2s
t hws ds. Thus the stochas-

tic integral*0
t ^Xs

t,l ,h dwt2s& is well defined in Itoˆ’s sense.
Lemma 3.1:As l→0, $Xs

t,l :0<s<t% converges in law (P̂) to the process$Xs
t (x):0<s<t%

which is sample continuous, agrees withXs
t,0 for 0<s,t andXt

t(x)5y.
Proof: As for 0<s,t, asl→0, As

t,l→Zs
t where

Zs
t5hwt2s2

vs1*0
t2shws ds

t2s
2
1

2
“ log uS vs1E

0

t2s

hws ds D , 0<s,t. ~3.5!

It follows from Sec. 4 Chap. VIII and Theorem 8C of Chap. VII of Elworthy14 @that asl→0 so
Xs
t,l converges inP̂ probability for 0<s,t, to a standard Brownian motionXs

t,0 with a drift Zs
t .

Note thatZs
t as well asAs

t,l depends on the Brownian motionws on the probability space
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~V,F ,P!. However this does not affect our argument. To see what happens at timet define
r s :M→R by r s(v)5r (v1*0

t2shws ds,y). Then r s~2! is C2 on M2$y% while, if n>2, and
xÞy, with P̂ probability oneXs

t,l avoidsy for 0<s,t as doesXs
t,0(x) for 0<s,t. Therefore by

Itô’s formula, for 0<s,t,

r s~vs
t !5r 0~x!1E

0

s

drs~Us dBs!1E
0

s

drs Zs
t ~vs

t !ds1
1

2 E
0

s

Dr s~vs
t !ds1E

0

s ]r s

]s
~vs

t !ds.

~3.6!

We see from Elworthy14 that

Dr5
n21

r
1

]

]r
log u. ~3.7!

Then it follows that

1

2
Dr s~vs!5

1

2

n21

r ~vs
t 1*0

t2shws ds!
1
1

2

]

]r
log uS vs

t 1E
0

t2s

hws ds D . ~3.8!

In our coordinates

“r s~v !5
v1*0

t2shws ds

uv1*0
t2shws dsu

.

Therefore,

drs Zs
t ~vs!5drs hwt2s2

r ~vs
t 1*0

t2shws ds!

t2s
2
1

2

]

]r
log uS vs

t 1E
0

t2s

hws ds D .
~3.9!

Therefore if we letr s5r „vs
t (x)1*0

t2shws ds… and B̃s5*0
sdrs~Us dBs!, and note the cancella-

tion of the termsdrs hwt2s and]r s/]s(vs
t ), then

r s5r 0~x!1B̃s1
1

2
~n21!E

0

s ds

r s
2E

0

s r s

t2s
ds. ~3.10!

It turns out from Ikeda and Watanabe16 that with P̂ probability one,r s converges to 0 ass→t. That
is to sayXs

t (x)→y ass→t. j

We call $Xs
t (x):0<s<t% a stochastic Brownian Riemannian bridge fromx to y in time t on

M .
~2! Now if f :M→R is smooth withf (x)5F[ r (x)] for some smoothF:(0,1`)→R, then by

Elworthy,17

D f ~x!5
]2F

]r 2
1S n21

r ~x!
1

]

]r
„log u~x!…D ]F

]r
. ~3.11!

In particular

2Dr 252222~n21!22r
]

]r
log u522n22r

]

]r
log u. ~3.12!

Moreover
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2 1
2 D log u5u1/2Du2~1/2!2u“ log u1/2u2. ~3.13!

We give the heat kernel representation theorem in terms of the stochastic Brownian Riemann-
ian bridge as follows:

Theorem 3.1: Suppose y is a pole on the n-dimensional Riemannian manifold M. If
u1/2Du21/2 and cPC1,2(R3M ,R) are bounded above andgPC1(R,Rm) is bounded, then the heat
kernel of Eq. (3.1) on the Riemannian manifold M is given by

pt~x,y!5
1

~2pt !n/2
u2~1/2!S exp„exp21~x!1E

0

t

hws ds…D expH E
0

t

^g~s!,dws&1
1

2 E
0

t

uhwsu2ds

1^x,hwt&2
r 2$exp„exp21~x!1*0

t hws ds…,y%

2t J
•Ê expH 12 E

0

t

~u1/2Du2~1/2!!S expS vst1E
0

t2s

hws ds D D ds1E
0

t

c~ t2s,Xs
t !dsJ ,

~3.14!

where Xs
t5exp(vs

t ) is the stochastic Brownian Riemannian bridge from x to y at time t on M.
Proof: DefineSt

l(x) by

St
l~x!52E

0

t

^g~s!,dws&2
1

2 E
0

t

uhwsu2ds2^x,hwt&1
r 2„exp~v1*0

t hws ds!,y…

2~l1t !
.

~3.15!

TakeYs
t,l(x)52St2s

l (x)2 1
2 log u(v1*0

t2shws ds). ThenAs
t,l is defined by Eq.~3.4! and the

stochastic processXs
t,l P F s* . Thus we can use Eq.~2.13! to calculateM t

l as follows:

M t
l5expH 2St

l~x!2
1

2
log uS v1E

0

t

hws dsD 1
r 2~Xt

t,l ,y!

2l
1
1

2
log u~Xt

t,l!

1
1

2 E
0

tF2
Dr 2~vs

t,l1*0
t2shws ds!

2~l1t2s!
2
1

2
D log uS vst,l1E

0

t2s

hws ds D Gds
1E

0

tF2dSt2s~Xs
t,l!1S“ log u2~1/2!S vst,l1E

0

t2s

hws ds D ~2hwt2s!

1
1

2
Ihwt2s2

r ~vs
t,l1*0

t2shws ds!“r ~vs
t,l1*0

t2shws ds!

l1t2s
I 2

1
1

2 I“ log u2~1/2!S vst,l1E
0

t2s

hws ds D I 21“ log u2~1/2!S vst,l1E
0

t2s

hws ds Dhwt2s

1
1

2

r ~vs
t,l1*0

t2shws ds!“r ~vs
t,l1*0

t2shws ds!

l1t2s

•“ log uS vst,l1E
0

t2s

hws ds D D dsG J .
The first cancellation comes out from“ log u2~1/2!(vs

t,l1*0
t2shws ds)(2hwt2s)

1“ log u2~1/2!(vs
t,l1*0

t2shws ds)hwt2s[0. Then by Eqs.~3.12! and ~3.13! we have
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M t5exp$2St
l~x!%u2~1/2!S v1E

0

t

hws dsD •expH r 2~Xt
t,l ,y!

2l
1
1

2
log u~Xt

t,l!

1
1

2 E
0

tF2
n

l1t2s
2
r ~vs

t,l1*0
t2shws ds!

l1t2s
•

]

]r
log uS vst,l1E

0

t2s

hws ds D
1u1/2S vst,l1E

0

t2s

hws ds DDu2~1/2!S vst,l1E
0

t2s

hws ds D
2U“ log u1/2S vst,l1E

0

t2s

hws ds D U2Gds1E
0

tF2dSt2s~Xs
t,l!

1S 12 i“St2s~Xs
t,l!i21

1

2 I“ log u2~1/2!S vst,l1E
0

t2s

hws ds D I 2
1
1

2

r ~vs
t,l1*0

t2shws ds!

l1t2s
•

]

]r
log uS vst,l1E

0

t2s

hws ds D D dsG J .
Thus after the cancellations we have

M t5exp$2St
l~x!%u2~1/2!S v1E

0

t

hws dsD S l

l1t D n/2 expH r 2~Xt
t,l ,y!

2l
1
1

2
log u~Xt

t,l!

1
1

2 E
0

t

u1/2S vst,l1E
0

t2s

hws ds DDu2~1/2!S vst,l1E
0

t2s

hws ds D ds
1E

0

tF2dSt2s~Xs
t,l!1

1

2
i“St2s~Xs

t,l!i2dsG J . ~3.16!

Now by the definition ofpt
l(x,y) and Eq.~2.10!,

pt
l~x,y!5

1

~2pl!n/2
Ê expH 2

r 2~Xt
t,l ,y!

2l
1E

0

t

c~ t2s,Xs
t,l!ds

1E
0

t

^g~ t2s!,dwt2s&1E
0

t

^Xs
t,l ,h dwt2s&J •M t . ~3.17!

From Eq.~3.16! and the fact thatSl satisfies the stochastic Hamilton Jacobi equation~Truman and
Zhao10!:

2dSt2s~Xs
t,l!1 1

2i“St2s~Xs
t,l!i2ds1^g~ t2s!,dwt2s&1^Xs

t,l ,h dwt2s&[0, ~3.18!

it turns out that
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pt
l~x,y!5

1

„2p~ t1l!…n/2
u2~1/2!S v1E

0

t

hws dsD expH E
0

t

^g~ t2s!,dwt2s&1
1

2 E
0

t

uhwsu2ds

1^x,hwt&2
r 2„exp~v1*0

t hws ds!,y…

2~l1t ! J
•Ê expH 12 E

0

t

u1/2S vst,l1E
0

t2s

hws ds DDu2~1/2!S vst,l1E
0

t2s

hws ds D ds
1E

0

t

c~ t2s,Xs
t,l!ds1

1

2
log u~Xt

t,l!J . ~3.19!

The theorem follows by taking the limitl→0 in Eq. ~3.19! and applying Lebesgue’s dominated
convergence theorem and Lemma 3.1. j

With the representation theorem in our hands, using the iterated logarithm law of Brownian
motion, the small time asymptotics is a straightforward corollary of Theorem 3.1.

Corollary 3.1:Assume all the conditions of Theorem 3.1. Then forx,y in any compact subset
of M as t→0, the heat kernelpt(x,y) of Eq. ~3.1! satisfies

pt~x,y!5
1

~2pt !n/2
expH 2

r 2~x,y!

2t J H 11+S S t log 1t D
1/2D J P2a.s. ~3.20!

If M5Rn, thenu[1, the following theorem in Truman and Zhao10 follows from Theorem 3.1.
Theorem 3.2 „Truman and Zhao10…: Consider Eq. (3.1) for the case M5Rn. Assume

cPC1,2([0,`)3Rn,R1) and gPC1([0,`),Rm) with c bounded above andg bounded. Then the
heat kernel is given by

pt~x,y!5
1

~2pt !n/2
expH E

0

t

^g~s!,dws&1
1

2 E
0

t

uhwsu2ds1^x,hwt&2
r 2~x1*0

t hws ds,y!

2t J
•Ê expH E

0

t

c~ t2s,Xs
t !dsJ . ~3.21!

Here $Xs
t :0<s<t% is the stochastic semiclassical bridge in Rn from x to y in time t.

If h[0, g[0, Eq.~3.1! is a deterministic equation onM . The Elworthy and Truman5 Theorem
follows from Theorem 3.1.

Theorem 3.3„Elworthy and Truman 5
…: Suppose y is a pole on the Riemannian manifold M.

If u1/2Du2~1/2! and c are bounded, then the heat kernel of Eq. (3.1) forh[0, g[0 on the Rie-
mannian manifold M is given by

pt~x,y!5
1

~2pt !n/2
u2~1/2!~x!expH 2

r 2~x,y!

2t J
3Ê expH 12 E

0

t

u1/2~Xs
t !Du2~1/2!~Xs

t !ds1E
0

t

c~ t2s,Xs
t !dsJ , ~3.22!

where Xs
t is the Brownian Riemannian bridge from x to y at time t on M.

~3! For hyperbolicn-spaceHn with constant sectional curvatures2~1/R2! we have

uy~x!5SRr sinh
r

RD n21
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for r (x)5r (x,y). From Elworthy14 we see that

1

2
u1/2Du2~1/2!52

~n21!2

8R2 1
~n21!~n23!

8 H r222SR2 sinh2S rRD D 21J .
Therefore the heat kernel of Eq.~3.1! on Hn is given by

pt~x,y!5
1

~2pt !n/2

3F r $exp„exp21~x!1*0
t hws ds…,y%

R

1

sinh@r $exp„exp21~x!1*0
t hws ds…,y%/R#

G ~n21!/2

•expH E
0

t

^g~s!,dws&1
1

2 E
0

t

uhwsu2ds1^x,hwt&2
r 2$exp„exp21~x!1*0

t hws ds…,y%

2t

2
~n21!2

8R2 t%•Ê expH ~n21!~n23!

8 E
0

tF r22S expH exp21
„Xs

t ~x!…

1E
0

t2s

hws dsJ ,yD 2SR2 sinh2S r ~exp$exp21
„Xs

t ~x!…1*0
t2shws ds%,y!

R D D 21GdsJ .
~3.23!

Here Xs
t (x) is the stochastic Brownian Riemannian bridge onHn. In particular for hyperbolic

3-spaceH3, we have

pt~x,y!5
1

~2pt !3/2

3
r $exp„exp21~x!1*0

t hws ds…,y%

R

1

sinh@r $exp„exp21~x!1*0
t hws ds…,y%/R#

3expH E
0

t

^g~s!,dws&1
1

2 E
0

t

uhwsu2ds1^x,hwt&2
r 2$exp„exp21~x!1*0

t hws ds…,y%

2t

2
1

2R2 tJ . ~3.24!

IV. THE STOCHASTIC MEHLER FORMULA

~1! Consider the following stochastic harmonic oscillator inR1

H dḞs52a2Fs ds2h dws

F0~x!5x, F0~x!5
x

l
, ~4.1!

wherea,l.0,h>0 are constants, which is Eq.~2.1! in the casec(s,x)5 1
2a

2x2, k(s,x)5hx, and
S0(x)5x2/2l andM5R1. See McKean,18 Markus and Weerasinghe,19 and Albeverioet al.20 for
some important properties of the stochastic harmonic oscillator. Solving Eq.~4.1! we have

Fs~x!5x cosas1
x

la
sin as2

h

a E
0

s

sin a~s2s!dws . ~4.2!
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The mapFs :R
1→R1 satisfies the no caustic condition fors,~1/a!ctg21

„2~1/al!… and the inverse
function is given by

F t
21~x!5

l„ax1h*0
t sin a~ t2s!dws…

al cosat1sin at
for 0,t,

1

a
ctg21S 2

1

al D . ~4.3!

By the definition ofS̃t(x), Eq. ~2.2!, and careful calculations we have

S̃t,l~y!5Fsin 2at4al2 1
cos 2at

2l
2
1

4
a sin 2atGy2

2
h

al
~al cosat1sin at !E

0

t

cosa~ t2s!dws y

1
1

2
h2E

0

t H S E
0

s

cosa~s2s!dwsD 22S E
0

s

sin a~s2s!dwsD 2J ds
1

h2

a E
0

tE
0

s

sin a~s2s!dws dws .

It turns out from the definition ofSt , Eq. ~2.3!,

St,l~x!5S̃t,l@F t
21~x!#5Fsin 2at4al2 1

cos 2at

2l
2
1

4
a sin 2atG l2

„ax1h*0
t sin a~ t2s!dws…

2

~al cosat1sin at !2

2
h

a E
0

t

cosa~ t2s!dwsS ax1hE
0

t

sin a~ t2s!dwsD 1
1

2
h2E

0

t H S E
0

s

cosa~s

2s!dwsD 22S E
0

s

sin a~s2s!dwsD 2J ds1 h2

a E
0

tE
0

s

sin a~s2s!dws dws ~4.4!

for 0,t,~1/a!ctg21@2~1/al!#. It is a very complicated formula. However we can simplify it by
taking the limitl→0 to get an illuminating formula forS:

St~x!5 lim
l→0

St,l~x!5
cosat

2a sin at S ax1hE
0

t

sin a~ t2s!dwsD 22 h

a E
0

t

cosa~ t2s!dws

3S ax1hE
0

t

sin a~ t2s!dwsD 1
1

2
h2E

0

t H S E
0

s

cosa~s2s!dwsD 2
2S E

0

s

sin a~s2s!dwsD 2J ds1 h2

a E
0

tE
0

s

sin a~s2s!dws dws ~4.5!

for t,p/a. NoteTa,l5~1/a!ctg21@2~1/al!# is the caustic time of our stochastic oscillator~4.1!.
Ta5p/a is thel→0 limit of the caustic timeTa,l .

At the moment let us consider the Stratonovich stochastic heat equation with the harmonic
oscillator potential

dut5@ 1
2Dut1

1
2a

2x2ut#dt1hxut]wt . ~4.6!
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Here xPR1. Let pt
l(x) be the solution of Eq.~4.6! with the initial condition p0

l(x)
5 (1/A2pl)exp$ 2 (x2/2l)% andpt(x)5liml→0 pt

l(x). We shall apply Theorem 2.5. Note first
c t,l(x) 5 Aa/2p(al cosat1sinat) by Eqs. ~2.20! and ~4.3! so that “ct2s,l[0 for
0<s<t,Ta,l . Moreover for 0<s<t,Ta,l ,

“St2s,l~x!5Fsin 2a~ t2s!

4al2 1
cos 2a~ t2s!

2l
2
1

4
a sin 2a~ t2s!G

•

2al2
„ax1h*0

t2s sin a~ t2s2s!dws…

„al cosa~ t2s!1sin a~ t2s!…2
2hE

0

t2s

cosa~ t2s2s!dws .

Let js
t,l5Xs

t,l1h/a*0
t2s sina(t2s2s)dws . Then from Eq.~2.8! js

t,l satisfies an equation
which does not include the stochastic processw except for the initial condition
j0
t,l5x1h/a*0

t sina(t2s)dws . Thus we can writejs
t,l5Fs

t,l
„x1h/a*0

t sina(t2s)dws….
Recall Xs

t,l5js
t,l2h/a*0

t2s sina(t2s2s)dws5Fs
t,l
„x1h/a*0

t sina(t2s)dws…2h/a*0
t

3sina(t2s2s)dws1h/a*t2s
t sina(t2s2s)dws . Thush*0

t Xs
t,l dwt2s is well defined in Itoˆ’s

sense for fixedt,Ta,l . Then applying Eq.~2.22! of Theorem 2.5 and Remark 2.3 we have

pt
l~x!5A a

2p~al cosat1sin at !
exp$2St,l~x!%. ~4.7!

It turns out by taking the limitsl→0 in Eq. ~4.7! that
Theorem 4.1:For 0,t,p/a,

pt~x!5A a

2p sin at
expH 2

cosat

2a sin at S ax1hE
0

t

sin a~ t2s!dwsD 2
1

h

a E
0

t

cosa~ t2s!dwsS ax1hE
0

t

sin a~ t2s!dwsD
2
1

2
h2E

0

t H S E
0

s

cosa~s2s!dwsD 22S E
0

s

sin a~s2s!dwsD 2J ds
2

h2

a E
0

tE
0

s

sin a~s2s!dws dwsJ . ~4.8!

And ast→p/a, pt(x)→1`P-a.s. for anyxÞ2h/a*0
t sina(t2s)dws .

Proof: Formula~4.8! follows taking the limitsl→0 in Eq. ~4.7!. The rest of the theorem is
easy to see if we notice that the last three terms in the exp$2% in Eq. ~4.8! remain bounded when
we take the limitt→p/a.

Remark 4.1:For h50, then for 0,t,p/a:

pt~x!5A a

2p sin at
expH 2

a cosat

2 sinat
x2J ~4.9!

which was given in Elworthy, Truman, and Zhao.8

~2! Similarly we consider

H dḞs
15a2Fs

1 ds2h dws

F0
1~x!5x, Ḟ0

1~x!5
x

l

, ~4.10!
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wherea.0, which is Eq.~2.1! in the casec(s,x)52 1
2a

2x2, k(s,x)5hx and S0(x)5x2/2l.
Similarly with (1) we have

Fs
1~x!5x coshas1

x

la
sinhas2

h

a E
0

s

sinha~s2s!dws . ~4.11!

The mapFs
1 :R1→R1 satisfies the no-caustic condition for 0<s,1` and the inverse function is

given by

F t
121

~x!5
l„ax1h*0

t sinha~ t2s!dws…

al coshat1sinhat
. ~4.12!

Similar calculations give

St
1~x!5

coshat

2a sinhat S ax1hE
0

t

sinha~ t2s!dwsD 2
2

h

a E
0

t

cosha~ t2s!dwsS ax1hE
0

t

sinha~ t2s!dwsD
1
1

2
h2E

0

t H S E
0

s

cosha~s2s!dwsD 21S E
0

s

sinha~s2s!dwsD 2J ds
1

h2

a E
0

tE
0

s

sinha~s2s!dws dws . ~4.13!

A quick way to get these formulas is to write Eq.~4.10! asdFs
152(a i )2Fs

1 ds2h dws .
Then Fs

1(x,a)5Fs(x,a i ) and St
1(x,a)5St(x,a i ). Note cos(a is)5coshas and ~1/i !sin(a is)

5sinhas.
Consider the Stratonovich stochastic heat equation with harmonic oscillator potential

dut5@ 1
2Dut2

1
2a

2x2ut#dt1hxut]wt . ~4.14!

HerexPR1. As before we can proveh*0
t Xs

t,ldwt2s is well defined in Itoˆ’s sense for any fixed
t>0. Let qt

l(x) be the solution of Eq.~4.14! with the initial conditionq0
l(x) 5 (1/A2pl)

3exp$2~x2/2l)% andqt(x)5liml→0 qt
l(x). It turns out from Eqs.~4.12! and ~2.22! in Theorem

2.5 and Remark 2.3 that

qt
l~x!5A a

2p~al coshat1sinhat !
exp$2St,l

1 ~x!%. ~4.15!

Here it is enough to knowSt,l
1 (x)→St

1(x) asl→0 since we have writtenSt
1(x) in Eq. ~4.13!. One

can writeSt,l
1 (x) explicitly without any difficulty. Taking the limitl→0 we have

Theorem 4.2:For anyt.0,

qt~x!5A a

2p sinhat
expH 2

coshat

2a sinhat S ax1hE
0

t

sinha~ t2s!dwsD 2
1

h

a E
0

t

cosha~ t2s!dwsS ax1hE
0

t

sinha~ t2s!dwsD
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2
1

2
h2E

0

t H S E
0

s

cosha~s2s!dwsD 21S E
0

s

sinha~s2s!dwsD 2J ds
2

h2

a E
0

tE
0

s

sinha~s2s!dws dwsJ . ~4.16!

Corollary 4.1: For h[0 we get

qt~x!5A a

2p sinhat
expH 2

a coshat

2 sinhat
x2J . ~4.17!

Remark 4.2:Formula ~4.17! is the classical Mehler formula~cf. Berline, Getzler, and
Vergne21!. Therefore we call Eq.~4.16! the stochastic Mehler formula. Note for anyt.0, qt(x) is
well defined.

Remark 4.3:Fora50, Eqs.~4.8! and~4.16! are no longer true. However we have the formulas
given in Sec. III and Truman and Zhao10 instead.

~3! Now we consider the more interesting case: the Itoˆ stochastic heat equation with the
harmonic oscillator potential

dut~x!5@ 1
2Dut~x!1 1

2a
2x2ut#dt1hxut dwt . ~4.18!

For a given initial conditionu0(x) from the Feynman–Kac formula we have

ut~x!5Êu0~Bt
x!expH 12 ~a22h2!E

0

t

~Bs
x!2ds1hE

0

t

Bs
x dwsJ .

HereBs
x5x1Bs , Bs is a one-dimensional Brownian motion in the probability space~V̂,F̂ ,P̂!

with B050 P-a.s. Thereforeut(x) satisfies the following Stratonovich stochastic heat equation:

dut~x!5@ 1
2Dut~x!1 1

2~a22h2!x2ut#dt1hxut]wt . ~4.19!

Let pt
l(x)(I ) denote the solution of Eq.~4.18! with the initial condition p0

l(x)(I )
5 (1/A2pl)exp$ 2 (x2/2l)% andpt(x)(I )5liml→0 pt

l(x)(I ). From the results on the Stratonovich
equation we easily formulate the following theorem:

Theorem 4.3:~i! For uhu,uau, let a1 5 Aa22h2, then for 0,t,p/a1,

pt~x!~ I !5A a1

2p sin a1t
expH 2

cosa1t

2a1 sin a1t
S a1x1hE

0

t

sin a1~ t2s!dwsD 2
1

h

a1
E
0

t

cosa1~ t2s!dwsS a1x1hE
0

t

sin a1~ t2s!dwsD
2
1

2
h2E

0

t H S E
0

s

cosa1~s2s!dwsD 22S E
0

s

sin a1~s2s!dwsD 2J ds
2

h2

a1
E
0

tE
0

s

sin a1~s2s!dws dwsJ . ~4.20!

And ast→p/a1, pt(x)(I )→1` P-a.s. for anyxÞ2(h/a1)*0
t sina1(t2s)dws .

~ii ! For uhu5uau we have
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pt~x!~ I !5
1

A2pt
expH 2

~x1*0
t hws ds!2

2t
1hxwt1

1

2 E
0

t

h2ws
2 dsJ . ~4.21!

~iii ! For uhu.uau, let a2 5 Ah22a2, we have for anyt.0,

pt~x!~ I !5A a2

2p sinha2t
expH 2

cosha2t

2a2 sinha2t
S a2x1hE

0

t

sinha2~ t2s!dwsD 2
1

h

a2
E
0

t

cosha2~ t2s!dwsS a2x1hE
0

t

sinha2~ t2s!dwsD
2
1

2
h2E

0

t H S E
0

s

cosha2~s2s!dwsD 21S E
0

s

sinha2~s2s!dwsD 2J ds
2

h2

a2
E
0

tE
0

s

sinha2~s2s!dws dwsJ . ~4.22!

V. STOCHASTIC BURGERS’ EQUATIONS

~1!As the simplest model for the differential equation of fluid flow, Burgers22,23introduced the
equation~called viscous Burgers’ equation nowadays!

]

]t
vm~ t,x!1vm~ t,x!

]

]x
vm~ t,x!5

1

2
m2

]2

]x2
vm~ t,x!. ~5.1!

The well known logarithm transformation

vm~ t,x!52m2
“ log um~ t,x! ~5.2!

given by Hopf in his pioneering work~Hopf24! on Burgers’ equation transforms the nonlinear
Burgers’ equation into a linear heat equation

]um~ t,x!

]t
5
1

2
m2

]2um~ t,x!

]x2
~5.3!

with the initial conditionum(0,x)5exp$[*0
xvm(0,x)dx/m2] %. Very recently stochastic Burgers’

equations have been studied by Kardar, Parisi, and Zhang,11 Bertini, Cancrini, and Jona-Lasinio,25

Bertini and Cancrini,26Albeverio, Molchanov, and Surgailis,27 Da Prato, Debusche, and Temam,28

Holdenet al.,29,30Oksendal,31 and Newman,32 to name but a few. The KPZ model has been given
and a representation theorem for the solution of the viscous stochastic Burgers’ equation has been
obtained by initial condition and a diffusion process via a stochastic heat equation for which the
solution can be represented by a Feynman–Kac formula. In this section of this paper we consider
the following viscous stochastic Burgers’ equation
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dvm~ t,x!1vm~ t,x!
]

]x
vm~ t,x!dt5

1

2
m2

]2vm~ t,x!

]x2
dt1e1~ t,x!dt1e2~ t,x!dwt , ~5.4!

with the initial condition vm(0,x)5“S0(x) for a certainC2 function S0. Here wt is a one-
dimensional Brownian motion. For simplicity we suppose initially the configuration space isR1.
Assumee1 ,e2PC1,1([0,1`)3R1,R1). Let us also make the transformation~5.2!. Suppose there
exist functions c(t,x) and k(t,x) such that e1(t,x)52(]/]x)c(t,x) and
e2(t,x)52(]/]x)k(t,x). Direct computation using Itoˆ’s formula gives the stochastic heat equa-
tion of the Stratonovich type

dum~ t,x!5F12 m2Dum~ t,x!1
c~ t,x!

m2 um~ t,x!Gdt1 k~ t,x!

m2 um~ t,x!]wt ~5.5!

with the initial conditionum(t,x)5exp$2S0(x)/m
2%.

~2! Consider the related inviscid stochastic Burgers’ equation

dv~ t,x!1v~ t,x!
]

]x
v~ t,x!dt5e1~ t,x!dt1e2~ t,x!dwt ~5.6!

with the initial conditionv(0,x)5“S0(x). Note it can be obtained by lettingm50 in Eq. ~5.4!.
More importantly we note the solutionv(t,x) of Eq. ~5.6! is the gradient of the solutionS(t,x) of
the stochastic Hamilton Jacobi equation

dS~ t,x!1@ 1
2 u“S~ t,x!u21c~ t,x!#dt1k~ t,x!dwt50 ~5.7!

with the initial conditionS(0,x)5S0(x), which was studied in Sec. II.
As before letF be defined by Eq.~2.1!. In our case

H dḞs~x!5e1~s,Fs~x!!ds1e2~s,Fs~x!!dws

Ḟ0~x!5v~0,x!, F0~x!5x
. ~5.8!

Suppose for 0<s<T~v!, Fs :R
1→R1 satisfies the no-caustic condition for a.e.vPV. From Sec.

II we know that for a.e.vPV and 0<t<T~v!, v(t,x)5“S(t,x) is well defined and continuous
with respect tot andC1 with respect tox. Later we will prove thatv(t,x) is not continuous at the
caustic points of the stochastic classical mechanics.

Let us come back to study the viscous stochastic Burgers’ equation under the no-caustic
condition. We always suppose the existence and uniqueness of the regular solution for the viscous
equation as from the existence and uniqueness of the regular solutions of the stochastic heat
equations studied by Flandoli.13 In the following we give the explicit formulas between the
solution of the viscous stochastic Burgers’ equation and the solution of the inviscid one under the
no-caustic condition. LetXs

t,m(x) be the solution of Eq.~2.8! with Y(s,2)52S(t2s,2). That is,

dXs
t,m~x!5m dBs2v t2s~Xs

t,m~x!!ds, X0
t,m~x!5x. ~5.9!

HereBs is a one-dimensional Brownian motion on the probability space~V̂,F̂ ,P̂! from the origin.
Theorem 5.1:Assume all the conditions of Theorem2.3 and the map defined byEq. ~5.8!

satisfies the no-caustic condition for0<t<T~v! for a.e.vPV and S(t,x) is defined byEq. ~2.3!.
Then fora.e.vPV and any0<t<T~v!, the solutionv(t,x) of the inviscid stochastic Burgers’
equation~5.6! exists and is given byv(t,x)5“S(t,x).

Let Xs
t,m(x) be defined byEq. ~5.9!. If Xs

t,m(x) is nonexplosive andF s* measurable then for
any mÞ0, the solutionvm(t,x) (if it exists and is unique) of the viscous stochastic Burger’s
equation~5.4! is given by
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vm~ t,x!5v~ t,x!2m2
“ log ÊexpH 2

1

2 E
0

t ]

]x
v~ t2s,Xs

t,m~x!!dsJ , ~5.10!

for a.e.vPV and any0<t<T~v!.
Proof: Claim v(t,x)5“S(t,x) was already shown. The solutionum(t,x) of Eq. ~5.5! is given

by Eq. ~2.15! whereT051. Therefore,ut
m(t,x).0 for a.e.vPV and 0<t<T~v!. Take the loga-

rithm to Eq. ~2.15! and differentiate it with respect tox. We get Eq. ~5.11! from
vm(t,x)52m2

“ log um(t,x). j

Recallc(t,x)5~udetTxF t
21u!1/2.0 for a.e.vPV and 0<t<T~v!. Instead of Eq.~5.10! now

we letXs
t,m(x) be defined by

H dXst,m~x!5m dBs2v t2s~Xs
t,m~x!!ds1m2

“ log c~ t2s,Xs
t,m~x!!ds

X0
t,m~x!5x

. ~5.11!

If Xs
t,m(x) is F s* measurable and nonexplosive we have the solutionum(t,x) given by Eq.~2.22!

andum(t,x).0 for a.e.vPV and 0<t<T~v!. Take logarithms of Eq.~2.22! and differentiate it
with respect tox. By Eq. ~5.2! we have the following theorem:

Theorem 5.2:Assume all the conditions of Theorem2.5.Then for anymÞ0, a.e.vPV and
0<t<T~v! the solutionvm(t,x) (if it exists and is unique) of the viscous stochastic Burgers’
equation~5.4! is given by

vm~ t,x!5v~ t,x!2m2
“ logc~ t,x!2m2

“ log

ÊexpH 12 m2 E
0

t

c21
„t2s,Xs

t,m~x!…Dc„t2s,Xs
t,m~x!…dsJ , ~5.12!

if Xs
t,m(x) is F s* measurable and nonexplosive, where Xs

t,m~x! is defined by Eq.~5.11!.
Remark 5.1:Theorems 5.1 and 5.2 are true for anymÞ0. Therefore Eqs.~5.10! and~5.12! are

exact solutions rather than asymptotic solutions of the viscous stochastic Burgers’ equation. It
seems that this solution cannot be easily obtained by the Maslov canonical operator method
~Mishchenko, Shatalov, and Sternin33!.

Remark 5.2: It is trivial to get from Theorem 5.2 that for a.e.vPV and
0<t<T(v),vm(t,x)→v(t,x) asm→0 as long as“ log c andc21Dc are bounded. That means
the inviscid limit is the semiclassical limit under the no-caustic condition.

~3! In the following we will prove thatv(t,x), the solution of the inviscid equation~5.6!, is
not continuous at the caustic points of the stochastic classical mechanics. Examples given later
demonstrate shock waves in the presence of the caustics.

By Eq. ~2.4! we have for a.e.vPV and 0<t<T(v):

Ḟt~x!5v~ t,F t~x!!. ~5.13!

Note this is the same as the characteristic equation in a lot of the literature for the deterministic
inviscid Burgers’ equations@of course whene2(t,x)50, Eq. ~5.6! is deterministic# ~see Smoller
34!.

Let t(a) be first time such that there existx1Þx2 ,x1 ,x2PR1 such thatFt(x1)5Ft(x2)5a
andḞt(x1)ÞḞt(x2), i.e., t is a caustic time at pointa.

Theorem 5.3:The functionv(t,x) is discontinuous at~t,a!.
Proof: For anyt,t from Eq.~5.13!, we haveḞ t(x1)5v~t,F t(x1)! andḞ t(x2)5v~t,F t(x2)!.

If v(t,x) is continuous at~t,a! we can take the limitt→t to v~t,F t(x1)! andv~t,F t(x2)!. Thus
limt→t v~t,F t(x1)!5v(t,a)5limt→t v~t,F t(x2)!. It turns out thatḞt(x1)5Ḟt(x2). This is in
contradiction to our hypothesis on~t,a!. The theorem follows. j
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Remark 5.3:If e2[0, one can prove that the assumption that there existx1Þx2 ,x1 ,x2PR1

such thatFt(x1)5Ft(x2) implies Ḟt(x1)ÞḞt(x2) from the uniqueness of the backward deter-
ministic ordinary differential equation. Thereforet(a) is the first time such that there exist
x1Þx2 ,x1 ,x2PR1 such thatFt(x1)5Ft(x2)5a.

Remark 5.4:Apparently this theorem is true for any manifoldM as our configuration space.
If c and k are smooth and bounded, then the stochastic heat equation~5.5! has a classical

solution therefore the viscous stochastic Burgers’ equation~5.4! has a classical solutionvm(t,x).
Therefore we have the following important remark:

Remark 5.5:Beyond the caustics, Eqs.~5.10! and~5.12! can hardly be true as in generalvm is
smooth andv is discontinuous at the caustics by Theorem 5.3. This leads us to pose an open
problem:

Problem:What change of measure should be used to deduce the detailed asymptotics of the
solution beyond the caustics?

The answer to this problem is not clear even in Elworthy and Truman’s deterministic Hamil-
ton Jacobi theory~deterministic here means that the Hamilton Jacobi equation is deterministic!.

~4! In order to understand some of the simplest inviscid stochastic Burgers’ equations beyond
caustics we first give a very simple lemma which transforms a certain class of the stochastic
equations to random equations which are easily handled. For this letg be the solution of the
nonlinear random equation

gt~ t,x!1g~ t,x!gx~ t,x!5 f S t,x2E
0

t

hws ds,gx ,gxx ,...D , ~5.14!

where gx(t,x)5(]/]x)g(t,x), etc. The equation can be treated as a deterministic equation as
*0
t hws ds is a continuous stationary process. All the conclusions on deterministic equations are
still true for Eq.~5.14!. The following lemma can be proved directly by calculations:

Lemma 5.1:The function

v~ t,x!5gS t,x1E
0

t

hws ds D 2hwt ~5.15!

satisfies the following stochastic equation:

dv~ t,x!1v~ t,x!
]

]x
v~ t,x!dt5 f ~ t,x,vx ,vxx ,...!dt2h dwt , v~0,x!5g~0,x!. ~5.16!

Conversely ifv(t,x) is a solution of Eq.~5.16!, then g(t,x)5v(t,x2*0
t hws ds)1hwt is a

solution of Eq.~5.14!.
Lemma 5.1 is true for some special cases such as the viscous stochastic Burgers’ equation, the

inviscid stochastic Burgers’ equation which are studied in this paper and the stochastic KdV
equation~Dankel35!.

~5! Consider the inviscid stochastic Burgers’ equation

dv~ t,x!1v~ t,x!
]

]x
v~ t,x!dt52h dwt ~5.17!

with v(0,x)51 for x,0 andv(0,x)50 for x.0. Let g be the solution of the Burgers’ equation
(]/]t)g(t,x)1g(t,x)(]/]x)g(t,x)50 with the same initial condition. It is well known thatg is a
discontinuous solution andg(t,x)51 for x, 1

2t andg(t,x)50 for x. 1
2t ~see, e.g., Smoller34!. It is

a deterministic shock wave. From Lemma 5.1 we havev(t,x)512hwt for x, 1
2t2*0

t hws ds
and v(t,x)52hwt for x. 1

2t2*0
t hws ds. This is the simplest example of stochastic shock
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waves. The wave front is a random curvex5 1
2t2*0

t hws ds, the structure of the wave is that: the
trough2hwt and the crest 12hwt , both behave randomly as a Brownian motion. Notet50 is the
caustic of the classical mechanics.

~6! We shall demonstrate another shock wave from the harmonic oscillator. Consider the
deterministic equation first:

]

]t
g~ t,x!1g~ t,x!

]

]x
g~ t,x!52x, g~0,x!5x. ~5.18!

From formula~4.4! where we takel51, a51, h50 we have

g~ t,x!5“Sl~ t,x!5
cos t2sin t

cos t1sin t
x. ~5.19!

For t, 3
4p,g(t,x) is smooth and ast↑ 34p,g(t,x)→1` for x,0 andg(t,x)→2` for x.0. Note

3
4 p is the caustic time of the classical mechanics and Theorem 5.3. If we consider the stochastic
Burgers’ equation

dv~ t,x!1v~ t,x!
]

]x
v~ t,x!dt52x dt2h dwt , v~0,x!5x, ~5.20!

then from Eq.~4.4! where we takel51,a51,

v~ t,x!5
cos t2sin t

cos t1sin t S x1hE
0

t

sin~ t2s!dwsD 2hE
0

t

cos~ t2s!dws . ~5.21!

Therefore fort, 3
4p,v(t,x) is well defined and continuous and ast↑ 34p,v(t,x)→1` P-a.s. for

x,2h*0
~3/4!p sin~34p2s!dws andv(t,x)→2` P2a.s. forx.2h*0

~3/4!p sin~34p2s!dws .
~7! We have not proved the existence of the piecewise continuous solution for the inviscid

stochastic Burgers’ equation. Nevertheless, we believe
Conjecture:Given some bounds one1 and e2 the stochastic Burgers’ equation~5.6! has a

unique viscosity solution.
It may not be true ife1 ande2 are not bounded. See Sec. V~6! for a counterexample. For some

more special equations we can prove:

Theorem 5.4: If V(t,x) 5 *
0
x2*0

t hws ds
e1(t,y)dy is bounded below and strictly convex in

space variablex, then the stochastic Burgers’ equation

dv~ t,x!1v~ t,x!
]

]x
v~ t,x!5e1~ t,x!dt2hdwt ~5.22!

with a bounded initial condition has a unique viscosity solution.
Proof: From Davies and Truman36 we knowG(t,x) 5 min$12*0

t uż(s)u2ds 1 *0
t V(s,z(s))ds

1 *0
ztv(0,y)dy:z05 x,zs is absolutely continuous for 0< s< t% hasauniqueglobalsolutionand

from Fleming37,38we knowG(t,x) satisfies the following Hamilton Jacobi equation:

]

]t
G~ t,x!1

1

2
u“G~ t,x!u21c* ~ t,x!50 ~5.23!

with G(0,x)5*0
xv(0,x)dx andc*52V. AlthoughV(t,x) is random here it does not affect the

argument. By Rademacher’s theorem a Lipschitz continuous function is differentiable almost
everywhere, therefore almost everywhereg(t,x)5“G(t,x) satisfies
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]

]t
g~ t,x!1g~ t,x!

]

]x
g~ t,x!5e1S t,x2E

0

t

hws ds D . ~5.24!

Let v(t,x)5g(t,x1*0
t hws ds)2hwt . By Lemma 5.1, for almost everywherev(t,x) is the

solution of Eq.~5.22!. By the uniqueness of Eqs.~5.23! and~5.24! we have the uniqueness of Eq.
~5.22!. The theorem follows. j

Here we have not striven for the maximum generality. For alternative formulations see
Fleming.37,38

Theorem 5.5:Consider the solutionum(t,x) of the following stochastic heat equation onR1:

H dut
m~x!5F12 m2Dut

m~x!1
1

m2 c~ t,x!ut
m~x!Gdt1 1

m2 hxut
m~x!]wt

u0
m~x!5T0~x!expH 2

S0~x!

m2 J . ~5.25!

Assume2c(t,x2*0
t hws ds) is bounded below and strictly convex in space variablex. Then the

following stochastic Hamilton Jacobi equation:

dS~ t,x!1@ 1
2“S~ t,x!u21c~ t,x!#dt1hx dwt50, ~5.26!

with the initial conditionS(0,x)5S0(x) has a unique Lipschitz continuous solution. IfT0 is
bounded and positive, then

lim
m→0

m2 log um~ t,x!52S~ t,x!, ~5.27!

uniformly in any compact subset of@0,1`!3R1,P-a.s.
Proof: The existence and uniqueness of the Lipschitz continuous solution to Eq.~5.26! fol-

lows from Theorem 5.4. Let

dJm~ t,x!1@ 1
2u“Jm~ t,x!u21c~ t,x!#dt1hx dwt5

1
2m

2DJm~ t,x!dt ~5.28!

with Jm(0,x)5S0(x). Let G
m andG satisfy

]

]t
Gm~ t,x!1

1

2
u“Gm~ t,x!u21cS t,x2hE

0

t

ws ds D 5
1

2
m2DGm~ t,x! ~5.29!

and

]

]t
G~ t,x!1

1

2
u“G~ t,x!u21cS t,x2hE

0

t

ws ds D 50 ~5.30!

with Gm(0,x)5G(0,x)5S0(x). Then direct calculations give thatJ is unique and
Jm(t,x)5Gm(t,x1h*0

t ws ds)2hxwt2
1
2h

2*0
t ws

2 ds, S(t,x)5G(t,x1h*0
t ws ds)2hxwt 2

1
2h

2*0
t ws

2 ds. From the results of Hopf24 and Fleming37 we know asm→0, Gm(t,x)→G(t,x)
uniformly in any compact subset of@0,1`!3R1 P-a.s. The randomness does not affect the result.
Thereforem→0, Jm(t,x)→S(t,x) uniformly in any compact subset of@0,1`!3R1 P-a.s. Let the
stochastic processXs

t,m(x) be defined by

dXs
t,m~x!5m dBs2“Jm~ t2s,Xs

t,m~x!!ds, X0
t,m~x!5x. ~5.31!
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As in Sec. III we know*0
t Xs

t,m(x)dwt2s is well defined in Itoˆ’s sense. Then using formulas~2.10!,
~2.13!, and~5.28! we have

um~ t,x!5expH 2
Jm~ t,x!

m2 J ÊT0~Xt
t,m~x!!, P-a.s. ~5.32!

Thereforem2 log um(t,x)52Jm(t,x)1m2 log ÊT0~Xt
t,m(x)! P-a.s. Thus Eq.~5.27! follows. j

Remark 5.6:We believe that Eq.~5.32! is of independent interest.
Remark 5.7:We also believe Eq.~5.27! is true in general
Conjecture: As long as the stochastic Hamilton Jacobi equation~2.5! has a Lipschitz solution

S(t,x), the solution of stochastic heat equation~2.7! satisfies

lim
m→0

m2 log um~ t,x!52S~ t,x!,

uniformly in any compact subset of@0,1`!3M ,P-a.s.

ACKNOWLEDGMENTS

It is our great pleasure to thank Professor K. D. Elworthy and Professor D. Williams, FRS and
Dr. I. M. Davies for very useful discussions. We would like to record our acknowledgement to
SERC Grant No. GR/J34095.

1V. P. Maslov,Theorie des Perturbations et Methods Asymptotiques~Dunod, Paris, 1972!.
2A. Truman, ‘‘Classical mechanics, the diffusion~heat! equation, and the Schro¨dinger equation,’’ J. Math. Phys.18,
2308–2315~1977!.

3K. D. Elworthy and A. Truman, ‘‘The classical limit of quantum mechanics in a curved space background,’’ inFunctional
Integration: Theory and Applications, edited by J. P. Antoine and E. Tirapegui~Plenum, New York, 1980!, pp. 65–87.

4K. D. Elworthy and A. Truman, ‘‘Classical mechanics, the diffusion~heat! equation, and the Schro¨dinger equation on a
Riemannian manifold,’’ J. Math. Phys.22, 2144–2166~1981!.

5K. D. Elworthy and A. Truman, ‘‘The diffusion equation and classical mechanics: An elementary formula,’’ inStochastic
Processes in Quantum Physics, edited by S. Albeverioet al., Lecture Notes in Physics No. 173~Springer, Berlin, 1982!,
pp. 136–146.

6R. S. R. Varadhan, ‘‘Diffusion process in a small time interval,’’ Commun. Pure Appl. Math.XX , 659–685~1967!.
7M. I. Freidlin and A. D. Wentzell,Random Perturbations of Dynamical Systems~Springer, Berlin, 1984!.
8K. D. Elworthy, A. Truman, and H. Z. Zhao, ‘‘Approximate traveling waves for the generalized KPP equations and
classical mechanics,’’ Proc. R. Soc. London, Ser. A446, 529–554~1994!.

9K. D. Watling, ‘‘Formulas for solutions to~possibly degenerate! diffusion equation exhibiting semiclassical asymptot-
ics,’’ in Stochastics and Quantum Mechanics, edited by A. Truman and I. M. Davies~World Scientific, Singapore, 1992!,
pp. 248–271.

10A. Truman and H. Z. Zhao, ‘‘The stochastic Hamilton Jacobi equation, stochastic heat equation, and Schro¨dinger
equation,’’ in Stochastic Analysis and Applications, edited by A. Truman, I. M. Davies, and K. D. Elworthy~World
Scientific, Singapore, 1996!, pp. 441–464.

11M. Kardar, G. Parisi, and Y. C. Zhang, ‘‘Dynamical scaling of growing interfaces,’’ Phys. Rev. Lett.56, 889–892~1986!.
12V. I. Arnold, Singularities of Caustics and Wave Fronts~Kluwer Academic, Dordrecht, 1990!.
13F. Flandoli, ‘‘Some remarks on regularity theory and stochastic flows for parabolic SPDE’s’’~Preprint di Mathematica
n.135, Scuola Normale Superiore di Pisa, 1992!.

14K. D. Elworthy,Stochastic Differential Equations on Manifolds, London Mathematical Society Lecture Notes Series 70
~Cambridge University, Cambridge, 1982!.

15L. C. G. Rogers and D. Williams,Diffusions, Markov Processes and Martingales, Vol. 2. Itoˆ Calculus~Wiley, New York,
1987!.

16N. Ikeda and S. Watanabe,Stochastic Differential Equations and Diffusion Processes~North-Holland, Kodansha, Am-
sterdam, Tokyo, 1981!.

17K. D. Elworthy, ‘‘Geometric aspects of diffusions on manifolds,’’LNM ~Springer, Berlin 1988!, Vol. 1362, pp. 277–425.
18H. P. McKean,Stochastic integrals~Academic, New York, 1969!.
19L. Markus and A. Weerasinghe, ‘‘Stochastic oscillators,’’ J. Diff. Eqn.21, 288–314~1988!.
20S. Albeverio, A. Hilbert, and E. Zehnder, ‘‘Hamiltonian systems with stochastic forces: Nonlinear versus linear and a
Girsanov formula,’’ Stochastic Stoch. Rep.39, 159–188~1992!.

21N. Berline, E. Getzler, and M. Vergne,Heat Kernels and Dirac Operators~Springer-Verlag, Berlin, 1992!.

306 A. Truman and H. Z. Zhao: Stochastic diffusion and Burgers’ equations

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



22J. M. Burgers, ‘‘Applications of a model system to illustrate some points of the statistical theory of free turbulence,’’
Proc. Acad. Sci. Amsterdam43, 2–12~1940!.

23J. M. Burgers, ‘‘A mathematical model illustrating the theory of turbulence,’’ Adv. Appl. Mech.1, 171–199~1948!.
24E. Hopf, ‘‘The partial differential equationut1uux5muxx ,’’ Commun. Pure Appl. Math.3, 201–230~1950!.
25L. Bertini, N. Cancrini, and G. Jona-Lasinio, ‘‘The stochastic Burgers equation,’’ Commun. Math. Phys.165, 211–232

~1994!.
26L. Bertini and N. Cancrini, ‘‘The stochastic heat equation: Feynman–Kac formula and intermittence,’’ J. Stat. Phys.78,
1377–1401~1995!.

27S. Albeverio, S. Molchanov, and D. Surgailis, ‘‘Stratified structure of the universe and Burgers equation—A probability
approach,’’ Probab. Theory Relat. Fields100, 457–484~1994!.

28G. Da Prato, A. Debusche, and R. Temam, ‘‘Stochastic Burgers equation’’~Preprint di Mathematica n.27, Scuola
Normale Superiore di Pisa, 1993!.

29H. Holden, T. Lindstrom, B. Oksendal, J. Uboe, and T. S. Zhang, ‘‘The Burgers’ equation with a noise force and the
stochastic heat equations,’’ Comm. PDE19, 119–141~1994!.

30H. Holden, T. Lindstrom, B. Oksendal, J. Uboe, and T. S. Zhang, ‘‘The stochastic Wick-type Burgers equation,’’ in
Stochastic Partial Differential Equations, edited by A. M. Ethridge, London Mathematical Society Lecture Note Series
216 ~Cambridge University, Cambridge, 1995!, pp. 141–161.

31B. Oksendal, ‘‘Stochastic partial differential equations and applications to hydrodynamics,’’ inStochastic Analysis and
Applications in Physics, edited by A. I. Cardaso, M. de Faria, J. Potthoff, and L. Streit, Nato ASI Series, Vol. 449
~Kluwer, Dordrecht, 1994!, pp. 283–305.

32T. J. Newman, ‘‘Exact results for a model of interface growth,’’ Phys. Rev. E49, 2525–2527~1994!.
33A. S. Mishchenko, V. E. Shatolov, and B. Yu. Sternin,Lagrangian Manifolds and the Maslov Operator~Springer-Verlag,
Berlin, 1990!.

34J. Smoller,Shock Waves and Reaction-Diffusion Equations~Springer, New York, 1983!.
35T. Dankel, ‘‘Stochastic KdV equations’’~preprint!.
36I. Davies and A. Truman, ‘‘Laplace asymptotic expansions of conditional Wiener integrals and generalized Mehler kernel
formulas,’’ J. Math. Phys.23, 2059–2070~1982!.

37W. H. Fleming,Controlled Markov Processes and Viscosity Solution of Nonlinear Evolution Equations~Lezioni Fermi-
ane, Scuola Normale Superiore di Pisa, 1986!.

38W. H. Fleming, ‘‘The Cauchy problem for a nonlinear first order partial differential equation,’’ J. Diff. Eqn.5, 515–530
~1969!.

307A. Truman and H. Z. Zhao: Stochastic diffusion and Burgers’ equations

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The squared eigenfunctions of the massive Thirring model
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We demonstrate a simple procedure for finding the squared eigenfunctions of an
integrable system and illustrate the method by deriving the squared eigenfunctions
of the massive Thirring model. We give the formula for the inner products between
the direct squared eigenfunction problem and its adjoint. We also demonstrate
closure and express the variations of the potentials in terms of variations of the
scattering data. ©1996 American Institute of Physics.@S0022-2488~96!02201-9#

I. INTRODUCTION

Besides being a simple integrable model in field theory, the massive Thirring model1 also
plays a certain role in nonlinear optics in a problem of wave propagation in a periodically modu-
lated nonlinear fiber.2

Naturally, in such situations, one at times needs to understand how perturbations can affect
such a system. For this, one needs to know the squared eigenfunctions for the appropriate eigen-
value problem and their closure. In this paper, we solve that problem.

There are two standard methods for finding squared eigenfunctions. One method, the first one
discovered,3 involves obtaining the equations for perturbations solving the adjoint problem and
then determining the inner products between the original eigenfunctions and the adjoint eigen-
functions. The main part of this technique consists of finding the equation for the squared eigen-
functions, which can require much trial and error, and thus the success of the method significantly
depends on the researcher’s ingenuity. On the other hand, there is a procedure based on the
Riemann–Hilbert method that will always work.4 However, in the interesting case when one is
interested in the perturbation on the background of a soliton~or aN-soliton solution!, this method
becomes technically very complex.

We have found a simple regular procedure that allows one to eliminate the trial and error from
the former method. We do not start by seeking an equation for the squared eigenfunctions, but
instead assume a particular general structure for the Wronskian relation between certain eigen-
states related to the original eigenvalue problem. Then one proceeds to determine the coefficients
in the general Wronskian relation. The method is simple to use and is straightforward to apply.
There seem to be no serious restrictions on the structure of the original eigenvalue problem. In
particular, it would work even in the case where eigenvalues can occur in an arbitrary polynomial
form inside the eigenvalue problem. We note, however, that at the moment our method does not
allow one to find the equation for the squared eigenfunctions; we discuss this point later in Secs.
III and VI.

In Sec. II, we review the direct and inverse scattering problems for the massive Thirring
model. In Sec. III, we solve the above for variations of the scattering data in terms of variations of
the potentials. We then discuss the problem of inverting this relation in order to obtain the
variations of the potentials in terms of variations of the scattering data. Then, in Sec. IV, we solve

a!Electronic mail address: kaup@sun.mcs.clarkson.edu
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this problem by the method outlined in the preceding paragraph. We start from a general Wronkian
relation and use the original and adjoint eigenvalue problems to fully determine all coefficients in
it. This results in obtaining the specific Wronskian relation required for the massive Thirring
model. Now it becomes trivial to obtain the inner products and a bit less trivial to verify closure,
which we do in Sec. V. Also in that section, we give the variations of the potentials in terms of
variations of the scattering data. In Sec. VI we make some concluding remarks. In the Appendix
the method based on the Riemann–Hilbert formulation is briefly considered.

II. THE DIRECT AND INVERSE SCATTERING PROBLEMS

We consider the equations of the massive Thirring model~MTM ! in the laboratory coordi-
nates:

i ~ux1ut!1v1uuvu250, i ~2vx1v t!1u1vuuu250. ~1!

Herex and t are the space and time coordinates, respectively. The initial conditions for the fields
u andv are

u~x,t50!5u0~x!, v~x,t50!5v0~x! ~2!

on the wholex-axisR, anduu0(x)u anduv0(x)u are assumed to be integrable onR and sufficiently
smooth ~e.g., from the Schwartz class!. Equations~1! are the compatibility condition for the
following linear system:1

S ]

]x
2L Dc50, ~3a!

S ]

]t
2ADc50, ~3b!

wherec is a two-vector andL andA are 232 matrices. Here we will only need the expression for
L:

L5
i

4
~ uuu22uvu2!s32

il

2 S 0 v*

v 0 D 1
i

2l S 0 u*

u 0 D 1
i

4 S l22
1

l2Ds3 , ~4!

where we have used the notations for the Pauli matrices:

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .
An asterisk in~4! and everywhere below stands for complex conjugation. Notice that the notations
in ~4! are slightly different from those in Ref. 1, where the representation~3! was first found.

The problem that we solve in this paper is the following: what quadratic combinations of the
eigenfunctions~we will term them ‘‘squared eigenfunctions’’ for brevity! of ~3a! does one need in
order to be able to expand over them the variationsdu,du* ,dv,dv* of the potentialsu andv of
the operatorL. Before passing to the solution of the problem stated we will give a brief summary
of the results on the direct and inverse scattering problems for the operatorL, obtained in Ref. 1.

Let us introduce two pairs of the Jost solutions of~3a!:
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x~l!→S 01Dexp~2 ikx!, x→2`

~5a!

x̄~l!→S 10Dexp~ ikx!, x→2`

f~l!→S 10Dexp~ ikx!, x→1`

~5b!

f̄~l!→S 0
21Dexp~2 ikx!, x→1`

wherek[k(l)5 1
4~l

22l22!. The operatorL satisfies the relation

s2L* ~l* !s25L~l!. ~6!

So if c~x,l! is a solution of~3a!, then

c̄~x,l!5 is2c* ~x,l* ! ~7!

is another solution. In particular, the solutionsx̄ and f̄ are related by involution~7! to x andf,
respectively. Also,

c̃~x,l!56s3c~x,2l! ~8!

is yet another solution of~3a!. If c is any of the Jost solutions, then it is invariant under trans-
formation~8!, with the sign in the rhs of~8! being chosen in accordance with asymptotics~5!. The
Wronskian

W~ f ,g!5detS f 1 g1

f 2 g2
D

of any two solutionsf andg of ~3a! with the samel is independent ofx. This yields thatc̄~l! and
c~l! are linearly independent~i.e., their Wronskian is nonzero!, where thec denotes any of the
Jost solutions.

Now let us introduce the scattering matrix for Iml250:

f5a~l!x̄1b~l!x, f̄52ā~l!x1b̄~l!x̄. ~9a!

From ~7! it follows that

ā~l!5a* ~l* !, b̄~l!5b* ~l* !. ~10!

In a standard way one shows thatx~l!eikx and f~l!e2 ikx are analytic where Iml2>0, and
x̄(l)e2 ikx and f̄(l)eikx are analytic where Iml2<0. From~9a! one finds

a5W~f,x!, b5W~ x̄,f!, ~11!

whencea~l! is analytic for Iml2.0, and accordinglyā~l! is analytic for Iml2,0; b~l! andb̄~l!
are, in general, defined only for Iml250. From~11!, ~8!, and~5! it follows that

a~2l!5a~l!, b~2l!52b~l!, ~12!

and also that, for Iml250,
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aā1bb̄51. ~13!

From ~9a! and ~13! one determines the inverse of~9a!:

x52af̄1b̄f, x̄5āf1bf̄. ~9b!

At the points of the discrete spectrumln~Im ln
2.0! andln* [ l n̄ such thata(ln) 5 ā(l n̄) 5 0, one

has

xn5b̄nfn , x̄ n̄5bn̄f̄ n̄ ,
~9c!

fn5bnxn , f̄ n̄5b̄n̄x̄ n̄ ,

wherefn5f(x,ln), etc. Note that these points appear in pairs: ifln is an eigenvalue, then so is
2ln , sincea~l! is an even function. The asymptotic values ofa~l! can be obtained from~3a! and
~11!:

l→` a~l!→exp~2 iQ̂ !

l→0 a~l!→exp~ iQ̂ ! J Im~l2!>0, ~14!

whereQ̂5 1
4*2`

` (uuu21uvu2)dx. The asymptotics of the Jost solutions for large and smalll are the
following ~for Im ln

2>0!:

l→` x→S v* l21

1 D „11O ~l21!…exp„2 ikx2 iQ2~x!…,

~15a!

f→S 1
2vl21D „11O ~l21!…exp„ikx2 iQ1~x!…,

l→0 x→S lu*
1 D „11O ~l!…exp„2 ikx1 iQ2~x!…,

~15b!

f→S 1
2luD „11O ~l!…exp„ikx1 iQ1~x!…,

where

Q6~x!56
1

4 E
x

6`

~ uuu21uvu2!dx8.

To complete the review of the discrete and inverse scattering problems for the operatorL, we
present the singular integral equation which allows one to reconstruct the Jost solutions from
known scattering dataS5$r(l)5b/aul2 is real;ln , cn5bn/ȧnun52N,...,N, nÞ0%:

Y~x,l!5 (
n52N,nÞ0

N
cnxne

2 iknx

l2ln
1S 10DeiQ2~x!1

1

2p i EG

r~l8!x~x,l8!e2 ik8x

l82l
dl8, ~16a!

where

Y~x,l!5 H ~f/a!e2 ikx, Im l2.0,
x̄e2 ikx, Im l2,0. ~16b!
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Above we have used the following notations:ȧn 5 (da/dl)ul5ln
, kn5k(ln), k85k(l8),

l2n52ln , and the contourG is shown in Fig. 1.
Now let us pass to the solution of the problem stated in the beginning. We have four variations

of the potentials:du, du* , dv, anddv* . In order to map them one-to-one into variations of the
scattering data, we need four independent components of the latter. If we ignore for now the
discrete spectrum, then we seem to have only two functions:r~l! and r̄~l!5r* ~l* ! on G. How-
ever, in reality we have exactly four of these. Indeed, the natural spectral parameter for~3a! is not
thel but ratherk~l!. OnG, k~l! is fourfold degenerate since, for each value ofk, there are four
different possible values ofl, namely,l itself,2l, and6il21. As l moves along each of the four
rays of which the contourG is composed,k ranges from2` to `. From ~12! one deduces the
relationr~2l!52r~l! @and consequently,r̄(2l)52 r̄(l)#. Thus, although the scattering data at
2l is always related to the scattering data atl, there is no such a relation connecting the
scattering data at6il21 with that atl. Therefore, the four independent functions in the set of
scattering data arer~l! and r̄~l! on contourG1 ~see Fig. 1!.

III. VARIATIONS OF POTENTIALS AND SCATTERING DATA

Before going on to the solution of the problem, we note the following. As it was pointed out
in the Introduction, there exist two equivalent ways of finding variations of the potentials via the
components of the Jost solutions. The first way~see, for example, Ref. 4! employs the Riemann–
Hilbert formulation of the corresponding scattering problem. This method would readily give us
the answer if no discrete spectrum was present, but it becomes technically very cumbersome when
one seeks to obtain the contribution to the variations of the potentials from the variation of the
discrete spectrum. Therefore, here we have chosen to use the other method, which is based on
calculating the variations of the scattering data via the variations of the potentials, and then
inverting this relation. This latter method was used, for example, in Refs. 3, 5–8. In the Appendix
we give, for the sake of completeness of presentation, a brief exposition of the former method.

Thus, we first find the variation ofr~l! corresponding to variations of the potentialsu andv.
Then in a standard way~see, for example, Ref. 9! we find from ~3a!, ~11!, ~5!, and~9!:

FIG. 1. ContoursC0
6 , C`

6 , andG6 in the complexl-plane. ContourG is the union ofG1 andG2.
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dr5
i

4a2
^Z„f~x,l!…udp~x!&, dr̄5

i

4ā2
^Z̄„f~x,l!…udp~x!&, ~17!

where

^ f ug&[E
2`

`

dx f~x!g~x!, dp5~du,du* ,dv,dv* !T,

Z5~Z1 ,Z2 ,Z3 ,Z4!, Z̄~f![Z~f̄ !,
~18!

Z1~f!52S 2
1

l
f1

21u*f1f2D , Z2~f!52S 1l f2
21uf1f2D ,

Z3~f!52~lf1
22v*f1f2!, Z4~f!52~2lf2

22vf1f2!,

andfi in the above is thei th ~i51,2! component off, the Jost solutions defined in~5b!. We omit
arguments of functions wherever those are obvious or unimportant. In what follows it will be
convenient for us to use the following notations:

Vi~ f g!5 f igi , i51,2; V3~ f g!5 f 1g21 f 2g1 , ~19!

andVi( f )5Vi( f f ), i51,2,3.
Let us now show how~17! should be inverted to finddp(x). To simplify the subsequent

calculations, let us suppose for the moment thatL has no discrete spectrum. Thendr anddr̄ are
its only scattering data. In order to invert these, we would require a set of adjoint functions,
ZA(x,l), orthogonal to the setZ in ~18!. Suppose for the moment that we have such a set where

i

4 E
G
„ZA~x8,l!,Z̄A~x8,l!…S Z~x,l!/a2~l!

Z̄~x,l!/ā2~l!
D dl5d~x82x!•I 4 , ~20!

whereI n is then3n unit matrix. Let us use the notationẐ for the matrix (
Z̄/ā2
Z/a2

) and ẐA for the
matrix (ZA,Z̄A). Using ~20!, we could then obtain from~17!

dp~x!5E
G
dlẐA~x,l!S dr~l!

dr̄~l! D . ~21!

One way to find the form ofẐA would be to start with the expression dual to~20!. Namely, if one
multiplies ~21! by Ẑ, integrates overx, and then takes into account~17!, then one would obtain

i

4
^Ẑ~x,l!uẐA~x,l8!&5d~l2l8!•I 2 . ~22!

Once one has such a set of orthogonality relations as in~22!, then one could identifyẐA from the
integrands. This is how we shall proceed.

In earlier works,3,5–8 the explicit form ofẐA was found in the following way. First, find the
integro-differential equation forZ of the form

LZ50; ~23a!

with the integro-differential operatorL being of the form

L5L01l or L5L01l2, etc., ~23b!
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whereL0 is al-independent part. For the cases in Refs. 3,5–8, it was always found that this could
be done even when the originalL-operator contained both positive and negative powers ofl ~see
Ref. 8!. Once~23! had been found, it was then straightforward to determineZA as a solution of the
adjoint equation~hence the superscript ‘A’ ! and the inner product betweenZ andZA. The apparent
drawback of this procedure was that the form ofL had always been found by trial and error, which
sometimes was a nontrivial matter.5–8 In the case of the MTM in laboratory coordinates, we have
been unable to easily find such an analogue of representation~23!. The most apparent difficulty in
doing this is that upon taking a derivative ofZi , i51,...,4, one then has derivatives of the poten-
tials u,u* ,v,v* as multiplying factors, which is a complicating feature. Nevertheless, we have
found that it is still possible to find the explicit form ofZA and determine its inner product withZ
by means of another technique. Below we will describe this technique in detail since we believe
that it will be useful in other related problems.

IV. METHOD OF FINDING ZA FROM THE WRONSKIAN RELATIONS

First, from ~3a!, for the vectorVW 5(V1 ,V2 ,V3)
T one straightforwardly obtains

F I 3 ]

]x
22i ~w1k!S 1 0 0

0 21 0

0 0 0
D 1S 0 0 r

0 0 q

2q 2r 0
D GVW 50, ~24a!

wherek[k(l), w5 1
4(uuu22uvu2), r5( i /2)(lv*2u* /l), andq5( i /2)(lv2u/l). Defining the

solutionVW A of the adjoint problem as the vector satisfying

F 2I 3
]

]x
22i ~w1k!S 1 0 0

0 21 0

0 0 0
D 1S 0 0 2q

0 0 2r

r q 0
D GVW A50, ~24b!

one finds thatVW A5(V2 ,V1 ,2V3/2). Thus the solution of the adjoint problem is related to that of
the original one by a similarity transformation.

Now we make the observation that, in all the previous cases, one was able to obtain from the
corresponding integro-differential equation,~23!, a Wronskian relation from the analogue of Eq.
~24! in the following form:

]

]x
@a~l,l8!V1

AV11b~l,l8!V2
AV21g~l,l8!V3

AV3#5h~l,l8!~Z1
AZ11Z2

AZ21Z3
AZ31Z4

AZ4!.

~25!

In ~25!, theVs andZs are functions ofx andl, the adjoint statesVAs andZAs are functions ofx
andl8, and the coefficientsa, b, g, andh are independent ofx. So, if this is the form which
always results, is it possible to start with~25!, then use all the above relations and uniquely
determinea, b, g, h, andZA? Indeed, such is the case.

We start with~24! and the definition ofVW A. Then~25! becomes of the form~summation over
repeated indices is implied!

h~l,l8!Zi
AZi5Vj8M jsVs , ~26a!

with
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M5S 0 22ib~k2k8! q8g2qb

2ia~k2k8! 0 r 8g2ra

qg2q8a rg2r 8b 0
D , ~26b!

whereVj[Vj (l), Vj8 [ Vj (l8), etc. From~18! one has

Zi5misVs ~27a!

with

m5S 22l21 0 u*

0 2l21 u

2l 0 2v*

0 22l 2v
D . ~27b!

Substituting~27a! into the lhs of~26a!, one sees that the resulting equation is linear inVs . Then,
after formally differentiating it with respect toVs , one obtains

h~l,l8!Zi
Amis5Vj8M js . ~28!

One cannot invert it to findZA becausem is not a square matrix. However, ifZA exists, then it is
seen from~28! that it must be of the form

Zi
A5mi j

AVj8 , ~29!

for some yet unknown 433 matrixmA. The key to determiningmA lies in the fact that the entries
of mA may depend onl8, but not onl. Upon substituting~29! into ~28! and formally differenti-
ating with respect toVj8 , one obtains

hmi j
Amis5M js . ~30!

Let us introduce the following notations@see~26b! and ~27b!#:

M5S A B

C 0 D , m5~D,E!, mA5~F,G!,

whereA, B, andC are 232, 231, and 132 matrices, respectively. The~22!-entry ofM is the
number zero,D andF are 432 matrices, andE andG are 431 matrices. Notice thatA andD are
independent of the potentials. With these notations,~30! rewrites as follows:

hFT•D5A, hFT•E5B,
~31!

hGT
•D5C, GT

•E50.

Consider the first matrix equation in~31!. Using~26b! and~27b! and the explicit form ofq,r ,
one obtains

2
1

l
F111lF3150, ~32a!

hS 2
1

l
F121lF32D5 i ~k2k8!b, ~32b!
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hS 2
1

l
F211lF41D5 i ~k2k8!a, ~32c!

2
1

l
F221lF4250. ~32d!

Let Fi j5Fi j
01Fi j

p , whereFi j
0 ,Fi j

p are the potential-independent and potential-dependent parts,
respectively. Then one easily finds that

F1 j
p 5l2F3 j

p , F2 j
p 5l2F4 j

p , j51,2. ~33!

Since the matrixmA is independent ofl, then from~33! it follows that the potential-dependent
part ofF must be zero.

Using the second equation in~31!, one obtains

h~u*F111uF212v*F312vF41!5
i

2 Fv~gl82bl!1uS b

l
2

g

l8D G , ~34a!

h~u*F121uF222v*F322vF42!5
i

2 Fv* ~gl82al!1u* S a

l
2

g

l8D G . ~34b!

SinceF has been found to be potential independent, one immediately sees that

F115F315F225F4250, ~35a!

hF215
i

2 S b

l
2

g

l8D , ~35b!

hF415
i

2
~bl2gl8!, ~35c!

hF125
i

2 S a

l
2

g

l8D , ~35d!

hF415
i

2
~al2gl8!. ~35e!

Substituting~35b! and ~35c! into ~32c! and ~35d! and ~35e! into ~32b!, one obtains two linear
equations fora, b, andg, from which one straightforwardly deduces

a5b, g5a•
l21l82

2ll8
. ~36!

Without loss of generality, one can seta51.
Let G5(g1 ,g2 ,g3 ,g4)

T. Then from the third equation in~31! and Eq.~36! it follows

hS 2
1

l
g11lg3D5

i

4 Flv l22l82

2ll8
1
u

l

l22l82

2ll8 G , ~37a!

hS 1l g22lg4D5
i

4 Flv* l22l82

2ll8
1
u*

l

l22l82

2ll8 G . ~37b!

316 D. J. Kaup and T. I. Lakoba: Squared eigenfunctions of massive Thirring model

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Since the entries ofG are to be independent ofl, then it must be

g152
u

2
f ~l8!, g25

u*

2
f ~l8!,

g35
v
2
f ~l8!, g452

v*

2
f ~l8!, ~38!

h5
i ~l22l82!

4ll8 f ~l8!
,

wheref ~l8! is an arbitrary function. Then the fourth equation in~31! is satisfied identically. As one
can see from~35! and ~38!, the functionf ~l8! simply multiplies the matrixmA by an arbitrary
function ofl8. In order to have a simple form forZA, we takef ~l8!51. Finally, using~35!, ~36!,
and ~38!, one obtains the desired Wronskian relation:

]

]x FV1
AV11V2

AV21
l21l82

2ll8
V3
AV3G5

i ~l822l2!

8ll8
•„Z1Z281Z2~2Z18!1Z3Z481Z4~2Z38!…,

~39!

whereZj[Zj (l), Zj8 [ Zj (l8), j51,...,4. With this we can define the inner product that we need.
We note that a formula, which proves to be equivalent to~39!, was given~without derivation! in
Ref. 1.

V. COMPLETENESS OF THE SQUARED EIGENFUNCTIONS

From ~39!, it follows that we may take

ZA5
i

2p
~Z2 ,2Z1 ,Z4 ,2Z3!

T, Z̄A52
i

2p
~ Z̄2 ,2Z̄1 ,Z̄4 ,2Z̄3!

T,

and we choose to evaluate theZ- andZA-states using the Jost solutionsf and x, respectively.
Then, from~5! and ~39!, we obtain, for Iml250,

i

4
^ẐuẐ8A&52ll8d~l22l82!•I 2 . ~40!

Similarly, the inner products involving the discrete spectrum are

^ẐnuẐm
A&50, ~41a!

^D̂nuD̂m
A&5S 2

p
lnȧnän~dn,m1dn,2m! 0

0
2

p
l n̄aG n̄aJ n̄~d n̄,m̄1d n̄,2m̄!

D , ~41b!

^D̂nuẐm
A&5^ẐnuD̂m

A&5S 2

p
lnȧn

2~dn,m1dn,2m! 0

0
2

p
l n̄aG n̄

2~d n̄,m̄1d n̄,2m̄!
D , ~41c!
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for m,n52N,...,N; m,nÞ0. In ~41!, we have used the following shorthand notations:

Ẑn5„ZT~x,ln!,Z̄
T~x,l n̄!…

T, D̂n5S ]

]l
ZT~x,l!Uln

,
]

]l
Z̄T~x,l!Ul n̄D T,

Ẑn
A5„ZA~x,ln!,Z̄

A~x,l n̄!…, D̂n
A5S ]

]l
ZA~x,l!Uln

,
]

]l
Z̄A~x,l!Ul n̄D .

Let us now derive a generalization of~20! to the case when theL-operator~3a! has a discrete
spectrum. Taking into account~40!, consider the following principal value integral:

i

8 E
G
Á

dl

l
ẐA„x~x!…•Ẑ„f~y!…

55
2

i

8 F S E
C0

1
1E

C`
1 D dl

la2
ZA„x~x!…Z„f~y!…1S E

C0
2

1E
C`

2 D dl

lā2
Z̄A„x~x!…Z̄„f~y!…G

2
p

4
~D.Sp.!, for y>x;

2
i

8 F S E
C0

1
1E

C`
1 D dl

la2
~2ZA„xf~x!…Z„xf~y!…2ZA„f~x!…Z„x~y!…!1S E

C0
2

1E
C`

2 D
3
dl

lā2
~2Z̄A„xf~x!…Z̄„xf~y!…2Z̄A„f~x!…Z̄„x~y!…!G2

p

4
~D.Sp.!, for y<x;

~42a!

where, for instance,Z„xf(y)… is evaluated for the functionsx~y,l! and f~y,l! as in ~19!;
Zn„f(y)…5Z„f(y,ln)…, etc. Now in ~42a!, each case contains the term~D.Sp.!, which is the
contribution to~42a! of the discrete spectrum. This term is given by

~D.Sp.!5 (
n52N,nÞ0

N H 2S ȧn1lnän
ȧn
3ln

2 DZnA„x~x!…Zn„f~y!…1
1

ȧn
2ln

@Dn
A
„x~x!…Zn„f~y!…

1Zn
A
„x~x!…Dn„f~y!…#J 2$same quantities with the bar%. ~42b!

The contoursC0
6 , C`

6 are shown in Fig. 1. In deriving~42!, we have used the analyticity of the
Jost functions in their corresponding domains, and also we made use of relations~9! to obtain the
representation of the lhs in the regionsy>x and y<x ~see Ref. 5!. Now, one can use the
asymptotics~14! and ~15! to evaluate the continuous spectrum part in the rhs of~42a! and then
‘‘pull back’’ onto the contourG, after deleting those terms which give vanishing contributions at
infinity. In this way, upon also using the identities

E
G
Á

dl

l3 e
ik~l!x5E

G
Á ldleik~l!x58pd~x!,

we arrive at the formula which is the main result of this paper:
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i

8 E
G
Á

dl

l
ẐA•Ẑ1

p

4 (
n52N,nÞ0

N H 2Ẑn
A
•S ~ ȧn1lnän!Zn /~ ȧn

3ln
2!

2~aG n̄1l n̄aJ n̄!Z̄n̄ /~aG n̄
3l n̄

2!
D 1D̂n

A
•S Zn /~ ȧn

2ln!

2Z̄n̄ /~aG n̄
2l n̄!

D 1Ẑn
A

•S Dn /~ ȧn
2ln!

2D̄n̄ /~aG n̄
2l n̄!

D 5d~x2y!•I 4 . ~43!

In ~43! eachZA andDA are to be evaluated forx~x,l! and eachZ andD are to be evaluated for
f~y,l!. Notice that, making use of symmetry~8! and~12!, one may restrict the summation in~42b!
and~43!, and formulae~45! and~46! below to be overn51,...,N ~one should then take the overall
coefficient in front of the sum sign to be a factor of 2 larger!, and at the same time, replace*ÁG by
2*G1.

Now we can produce formulas for the expansions of both the potentialp(x)5(u,u* ,v,v* )T

anddp(x) over the complete set$ZA%. In the standard way~see Ref. 10! one obtains

dln5
i

4bnȧn
^Zn~f!udp&, ~44a!

dcn5
i

4ȧn
2 F2S änȧnD ^Zn~f!udp&1^Dn~f!udp&G ; ~44b!

the quantitycn was defined before formula~16!. Note that in the derivation of~44!, one must take
into account the fact thatbn ,ȧn depend on the potentialp(x) both implicitly, as functionals, and
explicitly, through their dependence onln . Equations~17!, ~44!, and~43! now lead to the follow-
ing expansion formula fordp:

dp5
1

2 E
G
Á

dl

l
ẐA~x!S dr

dr̄
D 2 ip (

n52N,nÞ0

N F ẐnAS d~cn /ln!

2d~ c̄n̄ /l n̄!
D 1D̂n

AS ~cn /ln!dln

2~ c̄n̄ /l n̄!dl n̄
D G . ~45!

From the third row in~24a! one easily finds the inner products between theZ-states and the
potentialp(x). Whence one obtains

S s3 0

0 s3
D p~x!5

1

2 E
G
Á

dl

l
ẐA~x!S r

2 r̄ D 2 ip (
n52N,nÞ0

N

Ẑn
A~x!S cn /ln

c̄n̄ /l n̄
D . ~46!

Note that theDn
A states are absent in~46!.

For possible applications, we present below the exact expressions of the one-soliton potentials
us(x) andvs(x), the corresponding scattering data, and the Jost solutionsx~x,l! andx~x,l1!, from
which theZ- andZA- states may be computed as needed:

us~x,t !5sinQ sech~Q2 iQ/2!eib, vs~x,t !52sinQ sech~Q1 iQ/2!eib; ~47!

0<Q<p, Q5x sinQ, b52t cosQ,

l15exp~ iQ/2!, c15sinQ•eib, ~48!

a~l!5
l22l1

2

l22l1*
2 e

2 iQ, b~l!50 for Im l250;

x~x,l1!5
1

2 S i sech~Q1 iQ/2!•exp„2 ib1 iA~x!1~Q2 iQ !/2…

sech~Q2 iQ/2!•exp„2 iA~x!2~Q2 iQ !/2…
D , ~49!
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where

A~x!5arctanS tanSQ2 D tanhQ D1
Q

2
,

x~x,l!5S 01D e2 iA~x!2 ik~l!x2
exp„2 ik~l!x…•sinQ

l22l1*
2

•S l sech~Q1 iQ/2!•exp„2 ib2 iQ1 iA~x!…

i sech~Q2 iQ/2!•exp„Q2 iA~x!2 iQ/2…
D . ~50!

Formulas~49! and ~50! were obtained from~16! and ~48!.

VI. CONCLUDING REMARKS

The main difference between the result of the present work and those of the earlier ones4–9 on
this subject is a new method for finding squared eigenfunctions. Previously, one has been able to
find both the exact form of the ‘‘squared eigenfunctions’’ and the operatorL0 @see~23!#, whose
eigenfunctions were the ‘‘squared eigenfunctions.’’ The knowledge of that operator allowed one to
construct a hierarchy of integrable evolutional equations and Hamiltonian structures, related to a
givenL-operator, and the corresponding infinite series of conservation laws. Let us note, however,
that the infinite series of the conservation laws for equations~1! was obtained in Ref. 1 by standard
‘‘elementary’’ means, and thus the whole hierarchy of integrable evolutional equations of which
the massive Thirring model in laboratory coordinates is a member, is in principle known. We have
proposed a regular procedure by which the structure of the inner product, and thus the explicit
form of ZA, can be determined. This procedure gave us the result for equations~1!, and we believe
that it will be useful in other related problems.

Note added in proof:It has recently been pointed out to us by V. S. Gerdjikov that one could
also use the method outlined in Refs. 11 and 12 to find the recursion operator~i.e., the operator
whose eigenfunctions are the ‘‘squared eigenfunctions’’! for the operator~3a!. With the notations

Xuv f[2S u
2u* D E

x

`

dy~v* ,v ! f ,

defining operatorsXuv , etc., acting on a two-component vectorf , and also with

T5S 11
i

2
Xuu 2

i

2
Xuv

2
i

2
Xvu 211

i

2
Xvv

D , T215S 12
i

2
Xuu 2

i

2
Xuv

2
i

2
Xvu 212

i

2
Xvv

D ,

L̃5S 1 0

0 2~ i2Xvv!
D •S 0 1

2
1

2
~ i2Xuu! s3]x12iw2 1

2~Xvu1Xuv!
D ,

L̃215S 22~ i1Xuu! 0

0 1D •S s3]x12iw2 1
2~Xvu1Xuv!

1
2~ i1Xvv!

1 0
D ,

ŝ25diag~s2 ,s2!,
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one can define two operators,

L5ŝ2TL̃T21ŝ2 , L215ŝ2TL̃21T21ŝ2 ,

such that

~L2l2!Z50, ~L212l22!Z50,

whereZ was defined in~18!, andw5(uuu22uvu2)/4. Given this, one could find the adjoint vector
ZA and then proceed as outlined after Eq.~23! in the text. However, this method of finding the
recursion operator is known~V. S. Gerdjikov, private communication! not to work ~at least in a
straightforward way! for, e.g., a quartic bundle,12 while for the method described in Sec. IV of the
present paper there seems to be no restriction on the maximum power ofl in the Lax operator.
The question of whether this is indeed the case and, in particular, whether or not our method
would work for the quartic bundle, needs further investigation.
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APPENDIX: RIEMANN–HILBERT FORMULATION

Here we demonstrate how the form of the ‘‘squared eigenfunctions’’ can be found from the
Riemann–Hilbert~RH! formulation of the inverse scattering problem for operator~4!. Below we
will assume that the coefficientsa~l!, ā~l! are nonzero in their respective domains of analyticity.

The second equations in~9a! and ~9b! can be rewritten in the form

C15C2G, lPG, ~A1a!

where the 232 matricesC6, G are

C15S f

a
e2 ikx,xeikxD , C25S x̄e2 ikx,2

f̄

ā
eikxD , G5S 11rr̄ r̄e2ikx

re22ikx 1 D . ~A1b!

In deriving ~A1!, Eq. ~13! was used.C6 are analytic where Iml2:0, respectively. If the poten-
tials in ~4! vary, thenC6, G will vary according to the equation

dC1~C1!215dC2~C2!211C2dG~C1!21, lPG, ~A2!

where we have usedG5C1~C2!21. Matrices~C6!21 are nonsingular@see~11!#, thusdC6~C6!21

are analytic in the corresponding domains of thel-plane. Then~A2! constitutes a simple RH
problem, whose solution is

dC~x,l!5dC0~x!C~x,l!1
1

2ip E
G
Á

F~x,j!dj

j2l
C~x,l!, ~A3!

whereC~x,l! is the solution of~A1!. In ~A3!,

F5C2dG~C1!21, ~A4a!

or, in the component form,
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F1152F225drx1x22dr̄x̄1x̄2 , F1252drx1
21dr̄x̄1

2, F215drx2
22dr̄x̄2

2. ~A4b!

Matrix dC0(x) in ~A3! should be determined from the asymptotics atl→0 andl→`. Taking into
account symmetry~8! and ~12!, it is convenient to rewrite~A3! as follows:

dC~x,l!5dC0~x!C~x,l!1
1

ip E
G1

dj

j22l2 F jS F11 0

0 2F11
D 1lS 0 F12

F21 0 D GC~x,l!.

~A5!

The desired variationsdu,du* ,dv,dv* are found from the asymptotics of~A5! for l→0 and
l→`. From ~14! and ~15! one finds

l→0 C1→S e2 iQ2
lu* eiQ

2

2lue2 iQ2
eiQ

2 D , ~A6a!

l→` C1→S eiQ
2

l21v* e2 iQ2

2l21veiQ
2

e2 iQ2 D , ~A6b!

whereQ2[Q2(x). Substituting~A6a! into ~A5!, one finds

dC12
0 ~x!5dC21

0 ~x!50; ~A7a!

I 2S idQ21
1

ip E
G1

F11dj

j D 1s3 diag„dC11
0 ~x!,dC22

0 ~x!…50; ~A7b!

du52
1

ip E
G1

F21dj

j2
12idQ2u; ~A7c!

du*5
1

ip E
G1

F12dj

j2
22idQ2u* . ~A7d!

Substituting~A6b! into ~A5! and using~A7!, one obtains

dC11
0 ~x!52dC22

0 ~x!5 idQ252
1

2ip E
G1

F11dj

j
,

and then

du52
1

ip E
G1

S F21

j2
1u

F11

j Ddj;

du*5
1

ip E
G1

S F12

j2
1u*

F11

j Ddj;

~A8!

dv5
1

ip E
G1

S F211v
F11

j Ddj;

dv*52
1

ip E
G1

S F121v*
F11

j Ddj.
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Equations~A8! are equivalent to formula~45! without the contribution from the discrete spectrum.
As it is known, the discrete spectrum is introduced into the RH problem through the solution of a
certain system of algebraic equations. Working with the variation of this system, occurring due to
the variation of the discrete scattering data, is much more cumbersome than simply picking up the
contribution from the poles in the corresponding integrals@formula ~42!#, therefore we did not
pursue the former way here.
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Physically interesting exact solutions are constructed for a large class of nonlinear
nonintegrable evolution equations. These solutions describe the interaction of trav-
eling waves. They exhibit rich phenomenology including breaking of solitary
waves. Generalized conditional symmetries and bilinearity are used to derive these
exact results. ©1996 American Institute of Physics.@S0022-2488~96!03601-5#

I. INTRODUCTION

We have recently introduced a new method for finding physically important exact solutions of
certain nonintegrable equations.1 Our method uses the fact that there exist nonintegrable equations
which share an ‘‘integrable sector’’ with integrable equations. We recall that there exist two
well-known types of integrable equations: Equations like Burgers which can be linearized by an
explicit change of variables,2 and equations like Korteweg–de Vries~KdV! which can be linear-
ized by the inverse spectral method.3 We have found nonintegrable equations associated with both
Burgers and KdV. For example, the Newell–Whitehead equation4

3ut5uxx1u22u3 ~1.1!

shares the two-shock solution]x log(K1e
(1/&)x1(1/2)t1K2e

2(1/&)x1(1/2)t1K3), K1 , K2 , andK3
are arbitrary constants with the Burgers equation

ut5uxx12uux . ~1.2!

Similarly, the equation

ut52guuxx1~12g!ux
21~214g!u2ux1aux1~11g!~u42au21b!, a,b,g const

~1.3!

shares the two-soliton solution]x log@K1e
k1@x1(k1

2
13k2

2)t# 1 K2e
2k1@x1(k1

2
13k2

2)t# 1 K3e
k2@x1(3k1

2
1k2

2)t#

1K4e
2k2@x1(3k1

2
1k2

2)t##,k1 5 @(a 1 Aa224b)/2#1/2, k2 5 @(a 2 Aa224b)/2#1/2, K1 ,K2 , andK3 are
arbitrary constants andk1

2K1K25k2
2K3K4 , with the potential KdV equation

ut5uxxx16ux
2. ~1.4!

We note that multisoliton and multishock solutions have similar mathematical characteriza-
tion. Actually multisolitons can be obtained from multishocks by differentiation with respect tox.
Throughout this article we use this approach to obtain soliton-type solutions from shock-type
solutions.

Our method is based on the introduction of a new type of symmetry, which we have called
generalized conditional symmetry~GCS!. A smooth function ofu, ux , uxx ,..., denoted bys(u),

0022-2488/96/37(1)/324/22/$6.00
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is a GCS of the evolution equationut5K(u), whereK is a smooth function ofu, ux , uxx ,..., iff
[s,K]50 whens50, where [s,K]8s8[K]2K8[s] and the prime denotes Fre´chet differentia-
tion, i.e.,

s8~u!5
]s

]u
1

]s

]ux
]x1

]s

]uxx
]x
21••• .

GCS’s are generalizations of conditional symmetries,5 in the same way that generalized
symmetries6 are generalizations of symmetries. It turns out that GCS’s have the following impor-
tant properties:

~a! The equationss50 and ut5K are compatible, thus in general they share a common
manifold of solutions. Many physical important solutions, such as multishock and multisoliton
solutions, can be characterized precisely as such manifolds.~b! If s is a GCS ofut5K(u), thens
is also a GCS ofut5K(u)1G(u,s), whereG is anarbitrary function ofu, ux , uxx ,... and ofs,
sx , sxx ,..., which only satisfies the conditionG(u,0)50.

The method used in Ref. 1 is based on the following steps:~a! Find the GCSs which
characterizes the multishock or the multisoliton solutions of a given integrable equationut5K(u).
~b! Construct the family of equationsut5K(u)1G(u,s). Since this family also admitss as a
GCS, it shares the same multishock or multisoliton solution with the original equation. For ex-
ample, the two-shock solution of the Burgers equation is uniquely characterized as the common
solution of Eq.~1.2! and ofs50, where

s5uxx13uux1u31a~ux1u2!1bu. ~1.5!

TakingG522s/3 with a50, b521/2, the equationut5K1G becomes Eq.~1.1!, which there-
fore also possesses the same two-shock solution. Similarly, the two-soliton solution of the poten-
tial KdV equation is associated with

s52uuxx2ux
214u2ux1u42au21b. ~1.6!

Taking G52sx/(2u)1(11c)s, it follows that Eq.~1.3! also possesses the same two-soliton
solution.

In this article we further extend the above results:
~a! In Ref. 1 we found the GCS characterizing theN-shock solution of Burgers, and the

GCS’s for one-, two- and three-soliton solutions of KdV. In Sec. II we show that the GCS
characterizing theN-soliton solution of the KdV hierarchy

ut5 (
m50

M

am~]x
214u12ux]x

21!mux , MPZ, am const ~1.7!

is given by

s5 (
n50

N

cn~]x1u]x
21!nu. ~1.8!

~b! In Sec. III we construct two new GCS’s for the hierarchy of equations

ut5]xF (
m50

M

am~]x1u!2muG , MPZ, am const. ~1.9!

We call this hierarchy the ‘‘even’’ Burgers hierarchy, since Eq.~1.9! with (]x1u)2m replaced by
(]x1u)m is the usual Burgers hierarchy.
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These GCS’s are given by

s15 (
n50

N21

~21!nsn (
i51

2N22n21

~21! i21@~]x1u! i21u#@~]x1u!2N22n2 i21u#1~21!NsN

~1.10!

and

s25 (
n50

N21

~21!nsn (
i50

2N22n

~21! i@~]x1u! i21u#@~]x1u!2N22n2 i21u#1~21!NsN , ~1.11!

wheresn are elementary symmetric polynomials for the set of numbers (k1
2 ,k2

2 ,...,kN
2 ). For ex-

ample,s1 with N52 is

s1
~2!52uuxx2ux

214u2ux1u42~k1
21k2

2!u21k1
2k2

2,

ands2 with N52 is

s2
~2!52uxxx16uuxx17ux

218u2ux1u42~k1
21k2

2!~2ux1u2!1k1
2k2

2.

The equations150 together with Eq.~1.9! specifies the solution

u5]x logF(
i51

N

~K2i21e
ni1K2ie

2ni !G , ni8kiFx1S (
m50

M

anki
2mD tG , ~1.12!

where the constantski andKi satisfy the constraint

(
i51

N

ki
2F)

jÞ i
~ki

22kj
2!GK2i21K2i50. ~1.13!

Similarly the equations250 together with Eq.~1.9! characterizes the solution

u5]x logF(
i51

N

~K2i21e
ni1K2ie

2ni !1K2N11G , ni8kiFx1S (
m50

M

anki
2mD tG , ~1.14!

where the constantski andKi satisfy the constraint

K2N11
2 54S )

i51

N

ki
22D H (

i51

N

ki
2F)

jÞ i
~ki

22kj
2!GK2i21K2iJ . ~1.15!

The equationsut5K(u)1G(u,s1) andut5K(u)1G(u,s2), whereK(u) is the right-hand
side of Eq.~1.9! also possess these solutions. For example, the second order evolution equation

ut5uuxx2ux
21u2ux , ~1.16!

which corresponds toK5uxxx13uuxx13ux
213u2ux1(k1

21k2
2)ux , s15s1

~2! ,G52s1x/(2u), ad-
mits the solution

u5]x log~K1e
n11K2e

2n11K3e
n21K4e

2n2!,
~1.17!

n18k1@x1~k1
212k2

2!t#, n28k2@x1~2k1
21k2

2!t#,
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where the constantski andKi satisfy the constraint

k1
2K1K25k2

2K3K4 . ~1.18!

This solution describes the interaction of two solitary waves with arbitrary wave speeds. Similarly
the first order evolution equation

ut5ux
212u2ux1u42au21b, a,b const, ~1.19!

which corresponds toK522uxxx26uuxx26ux
226u2ux12aux , s25s2

~2! with k1 5 @(a
1 Aa224b)/2#1/2, k2 5 @(a 2 Aa224b)/2#1/2,G5s2 , admits the solution

u5]x log~K1e
n11K2e

2n11K3e
n21K4e

2n21K5!,
~1.20!

n18k1~x12k2
2t !, n28k2~x12k1

2t !, K5
284S 1k122 1

k2
2D ~k1

2K1K22k2
2K3K4!,

whereK1 , K2 , K3 , andK4 are arbitrary constants. If all theKi ’s are different from zero this
solution describes the interaction of two solitary waves with fixed wave speeds; however, if say
K150 this solution describes the interaction between one and two solitary waves, see Fig. 1. This
figure corresponds to the real value ofk1 andk2 . For the imaginary value we obtain breather-type
solutions. One such solution is plotted in Fig. 2.

It is remarkable that the potential KdV~1.4! can be obtained from Eq.~1.9! with M51,
a053(k1

21k2
2), a1522, i.e., from

ut522uxxx26uuxx26ux
226u2ux13~k1

21k2
2!ux , ~1.21!

usings5s1
~2! . This means that the two-soliton solution of the potential KdV can be traced back to

the three-shock solution of Eq.~1.21!.
~c! It is natural to ask if the equations considered in~b! have any other special property in

addition to possessing certain exact solutions. We have found that these equations are in general
equivalent to multilinear~i.e., bilinear, trilinear, etc.! equations. In Secs. IV and V we investigate
a particular class of such equations, namely the bilinear ones. We note that these equationscannot
in general be written in a concise form using Hirota’s bilinear operatorsDx andDt . We consider
the equation

ut5 (
i , j>0

a i j @~]x1u! i21u#@~]x1u! j21u#, ~1.22!

FIG. 1. Breaking of solitary waves.
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where we define (]x1u)21u51. This equation, under the Cole–Hopf transformationu5 f x/ f ,
becomes the bilinear equation

f f xt2 f xf t5 (
i , j>0

a i j ~]x
i f !~]x

j f !. ~1.23!

In Sec. IV we find certain exact solutions of Eq.~1.22!. These solutions are associated with
bilinear GCS’s. We find it more convenient to find these solutions directly without using the
associated GCS’s. These solutions are similar to Eqs.~1.11! and~1.12! and~1.13! and~1.14!. For
example, we find that Eq.~1.3!, in addition to possess the two-soliton solution, also admits the
solitary wave solution

u5]x log@K1e
k1@x1~k1

2
1~312g!k2

2
!t#1K2e

2k1@x1~k1
2
1~312g!k2

2
!t#1K3#, ~1.24!

whereK1 andK2 are arbitrary constants and

K3
254S 12

12g

11g

k1
2

k2
2DK1K2 . ~1.25!

In Sec. V we find exact solutions of Eq.~1.22! which are associated with multilinear GCS’s.
For example, we find that the third order evolution equation

ut5a1uxxx14a3uuxx13~2a12a3!ux
216a3u

2ux1a3u
41bu21c, ~1.26!

admits two types of exact solutions:

u5]x log@K1e
k1x1 l1t1K2e

2~k1x1 l1t !1K3e
k2x1 l2t1K4e

2~k2x1 l2t !#, ~1.27!

whereK1 , K2 , andK3 are arbitrary constants,

k15A2b1Ab224a3c

2a3
, k25A2b2Ab224a3c

2a3
,

~1.28!
l 15k1@a1k1

21~3a122a3!k2
2#, l 25k2@~3a122a3!k1

21a1k2
2#, k1

2K1K25k2
2K2K3 ,

FIG. 2. Breather-type solitary waves.
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and

u5]x log@K1e
k1x1 l1t1K2e

2~k1x1 l1t !1K3e
k2x1 l2t1K4e

2~k2x1 l2t !1K5e
k3x1 l3t1K6e

2~k3x1 l3t !#,
~1.29!

whereK1 , K2 , andK5 are arbitrary constants,

k15A2b1Ab224a3c

2a3
, k25A2b2Ab224a3c

2a3
, k352 1

2~k11k2!,

l 15a1~k1
313k1

2k313k1k3
223k3

3!22a3k1
2k2 ,

l 25a1~k2
313k2

2k313k2k3
223k3

3!22a3k1k2
2, l 35k3~4a1k3

222a3k1k2!, ~1.30!

K35
~k12k3!@3a1~k12k3!24a3k1#

2@3a1~k12k2!
2116a3k1k2#

a3~k12k3!
3@3a1~k22k3!24a3k2#

2

K1K2
2

K5
2 ,

K45
a3~k12k3!~k22k3!

3a1~k12k2!
2116a3k1k2

K5
2

K2
,

K65
@3a1~k12k3!24a3k1#@3a1~k12k2!

2116a3k1k2#

a3~k22k3!
2@3a1~k22k3!24a3k2#

K1K2

K5
.

Both of these solutions describe the interaction of two solitary waves.
We also find that the generalized CDGSK-KdV equation

ut5a1~uxxxxx130uxuxxx160ux
3!1a2~uuxxxx23uxuxxx12u2uxxx12uxx

2 110uuxuxx

12u3uxx29ux
316u2ux

21u4ux!1b1~uxxx16ux
2!1b2~uuxx2ux

21u2ux! ~1.31!

admits the exact solution

u5]x log@K1e
k1x1 l1t1K2e

2~k1x1 l1t !1K3e
k2x1 l2t1K4e

2~k2x1 l2t !

1K5e
k3x1 l3t1K6e

2~k3x1 l3t !1K7e
k4x1 l4t1K8e

2~k4x1 l4t !#, ~1.32!

wherek1 , k2 , K1 , K3 , K5 , andK7 are arbitrary constants,

k11k21k31k450, k1
21k2

21k3
21k4

252
2b2
a2

, l i5(
jÞ i

P~ki ,2kj !

ki1kj
,

~1.33!

K25
A23A24A34

AK1
, K45

A13A14A34

AK3
, K65

A12A14A24

AK5
, K85

A12A13A23

AK7

and

P~x,y!5 1
2~x2y!2@a1~x2y!41a2xy~x

22xy1y2!1b1~x2y!21b2xy#,
~1.34!

Ai j5~ki2kj !~ l i2 l j !22P~ki ,kj !, A56S 2
A12A13A14A23A24A34

K1K3K5K7
D 1/2.
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This solution describes the exact interaction of three solitary waves. We note that Eq.~1.31! can be
written in a concise bilinear form. Indeed, usingu5 f x/ f , Eq. ~1.31! becomes

DxDt f • f5a1Dx
6f • f1a2~Dx

4f x• f x1Dx
2f xx• f xx!1b1Dx

4f • f1b2Dx
2f x• f x . ~1.35!

We hope that the rich phenomenology of the interaction of solitary waves described in this
article will motivate the search for appropriate physical circumstances that such nonlinear inter-
actions occur.

II. GENERALIZED CONDITIONAL SYMMETRIES OF THE KdV HIERARCHY

It was found in Ref. 1, using the Ba¨cklund transformation, that the GCS characterizing the
three-soliton solution of the KdV hierarchy is given by

s5~pxx1ab1bc1ca!224~px12abc!v2,
~2.1!

p8vx1v2, a8p2k1
22k2

21k3
2, b8p2k2

22k3
21k1

2, c8p2k3
22k1

21k2
2.

The three-soliton solution of the potential KdV hierarchy is

v5]x log@e2~h11h21h3!1A12A13A23e
h11h21h31A12e

h11h22h31e2~h11h22h3!1A13e
h12h21h3

1e2~h12h21h3!1A23e
2h11h21h31e2~2h11h21h3!#,

~2.2!

h i5kiFx1S (
m50

M

am~2ki !
2mD tG1h i

0, Ai j5S ki2kj
ki1kj

D 2 ~ i , j51,2,3!.

Letting u52vx it follows thatu satisfies the KdV hierarchy~1.7!. We note that under differentia-
tion, the equations50 implies

@pxxx12~a1b1c!px#v2~pxx1ab1bc1ca!vx54pxv
3, ~2.3!

i.e.,

vvxxxx2vxvxxx12v2vxxx110vvxvxx12v3vxx25vx
316v2vx

2

1v4vx22A~vvxx2vx
21v2vx!1Bvx50,

~2.4!
A8k1

21k2
21k3

2, B8k1
41k2

41k3
422k1

2k2
222k1

2k3
222k2

2k3
2.

We can now use Eq.~2.4! to construct nonintegrable equations which possess the three-soliton
solution ~2.2!. For example, the fifth order evolution equation

v t5vxxxxx1~202C!vxvxxx110vxx
2 15~82C!vx

31C@vvxxxx12v2vxxx110vvxvxx12v3vxx

16v2vx
21v4vx22A~vvxx2vx

21v2vx!1Bvx#, A,B,C const

admits Eq.~2.2! with arbitraryk1 and

k25@ 1
2~A2k1

21AB22k1
2A23k1

4!#1/2, k35@ 1
2~A2k1

22AB22k1
2A23k1

4!#1/2,

h i5ki~x116ki
4t !1h i

0.
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Although in principle we can use the Ba¨cklund transformation to derive the GCS character-
izing theN-soliton solution this procedure is quite complicated. In this article we derive these
GCS’s in the form of Eq.~1.8!, using Bargmann’s method:7 We consider the Schro¨dinger spectral
equation

fxx1~u1k2!f50. ~2.5!

Letting f5eikxF, m52ik, we findFxx1mFx1uF50. Assuming thatF5mN1(n51
N anm

N2n, it
follows that

a1x1u50, an21,x1anxx1anu50 ~n51,2,...,N21!, aNxx1aNu50.

Thus

an5~21!n~]x1]x
21u!n21]x

21u ~n51,2,...,N21! ~]x1u]x
21!Nu50.

For example, forN52, we find

u52ax , b52ax1
1
2a

21c1

and

aaxx2
1
2ax

22a2ax1
1
8a

41 1
2c1a

21c250.

The left-hand side of this equation is the GCS~1.6! (a→22u) which characterizes the two-
soliton. ForN53, we find

u52ax , b52ax1
1
2a

21c1 , c5axx2aax2]x
21ax

21 1
6a

31c1a1c2

and

axxx2aaxx2
5
2ax

21 1
2a

2ax1a]x
21ax

22 1
24a

41c1~ax2
1
2a

2!2c2a1c350,

which implies Eq.~2.5! (a→22v).
It is a general conjecture that equations admitting three-soliton solutions with arbitrary wave

numbers are integrable.8 However, using our approach, it follows that this cannot be true. For
example, the three-soliton~2.2! satisfies the ODE:

H )
i , j ,m561

@]x1~21! ik11~21! j k21~21!mk3#J f50,

i.e.,

]x
8f1a1]x

7f1•••1a8f50

for certain constantsai . Since

]x
nf5pn~v ! f , p081, p18v, pn118pnx1vpn ,

we find

p81a1p71•••1a8p050,

which implies that the functionsp0(v), p1(v),...,p8(v) are functional dependent, thus their
Wronskian determinant

331Q. M. Liu and A. S. Fokas: Exact interaction of solitary waves

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



s5W~p0~v !,p1~v !,...,p8~v !!50.

Therefore, all the equations in the form ofv t5vxxx16vx
21G(v,s), whereG satisfiesG(v,0)50,

admit the three-soliton solution~2.2! with arbitrary wave numberski . SinceG(v,s) is essentially
arbitrary, it is doubtful that all these equations are integrable.

III. GENERALIZED CONDITIONAL SYMMETRIES AS REDUCTIONS OF LINEAR ONES

It was shown in Ref. 1 that the Burgers hierarchy

ut5]xF(
i50

M

am~]x1u!muG ~3.1!

admits the GCS:

s5 (
n50

N11

cn~]x1u!n21u. ~3.2!

Associated with thiss is theN-shock solution

u5]x logS (
i51

N11

Kie
kix1 l i tD , l i5 (

m50

M

amki
m11, ~3.3!

wherek1 ,...,kN11 are theN11 roots of the equation(n50
N11cnk

n50. This fact becomes more clear
under the Cole–Hopf transformation

u5~ log f !x . ~3.4!

Under this transformation, Eq.~3.1! becomes a linear evolution equation:

f t5 (
m50

M

am]x
m11f ; ~3.5!

s becomes linear inf :

s5 (
n50

N11

cn]x
nf ; ~3.6!

ands50 implies that

f5 (
i51

N11

Kie
kix1 l i t. ~3.7!

Therefore the GCS’s associated with the multishock solution can be explicitly linearized.
Now we derive some other type of GCS’s. These new GCS’s cannot be linearized. However,

they satisfy bilinear equations and furthermore can be obtained from the previous GCS’s through
the process of reductions. We say that a GCSs1 is a reduction of another GCSs2 iff
s25G(u,s1) for some functionG satisfyingG(u,0)50. This means thats150 impliess250. As
a simple example, we consider the ODE:

f xxxx2a f xx1b f50, ~3.8!
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whose general solution is

f5K1e
k1x1K2e

2k1x1K3e
k2x1K4e

2k2x, ~3.9!

wherek1 andk2 are given by

a5k1
21k2

2, b5k1
2k2

2, ~3.10!

andKi ( i51,2,3,4) are arbitrary and independent tox. A simple reduction can be obtained by
multiplying Eq. ~3.8! by f x and then integrating it. This yields

2 f xf xxx2 f xx
2 2a f x

21b f 250. ~3.11!

Substituting Eq.~3.9! into Eq. ~3.11!, we find the constraint condition

k1
2K1K25k2

2K3K4 .

Equations~3.9! and ~3.11! are compatible with the linear evolution equation

f t5 (
m50

M

am]x
2m11f . ~3.12!

Thus the even Burgers hierarchy~1.9! admits the GCS:

s52uuxx2ux
214u2ux1u42au21b. ~3.13!

We call this GCSs bilinear since the equations50 is equivalent to the bilinear equation~3.11!.
The solution associated to this GCS is the two-soliton

u5]x log@K1e
k1x1 l1t1K2e

2~k1x1 l1t !1K3e
k2x1 l2t1K4e

2~k2x1 l2t !#, ~3.14a!

l i5 (
m50

M

amki
m11 ~ i51,2!, k1

2K1K25k2
2K3K4 . ~3.14b!

As a second example of a reduction, we consider the ODE:

f xxxxx2a f xxx1b f x50, ~3.15!

whose general solution is

f5K1e
k1x1K2e

2k1x1K3e
k2x1K4e

2k2x1K5 , ~3.16!

wherek1 andk2 are given by Eqs.~3.10! andKi ( i51,2,3,4,5) are arbitrary and independent tox.
Multiplying this equation byf and integrating it, we find

2 f f xxxx22 f xf xxx1 f xx
2 2a~2 f f xx2 f x

2!1b f 250. ~3.17!

The constraint condition is

K5
254S 1k122 1

k2
2D ~k1

2K1K22k2
2K3K4!.

Thus the even Burgers hierarchy admits the bilinear GCS:
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s52uxxx16uuxx17ux
218u2ux1u422aux2au21b. ~3.18!

The solution associated to this GCS is

u5]x log@K1e
k1x1 l1t1K2e

2~k1x1 l1t !1K3e
k2x1 l2t1K4e

2~k2x1 l2t !1K5#, ~3.19a!

l i5 (
m50

M

amki
m11 ~ i51,2!, K5

254S 1k122 1

k2
2D ~k1

2K1K22k2
2K3K4!. ~3.19b!

The following theorem generalizes these results.
Theorem 3.1: ~a! The evolution equation

ut5]xF( am~]x1u!2muG1GS u,(
n50

N21

~21!nsn (
i51

2N22n21

~21! i21@~]x1u! i21u#

3@~]x1u!2N22n2 i21u#1~21!NsND ~3.20!

admits the exact solution

u5~ log f !x , f5(
i51

N

~K2i21e
ni1K2ie

2ni !,

~3.21!

ni5kiFx1S ( amki
2mD tG , (

i51

N

ki
2F)

jÞ i
~ki

22kj
2!GK2i21K2i50.

~b! The evolution equation

ut5]xF( am~]x1u!2muG1GS u,(
n50

N21

~21!nsn (
i50

2N22n

~21! i@~]x1u! i21u#

3@~]x1u!2N22n2 i21u#1~21!NsN ~3.22!

admits the exact solution

u5~ log f !x , f5(
i51

N

~K2i21e
ni1K2ie

2ni !1K2N11 ,

~3.23!

ni5kiFx1S ( amki
2mD tG , K2N11

2 54S )
i51

N

ki
22D H (

i51

N

ki
2F)

jÞ i
~ki

22kj
2!GK2i21K2iJ ,

whereG(u,s) is a function ofu ands and their derivatives satisfyingG(u,0)50, andsn are
elementary symmetric polynomials for the set of numbers (k1

2 ,k2
2 ,...,kN

2 ),
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s051, s15(
i51

N

ki
2, s25(

i, j
ki
2kj

2, ..., sN5)
i51

N

ki
2. ~3.24!

Proof: We only prove part~a!; part ~b! can be proved similarly. We need to prove

(
n50

N21

~21!nsn (
i51

2N22n21

~21! i21~]x
i f !~]x

2N22n2 i f !1~21!NsNf
250. ~3.25!

Substituting Eq.~3.21b! into this equation, we find that the sum of the coefficients ofe22np is

K2p21
2 F (

n50

N21

~21!nsn (
i51

2N22n21

~21! i21kp
2N22n1~21!NsNG5K2p21

2 F (
n50

N

~21!nsnkp
2N22nG50

and the sum of the coefficients ofe2np2nq is

2K2p21K2q21F (
n50

N21

~21!nsn (
i51

2N22n21

~21! i21kp
i kq

2N22n2 i1~21!NsNG
52K2p21K2q21F kq

kp2kq
(
n50

N

~21!Nsnkp
2N22n1

kp
kq2kp

(
n50

N

~21!Nsnkq
2N22nG50.

Similarly, we find that the sums of the coefficients ofe2np, e6np6nq are all zeros. The only terms
left come from the multiplication ofenp ande2np for p51,2,...,N, which are

2K2p21K2pF (
n50

N21

~2 i !nsn (
i51

2N22n21

~21! i21kp
i ~2kp!

2N22n2 i1~21!NsNG
52K2p21K2pF2 (

n50

N21

~21!nsn~2N22n21!kp
2N22n1~21!NsNG

524K2p21K2pkp
2F (

n50

N21

~21!nsn~N2n!ki
2N22n22G

524K2p21K2pkp
2F (

n50

N21

~21!nsn
~p!kp

2N22n22G524K2p21K2pkp
2)
qÞp

~kp
22kq

2!,

where we denote bysn
(p) the elementary symmetric polynomials for (k1

2 ,...,kp21
2 ,kp11

2 ,...,kN
2 ),

and have used the relationsn5sn
(p)1kp

2sn21
(p) . Thus Eq.~3.21d! implies Eq.~3.25!.

Remark:More general reductions can be obtained by integrating~(an]x
2n11f )((bn]x

2nf )50.
Example 3.1:The third order equation

ut5a1uxxx1a2uuxx1~6a12a21a3!ux
21~a212a3!u

2ux1a3u
41bu21c ~3.26!

admits the exact solutions~3.14a! and ~3.14c! with

k15A2b1Ab224a3c

2a3
, ~3.27a!
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k25A2b2Ab224a3c

2a3
, ~3.27b!

l 15k1@a1k1
21~3a12a212a3!k2

2#, ~3.27c!

l 25k2@~3a12a212a3!k1
21a1k2

2#. ~3.27d!

Proof: The right-hand side of Eq.~3.26! can be written as

~22a11a222a3!~uxxx13uuxx13ux
213u2ux!1a~3a12a212a3!ux

1F 12u ~3a12a212a3!]x1a3Gs1~b1aa3!u
21c2ba3 ,

wheres is given by Eq.~3.13!. Letting a52b/a3 andb5c/a3 , which imply Eqs.~3.27a! and
~3.27b!, we find that Eq.~3.26! admits two-soliton solutions@Eqs.~3.13a! and ~3.13c!# with

l i5ki@~22a11a222a3!ki
21a~3a12a212a3!# ~ i51,2!.

Example 3.2:The third order equation

ut5a1uxxx1a2uuxx1~6a12a2!ux
21a2u

2ux ~3.28!

admits the exact solutions~3.14a! and ~3.14c! with arbitrary wave numbers and
l 15k1[a1k1

21(3a12a2)k2
2], l 25k2[(3a12a2)k1

21a1k2
2].

Example 3.3:The third order equation

ut5a1uxxx13a1uuxx1~3a11a3!ux
21~3a112a3!u

2ux1a3u
41bu21c ~3.29!

admits the exact solutions~3.19a! and ~3.19c! with

k15A2b1Ab224a3c

2a3
, k25A2b2Ab224a3c

2a3
,

l 15k1~a1k1
212a3k2

2!, l 25k2~2a3k1
21a1k2

2!. ~3.30!

IV. EXACT SOLUTIONS OF BILINEAR EVOLUTION EQUATIONS ASSOCIATED WITH
BILINEAR GENERALIZED CONDITIONAL SYMMETRIES

Although in principle we can construct all the equations which admit exact solutions associ-
ated with bilinear GCS’s from the Burgers-type equations, the resulting equations are quite com-
plicated. Therefore, we look directly for simple equations admitting exact solutions. In particular
we consider the bilinear equation~1.23!. In this section, we search for exact solutions for this
equation directly. Without loss of generality, we assume thata i j5a j i . We define

P~x,y!5( a i j x
iy j , ~4.1!

then Eq.~1.23! can be written as

~]x2]x8!~] t2] t8! f ~x,t ! f ~x8,t8!ux85x,t85t52P~]x ,]x8! f ~x,t ! f ~x8,t8!ux85x,t85t . ~4.2!

336 Q. M. Liu and A. S. Fokas: Exact interaction of solitary waves

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



We look for solutions which are sums of exponentials

f ~x,t !5( Kpe
np, np5kpx1 l pt. ~4.3!

Substituting in Eq.~1.23!, we find that

(
p,q

~kp2kq!~ l p2 l q!KpKqe
np1nq5(

p,q
P~kp ,kq!KpKqe

np1nq,

i.e.,

(
p,q

@~kp2kq!~ l p2 l q!22P~kp ,kq!#KpKqe
np1nq2(

p
P~kp ,kp!Kp

2e2np50. ~4.4!

Therefore, we have the following results:
Theorem 4.1:The bilinear evolution equation~1.22! with evenP, admits the following exact

solutions:

~a!

u5~ log f !x , f5(
i51

n

@K2i21e
kix1 l i t1K2ie

2~kix1 l i t !#, ~4.5!

where

P~ki ,ki !50, l i5
P~ki ,kj !

ki2kj
1
P~ki ,2kj !

ki1kj
~; jÞ i !, (

i51

n

@2ki l i2P~ki ,2ki !#K2i21K2i50,

~4.6!

provided that

P~ki ,kj !

ki2kj
1
P~ki ,2kj !

ki1kj
5
P~ki ,km!

ki2km
1
P~ki ,2km!

ki1km
~; iÞ jÞm!; ~4.7!

~b!

u5~ log f !x , f5(
i51

n

@K2i21e
kix1 l i t1K2ie

2~kix1 l i t !#1K2n11 , ~4.8!

where

P~ki ,ki !50, l i5
2

ki
P~ki ,0!, P~0,0!K2n11

2 52(
i51

n

@4P~ki ,0!2P~ki ,2ki !#K2i21K2i ,

~4.9!

provided that

2

ki
P~ki ,0!5

P~ki ,kj !

ki2kj
1
P~ki ,2kj !

ki1kj
~; iÞ j !. ~4.10!

Applying this theorem to the third order equation~3.26!, we find that this equation admits not only
two-soliton solutions~3.27!, but also the following traveling wave solution:
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u5~ log f !x , f5K1e
kx1 l t1K2e

2~kx1 l t !1K3 ,
~4.11!

k5A2b6Ab224a3c

2a3
, l5k@~a122a3!k

222b#,

K3
254F11

1

c
~23a11a22a3!k

4GK1K2 .

Applying this theorem to the bilinear equation~1.23! with i1 j<6, we obtain the following
results.

Example 4.1:The equation

ut5a1~]x1u!5u1a2u~]x1u!4u1a3@~]x1u!u#@~]x1u!3u#1a4@~]x1u!2u#2

1b1~]x1u!3u1b2u~]x1u!2u1b3@~]x1u!u#21cu21d ~4.12!

admits the two-soliton solution~3.14a! where

~a11a21a31a4!ki
61~b11b21b3!ki

41cki
21d50 ~ i51,2!,

l 15k1@2~a21a31a4!k1
42a4k1

2k2
21~a31a4!k2

42~b21b3!k1
21b3k2

22c#,
~4.13!

l 25k2@2~a21a31a4!k2
42a4k1

2k2
21~a31a4!k1

42~b21b3!k2
21b3k1

22c#,

k1
2@a3k1

21~a31a4!k2
21b3#K1K25k2

2@~a31a4!k1
21a3k2

21b3#K3K4 ,

and the traveling wave solution~4.11! where

~a11a21a31a4!k
61~b11b21b3!k

41ck21d50,

l52k@~a112a212a312a4!k
41~b112b212b3!k

212c#, ~4.14!

K3
252

4k2

d
@~a11a212a31a4!k

41~b11b212b3!k
21c#K1K2 .

Example 4.2:The equation

ut5a1~]x1u!5u2~a11a31a4!u~]x1u!4u1a3@~]x1u!u#@~]x1u!3u#

1a4@~]x1u!2u#21b1~]x1u!3u2~b11b3!u~]x1u!2u1b3@~]x1u!u#2, ~4.15!

whose bilinear form is

DxDt f • f5a1Dx
6f • f2~5a11a31a4!Dx

4f x• f x2~5a113a314a4!

3Dx
2f xx• f xx1b1Dx

4f • f2~3b11b3!Dx
2f x• f x1c1Dx

2f • f , ~4.16!

admits the two-soliton solution~3.14a! with arbitrary wave numbers and
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l 15k1@a1k1
42a4k1

2k2
21~a31a4!k2

41b1k1
21b3k2

2#,

l 25k2@a1k2
42a4k1

2k2
21~a31a4!k1

41b1k2
21b3k1

2#, ~4.17!

k1
2@a3k1

21~a31a4!k2
21b3#K1K25k2

2@~a31a4!k1
21a3k2

21b3#K3K4 .

Example 4.3:The equation

ut5a1~]x1u!5u1a2u~]x1u!4u1a4$22@~]x1u!u#@~]x1u!3u#1@~]x1u!2u#2%

1b1~]x1u!3u1b2u~]x1u!2u1b3@~]x1u!u#21cu21d ~4.18!

with

a11a2Þa4 , ~a11a2!b31~b11b2!a450, ~4.19!

admits the exact solution

u5~ log f !x , ~4.20a!

f5K1e
k1x1 l1t1K2e

2~k1x1 l1t !1K3e
k2x1 l2t1K4e

2~k2x1 l2t !1K5e
k3x1 l3t1K6e

2~k3x1 l3t !,
~4.20b!

~a11a22a4!ki
61~b11b21b3!ki

41cki
21d50 ~ i51,2,3!, ~4.20c!

l 15k1@~2a21a4!k1
41a4k2

2k3
22~b21b3!k1

22c#, ~4.20d!

l 25k2@~2a21a4!k2
41a4k3

2k1
22~b21b3!k2

22c#, ~4.20e!

l 35k3@~2a21a4!k3
41a4k1

2k2
22~b21b3!k3

22c#, ~4.20f!

k1
2

k2
22k3

2 K1K21
k2
2

k3
22k1

2 K3K41
k3
2

k1
22k2

2 K5K650. ~4.20g!

Example 4.4:The equation

ut5uuxxxx22uxuxxx13u2uxxx1uxx
2 18uuxuxx14u3uxx

26ux
316u2ux

212u4ux1b~uuxx2ux
21u2ux!, ~4.21!

whose bilinear form is

DxDt f • f5Dx
4f x• f x12Dx

2f xx• f xx1bDx
2f x• f x , ~4.22!

admit the exact solutions~4.20b! and ~4.20g! with arbitraryk1 andk2 and

k1
21k2

21k3
252b, l 15k1k2

2k3
2, l 25k1

2k2k3
2, l 35k1

2k2
2k3 .

Example 4.5:The equation

ut5a1]x~]x1u!4u1a4$22@~]x1u!u#@~]x1u!3u#1@~]x1u!2u#2%

1b1]x~]x1u!2u1b3@~]x1u!u#21cu21d ~a4Þ0! ~4.23!

admits the exact solution
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u5~ log f !x ,

f5K1e
k1x1 l1t1K2e

2~k1x1 l1t !1K3e
k2x1 l2t1K4e

2~k2x1 l2t !1K5e
k3x1 l3t1K6e

2~k3x1 l3t !1K7 ,

a4ki
62b3ki

42cki
22d50 ~ i51,2,3!,

l 15k1@~a11a4!k1
41a4k2

2k3
21~b12b3!k1

22c#,
~4.24!

l 25k2@~a11a4!k2
41a4k3

2k1
21~b12b3!k2

22c#,

l 35k3@~a11a4!k3
41a4k1

2k2
21~b12b3!k3

22c#,

K7
252

4~k1
22k2

2!~k2
22k3

2!~k3
22k1

2!

k1
2k2

2k3
2 S k1

2

k2
22k3

2 K1K21
k2
2

k3
22k1

2 K3K41
k3
2

k1
22k2

2 K5K6D .
Since the exact solutions we derived in this article are in the form of sums of exponentials, they
describe in general the interaction of traveling waves. Here we use the solution~1.20! of Eq. ~1.19!
to show that these solutions may describe breaking traveling waves. We assume thatk1.k2.0. In
the moving coordinateh5x1at, we get

f5K1e
k1h1~ l12k1a!t1K2e

2k1h1~2 l11k1a!t1K3e
k2h1~ l22k2a!t1K4e

2k2h1~2 l21k2a!t1K5 .

For l 12k1a5 l 22k2a, i.e.,a522k1k2 , we get

f;e2k1k2~k11k2!t~K1e
k1h1K3e

k2h!, u;]x log~K1e
k1h1K3e

k2h!, t→1`,

and

f;e2k1k2~k11k2!t~K2e
2k1h1K4e

2k2h!, u;]x log~K2e
2k1h1K4e

2k2h!, t→2`.

For l 12k1a52 l 21k2a, i.e.,a52k1k2 , we get

f;e2k1k2~2k11k2!t~K2e
2k1h1K3e

k2h!, u;]x log~K2e
2k1h1K3e

k2h!, t→1`,

and

f;e2k1k2~k12k2!t~K1e
k1h1K4e

2k2h!, u;]x log~K1e
k1h1K4e

2k2h!, t→2`.

For l 12k1a50, i.e.,a52k2
2, we get

f;K3e
k2h12k2~k1

2
2k2

2
!t, u;k2 ~K3Þ0!,

f;K1e
k1h1K2e

2k1h1K5 , u;]x log~K1e
k1h1K2e

2k1h1K5! ~K350!,
t→1`,

and

f;K4e
2k2h22k2~k1

2
2k2

2
!t, u;2k2 , ~K4Þ0!,

f;K1e
k1h1K2e

2k1h1K5 , u;]x log~K1e
k1h1K2e

2k1h1K5!, ~K450!,
t→2`.

Therefore, if allKi ( i51,2,3,4) are nonzero, this solution describes the interaction of two solitary
waves and if one of theseKi is zero, then it describes the interaction of one and two solitary
waves. The following general result is valid for exact solutions containing six exponentials.

Lemma 4.1:The exact solution~1.29!, where k1.k2.k3.0, KiÞ0 (i51,2,3,4,5,6), de-
scribes the interaction of three solitary waves ifa12,a13,a23 with one of the following:
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b12,b13,b23, b23,b12,b13, b13,b23,b12,

or if a23,a13,a12 with one of the following:

b12,b23,b13, b13,b12,b23, b23,b13,b12.

The constantsai j andbi j are defined by

ai j5
l i2 l j
ki2kj

, bi j5
l i1 l j
ki1kj

.

If the above conditions are violated, it describes the interaction of two solitary waves. If some of
the Ki ’s equal zero, this solution in general describes breaking of solitary waves. Applying this
result to the solutions~1.29! and ~1.30!, we find that it describes the interaction of two solitary
waves.

V. EXACT SOLUTIONS OF BILINEAR EVOLUTION EQUATIONS ASSOCIATED WITH
MULTILINEAR GENERALIZED CONDITIONAL SYMMETRIES

There exist exact solutions, for example the three-soliton solution~2.2!, which are associated
with multilinear as oppose to bilinear GCS’s. Since these GCS’s are quite complicated, we con-
struct equations admitting this kind of solutions directly. In this section, we consider again Eq.
~1.23!. But now we are interested in the cases that, forf in the form of the sum of exponentials,
the product of two exponentials is identical to the product of some other two exponentials in Eq.
~1.23!. For f with even terms, we have the following cases:

~a! n11n21n31n450, ~b! n11n212n350, ~c! n113n250,

and for f with odd terms, we still have these cases as well as two additional ones:

~d! n11n21n350, ~e! n112n250.

As an example, we consider the solution of Eq.~1.23! with evenP(x,y) in the form of

f5K1e
n11K2e

2n11K3e
n21K4e

2n21K5e
n31K6e

2n3,

with the conditionn11n212n350. We substitute thisf into Eq.~1.23! to find the conditions for
f . The coefficients ofe2n1 ande2n2 yield

P~k1 ,k1!5P~k2 ,k2!50.

The coefficients ofeni2nj ( iÞ j ) yield

l 11 l 25
2P~k1 ,2k2!

k11k2
, l 11 l 35

2P~k1 ,2k3!

k11k3
, l 21 l 35

2P~k2 ,2k3!

k21k3
.

The coefficients ofen11n2 5 e22n3 ande2n12n2 5 e2n3 yield

A12K1K35P~k3 ,k3!K6
2, A12K2K45P~k3 ,k3!K5

2,

where we denote

Ai j5~ki2kj !~ l i2 l j !22P~ki ,kj !.

The coefficients ofen11n3 5 e2n22n3 anden21n3 5 e2n12n2 yield
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A13K1K51A23K4K650, A13K2K61A23K3K550.

The constant terms yield

@2k1l 12P~k1 ,2k1!#K1K21@2k2l 22P~k2 ,2k2!#K3K41@2k3l 32P~k3 ,2k3!#K5K650.

From all these requirements, we get the following result.
Theorem 5.1: SupposeP(x,y) is even and k1 and k2 are two roots of P(x,x),

k352(k11k2)/2, and

P~k1 ,k3!5P~k2 ,2k3!,
~5.1!

@2k3l 32P~k3 ,2k3!#A12A13A235P~k3 ,k3!$@2k1l 12P~k1 ,2k1!#A23
2

1@2k2l 22P~k2 ,2k2!#A13
2 %,

where

Ai j5~k12kj !~ l i2 l j !22P~ki ,kj ! ~ iÞ j !,
~5.2!

l 15
P~k1 ,2k2!

k11k2
1
2P~k1 ,2k3!

k11k3
, l 25

P~k1 ,2k2!

k11k2
1
2P~k2 ,2k3!

k21k3
, l 352

P~k1 ,2k2!

k11k2
.

Then Eq.~1.22! admits the exact solution

u5~ log f !x ,

f5K1e
k1x1 l1t1K2e

2~k1x1 l1t !1K3e
k2x1 l2t1K4e

2~k2x1 l2t !1K5e
k3x1 l3t1K6e

2~k3x1 l3t !,
~5.3!

whereK1 , K2 , andK5 are arbitrary and

K35
A12A13

2

A23
2 P~k3 ,k3!

K1K2
2

K5
2 , K45

P~k3 ,k3!

A12

K5
2

K2
, K652

A12A13

A23P~k3 ,k3!

K1K2

K5
. ~5.4!

Applying this result to Eq.~3.26!, we finda254a3 and the exact solutions~1.29! and~1.30! of Eq.
~1.26!.

We have also found the requirements for Eq.~1.23! to admit solutions with six terms satisfy-
ing n113n250, and seven terms satisfyingn11n212n350 or n11n21n350. In the following
we give one example for each case.

Example 5.1:Equation~4.12! admits the exact solution~5.3! with arbitraryK3 , K4 , andK5 ,
and

K15
k2
22k3

2

3~k1
22k3

2!

K4
2

K3
, K25

k2
22k3

2

3~k1
22k3

2!

K3
2

K4
, K65

64k2
6

k3
2~k1

22k3
2!2

K3K4

K5
,

l 152 1
9k1@a1k1

412~5a115a2111a3112a4!k1
2k3

2227~a312a4!k3
4#, l 252 1

3l 1 . ~5.5!

l 352 1
9k3@~a11a214a316a4!k1

412~5a129a2218a4!k1
2k3

219~a21a3!k3
4#,

for fixed wave numbersk1 , k2 , andk3 with k252k1/3, provided that

b152 10
9 a1k1

22~a11a21a3!k3
2, b252 10

9 a2k1
222a4k3

2,
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b352 1
9~11a3112a4!k1

21~a313a4!k3
2,

c5 1
9~a112a313a4!k1

41 2
9~5a115a21a323a4!k1

2k3
22~a312a4!k3

4, ~5.6!

d52 1
9~a11a212a3!k1

4k3
21~a312a4!k1

2k3
4.

Example 5.2:The equation

ut5a1]x~]x1u!4u1a3@~]x1u!u#@~]x1u!3u#1a4@~]x1u!2u#21@~ 5
3a11a31

4
3a4!k1k2

25a1k3
2#~]x1u!3u1@2~ 5

3a112a31
10
3 a4!k1k215a1k3

2#u~]x1u!2u1@~3a314a4!k1k2

2~ 11
2 a316a4!k3

2#@~]x1u!u#21@a3~k1
2k2

21 3
2k1

2k3
21 3

2k2
2k3

2!1a4~k1
2k2

212k1
2k3

212k2
2k3

2!#u2

2~ 3
2a314a4!k1

2k2
2k3

2 ~5.7!

admits the exact solution

u5~ log f !x ,

f5K1e
k1x1 l1t1K2e

2~k1x1 l1t !1K3e
k2x1 l2t1K4e

2~k2x1 l2t !1K5e
k3x1 l3t1K6e

2~k3x1 l3t !1K7 ,
~5.8!

whereK1 , K2 , andK5 are arbitrary and

l 152 1
12a1k1

3~3k1
2110k1k2115k2

2!1 1
3~3a314a4!k1k2~k1

323k2k3
2!,

l 252 1
12a1k2

3~3k2
2110k1k2115k1

2!1 1
3~3a314a4!k1k2~k2

323k1k3
2!, l 352 1

2~ l 11 l 2!,
~5.9!

K35
16k1

6~k12k3!

k2
2k3

2~k22k3!
3

K1K2
2

K5
2 , K45

k3
2~k12k3!~k22k3!

16k1
2k2

2

K5
2

K2
,

K65
16k1

4

k3
2~k22k3!

2

K1K2

K5
, K756

2~k12k2!
2~k22k3!

k2
2k3

AK1K2.

Example 5.3:The equation

ut5a1]x~]x1u!4u1a3@~]x1u!u#@~]x1u!3u#1a4@~]x1u!2u#2

1b1~]x1u!3u1b2u~]x1u!2u1b3@~]x1u!u#21cu21d ~5.10!

with b356(a31a4)(3b11b2)/(10a113a312a4), admits the exact solution~5.8!, wherek1 , k2 ,
andk3 are the three roots of the cubic polynomial (a31a4)x

31(b11b21b3)x
21cx1d, K1 , K3 ,

andK5 are arbitrary and

l 15k1@a~k1
425k1

2k2k325k2
2k3

2!1b1~k1
22k2k3!#,

l 25k2@a~k2
425k2

2k3k125k3
2k1

2!1b1~k2
22k3k1!#,

l 35k3@a~k3
425k3

2k1k225k1
2k2

2!1b1~k3
22k1k2!#, ~5.11!
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K752F ~k12k2!~k12k3!~k22k3!

k1k2k3
G2/3~K1K3K5!

1/3, K25
1

4 F k2k3
~k12k2!~k12k3!

G2 K7
2

K1
,

K45
1

4 F k1k3
~k12k2!~k22k3!

G2 K7
2

K3
, K65

1

4 F k1k2
~k12k3!~k22k3!

G2 K7
2

K5
.

Solutions of Eq.~1.22! with eight terms may describe the interaction of three solitary waves
providedn11n21n31n450:

Theorem 5.2:SupposeP(x,y) is even andki ( i51,2,3,4) are four roots ofP(x,x) and

k11k21k31k450,

P~k1 ,2k2!5P~k3 ,2k4!, P~k1 ,2k3!5P~k2 ,2k4!, P~k1 ,2k4!5P~k2 ,2k3!,
~5.12!

@2k1l 12P~k1 ,2k1!#A23A24A341@2k2l 22P~k2 ,2k2!#A13A14A34

1@2k3l 32P~k3 ,2k3!#A12A14A241@2k4l 42P~k4 ,2k4!#A12A13A2350,

where

l i5(
jÞ i

P~ki ,2kj !

ki1kj
, Ai j5~ki2kj !~ l i2 l j !22P~ki ,kj !. ~5.13!

Then Eq.~1.22! admits the exact solution

u5~ log f !x ,
~5.14!

f5K1e
k1x1 l1t1K2e

2~k1x1 l1t !1K3e
k2x1 l2t1K4e

2~k2x1 l2t !1K5e
k3x1 l3t1K6e

2~k3x1 l3t !

1K7e
k4x1 l4t1K8e

2~k4x1 l4t !,

whereK1 , K3 , K5 , andK7 are arbitrary and

K25
A23A24A34

AK1
, K45

A13A14A34

AK3
, K65

A12A14A24

AK5
, K85

A12A13A23

AK7
,

~5.15!

A56S 2
A12A13A14A23A24A34

K1K3K5K7
D 1/2.

This solution describes the interaction of three solitary waves. Applying this result to Eq.~4.12!,
we find Eq.~1.31! and its exact solutions~1.32!–~1.34!. We can also consider the cases thatn1 ,
n2 , n3 , and n4 satisfy two linear relations, which can be eithern353n1 , n452n11n2 , or
n353n1 , n454n11n2 , or n352n11n2 , n453n112n2 . The details for these results can be
found in Ref. 9.
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The generalized Maupertuis principle is formulated for systems with the natural
Lagrangian and an indefinite form of the kinetic energy. The generalization is
applied to the theory of gravity and cosmology. For such systems, the metric de-
termined by the kinetic energy form has a Lorentz signature. The theorem is proved
concerning the behavior of trajectories in a neighborhood of the boundary of the
region admissible for motion. This region is not a smooth manifold but turns out to
be a differential space of constant differential dimension. This fact allows us to use
geometric methods analogous to those elaborated for smooth manifolds. It is shown
that singularities of the Jacobi metric are not dangerous for the motion; its trajec-
tories are smooth in the sense of the theory of differential spaces. ©1996 Ameri-
can Institute of Physics.@S0022-2488~95!00412-1#

I. INTRODUCTION

In the present work we study mechanical systems with Lagrange functionsL which do not
depend on time and are of second order in velocities, i.e.,L 5 1

2gabq̇
aq̇b2V(q), where

V:M→R is a potential function. According to the classical Maupertuis principle, trajectories of
the system, with the total energyE5 1

2gabq̇
aq̇b1V(q), are geodesics of the Jacobi metric

ĝab5(E2V)gab . From the energy integral it follows that, for such systems, the motion occurs in
the region for whichE2V>0. If supM(V),E, then the description of motion reduces to the study
of the Riemann geometry. As far as applications to cosmology and the theory of gravity are
concerned, the kinetic energy form is indefinite and the metric has the Lorentz signature. In the
present work we generalize the Maupertuis principle to this case and prove the corresponding
generalized Jacobi theorem. It turns out that the problem of motion is reduced to the behaviour of
geodesics in certain domains of the configuration space. Spaces with the Jacobi metric are spaces
with boundaries at which the metric is degenerate~we use the term ‘‘boundary’’ although in some
cases below it is rather a boundary set than a boundary in a standard sense!. In the case of
positively definite kinetic energy form they are Riemann spaces~sections II and IV!, whereas in
our case they are pseudo-Riemannian spaces~sections III and V!.

First non-trivial results concerning the behaviour of trajectories of classical systems with
degenerate Jacobi metrics were obtained by Seifert.1 However, intensive investigation of the
domains admissible for motion$x P M :V(x)<E% began with Refs. 2 and 3. These works focused
on the existence of closed trajectories with endpoints at the boundary$x P M :E5V%. Kozlov’s
papers3 contain a review of the obtained results. Our motivations are different. We aim at finding
an invariant description of chaos in gauge theories. Our main tool is the study of separation of
nearby geodesics in terms of the normal component of the separation vector satisfying the geo-
desic deviation equation. The present paper is a generalization of the series of previous results.4

a!Electronic mail: szydlo@oa.uj.edu.pl

0022-2488/96/37(1)/346/15/$6.00
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The fact that the Jacobi metric degenerates at the boundary of the domain admissible for
motion creates some difficulties. We show, however, that these difficulties are not dangerous since
the set of the natural parameter values for which the trajectory remains at the boundary is a
zero-measure subset in the set of all boundary points. This allows us to use the geodesic deviation
equation~objections of Burd and Tavakol5 notwithstanding! in spite of the fact that it is singular
at the boundary.

In general, spaces with the Jacobi metric can be regarded as simple generalizations of differ-
entiable manifolds known as differential spaces of constant differential dimension~section VI!.
Differential spaces were first introduced by Sikorski6 and applied to the geometry of space–time
by Gruszczaket al.7 Classical analysis and differential geometry can be naturally done on such
spaces. This allows us to investigate, in the precise manner, the behaviour of trajectories in a
neighbourhood of the boundary of the domain admissible for motion. Such a domain can carry a
Lorentz metric. This fact is important since spaces with Lorentz metrics are needed to describe
systems with the indefinite kinetic energy form. It should be stressed that such mechanical systems
are as important as usual classical mechanical systems. We show that for systems with both
positive definite and indefinite kinetic energy forms hyperregular Lagrange functions can be de-
fined which implies that for these systems the Lagrange and Hamiltonian formulations of mechan-
ics are equivalent~section VII!. This fact puts the Maupertuis principle on the firm base.

There exist alternative approaches to the main problem of the present work. Motion can be
investigated either with the help of Euler–Lagrange equations with the metric taken from the
kinetic energy form~well defined on the entire space!, or with the help of the geodesic equations.
In the latter case, since the Jacobi metric on the boundary is degenerate, and the geodesic equation
breaks down at the boundary, one should develop the theory of motion in terms of structure
tensors with lower indices as it is done in the theory of sub-Riemannian manifolds~which have
found their applications to the steering theory!. However, one has to remember that to apply this
theory to our case, one should generalize it in two directions: to the case of the Lorentz metric and
to the case of manifold with boundary~again, the theory of differential spaces could be used!.

The Maupertuis principle in our approach can be regarded as a method of geometrization of a
broader class of dynamical problems. It can be applied to the Hamiltonian systems with the natural
Lagrange function. For instance, in the classical case~if the kinetic energy form is positive
definite!, this method can be used to the study of dynamics of collisionlessn-body gravitating
system.8 In the non-classical case~the kinetic energy form is indefinite!, the generalized Mauper-
tuis principle can be used to the investigation of dynamical systems in general relativity and
cosmology. In the so-called ADM formulation of general relativity, the dynamics of space–time is
equivalent to the study of non-classical dynamical systems with a suitable potential function which
is determined by the geometry of spacelike sections and the matter content in the non-vacuum
case.9 Another important field of applications of the generalized Maupertuis principle is given by
the dynamics of homogeneous anisotropic cosmological models. In this case, the potential func-
tion is determined by the Lie algebras of the corresponding isometry groups acting on spacelike
sections of space–time.10

It is worthwhile noticing that it would be meaningless to apply our method to a certain class
of problems as, for instance, to the problem of motion of a test particle in the external gravitational
field in general relativity. Such test particles already move along geodesics in a given space–time,
and their dynamics is already geometrized. In this case, the geodesic motion is determined by the
Hamilton function which coincides with the kinetic energy form.

II. CLASSICAL MECHANICS OF SIMPLE MECHANICAL SYSTEMS

In the present section we define classical mechanics of simple mechanical systems, introduce
standard concepts, mainly to establish terminology, and prove the Jacobi theorem for the case of
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simple mechanical systems with an indefinite kinetic energy form. This will allow us to generalize
the Maupertuis principle to the case of mechanical systems within the framework of general
relativity and cosmology.

Definition 1: Classical mechanics of simple mechanical systems is the triple(M,K,V), where
M is a smooth manifold (a configuration space), K is the kinetic energy form defined by the
Riemann metric onM, i.e., K(v)5 1

2g(v,v) for everyv P TxM, x P M, and V is the potential
energy of the system.,8,11

These systems are calledclassicalsince their kinetic energy form is positively definite; they
are calledsimplesince they have a natural Lagrangian.

For a given total energyE of the system theadmissible configuration spaceis given by

M̂E5$xPM:V~x!<E%.

To the total energyE there corresponds the Jacobi metricgE of the simple classical mechani-
cal system (M,K,V) given by

gE~x!:52~E2V~x!!g~x!.

This is a Riemann metric on a configuration spaceME parametrized byE. It is non-degenerate on
ME5$x P M:V(x),E%, and degenerate on the boundary]ME5$x P M:V(x)5E%.

As is well known, one obtains the trajectories of a simple mechanical system by extremalizing
the action

I @C#5E
a

b

L~C~ t !!dt,

whereL(x,v)5 1
2gx(v,v)2V(x). The Maupertuis principle, in its original formulation, consisted

in considering only those trajectories which satisfy the condition

1
2g~Ċ~ t !,Ċ~ t !!5E2V~C~ t !!,

where a dot means differentiation with respect tot.
Historically, the Maupertuis principle preceded a simpler Hamilton principle. The precise

formulation of the Maupertuis principle we owe to Jacobi~see Ref. 2!. After taking into account
the above Maupertuis condition, the first variation of the action assumes the form

dI @C#5dE
a

b

g~Ċ,Ċ!dt5dE
a

b

$2@E2V~C~ t !!#g~Ċ,Ċ!%1/2dt50.

Consequently, physical trajectories of the system with the total energyE are geodesics of the
Jacobi metric 2(E2V)g. This heuristic argumentation can be repeated for the case with the
indefinite kinetic energy form. To this end, it is enough to replace the expression
2(E2V(C(t))) by 2uE2V(C(t))u.

Theorem 1 „Jacobi…: Physical trajectories of a simple classical system(M,K,V) [or
equivalently (M ,g,V)] with the total energy E are geodesics on the Riemann manifold
(ME ,gE).

Since the proof of this theorem is well known we shall present only those of its aspects which
will allow us to generalize the above theorem to the case with the indefinite kinetic energy form
~in section III!.

The proof of the Jacobi theorem consists in considering the Lagrange-Euler equations in a
local map, i.e.,
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d

dt

]L

] ẋi~ t !
5

]L

]xi~ t !
, ~1!

where

L5 1
2g~Ċ~ t !,Ċ~ t !!2V~C~ t !!5 1

2gi j ~x~ t !!ẋi~ t !ẋ j~ t !)2V~x~ t !!. ~2!

After inserting~2! into ~1! we obtain

ẍp~ t !1G rs
p ~x~ t !!ẋr ẋs52gpi] iV~x~ t !!52~gradV!p~x~ t !! ~3!

or, equivalently, the Euler-Lagrange equation

¹ Ċ~ t !Ċ~ t !52gradV~C~ t !!.

Equation~3! with the convention

e2 f52uE2Vu

assumes the form

ẍi~ t !1Ĝjk
i ~x~ t !!ẋ j~ t !ẋk~ t !5

d

dt
lnuE2V~x~ t !!uẋi~ t !, ~4!

where Ĝjk
i are Christofell symbols with respect to the Jacobi metricĝE . We have taken into

account the equality 2d f(Ċ)52ẋi(t)(] i f )x(t) ~for detailed calculations see, Refs. 8, 11!.
Now, we introduce the reparametrizations5s(t) to obtain

S dsdt D
2

xi~s!91
d2s

dt2
xi~s!81S dsdt D

2

Ĝjk
i xj~s!8xk~s!85H F ddt lnuE2V~x~ t !!uGdsdt J xi~s!8, ~5!

where prime denotes differentiation with respect tos. After eliminating the terms with first
derivatives ofxi from equation~5!, we obtain

ds

dt
5kuE2V~x~ t !!u,

wherek is a real number. We choosek52 to guarantee
~1! that s should be a monotonic function of the Newtonian timet,
~2! that the tangent vector to the geodesic should be normed to11, or to21, or that it should

be a null vector, i.e.,

gE~x8,x8!5sgn~E2V!. ~6!

Therefore, if we take the natural parameters for the Jacobi metric, i.e.,

ds

dt
52uE2Vu, ~7!

the trajectory equation assumes the form of the geodesic equation

349Szydl”owski, Heller, and Sasin: Geometry of spaces with the Jacobi metric

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



xi~s!91Ĝjk
i ~x~ t !!xj~s!8xk~s!850, ~8!

which ends the proof. h

III. NON-CLASSICAL MECHANICS OF SIMPLE MECHANICAL SYSTEMS

Definition 2: Non-classical mechanics of simple mechanical systems is the triple(M,K,V)
(or (M ,g,V)! whereM is a smooth manifold (configuration space), K is the indefinite kinetic
energy form, K(v)5 1

2g(v,v), and V is the potential energy of the system.
These systems are called non-classical since their kinetic energy form is indefinite. We assume

that the signature ofg is (1,1, . . . ,1,2).
In the configuration space of simple non-classical mechanical systems we define the following

subsets
~a! DT : the subset of the configuration spaceRN on whichE2V,0,
~b! DS : the subset ofRN on whichE2V.0,
~c! ]D: the subset ofRN on whichV5E.
In the theory of gravity~cosmology included!, especially interesting is the class of simple

mechanical systems withE50, we shall call themzero constraint mechanical systems~ZC-
systems!.

Definition 3: In the tangent space to the configuration spaceRN of simple non-classical
mechanical systems, we define the following classes of vectors

~a! v P TqR
N is timelike if gab(q)v

avb,0,q P M ,
~b! v P TqR

N is spacelike if gab(q)v
avb.0,q P M ,

~c! v P TqR
N is null if gab(q)v

avb50,q P M .
The Hamiltonian constraint (H5E50) implies the following properties of the tangent vector

to any trajectory
~a8! any tangent vector in the domainDT is timelike,
~b8! any tangent vector in the domainDS is spacelike,
~c8! the tangent vector to any trajectory through a pointq0 P ]D is a null vector, i.e., it is

situated on the surface given bygab(q0)j
ajb50.

The above regularities allow us to generalize the Jacobi theorem to the case of non-classical
simple mechanical systems.

Theorem 2: Physical trajectories of a non-classical simple mechanical system with the total
energy E are geodesics on a pseudo-Riemannian manifold without a boundary on which the
Jacobi metric is degenerate.

Proof follows from that for the classical case together with definitions 2 and 3, and their
consequences. h

IV. APPLICATION OF THE MAUPERTUIS PRINCIPLE TO SIMPLE CLASSICAL
MECHANICAL SYSTEMS

We shall distinguish two cases
~1! E.maxM V,
~2! E<maxM V.
Of course, we assume that the potential function has no critical points on$V5E%. In case~1!,

M̂E coincides with the entire configuration space. For instance, the problem of the existence of
periodic solutions to the equations of motion reduces to the problem of finding closed geodesics
on a smooth Riemann manifold. In general, we can use known theorems about the behaviour of
geodesics on Riemann manifolds to solve various problems, but this case is seldom physically
interesting.3

Example 1:Let us consider a torusT2 with a Riemann metric. Among all closed curves with
m rotations in the parallel surface andn rotations in the orthogonal surface, there exists the curve
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of the minimal length. It is a closed geodesic.T2 is a position space of a double plane pendulum.
It follows that, for any integersm andn, there exists a periodic motion of the double pendulum in
which one arm performsm rotations and the other arm performsn rotations.

In case~2!, the boundary]ME is non-empty, and the Jacobi metric has a singularity on
]ME ; lengths of all curves in]ME are equal to zero. In this case, the geometry of the admissible
configuration space is different from that of the ordinary Riemann compact manifolds.~For a
review of the problem of geodesics on spaces with the Jacobi metrics degenerating at the bound-
ary, see Refs. 3, 12.!

The theory of closed geodesics was intensively investigated beginning from the classical
Poincare´ works. These works were a part of the program of the qualitative study of mechanical
systems. The problem of the periodic trajectories was reduced by Poincare´ to the existence of
closed geodesics. Later on it was investigated by many authors.

With the additional assumptions that the configuration spaceME is compact and has the
non-empty boundary]ME , which is an (N21)-dimensional smooth manifold, Kozlov was able
to prove the following propositions3:

~1! Let us consider the motionq(t) of a simple classical mechanical system with the initial
condition att50: q(0)5q0 , q̇(0)5v0 . q(2t) is a solution of the same equations with the initial
conditionq(0)5q0 , q̇(0)52v0 , andq(6t)5q(7t). The proof follows directly from properties
of Lagrange equations and from the theorem on the uniqueness of solutions for the Lagrange
systems with a positive definite kinetic energy form~as far as we know, for systems with an
indefinite kinetic energy form the uniquness was never proved!. The fact thatq(t)5q(2t) is a
simple consequence of the above, i.e., if the trajectoryq(t) reaches the boundary att50 then the
motion, after colliding with the boundary, will continue in the opposite direction along the same
trajectory.

~2! There are no solutions of the motion equations the trajectories of which cross the boundary
at more than two different points. The proof is elementary, and it follows from the fact that if a
trajectory crossed the boundary at three points,A, B, C say, then a pointmmoving fromA would
reachB, and then—in agreement with~1!—it would continue in the opposite direction along the
same trajectory. After a certain period of time it would again reachA, etc.

~3! If trajectories of motion have two common points with the boundary, they can have no
other common points with the boundary, and the solution is periodic.

~4! In the close neighbourhood of the boundary, trajectories of motion are orthogonal to the
boundary. To illustrate this proposition let us consider a simple classical mechanical system with
the Lagrange function

L5 1
2Kd i j q̇

i q̇ j2V~q!,

whereK5const. Since the metricgi j5Kd i j is constant, the Christoffel symbols vanish and the
Euler–Lagrange equations are

q̈52¹V.

Let us consider the trajectory of the system with the initial conditionq0 P ]D, where
q̇(0)50 ~at the boundaryt50!. This trajectory can be presented in the form

x~ t !5x01 ẋ~0!t1 1
2ẍ~0!t21•••5x02

1
2¹V~x0!t

21•••,

that is, for smallt,« ~near the boundary!, the trajectory is determined by the gradient vector
~which is orthogonal to the equipotential surface!. This means that the particle moves orthogonally
to the boundary, forutu,«.

To see how the Maupertuis principle works in simple classical mechanical systems let us
consider a harmonic oscillator.8
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Example 2:In the case of a harmonic oscillator the Lagrange function is

L5
mẋ2

2
1
mv2x2

2

which implies that the metric~of the kinetic energy form! g is equal tom.
The Jacobi metric is

ĝ52SE2
mv2x2

2 Dm,
the domain admissible for motion

DE5H xPR,2
1

v S 2Em D 1/2<x<
1

v S 2Em D 1/2J
and its boundary

]DE5H 2
1

v S 2Em D 1/2, 1v S 2Em D 1/2J ,
the only non-vanishing Christofell symbol

Ĝ11
1 52

mv2x

2E2mv2x2 S dxdsD
2

50.

The normalization condition of the tangent vectoriui251 reduces to

m~2E2mv2x2!S dxdsD
2

51.

This equation defines the natural parameters along the geodesic. After differentiating the above
equation with respect tos one obtains the geodesic equation. Therefore, the geodesic equation
informs us that the norm of the tangent vector is preserved if one changes the parameters. The
solution of the above equation is

x~ t !5
1

v S 2Em D 1/2sin v~ t2t0!,

x~s!arcsinS vAm

2E
xD 1vAm

2E
xS 12

v2m

2E
x2D 1/25v

E
~s2s0!,

and

s~ t !5EF ~ t2t0!1
sin 2v~ t2t0!

m G1s0 .

Of course,s(t) is a strictly monotonic function of the Newtonian timet.
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V. APPLICATIONS OF THE MAUPERTUIS PRINCIPLE TO SIMPLE NON-CLASSICAL
MECHANICAL SYSTEMS

The problem of the dynamics of non-classical simple mechanical systems in the Maupertuis
approach is, in principle, an open question. Kozlov’s theorems should be generalized to the two
following cases:~1! to Lagrange systems with the natural Lagrangian and indefinite form of the
kinetic energy;~2! to non-classical systems with and without a boundary which is not a smooth
manifold.

The following theorem is a counterpart for the pseudoriemannian case of Kozlov’s property 4
~see section IV!:

Theorem 3:A trajectory of a system with the natural Lagrangian and an indefinite form of the
kinetic energy, when passing through the boundary of the region admissible for motion, changes
the sector of the cone which is determined by the kinetic energy form.

Proof follows from the construction of the Maupertuis principle and from properties of the
tangent vector to the trajectory~properties~a8! – ~c8! in section 3!. h

Let us consider the following example. Let the energy function be

E5 1
2khmnẋ

mẋn1V~x!,

where

hmn5diagi21,1,1, . . .i ,k5const.

We assume that the boundary]D of the regionD admissible for the motion is a smooth
manifold. Forx P ]D one hashmnẋ

mẋn50. In the case of a non-classical system,ẋm(0) Þ 0 at the
boundary! We investigate the motion in a small neighbourhood of the boundary. The trajectory
starts in this neighbourhood att50. For small times,utu,« the linear approximation is valid

x~ t !5x01 ẋ0t1•••,

i.e., for utu,«, the motion is determined by the vectorẋ0 which is situated on the cone.
Example 3:As a special case of the above system, let us consider a Hamiltonian system

describing the dynamics of the Friedman cosmological model with the scalar field.13 The Hamil-
tonian of this system is

H5H~p1 ,p2 ,q
1,q2!5 1

2h
mnpmpn1V~q1,q2!,

where

hmn5diag~21,1!,

V~q1,q2!5 1
2@2~q1!21~q2!21m2~q1!2~q2!2#.

The Hamiltonian constraint isH50 which is typical for gravitational systems. Therefore, the
motion takes place in the region given by

2~ q̇1!21~ q̇2!252~q1!21~q2!21m2~q1!2~q2!2522V~q1,q2!.

In this case, the kinetic energy form is indefinite and divides the configuration space into
subdomains.

Kozlov3 claims that some theorems concerning the behaviour of trajectories, in the general
case of the reversible Hamiltonian systems, are valid independently of generalizations~1! and~2!.
For instance, one has
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Theorem 4 „Kozlov…: Let x:(2«,«)→B be a motion of a system with a natural Lagrangian
and x(0) P ]D. Then x(t)5x(2t) for every2«,t,«.

It seems that this theorem cannot be applied to the case with an indefinite kinetic energy form.
If a point hits]D, it moves along the same trajectory in the oppposite direction. In the work by
Hofer and Toland,14 the existence of libration motions has been proved provided thatDT is
compact and convex, and there are no critical points of the potential function on the boundary
]D. The proof uses topological theorems about fixed points of smooth mappings.

Hoffer and Toland14 consider also the existence of periodic motions of non-classical systems
with the Lagrangian (Sẋ,ẋ)/22V(x), where (•,•) is the scalar product inRN, andS is a sym-
metric, non-degenerate, linear operator with one negative eigenvalue. LetS5$y
P Rn:(Sy,y),0% be a cone inRn. If x(•) is a motion with the vanishing total energy starting in
the regionC5$x:V(x).0% then ẋ P S. SinceS consists of two connected components, the
transition from one component to another component can occur only at the boundaryC.

Some theorems, which are true for simple classical mechanical systems~as, for example,
Kozlov’s theorem!, have no counterparts for simple non-classical mechanical systems. This is
illustrated by the following example.

Example 4:A simple non-classical mechanical system in a neighbourhood of the boundary
]DE . Let us consider a system with the natural LagrangianL5 1

2habq̇
aq̇b2V(q), where

hab5diagi1, . . . ,21i is a metric with the Lorentz signature. We synchronize time so thatt50
corresponds to the moment at which the particle is at]DE andV(x0

1 , . . . ,x0
n)50. The tangent

vector to the conehmn(x0
1 , . . . ,x0

n)jmjn50, jm[]xm/]t,, is

xm~ t !5x0
m1t ẋ0

m1
t2

2
ẍ0

m1O~ t2!. ~9!

For a 2-dimensional case, the above equation has the form

x~ t !5x01t ẋ01
t2

2

]V

]x
~x0 ,y0!1O~ t2!,

~10!

y~ t !5y06t ẋ01
t2

2

]V

]y
~x0 ,y0!1O~ t2!,

where (x,y) are Cartesian coordinates of the trajectory,ẋ056 ẏ0 , andV(x0 ,y0)50 on the bound-
ary ]DE .

Expansion~9!, when applied to classical systems, leaves only terms with even exponentsa in
ta. To see this, it is enough to notice that, for a 1-dimensional system, the trajectoryq(t), for
small t, is given by

q~ t !5q02
t2

2

]V

]q
~q0!1O~ t2!. ~11!

Indeed, since the velocity of the particle at the boundary]DE vanishes, expansion~9! leaves the
terms with even exponents oft, for instance:

•••
q~ t !5

d

dt
~ q̈~ t !!5

2]2V

]q2
q̇50,

•••
q~ t !5

]2V

]q2
q̈Þ0

at the boundary]DE .
This is not true as far as non-classical mechanical systems are concerned and, consequently,

Kozlov’s generalization is not correct. This can be seen already in the linear approximation~see
~10!!. However, the assertion remains true that ifq(t) is a solution of the Euler-Lagrange equation
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with the initial conditionq(0)5q0 ,q̇(0)5v0, then q(2t) is also a solution with the initial
conditionq(0)5q0 ,q̇(0)52v0. It is enough to notice that ift→2t, ẋ0→2 ẋ0 , ẏ0→2 ẏ0 , and
x(0)5x0 , y(0)5y0 , one obtains the trajectory (x(t),y(t)). For classical mechanical systems,
from ~11! one hasq(6t)5q(7t).

To study our system in a neighbourhood of]DE let us consider the squared length of the
tangent vectorẋ to the trajectory

i ẋi2[hmn

dxm

dt

dxn

dt
522V~x!. ~12!

By using ~9! in the linear approximation of the potential and the trajectory we obtain:
for a 2-dimensional system

i ẋi2522~x01t ẋ0 ,y06t ẋ0!

522V~x0 ,y0!22tF]V]x ~x0 ,y0!ẋ06
]V

]y
~x0 ,y0!ẋ0G

522V~x0 ,y0!22tF]V]x ~x0 ,y0!ẋ06
]V

]y
~x0 ,y0!ẋ0G , ~13!

and for a multidimensional system

i ẋi2522~x0
11t ẋ0

1 ,x0
21t ẋ0

2 , . . . ,x0
n1t ẋ0

n!522t (
m51

n
]V

]xm ~x0
1 , . . . ,x0

n!ẋ0
m . ~14!

From ~14! it can be seen that, for smallt, the functionf of the squared velocity is an odd
function of t, and it changes the sign when passing through]DE , i.e.,

i ẋi25H f.0 if t,0

f50 if t50.

f,0 if t.0

To describe the behaviour of trajectories further away from the boundary]DE one should take
into account at least second order terms in expansion~9! and ~10!. Taking into account second
order terms in~9! and~10!, in the second order approximation of the functioni ẋi2 ~see~14!!, for
the 1-dimensional and multidimensional cases, we obtain, respectively,

i ẋi2522VS x01t ẋ02
t2

2

]V

]x
~x0 , y0!,y06t ẋ01

t2

2

]V

]y
~x0 , y0! D

522V~x0 ,y0!22tF]V]x ~x0 , y0!ẋ06
]V

]y
~x0 ,y0!ẋ0G2t2F S ]V

]x D 2~x0 , y0!1S ]V

]y D 2~x0 ,y0!
1

]2V

]x2
~x0 , y0!ẋ0

21
]2V

]y2
~x0 ,y0!ẋ0

27
]2V

]x]y
~x0 ,y0!ẋ0

2G1O ~ t2!,
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i ẋi2522t (
m51

n
]V

]xm ~x0
1 , . . . ,x0

n!ẋ0
i 2t2F (

m51

n21

~21!S ]V

]xmD 21S ]V

]xnD 21 ]2V

]xi2
~ ẋ0

i !21
]2V

]xi]xj
ẋ0
i ẋ0

j G .
~15!

From ~15! one can deduce that, after a certain timetcr , the trajectory will return to the boundary.
For then-dimensional case one has

tcr5

(
m51

n
]V

]xm ~x0
1 , . . . ,x0

n!ẋ0
m

(
m51

n21 S ]V

]xmD 22S ]V

]xnD
2

1
]2V

]xi2
~ ẋ0

i !21
]2V

]xi]xj
ẋ0
i ẋ0

j U
~x0
1 , . . . ,x

0
n!PC

, ~16!

whereC is given by(m51
n-1 (xm)22(xn)250.

If tcr exists and is finite, one can similarly compute the next cycle after which the system will
be again at the boundary]DE . Systems are known for which there are infinitely many such
cycles.

VI. SPACES WITH THE JACOBI METRIC AS DIFFERENTIAL SPACES

The existence of a singular boundary in the Maupertuis image of dynamics creates serious
problems with using standard analysis on smooth manifolds. In the present section, we show that
the problem can be dealt with in the framework of the theory of the so-called differential spaces.
The differential space concept generalizes the concept of smooth manifold to such an extent that
every subset ofRn is a differential space~d-space, for short!.6 We shall need only especially nice
~and easy workable! subclass of d-spaces, namely the d-spaces of constant differential dimension.
These d-spaces are similar to smooth manifolds: local calculations are the same as on manifolds;
in particular, tensors can be dealt with locally and globally as on manifolds; the majority of objects
~e.g., external forms! behave in the natural way.

As is well known, a smooth manifold can be defined as a pair (M ,C ) whereC5C`(M ) is a
family of smooth real functions on a setM satisfying the following axioms:~i! C is closed with
respect to localization,~ii ! C is closed with respect to composition with the setC`(R)n of all
smooth functions onRn, i.e., for anyn P N, andv P C`(R)n, f 1 ,...,f n P C implies that
v + ( f 1 ,...,l n) P C , ~iii ! M is locally diffeomorphic toRn. One considers the weakest topology on
M in which the functions ofC are continuous. Axiom~i! requires the following concept. A
function defined onU,M is said to be alocal C -function if for everyp P U there is a neigh-
bourhoodV of p ~in the topology onU induced from that onM ! and a functiong P C such that
f uV5guV. The set of all localC -functions is denoted byC U . One hasC uU,C U , and conse-
quentlyC,C M . If C5C M , the familyC is said to beclosed with respect to localization. If we
drop axiom~iii ! we obtain the definition of a differential space.C is called a differential structure
andM its support.

Most of calculation tools for d-spaces is developed in terms of tangent vectors. A tangent
vector to a d-space (M ,C ) at p P M is a linear mappingv:C→R satisfying the Leibniz rule. The
set of all tangent vectors atp P M is thetangent space Tp(M ,C ) to a d-space (M ,C ) at p P M .

A d-space (M ,C ) is said to be ofconstant differential dimension nif, for everyp P M , there
exist an open neighbourhoodW in the topology ofM and a smooth manifoldM̃ of the minimal
dimensionn such thatC`(M )W5CW , W,M̃ , whereC5(C`(Rn))M is the differential structure
onM .

First we shall prove~1! that the region admissible for motion of any classical or non-classical
system is a d-space of constant differential dimension;~2! that singularities of trajectories of
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classical or non-classical systems are not malicious in the sense that the set of point-instances at
which a particle is at the boundary consists of isolated points~it contains no interval!.

~1! follows from the following:
Lemma 1: If M,Rn satisfies the conditionIntM5M , thendimTpM5n for any pP M .
Proof. Let p P IntM . Since IntM is open inRn, dimTpM5n. Now, letp P M \IntM , i.e.,p is

an accumulation point ofM . Let M̃ be a smooth manifold of the minimal dimensionk such that
there exists an open neighbourhoodW of p andW,M̃ , C`(M̃ )W5CW . Sincep is an accumu-
lation point ofM , WùIntM is a non-empty open subset ofRn. It follows thatM̃ contains an open
subset ofRn, dimM̃5k>n. We know, however, thatk<n, sinceM̃,Rn. h

SinceIntV5V, statement~1! follows.
To prove~2! let us notice that in the classical case trajectories do not go ’’physically’’ through

the boundary]D. Let c:@2«,«#→Rn be a curve passing through]D. For non-classical systems,
the geodesic equation¹̂C8(s)C8(s)50 can be written on the entireRn. The only problem is what
happens at the boundary. Let us define the set of parameters for which the trajectory remains at the
boundary~where the metric is degenerate! by c#5$s:c(s) P ]D%. Two cases should be consid-
ered:~a! c# consists of isolated points,~b! c# contains an interval of parameters.

In case~a!, the trajectory is uniquely defined by the geodesic equation on the setDTøDS and
can be uniquely prolonged to]D. Since @2«,«#\c# is dense in@2«,«#, this follows from
continuity ~moreoverc is a smooth geodesic in the sense of the d-space theory!.

Case~b! implies that the tangent vector to the geodesic has a component which is tangent to
]D along a certain interval. In the case of classical systems it is impossible since the velocity
iui at the boundary is zero. In the non-classical case, trajectories go through the boundary trans-
versally changing the sector of the cone.~Let us notice that if a trajectory remained in]D, for a
certain time interval, the motion would not be determined.!

The singularity problem for non-classical systems is not dangerous since trajectories can be
suitably prolonged through the boundary~and made smooth in the sense of d-space theory!, and
the motion can occur in the entireRn. For classical systems singularities, if they exist, are
physical, and the motion can take place only in a region ofRn limited by the surface of the zero
velocity.

VII. EQUIVALENCE OF LAGRANGE AND HAMILTON FORMULATION OF MECHANICS

In the present section, we shall show, by using methods of differential spaces, that for both
classical and non-classical simple mechanical systems the Lagrange formulation of mechanics is
equivalent to the Hamilton formulation of mechanics. This fact gives a solid base to the Mauper-
tuis principle as it was presented in the preceding sections. Let us begin with simple classical
mechanical systems.

Let M be a differential space of classD0 , andL:TM→R a smooth Lagrange function. We
define a fibre derivativeL:TM→T*M , whereT*M is the space of covectors, by

^L~u!,v&5
d

dt U
t50

~ t°L~u1tv !!

for u,v P TM such thatp(u)5p(v), wherep:TM→M is the canonical projection of the tangent
bundle. In the literature, fibre derivative is known as Legendre transformation~see, for instance,
Ref. 15!. In the case of simple classical mechanical systems, Lagrange functionL is said to be
hyperregular ifL is a global diffeomorphism. It is evident that in such a case the Lagrange
formulation of mechanics is equivalent to that of Hamilton. A mechanical system (M,K,V) with
the Lagrange functionL5K2V + p is an example of a mechanical system with the hyperregular
Lagrange function. We shall show even more, namely that a simple classical mechanical system
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with a Jacobi metric on its configuration space with boundary is a mechanical system the Lagrange
function of which is hyperregular~provided that tangent and cotangent spaces are suitably cho-
sen!.

Let, as before,M̄E5$x P M :V(x)<E% be the admissible configuration space with the Jacobi
metric gE such thatgEu]M̄E50. Let us consider the Lagrange function ofgE , LE :TM̄E→R,
given byLE(v)5

1
2gE(v,v). Physically, it describes the motion of a free particle on the space with

boundary carrying the Jacobi metric.
Now, we introduce~after Spallek16! the concept of locally integrable vector field. A vector

field X P X (M̄E) is said to be locally integrable if, for any pointp P M̄E , there locally exists an
integral curve ofX. For smooth manifolds every smooth vector field is locally integrable. How-
ever, for spaces with singularities this need not be the case. Spallek16 has demonstrated that, in the
case of a differential space of constant dimension having the formMEø]ME , locally integrable
vector fields are tangent to the boundary]ME .

Following Spallek’s suggestion17 that to every problem on spaces with singularities one
should choose a suitable concept of tangent space~and that of differentiation!, we shall consider
the submoduleX̃ i(M̄E),X i(M̄E) of locally integrable vector fields onM̄E which vanish at the
boundary]M̄E . Let us notice that the fieldsX̃ i(M̄E) have a physical meaning. With this choice
we are able to prove the following theorem

Theorem 5: Legendre transformationL:TiM̄E→T* i M̄ E , where TiM̄E5$v P TM̄E :'X
P X̃ i(M̄E),X(p(v))5v% and T* i M̄ E5L(TiM̄E) is a cotangent space with the natural differen-
tial structure induced byL, is a global diffeomorphism.

Proof: It can be easily seen thatTp
i M̄E5$0% for any p P ]ME . Of course,L is a global

diffeomorphism overME which implies that it is an isomorphism on fibres. Over boundary points
the zero fibre is transformed into the zero fibre~the zero vector into the zero vector! which ends
the proof. h

The equivalence of the Lagrange and Hamilton formulations of mechanics following from the
hyperregularity of the Lagrange function is a strong conclusion which removes all objections
against the Maupertuis principle.18

In particular, it is clear that the existence of the boundary]ME does not violate the precise
formulation of the Maupertuis principle. To see what exactly happens on the boundary let us
consider a more general situation of a configuration spaceM with singularities~which can be
organized into a kind of boundary! such that there exist a differentiable manifoldM̃ and a
surjectionp̃:M̃→M with the property that, for regular~non-singular! points ofM , p̃ is a cover-
ing. Any Lagrange functionL:TM→R determines a Lagrange functionL̃5L + p̃ on the tangent
bundleTM̃. Projections of the tangent vector fields toM̃ which are compatible with the mapping
p̃ ~i.e., such that for anyp,q P M̃ ,p̃(p)5p̃(q) impliesp̃* (X(p))5p̃* (X(q)), X P X (M̄ )) are
vector fields locally integrable onM . The Lagrange formalism onM is fully determined by the
Lagrange formalism onM̃ ~with the LagrangianL̃). This implies that the singularities in the
configuration spaceM are fully analyzable. As a simple example one could consider the configu-
ration spaceM \]ME of a harmonic oscillator, whereM \]ME is an interval~without the endpoints!
which could be covered by a circleM̃ with the natural projectionp̃:M̃→M .

Now, let us consider a non-classical simple mechanical system (M ,K,V). Let gE52uE2Vu
be the Jacobi metric withg being the Lorentz metricK(v)5 1

2g(v,v). The Jacobi metricgE is
degenerate on the setJ5$x:V(x)5E%, J,M , which is a boundary set.

Larsen19 has investigated the behaviour of geodesics on spaces with degenerate semi-
Riemannian metrics. His theorem 4.1 concerns geodesics of a conformally singular metric~with a
smooth conformal factor!. He shows that there exists a geodesic passing through the boundary set
J with the zero velocity in a locally unique way, i.e., ifg1 and g2 are geodesics such that
domg15domg2 Þ B, then there exists an interval@2t,t# such thatg1@2t,t#5g2@2t,t#. By
applying methods of differential spaces to the case with a non-continuous conformal factor in the
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metric and by adapting Larsen’s theorem to our case, one can easily see the existence and the local
uniqueness of a piecewise smooth geodesic passing through the boundary setJ. ~Details of all
constructions sketched in the present section will be published in a forthcoming paper.!

Now, we shall describe the local behaviour of geodesics~of the metricgE) in a neighbourhood
of the boundary setJ for pointsp P M at which (dV)(p) Þ 0. There exist a neighbourhoodU of
p such thatJùU is a hypersurface inU, and a mapx ~with a suitably shrinked domainDx) such
thatJùDx is a subset of the surface of the coordinate system axes, with respect to whichDx is
symmetric. Therefore, we have reduced the considered case to a smooth manifold symmetric with
respect to the boundary setJ on which the Jacobi metric vanishes.

Let Z2 be an Abelian group acting as a reflexion group on this manifold with respect toJ. A
quotient half-spaceRn/Z2 is a manifold with boundary~symmetric points are identified!. On
Rn/Z2 the Jacobi metricgE

152(E2V)g is defined. A similar theorem as for simple classical
mechanical systems can be proved.

Theorem 6:The Lagrange function L:T̃(Rn/Z2)→R given by L(v)5 1
2gE

1(v,v) is hyperregu-
lar.

Therefore, the Maupertuis principle finds its strict formulation also for simple non-classical
mechanical systems. Analogous theorem to the above one can also be proved for the Jacobi metric
ḡE522(E2V)g. In such a case, the conditiong(2t)5g(t), found by Kozlov,3 is valid. It is
also evident that a geodesic passing through the boundary setJ changes the sector of the null-
cone.

We should notice that the mechanics on the quotient spaceRn/Z2 is ap-invariant projection
of the mechanics onRn, wherep:Rn→Rn/Z2 is the canonical projection. In a forthcoming paper
we shall investigate relationships between mechanics on a~quotient! space with singularities and
mechanics on the covering space.

VIII. CONCLUDING REMARKS

In the present work we focused on two problems:~1! a generalization of the Maupertuis
principle to the case with the natural Lagrangian and an indefinite kinetic energy form~non-
classical simple mechanical systems!; ~2! demonstration that the region admissible for the motion
of a system with the Jacobi metric is a differential space of constant differential dimension. Owing
to the last property the analysis usually carried out on smooth manifolds can be done on more
general spaces including some sorts of singularities. In the framework of such spaces, the behav-
iour of trajectories in a close neighbourhood of singular boundaries becomes a workable problem.
Differentiable space methods allowed us also to show that for both classical and non-classical
simple mechanical systems the Lagrange and Hamilton formulations of mechanics are equivalent.

The theory of non-classical simple mechanical systems is stillin statu nascendi, and the
situation in this field is analogous to that which once compelled mathematicians to investigate
spaces with Lorentz metrics. We hope that first steps in the correct direction have been made in the
present work.

Simple non-classical mechanical systems~ZC-systems! have natural applications in cosmol-
ogy and the gravity theory.4 In such systems the indefinite character of the kinetic energy form~in
the Hamiltonian formulation! is a relic of the Lorentz structure of space–time. Non-classical
systems can also be applied to the investigation of deterministic chaos or, more precisely, to the
investigation of separation of nearby trajectories, basing on the equation of the geodesic deviation.
This is important as far as the invariant definition of deterministic chaos in gauge theories is
concerned.4,5
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Induced matter theory and embeddings in Riemann flat
space–times
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A class of five-dimensional space-times that contain four-dimensional hypersur-
faces whose intrinsic metrics are of cosmological interest is investigated. First, the
five-dimensional space–time is assumed to be Riemann flat—the problem of deter-
mining the intrinsic metrics of the four-dimensional hypersurfaces then becomes a
problem of embedding in flat space–time. Second, the Riemann flat solutions are
used as a starting point to find solutions to Einstein’s vacuum field equations in five
dimensions that are not Riemann flat. In particular, a new general class of five-
dimensional vacuum solutions is found. ©1996 American Institute of Physics.
@S0022-2488~96!04201-8#

I. INTRODUCTION

Recently, several authors have been interested in Einstein’s theory of general relativity in five
dimensions1–7 ~higher-dimensional theories have also been considered8,9!. In these studies the
higher-dimensional field equations were taken to be the vacuum Einstein field equations, and the
primary goal in several1–3,6,7 of these studies was to determine whether the four-dimensional
properties of matter could be interpreted as being purely geometrical in origin10—the embedding
of the four-dimensional space–time in the vacuum five-dimensional space-time was interpreted as
producing an effective four-dimensional stress–energy tensor.

Curiously, Mc Manus7 recently observed that a class of five-dimensional vacuum~i.e., Ricci
flat! solutions of Ponce de Leon6 were, in fact, completely~Riemann! flat, that is to say that the
five-dimensional Riemann tensor associated with these metrics was identically zero. Thus, one is
immediately prompted to ask the following question: are any of the other known five-dimensional
Ricci flat solutions also Riemann flat? Of course, it is not very instructive to just simply system-
atically calculate the Riemann tensor for the known five-dimensional vacuum solutions to deter-
mine if the Riemann tensor vanishes. It would be far more beneficial if we could find some general
results. Consequently, we now pose the following question: what is the class of Lorentzian four-
metrics that can be embedded in five-dimensional Minkowski space-time? In theory, the general
solution to this problem is known.11 For example, consider the following class of Riemann flat
five-metrics:

ds25gab~xg,y!dxa dxb1f2~xg,y!dy2. ~1!

where the intrinsic metric,gab(x
g,y)uy5const, of the four-dimensional hypersurfacesy5constant is

Lorentzian in signature. The fact that the full five-dimensional metric is flat imposes necessary and
sufficient conditions on the Riemann tensor,Rabgd , of the intrinsic metric and on the extrinsic
curvature,Kab , of the hypersurfacey5const, namely that

Rabgd5KagKbd2KadKbg , ~2!

a!Current address: Finance Division, Faculty of Commerce & Business Administration. University of British Columbia,
Vancouver, British Columbia, V6T 1Z2, Canada.
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Kab;g5Kag;b , ~3!

where here ‘‘;’’ denotes covariant differentiation with respect to the intrinsic metricgab . ~In
general,11 the four-metric 4ds25gab(x

g)dxa dxb can be embedded in a five-dimensional
Riemann flat space–time if and only if there exists a symmetric tensorVab that satisfies
4Rabgd52Va@gVd#b andVa@b;g#50.! Furthermore, the extrinsic curvature of the surfacey5const is
given by

Kab5
1

2f

]

]y
~gab!, ~4!

for the above metric. Unfortunately, the above equations are too complex for an explicit coordinate
representation for the metric functionsgab andf to be found, in general.

In this paper, we consider the following class of metrics:

ds252e2F~ t,r ,y! dt21e2G~ t,r ,y!~dr21r 2 dV2!1e2K~ t,r ,y! dy2, ~5!

wheredV2[du21sin2~u!df2. Various forms of the metric~5! have been extensively investigated
in the literature1,2,6,7—the vacuum Einstein field equations,Ri j50, have been solved for certain
subclasses of the metric~5!. Although several metrics of the form~5! have been noted to be
Riemann flat,7,13most notably the Ponce de Leon solutions,6 the general form of the Riemann flat
solutions has not been found.

Therefore, we wish to determine all metrics of the form~5! that are Riemann flat. In other
words, we want to find all solutions of the equationsRi jkl50 where the metric is given by~5!. In
principle, the problem is trivial since locally all solutions are Minkowski space-time; however, one
has to implement various nontrivial diffeomorphisms to get the solution into this form. However,
we shall only permit diffeomorphisms of the formxa→ x̄a(xb) andy→ ȳ(y). Thus, by restricting
the permissible diffeomorphisms we ensure that the four-dimensional intrinsic metricsds2

5 gab(x
g,y)uy5constdx

a dxb are not necessarily Riemann flat, even though the five-dimensional
metrics are Riemann flat. In technical language, we confine our analysis to four-dimensional
metrics of embedding classp51 ~see Refs. 8 and 12 for further discussions on the embedding
problem!.

If we calculate the extrinsic curvature,Kab , for the metric~5! using ~4!, then we find that it
has the form

Kab5Avavb1Bgab , ~6!

wheregabv
avb521. Equation~2! can then be employed to show that the stress–energy tensor

associated with the intrinsic metricgab has the form of a perfect fluid, namely
Tab5(m1P)vavb1Pgab . Now, standard results of embedding theory12,14,15 tell us about the
allowable perfect fluid solutions. In the casem1PÞ0, the solution belongs to either the class of
generalized interior Schwarzschild solutions if the expansion of the fluid velocity,va , is zero, or
the class of generalized Friedmann cosmological models if the fluid expansion is nonzero. In the
case thatm1P50, the solutions are de Sitter space–times~that is, space–times of constant
curvature!. All of these spherically symmetric solutions are conformally flat.

The purpose of our paper is twofold; not only do we wish to find the explicit form for all the
Riemann flat solutions of the form~5!, but we also wish to find new Ricci flat solutions. In
particular, we wish to employ our knowledge of the Riemann flat solutions as an aid to construct
new Ricci flat solutions.

The paper is organized as follows: In Sec. II, we analyze the Riemann flat equations for the
metric ~5!, and both classify and find all the five-dimensional solutions explicitly. In Sec. III, we
discuss the solutions found in Sec. II, paying particular attention to their interpretation in the
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context of induced matter theory. Finally, in Sec. IV, we use the Riemann flat solutions as an aid
to construct some Ricci flat solutions of the metric~5! that are not Riemann flat.

II. FIELD EQUATIONS

We shall now proceed to solve the equationsRi jkl50 for the metric~5!. However, we will
restrict the allowable diffeomorphisms to diffeomorphisms of the formxa→ x̄a(xb), y→ ȳ(y). We
start our analysis by noting that the pivotal equations areRu

tru50 andRu
ryu50, which yield

Grt5GtFr . ~7!

Gry5GyKr , ~8!

respectively.~The complete set of the components of the Riemann tensor are listed in the Appen-
dix.! Thus, we immediately observe that we can divide the solutions into four classes:~1!
G5G(r ); ~2! G5G(r ,y) with GyÞ0 and exp(K)5Gy/a; ~3! G5G(r ,t) with GtÞ0 and
exp(F)5Gt/b; and ~4! G5G(t,r ,y) with GtGyÞ0, and exp(K)5Gy/a and exp(F)5Gt/b,
where botha andb are nonzero functions oft andy only.

A. G5G(r )

The equationRu
rr u50 yields the differential equation

rGrr1Gr50, ~9!

which can easily be solved to get

G5c1 ln~r !1c2 , ~10!

wherec1 andc2 are arbitrary constants. The field equationRf
uuf50 now reduces to

c1~c212!50. ~11!

We can takec15c250 without loss of generality.~The solutionsc150 andc2522 are related by
the transformationr→1/r .! EquationsRu

ttu50 andRu
yyu50 imply that the functionsF andK are

both independent of the variabler . Thus, the metric may be written as

ds252A2~ t,y!dt21dr21r 2 dV21B2~ t,y!dy2, ~12!

where the metric functionsA andB must satisfy the following equation:

]

]y S 1B ]A

]y D5
]

]t S 1A ]B

]t D . ~13!

Equation~13! follows directly from the equationRt
yty50. ~The remaining equationsRi

jkl50 are
trivially satisfied.!

B. Gt50, GyÞ0

For this class of solutions, we have that the metric functionK satisfies

eK5Gy /a~ t,y!, ~14!

whereaÞ0. The equationRr
tyr50 implies thata5(y). The equationRu

rr u50 then yields the
following differential equation forG:
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Grr1
1

r
Gr1a2e2G50, ~15!

which can easily be solved to obtain the solution

G5
1

2
lnFa2ba2

r a22

~11brc!2G , ~16!

wherea andb are arbitrary functions ofy only. Furthermore, the equationRf
uuf50 reduces to

Gr
21

2

r
Gr1a2e2G50. ~17!

Inserting the solution~16! for G into ~17! implies thata254 ~we can takea52 without loss of
generality!. Thus, the solution forG is

G5
1

2
lnF4b~y!

a2~y!

1

„11b~y!r 2…2G . ~18!

Note that we can write the solution forG in the above form, since the equationRu
rr u50 implies

thatGrÞ0 if Gt50 andGyÞ0.
For simplicity, we introduce the functionA defined by

A5eF. ~19!

The equationsRt
rtr50 andRu

ttu50 now reduce to

1

a2 Gy~Arr2GrAr !1Aye
2G50. ~20!

1

a2 GySGr1
1

r DAr1Aye
2G50. ~21!

respectively. Subtracting~21! from ~20! yields

Arr22ArGr2
1

r
Ar50, ~22!

which can be integrated to obtain

Ar5re2Gl ~ t,y!, ~23!

wherel (t,y) is an arbitrary function. Furthermore, Eq.~21! implies that

Ay52
l

a2 Gy~11rGr !. ~24!

With the aid of Eq.~18!, Eq. ~23! can now be integrated to yield

A52
2l

a2

1

11br2
1m~ t,y!. ~25!

wherem(t,y) is an arbitrary function. In addition, the equationRt
rty50 reduces to
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GrAry2Gy
2Ar2AyGry50, ~26!

which can be integrated to obtain

Ay

Gy
5A1n~ t,y!, ~27!

wheren(t,y) is an arbitrary function. If we divide Eq.~24! by Gy and compare the result to~27!,
then we find thatA must be of the form

A52
l

a2

12br2

11br2
2n. ~28!

If we combine Eqs.~25! and ~28!, then we obtain that the functionA may be written as

A5
p~ t,y!1b~y!q~ t,y!r 2

11b~y!r 2
. ~29!

wherep5n2 l /a2 and q5n1 l /a2. In addition, the above solution must also satisfy Eq.~24!.
Inserting the above solution into Eq.~24!, we find that Eq.~24! becomes a power series inr . Thus,
equating the various coefficients ofr to zero, we find the following equations:

~p2q!S byb 22
ay

a D54py , ~30!

~p2q!by52~qy1py!, ~31!

~p2q!S byb 12
ay

a D54qy . ~32!

Equation~31! is redundant since it can be obtained by adding Eqs.~30! and ~32! together. Sub-
tracting Eq.~32! from Eq. ~30!, we find that

2~py2qy!1~p2q!
ay

a
50, ~33!

which can be integrated to yield the solutions

p5u~ t !F 2a 1E dy

a

by
b G1v~ t !, ~34!

q5u~ t !F2
2

a
1E dy

a

by
b G1v~ t !, ~35!

whereu andv are arbitrary functions. The remaining equationsRi
jkl50 are trivially satisfied.

Thus, if we make the coordinate transformationY51
2ln b(y) and introduce the functiona5

2ln a, then the metric can be written as

ds252A2 dt21
4e2~a1Y!

~11e2Yr 2!2
~dr21r 2 dV2!1

e2a

~11e2Yr 2!2
@~aY11!1~aY21!e2Yr 2#2 dY2,

~36!
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wherea5a(Y) is an arbitrary function andA can be set to

A5H 1 @ if u~ t !50#,

v~ t !12e2a
12e2Yr 2

11e2Yr 2
12E ea dY @ if u~ t !Þ0#,

~37!

wherev(t) is an arbitrary function.

C. Gy50, GtÞ0

This class is very similar to the previous class. Thus, we forgo writing down the steps of the
calculation since they are, in essence, the same as those employed in the derivation of the class~2!
solutions. We merely quote the results: there exist coordinates such that the class~3! solutions may
be written as

ds252
e2a

~12e2Tr 2!2
@~aT11!2~aT21!e2Tr 2#2 dT21

4e2~a1T!

~12e2Tr 2!2
~dr21r 2 dV2!1B2 dy2,

~38!

wherea5a(T) is an arbitrary function andB can be set equal to

B5H 1 ~ if Br50!,

v~y!12e2a
11e2Tr 2

12e2Tr 2
12E ea dT ~ if BrÞ0!,

~39!

wherev(y) is an arbitrary function.

D. GtGyÞ0

In this case, the functionsF andK satisfy the relationships

eK5Gy /a~ t,y!, ~40!

eF5Gt /b~ t,y!. ~41!

Now, the equationsRu
rr u50 andRf

uuf50 yield

Grr1
1

r
Gr1ae2G50, ~42!

Gr
21

2

r
Gr1ae2G50, ~43!

respectively, where

a[a22b2. ~44!

The above equations can be solved to obtain the solution

G5
1

2
lnF 4b2

~a1b2r 2!2G , ~45!

whereb5b(t,y) is an arbitrary function. Furthermore, the equationRt
rty50 reduces to
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Gyt5GtGy1
ay

a
Gt1

b t

b
Gy . ~46!

Using the solution~45!, we can expand the above equation in a power series inr . We find that the
following two equations must be satisfied:

bty5~] t ln b!by1~]y ln a!bt , ~47!

] tS ay

b D1
1

b
@a~] t ln b!~]y ln b!2ay] t ln b2a t]y ln b#

5]yS b t

a D1
1

a
@b~] t ln b!~]y ln b!2by] t ln b2b t]y ln b#.

~48!

~Actually, there is a third equation, but it is automatically satisfied on account of the first two
equations.!

The remaining equationsRi
jkl50 can all be shown to be trivially satisfied. First, using Eq.

~46! we find that the equationRt
rtr50 can be written as

]

]r
@2Grr2Gr

21ae2G#50, ~49!

which is trivially satisfied due to~45!. Similarly, the equationRr
yyr50 reduces to

]

]y
@2Grr2Gr

21ae2G#50. ~50!

Both the equationsRt
rty50 andRy

try50 reduce to

]

]r FGyt2GtGy2
ay

a
Gt2

b t

b
GyG50 ~51!

which is trivially satisfied because of Eq.~46!. Furthermore, using Eq.~46!, the equationsRu
ttu50

andRy
uuy50 can be shown to reduce to

rGrtr5Grt~112rGr !, ~52!

rGryr5Gry~112rGr !, ~53!

respectively, which again are trivially satisfied on account of Eq.~45!. Finally, after a long calcu-
lation employing Eqs.~42!–~48!, the equationRt

yty50 can be shown to be trivially satisfied.
In summary, the metric is given by

ds252S Gt

b~ t,y! D
2

dt21e2G~dr21r 2 dV2!1S Gy

a~ t,y! D
2

dy2, ~54!

where

e2G[
4b~ t,y!2

„a22b21b~ t,y!2r 2…2
, ~55!

anda, b andb satisfy ~47!–~48!.
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III. DISCUSSION

We should, of course, determine where the known Riemann flat solutions of the form~5! fit
into the above classification scheme. As was noted by Mc Manus,7 the following three Ponce de
Leon metrics6 are all Riemann flat:

ds252y2 dt21t2/gy2/~12g!@dr21r2 dV2#1S g

g21D
2

t2 dy2, ~56!

ds252y2 dt21y2e2t@dr21r 2 dV2#1dy2, ~57!

ds252dt21t2e2y@dr21r 2 dV2#1t2 dy2, ~58!

whereg~Þ0,1! is an arbitrary constant. Clearly, all the above metrics belong to class~4!, since
G5G(t,y) with GtGyÞ0. In particular, the above solutions belong to the special casea50 @that
is, a5b—see Eqs.~40!–~42!#. However, the solution~43! appears to depend onr ; this depen-
dency can be removed by the coordinate transformationr→ r̄52/r . Also note that in this special
case Eq.~46! is automatically satisfied. Class~4! solutions withaÞb are known to exist. For
instance, the metric

ds252dt21
1

4
t2~ey2ke2y!2

dr21r 2 dV2

@11~k/4!r 2#2
1t2 dy2, ~59!

given in Ref. 7, is Riemann flat for all values of the constantk.
In addition, we recall that metrics of the form~5! were originally investigated in the context

of induced matter theory.2 In induced matter theory, the field equations are usually taken to be the
the vacuum Einstein field equations in 41n-dimensional space–time.1–3However, for our analysis
we wish to examine the consequences of taking the field equations to be the five-dimensional
Riemann flat equations.~Of course, we are immediately neglecting a whole variety of well-known
solutions of Einstein’s field equations, most notably the Schwarzschild solution that can, at best,
be embedded in six-dimensional Minkowski space-time.! Matter is introduced into the theory by
considering the embedding of the physical four-dimensional space–time in the full five-
dimensional space–time. Basically, the physically relevant metric is taken to be the intrinsic
metric on the four-dimensional slicesy5const.

The class~1! and~3! solutions, namely~12! and~37!–~38!, induce Riemann flat four-metrics
on the slicesy5const, and are thus physically uninteresting within the context of induced matter
theory. The class~2! solutions induce conformally flat four-metrics. The class~2! solutions with
A51 @see Eqs.~36!–~37!# represent static Friedman–Robertson–Walker metrics, such that the
three-spacet5const has positive constant curvature. The class~2! solutions withAÞ1 can be
interpreted as perfect fluid models with constant density,

m5
3

e2a
, ~60!

and non-constant pressure,

P52
1

e2a
2

4

e2a F21e22aV~ t !
11e2yr 2

12e2yr 2G
21

, ~61!

whereV(t)[v(t)12* t exp[a(y)]dy. The intrinsic metric of these class~2! solutions ~on the
hypersurfaceY5const!,
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ds252H v~ t !12e2a
12e2Yr 2

11e2Yr 2
12E ea dYJ 2dt21 4e2~a1Y!

~11e2Yr 2!2
~dr21r 2 dV2!. ~62!

belongs to the class of generalized interior Schwarzschild solutions.12,14The diffeomorphism~with
Y5const!,

R5
2e2aeY

11e2Yr 2
, ~63!

reduces the above metric to the standard form,

ds252$v~ t !1A12C2R2%2 dt21
dR2

12C2R2 1R2 dV2, ~64!

whereC( 5 exp@ 2 a(Y)#Y5const) is an arbitrary constant. We note that a specific embedding for the
interior Schwarzschild solution,v(t)5const, into a six-dimensional Riemann flat solution is
known ~see Ref. 16!. However, to our knowledge, the metric~36! with AÞ1 @see~37!# is the first
time that an explicit embedding for the interior Schwarzschild solution into five-dimensional
Riemann flat space–time has appeared in the literature.

The class~4! solutions also induce conformally flat four-metrics, and can be interpreted as
perfect fluid models whose associated density and pressure are

m53a2, ~65!

P523a212aa t$] t ln@b21~a22b21b2r 2!#%21. ~66!

These solutions belong to the class of generalized Friedmann solutions.14

It is clear from~2! that there exist algebraic relationships betweenKab ~Vab!, Rab ~and hence
Tab!, and the Weyl tensorCabgd . All the Riemann flat solutions@classes~1!–~4!# induce four-
metrics that are conformally flat. Indeed, all the perfect fluid solutions of embedding class one
must necessarily be either of Petrov type O~conformally flat! or of Petrov type D.12 Curiously,
results about the embedding of conformally flat four-dimensional metrics into Riemannian flat
five-dimensional Lorentzian space-time do not seem to appear in the literature. Results about the
embedding of conformally flat four-dimensional metrics into Riemannian flat five-dimensional
Euclidean space–times~positive definite metrics! are known~see Refs. 17 and 18!. For complete-
ness, we now state the following theorem without proof: If a four-dimensional conformally flat
Lorentzian metric is of embedding class one, then its Riemann tensor is given byRabgd

5 2Va[gVd]b , whereVa@b;g#50, and furthermoreV must be of the form

Vab5Ananb1Bgab , ~67!

wherena is a unit space-like or time-like vector~that is,nan
a561!.

IV. RICCI FLAT SOLUTIONS

All the solutions discussed in Secs. II and III are Riemann flat and thus are also automatically
Ricci flat. To date, the majority of the known Ricci flat solutions where the metric has the form~5!
have been found by examining the special ansatz that the metric functions are separable in the
variablest, r , andy. In this section, our aim is to find a class of Ricci flat solutions that contain
a subclass of the Riemann flat solutions. Thus, we use the Riemann flat solutions of the previous
sections as a springboard to construct new Ricci flat solutions.
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We base our first ansatz on the form of the class~2! solutions@we chose the class~2! solutions
because~i! they are not as complicated as the class~4! solutions; and~ii ! the class~1! and ~3!
solutions have an uninteresting interpretation in terms of induced matter theory#. Hence, we
consider metrics of the following form:

eF5
A~ t,y!1B~ t,y!r 2

a~y!1b2~y!r 2
, ~68!

eG5
2b~y!1C~y!r 2

a~y!1b2~y!r 2
, ~69!

eK5
D~y!1E~y!r 2

a~y!1b2~y!r 2
. ~70!

Thus, the field equationsRi j50 will all reduce to power series inr . The coefficients of each of the
power series will, in general, be partial differential equations int and y only and they must be
identically zero. After a lengthy calculation~see Ref. 19 for full details!, we find the following
equation:

Cy5C
by
b
. ~71!

Thus, we find that either~i! C50 or ~ii ! C56bÞ0. In case~i!, the solutions can eventually be
shown to reduce to the Riemann flat class~2! solutions. In case~ii !, the metric can be shown to be
equivalent to

ds252y21 dt21y~dr21r 2 dV2!1dy2. ~72!

The above metric was discussed in Ref. 7 and belongs to the class of generalized Kasner
metrics.9,20,21

In the process of determining the Riemann flat solutions and the above solutions, we observed
that if the metric functionsF, G, andK appearing in~5! had a particular form, then some of the
Ricci flat field equations could be easily integrated. Thus, based upon our observations, we are led
to our second ansatz; we shall now consider metrics of the following form:

ds252eF~ t,r ,y! dt21e2G~r !@dr21r 2 dV2#1e2K~r ,y! dy2. ~73!

This ansatz includes both the class~1! Riemann flat solutions and the Davidson–Owen–Gross–
Perry solutions.4,5

The field equationRuu50 for metric ~73! implies that (Gr11/r )Ftr50. Thus, either~i!
Gr521/r or ~ii ! Ftr50.

In case~i! we can setG50 without loss of generality by an appropriate diffeomorphism. The
field equationsRrr50 andRuu50 can then be employed to show thatFr505Kr . The remaining
field equations can then be used to show that the metric reduces to the class~1! Riemann flat
solutions,~12!–~13!, with B51.

In case~ii ! we find thatF5A(t,y)1B(r ,y). The equationRuu50 then yields the additional
result (B1K) ry50, and thusK52B(r ,y)1C(r ). Furthermore, the equationRrr50 yields
Bry(2Br2Cr)50, which implies thatK5K(r ) and F5A(t,y)1B(r ). Finally, the equation
Rry50 implies thatAy(Br2Kr)50. Thus, either~a! Ay50 or ~b! Br5Kr . In case~a!, we can take
A51 without loss of generality, and the metric then reduces to the Davidson–Owen–Gross–Perry
class of soliton solutions,4,5 namely,

370 Abolghasem, Coley, and Mc Manus: Induced matter theory and embeddings

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ds252S ar21

ar11D
2ek

dt21S a2r 221

a2r 2 D 2S ar11

ar21D
2e~k21!

@dr21r 2 dV2#1S ar11

ar21D
2e

dy2,

~74!

wheree andk are subject to the constrainte2~k22k11!51.
In case~b!, the general form of the metric may be written as

ds252A2~ t,y!e2K~r ! dt21e2G~r !@dr21r 2 dV2#1e2K~r ! dy2. ~75!

The field equationRtt50 can be employed to show that

Ayy5kA ~76!

and

e2K@Krr12Kr
21KrGr1~2/r !Kr #1ke2G50, ~77!

wherek is a constant~k can always be chosen to be equal to either 0 or61!. Finally, the equations
Rrr50 andRuu50 yield

Krr1Kr
22KrGr1Grr1

1

r
Gr50, ~78!

2KrGr1
2

r
Kr2Grr1

3

r
Gr1Gr

250, ~79!

respectively. We note that the above system of equations~77!–~79! only has rank 2—Eq.~79! is
a first integral of~77! and ~78!.

If k50, then the above system of equations,~77!–~79!, can be solved completely to yield the
solution

ds252S ar11

ar21D
2/)

@a~ t !y1b~ t !#2 dt21S a2r 221

a2r 2 D 2S ar21

ar11D
4/)

@dr21r 2 dV2#

1S ar11

ar21D
2/)

dy2, ~80!

wherea is an arbitrary constant, anda andb are arbitrary functions oft. If a50 then the above
metric is a particular solution belonging to the Davidson–Owen–Gross–Perry class of solutions4,5

@that is, metric~74! with e51/) andk521#. If aÞ0, then we can always seta51: this particular
solution was originally found by Ponce de Leon and Wesson22—the solution is also very similar in
form to the time-dependent soliton solution found by Wesson, Liu, and Lim.3

If kÞ0, then the equations~77!–~79! are not so simple to solve. For convenience, we intro-
duce the new variable,

r5 ln r . ~81!

Equations~77!–~79! can then be reduced to the following system of differential equations:

Grr52Gr
222KrGr22Kr22Gr , ~82!

Krr52Kr
213KrGr1Gr

212Gr13Kr , ~83!

with the first integral
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4KrGr1Gr
21Kr

212Gr14Kr1ke2~G2K1r!50. ~84!

Equations~82! and ~83! form a two-dimensional autonomous system of differential equations. A
specific solution can be found by demanding thatK5G1r; Eqs. ~82! and ~84! then imply that
k521 and that

G5S 216
1

)

D r, ~85!

K56
1

)

r. ~86!

Thus, if we make the transformationR5r61/), then the metric, in this special case, may be
written as

ds252cos2„y1a~ t !…R2 dt213 dR21R2 dV21R2dy2. ~87!

A. Remarks

Of course, Eqs.~82!–~83! can easily be analyzed as a two-dimensional dynamical systems.19

It can be shown that the system has four fixed points at finite values and six fixed points at infinity
~full details are given in Ref. 19!. Analysis of the finite fixed points shows that there are two
saddles, an attracting focus and a repelling focus. Both the attracting focus and the repelling focus
are described by the metric~87! @for which k521# and are valid forR tends to infinity andR
tends to zero, respectively. The corresponding class of solutions are consequently asymptotically
flat in general, in the sense that all components of the Riemann tensor asymptotically vanish~as
r→` for the attractor and asr→0 for the repellor!. The corresponding four-dimensional models
have the property that asymptotically the stress-energy tensor may be interpreted as an anisotropic
fluid, with pi50 andm52p' , wherepi andp' are the fluid pressures parallel and perpendicular
to the fluid four-velocity, respectively.~At the two saddles the corresponding exact solutions have
k50 and the associated four-dimensional solutions that are also flat.!

Analysis of the singular points at infinity shows that there are two sinks, two sources, and two
saddles~appearing in pairs!. The asymptotic form of the solution corresponding to the sources at
infinity is given by

G~r !'~ ln r !122/), K~r !'~ ln r !1/) ~88!

@note thatK→`, G→0, and that det(gi j )→` as r→`#, while for the sinks,

G~r !'~ ln r !112/), K~r !'~ ln r !21/). ~89!
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APPENDIX: THE RIEMANN TENSOR

The nonzero components of the Riemann tensor, up to the usual symmetries, for the metric~5!
are

Rt
rtr5Frr1Fr

22FrGr2e2~G2F !$Gtt1Gt
22FtGt%1e2~G2K !FyGy , ~A1!
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Rt
rty5Fry1FrFy2FrGy2FyKr , ~A2!

Rr
tyr5Gty1GtGy2FyGt2KtGy ~5Ru

tyu5Rf
tyf!, ~A3!

Ru
ttu5Gtt1Gt

22FtGt2Fr~Gr11/r !e2~F2G!2e2~F2K !FyGy ~5Rf
ttf!, ~A4!

Ru
tru5Grt2GtFr ~5Rf

trf!, ~A5!

Rt
yty5Fyy1Fy

22FyKy1e2~K2G!FrKr2e2~K2F !$Ktt1Kt
22FtKt%, ~A6!

Ry
try5Krt1KrKt2KtFr2GtKr , ~A7!

Ru
rr u5Grr1

1

r
Gr2e2~G2F !Gt

21e2~G2K !Gy
2 ~5Rf

rrf!, ~A8!

Ru
ryu5Gry2KrGy ~5Rf

ryf!, ~A9!

Rr
yyr5Gyy1Gy

22GyKy1e2~K2G!$Krr1Kr
22GrKr%2e2~K2F !GtKt , ~A10!

Rf
uuf5r 2HGr

21
2

r
Gr2e2~G2F !Gt

21e2~G2K !Gy
2J , ~A11!

Ru
yyu5Gyy1Gy

22GyKy2e2~K2F !GtKt1e2~K2G!Kr~Gr11/r ! ~5Rf
yyf! . ~A12!
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A new algebraic approach for calculating the heat kernel
in quantum gravity

I. G. Avramidia),b),c)
Department of Mathematics, University of Greifswald, Jahnstr. 15a,
17489 Greifswald, Germany
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It is shown that the heat kernel operator for the Laplace operator on any covariantly
constant curved background, i.e., in symmetric spaces, may be presented in the
form of an averaging over the Lie group of isometries with some nontrivial mea-
sure. Using this representation, the heat kernel diagonal, i.e., the heat kernel in
coinciding points is obtained. Related topics concerning the structure of symmetric
spaces and the calculation of the effective action are discussed. ©1996 American
Institute of Physics.@S0022-2488~96!00501-7#

I. INTRODUCTION

The heat kernel, a very powerful tool for investigating the effective action in quantum field
theory and quantum gravity, has been the subject of much investigation in recent years in physical
as well as in mathematical literature~Refs. 1–22!. The subject of the present investigation is the
low-energy limit of the one-loop contribution of a set of quantized fieldsf on ad-dimensional
Riemannian manifoldM of metricgmn with Euclidean signature to the effective action, which can
best be presented using thez-function regularization in the form1

G~1!52
1

2
z8~0!, ~1.1!

where

z~p!5m2p Tr F2p5
m2p

G~p!
E
0

`

dt tp21 Tr U~ t !, ~1.2!

F52h1Q1m2, ~1.3!

U~ t !5exp~2tF !, ~1.4!

with h5gmn
“m“n , Tr meaning the functional trace,m being a renormparameter introduced to

preserve dimensions,Q(x) an arbitrary matrix-valued function~potential term!, m a mass param-
eter, and“m a covariant derivative. The covariant derivative includes, in general, not only the
Levi-Civita connection, but also the appropriate spin one as well as the vector gauge connection,
and is determined by the commutator@“m ,“n#f5Rmnf. The Riemann curvature tensor, the cur-
vature of background connection, and the potential term completely describe the background
metric and connection, at least locally. In the following we will call these quantities theback-
ground curvaturesor simply curvatures and denote them symbolic byR5$Rmnab ,Rmn ,Q%.
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Exact evaluation of the heat kernelU(t) is obviously impossible. Therefore, one should make
use of various approximations. First of all, let us note the very important so-called Schwinger–De
Witt asymptotic expansion of the heat kernel att→0,1–5

Tr U~ t !;~4pt !2d/2 exp~2tm2!(
k50

`
~2t !k

k!
Bk , ~1.5!

Bk5E
M
dx g1/2 tr bk . ~1.6!

This expansion is purely local and does not depend, in fact, on the global structure of the
manifold. In manifolds with boundary additional terms inBk as well as new terms of order
t2d/21k/2 in the form of surface integrals over the boundary]M appear. For details see Refs. 12
and 13, where all coefficients for arbitrary boundary conditions up to terms of ordert2d/215/2 are
calculated. Its coefficientsbk @we call them Hadamard–Minakshisundaram–De Witt–Seeley
~HMDS! coefficients# are local invariants built from the curvature, the potential term, and their
covariant derivatives.1,5,6,14They play a very important role, both in physics and mathematics, and
are closely connected with various sections of mathematical physics.14,22 Therefore, the calcula-
tion of HMDS coefficients is in itself of great importance. Various methods were used for calcu-
lating these coefficients, beginning from the direct De Witt’s method1 to modern mathematical
methods, which make use of pseudodifferential operators, functorial properties of the heat kernel,
etc.5–13 Very good reviews of the calculation of the HMDS coefficients are given in recent
papers.14

Nowadays, in the general case only the first four coefficients are explicitly calculated. The first
three coefficients were calculated in Ref. 9. An effective covariant technique for calculating
HMDS coefficients is elaborated in Refs. 10 and 4, where also the first four coefficients are
computed. In the case of scalar operators the fourth coefficient is also calculated in Ref. 11.
Analytic approach was developed in Ref. 7, where a closed form for the intrinsic symbol of the
resolvent parametrix was obtained. The leading terms in all the volume coefficientsBk quadratic
in the background curvatures were calculated completely independently in Refs. 15 and 16.

Although the Schwinger–De Witt expansion is good for smallt ~viz. tR!1!, and thereby in
the case of massive quantized fields in weak background fields whenR!m2, it is absolutely
inadequate for larget in strongly curved manifolds and strong background fields~R@m2!. For
investigating these cases one needs some other methods.

A possibility to exceed the limits of the Schwinger–De Witt expansion is to employ the direct
partial summation.2 Namely, one can compare all the terms in HMDS coefficientsBk ~1.6!, pick
up the main~the largest in some approximation! terms, and sum up the corresponding partial sum.
There is always a lack of uniqueness concerned with the global structure of the manifold, when
doing so. But, hopefully, fixing the topology, e.g. the trivial one, one can obtain a unique, well-
defined, expression that would reproduce the Schwinger–De Witt expansion, being expanded in
curvature. The main advantage of such an approach is that although the result will benot exact, it
will be covariantandgeneral.

Actually, the effective action is a covariant functional of the metric and depends on the
geometry of the manifold as a whole, i.e., it depends on both local characteristics of the geometry,
like invariants of the curvature tensor, and its global topological structure. However,we will not
investigate in this paper the influence of the topology, but concentrate our attention, as a rule, on
the local effects. That means that we restrict ourselves to those physical problems where the
contribution of the global effects may be neglected, in comparison with local ones. Then the
possible approximations for evaluating the effective action can be based on the assumptions about
the local behavior of the background fields, dealing with the real physical gauge invariant varia-
tions of the local geometry, i.e. with the curvature invariants, but not with the behavior of the
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metric and the connection that is not invariant. Comparing the value of the curvature with that of
its covariant derivatives one comes to two possible approximations:~i! the short-wave~or high-
energy! approximation characterized by““R@RR, and~ii ! the long-wave~or low-energy! one
““R!RR.

The idea of partial summation was realized in short-wave approximation for investigating the
nonlocal aspects of the effective action~in other words, the high-energy limit of that! in Refs. 15
and 4, where all the terms in the HMDS coefficientsBk with higher derivatives~quadratic in the
curvature and potential term! are calculated, and the corresponding asymptotic expansion is
summed up. Another approach to study the high-energy limit of the effective action, so-called
covariant perturbation theory, is developed in Ref. 17.

II. LOW-ENERGY APPROXIMATION AND ITS CONSEQUENCES

The low-energy effective action, in other words, the effective potential, presents a very natural
tool for investigating the vacuum of the theory, its stability, and the phase structure.23 Here only
partial success is achieved and various approaches to the problem are only outlined~see, e.g., the
excellent review of Camporesi in Ref. 22 with an ample bibliography and our recent papers20,21!.

The long-wave~or low-energy! approximation is determined, as it was already stressed above,
by strong slowly varying background fields. This means that the derivatives of all invariants are
much smaller than the products of the invariants themselves. The zeroth order of this approxima-
tion corresponds to covariantly constant background curvatures,

“mRabgd50, “mRab50, “mQ50. ~2.1!

In this case the HMDS coefficients are simply polynomials in curvature invariants and poten-
tial term of dimensionRk up to terms with one or more covariant derivatives of the background
curvaturesO~“R!,

bk5 (
n50

k S knDQk2nan1O~“R!, ~2.2!

ak5bkuQ5“R505( Rk. ~2.3!

Note that the commutators@Q,Rmn# are of orderO~““R!, and therefore are neglected here.
Then, after summing the Schwinger–De Witt expansion~1.5!, we obtain for the heat kernel,

the z function and the effective action,

Tr U~ t !5E
M
dx g1/2~4pt !2d/2 tr$exp„2t~m21Q!…„V~ t !1O~“R!…%, ~2.4!

z~p!5E
M
dx g1/2~4p!2d/2

m2p

G~p!
E
0

`

dt tp2d/221 tr$exp„2t~m21Q!…„V~ t !1O~“R!…%,

~2.5!

G~1!5E
M
dx g1/2$V~R!1O~“R!%, ~2.6!

with
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V~R!5
1

2
~4p!2d/2

1

G~d/211!
E
0

`

dtS log~m2t !1cS d211D D
3S ]

]t D
d/211

tr$exp„2t~m21Q!…V~ t !%, ~2.7!

for evend and

V~R!5
1

2
~4p!2d/2

1

G~d/211!
E
0

`

dt t21/2S ]

]t D ~d11!/2

tr$exp„2t~m21Q!…V~ t !%, ~2.8!

for oddd, where

V~ t !;(
k50

`
~2t !k

k!
ak , ~2.9!

is a function of local invariants of the curvatures~but not of the potential!.
It is natural to call the functionsV(t) andV~R! that do not contain thecovariantderivatives

at all and so determine the zeroth order of the heat kernel and that of the effective action, the
generating functionfor covariantly constant terms in HMDS coefficients and theeffective poten-
tial in quantum gravity, respectively.

Let us note that such a definition of the effective potential is not conventional. It differs from
the definition that is often found in the literature.24 What is meant usually under the notion of the
effective potential is a function of the potential term onlyQ, because it does not contain deriva-
tives of the background fields~in contrast to Riemann curvatureRabgd that contains second
derivatives of the metric and the curvatureRmn with first derivatives of the connection!. So, e.g.,
in Ref. 24, the potential termQ is summed up exactly, but an expansion is made not only in
covariant derivatives but also in powers of curvaturesRmnab andRmn , i.e. the curvatures are
treated perturbatively. Thereby the validity of this approximation for the effective action is limited
to small curvaturesRmn ,Rmnab!Q. Such an expansion is called ‘‘expansion of the effective action
in covariant derivatives.’’ Without the potential term~Q50! the effective potential in such a
scheme is trivial. Hence we stress here once again that the effective potential in our definition
contains, in fact,much more informationthan the usual effective potential does when using the
‘‘expansion in covariant derivatives.’’ As a matter of fact, what we mean is thelow-energy limit of
the effective actionformulated in a covariant way.

Note that the conditions~2.1! are local. They determine the geometry of thelocally symmetric
spaces. However, the manifold is aglobally symmetric one only in the case when it satisfies
additionally some global topological restrictions~e.g., it is sufficient if it is simply connected and
complete! and the condition~2.1! is valid everywhere, i.e. at any point of the manifold.25,26

In most physical problems, the situation is radically different. The correct setting of the
problem seems to be as follows. The low-energy effective action depends, in general, also essen-
tially on the global topological properties of the space-time manifold, i.e. on the existence of
closed geodesics, boundaries, or singularities that might act similarly to boundaries. But, as it was
noted above, we do not investigate in this paper the influence of the topology. Therefore, consider
a complete noncompact asymptotically flat manifold without a boundary that is homeomorphic to
Rd. Let a finite not small, in general, domain of the manifold exists that is strongly curved and
quasihomogeneous, i.e. the invariants of the curvature in this region vary very slowly. Then, the
geometry of this region islocally very similar to that of a symmetric space. However, one should
have in mind that there arealwaysregions in the manifold where this condition is not fulfilled.
This is, first of all, the asymptotic Euclidean region that has small curvature and, therefore, the
opposite short-wave approximation is valid.
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The general situation in the correct setting of the problem is the following. From infinity with
small curvature and possibly radiation, where17

RR!““R, we pass on to the quasihomogeneous
region where the local properties of the manifold are close to those of symmetric spaces. The size
of this region can tend to zero. Then the curvature is nowhere large and the short-wave approxi-
mation is valid anywhere. If one tries to extend the limits of such a region to infinity, then one has
also to analyze the topological properties. The space can be compact or noncompact, depending on
the sign of the curvature. But first we will come across a coordinate horizon-like singularity,
although no one true physical singularity really exists.

This construction can be intuitively imagined as follows. Take the flat Euclidean spaceRd, cut
out from it a regionM with some boundary]M , and stick to it smoothly along the boundary,
instead of the piece cut out, a piece of a curved symmetric space with the same boundary]M .
Such a construction will be homeomorphic to the initial space and at the same time will contain a
finite highly curved homogeneous region. Let us stress that this surgery can be always done
smoothly, so that in the region where the curved and the flat regions are joined no discontinuity in
the curvature appears that could cause the reflected waves to produce Casimir-like effects. By the
way, the exact effective action for a symmetric space differs from the effective action for built
construction by a purely topological contribution. This fact seems to be useful when analyzing the
effects of topology.

Thus, the problem is to calculate the low-energy effective action~2.7! and~2.8!, i.e. the heat
kernel for covariantly constant background. Although this quantity, generally speaking, depends
essentially on the topology and other global aspects of the manifold, one can disengage oneself
from these effects fixing the trivial topology. Since the asymptotic Schwinger–De Witt expansion
does not depend on the topology, one can hold that we thereby sum up all the terms without
covariant derivatives in it.

We stress here once again that our analysis is purely local. Of course, there are always special
global effects~Casimir-like effects, influence of boundaries, closed geodesics, etc.!, that do not
show up in the local expansion of the heat kernel. The aim of this paper is to study only such
situations where the contribution of these effects is small in comparison with the local part, i.e. the
effective action isapproximatelygiven by the integration of the local formula.

In other words, the problem is the following. One has to obtain a local covariant function of
the invariants of the curvatureV(t) ~2.9! that would describe adequately the low-energy limit of
the trace of the heat kernel and that would, being expanded in curvatures, reproduce all terms
without covariant derivatives in the asymptotic expansion of the heat kernel, i.e. the HMDS
coefficientsak ~2.3!. If one finds such an expression, then one can simply determine thez function
~2.5! and, therefore, the low-energy limit of the effective action~2.7! and ~2.8!.

III. SYMMETRIC SPACES

In this paper we will get the most out of the properties of symmetric spaces. Let us list below
some known ideas, facts, and formulas about symmetric spaces presented in the form that is most
convenient for calculating the heat kernel and the effective action.

First of all, we give some definitions~see Refs. 25 and 26 and Sec. III D!. A Riemannian
locally symmetric space that is simply connected and complete is globally symmetric space~or,
simply, symmetric space!.26 A symmetric space is said to be ofcompact, non-compact, or Euclid-
ean typeif all sectional curvaturesK(u,v)5Rabcdu

avbucvd are positive, negative, or zero. A
direct product of symmetric spaces of compact and noncompact types is calledsemisimplesym-
metric space. It is well known25,26 that a generic complete simply connected Riemannian symmet-
ric space is a direct product of a flat space and a semisimple symmetric space~also see Sec. III D!.
Although in the Sec. IV we will need actually only symmetric spaces of compact type the whole
exposition of the Sec. III is valid for a more general case of semisimple symmetric spaces.

So, what are the direct consequences of the condition of covariant constancy of the curvature
~2.1!?
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A. Geometrical framework

First of all, to carry out the calculations in the curved space in a covariant way we need some
auxiliary two-point geometric objects, namely the geodetic interval~or world function! s(x,x8),
defined as one-half the square of the length of the geodesic connecting the pointsx andx8, the
tangent vectorssm(x,x8)5“ms(x,x8) andsm8(x,x8)5“m8s(x,x8) to this geodesic at the points
x and x8, respectively, and a frameea

m(x,x8), which is covariantly constant~parallel! along the
geodesic between pointsx and x8, i.e. sm

“mea
n50. We denote the frame components of the

tangent vector bysa(x,x8) 5 gabea
m8(x8)“m8s(x,x8).

Any tensorTb•••
a••• , can then be presented in the form of covariant Taylor series,

Tb•••
a•••5 (

n>0

~21!n

n!
sm18•••smn8@“ ~m1

•••“mn)
Tb•••

a•••#~x8!ea8
a •••eb

b8 . ~3.1!

Therefrom, it is clear that the frame components of acovariantly constant tensor aresimply
constant.

In the case of covariantly constant curvature one can express the mixed second derivatives of
the geodetic interval, i.e. the matrix

sa
b~x,x8!5em8

a
~x8!eb

a~x!“m8
“as~x,x8!, ~3.2!

explicitly in terms of the curvature at a fixed pointx8. Introducing a matrixK5$Ka
b(x,x8)%,

Ka
b5Ra

cbds
csd, ~3.3!

one can sum up the Taylor series, obtaining a closed form,4

sa
b52S AK

sinAK D a
b

. ~3.4!

This expression, as well as any other similar expressions below, should be always understood as a
power seriesin the curvature.

B. Curvature

Let us consider the Riemann tensor in more detail~we follow here Secs. 3.7–3.10 of the first
paper in Ref. 25!. The components of the curvature tensor ofanyRiemannian manifold can be
always presented in the form

Rabcd5b ikE
i
abE

k
cd , ~3.5!

whereEab
i
„i51,...,p;p<d(d21)/2…, is some set of antisymmetric matrices~2-forms! andbik is

some symmetric nondegenerate matrix.
Then define the traceless matricesDi5$Da

ib%,

Da
ib52b ikE

k
cbg

ca52Da
bi , ~3.6!

so that

Ra
bcd52Da

ibE
i
cd , Ra

b
c
d5b ikDa

ibD
c
kd , ~3.7!

Rb
a52b ikDa

icD
c
kb , R52b ikDa

icD
c
ka52b ik tr~DiDk!, ~3.8!

whereb ik5(b ik)
21. Because of the curvature identities, we have identically
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Da
j @bE

j
cd]50. ~3.9!

The matricesDi are known to be the generators of theholonomy algebra, i.e. the Lie algebra of
the restricted holonomy group,H ~the first paper in Ref. 25, p. 97! of dimension dimH5p,

@Di ,Dk#5F j
ikD j , or Da

icD
c
kb2Da

kcD
c
ib5F j

ikD
a
jb . ~3.10!

The structure constantsF j
ik of the holonomy algebra are completely determined by these com-

mutation relations and satisfy the Jacobi identities

Fi
j @kF

j
mn]50, or @Fi ,Fk#5F j

ikF j , ~3.11!

whereFi5$Fk
il % are the generators of the holonomy algebra in adjoint representation. Note that

the restricted holonomy groupH is always compact, as it is a subgroup of the orthogonal group~in
the Euclidean case!, and connected.

Now let us rewrite the condition of integrability of the relations~2.1! given simply by the
commutator of covariant derivatives,

@“m ,“n#Rabgd522$Rmnl@aR
l

b]gd1Rmnl@gR
l

d]ab%50, ~3.12!

in terms of introduced quantities. It is not difficult to show that it looks like

Ei
acD

c
bk2Ei

bcD
c
ak5Ej

abF
i
jk . ~3.13!

This equation takes placeonly in symmetric spacesand is the most important one. It is this
equation that makes a Riemannian manifold the symmetric space.

From Eqs.~3.10! and ~3.13! we now have

b ikF
k
jm1bmkF

k
ji50, or Fi

T52bFib
21, ~3.14!

which means that the adjoint and coadjoint representations of the restricted holonomy group are
equivalent.

Equation~3.13! leads also to some identities for the curvature tensor

Da
i @bRc]ade1Da

i @dRe]abc50, ~3.15!

Ra
cD

c
ib5Da

icR
c
b , ~3.16!

which means, in particular, that the Ricci tensor matrix commutes with all matricesDi and is,
therefore, an invariant matrix of the holonomy algebra.

Actually, Eq. ~3.13! brings into existence a much wider algebraG of dimension dimG5D
5p1d, in other words, it closes this algebra. Really, let us introduce new quantities
CA

BC52CA
CB (A51,...,D),

Ci
ab5Ei

ab , Ca
ib5Da

ib , Ci
kl5Fi

kl , Ca
bc5Ci

ka5Ca
ik50, ~3.17!

forming the matricesCA5$CB
AC%5(Ca ,Ci),

Ca5S 0 Db
ai

Ej
ac 0 D , Ci5SDb

ia 0

0 F j
ik
D , ~3.18!

and symmetric nondegenerate matrix,
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gAB5S gab 0

0 b ik
D . ~3.19!

Then one can show, first, that as a consequence of the identities~3.9!–~3.13! the quantitiesCA
CB

satisfy the Jacobi identities

CE
D@AC

D
BC]50, or @CA ,CB#5CC

ABCC , ~3.20!

and are, therefore, the structure constants of some Lie algebraG , the matricesCA being then the
generators of this algebra in adjoint representation. More precisely, the commutation relations
have the form

@Ca ,Cb#5Ei
abCi , @Ca ,Ci #5Db

aiCb , @Ci ,Ck#5F j
ikCj . ~3.21!

And, second, using the definition ofD matrices and Eq.~3.14!, one can show that the structure
constants also satisfy the identity

gABC
B
CD1gDBC

B
CA50, or CA

T52gCAg21, ~3.22!

meaning the equivalence of the adjoint and coadjoint representations of the algebraG .
In other words, the Jacobi identities~3.22! are equivalent to the identities~3.12! that the

curvature must satisfy in the symmetric space. This means that the set of structure constants
CA

BC , satisfying the Jacobi identities, determines the curvature tensor of symmetric spaceRa
bcd .

Vice versa, the structure of the algebraG is completely determined by the curvature tensor of
symmetric space at a fixed pointx8.

Now, consider the curvature of background connectionRab . One can show analogously to
~3.12! that because of the integrability conditions of Eq.~2.1!,

@“m ,“n#Rab5@Rmn ,Rab#22Rmnl@aR
l

b]50, ~3.23!

the curvature of background connectionRab in semisimplesymmetric spaces must have the form

Rab5RiE
i
ab , ~3.24!

whereEi
ab are the same 2-forms andRi are some matrices forming a representation of the

holonomy algebra,

@Ri ,Rk#5F j
ikRj . ~3.25!

In a generic symmetric space with a flat subspace there are additional Abelian contributions to the
curvatureRab ~3.24! corresponding to the flat directions.

Finally, from ~2.1! it follows that the potential term should commute with the curvatureRmn ,

@“m ,“n#Q5@Rmn ,Q#50, ~3.26!

and, therefore, with all the matricesRi ,

@Ri ,Q#50. ~3.27!

C. Isometries

On the covariantly constant background~2.1!, i.e. in symmetric spaces, one can easily solve
the Killing equations,

Ljgmn52“ ~mjn)50, ~3.28!
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whereLj means the Lie derivative. Indeed, by differentiating the equation

LjGmn
l 5“ ~m“n)j

l1Rl
~muaun!j

a50, ~3.29!

having in mind“R50, and symmetrizing the derivatives we get

“ ~m1
•••“m2n)

jl5~21!nRl
~m1ua1um2

Ra1
m3ua2um4

•••Ran21
m2n21uanum2n)

jan, ~3.30!

“ ~m1
•••“m2n11)

jl5~21!nRl
~m1ua1um2

Ra1
m3ua2um4

•••Ran21
m2n21uanum2n

“m2n11)
jan. ~3.31!

Thereby we have found all the coefficients of the covariant Taylor series~3.1! for the Killing
vectors of symmetric spaces. Moreover, one can now sum it up obtaining a closed form,

jm~x!5em
aH ~cosAK !abj

b~x8!2S sinAKAK D a

b

scjb;c~x8!J , ~3.32!

wherejb;c5jm
;nem

bec
n.

Therefore, all Killing vectors at any pointx are determined in terms of initial values of the
vectors themselvesjb(x8) and their first derivativesjb;c(x8) at a fixed pointx8. The set of all
Killing vectorsĜ 5 $j Â%,(Â 5 1,...,D̂), dim Ĝ5D̂ , can be split in two essentially different sets:
M5$Pa%, dimM5d, with Pa defined by

Pm
a~x!5em

b~cosAK !bcP
c
a~x8!, ~3.33!

andĤ 5 $L î %,( î 5 1,...,p̂), i.e. dimĤ5p̂5D̂2d, where

Lm
î ~x!52em

bS sinAKAK D b
a

scLaî ;c~x8!, ~3.34!

according to the values of their initial parameters,

Pm
aux5x8Þ0, Lm

î ux5x850. ~3.35!

Note that for a general symmetric spacep̂Þp, and hence,D̂ÞD!
The Killing vector fieldsj Â 5 j

Â

m
“m ~orPa5Pm

a“m andL î 5 Lm
î“m! ~acting on scalar fields!

form the Liealgebra of isometries, Ĝ ,

@j Â ,j B̂#5ĈĈ
ÂB̂j Ĉ , ~3.35a!

or, more explicitly,

@Pa ,Pb#5Êî
abL î , @Pî ,Li #5D̂b

a îPb ,

@L î ,Lk̂#5F̂ ĵ
î k̂L ĵ , ~3.35b!

where$ĈĈ
ÂB̂% 5 $Êî

ab ,D̂
b
a î ,F̂

ĵ
î k̂% are the structure constants of the algebra of isometries. One

sees now that the generatorsL î vanishing at the pointx8 form a subalgebra~3.35b! of the algebra
of isometriesĜ ~3.35a! called theisotropyalgebra,Ĥ.

In fact, all odd symmetrized derivatives ofPm
a and all even symmetrized derivatives ofL

m
i as

well asLm
î themselves vanish at the pointx8,
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“nP
m
aux5x85“ ~m1

•••“m2n11)
Pm

aux5x850, ~3.36!

Lm
î ux5x85“ ~m1

•••“m2n)
Lm

î ux5x850. ~3.37!

All the parametersPb
a(x8) are independent and, therefore, there are exactlyd such parameters.

The maximal number of the parametersLbî ;c is d(d21)/2, since they are antisymmetric; in other
words dimĤ<d(d21)/2. However, they are not independent. This can be seen immediately if
one recalls that the equation

LL î
Rabgd52{ Ls

î ;@gRd]sba1Ls
î ;@aRb]sdg} 50, ~3.38!

holds in symmetric spaces. This equation is, actually, the integrability condition for Killing equa-
tions ~3.26!. It imposes strict constraints on the possible initial parametersLbî ;c(x8). One can
show that for thesemisimplesymmetric spaces the number of independent parametersLbî ;c(x8) is
equal top, i.e. the dimension of the isotropy algebraĤ ~3.35b! is equal to the dimension of the
holonomy algebraH ~3.10!,.

p̂[dim Ĥ5dimH[p.

Therefore, the dimension of the algebra of isometriesĜ , i.e. the total number of the Killing
vectors, in semisimple symmetric spaces, is equal to the dimension of the algebraG ~3.20! defined
in previous Sec. III B,

D̂[dim Ĝ5dim G[D.

This means that there is no difference between the ordinary latin indices and the indices with
overcarets. Hence, one can omit the overcarets everywhere. In a symmetric space of general type
having a flat subspace there are additional trivial Killing vectors corresponding to flat directions.
Therefore, in general,

dimH<dim Ĥ<d~d21!/2, dimG<dim Ĝ<d~d11!/2.

The spaces with a maximal number of independent isometries, i.e. withp5d(d21)/2 andD5d
1p5d(d11)/2, are thespaces of constant curvature, and only those.

Thus, taking into account~3.15!, it is evident that one can put

Pa
b~x8!5db

a , Lai ;b~x8!52Da
ib . ~3.39!

Therefore, the generators of isometries in semisimple symmetric spaces take the form

Pa5Pm
a“m52~AK cotAK !baDb , ~3.40!

Li5Lm
i“m52Db

ias
aDb , ~3.41!

where

Da5~sa
b!

21em
b“m5

]

]sa . ~3.42!

Moreover, one can show25,26 that for semisimple symmetric spaces the isotropy algebraĤ

~3.35b! is isomorphicto the holonomy algebraH ~3.10! and the algebra of isometriesĜ ~3.35a!
is isomorphic to the algebraG ~3.20! determined by the curvature tensor. Therefore, the commu-
tation relations~3.35a! and ~3.35b! can be rewritten in the form
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@jA ,jB#5CC
ABjC ~3.43!

and

@Pa ,Pb#5Ei
abLi , @Pa ,Li #5Db

aiPb , @Li ,Lk#5F j
ikL j , ~3.44!

with the same structure constants as in~3.20! and~3.21! defined by~3.5!, ~3.6!, ~3.10!, and~3.17!.
Hence, we conclude that the curvature tensor of thesemisimplesymmetric space completely
determines the structure of the isotropy algebra and the algebra of isometries. For a generic
symmetric space the curvature determines the algebra of isometries up to an Abelian ideal. Let us
stress once again that in the case of semisimple symmetric spaces there is no need to distinguish
in notation between the isotropy algebraĤ and the holonomy algebraH and, therefore, between
Ĝ andG as well.

D. General structure

As we already noted above, the simply connected symmetric spaceM is isomorphic to the
quotient space of the group of isometries by the isotropy subgroupM5Ĝ/Ĥ.25 It is, in general,
reducible, and has the following general structure:25

M5M03Ms , ~3.45a!

Ms5M13M2 , ~3.45b!

whereM0, Ms , M1 , andM2 are the Euclidean, semisimple, compact, and noncompact compo-
nents. The corresponding algebra of isometries is a direct sum of ideals,

Ĝ5G 0%G s , G s5G 1 %G 2 , ~3.46!

whereG 0 is an Abelian ideal,G s is the semisimple ideal, andG 1 andG 2 are the semisimple
compact and noncompact ones.

There is a remarkable duality relation* between compact and noncompact objects. For any
semisimple algebra of isometriesG5M1H5$Pa ,Lk%, one defines the dual one according to
G *5iM1H5$ iPa ,Lk%, the structure constants of the dual algebra being

$C* ABC%5$Ei
ab ,D

c
dk ,F

j
lm%*5$2Ei

ab ,D
c
dk ,F

j
lm%. ~3.47!

So, the asterisk* only changes the sign ofE
i
ab , but does not act on all other structure constants.

This means also that the matrixg ~3.19! for dual algebra should have the form

g* AB5S gab 0

0 b ik
D *5S gab 0

0 2b ik
D , ~3.48!

and, therefore, the curvature of the dual manifold has the opposite sign,

R* abcd52Rabcd. ~3.49!

IV. HEAT KERNEL

It should be noted once more that our analysis in this paper is purelylocal ~see the discussion
in Sec. II.! We are looking for auniversal local function of the curvature,V(t), ~2.9! that
describes adequately the low-energy limit of the heat kernel diagonal~up to ‘‘global’’ nonanalyti-
cal effects that are not studied in this paper!!. Our minimal requirement is that this function should
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reproduceall the terms without covariant derivatives of the curvature in the local Schwinger–De
Witt asymptotic expansion of the heat kernel, i.e. it should giveall the HMDS coefficientsak ~2.3!
for any symmetric space.

It is well known that the HMDS coefficients have auniversalexplicit structure,5 i.e. ak are
scalar polynomials of the curvature of the orderk with universalnumerical coefficients that do not
depend on the particular form of the symmetric space, on the dimension, etc. It is obvious that any
flat subspaces do not contribute inak . Moreover, since HMDS coefficientsak are analytic in the
curvature, it is evident that to find this universal structure it is sufficient to consider only sym-
metric spaces of thecompacttype with positive curvature. Using the factorization property of the
heat kernel5 and the duality between compact and noncompact symmetric spaces, we can obtain
then the results for the general case by analytical continuation.

That is why below in this paper we consider only the case of symmetric spaces of thecompact
type when the matricesbik and gAB are positive definite. Besides, we restrict ourselves, for
simplicity, to the scalar operators, i.e.Rab50. The general case will be investigated in a future
work.

A. Heat kernel operator

It is not difficult to show that the metric of the symmetric space can be presented in the form

gmn5gABjA
mjB

n 5gabPm
aP

n
b1b ikLm

iL
n
k . ~4.1!

Indeed, by making use of Eqs.~3.7! and recalling the definition of the matrixK ~3.3!, it is easy to
obtain ~4.1! using the explicit expressions~3.33! and ~3.34!.

Now, having the metric~4.1!, we can build the Laplacian for the scalar~Rab50! case,

h5gmn
“m“n5gABjAjB , ~4.2!

wherejA5jA
m
“m and the Killing equation~3.5! has been used.

It is not difficult to show that the Laplacian belongs to the center of the enveloping algebra,
i.e. it commutes with all the generators of the algebra,

@h,jA#50. ~4.3!

Let us now try to represent the heat kernel in terms of a group average, i.e. let us find a formula
like

exp~ th !5E dk g1/2F~ tuk!exp~kAjA!. ~4.4!

We formulate first the answer in form of a theorem and prove it below.
Theorem 1: For any compactD-dimensional Lie group generated byjA ,

@jA ,jB#5CC
ABjC , ~4.5!

the operator identity takes place,

exp~ th !5~4pt !2D/2E dk g1/2 detS sinh~kACA /2!

kACA /2
D 1/2

3expH 2
1

4t
kAgABk

B1
1

6
RGtJ exp~kAjA!, ~4.6!
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whereh5gABjAjB , gAB5(gAB)
21, g5detgAB , gAB is a symmetric nondegenerate positive defi-

nite matrix connecting the generators in adjointCA5(CB
AC) and coadjointCA

T representations,

CA
T52gCAg21, ~4.7!

RG is the scalar curvature of the group manifold,

RG52 1
4 g ABCC

ADC
D
BC , ~4.8!

and the integration is to be taken over the whole Euclidean spaceRD.
The proof:Let us consider the integral

C~ t !5E dk g1/2F~k,t !exp~kAjA!, ~4.9!

where

F~ tuk!5~4pt !2D/2 detS sinh~kACA /2!

kACA /2
D 1/2 expH 2

1

4t
kAgABk

B1
1

6
RGtJ . ~4.10!

To prove the theorem we have to show thatC(t)5exp~th!, in other words, that it satisfies the
operator equation

] tC5hC, ~4.11!

with the initial condition

C~ t !u t5051. ~4.12!

First, one can show that

jB exp~k
AjA!5XB exp~k

AjA!, ~4.13!

where

XA5XM
A~k!

]

]kM
~4.14!

are the left-invariant vector fields on the group that have in canonical coordinates the explicit form

XM
A~k!5S kACA

exp~kACA!21D
M

A

. ~4.15!

Therefore, from the definition of the Laplacian we have

h exp~kAjA!5X2 exp~k
AjA!, ~4.16!

X25gABXAXB . ~4.17!

Then, introducing the metric on the group manifold,

GMN5gABX
21A

MX
21B

N , ~4.18!

and its determinant,
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G5detGMN5g detX225g detS sinh~kACA /2!

kACA /2
D 2, ~4.19!

one can obtain the transposition relation

~G1/2X2G
21/2!T5X2 . ~4.20!

Now, making use of~4.9!, ~4.16!, and~4.20! and integrating by parts, we obtain

hC~ t !5E dk g1/2 exp~kAjA!~G1/2X2G
21/2F!. ~4.21!

On the other hand, one has, from~4.9!,

] tC~ t !5E dk g1/2 ] tF exp~kAjA!. ~4.22!

Thus, to prove~4.11! we have to show that

] tF5G1/2X2G
21/2F. ~4.23!

Substituting the explicit expression forF,

F~ tuk!5g21/4G1/4~k!~4pt !2D/2 expH 2
1

4t
kAgABk

B1
1

6
RGtJ , ~4.24!

and using the relations

X2G
21/45 1

6 RGG
21/4 ~4.25!

and

kA
]

]kA
G21/45

1

2
~D2tr X!G21/4, ~4.26!

where

tr X5XA
A5tr„kACA coth~k

ACA!…, ~4.27!

which hold on the group manifold, we convince ourselves that Eq.~4.23! is correct. Thereby it is
shown thatC(t) really satisfies Eq.~4.11!.

Further, from~4.10! it follows immediately that

F~ tuk!u t505g21/2d~k!, ~4.28!

and, therefore, the initial condition~4.12!. Thus, we foundC(t)5exp~th! that proves the theorem.

B. Heat kernel diagonal

So, we have found a very nontrivial representation~4.6! that holds on any compact Lie group.
How can we proceed now with this useful theorem?

First, we can express the scalar curvature of the group manifold in terms of the scalar curva-
ture of the symmetric spaceR and that of the isotropy subgroupRH ,

RG52 1
4 gABCC

ADC
D
BC5 3

4 R1RH , ~4.29!

387I. G. Avramidi: Algebraic covariant approach to heat kernel

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



where

RH52 1
4 b ikFm

il F
l
km . ~4.30!

The representation~4.6! is valid for any generatorsjA satisfying the commutation relations
~4.5!, and so it is also valid for the infinitesimal isometries~3.40! and ~3.41! of the symmetric
space. In this caseh is the usual Laplacian and exp~th! is the heat kernel operator.

For further use it is convenient to rewrite the integral~4.6! splitting the integration variables
kA5(qa,v i) in the form

exp~ th !5~4pt !2D/2E dq dv h1/2b1/2 detS sinh„~qaCa1v iCi !/2…

~qaCa1v iCi !/2
D 1/2

3expH 2
1

4t
~qagabq

b1v ib ikv
k!1S 18 R1

1

6
RHD tJ exp~qaPa1v iL i !, ~4.31!

whereb5detbik , h5detgab . To get the heat kernel explicitly in coordinate representation we
have to act with the heat kernel operator exp~th! on the delta function onM ,

exp~ th !~x,x8!5exp~ th !d~x,x8!5E dq dv h1/2b1/2F~ tuq,v!exp~qaPa1v iL i !d~x,x8!.

~4.32!

To learn how the operator exp~kAjA! acts on a scalar functionf (x), let us introduce a new
function,

f~s,k,x!5exp~skAjA! f ~x!. ~4.33!

This function satisfies the first-order differential equation,

]sf5kAjAf5kAjm
A~x!]mf, ~4.34!

with the initial condition of the form

fus505 f ~x!. ~4.35!

It is not difficult to prove that

f~s,k,x!5 f „x0~s,k,x!…, ~4.36!

wherex0(s,k,x) satisfies the equation of characteristics,

dx0
m

ds
5kAjA

m~x0!, ~4.37!

with the initial condition

x0
mus505xm. ~4.38!

Therefore, we have

exp~kAjA!d~x,x8!5d„x0~1,k,x!,x8…. ~4.39!

Consider now the operator integrals of the form we need,
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I ~x,x8!5E dq dv h1/2b1/2Z~q,v!exp~qaPa1v iL i !d~x,x8!, ~4.40!

whereZ(q,v) is some analytic function. Using Eq.~4.39!, we have

exp~qaPa1v iL i !d~x,x8!5d„x0~1,q,v,x,x8!,x8…5h21/2J~v,x,x8!d~q2q̄!, ~4.41!

whereq̄5q̄(v,x,x8) is to be determined from the equation

x0~1,q̄,v,x,x8!5x8 ~4.42!

andJ(v,x,x8) is the Jacobian computed atx05x8,

J~v,x,x8!5g821/2h1/2 detU]x0m
]qa

U
q5q̄,s51

21

. ~4.43!

So, we can now simply integrate overq in ~4.40! to get

I ~x,x8!5E dv b1/2Z„q̄~v,x,x8!,v…J~v,x,x8!. ~4.44!

If we are interested in the coincidence limit then one has to put finallyx5x8,

I ~x,x!5E dv b1/2Z„q̄~v,x,x!,v…J~v,x,x!. ~4.45!

Consider now the equation of characteristics at greater length. Making a change of variables,

xm→s0
a5sa~x0 ,x8!5em8

a
~x8!sm8~x0 ,x8!, ~4.46!

we arrive to the equation of a more explicit form,

ds0
a

ds
52„AK~s0!cotAK~s0!…

a
bq

b2v iDa
ibs0

b . ~4.47!

Let s0
a5s0

a(s,q,v,sb) be the solution of the equation~4.47!. Thenq̄ is to be determined from
an equation like~4.42!,

s0
a~1,q̄,v,sb!50 ~4.48!

and

J~v,x,x8!5detU2 ]s0
a

]qb
U
q5q̄,s51

21

, ~4.49!

where it has been taken into account det(ea
m8) 5 g821/2h1/2.

Therefore, we have to find the solution to the equation~4.47! near the zero, i.e. assumings0
a

to be small. Moreover, we consider mostly the case when the pointsx andx8 are close to each
other which means thatsa is small as well. The equation~4.47! near the points0

a50 looks like

ds0
a

ds
52qa, ~4.50!
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meaning that the momentumsqa are of the same small order.
More precisely, we assume

s0
a;sb;qc;e!1, ~4.51!

and look for a solution of Eq.~4.47! in the form of a power series ine, i.e. in the form of a Taylor
series insa andqa.

In this way one simply obtains up to quadratic terms

s0
a~s,q,v,x,x8!5„exp~2sv iDi !…

a
bs

b1S exp~2sv iDi !21

v iDi
D a

b

qb1O~e2!. ~4.52!

With the same accuracy the solution of Eq.~4.48! is

q̄a5S v iDi exp~2sv iDi !

12exp~2sv iDi !
D a

b

sb1O~sa2!. ~4.53!

Further, one finds from~4.52!,

detU2 ]s0
a

]qb
U
q5q̄,s51

5detS sinh~v iDi /2!

v iDi /2
D1O~sa!, ~4.54!

and so, from~4.49!,

J~v,x,x8!5detS sinh~v iDi /2!

v iDi /2
D 21

1O~sa!. ~4.55!

Substituting~4.53! and ~4.55! in ~4.44! and expandingZ(q̄,v), we can calculate the integral
~4.40! for near pointsx andx8 in the form of an expansion insa(x,x8).

Therefore, we have found, in particular, a useful exact result for coincidence limit~4.45!.
Lemma 2:For an analytical functionZ(q,v) there holds

I ~x,x!5E dq dv h1/2b1/2Z~q,v!exp~qaPa1v iL i !d~x,x8!ux5x8

5E dv b1/2Z~0,v!detS sinh~v iDi /2!

v iDi /2
D 21

, ~4.56!

with the operatorsPa andLi given by ~3.40! and ~3.41!.
Using the obtained results~4.53!, ~4.55!, and~4.56! and substituting the explicit form of our

integral ~4.31!, we get the heat kernel in coordinate representation,

exp~ th !~x,x8!5~4pt !2D/2E dv bH
1/2 detS sinh~v iCi /2!

v iCi /2
D 1/2 detS sinh~v iDi /2!

v iDi /2
D 21

3expH 2
1

4t
„v ib ikv

k1sagacB
c
b~v!sb

…1S 18 R1
1

6
RHD tJ 1O~sa!,

~4.57!

whereB(v)5$Ba
b(v)% is a matrix of the form
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B~v!5S sinh~v iDi /2!

v iDi /2
D 22

. ~4.58!

Now, from ~3.18! it is not difficult to find that

detS sinh~v iCi /2!

v iCi /2
D5detS sinh~v iDi /2!

v iDi /2
DdetS sinh~v iFi /2!

v iFi /2
D . ~4.59!

Therefore, the final result, after taking into account~4.59!, looks like

exp~ th !~x,x8!5~4pt !2D/2E dv b1/2 detS sinh~v iFi /2!

v iFi /2
D 1/2 detS sinh~v iDi /2!

v iDi /2
D 21/2

3expH 2
1

4t
„v ib ikv

k1sagacBb
c~v!sb

…1S 18 R1
1

6
RHD tJ 1O~sa!.

~4.60!

The coincidence limit of this heat kernel is then simply derived by puttingx5x8, i.e. sa50,

exp~ th !~x,x!5~4pt !2D/2E dv b1/2 detS sinh~v iFi /2!

v iFi /2
D 1/2 detS sinh~v iDi /2!

v iDi /2
D 21/2

3expH 2
1

4t
v ib ikv

k1S 18 R1
1

6
RHD tJ . ~4.61!

Note that this formula is exact~up to possible nonanalytic topological contributions, see the
discussion in Sec. II!. This gives a nontrivial example of how the heat kernel can be constructed
using only the algebraic properties of the isometries of the symmetric space.

One can derive an alternative nontrivialformal representation of this result. Substituting the
equation,

~4pt !2p/2b1/2 expS 2
1

4t
v ib ikv

kD5~2p!2pE dp exp~ ipkv
k2tpkb

knpn! ~4.62!

into the integral~4.61!, and integrating overv we obtain

exp~ th !~x,x!5~4pt !2d/2 expH tS 18 R1
1

6
RHD J E dp exp~2tpnb

nkpk!

3detS sinh~2 i ]kFk /2!

2 i ]kFk /2
D 1/2 detS sinh~2 i ]kDk /2!

2 i ]kDk /2
D 21/2

d~p!, ~4.63!

where ]k5]/]pk . Therefrom, integrating by parts and changing the integration variables
pk→ i t21/2pk we get finally an expression without any integration,

exp~ th !~x,x!5~4pt !2d/2 expS tS 18 R1
1

6
RHD D detS sinh~At]kFk /2!

At]kFk /2
D 1/2

3detS sinh~At]kDk /2!

At]kDk /2
D 21/2

exp~pnb
nkpk!U

p50

. ~4.64!
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This formal solution should be understood as a power series in the derivatives] i that is well
defined and determines the heat kernel asymptotic expansion att→0.

C. Heat kernel asymptotics

Using the obtained result one can get easily the explicit form of the generating function for
HMDS coefficients~2.9!,

V~ tux,x!5~4pt !2p/2E dv b1/2 detS sinh~v iFi /2!

v iFi /2
D 1/2 detS sinh~v iDi /2!

v iDi /2
D 21/2

3expH 2
1

4t
v ib ikv

k1S 18 R1
1

6
RHD tJ . ~4.65!

This formula can be used now to generateall HMDS coefficientsak for anysymmetric space,
i.e. for any space with covariantly constant curvature, simply by expanding it in a power series in
t.

Changing the integration variablesv→Atv and introducing a Gaussian averaging overv,

^ f ~v!&5~4p!2p/2E dv b1/2 expS 2
1

4
v ib ikv

kD f ~v!, ~4.66!

we get

V~ tux,x!5expH S 18 R1
1

6
RHD tJ K detS sinh~Atv iFi /2!

Atv iFi /2
D 1/2 detS sinh~Atv iDi /2!

Atv iDi /2
D 21/2L .

~4.67!

Using the standard Gaussian averages,

^1&51, ^v i&50, ^v ivk&5 1
2 b ik,

^v1
i •••v i2n11&50,

^v i1•••v i2n&5
~2n!!

22nn!
b ( i1i2•••b i2n21i2n), ~4.68!

one can obtain now all HMDS coefficients in terms of various foldings of the quantitiesDa
ib and

F j
ik with the help of matrixb

ik. All these quantities are curvature invariants and can be expressed
directly in terms of a Riemann tensor. Thereby one findsall covariantly constant terms in all
HMDS coefficientsin a manifestly covariant way. We are going to obtain the explicit formulas in
a further work.

V. CONCLUDING REMARKS

In the present paper we continued the study of the heat kernel that we conducted in our papers
~Refs. 4, 10, 15, and 21!. Here we have discussed some ideas connected with the point that was
left aside in previous papers, namely, the problem of calculating the low-energy limit of the
effective action in quantum gravity. We have analyzed in detail the status of the low-energy limit
in quantum gravity and stressed the central role playing by the Lie group of isometries that
naturally appears when generalizing consistently the low-energy limit to curved space.
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We have proposed a promising, to our mind, approach for calculating the low-energy heat
kernel and realized, thereby, the idea of partial summation of the terms without covariant deriva-
tives in local asymptotic expansion for computing the effective action that was suggested in Refs.
2 and 4.

Of course, there are many unsolved problems left. First of all, one has to obtainexplicitly the
covariantly constant terms in HMDS coefficients. This would be the opposite case to the high-
derivative approximation15,16and can be of certain interest in mathematical physics. Then, we still
do not know how to calculate the low-energy heat kernel in the general case of covariantly
constant curvatures, i.e. when all background curvatures~R5$Rmnab ,Rmn ,Q%! are present. Be-
sides, it is not perfectly clear how to do the analytical continuation of Euclidean low-energy
effective action to the space of Lorentzian signature for obtaining physical results.

Let us make a final remark concerning the relation of our work to that of previous authors,
who seems to treat almost the same problem~see the review paper of Camporesi in Ref. 22 and
references therein and Ref. 27!. What we have been trying to do in the present paper is rather
different from what the other authors did. These are theglobal topological problems and effects
that are ofprime interest in those papers. The authors of those papers make use of the techniques
of geometric analysis on homogenous spaces, with an emphasis on theexactresults. That is why
only very special concrete examples of symmetric spaces~group manifolds, spheres, rank-one
symmetric spaces, split-rank symmetric spaces, etc.!, which allow us to obtain closed formulas
were considered. The results obtained in this way are presented in terms of the root vectors and
their multiplicities. The complexity of the method depends critically on the rank of symmetric
space. As far as we know the explicit results for the heat kernel are obtained for rank-one and for
some rank-two symmetric spaces.

We are interested, in contrary, first of all inlocal effects of strongly curvedapproximately
homogeneousmanifolds. Therefore, our approach is thought of only as aframework for a pertur-
bation theoryin nonhomogeneity. In typical physical problems we need a rathergeneral approxi-
mation schemeinstead of exact exceptional results. The point is that we need the effective action
as a functional of agenericmetric that could be varied to obtain the physical currents.

There is, of course, the difficult question, of whether the global effects might be neglected in
comparison with local ones. This question isopen. We can only say that if it is the case, i.e.if the
local effects are dominant, then the heat kernel is given by explicit covariant formulas obtained in
Sec. IV.

VI. NOTE ADDED

After this paper was completed we became aware of the similar results on the heat kernel in
symmetric spaces by Fegan~Ref. 27!. Though they were obtained in a completely different rather
geometrical setting incorporating the nontrivial global topology, one would, due to intrinsic local-
ity of the heat kernel expansion, expect that the two expressions, i.e. ours and that of Ref. 27,
should coincide under an appropriate representation of the special functions obtained in Ref. 27.

Another comment concerns the meaning of the effective potential. If the symmetry in question
is that of Euclidean space~that is not the case, in general!! our expansion should reduce to the
quasilocal expansion of Brown and Duff,28 which was extended to curved spaces by Hu and
O’Connor.29 Therefore, one might consider our work as an extension of the quasilocal expansion
to a symmetric space and quasihomogeneous setting.
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The arguments leading to the introduction of the massive Nonsymmetric Gravita-
tional action are reviewed@J. W. Moffat, J. Math. Phys.36, 3722~1995!, Phys. Lett.
B 355, 447 ~1995!#, leading to an action that gives asymptotically well-behaved
perturbations on General Relativity~GR! backgrounds. Through the analysis of
spherically symmetric perturbations about GR~Schwarzschild! and Nonsymmetric
Gravitational Theory~NGT! ~Wyman-type! static backgrounds, it is shown that
spherically symmetric systems are not guaranteed to be static, and hence Birkhoff’s
theorem is not valid in NGT. This implies that in general one must consider time
dependent exteriors when looking at spherically symmetric systems in NGT. For
the surviving monopole mode considered here there is no energy flux as it is short
ranged by construction. Further work on the spherically symmetric case will be
motivated through a discussion of the possibility that there remain additional modes
that do not show up in weak field situations, but nonetheless exist in the full theory
and may again result in bad global asymptotics. A presentation of the action and
field equations in a general frame is given in the course of the paper, providing an
alternative approach to dealing with the algebraic complications inherent in NGT,
as well as offering a more general framework for discussing the physics of the
antisymmetric sector. ©1996 American Institute of Physics.@S0022-
2488~96!01501-5#

I. INTRODUCTION

In General Relativity~GR!, just as in Maxwell’s electrodynamics, one finds that given a
spherically symmetric system, there are no dynamical degrees of freedom in the theory. This is
Birkhoff’s theorem, and it implies that a time dependent source will not excite modes in the
gravitational system, so that outside this source the system must be physically equivalent to the
Schwarzschild solution~the nontrivial static spherically symmetric spacetime!. It has been further
established1,2 that the solution is stable when perturbed, so that small deviations from spherical
symmetry do not alter the large scale features of the spacetime, and systems that are only approxi-
mately spherically symmetric are therefore still very well modeled by the Schwarzschild solution.
This establishes that the phenomenology of the Schwarzschild solution is physically relevant.

To see that Birkhoff’s theorem is not a generic feature of physical theories one need look no
further than a scalar field. However the example that is important for this work is the~massive!
Kalb–Ramond action3 which ~as will be demonstrated in Section III! has a single mode that is
time dependent in general. As will be shown in Section II, the massive Nonsymmetric Gravita-
tional Theory4,5 ~mNGT as opposed to the older versions of the theory, referred to as NGT, or
massless NGT! becomes identically a massive Kalb–Ramond field with an additional curvature
coupling term when considered as a perturbation about a Ricci-flat GR background, so the result
that NGT has a monopole mode is not surprising. The mode considered here is short ranged, so
that far enough away from the source one finds that the solution will be dominated by Schwarzs-
child behavior, and there is no energy flux. However, after demonstrating that spherically sym-
metric fields in the skew sector are not static in general, it will be shown in Section VI that the
symmetric sector will also no longer be static, through examination of a similar perturbation about
the mNGT background discussed in Section V. This means that no static solutions can be consid-
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ered rigorously as an exterior solution unless the solution is globally static~i.e. the interior is static
as well!.

The results in this paper are obtained through an examination of linearized perturbations,
although the conclusions must hold in general as Birkhoff’s theorem would imply that these fields
must be static as well. What cannot be examined in this fashion is whether in the full nonlinear
theory more modes become excited. In particular, one will see in the case of a perturbation about
a GR background~in Section II! that there are three propagating modes, even though the absence
of gauge invariant kinetic terms in the full theory would suggest that all six modes in the anti-
symmetric metric could be independent degrees of freedom~as yet, the number of degrees of
freedom in mNGT has not been rigorously established!. Although this issue is not addressed
directly in this work, the ability to recast the theory in a general basis given in Section IV sets the
stage for a complete analysis of the spherically symmetric system in NGT. Given that there is an
additional mode in the general spherically symmetric system, how the fields may or may not
approach an asymptotically flat spacetime should then be addressed, and also whether evolution
singularities of the type discussed in Ref. 6 are encountered.

II. MASSIVE NGT

The original version of NGT7 grew out of a re-interpretation of the Einstein-Straus8,9 unified
field theory as a purely gravitational system. The antisymmetric part of the metric and connection
operationally produce different modes of parallel transport and index contraction,7,10,11where the
algebra is consistent with an enlargement of the tangent vector space to its hyperbolic complex
extension.12–14 It is important to note that the action cannot support the additional Bianchi iden-
tities and gauge invariance related to the extension of the tangent bundle, simply because the base
manifold is locally diffeomorphic toR4, and the variational principle is based on an integration
over this real manifold. Any change of gauge that mixes real and hyperbolic complex covectors
will cause the volume element to pick up a hyperbolic complex piece, and the action will no
longer be real.

The hyperbolic complex structure is unnecessary for an operational discussion of the theory
~although it may be relevant for a more fundamental discussion of its physical interpretation!, and
in this paper all quantities will be considered real, allowing antisymmetric contributions to the
metric and connection coefficients. The dynamics of the theory will be determined from the first
order action (G5c51):

S5E d4x$2gmnRmn
NS@G#2gmn]@mWn]1 lmGm1 1

2ag
~mn!WmWn1 1

4m
2g@mn#g@mn#%1SM , ~1!

where

dSM
dgmn 5Tmn , ~2!

is the matter stress energy tensor derived from the variation of the matter actionSM, that acts as
a source in the gravitational field equations. The Ricci-like tensor for NGT appearing in~1! is
written as:

Rmn
NS5]aGmn

a 2 1
2~]nGma

a 1]mGan
a !1Gmn

a G~ab!
b 2Gbn

a Gma
b , ~3!

and a mass term forg@ # has been included along with a term quadratic inW as new features of the
action. As will become clear shortly,a may be fixed uniquely by requiring good asymptotic
behavior of perturbations about GR backgrounds. The new parameter in the massive action (m) is
an inverse length scale that must be constrained by experiment, andl is a Lagrange multiplier
employed to enforce the vanishing of the trace of the antisymmetric part of the connection coef-
ficients:Gm5G@ma#

a .
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The field equations related to the metric compatibility conditions are derived through the
variations:

dS

d lm
5Gm50, ~4a!

dS

dWm
5]ng

@nm#1ag~mn!Wn50, ~4b!

dS

dGsv
g 5]gg

sv2gsvG~ga!
a 1gavGag

s 1gsaGga
v 2 1

2dg
v~]ag

sa1gabGab
s 2 ls!

2 1
2dg

s~]ag
av1gabGab

v 1 lv!. ~4c!

Contracting on either index of~4c! and solving for the~anti-!symmetric parts of the divergence of
the densitized inverse metric results in the determination of the Lagrange multiplier using~4b!:
ls5 (a/3) g(sv)Wv . This also allows one to simplify the Kronecker-d terms, and determine the
compatibility conditions in undensitized form as:

]ggmn2gmaGng
a 2ganGgm

a 5 2
3a~gm@gga]n1 1

2gmng@ga#!g
~ab!Wb , ~5!

where the inverse of the metric has been defined bygmag
an5dm

n , which has been used in order to
rewrite the compatibility conditions in terms of the components of the metricgmn .

The remaining field equations derived from the variation of the action with respect togmn may
be written as:

Rmn :5Rmn
NS1]@mWn]2

1
2aWmWn2 1

4m
2~g@mn#2gamgnbg

@ab#1 1
2gnmg

@ab#g@ab#!5Tmn2 1
2gnmT,

~6!

whereT5gmnTmn , and the tensorR has been introduced in order to simplify the discussion of the
field equations. One may translate the conventions used here to those in Ref. 4 by taking
W→2 2

3W,Tmn→28pTmn , a→2 9
4s, and adjusting the definitions of the inverse metric:

gmn→gnm. To see the equivalence of the action, one further needs to rewriteG in terms of the
unconstrainedW connection, and drop the contribution from the Lagrange multiplierl .

The action for massless NGT is given by~1! with m5a50. As will be demonstrated, the new
terms have been introduced in order to make all skew modes short ranged when considering
perturbations about GR backgrounds. One performs this expansion about a symmetric, Ricci-flat
background, where one assumes that all background curvatures fall off at worst as 1/r as r→`.
This allows one to talk sensibly of energy-momentum and decompose fields via a spin projection,
so that higher order poles and negative energy~ghost! modes may be identified, as well as
avoiding the full nonsymmetric structure of a more general background that would make the
analysis far more complicated. One considers a perturbation of all quantities about a symmetric
GR background as in15:

gmn→g~mn!1hmn , Gmn
a → H a

mnJ 1gmn
a , ~7!

whereW, l and T are considered to be first order in the perturbation~as the background is
assumed to be Ricci-flat, there one hasTmn50). As usual, indices will be ‘‘raised’’ and ‘‘lowered’’
by the symmetric background metric, and the covariant derivative¹ is associated with the back-
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ground Christoffel symbols$ % determined from the background metric in the usual manner.
Corrections to the background curvatures, field equations and Lagrangian at each order in the
perturbation will be indicated by a superscript as:0R,1R•••.

The first order correction to the compatibility equation~5! can be solved explicitly forg to
yield:

gmn
a 5 1

2g
ab~¹nhbm1¹mhnb2¹bhmn!1 2

3ad@m
a Wn] , ~8!

andgm5g@ma#
a is seen to vanish by the linearization of the skew divergence equation:

2¹nh
@mn#5aWm. ~9!

In massless NGT,10 one had~8!, ~9! with a50, and hence there was no relation between the
metric degrees of freedom and those ofW. The skew part of the linearization of equation~6! with
m50 as well asa50 became:

1R@mn#5
1R@mn#

NS 1]@mWn]5¹ag@mn#
a 1]@mWn]5T@mn# . ~10!

The symmetric contribution, are the equations for a metric perturbation in GR,16 and will be
ignored in the remainder of this section. Using~9! with a50, the assumption that the background
is Ricci-flat (0Rmn50), and the commutation relation~for an arbitrary tensorB!:

¹@a¹b]Bmn52 1
2~Bvn

0Rv
mab1Bmv

0Rv
nab!, ~11!

~10! simplifies to:

¹a¹ah@mn#22]@mWn]240Ra
m

b
nh@ab#5¹aFmna22]@mWn]280Ra

m
b

nh@ab#522T@mn# .
~12!

The second form is given in terms of the curl of the skew metric
(Fgmn5]ghmn1]nhgm1]mhng), in order to more easily demonstrate the result found previously
by Damour, Deser, and McCarthy17,18 ~using the fact that¹g¹nFmng50 about a Ricci-flat back-
ground!, that these antisymmetric perturbations will in general have bad asymptotic behavior.
Although written as if the skew metric were a gauge field, the presence of the curvature coupling
term implies that the associated gauge invariance is not present,19 and one is not allowed to make
any choice of gauge in order to simplify this sector. One proceeds by taking the divergence of~12!
and choosing the gauge¹aWa50 ~the theory had aU(1) invariance asW only appeared in the
action in a curl! to find:

¹a¹aWm28¹n@0Ra
m

b
nh@ab##522¹nT@mn# . ~13!

Notice that the background curvature acts as a source here, so that even if one postulates that the
matter source is conserved, this curvature coupling~and in general other nonlinear terms! will still
exist as a source, causingW to propagate and have asymptotic behavior consistent with a massless
field (;1/r along the forward light cone!. Using this asymptotic behavior to determineh from
~12! results in a source with;1/r behavior, causing the fieldh not to fall off asr→` along the
forward light cone. This analysis is correct since one has assumed that the background curvature
falls off fast enough, and hence the potential term in~13! can be treated as a source, without
changing the asymptotic behavior of the fields. It must be stressed that one is assuming that the
backgroundand the radiative fields fall off at least as fast as;1/r , and what has actually been
derived here is a contradiction of this, sinceh is driven to a constant and can no longer be
considered as a perturbative mode.

Any analysis of this sort also supposes that a solution of the linearized field equations does in
fact correspond to an exact solution of the full nonlinear field equations. This is the case in GR16,20
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at least for source free equations, but no such result exists yet for any of the models considered
here. It is possible to take the stance that NGT is not linearization-stable, so that this sort of
analysis necessarily produces spurious results that do not correspond to global solutions, but then
one is denying the ability to do any sort of perturbative analysis without the existence of an exact
solution to back it up. Due to the scarcity of solutions, and the apparent existence of weak-field
perturbative situations, this would seem an unreasonable position to adopt.

This result is not confined to curved backgrounds, and in fact the analysis about Minkowski
space will serve to explicitly demonstrate the higher order pole leading to bad fall-off. Since this
curvature coupling, and any nonlinear effects in general, will act as a nonconserved source term in
the skew sector, the linearization that correctly represents the full nonlinear field equations in the
asymptotic region will have a nonconserved source term. This is no more than the observation that
once again, the full NGT action does not possess any form of additional gauge invariance in the
skew sector. A gauge field coupled to a source~or matter! in a manner that violates gauge
invariance may have drastically different behavior than the empty space and apparently gauge
invariant field equations, if indeed the action is consistent at all. Any analysis that attempts to
determine the propagator or asymptotic behavior of the field must take the form of the source~or
coupling to other fields! into account.

A trivial example of this is given by considering the Maxwell action. Coupling the usual
gauge invariant kinetic terms to a nonconserved source gives an inconsistent set of field equations,
and adding some sort of gauge fixing term will give a consistent set of equations, but the scalar
ghost mode will be excited and depending on the gauge there may be higher order poles in the
solution. The linearized field equations considered outside the source resemble those of the gauge
invariant theory in a particular gauge, but treating them as such will not give asymptotic behavior
that follows from coupling to the nonconserved source. The situation in NGT is more akin to
enforcing the gauge condition in the action through the use of an auxiliary field as:b]mA

m.21,22

Source conservation and absence of ghosts relies on whether or not the scalar Lagrange multiplier
field b has a source or not in the wave equation that determines it, and is thus a global question.
Given that the source forA is not conserved, thenb propagates and there are higher order poles
in the solution forA, leading to fields that do not fall off asr→` along the forward light cone.

Considering the field equations for massless NGT linearized from~12! about Minkowski
space:

hh@mn#22]@mWn]522T@mn# , ~14a!

]nh
@mn#50, ~14b!

(]nT@nm# Þ 0), one may take a divergence~to find a wave equation forW! or a curl~to removeW!
of the first of these, resulting in the unique consistent solution:

h@mn#522h21@T@mn#12h21]a] [mT[an]] ] ,

Wm522h21]nT@mn# . ~15!

The presence of the higher order pole~and consequent bad fall-off! is now obvious from the
presence of theh22 term in the Green’s function solution, and is no more than the result of
vanNieuwenhuizen23 who showed that the only healthy quadratic actions built of antisymmetric
tensor fields are the so-called Kalb–Ramond3 ~massless or massive! actions. One also notes that
there are 5 modes here: 3 inh, since 3 are determined algebraically by the second equation in~14!,
and 2 inW due to the previously mentionedU(1) gauge invariance.24 If it is assumed that the
~matter! source is conserved, the higher order poles are removed at linear order, but show up in the
second order correction to the fields, again causing a breakdown of the perturbative analysis.
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This analysis correctly represents the asymptotic behavior of the fields (W,h), and is equiva-
lent to equation~18! of Ref. 25, where the higher order pole resides in the projection operator:
P(11). One also sees the true propagating nature ofW, and this is borne out by the analysis in
Refs. 26 and 27 where there are five degrees of freedom evolving from each Cauchy surface, the
extra two of which are associated with the fieldW. That a Lagrange multiplier is propagating
merely signifies that it is a determined multiplier, with its evolution derived from the field
equations15 and not freely fixable as was done in Refs. 28 and 29 and in the next to last section of
Ref. 24 wheread hocconstraints were imposed on the linearized theory in order to obtain the
dynamics of a Kalb–Ramond theory. That these constraints cannot exist is clear from the lack of
gauge invariance in the full NGT action.

The result of vanNieuwenhuizen does however motivate a potential solution to this problem,
since the massive Kalb–Ramond theory does not require a conserved current and yet has no ghost
modes, higher order poles or tachyons. The additional terms in the action for mNGT~1! are
introduced in order to allow the linearized field equations of NGT to take on this form in the
antisymmetric sector. These two terms play slightly different roles: theW2 term causesW to be
determined in terms of metric functions directly (a is fixed in order to find the correct form of the
kinetic energy terms!, and the mass term forg@ # makes the skew sector short-ranged, and ensures
that the linearized field equations remain consistent when expanding about a flat background.

Thus mNGT should have a linearization about Minkowski space of the form:

]aFmna1m2h@mn#5J@mn# . ~16!

The solution to~16! can be found by taking a divergence and substituting back in to find:

h@mn#5h21FJ@mn#1
2

m2 ]a] [mJ[an]] G ,
]nh@mn#5

1

m2 ]nJ@mn# . ~17!

The higher order poles have disappeared, and it can be shown that the linearized Hamiltonian is
weakly positive definite and that ghost modes are removed through the algebraic conditions that
couple them locally to the source in~17!. About a more general background one can allow a
curvature coupling term, since it will not affect the behavior of the fields asymptotically once the
background is assumed to fall off appropriately. Choosing the theory that results in this behavior
in the linearized theory will fixa uniquely.

Returning now to the field equations of mNGT expanded about a GR background following
from ~6!, one finds:

1Rmn51Rmn1
1

a
¹ [m¹ah[an]]2

1

2
m2h@mn#5Tmn2

1

2
gnmT, ~18!

where the first order correction to the ‘‘Ricci’’ tensor is given by:

1Rmn5¹agmn
a 2¹~ngam)

a . ~19!

Again ignoring the symmetric GR perturbations, the antisymmetric part of~18! is:

¹ag@mn#
a 1

1

a
¹ [m¹ah[am]]2

1
2m

2h@mn#52 1
2~¹aFmna1m2h@mn#!22¹a¹ [mh[an]]

1
1

a F11
2

3
aG¹ [m¹ah[an]]5T@mn# . ~20!
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Requiring that this reduce to the massive Kalb–Ramond field equations~16! determines the
~previously arbitrary! coupling:a53/4. The last two terms can be reduced to a curvature term to
give:

¹aFmna1m2h@mn#240Ra
[m

b
n]h@ab#522T@mn# , ~21!

so the skew sector perturbations are well-behaved when perturbing about any asymptotically flat
GR background.

Expanding the action~1! to second order~ignoring surface terms! gives:

2L522R2 1
2h

1R1hmn1Rmn1hmn]@mWn]1
1
2aW

mWm1 lmGm2 1
4m

2h@mn#h@mn# ~22!

and once compatibility is imposed, followed by the removal ofW, this becomes:

2L5
1

12
FmngFmng2

1

4
m2h@mn#h@mn#2¹gh@mn#¹nh@gm#2S 1

2a
1
1

3D¹nh
@mn#¹gh@mg# . ~23!

Choosinga53/4 results in kinetic terms identical to those of Kalb–Ramond theory on a GR
background, giving the skew sector action:

2L5 1
12F

mngFmng2 1
4m

2h@mn#h@mn#2h@mn#h@ab#0Rambn , ~24!

which reproduces the linearized field equations~21!. Thus the massive NGT action will be~1!
with a53/4,4 giving the action~24! for perturbations about a GR background and guaranteeing
good asymptotic behavior for these fields.

Although it has been established that the perturbation equations about a GR background are a
consistent system resulting in good fall-off for the skew sector, it is not clear whether an asymp-
totic perturbation actually corresponds to a global solution~linearization stability!. The~seemingly
contrived! asymptotic limit of gauge invariant kinetic terms cannot be reflected in the full action,
since there is no room for the additional gauge invariance in theories constructed from antisym-
metric fields in this manner. This means that in general that one expects more~perhaps all 6!
degrees of freedom in the skew sector evolving as degrees of freedom in a Cauchy analysis,
whereas in any spacetime that has an asymptotically flat region only three will survive. This
situation could be similar to that found in Ref. 6, where vector fields were seen to increase their
degrees of freedom when gravitational effects are taken into account. In order to obtain an as-
ymptotically flat spacetime~with the reduced degrees of freedom of the vector fields! from physi-
cally reasonable initial data, the evolution equations were seen to have to encounter singularities.
This is generally considered to be a sign of instability, and certainly not a desirable feature in any
theory. Perturbations about NGT backgrounds should also be considered, since the physically
interesting NGT solutions are most likely those that are not ‘‘close’’ to a GR solution.30 It is hoped
that a more complete analysis of the general spherically symmetric system should be able to say
something about this issue, since it will certainly tell one how many degrees of freedom survive
and how they couple to external fields, and hopefully something about how the system may or
may not approach an asymptotically flat spacetime.

It is also true that the form of the action~1! is far from unique. In particular, one could replace
the W2 term with some combination ofW2 and (1/A2g) g(mn)]a@g@ma##]g@g@ng##, giving the
same perturbation equations~21!, and resulting in an arbitrary coupling constant in the action.
Further, since there is nothing preventing one from addingG@# terms~they are tensors! or even
infinite strings of terms of the form:g(ab)g

(bg)
••• or g@ab#g

@bg#
••• ~which conveniently disap-

pear in the asymptotic expansion!, there is clearly an infinite number of actions that do this. These
examples seem extremely unnatural and will not be considered further here, although the results of
this paper would not change significantly for these more general actions.

401M. A. Clayton: Massive NGT and spherically symmetric systems

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



III. SPHERICALLY SYMMETRIC PERTURBATION OF THE SCHWARZSCHILD SOLUTION
IN A COORDINATE BASIS

The absence of a Birkhoff theorem may be derived from the perturbation equations~21!
developed in Section II. In general the spherically symmetric fields in the skew sector will not be
static, although the symmetric sector will remain static in the perturbation about the GR solution
considered here. The background metric is Schwarzschild with~coordinate basis! metric written
as:g5diag@A(r ),21/A(r ),2r 2,2r 2sin2(u)#, whereA(r )5122Ms /r andMs is the Schwarzs-
child mass parameter. The perturbation considered will be one that is spherically symmetric but
not necessarily static. A Killing vector analysis yields the general form of the spherically sym-
metric perturbation:

uhmnu5F h00~ t,r ! h~01!~ t,r !1h@01#~ t,r ! 0 0

h~01!~ t,r !2h@01#~ t,r ! h11~ t,r ! 0 0

0 0 h22~ t,r ! h@23#~ t,r !sin~u!

0 0 2h@23#~ t,r !sin~u! h22~ t,r !sin2~u!

G .
~25!

Making a change of coordinates of the background geometry is equivalent to making a change of
gauge on the perturbation:dh5£«@g#, where« is the spherically symmetric vector gauge param-
eter generating diffeomorphisms between spherically symmetric spacetimes. This allows one to
simplify the form of the perturbation by a suitable choice of gauge. Choosing the gauge parameter
as:

«052E S h~01!

A~r !
2

] t@h22#

2rA~r !2Ddr, ~26a!

«15
h22
2r

, ~26b!

removes theu2u, f2f, and symmetrict2r perturbations altogether, and a remaining gauge
transformation«05e(t) allows one to remove an arbitrary function from thet2t component of
the form:dh0052A(r )e(t).

The field equations will be written without the source terms for simplicity although it is
straightforward to include them and relate the constants of integration to properties of the source.
First reviewing how the symmetric~in this case identically GR! perturbations become static, it is
simplest to begin with the field equation:1R(01)50, which implies:

] t@h11~ t,r !#50, ~27!

immediately showing thath11 must be static. By considering1R2250, it is determined to be:

h11~ t,r !52
2dMs

rA2 , ~28!

where the integration constant has been combined withMs and interpreted as a perturbation of the
Schwarzschild mass parameter:dMs . Then one considers:g00 1R002g11 1R1150, leading to:

h00~ t,r !5B~ t !A2
2dMs

r
, ~29!
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also giving a contribution arising from the perturbed mass parameter, as well as an arbitrary
function of time as an integration constant, removable by the remaining choice of gauge noted
above with:e(t)52B(t)/2. Thus one has that the symmetric perturbations are static and inter-
pretable as being due to a small change in the total energy of the system:dMs .

In the skew sector, thet2r field equation gives:

1R@01#5
1
2~2A92m2!h@01#50, ~30!

from which one must conclude thath@01# vanishes outside the source.~Primes will denote the
derivative of a function of one variable where convenient.! In massless Kalb–Ramond theory, this
is the surviving spherically symmetric ghost mode which in that case is pure gauge. When a mass
term is added, although these modes are now no longer pure gauge, they do not propagate since
they are locally coupled to the source. It is these modes that one eventually must worry about,
since in the full theory they may play a nontrivial dynamical role. In theu2f sector:

1R@23#52
1

2 H 1A ] t
2@h@23##2A] r

2@h@23##2SA82
2A

r D ] r@h@23##1S 4r 2 ~12A!1m2Dh@23#J sin~u!50.

~31!

In order to derive the asymptotic form of this perturbation, it is convenient to define
h@23#5r f (t,r ), leading to:

1

A
] t
2@ f #2A] r

2@ f #2A8] r@ f #1S 3A8

r
1
2A

r 2
1m2D f50. ~32!

Introducing the coordinate:

r *5E dr

A~r !
5r12Ms lnS r

2Ms
21D , ~33!

one obtains~after multiplying byA! the partial differential equation forf in normal form:

] t
2@ f #2] r*

2
@ f #1ASm21

2A

r 2
1
3A8

r D f50, ~34!

where r is considered as a function ofr * as areA(r ) and ] rA(r ), and the perturbation
f5 f (t,r * ). In this form it is obvious that~34! is a hyperbolic wave equation, and that the fieldf
is therefore nonlocally related to the source.

Using the fact that 1/r21/r *;o(1/(r * )2) asr *→`, one keeps only the constant mass term
asymptotically, as all other potential terms will be dominated by it. This leaves the massive scalar
wave equation to determine the asymptotic form of the perturbation:

] t
2@ f #2] r*

2
@ f #1m2f;0. ~35!

The static solution of this is easily seen to have the asymptotic form:

h@23#~r !;F0

r

m
e2mr*;F0

r

m
e2mrS r

2Ms
D 22mMs

, ~36!

where a factor ofm has been introduced in order to make the constantF0 dimensionless. The
general time dependent case may be handled by noting that the retarded and advanced Green’s
functions for the massive scalar wave equation31 (x25t22xW2):
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D ret, adv~x!5D ret, adv~ t,r !5
1

2p
u~6x0!Fd~x2!2

mu~x2!

2Ax2
J1~mAx2!G , ~37!

depends only on (t,r ), andr *D ret, adv(t,r * ) will solve ~35!. The asymptotic behavior ofh@23# is
then determined from:

h@23#;rr *D ret, adv~ t,r * !. ~38!

Note that the behavior on the light cone is determined from just the massless Green’s function
d(x2),32 and so it would appear thath@23# will behave asr asr→` along the forward light cone.
This is misleading, as it can be demonstrated explicitly33 that for C` initial data with compact
spatial support, a massive Klein-Gordon field is bounded everywhere by:f<d(11utu)23/2, for
some constantd, and therefore cannot radiate energy. This can also be understood by noting that
because the field is massive, the effects propagating on the light cone must be fields of infinite
energy, and given some physically reasonable source distribution, these infinite energy modes will
not be excited.

The existence of time dependent solutions thus proves that Birkhoff theorem is not valid in
mNGT, although the short-ranged nature of the skew sector implies that monopole radiation will
not exist. The symmetric sector has remained static in this system, but as will be shown in Section
VI, through a perturbation about an approximated mNGT solution, this will not be the case in
general. The perturbation equations about a mNGT background have not been given in covariant
form, primarily due to the complication involved~although it is possible in principle using a
generalization of the inversion of the compatibility equation given in Ref. 34!. Instead the system
may be developed in each case separately, and the analysis simplified by considering the field
equations in a vierbein frame given in the next Section.

IV. NONSYMMETRIC THEORIES IN A GENERAL FRAME

The structure of the compatibility relations and field equations in nonsymmetric theories can
be formulated in terms of components in a general moving frame~in the sense of global section of
the general linear frame bundleGLM of all linear frames overM ). The formalism given here is
essentially a more systematic development of the approach in Ref. 35, and differs slightly from
that of Hlavaty36 in that the~in general nonsymmetric in a coordinate basis! connection coeffi-
cients have been split up into a connection that is torsion free, and another that is purely antisym-
metric, instead of defining two types of covariant derivative, one associated with the NGT Christ-
offel symbols, and another that is in general nonsymmetric and not in general torsion-free. The
construction here has the advantage of only defining one covariant derivative, and the fact that it
is torsion-free implies that the antisymmetric components in a general~noncoordinate! frame are
related in the standard way to the structure constants. In a coordinate basis this is the usual split
between the symmetric and antisymmetric components, however it is easily generalized to any
basis by considering the antisymmetric components as a separate antisymmetric tensor, and the
symmetric components as a torsion-free but generally noncompatible connection.

This provides a simple way to split the GR and NGT contribution in weak field situations, as
well as generating computationally simpler systems to solve when inverting the compatibility
relations. Note that although the formalism is developed for a general basis, the specialization to
a vierbein basis~the reduction ofGLM to LM , the Lorentz frame bundle consisting of all Lorentz
frames aboveM ) which will be utilized in the rest of this paper, is accomplished through the
choice of the fiber metric asg()→h above all points of the manifold. This is possible in NGT for
the same reason that it is possible in GR: mathematically formulating a physical theory in a
diffeomorphism invariant manner will always allow the introduction of these general linear
frames. The reduction to Lorentz frames is also possible as one is assuming that the symmetric
part of the metric that one is attempting to diagonalize is nondegenerate, allowing the reduction of
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the frame bundle. This construction will be of importance when considering the canonical analysis
of NGT, as one would like to work in a surface compatible~generally noncoordinate! basis in
order to avoid specialization to a particular choice of time parameter fixed by the foliation of the
manifold, and is easily applied to other systems with a nonsymmetric metric and connection.29

A. Metric, compatibility and curvature

The compatibility conditions in a coordinate basis~5! will be written for convenience as:

]g@gmn#2gmaGng
a 2ganGgm

a 52Dgmn
0 , ~39!

whereD0 depends only on the metric or quantities directly derivable from it~and possibly other
quantities, but for the purposes of this construction it does not depend on the connection coeffi-
cients!. Parallel transport~and the related covariant derivative! will then be defined using just the
symmetric part of the coordinate basis connection, and its action on the~coordinate! basis vectors
is:

¹ea
@e#b5G~ab!

g eg ,¹ea
@u#g52G~ab!

g ub, ~40!

and the connection is split into a symmetric connection and an antisymmetric tensor:

Gmn
g →G~mn!

g 1L@mn#
g . ~41!

ThusG will refer from this point onwards to the torsion-free~symmetric in a coordinate basis! part
of the connection, andL to the remaining tensor contribution. In this way,G is a torsion-free~but
noncompatible! covariant derivative since:

Tmn
g 5ug@¹em

en2¹en
em2@em ,en##52G@mn#

g 50. ~42!

The compatibility equation~39! then becomes:

¹eg
@g#mn5eg@gmn#2gmaGgn

a 2ganGgm
a 5gmaLng

a 1ganLgm
a 2Dgmn

0 , ~43!

where the basis vectors are just directional derivatives along the coordinates:eg@ #5]g@#.
With this definition of the covariant derivative and related connection coefficients, the geo-

metric curvature is found as usual from:

Rbmn
a 5ua@~¹em

¹en
2¹en

¹em
2¹@em ,en#!eb#5em@Gnb

a #2en@Gmb
a #1Gnb

g Gmg
a 2Gmb

g Gng
a ,

~44!

and defining the two independent contractions:

Rmn
1 5Rman

a 5ea@Gnm
a #2en@Gam

a #1Gnm
g Gag

a 2Gam
g Gng

a , ~45a!

Rmn
2 5Ramn

a 5em@Gna
a #2en@Gma

a #. ~45b!

The Ricci tensor will be defined as:

Rmn5Rmn
1 2 1

2Rmn
2 5ea@Gnm

a #2 1
2~en@Gam

a #1em@Gna
a #!1Gnm

g Gag
a 2Gam

g Gng
a . ~46!

This particular combination is symmetric, and obviously reduces to the GR Ricci tensor when the
NGT antisymmetric terms vanish. Decomposition of~3! into Rmn and another that depends on
L as:Rmn

NS5Rmn1Rmn
L where (Lm5Lma

a ) gives:
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Rmn
L 5¹ea

@L#mn
a 1¹e@m

@L#
n]

1Lmb
a Lna

b . ~47!

A more general basis is introduced at each point on the manifold througheA5EA
mem , where

E is locally an element ofGl(4,R), and these bases are smoothly joined up to form sections of the
tangent bundleT(M ).37,38The general basis vectors are then given in terms of a coordinate basis
through the vierbein-like quantities, which can be used to translate tensors from one choice of
basis to the other:

eA5EA
mem , EA

mEB
ngmn5gAB , etc. ~48!

~In the usual orthonormal basis, one transforms the symmetric part of the metric to the Minkowski
space metric, and theE’s provide the isomorphism between coordinate basis tensors and locally
Lorentzian tensors.! The dual basis ofT* (M ) is introduced through the usual relation:
uA@eB#5dB

A , and the inverse of the vierbeins is defined through:EA
mEn

A5dn
m . In this paper capital

letters from the beginning of the alphabet:A,B,C,••• will refer to components of the object
decomposed in the general basis.

Parallel transport of the basis vectors now defines the generalized connection coefficients:

¹eA
@e#B5GAB

C eC ,¹eA
@u#C52GAB

C uB. ~49!

The definition of the basis in~48! implies that it is no longer a coordinate basis in general, and
hence the directional derivatives no longer necessarily commute, giving rise to the structure
constants:

@eA ,eB#5CAB
CeC , ~50a!

given by:

CAB
C5En

C~EA
m]m@EB

n #2EB
m]m@EA

n #!, ~50b!

calculated by noting thateA@ #5EA
m]m@#. This also implies that a torsion-free connection will no

longer be symmetric, and vanishing torsion now gives:

TBC
A 5uA@¹eB

eC2¹eC
eB2@eB ,eC##52G@BC#

A 2CBC
A50, ~51!

allowing one to determine the antisymmetric part as usual from the structure constants. This is the
motivation for splitting up the connection in this way. Given some alternate split whereG is not
torsion free, one would have to distinguish between the effects of the general basis on the skew
part of the connection coefficients, and that of the NGT effects~themselves tensors!.

The compatibility condition~39! can now be written as:

¹eC
@g#AB5gADLBC

D 1gDBLCA
D 2DCAB

0 , ~52!

where sinceD0 andL are tensors, they are just redefined by multiplication by the appropriate
combination of vierbeins. The symmetric part of this can now be solved for the symmetric part of
G in terms of the antisymmetric part, the structure constants, andL, to give:

GC~AB!5
1
2DC~AB!2GA@BC#1GB@CA#2AA

DLDBC1AB
DLDCA , ~53!

where the quantities:

GABC5g~AD!GBC
D , LABC5g~AD!LBC

D , AB
A5S~AC!g@CB# , ~54!
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have been defined for convenience, andS is the inverse of the symmetric part of the metric defined
by: S(AB)g(BC)5dC

A . Also appearing is the symmetric part of:

DCAB5eB@gCA#1eA@gBC#2eC@gAB#1DBCA
0 1DABC

0 2DCAB
0 . ~55!

The antisymmetric part of the compatibility conditions can now be recast@using ~53!# as 24
algebraic equations forL:

LCAB2AA
DAB

ELECD2AA
DAC

ELEBD1AB
DAA

ELECD1AB
DAC

ELEAD5VC@AB# , ~56!

where:

VC@AB#5
1
2~DC@AB#1AB

DDD~CA!2AA
DDD~BC!!1AA

D~GB@CD#1GC@BD#!

2AB
D~GA@CD#1GC@AD#!2AC

DGD@AB# . ~57!

The method for solving the compatibility conditions is to first determine the auxiliary quan-
tities appearing in this relation: (A,G@# ,D,V) in terms of the vierbeins and metric quantities, then
solve forL through ~56!, determineG () from ~53!, and then useS with G@# and G () to form
GBC
A andLBC

A . This may not seem like much of a simplification, but when specialized to a Lorentz
frame, many of these quantities simplify considerably~as is the case in the Wyman sector in
Section V!.

The curvature tensor~44! becomes:

RBCD
A 5uA@~¹eC

¹eD
2¹eD

¹eC
2¹@eC ,eD#!eB#

5eC@GDB
A #2eD@GCB

A #1GDB
E GCE

A 2GCB
E GDE

A 2CCD
EGEB

A , ~58!

and the contractions:

RAB
1 5RACB

C 5eC@GBA
C #2eB@GCA

C #1GBA
D GCD

C 2GCA
D GBD

C 2CCB
DGDA

C , ~59a!

RAB
2 5RCAB

C 5eA@GBC
C #2eB@GAC

C #2CAB
DGDC

C , ~59b!

combine to give the Ricci tensor:

RAB5RAB
1 2 1

2RAB
2 5eC@GBA

C #2eB@GCA
C #2 1

2eA@GBC
C #1 1

2eB@GAC
C #

1GBA
D GCD

C 2GCA
D GBD

C 2CCB
DGDA

C 1 1
2CAB

DGDC
C

5eC@GBA
C #2eB@GCA

C #2 1
2eA@GBC

C #1 1
2eB@GAC

C #1GBA
D GCD

C 2GCB
D GDA

C 1G@AB#
D GDC

C . ~60!

In the splitRAB
NS5RAB1RAB

L :

RAB
L 5¹eC

@L#AB
C 1¹e@A

@L#
B]

1LAD
C LBC

D ~61!

as expected.
Since by constructionG is a torsion free connection, and~58! is the standard curvature tensor

constructed from it, one obtains the usual Bianchi identities38 on the curvature tensor. One should
note though that the connection is not compatible, and so the rotation coefficients are not anti-
symmetric. The relevant Ricci tensors are also not constructed in the same manner as in GR, so the
implications of these identities are somewhat different. The first Bianchi identity gives the usual
cyclic identity on the last three indices of~58!, and leads to the result:
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R@AB#
1 5 1

2RAB
2 ~62!

when one contracts on any lowered index.~This can also be proven directly using the Jacobi
identity.! This tells us that the NGT Ricci tensor is symmetric (R@AB#50) in general, not just in a
coordinate basis.

A detailed study of the contractions of the second Bianchi identity~the cyclic covariant
derivative!:

¹eC
@R#BDE

A 1¹eD
@R#BEC

A 1¹eE
@R#BCD

A 50, ~63!

should result in a derivation of the equations of motion for matter fields39,40 from the field
equations.

B. The NGT action and field equations in a general basis

The translation of the field equations~4b!, ~5!, ~6! is accomplished through an almost straight-
forward substitution:

LA50, ~64a!

¹eB
@g#@AB#5ag~AB!WB , ~64b!

RAB :5RAB
NS1¹e@A

@W#
B]

2 1
2aWAWB2 1

4m
2MAB50, ~64c!

where the density isA2g5A2det(gAB), the mass tensor:

MAB5g@AB#2gCAgBDg
@CD#1 1

2gBAg
@CD#g@CD# ~65!

has been defined, and the tensor appearing in the compatibility equations is:

DCAB
0 52 2

3a~gA@CgD]B1 1
2gABg@CD#!g

~DE!WE . ~66!

One must be careful to treat totally antisymmetric derivatives properly~the structure constants
now come into the curl of a vector!, and translate the metric density properly.

In order to define the action, one should note that the inverse of the metric is now:
gABg

BC5gCBgBA5dA
C , and the direct translation of the density results in:

A2g→A2EgEt5EA2g whereg5 det(gAB) andE5det(Em
A). Then~1! is rewritten:

S5E d4xE$2gABRAB
NS2gAB¹e@A

@W#
B]

1 lALA1 1
2ag

~AB!WAWB1 1
4m

2g@AB#g@AB#%. ~67!

~Note that in a Lorentz basis, the inverse of the metric is noth.)
Deriving the equations of motion from this action should be approached with care. As it stands

there are too many fields~the metric and the vierbeins share degrees of freedom! and one typically
must choose either a coordinate basis~as in Section II!, a Lorentz basis~so that all symmetric
metric degrees of freedom are contained in the vierbeins!, or a well-defined combination of the
two. One must also realize that~67! as it stands assumes that the connectionG is torsion-free
a priori, so that when varying the vierbein,G@# must be varied as well. As an alternative, one may
impose the torsion-free condition through additional Lagrange multiplier terms:LA

BCTBC
A in the

action, varying the full connection coefficients and vierbeins separately.
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V. APPROXIMATION OF THE WYMAN SECTOR SOLUTION IN A VIERBEIN BASIS

In general, the spherically symmetric Killing vector analysis for a (0,2) tensor gives both
t2r and u2f skew components. However it is possible to show from the general spherically
symmetric field equations that it is consistent to put either~or both! of these skew components to
zero separately, since in either case one loses the corresponding field equation, and the system of
equations remains consistent. Whether it is physically reasonable to do this or not depends on the
details of the matter coupling in the theory, and how it alters the global behavior of the skew
sector. Here will be considered the field equations for what will be referred to as the Wyman
sector41 ~keeping just theu2f sector!, although the asymptotics of thet2r sector will be
discussed briefly at the end of this section, where it will be argued that there are no static solutions
with asymptotic behavior that is dominated by Schwarzschild~or equivalently, Newtonian! effects.
This will allow an analysis of the perturbation equations for the spherically symmetric modes, in
order to see the effects of the antisymmetric background.

In a coordinate basis, the Wyman metric looks like:

ugmnu5 diag@g~r !,2a~r !,2r 2,2r 2 sin2~u!#, g@23#5 f ~r !sin~u!. ~68!

~An appropriate coordinate system has been chosen in order to remove the symmetrict2r metric
component, and fix theu2u component.! Introducing the usual choice of vierbein~using the
functions defined by:F5 f (r )/r 2,E051/Ag(r ),E151/Aa(r )):

EA
m5diagFE0

05E0 ,E1
15E1 ,E2

25
1

r
,E3

35
1

r sin~u! G , ~69!

the metric becomes:

ug~AB!u5hAB , g@23#5F, ~70!

and the densityA2g5A11F2.
At this point one can invert the compatibility conditions and compute the field equations using

the method of Section IV, given in some detail in Appendix A. No attempt will be made here to
solve the field equations exactly, although numerical evidence for the existence of an exact solu-
tion with asymptotic behavior that matches that given here has been found,42 ensuring that the
approximations given come from a global solution. Instead, an approximation will be given that
describes the asymptotic behavior of the exact solution. The idea will be to consider the skew
sector as a small correction~of order some small dimensionless parameterk, to be explicitly
defined later! to the Schwarzschild solution far enough away from the source. This should be
reasonable since one expects from the results of the perturbation in Section III that the skew sector
will behave asymptotically as a decaying exponential, while the symmetric sector should behave
as;1/r , so that far enough away from the gravitational source the skew sector should be com-
pletely dominated by GR effects.

To lowest order ink ~the skew sector! the work is already done, as the field equation for the
skew function will be essentially the same as the static perturbation about a Schwarzschild back-
ground already considered in Section III. In the vierbein basis, this is derived as before from
R@23# ~A8!, and gives:

A] r
2@F#1SA81

2A

r D ] r@F#2
2

r SA81
A

r DF2m2F50, ~71!

and it is trivial to see that when using:F5 f /r , this reduces to the static limit of~32!, giving the
asymptotic form forF:
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F;F0

e2mr*

mr
. ~72!

One now must consider how the presence of the skew sector affects the symmetric sector,
particularly whether it really is a higher order effect. The asymptotic form of these corrections due
to F may be calculated by considering orderk2 corrections to the vierbeins~orderk terms will not
depend onF, and so will be solelydMs corrections!, calculated from the symmetric field equa-
tions with F from ~72! acting as a source. Writing the corrections to the vierbeins as:
E0,1→E0,11E0,1

(2) , and the corrections to the field equations asR(2), one calculates:

R00
~2!1R11

~2!52
2A

r
] rFAAE0~2!1

E1
~2!

AA G2AFF92
3

2
A~F8!22

2A

r
FF850, ~73!

which, after translating it into a differential equation inr * and keeping only the asymptotically
dominant terms, results in:

] r* FAAE0~2!1
E1

~2!

AA G;2
5

4
~F0!

2
e22mr*

r *
. ~74!

This integrates to give~the constant of integration is ignored as one could eliminate it through an
appropriate choice of gauge as in Section III!:

AAE0~2!1
E1

~2!

AA
;
5

4
~F0!

2
e22mr*

2mr*
. ~75!

Considering nextR33
(2) and using~73! leads to the asymptotic equation:

] r* @rAAE1~2!#;2 5
4~F0!

2e22mr* . ~76!

The solution of this combined with the results of~75! gives~once again the constant of integration
is ignored, this time as it would be interpretable as a perturbation of the mass parameter and not
due to the effects of the skew sector!:

E1
~2!;

5

4
~F0!

2
e22mr*

2mr*
, E0

~2!;oS e22mr*

~r * !2
D , ~77!

where the dominant correction to the symmetric sector isE1
(2) , andE0

(2) is down byo(1/r * ). It is
not hard to see that these corrections are indeed of an order higher than the effects in the skew
sector. Clearly one may define a small parameterk5F0 exp(2mr0* ), wherer 0* is chosen such that
F(r 0* )!1, to define the small size of the skew sector whenr *.r 0* . The corrections to the
symmetric sector are seen to be of orderk2, and will therefore be neglected in the approximation
of the background required in Section VI.

One may attempt to do the same sort of analysis keeping theg@01# component, however the
linearized field equation implies immediately that the field must vanish~it is identical to ~30!!.
Considering higher orders in the field in an attempt to generate a solution other than this trivial
result, the third order correction gives@writing W(r )5A2X(r ), where the sign has been chosen
so that the asymptotic behavior determined below results in a realW(r )]

R@01#5
A2X

6 FA] r
2@X#1SA81

2A

r D ] r@X#1S 12Ar 2 1
4A8

r
1
3

2
m2DX2

12A8

r
23m2G50.

~78!
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Writing X5Y/r and transforming to ther * coordinate as before gives in canonical form:

] r*
2

@Y#1AS 12Ar 2 1
3A8

r
1
3

2
m2DY2A~12A813m2r !50, ~79!

and keeping the dominant terms:

] r*
2

@Y#1 3
2m

2Y23m2r *50, ~80!

easily giving the asymptotic form of the solution:

W2~r * !521
a

r *
cos~A3

2mr* !1
b

r *
sin~A3

2mr* !, ~81!

~where (a,b) are arbitrary constants!. The dominant part of this solution implies thatW is not in
fact a small correction to the Schwarzschild metric asymptotically, and must therefore be dis-
carded. This is not surprising as one is trying to match a function that is small asymptotically~by
hypothesis! to one that is constant keeping higher orders inW will clearly not change this result,
implying that nontrivial static solutions that include this sector will fail to be dominantly
Schwarzschild for larger . This of course does not exclude solutions with symmetric metric
components whose asymptotic behavior does not match that of the Schwarzschild solution, nor
can one exclude the possibility thatW is nonvanishing only inside some finite radius.

VI. SPHERICALLY SYMMETRIC PERTURBATION ABOUT A WYMAN BACKGROUND

In an attempt to consider the perturbation equations for NGT about a general non-symmetric
background, one finds that the compatibility conditions prevent one from formulating the inver-
sion in a useful form. This means that a fairly straightforward covariant formulation~like that
given in Section II! is not feasible, and instead one must treat each situation separately, in this case
a spherically symmetric perturbation about the approximated mNGT Wyman solution given in the
previous section. Here it is demonstrated that despite the remaining gauge freedom in the sym-
metric sector, both symmetric functions will in general pick up time dependence from the skew
sector. Although this cross coupling is demonstrated explicitly in a perturbative scenario, it will
certainly persist in a more general sense. The results here will show that the perturbations in the
symmetric sector pick up time dependence that is algebraically determined by the skew function
F, without themselves becoming independent degrees of freedom. The canonical analysis of the
general spherically symmetric system will address rigorously how many degrees of freedom exist
in each sector. If there are more in the nonperturbative theory, one can examine the dynamical
approach to an asymptotically flat spacetime looking for possible singular behavior similar to that
found in Ref. 6.

The perturbation of the Wyman metric~70! in a coordinate basis will look identical to~25!
~using the gauge choice to simplify it as before!. The background vierbeins will be the same as
those in the Wyman solution~69!, where now the perturbations of the vierbeins and skew metric
functions are related to perturbations in the coordinate basis by:

dW5
h@01#~ t,r !

Aa~r !g~r !
, dF5

dh@23#~ t,r !

r 2
, dE052

1

2

h00~ t,r !

g~r !3/2
, dE152

1

2

h11~ t,r !

a~r !3/2
. ~82!

In the vierbein basis the metric perturbation has nonvanishing components:

h@01#5dW, h@23#5dF. ~83!
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The approximation of the background Wyman solution given in Section V greatly simplifies the
algebra necessary to develop the perturbation given in Appendix B. Approximating the symmetric
sector by the Schwarzschild solution and the antisymmetric sector by~72!, first order in this static
antisymmetric background is kept, as is the first order in the perturbations. As one shall see, this
will be a reasonable approximation since it will be possible to keep the perturbations small
compared to the background by an appropriate choice of integration constants~similarly todMs in
the Schwarzschild case!.

The field equation:1R@01#50, yields precisely the same field equation as in the Schwarzschild
case~30!, allowing one to immediately setdW50. The symmetric part:1R(01)50, can be written
as a total time derivative:

1R~01!5] tF 2

rAA
dE11

3

2
F8dF1S 1r 2

A8

2AD FdF1F] r@dF#G50. ~84!

This last field equation is then integrated, introducing an arbitrary static functiondE(r ):

2

rAA
~dE12dE!52

3

2
F8dF2S 1r 2

A8

2ADFdF2F] r@dF#. ~85!

Now computing (Tr@RAB#:5R001R1112R22):

Tr@1RAB#5
4

r 2
] r@rAAdE1#2

F

A
] t
2@dF#13AF] r

2@dF#1S 8Ar F12A8F15AF8D ] r@dF#

1S 3AF91
8A

r
F812A8F82m2F D dF50, ~86!

and inserting~85! gives:

Tr@1RAB#5
4

r 2
] r@rAAdE#2

F

A
] t
2@dF#1AF] r

2@dF#1SA81
2A

r DF] r@dF#

2S 2A8

r
1
2A

r 2
1m2DFdF50. ~87!

Also,

1R001
1R115

2A

r
] rFAAdE01

dE1

AA G1
F

A
] t
2@dF#1AF] r

2@dF#1AS 2Fr 13F8D ] r@dF#

1AS 2F8

r
1F9D dF50, ~88!

gives the equality of spatial derivatives ofAAdE0 anddE1 /AA up to orderF. This will be useful
when considering:
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1R@23#5S Fr 2
F8

2 DA] rFdE1

AA
2AAdE0G2FAF91S A81

2A

r D F82
2

r S A81
A

r D FGdE1

AA

1
1

2 S 1A ] t
2@dF#2A] r

2@dF#2S A81
2A

r D ] r@dF#1S 2A8

r
1
2A

r 2
1m2D dF D

5S Fr 2
F8

2 DA] rFdE1

AA
2AAdE0G2m2F

dE1

AA

1
1

2 S 1A ] t
2@dF#2A] r

2@dF#2S A81
2A

r D ] r@dF#1S 2A8

r
1
2A

r 2
1m2D dF D 50,

~89!

where use has been made of~71!. One derives a simple field equation by inserting~89! in ~87! and
dropping the resulting terms that are of second order in the background skew fieldF:

] r@rAAdE#50→dE5
dMs

rAA
, ~90!

where the constant of integration has been identified with the GR-like perturbation of the
Schwarzschild mass parameter.

Now ~88! can be used to replacedE0 with dE1 at this order, and~85! to replacedE1 with
dE to find:

1R@23#5
1

2 H 1A ] t
2@dF#2A] r

2@dF#2S A81
2A

r D ] r@dF#1S 2A8

r
1
2A

r 2
1m2D dFJ

2AS F82
2F

r D ] rF dE

AAG2m2F
dE

AA
50, ~91!

and using~90! in this yields the wave equation fordF:

1

A
] t
2@dF#2A] r

2@dF#2SA81
2A

r D ] r@dF#1Sm21
2A

r 2
1
2A8

r D dF

5
dMs

rA Fm2F14S Fr 2
F8

2 D SAr 1A8D G . ~92!

Note that this is a static source and so will not in itself induce any wave solutions, but as before
the effects of a matter source will show up asymptotically. The static part of the solution may be
derived using the methods in Section III:

dF522F0

dMs

r
e22mr* lnS r *

2Ms
D , ~93!

and is consistent with the static solution~72! derived about a Schwarzschild background with mass
parameterMs1dMs . Time dependent solutions are identical to those found from~71!, and will
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induce time dependence in the symmetric sector through~85!. SincedE1 is related todF locally,
it is not an independent degree of freedom, and since the skew field is short-ranged, it will not
radiate energy at infinity.

Using ~92! and ~71!, one reduces~88! to an algebraic relation fordE0:

2A

r
] rFAAdE01

dE

AAG1AF] r
2@dF#1S 3A8

2
F1

2A

r
F1

A

2
F8D ] r@dF#

1F S A81
A

2r D F82S ~A8!2

2A
1
7A8

2r
1
3A

r 2
1
3

4
m2D FGdF50. ~94!

The solution fordE0 can be written as:

AAdE05AAdẼ2
dE

AA
1B~ t !, ~95!

whereB(t) is an arbitrary function of time~removable in the usual way using the remaining gauge
transformation!, the second term corresponds to the static Schwarzschild perturbation from Sec-
tion III, and dẼ solves the remainder of~94!. Note that although not independent degrees of
freedom, neitherdE0 nordE1 is static. This is in fact what one would expect when considering the
effect of a spherically symmetric matter field to which Birkhoff’s theorem does not apply, on the
GR background. The presence of the nonstatic field will induce time dependence in the gravita-
tional fields, without exciting any independent modes. This is expected to continue to be the case
in NGT: the general spherically symmetric system should only have degrees of freedom in the
skew sector.

VII. CONCLUSIONS

The asymptotic behavior of the antisymmetric sector for the case of a static Wyman-type
metric has been determined, and the corrections to the symmetric sector shown to be negligible
provided one considers regions of spacetime far enough away from the gravitational source. It has
also been determined that if one keeps the antisymmetrict2r component, then one cannot have
asymptotic behavior that is dominated by the Schwarzschild metric, and so it must be discarded.
This analysis was facilitated by the introduction of a vierbein basis, although the formalism has
been given for a general basis for completeness.

By considering a spherically symmetric perturbation of the Schwarzschild metric, it has been
shown that NGT does not have a rigorous Birkhoff theorem as the antisymmetric sector will not
remain static in general.~This has also been noted previously in a Unified Field Theory based on
Lyra geometries.43! Perturbing an approximate Wyman background in a vierbein basis has shown
that the symmetric sector is also not static in general, although no additional modes become
excited. This is important phenomenologically since one cannot consider the static solutions
~Schwarzschild and Wyman! as the only spherically symmetric exterior solutions to the field
equations, and one must therefore match an interior solution to a nonstatic exterior in general.

Perturbations of GR backgrounds have been shown to have good asymptotic behavior in
general, since the ghost modes do not become excited and the remaining degrees of freedom are
short ranged by construction. However this is not good enough since one expects that the physi-
cally interesting solutions to mNGT will not be the purely GR solutions, and one would therefore
like to examine the behavior of perturbations on generic, asymptotically-flat, mNGT backgrounds.
A covariant perturbative scheme, although possible in principle, would seem to be too complex to
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be of any practical value. Instead one may treat each case separately and consider the behavior of
~perhaps several! modes about a particular background, as was done here for the spherically
symmetric perturbation about a Wyman background.

However this also may not be adequate to fully understand the dynamics of the skew sector in
mNGT. The lack of additional gauge invariance in the skew sector may mean that there are more
modes in the rigorous theory that will be seen in any sort of weak field, perturbative analysis. To
determine whether or not this is the case will require a canonical analysis of the full theory. Partial
information may be obtained by considering the full set of fields in a spherically symmetric
system, and looking for global information about the behavior of the skew modes given a general
coupling to external sources. This is not likely to be a tractable problem in a coordinate basis, and
even in a Lorentz frame the field equations are not expected to be particularly enlightening, due to
their complication alone. However the canonical analysis of this system will show which fields
propagate in the general case, and allow one to get at the dynamics of the approach to an
asymptotically well behaved spacetime.
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APPENDIX A: WYMAN SECTOR FIELD EQUATIONS

Here the details of the calculation of the Wyman field equations are given, following the steps
outlined in Section IV. Beginning withAB

A5hACg@CB# from ~54!, one finds the remaining compo-
nents:

A 3
252A 2

35F. ~A1!

The inverse of the symmetric part of the metric is the Minkowski metric:h, whereas the full
inverse metric is:

ugABu53
1 0 0 0

0 21 0 0

0 0 2
1

11F2 2
F

11F2

0 0
F

11F2 2
1

11F2

4 , ~A2!

and is necessary in order to compute the mass tensor~65!. The structure constants, and hence the
skew components of the connectionG, are then easily found to be:
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G@10#
0 5

1

2
C10

05
1

2
E1] r@ ln~E0!#,

G@12#
2 5G@13#

3 5
1

2
C12

25
1

2
C13

352
1

2r
E1 , ~A3!

G@23#
3 5

1

2
C23

352
1

2r
cot~u!.

ThenD from ~55! may be determined:

2D1@23#5D3@12#5D2@31#5E1] r@F#, ~A4!

andV from ~57!:

V1@23#5E1S Fr 2
1

2
] r@F# D , V3@12#5V2@31#5

1
2E1] r@F#. ~A5!

Now ~56! is solved forL and ~53! to calculate the connection components (G):

L12
3 5L31

2 52
1

2

E1F8

11F2 ,

L23
1 52

E1F

r
1
1

2
E1F82

1

2
E1F] r@ ln~11F2!#, ~A6!

and:

G01
0 5G00

1 52E1] r@ ln~E0!#, G22
1 5G33

1 52
E1

r
2
1

2
E1] r@ ln~11F2!#,

G21
2 5G31

3 5
E1

r
1
1

4
E1] r@ ln~11F2!#, G12

2 5G13
3 5

1

4
E1] r@ ln~11F2!#,

G32
3 52G33

2 5
1

r
cot~u!. ~A7!

The field equations that remain are:

R005E1] r@G00
1 #1G00

1 ~G01
0 12G21

2 !1
m2

4

F2

11F2 50,

R1152E1] r@G01
0 #22E1] r@G21

2 #2~G01
0 !222~G21

2 !222~L12
3 !22

m2

4

F2

11F2 50,

R225R335E1] r@G22
1 #1

1

r 2
1G22

1 ~G01
0 14G@21#

2 !22L12
3 L23

1 1
m2

4

F2

11F2 50,

R@23#5E1] r@L23
1 #1~G01

0 24G@12#
2 !L23

1 12G22
1 L12

3 2
m2

4 S F1
F

11F2D50. ~A8!
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It can be shown that in the absence of any skew sector altogether, the Schwarzschild field equa-
tions are obtained, and in the absence of the mass term one has the Wyman Field equations.41

APPENDIX B: PERTURBATION EQUATIONS

The background field will be that given in Appendix A, approximated by considering only first
order contributions from the skew sector. The spherically symmetric perturbations about this
background are given here in detail, keeping only first order in the backgroundF, and setting
a53/4 throughout. One may begin by calculating first order corrections to metric quantities, first
the density:

dA2g5A2gFdF, ~B1!

and the inverse of the full metric is:

udgABu5F 0 dW 0 0

2dW 0 0 0

0 0 2FdF 2dF

0 0 dF 2FdF

G . ~B2!

The tensordA has remaining components:

dA 1
05dA 0

15dW, dA 3
252dA 2

352dF, ~B3!

and the perturbation of the antisymmetric connection coefficients, derived from~50b!:

dG@10#
0 5

1

2
dC10

05
1

2 S dE1] r@ ln~E0!#1
E1

E0
] r@dE0#2

E1

E0
] r@ ln~E0!#dE0D ,

dG@01#
1 5

1

2
dC01

15
1

2

E0

E1
] t@dE1#, ~B4!

dG@12#
2 5dG@13#

3 5
1

2
dC12

25
1

2
dC13

352
1

2

dE1

r
.

The last equation of~64! is now solved to determinedW in terms of metric functions to find:

dW05
4

3
E1S ] r@dW#1

2dW

r D , dW15
4

3
E0] t@dW#, dW25dW350. ~B5!

It is then fairly straightforward to calculate the remainingdD0:

dD0@01#
0 52 1

4dW1 , dD1@01#
0 52 1

4dW0 ,

~B6!

dD2@a2#
0 5dD3@a3#

0 52 1
4dWa , dD2~3a!

0 52dD3~2a!
0 5 1

4FdWa ,

wherea P $0,1% here and in the following. The remainingD ’s are:
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dD2~a3!52dD3~a2!52 1
2FdWa , dD0@10#52E0] t@dW#2 1

2dW1 ,

dD1@10#52E1] r@dW#2 1
2dW0 , dD2@2a#5dD3@3a#52 1

2dWa ,
~B7!

dD0@23#52E0] t@dF#, dD1@23#52E1] r@dF#2dE1] r@F#,

dD3@02#52dD2@03#5E0] t@dF#, dD3@12#52dD2@13#5E1] r@dF#1dE1] r@F#.

ThendV can be calculated:

dV0@10#5E0] t@dW#2 1
4dW1 , dV1@10#5E1] r@dW#2 1

4dW0 ,

dV2@02#5dV3@03#5
1

4
dW02

E1dW

r
, dV2@12#5dV3@13#5

1

4
dW1 ,

~B8!

dV0@23#52
1

2
E0] t@dF#, dV1@23#52

1

2
E1] r@dF#1

FdE1

r
1
E1dF

r
2
1

2
dE1] r@F#,

dV3@02#52dV2@03#5
1
2E0] t@dF#, dV3@12#52dV2@13#5

1
2E1] r@dF#1 1

2dE1] r@F#.

One is now in a position to invert the compatibility conditions~56! to solve for the perturba-
tions to the connection coefficients. First the corrections toL:

dL01
0 52

2

3
E0] t@dW#, dL01

1 52
2

3
E1S dW

r
2] r@dW# D ,

dL20
2 5dL30

3 52
1

3
E1S dW

r
2] r@dW# D , dL21

2 5dL31
3 5

1

3
E0] t@dW#,

~B9!

dL23
0 52

1

2
E0] t@dF#, dL23

1 52
E1dF

r
2

dE1F

r
1
1

2

dE1F8

r
1
1

2

E1] r@dF#

r
,

dL03
2 5dL20

3 5 1
2E0] t@dF#, dL13

2 5dL21
3 5 1

2E1] r@dF#1 1
2F8dE1 ,

and then toG:

dG01
0 5dG00

1 52
E1

E0
] r@dE0#2dE1] r@ ln~E0!#1

E1

E0
dE0] r@ ln~E0!#,

dG11
0 5dG10

1 52
E0

E1
] t@dE1#, dG03

2 5dG30
2 52dG02

3 52dG20
3 5

1

2
E1F8dW,

dG22
0 5dG33

0 52dG02
2 52dG20

2 52dG03
3 52dG30

3 5E0F] t@dF#,

dG22
1 5dG33

1 52
dE1

r
2E1F] r@dF#2E1F8dF, dG12

2 5dG13
3 5 1

2E1F] r@dF#1
1

2
E1F8dF,

dG21
2 5dG31

3 5
dE1

r
1
1

2
E1F] r@dF#1

1

2
E1F8dF. ~B10!
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The remaining field equations will be:1R00,
1R(01) ,

1R@01# ,
1R11,

1R225
1R33 and

1R@23# . The
relevant combinations will be quoted in Section VI.
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Angular momentum and Killing potentials
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Physics Department, University of Michigan, Ann Arbor, Michigan 48109
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When the Penrose–Goldberg~PG! superpotential is used to compute the angular
momentum of an axial symmetry, the Killing potentialQ~w!

mn for that symmetry is
needed. Killing potentials used in the PG superpotential must satisfy Penrose’s
equation. It is proved for the Schwarzschild and Kerr solutions that the Penrose
equation does not admit aQ~w!

mn at finite r and therefore the PG superpotential can
only be used to compute angular momentum asymptotically. ©1996 American
Institute of Physics.@S0022-2488~95!03312-9#

I. INTRODUCTION

In this work computing angular momentum with the use of Killing potentials is studied for the
Schwarzschild and Kerr solutions. Killing potentials are bivectorsQmn whose divergence yields a
Killing vector. Both solutions have explicit rotational Killing symmetries, spherical for Schwarzs-
child and axial for Kerr, and we have obtained an axial Killing potentialQ~w!

mn for both solutions.
We expected to use thatQ~w!

mn in the Penrose–Goldberg~PG! superpotential1 to compute angular
momentum in the same way thatQ~t!

mn has been previously used to compute mass2 and found, to
our surprise, that this was not possible.

Killing potentials used in the PG superpotential must satisfy Penrose’s equation3

Pamn:5“

~aQmn2“

~aQn)m1ga@mQn]b
;b50 ~1!

such that“bQ
ab is a Killing vector. Penrose showed that ten independentQmn exist in Minkowski

space, but there can be no solutions in a general space–time which has no Killing symmetries. For
Penrose’s quasi-local mass integral we exhibit, in the following section, a Killing potential for the
Kerr spacetime which satisfies~1! and yields a quasi-local Kerr mass. Unfortunately, one cannot
use the PG superpotential to compute quasi-local angular momentum and so this work has a
negative result. It is proved for the Schwarzschild and Kerr solutions that the Penrose equation
does not admit aQ~w!

mn at finiter and thus the PG superpotentialcannotbe used to compute angular
momentum at finiter .

A Newman–Penrose null tetrad for the Kerr solution is given in Appendix A together with the
details of an anti-self-dual bivector basis. Bivector components of the Penrose equation are pre-
sented in Appendix B. The conformal Penrose equation is given in Appendix C. Sign conventions
used here are 2An;[ab]5AmR

m
nab , andRmn5Ra

mna .

II. KILLING POTENTIALS

For Killing vector ka there is an antisymmetric Killing potentialQab such that

ka5 1
3“bQ

ab.

It is the Killing potential which is the core of the PG superpotential for computing conserved
Noether quantities such as mass and angular momentum. The PG superpotential is

Uab5A2g 1
2G

ab
mnQ

mn, ~2!

a!Permanent address: Physics Department, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
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whereGab
mn is the negative right and left dual of the Riemann tensor. In order for

“bU
ab5A2gGankn ,

it is necessary that the Killing potentialQmn satisfy the Penrose equation.
The Kerr solution has two Killing vectors, stationaryk(t)

a and axialk~w!
a , and the metric, in

Boyer–Lindquist coordinates, is given by

gab
Kerr dxadxb5C dt22~S/D!dr21~12C!2a sin 2 u dtdw2Sdu2

2 sin 2 u@S1~22C!a2 sin 2 u#dw2, ~3!

whereR5r2 ia cosu, S5RR̄, D5r 21a222mr, andC5122mr/S. The Killing potential for
k(t)

a is

Q~ t !
ab52 1

2~RM
ab1R̄M̄ab!. ~4!

HereMab is an anti-self-dual bivector,M* ab52 iM ab, given in terms of Newman–Penrose null
vectors in Appendix A. One-third the divergence of Eq.~4! yields the stationary Killing vector

k~ t !
a 5na1~D/2S!l a1~ ia sin u/&S!~R̄ma2Rm̄a!. ~5!

Direct substitution ofQ(t)
ab in Eq. ~1! verifies thatQ(t) satisfies the Penrose equation. One can now

use the stationary Killing potential with the PG superpotential to compute the mass2 of the Kerr
source:

M ~S2!52
1

16p R
S2

A2gCmn
abQ~ t !

mndSab ~6!

whereS2 is a closedt5const,r5const two-surface. The result ism for any r beyond the outer
event horizon.

An axial Killing potential for the Kerr solution is given by

Q~w!
ab 5Q1M

ab1Q2V
ab1c.c.,

~7!

Q15
ar sin 2u

2S
~r 213a2 cos2u!, Q25

ir sin u

&R
~r 213a2 cos2u!,

and one-third the divergence ofQ~w!
ab yields the axial Killing vector

k~w!
a 52a sin 2uFna1S D

2S D l aG2F i ~r 21a2! sin u

&S
G ~R̄ma2Rm̄a!. ~8!

When the Kerr rotation parameter is set to zero, one obtains the Schwarzschild results

Q~w!
ab 5

ir 2 sin u

&

Vab1c.c., ~9!

k~w!
a 52

ir sin u

&

ma1c.c. ~10!

Neither theQ~w! for Kerr nor theQ~w! for Schwarzschild satisfy the Penrose equation.
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III. NO AXIAL PENROSE SOLUTION

We will show for the Schwarzschild solution and the Kerr solution that the Penrose equation
does not allow an axial Killing potential at finiter . Penrose’s equation,3

“A8
(AWBC)50 for sym-

metric spinorWBC ~equivalent to the antisymmetric Killing potentialQmn!, was used in linearized
theory where Penrose4 showed existence of ten independent Killing potentials, one for each
Minkowski Killing vector. In Goldberg’s generalization1 to a fully curved metric there is no
discussion of the existence of solutions of the Penrose equation at finiter . We know that a solution
exists forQ(t) . It is given in Eq.~4! for the Kerr solution with anti-self-dual components

Q050, Q152 1
2R, Q250, ~11!

where

Qmn5Q0U
mn1Q1M

mn1Q2V
mn1c.c.

We also know that Penrose obtained asymptotic results for angular momentumJ. For axial sym-
metry k~w! at the conformal boundary he foundJ50 for Schwarzschild’s solution andJ5ma for
Kerr’s, so it is reasonable to expect aQ~w! for use in the PG superpotential at finiter .

The argument presented below assumes thatQ~w! exists, goes through a long set of equations
which are the components of the bivector form of Penrose’s equation given in Appendix B, and
ends with no possibleQ~w! . To integrate the equations it is assumed thatQ0, Q1, andQ2 are
independent oft and w, i.e., it is assumed thatLj Q~w!

mn50 whereja is a Killing vector that
commutes with the Kerrk(t)

a andk~w!
a . If this assumption is false, thenLj Q(w)

mn 5Xmn. Penrose’s
equation~1! with ¹bQ

nb53kn can be written as

¹bQ
mn5¹@mQn]

b13k@mdn]
b . ~12!

Since the Lie and covariant derivatives commute, the nonzero bivectorXmn must satisfy

“bX
mn5“

@mXn]
b . ~13!

The Kerr and Schwarzschild solutions do not admit a nonzeroXmn at finite r .
We investigate the existence ofQ~w! for the Schwarzschild solution since the equations are

simpler with the Kerr rotation parameter set to zero but the argument can be extended in a
straightforward manner to the Kerr solution. The null tetrad and spin coefficients given in Appen-
dix A are used. Penrose’s equation~B4! hasna component

L0505] rQ0 , ~14!

with solutionQ05h(u); h an arbitrary function. Them̄a component is

M0505
1

&r
~]uQ02cot uQ0!, ~15!

with solutionQ05 f (r ) sinu, f arbitrary. The two separate solutions require

Q05c0 sin u, c0 const. ~16!

Equation~B2! hasl a component

N2505r ~r22m!] rQ222mQ2 , ~17!

with solutionQ25(122m/r )h(u). Thema component is
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B2505
1

&r
~]uQ22cot uQ2!, ~18!

with solutionQ25 f (r ) sinu. The two solutions forQ2 require

Q25c2~122m/r !sin u, c2 const. ~19!

Thena component of~B2! is

L222B150, ] rQ22
2

r
Q22

&

r
]uQ150. ~20!

UsingQ2 from ~19! we find

Q15c2&~123m/r !cosu1 f ~r !. ~21!

We now have functional forms forQ0, Q1, andQ2. TheQ components are further restricted by
using them̄a component of~B2!:

M222N150,
~22!

1

&r
~]uQ21cot uQ2!1S 12

2m

r D S ] rQ12
1

r
Q1D50.

UsingQ2 from ~19! andQ1 from ~21! we obtain the equation

c26&m

r 2
cosu1] r f2

1

r
f50. ~23!

No solution is possible unless one choosesc250. ThenQ15c1r . TheQ components are now

Q05c0 sin u, Q15c1r , Q250. ~24!

The l a component of~B4! is

N022M150,
~25!

1

2 S 12
2m

r D ] rQ01
m

r 2
Q02

1

r S 12
2m

r DQ01
&

r
]uQ150.

Substituting~24! requiresc050. Comparing~24! and~11! one can now see that the only solution
possible is the one forQ(t) given above.

We have proved that, for the Schwarzschild and Kerr solutions, only the timelike Killing
vectork(t) can have a Killing potential that satisfies the Penrose equation at finiter .

IV. NULL INFINITY

We proceed to solve the Penrose equation at the boundary of Schwarzschild space–time. The
Schwarzschild solution is given in outgoing null coordinates as

gmn dx
mdxn5~122m/r !du212 dudr2r 2~du21sin 2u dw2!. ~26!

We use the null tetrad
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l a dxa5du, na dxa5 1
2~122m/r !du1dr, ma dxa52~r /& !~du1 i sin u dw!,

and spin coefficients given in Eq.~A2! with Kerr rotation parametera50. The general equations
for a conformal map are given in Appendix C. We chooseV51/r5z. On I 1, wherez50, the
metric is

ĝmn dx
mdxn522 dudz2~du21sin 2u dw2!. ~27!

Here the conformal Bondi frame is

l â dxa5du, n̂a dxa52dz, m̂a dxa52~1/& !~du1 i sin u dw!,

with nonzero spin coefficients

b̂5
cot u

2&
52â.

The Penrose equation comprises eight complex equations~B2!–~B4! for Q̂0, Q̂1, andQ̂2. Three
establish finite values for theQs on the boundary:

]zQ̂050, ]zQ̂11
1
2~ d̂22â !Q̂050, ]zQ̂212~ d̂ !Q̂150,

whereD̂52]z , D̂5]u , and onI 1 ( d̂12sâ)h52Zh for h a spin weights scalar~we use the
original definition5 of edth with spin weight opposite to the helicity of outgoing radiation!. In the

following a zero superscript denotes independence ofz, and (Q̂0
0 ,Q̂1

0 ,Q̂2
0) have spin weights

~1,0,21!. The remaining five equations onI 1 are

]uQ̂2
050, ~28a!

ZpQ̂2
050, ~28b!

ZpQ̂2
012]uQ̂1

050, ~28c!

ZQ̂0
050, ~28d!

2ZQ̂1
01]uQ̂0

050. ~28e!

The solutions are

Q̂2
05km21Y1m , Q̂1

052 1
2u ZQ̂2

01 f ~u,w!, Q̂0
05 1

2 u
2Z2Q̂2

022uZf1cm1Y1m , ~29!

wherekm andcm are complex constants. Here we can go beyond Goldberg1 and integrate~28e!
since the Schwarzschild null surfaces are shear-free. The asymptotic Killing vectors are

k̂u5Q̂0
11c.c., V k̂u5c.c.~Q̂0

2!, V k̂w5Q̂0
2 . ~30!

The supertranslations of the BMS group have a full function’s worth of freedom inQ̂0
1 but at the

Schwarzschild boundaryf ~u,w! is restricted to four parameters for ordinary translations andZ̃f50.
The solution of the Penrose equation forQ(t) is contained above. The nonzero anti-self-dual

component of Eq.~4! is Q152r /2 or Q̂1521
2. This solution coincides with the valueskm50,

cm50, and f ~u,w!521
2.

Now lets take the asymptotic solutions found above in~29! and~30! and use them to construct
a Killing potentialQ~w! . Thus our candidate has the form
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Q~w!
mn 5~r 2Q2

0!Vmn1c.c. ~31!

For the Schwarzschild solution we compute the divergence:

1

3
“nQ~w!

mn 52@rQ0
2#m

m1F r
&

~]u1cot u!Q0
2G lm1c.c. ~32!

Equating with

k~w!
m 52

ir sin u

&

mm1c.c.

yields

Q0
25

i sin u

&

.

The lm term in ~32! vanishes when the complex conjugate is added. We have constructed the
Killing potential which was already given above as Eq.~9!. The anti-self-dual components are

Q050, Q150, Q25~ i /& !r 2 sin u. ~33!

Of the twelve terms entering the Penrose equation~defined in Appendix B!, four are nonzero for
the components of Eq.~33!:

L25 i&r sin u, N25~ i /& !~3m2r ! sin u,

M25 ir cosu, B15~ i /& !r sin u.

AlthoughQ2 has ther
2 dependence that one expects for an asymptotic solution and the angular

dependence dictated byk~w! , the components of Eq.~B2!, particularlyN250, show directly that
this Killing potential fails to satisfy the Penrose equation.

V. CONCLUSION

To find a Killing potential one can write the divergence equation relatingka andQab as a
three-form relation, one-third the exterior derivative of dualQ equal to the dual ofka dxa,

1
3d*Q5* ~ka dxa!,

and then integrate~if possible!. We have seen that not just any Killing potential can be used in the
PG superpotential but only one which satisfies Penrose’s equation. Although aQ~w!

ab whose diver-
gence yielded the axial Killing vector was presented for the Kerr solution, it could not be used to
compute quasi-local angular momentum although asymptotically it yieldsma. It has been shown
that aQ~w!

ab cannot be found for either the Kerr or Schwarzschild solutions which will satisfy the
Penrose equation in curved space and so the PG superpotential cannot be used to compute quasi-
local angular momentum.

Some interesting questions remain. What are the complete integrability conditions for the
Penrose equation? What is the physical reason that no quasi-local Killing potential for rotational
symmetry can satisfy the Penrose equation?
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APPENDIX A: NULL TETRAD AND BIVECTORS

A Newman–Penrose tetrad (l a,na,ma,m̄a) for the Kerr metric~3! with l a andna as principal
null vectors is chosen as

l a]a5
1

D
@~r 21a2!] t1D] r1a]w#,

na]a5
1

2S
@~r 21a2!] t2D] r1a]w#, ~A1!

ma]a5
1

&R̄
F ia sin u] t1]u1

i

sin u
]wG ,

whereR5r2 ia cosu, S5RR̄, andD5r 21a222mr. The nonzero spin coefficients and Weyl
tensor component are

r52
1

R
, m52

D

~2SR!
, t52

ia sin u

&S
, p5

ia sin u

&R2
,

~A2!

g5m1
r2m

2S
, b5

cot u

2&R̄
, a5p2b̄, c252

m

R3 .

A basis of anti-self-dual bivectors is given by

Umn52m̄@mnn] , Mmn52l @mnn]22m@mm̄n] , Vmn52l @mmn] . ~A3!

Their inner products areUmnVmn5ŪmnV̄mn52, MmnMmn5M̄mnM̄mn524, and all others zero.
As a basis, they satisfy the completeness relation

1
2~g

abmn1 ihabmn!5UabVmn1VabUmn2 1
2M

abMmn, ~A4!

wheregabmn5gamgbn2gangbm, and 1
2h

abmn is the dual tensor. It is useful to list their covariant
derivatives:

¹bU
mn522Umnab1Mmnbb , ab5enb1g l b2amb2bm̄b ,

¹bM
mn522Umncb12Vmnbb , bb5pnb1n l b2lmb2mm̄b , ~A5!

¹bV
mn52Vmnab2Mmncb , cb5knb1t l b2rmb2sm̄b .

APPENDIX B: THE PENROSE EQUATION

Equation~1!, which a Killing potential must satisfy in order to be valid for use in the PG
superpotential, can be written in terms of anti self-dual bivectors with the definition

Qmn5Q0U
mn1Q1M

mn1Q2V
mn1c.c. ~B1!
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Substituting the bivector expansion into~1! provides equations for the componentsQ0 ,Q1 ,Q2 ,
which can be most simply written with the use of twelve terms:

L05~D22e!Q022kQ1 , L15DQ12kQ21pQ0 , L25~D12e!Q212pQ1 ,

N05~D22g!Q022tQ1 , N15DQ12tQ21nQ0 , N25~D12g!Q212nQ1 ,

M05~d22b!Q022sQ1 , M15dQ12sQ21mQ0 , M25~d12b!Q212mQ1 ,

B05~ d̄22a!Q022rQ1 , B15 d̄Q12rQ21lQ0 , B25~ d̄12a!Q212lQ1 .

HereD5 l a“a , D5na
“a , andd5ma

“a . The Penrose equation has the followingUmn , Mmn , and
Vmn components, respectively:

l a~3N2!1na~L222B1!2ma~3B2!2m̄a~M222N1!50, ~B2!

l a~M222N1!1na~B022L1!1ma~2B12L2!1m̄a~2M12N0!50, ~B3!

l a~N022M1!1na~3L0!2ma~B022L1!2m̄a~3M0!50. ~B4!

If Qmn is to be a Killing potential forkm, then its divergence must satisfy

3km5 lm~N11M2!2nm~B01L1!2mm~B11L2!1m̄m~N01M1!1c.c. ~B5!

APPENDIX C: THE CONFORMAL PENROSE EQUATION

For asymptotically simple space–times with future null infinityI 1 we follow Penrose and
Rindler6 case~iv! to conformally map from the physical metricgab to the unphysical metricĝab :

ĝab5V2gab ~C1!

with the spinor basis mapping asôA5oA , ı̂A5VıA . HereV50 defines the future null boundary
with “aV a null vector tangent to the generators ofI 1. It follows from the map of the spinor basis
that the tetrad derivatives transform as

D̂5V22D, d̂5V21d, D̂5D. ~C2!

The spin coefficients conformally map as

k̂5V23k, r̂5V22r2V23DV,

ŝ5V22s, t̂5V21t2V22dV,

ê5V22e, â5V21a2V22d̄V,

b̂5V21b, ĝ5g2V21DV,

n̂5Vn, m̂5m1V21DV,

l̂5l, p̂5V21p1V22d̄V.

Since the Killing potential obeys the conformal transformationQ̂ab5V21Qab, it’s anti-self-dual
bivector components map as
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Q̂05Q0 , Q̂15VQ1 , Q̂25V2Q2 . ~C3!

The twelve terms in Appendix B which comprise the components of the Penrose equation map as

L̂05V22L0 , L̂15V21L11Q0~V22d̄V!1Q1~V22DV!,

L̂25L212Q1~V21d̄V!12Q2~V21DV!, N̂05N012Q0~V21DV!12Q1~V21dV!,

N̂15VN11Q1~DV!1Q2~dV!, N̂25V2N2 ,

M̂05V21N0 , M̂15M11Q0~V21DV!1Q1~V21dV!,

M̂25VM212Q1~DV!12Q2~dV!, B̂05V21B012Q0~V22d̄V!12Q1~V22DV!,

B̂15B11Q1~V21d̄V!1Q2~V21DV!, B̂25VB2 .

Finally, by direct substitution of the twelve terms above into Eqs.~B2!–~B4! we find the anti-self-
dual components of the Penrose equation conformally transform as

~B̂2!5~B2!, ~B̂3!5V21~B3!, ~B̂4!5V22~B4!. ~C4!

This result is confirmed by the conformal maps

P̂amn5V23Pamn ~C5!

and

Ûmn5V3Umn , M̂mn5V2Mmn , V̂mn5VVmn . ~C6!
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Exact solutions for the Tikekar superdense star
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We analyze a relativistic model for superdense stars proposed by Tikekar@R.
Tikekar, J. Math. Phys.31, 2454~1990!#. In this model the hypersurfaces generated
by $t5const% have the geometry of the 3-spheroid which gives the solutions a clear
geometrical characterization. The solution of the Einstein field equations is reduced
to integrating a second order ordinary differential equation. New classes of solu-
tions are presented by restricting the choice of the spheroidal parameterK so that
polynomial solutions are admitted for the first solution and then we find that there
exists another solution which is a product of polynomials and algebraic functions.
A remarkable feature of the class of solutions generated is that they are expressible
completely in terms of polynomials and algebraic functions. Some physical aspects
of the solutions are briefly considered. We regain the Tikekar solution as a special
case whenK527. As another example we explicitly present the form of the solu-
tion whenK522. © 1996 American Institute of Physics.@S0022-2488~96!02301-
8#

I. INTRODUCTION

Models of relativistic stars are important for the description of astrophysical processes. We
may model relativistic stars by finding static spherically symmetric solutions to the Einstein field
equations. In addition a number of conditions are normally placed on the energy density, the
pressure, and the gravitational potentials to ensure that the model is physically reasonable. How-
ever, we should point out that it is rare to find a model that rigorously satisfies all these conditions.
For a comprehensive list of exact solutions to the Einstein field equations, many of which may be
used to describe the gravitational behavior of stars, see Krameret al.1 Knutsen2,3 provides a
comprehensive treatment, in particular stellar models, of the conditions to be satisfied for a real-
istic matter distribution. Even though the static and spherically symmetric conditions are highly
simplified they allow the construction of models of physically reasonable superdense stars such as
neutron stars.4

In an attempt to reduce the complexity of the field equations one normally places some
restriction on the metric functions. Vaidya and Tikekar5 made the observation that one could
utilize the geometry of the spacelike hypersurfaces generated by$t5const% to find exact solutions
in some cases. This property is very useful in the case of space-times which are static and
spherically symmetric, and the hypersurfaces$t5const% are that of the 3-spheroid. The spheroidal
condition provides a clear geometrical characterization of the space–times concerned. This is a
desirable feature as it is difficult to characterize geometrically many of the solutions in the litera-
ture which have been obtained using other techniques. One of the metric functions may be
immediately determined from geometrical arguments and the energy density is specified. We are
then in a position to determine the remaining gravitational and thermodynamical variables from
Einstein’s equations. The model that is generated may be applied to superdense stars. Tikekar6 has
performed an analysis of the physical properties of these solutions and found them to be physically
viable. The Tikekar model is applicable in the last stages of stellar evolution and satisfies the

a!Member of the Centre for Theoretical and Computational Chemistry, University of Natal, Durban, and Centre for
Nonlinear Studies, University of the Witwatersrand, Johannesburg.
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physical requirements placed on fluid configurations at ultrahigh densities and pressures. The
values of the maximum mass of the superdense star obtained are close to those of Rhodes and
Ruffini.7 Knutsen3 has demonstrated that solutions with a spheroidal geometry are stable with
respect to infinitesimal radial pulsations.

Our intention in this paper is to obtain new solutions to the field equations for the Tikekar6

model. The ideal is to obtain models with physically acceptable gravitational behavior in the
interior of the star when the 3-spaces$t5const% are spheroidal. In Sec. II we present the field
equations for static spherically symmetric gravitational fields. We review the superdense model of
Tikekar and generate the second order field equation that has to be integrated. The first solution, in
terms of polynomials, is presented in Sec. III. In Sec. IV we generate the second solution in terms
of polynomials and algebraic functions by generalizing a solution previously found. Some par-
ticular solutions, from the new classes of solutions presented, are explicitly derived in Sec. V. In
Sec. VI we briefly consider certain aspects of physically reasonable stellar models. Finally in Sec.
VII we review the results obtained and discuss possibilities for further research.

II. THE TIKEKAR MODEL

In standard coordinates, (xi)5(t,r ,u,f), the line element for static spherically symmetric
space–times may be written as1

ds252e2n~r ! dt21e2l~r ! dr21r 2~du21sin2 u df2!, ~1!

where the quantitiesn(r ) and l(r ) are gravitational potentials. For a perfect fluid energy-
momentum tensor and the static spherically symmetric line element~1! we obtain the following
Einstein field equations:

1

r 2
@r ~12e22l!#85r, ~2!

2
1

r 2
~12e22l!1

2n8

r
e22l5p, ~3!

e22lFn91n821
n8

r
2n8l82

l8

r G5p, ~4!

wherer is the energy density andp is the isotropic pressure. In the above equations, primes denote
differentiation with respect tor . We rewrite the above systems~2!–~4! so that it is easier to
compare with the results of Tikekar.6 Note that our notation and signature differ from those of
Tikekar. However, we generate the same field equations and our results are consistent. For the
hypersurface$t5const% to be a 3-spheroid we require that

e2l5
12Kr 2/R2

12r 2/R2 .

The geometry of the 3-spheroid is governed by the parametersR andK. The metric functione2l

is regular and well behaved forr,R for which the parameter valuesK,1. We neglect the cases
K50,1: forK50 we obtain the Schwarzschild interior solution and, whenK51, the hypersurfaces
$t5const% are flat. With the above form ofe2l the field equations~2!–~4! become

r5
12K

R2

32Kr 2/R2

~12Kr 2/R2!2
, ~5!
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p5S 2n8

r
1

1

r 2D 12r 2/R2

12Kr 2/R22
1

r 2
, ~6!

p5S n91n821
n8

r D 12r 2/R2

12Kr 2/R22S n81
1

r D ~12K !~r /R2!

~12Kr 2/R2!2
. ~7!

The equation

~12r 2/R2!~12Kr 2/R2!S n91n822
n8

r D2~12K !~r /R2!S n81
1

r D
1~12K !~1/R2!~12Kr 2/R2!50 ~8!

follows directly from Eqs.~6! and ~7! and is the condition for pressure isotropy.
It is clear from inspection of the systems~5!–~7! that, if a functional form for the metric

function n is known, then we have a solution to the field equations. The differential equation~8!
determines the behavior ofn. We can transform Eq.~8! to simpler form if we let

c5en, x2512r 2/R2.

Then Eq.~8! takes the equivalent form

~12K1Kx2!
d2c

dx2
2Kx

dc

dx
1K~K21!c50. ~9!

For the parameter valueK527 Tikekar6 obtained the particular solution

c5Ac11Bc25A~12 7
2x

21 49
24x

4!1Bx~12 7
8x

2!3/2, ~10!

whereA andB are arbitrary constants. We present new classes of solutions to the differential
equation~9! in subsequent sections.

III. THE FIRST SOLUTION

The special solution~10! contains the quartic term~127
2x

2149
24x

4!. This suggests that Eq.~9!
may admit solutionsc1 in the form of a series which would terminate for some values ofK.
Therefore we seek solutions to Eq.~9! of the form

c15(
i50

`

aix
i ,

whereai are constants. We find that this series terminates and we obtain two classes of polynomial
solutions, the first in even powers ofx and the second in odd powers ofx, for particular values of
the parameterK as would be expected from the form of Eq.~9!. The appropriate values ofK are

even powers inx: K522~2n21!2,

odd powers inx: K5224n2.

Note that we requiren.1, for even powers ofx, andn.0, for odd powers ofx, so thatK,1 to
ensure regularity of the metric functions.

For even powers we obtain the difference equation
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ai1152
@~2n21!222#

n~n21!

~n2 i !~n1 i21!

~ i11!~2i11!
ai

which may be solved for the coefficientsai . Then we can show that the polynomial in even
powers ofx is of the form

c15(
i50

n

aix
2i5(

i50

n
~n1 i22!!

~n2 i !! ~2i !!
~2l! ix2i , ~11!

where the constantsl andK are given by

l542
1

n~n21!
, K522~2n21!2.

The difference equation for odd powers is given by

ai1152
8~2n221!

4n221

~n2 i !~n1 i !

~2i12!~2i13!
ai .

Consequently the polynomial in odd powers ofx has the form

c15(
i50

n

aix
2i115(

i50

n
~n1 i21!!

~n2 i !! ~2i11!!
~2m! ix2i11, ~12!

where we define

m542
4

4n221
, K5224n2.

The polynomial solutions~11! and~12! comprise the first solutionc1 of Eq. ~9! for the appropriate
values ofK. It is clear that Eq.~11! contains the quartic term~12 7

2x
2149

24x
4! in Tikekar’s solution

~10!. The second solution to Eq.~9! cannot be expressed solely in terms of polynomial functions
as demonstrated in Sec. IV.

IV. THE SECOND SOLUTION

The Tikekar6 solution ~10! containsx~127
8x

2!3/2 as the second solution. This algebraic func-
tion is a special case of

c25~12K1Kx2!3/2u~x!,

whereu(x)5x andK527. We notice that other values ofK generate particular solutions to Eq.
~9! andu(x) is a polynomial. This suggests that the above form forc2 is a generic solution to the
differential equation~9!. For c2 to be a solution of Eq.~9! the functionu(x) has to satisfy the
following equation:

~12K1Kx2!
d2u

dx2
15Kx

du

dx
1K~K12!u50. ~13!

As for the first solution we can find polynomials that satisfy Eq.~13! for certain values ofK. The
procedure is very similar to that given in Sec. III. However, it is important to note that there is a
reversal of role for the parameterK in the characterization of the even and odd polynomials:
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odd powers inx: K522~2n21!2,

even powers inx: K5224n2.

In other words,u will contain odd~even! powers ofx whenc1 has even~odd! powers ofx. The
oddness and evenness of the two solutions is not unexpected from the form of Eq.~9!. That both
are finite expressions~in the sense of Poincare´! is perhaps somewhat unexpected.

The difference equation forK522(2n21)2 is

ai1152
@~2n21!222#

2n~n21!

~n1 i11!~n2 i22!

~2i12!~2i13!
ai

which we have solved in general. Then the polynomial in odd powers ofx is given by

u5 (
i50

n22

aix
2i115 (

i50

n22
~n1 i !!

~n2 i22!! ~2i11!!
~2l! ix2i11,

where the constantsl andK satisfy

l542
1

n~n21!
, K522~2n21!2.

The difference equation forK5224n2 is given by

ai1152
8~2n221!

4n221

n22~ i11!2

~2i11!~2i12!
ai

which may be solved for the constantsai . The polynomial in even powers ofx has the form

u5 (
i50

n21

aix
2i5 (

i50

n21
~n1 i21!!

~n2 i !! ~2i !!
~2m! ix2i ,

where we have

m542
4

4n221
, K5224n2.

With these expressions foru we have that the second solution, withu containing odd powers ofx,
is given by

c25~12K1Kx2!3/2(
i50

n22
~n1 i !!

~n2 i22!! ~2i11!!
~2l! ix2i11. ~14!

The second solution, withu containing even powers ofx, is

c25~12K1Kx2!3/2(
i50

n21
~n1 i !!

~n2 i21!! ~2i !!
~2m! ix2i . ~15!

Solutions~14! and ~15! generate the second solutions of Eq.~9! which are clearly linearly inde-
pendent from the first solutions~11! and ~12!, respectively.
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Thus we have generated general solutions to the differential equation~9! by restricting the
values ofK so that polynomials and products of polynomials with algebraic functions are possible
as solutions. The solutions for the various cases are given by Eqs.~11!, ~12!, ~14!, and ~15!.
Collecting these results we have the first category of solutions:

c5A(
i50

n
~n1 i22!!

~n2 i !! ~2i !!
~2l! ix2i1B~12K1Kx2!3/2(

i50

n22
~n1 i !!

~n2 i22!! ~2i11!!
~2l! ix2i11

~16!

for K522(2n21)2. The second category of solutions is given by

c5A(
i50

n
~n1 i21!!

~n2 i !! ~2i11!!
~2m! ix2i111B~12K1Kx2!3/2(

i50

n21
~n1 i !!

~n2 i21!! ~2i !!
~2m! ix2i ,

~17!

whereK5224n2. In Eqs.~16! and ~17! the constantsl andm depend onn:

l542
1

n~n21!
, m542

4

4n221
.

We have generalized the solution of Tikekar6 and obtained new classes of solution applicable to
superdense stars. It is remarkable that the solutions~16! and ~17! are expressed completely as
combinations of polynomials and algebraic functions. This is directly related to the restriction
placed on the spheroidal parameterK. It is rare to find solutions, especially such large classes as
Eqs. ~16! and ~17!, to the field equations in terms of elementary functions. Because of their
simplicity our solutions will have the advantage of simplifying the analysis of the physical prop-
erties of the superdense star.

V. SOME PARTICULAR CASES

We may generate many solutions found previously from our general class of solutions~16!
and ~17!. With K527 ~n52!, l57/2. Then it is easy to verify that Eq.~16! becomes

c5A~12 7
2x

21 49
24x

4!1Bx~12 7
8x

2!3/2.

Thus we have regained the Tikekar6 solution from our results. Other solutions found in the
literature are also contained in our general class of functions. However, there exist solutions found
previously that cannot be regained from our results. For example, the Durgapal and Bannerji
solution8 for which

e2l5
2~11Cr2!

22Cr2
,

whereC is a positive constant does not fall into our class of solutions. A study of the various
possibilities that arise and their relationship to particular existing solutions would be a formidable
task. Also we may obtain other explicit functional forms forc which could be useful in applica-
tions for superdense stars. As a simple example suppose thatK522(n51) so thatm58/3. Then
it follows that

c5A~x2 4
9x

3!1B~322x2!3/2

from Eq. ~17!.
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VI. SOME PHYSICAL ASPECTS

As we have pointed out previously the condition of 3-spheroidal hypersurfaces permits a clear
geometrical interpretation which is not the case in many other exact solutions. The spheroidal
assumption in the$t5const% hypersurfaces is physically reasonable as it represents a deviation
from spherical symmetry. This situation is likely to occur in the central core regions of superdense
stars because of highly nonlinear gravitational effects. It should be emphasized that we have little
information about the nature of the behavior of matter in the central regions of superdense stars.
Clearly we should attempt to construct a model under assumptions that allow for fairly general
behavior. In this regard solutions generated by computers are not helpful as we cannot specifya
priori a equation of state with great certainty for the core regions. The spheroidal assumption has
produced models which are consistent with densities of the order 231014 gm cm23 as demon-
strated by Tikekar.6 These values are consistent with the results of Rhodes and Ruffini7 and
indicate that the spheroidal assumption produces physically viable static models for relativistic
stars.

If 0,K,1 thenr remains positive in the regionr 2,3R2/K which restricts the size of the
configuration. WhenK,0 there is no restriction onr. Thusr.0 in the interior of the star. It is
clear from Eq.~5! that r8,0 so that the density decreases from the center. We require that the
pressure must vanish at the boundaryr5a which implies that

S 4

R2

1

c

dc

dxG
a

2
1

a2D 12a2/R2

12Ka2/R2 1
1

a2
50,

wherec is given by Eq.~16! or ~17!. Essentially this places a restriction on the constantsA and
B. The gradient of the pressure is

p852~r1p!
pr312m~r !

2r @r22m~r !#
, m~r !5

1

2

~12K !r /R2

12Kr 2/R2 .

This implies that the pressure gradient is negative ifp.0 ~the energy densityr.0! and conse-
quently the pressure will be decreasing outwards. The interior metric~1! should continuously
match with the exterior Schwarschild line element

ds252S 12
2m

r Ddt21S 12
2m

r D 21

dr21r 2~du21sin2 u df2!

at r5a. This requirement implies that

12
2m

a
5e2n~a!5Ac1~a!1Bc2~a!,

S 12
2m

a D 21

5e2l~a!5
12Ka2/R2

12a2/R2 .

The quantities considered above can be explicitly investigated for various models. In particular
Tikekar6 and Vaidya and Tikekar5 have comprehensively studied the casesK527 andK522,
respectively; they demonstrated that the physical requirements for a regular, stable star are satis-
fied.

VII. DISCUSSION

The Tikekar6 model has the advantage of being well behaved and satisfies the physical re-
quirements for a superdense star. Unlike many other solutions it has a clear geometrical interpre-
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tation: the 3-spaces$t5const% have the geometry of the spheroid. We have integrated the field
equation~9! to obtain new solutions by restricting the spheroidal parameterK to take on values so
that polynomial solutions exist. The accuracy of the results has been verified with the assistance of
the algebraic computing packageMATHEMATICA .9 The distinguishing feature of solutions~16! and
~17! is that they are written completely in terms of polynomial functions and algebraic functions.
This is a desirable feature and is particularly helpful when considering the physical properties of
stars such as the mass, red shift, etc. We regained the physically reasonable Tikekar6 model of a
superdense star from our general class of solutions forK527 and presented a particular solution
for K522. We briefly discussed some of the physical properties of the new solutions presented.
This is important for applications and should be pursued in greater detail in the future. The models
generated in our analysis are likely to be physically reasonable as they contain the Tikekar super-
dense model.

The solutions obtained have arisen essentially because we have imposed spheroidal symmetry.
The use of other symmetries may generate new solutions. For example, Herreraet al.,10 Herrera
and Ponce de Leon,11–13and Maartens and Maharaj14 have generated conformally invariant static
fluid spheres by assuming a conformal symmetry on space–time. We have obtained solutions to
the differential equation~9! by restricting the values ofK. There exist other solutions to Eq.~9! for
different values ofK. To demonstrate this let

c5y~x!, x522A121/Kx1A121/K.

Then the isotropy of pressure condition~9! becomes

x~12x!
d2y

dx2
2S x2

1

2D dy

dx
1~12K !y50

which is the hypergeometric equation.15 This has solutions in terms of special functions, namely
the hypergeometric function. Whether the greater generality of the solution in terms of hypergeo-
metric functions outweighs the tractability of the solutions presented here is a matter for conjec-
ture.
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The dynamics of solutions of the Einstein–Vlasov system with Bianchi I symmetry
is discussed in the case of massive or massless particles. It is shown that in the case
of massive particles the solutions are asymptotic to isotropic dust solutions at late
times. The initial singularity is more difficult to analyze. It is shown that the
asymptotic behavior there must be one of a small set of possibilities, but it is not
clear whether all of these possibilities are realized. One solution is exhibited in the
case of massless particles, which behaves quite differently near the singularity from
any Bianchi I solution with perfect fluid as a matter model. In particular, the matter
is not dynamically negligible near the singularity for this solution. ©1996 Ameri-
can Institute of Physics.@S0022-2488~96!03901-4#

I. INTRODUCTION

The simplest of all anisotropic cosmological models are those of Bianchi type I. They are the
space–times that admit a three-dimensional Abelian symmetry group whose orbits are space-like.
~For general information on Bianchi models see Ref. 1.! Just how simple their dynamics is
depends significantly on the nature of the matter content of the space–time. For a perfect fluid
with a linear equation of state, it has been known for a long time how to analyze the dynamics.2,3

For a noninteracting mixture of two fluids with linear equations of state, the time evolution is also
well understood and is asymptotic near the singularity and at large times to that of a single fluid.4

The case of a fluid with a nonlinear equation of state is discussed in an Appendix to the present
paper. The dynamics does not differ much from the picture in the linear case. When a magnetic
field is added to the fluid, things are already more complicated. In fact, as was shown by Collins,5

a Bianchi type I model with fluid and magnetic field resembles a model of the more complicated
Bianchi type II with fluid alone. It is also interesting to note that models of type VI0 with perfect
fluid and a magnetic field have a dynamical behavior resembling the notoriously complicated
‘‘Mixmaster’’ behavior of Bianchi type IX models.6 Thus, changing the matter model can have
effects on the complexity of the dynamics comparable with those encountered when passing to
more general symmetry types.

Amatter model for which the details of the global dynamics of Bianchi type I space–times has
not previously been studied mathematically is the collisionless gas, described by the Vlasov
equation. The only general facts that are known are that, with an appropriate choice of time
orientation,~i! the space–time is future geodesically complete~when maximally extended toward
the future!; and~ii ! there is a crushing singularity in the past where, except in the vacuum case, the
curvature invariantRabR

ab tends to infinity.
These fundamental facts were proved in Ref. 7, where it was shown that they hold for any

Bianchi type other than IX and for a general class of matter models. The aim of this paper is to
refine ~i! and ~ii ! in the case of Bianchi type I symmetry and matter described by the Vlasov
equation so as to get more detailed information about the asymptotics of the expanding phase and
the nature of the initial singularity. An aspect of the situation that makes this more difficult than in
the case of many other matter models is that for general initial data it is not possible to derive an
explicit closed system of ordinary differential equations that describes the dynamics. This is
because certain integrals that occur cannot be evaluated. In one special case, where massless
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particles are considered and the initial phase space density has the form of the characteristic
function of a ball, these integrals have been computed by Lukash and Starobinski.8 However, the
explicit expressions they obtain are sufficiently complicated that they do not seem to make a
rigorous analysis of the global dynamics any easier. On the other hand, they would probably be
useful for numerical calculations, since they would allow costly numerical evaluation of integrals
to be avoided.

The dynamics at late times of the models with massive particles can be described precisely.
All solutions become isotropic and can be approximated by dust solutions in this limit~Theorem
5.4!. On the other hand, the results of this paper do not give a complete picture of the dynamics
near the initial singularity of the space–times being studied. They merely reduce the possible types
of asymptotic behavior to a small number of alternatives. Improving on this is likely to require
new techniques. These results leave open the possibility that Bianchi I space–times with a matter
content described by kinetic theory may show complicated oscillatory behavior, and thus may be
very different from those with other types of matter content studied up to now. The mechanism
that allows for this complexity is simply the presence of anisotropy in the pressure that may
respond to changes in the geometry. It may be that the only reason that the dynamics is so simple
in the case of a perfect fluid is that this mechanism is excluded by a special symmetry assumption
~the isotropy of the pressure!. The one conclusion that emerges and that applies to all solutions
considered here is that the ratio of the mean pressure to the energy density tends to one-third as the
singularity is approached. This means that in a certain weak sense the dynamics for particles of
unit massm is approximated near the singularity by that for massless particles. For this reason
both cases are often considered together in the following, although the main emphasis is on the
casem51.

The results will now be summarized. There are, broadly speaking, two possible types of
asymptotic behavior of solutions of the Einstein–Vlasov system with Bianchi I symmetry near the
singularity. They will be referred to as convergent and oscillatory. Letli denote the eigenvalues of
the second fundamental form of the homogeneous hypersurfaces. Then the mean curvature of the
homogeneous hypersurfaces is given by trk5l11l21l3 . Define the generalized Kasner expo-
nents bypi5l i /tr k. In the convergent type, thepi tend to limits as the singularity is approached.
There are three different cases, depending on these limiting values. The first case is that where the
limiting values are~ 13,

1
3,
1
3!. The well-known homogeneous and isotropic solutions of the Einstein–

Vlasov system9 are of this type. The second is that the limiting values are~0,12,
1
2! or some permu-

tation thereof. The existence of solutions of this kind in the case of massless particles is shown in
Sec. VI. These limiting values of the generalized Kasner exponents are not realized by any Bianchi
type I space–time when the matter model is a perfect fluid~see the Appendix!. The third is that the
limiting values satisfy the Kasner relationp1

21p2
21p3

251. Any solution for which one of the
eigenvalues becomes negative at some time has this asymptotic behavior, and so there are plenty
of examples. This is proved in Theorem 5.1. Note that the special case of this result when two of
thepi are equal is closely related to the homogeneous special case of a result of Rein

10 for plane
symmetric space–times. In the oscillatory type thepi undergo infinitely many oscillations, in a
sense that will now be specified. There are two cases to be considered, according to whether two
of the eigenvalues are always equal or not. Consider first the case where two eigenvalues are equal
and suppose, without loss of generality, thatl25l3. Associate to any solution a string of symbols
~which may be finite or infinite, depending on the solution! as follows. Moving backward from
some fixed time, add anx to the string each time thatl12l2 changes from being<0 to being.0
and add ay each time it changes from being>0 to being,0. That this makes sense follows from
the fact, proved in Sec. II, that the set of times wherel15l2 can have no limit point unless this
equality holds at all times. Thus, a finite time interval can only contribute a finite number of
symbols. The solution is said to undergo infinitely many oscillations if the resulting string of
symbols is infinite. Similarly, if there is some time where all eigenvalues are distinct, then a string
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of symbols is associated to the solution by addingx, y, or z each timel1, l2, or l3, respectively,
becomes strictly larger than the other two eigenvalues.

Unfortunately it could not be shown whether any oscillatory solutions exist. If they did, then
the behavior of Bianchi I models with kinetic theory as matter model would be much more
complicated than in the case of a perfect fluid. If it could be shown that they existed, the question
would remain whether the sequences of symbols they produce have some regularity or whether
they are chaotic. In the absence of analytical techniques capable of deciding this question, it would
be desirable to carry out a numerical investigation. This could provide evidence as to the existence
~or otherwise! and nature of oscillatory behavior. It might also suggest new approaches to proving
theorems about the global dynamics.

To each type of solution discussed above corresponds a characteristic behavior of the pres-
sures. The solutions considered in the following all have diagonal energy-momentum tensors, and
so three pressuresPi are defined by three diagonal components. The remaining diagonal compo-
nent is the energy densityr. The quantitiesRi5Pi /r must have a sum that converges to unity at
the singularity. When the limiting values of thepi are~13,

1
3,
1
3! or ~0,12,

1
2!, then the limiting values of

theRi are~13,
1
3,
1
3! or ~0,12,

1
2!, respectively. When the sum of the squares of the limiting values of the

pi is equal to unity, then theRi tend to ~0,12,
1
2! or a permutation thereof, unless onepi has the

limiting value zero. In the latter case theRi tend to~1,0,0! or a permutation thereof.
The paper is organized as follows. In Sec. II some basic facts about the solutions are collected.

Section III is concerned with a simplified system, which in some cases models the asymptotic
behavior of the solutions of the original system. Some estimates for the pressures are derived in
Sec. IV. Section V contains the main results. Section VI contains proofs of the existence or
nonexistence of solutions with certain kinds of asymptotic behavior.

II. BASIC FACTS

The Einstein–Vlasov system is the system of equations that describes the kinetic theory of
self-gravitating particles in general relativity. A thorough introduction to general relativistic kinetic
theory and to the collisionless case, in particular, can be found in Ref. 11. For particles all of the
same massm>0, the system can be written in the following form in the case of Bianchi type I
symmetry:

2ki j k
i j1~ tr k!2516pr, ~2.1!

T0i50, ~2.2!

] tgi j522ki j , ~2.3!

] tki j5tr kki j22kil kj
l28pTi j24prgi j14p tr Tgi j , ~2.4!

] f

]t
12kj

iv j
] f

]v i
50, ~2.5!

r5E f ~ t,vk!~m21grsv
rvs!1/2~detg!1/2 dv1 dv2 dv3, ~2.6!

Ti j5E f ~ t,vk!v iv j~m
21grsv

rvs!21/2~detg!1/2 dv1 dv2 dv3. ~2.7!

Equations~2.1!–~2.4! are the Einstein equations written in 311 form, ~2.5! is the Vlasov equation,
and~2.6! and~2.7! are the definition of the energy-momentum tensor in terms of the matter fields
needed to complete the system. In these equationsgi j is the induced metric of the homogeneous
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hypersurfaces,ki j is the second fundamental form,f is the phase space density of particles,r is the
energy density,T0i andTi j are components of the energy-momentum tensor, and trk is the mean
curvaturegi j ki j . With the exception off all these quantities depend only on the time coordinatet.
This time coordinate is Gaussian, i.e., it is constant on each homogeneous hypersurface and
defines a parametrization by proper time when restricted to any geodesic normal to these hyper-
surfaces. The space–time metric is of the form

ds252dt21gi j ~ t !dx
i dxj . ~2.8!

In the following it is always assumed, when talking about solutions of~2.1!–~2.7!, that the
function f (t,v) is non-negative and has compact support for each fixedt. It is assumed thatf isC1

except in Sec. III, wheref may be a distribution. The case of primary interest here is the case
m51. Since, however, solutions of~2.1!–~2.7! with m51 resemble solutions withm50 close to
the singularity, it is useful to also allow the casem50 from the beginning. Note that the real
distinction here is between massless particles on the one hand and, on the other hand, massive
particles, which all have the same mass. In the latter case it is convenient to choose the mass of a
particle as a unit of mass so that the numerical value of the mass of a particle in the system of units
used is unity.

For a given Bianchi I geometry, the Vlasov equation can be solved explicitly.~This is not
possible for the other Bianchi types. The reason is explained in Ref. 12.! The result is that iff is
expressed in terms of the covariant componentsv i then it is independent of time. This means that
if t0 is some fixed time andf 0~v i!5f (t0 ,v i!, then~2.6! can be rewritten as

r5E f 0~v i !~m
21grsv rvs!

1/2~detg!21/2 dv1 dv2 dv3 , ~2.9!

and~2.7! can be rewritten in a similar way. The explicit solution allows certain special subclasses
of solutions of~2.1!–~2.7! to be identified. The first of these will be referred to as reflection-
symmetric, and is defined by the conditions that

f 0~v1 ,v2 ,v3!5 f 0~2v1 ,2v2 ,v3!5 f 0~v1 ,2v2 ,2v3!, ~2.10!

and that the initial values ofgi j andki j are diagonal. Equation~2.10! implies thatTi j is diagonal.
It then follows from~2.3! and~2.4! thatgi j andki j are always diagonal. The second case, which
will be referred to as LRS~locally rotationally symmetric! is obtained by supplementing~2.10! by
the conditions that

f 0~v1 ,v2 ,v3!5F„~v1!
21~v2!

2,v3…, ~2.11!

for some functionF and thatg115g22, k115k22 initially. Equation~2.11! implies thatT115T22 and
it follows from ~2.3! and ~2.4! that g115g22 and k115k22 everywhere. A solution will also be
called LRS if it satisfies the definition obtained from that just given by a permutation of the indices
1,2,3. A solution will be called isotropic if

f 0~v1 ,v2 ,v3!5F„~v1!
21~v2!

21~v3!
2
…, ~2.12!

and if gi j andki j are proportional tod i j on the initial hypersurface, and hence everywhere. If a
solution satisfies the conditions ongi j and ki j in the definition of reflection-symmetric, LRS or
isotropic for all t in some interval, but no assumption is made onf then the solution will be said
to have reflection-symmetric, LRS or isotropic geometry, respectively, on that interval. It follows
from ~2.4! thatTi j has a corresponding symmetry property.
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In this paper only reflection-symmetric solutions of~2.1!–~2.7! are considered. The alternative
notationa25g11/g11~t0!, b

25g22/g22~t0!, c
25g33/g33~t0! is used when it is convenient. Yet another

form of ~2.6! can then be obtained by doing a change of variables in~2.9!,

r5E f 0~aw1 ,bw2 ,cw3!~m
21d rswrws!

1/2 dw1 dw2 dw3 . ~2.13!

The geometric interpretation of thewi is that they are the components of the momentum in an
orthonormal frame. Similarly,

Ti
i5E f 0~aw1 ,bw2 ,cw3!wi

2~m21d rswrws!
21/2 dw1 dw2 dw3 . ~2.14!

In order to study the dynamics of the solutions of the system~2.1!–~2.7! in detail, it is useful
to introduce certain dimensionless variables that remain finite at the singularity. It follows from
~2.1! that trk never vanishes, except in the case of flat space–time, which is excluded from
consideration in the following. By replacingt by 2t if necessary, it can be arranged that trk,0
everywhere. It will be assumed that this has been done. Define

k̂i j5ki j /tr k, ~2.15!

r̂5r/~ tr k!2, ~2.16!

T̂i j5Ti j /~ tr k!2, ~2.17!

t~ t !52E
t0

t

tr k~ t8!dt8. ~2.18!

In terms of these variables equations~2.1! and ~2.4! become

2 k̂ j
i k̂i

j11516pr̂, ~2.19!

]tk̂ j
i5212pr̂~ k̂ j

i2 1
3d j

i !18pT̂j
i14p~ k̂ j

i2d j
i !tr T̂. ~2.20!

The following lemma provides some information about the range oft.
Lemma 2.1:Let a solution of~2.1!–~2.7! with m50 orm51 be given, which is the maximal

globally hyperbolic development of initial data on the hypersurfacet5t0 . Then trk(t) is a
monotonic function defined on an interval~t1 ,`!. By translatingt, it can be assumed thatt150.
Then limt→0 tr k52` and limt→` tr k50. Moreover,23/t<tr k(t)<21/t.

Proof: That trk(t) is monotonic and defined on an interval of the form (t1 ,`! with
limt→t1

tr k 5 2` was shown for the casem51 in Ref. 13. Essentially the same argument applies
for m50. In the latter case the coefficients of the characteristic system are only Lipschitz instead
of C1, but this causes no problems. Now it follows from~2.4! that 1

3~tr k)
2<]t~tr k)<(tr k)2.

Comparing the solution with the ordinary differential equations corresponding to these inequalities
then gives the desired estimates~cf. Ref. 7!.

This result implies that the integral definingt diverges ast→0 and ast→`. Hence, the
solution of ~2.19!–~2.20! exists globally int.

The solution of~2.19!–~2.20!, of course, contains only a small part of the information of that
contained in the solution of~2.1!–~2.7!. The former is only a projection of the latter. Nevertheless,
it will be seen that a lot of information about the solution of the full equations can be obtained by
studying this projection. Consider now the setK of triples of real numbersk̂1

1 ,k̂2
2 ,k̂3

3 that satisfy
(i( k̂i

i)2<1 and( i k̂i
i51. This is a compact subset ofR3. In fact, it is a disk in a plane. A solution

442 Alan D. Rendall: Bianchi I solutions of the Einstein–Vlasov system

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



of ~2.19!–~2.20! defines a point ofK at each timet. It is on the boundary ofK in the plane iff is
identically zero and in the interior otherwise. This point depending ont, considered as a mapping
fromR to K, will be referred to as the projection of the given solution. The projection of a vacuum
solution, which lies on the boundary ofK, is constant. The vacuum solutions are, of course, the
well-known Kasner solutions and the boundary ofK may be referred to as the ‘‘Kasner circle.’’ Let
C denote the point~ 13,

1
3,
1
3!. If a solution has isotropic geometry on a time interval, then its projec-

tion lies at the pointC during this time. Conversely, if its projection lies atC on a given time
interval, then it can be made to have isotropic geometry by a time-independent rescaling of the
spatial coordinates. LetL1 , L2 , and L3 be the subsets ofK defined byk̂2

25 k̂3
3 , k̂1

15 k̂3
3 , and

k̂1
15 k̂2

2 , respectively. A solution has LRS geometry on a time interval~up to a constant rescaling
of the spatial coordinates as above!, if and only if its projection lies on one of the linesL1 , L2 , or
L3 during this time. LetLi

1 denote the open half ofLi which ends at the point with coordinates
~2 1

3,
2
3,
2
3! or a permutation thereof, and letLi

2 denote the opposite half-line, which ends at the point
with coordinates~1,0,0! or a permutation thereof. LetVi

1 andVi
2 denote these end points. LetA1

be the open region bounded byL2
1 ,L3

1 and the boundary ofK, and letA2 andA3 be defined by
cyclically permuting~1,2,3! in this definition. LetBi be the subset ofK wherek̂i

i<0.
The components of the metric satisfy the evolution equations

dgii
dt

52k̂i
igii ,

d

dt S giigj j
D52~ k̂i

i2 k̂ j
i !S giigj j

D , ~2.21!

which imply thatgii or their ratios increase or decrease exponentially if certain sign conditions are
satisfied by thek̂i

i . There are, of course, corresponding statements for the scale factorsa, b, and
c. Given an initial datumf 0 for f the quantitiesr andTi

i are determined uniquely by thegii by
means of Eqs.~2.13! and~2.14!. The quantitiesr̂ andT̂i

i are given in terms ofr andTi
i and trk by

the definitions~2.16! and ~2.17!, while the off-diagonal componentsT̂j
i are zero by assumption.

Thus,~2.19!, ~2.20!, and~2.21!, together with the equation

]t~ tr k!52~ tr k!~1212pr̂14p tr T̂!, ~2.22!

derive from ~2.4!, form a closed system of ordinary differential equations, which, for fixedf 0 ,
formally determine the quantitiesk̂i

i , gii , and trk as functions oft in terms of initial data. If the
coefficients of this system were locally Lipschitz, it would follow from the standard uniqueness
theorem for ordinary differential equations that they determine them uniquely. It will now be
shown that, in fact, form51 this dependence is analytic. To do this it is convenient to use the
expressions forr andTi

i of the type~2.9!. Analyticity is a consequence of the following lemma.
Lemma 2.2:LetW be a mapping ofU3R3 to R, whereU is an open subset ofR3. Suppose

thatW extends to aC1 mappingW̃ of Ũ3R3 to C, whereŨ is an open neighborhood ofU in C3,
and thatW̃(•,y) satisfies the Cauchy–Riemann equations for each fixedyPR3. Finally, suppose
that eachzPW̃ has an open neighborhoodV such that the supports of the functionsW̃(z,•) are
contained in a common compact subsetK of R3. Then the functionF(x) 5 *R3W(x,y)dy is
analytic.

Proof: It suffices to show that the functionF̃(z) 5 *R3W̃(z,y)dy is complex analytic, and this
is true if F̃ is C1 and satisfies the Cauchy–Riemann equations.14 The assumptions on the smooth-
ness and support ofW̃ justify differentiation under the integral, and so the Cauchy–Riemann
equations forF̃ follow from the Cauchy–Riemann equations for W˜ .

A consequence of the analyticity of the coefficients in the system of ordinary differential
equations is that the solutions are analytic. It follows that if a solution withm51 has LRS or
isotropic geometry on some nonempty open time interval, then it must have LRS or isotropic
geometry, respectively, for all values oft. The same conclusion holds if there is a sequence of
times having a limit point where the geometry is LRS or isotropic, respectively.
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III. THE ASYMPTOTIC SYSTEM

In this section a certain system of ordinary differential equations is introduced and the quali-
tative behavior of its solutions analyzed. This system is used later to study the asymptotic behavior
of solutions of the system~2.1!–~2.7!. This system can be obtained formally from~2.1!–~2.7! by
replacing the C1 function f (t,v1 ,v2 ,v3) by a measure of the form
f (t,v1)d„v22 v̄2(t)…d„v32 v̄3(t)…, whered is a Dirac measure, and takingm50. Solutions of this
system can be interpreted as certain distributional solutions of the Einstein–Vlasov system for
massless particles. These are intermediate between smooth solutions and the even more singular
solutions, which are in one to one correspondence with dust solutions.~For the correspondence
between dust and distributional solutions of the Vlasov equation see Ref. 15.! The mathematical
results that will now be derived are independent of this interpretation.

The system of ODEs to be considered is the special case of the equations~2.19! and ~2.20!
obtained by settingT̂1

15T̂2
250 andT̂3

35 r̂. Note that, in contrast to the general case of~2.19! and
~2.20!, these specialized equations suffice to determine all unknowns occurring in them from
initial data. The explicit form of~2.20! in this case is

]tk̂1
1528pr̂ k̂1

1, ~3.1!

]tk̂2
2528pr̂ k̂2

2, ~3.2!

]tk̂3
3528pr̂~ k̂3

321!. ~3.3!

If initial data are chosen at some time that satisfy the condition( i( k̂i
i)51, then the solution also

satisfies it. Only solutions with this property are considered here. It follows from~3.1! and ~3.2!
that ]t( k̂2

2/ k̂1
1)50 wheneverk̂1

1Þ0. Let r be the constant value ofk̂2
2/ k̂1

1 . Then

k̂2
25rk̂1

1, ~3.4!

k̂3
3512~11r !k̂1

1. ~3.5!

Substituting~2.19!, ~3.4!, and~3.5! into ~3.1! gives

]tk̂1
15~ k̂1

1!2@~11r1r 2!k̂1
12~11r !#. ~3.6!

Proposition 3.1: Let (k̂1
1 ,k̂2

2 ,k̂3
3) be a solution of~3.1!–~3.3! satisfying ( i( k̂i

i)51 and
( i( k̂i

i)2,1. Definer5 k̂2
2/ k̂1

1 wheneverk̂1
1Þ0. Then

~i! if k̂1
1 is zero initially it is always zero;

~ii ! if k̂1
1 is initially ~and hence always! nonzero, thenr is constant;

~iii ! when k̂1
1Þ0 it is a monotonic function with limt→2` k̂1

15(11r )/(11r1r 2! and
limt→` k̂1

150; and
~iv! in that case limt→2`~k̂3

32 k̂2
2)52r (r12)/(11r1r 2!.

Proof: Statement~i! follows from ~3.1!. Statement~ii ! has been demonstrated above. State-
ment ~iii ! follows from ~3.6!. The last conclusion is then an immediate consequence of the defi-
nitions.

Of course analogous statements hold ifk̂1
1 andk̂2

2 are interchanged, since these two quantities
occur symmetrically in the hypotheses.

IV. PRESSURE ESTIMATES

The results of this section are all variations on the theme that if the space–time is expanding
in a certain direction, then the pressure in that direction tends to decrease. It is assumed throughout
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that the geometry is reflection-symmetric. A solution of~2.1!–~2.7! with m50 satisfies trT/r51.
This condition never holds whenm51, but the next lemma shows that it does hold asymptotically.

Lemma 4.1:Suppose that some solution of~2.1!–~2.7! with m51 is defined on an interval
~2`,t1!, with f not identically zero. Then limt→2` tr T/r51.

Proof: It was shown in Ref. 7 that limt→2` r5`. Thus, the result will follow if it can be
shown thatr→` implies trT/r→1. To do this, choose some radiusL.0 and writer5r11r2 and
tr T5(tr T)11~tr T)2 , where the first summand is the integral over the regionuwu,L of the
integrand in~2.13! or ~2.14!, respectively, and the second is the integral over the complementary
region. Using the fact that (11x2!1/22x2/~11x2!1/25~11x2!21/2, it can be seen that
r22~tr T)2<~11L2!21r2. Hence

~ tr T!2>
L2

11L2
r2 ~4.1!

and

tr T>tr T2>
L2

11L2 S r2S 4p

3 DL3~11L2!1/2i f 0i`D . ~4.2!

By choosingL sufficiently large, the quantityL2/~11L2! can be made as close to unity as desired.
For fixedL, the quantity in brackets on the right-hand side of~4.2! approachesr asr becomes
large. This suffices to give the conclusion of the lemma.

For a given initial datumf 0, the equation~2.14! defines the pressuresTi
i as functions ofa, b,

andc. The following results concern the qualitative behavior of these functions.
Lemma 4.2:If f 0 is not identically zero anda<C8 min$1,b,c% for some constantC8.0, there

exists a constantC.0 such thatT1
1>Ca22b21c21 andT2

2/T1
1<C(a/b)4/3. In the casem50 the

conclusion holds under the weaker hypothesis thata<C8 min$b,c%.
Proof: Let p be a point ofR3 where f 0Þ0, whose first coordinatew1 is nonzero. Letd be a

positive number such thatf is bounded below by some positive constanth on the closed cubeW
of side 2d centered atp and such thatw1 does not vanish anywhere on this cube. Consider now the
imageW8 of the cubeW under the mapping~w1 ,w2 ,w3!°~a21w1 ,b

21w2 ,c
21w3!. On W the

functionsw2/w1 andw3/w1 are bounded. Under the assumptions of the lemma they are bounded
by the same constant onW8. It follows that uw1u/~11uwu2!1/2 is bounded below on any such cube
by a positive constant that is independent ofa, b, and c, which satisfy the hypotheses of the
lemma. The integral definingT1

1 can be bounded from below by the integral of the same quantity
overW. It follows that

T1
1>Cha22b21c21, ~4.3!

and this proves the first part of the lemma. To get a lower bound forT1
1/T2

2 , the domain of
integration in the definition of these two quantities will be divided into the regionsuw2u.Ruw1u
and uw2u,Ruw1u, whereR is a positive number that will be specified later. Corresponding to this
decomposition of the domain of integration, there are decompositionsT1

15T11
1 1T12

1 and
T2
25T21

2 1T22
2 . The volume of the region whereuw2u.Ruw1u and f (aw1 ,bw2 ,cw3!Þ0 can be

bounded by an expression of the formCR21c21b22, and soT21
2 <CR21c21b23. On the other

hand,T22
2 <R2T12

1 . Thus,

T2
2<CR21c21b231R2T1

1<„CR21~a/b!21R2
…T1

1, ~4.4!

where in the last step~4.3! has been used. ChoosingR5(a/b)2/3 givesT2
2<C(a/b)4/3T1

1 , and this
proves the result forT2

2/T1
1 .
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Lemma 4.3:Suppose that some solution of~2.1!–~2.7! is defined on the interval~2`,t1!, with
f not identically zero. If k̂1

12 k̂2
2>A and k̂1

12 k̂3
3>A on this interval for someA.0, then

Ti
i /T1

1<Ce4At/3 for i52,3.
Proof: It suffices to note that under the assumptions of this lemma there will be a time interval

~2`,t2! where the hypotheses of Lemma 4.2 hold, so that~4.4! can be applied.
The time derivatives of the quantitiesT̂i

i cannot, in general, be expressed in terms of the
dimensionless quantities~2.9!–~2.11!, so as to get a closed system of ordinary differential equa-
tions. However, they can be estimated in terms of these quantities. Note first that

dT̂i
i

dt
52~ tr k!23

dTi
i

dt
12T̂i

i@1212pr̂14p tr T̂#. ~4.5!

Next, a change of variables in~2.7! gives, in the diagonal case,

Ti
i5gii E f 0~v1 ,v2 ,v3!~v i !

2~m21grsv rvs!
21/2~detg!21/2 dv1 dv2 dv3 . ~4.6!

Hence,

dT1
1

dt
5~3k1

11k2
21k3

3!T1
11g11E f 0~v1 ,v2 ,v3!~v1!

2F~v1 ,v2 ,v3!

3~m21grsv rvs!
23/2~detg!21/2 dv1 dv2 dv3 , ~4.7!

where

F~v1 ,v2 ,v3!5„2g11k1
1~v1!

22g22k2
2~v2!

22g33k3
3~v3!

2
…. ~4.8!

Note now that

uF~v1 ,v2 ,v3!u<~ uk1
1u1uk2

2u1uk3
3u!~m21grsv rvs!, ~4.9!

and so the integral in~4.7! can be bounded in modulus by 3 trkT1
1 . Putting this information into

~4.5! gives the desired bound.
Lemma 4.4:Consider a maximally extended solution of~2.1!–~2.7! with m51 and f not

identically zero. Ifgii→` as t→`, then limt→` Ti
i /r50. If, on the other hand,g11 is bounded

above and allgii are bounded below by a positive constant on an interval of the form@t1,`!, then
T1
1/r is bounded below by a positive constant on that interval.
Proof: It follows from ~2.13! and~2.14! thatT1

1<Ca22r, and this proves the first statement.
To get the other conclusion, choose a cubeC1 as in the proof of Lemma 4.2. Then
T1
1>Ca21b21c21 while r<Ca21b21c21. Hence,T1

1/r>C.0.

V. THE MAIN RESULTS

Lemma 5.1 (compactness lemma):Let a sequence of reflection-symmetric global solutions of
Eqs.~2.1!–~2.7! be given. Then there exists a subsequence such thatk̂ j

i andr̂ converge uniformly
on compact sets ofR. Here T̂i

i also converges uniformly on compact subsets~after possibly
passing to a subsequence once more!, and the limiting quantities satisfy~2.19! and ~2.20!.

Proof: The quantitiesk̂ j
i are contained in the compact setK and so are, in particular, uniformly

bounded. By~2.19!, r̂ is uniformly bounded. It follows thatT̂j
i is uniformly bounded. Equation

~2.20! now shows that]tk̂ j
i is uniformly bounded. By Ascoli’s theorem there exists a subsequence

such thatk̂ j
i converges uniformly on the interval@21,1#. Applying the theorem again shows that

this subsequence has a subsequence such thatk̂ j
i converges uniformly on@22,2#. Continuing in
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this way, we obtain a collection of subsequences indexed by a positive integern with the proper-
ties that for thenth subsequencek̂ j

i converges uniformly on@2n,n#, and each sequence is a
subsequence of the previous one. The diagonal sequence has the property thatk̂ j

i converges on
each compact subset of the real line. By the Hamiltonian constraintr̂ also converges uniformly on
compact sets along this subsequence. In the diagonal case the derivatives]tT̂i

i are bounded, as was
shown in Sec. IV and applying Ascoli’s theorem as before gives the remaining conclusions.

Theorem 5.1:Let a global solution of Eqs.~2.1!–~2.7! be given for whichf is not identically
zero. If at some timet1, the projection of the solution lies in the setBi for somei, then ~i! the
projection lies inBi for all t<t1; ~ii ! if there exists somet2.t1 such that the projection of the
solution lies in the complement ofBi , then it lies in the complement of allBj for t.t2; and~iii !
ast→2` the projection converges to a point of the boundary of the regionK that is not one of the
pointsVi

2 .
Proof: Suppose without loss of generality thati51. It follows from ~2.20! that

]tk̂1
1524p~r̂2tr T̂!~3k̂1

121!28p tr T̂k̂1
118pT̂1

1. ~5.1!

If at some timek̂1
1<0, then the first and second terms on the right-hand side of~5.1! are non-

negative while the third term is positive. Hence]tk̂1
1.0. This implies the first conclusion of the

theorem. Moreover, it means that if the projection once leavesB1 it can never reenter it. A similar
statement, of course, applies to any otherBj , and this gives~ii !. To prove~iii ! note first that]tk̂1

1

is bounded below by a positive constant as long asr̂ is. This shows that lim infr→2` r̂50.
Equation~5.1! also implies that the integral ofr̂ on the interval~2`,t1# must be finite so that for
eachi the integral of the right-hand side of~2.20! is absolutely convergent. Hence, eachk̂i

i tends
to a limit ast→2`. By what has already been said it can only be a point of the boundary ofK.
The monotonicity ofk̂1

1 shows that this limit cannot be one of the pointsVi
2 .

Theorem 5.2:Let a global solution of Eqs.~2.1!–~2.7! be given for whichf is not identically
zero. If at some timet1 the projection of the solution lies in the setAi for some i, then ast
decreases either~i! the projection converges to a point of the boundary ofK ast→2`; or ~ii ! it
reachesL j

1 for somej or C at a finite time beforet1; or ~iii ! it stays inAi for all t,t1 and it has
a point of one of the linesL j

1 or the pointC as an accumulation point.
Proof: Suppose without loss of generality thati51. When the projection lies inA1 the

inequalitiesk1
1.k2

2 , k1
1.k3

3 , and k̂1
1. 1

3 hold. Suppose that on the time interval~2`,t1! the
inequalities k̂1

12 k̂2
2>A and k̂1

12 k̂3
3>A are satisfied for someA.0. Then, by Lemma 4.3, it

follows that on this time intervalT1
1/T2

2 andT1
1/T3

3 can be bounded below by a decreasing func-
tion, which tends tò ast→2`. Moreover, by Lemma 4.1, trT/r→1 ast→2`. Now, define a
sequence of solutions of~2.1!–~2.7! by un~t!5u(t2n), tP~2`,t1!, whereu denotes any of the
functions that make up the solution andn is a positive integer. By Lemma 5.1 there exists a
subsequence such thatk̂ j

i and r̂ converge uniformly on compact subsets. By the statements made
above, trT̂ must tend to the same limit asr̂ along this sequence. Also,T̂1

1 tends to this same limit
and T̂2

2 and T̂3
3 tend to zero. Applying Lemma 5.1 again shows that the limits of these sequences

satisfy ~2.19! and ~2.20!. Because of the values of the limits they, in fact, satisfy the asymptotic
system~3.1!–~3.3!. The solution of the asymptotic system obtained inherits the properties that
k̂1
1> k̂2

2 and k̂1
1> k̂3

3. The only solutions of the asymptotic system that satisfy these inequalities on
an interval of the form~2`,t1! are the vacuum solutions. If for some choice of subsequence this
vacuum solution is not that corresponding to the pointV1

2, then the projection of the original
solution must converge to that point, by Theorem 5.1. Otherwise every subsequence of the se-
quence of translated solutions has a subsequence that converges to the same solution of the
asymptotic system. Hence, the whole sequence converges to this solution and the projection of the
original solution converges toV1

2. In both cases the solution of the original system converges to
a point of the boundary ofK.
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It remains to consider the case where the above estimate is not satisfied for anyA.0. If the
solution does not reachL j

1 for somej or C in finite time, then it stays inAi for all t,t1. Then it
must have as an accumulation point either a point onL j

1 for somej , C, or Vj
1 for somej . In the

first two cases this gives case~iii ! of the conclusion of the theorem. In the third case the solution
entersBj , and so by Theorem 5.1, case~i! of the conclusion holds.

In case~iii ! of this theorem we can also consider a limit of translates of the solutions whose
existence is guaranteed by Lemma 5.1. If the ratiosa/b anda/c tended to zero ast→2` for the
original solution, then by Lemma 4.2 the ratiosT1

1/T2
2 andT1

1/T3
3 would tend to infinity and the

solution would belong to case~i!. Thus, in case~iii ! it can be assumed without loss of generality
~after possibly interchanging the indices 2 and 3! that b/a is bounded ast→2`. Hence
*

2`
t1 ( k̂1

1 2 k̂2
2) is finite. Since]t~k̂1

12 k̂2
2) is bounded, it follows thatk̂1

12 k̂2
2→0 ast→2`. Hence,

the solution obtained as a limit of translates has LRS geometry. It also satisfiesr5tr T. Informa-
tion about the asymptotics of LRS solutions can thus be used to obtain information about the
asymptotics of the solutions, which fit into case~iii ! of Theorem 5.2 but do not fit into case~i!.

Theorem 5.3:Let a solution of Eqs.~2.19!–~2.20! be given that satisfies the LRS condition
k2
25k3

3 . If at some timet1 the projection satisfiesk̂1
1, 1

3, then either~i! the projection of the
solution tends to the point~2 1

3,
2
3,
2
3! as t→2`; ~ii ! it tends to the point~0,12,

1
2! as t→2`; ~iii ! it

reaches the point~13,
1
3,
1
3! at a finite time beforet1; or ~iv! it tends to the point~13,

1
3,
1
3! ast→2`.

Proof: Suppose first thatk̂1
1< 1

32A for someA.0. Then by Lemma 4.2 the ratio ofT2
25T3

3 to
T1
1 increases without limit. Passing to a limit of translates in the familiar way gives a solution of

the equation]tk̂1
1528p k̂1

1r̂ for which k̂1
1 satisfies the same inequality as before. There are only

two such solutions, namely that for whichr̂50 and that for whichk̂1
150. In the first of these cases

the original solution must enter the regionB1 , and hence by Theorem 5.1 belong to case~i! of the
conclusion of the present theorem. The only way of avoiding this is if, no matter which subse-
quence is chosen, the limiting value ofk̂1

1 is zero. Hence, the projection of the original solution
must converge to the point~0,12,

1
2!. Thus, the solution belongs to case~ii ! of the conclusion. Now

consider the case where there is noA.0 with the given property. If, despite this, the ratio ofT2
2

to T1
1 tends to infinity, we can argue as before to show that the solution belongs to case~i! or ~ii !.

If, on the other hand, this ratio remains bounded, then the ratioa/b must remain bounded, and
hence if k̂1

1 remains smaller than13 forever then*
2`
t1 ( 132 k̂1

1) is finite. It then follows as in the
discussion following the proof of Theorem 5.2 thatk̂1

1→ 1
3. Thus the solution either belongs to case

~iii ! or case~iv!.
Theorem 5.4:Let a solution of the equations~2.1!–~2.7! with m51 andf not identically zero

be given. Thenk̂i
i→ 1

3 andTi
i /r→0 for eachi ast→`.

Proof: In Ref. 13, it was shown that the scale factorsa, b, andc are bounded below by a
positive constant on any interval of the form@t1,`!. Using ~5.1!, this statement can be strength-
ened. Suppose thatk̂1

1 were negative on an interval of the form@t1,`!. Then it would follow, as in
the proof of Theorem 5.1, that the integral ofr̂ on this interval was finite. Butr̂ is increasing on
this interval, a contradiction. It follows that eachk̂i

i must become zero after a finite time, and once
this happens it must immediately become positive and stay positive. Thus, fort1 sufficiently large,
a, b, andc are increasing. Consider now the behavior of the quantity min$a,b,c%. Suppose first
that it tends to infinity ast→`. Then, by Lemma 4.4 the ratiosTi

i /r tend to zero ast→`.
Construct a limit of translates as in the proof of Theorem 5.2, except that this time the translations
should be done in the opposite direction. Then the limiting solution satisfies]tk̂i

i5212pr̂~k̂i
i2

1
3). This is the equation that is satisfied by a Bianchi I solution of the Einstein equations coupled
to dust. It is well known and also easy to see directly that in the case of dust eachk̂i

i converges to
1
3 as t→`. Because a convergent subsequence can be extracted from any subsequence of the
sequence of translates by integers, it follows thatk̂i

i→ 1
3 for the original solution of the Einstein–

Vlasov system as well. Next, consider the case wherea is bounded on an interval of the form
@t1,`! while min$b,c%→` as t→`. Then, by Lemma 4.4 the ratiosT2

2/r andT3
3/r converge to

zero ast→` while T1
1/r remains bounded away from zero. Equation~5.1! implies that]tk̂1

1 is
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bounded below by a positive constant ifk̂1
1, 1

3 andT2
2/T1

1 andT3
3/T1

1 are less than 12A for some
constantA.0. However, this contradicts the boundedness ofa. Since the volume tends to infinity
ast→`, at least one ofa, b, or c must tend to infinity. It follows that to complete the proof we
may assume without loss of generality thata and b are bounded whilec tends to infinity. By
Lemma 4.4,T3

3/r→0, while T1
1/r andT2

2/r are bounded below by a positive constant. Now the
integral*t1

` k̂i
i(t)dt is finite for i51,2 and]tk̂i

i is bounded. Hence,k̂1
1 andk̂2

2 tend to zero ast→`

and k̂3
3→1. But the given behavior of the pressures shows that fork̂3

3> 1
3 and sufficiently large

times]tk3
3 is negative, a contradiction. This completes the proof.

VI. A COMPACTIFICATION

This section is devoted to a finer examination of LRS solutions of the Einstein–Vlasov system
with massless particles. For LRS solutions withk2

25k3
3 , let k5 k̂1

1 , q5b/a, Q5T1
1/r. Then

k̂2
25 1

2(12k) and r̂5~1/16p!~121k2 3
2k

2!. The essential equations describing the dynamics are

]tk5 1
4~113k!~12k!~Q2k!, ~6.1!

]tq5 1
2~123k!q. ~6.2!

The quantityQ can be expressed entirely in terms ofq and the initial data as follows:

Q5q2F* f 0~v i !v1
2~q2v1

21v2
21v3

2!21/2 dv1 dv2 dv3
* f 0~v i !~q

2v1
21v2

21v3
2!1/2 dv1 dv2 dv3

G . ~6.3!

Substituting~6.3! into ~6.1! makes the equations~6.1! and ~6.2! into an autonomous system of
ordinary differential equations fork andq. Lemma 4.2 shows thatQ(q)5O(q4/3) asq→0. This
means that the system~6.1!–~6.2! can be extended in aC1 manner to the boundaryq50. More-
over,Q does not contribute to the linearization of the extended system at the critical pointq50,
k50. The eigenvectors of the linearization are directed along thek andq axes, with eigenvalues
2 1

4 and
1
2, respectively. It follows~see, e.g., Ref. 16! that the dynamical system has an unstable

manifold that is a curve tangent to thek axis at the point~0,0!. This shows that for any initial value
f 0 it is possible to find LRS solutions of the Einstein–Vlasov system, where the distribution
function has the initial valuef 0 and where the quantitiesk̂i

i converge to~0,12,
1
2! ast→2`. Note

that the stable manifold is just thek axis, and so does not give rise to any smooth solutions of the
Einstein–Vlasov system. The information about the linearization also determines the nature of the
phase portrait near the singular point, and shows that there are solutions for whichk̂1

1 approaches
zero, but turns back before reaching it. A typical feature of Bianchi models is that the matter
becomes dynamically negligible near the singularity. No attempt will be made here to make this
notion precise, but one aspect of it is that the projection of the solution should tend to a point of
the boundary ofK ast→2`. The solution whose existence has just been shown is an exception
to the rule. For anisotropic Bianchi I models with a perfect fluid, no exceptional solutions of this
kind exist. However, they do occur for other Bianchi types.17

The critical points of the system~6.1!–~6.2! in the region where 0,q and21
3,k,1 are the

points of the form~ 13,q0!, whereq0 has the property thatQ(q0!5
1
3. Differentiating ~6.3! and

estimating the result in an elementary way leads to the inequalityqQ8>Q(12Q). This shows that
the functionQ is strictly increasing forq.0. Taking account of the limiting values ofQ, it follows
that there is precisely one valueq0 for which Q(q0!5

1
3. Moreover, at this pointqQ8>2

9. The

eigenvalues of the linearization at the corresponding critical point are2 1
66

1
2A 1

92q0Q8(q0!. They
both have negative real parts and the critical point is a sink. In particular, no solution emerges
from this critical point. Thus, it is seen that if the projection of any LRS solution for massless
particles approaches the pointC ast→2`, then the projection must stay atC for all time, i.e., the
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solution must have isotropic geometry. This should be compared with the results of Newman18 on
isotropic singularities in solutions of the Einstein equations coupled to a radiation fluid.

APPENDIX: FLUIDS WITH NONLINEAR EQUATION OF STATE

Consider a perfect fluid with equation of statep5 f (r) that satisfies the following general
assumptions:~i! f is a continuous function from@0,̀ ! to itself with f~0!50, which isC1 for r.0;
~ii ! 0<f 8~r!<1 for all r.0; and~iii ! there exists a constantC,1 such thatp<Cr for r,1.

Assumptions~i! and~ii ! are standard. The third assumption is, when~i! and~ii ! are satisfied,
equivalent to the assumption made in Ref. 7 that the equation of state is not asymptotically stiff at
low densities. In the case of a linear equation of statef (r)5kr, the assumptions~i!–~iii ! are
satisfied if and only if 0<k,1. In a Bianchi I space–time, it follows from the momentum
constraint~2.2! that the four-velocity of the fluid is orthogonal to the hypersurfaces of homoge-
neity. Hence, the energy densityr measured by an observer whose word line is orthogonal to the
hypersurfaces of homogeneity, is the same as that measured by a comoving observer. Equations
~2.19! and ~2.20! are valid, as in the case of the Einstein–Vlasov system. For a fluid, it can be
assumed without loss of generality that the solution is reflection symmetric, because given any
initial data, it suffices to do a linear transformation of the coordinates that simultaneously diago-
nalizes the metric and second fundamental form in order to transform the given data to data for a
reflection-symmetric space–time.

In the case of a fluidTj
i5pd j

i and henceT̂j
i5 p̂d j

i , wherep̂5p/~tr k)2. If the equation of state
is linear, thenp̂ can be expressed as a function ofr̂ alone, and~2.19! and~2.20! then reduce to a
system of ordinary differential equations that suffice to determinek̂ j

i from initial data. For a
nonlinear equation of state, this is no longer the case. The equations~2.19! and ~2.20! no longer
form a closed system and must instead be considered as the projection of a bigger system, as in the
case of the Vlasov equation. This is one reason why the linear case has been studied preferentially
in the literature. Nevertheless, it turns out that the projection can be analyzed very effectively in
the general case.

The first question that needs to be addressed is that of global existence int, i.e., the equivalent
of Lemma 2.1 for a fluid. This follows from the results of Ref. 7. The assumption~iii ! has been
used at this stage. A direct calculation shows that the quantity (k̂1

12 k̂2
2)/( k̂1

12 k̂3
3) is independent of

t wheneverk̂1
12 k̂3

3 is nonzero. Moreover, ifk̂1
12 k̂3

3 is zero at some time, it remains zero. Hence,
the projection of each solution is constrained to move on a straight line inK passing through the
centerC. This is already a much stronger statement than could be proved in the case of the Vlasov
equation. To find out how the projection moves on this straight line, the time derivative of the
dimensionless version of the density will be calculated. For a fluid it is given by

]tr̂5~ r̂2 p̂!~1224pr̂!. ~A1!

Noting that the Hamiltonian constraint implies that 24pr̂<1 with equality only at the pointC, it
can now be seen that the projection moves monotonically from the boundary ofK at t52` to the
centerC of K at t5`. This qualitative behavior is independent of the equation of state, satisfying
~i!–~iii !. The only difference is in the speed with which the projection moves along the radial line
at different times. Equation~A1! also makes clear that this picture changes completely if the
equations of state considered here are replaced by the limiting case of a stiff fluid,p5r.
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A Majorana analog to the parafermion algebra is constructed and shown to be
isomorphic to so(n). Ansatz realizations of this algebra are constructed and used to
establish the properties of particular representations. The construction of specific
so(n) representations is discussed for odd and evenn, and for evenn the procedure
is illustrated explicitly in the case of so~4!. By contracting the Majorana parafer-
mion algebra, the para-Grassman algebra and its representation theory are obtained.
© 1996 American Institute of Physics.@S0022-2488~96!03401-2#

I. INTRODUCTION

Systems of parabosons and parafermions were introduced in Ref. 1, and have been considered
extensively2,3 as generalizations of ordinary bosons and fermions. Recently, representations of
these systems in terms of deformed bosonic operators,4–8 examination of their connections with
the Calogero–Vasiliev oscillator,9,10 and attempts to quantum deform them11–14 have all led to a
renewal of interest.

In this paper we construct a Majorana analog to the parafermion, interpret it as a Lie algebra,
and investigate the properties of its representations.

After a brief review in Sec. II of parafermions and their ansatz representations, we move
directly in Sec. III to the construction of real Majorana parafermions~MPFs! out of the standard
complex parafermions and the establishment of the algebra which these new operators satisfy. In
Sec. IV we establish that the algebra ofn MPFs is isomorphic to so(n11), which is a generali-
zation of the well-known result thatn parafermions generate so(2n11). In Sec. V we introduce
a minor modification to the standard fermionic realization of the Green ansatz, and use this in a
straightforward way to obtain ansatz realizations of the MPFs. Using these we develop a proce-
dure for establishing complete sets of the algebraic relations for MPFs representations of any order
of statistics. We illustrate this procedure forp52. In Sec. VI we look at the construction of
so(2n11) and so(2n) representations using MPFs. For so(2n11) this only involves a restate-
ment of the unique vacuum conditions for a parafermion system in terms of MPFs, and we find
that MPFs, when acting on a Fock space, are grouped into related pairs, so that the overall
symmetry between MPFs is lost. For so(2n) we are in a new situation. We show how to project
a MPF realization of so(2n11) onto so(2n), and how, after implementing this projection, to
reduce the number of MPFs involved to its natural minimum. The purpose of this procedure is to
obtain so(2n) in a form in which its constituent MPFs are clearly related to its raising and
lowering operators. This is illustrated explicitly for so~4!, for which we also construct all repre-
sentations in MPF terms.

Finally, in Sec. VII we show that by means of a simple contraction, the para-Grassman
algebra15 can be obtained from the MPF algebra. Consequently the properties of the para-
Grassman representations for any order of statistics follow from the contraction of the correspond-
ing MPF representations.

II. DIRAC PARAFERMIONS

A system ofn oscillatorsai and their conjugatesai
† which satisfy the trilinear commutation

relations

0022-2488/96/37(1)/452/8/$6.00
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@@ai
† , aj #, ak

†#52d ikaj , ~1!

@@ai , aj #, ak#50, ~2!

together with their conjugates, fori , j ,k51,2,...,n is referred to in previous work as a system of
n parafermions. In this paper we shall refer to these oscillators as Dirac parafermions~DPFs!. It is
well known that all of the irreducible representations of the DPFs on a Fock space with a unique
vacuum stateu0& satisfying ai u0&50 are labeled by a single positive integerp, the order of
statistics, such thataiai

†u0& 5 pu0& for all i , and that all of these representations are included
among the Green ansatz representations.2 Recently the following realization of this ansatz in terms
of Dirac and Majorana fermions has been studied by16

ai5 (
a51

p

f iasa , ai
†5 (

a51

p

f ia
† sa . ~3!

Here f ia andsa are, respectively, Dirac and Majorana fermions. These have commutation relations

$ f ia , f jb%50, $ f ia , f jb
† %5d i jdab , $sa ,sb%52dab , $ f ia ,sb%50, ~4!

as well assa
† 5 sa .

III. CONSTRUCTION OF MAJORANA PARAFERMIONS

In this section we construct a parafermionic analog to the Majorana fermion, and establish the
algebraic properties of such operators. Essentially the same operators were defined in Ref. 17,
although there they were introduced only as a part of the analysis of the DPF algebra, and not
considered in their own right. We define Majorana parafermions~MPFs! in terms of DPFs by
analogy with the well-known definition of Majorana fermions in terms of Dirac fermions, so that,
for example

c15a11a1
† , c25 i ~a12a1

†!. ~5!

Herec1 andc2 are MPFs. It is clear from these definitions thatc1
† 5 c1 andc2

† 5 c2 . To establish
the MPF algebra we must also define

c35a21a2
† , c45 i ~a22a2

†!,
~6!

c55a31a3
† , c65 i ~a32a3

†!.

Now consider

@@a1
† , a1#, a1

†#52a1
† and @@a1

† , a1#, a1#522a1 . ~7!

Writing this in MPF form we obtain

@@c11 ic2 ,c12 ic2#, c16 ic2#568c118ic2 , ~8!

which reduces to

@@c1 , c2#, c2#54c1 , @@c1 , c2#, c1#524c2 . ~9!
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The form of each of these equations is the same. By using Eqs.~1!, ~2!, and~6! it is straightfor-
ward to check that the form of the two particle trilinear is the same for any pair of MPFs. Further,
by replacing MPFs with their DPF equivalents, and using Eqs.~1! and~2! it is easy to show that
all three particle MPF trilinear are trivial.

For example, to show that [[c1 , c2], c3]50, add@@a1
† , a1#, a2# 5 0 and @@a1

† , a1#, a2
†#

5 0. Collecting our results into a single expression, we have

@@ci , cj #, ck#54d jkci24d ikcj . ~10!

Taking this to be the definition of the MPF algebra, the requirement that it be invariant under
Hermitian conjugation gives us the freedomci

† 5 h ici , whereh i561. Augmenting our definition
by h i511 for all i we restrict ourselves to the compact real form of the algebra. The odd looking
factors of 4 on the right-hand side of Eq.~10! arise because we have constructed MPFs out of
DPFs in exact analogy to the construction of Majorana fermions out of Dirac fermions, and these
could easily be scaled away. However, for our purposes the scale factor in Eq.~10! is convenient,
since it avoids the introduction of noninteger factors into the algebras~20!, ~21!, and ~22! asso-
ciated with MPFs of specific orders of parastatistics. This construction is completely reversible, so
the algebra of 2n MPFs is isomorphic to the algebra ofn DPFs. It is well known17 that this algebra
is so(2n11). Although the MPFs were derived in such a way that we obtained two from each
DPF, there is no memory of this in the MPF algebra which gives allcis the same properties.
Because of this there is no obstacle to consideration of systems containing an odd number of
MPFs. Unlike systems containing an even number of MPFs, these are essentially different from
the well-known DPF systems, and lead to new results.

IV. THE LIE ALGEBRAIC INTERPRETATION OF MPFs

As stated above, it is known thatn DPFs generate so(2n11), and consequently that the same
must be true of 2n MPFs. We now establish the more general result, which includes systems
containing an odd number of MPFs.

Using n MPFs, labeledc1 , c2 ,...cn we can define operatorsLab with a, b51,2,...,n as
follows:

Lab5
@ca , cb#

4
. ~11!

ClearlyLab52Lba . It follows directly from the MPF algebra~10! that these satisfy

@Lab , Lgn#5dbgLan1danLbg2dbnLag2dagLbn ~12!

and

@ca , Lgn#5dgacn2dnacg . ~13!

We now define

L0a5
ica

2
. ~14!

Then Eqs.~11! and ~13! can be written as

@L0a , L0b#52Lab , @L0a , Lgn#5dnaL0g1dgaL0n , ~15!

both of which have the same form as Eq.~12!. These relationships extend the range of the indices
on theLa,b in Eq. ~12! to a, b50,1,2,...,n, but this is just the algebra so(n11), and by our
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construction we see that it is isomorphic to an algebra ofn MPFs. Thus we have established the
general result, thatn21 MPFs generate so(n). For evenn this corresponds to the familiar result
that n DPFs generate so(2n11), but for oddn our result is new, and provides those so(n)
algebras which DPFs alone cannot generate in a canonical way.

Note that to establish the order of statistics of a given representation, we can construct the
MPF equivalent of the su~2! Casimir operator out if any pair. This gives

ci
21cj

22
@ci , cj #

2

4
5p~p12!. ~16!

V. ANSATZ REPRESENTATIONS OF MPFs

We now construct a MPF analog of the Green ansatz. To do this in the most convenient way
we first of all note that the realization of the Green ansatz given by Eqs.~3! and~4! remains valid
if we modify Eq.~4! so that the Dirac fermions commute with the Majorana fermions, that is, Eq.
~4! becomes

$ f ia , f jb%50, $ f ia , f jb
† %5d i jdab , $sa ,sb%5dab , @ f ia , sb#50, ~17!

wheresa
† 5 sa for all a. This may appear somewhat unnatural, though it is less so if we view the

Dirac and Majorana elements as fermions of different colors. The point of making this change is
that doing so greatly simplifies manipulation of the MPF ansatz realizations, which, using Eq.~5!,
we can write down directly as

ci5 (
a51

p

kiasa . ~18!

Here$kia% and$sa% are commuting sets of Majorana fermions, that is,

$kia ,kjb%5d i jdab , $sa ,sb%5dab , @kia , sb#50. ~19!

We note that because thep51 ansatz is the fundamental representation, it is known from repre-
sentation theory that all representations of so(n) appear~at least once! in the reduction of this
ansatz for somep. For p51 all we have are the ordinary Majorana fermions, the properties of
which are well known. Forp52 the algebra is

ci
354ci , cicjck1ckcjci54d jkci14d i j ck . ~20!

In general to obtain the algebras associated withp.1 we must first establish the single MPF
algebra. The most direct way to do this is to notice that each ansatz termkiasa ~no sum ona! has
eigenvalues61. From this we can see that an MPF of orderp satisfies the following characteristic
equation:

~c1p!~c1p22!~c1p24!,...,~c2p14!~c2p12!~c2p!50.

This can be more conveniently written as follows:

For even p: ~c22p2!~c22~p22!2!,...,~c2222!c50,
~21!

for odd p: ~c22p2!~c22~p22!2!,...,~c2232!~c221!50.

For example,

p52, c354c, p53, c4510c229,
~22!
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p54, c5520c3264c.

To obtain the algebraic relations between different MPFs their characteristic equations need to be
inserted into commutators. As an example we obtain thep52 algebra as given in Eq.~20!. First
of all use the characteristic equationc354c to obtain

@@c1 , c2#, c2
3#54@@c1 , c2#, c2#. ~23!

When the left-hand side of this is evaluated using Eq.~10!, and the result is solved simultaneously
with Eq. ~10!, those relations from Eq.~20! which involve only two MPEs are obtained. To obtain
the three MPF relations as well we put the two MPF relations into a commutator involving a new
MPF. In this case~i.e., for p52! we need only usec1c2c150 to obtain the expression

@@c1 , c3#, c1c2c1#50. ~24!

Expanding this, we find thatc1c2c31c3c2c150 which completes our derivation of the relations
~20!. For p.2 we can establish the algebra using essentially the same method as we have
illustrated here. However, because in general thep specific relations are of orderp11, to get a
complete set of these it is necessary to use an iterative procedure in which the characteristic
equation, itself of orderp11, is commuted up top times with terms of the form [ci ,cj ], each
commutation inserting a new MPF into the algebra.

VI. MPFs AND REPRESENTATIONS OF so( n ) ALGEBRAS

In this section we look at representations of so(n) algebras on Fock spaces which have a
unique vacuum state. In the case of oddn this involves a restatement of the familiar DPF results
in MPF language, and we include these only for completeness. For the more complicated evenn
case, we show how to construct so(2n) representations out of 2n21 MPFs by making use of a
projection from so(2n11). This is illustrated for so~4!.

A. so(2 n11) representations in terms of MPFs

In terms of DPFs, a particular so(2n11) representation having a unique vacuum stateu0& is
defined by the following conditions:

aj u0&50, ajaj
†u0&5pu0& for all j . ~25!

Herep is a positive definite integer, the order of the parastatistics. From Eq.~5! we can express the
DPFs in these expressions as follows:

aj5
cj12 ic j2

2
, aj

†5
cj11cj2

2
. ~26!

Here cj1 and cj2 are independent MPFs, thej6 notation being used only for convenience. In
terms of MPFs the representation defining conditions~25! become

cj1u0&5 ic j2u0&, ~cj1
2 1cj2

2 !u0&52pu0&. ~27!

These conditions clearly involve a pairing of MPFs based on their properties with respect to the
Fock space. So although within the algebra there is complete symmetry between the MPFs, this is
broken by their action on the Fock space. The fact that even after this symmetry is broken we are
able to group 2n MPFs inton symmetric pairs~i.e., each of then pairs having the same algebraic
properties! is the origin of the DPF algebra.

456 Robert S. Dunne: Majorana parafermions

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



B. Representation of so(4) constructed using three MPFs

Consider first so~5!, with its elements expressed in DPF notation. The root diagram of this
algebra contains the points6e1 , 6e2 , 6e11e2 , 6e12e2 , wheree1 ande2 are othogonal unit
vectors. The correspondence between the DPF algebra elements and the root vectors is

a1
†↔e1 , a1↔2e1 , a2

†↔e2 , a2↔2e2 ,

@a1
† , a2

†#↔e11e2 , @a1
† , a2#↔e12e2 , @a1 , a2

†#↔2e11e2 , @a1 , a2#↔2e12e2 .

The four vectors of length& are the roots of the so~4! subalgebra. To construct so~4! represen-
tations in terms of MPFs we restrict our attention to these. We define

J1z5
@a1

† , a1#1@a2
† , a2#

4
, J115

@a2
† , a1

†#

2
, J125

@a1 , a2#

2
~28!

and

J2z5
@a1

† , a1#2@a2
† , a2#

4
, J215

@a2 , a1
†#

2
, J225

@a1 , a2
†#

2
. ~29!

These operators form two commuting su~2! algebras, displaying the su~2!%su~2! structure of
so~4!. To express these operators in terms of MPFs we use

a1
†5

c11 ic2
2

, a15
c12 ic2

2
, ~30!

a2
†5

c31 ic4
2

, a25
c32 ic4

2
. ~31!

We find

J1z5
i @c2 , c1#1 i @c4 , c3#

8
,

J165
7@c1 , c3#6@c2 , c4#2 i @c2 , c3#2 i @c1 , c4#

8
,

~32!

J2z5
i @c2 , c1#2 i @c4 , c3#

8
,

J265
7@c1 , c3#7@c2 , c4#2 i @c2 , c3#1 i @c1 , c4#

8
.

Here we have constructed a representation of so~4! using four MPFs. However our theorem tells
us that so~4! is isomorphic to the algebra of only three MPFs. This isomorphism can be made
explicit if we first use Eq.~11! to rewrite our MPF realization of so~4! in terms ofLab operators:

J1z5
i ~L211L43!

2
, J165

~7L136L242 iL 232 iL 14!

2
,

~33!
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J2z5
i ~L212L43!

2
, J265

~7L137L242 iL 231 iL 14!

2
.

Now, since the index 0 does not appear in any of these expressions, we can, without altering the
algebra in any way, replace the index 4 in each by the index 0. If we do this, and then use Eqs.~11!
and ~14! to transform our results back into MPF notation we obtain

J1z5 i
@c2 , c1#

8
2
c3
4
, J165

7@c1 , c3#2 i @c2 , c3#

8
2
c16 ic2

4
,

~34!

J2z5 i
@c2 , c1#

8
1
c3
4
, J265

7@c1 , c3#2 i @c2 , c3#

8
1
c16 ic2

4
.

These expressions involve only three MPFs, so we have obtained the so~4! algebra explicitly in
terms of three MPFs, as we set out to do. It is particularly interesting to observe the following
expressions forJix , Jiy , Jiz ( i51,2) in which the symmetry between the three MPFs is made
manifest:

J1x52 i
@c2 , c3#

8
2
c1
4
, J1y52 i

@c3 , c1#

8
2
c2
4
, J1z52 i

@c1 , c2#

8
2
c3
4
; ~35!

J2x52 i
@c2 , c3#

8
1
c1
4
,J2y52 i

@c3 , c1#

8
1
c2
4
, J2z52 i

@c1 , c2#

8
1
c3
4
. ~36!

Due to the su~2!%su~2! structure of so~4! we can construct specific so~4! representations by
choosing a ground stateu0& such that

J12u0&5J22u0&50, J1zu0&52 j 1u0&, J2zu0&52 j 2u0&. ~37!

Here j 1 and j 2 are the spins of the two su~2! subalgebra representations. In conventional su~2!
notation, this ground state would be written asu j 1 ,2 j 1 , j 2 , j 2&. In terms of MPFs the conditions
~37! become

~c12 ic2!u0&50, ~38!

i @c1 , c2#u0&5~c1
21c2

2!u0&54~ j 11 j 2!u0&, ~39a!

c3u0&52~ j 12 j 2!u0&. ~39b!

Note that Eqs.~38! and ~39a! are essentially the same as Eq.~27!. As in the so(2n11) case the
overall symmetry among the MPFs is lost in the transition to Fock space representations.

Relations~35! and ~36! can be inverted to yield the MPF matrix representations associated
with specific so~4! representations. The relationship is

ci52~J2i2J1i !. ~40!

If the J1i andJ2i operators have spinsn andm, respectively, so that we are looking at the (n,m)
representation of so~4!, then by Eq.~16! the MPFs havep52(n1m). As an example, if$sa% are
the Pauli matrices, then the~12,

1
2! representation hasj 1a5sa/2^1 andj 2a51^ sa/2, so thatp52,

and by Eq.~40! ca51^ sa2sa ^1.
Realizations of higher so(2n) algebras in terms of MPFs can be constructed in a similar way

by projecting down from the well-known parafermionic realizations of so(2n11).
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VII. MPFs AND THE PARA-GRASSMAN ALGEBRA

If we define~real! elementse i by ci5 l e i for all i , wherel is a contraction parameter, and take
the limit l→0 we obtain the algebra

@@e i , e j #, ek#50. ~41!

This is just the para-Grassman algebra,15 considered extensively in connection with the represen-
tation theory of DPFs. Our results and ansatz representations for specific MPF algebras can
likewise be contracted, leading to results in para-Grassman representation theory. For example
contraction of Eq.~20! yields

e ie jek1eke je i50 ~42!

and Eq.~21! contracted leads to the very simple relatione i
p1150 for all i .
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We give an elementary analysis of the multiplicator group of the Galilei group in
112 dimensionsG 1

↑ . For a nontrivial multiplicator we give a list of all the corre-
sponding projective unitary irreducible representations ofG 1

↑ . © 1996 American
Institute of Physics.@S0022-2488~96!00701-5#

I. INTRODUCTION

Recently a complete list of all projective unitary irreducible representations of the Poincare´
group in 112 dimensions was determined.1 This paper intended to provide a similar analysis for
the Galilei group~more precisely for the proper orthochronous Galilei group!.

The main technical obstacle seems to be the rather complicated structure of the multiplier
group ~see Ref. 2, Appendix A!. In Sec. II the reader is provided with the basic facts concerning
the determination of the projective irreducible representations of a certain group by the Mackey
method.~Follow as closely as possible Ref. 3!. Section III gives an elementary analysis of the

second cohomology group of the universal covering groupG̃ 1
↑ of the Galilei groupG 1

↑ in 112
dimensions.

Section IV constructs for every nontrivial multiplier a certain extension ofG̃ 1
↑ which ex-

hibits a semidirect product group structure. One is able to apply the Mackey induced representa-
tions method to determine the desired representations. In this paper only nontrivial multipliers are
considered. The case of true representation~i.e., trivial multipliers! is elementary to analyze and
raises no problems.1

II. PROJECTIVE UNITARY IRREDUCIBLE REPRESENTATIONS

Following Ref. 3, the classification of all projective unitary irreducible representations of a
certain groupG is done following the steps below:

~1! One identifies the universal covering groupG̃ of G. Let one denote byp:G̃→G the
canonical projection. Ifa:G→Aut(P (H)) is a morphism ofG into the group of automorphisms
of the lattice of the orthogonal projectors in the Hilbert spaceH ~i.e., asymmetry! then

ã[a+p ~2.1!

is a morphism ofG̃ into the group of automorphisms of the same latticeP (H) verifying the
condition

ãg0
5 id ~2.2!

for anyg0 P Ker(p).
Conversely, any morphism ofG̃ in Aut(P (H)) verifying Eq.~2.2! determines a morphism of

G via formula~2.1!. It will be clear immediately that it is more convenient to study morphisms of
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G̃ instead of morphisms ofG. According to Wigner theorem, the morphismã is induced by

projective unitary irreducible representationV of G̃ in the Hilbert spaceH.
One easily discovers, applying the Schur lemma, that the condition~2.2! is equivalent to the

condition

Vg0
5l3 id ~2.3!

for anyg0 P Ker(p). Herel is a complex number of modulus 1. So in the following one will
determine the projective unitary irreducible representation of the groupG̃ verifying Eq. ~2.3!.

~2! One determines the cohomology groupH2(G̃,R) using infinitesimal arguments. This is
possible because for connected and simply connected Lie groups one hasH2(G̃,R)
.H2(Lie(G̃),R).

~3! One determines fromH2(G̃,R) the multiplier group, i.e.,H2(G̃,T) whereT is the multi-
plicative group of complex numbers of modulus 1. The corresponding 2-cocycles are also called
multipliers. One selects a multiplier from every cohomology class and tries to classify the unitary
irreducible representations ofG̃ and afterwards selects those verifying the condition~2.3!.

For this last step one tries to first exhibit a semidirect product group. To fix the notations we
remind the reader the content of the Mackey theorem. LetH3 tA be a semidirect product of the
locally compact groupsH andA which verify the second axiom of countability. Suppose thatA is
Abelian. Here:t:H→Aut(A) is a group homomorphism. To classify all the unitary irreducible
representations ofH3 tA one goes through the following steps.3

~a! One considers the dualÂ of A and the action ofH on it given by

~h•v!~a![v~ th21~a!!. ~2.4!

~b! One computes all theH-orbits in Â. We suppose there exists a Borel cross section
S,Â intersecting once everyH-orbit.

~c! For;v P S one computes thelittle group:

Hv[$hPHuh•v5v%. ~2.5!

~d! We suppose that we know the complete list of the unitary irreducible representations of
Hv ,;vPS.

~e! Let O,Â be aH-orbit in Â,v0[OùS and p a unitary irreducible representation of
Hv0

acting in the~complex! Hilbert spaceK . As it is well known3 one can associate to every
p a (H,O ,K )-cocylefp, i.e., a Borel mapfp:H3O→U(K ) @hereU(K ) is the group of
unitary operators inK ] such that a.e. inH3O :

fp~h1 ,h2•v!fp~h2 ,v!5fp~h1h2 ,v! ~2.6!

and;hPHv0
:

p~h!5fp~h,v0!. ~2.7!

A convenient way to constructfp is as follows. Letc:O→H be a Borel section, i.e., a Borel
map such that;v P O ,

c~v!•v05v. ~2.8!

Then we can take

fp~h,v!5p~c~h•v!21hc~v!!. ~2.9!
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~f! For everyH-orbit O and every unitary irreducible representationp of Hv0
in K we

consider the Hilbert spaceH[L2(O ,da,K ) ~wherea is anH-quasi-invariant measure onO )
and define:W h,a

(O ,p) :H→H as follows:

~W h,a
~O ,p! f !~v!5v~a!~r h~h

21
•v!!1/2fp~h,h21

•v! f ~h21
•v! ~2.10!

~wherer h(•) is a version of the Radon–Nicodym derivativedah21
/da).

ThenW is a unitary irreducible representation ofH3 tA.
The Mackey theorem asserts that if the orbit structure is smooth~see Ref. 3! then every

unitary irreducible representation ofH3 tA is unitary equivalent to a representation of the form
W (O ,p) and moreover to distinct couples (O ,p)Þ(O 8,p8) corresponding representations
W (O ,p) andW (O ,p) which are not unitary equivalent.

III. THE GALILEI GROUP IN 112 DIMENSIONS

A. Notations

By definition the orthochronous Galilei group in 112 dimensionsG ↑ is set-theoretically
O(2)3R23R3R2 with the composition law

~R1 ,v1 ,h1 ,a1!•~R2 ,v2 ,h2 ,a2!5~R1R2 ,v11R1v2 ,h11h2 ,a11R1a21h2v1!. ~3.1!

OrganizeR2 as column vectors,O(2) as the 232 real orthogonal matrices, and consistently
use matrix notations. This group acts naturally onR3R2:

~R,v,h,a!–~T,X!5~T1h,RX1Tv1a!. ~3.2!

One can also consider the proper orthochronous Galilei groupG 1
↑ defined as

G 1
↑ [$~R,v,h,a!udet~R!51% ~3.3!

and the universal covering groupG̃ 1
↑ of G 1

↑ . We can take G̃ 1
↑5R3R23R3R2 with the

composition law

~x1 ,v1 ,h1 ,a1!•~x2 ,v2 ,h2 ,a2!5~x11x2 ,v11R~x1!v2 ,h11h2 ,a11R~x1!a21h2v1!,
~3.4!

where

R~x![S cos~x! sin~x!

2sin~x! cos~x!
D . ~3.5!

The covering homomorphismd: G̃ 1
↑→G 1

↑ is

d~x,v,h,a!5~R~x!,v,h,a!. ~3.6!

Finally we describe the Lie algebra ofG̃ 1
↑ ,Lie( G̃ 1

↑ ).Lie(G 1
↑ ) using the fact thatG 1

↑ can
be organized as a matrix group. Indeed one has the group isomorphism:

G 1
↑ {~R,v,h,a!↔S R v a

0 1 h

0 0 1
D PMR~4,4!. ~3.7!

Then Lie(G 1
↑ ) can be identified with the linear space of 434 real matrices of the form
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~a,u,t,x![S aA u x

0 0 t

0 0 0
D . ~3.8!

Hereu,x P R2,t,a P R andA[(21
0

0
1). One obtains the Lie bracket as

@~a1 ,u1 ,t1 ,x1!,~a2 ,u2 ,t2 ,x2!#5~0,A~a1u22a2u1!,0,A~a1x22a2x1!1t2u12t1u2!.
~3.9!

B. Computation of H2(Lie( G̃ 1
↑ ),R)

As was outlined in the preceding section, to classify all multipliers of a Lie groupG one starts
by first computing the second cohomology group of Lie(G) with real coefficients.3 As was said in
the Introduction, an elementary derivation of this group is provided~see also Ref. 4!. If j
P Z2(Lie(G̃ 1

↑ ),R) the cocycle equation is written as:

j~@~a1 ,u1 ,t1 ,x1!,~a2 ,u2 ,t2 ,x2!#,~a3 ,u3 ,t3 ,x3!!1perm.50. ~3.10!

Here j:Lie( G̃ 1
↑ )3Lie( G̃ 1

↑ )→R is, by definition, bilinear and antisymmetric. Using Eq.
~3.9!, one can explicitate~3.10!:

j~~0,A~a1u22a2u1!,0,A~a1x22a2x1!1t2u12t1u2!,~a3 ,u3 ,t3 ,x3!!1perm.50. ~3.11!

One can consider some distinct cases of this equation:
~i! t i50, xi50 ( i51,2,3)
One obtains

j~~0,A~a1u22a2u1!,0,0!,~a3 ,u3 ,t3 ,x3!!1perm.50. ~3.12!

From bilinearity one has

j~~0,u,0,0!,~0,u8,0,0!!5utCu8, ~3.13!

where C is a 232 real matrix. From antisymmetry one findsCt52C so necessarilyC
5 1

2FA(F P R). So one has

j~~0,u,0,0!,~0,u8,0,0!!5 1
2F^u,u8& , ~3.14!

where^•,•& is the sesquilinear form onR2 given by

^u,v&[utAv. ~3.15!

It is easy to see that Eq.~3.12! becomes an identity.
~ii ! a i50, ui50 ( i51,2,3!
Equation~3.11! becomes an identity.
~iii ! t150, x150, a i50, ui50 ( i52,3)
One easily obtains from Eq.~3.11!,

j~~0,0,t,x!,~0,0,t8,x8!!50. ~3.16!

~iv! t i50, xi50 ( i51,2), a350, u350
Equation~3.11! becomes

j~~0,A~a1u22a2u1),0,0),(0,0,t3 ,x3))1j((0,0,0,a2Ax31t3u2),(a1 ,u1,0,0))
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1j~~0,0,0,2a1Ax32t3u1!,~a2 ,u2,0,0!!50. ~3.17!

From bilinearity one has

j~~0,u,0,0!,~0,0,0,x!5xtDu, ~3.18!

whereD is a 232 real matrix.
If one takes in Eq.~3.17! a250, t350 and inserts expression~3.18! one gets

@D,A#50⇔D52t3 id1cA ~t,cPR! ~3.19!

so, Eq.~3.18! takes the form

j~~0,•u,0,0!,~0,0,0,x!52tx–u1c^x,u&. ~3.20!

If one inserts Eq.~3.20! into Eq. ~3.17! one getsc50 and

j~~0,Au,0,0!,~0,0,1,0!!1j~~0,0,0,u!,~1,0,0,0!!50. ~3.21!

Because of linearity one has

j~~0,0,1,0!,~0,u,0,0!!5P–u ~PPR2! ~3.22!

and the preceding relation gives

j~~0,0,0,x!,~1,0,0,0!!5^P,x&. ~3.23!

Finally Eq. ~3.20! reduces to

j~~0,u,0,0!,~0,0,0,x!5tx–u. ~3.24!

Denote

S[j~~1,0,0,0!,~0,0,1,0!! ~3.25!

and use linearity to obtain.

j~~1,0,0,0!,~0,u,0,0!5^G,u& ~GPR2!. ~3.26!

Finally reconstruct the cocylej from Eqs.~3.14!–~3.26!:

j~a1 ,u1 ,t1 ,x1!,~a2 ,u2 ,t2 ,x2!5^G,a1u22a2u1&1 1
2 F^u1 ,u2&1S~a1t22a2t1!

2^P,a1x22a2x1&1P–~ t2u12t1u2!1t~x1–u22x2•u1!. ~3.27!

If one takes the generic element ofC1(Lie( G̃ 1
↑ ),R).(Lie( G̃ 1

↑ )* to be (b,G,E,P) de-
fined by

^~b,G,E,P!,~a,u,t,x!&[2ba2G–u2Et1P–x ~3.28!

then it is elementary to see that Eq.~3.27! rewrites as

j5tj01Fj11Sj21]~0,G,0,P!, ~3.29!

wherej0 ,j1 ,j2 P Z2(Lie( G̃ 1
↑ ),R) are
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j0~~a1 ,u1 ,t1 ,x1!,~a2 ,u2 ,t2 ,x2!![x1•u22x1•u2 , ~3.30!

j1~~a1 ,u1 ,t1 ,x1!,~a2 ,u2 ,t2 ,x2!![ 1
2^u1 ,u2&, ~3.31!

j2~~a1 ,u1 ,t1 ,x1!,~a2 ,u2 ,t2 ,x2!![a1t22a2t1 ~3.32!

and] is the coboundary operator defined as

~]b!~X,X8!52b~@X,X8# !, ;X,X8PLie~ G̃ 1
↑ !, ;bP~Lie ~ G̃ 1

↑ !!* . ~3.33!

So every cocyclej P Z2(Lie( G̃ 1
↑ ),R) is cohomologous with a cocyle of the form

tj01Fj11Sj2 .
It is easy to establish now that this cocycle is not a coboundary. One can summarize the

preceding discussion as the following:

Proposition 1: H2(Lie( G̃ 1
↑ ),R) is a three-dimensional real space. In every cohomology

class there exists exactly one cocyle of the typetj01Fj11Sj2 .

C. Computation of H2( G̃ 1
↑ ,R)

As in Ref. 3 one uses the fact that forG a connected and simply connected Lie group,
H2(G,R) is isomorphic toH2(Lie(G),R). So, to determineH2(G,R) one should determine for
j0 ,j1 ,j2 some corresponding group cocyles. One easily determines~see Ref. 2!

v0~g,g8!51/2@a•R~x!v82v•R~x!a81h8v•R~x!v8#, ~3.34!

v1~g,g8!51/2̂ v,R~x!v8&, ~3.35!

v25hx8, ~3.36!

whereg5(x,v,h,a), g85(x8,v8,h8,a8).
The correspondence between the Lie group and Lie algebra cocycles is checked using Lemma

7.36 from Ref. 3, Chap. VII. The content of this lemma is the following. LetG be connected and
simply connected Lie group andc P Z2(G,R). Define the Lie algebra 2-cochainjc by

jc~X,X8![
]2

]s]s8
@c~exp~sX!,exp~s8X8!!2~X↔X8!#s5s850 . ~3.37!

Thenjc P Z2(Lie(G),R) and the correspondencec→jc factorizes to an isomorphism between
H2(G,R) andH2(Lie(G),R).

So one has the following:

Corollary 1: H2( G̃ 1
↑ ,R) is a three-dimensional real linear space. In every cohomology

class there exists exactly one cocycle of the typetv01Fv11Sv2 .
Finally, applying Thm. 7.37 of Ref. 3 one has the following:

Theorem 1: Every multiplier of G̃ 1
↑ is equivalent to a multiplier of the form

mt,F,S~g,g8![expH i t2 @a•R~x!v82v•R~x!a81h8v•R~x!v8#J expH iF2 ^v,R~x!v8&1 iShx8J .
~3.38!

Moreover mt,F,S;mt8,F8,S8 iff t5t8, F5F8, S5S8.
Remark 1: In 113 dimensions it is well known that only a multiplier of type mt,0,0 survives.

So, m0,F,S is characteristic to 112 dimensions. According to the general theory of the projective
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unitary representations, one has to consider the most general multiplier mt,F,S . In Ref. 1 only the
multiplier mt,0,0 was considered, so the statement of Theorem 2 in this reference is rather care-
lessly formulated.

Remark 2: One will find it convenient to denote mt[mt,0,0, mF[m0,F,0 , mS[m0,0,S .
Also note thatmt,F,S5mtmFmS .

IV. THE PROJECTIVE UNITARY IRREDUCIBLE REPRESENTATIONS OF THE GALILEI
GROUP IN 112 DIMENSIONS

A. The method

As anticipated, classify here the unitary irreduciblemt,F,S-representations ofG̃ 1
↑ . We try to

mimic the method from Ref. 3 which consists of two steps:
~a! One first applies a simple result, namely a generalization of Theorem 7.16 from Ref. 3.

~g;z0 , . . . ,zp!•~g8;z08 , . . . ,zp8!5~gg8;z0z08m0~g,g8!, . . . ,zpzp8mp~g,g8!!. ~4.1!

Then Gm0 , . . . ,mp
is a group, and

~g;z0 , . . . ,zp!°Vg;z0 , . . . ,zp
[z0

21,...,zp
21Ug ~4.2!

is a representation of Gm0 , . . . ,mp
in H such that

Ve;z0 , . . . ,zp
5z0

21,...,zp
213 id. ~4.3!

Conversely, if V is a representation of Gm0 , . . . ,mp
inH such that Eq. (4.3) is verified, then if

one writes

g°Ug is an m0 ,...,mp-representation of G inH and the connection (4.2) between U and V is
true.

The proof is elementary and Theorem 7.16 of Ref. 3 is the particular casep50.

It is clear that one can apply Proposition 2 withG5 G̃ 1
↑ , p52, andm05mt , m15mF ,

m25mS . Denote the corresponding groupGm0m1m2
by G̃ 1

↑ t,F,S.
~b! Remember that in Ref. 3, where, in the four-dimensional case, one has to study only

G̃ 1
↑ t,0,0 ~see Chap. IX, Sec. 8!, a semidirect product group structure is exhibited, so one can

apply the induction procedure. The same procedure works forG̃ 1
↑ t,F,S. Indeed one has a group

isomorphism G̃ 1
↑ t,F,S.HF3 tt,SA.

Define the groupH[R3R2 with the composition law:

~x,v!•~x8,v8!5~x1x8,v1R~x!v8! ~4.5!

466 D. R. Grigore: Galilei group in 112 dimensions

J. Math. Phys., Vol. 37, No. 1, January 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



thenHF[H3T with the composition law

~h1 ;z1!•~h2 ;z2!5~h1h2 ;z1z18mF~h,h8!!. ~4.6!

The notationmF(h,h8) makes sense because on the right-hand side of Eq.~3.35! only the
variablesx andv appear.

A[R3R23T3T with the composition law

~h,a;z0 ,z2!•~h8,a8;z08 ,z28!5~h1h8,a1a8;z0z08 ,z2z28!. ~4.7!

tt,S:HF→Aut(A) is given by

th;z1
t,S ~a;z0 ,z2!5S th~a!;z0 expH 2

i t

2
@2v•R~x!a1hv2#J ,z2e2 iShxD . ~4.8!

Herea[(h,a) and

th~h,a!5~h,R~x!a1hv!. ~4.9!

The semidirect product structure follows from the homomorphism property oftt,S. Then the
isomorphism is

HF3 tt,SA{$~x,v;z1!,~h,a;z0 ,z2!%↔S x,v,h,a;z0 expS i t2 a•vD ,z1 ,z2eiShxDP G̃ 1
↑ t,F,S.

~4.10!

We note thatA is Abelian, so we will be able to apply the Mackey induction procedure.
Remark 3: One may wonder why Proposition 2 was not applied with p50 and

m05mtmFmS . The reason is that it did not succeed to find a convenient semidirect product
structure for Gm0

in this case.

Taking into account Eq.~4.10! the representations ofG̃ 1
↑ t,F,S follow from representations of

HF3 tt,SA according to

W~x,v,h,a;z0 ,z1 ,z2!5W ~x,v,h,a;z0 exp$2 ~ i t/2! a•v%,z1 ,z2e
2 iShx!. ~4.11!

According to Proposition 2 one is looking for unitary irreducible representations of

G̃ 1
↑ t,F,S verifying

We;z0 ,z1 ,z2
5z0

21z1
21z2

213 id. ~4.12!

Follow the method of induced representations as presented in Sec. II.

B. Computation of the orbits

It is clear that every character ofAt,S has the form

xp0 ,p;n0 ,n2
~h,a;z0 ,z2!5z0

n0z2
n2 exp$ i ~hp01a•p!%, ~4.13!

wherep0 P R,p P R2, andn0 ,n2 P Z. So,At,Ŝ[R3R23Z3Z with the generic element denoted
by @p0 ,p;n0 ,n2#. One easily computes the dual action ofth;z1

t,S , namely,

~x,v;z1!•@p0 ,p;n0 ,n2#5@p02v–R~x!p21/2n0tv
21Sn2x,R~x!p1n0tv;n0 ,n2#. ~4.14!
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The classification of the orbits of this action is elementary. We distinguish three cases which
must be studied separately:

~a! t Þ 0, S50.
The orbits are

Zn2 ,p0
1 [$@p0 ,0;0,n2#%; p0PR, n2PZ,

Zn2 ,r
2 [$@p0 ,p;0,n2#up25r 2, p0PR%; rPR1 , n2PZ,

Zn0 ,n2 ,r
3 [$@p0 ,p;n0 ,n2#up212n0tp05r%; rPR, n0PZ* , n2PZ.

~b! t 5 0, SÞ0.

Zn0 ,p0
4 [$@p0 ,0;n0,0#%; p0PR, n0PZ,

Zn0 ,n2
5 [$@p0 ,0;n0 ,n2#up0PR%, n0PZ, n2PZ* ,

Zn0 ,n2 ,r
6 [$@p0 ,p;n0 ,n2#up25r 2,p0PR%; rPR1 , n0 ,n2PZ.

~c! tÞ0, SÞ0.

Zp0
7 [$@p0 ,0;0,0#%; p0PR,

Zn2
8 [$@p0 ,0;0,n2#up0PR%, n2PZ* ,

Zn0 ,r
9 [$@p0 ,p;n0,0#up212n0tp05r%; rPR, n0PZ* ,

Zn0 ,n2
10 [$@p0 ,p;n0 ,n2#upPR2,p0PR%; n0 ,n2PZ* .

~d! t50, S50.

Zp0 ,n0 ,n2
11 [$@p0 ,0;n0 ,n2#u%; p0PR, n0 ,n2PZ,

Zr ,n0 ,n2
12 [$@p0 ,p;n0 ,n2#up0PR,p25r 2%; rPR1 , n0 ,n2PZ.

~Note thatZ11 is a point.! It is not hard to see that condition~4.12! cannot be fulfilled by the
induced representations corresponding to the orbits:Z1,Z2,Z4,Z7,Z8, andZ9. So, analyze only the
casesZ3,Z5,Z6,Z10,Z11, andZ12. One by one of these six cases are analyzed.

C. The representations

The unitary irreducible representations of the little groups are computed, then the correspond-
ing cocycles as in Sec. II and finally the projective representations ofG 1

↑ we are looking for, are
exhibited.

~a! tÞ0, S50.
In this case,Z5Zn0 ,n2 ,r

3 . A reference point is@r/2n0t ,0;n0 ,n2# and we have

H @r/2n0t ,0;n0 ,n2#
F 5$~x,0;z1!uxPR,z1PT%.R3T. ~4.15!

The unitary irreducible representations of this Abelian subgroup are of the formp (s,n1)(s
P R,n1 P Z); they are one-dimensional and are acting inC as follows:
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p~s,n1!~x,0;z1!5eisx z1
n1. ~4.16!

In this case one can find explicitly a corresponding cocyclefp, namely,

f~s,n1!~~x,v;z1!,@p0 ,p;n0 ,n2# !5eisx z1
n1 expH in1F2n0t

^v,R~x!p&J . ~4.17!

As in Ref. 3 identifyZ3.R2 according to:@(r2p2)/2n0t,p;n0 ,n2#↔p and consider the
strictly invariant Lebesgue measuredp on R2.

Applying Eq. ~4.11!, the corresponding induced representation is acting inH5L2(R2,dp)
according to

~W~x,v,h,a;z0 ,z1 ,z2! f !~p!5z0
n0z1

n1z2
n2 expH i F2

n0t

2
ha–v1h

r2p2

2n0t
1a–p1sxG J

3expH i F n1F2n0t
^v,p&G J f ~R~x!21~p2n0tv!. ~4.18!

The condition~4.12! imposesn05n15n2521. The factor exp(2 (ihr/2t)) can be dropped
because one is looking for projective representations. One gets the projective representations
Vt,s(t P R* ,sP R) acting inL2(R2,dp) as follows:

~Vx,v,h,a
t,s f !~p!5expH i S sx1a–p1

hp2

2t
1

t

2
a•v1

F

2t
^v,p& D J f ~R~x!21~p1tv!!. ~4.19!

~b! t50, SÞ0.
~b1! Z5Zn0 ,n2

5 .

A reference point is@0,0;n0 ,n2# and one has

H @0,0;n0 ,n2#
F 5$~0,v;z1!uvPR2,z1PT%, ~4.20!

i.e., a central extension of the Abelian groupR2. Let p be a unitary irreducible representation of
this group. Because of Eq.~4.12! one must have

p~0,0;z1!5z1
213 id. ~4.21!

This easily implies that one has

p~0,v;1!p~0,v8;1!5expH 2
iF

2
^v,v8&J p~0,v1v8;1! , ~4.22!

i.e., v°p (0,v;1) is a unitary irreducible representation of the canonical commutation relations in
Weyl form. According to Stone–von Neumann theorem there exists~up to unitary equivalence!
exactly one such representation, denotedpCCR and acting in the Hibert spaceK ~for an explicit
expression see, e.g., Ref. 5, Chap. 3.1!. So, the representations ofH @0,0;n0 ,n2#

F one is looking for are

of the form

p~0,v;z1!5z1
21pv

CCR. ~4.23!

A corresponding cocycle is clearly

fCCR~~x,v;z1!,@p0 ,0;n0 ,n2# !5z1
21pv

CCR. ~4.24!
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If one identifies naturallyZ5.R with the strictly invariant measuredp0 , then the correspond-
ing induced representation is acting inH5L2(R,K ,dp0) as follows:

~W~x,v,h,a;z0 ,z1 ,z2! f !~p0!5z0
n0~z2 e

2 iShx!n2 eihp0z1
21~pv

CCRf !~p02Sn2x!. ~4.25!

Again Eq. ~4.12! imposesn05n2521 and one is left with the projective representations
VCCR acting inH5L2(R,K ,dp0) according to

~Vx,v,h,a
CCR f !~p0!5eih~p01Sx!~pv

CCRf !~p01Sx!. ~4.26!

~b2! Z5Zn0 ,n2 ,r
6 .

A reference point is@0,re1 ;n0 ,n2# and one easily obtains

H @0,re1 ;n0 ,n2#
F 5H S 2pn,

2pnSn2
r

e11ae2 ;z1D UnPZ,aPR,zPTJ . ~4.27!

If one denotes

~n,a;z1![S 2pn,
2pnSn2

r
e11ae2 ;z1D ~4.28!

then the composition law is

~n,a;z1!•~n8,a8;z18!5~n1n8,a1a8;z1z18 exp$ ik~an82a8n!%!, ~4.29!

i.e., the little group is in this case a central extension of the Abelian groupZ3R. Here
k52pFSn2 /r . Let (n,a;z1)°p (n,a;z1)

be a unitary irreducible representation fulfilling

p~0,0;z1!5z1
213 id. ~4.30!

~The argument leading to this relation is similar to the argument leading to Eq.~4.21!.!
One has forpn,a[pn,a;1:

pn,apn8,a85exp$ ik~an82a8n!%pn1n8,a1a8. ~4.31!

~b21! First analyze the casek Þ 0⇔F Þ 0.
The resemblance of this relation to the Weyl system~4.22! suggests an association to Eq.

~4.31!, a sort of imprimitivity system.3 Denote:p1,0[V andpa5p0,a . It is clear that Eq.~4.31!
is equivalent to

pn,05Vn; VpaV
215e2ikapa ; papa85pa1a8. ~4.32!

So, it is sufficient to find an irreducible couple (V,pa) fulfilling the last two relations of Eq.
~4.32!. According to a well-known theorem in harmonic analysis@Stone, Naimark, Ambrose, and
Godement~SNAG!theorem#6,7pa is of the form

pa5E
R
eila dP~l!, ~4.33!

whereD°PD is a projection valued measure in the Hilbert spaceK . The second relation~4.32!
is equivalent to

VPDV
215PD22k . ~4.34!
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Applying the same idea as in Ref. 3 Lemma 6.10, we can prove thatP is homogeneous, i.e.,
K5L2(R,Cn,b) whereb is a measure onR quasi-invariant with respect to the transformation
l°l12k and

~PD f !~l!5xD~l! f ~l!. ~4.35!

Moreover, like in Ref. 3, Theorem 6.12, one can show thatV has the ‘‘diagonal’’ expression

~Vf !~l!5r V~l12k!1/2v~l! f ~l12k! ~4.36!

~herer V is a Radon–Nicodym derivative!.
It is easy to see that forn.1 the system (V,PD) is not irreducible. So,n51. Moreover one

can show that supp(b) must be discrete with period 2k, i.e., supp(b)5$l12kmum P Z%,l P R.
It is clear that one can takeb5(mPZdl12km . In this case one can also takeK5 l 2 ~i.e.,

sequences$ f m%mPZ such that(mPZu f mu2,`) andP5b. It follows that one has

~pa f !m5ei ~l12km!a f m ; ~Vf !m5vmfm11~;mPZ!. ~4.37!

~HerevmP T.)
The system (V,pa) is irreducible. So, the unitary irreducible representations of the little group

H @0,re1 ;n0 ,n2#
F verifying Eq.~3.25! are of the formpl(l P R) acting inl 2 according to

~pn,a;z1
l f !m5z1

21ei @l1k~2m1n!#a f m1n . ~4.38!

Consider the unitary transformation

~Uf !m5 f m1n . ~4.39!

Then, one easily obtains that

UplU215pl1n, ;nPZ, ~4.40!

i.e.,pl;pl1n;nP Z.
Conversely, suppose thatpl1;pl2. Then the spectra of the infinitesimal generators

(1/i ) (d/da) p0,a
l i ua50 i51,2 must coincide. But these spectra are$l i1knun P Z%, so one neces-

sarily getsl12l2 P kZ.
It follows that the parameterl takes values inR(modk).
Denote byfl a cocycle corresponding topl. ~The author has not been able to find a simple

expression for this cocycle.! Then, if one identifiesZ6.R3S1 with the strictly invariant measure
dp0^dV, in the end one gets the projective representationVr ,l acting in
L2(R3S1,l 2,dp0^dV) according to

~Vx,v,h,a
r ,l f !~p0 ,p!5exp$ i @h~p01Sx!1a•p#%fl~~x,v;1!,@p01v•p1Sx,R~x!21p# !

3 f ~p01v•p1Sx,R~x!21p!. ~4.41!

~b22! Analyze the casek50⇔F50.
In this case Eq.~4.31! states thatp is a unitary irreducible representation of the Abelian group

Z3R. Sop;p (s,t) with s P R(mod 1),t P R wherep (s,t) are one-dimensional and have the ex-
pression

pn,a
~s,t !5e2p ins eita. ~4.42!

A corresponding cocycle is
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f~s,t !~~x,v!,@p0 ,p# !5expH i S sx2t
^v,R~x!p&

r D J . ~4.43!

The corresponding induced representation isVr ,s,t acting inL2(R3S1,dp0^dV) according
to

~Vx,v,h,a
r ,s,t f !~p0 ,p!5expH i Fh~p01Sx!1a•p1sx1S

^p,v&
r G J f ~p01v•p1Sx,R~x!21p!.

~4.44!

~c! tÞ0, SÞ0.
Only the orbitZn0 ,n2

10 is involved. A reference point is@0,0;n0 ,n2# and we have

H @0,0;n0 ,n2#
F 5$~0,0;z1!uz1PT%.T ~4.45!

with the unitary irreducible representations of the formpn1 acting inC according to

p
~0,0;z1!

n1 5z1
n1. ~4.46!

A corresponding cocycle can be found:

fn1~~x,v;z1!,@p0 ,p;n0 ,n2# !5z1
n1 expH iFn12n0t

^v,R~x!p&J . ~4.47!

Identify Z10.R3R2 with the strictly invariant measuredp0^dp. The induced representa-
tions obey Eq.~4.12! iff n05n15n2521 and we get projective representationsVt acting in
L2(R3R2,dp0 dp) according to

~Vx,v,h,a
t f !~p0 ,p!5expH i Fh~p01Sx!1

t

2
a•v1a•p1

F

2t
^v,p&G J

3 f ~p01Sx1v•p1 1
2 tv2,R~x!21~p1tv!!. ~4.48!

~d! t50, S50.
In this case only the nontrivial orbitZ12 counts. A reference point is@0,re1 ;n0 ,n2# and we

have

H @0,re1 ;n0 ,n2#
F 5$~2pn,ae2 ;z1!unPZ,aPR,zPT%.Z3R3T. ~4.49!

The unitary irreducible representations arep (s,t,n1)(s P R(mod 1),t P R,n1 P Z) acting inC
according to

p~s,t,n1!~~2pn,ae2 ;z1!5e2p ins eitaz1
n1 . ~4.50!

Let f (s,t,n1) be an associated cocycle. Then the induced representation corresponds to the
choicen05n15n2521 and acts inL2(R3S1,dp0^dV) according to

~Vx,v,h,a8,r ,s,t f !~p0 ,p!5ei ~hp01a•p!f~s,t,21!~~x,v;1!,@p01v•p# ! f ~p01v•p,R~x!21p!. ~4.51!

Theorem 2: Every projective unitary irreducible representation ofG̃ 1
↑ with a nontrivial multi-

plier is unitary equivalent to a representation of the type Vt,s,VCCR,Vr ,l,Vr ,s,t,Vt, or V8,r ,s,t

described by Eqs. (4.19), (4.26), (4.41), (4.44), (4.48), and (4.51), respectively. Two different
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representations from this list are not unitary equivalent. Only the representations (4.19) and (4.51)
verify the condition (2.3) so only these representations correspond to Galilean invariant systems.

Remark 4: Consider the representations (4.19) and (4.51) from the point of view of
localizability.3 The representation (4.19) is localizable. Indeed, by restricting the covering group
of the Euclidean group SE(2) we obtain

~Vx,a
t,sf !~p!5ei ~sx1a•p! f ~R~x!21p!. ~4.52!

Performing a Fourier transform one gets

~Vx,a
t,sf !~X!5eisx f ~R~x!21~X2a!!. ~4.53!

If PD5xD then (Vt,s,P) is a system of imprimitivity based onR2 relative to the action

~x,a!–X5R~x!X1a ~4.54!

so one has localizability.
The representations (4.51) are not localizable onR2 (the argument is similar to the one in Ref.

3 and is based on the existence of the constraintp25r 2).
Remark 5: The representations (4.19) obtained in case (a) are the analogues of the represen-

tations obtained in 113 dimensions (see, Ref. 3, Chap. IX, Subsection 8). The infinitesimal gen-
erators of this representation are

~Hf !~p!5
p2

2t
f , ~4.55!

~Pf !~p!5pf , ~4.56!

~J f !~p!5 i S p1 ] f

]p2
2p2

] f

]p1
D1s f, ~4.57!

~K f !~p!52 i t
] f

]p
1

F

2t
Apf . ~4.58!

So t and s must be interpreted as the mass and the spin of the system, respectively. The
interpretation of F is not clear. Because F appears from a central extension of a translation group
(see Eq. (4.22)), it is tempting to associate F with some kind of magnetic force. For another
interpretation of the parameter F (based on the nonrelativistic limit) see Ref. 8.
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A Z3-graded generalization of supermatrices
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We introduce Z3-graded objects which are the generalization of the more
familiar Z2-graded objects that are used in supersymmetric theories and in many
models of non-commutative geometry. First, we introduce theZ3-graded Grass-
mann algebra, and we use this object to construct theZ3-matrices, which
are the generalizations of thesupermatrices. Then, we generalize the concepts of
supertraceandsuperdeterminant. © 1996 American Institute of Physics.
@S0022-2488~96!00901-9#

I. INTRODUCTION

Z2-graded algebras, which are the basic objects of supersymmetry, are well known since the
works of Berezin, Kac, Leites, Wess and Zumino,1–5 who introduced the concepts of supermatri-
ces, supertrace and superdeterminant. These concepts will be generalized here.

Recently, there have been many attempts to generalizeZ2-graded constructions to the
Z3-graded case.

6–10Many such attempts, though, were aimed at the description of exotic statistics.
We think that our construction could describe some properties of thequarks, in particular the
ternaryaspects of their associations.

II. THE Z3-GRADED GRASSMANN ALGEBRA

The ordinary Grassmann algebra is generated by anticommuting entities:

h ih j52h jh i .

This can be viewed in the following way.Z2 is the group of the permutations of two elements.
It can be represented by the real numbers (21) and 1:

SA B

A BD S A B

B AD
11 21

.

When an element of the permutation group is applied to the product of two generators, it is
followed by the multiplication by the number representing this permutation.

Similar operations can be performed withZ3 , which is faithfully represented by the complex
numbers 1,j and j 2, where j is a cubic root of 1,e2ip/3:

SA B C

A B CD S A B C

B C AD S A B C

C A BD
1 j j 2

.

When one applies an element of the cyclic permutation group to the product ofthreegenera-
tors, it is multiplied by the complex number representing this permutation:

0022-2488/96/37(1)/474/10/$6.00
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u iuku l5 juku lu i .

The generators defined in this way have the following properties: their cubes vanish, as also
does a product of any four generators:8

u i
350, u iuku lum50.

Therefore the dimension of the algebra generated byN independent elements is

N

u8s

1 N2

uu8s

1
N32N

3

uuu8s

.

To restore the symmetry between grades 1~the u ’s! and 2~the uu ’s!, we can addN grade 2
generatorsū i that behave like the products of twou ’s, that is

ū i ūkū l5 j 2ūkū l ū i , u i ūk5 j ūku i .

In the case of the ordinary Grassmann algebra, the products of an odd number of generators
are automatically anticommutative, whereas the products of an even number of generators com-
mute with all other elements. In theZ3-graded case, this is no longer true. For example,

u iukū l5 ju i ū luk5 j 2ū lu iuk ;

but in the same time,ukū l andū lu i , as grade 0 elements, should commute with all other elements,
leading to the relationsu i(ukū l)5(ukū l)u i andu iukū l5 j 2( ū lu i)uk5 j 2uk( ū lu i), which are clearly
contradictory.

This leads us to impose the following relations on all elements of a definite grade~the grade
of the product of two elements being the sum of their grades, modulo 3!. Let us denote by
a,b, . . . , the elements of grade 0, byA,B, . . . , the elements of grade 1, byĀ,B̄, . . . , the
elements of grade 2 and byX an element of arbitrary grade. Then the rules

aX5X a, AĀ5 j ĀA,

define entirely theZ3-graded Grassmann algebra. We obtain the ternary rulesu iuku l5 juku lu i and
ū i ūkū l5 j 2ūkū l ū i directly from the second rule by replacingA andĀ with products of one or two
generatorsu or ū.

With the unit elementI, the algebra contains the following elements:

Grade 0: I,uū,uuu,ū ū ū,

Grade 1: u,ū ū,

Grade 2: ū,uu,

and its dimension is
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D5112N13N212
N32N

3
5
314N19N212N3

3
.

One can note that the grade 0 elements recall formally the only observable combinations of
quark fieldsin chromodynamics based on theSU(3) symmetry, that is, the mesons which are the
combinationsqq̄ of one quark and one antiquark, and the hadrons which are the combinations
qqq or q̄q̄q̄ of three quarks or three antiquarks.

From now on, we shall denote the grade of an objectX by ]X.

III. Z3-MATRICES

We define theZ3-matrices in analogy with the supermatrices, which form aZ2-graded matrix
algebra and whose entries are elements of a Grassmann algebra.

First, we define aZ3-graded complex matrix algebra by dividing the algebraA of 333 block
matrices into three parts:A5A0 % A1 % A2 . A matrix is an element ofA0 ~resp.,A1 , A2)
and is of grade 0~resp., 1, 2! if it has the form shown below:

S A 0 0

0 B 0

0 0 C
D , resp.S 0 A 0

0 0 B

C 0 0
D , S 0 0 A

B 0 0

0 C 0
D .

This gives aZ3-graded structure to the algebra of matrices, in the sense that the grade of the
product of two matrices is the sum of the grades of these matrices modulo 3.

We can then tensorize this graded algebra with ourZ3-graded Grassmann algebra, the grade of
a Z3-matrix being the summodulo 3of the grade of the matrix and of the grade of the Grassmann
element. So aZ3-matrix is of grade 0~resp., 1, 2! if its blocks contain only Grassmann elements
with the respective grades:

S 0 2 1

1 0 2

2 1 0
D

grade 0

,S 1 0 2

2 1 0

0 2 1
D

grade 1

,S 2 1 0

0 2 1

1 0 2
D

grade 2

.

It is easy to verify that the grade of the product of twoZ3-matrices is the sum of their grades
modulo 3.

The algebra ofZ3-matrices contains a neutral element,I , the Z3-matrix whose only non-
vanishing elements are the unit of the Grassmann algebra occupying the main diagonal. The
existence of this element enables us to define the invertibility of aZ3-matrix.

Theorem 1„a…: A block of aZ3-matrix is invertible if and only if the block matrix formed with
the coefficients ofI in the development of the elements of the block over the grade 0 elements of
the Grassmann algebra(I, uū, uuu, ū ū ū) is invertible.

„b… A Z3-matrix is invertible if and only if its grade 0 blocks are invertible. The inverse of a
grade 1 (resp., 2, 0)Z3-matrix is a grade 2 (resp., 1, 0)Z3-matrix.

„c… The product of two invertibleZ3-matrices is an invertibleZ3-matrix.
Proof:
~a!–Let us decompose aZ3-matrixM into its complex component matrices along the elements

of the Grassmann algebra:M5MfI1Mmum1M̄mūm1Mmnumun1M̄mnūmūn1M̃mnumūn

1 Mmnhumunuh1M̄mnhūmūnūh . We also consider anotherZ3-matrixN that we decompose in the
same way. Then it is easy to see that the component ofMN alongI is MfNf ~no product of two
generators different fromI can give something proportional toI), so that forM to be invertible, its
component Mf must be invertible. Conversely, ifMf is invertible, let us put
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Nf5(Mf)
21. Then the productMN differs from I only in terms of degree 2 and higher.

However, we can chooseNm52(Mf)
21Mm(Mf)

21 andN̄m52(Mf)
21M̄m(Mf)

21. This way,
MN differs fromI only in terms of degree 3 and higher. Choosing the higher-level components
of N in the same way, it is easy to expel these terms to higher degrees, until we have actually
constructed the inverse ofM , because of the finite number of terms in the development and of
their cubic nilpotence.

~b! For this part of the theorem, we can use the proof of part~a! by noting that the component
Mf of a matrixM has non-zero coefficients only in positions corresponding to grade 0 blocks.
I being of grade 0, it is obvious that the sum of the grades of aZ3-matrix and of its inverse should
be 0 modulo 3.

~c! The component alongI of the product of two invertible matrices is the product of their
components alongI, which are invertible matrices by virtue of~b! and ~a!. These components
being ordinary matrices, their product is an invertible matrix. We use~b! once more to conclude.j

The left ~resp., right! product of a supermatrix by an elementl of the ordinary Grassmann
algebra is defined as its left~resp., right! multiplication by the supermatrix

S l

~21!]ll
D .

Generalizing this idea, we define the left~resp., right! product of aZ3-matrix by an element
l of the Grassmann algebra as its left~resp., right! multiplication by the following diagonal
Z3-matrix:

S l

j 2]ll

j ]ll
D .

Note that in general,lM Þ Ml, but we havel(MN)5(lM )N, (Ml)N5M (lN),
M (Nl)5(MN)l andl(Mm)5(lM )m which give our algebra the structure of a bimodule with
respect to the Grassmann algebra.

Definition 2: Let us define aZ3-matrix M with the following block structure:

M5S A B C

D E F

G H I
D .

Its Z3-traceis defined by:trZ3(M )5tr(A)1 j 2(12]M )tr(E)1 j (12]M )tr(I ); that is:
• If M is of grade 0, then trZ3(M )5tr(A)1 j 2.tr(E)1 j .tr(I ).
• If M is of grade 1, then trZ3(M )5tr(A)1tr(E)1tr(I ).
• If M is of grade 2, then trZ3(M )5tr(A)1 j tr(E)1 j 2tr(I ).
The supertrace of a supermatrix

M5S A B

C DD
was defined by strM5tr(A)1(21)12]Mtr(D).

The following theorem can be easily proved:
Theorem 3: (a) If M and N are of the same grade,
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trZ3~M1N!5trZ3~M !1trZ3~N!.

(b) trZ3(lM )5ltrZ3(M ) and trZ3(Ml)5trZ3(M )l.
~c! • If M and N are of grade 0 thentrZ3(MN)5trZ3(NM).

• If M is of grade 1 and N of grade 2, thentrZ3(MN)5 j trZ3(NM).
Corollary 4: • If M,N and P are of grade 1 thentrZ3(MNP)5 j trZ3(NPM).
• If M,N and P are of grade 2 thentrZ3(MNP)5 j 2trZ3(NPM).
The proofs are straightforward, and the only nontrivial observation concerns the fact that

tr(MN)5tr(NM) is not always true if theM andN’s coefficients are not numbers.
Finally, we can define the generalization of the superdeterminant this way.
Definition 5,Z3-determinant: If M is agrade 0invertibleZ3-matrix, then itsZ3-determinantis

detZ3~M !5det~A2CI21G2~B2CI21H !~E2FI21H !21~D2FI21G!!

3~det~E2FI21H !! j
2
~detI ! j .

Theorem 6: If M and N are two invertible grade 0Z3-matrices,

detZ3~MN!5~detZ3M !~detZ3N!.

Proof: Any grade 0 invertibleZ3-matrix can be decomposed into the product of three
Z3-matrices:M5M1M0M2 with

M15S 1 ~B2CI21H !~E2FI21H !21 CI21

0 1 FI21

0 0 1
D ,

M05S A2CI21G2~B2CI21H !~E2FI21H !21~D2FI21G! 0 0

0 E2FI21H 0

0 0 I
D ,

~1!

M25S 1 0 0

~D2FI21G!~E2FI21H !21 1 0

I21G I21H 1
D .

It is very easy to show that the theorem is true for anyM if N is block-diagonal or inferior-block-
triangular with the identity in the diagonal blocks. It is also easy to generalize to an arbitraryN in
the case whereM is block-diagonal or superior-block-triangular with the identity in the diagonal
blocks. Therefore, we have

detZ3~MN!5detZ3~M1!detZ3~M0!detZ3~M2N1!detZ3~N0!detZ3~N2!

5detZ3~M !detZ3~M2N1!detZ3~N!,

and the theorem remains to be proved only forM of the form
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S 1 0 0

A 1 0

B C 1
D

andN of the form

S 1 D E

0 1 F

0 0 1
D .

One can note that

S 1 0 B

0 1 C

0 0 1
D S 1 0 0

0 1 C8

0 0 1
D 5S 1 0 B

0 1 C1C8

0 0 1
D ,

S 1 A B

0 1 C

0 0 1
D S 1 A8 0

0 1 0

0 0 1
D 5S 1 A1A8 B

0 1 C

0 0 1
D ,

and

S 1 A B

0 1 C

0 0 1
D S 1 0 B8

0 1 0

0 0 1
D 5S 1 A B1B8

0 1 C

0 0 1
D ,

so that we can construct the matrixN1 , element by element, starting from the matrix that contains
only its diagonal blocks, using left multiplication by a series of matrices that contain only one
non-zero element out of the diagonal blocks.

We show the theorem forM of the form ofM2 andN containing only one element out of the
diagonal blocks, using the fact that if]X Þ 0, then (11X)a511aX1 @a(a21)/2#X2. If
N15N1

0N1
1 we can decomposeM2N1

0 in the form 1. Then,

detZ3~M2N1!5detZ3~~M2N1
0!1~M2N1

0!0~M2N1
0!2 .N1

1!

5detZ3„~M2N1
0!0…detZ3„~M2N1

0!2 .N1
1
…5detZ3„~M2N1

0!0…,

if N1
1 contains only one element out of its diagonal blocks. But detZ3

((M2N1
0)0)5detZ3(M2N1

0).
We can perform the same operation, until only the product ofM2 and the matrix formed with the
diagonal blocks ofN1 ~which are the identity! remains. Thus detZ3(M2N1)51. j

Theorem 7: If M is a grade 0 invertibleZ3-matrix, itsZ3-determinant can also be expressed
in the following five alternative ways:

detZ3~M !5det~A2CI21G!

3~det„E2FI21H2~D2FI21G!~A2CI21G!21~B2CI21H !…! j
2
~det I ! j ,
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A q-superdimension formula for irreps of type I quantum
superalgebras

J. R. Links and M. D. Gould
Department of Mathematics, University of Queensland, Queensland, 4072, Australia

~Received 17 July 1995; accepted for publication 8 August 1995!

We derive a closed formula for theq-superdimensions of a wide class of irreps,
including all unitary irreps, of the type I quantum superalgebras. ©1996 Ameri-
can Institute of Physics.@S0022-2488~95!03512-7#

I. INTRODUCTION

It is well known that quantum algebras1 play an extensive role in the study of integrable
systems derived through the quantum inverse scattering method. Not only do these algebras appear
as underlying symmetries of these systems, but it is their quasitriangular structure which in
essence allows the algebraic Bethe ansatz to be applied to diagonalize the Hamiltonians of these
models. Likewise, theZ2-graded analogues of quantum algebras, known as quantum
superalgebras,2–4 play a similar role in integrable systems with supersymmetry. Recently, these
models have attracted considerable attention since within this class of models are a number which
describe correlated electron systems. These include the supersymmetrict2 j model,5 the super-
symmetric extended Hubbard model,6 and the Hubbard model with correlated hopping and elec-
tron pair hopping.7

In the investigation of such models it is desirable to have a well-developed representation
theory of the underlying symmetry algebras. The representation theory of quantum superalgebras
is more complicated than that of quantum algebras. Here we will restrict our attention to the type
I quantum superalgebras consisting ofUq„gl~mun!… andUq„osp~2u2n!… where several develop-
ments have been made. A description of finite-dimensional irreducible representations~irreps! is
understood in terms of the induced module construction8 generalizing that of Kac,9 whereby the
irreps fall into two distinct classes, typical and atypical. This construction also provides a means
to naturally induce bilinear forms. Symmetry relations satisfied by Clebsch-Gordan coefficients
defined with respect to these forms have been obtained in Ref. 10 and these results have been used
to determine the eigenvalues of families of Casimir invariants in any irrep~see also Ref. 11!.

The most important aspect of the type I quantum superalgebras is that they are the only ones
which admit finite-dimensional unitary irreps. These are the representations which are necessary to
use in describing physical models where unitarity is a requirement. For example, the correlated
electron models5–7mentioned above are all based on unitary irreps. A classification of the unitary
irreps is known12,13which was achieved through the use of the induced bilinear forms.

In this article, we will be concerned with developing another aspect of the representation
theory of the type I quantum superalgebras; viz. the determination of theq-superdimensions of
irreps which we will achieve using the results of Ref. 10. Previously, a general formula for
q-superdimensions has been lacking~with the exception of the typical irreps which all have zero
q-superdimension! since all the classical techniques used for non-graded algebras~e.g., see Ref.
14! fail to extend to the superalgebra case. Our results apply to a large number of irreps, including
all unitary irreps~which include all covariant and contravariant tensor irreps! as we will show, and
consequently will have applications to systems with physical significance. The surprising aspect of
our formula is that it shows that theq-superdimension is nonzero only when the irrep has maximal
atypicality. Using the results of Refs. 12 and 13 enables us to classify all the unitary irreps which
have this property.

Theq-superdimension formula we derive is new even in the classical~q→1! limit and agrees
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with some particular studies using other methods such as super Young diagrams.15 The formula is
presented as a natural generalization of the Weyl dimension formula for irreps of Lie algebras.
These results have an important role in the computation of link invariants as discussed in Ref. 16.

II. PRELIMINARIES

Let g denote a basic classical Lie superalgebra of rankl11 with the usual generators
$ei , f i ,hi% i50

l . Let $a i% i50
l be the distinguished set of simple roots ofg in the sense of Kac9 and

let ~,! be a fixed invariant bilinear form onH* , the dual of the Cartan subalgebraH of g. We also
let F15F0

1øF1
1 denote the full set of roots withF0

1 ~resp.F1
1! the subset of even~resp. odd!

roots. Throughout, we adopt the convention thata0 denotes the unique odd simple root. Associated
with g one can define the quantum superalgebraUq(g) ~q is assumed not a root of unity! which
has the structure of aZ2-graded quasi-triangular Hopf algebra.

3 We will not give the full defining
relations ofUq(g) here and refer to Ref. 4 for details. We note, however, thatUq(g) has a
co-product structure given by

D~q6~1/2!hi !5q6~1/2!hi ^q6~1/2!hi, D~x!5x^q2~1/2!hi1q~1/2!hi ^x, x5ei , f i ,

which is extended to an algebra homomorphism to all ofUq(g) in the usual way. It is important
to point out that the multiplication rule for the tensor product is defined for homogeneous elements
a,b,c,dPUq(g) by

~a^b!~c^d!5~21!@b#@c#~ac^bd! ~1!

and extended linearly to all ofUq(g)^Uq(g). Here [a]PZ2 denotes the degree of the homoge-
neous elementaPUq(g), which is defined for the elementary generators by

@hi #50, @ei #5@ f i #[@ i #5d i0 , ;0< i< l ,

and extended to all homogeneous elements ofUq(g) through

@ab#5@a#1@b#~mod 2!, ;a,bPUq~g!.

The twist mapT:Uq(g)^Uq(g)→Uq(g)^Uq(g) is defined by

T~a^b!5~21!@a#@b#b^a ~2!

for all homogeneousa,bPUq(g): we set D̄5T.D. Then there exists a canonical element
RPUq(g)^Uq(g) called the universalR-matrix which is even and invertible and satisfies the
following relations:3

RD~a!5D̄~a!R, ;aPUq~g!, ~3!

~D ^ I !R5R13R23, ~ I ^ D!R5R13R12, ~4!

where we have adopted the conventional notation. From Eqs.~3! and ~4! it follows that the
universalR-matrix satisfies the graded Yang–Baxter equation

R12R13R235R23R13R12. ~5!

We emphasize that multiplication of the tensor products is to obey Eq.~1!.
Let rPH* denote the graded half-sum of positive roots ofg and lethr denote the unique

element ofH defined bya i(hr)5(r,a i), ;aiPH* . We recall from Ref. 17 the following result.
Theorem 1: Let p be a fixed, but arbitrary, finite-dimensional representation ofUq(g) with

representation spaceV and set
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Dp5~p ^ I !D.

If wPUq(g)^EndV satisfies

Dp~a!w5wDp~a!, ;aPUq~g!, ~6!

then

stq~w!5~str^ I !„p~q2hr! ^ I …w

belongs to the centerZ of Uq(g), where str denotes the supertrace. h

Theorem 1 enables a family of Casimir invariants to be constructed forUq(g) utilizing the
universalR-matrix. DefiningRT5TR, it is clear from~3! that

RTRD~a!5D~a!RTR, ;aPUq~g!.

Setting

A5~q2q21!21~p ^ I !~ I ^ I2RTR!, ~7!

thenAl ,lPZ1, satisfies~6!. We thus obtain the family of Casimir invariants

Cl5stq~A
l !.

The preceding discussion applies for any quantum superalgebra, not only those of type I. Let
pm denote aUq(g) irrep with highest weightmPD1 whereD1,H* is the set of dominant
weights. For type I quantum superalgebras,mPD1 if and only if8,9

^m,a i&5
2~m,a i !

~a i ,a i !
PZ1, 1< i< l ,

while ~m,a0! can take arbitrary complex values. When acting inpm the invariantsCl act as scalar
multiples of the identity operator~Schur’s lemma!, which we denote byxm(Cl). In Ref. 10 a
general formula for these eigenvalues is presented. We say thatpm admits aninfinitesimal char-
acterxm which determines an algebra homomorphism

xm :Z→C, z→xm~z!.

Recall that for type I quantum superalgebras we say thatmPH* is typical if 8,9

~m1r,a!Þ0, ;aPF1
1 ,

andatypicalotherwise. It is known9 that for typicalmPD1, the irreppm is uniquely characterized
by the infinitesimal characterxm . This is not the case for atypical irreps.

Finally, in view of Theorem 1, it is natural to define theq-superdimension of an irreppm by

sdq@m#5str pm~q2hr!,

which reduces to the usual superdimension whenq→1. Below we will present a method of
determining this quantity for a large class of irreps.
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III. A q -SUPERDIMENSION FORMULA

Throughout, we letV~m! denote theUq(g) module which affords the representationpm . Let
Uq(g0),Uq(g) be the ~nongraded! quantum algebra generated by$ei , f i ,hi% i51

l . EachUq(g)
moduleV~m! reduces completely intoUq(g0) modules; i.e.,

V~m!5 %
n
mnV0~n!, ~8!

wheremn denotes the multiplicity ofV0~n!. Each of the weightsn has a degree@n#PZ2. We adopt
the convention that@m#50. Let P1~m! denote theUq(g0) highest weights occurring in the de-
composition~8!. For later use we define the following.

Definition 1.We say thatmPD1 is quasi-typicalif

xnÞxm , ;nÞm, nPP1~m!;

i.e., xm occurs once in the set$xnunPP1~m!%.
Note that the class of quasi-typical weights includes the typical weights inD1.
Let dPH* be orthogonal to all even elements ofH* and satisfy~d,a0!51. Clearly~d,a!51,

;aPF1
1 . ChoosingbPC, ubu!1, such thatbd,n1bd are all typical, then~8! implies theUq(g)

tensor product decomposition10

V~m! ^V~bd!5 %
n
mnV~n1bd!. ~9!

Let P@n1bd# denote orthogonal projections onto the isotypic componentsV(n1bd) [ mnV(n
1 bd). Since the weightsn1bd are all typical, we have, as noted previously,

xn1bdÞxm1bd , ;nÞm, nPP1~m!.

This implies that there existszPZ such that the central projection

P@m1bd#5 )
nÞm

S D~z!2xn1bd~z!

xm1bd~z!2xn1bd~z! D ~10!

is well defined. Using Theorem 1 we may construct the Casimir invariant

gb5stq~P@m1bd#!.

From Ref. 10 we have the following result.
Proposition 1:For anyV(n),V(m) ^ V(L) such thatn andL are both typical and dominant,

then

xL„stq~P@n#!…5~21!@n#mn )
aPF0

1

@~n1r,a!#q
@~L1r,a!#q

)
aPF1

1

@~L1r,a!#q
@~n1r,a!#q

,

where

@x#q5
qx2q2x

q2q21 .

h

Applying Proposition 1 to the invariantgb we find
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xbd~gb!5 )
aPF0

1

@~m1bd1r,a!#q
@~bd1r,a!#q

)
aPF1

1

@~bd1r,a!#q
@~m1bd1r,a!#q

. ~11!

Taking the limitb→0, Eq. ~9! becomes

V~m! ^K~0!5 %
n
mnK~n!,

whereK~n! denotes the Kac module8,9 of highest weightn. Note thatK(n)5V(n) if n is typical.
In the case of atypicaln, K~n! is not irreducible but still admits the infinitesimal characterxn .
Providedm is quasi-typical, the central projection

P@m#5 lim
b→0

P@m1b#

is well defined. Observe thatP@m# acts as the identity operator onV(m)^V(0) so

x0~gb!ub505sdq@m#.

On the other hand,x0~gb!ub50 is given by~11! in the limit b→0 sinceK~0! admits the infinitesimal
characterx0. Define

F1
1~m!5$aPF1

1u~m1r,a!Þ0%

and call am5uF1
1u2uF1

1~m!u the atypicality indexof m. We remark that the maximal possible
atypicality index is given bya0 corresponding to the trivial one dimensional irrep. We then have
the following.

Proposition 2:Supposem is quasi-typical. Then

sdq@m#5da0am )
aPF0

1

@~m1r,a!#q
@~r,a!#q

PaPF
1
1~0!@~r,a!#q

PaPF
1
1~m!@~m1r,a!#q

.

Proof:We may write~11! in the form

xbd~gb!5@b#q
a02am )

aPF0
1

@~m1bd1r,a!#q
@~bd1r,a!#q

PaPF
1
1~0!@~bd1r,a!#q

PaPF
1
1~m!@~m1bd1r,a!#q

.

Taking the limitb→0, it is clear that we have a nonzero result if and only ifam5a0 sincea0 is the
maximal atypicality index as indicated above. The proposition then follows. h

The above shows that theq-superdimension of a quasi-typical irreppm vanishes identically
unlessmPD1 has maximal atypicality index.

IV. UNITARY IRREPS

Next we will show that Proposition 2 applies to all unitary irreps. The two types of unitary
irreps have been classified in Refs. 12 and 13 and we refer to those articles for details. We have the
following result from Ref. 18.

Proposition 3:Let CL denote the universal second-order Casimir invariant ofg. Let V~m! be
a unitary module withg0 decomposition~8!.

~i! If pm is a type I unitary irrep, then

xm~CL!2xn~CL!5~m2n,m1n12r!>0
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with equality if and only ifn5m.
~ii ! If pm is a type II unitary irrep, then

xm~CL!2xn~CL!5~m2n,m1n12r!<0

with equality if and only ifn5m. h

Proposition 3 shows thatm is quasi-typical for all unitary irreps of the Lie superalgebrag.
This must also be true upon deformation into an irrep ofUq(g), which is also unitary, so we can
apply Proposition 2 to give the following.

Proposition 4:Theq-superdimension of a finite dimensional unitary irreppm is given by

sdq@m#5da0am )
aPF0

1

@~m1r,a!#q
@~r,a!#q

PaPF
1
1~0!@~r,a!#q

PaPF
1
1~m!@~m1r,a!#q

.

h

Using the classification scheme of Ref. 12, we can characterize all of the unitary irreps of
Uq„gl(mun)… with maximal atypicality indexa05min(m,n).

Proposition 5: For Uq„gl(mun)… choose $« i% i51
m1n as a basis for H* satisfying

(« i ,« j )5(21)[ i ]d i j where [i ]50 for i51,2,...,m and [i ]51 for i5m11,...,m1n. In this
basis, any weightmPH* is expressed asm5( im i« i[(m1 ,...,mmumm11,...,mm1n).

~i! Supposem>n. The irreppm is type I unitary witham5n if and only if

m5~m1 ,...,mm2n ,0̇nu0̇n!, ~12!

and is type II unitary witham5n if and only if

m5~ 0̇k ,mk11 ,...,mmumm11 ,...,mm1n!, k>n, ~13!

where

mm1 j5 i j1 j2m21, j51,...,n, ~14!

and

i 15k,
~15!

i j5n112 j ,...,i j2121, j52,...,n.

~ii ! Supposem<n. The irreppm is type I unitary witham5m if and only if

m5~m1 ,...,mmumm11 ,...,mm1k21 ,0̇n2k11!, k<n2m11,

where

m i5 i1 j i2m21, i51,...,m,

and

j m5k,

j i5 j i1111,...,n112 i , i51,...,m21.

The irreppm is type II unitary witham5m if and only if
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m5~ 0̇mu0̇m ,m2m11 ,...,mm1n!.

Proof: First we will consider the case whenm>n andpL is type I unitary. From Ref. 12 we
have thatm must satisfy

~m1r,«m2«m1k!5~m,«k2«m1n!50 ~16!

for some odd indexm11<m1k<m1n in order to be type I unitary. Form to have maximal
atypicality requires that for each 1< j<n, there exists 1<i j<m such that

~m1r,« i j2«m1 j !50. ~17!

Note that the indexi j is uniquely determined since

~m1r,« i2«m1 j !.~m1r,« l2«m1 j !, 1< i, l<m.

Now

~m1r,« i j2«m1 j !5~m1r,«m2«m1k!1~m1r,« i j2«m!1~m1r,«m1k2«m1 j !

so that

~m1r,« i j2«m!52~m1r,«m1k2«m1 j !.

Lexicality of m requires thatk< j , ;1< j<n, implying thatk51. In view of ~16! we can choose
w.l.o.g.

mm5mm115••••5mm1n50.

Now from ~17! we have

m i5 i j1 j2m21

and again the lexicality ofm demands that

m i>m l>0, ;1< i, l,m

because of the choicemm50. There is only one solution to this system of equations which is given
by

i j5m112 j ,

and this in turn givesmm112 j50, j51,...,n. All other mi , i<m2n, are arbitrary so we obtain
~12!.

Next we will consider the case whenpm is type II unitary. From Ref. 12 we have thatm must
satisfy

~m1r,«k2«m11!5~m,«12«k!50, ~18!

for some even index 1<k<m. From Eq.~18! we can choose w.l.o.g.

m15m25•••5mk50. ~19!

Now for m to have maximal atypicality requires that for each 1< j<n there is an even index
1< i j<m such that
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~m1r,« i j2«m1 j !50. ~20!

Equation~20! also implies that

~m1r,« i j2« i l !52~m1r,«m1 l2«m1 j !

from which we deducei j, i l wheneverl, j . Clearly i 15k so we conclude thatk>n. For con-
sistency, the remaining values ofi j must be restricted to the range of values given by~15!.
Equation~20! may be written as

m i j
1mm1 j5 i j1 j2m21.

However, we see from~19! thatm i j
5 0 ;1< j<n, which then gives us~14!. The remainingmi ,

k11< i<m, may take arbitrary values. The case form<n may be treated similarly and this
completes the proof.

Note:An interesting example is the case ofUq„gl(mum)…. The above shows that apart from

the exception of the trivial irrep withm5(0̇mu0̇m), all unitary irreps have zeroq-superdimension.
For the case ofUq„osp~2u2n!…, all irreps have atypicality index of either 0 or 1. Thus the

unitary irreps with maximal atypicality are simply the atypical unitary irreps. From Ref. 13 we
have the following classification.

Proposition 6: For Uq„osp~2u2n!…, choose$« i% i50
n as a basis forH* satisfying (« i ,« j )

5(21)d i0d i j . The irreppm is type I unitary witham51 if and only if

~m,«02«1!50.

The irreppm is type II unitary witham51 if and only if there exists an indexjP$1,...,n% such that

~m1r,«01« j !5~m,«12« j !50;

or m50.

V. CONCLUSION

We have derived a formula for theq-superdimensions of a class of irreps, referred to as
quasi-typical, for the type I quantum superalgebras. The quasi-typical irreps are a natural gener-
alization of typical irreps and include the important class of all unitary irreps. In future work we
aim to characterize and investigate the properties of the quasi-typical irreps.

Our q-superdimension formula is new even in the classical~q→1! limit. It has long been
known that all the typical irreps have zeroq-superdimension.9,17Our formula gives the surprising
result that the quasi-typical irreps with maximal atypicality index have nonzeroq-superdimension,
while all other quasi-typical irreps haveq-superdimension equal to zero. For the unitary irreps, we
have given a classification of those with maximal atypicality index in terms of the highest weight
labels. An example of an application of these results is in the computation of link invariants as
discussed in Ref. 16.
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The ‘‘standard group’’ of elementary particle theory islocally isomorphic to SU~3!
3SU~2!3U~1!. Theglobalstructure is completely fixed in unified theories, often in
a subtle way; and such theories can be physically unacceptable if they predict the
‘‘wrong’’ global structure for the standard group. A particularly striking example of
this is provided by Calabi–Yau compactifications of string theory with thelinear
~rather than the more conventional spinor! connection interpreted as anE8 connec-
tion. Remarkably, these more unconventional compactifications breakE8 to a group
which is locally isomorphic to the standard group~instead ofE6!; but they are
physically unacceptable, and we argue that the basic reason for this is their failure
to produce the correct global structure. ©1996 American Institute of Physics.
@S0022-2488~96!03701-9#

I. INTRODUCTION

One of the most remarkable results of work on Kaluza–Klein theories1 was the discovery that
higher-dimensional theories can yield chiral fermions only ifK, the internal manifold, admits a
nontrivial vacuum gauge potential. The geometry ofK itself supplies, through parallel transport,
candidates for this vacuum gauge potential; if these are used for this purpose, one says2 that the
‘‘spin connection is embedded in the gauge group.’’

However, a closer analysis of this procedure reveals a basic ambiguity. Every Riemannian
spin manifold3 carries at leasttwo distinct principal bundles defined by its geometry: a bundle of
oriented orthonormal frames, SO(K) ~with structural group SO(n),n5dimK!, and at least one
bundle of spinor frames spin(K) ~with structural group spin(n)!. The familiar Levi–Civitácon-
nection onK may be regarded as a one-formvL on SO(K), but it also defines a ‘‘Dirac connec-
tion’’ vD on spin(K). ~This, in turn, defines the spinor covariant derivative.! The question now is
this: when, as in string theory, we use the geometry ofK to define a vacuum gauge potential, how
are we to decide whether to usevL or vD?

The distinction betweenvL andvD can most usefully be expressed as follows. Suppose that
K is a Calabi–Yau manifold. Then, as is well-known, itslinear holonomy group is a subgroup of
SO~6! which happens to be isomorphic to SU~3!. Notice that thelinear holonomy group~i.e., the
holonomy group defined by the Levi–Civita´ connectionvL! is necessarily a subgroup of SO~6!.
On the other hand, the Dirac connectionvD , like every connection, also has a holonomy group;
but this group is necessarily a subgroup of spin~6!, notSO~6!. In fact, it can be shown that under
certain reasonable technical conditions, the holonomy group ofvD is also abstractly isomorphic to
SU~3!. Nevertheless,vL andvD are distinct objects, and this distinction is expressed through the
fact that one holonomy group is a subgroup of SO~6!, while the other is a subgroup of spin~6!.

The usual procedure2 in string theory is to embed SU~3! in the exceptional groupE8 through
SU~3!•E6. ~Here and henceforth, the dot denotes a direct product modulo some finite
subgroup—in this case, the cyclic group of order three,Z3.! It can be shown that this is equivalent
to an embedding through spin~6!•spin~10! ~which is a subgroup of spin~16!/Z2, a maximal con-
nected subgroup ofE8!. Thus we see that the standard procedure in string theory is to use the
Dirac connectionvD to define the vacuumE8 gauge potential onK. But why should we do
this—why not use the~more fundamental! Levi–Civitá connectionvL? In this article, we shall
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investigate the consequences of doing so: i.e., we embed SU~3! in E8 through SO~6! instead of
spin~6!. The results are rather striking. Instead ofE6, we find thatE8 is broken directly to a group
which is locally isomorphic to SU~3!3SU~2!3U~1!. However, the global structure~including
discrete symmetries! is unsatisfactory, and so these unconventional compactifications must be
rejected.~We stress that this result has no bearing on the conventional Calabi–Yau compactifica-
tions which do indeed breakE8 to E6; we merely wish to clarify the importance of making the
correct choice betweenvD andvL .!

II. REMARKS ON THE GLOBAL STRUCTURE OF THE STANDARD GROUP

The gauge group of the standard model is usually given as SU~3!3SU~2!3U~1!. However, it
is often argued4,5 that the correct form~the ‘‘true group’’! is @SU~3!3SU~2!#•U~1!, where the dot
indicates that a finite subgroup has been factored out. This finite subgroup isZ33Z2~5Z6!. The
argument is essentially as follows. IfG is a Lie group andF is a finite normal subgroup, then
every representation ofG/F is likewise a representation ofG; but the converse is not true. Thus
in passing from SU~3!3SU~2!3U~1! to @SU~3!3SU~2!#•U~1!, some representations are ‘‘lost.’’
However, it so happens that these representations invariably correspond to particles which appar-
ently do not exist. For example, all charged quarks are assigned to representations of SU~3!•U~1!q

~where U~1!q is the electromagnetic subgroup of SU~2!•U~1!!; the representations of
SU~3!3U~1!q that fail to ‘‘factor through’’ are never used.5

The reader may be inclined to dismiss this as hair splitting—after all, the fact is that all
representations of SU~3!•U~1!q are representations of SU~3!3U~1!q—but the question is of genu-
ine interest if discrete symmetries are included. Let us write SU~3!3U~1! as SU~3!3SO~2!. Then
SU~3!•SO~2! is obtained by factoring out theZ3 generated by the pair (u,v), whereu andv are
fixed central elements of order three in SU~3! and SO~2!, respectively. ThisZ3 is of course normal
in SU~3!3SO~2!. But now consider thedisconnectedgroup SU~3!3O~2!. The reader can readily
verify that Z3 is not a normal subgroup of this group—notice that, unlike SO~2!, O~2! is not
Abelian. HenceZ3 cannot be factored out, and SU~3!3O~2! has no representations which restrict
to representations of SU~3!•SO~2!. In this case, we can definitely assert that SU~3!3O~2! must be
rejected on physical grounds, despite the fact that itslocal structure is identical to that of SU~3!
3U~1! and SU~3!•U~1!. In short, global properties can have unacceptable consequences even if
the local structure is correct.

III. CALABI–YAU COMPACTIFICATIONS BASED ON LINEAR HOLONOMY

In this section we investigate unconventional Calabi–Yau compactifications with SU~3! em-
bedded inE8 through SO~6!, instead of the usual spin~6! subgroup.

As we shall see, the final gauge group is necessarily disconnected. We can turn this to good
account by gauging the CP operator, as advocated in Ref. 6. In string theories, CP always has a
natural geometric interpretation in terms of antiholomorphic isometries ofK. Let b be such an
isometry, withb251, and leta be the parity isometry ofM4: thenCP is related2 to ab. AsM4 is
flat, the bundle SO1(M43K) consisting of time and space oriented orthonormal frames over
M43K is reducible to an SU~3! bundleP. But while the natural lift7 of ab, denotedãb̃, is an
automorphism of SO1(M43K) ~becausea andb are orientation-reversing onM4 andK sepa-
rately, so thatab is orientation-preserving!, it does not restrict to an automorphism ofP. There-
fore we adjoin toP all those frames in SO1(M43K) obtained by reversing directions according
to the action of the matrix

s5diag~1,21,21,21,1,1,1,21,21,21!.
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Thens is an element of SO1~1,9!; it generates a cyclic subgroup of order 2.~The first four entries
act on frames overM4; the last six act on frames overK.! The resulting bundleP* overM43K
is an SU~3!’Z2 bundle, where the product is semidirect andZ2 acts on SU~3! by complex
conjugation.~Note that SU~3! is embedded in SO1~1,9! through

A1 iB→diagS I 4 ,SA 2B

B A D D PSO1~1,9!,

so that conjugation bys does indeed mapA1 iB to A2 iB.! Clearly ãb̃ does restrict to an
automorphism ofP* . Our objective is to extend the latter to anE8 bundle, and so we must embed
SU~3!’Z2 in E8.

As explained above, we wish to embed SU~3! in E8 through SO~6! ~just as SU~3! is embedded
in SO1~1,9! through SO~6!!. There is a very natural way to do this, as follows.E8 contains
SU~2!•E7 as a maximal connected subgroup, andE7 likewise contains SU~3!•SU~6!. ThusE8
contains@SU~2!3SU~3!#•SU~6!, the dot as usual meaning that the respective centers~both iso-
morphic toZ23Z35Z6! are identified inE8, so that the product is not direct in the usual sense. As
SU~6! contains SO~6! in an obvious way, we have our embedding of SO~6! in E8. In fact, we can
even embed O~6! in E8 in much the same way. To see this, let (a,b,c) denote any element of
@SU~2!3SU~3!#•SU~6!. ~Because of the identifications mentioned earlier, all triples of the form
(x3I 2 ,x

2I 3 ,xI6), wherex is any sixth root of unity, are identified in this group.! Now letS be the
element of this group given by~recall the definition ofs!

S5S z3S 1 0

0 21D , z2S 21 0 0

0 21 0

0 0 21
D , z•diag~1,1,1,21,21,21!D ,

wherez is a primitive 12th root of unity. ThenS251, and, if SO~6! is the real subgroup of SU~6!,
it is clear that

O~6!5SO~6!øS•SO~6!

is indeed isomorphic to O~6!. Thus we have O~6! as a subgroup of@SU~2!3SU~3!#•SU~6!, and
hence as a subgroup ofE8. This in turn yields the desired embedding of SU~3!’Z2 in E8.

The SU~3!’Z2 bundle P* may now be extended to anE8 bundle,8 denotedE, and the
Levi–Civitá connection onP* induces a connectionv on E. In this way, we equate the gauge
connection to the linear connection, and at the same time associate an element ofE8 with the
action ofab onM43K ~i.e., we ‘‘gauge’’ theCP operator.6 See below for the precise construc-
tion of theE8 element associated withab.!

The final gauge symmetry group of this theory is the group of all those automorphisms ofE
which cover the cyclic group of order two generated byab, and which preservev. That is, we
need to study the group of all mapsF:E→E which commute with the action ofE8 on E, which
satisfyF*v5v, and which induce eitherab or the identity map on the base manifold. This group
is naturally isomorphic to a subgroup ofE8, as follows. First, the subgroupVv which covers the
identity ~i.e., the group ofvertical automorphisms preservingv! is isomorphic9 to the centralizer
of the holonomy group inE8. This centralizer, which we also denote byVv , depends on the
embedding of SU~3! in E8: when the embedding is through spin~6!, it is isomorphic toE6, but not
when the embedding is through SO~6!. Second, the automorphisms coveringab correspond to the
E8 elements of the formS•Vv , whereS was defined above. Hence the full symmetry group is

VvøS•Vv ,
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which has the structureVv’Z2. ~Note that as conjugation byS is an automorphism of SU~3!, it is
also an automorphism of the centralizer of SU~3! in any group containingS and SU~3!.! With the
spin~6! embedding, this means thatE8 is broken to a subgroup of the formE6’Z2, as one expects
if CP is gauged. To find the corresponding subgroup in the SO~6! case, we need to compute the
centralizer of SU~3! with that embedding.

As SU~6! is embedded inE8 through@SU~2!3SU~3!#•SU~6!, it is clear that the centralizer of
SO~6! must contain SU~2!3SU~3!. In fact, thefull centralizer is the disconnected group10

@SU~2!3SU~3!#’Z2 ,

where the product is semidirect, and whereZ2 is generated by an elementR0 contained inE8 ~but
not in @SU~2!3SU~3!#•SU~6!!, such thatR0

251 and conjugation byR0 induces complex conjuga-
tion on SU~2!, SU~3!, and SU~6!. In fact we shall find it more convenient to describe
@SU~2!3SU~3!#’Z2 in the following slightly different way. LetQ be the element of@SU~2!
3SU~3!#•SU~6! defined by

Q5S z3S 1 0

0 21D ,I 3 ,I 6D ,
wherez is as in the definition ofS. Defining

R5QR0 ,

we see thatR251, and so we may regardR as the generator ofZ2 in @SU~2!3SU~3!#’Z2. Note
thatR commutes with SO~6!, and that

SR5SQR05QSR05QR0S̄5RS̄,

where

S̄5S z̄3S 1 0

0 21D , z̄2S 21 0 0

0 21 0

0 0 21
D , z̄•diag~1,1,1,21,21,21!D .

But the latter is just the product of~z̄6I 2 ,z̄
3I 3 ,z̄

2I 6) with S; and sincez̄2 is a sixth root of unity,
we find that S̄5S. Thus in factSR5RS. In short, the centralizer of SO~6! in E8 is @SU~2!
3SU~3!#’ Z2, where the generator ofZ2 can be chosen to commute withS.

If the holonomy group ofK were isomorphic to SO~6!, then, we would obtain a gauge group
with identity component SU~2!3SU~3!, which is of course too small to be useful. But within
SO~6!, SU~3! commutes with all matrices of the form

F I 3 cosu 2I 3 sin u

I 3 sin u I 3 cosu G ,
and so the gauge group acquiresan additional factor, isomorphic to U~1!, if the holonomy group
is SU~3!. Note that this U~1! contains theZ2 in the center of SU~6! ~generated by2I 6! but not the
Z3, since that latter is not generated by a real matrix. Thus U~1! intersects the SU~2! factor in
@SU~2!3SU~3!#’Z2 nontrivially, but not the SU~3! factor. In our earlier agreed notation, the
identity component of the final gauge group is

@U~1!•SU~2!#3SU~3!.
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Thus indeed the linear connectionvL breaksE8 differently:instead of theE6 produced by the
Dirac connection, we obtain a group which is locally indistinguishable from the standard group.
This result is all the more striking when we recall that, even with the aid of the ‘‘Hosotani
mechanism,’’ the conventional approach2 cannot produce a final gauge group of rank lower than
five.

These alternative string theories must, however, be rejected. One can show this in various
ways; but the most fundamental defect of these theories is that they do not produce an acceptable
global structure for the gauge group.

The group@U~1!•SU~2!#3SU~3! is not globally isomorphic to the ‘‘true group’’ of Ref. 4; the
latter is obtained by identifying the center of SU~3! with the Z3 subgroup of U~1!. That is, our
gauge group is a covering group of the true group. But this in itself is not a fatal objection: it
becomes so only when we consider the structure of the full, disconnected gauge group. Setting
G05@U~1!•SU~2!#3SU~3!, we have found that the full gauge group, includingCP, is theE8
subgroup

G5G0øS•G0øR•G0øRS•G0 .

Here,S andR satisfyS25R251, RS5SR; conjugation byS acts as conjugation by

S i 0

0 2 i D
on SU~2!, as complex conjugation on U~1! ~because

S I 3 0

0 2I 3
D S I 3 cosu 2I 3 sin u

I 3 sin u I 3 cosu D S I 3 0

0 2I 3
D 5S I 3 cosu I 3 sin u

2I 3 sin u I 3 cosu D ,
which is complex conjugation for U~1! as a subgroup of SO~6!!, and trivially on SU~3!. Conju-
gation byR acts as complex conjugation followed by

AdS i 0

0 2 i D
on SU~2!, trivially on U~1!, and as complex conjugation on SU~3!. Conjugation byRS therefore
acts simply as complex conjugation on all three factors, and so it isRS that corresponds to the
conventionalCP operator. Thus finallyE8 is broken to a subgroup isomorphic to a semidirect
product of@U~1!•SU~2!#3SU~3! with Z23Z2.

Now the subgroup which must be factored out if the identity component is to coincide with
the true group4 ~i.e., @SU~3!3SU~2!3U~1!#/Z6!, is the diagonal subgroup of the central subgroup
Z33Z3,U~1!3SU~3!. But it is clear that, since Ad(R) and Ad(S) act differently on the twoZ3
factors, the diagonal subgroup isnot normal in any group containing eitherR or S. It is normal in
G05@U~1!•SU~2!#3SU~3!, and also inG0øRS•G0 , but not in the full group with four connected
components. Consequently the latter does not possess representations that can accommodate the
known elementary particles, and the theory must therefore be rejected.

IV. CONCLUSION

We argue that there are two ways of interpreting, in string theory, the construction of a
nontrivial vacuum gauge potential. The usual procedure is based on spinor parallel transport. In
this article we have investigated the alternative, using linear~vector! parallel transport. Despite
being initially attractive, these unconventional compactifications must be rejected; and this con-
clusion probably cannot be evaded, since it is obtained by very general~topological! arguments.
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We prove the embedding ofISOq(3)�ISUAq
ex(2) andISOq(2,1)�ISLq

ex(2,R) as

* -algebras and give a Hilbert space representation ofISUAq
ex(2). © 1996 American

Institute of Physics.@S0022-2488~96!00301-9#

I. INTRODUCTION

The inhomogenized extensions of a large list of standard quantized Lie groups1 have been
given in Refs. 2–7. They form quantized versions of the classical inhomogeneous groups. For a
real deformation parameterq the representation theory of the homogeneous parts~e.g., corepre-
sentations of the function algebra! is basically the same as for the classical groups, whereas forq
root of unity it is completely different. However, the representation theory of the noncommutative
function algebra differs for anyqÞ1 from the classical situation. Its relevance stems from the
question of whether a deformation exists on theC* -algebra level.8

In Sec. II we recall the properties of inhomogeneous quantum groups. In Sec. III we examine
the algebraic embedding of theISOq(3) into ISUAq

ex(2) andISOq(2,1) into ISLq
ex(2,R). Here the

‘‘extended inhomogeneous’’ quantum algebraIGex designates inhomogeneous quantum algebras
containing two sets of coordinate functions.

In Sec. IV we examine the representation theory of theISUAq
ex(2).

II. THE HOPF ALGEBRA STRUCTURE OF INHOMOGENEOUS QUANTUM GROUPS

Quantum groups may be considered to be deformations of the function algebra over the
corresponding Lie groups. The deformation is given by a parameterqPC which has to be further
restricted in order to get special cases of deformations. Quantum groups exhibit a Hopf algebra
structure. The noncommutative algebra structure is controlled by anR̂ matrix fulfilling the quan-
tum Yang–Baxter equationR̂12R̂23R̂125R̂23R̂12R̂23. In this paper we refer toR̂ matrices in their
standard form given in Ref. 1. They are defined by their projector decomposition making use of
the antisymmetrizerÂq

i j
kl , the symmetrizerŜq

i j
kl , and the trace projectorT̂q

i j
kl}C

i jCkl with the
metricCi j , existing for theq-orthogonal groups only:

R̂q
i j
kl5H qŜqi j kl2q21Âq

i j
kl , @ for SLq~N!#

qŜq
i j
kl2q21Âq

i j
kl1q12NT̂q

i j
kl , @ for SOq~N!# .

~1!

The algebra relations for the generatorsM j
i of the unitalC algebraA are

R̂q
i j
j 8 i 8M

j 8
j 9M

i 8
i 95Mi

i 8M
j
j 8R̂q

i 8 j 8
j 9 i 9 ~2!

and

H detM5
~21!N21

@N#!
ek1 ,...,kNMl1

k1
,...MlN

kN
e l1 ,...,l N51 , @SLq~N!# ,

Ci jM
i
i 8M

j
j 85Ci 8 j 81 , @SOq~N!# .

~3!

For the unimodularity condition we use theq-antisymmetric tensorseq defined in Refs. 2 and 3.
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In order to obtain inhomogeneous quantum groups the set of generators has to be enlarged not
only by the coordinate functionsxi but by an invertible scaling operatorw̄ as well. Its existence is
required by consistency of the comultiplication. The additional algebra relations of the extended
Hopf algebraAI are

~ i! xiM j
k5gR̂q

i j
lmM

l
kx

m, ~ iv! wMi
j5Mi

jw,

~ ii ! w̄w51, ~v! w̄xi5
q

g
xiw̄,

~ iii ! w̄M i
j5Mi

jw̄, ~vi! wxi5
g

q
xiw,

~4!

with

g5H q21/N, @ for SLq~N!#,

1, @ for SOq~N!#.
~5!

The comultiplicationF:AI→AI
^AI , counit e:AI→C and the antipodek:AI→AI are very

easily given in matrix notation. With

MI5SwM x

0 1D ~6!

we get

F~MI !5MI
^̇MI ~7!

and

e~MI !5SE 0

0 1D ~8!

with the unity matrixE. The antipode is given as

k~MI !5S k~M !w̄ 2k~M !w̄x

0 1 D . ~9!

A. Complex conjugation

The *-operations onA are defined quite differently in the casesqPR1 and uqu51.

1. qPR1

With the unitarity condition (M j
i )*5k(Mi

j ), the quantum groupSLq(N) becomes anSUq(N)
quantum group. The same*-structure holds for the orthogonal quantum groupsSOq(N).

2. zqz51

For suchq theRq matrix has the propertyRq* 5 Rq
21. With the reality condition (M j

i )*5M j
i

one finds the real representation of the quantum groupSLq(N) calledSLq(N,R) and the orthogo-
nal quantum groups in this case have a metric which is indefinite, i.e., forN even we get
SOq(n,n) and forN oddSOq(n,n11), with N52n or N52n11, respectively.

The complex conjugation for the inhomogeneous extensions of these function algebras have to
be treated separately as well.
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~a! In the caseqPR1 we have to enlarge the generating set of the*-Hopf algebraA
I by the

conjugate coordinate functionsx̄i . The additional algebra relations are

~ i! Ml
sx̄j5

1

g
R̂q
al
i j x̄aM

i
s , ~ iii ! w̄x̄i5

q

g
x̄i w̄,

~ ii ! wx̄i5
g

q
x̄iw, ~ iv! xi x̄j5

1

q
x̄ax

bR̂q
ai
b j .

~10!

The comultiplication ofx̄i follows from being an*-homomorphism and the antipode from the fact
thatk+* +k+*5 id.

~b! Whenuqu51 the coordinate functions may be chosen to be real (xi* 5 xi), since applying

the* to Eq.~4i! and taking into account thatRq
i j *

kl 5 Rq
21i j

kl , we get

M j
kx

i5g21Rq
21 j i

lmx
mMl

k ~11!

or

gR̂q
rs
j iM

j
kx

i5dm
r d l

sxmMl
k . ~12!

III. ALGEBRAIC EMBEDDING

The R̂-matrix of SUAq(2) is decomposed using theq-antisymmetrice-tensor:

R̂Aqrs
mn 5Aqdr

mdn
s1emners ~13!

with

emn :5S 0 q21/4

2q1/4 0 D
mn

52emn.

For the homogeneous parts the embeddingSOq(3)�SUAq is well known.9 With the
q-deformed Clebsch–Gordan coefficientscmn

i of the product decomposition of theSUAq(2):
10

cmn
1 :5S 1 0

0 0D
mn

, cmn
2 :5

1

A11q
S 0 Aq
1 0

D
mn

, cmn
3 :5S 0 0

0 1D
mn

~14!

andcmn
i 5ci

mn the matrix elementsM j
i of SOq(3) are given in terms ofSUAq(2) elementsmn

m by

Mi
j :5cmn

i mm
rm

n
scj

rs . ~15!

This is verified by checking theR̂-matrix of theSOq(3) group to be

1

q
h i

i 8h
j
j 8cmr

i 8 csl
j 8 r̂mn

m8n8r̂
rs

nt r̂
tl

t8l8r̂
n8t8

r8s8ck8
m8r8cl 8

s8l8h̄k8
kh

l 8
l , ~16!

where r̂ denotes theR̂-matrix of theSUAq(2) group andh5diag(1,i ,1), i being the imaginary
unit. It just produces a base change to more convenient coordinates. Note as well the decompo-
sition of the symmetric projectorŜAqrs

mn 5 ci
mncrs

i .
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In order to clear out nasty indices we want to make use of a graphical notation, which has
been given in Ref. 11. With

~17!

and the equality

~18!

we can disentangle the matrix

~19!

This is theR̂-matrix of SOq(3) since obviously

~20!

and

~21!

Of course the same construction holds for theSOq(2,1) group. Thenh has to be chosen as an
identity matrix
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Since we know theq-antisymmetrizer we are able to find theSOq(3) covariant quantum
plane in terms of spinor variables. To obtain sufficiently many degrees of freedom we have to take
at least two copies ofq-spinorsx and y having the same commutation relations withm. This
provides an extended inhomogeneous algebra calledISUAq

ex(2). We want to mention that the
extended algebra does not have a correct coalgebra structure. This is not important for the alge-
braic embedding. The three-dimensional quantum space has the form

~22!

We fix thex,y-relations such that the elementenmx
nym commutes with the coordinate functions

and get

~23!

We still have to prove thatÂq
i j
klz

izj vanishes. This follows from the equation

~24!

or

~25!

Next we observe that

~26!

Now we have to take a look to the*-operation. The behavior is forq complex quite different
from q real, since (cmn

i )*5cnm
i in the first and (cmn

i )*5cmn
i in the second case. From this we see
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immediately that the algebraic embedding in the case ofISOq(2,1) respects the*-operation,
whereas for theISOq(3) quantum group we have to examine the*-structure more closely. At first
for the homogeneous part we have

k~cmn
i mr

mms
ncj

rs!5cmn
i ~mn

s!* ~mm
r !* cj

rs5~crs
j mm

rmn
sci

mn!* . ~27!

To use the graphical technique for the translations we have to introduce the ‘‘transposedc-matrix’’
cT:

~28!

Of course (zi)*5: z̄i5(ci
T)mnx̄mx̄n . Calculating now the mixed commutation relations one has

~29!

To reproduce the correctz2 z̄ relations which use diagrams similar to that of Eq.~29! we have to
redefinez as z→zi5xmxncmn

i v̄n. Now the calculation is similar to the one above and we find
n52/3. This relation finishes the proof of the algebraic embedding.

A. Remarks

~a! The antipode of the coordinatesz just differs by a minus sign, when expressed in terms of
k(x).

~b! The coproduct of the coordinatesz cannot be embedded for obvious reasons.

IV. HILBERT SPACE REPRESENTATION FOR ISOq(3)

The problem to find a representation forISOq(3) andISOq(2,1) is now reduced to that of
representingISUAq

ex(2) andISLq
ex(2,R).

Here we restrict ourselves to the representation ofISOq(3). @We want to mention that
SLq~2,R! does not exist on theC* -algebra level anyhow.12# As well we confine the value ofq to
~0,1!. However, the caseq.1 is isomorphic. The relations ofSUAq(2) are (m 5 Aq):

ag5mga, ag*5mg*a, gg*5g* g,
~30!

a*a1g* g51, aa*1m2g* g51.

The second coordinate has the following commutation relations~remember that in our convention
the quantum plane coordinates arex(t), t51,2.!:
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x~2!a5m21ax~2!, x~2!g5mgx~2!,
~31!

x~2!a*5ma* x~2!, x~2!g*5m21g* x~2!.

Applying the antipode to Eq.~31! gives

a* k~x~2!!5m21k~x~2!!a* , gk~x~2!!5mk~x~2!!g,
~32!

ak~x~2!!5mk~x~2!!a, g* k~x~2!!5m21k~x~2!!g* .

Those relations hold for anySUAq(2)-covariant plane.
We have other relations for the functions on the quantum planesx(t) andy(t), t51,2:

x~2!y~2!5my~2!x~2!, k~x~2!!k~y~2!!5m21k~y~2!!k~x~2!!,

x~t!k~x~d!!5m22k~x~d!!x~t!, x~t!k~y~d!!5m21k~y~d!!x~t!,

k~x~2!!k~y~2!!5m2k~y2!k~x2!, ~33!

ank~b~t!!5k~b~t!!an, a,bP$x,y%,

y~t!k~x~d!!5m21k~x~d!!yt1~m2221!k~y~d!!x~t!,

whered,tP$1,2%.
These and the conjugated relations together with the obvious relations forv contain the whole

algebraic information ofISUAq(2) since

a~1!5~mg!~21!@vk~a~2!!1aa~2!#, a,bP$x,y%. ~34!

Remember thatg is an invertible element.
The algebra may still be simplified by a nonlinear transformation in the functions of coordi-

nates. WithQ45m25q andv35v we define

r15 v̄2g21x~2!, Q15q21vg21k~x~2!!,
~35!

r25 v̄2g21y~2!, Q25q21vg21k~y~2!!.

All algebraic relations with coordinate functions are given by

r ia5Qar i , Q ia5QaQ i , Q iQ i*5Q i*Q i ,

r ia*5Q21a* r i , Q ia*5Q21a*Q i , r ir i*5Q2r i* r i ,
~36!

r ig5Qgr i , Q ig5Q21gQ i , r iQ i5Q23Q ir i ,

r ig*5Q21g* r i , Q ig*5Qg*Q i , r i*Q i5Q21Q ir i* ,

with i51,2:
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Q1Q25Q2Q2Q1 , r1r2*5Q2r2* r1 ,

r1r25Q2r2r1 , Q1r2*5Qr2*Q1 ,
~37!

r1Q25Q21Q2r1 , Q2r1*5Qr1*Q2 ,

Q1r25~Q22Q22!Q2r11Qr2Q1 , Q1Q2*5Q2*Q1 .

It is easy to find a maximal real subalgebraD of commuting elements. In order to connect the
representation ofISOq(3) to that ofSUAq(2) we choose

D :5$aa* ,gg* ,r1r1* ,Q1Q1* ,Q2Q2* ,v%. ~38!

These operators are used to label the eigenvectors of the Hilbert space. They are normalized so
that the representation is given by

p~a!un,m,k,r ,s,v&5A12Q4nun21,m,k,r ,s,v&,

p~a* !un,m,k,r ,s,v&5A12Q4~n11!un11,m,k,r ,s,v&,

p~g!un,m,k,r ,s,v&5Q2nun,m21,k,r ,s,v&,

p~g* !un,m,k,r ,s,v&5Q2n12un,m11,k,r ,s,v&,

p~v !un,m,k,r ,s,v&5un,m,k21,r ,s,v&,

p~v* !un,m,k,r ,s,v&5un,m,k11,r ,s,v&,

p~r1!un,m,k,r ,s,v&5Q2~n1m1k!1r12s2vun,m,k,r21,s,v&,
~39!

p~r1* !un,m,k,r ,s,v&5Q2~n1m1k!1r1112s2vun,m,k,r11,s,v&,

p~r2!un,m,k,r ,s,v&5Q2~n1m1k!12r13s2vun,m,k,r21,s,v21&,

p~r2* !un,m,k,r ,s,v&5Q2~n1m1k!12r1113s2vun,m,k,r11,s,v11&,

p~Q1!un,m,k,r ,s,v&5Q2~n2m1k1r1v !un,m,k,r ,s21,v&,

p~Q1* !un,m,k,r ,s,v&5Q2~n2m1k1r1v !un,m,k,r ,s11,v&,

p~Q2!un,m,k,r ,s,v&5Q2~n2m1k1r2s1v !un,m,k,r ,s21,v21&,

p~Q2* !un,m,k,r ,s,v&5Q2~n2m1k1r2s1v !un,m,k,r ,s11,v11&.

V. CONCLUSIONS

We have given the algebraic embedding of twoq-Euclidean groups in three dimensions. We
have given an irreducible Hilbert space representation for the function algebra ofISOq(3). With
a reasoning along the lines of Ref. 8 it should be possible to prove thatISOq(3) exists on a
C* -algebra level.
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Spinor structures and nonlinear connections in vector
bundles, generalized Lagrange and Finsler spaces
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It is our purpose here to show that the spinor theory admits generalization for
curved spaces with local anisotropy~for example, for Finsler, Lagrange, and gen-
eralized Lagrange spaces!. © 1996 American Institute of Physics.@S0022-
2488~95!02210-7#

I. INTRODUCTION

The space–times with local anisotropy have generated growing interest in theoretical and
mathematical physics.1–8 In different models of locally anisotropic space–times one considers
nonlinear and linear connections and metric structures in vector bundles~isotopic anisotropy! and
tangent bundles~space–time anisotropy! on locally isotropic space–times@~pseudo!-Riemannian,
Einstein–Cartan, or more general types of curved spaces with torsion and nonmetricity#. It seems
likely that locally anisotropic space–times~la-spaces! make up a more convenient geometrical
background for developing, in a self-consistent manner, classical and quantum statistical and field
theories in dispersive media with radiational or turbulent and random processes. In this connec-
tion, the formulation of spinor theory on la-spaces presents substantial interest. Questions on
spinors and la-space geometry were considered, for example, in the frame of Finsler bundles on
space–time5 and of the spinor gauge field theory,9 but up to the present, we do not have arigorous
mathematical definition of spinors on la-spaces.

The aim of this paper is to present a geometric study of the Clifford and spinor structures in
vector and tangent bundles provided with nonlinear and linear connections and metric structures
and to formulate the spinor theory for spaces with the most general anisotropy of metric called
generalized Lagrange spaces1,2,10GL-spaces.

The geometry of vector bundles, endowed with mutually adapted nonlinear connection, dis-
tinguished connection and metric structures and the geometry of GL-spaces are briefly reviewed in
Sect. II. Distinguished Clifford algebras are introduced in Sec. III. Then, in Sec. IV, we define
Clifford bundles and spinor structures on vector bundles and GL-spaces. Almost complex spinor
structures on GL-spaces are studied in Sec. V. A brief introduction into algebraic and geometric
theory of distinguished spinors in vector bundles and GL-spaces is given in Sec. VI. Finally, the
results presented in the paper are discussed in Sec. VII.

II. NONLINEAR CONNECTIONS IN VECTOR BUNDLES AND GENERALIZED
LAGRANGE SPACES

In this section we present for our further considerations the necessary definitions and basic
results on vector bundles and spaces with local anisotropy.1,2,11,12

Let us introduce differentiable bundle spaces: the principal bundle, denoted asP5~P,p,Gr,M !
whereP andM are differentiable manifolds, mapp:P→M is a differentiable surjection, and Gr
is the structural group, the vector bundle,v-bundle, denoted asj5(E,p,M )5(E,p,Gr,M ,F!
where differentiable manifoldsE andM are called, respectively, the total~E5tot j! and base
~M5basj! spaces ofv-bundlej, mapp:E→M is a differentiable surjection, typical fiberF is a
real vector space of dimensionm, dimF5m, and as the structural group Gr of bundlej we
consider the group of linear transforms ofF, i.e., Gr5GL(m,R!.

0022-2488/96/37(1)/508/16/$6.00
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For a base spaceM of dimensionn, bundle j hasE a space of dimensionn1m. Local
coordinates onj are denoted asu5(ua)5(xi ,ya), (i51,2,...,n), (a51,2,...,m), wherex5(xi)
are considered as local coordinates onM andya as coordinates on fiberFx . Coordinate transforms
on v-bundlej are defined as

ua5~xi ,ya!→ua85~xi 8,ya8!, ~1!

wherexk8 5 xk8(xk), rank (]xk8/]xk) 5 n,

ya85Ma
a8~x!ya,iMa

a8~x!iP Gr,

matrices Ma
a8 have the property that for a superposition of coordinate transforms

(xi ,ya)→(xi 8,ya8)→(xi 8,ya8),

Ma
a9~x8!Ma

a8~x!5Ma
a9~x!,Ma

a8~x!5da
a8 .

The concept of nonlinear connection, i.e.,N-connection, was introduced in the frame of
Finsler geometry; the definition ofN-connection as a global geometric structure was first given in
Ref. 13~see related topics in Refs. 14 and 15!. In Refs. 1, 2, 9, and 10N-connection structures are
studied in detail.

Definition 1: A nonlinear connection in a vector bundlej is a distribution
$Eu→HuE,TuE5HuE^VuE% on E defining a global decomposition, as a Whitney sum, into
horizontal,HE, and vertical,VE, subbundles of the tangent bundleTE:

TE5HE^VE. ~2!

To aN-connection one associates a covariant derivation

¹XA5Xi H ]Aa

]xi
1Ni

a~x, A!J sa ~3!

onM , wheresa are local linear independent sections of (E,p,M ), A5Aasa is a tensor field inE,
andX5Xisi is a vector field onM decomposed on local basissi .

Differentiable functionsNi
a from ~3! written as functions onxi and ya, Ni

a(x, y) are called
coefficients of theN-connection and satisfy these transformation laws under coordinate transforms
~1! and ~2!:

Ni 8
a8 ]xi 8

]xi
5Ma

a8Ni
a2

]Ma
a8~x!

]xi
ya.

Remark 1:Linear connections are particular cases ofN-connections, whenNi
a(x, y) are

parametized asNi
a(x, y)5Ka

bi(x)X
iyb; functionsKa

bi(x) defined onM are called as Christoffel
coefficients.

In vector bundlej we can introduce a local frame basis adapted to the givenN-connection,

Xa5
d

dua 5SXi5
d

dxi
5] i2Ni

a~x, y!
]

]ya
,Xa5

d

dya
5

]

]yaD . ~4!

The dual to~4! basis is defined as

Xa5dua5~dXi5dxi5dxi , Xa5dya5dya1Ni
a~x, y!dxi !. ~4a!
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By using adapted bases~4! and~4a! one introduces algebraDT(E) of tensorial distinguished
fields ~d-fields,d-tensors,d-objects! on j, T 5T qs

pr which is equivalent to the tensorial algebra of
thev-bundlepd :HE^VE→E, hereafter briefly denoted asjd . An elementtPT qs

pr, d-tensor field
of type (qs

pr) can be written in local form as

t5t j 1••• j q b1•••bs

i1••• i p a1•••ar ~x, y!
d

dxi1
^ ••• ^

d

dxi p
^dxj 1^ ••• ^dxj q^

]

]ya1
^ ••• ^

]

]yar
^ dyb1^ ••• ^ dybs.

In addition tod-tensors we can introduced-objects with various group and coordinate trans-
forms adapted to global splitting~2!. For example, we define lineard-connections in this form.

Definition 2:A linear d-connection onE is a linear connectionD on E conserving under
parallelism the global decomposition~2! into horizontal and vertical sub-bundles of the tangent
bundleTE.

By using decompositions ofN-adapted frames~4! we define components of connectionD,
G̃a

bg , as covariantD̃-derivations ofXb :

D̃gXb :5D̃Xg
Xb5G̃a

bgXa .

Torsion T̃a
bg and curvatureR̃b

a
gd of connection G̃a

bg can be introduced in standard
manner:1,2,10

T̃~Xg ,Xb!5T̃a
bgXa ,

where

T̃a
bg5G̃a

bg2G̃a
gb1va

bg , ~5!

and, respectively,R̃(Xd ,Xg ,Xb)5R̃b
a

gdXa , where

R̃b
a

gd5XdG̃a
bg2XgG̃a

b•d1G̃w
bgG̃a

wd2G̃w
bdG̃a

wg1G̃a
bwvw

gd . ~6!

In formulas~5! and~6! we have used nonholonomy coefficientswa
bg of adapted frames, defined

as

@Xa ,Xb#5XaXb2XbXa5wg
abXg . ~7!

Let us considerv-bundlej5(E, p, M ) with paracompact baseM .
Definition 3: The metric structureG on total spaceE of vector bundlej is defined as a

second-order covariant, tensor field nondegenerate, and of constant signature.
In the adapted frame metricG on E is expressed as

G5Gab~u!dua
^ dub5gi j ~x, y!dxi ^dxj1qab~x, y!dya^ dyb. ~8!

Definition 4:Distinguished connection structureD onE is compatible with metric structureG
on E if

D̃aGgd50. ~9!

In Lagrange and Finsler geometry the basic geometric constructions are realized on the tan-
gent bundle (TM,t,M ) In this case, anN-connection, with local coefficientsNj

i (xk,yl) is associ-
ated to a global Whitney sum decomposition:

TTM5HTM%VTM. ~10!
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Let consider ad-metric gi j (x, y) onM ~fundamental tensor onM ! as a second-order cova-
riant and nondegenerate tensoriald-field onM .

Definition 5 (see Refs. 1, 2, and 10):A pair Mn5(M , gi j (x, y)) is called a generalized
Lagrange space~GL-space!.

Remark 2: Lagrange spacesLn are a particular case of GL-spaces: when thed-metric onM
can be expressed as

gi j ~x,y!5
]2L

]yi ]yj
,

whereL:TM→R ~R is the real number field! is a differentiable function, called a Lagrangian on
M .

Remark 3:We obtain a Finsler space (M ,L), also as a particular case, ifL5L2, whereL is
a Finsler metric onM .

For our purposes it is convenient to use Miron’s1,2 almost Hermitian modelH2n(M ,G,J) of a
GL-space, denotedH2n-space, a correspondingly defined lift ofMn5(M , gi j (x, y)) to TM,

which is almost compatible with complex structureJa
b 5 (

2d
j
i
0

0
d j
i

) onTM, with J•J52I . In the

construction ofH2n-spaces it is a very important fact that theN-connection onTM uniquely
determines the metric structureG on TM, theH2n-metric,

G~u!5gi j ~x,y!dxi ^dxj1gi j ~x,y!dyi ^ dyj ~11!

@with components ofd-metricgi j (x, y) defined from relationsgi j2Nk
igk j50# being compatible

with the D̃-connection, i.e.,

D̃aGbg50, ~12!

and with the almost complex structure, i.e.,

Ja
bJg

dGbd5Gag and DaJ
g

b50.

The spinor formalism proposed in this paper will be formulated forv-bundles provided with
anN-connection structure compatible with the correspondingd-connection and metric structures
~8! and satisfying metricity conditions~9!. We point out that for GL-spaces,H2n-metric ~11!
satisfying metricity conditions~12! is uniquely determined by theN-connection; we shall con-
struct Clifford bundles and define spinor structures generated by this nonlinear connection struc-
ture.

III. DISTINGUISHED CLIFFORD ALGEBRAS

The typical fiber ofv-bundlejd , pd :HE%VE→E is a d-vector spaceF 5hF %vF , split
into verticalvF and horizontalhF subspaces, with metricG(g, q) induced byv-bundle metric
~8! @or by H2n-metric ~11! in the case whenE5TM#. Clifford algebras~see, for example, Refs.
16–18! formulated ford-vector spaces will be called Cliffordd-algebras. In this section we shall
consider the main properties of Cliffordd-algebras. The proof of theorems will be based on the
technique developed in Ref. 16 correspondingly adapted to the distinguished character of spaces in
consideration.

Let k be a number field~for our purposesk5R or k5C, R andC are, respectively, real and
complex number fields! and defineF as ad-vector space onk provided with nondegenerate
symmetric quadratic form~metric! G. LetC be an algebra onk ~not necessarily commutative! and
j :F→C a homomorphism of underlying vector spaces such thatj (u)25G(u)•1 ~1 is the unity in
algebraC andd-vectoruPF !. We are interested in definition of the pair (C, j ) satisfying the next
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universality conditions. For everyk-algebraA and arbitrary homomorphismw:F→A of the un-
derlyingd-vector spaces, such that (w(u))2→G(u)•1, there is a unique homomorphism of alge-
brasc:C→A transforming the diagram

into a commutative one. The algebra solving this problem will be denoted asC~F ,G! @equiva-
lently asC(G) or C~F !# and called as Cliffordd-algebra associated with pair~F ,G!.

Theorem 1: The above-presented diagram has a unique solution (C, j ) up to isomorphism.
Proof: ~We adapt ford-algebras that of Ref. 16, p. 127.! For a universal problem the unique-

ness is obvious if we prove the existence of solutionC(G). To do this we use tensor algebra
L(F ) 5 %Lqs

pr(F ) 5 % i50
` Ti(F ), whereT0~F !5k andTi~F !5F ^•••^F for i.0. LetI (G) be

the bilateral ideal generated by elements of forme(u)5u^u2G(u)•1 whereuPF and 1 is the
unity element of algebraL~F !. Every element fromI (G) can be written asS il ie(ui)m i , where
l i , m iPL~F ! anduiPF . LetC(G)5L~F !/I (G) and definej :F→C(G) as the composition of
monomorphism i :F →L1~F !,L~F ! and projection p:L~F !→C(G). In this case pair
(C(G), j ) is the solution of our problem. From the general properties of tensor algebras the
homomorphismw:F →A can be extended toL~F !, i.e., the diagram

is commutative, wherer is a monorphism of algebras. Because (w(u))25G(u)•1, thenr van-
ishes on idealI (G) and in this case the necessary homomorphismt is defined. As a consequence
of uniqueness ofr, the homomorphismt is unique.

Tensord-algebraL~F ! can be considered as aZ/2 graded algebra. Really, let us introduce
L ~0!~F !5( i51

` T2i~F ! and L~1!~F !5( i51
` T2i11~F !. Setting I (a)(G)5I (G)ùL ~a!~F ! @~a!

5~1!,~2!#, we have I (G)5I (0)(G)% I (1)(G). Define C(a)(G) as p~L ~a!~F !!, where
p:L~F !→C(G) is the canonical projection. ThenC(G)5C(0)(G)%C(1)(G) and in consequence
we obtain that the Cliffordd-algebra isZ/2 graded.

It is obvious that Cliffordd-algebra functorially depends on pair~F ,G!. If f :F→F 8 is a
homomorphism ofk-vector spaces, such thatG8( f (u))5G(u), whereG andG8 are, respectively,
metrics onF andF 8, then f induces an homomorphism ofd-algebras

C~ f !:C~G!→C~G8!

with identitiesC(w• f )5C(w)C( f ) andC(IdF ) 5 IdC(F ) .
If Aa andBb are Z/2-gradedd-algebras, then their graded tensorial productAa

^Bb is
defined as ad-algebra for k-vector d-spaceAa

^Bb with the graded product induced as
(a^b)(c^d)5(21)abac^bd, wherebPBb andcPAa~a,b50,1!.

Now we reformulate ford-algebras the Chevalley theorem.19

Theorem 2: The Clifford d-algebra C(hF %vF ,g1q! is naturally isomorphic to

C(g) ^̂C(q).
Proof: Let n:hF →C(g) and n8:vF→C(q) be canonical maps and map

m:hF %vF →C(g) ^̂C(q) is defined asm(x, y)5n(x)^111^n8(y), xPhF , yPvF . We
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have (m(x, y))25[(n(x))21(n8(y))2] •15[g(x)1q(y)]. Taking into account the universality
property of Cliffordd-algebras we conclude thatm induces the homomorphism

z:C~hF %vF ,g%q!→C~hF ,g! ^̂C~vF ,q!.

We also can define a homomorphism

y:C~hF , g! ^̂C~vF , q!→C~hF %vF , g%q!

by using formulay(x^ y)5d(x)d8(y), where homomorphismsd andd8 are, respectively, induced
by imbeddings ofhF andvF into hF %vF :

d:C~hF , g!→C~hF %vF ,g%q!,

d8:C~vF , q!→C~hF %vF ,g%q!.

BecausexPC(a)(g) andyPC(a)(q),d(x)d8(y) 5 ( 2 1)a8d8(y)d(x).
Superpositions of homomorphismsz andy lead to identities

yz5IdC~hF , g! ^̂C~vF , q! ,
~13!

zy5IdC~hF , g! ^̂C~vF , q! .

Really,d-algebraC(hF %vF ,g1q! is generated by elements of typem(x, y). Calculating

yz~m~x, y!!5y~n~x! ^111^n8~y!!5d~n~x!!d~n8~y!!5m~x, 0!1m~0, y!5m~x, y!,

we prove the first identity in~13!.

On the other hand,d-algebraC(hF , g) ^̂C(vF , q! is generated by elements of typen(x)^1
and 1̂ n8(y). Because (zy)(n(x)^1)5c(d(n(x))5n(x)^1 and (zy)(1^n8(y))
5c(d8(n(y))51^n8(y), we prove the second identity in~13!.

Following from the above-mentioned properties of homomorphismsz and y we can assert
that the natural isomorphism is explicitly constructed. h

In consequence of theorem 2 we conclude that all operations with Cliffordd-algebras can be
reduced to calculations forC(hF , g! andC(vF , q! which are usual Clifford algebras of dimen-
sion 2n and, respectively, 2m.16,20

Of special interest is the case whenk5R and F is isomorphic to vector spaceRp1q,a1b

provided with quadratic form2x1
22•••2xp

21•••1xp1q
2 2y1

22•••2ya
21•••1ya1b

2 . In this case,
the Clifford algebra, denoted as (Cp,q, Ca,b), is generated by symbolse1

(x), e2
(x) ,...,ep1q

(x) , e1
(y),

e2
(y) , ...,ea1b

(y) satisfying properties (ei)
2521 (1< i<p), (ej )

2521 (1< j<a), (ek)
251 (p

11<k<p1q), (ej )
251 (n11<s<a1b), eiej52ejei , i Þ j . Explicit calculations ofCp,q

andCa,b are possible by using isomorphisms16,18

Cp1n,q1n'Cp,q
^M2~R! ^ ••• ^M2~R!.Cp,q

^M2n~R!>M2n~C
p,q!,

whereMs(A) denotes the ring of quadratic matrices of orders with coefficients in ringA. Here we
write the simplest isomorphismsC1,0.C, C0,1.R%R andC2,05H, where byH is denoted the
body of quaternions. We summarize this calculus as~as in Ref. 20!

C0,05R, C1,05C, C0,15R%R,

C2,05H, C0,25M2~R!, C3,05H%H, C0,35M2~R!,
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C4,05M2~H!, C0,45M2~H!, C5,05M4~C!, C0,55M2~H! %M2~H!,

C6,05M8~R!, C0,65M4~H!, C7,05M8~R! %M8~R!, C0,75M8~C!,

C8,05M16~R!, C0,85M16~R!.

One of the most important properties of real algebrasC0,p(C0,a) andCp,0(Ca,0) is the eightfold
periodicity of p(a).

Now, we emphasize thatH2n-spaces admit locally a structure of Clifford algebra on complex
vector spaces. Really, by using almost Hermitian structureJa

b and considering complex spaceCn

with nondegenerate quadratic form(a51
a uzau

2, zaPC2 induced locally by metric~8! ~rewritten in

complex coordinatesza5xa1 iya! we define Clifford algebra where

Č15C^RC5C%C or, in consequence,Čn.Cn,0
^RC'C0,n

^RC. Explicit calculations lead to iso-
morphisms Č25C0,2

^RC'M2~R!^RC'M2~C!, Čn12'M2(Č
n), C2p ' M2p(C) and Č2p11

' M2p(C) % M2p(C), which show that complex Clifford algebras, defined locally forH2n-spaces,
have periodicity 2 onp.

Considerations presented in the proof of theorem 2 show that mapj :F→C~F ! is monomor-
phic, so we can identify spaceF with its image inC~F ,G!. On the other hand, endomorphism
u→2u of spaceF induces an involution onC~F ,G!, denoted asu→ū, if uPC(0)~F ,G!
~uPC(1)~F ,G!!; thenu5ū ~respectively,ū52u!.

Definition 6:The set of elementsuPC(G)* , whereC(G)* denotes the multiplicative group
of invertible elements ofC~F ,G! satisfyingūF u21PF , is called thetwisted Clifford d-group,
denoted asḠ~F !.

Let r̃:G̃~F !→GL~F ! be the homomorphism given byu→rũ, where r̃u(w)5ūwu21. We
can verify that kerr̃5R* is a subgroup inG̃~F !.

Canonical mapj :F →C~F ! can be interpreted as the linear mapF→C~F !0 satisfying the
universal property of Clifford d-algebras. This leads to a homomorphism of algebras,
C~F !→C~F !t, considered by an anti-involution ofC~F ! and denoted asu→ tu. More exactly, if

lPu1•••unPF , thentu5un•••u1 and
tū5 tū5 ( 2 1)nun•••u1 .

Definition 7:The spinor norm of arbitraryuPC~F ! is defined asS(u)5 tū•uPC~F !.
It is obvious that if u,u8,u9PG̃~F !, then S(u,u8)5S(u)S(u8) and

S(uu8u9)5S(u)S(u8)S(u9). For u,u8PF S(u)52G(u) andS(u, u8)5S(u)S(u8)5S(u8u).
Let us introduce the orthogonal group O(G),GL(G) defined by metricG on F and denote

sets SO(G)5$uPO(G), detuuu51%, Pin(G)5$uPG̃~F !, S(u)51% and Spin(G)
5Pin(G)ùC0~F !. For F >Rn1m we write Spin(n1m). By straightforward calculations~see
similar considerations in Ref. 16! we can verify the exactness of these sequences:

1→Z/2→Pin~G!→O~G!→1,

1→Z/2→Spin~G!→SO~G!→0,

1→Z/2→Spin~n1m!→SO~n1m!→1.

We conclude this section by emphasizing that the spinor norm was defined with respect to a
quadratic form induced by a metric in thev-bundle jd ~or by anH2n-metric in the case of
GL-spaces!. This approach differs from that presented in Refs. 5 and 9.

IV. CLIFFORD BUNDLES AND SPINOR STRUCTURES ON VECTOR BUNDLES AND GL-
SPACES

There are two possibilities for generalizing our spinor constructions defined ford-vector
spaces to the case of vector bundle spaces with the structure ofN-connection. The first is to use
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the extension to the category of vector bundles. The second is to define the Clifford fibration
associated with compatible lineard-connection and metricG on a vector bundle~or with an
H2n-metric on GL-space!. Let us consider both variants.

A. Clifford d -module structures in vector bundles

Because functorF →C~F ! is smooth we can extend it to the category of vector bundles of
typejd5$pd :HE%VE→E%. Recall that byF we denote the typical fiber of such bundles. Forjd
we obtain a bundle of algebras, denoted asC(jd), such thatC(jd)u5C~F u!. Multiplication in
every fiber defines a continuous mapC(jd)3C(jd)→C(jd). If jd is a vector bundle on number
field k, the structure of theC(jd)-module, thed-module, onjd is given by the continuous map
C(jd)xEjd→jd with every fiberF u provided with the structure of theC~F u!-module, correlated
with its k-module structure. BecauseF ,C~F !, we have a fiber to fiber mapF xEjd→jd , induc-
ing on every fiber the mapF uxEjd(u)→jd(u) ~R-linear on the first factor andk-linear on the
second one!. Inversely, every such bilinear map defines onjd the structure of theC(jd)-module
by virtue of universal properties of Cliffordd-algebras. Equivalently, the above-mentioned bilin-
ear map defines a morphism ofv-bundlesm:jd→HOM(jd , jd) @HOM(jd , jd) denotes the
bundle of homomorphisms# when (m(u))25G(u) on every point.

Vector bundlesjd provided withC(jd)-structure are objects of the category with morphisms
being morphisms ofv-bundles, which induce on every pointuPj morphisms ofC(jd)-modules.
This is a Banach category contained in the category of finite-dimensionald-vector spaces on field
k. We shall not use category formalism in this work, but point to its advantages in further
formulation of new directions ofK-theory~see, for example, an introduction in Ref. 16! concerned
with generalized Lagrange spaces.

Let us denote byHs(j,GLn1m~R!! the s-dimensional cohomology group of the algebraic
sheaf of germs of continuous maps ofv-bundlej with groupGLn1m~R! the group of automor-
phisms ofRn1m ~for the language of algebraic topology see, for example, Refs. 16 and 21!. We
shall also use the groupSLn1m~R!5$A,GLn1m~R!, detA51%. Here we point out that cohomolo-
giesHs(M , Gr! characterize the class of a principal bundlep:P→M onM with structural group
Gr. Taking into account that we deal with bundles distinguished by anN-connection we introduce
into consideration cohomologiesHs(j,GLn1m~R!! as distinguished classes~d-classes! of bundles
j provided with a globalN-connection structure.

For a real vector bundlejd on compact basej we can define the orientation onjd as an
elementadPH1(j,GLn1m~R!! whose image on map

H1~j,SLn1m~R!!→H1~j,GLn1m~R!!

is thed-class of bundlej.
Definition 8: The spinor structure onjd is defined as the elementbdPH1(j,Spin(n1m))

whose image in the composition

H1~j,Spin~n1m!!→H1~j,SO~n1m!!→H1~j,GLn1m~R!!

is thed-class ofj.
The above definition of spinor structures can be reformulated in terms of principal bundles.

Let jd be a real vector bundle of rankn1m on a compact basej. If there is a principal bundlePd

with structural group SO(n1m) @or Spin(n1m)#, this bundlejd can be provided with orienta-
tion ~or spinor! structure. The bundlePd is associated with elementadPH1~j,SO(n1m)! @or
bdPH1(j,Spin(n1m)#.

We remark that a real bundle is oriented if and only if its first Stiefel–Whitneyd-class
vanishes,

w1~jd!PH1~j,Z/2!50,
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whereH1~j/Z/2! is the first group of Chech cohomology with coefficients inZ/2. Considering the
second Stiefel–Whitney classw2(jd)PH2~j,Z/2! it is well known that vector bundlejd admits the
spinor structure if and only ifw2(jd)50. Finally, in this subsection, we emphasize that taking into
account that base spacej is also av-bundle,p:E→M , we have to make explicit calculations in
order to express cohomologiesHs(j,GLn1m) and Hs~j,SO(n1m)! through cohomologies
Hs(M ,GLn), H

s(M ,SO(n)!, which depends on global topological structures of spacesM andj.
For general bundle and base spaces this requires a cumbersome cohomological calculus.

B. Clifford fibration

Another way of defining the spinor structure is to use Clifford fibrations. Consider the prin-
cipal bundle with the structural group Gr being a subgroup of orthogonal group O(G), whereG is
a quadratic nondegenerate form@see~8!# defined on the base~also being a bundle space! spacej
@we deal withH2n-metric ~11! in the case when the base space is aH2n-space# and denote it as
P~j, Gr! @P(H2n, Gr!#. The fibration associated to principal fibrationP~j, Gr! @or P(H2n, Gr!#
with a typical fiber having Clifford algebraC(G) is, by definition, the Clifford fibrationPC~j, Gr!
@or PC(H2n, Gr!#. We can always define a metric on the Clifford fibration if every fiber is
isometric to PC(j, G) ~this result is proved for arbitrary quadratic formsG on pseudo-
Riemannian bases17!. If, additionally, Gr,SO(G) a global section can be defined onPC(G).

Let P ~j, Gr! @or P ~H2n, Gr!# be the set of principal bundles with differentiable basej ~or
H2n-space! and structural group Gr. Ifg:Gr→Gr8 is an homomorphism of Lie groups and
P~j, Gr!,P ~j, Gr! @or P(H2n, Gr!,P ~H2n, Gr!# ~for simplicity in this section we shall denote
mentioned bundles and sets of bundles asP, P8 and, respectively,P , P 8#, we can always con-
struct a principal bundle with the property that there is an homomorphismf :P8→P of principal
bundles which can be projected to the identity map ofj ~or H2n! and corresponds to isomorphism
g:Gr→Gr8. If the inverse statement also holds the bundleP8 is called as the extention ofP
associated tog and f is called the extension homomorphism denoted asg̃.

Now we can define distinguished spinor structures on bundle spaces~compare with definition
8!.

Definition 9: Let PPP ~j,O(G)! @or PPP (H2n),O(G)# be a principal bundle. A distin-
guished spinor structure ofP, equivalently ads-structure onj ~or onH2n! is an extensionP̃ of P
associated to homomorphismh:PinG→O(G) where O(G) is the group of orthogonal rotations,
generated by metricG, in bundlej ~or in H2n-space!.

So, if P̃ is a spinor structure of the spacej ~or H2n!, then P̃PP (j,PinG) @or
P̃PP (H2n, PinG)#.

The definition of spinor structures on varieties was given in Ref. 22. In Refs. 23 and 24 it is
proved that a necessary and sufficient condition for a space time to be orientable is to admit a
global field of orthonormal frames. We mention that spinor structures can be also defined on
varieties modeled on Banach spaces.25As we have shown in this subsection, similar constructions
are possible for the cases when space time has the structure of av-bundle with anN-connection
~or anH2n-space!.

Definition 10: A special distinguished spinor structure,ds-structure, of principal bundle
P5P~j,SO(G)! @or P5P(H2n,SO(G)!# is a principal bundle P̃5 P̃(j,SpinG) @or
P̃5 P̃(H2n,SpinG)# for which a homomorphism of principal bundlesp̃: P̃→P, projected on the
identity map ofj ~or of H2n! and corresponding to representation

R:SpinG→SO~G!,

is defined.
In the case when the base space variety is oriented, there is a natural bijection between tangent

spinor structures and special spinor structures with a common base. For specialds-structures we
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can define, as for any spinor structure, the concepts of spin tensors, spinor connections, and spinor
covariant derivations~see Sec. VI in this paper! a detailed version will be presented in Ref. 26!.

V. ALMOST COMPLEX SPINOR STRUCTURES ON GENERALIZED LAGRANGE
SPACES

Almost complex structures are an important characteristic ofH2n-spaces. As we have men-
tioned in Sec. IV, we can rewriteH2n-metric ~11! in complex form:

G5Hab~z,j!dza^dzb, ~14!

where

za5xa1 iya, z̄a5xa2 iya, Hab~z,z̄!5gab~x,y!ux5x~z,z̄!
y5y~z,z̄!

,

and define almost complex spinor structures. For given metric~14! onH2n-space there is always
a principal bundlePU with unitary structural group U(n) which allows us to transformH2n-space
into v-bundlejU'PUxU(n)R

2n. This statement will be proved after we introduce complex spinor
structures on oriented real vector bundles.16

Let us consider momentarilyk5C and introduce into consideration@instead of the group
Spin(n)# the group Spinc(n)5Spin(n)xZ/2, U~1! being the factor group of the product
Spin(n)xU(1) with the respect to equivalence

~y, a!;~2y, 2a!, yPSpin~m!.

This way we define the short exact sequence

1→U~1!→Spinc~n!→
Sc

SO~n!→1,

whererc(y,a)5rc(y). If l is a oriented, real, and rankn, g-bundlep:El→Mn, with baseMn,
the complex spinor structure, spin structure, onl is given by the principal bundleP with structural
groupSpinc(m) and isomorphisml ' PxSpinc(n)R

n. For such bundles the categorial equivalence
can be defined as

ec:EC
T~Mn!→EC

l~Mn!, ~15!

whereec(Ec) 5 PDSpinc(n)E
c is the category of trivial complex bundles onMn, EC

l(Mn) is the
category of complexv-bundles onMn with action of Clifford bundleC(l), PDSpinc(n) andE

c is
the factor space of the bundle productPxME

c with respect to the equivalence
(p, e);(pĝ21, ĝe), pPP, ePEc, where ĝPSpinc(n) acts on E by via the imbedding
Spin(n),Co,n and the natural action U~1!,C on complexv-bundlejc, Ec5tot jc, for bundle
pc:Ec→Mn.

Now we return to the bundlej. A realv-bundle~not being a spinor bundle! admits a complex
spinor structure if and only if there exists a homomorphisms:U(n)→Spinc(2n) making the
diagram
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commutative. The explicit construction ofs for arbitraryg-bundles is given in Refs. 16 and 20.
ForH2n-spaces it is obvious that a diagram similar to~16! can be defined for the tangent bundle
TMn, which directly points to the possibility of defining thecSpin-structure onH2n-spaces.

Let l be a complex, rankn, spinor bundle with

t:Spinc~n!xZ/2U~1!→U~1! ~17!

the homomorphism defined by formulat~l,d!5d2. For PS being the principal bundle with fiber
Spinc(n) we introduce the complex linear bundleL(lc) 5 PSxSpinc(n)C defined as the factor space
of PSxC on equivalence relation (pt,z);(p,l (t)21z), wheretPSpinc(n). This linear bundle is
associated to complex spinor structure onlc.

If lc andlc8 are complex spinor bundles, theWhitney sumlc
% lc8 is naturally provided with

the structure of the complex spinor bundle. This follows from the holomorphism

vc:Spinc~n!3Spinc~n8!→Spinc~n1n8!, ~18!

given by formula [(b, z),(b8, z8)] → [v(b, b8), zz8], wherev is the homomorphism making
the following diagram commutative;

Here,z,z8PU~1!. It is obvious thatL(lc
% lc8) is isomorphic toL(lc) ^ L(lc8).

We conclude this section by formulating our main result on complex spinor structures for
H2n-spaces:

Theorem: Let lc be a complex spinor bundle of rankn andH2n-space considered as a real
vector bundlelc

% lc provided with almost complex structureJa
b ; multiplication oni is given by

(d
j
i
0

0
2d j

i

). Then, the diagram below is commutative up to isomorphism

whereec andẽc are defined as in~15!,H is functorEc→Ec
^L(lc) andEC

0,2n(Mn) is defined by
functor EC(M

n)→EC
0,2n(Mn) given as correspondenceEc→L~Cn)^Ec ~which is a categorial

equivalence!, L~Cn! is the exterior algebra onCn. W is the real bundlelc
% lc provided with

complex structure.
Proof:We use composition of homomorphisms

m:Spinc~2n!→
p

SO~n!→
r

U~n!→
s

Spinc~2n!5Spin~2n!xZ/2U~1!,

commutative diagram
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and introduce composition of homomorphisms

m:Spinc~n!→
D

Spinc~n!3Spinc~n!→
vc

Spinc~n!,

whereD is the diagonal homomorphism andvc is defined as in~18!. Using homomorphisms~17!
and ~18! we obtain formulam(t)5m(t)r (t).

Now we consider bundlePxSpinc(n)Spin
c(2n) as the principalSpinc(2n)-bundle, associated

to M%M being the factor space of the productPxSpinc(2n) on the equivalence relation
(p, t, h);(p, m(t)21h). In this case the categorial equivalence~15! can be rewritten as

ec~Ec!5PxSpinc~n!Spin
c~2n!DSpinc~2n!E

c

and seen as factor space ofPxSpinc(2n)xME
c on equivalence relation

(pt, h, e);(p, m(p)21h, e) and (p, h1 , h2 , e);(p, h1 , h2
21e) ~projections of elementsp and

e coincides on baseM !. Every element ofec(Ec) can be represented asPDSpinc(n)E
c, i.e., as

factor space ofPxME
c on equivalence relation (pt, e);(p, m(t)21e), wheretPSpinc(n).

On the other hand, the principalSpinc(2n)-bundle associated to complex structure onM%M
is PxSpinc(n)Spin

c(2n) and in consequenceec(Ec) can be represented asPDSpinc(n)E
c, i.e., as a

factor spacePDEc on equivalence relation (pt, e);(p, mc(t)21, e), whentPSpinc(n).
The complex line bundleL(lc) can be interpreted as the factor space ofPxSpinc(n)C on

equivalence relation (pt, d);(p, r (t)21d).
Putting (p, e)^ (p, d)(p, de) we introduce morphism

ec~E!3L~lc!→ec~lc!

with properties (pt, e)^ (pt, d)→(pt, de)5(p, mc(t)21de), (p, mc(t)21e)^ (p, l (t)21e)
→(p, mc(t)r (t)21de) pointing to the fact that we have defined the isomorphism correctly and
that it is an isomorphism on every fiber. h

VI. SPINORS IN VECTOR BUNDLES WITH NONLINEAR CONNECTIONS

In this section we present a brief introduction to the theory ofd-spinors inv-bundles and
H2n-spaces. To generate Cliffordd-algebra we start with Clifford–Dirac equations written in the
form18

sa~u!sb~u!1sb~u!sa~u!52Gab~u!I , ~19!

where distinguished complex matricessa(u) are parametrized as

sa~u!5S s i~u! 0

0 sa~u!
D ,

s i(u), sa(u) being matrices of dimensionNh3Nh (Nv3Nv) Nh52n/2(Nv52m/2 for even values
of n(m) andNh52(n11)/2(Nv52(m11)/2) for odd values ofn(m).
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To relate the succeeding constructions with Cliffordd-algebra~see Sec. III! it is convenient to
use frame decomposition of metric~8! @or ~11!#:

Gab5 l a
â~u!l b

b̂~u!gâb̂ ,

where the frame components are distinguished as

l a
â~u!5S l jĵ~u! 0

0 l a
â~u!

D , gâb̂5S gî ĵ 0

0 gâb̂
D ,

wheregî ĵ andgâb̂ are diagonal matrices withgî ĵ 5 gâb̂ 5 61. In general, we can treat indices
â,b̂, î , ĵ ,â,b̂,... asabstract tensorial indices.18

Introducing matricessâ 5 l â
asa ~matrix l â

a is inverse tol a
â) we rewrite Eqs.~17! as algebraic

equations for components of constant matricessa
n :

sâsb̂1sb̂sâ52Gâb̂I . ~20!

We consider that matricessâ act on correspondingd-vector spaceF 5hF %vF . To specify
elements we can introduce abstract spinor indices@locally adapted to bases~4! and ~5!#:

sâ5H ~sâ!r
g5S ~s î ! j

k 0

0 ~s â!b
cD J ,

wherer, g,... refer to spin spaceS5S(h)%S(v) ; j , k andb, c refer, respectively, to spin spacesS(h)
andS(v) @S(h) andS(v) are associated toh- and, respectively,g-decomposition of bundlejd ~of
H2n-space!#. Suggesting that algebra generated bys2 is irreducible, it is necessary that
dimS(h)5N(h) and, respectively, dimS(v)5N(v) , where

N~h!5H 2n/2, n52k,

2~n21!/2, n52k11,
and N~v !5H 2m/2, m52k,

2~m21!/2, m52k11

@the minimal dimension of matrices satisfying Eqs.~18! is N3N, whereN5N(h)1N(v)#.
The Clifford d-algebra is generated by sums ofn11 elements of the form

A1I1Bîs î1Cî ĵs î ĵ1Dî ĵ k̂s î ĵ k̂1••• ~21!

and sums ofm11 elements of the form

A2I1Bâs â1Câb̂s âb̂1Dâb̂ĉs âb̂ĉ1•••

with antisymmetric coefficientsCî ĵ 5 C@ î ĵ #, Câb̂ 5 C@ âb̂#, Dî ĵ k̂ 5 D @ î ĵ k̂#, Dâb̂ĉ 5 D @ âb̂ĉ#,... andma-
trices s î ĵ 5 s [ îs ĵ ] , s âb̂ 5 s [ âs b̂] , s î ĵ k̂ 5 s [ îs ĵs k̂] , ... . Really, we have 2n11 coefficients

(A1 ,C
î ĵ ,Dî ĵ k̂,...) and 2m11 coefficients (A2 ,C

âb̂,Dâb̂ĉ,...) of Clifford d-algebra onF .
Let us define finite~because of a finite number of elementss@ î , ĵ ,...,k̂# ands@ âb̂••• ĉ#! sums:

~6 !Ekm
i j 5dk

i dm
j 1

2

1!
~s î !k

i~s î !m
j1

22

2!
~s î ĵ !k

i~s î ĵ !m
j1

23

3!
~s î ĵ k̂!k

i~s î ĵ k̂!m
j1••• , ~22!

~6 !Ecd
ab5dc

add
b1

2

1!
~s â!c

a~s â!d
b1

22

2!
~s âb̂!c

a~s âb̂!d
b1

23

3!
~s âb̂ĉ!c

a~s âb̂ĉ!d
b1... . ~23!
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E-objects~22! can be factorized as

~6 !Ekm
i j 5N~h!

~6 !ekm
~6 !e i j , for n52k,

~1 !Ekm
i j 52N~h!ekme i j ,~2 !Ekm

i j 50, for n53~mod 4!, ~24!

~1 !Ekm
i j 50, ~2 !Ekm

i j 52N~h!ekme i j , for n51~mod 4!

@in a similar manner we can factorizeE-objects ~23!, correspondingly, for valuesm52k,
m53~mod 4! andm51~mod 4!#.

From definition~21!, factorization~24!, and antisymmetry ofs î ĵ k̂... ands âb̂ĉ... one follows
the symmetry properties ofe-objects summarized in Table I~coordinated with canonical isomor-
phisms of Clifford algebrasCp,0 andC0,p; see Sec. III in this work and similar considerations for
isotropic spaces in Ref. 18. We omit proofs which in most cases are mechanical but rather tedious.
By straightforward calculations the presented formulas show direct relationships between relations
for Clifford d-algebra~21!–~25! and symmetric properties of spinor metrics ands-objects on the
corresponding periodicity of dimensionsn andm ~see Tables I and II!.

For even values ofn(m) we can continue reduction of6E- and6e-objects. We define new
e-objects

e lm5 1
2~

~1 !e lm1 ~2 !e lm!, e lm5 1
2~

~1 !e lm1 ~2 !e lm!,

ẽ lm5 1
2~

~1 !e lm2 ~2 !e lm!, e lm5 1
2~

~1 !e lm2 ~2 !e lm!

TABLE I. Symmetry properties ofe-objects ~O, S, andA denote corre-
spondingly vanishing, symmetry, and antisymmetry ofe-objects!.

n~mod 8!
@m~mod 8!#

(1)e lm ,
(1)e lm

((1)eab ,
(1)eab)

(2)e lm ,
(2)e lm

((2)eab ,
(2)eab)

0 S S
1 O S
2 A S
3 A O
4 A A
5 O A
6 S A
7 S O

TABLE II. e-isomorphisms.

n Spinor metrics
Juggling
of indices

Canonical
isomorphisms

0
~mod 4!

eMN52eNM, eM8N852eN8M8

eMN52eNM , eM8N852eN8M8

zA85eA8B8z
B8,

zA5eABzB

S(h)>S8(h)
S̃(h)>S̃8(h)

2
~mod 4!

eRS8, eRS8
eR8S, eR8S

zA85eA8BzB,

zA85eA8BzB

S(h)>S̃8(h)
S8(h)>S(h)

2k11
k50,1,
2,...

e lm, e lm z l5e lmzm,
zm5emnzn

S(h)>S̃(h)
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~by similar formulas we introduce objectseab, eab , ẽab, ẽab on fibers of bundlejd!. For simplicity,
hereafter, in this section, we shall restrict our considerations only to horizontal spinor subspaces
S(h) . Introducing splitting of indicesl5L%L8, m5M%M 8, a5A%A8,..., weparametrize the
spinor metrics in this form:

e lm5S eLM 0

0 0D , ẽ lm5S 0 0

0 ẽL8M8D , for n50~mod 4!,

e lm5S 0 0

eL8M 0D , ẽ lm5S 0 eLM8

0 0
D , for n52~mod 4!

~the same formulas holds fore-objects with covariant spinor indices!.
From Table I we conclude thateMN, eMN , ẽM8N8, ẽM8N8 are symmetric~antisymmetric! for

n50~mod 8! ~n54~mod 8!!, ẽAB85eB8A, ẽAB856eB8A for n56~mod 8! and ẽAB8

52eB8A, ẽAB852eB8A for n52~mod 8!.
Let us denote horizontal spinors aszNPS(h) , zN8 P S8(h) , zNPS̃(h) ~S̃(h) is dual toS(h)!, zN8

P S8(h) ~S̃8(h) is dual toS8(h)!, z lPS(h) , andz lPS̃(h) ~S̃(h) is dual toS(h)!. By usinge-objects we
can raise and lower indices in both cases of irreduced and reduced spinor spaces@for n52~mod 4!
we can exclude, for example, primed indices, or inversely#. These properties and canonical iso-
morphisms between corresponding spaces are summarized in Table II.

The last subject to be considered in this section is the mutual transformation ofd-tensors and
d-spinors onjd ~or onH2n!. Reallys-objects from~19! or ~20! allow us to obtain, for example,
for n52~mod 4!, from d-tensor Ba

b a spinor d-tensor ~d-spinor!: BMM8
NN8

5 (sa)
MM8(s83)NN8B

a
b . On the other hand, a spinord-tensorw

lm, for example, forn52k11,
can be transformed into d-vector wa5(sa) lmw lm. So, by using s-objects
[(sa) i

m,(sa)RS,(sa)
AB,...] we cantransforms-tensors intod-spinors and inverselyd-spinors

into d-tensors. We note thatd-spinor–d-tensor mutual transformations are compatible to Whitney
sums~2! @or ~10!# for bundlejd ~or H2n-space!; i.e., ‘‘horizontal’’ ~‘‘vertical’’ ! d-tensorial indices
must be transformed into ‘‘horizontal’’~‘‘vertical’’ ! spinor indices and inversely.

We end this section by emphasizing that the next step in the formulation of locally anisotropic
spinor theory should be the development of the spinor differential geometry for 1a-spaces.26–28

VII. OUTLOOK AND CONCLUSIONS

We have investigated the problem of definition of spinors on spaces with local anisotropy. Our
approach is based on the formalism of Cliffordd-algebras. We have introduced spinor structures
on la-spaces as Cliffordd-module structures onv-bundles. We have also proposed the second
definition, as distinguished spinor structures, by using Clifford fibrations. It has been shown that
H2n-spaces admit as a proper characteristic the almost complex spinor structure. We have argued
that one of the most important properties of spinors in bothv-bundles with compatible nonlinear
connection and metric and inH2n-spaces is the periodicity 8 on the dimension of the base and on
the dimension of the typical fiber spaces.

It should be noted that in this paper the distinguished Clifford and spinor structures have been
introduced in an algebraic topological manner, and that in our considerations the compatibility of
the d-connection and the metric, adapted to a givenN-connection, plays a crucial role. Only
Miron’s approach to modeling on tangent bundles of spaces and media with local anisotropy
admits a rigorous geometric definition of spinors. For models of Finsler and Lagrange spaces with
noncompatible connection and metric structure, the definition of spinors is more sophisticated, if
spinors are introduced locally with respect to the given metric quadratic form, the spinor construc-
tions will not be invariant on parallel transport. We shall introduce corresponding discordance
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laws and values and define nonstandard spinor structures by using a nonmetricald-tensor~see
similar constructions for locally isotropic curved spaces, in general with torsion and nonmetricity,
in Ref. 29!.
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Differential Hopf algebra structures on the universal
enveloping algebra of a Lie algebra
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We discuss a method to construct a De Rham complex~differential algebra! of
Poincare´–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra
g. We determine the cases in which this gives rise to a differential Hopf algebra that
naturally extends the Hopf algebra structure ofU~g!. The construction of such
differential structures is interpreted in terms of color Lie superalgebras. ©1996
American Institute of Physics.@S0022-2488~95!02112-5#

I. INTRODUCTION

Recently noncommutative differential geometry has attracted considerable interest, both math-
ematically and as a framework for certain models in theoretical physics. In particular, there is
much activity in differential geometry on quantum groups. A noncommutative differential calculus
on quantum groups has been developed by Woronowicz1 following general ideas of Connes.2 This
general theory has been reformulated by Wess and Zumino3 in a less abstract way. Their approach
may be more suitable for specific applications in physics. A large number of papers have been
written since and a few other methods to construct a noncommutative differential geometry on a
quantum group or to define a differential geometric structure~a De Rham complex! on a given
noncommutative algebra have been proposed and discussed by several authors~e.g., Refs. 4–6!.

In this paper we present a differential calculus on the enveloping algebra of a given Lie
algebra. This differential structure turns out to be a differential Hopf algebra, which can be
interpreted in a very interesting way in terms of color Lie superalgebras. The commutative case
has been studied previously~see, e.g., Ref. 7!. Notice that our approach is different from the
standard methods to construct noncommutative differential structures on Hopf algebras and quan-
tum groups, in the sense that our starting point is not the algebra of functions on the~quantum!
group but its dual the~quantized! universal enveloping algebra.

In the classical limit a quantized universal enveloping algebra defines a co-Poisson–Hopf
algebra structure on the universal enveloping algebra~see Ref. 8!. Further research is in progress
concerning the compatibility between the differential calculus and the Poisson cobracket in order
to define a differential Hopf algebra structure on the quantized universal enveloping algebra. We
will report on this in the near future.

II. A DE RHAM COMPLEX ON U(g)

Let A be an associative algebra over the field of complex numbers. A differential algebra on
A ~or a De Rham complex onA, see Ref. 4! is anN-graded associative algebraV equipped with
a linear operatord that has the following properties:~1! d is homogeneous of degree 1, i.e.
d(Vp),Vp11 for all pPN. ~2! d is a differential, i.e.d25d+d50. ~3! d is a graded derivation~of
degree 1!, i.e.

d~ab!5d~a!b1~21!pad~b!, aPVp, bPV. ~1!

a!Supported by NWO Grant No. 611-307-100.
b!Present address: University of Twente, Department of Applied Mathematics, The Netherlands.
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Furthermore, the algebraV has to be generated byV0ød~V0!, whereV0 is isomorphic toA. For
A we take the universal enveloping algebra of a Lie algebra and discuss the construction of De
Rham complexes on such an algebra.

Let g be a finite-dimensional Lie algebra overC with basis$x1,x2,...,xn% and corresponding
structure constantsCk

i j , which are defined by the property [xi ,xj ]5Ck
i j xk. Throughout this paper

we will make use of the Einstein summation convention. The universal enveloping algebra ofg,
which we denote byU~g!, can be viewed as the quotient algebra of the free associative algebra on
the alphabet$x1,x2,...,xn% modulo the ideal generated by the relations

xixj2xjxi5Ck
i j xk. ~2!

From the Poincare´–Birkhoff–Witt Theorem we know that the monomialsxi1xi2•••xi p with p>0
and i 1< i 2<•••< i p form a basis ofU~g!. The main idea behind the construction ofV onU~g! is
that we demandV to be of the PBW type; by this we mean that the monomials

dxj 1 dxj 2•••dxj qxi1xi2•••xi p, with j 1, j 2,•••, j q , i 1< i 2<•••< i p , p,q>0, ~3!

are a basis of the associative algebraV. From here on we will writeyj to denote the element
dxj5d(xj ) in V1.

In order to constructV we have to impose certain commutation relations between the ele-
mentsxi andyj . On account of the homogeneity and the PBW property, we impose relations of the
form

xiyj5yk~Q lk
i j xl1Ak

i j !, ~4!

where bothQlk
i j andAk

i j are arbitrary complex numbers. Since we want to obtain an ideal that is
invariant under the action of the differential, we adjoin the following commutation relations for
the elementsyi andyj :

yiyj52Q lk
i j ykyl . ~5!

This is simply the consequence of applyingd to the relations~4!. LetV be the quotient algebra of
the free associative algebra on the alphabet$x1,x2,..,xn,y1,y2,..,yn% modulo the idealJ that is
generated by the relations~2!, ~4!, and~5!. TheN grading ofV is induced by giving the elements
xi degree 0 and the elementsyj degree 1. The differentiald is defined byd(xi)5yi , d(yi)50 and
the derivation property~1!.

The coefficientsQlk
i j andAk

i j should satisfy a number of conditions in order thatV has the
above mentioned properties of a De Rham complex onU~g!. The first condition arises from
d(J),J, i.e. thed invariance of the idealJ. By applyingd to ~2! we obtain

yixj1xiyj2yjxi2xjyi5Ck
i j yk,

which, on account of the relations~4!, can be written as

yixj1yk~Q lk
i j xl1Ak

i j !2yjxi2yk~Q lk
j i xl1Ak

ji !5Ck
i j yk.

The PBW property ofV implies that

Ak
i j2Ak

ji5Ck
i j and yixj2yjxi1~Q lk

i j 2Q lk
j i !ykxl50.

We can write this in the following compact form:

~ I2P!A5C and I2P1QP2PQP5~ I2P!~ I1QP!50. ~6!
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In these equations we considerA andC asn23n andQ, I , andP asn23n2 matrices overC, the
product is just the ordinary matrix multiplication. The permutation matrixP is defined by
Pkl
i j 5d l

idk
j where d denotes the Kronecker delta. Since the relations~5! have been found by

applyingd to the relations~4!, and sinced250, there are no further conditions arising from thed
invariance.

The PBW property yields a number of compatibility conditions that are closely related to the
well-known Diamond Lemma~see, e.g., Ref. 9!. The ordering is a lexicographic total degree
ordering withyi,yj,xk,xl for all i, j andk, l . According to this the monomials of the form
~3! are precisely the irreducible monomials. The compatibility conditions arise from rewriting
terms of the formxixjxk, xixjyk, xiyjyk, andyiyjyk. Evidently, rewriting the termsxixjxk does not
lead to any conditions since it simply boils down to the proof of the Poincare´–Birkhoff–Witt
Theorem. We can rewritexixjyk as

xixjyk5xi„yl~Qpl
jkxp1Al

jk!…5ym~Qnm
il xn1Am

il !~Qpl
jkxp1Al

jk!,

but also as

xixjyk5~xjxi1Cl
i j xl !yk

5xjym~Qnm
ik xn1Am

ik!1Cl
i j yp~Qmp

lk xm1Ap
lk!

5yp~Q lp
jmxl1Ap

jm!~Qnm
ik xn1Am

ik!1Cl
i j yp~Qmp

lk xm1Ap
lk!.

Due to the PWB property ofV, the linear part of the expressions should coincide, yielding

Al
jkAm

il 5Ap
ikAm

jp1Cl
i j Am

lk .

We introduce matricesAi by (Ai)k
j 5Ak

i j . Thus, the equation above can be written as

AjAi2AiAj5Cl
i j Al . ~7!

The rest of the expressions give rise to the equation

ymxn~Al
jkQnm

il 1Qnl
jkAm

il 2Ap
ikQnm

jp 2Qnp
ik Am

jp2Cl
i jQnm

lk !1ymxnxp~Qpl
jkQnm

il 2Qpl
ikQnm

jl !50.

By making use of the following equality:

xnxp5 1
2 ~xnxp1xnxp!5 1

2 ~xnxp1xpxn1Cl
npxl !,

the PBW basis gives rise to two consistency conditions. The highest-order part yields

Qpl
jkQnm

il 2Qpl
ikQnm

jl 1Qnl
jkQpm

il 2Qnl
ikQpm

jl 50,

which can shortly be written as

@Qn
i ,Qp

j #5@Qn
j ,Qp

i #, ~8!

where the matricesQj
i are defined by (Q j

i ) l
k5Q j l

ik. Similarly, the second-order part coefficients
give the condition

2~@Aj ,Qn
i #1@Qn

j ,Ai #2Cl
i jQn

l !1~Qp
j Qq

i 2Qp
i Qq

j !Cn
pq50. ~9!

We apply the same method to handle terms likexiyjyk. We obtain

xiyjyk5ym~Q lm
i j xl1Am

i j !yk
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5Q lm
i j ymyp~Qqp

lk xq1Ap
lk!1Am

i j ymyk

5Q lm
i j Qqp

lk ymypxq1~Q lm
i j Ap

lk2Al
i jQpm

lk !ymyp,

and on the other hand we can write

xiyjyk5~Q lm
jk Ap

imQ ts
pl2Q lm

jk Qps
imAt

pl!ysyt2Q lm
jk Qqp

imQ ts
qlypysxt.

We remark that the relations~5! can be rewritten in the form

~ I1S!kl
i j ykyl50,

whereS is a matrix with the propertyS25I . On account of the PBW property ofV, we obtain the
conditions

~Q lp
i j Q ts

lk1Sml
jk Qqp

imQ ts
ql!ypysxt50 and ~ I1S!ml

jk ~Qsp
imAq

sl2As
imQqp

sl !ypyq50.

Due to the fact that 1/2(I1S) is a projection, the preceding equations are equivalent to

~ I1S!ml
jk Qqp

imQ ts
ql~ I2S!uv

ps50, ~ I1S!ml
jk ~Qsp

imAq
sl2As

imQqp
sl !~ I2S!uv

pq50. ~10!

The first condition can be written in the following elegant form:

~ I1S!12Q31Q32~ I2S!1250. ~11!

The subscripts denote the positions used to embed then23n2 matrices into then33n3 matrices,
e.g.,~Q12!pqr

i jk 5Qpq
i j d r

k. The consistency condition arising from rewriting the termsyiyjyk is

„~ I1S!12Q31Q32…pqr
i jk ypyqyr50.

This is evidently satisfied if~11! holds, so this gives no further conditions for the coefficients.
The conclusion is that the set of conditions~6!, ~7!, ~8!, ~9!, and~10! is sufficient to define a

De Rham complexV on U~g! with the PBW property. In the next section we investigate the
possibility to define a differential Hopf algebra onU~g!.

III. A DIFFERENTIAL HOPF ALGEBRA ON U(g)

It is well known that the universal enveloping of a Lie algebrag has a natural Hopf algebra
structure~see, e.g., Ref. 10!, its comultiplicationD:U~g!→U~g!^U~g! is defined byD(x)51^x
1x^1, its counite:U~g!→C by e(x)50 for all x in g. They both are algebra morphisms. The
antipodeS:U~g!→U~g! is the unique antialgebra morphism satisfyingS(x)52x. In the preceding
section we discussed the construction of a differential algebra onU~g!, which essentially is an
algebra extension ofU~g! equipped with a differential operatord. In this section we discuss the
possibility of extendingD, e, andS from U~g! to V in such a way thatV becomes a differential
Hopf algebra.

Let us first recall the notion of a differential bialgebra, for a complete description we refer to
Ref. 4. A differential bialgebra is a differential algebraV equipped with a comultiplicationD and
a counit e that are differential algebra morphisms. Note that a differential algebra morphism
w:V→V8 simply is an algebra morphism of degree zero that commutes with the differentials, i.e.
w+d5d8+w.

In order to write down explicitly the conditions forD ande we need to explain the differential
algebra structures ofV^V andC. TheN grading ofV^V is defined by

~V ^ V!p5 %

0<q<p
Vq

^ Vp2q, ~12!
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and its multiplicationm^ :V^V^V^V→V^V by

m ^ 5~m ^ m!+s23, ~13!

where m denotes the multiplication ofV. The linear maps23 denotes the graded flip
s:V^V→V^V, which is defined by

s~a^b!5~21!pqb^a, aPVp, bPVq, ~14!

applied to the second and third component of the tensor product. The differentiald^ of V^V is
given by d^ 5d^ id1t ^d, where t :V→V is the linear map of degree zero satisfying
t(a)5(21)pa for all aPVp. Written out explicitly, this gives

d^~a^b!5d~a! ^b1~21!pa^d~b!, aPVp, bPV. ~15!

Henceforth, the condition thatD should be a differential algebra morphism means thatD is an
algebra morphism with the property

d^ +D5~d^ id1t ^d!+D5D+d. ~16!

Note that this is the analog of the derivation property~1! that can be written asd+m5m+d^ . We
considerC to be a differential algebra withC05C andCp50 for all p.0. Hence,e is a differential
algebra morphism if and only if it is an algebra morphism satisfyinge+d50.

Since V is generated byV0ød~V0!, it suffices to define the actions ofD and e on
$x1,x2,...,xn,y1,y2,...,yn%. Naturally the actions on elementsxi coincide with the previously
described actions onU~g!. The above mentioned conditions forD ande uniquely determine the
actions on the elementsyj :

D~yi !5D+d~xi !5d^ +D~xi !5d^~xi ^111^xi !5yi ^111^ yi , ~17!

e~yi !5e+d~xi !50. ~18!

Here we have used thatd~1!50, which is a direct consequence of the derivation property ofd.
In order for e andD to be well defined, the idealJ needs to be a~two-sided! coideal, i.e.

e(J)50 andD(J),V ^J1J^ V. The first condition is clearly satisfied. To verify the second we
apply D to the relations~2!, ~4!, and ~5!. Naturally the relations~2! do not give rise to any
conditions for the coefficientsQlk

i j andAk
i j . The relations~4! yield

D„xiyj2Q lk
i j yk~xl1Ak

i j !…5D~xi !D~yj !2Q lk
i j D~yk!„D~xl !1Ak

i j1^1…

51^xiyj1xi ^ yj1yj ^xi1xiyj ^1

2Q lk
i j
„1^ ykxl1xl ^ yk1yk^xl1ykxl ^11Ak

i j ~1^ yk1yk^1!…

5xi ^ yj1yj ^xi2Q lk
i j ~yk^xl1xl ^ yk!mod~V ^J1J^ V!.

Again, on account of the PBW property ofV, we obtain

xi ^ yj5Q lk
i j xl ^ yk and yj ^xi5Q lk

i j yk^xl , ~19!

which evidently impliesQ5I . Similarly, we find

D~yiyj1Q lk
i j ykyl !5yi ^ yj2yj ^ yi1Q lk

i j ~yk^ yl2yl ^ yk!mod~J^ V1V ^J!,
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which boils down to the condition (I2Q)(I2P)50. Therefore, the conclusion is thatV can only
be a differential bialgebra onU~g! if Q5I . In that case the conditions~6!, ~7!, ~8!, and~9! reduce
to

~ I2P!A5C and @Aj ,Ai #5Cl
i j Al , ~20!

due to the fact thatP25I andS25I . The commutation relations~4! and ~5! take the following
form:

xiyj5yjxi1Ak
i j yk and yiyj52yjyi . ~21!

We remark that we did not check the coassociativity ofD, i.e. (D ^ id)+D5( id^ D)+D. This is a
direct consequence of the coassociativity ofD on U~g!5V0 since

~D ^ id !+D+d~V0!5~D ^ id !+d^ +D~V0!

5~d^ ^ id1t ^ t ^d!+~D ^ id !+D~V0!

5~d^ id^ id1t ^d^ !+~ id^ D!+D~V0!

5~ id^ D!+d^ +D~V0!5~ id^ D!+D+d~V0!.

By a similar reasoning one can show that the counit property ofe on V is induced by the same
property ofe on U~g!.

The next step is to consider a differential Hopf algebra structure onV. We recall thatV is a
differential Hopf algebra~see Ref. 4! if it is a differential bialgebra that possesses an antipodeS.
An antipodeS is an element ofEnd~V! satisfyingS! id5 id!S5h+e, where! denotes the con-
volution product onEnd~V! ~see Ref. 10! defined by

f!g5m+~ f ^g!+D, f ,gPEnd~V!. ~22!

By h :C→V we denote the unit element ofV, i.e. h~1!51. Sinceh+e is the unit element in
End~V! with respect to the convolution product, one can describe the antipode as the unique
inverse of the identity. An important property of the antipode is that it is an antialgebra morphism;
this means thatS+m+s5(S^S)+m andS+h5h @or equivalentlyS~1!51#.

We try to extend the antipode ofU~g!5V0 to V. In order to do that we make the following
observation. Suppose thatf and g are homogeneous endomorphisms onV of degree zero that
commute with the differential operatord. Then the propertiesd^ +D5D+d andm+d^ 5d+m imply
that

d+~ f!g!5d+m+~ f ^g!+D

5m+d^ +~ f ^g!+D

5m+~d^ id1t ^d!+~ f ^g!+D

5m+~ f ^g!+~d^ id1t ^d!+D

5m+~ f ^g!+d^ +D

5m+~ f ^g!+D+d5~ f!g!+d.

Hence, the convolution productf!g also commutes withd. By inductive use of this argument we
can conclude thatd commutes withf n5 f! f!•••! f for all positive values ofn if f is a homoge-
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neous endomorphism of degree zero satisfyingd+ f5 f +d. For f we can choose the identity. This
makes it plausible thatd commutes withid215S. So, we extend the antipode by demanding
d+S5S+d. In particular, this yields

S~yi !5S+d~xi !5d+S~xi !52d~xi !52yi . ~23!

For S to be a well-defined antialgebra morphism onV, it must leave the idealJ invariant
[S(J),J]. To verify this condition, it suffices to applyS to the relations~21!. We will only write
out the first; the second can be handled similarly,

S~xiyj2yjxi2Ak
i j yk!5S~yj !S~xi !2S~xi !S~yj !2Ak

i j S~yk!

5yjxi2xiyj1Ak
i j yk

52~xiyj2yjxi2Ak
i j yk!PJ.

In order to check thatS is indeed an antipode, we can confine ourselves to verifying the defining
property ofS for a set of generators ofV. SinceS is the extension of the antipode ofU~g!, we
only need to compute

~S! id !~yi !5m+~S^ id !~1^ yi1yi ^1!51•yi2yi•1505h+e~yi !.

So, at the end of this section we come to the following conclusion. In order to obtain a
differential Hopf algebraV on U~g!, it is necessary that the matrixQ in ~4! and ~5! equals the
identity matrixI . In that case necessary and sufficient conditions for the coefficientsAk

i j are given
by ~20!, and the corresponding Hopf algebraic extension is described by~17!, ~18!, and~23!.

IV. A LIE ALGEBRAIC INTERPRETATION

The comultiplication of the universal enveloping algebra of a Lie algebra is cocommutative.
We can easily verify that the cocommutativity ofD onV0 gives rise to graded cocommutativity for
the extension ofD to V:

s+D+d~V0!5s+d^ +D~V0!5d^ +s+D~V0!5d^ +D~V0!5D+d~V0!,

or, more explicitly,

s+D~yi !5s~1^ yi1yi ^1!5yi ^111^ yi5D~yi !.

We call the propertys+D5D graded cocommutativity becauses denotes the graded flip.
It is well known ~see, e.g., Ref. 11! that a cocommutative Hopf algebraH, which has a

compatible filtering, is isomorphic to the Hopf algebra corresponding to the universal enveloping
algebra of the Lie algebra of primitive elements ofH. Note that the set of primitive elements ofH
is defined by

P~H !5$xPHuD~x!51^x1x^1%, ~24!

which has the structure of a Lie algebra with the commutator [x,y]5xy2yx. By a compatible
filtering we mean an increasing family of subspaces (Fp)pPN of H satisfying

m~Fp^Fq!,Fp1q D~Fp!, (
0<q<p

Fq^Fp2q ø
pPN

Fp5H. ~25!

With respect to the graded cocommutative Hopf algebraV, we remark thatFp5 % 0<q<pV
q

defines a compatible filtering. Due to the graded cocommutativity,P~V! does not have the struc-
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ture of an ordinary Lie algebra. Instead of the usual commutator we define a ‘‘color’’ commutator
onV by [x,y]5xy2(21)pqyx for xPVp andyPVq. The setP~V! is closed under this bracket
since

D~@x,y# !5D„xy2~21!pqyx…

5D~x!D~y!2~21!pqD~y!D~x!

5~1^x1x^1!~1^ y1y^1!2~21!pq~1^ y1y^1!~1^x1x^1!

51^xy1x^ y1~21!pqy^x1xy^12~21!pq„1^ yx1y^x1~21!pqx^ y1yx^1…

51^ „xy2~21!pqyx…1„xy2~21!pqyx…^1

51^ @x,y#1@x,y# ^1,

for all xPP(V)p andyPP(V)q. Note that theN grading ofV induces anN grading onP~V!,
sinceD is homogeneous of degree zero. By this argument we have derived thatP~V! is a color Lie
superalgebra. For the definition of a color Lie superalgebra we refer to Ref. 12. The corresponding
2-cocylea is given by

a:N3N→C* , a~p,q!5~21!pq. ~26!

Sincea(q,q) 5 ( 2 1)q
2

5 ( 2 1)q, the elements ofP(V)q are even~odd! if and only if q is even
~odd!. As in the case of ordinary Lie algebras, one can define the universal enveloping algebra of
a color Lie superalgebra and a corresponding Hopf algebraic structure on it. Analogous to the
above mentioned result of Ref. 11, the Hopf algebraV is isomorphic to the Hopf algebra
U„P~V!….

The question is whatP~V! explicitly looks like. The set of primitive elements ofV certainly
contains the linear span of$x1,x2,..,xn,y1,y2,..,yn% @see~17!#, which we will denote byL. We
considerL as theN-graded vector spaceL5 % pPNL

p with

L05^xi&1< i<n , L15^yi&1< i<n Lp50 ~p>2!.

According to the relations~2! and ~21!, we have

@xi ,xj #5Ck
i j xk, @xi ,yj #5Ak

i j yk, and @yi ,yj #50, ~27!

soL is a color Lie supersubalgebra inP~V!. Since the elements ofL0 are even and the elements
of L1 are odd, a basis ofU(L) can be given by~see, e.g., Ref. 12!

yj 1yj 2•••yj qxi1xi2•••xi p with j 1, j 2,•••, j q , i 1< i 2<•••< i p , and p,q>0.

A comparison of this basis with the described basis ofV @see~3!#, proves that the Hopf algebraV
is isomorphic to the Hopf algebraU(L). Hence,P(V)5L.

The preceding reasoning enables us to interpret the construction of a differential Hopf algebra
on the universal enveloping of a Lie algebrag in terms of a color Lie superalgebraic extension of
g. The problem to be solved can be reformulated as follows. Given is a Lie algebrag with basis
$x1,x2,...,xn%. Let L be theN-graded vector space given byL05g, L15^yi&1< i<n andL

p50 for
all p>2. Define a bilinear operation@ , # on L of degree zero extending the commutator ofg in
such a way that [xi ,yj ]5Ak

i j yk. This bracket expresses the commutation relations~21!. The con-
ditions ~20! for the coefficientsAk

i j are equivalent to demanding thatL equipped with this com-
mutator becomes a color Lie superalgebra with 2-cocyclea given by~26!, satisfying the additional
property that the linear mapd defined byd(xi)5yi andd(yi)50 is a graded derivation of degree
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1 on L. The corresponding differential Hopf algebra onU~g! is then given by the Hopf algebra
U(L) equipped with the unique extension of the derivationd from L to U(L).

V. CONCLUDING REMARKS

We have presented a framework to construct a De Rham complex on the universal enveloping
algebra of a Lie algebrag. The fundamental property of the differential algebra is that it possesses
a so-called PBW basis. We have proven that the differential algebra can be given a Hopf algebra
structure extending the natural Hopf algebraU~g!. In our presentation we assumedg to be finite
dimensional. This is definitely not a necessary condition; one can easily see that this framework
can also be applied in the infinite-dimensional case. For more details on this and some explicit
examples we refer to Ref. 13. Naturally, a De Rham complex onU~g! brings to surface the notion
of cohomology. It would be very interesting to investigate this De Rham cohomology.
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We examine the problem of the evaluation of both the propagator and of the
partition function of a spinning particle in an external field at the classical as well
as the quantum level, in connection with the asserted exactness of the stationary
phase approximation. At the classical level we argue that exactness of this approxi-
mation stems from the fact that the dynamics~on the two-sphereS2! of a spinning
particle in a magnetic field is the reduction fromR4 to S2 of a linear dynamical
system onR4. At the quantum level, however, and within the path integral ap-
proach, the restriction, inherent to the use of the stationary phase approximation, to
regular paths clashes with the fact that no regulators are present in the action that
enters the path integral. This is shown to lead to a prefactor for the path integral
that is strictly divergent, except in the classical limit. A critical comparison is made
with the various approaches that have been presented in the literature. The validity
of a formula given in literature for the spin propagator is extended to the case of
motion in an arbitrary magnetic field. ©1996 American Institute of Physics.
@S0022-2488~96!04501-5#

I. INTRODUCTION

Since the early days of path integration, how to do a path integral for spinning particles was
recognized1 as one of the major difficulties of the formalism. Schulman2 ~but also see Ref. 3!
made a first attempt toward a formulation of a path integral for spinning particles, one which was,
however, rather a related path integral, namely that for a spinning top.

Much progress has been made since with the systematic use, initiated by Klauder,4,5 of the
resolution of the identity associated with spin-coherent states6,7 in the discretized-time~or time-
sliced! approach to the path integral. Path integral quantization using coherent states will be
discussed extensively in the sequel. Other versions of the path integral not making an explicit use
of coherent states have been discussed instead in Refs. 8 and 9~also see Ref. 10!, as well as in Ref.
11 specifically for the calculation of the spin tunneling in the semiclassical limit.

Already at the classical level, a spin~classically a vectorS of fixed magnitudes! presents
some peculiarities as a dynamical system. While the Hamiltonian description is essentially
straightforward if one assumes the Poisson brackets:

$Si ,Sj%5e i jkSk , ~1!

0022-2488/96/37(2)/535/19/$10.00
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among the components of the spin vector, it has been pointed out by Balachandranet al.12 that no
global Lagrangian description can be given as long as one sticks to the natural configuration space
of the spin, which is the compact two-sphereS2. The same authors have shown that a global
Lagrangian can be associated with a classical spin by lifting the description of the system fromS2

to the group manifold of SU~2!, which is the three-sphereS3, as follows. Considering the usual
spin-12 representation of SU~2!, one can define a vectorS in S2 via the Hopf map, i.e.

S̃5S–s5sgs3g
21, ~2!

with s5~s1,s2,s3! the Pauli matrices. Then it can be shown12 that the~global! Lagrangian on
TSU~2!:

L5 is Tr~s3g
21ġ!2

m

2
Tr~S̃B̃!, ~3!

wherem is the Bohr magneton andB̃5B–s, yields the correct equations of motion for a classical
spin in an external magnetic fieldB. The same equations can be derived, of course, at the
Hamiltonian level using the Poisson brackets~1! and the Hamiltonian:

H5mS–B. ~4!

As it is clear from the fact that the spin is recovered via the Hopf projection~2!, this approach
introduces an extra, nondynamical U~1! gauge degree of freedom. Indeed, under
g→g exp@igs3/2#, ~2! is invariant whileL changes by a total time derivative~i.e., it is ‘‘weakly
invariant’’12!:

L→L2sġ. ~5!

This is also evident if we parametrize SU~2! with the Euler angles as

g5e2 ifs3/2e2 ius2/2e2 igs3/2 ~6!

~0<u<p,0<f<2p,0<g<4p!, which yields the~local! Lagrangian:

L5s~ḟ cosu1ġ !1mS–B. ~7!

Although it can be shown13 that this extra gauge degree of freedom has interesting conse-
quences for the path integral quantization of~3!, and namely that it leads in a straightforward way
to spin quantization~i.e., 2s/\5integer!, we would like to stress here the fact that~3! ~or ~7! for
that matter! being linear in the time derivatives, a spinning particle is described as a constrained
dynamical system. Canonical quantization requires then the use of Dirac’s theory14 of constraints,
and it has been shown by Balachandranet al.12 that this does indeed yield the correct quantum
mechanical description of the spin, including spin quantization. As pointed out, e.g., in Ref. 9, it
turns out that the~semiclassical! Bohr–Sommerfeld quantization is exact for a spin Hamiltonian.
This is a strong indication that the stationary phase approximation to the path integral for, say, the
propagator should be exact as well. Exactness of the stationary phase approximation implies, of
course, that we discuss the applicability to the present problem of the Duistermaat–Heckman
theorem, which provides a rigorous framework.

Concerning the path integral approach and the legitimacy of evaluating the path integral
within the stationary phase approximation, which is the main problem addressed in the present
paper, a Lagrangian of the form~7! poses another problem, and namely that, the classical equa-
tions of motion being first order in time, the saddle point problem becomesoverdetermined, as the
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solutions of the saddle point equations have to obey two boundary conditions, and not a single
one. Different ways to overcome this problem have been proposed in the literature, and notably by
Klauder,4,5 Keski-Vakkuriet al.,15 and Suzuki.16

This paper is devoted mainly to the discussion of two questions, namely that of the legitimacy
of some approximations that are currently made in the coherent state formulation of the path
integral for spins and that of the still unsettled problem, which has also been widely discussed in
the literature, that the stationary phase approximation to the path integral yields the exact result for
both the propagator and/or the partition function of a quantum spin. While the stationary phase
approximation is almost trivially exact for quadratic Hamiltonians, here the apparently surprising
fact is that it turns out to be exact also for the Hamiltonian~4! and/or the Lagrangian~7! that are
far from being quadratic.

The paper is organized as follows. In the Appendix we briefly review the Duistermaat–
Heckman theorem and the stationary phase approximation. In Sec. II we apply the latter to the
calculation of the partition function of a classical spin and show that the deep reason of the
validity of such an approximation is that a classical spin, when viewed as a dynamical system, can
be shown to result from the reduction of a linear dynamical system fromR4 to S2. In Sec. III, we
begin by discussing briefly the use of spin-coherent state path integral approach to the calculation
of the propagator and/or of the partition function of a quantum spin. We show there that the
approximation currently used in literature restricting the paths in the functional integral to be
continuous leads to incorrect and diverging prefactors. Then we review briefly the approaches of
Klauder and Suzuki to the same problem. We clarify the origin of some apparently mysterious
terms that are added to the action in Klauder’s approach. Then we analyze why the stationary
phase approximation yields the exact result in Suzuki’s approach, by arguing that his main result
stems simply from the exactness of the Ehrenfest theorem in the present context. In Sec. IV we
discuss in more detail the coherent state approach by using the holomorphic representation for the
latter, applying the complex stationary phase approximation to the discrete version of the spin path
integral. Section V is devoted to a general discussion and to some conclusions.

II. THE CLASSICAL SPIN

Let us start our considerations from aclassical ~nonrelativistic! spin in a time-independent
magnetic fieldB5(B1 ,B2 ,B3).

Since the only degree of freedom for a spin is its direction, we describe it by means of a
three-dimensional vector (S1 ,S2 ,S3)PR3 of a fixed norm:S1

21S2
21S3

25s2, where the three clas-
sical variablesSj ( j51,2,3) satisfy the Poisson brackets~1!. Thus, the phase space for a classical
spin is the two-dimensional manifoldS2(s), equipped with the symplectic two-form

V5
1

2s2
e i jkSi dSj`dSk . ~8!

The Hamiltonian that describes a classical spin in a magnetic field is given by~4!. For
simplicity we will setm[1 in the following so that

H5B–S. ~9!

The Hamiltonian vector fieldD associated to~9!, which is determined by the symplectic form
V, is given by

D5e i jkBjSk
]

]Si
, ~10!

so that the classical equations of motion,iDV5dH, read as
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Ṡi5e i jkBjSk . ~11!

Without any loss of generality, we will setB5(0,0,B) (B.0) from now on. In this case, the
Hamiltonian~9! and the equations of motion~11! assume a very simple form if we use spherical
coordinatesS15s sinu cosf, S25s sinu sinf, S35s cosu. They become, respectively,

H5sB cosu ~12!

and

cosuu̇50, sinu~ḟ2B!50. ~13!

The latter can be easily integrated, and one sees that the classical orbits are circles parallel to the
equator, the spin processing about the magnetic field with a periodt52p/B.

In spherical coordinates, it is also very easy to compute theexactpartition function for the
Hamiltonian~9!:

Zcl~b!5E
S2~s!

Ve2bH. ~14!

Indeed, one gets

Zcl~b!5sE
0

2p

dfE
0

p

sin u du e2bsB cosu5
2p

bB
~ebsB2e2bsB!. ~15!

From ~15!, one recognizes that the classical partition function can be written as the weighted sum
of two terms, each given by the evaluation ofe2bH at the two critical pointsu5p andu50 of the
Hamiltonian, for whichDS5(0,0,6s) 5 0. In addition, it is not hard to check that the weights
~62p/bB! are exactly the ones coming from the calculation of the contributions to the integral
~15! of the Gaussian fluctuations around the stationary points ofH.

Everybody is familiar with such a result whenever dealing with~multidimensional! harmonic
oscillators, or, in general, with a quadratic Hamiltonian on the linear manifoldR2n. Even if the
Hamiltonian~9! is not of this kind, the stationary phase approximation is exact as well. A spin in
a magnetic field is, in fact, the simplest~nontrivial! application of the Duistermaat–Heckman
theorem,17,18which establishes under which conditions a phase-space integral, such as~14!, can be
evaluated exactly in the stationary phase approximation. We refer to the Appendix for a review of
the Duistermaat–Heckman theorem and for the proof of its applicability to the system of a spin in
a magnetic field. Here we recall only that this result holds essentially for the two following
geometrical reasons:~1! the Hamiltonian~12! is invariant under anU~1! action, given by rotations
about the third axis~i.e., the axis of the constant magnetic field!; ~2! the associated Hamiltonian
vector field, given by

D5BS 2S2
]

]S1
1S1

]

]S2
D , ~16!

is proportional to the generator of thisU~1! action. This is clear in spherical coordinates, where
D5B~]/]f!. However, while~16! defines it globally onS2(s), the spherical coordinate represen-
tation becomes singular atu50, p.

The Duistermaat–Heckman theorem gives some abstract mathematical conditions for the
stationary phase approximation to be exact. In the following we will show that for a spin in a
magnetic field there is, however, a deeper reason why this holds: the dynamical system that
describes a spin in the magnetic field is the reduction of a bigger system, which is described by a
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quadratic Hamiltonian on the linear manifoldR4.19 Such a situation has already been considered in
the literature~see Ref. 20 and references therein!, even if not much in the context of the stationary
phase approximation, but mainly in the context of integrable systems, for which there exists the
conjecture20 that every integrable system is the reduction of a biggerlinear dynamical system. To
show what happens in the case of a spin, let us consider the linear manifold
R45$(x1 ,x2 ,x3 ,x4)%5C25$(z1 ,z2):z15x11 ix2 ,z25x31 ix4%, equipped with the symplectic
two-form V̄5 (1/2s)(dx1`dx21dx3`dx4)5 (1/2s)(1/2i )(dz1*`dz11dz2*`dz2).

There is a natural action of SU~2! on R45C2, which is simply given by left multiplication:

Fa 2b*

b a* GFz1z2G5Faz12b* z2
bz11a* z2

G ,
where@b

a
a*

2b* #, with uau21ubu251, is an element of SU~2! in the fundamental representation. This
action is symplectic and Hamiltonian,21 and its Lie algebra is spanned by the vector fields:

x̄15x4]12x3]21x2]32x1]4 , x̄252x3]12x4]21x1]31x2]4 ,
~17!

x̄35x2]12x1]22x4]31x3]4 .

Hence, it is easy to prove that the linear vector fieldD̄5( j51
3 Bj x̄j is a Hamiltonian vector field

with a quadratic Hamiltonian, namely

H̄5(
j51

3

Bj f j , ~18!

where

f 15
1

2s
~x1x31x2x4!5

1

2s
Re z1* z2 , f 25

1

2s
~x1x42x2x3!5

1

2s
Im z1* z2 ,

~19!

f 35
1

4s
~x1

21x2
22x3

22x4
2!5

1

4s
~ uz1u22uz2u2!.

Here we can identifyR4 with T*R2 with canonical coordinatesx1, x3 and momentap15x2/2s and
p25x4/2s.

The SU~2! action we are considering leaves the three-dimensional spheres
S3(R)5$(x1 ,x2 ,x3 ,x4):x1

21x2
21x3

21x4
25R2%5$(z1 ,z2):uz1u

21uz2u
25R2% invariant, so that we

can restrict the dynamics from the fullR4 to the submanifoldsS3(R) on which the classical orbits
lie. In the following we chooseR52s and work onS3(2s).

The functions~19! and hence the Hamiltonian~18! have an additional symmetry, being in-
variant under the action of U~1!, given by

~z1 ,z2!°~eiuz1 ,e
iuz2!, uP@0,2p@ .

This allows us to project the Hamiltonian~18! fromS3(2s) down to the two-dimensional manifold
S3(2s)/U~1!, which is homeomorphic to the two-dimensional sphere. Indeed, the three functions
(x1 ,x2 ,x3 ,x4)°Sj[ f j (x1 ,x2 ,x3 ,x4) ~j51,2,3! given in ~19! are the components of the projec-
tion map from the three-sphereS3(2s) to the two-sphereS2(s) of the Hopf bundle,
U(1)→S3→S2.22

On S2(s) the Hamiltonian~18! becomes simplyH5( j51
3 BjSj and therefore coincides with

the Hamiltonian~9! for a spin in a magnetic field. This shows that the latter is the reduction of a
quadratic Hamiltonian defined on a linear manifold. To prove this rigorously, we should show also
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that the restriction toS3(2s) of the symplectic two-formV̄ is the pull-back of the symplectic
two-formV we defined onS2(s). The proof of this statement is straightforward, so we will omit
details here.

The situation we have examined here has some resemblance with the problem discussed, for
example, in Ref. 23, namely with the possibility of finding solutions of the wave and Laplace
equations on the Euclidean planeR2, the two-sphereS2, and the Lobachevski planeL2 by a
descent process, starting, respectively, fromR3,S3,L3. We would like to remark here, however,
that the dynamical system we have chosen to consider onR4 is not equivalent to asinglespin in
a magnetic field. Indeed, the Hamiltonian~18! on R4 simultaneously describes all values of the
spin, the latter getting fixed to the single values only when we restrict the dynamics to the
submanifoldS3(R) with R52s.

III. COHERENT STATE PATH INTEGRALS FOR SPIN

Let us consider now the quantum mechanics of a spinning particle, described by the Hamil-
tonian

Ĥ5B–Ŝ, ~20!

where the spin operatorsŜj ( j51,2,3) satisfy the usual commutation relations~\51!:

@Ŝi ,Ŝj #5 i e i jk Ŝk . ~21!

We have already mentioned in the Introduction that the semiclassical Bohr–Sommerfeld quanti-
zation turns out to be exact for this problem, and this seems to suggest that the stationary phase
approximation to the path integral for the propagator and/or the partition function could be exact
as well. In addition, for such a simple problem, one can evaluate the partition function exactly. Its
expression,

Z~b!5Tr$e2bĤ%5
ebBs

12e2bB 1
e2bBs

12ebB , ~22!

can be thought of as the sum of two terms, each corresponding to one of the two poles of the
sphere (S356s), similarly to what happens in the classical case.

In this section we will briefly review the existing literature on the evaluation of the partition
function for a quantum spin in a magnetic field, and, in particular, on the validity of the stationary
phase approximation applied to this problem.

Let us begin by considering a setu l & of generalized coherent states4,7 labeled by one or more
continuous variables that we denote collectively asl . The u l & ’s will be assumed to be normalized.
They are, however, overcomplete, because although there is a resolution of the identity associated
with them,

15E dlu l &^ l u, ~23!

with ‘‘ dl ’’ a suitable measure, in general, they fail to be an orthonormal set:^ l u l 8&Þ0.
Here we are interested in the group SU~2!, which is generated by the spin-operator algebra

~21!. Coherent states7 for a spins ~2s being an integer! can be constructed as

uu,f&5e2 ifŜ3e2 iuŜ2u0&, ~24!

whereu0& denotes the highest-weight state of the spin-s representation of SU~2! (Ŝ3u0&[su0&) and
u,f are the two angular coordinates parametrizingS2: 0<u<p; 0<f<2p. It is well known6,7 that
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^u8,f8uu,f&5Fcosu8

2
cos

u

2
ei ~f82f!/21sin

u8

2
sin

u

2
e2 i ~f82f!/2G2s, ~25!

and that the resolution of the identity associated with spin-coherent states is

15
2s11

4p E
0

2pE
0

p

uu,f&^u,fusin u du df. ~26!

Going back to the general case, letĤ be the Hamiltonian of a quantum system. The matrix
element of the propagator,

K~ l F ,l I ,T!5^ l Fue2 iĤ Tu l I&, ~27!

can be represented as the following path integral:

K~ l F ,l I ,T!5 lim
e→0

E )
k51

N

~dlk!)
k50

N

^ l k11ue2 i eĤu l k&, ~28!

wheree5T/N and u l 0&[u l I&,u l N11&[u l F&. Equation~28! can be rewritten as

K~ l F ,l I ;T!5 lim
e→0

E )
k51

N

~dlk!)
k50

N

eiA~ l k11 ,l k!, ~29!

where

A~ l k11 ,l k!52 i ln^ l k11u l k&2eH~ l k11 ,l k! ~30!

and

H~ l k11 ,l k!5
^ l k11uĤu l k&
^ l k11u l k&

. ~31!

It is usually assumed that, fore small, u l k11& is so close tou l k& that one is allowed to expand the
former around the latter to leading order ine. This leads to

H~ l k11 ,l k!;H~ l k!5^ l kuĤu l k& ~32!

and to

ln^ l k11u l k&;^d l ku l k&, ~33!

whereud l k&5u l k11&2u l k&. Hence, the continuum version of the path integral reads as

E D l expF i E
0

T

dt@ i ^ l u l̇ &2H~ l !#G , ~34!

whereu l̇ &5du l &/dt. This procedure is justified when the Hamiltonian contains an explicit kinetic
term that can act as a regulator, concentrating the functional measure on continuous paths. This is
the case of the Wiener integral, where24,25the measure is concentrated on pathsq(t) satisfying the
Lipschitz condition:uq(t1e)2q(t)u5O(e1/2). The same holds true for the Feynman path inte-
grals for massive particles in not too singular potentials.1
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In the case of spin, the Hamiltonian~20! contains no regulators and the straightforward
application of ~32! and ~33! is questionable. We will see, indeed, that it may lead to serious
problems. Let us be more specific. Taking again the magnetic field along the positivez axis we
have, in terms of spin-coherent states~24!:

^ l uĤu l &→^u,fuĤuu,f&5sB cosu ~35!

and

i ^ l u l̇ &→ i ^u,fu
d

dt
uu,f&5s cosuḟ. ~36!

So we obtain the path integral:

^uF ,fFue2 iBŜ3Tuu I ,f I&5E DV expF i E
0

T

@s cosuḟ2sB cosu#dtG , ~37!

whereDV5sinuDu Df. From ~37! we can obtain the canonical partition functionZ~b! by
settingT52 ib,uuF ,fF&5uu I ,f I& and by tracing over the angles. Following the standard proce-
dure and Ref. 8, we evaluatedZ~b! by time slicing the path integral and using the resolution of
the identity~26! at each intermediate~Euclidean! time. In order to include paths turning around the
North Pole any number of times, we had to extend, at every time slice, the domain of integration
of the variablef from @0,2p# to @2`,1`#. In fact without following such a procedure one would
have gotten, as in Ref. 8, a completely wrong partition function. Denoting withZN~b! the result
for N time slices, we found for it, without any further approximation, the expression13

ZN~b!5S 11
1

2sD
N

Z~b!, ~38!

whereZ~b! on the right-hand side is the exact partition function~22!.
As one can easily notice by simple inspection, in the limitN→`,ZN coincides with the exact

partition function up to a diverging prefactor. Such divergency disappears only in the classical
limit, namely\→0, s→`, with \s5const. On the other hand, the only approximations we used
are those given by Eqs.~32! and mainly~33!, which again are exact in the classical limit. In the
sequel of this paper we shall come back to this point.

We discuss now briefly two different approaches5,16 that lead to the conclusion that in the case
of a spinning particle in a magnetic field the stationary phase approximation to the path integral for
the propagator does indeed yield the exact result. This holds again up to a normalization factor not
taken into account in Refs. 15 and 16, since the calculation is done in the continuum.

Klauder5 has proposed a modified form for the action that appears in the path integral~34!,
redefining the latter as

K~ l F ,l I ;T!5 lim
e→0

E D l expF i E
0

T

dtF i ^ l u l̇ &1
1

2
i e^ l̇ u~12u l &^ l u!u l̇ &2H~ l !G G . ~39!

The prescription here is that the limit fore→0 should be taken after having evaluated the path
integral in the stationary phase approximation. For the case of a spin in a magnetic field,~39!
becomes

K~uF ,fF ,u I ,f I ;T!5 lim
e→0

E DV expF i E
0

TFs cosuḟ1
1

4
ise~ u̇21sin2 uḟ2!2sB cosuGdtG ,

~40!
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and the action in~40! becomes essentially that of a particle of charges and massm51/2se
moving on the two-sphereS2, coupled both with a magnetic monopole of unit strength located at
the center of the sphere and with a constant electric-type field directed along thez axis. In this
context, Dirac’s quantization condition26 becomes identical with the spin quantization condition,
i.e., 2s5integer.

The classical equations of motion that can be derived from the action in~40! are now second
order in time foreÞ0, and hence are not plagued by the already mentioned problem of overde-
termination. Klauder has proved that they can be solved explicitly and that the resulting stationary
phase approximation to the path integral~or, better, what he calls the ‘‘dominant stationary phase
approximation,’’ namely approximating the path integral witheiScl, without any prefactor origi-
nating from the integration of Gaussian fluctuations! is indeed exact. Actually, only the free-spin
caseB50 has been considered in Ref. 5, but the extension toBÞ0 is straightforward.13 It should
be noted, incidentally, that the term that Klauder has added to the action is in the form of a kinetic
energy term, thus providing the required regulator justifying the assumption of continuously
varying paths.

The origin of the additional kinetic-type term, that looks somewhat mysterious in Klauder’s
original paper,4 can be clarified as follows. If we push the expansion of the logarithm in~33! one
step further beyond first order, we obtain, withud l &;eu l̇ &1e2/2u l̈ &:

ln^ l k11u l k&;e^ l̇ ku l k&1
e2

2
^ l̈ ku l k&2

e2

2
~^ l̇ ku l k&!2, ~41!

leading, in the continuum limit, to

lim
e→0

expF i E
t i

t f
dtF i ^ l u l̇ &1

1

2
i e~2^ l̈ u l &1^ l̇ u l &^ l u l̇ &!G G , ~42!

where we have used̂l u l̇ &52^ l̇ u l &. A final integration by parts of the term containing the second
derivative yields precisely Klauder’s additional term.

Suzuki16 has adopted quite a different approach. Introducing two additional resolutions of the
identity, the propagator

K~ l F ,l I ,T!5E
l ~0!5 l I

l ~T!5 l F
D l eiAFI ~ l !, ~43!

where

AFI~ l !5E
0

T

dt@ i ^ l u l̇ &2H~ l !#, ~44!

is rewritten in Ref. 16 in the form

K~ l F ,l I ,T!5E E dl f dl i^ l Fu l f&^ l f ue2 iĤ Tu l i&^ l i u l I&5E E dl f dl i^ l Fu l f&^ l i u l I&E
l ~0!5 l i

l ~T!5 l f
D l eiAfi~ l !.

~45!

In general, the parameter~s! l labeling a coherent state can be defined in terms of the expectation
values of a suitable set of operators: position and momentum for the free particle and the harmonic
oscillator, spin components in the case of spins. Taking then the latter as Cauchy data for the
canonical equations of motion, one can determine how they evolve classically in time, thus
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determining a ‘‘classical’’ coherent stateu l (t)& as the coherent state labeled byl (t), the evoluted
at time t of any given initial parameter setl . Then, Suzuki has argued that the stationary phase
approximation to the last integral leads to

E
l ~0!5 l i

l ~T!5 l f
D l eiAfi~ l !;d„l f2 l i~T!…eiAfi, ~46!

where l i(T) is the evoluted at timeT of l i , and that the final result of the application of the
stationary phase approximation is the semiclassical propagator,

Ksc~ l F ,l I ,T!5E dli^ l Fu l i~T!&^ l i u l I&eiAfi, ~47!

whereAfi is the classical action evaluated along the classical path leading froml (0)5 l i to l (T).
Once again, the semiclassical propagator~47! yields the exact result for the propagator of a
spinning particle.

We would like to show here that the possible exactness of Eq.~47! has very little to do with
the path integral formalism itself, and that it follows rather from a single assumption, one that
amounts basically to assuming that the Ehrenfest theorem be applicable in the present case. Letl̂
be the set of operators whose expectation values label a given coherent state. To each coherent
stateu l & we can associate two different time-dependent states: the ‘‘classically’’ time evoluted state
u l (t)& defined above, and therefore such that

^ l ~ t !u l̂ u l ~ t !&5 l cl~ t !, ~48!

l cl(t) being the classical trajectory; and the quantum time evoluted stateu l ,t& obtained through the
application of the full quantum evolution operator:

u l ,t&5e2 iĤ tu l &. ~49!

We require now the expectation values on the quantum evoluted state to evolve in time according
to the classical equations of motion:

^ l ,tu l̂ u l ,t&5 l cl~ t !. ~50!

In other words, we are assuming, as anticipated, the validity of the Ehrenfest theorem. A sufficient
condition for this to happen is that the Heisenberg equations of motion be linear equations. This is
certainly true for quadratic Hamiltonians with conventional canonical coordinates and momenta
and the standard Poisson brackets among them. For spins, the Hamiltonian~4! is not of the
quadratic type, but the Poisson brackets~1! lead, nonetheless, to linear equations of the motion,
and hence to the validity of the Ehrenfest theorem. If we now assume that the set of operatorsl̂ act
irreducibly on the Hilbert space of states~which is true, e.g., for harmonic oscillators and for spin
systems!, the two statesu l ,t& and u l (t)& will differ, at most, by a phase, i.e.:

u l ,t&5eix~ t !u l ~ t !&. ~51!

Differentiating with respect to time, we obtain

^ l ~ t !u
d

dt
u l ~ t !&52 i ẋ11^ l ,tu

d

dt
u l ,t&, ~52!

and hence
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^ l u l̇ &cl52 i ẋ2 i ^ l ,tuĤu l ,t&. ~53!

If, as it is presently the case, the Hamiltonian does not contain time derivatives, we obtain,
furthermore,

ẋ5 i ^ l u l̇ &cl2^ l ~ t !uĤu l ~ t !&5 i ^ l u l̇ &cl2H„l ~ t !…, ~54!

and eventually, integrating the last equation and up to an irrelevant constant phase,

x~ t !5E
0

t

@ i ^ l u l̇ &cl2H~ l !#dt8. ~55!

The rhs of~55! is exactly the classical action, hencex(t)5Acl(t). Then Suzuki’s result follows at
once from

K~ l F ,l I ,T!5^ l Fue2 iĤ Tu l T&5E dli^ l Fue2 iĤ Tu l i&^ l i u l I&5E dli^ l Fu l i~T!&^ l i u l I&eix~T!

5E dli^ l Fu l i~T!&^ l i u l I&eiAfi, ~56!

which is the desired result.
Let us analyze~56! in the specific case of a spinning particle. As already pointed out, the

Hamiltonian ~4! leads to linear Heisenberg equations of motion and hence to the validity of
formula ~56!. It seems to us that this is the ultimate reason for the apparently surprising fact that
stationary phase approximation to path integrals and/or semiclassical quantization leads to the
exact result for the quantum propagator of a spinning particle. We would like to stress here that
this is also true for the motion in a magnetic field with an arbitrary dependence on time. Formula
~56! reduces therefore the quantum problem of the calculation of the spin propagator in an arbi-
trary magnetic field to the solution of the classical equation of motion.

The expression for the propagator can, of course, be worked out explicitly only when the
classical equation of motion can be solved analytically. With a constant magnetic field along thez
axis, formula~47! reads as

K~uF ,fF ,u I ,f I ;T!5
2s11

4p E dV i^uF ,fFuu i~T!,f i~T!&^u i ,f iu I ,f I&e
iAcl. ~57!

Since the solutions of the classical equations of motion areu i(T)5u i ; f i(T)5f i1BT, while
Acl50, the above expression becomes

K~uF ,fF ,u I ,f I ;T!5
2s11

4p E dV i^uF ,fFuu i ,f i1BT&^u i ,f i uu I ,f I&. ~58!

The integral in ~58! can be done easily by noting that̂uF ,fFuu i ,f i1BT&5^uF ,fF

2BTuu i ,f i& and using the resolution of the identity. We obtain, eventually,

K~uF ,fF ,u I ;f I ;T!5^uF ,fF2BTuu I ,f I&, ~59!

which indeed gives the exact propagator, upon using formula~25! for the overlap of two coherent
states.
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IV. THE COMPLEX SADDLE POINT

We devote this section to another approach to the path integral for spin. It has been used, for
example, in Refs. 15 and 27, where, however, only continuous and hence formal expressions for
the action and the path integral have been studied.

Here we will study the path integraldiscreteversion for the propagator~34!. The method is
based on a different choice of the spin-coherent states. Instead of~24!, we consider the following
states, labeled by a complex parameterm:

um&5
emŜ2

~11umu2!s
u0&, ~60!

where we have setŜ65Ŝ16 iŜ2 . To be more precise,m parametrizes the homogeneous space
SU~2!/U~1!5S2 by means of the stereographic projection ofS2 onto R2. With respect to the
spherical coordinatesu andf used previously, one hasm5tan~u/2!eif, and it is also not difficult
to check that the state~60! coincides up to a phase with the stateuu,f& defined in~24!.

To write down an explicit expression for the path integral in terms of the coherent states~60!,
we need the matrix elements

^lum&5
~11l*m!2s

~11umu2!s~11ulu2!s
, ^luŜ3um&5^lum&s

12l*m

11l*m
,

~61!

^muṁ&5
s

11umu2 ~ṁm*2ṁ*m!,

and the explicit formula for the resolution of the identity:

2s11

p E d2m

~11umu2!2
um&^mu51, ~62!

whered2m5d~Rem!d~Im m!. After some algebra, one finds that the path integral representation
of the propagator is given by

K~mF* ,m I ;T!5E m~0!5m I

„m~T!…*5mF*

d2m

~11umu2!2
eA, ~63!

where the action for a spin in a magnetic field is

A5 isE
0

T

dtS i ṁm*2mṁ*

11umu2
2B

12umu2

11umu2D . ~64!

Again, the saddle point equations that are derived by extremizing~64!:

ṁ5 iBm, ṁ*52 iBm* , ~65!

are first order, so that they do not admit a solution for boundary conditions of the form

m~0!5m I , „m~T!…*5mF* , ~66!

with arbitrarymI andmF .
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This problem does, however, admit of solutions15,28 if we enlarge our variable space fromC
toC2, and look for saddle point solutions for whichm(t) andm* (t) arenotcomplex conjugate one
of the other. In other words, we have to considerm andm* as independent complex variables, and
look for solutions of~65! satisfying the boundary conditions

m~0!5m I , m* ~T!5mF* . ~67!

These so-called complex saddle point solutions are easily found to be

m~ t !5eiBtm I , m* ~ t !5eiB~T2t !mF* , ~68!

and, to complete the stationary phase approximation, one has further to evaluate the contributions
of the Gaussian fluctuations around the solutions~68!.

This has been done by the authors of Refs. 15 and 27, who have concluded that one can obtain
the exact propagator in this way. They have, however, worked with the continuous expression
~64!, and therefore they have performed only formal calculations. Funahashiet al.29 have consid-
ered the discrete version of the integral, but they have applied a stationary phase approximation to
the calculation of the partition function only. This problem, as pointed out by the same authors, is
simpler than the calculation of the propagator, since the overdetermination problem can be over-
come without enlarging the variable space fromC to C2.

Our aim in this section is to examine whether the stationary phase approximation to the path
integral~63! is exact, by performing the calculation in thediscreteversion of the path integral. The
latter is given by~29!, where now the generic indexl stands for the complex parameterm. By
using ~61! and rearranging the terms, one eventually gets

K~mF* ,m I ,T!5N E )
j51

N21
d2m j

~11m j*m j !
2 e

A, ~69!

with

N 5S 2s11

p D N21 1

~11umFu2!s~11um I u2!s
, ~70!

whereas the discretized actionA is given by

A5(
j51

N

@Aj , j211Hj , j21#12s ln~11mF*mN!, ~71!

Aj , j21[2s ln
11m j*m j -1

11m j*m j
~72!

Hj , j2152 iBse
12m j*m j21

11m j*m j21
. ~73!

The expression forAj , j21 given in ~72! comes from the exponentiation of the overlaps
^m j um j21& ( j51,...,N). Let us remark that we havenotexpanded the overlaps to first order in the
difference um j&2um j21&, as is usually done to recover the continuum version@see ~33!#. As
already pointed out, such an expansion would be correct only in the presence of a regulating term
in the action. Thus, we will work only with~72! and we will proceed now to evaluate the
stationary phase approximation to the multidimensional integral~69!, according to the formula
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K~mF* ,m I ,T!sc5N )
j51

N21 S 1

~11m j*m j !
2D

cl

eAcl
pN21

~detMN!1/2
, ~74!

whereMN is the 2(N21)32(N21) matrix of quadratic fluctuations around the classical solu-
tions of the discretized action~71!:

A5Acl1~dm1* ,dm1 ,...,dmN21* ,dmN21!MNS dm1

dm1*
A

dmN21

dmN21*

D . ~75!

The subscript ‘‘cl’’ means that the function~the action in this case! has to be evaluated on the
classical solution, which satisfies the saddle point equations:

m j11* 2m j*

11m j*m j
52 i eB

m j11*

11m j11* m j
,

~76!
m j2m j21

11m j*m j
51 i eB

m j21

11m j*m j21
.

In ~76!, as well as in~71!, we have explicitly writtenumj u
2 asm jm j* to stress the fact that in the

search of the saddle point solutions we have to treatmj andm j* as independent complex variables.
Indeed, exactly as in the continuum, the equations~76! are incompatible with the boundary
conditions

m05m I , mN*5mF* , ~77!

unlessmj andm j* are treated as independent variables.
We know that the classical solution has to fulfill the propertymj11ucl5mj ucl1O~e!, so that we

can approximate the denominators on the right-hand side of~76!, to get

m j11* 2m j*

11m j*m j
52 i eB

m j*

11m j*m j
1O~e2!,

~78!
m j2m j21

11m j*m j
51 i eB

m j21

11m j*m j
1O~e2!.

To ordere, we find for the solutions satisfying the boundary conditions~77! and for the classical
action, the expressions

m j5~11 i eB! jm I , m j*5~11 i eB!N2 jmF* , ~79!

Acl52 isBT. ~80!

To complete the calculation of the right-hand side of~74!, we have to compute the determi-
nant of the Gaussian fluctuation matrixMN . As for the solutions of the classical equations~76!,
we evaluate the matrix elements to the orderO~e!. Neglecting therefore all the terms of at least
orderO~e2!, we find that the only nonzero matrix elements are
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aj[
]2A

]m j* ]m j
U
cl

5
]2A

]m j ]m j*
U
cl

5
22s

~11m j*m j !
2U
cl

5
22s

„11~11 i eB!NmF*m I)
2 , ~81!

bj[
]2A

]m j ]m j11* U
cl

5
]2A

]m j11* ]m j
U
cl

5F 2s

11m j11* m j
G
cl

F 1

11m j*m j
1 i eB

1

~11m j11* m j !
2G

cl

5
2s~11 i eB!

„11~11 i eB!Nm ImF* )
2 . ~82!

Defining

Ai5S ai 0

0 ai
D , Bi5S 0 0

0 bi
D , Ci5S bi 0

0 0D , ~83!

the matrixMN is given by

MN5S A1 B1

C1 A2 B2

�

CN23 AN22 BN22

CN21 AN21

D . ~84!

Thus, we have

detMN5a1
2•••aN21

2 5F 22s

„11~11 i eB!Nm ImF* …
2G2~N21!

, ~85!

which can be finally inserted, together with~80!, in ~74!, yielding

K~mF* ,m I ,T!sc5S 11
1

2sD
N21 e2 isBT

„11m ImF* ~11 iBT/N!N…2s

~11umFu2!s~11um I u2!s
. ~86!

This is again the expected result up to the divergent normalization factor (111/2s)N21. Indeed,
since limN→`(11 iBT/N)N5eiBT, but for the prefactor, we obtain

K~mF* ,m I ,T!sc5
e2 isBT~11m ImF* e

iBT!2s

~11umFu2!s~11um I u2!s
, ~87!

which coincides with the exact propagator.

V. CONCLUSIONS

In this paper we have examined the problem of spin in a magnetic field. We have seen that the
stationary phase approximation applied to the calculation of the classical partition function yields
the correct result. In quantum mechanics the situation is more complicated. We have reexamined
the different approaches that have been used in literature to prove the exactness of stationary phase
approximation in the calculation of the quantum propagator and partition function. All these
methods, in particular those proposed by Klauder5 and Keski-Vakkuriet al.,15 make use of the
continuum expression of the path integral, and hence reproduce the correct result only formally.

To test the validity of the stationary phase approximation for a spin system, we decided to
work with the very definition of the path integral, namely with its discrete version. We have
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written the discrete path integral for the partition function and the propagator in terms of spin
coherent states and then considered two different kinds of approximations. In Sec. III we have
expanded the overlaps^ l ku lk21& to first order ine5T/N and then performed an exact integration.
On the contrary, in Sec. IV we have made no expansion for the overlaps and applied instead the
complex saddle point method to evaluate the stationary phase approximation of the path integral.
In both cases, we have found that the exact result is reproduced correctly only up to an infinite
normalization factor, limN→`(111/2s)N, which goes to 1 in the classical limits→`, provided the
latter is performed first. Notice that this fact is not a drawback just of the Hamiltonian for a
spinning particle. Indeed, one can repeat easily the calculation forH[0 and get the same infinite
constant.

A very similar conclusion has also been reached by Enz and Schilling.11 They have examined
the semiclassical theory for the tunneling of a magnetic ion in a crystal field and an applied
magnetic field. In particular, they have calculated the quantum ground state energyE0, which
classically is doubly degenerate, as well as the tunnel splitting energyDE0 as a function of the
spins. By performing the calculations by means of spin-coherent states, they have found that the
path integral does not yield the correct semiclassical results for these physical quantities.

All this seems to suggest that, for those Hamiltonians that do not contain a regulating term
~such as a kinetic part!, any approximation that restricts the class of quantum paths in phase space,
by imposing some regularity conditions on them, yields a wrong result. In our case this shows up
in the appearance of an infinite prefactor.

We would like to conclude by commenting on the paper by Funahashiet al.,29 who have been
able to reproduce the exact partition function~with the correct prefactor! by performing the
stationary phase approximation in the discrete path integral, written again in terms of spin-
coherent states. They have obtained this result by also taking into account the Gaussian fluctua-
tions coming from the factor 1/~11umu2!25sinu/4 appearing in the integration measure. We do not
want to explain this technique, which is described in detail in Ref. 29. Here we notice only that the
inclusion of fluctuations coming from the measure induces a shift in the multiplicative factor
appearing in front of the action from 2s to 2s11. Effectively, we can say that such a method
amounts to choosing 2s11 as a parameter for the semiclassical expansion. If so, we should not
evaluate the path integral following~74!, but according to

K~mF* ,m I ,T!sc5N )
j51

N21 S e2Ã/~N21!

~11m j*m j !
2D

cl

pN21e~2s11!Ãcl

~det M̃N!1/2
, ~88!

whereÃ5A/2s and M̃N is the matrix of Gaussian fluctuations of (2s11)Ã around the classical
solution, so that

det M̃N5a1
2•••aN21

2 5F 22~s11!

~11~11 i eB!Nm ImF* !2G
2~N21!

. ~89!

It is exactly the factor 2s11 in ~89! that cancels the same factor inN , yielding the correct
propagator.

This is quite a remarkable result. In our opinion, however, the derivation presented in Ref. 29
needs some clarification. To us, it seems to be inconsistent to include Gaussian fluctuations of the
measure factor in the calculation of the stationary phase approximation without considering also
its contributions to the saddle point equations. In Ref. 29 this method works only because the first
derivatives of the measure factordo vanish at the classical solution, which in this case correspond
to m50 orm5` ~u50, p in angular coordinates!. But this would not be the case in slightly more
complicated situations, for example for the calculation of the propagator or when considering
complex saddle point solutions.
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APPENDIX: THE DUISTERMAAT–HECKMAN THEOREM

Let us consider an oscillatory integral of the kind

I ~ t ![S t

2p D nE
M

seit f , ~A1!

over a (2n)-dimensional manifoldM with volume forms. If M is a Riemannian manifold, under
rather mild hypotheses, namely that the functionf be a Morse function, i.e., that the Hessian
matrix of f be nonsingular at all critical points off @det HessP( f )Þ0 if “f (P)50#, it is possible
to show30 that for large values of the parametert, one has

I ~ t !5(
P

cPe
it f ~P!1O~ t21!, ~A2!

where the sum ranges over all critical points off and the coefficients are given in terms of the
determinant of the Gaussian fluctuations off around the critical points:

cP5expF i p

4
sgn HessP~ f !G@det HessP~ f !#21/2. ~A3!

Here the signature sgnA of a symmetric real-valued nonsingular matrixA is defined as the
number of its positive eigenvalues minus the number of its negative eigenvalues.

Everybody is familiar with the elementary result that the remainder termO(t21) vanishes
identically ifM is the linear manifoldR2n with volume forms5dx1•••dx2n, and the functionf is
a quadratic form:f5 1

2QxW–xW2jW–xW , Q being any symmetric real-valued (2n)-dimensional nonsin-
gular matrix. In this case, the only critical point off is xW05Q21jW and HessxW0( f ) 5 Q, so that~A2!

with O(t21)[0 gives simply the formula for a Gaussian integral.
The theorem of Duistermaat–Heckman17 and its generalization due to Berline and Vergne18

establish under which conditions an integral of the kind~A1! can be exactly evaluated in the
stationary phase approximation, i.e., whenO(t21)[0.

LetM be a compact (2n)-dimensional manifold with symplectic two-formV and supposeM
is acted upon by a compact Lie groupG, whose action is symplectic and Hamiltonian.30 Let us
denote withxh the fundamental vector field onM generated by the action of the elementh in the
Lie algebraḠ ofG and withf h the associated Hamiltonian function~i xh

V 5 d fh , wherei denotes
the contraction!. Then, if xh is nondegenerate, i.e., if it is zero only at the fixed points ofG, the
following results hold:30

~1! f h is a Morse function;
~2!

S t

2p D nE
M

Vn

n!
eit f h5(

P
cPe

it f h~P!, ~A4!

where the the sum ranges over the critical points off , i.e., over the pointsP, such thatxh(P)50
and the coefficientscP are given by

cP5
i n

l1l2•••ln
, ~A5!

thelj ’s being the coefficients appearing in the matrixLP of the derivatives atP of the components
of the vector fieldxh , [LP]

i j5(]xh
i /]xj )P , which in a suitablepositively orientedbasis can

always be written as
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LP53
0 l1

2l1 0

0 l2

2l2 0

••• 0 ln

2ln 0

4 .
If M is equipped with a Riemannian metric, formula~A5! is seen to coincide with~A3!.

From a physical point of view,~A4! can be applied to classical statistical mechanics for the
computation of the partition function:

Z5E
M

Vn

n!
e2bH. ~A6!

In this case the vector fieldxh is given by the Hamiltonian vector fieldDH, where nowH plays the
role of the functionf h . The assumptions of the Duistermaat–Heckman theorem requireDH to be
nondegenerate and to be the fundamental vector field associated with an elementh of the Lie
algebraḠ of a compact Lie groupG, acting symplectically on the manifoldM . If these two
conditions holds, we can apply formula~A4! to conclude that~we have setb52i t !:

Z~b!5S 2p

ib D n(
P

cPe
2bH~P!, ~A7!

where~i! the sum ranges over the stationary points of the Hamiltonian,DH(P)50; ~ii ! the coef-
ficientscP are given by~A5! in terms of thelj ’s, the latter being the coefficients of the matrix
[LP] i j5(]DH

i /]xj )P , written in a suitable positive oriented basis.
Let us go back now to the problem of a spin in a magnetic field. We want to show that the

Duistermaat–Heckman theorem can be applied to this problem, so that theexactpartition function
can be calculated by means of formula~A7!. The Hamiltonian vector field associated to the
Hamiltonian~9! is

D5BS 2S2
]

]S1
1S1

]

]S2
D , ~A8!

and it is easy to recognize that it is proportional to the generatorxh5]/]f of the rotations about
the third axis~i.e., the axis along the constant magnetic field!. Thus, the Lie group that acts
symplectically on the phase space manifoldS2(s) is simply given byU~1! in this case.

To apply ~A7! we have, first of all, to find the critical points of the Hamiltonian, which are
given by the North and the South Poles of the sphere:

P6[~0,0,6s!, ~A9!

and then to compute the coefficientscP6
according to~A5!. In the tangent space ofP1 andP2 ,

we choose to work with the positively oriented basis (]/]S1 ,]/]S2) and (]/]S2 ,]/]S1), respec-
tively. With respect to these bases,

LP6
~D!57BF 0 1

21 0G , ~A10!

so that
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cP6
57

i

B
. ~A11!

We can finally compute the partition function in the stationary phase approximation as

Z5
2p

bB
~ebBs2e2bBs!, ~A12!

which, in agreement with the Duistermaat–Heckman theorem, coincides with the exact partition
function ~15! for a spin in a magnetic field.
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We find both radially symmetric and more general solutions in a Chern–Simons–
Higgs model with a Higgs doublet. They are of the kind of the so-called semilocal
defects, and show richer properties than those previously known in another type of
Higgs models. ©1996 American Institute of Physics.@S0022-2488~96!00602-2#

I. INTRODUCTION

Planar solitons arising in models enjoying both global and gauge, i.e. local symmetries, have
been recently discovered by Vachaspati and Achu´carro.1 They are called semilocal topological
defects and fit in the general theme of cosmological strings,2 although not always the magnetic
flux is concentrated. The appearance took place in the extended Higgs model, the bosonic sector
of the Standard Model at Weinberg angleQW5p/2, where the SU~2!-weak isospin symmetry
becomes global, in the search for stable strings in variations of the Electroweak Theory.3

The problem of studying the stability of semilocal topological defects was addressed thereaf-
ter by Hindmarsh,4 who showed by numerical computations that they are indeed stable. He also
made the important observation that semilocal topological defects are hybrids ofCP1 lumps and
Higgs vortices; the solution depends on a continuous parameter varying between zero and infinity,
such that at the extreme values it is either a Higgs vortex or aCP1 lump.

The apparent paradox of finding stability without meeting the necessary topological condi-
tions, at least at first sight, attracted a lot of attention to the problem. In an interesting paper,5

Gibbonset al. observed that the crux of the matter is the Hopf fibration, and they were also able
to recognize the moduli space of solutions by means of an analysis a` là Jaffe–Taubes.6 Their
results were used in Ref. 7 by Leese and Samols to elucidate the low-energy scattering of these
semilocal topological defects as geodesic motion in their moduli space.

In this paper we address the issue of the existence of semilocal topological defects in a similar
model. We consider an extended Chern–Simons–Higgs theory: the generalization of the model
thoroughly discussed by Jackiwet al. in Ref. 8 to a doublet of Higgs fields. The charged scalar
fields are assembled in the fundamental representation of SU~2!, which is a global symmetry of the
Lagrangian; meanwhile they are minimally coupled to a U~1! gauge field for which the kinetic
energy is of the Chern–Simons form. The richest structure of the set of Chern–Simons–Higgs
planar solitons as compared to the solitons of the Abelian Higgs model tells us that a detailed
analysis of the model is worthwhile. We thus find, besides the expected semilocal topological
defects associated to the topological vortices of the CSH model, a new kind related to the so-called
nontopological solitons with or without vorticity. We present both radially symmetric solutions
solving an interesting mechanical problem by applying the methods of Spru¨ck and Yang9 and
describe more general situations using the ideas of Wang.10 This latter approach, combined with
index theorems a` là Weinberg,11 afford us a good knowledge of the moduli space with specially
interesting results in the nontopological sectors.

From a phenomenological point of view, the model could provide a Ginzburg–Landau theory
of the kind proposed by Kivelsonet al.12 for the Fractional Quantum Hall Effect. A pathology in
the filling factor series with fractionn5 5

2 has been discovered by Eisesteinet al.13 Hall conduc-
tivity rxy5

5
2(h/e

2) is anomalous, in the sense that even denominators are very rare. Moreover, the
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same team of experimentalists has determined that the incompressible state is not completely spin
polarized.14 The electron wave function is a spinor and the procedure of Ref. 12, leading from the
microscopic theory to a phenomenological model in a parallel development, where the electrons
are not polarized, requires a spinorial order parameter and free energy obtainable from our La-
grangian by looking at static configurations. Finally, we expect links between our vortices and
Laughlin states similar to those occurring in the usual case of completely polarized electrons and
odd denominator fractions~see Ref. 12!.

The organization of the paper is as follows: In Sec. II, we present the model, analyze the
topology of the configuration space, and propose the self-duality equations. We perform the study
of radial solutions in Sec. III. Solutions with arbitrary centers as well as their moduli space are
discussed in Sec. IV. To conclude, we elaborate in Sec. V on the stability of the semilocal
topological defects and speculate on how to study the low-energy scattering.

II. THE MODEL

Our model is described by the action

S5E d3xH k

4
eabgAaFbg1

1

2
DmF†DmF2U~F!J , ~1!

where the tridimensional Minkowski space–time metric ishmn5diag~1,21,21!, F 5 (f2

f1) is a

doublet of complex scalar fields,DmF5]mF2 iAmF, and U(F)5(l/8)F†F(F†F21).2 This
system shows gauge invariance against the hybrid global-localSU(2)3U(1) transformations,

F→F85e~ i /2!vasaeix~x!F, ~2!

Am→Am8 5Am1]mx, ~3!

where$sa% a51,2,3 are the Pauli matrices and theva coefficients do not depend on the coordi-
nates. This type of mixed Symmetry is called semilocal.1 The action functional~1! is akin to the
action for the bosonic sector of electroweak theory at Weinberg angleQW5p/2; here the Maxwell
terms for the neutral fields are replaced by the Chern–Simons term for theAm field, the counter-
part of the massiveZ field of the weak interactions. The SU~2! global symmetry would correspond
thus to weak isospin symmetry, whereas the U~1! gauge group would be connected to the hyper-
charge.

The choice of the scalar potentialU(F), however, is guided by the expectation of self-duality
in the conventional Chern–Simons–Higgs model.15 The theory exhibits two phases, respectively,
built around the two degenerate vacua: the symmetricF50 and the asymmetric$F†F51%. In the
symmetric phase, the symmetry remains totally unbroken and four scalar bosons of massms

5 Al/2 arise, while the vector field does not propagate. In the asymmetric phase, the Higgs–
Kibble mechanism takes place to produce one scalar particle of massmH 5 Al and one vector
meson of massmA51/k. There are also two Goldstone bosons, the broken SU~2! symmetry is
global, and we are left with a global U~1! symmetry that is the diagonal subgroup of U~1!3U~1!
corresponding to the electromagnetic charge.

Classically, the dynamics follows from the field equations yield by varying~1!:

k

2
emabFab5Jm, ~4!

Dm DmF52
]U

]F† , ~5!
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whereJm52( i /2)[F† DmF2F DmF†] is a conserved current. Among them is specially inter-
esting the modified Gauss law,

kF125J052A0F
†F2

i

2
@F† ]0F2F ]0F

†#, ~6!

or, in integral terms,

Q5E d2x J05kE d2x F125kFM ; ~7!

this equality forces the particle-like excitations of the model to be anionic.16

Our interest in this paper is limited to the study of the topological and nontopological defects
emerging from~1!, and so we will work in the spaceC of finite energy stationary configurations.
For stationary configurations satisfying the modified Gauss law~6!, the energy is minus the action
by unit of time:E5* d2x T0052S/T. Plugging~6! in ~1!,

E5E d2xH 14 k

F†F
Fi j Fi j1

1

2
DkF

†DkF1U~F!J , ~8!

and we obtain a semilocal Higgs generalized model where a dielectric functionG(F)5k/F†F is
incorporated.17 Finite energy implies

F12u]R250, DkFu]R250, Fu]R2PV, ~9!

V5$F50 or F†F51%>$0%øS3 being the vacuum orbit of the scalar field. Due toP0(V)5Z2 ,
we can define a topological charge,

Q0
T :C→Z2 , Q0

T5F†Fu]R2, ~10!

but the surprising fact is that, althoughP1(V)5$0%, the Hopf fibrationS3„CP1,U(1)… allows us
to introduce a vortical topological charge,S3 being locally isomorphic toCP13U(1).1 The
reason is that for the covariant derivative to vanish in the infinity of the plane whenQ0

T51, it is
necessary thatF(`,u)5g(`)F0 , whereg is a map from]R2>S1 to the U~1! fiber ofS3 passing
byF0. In addition,Amu]R2 5 2 ig21]mg, so that (1/2p)r]R2Am dxm gives the winding number of
g. Thus

Q1
T :C→Z, Q1

T5
1

2p R
]R2

Am dxm5
FM

2p
~11!

is a topological charge. As a consequence,C breaks in topological sectors as follows

C5ø lPZC 0
l ønPZC 1

n , Q0
T@C a

b#5a, Q1
T@C a

b#5b. ~12!

Now, the problem is to find solutions of the field equations inC space. We can proceed by
realizing that~8! admits the splitting

E5E d2xH k2

2F†F FF127
Al

2k
F†F~12F†F!G21 1

2
uD1F6 iD 2Fu2J

6
1

2 E d2x F126
1

2
~kAl21!E d2x~12F†F!F12. ~13!
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In the Bogomolny limitAl 5 1/k ~i.e.,mA5mH5m!, we have a lower bound for the energy,
E> 1

2u* d2x F12u, and the bound is reached if and only if the Bogomolny equations,

F1256
m2

2
F†F~12F†F!, ~14!

D1F6 i D 2F50, ~15!

are satisfied. Configurations fulfilling~14!, ~15! are minima of the energy functional, and thus also
represent solutions of the second-order Euler–Lagrange equations.

III. RADIALLY SYMMETRIC SOLUTIONS

We will now be concerned with the search for radially symmetric solutions of~14!, ~15!. By
applying a global SU~2! and a local trivial U~1! transformations, any configuration of such a kind
can be set in the general form

F5Fg~r !einu

h~r ! G , Ak5ek j
a~r !2n

r 2
xj , ~16!

whereg(r )PR andh(r )PC. Substitution of the ansatz~16! in ~14!, ~15! gives

1

r

da

dr
5
m2

2
~g21uhu2!~g21uhu221!, ~17!

dg

dr
5
ag

r
, ~18!

dh

dr
5
a2n

r
h. ~19!

Given that~16! is tantamount toAr50, Au5n2a(r ) for configurations in theC l
n sector,

regularity at the origin imposes the conditions

ng~0!50, h~0!5h0e
ig, a~0!5n, ~20!

and finite energy requires

g~`!5 l , h~`!50, a~`!5~ l21!a, ~21!

wherea priori h0, a are arbitrary real numbers that determine, together withn andl , the behavior
of the solutions, both at the origin and infinity. From~18!, ~19!, h(r )5Kg(r )/r n, KPC, and by
definingv(r )5 1

2 ln g(r )1ln(11uKu2/r 2n) the system~16!–~19! reduces to

d2v
dr2

1
1

r

dv
dr

5m2ev~ev21!1
4n2uKu2r 2n22

~r 2n1uKu2!2
, ~22!

F5
1

Ar 2n1uKu2
S r neinu

K Dev~r !/2, a~r !5
1

r

dv
dr

1
nuKu2

r 2n1uKu2
. ~23!

Equation~22! adopts a particularly appealing form by making the changet5ln r ~from a geomet-
ric point of view, an isometric transformation from the plane to an infinite cone! that leads to
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v̈5m2e2tT~v !1F~ t !, ~24!

where T(v)5ev(ev21), F(t)54n2uKue2nt/(e2nt1uKu2)2. Thus, we are facing a mechanical
problem: one particle whose coordinate isv, submitted to a position and time depending force.
The velocity of the particle is related to the vector fielda by means of

v̇52a2
2nuKu2

e2nt1uKu2
, ~25!

and the boundary conditions~20!, ~21! fix the asymptotic behavior of the movement fort56`.
Accordingly, we will consider each sector separately:

I. C 1
0 sector: HereF(t)50 and v̈52e2t(dU/dv), U5m2ev(12ev/2). From ~20! and ~21!

we get

v~2`!5v0 , v̇~2`!50, ~26!

v~1`!50, v̇~1`!50. ~27!

A glance at Fig. 1 leads us to the conclusion thatv(t)50 is the only possible solution compatible
with ~26! and ~27!, leading therefore to finite energy lumps: The only solution is thus the trivial
one, the asymmetric vacuum.

II. C 0
n sector~nontopological vortices!: The asymptotic conditions of the movement are

v~2`!5v0 , v̇~2`!50, ~28!

v~1`!52`, v̇~1`!522a, ~29!

and therefore the functionv5v(t) has the behavior shown in Fig. 2. Bearing in mind~24!, ~28!,
and ~29!, it follows that v0 is necessarily smaller than zero. Moreover, it can be shown that, if
v0!0, v does not reach positive values, and, sinceT(v),0 if v,0, thee2t factor pushes the
particle towardv52` when t→`. To see how this can happen, let us forget about thee2tT(v)
term in ~24! at a first stage of the movement. Then the equation proves to be integrable, and from
it we deduce that the particle reachesv̂,2ln 2 in the instantt̂'~2 lnK2v01 v̂)/2n with speed
v̇'2n. But the actual acceleration in~24! is more negative, and so we conclude that either the

FIG. 1. A plot ofU as a function ofv. It could be understood as the ‘‘potential’’ felt by the particle att50.
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particle does not reachv̂ or arrives at this point fort. t̂. Now, sincet̂ is great, fort. t̂, F(t) can
be taken asF(t) ' 4n2k2ev0, and while the particle continues moving betweenv̂ and2ln 2, we
have

v̈,m2e2tT~ v̂ !14n2k2ev0. ~30!

If ~30! were an equality, one would have that fort5 t̂1 1
2 ln[4n/m

2T( v̂)] there would be a turning
point and we could always choosev̂ so that this point would be at the left of2ln 2. Since in~30!
we have an upper bound forv̈, the turning point is in fact reached even before.

Hence, the existence of nontopological vortices is guaranteed, and from Fig. 2 and~17!–~21!
it is easy to give a qualitative description of the fields:a(r ) and uh(r )u decrease monotonically
with r , while g(r ) anduF(r )u present a maximum;F12(r ) presents one maximum value that splits
in two if the turning point of the particle occurs forv.2ln 2 ~see Figs. 3, 4, and 5!. The magnetic
flux is FM52p(n1a), and therefore the charge isQ52pk(n1a).

It is interesting to consider in~22!, ~23! the extreme situationsK50, uKu→`. In the first case,
f2(r ,u)50, and we come back to the CSH conventional model.8 Hence, forK50 we obtain all
the CSH nontopological vortices as a special limit of our solutions. To understand the other limit
we note that in~23! F5F̂ev/2, whereF̂ is exactly aCP1 lump of topological chargen; mean-
while theev/2 factor is determined by~22! and the boundary conditions. Then, for generaluKu we
can interpret our nontopological vortices asCP1 lumps modulated by certain radial functions, the
solutions of the mechanical problem~22!, ~28!, and~29!. The interesting point is that, foruKu→`,
~20!–~23! lead us to the mechanical problem

v̈5m2e2tev~ev21!, ~31!

v~2`!5v0 , v̇~2`!50, ~32!

v~1`!52`, v~2`!522a22n522a8, ~33!

FIG. 2. Trajectories of the particles leading to~1! nontopological vortices,~2! infinite energy solutions, and~3! topological
vortices.
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corresponding exactly to the equations of a CSH nontopological soliton.9 These limits seem to
suggest that, for finiteuKu, the nontopological vortices of the extended model interpolates between
the nontopological vortices and the nontopological solitons of the standard CSH model times a
CP1 lump. Thea parameter in~29! varies accordingly as a function ofuKu:a,a(uKu) and
2,a(K),212n.9

III. C 1
n sector~topological vortices!: In this sector the movement is subject to the conditions

v~2`!5v0 , v̇~2`!50, ~34!

v~1`!50, v̇~1`!50, ~35!

and thev5v(t) function has the appearance shown in Fig. 2. We have seen that the model
contains nontopological vortices satisfyingv(1`)52`. Moreover, in the semilocal Abelian
Higgs model there are solutions havingv(1`)51`,4 and, since forv,0 the acceleration in
~24! is less negative than the one corresponding to that model,~24! also has solutions with such
behavior. The separatrix between these two types of movements satisfies~34! and ~35! and cor-
responds to a topological vortex. In a similar way to the nontopological vortices, it is easy to
understand the shape of the fields at a qualitative level~see Figs. 6–8!. The magnetic flux is now
FM52pn and the charge amountsQ52pkn. TheK→0 limit of a topological vortex is a CSH

FIG. 4. The vector field of a nontopological vortex.

FIG. 3. Behavior of the scalar field for nontopological vortices.
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topological vortex. WhenuKu→`, from ~31!, ~34!, and ~35! we obtainv(t)50 and arrive at a
CP1 lump of chargen, whereas for arbitraryuKu we have aCP1 lump modulated by theev/2

factor determined in~24!, ~34!, and~35!.
IV. C 0

0 sector~nontopological solitons!. In this caseF(t)50 and the mechanical problem is
~31! with boundary conditions~28!, ~29!, and a solution corresponding to a CSH nontopological
soliton. Takingn50 in ~23!, we can build the fields, which are essentially the same as for a CSH
soliton, whose detailed description can be found in Refs. 8 and 9.

IV. MORE GENERAL SOLUTIONS

After having studied the radially symmetric solutions, we now will focus on the description of
the space of general solutions inC . In the topological sectors, the method put forward in Ref. 6
allows a very precise characterization based on the location on the plane of the zeros ofF. In the
nontopological ones however, the appearance of an asymptotic zero located at the infinity pro-
duces some novelties that we will show by means of an index theorem.

Following Ref. 5, we will first consider the general topological vortices inC 1
n. In order to do

so, we introduce the usual complex notationz5x11 ix2 , ]z5
1
2(]12 i ]2), A5 1

2(A12 iA2), and
write ~14!, ~15! as

~] z̄2 iĀ !f150, ~36!

FIG. 6. The scalar field for topological vortices.

FIG. 5. Distribution of the magnetic field of nontopological vortices.
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] z̄ ln w50, ~37!

] z̄A2]zĀ52
i

4
m2uf1u2~11uwu2!@12uf1u2~11uwu2!#, ~38!

wheref2(z)5w(z)f1(z). Expression~36! and boundary conditions~20!, ~21! imply thatf1 has
n zeros, say z1 , z2 ,...,zn . Furthermore, it is possible to choose a gauge in which
f1(z)5e1/2[u(z)1 iu(z)] , whereu52( i51

n arg(z2zi) andu(z) is a real function satisfying

Du1m2@12eu~11uwu2!#@eu~11uwu2!#54p(
k51

n

d~z2zk!, ~39!

and limuzu→` u(z)50. Equation~37! plus the boundary condition limuzu→` w(z)50 has general
solutionw(z)5Qn(z)/Pn(z), wherePn(z)5Pk51

n (z2zk) andQn(z)5(k50
n21qnz

k, the qk coeffi-
cients being arbitrary. By using this in~39! and introducingv5u1ln(11uwu2), we conclude that
the problem is tantamount to studying the equation

Dv1m2ev~12ev!5D ln~ uPnu21uQnu2!, ~40!

FIG. 7. The vector field of a topological vortex.

FIG. 8. Distribution of the magnetic field of topological vortices.
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whose solution gives us the vortex fields as

F5
1

AuPnu21uQnu2
S Pn

Qn
Dev/2, A5

i

2
]z~u2 iu!. ~41!

ForQn50, ~40! has one only solution,10 and so the moduli space inC 1
n M1

n, has dimension 2n
and is parametrized by the points$zn%, wheref1 vanishes. For generalQn , proof of existence and
uniqueness of solutions of~40! comes from a slight modification of the Sovolev analysis devel-
oped by Wang by writing~40! as the variational equation for a strictly convex functional ofv. This
leads to the conclusion that, sinceQn depends on 2n parameters, dimM1

n54n. Instead of plung-
ing into too technical a work, here we will exploit an index calculation that, besides giving us
information about the others sectors, provides the announced result forM1

n.
The departure point8,11 is to take a solution (Ak ,F) of ~14! and~15! and deform it into another

(Ak1dAk ,F1dF), at the same time imposing the Coulomb gauge condition]k dAk50. This is
equivalent to the requirementD(dAk

dF ) 5 0, whereD5iPk]k1Q and

P15S 2 i 0 0

0 2 i 0

0 0 2s2

D , P25S 2s2 0 0

0 2s2 0

0 0 2 i
D , ~42!

Q5S A21 is2A1 0 w21 is2w1

0 A21 is2A1 c21 is2c1

Kw Kc 0
D , ~43!

j5w or c,Kj5S j1U j2U

0 0 D , U5m~122F†F!, ~44!

where we have changed the notation and putF5~c
w!. Thus, the dimension of the moduli space on

C a
n,Ma

n, essentially corresponds to the dimension of the kernel ofD , except for four global gauge
modes of SU~2!g3U~1!l not excluded by the Coulomb gauge in the nontopological sectors, and
hence

dimM1
n5dim kerD , dimM0

n5dim kerD24. ~45!

Now, the following operator

T5S i w̄ i c̄ 2]z

i w̄ i c̄11 2]z

1 0 0

0 2 iw 0

0 2 iw 0

0 0 2 iw

0 0 2 iw

D , ~46!

where

i j5S j2 2j1

j1 j2
D , 2]z5S ]1 ]2

2]2 ]1
D ~47!
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satisfies KerT5$0%, KerTD†5$0% ~except for the existence of a nongeneric zero mode of the
Schrödinger operator2¹22uFu2U!, as it is easy to verify, and so KerD†5$0%, and we have

ind D5dim kerD . ~48!

To compute indD we shall use the heat-kernel method. We define

h~ t !5Tr e2tD†D2Tr e2tDD†
, ~49!

and, because of the supersymmetric pairing between theDD† andD†D eigenstates corresponding
to nonvanishing spectral values, we obtain

ind D5h~0!1D, ~50!

where the correctionD must be considered in the nontopological sectors because the boundary
conditions in them produce differences between the spectral densities of both operators. On the
topological sectors, boundary conditions allowR2 to be compactified to a sphere,18 and hence
D50. To computeh(0), webuild the second-order operators,

D†D52¹21 i @PkQ
†1QPk

†#]k1 iPk~]kQ
†!1QQ†, ~51!

DD†52¹21 i @Pk
†Q1Q†Pk#]k1 iPk

†~]kQ!1Q†Q, ~52!

and realizing that$Pk
† ,Pj% 5 $Pk ,Pj

†% 5 2dk j , we obtain

h~0!5 lim
t→0

h~ t !52
i

4p E d2x tr@Pk
†~]kQ!2Pk~]kQ

†!#54FM . ~53!

It remains to computeD. For this, we observe that ifCl is an eigenstate ofD†D with
eigenvaluel2, C̃l5(1/l)DCl is also eigenstate ofDD† with the same eigenvalue, and, as a
consequence,

D5 lim
t→0

E dlE d2x@„C̃l~x!,C̃l~x!…2„Cl~x!,Cl~x!…#e2tl2, ~54!

and, via partial integration,

D5 lim
t→0

E dlE
0

2p

r du~Cl ,2 iPr
†
DCl!

e2tl2

l2 U
r5`

, ~55!

wherePr5xkPk/r , Pu5e ikxiPk/r
2, and in polar coordinatesD5iPr] r1 iPu]u1Q. Introducing

D5iPr [ ] r1Tr ],

D5 lim
t→0

E dlE
0

2p

r du~Cl ,@] r1T`#Cl!
e2tl2

l2 U
r5`

, ~56!

whereD†D`5limr→` D
†D52] r

22(1/r )] r1T`
22(1/r )(] r1T`) and

564 W. G. Fuertes and J. M. Guilarte: Semilocal Chern–Simons defects

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



T`5S L 0 0

0 L 0

0 0
i

r
s2]u

D , L5
1

r
@2 is2]u1n2a~`!#. ~57!

By using the complete orthonormal system$Ckm(r ,u) 5 eikr /A2pr f m(u)% in ~56!, one can
show that

D5 1
2 hT`

~0!5224 Fracc@n2a~`!#, ~58!

wherehT`
(0) is the spectral asymmetry of theT` operator and byFracc[a] we denote the

fractionary part ofa ; this, together with~45!, ~50!, ~53!, ~20!, and~21!, leads to

dimM1
n54FM54n, dimM0

n54 Int@FM]22, ~59!

a result that in all the sectors has 2@FM# parameters more than in the CSH case,8 owing to the new
degrees of freedom associated with thef2 field.

V. FURTHER COMMENTS

We now briefly consider the issue of the stability of the defects found in the model. For the
topological ones, stability is sure because Bogomolny equations are associated in the topological
sectors to a lower bound of the energy. The same is not true for nontopological defects, and thus
it is necessary to study the spectrum of the Hessian operator, whose form restricted to thef2
deformations of a radially symmetric configuration~thef1 deformations are exactly the same as in
the CSH model and lead to stability! is the following:

H52
1

r

d

dr S r d

dr D1
~a2n1 l !2

r 2
1
1

r

da

dr
, ~60!

when operating on deformations of the formdf2(r ,u)5j(r )eil u. Accordingly, thel50 case is
the most unfavorable, and it will suffice to concentrate on it. We do not dispose of an exact
expression for the fields, but we can approximate the problem by taking

a~r !5H n2Lr , if r,g/L,

n2g, if r.g/L,
~61!

whereg5n for a topological vortex and takes an arbitrary value for a nontopological defect, and
L is a parameter that specifies the defect size. Thus, near the defect core,

H5HCOUL1L2, HCOUL52
1

r

d

dr S r d

dr D2
L

r
, ~62!

and it is known thatHCOUL has one only bound state with eigenvalue2L2. SoH does not have
negative eigenvalues, and this can be taken as strong evidence of stability for all the defects that
we have studied.

In this paper we have addressed the static semilocal CSH defects. It would be interesting to
pursue the investigation by considering the low-energy scattering of these defects, as has been
done in the semilocal Abelian Higgs Model.7 The main difference is that, since our defects have an
anyonic nature, the low energy Lagrangian will include a ‘‘e i j q

iqj ’’ term that will prevent defects
from following geodesics in the moduli space, although presumably the 90° scattering will be also
present in our model.
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U(N) coherent states over Grassmann manifold,GN,n.U(N)/„U(n)3U(N2n)…,
are formulated to be able to argue the WKB exactness in the path integral repre-
sentation of a character formula. The phenomena is the so-called localization of
Duistermaat–Heckman. The exponent in the path integral formula is proportional
to an integerk labeling the U(N) representation. Thus, whenk→` a usual semi-
classical approximation, by regardingk;1/\, can be performed to yield a desired
conclusion. The mechanism of the localization is uncovered by the help of the
~generalized! Schwinger boson technique. The discussion on the Feynman kernel is
also presented. ©1996 American Institute of Physics.@S0022-2488~96!03102-0#

I. INTRODUCTION

In any physical situation it is often difficult to find an exact response, therefore, some ap-
proximation method must be employed. Apart from the well-known perturbation theories, the
Wentzel–Kramers–Brillouin~WKB! approximation, known as the\ expansion, seems most suit-
able to the path integral formalism; since the exponent in the path integral is usually given by a
quantity divided by Planck’s constant\. These approximation methods can be straightforwardly
performed without specifying a path measure rigorously, which apparently has been a main reason
that the path integral plays a major role in modern physics. On the other hand, due to this
handiness there always accompanies some skepticism, such as the problem of operator ordering,1

since onlyc numbers appear, or a vague relationship of the change of variables to the canonical
operator formalism.2 What we have learned through various efforts is that the path integral can
produce reliable as well as consistent results under thetime slicing method. A simple example can
be seen as follows: take a bosonic oscillator, defined by a HamiltonianH[va†a with [a,a†]5I ,
@I ,a#5@I ,a†#50, and calculate the quantity Tre2 iHT. First, write the exponential operator such that

Tr e2 iHT5 lim
M→`

Tr~ I2 i Dt H !M; Dt[
T

M
, ~1.1!

which is the starting point of the time slicing method. With the aid of canonical coherent states,3

~1.1! becomes

a!Electronic-mail: fujii@yokohama-cu.ac.jp
b!Electronic-mail: taro1scp@mbox.nc.kyushu-u.ac.jp
c!Electronic-mail: a00501@cc.hc.keio.ac.jp
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Tr e2 iva†aT5 lim
M→`

E
PBC

)
j51

M
dz~ j !dz̄~ j !

p
expF2 (

k51

M

$z̄~k!„z~k!2z~k21!…

1 iv Dt z̄~k!z~k21!%G , ~1.2!

where ‘‘PBC’’ denotesz(0)5z(M ) anddz dz̄[d Re(z)d Im(z). By taking a formal limit,M→`,
the continuum representation is obtained:

Tr e2 iva†aT→E
PBC

)
0<t<T

dz dz̄expH 2E
0

T

dt~ z̄ż1 iv z̄z!J , ~1.3!

where ‘‘PBC’’ reads asz(T)5z(0) in this case. In spite of the formal limit, we still could impart
a meaning to the functional measure by means of the functional determinant:

~1.3![detS ddt1 iv D 21

5
1

2i sin~vT/2!
, ~1.4!

with the aid of thez-function regularization. The result does not, however, match to the correct
one, obtained from~1.2!,

1

2i sin~vT/2!
Þ

1

12e2 ivT 5
eivT/2

2i sin~vT/2!
. ~1.5!

Therefore, we must pay the price whenever we have adopted the continuum path integral repre-
sentation, which would apparently be suitable for a geometrical treatment.

In some situation an approximation scheme happens to lead to an exact answer: the harmonic
oscillator is WKB exact, because of the integration being Gaussian.~The cross section of the
Coulomb interaction is another well-known example,4 which furthermore reveals that the Born
approximation yields the exact result.! In recent years, however, a new possibility of finding the
WKB exactness has been opened up.5–10 Works have been stimulated by the Duistermaat–
Heckman~DH! theorem.11–13A key word to understand these new classes of the WKB exactness
would be ‘‘localization’’, 14–16 commonly understood in terms of equivariant cohomology.17

Inspired by these facts, we have convinced ourselves of the WKB exactness in the path
integral formulas obtained through the generalized coherent states18 in cases ofCP1 andCPN,9,10

as well as their noncompact counter parts in the foregoing papers. Even if another representation
is adopted19 for theCP1 case to give the Nielsen–Rohrlich form,20 the same localization has been
clarified.21 As a natural generalization in this paper, we try to examine the Grassmann manifold,
GN,n.U(N)/„U(n)3U(N2n)…. In order to carry out the program we need to build up coherent
states of U(N) overGN,n .

The plan of the paper is as follows. An interpretation of the DH theorem, stated in terms of
finite-dimensional integrations, is presented in Sec. II, since the WKB exactness is sometimes
regarded as a generalization to the infinite-dimensional case. In order to achieve the path integral
expression, there needs to construct coherent states over Grassmann manifolds. We develop two
ways: one is the algebraic method according to the Perelomov’s prescription18 and the other is due
to the canonical coherent state3 combined with the Schwinger boson technique.22 These are the
contents of Sec. III A and III B, respectively. The path integral representation of the character
formula is then given in Sec. IV A and the WKB approximation is performed in Sec. IV B. The
mechanism of the WKB exactness is clarified in Sec. IV C by making use of the Schwinger boson.
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The final section is devoted to related topics and remarks. In Appendix A, proofs for the theorems
in the Sec. III A, are given. Finally, in Appendix B a discussion on the WKB exactness in terms of
the Feynman kernel is provided.

II. THE DH FORMULA ON GRASSMANN MANIFOLDS

In this section, we demonstrate the validity of the DH formula onGN,n as a preparation for
later discussions.

A. Classical mechanics on GN,n

Let Cn be then-dimensional complex vector space. We denote the space ofm3n matrices
over C by M ~m,n;C! and abbreviate M ~n,n;C! by M ~n;C!. Regard
GN,n.U(N)/„U(n)3U(N2n)… as a phase space, assumingN>2n for brevity’s sake, and write

GN,n5$PPM ~N;C!uP25P,P†5P and trP5n%. ~2.1!

P can be parametrized in terms ofjPM ~N2n,n;C!, such that

P5S 1

1n1j†j

1

1n1j†j
j†

j
1

1n1j†j
j

1

1n1j†j
j†
D 5U~j!P1,...,nU

†~j!, ~2.2!

where

P1,...,n[S 1n 0

0 0D ~2.3!

and

U~j![S 1

A1n1j†j
2

1

A1n1j†j
j†

j
1

A1n1j†j

1

A1N2n1jj†
D . ~2.4!

The parametrization~2.2! cannot cover the whole phase space: indeed there exist other parametri-
zations such as

~Pm1 ,...,mn
!rl5 (

a51

n

dr,ma
dl,ma

, 1<ma<N, ~2.5!

which tells us that there need (n
N) kinds of local parametrization.~Throughout the paper we use a

convention for indices: 1<m,n<N; 1<a,b<n; n11< i , j<N.! In order to obtain an appropriate
parametrization in the neighborhood ofPm1 ,...,mn

, we can utilize a unitary transformation
U(m1 ,...,mnu1,...,n) satisfying

U~m1 ,...,mnu1,...,n!P1,...,nU
†~m1 ,...,mnu1,...,n!5Pm1 ,...,mn

. ~2.6!

The symplectic structure onGN,n is defined through the symplectic 2-form,

v5 i tr~P dP`dP!, ~2.7!
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whose explicit form, under~2.2!, reads as

v5 i tr$~1n1j†j!21 dj†`~1N2n1jj†!21 dj%, ~2.8!

yielding to theU(N) invariant measure onGN,n ,

det@~1N2n1jj†!21
^ $~1n1j†j!21%T #~dj dj̄ !n~N2n!5

1

$det~1n1j†j!%N
~dj dj̄ !n~N2n!,

~2.9!

where the superscriptT denotes the transpose of matrix and an abbreviation,

~dz dz̄!mn[ )
1< i<m
1<a<n

d Re~zia!d Im~zia!, ~2.10!

has been employed. Our convention of the tensor product is

A^B5S a11B a12B •••

a21B a22B •••

A A �

D , for A5~ai j !, B5~bi j !.

Dynamical variables are defined through a linear mapping,

XPH~N!°FX5tr~PX!PR, ~2.11!

whereH(N) is the space of Hermitian matrices:

H~m!5$XuXPM ~m;C!,X†5X%. ~2.12!

The Poisson bracket is given, with the aid of~2.7!, by

$FX ,FY%P.B.5v21~VX ,VY!5F2 i @X,Y# , ~2.13!

with [X,Y]5XY2YX, whereVX is a vector field onGN,n associated withFX :

VX5(
i ,a

S ]FX

]j ia

]

]j ia
1

]FX

]j̄ ia

]

]j̄ ia
D .

Note that the Poisson bracket~2.13! generates theu(N) algebra.
An explicit form of the Hamiltonian function for a Hermitian matrixX,

X5S A B

B† D D , APH~n!, BPM ~n,N2n;C!, DPH~N2n!, ~2.14!

is read as

FX5tr$~1n1j†j!21FX%, FX5A1Bj1j†B†1j† Dj. ~2.15!

Introduce a 1-formuk ,

duk5v, uk5 i tr@$kj† dj2~12k!dj† j%~1n1j†j!21#; kPR. ~2.16!
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Here k is an arbitrary parameter that does not affect kinematics at all and is usually fixed by
puttingk51

2. The action functional for this Hamiltonian system is thus found as

S5E
t1

t2
~uk2FX dt!5E

t1

t2
dt tr@~1n1j†j!21$ i ~kj†j̇2~12k!j†j!2~A1Bj1j†B†1j†Dj!%#,

~2.17!

giving us equations of motion,

j̇5 i ~jA2Dj2B†1jBj!,
~2.18!

j̇†52 i ~Aj†2j†D1j†B†j†2B!.

The solution can be found by putting

exp~2 iXt !5S a~ t ! b~ t !

g~ t ! d~ t !
D , ~2.19!

with X being given by~2.14!, such that

j~ t !5$g~ t !1d~ t !j~0!%$a~ t !1b~ t !j~0!%21. ~2.20!

The solution~2.20! takes the simplest form in the case of a block-diagonal Hamiltonian given by
B50:

j~ t !5U~ t !j~0!V†~ t !, ~2.21!

where matricesV(t)PU(n) andU(t)PU(N2n) are given as

V~ t !5exp~2 iAt !, U~ t !5exp~2 i Dt !. ~2.22!

In terms ofj(t) ~2.20!, the time dependence ofP ~2.2! is read as

P~ t !5S 1

1n1j†~ t !j~ t !

1

1n1j†~ t !j~ t !
j†~ t !

j~ t !
1

1n1j†~ t !j~ t !
j~ t !

1

1n1j†~ t !j~ t !
j†~ t !

D , ~2.23!

so that

P~ t !5e2 iXtP~0!eiXt. ~2.24!

Therefore we can recognize that the equations~2.18! describe an action of U(N) on GN,n ~in a
local coordinate system!. In this way classical mechanics onGN,n can have geometric interpreta-
tion.

As a final remark, note that onlyj(t)50 (0<t<T) is allowed under the periodic boundary
conditionj(T)5j~0! for arbitraryT andX. In the subsequent section the same situation is found
when performing the WKB approximation.

B. The DH formula

We now discuss the Duistermaat–Heckamn localization formula for the classical system de-
fined above. Start with a classical partition function,
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Zcl~b!5E dm~j!exp~2bFH!, b.0, ~2.25!

where

dm~j![
1

$det~1n1j†j!%N
S dj dj̄

p D n~N2n!

, ~2.26!

which satisfies

E dm~j!5N ~n,N2n!, ~2.27!

with

N ~n,p![
0!1!•••~n21!!

p! ~p11!! •••~p1n21!!
~p50,1,2,...!. ~2.28!

@The verification of~2.27! is found in the next section. Puttingk→0 in ~3.48! we have~2.27!.#
HereFH is a Hamiltonian, in terms of a real diagonal matrix,

H5diag~h1 ,...,hn ,hn11 ,...,hN!, 0,h1,•••,hN , ~2.29!

such that

FH5tr$~1n1j†j!21~Hu1j†Hdj!%,

Hu5diag~h1 ,...,hn!, Hd5diag~hn11 ,...,hN!. ~2.30!

The first task is to find critical points of the Hamiltonian by solving

]FH

]j ia
50,

]FH

]j̄ ia
50, ~2.31!

which coincide with the right-hand sides of the equations of motion~2.18!. In view of ~2.25! these
critical points are nothing but thesaddle pointsof the integral. For the present case, the saddle
point conditions~2.31! become

Huj
†2j†Hd50, jHu2Hdj50. ~2.32!

Note that if jÞ0 these conditions cannot be met, owing to the assumption,h1,•••,hN .
Therefore there remains only one case,j50, under this parametrizationof GN,n , in other words,
there exists a unique fixed point under the action of U(n)3U(N2n) @torus, U~1!N, in this case#
~2.21!. Now calculate the second derivative ofFH at j50; the Hessian of the Hamiltonian,

]2FH

]j ia ]j̄ jb
U

j50

5~Hu!abd j i2dab~Hd! j i . ~2.33!

Hence, the contribution from this critical point to~2.25! is found to be
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E S dj dj̄

p D n~N2n!

exp$2b tr Hu2b tr~Hdjj†2Huj
†j!%5

exp~2b(a51
n ha!

bn~N2n!Pa51
n P i5n11

N ~hi2ha!
.

~2.34!

As was stressed above, there need (n
N) local parametrizations to cover the whole phase space,

contributions from other critical points must be taken into account. To this end, recall the unitary
transformation given in~2.6!. A change of the local parametrization,

P5U~j!P1,...,nU
†~j!°PU5U~m1 ,...,mnu1,...,n!PU†~m1 ,...,mnu1,...,n!, ~2.35!

is equivalent to that of the Hermitian matrix in the Hamiltonian function,

FH~P!5tr~PH!°FH~PU!5FH8~P!5tr~PH8!, ~2.36!

with

H85U†~m1 ,...,mnu1,...,n!HU~m1 ,....,mnu1,...,n!. ~2.37!

Once recognizing this, we can easily carry out the task; since the new Hamiltonian after the
transformation is again diagonal without degeneracy so that a critical point is always located at
j50 in each local parametrization. Summing up those contributions, therefore we obtain, as a
result of the saddle point approximation,

Zcl~b!. (
m1,•••,mn

exp~2b(a51
n hma

!

bn~N2n!Pa51
n PnPm̄~hn2hma

!
, ~2.38!

where

m̄[$1,...,N%\$m1 ,...,mn%. ~2.39!

The DH theorem tells us that the sum on the right-hand side gives an exact result. To see that
this is true, consider, instead of~2.25!, the following expression:

E
H~n!

dlE
M ~N,n;C!

S dz dz̄

p D Nn exp@2b tr~Z†HZ!1 i tr$l~Z†Z21!%#, ~2.40!

where the integration domain ofl is H(n) and new variables,

Z5SZuZdD , ZPM ~N,n;C!,

Zu5S z1,1 ••• z1,n

A A

zn,1 ••• zn,n
D , Zd5S zn11,1 ••• zn11,n

A A

zN,1 ••• zN,n
D , ~2.41!

have been introduced. An explicit form ofl is given as

l5S l1 l1,2 ••• l1,n

l̄1,2 l2 � A

A � � ln21,n

l̄1,n ••• l̄n21,n ln

D , ~2.42!
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laPR ~a51,...,n!,

la,b5
xa,b2 iya,b

2
, xa,b ,ya,bPR, ~1<a<b<n!, ~2.43!

so that the measure is

dl5 )
a51

n
dla

2p )
a,b

dxa,b dya,b
~2p!2

. ~2.44!

Thel integration leads us to delta functions which can be handled by means of the following
change of variables:

Z5S 1nj D 1

A1n1j†j
z; jPM ~N2n,n;C!, zPM ~n;C!, ~2.45!

which brings

Z†Z5z†z, ~2.46!

S dz dz̄

p D Nn5S dj dj̄

p D n~N2n! 1

$det~1n1j†j!%N
S dz dz̄

p D n2$det~z†z!%N2n. ~2.47!

Then the integration with respect toz in ~2.40! is easily performed yielding to~2.25!. From this
observation we can grasp the role ofl, which is to reduce the number of degrees of freedom from
Nn toNn2n25n(N2n). Thereforel is called a multiplier and whose coefficient is referred to as
constraint:23

cab[~Z†Z!ab2dab'0. ~2.48!

On the contrary, ifzm,a’s integrations that isGaussianare first performed, we obtain

E
H~n!

dl
exp~2 i tr l!

det~bH^1n2 i1N^ lT !
. ~2.49!

With the help of the decomposition,24

l5Vl0V
†, l05diag~ l 1 ,...,l n!, VPSU~n!, ~2.50!

theV integration gives

~2.40!5E
2`

1` 1

n! )
a51

n
dla
2p )

a,b
~ l a2 l b!

2
exp~2 i(a51

n l a!

Pa51
n Pm51

N ~bhm2 i l a!
, ~2.51!

which, by considering poles and zeros, leads to

~2.40!5 (
m1,•••,mn

exp~2b(a51
n hma

!

bn~N2n!Pa51
n PnPm̄~hn2hma

!
, ~2.52!

where againm̄ is given by~2.39!. This is exactly the same expression as~2.38!. Thus,the saddle
point approximation (2.38) itself contains the full information of the partition functionZcl .

574 Fujii, Kashiwa, and Sakoda: Coherent states over Grassmann manifolds

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



We consider in what follows a quantum version of the DH theorem, that is, the WKB exact-
ness in a path integral. Our interpretation to the DH formula put here will be very helpful in the
analysis.

III. COHERENT STATES OF U(N) OVER GN,n

In order to obtain the path integral representation, we construct coherent states of U(N) in this
section. We consider first the algebraic method proposed by Perelomov, then a generalization of
the Schwinger boson technique.

A. Algebraic construction

Theu(N) algebra in terms of generatorsEmn is

@Emn ,Ers#5dnrEms2dmsErn , ~1<m,n,r,s<N!. ~3.1!

First, build up the coherent state in the fundamental representation. The generators are expressed
as

~Emn!rs5dmrdns . ~3.2!

Introduce an orthonormal set of basis vectors inCN,

~em!n5dmn , em
†en5dmn ; ~3.3!

to define a fiducial vector, by picking up firstn ea (a51,...,n) vectors out ofN vectors, such that

EN,n5
1

An! (
sPS n

sgn~s!es~1! ^ ••• ^es~n!PCNn, ~3.4!

whereS n denotes the symmetric group of ordern. Consider the map

r1 :GL~N;C!°GL~Nn;C!, r1~x![ ^
nx~5x^ ••• ^x

n

!, ~3.5!

then it is obvious that

dr1S (
a51

n

Eaa2 (
i5n11

N

Eii DEN,n5nEN,n , ~3.6!

dr1~Em i !EN,n50, ~3.7!

where

dr1~E![
d

dtU
t50

r1~exp tE!5 (
p51

n

^
p211N^E^

n2p1N , ~3.8!

for EPu(N). As for this fiducial vectorEN,n , the following fact should be noted.
Lemma III.1: On the fiducial vectorEN,n , there holds

r1~B!EN,n5deta•EN,n , ~3.9!

where
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BPGL~N;C!, B5S a b

0 cD , ~3.10!

with

aPGL~n;C!, bPM ~n,N2n;C!, cPGL~N2n;C!. ~3.11!

The proof of this lemma is obvious so that we can omit it.~However, some comments would be
useful: what this lemma signifies is that deta~EN,n! is an eigenvalue~eigenvector! of r1(B). If we
put n5N in ~3.9!, the relation is nothing but the definition of the determinant.!

Now consider an element of SU(N) generated by an orthogonal complement of the Lie
algebra of U(n)3U(N2n),

S5expS 0 2a†

a 0 D ; aPM ~N2n,n;C!, ~3.12!

which can be rewritten as

S5S 1

A1n1j†j
2

1

A1n1j†j
j†

j
1

A1n1j†j

1

A1N2n1jj†
D ; jPM ~N2n,n;C!, ~3.13!

with

j5a
1

Aa†a
tanAa†a. ~3.14!

Noting the Gauss’ decompositionS5LMU, with

L5S 1n 0

j 1N2n
D , M5S 1

A1n1j†j
0

0 A1N2n1jj†
D , U5S 1n 2j†

0 1N2n
D , ~3.15!

we can obtain a desired~normalized! coherent state:

uj;1&[r1~LMU !EN,n5
1

$det~1n1j†j!%1/2
r1~L !EN,n , ~3.16!

where we have used Lemma III.1. While the unnormalized one is given by

uj;1&[r1~L !EN,n , ~j;1uj;1!5det~1n1j†j!, ~3.17!

whose second relation can be verified as follows: by noting thatLea5ea1( i5n11
N j iaei ;

(1<a<n), we find

uj;1&5
1

An! (
sPS n

sgn~s!~es~1!1j i1s~1!ei1! ^ ••• ^ ~es~n!1j i ns~n!ei n!. ~3.18!

~Here and for a while repeated indices imply summation for brevity’s sake.! Further, noting
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~es
†1jisei

†!~et1h j tej !5dst1~j†h!st , ~3.19!

then we find

~j;1uh;1!5det~1n1j†h!, ~3.20!

so that

^j;1uh;1&5det$~1n1j†j!21/2~1n1j†h!~1n1h†h!21/2%. ~3.21!

Next, discuss matrix elements of generators: in view of~3.8! the task is to calculate

~j;1udr1~Emn!uh;1!5 (
p51

n

~j;1u ^
p211N^Emn ^

n2p1Nuh;1!, ~3.22!

which can be found, after somewhat lengthy calculations, as

~j;1udr1~Eab!uh;1!5det~1n1j†h!S 1

1n1j†h D
ba

, ~3.23!

~j;1udr1~Eai!uh;1!5det~1n1j†h!S h
1

1n1j†h D
ia

, ~3.24!

~j;1udr1~Eia!uh;1!5det~1n1j†h!S 1

1n1j†h
j†D

ai

, ~3.25!

~j;1udr1~Ei j !uh;1!5det~1n1j†h!S h
1

1n1j†h
j†D

j i

. ~3.26!

Armed with these, we obtain the matrix element of an arbitrary Hermitian matrix,

H5(
m,n

hmnEmn5(
a,b

habEab1(
a,i

haiEai1(
j ,b

hjbEjb1(
i , j

hi j Ei j[SHuu Hud

Hdu Hdd
D , ~3.27!

such that

~j;1udr1~H !uh;1!5~j;1uh;1!trH 1

1n1j†h
~Huu1Hudh1j†Hdu1j†Hddh!J , ~3.28!

which is further rewritten to

~j;1udr1~H !uh;1!5~j;1uh;1!tr$P~j,h!H%, ~3.29!

or, equivalently,

^j;1udr1~H !uh;1&5^j;1uh;1&tr$P~j,h!H%, ~3.30!

where we have introduced a projectionP~j,h!,

P~j,h!5S 1nh D ~1n1j†h!21~1n j†!, ~3.31!
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giving

tr$P~j,h!H%5trH 1

1n1j†h
~Huu1Hudh1j†Hdu1j†Hddh!J . ~3.32!

@It should be noted that although the definition ofP~j,h! looks singular in the domain
$~j,h!udet~1n1j†h!50%, there is no harm; since the quantity tr$P(j,h)H% is always accompanied
with ^j;1uh ;1&, including det~1n1j†h! in the numerator.#

Now we generalize the above result to a higher-dimensional representation. Consider a tensor
product of the coherent state,

uj;1&°uj;k&[ ^
kuj;1&, k50,1,2,..., ~3.33!

as well as that of the representation,

rk~x![ ^
k
„r1~x!…, xPGL~N,C!, ~3.34!

to put

uj;k&5rk~LMU !E N,n
k , E N,n

k [ ^
kEN,n . ~3.35!

We designate this representation as thekth representation. The following relations are obvious:

drkS (
a51

n

Eaa2 (
i5n11

N

Eii DE N,n
k 5knE N,n

k , ~3.36!

drk~Em i !EN,n
k 50. ~3.37!

And it is straightforward to find~i! the inner product between coherent states,

^j;kuh;k&5@det$~1n1j†j!21/2~1n1j†h!~1n1h†h!21/2%#k; ~3.38!

~ii ! and matrix elements of generators,

^j;kudrk~Emn!uh;k&5k tr$P~j,h!Emn%^j;kuh;k&, ~3.39!

hence

^j;kudrk~H !uh;k&5k tr$P~j,h!H%^j;kuh;k&. ~3.40!

In view of these relations, there follow that~i! the inner product has a form$^j;1uh ;1&%k and ~ii !
the matrix element of a Hamiltonian is proportional to the parameterk. This fact tells us that the
exponent of the path integral is proportional tok. Therefore we can perform the 1/k expansion
whenk goes to large like the usual WKB expansion with respect to\.

If we declare that the stateuj;k& is a coherent state, we must check that the resolution of unity
does hold:

1k5E dm~j;k!uj;k&^j;ku, ~3.41!

with

dm~j;k![
N ~n,k!

N ~n,N2n1k!

1

$det~1n1j†j!%N
S dj dj̄

p D n~N2n!

, ~3.42!
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whereN (n,k) has been given by~2.28! and 1k is the identity operator on the representation
space. To this end the following formulas are indispensable.

Theorem III.2: Let dg be the normalized Haar measure onU(n). Then for ;pPZ1 with
Z15$0%øN and ;XPM ~n;C!, there holds an integration formula,

E
U~n!

dg

~detg!p
exp$tr~gX!%5N ~n,p!uXup, ~3.43!

N ~n,p![
0!1!•••~n21!!

p! ~p11!! •••~p1n21!!
. ~3.44!

Theorem III.3: For ;XPM ~n;C! and ;pPZ1 , there holds a differential formula,

u]XuuXup5p~p11!•••~p1n21!uXup21, ~3.45!

whereuXu5detX and u]Xu is defined by

u]Xu[detS ]

]xi j
D , for X5~xi j !, ~3.46!

which is valid even if p is negative integer, provided that X1X† is positive definite anduXuÞ0.
Proofs of these formulas are straightforward, but need a bit lengthy calculations; therefore we
relegate them to Appendix A.~Although the proof of Theorem III.3, known as Cayley’s formula,
could be found somewhere, for example, by using Capelli’s identity,25 we supply our own proof.!

Practically our target is to show, instead of~3.41!,

~a;kub;k!5E dm~j;k!~a;kuj;k&^j;kub;k!; a,bPM ~N2n,n;C!, ~3.47!

that is,

$det~1n1a†b!%k5E dm~j;k!
$det~1n1a†j!%k$det~1n1j†b!%k

$det~1n1j†j!%k

5
N ~n,k!

N ~n,N2n1k!
E S dj dj̄

p D n~N2n! 1

$det~1n1j†j!%N

3
$det~1n1a†j!%k$det~1n1j†b!%k

$det~1n1j†j!%k
. ~3.48!

Establishing~3.48! is equal to establishing~3.41!; since these relations hold for anyua;k! and
ub;k!. To this end, two other relations are needed.

Corollary III.4: For ;kPZ1 , there holds a formula for Gaussian-type integration over M~m
1n,n;C!:

E S dz dz̄

p D n~m1n!

uZ†Zuk exp$2tr~Z†Z!%5
N ~n,m!

N ~n,m1k!
. ~3.49!

Proof: By making use of an identity,

uZ†Zuk exp$2tr~Z†Z!%5~21!nku]XukuX51n
exp$2tr~XZ†Z!%, ~3.50!

the left-hand side of~3.49! is rewritten as
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~21!nku]XukuX51nE S dz dz̄

p D n~m1n!

exp$2tr~XZ†Z!%5~21!nku]XukuX51n
uXu2~m1n!,

~3.51!

which becomes, by a repeated use of the formula III.3, to

~3.51!5
~m1n!!

m!
3

~m1n11!!

~m11!!
3•••3

~m1n1k21!!

~m1k21!!
5

N ~n,m!

N ~n,m1k!
. ~3.52!

Corollary III.5: For ;p,qPZ1 and ;A,BPM ~m1n,n;C!, there holds

E
U~n!

dg

~detg!p
E S dz dz̄

p D n~m1n!

uZ†Zuq exp$2tr~Z†Z2Z†A2gB†Z!%

5
N ~n,p!N ~n,m1p!

N ~n,m1p1q!
uB†Aup. ~3.53!

Proof: Integrate with respect toZ,Z† and follow a similar procedure as above to find

~3.53!5~21!nqu]XuquX51nEU~n!

dg

~detg!p
exp$tr~gB†AX21!%uXu2~m1n!. ~3.54!

The formula III.2 enables us to perform theg integration, giving

~3.54!5~21!nqu]XuquX51n
uXu2~m1n1p!N ~n,p!uB†Aup, ~3.55!

which turns out, again, by the repeated use of the formula III.3, to be the right-hand side of~3.53!.
Now we can proceed to our target: first rewrite the left-hand side of~3.48! by use of the

formula III.2 as

$det~1n1a†b!%k5
1

N ~n,k!
E
U~n!

dg

~detg!k
exp@ tr$g~1n1a†b!%#, ~3.56!

whose integrand can be expressed by the Gaussian integration with respect toZPM ~N,n;C!,

exp@ tr$g~1n1a†b!%#5E S dz dz̄

p D Nn expF2trHZ†Z2Z†S 1nb D2~1n ,a
†!ZgJ G . ~3.57!

A change of variables,Z→~j,z!, as was from~2.45! to ~2.46!, gives

~3.57!5E S dj dj̄

p D n~N2n! 1

$det~1n1j†j!%N
E S dz dz̄

p D n2~det z†z!N2n exp@2tr$z†z2z†~1n

1j†j!21/2~1n1j†b!2g~1n1a†j!~1n1j†j!21/2z%#. ~3.58!

Substituting~3.58! into ~3.56!, then integrating with respect toz andg with the aid of the formula
III.5, we find

rhs of ~3.56!5
N ~n,k!

N ~n,N2n1k!
E S dj dj̄

p D n~N2n! 1

$det~1n1j†j!%N

3
$det~1n1a†j!%k$det~1n1j†b!%k

$det~1n1j†j!%k
, ~3.59!
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which is nothing but the right-hand side of~3.48!.
We now consider another version of the coherent state with the aid of the Schwinger boson

technique.

B. Coherent state via Schwinger boson

As was stressed in Sec. II B, the essence of the classical DH theorem can easily be grasped by
increasing degrees of freedom while balancing them with the aid of the multiplierl: we call such
a viewpoint as that of the constrained system. If we could find a similar way in quantum cases,
then establishment of the localization would be obvious. Fortunately, we know such a candidate
that might realize our expectation: the method of a Schwinger boson. There, in order to obtain a
group representation, generators of a group are expressed by creation and annihilation operators.
The representation space is thus the Fock space, whose dimension is too large for a group.
Therefore there needs to be some constraint to reduce the whole space. In a simple case such as
CPN,9,10 it is realized by fixing the total particle number. In this way, the scenario would be
hopeful.

Consider operators,

a5S auadD , au5S a1,1 ••• a1,n

A A

an,1 ••• an,n
D , ad5S an11,1 ••• an11,n

A A

aN,1 ••• aN,n
D , ~3.60!

which obey~1<m,n<N; 1<a,b<n!

@am,a ,an,b
† #5dmndab , @am,a ,an,b#5@am,a

† ,an,b
† #50. ~3.61!

In terms of these operators,u(N) generators are realized:

Êmn5tr~a†Emna!; ~3.62!

@Êmn ,Êrs#5~dnrÊms2dsmÊrn!. ~3.63!

The Fock spaceF is designated as

F 5Span$u~nm,a!&5)
m,a

1

Anm,a!
am,a
† nm,au0&, am,au0&50, nm,aPZ1%. ~3.64!

Introduce a usual canonical coherent state:3

uZ&[exp$tr~a†Z2Z†a!%u0&5exp$2 1
2 tr~Z

†Z!%exp$tr~a†Z!%u0&, ~3.65!

15E S dz dz̄

p D NnuZ&^Zu, ~3.66!

^ZuZ8&5exp$2 1
2 tr~Z

†Z1Z8†Z8!1tr~Z†Z8!%, ~3.67!

where1 denotes the identity operator onF andZ has been given by~2.41!.
Consider a Hermitian projection operator,

Pk[E S dz dz̄

p D NnE
U~n!

dg

~detg!k
uZg&^Zu. ~3.68!
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A simple inspection leads to

PkPk85Pkdk,k8 , Pk
†5Pk . ~3.69!

In what follows we see that this projection operator indeed reducesF to the space of thekth
representation in the previous section, but before proceeding it is instructive to discuss how to find
the form ofPk as ~3.68!. By noting

exp$ i tr~la†a!%uZ&5uZg&, g5eilPU~n!, ~3.70!

so that

1

~detg!k
uZg&5exp@ i tr$l~a†a2k!%#uZ&, ~3.71!

which immediately reminds us of the multiplier part of~2.40! by replacinga(a†) with Z(Z†).
@However, note that the difference of the integration domain ofl; in ~2.40! it is infinite but in
~3.68! it is bounded. Details on this issue are found in Sec. V.#

The trace ofPk can be calculated as

Tr Pk5E S dz dz̄

p D NnE
U~n!

dg

~detg!k
^ZuZg&

5N ~n,k!E S dz dz̄

p D NnuZ†Zuk exp$2tr~Z†Z!%

5
N ~n,k!N ~n,N2n!

N ~n,N2n1k!
, ~3.72!

where we have used~3.67!, then the formula III.4.@We have employed the notation Tr~•••! for the
trace over the Fock space while Trk~•••! emerging below for that over thekth representation space.
Those should be distinguished from tr~•••! used for matrix-valued quantities.# ~3.72! implies the
dimension of thekth representation, that is, the number of independent vectors inF obeyingn2

physical state conditions:

~a†a!a,buphys&5kda,buphys&. ~3.73!

In particular, for the case ofk51, the relation~3.72! implies an arbitrariness of choosing a fiducial
vector ~3.4!. It is symmetric with respect ton andN2n, which clearly reflects the nature of the
base manifoldGN,n , namelyGN,n>GN,N2n , and is easily checked by an explicit calculation:

N ~n,k!N ~n,N2n!

N ~n,N2n1k!
5
N ~N2n,k!N ~N2n,n!

N ~N2n,n1k!
. ~3.74!

Now we show that

Pk5E dm~j;k!uj;k&^j;ku, ~3.75!

whereuj;k& is the coherent state ofU(N) overGN,n derived previously, but now given by

uj;k&[
1

$det~1n1j†j!%k/2
exp$tr~ad

†jau!%AN ~n,k!~detau
†!ku0&. ~3.76!
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Thus, we can regard~3.75! as the resolution of unity~3.41!.
In order to reach the resolution of unity~3.75! and the coherent state~3.76!, first rewrite~3.68!

to

Pk5E S dz dz̄

p D NnE
U~n!

dg1 dg2
$det~g1g2!%

k uZg1&^Zg2
†u, ~3.77!

which can be recognized directly by puttingZg2
†°Z and g1g2°g and finally performing the

trivial integration with respect tog2. Then note that from~3.67!,

uZg&5exp$2 1
2 tr~Z

†Z!%exp$tr~a†Zg!%u0&

5exp$2 1
2 tr~Z

†Z!%exp@ tr$~au
†Zu1ad

†Zd!g%#u0&

5exp$2 1
2 tr~z†z!%exp$tr~ad

†jau!%exp$tr~au
†L21/2zg!%u0&, ~3.78!

with L51n1j†j, where we have utilized the change of variables~2.45! and the Campbell–Baker–
Hausdorff formula to the final expression.@As was discussed in the previous section, employing
~2.45! is nothing but choosing some fiducial vector.# Therefore~3.78! with the formula III.2 leads
to

E
U~n!

dg1
~detg1!

k uZg1&5N ~n,k!expH 2
1

2
tr~z†z!J exp$tr~ad†jau!%$det~au†L21/2z!%ku0&.

~3.79!

Also note the relation, obtained from the formula III.4,

E S dz dz̄

p D n2uz†zuN2n1k exp$2tr~z†z!%5
1

N ~n,N2n1k!
. ~3.80!

Substituting~3.79! ~and whose conjugate! into ~3.77! then utilizing ~3.80!, we finally arrive at

Pk5
N ~n,k!2

N ~n,N2n1k!
E S dj dj̄

p D n~N2n! 1

$det~1n1j†j!%N1k 3exp$tr~ad
†jau!%

3~detau
†!ku0&^0u~detau!k exp$tr~au

†j†ad!%. ~3.81!

Therefore we have established~3.75! and~3.76!. By comparing~3.76! with ~3.16! and~3.33!, the
stateAN (n,k)(detau

†)ku0& can be identified asEW N,n
k . Therefore the projection operator onto the

subspace can now be regarded as the resolution of unity in the space of thekth representation.

IV. PATH INTEGRAL AND WKB

In this section we first build up a path integral representation of a character formula by means
of the coherent states developed previously. We then perform the WKB approximation. The
mechanism of exactness is clarified with the aid of the generalized Schwinger boson technique.

A. Path integral representation

Take a Hamiltonian in thekth representation,

Ĥ5drk~H !, H5diag~h1 ,...,hN!, hmPR, h1,•••,hN . ~4.1!

Consider the trace of the time evolution operator, which we call thecharacter formulaof thekth
representation:

583Fujii, Kashiwa, and Sakoda: Coherent states over Grassmann manifolds

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Zk~T![Trk rk~e
2 iHT!5 lim

M→`
E dm~j;k!^j;ku$drk~1N2 i Dt H !%Muj;k&, ~4.2!

whereDt5T/M . Insert the resolution of unity~3.41! to obtain

Zk~T!5 lim
M→`

E
PBC

)
j51

M

dm„j~ j !;k…^j~ j !;kudrk~1N2 i Dt H !uj~ j21!;k&, ~4.3!

where as before ‘‘PBC’’ meansj~0!5j(M ). From ~3.40! we have

^j~ j !;kudrk~1N2 i Dt H !uj~ j21!;k&5^j~ j !;kuj~ j21!;k&@12 ik Dt tr$P„j~ j !,j~ j21!…H%#

5^j~ j !;kuj~ j21!;k&exp@2 ik Dt tr$P„j~ j !,j~ j21!…H%#

3$11O„~Dt !2…%. ~4.4!

Employing the expression~3.38! to ^j( j );kuj( j21);k&, we obtain

Zk~T!5 lim
M→`

E
PBC

)
j51

M

dm„j~ j !;k…expF2k(
i51

M

tr$ log„1n1j†~ i !j~ i !…2 log~1n1j†~ i !

3j„i21!…%GexpF2 ik Dt(
j51

M

tr$P„j~ j !,j~ j21!…H%G , ~4.5!

where we have discarded terms ofO„(Dt)2…, whose fact also brings us to

Zk~T!5„detV~T!…k lim
M→`

E
PBC

)
j51

M

dm„j~ j !;k…expF2k(
i51

M

tr$ log„1n1j†~ i !j~ i !…

2 log„1n1j†~ i !U~Dt !j~ i21!V†~Dt !…%G , ~4.6!

whereU(t) andV(t) have been defined by~2.22!,

U~ t !5e2 iHdtPU~N2n!, V~ t !5e2 iHutPU~n!, ~4.7!

Hu5diag~h1 ,...,hn!, Hd5diag~hn11 ,...,hN!. ~4.8!

By noting that

exp@2k tr$ log„1n1j†~ i !j~ i !…2 log„1n1j†~ i !U~Dt !j~ i21!V†~Dt !…%#

5H det„1n1j†~ i !U~Dt !j~ i21!V†~Dt !…

det~1n1j†~ i !j~ i !… J k, ~4.9!

~4.6! becomes

Zk~T!5„detV~T!…k lim
M→`

E
PBC

)
i51

M

dm„j~ i !;k…3)
j51

M

^j~ j !V~Dt !;kuU~Dt !j~ j21!;k&,

~4.10!
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where use has been made of~3.38!. The relation~3.48! enables us to perform the multiple
integration, giving

Zk~T!5„detV~T!…kE dm~j;k!H det„1n1j†U~T!jV†~T!…

det~1n1j†j! J k. ~4.11!

~See a further discussion in Appendix B.!

B. The WKB approximation

Now examine the WKB approximation of the path integral expression~4.6!. Equations of
motion are

j~ j !$1n1j†~ j !j~ j !%215U~Dt !j~ j21!V†~Dt !$1n1j†~ j !U~Dt !j~ j21!V†~Dt !%21,
~4.12!

$1n1j†~ j !j~ j !%21j†~ j !5$1n1V†~Dt !j†~ j11!U~Dt !j~ j !%21V†~Dt !j†~ j11!U~Dt !.
~4.13!

Recall here that solutions should meet the periodic boundary conditionj~0!5j(M ). Clearly, only
j( j )50 for all 1< j<M can fulfill the condition. Therefore, by puttingj5z/Ak and noting

N ~n,k!

N ~n,N2n1k!
;
k→`

kn~N2n!, ~4.14!

the dominant contribution from this classical solution is read as

Z̃k~T! ;
k→`

lim
M→`

E
PBC

)
j51

M S dz~ j !dz̄~ j !p D n~N2n!

3expF2(
j51

M

tr z†~ j !$z~ j !2U~Dt !z~ j21!V†~Dt !%G , ~4.15!

where

Z̃k~T![
Zk~T!

„detV~T!…k
. ~4.16!

To perform the integration further, it is convenient to utilize the Fourier transformation respecting
‘‘PBC:’’

z~ j !5 (
r50

M21
1

AM
e22p i j r /Mz̃~r !, z̃~r !PM ~N2n,n;C!, ~4.17!

which enables us to write

(
j51

M

z†~ j !$z~ j !2U~Dt !z~ j21!V†~Dt !%5 (
r50

M21

z̃†~r !$z̃~r !2U~Dt !z̃~r !V†~Dt !e2p ir /M%.

~4.18!

Since the Jacobian is trivial, the integration with respect toz̃,z̃† can readily be performed to give
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Z̃k~T!5 lim
M→`

1

P r50
M21 det$1N2n^1n2e2p ir /MU~Dt ! ^ V̄~Dt !%

, ~4.19!

whereV̄ is the complex conjugate ofV. Utilizing the identity

)
r50

M21

~1m2e2p ir /MX!51m2XM, ~4.20!

holding for anyXPM ~m;C!, we finally obtain

Z̃k~T!5
1

det$1N2n^1n2U~T! ^ V̄~T!%
5

1

P i5n11
N Pa51

n $12e2 i ~hi2ha!T%
. ~4.21!

Similar to the classical case, the number of classical solutions is (n
N). Taking all the contribu-

tions into account@while paying attention to the relation~4.16!#, we arrive at

Zk~T! ;
k→`

(
m1,•••,mn

exp~2 ik(a51
n hma

T!

Pa51
n PnPm̄$12e2 i ~hn2hma

!T%
, ~4.22!

with m̄ being given by~2.39!.
By noticing that the right-hand side of~4.22! can be rewritten, by means of the Laplace

expansion of determinant, such that

rhs of ~4.22!5
ueN211k,...,eN2n1k,eN2n21,...,e1,1u

ueN21,...,e1,1u
~4.23!

where

uem1,...,emNu[U e1
m1 ••• e1

mN

A A A

eN
m1 ••• eN

mN

U , em[e2 ihmT, ~4.24!

the conclusion that the WKB approximation is exact in this case can be derived; since~4.23! is
nothing but the Weyl character formula26 of U(N). @It is easy to find a similar expression for the
classical counterpart~2.38!.# The mechanism of this exactness then must be examined.

C. The mechanism of exactness

In view of ~4.6!, or even afterM21 integrations as in~4.11!, the remaining integration looks
still hard to perform. However, the method of the~generalized! Schwinger boson betters the
situation.

As in ~3.62!, any elementEmnPu(N) has an operator counterpart onF . Since anyN3N
Hermitian matrix is expandable in terms of these basis matrices, a quantum Hamiltonian is ex-
pressed as a self-adjoint operator onF :

X̂[tr~a†Xa!, XPH~N!. ~4.25!

Adopting the diagonal matrixH in ~4.1! for X to defineĤ, we start with the character formula

Zk~T!5Trk exp~2 iĤ T!, ~4.26!
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in this new formulation. Recall now the fact that the operatorPk ~3.68! is not only the resolution
of unity in thekth representation space, but also the projection operator onto the subspace of the
Fock space. Therefore we can rewrite~4.26! to

Zk~T!5Tr$exp~2 iĤ T!Pk%5E
U~n!

dg

~detg!k
E S dz dz̄

p D Nn^Zue2 iĤ TuZge&, ~4.27!

where we have introduced a regularization parametere,

g°ge5e2eg, ~4.28!

which is set to zero after all and legitimatizes the exchange of order of integrations. Apart from the
g integration, the right-hand side of~4.27! can be brought into a path integral form by dividing the
time duration intoM segments and inserting the resolution of unity~3.66! successively:

E S dz dz̄

p D Nn^Zue2 iĤ TuZge&5 lim
M→`

E
TBC

)
i51

M S dz~ i !dz̄~ i !p D Nn)
j51

M

^Z~ j !u~12 iĤ Dt !uZ~ j21!&,

~4.29!

where ‘‘TBC’’ means a twisted boundary conditionZ(0)5Z(M )ge . Since the Hamiltonian is
bilinear with respect toa† anda, it is a simple task to arrive at

~4.29!5 lim
M→`

E
TBC

)
i51

M S dz~ i !dz̄~ i !p D Nn expF2(
j51

M

tr Z†~ j !$Z~ j !2~1N2 iH Dt !Z~ j21!%G .
~4.30!

In order to carry out the Gaussian integrals, follow a similar procedure from~4.17! to ~4.21!
except employing the Fourier transformation met with ‘‘TBC,’’

z~ j !5 (
r50

M21
1

AM
e22p i j r /Mz̃~r !~ge!

j /M, ~4.31!

giving

~4.27!5E
U~n!

dg

~detg!k
1

det~1N^1n2e2 iHT
^ge

T !
. ~4.32!

Theg integration can be performed such that one can use the decomposition27,24

g5Vg0V
†, g05diag~eiu1,...,eiun!, VPSU~n!, ~4.33!

then integrateV to give

~4.32!5E
0

2pS du

2p D n 1

n! )
a,b

ueiua2eiubu2
exp~2 ik(a51

n ua!

Pm51
N Pa51

n ~12e2 ihmT1 iua2e!
. ~4.34!

By puttingwa 5 e2 iua the integration over the maximal torus is converted into a multiple contour
integrations:

~4.34!5
1

n! R S dw2p i D
n

)
aÞb

~wa2wb!
Pa51

n wa
N2n1k

Pm51
N Pa51

n ~wa2e2 ihmT2e!
. ~4.35!
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Taking into account all the contributions from poles, we finally obtain

Zk~T!5 (
m1,•••,mn

exp~2 ik(a51
n hma

T!

Pa51
n PnPm̄$12e2 i ~hn2hma

!T%
, ~4.36!

where again we have used the notation~2.39!. ~4.36! exactly matches with~4.22!. Hence, the
WKB approximation is exact in the path integral for the character formula~4.2!, which is now
interpreted as that of U(N) represented overGN,n .

The reason is now quite obvious, since the path integral representation, in view of~4.30!, is
essentially Gaussian with an additionalg integration, regarded as imposing the physical state
condition. Evidently there is no room for the emergence ofk21. As is stated in Ref. 14, we may
conclude that the path integral expression we have discussed is kinematically nonlinear but dy-
namically free.@The situation would correspond to a free field over nontrivial phase space, which
should compare to the harmonic oscillator~free field!! over a flat phase space.#

V. DISCUSSION

We have clarified the exactness of the WKB approximation for the U(N) character formula
expressed as a path integral overGN,n . We have employed a time slicing method as well as
coherent states to build up a path integral representation. We have made two different approaches:
Perelomov’s generalized coherent state and a method of~generalized! Schwinger boson. The latter
provides a view of constrained system and can clarify the reason for exactness in both cases,
classical ~2.38! as well as~4.22!: the targets, the classical partition function~2.25!, and the
character formula~4.2!, are essentially Gaussian.

Note, however, the difference between the classical and the quantum cases: critical points are
controlled by eigenvalues of the Hermitian matrix,~2.32! or ~2.38! in the former case but by those
of the unitary matrix,~4.12!, ~4.13! or ~4.22! in the latter case. The origin of the difference lies in
the form of constraints: although in the classical case~2.40! constraints~2.48! can be interpreted
as the result of inserting the delta function naively to the trivial partition function, in other words,
the integration domain of the multiplierl is unbounded, it is compactin the quantum case, as can
be seen from~3.68!.

The compactness of the integration domain is indispensable in the quantum case. To see the
situation clearly let us examine theCP1 example:

H5z†hz, h5S a b

b̄ dD PH~2!, z5S z1z2D PC2, ~5.1!

with a constraint

c[z†z2p'0, pPR1 . ~5.2!

The fundamental Poisson brackets are

$zm ,z̄n%52 idmn , $zm ,zn%5$z̄m ,z̄n%50, ~m,n51,2!. ~5.3!

In order to reduce the~flat! manifold toCP1, there needs an additional constraint to fix the phase
of a complex number, sayz1. To this end, a change of variables,

z5S 1j D 1

A11uju2
z, ~5.4!

is utilized. The constraint~5.2! is read asc5uzu22p, and the desired one is found as
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x5
1

2i
logS z

z̄
D 2f0 , 0<f0,2p. ~5.5!

They satisfy

$c,x%51, ~5.6!

so that the Dirac brackets can be constructed to give

$j,j̄%D52
i

p
~11uju2!2. ~5.7!

In this way classical mechanics on the reduced phase space can be obtained without any problems.
A prescription to quantum theory would be found by means of a path integral developed by

Faddeev–Senjanovic~FS!:28

Zp
~FS![ lim

M→`
E
PBC

)
i51

M
„dz~ i !dz̄~ i !…2

p
d„c~ i !…d„x~ i !…

3expF i(
j51

M

$ iz†~ j !Dz~ j !2Dt z†~ j !hz~ j21!%G , ~5.8!

where

Dz~ j ![z~ j !2z~ j21!. ~5.9!

Although the way of finding~5.8! is rather heuristic, the result seems convincing, provided that
constrained systems are given in the configuration space, such as the sphere.29 Therefore we
employ this as a starting point of quantum theory.

With the aid of the change of variables~5.4!, ~5.8! becomes

Zp
~FS!5 lim

M→`
E
PBC

)
i51

M
dj~ i !dj̄~ i !

p~11uj~ i !u2!2
dz~ i !dz̄~ i !uz~ i !u2d„c~ i !…d„x~ i !…

3expF i(
j51

M H i uz~ j !u22 i z̄~ j !z~ j21!
11 j̄~ j !j~ j21!

„11 j̄~ j !j~ j !…1/2„11 j̄~ j21!j~ j21!…1/2

2Dt z̄~ j !z~ j21!

3
a1bj~ j21!1 j̄~ j !b̄1 j̄~ j !dj~ j21!

„11 j̄~ j !j~ j !…1/2„11 j̄~ j21!j~ j21!…1/2
J G . ~5.10!

A trivial integration with respect toz leads to
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Zp
~FS!5 lim

M→`
E
PBC

)
i51

M
p dj~ i !dj̄~ i !

p~11uj~ i !u2!2

3expF2p(
j51

M H 12
11 j̄~ j !j~ j21!

„11 j̄~ j !j~ j !…1/2„11 j̄~ j21!j~ j21!…1/2

1 i Dt
a1bj~ j21!1 j̄~ j !b̄1 j̄~ j !dj~ j21!

„11 j̄~ j !j~ j !…1/2„11 j̄~ j21!j~ j21!…1/2
J G , ~5.11!

which should be compared with the correct one, theCP1 version of~4.5!,

Zk~T!5 lim
M→`

E
PBC

)
i51

M
~k11!dj~ i !dj̄~ i !

p~11uj~ i !u2!2
expF2k(

j51

M H log„11uj( j )u2…2 log„11 j̄~ j !j~ j21!…

1 i Dt
a1bj~ j21!1 j̄~ j !b̄1 j̄~ j !dj~ j21!

11 j̄~ j !j~ j21!
J G . ~5.12!

In view of these, even if an arbitrary parameterp in ~5.11! would be set tokPZ1 , a failure of the
FS prescription for the present model is now obvious. Nevertheless, a formal continuum limit of
~5.11! seems reasonably geometric and respects the feature of the classical system. First, rely on a
naive expansion,

j~ j21!;j~ j !2Dt j̇~ j !, ~5.13!

which brings~5.11! to

~5.11!→E
PBC

)
0<t<T

p dj~ t !dj̄~ t !

p~11uj~ t !u2!2
expF ipE

0

T

dtH i

2

j̄ j̇2jG j

11uju2
2

1

11uju2 ~a1bj1b̄j̄1 j̄dj!J G ,
~5.14!

whose exponent consists of~classical! CP1 action. @Of course, we can also arrive at~5.14!,
starting from~5.12! with a replacement,k11→p, in the measure, then taking the same limit.#

We should, therefore, discard or modify the expression~5.8! in order to find a correct quantum
theory. In order to convince the importance of the compactness of the multiplier, we modify the
expression as

Zp
~FS-I![ lim

M→`
E
PBC

)
i51

M S dz~ i !dz̄~ i !p D 2E
2`

` Dt

2p
dl~ i !

3expF i(
j51

M

$ iz†~ j !Dz~ j !2Dt z†~ j !hz~ j21!1Dt l~ j !„z†~ j !z~ j21!2p…%G .
~5.15!

Here the x constraints have been discarded while thec constraints now read as
z†( j )z( j21)2p'0 and have been Fourier transformed in~5.8!. Note thatl plays the role of the
multiplier and still travels in aninfinite range. If we notice that a change of variables,

z~ j !5z8~ j !expH i Dt(
k51

j

l~k!J , ~5.16!
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l~ j !5 (
r50

M21
1

AM
e22p i j r /Ml̃~r !, ~5.17!

wipes out almost alll̃(r ), leaving only l̃~0! @the constant mode ofl( j )# in the integrand we
further modify ~5.8!, by throwing away infinities froml̃(r )’s, to

Zp
~FS-II![ lim

M→`
E
TBC

)
i51

M S dz~ i !dz̄~ i !p D 2E
2`

` dl

2p
e2 ipl

3expF i(
j51

M

$ iz†~ j !Dz~ j !2Dt z†~ j !hz~ j21!%G , ~5.18!

where, as before, ‘‘TBC’’ denotesz~0!5z(M )eil and all primes have been removed. The Gaussian
integrations with respect toz’s can be performed by introducing a regularization parametere.0,
to give

Zp
~FS-II!5 lim

e→`
E

2`

1` dl

2p
e2 ipl

1

~12e2 ih1T1 il2e!~12e2 ih2T1 il2e!
, ~5.19!

wherehi ’s are eigenvalues ofh in ~5.1!. In view of ~5.19!, p must be some positive integer,
otherwise the result is zero, which leads us, furthermore, to the conclusion that the integration
domain ofl in ~5.19! must be replaced by a compact one0<l<2p. ~Since otherwise we obtain
infinitely many copies of the same integration.! Therefore we should have

Zp
~correct!5 lim

e→`
E
0

2p dl

2p
e2 ipl

1

~12e2 ih1T1 il2e!~12e2 ih2T1 il2e!
, ~5.20!

that is

Zp
~correct!5 lim

M→`
E
TBC

)
i51

M S dz~ i !dz̄~ i !p D 2E
0

2p dl

2p
e2 ipl

3expF i(
j51

M

$ iz†~ j !Dz~ j !2Dt z†~ j !hz~ j21!%G . ~5.21!

In this way the importance of the compactness in the domain of multipliers is understood, which
clarifies an indispensable use of projection operatorPk ~3.68! given in Sec. III B.

APPENDIX A: PROOF OF THE THEOREMS

In this appendix, we prove our main theorems in Sec. III A

1. Theorem III.2

The statement is

E
U~n!

dg

~detg!p
exp$tr~gX!%5N ~n,p!uXup, ~A1!

where
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N ~n,p!5
0!1!•••~n21!!

p! ~p11!! •••~p1n21!!
, ~A2!

with the assumptions being given in the text.
We use the following facts without proof.
~I! Invariant measure on U(n):

dg}
1

~detg!n )
1< i , j<n

dgi j , ~A3!

wheredgi j ’s denoten2 independent differentials. Eachgi j is complex and the number of inde-
pendent components isn2 in terms of real variables.

~II ! Local decomposition of U(n):

gPU~n!⇒g5S a 0

0 BD expS 0 2a†

a 0 D , ~A4!

whereaPU~1!, BPU~n21!, andaPCn21 is the parameter forCPn21. Rewrite~A4! to

S a 0

0 BD S 1

A11uju2
2

1

A11uju2
j†

j
1

A11uju2
1

A1n211jj†
D , j5

a

uau
tanuau, ~A5!

so that

dg}dmn21~j!
da

a

PdBi j
~detB!n21 . ~A6!

Note that the U(n) measure is decomposed intoCPn21, U~1!, and U(n21) in order of mention.
Therefore a repeated use of this procedure results in

dg} )
j51

n21

dm j~j~ j !!)
i51

n
dai
ai

, ~A7!

which signifies that the invariant measure of U(n) is given by the product ofCPj ’s measure
(1< j<n21) and the tori of U(n), corresponding to the local decomposition of U(n):

U~n!

U~1!3U~n21!
3

U~n21!

U~1!3U~n22!
3•••3

U~2!

U~1!3U~1!
3U~1!n>CPn213CPn223•••CP1

3U~1!n. ~A8!

~III ! Integration formula onCPN:

~k1N!!

k! E ~dj dj̄ !N

pN~11uju2!N111k ~11a†j!k~11j†b!k5~11a†b!k, ~A9!

holds for;a,bPCN and;kPZ1 .
Since both sides of~A1! are regular functions ofxi j , the case,uXu50, can be regarded as a

limit of uXuÞ0 so that without loss of generality we can assume
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X5S a b

g d D , aPC,bT,gPCn21,dPM ~n21;C!, ~A10!

with a detdÞ0.
The proof is done by induction:
~i! For n51, ~A1! is verified by a direct calculation:

R da

2p iak11 (
k50

`
1

k!
~aX!k5

Xk

k!
. ~A11!

~ii ! Assume~A1! holds forn<m. Then adopt~A5! for gPU(m11) to find

tr gS a b

g d D 5a
a2j†g

A11uju2
1trH BS jb

A11uju2
1

1

A1m1jj†
d D J . ~A12!

According to the assumption of induction, whenn5m11, the integration with respect toa andB
on the left-hand side of~A1! gives

N ~m,p!

p! E m! ~dj dj̄ !m

pm~11uju2!m11 H a2j†g

A11uju2 J
pH detS jb

A11uju2
1

1

A1m1jj†
d D J p

. ~A13!

By means of a relation,

detS jb

A11uju2
1

1

A1m1jj†
d D 5

11bd21j

A11uju2
det d, ~A14!

~A13! is rewritten as

m!N ~m,p!

p!
~a det d!pE ~dj dj̄ !m

pm~11uju2!m111p ~12j†ga21!p~11b d21j!p, ~A15!

which finally turns out, with the aid of~A9!, to be

~A15!5
m!

~p1m!!
N ~m,p!~a det d!p~12b d21g a21!p5

m!

~p1m!!
N ~m,p!H detS a b

g d D J p.
~A16!

Hence,~A1! holds forn5m11 as well as forn<m.
This completes the proof.

2. Theorem III.3

Next, consider the second theorem:

u]XuuXup5p~p11!•••~p1n21!uXup21,

p50,61,62,... . ~A17!
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A. Proof for p >0

In this case, the formula~A1! is utilized to rewrite the left-hand side of~A17! as

u]XuuXup5
1

N ~n,1!N ~n,p!
E
U~n!

dg1 dg2
detg1~detg2!

p exp$tr~g1]X!%exp$tr~g2X!%. ~A18!

Regard] i j5]/]xi j andxi j as operators upon functions ofxi j . Then the both sides of~A18! are
now considered to operate on 1. Apply the Campbell–Baker–Hausdorff formula to the exponential
factors on the right-hand side to give

rhs of ~A18!5
1

N ~n,1!N ~n,p!
E
U~n!

dg1 dg2
detg1~detg2!

p exp$tr~g1g2!%

3exp$tr~g2X!%exp$tr~g1]X!%, ~A19!

so that the last exponential factor can be dropped. Finally,g1 integration leads to

u]XuuXuP5
1

N ~n,p!
E
U~n!

dg

~detg!p21 exp$tr~gX!%5
N ~n,p21!

N ~n,p!
uXup21

5p~p11!•••~p1n21!uXup21,
~A20!

which complete the proof forpPZ1 . Note that there is no restriction toXPM ~n;C! in this case.

B. Proof for p <0

Start with the following relation:

u]XuuXu2p5u]Xu E S dz dz̄

p D np exp$2tr~XZZ†!%5~21!nE S dz dz̄

p D npuZZ†uexp$2tr~XZZ†!%,

~A21!

for

X5A1 iB, A†5A, B†5B, A.0, ~A22!

where we have putp→2p so thatp is positive here and hereafter.
First, consider the casep<n21 in which the relation,

detZZ†5det~Z 0!SZ†0 D50, ~A23!

tells us that the right-hand side of~A21! trivially vanishes. Hence, it is enough to examine the case
p>n. Before proceeding, we recall a well-known fact: under the condition~A22! A andB are
simultaneously diagonalized by means of an appropriate invertible matrixK, such that

K†AK51n , K†BK5BD5diag~b1 ,...,bn!. ~A24!

Accordingly, a change of variables,Z°Z85K21Z, gives

~A21!5
~21!n

uAup11 E S dz dz̄

p D npuZZ†uexp@2tr$~1n1 iBD!ZZ†%#. ~A25!

Then rewrite the matrix 1n1 iBD as
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1n1 iBD5S 11 ib1 0

�

0 11 ibn

D 5FF, ~A26!

F[S f 1 0

�

0 f n
D , F[S eif1 0

�

0 eifn

D , ~A27!

0, f i , 2
p

2
,f i,

p

2
~ i51,...,n!. ~A28!

Further, a change of variablesZ°Z85AFZ leads to

~A25!5
~21!n

uAup11uFup11 E S dz dz̄

p D npuZZ†uexp$2tr~FZZ†!%, ~A29!

which is rewritten, by use of the formula~A1!, as

~A29!5
~21!nn!

uAup11uFup11 lim
e→0

E
U~n!

dg

detg E S dz dz̄

p D np exp@2tr$~F2ge2e!ZZ†%#. ~A30!

Now the Gaussian integration with respect toZ is performed, giving

~A30!5
~21!nn!

uAup11uFup11 lim
e→0

E
U~n!

dg

detg

1

det~F2ge2e!p
, ~A31!

which becomes, after a change of variableg°F21g,

~A31!5
~21!nn!

uAup11uFup11uFup11 lim
e→0

E
U~n!

dg

detg

1

det~1n2ge2e!p

5
~21!nn!

uXup11 lim
e→0

E
U~n!

dg

detg

1

det~1n2ge2e!p
. ~A32!

In view of ~A32! and ~A17! ~with p→2p!, our remaining task is therefore to prove

lim
e→0

E
U~n!

dg

detg

1

det~1n2ge2e!p
5S pnD . ~A33!

In order to accomplish theg integration, recall the decomposition,27,24

g5Vg0V
†, g05diag~eiu1,...,eiun!, VPSU~n!, ~A34!

then integrateV to obtain

lim
e→0

E
U~n!

dg

detg

1

det~1n2ge2e!p
5 lim

e→0
E
0

2pS du

2p D n 1

n! )
a,b

ueiua2eiubu2)
a51

n
e2 iua

~12e2e1 iua!p
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5 lim
e→0

E
0

2pS du

2p D n 1

n! (
s,tPS n

sgn~st!)
a51

n

(
l a50

` S p1 l a21
l a

D
3exp@ i $ l a211s~a!2t~a!%ua2 l ae#. ~A35!

Finally, carry out theu integrations and pute→0 to find

~A35!5U p S p11
2 D S p12

3 D ••• S p1n21
n D

1 p S p11
2 D � A

0 1 p � S p12
3 D

A � � � S p11
2 D

0 ••• 0 1 p

U . ~A36!

We denote this determinant asD(n,p), n50,1,2,..., definingD~0,p!51. Now our goal is to show

D~n,p!5S pnD . ~A37!

Prove this again by induction: first note the recursion relation, obtained by expandingD(n,p)
with respect to its first row,

D~n,p!5(
r51

n

~21!11r S p1r21
r DD~n2r ,p!. ~A38!

Assume~A37! for 0<m<n21, then rewrite~A38! as

D~n,p!5(
r51

n

~21!11r S p1r21
r D S p

n2r D5
p

n (
r51

n

~21!11r S nr D S p1r21
p1r2nD . ~A39!

Utilize the generating function, giving us

S p1r21
p1r2nD5

1

p! S ddxD
pU
x50

(
l50

` S l1n21
l D xl1n2r , ~A40!

to find

S pnD2D~n,p!5
p

n (
r50

n

~21!r S nr D S p1r21
p1r2nD5

p

n

1

p! S ddxD
pU
x50

(
r50

n

~21!r S nr D
3(

l50

` S l1n21
l D xl1n2r

5
p

n

1

p! S ddxD
pU
x50

(
r50

n S nr D ~21!rxn2r S 1

12xD
n

5~21!n
p

n

1

p! S ddxD
pU
x50

150.

~A41!
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Thus ~A37! also holds form5n. This completes the proof.

APPENDIX B: FEYNMAN KERNEL AND THE WKB APPROXIMATION

In order to make a comparison to the DH theorem, our concentration has been on the character
formula in the text. However, from a quantum mechanical point of view, the Feynman kernel is
more primitive so that in this appendix a brief sketch is presented, giving a path integral repre-
sentation that enables us to discuss the WKB approximation.

1. The Feynman kernel by the generalized coherent states

Take a Hermitian matrix,

H[S A B

B† D D PH~N!, ~B1!

with the same convention given in~2.14!; then consider the Feynman kernel,

Kk~jF ,j I ;T![^jF ;kurk~e2 iHT!uj I ;k&. ~B2!

Follow a similar procedure from~4.2! to ~4.6! to obtain

Kk~jF ,j I ;T!5
1

@det$~1n1jF
†jF!~1n1j I

†j I !%#k/2
lim
M→`

E )
i51

M21

dm„j~ i !;k…

3expF2k (
j51

M21

tr log„1n1j†~ j !j~ j !…1k(
j51

M

tr log„1n1j†~ j !j~ j21!…G
3expF2 ik Dt(

j51

M

tr$P„j~ j !,j~ j21!…H%G , ~B3!

wherej~0!5jI , j(M )5jF . Introduce a one-parameter subgroup of U(N),

g~ t !5exp~2 iHt !5S a~ t ! b~ t !

g~ t ! d~ t !
D , tPR, ~B4!

and write

L ~ i , j ![a~ i2 j !1j†~ i !g~ i2 j !1b~ i2 j !j~ j !1j†~ i !d~ i2 j !j~ j !, ~B5!

with the abbreviationa( jDt)5a( j ), etc.; then discardO„(Dt)2… terms to obtain

Kk~jF ,j I ;T!5
1

@det$~1n1jF
†jF!~1n1j I

†j I !%#k/2
lim
M→`

E )
i51

M21

dm„j~ i !;k…

3expFk(
j51

M

tr log L ~ j , j21!2k (
j51

M21

tr log L ~ j , j !G , ~B6!

whosej th integration part is

E dm„j~ j !;k…

$det„1n1j†~ j !j~ j !…%k
@det$L ~ j11,j !L ~ j , j21!%#k. ~B7!

To carry out this integration, write
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det$L ~ j11,j !L ~ j , j21!%5det$a~1!1j†~ j11!g~1!%det$1n1$j†~ j11!* g~1!%j~ j !%

3det$1n1j†~ j !$g~1!* j~ j21!%%det$a~1!1b~1!j~ j21!%,

~B8!

where

g~ j !* j5$g~ j !1d~ j !j%$a~ j !1b~ j !j%21,
~B9!

j†* g~ j ![$a~ j !1j†g~ j !%21$b~ j !1j†d~ j !%.

Utilizing the formula~3.48!, we find

~B7!5det$a~1!1j†~ j11!g~1!%k@det$1n1$j†~ j11!* g~1!%$g~1!* j~ j21!%%#k

3det$a~1!1b~1!j~ j21!%k, ~B10!

which is nothing but

~B7!5$detL ~ j11,j21!%k, ~B11!

sinceg(t) is an element of the one-parameter subgroup~B4!. Hence, afterM21 times of this
manipulation we obtain

Kk~jF ,j I ;T!5Fdet$a~T!1jF
†g~T!1b~T!j I1jF

†d~T!j I%

det$~1n1jF
†jF!~1n1j I

†j I !%
1/2 G k. ~B12!

2. The Feynman kernel by the Schwinger boson

First introduce an integral representation of the inner product between coherent states:

^j;kuh;k&5
N ~n,N2n1k!

N ~n,k!
E S dz dz̄

p D n2$det~z†z!%N2nE
U~n!

dg

~detg!k
^Z~j,z!uZ~h,z!g&,

~B13!

where

uZ~j,z!&[exp$tr~a†Z~j,z!2Z†~j,z!a!%u0& ~B14!

is the canonical coherent state, withZ~j,z! being defined by

jPM ~N2n,n;C!, zPM ~n;C!°Z~j,z![S 1nj D 1

A1n1j†j
zPM ~N,n;C!. ~B15!

@The relation~B13! can be verified by use of the formulas III.2 and III.3.! Then the Feynman
kernel ~B2! is expressed as

Kk~jF ,j I ;T!5
N ~n,N2n1k!

N ~n,k!
E S dz dz̄

p D n2$det~z†z!%N2nE
U~n!

dg

~detg!k
^Z~jF ,z!u

3exp~2 iĤ T!uZ~j I ,z!g&, ~B16!

whereĤ has been given by~4.25! for H in ~B1!. Write
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^Z~jF ,z!uexp~2 iĤ T!uZ~z I ,z!g&5exp$2tr~z†z!% lim
M→`

E )
i51

M21 S dz~ i !dz̄~ i !p D Nn

3expF2trH (
j51

M21

Z†~ j !Z~ j !

2(
j51

M

Z†~ j !g~1!Z~ j21!J G , ~B17!

whereZ(0)5Z(j I ,z)g, Z
†(M )5Z†(jF ,z), which becomes

~B17!5exp@2tr$z†z2gz†K ~jF ,j I ;T!z%#, ~B18!

where

K ~jF ,j I ;T![~1n1jF
†jF!21/2L ~M ,0!~1n1j I

†j I !
21/2

5~1n1jF
†jF!21/2$a~T!1jF

†g~T!1b~T!j I1jF
†d~T!j I%~1n1j I

†j I !
21/2.

~B19!

Substituting~B18! into ~B16! and carrying outg andz integrations, we find

Kk~jF ,j I ;T!5$detK ~jF ,j I ;T!%k5Fdet$a~T!1jF
†g~T!1b~T!j I1jF

†d~T!j I%

det$~1n1jF
†jF!~1n1j I

†j I !%
1/2 G k, ~B20!

which, of course, matches the previous result~B12!. However, this representation can again
provide an interpretation of the WKB exactness.

3. The WKB approximation

From the path integral expression~B6!, the action is read as

S5(
j51

M

tr log L ~ j , j21!2 (
j51

M21

tr log L ~ j , j !. ~B21!

and therefore equations of motion read as

$g~1!1d~1!j~ j21!%L21~ j , j21!5j~ j !L21~ j , j !, ~B22!

L21~ j11,j !$b~1!1j†~ j11!d~1!%5L21~ j , j !j†~ j !, ~B23!

for 1< j<M21. These can be solved locally by

j~ j !5$g~1!1d~1!j~ j21!%$a~1!1b~1!j~ j21!%21, ~B24!

j†~ j !5$a~1!1j†~ j11!g~1!%21$b~1!1j†~ j11!d~1!%, ~B25!

so that the classical solution, under the boundary conditionj~0!5jI , j(M )5jF , is found such that

jc~ j !5$g~ j !1d~ j !j I%$a~ j !1b~ j !j I%
21, ~B26!

jc
†~ j !5$a~M2 j !1jF

†g~M2 j !%21$b~M2 j !1jF
†d~M2 j !%. ~B27!
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Note thatjc( j ) andjc
†( j ) are not Hermitian conjugated to each other. This is not so surprising,

although it is often emphasized. A similar situation can be met even in a simple Gaussian inte-
gration:

E dz dz̄

p
exp~2 z̄z1āz1 z̄b!, ~B28!

for a,bPC. Complete the square to find

z̄z2āz2 z̄b5~ z̄2ā!~z2b!2āb. ~B29!

Then the shift,z,z̄→z1b,z̄1a, leading to

E dz dz̄

p
exp~2 z̄z1āb!5eāb, ~B30!

is asymmetric, but there is no problem. The point is that they should be regarded as independent,
which also clarifies that there is no overspecification problem often stressed by authors working in
a continuum version of the path integral, since there seems to be two boundary conditions in the
first-order differential equation.~The confusion emerges from regarding variables as complex
conjugates to each other.!

Turn back to the main subject and evaluate the action~B21! and its Hessian at classical
solutions~B26! and ~B27!. To this end note the following relation:

L ~ j , j !c$a~ j !1b~ j !j I%5L ~ j , j21!c$a~ j21!1b~ j21!j I%, ~B31!

where the subscriptc designates quantities of the classical solutions. Then

Sc[(
j51

M

tr log L ~ j , j21!c2 (
j51

M21

tr log L ~ j , j !c

5tr log@L ~M ,M21!c$a~M21!1b~M21!j I%#5tr log L ~M ,0!, ~B32!

with L (M ,0)PM ~n;C! being given by~B5!: explicitly, L (M ,0) 5 a(T) 1 jF
†g(T) 1 b(T)j I

1 jF
†d(T)j I . Introduce another one-parameter subgroup,

g̃~ t ![S d†~ t ! 2b†~ t !

2g†~ t ! a†~ t !
D , ~B33!

to define

L̃ ~ i , j ![d†~ i2 j !2j~ j !g†~ i2 j !2b†~ i2 j !j†~ i !1j~ j !a†~ i2 j !j†~ i !. ~B34!

The Hessian of the action is then found as

]2S

]j ia~ l !]j̄ jb~m!
52d l ,mL̃

21~m,m! j iL
21~m,m!ab1d l ,m21L̃

21~m,m21! j iL
21~m,m21!ab .

~B35!

Shifting the variables such that

j~ j !5jc~ j !1z~ j !, j†~ j !5jc
†~ j !1z†~ j !, ~B36!
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and truncate the Taylor series up to the bilinear terms ofz andz† to obtain

S;Sc2 (
j51

M21

tr$z†~ j !L̃21~ j , j !cz~ j !L
21~ j , j !c%1 (

j52

M21

tr$z†~ j !L̃21~ j , j21!cz~ j21!

3L21~ j , j21!c%. ~B37!

The measure is also approximated as

dm„j~ j !;k…uc ;
k→` kn~N2n!

$detL ~ j , j !c%
N S dz~ j !dz̄~ j !p D n~N2n!

$11O~k21!%, ~B38!

where use has been made of the definition of the measure~3.42! with ~4.14!. Therefore, in view of
~B37! and ~B38! the Gaussian integration ofz̄( j ),z( j ) gives

det$L̃21~ j , j !c^ ~L21~ j , j !c!
T %215$detL ~ j , j !c%

N, ~B39!

which, together with (p/k)n(N2n), cancels the prefactor in~B38!, yielding the leading contribution
to the WKB approximation:

Kk~jF ,j I ;T! ;
k→` 1

@det$~1n1jF
†jF!~1n1j I

†j I !%#k/2
exp$k tr log L ~M ,0!%

5Fdet$a~T!1jF
†g~T!1b~T!j I1jF

†d~T!j I%

det$~1n1jF
†jF!~1n1j I

†j I !%
1/2 G k. ~B40!

The result is equal to the Feynman kernel~B12!, ~B20!. Thus,the WKB approximation is again
exact for the Feynman kernel. The fact can also be clarified in view of~B16! as well as~B17!,
since the integrand is Gaussian.
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Berry’s phase on SU( n )/S(U(1)3U(n21)) manifolds
S. Giller, C. Gonera, P. Kosiński, and P. Maślanka
University of Lodz, Department of Theoretical Physics, Pomorska 149/153, 90-236 Lodz,
Poland
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It is shown that the Berry phase/matrix for Hamiltonians parametrized by the points
of M[SU(n)/S„U~1!3U~n21!… and having no accidental degeneracy is express-
ible in terms of Riemannian connection onM and representations of
S„U~1!3U~n21!…. © 1996 American Institute of Physics.@S0022-2488~95!01812-
3#

I. INTRODUCTION

Berry’s phase has appeared to be the most exciting recent discovery in the field of elementary
quantum mechanics. It has found a wide range of applications as, for example, the Born–
Oppenheimer treatment of molecular systems,2 the quantum Hall effect,3 gauge anomalies,4 or
light propagation in optical fibers.5

Much attention has also been paid to the mathematical structure of Berry’s phase. It was
quickly realized that Berry’s phase, as well as its generalization to the case of degenerate
levels6—the Berry matrix, is related to the geometry of some fiber bundles.7–10 In particular, in
Ref. 10 a general approach was proposed that is applicable in the case of Hamiltonians generated
by the action of a unitary representation of some Lie groupG. Within the approach proposed there
the relation between Berry’s phase/matrix and the geometry of homogeneous spaceG/H becomes
transparent, and some general structural questions are easily addressed. For example, the general
criteria can be given under which the Berry phase is determined by the Riemannian connection on
G/H and the representation ofH.

The present paper is devoted to the proof of the statement that forG5SU(n) andH5S„U~1!
3U~n21!… the Berry phase/matrix for any Hamiltonian with no degeneracy~to be defined below!
is determined in this way. In Sec. II we outline the method developed in Ref. 10 and recall some
basic facts concerning the geometry of homogeneous spaces. Then in Sec. III, we prove our basic
statement. Our main tool in Gelfand–Tseytlin explicit construction of representations of U(n)
groups.

II. GEOMETRY OF BERRY’S PHASE AND HOMOGENEOUS SPACES

We recall briefly the group-theoretical approach to Berry’s phase developed in Ref. 10. Let
$Pn% be any spectral decomposition of unity,

PnPm5dnmPm , Pn
15Pn , (

n
Pn51. ~1!

Assume further thatG{g°U(g) is a unitary representation of compact semisimple Lie
groupG acting in the Hilbert space of states. Consider family of projectors defined by

Pn~g!5U~g!PnU
1~g!. ~2!

Let H,G be subgroup ofG consisting of all elementsgPG such thatU(g)PnU
1(g)5Pn

for anyn. Then the family$Pn(g)% is parametrized by the pointszPG/H. Finally, let $En~z!% be
a set of real-valued functions onG/H such thatEn(z)ÞEm(z), nÞm; we define the family of
Hamiltonians,

H~z![(
n

En~z!Pn~z!. ~3!
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Our task is to calculate the Berry phases/matrices for this family. The following answer to this
problem is given in Ref. 10. Let (V,A) be the Lie algebra ofG while (V)—that ofH. The relevant
commutation rules read as follows:

@Vi ,Vj #5 ic i j
k Vk , @Vi ,Aa#5 ic ia

b Ab , @Aa ,Ab#5 icab
k Vk1 icab

g Ag . ~4!

We always assume that basis (V,A) provides an orthogonal decomposition of Lie algebra with
respect to the Cartan product,

Tr~Ad Vi•Ad Aa!50, ~5!

and we put

Tr~Ad Vi•Ad Vj !5h i j , Tr~Ad Aa•Ad Ab!5hab . ~6!

The Cartan forms are defined as follows:

U1~z!dU~z!5 ihm
i dzm

•Vi1 ivm
a dzmAa . ~7!

Finally, we denote

Vi
~n![PnViPn , Aa

~n![PnAaPn . ~8!

The main result of Ref. 10 is as follows. Given any closed curveg,G/H, the corresponding
Berry’s matrix for thenth level is given by the parallel transport alongg defined by the connection

D

dt
5

]

]t
1 i

dzm

dt
~vm

aAa
~n!1hm

k Vk
~n!!. ~9!

This formula gives the group-theoretical description of Berry’s aholonomy for the family of
Hamiltonians defined by Eq.~3!. One can now use the geometrical techniques to obtain more
detailed information concerning Berry’s phase/matrix.

Let us remind some basic facts concerning the geometry of homogeneous spaces. Putting

va[vm
a dzm, h i[hm

i dzm, ~10!

and taking the external derivative of both sides of Eq.~7!, we arrive at the so-called Cartan–
Maurer equations,

dvg5 1
2cab

g va`vb1cka
g hk`va, ~10a!

dh i5 1
2cab

i va`vb1 1
2clk

i h l`hk. ~10b!

Note thatvm
a~z! can be viewed as orthonormal repers; in particular,

gmn~z![habvm
a~z!vn

b~z! ~11!

is an invariant metric onG/H. Let us define

Vb
a[2h icib

a , ~12a!

Tbg
a [cbg

a , ~12b!

Rbgr
a [2cib

a cgr
i . ~12c!
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Equations~10! can be now written in the form

dva1Vb
a`vb5 1

2Tbg
a vb`vg, ~13a!

dVb
a1Vr

a`Vb
r 5 1

2Rbgr
a vg`vb. ~13b!

Therefore,Tbg
a andRbgr

a are torsion and curvature, respectively. In particular, ifG/H is a sym-
metric space,cbg

a 50, the torsion vanishes. ThenVb
a is the Riemannian connection onG/H. If G/H

is homogeneous only,Vb
a differs from the Riemannian connection by a torsion term; in both cases

the metric tensor~11! is covariantly constant. In thenonsymmetriccase the Riemannian connec-
tion reads as

VRb
a 52h icib

a 2 1
2cgb

a vg. ~14!

Indeed,VRab is antisymmetric; moreover, it follows from Eq.~12a! that the corresponding torsion
vanishes. The direct proof of Eq.~14! can be also obtained by calculating Christoffel symbols
from the metric~11! and using the formula

VRb
a 5vn

aGm
n vb

m1vn
a dvb

n . ~15!

In the above formula the first index ofvb
a is raised~lowered! with the help ofhab~hab! while the

second one bygmn~z!„gmn~z!….
If G/H is symmetric space, the Riemannian connection can be viewed as a connection in a

bundle associated with the principal bundleP(G/H,H).
Let us pose the following question:for which Hamiltonians (3) the Berry matrices for all

levels n are expressible in terms of Riemannian connection on G/H and the representations of H.
It follows from Eq. ~9! that one should then have

Aa
~n!50, ~16!

and, moreover,G/H should be symmetric space. All generatorsVi have a block-diagonal form,

Vi5(
n

Vi
~n! . ~17!

We assume that there is no accidental degeneracy, i.e.,H is a maximal symmetry group of all
Hamiltonians of the family under consideration. Then all eigenspaces carry irreducible represen-
tations ofH. Our problem becomes now a purely group-theoretical one. Given groupG and
subgroupH,G such thatG/H is a symmetric space, find all irreducible representations ofG such
that Eq.~16! holds for all irreducible subspace (n) of subduced representationG↓H.

It is not easy to solve this question in whole generality. Instead, in the next section we present
some general example of such a situation.

III. BERRY’S AHOLONOMY FOR SU( n )/S(U(1)3U(n21)) SYSTEMS

Here we solve the problem posed in the last section forG5SU(n) andH5S„U~1!3U~n21!….
The generators of SU(n) can be introduced as follows.11 First, we define generators of

GL~n,R!,

~Ai j !kl5d i ld jk , ~18!

verifying

@Ai j ,Akl#5d jkAil2d i l Ak j . ~19!
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Then we put

Mkl[Akl1Alk , M̃ kl[ i ~Akl2Alk!, 1<k, l<n, ~20a!

Mll[All2Al11l11 , 1< l<n22, ~20b!

Mn21n21[diag~1,...,1,12n!. ~20c!

Then H5S„U~1!3U~n21!… subgroup is generated byMkl , M̃ kl , 1<k, l<n21 and Mll ,
l51,...,n21; the remaining ones~generating the cosets! areMkn , M̃kn , k51,...,n21.

We are looking for the irreducible representations of SU(n) for which Eq.~16! holds. To this
end we adopt the following strategy.12 First, we note that any irreducible representation of SU(n)
is obtained by subducing some irreducible representations of U(n). Indeed, it is sufficient to add
to the set of generators~20! an additional one,

Mnn5I . ~21!

Then the operatorsMkl , M̃ kl , 1<k, l<n21, Mll , l51,...,n21 span the Lie algebra of U(n)
while Mkl , M̃kl , 1<k, l<n21, Mll , 1< l<n22 and

M[
1

n
„Mn21n211~n21!Mnn…, ~22!

span the Lie algebra of U~n21!; the coset space is generated by 2n21 operatorsMkn ,M̃ kn ,Mnn .
In any irreducible representationMnn is proportional to unit operator and poses no problems.

We have only to check for which representations of U(n) Eq. ~16! holds for any irreducible
representation of U~n21! and any operatorMkn , M̃kn , k51,...,n21. First, we note that

@Mkl ,Min#52 i ~d i l M̃ kn1d ikM̃ ln!, ~23a!

@M̃ kl ,M̃ in#5 i ~d i l M̃ kn2d ikM̃ ln!, ~23b!

@M̃ kl ,Min#5 i ~d i l Mkn2d ikM ln!. ~23c!

We see that the generatorsM̃ kl , 1<k, l<n21 span SO~n21! algebra andMin , M̃ in ,
i51,...,n21 form the vector representations of this algebra. Therefore, for anyl51,...,n21
there existgl ,g̃lPSO~n21!,S„U~1!3U~n21!…, such that

Mln5U~gl !Mn21nU
1~gl !, M̃ ln5U~ g̃l !M̃n21nU

1~ g̃l !. ~24!

But U(gl),U(g̃l) leave invariant the irreducible subspaces of S„U~1!3U~n21!…. Therefore it is
sufficient to check the validity of Eq.~16! for Mn21n and M̃n21n only. To this end we use the
Gelfand–Tseytlin method.11 Consider the chain of subalgebras,

u~n!.u~n21!.•••.u~1!. ~25!

It is well known that any irreducible representation ofu(k), when subduced tou(n21), contains
a given irreducible representation ofu(k21), at most, once; moreover, irreducible representations
of u~1! are one dimensional. Therefore we can enumerate the basis vector of a given representa-
tion of u(n) by indicating to which representation ofu(k),k51,...,n21, it belongs. This is the
essence of the Gelfand–Tseytlin scheme.

Now, Mn21n and M̃n21n commute with allu(k),k51,...,n22. Therefore, in a Gelfand–
Tseytlin basis, their nonvanishing matrix elements are either diagonal or correspond to the vectors
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belonging to different irreducible representation ofu(n21). So, we have to check Eq.~16! for
diagonal elementsMn21n andM̃n21n, or, equivalently, ofAn21n andAnn21. However, it follows
from general Gelfand–Tseytlin formulas11 that the diagonal matrix element ofAn21,n andAn,n21
vanish for all irreducible representations of U(n).

We conclude that for anyn and any irreducible representation of SU(n), the Hamiltonians
generated by SU(n), parametrized by the points of coset space SU(n)/S„U~1!3U~n21!… and
exhibiting no accidental degeneracy give rise to Berry’s phases/matrices expressible in terms of
Riemannian connection on SU(n)/S„U~1!3U~n21!… and the representations of S„U~1!3U~n21!….
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For over a century, the Kepler problem and the harmonic oscillator have been
known as the only central force dynamical systems, all of whose bounded motions
are periodic. Two of the authors~T. I. and N. K.! have found an infinite number of
dynamical systems possessing such a periodicity property, which have been called
multi-fold Kepler systems orn-fold Kepler systems, withn a positive rational
number. Ifn is allowed to take the real positive numbers, sayn5a, then for the
a-fold Kepler system, all the bounded motions become periodic or not, according
to whether the parametera is a rational number or not. A purpose of this paper is
to quantize thea-fold Kepler system and thereby to figure out a quantum analog of
the closed orbit property of thea-fold Kepler system. It will turn out that the
quantizeda-fold Kepler system admits accidental degeneracy in energy levels or
not, according to whethera is a rational number or not. ©1996 American Insti-
tute of Physics.@S0022-2488~96!00902-1#

I. INTRODUCTION

For many years, the Taub–NUT metric onR42$0% has been investigated from various points
of view. For instance, the motion of well-separated two monopoles can be described approxi-
mately by the geodesic motion associated with the Taub–NUT~Taub–Newman–Unti–Tambrino!
metric.1–5 It is also known, from a symmetry point of view, that the geodesic motion of this metric
admits a Kepler-type symmetry when the geodesic flow system is reduced to a three-degrees-of-
freedom system.5–8

In previous papers,9–11 Iwai and Katayama have generalized the Taub–NUT metric so that the
associated reduced system may admit a Kepler-type symmetry. In a continuation of those papers,12

they have made further generalization of the Taub–NUT metric, which is described as follows: Let
(xj ) be the Cartesian coordinates inṘ

4:5R42$0%. The generalized Taub–NUT metric is expressed
as

dsG
2 54r f ~r !(

j51

4

dxj
214S g~r !

r 2
2 f ~r ! D ~2x2 dx11x1 dx22x4 dx31x3 dx4!

2, ~1.1!

with f (r ) andg(r ) given, respectively, by

f ~r !5r 1/a22~a01a1r
1/a! and g~r !5

r 1/a~a01a1r
1/a!

11a2r
1/a1a3r

2/a , ~1.2!

wherer is the squared radius,

r5(
j51

4

xj
2,

and the parametera is a positive real number andaj ’s real constants.
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The reduced system from the geodesic flow system associated with this metric has a remark-
able periodicity property. Consider the cotangent bundleT* Ṙ4 of Ṙ4 with the standard symplectic
form du5( j51

4 dyj`dxj , (xj ,yj ) being the Cartesian coordinates inṘ43R4.T* Ṙ4. Then the
geodesic flow system is described as a Hamiltonian system on the phase space~T* Ṙ4,du! along
with a certain Hamiltonian functionH containingf (r ) andg(r ). Owing to aU(1) symmetry, the
Hamiltonian system~T* Ṙ4,du,H! can be reduced to a Hamiltonian system~T* Ṙ3,vm ,Hm!, where
T* Ṙ3.Ṙ33R3 denotes the cotangent bundle ofṘ3:5R32$0%, vm is the reduced symplectic form
composed of the canonical one plus the two-form describing Dirac’s monopole field of strength
2m, mPR, andHm is a reduced Hamiltonian, which also depends onf (r ) andg(r ). See Refs. 12,
13, or 14 for the reduction procedure, for example. Forf (r ) andg(r ) given by~1.2!, the reduced
Hamiltonian system~T* Ṙ3,vm ,Hm! has a remarkable periodicity property; according as the pa-
rametera in Hm is a rational number or not, all the bounded motions become periodic or not. In
this paper, this Hamiltonian system will be referred to as the ‘‘a-fold Kepler system,’’ whichever
number thea takes, rational or irrational.

The aim of this paper is to develop a quantum theory for thea-fold Kepler system. Like in the
classical case, a significant feature will be found out for the quantizeda-fold Kepler system:
According to whether thea is rational or not, accidental degeneracies in the energy levels arise or
not.

The contents of this paper are outlined as follows: Section II contains a setting up of the
classicala-fold Kepler system, which is defined to be a Hamiltonian system reduced from the
geodesic flow system for the generalized Taub–NUT metricdsG

2 through the reduction by aU(1)
action. It is remarked that thea-fold Kepler system covers a class of dynamical systems of
interest.

In Sec. III, the geodesic flow system fordsG
2 is quantized, through the Schro¨dinger procedure,

since the classical Hamiltonian can be expressed in the Cartesian coordinates, and since no prob-
lem of noncommutativity of operators arises. It is to be noted that the Hamiltonian operator
obtained,Ĥ, is not equal to21

2 times the Laplace–Beltrami operator fordsG
2 . This definition ofĤ

seems to contradict the ordinary principle that the Hamiltonian operator to be associated with the
metric is the Laplace–Beltrami operator. For example, in Refs. 5–7, the Laplace–Beltrami opera-
tor associated with the Taub–NUT metric was used as a Hamiltonian operator. This discrepancy
will be cleared out in Sec. VI. Note also that the Hilbert space in whichĤ is to be defined densely
is taken to beL2„R4;4r f (r )dx…, the space of square-integrable functions onR4 with respect to the
volume form 4r f (r )dx1•••dx4 . To avoid excessive singularity, we assume thatf (r ).0 for r.0
in the following. The eigenvalue problem ofĤ is solved for bound states. It is shown further that
the energy eigenvalues forĤ become equal to those obtained already in Refs. 5–7, whendsG

2 is
restricted to the Taub–NUT metric.

In Sec. IV, the quantizeda-fold Kepler system is defined to be the reduced system of the
quantized geodesic flow system defined in Sec. III. A key to the reduction procedure is the fact that
the configuration spaceṘ4 is made into a principal U~1! bundlep :Ṙ4→Ṙ3. Then the geometric
setting for the reduction is to form the complex line bundleLm , mPZ, associated with the
principal bundle p :Ṙ4→Ṙ3. The restriction of L2„R4;4r f (r )dx… to the rm-equivariant
functions15,16gives rise to the Hilbert space of square integrable cross sections inLm , denoted by
Gm . According to this reduction procedure, the quantizeda-fold Kepler system is to be defined in
Gm , with the Hamiltonian operatorĤm reduced from theĤ, which contains the covariant deriva-
tion operator with respect to the linear connection onLm . The eigenvalue problem ofĤm is
studied accordingly. On account of the reduction procedure, the eigenvalues ofĤm come from
those ofĤ.

In Sec. V, degeneracy in energy levels forĤm is discussed. Owing to the spherical symmetry,
the quantizeda-fold Kepler system admits an SU~2! symmetry, which causes degeneracy in the
energy levels ofĤm . In addition, it will be shown that additional ‘‘accidental’’ degeneracy occurs
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or not, according to whethera is a rational number or not. This can be thought of as a quantum
analog to the periodicity property of the classicala-fold Kepler system.

Section VI contains the comparison of the operatorĤ with the Laplace–Beltrami operatorD
for the generalized Taub–NUT metricdsG

2 . A necessary and sufficient condition forĤ52(1/2)D
will be given.

II. A REVIEW OF THE MULTIFOLD KEPLER SYSTEM

In this section, we make a brief review of the multifold Kepler system. To define the multifold
Kepler system onT* Ṙ3 with Ṙ35R32$0%, we start with a U~1! reduction of the phase space
~T* Ṙ4,du!, whereṘ45R42$0%, anddu is the standard symplectic two-form that is expressed as
du5( i51

4 dyi`dxi in the Cartesian coordinates (x,y)PṘ43R4.T* Ṙ4. The symplectic SO~2!
.U~1! action, denoted bySt , is defined to be

St :~x,y!°„T~ t !x,T~ t !y…, ~2.1!

with

T~ t !5SR~ t ! 0

0 R~ t !
D , R~ t !5S cos t/2 2sin t/2

sin t/2 cost/2 D . ~2.2!

The moment mapJ associated withSt takes the form

J~x,y!5 1
2~2x2y11x1y22x4y31x3y4!. ~2.3!

According to the Weinstein–Marsden reduction method,17 the reduced phase space is defined to be
the quotient spaceJ21(m)/U~1! for a fixedmPR, which turns out to be realized as the cotangent
bundleT* Ṙ3 of Ṙ3 as follows:13,14We define a map ofṘ43R4 to Ṙ33R3 by

P~x,y!:5S P~x!x,
1

2r
P~x!yD , ~2.4a!

where

P~x!5S x3 x4 x1 x2

2x4 x3 x2 2x1

x1 x2 2x3 2x4
D , r :5(

j51

4

xj
2. ~2.4b!

The mapping~2.4a! is also known as the Kustaanheimo–Stiefel transformation.18 Then the restric-
tion of P to J21(m),T* Ṙ4, denoted bypm , gives rise to the projection

pm :J
21~m!→T* Ṙ3.J21~m!/U~1!, ~2.5!

which proves our assertion. We denote the Cartesian coordinates in the reduced phase space
Ṙ33R3 by (q,p); P(x,y)5(q,p) with (x,y)PJ21(m). We reduce the symplectic formdu in
turn. On lettingim :J

21(m)→T* Ṙ4 be the inclusion map, the reduced symplectic formvm on the
reduced phase space is determined throughpm*vm 5 im* du, which turns out to take the form

vm5 (
k51

3

dpk`dqk2
m

r 3
~q1 dq2`dq31cyclic!. ~2.6!

The second term of the right-hand side of~2.6! corresponds to the magnetic flux of Dirac’s
monopole fieldB52mq/r 3.
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Let H be a Hamiltonian function onT* Ṙ4. If it is U(1) invariant, it can be reduced, through
H+im5Hm+pm , to a Hamiltonian functionHm on T* Ṙ3. In what follows, we are to reduce the
Hamiltonian system describing the geodesic flows for the generalized Taub–NUT metricsdsG

2

given by ~1.1! and ~1.2!. The Hamiltonian functionH associated withdsG
2 is given by

H5
1

2
•

1

4r f ~r ! F (
j51

4

yj
21S r f ~r !

g~r !
2
1

r D ~2x2y11x1y22x4y31x3y4!
2G . ~2.7!

Throughout this paper, to get rid of excessive singularities ofH, we assume thata0>0 anda1.,
so thatf (r ).0 for r.0. Note again that thea is a positive number, andaj ’s real constants. Since
theH is invariant under the U~1! action~2.1!, it proves to be reduced to the Hamiltonian function

Hm5
1

2 f ~r ! (
k51

3

pk
21

m2

2g~r ! S r 25 (
k51

3

qk
2D . ~2.8!

Note that the reduction procedure works for arbitrary functionsf (r ) andg(r ). In a summary, we
have the following.12

Proposition 2.1: The Hamiltonian system~T* Ṙ4,du,H! describing the geodesic flows for the
generalized Taub–NUT metric dsG

2 is reduced by theU~1! action to the Hamiltonian system
~T* Ṙ3,vm ,Hm!, mPR, which is called thea-fold Kepler system.

Thea-fold Kepler system has a significant property in their bounded trajectories.12

Theorem 2.2:For thea-fold Kepler system~T* Ṙ3,vm ,Hm!, all the bounded trajectories are
closed if and only if the parametera in the Hamiltonian function (2.8) with (1.2) is a rational
number.

In closing this section, we make a few remarks. When the parameters inf (r ) andg(r ) are set
to be

a054c, a151, a25
1

2c
, a35

1

16c2
, and a51, ~2.9!

the metricdsG
2 becomes the Taub–NUT metric, wherec is a constant. Further, if we set the

parameters to be

a05a350, a151, a252
2k

m2 ~k.0,const!, and a51, ~2.10!

the reduced Hamiltonian~2.8! becomes that for the MIC~McIntosch–Cisneros!–Kepler problem.
For the MIC–Kepler problem, see a series of papers.13,15,19,20Further, in the case of

a05a350, a15
1

4
, a252

k

2m2 , and a52, ~2.11!

the reduced system becomes the two-fold Kepler system studied in Ref. 11, which is the Hamil-
tonian system reduced from the four-dimensional Kepler problem on~T* Ṙ4,du!.

III. THE QUANTUM SYSTEM ASSOCIATED WITH THE GEODESIC FLOW SYSTEM FOR
ds G

2

A. Quantization of the geodesic flow system

We wish to quantize the geodesic flow system~T* Ṙ4,du,H!, with H given by~2.7!. SinceH
is expressed in the Cartesian coordinates, and since no problem of noncommutativity of operators
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occurs, we choose to adopt the Schro¨dinger procedure in order to associate a Hamiltonian operator
with H. According to that procedure,yj are replaced by2 i ]/]xj , so that Eq.~2.7! gives rise to

Ĥ52
1

2
•

1

4r f ~r ! F (
j51

4
]2

]xj
2 1S r f ~r !

g~r !
2
1

r D S 2x2
]

]x1
1x1

]

]x2
2x4

]

]x3
1x3

]

]x4
D 2G .

~3.1!

As a Hamiltonian operator, we could have chosen21
2 times the Laplace–Beltrami operator

associated withdsG
2 , following the usual principle. However, we dared to adopt the operator~3.1!.

We postpone the comparison of these two quantization procedures to Sec. VI. Instead of the
comparison, here we claim that our procedure is based upon the consideration of energy manifolds
of the classical system. Let us define a functionKl to be

Kl54r f ~r !~H2l!, ~3.2!

wherel is a constant. Then, the energy manifoldsH21(E) andKl
21(0) with E5l are identical in

T* Ṙ4. Further, the Hamiltonian flows generated byH and byKE coincide up to ‘‘time’’ param-
eters. In fact, a straightforward calculation shows thatXKl

5 4r f (r )XH on the energy manifold
mentioned above. We are to quantizeH on the hope that quantum analogy of~3.2! holds. That is,
we assume that if Hamiltonian operatorsĤ andK̂l are defined suitably, they will possibly satisfy

K̂l54r f ~r !~Ĥ2l!. ~3.3!

This equation implies that eigenfunctions forK̂E50 become those forĤ5E, and vice versa. The
quantization ofKl is easy to make, sinceKl takes the simple form

Kl5
1

2 F (
j51

4

yj
21S r f ~r !

g~r !
2
1

r D ~2x2y11x1y22x4y31x3y4!
2G24lr f ~r !, ~3.4!

to which the Schro¨dinger procedure is easy to apply. Hence, the Hamiltonian operatorĤ is
expressed as in~3.1! on account of~3.3!.

We have to describe what Hilbert space is suitable forĤ. We wish to define a Hilbert space so
that Ĥ may be at least a symmetric operator in it. To this end, we consider the space of square
integrable functions onR4 with respect to the volume element 4r f (r )dx54r f (r )dx1•••dx4 ,
which is denoted byL2„R4;4r f (r )dx…. Incidentally, it is well known thatC0

`~R4!, the space of
smooth functions onR4 with compact support, is dense inL2~R4!, the usualL2 space. Moreover,
the spaceC0

`~R4! remains to be dense inL2„R4;4r f (r )dx…, as is easily shown. Now, for anyf,
cPC0

`~R4!, integration by parts shows that

E
R4

~Ĥf!~x!c~x!4r f ~r !dx5E
R4

f~x!~Ĥc!~x!4r f ~r !dx. ~3.5!

Thus, the Hamiltonian operatorĤ is a symmetric operator inL2„R4;4r f (r )dx…. Summarizing the
above, we come to the following definition.

Definition 3.1: The quantized system associated with the geodesic flow system for the gener-
alized Taub–NUT metric dsG

2 is defined as the pair~L2„R4;4r f (r )dx…,Ĥ!, where Ĥ is given by
(3.1).

Before going to the eigenvalue problem ofĤ, we have to make a remark onĤ. As was
remarked in Sec. II, if the parameters are set as in~2.9!, the generalized Taub–NUT metricdsG

2

becomes the usual Taub–NUT metric. Correspondingly, the Hamiltonian operatorĤ becomes
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identical with 21
2 times the Laplace–Beltrami operator for the Taub–NUT metric, which was

studied in Refs. 5–7. However, as will be shown in Sec. VI, theĤ is not equal to21
2 times the

Laplace–Beltrami operator fordsG
2 in general.

B. The eigenvalue problem of Ĥ

We are to solve the eigenvalue problem ofĤ for the bound states. To this end, it is convenient
to introduce curvilinear coordinates inṘ4 as follows:

x15Ar cos
u

2
cos

c1f

2
, x25Ar cos

u

2
sin

c1f

2
,

~3.6!

x35Ar sin
u

2
cos

c2f

2
, x45Ar sin

u

2
sin

c2f

2
,

wherer.0, 0<u<p, and 0<c2f, c1f<4p. In terms of (r ,u,f,c), the operatorĤ is written
as

Ĥ52
1

2 f ~r ! F 1r 2 ]

]r S r 2 ]

]r D1
1

4r 2
D31S f ~r !

g~r !
2

1

r 2D S ]

]c D 2G , ~3.7!

whereD3 is the Laplace–Beltrami operator on the three-dimensional unit sphereS3 with the
canonical metric;

D354F 1

sin u

]

]u S sin u
]

]u D1
1

sin2 u S ]2

]f222 cosu
]2

]f ]c
1

]2

]c2D G . ~3.8!

Let us take an ansatzR(r )Q(u,f,c) as an eigenfunction ofĤ, after the method of a sepa-
ration of variables. We may assume that the angular partQ(u,f,c) is an eigenfunction of theD3,
which is expanded into a series of Wigner’sD functions$DML

J (c,u,f)%, a complete orthogonal
basis ofL2(S3). In this paper, we follow Edmonds’ definition;21

D ML
J ~c,u,f!5exp~ iMc!exp~ iLf!dML

J ~u!, ~3.9a!

with

dML
J ~u!5F ~J1M !! ~J2M !!

~J1L !! ~J2L !! G1/2S cosu

2D
M1LS sin u

2D
M2L

PJ2M
~M2L,M1L !~cosu!, ~3.9b!

wherePJ2M
(M2L,M1L)’s denote the Jacobi polynomials.21 The sufficesJ, L, andM of D ML

J are
subject to

J:non-negative half-integer, L,M5J,J21,•••2J11,2J. ~3.10!

Since everyD function is an eigenfunction forD3,

D3D ML
J 524J~J11!D ML

J , ~3.11!

our ansatz can take a more specified form,R(r )D ML
J (c,u,f). We note here thatD ML

J is simul-
taneously an eigenfunction of2 i ]/]c;

]

]c
D ML

J 5 iMD ML
J . ~3.12!
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Then, further calculation shows that the radial partR(r ) must satisfy

F 1r 2 ]

]r S r 2 ]

]r D2
J~J11!

r 2
1

1

r 2
~c0r

1/a1c1r
2/a!GR~r !50, ~3.13a!

with

c052Ea02M2a2 , c152Ea12M2a3 , ~3.13b!

whereJ, M , andL are subject to~3.10!. The energy eigenvalues and the eigenfunctions are hence
obtained by solving~3.13! under the boundary condition

E
0

`

uR~r !u22r 2f ~r !dr,1`, ~3.14!

sinceR(r )Q(u,f,c)PL2„R4,4r f (r )dx…. The calculation of eigenfunctions and eigenvalues is
given in the Appendix.

From the Appendix, we see that the eigenvalues depend on a numbern defined, for a non-
negative integerN, by

n5N1 1
21a~J1 1

2!. ~3.15!

We express Eqs.~A14a! and ~A14b! as

EJ,N;M
1 5

1

2a0
2 S a0a2M222a1S na D 212

n

a
AS na D 2a121a0~a0a32a1a2!M

2D , ~3.16a!

for a0Þ0, and as

EJ,N;M
0 5

a3M
2

2a1
2

a2a2
2M4

8a1n
2 , ~3.16b!

for a050, respectively. Further, we set

e5aAa3M222a1EJ,N;M
s ~s51,0!. ~3.17!

Then from~A12!, we find that Eq.~3.13! is satisfied by the function

RJ,N;M
s ~r !5exp~2er 1/a!r JF„2N,a~2J11!11,2er 1/a…, ~3.18!

whereF denotes the confluent hypergeometric function.
We are now in a position to give solutions to the eigenvalue problem~3.13! with ~3.14!.
Theorem 3.2: The eigenvalues of Hˆ for the bound states are given by (3.16a) or (3.16b),

according to whether the constants aj , j50,...,3, are subject to the condition

~P! a0.0, a1>0, and ~a0a32a1a2!M
2Þ0,

or ~3.19!

~Z! a050, a1.0 andMÞ0.

The suffixes J and M are subject to (3.10), and N to N50,1,2,... . If the constants aj , j50,1,2,3,are
not subject to the conditions listed in (3.19), no bound states for Hˆ exist under the assumption that
f(r).0 for r.0.
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It is to be noted that the conditions (a0a32a1a2)M
2Þ0 andMÞ0 in ~3.19! are necessary for

e.0.
Theorem 3.3:The2J11 linearly independent eigenfunctions,

CL,J,N;M
s ~r ,u,f,c!5RJ,N;M

s ~r !D ML
J ~c,u,f! ~L5J,J21,...,2J!, ~3.20!

are associated with the eigenvalue EJ,N;M
s of Ĥ, where the suffixes J and M are subject to (3.10),

and N to N50,1,2,... . Thes is chosen to bes51 in the case of~P!, ands50 in the case of~Z!.
In particular, in the case of the Taub–NUT metric, the constantsaj , j50,...,3, are chosen as

in ~2.9!, so that the eigenvalues~3.16a! become

EJ,N;M
1 5

1

~4c!2
~M22n21nAn22M2! ~n5N1J11!, ~3.21!

which are equal to those already known.5–7 The same energy eigenvalues are obtained by other
methods, say, by the path integral method,et al.,22–25 in relation to the Kaluza–Klein monopole
system in five dimensions.26,27We have to note here thata51 for the Taub–NUT metric. What the
condition ofa51 means will be investigated in the last section. Moreover, if the constantsaj take
the values given in ~2.10!, the eigenvalues~3.16b! become EJ,N;M

0 52k2/2(N1J11)2

522k2/(n812)2 with n852N12J a non-negative integer, which are already known as energy
eigenvalues for the quantized MIC–Kepler problem.15

In closing this section, we have to make a remark on the differential equation~3.13a!. This
equation can be regarded as the radial Schro¨dinger equation for the potential

V~r !52 1
2c0r

1/a222 1
2c1r

2/a22, ~3.22!

along with the zero energy, wherec0.0 andc1,0 are constants. From this point of view, Khare
et al.28–30 investigated Eq.~3.13a!.

IV. THE QUANTIZED a-FOLD KEPLER SYSTEM

A. The quantization of the a-fold Kepler system

In this section, we reduce the quantum system~L2„R4;4r f (r )dx…,Ĥ! in order to define the
quantizeda-fold Kepler system on the analogy to the reduction procedure for defining the clas-
sicala-fold Kepler system. The geometric setting of the reduction procedure has been established
in Iwai and Uwano,15 which is reviewed as follows.

A point to make is to observe that the configuration spaceṘ4 is made into a principal U~1!
bundle;p :Ṙ4→Ṙ3. The U~1!.SO~2! action onṘ4 is defined by

x°T~ t !x ~xPṘ4!, ~4.1!

whereT(t) is given by~2.2!. The projectionp is realized as

p~x!5P~x!x ~xPṘ4!, ~4.2!

whereP(x) is the matrix defined by~2.4b!.
Let rm , mPZ, denote a unitary irreducible representation of U~1!.SO~2! on C;

rm„T~ t !…:z°exp~ imt/2!z ~zPC!. ~4.3!

Then, the U~1! action on the product spaceṘ43C,

~x,z!°„T~ t !x,exp~ imt/2!z… ~xPṘ4,zPC!, ~4.4!
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gives rise to the quotient manifold denoted byṘ43mC, which is made into a complex line bundle
Lm5~Ṙ43mC,pm ,Ṙ

3!. Here, thepm is the projection,pm :Ṙ
43mC→Ṙ3. The Lm is called the

complex line bundle associated with the U~1! bundlep:Ṙ4→Ṙ3.15,16 Denoting by pr the natural
projection ofṘ43C to Ṙ43mC, one has the commutative diagram
rw

Ṙ43C ——→
pr

Ṙ43mC

p1
↓ pm

↓

Ṙ4 ——→
p

Ṙ3

, ~4.5!

wherep1 is the projection onto the first factor.
A complex-valued functionF on Ṙ4 is calledrm equivariant, if it satisfies

F„T~ t !x…5exp~ imt/2!F~x!. ~4.6!

It is well known thatrm-equivariant functions onṘ
4 are in one-to-one correspondence with cross

sections inLm .
15,16We denote byqm the correspondence; to arm-equivariant functionF, there

corresponds a cross sectiong in Lm ,

~qmF !~q!5g~q! ~qPṘ3!. ~4.7!

On the basis of~4.7!, we are to reduce the Hilbert spaceL2„R4;4r f (r )dx… to a Hilbert space of
cross sections inLm . Let g’s be cross sections inLm such thatqm

21g ’s are inL2„R4;4r f (r )dx….
Then, the inner product inL2„R4;4r f (r )dx… gives rise to the inner product in the space of cross
sections inLm ;

^g1 ,g2&m5
1

4p E
R4

~qm
21g1!~x!~qm

21g2!~x!4r f ~r !dx. ~4.8!

We note here that, sinceqm
21g ’s arerm equivariant, the integrand in~4.8! is invariant under the

U~1! action, so that the integration on the right-hand side of~4.8! is reduced to that onR3. We
denote byGm the Hilbert space of square integrable cross sections inLm with respect tô , &m .
Thus, L2„R4;4r f (r )dx… is reduced toGm by restricting L2„R4;4r f (r )dx… to the space of
rm-equivariant functions.

We here remark that Dirac’s monopole field is already encompassed in this setting.15,16This is
because the complex line bundleLm is endowed with the linear connection associated with the
natural connection defined in the U~1! bundle Ṙ4 and because Dirac’s monopole field is the
curvature 2-form of this linear connection.

We turn to the reduction of the Hamiltonian operatorĤ given by ~3.1!. For this purpose, we
define a one-parameter group of unitary transformationsUt to be

~UtF !~x!5F„T~2t !x… ~FPL2„Ṙ4;4r f ~r !dx…!. ~4.9!

Then, it is an easy matter to verify that the Hamiltonian operatorĤ is invariant underUt ;
UtĤUt

215Ĥ. To reduce Ĥ, we have only to restrict the domain ofĤ to the space of
rm-equivariant functions. ForĤ andrm-equivariant functionsF, we can define a reduced operator
Ĥm through

Ĥm~qmF !5qm~ĤF !, ~4.10!
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sinceĤF is rm equivariant because ofUtĤUt
215Ĥ and ofUtF5exp(2 imt/2)F. To put Ĥm in

an explicit form, we expressĤ in terms of the momentum operatorĴ and the horizontal lifts
(]/]qk)* of the vector fields]/]qk on Ṙ

3,

Ĥ52
1

2 f ~r ! (
k51

3 F S ]

]qk
D * G21 1

2g~r !
~ Ĵ!2, ~4.11!

where (]/]qk)* and Ĵ are given,15 respectively, by

S ~]/]q1!*
~]/]q2!*
~]/]q3!*

D 5
1

2r
P~x!S ]/]x1

]/]x2
]/]x3
]/]x4

D , ~4.12a!

and

Ĵ5
1

2i S 2x2
]

]x1
1x1

]

]x2
2x4

]

]x3
1x3

]

]x4
D . ~4.12b!

Operatingrm-equivariant functions with~4.11! provides

Ĥm52
1

2 f ~r ! (
k51

3

¹k
21

~m/2!2

2g~r !
, ~4.13!

where“k is the covariant derivation with respect to]/]qk .
15 Comparison of~2.8! with ~4.13!

shows that theĤm is the quantization ofHm by replacingpk and m with 2 i“k and 2m/2,
respectively. Thus, we obtain the following theorem.

Theorem 4.1:The quantized system~L2„R4;4r f (r )dx…,Ĥ! for the geodesic flow system asso-
ciated with the generalized Taub–NUT metric dsG

2 is reduced to the quantum system~Gm,Ĥm!,
whereGm is the Hilbert space of square integrable cross sections in Lm, and Ĥm is the Hamiltonian
operator given by (4.13). We refer to the quantum system~Gm,Ĥm! as the quantizeda-fold Kepler
system.

B. The eigenvalue problem

We proceed to the eigenvalue problem ofĤm . In view of the definition of the quantizeda-fold
Kepler system, the eigenvalues and the eigencross sections for (Gm ,Ĥm) are expected to be
obtained from those for~L2„R4,4r f (r )dx…,Ĥ! through the U~1! reduction method.

From the definition~4.10! of Ĥm , the eigenvalues ofĤmmust be eigenvalues ofĤ. Hence the
eigencross sections ofĤm come from eigenfunctions ofĤ, so that our task amounts to picking up
rm-equivariant eigenfunctions ofĤ. Let us be reminded that the eigenfunctions ofĤ are expressed
as linear combinations of functions of the formR(r )Q, whereQ’s are spherical harmonics on the
unit sphereS3. Since therm equivariance of eigenfunctions is concerned with only the spherical
harmonics part, we can restrict ourselves to spherical harmonics onS3 in picking up
rm-equivariant eigenfunctions. Moreover, since spherical harmonics onS3 are the restriction of
solid harmonics onR4, we have only to give a method of picking uprm-equivariant solid har-
monics. Incidentally, a generating function of solid harmonics of degree 2J is given by

G~z,z̄;t!5~tz11z2!
p~ z̄12t z̄2!

q, p1q52J, tPR, ~4.14!

wherep andq are non-negative integers, and

z15x11 ix2 , z25x31 ix4 . ~4.15!
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Moreover, the U~1! action onC2>R4 given by ~4.1! is expressed as

~z1 ,z2!°~eit /2z1 ,e
it /2z2!. ~4.16!

Then, the generating function~4.14! transforms according to

G~eit /2z,e2 i t /2z̄;t!5eit ~p2q!/2G~z,z̄;t!, ~4.17!

so that therm-equivariant solid harmonics are singled out by the condition thatp2q5m. Thus,
we have found the method of picking uprm-equivariant eigenfunctions in the manner independent
of the choice of local coordinates inS3.

To carry out the above procedure in terms of local coordinates~u,f,c! in S3, we first notice
that the U~1! action is expressed as

c°c1t, the others fixed. ~4.18!

Then theD functions, spherical harmonics onS3, transform according to

D ML
J ~c1t,u,f!5exp~ iMt !D ML

J ~c,u,f!. ~4.19!

Thus we have the following.
Lemma 4.2: The eigenfunctionCL,J,N;M

s for Ĥ associated with the eigenvalue EJ,N;M
s is rm

equivariant if and only if M5m/2.
It is to be noted here that the generating functionG(z,z̄;t) with p5J1M , q5J2M , and

uz1u
21uz2u

251 is expanded into

G~z,z̄;t!5 (
uLu<J

t J1LF ~J1M !! ~J2M !!

~J1L !! ~J2L !! G1/2D ML
J ~c,u,f!, ~4.20!

where we have used~3.6! together with~4.15!. We are now in a position to describe eigenspaces
for the quantizeda-fold Kepler system (Gm ,Ĥm).

Theorem 4.3:The eigenvalues of the quantizeda-fold Kepler system~Gm,Ĥm! are given by
EJ,N;m/2

s , and the associated eigenspace is isomorphic with the eigenspace of~L2~R4,4rf~r!dx!,Ĥ!
assigned by EJ,N;m/2

s .
We notice here thatqm„CL,J,N;m/2

s (r ,u,f,c)…’s provide locally-defined eigencross sections
throughc52f or c5f.

V. DEGENERACIES IN THE ENERGY LEVELS

Now that we have solved the eigenvalue problem for the quantizeda-fold Kepler system, we
are to study degeneracies in the energy levels for this system. Degeneracies are broken up into
two. One is concerned with the rotational symmetry of the quantizeda-fold Kepler system, and
the other depends on whethera is a rational number or not.

A. Normal degeneracies

Theorems 3.3 and 4.3 are put together to show that the eigenspace ofĤm associated with the
energy levelEJ,N;m/2

s is of dimension 2J11, at least. Namely, the energy levelEJ,N;m/2
s is degen-

erate at least (2J11)-fold. In this section, we show that this degeneracy is caused by the spherical
symmetry of the quantizeda-fold Kepler system, so that it will be suitably called normal degen-
eracy after Wigner.31

To start with, let us identifyR4 with C2 through the map given in~4.15!. Further, we denote
by gR the 434 real matrix associated withgPSU~2!. Then, the SU~2! action onR4 gives rise to
a unitary operatorWg on L

2
„R4;4r f (r )dx… through
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~WgF !~x!5F~gR
21x! ~gPSU~2!,FPL2„R4;4r f ~r !dx…!. ~5.1!

We can verify that theWg is indeed a unitary operator by using the fact thatgR leaves the volume
form 4r f (r )dx invariant. Further calculation shows that the Hamiltonian operatorĤ is invariant
underWg ;

WgĤWg
215Ĥ. ~5.2!

Thus, the SU~2! proves to be a symmetry group of~L2„R4;4r f (r )dx…,Ĥ!.
The action ofWg on the eigenfunctions can be described in a usual manner from the repre-

sentation theory. To show this, we choose to identifyS3 with SU~2! through

~z1 ,z2!°S z1 z2

2z2 z1
D , with (

l51

2

uzl u251. ~5.3!

Then the representation theory shows that

D ML
J ~gR

21x/uxu!5 (
M852J

J

D MM8
J

~x/uxu!D M8L
J

~g! „gPSU~2!…, ~5.4!

wherex5(x1 ,...,x4)
T, a column vector,uxu25( j51

4 xj
2, andD functions are viewed as defined on

SU~2!.S3,R4. Equations~5.4! and ~3.20! are put together to show that the energy eigenspace
admits the SU~2! action.

We proceed to show that the SU~2! symmetry treated above will provide the SU~2! symmetry
of the quantizeda-fold Kepler system. Since the U~1! actionUt given by ~4.9! and the SU~2!
actionWg given by~5.1! commute, we can restrictWg to the subspace ofrm-equivariant functions
in L2„R4;4r f (r )dx… to define the SU~2! actionWg

(m) on the Hilbert spaceGm ;

Wg
~m!+qm5qm+Wg . ~5.5!

Put together with Theorem 4.3, this implies the following.
Theorem 5.1: The quantizeda-fold Kepler system~Gm,Ĥm! admits SU(2) as a symmetry

group, which acts unitarily on each eigenspace through Wg
~m! .

Remark: The operatorWg
(m) can be expressed in a simple form. Let us define a map

xg :Ṙ
43C→Ṙ43C by (x,z)°(gRx,z), and a mapxg

(m) :Lm→Lm through

xg
~m!+pm5pm+xg „gPSU~2!…. ~5.6!

Then, from the commutative diagram~4.5! and the definition~5.5!, it follows that

~Wg
~m!g!„p~x!)…5xg

~m!~g„p~gR
21x!…! ~xPṘ4!. ~5.7!

Further calculation shows that

~W2g
~m!g!~q!5~21!m~Wg

~m!g!~q! ~qPṘ3!. ~5.8!

Hence, ifm is even, the SU~2! symmetry stated above reduces to the SO~3! symmetry, since
SU~2!/Z2.SO(3), Z25$I ,2I %, with I the identity of SU~2!.
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B. Accidental degeneracies

We wish to show that another degeneracy takes place in the energy levels ofĤm , which is not
attributed to the SU~2! symmetry, but to thea dependence of the energy levels. The following
lemma is easy to prove.

Lemma 5.2: Lets and m be fixed in the energy eigenvalues EJ,N;m/2
s of Ĥm. Then two of the

eigenvalues, EJ1 ,N1 ;m/2
s and EJ2 ,N2 ;m/2

s , become identical if and only if

~N11
1
2!1a~J11

1
2!5~N21

1
2!1a~J21

1
2!. ~5.9!

We now rewrite~5.9! in the form

~N12N2!52a~J12J2!, ~5.10!

which shows that there are no pairs of different half-integers, (J1 ,N1) and (J2 ,N2), satisfying
~5.10! if a is an irrational number. Conversely, ifa is a rational number, one can find out those
integers satisfying~5.10!; for example, on puttinga5q/p with q andp mutually prime integers,
we find that ~5.10! is valid, at least, for the pair of integers, (J1 ,N1) and
(J2 ,N2)5(J11p,N12q). Lemma 5.2 then implies that the energy levelsEJ1 ,N1 ;m/2

s and

EJ2 ,N2 ;m/2
s coincide for those pairs. Clearly, this degeneracy has nothing to do with theSU(2)

symmetry of the quantizeda-fold Kepler system. We may call this degeneracy an ‘‘accidental’’
one after Wigner.31 Thus, we come to the following conclusion.

Theorem 5.3: In the energy levels of the quantizeda-fold Kepler system, accidental degen-
eracies take place, if and only ifa is a rational number.

In the rest of this section, we wish to observe how the energy level splitting for the quantized
a-fold Kepler system occurs whena varies from a rational number. Let us take the parameters
contained inĤm to be

a054c, a151, a25
1

2c
, a35

1

16c2
~c.0!, andm52. ~5.11!

If a51 in addition to~5.11! ~without the condition ofm52!, the generalized Taub–NUT metric
dsG

2 becomes the Euclidean Taub–NUT metric. Takingc51, we evaluate numerically the energy
levels,EJ,N;1

1 , of Ĥ2 in the case ofa51 and ofa511p/5000. In both cases, the energy levels,
EJ,N;1

1 , to be evaluated are subject to

500<N1J<510, J>1, N>0 ~J,N: integers!. ~5.12!

Figures 1~a! and 1~b! show the energy levels fora51 and fora511p/5000, respectively. These
figures show that distinct energy levels split asa varies froma51 to a511p/5000. Indeed, the
bands painted out in black in Fig. 1~b! consist of more than 5000 distinct energy levels. It is worth
noting that, in Fig. 1~a!, each of the energy levels are degenerate approximately 2.53105-fold. In
contrast with this, each of the energy levels in Fig. 1~b! admits 2J11-fold normal degeneracy,
which is less than 1100-fold. We have to remark that the numerical evaluation, of course, cannot
describe the energy-level behavior completely, because we cannot deal with any irrational num-
bers on computers! In our example, however, the numerical evaluation seems to work quite well.

VI. REMARKS ON THE HAMILTONIAN OPERATOR Ĥ

As we stated in Sec. III, the Hamiltonian operatorĤ is not equal to21
2 times the Laplace–

Beltrami operator, which are usually supposed to be the Hamiltonian operator associated with the
energy function of the geodesic flows. Letgjk be the components of the generalized Taub–NUT
metricdsG

2 , and (gjk)5(gjk)
21;
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dsG
2 5 (

j ,k51

4

gjk du
j duk5 f ~r !„dr21r 2~du21sin2 u df2!…1g~r !~dc1cosu df!2, ~6.1!

where (uj )5(r ,u,f,c), and f (r ) andg(r ) are given by~1.2!. Let “̃j be the Levi–Civita con-
nection formed fromgjk . Then21

2 times the Laplace–Beltrami operator is expressed as

2
1

2
D52

1

2 (
j ,k

gjk “̃ j“̃k5Ĥ2
„f ~r !g~r !…8

4 f ~r !2g~r !

]

]r
, ~6.2!

whereĤ is the Hamiltonian operator given by~3.7!, and the prime8 denotes the derivative with
respect tor . From~6.2! it then follows thatĤ52 1

2 D if and only if „f (r )g(r )…850. Investigating
this equation, we obtain the following.

Proposition 6.1:The Hamiltonian operatorĤ and2 1
2 times the Laplace–Beltrami operator

coincide, if and only if

a51, a252a1 /a0 , a35~a1 /a0!
2 ~a0Þ0!,

or ~6.3!

a52, a1Þ0, a25a350 ~a050!.

According to whether the conditiona51,..., holds or the conditiona52,..., does, the generalized
Taub–NUT metricdsG

2 becomes a constant multiple of the Taub–NUT metric or of the standard
flat metric. Therefore, for the Taub–NUT metric, our Hamiltonian operator is equal to21

2 times
the Laplace–Beltrami operator, so that the energy levels~3.16a! become equal to those obtained
from 2 1

2 times the Laplace–Beltrami operator for the Taub–NUT metric. This fact was already
remarked in~3.21! without any comments.

In conclusion, we remark also that fora51 the generalized Taub–NUT metricdsG
2 is Einstein

if and only if a252a1/a0 , a35(a1/a0)
2 (a0Þ0).9 In view of this, we would like to say that if the

Riemannian manifold is Einstein, the generally accepted principle that21
2 times the Laplace–

Beltrami operator is the Hamiltonian operator associated with the geodesic flow system holds true.
However, if the Riemannian manifold is not Einstein, the other principle of quantization would be
worth applying.

FIG. 1. The energy levels ofĤ2 .
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APPENDIX: CALCULATION OF EIGENFUNCTIONS AND EIGENVALUES

We are to give solutions to~3.13!. In view of the classical method for finding the functional
form of f (r ) andg(r ),12 we make a change of the variabler by setting

r 1/a5r. ~A1!

Then the unknown functiony(r)5R(r ) turns out to satisfy the differential equation

y9~r!1
11a

r
y8~r!1a2S c11 c0

r
2
J~J11!

r2 D y~r!50. ~A2!

Introducing a functionv(r) by

y~r!5r2~1/2!~11a!v~r!, ~A3!

we find thatv(r) satisfies

v9~r!1S a2c11a2
c0
r

1
1

r2 S 14 ~12a2!2a2J~J11! D D v~r!50. ~A4!

As r tends to infinity, Eq.~A4! has an asymptotic solutione2aA2c1r, subject to the condition that
y(r)→0. Here we have assumed thatc152a1E2M2a3,0, which is a quantum analog of one of
the classical conditions, 2a1E2a3m

2,0, for bounded trajectories of the multifold Kepler system
to occur.12 Note also that the boundary condition~3.14! is now expressed as

E
0

`

uy~r!u2~a01a1r!ra dr,1`. ~A5!

On setting

v~r!5e2aA2c1rz~r!, ~A6!

it follows from ~A4! that z(r) is subject to

z9~r!22aA2c1z8~r!1S a2
c0
r

1
1

r2 S 14 ~12a2!2a2J~J11! D D z~r!50. ~A7!

This equation has a solution of the form

z~r!5rsw~r!, w~r!5 (
m50

`

bmrm, b0Þ0. ~A8!

Equations~A7! and ~A8! are put together to provide

s5 1
21a~J1 1

2!, ~A9!

and

w9~r!1S 1r „11a~2J11!…22aA2c1Dw8~r!1
1

r
~a2c02„a1a2~2J11!…A2c1!w~r!50.

~A10!
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This equation can be expressed as the confluent hypergeometric equation, and therefore its solu-
tion is expressed in terms of confluent hypergeometric functions;

w~r!5FS 121aS J1
1

2D 2
ac0

2A2c1
,11a~2J11!,2aA2c1r D . ~A11!

Thus the radial equation has a solution of the form

R~r !5exp~2aA2c1r
1/a!r JFS 121aS J1

1

2D 2
ac0

2A2c1
,11a~2J11!,2aA2c1r

1/aD .
~A12!

The boundary condition~A5! requires thatF should be a polynomial inr, so that there is a
non-negative integerN, satisfying

N1
1

2
1aS J1

1

2D5
ac0

2A2c1
, ~A13!

and thereby the energy levels are obtained as follows: Fora0Þ0,

E5
1

2a0
2 S a0a2M222a1S na D 262

n

a
AS na D 2a121a0~a0a32a1a2!M

2D , ~A14a!

and fora050,

E5
a3M

2

2a1
2

a2a2
2M4

8a1n
2 , ~A14b!

wheren is defined to be

n5SN1
1

2D1aS J1
1

2D ~N:non-negative integer!. ~A15!

We have to take ‘‘1’’ in ~A14a!. This is because if ‘‘2’’ were chosen, the energy levels would not
have a minimum, which is not acceptable.
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In this paper we investigate the form of induced gauge fields that arises in two
types of quantum systems. In the first we consider quantum mechanics on coset
spacesG/H, and argue thatG invariance is central to the emergence of theH
connection as induced gauge fields in the different quantum sectors. We then dem-
onstrate why the same connection, now giving rise to the non-Abelian generaliza-
tion of Berry’s phase, can also be found in systems that have slow variables taking
values in such a coset space. ©1996 American Institute of Physics.@S0022-
2488~96!02602-0#

I. INTRODUCTION

There are various instances in quantum mechanics when a gauge field appears in a system
whose initial formulation did not contain such fields. The most familiar example of this is the
emergence of Berry’s connection1 in systems with degeneracies, which leads to a holonomy in
energy eigenspaces, i.e., a non-Abelian generalization of Berry’s phase. Another example is to be
found in the different quantum sectors that arise when quantizing on a coset space.2 For both of
these cases, the gauge field that emerges is often found to be of a specific type. Indeed, when the
effective configuration space is a coset spaceG/H, the resulting connection can usually be iden-
tified with the so-calledH connection, which is a~possibly topological! solution of the Yang–
Mills equation on this space. The prime aim of this paper is to clarify why and when this
connection arises in these systems.

More precisely, in the context of Berry’s phase, the origin of the connection is in some sense
obvious from the outset, that is, it comes from the ambiguity in choosing a set of basis vectors in
the instantaneous energy eigenspaces. However, what is not obvious and hence remarkable is that
in a wide variety of systems of physical interest, Berry’s connection often~though not always!
takes the form of theH connection.3–5Such systems arise when considering the coupled dynamics
of slow and fast variables. In this case we wish to know the form of the connection, also occurring
in the Hamiltonian of the effective slow system, in advance. By giving a precise identification of
when it is theH connection the need to calculate energy eigenstates can be avoided.

In contrast, in the context of inequivalent quantizations on coset spaces, the origin of the
connection is not quite obvious, and the question is why the specificH connection can appear at
all when quantized. In the account presented in Ref. 2, which relies~basically! on Mackey’s
approach,6 the system of a ‘‘free particle’’ onG/H is considered, where the Hamiltonian is fixed
by requiring that there is no operator ordering ambiguity. This is clearly an important criterion, and

a!Electronic mail: levay@phy.bme.hu
b!Electronic mail: d.mcmullan@plymouth.ac.uk
c!Electronic mail: tsutsui@ins.u-tokyo.ac.jp.
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leads to a system minimally coupled to theH connection. However, this is not a criterion geo-
metrically motivated, and more importantly, in any attempt at extending these results to field
theories such a reliance on a factor ordering argument is unnatural and, indeed, unworkable. What
we will show in this paper is that an invariance argument can be developed that highlights the
need for such a connection.

The emergence of gauge fields is also recognized recently by a number of other groups7–9

using different approaches to quantization. For instance, in Ref. 7, spheresSn embedded inRn11

are taken as the configuration space and gauge fields are seen to emerge at the quantum level. It
will be shown, however, in this paper that these induced gauge fields are none other than theH
connection. This will perhaps support the view that the emergence of gauge fields is not just an
artifact of a particular quantization approach but a ‘‘norm’’ when quantizing on coset spaces.

The plan of this paper is as follows. In Sec. II we will demonstrate how theH connection
emerges in the quantum description of a point particle moving freely on a coset space. In Sec. III
we prove that the connection that arises in the quantization scheme of Ref. 7 is just theH
connection. In Sec. IV the conditions under which Berry’s connection reduces to theH connection
will be presented. Section V is devoted to our conclusions and discussions.

II. QUANTIZING ON A COSET

We begin by arguing that theH connection—observed by Landsman and Linden2 in investi-
gating the dynamical aspect of the quantum theory on a coset spaceG/H—is indeed the natural
connection in the quantum system.

Let us first, though, fix our notation~which follows those in Ref. 10!. We takeG to be a
compact Lie group with Lie algebrag, andH a compact subgroup ofG with Lie algebrah. The
Lie algebrag has an orthogonal decomposition,

g5h% r, ~2.1!

wherer5h
' is the orthogonal complement ofh in g. This is, in fact, a reductive decomposition,

i.e.,

@h,r#,r. ~2.2!

We shall denote bases of the spaces by

g5span$Tm%, m51,...,dimG,

h5span$Ti%, i51,...,dimH,

r5span$Ta%, a51,...,dim~G/H !. ~2.3!

Let us recall that in Mackey’s account of quantizing onG/H,6 a set of fundamental relations,
called asystem of imprimitivity, is introduced whose irreducible representations give the quantum
theories~a full discussion of this can be found in Ref. 10!. The upshot of this is that the Hilbert
spaceH(G/H) on the coset space consists ofL2 functions onG/H belonging to the linear space
Hx of some irreducible unitary representationx of the subgroupH: H(G/H).L2~G/H,Hx!.
Locally, we may take a basis set$uq,x,m&% of the Hilbert spaceH(G/H) by

uq,x,m&:5uq& ^ ux,m&, ~2.4!

whereuq& are the eigenstates in the coordinate representation onG/H and ux,m& the orthonormal
basis vectors inHx . Thus, the states in the basis set~2.4! satisfy the orthonormality condition

^q,x,muq8,x,n&5dmnd~q2q8!, ~2.5!
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with d(q2q8) being the delta function on the coset spaceG/H.
In order to have a singularity-free description we need to introduce a set of patches to cover

the coset spaceG/H. Let $Ua% be the local patches introduced, andsa : Ua°G be a continuous
section on the patchUa . On overlapsUaùUb the sections are related by a gauge transformation,
namely, forqPUaùUb ,

sb~q!5sa~q!hab~q!, ~2.6!

wherehabPH. Accordingly, we consider a sectional basis$uq,x,m&a%, which is a basis set given
independently on the patchUa . Using standard partition of unity arguments, we can define an
inner product on these and see that all is well defined. The wave functions are then defined to be

cm
a~q!5a^q,x,muc&. ~2.7!

An important ingredient in Mackey’s quantization6 is that associated with theG action
q→g21q for gPG, which relates any two points on the coset space, there is a corresponding
action on the wave functions furnished by theinduced representation,

„U~g!c…m
a~q!5(

n
pmn

x ~„sa~q!…21gsb~g21q!!cn
b~g21q!. ~2.8!

Here the matrix elements of the unitary operatorpx(h), implementing the irreducible representa-
tion x, are

pmn
x ~h!:5^x,mupx~h!ux,n&, ~2.9!

and a choice of section has been made on each of the patch,qPUa and g21qPUb . On the
sectional basis, this action~2.8! reads as

U~g!uq,x,m&a5(
n

ugq,x,n&bpnm
x ~„sb~gq!…21gsa~q!!, ~2.10!

where we putg→g21 for later convenience. In effect, the induced representation~2.10! consists of
a rotation in the spaceHx and a translation in the coset spaceG/H, both determined byg andq.
Using the naturally defined measure on the coset spaceG/H, one can readily show that~2.10!
indeed provides a unitary representation ofG.10

Now we shall consider the quantum mechanics of a point particle moving freely on the coset
spaceG/H. Here the term ‘‘free’’ is meant to indicate that the system under consideration is
homogeneousover G/H, and that the dynamics of the particle is that of a free particle when
observed locally. Note that in order to get the Schro¨dinger equation for the wave functions~2.7!
describing the point particle of this system, we need to use theG action to ensure the homogeneity
~as it is the only means available onG/H for this purpose!. But since theG action on the wave
functions~2.8! is section dependent, we need a covariant derivative~with respect toq! such that
the section dependence disappears in the physical dynamics.

To be explicit, let us consider the state

ux,m̄&:5(
n

ue,x,n&bpnm~„sb~e!…21!, ~2.11!

wheree is the identity point in the cosetG/H. Then~2.10! allows us to write the basis states atq
as

uq,x,m&a5U„sa~q!…ux,m̄&, ~2.12!
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which shows that theG action allows for obtaining all the basis states overG/H by the unitaryG
action from the reference state~2.11!. It is then easy to see from~2.10! that, under the change of
section~2.6!, the basis states undergo the rotation

uq,x,m&a→uq,x,m&b5U~sahab!ux,m̄&5(
n

uq,x,n&apnm
x ~hab!. ~2.13!

Thus, the connection used in the covariant derivative must compensate the derivative factor in the
Schrödinger equation arising from the rotation in~2.13!. Actually, in the theory of vector bundles
associated with the principal bundleG(G/H,H), the term ‘‘connection’’ already implies this
property. This, however, is not enough to single out the connection relevant to our system onG/H.

The crucial point in specifying the connection is the homogeneity over the cosetG/H men-
tioned above. We note that for the system to be homogeneous the connection must also be
homogeneous physically, that is, it must be invariant under theG action up to a gauge transfor-
mation of the groupH ~i.e., up to a change of section!. In other words, the curvature of the
connection is constant overG/H. Now the theory of invariant connections~see Theorem 11.1 on
p. 103 of Ref. 11! asserts that such a connection is always given by theH connection
AH:5sa

21(q)dsa(q) uh , which is the~pullback of the! canonical 1-form projected down to the
subspaceh,g. In the present context, the invariant connection that arises in the covariant deriva-
tive acting on the wave functions~2.7! is theH connection in the representationx:

(
i
Ai
H~q!~Ti !mn5^x,m̄uU21~sa~q!…dU„sa~q!…uhux,n̄&. ~2.14!

One can readily confirm that its curvature is indeed constant overG/H and that it does transform
as a connection under the change of section~2.6!.

In short, we see that the covariant derivative used for the Schro¨dinger equation must contain
theH connection in the form~2.14!, if we are to consider the homogeneous free particle system
overG/H requiring the independence of the choice of section. ThisG invariance is, we feel, more
fundamental than the factor ordering criterion adopted in Ref. 2. However, for completeness, we
now need to see what form of Hamiltonian comes out of our analysis.

To begin with, let us note that our vector-valued wave functionscm
a(q), provided by the

irreducible representationx of H, may be expanded in terms of the ‘‘harmonics’’Uj
L
„sa

21(q)… over
the coset spaceG/H,12

cm
a~q!5(

L
(
r,j

crj
L Uj

L
„sa

21~q!…mr . ~2.15!

In this expansion,j is the index of multiplicity of the representationx appearing in the irreducible
representationL of G upon restriction toH, and the range ofr equals the dimension of the
representationL.

We recall that the Frobenius reciprocity theorem tells us that in the above summation only
thoseL of G occur that contain the representationx of H when restricted to the subgroup.~For
brevity we henceforth omita, which labels the patch to which the pointq belongs.! But the
message important to us here is that we can now work with the section variables21(q) instead of
the coordinatesq on the coset space. We shall, for the sake of simplicity, consider the principal
bundleG(G/H,H) first. Because our vector bundle in question is the associated bundle via the
irreducible representation ofH, the covariant derivative in the vector bundle will follow immedi-
ately from that of the principal bundle.

Consider now the vector fieldsXm defined by the relation

Xms21~q!5s21~q!Tm . ~2.16!
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These vector fields are just the generalizations of the usual Killing vector fields regarded as
first-order differential operators.~In the context of Berry’s phase these are modified symmetry
generators for effective Hamiltonians.5! The fact that such vector fields do exist can be seen
explicitly by examining the infinitesimal version ofgs(q)5s(gq)h(g,q), which leads to a
first-order differential operators forXm satisfying the commutation relations of the Lie algebrag.

We shall then consider the following covariant derivative:

“m :52D m
n ~s21!Xn , ~2.17!

whereD m
n ~s! is the ‘‘adjoint matrix’’ ~the matrix of the adjoint representation ofG in the basis

Tm!, defined by

s21~q!Tms~q!5D m
n ~s!Tn , ~2.18!

Using this, we may invert~2.16! to get

D n
m~s21!Xms215Tns

21. ~2.19!

Hence, we find that our covariant derivative~2.17! satisfies

“ms2152Tms21, ~2.20!

that is, it behaves just as2Tm on s21.
The r component of“m is the covariant derivative with respect to theH connection. To see

this, following the standard line of argument,13 one decomposes the canonical 1-form as
s21 ds52d(s21)s5AH1e, where AH5Aa

i Ti dq
a is the H connection and

e5s21 ds ur5ea
aTa dq

a is the vielbein, withTiPh andTrPr in the orthogonal decomposition
g5h%r. Using the inverse of the vielbein,ea

aea
b5da

b, one may cast the canonical 1-form into the
vielbein frame. This yields

~]a1ea
aAa

i Ti !s
2152Tas

215“as
21, ~2.21!

where~2.20! is used in the last equality, therefore proving our claim.
When we go over to the vector bundle from the principal bundle, we have to act with the

covariant derivative on the expansion~2.15!; hence, we are to use the particular representationx
for the generatorsTi of h. It is then clear that the covariant derivative acts in an extremely simple
manner on the wave functions. In fact, the property~2.20! shows that the covariant derivative in
the representationx is indeed the representation of the elementTm on such wave functions. Hence,
if we adopt for the Hamiltonian the quadratic CasimirXmX

m5“m“
m of the groupG—which isG

invariant by construction—we find that the Hamiltonian is given by the square of the covariant
derivative“a“

a modulo a constant that is the value of the quadratic Casimir of the subgroupH
evaluated on the irreducible representationx. Thus, the free, homogeneous Hamiltonian given by
the quadratic Casimir leads precisely to the Hamiltonian for the particle minimally coupled to the
H connection, that is, the Hamiltonian argued by Landsman and Linden.2

III. QUANTIZING ON AN n SPHERE

In the approach to quantizating on spheresSn proposed by Ohnuki and Kitakado7 there
appeared~possibly topological! gauge fields on the spheres as a result of inequivalent quantiza-
tions. These~infinitely! many inequivalent quantizations are labeled by the irreducible represen-
tations of the group SO(n)—an important feature shared with Mackey’s approach,6 where one
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regardsSn as SO(n 1 1)/SO(n). Thus, it would be natural to expect that the gauge fields observed
in Ref. 7 may coincide with theH connection found by Landsman and Linden2 in Mackey’s
approach. We shall show below that this is indeed the case.

But let us first recall the quantization and the gauge fields discussed in Ref. 7. There, quan-
tization is prescribed by embedding the sphereSn in Rn11 and then postulating a ‘‘fundamental
algebra’’ as a set of quantum relations, generalizing the conventional canonical commutation
relations. The fundamental algebra is the Lie algebra ofE(n11), the Euclidean group inn11
dimensions given by the semidirect product of SO(n 1 1) andRn11, and finding the Hilbert space
H(Sn) amounts to finding the representations of the group, taking into account the constraint that
restricts to the sphere. Wigner’s technique then allows for constructing explicitly the representa-
tions ofE(n11) from the irreducible representations of the subgroup SO(n), which is the isom-
etry group of SO(n 1 1) acting onSn. According to this, the representations~of the Lie algebra! of
E(n11) may be found by looking at the infinitesimal generators of the Wigner rotation. In
Mackey’s language the Wigner rotation corresponds to the matrix element

Qmn~g,q!:5pmn
x ~„s~q!…21gs~g21q!!, ~3.1!

representing the rotations in the components of the vector-valued wave function in the induced
representation~2.8!. ~Here we assume for simplicity thatq andg21q are in the same patch, where
a single sections is available.! In the present caseg P SO(n 1 1) andq stands for a vector on the
sphereSn embedded inRn11, and we take the radius of the sphere to be unity,(a51

n11(qa)251. In
this embedding we adopt the convention that any function onSn is smoothly extended toRn11 by
continuing the value of the function constantly along the direction of the radius. This implies that
any functionf (q) defined this way obeys the condition,qa]a f (q)50, where]a5]/]qa.

We label the basis of the Lie algebra so~n11! by antisymmetric operatorsTab with a andb
running over 1,...,n11. The so~n! subalgebra is identified with the generatorsTab , wherea andb
can take values 1,...,n. The reductive decomposition so~n11!5so~n!%r is then given by
so~n11!5span$Tab%%span$Ta%, whereTa5Ta,n11. The commutation relations are then

@Tab ,Tcd#5dadTbc1dbcTad2dacTbd2dbaTac ,

@Tab ,Tc#5dbcTa2dacTb , ~3.2!

@Ta ,Tb#52Tab .

To make the presentation easier we now omit the labelpx for the representation used.
Corresponding to the infinitesimal transformationg5 e1/2eabTab 5 11 1

2eabTab with eab being
real antisymmetric parameters, we have the Wigner rotation

Q~g,q!511 1
2eab f ab~q!, ~3.3!

where f ab(q) are the generators of the rotation. Then, the combination7

Aa~q!:5 f ab~q!qb, ~3.4!

is seen to appear in the Hamiltonian in the form covariantly coupled to a particle, and hence is
regarded as an induced gauge field. We now show that this gauge field~3.4! is, in fact, theH
connection.

To this end, observe first that from~3.1! the generators in~3.3! are given by

f ab~q!5s21~q!Tabs~q!2s21~q!]ms~q!
]qm~e!

]eab
U

e50

, ~3.5!
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whereqm(e):5(gq)m5qm11
2eab~Tab

def!mnq
n, and~Tab

def!mn5damdan2dandbm is the defining represen-
tation of so~n11!. From this we get

]qm~e!

]eab
U

e50

5damqb2dbmqa. ~3.6!

It is then easy to see that under the change of sections(q)→s(q)h(q) for someh(q)PSO(n)
the gauge field~3.4! transforms as a connection,

Aa~q!→h21~q!Aa~q!h~q!2h21~q!]ah~q!. ~3.7!

This is also evident from the expression

Aa~q!5s21~q!Tabq
bs~q!2s21~q!]as~q!, ~3.8!

obtained from the definition~3.4!.
Consider now the section

s~q!5eua~q!Ta, ~3.9!

which provides a local mapping fromSn toG 5 SO(n 1 1). The inverse mapping is given by

qa:5ua
sinuuu

uuu
, a51,...,n, qn11:5cosuuu, ~3.10!

whereu t5(u1,...,un) anduuu 5 Au tu 5 A(a(u
a)2. With the section~3.9! one finds that the rel-

evant parts of the adjoint matrix~2.18!,

s21~q!Tabs~q!5D ab
cdTcd1D ab

c Tc ,

s21~q!Tas~q!5D a
bcTbc1D a

bTb , ~3.11!

take the form5

D a
bc5 1

2~q
bda

c2qcda
b! ~3.12!

and

D ab
cd5

1

2
~da

cdb
d2db

cda
d!1

qb~q
cda

d2qdda
c!1qa~q

ddb
c2qcdb

d!

2~11qn11!
. ~3.13!

To show that~3.8! is the H connection, we note that theh part in the first term on the
right-hand side of~3.8! vanishes,

s21~q!Tabq
bs~q!uh50. ~3.14!

For a5n11, this is obvious since the middle pieceTabq
b that is conjugated unders(q) is

precisely proportional to the argument in the exponential ofs(q); see ~3.9! and ~3.10!. For
a5aÞn11, using~3.12!, ~3.13! and the antisymmetry ofTcd , we have

s21~q!Tabq
bs~q!uh5~qbD ab

cd1qn11D a
cd!Tcd50, ~3.15!

which establishes~3.14!.
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Now since the gauge field~3.8! must lie anyway in the spaceh5so(n) by construction
@because it is formed out of the generators of the SO(n) Wigner rotation#, we see that ther part of
the two terms in the right-hand side of~3.8! must precisely cancel each other. Combined with
~3.14!, this implies that

Aa~q!52s21~q!]as~q!uh , ~3.16!

that is, Ohnuki–Kitakato’s gauge field~3.4! is, in fact, theH connection~up to the irrelevant sign!.
In terms of the section~3.9! theH connection reads as

s21~q!ds~q!uh5
1

11qn11 (
a,b

n

qa dqb Tab , ~3.17!

which, of course, agrees with the expression found in Ref. 7.
In passing, we mention that in a recent paper15 it is pointed out that the gauge field~3.4! can

be mapped into the ‘‘generalized BPST instanton’’ solution found earlier16—a solution of the
Yang–Mills equation onSn, which is topologically nontrivial forn even and trivial forn odd. The
above result implies that this solution is essentially identical to theH connection, although the
meaning of self-duality can change under the mapping.~The confirmation by a direct computation
is also given in Ref. 14.!

IV. BERRY’S CONNECTION AS THE H CONNECTION

Berry’s phase arises in systems where the Hamiltonian has degenerate eigenstates labeled by
a collection of parameters, which are identified with the slow degrees of freedom. Adiabatically
decoupling the fast variables from these slow ones results in an effective theory with a gauge
structure in the slowly varying system.1 The form of the gauge field that emerges is governed by
the geometry of the slow system. In applications the degeneracies reflect a symmetry of the
system; hence the slow system is usually identified with a coset spaceG/H. Such an identification
emerges from a Hamiltonian of the form

H~q!5U~q!H0U
21~q!, ~4.1!

whereqPG/H are the slow variables,U(g) is a unitary irreducible representation ofG, andH0
is typically an element of the enveloping algebra of the subgroupH, commuting with the restric-
tion of the representationU to H. It is readily confirmed3–5 that if we letU(q) be in the form
U„s(q)…, then~2.12! furnishes the eigenstates of the Hamiltonian withux,m̄& being the eigenstates
of H0 labeled by some irreducible representationx of H. Thus, our representationx is obtained
from the given representation ofG by restriction toH, followed by a further restriction to an
invariant subspace. Using the states~2.12! ~again dropping the labela for the patch to whichq
belongs! Berry’s connection reads as

(
m

Am
Berry~q!~Tm!mn5^q,x,muduq,x,n&

5^x,m̄uU21
„s~q!…dU„s~q!…ux,n̄&

5(
i
Ai
H~q!~Ti !mn1(

a
ea~q!

3^x,m̄uU~Ta!ux,n̄&. ~4.2!

632 Levay, McMullan, and Tsutsui: The canonical connection in quantum mechanics

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The identification of this connection with theH connection clearly depends on whether the final
term is zero or not. In applications this term is often set equal to zero by hand.4,5 That this term is
not always zero, though, is best seen through an explicit example.

Consider the situation where the slow variables parametrize a three sphereS3, now viewed as
the coset space SO~4!/SO~3!. This would arise, for example, from~4.1! by takingH0 to be the
quadratic Casimir for SO~3!. In the Lie algebra of SO~4! we take the reductive decomposition

g5h% r5span$Ti% %span$Td%, i ,a51,2,3, ~4.3!

with theTi ’s forming an su~2! algebra, [Ti ,Tj ]5e i jkTk , and the remaining commutators being

@Ti ,Ta#5e iabTb ~4.4!

and

@Ta ,Tb#5eabiTi . ~4.5!

The non-H-connection part of Berry’s connection is, in this example,(aea^ jmuTau jm8&, where
we have reverted to the familiar notation for the representation of angular momentum. We now
show that the matrix element^ jmuTau jm8& need not be zero in general.

For this, we note first that the commutator~4.4! implies that the basis vectors inr transform
as a vector~spin 1! operator. To emphasize this fact we will, henceforth, denote these operators by
Ta

(1). The Wigner–Eckart theorem then tells us that them, m8, anda dependence of this matrix
element resides in the Clebsch–Gordan coefficients^ jm81au jm&:

^ jmuTa~1!u jm8&5^ jm81au jm&^ j iT~1!i j &, ~4.6!

where^ j iT(1)i j & is the reduced matrix element, which is independent ofm, m8, anda. In terms
of the basisT6 :5 i (T16 iT2), T0 :5 iT3 , the Clebsch–Gordan coefficients are given by

^ jm81au jm&5
dm81a,m

Aj ~ j11!
H 7A~ j6m!~ j7m11!/2, if a56;

m, if a50.
~4.7!

Upon identifying the samea andi , we find that these coefficients are related to the representation
matrix elementŝ jm8uTi u jm& of thesu~2! generatorsTi , i51,2,0. This allows us to rewrite~4.6!
as

^ jmuTa
~1!u jm8&5aj^ jm8uTi u jm&, ~4.8!

where the prefactoraj is

aj52
^ j iT~1!i j &
Aj ~ j11!

. ~4.9!

We recall that the action of any vector operator on the stateu jm8& is determined by two reduced
matrix elements. ForT~1! these areaj and the reduced matrix element^ j21iT(1)i j &. However, the
action ofT~1! is also fixed by the fact that it comes from a representation of SO~4!. Exploiting
these two facts allows us to determine the allowed values foraj .

The irreducible unitary representations of SO~4! are labeled by two numbers (k0 ,c), where
k050, 1

2, 1,
3
2,..., andc56(k111) with k15k0 ,k011,k012,... . ~For a clear account of this see

Ref. 17.! The representation space is then decomposed into the direct sum
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R~k0 ,c!5 %

j5k0

k1
Rj , ~4.10!

of the irreducible representationsRj of SO~3! spanned by the angular momentum states,u jm&,
m52 j ,...,j . In such a representation one finds thataj is given by

aj5
k0c

j ~ j11!
. ~4.11!

From this we deduce that ifk0Þ0, then Berry’s connection does not correspond to theH connec-
tion.

This example can be extended to more general coset spaces in much the same way by using
the generalized Wigner–Eckart theorem~see, for example, Ref. 18!. The conclusion reached is
that, in general, Berry’s connection is not theH connection. The question we now want to address
is what additional structures are needed in order to ensure that they do coincide. To motivate our
analysis of this problem it is again useful to return to the three sphere example discussed above.

From~4.11! we see that the relevant reduced matrix element vanishes only whenk050. In this
case~and only in this case! the representations (k050,c) and (k050,2c) of SO~4! are unitarily
equivalent~there is no parity doubling17!. The representation space becomes the direct sum,

R~0,n!5 %

j50

n21

Rj , where n51,2,... . ~4.12!

The action ofTi onR
j is the standard one, changing the value ofm by 61. From~4.4! one can

also show that the action ofTa
(1) onRj changes the value ofj by 61. Thus, the stateu jm&5un

21,n21& is both a highest weight vector for the irreducible representation onRn21 of SO~3!,
and for the irreducible representation onR~0,n! of SO~4!. This cannot hold for any of the other
~k0Þ0! representations of SO~4! since the parity doubling found in those representations would
then imply that such a vector was a highest weight for two inequivalent representations.

We shall use this example as a motivation for the following restriction on the allowed states
ux,m̄& that occur in~4.2!. Recall first that by definition the reference basis states satisfy

U~h!ux,m̄&5(
n

ux,n̄&pnm
x ~h!, for hPH. ~4.13!

Let L be the highest weight labeling the representation of the groupG in question. We shall
consider thehighest subspaceHL , which is the subspace of the representation spaceH of G
realizing ~4.13! and also contains the vectoruL& corresponding to the highest weight. We then
claim that, for a wide class of systems, by choosing the subspace as a highest subspace we will
manage to obtain merely theh part of Berry’s connection. To prove this it is convenient to develop
an alternative description of the highest subspaceHL .

For this, let us restrict ourselves to cosetsG/H, where the subgroupH is given by the
centralizerSK of some elementKPg. This corresponds to the Hamiltonian~4.1! whose parameter
space is the coadjoint orbit of the groupG passing throughK discussed in Refs. 3 and 5. IfK is
a regular semisimple element19 of g, thenH in this case is just the Cartan subgroupT regarded as
the maximal torus containingK, but if not thenH is greater thanT. Let S be the root system of
G relative toT, and letSK be the root system ofH relative toT. By considering the complexi-
fication gc of g we have the Cartan decomposition,

gc5tc% (
aPS

ga , ~4.14!
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wheretc is the complexification of the Cartan subalgebrat, andga is the root space corresponding
to the roota. Similarly, we have

hc5tc% (
aPSK

ha . ~4.15!

Next, letW be a Weyl chamber oft relative toG, andWK be a Weyl chamber oft relative toH.
We can define the positive rootsS1 ~SK

1! of S ~SK! with respect toW ~WK!. It is then guaranteed20

that there exists a ‘‘K admissible Weyl chamber,’’ satisfying~i! S1ùSK5SK
1 and ~ii ! if

aPS12SK
1, bPSK anda1bPS, thena1bPS2SK

1.
Armed with this, we then show that the highest subspaceHL can alternatively be character-

ized by

HL5$uf&PHu U~Ta!uf&50, ;aPS12SK
1%. ~4.16!

Note first that the states defined by~4.16! are invariant under the action ofH in H. Indeed, for
those generators ofh belonging to the Cartan subalgebrat this is obvious since forTiPt,
[Ti ,Ta]5a(Ti)Ta . If Tb is a generator ofh not in t then, using the reductivity of the decompo-
sition g5h%r, we get, foraPS12SK

1,

U~Ta!U~Tb!uf&5U~Tb!U~Ta!uf&1U~@Ta ,Tb#!uf&5Cab
a1bU~Ta1b!uf&, ~4.17!

which vanishes sincea1bPS12SK
1.

Second, the unitary action in~4.16! is also irreducible. To see this, suppose that it is reducible.
Then there exists someuV&ÞuL& for which

U~Tb!uV&50, for bPSK
1 , ~4.18!

i.e., U(Tb) is a step operator inh annihilating this state. It then follows that both the operators
U(Ta) andU(Tb), whereaPS12SK

1 andbPSK
1, annihilateuV&. Hence, this state is annihilated

by anyU(Ta) for aPS1, which implies thatuV& is a highest weight. But since we cannot have
two highest weights, we see thatHL defined by~4.16! is irreducible and hence must be the
highest subspace satisfying~4.13!.

Having established~4.16!, we now find, for such highest subspace states,

(
aPS2SK

ea~q!^x,m̄uU~Ta!ux,n̄&50, ~4.19!

on account ofT2a5Ta
†. Clearly, then, we can conclude that if a highest subspace is used in the

construction of Berry’s connection, then there will be nor part, and hence it will be theH
connection—the claim we wished to prove.

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have argued that the induced connection that appears on a coset space in
Mackey’s quantization scheme admits a natural interpretation, that is, it arises from the homog-
eniety criterion required for the Hamiltonian. This led to an alternative account from Ref. 2 of why
the Hamiltonian onG/H involves the inducedH connection. Being geometrical, our criterion will
be useful, even in other quantization approaches and, possibly, in attempts at extending the quan-
tization scheme to field theories. Indeed, we have shown that the gauge field induced in a slightly
different approach7 is again theH connection—a fact suggesting a universal feature of the quan-
tum theory on such topologically nontrivial spaces. In connection with this, it is worth mentioning
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that even in the ‘‘confining approach’’21 to quantization, which is totally different from Mackey’s
approach, one can still observe an induced gauge field, which is also appears to be of the type of
theH connection.8,9

The appearance of theH connection in the other context—Berry’s phase—was then analyzed
in the setting where the parameter space is given by a coset spaceG/H. We have seen that Berry’s
connection becomes theH connection if the energy eigenspace we are looking at possesses the
highest weight state of the unitary representation of the groupG that characterizes the system.
Notice also that such highest subspaces can be used to define the so-called vectorial coherent
states22 for the groupG. Indeed, by choosing the statesux,m̄& as the ones belonging to a highest
subspace, the states of~2.12! become the vectorial coherent states. The physical implications of
this condition for the energy eigenspaces need to be investigated, but we have at least seen an
interesting fact that in such cases the effective theory describing the slow variables bears an
unexpected resemblance with the quantum theory on coset spaces.
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We describe a finite analog of the Poisson algebra of Wilson loops in Yang–Mills
theory. It is shown that this algebra arises in an apparently completely different
context: as a Lie algebra of vector fields on a noncommutative space. This suggests
that noncommutative geometry plays a fundamental role in the manifestly gauge
invariant formulation of Yang–Mills theory. We also construct the deformation of
the algebra of loops induced by quantization, in the large-Nc limit. © 1996 Ameri-
can Institute of Physics.@S0022-2488~96!03001-5#

I. ALGEBRAS OF WILSON LOOPS

A central problem of particle physics is to find a formulation of Yang–Mills theory in terms of
gauge invariant variables. There is a large amount of literature on this subject, starting with
pioneering work of Mandelstam.1 Such a reformulation of Yang–Mills theory must involve as yet
unknown geometrical principles, as the principle of gauge invariance would be empty. We should
discover these geometrical structures by starting with the conventional formalism of gauge theory
and rewriting it in terms of gauge invariant variables. A loose analogy can be made with the
process by which symplectic geometry was discovered to be the foundation of classical mechan-
ics.

In this article we will show that the fundamental Poisson brackets of Yang–Mills theory have
an interpretation as an algebra of vector fields in a noncommutative space, a sort of noncommu-
tative generalization of the Virasoro algebra. The precise mathematical formulation is possible
only for a finite ~regularized! version of the theory, but the ideas extend in a formal way to the
continuum theory.

A natural choice of gauge invariant variable in Yang–Mills theory is the Wilson loop variable.
It is just the trace of the parallel transport operator around a loop. We can describe the symplectic
structure of classical Yang–Mills theory in terms of Poisson brackets of these variables. However,
in the usual canonical formalism, where initial data is given on a spacelike surface, this leads to
either a trivial answer or to an impossibly complicated one. If the loop lies entirely on a spacelike
surface, the Poisson brackets will vanish since the components of the gauge field on a spacelike
surface commute: they are like theq variables of classical mechanics. If the loop has a finite
extension into the timelike direction on the other hand, the Poisson brackets cannot be obtained
without solving the equations of motion: this is like asking for$q(t),q(t8)% at unequal times in
classical mechanics. One way around this impasse is to introduce loop variables involving the
electric field~which is the canonical conjugate of the Yang–Mills potential! but this does not have
the elegance and simplicity of a formalism involving Wilson loop variables alone.

We showed in some recent papers2 that the Wilson loops in classical Yang–Mills theory which
lie on a null surface satisfy simple Poisson brackets.~There is also a large amount of literature on
the null cone formalism for gauge theories. See, e.g., Ref. 3.! In a formalism in which initial data
is given on null surfaces there is thus a natural way of encoding the canonical structure of

a!Present address: The Erwin Schro¨dinger International Institute for Mathematical Physics, Pasteurgasse 6/7, Vienna,
Austria.
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Yang–Mills theory in terms of gauge invariant variables. In this article we will show that an
analog of this Loop algebra arises as derivations of the free algebra on a finite number of variables.
This allows us to construct a Lie group of which the finite loop algebra is the Lie algebra.
Moreover, we will construct a symplectic realization analogous to the realization on the Yang–
Mills phase space. We will also obtain a quantum deformation of this algebra and obtain the
contraction corresponding to the large-Nc limit. It is conjectured that this large-Nc limit algebra
also has a symplectic realization, but we are as yet unable to construct it. This would be of great
interest in Yang–Mills theory, as it would help us discover the phase space of gauge invariant
observables of that theory.

We will reserve the phrase ‘‘loop algebra’’ to describe the algebras formed by Wilson loops in
gauge theories. This should not be confused with another meaning of this term often found in the
literature: the Lie algebra of the so-called loop group, the group of functions from a circle to a Lie
group.

Let us now describe the situation a little more explicitly.2 We will consider pure Yang–Mills
theory on flat Minkowski space, with initial data given on a null cone. The field will then be
determined at all points in the future of the cone by the Yang–Mills equations.~See Ref. 2 for
details.! It will be particularly convenient to choose as initial surface the null cone at past timelike
infinity ~calledI 2 in Ref. 4! so that all points not on the cone are in its future.~This will also
restore spatial translation invariance.! This can be accomplished by using a conformally equivalent
metric

d̂s25dU~dU12dR!2sin2 Rqi j ~z!dzi dzj ~1!

instead of the flat metric on Minkowski space.~Here,qi j is the standard metric onS
2.! Yang–Mills

equations are conformally invariant in four dimensions, so this conformal change of the metric
will not change the theory.]/]U is a timelike vector and]/]R is a null vector. We will regard]/]U
as defining the time direction. Also, Minkowski space corresponds to the region

2p,U,p 2p,U12R,p. ~2!

The null cone at past timelike infinityI 2 will be the surfaceU52p.
Since the Yang–Mills equations are of first order in the time variableU, initial data consist of

prescribing the value of the gauge potential onI 2. We can setAR50, by a choice of gauge. Also,
AU is just a Lagrange multiplier~its time derivative does not appear in the Lagrangian! so that the
dynamical variables are the transverse componentsAi . The main simplification of the null for-
malism is that these variables are in a sense canonically conjugate to each other with equal time
Poisson brackets

$Aib
a ~z,R!,Ajd

c ~z8,R8!%5 1
2dd

adb
cqi j ~z!d~z2z8!sgn~R2R8!. ~3!

Herea,b51,2,...,Nc . We will consider the gauge group to be U(Nc) so that the matricesAi are
Hermitian. These Poisson brackets follow from the Yang–Mills action by a straight forward
application of the canonical formalism.

We thus define the inverse of the symplectic form on the phase space of Yang–Mills theory:

v i jcd
ab ~z,R,z8,R8!5dd

adc
bv i j ~z,R,z8,R8!, ~4!

where

v i j ~z,R,z8,R8!5 1
2qi j ~z!d~z2z8!sgn~R2R8!. ~5!
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Now let j:S1→I 2 be a closed curve on the light cone. Given a Yang–Mills fieldA, we can
define a complex valued functionW@j# on the space of closed curves, the trace of the parallel
transport operator~holonomy! in the basicNc dimensional representation. In the case of U(Nc),
this loop variable is complex valued, but it satisfies the condition

W@ j̄ #5W* @j#, ~6!

wherej̄ is the curvej with the opposite orientation.
ThisW@j# is the ‘‘Wilson loop’’ associated to this Yang–Mills configuration. For eachj,W@j#

is a function on the Yang–Mills phase space so that it is possible to compute the Poisson bracket
of a pair of loop variables. We will get

$W@j#,W@ j̃ #%5E ds dt j̇ i~s!j8 j~ t !v i j ~j~s!,j̃~ t !!W@j+stj̃ #.

Due to the delta function in the symplectic form, only pointss,t wherej i(s)5 j̃i(t) will contribute
to the integral; i.e., the projections of the curves to the sphere must intersect at parameter values
for the first curve andt for the second. There will be a null line segment joining the pointsj(s)
and j̃(t) for this intersection. In this case,j+stj̃ is the product curve, defined as follows: describe
the curvej starting and ending ats; jump to the pointj̃(t) along the null line segment; describe
the curvej̃ starting and ending atj̃(t); jump back toj(s) along the null segment. Thus the product
is also a closed curve. The pieces of the curve along null lines will not contribute toW[ j+stj̃]
since we have chosen a gauge where the null component of the gauge field vanishes. Also, there
will be generically only a finite number of intersection points, so that the integral on the right-hand
side can be actually evaluated to yield a finite sum. We will not need the explicit expression, which
is given in Ref. 2. This last property depends on the dimension of space–time being four; in higher
than four dimensions generically there are no intersections while in lower dimensions there is a
continuum of such intersections.

The Poisson brackets above could have been motivated based purely on the geometry of loops
on the null cone. Causality requires that loops on a null cone which have no intersections when
projected to the spacelike surface must commute. This explains the delta function in
v(z,R,z8,R8). The factor sgn (R2R8) is also natural, as it simply keeps track of which event is
to the future along the null direction, and makes the bracket antisymmetric.

Indeed, geometrically, these are the most natural definitions possible forv as well as the
product of the loops. Note that the bracket is invariant under the change of parametrization of the
loop. In fact the right-hand side will only depend onqi j only through the angle of intersection of
the tangent vectorsj̇(s),jP(t); thus the algebra is invariant under conformal transformation of the
metric on the two sphere. But every metric on the two sphere is conformal to the standard one, so
we see that the algebra is in fact independent of the choice of metric also.

Once the Poisson brackets are postulated, the Jacobi identity can be proved directly. The
Yang–Mills phase space then arises as the solutions of some algebraic constraints satisfied by the
loop variables, due to Mandelstam. We proposed that these constraints be viewed as describing the
coadjoint orbits of the above Lie algebra. In this way, Yang–Mills theories with different unitary
groups as gauge groups, would arise as different realizations of the same universal Lie algebra.
For more details we refer the reader to Ref. 2.

We would like to understand the above Lie algebra of loops better. In particular we would like
to have a finite analog which can be studied by more rigorous methods; also it would be good to
have a different situation in which this loop algebra arises so that we can have a point of view to
Yang–Mills theory not based on the gauge group. Another natural object to study is the group
associated to the above Loop algebra. Finally it is very important to understand the quantum
deformations of this algebra and its large-Nc limit. In this paper we will in fact arrive at a finite
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analog of the loop algebras and their groups, starting from considerations quite different from
Yang–Mills theories; i.e., the derivations and automorphisms of free algebras. We will also con-
struct a quantum deformation and its large-Nc limit.

Another situation where Poisson brackets of Wilson loops appears is in Chern–Simons theory.
There, also, the spatial components of the gauge field are canonically conjugate to each other; the
Wilson loops on a spacelike 2-surface satisfy the above algebra except that

v i , j~z,z8!5e i j ~z!d2~z2z8!, ~7!

wheree i j (z)dz
i`dzj is the volume form on the spacelike surface. The product of loops relative to

a pair of coincident points is defined as before as one loop followed by the other. Thus our
considerations should also be of interest in the context of topological field theories.

II. THE FREE ALGEBRA AND ITS AUTOMORPHISMS

Let T M be the real free algebra onM variables.5 It is a graded vector space, the part of order
m ~for m50,1,2,...! being just the set of all tensors of type~0,m! on anM -dimensional real vector
space. Note that no symmetry of any kind is required on these tensors. The multiplication rule on
the algebra is defined by the direct~or tensor! product.T M is a noncommutative but associative
algebra with identity.

More explicitly, introduce variablesj i for i51,...,M satisfying no relations whatever. A
typical element ofT M is a polynomial in these variables,

T~j!5 (
m50

`

Ti1i2 ,...,imj i1j i2,...,j im. ~8!

Ti1i2 ,...,im are the components with respect to some basis inRM of a tensorT of type ~0,m!. Since
T~j! is assumed to be a polynomial, only a finite number of terms on the right-hand side of the
above series are nonzero: only a finite number of the tensorsTi1 ,...,im are nonzero.

In this language, multiplication is defined as follows:

~ST!~j!5 (
m,n50

Si1 ,...,imTj 1 ,...,j n
j i1,...,j imj j 1,...,j j n. ~9!

There is no problem with convergence of the series since only a finite number of terms are
nonzero. In fact this comment applies to almost all the formally infinite series below.~The excep-
tion is where we speak of inverting a transformation of the variables.!

If these variablesj had commuted with each other, the algebra would just have been the
commutative algebra of functions~polynomials! on RM. The tensors would all have been sym-
metric and multiplication would have been the symmetrized tensor product. This algebra has as
automorphisms the group of diffeomorphisms ofRM. ~Actually a diffeomorphism will in general
map a polynomial to an infinite series, so we will really needT M to extend to an appropriate
topological vector space to make this possible.! Infinitesimally, this would correspond to the Lie
algebra of vector fields, whose components are polynomials, which form the derivations of the
commutative algebra.

Thus we can regardT M as the set of ‘‘functions’’ on a noncommutative space in the spirit of
noncommutative geometry.6 This is perhaps the most noncommutative case in the sense that the
coordinates satisfy no relations at all. Now let us determine the Lie algebra of derivationsV M

which will be the noncommutative analog of the algebra of vector fields. A derivationv is
determined by its effect on the generators:
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v~j! i5 (
m51

v i1 ,...,im
i j i1,...,j im, ~10!

where it is assumed that only a finite number of terms in the sum are nonzero. The effect ofv on
an arbitrary element ofT M is given by the Leibnitz rule:

v~T!~j!5 (
m,n51

`

(
k51

m

Ti1 ,...,imv j 1 ,...,j n
i k j i1,...,j i k21j j 1,...,j j nj i k11,...,j im. ~11!

A basis~analogous to the Weyl basis forgl(M )! for V M is given by the elementsEi
i1 ,...,im defined

by

Ei
i1 ,...,im~j! j5d i

jj i1,...,j im. ~12!

In the commutative case they correspond to the vector fieldsj i1,...,j im(]/]j i). They satisfy the
commutation relations

@Ei
i1 ,...,im,Ej

j 1 ,...,j n#5(
l51

n

d i
j lEj

j 1 ,...,j l21i1 ,...,imj l11 ,...,j n2 (
k51

m

d j
i kEi

i k ,...,i k21 j 1 ,...,j ni k11 ,...,im.

In the special caseM51, all the noncommutativity dissappears, andV 1 is just the algebra of
polynomial vector fields on the real line. Since all the indices must take the value 1, there is just
one generator withm superscripts. Suppose we call itLm21 for m50,1,.... Then the above com-
mutation relation becomes

@Lm ,Ln#5~n2m!Lm1n for m521,0,1,2,... . ~13!

This is just the subalgebra of the Virasoro algebra on which the central term vanishes. Thus our
algebras are, in a sense, generalizations of this familiar algebra.

Now let gi j be a symmetric positive tensor onRM and defineV M
2 to be the subalgebra of

tensors that preserve the elementg~j!5uju25gi j j
ij j . In the commutative case these are all the

vector fields tangential to the spheres centered at the origin; these preserve the distance function
uj u2. The simplest among these are the rotations. In the case of a free algebra, we can see easily
that the algebraV M

2 consists of the set of all elements of the form

v i1 ,...,im
i 5gii 0wi0i1 ,...,im

, ~14!

wherewi0i1 ,...,im
is acyclically antisymmetric tensor. Of course such tensors exist only whenm is

odd. There is a basis forV M
2 ,

Gi0 ,...,im5 (
k50

m

~21!kgi kjEj
i k11 ,...,i0im ,...,i k21 ~15!

in which the Lie brackets become

@Gi0 ,...,im,Gj 0 ,...,j n#5 (
k,l50

k5m,l5n

~21!k1 l11gikj lGi k11 ,...,imi1 ,...,i k21 j l11 ,...,j nj 1 ,...,j l21. ~16!

In an exactly analogous fashion, letv be an antisymmetric nondegenerate tensor.~Clearly this
exists only ifM is even, which will be assumed in the following.! This defines an element
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v~j!5v i j j
ij j . ~17!

This is a symplectic analog of the distance function. This would have vanished identically in the
commutative case.

The subalgebraV M
1 which preservesv~j! is just the set of elements such that

v i1 ,...,im
i 5v i i 0wi0i1 ,...,im

, ~18!

wherewi0i1 ,...,im
is a cyclically symmetrictensor. There is a basis forV M

1 ,

Fi1 ,...,im5 (
k51

m

v i kjEj
i k11 ,...,i1im ,...,i k21 ~19!

in which the Lie brackets become

@Fi1 ,...,im,F j 1 ,...,j n#5 (
k,l51

k5m,l5n

v i kj lFi k11 ,...,imi1 ,...,i k21 j l11 ,...,j nj 1 ,...,j l21. ~20!

Now we will show that this algebra is just a finite version of the loop algebra we found for
Wilson loops. Let us think of the indexI5 i 1 ,...,i m on theFI variable as a mapI :Zm→$1,...,M %.
Due to cyclic symmetry, this can be viewed as a ‘‘loop’’ from the cyclic permutation groupZm
~which is a discrete model for the circle! to a space which contains just a finite numberM of
points. The product of two loops at pointk,l is defined as the loopI starting ati k11 and ending
at i k21 followed by the loopJ starting atj l11 and ending atj l21:

I +klJ5 i k11 ,...,i mi 1 ,...,i k21 j l11 ,...,j nj 1 ,...,j l21 . ~21!

This is just the discrete analog of the product we introduced earlier. The commutation relations of
the Lie algebraV M

1 are then

@FI , FJ#5(
kl

v i kj lFI +klJ. ~22!

The Wilson loop algebra can be understood as the limiting case where the finite setZm is replaced
by S1 and the set$1,2,...,M % is replaced by the light coneS23R1. Thus by studying the algebra
V M

1 we are studying a finite model for the algebra of Wilson loops. The algebrasV M , V M
2 , V M

1

are all graded Lie algebras. The point is that the Lie bracket of a tensor withm indices and one of
with n indices hasm1n22 indices. Thus if we assign a grade ofm21 to the space of tensors with
m indices, we have a graded Lie algebra. The range of the grading is21,0,1,2; the space of grade
21, if nonempty, is a subalgebra with vanishing brackets.

Although we have introducedV M
1 as a complex Lie algebra, its unitary form, obtained by

imposing

v I*5v Ī ~23!

on the coefficients of an elementv5(v IF
I , will be of particular interest. To save on notation we

will also call this real Lie algebraV M
1 . Here,

Ī5 i mi m21 ,...,i 1 ~24!

is the loop with the opposite orientation. The conjugationv I→v
Ī
* is an antilinear involution of the

complex algebra, therefore it makes sense to talk about its unitary form.
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The algebraV M
2 is the finite analog of the commutation relations of the Wilson loop in

supersymmetric Yang–Mills theory. In the case of supersymmetric QCD in two dimensions, e.g.,
the bosonic components of the gauge field can be removed by gauge fixing, and the analog of the
Wilson loop variables involve only the fermionic fields in the adjoint representation. Thus it is of
equal interest to studyV M

2 ; we can develop the two cases in parallel; but mostly we will speak of
V M

1 .

III. AUTOMORPHISM GROUPS GM
6

It is now possible to understand the Lie groups of whichV M
6 are Lie algebras. Thus, we will

solve in a finite context the problem of exponentiating the Lie algebra of Wilson loops.
First of all, let us consider a group of whichV M is the Lie algebra. Consider the vector space

of tensors of type~1,m! for m50,1,.... In terms of the variablesji , a typical element would be

f i~j!5 (
m51

`

f i1 ,...,im
i j i1,...,j im. ~25!

Define the composition law of such functions ofj in the obvious way:

~f̃+f! i~j!5 (
m50

`

f̃ i1 ,...,im
i f~j! i1,...,f~j! im. ~26!

This operation is clearly associative and has identity.
If we now restrict to the subset of functionsf such that the first tensor in the series above, is

invertible,

GM5$fudetf j
iÞ0% ~27!

we have a group under the above composition law. To see this, we note that given any suchf, a
unique inversec can be constructed solving the equation

c i~f!~j!5j i ~28!

recursively:

c j
ifk

j 5dk
i ,

c j
if j 1 j 2

j 1c i1i2
i f j 1

i1f j 2

i250,

etc. The term of orderm will determinec i1,...,im
i in terms of lower order components ofc thus

establishing the existence and uniqueness of an inverse. In general,c will have an infinite number
of nonzero terms even whenf is a polynomial.@We must enlarge our space of allowed transfor-
mations to include infinite series, in order to be able to define an inverse. We do not address the
issue of convergence of these series, although it should be possible to define an appropriate
topology on the space of such series with respect to whichGM is a Lie group. The Lie algebra of
GM will in fact be the completion of our polynomial derivationsV M in such a topology.# This is
an algebraic analog of the inverse function theorem:fj

i is the analog of the derivative at the origin
of the functionfi~j!, so that if it is invertible, we should expectf to be invertible at least locally.

ThusGM is a group under the above composition law; by infinitesimalizing the composition
law we see that this group has as Lie algebraV M . We see thatGM is a noncommutative analog
of the diffeomorphism group ofRM.

Now it is clear that groups of which the Lie algebras areV M
6 may be defined as below:
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GM
25$fudetf j

iÞ0;gi jf
i~j!f j~j!5gi j j

ij j%,

GM
15$fudetf j

iÞ0;v i jf
i~j!f j~j!5v i j j

ij j%

which are just the conditions for the distance functions to be invariant.

IV. SYMPLECTIC REALIZATIONS

It would obviously be interesting to look at representations of the above loop algebras. This
should be interesting, e.g., in the quantum Yang–Mills theory. However, it is quite possible that
the relevant algebras are different in the quantum theory: quantization could deform the algebra
itself. Therefore we first study the classical analog of a representation, a realization of the Lie
algebraV M

1 in terms of Poisson brackets of some functions on symplectic space.
Let hb

ia be a set of complex variables satisfying the Hermiticity condition

hb
ia*5ha

ib . ~29!

Here, i51,...,M anda,b51,...,Nc for some positive integerNc . We will consider only the
case of evenM . ~The indicesa and b will be called color indices, since we will soon see an
analogy to Yang–Mills theory.! Now impose the Poisson brackets

$hb
ia ,hd

jc%5v i jdd
adb

c . ~30!

Thus we are just considering the real vector spaceRMNc
2
with a symplectic form that is invariant

under the adjoint action of U(Nc). Now consider the space of polynomials invariant under the
adjoint action of U(Nc). A basis for this space is labeled by a discrete loopI :Zm→$1,2,...,M %:

f I~h!5Tr h i1h i2,...,h im. ~31!

The cyclic symmetry of the trace assures us thatf I is independent of the starting point of the loop
I . Moreover,

f I*5 f Ī . ~32!

This implies that the coefficientsaI of an elementa5(aI f
I are complex numbers satisfyingaI*

5aĪ .
Now it is a simple matter to verify that the Poisson brackets of these functions provide a

realization of the Lie algebraV M
1 :

$ f I , f J%5(
kl

v i k , j l f I +k,l J. ~33!

The analogy of this realization with the Poisson brackets of the Wilson loops is obvious.
At the level of the group, we also have an action of the group on invariant polynomials of the

variableshi by a sort of ‘‘pull-back’’:

f* ~h!~h!5h~c~h!!, ~34!

wherec is the inverse off and

@c~h!# i5 (
m51

c i1 ,...,im
i h i1,...,h im ~35!
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matrix multiplication being implied on the right-hand side. If we restrict to the subgroupGM
1 the

matrix valued functionv i jh
ih j is invariant under this action. This ‘‘symplectic distance’’ function

has an obvious meaning in this realization: it is the generator of infinitesimal gauge transforma-
tions. If u is a constant anti-Hermitian matrix,

$Tr uv i jh
ih j ,hk%5@u,hk# ~36!

so that the tracesf i1 ,...,im are invariant under this action.
Clearly if the number of ‘‘colors’’Nc is one, the realization described above has a large kernel.

The variableshi then satisfy the relation

h ih j2h jh i50 ~37!

since they commute. The functionsf I then satisfy the ‘‘Mandelstam identity’’

f I +klJ2 f I f J50 ~38!

relative to any way of multiplying the two loopsI andJ at pointsk and l . More generally, there
will be an identity that says that the antisymmetric part inNc11 indices is zero; these are the finite
analogs of the Mandelstam identities. For simplicity, let us state theNc52 case:

f I1+I2+I31 f I1+I3+I22 f I1+I2f I32 f I1+I3f I22 f I2+I3f I11 f I1f I2f I350. ~39!

Here,I 1 actually denotes the seti 1 ,i 2 ,...,i k1, I 2 denotesj 1 ,...,j k2 and I 3 refers tol 1 ,...,l k3. The
circles are the products we introduced which corresponds to combining the corresponding se-
quences. Similarly, one can see that writing the all possible antisymmetric combinations and
taking the trace, we get a relation satisfied byNc11 generators of the representation. This gives us
combinations of generators with all possible permutations multiplied with the appropriate sign of
the permutation. If we take the cycle decomposition of a permutationp of Nc11 numbers, and
denote each cycle aspk , we can write the result as

(
p

~21!p f Ip1f Ip2,...,f Ips50, ~40!

where we used a short handf Ipk to denotef I l r k21
+,...,+I l r k. Here the length of the cyclepk is given

by r k2r k21 and circles again correspond to products.
These are precisely the analogs of the identities satisfied by the Wilson loop for finiteNc ~see

Ref. 2!. They simply describe the fact thatf I is the trace of anNc3Nc matrix. AsNc→` these
identities should disappear which must be a reason for the simplicity of the large-Nc limit.

We remark that if we introduce Grassmann variablescb
ia which anticommute,

cb
iacd

jc1cd
jccb

ia50 ~41!

and satisfy the super-Poisson bracket

$cb
ia ,cd

jc%5gi jdd
adb

c ~42!

we also have a supersymplectic realization ofV M
2 :

GI°Tr c i1,...,c im. ~43!

Clearly theseGI are cyclically antisymmetric and a short computation will show that their super-
Poisson brackets form a realization ofV M

2 . By replacing the above Grassmann algebra by a
Clifford algebra:
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cb
ia
*cd

jc1cd
jc
*cb

ia5\gi jdd
adb

c ~44!

we also have a quantum deformation forV M
2 , analogous to the one in the Sec. V.

V. FREE ORTHOGONAL ALGEBRA

Let us consider the SO(Nc) Yang–Mills theory, and obtain a similar formalism of loops. If we
think of SO(Nc) as the real part of U(Nc), then Wilson loops satisfy

W@j#5W@ j̄ #, W* @j#5W@j#. ~45!

The loop algebra should also reflect this symmetry, therefore for SO(Nc) Yang–Mills theory, we
obtain the result

$W@j1#,W@j2#%5E ds dt~ j̇1
i ~s!j̇2

j ~ t !v i j ~j1~s!,j2~ t !!W@j1+stj2#

1 j̇1
i ~s!jG 2

j ~ t !v i j ~j1~s!,j̄2~ t !!W@j1+stj̄2# !.

One can see that the algebra is invariant underj°j̄.2

We will see that the real subalgebra of the unitary algebra is in fact the above algebra of
Wilson loops. The real form can be obtained by imposing the conditions

v I5v Ī , v I*5v I ~46!

for the coefficients of an elementv5(v IF
I . One can check that a basis for them is given by

HI5FI1FĪ . ~47!

We can now calculate the commutator of these basis elements;

@HI , HJ#5(
k,l

v i kj l~FI +klJ1FI +klJ̄1FĪ +klJ1FĪ +klJ̄!, ~48!

using the previous result on the commutators ofFI ’s. Due to the cyclic symmetry we can show

thatFĪ +klJ̄ 5 FI +klJ. Thus the above expression can be reorganized as

@HI , HJ#5(
kl

v i kj l~HI +klJ1HI +klJ̄!. ~49!

This also shows explicitly that the above set of elements constitute a subalgebra. We will also
briefly describe a symplectic realization of the above algebra. Let us consider the real symmetric
matriceshb

ia, wherei51,2,...,M anda,b51,2,...,Nc , with the Poisson bracket

$hb
ia ,hd

jc%5v i j ~dd
adb

c1dacdbd!. ~50!

If we define the SO(Nc) invariant polynomials,

hI5Tr h i1h i2,...,h i n ~51!

they provide a symplectic realization of the above algebra. We have the conditionhI 5 hĪ and the
Mandelstam constraints as the kernel of this realization.
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It is also possible to discuss the deformation of this symplectic realization but we will only
consider the more physically relevant case of unitary algebras. The derivation given below can be
extended to the orthogonal case.

VI. QUANTUM DEFORMATION

It is interesting to see what happens to the above realization upon quantization. One approach
to quantization is the deformation of the commutative product of the functions ofhb

ia by the
so-called Moyal product:

f * g~h!5@e2 i ~\/2!v i j ~]/]hb
ia

!~]/]ha8
jb

! f ~h!g~h8!#h5h8 . ~52!

~This particular definition of the product corresponds to Weyl ordering.7! If we apply this multi-
plication rule to the U(Nc)-invariant polynomialsf

I , we will get a noncommutative associative
algebra. The commutator of this multiplication defines a Lie algebra, which is a quantum defor-
mation of our loop algebraV M

1 . To first order in\ this commutator is just the Poisson bracket, so
that in this limit we recover the previous algebra as a contraction of the quantum algebra. But the
general answer is quite formidable, at each orderr in \, there will be terms involving up tor
products of loops.

On the other hand, it is to be expected that some simplifications will occur in the limit as
Nc→`. The point is that the leading contribution will come from terms where there are the largest
number of possible independent traces, so that we must keep the terms with the largest number of
loops. All the other terms are subleading order. Nevertheless, it turns out that there is such a term
of leading order in 1/Nc

2 at each order in\; the limit Nc→` is quite different from the limit\→0.
But this is also a ‘‘classical’’ limit in that the commutators of color invariant observables is of
order 1/Nc

2, so that they become simultaneously measurable in the limitNc→`. It is of utmost
importance to understand the large-Nc limit of gauge theories; our discussion identifies the ca-
nonical structure~Poisson brackets of loop variables! of color singlet observables in the large-Nc

limit.
Let us now calculate the deformed brackets more explicitly. First of all note that

] f I

]hb
ka50 ~53!

unlessk is equal to one of the elements of the loop$ i 1 ,i 2 ,...,i m%. In the casek5 im for some
m51,2,...,m,

] f I

]hb
ima

5@h im11h im12,...,h imh i1,...,h im21#a
b . ~54!

Thus differentiation with respect toh im cuts the loop at the point with parameter valuem.
More generally,

] r f I

]hb1

k1a1,...,]hbr

krar
50 ~55!

unless the set $k1 ,k2 ,...,kr% is a subset of the set $ i 1 ,i 2 ,...,i m%. Suppose
$m1 ,m2 ,...,m r%,$1,2,...,m% and moreover thatm1,m2,...,,mr . Then we can see that
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] r f I

]h
b1

im1
a1,...,]h

br

imr
ar

5@h im111h im112,...,h im221#a1
b1

3@h im211h im212,...,h im321#a2
b2•••@h imr11h imr12,...,h im121#ar

br

which corresponds to cutting the loop at pointsm1,m2,...,mr . It is clearly convenient to introduce
the matrix, form1,m2P$1,2,...,m%:

Pa
b~ I ~m1 ,m2!!5@h im111h im112,...,h im221#a

b , ~56!

which represents the parallel transport operator for the piece of the loopI from m1 to m2. Then, for
m1,m2,...,,mr ,

] r f I

]h
b1

im1
a1,...,]h

br

imr
ar

5Pa1

b1~ I ~m1 ,m2!!Pa2

b2~ I ~m2 ,m3!!,...,Par

br~ I ~m r ,m1!!.

Now let us consider the general term in the definition of the deformed product of color
invariant functions of theh:

f I* f J5 f I f J1(
r51

`
1

r ! S 2
i\

2 D rv im1
j n1,...,v imr

j nr
] r f I

]h
b1

im1a1 ,...,]h
br

imrar

] r f J

]h
a1

j n1b1 ,...,]h
ar

j nrbr
.

We can, using the symmetry of the derivatives, and relabeling of indices, always bring the indices
in the first derivative factor to the orderm1,m2,...,,mr . However, once this is done, there is no
reason that the indicesn1,n2,...,nr are in any particular order. This is because the contraction of the
color indices linksmk to nk . Thus, the general term in the series will involve quite complicated
ways of contracting the color indices.

In the large-Nc limit, however, the leading term will have the largest number of traces. This
will happen when then indices are indecreasingorder:$n1.n2,...,.nr%. ~Of course, the ordering
we use is a cyclic ordering; i.e.,m1.m2,...,mr means alsom2.m3,...,mr.m1, etc.! This is the term
that involves a product ofr Wilson loops, so that

f I* f J5 f I f J1(
r51

`

(
m1,m2 ,...,,mr
n1.n2 ,...,.nr

3S 2
i\

2 D rv im1
j n1,...,v imr

j nr f I ~m1 ,m2!J~n2 ,n1! f I ~m2 ,m3!J~n3 ,n2!••• f I ~mr ,m1!J~n1 ,nr !1••• .

Here I (m1 ,m2)J(n2 ,n1), e.g., is the loopim111im112 ,...,im221 j n211 ,...,j n121.
Now, as the large-Nc limit is taken, we usually have to multiply physical quantities by some

Nc-dependent factor, in order that the limit be well-defined. The proper normalization off I , e.g.,
is not obvious. We propose thatf I be normalized such that its vacuum expectation value remains
finite in the limit. Now the vacuum expectation value depends on the choice of the Hamiltonian,
which we have not made yet. The simplest case would be a quadratic function,H5gi j Tr h ih j .
~This corresponds to having a free theory; if the coupling constants in the interacting case are
scaled properly by powers ofNc as well, the counting rules in powers ofNc will not be affected.!
The vacuum expectation value of a product of twoh’s is then^hb

iahd
jc&5e i jdd

adb
c. ~Hereei j is a

tensor built fromgi j andvi j whose explicit form is not necessary.! The vacuum expectation value
of the product of an odd number ofh’s will vanish; for an even number ofh’s it is given by the
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Wick formula. A short calculation will show that, for evenm, the expectation value off I is of
orderNc

m/211. This is independent of the particular form of the Hamiltonian.
Thus we define the normalized functions

f̃ I5
1

Nc
m/211 f

I . ~57!

Now one can check that

f̃ I* f̃ J5 f̃ I f̃ J1
1

Nc
2 (
r51

`

(
m1,m2 ,...,,mr
n1.n2 ,...,.nr

S 2
i\

2 D rv im1
j n1,...,v imr

j nr f̃ I ~m1 ,m2!J~n2 ,n1!

3 f̃ I ~m2 ,m3!J~n3 ,n2!••• f̃ I ~mr ,m1!J~n1 ,nr !1OS 1

Nc
3D .

Thus the pointwise product is again the leading contribution in the large-Nc limit.
The commutator of thef̃ I ’s is of order 1/Nc

2. This is consistent with the idea that the large-Nc

limit is a classical theory, with 1/Nc
2 measuring the size of the quantum corrections: analogous to

the \ of the conventional classical limit. Indeed, the Poisson algebra of the large-Nc limit of
~regularized! Yang–Mills theory is

$ f̃ I , f̃ J%*52i (
r51,odd

`

(
m1,m2 ,...,,mr
n1.n2 ,...,.nr

S 2
i\

2 D rv im1
j n1,...,v imr

j nr f̃ I ~m1 ,m2!J~n2 ,n1!

3 f̃ I ~m2 ,m3!J~n3 ,n2!••• f̃ I ~mr ,m1!J~n1 ,nr !.

The Poisson manifold defined by these relations is the phase space of the large-Nc limit of
Yang–Mills theory. It is quite different from the phase space of the conventional classical limit.
~This is in fact quite typical of such large-Nc limits.! We believe that the above Poisson algebra
plays a fundamental role in the physics of strongly interacting particles.
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Zero modes of rotationally symmetric vortices in a hierarchy of generalized Abe-
lian Higgs models are studied. Under the finite energy and the smoothness condi-
tion, it is shown, that in all models,n self-dual vortices superimposed at the origin
have 2n modes. The relevance of these modes for vortex scattering is discussed:
first, in the context of the slow-motion approximation; second, a corresponding
Cauchy problem for an all head-on collision ofn vortices is formulated. It is shown
that the solution of this Cauchy problem has ap/n symmetry. ©1996 American
Institute of Physics.@S0022-2488~96!03301-6#

I. INTRODUCTION

Since their discovery,1 vortices in the Abelian Higgs model have attracted much attention.
This is mainly due to the fact that the static solutions of this model describe flux tubes in
superconductors. As objects in two-dimensional space, they also provide simple examples of
topologically nontrivial structures. Recently, the Abelian Higgs model was generalized, and rota-
tionally symmetric vortices were found in these models.2 ThegeneralizedAbelian Higgs models
form a hierarchy of two-dimensionalU(1) models labeled by an integer parameterp. The sig-
nificance ofp is that thepth member of this hierarchy has been derived by subjecting thepth
member of the hierarchy of the 4p-dimensional scale-invariant SO(4p) Yang–Mills models to
dimensional descent.3 The p51 members of both these hierarchies are the usual Abelian Higgs
model and the Yang–Mills model in 2 and 4 dimensions, respectively.

A mathematically rigorous proof for the existence and uniqueness of the rotationally symmet-
ric self-dual vortices of the hierarchy of generalized Abelian Higgs models was subsequently
given in Ref. 4. These rotationally symmetric solutions describe vortices superimposed at the
origin, and provide us with objects qualitatively similar to, but quantitatively different from the
vortices in the Abelian Higgs model. In the case of the Abelian Higgs model, actually, a 2n-
parameter family of vortices exists.5 In this article, we show that, at least near the rotationally
symmetric vortices, there is also a 2n-parameter family of generalized vortices.

In the Abelian Higgs model, the knowledge gained from the study of the zero modes has been
used to investigate the scattering of vortices. Vortex scattering has been studied in the context of
the slow-motion approximation,6 and with the help of the theory of partial differential equations.7

Among the most interesting processes studied is 90° scattering of two vortices in a head-on
collision ~or its generalization:p/n scattering in all head-on collisions ofn vortices!. We will
show that some of the results, in particular thep/n symmetry of the scattering process, generalize
to generalized vortices.

The paper is organized as follows. In Sec. II, we highlight those aspects of the generalized

a!On leave of absence from the School of Mathematical Sciences, Dublin City University, Dublin 9, Ireland.
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Abelian Higgs models, and of their rotationally symmetric vortices, important to our discussion of
the zero modes. In Sec. III, following steps taken by Weinberg in the case of the Abelian Higgs
model,8 we derive the fluctuation equations for rotationally symmetric generalized vortices. We
show that these equations have a 2n-parameter family of smooth finite-energy solutions. In Sec.
IV, the scattering ofn generalized vortices shortly before and after they form a rotationally
symmetric vortex is discussed, first, briefly, in the context of the slow-motion approximation. A
corresponding Cauchy problem is then formulated. It is shown that its solution has ap/n sym-
metry.

II. THE MODELS AND THEIR RADIALLY SYMMETRIC SOLUTIONS

The models we study are the generalized Abelian Higgs models in~211!-dimensional space–
time, given by the Lagrangian densities

L~p!5~h22ufu2!2~p22!~ @~h22ufu2!Fmn1i~p21!D [mf*Dn]f#2

14p~2p21!~h22ufu2!2uDmfu212~2p21!2~h22ufu2!4! ~1!

for any integerp.1. For p51, Eq. ~1! reduces to the usual Abelian Higgs model.f is the
complex Higgs field,Dmf5]mf1iAmf, m50,1,2, is the covariant derivative, and the gauge
fieldsFmn are defined in terms of the real gauge potentialsAm asFmn 5 ]mAn 2 ]nAm 5 ] [mAn]

m,n50,1,2. The square brackets mean antisymmetrization in the indices. For any tensorTmn,...,
(Tmn,...)

2 meansTmn,...T
mn,.... The indices are raised and lowered with the metric tensorg5diag

~21,11,11!. Our task is to find, and study, smooth finite-energy solutions of the corresponding
Euler–Lagrange equations.

As in the case of the Abelian Higgs model, the Euler–Lagrange equations of the generalized
Abelian Higgs models are solved by certain first-order equations. For the Abelian Higgs model,
these equations were found by Bogomol’nyi.9 For the Lagrangian~1!, the first-order equations
arise as follows: In the caseA050, and for time-independent Higgs field and gauge potentials, the
Lagragian can be written in the formL (p)5I 21J21e i j ]

iV j , where I 2 and J2 are the positive
definite terms

I 25~h22ufu2!2~p22!~~~h22ufu2!Fi j1i~p21!D [ if*Dj ]f!2~2p21!e i j ~h22ufu2!2!2,
~2!

J252p~2p21!~h22ufu2!2~p21!uDif2ie i j D
jfu2, ~3!

and where

V j54~2p21!h2~2p21!Aj1 (
s51

2p21
4i

s
~2p21!2h2~2p212s!S 2p22

s21 D ~2ufu2!s21f*Djf. ~4!

The special structure of the LagrangianL (p) is no accident, but arises naturally through
dimensional reduction of the generalized Yang–Mills model onR23S4p22.2 The divergence
e i j ]

iV j is the dimensionally reduced form of the Chern–Pontryagin density.I50 andJ50 stem
from the self-duality equations of the generalized Yang–Mills theory.3 Setting I and J equal to
zero means minimizing the energy in a given tological sector, and yields the desired first-order
equations. We have simplified the task of finding time-independent solutions withA050, to
solving the following equations:

~h22ufu2!Fi j1i~p21!D [ if*Dj ]f5~2p21!e i j ~h22ufu2!2, ~5!

Dif5ie i j D
jf. ~6!
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For the rotationally symmetric ansatz,

f5hg~r !exp~2inu!, ~7!

Ai5e i j x
j
a~r !2n

r 2
, ~8!

with integer vortex numbern, Eqs.~5! and ~6! reduce to

~12g2!
da

dr
5
2

r
~p21!a2g22h2~2p21!r ~12g2!2, ~9!

dg

dr
5
ag

r
. ~10!

In Ref. 3, for alln, existence and uniqueness of a solution to these equations with the desired
asymptotic behavior was shown. For smallr , a goes ton, andg goes likeCnr

n, where theCn are
constants which have to be determined numerically. For larger , g goes to 1, anda/(12g2) goes
like A(2p21)/(2p)hr . In Sec. III, we will study the zero modes of these rotationally symmetric
solutions.

III. THE FLUCTUATION EQUATIONS AND THE ZERO MODES

We write the fluctuations about the rotationally symmetric solutions in the following form:

df5hg~r !h~r ,u!exp~2inu!, ~11!

dA15
1

r
~2b~r ,u!sin u1c~r ,u!cosu!, ~12!

dA25
1

r
~b~r ,u!cosu1c~r ,u!sin u!. ~13!

Here,b andc are real functions, andh5h11ih2 is a complex function. To count the number of
modes, we will later fix the gauge by settingh2 equal to zero. To discuss the smoothness of the
modes, we will have to use the gauge freedom and find suitable functionsh2.

Equations~5! and ~6!, linearized in the functionsh, b, and c, then yield the fluctuation
equations. Equation~6! leads to expressions for the functionsb andc in terms of the functionh:

b52r
]h1

]r
2

]h2

]u
, ~14!

c5
]h1

]u
2r

]h2

]r
. ~15!

Using these expressions, we obtain from Eq.~5! the following equation forh:

1

r

]

]r S r ]h1

]r D1
1

r 2
]2h1

]u2
2
4~p21!ag2

r ~12g2!

]h1

]r
2g2S 2~2p21!h21

4~p21!a2

r 2~12g2!2Dh150. ~16!
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Note thath2 does not occur in Eq.~16!. Therefore, the finite-energy solutions of Eq.~16!, which
lead to smooth fields in a suitable gauge, yield the zero modes. There are no other modes, since we
can impose the gauge condition,h250.

We attempt to solve Eq.~16! in terms of a Fourier series forh1,

h1~r ,u!5 (
k50

`

~hk
~1!~r !cosku1hk

~2!~r !sin ku!. ~17!

The Fourier coefficient functionshk
( i ) have to satisfy the equation

d2hk
~ i !

dr2
1S 1r2

4~p21!ag2

r ~12g2! D dhk
~ i !

dr
2S k2r 2 12~2p21!h2g21

4~p21!a2g2

r 2~12g2!2 Dhk~ i !50. ~18!

We want to find all solutions such that, in a suitable gauge, the rotationally symmetric background
fields plus the fluctuations areC` functions onR2 with finite energy.

For smallr , Eq. ~18! reduces tor 2y91ry85k2y, wherey5hk
( i ). The general solution to this

equation isy5c1r
k1c2r

2k for k.0, andy5c11c2 ln r for k50. The uniqueness of radially
symmetric vortices rules out nontrivial fluctuations fork50. ~We assume here that the uniqueness
result, rigorously proven in Ref. 4 forp52, is in fact true for allp.! For larger ,

y92~p21!A8~2p21!

p
hy82

2~2p21!2

p
h2y50 ~19!

holds, with the general solution

y5c3 expSA2

p
~2p21!3/2hr D 1c4 expS 2A2~2p21!

p
hr D . ~20!

Because of the finite-energy condition, we have to setc350. c4 is an arbitrary coefficient. One
can now show that all exponentially decreasing solutions at infinity lead to solutions at the origin
with c2Þ0. Assume the contrary: Then forc4.0 there must be a maximum with positivey.
However, Eq.~18! shows that, when the first derivative vanishes, the second derivative is positive.
This is a contradiction.~An analogous argument holds whenc4 is negative andy has to attain a
minimum.! Hence, acceptable nontrivial behavior at infinity leads to anr2k term at the origin. For
k.n this implies that the energy is infinite.

We are left with the 2n modeshk
( i ) ~with all the otherhl

( j ), for jÞ i or lÞk, equal to zero! for
0,k<n and i51,2. Supplemented with suitable functionsh2, these modes lead to the following
smooth finite-energy solutions: For the first set ofn functions, the fluctuations are of the form

df5hg~r !hk
~1!~r !exp~2i~n2k!u!, ~21!

dA152S dhk~1!

dr
1
k

r
hk

~1!D sin~~k21!u!, ~22!

dA252S dhk~1!

dr
1
k

r
hk

~1!D cos~~k21!u!. ~23!

For the second set ofn functions, the fluctuations are of the form

df52ihg~r !hk
~2!~r !exp~2i~n2k!u!, ~24!
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dA15S dhk~2!

dr
1
k

r
hk

~2!D cos~~k21!u!, ~25!

dA252S dhk~2!

dr
1
k

r
hk

~2!D sin~~k21!u!. ~26!

IV. SYMMETRIES AND VORTEX SCATTERING

In the Abelian Higgs model, the zero modes can be used to study vortex scattering in the
context of the slow-motion approximation.10 The idea of this approximation is that for low ve-
locities, at each point in time the fieldsA1 , A2 , andf are given by one of the static solutions; i.e.,
as an ansatz for these functions one can choose the family of static solutions after making the
parameters time dependent.A0 is then determined from its equation of motion, which is of zero
order in t. Finally, with this ansatz the action is minimized.

For our purpose, this idea can be implemented as follows. Near the rotationally symmetric
vortices, we expand the fields

f i5f̂ i1si~ t !df i , Ai5Âi1s21 i~ t !dAi . ~27!

Here, f̂5f̂11if̂2 and Âi are the static solutions~7! and ~8!. df i and dAi are the fluctuations
~21!, ~22!, and~23! or ~24!, ~25!, and~26!. The equation, which has to be solved forA0 , is the first
~for n50! of the following three equations:

]m~~h22ufu2!2p23~~h22ufu2!Fmn1i~p21!D [mf*Dn]f!!1~p21!~h22ufu2!2p24

3~~~h22ufu2!Fmn1i~p21!D [mf*Dn]f!~f*Dmf1fDmf* !!2ip~2p21!

3~h22ufu2!2p22~fDnf*2f*Dnf!50. ~28!

@The other two equations~for n51,2! are the second-order equations of motion forA1 andA2 ,
which we will need later.#

The dynamics, as described by the functionssa(t), is now given by the Lagrange function

L ~p!5E
R2

~h22ufu2!2~p22!~2~~h22ufu2!F0i1i~p21!D [0f*Di ]f!2

14p~2p21!~h22ufu2!2uD0fu2!d2x. ~29!

The functionssa are found by solving the Euler–Lagrange equations of this Lagrange function.
Obviously, the slow-motion approximation still leaves us with very complicated equations to
solve. With our ansatz~27!, however, we only attempt to study the neighborhood of rotationally
symmetric vortices; i.e., we can neglect higher order terms in the functionssa. Even though we
are allowed to linearize insa, we were not able to solve Eq.~28! for n50.

In the Abelian Higgs model, the Gauss equation corresponds to Eq.~28! for n50. Following
the same steps we have just discussed for our models, in the Abelian Higgs model one finds that
A050, and that thesa are functions linear in time, in the neighborhood of the rotationally
symmetric vortices. For the modes with real smoothdf this impliesp/n scattering, if only times
shortly before and shortly after the vortices coincide are considered. We see that the slow-motion
approximation yields more results in the Abelian Higgs model. Another difference between the
models discussed here and the Abelian Higgs model is that in the Abelian Higgs model the validity
of the slow-motion approximation has been rigorously proven.11
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Instead of pursuing the slow-motion approximation any further, we will now formulate a
corresponding Cauchy problem and use the symmetries to study the full Euler–Lagrange equa-
tions of the Lagrangian~1!. We work with the vectorcT5(A0 ,] tA0 ,A1 ,] tA1 ,A2 ,] tA2 ,f,] tf),
and impose the following initial conditions:

c~0,x!T5~Â0,0,Â1 ,dA1 ,Â2 ,dA2 ,f̂,df!. ~30!

Heref̂ andÂi are the static solutions~7! and~8!. df anddAi are the fluctuations~21!, ~22!, and
~23! for k5n. We concentrate on this type of fluctuation for simplicity, and because they lead to
the interestingp/n symmetry in then vortex scattering process.Â0 is the solution of Eq.~28! for
n50 at timet50.

The equations of motion forf andAm we consider are the following second-order equations.
The second-order equation forA0 is ] ttA

01] i] tA
i50. ~This equation follows from the Lorentz

condition]mA
m50.! The second-order equations forA1 andA2 are given by Eq.~28! for n51,2.

The second-order equation forf is its Euler–Lagrange equation,

i]m~~h22ufu2!2p24@~h22ufu2!Fnm1i~p21!D [nf*Dm]f#~p21!Dnf*1p~2p21!

3~h22ufu2!2Dmf* )1 1
2~p22!~h22ufu2!2p23~@~h22ufu2!Fmn1i~p21!D [mf*Dn]f#2

14p~2p21!~h22ufu2!2uDmfu212~2p21!2~h22ufu2!4!f*2 1
2~h22ufu2!2~p22!

3~~~h22ufu2!Fmn1i~p21!D [mf*Dn]f!~Fmnf*2~p21!A[mDn]f* !22p~2p21!

3~h22ufu2!uDmfu2f*1ip~2p21!~h22ufu2!2AmDmf*22~2p21!2~h22ufu2!3f* !50.

~31!

The Lorentz condition and Eq.~28! for n50 are considered as constraints, which, by our choice of
initial data, are satisfied att50. In the Abelian Higgs model, it has been proven that the analogous
Cauchy problem has a unique solution, and that the constraints are propagated.7 In the following,
we will assume that in the present case a unique solution also exists, although a rigorous proof is
still missing. ~Because of the complexity of the equations, to rigorously prove existence of a
unique solution seems a very difficult task.!

For a given solutionc~t,x!, we define the functionsc i(t,x!5Mic(t,x( i )) for i51,2, where
x~1!5Sx with

S5S cos
2p

n
2sin

2p

n

sin
2p

n
cos

2p

n

D , ~32!

and wherex(2)
T 5(x1 ,2x2)

T. The matricesMi are defined as

M15S I 0 0 0

0 A B 0

0 2B A 0

0 0 0 I

D , I5S 1 0

0 1D , A5cos
2p

n
I , B5sin

2p

n
I ~33!

and
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M25S 2I 0 0 0

0 2I 0 0

0 0 I 0

0 0 0 C

D , CV5V* . ~34!

We can now show that, ifc~t,x! is a solution of the Cauchy problem, so arec1~t,x! and
c2~t,x!. ~To find the symmetries of the initial dataA0~0,x!, we have assumed that Eq.~28! for n50
has a unique smooth solution with asymptotic decay sufficient to satisfy the finite-energy condi-
tion.! The uniqueness of the solution of the Cauchy problem now implies that, actually,c, c1, and
c2 are all the same function. This, in turn, implies that functions likeufu2, Fi j

2 , or the energy
densityE are invariant under a 2p/n rotation, and under a reflection with respect to thex1 axis.
This leads to the following conclusion: If by using functions likeufu2, Fi j

2 , or E , there is a way of
defining the positions (x1

a(t),x2
a(t)), a51,...,n, of exactlyn separate vortices, thesen positions

must lie onn radial lines separated by an angle 2p/n with equal distance from the origin.~As in
Ref. 7, we can use the minima ofuFu2 to define these positions, near the rotationally symmetric
vortices.! Furthermore, one of these radial lines must be the positivex1 axis, or make an anglep/n
with the positivex1 axis. Any vortex that does not satisfy these conditions immediately leads to
2n21 other vortices, because of the symmetries of our solution. For continuous solutions, these
positions will change continuously such that att50 the n positions coincide, and after the
collision the vortices move again on the radial lines just described. Therefore, they can either go
back on the radial lines they came in on, or go back on radial lines shifted by an anglep/n. We
will study a further symmetry to show that the second case is realized.

The last transformation we study isx→Mx, whereM is the orthogonal matrix

M5S cos
p

n
2sin

p

n

sin
p

n
cos

p

n

D . ~35!

Under this transformation the initial data change as follows:

c~0,Mx!5M3c~0,x!,

with

M35S 2s 0 0 0

0 C 2D 0

0 D C 0

0 0 0 2s

D , s5S 1 0

0 21D , C5cos
p

n
s, D5sin

p

n
s. ~36!

@We have again assumed the uniqueness of the smooth finite-energy solution,A0~0,x!, of Eq. ~28!
for n50.# From the uniqueness of the solution of the Cauchy problem,c~2t,Mx!5M3c(t,x!
follows, and we see that the functionsufu2, Fi j

2 , andE are invariant under the transformation
~t,x!→~2t,Mx!. This establishesp/n scattering forn vortices.

V. CONCLUSIONS

The study of vortices in a hierarchy of generalized Abelian Higgs models, and the comparison
with the Abelian Higgs model was continued. In previous studies we had seen that the rotationally
symmetric generalized vortices are qualitatively similar to, but quantitatively different from the
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vortices. Here similar structures were found in the neighborhood of the rotationally symmetric
vortices. We found that the zero modes of the generalized vortices have the same angular depen-
dence as, but radial behavior different from that of the zero modes of the vortices in the Abelian
Higgs model.

The slow-motion approximation turned out to be of limited value.~Since the time-independent
solutions are not known explicitly even in the Abelian Higgs model, the slow-motion approxima-
tion is not very successful in this model either.! On the reasonable assumption that a certain
Cauchy problem has a unique solution, we were, however, able to study the symmetries of certain
solutions. Each solution describes a process wheren vortices approach and form one structure,
namely a rotationally symmetric vortex. From this structuren vortices emerge. The pattern the
vortices create for timet is the same as that for time2t, after ap/n rotation.
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A new time-domain spectral theory for radiation from a time-dependent source
distribution, is presented. The full spectral representation is based on a Radon
transform of the source distribution in the four-dimensional space-time domain and
consists of time-dependent plane waves that propagate in all space directions and
with all ~spectral! propagation speedsvk . This operation, termed theslant stack
transform, involves projection of the time-dependent source distribution along
planes normal to the spectral propagation direction and stacking them with a pro-
gressive delay corresponding to the spectral propagation speedvk along this direc-
tion. Outside the source domain, this three-fold representation may be contracted
into a two-fold representation consisting of time-dependent plane waves that satisfy
the spectral constraintvk5c with c being the medium velocity. In the two-fold
representation, however, the complete spectral representation involves both propa-
gating time-dependent plane waves and evanescent time-dependent plane waves.
We explore the separate role of these spectral constituents in establishing the causal
field, and determine the space-time regions where the field is described only by the
propagating spectrum. The spectral theory is presented here for scalar wave fields,
but it may readily be extended to vector electromagnetic fields. ©1996 American
Institute of Physics.@S0022-2488~96!01801-4#

I. INTRODUCTION

With the increase in the bandwidth of radiation and detection hardware there is a growing
interest, for various applications, in the radiation, propagation and diffraction of ultra-wideband,
short-pulse fields. Of particular interest is the problem of synthesizing source distributions for well
collimated short pulse fields, sometimes referred to as pulsed beams.1–6 Because of the broad
frequency band of these fields, the conventional use of frequency domain techniques is often less
efficient and physically less transparent than direct treatment in the space-time domain where the
fields are well localized. The general goal of the present research is thus toward developing a
time-domain theory for spectral analysis and synthesis of physically realizable pulsed fields and
sources. This includes representation theorems and processing tools as well as ‘‘time-domain
thinking.’’ Emphasis in this paper is placed on clarifying the physical role of various portions of
the plane wave spectra in generating the causal field in different space-time regions.

The time-dependent plane-wave realization of general short pulse fields have been considered
in Refs. 7–9. It has been shown in Ref. 7 how the time-dependent plane-wave spectrum can be
matched to a prescribed pulsed radiation pattern in the far zone, thereby determining the field at all
times and in particular the initial distribution att50. This representation, however, has addressed
only the initial field distributions after the source had shut-off~i.e., a source-free field!, but not the
time-dependent source problem which models physical antennas. As such, it has been restricted to
wave fields without evanescent spectrum, and in particular to electromagnetic ‘‘bullets’’ whose
radiation pattern vanishes identically outside a certain ‘‘radiation cone.’’ Strictly speaking, such
fields cannot be synthesized by finite support sources. Refs. 8–9, on the other hand, have ad-
dressed only planar source~aperture! realizations.

In the present paper we explore the time-dependent plane-wave spectral representation due to
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a general source distribution of finite support. As will be shown~Sec. VI!, in certain space-time
regions the field may be described only by the propagating spectrum, but such a representation is
not valid everywhere. A full description, in particular in the near zone, must include the time-
dependent evanescent field. We shall therefore explore the physical role of the various spectral
constituents in establishing the causal field. Some of the observations, concerning the space-time
regions where the evanescent spectrum does not contribute have been derived in Ref. 10 from
asymptotic considerations in the frequency domain. Here, however, all the results are obtained
directly from the time-domain spectral contributions.

Transient plane-wave representations have been used in the past mainly for the analysis of
scattering and diffraction of point-source excited pulsed fields. Several techniques have been
introduced for the evaluation of the resulting spectral integrals.11–16. Recent studies were con-
cerned with time-dependent spectral synthesis of collimated pulsed beam fields~space-time wave-
packets!, and with the scattering of such fields.17,18The present paper, on the other hand, presents
a general formulation for source distributions.

We consider the time-dependent plane wave representation for the field radiated by a pulsed
source distribution in a uniform medium with wave speedc. The field u satisfies the time-
dependent wave equation

S ¹22
1

c2
]2

]t2Du~r ,t !52q~r ,t ! ~1.1!

in a three-dimensional domainr5(x,y,z). It is assumed that the source distributionq(r ,t) is
confined in a volumeV bounded within a sphere of radiusR0 centered at the origins and that its
time history is a continuous pulse of durationT, namely

q~r ,t !Þ0 only if rPV and 0,t,T. ~1.2!

The solution of~1.1! is given by the well known retarded potential integral

u~r ,t !5E
V
d3r 8q@r 8,t2ur2r 8u/c#/4pur2r 8u. ~1.3!

Here, however, we shall explore alternative time-dependent plane wave representations for the
field.

The time-dependent spectral theory will be derived here only for scalar fields. An extension to
radiation of vector electromagnetic fields, expressed in the terminology of antenna theory is under
preparation.

The presentation starts, methodically, with the well known spectral representations of time-
harmonic fields~Sec. II!. In Sec. III we construct the full time-domain spectral representation
which is valid everywhere, including the source domain. It involves plane waves that propagate in
all directions and with all wave-speedsvk , 0,vk,`. This spectral representation is obtained via
a Radon transform of the source distribution in the four-dimensional (r ,t) domain. Physically, this
operation involves projection of the distribution along planes normal to the propagation direction
and stacking them with a progressive delay that corresponds to the spectral wave-speedvk , and it
is therefore termed theslant stack transform. Note that ‘‘plane-wave’’ constituents for whichvk

Þ c are not solutions of the wave equation.
For observation pointsoutsidethe source region the complete three-fold representation above

may be contracted into a representation involving only spectral constituents constraint by the
dispersion relationvk5c, i.e., lying on thelight cone ~Sec. IV!. This representation, however,
involves both propagating~homogeneous! and evanescent time-dependent plane-wave spectra.
The time-dependent evanescent spectrum is described most effectively by the analytic signal
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representation, obtained by extending the field solutions into the complex time domain. However,
we also present explicit expressions for the evaluation of the time-dependent evanescent field
directly from the real time-dependent data.

Next we explore the physical meaning of the time-dependent evanescent plane waves by
considering first the special case of a pulsed point-source~Sec. V!, and then extending the results
to distributed sources~Sec. VI!. It is shown that the contribution of the evanescent spectrum
vanishes identically after a certain timetE that may be determined a priori, so that fort.tE the
field is described only by a spectrum of propagating time-dependent plane waves. In certain
regions in spacetE occurs prior to the causal arrival timet0 , leaving the causal field att.t0
described only by the propagating spectrum. Prior tot0 , however, the propagating spectrum
generates non-vanishing non-causal contributions that are canceled only by the contributions of
the evanescent spectrum.

Motivated by these results we consider in Sec. VII some general properties of the field
solutions that are generated by a spectrum ofpropagating~homogeneous! time-dependent plane
waves. Specifically we explore the fields described by a conical spectral range with angleQ,
centered about the propagation direction to the observer. The analysis covers a wide range of
parameters, from a very narrow spectral range~small Q) up to Q5p where the plane waves
emerge from the source in all directions~a Wittaker-type expansion!. Again we determine the
space-time window wherein such spectral representation provides a faithful description of the
field.

II. TIME-HARMONIC REPRESENTATIONS

A. Full spectral representation

We start with a brief review of alternative plane wave representations for time-harmonic
solutions. We use an over caret to denote time-harmonic constituents with suppressed time-
dependence exp(2ivt). We introduce the 3D spatial spectrum of the time-harmonic source distri-
bution q̂(r ,v)

q̂̃~K ,v!5E d3rq̂~r ,v!e2 iK•r ~2.1!

and its inverse

q̂~r ,v!5
1

~2p!3
E d3Kq̂̃~K ,v!eiK•r, ~2.2!

whereK5(Kx ,Ky ,Kz). Applying the transform in~2.1! to the time-harmonic wave equation we
obtain the well-known result for the time-harmonic field

û~r ,v!5
1

~2p!3
E d3K

q̂̃~K ,v!

K22k2
eiK•r, ~2.3!

whereK5uK u andk5v/c.

B. Contracted (2D) spectral representation: Weyl representation

Expression~2.3! is valid both inside and outside the source region. For observation points
outside the source regionV, the 3D integral can be contracted to a 2D plane-wave integral.
Without loss of generality we shall contract the spectrum about thez-axis and therefore denote
r5(x,z) with x5(x1 ,x2) being the transverse coordinates. Foruzu.R0 we may evaluate theKz

integral in ~2.3! via Cauchy’s theorem, obtaining
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û~r ,v!5
1

~2p!2
E d2kxe

ikx•x6 ikzz
1

22ikz
q̂̃~K ,v! U

K5~kx ,6kz!

, ~2.4!

where upper and lower signs are forz.R0 andz,2R0 , respectively. To distinguish between the
full ~3D! and the contracted~2D! representations we have replaced the spectral coordinates
(Kx1

,Kx2
) by kx5(kx1,kx2). The longitudinal wavenumber is determined bykx via

kz5HAk22ukxu2, ukxu,k

iAukxu22k2, ukxu.k.
~2.5!

Unlike ~2.3!, Eq. ~2.4! expresses the field as a superposition of plane-wave solutions of the wave
equation. It consists, however, of both propagating and evanescent spectra: The propagating part

of the spectrum~ukxu,k! depends on the value ofq̂̃(K ) on the Ewald sphereuK u5k, while the

evanescent part (ukxu.k) depends on the analytic continuation ofq̂̃(K ) to
K5(kx ,6 iAukxu22k2) for z:R0, respectively.

The integral representation in~2.4! is valid only if uzu.R0 . If uzu,R0 , the contracted repre-
sentation is more complicated and involves both forward and backward propagating waves. We
shall not address this case here. If, however,uzu,R0 but r is located outside the sphereR0 , then
this difficulty can be circumvented by rotating the coordinates to a different contraction axis, say
z8 for which uz8u.R0 .

III. FULL SPECTRAL REPRESENTATION: 4D RADON TRANSFORM IN SPACE–TIME

The time-dependent field will be recovered here via an inverse Fourier transform to the time
domain. To simplify the analytic manipulations we shall use analytic signal representation. Among
other advantages, this formulation also enables a treatment of the propagating and the evanescent
spectra in the same analytical framework.

An analytic signalf
1

(t) corresponding to the real signalf (t) with frequency spectrumf̂ (v) is
defined by the analytic inverse Fourier transform

f
1

~ t !5
1

pE0
`

dve2 ivt f̂ ~v!, Im t<0. ~3.1!

This integral definition implies thatf
1

(t) is an analytic function in the lower half of the complex
t-plane. The physical signalf (t) for real t is obtained via

f ~ t !5Re f
1

~ t !, t real. ~3.2!

An alternative definition off
1

(t) directly from the real dataf (t) is given in~A7!. Other properties
are summarized in Appendix A.

A key feature in the time-dependent spectral representation is the use of frequency-normalized
spectral variables

k5K /k5~kx ,ky ,kz!. ~3.3!

Clearlyk has a purefrequency independentgeometrical interpretation in terms of the plane-wave

angle. We shall also denote convenientlyq̂̃(K ,v)uK5kk as q̂̃(k,v).
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The space–time spectrumq̃
1

(k,t) is defined now by

q̃
1

~k,t!5
1

pE0
`

dve2 ivt q̃
1

~k,v!, ~3.4!

wheret is the spectral time variable. Rewriting~2.1!–~2.2! in terms ofk, and applying~3.1! we
have

q̃
1

~k,t!5
1

pE0
`

dvE
V
d3rq̂~r ,v!e2 iv~t1k•r /c!, ~3.5!

q
1

~k,t !5
1

pE0
`

dv
k3

~2p!3
E d3k q̂̃~k,k!e2 iv~ t2k•r /c!. ~3.6!

Switching the order of integrations and performing thev integrations first ~justified for
Im t,t,0 and in the limit of realt,t) we obtain the analytic time-domain transform pair

q̃
1

~k,t!5E
V
d3rq

1

~r ,t1 k•r /c!, ~3.7!

q
1

~r ,t !5
2 i ] t

3

~2pc!3
E d3k q̃

1

~k,t2k•r /c! ~3.8!

where q
1

(r ,t) is the analytic signal corresponding to the real source functionq(r ,t) and
] t[]/]t.

Thereal signalequivalent of this analytic transform pair is obtained by taking its real part~see
~3.2!!. Noting that the (2 i ) is replaced byH ~see~A2!! we obtain

q̃~k,t!5E
V
d3rq~r ,t1k•r /c!, ~3.9!

q~r ,t !5H] t
3 1

~2pc!3
E d3kq̃~k,t2k•r /c!. ~3.10!

Note that the integration, the differentiation and the Hilbert transform operations in~3.10! can
commute.

The transformation-pair in~3.9!–~3.10! ~or, equivalently,~3.7!–~3.8!! is termed theslant stack
transform. To gain further insight we note that the operation in~3.9! can be cast in a two step
cascade

q̃~k,t!5E dsP k̂@q#~s,t1ks/c! ~3.11!

P k̂@q#~s,t!5E d2rq~r ,t!ur•k̂5s . ~3.12!

Equation ~3.12! is the projection of the time-dependent distributionq(r ,t) onto the direction
k̂[k/k wherek[uku. It is obtained by integratingq along the planer•k̂5s normal tok̂, with
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s being position along thek̂ axis. In ~3.11! these projections are stacked along this axis with a
progressive delay corresponding to the spectral propagation speed~see Fig. 1!

vk5c/k. ~3.13!

Note that spectral points on the 4D coneuku51 correspond to plane-wave data with propagation
speedc. In the frequency domain, they correspond to points on the Ewald sphereuK u5v/c.
Points lying off this cone describe faster or slower spectral components.

Equations~3.9!–~3.10! are identified as a Radon transform pair in the four dimensional
(r ,t)↔(k,t) domains. In fact, defining the 4D vectorx5(r ,ct) we find from ~B1! that

q̃~k,t!5c21A11k2q̌~p,p̂! ~3.14!

with q̌(p,p̂) being the conventional definition of the Radon transform and

p5ct/A11k2, p̂5~2k,1!/A11k2. ~3.15!

Equation~3.10! can be identified as the 4D inverse Radon transform~B18!.
The analytic time-dependent field is obtained now by rewriting~2.3! in terms of k and

transforming the result to the time domain. Following the same procedure as in~3.4!–~3.8! we
obtain

u
1

~r ,t !5
i ] t

~2p!3cE d3k
q̃
1

~k,t2k•r /c!

k221
, ~3.16!

hence the real field is found from the real spectral functionq̃(k,t) via

u~r ,t !52H] t
1

~2p!3cE d3k
q̃~k,t2 k•r /c!

k221
, ~3.17!

where the real spectral functionq̃ is defined in~3.9!. Equations~3.16!–~3.17! describe the field as
a superposition of time-dependent ‘‘plane waves’’ that propagate in all directions with the spectral
propagation speedvk of ~3.13!.

In the far radiation zone the time-dependent spectral integral~3.17! reduces asymptotically to
a point contribution from the spectral componentq̃ that propagates at the speed of lightvk5c in
the observation directionr̂ . Thus the field has the asymptotic form

FIG. 1. Schematization of the time-dependent plane-wave transform.
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u~r ,t !;
g~ r̂ ,t2r /c!

4pr
, r→`, ~3.18!

wherer5ur u, r̂5r /r and the time-dependent radiation pattern

g~ r̂ ,t2r /c!5q̃~k,t! U
k5 r̂ ,t5t2r /c

. ~3.19!

IV. CONTRACTED (WEYL-TYPE) REPRESENTATION: TIME-DEPENDENT
PROPAGATING AND EVANESCENT SPECTRA

Expression~3.17! describes the field as a 3D spectral superposition of time-dependent plane
waves that propagate in all directions, and with all propagation speeds 0,vk,` ~see~3.13!!. For
observation points outside the source region one may obtained a contracted representation involv-
ing only time-dependent plane waves with wave-speedc. This representation, however, includes
evanescent time-dependent plane waves.

For the contracted spectrum representation we replace the spectral wavenumberkx of ~2.4! by
the frequency-normalized spectral coordinates~cf. ~3.3!!

j5kx /k5~j1 ,j2!, ~4.1!

and

z5HA12uju2, uju,1

iAuju221, uju.1.
~4.2!

The use of analytic signals enables us to treat the contributions of the propagating (uju,1) and the
evanescent (uju.1) spectra in a single framework~see~4.13!–~4.14!!. However, to clarify the
mathematical details we shall first consider these contributions separately.

A. Time-dependent propagating spectrum

We rewrite the time-harmonic integral for the propagating spectrum in~2.4! as

ûP~r ,v!5
ik

2~2p!2
E

uju,1
d2j

1

z
q̂̃~K

6
,v!eik~j•x6zz!, ~4.3!

where upper and lower signs are forz.R0 and z,R0 , respectively,K
65k(j,6z), and from

~2.1!

q̂̃~K6,v!5E
V
d3r 8q̂~r 8,v!e2 ik~j•x86zz8!. ~4.4!

Henceforth we shall assume thatz.R0 and shall omit the6 sign.
The time-dependent field is obtained by applying~3.1! to ~4.3!. Substituting~4.4!, switching

the order of integrations and performing thev-integration first as in~3.5! and ~3.7! yields

u
1

p~r ,t !5
2] t

~2p!22cEuju,1
d2j

1

z
q̂̃~k,t2k•r /c! U

k5~j,z!

, ~4.5!

where q̃
1

is the analytic time-dependent spectral function as calculated from the time-dependent
source via~3.7!.
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The real field uP is obtained from the real part ofuP
1

. Thus, it can be calculated directly from

thereal spectral functionq̃ by usingq̃ instead ofq̃
1

in ~4.5!. Note also thatq̃ is found directly from
the real dataq(r ,t) via ~3.10!.

Expression~4.5! constitutes an angular spectrum of time-dependent plane waves as schema-
tized in Fig. 2~a!. The integrand defines time-dependent plane waves propagating with speedc
along the unit vector directions

ŝ5~j1 ,j2 ,z!5~sin a cosb,sin a sin b,cosa!, ~4.6!

where (a,b) are the polar and azimuthal angles with respect to thez-axis. Using these angle
coordinates, the real propagating spectrum integral simplifies into

uP~r ,t !5
2] t

~2p!22cE2p

p

dbE
0

p/2

da sin aq̃~ ŝ,t2 ŝ•r /c!. ~4.7!

FIG. 2. Time-dependent plane wave integral.~a! Propagating spectrum: Schematization of a single pulsed plane wave at a
fixed observation time.ŝ is the plane-wave direction,r is a typical observation point, anda0 is introduced in connection
with ~5.10!. ~b! Evanescent spectrum: Schematization of an evanescent pulsed plane wave at several observation points
along three axes parallel to thez-axis. The diagonal axes denote the time axis at each observation point. The evanescent
plane wave propagates in thex-direction and that the pulses decay and broaden asz grows.
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B. Time-dependent evanescent spectrum

The time-harmonic evanescent spectrum is given by~4.3! but with the integration limit now

replaced byuju.1. Here, however,z5 i uzu hence as follows from~4.5!, q̂̃(K6,v) now grows
exponentially asv→`. To transform this representation to the time domain we rewrite the
evanescent spectrum part of~2.4! in a regularized form

ûE~r ,v!5
ik

2~2p!2
E

uju.1
d2j

1

z
q̂̃0~K

1,v!eik@j•x1z~z2R0!# ~4.8!

with

q̂̃0~K
1,v!5E

V
d3r 8q̂~r 8,v!e2 ik@j•x81z~z82R0!#, ~4.9!

whereR0 is the support of the source and, as before, it is assumed thatz.R0 . Noting also that
z8,R0 for r 8 P V it follows that the exponents in~4.8! and~4.9! decay forz5 i uzu asv→`.

The time-dependent field is obtained now by applying~3.1! to ~4.8!–~4.9! and performing the
v integration first. We obtain

uE
1

~r ,t !5
2] t

~2p!22cEuju.1
d2j

1
z q̃0

1

@~j,z!,t2j•x/c2z~z2R0!/c# ~4.10!

with

q̃0
1

@~j,z!,t#5E
V
d3r 8q

1

@r 8,t1j•x8/c1z~z82R0!/c#, ~4.11!

whereq̃
1

0 is the analytic time-dependent spectrum ofq(r ,t) ~compare~3.7!!. Here, however, it is
calculated for an imaginary spectral variablez5 i uzu, and it is also space-shifted byR0 . Note that
sincez.R0 and z8,R0 , the time-arguments in the integrands of~4.10!–~4.11! have negative
imaginary parts as required by the analytic signal theory.

Expression~4.10! is identified as a superposition oftime-dependent evanescent plane waves.
This interpretation follows from the fact that analytic signals generally decay as their time-
argument goes deeper into the lower half of the complex plane~see~3.1!!. Sincez5 i uzu here, the

integrandq̃
1

in ~4.10! decays asz increases, as schematized in Fig. 2~b!. Thereal spectral delay in

the argument ofq̃
1

is given byj•x/c, hence the time-dependent evanescent waves ‘‘propagate’’
transversely in thej direction with propagation speedvE5c/uju,c ~Fig. 2~b!!.

The real field uE is obtained from~4.10! via ReuE
1

. Unlike ~4.5!, however, in~4.10! one

cannot replaceq̃0
1

by the real spectral functionq̃ since here the time-argument in the integrand is
complex even for realt.

It is therefore required in~4.11! to calculate the extension of the source signalq(r ,t) to the

analytic functionq
1

(r ,t) for complext. In certain cases,q
1

can be found analytically. Otherwise, it

should be calculated numerically. One route is by the analytic Fourier inversion~3.4! of q̂̃(k,v) to
complext with Im t<0. This route, however, is rather intricate since, givenq(r ,t), it requires the

calculationq̂(r ,v) for all r , then of q̂̃(k,v) and finally ofq
1

(r ,t) via ~3.4!.
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Alternatively, the extension of the real dataq(r ,t) to complext can be calculateddirectly in

the time domainby convolving the real signal with the analyticd
1

function as in~A7!. Via this

route, the analytic kernelq̃
1

0@(j,z),t# in ~4.11! can be calculated via thereal data integration

q̃
1

@~j,z!,t#5E
V
d3r 8E

2`

`

dt8q~r 8,t8!
1

p i

1

t1j•x8/c1z~z82R0!/c2t8
, Im t,0.

~4.12!

To recover the radiated field via~4.10!, this kernel should be calculated forz5 iAuju221 and for
complext: t5t2j•x/c2 i uzu(z2R0)/c wheret is the real observation time.

C. A unified representation

The analysis in~4.8!–~4.9! implies that the evanescent time-dependent plane-wave represen-
tation is valid only if the source is located entirely behind the reference plane. Choosing a
reference planez5z0 . R0 yields a representation that includes both the propagating and the
evanescent spectra. With respect to this plane we have

u
1

~r ,t !5
2] t

~2p!22cE2`

`

d2j
1
z q̃0

1

@~j,z!,t2j•x/c2z~z2z0!/c#, z.z0 , ~4.13!

with ~compare~4.5! and ~4.10!!

q̃0
1

@~j,z!,t#5E
V
d3r 8q

1

@r 8,t1j•x8/c1z~z82z0!/c#. ~4.14!

The unified representation in~4.13! now includesboth the propagating and the evanescent time-
dependent spectra. The real field is obtained by taking the real part of~4.13!. The details are
similar to those discussed in connection with~4.7! and ~4.10!.

V. SPECIAL CASE: POINT SOURCE

To clarify the causal properties of the time-dependent plane wave representation we shall
consider first the simplified problem of the time-dependent Green’s functionG(r ,t), due to a
pulsed point-source

q~r ,t !5 f ~ t !d~r !, ~5.1!

where it is assumed that the source historyf (t) vanishes fort,0.
We shall obtain closed-form expressions for the time-dependent propagating and evanescent

spectra that clarify their respective role in establishing the causal radiated field. These properties
will be used in Sec. VI to establish the causal properties of the time-dependent plane-wave
representations under more general conditions.

A. The spectral integrals

From ~3.7!, the plane-wave spectrum of the source is

q̃~k,t!5 f ~t!, ~5.2!

hence from~4.13!, the ~Weyl-type! spectral expansion for the time-dependent analytic Green’s
function is
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G
1

~r ,t !5
1

~2p!2
21
2c E

2`

`

d2j
1
z f 8

1

@ t2~j•x1zz!/c#, ~5.3!

where the prime denotes a derivative with respect to the argument. Expression~5.3! is a unified
expression that includes both the propagating and the evanescent time-dependent spectra.

As before, we explore separately the field contributionsGP andGE from the propagating and
evanescent spectral ranges, respectively. The propagating spectrum consists of pulsed plane waves
propagating in the unit vector directionsŝ in ~4.6!. Using the plane-wave unit vector directionŝ
and the spherical angles (a,b) of ~4.6!, the integral for the propagating spectrum becomes~see
~4.7!!

G
1

P~r ,t !5
21

~2p!22cE2p

p

dbE
0

p/2

da sin a f 8
1

@ t2 ŝ•r /c#, ~5.4!

and thereal field GP is given by the same expression withf
1

→ f . Sinceŝ•r<r for all ŝ, all the
pulsed plane waves in~5.4!, except for the one that propagates along the direction from the source
to r , arrive tor prior to the causal arrival timet05r /c. This yields a non-causal contribution that
is canceled out by the contribution of the pulsed evanescent spectrum. As we shall see below, in
certain space-regions the integrated non-causal contribution vanishes prior to the causal arrival
time t0 , so that it may be time-separated from the physical signal att.t0 .

The contribution of the evanescent spectrum is given by

G
1

E~r ,t !5
21

~2p!22cEuju.1
d2j

1
z f 8

1

@ t2~j•x1zz!/c#, ~5.5!

where herez5 i uzu. This expression may be described as an integration in the complexa plane
but we shall not pursue this formal extension here. The interpretation of~5.5! has been discussed
in connection with~4.10!. The implications of the observations noted there will be discussed later
on.

Expression~5.5! requires the calculation of the dual analytic functionf
1

for complex t. As
mentioned in connection with~4.12!, unlessf is known analytically, this extension should be done
numerically either by Fourier inversion off̂ (v) to complext via ~3.1! or directly in the time
domain as in~A7!. Substituting~A7! in ~5.5! we obtain an expression that involves processing
only of the real data f

GE~r ,t !5
1

~2p!3cEuju.1
d2j

1

uzu E2`

`

dt8 f 8~ t8!Re
1

t2t82j•x/c2 i uzuz/c
~5.6!

5
1

~2p!3cEuju.1
d2j

1

uzu E2`

`

dt8 f ~ t8!Re
21

~ t2t82j•x/c2 i uzuz/c!2
,

~5.7!

where in~5.7! the time-derivative has been commuted, yielding an expression in terms off rather
than f 8.

B. Evaluation of the propagating spectrum integral and the role of the evanescent
spectrum

To gain insight we consider first an observation point on thez-axis r5(0,0,z). Here
ŝ•r5z cosa and the integral in~5.4! is b-independent, giving
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GP~r ,t !5
21

4pcE0
p/2

da sin a f 8@ t2~z/r !cosa#.

Changing the integration variable tot5(z/c)cosa we obtain

GP~r ,t !5
1

4pzEz/c
0

dt f 8~ t2t!5 f ~ t2z/c!/4pz2 f ~ t !/4pz. ~5.8!

The first term in~5.8! is the actual fieldG on thez-axis, hence the remainder should be canceled
by the evanescent spectrum, i.e.,

GE~r ,t !5 f ~ t !/4pz. ~5.9!

Expression~5.9! will be re-derived in~5.21! by direct evaluation of integral~5.5! for GE .
Next, we consider general observation points off thez-axis. Letr5(r ,u,f) whereu andf

are the conventional spherical angles and, without loss of generality, letf50. To evaluate the
spectral integralGP it is convenient to use the spectral spherical angles (a0 ,b0) that are centered
about the observation directionr̂ : a0 andb0 are the plane wave polar and azimuthal angles with
respect to ther̂ -axis, with b050 on thef50 plane. One readily finds that the plane wave
direction ŝ in ~4.6! is described by

~j1 ,j2 ,z!5~cosu sin a0 cosb01sin u cosa0 , sin a0 sin b0 , cosu cosa0

2sin u sin a0 cosb0!. ~5.10!

The conditionz>0 that defines the propagating plane wave spectrum in~5.4! can therefore be
expressed as 0<a0<ā0(b0) where

ā0~b0!5tan21~cot u/cosb0!. ~5.11!

Using r• ŝ5r cosa0 we obtain from~5.4!

GP5
1

~2p!2
21

2c E0
2p

db0E
0

ā0~b0!
da0 sin a0 f 8@ t2~r /c!cosa0#. ~5.12!

Changing integration variable tot5(r /c)cosa0 we obtain, as in~5.8!

GP5
1

4pr

1

2pE0
2p

db0$ f @ t2r /c#2 f @ t2~r /c!cos ā0~b0!#%

5
f @ t2r /c#

4pr
2

1

4pr E0
2pdb0

2p
f @ t2~r /c!cos ā0~b0!#, ~5.13!

hence the evanescent spectrum contribution

GE5
1

4pr E0
2pdb0

2p
f @ t2~r /c!cos ā0~b0!#. ~5.14!

Noting that the maximum and minimum values ofā0(b0) are ā0(0)5p/22u and
ā0(p)5p/21u, respectively, one finds that the latest and earliest spectral delays in the integrand
~5.14! are 6x1 /c, respectively~recall that we assumed thatx250). It therefore follows that
GE Þ 0 only for2x1 /c,t,T1x1 /c. Generalizing this result for anyr we have

669Ehud Heyman: Time-dependent plane-wave spectrum representation

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



GEÞ0 only for 2r/c,t,T1r/c[tE , ~5.15!

where r5Ax121x2
2. Thus G5GP for all t.tE . Recalling that the physical arrival time is

t0[r /c, it follows that in the space region wheretE,t0 , i.e.,

r.r1cT ~5.16!

~regionP in Fig. 3!, the field is described only byGP for all t in the causal windowt.t0 ~in fact,
even fortE,t,t0). In regionE wherer,r1cT, the contribution ofGE does not vanish prior to
t0 hence the total field in the causal windowt.t0 consists of bothGP andGE .

C. Impulsive source: f (t )5d(t )

To further clarify the discussion above we consider the special casef (t)5d(t) in which the

spectral integrals may be evaluated in closed form. The analytic excitation here isf
1

(t)5d
1

(t)

whered
1

(t)5(p i t )21 is the analytic delta function~see~A5!!. Substituting in~5.5! and using the
evanescent spectrum coordinatesj5(j1 ,j2)5j(cosb, sinb) with j.1, we obtain

G
1

E5
1

~2p!3c

]

]tE1
`

djE
2p

p

db
j

Aj221

1

t2~jx1cosb1 izAj221!/c
, ~5.17!

where it is assumed, without loss of generality, thatx250. Evaluating theb integral yields

G
1

E5
1

~2p!3c

]

]tE1
`

dj
j

Aj221

2pc

@~ct!21z22j2r 222ictzAj221#1/2
,

where r5Ax121z2. This result may be generalized forx2 Þ 0 by replacingx1→r. Changing
integration variable toh5Aj221 we obtain

G
1

E5
1

~2p!2
]

]t E0
`

dh
1

AF

whereF5(ct)22r222ictzh2h2r 2, and then

FIG. 3. Space-time regions for the propagating and the evanescent spectral contributions. In regionE, the causal field~at
timest.r /c! is described by both the propagating and the evanescent spectra. In regionP, the field may be described only
by the propagating spectrum for all causal times.
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G
1

E5
1

~2p!2
i

r

]

]t
lnS ct2 ir 2h

z
1
r

z
AF D U

0

`

5
c

~2p!2
i

r

ctr/z2 ihr1AF

@ct2 ir 2h/z1~r /z!AF#AF
U
0

`

.

Since the limit at infinity vanishes we finally obtain

GE

1

5
1

~2p!2iz

t1~z/r !At22~r/c!2

t1~r /z!At22~r/c!2
1

At22~r/c!2
. ~5.18!

In all the expressions above, the square roots are defined with branch cuts in the upper half of the
complext plane, giving analytic function in the lower half of thet-plane. In particular in the final
expression~5.18! we use for realt,

At22~r/c!25H At22~r/c!2 t.r/c,

2 iA~r/c!22t2 2r/c,t,r/c,

2At22~r/c!2 t,2r/c,

where all the square roots on the right hand side are defined to be positive real. Taking the real part
of ~5.18!, using~V.3.!, we obtain for thereal evanescent field

GE5
1

~2p!2
z/c2

~r /c!22t2
1

A~r/c!22t2
~5.19!

for 2r/c,t,r/c, and zero elsewhere.
Expression~5.19! ~or ~5.18!! is our main result. Fort→r/c such thatut2r/cu!2r/c we

obtain from~5.18! and ~5.19!

GE

1

.
1

~2p!2i

1

zA2r/c

1

At2r/c
, hence GE.

1

~2p!2
1

zA2r/c

H~r/c2t !

Ar/c2t
~5.20!

whereH is the Heaviside function. As one observes, the peak fort→r/c increases asr→0.
Indeed, usingr50 in ~5.18! we obtainon the axis

GE

1

5
1

4pz
1

p i t 5
1

4pz d
1

~ t !, hence GE5
1

4pzd~ t !. ~5.21!

Expression~5.21! is in agreement with~5.9!, while ~5.19! explains the conclusion in~5.15! and the
discussion thereafter~see Fig. 3!.

Expression~5.19! is similar to Eq.~C.7a! in Ref. 15 up to a factor of 2, which is due to the fact
that in Ref. 15, the contribution of the evanescent spectrum has been calculated indirectly using
the ‘‘causality trick,’’ i.e., by adding the noncausal Green’s function to the causal Green’s function,
and calculating the combined response.

Plots ofGE and ofGP at a constant distancer51 from the source but for several observation
directions u are shown in Fig. 4. Their sum synthesizes the Green’s function
G5 f (t2r /c)/4pr . The input in this figure is a smoothedd pulse

f ~ t !5Re d
1

~ t2 i 12T!5
1
p

1
2T

t21~ 1
2 T!2

~5.22!
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with T52 1023 is the half-amplitude pulse length. The spectral contributionsGp andGE for this
excitation pulse are obtainedin closed formby substitutingt→t2 i 1

2 T in the analytic impulse
response~5.18! and then taking the real part.

D. Conical spectrum of propagating time-dependent plane-waves

In the previous section we explored, separately, the fields generated by the time-dependent
propagating and evanescent spectra. Here we consider the fields generated by a spectrum of
propagating time-dependent plane waves. Specifically, we shall consider a conical spectral range
of angleQ centered about the observation directionr̂ . From ~5.4! it is defined by

GP
Q5

21

~2p!22cE2p

p

db0E
0

Q

da0 sin a0 f 8@ t2~r /c!cosa0#, ~5.23!

where (a0 ,b0) are the plane wave angles with respect tor̂ ~see~5.10!!. Following the analysis in
~5.8! we find that

GP
Q5

f ~ t2r /c!

4pr
2
f ~ t2~r /c!cosQ!

4pr
. ~5.24!

The second term represents the effect of spectral truncation. It vanishes for~cf. ~5.15!!

t.tQ , tQ[T1~r /c!cosQ. ~5.25!

Following the same reasoning as in~5.16! we find that if

r ~12cosQ!.cT ~5.26!

thenG can be described byGP
Q for all t.t0[r /c. Condition~5.26! defines the narrowest angular

spectrum range needed in order to described correctly the signalG for causal timest.t0 . For
r@cT we find that

Q.cos21~12cT/r !.A2cT/r . ~5.27!

ReplacingT by v-1, this condition becomesQ;A1/kr which is the asymptotic expressison~for
kr@1! for the contributing spectral range in a conventional stationary point evaluation of the
time-harmonic plane-wave integral.

FIG. 4. Plots ofGE and ofGP at a constant distancer51 from the source and for several observation directionsu.
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The wave functionGP
Q is a superposition of propagating time-dependent plane waves and

therefore is also a source-free solution of the wave equation. Indeed one finds from~5.24! that for
r→0

GP
Q.

f 8~ t !@12cosQ#

4pc
5bounded. ~5.28!

An important special case of~5.23! is the Wittaker’s expansion wherein the propagating
plane-wave spectrum comprises all 4p directions~i.e.,Q5p). From ~5.24! we obtain

GP
p5

f ~ t2r /c!

4pr
2
f ~ t1r /c!

4pr
. ~5.29!

ThusGP
p is the Schwinger function, consisting of a sum of the causal and the non-causal~adjoint!

Green’s functions

GP
p5G2G†[G . ~5.30!

ClearlyGP
p is a source-free solution of the wave-equation and is regular atr.0 ~see also~5.28!!.

VI. ON THE ROLE OF THE EVANESCENT SPECTRUM IN THE CAUSAL FIELD

Having established the causal properties of the propagating and evanescent spectra of the
point-source configuration, we return now to the distributed source configurationq(r ,t). We shall
determine the space-time region wherein the total fieldu is describedonly by the propagating
spectrumuP in ~4.5!–~4.7!.

For a single point-source at the origin we have shown in~5.15! that uE vanishes for all
t.tE5T1r/c wherer5Ax121x2

2 is the transverse distance ofr from the point source. Thus for
the distributed source,uE vanishes for allt.tE where tE is determined by the pointr 8 in the
source domain with the greatest transverse distance fromr , i.e., tE5T1maxux2x8u . Recalling
that the source is bounded within a sphere of radiusR0 , it follows that

uE50 for t.tE[T1~r1R0!/c. ~6.1!

Since the causal signal arrives tor at t05(r2R0)/c, we find that the region in space wherein
tE,t0 is given by

r2r.2R01cT ~6.2!

~regionP in Fig. 3!. In this region the fieldu can be described only byuP for all causal times
t.t0 ~in fact for all t.tE). In regionE wherer2r,2R01cT the contribution ofuE does not
vanish within the causal time windowt.t0 , hence the field representation there consists of both
uP anduE . It should be emphasized that in any case,uP generates non-causal contributions that
are canceled byuE, such that the total field is causal. If the observer is in regionP, these
non-causal contributions vanish prior to the causal arrival timet0 .

VII. ON FIELDS DESCRIBED BY A SPECTRUM OF PROPAGATING PLANE WAVES

A. Conical spectrum of propagating time-dependent plane waves

As mentioned in the introduction, in certain cases it might be preferable to consider only a
portion of the propagating spectrum. In this section we consider the fielduP

Q generated by
a conical spectral range with angleQ, centered about the observation directionr̂ . Without loss of
generality we may assume here thatr is on thez-axis, hence from~4.7! we have
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uP
Q~r ,t !5

2] t
~2p!22cE2p

p

dbE
0

Q

da sin a q̃@ ŝ,t2 ŝ•r /c#. ~7.1!

Hereq̃( ŝ,t) may be any function of the plane-wave directionŝ(a,b) and of timet. ClearlyuP
Q is

a source-free solution of the time-dependent wave equation. However, to be specific we shall take
q̃ to be the time-dependent plane-wave spectrum ofq(r ,t) as obtained by the slant-stack transform
~3.9! ~restricted to the light cone whereonuku51). We shall then explore under what conditions
uP

Q represent the actual fieldu radiated byq(r ,t). It will also be assumed here that

Q.sin21~R0 /z!, ~7.2!

where sin21(R0 /z) is the polar angle formed by the tangent fromr to the ballR0 supporting the
source domainV. This implies thatall the observation directions from allr 8 P V to r are included
in the spectral range in~7.1!.

To explore the properties ofuP
Q , we shall express~7.1! as a Green’s function integral

uP
Q~r ,t !5E

V
d3r 8E dt8q~r 8,t8!GP

Q~r ,t,r 8,t8!, ~7.3!

where~see~5.4! and ~5.23!!

GP
Q~r ,t,r 8,t8!5

21

~2p!22cE2p

p

dbE
0

Q

da sin a d8@ t2t82 ŝ•~r2r 8!/c# ~7.4!

is the truncated spectrum part of the time-dependent Green’s function.
The expression forGP

Q(r ,t,r 8,t8) can be simplified by using the spherical spectral angles
(a0 ,b0) that are centered about the observation direction fromr 8 to r as in~5.10!, with b050 on
the plane that includes thez axis. In this coordinate system, the plane-wave direction
5(j1 ,j2 ,z) in the conventional (x1 ,x2 ,z) coordinate system is described by~5.10! whereu is
now the observation angle fromr 8 to r , i.e.,

u~r 8!5tan21@r8/~z2z8!#, r85Ax8121x82
2. ~7.5!

For a givenb0 , the spectrum is truncated at an angleā0(b0 ,r 8), which is the spectral angle
a0 at r 8 where the spectral directionŝ coincides with the spectral truncation conea5Q. From
~5.10! it is found by solving the equation

z52sin u~r 8!sin a0 cosb01cosu~r 8!cosa05cosQ, ~7.6!

whereu(r 8) is defined in~7.5!. In view of ~7.2!, this equation has a solutionā0.0.
Following an analysis similar to~5.11!–~5.13! we find that

GP
Q~r ,t,r 8,t8!5

21

~2p!22cE2p

p

db0E
0

ā0~b0 ,r8!
da0 sin a0 d8@ t2t82c21ur2r 8u cosa0#

~7.7!

and finally

GP
Q5

d@ t2t82ur2r 8u/c#

4pur2r 8u
2

1

4pur2r 8u E2p

p db0

2p
d@ t2t82c21ur2r 8u cos ā0~b0 ,r 8!#,

~7.8!

whereā0(b0 ,r 8) is defined in~7.6!.
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The first term in~7.8! is readily recognized as the time-dependent Green’s function. Thus the
spectral truncation effect is included in the second term which consists of a spectrum of pulsed
plane waves arriving atr prior to the causal arrival timeur2r 8u/c. The latestarrival is obtained
for the smallestā0(b0 ,r 8) i.e., whenb050. From~7.6! we obtain, as expected

ā0umin5Q2u~r 8!. ~7.9!

Thus the spectral truncation term in~7.8! vanishes fort2t8 . c21ur2r 8ucos(Q2u(r 8)).
Returning to~7.3! we may determine now the space-time region where the effect of the

spectral truncation vanishes so that the homogeneous wave solutionuPQ of ~7.1! represents the
source excited field u. We therefore look for r 8 P V that maximizes
t[c21ur2r 8ucos(Q2u(r 8)). Recalling thatr is on thez-axis and that tanu(r 8)5r8/(z2z8) we
obtain ct5(z2z8)cosQ1r8 sinQ5zcosQ2r8 cos(Q1u8) where in the second expression
(r 8,u8) denote the polar coordinates ofr 8. The maximum occurs at (r 8,u8)5(R0 ,p2Q), where
ct5z cosQ1R0. It therefore follows thatthe effect of the spectral truncation on the total solution
vanishes for

t.t
Q
[T1~z cosQ1R0!/c. ~7.10!

Next, the region wherein the effect of the spectral truncation vanishes before the causal arrival at
t05(z2R0)/c is found fromt

Q
,t0 , giving

z.~cT12R0!/~12cosQ!. ~7.11!

This condition determines the space region wherein the truncated spectral integraluP
Q of ~7.1!

describes the causal part of the actual radiated fieldu. We finally note that if the observation point
is not situated on thez axis thenz in ~7.10!–~7.11! should be replaced byr .

Special case: The far zone spectral cone.The narrowest spectral cone of propagating time-
dependent plane waves needed in order to synthesize the total causal field at a given remote
observation point is found from the largez approximation of~7.11!, giving

Q.A2~cT12R0!/z→0. ~7.12!

Special case:Q5p/2. In this case,~7.11! is a special case of the result in~6.2!, as one may
readily be verified by settingr50 in ~6.2!.

B. Wittaker’s expansion: Q5p

Here we consider the field generated by a spectrum of propagating time-dependent plane-
waves propagating in all directions. From~7.1!, it is given by

uP
p~r ,t !5

2] t
~2p!22cE2p

p

dbE
0

p

da sin a q̃@ ŝ,t2 ŝ•r /c#, ~7.13!

where, as mentioned after~7.1!, q̃ may be any proper function of (ŝ,t), but is taken here to be the
time-dependent plane-wave spectrum ofq(r ,t) as obtained by theslant stack transform~3.9!.
Clearly, uP

p is a source-free solution hence it does not describe the actual fieldu radiated by
q(r ,t). To determine the relation between the two we note from~7.3! that uP

p can also be ex-
pressed as

uP
p~r ,t !5E

V
d3r 8E dt8q~r 8,t8!G ~r ,t,r 8,t8!, ~7.14!
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whereG[GP
p is the Schwinger function as given by~5.29!–~5.30! with f→d. Its spectral repre-

sentation is given by~7.4! with Q→p.
It follows from ~7.14! thatuP

p describes the actual radiated fieldu for all t.T.10 Furthermore,
the space-region whereinuP

p5u describes the total causal field~for t.t05(r2R0)/c) is found by
settingQ5p in ~7.11!, giving

r.cT/21R0 . ~7.15!

In view of ~7.14!, this condition is identified as a requirement that the contributions of the non-
causal Green’s function~which vanish fort.T2(r2R0)/c) will vanish prior to the causal arrival
time of the actual field att05(r2R0)/c.

VIII. CONCLUSIONS

We presented a new time-domain spectral theory for radiation from a time-dependent source
distribution. In a companion paper~Ref. 19! we consider alternative representation strategies using
pulsed multipoles, and determine their relation to the present time-dependent plane-wave repre-
sentations. The theory has been derived here only for scalar fields: An extension to vector elec-
tromagnetic fields, expressed in the terminology of antenna theory is under preparation.

The main results and expressions are summarized below:

~1! The spectral theory is based on thetime-dependent plane-wave spectrumof the source
q̃(k,t), calculated via theslant stack transform~3.9! of the time-dependent source distribution
q(r ,t). This operation involves (i ) projection of q(r ,t) along planes normal to the spectral
propagation direction~see ~3.11!! and (i i ) stacking the projections with a progressive delay
corresponding to the spectral propagation speedvk along this direction~see~3.12!!. The plane-
wave direction and its speedvk are determined byk ~see~3.13!!. k5(k1 ,k2 ,k3) is a frequency-
normalized wavenumber as defined in~3.3!.

The slant-stack transform q˜ (k,t) is related to a Radon transform ofq(r ,t) in the four-
dimensional space-time domain. The relation to the conventional definition of the Radon trans-
form q̌ ~see Appendix B! is given in ~3.14!–~3.15!.

~2! The full ~three-fold! spectral representation in~3.17! consists of a spectrum of ‘‘time depen-
dent plane waves’’q̃(k,t) that propagate in all space directions and with all~spectral! propagation
speedsvk . Note that only those ‘‘plane waves’’ whose propagation speedvk equalsc ~i.e., those
on the light coneuku51) are solutions of the wave equation.

~3! The time-dependent radiation patterng( r̂ ,t) is described by the value ofq̃(k,t) on the
‘‘light-cone’’ uku51 ~see~3.18!!.

~4! Outside the source domain, the field can be described by a contracted~two-fold! representa-
tion consisting of time-dependent plane wavesq̃(k,t)u u ku51 that satisfy the spectral constraint
vk5c. Here, however, the complete spectral representation involves bothpropagatingandeva-
nescenttime-dependent plane waves. Their separate contributions,uP anduE are given by~4.5!–
~4.7! and by the real part of~4.10!, respectively. The integrand in~4.10! requires an analytic
extension of the real data to complex times as performed in~4.12!.

The analytic signal representation also enables the unified formulation~4.13! that incorporates
both the propagating and the evanescent time-dependent spectra in a single integral.

In the contracted spectral integrals above,j is a frequency normalized transverse wavenumber
as defined in~4.1!.

~5! To clarify the physical meaning of the time-dependent evanescent spectrum we have explored
first the special case of a pulsed point-source~Sec. V!, and then extended the results to distributed
sources~Sec. VI!.
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In the point-source case, the analytic time-dependent Green’s functionG
1

is given by the
Weyl-type integral~5.3!. The separate contributions of the time-dependent propagating and eva-
nescent spectra,GP andGE , are given, respectively by~5.4! and ~5.5!. The latter involves an
extension of the real source function to complex times~see~5.6!–~5.7!!. It has been established
that theGE vanishes identically after a timetE in ~5.15!. Furthermore, in certain regions in space
this contribution vanishesbeforethe causal timet0 ~i.e., tE,t0), hence the causal field there may
be described only by the time-dependent propagating spectrum~see~5.16!!.

Finally, the time-dependent propagating and the evanescent spectra has been evaluated explic-
itly for the special case of animpulsive point-source~see ~5.19!!. The results agree with the
general observations mentioned above.

~6! The point-source results were extended to the case of a general source distribution. We have
determined in~6.1! the time tE after which the contribution of the time-dependent evanescent
spectrum vanishes, and in~6.2! the region in space wherein the causal part of the field may be
described only by the propagating spectrum.

~7! Finally, we explored the properties of the fieldsuP
Q(r ,t) obtained by truncating the spectrum

of the time-dependent propagating plane waves in a conical range of angleQ. The special case
Q5p is the time-domain Wittaker’s expansion. These fields are non-causal, source-free solutions
of the wave equation. In~7.3! and~7.8!, they have been described as a sum of the actual radiating
field and a spectral truncation term. The latter vanishes identically after the timet

Q
in ~7.10!.

Consequently we determined the space-time regions wherein the truncated representation gives the
correct solution to the actual field~~7.10!–~7.11!!. Finally, the special case of the time-domain
Wittaker’s expansion has been considered as examples for the general spectral conditions.
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APPENDIX A: ANALYTIC SIGNALS

Analytic signals are defined by the positive frequency inverse Fourier transform in~3.1! ~see

~A7! for an alternative definition!. This integral definition implies thatf
1

(t) is an analytic function
in the lower half of the complext-plane. Itsreal t limit is related to thereal signal f (t) via

f
1

~ t !5 f ~ t !1 iH f ~ t !, t real, ~A1!

whereH denotes the Hilbert transform

H f ~ t ![
2P

pt
^ f ~ t !5

21

p E
2`

`

dt8P
f ~ t8!

t82t
, ~A2!

P denotes a principal value and̂ is a convolution operator. From~A2!, the real signalf (t) for

real t is recovered viaf (t)5Re f
1

(t).
The analytic signals possess the following convolution property: Ifĥ(v)5 f̂ (v)ĝ(v) then

h
1

~ t !5
1
2 f

1

^ g
1

[
1
2E

2`

`

dt8 f
1

~ t2t8!g
1

~ t8!, ~A3!
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where Imt<0 and thet8-integration can be carried along any contour with 0>Im t8>Im t. If
one of the signals, sayg, is known only in its real form for realt then

h
1

~ t !5 f
1

^g[E
2`

`

dt8 f
1

~ t2t8!g~ t8!, ~A4!

where here Imt<0 but the integration is carried along the realt8 axis.
A special case of these relations is provided by the analyticd function defined by

d
1

~ t !5 H1/p i t , Im t,0,
d~ t !1P /p it, Im t50, ~A5!

where the second expression is the distributional limit of the first one for realt. Via Cauchy
theorem one readily verifies the identity

f
1

~ t !5
1
2 f

1

^ d
1

5
1
2p i E

2`

`

dt8
f
1

~ t8!

t2t8
. ~A6!

Finally, from ~A4! and~A6! the analytic functionf
1

(t) for Im t<0 can be calculated from the real
function f (t) for real t via

f
1

~ t !5 f ^ d
1

5
1
p i E

2`

`

dt8
f ~ t8!

t2t8
, ~A7!

where the integration is carried out along the realt8 axis.

APPENDIX B: ANALYTIC SIGNAL REPRESENTATION OF THE RADON TRANSFORM

The time-dependent spectral theory in this paper can be structured as a Radon transform in 4D
space-time domain. Since a unified time-domain theory involves analytic signals in order to
accommodate the evanescent spectrum~see Sections IV B and IV C!, we summarize below an
analytic signal representation of the Radon transform theory.21

1. Definition in the configuration space

Let f (x), with x P Rn, be a real function inL2 . Its Radon transform is defined by20

f̌ ~p,p̂!5E dnx f~x!d~p2p̂•x!5E dn21x f~x! U
p̂•x5p

, ~B1!

wherep P R while p̂ P Rn is a unit vectorup̂u51. The analytic Radon transform is defined by

f̌
1

~p,p̂!5E dnx f~x!d
1

~p2p̂•x!, Im p<0 , ~B2!

where we usedd
1

(p)51/p ip ~see ~A5!!. Henceforth we use the over plus symbol to define
analytic functions ofp in the l.h.p. Note that unlike the definition of the real Radon transform, the
integral in ~B2! cannot be reduced into an (n21) dimensional integral over the planep̂•x5p
since herep is complex. For realp, however, we obtain via the distributional limit in~A5!

f̌
1

~p,p̂!5 f̌ ~p,p̂!1 iHpf̌ ~p,p̂!, Im p50, ~B3!
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whereHp is the Hilbert transform operator~see~A2!!

Hpf̌ ~p,p̂!5
21

p E
2`

`

dp8P
f̌ ~p8,p̂!

p82p
. ~B4!

The definition of the analytic Radon transform implies the symmetry property

@ f̌
1

~p,p̂!#*5 f̌
1

~2p* ,2p̂!, Im p<0. ~B5!

~Note that2p* is symmetric top with respect to the imaginary axis in the l.h.p.! For realp we
obtain the expected result

f̌ ~p,p̂!5 f̌ ~2p,2p̂! ~B6!

and also:Hpf̌ (p,p̂)52Hpf̌ (2p,2p̂).

2. Relation to the Fourier transform: The analytic Fourier slice theorem

The Fourier spectrum off is defined by

f̃ ~X!5E dnx f~x!eiX•x, XPRn. ~B7!

To sow the relation off̃ and f̌
1

we replace thed
1

function in~B2! by its integral definition, valid for
Im p<0, obtaining

f̌
1

~p,p̂!5E dnx f~x!
1

pE0
`

dX e2 iX~p2p̂•x!, Im p<0. ~B8!

Switching the orders of integrations~legitimate for Imp<0) we note that thex-integral yields

f̃ (X5Xp̂). Thus f̌
1

(p,p̂) and f̃ (X)[ f̃ (X,p̂) are related via the 1D analytic Fourier transform

f̌
1

~p,p̂!5
1

pE0
`

dX f̃~X,p̂!e2 iXp, Im p<0 ~B9!

and consequently

f̃ ~X,p̂!5
1

2E2`

`

dp f̌
1

~p,p̂!eipX. ~B10!

The integration in~B10! may be performed along any path in the lower half of the complex

p-plane but is taken, conveniently, along the real axis. Note also that sincef̌
1

is analytic in the
l.h.p., thenf̃ (X,p̂)50 for X,0.

The distributional limit counterpart of~B9!–~B10! for real p is found now by noting from

~B3! that for realp, f̌5 1
2( f̌

1

1 f̌
1

* ), and from~B9! that f̌
1

* (p,p̂)↔ f̃ * (X,2p̂), so that

f̌ ~p,p̂!5
1

2pE0
`

dX$ f̃ ~X,p̂!e2 iXp1 f̃ ~X,2p̂!eiXp%. ~B11!
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To simplify this expression we extend the definition ofX to negative values viaX5Xp̂5(2X)
3(2p̂). Consequentlyf̃ (X,2p̂)5 f̃ (2X,p̂) and we finally obtain

f̌ ~p,p̂!5
1

2pE2`

`

dX f̃~X,p̂!e2 iXp, ~B12!

and

f̃ ~X,p̂!5E
2`

`

dp f̌~p,p̂!eipX. ~B13!

The transform pair in~B12!–~B13! is called the ‘‘Fourier slice theorem’’ since it relates a slice in
theX-domain to the projections off transverse to the directionp̂. Equations~B9!–~B10! are the
analytic counterparts of this theorem.

3. Analytic inversion

We start with the inverse of~B7!

f ~x!5
1

~2p!n
E dnX f̃~X!e2 iX•x ~B14!

5Re
2

~2p!n
E

V/2
dn21p̂E

0

`

dXXn21 f̃ ~X,p̂!e2 iXp̂•x ~B15!

where in~B15! we usedX5Xp̂ as before, and alsof̃ (X,p̂)5 f̃ * (X,2p̂) ~since f is real!. Conse-
quently thep̂-integration is performed over the ‘‘half sphere ’’ domainV/2 consisting of all
directionsp̂ but excluding the reverse directions2p̂. TheX integral may be evaluated via the
Fourier slice theorem~B9!, using alsoX↔ i ]p , giving

f ~x!5Re
i n21

~2p!n21E
V/2

dn21p̂~]p
n21 f̌

1

~p,p̂!! U
p5p̂•x

. ~B16!

This expression can be rewritten in terms of real functions. Taking the real part and using~B3! for

f̌
1

with real p, we obtain the inversion formulas20

f ~x!5
~2 !~n21!/2

~2p!n21 E
V/2

dn21p̂~]p
n21 f̌ ~p,p̂!! U

p5p̂•x
, n odd ~B17!

f ~x!5
~2 !n/2

~2p!n21E
V/2

dn21p̂~]p
n21

Hpf̌ ~p,p̂!! U
p5p̂•x

, n even. ~B18!
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The radiation from a pulsed source distribution is expressed directly in the time-
domain using a sum of time-dependent spherical~multipole! wave functions. Two
alternative expressions for the time-dependent multipole moments~the excitation
pulses! are derived. It is shown how they are related to the time-dependent plane-
wave spectrum of the source~obtained via a Radon transform of the source distri-
bution in the four space-time coordinates!. Furthermore, the time-dependent mul-
tipole moments, and thereby the total time-dependent field outside the source
region, are completely determined by the time-dependent radiation pattern. The
series convergence is addressed by showing that the high order multipole moments
tend to the quasistatic extension of the static multipole moments. This also puts an
upper limit on the spatial resolution that can be achieved by a source distribution
with specified size and pulse length. ©1996 American Institute of Physics.
@S0022-2488~96!01901-0#

I. INTRODUCTION

With the increased bandwidth of radiation and detection systems there is a growing interest in
the analysis of radiation propagation and scattering of short-pulse fields. Because of the wide band
of these fields, solution techniques directly in the time-domain, where the fields are localized, are
preferable over the more conventional approach of transforming the frequency-domain solutions
into the time domain. A recent review of short pulse systems, applications, and of analysis tech-
niques may be found in Ref. 1.

One of most significant characteristics of time-dependent fields iscausality. Solution tech-
niques that are structured around causality are therefore preferable. One example of an a priori
causal representation is the time-dependent Green’s function integral i.e., the retarded potential
superposition integral~see e.g., Ref. 2!. An alternative representation is the time-dependent plane-
wave spectral integral.3 However, because of their global nature, the individual pulsed plane
waves are non-causal, i.e., each one may contribute at the observer prior to the physical~causal!
arrival time of the field. These non-causal contributions cancel each other in the complete spectral
superposition, thereby generating the correct causal field. Thus, if the causal arrival time is known
a priori, for example via ray tracing, then these non-causal spectral constituents can be rejected a
priori for causal observation windows, yielding a simplified spectral representation. This idea has
been explored in Ref. 3 where the separate role of selected spectral constituents in establishing the
causal radiated field has been determined directly in the time domain~see also Refs. 4 and 5!.

In this paper we consider a different set of basic function, namely the time-dependent multi-
poles. A major advantage of this set for radiation problems is that these basis functions are
spherically outgoing and therefore a priori causal. These functions are the time-domain counter-
parts of the time-harmonic multipoles which were used extensively in direct and inverse scattering
and in spectral theory~see e.g., Refs. 6, 7, 8–10, and 11, respectively!, as well as in establishing
fundamental limits in antenna theory.12–14
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Time-dependent multipole expansions have already been suggested before.15,16 In Sec. III C
we rederive this expansion directly from its frequency domain counterpart. In Sec. III B we
introduce an alternative new expansion, which is more closely related to the time-dependent
plane-wave spectrum representation of Ref. 3.

The time-dependent multipole expansion will be developed for the prototype problem of
pulsed radiation in a uniform 3-dimensional mediumr5(x,y,z), where the fieldu(r ,t) satisfies
the wave equation

S ¹22
1

c2
]2

]t2Du~r ,t !52q~r ,t !. ~1.1!

It is assumed that the source distributionq(r ,t) occupies a volumeV bounded by a sphere of
radiusR0 about the origin, and thatq(r ,t) Þ 0 only for 0,t,T.

The time-dependent multipole wave-functions can be extended analytically so that they de-
scribe radiation from multipoles located in a complex coordinate space.17 The resulting fields are
highly collimated pulsed beams~space-time wavepackets! that propagate along ray trajectories.18

Such basis functions are useful for efficient expansion of pulsed highly collimated source
distributions.17

II. TIME-HARMONIC FIELDS: SPHERICAL WAVE EXPANSION

With a suppressed time-dependencee2 ivt, the spherical wave functions of order (l ,m) with
l50,1, . . . andm50,61, . . .6 l are defined by

ŵ l ,m~r !5~4p! j l~kr !Yl ,m~ r̂ !, ~2.1!

ĉ l ,m~r !5~4p!21ikhl
~1!~kr !Yl ,m~ r̂ !. ~2.2!

Here r5(r ,u,f) is the space coordinate,r̂5(u,f) is a unit vector in the direction ofr̂ , j l and
hl
(1) are the spherical Bessel functions of orderl andYl ,m are the spherical harmonics~we use the
standard definition of Ref. 6; see Appendix A!. Here and henceforth a caret over a wave constitu-
ents denotes the time harmonic amplitude, while a caret over a vector denotes a unit vector.

The 3D Green’s function

Ĝ~r ,r 8!5eikur2r8u/4pur2r 8u ~2.3!

can be expressed now as

Ĝ~r ,r 8!5(
l ,m

ik j l~kr,
!hl

~1!~kr
.

!Yl ,m~ r̂ !Yl ,m* ~ r̂ 8!, ~2.4!

wherer
,
and r

.
denote, respectively, the lesser and greater betweenr and r 8 and the asterisks

denotes a complex conjugate. Denoting byq̂(r ) the time-harmonic counterpart of the source
distribution in ~1.1!, the radiated field can be expressed as

û~r !5E
V
d3r 8Ĝ~r ,r 8!q̂~r 8!. ~2.5!

Outside the sphereR0 that enclosesV, û(r ) can therefore be expressed as a series of spherical~or
multipole! waves

û~r !5(
l ,m

q̂l ,mĉ l ,m~r !, r.R0 , ~2.6!
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where the ‘‘multipole moments’’ are found from

q̂l ,m5E
V
d3r 8ŵ l ,m* ~r 8!q̂~r 8!. ~2.7!

An alternative expression for the multipole moments is obtained if we use the plane-wave expan-
sion of ŵ l ,m(r 8)

ŵ l ,m~r !5E
4p
d2r̂ 8~2 i ! lYl ,m~ r̂ 8!eik r̂8•r ~2.8!

or its inverse representation, i.e., the multiple expansion of a plane-wave

eik r̂8•r5(
l ,m

i l ŵ l ,m~r !Yl ,m* ~ r̂ 8!, ~2.9!

where in~2.8! d2r̂ 85sinu8du8df8 and the integration comprises all 4p spherical directions. Sub-
stituting ~2.8! into ~2.7! and inverting order of integrations we obtain

q̂l ,m5E
4p
d2r̂ 8i lYl ,m* ~ r̂ 8! q̂̃~K !uK5kr̂8, ~2.10!

where

q̂̃~K !5E
V
d3r 8q̂~r 8!e2 iK•r8 ~2.11!

is the 3D Fourier transform ofq̂(r ). From~2.10!, the multipole moments are the coefficients in the

spherical harmonic expansion of the spatial spectrumq̂̃(K ) on the Ewald sphereuK u5k.
In the far zone the radiated field has the form

û~r !ur→`5
eikr

4pr
ĝ~ r̂ ! ~2.12!

where the ‘‘radiation pattern’’ in the directionr̂ is given by

ĝ~ r̂ !5 q̂̃~kr̂ ! ~2.13!

5(
l ,m

q̂l ,m~2 i ! lYl ,m~ r̂ !. ~2.14!

Equation ~2.13! is obtained directly from ~2.5! and ~2.11! by using
Ĝ(r ,r 8);(eikr /4pr )e2 ik r̂•r8. It states that the far field pattern is determined by the value of

q̂̃(K ) on the Ewald sphereuK u5k. In view of ~2.10!, expression~2.14! is simply a spherical
harmonic expansion of ~2.13!. Alternatively ~2.14! follows from ~2.6! using hl

(1)

3(kr);(2 i ) l(eikr / ikr ) as r→`.
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III. TIME-DEPENDENT MULTIPOLE EXPANSION

The time-dependent field will be recovered via an inverse Fourier transform to the time-
domain. We shall use analytic signal representation that simplifies the manipulations, but we shall
also express the final results explicitly in terms of real signals.

An analytic signalf
1

(t) corresponding to the real signalf (t) with frequency spectrumf̂ (v) is
defined by the positive frequency inverse Fourier transform

f
1

~ t !5
1

pE0
`

dve2 ivt f̂ ~v!, Im t <0. ~3.1!

This integral definition implies thatf
1

(t) is an analytic function in the lower half of the complex
t-plane. Itsreal t limit is related to thereal signal f (t) via

f
1

~ t !5 f ~ t !1 iH f ~ t !, t real, ~3.2!

whereH is the Hilbert transform

H f ~ t ![
21

p E
2`

`

dt8P
f ~ t8!

t82t
~3.3!

andP denotes a principal value. The physical signalf (t) ~for real t! is therefore recovered via

f (t)5Ref
1

(t).

A. Time-dependent multipole wave functions

The analytic time-dependent multipole wave functions of order (l ,m) with l50,1, . . . and
m50,61, . . .6 l are defined via

c
1

l ,m~r ,t !5
1

pE0
`

dve2 ivti l ĉ l ,m~r ! f̂ ~v! ~3.4!

whereĉ l ,m are defined in~2.2! and f̂ (v) is a rather general pulse spectrum. Substituting@Ref. 19,
Eq. ~10.1.8–9!#

hl
~1!~z!5

eiz

iz
~2 i ! l (

n50

l
~ l1n!!

n! ~ l2n!!
~22iz!2n, ~3.5!

and inverting the order of integration and summation we get

c
1

l ,m~r ,t !5~4pr !21Yl ,m~ r̂ !L l f
1

~t!, t5t2r /c, ~3.6!

where

L l5 (
n50

l
~ l1n!!

n! ~ l2n!! S c2r D
n

]t
2n ~3.7!

and]t
2n[(]/]t)2n denotes annth order integration. The procedure above is justified analytically

for Im t,0 and in the limit of realt. It is also assumed thef (t) is l times integrable.
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The real multipole wave functions are given now by

c l ,m
~ j ! ~r ,t !5~4pr !21Sl ,m

~ j ! ~ r̂ !L l f ~t!, ~3.8!

whereSl ,m
( j ) are the real spherical harmonics in~A6! with l50,1, . . . , m50,1, . . .l and j51, 2.

The relation between the analytic setc
1

l ,m with 2 l<m< l and the real setc l ,m
( j ) with 0<m< l , is

found by substituting in~3.6! Yl ,m5Sl ,m
(1)1 iSl ,m

(2) for m>0 and using the symmetry relation~A5!

for m,0. Using also the realt relation~see~3.2!! f
1

5 f1 iH f we obtain

c
1

l ,m5c l ,m
~1!2Hc l ,m

~2!1 i @Hc l ,m
~1!1c l ,m

~2! #, ~3.9a!

~21!mc
1

l ,2m5c l ,m
~1!1Hc l ,m

~2!1 i @Hc l ,m
~1!2c l ,m

~2! #, ~3.9b!

wherem>0 here andHc l ,m
( j ) (r ,t) are given by~3.8! with f (t)→H f (t).

B. Multipole wave expansion based on time-dependent plane-wave representation

Applying ~3.1! to ~2.6!, using~3.4! and~3.6! we find that the analytic time-dependent field at
r.R0 can be expressed as a sum of multipole wave functions

u
1

~r ,t !5(
l50

`

(
m52 l

l

~4pr !21Yl ,m~ r̂ !L l q
1

l ,m~t!, ~3.10!

where the operationL l is defined in~3.7! and the time-dependent multipole moments are related
to the time-harmonic ones in~2.6! via

q
1

l ,m~t!5
1

pE0
`

dv~2 i ! l q̂l ,me
2 ivt. ~3.11!

Using ~2.10!–~2.11!, we find a time-domain expression for the multipole moments

q
1

l ,m~t!5E
4p
d2r̂ 8Yl ,m* ~ r̂ 8! q̃

1

~ r̂ 8,t!, ~3.12!

where

q̃
1

~ r̂ 8,t!5
1

pE0
`

dve2 ivtq̃~kr̂ 8!5
1

pE0
`

dvE
V
d3rq̂~r !e2 iv~t1 r̂8•r /c!.

Inverting the order of integrations~legitimate for Imt,0 and in the limit of realt) and evaluating
thev integration yields

q̃
1

~ r̂ 8,t!5E
V
d3rq

1

~r ,t1 r̂ 8•r /c!. ~3.13!
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In ~3.13! q
1

(r ,t) is the analytic extension of the source distributionq(r ,t). The function

q̃
1

( r̂ 8,t) is termed the analytictime-dependent plane-wave spectrumof q(r ,t),3 describing the
source-excited time-dependent plane wave in the directionr̂ 8. The operation in~3.13! is termed a
‘‘slant-stack transform’’3 since, as implied by~3.13!, it is obtained by projecting the source
distributionq(r ,t) along planes normal to the propagation directionr̂ 8 and stacking these projec-
tions with a progressive delay corresponding to a time-dependent plane wave that propagates in
that direction~see Ref. 3; Eqs.~3.11!–~3.12! and Fig. 1!. Thus, this operation extracts from
q(r ,t) the time-dependent plane-wave information in the direction ofr̂ 8. Mathematically,~3.13! is
a Radon transform ofq(r ,t) in the four-dimensional (r ,t) coordinate space.

On taking the real part of~3.10! we obtain the final result for thereal field

u~r ,t !5(
l50

`

(
m50

l

(
j51

2

~4pr !21amSl ,m
~ j ! ~ r̂ !L lql ,m

~ j ! ~t !, ~3.14!

whereSl ,m
( j ) are the real spherical harmonics,am51 or 2 form50 orm>1, respectively, and

ql ,m
~ j ! ~t !5E

4p
d2r̂ 8Sl ,m

~ j ! ~ r̂ 8!q̃~ r̂ 8,t! ~3.15!

with

q̃~ r̂ 8,t!5E
V
d3rq~r ,t1 r̂ 8•r /c!. ~3.16!

Equations~3.14!–~3.16! are the real analog of~3.10!–~3.13!, and their interpretation is basically
the same. The real field is expressed in~3.14! as a sum of time-dependent multipole wave func-
tions with time-dependent momentsql ,m

( j ) (t). From ~3.15!, these moments are projections of the
real time-dependent plane-wave spectrumq̃( r̂ 8,t) of ~3.16! onto thereal spherical harmonics
Sl ,m
( j ) . In ~3.18!–~3.20! this operation will be identified as a projection of the time-dependent
radiation pattern. Finally, the series convergence will be considered in~3.30!–~3.32!.

In the far zone, the field has the form

u~r ,t !ur→`;
g~ r̂ ,t!

4pr
,t5t2r /c. ~3.17!

In the multipole expansion~3.14!, the time-dependent radiation pattern is obtained from the lowest
order (n50) term in the operatorL l in ~3.7! which yieldsL l→1. Thus, from~3.14!

g~ r̂ ,t!5(
l50

`

(
m50

l

(
j51

2

amSl ,m
~ j ! ~ r̂ !ql ,m

~ j ! ~t !. ~3.18!

Equation~3.18! is a spherical harmonics expansion ofg( r̂ ,t). Thus, for a given radiation pattern
g( r̂ ,t) the multipole moment functionsql ,m

( j ) (t) are given by

ql ,m
~ j ! ~t !5E

4p
d2r̂ Sl ,m

~ j ! ~ r̂ !g~ r̂ ,t!. ~3.19!

Comparing~3.15! and~3.19! it also follows that the time-dependent radiation patterng is directly
related to the time-dependent plane-wave spectrum
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g~ r̂ ,t!5q̃~ r̂ ,t!5E
V
d3r 8q~r 8,t1 r̂•r 8/c!. ~3.20!

This expression is also derived in Ref. 3; Eq.~3.18!–~3.19! using time-dependent plane wave
analysis. Thus, the time-dependent multipole momentsql ,m

( j ) (t), and from~3.14! also the total field
at r.R0 , are completely determined by the time-dependent radiation patterng( r̂ ,t).

C. A multipole expansion based on weighted volume contribution

Here we use~Ref. 19; 9.1.20!

j l~z!5
~z/2! l

2l ! E
21

1

dh~12h2!eizh ~3.21!

so that from~2.7!

k2 l q̂l ,m5
4p

l !2 l11E
V
d3r 8q̂~r 8!Yl ,m* ~ r̂ 8!~r 8! lE

21

1

dh~12h2! leikr 8h. ~3.22!

In this expression, the function (r 8) l*21
1 dh(12h2) leikr 8h can be regarded as a weighting factor

~or, in antenna terminology, an array factor! for sources located on ther 8 sphere.
Applying the analytic inverse Fourier transform~3.1! yields the time-dependent multipole

expansion of~3.10! wherein the time-dependent multipole moments are related to the frequency
domain ones as in~3.11!. In this section, however, we shall obtain the time-domain expression for
the multipole moments by substituting~3.22! into ~3.11! and inverting the order of integration,
giving

q
1

l ,m~t!5E
V
d3r 8Yl ,m* ~ r̂ 8!~r 8! l q̄

1

l~r 8,t!, ~3.23!

where

q̄
1

l~r 8,t!5
1

pE0
`

dve2 ivt~2 ik ! l q̂~r 8!
4p

l !2 l11E
21

1

dh~12h2! leikr 8h.

Inverting the order of integrations~see remark after~3.7!! we obtain

q̄
1

l~r 8,t!5
4p

l !2 l11 S d

cdt D lE
21

1

dh~12h2! l q
1

~r 8,t1hr 8/c!. ~3.24!

Taking the real part of~3.10! with ~3.23!–~3.24! we find that the real time-dependent field is given
by the multipole expansion in~3.14! with

ql ,m
~ j ! ~t !5E

V
d3r 8Sl ,m

~ j ! ~ r̂ 8!~r 8! l q̄l~r 8,t! ~3.25!

with

q̄l~r 8,t!5
4p

l !2 l11 S d

cdt D lE
21

1

dh~12h2! lq~r 8,t1hr 8/c!. ~3.26!
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Note that the operationL l(d/dt) l in ~3.14! with ~3.25! and ~3.26! involves only positive power
derivatives ofq(r 8,t), having the form (d/dt) l2n with n50, . . . ,l .

The multipole expansion in~3.14! with ~3.25!–~3.26! has been derived previously using
time-domain manipulations. Here it has been derived from the well known time-harmonic multi-
pole expansion~2.6!–~2.7!. In Sec. III B we have derived a different representation which explic-
itly shows that the time-dependent multipole moments are the coefficients in a spherical expansion
of the time-dependent plane-wave spectrum~or of the time-dependent radiation pattern!.

Note that the operation in~3.26! ~or ~3.24!! is, for a givenr 8, a weighted average of the signal
in the time-window (t6r 8/c), accounting for the fact that this source point is located on a sphere
of radiusr 8. Theh integration therefore yields the effective ‘‘array factor’’ for each source point
r 8.

If the source signal is approximately constant within the time-window (t6r 8/c), then

q̄l~r 8,t!.
4p

~2l11!!! S d

cdt D lq~r 8,t!, ~3.27!

where (2l11)!!51•3•5...(2l11). LetT be a measure of the source rate of change~in particular
T can be the pulse-length!. Noting that the effective width of the (12h2) l kernel in ~3.26! is
@*21

1 dhh2(12h2) l #1/25@2(2l )!!/(2 l13)!! #1/2, where (2l )!!52•4•6...(2l ), we find that the
approximation in~3.27! is valid if

2r 8/cT!A~2l13!!!/ ~2l !!!;~2p21/4!~ l /e!3/4, ~3.28!

where the largel approximation is obtained using Stirling’s formula. Thus the approximation in
~3.27! is valid for smallr 8 or for largel .

For largel such that

2R0 /cT!A~2l13!!!/ ~2l !!!;~2p21/4!~ l /e!3/4, ~3.29!

whereR0 is the source support~see~1.1!!, ~3.27! can be applied forall points in the source region,
and the time-dependent multipole moments become

ql ,m
~ j ! ~t !.

4p

~2l11!!! S d

cdt D lE
V
d3r 8Sl ,m

~ j ! ~ r̂ 8!~r 8! lq~r 8,t!. ~3.30!

The multipole expansion~3.14! with the multipole moments of~3.30! is recognized as the quasi-
static extension of the static multipole expansion~Ref. 6; Sec. 4.1!.

Noting that for largel the main contribution in~3.30! comes fromr.R0 , one obtains

ql ,m
~ j ! ~t !.

4pR0
l13

~2l11!!! ~ l13! S d

cdt D lQl ,m
~ j ! ~t !.

4pR0
l13~e/2! l13/2

l l12 S d

cdt D lQl ,m
~ j ! ~t !, ~3.31!

where

Ql ,m
~ j ! ~t !5E

4p
d2r̂ Sl ,m

~ j ! ~ r̂ !q~R0r̂ ,t! ~3.32!

is the spherical harmonics expansion of the source distribution situated on the external ballR0 . In
~3.31! we also used the Stirling approximation for (2l11)!!. Using in ~3.31! ]t;O(T21), it
follows that the multipole momentsql ,m

( j ) decay rapidly likel22(R0 /cTl)
l for l.R0 /cT. In view
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of ~3.18!, this defines a fundamental limit on the space-time resolution of the time-dependent
radiation pattern that can be achieved by a given pulsed source distribution. This subject will be
explored elsewhere.

IV. CONCLUSIONS

In this paper we described the radiation from a pulsed source distribution by a time-dependent
multipole expansion. The spherical~multipole! wave functions have been introduced in Sec. III A
using two formulations: An analytic signal formulation in~3.6! and later on a real signal formu-
lation ~3.8!. The latter is expressed in terms of a real source functionf (t) and utilizes the real
spherical harmonicsSl ,m

( j ) , whereas the former requires the analytic extension of the source data

f
1

(t) and the complex spherical harmonicsYl ,m . Clearly the real signal formulation is the practical
one, but for analytical convenience we also considered the analytic signal one~identified by an
over plus!. In the expressions above, the source functionf (t) is an arbitrary signal: In the multi-
pole expansions of Secs. III B and C, it is replaced by the corresponding time-dependent multipole
moment of the source distribution.

The time-dependent multipole expansion of the field is given in~3.14! whereinql ,m
( j ) (t) are the

corresponding time-dependent multipole moments~see also~3.10! for the analytic signal formu-
lation; henceforth, however, we shall mention only the final, real signal expressions!. We derived
two alternative formulations for the calculation of the time-dependent multipole moments directly
from the time-dependent source distributionq(r ,t). The one in Sec. III B~Eqs.~3.15!–~3.16!! is
closely related to the time-dependent plane-wave spectrum of the source considered in Ref. 3. In
this formulation the sourceq(r ,t) is first projected on planar wavefronts via the slant-stack
transform~3.16!, thereby providing the time-dependent plane-wave spectrum of the source, and
subsequently projected onto the real spherical harmonics~see~3.15!!. In the formulation of Sec.
III C ~Eqs.~3.25!–~3.26!!, on the other hand, the time-dependent source function is first projected
on spherical wavefronts centered in the origin~see~3.26!!. This formulation has been derived
before.15

Finally, we addressed the series convergence by showing that the high order multipole mo-
ments tend to the quasistatic extension of the static multipole moments~see~3.29!–~3.30!!. This
also puts an upper limit on the spatial resolution that can be achieved by a source distribution with
specified size and pulse length~see~3.31!–~3.32!!.
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APPENDIX: THE REAL SPHERICAL HARMONICS Sl ,m
(j )

We use the standard definition of the spherical harmonics6

Yl ,m~ r̂ !5yl ,mPl
m~cosu!eimf, ~A1a!

yl ,m5A~2l11!~ l2m!!/ ~ l1m!/A4p, ~A1b!

where l50,1, . . . , m50,61, . . .6 l and r̂ is a unit vector, defined by the spherical angles
(u,f). Here

Pl
m~x!5

~21!m

2l l !
~12x2!m/2S ddxD

l1m

~x221! l ~A2!
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are the associated Legendre functions which may be rewritten in the computationally convenient
form ~Ref. 19; Eq. 22.5.60 and 22.5.20!

Pl
m~x!5

~21!m~ l1m!!

2ml !
~12x2!m/2Pl2m

~m,m!~x!, ~A2a!

wherePm
(a,b) are the Jacobi polynomials.

The spherical harmonics satisfy the orthogonality, completeness and symmetry conditions

E
4p
d2r̂ Yl ,m* ~ r̂ !Yl 8,m8~ r̂ !5d l ,l 8dm,m8, ~A3!

(
l ,m

Yl ,m~ r̂ !Yl ,m* ~ r̂ 8!5d~ r̂2 r̂ 8!, ~A4!

Yl ,2m~ r̂ !5~21!mYl ,m* ~ r̂ !, ~A5!

where the asterisks denote a complex conjugate. In~A3! the d2r̂5sinu du df integration com-
prises all 4p spherical directions and in~A5!, d( r̂2 r̂ 8) 5 (1/sinu)d(f2f8)d(u2u8).

For the real time-domain fields it is convenient to use thereal spherical harmonicsSl ,m
( j ) ,

wherel50,1, . . . m50,1, . . .l and j51,2,

Sl ,m
~1!5ReYl ,m , Sl ,m

~2!5Im Yl ,m . ~A6!

Clearly they are given by~A1! with eimf replaced by cosmf and sinmf, respectively. One may
readily show that they satisfy the orthogonality and completeness conditions

E
4p
d2r̂ Sl ,m

~ j ! ~ r̂ !Sl 8,m8
~ j 8!

~ r̂ !5d l ,l 8dm,m8d j , j 8

1

am
, ~A7!

(
l51

`

(
m50

l

(
j51,2

amSl ,m
~ j ! ~ r̂ !Sl ,m

~ j ! ~ r̂ 8!5d~ r̂2 r̂ 8!, ~A8!

wheream51 or 2 form50 orm>1, respectively.
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We study the topological Yang–Mills theory of scalar and vector fields in two and
three dimensions in the superconnection framework. We modify the horizontality
condition in such a way that we can take care of the topological symmetry of the
dAm5bm type, as well as the usual gauge symmetry of thedAm5Dmc type. We
then obtain a complete set of BRST and anti-BRST transformation rules of the
component fields in a systematic way. ©1996 American Institute of Physics.
@S0022-2488~96!03501-9#

I. INTRODUCTION

The classical action of Witten’s four-dimensional topological Yang–Mills theory1

S 45E d4x Tr@emnrsFmnFrs# ~1!

is invariant under the transformation

dbAm5bm , ~2!

as well as under the usual gauge transformation

daAm5Dmc. ~3!

The transformation~2! is the characteristic symmetry of the action~1!. Using Eq.~2! as well as
Eq. ~3! in the BRST quantization formalism, Baulieu and Singer and Perry and Teo reproduced
Witten’s quantum action which generates the Donaldson invariants.2–4

On the other hand, Baulieu and Grossman5 found that in three dimensions the classical action

S 35E d3x Tr@emnlFmnDlw#, ~4!

whereDlw5]lw1[Al ,w], is invariant under the following transformations:

dAm5Dmc1bm , dw5@w, c#1g. ~5!

Then they studied the BRST symmetry of Eq.~4!, and related its quantum action with the scat-
tering of slowly moving magnetic monopoles. Chapline and Grossman6 found that the classical
action in two dimensions,

S 25E d2x Tr@emnDmwDnw#, ~6!

a!Electronic mail: dshwang@phy.sejong.ac.kr
b!Electronic mail: leecy@hep.sejong.ac.kr
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is also invariant under the transformations~5!. They studied the BRST symmetry of Eq.~6!, and
its quantum action in connection with the theory of vortices and knots.

In this paper we study the BRST and anti-BRST symmetries of Eq.~5! in the superconnection
framework. In Sec. II we briefly explain the ‘‘superconnection’’ formalism~introduced by Refs.
7–9! and the ‘‘horizontality condition’’~introduced by Ref. 10!, which are essential tools in the
present work. In this paper, the superconnection will contain only zero and one forms, thus this
term has more restrictive meaning than the general one that appeared in Refs. 7 and 8, and in this
sense it is similar to the one that appeared in Ref. 9. However, we would like to note that the
authors of Ref. 8 also considered a similar case including the Higgs field for the spontaneous
symmetry breaking mechanism. From here on, we shall freely use this terminology~and remove
the double quotes! as it was used in the quoted references, and we shall not have to provide any
further interpretation for the geometrical meaning of the horizontality condition in terms of the
geometry of principal bundles. In Sec. III we combine the scalar fieldw and the vector fieldAm in
a superconnection. We modify the horizontality condition such that it takes care of the symmetry
~5! which contains the topological symmetry as well as the usual gauge symmetry. Then using this
modified horizontality condition, we obtain the BRST and anti-BRST transformation rules of the
component fields in the superconnection framework. In Sec. IV, which constitutes discussions and
conclusion, we interpret the three- and two-dimensional topological actions~4! and~6! in analogy
with the correspondence between the four-dimensional topological action~1! and the Chern–
Simons action.

II. SUPERCONNECTION AND HORIZONTALITY CONDITION

In order to study the theory with scalar and vector gauge fields, it is much easier to work in the
superconnection framework, since the theory contains both even and odd form fields. The super-
algebra multiplication law is given as follows: for general supermatricesX andX 8, which have
arbitrary degree formsX andX8 as their supermatrix elements,8,9

XX 85~a^X!~a8^X8!5~21! uXuua8u~aa8! ^ ~XX8!, ~7!

where

X5~a^X!5S A C

D BD , X 85~a8^X8!5S P R

S QD . ~8!

In Eq. ~7!, uXu anduau are form grade and supermatrix grade, respectively.uXu is one for odd form,
zero for even form.uau is zero for even~diagonal! supermatrix and one for odd~off-diagonal!
supermatrix. Equation~7! can be written more explicitly as

XX 85S A C

D BD S P R

S QD 5S AP1~21! uCuCS ~21! uAuAR1CQ

DP1~21! uBuBS ~21! uDuDR1BQD . ~9!

The exterior derivative which is consistent with the superalgebra multiplication law~7! is
given by

dX5S d 0

0 dD S P R

S QD 5S dP 2dR

2dS dQ D ~10!

for the general supermatrixX sinced is an even supermatrix andd[dxm(]/]xm) is one form in
the base manifold. This exterior derivative satisfies the following Leibniz rule:

d~XX 8!5d~~a^X!~a8^X8!!5~dX !X 81~21! uau1uXuX ~dX 8! ~11!
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for general supermatricesX andX 8. Here one can introduce a ‘‘matrix differentiation’’ operation
satisfying the same Leibniz rule, the so-called matrix derivative,11 which is a graded commutator
operation with a constant zero form matrix. However, we shall not consider this operation here,
and it was considered in our previous article4 on the pure topological Yang–Mills theory in four
dimensions. In this sense, here we are following the approach of Ref. 8 more closely, although
ours is more restrictive as we explained in the Introduction. The superconnection is defined as8

A5S v0 L01

L10 v1
D 5Aev1Aod5S v0 0

0 v1
D 1S 0 L01

L10 0 D , ~12!

where the even supermatrix elementsv0, v1 are odd degree differential forms, and the odd
elementsL01, L10 are even degree forms. Since the superconnection in Eq.~12! has odd and even
degree forms for even and odd supermatrix elements, respectively, the exterior derivatived satis-
fies the following Leibniz rule from Eq.~11!:

d~AX !5~dA!X2A~dX ! ~13!

for the superconnectionA and the general supermatrixX . We note that Eq.~13! is the same
Leibniz rule as that for the ordinary one-form gauge fieldA which is given byd(AX)5(dA)X
2A(dX), whereX is an arbitrary differential form. From the superconnection in Eq.~12! we have
the supercurvatureF as

F 5dA1AA ~14!

5S dv01v0v01L01L10 2dL012v0L011L01v1

2dL101L10v02v1L10 dv11L10L011v1v1
D . ~15!

Now, we explain the horizontality condition by showing how it gives rise to the BRST
transformation rules in the ordinary gauge theory. In the usual non-Abelian gauge theory we have
a one-form connectionA:

A5Am dxm, ~16!

where xm is the coordinate of the space-time base manifold. We adopt the differential form
notation. The curvature is given by

F5dA1AA, ~17!

where d5dxm(]/]xm) is the exterior derivative andAA5A`A. We omit the wedge for the
product of differential forms.

In order to obtain the BRST transformations in a simple way, Ne’eman and Thierry-Mieg
introduced10 new coordinatesyN and extendedA to the following algebraic objectÃ:

Ã5A1c5Am dxm1cN dyN, ~18!

wherec5cN dyN plays the role of a gauge field along the direction of the gauge group and turns
out to be the ghost field of the BRST symmetry. The curvature in the fiber-bundle space is given
by

F̃5d̃Ã1ÃÃ5~d1s!~A1c!1~A1c!~A1c!, ~19!

whered̃5d1s ands5dyN(]/]yN) is the exterior derivative in the gauge group direction.
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Then Ne’eman and Thierry-Mieg showed that the horizontality condition, which is the
Maurer–Cartan equation,

F̃5F ~20!

gives rise to the BRST transformation rules which satisfy the nilpotency condition
s25 s̄25ss̄1 s̄s50. That is, when we expand Eq.~20! in terms of form degree, we get the
following well-known BRST transformation rules:

~dx!1~dy!1:sA52dc2Ac2cA,
~21!

~dy!2:sc52cc.

The horizontality condition was first studied by Ne’eman and Thierry-Mieg,10 and it has played
important roles in investigating the geometrical meaning of the BRST symmetry.10,12–14

III. TOPOLOGICAL BRST AND ANTI-BRST SYMMETRIES WITH SCALAR AND VECTOR
FIELDS

In this section we apply the horizontality condition in the superconnection framework, in
order to study the BRST symmetry of a system which contains both scalar and vector gauge fields.
Then we modify the horizontality condition in such a way that we can take care of the symmetry
~5!, which contains the topological symmetry of the type~2!, as well as the usual gauge symmetry
of the type~3!. At the beginning we consider only the BRST symmetry, and then both the BRST
and anti-BRST symmetries.

In order to study a system which contains both scalar and vector fields, we combine one form
gauge fieldA and zero form scalar gauge fieldw in the superconnection as

A5SA w

w AD , ~22!

whereA5Am dxm is one-form andw is zero-form. HereA andw are Lie algebra valued, that is,
A5AaTa andw5waTa , whereTa are gauge group generators, for example, SU(N) group gen-
erators. The ghost and auxiliary fields below are also Lie algebra valued in the same way. The
superconnection in the fiber-bundle space is given by

Ã5SA1a w

w A1a D , ~23!

where

A1a5Am dxm1aN dyN, w5w. ~24!

The supercurvature in the base manifoldF and that in the fiber-bundle spaceF̃ are given by

F 5dA1AA, ~25!

F̃ 5~s1d!Ã1ÃÃ. ~26!

Then the horizontality condition is given by

F̃ 5F . ~27!

From Eq.~27! we get the BRST transformation rule ofÃ,
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sÃ52dÃ2ÃÃ1F . ~28!

However, in order to make sure thats in Eq. ~28! is really a BRST transformation, we should
check thatssÃ50 is satisfied. From Eq.~28! we have

ssÃ5d~sÃ!2~sÃ!Ã1Ã~sÃ!1sF 5dF 1ÃF 2F Ã1sF . ~29!

On the right-hand side of Eq.~29! there is no term with a ghost number greater than one in our
case withA in Eq. ~22! andÃ in Eq. ~23!. ThereforessÃ50 is satisfied in the system composed
of scalar and vector gauge fields with usual gauge symmetry. Expanding Eq.~28! in terms of form
degree, we get the usual BRST transformation rules of both the gauge fieldsA, w, and the ghost
field a without topological symmetry:

~dx!1~dy!1:sA52Da,

~dy!1:sw52@a, w#, ~30!

~dy!2:sa52aa,

where@ , # is the graded commutator andDf[d f1[A, f ]. By explicit application ofs in Eq. ~30!
we can show thats is nilpotent, that is,s250.

In order to take care of the topological symmetry of Eq.~5!, we extendF̃ in Eq. ~26! to

F̃ T[F̃ 1F̃ 8. ~31!

In our case whereÃ is given by Eq.~23!, F̃ 8 is assigned as

F̃ 85S b1f g

g b1f D , ~32!

where

b1f5bmN dxm`dyN1 1
2fMN dyM`dyN, g5gN dyN. ~33!

Note that each component field ofF̃ 8 is assigned to have one more ghost number than the
corresponding field ofÃ in Eq. ~23!. Then we modify the horizontality condition~27! to

F̃ T5F . ~34!

From Eq.~34! we have the modified version of Eq.~28!,

sÃ52dÃ2ÃÃ1F 2F̃ 8. ~35!

By applyings on the both sides of Eq.~35!, and requiring the nilpotency forÃ, ssÃ50, we get
the BRST transformation rule ofF̃ 8,

sF̃ 852dF̃ 82ÃF̃ 81F̃ 8Ã1dF 1ÃF 2F Ã1sF . ~36!

In reality, the last four terms of the right-hand side of Eq.~36! do not contribute tosF̃ 8 in the
system composed of scalar and vector gauge fields, since none of them has a ghost number greater
than one, whereas all the components ofsF̃ 8 have ghost numbers greater than one. Again, we
should checkssF̃ 850. From Eqs.~35! and ~36! we have

ssF̃ 852Ã~dF !2~dF !Ã2Ã~sF !2~sF !Ã2dsF . ~37!
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There is no term with a ghost number greater than two on the right-hand side of Eq.~37! in our
case withA in Eq. ~22!, Ã in Eq. ~23!, andF̃ 8 in Eq. ~32!, whereas all the components ofssF̃ 8
have ghost numbers greater than two. ThereforessF̃ 850 is satisfied in our case. Then it is
confirmed that Eqs.~35! and ~36! give the BRST transformation rules of the topological Yang–
Mills theory with scalar and vector gauge fields.

In order to obtain the BRST transformation rules of the component fields, we expand Eqs.~35!
and ~36! in terms of form degree. Through this expansion we obtain

@even part#

~dx!1~dy!1:sA52Da2b,

~dy!2:sa52aa2f,
~38!

~dx!1~dy!2:sb52Df2@a, b#,

~dy!3:sf52@a, f#;

@odd part#

~dy!1:sw52@a, w#1g,
~39!

~dy!2:sg52@a, g#2@f, w#,

where@ , # is the graded commutator andDf[d f1[A, f ]. Equations~38! and ~39! constitute a
complete set of the BRST transformation rules of the component fields.

Now, let us consider both BRST and anti-BRST symmetries by assigning

Ã5SA1a1ā w

w A1a1ā D , ~40!

F̃ 85S b1b̄1f1r1f̄ g1ḡ

g1ḡ b1b̄1f1r1f̄
D , ~41!

where

A1a1ā5Am dxm1aN dyN1ā N̄ dȳN̄,

w5w,
~42!

b1b̄1f1r1f̄5bmN dxm`dyN1b̄mN̄ dxm`dȳN̄1 1
2fMN dyM`dyN

1rMN̄ dyM`dȳN̄1 1
2f̄ M̄N̄ dȳM̄`dȳN̄,

g1ḡ5gN dyN1ḡ N̄ dȳN̄.

In the abovef, r, andf̄ fields are ghost for ghost fields which are necessary to fix the residual
gauge symmetries ofb and b̄. The forms in Eqs.~40! and ~41! are defined on the tangent and
cotangent manifolds of the fiber as well as on the space-time base manifold, that is, they are
defined in the fiber-bundle space. The component fields with odd forms indy anddȳ directions
have wrong spin statistics and reduce the physical degrees of freedom. Here,a, ā, b, and b̄ are
such fields.
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In analogy with Eqs.~35! and ~36!, the BRST and anti-BRST transformation rules are given
by

~s1 s̄!Ã52dÃ2ÃÃ1F 2F̃ 8, ~43!

~s1 s̄…F̃ 852dF̃ 82ÃF̃ 81F̃ 8Ã1dF 1ÃF 2F Ã1~s1 s̄…F . ~44!

We obtain the following BRST and anti-BRST transformation rules of the component fields by
expanding Eqs.~43! and ~44! in terms of form degree:

@even part#

~dx!1~dy!1:sA52Da2b,

~dx!1~dȳ!1: s̄A52Dā2b̄,

~dy!2:sa52aa2f,

~dȳ!2: s̄ā52āā2f̄,

~dy!1~dȳ!1:sā1 s̄a52@a, ā#2r,

~dx!1~dy!2:sb52Df2@a, b#,
~45!

~dx!1~dȳ!2: s̄b̄52Df̄2@ā, b̄#,

~dx!1~dy!1~dȳ!1:sb̄1 s̄b52@a, b̄#2@ā, b#2Dr,

~dy!3:sf52@a, f#,

~dȳ!3: s̄f̄52@ā, f̄#,

~dy!2~dȳ!1: s̄f1sr52@a, r#2@ā, f#,

~dy!1~dȳ!2:sf̄1 s̄r52@ā, r#2@a, f̄#;

@odd part#

~dy!1:sw52@a, w#1g,

~dȳ!1: s̄w52@ā, w#1ḡ,

~dy!2:sg52@a, g#2@f, w#, ~46!

~dȳ!2: s̄ḡ52@ā, ḡ #2@f̄, w#,

~dy!1~dȳ!1:sḡ1 s̄g52@a, ḡ #2@ā, g#2@r, w#.

The equations of (dy)1(dȳ)1, (dx)1(dy)1(dȳ)1, (dy)2(dȳ)1, and (dy)1(dȳ)2 in Eq. ~45! and
that of (dy)1(dȳ)1 in Eq. ~46! do not completely specify the transformation rules of the compo-
nent fields. Therefore we need to introduce the auxiliary fieldst, m, n, n̄, andu given below to
solve these equations:

699D. S. Hwang and C. Y. Lee: Topological Yang–Mills theory with scalar and vector fields

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



sā[t, s̄a52t2@a, ā#2r,

sb̄[m, s̄b52m2@a, b̄#2@ā, b#2Dr,

sr[n, s̄f52n2@a, r#2@ā, f#, ~47!

sf̄[n̄, s̄r52n̄2@ā, r#2@a, f̄#,

sḡ[u, s̄g52u2@a, ḡ #2@ā, g#2@r, w#.

From Eq.~47! we get the following transformation rules of the auxiliary fields:

st5sm5sn5sn̄5su50,

s̄t52@ā, t#1n̄,

s̄m52@Da, f̄#2Dn̄2@b, f̄#2@b̄, t#2@ā, m#,
~48!

s̄n52@aa, f̄#2@a, n̄#2@ā, n#2@f, f̄#2@r, t#,

s̄n̄52@ā, n̄#2@f̄, t#,

s̄u52@ā, u#2@ ḡ, t#2@w, n̄#2@g, f̄#1@@a, w#, f̄#.

Equations~45!, ~46!, ~47!, and~48! constitute a complete set of the BRST and anti-BRST trans-
formation rules of the component fields of the topological Yang–Mills theory with scalar and
vector gauge fields.

IV. DISCUSSIONS AND CONCLUSION

It is well known thatS 4 in Eq. ~1! can be expressed as

S 45Tr E
M4

FF5Tr E
M4

d~A dA1 2
3AAA!. ~49!

From this property we get the Chern–Simons action in three dimensions:

S 3
CS5Tr E

M3

~A dA1 2
3AAA!, ~50!

which is invariant under the usual gauge transformationsA52Da. At the same time, the fact that
S 4 is a total derivative of something as in Eq.~49! explains whyS 4 is invariant under the
topological symmetrysA52b which is equivalent to Eq.~2!. This is true becausesd52ds, and
b is set to be zero at the boundary.

S 3 in Eq. ~4! andS 2 in Eq. ~6! are also invariant under the topological symmetry~5!. Then
we expect thatS 3 andS 2 can also be expressed as total derivatives of something. This is also true
as we can see below:

S 35Tr E
M3

F Dw5Tr E
M3

d~wF !, ~51!
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S 25Tr E
M2

Dw Dw5Tr E
M2

d~w dw!. ~52!

Actually, we can say that for some action, having a topological symmetry and being able to be
expressed as a total derivative of something are equivalent. From Eqs.~51! and~52! we have the
following two- and one-dimensional Chern–Simons actions:15

S 2
CS5TrE

M2

wF, ~53!

S 1
CS5TrE

M1

w dw, ~54!

which are invariant under the usual gauge transformation ofsA52Da andsw52[a, w].
In this paper we studied the topological Yang–Mills theory of a system composed of scalar

and vector gauge fields in two and three dimensions. Since the system contains both even and odd
form gauge fields, we worked in the superconnection framework. Furthermore, in order to take
care of the topological symmetry of thedAm5bm type as well as the usual gauge symmetry of the
dAm5Dmc type, we modified the horizontality condition. In this scheme it was possible to un-
derstand the BRST and anti-BRST symmetries geometrically. That is, by applying the modified
horizontality condition in the superconnection framework, we could obtain a complete set of the
BRST and anti-BRST transformation rules of the component fields in a systematic way.
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(2,0) superconformal anomaly
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The ~2,0! supersymmetric Wess–Zumino–Polyakov action is constructed and the
~2,0! superconformal anomaly is given. The anomalous Ward-identity in the right
sector is derived and the known operator product expansion of theN52 superstress
energy tensor is recovered. ©1996 American Institute of Physics.@S0022-
2488~95!04509-6#

I. INTRODUCTION

The Beltrami differentials are the basic objects in the context of two-dimensional conformal
structures, and play an important role in conformal field theory and perturbative string theory1,2

where they couple to the energy momentum tensors.3 Furthermore, Beltrami differentials which
parametrize a conformal class of metrics4 are considered as the proper tool for describing the
Riemann surfaces and the Beltrami parametrization makes the so-called factorization5 manifest at
all levels.1,4,6The generalizations of these topics to super Riemann surfaces have been pursued by
various authors, e.g. Refs. 7–10, and prove equally important for superstrings.11–13

Recently, the constructions of conformally covariant differential operators on compact Rie-
mann surfaces in terms of projective connections14 have been of considerable interest since their
applications to conformal15 and integrable16 models. The study is based on the superdiffeomor-
phism anomaly which is not well defined on the compact Riemann surface and has to be modified
by the inclusion of projective connection. On the other hand, theN51 superconformal anomaly on
a super Riemann surface has been determined17 and its modification by the superprojective con-
nections in order to be well defined on compactN51 super Riemann surfaces was quite recently
reached.18 The generalization of these subjects toN52 super Riemann surfaces requires familiar-
ity with the N52 superconformal anomaly. This is the purpose of this article in which we con-
struct the~2,0! superconformal anomaly and the corresponding Wess–Zumino–Polyakov action.
The anomalous Ward-identity is derived and the known operator product expression of the super-
stress energy tensor is recovered.

The article is organized as follows. In Sec. II, we present the~2,0! superconformal transfor-
mations of the derivatives, their duals, and the super Beltrami variables which are defined in the
same way as in Refs. 8 and 9. The integrating factor equations, the BRST transformations, and the
superconformal transformations of the ghost superfields are obtained. In Sec. III, we construct the
~2,0! supersymmetric Wess–Zumino–Polyakov action and its variation gives the~2,0! supercon-
formal anomaly. Section IV, contains the anomalous Ward-identity and the operator product ex-
pansion of theN52 superconformal theory. Section V is devoted the conclusion.

II. (2,0) SUPERCONFORMAL TRANSFORMATIONS AND BELTRAMI SUPERFIELDS

The objective of this section is to discuss the super Beltrami differentials and superconformal
models for the~2,0! supersymmetric case by following the development of Ref. 17~c!. However,
the ~2,0! superspace is locally parametrized by (z,z̄,u1,u2) with u1[u2

1 andu2[u2
2 where the

lower index corresponds to the Lorentz indices and the upper to the U~1! charges. According to
this choice the~2,0! super-derivatives are given by

a!Permanent address: Section de Physique des Hautes Energies, Faculte´ des Sciences, LMPHE, Av. Ibn. Battouta, B.P.
1014, Rabat, Morocco.
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Du
1[D1

15
]

]u2 1u1]z[]u
11u1]z ,

~2.1!

Du
2[D1

25
]

]u1 1u2]z[]u
21u2]z

which satisfy the relations

$Du
1 ,Du

2%52]z , ~Du
1!2505~Du

2!2. ~2.2!

A~2,0! super Riemann surface is a supermanifold which is equipped with a superconformal
structure meaning that it admits local coordinates (Z,Z̄,Q1,Q2) and any two sets of such coor-
dinates.

~Z,Z̄,Q1,Q2!→~Z8,Z̄8,Q18,Q28!

are related by a superconformal transformation if it satisfies

Z85Z8~Z,Q1,Q2!, Q865Q86~Z,Q1,Q2!, Z̄85Z̄8~ Z̄!. ~2.3!

These are equivalent to the following~2,0! superconformal conditions:

DQ
6Z85Q81~DQ

6Q82!1Q82~DQ
6Q81!, ~2.4!

DQ
65~DQ

6Q81!DQ
281~DQ

6Q82!Du
18, ~2.5!

where the canonical basis of the supertangent space is

]Z , ] Z̄, DQ
15]Q

11Q1]Z , DQ
25]Q

21Q2]Z , ~2.6!

and the graded Lie brackets between these are

$DQ
1 ,DQ

2%52]Z , ~DQ
1!2505~DQ

2!2. ~2.7!

The conditions~2.4! must be supplemented by either11

DQ
1Q82505DQ

2Q81 ~2.8!

or

DQ
1Q81505DQ

2Q82 ~2.9!

which mean thatDQ
6 transform homogeneously under superconformal transformations. Note that

the condition~2.9! can always be chosen for a surface withN52, U~1! superconformal structure.11

Therewith we have

DQ
185eWDQ

1 , DQ
285eW̄DQ

2 , ~2.10!

with

eW5~DQ
1Q82!21, ~2.11!

and where2is the U~1! charge conjugation. Furthermore, the constraint~2.4!, which is rewritten
with the choices~2.9! as
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~DQ
1Z8!5Q81~DQ

1Q82!, ~2.12.1!

~DQ
2Z8!5Q82~DQ

2Q81! ~2.12.2!

leads to

e2We2W̄5]ZZ81Q81~]ZQ82!1Q82~]ZQ81!5~DQ
2Q81!~DQ

1Q82! ~2.13!

and

~DQ
1Q82!~DQ

18Q2!515~DQ
2Q81!~DQ

28Q1! ~2.14!

with the use of relations~2.7!. These show that

e2W5eia@]ZZ81Q81~]ZQ82!1Q82~]ZQ81!#1/2 ~2.15!

which is defined up to the U~1! phaseeia.19 Furthermore, the transformations of]Z and ] Z̄ are
given by

]Z85eWeW̄@]Z1~DQ
1W̄!DQ

21~DQ
2W!DQ

1#,

] Z̄85S ]Z̄

]Z̄8
D ] Z̄ . ~2.16!

On the other hand, the derivatives~2.6! are dual to the set of the one-forms

eZ5dZ1Q1dQ21Q2dQ1,

eQ1
5dQ1, eQ2

5dQ2, eZ̄5dZ̄ ~2.17!

and the graded Lie brackets~2.7! are equivalent to

deZ1eQ1
eQ2

1eQ2
eQ1

50,

deQ1
50, deQ2

50, deZ̄50. ~2.18!

In terms of these one-forms, the exterior derivative is given by

d5eZ]Z1eQ1
DQ

21eQ2
DQ

11eZ̄] Z̄ ~2.19!

and the~2,0! superconformal transformations ofeZ,eQ6
, andeZ̄ can be deduced from Eq.~2.19!

with the use of Eqs.~2.10! and ~2.16!. These are given by

eZ85e2~W1W̄!eZ, ~1!

eQ81
5e2W̄@eQ1

2eZ~DQ
1W̄!#, ~2!

eQ82
5e2W@eQ2

2eZ~DQ
2W!#, ~3!

eZ̄85
]Z̄8

]Z̄
eZ̄. ~4!

~2.20!
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In analogy withN50 andN51 superconformal cases, we assume that the~2,0! superconfor-
mal coordinates (Z,Z̄,Q1,Q2) have been obtained from a reference system of superconformal
coordinates (z,z̄,u1,u2) by a smooth change of coordinates

~z,z̄,u1,u2!→~Z~z,z̄,u1,u2!,Z̄~ z̄!,Q6~z,z̄,u1,u2!!. ~2.21!

Now let us express the one-forms in terms of the reference coordinate basis as

eZ5ezEz
Z1ez̄Ez̄

Z
1eu1

Eu1
Z

1eu2
Eu2
Z , ~1!

eQ6
5eu1

Eu1
Q6

1eu2
Eu2

Q6

1ezEz
Q6

1ez̄Ez̄
Q6

, ~2!

eZ̄5ez̄Ez̄
Z̄
1ezEz

Z̄1eu1
Eu1
Z̄

1eu2
Eu2
Z̄ . ~3!

~2.22!

The identification of Eq.~2.17!, with the help of the exterior derivative in the reference system
of superconformal coordinates (z,z̄,u1,u2), with Eq. ~2.21! leads to

Ez
Z5]zZ1Q1]zQ

21Q2]zQ
1,

Ez̄
Z
5] z̄Z1Q1] z̄Q

21Q2] z̄Q
1,

Eu1
Z

5Du
2Z2Q1Du

2Q22Q2Du
2Q1,

Eu2
Z

5Du
1Z2Q1Du

1Q22Q2Du
1Q1, ~2.23!

Eu6
Q1

5Du
7Q1, Ez

Q1
5]zQ

1, Ez̄
Q1

5] z̄Q
1, ~2.24!

Eu1
Q2

5Du
6Q2, Ez

Q2
5]zQ

2, Ez̄
Q2

5] z̄Q
2, ~2.25!

Ez̄
Z̄
5] z̄Z̄, Ez

Z̄5]zZ̄, Eu6
Z̄

5Du
7Z̄. ~2.26!

From Eq.~2.22! we can define the super Beltrami variables which are inert under the super-
conformal transformation~2.3!. In fact, since the one-formeZ transforms homogeneously under
Eq. ~2.3!, the unaffected coefficients ofeZ can be obtained directly by factorizingEz

Z in Eq.
~2.22.1! which gives

eZ5@ez1ez̄Hz̄
z
1eu1

Hu1
z

1eu2
Hu2
z

#L ~2.27!

with

L[Ez
Z ~2.28!

and

Ha
z5

Ea
z

Ez
Z , a5z,z̄,u6 ~2.29!

are the super Beltrami coefficients ofeZ. Furthermore, the super Beltrami variables ofeZ̄ are
defined in the same way as

eZ̄5@ez̄1ezHz
z̄1eu1

Hu1
z̄

1eu2
Hu2
z̄

#L̄ ~2.30!
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with

L̄5Ez̄
Z̄ ~2.31!

and

Ha
z̄5

Ea
Z̄

Ez̄
Z̄
, a5z,z̄,u6. ~2.32!

The ~2,0! superconformal transformations~2.20.2–3! with the use of the expansions~2.22.2!
and ~2.27! lead to

Eu1
Q81

5e2W̄@Eu1
Q1

2Hu1
z

~DQ
1W̄!L#, Ez

Q81
5e2W̄@Ez

Q1
2~Du

1W̄!L#,

~2.33.1!
Ez̄

Q81

5e2W̄@Ez̄
Q1

2Hz̄
z~DQ

1W̄!L#, Eu2
Q81

5e2W̄@Eu2
Q1

2Hu2
z

~DQ
1W̄!L#

and

Eu1
Q82

5e2W@Eu1
Q2

2Hu1
z

~DQ
2W!L#, Eu2

Q82

5e2W@Eu2
Q2

2Hu1
z

~DQ
2W!L#,

~2.33.2!
Ez

Q82
5e2W@Ez

Q2
2~DQ

2W!L#, Ez̄
Q82

5e2W@Ez̄
Q2

2Hz̄
z~DQ

2W!L#.

These expressions show that the coefficients ofeQ6
do not transform homogeneously and by

some particular combinations of them one can construct the corresponding super Beltrami vari-
ables given in Refs. 8 and 9 namely.

Ha
u6

5
1

AL
@Ea

Q6
2Ha

zEz
Q6

#, a5z,z̄,u6 ~2.34!

which are by construction inert variables. Therefore, the expansions ofeQ6
in terms of these

variables are given by

eQ6
5@ez1eu1

Hu1
z

1eu2
Hu2
z

1ez̄Hz̄
z#t61@eu1

Hu1
u6

1ez̄Hz̄
u6

1eu2
Hu2

u6

#AL ~2.35!

with

t65Ez
Q6
.

However, the parametrization contained in Eqs.~2.27!, ~2.30!, and~2.34! can be expressed by
using the decomposition given in Ref. 9 namely

~eZ,eZ̄,eQ1
,eQ2

!5~ez,ez̄,eu1
,eu2

!ML, ~2.36.1!

where the matricesM andL are given by

M5U 1 Hz
z̄ 0 0

Hz̄
z 1 Hz̄

u1

Hz̄
u2

Hu1
z

Hu1
z̄

Hu1
u1

Hu1
u2

Hu2
z

Hu2
z̄

Hu2
u1

Hu2
u2

U , L5UL 0 t1 t2

0 L̄ 0 0

0 0 AL 0

0 0 0 AL

U . ~2.36.2!
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The coefficientsL andt6 transform under superconformal transformations as

L85e2~W1W̄!L, t185e2W̄@t12L~Du
1W̄!#, t285e2W@t22L~Du

2W!#. ~2.37!

We note that in Ref. 9 some gauge fixing choices are used in order to obtain the BRST
transformations of the super Beltrami variables. However, these choices can be validated by
considering a change of the reference coordinate system (z,z̄,u1,u2) with

D1z85u81~D1u82!, D2z85u82~D2u81! ~2.38!

and

~D1u81!505~D2u82!.

Therewith, the one basis forms transform as

ez85e2~v1v̄ !ez,

eu81
5e2v̄@eu1

2ez~D1v̄ !#,

eu82
5e2v@eu2

2ez~D2v!#,

ez̄5S ] z̄

] z̄8Dez̄8 ~2.39!

and the substitution of these expressions in Eq.~2.36.1! leads to the transformation of the coeffi-
cientsL,L̄,t6 and the super Beltrami variablesHa

b namely

L8[Lz8
Z

5e~v1v̄ !YLz
Z , ~2.40.1!

t6[tz8
Q6

5e~v1v̄ !Y@tz
Q6

1Y21~D1v̄ !Hu1
u6

AL1Y21~D2v!Hu2
u6

AL#, ~2.40.2!

L̄8[L̄z8
Z

5S ] z̄

] z̄8D L̄z
Z ~2.40.3!

and

Hz̄8
z85e2~v1v̄ !Y21S ] z̄

] z̄8DHz̄
z ,

Hu18
z8 5e2vY21Hu1

z ,

Hu82
z8 5e2v̄Y21Hu2

z ,

Hu81
u81

5e2~v2v̄ !/2Y21/2@Hu1
u1

2Y21Hu1
z

~Hu1
u1

D1v̄1Hu2
u1

D2v!#,

Hu82
u81

5e~v2v̄ !/2Y21/2@Hu2
u1

2Y21Hu2
z

~Hu1
u1

D1v̄1Hu2
u1

D2v!#,

Hz̄8
u86

5e2~v1v̄ !/2Y21/2S ] z̄

] z̄8D @Hz̄
u6

2Y21Hz̄
z~Hu1

u6

D1v̄1Hu2
u6

D2v!#,
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Hu81
u82

5e2~v2v̄ !/2Y21/2@Hu1
u2

2Y21Hu1
z

~Hu1
u1

D1v̄1Hu2
u2

D2v!#,

Hu28
u285e~v2v̄ !/2Y21/2@Hu2

u2

2Y21Hu2
z

~Hu1
u2

D1v̄1Hu2
u2

D2v!#,

Hz8
z̄85e~v1v̄ !S ] z̄8

] z̄ D @Hz
z̄1~D1v̄ !Hu1

z̄
1~D2v!Hu2

z
#,

Hu81
z̄8 5ev̄S ] z̄8

] z̄ DHu1
z̄ ,

Hu82
z̄8 5evS ] z̄8

] z̄ DHu2
z̄ ~2.41!

with

Y511~D1v̄ !Hu1
z

1~D2v!Hu2
z . ~2.42!

Therefore, the choicesHu6
z

5 0 taken in Refs. 8 and 9 are invariant under the change of the
reference coordinate system and simplify all the other super Beltrami variable transformations. In

fact, with these choices the transformations ofHu6
u6

andHu6
u7

become homogeneous. Furthermore,

we have seen that9 the variablesHu6
z̄ andHz̄

z are the fundamental super Beltrami variables. Indeed,
from Eq. ~2.17! and by the use of similar equations written in the reference coordinate system
namely

dez1eu1
eu2

1eu2
eu1

50, deu1
505deu2

, dez̄50 ~2.43!

and the expansions~2.27!, ~2.30!, ~2.35! we find that the super Beltrami variables and the super-
conformal factors are related to each other by a set of equations. Among them we have

] z̄L2]z~Hz̄
zL!12Hz̄

u2

t1AL12Hz̄
u1

t2AL50,

D1L1]z~Hu2
z L!12Hu2

u2

t1AL12Hu2
u1

t2AL50, ~2.44!

D2L1]z~Hu1
z L!12Hu1

u2

t1AL12Hu1
u1

t2AL50,

D1~Hu1
z L!1D2~Hu2

z L!22L12@Hu1
z Hu2

u2

1Hu2
z Hu1

u2

#t1AL

12@Hu2
z Hu1

u1

1Hu1
z Hu2

u1

#t2AL12@Hu1
u1

Hu2
u2

1Hu2
u1

Hu1
u2

#L50,

2t12D1~Hu1
z t1!2D2~Hu2

z t1!2D1~Hu1
u1

AL!2D2~Hu2
u1

AL!50,

~2.45!

2t22D1~Hu1
z t2!2D2~Hu2

z t2!2D1~Hu1
u2

AL!2D2~Hu2
u2

AL!50,

] z̄L̄2] z̄~Hz
z̄L̄!50,

~2.46!
D6L̄2] z̄~Hu7

z̄ L̄!50.
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From this set of equations we obtain the following results:

h5~Hu1
u1

Hu2
u2

1Hu2
u1

Hu1
u2

!512 1
2~D

12Hu2
z ]z!Hu1

z
2 1

2~D
22Hu1

z ]z!Hu2
z ,

Hu1
u2

5
1

2Hu1
u1 ~D22Hu1

z ]z!Hu1
z ,

Hu2
u1

5
1

2Hu2
u2 ~D12Hu2

z ]z!Hu2
z ,

Hz̄
u6

5
1

2h
@Hu1

u6

~] z̄2Hz̄
z]z!Hu2

z
2Hu2

u6

~] z̄2Hz̄
z]z!Hu1

z

1Hu1
u6

~D12Hu2
z ]z!Hz̄

z
2Hu2

u6

~D22Hu1
z ]z!Hz̄

z#,

Hz
z̄5 1

2~D
12Hu2

z̄ ] z̄!Hu1
z̄

1 1
2~Du

22Hu1
z̄ ] z̄!Hu2

z̄ ,

t65
1

2h
@~D12Hu2

z ]z!~Hu1
u6

AL!1~D22Hu1
z ]z!~Hu2

u6
AL!# ~2.47!

which show that the super Beltrami variablesHu1
u2

,Hu2
u1

,Hz̄
u6

,Hz
z̄ and the coefficientst6 are ex-

pressed in terms of the basic super Beltrami variablesHu6
z , Hu2

u2

, Hu6
z̄ , andHz̄

z which remain
undetermined. However, the particular choices

Hu6
z

50 ~2.48!

lead to

Hz̄
u6

5
1

2Hu7
u7 @6D6Hz̄

z#, ~1!

t65 1
2@D

6~Hu6
u6

AL!# ~2!

~2.49!

with

Hu1
u1

Hu2
u2

51, ~2.50!

Hu1
u2

505Hu2
u1

. ~2.51!

These latter relations are equivalent to the fixing choice in Ref. 9 in order to decouple the BRST
transformations of the super Beltrami variables.

On the other hand, the substitution of the previous results~2.47! in Eqs. ~2.44! yields the
following differential equations:

] z̄L2FHz̄
z
1

1

2h
Hz̄

u2

~Hu2
z Hu1

u1

1Hu1
z Hu2

u1

!1
1

2h
Hz̄

u1

~Hu2
z Hu1

u2

1Hu1
z Hu2

u2

!G]zL1
1

2h

3~Hz̄
u2

Hu1
u1

1Hz̄
u1

Hu1
u2

!D1L1
1

2h
~Hz̄

u2

Hu2
u1

1Hz̄
u1

Hu2
u2

!D2L
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2F]zHz̄
z
2
1

h
Hz̄

u2

~D12Hu2
z ]z!Hu1

u1

2
1

h
Hz̄

u2

~D22Hu1
z ]z!Hu2

u1

2
1

h
Hz̄

u1

3~D12Hu2
z ]z!Hu1

u2

2
1

h
Hz̄

u1

~D22Hu1
z ]z!Hu2

u2GL50, ~2.52!

D6L1
1

h
Hu7

u2

Hu7
u1

D7L1
1

2SHu7
z

2
2

h
Hu6
z Hu7

u2

Hu7
u1D ]zL1F]zHu7

z
1
1

h
Hu7

u2

3~D12Hu2
z ]z! Hu1

u1

1
1

h
Hu7

u2

~D22Hu1
z ]z!Hu2

u1

1
1

h
Hu7

u1

3~D12Hu2
z ]z!Hu1

u2

1
1

h
Hu7

u1

~D22Hu1
z ]z!Hu2

u2GL50 ~2.53!

which contain as for theN51 supersymmetric case17~c! the bosonic theory equations and take a
simple form for the choices~2.48!.

The BRST transformations of the super Beltrami variables corresponding to~2,0! superdif-
feomorphisms can be generated by the ghost vector superfieldjM(M5z,z̄,u1,u2) such that

i je
M5jM, ~2.54!

where i j is the contraction operator along the ghost vector superfieldj M. Therewith, one can
define suitable ghost superfields by using Eqs.~2.27!, ~2.30!, and~2.35! in the following way:

i j~e
Z!5@jz1j z̄Hz̄

z
1ju1

Hu1
z

1ju2
Hu2
z

#L[SzL, ~2.55.1!

i j~e
Z̄!5@j z̄1jzHz

z̄1ju1
Hu1
z̄

1ju2
Hu2
z̄

#L̄[S z̄L̄ ~2.55.2!

and similarly

i j~e
Q6

!5SQ6AL1Szt6. ~2.55.3!

Thereby the BRST transformations of the coordinate systemZ, Z̄, andQ6 can be deduced from
Eq. ~2.55! with the help of Eqs.~2.17!. These are given by

sQ65Su6AL1Szt6, sZ5SzL2Q1sQ22Q2sQ1, sZ̄5S z̄L̄. ~2.56!

The nilpotency property of the BRST operator on the coordinate systemZ,Z̄,Q6 leads to the
BRST transformations of the ghost superfieldsSz, Su6

, andS z̄ in terms of the superconformal
factors and the spinorial superfieldst6 namely

sSz5Szs log L12SzFSu2 t1

AL
1Su1 t2

AL
G12Su1

Su2
,

sSu6
5Su6

s log L2
t6

AL
sSz1Sz

1

AL
st6, sS z̄5S z̄s log L̄. ~2.57!
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Furthermore, the BRST transformations ofL,L̄,t6 can be deduced by the evaluation of the
differentialsdZ,dQ6,dZ̄ variations and the use of the relationsd1ds50. These are given by

st652]z@Su6AL1Szt6#,

sL52]z@SzL#22@Su2
t11Su1

t2#AL, sL52] z̄@S z̄L#. ~2.58!

The substitution of these expressions in Eq.~2.57! leads to

sSz52Sz]zS
z12Su1

Su2
,

sSu6
52Sz]zS

u6
2 1

2S
u6

]zS
z,

sSz52S z̄] z̄S
z̄. ~2.59!

We remark that the introduction of the U~1! connection as a new degrees of freedom which closed
the multiplet of the super Beltrami variables can be made in a straightforward way. In fact, this can
be taken into account by considering the new covariant derivative

d→d6A ~2.60!

on objects having1 and 2U~1! charges, respectively. This is equivalent to modifying Eqs.
~2.23!–~2.26! by covariantizing the derivatives of the fermionic variables with respect to the U~1!
connection. The latter can also be redefined in a particular form8,9 in order to maintain the super
Beltrami multiplet inert under Eq.~2.3! namely

Aa5Aa2Ha
zAz1Ha

u1 t2

AL
2Ha

u2 t1

AL
12Ha

z t1t2

AL
~2.61!

with

Az50.

In the same way as the procedure which gives Eq.~2.58!, the BRST variations corresponding
to superdiffeomorphisms of the super Beltrami variables are given by8,9

sHz̄
z
5~] z̄2Hz̄

z]z!S
z22~Hz̄

u2

Su1
1Hz̄

u1

Su2
!1Sz]zHz̄

z , ~1!

sHu6
z

5~D72Hu6
z ]z!S

z22~Hu6
u2

Su1
1Hu6

u1

Su2
!1Sz]zHu6

z , ~2!

sHz̄
u6

5~] z̄2Hz̄
z]z!S

u6
1Sz]zHz̄

u6

1 1
2 ~Su6

]zHz̄
z
2Hz̄

u6

]zS
z!, ~3!

sHu1
u6

5~D22Hu1
z ]z!S

u6
1Sz]zHu1

u6

1 1
2~Su6

]zHu1
z

2Hu1
u6

]zS
z!, ~4!

sHu2
u6

5~D12Hu2
z ]z!S

u6
1Sz]zHu2

u6

1 1
2~Su6

]zHu2
z

2Hu2
u6

]zS
z!, ~5!

~2.62!

sHz
z̄5~]z2Hz

z̄] z̄!S
z̄1S z̄] z̄Hz

z̄ , sHu6
z̄

5~D72Hu6
z̄ ] z̄!S

z̄1S z̄] z̄Hu6
z̄ ,

where we have to use the covariantization~2.60! if we take into account the U~1! symmetry.
Finally, we would like to note that the expressions~2.57! are invariant under superconformal
changes of the reference coordinate system. Therefore, with the use of the transformations~2.40!
we deduce
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Sz85Y21e2~v1v̄ !Sz,

Su86
5Y21/2e2~v1v̄ !/2@Su6

2Y21Sz~D1v̄ !Hu1
u6

2Y21Sz~D2v!Hu2
u6

#,

S z̄85S ] z̄8

] z̄ DS z̄ ~2.63!

with these formulations of~2,0! superconformal structures parametrized in terms of Beltrami
superfields we can study the extension to the~2,0! supersymmetric case of the Wess–Zumino–
Polyakov action and the conformal anomaly.

III. (2,0) SUPERCONFORMAL ANOMALY

Before giving the~2,0! super Wess–Zumino–Polyakov action, we point out that, as in the
N51 superconformal case,17~c! we can define covariant derivatives with which the integrating
factor equations~2.52! and~2.53! may be expressed. For this reason we introduce an intermediate
coordinate system noted by (z̃,z! ,u1̃,u2̃) such that

~z,z̄,u1,u2!→~ z̃,z! ,u1̃,u2̃![~Z,z̄,Q1,Q2!→~Z,Z̄,Q1,Q2!. ~3.1!

The passage from the reference coordinate system to the intermediate one is described by the
following matrices:

M1L15F 1 0 0 0

Hz̄
z 1 Hz̄

u1

Hz̄
u2

Hu1
z 0 Hu1

u1

Hu1
u2

Hu2
z 0 Hu2

u1

Hu2
u2

GF L 0 t1 t2

0 1 0 0

0 0 AL 0

0 0 0 AL
G ~3.2!

with

s detM1L15@Hu1
u1

Hu2
u2

2Hu1
u2

Hu2
u1

#5 f21. ~3.3!

Therewith we have

F ]̃

]!

D̃1

D̃2

G5L1
21M1

21F ]

]̄
D1

D2

G ~3.4!

which leads explicitly to

]̃5L21H ]1
t1

fAL
@Hu1

u2

~D12Hu2
z ]!2Hu2

u2

~D22Hu1
z ]!#

1
t2

fAL
@Hu2

u1

~D22Hu1
z ]!2Hu1

u1

~D12Hu2
z ]!#J ,

]! 5~ ]̄2Hz̄
z]!2

1

f
~Hz̄

u1

Hu2
u2

2Hz̄
u2

Hu2
u1

!~D22Hu1
z ]!2

1

f
~Hz̄

u2

Hu1
u1

2Hz̄
u1

Hu1
u2

!~D12Hu2
z ]!,
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D̃15
1

fAL
@Hu1

u1

~D12Hu2
z ]!2Hu2

u1

~D22Hu1
z ]!#,

D̃25
1

fAL
@Hu2

u2

~D22Hu1
z ]!2Hu1

u2

~D12Hu2
z ]!#. ~3.5!

Consequently, the integrating factor Eqs.~2.52! become

]! L5LH ]Hz̄
z
2
1

h
Hz̄

u2

@~D12Hu2
z ]!Hu1

u1

1~D22Hu1
z ]!Hu2

u1

#

2
1

h
Hz̄

u1

@~D12Hu2
z ]!Hu1

u2

1~D22Hu1
z ]!Hu2

u2

#J . ~3.6!

This differential equation simplifies for the choices~2.48! namely

]! L5L$]Hz̄
z
2Hz̄

u2

D1Hu1
u1

2Hz̄
u1

D2Hu2
u2

%. ~3.7!

As we have seen in the previous section the~2,0! superconformal structures are parametrized by

the super Beltrami variablesHz̄
z , Hu6

z̄ , andHu1
u1

~or Hu2
u2

! which are independent. However, the
extended Wess–Zumino–Polyakov action to the~2,0! supersymmetric case is given in the right
sector by

GWZP5
1

2 E d3z22Hz̄
z@D1,D2# ln L, ~3.8!

whered3z225d2zdu1du2, and

L5]zZ1Q1]zQ
21Q2]zQ

1. ~3.9!

Furthermore, the choices~2.48!, which will be henceforth taken, and the expressions~2.23! and
~2.29! lead to

D2Z2Q1D2Q22Q2D2Q150, D1Z2Q1D1Q22Q2D1Q150; ~3.10!

these equations can be combined in order to get

L5~D1Q1!~D2Q2!1~D1Q2!~D2Q1!. ~3.11!

Moreover, the induced conditions~2.51! are equivalent to

~D1Q1!505~D2Q2! ~3.12!

which are nothing but Eq.~2.9!. Therefore, the coefficientL is restricted with these convenient
choices to

L5~D1Q2!~D2Q1!. ~3.13!

The BRST variation of the action~3.8! is given by
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sGWZP5
1

2E d3z22$~ ]̄2H z̄
z]!Sz22~H z̄

u2

Su1
1H z̄

u1

Su2
!1Sz]H z̄

z %@D1,D2# ln L

2
1

2E d3z22@D1,D2#H z̄
z $]Sz1Sz] ln L1Su2

D1Hu1
u1

1Su1
D2Hu2

u2

1 1
2S

u2
Hu1

u1

D1 ln L1 1
2S

u1
Hu2

u2

D2 ln L%, ~3.14!

where we have used the expression~2.49.2!. Moreover, the choices~2.48! and the resulting Eqs.
~2.50! and ~2.51! allow us to have

D1 ln L522Hu2
u2

~D1Hu1
u1

!52Hu1
u1

~D1Hu2
u2

!,

~3.15!

D2 ln L522Hu1
u1

~D2Hu2
u2

!52Hu2
u2

~D2Hu1
u1

!.

These equations, with the use of Eq.~2.2!, imply

] ln L5Hu2
u2

~D1D2Hu1
u1

!1Hu1
u1

~D2D1Hu2
u2

! ~3.16!

and the variation~3.14! becomes

sGWZP5
1

2E d3z22$Sz]@D2,D1#H z̄
z
1couplings in H z̄

z ,Hu6
u6

,Sz%5A~Sz,H z̄
z ,Hu6

u6

!.

~3.17!

We note that we have used the relations

D1Sz52Hu2
u2

Su1
, D2Sz52Hu1

u1

Su2
, D2Su2

505D1Su2
~3.18!

which follow from the BRST transformations of the super Beltrami variablesHu6
z , Hu1

u2

, and

Hu2
u1

fixed to zero. The~2,0! superconformal anomaly is contained in the first term of Eq.~3.17!

and the super Beltrami variablesHu1
u1

andHu2
u2

which are constrained by the following condition

Hu1
u1

Hu2
u2

51

contain only auxiliary fields. Therefore, if these variables are fixed as

Hu1
u1

515Hu2
u2

~3.19!

in addition to Eq.~2.48! then

~D1Q2!25L5~D2Q1!2 ~3.20!

and Eqs.~3.15! become

D6 ln L50

which are equivalent to

L5~D1Q2!25~D2Q1!251. ~3.21!
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These choices are equivalent to the gauge choices of the Polyakov’s chiral gauge action in the
pseudo-Riemannian framework and its generalization to theN51 supersymmetric case.17~d!,20

Finally, in terms of field components the~2,0! superconformal anomaly~3.17! is given by

A5E d2z22$Sz]3m z̄
z
12Su2

]2m z̄
u1

12Su1
]2m z̄

u2

%, ~3.22!

where we have used Eqs.~2.49.1! and ~3.18! with the choice~3.19!. Note in Eq. ~3.17! and
consequently Eq.~3.22! the absence of the U~1! gauge anomaly since the U~1! connection has
been omitted from the beginning. At this stage, the anomalous~2,0! supersymmetric Ward-
identities and the operator product expansions can be obtained. This is the subject of the next
section.

IV. (2,0) SUPERSYMMETRICWARD-IDENTITIES FOR Hu6
z

5 0, Hu6
u6

5 1

The ~2,0! supersymmetric Wess–Zumino–Polyakov action in the right sector Eq.~3.8! can be
rewritten as follows:

GWZP52E d3z22
1

~D1Q2!~D2Q1!
$~]Q2!~ ]̄2Hz̄

z]!Q12~]Q1!~ ]̄2Hz̄
z]!Q2%, ~4.1!

where we have used the following identities:

D1@ ]̄Z1Q1]̄Q21Q2]̄Q1#52~ ]̄Q1!~D1Q2!,

D2@ ]̄Z1Q1]̄Q21Q2]̄Q1#52~ ]̄Q2!~D2Q1! ~4.2!

which proceed from Eq.~3.10!. Note that if we want to take into account the connection of the
U~1! symmetry one has to covariantize the derivatives]̄Q1 and ]̄Q2 namely

]̄Q6→~ ]̄6Az̄!Q
6. ~4.3!

Therefore, the expression~4.1! becomes

GWZP52E d3z22
1

~D1Q2!~D2Q1!
$~]Q2!~ ]̄1Az̄2Hz̄

z]!Q12~]Q1!~ ]̄2Az̄2Hz̄
z]!Q2%

~4.4!

and its BRST variation allows to obtain in addition to Eq.~3.17! the contribution of the U~1!
gauge anomaly.

The Ward-identity operator acting on the generating functional is given in the right sector by

B~l•]!5E d3z22dlHz̄
z d

dHz̄
z ~4.5!

with dlHz̄
z the BRST variation~2.62.1! where the ghost superfieldsSz, Su6

are replaced by the
superparametersla(a5z,u6). The anomalous Ward-identity which is given in the right sector by

B~l•]!Zc@Hz̄
z#aA~lz,Hz̄

z! ~4.6!

takes the explicit form
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E d3z22@~ ]̄2Hz̄
z]!lz22~Hz̄

u2

lu1
1Hz̄

u1

lu2
!1lz]Hz̄

z#
dZc@Hz̄

z#

dHz̄
z 5kE d3z22lz]@D2,D1#Hz̄

z

~4.7!

which is equivalent to

F ]̄2Hz̄
z]1

1

2
~D2Hz̄

z!D11
1

2
~D2Hz̄

z!D22]Hz̄
zG dZc@Hz̄

z#

dHz̄
z 5k]@D2,D1#Hz̄

z , ~4.8!

where k is an arbitrary constant. Furthermore, as for the bosonic andN51 supersymmetric
cases17~d! we define the following~2,0! superspace identity

2Pd22
3 ~Z1 ,Z2!5

]̄2

h
@D1,D2# ln@Z12,z̄12# ~4.9!

which contains the ordinary distributional relation,Z12 and z̄12 are defined by

Z125z12z22u1
1u2

22u1
2u2

1 , z̄125 z̄12 z̄2 ~4.10!

and

d 22
3 ~Z1 ,Z2!5d2~z12z2!~u1

12u2
1!~u1

22u2
2!

Therefore, multiplying Eq.~4.8! by ]̄/h[D1,D2] ln[ Z12• z̄12] and after integrating we obtain

p

2

dZc
dHz̄

z~Z2!
5E d3z1

22Hz̄
zH Uu121 u12

2

Z12
]1

u12
1 u12

2

Z12
2 1

u12
1

2Z12
D22

u12
2

2Z12
D1U dZc

dHz̄
z1

2k

Z12
2 J .

~4.11!

Then a second derivation of this expression with respect toHz̄
z leads to

p

2

d2Zc
dHz̄

z~Z1!dHz̄
z~Z2!

U
H
z̄
z
50

5
2k

Z12
2 1Uu121 u12

2

Z12
2 1

u12
1 u12

2

Z12
]1

u12
1

2Z12
D22

u12
2

2Z12
D1U dZc

dHz̄
zU
H
z̄
z
50

.

~4.12!

The variation of the generating functionalZc with respect to the super Beltrami variableHz̄
z gives

rise9 to the following ~2,0! superstress energy tensor:

Tz~Z1!5
dZc

dHz̄
z~Z1!

~4.13!

and consequently, Eq.~4.12! is nothing but the operator product expansion of the~2,0! superstress
energy tensorTz ~Refs. 21 and 19! namely

Tz~Z1!Tz~Z2!5
c

2Z12
2 1Uu121 u12

2

Z12
2 1

u12
1 u12

2

Z12
]1

u12
1

2Z12
D22

u12
2

2Z12
D1UTz~Z2!1regular terms,

~4.14!
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wherec is the central charge of theN52 superconformal algebra. Finally, we note that if we

consider the dependence of the generated functional with respect toHz̄
u6

instead ofHz̄
z and we

reexpress the~2,0! superconformal anomaly in terms ofSu6
andHz̄

u6

by the use of Eqs.~2.49.1!
and ~3.18! we obtain anomalous Ward-identities which contain variations ofZc with respect to

Hz̄
u6

. These latter lead in the same way to the operator product expansions of the following
spinorial superstress energy tensor:9

Tu65
dZc

dHz̄
u6

V. CONCLUSION

In this article we have derived the~2,0! superconformal transformations of the conformal
factors, the super Beltrami variables and their corresponding ghost superfields. We have seen that
the choicesHu6

z
5 0 fixed in Refs. 8 and 9 are invariant under the change of the reference

coordinate and simplify all the other super Beltrami variable transformations as in theN51

supersymmetric case. Therefore, the transformations ofHu6
u6

andHu6
u7

become homogeneous. The
BRST variations of the super Beltrami variables are obtained. We remark that these correspond to
only superdiffeomorphism transformations. In order to recover the complete BRST transforma-
tions given in Refs. 8 and 9 in which the U~1! symmetry is apparent, we have to covariantize the
derivatives acting on fermionic objects having1 and2U~1! charges with respect to the U~1!
connection. This latter is necessary in order to close the multiplet of the super Beltrami variables.
Furthermore, the Wess–Zumino–Polyakov action is extended to the~2,0! supersymmetric case for
the convenient choicesHu6

z
5 0. The BRST variation of this action leads to the~2,0! superconfor-

mal anomaly. ForHu1
u1

5 1 5 Hu2
u2

we recover the gauge choice of the Polyakov’s chiral gauge
action. Finally, we remark that the use of anomalous Ward-identity in the right sector of the~2,0!
superspace allows to deduce the known operator product expansion of theN52 superconformal
theory.

ACKNOWLEDGMENTS

The author would like to thank Professor Abdus Salam, the International Atomic Energy
Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste.

1D. Friedan, S. Shenker, and E. Martinec, Nucl. Phys. B271, 93 ~1986!; A. A. Belavin and V. G. Knizhnik, Phys. Lett. B
168, 201~1986!; G. Moore, J. Harris, P. Nelson, and I. Singer,ibid. 178, 167~1986!; E. Martinec, Nucl. Phys. B281, 157
~1987!.

2S. Randjbar-Daemi and J. Strathdee, Lectures, High Energy Physics and Cosmology, ICTP, Trieste, 1989, SMR, 396-1.
3C. Becchi, Nucl. Phys. B304, 513 ~1988!; L. Baulieu and M. Bellon, Phys. Lett. B196, 142 ~1987!.
4L. Bers,Riemann Surfaces, Lecture Note B39~New York University Press, Courant Institute of Mathematical Sciences,
1958!; O. Lehto,Univalent Functions and Teichmu¨ller Spaces~Graduate texts in Mathematics 109! ~Berlin, Springer,
1987!.

5D. Friedan, E. Martinec, and S. Shenker, Nucl. Phys. B271, 93 ~1986!; A. Belavin and V. Knizhnik, Phys. Lett. B168,
201 ~1986!; A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B241, 33 ~1984!.

6S. J. Gates and F. Gieres, Nucl. Phys. B320, 310 ~1989!.
7L. Baulieu, M. Bellon, and R. Grimm, Phys. Lett. B198, 343 ~1987!; R. Grimm, Nucl. Phys. B5, 137 ~1988!; L.
Baulieu, M. Bellon, and R. Grimm,ibid. 321, 697 ~1989!; R. Grimm, Ann. Phys. NY200, 49 ~1990!.
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In this paper, by using the multiscale operator and based on the Beylkin’s formula
@J. Math. Phys.26, 99–108~1985!#, the inversion method of velocity singularities
is presented, and by applying the multiscale operator to upward scattered data
represented by the Kirchhoff approximation, the multiscale imaging formula is
shown. For the band-limited inverse problem, based on the multiscale imaging
formula in this paper, the behavior of the velocity singularities can be analyzed
across the multiscale and the formula to reconstruct the velocity is obtained from
the output of the multiscale operator interpreted in the terms of the Kirchhoff-
approximate data. Particularly, at wide offset and even postcritical case, for the
full-band input data, the same result with Beylkin’s in the above reference about the
velocity discontinuities is obtained. Our method in this paper can suppress the
effects of the noise in the real world data and analyze the effect produced by
band-limited input data. ©1996 American Institute of Physics.@S0022-
2488~96!02601-5#

I. INTRODUCTION

Beylkin presented a theory for asymptotic inversion of observation for the constant-density
acoustic wave equation.1 It allows for a completely general background sound speed in the inverse
problem, as well as an assortment of possible source–receiver configurations broad enough to
accommodate most of the cases of interest in seismic exploration and other applications. Thus, for
the full-band inverse problem his method provides a unified inversion theory for all source–
receiver configurations used in practice. However, in practice, the input data are band limited. To
solve the band-limited inverse problems, Bleistein and his colleague have done a lot of investiga-
tions in Refs. 2 and 3 based on Beylkin’s formula. The inversion operatorb(x) was introduced,
and by using the velocity singularities, the authors have shown thatb(x) is a band-limited delta
function on the interior surface, for the band-limited input data. From Refs. 2 and 3 we know that
the small parameter constraint of the Born approximation in Ref. 1 can be at least partially
eliminated by applying Bleistein’s methods.

Despite the fundamental significance of Bleistein’s results, further analysis is necessary. Be-
cause the inversion operatorb(x) is a generalization of the derivative operator]a(z)/]z in Ref.
4, b(x) is highly sensitive to the noise in real world data. On other hand, the inversion operator
b(x), which is a band-limited delta function on the reflector, would be affected by the band-
limited data. Hence, for the band-limited inverse problem, it is necessary to develop some new
inverse methods which can suppress the noise and can analyze the effect.

Until recently, the Fourier transform was the main mathematical tool for singularity detection.
The Fourier transform is global and provides a description of overall regularity of functions, but it
is not well adapted for finding the location and the spatial distribution of singularities. However,
based on the wavelet theory,5 the multiscale operator in this paper is proposed. It is adapted for
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finding the location and the spatial distribution of velocity singularities for the band-limited in-
verse problem. In this paper, a new inversion method for velocity singularities using multiscale
operators is presented. For the band-limited inverse problem, the multiscale image formula for
velocity singularities is given by applying the multiscale operator to upward scattered data repre-
sented by the Kirchhoff approximation. Based on the multiscale imaging formula, we can analyze
the behavior of velocity singularities across multiscales. Particularly, at wide offset and even
postcritical case, for the full-band imput data, we can obtain the same results as Beylkin’s in Ref.
1 about the velocity discontinuities. Furthermore, our inversion method can suppress the effects of
the noise in real world data and analyze the effect produced by band-limited input data.

This paper is motivated by Beylkin~Ref. 1! and Mallat~Ref. 5!.

II. IMAGING OF VELOCITY SINGULARITIES WITH MULTISCALE OPERATOR

The Beylkin ~Ref. 1! inversion formula in 3-D is

a~x!5E dvE E
V

d2jB~x,j!exp$2 ivw~x,j!%us~xg ,xs ,v!, ~1!

where

B~x,j!5
1

8p3

uh~x,j!uc2~x!

a~x,j!
, ~2!

h~x,j!5detF“xw~x,j!

]

]j1
“xw~x,j!

]

]j2
“xw~x,j!

G , ~3!

w~x,j!5t„x,xs~j!…1t„xg~j!,x…, ~4!

a~x,j!5A„x,xs~j!…A„xg~j!,x…. ~5!

At this pointA andt are the 3-D amplitude and phase of the WKB Green’s function, but with
initial points being either the source pointxs or the receiver pointxg , both of which are param-
etrized byj5~j1,j2! on the datum surfaceV, i.e.,

xs5xs~j1 ,j2!, xg5xg~j1 ,j2!. ~6!

Herea(x) is the perturbation correction to the given reference velocityc(x), with the total
velocity v(x) being given by

1

v2~x!
5

1

c2~x!
@11a~x!#. ~7!

Hereus(xg ,xs ,v) denotes the observed data atxg due to the source atxs .
To consider the important question, that of limited bandwidth, we modify the formula~1! as

a~x!5E F~v!dvE E
V

d2jB~x,j! exp$2 ivw~x,j!%us~xg ,xs ,v!. ~8!
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The domain of integration inv is limited by the symmetric filterF~v!.
We take as the symmetric filterF~v! the following

F~v!5 H1, vP~v0 ,v1! or ~2v1 ,2v0!,
0, otherwise, ~9!

wherev1.v0.0.
In Ref. 1, only for the full-bandwidth case, Beylkin showed that the discontinuities of the

functiona(x) in ~1! are located at the reflectors in the earth. In Refs. 2 and 3, Bleistein introduced
a new inversion operatorb(x) and showed thatb(x) is a band-limited delta function for the
band-limited case. What then is the effect of bandlimiting on the functiona(x) in ~8!? It is still
unclear from Beylkin’s results1 and Bleistein’s results.2,3 In this paper, by choosing a multiscale
function c(x), we obtain the imaging formula of a velocity singularity, for the band-limited
inversion problem~8!. This imaging formula shows the effect of band limiting ona(x) very
clearly.

We call a three-dimensional smoothing function, any function whose triple integral is nonzero.
We define three functions which are, respectively, the partial derivatives alongx1, x2, andx3 of a
three-dimensional smoothing functionu(x1 ,x2 ,x3):

ck~x!5
]u~x!

]xk
, ~10!

wherek51, 2, 3, andx5(x1 ,x2 ,x3).
Let us(x)51/s3u(x/s) andcs

k(x)5(1/s3)ck(x/s). The multiscale transforms are given by

Ws
ka~x!5~a*cs

k!~x!5s
]

]xk
~a* us!~x!, ~11!

in which ‘‘ * ’’ is the convolution operator ands is the multiscale.
Under the scales, the three-dimensional multiscale operatorW is given by

Wsa~x!5FWs
1a~x!

Ws
1a~x!

Ws
1a~x!

G5sF ]

]x1
~a* us!~x!

]

]x2
~a* us!~x!

]

]x3
~a* us!~x!

G5s“~a* us!~x!, ~12!

where ‘‘“’’ is gradient operator.
In this paper, we chooseu(x) equal to a Gaussian, i.e.,

u~x!5
1

2pA2p
expS 2

x1
21x2

21x3
2

2 D . ~13!

Now we assume that the upward-scattered responseus(xg ,xs ,v) in ~8! arises from a single
reflectorS. Then, we use the Kirchhoff approximation which can be found in Ref. 3 to represent
those data, for example. In the notation used here, the result is

us~xg ,xr ,v!' ivE E
S

R~ x̄,xs!a~ x̄,j!n̂•“ x̄w~ x̄,j!exp$ ivw~ x̄,j!%dS. ~14!
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In this equation,w~x̄,j! anda( x̄,j) are defined by~4! and ~5!, respectively:R( x̄,xs) is the geo-
metrical optics reflection coefficient

R~ x̄,xs!5

U ]

]n
t~ x̄,xs!U2H 1/c1

2 ~ x̄!21/c2~ x̄!1F ]

]n
t~ x̄,xs!G2J 1/2

U ]

]n
t~ x̄,xs!U1H 1/c1

2 ~ x̄!21/c2~ x̄!1F ]

]n
t~ x̄,xs!G2J 1/2. ~15!

The unit normaln̂ points upward and]/]n5n̂•, x̄ ; c1(x) is the propagation speed below the
reflector. The surfaceS is described parametrically in terms of two parameters~s1,s2! by an
equation of the formx̄5 x̄~s!, s5~s1,s2!. In terms of these parameters,dS5 Ag ds1 ds2 . Equa-
tion ~14! is to be substituted into~8!. By using the stationary phase method, exactly as in~14!,
~15!, and~18! in Ref. 3, forx near the reflectorS we obtain

a~x!'2R~ x̄,xs!
a~ x̄,xs!

a~x,xs!

uh~x,j!u

Adet@Fj,s#
n̂

•“ x̄w~ x̄,j!c2~x!Ag
1

2p E F~v!
1

iv
exp$ ivF~x,x̄,j!%dv, ~16!

in which

F~x,x̄,j!5w~ x̄,j!2w~x,j!, ~17!

g5U ] x̄

]s1
3

] x̄

]s2
U25UdetF ] x̄

]sk
•

] x̄

]sm
GU, k,m51,2, ~18!

@Fj,s#5F ]2F

]jk]jm

]2F

]jk]sm

]2F

]jk]sm

]2F

]sk]sm

G , k,m51,2. ~19!

By Ref. 3, we obtain the following equation:

F~x,x̄,j!50, only for x on surfaceS. ~20!

Now we apply the multiscale operatorW in ~13! to a(x) in ~16!, we obtain the following
results, and the proof will be found in Sec. III.

Theorem 1: For the band-limited inverse problem~8!, if x is near to surfaceS, then

uWsa~x!u'
8suR~ x̄,xs!u

pc~ x̄!
cos3 u expS 2

b2

4aDU Ev0

v1
exp~2av2!dv1z~a,b,v0 ,v1!U. ~21!

In this equation,a52s2 cos2 u/c2( x̄), b5F(x,x̄,j), u is the angle between the upward normal to
the surfaceS and the incident and reflected rays on the surfaceS, andz(a,b,v0 ,v1) satisfies the
following inequality:

UexpS 2
b2

4aD z~a,b,v0 ,v1!U< 1

a
@exp~2av1

2!1exp~2av0
2!# expH 2

~b22t0
2!

4a J , ~22!

in which t0P~0,b! asb.0, or t0P~b,0! asb,0, andz(a,b,v0 ,v1)50 asb50.
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Based on~20!–~22!, the following corollary holds.
Corollary 1: If x is on the surfaceS, then the value ofuWsa(x)u is maximal, and

maxuWsa~x!u'
8suR~ x̄,xs!u

pc~ x̄!
cos3 uE

v0

v1
exp~2av2!dv. ~23!

Especially at wide offset and even postcritical case, for the full-band input data, i.e., as
v0→01 andv1→1`, from inequality~22! we have

expS 2
b2

4aD z~a,b,v0 ,v1!→0 ~24!

and

E
v0

v1
exp~2av2!dv5E

2`

`

exp~2av2!dv5Ap

a
5

c~ x̄!

&s cosu
. ~25!

So, we have the second corollary.
Corollary 2: At wide offset and even postcritical case, from the full-band input data, then

uWsa~x!u'
8uR~ x̄,xs!u

A2p
cos2 u expS 2

b2

4aD ~26!

and forx on surfaceS

maxuWsa~x!u'
8uR~ x̄,xs!u

A2p
cos2 u. ~27!

Remark (i):From ~21!, by detecting the maxima ofuWsa(x)u, we obtain a reconstruction
algorithm for the band-limited inverse problem. The approximation in~21! not only reconstructs
the place, where the gradient ofa(x) is large, for the band-limited inverse problem, but also shows
the effect of the band-limited nature of the input data very clearly. Particularly, at wide offset and
even postcritical case, for the full-band input data, the Corollary 2 shows that the effect of the
band-limited nature disappears. In this sense the formula in~26! provides an algorithm for imaging
the discontinuities of the functiona(x).

Remark (ii):Based on Theorem 1, we can detect the velocity singularities to the band-limited
inverse problem with the multiscale transform, and then we get the information on the differences
between the velocity singularities and the noise singularities. On this information, we can easily
suppress the effect of the noise from the imaging of the velocity singularities, by analyzing the
behavior of the multiscale operator maxima across scaless. The detail discussion will be found in
Sec. IV.

III. ASYMPTOTIC INVERSION

Bleistein in Ref. 3 showed that

n̂•“ x̄w~ x̄,j!52
2 cosu

c~ x̄!
, ~28!

u¹ x̄w~ x̄,j!u5
2 cosu

c~ x̄!
, ~29!
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andx on surfaceS

uh~x,j!u

Audet@Fj,s#
Ag5

2 cosu

c~x!
. ~30!

Let the reference velocityc(x) in ~7! be a continuous function and all the singularities of the total
velocity v(x) be contained in functiona(x). In ~16!, define

I ~x!5
1

p E F~v!
1

iv
exp$ ivF~x,x̄,j!%dv. ~31!

Based on~28!–~31!, from ~16! we know thata(x) is equal toI (x) multiplied by ‘‘a slowly
varying function,’’ i.e.,

a~x!'2R~ x̄,xs! cos
2 uI ~x!, for x near enough to surfaceS. ~32!

Applying the multiscale operatorW in ~13! to a(x) in ~32!, we obtain

Wsa~x!'2R~ x̄,xs!cos
2 uWsI ~x!. ~33!

In ~31!, we expand the phase functionF(x,x̄,j) into Taylor’s series about the pointx5 x̄.
Saving the first two terms of the Taylor’s series ofF(x,x̄,j),

F~x,x̄,j!'F~x,x̄,j!ux5 x̄1¹xF~x,x̄,j!ux5 x̄•~x2 x̄!1••• , ~34!

and, using~20!, we find that

F~x,x̄,j!'“xF~x,x̄,j!ux5 x̄•~x2 x̄!'2¹xw~x,j!ux5 x̄•~x2 x̄!, ~35!

and

I ~x!'
1

p E F~v!
1

iv
exp$2 iv“xw~x,j!ux5 x̄•~x2 x̄%dv. ~36!

Next, let us calculate theWsI (x). First, we calculateWs
kI (x). From ~10!, ~11!, and~13!

Ws
kI~x!5s

]

]xk
~ I * ux!~x!

52
s

2p2A2p
¹xk

w~x,j!U
x5 x̄

3E F~v!dvE
2`

`

exp$ iv¹xw~x,j!u x5 x̄•@y2~x2 x̄!#%
1

s3

3expH 2
y1
21y2

21y3
2

2s2 J dy1dy2dy3 . ~37!

By using the formula
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E
2`

`

exp~ ivx2x2/2!dx5~2p!1/2 exp~2v2/2!, ~38!

from ~37! we obtain

Ws
kI ~x!52

s

p
¹xk

w~x,j!ux5 x̄E F~v! exp~2av21 ibv!dv, ~39!

in which a52s2 cos2 u/c2( x̄), and

b52“xw~x,j!ux5 x̄•~x2 x̄!'F~x,x̄,j!.

Define

z1~b!5E F~v! exp~2av2! cos~bv!dv, ~40!

z2~b!5E F~v! exp~2av2! sin~bv!dv. ~41!

From Eq.~9! we obtain

z1~b!52E
v0

v1
exp~2av2! cos~bv!dv, z2~b!50.

Since

dz1~b!

db
52

b

a
z1~b!1

1

a
@exp~2av1

2!sin bv12exp~2av0
2! sin bv0#, ~42!

one obtains

z1~b!52 expS 2
b2

4aD H Ev0

v1
exp~2av2!dv1E

0

b

@exp~2av1
2! sin tv1

2exp~2av0
2!sin tv0#

1

2a
expS t2

4aD dtJ . ~43!

Substituting~43! into ~39! one obtains

Ws
kI ~x!52

2s

p
“xk

w~x,j!ux5 x̄ expS 2
b2

4aD F Ev0

v1
exp~2av2!dv1z~a,b,v0 ,v1!G , ~44!

where

z~a,b,v0 ,v1!5E
0

b

@exp~2av1
2! sin tv12exp~2av0

2! sin tv0#expS t2

4aDdt. ~45!

It is easy to check thatz(a,b,v0 ,v1) satisfies the following inequality:

UexpS 2
b2

4aD z~a,b,v0 ,v1!U< 1

a
@exp~2av1

2!1exp~2av0
2!# expH 2

b22t0
2

4a J , ~46!
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wheret0P~0,b! for b.0, t0P~b,0! for b,0, andz(a,b,v0 ,v1)50 for b50.
From ~12!, one obtains

uWsI ~x!u5AuWs
1I ~x!u21uWs

2I ~x!u21uWs
3I ~x!u2. ~47!

Substituting~44! into ~47!, we have

uWsI ~x!u5
2s

p
u¹xw~x,j!ux5 x̄uexpS 2

b2

4aDU Ev0

v1
exp~2av2!dv1z~a,b,v0 ,v1!U. ~48!

Furthermore, by~29!, one obtains

uWsI ~x!u5
4s cosu

pc~ x̄!
expS 2

b2

4aDU Ev0

v1
exp~2av2!dv1z~a,b,v0 ,v1!U. ~49!

Substituting~49! into ~33!, we have

uWsa~x!u'
8suR~ x̄,xs!u

pc~ x̄!
cos3 u expS 2

b2

4aDU Ev0

v1
exp~2av2!dv1z~a,b,v0 ,v1!U. ~50!

This equation shows that Eq.~21! in Theorem 1 is true.

IV. THE RECONSTRUCTION OF THE VELOCITY FUNCTION

By the above analyses, we can calculate the approximate value ofWsa(x) from the input data
us(xg ,xs ,v). Now, let us explain how to determine the velocityc1(x) below the surfaceS. Based
on ~23!, in order to reconstructc1(x), first we have to determine the value ofu. Similar to~9!, let
us define a multiscale filterF1~v! as follows:

F1~v!5H exp~2s0
2v2!, vP~v0 ,v1! or vP~2v1 ,2v0!,

0, otherwise
, ~51!

wherev1.v0.0 ands0 is a parameter to be chosen.
Using the filterF1~v! to replaceF~v! in ~8!, similar to ~32! we obtain

a~x!'2R~ x̄,xs! cos
2 uI s0~x!, ~52!

for x near enough to surfaceS.
Here

I s0~x!5
1

p E 1

iv
exp$2s0

2v21 ivF~x,x̄,j!%dv. ~53!

Define

W̄s0
a~x!52R~ x̄,xs!cos

2 u“xI s0~x!. ~54!

Similar to the proof of~50!, for x near toS we obtain

uW̄s0
a~x!u'

8R~ x̄,xs!

pc~ x̄!
cos3 u expS 2

b2

4s0
D F E

v0

v1
exp~2s0

2v2!dv1z~s0 ,b,v0 ,v1!G ~55!

in which b5F(x,x̄,j) andz(s0 ,b,v0 ,v1) is given in ~45!, s0
2 being in the place ofa.
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Note that in deriving~55! from ~54! we have not used the linearization of phaseF, but we
have used the exact phase.

Thus, by~55!,

maxuW̄s0
a~x!u'

8uR~ x̄,xs!u
pc~ x̄!

cos3 uE
v0

v1
exp~2s0

2v2!dv. ~56!

From ~23!, ~56!, and noting thata52s2 cos2 u/c2( x̄) in ~23!, we obtain

maxuWsa~x!u

maxuW̄s0
a~x!u

'
s*v0

v1 exp$22s2v2 cos2 u/c2~ x̄!%dv

*v0

v1 exp$2s0
2v2%dv

. ~57!

Based on~57!, from maxuWsa(x)u and maxuW̄s0
a(x)u we can determine cosu. In fact,

cos2 u

c2~ x̄!
'

s0
2

2s2
2

1

2s2v1
2
ln

maxuWsa~x!u

s maxuW̄s0
a~x!u

. ~58!

After cosu has been determined, we can use~23! or ~56! to calculateR( x̄,xs). That is to say, from
input dataus(xg ,xs ,v) we can calculateuWsa(x)u anduW̄s0

a(x)u, and then determine the values
of cosu andR( x̄,xs).

Next, let us reconstruct the velocityc1 below the surfaceS. Under the stationary conditions
~see Ref. 3!, one obtains

]t~ x̄,xs!

]n
5
cosu

c~ x̄!
.

Hence,~15! can be rewritten as

R~ x̄,xs!5

cosu

c~ x̄!
2F 1

c1
2 ~ x̄!

2
sin2 u

c2~ x̄! G1/2
cosu

c~ x̄!
1F 1

c1
2 ~ x̄!

2
sin2 u

c2~ x̄! G1/2
. ~59!

From ~59!, c1( x̄) can easily be expressed as

c1~ x̄!5
c~ x̄!

A124R cos2 u/~11R!2
. ~60!

V. CHARACTERIZATION OF VELOCITY SINGULARITY

To map more precisely the location of the reflector surface, it is useful to analyze the velocity
singularity for the band-limited inverse problem. In mathematics, singularities are generally char-
acterized by their Lipschitz exponents.

Definition 1: Let 0<g<1. A function f (x) is Lipschitzg at x0 if and only if there exists a
constantk such that for allx in a neighborhood ofx0, we have

u f ~x!2 f ~x0!u<kux2x0ur . ~61!

The functionf (x) is uniformly Lipschitzg over an open interval (a,b) if and only if there
exists a constantk such that~61! holds for anyx, x0P(a,b).
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According to the Definition 1, iff (x) is continuously differentiable atx0, then it is Lipschitz
g51. If f (x) is discontinuous but bounded atx0, for example,f (x) is a step function atx0, then
its Lipschitz exponentg50.

In three dimensions, Lipschitz exponents are defined with a simple extension of Definition 1.
Let 0<g<1 andxPR3. A function f (x) is said to be Lipschitzg at a given pointx0PR3, if and
only if there existsd.0 as well ask.0 such that for anyxPU(x0 ,d)5$xuxPR3,ux2x0u,d%,

u f ~x!2 f ~x0!u<kdg. ~62!

If there exists a constantk such that~62! is satisfied for any pointsx0 andx within an open set of
R3, the functionf (x) is uniformly Lipschitzg over this open set.

From ~12!, the modulus of the multiscale operator at the scales can be defined by

uWsa~x!u5AuWs
1a~x!u21uWs

2a~x!u21uWs
3a~x!u2. ~63!

Based on~64!, Jaffard’s result in Ref. 6 can be extended as follows. Suppose that the wavelet
cj (x), j51,2,3, are continuously differentiable anduc j (x)u50„1/~11uxu2!…, as uxu→`. Then we
have the following lemma.

Lemma 1:Let 0,g,1 and f (x)PL2(R3). A function f (x) is uniformly Lipschitzg over an
open setA of R3 if and only if there exists a constantB.0 such that for allxPA, the modulus of
the wavelet operator satisfies

uWsf ~x!u<Bsg. ~64!

The proof of this lemma is a simple extension of the proof of the Jaffard’s result in Ref. 6.
Lemma 1 characterizes uniform Lipschitz exponents over an open set but not pointwise

Lipschitz exponents. To study isolated singularities, however, according to Mallat’s view in Ref. 5,
Lemma 1 is sufficient. We shall say that a function has an isolated singularity asx0 if there exists
a neighborhoodU(x0 ,d) of x0, where the worst singularity is atx0. In other words, the uniform
Lipschitz regularity of the function overU(x0 ,d) is equal to the pointwise Lipschitz regularity at
x0.

Based on~22! in Theorem 1,~23! in Corollary 1, and~64! in Lemma 1, we obtain the
following theorem.

Theorem 2: For the band-limited inverse problem~8!, on the surfaceS in the Earth, the
Lipschitz exponentg of a(x) is not less than zero.

Particularly, at wide offset and even postcritical case, for the full band case by~26! and~27!
in Corollary 2, and~64! in Lemma 1, we know that the Lipschitz exponentg of a(x) is equal to
zero on the surfaceS in the Earth. Hence, we have the following corollary.

Corollary 3:At wide offset and even postcritical case, for the full band case, the functiona(x)
is a step function and its discontinuity is on the surfaceS.

Theorem 2 and Corollary 3 show clearly the characterization of the velocity singularity,
respectively, for band-limited and full-band input data. Using this information about the velocity
singularity, we can easily suppress the effect of noise in real world data.

Because there always exists noise in the observed data, it is important to find a velocity
inversion method which can suppress the noise.

First, let us consider the effects of noise in the data. Suppose thatus(xg ,xs ,v) in ~8! is
affected byn̂~v! and the observed data becomesus(xg ,xs ,v)1n̂(v); here n̂~v! is the Fourier
transform of the noisen(t). Then, the functiona(x) in ~8! correspondingly becomesā(x), that is

ā~x!5a~x!1n1~x!. ~65!

In this equation,
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n1~x!5E F~v!dvE E
V

d2jB~x,j! exp$2 ivw~x,j!%n̂~v!. ~66!

Equation~66! implies that the noise in the observed data should affect the functiona(x) in ~8!. If
n(t) is real wide sense stationary white noise, by using the methods provided by Mallat in Ref. 5
we can calculate the Lipschitz exponentg of n1(x) in ~66!. For a few special cases~for example,
for the zero offset constant background case!, we have known that the Lipschitz exponentg of
n1(x) in ~66! is less than zero. That is to say, there exists a constantB1 such that

uWsn1~x!u<B1s
g. ~67!

In this equation,g is less than zero.
Therefore, if we apply the wavelet operatorW to ~65!, we obtain

Wsā5Wsa~x!1Wsn1~x!. ~68!

Inequality ~67! implies thatuWsn1(x)u should decrease when the scales increases. On the
other hand, by Theorem 2 and Lemma 1, the amplitude ofuWsa(x)u should decrease only when
the scales decreases. This means theuWsa(x)u should increase or remain constant when the scale
s increases. Hence, we can take advantage of the spatial coherence of the image of the velocity
singular structure to suppress the effects of noise in observed data when the scales increase.

VI. EXAMPLE AND DISCUSSION

Suppose surfaceS is a tilted plane and its equation is

x1 sin m cosn1x2 sin m sin n1x3 cosn2h cosn50, ~69!

with speedc(x)[c0 above the plane, and speedc1(x)[c1 below the plane. Letj5~j1,j2,0! be
a point on the Earth surface. Suppose a unit impulse is set off at the Earth surface. About this
model, for the constant background~i.e., c(x)[c0! and zero-offset~i.e., xs[xg , this implies
cosu[1!, a(x) in ~32! can be expressed as follows:

a~x!5
2R

p E F~v!d~v!
1

iv
exp$2iv@~2x1 cosn2x2 sin n!sin m1~h2x3!cosn#/c0%.

HereR5(c12c0)/(c11c0).
One obtains

uWsa~x!u5
8sR

pc0
expH 2

b2

4a J U E
v0

v1
exp~2av2!dv1z~a,b,v0 ,v1!U. ~70!

Herea52s2/c0 , b52@~2x1 cosn2x2 sinn! sinm1~h2x3! cosn#/c0, andz(a,b,v0 ,v1) sat-
isfies ~45! and ~46!.

By ~70!, we can easily show that

maxuWsa~x!u5
8sR

pc0
E

v1

v0
exp~2av2!dv,

if and only if b50.
This implies that only for the pointx5(x1 ,x2 ,x3) on the tilted planeS is the value of

uWsa(x)u maximum.

729Song, Qu, and He: Imaging of velocity with multiscale operators

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Here we simply describe the numerical procedure to calculateWsa(x).

~1! By use of fast Fourier transform and the inverse Fourier transform, the calculations ofa(x)
can be carried out from the input dataus(j,t). The details can be found, for instance, in Ref.
7.

~2! By use of fast wavelet transform, which can be found in Ref. 5 or Ref. 8, we can calculate
Wsa(x).

~3! Choose the maximum ofuWsa(x)u to detect the location of the reflector surface.

In ~69!, let m530°, n50, h52000 m,c054500 m/s, andc155500 m/s. Figure 1 shows that
the image of the reflector plane produced by maxuWsa(x)u corresponds to the planeS correctly.
Furthermore, we add the real white noise to input dataus(j,t) and the peak amplitude of the noise
is three-fifths of the peak amplitude of the signal. The image produced by]a/]n is shown in Fig.
2. The effects of the noise in Fig. 2 are apparent, and we cannot know the location of the planar

FIG. 1. A 6–50-Hz bandwidth representation ofuWsa(x)u, scales521.

FIG. 2. Adding real white noise to input data, a 6–50-Hz bandwidth depth section determined by]a/]n.
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reflector nor how many reflectors there are. However, in Fig. 3~a!–3~c!, the images produced by
uWsa(x)u are far more desirable. As the scales increases, the image of the reflector becomes
progressively cleaner. However, the scales should stay in a suitable range for seismic data
because of spatial resolution being lost for increasing scale. Detailed analysis of how to choose the
scales can be found in Ref. 8. Here we give an example only to demonstrate the effectiveness of
the results in this paper.

ACKNOWLEDGMENTS

This paper is also motivated by Bleistein’s lecture~1992! at Shandong University of the
People’s Republic of China. The authors wish to thank Professor N. Bleistein for his help. Here,
the authors are very grateful to the referees for their helpful suggestions.

This work was supported by IET foundation for young teachers. This works was also sup-
ported by science foundation of Hunan Province.

1G. Beylkin, ‘‘Imaging of discontinuities in inverse scattering problems by inversion of a causal generalized Radon
transform,’’ J. Math. Physics.26, 99–108~1985!.

2N. Bleistein, J. K. Cohen, and F. G. Hagin, ‘‘Two-and-one-half dimensional Born inversion with an arbitrary reference,’’
Geophysics52, 26–36~1987!.

3N. Bleistein, ‘‘On the imaging of reflectors in the earth,’’ Geophysics52, 931–942~1987!.
4J. K. Cohen and N. Bleistein, ‘‘Velocity inversion procedure for acoustic waves,’’ Geophysics44, 1077–1085~1979!.
5S. Mallat and W. L. Hwang, ‘‘Singularity detection and processing with wavelets,’’ IEEE Trans. Inform. Theory.38,
617–643~1992!.

6S. Jaffard, ‘‘Pointwise smoothness, two microlocalization and wavelet coefficients,’’ Publ. Math.35, 155–168~1991!.
7N. Bleistein, J. K. Cohen, and F. G. Hagin, ‘‘Computational and asymptotic aspects of velocity inversion,’’ Geophysics
50, 1253–1265~1985!.

8Y. Meyer,Wavelets, Algorithms, and Applications~Philadelphia, 1993!, pp. 101–110.

FIG. 3. ~a!–~c! Adding real white noise to input data, 6–50-Hz bandwidth depth section determined byuWsā(x)u under
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Probabilistic solutions of the so-called Schro¨dinger boundary data problem provide
for a unique Markovian interpolation between any two strictly positive probability
densities designed to form the input–output statistics data for the process taking
place in a finite-time interval. The key issue is to select the jointly continuous in all
variables positive Feynman–Kac kernel, appropriate for the phenomenological
~physical! situation. We extend the existing formulations of the problem to cases
when the kernel isnot a fundamental solution of a parabolic equation, and prove
the existence of a continuous Markovian interpolation in this case. Next, we ana-
lyze the compatibility of this stochastic evolution with the original parabolic dy-
namics, which is assumed to be governed by the temporally adjoint pair of~para-
bolic! partial differential equations, and prove that the pertinent random motion is
a diffusion process. In particular, in conjunction with Born’s statistical interpreta-
tion postulate in quantum theory, we consider stochastic processes which are com-
patible with the Schro¨dinger picture quantum evolution. ©1996 American Insti-
tute of Physics.@S0022-2488~96!00702-9#

I. MOTIVATION: SCHRÖDINGER’S INTERPOLATION PROBLEM THROUGH
FEYNMAN–KAC KERNELS

The issue ofderiving a microscopic dynamics from the~phenomenologically or numerically
motivated, by approximating the frequency distributions! input–output statistics data was ad-
dressed, as the Schro¨dinger problem of a probabilistic interpolation, in a number of
publications.1–10 We shall consider Markovian propagation scenarios so remaining within the
well-established framework, where for any two Borel setsA,B,R on which the respective strictly
positive boundary densitiesr~x,0! andr(x,T) are defined, the transition probabilitym(A,B) from
the setA to the setB in the time intervalT.0 has a density given in a specific factorized form:

m~x,y!5 f ~x!k~x,0,y,T!g~y!, m~A,B!5E
A
dxE

B
dym~x,y!, ~1!

E dym~x,y!5r~x,0!, E dxm~x,y!5r~y,T!.

Here, f (x),g(y) are thea priori unknown functions, which come out as solutions of the
integral ~Schrödinger! system of equations~1!, provided that in addition to the density boundary
data we have in hand any strictly positive, continuous in-space variablesfunction k(x,0,y,T). Our
notation makes explicit the dependence~in general irrelevant! on the time interval endpoints. It
anticipates an important restriction we shall impose, thatk(x,0,y,T) must be a strongly continuous
dynamical semigroup kernel: it will secure the Markov property of the sought after stochastic
process.

It is the major mathematical discovery4 that, without the semigroup assumptionbut with the
prescribed, nonzero boundary datar~x,0!, r(y,T) andwith the strictly positive continuous func-
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tion k(y,0,x,T), the Schro¨dinger system~1! of integral equations admits a unique solution in terms
of two nonzero, locally integrable functionsf (x),g(y) of the same sign~positive, everything is up
to a multiplicative constant!.

If k(y,0,x,T) is a particular, confined to the time interval endpoints, form of a concrete
semigroup kernelk(y,s,x,t),0<s<t,T, let it be a fundamental solution associated with~5!
~whose existencea priori is not granted!, then there exists5,7,8,9,10a functionp(y,s,x,t):

p~y,s,x,t !5k~y,s,x,t !
u~x,t !

u~y,s!
, ~2!

where

u~x,t !5E dyk~x,t,y,T!g~y!, u* ~y,s!5E dxk~x,0,y,s! f ~x! ~3!

which implements a consistent propagation of the densityr(x,t)5u(x,t)u
*
(x,t) between its

boundary versions, according to

r~x,t !5E p~y,s,x,t !r~y,s!dy, 0<s,t<T. ~4!

For a given semigroup which is characterized by its generator~Hamiltonian!, the kernelk(y,s,x,t)
and the emerging transition probability densityp(y,s,x,t) are unique in view of the uniqueness of
solutions f (x),g(y) of ~1!. For Markov processes, the knowledge of the transition probability
densityp(y,s,x,t) for all intermediate times 0<s,t<T suffices for the derivation of all other
relevant characteristics.

In the framework of the Schro¨dinger problem the choice of the integral kernelk( ẏ,0,x,T) is
arbitrary, except for the strict positivity and continuity demand. As long as there is no ‘‘natural’’
physical motivation for its concrete functional form, the problem is abstract and of no direct
physical relevance.

However, in the context of parabolic partial differential equations this ‘‘natural’’ choice is
automatically settled if the Feynman–Kac formula can be utilized to represent solutions. Indeed,
in this case an unambiguous strictly positive semigroup kernel, which is a continuous function of
its arguments, can be introduced for a broad class of~admissible11! potentials. Time-dependent
potentials are here included as well.12,13 Moreover, in Ref. 8 we have discussed a possible phe-
nomenological significance of the Feynman–Kac potentials, as contrasted to the usual identifica-
tion of Smoluchowski drifts with force fields affecting particles~up to a coefficient! in the stan-
dard theory of stochastic diffusion processes.

In the existing probabilistic investigations,5,6,8,9,14based on the exploitation of the Schro¨dinger
problem strategy, it was generally assumed that the kernel actuallyis a fundamental solution of the
parabolic equation. It means that the kernel is a function with continuous derivatives: first order
with respect to time, second order with respect to space variables. Then, the transition probability
density defined by~2! is a fundamental solution of the Fokker–Planck~second Kolmogorov!
equation in the pairx,t of variables, and as such is at the same time a solution of the backward
~first Kolmogorov! equation in the pairy,s. This feature was exploited in Refs. 8 and 9.

There are a number of mathematical subtleties involved in the fundamental solution notion,
since, in this case, the Feynman–Kac kernel must be a solution of the parabolic equation itself. In
general, Feynman–Kac kernels may have granted the existence status, even as continuous
functions,11,13,15but may not be differentiable, and need not be solutions of any conceivable partial
differential equations.
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To our knowledge, this complication in the study of Markovian representations of the Schro¨-
dinger interpolating dynamics~and the quantum Schro¨dinger picture dynamics in particular! has
never been addressed in the literature. Moreover, it is far from being obvious that this Markovian
interpolation actuallyis a diffusion process.

II. SCHRÖDINGER’S INTERPOLATION PROBLEM: GENERAL DERIVATION OF THE
STOCHASTIC EVOLUTION

A. The Schrö dinger system of integral equations

We shall complement our previous analysis8,9 by discussing the issue in more detail. It turns
out the crucial step lies in aproper choice of the strictly positive and continuous function
k(y,s,x,t),s,t, which, if we want to construct a Markov process, has to satisfy the Chapman–
Kolmogorov ~semigroup composition! equation. To proceed generally, let us consider a pair of
partial differential equations for real functionsu(x,t) andv(x,t):

] tu~x,t !5Du~x,t !2c~x,t !u~x,t !,

] tv~x,t !52Dv~x,t !1c~x,t !v~x,t !, ~5!

where we have eliminated all unnecessary dimensional parameters.
Usually,11,15c(x,t) is assumed to be a continuous and bounded-from-below function. We shall

adopt weaker conditions. Namely, let us decomposec(x,t) into a sum of positive and negative
terms: c(x,t)5c1(x,t)2c2(x,t), c6>0, where~a! c2(x,t) is bounded, while~b! c1(x,t) is
bounded on compact sets ofR3[0, T]. It means thatc(x,t) is bounded from below and locally
bounded from above. Clearly,c(x,t) need not be a continuous function and then we encounter
weak solutions of~5! which admit discontinuities.

With the first ~forward! equation~5! we can immediately associate an integral kernel of the
time-dependent semigroup~the exponential operator should be understood as the time-ordered
expression!:

k~y,s,x,t !5FexpS 2E
s

t

H~t!dt D G~y,x!, ~6!

whereH(t)52D1c(t). It is clear that for discontinuousc(x,t), no fundamental solutions are
admitted by~5!.

By the Feynman–Kac formula,12,13we obtain

k~y,s,x,t !5E expF2E
s

t

c„v~t!,t…dtGdm~x,t !
~y,s!~v!, ~7!

wheredm (x,t)
(y,s)~v! is the conditional Wiener measure over sample paths of the standard Brownian

motion.
It is well known thatk is strictly positive in case ofc(x,t), which is continuous and bounded

from below; typical proofs are given under an additional assumption thatc does not depend on
time.15 However, our assumptions aboutc(x,t) were weaker, and to see that nonethelessk is
strictly positive we shall follow the idea of Theorem 3.3.3 in Ref. 15. Namely, the conditional
Wiener measuredm (x,t)

(y,s) can be written as follows

dm~x,t !
~y,s!5@4p~ t2s!#21/2 expF2

~x2y!2

4~ t2s! Gdn~x,t !
~y,s! , ~8!
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wheredn (x,t)
(y,s) is the normalized Wiener measure.11We can always choose a certain numberr.0 to

constrain the event~sample path! set

V~r !5@v:Xs~v!5y,Xt~v!5x,sups<t<tuXt~v!u<r #. ~9!

It comprises these sample trajectories which are bounded byr on the time interval [s, t]. In the
above,Xt(v) is the value taken by the random variableX(t) at time t, while a concretevth path
is sampled. By properly tuningr , we can always achieve

E
V~r !

dn~x,t !
~y,s!>

1

2
, ~10!

which implies that

k~y,s,x,t !>
1

2
@4p~ t2s!#21/2 expF2

~x2y!2

4~ t2s! Gexp@2~ t2s!C#.0,

~11!
C5sups<t<t,vPV~r !c1„Xt~v!,t…,

where, by our assumptions,c1 is bounded on compact sets. Consequently, the kernelk is strictly
positive.

With the Schro¨dinger boundary data problem in mind, we must settle an issue of thecontinuity
of the kernel. To this end, let us invoke a well-known procedure of rescaling of path integrals:11,16

by passing from the ‘‘unscaled’’ sample pathsv(t)-over which the conditional Wiener measure
integrates, to the ‘‘scaled’’ paths of the Brownian bridge, the (y,x) conditioning can be taken away
from the measure. Then, instead of sample pathsv connecting pointsy andx in the time interval
t2s.0, we consider the appropriately ‘‘scaled’’ paths of the Brownian bridgea connecting the
point 0 with 0 again, in the~scaled! time 1. It is possible, in view of the decomposition:11,16

v~t!5S t

t2s
2

t

t2sD y1S t

t2s
2

s

t2sD x1At2saS t

t2s
2

s

t2sD , ~12!

wherea stands for the ‘‘scaled’’ Brownian bridge. Then, we can write

k~y,s,x,t !5@4p~ t2s!#21/2 expF2
~x2y!2

4~ t2s! G E dm~a!

3expF2E
s

t

cS t2t

t2s
y1

t2s

t2s
x1At2saS t2s

t2sD ,t D dtG , ~13!

where dm(a)5dn (0,1)
(0,0)(v) is the normalized Wiener measure integrating with respect to the

‘‘scaled’’ Brownian bridge paths, which begin and terminate at the origin 0 in-between ‘‘scaled
time’’ instants: 0 corresponding tot5s and 1 corresponding tot5t.

This representation ofk, if combined with the assumption thatc(x,t) is a continuous function,
allows us to conclude11 that the kernel is continuous in all variables. However, our previous
assumptions were weaker, and it is instructive to know that through suitable approximation tech-
niques, Theorem B.7.1 in Ref. 13 proves that the kernel is jointly continuous in our case as well.

It is also clear thatk(y,s,x,t) satisfies the Chapman–Kolmogorov composition rule. So, the
first equation~5! can be used to define the Feynman–Kac kernel, appropriate for the Schro¨dinger
problem analysis in terms of a Markov stochastic process.

Let us consider an arbitrary~at the moment! pair of strictly positive, but not necessarily
continuous, boundary densitiesr0(x) andrT(x). By Jamison’s principal theorem

4 there exists a
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unique pair of strictly positive, locally~i.e., on compact sets! integrable functionsf (x) andg(x)
solving the Schro¨dinger system ~1!, e.g., such thatr0(x)5 f (x)*k(x,0,y,T)g(y)dy and
rT(x)5g(x)*k(y,0,x,T) f (y)dy with the kernelk(y,s,x,t) given by ~7!.

Let us define

g~x,t !5E k~x,t,y,T!g~y!dy, f ~x,t !5E k~y,0,x,t ! f ~y!dy. ~14!

The above integrals exist at least for almost everyx so that there appears the problem of the
existence of a unique and continuous transition probability densityp(y,s,x,t) @Eq. ~2!#. We shall
assume that the functiong(y) is bounded at infinity. This means that there exists a constantC.0
and a compact setK,R such thatg(y)<C for all yPR\K. Then, for allt,T and any sequences
hn→0, sn→0, asn→` we obtain~lim stands for limn→`!

limug~x1hn ,t1sn!2g~x,t !u< limU E
K
@k~x1hn ,t1sn ,y,T!2k~x,t,y,T!#g~y!dyU

1 limU E
R\K

@k~x1hn ,t1sn ,y,T!2k~x,t,y,T!#g~y!dyU
< lim sup

yPK
uk~x1hn ,t1sn ,y,T!2k~x,t,y,T!u E

K
g~y!dy

1C lim E
R\K

uk~x1hn ,t1sn ,y,T!2k~x,t,y,T!udy. ~15!

The first term tends to zero becausek is jointly continuous andg is locally integrable. The second
one tends to zero because of the Lebesgue bounded convergence theorem. Consequently, our
assumption suffices to makeg(x,t) continuous onR3[0,T). Similarly, we can prove thatg(x,t)
is bounded.

Now, we can set, according to~2!, p(y,s,x,t)5k(y,s,x,t)g(x,t)/g(y,s). Then,
p(y,s,x,t),0<s,t<T, becomes a transition probability density of a Markov stochastic process
with a factorized densityr(x,t)5 f (x,t)g(x,t). Clearly, this stochastic process interpolates be-
tween the boundary datar0 and rT as time continuously varies from 0 toT. Notice that~15!
implies the continuity ofp in the time interval@0,T!.

Although p(y,s,x,t) is continuous in all variables, we cannot be sure that the interpolating
stochastic process has continuous trajectories, and no specific~e.g., Fokker–Planck! partial dif-
ferential equation can be readily associated with this dynamics. Therefore, we must explicitly
verify whether the associated process is stochastically continuous. If so, we should know whether
it is continuous~i.e., admits continuous trajectories!. Eventually, we should check the validity of
conditions under which the investigated interpolation can be regarded as a diffusion process. The
subsequent analysis will prove that this ultimate goal results only due to the gradual strengthening
of conditions imposed on the parabolic system~5!.

B. Stochastic continuity of the process

Apart from the generality of formulation of the Schro¨dinger interpolation problem, which
appears to preclude an unambiguous identification~diffusion or not! of the constructed stochastic
process, we can prove in the present case a fundamental property of a stochastic dynamics called
a stochastic continuity of the process. In this connection, compare, e.g., Refs. 5, 17 and 18, where
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this property is linked to the uniqueness of the corresponding Markov semigroup generator. The
stochastic continuity property is a necessary condition for the process to admit continuous trajec-
tories.

The stochastic process is stochastically continuous, if for the probability of the occurrence of
sample pathsv, such that the random variable valuesXt~v! along the trajectory obey
uXt(v)2Xs(v) u>e, s,t, the following limiting behavior is recovered:

lim
t↓s

P@v:uXt~v!2Xs~v!u>e#50 ~16!

for every positivee. This demand can be written in a more handy way in terms of the transition
probability densityp(y,s,x,t) and the densityr(x,t) of the process:

lim
t↓s

F E
2`

1`

dyr~y,s!E
ux2yu>e

p~y,s,x,t !dxG50. ~17!

So, for the transition density to be stochastically continuous, it suffices that

lim
Ds↓0

E
ux2yu>e

p~y,s,x,s1Ds!dx50 ~18!

for almost everyyPR.
In view of our construction@Eq. ~2!#, we have

lim
Ds↓0

E
ux2yu>e

p~y,s,x,s1Ds!dx5
1

g~y,s!
lim
Ds↓0

E
ux2yu>e

dxk~y,s,x,s1Ds!

3E
2`

1`

k~x,s1Ds,z,T!g~z!dz. ~19!

By changing the order of integrations~allowed by positivity of the involved functions! we obtain

lim
Ds↓0

E
ux2yu>e

p~y,s,x,s1Ds!dx5
1

g~y,s!
lim
Ds↓0

E
2`

1`

dzg~z!

3F E
ux2yu>0

dxk~y,s,x,s1Ds!k~x,s1Ds,z,T!G . ~20!

Because the potential is bounded from below,c>2M for someM.0, we easily arrive at the
estimates~use the ‘‘scaled’’ Brownian bridge argument!

k~y,s,x,s1Ds!<~4pDs!21/2 expF2
~x2y!2

4Ds Gexp~MDs! ~21!

and

k~x,s1Ds,z,T!<@4p~T2s2Ds!#21/2 expF2
~z2x!2

4~T2s2Ds!Gexp@M ~T2s2Ds!#. ~22!

Then we obtain
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0< lim
Ds↓0

E
ux2yu>e

k~y,s,x,s1Ds!k~x,s1Ds,z,T!dx

<@4p~T2s!#21/2 exp@M ~T2s!# lim
Ds↓0

~4pDs!21/2

3E
ux2yu>e

dx expF2
~x2y!2

4Ds GexpF2
~z2x!2

4~T2s2Ds!G50. ~23!

So, by the classic Lebesgue bounded~dominated! convergence theorem, the required limiting
property limDs→0* ux2yu>ep(y,s,x,s1Ds)dx50 follows and~16! holds true.

As mentioned before, the stochastic continuity of the Markov process is a necessary condition
for the process to be continuous in a more pedestrian sense, i.e., to admit continuous sample paths.
However, it is insufficient. Hence, additional requirements are necessary to allow for a standard
diffusion process realization of solutions of the general Schro¨dinger problem@Eqs.~1!–~3!#.

In the next section we shall prove that our process can be regarded as continuous, by requiring
a certain correlation between the kernelk(y,s,x,t) and a functiong(x,t) @Eq. ~14!#.

C. Continuity of the process

It is well known that a solution of a parabolic equation cannot tend to zero arbitrarily fast,
when uxu→`.19 Roughly speaking, it cannot fall off faster than a fundamental solution~provided
it exists!. In fact, the solution is known to fall off as fast as the fundamental solution, when the
initial boundary data coincide with the Dirac measure. If a support of the initial data is spread~i.e.,
not pointwise!, then the solution falloff is slower than this of the fundamental one.

In our discussion, whereg(x,t) is a generalized solution andk(y,s,x,t) is a Feynman–Kac
kernel which does not need to be a fundamental solution, we expect a similar behavior. Math-
ematically, our demand will be expressed as follows. Lett2s be small andK be a compact subset
in R. Becauseg(x,t) is supported on the wholeR, in the decomposition

g~y,s!5E
K
k~y,s,x,t !g~x,t !dx1E

R\K
k~y,s,x,t !g~x,t !dx, ~24!

the second term becomes relevant whenuyu→`. It amounts to@in the denominator there appears
g(y,s)#

lim
uyu→`

*2`
1`k~y,s,x,t !g~x,t !xK~x!dx

*2`
1`k~y,s,x,t !g~x,t !dx

50, ~25!

wherexK is an indicator function of the setK, which equals one forxPK and zero otherwise.
By means of the transition probability densityp(y,s,x,t) let us introduce a transformation

~Ts
t f !~y!5E

2`

1`

p~y,s,x,t ! f ~x!dx. ~26!

of a functionf (x), continuous and vanishing at infinity~we shall use an abbreviationfPC`(R) to
express this fact!. It is clear that (Ts

t f )(x) is a continuous function. For a suitable compact setK
we can always guarantee the propertyu f (x)u,e for everyxPR\K. Then, if we exploit the property
*R\Kp(y,s,x,t)dx<1 if s,t and the definition ofp in terms ofk andg, we arrive at

u~Ts
t f !~y!u<E

K
p~y,s,x,t !u f ~x,t !udx1E

R\K
p~y,s,x,t !u f ~x,t !udx
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<F E
K
p~y,s,x,t !dxG E

K
u f ~x,t !udx1 sup

xPR\K
u f ~x,t !u E

R\K
p~y,s,x,t !dx

<F E
K
u f ~x,t !udxG *Kk~y,s,x,t !g~x,t !dx

*2`
1`k~y,s,x,t !g~x,t !dx

1e. ~27!

It implies that for smallt2s, limuyu→`(Ts
t f )(y)50, and soTs

t forms an inhomogeneous-in-time
semigroup of positive contractions onC`(R). For arbitraryt and s the result follows by the
obvious decomposition propertyTs

t 5 Ts
s1Ts1

s2•••Tsn
t . In the well-established terminology, our

p(y,s,x,t) is aC`-Feller transition function and leads to a regular Markov process.17 Moreover,
by the stochastic continuity ofp(y,s,x,t),Ts

t is strongly continuous.
As yet, we do not know whether the process itself is continuous, i.e., has continuous sample

paths. To this end, it suffices to check whether the so-called ‘‘Dynkin condition,’’20

lim
t↓s

1

t2s
sup
yPK

F E
ux2yu.e

p~y,s,x,t !dxG50, ~28!

is valid for everye.0 and every compact setK. We have@remember thatg(x,t) is strictly
positive, continuous and bounded#

sup
yPK

E
ux2yu.e

p~y,s,x,t !dx5 sup
yPK

1

g~y,s!
E

ux2yu.e
k~y,s,x,t !g~x,t !dx

<
supxg~x,t !

infyPKg~y,s!
E

ux2yu.e
k~y,s,x,t !dx<CE

ux2yu.e
k0~x2y,t2s!dx,

~29!

where@compare, e.g., the previous estimate~22!#

C5
supxg~x,t !

infyPKg~y,s!
exp@M ~ t2s!# ~30!

andk0(x2y,t2s) is the heat kernel.
Finally, we arrive at

lim
t↓s

1

t2s
sup
yPK

F E
ux2yu.e

p~y,s,x,t !dxG<C lim
t↓s

1

t2s Euzu.e
k0~z,t2s!dz50. ~31!

So, the stochastic process we are dealing with is continuous. Interestingly, ‘‘a continuous in time
parameter stochastic process, which possesses the~strong! Markov property and for which the
sample pathsX(t) are almost always~i.e., with probability one! continuous functions oft, is called
a diffusion process,’’ see, e.g., Ch. 15 of Ref. 20.

D. The interpolating stochastic dynamics: Compatibility with the temporally adjoint
parabolic evolutions

The formulas~14! determine what is called12 the generalized solution of a parabolic equation:
it admits functions which are not necessarily continuous and if continuous, then not necessarily
differentiable. Previously, we have established the continuity of the generalized solutiong(x,t)
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under the rather mild assumption about the behavior ofg(x) at spatial infinity. In fact, the same
assumption works forf (x,t). However, nothing has been said about the differentiability off (x,t)
andg(x,t).

Consequently, our reasoning seems to be somewhat divorced from the original partial differ-
ential equations~5!, for which we can take for granted that certain solutionsu(x,t) andv(x,t)
exist in the time interval 0<t<T. For this, we must assume thatc(x,t) is a continuous function.

Let us consider the solutions of~5! that are bounded functions of their arguments. It is
instructive to point out that we do not impose any restrictions on the growth ofc(x,t) when
uxu→`, and consequently we do not assume that solutions of parabolic equations~5! have
bounded derivatives. Then,12 the solutionu(x,t) of the forward parabolic equation~5! is known to
admit the Feynman–Kac representation with the integral kernel~7! and ~13!, where

u~x,t !5E k~y,s,x,t !u~y,s!dy ~32!

for 0<s,t<T. At this point let us define

U~x,t !5v~x,T2t ! ~33!

for all tP[0, T] and observe that, as a consequence of the time-adjoint equation~5! for which
v(x,t) is a solution, the newly introduced functionU(x,t) solves the forward equation~5!:

] tU~x,t !5DU~x,t !2c~x,T2t !U~x,t ! ~34!

with a slightly rearranged potential:c(x,t)→c(x,T2t). By the assumed boundedness of the
solutionv(x,t) of ~5!, we arrive at the Feynman–Kac formula

U~x,t !5E K~y,s,x,t !U~y,s!dy ~35!

with the corresponding kernelK(y,s,x,t) of the ~time ordering implicit! operator
exp@2*s

tH(T2t)dt#, whereH(T2t)52D1c(T2t). Let us emphasize that in the case of the
time-independent potential,c(x,t)5c(x) for all 0<t<T, the kernelK coincides withk.

The previous Brownian bridge argument~12! and ~13! retains its validity, and we have

K~y,s,x,t !5@4p~ t2s!#21/2 expF2
~x2y!2

4~ t2s! G E dm~a!

3expF2E
s

t

cS t2t

t2s
y1

t2s

t2s
x1At2saS t2s

t2sD ,T2t D dtG , ~36!

which, after specializing to the case ofs50, t5T and accounting for the invariance of the
Brownian bridge measure with respect to the replacement of sample pathsv~t! by sample paths
v~T2t!,7,21 gives rise to

K~y,0,x,T!5~4pT!21/2 expF2
~x2y!2

4T G E dm~a!

3expF2E
0

T

cS s

T
y1S 12

s

TD x1ATaS s

TD ,s D dsG , ~37!

wheres5T2t.
A comparison of~37! with ~13! proves that we have derived an identity
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K~y,0,x,T!5k~x,0,y,T! ~38!

whose immediate consequence is the formula

U~x,T!5v~x,0!5E k~x,0,y,T!v~y,T!dy ~39!

for the backward propagation ofv(y,T) into v(x,0).
We shall utilize ~39! and ~32!, under anadditional assumption that the previous, hitherto

arbitrary, probability density datar0(x),rT(x) actually are determined by the initial and terminal
values of the solutionsu(x,t),v(x,t) of ~5! according to

r0~x!5u~x,0!v~x,0!, rT~x!5u~x,T!v~x,T!. ~40!

Our present aim is to show that with this assumption, we can identify the~still abstract! functions
f (x,t),g(x,t), ~14!, with u(x,t) andv(x,t), respectively. By~32! and ~39! there holds

r0~x!5u~x,0!E k~x,0,y,T!v~y,T!dy,

~41!

rT~x!5v~x,T!E k~y,0,x,T!u~y,0!dy

and, in view of the uniqueness of solution of the Schro¨dinger system, once the boundary densities
and the continuous strictly positive kernel are specified, we realize that the propagation formulas
~14! involve solutions of~5! through the respectively initial and terminal data:

f ~x!5u~x,0!, g~x!5v~x,T!. ~42!

Moreover,~5! and ~14! imply that f (x,t)5u(x,t) holds true identically for alltP[0, T].
What remains to be settled is whether the functiong(x,t) can be identified with the solution

v(x,t) of ~5! for all tP[0,T].
This property is obvious, when the time-independent potentialc(x) is investigated instead of

the more generalc(x,t). Also, the identification is with no doubt in the case whenk(y,s,x,t) is a
fundamental solution of the parabolic equation in variablesx,t. In this case,k(y,s,x,t) is a unique
solution of the system~5!, and solves the adjoint equation in variablesy,s.22–24 Then, because
f (x),g(x) are locally integrable, an immediate consequence is25 that f (x,t) andg(x,t) are posi-
tive solutions of~5!. The identification of them withu(x,t) andv(x,t), respectively, follows from
the uniqueness of positive solutions.23

Let us begin from a minor generalization of~22! and define

Us~x,t !5v~x,T1s2t !, tP@s,T#. ~43!

Clearly, a parabolic equation~34! is satisfied byUs(x,t), if instead ofc(x,T2t), the potential
c(x,T1s2t) is introduced. An immediate propagation formula follows:

Us~x,t !5E Ks~y,s,x,t !Us~y,s!dy. ~44!

The integral kernelKs differs from the previousK, ~36!, in the explicit time dependence of the
potentialc(x,T2t)→c(x,T1s2t). By puttingT5t in ~44! we obtain

v~x,s!5E Ks~y,s,x,T!v~y,T!dy, ~45!
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and by the previous part of our demonstration we know that

g~x,s!5E k~x,s,y,T!v~y,T!dy. ~46!

At this point, it is enough to prove that the identity@cf. ~38!#

Ks~y,s,x,T!5k~x,s,y,T! ~47!

takes place for anys; 0<s<T.
Let us exploit the Brownian bridge scaling~13! again, so that

k~x,s,y,T!5@4p~T2s!#21/2 expF2
~x2y!2

4~T2s!G E dm~a!

3expF2E
s

T

cS T2t

T2s
x1

t2s

T2s
y1AT2saS t2s

T2sD ,t D dtG , ~48!

and, analogously,

Ks~y,s,x,T!5@4p~T2s!#21/2 expF2
~x2y!2

4~T2s!G E dm~a!

3expF2E
s

T

cS T2t

T2s
y1

t2s

T2s
x1AT2saS t2s

T2sD ,T1s2t D dtG . ~49!

By changing

aS t2s

T2sD⇒aS 12
t2s

T2sD5aS T2t

T2sD ~50!

and substitutings5T1s2t, wheret only is the running variable, we finally recover

Ks~y,s,x,T!5@4p~T2s!#21/2 expF2
~x2y!2

T2s G E dm~a!expF2E
T

s

cS s2s

T2s
y1

T2s

T2s
x

1AT2saS s2s

T2sD ,s D ~2ds!G5k~x,s,y,T!. ~51!

Hence,

g~x,s!5v~x,s! ~52!

is valid for all time instants 0<s<T. This implies thatp(y,s,x,t)5k(y,s,x,t)v(x,t)/v(y,s)
defines a consistent transition probability density of the continuous Markovian interpolation.

We have succeeded to prove the following.
~i! If a continuous, strictly positive Feynman–Kac kernel of the forward parabolic equation~5!

is employed to solve the Schro¨dinger boundary data problem~1! for anarbitrary pair of nonzero
probability densitiesr0(x) andrT(x), then we can construct a Markov stochastic process, which is
continuous and provides for an interpolation between these boundary data in the time interval
@0,T#.
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~ii ! Given the time-adjoint parabolic system~5! with bounded solutionsu(x,t),v(x,t) in the
time interval@0,T#, if the boundary densities are defined according to~40!, then the Schro¨dinger
problem ~1!–~3! provides us with a unique continuous Markov interpolation that is compatible
with the time evolution ofr(x,t)5u(x,t)v(x,t), tP[0, T].

E. Whence diffusions?

Our strategy of deducing a probabilistic solution of the Schro¨dinger boundary data problem in
terms of Markov stochastic processes running in a continuous time was accomplished in a number
of steps, accompanied by the gradual strengthening of restrictions imposed on the Feynman–Kac
potential, to yield a continuous process~cf. Sec. II C!, and eventually to get it compatible with a
givena priori parabolic evolution~Sec. II D!. In a broad sense,20 it can be named a diffusion.

However, this rather broad definition of the diffusion process is significantly narrowed in the
physical literature: while demanding the continuity of the process, the additional restrictions are
imposed to guarantee that the mean and variance of the infinitesimal displacements of the process
have the standard meaning of the drift and diffusion coefficient, respectively.25

According to the general wisdom, diffusions arise in conjunction with the parabolic evolution
equations, since then only the conditional averages are believed to make sense in the local de-
scription of the dynamics. It is not accidental that forward parabolic equations~5! are commonly
called the generalized diffusion equations. Also, the fact that the Feynman–Kac formula involves
the integration over sample paths of the Wiener process seems to suggest some diffusive features
of the Schro¨dinger interpolation, even if we are unable to establish this fact in a canonical manner.

Clearly, the conditions valid for anye.0,

~a! there holds limt↓s[1/(t2s)]* uy2xu.ep(y,s,x,t)dx50 @notice that~a! is a direct consequence
of the stronger, Dynkin condition,~28!#,

~b! there exists a drift functionb(x,s)5lim t↓s[1/(t2s)]* uy2su<e(y2x)p(x,s,y,t)dy,
~c! there exists a diffusion functiona(x,s)5lim t↓s[1/(t2s)]* uy2xu<e(y2x)2p(x,s,y,t)dy,

are conventionally interpreted to define a diffusion process.25

To our knowledge, no rigorous demonstration is available in the Schro¨dinger problem context,
in the case when the involved semigroup kernel isnot a fundamental solution of the parabolic
equation.

Let us impose a restriction on a lower bound of a solutionv(x,t) of the backward equation
~5!. Namely, we assume that there exist constantsc1.0, c2.0 such thatv(y,s)>c1 exp~2c2y

2!
for all sP[0, t], t,T. This property was found to be respected by a large class of parabolic
equations,26 and it automatically ensures that the condition~25! of Sec. II C is satisfied. Indeed,

0< lim
uyu→`

1

v~y,s!
E

2`

1`

k~y,s,x,t !v~x,t !xK~x!dx

<
1

c1
@4p~ t2s!#21/2 exp@M ~ t2s!#@ sup

xPK
v~x,t !# lim

uyu→`

3exp~c2y
2!E

K
expF2

~x2y!2

4~ t2s!
dxG50, ~53!

if t2s>e for sufficiently smalle.0 ~like, for example,e51/16c2!.
It is our purpose to complete the previous analysis by demonstrating that, with the above

assumption onv(x,t), the continuous Markov process we have constructed actuallyis the diffu-
sion process.
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Our subsequent arguments will rely on the Dynkin treatise.17 It is well known that the infini-
tesimal~local! characteristics of a continuous Markov process can be defined in terms of its so
called characteristic operator. It is closely linked with the standard infinitesimal~Markov! genera-
tor of the process, and we shall take advantage of this link in below. Let us agree, following
Dynkin, to call a continuous Markov process a diffusion, if its characteristic operatorU is defined
on twice-differentiable functions~we skip more detailed definition17!. In this casex→x2x0 and
x→(x2x0)

2 allow for the definition of a drift and diffusion function, respectively:

@U~x2x0!#~x0 ,s!5b~x0 ,s!, @U„~x2x0!
2
…#~x0 ,s!5a~x0 ,s!. ~54!

By results of Secs. II C and II D we know that our transition probability densityp(y,s,x,t)
5k(y,s,x,t)v(x,t)/v(y,s), inspired by the Schro¨dinger boundary data problem, gives rise to a
continuous Markov process. To see whether it can be regarded as a diffusion, we must verify the
above two defining properties~54!.

At first, let us consider the infinitesimal operatorA ~Markov generator! of the corresponding
strongly continuous semigroupTs

t :C`(R)→C`(R), which we have introduced via the formula
~26!. We are interested in domain properties ofA, in view of the fact that the characteristic
operatorU is a natural extension ofA,A,U.17

We denoteCc
2(R) as the space of continuous functions with compact support which possess

continuous derivatives up to second order. ForhPCc
2(R) we have

lim
d↓0

1

d F E
2`

1`

p~y,s,x,s1d!h~x!dx2h~y!G
5

1

v~y,s!
lim
d↓0

1

d F E
2`

1`

k~y,s,x,s1d!v~x,s1d!h~x!dx2v~y,s!h~y!G . ~55!

Becausev is continuously differentiable with respect to time, we have

v~x,s1d!5v~x,s!1d]sv~x,s8! ~56!

where~cf. the standard Taylor expansion formula! s85s1qd, 0<q<1. Hence

lim
d↓0

1

d F E
2`

1`

p~y,s,x,s1d!h~x!2h~y!G
5

1

v~y,s!
lim
d↓0

1

d F E
2`

1`

dxk~y,s,x,s1d!v~x,s!h~x!2v~y,s!h~x!G
1

1

v~y,s!
lim
d↓0

F E
2`

1`

k~y,s,x,s1d!]sv~x,s8!h~x!dxG . ~57!

We shall exploit the strongly continuous semigroup evolution associated with the parabolic
system~5!. Because of the domain propertyCc

`(R),D(H), the smooth functions with compact
support are acted upon byH5D2c(x,s) andH is closed as an operator onC`(R). But then also
Cc
2(R),D(H) and so the first term in~57! takes the form

1

v~y,s!
@D~vh!~y,s!2c~y,s!v~y,s!h~y!# ~58!

while the second equals
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1

v~y,s!
@]sv~y,s!# f ~y!5

1

v~y,s!
@2Dv~y,s!1c~y,s!v~y,s!# f ~y!. ~59!

Thus,~55! is pointwise convergent:

lim
d↓0

1

d F E
2`

1`

p~y,s,x,s1d!h~x!dx2h~y!G
5

1

v~y,s!
[ ~Dv~y,s!)h~y!12“v~y,s!“h~y!1v~y,s!Dh~y!2c~y,s!v~y,s!h~y!

2„Dv~y,s!…h~y!1c~y,s!v~y,s!h~y!#

5Dh~y!12S ¹v
v D ~y,s!¹h~y!. ~60!

Now, we shall establish the boundedness of

sup
yPR;0,d,e

F1d U E
2`

1`

p~y,s,x,s1d!h~x!dx2h~y!UG ~61!

for some smalle.
BecauseCc

2(R),D(H), so there holds

1

d F E
2`

1`

k~y,s,x,s1d!v~x,s!h~x!dx2v~y,s!h~y!G→@D2c~y,s!#~v f !~y,s! ~62!

uniformly in y, asd→0. It implies that for any compact setK there is

sup
yPK;0,d,e

1

d U E
2`

1`

p~y,s,x,s1d!h~x!2h~y!U
<@sup
yPK

1

v~y,s!
] sup
yPK;0,d,e

F1d U E
2`

1`

k~y,s,x,s1d!v~x,s!h~x!dx2v~y,s!h~y!U
1E

2`

1`

k~y,s,x,s1d!]sv~x,s8!h~x!dxUG,`. ~63!

We have thus the required boundedness for allyPK, i.e., on compact sets.
For yPR\K we shall make the following estimations. Because the support ofh is compact,

we can define supph,[2n, n] for some natural numbern. Let K5[23n, 3n]. Then,

sup
yPR\K;0,d,e

1

d U E
2`

1`

p~y,s,x,s1d!h~x!dx2h~y!U
5 sup

yPR\K;0,d,e

1

d U E
K
p~y,s,x,s1d!h~x!dxU

<@ sup
xPK

uh~x!u# sup
yPR\K;0,d,e

1

d

1

v~y,s!
E
K
k~y,s,x,s1d!v~x,s1d!dx
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<@ sup
xPK

uh~x!u#@ sup
xPK;s<s8<s1e

v~x,s8!# sup
yPR\K;0,d,e

1

d

1

v~y,s!
E k~y,s,x,s1d!dx.

~64!

In view of our assumptionv(y,s)>c1 exp~2c2y
2!, there holds

sup
yPR\K;0,d,e

1

d
U E p~y,s,x,s1d!h~x!dxU

<C• sup
uyu>3n;0,d,e

exp~c2y
2!d23/2E

2n

1n

expF2
~x2y!2

4d Gdx, ~65!

where

C5c1~4p!21/2 exp~Me!@ sup
xPK

uh~x!u# sup
xPK;s,s8,s1e

v~x,s8!. ~66!

If we choosee51/16c2, then

exp~c2y
2!E expF2

~x2y!2

4d Gdx<4d expS 2
n2

d D ~67!

for every uyu>3n, and so

sup
yPR\K;0,d,e

1

d
U E p~y,s,x,s1d!h~x!dxU<4C sup

0,d,e
d21/2 expS 2

n2

d D,`. ~68!

Consequently, the desired boundedness~62! holds true for allyPR, together with the previously
established pointwise convergence~61!.

Altogether, it means17 that the weak generator ofTs
t is defined at least onCc

2(R). Moreover,
while acting onhPCc

2(R) it givesDh1~“ ln v!“h. BecauseTs
t is strongly continuous inC`(R),

the Markov generatorA coincides with the weak generator,17 i.e.,A5D1~“ ln v!“ on Cc
2(R).

Finally, let us chooseh0PCc
2(R) such thath0(x)51 in some neighborhood of the pointx0.

Then, (x2x0)h0(x) and (x2x0)
2h0(x) both belong toCc

2(R) and therefore

A@~x2x0!h0#~x0 ,s!5D@~x2x0!h0#~x0!12~“ ln v !~x0 ,s!“@~x2x0!h0#~x0!

52~“ ln v !~x0 ,s!52~“ ln v !~x0,s!,

A@~x2x0!
2h0#~x0 ,s!52. ~69!

BecauseA,U andU is a local operator,17 we have the following inclusionCc
2(R),D~U!

and ~we can get rid ofh0!

@U~x2x0!#~x0 ,s!52~“ ln v !~x0 ,s!,
~70!

@U~x2x0!
2#~x0 ,s!52.

It means that we indeed obtain a diffusion process with the drift“ ln v and a constant
diffusion coefficient, according to the standards of Refs. 5, 21, and 28.

It is worth emphasizing that since (x2x0)h0(x) and (x2x0)
2h0(x) belong toD(A), and

since functions fromCc
2(R) can be used to approximate, under an integral, an indicator function of

the set [x02e,x01e], e.0, we can directly evaluate
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lim
t↓s

1

t2s E2`

1`

p~x0 ,s,x,t !~x2x0!h0~x!dx

5 lim
t↓s

1

t2s Eux2x0u<e
p~x0 ,s,x,t !~x2x0!dx

52~“ ln v !~x0 ,s!, ~71!

and similarly

lim
t↓s

1

t2s Eux2x0u<e
p~x0 ,s,x,t !~x2x0!

2 dx52. ~72!

Because the Dynkin condition~28! implies that

lim
t↓s

1

t2s Eux2x0u.e
p~x0 ,s,x,t !dx50, ~73!

we arrive at the commonly accepted definition of the diffusion process, summarized in formulas
~71!–~73!, with the functional expression for the drift,~71!, given in the familiar,5,8,27 gradient
form.

III. NONSTATIONARY SCHRÖDINGER DYNAMICS: FROM THE FEYNMAN–KAC
KERNEL TO DIFFUSION PROCESS

In our previous paper,9 the major conclusion was that in order to give a definitive probabilistic
description of the quantum dynamics as auniquediffusion process solving Schro¨dinger’s inter-
polation problem, a suitable Feynman–Kac semigroup must be singled out. Let us point out that
the measure-preserving dynamics, permitted in the presence of conservative force fields, was
investigated in Ref. 8~see also Refs. 12 and 29!.

The present analysis was performed quite generally and extends to the dynamics affected by
time-dependent external potentials, with no clear-cut discrimination between the nonequilibrium
statistical physics and essentially quantum evolutions. The formalism of Sec. II encompasses both
groups of problems. Presently, we shall restrict our discussion to the free Schro¨dinger picture
quantum dynamics. Following Ref. 9 we shall discuss the rescaled problem so as to eliminate all
dimensional constants.

The free Schro¨dinger evolutioni ] tc52Dc implies the following propagation of a specific
Gaussian wave packet,

c~x,0!5~2p!21/4 expS 2
x2

4 D→c~x,t !5S 2p D 1/4~212i t !21/2 expF2
x2

4~11 i t !G , ~74!

so that

r0~x!5uc~x,0!u25~2p!21/2 expF2
x2

2 G
→r~x,t !5uc~x,t !u25@2p~11t2!#21/2 expF2

x2

2~11t2!G ~75!

and the Fokker–Planck equation@easily derivable from the standard continuity equation
]tr52“(vr), v(x,t)5xt/(11t2)# holds true:
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] tr5Dr2¹~br!, b~x,t !52
12t

11t2
x. ~76!

The Madelung factorizationc5exp(R1 iS) implies @notice thatv52“S andb52¹(R1S)#
that the related real functionsu(x,t)5exp[R(x,t)1S(x,t)] and u

*
(x,t)5exp[R(x,t)2S(x,t)]

read

u~x,t !5@2p~11t2!#21/4 expS 2
x2

4

12t

11t2
2
1

2
arctant D ,

~77!

u* ~x,t !5@2p~11t2!#21/4 expS 2
x2

4

11t

11t2
1
1

2
arctant D .

They solve a suitable version of the general parabolic equations~5!, namely,

] tu52Du1cu, ] tu*5Du*2cu* , ~78!

with

c~x,t !5
x2

2~11t2!2
2

1

11t2
52

Dr1/2

r1/2
. ~79!

Anticipating further discussion, let us mention that the Feynman–Kac kernel, in this case,is
a fundamental solution of the time-adjoint system~78!. For clarity of exposition, let us recall that
a fundamental solutionof the forward parabolic equation~5! is a continuous functionk(y,s,x,t),
defined for allx,y,PR and all 0<s,t<T, which has the following two properties:

~a! For any fixed (y,s)PR3(0,T), the function (x,t)→k(y,s,x,t) is a regular~i.e., continuous
and continuously differentiable the needed number of times! solution of the forward equa-
tion ~5! in R3(s,T].

~b! For all continuous functions f(x) with a compact support, there holds
lim(t,x)→(s,z)*2`

1`k(y,s,x,t)f(y)dy5f(z).

First, we need to verify~this will be done self-explanatorily! that c(x,t), ~79!, is Hölder
continuous of exponent one on every compact subset ofR3[0, T]. It follows from direct esti-
mates:

uc~x2 ,t2!2c~x1 ,t1!u<
1

2 U x2
2

~11t2
2!2

2
x1
2

~11t1
2!2

U1U 1

11t2
22

1

11t1
2U

<
1

2 U x2
11t2

22
x1

11t1
2US ux2u

11t2
2 1

ux1u
11t1

2D 1ut22t1u
ut1u1ut2u

~11t1
2!~11t2

2!
. ~80!

However, in the case ofux1u,ux2u<K and ut1u,ut2u<T we have

uc~x2 ,t2!2c~x1 ,t1!u<KU x2
11t2

22
x1

11t1
2U12Tut22t1u ~81!

Furthermore,

U x2
11t2

22
x1

11t1
2U<U x22x1

~11t2
2!~11t1

2!
U1U x2t1

22x1t2
2

~11t2
2!~11t1

2!
U<ux22x1u1T2ux22x1u12KTut22t1u

~82!
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implies ~the new constantC majorizes all remaining ones!

uc~x2 ,t2!2c~x1 ,t1!u<C~ ux22x1u1ut22t1u!<&C@~x22x1!
21~ t22t1!

2#1/2. ~83!

Let us also notice that we can introduce an auxiliary functionh(x,t)5arctant such that there
holds

Dh2c~x,t !h2] th52
x2h~x,t !

2~11t2!2
<0. ~84!

We have thus satisfied the crucial assumptions I and II of Ref. 24. As a consequence, we have
granted the existence of a fundamental solutionk(y,s,x,t)>0. Moreover, for every bounded and
continuous functionf(x),uf(x)u<C, whereC.0 is arbitrary, the function

u~x,t !5E
2`

1`

k~y,0,x,t !f~y!dy ~85!

is a solution of the Cauchy problem, i.e., solves~79! under the initial conditionu(x,0)5f(x), so
that uu(x,t)u<C. All that implies the uniqueness of the fundamental solutionk(y,s,x,t), and in
view of 2c(x,t)<1 its strict positivity. The functionk(y,s,x,t) is also a solution of the adjoint
equation with respect to variablesy,s:]sk52Dyk1c(y,s)k in R3[0,T). It is obvious that the
Chapman–Kolmogorov composition rule holds true, in view of the validity of the Feynman–Kac
representation in the present case.

Basically, we must be satisfied with the Feynman–Kac representation of the fundamental
solution, whose existence we have granted so far. In our case, the so-called parametrix method,22

can be used to construct fundamental solutions. In fact, sincec(x,t) is locally Lipschitz, i.e.,
Hölder continuous of exponent one and quadratically boundeduc(x,t)u<x211, the infinite series

k~y,s,x,t !5 (
n50

1`

~21!nkn~y,s,x,t !, ~86!

wherek0(y,s,x,t)5[4p(t2s)]21/2 exp@2(x2y)2/4(t2s)# is the heat kernel and

kn~y,s,x,t !5E
s

t

dtE
2`

1`

dzc~z,t!kn21~y,s,z,t!k0~z,t,x,t ! ~87!

are known to converge for allx,yPR, 0<s,t<T, and t2s,T0 whereT0,T, and define the
fundamental solution.30

By puttingp(y,s,x,t)5k(y,s,x,t)u(x,t)/u(y,s) we arrive at the fundamental solution of the
second Kolmogorov~Fokker–Planck! equation

] tp~y,s,x,t !5Dxp~y,s,x,t !2“x@b~x,t !p~y,s,x,t !#, ~88!

whereb52“u/u andr5uv, and, in particular,r5uu
*

5ucu2, are consistently propagated byp. It
is the transition probability density of the Nelson diffusion associated with the solution~74! of the
Schrödinger equation, and at the same time a solution of the first Kolmogorov~backward diffu-
sion! equation

]sp~y,s,x,t !52Dyp~y,s,x,t !2b~y,s!“yp~y,s,x,t !. ~89!

Equations~88! and ~89! prove that the pertinent process is a diffusion: it has the standard local
~infinitesimal! characteristics of the diffusion process.25
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Obviously, the above definition ofp in terms ofk induces the validity of the compatibility
condition

c~x,t !52F] t ln u~x,t !1
1

2Fb
2~x,t !

2
1¹b~x,t !G G ~90!

connecting the drift of the diffusion process with the Feynman–Kac potential governing its local
dynamics: cf. Refs. 8, 29, and 31 where the Ehrenfest theorem analogue was formulated for
general~non-quantal included! Markovian diffusions.

Let us point out that our quantally motivated example was chosen not to show up a typical for
quantum wave functions property of vanishing somewhere. In fact, because of restricting our
considerations to strictly positive Feynman–Kac kernels and emphasizing the uniqueness of so-
lutions, we have left aside an important group of topics pertaining to solution of the Schro¨dinger
boundary data problem when

~i! the boundary densities have zeros, and
~ii ! the interpolation itself is capable of producing zeros of the probability density, even if the

boundary ones have none.

Only the case~i! can be~locally! addressed by means of strictly positive semigroup kernels;
however, the uniqueness of solution is generally lost in space dimension higher than one.2–4

General existence theorems are available28,29 and indicate that one deals with diffusion-type pro-
cesses in this case~see also, e.g., Refs. 5, 6, and 8!. The case~ii ! seems to never be considered in
the literature~see however Ref. 32!.
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A uniform diffusion limit for random wave propagation
with turning point
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A random wave propagation problem with turning point is considered for a refrac-
tive, layered random medium. The variations of the medium structure are assumed
to have two spatial scales; microscopic random fluctuations are superposed upon
slowly varying macroscopic variations. An extension of a limit theorem for sto-
chastic differential equations with multiple spatial scales is derived and proved to
obtain a uniformly valid diffusion limit for random multiple scattering up to the
turning point region. The scale dependence of the infinitesimal generator of the
backward Kolmogorov equation provides an insight into the interplay of internal
refraction and random scattering as one approaches the turning point. ©1996
American Institute of Physics.@S0022-2488~96!01002-9#

I. INTRODUCTION

Waves are expected to undergo some scales of fluctuations when they propagate in a randomly
inhomogeneous medium. If the random inhomogeneities are strong, multiple scattering and the
interference of waves produce phenomena in which the waves are localized around the region
where they are generated. They lose coherence and eventually they are totally converted to ran-
dom fluctuations; the waves do not propagate at all. Localization phenomena can be found in one
or two dimensional settings of layered media even when the random inhomogeneities are weak.
Anderson1 discovered these localization phenomena in connection with electronic waves in semi-
conductors in 1958. Then a substantial theory of Anderson localization has been developed in the
eighties.2,3 Recently, an analogous localization of light has also started getting attention from
physicists.4,5 Light in a certain class of strongly scattering dielectric microstructure exhibits local-
ized modes. It took time, however, before localization of various types of classical waves became
fully appreciated,6 although localization for one-dimensional Schro¨dinger equation with random
potential was well understood.7 One reason3 for this is that localization phenomena are observed
usually over the long range of distances unless the random scattering is very strong and the
dissipation is rather weak. In this paper, we study a wave propagation problem with turning point
in a layered random medium in which we combine a geometric optics limit for the large scale
structure of the medium with wave localization of multiply-scattered fields.

One typical type of randomly inhomogeneous medium, i.e. a one-dimensional refractive,
randomly-layered medium, is considered here. When we have a point source off a medium, one
can think of it as launching rays in all directions. We consider an oblique wave incident upon the
medium from an adjoining homogeneous medium. Average wave field parameters are assumed to
vary with propagation direction so that an obliquely incident wave, undergoing some random
fluctuation, turns at some point in the medium, leading to stochastic turning point problem. To see
the variations of the large-scale structure of the medium, the wave needs to have short wavelength
compared to the length scales of the macrostructure but to acquire the statistical properties of the
details of the random inhomogeneities, the wavelength needs to be long compared to the size of
the random microstructure. This allows us to combine both a geometrical optics-like accommo-
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dation of the large-scale macroscopic variations and a Central Limit Theorem or diffusion limit
theorem for the random microscopic details. The combined limits can reveal the very rich struc-
tures of stochastic wave propagation problems for suitably defined quantities. Our modeling hy-
pothesis is this separation of scales with random layering of the medium. The interplay of total
internal refraction and diffusion effects produced by random multiple scattering is to be analyzed
based on this hypothesis.

Limit theorems for stochastic differential equations with a small parameter remain our math-
ematical tool. They say in brief that a large class of random processes defined by the following
stochastic differential equations, not of Itoˆ type,9 converge weakly to a diffusion Markov process
which solves a parabolic partial differential equation, the backward Kolmogorov equation, whose
adjoint equation is the Fokker–Planck equation for the transition probability density:

dx

dt
5
1

e
F~t,t/e2,x,v!, 0<t<t0;O~1!, vPV, ~1a!

x~0!5x0 , ~1b!

where the random fieldF has zero-mean andV denotes an underlying probability space. Such a
type of theory was first called to attention by Stratonovich10 in 1963 for problems of nonlinear
vibrations in the presence of noise. Then mathematical theory was developed by Khasminskii11

and extended by Papanicolaou and Kohler.12 The theory has been applied effectively in the proba-
bilistic approaches to a variety of problems8,13–19including wave propagation theory. In particular,
it became a fundamental tool to derive transport equations for the statistics of multiply-scattered
wave fields in the analysis of waves in random media. Our stochastic turning point problem,
however, requires an extension of this theory to an asymptotically infinite interval. We present a
limit theorem in general terms for stochastic equation of type~1! over an extended interval:

dx

dt
5
1

e
F~t,t/e2,x,v!, 0<t<t0 /e;O~e21!, vPV, ~2a!

x~0!5x0 . ~2b!

We quantify, in Sec. II, the scaling condition for multiscale structure of the medium. We
introduce a stochastic turning point problem for a one-dimensional refractive, randomly layered
medium. Using the propagator matrix of an effective system, we formulate a stochastic boundary
value problem for the scattering variables. In terms of a new stretched variable, we recast it as a
nonlinear stochastic initial value problem~the Riccati equation! for the reflection coefficient. In
Sec. III, we derive a diffusion limit theorem for stochastic differential equations on an extended
interval in general terms and subsequently apply this theorem to the turning point problem estab-
lished in Sec. II. As a result, the stochastic quantities of interest are characterized as expectations
of functions of the reflection coefficient. In Sec. IV, the subtle interplay of refraction and local-
ization effect is explained in terms of the frequency and scale dependence of the backward
Kolmogorov equation. The extended limit theorem is proved in Sec. V.

II. RANDOM WAVE PROPAGATION WITH TURNING POINT

We consider a monochromatic, time-harmonic, plane wave incidence upon a half space
z<0 from a homogeneous medium occupying the regionz.0. The medium has a one-
dimensional, randomly-layered fine structure; it is homogeneous in the transverse directions. The
wave propagation model considered here is provided by a system of differential equations
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d

dz
c~z,v!5 ivA~z!c~z,v!, 2`,z,`, ~3!

where matrixA(z) represents the material properties of the medium in thez direction. The
physical waves represented by this system may be of a large number of different kinds~waves in
a waveguide, acoustic waves, electromagnetic waves, etc!.

Within the medium, matrixA(z) is assumed to vary withz in a manner that superposes a
randomly-fluctuating component upon a slowly-varying mean value. We introduce a small positive
parametere to quantify this two-scale dependence, i.e. a smooth deterministic macroscale and a
random microscale, of the medium:

A~z!5A~z,z/e2!, 2`,z<0, ~4!

where each component of matrixA(z,z/e2) is unit correlation length random function of the
second argument while the first argument accounts for deterministic nonstationary modulation; the
actual correlation length of the processes is, therefore,e2. Let the frequency of the incident wave
also be scaled by

v5v̄/e, ~5!

wherev̄ is O(1) ~the overbar will subsequently be omitted throughout!. Consequently the orders
O(1), O(e) andO(e2) correspond to the large-scale structure of the medium, the wavelength of
incident wave and the correlation length of the random features of the medium, respectively. This
means that the wavelength is large enough to average over microscopic random effects and small
enough to probe macroscopic variation. A limit is, therefore, possible which combines a diffusion
limit for fine-scale random fluctuation with a geometric optics-like limit for large-scale determin-
istic variation. Also the high-frequency scale will permit the use of WKB analysis.

From now on, we consider a random system in the form

d

dz
c~z,v!5

iv

e
A~z,z/e2!c~z,v!, 2`,z<0, ~6!

where matrixA(z,z/e2) is decomposed into the sum of a deterministic partA0(z) and a mean-
zero random partA1(z,z/e

2), each of which takes the form

A0~z!5F 0 a0~z!

b0~z! 0 G , A1~z,z/e
2!5F 0 a1~z,z/e

2!

b1~z,z/e
2! 0 G . ~7!

We assume that the averaged functionsa0(z) andb0(z) vary with z in such a way that the
eigenvalues of (iv/e)A0(z) vanish at some point, sayz5z0 , and they are pure imaginary on
z0,z,0 and real valued onz,z0; in the effective medium, waves propagate in the region
z0,z,0 and evanesce in the regionz,z0 . The pointz0 will remain the dividing point for the
stochastic problem in our scaling and it is called the turning point of our stochastic problem.

In order to obtain quantities exhibiting a limiting stochastic behavior ase↓0 in our turning
point problem, one needs to remove the rapid deterministic variations of~6! so that there is only
a mean-zero term on the right-hand side of~6!. For this step of centering, we need a propagator
matrix of the following system:

d

dz
c~z,v!5

iv

e
A0~z!c~z,v!, 2`,z<0. ~8!
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Let us introduce a WKB approximant for the propagator matrix of the effective system~8!; we
denote this approximant byF(z,v). Then a new dependent vector variableu(z,v) is introduced
by

c~z,v!5F~z,v!u~z,v!, u~z,v![@u1~z,v!,u2~z,v!# t. ~9!

For brevity, we omit thev-dependence of field variables from now on. In a uniform medium,
u1(z) and u2(z) are constant and the total wave field is exactly splitted into two physically
identifiable components propagating in two opposite directions;u1(z) represents a reflected or
up-going wave amplitude whileu2(z) will correspond to an incident or down-going one. In a
general inhomogeneous medium, however, the splitted wave fields provide only a mathematical
decomposition. Random system~6! for wave fields now transforms into the following system for
scattering variablesu1(z) andu2(z):

d

dz
u~z!5

iv

e
F21~z!A1~z,z/e

2!F~z!u~z!1F21~z!S ive A0~z!F~z!2
d

dz
F~z! Du~z!,

~10!

where the second term on the right side of~10! would vanish ifF(z) were an exact propagator
matrix for the effective system~8!.

To produce a two-point boundary value problem, we consider a unit incident wave inz.0
impinging upon the random medium, while for simplicity we assume total reflection at some point
z̄,z0 . For a physical point of view, the presence of a turning point atz0 makes the nature of the
termination atz̄ irrelevant. Thus, using notationGz for reflection coefficient atz, we impose the
following boundary conditions:

u1~ z̄!5G z̄u
2~ z̄!, u2~0!51, ~11!

whereuG z̄u51.
Let

F~z!5Ff11~z! f12~z!

f21~z! f22~z!
G . ~12!

If a propagator matrixF(z) can be chosen to have the second component on the right-hand side
of the exact random system~10! negligible, then~10! becomes essentially centered. To obtain such
aF(z) explicitly, we use results of Lynn and Keller20 from which it follows that detF(z)52 and
thef i j (z)’s are

f1 j~z!5a0
1/2~z!z~z!Q j~l2/3f!, j51,2, ~13a!

f2 j~z!5l21a0
21/2~z!~a08~z!z~z!/2a0~z!1z8~z!!Q j~l2/3f!

1l21/3a0
21/2~z!z21~z!Q j8~l2/3f!, ~13b!

wherel5 iv/e and the functionsz(z) andf(z) are defined to be

z4~z!5f~z!/a0~z!b0~z!, f3/2~z!5~3/2!t~z! ~14!

and the functionsQ1 andQ2 are defined as follows in terms of the Airy functions:

Q1~x!5p1/2l1/6e2 i ~v/e! t0$2 iAi ~x!1Bi~x!%, Q2~x!522p1/2l1/6ei ~v/e! t0Ai~x!. ~15!

Here we used the travel time defined by
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t~z!5E
z0

z
Aa0~s!b0~s!ds ~16!

and notationt05t(0). It is worth noting thatt(z), f(z) andz(z) are real positive functions on
z0,z,0 but are complex-valued functions onz,z0 .

If we use properties of the Airy functions,21 the right-hand side of system~10! can be sim-
plified and some underlying group structure of~10! can be revealed. First one can obtain the
following conjugacy relations among thef i j (z)’s:

f12~z!52f11* ~z!, f22~z!5f21* ~z!. ~17!

Due to these relations, one can show that both components of the coefficient matrix on the
right-hand side of~10! have a common structure that generates propagator matrices belonging to
a Lie group SU~1,1!.22 It means that the Lynn and Keller approximant preserves the group struc-
ture of the propagator matrices for the exact problem. With this observation and relations~17!, one
can prove that the time average energy flux for a time-harmonic wave, defined byĪ
5(1/2)Re(c1c2* ),

23 is same as (1/2)(uu1u22uu2u2) and it is invariant. This leads to the fact that
we have total reflection everywhere in the random slabz̄<z<0.

From now on, only the regionz0<z<0 is considered. We stretch this region by defining a
new argument

h5~v/e!2/3f~z!. ~18!

Then, using the relationdh5(v/e)2/3z22(z)dz, one can rewrite the exact system~10! in terms of
the new variable. The asymptotic expansions of the Airy functions and their first derivatives
provide the identification of the growth or decay behavior of components of the exact system as
they reach the outer region after starting at the turning pointz0 . Here we use the terminology
‘‘transition region’’ and ‘‘outer region,’’ respectively, for a region in distance of orderO(1) in the
h-scale from the turning point and the rest of the transition region. It can be shown from the
asymptotic behavior of the Airy functions that the second coefficient matrix of the exact system
~10! is negligible uniformly ~i.e. when one rescales back toz!; the major contribution in the
diffusion limit comes from the first coefficient matrix of~10! in both the transition region and the
outer region. If we use the moduli and phases for the Airy functions and their first derivatives, i.e.

Ai~2h!1 iBi ~2h!5M ~h!ei $V~h!1p/4%, ~19a!

Ai8~2h!1 iBi 8~2h!5N~h!ei $C~h!13p/4%, ~19b!

then we can obtain the following centered system after neglecting the small terms:

d

dh Fu1

u2G5~ i /2!~v/e!2/3pa0z
4M2~h!b1~h/e4/3!F 1 2e2i $ ~v/e! t01V%

e22i $ ~v/e! t01V% 21 GFu1

u2G
1~ i /2!pa0

21N2~h!a1~h/e4/3!F 1 e2i $ ~v/e! t01C%

2e22i $ ~v/e! t01C% 21 GFu1

u2G , ~20a!

0<h<h0[~3vt0/2e!2/3, u1~0!5G0u
2~0!, u2~h0!51. ~20b!

We note from the asymptotic expansion ofM (h) andN(h) that the first term on the right-hand
side of system~20! is a dominant term in both the transition region and the outer region, while the
second term will not contribute in the transition region but it will become as significant in the
outer region as the first term.
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The linear two point stochastic boundary value problem for the scattering variablesu1(h) and
u2(h) can be recast as a nonlinear stochastic initial value problem for the reflection coefficient. In
this section, we already noted that the reflection coefficient is unimodular in the random slab of
our interest. The problem reduces to a consideration of the phase of the unimodular reflection
coefficient. Let

u1~h!

u2~h!
5e2 ic~h!. ~21!

Then system~20! for the scattering variablesu1(h) andu2(h) leads to the Riccati differential
equation for the phasec(h) of the reflection coefficient as follows:

dc

dh
5e22/3F1~h,h/e4/3,c!1F2~h,h/e4/3,c!, 0<h<h0 , ~22a!

c~0!5c0 , ~22b!

wherec0 is the phase of the reflection coefficient at the turning point and it is considered known
for present discussion and the random fieldsF1 andF2 are given by

F1~h,h/e4/3,c!5v2/3pa0z
4M2~h!b1~h/e4/3!$12cos~c12~vt0 /e1V~h!!!%, ~22c!

F2~h,h/e4/3,c!5pa0
21N2~h!a1~h/e4/3!$11cos~c12~vt0 /e1C~h!!!%. ~22d!

From the above stochastic initial value problem, a number of facts should be noted. The
Riccati equation~22! is expressed in terms of the stretched variableh ~transition region scale!;
e2/3h andh/e4/3 correspond toz ~or f(z)) andz/e2 in thez-scale, respectively. The deterministic
functionsa0 andz depend on only a slow-variablee2/3h and thus they behave like constants in the
h-scale. Both random fieldsF1 and F2 have the form of a mean-zero nonstationary random
function, eithera1 or b1 , times deterministic functions. In short, stochastic initial value problem
~22! has the form of model problem introduced in Sec. I. The interval 0<h<h0 considered in our
case, however, is not a bounded interval; it is orderO(e22/3). Thus the mean-zero random field
F2 must be retained~not like the case of previously known theory!. It will contribute in the
diffusion limit since it is significant in the outer region. Hence it requires an extension of known
limit theorems for stochastic differential equations with a small parameter to understand the
diffusion effects caused by random multiple scattering. This work will be performed in the fol-
lowing sections. Usual differential equation existence and uniqueness theory tells us that the
solutions of ~22! are well-defined stochastic processes. Our goal is to characterize stochastic
quantities of interest as expectations of functions of solutions of the stochastic differential equa-
tion, using an extended limit theorem that will be described in the next section.

III. AN EXTENDED DIFFUSION LIMIT THEOREM

In this section, we state in general terms a result about the extension of Khasminskii’s limit
theorem to an unbounded interval. Then we apply our results to the stochastic turning point
problem formulated in Sec. II. As a result, we obtain a uniformly valid infinitesimal generator for
the limiting diffusion Markov process.

We first establish notation and hypotheses before stating our theorem. Let (V,F ,P) be a
probability space and letF s

t , 0<s<t<`, be a family ofs-algebra contained inF such that

F s1

t1,F s2

t2 , 0<s2<s1<t1<t2<`. ~23!

We assume the strong mixing condition in the sense that
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sup
s>0

sup
APF s1t

` ,BPF 0
s

uP~AuB!2P~A!u5r~ t !↓0, as t↑`. ~24!

The monotonically decreasing nonnegative functionr is called the mixing rate which is assumed
to satisfy the following rate condition:

E
0

`

r1/2~s!ds,`. ~25!

For example, ergodic Markov processes on a compact state space are mixing processes with an
exponential mixing rate. Note that decreasing monotonicity~24! and rate condition~25! imply that
r(1/e)/e is uniformly bounded ine P (0,1# and*0

`r(s)ds,` and*0
`sr(s)ds,`. The condi-

tional probabilities relative toF 0
s , 0<s<`, are assumed to have a regular version so that we are

able to have the following representation almost everywhere:

E$•uF 0
s%5E

V
•Ps~dvuv8! a.e. ~26!

Let F(h,n,x,v) be a function from@0,̀ )3@0,̀ )3R3V intoR, whereR denotes the set of
real numbers. The random fieldF is assumed to be jointly measurable with respect to its argu-
ments and, for fixedh, n andx, F(h,n,x,v) is F n

n measurable as a function ofv P V.
We introduce the one-point compactification ofR, denoted byRc , andC

0 denotes the space
of continuous real valued functions onRc with the supremum normi•i . Let C k denote the space
of real valued functions onRc with bounded continuous derivatives up to orderk with norm
i•ik the sum of the supremum norm of the function and its derivatives up to orderk. Then the
spacesC k are separable Banach spaces and dense subspaces ofC 0 such thatC k,C k21 and
i f ik21<i f ik ,; f P C k.

With a positive parametere, we consider the following stochastic initial value problem on an
O(e21) interval which is a generalized form of our model problem~22!:

d

dt
xe~t,s,x!5

1

e
F~t,t/e2,xe~t,s,x!,v!, 0<s<t<h0;O~e21!, ~27a!

xe~s,s,x!5x, ~27b!

where the solutionxe(t,s,x) is F s/e2
t/e2 measurable as a function ofv for any fixedx.

To develop a limit theory for our problem of interest, it is convenient to introduce solution
operatorsUe(s,t), called random propagators, associated with~27!; we defineUe(s,t) by

~Ue~s,t! f !~x!5 f ~xe~t,s,x!!, ~28!

for arbitrary f P C 0. These are contraction operators onC 0→C 0. The functionUe(s,t) f , f

P C 0, is stronglyF s/e2
t/e2 measurable. It is also useful to define the following random differential

operatorV(t):

~V~t! f !~x!5F~t,t/e2,x!]xf ~x!, ~29!

for arbitraryf P C k, k>1. Note that thee dependence ofV(t) is not explicitly expressed here. For

eachf P C k, V(t) f is stronglyF t/e2
t/e2 measurable.

Let the interval 0<t<h0 be covered byO(1) intervalsI n5@sn21 ,sn# such that
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05s0,s1,•••,sn,•••,sm0
5h0 , m0;O~e21!. ~30!

We adopt, throughout, the convention that, for each fixedn, e dependent constantCn,e introduced
in the following theorem is not necessarily the same constant; constant multiples ofCn,e will again
be denoted byCn,e .

Now we are ready to state our main result. The proof of the following theorem will be given
in the next section.

Theorem: Let Ue(s,t) and V(t), 0<s<t<h0[t0 /e;O(e21), be the operators, respec-
tively, defined by (28) and (29) corresponding to stochastic initial value problem (27). Suppose the
strong mixing condition (24)–(25) and the hypotheses stated above are satisfied. Let us assume the
following conditions (i)–(iv) hold:

(i) For arbitrary f P C 1,

E$V~t! f %50. ~31!

(ii) There are positive constantsak and bk independent ofs, t and e such that for arbitrary f
P C k, k51,2,

iUe~s,t! f ik<bk$11~t2s!/e1•••1~~t2s!/e!k21%eak @~t2s!/e#i f ik a.e. ~32!

(iii) For each interval In , there is a positive constant Cn,e such that

sup
tPI n

iV~t! f ik21<Cn,ei f ik a.e., ; fPC k, 1<k<4. ~33!

The above constants Cn,e , n51,2, . . . ,m0 , are uniformly bounded in n by a constant independent
of e and satisfy, for some numberg,1, the following decay condition:

(
n51

m0

Cn,e;O~e2g!. ~34!

(iv) Let (Ae(s,t) f )(x) denote the solution ue(s,t,x; f ) of the backward Kolmogorov equation

]su~s,t,x!1Ls
e u~s,t,x!50, s,t, u~t,t,x!5 f ~x!, ~35!

with infinitesimal generatorLs
e defined onC 2→C 0 by

Ls
e f5E

0

1/e

E$V~s!V~s1e2t ! f %dt, ~36!

and let the averaged backward propagators Ae(s,t) satisfy the following inequality for some
positive constants ak independent ofe.0:

sup
0<s<t<h0

iAe~s,t! f ik<aki f ik , ; fPC k, 1<k<4. ~37!

We assume that the strong limit inC 0 of Ae(s,t) f , ase→0, exists uniformly ins andt and the
limit, denoted by A(s,t) f , satisfies the rate of approach

sup
0<t<h0

iAe~0,t! f2A~0,t! f i0<e12gCt0
i f i2 , ; fPC 2. ~38!

Then, for arbitrary fP C 4, we have the estimate
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sup
0<t<h0

iE$Ue~0,t! f %2A~0,t! f i0<e12gC~ f ;t0!, ~39!

where C( f ;t0) is a positive constant depending on f and its derivatives up to order 4 andt0
(which comes fromh05t0 /e) but independent ofe.

Remark:The known limit theorems so far have dealt with the random field of the form
e21F5e21F11F2 for some mean-zero random fieldsF1 andF2 on a finite scaled interval. In this
case, the random fieldF2 can be ignored in the diffusion limit. On the interval of infinite scale
considered here, however,F2 may grow and become comparable toe21F1 ash increases while
F1 remains controlled. Then the random fieldF2 cannot be ignored anymore in the diffusion limit.
This is the case for the turning point problem established in the previous section. Unless such a
problem is dealt with separately in two different regions, therefore, we need the above theorem for
a uniformly valid diffusion limit on the whole interval.

IV. INTERPLAY OF REFRACTION AND RANDOM SCATTERING

Now we apply the theorem in Sec. III to our stochastic turning point problem in Sec. II with
the appropriate strong mixing condition for the random functionsa1(h/e

4/3) andb1(h/e
4/3). The

necessary hypotheses described in the theorem are satisfied. In particular, the constantCn,e can be
taken as

Cn,e5c1~~n21!h1!
21/21c2e

2/3~nh1!
1/2, n52,3, . . .m0 , ~40!

where the correspondingsn in ~30! is given bynh1 for a fixedO(1) intervalh1 , andc1 and
c2 are some positive constants (C1,e can be defined as a fixed positive number sinceh1 is finite!.
Note also that the decay condition~34! corresponds tog51/2:

(
n51

m0

Cn,e;O~e21/3!. ~41!

We present here explicitly, with exact scales, thee-dependent single-frequency infinitesimal
generator of the corresponding diffusion Markov process for our turning point problem. This is an
adjoint form of the infinitesimal generator of the Fokker-Planck equation for the transition prob-
ability density of the diffusion process:

Lh
e f5@g22

e v4/3p2a0
2z8M4~h!$12cosVe~h,v,c,t0!%

21e2/3g21
e v2/3p2z4M2~h!N2~h!

3$12cosVe~h,v,c,t0!%$11cosCe~h,v,c,t0!%1e2/3g12
e v2/3p2z4M2~h!N2~h!

3$12cosVe~h,v,c,t0!%$11cosCe~h,v,c,t0!%1e4/3g11
e p2a0

22N4~h!

3$11cosCe~h,v,c,t0!%
2#]cc

2 f1@g22
e v4/3p2a0

2z8M4~h!$12cosVe~h,v,c,t0!%

3sin Ve~h,v,c,t0!2e2/3g21
e v2/3p2z4M2~h!N2~h!$12cosVe~h,v,c,t0!%

3sin Ce~h,v,c,t0!1e2/3g12
e v2/3p2z4M2~h!N2~h!sin Ve~h,v,c,t0!

3$11cosCe~h,v,c,t0!%2e4/3g11
e p2a0

22N4~h!sin Ce~h,v,c,t0!

3$11cosCe~h,v,c,t0!%#]c f , ~42a!

whereVe(h,v,c,t0) andCe(h,v,c,t0) are given by

Ve~h,v,c,t0!5c12~vt0 /e1V~h!!, Ce~h,v,c,t0!5c12~vt0 /e1C~h!! ~42b!

andg i j
e ’s, i , j51,2, correspond to the following quantities in thez-scale:
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g i j
e ~z!5E

0

1/e

g i j ~z,z/e
2;t !dt, G t~z,z/e

2![~g i j ~z,z/e
2;t !!, ~42c!

G t~z,z/e
2![FE$a1~z,z/e

2!a1~z,z/e
2!% E$a1~z,z/e

2!b1~z,z/e
2!%

E$b1~z,z/e
2!a1~z,z/e

2!% E$b1~z,z/e
2!b1~z,z/e

2!%
G .

The above generator is uniformly valid in the region above the turning point~transition as
well as outer regions!. Note that there is a competition among diffusion and drift coefficients due
to the asymptotic behavior ofM (h) andN(h); the terms involvingg22

e , g21
e , g12

e andg11
e are of

ordersO(1), O(e2/3), O(e2/3) andO(e4/3), respectively, in the transition region whereas all of
these are of comparableO(e2/3) order in the outer region. In~42c!, the limits are finite in view of
the mixing rate condition~25!. These quantities represent the noise intensity wherez represents
the nonstationary slow-scale (e2/3h) dependence whilez/e2 represents the fast random-scale
(h/e4/3) dependence.

For the frequency range of interest, the scale dependence of diffusion and drift terms in each
region displays the subtle interplay of refraction and multiple scattering. Significant multiple
scattering by the random layering occurs in both regions with diffusive spreading of the phase
angle of the reflection coefficient. Note that the orderO(e2/3) in the h-scale corresponds to the
orderO(1) in thez-scale. In particular, the singular scale, i.e.O(e22/3) in thez-scale, of diffusion
and drift terms in the transition region indicates that the refraction of the wave plays little role near
the turning point. This implies physically that the randomization effect is enhanced as the rays
become aligned with random layers. As the frequency increases in the valid range of our analysis,
the multiple scattering is even more pronounced near the turning point than in the outer region; the
diffusion term grows with the frequency of ordere22/3v4/3 in the z-scale near the turning point
whereas it grows with the order ofv2/3 in the outer region. At higher frequencies, the randomiza-
tion due to the increased multiple scattering is expected to be much stronger even in the outer
region so that the wave field becomes relatively insensitive to the turning point. The simulation
study of Ref. 18 in the geophysical context has shown this behavior well. The coherent energy
suffers attenuation due to this randomization process and the multiple scattering with wave inter-
ference tends to localize the energy.

V. PROOF OF THE EXTENDED LIMIT THEOREM

To prove the limit theorem established in the previous section, we begin with finite propagator
property and the variation of constants formulas for the random propagatorsUe(s,t) and the
averaged backward propagatorsAe(s,t).

~i! finite propagator property:

Ue~s,h!Ue~h,t!5Ue~s,t!, Ue~t,t!5I . ~43a!

~ii ! infinitesimal forward and backward propagator properties:

I1e21E
s

t

Ue~s,h!V~h!dh5Ue~s,t!5I1e21E
s

t

V~h!Ue~h,t!dh. ~43b!

The property~i! comes from the uniqueness of solutions of the differential equation. If one
differentiates the identity (Ue(s,t) f )(x)5 f (xe(t,s,x)) with respect tot, then one can obtain a
differential equation whose integral form is the first identity of~43b!. If one differentiates~43a!
with respect toh and leth↓s, then one obtains an equivalent form of the second identity of~43b!.
Also the averaged backward propagatorsAe(s,t) satisfy
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Ae~s,h!Ae~h,t!5Ae~s,t!, Ae~s,s!5I , ~44a!

Ae~s,t!5I1E
s

t

Lh
eAe~h,t!dh. ~44b!

Then, using~43! and~44!, one can obtain for arbitraryf P C 4

E$Ue~0,t! f %2Ae~s,t! f5 (
n51

m

E$Ue~0,sn21!$E$Ue~sn21 ,sn!gn%2Ae~sn21 ,sn!gn%%

1 (
n51

m

E$Ue~0,sn21!$U
e~sn21 ,sn!gn2E$Ue~sn21 ,sn!gn%%%,

~45!

wheregn5Ae(sn ,t) f is a deterministic function inC
4 andigni4<a4i f i4 . Since the propagators

Ue(0,sn21) are contraction operators onC
0→C 0, the i•i0 norm of the above~45! satisfies the

following inequality:

iE$Ue~0,t! f %2Ae~0,t! f i0< (
n51

m

~ In
1~ f !1In

2~ f !!, ~46a!

In
1~ f ![iE$Ue~sn21 ,sn!gn%2Ae~sn21 ,sn!gni0 , ~46b!

In
2~ f ![iE$Ue~0,sn21!U

e~sn21 ,sn!gn%2E$Ue~0,sn21!E$Ue~sn21 ,sn!gn%%i0 . ~46c!

From now on, we will show that

In
1~ f !, In

2~ f !<eCn,ei f i4 , ; fPC 4. ~47!

Once~47! is proved, then the estimate~39! of the theorem follows immediately from~38! and the
decay condition~34! for Cn,e . The estimate forIn

1( f ) roughly corresponds to a limit theorem on
eachO(1) intervalI n in our context. Since it would follow basically the same idea of proof as in
previously known limit theorems,11,12 we omit here the lengthy proof24 of the estimate for
In
1( f ). The main tool for the estimate ofIn

2( f ) is the followingp-norm version of mixing lemma.25

Lemma 1: Let F(v8,v) be a function onV3V such that for fixedv, F(•,v) is F 0
s mea-

surable and for fixedv8, F(v8,•) is F s1t
` measurable anduF(v8,v)u<f(v8)c(v),

E$fq%,` and E$cp%,` with 1/q11/p51 and p,q.1. Let F s
t and P satisfy the hypotheses in

Sec. III and set

F̄~v8![E$F~v8,• !%5E
V
F~v8,v!P~dv!.

Then

uE$F%2E$F̄%u<2r1/q~ t !E1/q$fq%E1/p$cp%. ~48!
If one uses the backward propagator property~43b! for Ue(sn21 ,sn), then one can represent

In
2( f ) as follows:

In
2~ f !5 sup

xPRc

In
2~ f ,x!, ~49a!
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In
2~ f ,x![ sup

xPRc

e21U E
sn21

sn
$E$Ue~0,sn21!V~s!Ue~s,sn!%

2E$Ue~0,sn21!E$V~s!Ue~s,sn!%%%gn~x!dsU. ~49b!

Note that betweenUe(0,sn21), which is F 0
sn21 /e

2
measurable, andV(s)Ue(s,sn), which is

F s/e2
` measurable, a gap has been created. This allows us to apply Lemma 1 to the integral of

~49b! if the corresponding random variablesf(v8) andc(v) can be found appropriately. From
now on, we give the estimate ofIn

2( f ) in the context of Lemma 1. The corresponding random field
is given by

Fn~v8,v!5F~s,s/e2,xe~sn21,0,x,v8!,v!]xgn~x
e~sn ,s,x

e~sn21,0,x,v8!,v!!

3]xx
e~sn ,s,x

e~sn21,0,x,v8!,v!. ~50!

The random field averaged with respect todv is denoted by

F̄n~v8!5E$Fn~v8,• !%. ~51!

We wish to control random variablescn(v) andfn(v8) defined as

fn~v8!5 sup
sPI n ,xPRc

sup
vPV

uF~s,s/e2,x,v!]xgn~x
e~sn ,s,x,v!!u, ~52a!

cn~v!5 sup
sPI n ,xPRc

u]xxe~sn ,s,x,v!u. ~52b!

Anticipating Lemma 2, we now apply Lemma 1~with p5q52! to each integrand of~49!. Then
we get the inequality

In
2~ f ,x!<eCn,ei f i4E

0

`

r1/2~u!du ~53!

for all x P Rc , where the notational convention forCn,e was used. Then the assumed mixing rate
condition implies the desired estimate forIn

2( f ). To complete the estimate forIn
2( f ), therefore, we

are left to prove the following lemma.
Lemma 2: Let xe(t,s,x) be the solution of stochastic initial value problem (27). Then on each

interval In we have

sup
s,tPI n ,s<t

sup
xPRc

E1/p$u]xxe~t,s,x!up%<11Cn,e ~54!

and thus the pth moment of]xx
e(t,s,x) is bounded uniformly in n by a constant. The random

variablescn andfn defined by (52) satisfy

E1/p$cn
p~v!%<11Cn,e , E1/q$fn

q~v8!%<Cn,ei f i4 . ~55!

Proof: The second inequality in~55! holds because of condition~33!. The first inequality will
follow from the dominated convergence theorem, once~54! is proved. From now on, therefore, we
focus on the estimate of thepth moment of]xx

e(t,s,x). In order to estimate thepth moment of
]xx

e(t,s,x) onO(1) interval I n , we use the following variational argument.
First we define the following~vector! notation for convenience:
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x1
e~t,s,x![xe~t,s,x!, x2

e~t,s,x![]xx
e~t,s,x!, ~56a!

F1~t,t/e2,xe~t,s,x!![F~t,t/e2,xe~t,s,x!!, ~56b!

F2~t,t/e2,xe~t,s,x!![]xF~t,t/e2,xe~t,s,x!!]xx
e~t,s,x!. ~56c!

Then, from the random differential equation~27!, we obtain

x2
e~t,s,x!511e21E

s

t

F2~s,s/e
2,xe~s,s,x!!ds. ~57!

Using the Gronwall inequality, one can get the following local estimate; ifs,t P I n and
0<t2s<e, then

ux2
e~t,s,x!u<eCn,e, u]xx2

e~t,s,x!u<Cn,e . ~58!

Note that, once one can show the inequality~54! for any even integer 2p, the same result is
true for any positive integerp by the Cauchy–Schwartz inequality. So we consider only the case
of even integer power ofux2

e(t,s,x)u to prove Lemma 2. Let us first divide the interval
@s,t#,I n into e-length segments such that

s5t0,t1,t2,•••,tk,•••,t r21,t r5t, tk5s1ke,

wheree can be chosen such thatr5(t2s)/e is an integer without loss of generality. If one takes
the 2p-power of ~57! and differentiates with respect tot and integrates it froms to t, then one
can get

$x2
e~t,s,x!%2p2$x2

e~s,s,x!%2p52p/eE
s

tF111/eE
s

s

F2~ t,t/e
2,xe~ t,s,x!!dtG2p21

3F2~s,s/e
2,xe~s,s,x!!ds, ~59!

which, from ~57!, leads to

$x2
e~t,s,x!%2p5112p/eE

s

t

F2~s,s/e
2,xe~s,s,x!!$x2

e~s,s,x!%2p21ds. ~60!

We decompose the integral on the right side of~60! into the integrals on thee-length segments:

$x2
e~t,s,x!%2p5112p/e(

k50

r21

Jk
e~x!, ~61a!

Jk
e~x![E

tk

tk11
F2~s,s/e

2,xe~s,s,x!!$x2
e~s,s,x!%2p21ds, k50,1, . . . ,r . ~61b!

For k50, in particular, the following estimate from~33! and ~58! holds:

uJ0
e~x!u<eCn,e a.e., ~62!

where the uniform boundedness ofCn,e , n51,2,..,m0 , and the notational convention forCn,e

were used. Combining~61! and ~62!, one obtains the inequality
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E$ux2
e~t,s,x!u2p%<11Cn,e12p/e(

k51

r21

uE$Jk
e~x!%u. ~63!

This inequality will have the form to which the discrete version of the Gronwall inequality can be
used if the following inequality holds:

uE$Jk
e~x!%u<e2Cn,eE$$x2

e~tk21 ,s,x!%2p%, k51,2, . . . ,r21. ~64!

Suppose this is true@~64! will be proved in Lemma 3#. Then we can get estimate~54! with even
integer 2p in the following way. Using the notation

Ek~s,x,2p![uE$$x2
e~tk ,s,x!%2p21%u, k50,1, . . . ,r , ~65!

for convenience, one can obtain from assumption~64! that ~63! becomes

Er~s,x,2p!<Cn,e1eCn,e(
k51

r21

Ek~s,x,2p!, ~66!

where the fact thatr5O(e21) and the notational convention forCn,e were used. With the notation
L j (s,x,2p) defined by

L0~s,x,2p![0, L j~s,x,2p![(
k51

j

Ek~s,x,2p!, j51,2, . . . ,r , ~67!

inequality ~66! can be expressed as

L r~s,x,2p!<Cn,e1~11eCn,e!L r21~s,x,2p!. ~68!

Now we apply the discrete version of the Gronwall inequality to~68!. Then

L r~s,x,2p!<Cn,e

~11eCn,e!
r21

eCn,e
<
er eCn,e21

e
. ~69!

By substituting this inequality~corresponding tor21 instead ofr ! into ~68!, we have

Er~s,x,2p!5L r~s,x,2p!2L r21~s,x,2p!<Cn,e1eCn,e

e~r21!eCn,e21

e
[Cn,e . ~70!

Therefore, the desired estimate~54! follows for even integer 2p. To complete the proof of Lemma
2, we are left to show inequality~64!. Let us explicitly restate this inequality as follows by
substituting~61b! into ~64!.

Lemma 3: Forsn21<s<•••<tk<tk11<•••<t<sn , we have the estimate

UEH E
tk

tk11
F2~s,s/e

2,xe~s,s,x!!$x2
e~s,s,x!%2p21dsJ U<e2Cn,eE$$x2

e~tk21 ,s,x!%2p%. ~71!

Proof: To derive the estimate~71!, we first introduce some useful identities. These identities
provide the creation of gaps to allow the mixing lemma~Lemma 1! to be used. By differentiation
and integration, one can have
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$x2
e~s,s,x!%2p215$x2

e~tk21 ,s,x!%2p211~2p21!/eE
tk21

s

F2~n,n/e2,xe~n,s,x!!

3$x2
e~n,s,x!%2~p21!dn, ~72!

wheretk<s<tk11 . We also have the following identity by the fundamental theorem of calculus
and chain rule:

F2~s,s/e
2,xe~s,s,x!!5F2~s,s/e

2,xe~tk21 ,s,x!!

11/eE
tk21

s

~]xF2~s,s/e
2,xe~n,s,x!!,F~n,n/e2,xe~n,s,x!!!dn,

~73!

wherex5@x1 ,x2#
t, F5@F1 ,F2#

t and~ , ! denote the inner product. From the above two identities
~72! and ~73!, the integral on the left side of inequality~71! becomes

Jk
e~x!5E

tk

tk11
F2~s,s/e

2,xe~tk21 ,s,x!!$x2
e~tk21 ,s,x!%2p21ds

1~2p21!/eE
tk

tk11E
tk21

s

F2~s,s/e
2,xe~tk21 ,s,x!!F2~n,n/e2,xe~n,s,x!!

3$x2
e~n,s,x!%2~p21!dnds

11/eE
tk

tk11E
tk21

s

~]xF2~s,s/e
2,xe~n,s,x!!,F~n,n/e2,xe~n,s,x!!!

3$x2
e~tk21 ,s,x!%2p21dnds

1~2p21!/e2E
tk

tk11E
tk21

s E
tk21

s

~]xF2~s,s/e
2,xe~n,s,x!!,F~n,n/e2,xe~n,s,x!!!

3F2~m,m/e2,xe~m,s,x!!$x2
e~m,s,x!%2~p21!dmdnds. ~74!

There are, therefore, four terms to be estimated for the proof of Lemma 3. For the estimation of
these terms, we repeatedly use the following inequalities which can be derived without difficulty:

Lemma 4: Forsn21<s<•••<tk<tk11<•••<t<sn, we have the estimate

ux2
e~n,s,x!u<eCn,eux2

e~tk21 ,s,x!u, tk21<n<tk , ~75!

E
tk

tk11E
tk21

s

r~~s2n!/e2!dnds<e3E
0

`

r~ t !dt. ~76!

We present here an estimation for only one term~for example, the second term! of ~74! since
the other terms can be estimated in a similar way:
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UEH ~2p21!/eE
tk

tk11E
tk21

s

F2~s,s/e
2,xe~tk21 ,s,x!!F2~n,n/e2,xe~n,s,x!!

3$x2
e~n,s,x!%2~p21!dndsJ U

5UEH ~2p21!/eE
tk

tk11E
tk21

s

E$]xF~s,s/e2,xe~tk21 ,s,x!!uF 0
n/e2%]xF~n,n/e2,xe~n,s,x!!

3x2
e~tk21 ,s,x!$x2

e~n,s,x!%2p21dndsJ U
<EH ~2p21!/eE

tk

tk11E
tk21

s

2r~~s2n!/e2!dndsCn,e
2 e2~2p21!Cn,eux2

e~tk21 ,s,x!u2pJ
<e2Cn,eE$ux2

e~tk21 ,s,x!u2p%,

where a property of conditional expectation, Lemma 1,~75! and ~76!, sequentially, with the
notational convention forCn,e . Therefore, Lemma 3 is proved.

VI. FINAL REMARKS

The random wave propagation problem considered in this paper has the two divided regions,
i.e. propagating region and evanescent region, determined by effective medium theory. Our ex-
tended limit theorem leads to a uniform description of diffusion Markov process for random
multiple scattering occurring in the propagating region. The scale dependence of the coefficients
of the backward Kolmogorov equation provides an insight into the orchestral interplay of refrac-
tion and multiple scattering as one approaches to the turning point of our wave propagation
problem. The intermediate frequency scaling considered here, however, needs to be extended in
order to understand the problem for the full range of frequencies.

The problem of interest in the evanescent region requires different scattering variables from
those introduced in this paper since the error term in the Lynn and Keller approximant is not small
at all in this region. Consequently we need a limit theorem for stochastic differential equations
with a right-hand side that consists of a rapidly varying deterministic part plus a zero-mean
random fluctuation part. There is already a result26 for this type of problem~stochastic Boltzmann
equations!. The scaling there, however, is different from our case. If the limit process of a
diffusion-type can be obtained for evanescent waves, which will appear later, it would adjoin at
the turning point with the limiting diffusion process obtained in this paper and provide a global
limit law for the same physical problem; we will need to use a transformation at the turning point
to obtain a marching limiting process in the whole region of the medium.
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The dynamics and kinematics of reciprocal diffusions were examined in a previous
paper@J. Math. Phys.34, 1846~1993!#, where it was shown that reciprocal diffu-
sions admit a chain of conservation laws, which close after the first two laws for
two disjoint subclasses of reciprocal diffusions, the Markov and quantum diffu-
sions. For the case of quantum diffusions, the conservation laws are equivalent to
Schrödinger’s equation. The Markov diffusions were employed by Schro¨dinger
@Sitzungsber. Preuss. Akad. Wiss. Phys. Math Kl. 144~1931!; Ann. Inst. H. Poin-
caré2, 269 ~1932!#, Nelson@Dynamical Theories of Brownian Motion~Princeton
University, Princeton, NJ, 1967!; Quantum Fluctuations~Princeton University,
Princeton, NJ, 1985!#, and other researchers to develop stochastic formulations of
quantum mechanics, called stochastic mechanics. We propose here an alternative
version of stochastic mechanics based on quantum diffusions. A procedure is pre-
sented for constructing the quantum diffusion associated to a given wave function.
It is shown that quantum diffusions satisfy the uncertainty principle, and have a
locality property, whereby given two dynamically uncoupled but statistically cor-
related particles, the marginal statistics of each particle depend only on the local
fields to which the particle is subjected. However, like Wigner’s joint probability
distribution for the position and momentum of a particle, the finite joint probability
densities of quantum diffusions may take negative values. ©1996 American In-
stitute of Physics.@S0022-2488~96!03402-8#

I. INTRODUCTION

Since the early days of quantum mechanics, many researchers have attempted to formulate
quantum mechanics in terms of diffusions processes. These efforts were originally motivated by
the observation that as the real timet is converted to imaginary timeit, the Schro¨dinger and
Fokker–Planck equations, which describe, respectively, the time evolutions of the wave function
in quantum mechanics and the density of a Markov diffusion, are transformed into each other. This
is, for example, the correspondence that was exploited by Kac1 to derive a stochastic interpretation
of Feynman path integrals.2 This analogy has been used in recent years to develop a stochastic
formulation of quantum mechanics, called Euclidean quantum mechanics, which relies on Markov
diffusions.3,4 However, since this interpretation is based on the Wick rotationt→ i t , the resulting
stochastic models can be viewed as evocative analogies, but not as a picture of physical reality.

Other attempts at relating quantum mechanics and diffusion processes are more radical, in the
sense that they go beyond analogies and seek to demonstrate that these two theories are, in fact,
equivalent. This line of investigation was initiated by Schro¨dinger5 in 1931, who focused his
attention on Markov diffusions. Unfortunately, Schro¨dinger’s work was somewhat premature,
since descriptions of Markov diffusions in terms of stochastic differential equations were not yet
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available, and as a consequence his results were not immediately exploited, and were taken up
only later by Zambrini6 and Nagasawa.7 Inspired by the early work of Fenyes,8 a slightly different
approach was proposed by Nelson9,10 and other researchers11 to formulate quantum mechanics in
terms of Markov diffusions. The key aspect of this theory, which is usually called Markovian
stochastic mechanics, is that it employs the calculus of stochastic differential equations to give a
precise meaning to kinematic quantities such as velocity and acceleration. Given the wave func-
tion of a quantum process, one associates to it a Markov diffusion with an identical probability
density, where the gradient of the wave function phase specifies the mean velocity obtained by
averaging the forward and backward drifts of the diffusion. However, like Bohm’s hidden vari-
ables interpretation of quantum mechanics,12 both the Schro¨dinger and Nelson versions of sto-
chastic mechanics arenonlocal, in the sense that a ‘‘quantum potential’’ needs to be introduced to
relate the forward and backward Fokker–Planck equations of the Markov diffusions with the
Schrödinger equation of the matching wave function. This potential has the feature that for two
dynamically uncoupled and widely separated particles, changes in their joint probability density
affect immediately the forces acting on each particle. This lack of locality gives rise to significant
differences10,13 between Markovian stochastic mechanics and standard quantum mechanics.

We propose here an alternative form of stochastic mechanics based on a subclass of reciprocal
diffusions, called the quantum diffusions. Reciprocal processes were introduced by Bernstein in
1932,14 who was influenced by Schro¨dinger’s above mentioned attempt at a stochastic formulation
of quantum mechanics. Reciprocal processes were subsequently studied by Jamison,15 who
showed that over a finite interval, they could be constructed from Markov processes by applying
a change of measure to the joint probability distribution of the end-point values of the process.
This procedure can be used to construct reciprocal diffusions directly from Markov diffusions. In
Refs. 16 and 17, Krener showed that reciprocal diffusions satisfy locally a stochastic form of
Newton’s law, which in the Gaussian case,18 can be used to express reciprocal diffusions as the
solutions of second-order stochastic differential equations. In Ref. 19, a stochastic quantization
procedure was introduced to associate a class of reciprocal diffusions to a dynamical system
satisfied by its Hamiltonian. This construction was used to characterize the kinematics and dy-
namics of reciprocal diffusions. It was shown that reciprocal diffusions satisfy a chain of conser-
vation laws, which is generally infinite, but closes after the first two laws for two disjoint sub-
classes, the Markov and quantum diffusions. The quantum diffusions derive their name from the
equivalence existing between their conservation laws and Schro¨dinger’s equation for the associ-
ated Hamiltonian.

The stochastic mechanics described here associates to the wave function of a quantum system
a matching quantum diffusion. This construction selects, in the equivalence class of reciprocal
diffusions associated to a Hamiltonian, the diffusion which models the corresponding quantum
process. The quantum diffusions have the feature that the closure rule satisfied by their conserva-
tion laws is essentially equivalent to Heisenberg’s uncertainty principle for the position and mo-
mentum variables. Unlike Markovian stochastic mechanics,10,13 the stochastic mechanics of quan-
tum diffusions is local, in the sense that given two dynamically uncoupled but statistically
correlated particles, the marginal probability density of each particle does not depend on the
parameters of the potentials acting on the other particle. However, one interesting feature of this
new stochastic mechanics is that the end-point densities that must be applied to model certain
quantum processes, such as the excited states of the harmonic oscillator, can take negative values.
The appearance of such negative densities should not come as a true surprise if one considers that
the finite joint densities for the positions at successive times obtained here form an extension of
the Wigner joint position-momentum distribution,20,21 which also has the feature of taking nega-
tive values. Note that the marginal density for the position at a single time is always positive, so
that, as argued in Ref. 22, the negativity of densities is not a real drawback, as long as one
considers that observable quantum events have always positive probabilities.

The paper is organized as follows. The stochastic quantization procedure used to associate a
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class of reciprocal diffusions to a dynamical system specified by its Hamiltonian is described in
Sec. II, where the dynamical properties of reciprocal diffusions are reviewed. In Sec. III, the
subclass of quantum diffusions is introduced, and a method is presented for constructing the
quantum diffusion matching the wave function of a quantum system. This construction is simpli-
fied for the case of Gaussian processes in Sec. IV, and then illustrated by considering the minimum
uncertainty wavepacket for a free particle and the ground state of the harmonic oscillator. In Sec.
V, we prove that quantum diffusions satisfy Heisenberg’s position-momentum uncertainty relation.
The locality property of quantum diffusions is demonstrated in Sec. VI. Finally, it is shown in Sec.
VII that negative probabilities must be allowed if one seeks to model certain quantum processes,
such as the excited states of the harmonic oscillator.

II. DYNAMICAL SYSTEMS AND RECIPROCAL DIFFUSIONS

As a starting point, we recall that a processx(t)PRn defined over@0,T# is reciprocal if for
arbitrary subintervals [s,t] of @0,T#, the process interior to [s,t] is independent of the process
exterior to [s,t], given x(s) andx(t). Whenx~•! admits finite joint probability densities, it was
shown by Jamison15 that x~•! is completely specified by~i! the joint probability density
p(x0,0;xT ,T) of its valuesx~0! andx(T) at the ends of the interval@0,T#; and ~ii ! its reciprocal
transition densityr (x,s;y,t;z,u), which is the conditional density ofx(t)5y, given thatx(s)5x
andx(u)5z, with s,t,u. In order to correspond to a reciprocal density, a functionr must satisfy
two conditions. First, it must be a probability density iny, i.e.

E r ~x,s;y,t;z,u!dy51, ~2.1a!

and the identity

r ~w,s;x,t;z,v !r ~x,t;y,u;z,v !5r ~w,s;y,u;z,v !r ~w,s;x,t;y,u!, ~2.1b!

must hold for all 0<s,t,u,v<T. This last condition is the analog for reciprocal processes of
the Chapman–Kolmogorov equation of Markov processes. From this characterization, one can
immediately deduce that if a process is Markov, it is necessarily reciprocal, but the converse does
not hold, in general. Also, two reciprocal processes with the same transition densityr(x,s;y,t;z,u)
are said to belong to the same reciprocal class, since they exhibit the same local stochastic
behavior.

Let Rn be the standardn-dimensional Euclidean space with metricdi j51 for i5 j , and50
otherwise. Consider a dynamical system with Hamiltonian

H~x,p,t !5 1
2„p

i2Ai~x,t !…„pi2Ai~x,t !…1f~x,t !, ~2.2!

where$f,Ai% denotes a scalar and vector potential pair, and where we employ the standard tensor
contraction convention with repeated upper and lower indices corresponding to a summation.
Under certain smoothness conditions for the potentials$f,Ai%, a stochastic quantization procedure
was proposed in Ref. 19, which associates a class of reciprocal diffusions to the system~2.2!.

The first step of this quantization procedure consists in replacing the momentumpj by 2“j

inside the HamiltonianH(x,p,t), where“j denotes the differentiation with respect toxj . This
correspondence rule is the stochastic analog of the quantization rulepj↔2 i“j of quantum me-
chanics. This yields the elliptic operator

H5 1
2~“

i1Ai !~“ i1Ai !1f, ~2.3a!

5 1
2D1Ai

“ i1
1
2~“

iAi1AiAi !1f, ~2.3b!
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whereD denotes the Laplacian. Then the generalized heat operator,

L5H2
]

]t
, ~2.4!

is the forward operator of a general Markov diffusion with unit diffusion matrixdi j drift
bi(x,t)52Ai(x,t) and creation/killing rate

c~x,t !, 1
2~A

iAi2“

iAi !~x,t !1f~x,t !. ~2.5!

See Ref. 23 for a study of Markov diffusions with creation or killing. The Green’s function
G(x,s;y,t) associated toL is given by

L y,tG~x,s;y,t !50, t>s, ~2.6a!

G~x,s;y,s!5d~x2y!, ~2.6b!

where the subscripts$y,t% specify the variables upon which the operatorL is acting. To ensure that
G(x,s;y,t) represents the transition density of a general Markov diffusion,G(x,s;y,t) is also
required to decay asuyu→`.

Then,x(t) is a reciprocal diffusion over@0,T# in the class associated to the Hamiltonian~2.2!
if given an arbitrary set of timest050,t1,•••,tN5T, the joint probability density of
x(t0),x(t1),...,x(tN) can be expressed as

p~x0 ,t0 ;x1 ,t1 ;...;xN ,tN!5q~x0 ,t0 ;xN ,tN! )
k50

N21

G~xk ,tk ;xk11 ,tk11!, ~2.7!

where the end-point densityq(x0,0;xT ,T) is positive and satisfies the normalization condition

E E q~x0,0;xT ,T!G~x0,0;xT ,T!dx0 dxT51. ~2.8!

Since the Green’s functionG(x,s;y,t) is completely specified by the HamiltonianH(x,p,t), the
expression~2.7! indicates that all diffusions associated to a given physical system differ only by
the choice of end-point densityq(x0,0;xT ,T). To verify that the finite joint densities~2.7! satisfy
the Jamison conditions~2.1a!–~2.1b!, note that fors,t,u, the three-point transition density
r (x,s;y,t;z,u) can be expressed as

r ~x,s;y,t;z,u!5
G~x,s;y,t !G~y,t;z,u!

G~x,s;z,u!
. ~2.9!

Then ~2.1b! can be verified by inspection, and the fact thatr (x,s;y,t;z,u) is a density iny is a
consequence of the transition property,

G~x,s;z,u!5E G~x,s;y,t !G~y,t;z,u!dy ~2.10!

of the heat kernelG.
The end-point densityq appearing in~2.7! is related to the joint probability density ofx~0!

andx(T) through the relation

p~x0,0;xT ,T!5q~x0,0;xT ,T!G~x0,0;xT ,T!. ~2.11!
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From the structure~2.7! for the finite joint densities, we deduce that when the interval of definition
of a reciprocal diffusion is restricted from@0,T# to a subinterval [s,t] with 0,s,t,T, the density
q(x,s;y,t) that needs to be applied to the new end points (s,t) is given by

q~x,s;y,t !5E E G~x0,0;x,s!G~y,t;xT ,T!q~x0,0;xT ,T!dx0 dxT . ~2.12!

The expression~2.12! implies thatq(x,s;y,t) with s<t satisfies the two evolution equations,

L x,sq~x,s;y,t !50, ~2.13a!

L y,t* q~x,s;y,t !50, ~2.13b!

whereL* denotes the adjoint operator ofL .
Within the general class of reciprocal diffusions specified by the HamiltonianH(x,p,t), it was

shown in Theorem 2.1 of Ref. 19 that the subclass of Markov diffusions has the feature that for
any subinterval [t,s] of @0,T#, the end-point densityq(x,s;y,t) admits the separable structure

q~x,s;y,t !5qf~x,s!qb~y,t !, ~2.14!

whereqf(x,t) andqb(y,t) obey, respectively, the forward and backward heat quations,

Lqf~x,t !50, L* qb~x,t !50, ~2.15!

with initial conditionsqf(x0,0) andqb(xT ,T), respectively.
The identities~2.7! and~2.12! imply that the densityr(x,t) of a reciprocal diffusionx(t) can

be expressed as

r~x,t !5q~x,t;x,t !5E E G~x0,0;x,t !G~x,t;xT ,T!q~x0,0;xT ,T!dx0 dxT , ~2.16!

so that it is completely fixed byq. In the Markov case, this expression reduces to

r~x,t !5qf~x,t !qb~x,t !, ~2.17!

which represents a modification due to Schro¨dinger of the standard representation for the density
of a Markov diffusion, where instead of viewingr as the solution of either a forward or a
backward heat equation, it is expressed as a product of componentsqf andqb propagating in both
time directions. These two components describe the information about the diffusion process speci-
fied at each end of the interval@0,T#. In Schrödinger’s attempt at reformulating quantum mechan-
ics in terms of Markov diffusions, which is further elaborated in Refs. 6 and 7, the identity~2.17!
is employed as a substitute for the usual representation,

r~x,t !5c~x,t !c* ~x,t !, ~2.18!

for the density of a quantum process in terms of the wave functionc(x,t) generated by Schro¨d-
inger’s equation. Unfortunately, as we shall see below, the potentials$Ai ,f% used to construct the
wave functionc are inconsistent with those employed to generate the matching Markov diffusion.

In Ref. 19, several important properties of reciprocal diffusions were derived, which are now
summarized. We denote the mean position and the centered first- and second-order differences of
the processx(t) as

x̄~ t,h!5 1
2„x~ t1h!1x~ t2h!…, ~2.19a!

773B. C. Levy and A. J. Krener: Stochastic mechanics of reciprocal diffusions

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



d1x~ t,h!5 1
2„x~ t1h!2x~ t2h!…, ~2.19b!

d2x~ t,h!5x~ t1h!1x~ t2h!22x~ t !. ~2.19c!

Then, it was shown in Ref. 19 that the three-point transition densityr ( x̄2uh,t2h;x,t; x̄1uh,t
1h) of x(t)5x givenx(t6h)5 x̄6uh can be approximated locally by a Gaussian distribution for
d2x(t,h) with mean

E@d2xi ux~ t6h!5 x̄6uh#5Fi~ x̄,u,t !h21O~h5/2!, ~2.20!

and variance

E@d2xi d2xj ux~ t6h!5 x̄6uh#52hd i j1O~h5/2!. ~2.21!

In relation ~2.20!, if

dAi j5
]Aj

]xi
2

]Ai

]xj
~2.22!

denotes the exterior derivative ofAi ,

Fi~x,u,t !5dAi j ~x,t !u
j2S ]f

]xi
1

]Ai

]t D ~x,t !, ~2.23!

represents the force applied to a particle with positionx and velocityu due to the potentials
$Ai ,f%. Thus ~2.20! can be viewed as a stochastic form of Newton’s law, since it states that the
conditional mean acceleration,

ai5EFd2xih2 Ux~ t6h!5 x̄6uhG , ~2.24!

for the process at timet equals the force based on the mean positionx̄(t,h) and empirical velocity
u(t,h)5d1x(t,h)/h estimated from the positions at timest6h. Note that this form of Newton’s
law is noncausal, since the conditioning is taken with respect to positions at timest2h andt1h.
From a physical point of view, we see that the local motion of a reciprocal diffusion is obtained by
superposing the classical motion specified by the forceFi with some random fluctuations, which,
according to the expression~2.21! for the conditional variance, have a size proportional toh1/2.
Note also that the definition~2.24! of the acceleration differs from the one employed by Nelson9,10

in his derivation of Newton’s law for Markov diffusions. See Ref. 24 for a detailed comparison of
the two accelerations.

Let

M ~a,b,t !, ln q~a2b,t;a1b,t ! ~2.25!

and

wi~a,t !5
1

2

]M

]bi
~a,0,t !, ~2.26a!

p i j ~a,t !5
1

4

]2M

]bi]bj
~a,0,t !, ~2.26b!
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t i jk~a,t !5
1

8

]3M

]bi ]bj ]bk
~a,0,t !. ~2.26c!

Then, in addition to the above characterization for the mean acceleration, it was shown in Ref. 19
that the conditional density of the first differenced1x(t,h) given the mean positionx̄(t,h), is
locally Gaussian with mean

E@d1x~ t,h!ux̄~ t,h!5x#5v i~x,t !h1O~h2!, ~2.27!

where

v i~x,t !,2Ai~x,t !1wi~x,t !, ~2.28!

represents themean velocityof the process, and with covariance

E@~d1xi2v i~x,t !h!~d1xj2v j~x,t !h!ux̄~ t,h!5x#5d i j h/21p i j ~x,t !h21o~h2!. ~2.29!

By analogy with the kinetic theory of gases, for which the 1/h term of the covariance expansion
~2.29! is not present, we callp i j (x,t) the stress tensorof the Gaussian velocity distribution
specified by~2.27! and ~2.28!.

An important difference between the stochastic Newton law and velocity distribution obtained
above is that whereas the conditional distribution ford2x specified by~2.20!–~2.21! is the same
for all diffusions in the same reciprocal class, the velocity distribution given by~2.27!–~2.29!
depends on the density functionq(x,s;y,t) through the functionswi(x,t) andp i j (x,t), so that
different diffusions within a same reciprocal class will admit different conditional velocity distri-
butions.

Finally, it was shown in Ref. 19 that reciprocal diffusions admit an infinite chain of conser-
vation laws, which can be generated by considering the functionq(x,t;y,t) obtained by letting
s→t in the end-point density of the reciprocal diffusion over [s,t]. The identities~2.13a!–~2.13b!
imply q(x,t;y,t) obeys the evolution equation

]q

]t
~x,t;y,t !5~Hx,t2Hy,t* !q~x,t;y,t !. ~2.30!

Then, the function

m~a,b,t !,q~a2b,t;a1b,t !, ~2.31!

plays the role of generating function for the conservation laws. Specifically, by performing a
Taylor series expansion ofm(a,b,t) in the vicinity ofb50 and taking into account the definitions
~2.26a!–~2.26b! of wi andpi j , we findm(a,b,t) admits the power series representation,

m~a,b,t !5r~a,t !F112wi~a,t !b
i14~p i j1wiwj !~a,t !

bibj

2

18~t i jk1p i j wk1pkiwj1p jkwi1wiwjwk!~a,t !
bibjbk

6
1••• G , ~2.32!

for smallb. The chain of conservation laws of reciprocal diffusions is then obtained by performing
the change of coordinatesx5a2b and y5a1b and matching successive powers ofb on both
sides of~2.30!. The constant term yields the law of mass conservation,
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]r

]t
1“

i~rv i !50. ~2.33!

The linear terms inbj give the conservation of momentum,

]

]t
~rv j !1“

i~rPi j !5rF j~x,v,t !, ~2.34!

whereF j is the force defined in~2.23! and where, by analogy with fluid dynamics,

Pi j ~x,t !,~p i j1v iv j !~x,t !, ~2.35!

is called theflux of momentum tensor. Finally, matching the quadratic terms inbjbk, we obtain the
tensor form

]

]t
~rPjk!1“

i~rSi jk !5r~dAji P
i
k1dAki P

i
j1 f jvk1 f kv j ! ~2.36!

of the conservation of energy. In this expression,

f j~x,t !52S ]Aj

]t
1

]f

]xj D ~x,t !, ~2.37!

corresponds to the electric component~the part independent ofv! of the forceF j , and if we
introduce the tensor

s i jk~x,t !,S t i jk2
1

4

]2Ai

]xj ]xkD ~x,t !, ~2.38a!

Si jk~x,t !,~s i jk1p i jvk1pkiv j1p jkv i1v iv jvk!~x,t !, ~2.38b!

represents theflux of energy tensor. Then, if we denote the internal energy byE 5 p j
j /2,, and take

the trace of~2.36! by using the skew symmetry of the tensordAi j , we obtain the scalar form

]

]t S rSE1
1

2
v jv

j D D1
1

2
“

i~rSi j
j !5r f jv

j ~2.39!

of the energy conservation law of fluid mechanics, where the termv jv
j /2 represents the kinetic

energy.
The above procedure for generating the conservation laws of reciprocal diffusions makes clear

that they usually form an infinite chain, since each successive law contains a divergence term
involving the next conserved quantity in the chain. However for the Gaussian case, i.e., when

Ai~x,t !5Ai j ~ t !x
j , f~x,t !5 1

2F i j ~ t !x
ixj , ~2.40!

are, respectively, linear and quadratic inx, and lnq(x0,0;xT ,T) is a quadratic form ofx0 andxT ,
the tensorsi jk(x,t) given by~2.38a! is identically zero, so thatSi jk depends only on the previous
conserved quantities in the chain. In this case, the chain closes after the first three laws. Specifi-
cally, in the Gaussian case,r(x,t) andv(x,t) admit the parametrization

r~x,t !5N„xC~ t !,Kx~ t !…, ~2.41a!

v~x,t !5 ẋC~ t !1V~ t !„x2xC~ t !…, ~2.41b!
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whereN(m,K) denotes a normal distribution with mean vector and covariance matrixK. Here
xC(t) represents the classical trajectory in the absence of random fluctuations andKx(t) denotes
the covariance matrix ofx(t). The stress tensorpi j does not depend onx, and can be represented
by ann3n matrix p(t). Let

L1~ t !5AT~ t !2A~ t !, ~2.42a!

L2~ t !52F~ t !2
dA

dt
~ t !, ~2.42b!

whereA(t) andF(t) are then3n matrices representing the tensorsAi j andFi j in the parametri-
zation~2.40! of the covector and scalar potentials, andT denotes the matrix transpose. Then, the
conservation laws~2.33!, ~2.34!, and~2.36! can be expressed compactly25 as

dV

dt
5LV1VLT, ~2.43!

with

V5F Kx KxV

VKx p1VKxV
TG , ~2.44a!

L5F 0 I n

L2 L1
G , ~2.44b!

which obviously forms a closed system.

III. CONSTRUCTION OF QUANTUM DIFFUSIONS

The general family of reciprocal diffusions contains two interesting and disjoint subclasses,
the Markov and quantum diffusions, for which the chain of conservation laws closes after the first
two. These two classes are characterized by the requirement that the functionswi(x,t) and
p i j (x,t) given by ~2.26a!–~2.26b! must satisfy the closure rules,

wi~x,t !5“ iS~x,t !, ~3.1a!

p i j ~x,t !5
e

4
“ i“ j ln r~x,t !, ~3.1b!

whereS(x,t) is an arbitrary function, and wheree51 for Markov diffusions ande521 in the
quantum case. Note that~3.1a! is satisfied whenever the exterior derivative ofwi5v i1Ai equals
zero. Using this last observation, it is easy to verify that for the Gaussian case, the closure rules
reduce to

L1~ t !5V~ t !2VT~ t !, ~3.2a!

p~ t !52
e

4
Kx

21~ t !, ~3.2b!

whereKx , V, andL1 are as defined in~2.41!–~2.42!. By using the representation~2.43! of the
conservation laws, we can also verify that if the closure rules~3.2! hold at one instant in time, at
that instant we have
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d

dt
~L11VT2V!5

d

dt S p1
e

4
Kx

21D50, ~3.3!

so that the closure rules continue to hold for the complete time interval over which~2.43! admits
a solution. In other words, once closed, the conservation laws remain closed.

For the non-Gaussian case, to discuss the consequences of the closure rules~3.1!, it is con-
venient to rewrite the conservation laws~2.33!, ~2.34!, and~2.36!, which are expressed in Eulerian
form, in the equivalent Lagrangian form

]r

]t
1v i“

ir1r “

iv i50, ~3.4a!

r
]v j
]t

1rv i ¹ iv j1“

i~rp i j !2rF j50, ~3.4b!

r
]p jk

]t
1rv i ¹ ip jk1“

i~rs i jk !5r@~dAji2“ iv j !p
i
k1~dAki2“ ivk!p

i
j #. ~3.4c!

Then, if we introduce the function

R~x,t !5 1
2 ln r~x,t !, ~3.5!

and use~3.1a! to specifyS(x,t), it is easy to verify that under the closure rules~3.1a!–~3.1b!, the
first two conservation laws can be expressed in terms ofR andS as

]R

]t
1~“ iS2Ai !“ iR1

1

2
“

i~“ iS2Ai !50, ~3.6!

“ j I ~x,t !50, ~3.7a!

with

I ~x,t !,
]S

]t
1
1

2
~“ iS2Ai !~“ iS2Ai !1f1

e

2
~“ iR “ iR1DR!. ~3.7b!

The identity ~3.7a! implies thatI (x,t) depends ont only, i.e., I (x,t)5I (t). At this point, it is
useful to note that for a fixedwi , the relation~3.1a! specifiesS(x,t) only up to a function oft, say
f (t). This function contributes a term equal toḟ (t) to I (t), which can be used to setI (t)[0. Thus,
under the closure rules~3.1!, we have shown that the first two conservation laws are equivalent to
the coupled evolution equations~3.6! and~3.7b!, with I50, for R andS. Note that except for the
addition of the term2ek/2, with

k,2~“ iR “ iR1DR!52
Dr1/2

r1/2
, ~3.8!

the equationI (x,t)50 is identical to the Hamilton–Jacobi equation of classical mechanics.
In the Markov case, for whiche51, if we denote

qf~x,t !5exp~R2S!~x,t !, ~3.9a!

qb~x,t !5exp~R1S!~x,t !, ~3.9b!
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it is easy to verify that Eq.~3.6! and ~3.7b! can be rewritten as the decoupled forward and
backward heat equations~2.15! for qf andqb . With this choice, the product

qf~x,t !qb~x,t !5exp 2R~x,t !5r~x,t ! ~3.10!

corresponds precisely to the identity~2.14! for the probability density of a Markov diffusion.
Similarly, for the quantum case, for whiche521, if we introduce the wave function

c~x,t !5exp~R1 iS!~x,t !, ~3.11!

the coupled equations~3.6! and~3.7b! correspond, respectively, to the real and imaginary parts of
Schrodinger’s equation,

i
]c

]t
5HQc~x,t !, ~3.12!

where we have set Planck’s constant\51, and where the Hermitian operator,

HQ5 1
2~2 i“ i2Aj !~2 i“ j2Aj !1f, ~3.13!

is obtained by applying the correspondence principlepj↔2 i“j of quantum mechanics to the
HamiltonianH(x,p,t). The wave functionc(x,t) obtained in this manner satisfies

uc~x,t !u25exp 2R~x,t !5r~x,t !, ~3.14!

and is thus consistent with the probability density of the quantum diffusion we are considering.
Comparing the coupled evolution equations~3.6! and ~3.7b! for e51 ande521, one finds

that the probability densityr of a quantum diffusion with potentials$Ai ,f% is consistent with the
density of a Markov diffusion with potentials$Ai ,f8%, where

f85f1k, ~3.15!

with k given by ~3.8!. This identification forms the basis for the reinterpretation of quantum
mechanics based on Markov diffusions proposed by Schro¨dinger5 and later refined by Zambrini9

and Nagasawa.10 In this respect, it is worth noting that the correction termk relating the physical
potentialf to the potentialf8 of the matching Markov diffusion is identical, except for a factor of
2, to the ‘‘quantum potential’’ introduced by Bohm12 in his causal formulation of quantum me-
chanics in terms of hidden variables~see Ref. 26 for comprehensive accounts of Bohm’s theory!.
The factor of 2 arises because the correcting potential that must be applied to the stochastic
Hamilton–Jacobi equation~3.7b! to transform the Markov motion~e51! into a quantum one
~e521! is twice as large as the correction needed to go from the classical motion~e50! to the
quantum motion. One problem associated with the introduction of a quantum potential is, of
course, that it implies an action at a distance whereby two widely separated particles can affect
each other instantaneously, thus violating the locality of classical physics, according to which the
dynamics of each particle should be governed only by local force fields.

Nelson’s stochastic mechanics9–11 relies also on Markov diffusions. However, unlike Schro¨-
dinger’s approach, which redefines the force fields to incorporate a quantum potential, it redefines
the acceleration. Specifically, for a Markov diffusionx(t), Nelson’s stochastic acceleration takes
the form

aN
i ~ t !5 1

2~D2D11D1D2!xi~ t !, ~3.16!

whereD1 andD2 denote the mean forward and backward derivatives corresponding tox(t). In
flat space, and for an arbitrary tensorT(x,t), these derivatives are defined as

779B. C. Levy and A. J. Krener: Stochastic mechanics of reciprocal diffusions

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



D1T„x~ t !,t…5 lim
h→0

1

h
Et@T„x~ t1h!,t1h…2T„x~ t !,t…#, ~3.17a!

D2T„x~ t !,t…5 lim
h→0

1

h
Et@T„x~ t !,t…2T„x~ t2h!,t2h…#, ~3.17b!

whereEt denotes the conditional expectation givenx(t). It is shown in Ref. 24@see Eq.~7.4!# that
for a standard Markov diffusion with forward driftbi(x,t), which corresponds to settingAi52bi

andf52~bibi1“

ibi!/2, and diffusion metricdi j , the accelerationaN
i (t) satisfies

aN
i ~ t !5Fi~x~ t !,v„x~ t !,t…,t !1“

ik„x~ t !,t…, ~3.18!

whereF(x,v,t) is the force defined in~2.23!,

v„x~ t !,t…5 1
2~D11D2!x~ t !, ~3.19!

coincides with the mean velocity specified by~2.27!, andk is the quantum potential given in~3.8!.
Consequently, when Nelson’s acceleration is evaluated for a Markov diffusion with modified
potentials$Ai ,f8%, we obtain

aN
i ~ t !5Fi~x~ t !,v„x~ t !,t…,t !, ~3.20!

so that the acceleration equals the force associated to the unmodified potentials$Ai ,f%. Thus, even
though Nelson’s stochastic mechanics employs exactly the same Markov diffusions as Schrod-
inger’s theory, in the Newton lawma5F, where we have setm51, the correction term associated
to the quantum potential is shifted from the right to the left-hand side through a redefinition of the
acceleration. Not surprisingly, it was discovered that Nelson’s stochastic mechanics is nonlocal, a
feature that, although it is viewed as a virtue by advocates of Bohm’s theory~see Ref. 27 for a
discussion of stochastic mechanics from a Bohmian viewpoint!, led Nelson~Ref. 10, p. 127! to
write ‘‘But the whole point~of the Markovian stochastic mechanics! was to construct a physically
realistic picture of microprocesses, and a theory that violates locality is untenable.’’

The problem is, of course, that the conservation laws of Markov diffusions are not equivalent
to Schrödinger’s equation, and our objective here is to develop a stochastic mechanics, which
instead of focusing on Markov diffusions, will apply to the quantum diffusions obtained by setting
e521 in the closure rules~3.1!. As a first step, we need to prove that such diffusions exist.
Specifically, in the specification~2.7! for the reciprocal diffusions associated to a Hamiltonian with
potentials$Ai ,f%, the only element that does not depend on the physics of the problem is the
end-point densityq(x,s;y,t). We need therefore to construct densitiesq such that the closure rules
~3.1! hold with e521. In addition, since we seek to model quantum phenomena, it would be nice,
if given a wave functionc(x,t) satisfying Schro¨dinger’s equation, we could construct the match-
ing q directly fromc.

To elucidate the structure of the densityq(x,s;y,t) for quantum diffusions, consider the
functionM (a,b,t) defined in~2.25!. Taking into account the definition~2.26b! of pi j (a,t) and
observing that

M ~a,0,t !5 ln r~a,t !52R~a,t !, ~3.21!

the closure rule~3.1b! can be expressed as

S ]2M

]ak ]al
1

]2M

]bk ]bl D ~a,0,t !50. ~3.22!
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This constraint is, of course, satisfied if

S ]2M

]ak ]al
1

]2M

]bk ]bl D ~a,b,t !50, ~3.23!

for all a and b in Rn, where we recognize the Cauchy–Riemann conditions for an analytic
function of then complex variableszk5ak1 ibk.

Specifically,M (a,b,t) can be viewed as the real part of an analytic function,

F~z,t !5M ~a,b,t !1 iN~a,b,t !, ~3.24!

with z5a1 ibPCn, for which the Cauchy–Riemann conditions take the form

]M

]ak
5

]N

]bk
, ~3.25a!

]M

]bk
52

]N

]ak
. ~3.25b!

These conditions imply~3.23!. Furthermore, substituting~3.25b! inside the expression~2.26a! for
wk gives

2wk~a,t !5
]M

]bk
~a,0,t !52

]N

]ak
~a,0,t !, ~3.26!

so that the closure rule~3.1a! is also satisfied with

2S~a,t !52N~a,0,t !. ~3.27!

To summarize, the end-point densityq(x,t;y,t) obtained by shrinking to zero the interval of
definition [s,t] of a reciprocal diffusion corresponds to a quantum diffusion, provided

q~x,t;y,t !5expM S y1x

2
,
y2x

2
,t D , ~3.28!

whereM (a,b,t)5ReF(z,t) is the real part of an analytic function ofz. Furthermore, from~3.21!
and ~3.27!, the evaluation ofF(z,t) for z5a1 i0PRn gives

F~a1 i0,t !5M ~a,0,t !1 iN~a,0,t !52„R~a,t !2 iS~a,t !…52 ln c* ~a,t !, ~3.29!

i.e., F(z,t) can be viewed as obtained by analytical continuation of the function 2 lnc* (a,t)
defined overRn. Note that this is only possible as long asr(a,t)5uc(a,t)u2 does not admit nodes,
i.e., values ofa for which the density is zero. When nodes are present, lnc* (a,t) has singularities,
so that a straightforward analytic continuation is not possible, althoughF(z,t) can still be defined
as a meromorphic function.

To analyze the effect of the nodes ofr(x,t) on the end-point density, let lnc(z,t) with
z5a1 ib denote the analytical continuation of lnc(a,t) to Cn. Then the expression~3.28! for the
end-point density can be rewritten as

q~x,t;y,t !5UcS y1x

2
2 i

y2x

2
,t D U2, ~3.30!

so that wheneverr(x,t) has a node atx5x0 , q(x,t;y,t) has a node atx5y5x0 . Note also that the
structure~3.30! of the end-point density is the analog for quantum diffusions of the separable
structure~2.14! of Markov diffusions.
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Assuming at this point that a functionq(x,t;y,t) of the form~3.28! has been constructed, to
obtain the end-point densityq(x,s;y,t) for an interval [s,t] of nonzero length, we can either
propagate the evolution equation~2.13a! backward in time, with initial conditionq(x,t;y,t), or
propagate~2.13b! forward in time starting fromq(x,s;y,s). In both cases, this corresponds to
propagating a heat equation in an unstable direction, i.e., we are trying to push back the heat
toward its source. Consequently, solutions will usually exist only over a finite time interval, thus
suggesting that quantum diffusions have generally a finite lifetime. In addition, althoughq(x,
t;y,t) given by ~3.28! is always non-negative, fors,t, the solutionq(x,s;y,t) of ~2.13a! or
~2.13b! may become negative for some values ofx andy, as will be shown in Sec. VII.

IV. GAUSSIAN PROCESSES

The construction procedure we have just outlined can be simplified further for the case when
the potentials$Ai ,f% have the structure~2.40! and the wave functionc(x,t) is Gaussian, in which
case the corresponding quantum diffusion is a Gaussian process. Specifically, following Ref. 10,
Sec. 16, assume that

ln c~x,t !5R~x,t !1 iS~x,t !, ~4.1a!

with

R~x,t !52 1
2„x2xC~ t !…TR~ t !„x2xC~ t !…1 f R~ t !, ~4.1b!

S~x,t !5 1
2„x2xC~ t !…TS~ t !„x2xC~ t !…1xTpC~ t !1 f S~ t !, ~4.1c!

wheref R(t), f S(t) are functions oft only. xC(t) denotes the classical trajectory of the particle, and
pC
i (t)5 ẋC

i (t)1Ai(xC ,t) represents the momentum along this trajectory. In this case,

r~x,t !5uc~x,t !u2 ~4.2!

is a Gaussian distribution with meanxC(t) and covariance matrix

Kx~ t !5R21~ t !/2. ~4.3!

Since 2 lnc* (a,t) is quadratic ina, its analytical continuation is obtained by replacinga with
z5a1 ib, which gives

F~z,t !52„z2xC~ t !…TR~ t !„z2xC~ t !…2 i „z2xC~ t !…TS~ t !„z2xC~ t !…22izTpC~ t !1 f F~ t !,
~4.4!

where f F(t) depends again ont only. Taking the real part, we find

M ~a,b,t !52„a2b2xC~ t !…TR~ t !„a1b2xC~ t !…12bTS~ t !„a2xC~ t !…12bTpC~ t !1 f M~ t !.
~4.5!

Substituting this expression inside the identities~2.26a!–~2.26b! for w(a,t) and the stress tensor
p(a,t) gives

w~a,t !5pC~ t !1S~ t !„a2xC~ t !…, ~4.6a!

p~a,t !5
R~ t !

2
. ~4.6b!

Clearly, p satisfies the closure rule~3.1b!, and ~4.6a! can be rewritten in terms of the mean
velocity v i5wi2Ai in the form ~2.41a! with
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V~ t !5S~ t !2A~ t !, ~4.7!

whereA(t) denotes the matrix representing the tensorAi j in ~2.40!.
Next, the expression~3.28! for q(x,t;y,t) yields

ln q~x,t;y,t !52
1

2
@„x2xC~ t !…T„y2xC~ t !…T#Q~ t,t !Fx2xC~ t !

y2xC~ t !G
2@„x2xC~ t !…T„y2xC~ t !…T#F pC~ t !

2pC~ t !G1 f q~ t !, ~4.8!

with

Q~ t,t !5FS~ t ! R~ t !

R~ t ! 2S~ t !
G . ~4.9!

Assume now thatq(x,s;y,t) has the structure

ln q~x,s;y,t !52
1

2
@„x2xC~s!…T„y2xC~ t !…T#Q~s,t !Fx2xC~s!

y2xC~ t ! G
2@„x2xC~s!…T„y2xC~ t !…T#p~s,t !1 f q~s,t !, ~4.10a!

with

Q~s,t !5FQxx~s,t ! Qxy~s,t !

Qyx~s,t ! Qyy~s,t !
G , ~4.10b!

p~s,t !5Fpx~s,t !py~s,t !
G . ~4.10c!

By substituting this expression and the representation~2.40! of the potentials$Ai ,f% inside the
heat equation~2.13a! for q(x,s;y,t), we find it reduces to the ordinary differential equations,

2
dQ

ds
~s,t !5FQxx2AT~s!

Qyx
G @Qxx2A~s! Qxy#1FF~s! 0

0 0G , ~4.11!

2
dp

ds
~s,t !5FQxx

Qyx
G„px2A~s!xC~s!2 ẋC~s!…2FAT~s!„px2A~s!xC~s!…2F~s!xC~s!

0 G ,
~4.12!

whereF is the matrix representing the tensorFi j in ~2.40!. By observing that the positionxC and
momentumpC for the classical trajectory, satisfy Hamilton’s equations,

ẋC5
]H

]p
5pC2AxC , ~4.13a!

ṗC52
]H

]x
5AT~pC2AxC!2FxC , ~4.13b!

it is easy to verify that the differential equation~4.12! is satisfied by

px~s,t !5pC~s!, py~s,t !52pC~ t !. ~4.14!
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Thus, once the classical trajectory has been evaluated, to specify the end-point densityq(x,s;y,t),
we only need to solve the matrix Riccati equation~4.11! for s<t, with initial condition ~4.9!.

To illustrate the above results, we consider two simple examples: the minimum uncertainty
wave packet and the coherent state of the harmonic oscillator.

Example 4.1:For a free particle, we have

A~x,t !5f~x,t !50, ~4.15!

so that the Green’s function,

G~x,s;y,t !5
1

„2p~ t2s!…1/2
exp2

~y2x!2

2~ t2s!
~4.16!

is the standard heat kernel. The wave function corresponding to a minimum uncertainty wave
packet centered about the classical trajectoryxC(t)5x01v0t is given by

c~x,t !5
1

p1/4~r1 i t /r !1/2
expF2

~x2x02 ir 2v0!
2

2~r 21 i t !
2
r 2v0

2

2 G . ~4.17!

The real and imaginary partsR andS of ln c have the form~4.1b!–~4.1c! with

R~ t !5
r 2

r 41t2
, S~ t !5

t

r 41t2
, ~4.18!

and where the momentumpC(t)5v0 along the classical trajectory remains constant. The density
r(x,t) is therefore Gaussian, centered aboutxC(t), with standard deviation,

sx~ t !5
1

&

S r 21 t2

r 2D
1/2

. ~4.19!

The momentum density, which is obtained by Fourier transformingc(x,t), and squaring the
resulting transform, is also Gaussian with meanv0 and standard deviation,

sp~ t !5
1

r&
. ~4.20!

The position-momentum uncertainty product,

sx~ t !sp~ t !5 1
2~11t2/r 4!1/2, ~4.21!

equals the Heisenberg lower bound of1
2 at t50, which explains why this process is called a

minimum uncertainty wave packet. The factorr 2 represents the ratio of the position and momen-
tum standard deviations, i.e., their relative spreading, att50.

According to~4.7! and ~4.6b!, the mean velocity and stress tensor of the quantum diffusion
modeling this process are given by

v~x,t !5v01
t„x2xC~ t !…

r 41t2
, ~4.22a!

p~x,t !5
r 2

2~r 21t2!
. ~4.22b!
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Note that ast→`, the mean velocity,

v~x,t !'v01„x2xC~ t !…/t5~x2x0!/t, ~4.23!

is obtained by modeling trajectories passing throughx at time t as straight lines originating from
x0. Solving the Riccati equation~4.11! yields

Q~s,t !5
1

r 41st F t r 2

r 2 2sG , ~4.24!

which specifiesq(x,s;y,t).
Since bothq(x,s;y,t) and the Green’s functionG(x,s;y,t) are Gaussian, the processx(t) is

Gaussian, so that it is entirely described by its mean and autocovariance functions. By combining
the expressions~4.10! and~4.16! for q andG, we find that fors,t, the joint density ofx(s) and
x(t) is given by

p~x,s;y,t !5G~x,s;y,t !q~x,s;y,t !5NS FxC~s!

xC~ t ! G ,P~s,t ! D , ~4.25a!

where

P~s,t !5
1

2 F r 21s2/r 2 r 21st/r 22~ t2s!

r 21st/r 22~ t2s! r 21t2/r 2 G , ~4.25b!

denotes the covariance matrix ofx(s) andx(t). Thus, if z(t)5x(t)2xC(t) represents the devia-
tion of x(t) with respect to the classical trajectory,z(t) is Gaussian, with zero mean, and auto-
correlation function

K~ t,s!5E@z~ t !z~s!#5 1
2~r

21ts/r 22ut2su!. ~4.26!

Taking into account Newton’s law and the characterization of Gaussian reciprocal diffusions given
in Refs. 18 and 25, we find that over an arbitrary interval@0,T#, z(t) satisfies the second-order
stochastic differential equation,

LFz~ t !5j~ t !, ~4.27a!

LF,2
d2

dt2
, ~4.27b!

with Dirichlet conditions

Fz~0!

z~T!G;N„0,P~0,T!…. ~4.28!

The driving noisej(t), which is usually called the dual or conjugate process ofz(t), is a gener-
alized Gaussian process independent ofz~0! andz(T), with zero mean and autocorrelation

E@j~ t !j~s!#5LFd~ t2s!. ~4.29!

The Green’s function ofLF can be used to decompose the solution of~4.27!–~4.29! into a
component depending only on the noisej(t) and a component representing the effect of the
boundary conditions, so that over@0,T#, z(t) can be represented as
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z~ t !5B~ t !1
T2t

T
z~0!1

t

T
z~T!, ~4.30!

whereB(t)5W(t)2tW(T)/T is a Brownian bridge process, independent ofz~0! andz(T). Since
the interval lengthT is arbitrary, the quantum diffusion corresponding to a minimum uncertainty
wave packet has an infinite lifetime. This can also be seen by noting that a stochastic model
equivalent to the one obtained above is given by

z~ t !5W~ t !1z~0!~12t/r 2!, ~4.31!

whereW(t) is a Wiener process independent ofz~0!. See Ref. 28, Sec. 5 for general results on the
representation of scalar Gaussian reciprocal processes in terms of the Wiener process.

Example 4.2:Theharmonic oscillatorhas for potentials,

A~x,t !50, f~x,t !5
~vx!2

2
. ~4.32!

Since the LagrangianL(x,p,t)5pẋ2H(x,p,t) is quadratic, the Green’s function can be ex-
pressed~see Ref. 2, Sec. 3.5! as

G~x,s;y,t !5C~ t2s!exp2SC~x,s;y,t !, ~4.33a!

where

SC~x,s;y,t !5E L~xC ,ẋC ,u!du ~4.33b!

denotes the action for the classical path linkingx(s)5x to x(t)5y, andC(t2s) is a function of
t2s. EvaluatingSC yields

SC5
v

2 sin„v~ t2s!…
@~x21y2!cos„v~ t2s!…22xy#, ~4.34a!

and substituting~4.32a! inside expression~2.10! for the transition property of the Green’s function,
we can identify

C~ t2s!5S v

2p sin„v~ t2s!…D
1/2

. ~4.34b!

An important property of the Green’s functionG(x,s;y,t) is that, viewed as a function ofy, it
decays asuyu→` for t2s,p/2v, but for (t2s).p/2v, it grows exponentially withy, so that the
Green’s function does not exist for intervals of length larger thanT5p/2v, which represents
one-quarter of the period of the harmonic oscillator.

The wave function corresponding to a coherent state centered about the classical trajectory
xC(t)5 l cos(vt), wherel denotes the oscillation amplitude, takes the form~4.1! with

R~ t !5v, S~ t !50, ~4.35!

and where the momentum along the classical trajectory is given bypC(t)5 ẋC(t)52 lv sin(vt).
According to ~4.7! and ~4.6b!, the mean velocity and stress tensor of the quantum diffusion
modeling this process are given by

v~x,t !5pC~ t !, ~4.36a!
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p~x,t !5v/2. ~4.36b!

Note that since the mean velocityv(x,t) does not depend onx, the wave packet does not undergo
any deformation with time and retains its coherence, hence the name of the process. The solution
of the Riccati equation~4.11! is given by

Q~s,t !5
v

cos„v~ t2s!… Fsin„v~ t2s!… 1

1 sin„v~ t2s!…
G . ~4.37!

Both q(x,s;y,t) andG(x,s;y,t) are again Gaussian, sox(t) is a Gaussian process. The joint
density ofx(s) andx(t) takes again the form~4.25a!, with

P~s,t !5
1

2v F 1 g~ t2s!

g~ t2s! 1 G , ~4.38a!

where

g~ t2s!5cos„v~ t2s!…2sin„v~ t2s!…5
cos„v~ t2s!1p/4…

cos~p/4!
, ~4.38b!

denotes the correlation coefficient ofx(t) and x(s). Note that forg(t2s) to be a correlation
coefficient, its magnitude must be less than unity, which requirest2s,p/2v. Thus, the deviation
z(t)5x(t)2xC(t) of x(t) with respect to the classical trajectoryxC(t) is Gaussian, with zero
mean and autocorrelation function

K~ t,s!5E@z~ t !z~s!#5
1

2v

cos„v~ t2s!1p/4…

cos~p/4!
. ~4.39!

This process, which is called theshifted cosine process, was introduced by Carmichael, Masse´,
and Theodorescu,29 while completing a classification of scalar stationary Gaussian reciprocal
processes proposed earlier by Jamison.30 In Ref. 18, it is shown that this process is defined over a
finite interval of lengthT5p/2v, and satisfies the second-order stochastic differential equation,

LHz~ t !5j~ t !, ~4.40a!

LH,2
d2

dt2
2v2, ~4.40b!

with boundary condition

z~0!52z~T!;N„0,1/~2v!…, ~4.41!

where the driving noisej(t) is a generalized Gaussian process independent ofz~0! andz(T), with
zero mean and autocorrelation

E@j~ t !j~s!#5LHd~ t2s!. ~4.42!

The relation~4.40a! shows that the dynamics of the shifted cosine process are those of an
oscillator subjected to random fluctuationsj(t). The noisej(t) is not white but has a local
correlation structure depending on the oscillator dynamicsLH . The lifetimep/~2v! of the shifted
cosine process corresponds to only one-quarter of the period of the harmonic oscillator. To con-
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struct a model valid for longer periods of time, since the ground state of the harmonic oscillator is
stationary, it is natural to expect that its model should not depend on the choice of time origin. The
boundary conditionz„p/~2v!…52z~0! therefore suggests the rule

z„t1p/~2v!…52z~ t !, ~4.43!

for extendingz~•! to all times. However, this choice impliesz(t1np/v)5z(t) for n integer,
whereas Heisenberg’s position operator satisfiesX(t1np/v)5(21)nX(t). This difference, and
in particular its effect on the evaluation of multitime quantum correlations, requires further analy-
sis. h

V. POSITION-MOMENTUM UNCERTAINTY

Although the position-momentum uncertainty relations form a cornerstone of standard quan-
tum mechanics, their role has been somewhat diminished in the development of Markovian sto-
chastic mechanics.31 This difference arises in part from difficulties in giving an operational defi-
nition to the momentum process.32 Indeed, unlike the Hilbert space formulation of quantum
mechanics, where position and momentum play completely symmetric roles, stochastic mechanics
privileges position variables. While this last feature is retained by the stochastic mechanics of
quantum diffusions described here, the position-momentum uncertainty relations will regain a key
role. Specifically, we show they are a consequence of the closure rule~3.1b! with e521, and are
thus characteristic of quantum diffusions.

As a starting point, consider theempirical momentumprocess,

pk~ t;h!5uk~ t;h!1Ak
„x~ t !,t…, ~5.1!

whereu(t;h)5d1x(t;h)/h is the empirical velocity of the diffusion. The expression~2.27! for the
conditional mean ofd1x(t;h) given the mean positionx̄(t;h) implies

E@pk~ t;h!ux̄~ t;h!5x#5vk~x,t !1Ak~x,t !1o~1!5wk~x,t !1o~1!, ~5.2!

so that ash→0, the conditional mean of theabstract momentumprocessp(t) given the position
x(t) can be defined as

E@pk~ t !ux~ t !5x#, lim
h→0

E@pk~ t;h!ux̄~ t;h!5x#5wk~x,t !. ~5.3!

Taking into account the closure rule~3.1a! gives

E@pk~ t !#5E wk~x,t !r~x,t !dx5E c* ~x,t !“kS~x,t !c~x,t !dx5E c* ~x,t !„2 i “kc~x,t !…dx,

~5.4!

so that the usual correspondence principle,

pk↔2 i¹k , ~5.5!

holds for this momentum definition.
The correlation matrix of the abstract momentump(t) is harder to define, since according to

the characterization~2.27!, ~2.29! of the velocity distribution, the empirical momentumpk(t;h)
has a size proportional toh21/2. However, following Ref. 2, p. 179, we can define it as the
correlation of the empirical momentum evaluated for two successive infinitesimal time intervals.
Specifically, we consider
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pkS t1 h

2
;
h

2D pl S t2 h

2
,
h

2D 5S dx1
k

h
1AkD S dx2

l

h
1Al D , ~5.6!

wheredx656„x(t6h)2x(t)…/h. Observing that the cross-product of the forward and backward
differencesd1x and d2x can be expressed in terms of the centered first- and second-order
differencesd1x andd2x as

dx1
k dx2

l 5d1xk d1xl2 1
4d

2xk d2xl , ~5.7!

and using expressions~2.21! and ~2.29! to evaluate the conditional covariances ofd2x andd1x
given the mean positionx̄(t;h), we find

E@pk~ t1h/2;h/2!pl~ t2h/2,h/2!ux̄~ t;h!5x#5pkl~x,t !1uk~x,t !wl~x,t !1o~1!. ~5.8!

This implies

E@pk~ t !pl~ t !ux~ t !5x#, lim
h→0

E@pk~ t1h/2;h/2!pl~ t2h/2,h/2!ux̄~ t;h!5x#

5pkl~x,t !1wk~x,t !wl~x,t !. ~5.9!

Taking into account the closure rules~3.1a!–~3.1b!, it can then be checked that

E@pk~ t !pl~ t !#5E ~pkl1wkwl !~x,t !r~x,t !dx

5E c* ~x,t !~2 1
2 “k“ lR~x,t !1“kS~x,t !“ lS~x,t !!c~x,t !dx

5E c* ~x,t !„2“k“ lc~x,t !…dx, ~5.10!

so that we have again the usual correspondence principle,

pkpl↔~2 i“k!~2 i“ l !. ~5.11!

Note, however, that this correspondence depends on the unusual rule employed in~5.9! to evaluate
the conditional correlation matrix of the momentum given the position.

From expressions~5.9! and~5.3! we see that the entries of the conditional covariance matrix
Kpux(t) of the momentump(t) given the positionx(t) take the form

Kpux,kl~x,t !5cov„pk~ t !,pl~ t !ux~ t !5x…5pkl~x,t !. ~5.12!

Taking expectations, this implies

E@Kpux,kl„x~ t !,t…#5E pkl~x,t !r~x,t !dx. ~5.13!

On the other hand, the covariance matrixKp(t) of p(t) is given by

Kp,kl~ t !5cov„pk~ t !,pl~ t !…5E @pkl~x,t !1„ck~x,t !2E@pk~ t !#…„wl~x,t !2E@pl~ t !#…
Tr~x,t !dx.

~5.14!
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Comparing~5.13! and ~5.14!, we obtain

Kp~ t !>E@Kpux~ t !#, ~5.15!

which just expresses the fact that the knowledge ofx(t) reduces the momentum variance.
Our derivation of the position-momentum uncertainty relations relies on the following lemma,

which is an adaptation of standard results of Bayesian estimation theory.
Lemma 5.1:Let X be a random vector ofRn with probability densityp(x). Its mean vector

and covariance matrix are denoted bym andK, respectively, i.e.,

E@Xk#5mk, E@~Xk2mk!~Xl2ml !#5Kkl. ~5.16!

Then, if we consider the Fisher information matrixJ with entries

Jkl52E@“k“ l ln p~X!#, ~5.17!

the matrix

P5F K 2I

2I J G ~5.18!

is non-negative definite. IfK is positive definite, this implies

J>K21. ~5.19!

Proof: Consider the random vectorsA5X2m andB5“ ln p(X). Both have zero mean,A
has covariance matrixK, and

E@AkBl #5EF ~Xk2mk!
]

]xl
ln p~X!G5E ~xk2mk!S ]

]xl
ln p~x! D p~x!dx

52E ]

]xl
~xk2mk!p~x!dx52d l

k , ~5.20a!

E@BkBl #5EF ]

]xk
ln p~X!

]

]xl
ln p~X!G5E ]

]xk
ln p~x!

]

]xl
ln p~x!p~x!dx

52E ]2

]xk ]xl
ln p~x!p~x!dx5Jkl . ~5.20b!

The identities~5.20! indicate that the matrixP given by~5.18! is just the covariance matrix ofA
andB, and thus must be non-negative. In this covariance matrix,J2K21 is the Schur complement
of the ~2,2! block K, so that it is non-negative. h

The Lemma 5.1 can be combined with the quantum closure rule~3.1b! to derive the following
result.

Theorem 5.1:If x(t) is a quantum diffusion with position covariance matrixKx(t), it satisfies
the matrix position-momentum uncertainty relation,

Kp~ t !>E@Kpux~ t !#>
1
4Kx

21~ t !, ~5.21!

where the conditional covariance matrixKpux(t) and the covariance matrixKp(t) are specified by
~5.12! and ~5.14!, respectively.

Proof: Let J(t) denote the Fisher information matrix corresponding to the quantum diffusion
x(t) with densityr(x,t). Taking into account~5.13!, the closure rule~3.1b! implies
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E@Kpux~ t !#5 1
4J~ t !, ~5.22!

which, when combined with inequalities~5.15! and ~5.19!, yields ~5.21!. h

The key step in the above derivation was the use of the quantum closure rule to derive the
equality ~5.22!. This implies that the uncertainty relation~5.21! is specific to quantum diffusions
and may not hold for other reciprocal diffusions. Also, as expressed in~5.21!, the position-
momentum uncertainty relation is slightly stronger than the usual version, since it holds for the
averaged conditional covariance matrixE@Kpux„x(t),t…# of the momentum, given the position.

VI. LOCALITY

An important test for evaluating the realism of stochastic formulations of quantum mechanics
is whether such formulations preserve locality. Indeed, in spite of the existence of interpretations
of quantum mechanics, such as Bohm’s theory,26 which are apparently nonlocal, when viewed as
a set of computational rules for evaluating statistical averages, quantum mechanics is inherently
local, in a sense that will be described below. Unfortunately, as was demonstrated in Ref. 10,
Markovian stochastic mechanics does not have this property, and must therefore be rejected as a
proper model of quantum phenomena. In contrast, we show that the new form of stochastic
mechanics described here is local.

To demonstrate this fact, consider a general reciprocal diffusion,

x~ t !5Fx1~ t !x2~ t !
G , ~6.1!

not necessarily of quantum type, but where the componentsx1(t) and x2(t) are dynamically
uncoupled. This means that the Hamiltonian~2.2! admits the decomposition

H~x,p,t !5H1~x1 ,p1 ,t !1H2~x2 ,p2 ,t !, ~6.2!

where $A1(x1 ,t),f1(x1 ,t)% and $A2(x2 ,t),f2(x2 ,t)% are the potentials affecting each of the
diffusion components. From the form~6.2! of the Hamiltonian, we can deduce that the Green’s
functionG(x,s;y,t) corresponding toH can be factored as

G~x,s;y,t !5G1~x1 ,s;y1 ,t !G2~x2 ,s;y2 ,t !, ~6.3!

whereG1 and G2 are the Green’s functions corresponding toH1 and H2, respectively. This
structure can be used to derive the following result.

Lemma 6.1:Let x(t) be a reciprocal diffusion with two dynamically uncoupled components
x1(t) andx2(t). Then each componentx1(t) or x2(t) considered separately is a reciprocal diffu-
sion. Furthermore, ifx(t) is a quantum diffusion, its componentx1(t) is of quantum type if and
only if the functionR andS given by ~3.5! and ~3.1a! admit the additive decomposition,

R~x,t !5R1~x1 ,t !1R2~x2 ,t !, ~6.4a!

S~x,t !5S1~x1 ,t !1S2~x2 ,t !, ~6.4b!

or equivalently if the wave functionc(s,t) decomposes multiplicatively as

c~x,t !5c1~x1 ,t !c2~x2 ,t !. ~6.5!

Proof: Substituting~6.3! inside expression~2.7! for the joint density ofx(t0), x(t1),...,x(tN)
and integrating over thex2 components, we find that the marginal joint density of
x1(t0),x1(t1),...,x1(tN) can be expressed as
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p1~x10,t0 ;x11,t1 ;...;x1N ,tN!5q1~x10,t0;x1N,tN! )
k50

N21

G1~x1k ,tk ;x1k11 ,tk11!, ~6.6!

where the end-point densityq1(x1 ,s;y1 ,t) is given by

q1~x1 ,s;y1 ,t !5E G2~x2 ,s;y2 ,t !q~x,s;y,t !dx2 dy2 , ~6.7!

with xT5[x1
T ,x2

T] and yT5[y1
T ,y2

T]. The structure~6.6! of the finite joint densities ofx1(t) indi-
cates it is a reciprocal diffusion. However, ifx(t) is a quantum diffusion, there is no guarantee that
x1(t) will also be of the quantum type. Specifically, consider the partition

v~x,t !5Fv1~x,t !v2~x,t !
G , p~x,t !5Fp11~x,t ! p12~x,t !

p21~x,t ! p22~x,t !
G ~6.8!

of the mean velocity and stress tensor in terms of theirx1 andx2 components. According to the
characterization~2.27! and ~2.29! of the velocity distribution, the mean velocityv1

m(x1 ,t) and
stress tensorp11

m (x1 ,t) for the marginal probability distribution ofx1~•! can be expressed as

v1
m~x1 ,t !5E v1~x,t !r2u1~x2 ,tux1 ,t !dx2 , ~6.9a!

p1
m~x1 ,t !5E p11~x,t !r2u1~x2 ,tux1 ,t !dx21E „v1~x,t !2v1

m~x1 ,t !…

3„v1~x,t !2v1
m~x1 ,t !…

Tr2u1~x2 ,tux1 ,t !dx2 , ~6.9b!

wherer2u1(x2 ,tux1 ,t) denotes the conditional probability density ofx2(t) given x1(t). Note that
since the covector potentialA1 depends only onx1,

v1~x,t !2v1
m~x1 ,t !5w1~x,t !2w1

m~x1 ,t !. ~6.10!

Then if x1(t) is a quantum diffusion,w1
m andp1

m must satisfy the closure rules,

w1
m~x1 ,t !5“1S1~x1 ,t !, ~6.11a!

p1
m~x1 ,t !5

21

4
“1“1

T ln r1~x1 ,t !, ~6.11b!

where r1(x1 ,t) denotes the marginal probability density ofx1(t) and“1 is the gradient with
respect tox1. Substituting these closure rules and the closure rules forx(t), we find that after
integration by parts,~6.9b! can be rewritten as

05
1

4 E ¹1 ln r2u1~“1 ln r2u1!
Tr2u1 dx21E ~w12w1

m!~w12w1
m!Tr2u1 dx2 , ~6.12!

which implies

05“1 ln r2u15“1„R~x,t !2R1~x1 ,t !…, ~6.13a!

05w12w1
m5“1„S~x,t !2S1~x1 ,t !…, ~6.13b!

so thatR andS admit the decomposition~6.4!. h
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Note that the conclusion that dynamically uncoupled components of quantum diffusions need not
be quantum diffusions is consistent with the standard interpretation of quantum mechanics, which
holds that statistically coupled components of a quantum process cannot be analyzed separately. It
is also worth observing that the multiplicative structure of the decomposition~3.5! is preserved by
the Schro¨dinger equation~or the equivalent conservation laws of quantum diffusions!, so that if
~3.5! holds for onet, it holds for all t.

Nevertheless, as indicated by Lemma 6.1, dynamically uncoupled components of quantum diffu-
sions are reciprocal diffusions. This result is now employed to demonstrate locality. We use the
fact that if c(x,t) is the wave function of two dynamically decoupled, but possibly statistically
coupled particles, quantum mechanics has the following locality property. LetO1 be a Hermitian
operator involving only the position and momentum operators ofx1(t). Then, since the Heisen-
berg representationO1(t) of O1 depends only on the HamiltonianH1, the inner product,

^c~x,t !,O1c~x,t !&, ~6.14!

is independent of the potentials$A2 ,f2%.
Theorem 6.1: Let x(t) be a quantum diffusion constructed from a wave function with two

dynamically uncoupled componentsx1(t) andx2(t). Then, the end-point densityq1(x1 ,s;y1 ,t) of
x1(t) does not depend on the potentials$A2 ,f2% acting onx2(t).

Proof: The argument is patterned after that of Ref. 10, Theorem 23.1. Settings5t in ~6.7!, the
end-point density ofx1 takes the form

q1~a12b1 ,t;a11b1 ,t !5E expM ~a1 ,a2 ,b1,0,t !da2

5E exp@M ~a1 ,a2 ,b1,0,t !2M ~a1 ,a2,0,0,t !#r~a1 ,a2 ,t !da2 ,

~6.15!

wherer(x1 ,x2 ,t) is the joint density ofx1(t) andx2(t). But in ~6.15!,

M ~a1 ,a2 ,b1,0,t !2M ~a1 ,a2,0,0,t !5Re@F~z1 ,a2 ,t !22 ln c* ~a1 ,a2 ,t !#, ~6.16!

whereF(z1 ,z2 ,t) is the analytical continuation of 2 lnc* (a1 ,a2 ,t). Since in expression~6.16!,
z25a21 i0 is real, the analytic continuation needs to be performed only with respect to thez1
variables, which requires taking derivatives of 2 lnc* (a1 ,a2 ,t) with respect to the entries ofa1
only. Noting thatq1(a12b1 ,t;a11b1 ,t) is non-negative real, by integrating~6.15! against an
arbitrary functionf (a1), we find

E f ~a1!q1~a12b1 ,t;a11b1 ,t !da15^c~a1 ,a2 ,t !,O1~b1!c~a1 ,a2 ,t !&, ~6.17!

whereO1~b1! is Hermitian, so that the left-hand side of~6.17! does not depend on$A2,f2%. Since
f (a1) is arbitrary, this implies that the end-point densityq1(x1 ,t;y1 ,t) does not depend on the
potentials$A2,f2%. h

To illustrate this result, we consider an example used by Nelson in Ref. 10, pp. 125–126 and
Ref. 13 to demonstrate that his version of stochastic mechanics is nonlocal.

Example 6.1:Consider a quantum diffusionx(t) with componentsx1(t) and x2(t), which
correspond to the positions of two correlated but dynamically uncoupled particles, where the first
particle is free and the second is a harmonic oscillator with frequencyv and rest positionx20. The
initial wave function is given by
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c~x,0!5
1

~2p!1/2
exp2

1

4
~x2x0!

TKx
21~0!~x2x0!, ~6.18a!

with

Kx~0!5F2 1

1 1G ~6.18b!

and

x05Fx10x20
G , ~6.18c!

where the rest positionsx10 andx20 of the two particles are assumed to be widely separated. Then,
althoughx1(t) andx2(t) are statistically correlated, the locality property requires that the statistics
of the x1(t) process should not depend on the frequencyv. This is due to the fact that, in the
absence of any instantaneous action at a distance, the first particle does not know which frequency
v has been selected for the harmonic oscillator.

To verify that this is the case, note that since the Hamiltonian is quadratic and the initial wave
function is Gaussian, the wave function remains Gaussian and can be expressed as

c~x,t !5exp@2 1
2~x2x0!

TC21~ t !~x2x0!1a~ t !#, ~6.19!

wherea(t) denotes a normalizing constant. Then the Schro¨dinger equation reduces to the Riccati
equation,

i
dC

dt
52I 21CFC, ~6.20!

where

F5F0 0

0 v2G ~6.21!

is the matrix representing the scalar potentials of the free particle and harmonic oscillator. Solving
this equation with initial condition 2Kx~0! gives

C~ t !5
1

b~ t ! F ~41 i t !b~ t !24iv sin~vt ! 2

2 2 cos~vt !1
i

v
sin~vt !G , ~6.22a!

with

b~ t !5cos~vt !12iv sin~vt !. ~6.22b!

Then the real and imaginary partsR(x,t) andS(x,t) of ln c(x,t) take the form~4.1b!–~4.1c! with
xC(t)5x0 , pC(t)50, and

„2R~ t !…215Kx~ t !5F 21
t2

4
cos~vt !2

t

4v
sin~vt !

cos~vt !2
t

4v
sin~vt ! cos2 vt1

1

2v2 sin
2~vt !

G , ~6.23!
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Kx~ t !S~ t !5F t

4
2v sin~vt !2

t

4
cos~vt !

2
1

4v
sin~vt ! S 1

2v
2v D sin~vt !cos~vt !

G . ~6.24!

Fourier transformingc(x,t) and squaring the magnitude of the resulting transform, we also find
that the momentum processp(t) has a zero-mean Gaussian density with covariance matrix

Kp~ t !5
Kx

21~ t !

4
1S~ t !Kx~ t !S~ t !. ~6.25!

SinceS~0!50, the processx(t) has minimum uncertainty att50.
The end-point densityq(x,t;y,t) takes the form~4.8!–~4.9!, and to complete the construction

of the quantum diffusion corresponding to the wave function~6.19!, we would need, in principle,
to evaluateq(x,s;y,t) by propagating the backward heat equation~2.13a!. However, this compu-
tation is rather tedious. A simpler approach consists in observing from the characterization of
Gaussian reciprocal diffusions in terms of their Newton law given in Ref. 18, that for an interval
@0,T# over which it is defined,z(t)5x(t)2x0 is a solution of the second-order stochastic differ-
ential equation,

LFz1~ t !5j1~ t ! ~6.26a!

LHz2~ t !5j2~ t !, ~6.26b!

with Dirichlet boundary conditions

Fz~0!

z~T!G;N~0,P!, ~6.27a!

where

P5F Kx~0! K~0,T!

K~T,0! Kx~T!
G . ~6.27b!

In this equation, the operatorsLF andLH are given by~4.27b! and~4.40b!, respectively, and the
noisesj1(t) and j2(t) are two independent generalized Gaussian processes, independent ofz~0!
andz(T), with zero mean and autocorrelations

E@j1~ t !j1~s!#5LFd~ t2s!, ~6.28a!

E@j2~ t !j2~s!#5LHd~ t2s!. ~6.28b!

In ~6.27b!, K(t,s)5E[z(t)zT(s)] denotes the matrix autocorrelation ofz(t), which still remains to
be determined.

In our analysis, the lengthT of the interval is selected as one-quarter of the period of the
harmonic oscillator, i.e.,T5p/2v. Then, the Green’s functions of the operatorsLF andLH with
homogeneous Dirichlet boundary conditions att50 andt5T are given by

GF~ t,s!5H S 12
t

TD s, for t>s,

tS 12
s

TD , for s>t,
~6.29!
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and

GH~ t,s!5H 1

v
cos~vt !sin~vs!, for t>s,

1

v
sin~vt !cosvs, for s>t.

~6.30!

As shown in Ref. 18, the solution of the stochastic boundary value problem~6.26!–~6.28! can be
expressed as

z1~ t !5I 1~ t !1
T2t

T
z1~0!1

t

T
z1~T!, ~6.31a!

z2~ t !5I 2~ t !1cos~vt !z2~0!1sin~vt !z2~T!, ~6.31b!

where

I 1~ t !5E
0

T

GF~ t,s!j1~s!ds, ~6.32a!

I 2~ t !5E
0

T

GH~ t,s!j2~s!ds, ~6.32b!

are two independent zero-mean Gaussian processes with covariancesGF(t,s) andGH(t,s), respec-
tively. This implies thatI 1(t) is a Brownian bridge process, i.e.,I 1(t)5W1(t)2tW1(T)/T, where
W1~•! is a standard Wiener process. The only element missing in the above specification ofz(t) is
the correlation matrixK(0,T) of the end-point vectorsz~0! andz(T). Evaluating the autocorrela-
tion function of the solutionz(t) given by ~6.31!, and comparing with the expression~6.23! for
Kx(t) gives

E@z~0!zT~T!#5K~0,T!5F 22
T

2
0

1 2
1

2v

G , ~6.33!

from which we deduce that the autocorrelation of the processz(t) is given by

K1~ t,s!5E@z1~ t !z1~s!#521
ts

4
2

ut2su
2

, ~6.34a!

K12~ t,s!5E@z1~ t !z2~s!#5cos~vs!2
t

4v
sin~vs!, ~6.34b!

K2~ t,s!5E@z2~ t !z2~s!#52
1

2v
sin~vut2su!1cosvt cosvs1

1

2v2 sin vt sin vs.

~6.34c!

From ~6.34a!, we see that the covariance function of thex1(t)5z1(t)1x10 process is independent
of the frequencyv of the harmonic oscillator, thus demonstrating locality.

It is also worth noting that the componentsz1(t) andz2(t), viewed as isolated processes, are
not quantum diffusions. To verify this fact, note that according to Lemma 6.1,z1 and z2 are
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zero-mean Gaussian reciprocal diffusions. Given such a diffusion with autocorrelationK(t,s), it is
shown in Ref. 18 that the matrixV(t) parametrizing the mean velocity in~2.41b!, and the stress
tensorp(t) can be expressed as

V~ t !5
1

2 S ]K

]t
~ t1,t !1

]K

]t
~ t2,t ! DK21~ t,t !, ~6.35a!

p~ t !5
1

2 S ]2K

]t ]s
~ t1,t !1

]2K

]t ]s
~ t2,t ! D2V~ t !K~ t,t !VT~ t !. ~6.35b!

Applying these expressions to the autocorrelation functionsK1 andK2 in ~6.34a! and~6.34c! gives

V1~ t !5
t/4

21t2/4
, p1~ t !5

1

2~21t2/4!
5
1

2
Kx1

21~ t !, ~6.36a!

V2~ t !K2~ t,t !5S 1

2v
2v D sin~vt !cos~vt !, ~6.36b!

p2~ t !5F2S cos2~vt !1
1

2v2 sin
2~vt ! D G21

5
1

2
Kx2

21~ t !. ~6.36c!

Thus, the stress tensorsp i(t) with i51,2 are proportional to the inverse covariancesKx1
21(t), but

the coefficient of proportionality is12, instead of14, as required by the closure rule~3.2b!. h

Finally, it is worth noting that the reciprocity property of quantum diffusions can be viewed as
locality in time, in the sense that givenx(t2h) and x(t1h), the positionx(t) is conditionally
independent ofx(s) for s outside the interval [t2h,t1h], so that, in some sense, the stochastic
mechanics of quantum diffusions achieves locality in both space and time.

VII. NEGATIVE PROBABILITIES

For all the quantum processes considered up to this point, such as the Gaussian processes of
Sec. IV, the end-point densityq(x,s;y,t) of the quantum diffusion associated to the wave function
c(x,t) was always positive. Unfortunately, this property does not hold whenr(x,t)5uc(x,t)u2

has some nodes. To see this, note that the densityq(x,t;y,t) obtained from~3.27! is non-negative
but takes zero values wheneverx5y5x0 , wherex0 denotes an arbitrary node ofr(x,t). But the
heat equation~2.13a! for q(x,s;y,t) with s,t implies that it satisfies the integral equation,

q~x,t;y,t !5E G~z,s;x,t !q~z,s;y,t !dz. ~7.1!

In this expression, the Green’s functionG(z,s;x,t), which is the transition density of a Markov
diffusion with creation or killing, is positive for allz andx. Consequently, zero values on the left
side of the above identity can only occur if the integrandq(z,s;y,t) takes both negative and
positive values. To illustrate this phenomenon, consider the excited states of the harmonic oscil-
lator.

Example 7.1:The wave functions corresponding to the eigenstates of a harmonic oscillator
with frequencyv are given by

cn~x,t !5S v

p D 1/4 1

~2nn! !1/2
Hn~v1/2x!exp2Fvx22 1 ivS n1

1

2D t G , ~7.2!

where theHn(y)s are the Hermite polynomials. They satisfy the recursion
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Hn~y!52yHn21~y!22~n21!Hn22~y!, ~7.3a!

for n>2, with

H0~y!51, H1~y!52y. ~7.3b!

Since cn(x,t) depends on t only through its phase, the probability density
rn(x,t)5rn(x)5ucn(x,t)u

2 of each eigenstate is time invariant. In~7.2!, n50 represents the
ground state of the harmonic oscillator, andn>1 the excited states. Note that the ground state is
obtained by settingxC(t)50 in the coherent state examined in Example 4.2. The excited states
have nodes at the values ofx corresponding to zeros of the Hermite polynomialsHn(v

1/2x). For
example, for the first two excited states,r1(x) has a node atx50, and r2(x) has nodes at
x561/~2v!1/2. This implies that the function

2 ln cn* ~a,t !52va212 ln Hn~v1/2a!1 f n~ t !, ~7.4a!

with

f n~ t !5
1

2
lnS v

p D2 ln~22n! !1 iv~2n11!, ~7.4b!

has logarithmic singularities at these nodes. Consequently, the function

Fn~z,t !52vz212 ln Hn~v1/2z!1 f n~ t !, ~7.5!

obtained by analytic continuation of 2 lnc* (a,t) is meromorphic. Its real part,

Mn~a,b!52v~a22b2!1 ln@ uHn„v
1/2~a1 jb !…u2#1 f M ,n , ~7.6a!

with

f M ,n5
1

2
lnS v

p D2 ln~22n! !, ~7.6b!

has the feature of being time invariant. From~2.26b!–~2.26c!, we find that the mean velocity and
stress tensor of the quantum diffusions modeling the eigenstates of the harmonic oscillator take the
form

vn~a,t !5vn~a!50 ~7.7a!

pn~a,t !5pn~a!5
v

2
2
1

2

d2

da2
ln Hn~v1/2a!, ~7.7b!

for values ofa that do not correspond to nodes ofrn(a). The zero value of the mean velocity just
reflects the stationarity of the eigenstates.

Then the expression~2.35! for the end-point density gives

qn~x,t;y,t !5S v

p D 1/2Pn~x,y!exp2vxy, ~7.8a!

where

Pn~x,y!5
1

2nn! UHnS v1/2S y1x

2
1 i

y2x

2 D D U2 ~7.8b!

is a polynomial of degree 2n in x andy. In particular,
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P0~x,y!51, P1~x,y!5v~x21y2!, ~7.9a!

P2~x,y!5 1
8 @~4vyx22!214v2~y22x2!2#. ~7.9b!

Note thatqn(x,t;y,t) does not depend ont, and, as expected,q1(x,t;y,t) has a node atx5y50
andq2(x,t;y,t) has nodes atx5y61/~2v!1/2.

To solve the backward heat equation~2.13a! for qn(x,s;y,t), it is convenient to perform the
transformation

qn~x,s;y,t !5Pn~x,s;y,t !q0~x,s;y,t !, ~7.10!

whereq0(x,s;y,t) is the end-point density for the ground state of the harmonic oscillator. It can be
evaluated by settingxC(t)5pC(t) in the expression obtained for the coherent oscillator of Ex-
ample 4.2. This gives

q0~x,s;y,t !5D~ t2s!expF2
v

2 cos„v~ t2s!…
~sin„v~ t2s!…~x21y2!12xy!G , ~7.11a!

with

D~ t2s!5S v

p cos„v~ t2s!…D
1/2

. ~7.11b!

Note that since the initial conditionq0(x,t;y,t) does not depend ont, and the spatial part,

H5
1

2 S d2dx2
1~vx!2D ~7.12!

of the heat operatorL x,s is time invariant,q0(x,s;y,t) depends only ont2s. Under the transfor-
mation ~7.10!, the heat equation~2.13a! for qn is transformed into the equation

S ]

]s
2
1

2

]2

]x2
2

]

]x
ln q0~x,s;y,t !

]

]xDPn~x,s;y,t !50, ~7.13!

for Pn with s<t. Since

]

]x
ln q0~x,s;y,t !5

v

cos„v~ t2s!…
~sin„v~ t2s!…x1y! ~7.14!

is linear in x and y, and the initial conditionPn(x,t;y,t) for this equation is a polynomial of
degree 2n, Pn(x,s;y,t) remains a polynomial of degree 2n in x andy for all s<t. Matching the
coefficients of like powers ofx andy in ~7.13!, this equation can be transformed into a system of
ordinary differential equations for the coefficients ofPn .

For the first excited state of the harmonic oscillator, we obtain

P1~x,s;y,t !5
v

cos2„v~ t2s!… F ~x21y2!12xy sin„v~ t2s!…2
1

2
sin„2v~ t2s!…G , ~7.15!

which even for small values oft2s takes negative values in the vicinity of the nodex5y50 of
q1(x,t;y,t).

Finally, sinceqn(x,t;y,t) does not depend ont, and the spatial partH of the heat operatorL x,s
is time invariant, the end-point densityqn(x,s;y,t) depends only ont2s. This implies that the
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quantum diffusions modeling the excited states of the harmonic oscillator are all stationary, since
their finite joint densities~2.7! are invariant under time shifts. h

The above example shows that, given a quantum process whose wave functionc(x,t) in-
cludes nodes, the end-point densityq(x,s;y,t) of the corresponding quantum diffusion must
necessarily take negative values. Although this feature may appear troubling at first sight, it is not
completely inconsistent with standard probability theory, provided that instead of selecting the
Borel cylinder sets as the family of events associated to the finite joint densities~2.7!, we select a
smaller family of eventsE whose probabilityP(E) satisfies 0<P(E)<1. In other words, as was
already argued from a physics perspective in Ref. 22, we can employ negative probabilities as an
intermediate bookkeeping step, as long as all ‘‘observable’’ events have a positive probability, and
provided the operations we perform respect the axioms of probability theory. In this respect, note
that the set of ‘‘observable’’ events is highly restricted in quantum mechanics, since such events
must concern quantities represented by commuting operators. For example, for the position and
momentum processes, only events concerning the position only, or the momentum only, are
observable. Since most operators do not commute, the emphasis in quantum mechanics is usually
on marginal densities, such as for the position, or the momentum only. By contrast, the goal of
stochastic mechanics in either Markovian or non-Markovian form, is to construct finite joint
densities for the position process at successive timest1<•••<t i<•••<tN , even if the position
operators$X(t i),1< i<N% in the Heisenberg representation do not commute.

The first attempt at accomplishing an objective of this type, at least in a limited way, dates
back to the introduction by Wigner20 of a joint density for the position and momentum of a particle
at time t. Specifically, the Wigner distribution, which is defined as

W~x,p,t !5
1

2p E cS x1
y

2
,t Dc* S x2

y

2
,t Dexp2 ipy dy, ~7.16!

has the feature that its marginals with respectx andp correspond to the position and momentum
probability densities of quantum mechanics. However, an aspect of the Wigner distribution that
some researchers find unappealing is that it takes negative values. For example, the Wigner
distribution for the eigenstates of the harmonic oscillator is given by21

Wn~x,p,t !5
~21!n

p
LnS 4Hv DexpS 22H

v D , ~7.17a!

where

H~x,p!5
p2

2
1

~vx!2

2
~7.17b!

is the harmonic oscillator’s Hamiltonian, andLn(y) is thenth Laguerre polynomial. From the first
few Laguerre polynomials,

L0~y!51, L1~y!512y, L2~y!5122y1y2, ~7.18!

we see that whileW(x,p,t) is positive for the oscillator’s ground state, it takes negative values for
the excited states. The fact that the Wigner distribution can be negative inspired efforts to find
distributions that would always be positive. However, it was later shown20 that if, beyond the
requirement that the marginals ofW(x,p,t) should coincide with the position and momentum
densities, a few additional conditions are imposed,W(x,p,t) is unique.

Note that the Wigner distribution is closely related to the end-point densityq(x,t;y,t) of
quantum diffusions, since the inverse Fourier transformw(x,z,t) of W(x,p,t) with respect top
takes the form
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w~x,z,t !5c~x1z/2,t !c* ~x2z/2,t !, ~7.19!

which should be contrasted with the expression~3.27! for q(x,t;y,t). Thus, the finite joint den-
sities we have constructed for quantum diffusions can be viewed as extended Wigner distributions
for the position variables at arbitrary times. Observe also that in the expression~2.7! for the finite
joint densities, the only quantity that can be negative is the end-point densityq(x,s;y,t). The
marginal densitiesr(x,t)5q(x,t;x,t) are always non-negative, since by construction the density
q(x,t;y,t) given by ~3.27! is always non-negative, and the three-point transition densitiesr (x,
s;y,t;z,u)with s,t,u are also positive.

VIII. CONCLUSIONS

In this paper, we have presented a comprehensive reformulation of stochastic mechanics,
which instead of using Markov diffusions, relies on a subclass of reciprocal diffusions, the quan-
tum diffusions, whose conservation laws are equivalent to Schro¨dinger’s equation. This new form
of stochastic mechanics presents several advantages over earlier Markovian theories of Schro¨-
dinger or Nelson. First, it is not necessary to introduce a quantum potential in the Newton law
satisfied by the diffusions in order to make their evolution consistent with Schro¨dinger’s equation.
The new mechanics is local, and the uncertainty principle arises naturally from the closure rules
defining quantum diffusions.

In spite of the apparent agreement between quantum mechanics and the stochastic mechanics
of quantum diffusions, the two theories have significant differences. Quantum mechanics is less
ambitious than stochastic mechanics in the sense that it is primarily concerned with the evolution
of marginal densities for the position or momentum variables of a physical system. No attempt is
made at evaluating joint probability densities for the positions at different times, since, in general,
the Heisenberg operatorsX(t) andX(s) representing the positions at different timest ands do not
commute, so that these positions are not simultaneously observable. On the other hand, stochastic
mechanics assigns joint probability densitiesp(x0 ,t0 ;x1 ,t1 ;...,xN ,tN) to the positions at different
times. These joint densities yield marginals for the position and velocity variables at a single time
t, which are consistent with the rules of quantum mechanics, in the sense that the conservation
laws for r(x,t) and v(x,t) are equivalent to Schro¨dinger’s equation. However, the finite joint
densities may themselves be devoid of physical significance, as evidenced by the fact that they can
be negative. Through Newton’s law, stochastic mechanics provides a nice interpretation of the
relation existing between quantum and classical mechanics, but it represents a model rather than a
physical theory.

The new stochastic mechanics sketched here is incomplete in several respects. First, many
important quantum mechanics phenomena, such as interference, scattering, statistics of indistin-
guishable particles, or measurement theory, need to be given a stochastic formulation within the
new theory. It would also be of interest to obtain a variational derivation of the closure rules
~3.1a!–~3.1b! similar to the one proposed in Ref. 33 for Markovian stochastic mechanics, but
possibly with a different action functional. Finally, as was noted in the discussion of the harmonic
oscillator of Example 4.2, we need to examine how quantum diffusions with a finite lifetime can
be combined to describe quantum processes over longer periods of time.
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A class of rate processes with dynamical disorder is investigated based on the two
following assumptions:~a! the system is composed of a random number of particles
~or quasiparticles! which decay according to a first-order kinetic law;~b! the rate
coefficient of the process is a random function of time with known stochastic
properties. The formalism of characteristic functionals is used for the direct com-
putation of the dynamical averages. The suggested approach is more general than
the other approaches used in the literature: it is not limited to a particular type of
stochastic process and can be applied to any type of random evolution of the rate
coefficient. We derive an infinity of exact fluctuation–dissipation relations which
establish connections among the moments of the survival function and the moments
of the number of surviving particles. The analysis of these fluctuation–dissipation
relations leads to the unexpected result that in the thermodynamic limit the fluc-
tuations of the number of particles have an intermittent behavior. The moments are
explicitly evaluated in two particular cases:~a! the random behavior of the rate
coefficient is given by a non-Markovian process which can be embedded in a
Markovian process by increasing the number of state variables and~b! the stochas-
tic behavior of the rate coefficient is described by a stationary Gaussian random
process which is generally non-Markovian. The method of curtailed characteristic
functionals is used to recover the conventional description of dynamical disorder in
terms of the Kubo–Zwanzig stochastic Liouville equations as a particular case of
our general approach. The fluctuation–dissipation relations can be used for the
study of fluctuations without making use of the whole mathematical formalism. To
illustrate the efficiency of our method for the analysis of fluctuations we discuss
three different physicochemical and biochemical problems. A first application is the
kinetic study of the decay of positrons or positronium atoms thermalized in dense
fluids: in this case the time dependence of the rate coefficient is described by a
stationary Gaussian random function with an exponentially decaying correlation
coefficient. A second application is an extension of Zwanzig’s model of ligand–
protein interactions described in terms of the passage through a fluctuating bottle
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neck; we complete the Zwanzig’s analysis by studying the concentration fluctua-
tions. The last example deals with jump rate processes described in terms of two
independent random frequencies; this model is of interest in the study of dielectric
or conformational relaxation in condensed matter and on the other hand gives an
alternative approach to the problem of protein–ligand interactions. We evaluate the
average survival function in several particular cases for which the jump dynamics is
described by two activated processes with random energy barriers. Depending on
the distributions of the energy barriers the average survival function is a simple
exponential, a stretched exponential, or a statistical fractal of the inverse power law
type. The possible applications of the method in the field of biological population
dynamics are also investigated. ©1996 American Institute of Physics.@S0022-
2488~96!02212-8#

I. INTRODUCTION

Rate processes with static or dynamic disorder are commonly encountered in nature.1 A
common approach to a first-order rate process with static disorder is based on the assumption that
the observed survival~relaxation! function at timet, ^ l (t)&static is an average of an exponential
decay law exp~2Wt) with respect to the possible values of the rate coefficientW

^ l ~ t !&static5E
0

`

exp~2Wt! f ~W!dW, ~1.1!

wheref (W)dW is the probability density of the rate coefficient. We note that the average survival
function is simply the Laplace transform of the probability densityf (W)dW of the rate coefficient
W. Such an approach has been used in the study of protein–ligand interactions in biochemistry;2,3

in this case different conformational states of the protein have different activation barriers to
rebinding, resulting in a statistical distribution of the rate coefficients. Similar approaches have
been used for describing the combination processes of active intermediates in radiochemistry,4 the
extinction of fluorescence due to the direct energy transfer from excited donors to acceptors,5–8 the
description of dielectric relaxation,8,9 for the random walk description of transport processes with
static or temporal disorder,10 and for the study of one-channel compound nuclear reactions,11 or of
linear viscoelasticity.12

The description of rate processes with dynamical disorder is more complicated. In this case
the relaxation rate is a random function of time and the average~1.1! is replaced by

^ l ~ t !&dynamic5K expS 2E
0

t

W~ t8!dt8D L
dynamic

, ~1.2!

where the average can be reduced to the evaluation of a path integral over all possible trajectories
W5W(t8), t>t8>0

^ l ~ t !&dynamic5E E expS 2E
0

t

W~ t8!dt8DP @W~ t8!#D@W~ t8!#, ~1.3!

where** stands for the operation of path integration,D[W(t8)] is a suitable integration measure

over the space of random ratesW(t8), and
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P @W~ t8!#D@W~ t8!#, with E E P @W~ t8!#D@W~ t8!#51 ~1.4!

is the probability density functional of the random rate coefficientW(t8). Equation ~3! is a
functional analog of the Laplace transform corresponding to the static disorder@Eq. ~1!#. The
evaluation of dynamical averages is much more difficult than the evaluation of static averages,
mainly because the functional integral~3! can be computed only in a few particular cases; the
major difficulty is due to the fact that for non-Gaussian processes we do not even have an
appropriate definition for the integration measureD[W(t8)].

The first system with dynamical disorder studied in the literature is a simplified model for the
line shape in magnetic resonance spectroscopy13,14 suggested by Anderson and Kubo. This initial
approach has been extended to other spectroscopical problems.14–21 Similar rate processes with
dynamical disorder have been used in connection with the study of earthquakes,22 non-Gaussian
diffusion,23 the Taylor problem from hydrodynamics,24 the description of transport processes in
networks with dynamic percolation,25 the Browniam motion description of very fast chemical
processes without activation barriers,26 the study of fluorescence depolarization27 and of protein
dynamics,28 and in connection with the analysis of collective orientational relaxation in dense
liquids.29 In these studies most authors avoid the direct evaluation of the dynamical average~3!
and use instead indirect methods such as the solving of certain stochastic Liouville equations.1,30,31

The approaches presented in the literature can be applied only to certain particular cases of
stochastic processes, for instance, in the case of a Markovian or Gaussian behavior. A general
treatment for the analysis of dynamical disorder for an arbitrary type of stochastic dependence is
missing. The purpose of this article is to fill this gap in the literature and to derive an efficient
method for evaluating the dynamical average for a rate process characterized by an arbitrary
stochastic behavior. The initial motivation of our approach is the investigation of fluctuations for
a model of ligand–protein interactions suggested by Zwanzig32 and further studied by Wang and
Wolynes.33 The main sources of inspiration for our method are the initial Kubo approach14 to the
problem of line shape and the characteristic functional approaches used by the authors for the
description of space and time-dependent colored noise,34 of stochastic gravitational fluctuations,35

and of fractal random processes.36 The main advantage of our approach is its versatility and
generality. It leads to an infinite number of fluctuation–dissipation relations which allow to study
the fluctuations without using the whole mathematical apparatus of the theory.

The structure of the article is as follows. In Sec. II we give a general formulation of the
problem. In Secs. III and IV a general approach for computing the dynamical averages is devel-
oped and the fluctuation–dissipation relations are derived. In Sec. V the moments of the survival
function and of the number of surviving particles are explicitly derived for Markovian and sta-
tionary Gaussian processes. Sections VI, VII, and VIII deal with the application of the theory to
three different problems from condensed matter physics and biochemistry. In Sec. IX the main
results of the article are summarized and the possibilities of application to the theory in exobiology
and biological population dynamics are pointed out. To make the body of the article easier the
details of the computations are not presented in the text; they are given in Appendices A to D.

II. FORMULATION OF THE PROBLEM

We consider a system made up of a random number of independent particles or quasiparticles
and assume that the rate of decomposition of a particle at a time betweent andt1dt,W(t)dt, is
a random function whose stochastic properties are characterized by the probability density func-
tional ~1.4! or by the corresponding characteristic functional
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G@K~ t8!#5K expS i E
0

t

K~ t8!W~ t8!dt8D L
dynamic

5E E expS i E
0

t

K~ t8!W~ t8!dt8DP @W~ t8!#D@W~ t8!#, ~2.1!

whereK(t8) is a suitable test function. The initial numberN of particles is a random variable
characterized by a probability

P~N,t50!, (
N

P~N,0!51 ~2.2!

or by the corresponding generating function

g~z,t50!5(
N

zNP~N,0!, uzu<1, ~2.3!

wherez is a complex variable with the absolute value at most equal to the unity.
The stochastic properties of the numbersN(t1),...,N(tm) of particles surviving at times

0<t1<•••<tm<t are characterized by anm-gate probability

Pm„N~ tm!,tm ;...;N~ t1!,t1…, ~2.4!

with the normalization condition

(
Nm

•••(
N1

Pm~Nm ,tm ;...;N1 ,t1!51 ~2.5!

and

tu5uDt, Dt5~ t2t0!/~m11!, u51,...,m. ~2.6!

In the limitm→ ` ~Dt → 0!, Pm becomes a probability functional which describes the stochastic
properties of a random trajectoryN(t8), 0<t8<t

B@N~ t8!; 0<t8<t#5 lim
m→`

~Dt→0!

Pm~Nm ,tm ;...;N1 ,t1!, ~2.7!

which obeys the normalization condition

(( B@N~ t8!; 0<t8<t#51, ~2.8!

where(( stands for a path sum which is a discrete analog of a path integral

(( •••5 lim
m→`

~Dt→0!

(
N~ t1!

••• (
N~ tm!

••• . ~2.9!

In terms of the probability functionalB[N(t8)] we can define the characteristic functional
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J@K ~ t8!#5K expS i E
0

t

K ~ t8!N~ t8!dt8D L
dynamic

5(( expS i E
0

t

K ~ t8!N~ t8!dt8DB@N~ t8!#.

~2.10!

The central momentŝN(t1)•••N(tm)& and the cumulantŝ^N(t1)•••N(tm)&& of the number of
surviving particles may be defined by the moment and cumulant expansions ofJ@K ~t8!#

J@K ~ t8!#511 (
m51

`
i m

m! E0
t

•••E
0

t

^N~ t18!•••N~ tm8 !&K ~ t18!•••K ~ tm8 !dt18•••dtm8

5expH (
m51

`
i m

m! E0
t

•••E
0

t

^^N~ t18!•••N~ tm8 !&&K ~ t18!•••K ~ tm8 !dt18•••dtm8 J ,
~2.11!

that is, the central moments and the cumulants can be computed by evaluating the functional
derivatives

^N~ t1!•••N~ tm!&5~2 i !m
dmJ@K ~ t8!#

dK ~ t1!•••dK ~ tm!
U
K ~ t8!50

, ~2.12!

and

^^N~ t1!•••N~ tm!&&5~2 i !m
dm ln J@K ~ t8!#

dK ~ t1!•••dK ~ tm!
U
K ~ t8!50

. ~2.13!

On the other hand the rate process can be characterized by the moments of a realization of the
survival function

l ~ t !5expS 2E
0

t

W~ t8!dt8D , ~2.14!

i.e., by the averages

^ l ~ t1!••• l ~ tm!&dynamic5E E l ~ t1!••• l ~ tm!P @W~ t8!#D@W~ t8!#. ~2.15!

The aim of this article is to answer the following questions:

~1! Given the stochastic properties of the random rate coefficient and of the initial number of
particles, which are the stochastic properties of the number of particles at any time?

~2! Which are the moments of the survival functionl (t)?
~3! Is there any relationship between the moments of the survival function and the moments of the

number of surviving particles?
~4! For which systems can the moments of the number of surviving particles and of the survival

function be computed explicitly and which is the relationship between these functions and the
experimentally accessible quantities?

~5! In order to answer these questions we should express the characteristic functionalJ@K ~t8!# of
the number of surviving particles in terms of the characteristic functionalG[K(t8)] of the
random rate coefficient. The main idea of our approach is to evaluate the dynamical average
in Eq. ~2.10! in two steps: first we consider a given realization of the random rate coefficient
W(t8), 0<t8<t and average over all possible numbers of surviving particles which are
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compatible with this realization; finally we average over all possible realizations of the ran-
dom rate coefficientW(t8).

III. CHARACTERISTIC FUNCTIONAL APPROACH TO DYNAMICAL DISORDER

In this section we consider a realizationW(t8), 0<t8<t of the rate coefficient and try to
evaluate the corresponding generating functional of the number of surviving particles. First we
notice that for a given realization of the rate coefficient the dynamical disorder does not exist; we
deal with an ordered random system with a time-dependent rate coefficient. The study of such
systems is not necessarily related to the problem of dynamical disorder; such a study is also of
interest on its own, for instance, in connection with the statistical description of the death process
in mathematical demography37 or for the study of radiochemical reactions.4,38 We introduce the
ordered characteristic functional

Jordered@K ~ t8!uW~ t8!#5K expS i E
0

t

K ~ t8!N~ t8!dt8D L
ordered

, ~3.1!

where the averagê•••&orderedis computed with respect to the number of surviving particles com-
patible with the realizationW(t8) 0<t8<t. The characteristic functionalJ@K ~t8!# of the disor-
dered process is simply given by

J@K ~ t8!#5^Jordered@K ~ t8!uW~ t8!#&disorder5E E Jordered@K ~ t8!uW~ t8!#P @W~ t8!#D@W~ t8!#,

~3.2!

where the averagê•••&disorder is computed with respect to all possible values of the random
functionW(t8), 0<t8<t.

In Appendix A we show that the generating functionalJordered @K (t8)uW(t8)# can be ex-
pressed in terms of the realizationl (t) of the survival function as

Jordered@K ~ t8!uW~ t8!#5gH z511E
0

t

l ~ t8!iK ~ t8!expF i E
0

t8
K ~W!dWGdt8, t50J .

~3.3!

In order to compute the characteristic functionalJ@K ~t8!# for systems with dynamical dis-
order we express the generating functiong(z,0) corresponding to the probabilityP(N,0) in terms
of the initial factorial moments of the number of particles

Fm~ t50!5^N~N21!•••~N2m11!&dynamic~ t50!5(
N

N~N21!•••~N2m11!P~N,0!;

~3.4!

we have

Fm~0!5N0~N021!•••~N02m11! ~3.5!

for an initial canonical ensemble and

Fm~0!5~^N0&!m, ~3.6!

for an initial grand canonical ensemble.
From the definition~2.3! of g(z,0) it follows that
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Fm~0!5dmg~z,0!/dzmuz51 ~3.7!

and thusg(z,0) can be expressed as a Taylor series

g~z,0!511 (
m51

`
1

m!
Fm~0!~z21!m. ~3.8!

By combining Eqs.~3.2!, ~3.3!, and~3.8! the characteristic functionalJ@K ~t8!# for systems with
dynamical disorder can be expressed as

J@K ~ t8!#511 (
m51

`
~ i !m

m!
Fm~0!E

0

t

•••E
0

t

K ~ t18!•••K ~ tm8 !expS i(
u51

m E
0

tu8 K ~W!dW D
3^ l ~ t18!••• l ~ tm8 !&dt18•••dtm8 , ~3.9!

where^ l (t18)••• l (tm8 )& are dynamical averages given by Eqs.~2.15!. By combining Eqs.~3.9! and
~3.10! and using the definition~2.1! of the characteristic functionalG[K(t8)] of the rate coeffi-
cient we can expresŝl (t18)••• l (tm8 )& as

^ l ~ t18!••• l ~ tm8 !&5E E expS 2 (
u51

m E
0

tu8 W~W!dW DP @W~ t8!#D@W~ t8!#

5GFK~ t8!5 i(
u51

m

h~ tu82t8!G , ~3.10!

whereh(x) is the usual Heaviside step function. By inserting Eqs.~3.10! into Eq. ~3.9! we have

J@K ~ t8!#511 (
m51

`
i m

m!
Fm~0!E

0

t

•••E
0

t

K ~ t18!•••K ~ tm8 !

3expS i(
u51

m E
0

tu8 K ~C !dC DGFK~ t8!5 i(
u51

m

h~ tu82t8!Gdt18•••dtm8 . ~3.11!

Equation ~3.11! is the main result of this article. It expresses the stochastic properties of the
number of surviving particles in terms of the stochastic properties of the random rate coefficient
W(t8), 0<t8<t.

Combining Eqs.~2.12! and ~2.13! and Eq.~3.11! we can compute the first two cumulants of
the number of surviving particles. We assume that the initial distribution of the number of particles
is given by equilibrium statistical mechanics. We get

^^N~ t !&&5N0^ l ~ t !&, ~3.12!

^^N~ t1!N~ t2!&&5N0@^ l ~ t2* !&2^ l ~ t1!l ~ t2!&#1~N0!
2^^ l ~ t1!l ~ t2!&& ~3.13!

for an initial canonical ensemble and

^^N~ t !&&5N0^ l ~ t !&, ~3.14!

^^N~ t1!N~ t2!&&5^N0&^ l ~ t2* !&1^N0&
2^^ l ~ t1!l ~ t2!&& ~3.15!

for an initial grand canonical ensemble. Here
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^^ l ~ t1!l ~ t2!&&5^ l ~ t1!l ~ t2!&2^ l ~ t1!&^ l ~ t2!& ~3.16!

is the second cumulant of the survival function for systems with dynamic disorder. We have

^^ l ~ t1!l ~ t2!&&>0, t1 ,t2 finite, ~3.17!

where the equality holds for systems without dynamical disorder. In both cases in the thermody-
namic limit the relative fluctuation has the same asymptotic behavior

rdynamic~ t1 ,t2!;S ^^ l ~ t1!l ~ t2!&&

^ l ~ t1!&^ l ~ t2!&
D 1/2 const as N0 , ^N0& → `. ~3.18!

Unlike in the case of ordered systems discussed in Appendix A for dynamical disorder the relative
fluctuation of the number of particles does not decrease to zero but rather tends towards a constant
value; in other words the fluctuations have an intermittent behavior.

The other moments and cumulants can be computed in a similar way, the complexity of
computations increasing with the order of the moments. The computations are much simpler if we
are interested in the analysis of fluctuations at a single time; in this case an infinity of fluctuation
dissipation relations for all moments exist which are independent of the type of statistical en-
semble which describes the initial state of the system. The derivation of these fluctuation–
dissipation relations is presented in the following section.

IV. FLUCTUATION–DISSIPATION RELATIONS

We introduce the probabilityP(N,t) of the numberN of surviving particles at timet and the
corresponding generating function

g~z,t !5( zNP~N,t !, uzu<1; ~4.1!

P(N,t) can be expressed as an average of a functional Kronecker symbol over all possible
trajectoriesN(t8), 0<t8<t

P~N,t !5(( B@N~ t8!#dN~ t8!N~ t !
~ funct! , ~4.2!

where

dN~ t8!N~ t !
~ funct!

5dN~ t !N~ t8! , for t5t8,

~4.3!
50, for t Þ t8

and dNN8 is the usual numerical Kronecker symbol. By combining Eqs.~2.10! and ~4.1! for
J@K ~t8!# andg(z,t) and using Eqs.~4.2! and ~4.3! we note that we have the relationship

g~z,t !5J@ iK ~ t8!5d~ t2t8!ln z#. ~4.4!

By combining Eqs.~3.2!, ~3.10!, ~3.11!, and~4.4! we obtain

g~z,t !5E E g„11~z21!l ~ t !,0…P @W~ t8!#D@W~ t8!#511 (
m51

`
1

m!
Fm~0!^ l m~ t !&~z21!m,

~4.5!

where
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^ l m~ t !&5E E l m~ t !P @W~ t8!#D@W~ t8!# ~4.6!

is themth central moment of the survival function at timet. From Eqs.~2.14! and~4.6! we note
that at one time all momentŝl m(t)& can be expressed in terms of the average value^ l (t)&, by
replacing the instantaneous value of the rate coefficientW(t8) by mW(t8), m52,3,... .

^ l m~ t !&5E E expS 2mE
0

t

W~ t8!dt8DP @W~ t8!#D@W~ t8!#5^ l „t;W~ t8!→mW~ t8!…&.

~4.7!

On the other hand, by using Eq.~3.10! we can express the one-time moments of the survival
function in terms of the characteristic functionalG[K(t8)] of the random rate coefficient

^ l m~ t !&5G@K~ t8!5 im#. ~4.8!

Now we note that the factorial moments of the number of particles at timet

Fm~ t !5^N~N21!•••~N2m11!&dynamic~ t !5( N~N21!•••~N2m11!P~N,t ! ~4.9!

can be computed by differentiating the generating functiong(z,t)

Fm~ t !5dmg~z,t !/dzmuz51 . ~4.10!

By differentiating Eq.~4.5! m times and makingz51 we come to

Fm~ t !5Fm~0!^ l m~ t !&5Fm~0!^ l „t,W~ t8! → mW~ t8!…&, m51,2,... ~4.11!

Equations~4.11! are an infinity of fluctuation–dissipation relations which establish a connection
between the average dissipative behavior of the rate process, expressed by the average survival
function ^l „t;W(t8)→mW(t8)…& and all the factorial moments of the number of surviving par-
ticles, which express the fluctuation dynamics.

For applying the fluctuation–dissipation relations~4.11! we should be able to evaluate the
average survival function̂l „t;W(t8)→mW(t8)…&. If the cumulants of the random rate coefficient

sq~ t1 ,...,tq!5^^W~ t1!•••W~ tq!&&dynamic ~4.12!

exist and are finite the characteristic functionalG[K(t8)] can be expressed in the form of a
cumulant expansion

G@K~ t8!#5expH (
q51

`
i q

q! E0
t

•••E
0

t

sq~ t1 ,...,tq!K~ t1!•••K~ tq!dt1•••dtqJ . ~4.13!

By combining Eq.~4.13! with the expressions~4.8! for the one-time moments of the survival
function and with the fluctuation–dissipation relations~4.11! we come to

Fm~ t !/Fm~0!5^ l m~ t !&5expH (
q51

`
~2m!q

q! E
0

t

•••E
0

t

sq~ t1 ,...,tq!dt1 ...dtqJ . ~4.14!

This is a general expression for the one-time moments of the number of surviving particles and of
the survival function; for applying it we should evaluate the integrals and the series in the expo-
nential.
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In Appendix B we show how Eqs.~4.11!–~4.14! can be used for computing the central
moments and the cumulants of the number of surviving particles.

V. EXACTLY SOLVABLE MODELS

In this section we consider two particular cases for which, at least in principle, the formal
expressions~4.8! or ~4.11! for the moments of the survival function can be explicitly evaluated.

In the first case we assume that the random rate coefficientW(t8) is a known function of a
generally non-Markovian random vectory1 which can be embedded in a more complicated
Markovian random process characterized by a higher dimensional random vector

x5~y1 ,y2!, ~5.1!

wherey2 is the vector of the minimum number of additional random variables necessary for a
Markovian description. The random rate coefficientW(t8) can be expressed as

W~ t8!5W~x~ t8!5„y1~ t8!,y2~ t8!…5W„y1~ t8!…. ~5.2!

The dynamical averages^ l m(t)& can be computed by evaluating the characteristic functional
G[K(t8)] with the help of the method of curtailed characteristic functionals suggested by Lax39

and Van Kampen.40 The computations are presented in Appendix C. The moments of the survival
function are equal to

^ l m~ t !&5E Lm~x,t !dx, ~5.3!

wherem is a positive number, not necessarily an integer, andLm~x,t! is the solution of the
evolution equation

] tLm~x,t !5LLm~x,t !2mW~x!Lm~x,t !, ~5.4!

with the initial condition

Lm~x,0!5P~x,0! independent of m. ~5.5!

P~x;0! is the probability density of the state vector att50 andL is a linear Markovian evolution
operator. For a time-homogeneous Fokker–Planck process

L•••52(
q

]xq@Aq~x!•••#1 (
q,q8

]xqxq8
2 @Dqq8~x!•••#, ~5.6!

whereas for a pure jump Markovian process we have

LP~x,tux0 ,0!5E @W ~x8 → x!P~x8,tux0 ,0!2W ~x → x8!P~x,tux0 ,0!#dx8. ~5.7!

Here Aq~x! and Dqq8~x! are probability drift and diffusion coefficients, respectively, and
W ~x8→ x!dx is the jump rate from a statex to a state with a random vector betweenx andx1dx.

To clarify the physical significance of the functionLm~x,t! we introduce the logarithmic
decrement of the survival function

«~ t !52 ln l ~ t !. ~5.8!

Borrowing a commonly used name from nuclear physics, we call the function«(t) the lethargy
variable. We denote by
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f~«,x;t !d«dx, with E E f~«,x;t !d« dx51 ~5.9!

the probability that at timet the lethargy has a value between« and«1d« and that the state vector
is betweenx andx1dx. In Appendix C we show that the functionLm~x,t! can be expressed in
terms of the Laplace transform off~«,x;t! with respect to«:

f̃~b,x;t !5E
0

`

exp~2b«!f~«,x;t !d«, ~5.10!

whereb is the Laplace variable conjugated to«. We have~see Appendix C!

Lm~x,t !5f̃~b5m,x;t !, ~5.11!

that is, the functionLm~x,t! is the Laplace transform of the lethargy-state vector joint probability
densityf~«,x;t! for b5m. From this physical interpretation of the functionLm~x,t! it follows that
the probability density

C~ l ,t !dl, with E
0

1

C~ l ,t !dl51 ~5.12!

of the survival function at timet can be expressed as

C~ l ,t !5E E d„l2exp~2«!…f~«,x;t !dx d«5 l21E f̃~2 ln l ,x;t !dx5 l21E Lm52 ln l~x,t !dx.

~5.13!

A second case for which the moments of the survival function can be explicitly evaluated
corresponds to a time-homogeneous Gaussian behavior of the rate coefficientW(t8) for which the
cumulantssq(t1 ,...,tq) are given by

s15^W& independent of t, ~5.14!

s25s~ ut12t2u!5^DW~ t1!DW~ t2!&, ~5.15!

sq50, q.2. ~5.16!

Here ^W& and ^DW(t1)DW(t2)& are the average value and the absolute autocorrelation function
of the rate coefficient, respectively. Due to the stationary character of the process the average rate
^W& is independent of time and the autocorrelation function^DW(t1)DW(t2)& depends only on
the absolute value of the difference of the two times,t1 and t2. In this case Eq.~4.14! becomes

Fm~ t !/Fm~0!5^ l m~ t !&5exp$2m^W&t1m2^DW2~0!& j ~ t !%, ~5.17!

where

^DW2~ t !&5^DW2~0!& ~5.18!

is the stationary one-time dispersion of the rate coefficient

j ~ t !5E
0

t

~ t2c!E~ uc u!dc >0, ~5.19!

is a non-negative function of time and

813Vlad, Ross, and Mackey: Fluctuation–dissipation relations

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



E~ ut12t2u!5^DW~ t1!DW~ t2!&/^DW
2~0!& ~5.20!

is the relative correlation function of the rate coefficient.
The multitime moments and cumulants of the correlation function can be computed in a

similar way. By applying Eq.~3.10! to the case of a stationary Gaussian process we obtain

^ l ~ t1!l ~ t2!&5G@W~ t8!5„h~ t12t8!1h~ t22t8!…i #

5expH 2^W&~ t11t2!1 1
2^DW

2~0!&E
0

tE
0

t

E~ ut182t28u!@h~ t12t18!

1h~ t22t18!#@h~ t12t28!1h~ t22t28!#dt18 dt28J , with t1 ,t2<t. ~5.21!

After lengthy algebraic manipulations the double integral in Eq.~5.21! can be expressed in terms
of the functionj (t), resulting in

^ l ~ t1!l ~ t2!&5exp$2^W&~ t11t2!1^DW2~0!&@2j ~ t1!12j ~ t2!2j ~ ut12t2u!#% ~5.22!

and

^^ l ~ t1!l ~ t2!&&5exp$2^W&~ t11t2!1^DW2~0!&@ j ~ t1!1j ~ t2!#%

3$$exp$^DW2~0!&@ j ~ t1!1j ~ t2!2j ~ ut12t2u!#%21%. ~5.23!

The first two cumulants of the number of surviving particles for initial canonical and grand
canonical ensembles can be computed by combining the general equations~3.12!–~3.18! with Eqs.
~5.17! and ~5.22!, ~5.23!. In the thermodynamic limit the relative fluctuation is given by

rdynamic~ t1 ,t2!5$exp$^DW2~0!&@ j ~ t1!1j ~ t2!2j ~ ut12t2u!#%21%1/2. ~5.24!

VI. POSITRON LIFETIME DISTRIBUTIONS IN DENSE FLUIDS

As a first application of the approach developed here, we consider the problem of the distri-
bution of the lifetime of positrons or positronium atoms in dense fluids. A positron or a positro-
nium atom thermalized in a dense fluid can become localized.41 This type of localization is due to
the interaction of the trapped particles with the environment, for instance, via the Fermi repulsion,
and it is different from the usual Anderson localization typical for disordered systems.42 Eventu-
ally the trapped particles decay due to the annihilation reaction with the neighboring electrons.
With respect to this annihilation-self-trapping phenomenon it is not clear whether the positron
actively creates a well in the fluid in which it localizes, or randomly visits favorable fluctuations.
Density functional theory calculations43 support the idea of a definite localized state for the
trapped particle and under these circumstances one normally expects to have a well definite decay
rate. This point of view is consistent with the ease with which experimentalists are able to assign
specific annihilation rates to each decay mode. In contrast, quantum Monte Carlo calculations44

show that substantial fluctuations occur in the neighborhood of a trapped particle resulting in a
broad distribution of decay rates. These Monte Carlo simulations seem to contradict the experi-
mental measurements which lead to single, definite decay rates.

To solve this contradiction Miller, Reese, and Worrell45 ~MRW! have recently suggested an
approximate stochastic model with dynamical disorder. They have shown that the difference
between the density functional and Monte Carlo calculations is due to a misinterpretation of the
results of simulations in terms of a model with static disorder. Both the Monte Carlo and the
density functional approaches are recovered as particular cases of the MRW dynamical stochastic
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model.45 In the MRW treatment the rate coefficient is a quantum mechanical operatorŴ which
depends on the electron density in the neighborhood of the trapped particle. The time-dependent
instantaneous rate coefficientW(t) is a quantum mechanical average

W~ t !5^c~ t !uŴuc~ t !&. ~6.1!

Due to the environmental fluctuations of the density the quantum mechanical averageW(t) is a
fluctuating quantity that can be written in the form

W~ t !5^W&1DW~ t !, ~6.2!

where^W& is a time-independent statistical average rate coefficient andDW(t) is the fluctuating
part ofW(t).

The average survival function is given by

^ l ~ t !&5exp~2^W&t !K expS 2E
0

t

DW~ t8!dt8D L . ~6.3!

To evaluate the dynamical average in Eq.~6.3! Miller, Reese, and Worrell45 do not use the
characteristic functional method suggested in this article. Instead they use a nonsystematic ap-
proximation based on two series expansions. They expand the exponential under the average
brackets in a Taylor series and keep the first three terms, resulting in

^ l ~ t !&>exp~2^W&t !H 11
1

2 E
0

tE
0

t

^DW~ t18!DW~ t28!&dt18 dt28J . ~6.4!

The next step is to take the logarithm of the average survival function and to approximate the
logarithm containing the double integral by the first term from its Taylor expansion

ln^ l ~ t !&>2^W&t1
1

2 E
0

tE
0

t

^DW~ t18!DW~ t28!&dt18 dt28 . ~6.5!

The simplest assumption for the time dependence of the correlation function^DW(t1)DW(t2)& is
an exponential decay

^DW~ t1!DW~ t2!&5^DW2~0!&exp~2ut12t2u/ c̄ W!, ~6.6!

wherec̄ W is a characteristic relaxation time for the regression of fluctuations. Equations~6.5! and
~6.6! lead to

ln^ l ~ t !&52^W&t1^W&2z2t c̄ W$12~ c̄ W /t !@12exp~2t/ c̄ W!#%, ~6.7!

where

z5^W2~0!&1/2/^W&. ~6.8!

Miller, Reese, and Worrell45 have estimated the parameters entering Eq.~6.7! for the orthopositro-
nium atom~o-Ps! in xenon at 340 °K and for the bare positron~e1! at 300 °C. The result of this
estimation is that for o-Ps the macroscopic relaxation time scale

t̄macro51/̂ W& ~6.9!

is much larger than the regression time of fluctuationsc̄ W : t̄macro@c̄ W ; in this case the fluctuations
are very fast and the average survival function is practically exponential
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ln^ l ~ t !&>2^W&t, ~6.10!

which corresponds to a definite effective relaxation rate^W&. This behavior is a particular case of
a general feature of the systems with dynamic disorder and very fast fluctuations.1 For the bare
positronium, however, the macroscopic and fluctuation time scales are less well separated and the
average survival function is given by Eq.~6.7!.

Now we investigate the MRW model from the point of view of our approach. First note that
within the framework of our theory the MRW approximative equations~6.5! and ~6.7! are exact
for a Gaussian and Markovian process. According to Doob’s theorem the only possible expression
for the correlation function of a stationary Gaussian and Markovian process is the exponential
form given by Eq.~6.6!. Inserting Eq.~6.6! into Eq. ~5.20! and using Eqs.~5.19! and ~5.17! for
m51 we recover the MRW equation~6.7!. If the stochastic process describing the behavior of the
random rate coefficientW(t8) is close to a Gaussian process then the superior cumulants lead to
small corrections in the expression of the average survival function@see the general non-Gaussian
relationships~4.14!#.

Examining the MRW derivation of Eq.~6.7! it follows that this equation is valid only if

1

2 E
0

tE
0

t

^DW~ t18!DW~ t28!&dt18 dt285^W&2z2t c̄ W$12~ c̄ W /t !@12exp~2t/ c̄ W!#%!1. ~6.11!

Indeed, only if this restriction is fulfilled are the series expansions used in Eqs.~6.4! and ~6.5!
justified. Our approach, however, shows that the restriction~6.11! is not necessary. For a stationary
Gaussian and Markovian process the MRW equation~6.7! is exact for any values of the integral
term in Eq. ~6.11!. Miller, Reese, and Worrell did not notice this relationship between their
approach and the stationary Gaussian and Markovian processes. We do not know whether the
actual random properties of the rate coefficient are accurately described by a stationary Gaussian
and Markovian process. Note, however, that the standard description of stationary fluctuations is
based on the use of such a process.46 The broad range of validity of Eq.~6.7! is surprising but it
is due to the fact that in the MRW derivation the errors due to the two series expansions in Eqs.
~6.4! and ~6.5! compensate each other.

The exponential or nonexponential structure of the average survival function is governed by
the relationship between the macroscopic and the microscopic~fluctuation! time scales. From the
MRW approach it follows that in the case of very rapid fluctuations the system behaves as if the
dynamical disorder were missing. Our approach, however, shows that this is not the case. Apply-
ing the expression~5.24! for the relative fluctuation of the number of particles in the thermody-
namic limit we obtain

rdynamic~ t1 ,t2!;exp$~ c̄ W!2^DW2~0!&@2 min~ t1 ,t2!/ c̄ W212exp~2ut12t2u/ c̄ W!

1exp~2t1 / c̄ W!1exp~2t2 / c̄ W!#21%1/2, as N0 ,^N0& → `. ~6.12!

For larget1 ,t2 Eq. ~6.12! takes a simpler form

rdynamic~ t1 ,t2!;exp$~ c̄ W!^DW2~0!&min~ t1 ,t2!%, t1 ,t2 → `, ~6.13!

that is, the relative fluctuation increases exponentially to infinity. From Eqs.~6.12! and~6.13! we
notice that the intermittent behavior of the fluctuations exists even if the fluctuations are very
rapid. This is a surprising result which cannot be obtained by applying the MRW approach. It
might be possible that the intermittent character of fluctuations of the number of particles can be
observed experimentally.

The existence of dynamical disorder decreases the efficiency of the annihilation process. This
is reflected in the fact that the decrease of the survival function given by Eq.~6.11! is slower than
in the case when the fluctuations of the rate coefficient are missing. By using the method devel-
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oped here, we can show that this slowing down effect due to the dynamical disorder is also present
in the case of Gaussian, non-Markovian fluctuations of the rate coefficient for which the correla-
tion function^DW(t1)DW(t2)& is generally nonexponential. If the dynamical disorder is missing
we have^DW(t1)DW(t2)&50, j (t)50 and Eqs.~5.17! lead to

^ l m~ t !&ordered5„Fm~ t !/Fm~0!…ordered5exp~2m^W&t !. ~6.14!

As j (t) is generally non-negative by comparing Eqs.~120! with Eqs.~6.14! we obtain

^ l m~ t !&ordered5„Fm~ t !/Fm~0!…ordered>^ l m~ t !&dynamic5„Fm~ t !/Fm~0!…dynamic, m51,2,...
~6.15!

The slowing down generated by the dynamical disorder affects not only the moments of the
survival function but also the factorial moments of the number of particles.

VII. PASSAGE THROUGH A FLUCTUATING GEOMETRICAL BOTTLENECK

The model for the binding of a ligand to a protein molecule suggested by Zwanzig32 is based
on the following assumptions:

~1! The rate determining process is the passage of a ligand molecule through a geometrical
bottleneck formed by the protein chain. The rate coefficientW is proportional to the area of the
bottleneck

W~r !5ar 2, ~7.1!

where r is the radius of the bottleneck anda is a positive coefficient with dimension@time#21

@length#22.
~2! Due to the conformational fluctuations of the protein molecule the radiusr of the bottle-

neck is a random variable which obeys a Langevin equation

dr/dt52lr1F~ t !, ~7.2!

in which l is the rate of regression of a fluctuation inr andF(t) is thermal~Gaussian white!
noise. The stochastic properties ofF(t) are completely characterized by the cumulants

^^F~ t !&&50, ^^F~ t !F~ t8!&&52lud~ t2t8! ~7.3!

and

^^F~ t1!...F~ tq!&&50, q.2, ~7.4!

whereu is the second moment of the radiusr

u5^r 2&. ~7.5!

Using these two assumptions Zwanzig has computed the expression of the average survival
function ^ l (t)& of the ligand molecules. In this section we complete the Zwanzig’s analysis by
evaluating the fluctuations of the number of ligand molecules. This is more than a simple aca-
demic exercise; indeed, even though the fluctuations are not easily experimentally accessible the
theoretical investigation of their behavior would lead to the clarification of the nature of the
process in the thermodynamic limit. We shall see in the following that, like in the case of positron
trapping in fluids, the Zwanzig’s model leads to an intermittent behavior.

Equation ~7.2! shows that the radius of a bottleneck is a Markovian random variable. It
follows that we can apply the Markovian approach developed in Sec. V. In this case the state
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vectorx is made up of one componentx5(r ). Reducing the Langevin description~7.2!–~7.4! to
a Fokker–Planck description it turns out that the evolution operatorL is given by

L•••5l] r~r ••• !1lu] r2
2

~••• !, ~7.6!

which is a particular case of Eq.~5.6!. The factorial moments of the number of surviving particles
and the moments of survival functions can be derived by applying the fluctuation–dissipation
relation ~4.11!. The details of computations are presented in Appendix D. By combining our
formalism with the data available in the literature32,47we obtain

Fm~ t !/Fm~0!5^ l m~ t !&5S m~ t !, ~7.7!

where

S m~ t !5H l12amu

~l214amul!1/2
sinh@~l214amul!1/2t#

1cosh@~l214amul!1/2t#J 21/2

exp~lt/2!. ~7.8!

Form51 Eqs.~7.7! and ~7.8! reduce to the Zwanzig’s expression for the average survival func-
tion. The expressions~7.7! and~7.8! for m.1 for the fluctuations of the survival function and of
the number of ligand molecules are new.

The average rate coefficient is equal to

^W&5^ar 2&5au. ~7.9!

In terms of^W& andl the macroscopic time scalet̄macroand the fluctuation time scaleC̄ fluct can
be expressed as

t̄macro51/̂ W&5~au!21, C̄ fluct51/l. ~7.10!

The limit behavior of Eqs.~7.7! and~7.8! can be analyzed in terms of the ratioy of the two time
scales

y5C̄ fluct / t̄macro5au/l. ~7.11!

For y→ ` the fluctuations are slow, the disorder is static, and Eqs.~7.7! and ~7.8! become

Fm~ t !/Fm~0!5^ l m~ t !&;~112maut !1/2, m51,2,..., y → `. ~7.12!

In the opposite case of rapid fluctuationsy→ 0 and the moments decrease exponentially in time

Fm~ t !/Fm~0!5^ l m~ t !&;exp~2maut !, m51,2,..., y → 0. ~7.13!

The one-time central moments and the cumulants of the number of ligand molecules can be
computed by using the relationships presented in Appendix B. To save space we give here only the
expression of the one-time relative fluctuation

r~ t !5^DN2~ t !&1/2/^N~ t !&5@„11r2~0!…S 2~ t !/„S 1~ t !…
2211„12S 2~ t !/S 1~ t !…/^N~0!&#1/2

;@„11r2~0!…S 2~ t !/„S 1~ t !…
221#1/2, ^N~0!& → `.

~7.14!
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Note that in the thermodynamic limit^N~0!&→ ` the fluctuations are intermittent. To estimate the
intensity of the intermittent behavior we analyze the asymptotic expressions for the factorial
momentsFm(t) and for the one-time relative fluctuationr(t). For large time bothFm(t) andr(t)
are exponentials

Fm~ t !/Fm~0!5^ l m~ t !&;
2~114my!1/4

11~114my!1/2
exp$2 1

2lt@~114my!1/221#%,

t@0, ~7.15!

r~ t !;„11r2~0!…1/2R~y!exp@ 1
4ltQ~y!#, t@0, ~7.16!

where

R~y!5
~118y!1/8@11~114y!1/2#

~114y!1/4@11~118y!1/2#1/2&
, ~7.17!

Q~y!52~114y!1/22~118y!1/221.0, for y.0. ~7.18!

As time increases the factorial momentsFm(t) of the number of ligand molecules decrease
exponentially to zero and the relative fluctuationr(t) increases exponentially to infinity.

From Eqs.~7.15! we see that the effective exponential rate constantWeff(m) for the decay of
fluctuations is a parabolic function of the moment indexm. Equations~7.15! may be rewritten in
the form

Fm~ t !;exp@2Weff~m!t#, t → `, ~7.19!

with

Weff~m!5 1
2l@~114my!1/221#;~malu!1/2, y@1; ~7.20!

for m51 Eq. ~7.20! reduces to a relation derived by Zwanzig32

Weff~1!;~alu!1/2, y@1. ~7.21!

As the relaxation ratel of the radius fluctuations is inversely proportional to the viscosityh of the
solvent32,48 Eq. ~7.21! leads to

Weff~1!;h21/2 ~7.22!

a relationship which is approximately consistent with the experimental data which can be fitted by
the law49

Weff~1!;h2K, with 0.8.K.0.4. ~7.23!

A possible explanation of the existence of an exponent different from1
2 would be the fact that

the fluctuations of the radiusr of the bottleneck are actually non-Gaussian. The Gaussian behavior
of a geometrical parameter of a polymeric chain is generally related to the description of the
conformational fluctuations by a noncorrelated random walk.50 For real polymers, however, the
excluded volume effect necessarily leads to non-Gaussian behavior.50 A generalization of the
Zwanzig’s model which provides a theoretical derivation of the experimental law~7.23! is based
on the assumption that the non-Gaussian fluctuations can be described by using the fractional
diffusion equation.51 Details concerning this model will be given elsewhere. We mention that
Wang and Wolynes33 suggest a different explanation for the experimental law~7.23!. They assume
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that the fluctuations of the radiusr are Gaussian but that the corresponding correlation function
^Dr (t1)Dr (t2)& is a nonexponential function of the time intervalt12t2 .

VIII. JUMP RATE PROCESSES AND RELAXATION

The third application of our approach is an exactly solvable model with dynamical disorder
which can be used both in biochemistry and condensed matter physics. We assume that the
random time evolution of the rate coefficientW(t8) can be described in terms of a jump process.
For each jump a new value ofW is randomly selected from a given probability densityf (W)dW.
The jump frequency is also a random functionV~t8! which obeys a similar dynamics. For each
jump a new frequencyV is picked up from another probability densityj~V!dV. For this kind of
model the random functionW(t8) is generally non-Markovian. However the set~V,W! has a
Markovian behavior characterized by the jump rate

W ~V8,W8 → V,W!dV dW Dt5V8j~V! f ~W!dV dW Dt, ~8.1!

whereDt → 0 is the length of the time interval in which a jump occurs. This type of model is a
particular case of the Markovian processes studied in Sec. V. The state vectorx is given by

x5~V,W! ~8.2!

and the evolution operatorL can be computed by inserting Eq.~8.1! into Eq. ~5.7!. Using the
expression for L the evolution equations ~5.4!, ~5.5!, and ~5.10! for
Lm(V,W,t)5f̃(b5m,V,W;t) become

] tf̃~b,V,W;t !5j~V! f ~W!E E V8f̃~b,V8,W8!dV8 dW82~V1bW!f̃~b,V,W;t !,

~8.3!

with the initial condition

f̃~b,V,W;t50!5P~V,W,t50!5j~V! f ~W!. ~8.4!

Equation~182! can be solved by introducing the auxiliary function

b~b,t !5E E Vf̃~b,V,W;t !dV dW. ~8.5!

We express the integral in Eq.~8.3! in terms ofb(b,t) and integrate the resulting equation by
assuming the functionb(b,t) is known. This gives

f̃~b,V,W;t !5j~V! f ~W!Fexp„2~V1bW!t…1E
0

t

b~b,t2t8!exp„2~V1bW!t8…dt8G .
~8.6!

Inserting Eq.~8.6! into Eq. ~8.5! we obtain a linear integral equation forb(b,t)

b~b,t !5^ l b~ t !&staticc~ t !1E
0

t

^ l b~ t8!&staticc~ t8!b~b,t2t8!dt8, ~8.7!

where

^ l b~ t !&static5E
0

`

l b f ~W!dW5E
0

`

exp~2bWt! f ~W!dW ~8.8!
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is the one-time fractional static moment of orderb of the survival functionl (t) and

c~ t !5E
0

`

V exp~2Vt !j~V!dV ~8.9!

is the static average of the probability density of the waiting time between two jumps. Combining
Eqs.~5.3!, ~4.11!, and~8.6! we can express the dynamic moments of the survival function and of
the number of surviving particles in terms of the functionb(b,t)

Fm~ t !/Fm~0!5^ l m~ t !&5^ l m~ t !&staticS ~ t !1E
0

t

b~m,t2t8!S ~ t8!^ l m~ t8!&static dt8, ~8.10!

where

S ~ t !5E
t

`

c~ t8!dt85E
0

`

exp~2Vt !j~V!dV ~8.11!

is the probability that in a time interval of lengtht no jump processes occur. Equation~8.7! is a
linear convolution equation inb(b,t) which can be solved by using the Laplace transformation.
We denote the Laplace transform of the real time variablet by an overbar

b̄~b,s!5E
0

`

exp~2st!b~b,t !dt, etc., ~8.12!

wheres is the Laplace variable conjugated to the timet. We apply the Laplace transform to Eqs.
~5.13! and~8.6!–~8.8!, eliminate the functionb̄(b,s) from the resulting equations, and come back
to the real time variablet. After lengthy calculations we get the following expressions for the
probability densityC( l ,t) of the survival functionl at timet and for the dynamic averages^ l m(t)&
andFm(t)

C~ l ,t !5~2p i l !21E db exp~b ln l !L21

3H F E E j~V! f ~W!dV dW

V1bW1s G YF E E ~s1bW!j~V! f ~W!dV dW

V1bW1s G J ,
~8.13!

Fm~ t !/Fm~0!5^ l m~ t !&

5L21H F E E j~V! f ~W!dV dW

V1mW1s G YF E E ~s1mW!j~V! f ~W!dV dW

V1mW1s G J ,
~8.14!

where the complex integral overb is computed along a vertical line from the left hand side of the
complex plane from2i` to 1i` andL21 denotes the inverse Laplace transformation with
respect to thes variable conjugated to the real time.

The probability densityP(x,t)5P(V,W,t) of the ratesV andW at time t can be evaluated
in a similar way. We have

P~V,W,t !5E f~E ,V,W;t !dE5f̃~b50,V,W;t !. ~8.15!
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Combining Eq.~8.15! with the Laplace transform of Eq.~8.6! we obtain

P~V,W,t !5j~V! f ~W!L21@~s1V!21
„12c̄~s!…21#, ~8.16!

where

c̄~s!5E
0

`

exp~2st!c~ t !dt5E
0

` V

s1V
j~V!dV ~8.17!

is the Laplace transform of the average probability density of the waiting time between two jumps.
The above equations allow us to express the dynamic averages^ l m(t)& andFm(t) in terms of

static averages over the ratesV andW. Equations~8.14! may be rewritten as

Fm~ t !/Fm~0!5^ l m~ t !&5^ l m~ t !&statiĉ c~ t ! ^ x~ t !, ~8.18!

where ^ l m(t)&static is given by Eq.~8.18!, ^ denotes the temporal convolution product, and the
functionx(t) is given by

x~ t !5L21@„12wm~s!…21#, ~8.19!

with

wm~s!5E
0

`

exp~2st!c~ t !^ l m~ t !&static dt. ~8.20!

According to Eq.~8.18! the intermediate time behavior of the dynamical averages^ l m(t)& and
Fm(t) can be quite complicated; the large time behavior, however, is dominated by the most
rapidly decreasing functions on the right hand side of Eq.~8.18!. The asymptotic behavior of the
static averageŝl m(t)&static andc(t) can be investigated by using the methods developed in the
literature dealing with systems with static disorder.10 On the other hand the behavior ofx(t) can
be investigated by making an analogy with Lotka’s theory of stable populations.37,52 Equation
~8.19! shows that the functionx(t) depends on the roots of the transcendental equation

wm~s!5E
0

`

exp~2st!c~ t !^ l m~ t !&static dt51. ~8.21!

Equation~8.21! has exactly the same form as the well-known Lotka equation for the intrinsic rate
of growth from population dynamics.37,52 By using this analogy it follows that Eq.~8.21! has a
single real roots5s0 which is nonpositive. We have37,52

s0,0 if wm~0!,1 and s050 if wm~0!51. ~8.22!

Equation ~30! can also have at most a countable number of complex rootss6q5uq6 ivq ,
q51,2,... with real partsuq smaller or at most equal to the real roots0 ~Refs. 37 and 52!

uq<s0 , q51,2,... ~8.23!

If the complex roots are simple thenx(t) can be expressed as

x~ t !5~ I 0!
21 exp~2us0ut !12(

q51

`

exp~2uuqut !$@ I q
1 cos~vqt !2I q

2 sin~vqt !#/@~ I q
1!21~ I q

2!2#%,

~8.24!

where
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I 05E E Vj~V! f ~W!

~V1mW!2
dV dW ~8.25!

and

I q
65E E Vj~V! f ~W!

@~V1mW2uq!
21vq

2#2
H ~V1mW2ul !

22v l
2

2~V1mW2ul !v l
J dV dW. ~8.26!

The expansion~8.24! is physically consistent only if the integrals~8.25! and ~8.26! exist and are
finite.

The constantwm~0! can be expressed as

wm~0!5E E V

V1mW
j~V! f ~W!dV dW5 K V

V1mWL
static

. ~8.27!

In most cases the average^V/~V1mW!&static is smaller than unity and thuss0,0 and

x~ t !;~ I 0!
21 exp~2us0ut ! as t → `. ~8.28!

In this case the dynamical averages^ l m(t)& andFm(t) decrease to zero exponentially or faster. In
some exceptional cases it may happen that^V/~V1mW!&static51. In this situation there are two
possibilities: if 12wm(s) is analytic nears50

12wm~s!;s as s→ 0 and x~ t !;const as t→ `. ~8.29!

If Eq. ~8.29! holds then the dynamical averages^ l m(t)& andFm(t) are completely determined by
the static averageŝl m(t)&static. The second possibility is that 12wm(s) is nonanalytic nears50 so

12wm~s!;sa, 1.a.0 as s→ 0. ~8.30!

In this case the integrals~8.25! and~8.26! are infinite, the expansion~8.24! breaks down and the
asymptotic behavior ofx(t) as t → ` is given by

x~ t !;ta21/G~a! as t → `. ~8.31!

The asymptotic fractal time behavior ofx(t) may lead to an exotic~i.e., nonexponential! large
time behavior for̂ l m(t)& andFm(t).

As expected for very rare jumps the dynamical moments^ l m(t)& andFm(t)/Fm~0! are the
same as the static averages

^ l m~ t !&5^ l m~ t !&static. ~8.32!

In this case we havej~V!5d~V! and Eq.~8.14! reduces to Eq.~8.8!. In the other extreme of very
frequent jumps we havej~V!5d~V2V8!, V8→ ` and Eq.~8.14! becomes

Fm~ t !/Fm~0!5expS 2tE Wf~W!dWD5exp~2^W&t ! as t → `. ~8.33!

Equation~8.33! is similar with Eqs.~6.9! and ~7.13! derived in Secs. VI and VII.
It is easy to check that for the jump process considered here the fluctuations of the number of

surviving particles are also intermittent. A straightforward calculation shows that the expression
~7.14! for the one-time relative fluctuation remains valid provided that the functionsS 1,2(t) are
replaced by the functionŝl m(t)&, m51,2 given by Eq.~8.14!.
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A more detailed analysis requires knowledge of the probability densitiesj~V! and f (W). We
consider here only a few particular situations which may generate exotic relaxation. We assume
the validity of the random activation energy model~RAEM53,54!, i.e., that both the jump and the
rate processes are activated phenomena corresponding to a random distribution of energy barriers.
We have

V~E!5m exp~2E/kT!, W~E!5n exp~2E/kT!, ~8.34!

where the activation energyE may take any value between zero and infinity, the pre-exponential
factorsm andn are the maximum values of the ratesV andW, respectively,k is the Boltzmann’s
constant, andT is the absolute temperature of the system. The activation energies corresponding to
V andW are random variables selected from two different probability densities

hV,W~E!dE, with E hV,W~E!dE51. ~8.35!

Combining Eqs.~8.34! and ~8.35! it follows that the probability densitiesj~V! and f (w) of the
ratesV andW can be expressed as

j~V!5E hV~E!d@V2m exp~2E/kT!#dE, ~8.36!

f ~W!5E hW~E!d@W2n exp~2E/kT!#dE. ~8.37!

Depending on the choice of the probability densitieshV,W(E)dE we distinguish the following
cases:

~1! We assume that the jump dynamics is Markovian, i.e., that the height of the energy barrier
corresponding to the jump process is constant

hV~E!5d~E2EV! ~8.38!

and that the height of the energy barrier corresponding to the rate process is exponentially dis-
tributed

hW~E!5~kTW!21 exp~2E/kTW!, TW>T. ~8.39!

The probability law~8.39! corresponds to a canonical distribution of energies ‘‘frozen’’ at the
temperatureT0. This type of distribution was introduced almost sixty years ago in surface
chemistry;55 it has also been used in the study of transport processes in disordered systems.10,53,54

In this case the dynamical moments^ l m(t)& andFm(t) and the relative fluctuationp(t) are given
by

Fm~ t !/Fm~0!5^ l m~ t !&
G~11H !~mnt !2H exp~2V0t !

12H~V0 /mn!HB@H,12H,mn/~V01mn!#
, t → `, ~8.40!

r~ t !;„11r2~0!…1/2
12H~V0 /n!HB@H,12H,n/~V01n!#

$G~12H !@12H~V0 /2n!HB@H,12H,2n/~V012n!##%1/2
~nt/2!H/2

3exp~ 1
2V0t !, as t → `, ~8.41!

where
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G~p!5E
0

`

tp21 exp~2t !dt, B~p,q,x!5E
0

x

tp21~12t !q21 dt ~8.42!

are the complete gamma and the incomplete beta Eulerian integrals, respectively,

H5T/TW<1, ~8.43!

and

V05m exp~2EV /kT!. ~8.44!

~2! The distribution of the height of jump barriers is given by a positive Gompertz law10 with
a characteristic energyE0

hV~E!5~E0!
21 exp@E/E02exp~E/E0!21# ~8.45!

and the probability density of the rate coefficientW is given by the exponential law~8.39!. In this
case the large time behavior of the dynamical moments^ l m(t)& andFm(t) is given by a stretched
exponential

Fm~ t !/Fm~0!5^ l m~ t !&;G~11H !~mn!2Hmt12H exp@2s~mt !a#, ~8.46!

where

s5@11kT/E0#/~kT/E0!
a ~8.47!

and

a5kT/~E01kT!<1. ~8.48!

The one-time relative fluctuation diverges to infinity ast → ` according to a positive stretched
exponential

r~ t !5S 11r2~0!

mG~11H ! D
1/2

~n/2!H/2t2~12H !/2 exp@ 1
2s~mt !a#, as t → ` ~8.49!

~3! Both activation barriers are exponentially distributed;hW(E) is given by Eq.~218! and
hV(E) is given by a similar canonical distribution ‘‘frozen’’ at temperatureTV

hV~E!5~kTV!21 exp~2E/kTV!, T<TV . ~8.50!

We have

Fm~ t !/Fm~0!5^ l m~ t !&;G~H11!G~H11!~m/mn!H~mt !2~H1H!,

n@m, t@m21, ~8.51!

r~ t !5S 11r2~0!

G~11H!G~11H ! D
1/2

~n/2m!H/2~mt !~H1H!/2,

n@m, t@m21, ~8.52!

where

H5T/TV<1. ~8.53!
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Thus the large time decrease of the dynamical momentsFm(t) and^ l m(t)& is given by a statistical
fractal law with an exponentH1H and the relative fluctuation increases to infinity according to
a statistical fractal law with an exponent12~H1H!.

The probability densityP(V,W,t) of the ratesV andW can be evaluated from Eq.~8.16!. If
the average time between two jumps

^t&5E
0

`

tc~ t !dt5E
0

`

V21j~V!dV5^V21&static, ~8.54!

exists and is finite, then

P~V,W,t !;j~V! f ~W!/@V^V21&static# as t → `. ~8.55!

If ^t& is infinite then the stateV50 acts as a trap and in the limitt → ` the random jumps cease.
We have

P~V,W,t !→d~V! f ~W! as t → `. ~8.56!

For example, if the distribution of jump activation energies is given by the exponential law~8.50!
then ^t&5` and forV Þ 0 the probability densityP(V,W,t) decreases to zero according to an
inverse power law

P~V,W,t !;
f ~W!

V22H

sin~pH!

pG~H!
t2~12H!, V Þ 0, t → `. ~8.57!

We have checked the validity of the asymptotic laws~8.46! and ~8.51! by assuming that
n/m;10–102 andH,H;0.5–0.9. For this range of parameters the stretched exponential~8.46!
and the inverse power law~8.51! describe the behavior of the tail of the average survival function
for 0.15–20.10>^ l (t)&>0 and 0.12–0.08>P( l (t)&>0, respectively.

Although the above analysis provides a mathematical description of dynamical disorder in
terms of pure jump processes it does not clarify its physical significance. By rephrasing the pure
jump model in a physical language, we distinguish three different features:

~1! There are two different types of dynamical processes: a first process, described in terms of
the jump frequencyV, is responsible for the occurrence of dynamical disorder, whereas the second
is the rate process itself characterized by the random rate coefficientW.

~2! Although no direct relations concerning the relative values of the frequenciesV andW are
assumed, their statistical behavior is correlated due to their mechanism of change. For each new
step two new values of the frequenciesV andW are randomly selected from two different
probability laws. For this assumption to be fulfilled it is necessary that the interaction process
corresponding to a step is very strong, resulting in a loss of memory concerning the previous states
of the system. Such an assumption, known in the literature as the ‘‘strong collision hypothesis,’’
has been commonly used in spectroscopy,14–17 chemical kinetics,56 and condensed matter
physics.10,21,23,57

~3! The third assumption is the one concerning the random distribution of the ratesV andW
which describe activated phenomena with a random distribution of energy barriers. This assump-
tion has been used in biochemistry,2,3 chemical kinetics,4 the structural or dielectric relaxation in
glassy materials,53 transport phenomena in disordered systems,54 etc. For this assumption to be
satisfied it is necessary that a state of local equilibrium exists, i.e., that besides the jump and rate
processes taken explicitly into account there is another type of process which ensures the ther-
malization of the system. Besides, it is necessary that the particles involved in the rate process can
exist in a large variety of different states, to which correspond different activation barriers.
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For illustration we consider two possible applications of the theory. The first example is the
problem of protein–ligand interactions which has already been mentioned earlier. In this context
the jump model is a generalization of the model with static disorder suggested by Frauenfelder
et al.2,3 We assume that the passage from a conformation to another is not an instantaneous
process but rather it is characterized by a distribution of time scalesC fluct51/Vu corresponding to
different jump frequenciesVu , u51,2,... For this problem the strong collision assumption means
that the interaction between the ligand and the protein is sufficiently strong that it leads to a
conformational change of the protein which is relatively independent of the state of the protein
molecule before the interaction. Although the constraints imposed by the model seem to be rather
strong, they are less restrictive than the ones corresponding to the models with static disorder
presented in the literature.2,3

A second possible application of the theory is the study of interactions between the collective
orientational relaxation in dense fluids and the kinetics of chemical processes.29 In this case the
collective orientational relaxation is responsible for the occurrence of dynamical disorder and it
plays a role which is similar to the role played by the process of conformational relaxation in
protein dynamics. The chemical reaction plays the role of the rate process.

IX. COOPERATIVITY VERSUS STATISTICAL INDEPENDENCE FOR RANDOM
RELAXATION RATES

A referee of this article has pointed out that our approach is based on the implicit assumption
that all particles making up the system are controlled by the same realization of the random rate
W(t8). In this section we investigate the general implications of this assumption and suggest an
alternative approach of random relaxation processes for which the above-mentioned assumption
does not hold anymore.

The assumption that the relaxation behavior of all particles is controlled by the same realiza-
tion of the random rateW(t8) corresponds to a very strong cooperative behavior. As the above-
mentioned referee has pointed out this cooperative behavior of all particles is the physical cause
which generates the intermittent behavior of the process characterized by the general fluctuation–
dissipation relations~4.11!. We emphasize that this cooperative behavior is related only to the
dynamical disorder and has nothing to do with the particles themselves which in the framework of
our approach are otherwise supposed to be independent.

Although the cooperativity of a dynamical-disordered process is not an unreasonable assump-
tion there is no guarantee that it is universally valid. In two of the three applications considered in
this article, the positron lifetime distributions and the passage through a fluctuating geometrical
bottleneck, one expects to have only a partial cooperative behavior, limited to the particles trapped
in a given region of the fluid or to the number of particles passing through the same bottleneck.
However, the theory developed in the preceding sections remains valid, provided that the number
N0 of particles is not the total number of particles from the system, but rather the number of the
particles from a given cluster corresponding to a given region of the fluid or to a given bottleneck,
respectively. Generally speaking, for such a system with partial cooperativity, in addition to the
two averages considered in this article, over the sample fluctuations and over the dynamical
disorder, we should consider an additional averaging, over the all possible numbers and sizes of
the clusters. Concerning the jump process model investigated in Sec. VIII the cooperative or
noncooperative behavior of dynamical disorder should be examined for each possible applications
of the model.

We emphasize that the cooperative or noncooperative behavior of dynamical disorder does not
influence the expressions for the average survival functions derived in this article; only the be-
havior of the fluctuations is influenced by the type of dynamical disorder considered. For illustra-
tion in this section we investigate the other extreme of complete statistical independence for which
the fluctuations of the relaxation rates attached to the different particles are completely indepen-
dent. In this case the average in definition~2.10! of the characteristic functionalJ@K ~t8!# of the
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number of particles should be computed by taking into account all possible realizations of differ-
ent random relaxation functionsW(t18),...,W(tN8 ) which are assumed to be independent of each
other. Equation~3.2! should be replaced by

J@K ~ t8!#5K expS i E
0

t

K ~ t8!^N~ t8!&disorderdt8D L , ~9.1!

where

^N~ t8!&disorder5N0K expS 2E
0

t8
W~ t9!dt9D L

disorder

~9.2!

is a dynamical average of the type~3.10!. The characteristic functionalJ@K ~t8!# can be expressed
by an expansion of the type~3.9!

J@K ~ t8!#5gH z511E
0

t

^ l ~ t8!&dynamiciK ~ t8!expF i E
0

t8
K ~C !dC Gdt8, t50J

511 (
m51

`
~ i !m

m!
Fm~0!E

0

t

•••E
0

t

K ~ t18!•••K ~ tm8 !

3expS i(
u51

m E
0

tu8K ~C !dC D ^ l ~ t18!&•••^ l ~ tm8 !&dt18•••dtm8 . ~9.3!

By following the same steps as in Secs. II–IV from Eq.~9.3! we can show that for indepen-
dent fluctuations of the random ratesW(t18),...,W(t8) the two-time cumulants of the second order
of the number of particles and the factorial cumulantsFm(t) are given by

^^N~ t1!N~ t2!&&5N0@^ l ~ t2* !&2^ l ~ t1!&^ l ~ t2!&# ~9.4!

and

Fm~ t !5Fm~0!^ l ~ t !&m. ~9.5!

We notice that, in contrast with the case of cooperative dynamical disorder, for independent
fluctuating rates the cumulants of the second order of the number of particles depend on the first
power of the total numberN0 of particles and not on the second powerN0

2. As a result in the
thermodynamic limitN0→ ` the relative fluctuation of the number of particles decreases to zero
as ~N0!

21/2 asN0→ `, a situation which corresponds to a nonintermittent behavior.
The choice between these two limit approaches corresponding to correlated and noncorrelated

fluctuations of the relaxation rates, respectively, should be done depending on the characteristics
of the particular system studied. It may happen that for certain systems none of the two approaches
developed in in this article may be used and thus the development of an averaging procedure
corresponding to a partially correlated behavior may be necessary.

X. DISCUSSION

Dynamical disorder occurs when there is a partial overlapping between the time scales of two
correlated random processes. In this article we have addressed two problems concerning systems
with dynamical disorder, to which little attention has been paid in the literature:

~1! The elaboration of an efficient method for the direct evaluation of the dynamical averages
and
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~2! The study of fluctuations of the number of surviving particles for independent rate pro-
cesses with dynamical disorder.

Our method of direct averaging is based on the use of characteristic functionals; within its
framework the direct evaluation of means is less unpleasant and less formidable than has been
claimed in the literature.1 We have derived a general class of fluctuation–dissipation relations
which can be used to evaluate all moments of the number of surviving particles in terms of the
average survival function. For applying these fluctuation–dissipation relations it is not necessary
to use the whole mathematical apparatus of the theory. Our approach can be used to evaluate not
only the fluctuations of the number of particles but also the moments of the survival functions as
well as other properties of the systems. It is more general than the indirect methods of averaging
used in the literature, in particular it is not confined to a certain class of stochastic processes. For
Markovian processes the method of stochastic Liouville equations1,30,31is recovered as a particular
case of our approach.

A surprising result of our treatment is that for systems with dynamical disorder the fluctua-
tions of the number of particles have an intermittent behavior. In the thermodynamic limit the
relative fluctuation does not decrease to zero, but rather tends to a constant value. In all particular
cases investigated the relative fluctuation diverges to infinity for large time. This type of behavior
is very different from the equilibrium behavior of systems made up of independent particles for
which the relative fluctuation decreases to zero in the thermodynamic limit as the reciprocal value
of the square root of the number of particles.58 An important consequence of the intermittent
behavior is that for systems with dynamical disorder the fluctuations should play an important role
even in the macroscopic limit, and should lead to observable macroscopic effects. These effects
would be the stochastic analog of the macroscopic quantum effects.

Although this article is long, it does not exhaust the possibilities of the application of our
method. A first generalization would be the development of a field theory in which the spatial
distribution of the particles is taken into account. The development of this type of theory is of
importance in connection with the measurement of large fluctuations corresponding to the inter-
mittent behavior by means of light scattering.59 A second generalization would be to the study of
the interaction between an annihilation process and a generation process of the particles~or
quasiparticles!. In this case nonequilibrium steady states may occur for which the generation and
annihilation processes compensate each other. For these processes the fluctuation–dissipation
relations may serve as a basis for the derivation of a generalized thermodynamic description of
nonequilibrium steady states by using the method suggested by Ross, Hunt, and Hunt.60

Another possible application is related to the analysis of new experimental techniques for the
study of radical kinetics by applying external variable magnetic fields, for instance, the study of
geminate recombination of radical pairs by means of the stimulated polarization of nuclei~SPN61!.

The possibilities of application of the theory are not limited to the study of physical or
chemical phenomena. The method can also be used in population dynamics for the analysis of the
influence of environmental fluctuations on the growth of a population62 or in exobiology for the
evaluation of the probability of the existence of extraterrestrial life.63
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APPENDIX A: TIME-DEPENDENT, ORDERED SYSTEMS

For computing the generating functionalJordered@K (t8)uW(t8)# we come back to the discrete
representation~2.6! of the time variable and notice that for a given realization of the rate coeffi-
cientW(t8), 0<t8<t them-gate probabilityPm(Nm ,tm ;...;N1 ,t1) is a superposition of binomial
distributions

Pm~Nm ,tm ;...;N1 ,t1!5(
N0

P~N0 ,0!
N0!

~N02N1!!N1!
~12p1!

N1~p1!
N02N1•••

Nm21!

~Nm212Nm!!Nm!

3~12pm!Nm~pm!Nm212Nm, m@1, ~A1!

where

pu5W~uDt !Dt, u51,...,m ~A2!

is the probability of disappearance of a particle in a small time interval limited by the timesuDt
and (u11)Dt. Equation~A1! has been derived by taking into account that the disappearance of a
particle is a statistical process independent of the evolution of other particles and by making a
balance of the surviving particles from time interval to time interval. The generating function of
them-gate probabilityPm(Nm ,tm ;...;N1 ,t1)

Jm~zm ,tm ;...;z1 ,t1!5(
Nm

•••(
N1

)
u51

m

~zu!
NuPm~Nm ,tm ;...;N1 ,t1!,

with uzuu<1, u51,...,m ~A3!

can be computed by a repeated application of the binomial summation formula. By combining
Eqs.~2.3!, ~A1!, and~A3! after some elementary algebraic manipulations we come to

Jm~zm ,tm ;...;z1 ,t1!5g„wm~z1 ,...,zm!,0…, ~A4!

where

wm~z1 ,...,zm!5p11z1~12p1!p21z1z2~12p1!~12p2!p31•••1z1•••zm21

3~12p1!•••~12pm21!pm1z1•••zm~12p1!•••~12pm! ~A5!

andg(z,0) is the generating function of the initial distribution of particles@Eq. ~2.3!#.
Now we compare the definitions of the ordered characteristic functional

Jordered@K (t8)uW(t8)# and of them-gate generating functionJm(zm ,tm ,...,z1 ,t1); the compari-
son shows that in the limitDt → 0 we have

Jordered@K ~ t8!uW~ t8!#5 lim
Dt→0

~m→`!

Jm~zu5exp„iK ~uDt !Dt…, u51,...,...,m!. ~A6!

By combining Eqs.~A2! and ~A4!–~A6! we obtain the following expression for the ordered
characteristic functional:

Jordered@K ~ t8!uW~ t8!#5gH z5E
0

t

F ~ t8!expS i E
0

t8
K~C !dC D dt81 l ~ t !expS i E

0

t

K~C !dC D ,0J ,
~A7!

where
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F ~ t !52@] l ~ t !/]t#5W~ t !expS 2E
0

t

W~ t8!dt8D . ~A8!

Performing a partial integration in Eq.~A7! we come to Eq.~3.3!.
The central momentŝN(t1)•••N(tm)&ordered and the cumulantŝ^N(t1)•••N(tm)&&ordered of

the number of surviving particles for a given realization of the random rate coefficient are given by

^N~ t1!•••N~ tm!&ordered5~2 i !m
dmJordered@K ~ t8!#

dK ~ t1!•••dK ~ tm!
U
K ~ t8!50

~A9!

and

^^N~ t1!•••N~ tm!&&ordered5~2 i !m
dm ln Jordered@K ~ t8!#

dK ~ t1!•••dK ~ tm!
U
K ~ t8!50

. ~A10!

For an initial canonical ensemble we get the following expressions for the first two moments
of the number of particles:

^^N~ t !&&ordered5^N~ t !&ordered5N0l ~ t ! ~A11!

and

^^N~ t1!N~ t2!&&ordered5^N~ t1!N~ t2!&ordered2^N~ t1!&ordered̂N~ t2!&ordered5N0@ l ~ t2* !2 l ~ t1!l ~ t2!#,
~A118!

where

tm*5max~ t1 ,...,tm!. ~A12!

The relative fluctuation of the number of particles is equal to

rordered~ t1 ,t2!5S ^^N~ t1!N~ t2!&&ordered
^^N~ t1!&&ordered̂ ^N~ t2!&&ordered

D 1/25~N0!
21/2S l ~ t2* !

l ~ t1!l ~ t2!
21D 1/2.

~A13!

In the thermodynamic limit̂N0&→ ` the relative fluctuation of the number of particles decreases
to zero as~N0!

21/2, that is, in the thermodynamic limit the fluctuations are insignificant, i.e., they
have a nonintermittent behavior.58

For an initial grand canonical ensemble the generating functiong(z,0) depends exponentially
onz21, all terms in the functional Taylor expansion of lnJordered@K (t8)uW(t8)# can be computed
exactly, which allows the evaluation of all cumulants. After some calculus we come to

^^N~ t1!•••N~ tm!&&ordered5m212ml ~ tm* !^N0&. ~A14!

The relative fluctuation of the number of particles is given by an equation similar to Eq.~A13!

rordered~ t1 ,t2!5~^N0&!21/2S l ~ t2* !

l ~ t1!l ~ t2!
D 1/2. ~A15!

For an initial grand canonical ensemble in the thermodynamic limit^N0&→ ` the fluctuations are
also nonintermittent.
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APPENDIX B: MOMENTS AND CUMULANTS

The central moments of the number of particles,^Nm(t)&, can be expressed in terms of the
factorial moments by using the Stirling numbers of the second and first kindS”m

(q) and Sm
(q),

respectively,34

S”m
~q!5 (

k50

q
~21!q2kkm

k! ~q2k!!
, ~B1!

Sm
~q!5 (

k50

m2q

~21!k
~m211k!!

~m2q1k!! ~q21!!
•

~2m2q!!

~m2q2k!! ~m1k!!
S”m2q1k

~k! . ~B2!

We have

^Nm~ t !&5 (
q50

m

S”m
~q!Fq~0!^ l q~ t !&5 (

q50

m

(
v50

q

S”m
~q!Sq

~v !^Nv~0!&^ l q~ t !&. ~B3!

The one-time cumulantŝ̂ Nm(t)&&dynamic5Cm(t) can be computed in terms of the factorial
moments by comparing the logarithm of Eq.~4.5! with an expansion of lng(z,t) similar to the
expansion used in Eq.~2.11! for the characteristic functionalJ@K ~t8!#. We obtain

Cm~ t !5 (
m1 ,m2 ,...

m! ~21!Smv~Smv21!!)
v

~^Nv~ t !&/@~v! !mvmv! # !mv, ~B4!

where(vmv5m is a partition of the integerm into smaller integersm1 ,m2 ,..., and^Nv(t)& are
given by Eq.~B3!.

APPENDIX C: CURTAILED CHARACTERISTIC FUNCTIONALS

Following Lax39 and Van Kampen40 the characteristic functionalG[K(t8)] of the rate coef-
ficientW(t8) can be expressed as an integral of a curtailed generating functionalG @K(t8);x# over
all possible values of the random vectorx

G@K~ t8!#5E G @K~ t8!,x#dx, ~C1!

whereG @K(t8),x# is the solution of the evolution equation

] tG @K~ t8!,x#5LG @K~ t8!,x#1 iK ~ t !W~x!G @K~ t8!,x#, ~C2!

with the initial condition

G ~ t50!5P~x,0!. ~C3!

To compute the one-time moments of the survival function,^ l m(t)&, we need to evaluate
G @K(t8),x# for a constant test functionK(t8)5 im @see Eq.~4.8!#. Combining Eqs.~4.8! and
~C1!–~C3! yields Eqs.~5.3!–~5.5!.

From Eqs.~2.14! and ~5.8! it follows that the lethargy variable«(t) obeys a differential
equation with random parameters

d«~ t !/dt5W„x~ t !…, with «~0!50, ~C4!

where the random evolution ofx(t) is determined by the evolution operatorL. From Eq.~C3! it
follows that the probability densityf~«,x;t! obeys the stochastic Liouville equation
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] tf~«,x;t !1W~x!]«f~«,x;t !5Lf~«,x;t !, ~C5!

with the initial condition

f~«,x;t50!5d~«!P~x,0!. ~C6!

Through Laplace transformation Eqs.~C5!–~C6! become

] tf̃~b,x;t !5Lf̃~b,x;t !2bW~x!f̃~b,x;t !, ~C7!

f̃~b,x;t50!5P~x,0!. ~C8!

By comparing Eqs.~5.4! and ~5.5! with Eqs.~C7! and ~C8! we obtain Eq.~5.11!.

APPENDIX D: FLUCTUATING GEOMETRICAL BOTTLENECKS

We introduce the joint probability density of the numberN of ligand molecules and of the
radiusr of the bottleneck

B~N,r ;t !dr, with ( E B~N,r ;t !dr51. ~D1!

B(N,r ;t) is the solution of a stochastic Liouville equation

] tB~N,r ;t !5ar 2@~N11!B~N11;r ;t !2NB~N,r ;t !#1l] r@rB~N,r ;t !#1lu] r2
2

@B~N,r ;t !#,
~D2!

with the initial and boundary conditions

B~N,r ;t50!5P~N,0!~pu!21/2 exp~2r 2/4u!, ~D3!

] rB~N,r50;t !50. ~D4!

The boundary condition~D4! expresses the fact the radiusr of the bottleneck cannot be negative,
whereas the initial condition~D3! corresponds to an initial equilibrium truncated Gaussian distri-
bution which obeys the conditionr>0.

Introducing the marginal generating function

g* ~z,r ,t !5( zNB~N,r ;t !, uzu<1. ~D5!

Equations~D2!–~D4! become

] tg* ~z,r ,t !5ar 2~12z!]zg* ~z,r ,t !1l] r@rg* ~z,r ,t !#1lu] r2
2

@g* ~z,r ,t !#, ~D6!

g* ~z,r ,t50!5g~z,0!~pu!21/2 exp~2r 2/4u!, ~D7!

] rg* ~z,r50,t !50.

We express the factorial momentsFm(t) in terms of the marginal generating function
g* (z,r ,t). We obtain

Fm~ t !5( N~N21!•••~N2m11!E B~N,r ;t !dr5E Fm* ~r ,t !dr, ~D8!
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where the functionsFm* (r ,t) are given by

Fm* ~r ,t !5]mg* ~z,r ,t !/]zmuz51 . ~D9!

From Eqs.~D5!–~D7! and ~D9! we get a set of partial differential equations inFm* (r ,t)

] tFm* ~r ,t !52amr2Fm* ~r ,t !1l] r@rFm* ~r ,t !#1lu] r2
2

@Fm* ~r ,t !#, ~D10!

with the initial and boundary conditions

Fm* ~r ,0!5Fm~0!~pu!21/2 exp~2r 2/4u!, ~D11!

] rFm* ~r50,t !50. ~D12!

Equation~D10! have the same formal structure as a differential equation used by Zwanzig32 for
the evaluation of the average survival function. An eigenfunction solution of the same type of
equation has been given by Weiss47 in a different physical context. Equation~D10! can be solved
by searching for Gaussian solutions of the type

Fm* ~r ,t !5Am~ t !exp@2r 2bm~ t !#, m51,2,..., ~D13!

which obviously are compatible with the initial and boundary conditions~D11! and~D12!. Insert-
ing Eqs. ~D13! into Eqs. ~D10!–~D12! we obtain a chain of ordinary differential equations in
Am(t) andbm(t). Solving these differential equations and inserting the solutions into Eqs.~D13!
we can compute the functionsFm* (r ,t). The calculations are lengthy but standard. Substituting the
expressions forFm* (r ,t) into Eqs.~D8! and using the fluctuation–dissipation relations~4.11! we
come to Eqs.~7.7! and ~7.8!.
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Gauge invariant perturbations of black holes. I.
Schwarzschild space–time
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We cast the perturbed Bianchi identities, in the Schwarzschild background, into a
form involving only tetrad and coordinate gauge invariant Newman–Penrose field
quantities. These quantities, which arise naturally in our approach, are gauge in-
variant quantities of spin-weight62, 61, and 0. Some of the integrability condi-
tions for the Bianchi identities then provide a system of six gauge invariant pertur-
bation wave equations for the spin-weighted quantities. These wave equations are,
respectively, the~spin-weight62! Bardeen–Press equations, two new~spin-weight
61! gravitational wave equations, and two~spin-weight 0! Regge–Wheeler equa-
tions. Other integrability conditions provide the transformation identities that relate
the field quantities to each other, and hence relate the various perturbation wave
equations to one another. In particular, this method provides an alternative deriva-
tion of the transformations between the Bardeen–Press and Regge–Wheeler equa-
tions. The integrability conditions also allow us to relate the Bardeen–Press quan-
tities of opposite spin-weight, and we investigate how this relationship compares
with the Teukolsky–Starobinsky identities. Finally, we give a derivation of the
gauge invariant Zerilli equation, and show how it is related to the fundamental
equations mentioned above. ©1996 American Institute of Physics.@S0022-
2488~96!04601-4#

I. INTRODUCTION

Chandrasekhar,1 and Sasaki and Nakamura,2,3 have investigated the gravitational perturbations
of the Schwarzschild space–time extensively. They have shown how the well-known
Bardeen–Press4 ~BP! and Regge–Wheeler5 ~RW! equations are related to one another, and have
provided transformations between the quantities that satisfy these equations. Their analysis is
based on the transformation properties of some ordinary differential operators.

We wish to show that these results may be derived from the perturbed Bianchi identities in a
gauge-independent manner, using the modified Newman–Penrose~compacted spin-coefficient!
formalism.6 We use a purely symbolic approach in order to make full use of the Einstein equations
and their integrability conditions, which are embedded in the complete set of Newman–Penrose
~NP! equations. The underlying structure that becomes evident, that is, our ability to derive a
system of perturbation wave equations and the transformations between them, is due largely to the
properties of the background space–time. We would surely not succeed in our aim, using a
formalism that did not exploit all available information about the physical scenario.

We will model our approach to this problem on the much simpler case of electromagnetic
perturbations to the Schwarzschild space–time. In this case the BP and RW equations arise quite
naturally from the integrability conditions for the Maxwell equations. We show how transforma-
tions between the BP and RW equations may also be derived from the integrability conditions.

Our aim will then be to extend this approach to the gravitational case. The perturbed Bianchi
identities, like the perturbed source-free Maxwell equations, are gauge invariant:

Lu~R
a
b@cd;e#!50

a!Electronic mail: joeff@thala.maths.monash.edu.au, lun@vaxc.cc.monash.edu.au
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~see Lun7!, whereRa
b[cd;e] refers to the background space–time andua is an arbitrary vector field.

Therefore the field quantities that arise naturally in our analysis are also gauge invariant. That is,
our field quantities, like those in the electromagnetic case, are invariant under infinitesimal coor-
dinate and infinitesimal Lorentz transformations. After identifying these quantities, the perturbed
Bianchi identities may be cast into a form that resembles the Maxwell equations, involving only
gauge-independent boost- and spin-weighted quantities~see Penrose and Rindler6!. These quanti-
ties are related to the NP Weyl scalars and spin coefficients.

We will show how the integrability conditions for the perturbed Bianchi identities give rise to
six wave equations for the gauge invariant quantities. These are the BP equations, two new
equations for the quantities of spin-weight61, and the~gauge invariant! RW equations. We will
also demonstrate how the integrability conditions naturally relate the quantities of various spin-
weight, and provide the transformations between the equations that govern them. For the trans-
formations to proceed, we use a set of higher-order commutation relationships, which may be
derived from the NP commutators. In this way, the transformation identities between the BP and
RW equations arise naturally, and gauge independently, from the Bianchi identities. The Zerilli8

equation, while not arising in the same way as the other perturbation equations, may be con-
structed and given gauge invariant meaning.

Because of the nontrivial nature of the constructions in this article, it is worthwhile highlight-
ing the significant results from each section here.

Section II is devoted to analyzing the electromagnetic perturbations. The work presented in
this section will be used as the model for our approach to the gravitational perturbations in Sec.
III.

In Sec. III A we write the perturbed Bianchi identities~3.21!–~3.28! in a form involving only
gauge invariant field quantities, which we define in~3.29!. This is a major result in our analysis,
the verification of which involves lengthy calculations, and also makes use of the perturbed Ricci
identities.

Section III B is devoted to investigating the integrability conditions for the perturbed Bianchi
identities. Here we find the spin-weight62 ~BP!, 61, and 0~RW! wave equations~3.38!, ~3.39!,
~3.46!–~3.49!, and the transformation identities~3.40!–~3.43!, ~3.53!–~3.60!. We also provide an
alternative derivation of Price’s9 result, that Im~C2B! is a RW quantity.

In Sec. III C we investigate the significant role played by the]t Killing vector ~3.66!, which
arises very naturally in our approach. The Killing vector is fundamental in relating the BP and RW
equations, as well as relating the quantities of opposite spin-weight below.

In Secs. III D and III E we examine the transformations between the six wave equations.
These require some higher-order commutation relationships. Since the transformations between
the BP and RW equations are of particular interest, we consider these separately in Sec. III D.

In Sec. III F, we relate quantities of opposite spin-weight. The relationship between the BP
quantitiesC4B andC0B is given in ~3.108!, and we investigate how this relationship compares
with the Teukolsky–Starobinsky identities. A consequence of our results is that the solution of any
one of the perturbation wave equations is sufficient to determine the other gauge invariant quan-
tities ~for l>2!, after resolving into spherical harmonics and specifying the time dependence.

Finally, in Sec. III G, we construct the Zerilli equation~3.115!, and show how the Zerilli
quantity is defined in terms of our gauge invariant RW quantity.

Some of our results have already appeared elsewhere: Fernandes and Lun.10,11 Here we at-
tempt to give an overview, extend the earlier work, and provide more of the detail. We adopt the
usual convention of denoting perturbation quantities by a subscriptB.

II. ELECTROMAGNETIC PERTURBATIONS: AN ILLUSTRATION

The Schwarzschild space–time may be described in the Newman–Penrose formalism using
the null tetrad:
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l a5
1

D
~r 2,D,0,0!, na5

1

2r 2
~r 2,2D,0,0!, ma5

1

r&
~0,0,1,i cosecq!, ~2.1!

whereD5r 222Mr . Then

k5s5l5n5e5p5t5F05F15F25C05C15C35C450,

Ar5r2, A8r52rm2C2 , Am5rm1C2 , A8m52m2,
~2.2!

AC253rC2 , A8C2523mC2 ,

ZC25Zm5Zr5Z8C25Z8m5Z8r50,

and

r5 r̄52
1

r
, m5m̄52

D

2r 3
, a52b52

cot q

2r&
, g5

M

2r 2
, C252

M

r 3
. ~2.3!

Thus

Ar52rr , A8r5mr , Zr50. ~2.4!

The fundamental equations governing the electromagnetic perturbations are the perturbed
Maxwell equations,12 which, in the compacted spin-coefficient formalism, take the form

~A22r!F1B5Z8F0B , ~2.5!

~A2r!F2B5Z8F1B , ~2.6!

~A81m!F0B5ZF1B , ~2.7!

~A812m!F1B5ZF2B . ~2.8!

From the integrability conditions on the perturbed Maxwell equations, we obtain four wave
equations in the following way. Operating on equation~2.8! with Z8 and on~2.6! with ~A813m!,
using ~2.2! and making use of the appropriate NP commutation relation to eliminateF1B, we
obtain

@~A813m!~A2r!2Z8Z#F2B50. ~2.9!

On the other hand, acting on~2.5! with Z and on~2.7! with ~A23r!, we recover

@~A23r!~A81m!2ZZ8#F0B50. ~2.10!

Similarly, from Eqs.~2.6! and ~2.8!, and~2.5! and ~2.7!, we have

@~A22r!~A812m!2ZZ8#F1B50, ~2.11!

@~A812m!~A22r!2Z8Z#F1B50. ~2.12!

In fact, Eqs.~2.11! and ~2.12! are identical, as can be seen by using the commutators@A,A8# and
@Z,Z8#.
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It should be noted that these equations, when expanded in coordinates according to the tetrad
given in ~2.1!, reduce to familiar forms:~2.11! and ~2.12! are precisely the RW equation for
electromagnetic perturbations, while~2.9! and~2.10! are, respectively, the spin-weight21 and11
BP equations.

The integrability conditions also give rise to six~complex! transformation identities. Applying
Z to ~2.6!, we get

ZZ8F1B5Z~A2r!F2B . ~2.13!

A similar procedure on~2.8!, ~2.7!, and~2.5! gives, respectively,

Z8ZF2B5Z8~A812m!F1B , ~2.14!

Z8ZF1B5Z8~A81m!F0B , ~2.15!

ZZ8F0B5Z~A22r!F1B . ~2.16!

Finally, using the appropriate commutation relations, we eliminateF1B between equations~2.5!
and ~2.6!, and between Eqs.~2.7! and ~2.8!, to relate the quantities of opposite spin-weight~also
see Teukolsky and Press13!:

~A23r!~A2r!F2B5Z8Z8F0B , ~2.17!

~A813m!~A81m!F0B5ZZF2B . ~2.18!

Chandrasekhar1 refers to the coordinate forms of Eqs.~2.17! and ~2.18! as the Teukolsky–
Starobinsky identities, and shows how these relations can be used to make the transformation
between the wave equations~2.9! and ~2.10! for F2B andF0B, respectively.

Now, Eqs.~2.13!–~2.16! also act as transformations between the various wave equations. To
see this, resolveF0B, F1B, andF2B into spin-weighted spherical harmonics in the usual way@see,
for example, Penrose and Rindler,6 Eq. ~4.15.106!#. Equation~2.13! becomes

F1B5
22r 2

l ~ l11!
Z~A2r!F2B , ~2.19!

wherel>1 for electromagnetic radiation. Allow the RW operator,

@~A22r!~A812m!2ZZ8#,

to act on the quantity in~2.19!. From ~2.2!, ~2.4!, and the NP commutators, one can prove an
important commutation relation for weighted quantities of type (p,q):

@~A22r!~A812m!2ZZ8#@r 2Z~A2r!#5@r 2Z~A23r!#@~A813m!~A2r!2Z8Z#. ~2.20!

This higher-order commutator, when acting onF2B, relates the RW and BP wave operators.
Consequently, sinceF2B satisfies the spin-weight21 BP equation~2.9!, we see thatF1B satisfies
the RW equation~2.11!:

@~A22r!~A812m!2ZZ8#F1B52
2r 2

l ~ l11!
Z~A23r!@~A813m!~A2r!2Z8Z#F2B50.

Hence, from the relation~2.13! betweenF1B andF2B, the quantityF1B automatically satisfies
~the RW! equation~2.11! by virtue of ~the BP! Eq. ~2.9!.
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The converse also holds true. The following is the corresponding commutation relation for
(p,q) quantities:

@~A813m!~A2r!2Z8Z#@r 2Z8~A812m!#5@r 2Z8~A814m!#@~A22r!~A812m!2ZZ8#.
~2.21!

Given the RW equation~2.11! and the identity~2.14!, which becomes

F2B5
22r 2

l ~ l11!
Z8~A812m!F1B , ~2.22!

we derive the spin-weight21 BP equation~2.9! for F2B:

@~A813m!~A2r!2Z8Z#F2B50,

by acting on~2.22! with the BP operator and using~2.21!.
The identities~2.15! and~2.16! offer similar transformations between the spin-weight11 BP

equation~2.10! and the RW equation~2.12!. Alternatively, one can simply apply the GHP14 prime
operator to the above equations. Thus, the given identities@~2.13!–~2.16!# between the Newman–
Penrose Maxwell scalars may be viewed as transformations between the RW and BP equations.

The remaining integrability conditions yield no new useful information in the case of electro-
magnetic perturbations of the Schwarzschild space–time.

III. GRAVITATIONAL PERTURBATIONS

A. Rewriting the Bianchi identities

The fundamental equations for the gravitational perturbations are the~gauge invariant! per-
turbed Bianchi identities.15 After linearization in the Schwarzschild background, they become

~A814m!C3B5ZC4B13nBC2 , ~3.1!

~A813m!C2B1~AB813mB!C25ZC3B , ~3.2!

~A22r!C3B5Z8C2B1~ZB813pB!C2 , ~3.3!

~A2r!C4B5Z8C3B23lBC2 , ~3.4!

~A24r!C1B5Z8C0B23kBC2 , ~3.5!

~A23r!C2B1~AB23rB!C25Z8C1B , ~3.6!

~A812m!C1B5ZC2B1~ZB23tB!C2 , ~3.7!

~A81m!C0B5ZC1B13sBC2 . ~3.8!

The following ~Ricci! identities relating the spin coefficients will also be useful:

A8lB2Z8nB522lBm2C4B , ~3.9!

AlB2Z8pB5rlB1ms̄B , ~3.10!

AsB2ZkB52sBr1C0B , ~3.11!

ZtB2A8sB5msB1rl̄B , ~3.12!
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ZBr1ZrB2Z8sB52C1B , ~3.13!

ZlB2ZB8m2Z8mB52C3B . ~3.14!

We note that only six of the twelve Ricci identities are required.
To put the Bianchi identities into a form that more closely resembles the Maxwell equations

of the previous section, we define the following six quantities:

j4 :5
12C2r

4

L
~rA81mA22C2!C4B , ~3.15!

j3 :52
12C2r

4

L
Z8ZZlB , ~3.16!

j2 :5
4r 4

L
ZZ~Z8ZB823rlB23ms̄B!C2 , ~3.17!

j28 :5
4r 4

L
Z8Z8~ZZB23msB23rl̄B!C25 j̄2 , ~3.18!

j1 :5
12C2r

4

L
ZZ8Z8sB5j38 , ~3.19!

j0 :52
12C2r

4

L
~mA1rA812C2!C0B5j48 , ~3.20!

where, for convenience, we have written

L:5~ l21!l ~ l11!~ l12!,

and l>2 for gravitational radiation. In fact,~3.15!–~3.20! are weighted quantities of (p,q) type
~24,0!, ~22,0!, ~0,0!, ~0,0!, ~2,0!, and~4,0!, respectively. The quantities of opposite spin-weight
are related by the GHP14 prime operation. While they appear mysterious at first, these quantities
arise naturally in the Bianchi identities. Importantly, each of~3.15!–~3.20! vanishes in the flat
space–time limit, whenC250. Note that there has been a minor change in the notation since
Fernandes and Lun.10,11

With these definitions, the Bianchi identities~3.1!–~3.8! become

S 11
12C2r

4

L
Z8ZDZC4B5~A814m!Ĉ3B , ~3.21!

ZĈ3B5~A813m!Ĉ2B1
12C2r

4

L
ZZ~A22r!C4B , ~3.22!

Z8Ĉ2B5~A22r!Ĉ3B , ~3.23!

Z8Ĉ3B5~A2r!C4B , ~3.24!

S 11
12C2r

4

L
ZZ8DZ8C0B5~A24r!Ĉ1B , ~3.25!
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Z8Ĉ1B5~A23r!Ĉ2B8 1
12C2r

4

L
Z8Z8~A812m!C0B , ~3.26!

ZĈ2B8 5~A812m!Ĉ1B , ~3.27!

ZĈ1B5~A81m!C0B , ~3.28!

where

Ĉ3B :5C3B1j3 , Ĉ2B :5C2B1j2 , Ĉ2B8 :5C2B1j28 , Ĉ1B :5C1B1j1 . ~3.29!

By substituting the appropriate quantity, we can show that the identities~3.21!–~3.28! are
identical to~3.1!–~3.8!. For example, in Eq.~3.21!, we use~3.16!, ~2.2!, ~2.4!, and the commutator
@A8,Z8# followed by @A8,Z#. The term involvingA8lB is then rewritten according to the Ricci
identity ~3.9!. After cancellation of terms and expansion in spin-weighted spherical harmonics, so
that

Z8ZZZ8nB5
L

4r 4
nB ,

we recover precisely~3.1!.
Considerably more work is required to show that~3.2! can be written as~3.22!. This is

because we also use the perturbed NP commutator@A8,Z8#B , sincej2 involves perturbed deriva-
tives ofC2. The identity~3.22! may be expanded immediately to give

ZC3B5~A813m!C2B1~A813m!j22Zj31
12C2r

4

L
ZZ~A22r!C4B . ~3.30!

Now, using@A8,Z#, ~2.2!, and~2.4!,

~A813m!j25
4r 4

L
ZZ~A815m!@Z8ZB823rlB23ms̄B#C2 . ~3.31!

From ~@A8,Z8#C2!B , we have

~A81m!ZB8C213ZB8 ~mC2!5Z8AB8C21~3mt̄B13rnB!C2 . ~3.32!

Expanding the second term by the Liebniz rule, and rewriting the termZB8m according to the Ricci
identity ~3.14!, we see that

~A814m!ZB8C25Z8~AB813mB!C223C2~ZlB1C3B2mt̄B2rnB!. ~3.33!

So the first term in~3.31! is

4r 4

L
ZZ~A815m!Z8ZB8C25~AB813mB!C22

12C2r
4

L
ZZZ8~ZlB1C3B2mt̄B2rnB!.

~3.34!

From ~2.2!, ~2.4!, ~3.9!, and~3.12!, the second part of~3.31! becomes, after a straightforward
calculation

2
12C2r

4

L
ZZ@rZ8nB1mZ8t̄B2~2rm1C2!lB2rC4B#. ~3.35!

842 J. F. Q. Fernandes and A. W. C. Lun: Gauge invariant perturbations of black holes. I

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Hence, using~3.4!,

~A813m!j25~AB813mB!C22
12C2r

4

L
ZZ@Z8ZlB1~A22r!C4B12~C22rm!lB#.

~3.36!

Now

Zj352
12C2r

4

L
ZZ8ZZlB ,

which becomes, using@Z,Z8#,

Zj352
12C2r

4

L
@ZZZ8ZlB12~C22rm!ZZlB#. ~3.37!

Combining all terms, and after a transparent cancellation,~3.30! becomes

~A813m!C2B1~AB813mB!C25ZC3B .

The other Bianchi identities follow in a similar way, using the NP commutators, Eqs.~2.2! and
~2.4!, and the Ricci identities~3.9!–~3.14!. For ~3.26! we also require@A,Z#B . Alternatively, we can
apply the GHP prime to the analysis above.

An important feature of~3.29! is that they are fully gauge invariant~the proof of this result is
given in the Appendix!. In this way, the Bianchi identities~3.21!–~3.28! can be regarded as the
gravitational analogs of the Maxwell equations of the previous section.

B. The integrability conditions for the Bianchi identities

The integrability conditions for the perturbed Bianchi identities~3.21!–~3.28! provide a set of
six wave equations. The first two are well known: they are the BP equations. Operating withZ8 on
~3.21! and~A815m! on ~3.24!, and using the appropriate NP commutation relation in conjunction
with ~2.2!, we find

@~A815m!~A2r!2Z8Z23C2#C4B50. ~3.38!

Likewise, from~3.25! and ~3.28!, we get

@~A25r!~A81m!2ZZ823C2#C0B50 ~3.39!

~cf. Chandrasekhar1 and Bardeen and Press4!. Equations~3.38! and ~3.39! are the usual spin-
weight22 and12 BP equations, respectively.

Before moving on to the remaining wave equations, it is necessary to establish some of the
other integrability conditions, which, as will be shown, are transformation identities in the gravi-
tational case. Operating on~3.23! with Z8 and on~3.24! with ~A23r!, and using the NP commu-
tators to eliminateĈ3B, yields

~A23r!~A2r!C4B5Z8Z8Ĉ2B . ~3.40!

On the other hand, applyingZ to ~3.21!, ~A815m! to ~3.22!, and using the equation~3.38! for C4B,
we get

~A815m!~A813m!Ĉ2B5ZZ~C4B1j4!. ~3.41!

Analogously, from~3.25!–~3.28!,
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~A813m!~A81m!C0B5ZZĈ2B8 , ~3.42!

~A25r!~A23r!Ĉ2B8 5Z8Z8~C0B1j0!. ~3.43!

We are now in a position to derive the last four wave equations. Operating on~3.23! with
~A814m! and on~3.22! with Z8, using@A8,Z8#, ~2.2!, and~2.4! we get

@~A814m!~A22r!2Z8Z#Ĉ3B52
12C2r

4

L
Z8ZZ~A22r!C4B .

From ~3.24!, and expanding in harmonics, we may rewrite this equation as

@~A814m!~A22r!2Z8Z13C2#Ĉ3B5
12C2rr

4

L
Z8ZZC4B . ~3.44!

Similarly, from ~3.26! and ~3.27!:

@~A24r!~A812m!2ZZ813C2#Ĉ1B52
12C2mr

4

L
ZZ8Z8C0B . ~3.45!

These equations simplify greatly if we resolve into spherical harmonics, use~3.21! and ~3.25! to
eliminateC4B andC0B, respectively, and the commutators@A,A8# and @Z,Z8#. They become

@~A1~W22!r!~A814m!2ZZ823C2#Ĉ3B50, ~3.46!

@~A82~W22!m!~A24r!2Z8Z23C2#Ĉ1B50, ~3.47!

where

W:5
6r 2C2

~ l21!~ l12!26r 2C2
.

So ~3.44! and~3.45! may be expressed as wave equations for the gauge invariant spin-weight21
and11 quantities.

Now, acting on~3.22! with ~A23r! and on~3.23! with Z and using@A,Z#, we get

@~A23r!~A813m!2ZZ8#Ĉ2B1
12C2r

4

L
ZZ~A22r!~A22r!C4B50.

Actually, ~A22r!~A22r![~A23r!~A2r!. Using ~3.40! to eliminateC4B and again expanding in
harmonics, we see that this becomes

@~A23r!~A813m!2ZZ813C2#Ĉ2B50. ~3.48!

The last wave equation follows in a similar natural way from~3.26! and ~3.27!:

@~A813m!~A23r!2Z8Z13C2#Ĉ2B8 50. ~3.49!

Equations~3.48! and~3.49! are the gauge invariant RW equations, after expansion in coordinates.
The RW operators associated with these equations are identical, using the commutators@A,A8# and
@Z,Z8#. However, the field quantitiesĈ2B andĈ2B8 are distinct@with j2 related toC4B via ~3.40!
andj28 5 j̄2 related toC0B via ~3.42!#. We emphasize the difference between the two RW field
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quantities here, since this will be important for the identities relating quantities of opposite spin-
weight @see~3.101! and ~3.102!#. Hence, the integrability conditions naturally provide two RW
equations. Clearly, the imaginary quantities,

Ĉ2B2Ĉ2B8 52i Im~j2!, ~3.50!

Ĉ2B2~Ĉ2B8 !52i Im~C2B!, ~3.51!

also satisfy the RW equation and are gauge invariant. This is an alternative way of obtaining
Price’s9 result.

Thus, the six equations~3.38!, ~3.39!, and~3.46!–~3.49! are the wave equations governing the
gauge invariant spin-weight62, 61, and 0 gravitational perturbation fields, and we shall view
them as fundamental wave equations governing the evolution of gravitational perturbations in the
Schwarzschild background.

Using the techniques outlined above and in the previous section, the perturbed Bianchi iden-
tities also give rise to the transformation identities below. First, we obtain a useful result by
operating on~3.21! with Z8:

@Z8Z13C2#C4B5Z8~A814m!Ĉ3B . ~3.52!

Acting on ~3.21! with Z8Z8Z, using@Z,Z8# to simplify the second term, and~3.52!, it follows that

@Z8Z8ZZ23C2~C212rm!#C4B5Z8~Z8Z23C2!~A814m!Ĉ3B . ~3.53!

The other identities follow similarly. They are

ZZ8Z8ZĈ3B5ZZ8Z8~A813m!Ĉ2B13C2Z~A22r!C4B , ~3.54!

ZZZ8Z8Ĉ2B5ZZZ8~A22r!Ĉ3B , ~3.55!

Z8ZZZ8Ĉ3B5Z8ZZ~A2r!C4B , ~3.56!

@ZZZ8Z823C2~C212rm!#C0B5Z~ZZ823C2!~A24r!Ĉ1B , ~3.57!

Z8ZZZ8Ĉ1B5Z8ZZ~A23r!Ĉ2B8 13C2Z8~A812m!C0B , ~3.58!

Z8Z8ZZĈ2B8 5Z8Z8Z~A812m!Ĉ1B , ~3.59!

ZZ8Z8ZĈ1B5ZZ8Z8~A81m!C0B . ~3.60!

The significance of these relations is two-fold. First, they are gauge invariant~that is, invariant
under infinitesimal coordinate and infinitesimal tetrad transformations; see the Appendix!. Second,
together with~3.40!–~3.43!, they provide the required transformations between the various wave
equations. In this way they are precisely the gravitational analogs of the transformations~2.13!–
~2.16!, which arose from the perturbed Maxwell equations in the previous section.

C. The t Killing vector

It is important that the gauge invariant quantitiesj4 andj0 also satisfy the spin-weight22 and
12 BP equations:

@~A815m!~A2r!2Z8Z23C2#j450, ~3.61!
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@~A25r!~A81m!2ZZ823C2#j050. ~3.62!

Since this result is significant for the development of the theory, it is worthwhile spending some
time on it here before investigating our transformation identities more fully. Using the NP com-
mutators,~2.2! and ~2.4!, one can prove the following commutation relations for weighted quan-
tities of the general type (p,q):

~A1nr!@r 4C2„rA81mA1 1
2~p1q!C2…#5@r 4C2„rA81mA1 1

2~p1q12!C2…#~A1nr!,

~A81mm!@r 4C2„rA81mA1 1
2~p1q!C2…#5@r 4C2„rA81mA1 1

2~p1q22!C2…#~A81mm!,
~3.63!

Z@r 4C2„rA81mA1 1
2~p1q!C2…#5@r 4C2~rA81mA1 1

2~p1q!C2…#Z.

From these, we derive the following commutator for quantities of type~24,0!:

@~A815m!~A2r!2Z8Z23C2#@r
4C2~rA81mA22C2!#

5@r 4C2~rA81mA22C2!#@~A815m!~A2r!2Z8Z23C2#. ~3.64!

The above results are self-evident whenj4 is written in coordinate form:

j45
12M

L

]

]t
C4B . ~3.65!

The operator

r 4C2„rA81mA1 1
2~p1q!C2… ~3.66!

corresponds to the]t Killing vector of the background space–time for a quantity of type (p,q),
and so commutes with the spin-weight22 BP operator when (p,q)5~24,0!.

The operator~3.66! plays an important role in our results, and, in fact, makes several appear-
ances. For example, the quantity Im~j2! in ~3.50! reduces to

Im~j2!5
12r 4

L
C2~rA81mA!Im~C2B!, ~3.67!

or, in coordinates,

Im~j2!5
12M

L

]

]t
Im~C2B!. ~3.68!

To see this, consider

L

4r 4
j25ZZZ8ZB8C223C2~rZZlB1mZZs̄B!. ~3.69!

The first term on the right-hand side of~3.69! is

„ZZ822~C22rm!…ZZB8C2 , ~3.70!

using @Z,Z8#. From ~@Z,Z8#C2!B and ~2.2!,

ZZB8C25Z8ZBC213C2@r~mB2m̄B!1m~r̄B2rB!#. ~3.71!
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After substitution of~3.71!, and commutingZ andZ8, ~3.70! reads

Z8Z8ZZBC213@ZZ822~C22rm!#@r~mB2m̄B!1m~r̄B2rB!#C2 . ~3.72!

From the complex conjugate of~3.13!, and~3.14!, we may substitute forZs̄B andZlB in the
second term on the right-hand side of~3.69!. The result is

23C2r~ZZB8m1ZZ8mB2ZC3B!23C2m~ZZB8r1ZZ8r̄B1ZC̄1B!. ~3.73!

Now, using~@Z,Z8#r!B and ~@Z,Z8#m!B , and after some cancellations,~3.69! becomes

L

4r 4
j25Z8Z8ZZBC223C2Z8~rZm̄B1mZrB1rZBm1mZBr!29C2

2r~mB2m̄B!

29C2
2m~r̄B2rB!13rZC3B23mZC̄1B. ~3.74!

Using ~3.13! and the complex conjugate of~3.14!, ~3.74! simplifies to give

L

4r 4
j25Z8Z8~ZZB23rl̄B23msB!C213C2@r~ZC3B2Z8C̄3B!1m~Z8C1B2ZC̄1B!

23rC2~mB2m̄B!23mC2~ r̄B2rB!#. ~3.75!

The terms involvingC3B andC1B may be rewritten according to~3.2!, ~3.6!, and their complex
conjugates. The expression~3.75! then simplifies greatly to give

L

4r 4
j25

L

4r 4
j2813C2~rA81mA!~C2B2C̄2B!. ~3.76!

Recalling thatj28 5 j̄2, ~3.67! is proved. So, in fact, it is no surprise that Im~j2! is a RW quantity!

D. The transformations between the BP and RW equations

The ~0,0! quantitiesĈ2B and Ĉ2B8 are gauge invariant, and satisfy the RW equation. From
~3.40!–~3.43! we have

ZZZ8Z8Ĉ2B5ZZ~A23r!~A2r!C4B , ~3.77!

Z8Z8ZZ~C4B1j4!5Z8Z8~A815m!~A813m!Ĉ2B , ~3.78!

Z8Z8ZZĈ2B8 5Z8Z8~A813m!~A81m!C0B , ~3.79!

ZZZ8Z8~C0B1j0!5ZZ~A25r!~A23r!Ĉ2B8 . ~3.80!

Taking ~3.77! and resolving into spin-weighted spherical harmonics, we get

Ĉ2B5
4r 4

L
ZZ~A23r!~A2r!C4B . ~3.81!

Applying the RW operator,

@~A23r!~A813m!2ZZ813C2#
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to this quantity, we derive@again by making repeated use of the NP commutation relationships and
Eqs.~2.2! and ~2.4!# a commutation relation for quantities of (p,q) type ~24,0!,

@~A23r!~A813m!2ZZ813C2#@r
4ZZ~A23r!~A2r!#

5@r 4ZZ~A25r!~A23r!#@~A815m!~A2r!2Z8Z23C2#. ~3.82!

Hence, assuming the spin-weight22 BP equation~3.38!, we have the RW equation~3.48!,

@~A23r!~A813m!2ZZ813C2#Ĉ2B50.

Conversely, from~3.78!,

C4B1j45
4r 4

L
Z8Z8~A815m!~A813m!Ĉ2B , ~3.83!

and we may derive the spin-weight22 BP equation forCAB1j4 from the RW equation, by
operating on~3.83! with the BP operator,

@~A815m!~A2r!2Z8Z23C2#,

and making use of the following commutation relation for~0,0! quantities:

@~A815m!~A2r!2Z8Z23C2#@r
4Z8Z8~A815m!~A813m!#

5@r 4Z8Z8~A817m!~A815m!#@~A23r!~A813m!2ZZ813C2#. ~3.84!

Our commutators~3.82! and ~3.84!, like those in the electromagnetic case, relate the BP and
RW wave operators. Similar results follow by applying the GHP prime operator to~3.81!–~3.84!.
They give the transformations between the spin-weight12 BP equation~3.39! and the RW
equation~3.49!. Alternatively, ~3.79! and ~3.80! are the transformation identities in this case.

The identities~3.81! and~3.83!, when written in coordinates, agree~up to multiplication by a
constant! with the transformations that Chandrasekhar1 and Sasaki and Nakamura2,3 derived
through a consideration of the theory of differential equations. When expanded in coordinates,
~3.81! becomes

LĈ2B52L 1
†
L 2

†
D0D0~r

2C4B!, ~3.85!

while ~3.83! becomes

FL112M
]

]t GC4B5
D2

2r 6
L21L0D0

†
D0

†~r 4Ĉ2B!, ~3.86!

where

D0 :5
]

]r
1
r 2

D

]

]t
, D0

† :5
]

]r
2
r 2

D

]

]t
,

Ln :5
]

]q
2 i cosecq

]

]w
1n cot q,

L m
† :5

]

]q
1 i cosecq

]

]w
1m cot q.
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It should be noted that the constant [L112Mis], which appears in Chandrasekhar’s results,
occurs naturally in our equation~3.86! or ~3.83!, if a time dependenceeist is used.~To see
agreement with the work of Chandrasekhar1 and Sasaki and Nakamura,2,3 recall that the radial part
of the quantityr 3Ĉ2B satisfies the RW ordinary differential equation.!

E. Other transformations

The identities~3.53!–~3.60! provide the remaining transformations between the various gauge
invariant perturbation quantities. The required commutators given below, which can be derived
form the NP commutators and the relations~2.2! and~2.4!, are rather complicated by comparison
with ~3.82! and ~3.84!. Their ordering here is purely for later convenience.

On quantities of (p,q) type ~0,0!:

@~A814m!~A22r!2Z8Z13C2#@r
4ZZ8Z8~A813m!#

5@r 4ZZ8Z8~A815m!#@~A23r!~A813m!2ZZ813C2#13mr 4C2ZZ8Z8. ~3.87!

On quantities of type~24,0!:

@~A814m!~A22r!2Z8Z13C2#@r
4C2Z~A22r!#

5@r 4C2Z~A23r!#@~A815m!~A2r!2Z8Z23C2#

2r 4C2mZ~A23r!~A2r!1r 4C2rZ8ZZ. ~3.88!

On quantities of type~22,0!:

@~A23r!~A813m!2ZZ813C2#@r
4ZZZ8~A22r!#

5@r 4ZZZ8~A24r!#@~A814m!~A22r!2Z8Z13C2#23rr 4C2ZZZ8. ~3.89!

On quantities of type~22,0!:

@~A815m!~A2r!2Z8Z23C2#@r
4Z8~Z8Z23C2!~A814m!#

5@r 4Z8~Z8Z23C2!~A815m!#@~A814m!~A22r!2Z8Z13C2#

1r 4mZ8Z8Z@~A814m!~A22r!2Z8Z13C2#

23r 4C2~A816m!@rZ8~A814m!#16mr 4C2~rm12C2!Z8. ~3.90!

On quantities of type~24,0!:

@~A815m!~A2r!2Z8Z23C2#@r
4C2~C212rm!#

5@r 4C2~C212rm!#@~A815m!~A2r!2Z8Z23C2#

12r 4C2~2C21rm!@~A814m!r2m~A2r!#26r 4C2
2rm, ~3.91!

@~A814m!~A22r!2Z8Z13C2#@r
4Z8ZZ~A2r!#

5@r 4Z8ZZ~A23r!#@~A815m!~A2r!2Z8Z23C2#13rr 4C2Z8ZZ. ~3.92!

The identities~3.54! and ~3.55!, together with the commutators~3.87!–~3.89!, provide the
transformations betweenĈ3B and ~the RW quantity! Ĉ2B. For example, after resolving into
spherical harmonics,~3.54! may be written as
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Ĉ3B5
4r 4

L
ZZ8Z8~A813m!Ĉ2B1

12C2r
4

L
Z~A22r!C4B . ~3.93!

Applying the operator,

@~A814m!~A22r!2Z8Z13C2#,

to this quantity, using the commutators~3.87! and~3.88!, and the relationship~3.40! betweenĈ2B
andC4B, we see that

@~A814m!~A22r!2Z8Z13C2#Ĉ3B

5
4r 4

L
ZZ8Z8~A815m!@~A23r!~A813m!2ZZ813C2#Ĉ2B1

12r 4

L
C2Z~A23r!

3@~A815m!~A2r!2Z8Z23C2#C4B1
12r 4

L
rC2Z8ZZC4B . ~3.94!

From the RW and BP equations~3.48! and ~3.38!, ~3.94! may be written as

@~A814m!~A22r!2Z8Z13C2#Ĉ3B5
12r 4

L
rC2Z8ZZC4B . ~3.95!

Although the right-hand side of~3.93! also involvesC4B, it would not be difficult to express
it solely in terms ofĈ2B ~see below!. So the identity~3.54! is the transformation from the RW
equation~3.48! to the spin-weight21 equation~3.44!.

The transformation fromĈ3B to Ĉ2B proceeds along similar, although much simpler, lines.
We use the identity~3.55! with the commutator~3.89!, followed by the identity~3.24!.

The transformations betweenĈ3B andC4B are achieved through~3.53! and~3.56!, using the
commutators~3.90!–~3.92!. For example, take~3.53!:

@L212r 4C2~C212rm!#C4B54r 4Z8~Z8Z23C2!~A814m!Ĉ3B . ~3.96!

Applying the BP operator,

@~A815m!~A2r!2Z8Z23C2#,

to this, using~3.90! and ~3.91!, substituting the expressions~3.52! and ~3.24! for Z8~A814m!Ĉ3B
and Z8Ĉ3B, respectively, and using the spin-weight21 equation~3.44!, we find, after much
cancellation,

@L212r 4C2~C212rm!#@~A815m!~A2r!2Z8Z23C2#C4B50. ~3.97!

Conversely, from~3.56! and~3.92!, we derive the wave equation forĈ3B from the BP equa-
tion for C4B in a similar calculation:

@~A814m!~A22r!2Z8Z13C2#Ĉ3B

5
4r 4

L
Z8ZZ~A23r!@~A815m!~A2r!2Z8Z23C2#C4B1

12rC2r
4

L
Z8ZZC4B .

~3.98!
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At first sight, these transformations appear not to be as satisfying as the RW–BP transforma-
tions above. In particular, in the transformation~3.93! betweenĈ2B andĈ3B, we are forced to use
C4B as an intermediate. In~3.96!, the quantity is not itself the BP quantity. We consider these two
issues here.

If we wished, it would be quite straightforward to write the right-hand side of~3.54! or ~3.93!
purely in terms ofĈ2B. In fact, operating on~3.54! with

F11
12C2r

4

L
~rA81mA2C2!G ,

we find

ZZ8Z8ZF11
12C2r

4

L
~rA81mA2C2!GĈ3B

5ZZ8Z8~A13m!F11
12C2r

4

L
~rA81mA!GĈ2B13C2Z~A22r!

3F11
12C2r

4

L
~rA81mA22C2!GC4B ,

~3.99!

using ~3.63!. The right-hand side of this is

ZZ8Z8~A813m!F11
12C2r

4

L
~rA81mA!GĈ2B13C2Z~A22r!~C4B1j4!,

or, using the identity~3.78!,

FZZ8Z8~A813m!F11
12C2r

4

L
~rA81mA!G1

12C2r
4

L
ZZ8Z8~A24r!~A815m!~A813m!GĈ2B .

~3.100!

There is no need to do any further work to prove that this transformation proceeds. The analysis
presented above ensures that this identity gives the desired result.

The fact that~3.96! is not exactly the BP quantity is manifest in the calculation required to
derive~3.97!, where the terms from the left-hand side cancel with some from the right. Although
this is not in keeping with the manner in which the other transformations~notably the transfor-
mations between the BP and RW quantities! proceed, it does, nonetheless, provide the correct
result. We can isolateC4B in ~3.96! by dividing by the factor@L212r 4C2~C212rm!#. It would be
more satisfying to put this transformation into a simpler form, and we hope to refine this part of
our work at some future time.

The primed versions of the commutators~3.87!–~3.92! are required when treating the other
transformations given by~3.57!–~3.60!. These transformations follow directly.

F. Relating quantities of opposite spin-weight

Now, the identities~3.40!–~3.43! also relateC4B andC0B. We may derive, from our trans-
formation identities, the following relationships in a straightforward way:

~A27r!~A25r!~A23r!~A2r!C4B5Z8Z8Z8Z8~C0B1j0!1~A27r!~A25r!Z8Z8~j22j28!,
~3.101!
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~A817m!~A815m!~A813m!~A81m!C0B5ZZZZ~C4B1j4!1~A817m!~A815m!ZZ~j282j2!.
~3.102!

These identities allow, say,C0B to be determined ifC4B is known. From~3.42! and~3.43! we
may derive the following useful higher-order equation forC0B:

~A27r!~A25r!~A813m!~A81m!C0B5ZZZ8Z8~C0B1j0!. ~3.103!

Recall, from~3.67!,

~j22j28!5~j22 j̄2!5
12r 4

L
C2~rA81mA!~C2B2C̄2B!. ~3.104!

Using the identity~3.40! and the complex conjugate of~3.42!, we may write

Z8Z8~C2B2C̄2B!5~A23r!~A2r!C4B2~A813m!~A81m!C̄0B . ~3.105!

Substituting this into~3.101!, using the commutators~3.63!, and the equation~3.103!, we
eliminate reference to the term (j2 2 j28), to get

~A27r!~A25r!~A23r!~A2r!~C4B2j4!

5Z8Z8Z8Z8~C0B1j0!23C2~rA81mA12C2!~C̄0B1 j̄0!. ~3.106!

Taking the complex conjugate of this expression yields

~A27r!~A25r!~A23r!~A2r!~C̄4B2 j̄4!

5ZZZZ~C̄0B1 j̄0!23C2~rA81mA12C2!~C0B1j0!. ~3.107!

We may eliminateC̄0B1 j̄0 from these two expressions by operating on~3.106! with ZZZZ and on
~3.107! with 3C2~rA81mA12C2!, using~3.63!, and adding. The final result is

@ZZZZZ8Z8Z8Z82„3C2~rA81mA12C2!…
2#~C0B1j0!

5ZZZZ~A27r!~A25r!~A23r!~A2r!~C4B2j4!

13C2~rA81mA12C2!~A27r!~A25r!~A23r!~A2r!~C̄4B2 j̄4!. ~3.108!

After expanding in coordinates we get

S L212M
]

]t D FBC0B2L 21
†
L 0

†
L 1

†
L 2

†
D0D0D0D0~4r

4C4B!

212M
]

]t
D0D0D0D0~4r

4C̄4B!G50, ~3.109!

where

B:5FL22144M
]2

]t2G .
If we separate the variables, so thatC4B andC0B may be expanded as
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~3.110!
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R12
lm ~r ,s!Y12

lm ~u,w!eist ds,

and if we assumeR̄62
l2m(r ,2s)5(21)mR62

lm (r ,s), then we recover the usual Teukolsky–
Starobinsky relationships~see, for example, Chandrasekhar1! from ~3.109! or indeed~3.106!. For
example, using~cf. Newman and Penrose16 and Penrose and Rindler6!

Ȳs
lm5~21!m1sY2s

l2m, Z8Z8Z8Z8Y12
lm 5

L

4r 4
Y22
lm , ~3.111!

~3.106! implies

E
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`

~L212Mis!(
l

(
m

@D0D0D0D0R22
lm 2LR12

lm 1~21!m12MisR̄12
l2m~r ,2s!#

3Y22
lm eist ds50, ~3.112!

and the Teukolsky–Starobinsky identity follows.
A similar approach can be used to relate the quantities of spin-weight61. Operating on~3.22!

with Z, using the commutator@A8,Z# and ~3.27!, we recover

ZZĈ3B5~A814m!~A812m!Ĉ1B1~A814m!Z~j22j28!1
12C2r

4

L
ZZZ~A22r!C4B .

~3.113!

Also, from ~3.26! and ~3.23!,

Z8Z8Ĉ1B5~A24r!~A22r!Ĉ3B1~A24r!Z8~j282j2!1
12C2r

4

L
Z8Z8Z8~A812m!C0B .

~3.114!

We could go further and simplify these expressions by substituting forC4B andC0B as we did for
~3.54!, however, this goes beyond our present needs.

The termj2 2 j28 that appears in our results, exits due to the lack of symmetry in the identities
~3.21!–~3.28!. This is something one does not encounter when treating the electromagnetic case in
the previous section~also see Teukolsky and Press13!.

The results of Secs. III D–III F demonstrate why the six wave equations~3.38!, ~3.39!, and
~3.46!–~3.49! presented above can be viewed as master perturbation equations. The solution of
any one of these equations for the appropriate gauge invariant quantity, determines all of the other
gauge invariant quantities~3.29!.

G. Another perturbation equation: The Zerilli equation

The Regge–Wheeler equation appears very naturally in our approach to the perturbation
problem. The Zerilli equation may be found as well, however, it does not arise in the manner
described above. Consider the equation

@~ZZ81C212rm!2~A23r!~A813m!2„~ZZ812rm22C2!
219C2

2
…~ZZ813C2!

29C2
2~2rm24C2!#Z50, ~3.115!
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where

~ZZ81C212rm!Z5~ZZ81C12rm!Ĉ2B2
24C2rr

4

L
ZZ~A2r!C4B . ~3.116!

To show that the equation holds, that is, that it follows from the fundamental equations~3.38!,
~3.39!, ~3.44!, ~3.45!, ~3.48!, and~3.49!, we require the following:

On quantities of type~0,0!:

@~ZZ81C212rm!2~A23r!~A813m!2„~ZZ812rm22C2!
219C2

2
…~ZZ813C2!

29C2
2~2rm24C2!#

5@~ZZ81C212rm!~A25r!~A815m!13C2„m~A23r!1C22r~A815m!…

2~ZZ812rm25C2!~ZZ813C2!218C2
2#~ZZ81C212rm!, ~3.117!

@~ZZ81C212rm!2~A23r!~A813m!2„~ZZ812rm22C2!
219C2

2
…~ZZ813C2!

29C2
2~2rm24C2!#

5~ZZ81C212rm!2@~A23r!~A813m!2ZZ813C2#

16C2@3rmC22~C212rm!~ZZ812rm1C2!#. ~3.118!

On quantities of type~24,0!:

@~ZZ81C212rm!~A25r!~A815m!13C2„m~A23r!1C22r~A815m!…

2~ZZ812rm25C2!~ZZ813C2!218C2
2#rC2r

4ZZ~A2r!

5r 4rC2ZZ@~Z8Z13C2!~A23r!23rC2#@~A815m!~A2r!2Z8Z23C2#

1r 4C2@3C2rm2~ZZ81C212rm!~C212rm!#ZZ~A23r!~A2r!. ~3.119!

Now, using the above commutation relations and the transformation identity~3.77!, we can
prove that Eq.~3.115! holds. In fact

@~ZZ81C212rm!2~A23r!~A813m!2„~ZZ812rm22C2!
219C2

2
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29C2
2~2rm24C2!#Z

5@~ZZ81C212rm!~A25r!~A815m!13C2„m~A23r!1C22r~A815m!…

2~ZZ812rm25C2!~ZZ813C2!218C2
2#~ZZ81C212rm!Z

5~ZZ81C212rm!2@~A23r!~A813m!2ZZ813C2#Ĉ2B2
24rC2r

4

L

3ZZ@~Z8Z13C2!~A23r!23rC2#@~A815m!~A2r!2Z8Z23C2#C4B[0.

From ~3.41! and ~3.78! we have seen howC4B can be expressed in terms ofĈ2B. Thus, we
can write ~3.116! so that it involves onlyZ and Ĉ2B, thereby relating the Regge–Wheeler and
Zerilli quantities directly. Acting on~3.116! with

F11
12r 4

L
C2~rA81mA!G ,
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we get

~ZZ81C212rm!F11
12r 4

L
C2~rA81mA!GZ

5~ZZ81C212rm!F11
12r 4

L
C2~rA81mA!GĈ2B2

24r 4

L
rC2~A23r!ZZ

3F11
12r 4

L
C2~rA81mA22C2!GC4B ,

using ~3.63! and the NP commutator@Z,A#. Together with~3.41!, this implies

~ZZ81C212rm!F11
124

L
C2~rA81mA!GZ5~ZZ81C212rm!F11

12r 4

L
C2~rA81mA!GĈ2B

2
24r 4

L
rC2~A23r!~A815m!~A813m!Ĉ2B .

~3.120!

SinceĈ2B satisfies the RW equation~3.48!, we can use the commutator@A,A8# to write the
product~A23r!~A815m!~A813m! in the second term on the right-hand side as a singleA8 deriva-
tive. This quantity, expanded in coordinates according to~2.1!, can be shown to agree with
Chandrasekhar’s1 Zerilli quantity, up to multiplication by a constant. Equation~3.115!, when
written down in coordinates, is precisely the Zerilli equation. Of course, acting on~3.116!, with
the prime operation, we have a Zerilli quantity related toĈ2B8 , andC0B. So, just as there are two
RW equations, we may derive two Zerilli equations.

IV. DISCUSSION

Our approach to the linearized gravitational perturbations of the Schwarzschild black hole
reveals a wealth of structure. The coordinate approach to the problem provided by Chandrasekhar1

and Sasaki and Nakamura,2,3 obscures, to a certain extent, how natural their results really are.
Actually, the transformations between the BP and RW equations are only part of a broader picture.

As we have shown, the perturbed Bianchi identities may be cast into a form involving only
tetrad and coordinate-gauge-independent quantities. The identities then give rise to a system of six
wave equations for the~gauge invariant! perturbation field quantities of spin-weight 0,61, and
62. Historically, the spin-weight 0 and62 equations have been the focus of much investigation
~motivated by the desire to derive a RW-like equation in the Kerr case!. We are now led to
establish two new perturbation equations for the intermediate spin-weights. These spin-weight61
equations for the gravitational perturbations are quite distinct from the spin-weight61 ~BP!
equations in the electromagnetic case.

In fact, the fundamental perturbation wave equations are some of the integrability conditions
for the perturbed Bianchi identities. Other integrability conditions also naturally give rise to
~transformation! identities that allow us to transform from one wave equation to another, via some
higher-order commutation relations. To an extent, the work presented here addresses the question
of why the transformations of Sasaki and Nakamura2,3 and Chandrasekhar1 should work, and how
they fit into the broader theory. Thus, we have been able to provide an explanation for their results,
from the point of view of the integrability conditions for the linearized Einstein equations.

The RW equation naturally plays a central role in our analysis. The Zerilli equation is
not natural in the sense described above, but may be constructed from our fundamental wave
equations, and given gauge invariant meaning. The Zerilli quantities may be
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expressed in terms of the RW quantities, as shown here, and in coordinate form in Chandrasekhar.1

The gauge invariant approach of Moncrief,17 using the Hamiltonian formalism with a perturbed
metric, has the Zerilli equation as a centerpiece. An interesting question for future consideration is
how to relate the present gauge invariant approach, where we use the modified Newman–Penrose
formalism, to the results of Moncrief.17

The fact that there are two RW equations should not cause too much concern. In fact, this has
been foreseen by Chandrasekhar,1 although from another point of view. The difference between
the two RW quantitiesĈ2B ~associated withC4B! and Ĉ2B8 ~associated withC0B! is manifest
throughout our analysis. In fact,

1

2i
~Ĉ2B2Ĉ2B8 !5Im~j2!5

12M

L

]

]t
Im~C2B!.

It is not surprising to discover that the imaginary part of our quantityj2, which arises naturally in
the Bianchi identities, can be written in this way. Suppose we wished to manufacture a gauge
invariant quantity by adding a complete scalar toC2B. Since Im~C2B! is gauge invariant, it is
Re~C2B! that must be modified. Thus, forĈ2B to be gauge invariant, we should expect Im~j2! to
be gauge invariant also, so as not to interfere with the gauge invariance of Im~C2B!. As we have
shown, Im~j2! is indeed gauge invariant and contains no new information.

It is worthwhile emphasizing the natural way in which the]t Killing vector appears in our
analysis, not only in the termsj4 andj0, but also in Im~j2! above. It plays an important role in the
identities relating the quantities of opposite spin-weight, as well as in the transformation identities
~3.78! and ~3.80!.

Since Im~j2! is nonzero in general, the identities~3.101! and~3.102! relatingC0B andC4B are
not as simple as one would infer from~for example! Chandrasekhar.1 After some work, we can
show that the Teukolsky–Starobinsky identities follow from our~more general! identities, if the
NP scalarsC4B andC0B satisfy certain conditions. The quantityC0B is uniquely determined by
C4B ~and vice versa! after Fourier analyzing the time dependence, and expanding in spherical
harmonics.

An important feature of our results is that they are equally valid in the flat space–time limit,
whenC250 ~M50!. Thus, in particular, our wave equations and transformation identities are the
direct generalizations of their flat space–time forms to the Schwarzschild space–time.

The nonvacuum perturbations of Schwarzschild space–time may also be formulated using the
approach presented above. It is not difficult to include source terms in the analysis, and, in fact, the
associated NP quantities~FmnB! are necessarily gauge invariant as well. The inclusion of source
terms will be considered in a future paper.

We are prompted to ask whether the approach outlined in this paper can be generalized further
to other Petrov type-D background metrics. In fact, we have shown that our approach can be
extended to treat the perturbations of the Kerr and Reissner–Nordstro¨m space–times. In the
Reissner–Nordstro¨m case~see Fernandes and Lun18!, we have been able to rewrite the perturbed
Maxwell equations and the perturbed Bianchi identities so that only canonical gauge invariant
electromagnetic and gravitational field quantities are involved. In the Kerr case~see Fernandes and
Lun19! the perturbed Bianchi identities can be cast into a form involving only gauge invariant field
quantities. In both cases we have investigated the integrability conditions for these identities, and
derived gauge invariant perturbation equations. These are coupled gauge invariant
electromagnetic–gravitational perturbation equations in the Reissner–Nordstro¨m case.

Preliminary results suggest that a further extension to deal with the electromagnetic and
gravitational perturbations of the Kerr–Newman space–time in a gauge invariant manner may be
possible.
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APPENDIX: GAUGE INVARIANCE

SinceC0B andC4B are~both tetrad and coordinate! gauge invariant, our results will be seen
to be gauge invariant when we prove that the quantities

Ĉ2B , Ĉ2B8 , Ĉ3B , Ĉ1B

are gauge invariant. To prove this, consider a combined tetrad and coordinate-gauge transforma-
tion. Then~Lun7!

C2B°C2B2~XA1YA8!C2 , C3B°C3B13vC2 ,

C1B°C1B13wC2 , lB°lB1Z8v, sB°sB2Zw,

and

ZB8°ZB81~Z8X1v !A1~Z8Y1w̄!A8,

when acting onC2 @using~2.2!#. A quick calculation reveals that all coordinate-gauge terms (X,Y)
and tetrad-gauge terms (v,w) disappear from our quantities when they are subjected to gauge
transformations. SoĈ2B is gauge independent, as areĈ2B8 , Ĉ3B, andĈ1B.

Hence, the quantities

Ĉ2B2Ĉ2B8 52i Im~j2!, Ĉ2B2~Ĉ2B8 !52i Im~C2B!,

are also gauge invariant.
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Cosmological models expressible as gradient vector fields
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Classes of cosmological models, for which Einstein’s equations reduce to two-
dimensional dynamical systems, are studied in the presence of stochastic perturba-
tions using the steady state of the associated Fokker–Planck equations and Zee-
man’s notion ofe-stability. In all cases, a set of variables is found for which the
dynamical systems are expressible as gradient vector flows, showing that the asso-
ciated cosmologies are stochastically stable. Such models are also important in
connection with application of catastrophy theory to cosmology. ©1996 American
Institute of Physics.@S0022-2488~96!01101-5#

I. INTRODUCTION

A common approach to cosmological modeling is to start from Einstein’s field equations

Rab2 1
2Rgab1Lgab5kTab ~1!

in the usual notation, and use various simplifying assumptions, such as particular symmetries, to
reduce these equations to a set of ordinary differential equations of the form

dx

dt
5v„x,c…, ~2!

wherex P RN ~N being the dimension of the system!, v is the vector field defining the flow, and
cPRM are the control parameters of the system~with M the dimension of the parameter space!.
Starting from Eq.~2!, it has recently been argued that almost all models currently employed in
cosmology are fragile, in the sense that the presence of small physically plausible perturbations
can qualitatively change their dynamical behavior.1–5 This can clearly have important conse-
quences both for the theoretical models commonly employed in cosmology and for the interpre-
tation of the observational data. Interestingly, it turns out that perturbations whose existence in the
cosmological context give rise to such fragility could have very different consequences if they are
perceived as a source of stochasticity and if at the same time a new notion of stability proposed by
Zeeman6 is employed. Briefly, Zeeman’s idea is to employ a coarser notion of equivalence class
~instead of the usual one employed in deterministic dynamical systems theory which is defined in
terms of topological conjugacy!, such that the set of structurally stable systems are dense. More
precisely, Zeeman starts with dissipative flows of the form~2! with the vector fieldv defined on an
orientable manifoldM . The dynamics of such systems can usually be understood in terms of
attractors or some measures on them. As a result, the effect of ‘‘noise’’ may be understood in terms
of forcing the dynamics to take place on a neighborhood of the original attractor, denoted bys say,
and defined by the steady state of the Fokker–Planck equation forv with e.0 diffusion in the
form
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e“2s2“–~sv!50. ~3!

Defined in this way,s can be looked upon as the smooth probability function on the manifoldM ,
with its greatest values corresponding to locations where the orbit moves most slowly on the
attractor. Zeeman defines two vector fields ase-equivalent if their corresponding Fokker–Planck
steady states defined by Eq.~3! are equivalent as functions. A vector fieldv is then said to be
e-stable if it has neighborhoods ofe-equivalent vector fields and stable if it ise-stable for arbitrary
smalle. The most important outcome of this scheme is thate-stable systems are dense. This should
be contrasted with the usual notion of structural stability, defined in terms of topological conju-
gacy, under which the structurally stable systems are not dense7 in the set of systems of the type
~2!.

This method of stabilization was recently introduced in a cosmological setting8 and applied to
simple cosmological models expressible as one-dimensional flows. The framework is particularly
useful for studying those aspects of the universe that are invariant undere-perturbations. Our aim
here is to extend that work by studying cosmological models that are expressible as two-
dimensional gradient vector fields~GVFs!.

Zeeman’s procedure for stabilization can be of relevance in cosmology, particularly in the
presence of viscosity~which makes the resulting flow dissipative!. To find the steady state of the
Fokker–Planck equation~3!, however, is not an easy task for a general vector field, without
resorting to numerical techniques. There is, however, one class of vector fields for which the
steady states can be easily evaluated analytically and these are the GVFs expressible in the form

v5“ f , f :M→R, ~4!

where we shall callf thegenerating functionfor v.
In such cases, thesteady state scan be shown to be of the form

s5s0 e
f /e, ~5!

where the constants0 is defined by the condition*Ms51. Furthermore, it can be shown that GVFs
are e-stable.6 As a result, it would be of interest to find the set of reductions of Einstein’s field
equations which can be expressed as dissipative GVFs~in the presence of viscosity!, since in such
cases structurally stable properties of these models in the presence of stochasticity may easily be
obtained. Such GVFs are also of interest in applications of catastrophy theory to reductions of
Einstein’s field equations.9 In the following we give a number of such two-dimensional reductions
together with the corresponding steady states of their corresponding Fokker–Planck equation.

Many of the calculations of this article were checked by using various algebraic computing
systems, such asCLASSI10,11 written in the symbolic languageSHEEP,11,12 REDUCE,13,14 and
Maple.15

II. MATHEMATICAL PRELIMINARIES

In what follows, one shall have occasion to study dynamical systems which fit the general
form

Ẋ5Y, Ẏ5aXm1bY, ~6!

with a,b,mPR. We show here that it is always possible to find a transformation of variables
which takes Eq.~6! into a GVF. We note in passing that it is trivial to show that the generalization
of Eq. ~6! with Ẋ5dY, where d is a constant, is also reducible to a GVF. However, in all
cosmological models we studyd51 and so we introduce this simplification here.

Consider the change of variableX5cZn, wherec,nPR. As we shall see later,X is essentially
the cosmological scale factor and so assumes physically meaningful values whenX>0. Math-
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ematically however it is often both possible and useful to extend the analysis to includeX,0.
SinceZ}X1/n, whenn,0 the transformation is undefined forX50 and, depending on the value of
n, Z may not be defined whenX,0. Again this is not a problem for physical values ofX andZ but
may hinder any mathematical analysis forX,0.

After transforming fromX to Z, Eqs.~6! become

Ż5
1

cn
YZ12n, Ẏ5acmZmn1bY. ~7!

For Eq.~7! to represent a GVF, we must have]Ż/]Y5]Ẏ/]Z, which implies

1

cn
Z12n5acmmnZmn21.

Hence choosing

n5
2

m11
, c5F ~m11!2

4am G1/m11

~8!

the system~7! will be a GVF. We note that the definition ofc places a further restriction on the
transformation fromX to Z, since for a general value of the exponent in Eq.~8! we must demand
that the quantity in the square brackets is positive, though this restriction can be lifted when the
exponent is a rational number with an odd denominator. So for ageneric mPR, we should only
consider cases wheream.0, and the upper half-planeZ>0.

After the change of variables, our dynamical system can be incorporated within the GVF form

Ż5aqYZq21, Ẏ5aZq1bY, ~9!

where

a[acm, q[mn5
2m

m11
, ~10!

and such a system will have the generating function

f5aYZq1 1
2bY

2. ~11!

Now an important property of GVFs is that theirv-limit sets consist solely of critical points.
An easy proof is to note that for the vector fieldv5“f , the rate of change off , i.e.,
ḟ[“f –v5u“f u2, which shows thatf may be appropriately chosen as a Lyapunov function.16 As a
result, we shall confine ourselves to the analysis off near the critical points of the dynamical
system, since it is at such points that we should hope to see the pronounced effect of noise on the
dynamical system’s stability. An interesting case arises in a neighborhood of stable critical points,
where the effect of noise is to replace the critical point with a peak in the graph of the steady state
s, centered on the critical point.

Postponing the subject of critical points at infinity later, it can be seen that the only critical
point which Eq.~9! admits that does not lie at infinity is at the origin. On solving the equation
Ẏ50, we find that the conditionŻ50 is

Y52
a

b
Zq⇒ a2

b
qZ2q2150.
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We note that for the origin to be a critical point we must haveq.1/2. Whenq,1/2 the origin is
a singular point. We shall see that even when the origin is a singular point of Eq.~9! the behavior
of trajectories near the origin may be analyzed in a manner similar to that used for critical points.
Whenq51/2 ~or equivalentlym51/3! no critical point exists.

Since the dynamical system is not linearizable, we cannot use standard eigenvalue analysis to
determine the stability near the origin. Instead our analysis must be somewhat artisan and will rely
on piecing together information about the gradient of the trajectories within each quadrant, their
behavior as they cross theY- andZ-axes, and the use of polar coordinates centered on the origin
to analyze the effects of perturbations on the radial coordinate.

Defining polar coordinates by

Y5r cosu, Z5r sin u, ~12!

and taking care to restrictu to ~0,p! whenZ is restricted to the upper half-planeZ.0, Eqs.~9!
become

ṙ5a~q11!r q sinq u cosu1br cos2 u,
~13!

u̇5ar q21 sinq21 u~q cos2 u2sin2 u!2b sin u cosu.

In this coordinate system, provided the dynamical system is well-defined for all values ofu, a
perturbation for whichṙ>0;u, implies that the origin is an unstable critical point, while ifṙ<0;u
the origin is a stable critical point. If the sign ofṙ depends onu the situation is more complicated,
giving rise to the possibility of not only saddles and centers, but also behaviors typical of nonlin-
earizable systems, such as cusps. In such cases further investigation is needed to determine the
behavior near the origin.

Studying the equation forṙ , the stability near the origin can be seen to depend primarily on the
value ofq, which divides the nature of the origin into six categories.

~1! If q.1, the origin is a critical point. The term linear inr dominates near the origin, which
will be a stable node ifb,0, and an unstable node ifb.0.

~2! Whenq51, the system~9! is linear and standard eigenvalue techniques can be used to
study the critical point. It is found that the eigenvectors of the dynamical system are always real
and of opposite sign and the critical point is a saddle.

~3! For 1
2,q,1, the origin is still a critical point and the term inr q dominates near the origin.

The factor sinq u implies that for a generalq we must restrict our analysis to the upper half-plane
where sinu.0. The sign ofṙ is determined by the product~q11!a cosu and so must necessarily
be opposite in the first and second quadrants.

~4! If q5 1
2, the origin is neither a critical point nor a singular point, and so the question of

stability does not make sense.
~5! For q,1

2, qÞ21, the origin is a singular point. Again the term inr q dominates the
equations close to the origin, and so the sign ofṙ is necessarily opposite in the first and second
quadrants.

~6! Whenq521, the origin is singular and will be either ‘‘stable’’ or ‘‘unstable’’ depending on
the sign ofb.

To distinguish between the behaviors when the sign ofṙ depends onu, we can analyze the
behavior ofdZ/dY ~or dY/dZ! in various quadrants, together with the symmetry of the dynamical
system near the origin under reflection in theZ-axis. Moving anticlockwise from the first quad-
rant, if sign(dZ/dY)5$2121% and the system is symmetric under reflection in theY-axis, the
origin behaves like a center; whereas if sign(dZ/dY)5$1212%, the origin is a saddle point.
From Eq.~9! we find that near the origin,
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dY

dZ
5
1

q

Z

Y
1

b

aq
Z12q5

1

q
tan u1

b

aq
r 12q sin12q u ~14!

which shows that whenq,1 the term in tanu dominates near the origin and sign(dY/dZ) is
determined by the sign ofq. Forq.1, the nature of the critical point will depend on sign(b/aq).
@Strictly speaking, this is true for the upper half-plane only: ifq is rational then the behavior in the
lower half-plane also depends on the numerator of 12q. If this numerator is even, sign(dY/dZ)
always has the same sign.#

Equation~14! also tells us about the behavior of trajectories near the axes, which allows us to
distinguish between saddles and centers. Whenq,1, dZ/dY→` as u→0 or as u→p while
dZ/dY50 for u5p/2 oru53p/2. Whenq.1, we still havedY/dZ→` asY→0 and so trajectories
still cross theZ-axis perpendicularly. But nowdY/dZ→` asZ→0, and so trajectories close to the
Y-axis must be parallel to theY-axis.

Polar coordinates may also be used to analyze the behavior off , in which f assumes the form

f5ar q11 cosu sinq u1 1
2br

2 cos2 u. ~15!

Hence ifq>21, f increases withr close tor50, while forq,21, f decreases withr , tending to
infinity at the origin. In terms of the steady states, sinces is essentially exp(f ), s will peak at the
origin for either of the combinations$a,0, q,1% or $b,0, q.1%.

In the light of what has been developed in this section, we now turn to examine a class of
cosmological models for which various subclasses fall into the description~6!.

III. APPLICATIONS TO COSMOLOGY

A. Friedman-like models with bulk viscosity

We first consider a class of spatially homogeneous models with bulk viscosity, shear, curva-
ture, and cosmological constant. In this case, the Raychaudhuri equation17 subject tov505u̇
takes the form

3
R̈

R
522s22

1

2
~m13P̄!1L, ~16!

where an overdot represents a derivative with respect to time,R is the mean cosmological scale
factor,s the shear scalar (5 Asabsab), m the energy density, andP̄5p23z(Ṙ/R) the pressure
in the presence of bulk viscosity, withz.0 representing the coefficient of bulk viscosity. Recalling
the conservation law

ṁ523~m13P̄!
Ṙ

R
, ~17!

and lettings25S2/R6, which includes the Bianchi types I and V,18 Eq. ~16! can be integrated to
give the generalized Friedman equation in the form

3
Ṙ2

R2 5
S2

R62
3k

R2 1L1m. ~18!

The resulting dynamics are simplified by the choice of an isothermal equation of state,p5~g
21!m, ~1<g<2!, and a change of variables1,18 such thatX[RD with D[3g/2, so that 3/2<D<3.
Note that sinceR>0, the physically meaningful values ofX areX>0. Substituting in Eqs.~16!
and~18! we obtain the second order differential equation expressing the dynamics in presence of
shear, bulk viscosity, curvature, and a nonzero cosmological constant, to be
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Ẍ2
3

2
zẊ2

D2L

3
X2

D~D23!

3
X~D26!/DS21kD~D21!XD22/D50 ~19!

which can be expressed as the two-dimensional dynamical system

Ẋ5Y,

Ẏ5
D2L

3
X1

D~D23!

3
X~D26!/DS22kD~D21!X~D22!/D1

3

2
zY. ~20!

Now, if we set any two of the constants$k,L,S% equal to zero, the system will have the form~6!
and we know that a GVF exists to describe that cosmological model, which must then bee-stable.
We examine each of these three cases in turn.

Case I. Shear-free spatially flat models:For these models we setk5S50 and Eq.~20!
becomes

Ẋ5Y, Ẏ5
D2L

3
X1

3

2
zY. ~21!

This has the form~6! with the following identifications:

a5
D2L

3
, b5

3

2
z, m51.

Sincem51, it is easily calculated that

n51, c5a21/25
1

D
A3

L
, q51

and so the transformation betweenX andZ is well-defined forL.0. As a GVF the dynamical
system is

Ż5DAL

3
Y, Ẏ5

3

2
zY1DAL

3
Z. ~22!

As discussed earlier, whenq51 the origin is a critical point, whose nature is a saddle point.
In Fig. 1 is shown a graph of the full phase-plane of the GVF~22! for the particular choice of

a radiation fluid~D52! and with values of the parametersz51 andL51. From our analysis we
know that the general characteristics of the graph are not sensitive to the values of the parameters
D, z, andL, within the physical constraints already imposed.

The generating functionf in this case is

f5DAL

3
YZ1

3

4
zY25DAL

3
r 2 cosu sin2 u1

3

4
zr 2 cos2 u. ~23!

Figure 2 shows the plot of the steady states for f given by Eq.~23!, with the same values ofD,
z, andL as used in Fig. 1. In this, and other examples, we have absorbed the arbitrary constant of
integration into the constants0 of Eq. ~5!.

Interpretings as a measure of ‘‘likelihood of state,’’ we see that, as might have been expected,
s tends to infinity in the direction of the unstable manifold. A bounded graph would result around
a stable fixed point, but as we shall see later system~22! only admits a stable critical point at
infinity. In order to study critical points at infinity, we need to use coordinates which compactify
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the phase-space. One potential problem with this approach is that, in terms of the new coordinates,
our dynamical system is no longer a GVF! Nevertheless, if the compactification is made suffi-
ciently carefully, the stability analysis and the overall characteristics of the steady states are
unchanged. The application of compactification to study the critical point at infinity is dealt with
in Sec. IV.

For a comparison with the more conventional approach to the stability of these cosmological
models using structural stability, the reader is referred to the article of Goldaet al.19

Case II. Shear-free models with no cosmological constant:Within the parameter-space
allowed by the physics, these models have the richest structure of the three subclasses. Setting
S5L50 in Eqs.~20! we obtain

Ẋ5Y, Ẏ5 3
2zY2kD~D21!X~D22!/D. ~24!

In this case, we have the identifications

FIG. 1. The phase plane of dynamical system~22! with z51, D52, andL51.

FIG. 2. The steady state functions for Fig. 1 plotted out tor51.
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a52kD~D21!, b5
3

2
z, m5

D22

D
,

which give us

n5
D

D21
, c5F2

D21

kD2~D22!G
D/2~D21!

.

Because of the exponent involved in the definition ofc, the values ofD which we consider in this
case are restricted by the necessity that the quantity inside the square brackets ofc must be
positive. This implies that in general we can only consider fluids for whichD,2 whenk51 and
D.2 when k521. WhenD52 ~radiation! the transformation is singular and we must use a
different transformation to obtain a GVF. This case is discussed later as case IId.

After the change of variables, the dynamical system assumes the form~9! with

q5
D22

D21
, a52kD~D21!F2

D21

kD2~D22!G
~D22!/2~D21!

. ~25!

For a generalq we can only study the dynamical system for this case in the half-planeZ.0. Given
the values ofD we are considering, we find thatqP@21,12#.

Besides the radiation case~q50!, the range ofq for these models incorporates four different
behaviors. There are the special casesq51/2 ~stiff fluid! andq521 ~dust!. For the other cases,
since we have chosen the quantity in the square brackets of Eq.~25! to be positive,

sign~a!5sign~a!52sign~k!.

So for closed models, withk51, a,0, andṙ is negative in the first quadrant and positive in the
second. For open models withk521, a.0 and this situation is reversed.

Using the analysis of Eq.~14!, sinceq,1 for all values ofD under consideration, sign(dY/
dZ) alternates, with the sign in the first quadrant being given by sign(q)5sign~D22!.

Case IIa. 2<D<3, k521: For these modelsq.0 and so we know thatdZ/dY is positive in
the first quadrant and negative in the second. The trajectories cross both theY- and Z-axes
perpendicularly, and sincea.0, Eqs.~13! tell us that trajectories will be traced in a clockwise
direction. From these data, it can be deduced that the trajectories close to the origin will behave
analogously to a saddle point.

Figure 3 presents, as an illustrative example, the upper phase plane for an open cosmology
with z51, D55/2, andk521. In the neighborhood of the origin, we see that the origin does
behave as a saddle point, and that this is the only critical point in the phase plane.

Case IIb. 3/2<D<2, k51. Turning now to the closed models, the analysis is similar and
~where the system is defined forZ,0! the system is symmetric under reflection in theY-axis. As
q,1, trajectories will meet both axes perpendicularly.

In Eqs.~9! we see that the change in sign ofk and hencea means thatẎ will now be negative
nearY50 and trajectories will cross theZ-axis from right to left. However, since sign(Ẏ)5
2sign(Y), Y will be increasing from the right and decreasing on the left. Piecing this together, the
trajectories encircle the origin, and the origin acts as a center.

Figure 4 shows the phase plane near the origin for a closed cosmology, withz51,D51.9, and
k51. Though we show only the physical upper half-plane, if we could extend the trajectories into
the regionZ,0, we would find that near the origin the trajectories are closed, confirming that the
origin acts as a center.

From our earlier analysis we know that, sinceq,1, the steady states cannot peak at the
origin, and the form ofs shown in a semicircle near the origin is plotted in Fig. 5, showing this
instability.
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Case IIc. D53/2 „Dust…: For the special case of dust, whenD53/2 andk51, we have
q521, a529/8 and Eq.~9! simplifies considerably to give

Ż5 9
8YZ

22, Ẏ5 3
2zY2 9

8Z
21. ~26!

Only integral powers ofZ appear in this system, and much of the analysis for case IIb goes
through unchanged: the trajectories are perpendicular to the axes, and must encircle the origin due
to the signs ofdZ/dY. However in Eq.~13!, the vanishing of the first term forṙ implies thatṙ.0
in all four quadrants~sinceb.0!, and the origin will be unstable. Given that the trajectories
encircle the origin, it must be an unstable spiral. Figure 6 represents the upper half-plane for a
cosmology with dust andz51. Though apparently qualitatively the same as Fig. 4, if the trajec-
tories are extended to the lower half-plane we find that they do not close, but spiral around the
origin as expected.

FIG. 3. Phase plane of the dynamical system given by Eqs.~9! and ~25! with z51, D55/2, andk521.

FIG. 4. Phase plane of the dynamical system given by Eqs.~9! and ~25! with z51, D51.9, andk51.
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Case IId. D52 „Radiation…: We consider the special caseD52 both because of its excep-
tional property from the mathematical point of view, and because of the physical interest of the
fluid for which this value ofD corresponds. In this case Eqs.~24! reduce to

Ẋ5Y, Ẏ5 3
2zY22k. ~27!

We may turn this system into a GVF by considering the linear transformation of variables
Y5aZ1bX, with a andb constants. It is found that the system in terms ofX andZ will be a
GVF provided the relation

a25b~ 3
2z2b!

holds. One choice ofb which leads to particularly simple equations is20

b5 6
5z⇒a5 3

5z.

FIG. 5. The steady state functions for the dynamical system of Fig. 4, plotted out tor51 in the upper half-plane.

FIG. 6. Phase plane of the dynamical system given by Eqs.~9! and ~25! with z51, D53/2, andk51 ~dust!.
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The dynamical system assumes the form

Ẋ5
3

5
z~2X1Z!, Ż5

3

10
z~2X1Z!2

10

3

k

z
, ~28!

from which it is easily seen that there isno critical point at the origin. The generating function has
the form

f5
3

20
z~4X214XZ1Z2!2

10

3

k

z
Z.

For completeness the upper phase plane is shown as Fig. 7.
Case III. Flat models with shear andL50: For these models we setk5L50 in Eq.~20! to

obtain

Ẋ5Y, Ẏ5
3

2
zY1

D~D23!

3
S2X~D26!/D. ~29!

This system takes the form~6! with the identifications

b5
3

2
z, a5

1

3
D~D23!S2, m5

D26

D
.

We calculate the values of the parameters in the GVF~9! to be

a5
1

3
D~D23!S2F 3~D23!

D2~D26!S2GD/2~D23!

, q5
D26

D23
. ~30!

Again there is a slight restriction on the equation of state, since for a stiff fluid~D53! this
transformation is singular. GivenDP@3/2,3!, q takes values in the range@3,̀ !. In general, we are
once more limited to considering the upper half-planeZ.0 because of the exponent ofZ in the
equation forŻ, which is negative for all values ofD under consideration.

In Fig. 8 we plot the phase diagram for these cosmologies withz51, S51, andD52. The
origin is seen to be an unstable cusp.

FIG. 7. Phase plane of the dynamical system given by Eqs.~9! and ~25! with z51, D52, andk51 ~radiation!.
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Referring to Eq.~15!, the large value ofq means that the term inr 2 dominates near the origin.
Sinceb.0, we expect the origin to be unstable for all values ofu, which is indeed the case.

B. Novello–Rebouc¸as space-times

As a second family of space-times, we consider a class of rotating dissipative cosmological
models21 whose line element is given by

ds25dt212A~ t,x!dt dy2F2~ t !dx22 1
2A~ t,x!dy22H2~ t !dz2. ~31!

Making use of the algebra packages referred to in the Introduction it can be shown that the
corresponding Einstein equations reduce to a set of seven differential equations. One of these
implies thatF(t)H(t) is constant. Three of the rest define the energy density and the heat flux
vectorqa. The remaining three space-diagonal equations can be reduced to the equations

Ẋ522&XY, Ẏ52&~2Y21X2!, ~32!

where, in order to express the result as a GVF, the following change of variables have been used:

X5
Ḟ

F
, Y5

1

2&

Ȧ

A
~33!

in agreement with Ref. 9. The system has one critical point atX5Y50 and the generating
function

f52&X2Y2
2&

3
Y3. ~34!

In polar coordinates, the sign off is seen to change atu5p/2, and so the steady state again cannot
be stable. This is confirmed by the phase plane shown in Fig. 9, where it is seen that the origin is
a saddle point.

FIG. 8. The phase plane of the dynamical system~9! with Eq. ~30! for z51, D52, andS51.
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IV. CRITICAL POINTS AND STEADY STATES AT INFINITY

In this section we return briefly to the question of the link between the steady state function
and the critical points of a GVF. Unfortunately in all the cases considered, the only critical point
which occurs for finiteY andZ— namely the origin—has been shown to be unstable, and we
therefore do not obtain the graph of the steady states peaking at the critical point. This leaves the
possibility of stable critical points at infinity, and in order to study these, we compactify the
phase-space to a unit disk by defining new coordinates:

y[
Y

A11Y21Z2
, z[

Z

A11Y21Z2
. ~35!

This transformation also has the useful property that it maps the straight linesY5mZ to the lines
y5mz. The dynamical system in terms ofy andz is no longer a GVF, however the transformation
~35! does not destroy the nature of the critical points of the GVF forY andZ.

We shall apply this technique to case I of the dynamical systems studied since, in addition to
the bulk viscosity, it contains a nonzero cosmological constant. According to the cosmic no-hair
conjecture, a cosmological model with a~positive! cosmological constant which does not recol-
lapse and whose energy-momentum tensor obeys the energy conditions should tend towards de-
Sitter space. However, a model with bulk viscosity can havep,0, and so the energy conditions do
not in general hold, but it is instructive to study the phase plane at infinity for generalz and see
whether we recover de-Sitter space as a stable critical point in the limitz→0.

de-Sitter space is characterized by having a scale factor which obeysṘ/R5AL/3. On fol-
lowing through the various transformations fromR andṘ to X, Y, andZ, it is remarkable that in
terms ofY and Z, de-Sitter space corresponds to the lineY5Z and by the properties of the
transformation between$Y,Z% and $y,z%, de-Sitter space corresponds to the liney5z. If the
cosmic no-hair conjecture holds in this case, all models~which do not recollapse! should therefore
tend to this line.

In terms ofy andz the dynamical system~9! becomes

ẏ5
3

2
zy~12y2!1DAL

3
~122y2!z, ż5ySDAL

3
22DAL

3
z22

3

2
zyzD . ~36!

FIG. 9. The phase plane of dynamical system~32!.
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The critical points of this system occur aty5z50 and at the two points

y5
2

3z
AL

3 S 1z22zD , z25
1

2
1
3)z

2
A16D2L127z2, ~37!

which, as expected, do not correspond to de-Sitter space. Now in the limitz→0, for which z

→6A 1
2, both the numerator and denominator ofy in Eq. ~37! tend to zero. Hence to study the case

with zero bulk viscosity we need to setz50 in Eq.~36! and determine the critical points anew. On
performing the algebra we find the critical points at infinity arey5z56(1/&) and indeed
correspond to the end state~with infinite scale factor! of de-Sitter space.

Finally, since we expect de-Sitter space to represent a stable critical point, we plot the com-
pactified phase plane forz51,D52, andL51 and the steady state functions for Eq. ~23! in terms
of the compactified variables as Figs. 10 and 11, respectively. We see that the graph ofs peaks at
the stable critical points of the dynamical system.

FIG. 10. The compact phase plane of dynamical system~36!.

FIG. 11. The steady state functions for the generating function~23! plotted in terms of the compactified variablesy
andz.
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V. CONCLUDING REMARKS

We have considered examples of two-dimensional reductions of Einstein’s equations which
are expressible as dissipative GVFs, with the aid of nonlinear transformations. The set of reduc-
tions of Einstein’s equations so expressible are of interest as theirv-limit sets solely consist of
critical points. In addition they allow the steady states of their corresponding Fokker–Planck
equations to be readily found analytically. This is especially important in view of the fact that
almost all the known exact reductions of Einstein field equations are fragile with respect to
plausible physical perturbations. The steady states of the Fokker–Planck equations in these cases
essentially define noisy neighborhoods of the original attractors which are structurally stable.6 As
a result such steady states are of importance for those features of the universe which are dissipa-
tive, as they give likelihood estimates for various features of the universe around such attractors,
which are structurally stable. Furthermore, the presence of such steady states could be of relevance
in ultimately resolving the question of natural measure on the initial state of the classical
Universe—with quantum fluctuations acting as noise. Also, the set of reductions of Einstein’s
equations expressible as GVFs are important in connection with the applications of catastrophy
theory to cosmology.

In the two-dimensional cases considered here the critical points which do not lie at infinity
turn out not to be stable. In the majority of cases, the critical point is a saddle, resulting in
decaying and exponentially expanding directions for the functions, corresponding dynamically to
the directions of the stable and unstable manifolds. In this way the behavior ofs is compatible
with the dynamics of a distribution of initial states.

It has also been shown that the stable fixed points at infinity, and the form of the steady state
functions in the neighborhood of these fixed points, can be examined by a careful compactifica-
tion of the phase plane. In this case,s remains bounded in all directions, indicating the attracting
nature of the fixed points in all directions.

It is also interesting to note that systems of coordinates which produce a GVF are not unique.
This begs the question as to whether or not there might be an invariant property of the geometry
of a space-time which defines whether or not it is possible to find a GVF that describes a
cosmology. There are certainly cases~the most general case above with shear, curvature, and a
cosmological constant, for example! which defeated our attempts to find a description in terms of
a GVF. Perhaps a solution to this question might be found by the techniques used in Cartan’s
equivalence problem.22

The consideration of cosmological models expressible as GVFs is a first step in the applica-
tion of Zeeman’s notion ofe-stability to cosmology. The study of models not so expressible would
involve extensive numerical calculations to which we hope to return in the future.
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22É. Cartan,Leçons sur la Geome`trie des Espaces de Riemann~Gauthier-Villars, Paris, 1946!.

873Rebouças, Skea, and Tavakol: Gradient vector fields in cosmology

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The Dirac equation in the Robertson–Walker space–time
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The Dirac equation is considered, via the Newman–Penrose formalism, in the
context of the Robertson–Walker geometry. The solution of the equation, which
contrary to the neutrino case is not directly separable, is reduced to the study of
decoupled spatial and temporal equations. The spatial equations are explicitly inte-
grated and show the existence of discrete energy levels in case of closed universe.
Besides the neutrino, the time equation is discussed in limiting situations of the
standard cosmology. ©1996 American Institute of Physics.@S0022-
2488~96!02701-4#

I. INTRODUCTION

In this paper we determine the solution of the Dirac wave equation in the curved space–time
given by the Robertson–Walker metric. The formulation of the equation is done by the spinorial
formalism of Newman and Penrose,1 an account of which can be found in the books by Penrose
and Rindler2 and by Chandrasekhar.3 Besides the physical interest, this study is motivated also by
the fact that the Dirac equation is not directly separable as it happens in the massless case or in the
context of the Kerr geometry.4–6

For what concerns the solution of the Dirac equation, the separation of the angular part is
performed in a standard way3 obtaining the Teukolsky-like equation for spin12 field admitting
explicit solution.7 The surviving coupled equations in ther ,t variables which are not separable are
treated by expressing the unknown wave function in terms of a known particular solution. This
enables us to separate ther and t dependence in such a way that the resultingr -equation is
independent of the mass of the particle. The price to be paid is, however, the fact that the final
resulting t-equation comes out to be of second order. The possible values of the constantK2

relative to ther ,t separation, which are interpreted as giving the energy spectrum of the particle,
are determined by the study of the radial equations corresponding in the case of a flat, closed and
open universe. In each case the solutions of the equations are explicitly found. The set of values
of K2 reduces to a discrete set in the closed universe case.

The time equation, which depends explicitly on the dynamics of the underlying cosmological
model, is discussed in connection with limiting situations of the standard cosmology. The present
treatment covers the results relative to the neutrino case previously considered only in a special
case.

II. THE DIRAC EQUATION

It is well known that the Dirac equation can be written in general relativity in terms of
covariant derivatives and generalized Pauli matrices. In the context of the Newman–Penrose
formalism the Dirac equation can be further expressed in terms of directional derivatives and spin
coefficients~we will refer to Chandrasekhar’s book3 for notations, mathematical conventions, and
development of the formalism!.

Here we study the problem in the case of the Robertson–Walker space–time of metric

ds25dt22R2~ t !F dr2

12ar2
1r 2~du21sin2 u df2!G ~a50,61!. ~1!

0022-2488/96/37(2)/874/6/$10.00
874 J. Math. Phys. 37 (2), February 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



We choose the null-tetrad frame$ l i ,ni ,mi ,m! i% whose associated directional derivatives are given
by

D5 l i] i5
1

&

@] t1R21A12ar2] r #,

D5ni] i5
1

&

@] t2R21A12ar2] r #,

~2!

d5mi] i5
1

&rR
@]u1 i cscu]f#,

d!5m! i] i5
1

&rR
@]u2 i cscu]f#,

and whose corresponding nonzero spin coefficient are given by7

r52
1

&rR
~rṘ1A12ar2!, b52a5

cot u

2&rR
,

~3!

m5
1

&rR
~rṘ2A12ar2!, e52g5

R

2&R
.

The Dirac equations in the Newman–Penrose formalism are then3

~D1e2r!F11~d!2a!F25 im!G1 ,

~D1m2g!F21~d2a!F15 im!G2 ,
~4!

~D1e2r!G22~d2a!G15 im!F2 ,

~D1m2g!G12~d!2a!G25 im!F1 ,

where m!& is the mass of the particle. Owing to the special dependence of the directional
derivatives and of the spin rotation coefficients on the variablef, thef dependence of the wave
function can be assumed to be given by the usual factoreimf ~m50,61,62,63,...!. With this
assumption the Dirac equations become

&rR~D1e2r!F11L2F25 im!rRG1&,

&rR~D1m1e!F21L1F15 im!rRG2&,
~5!

&rR~D1e2r!G22L1G15 im!rRF2&,

&rR~D1m1e!G12L2G25 im!rRF1&,

where it has been setL65]u7m cscu1~1/2!cotu, the wave function depending now on the
variablesr ,u,t. Also, theu dependence can be separated by setting
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rR~ t !F15H1~r ,t !S1~u!, rR~ t !F25H2~r ,t !S2~u!,
~6!

rR~ t !G15H2~r ,t !S1~u!, rR~ t !G25H1~r ,t !S2~u!,

thus obtaining from Eqs.~5! the Teukolsky-like equations for spin12 field
3,4

L2S252lS1 , L1S15lS2 , ~7!

and the equations in ther ,t variables

DH11eH15S im!2
l

rR&
DH2 , DH21eH25S im!1

l

rR&
DH1 , ~8!

l being the separation constant. The solution of the eigenvalue problem forS1 ,S2 that arises from
Eqs. ~7! gives l25~l11!2 ~l50,1,2,3,..! if m50 and l25~l11

2!
2 ~l5umu,umu11,umu12,...! if

umu>1, the eigenfunctionsS1 ,S2 being essentially the Tchebichef polynomials in the first case and
the Jacobi polynomials in the second one.7

A straightforward inspection of the coupled equation~8! shows that ther ,t dependences are
not directly separable, namely that solutions of the formH15R1(r )T1(t), H25R2(r )T2(t) are
not possible for Eq.~8! if at leastR1ÞR2 or T1ÞT2 . Furthermore, Eqs.~8! imply also that the
wave function is subject to the constraintsH1(0,t)5H2(0,t)50.

III. SEPARATION OF TIME AND RADIAL EQUATIONS

In order to integrate Eqs.~8! we are first interested in the special solutions obtained by setting
thereH65H156H2 . An explicit integration gives

H65
K6

R~ t !1/2 S r

11A12ar2
D 7l

exp~6 i&m!t ! ~a50,61!, ~9!

K6 being integration constants. Now we look for a general solution of the form

H15A~r ,t !H1, H25B~r ,t !H1. ~10!

SinceH1 itself is a solution, Eqs.~8! imply for A,B the equations

DA5S im!2
l

rR&
D ~B2A!, DB52S im!1

l

rR&
D ~B2A!. ~11!

To ease the calculation, instead of ther ,t variables, we introduce now as independent variables

t5t~ t !5E
0

t dt

R~ t !
, s5s~r !5E

0

r dr

A12ar2
~12!

in terms of which the directional derivatives simplify toD5(]t1]s)/(R&) and
D5(]t2]s)/(R&). By further setting

2A5X~t,s!1Y~t,s!, 2B5X~t,s!2Y~t,s!, ~13!

in Eq. ~11!, we obtain
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Xt1Ys5
2l

r
Y, Yt1Xs522im*&RY, ~14!

from which the second-order equation forY follows

Ytt2Yss12& im*RYt12
l

r
Ys12S& im*Rt2

lr 8

r 2 DY50 ~15!

that can be separated. Indeed if we putY(t,s)5A(s)T(t) in Eq. ~15!, we obtain

A922
l

r
A81S 2lr 8

r 2
1K2DA50, ~16!

T912& im*T8R1~2& im*R81K2!T50, ~17!

K2 being the separation constant. It is worth noting that Eq.~16! is independent of the mass of the
particle. Once theY solution is known, theX solution can be easily obtained from Eq.~14!, which
in its turn implies a wave function of the form

H1~r ,t !5
H1~r ,t !

2 HA~s!T~t!1F2l

r
A~s!2A8~s!G E

0

t

Tdt1X~0,s!J . ~18!

An analogous result holds forH2. If, instead of~10!, we assumeH15AH2, H25BH2 we obtain
the above equations with the substitutionsX↔Y.

IV. RADIAL EQUATIONS

We discuss Eq.~16! separately according to the different values 0,61 of a.
Case a50: Equation~12! gives r5s. If we put x52iKr , A5x2le2

1
2xv(x) in Eq. ~16!, we

find thatv satisfies the confluent hypergeometric equation:

xv91~2l2x!v82lv50, ~19!

whose solution8 that is acceptable inr50 is v5F(l;2l;x)
Case a51: From Eq. ~12! we have r5sins. By setting 2x215coss and

A5[x(12x)] 1/2f (x) in Eq. ~16! we find for f the hypergeometric equation

x~12x! f 91~ 3
21l23x! f 81~K221! f50, ~20!

whose acceptable solution~namely the one generating anH1 solution which vanishes forr50! is

f ~x!5~12x!l21/2F~l1 1
21K,l1 1

22K;l1 1
2;12x!. ~21!

As a consequence of Eq.~16! we have thatA(s) is subject also to the constraintA~p/2!50.
Therefore the solution~21! must be such thatf ~ 12!50 or

F~l1 1
21K,l1 1

22K;l1 1
2;

1
2!50, ~22!

a condition which implies the existence of discrete values ofK2. A class of solutions of Eq.~22!
is given by

K5Kn52n1 1
21l, ~n50,1,2,3,...!. ~23!
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Indeed, apart from a positive numerical factor, we haveF(22n,2l1112n;l1 1
2;

1
2)

[P2n
(a,a11)(0), ~a5l21

2!. However,P2n
(a,a11)(0)5bP2n11

(a,a) (0)1b8P2n21
(a,a) (0)50 by using the re-

currence relations and the relationPn
(a,b)(x)5(21)nPn

(b,a)(2x) for Jacobi’s polynomials.8

Case a521: We have from Eq. ~12! r5sinhs. By setting 2x215coshs and
A(x)5„x(x21)…1/2f (x) in Eq. ~16! one obtains forf exactly Eq.~20! with the substitutionk→ ik.
Therefore the acceptablef is heref5(12x)l21/2F(l1 1

21 iK ,l1 1
22 iK ;l1 1

2;12x).

V. TIME EVOLUTION AND INTERPRETATION

We first consider the neutrino case. By settingm
*

50, Eq. ~17! becomes

T91K2T50 ~24!

and its solution together with a suitable choice ofX(0,s) in Eq. ~18! implies a time dependence of
theH1 wave function through the factor

R21/2 expF6 iK E
0

t dt

R G , ~25!

which apart from the present double sign is one of the neutrino cases previously studied.7

Therefore we interpretK2 to represent the the energy of the neutrino because in Ref. 7K2 was
the energy eigenvalue of the Scrho¨dinger equation to which the massless Dirac equation was
reduced by means of the Chandrasekhar method. In general, both for massless and massive
particles, we interpretK2 as the gravitational interaction energy that is independent of the mass of
the particle as a consequence of Eq.~16!. By taking into account the result~23! there follows that
in the case of a closed universe the energy of the particle contains a discrete spectrum. However,
a numerical evaluation of these energy levels gives results that are beyond the present experimen-
tal sensitivity both for the neutrino as well for the electron.7

Besides the neutrino case, Eq.~17! can be solved, in principle, by giving an explicitR(t)
function representing the dynamics of the cosmological background.

An explicit analytical solution of Eq.~17! is not easy in general nor in the standard cosmol-
ogy. Therefore we will consider Eq.~17! in some special physical situations all relative to the
standard cosmology.

~a! SupposeR(t) is given by the solution of the Friedmann–Einstein equation of the standard
Cosmology relative to the case of a closed~a51! dominated matter universe with arbitraryV0.1,
V0 being the ratio of the energy density to the critical density today. In this case the scale factor
R(t) increases from 0 att50 to its maximumR̄5R~tmax! and then collapses to zero at time
t52tmax.

9 In correspondence of time intervalst2tmax small on cosmological scale, but great on
microscopical level, we can assumeR8(t)5Ṙ(t)R(t)>0, R(t)>R̄.

Under this assumption, Eq.~17! gives

T~ t !}exp@ i t ~2m*&6A2m
*
2 1~k/R̄!2!#. ~26!

~b! Another situation of interest is the one relative to the open~a521! dominated matter
Universe withV0,1 of the standard cosmology for time intervals relative to very large timet so
that one can assume9

R~ t !>R0H0t>R0H0e
R0H0t. ~27!

Therefore the asymptotic behavior of the solutions of Eq.~17! is given by
T~t!>exp~2H0R0t)>t21 and for t@1 theH1 time dependence is of the form@see Eqs.~9! and
~18!#
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t21/2ei&m
*
t. ~28!

~c! Consider now the case of a cosmological model witha50 and comparable contributions to
the energy density from both matter and radiation. For larget, R;t2/3 henceR;t2 so that the
asymptotic behavior of the solutions of Eq.~17! are now approximated byT;t22;t22/3 so that
H1 has the time dependence

t21/3ei&m
*
t. ~29!

~d! Finally, consider the model of the points~a! and~b! for small t. We haveR;t2/3;t2 for
a561.9 The solutions of Eq.~17! are then approximated for smallt by the solutions of Eq.~24!
which imply now, for smallt, theH1 time behaviour

t21/3 exp~ i&t !m* . ~30!

The fact that in the previous cases thet dependence ofH1 factors out is a consequence of the
approximation done, while it is a general property for the neutrino case which is completely
separable.7
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Geometrical aspect of topologically twisted
two-dimensional conformal superalgebra
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We study the topologically twisted osp~2u2!%osp~2u2! conformal superalgebra. The
algebra includes the Lagrangians which are intrinsic to the topological field theory
and composed of fermionic generators. Studying the Lagrangians through a gauge
system of osp~2u2!%osp~2u2!, geometrical features inherent in the algebra are re-
vealed: a moduli space associated with the algebra is derived and the crucial roles
which the fermionic generators play in the moduli space are clarified. It is argued
that there exists a specific relation between the topological twist and the moduli
problem through a geometrical aspect of the algebra. ©1996 American Institute of
Physics.@S0022-2488~96!01702-4#

I. INTRODUCTION

In the recent progress of the quantum field theory~QFT!, the detection of the cohomological
field theory may be most the fascinating development. The theory is a kind of the topological QFT
which deals with topological invariants, and has been pioneered by E. Witten.1 We refer to the
cohomological field theory as TFT in the present paper and will focus on it. The theory has some
characteristic properties on the construction and has distinct framework. Therefore, many ener-
getic researches in TFT have been done2 and then TFT has been proved to be a real solid
methodology in QFT. A few substantial problems associated with TFT still remain to be solved,
however, for example, about the topological twist. In the conformal field theory~CFT!, the topo-
logical twist ofN52 CFT is performed through a redefinition of the energy–momentum tensor of
N52 theory,3 which generates the bosonic CFT models of vanishing central charge with hidden
fermionic ~topological! symmetry. In relation to the topological twisting mechanism, the different
twistings of the same model yield the different moduli problems, respectively, which are related
through the mirror symmetry4 as the explicit example of twisting in general. For another example,
the topological gauged WZW models5 are composed of two different gauge fixing procedures
from the same bosonic model, not necessarily twisting of theN52 supersymmetry6 of the
Kazama–Suzuki model,7 and in this case there surely exists the mirror symmetry.

There are two typical stand points for constructing TFT, i.e., topological twisting and BRST
gauge fixing. Both approaches result in the so-called moduli problem.8,9 In either case, the re-
markable characteristic is that the Lagrangian is described asL5$Q ,!%, whereQ is the fermionic
operator of nilpotency, i.e., the so-called topological symmetry. In terms of the ordinary QFT
words,L is just composed of the BRST gauge fixing and the FP ghost terms, and theQ corre-
sponds to the BRST operator. Because of the BRST-exact form ofL, every correlation function is
independent of the coupling factor as a consequence of which the leading contribution to the
path-integral is only the classical configuration of the fields, i.e., zero mode. This zero mode
configuration is associated with some moduli space. In the BRST approach, the relation between
the moduli problem and TFT may be comparatively clear owing to the intrinsic constructing
procedure where some moduli problem can be settled as the gauge fixing condition. In the topo-
logical twisting formalism, the above relation is not much clearer, on the contrary. It seems that
there has not been a common recognition on what the topological twist is really doing.

a!Electronic-mail: nano@rikkyo.ac.jp
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In the present paper, we concentrate onN52 finite-dimensional superalgebra in two dimen-
sions, perform the topological twist on such a superalgebra, and show a characteristic property
associated with the topological twist by discussing the twisted superalgebra, i.e., the so-called
topological algebra, through a gauge system. First, a geometrical feature inherent in the algebra is
revealed, and then it is argued that there exists a specific relation between the topological twist and
the moduli problem through a geometrical aspect of the algebra.

In the next section, we decide on osp~2u2!%osp~2u2! asN52 finite-dimensional superalgebra
and perform the topological twist on osp~2u2!%osp~2u2!, so that topological algebra is obtained. In
Sec. III, three types of the TFT’s Lagrangian are found in the topological algebra. One of the three
types of Lagrangian is focused on, and the field configuration is investigated in the case of
zero-limit of the coupling factor on the path-integral by considering a gauge system. It is shown
that this configuration is indeed a moduli space of flat connections associated with the topological
algebra, and this fact originates from vanishing Noether current. In Sec. IV, a geometrical aspect
of the fermionic charges is discussed. Under the weak coupling limit, the total Lagrangian which
is a linear combination of the three Lagrangians is regarded as the Laplacian operator on the
moduli space, and the fermionic charges as Fredholm operators. Taking account of these facts, the
moduli space which is obtained formally in Sec. III is made more visual. It is also shown that the
index of these operators could be derived if proper support in the moduli space can be defined.
Lastly, in Sec. IV, we discuss the triviality of the path-integral and obtain a nontrivial TFT’s
observable. The facts will support the argument developed in the present paper. In the final
section, it is claimed that the algebra has a specific relation with the moduli problem and the same
remark about the vanishing Noether current which plays a crucial role in the following discussions
is mentioned.

II. PROCEDURE OF TOPOLOGICAL TWIST

A. osp(2 z2)%osp(2 z2) algebra

The first issue is the specification ofN52 finite-dimensional superalgebra in two dimensions
on which the topological twist will be performed. The topological twist usually means the mixing
of the representation space of the internal symmetry group of the supersymmetry with that of the
symmetry group with respect to the space–time, i.e., spinor space. On manifolds, the latter sym-
metry is local. Consequently, the former symmetry must also be local. The situation is allowed in
the case of the conformal supersymmetry alone. On the contrary, the other types of the super-
extended algebra, that is, super-Poincare´ or super-~anti-!de-Sitter, must not be adapted for the
present case because it is not possible to deal with its internal symmetry as a purely geometrical
object in contrast to the conformal case. In the first place, the topologically twisted super-Poincare´
algebra is incomplete from the geometrical view point.10,11

What we are next interested in is the finite-dimensional conformal superalgebras. The finite-
dimensional simple Lie superalgebras are fully investigated12 and all the finite-dimensional con-
formal superalgebras in two dimensions are shown.13 The four-types of all the algebras must be
eliminated from the physical view point;s2, osp~2,1uN!, su~1,1u1,1!, and d~1,2;a!.13 The four-types
are unsuitable also for the present case, either because there exists no anticommutator of the
supercharges or because the supersymmetry is in the representations of integer spin. We will soon
understand the reason why in the forthcoming contexts. After all, the possible finite-dimensional
conformal superalgebras in two dimensions are then osp~Nu2! ~N>0!, su~Nu1,1! ~N>2!, f 4, and
g3. Moreover, it is theN52 case that we are interested in. In this case, the remaining card is
osp~2u2! alone. Therefore, osp~2u2! is the unique solution for performing the topological twist on
finite-dimensionalN52 superalgebra in two dimensions.

The internal symmetry group of Osp~2u2!^Osp~2u2! in relation to ~2,2! supersymmetry is
SO~2!^SO~2!, and Osp~2u2! is required to be compact so that its Cartan–Killing form is positive
definite, while the super Lie group Osp~2u2! is generally not compact. osp~2u2!%osp~2u2! confor-
mal superalgebra on which the twisting operation will be made to form a corresponding topologi-
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cal algebra is then confined to the two-dimensional Lorentzian manifold with the local Lorentz
metric in the light-conecoordinates:gzz̄5 gz̄z5 22,gzz̄5 gz̄z5 2 1

2, andg
zz5 gz̄z̄5 gzz5 gz̄z̄5 0.

This ~2,2! superalgebra contains two types of complex Weyl spinorial chargesQ, Q̄; S, S̄, where
‘‘ 2’’ means the Dirac conjugationQ̄5Q†g0 in which g05is2 and incidentally g15s1,
g552g0g15s3, or equivalentlygz5g01g1, g z̄ 5 g0 2 g1 in the light-cone coordinates. These su-
percharges are two component spinors, for exampleQ5(Q1 ,Q2)

t, where ‘‘1,2’’ mean spinor
indices describing ‘‘left’’ and ‘‘right’’ moving, respectively, with respect to the local Lorentz
coordinates (z,z̄). These indices are raised and lowered by a metric in spinor space given by the
charge conjugation matrix C5g0: h125h21521, h215h1251, and
h115h225h115h2250.

We can leave out the conjugate parts of the bracket bosonic relations with respect to the
complex supercharges of osp~2u2!%osp~2u2! as follows:

@S, Pa#5gaQ, @S, D#52 1
2S, @S, M #52 1

2g5S,

@Q, Ka#52gaS, @Q, D#5 1
2Q, @Q, M #52 1

2g5Q,
~2.1!

@S, A#52 i 14g5S, @S, V#52 i 14S,

@Q, A#52 i 14g5Q, @Q, V#52 i 14Q.

If we want to get these conjugate parts of Eqs.~2.1!, we must pay attention to the fact that the
representation of the body so~2!%sp~2! of osp~2u2! is anti-Hermitian where the anti-Hermitian
character of the representation of sp~2! actually leads to the positivity of the Cartan–Killing form
of osp~2u2!.

Ordinary~2,2! supersymmetry which is free from the central charges is the direct sum of~2,0!
and ~0,2!, and the corresponding part in osp~2u2!%osp~2u2! reads

$Q1 ,Q̄1%5 iPz , $S1 ,S̄1%52 iK z ,
~2.2!

$Q2 ,Q̄2%5 iPz̄ , $S2 ,S̄2%52 iK z̄ .

While the super-extended conformal algebra has no central charge, there are mixing parts, instead,
in the relations between the supercharges, and consequently the decomposition mentioned above
does not exist. The mixing part of~2,0! and ~0,2! in osp~2u2!%osp~2u2! is

$Q1 ,S̄2%5 i ~M2D !12~A2V!,

$Q2 ,S̄1%5 i ~M1D !12~A1V!,
~2.3!

$Q̄1 ,S2%5 i ~M2D !22~A2V!,

$Q̄2 ,S1%5 i ~M1D !22~A1V!.

The property will play an important role in the forthcoming contexts.
The bosonic generators of osp~2u2!%osp~2u2! are as follows:Pa , Ka , M , D, A, andV are

translation, conformal-translation, Lorentz, Weyl, chiral so~2!, and internal so~2!, respectively. The
finite two-dimensional conformal algebra composed of these bosonic generators alone is
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@Pa , M #5eabP
b, @Pa , D#5Pa , @Ka , D#52Ka ,

~2.4!
@Ka , M #5eabK

b, @Ka ,Pb#52~eabM2dabD !,

whereeareezz̄5 2e z̄z5 22,ezz̄5 2e z̄z5 1
2,ande

zz5 e z̄z̄5 ezz5 e z̄z̄5 0.
Lastly in the presentation of osp~2u2!%osp~2u2! algebra, let us comment on the naming of the

generators of osp~2u2!%osp~2u2!. In Sec. III where a pure gauge theory of osp~2u2!%osp~2u2! on
two-dimensional manifold will be considered, the naming, for instance,P as translation, is per-
fectly formal. If not, the general coordinate transformations must exist in the system and then the
theory may become empty as well as the ordinary 2-D conformal supergravity theories.14

B. Topological twist

We are now in a position to perform topological twisting of the algebra. Topological twist is
usually a kind of mixing which results in identification of the representation space of internal
symmetry group ofN52 supersymmetry with that of the local Lorentz group. It is easy to perform
twisting of the algebra to get the topological algebra. Most of all what we have to do is to replace
Q, Q̄, S, andS̄with Q1,Q2, S1, andS2, respectively. The indices ‘‘1,2’’ are raised and lowered
with the same metric as for the indicesa;b of Cab andQa . That is, the complex Weyl spinors
wa ,w̄a are substituted forwa

1,wa
2.

wa5
i

&

wa
1, w̄a5

i

&

wa
2. ~2.5!

The remaining manipulations are as follows. The fermionic chargesQ15(Q1
1,Q2

1) t have
become~~0,0!-form, ~0,1!-form!, andQ25(Q1

2,Q2
2) t with ~~1,0!-form, ~0,0!-form!, idemS6.

Then we have to modify the definitions of local LorentzM and WeylD generators so that the four
~0,0!-form fermionic generators of supersymmetry have no charge with respect to these two
bosonic generators. We have put the representation space accompanied with the internal symmetry
group SO~2!^SO~2! upon the space of spinor. The modifiedM , D generators must be direct sums
with so~2!%so~2! generatorsV andA, respectively. The solution to this constraint resolves into

M̃5M12iV, D̃5D12iA. ~2.6!

These modified generators then satisfy the following relations:

@D6
6, M̃ #50, @D6

6,D̃#50, ~2.7!

whereD means bothQ andS.
There appear some problems about the closure of the modified algebra, however. The genera-

torsA andV have been put uponD andM , respectively, and the modified algebra which contains
M̃ and D̃ must not containA andV. In fact, the modified algebra contains subtle relations:

$Q2
1,S1

2%5 i ~M̃1D̃ !24i ~A1V!,
~2.8!

$Q1
2,S2

1%5 i ~M̃2D̃ !14i ~A2V!.

We can avoid the above relations~2.8! as in the following. Here it is necessary to omit another
generator with regard to Eqs.~2.8!, if this modified algebra still obeys the closure property for the
generators of the gauge symmetry. In this point of view, the four fermionic generatorsQ1

2, Q2
1,

S1
2, andS2

1 do not induce the gauge transformations generated by bothi (M̃1D̃)24i (A1V)
and i (M̃2D̃)14i (A2V). There are two alternatives, that is, the case in which the left chiral
chargesQ1

2, S1
2, Pz , andKz vanish, or the case in which the right chiral chargesQ2

1, S2
1,
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Pz̄ , andKz̄ vanish, without any compensation procedure, that is, all gauge fields and parameters
of these four generators are assured to vanish. The second case is adapted here. In Sec. IV, it will
be shown that a moduli space derived from either case is reduced to that associated with an
intersection part of both cases.

The twisting procedure is explained in terms of the gauge fields of the corresponding sym-
metry osp~2u2!%osp~2u2!. Let us introduce the gauge fielda, which is Lie superalgebra-valued
one-form of osp~2u2!%osp~2u2! in the form

am5em
aPa1 f m

aKa1vmM1bmD1amA1vmV1c̄mQ1Q̄cm1f̄mS1S̄fm , ~2.9!

as well as transformation parametert defined by

t5jP
aPa1jK

aKa1l lM1ldD1uaA1uvV1 «̄Q1Q̄«1k̄S1S̄k. ~2.10!

Using the gauge fields and parameters, the above-mentioned topological twist and additional
manipulations can be described as follows: Eqs.~2.6! mean

vm52ivm , am52ibm , ~2.11!

and elimination of the generatorsQ2
1, S2

1, Pz̄ , andKz̄ means

fm1
2505cm1

2, k1
2505«1

2,
~2.12!

em
z̄ 505 f m

z̄ , jP
z̄505jK

z̄ .

Under the conditions we are led to

dfm1
1;dfm2

2, dcm1
1;dcm2

2. ~2.13!

Accordingly, we have the following identifications:

cm1
152cm2

2[2cm , fm1
152fm2

2[2fm ,
~2.14!

«1
152«2

2[2«, k1
152k2

2[2k,

which read without loss of generality

Q[Q1
11Q2

2, S[S1
11S2

2. ~2.15!

Taking into account all these additional conditions with respect to the topological twist on the
original osp~2u2!%osp~2u2!, we get the gauge connectiona,

ȧm5em
z Pz1 f m

z Kz1vmM̃1bmD̃2 1
2~Q1

2cm2
11S1

2fm2
11cmQ1fmS!, ~2.16!

and transformation parametert,

t5jP
z Pz1jK

z Kz1l l M̃1ldD̃2 1
2~Q1

2«2
11S1

2k2
11«Q1kS!, ~2.17!

respectively.
After all, the generators in Eqs.~2.16! and ~2.17! obey the following relations:

@S, Pz#5Q1
2, @Q1

2, D̃#5Q1
2, @Q1

2, M̃ #52Q1
2,

@Q, Kz#52S1
2, @S1

2, D̃#52S1
2, @S1

2, M̃ #52S1
2,

884 Noriaki Ano: Geometrical aspect of topological algebra

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



$Q,Q1
2%522iPz , $S,S1

2%52iK z , $Q,S%524iM̃ , ~2.18!

@Pz , M̃ #52Pz , @Pz , D̃#5Pz ,

@Kz , M̃ #52Kz , @Kz , D̃#52Kz ,

and the gauge connections~2.16! satisfy the following transformation rules:

dcm5]m«,

dfm5]mk,

dcm2
15Dm«2

11jP
zfm1~l l2ld!cm2

12em
z k,

dfm2
15Dmk2

12jK
z cm1~l l1ld!fm2

11 f m
z «,

~2.19!

dem
z 5DmjP

z1~l l2ld!em
z 2

i

4
~«cm2

12cm«2
1!,

d f m
z 5DmjK

z 1~l l1ld! f m
z 1

i

4
~kfm2

12fmk2
1!,

dvm5]ml l1
i

4
~kcm2«fm!,

dbm5]mld ,

where

Dm«2
15~]m2vm1bm!«2

1, Dmk2
15~]m2vm2bm!k2

1,
~2.20!

DmjP
z5~]m2vm1bm!jP

z , DmjK
z 5~]m2vm2bm!jK

z .

The field strengths in relation to the discarded right chiral chargesQ2
1, S2

1, Pz̄ , andKz̄ all
vanish as expected. The resultant algebra~2.18! can be referred to as the topological algebra.10

SO~2!^SO~2! symmetry still remains as global internal symmetry whose charge is the so-
called ghost number, the generators of which are defined byG[2i (A2V), G̃[2i (A1V). Here
G andG̃ satisfy the following relations:

@G, Q1
1#5Q1

1, @G,S1
1#52S1

1,

@G,Q1
2#52Q1

2, @G̃,S1
2#5S1

2, ~2.21!

@G̃,Q2
2#5Q2

2, @G̃,S2
2#52S2

2,

where the other combinations are trivial. As a consequence of Eqs.~2.21!, indeed, it is natural to
regard these generatorsG, G̃ as the ghost number operators. HereQ6

6 andS1
2 increase the

ghost number by one unit, whileQ1
2 andS6

6 decrease it by the same quantity. The assignment
is consistent with the relations~2.18! and ~2.19!.

In preparation for the forthcoming contexts, next the description of the coordinate indices in
the relations~2.18! must be simplified. First of all, the local Lorentz coordinates are substituted for
spinor indices of the supercharges as follows:
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Q1
252Qz , S1

252Sz , ~2.22!

from the following relations of fermionic fieldw:

wa
b5wa~ga!a

b5

1 2

1 S 0 2

0 0D2

wz1

1 2

1 S 0 0

22 0D2

w z̄ , ~2.23!

wherea~b! is ‘‘1,2’’ and ‘‘ a’’ means ‘‘z,z̄’’. The above supercharges are further substitutable as
follows:

Qz5qzQc , Sz5szSc , ~2.24!

whereqz andsz , carrying the chiral index,z, commute all generators in the algebra~2.18! and ‘‘c’’
means the ‘‘chiral’’. Hereqz and sz are left chiral components of real vectorsq 5 (qz ,qz̄)

t, s
5 (sz ,sz̄)

t, respectively. Therefore,Qc and Sc are real generators. We then obtain a different
description of the topological algebra~2.18!:

@S, qzPz#52qQc , @Qc , D̃#5Qc , @Qc , M̃ #52Qc ,

@Q, szKz#522sSc , @Sc , D̃#52Sc , @Sc , M̃ #52Sc ,

$Q,Qc%52
i

q
qzPz , $S,Sc%5

i

s
szKz , $Q,S%524iM̃ ,

@Pz , M̃ #52Pz , @Pz , D̃#5Pz ,

@Kz , M̃ #52Kz , @Kz , D̃#52Kz , ~2.25!

whereq5qzqz ands5szsz .
We must note that the four generatorsqzPz , s

zKz , Qc , andSc still behave as holomorphic
one-forms because the real vectorsq, s commute all generators in the algebra~2.25! and then the
commutation relation withM̃ is still retained. It is a matter of course that, if two-manifoldM2 is
Hermitian with no boundary, four generatorsqzPz , s

zKz , Qc , andSc could behave as zero-forms,
that is, they commuteM̃ , regardingqz(sz) as the ordinary adjoint Dolbeault operator;]†~52* ]̄* !
which satisfies the relation@M̃ ,]†#52]†. We must note that the scale dimensions can not be wiped
out through]†, however.

III. REDUCTION TO MODULI SPACE

Let us introduce TFT Lagrangians in explanation of the derivation of a moduli space associ-
ated with the algebra~2.25!:

LQ5$Q,Qc%, LS5$S,Sc%, LQS5$Q,S%. ~3.1!

We see that the above relations are on two-manifold with boundary owing to the Stokes’ theorem,
and it is possible for the corresponding theory to be in the case of two-manifold without boundary.
We can make the formulation on manifold without boundary by means of the inner product of the
path-integrals as ‘‘in’’ and ‘‘out’’ states,15,16and then suppose that the manifold of the theory will
be without boundary. Moreover, at the quantum level the three Lagrangians~3.1! are invariant
under the symmetry generated by the topological algebraA!:

A!5Pz ,Kz ,M̃ ,D̃,Q,Qc ,S,Sc , ~3.2!
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because, if the Lagrangian is the exact form of BRST-like operatorQ of TFT, the path-integral of
theQ -exact form is trivial;^Q -exact&50. We will show that the moduli space associated with the
algebra~2.25! can be derived just by focusing on the LagrangianLQS through a gauge system of
osp~2u2!%osp~2u2! algebra.

It is well known that the configuration of the system results in a corresponding moduli space
after the quantization in TFT. The reduction to a moduli space is a result of the weak coupling
limit. Under the limit, the leading contribution could be given by zero mode, that is, the classical
configuration which makes the Lagrangian vanish. We now suppose that there exists some proper
observable which guarantee the nontriviality of the path-integral. Let us start with a vanishing
Lagrangian condition. Therefore, we obtain

LQS5$Q,S%524iM̃50. ~3.3!

There exists a systemG of the gauge fields~2.16! of the topological algebra~2.25!. Let a Noether

current which generatesM̃ beJ0
M̃ . From the condition~3.3!, dJ0

M̃ 5 0 on two-manifoldM2 without

boundary can be derived. The condition meansJ0
M̃ is constant onM2 for arbitrary 2-D metric.

Moreover, it is necessary to estimate the behavior of the path-integral defined on two-manifold
with boundary under the zero coupling limit. We know that a path-integral on manifold with
boundary can be regarded as a functional on boundary:

ZDi
@w#5E

cu]M25w
Dce2S~c! ~ i51,2!, ~3.4!

whereM2 5 D1ø]M2D2. The boundary conditioncu]M2 5 w could be confined in a delta function
with a proper periodicity. The coupling factor independence ofZDi

@w# is evident because the
invariance ofZDi

@w# under the gauge transformations byQ andS holds.15 Therefore, we see that

ZDi
@w#~O !5E Dce2S~c!dp~cu]M22w!O50, ~3.5!

where O5Q- or S-exact anddp denotes a delta function with some proper periodicity. The
characteristic~3.5! guarantees the coupling factor independence ofZDi

@w# in a way similar to the
case of no-boundary. Therefore, the zero coupling limit would induce the classical configuration

which makes the Lagrangian vanish and then the conditionJ0
M̃ 5 0 on boundary holds because the

Lagrangian could be described as one-dimensional integration on]M2; L 5 *]M2J0
M̃ . Conse-

quently, the condition~3.3! is reduced toJ0
M̃ 5 0 on two-manifold without boundary. We then

define a subconfigurationGs which satisfiesJ0
M̃ 5 0. The constraintJ0

M̃ 5 0 yields the following
reduction of the configuration:

G⇒Gs . ~3.6!

Let us confine ourselves to investigation of the physical meaning of the reduction mentioned
above just through the Noether current which is composed of the connections of original
Osp~2u2!^Osp~2u2! ~[G !. To this aim, we will consider a pure gauge theory of osp~2u2!%osp~2u2!,
not supergravity theory. Therefore, the naming of the generators of osp~2u2!%osp~2u2!, which is
shown in Sec. II, is perfectly formal. If not, that is, the naming is meaningful, the general coor-
dinate transformations must be induced, and then the theory becomes empty as in the case of the
ordinary two-dimensional conformal supergravity gauge theory.

Let us start with considering the Yang–Mills action on two-dimensional manifold without
boundary:
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LYM2
5E

M2
uRG u2* 1, ~3.7!

where* is Hodge star operator andRG is a field strength two-form:RG5RABIAB in which I AB is
the Cartan–Killing matrix on the Lie algebra ofG . Here the normuRG u2 has been obtained by
using the metric onM2 and I AB . It is of interest to argue that the integrand of Eq.~3.7! can be
rewritten asRA`*R

BIAB , together with the volume form of the metric*1. It is a matter of course
that Eq.~3.7! is invariant with respect to the gauge symmetryG and has no general coordinate
invariance. The time component of the Noether current in association with the symmetry gener-
ated byM then turns out to be

JM
0 5

]LYM2

]~]0am
A!

GM
A ~a!m5RBLABGM

A ~a!m , ~3.8!

whereGM
A ~a!m is defined by

dMam
A5lMGM

A ~a!m , ~3.9!

a is general form of the gauge connections, andRA5R01
A . We can now add the optional field

strength components to the original current~3.8! owing to the ambiguity of the Noether current.
We are free to choose the additional term:

]a~uARAab!, ~3.10!

whereuA(x) zero-form is an arbitrary function which supplements the characteristics ofJM
0 with

respect to the paired field strengthRA. Here note that the summation convention for repeated
indices does not apply to indices ofu and of exponent of statistical factor~2! in the following
equations. It is a matter of course that the conventional sum rule is alive for the indices except the
exponent ofu.

For the purpose of determining the compensating factoruA(x) zero-form, we refer to Eq.~3.8!
in which GM

A ~a!m is composed of the gauge transformationd/ta
A one-form as in Eq.~3.9!, and

surely correspond touA(x) zero-form. Therefore,uA(x) zero-form must be constructed through
the reduction procedure ofdaA one-form. That is, we need some mapX:

X:daA...one-form°uA...zero-form. ~3.11!

The mapX can indeed be chosen as

X[D†, ~3.12!

whereD† is the adjoint exterior derivative operator:

D†:V r~M2!→U r21~M2!, ~3.13!

with D†5*D* on the two-dimensional Lorentzian manifold without boundary. We then obtain
uA(x) zero-form as follows:

uA[D†daA. ~3.14!

Accordingly, Eq.~3.10! is reduced to

]b~uARAba!5„]buA2~2 ! uBuuAu f BA
CuCab

B
…RAba1uADbR

Aba, ~3.15!

where
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DbR
Aba5]bR

Aba1~2 ! uBuuCu f BC
Aab

BRCba. ~3.16!

We next add Eq.~3.15! to JM
0 which leads to

JM
0 5 (

A~on u!

all

@Pm51
A~on u!RA1uADm51R

A#, ~3.17!

where

Pm51
A~on u!5~2 ! uBuuAuI ABGM

B ~a!11]1u
A2(

C

all

~2 ! uBuuAu f BA
CuCa1

B , ~3.18!

and(A(on u)
all denotes a summation of the indices appearing in the exponent ofu. That is, we must

sum up the indicesA in Eq. ~3.17! except for the indices appearing in the exponent of the
statistical factor~2!. The indexA of I AB and f BA

C in Pm51
A(on u) obeys the conventional summation

rule.
Our principal task is now to make the topological twist on the currentJM

0 ~3.17! and set it
upon the configurationGs as a result of the weak coupling limit. Making the topological twist on
JM
0 leads us to the modified currentJ

M̃

0
whereM̃5M12iV. The zero field strengths of the current

JM
0 are removed through replacement ofA by A! ~3.2!, which means that the configuration is
reduced toG. We then obtain the information for the limiting conditionJ

M̃

0
5 0 as follows:

RA!
50, uA

!
50. ~3.19!

Clearly, this solution~3.19! is not unique in the mathematical view point, but seems natural
because of the independence of the specific space–time coordinate index:m51.

The informationsRA!
50 and uA

!
50 obtained above play the roles of the constraints for

the configurationGs , which eventually lead to some moduli space. The number of the equivariant
constraintRA!

50 is equal to that of the fermionic connections with ghost numbercm~21!,
cm2

1~1!, fm~1!, andfm2
1~21!. Therefore,RA!

50 can be regarded as the fixing condition of the
so-called topological symmetry whose degree of freedom is equal to number of these fermionic
connections, i.e., the so-called topological ghosts.

Let us next explain the physical meaning of the conditionu A!
50. The tangent of the con-

nection spaceA can be decomposed17 as follows:

TaA5Im D%Ker D†, ~3.20!

where ImD one-form is the tangent in the gauge direction, while KerD† one-form means the
component orthogonal to the gauge orbit and 05u A!

5D†daA
!
is natural gauge condition in which

daA
!
is an infinitesimal variation of the connectionaA

!
. The constraintu A!

, the number of which
is equal to that of the generators of the gauge symmetry, is then regarded as the gauge fixing
condition.

We can therefore claim that all the constraintsRA!
50, u A!

50 which originate fromJ
M̃

0
5 0

indeed lead to a moduli space of flat connections:

Mflat5$RA!
50%/G !. ~3.21!

The moduli space~3.21! is really associated with the topological algebra~2.25!. The BRST gauge
fixing is necessary, by way of parenthesis, for the detailed investigation of observables, correlation
functions, and their geometrical meaning in TFT.18,19 Incidentally, let us describe another repre-
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sentation for the conditions~3.19!. If the infinitesimal variation of the connectiondaA
!
is onGs ,

the variations ofRA!
underdaA

!
must also vanish. Linearized representation20,21 of the flat con-

nection equations yields

05* dR5*Dda5*D** da5D†* da,
~3.22!

05D†da.

If da is the arbitrary variation onMflat , its Hodge dual!da, which is still one-form only in the
two-dimension, is also onMflat .

Let us next refer to the general coordinate transformations. In the ordinaryN52 conformal
supergravity, all curvatures must vanish in full consonance with the general coordinate transfor-
mations as gauge symmetry generated by the conformal super group.14 As a consequence, there
exists no kinetic term, i.e., no dynamics of connection fields in the ordinary theory. In the present
case, on the contrary, zero curvatures play the roles of the conditions which lead to the configu-
ration of the fields. Accordingly, the general coordinate transformationdgc~j! is induced by these
conditions. Heredgc~j! is expressed as

dgc~j!am
A5(

B
dB~jnan

B!am
A1jnRnm

A . ~3.23!

The topological twist on Eq.~3.23! induces the replacementA→A!, so that the zero field strengths
associated withA2A! are removed. Moreover, under the weak coupling limit, the resultant con-
figuration is given by~3.19!. Therefore, the transformation law~3.23! onMflat is described as
follows:

dgc~j!aa
A!

5(
B!

dB!~jnan
B!

!am
A!
. ~3.24!

In Eqs. ~3.24!, dgc~j! have been fixed in accordance with the thoroughly fixed gauge symmetry
~3.21!. It is then possible to argue that the configurationMflat is a quotient not only in the sense
of the gauge symmetry, but also in the sense of the diffeomorphism:

;/G !.;/Diff 0 . ~3.25!

IV. GEOMETRICAL MEANING OF FERMIONIC OPERATORS

In the last section, the moduli spaceMflat ~3.21! has been derived formally. It is possible to
obtain more information onMflat by studying a geometrical meaning of the fermionic operators of
the algebra~2.25!. In TFT, the operatordf of the BRST-like fermionic symmetry corresponds to
the exterior derivative operatord on a moduli space where the ghost number corresponds to the
form degree. In the topological Yang–Mills theory on four-manifolds,1,8 for instance, the cotan-
gent vector, i.e., one-form on the Yang–Mills instanton moduli space, is described as

d fa5c, ~4.1!

wherea is a generic point in the moduli space andc is a topological ghost. In the present case, it
is natural to regard the fermionic operatorsQ, S, QcSc as df , because there exists the ghost
number which has nothing to do with the gauge symmetry and, moreover, the fermionic operators
generate the transformations with the ghost number, that is, they are the ghost number carriers.
Whatever the gauge orbit may be collapsed under the zero coupling limit, the four fermionic
operators can still remain as BRST-like operators onMflat . The operation onMflat must be read
off from the transformation rule~2.19!. The existence of such operators onMflat leads us to
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consistent and interesting results. A space which we can regard as a moduli space will be equipped
with some analytical, or in other words, differentiable structure, in general. It is well known, for
instance, that the moduli space of 4-D~anti-! instantons is locally homeomorphic to a differen-
tiable manifold under the appropriate conditions, and the complex structure of the~anti-! instanton
moduli space corresponds to that of the base manifold.11,22 It is a matter of course that the
topological invariants of TFT, which are originated from the Donaldoson theory, must be integrals
on certain analytical support of the moduli space.

We now suppose that the moduli spaceMflat ~3.21! has such an analytical support. This
assumption is appropriate because the general discussion of flat connections shows that the moduli
space of flat connections is regarded as a manifold. In the present case, it is possible to decompose
Mflat locally into fermionic subspaceM f and bosonic subspaceMb as follows:

Mflat>M f
^Mb. ~4.2!

Accordingly,Mflat is regarded as a fiber bundle over the base spaceMb, which is described by
using the following fibration:

F → Mflat

↓ p

Mb

. ~4.3!

Here F denotes a fiber parametrized by the ghost number. That is,Mflat is regarded as the
Whitney sum bundle composed of the vector bundles;Ek with the ghost numberk~521,0,1!:

Mflat5E21%E0%E1 . ~4.4!

Let us discuss a geometrical meaning of the fermionic operators in the present theory. In Sec
III, the three TFT’s Lagrangians have been set up in~3.1!. While, under the weak coupling limit,
we have induced the reduction to the moduli spaceMflat by considering one of the three
Lagrangians;LQS, all Lagrangians are adapted here. We introduce a total LagrangianL tot as a
linear combination of the three Lagrangians:

L tot5LQ1LS1LQS. ~4.5!

Using the algebra~2.25!, L tot is also described as an anticommutator of two fermionic operators
as follows:

L tot5$QS ,QS †%, ~4.6!

whereQS 5Q1Sc andQS
†5Qc1S. As can be seen from the relations~2.21!, QS increases the

ghost number by one unit, whileQS † decreases it by the same quantity. Moreover, bothQS and
QS † are nilpotent. Under the weak coupling limit,QS andQS † can be regarded as operators on
the fiber bundleMflat . To be precise,QS ~QS †! operates on the vector bundlesEk ~k521,0,1!.
The operation sequence ofQS is

0→
i

E21 ——→
QS 21

E0 ——→
QS 0

E1 ——→
QS 1

0, ~4.7!

whereE215$c,fz%, E05$v,b,ez, f z%, E15$cz,f%, QS k ~k521,0,1!5QS , and i denotes in-
clusion. Therefore, we can regard the above sequence~4.7! as an elliptic complex, andQS as a
Fredholm operator withQS † its adjoint. Accordingly,L tot corresponds to the Laplacian operator.

It is possible to derive the index of the above elliptic complex as an additional result:
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ind~QS !5 (
k521

1

~21!kHarmk~MflatQS !50, ~4.8!

where Harmk~Mflat ,QS ! denotes the Kernel of$QS k ,QS k
†%.

The vanishing Lagrangian conditionL tot50 means that the eigenvalues of the Laplacian
operator must be zero. The facts seem to show thatMflat is corresponding to the Kernels;
Harmk~Mflat ,QS !. To see the contents of the Kernels, we describe the operator sequence~4.7! in
terms of the components:

fz

S

Q

f z→
Sc

f, c←
S

v→
Q

f, c←
Qc

ez

S

Q

cz, b. ~4.9!

As can be seen from the sequences~4.9!, four componentsez, f z, cz, andfz are not suitable for
the Kernel of the Laplacian. In the above context, we have indicated thatL tot is regarded as the
Laplacian under the weak coupling limit and the vanishing Lagrangian condition leads us to the
Kernels of the Laplacian. It is natural to expect that the Kernels correspond toMflat . Conse-
quently, we claim that the four components must not be inMflat .

This statement is also supported by the following consideration. First of all, there are two
closed loops in the sequences~4.9!, which are composed of two sets (ez,cz), ( f z,fz):

fz

S

Q

f z, ez

S

Q

cz. ~4.10!

The two components in each set circulate on its own loop by operation ofQ andS. Any other
components cannot reach the two loops by any operations. Moreover, theS-operation after the
Q-operation~or Q afterS! leads the component to itself and such a double operation ofS*Q ~or
Q*S! induces the transformation in the direction of the gauge orbit, because of the relation@Q,
S#524iM̃ . Therefore, the two closed loops are in the gauge orbit and are expected to be collapsed
together with the gauge orbit onMflat . The fact shows thate

z, f z, cz, andfz are not in the moduli
spaceMflat .

More detailed information ofMflat is obtained through studying the geometrical meaning of
the fermionic operators. It is clarified that the choice of the left-chiral part of the algebra~2.25! is
rather meaningless for the purpose of the derivation of the moduli space and the intersection of the
left- and right-chiral part is only effective. Therefore,Mflat is reduced toM0:

M05$RA!!
50%/G A!!

, ~4.11!

whereA!!5M̃ ,D̃,Q,S. We then claim that the moduli space intrinsic to the topologically twisted
osp~2u2!%osp~2u2! is reallyM0.

A. Observable

We will see that there exists a TFT observableO which assures that the path-integral under
consideration is nontrivial. Let us begin with introducing the following two forms:

%̂a5«v%̂a ~a50,1,!. ~4.12!

Hereev denotes a two-form determined by a metric and%̂a is a zero-form defined by

%̂a5cafa . ~4.13!
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The indexa can be regarded as mere labels because the coordinate transformations are not
considered. Therefore, we present a candidate for the nontrivial observable as in the following:

O5E
M2
dm %0%1 . ~4.14!

The behavior of%a under the gauge transformationdg ~2.19! is written in the form

dg%a5~]ae!fa1ca]ak5 éfa2ḱca5dQSca , ~4.15!

whereé5]ae and ḱ5]ak. Therefore, we see that

dgO5E
M2
dm dg~%0%1!5E

M2
dm$~dg%0!%11%0~dg%1!%

5E
M2
dm$~dQSv0!%11%0~dQSv1!%

5E
M2
dm dQS~v0%11%0v12v0v1!

5dQSE
M2
dm~v0%11%0v12v0v1!. ~4.16!

The above equation~4.16! shows thatO is gauge invariant in the path-integral. Clearly,O is not
dependent on a metric and includes the couplingc0f0c1f1. Therefore, we conclude thatO is a
nontrivial TFT’s observable. The fact shows that the path-integral is not trivial and supports the
present discussion from beginning to end.

V. SUMMARY AND REMARKS

First, we have investigated the topologically twisted osp~2u2!%osp~2u2! conformal superalge-
bra and derived the moduli space intrinsic to the twisted algebra. The algebra includes the appro-
priate TFT’s Lagrangians composed of the fermionic chargesQ, S, Qc , andSc . They lead us to
the moduli spaceMflat intrinsic to the algebra under the condition of the weak coupling limit. As
a consequence of the investigation of the geometrical meaning of the fermionic charges, it is
shown thatMflat is reduced toM0 associated with the intersection of the left- and right-chiral part
of the topological algebra and is just a moduli space inherent in the algebra. As an additional
result, the index of these fremionic operators is derived if some proper support in the moduli space
can be defined. The facts which have been clarified in the above discussion show that the topo-
logical algebra has a specific relation with a moduli problem. It is claimed that a geometrical
feature of the algebra is one of the interesting characteristics inherent in the topological twist.
Therefore, we have succeeded in shedding some light upon the relation between the topological
twist and the moduli problem through the geometrical aspect of the topological algebra.

Second, let us make a remark on the vanishing Noether current. Making use of the ambiguity
of the Noether current, we are led to the relation~3.17! between the vanishing Noether current
J
M̃

0
50 and the flat connection conditionsRA!

50, uA
!
50. In the conventional QFT, e.g., the

quantum electro-dynamics, this ambiguity mentioned above plays an important role in association
with avoiding one mass-less state to obtain a well-defined conserved charge while its physical role
is not clarified in the case of the classical correspondent. In the present TFT, on the contrary, the
classical theory has been obtained as the limiting case of the path-integral, and consequently the
ambiguity argued above leads to the corresponding moduli problem.
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We present a very quick and powerful method for the calculation of heat kernel
coefficients. It makes use of rather common ideas, as integral representations of the
spectral sum, Mellin transforms, non-trivial commutation of series and integrals
and skillful analytic continuation of zeta functions on the complex plane. We apply
our method to the case of the heat kernel expansion of the Laplace operator on a
D-dimensional ball with either Dirichlet, Neumann or, in general, Robin boundary
conditions. The final formulas are quite simple. Using this case as an example, we
illustrate in detail our scheme —which serves for the calculation of an~in principle!
arbitrary number of heat kernel coefficients in any situation when the basis func-
tions are known. We provide a complete list of new results for the coefficients
B3 ,...,B10, corresponding to theD-dimensional ball with all the mentioned bound-
ary conditions andD53,4,5. © 1996 American Institute of Physics.
@S0022-2488~96!00102-0#

I. INTRODUCTION

An important issue for more than twenty years now has been to obtain explicitly the coeffi-
cients which appear in the short-time expansion of the heat kernelK(t) corresponding to a
Laplacian-like operator on aD-dimensional manifoldM. In mathematics this interest extends to
basically all of Geometric Analysis, including in particular, the well-known connection that exists
between the heat equation and the Atiyah-Singer index theorem,1 but also analytic torsion, sharp
inequalities of borderline Sobolev and Moser–Trudinger type, etc. In physics, the importance of
that expansion is notorious in different domains of quantum field theory, where it is commonly
known as the~integrated! Schwinger–De Witt proper-time expansion.2,3 In this context, the heat-
equation for an elliptic~in general pseudoelliptic! differential operatorP and the corresponding
zeta functionzP(s) has been realized to be a particularly useful tool for the determination of
effective actions4 and for the calculation of vacuum or Casimir energies5 ~a fundamental issue for
understanding the vacuum structure of a quantum field theory!. Here usually the derivative
zP8 (0) of the zeta function

4 and its value ats521/2 ~sometimes the principal part! are needed.5,6

In this paper we would like to exploit another property of the zeta functionzP(s) correspond-
ing to an elliptic operatorP, namely its well-known close connection with the heat kernel expan-
sion. In spite of the fact that almost everybody is aware of such connection, its actual use in the

a!Electronic-mail address: bordag@qft.physik.uni-leipzig.d400.de
bElectronic mail address: eli@zeta.ecm.ub.es
cAlexander von Humboldt foundation fellow, Electronic mail address: klaus@zeta.ecm.ub.es
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literature has remained very scarce until now. If the manifoldM has a boundary]M, the
coefficientsBn in the short-time expansion have both a volume and a boundary part.

7,8 It is usual
to write this expansion in the form

K~ t !;~4pt !2 D/2 (
k50,1/2,1, . . .

`

Bkt
k, ~1.1!

with

Bk5E
M

dVbn1E
]M

dScn . ~1.2!

For the volume part very effective systematic schemes have been developed~see for example
Refs. 9–11!. The calculation ofcn , however, is in general more difficult. Only quite recently has
the coefficientc2 for Dirichlet and for Neumann boundary conditions been found.12–17Very new
results on the coefficientB5/2 for manifolds with totally geodesic boundaries will be given in Ref.
18.

When using the general formalism of Ref. 12 for higher-spin particles, Moss and Poletti19,20

found a discrepancy with the direct calculations of D’Eath and Esposito21 ~see also Refs. 22–25!.
The latter results have been confirmed in Refs. 26,27, where a new systematic scheme for the
calculation ofc2 has been designed in the context of the Hartle–Hawking wave-function of the
universe and for the case when the whole set of basis functions is known26,27. Finally, very
recently the discrepancy has been resolved completely28 and now the results that are found using
the general algorithm29 are in agreement with those coming from the direct calculations21–27.

The connection between the heat kernel expansion, Eq.~1.1! and the associated zeta function
is established through the formulas30

Res z~s!5
Bm/22s

~4p!m/2G~s!
, ~1.3!

for s5m/2, (m21)/2, ..., 12; 2~2l11!/2, for lPN0, and

z~2p!5~21!pp!
Bm/21p

~4p!m/2
, ~1.4!

for pPN0. The aim of the present article is to show that these equations,~1.3! and ~1.4!, can
actually serve as a very convenient starting point for the calculation of the coefficientsBk , even in
the cases when the eigenvalues of the operatorP under consideration are not known. The good
knowledge in explicit zeta-function evaluations that have been accumulated in the past few years
~for a review of many results in this respect, see Ref. 31! will allow us to elaborate a very
competitive method of calculation of the heat kernel coefficients which makes use of rather
common ingredients, such as integral representations of the spectral sum, Mellin transforms,
non-trivial commutation of series and integrals and skillful analytic continuation of zeta functions
on the complex plane.

To explain the method in detail we will consider the Laplace operator on theD-dimensional
ball with Dirichlet, Neumann or~in general! Robin boundary conditions. Earlier investigations on
the first few coefficients are due, forD51, to Stewartson and Waechter ,32 to Waechter inD5233

and to Kennedy34,35 in up to D55 dimensions. Concerning the four-dimensional ball, another
rather large work is documented in Refs. 36,37, where the focus is in conformal deformations of
the metrics, the four-ball being treated explicitly in the second of these papers~for recent results
on the functional determinant of the Laplace operator on the three- and four-dimensional ball see
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also Ref. 38!. In these references the method was based on the use of Laplace transformations of
the heat kernelK(t) itself. In that method an intermediate cut off has to be introduced at some
point—because one needs to consider the Laplace transform of a function which is singular at
t50. In contrast, in our approach it is the complex arguments of the zeta function of the Laplace
operator which very neatly serves for the regularization of all sums~in just the usual way31!.

The layout of the paper is as follows. In section II we briefly describe the eigenvalue problem
of the massive Laplace operator on the ball and derive a representation of the associated zeta
function in terms of a contour integral. We consider themassiveLaplace operator because the
analytical continuation procedure is slightly easier for the case of non-vanishing mass. In section
III we describe how an analytical representation of the zeta function —valid in the strip~12N!/
2,Rs,1— can be obtained for anyN, restricting our considerations in this section toD53 and
to the case of Dirichlet boundary conditions. This representation will display very clearly the
meromorphic structure of the zeta function. As is then shown in section IV, from this representa-
tion it is quite immediate to read off special properties, as the ones reflected by~1.3! and~1.4!, in
order to find the heat kernel coefficients. In section V we explain the small changes in the
procedure that are necessary in order to treat Robin boundary conditions, in general. Finally, in
section VI we study the modification to be introduced in the formulas for considering any arbitrary
dimensionD. In Appendix A we exhibit some technical details of the calculation and in appen-
dices B, C and D we give explicit tables of the heat kernel coefficients for Dirichlet, Neumann and
general Robin boundary conditions, for the dimensionsD53,4,5.

II. HEAT KERNEL COEFFICIENTS ON THE D-DIMENSIONAL BALL

As explained in the introduction, we are interested in the zeta function of the operator
~2D1m2! on theD-dimensional ballBD5$xPRD;uxu<R% endowed with Dirichlet, Neumann or
Robin boundary conditions. The zeta function is formally defined as

z~s!5(
k

lk
2s , ~2.1!

with the eigenvalueslk being determined through

~2D1m2!fk~x!5lkfk~x! ~2.2!

~k is in general a multiindex here!, together with one of the three boundary conditions above. It is
convenient to introduce a spherical coordinate basis, withr5uxu and D21 angles
V5~u1,...,uD22,w!. In these coordinates, a complete set of solutions of Eq.~2.2! together with one
of the mentioned boundary conditions may be given in the form

f l ,m,n~r ,V!5r 12 D/2Jl1 ~D22!/2~wl ,nr !Yl1 D/2~V!, ~2.3!

with Jl1(D22)/2 being Bessel functions andYl1D/2 hyperspherical harmonics.
39 Thewl ,n ~.0! are

determined through the boundary conditions by

Jl1 ~D22!/2~wl ,nR!50, for Dirichlet boundary conditions,

u

R
Jl1 ~D22!/2~wl ,nR!1wl ,nJl1~D22!/28 ~wl ,nr !ur5R50, for Robin boundary conditions.

~2.4!

As is clear, the caseu5~12D/2! of the ~general! Robin boundary conditions corresponds to the
Neumann boundary conditions. In this notations, usingll ,n5wl ,n

2 1m2, the zeta function can be
given in the form
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z~s!5 (
n50

`

(
l50

`

dl~D !~wl ,n
2 1m2!2s, ~2.5!

wherewl ,n ~.0! is defined as then-th root of thel -th equation. Here the sum overn is extended
over all possible rootswl ,n on the positive real axis, anddl(D) is the number of independent
harmonic polynomials, which defines the degeneracy of each value ofl andn in D dimensions.
Explicitly,

dl~D !5~2l1D22!
~ l1D23!!

l ! ~D22!!
. ~2.6!

Furthermore, here and in what follows the prime will always mean derivative of the function with
respect to its argument.

To distinguish in the notation among the different cases, we will use the indices D, N and R
to denote Dirichlet, Neumann and Robin boundary conditions, respectively. Thus, we will write
zD , zN and zR for the corresponding zeta functions. Using for the moment the unified notation
Fl1(D22)/2(wl ,nR!50 for the boundary condition Eq.~2.4!, it turns out that Eq.~2.5! may be
written under the form of a contour integral on the complex plane,

z~s!5(
l50

`

dl~D !E
g

dk

2p i
~k21m2!2s

]

]k
lnF l1 ~D22!/2~kR!, ~2.7!

where the contourg runs counterclockwise and must enclose all the solutions of~2.4! on the
positive real axis~for a similar treatment of the zeta function as a contour integral see Refs.
26,27,40!. This representation of the zeta function in terms of a contour integral around some
circuit g on the complex plane, Eq.~2.7!, is thefirst stepof our procedure.

Depending on the value of the dimensionD and on the boundary conditions chosen, the
analysis of the zeta function, Eq.~2.7! —to be given below— will differ, but just in small details.
For this reason, we will only describe at length the case of the three-dimensional ball with
Dirichlet boundary condition. The derivation of the analogous results for the other boundary
conditions and higher dimensions will then be clear, and shall be indicated only briefly.

III. A QUICK PROCEDURE FOR CALCULATING HEAT KERNEL COEFFICIENTS

As explained above, we will illustrate the procedure in the case of the three-dimensional ball
with Dirichlet boundary conditions. ForD53 the degeneracy isdl(3)52l11, so that the starting
point of the calculation reads~we omit further indication of the dimension in the notation!

zD~s!5(
l50

`

~2l11!E
g

dk

2p i
~k21m2!2s

]

]k
ln Jl1 1/2~kR!. ~3.1!

As it stands, the representation~3.1! is valid for Rs.3/2. However, we are interested in the
properties ofzD(s) in the rangeRs,0 and thus, we need to perform the analytical continuation to
the left domain of the complex plane. Before considering in detail thel -summation, we will first
proceed with thek-integral alone.

The first specific idea is to shift the integration contour and place it along the imaginary axis.
In order to avoid contributions coming from the origink50, we will consider~with n5l11/2! the
expression

zD
n 5E

g

dk

2p i
~k21m2!2s

]

]k
ln~k2nJn~kR!!, ~3.2!
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where the additional factork2n in the logarithm does not change the result, for no additional pole
is enclosed. One then easily obtains

zD
n 5

sin~ps!

p E
m

`

dk~k22m2!2s
]

]k
ln~k2nI n~kR!! ~3.3!

valid in the strip 1/2,Rs,1. A similar representation valid form50 has been given in Refs.
41,42.

As the second stepof our method, we make use of the uniform expansion of the Bessel
function I n(k) for n→` at z5k/n fixed.43 One has

I n~nz!;
1

A2pn

enh

~11z2!1/4F11 (
k51

`
uk~ t !

nk G , ~3.4!

with t51/A11z2 andh5A11z21ln@z/~11 A11z2)]. The first few coefficients are listed in Ref.
43, higher coefficients are immediate to obtain by using the recursion43

uk11~ t !5
1

2
t2~12t2!uk8~ t !1

1

8E0
t

dt~125t2!uk~t!, ~3.5!

starting withu0(t)51. As is clear, all theuk(t) are polynomials int. Furthermore, the coefficients
Dn(t) defined by

lnF11 (
k51

`
uk~ t !

nk G; (
n51

`
Dn~ t !

nn
~3.6!

are easily found with the help of a simple computer program.
Now comes what can be considered as thethird stepof our method. By adding and subtracting

N leading terms of the asymptotic expansion, Eq.~3.6!, for n→`, Eq. ~3.3! may be split into the
following pieces

zD
n 5ZD

n ~s!1 (
i521

N

Ai
n,D~s!, ~3.7!

with the definitions

ZD
n ~s!5

sin~ps!

p E
mR/n

`

dzF S znR D 2

2m2G2s
]

]z

3H ln@z2nI n~zn!#2 lnF z2n

A2pn

enh

~11z2!
1
4
G2 (

n51

N
Dn~ t !

nn J , ~3.8!

and

A21
n,D5

sin~ps!

p E
mR/n

`

dzF S znR D 22m2G2s ]

]z
ln~z2nenh!, ~3.9!

A0
n,D5

sin~ps!

p E
mR/n

`

dzF S znR D 22m2G2s ]

]z
ln~11z2!2 1/4, ~3.10!
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Ai
n,D5

sin~ps!

p E
mR/n

`

dzF S znR D 22m2G2s ]

]z SDi~ t !

n i D . ~3.11!

The essential idea is conveyed here by the fact that the representation~3.7! has the following
important properties. First, by considering the asymptotics of the integrand in Eq.~3.8! for
z→mR/n andz→`, it can be seen that the function

ZD~s!5(
l50

`

~2l11!ZD
l1 1/2~s!

is analytic on the strip~12N!/2,Rs,1. For this reason, it gives no contribution to the residue of
zD(s) in that strip. Furthermore, fors52k,kPN0, k,211N/2, we haveZ(s)50 and, thus, it
also yields no contribution to the values of the zeta function at these points. Together with Eqs.
~1.3! and~1.4!, this result means that the heat kernel coefficients are just determined by the terms
Ai
D(s) with

Ai
D~s!5(

l50

`

~2l11!Ai
l1 1/2 ,D~s!. ~3.12!

As they stand, theAi
n,D~s! in Eqs.~3.9!, ~3.10! and~3.11! are well defined on the strip 1/2,Rs,1

~at least!. And we will now show that the analytic continuation in the parameters to the whole of
the complex plane, in terms of known functions, can be performed. Keeping in mind thatDi(t) is
a polynomial int, all theAi

n,D(s) are in fact hypergeometric functions, which is seen by means of
the basic relation44

2F1~a,b;c;z!5
G~c!

G~b!G~c2b!
E
0

1

dttb21~12t !c2b21~12tz!2a.

Let us consider first in detailA21
n,D(s), A0

n,D(s), and the correspondingA21
D (s), A0

D(s). One finds
immediately that

A21
n,D~s!5

m22s

2Ap
Rm

GS s2
1

2D
G~s! 2F1S 2

1

2
,s2

1

2
;
1

2
;2S n

mRD
2D2

n

2
m22s, ~3.13!

A0
n,D~s!52

1

4
m22s

2F1S 1,s;1,2S n

mRD
2D52

1

4
m22sF11S n

mRD
2G2s

, ~3.14!

where in the last equality we have used that2F1(a,s;a;x)5(12x)2s.
The next step is to consider the summation overl . For A21

n,D(s) this is best done using a
Mellin–Barnes type integral representation of the hypergeometric functions

2F1~a,b;c;z!5
G~c!

G~a!G~b!

1

2p i EC dt
G~a1t !G~b1t !G~2t !

G~c1t !
~2z! t, ~3.15!

where the contour is such that the poles ofG~a1t!G~b1t!/G~c1t! lie to the left of it and the poles
of G~2t! to the right.44After interchanging the summation overl and the integration in~3.15!, the
result will be a Hurwitz zeta function, which is defined as
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zH~s;v !5(
l50

`

~ l1v !2s, Rs.1. ~3.16!

However, as is well known, one has to be very careful with this kind of manipulation with what
has been realized and explained with great detail in Refs. 45–47. This point is of crucial impor-
tance~it has been the source of many errors in the literature over the past ten years31! and can be
considered as thefourth stepof our original procedure here. Applying the method, as described in
the mentioned references, toA21

D (s),

A21
D ~s!5(

l50

`

~2l11!Fm22s

2Ap
Rm

G~s2 1/2!

G~s! 2F1S 2
1

2
,s2

1

2
;
1

2
;2S l1 1/2

mR D 2D 2
l1 1

2

2
m22sG ,

it turns out that we may interchange the(l and the integral in Eq.~3.15! only if for the real part
RC of the contour the conditionRC,21 is satisfied. However, the argumentG~21/21t!G~s21/
2!/G~1/21t! has a pole att51/2. Thus the contourC coming from2i` must cross the real axis to
the right oft51/2, and then once more between 0 and 1/2~in order that the polet50 of G~2t! lies
to the right of it!, before going to1i`. That is, before interchanging the sum and the integral we
have to shift the contourC over the pole att51/2 to the left, cancelling the~potentially divergent!
second piece inA21

D (s). Closing then the contour to the left, we end up with the following
expression in terms of Hurwitz zeta functions

A21
D ~s!5

R2s

2ApG~s!
(
j50

`
~21! j

j !
~mR!2 j

G~ j1s2 1/2!

s1 j
zH~2 j12s22;1/2!. ~3.17!

For A0
D one only needs to use the binomial expansion in order to find

A0
D~s!52

R2s

2G~s!(j50

`
~21! j

j !
~mR!2 jG~s1 j !zH~2 j12s21;1/2!. ~3.18!

The series are convergent forumRu,1/2. These representations~3.17! and~3.18! show very clearly
the analytic structure ofA21

D (s) andA0
D(s). As thefifth ~and final! stepof our procedure, we are

left with the quite simple task of explictly evaluating this analytic structure, namely of finding its
poles and some point values, and of adding all contributions together.

The point valuesA21,0
D ~2p!,pPN0—respectively their residues ats51/2, 2~2l11!/2,

lPN0— necessary for the calculation of the associated heat kernel coefficients are immediate to
obtain, using

zH~11e,1/2!5
1

e
1O ~e0!,

G~e2n!5
1

e

~21!n

n!
1O ~e0!. ~3.19!

However, before we can actually calculate~an in principle arbitrary number of! the heat kernel
coefficients, we need to obtain analytic expressions for theAi

D(s), iPN. As is easy to see, they are
similar to the ones forA21

D (s) andA0
D(s) above. We need to recall only thatDi(t), Eq. ~3.6!, is a

polynomial in t,
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Di~ t !5 (
a50

i

xi ,at
i12a, ~3.20!

which coefficientsxi ,a are easily found by using Eqs.~3.5! and~3.6! directly, or either by using the
direct recursion relations presented in appendix A. Thus the calculation ofAi

n,D(s) is essentially
solved through the identity

E
mR/n

`

dzF S znR D 22m2G2s ]

]z
tn52m22s

n

2~mR!n
G~s1 n/2!G~12s!

G~11 n/2!
nnF11S n

mRD
2G2s2 n/2

.

~3.21!

The remaining sum may be done as mentioned forA0
D, and we end up with

Ai
D~s!52

R2s

G~s!(j50

`
~21! j

j !
~mR!2 jzH~211 i12 j12s;1/2! (

a50

i

xi ,a
~ i12a!G~s1a1 j1 i /2!

G~11a1 i /2!
.

~3.22!

In summary we have obtained the analytic expression of all the asymptotic terms coming from
expansion~3.4! in its most elementary form, which involves the very familiar Hurwitz zeta
functions and Gamma functions only. Expressions~3.17!, ~3.18! and~3.22! constitute the explicit
starting point for the calculation of an —in principle arbitrary— number of heat kernel coefficients
in an extremely quick way.

IV. HEAT KERNEL COEFFICIENTS FOR DIRICHLET BOUNDARY CONDITIONS ON THE
THREE-DIMENSIONAL BALL

Let us now see how the analysis in Sec. II can be used for a very effective calculation of the
heat kernel coefficients. The dependence of the coefficients on the mass is already contained in the
coefficients of the massless case through

Km~ t !5Km50~ t !e
2m2t

and for this reason we shall restrict ourselves tom50. For the sums in~3.17!, ~3.18! and ~3.22!
this means that onlyj50 will contribute.

We shall distinguish between the coefficientsBk with integer and half-integer indexk, be-
cause the situation is actually different in both cases. In fact, corresponding to Eq.~1.3! ~resp. Eq.
~1.4!!, the residue of~resp. the value of the function! zD is needed.

Let us start with the case of integer indexkPN , so that ReszD~3/22k! is to be calculated. In
order thatZD(s) does not contribute, one has to chooseN52k21 and thus only the asymptotic
termsAj

D(s), j521,0,1,...,2k21, will provide some contribution. Furthermore, one may see very
easily which terms in the differentAj

D(s) contribute. An important feature is, that fori52n,
nPN 0, Ai

D(s) does not contribute toBk for kPN . The relevant residues are found to be

Res A21
D S 322kD5

~21!k21

~k21!!

R322k

2ApG~5/22k!
zHS 122k;

1

2D ,
Res A2k21

D S 322kD52
R322k

2G~3/22k! (
a50

2k21

x2k21,a

~2k2112a!a!

G~1/21a1k!
,

and fornPN , n<k21, k<3n,
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Res A2n21S 322kD5
~21!kR322k

G~3/22k!
zHS 112n22k;

1

2D (
a50

k212n

x2n21,a

~21!a1n~2n12a21!

~k212a2n!!
,

whereas forn<k21, k.3n, we have

Res A2n21S 322kD5
~21!kR322k

G~3/22k!
zHS 112n22k;

1

2D (
a50

2n21

x2n21,a

~21!a1n~2n12a21!

~k212a2n!!
.

From these results we readily obtain the heat kernel coefficients through

Res zDS 322kD5Res(
l50

k

A2l21
D S 322kD[

Bk

~4p!3/2G~3/22k!
.

The coefficients up toB10 are listed in appendix B.
Let us now consider the calculation of the coefficients corresponding to half-integer index

Bk11/2,kPN . Here the value ofzD(3/22k! is needed and one findsN52k. It is apparent that the
Ai
D(s) with odd i , i52 j21, jPN 0, do not contribute now. The relevant values of theAi

D(s) read

A0
D~12k!52

R222k

2
zHS 122k;

1

2D ,
A2k
D ~12k!5~21!k~k21!!R222k(

a50

2k

x2k,a
a!

~a1k21!!
,

and fornPN , n<k21, k<3n11,

A2n
D ~12k!522R222k~k21!! zHS 112n22k;

1

2D (
a50

k2n21

x2n,a
~21!n1a

~k2n2a21!! ~a1n21!!
,

whereas forn<k21, k.3n11, we have

A2n
D ~12k!522R222k~k21!! zHS 112n22k;

1

2D (a50

2n

x2n,a
~21!n1a

~k2n2a21!! ~a1n21!!
.

And from these results, we finally obtain

zD~12k!5 (
n50

k

A2n~12k![
~21!k21~k21!!

~4p!3/2
Bk1 1/2.

The heat kernel coefficients Bk11/2 are listed in appendix B too. Using
zH(2n;q!52Bn11(q)/(n11),nPN 0, the results might have been given, equivalently, in terms
of Bernoulli polynomialsBn11(q).

V. ROBIN BOUNDARY CONDITIONS ON THE THREE-DIMENSIONAL BALL

When Robin boundary conditions are imposed, using the same method of the preceding
sections we can write the zeta function as

zR~s!5(
l50

`

~2l11!E
g

dk

2p i
~k21m2!2s

]

]k
lnF uRJl1 1/2~kR!1kJl1 1/28 ~kR!G ~5.1!
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and, in analogy with Eq.~3.3!, we then consider

zR
n 5

sin~ps!

p E
m

`

dk~k22m2!2s
]

]k
lnFk2nS uRI n~kR!1kIn8~kR! D G . ~5.2!

Employing the same idea as for Dirichlet boundary conditions, this time we have in addition the
following uniform asymptotic expansion43

I n8~nz!;
1

A2pn

enh~11z2!1/4

z F11 (
k51

`
vk~ t !

nk G , ~5.3!

with the vk(t) determined by

vk~ t !5uk~ t !1t~ t221!F12 uk21~ t !1tuk218 ~ t !G .
In analogy with Eq.~3.6!, we write

lnF11 (
k51

`
vk~ t !

nk
1
u

n
tS 11 (

k51

`
uk~ t !

nk D G; (
n51

`
Mn~ t !

nn
, ~5.4!

where the functionsMn(t) are easily obtained. At this point we see already, that for Robin
boundary conditions no additional calculation is necessary. Comparing the expansion~5.3! with
~3.4! and introducingAi

R(s) for the contributions coming from the asymptotic terms, one has

A21
R ~s!5A21

D ~s!, A0
R~s!52A0

D~s!. ~5.5!

Furthermore, the functionsMi(t) are of the form

Mi~ t !5 (
a50

2i

zi ,at
i1a ~5.6!

~notice that here, in contrast with the case of Dirichlet boundary conditions, all powers betweeni
and 3i are present!. As a result, we find

Ai
R~s!52

R2s

G~s!(j50

`
~21! j

j !
~mR!2 jzH~211 i12 j12s;1/2! (

a50

2i

zi ,a
~ i1a!G~s1 j1 ~ i1a!/2!

G~11 ~ i1a!/2!
.

~5.7!

One can show again that only the even indicesi contribute to the residues ofzR(s), whereas the
odd ones will contribute to the point values.

Restricting ourselves as before~see the comment in the previous section! to the massless case,
the results for the heat kernel coefficients may now be read off from the formulas in the previous
section. One has

Res A21
R S 322kD5Res A21

D S 322kD ,
Res A2k21

R S 322kD52
R322k

2G~3/22k! (
a50

4k22

z2k21,a

~2k211a!G~11 a/2!

G~1/21k1 a/2!
,
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where the expressions forA2n21
R are found from the results in Sec. III, oncex2n21,a has been

replaced withz2n21,2a. The coefficients for Neumann boundary conditions are given in appendix
C, and for the general case~u arbitrary! in appendix D. For the point values the analogous
formulas read

A0
R~12k!52A0

D~12k!,

A2k
R ~12k!5~21!kR222k~k21!!(

a50

4k

z2k,a
~2k1a!G~11 a/2!

2G~11k1 a/2!
,

and once more the replacement ofx2n,a with z2n,2a leads to the results forA2n
R . The results for the

heat kernel coefficients are summarized in appendices C and D.

VI. GENERALIZATION TO THE D-DIMENSIONAL BALL

As we will now explain, for the generalization of our results to the case of aD-dimensional
ball almost no additional calculations are necessary. Let us discuss first the case of Dirichlet
boundary condition. The starting point of the analysis is now

zD~s!5(
l50

`

dl~D !E
g

dk

2p i
~k21m2!2s

]

]k
lnJl1 ~D22!/2~kR!. ~6.1!

It is easy to see that the above treatment for the individual terms of thel -series,

zD
n 5E

g

dk

2p i
~k21m2!2s

]

]k
lnJn~kR! ~6.2!

remains valid, once we have setn5l1(D22!/2. In order to use our procedure for the whole
l -summation, what remains to be done is to substitute for the degeneracydl(D) its value in
powers ofl1(D22!/2, in order to find again expressions in terms of the Hurwitz zeta function
zH(s;(D22!/2!. Writing

dl~D !5 (
a51

D22

ea~D !S l1 D22

2 D a

, ~6.3!

the final results forA21
D (s), A0

D(s) andAi
D(s), iPN , may be read off from Eqs.~3.17!, ~3.18! and

~3.22!. We find

A21
D ~s!5

R2s

4ApG~s!
(
j50

`
~21! j

j !
~mR!2 j

G~ j1s2 1/2!

s1 j F (
a51

D22

ea~D !zH~2 j12s212a;~D22!/2!G ,
~6.4!

A0
D~s!52

R2s

4G~s!(j50

`
~21! j

j !
~mR!2 jG~s1 j !F (

a51

D22

ea~D !zH~2 j12s2a;~D22!/2!G , ~6.5!

Ai
D~s!52

R2s

2G~s!(j50

`
~21! j

j !
~mR!2 jF (

a51

D22

ea~D !zH~2a1 i12 j12s;~D22!/2!G
3 (

a50

i

xi ,a
~ i12a!G~s1a1 j1 i /2!

G~11a1 i /2!
. ~6.6!
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We shall spare the reader the analogous results for Robin boundary conditions. They need not be
given explicitly, since the procedure is absolutely clear by now. Let us just write down the relevant
residues and point values ofzD(s) ~the Robin case follows from the replacements explained in
Sect. V!. They read

Res A21
D S 322kD5

~21!k21

~k21!!

R322k

4ApGS 522kD (
a51

D22

ea~D !zHS 222k2a;
D22

2 D ,
for n51,...,k21, k.3n,

Res A2n21S 322kD5~21!k
R322k

2G~3/22k! (a51

D22

ea~D !zHS 212n2a22k;
D22

2 D
3 (

a50

2n21

~21!n1ax2n21,a

2n12a21

~k212n2a!!G~1/21a1n!
,

whereas fork<3n, it reads

Res A2n21S 322kD5~21!k
R322k

2G~3/22k! (a51

D22

ea~D !zHS 212n2a22k;
D22

2 D
3 (

a50

k2n21

~21!n1ax2n21,a

~2n12a21!

~k212n2a!!G~1/21a1n!
.

For higher indices it is advisable to distinguish betweenD even andD odd. ForD odd contribu-
tions arise forn5k,...,k1(D23)/2, and read

Res A2n21S 322kD52
R322k

4G~3/22k!
e112n22k (

a50

2n21

x2n21,a

~2n12a21!~a1n2k!!

G~1/21a1n!
,

~6.7!

whereas forD even the indices run fromn5k,...,k1(D24!/2, and the results are

Res A2nS 322kD52
R322k

2G~3/22k!
e212n22k(

a50

2n

x2n,a
G~3/22k1a1n!

~a1n21!!
.

Let us conclude with the list of point values. The leading asymptoticsA21
D gives only contribu-

tions for k50,

A21~0!52
1

2(
a51

D22

ea~D !zHS 2a21;
D22

2 D .
Furthermore, forn51,...,k21, we have

A2n~12k!52R222k~k21!! (
a51

D22

ea~D !zHS 2a12n1222k;
D22

2 D
3 (

a50

2n

x2n,a
~21!a1n

~a1n21!! ~k212a2n!!
,
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if k.3n11, and ifk<3n11

A2n~12k!52R222k~k21!! (
a51

D22

ea~D !zHS 2a12n1222k;
D22

2 D
3 (

a50

k2n21

x2n,a
~21!a1n

~a1n21!! ~k212a2n!!
.

Finally, for D odd and forn5k,...,k1(D23!/2,

A2n~12k!5
1

2
~21!k~k21!!R222ke112n22k(

a50

2n

x2n,a
~a1n2k!!

~a1n21!!
,

whereas forD even the indices run fromn5k11,...,k1(D22!/2, and the result reads

A2n21~12k!5
1

4
~21!k~k21!!R222ke2n22k (

a50

2n21

x2n21,a

~2n2112a!G~1/22k1a1n!

G~1/21a1n!
.

The formulas above simplify a bit if we write the degeneracy~2.6! under the form

dl~D !5
2

~D22!! F S l1 D22

2 D 22SD2 22D 2G3 . . .3S l1 D22

2 D , for D odd,

dl~D !5
2

~D22!! F S l1 D22

2 D 22SD2 22D 2G3 . . .3S l1 D22

2 D 2, for D even,

so thate2k(D)50 for D odd ande2k21(D)50 for D even,kPN .
Furthermore, one might use the following recursion for the coefficientsea(D) appearing in

the expression of the degeneracydl(D), Eq. ~6.3!,

e2a~D12!5
1

D~D21! Fe2a22~D !2SD2 21D 2e2a~D !G , for D even,

e2a21~D12!5
1

D~D21! Fe2a23~D !2SD2 21D 2e2a21~D !G , for D odd,

where we have used the definitionse2k(D)50 for kPN0 andea(D)50 for a.D22.
We have performed explicit calculations forD54 andD55. One has in these cases

dl~4!5~ l11!2, e1~4!50, e2~4!51,

dl~5!5 1
3 ~ l1 3

2!@~ l1
3
2!
22 1

4#, e1~5!52 1
12 , e2~5!50, e3~5!5 1

3 .

The results for the heat kernel coefficients are presented in appendices B, C and D.

VII. CONCLUSIONS

As promised in the introduction, we have developed in this paper a very convenient method in
order to deal with the problem of the calculation of heat kernel coefficients corresponding to an
arbitrary elliptic operator with any of the usual boundary conditions~Dirichlet, Neumann or
Robin!, with the only proviso that the behavior of some basis for its spectrum should be known
~even if the eigenvalues themselves are actually unknown!.
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This is indeed a very common case in mathematical physics, what confers to our procedure a
wide generality of application. Another fundamental characteristic of the method is its extreme
simplicity, which comes in part from the quite strong background on zeta function computations
that we have acquired during the last half a dozen years. This knowledge confers to the new
method the same elegance that the procedure of zeta function regularization~including the analytic
continuation techniques and non-trivial series commutation that it involves! has in itself.

Finally, we have tried our method with explicit examples and gave several tables of heat
kernel coefficients that have been calculated here~with relative ease! for the first time. For the
near future we envisage to investigate other physical applications where the method can prove
useful.

Note:At the final stage of our analysis, P. Gilkey made us aware of related research by M.
Levitin,48 who has further developed the approach of Kennedy,34,35also with the aim of calculat-
ing higher-order heat kernel coefficients. We are indebted to M. Levitin for sending us his results,
which have served as a very good check of our calculations. All results in common with his are in
complete agreement.
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APPENDIX A: RECURSION RELATION FOR THE COEFFICIENTS x i ,a

In this appendix we present the recursion relations for the coefficientsxi ,a , Eq. ~3.20!. For
convenience let us introduce foriPN , a50,...,i ,

xi ,a5
ci11,a

2i11~ i12a!
.

Then, starting withc1,0521, we find the following recursion relation,

ci ,05~ i22!ci21,02
1

2(s51

i21

ci2s,0cs,0 ,

ci ,i215~423i !ci21,i221
1

2(s51

i21

ci2s,i2s21cs,s21 ,

and fora51,...,i22, we have

ci ,a5~ i2212a!~ci21,a2ci21,a21!

2
1

2(s51

i21 S (
j5Max~0,11a1s2 i !

Min~a,s21!

ci2s,a2 j cs, j2 (
j5Max~0,a1s2 i !

Min~a21,s21!

ci2s,a2 j21cs, j D .
This relation can be used very effectively for the calculation of the coefficientsxi ,a .
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APPENDIX B: HEAT KERNEL COEFFICIENTS FOR DIRICHLET BOUNDARY
CONDITIONS

In this appendix we list our results for the heat kernel coefficients of the Laplace operator in
three, four and five dimensions with Dirichlet boundary conditions. Here and in the following
appendices, the first coefficientsB0 ,...,B5/2 are listed for completeness and may also be found in
Refs. 34,35 or derived from Ref. 12.

In three dimensions we have found that

B05
3

4
pR3, B1/2522p3/2R2,

B15
8pR

3
, B3/252

1

6
p3/2,

B252
16p

315R
, B5/252

p3/2

120R2 ,

B352
64p

9009R3 , B7/252
47p3/2

20160R4 ,

B452
202816p

72747675R5 , B9/252
521p3/2

443520R6 ,

B552
25426048p

15058768725R7 , B11/252
9521p3/2

11531520R8 ,

B652
90878576896p

67689165418875R9 , B13/252
34344493p3/2

47048601600R10

B752
22835854180352p

17531493843488625R11, B15/252
36201091p3/2

47048601600R12,

B852
1509389910845640704p

1019964780320324713875R13, B17/252
153984929039p3/2

164481911193600R14,

B952
1673450232605639069696p

872477873086005760248675R15, B19/252
13334525091737p3/2

10362360405196800R16,

B1052
643985013732181345325056p

231206636367791526465898875R17.

In four dimensions the result is

B05
1

2
p2R4, B1/252p5/2R3,

B152p2R2, B3/252
11p5/2R

32
,

B252
4p2

45
, B5/252

35p5/2

4096R
,
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B352
464p2

45045R2 , B7/252
911p5/2

196608R3 ,

B452
107456p2

14549535R4 , B9/252
827315p5/2

201326592R5 ,

B552
23288576p2

3011753745R6 , B11/252
158590273p5/2

32212254720R7 ,

B652
20064545792p2

1933976154825R8 , B13/252
630648945109p5/2

86586540687360R9 ,

B752
492912963584p2

29464695535275R10, B15/252
70309732006867p5/2

5541538603991040R11,

B852
37648078688043008p2

1204208713483264125R12, B17/252
1578924180477650401p5/2

62419890835355074560R13,

B952
887504373820227584p2

13409327181833639595R14, B19/252
1018264365864160946171p5/2

17976928560582261473280R15,

B1052
252629551155828479492096p2

1616829624949591094167125R16.

Finally, in five dimensions we obtain

B05
8p2R5

15
, B1/252

4p5/2R4

3
,

B15
32p2R3

9
, B3/252p5/2R2,

B252
128p2R

945
, B5/25

17p5/2

360
,

B35
1216p2

45045R
, B7/25

157p5/2

30240R2 ,

B45
235264p2

43648605R3 , B9/25
5p5/2

2464R4 ,

B55
779264p2

280598175R5 , B11/25
593p5/2

449280R6 ,

B65
91757946368p2

43074923448375R7 , B13/25
32815499p5/2

28229160960R8 ,

B75
22103738934272p2

10518896306093175R9 , B15/25
119034319p5/2

94097203200R10,
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B85
53300366610079744p2

21397862524202616375R11, B17/25
798608979601p5/2

493445733580800R12,

B95
381809787573414866944p2

111856137575128943621625R13, B19/25
146801666871373p5/2

62174162431180800R14,

B105
31815282789579439112192p2

6031477470464126777371275R15.

APPENDIX C: HEAT KERNEL COEFFICIENTS FOR NEUMANN BOUNDARY
CONDITIONS

Here is a list of the results we have obtained for the heat kernel coefficients of the Laplace
operator in three, four and five dimensions with Neumann boundary conditions. In three dimen-
sions we have found

B05
4

3
pR3, B1/252p3/2R2,

B15
8pR

3
, B3/25

7

6
p3/2,

B25
16p

9R
, B5/25

47p3/2

60R2 ,

B35
6464p

6435R3 , B7/25
3973p3/2

10080R4 ,

B45
14766656p

31177575R5 , B9/25
5057p3/2

28160R6 ,

B55
2314167424p

10756263375R7 , B11/25
2320069p3/2

27675648R8 ,

B65
1439468204288p

13537833083775R9 , B13/25
11298472831p3/2

250925875200R10,

B75
369968178163712p

5843831281162875R11, B15/25
1718717967893p3/2

57211099545600R12,

B85
48366532825354366976p

1019964780320324713875R13, B17/25
113384991528329p3/2

4511503849881600R14,

B95
781980237125923045376p

17805670879306240005075R15, B19/25
33839928581307889p3/2

1326382131865190400R16,

B105
14392436216775440050663424p

297265675330017676884727125R17.

In four dimensions
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B05
1

2
p2R4, B1/25p5/2R3,

B152p2R2, B3/25
41p5/2R

32
,

B25
116p2

45
, B5/25

5861p5/2

4096R
,

B35
99472p2

45045R2 , B7/25
388657p5/2

393216R3 ,

B45
18334144p2

14549535R4 , B9/25
91095533p5/2

201326592R5 ,

B55
6269294336p2

15058768725R6 , B11/25
2096614963p5/2

32212254720R7 ,

B652
1448614636544p2

13537833083775R8 , B13/252
13041149176631p5/2

86586540687360R9 ,

B752
38509398708224p2

100179964819935R10, B15/252
1498787760061463p5/2

5541538603991040R11 ,

B852
7562397933317668864p2

13246295848315905375R12, B17/252
23865356170241004641p5/2

62419890835355074560R13 ,

B952
30045051913611575296p2

36622112051226326625R14, B19/252
135252966433194092697787p5/2

233700071287569399152640R15 ,

B1052
307843753219621367054336p2

230975660707084442023875R16.

And, finally, in five dimensions

B05
8p2R5

15
, B1/25

4p5/2R4

3
,

B15
32p2R3

9
, B3/253p5/2R2,

B25
1024p2R

135
, B5/25

1873p5/2

360
,

B35
63296p2

6435R
, B7/25

10121p5/2

1890R2 ,

B45
504064p2

61047R3 , B9/25
198463p5/2

55440R4 ,
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B55
125689856p2

30879225R5 , B11/25
34154807p5/2

34594560R6 ,

B652
56447170574848p2

157941385977375R7 , B13/252
16602940093p5/2

14114580480R8 ,

B752
945576485184512p2

281253911927625R9 , B15/252
13550828636809p5/2

5721109954560R10 ,

B852
259104011527854628864p2

55634442562926802575R11 , B17/252
5379580705269259p5/2

1973782934323200R12 ,

B952
46180677500935662030848p2

9587668935011052310425R13 , B19/252
2640354677256557617p5/2

994786598898892800R14 ,

B1052
1401638457879249954799616p2

306775722734796364174125R15 .

APPENDIX D: HEAT KERNEL COEFFICIENTS FOR ROBIN BOUNDARY CONDITIONS

We conclude our list of results with the leading coefficients for general Robin boundary
conditions forD53,4 and 5.

In three dimensions, we have found

B05
4pR3

3
, B1/252p3/2R2,

B152
4pR

3
~116u!, B3/25

p3/2

6
~1124u2!,

B25
2p

45R
~1218u160u22120u3!, B5/25

p3/2

60R2 ~2215u160u22120u31120u4!,

B35
p

45045R3 ~1633212870u146904u22107536u31144144u4296096u5!,

B7/25
p3/2

10080R4 ~15121008u13612u228400u3113440u4213440u516720u6!,

B45
p

436486050R5 ~8243319251363270u1169826940u22395830040u31676878800u4

2835097120u51665121600u62266048640u7!,

B9/25
p3/2

1774080R6 ~14639280784u1249304u22556600u31976800u421330560u5

11340416u62887040u71295680u8!,
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B55
p

301175374500R7 ~3517532467217760354570u149945523040u22105573378240u3

1182023225440u42259648898880u51295543449600u62252181862400u7

1142779436800u8240794124800u9!.

In four dimensions, the results read

B05
p2R4

2
, B1/25p5/2R3,

B1522p2R2~112u!, B3/25
p5/2R

32
~9132u164u2!,

B252
4p2

45
~1130u3!,

B5/252
p5/2

4096R
~592224u12048u324096u4!,

B352
16p2

45045R2 ~752286u1286u21858u323003u413003u5!,

B7/252
p5/2

393216R3 ~5807221024u129952u217168u32110592u41196608u52131072u6!,

B452
32p2

14549535R4 ~11726239368u162016u2236176u3275582u41230945u52277134u6

1138567u7!,

B9/252
p5/2

201326592R5 ~296117129105152u114440448u2213142016u32458752u4

125427968u5246137344u6141943040u7216777216u8!,

B552
64p2

15058768725R6 ~6419236217976600u127448200u2228336920u3114866740u4

114709420u5249365705u6165189475u7247805615u8115935205u9!.

Finally, in five dimensions we have found

B05
8p2R5

15
, B1/25

4p5/2R4

3
,

B152
8p2R3

9
~516u!, B3/25

p5/2R2

3
~318u18u2!,

B25
4p2R

135
~2516u260u22120u3!, B5/25

p5/2

360
~2172240u21480u4!,
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B35
2p2

135135R
~87113442u235464u2161776u3148048u4296096u5!,

B7/25
p5/2

7560R2 ~2881483u21806u212940u321680u423360u513360u6!,

B45
p2

43648605R3 ~253950114050078u212086660u2123878744u3223715952u4

11478048u5126604864u6217736576u7!,

B9/25
p5/2

2661120R4 ~218927199616u2302720u21576048u32748704u41473088u51177408u6

2591360u71295680u8!,

B55
p2

90352612350R5 ~293553656714964319990u213111462800u2125019918880u3

234365190560u4132451298368u5212409401600u6212609093120u7120397062400u8

28158824960u9!.

This concludes our lists of explicit tables for the heat kernel coefficients. In the same way, results
for any desired dimensionD are very easy to obtain from the formulas in the text.

1P. B. Gilkey,Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem~Publish or Perish, Vilmington,
1984!.

2N. Birrell and P. C. W. Davies,Quantum Fields in Curved Spaces~Cambridge University, Cambridge 1982!.
3B. S. De Witt, Phys. Rep. C19, 295 ~1975!.
4S. W. Hawking, Commun. Math. Phys.55, 133 ~1977!.
5S. K. Blau, M. Visser, and A. Wipf, Nucl. Phys. B310, 163 ~1988!.
6B. P. Dolan and C. Nash, Commun. Math. Phys.148, 139 ~1992!.
7P. Greiner, Arch. Rat. Mech. Anal.41, 163 ~1971!.
8P. B. Gilkey, J. Diff. Geom.10, 601 ~1976!.
9I. G. Avramidi, Nucl. Phys. B355, 712 ~1991!.
10S. A. Fulling and G. Kennedy, Trans. Am. Math. Soc.310, 583 ~1988!.
11P. Amsterdamski, A. L. Berkin, and D. J. O’Connor, Class. Quantum Grav.6, 1981~1989!.
12T. P. Branson and P. B. Gilkey, Commun. PDE15, 245 ~1990!.
13I. G. Moss and J. S. Dowker, Phys. Lett. B229, 261 ~1989!.
14D. M. Mc Avity and H. Osborn, Class. Quantum Grav.8, 603 ~1991!.
15A. Dettki and A. Wipf, Nucl. Phys. B377, 252 ~1992!.
16J. S. Dowker and J. P. Schofield, J. Math. Phys.31, 808 ~1990!.
17G. Cognola, L. Vanzo, and S. Zerbini, Phys. Lett. B241, 381 ~1990!.
18T. P. Branson and P. B. Gilkey,The asymptotics of the Laplacian on a manifold with boundary II~to be published!.
19I. G. Moss and S. Poletti, Nucl. Phys. B341, 155 ~1990!.
20I. G. Moss and S. Poletti, Phys. Lett. B245, 355 ~1990!.
21P. D. D’Eath and G. Esposito, Phys. Rev. D43, 3234~1991!.
22G. Esposito, Class. Quantum Gravit.11, 905 ~1994!.
23G. Esposito, A. Yu. Kamenshchik, I. V. Mishakov, and G. Pollifrone, Class. Quantum Gravit.,11, 2939~1994!.
24G. Esposito, A. Yu. Kamenshchik, I. V. Mishakov, and G. Pollifrone, Phys. Rev. D50, 6329~1994!.
25G. Esposito,Quantum Gravity, Quantum Cosmology and Lorentzian Geometries, Second corrected and enlarged edition,
Lecture Notes in Physics, New Series m: Monographs, Vol. m12~Springer-Verlag, Berlin, 1994!.

26A. Yu. Kamenshchik and I. V. Mishakov, Int. J. Mod. Phys. A7, 3713~1992!.
27A. O. Barvinsky, A. Yu. Kamenshchik, and I. P. Karmazin, Ann. Phys.219, 201 ~1992!.
28D. V. Vassilevich, J. Math. Phys., to appear~1995!.
29I. G. Moss and S. Poletti, Phys. Lett. B333, 326 ~1994!.
30A. Voros, Commun. Math.110, 439 ~1987!.

915Bordag, Elizalde, and Kirsten: Heat-kernel coefficients of Laplacian on D-ball

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



31E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbini,Zeta Regularization Techniques with Applications
~World Scientific, Singapore, 1994!; E. Elizalde,Ten Physical Applications of Spectral Zeta Functions~Springer-Verlag,
Berlin, 1995!.

32K. Stewartson and R. T. Waechter, Proc. Cambridge Phil. Soc.69, 355 ~1971!.
33R. T. Waechter, Proc. Cambridge Phil. Soc.72, 439 ~1972!.
34G. Kennedy, Ph.D. thesis, Manchester University~1978!.
35G. J. Kennedy, Phys. A: Math. Gen.11, L173 ~1978!.
36T. Branson and P. Gilkey, Trans. Am. Math. Soc.344, 479 ~1994!.
37T. Branson and P. GilkeyThe Functional Determinant in the Standard Conformal Class on Four Dimensional Balls and
Spherical Shells, Proceedings of the 24th National Conference on Geometry and Topology~Romania, 1994!.

38J. S. Dowker and J. S. Apps, ‘‘Further functional determinants,’’ preprint MUTP/95/1, The University of Manchester.
39A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. TricomiHigher Transcendental Functions Vol 1~McGraw-Hill, New
York, 1953!.

40M. J. Bordag, Phys. A: Math. Gen., to appear~1995!.
41E. Elizalde, S. Leseduarte, and A. Romeo, J. Phys. A: Math. Gen.26, 2409~1993!.
42S. Leseduarte and A. Romeo, J. Phys. A: Math. Gen.27, 2483~1994!.
43M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, (Natl. Bur. Stand. Appl. Math. Ser. 55)~U. S.
GPO, Washington, DC! ~Dover, New York, reprinted 1972!.

44I. S. Gradshteyn and I. M. RyzhikTables of Integrals, Series and Products~Academic, New York, 1965!.
45H. A. Weldon, Nucl. Phys. B270, 79 ~1986!.
46E. Elizalde and A. Romeo, Phys. Rev. D40, 436 ~1989!.
47E. Elizalde, K. Kirsten, and S. Zerbini, J. Phys. A: Math. Gen.28, 617 ~1995!.
48M. Levitin, ‘‘Dirichlet and Neumann heat invariants for Euclidean balls,’’ to appear inDifferential geometry and its
application, to be published.

916 Bordag, Elizalde, and Kirsten: Heat-kernel coefficients of Laplacian on D-ball

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



On position and momentum operators
in the q -oscillator algebra

Won-Sang Chung
Theory Group, Department of Physics, College of Natural Sciences, Gyeongsang National
University, Jinju, 660-701, Korea

Anatoli U. Klimyk
Institute for Theoretical Physics, Ukrainian National Academy of Sciences,
Kiev 252143, Ukraine

~Received 21 April 1995; accepted for publication 9 October 1995!

The aim of this paper is to study the position and momentum operators in
q-deformed oscillator algebras. The natural form of the position operator is
Xp5qpN(a11a)qpN, wherep is a real number. This operator is an operator rep-
resentable by a Jacobi matrix. Using the theory of Jacobi matrices, the theory of
classical moment problem and the theory of basic hypergeometric functions, it is
shown that, depending on values ofq and p, Xp can be unbounded symmetric
operator@which has the deficiency indices~1,1! and, hence, is not self-adjoint, but
has self-adjoint extensions#, bounded self-adjoint operator with continuous simple
spectrum or self-adjoint operator of trace class~therefore, with discrete spectrum
with zero as the point of accumulation of eigenvalues!. The connection of the
q-deformed Heisenberg relationPX2qXP51 for the position and momentum op-
erators with a q-deformation of the quantum harmonic oscillator is also
considered. ©1996 American Institute of Physics.@S0022-2488~96!04401-6#

I. INTRODUCTION

The q-oscillator appeared in the papers by Coon and others1–3 devoted to dual resonance
models. Theq-oscillator relation can also be found in the papers by Feinsilver4,5 on the
Heisenberg–Weyl algebra. Theq analog of the quantum harmonic oscillator, related to the quan-
tum groupSUq~2!, was studied by Biedenharn6 and Macfarland.7 The papers by Biedenharn and
Macfarlane initiated an extensive research ofq-deformed oscillators and their different applica-
tions. There exists a good review on this subject by Damaskinsky and Kulish.8 A big attention to
q-oscillators is related to quantum groups appeared approximately ten years ago. Quantum groups
andq oscillators led to a new development in mathematical and theoretical physics.

For the one-dimensionalq oscillator, the theory was developed similar to that for the usual
quantum harmonic oscillator~coherent states, linear representations, different realizations, and so
on!. As in the case of quantum groups, many things for theq-deformed oscillator differ from the
corresponding items for the usual quantum oscillator. For example, in theq-deformed case we
have not so good a connection of the creation and annihilation operators with theq-Heisenberg–
Weyl algebra containing the position and momentum operators.

It is well known that the operators of canonical positionX5a11a and of canonical momen-
tum P5 i (a12a) are self-adjoint operators with a continuous simple spectrum, coinciding with
the real axis.~It would be more natural to use the words ‘‘Hermitian operator,’’ which is a
synonym of ‘‘self-adjoint operator.’’ However, in our investigation below we extensively use the
mathematical literature, where the words ‘‘self-adjoint operator’’ and the notion ‘‘self-adjoint
extensions’’ are used. For this reason, we use the same words.! This is not the case forq-deformed
oscillators.9 It is natural for representations of quantum algebras and ofq-deformed oscillator
algebras that closures of unbounded symmetric operators are not self-adjoint operators.10 Since the
difference between symmetric and self-adjoint operators is very important for our study, we recall
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these notions. LetA be a linear unbounded operator on a Hilbert spaceH. Suppose that the
domainD(A) of A is an everywhere dense subspace ofH andA is a closed operator. IfA would
not be closed, then we could close it and obtain a closed operator. There are pairsv andv8 of
elements fromH such that

^vuAu&5^v8uu&, for all uPD~A!.

We setv85A* v and callA* the operator conjugate toA. It is proved thatA* is defined on an
everywhere dense subspaceD(A* ) of H @sinceD(A) is everywhere dense inH#. The operatorA*
is linear and closed. Moreover,A** 5A if A is closed. The operatorA is called symmetric if
A#A* , that is,D(A),D(A* ). If A*5A, that isD(A)5D(A* ), thenA is called self-adjoint. If
a symmetric operator is not self-adjoint, then it can have self-adjoint extensions. To know whether
a symmetric operatorA has self-adjoint extensions or not, there are the notion of deficiency
indices (m,n) of A. If these indices are equal to each other, thenA has self-adjoint extensions.
Self-adjoint extensions are constructed with the help of deficiency subspaces. A detailed descrip-
tion of deficiency indices and deficiency subspaces can be found in Ref. 11.

The important fact is that different self-adjoint extensions of a symmetric operator can have
different spectra. For example, it was shown in Ref. 12 that in aq-deformed Heisenberg algebra,
symmetric operators appear that have self-adjoint extensions with nonoverlaping spectra, that is,
their spectra have no common points. This can happen when their spectra are discrete. This means
that we must be very careful when dealing with closed symmetric operators that are not self-
adjoint. In order to avoid an ambiguity we must deal with self-adjoint operators. In other words,
if a closed symmetric operator is not self-adjoint, then we must take an appropriate self-adjoint
extension~of course, we must have some criterion explaining to us which self-adjoint extension
we need; clearly, this criterion depend on a problem we must solve!.

In this paper we study in detail the position and momentum operators in theq-oscillator
algebra. These operators are operators representable by Jacobi matrices. Therefore, we can apply
the theory of moment problem,13 the theory of Jacobi matrices,14 as well as the theory of basic
hypergeometric functions.15 The theory of Jacobi matrices reduces the spectral theory of the
position operator to studying three-term recurrence relations. Solutions of these recurrence rela-
tions areq-orthogonal polynomials. Actually, values of these polynomials are coefficients of
transition from the usual basisun& to the basis that diagonalizes the position operator. An orthogo-
nality relation for polynomials, which are solutions of an appropriate three-term recurrence rela-
tion, defines the spectral measure of the position operator under consideration. The transition
coefficients that appear here are also called overlap coefficients for the corresponding bases. These
coefficients are of independent interest, since they can have a certain physical meaning.

Depending on values ofq, there appear different possibilities. Sometimes, the position opera-
tor is bounded and, therefore, its closure is a self-adjoint operator. In other cases, it is not bounded
and then its closure is not a self-adjoint operator. But in the last cases it has the deficiency indices
~1,1! and, therefore, has self-adjoint extensions. For some cases we found explicitly the corre-
sponding deficiency subspaces.

In Sec. II we give some information on the second-order difference operators that are used
below. These operators are, in fact, operators representable by Jacobi matrices. In Sec. III we
discuss the position and momentum operators inq-deformed oscillator algebras. We explain there
why we must consider the position operators in the formXp5qpN(a11a)qpN. Section IV is
devoted to studying the operatorsXp for q,1. In Sec. V we investigate the operatorsXp at q.1.
Section VI is devoted to consideration of theq-Heisenberg relationPX2qXP51 for position and
momentum operators. In our investigation we extensively use the theory ofq-orthogonal polyno-
mials and basic hypergeometric functions. The theory of these polynomials and hypergeometric
functions, as well as the related notions and assertions, can be found in Ref. 15.
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II. DIFFERENCE OPERATORS OF THE SECOND ORDER

Let V be the Hilbert space with the orthonormal basisun&, n50,1,2,... . LetL be a linear
operator onV, acting upon basis elements as

Lun&5anun11&1bnun&1cnun21&, ~1!

and let

uz&5 (
n50

`

pn~z!un&, ~2!

be an eigenvector ofL with an eigenvaluez: Luz&5zuz&. Then

Luz&5 (
n50

`

„pn~z!anun11&1pn~z!bnun&1pn~z!cnun21&)5z(
n50

`

pn~z!un&.

Equating coefficients at the vectorun&, we obtain the recurrence relation for the coefficients from
~2!:

cn11pn11~z!1bnpn~z!1an21pn21~z!5zpn~z!. ~3!

Since p21(z)[0, then settingp0(z)[1, we have that this relation completely determines the
coefficientspn(z). Moreover,pn(z) are polynomials inz of degreen.

Sometimes, vectorsv5Sn50
` vnun& of V are represented as numerical sequences~v0 ,v1 ,...!. In

this case formula~1! can be written as

~Lv!n5an21vn211bnvn1cn11vn11 .

Because of this, such operatorsL are calledsecond-order difference operators.
Now let L be a symmetric operator. Then formula~1! is of the form

Lun&5anun11&1bnun&1an21un21&, ~4!

and Eq.~3!, determining eigenvectors, reduces to the recurrence relation

anpn11~z!1bnpn~z!1an21pn21~z!5zpn~z!. ~5!

If the coefficientsan andbn are real, then all coefficients of the polynomialspn(z) are real.
We suppose thatan andbn are real andan.0. If the operatorL is unbounded, then we denote

the closure ofL by L̄. The operatorL̄ may not be self-adjoint. In this case,L̄ has nonzero
deficiency indices (m,k), which determine dimensions of deficiency subspaces.~The definitions of
deficiency indices and deficiency subspaces, as well as their properties, can be found in Ref. 11.!
If (m,k)Þ~0,0!, then to every complex numberz, Im zÞ0, there correspond its deficiency sub-
spaces. The following statements may be used for studying operatorsL representable by formula
~4!.

~a! Deficiency indices of the operatorL̄ are coinciding. Moreover, these indices are~0,0! or
~1,1!. In the first case the operatorL̄ is self-adjoint. In the second caseL̄ is not self-adjoint,
however, it has self-adjoint extensions.

~b! Deficiency indices ofL̄ are ~0,0! if and only if the seriesSn50
` upn(z)u

2 diverges for all
complexz, Im zÞ0, wherepn(z) are polynomials from~5!. If deficiency indices are~1,1!, then
this series converges for all complexz, Im zÞ0.

~c! If deficiency indices are~1,1!, then deficiency subspaces are one-dimensional. The defi-
ciency subspaceNz̄ corresponding to a complex numberz̄ is spanned by the vector
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(
n50

`

pn~z!un&,

wherepn(z) are taken from formula~5!.
To find whether or not the operatorL̄ is self-adjoint, we may use the following statements.14

~a! If the coefficientsan andbn from ~4! are bounded, then the operatorL̄ is bounded and,
therefore, self-adjoint.

~b! If bn are any real numbers andan are such thatSn50
` an

215`, then the operatorL̄ is
self-adjoint.

~c! Let ubnu<C, n50,1,2,..., and let beginning with some positive integerj we have
an21an11<an

2, n> j . If

(
n50

`
1

an
,`, ~6!

then the operatorL̄ is not self-adjoint. IfL̄ is not a self-adjoint operator, then it has self-adjoint
extensions. There are infinitely many self-adjoint extensions ofL̄. We refer the reader to Refs. 11
and 14 for a more detailed discussion of self-adjoint extensions.

Using the terminology of Ref. 14, we can say about the operatorL̄ the following. LetB be the
operatorL if it is self-adjoint or its self-adjoint extension if it is not self-adjoint. LetE~D! be the
decomposition of the unity of the operatorB. Then

E~D!5E
D
P~l!dr~l!,

whereP~l! are operators of generalized projections acting from the spacel 2([0,`),dn) into the
spacel 2([0,`),dn

21). Heredn>0 and such thatSj50
` dj

21,`. Note thatl 2([0,`),dn) is the space
of sequences~a0 ,a1 ,a2 ,...! such thatSn50

` uanu
2dn,`. The operatorsP~l! are matrix operators

with positive definite matrices„Fjk~l!…j ,k50
` , satisfying the condition14

(
j ,k50

`

uF jk~l!u2~djdk!21<1.

Moreover, we have

F jk~l!5pj~l!pk~l!F00~l!, j ,k50,1,2,... .

Let ds~l!5F00~l!dr~l!. It is shown in Ref. 14 that

E
2`

`

pj~l!pk~l!ds~l!5d jk , j ,k50,1,2,... . ~7!

If the operatorL is bounded and self-adjoint, then we can setdn51, n50,1,2,..., and polyno-
mials pj ~l! are coefficients of transition from the orthonormal basisun& to the basis that diago-
nalizes the operatorL ~overlap coefficients!. If we know the overlap coefficients, then we know
eigenvectors of the operatorL. If we know the orthogonality relation for polynomials that give
overlap coefficients, then we know spectrum and spectral measure forL. Namely, the spectral
measure ofL coincides withds~l!.

In general cases, it is difficult to evaluate polynomialspn~l!. The problem of their evaluation
is closely related to the theory of orthogonal polynomials and to the moment problem~see, for
example, Refs. 13 and 14!. They are evaluated for many representation operators of type~4! for
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infinite-dimensional representations of simplest Lie groups@for the groupsSL~2,R!, SO0~3,1!# and
for class 1 representations of high dimension Lie groups~see Ref 16 and references therein!. In
Ref. 9 they are evaluated for some operators of different realizations of theq-oscillator algebra.

III. POSITION AND MOMENTUM OPERATORS FOR q-OSCILLATOR

We consider theq oscillator given by the relations

aa12qa1a51, @N,a1#5a1, @N,a#52a. ~8!

The Fock representation of thisq oscillator acts on the Hilbert spaceV with the orthonormal basis
un&,n50,1,2,..., and is given by the formulas

aun&5S 12qn

12q D 1/2un21&, a1un&5S 12qn11

12q D 1/2un11&. ~9!

It follows from here thatNun&5nun&.
For thisq oscillator and forq oscillators given by other formulas,6–8 it is assumed that the

position and momentum operators are given, up to a constant, by the formulas

X5a11a, P5 i ~a12a! ~10!

~see, for example, Ref. 6!. Different q oscillators are related to each other by some nonlinear
transformations.8 That is, in fact, we deal with the same associative algebra, butq-creation and
q-annihilation operators~which, together with the number operatorN generate aq oscillator!, are
taken in different manners. Therefore, in the frame of theq-oscillator algebra, the position and
momentum operators can be taken in different ways, depending on choosing the generating ele-
mentsa1,a,N. If to analyze the position and momentum operators in different cases, then one can
make the following assertion. The position and momentum operators in a frame of anyq oscillator
differ from operators~10!, taken for theq oscillator ~8!, by the mutipliersqpN, wherep is a real
number. This fact compels us to study spectral properties of the operators,

Xp5qpN~a11a!qpN, Pp5 iqpN~a12a!qpN, pPR. ~11!

Let us note that since

qsNa1q2sN5qsa1, qsNaq2sN5q2sa,

then the operators

X5qpNa1qsN1qsNaqpN, P5 i $qpNa1qsN2qsNaqpN%, ~12!

with p,sPR reduce to the operators of the type~11!. Remark that the multipliersqpN andqsN in
~11! and~12! are taken in such a way that the operatorsX andP are symmetric. Ifq→1 then, up
to a constant, operators~11! tend to the usual position and momentum operators of the one-
dimensional quantum harmonic oscillator.

It is well known that for the usual quantum harmonic oscillator the closures of the operators
a11a and i (a12a) are unbounded self-adjoint operators with a continuous spectrum. In this
paper we study spectra of operators~11! for different values ofp. It is easy to show that multi-
plying the basis elementsun& by i n, i 5 A21, we transform the matrix of the operator
X5qpN(a11a)qpN into that of the operatorP5 iqpN(a12a)qpN. Therefore, the operatorsP and
X are simultaneously bounded or unbounded, self-adjoint or not self-adjoint. Moreover, both of
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them have the same spectrum and simultaneously have self-adjoint extensions or not. They also
have the same spectral measure. For this reason, we consider below only the operator
X5qpN(a11a)qpN.

It follows from formulas~9! that for the operatorXp5qpN(a11a)qpN we have

Xpun&5ap,nun11&1ap,n21un21&,

ap,n5q2p~n11!q2pS 12qn11

12q D 1/2. ~13!

IV. SPECTRA AND EIGENVECTORS FOR THE OPERATORS Xp AT q<1

We assume in this section that 0,q,1. The following assertion is valid for operator~13!.
Proposition 1:Let 0,q,1. If p>0 then the operatorXp is bounded and has a unique self-

adjoint extension coinciding with its closureXp. Moreover,Xp is an operator of trace class. If
p,0, then the operatorXp is unbounded. The deficiency indices ofXp in the last case are~1,1! and
the operatorXp is not self-adjoint. It has infinitely many self-adjoint extensions.

Proof: For the numbersap,n from formula ~13! at q,1, we have

ap,n11 /ap,n→q2p, when n→1`. ~14!

Since 0,q,1, then the operatorXp is bounded forp>0. It also follows from ~14! that
Sn50

` uap,nu,`, that is,Xp is an operator of trace class. This proves the first part of the proposi-
tion. It follows from formula~14! that the operatorXp is unbounded forp,0. To prove the second
part of the proposition, we remark that the inequality,

~12qn21!~12qn11!<~12qn!2, ~15!

is valid. Really, removing the parentheses, we obtain from here thatq1q21>2. This inequality is
correct for all realq and the equality is achieved atq51. It follows from ~15! that

ap,n21ap,n11<ap,n
2 , for all n.0.

Besides, in this case we have

(
n50

`
1

ap,n
,`,

since

ap,n /ap,n11→q22p,1, if n→1`.

Therefore, by criterion~c! from Sec. II, the deficiency indices of the operatorXp, p,0, are~1,1!.
The proposition is proved.

Let us investigate the spectrum of the operatorXp for different values ofp. If p,0, then the
operatorXp has deficiency indices~1,1!. In this case, any self-adjoint extensionXp

ext of Xp,
constructed without outcoming from the carrier Hilbert spaceV in which the operatorsa1 anda
act, has a purely discrete simple spectrum~see Ref. 14, Sec. 1 of Chap. 7!. Moreover, there exists
a functiong(z) from the spaceU such that the spectrum of the operatorXp

ext coincides with the set
of zerosl j ( j51,2,3,...) of g(z) and jumps

m j5s~l j10!2s~l j !, j51,2,3,...,

922 W. Chung and A. U. Klimyk: Position and momentum in q-oscillator algebra

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



of the spectral functions(u) of Xp
ext are such that the following conditions are fulfilled:

(
j51

`
1

m j„11l j
2)~g8~l j !…

2 ,`, (
j51

`
1

m j„g8~l j !…
2 5`

~see Ref. 13, Chap. 4!, whereg8(z)5(d/dz)g(z). HereU is the space of entire real functions on
C such that the following conditions are fulfilled:~a! all zeroslj of g are real;~b! the absolute
convergent expansion,

1

g~z!
5(

j51

`
1

g8~l j !~z2l j !
,

has a place;~c! all seriesSj51
` l j

m/g8(l j ), m50,1,2,..., are convergent.
It follows from these assertions that the discrete spectrum of the operatorXp has the infinite

point as the only point of accumulation.
Let p.0. SinceXp is a trace class operator, it has a purely discrete spectrum with zero as the

only point of accumulation. It follows from the results of Refs. 17 and 18 that the spectrum is
symmetric with respect to the pointx50, which also belongs to the spectrum. We derive from
Theorem 3 in Ref. 18 that there exists the transcendental meromorphic functionG(z) with the
expansion

G~z!52A1 (
n51

`
2An

z22an
2 ,

where2SnAnan
22,`, A<0, andAn,0, n51,2,..., such that the spectrum ofXp coincides with

the set of pointsx50 andx561/an , n51,2,.. . Clearly, the pointsx561/an , n51,2,..., are poles
of the functionG(1/z). Jumps of the spectral measures(x) of Xp at these poles are equal to
residues of the functionz21G(1/z) at these points.18 They coincide with

s~x10!2s~x20!52Anan
22 ~ for the poles6an

21!,

ands~10!2s~20!52A. Of course, the functionG(z) is determined by the coefficientsbpm from
~13!. However, the expression forG(z) in terms ofap,m is very complicated@see formula~2.7! in
Ref. 18#.

We considered spectra of the operatorsXp for p.0 andp,0. Now we have to consider the
spectrum of the operatorX05a11a. We have

X0un&5anun11&1an21un21&, an5$~12qn11!/~12q!%1/2.

This operator is bounded. Therefore, its closureX0 is a bounded self-adjoint operator. A general-
ized vector,

ux&5 (
n50

`

Pn~x!un& ~16!

is an eigenvector ofX0 corresponding to an eigenvaluex, xPR, if Pn(x), n50,1,2,..., satisfy the
recurrence relation

~12qn11!1/2Pn11~x!1~12qn!1/2Pn21~x!5~12q!1/2xPn~x!, ~17!

and the initial conditionsP21(x)[0, P0(x)[1. The substitution,
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Pn~x!5~q;q!n
21/2P̂n~x!,

where

~a;q!n5~12a!~12aq!~12aq2!•••~12aqn21!,

reduces this recurrence relation to the form

P̂n11~x!1~12qn!P̂n21~x!5~12q!1/2xP̂n~x!.

It can be written down as

Pn118 ~y!1~12qn!Pn218 ~y!52yPn8~y!, ~18!

wherey5 1
2(12q)1/2x andPn8(y)[ Pn8„

1
2(12 q)1/2x…5 P̂n(x).

Comparing relation~18! with recurrence relation~6.2! for the continuousq-Hermite polyno-
mialsHn(yuq) from Ref. 19, we conclude that

Pn8~y!5Hn~yuq!,

that is

Pn~x!5~q;q!n
21/2Hn„~12q!1/2x/2uq…. ~19!

Thus, eigenvectors of the operatorX05a11a are given by formula~16!, where the polynomials
Pn(x) are determined by~19!.

The orthogonality relation for the polynomialsHn(yuq) is given by the formula

E
21

1

Hn~yuq!Hm~yuq!~12y2!21/2)
k50

`

$122~2y221!qk1q2k!%dy5
2p~q;q!n

~q;q!`
dnm

@see formula~6.6! in Ref. 19#. Therefore, polynomials~19! satisfy the orthogonality relation

E
2b

b

Pn~x!Pm~x!s~x!dx5dnm , ~20!

whereb52/(12q)1/2 and

s~x!5
~12q!1/2~q;q!`

2p

Pk50
` $12~~12q!x222!qk1q2k%

„42~12q!x2…1/2
. ~21!

Formula~20! means that the spectrum of the operatorX0 is simple and continuous. This spectrum
completely covers the interval~2b,b!, b52/(12q)1/2. The spectral measure ofX0 coincides with
s(x)dx, wheres(x) is given by formula~21!.

Whenq→1, then the spectrum turns into the real line and polynomialsPn(x) tend to the usual
Hermite polynomials multiplied by a constant. This agree with results for the quantum harmonic
oscillator. Now we can formulate the following theorem.

Theorem 1: If p.0, then the operatorXp has a discrete simple spectrum with zero as the only
point of accumulation. Ifp,0, then all self-adjoint extensions ofXp ~without outcoming from the
Hilbert spaceV! have discrete simple spectra with infinity as the only point of accumulation. The
operatorX0 has a continuous simple spectrum that covers the interval (2b,b), b52/(12q)1/2.

Let
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ux&5 (
n50

`

Pn~x!un&

be an eigenvector of the operatorXp :Xpux&5xux&. Then the polynomialsPn(x) satisfy the recur-
rence relation,

q2pnqp~12qn11!1/2Pn11~x!1q2p~n21!qp~12qn!1/2Pn21~x!5~12q!1/2xPn~x!,

and the initial conditionsP21(x)[0 andP0(x)[1. Making here the substitution

Pn~x!5S )
i50

n21

q22piD S )
i51

n

~12qi !21/2D P̂n~x!,

we obtain forP̂n(x) the recurrence relation,

P̂n11~x!1q4p~n21!~12qn!P̂n21~x!5
~12q!1/2

qp
xP̂n~x!. ~22!

We found explicit expressions for overlap polynomialsPn(x) and the corresponding spectral
measure for operatorX05a11a. Unfortunately, we could not find an explicit expression for these
polynomials in the case of the operatorXp for arbitrary realp. But it is possible to find polyno-
mials Pn(x) for some particular cases. Let us find them forp5 1

4. In this case for polynomials
P̂n(x) we have

P̂n11~x!1qn21~12qn!P̂n21~x!5cxP̂n~x!,

wherec5(12q)1/2q21/4. It is equivalent to the relation

Pn118 ~y!1qn21~12qn!Pn218 ~y!5yPn8~y!,

wherey5cx[(q21/22q1/2)1/2x andPn8(y) 5 P̂n(x). This recurrence relation coincides with the
recurrence relation for the discreteq-Hermite polynomials,

Hn~y;q!5 (
k50

@n/2#
~q;q!n

~q2;q2!k~q;q!n22k
~21!kqk~k21!yn22k, ~23!

from Refs. 20 and 21. Here [n/2] is an integral part of the numbern/2. Therefore,
P̂n(x)5Hn(cx;q), c5(q21/22q1/2)1/2, and

Pn~x!5q2n~n21!/4~q;q!n
21/2Hn„~q

21/22q1/2!1/2x;q…. ~24!

It follows from results of Ref. 21 that the orthogonality relation for polynomials~23! is of the form

(
j51

`

$Hm~qj ;q!Hn~q
j ;q!1Hm~2qj ;q!Hn~2qj ;q!%

qj

2

~q2 j12;q!`~q;q2!`

~q2;q2!`

1 1
2~q;q

2!`Hm~1;q!Hn~1;q!5dmnq
n~n21!/2~q;q!n .

Therefore, the orthogonality relation for polynomials~24! is
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(
j51

`

$Pm~c21qj !Pn~c
21qj !1Pn~2c21qj !Pn~2c21qj !%Wj1Pm~2c21!Pn~2c21!W05dmn ,

~25!

wherec5(q21/22q1/2)1/2 and

Wj5
c21qj

2

~c22q2 j12;q2!`~q;q2!`

~q2;q2!`
. ~26!

This means that the spectrum of the operatorX̄1/4 is simple and discrete. Moreover, the spectrum
coincides with the set of points,

6
qj

~q21/22q1/2!1/2
, j50,1,2,... . ~27!

It follows from ~25! that the set of vectors,

udj&5 (
n50

`

PnS qj

~q21/22q1/2!1/2DWj
1/2un&, j50,1,2,...,

ud2 j&[ (
n50

`

PnS 2
qj

~q21/22q1/2!1/2DWj
1/2un&, j51,2,3,...,

whereWj are given by formula~26!, form a new orthonormal basis of the Hilbert spaceV and

X̄1/4udj&5dj udj&[
qj

~q21/22q1/2!1/2
udj&, j50,1,2,...,

X̄1/4ud2 j&5d2 j ud2 j&[2
qj

~q21/22q1/2!1/2
ud2 j&, j51,2,3,... .

Now let us consider the operatorXp at p52 1
4. In this case we represent formula~13! in the

form

X21/4un&5bnun11&1bn21un21&, bn5q1/4S q2n2121

12q D 1/2.
This operator is unbounded andX̄21/4 is not a self-adjoint operator. Since the deficiency indices of
X̄21/4 are ~1,1!, then deficiency subspaces for this operator are one dimensional. Moreover, the
deficiency subspacesNz̄ , Im zÞ0, are defined by the generalized vectors

uz&5 (
n50

`

Pn~z!un&, ~28!

such that

~q2n2121!1/2Pn11~z!1~q2n21!1/2Pn21~z!5~q21/22q1/2!1/2zPn~z!,

and the initial conditionsP21(z)[0 andP0(z)[1 are satisfied. Making the substitution
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Pn~z!5S )
i51

n

~q2 i21!21/2D P̂n~z!,

we obtain forP̂n(z) the relation

P̂n11~z!1~q2n21!P̂n21~z!5~q21/22q1/2!1/2zP̂n~z!.

This recurrence relation coincides with recurrence relation~1.7! in Ref. 22~if q21 is replaced by
q,q.1! for the continuousq-Hermite polynomialshn(zuq)5 i2nHn( izuq) whenq.1. Therefore,

P̂n~z!5hn„~q
21/22q1/2!1/2z/2uq21

…

and

Pn~z!5qn~n11!/4~q;q!n
21/2hn~czuq21!,

wherec5(q21/22q1/2)1/2/2. We derive from formula~3.2! in Ref. 22 that the orthogonality rela-
tion for these polynomials are

E
2`

`

Pm~c21 sinhu!Pn~c
21 sinhu!ds~u!5dmn ,

where

ds~u!5
du

~q;q!`~ log q21!P j51
` ~112qj cosh 2u1q2 j !

. ~29!

The operatorX21/4 can be extended to be a self-adjoint operator defined on the subspace

D~X21/4! %Nz%Nz̄ ,

whereD(X21/4) is the domain ofX21/4 and z is any fixed complex number. A description of
self-adjoint extensions of symmetric operators can be found in Ref. 11, Chap. 7. It would be
interesting to know how spectral measures of self-adjoint extensions ofX21/4 are connected with
measure~29!.

V. SPECTRA AND EIGENVECTORS FOR THE OPERATORS Xp AT q>1

If q.1, then the operatorsXp have the following properties.
Proposition 2:Let q.1. If p<2 1

4 thenXp is a bounded operator and has a unique self-adjoint
extension coinciding with its closureXp. If p.21

4 then the operatorXp is unbounded andXp has
the deficiency indices~1,1!. In the last case, the operatorXp has infinitely many self-adjoint
extensions.

Proof: For the numbersap,n from formula ~13! at q.1, we have

ap,n11

ap,n
5q2p11/2S q2n2221

q2n2121D
1/2

→q2p11/2, when n→1`.

Now our proposition is proved in the same way as Proposition 1.
Again, if p.2 1

4 then any self-adjoint extensionXp
ext of Xp , constructed without outcoming

from the carrier Hilbert spaceV, has a purely discrete spectrum and there exists a functiong(z)
from the spaceU such that the spectrum ofXp

ext coincides with the set of zeroslj ~j51,2,3,...! of
g(z). In this case, the spectrum ofXp

ext has the infinite point as the only point of accumulation.
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If p,21
4 thenXp is an operator of trace class. It has a purely discrete spectrum with zero as

the only point of accumulation.
Let us consider the spectrum ofXp at p521

4. In this case

X21/4un&5anun11&1an21un21&, an5q1/4S 12q2n21

q21 D 1/2.
A generalized vector,

ux&5 (
n50

`

Pn~x!un&,

is an eigenvector ofX21/4 with the eigenvaluex, xPR, if Pn(x), n50,1,2,..., satisfy the recurrence
relation,

~12q2n21!1/2Pn11~x!1~12q2n!1/2Pn21~x!5~q1/22q21/2!1/2xPn~x!.

This recurrence relation is solved in the same way as relation~17! and we have

Pn~x!5~q21;q21!n
21/2Hn„~q

1/22q21/2!21/2x/2uq21
…,

whereHn(yuq21) are the continuousq-Hermite polynomials, taken with the baseq21. For poly-
nomialsPn(x) we have the orthogonality relation

E
2b

b

Pn~x!Pm~x!s~x!dx5dnm ,

whereb52/(q1/22q21/2)1/2 and

s~x!5
~q1/22q21/2!1/2~q21;q21!`

2p

Pk50
` $12„~12q21!x222…q2k1q22k%

„42~12q21!x2…1/2
. ~30!

This means that the spectrum of the operatorX21/4 is simple and continuous. This spectrum
exactly covers the interval~2b,b!, b52/(q1/22q21/2)1/2. The spectral measure ofX21/4 coincides
with s(x)dx, wheres(x) is given by formula~30!. So, we can formulate the following theorem.

Theorem 2: If p,2 1
4 then the operatorXp has a discrete simple spectrum with zero as the

only point of accumulation. Ifp.21
4, then all self-adjoint extensions ofXp ~without outcoming

from the Hilbert spaceV! have discrete simple spectra with infinity as the only point of accumu-
lation. The operatorX21/4 has a continuous simple spectrum, which covers the interval~2b,b!,
b52/(q1/22q21/2)1/2.

Let us find the spectrum and the spectral measure for the operatorXp at p521
2. In this case

X21/2un&5anun11&1an21un21&, an5q2n/2
~12q2n21!1/2

~q21!1/2
.

Therefore, a generalized vector,

ux&5 (
n50

`

Pn~x!un&
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is an eigenvector ofX21/2 with the eigenvaluex, xPR, if Pn(x), n50,1,2,..., satisfy the recurrence
relation

q2n/2~12q2n21!1/2Pn11~x!1q~2n11!/2~12q2n!1/2Pn21~x!5~q21!1/2xPn~x!.

Making the substitution

Pn~x!5S )
i50

n21

qi /2D S )
i51

n

~12q2 i !21/2D P̂n~x!,

we obtain forP̂n(x) the relation

P̂n11~x!1q2n11~12q2n!P̂n21~x!5~q21!1/2xP̂n~x!.

This recurrence relation is solved in the same way as relation~22!. We obtain
P̂n(x)5Hn„(q21)1/2x;q21

… and

Pn~x!5qn~n21!/4~q21;q21!n
21/2Hn„~q21!1/2x;q21

…, ~31!

whereHn(y;q) are the discreteq-Hermite polynomials~23!.
The orthogonality relation for polynomials~31! is of the form~25!, but nowc5(q21)1/2 and

Wj5
~q21!21/2q2 j

2

„~q21!21q22 j22;q22
…`~q21;q22!`

~q22;q22!`
. ~32!

Therefore, the spectrum of the operatorX21/2 is simple and discrete. This spectrum coincides with
the set of points

6
q2 j

~q21!1/2
, j50,1,2,... .

The eigenvectors ofX21/2 are the vectors

udj&[ (
n50

`

PnS q2 j

~q21!1/2DWj
1/2un&, j50,1,2,...,

ud2 j&[ (
n50

`

PnS 2
q2 j

~q21!1/2DWj
1/2un&, j51,2,3,...,

whereWj are given by formula~32!. For these vectors we have

X21/2udj&5d6 j ud6 j&, where d6 j56q2 j /~q21!1/2.

For the operatorXp at p50 we have

X05S qn1121

q21 D 1/2un11&1S qn21

q21 D 1/2un21&.

This operator is unbounded andX0 is not a self-adjoint operator. Deficiency subspaces ofX0 are
one dimensional. The deficiency subspaces ofNz̄ , Im zÞ0, are defined by the generating vectors

929W. Chung and A. U. Klimyk: Position and momentum in q-oscillator algebra

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



uz&5 (
n50

`

Pn~z!un&, ~33!

such that

~qn1121!1/2Pn11~z!1~qn21!1/2Pn21~z!5~q21!1/2zPn~z!.

Solving this recurrence relation we find that

Pn~z!5q2n~n11!/4~q21;q21!n
21/2hn„~q21!1/2zuq…,

where hn(yuq) are continuousq-Hermite polynomials with the baseq.1 ~see Sec. IV!. The
operatorX0 can be extended to be the self-adjoint operator defined on the subspace,

D~X0! %Nz%Nz̄ ,

whereD(X0) is the domain of the operatorX0.

VI. q -HEISENBERG POSITION AND MOMENTUM OPERATORS

For anypPR, the position and momentum operators, given by formulas~11!, do not satisfy
theq-deformed Heisenberg relation,

PX2qXP51. ~34!

Let us find the newq deformation of the quantum harmonic oscillator, which is compatible
with theq-Heisenberg relation~34!. We suppose thata, a1, andN satisfy the relations

H~N!aa12G~N!a1a51, ~35!

@N,a#52a, @N,a1#5a1, ~36!

whereH(N) andG(N) are functions ofN that must be found. Let

X5 f ~N!a1g~N!a1, P5h~N!a2k~N!a1. ~37!

We take into account that relations~36! mean that

qsNaq2sN5q2sa, qsNa1q2sN5qsa1.

Then Eqs.~34! and ~35! lead to the relations

f ~N11!

f ~N!
5q

h~N11!

h~N!
,

g~N21!

g~N!
5q

k~N21!

k~N!
, ~38!

$h~N!g~N11!1q f~N!k~N11!%aa12$k~N! f ~N21!1qg~N!h~N21!%a1a51. ~39!

Therefore, in~37! we have

f ~N!5k~N!5 1
2q

2N, h~N!5g~N!5 1
2q

N, ~40!

and according to~39! for H(N) andG(N) from ~35!, we obtain the expressions

H~N!5 1
2~q

2N111q4N13!, G~N!5 1
2~q

4N221q2N!. ~41!
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So, we obtained theq-deformed oscillator algebra defined by formulas~35!, ~36!, and ~41!.
The Fock representation of this algebra acts in the Hilbert spaceV with the orthonormal basisun&,
n50,1,2,..., such thatNun&5nun&. For the operatorsa1 anda we have

a1un&5Af~n11!un11&, aun&5Af~n!un21&,

where

f~n!5
G~n21!!

H~n21!! S 1

H~0!
1 (

j51

n21
H~ j21!!

G~ j !! D , ~42!

and the factorials are defined by the formula

F~ j !!5F~ j !F~ j21!••F~2!F~1!, F~0!!51.

Inserting~41! into ~42! yields to

f~n!5
2q2n

~11q2n22!~11q2n! S 11
qn2q2n11

q21 D . ~43!

Let us note that

a1a5f~N!, aa15f~N11!,

wheref(N) is given by formula~42! or ~43!.
The position and momentum operators~37! are not symmetric in our case ifqPR. It can be

shown that these operators can be symmetric only ifq is a root of unity. We also remark that
realizations of the operatorsP andX, satisfying relation~34!, by self-adjoint operators was found
by Schmu¨dgen.23

Note added in proof: After the submission of this manuscript, we learned that there are some
papers24–28 that are mostly overlapping the material in the first part of this paper. We would like
to mention that A. Kempf discussed Heisenberg algebra different from ours in his seminal
work.29–30
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Analytic continuation plays a key role in many problems in physics. A central
problem is the implementation of a stabilized continuation from approximate nu-
merical data specified on an interior segmentg within the holomorphy domain. The
solution to that problem presented in this paper is expressed in terms of a Fredholm
integral equation of the second kind which refers only to the physical regiong ; in
this latter respect it differs from other approaches to the same problem which are
normally formulated on the boundary, and has the considerable advantage of deal-
ing directly with the physically relevant functions. ©1996 American Institute of
Physics.@S0022-2488~96!01401-2#

I. INTRODUCTION

A problem which arises in many different contexts in physics is to continue a data function
D(z) away from its domain of definitiong,g being that part of the physical region within which
the measurements definingD(z) have been performed. Although the data functionD(z) will
normally be given as a set of values corresponding to a discrete set of measurements, it may,
however, in certain circumstances be given in functional form as an approximate theoretical
expression such as, for example, that derived in QCD using a perturbative asymptotic expansion
~in this particular example the data regiong will in fact be outside the physical region!. In either
caseD(z) will represent approximate information and a knowledge of the associated uncertainty
will form an essential ingredient in the analysis. Continuation could be meant in various ways but
applies most commonly within the context of the analytic properties of a complex function to
which the data relate. We shall suppose that the data regiong is located within the interior of the
holomorphy domain and that the problem of interest is to effect a continuation away fromg by
associating the data functionD(z), given ong, with an analytic functionX(z).

The first and obvious point to be made is that the process of analytic continuation as described
is a totally unstable one. Despite the fact that the continuation of an analytic function is uniquely
defined throughout the holomorphy domain, nevertheless when dealing with the practical problem
of implementing such a continuation numerically, unless some suitable stabilizing condition is
introduced we are faced with a mathematically ill-posed problem. This is because, without such
stabilization, infinitesimal changes in the input functionD(z) can lead to arbitrarily large differ-
ences in the output. The stabilization problem, which is thus a necessary part of the process of
carrying out the analytic continuation, and is a general feature of all so-called inverse problems, is
well understood and has been applied in many different contexts. The classical method, due to
Tychonov,1 is based on the use of compact setsCK , defined on some function spaceC referred
to as the control space. For example, taking the domain of holomorphy to be the unit disk, we
could defineC to be the space of boundary value functionsx(f)[X(eif). The functionsX(z) are
uniquely determined by the corresponding boundary functionx~f!: there is a continuous linear
mapM ~the Cauchy integral! from C to the space of functionsX. Tychonov’s method is based on
the assumption that one can find physical arguments to require that the functions in the control
space, in this case thex~f!, should lie within one of some set of compact setsCK,C .

0022-2488/96/37(2)/933/9/$10.00
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If we define the spaceS to consist, for example, of theL2-functions defined ong, thenC is
remote2 from S but maps on to a subspaceM~C ! of S which consists of the restrictionsXg(z)
to the segmentg, of the holomorphic functions defined by the boundary valuesx~f!PC . In the
Tychonov procedure, stability is achieved through the restriction withinS to M~CK!, where
CK,C is compact. The continuity and bijectivity ofM ~the continuity and the uniqueness of the
analytic continuation! together with the compactness ofCK,C ensures that the setM~CK! is
also compact and that the inverse mapM21 fromM~CK! to CK is also continuous. As well as
that, and this is a key point, if the setsCK are convex, it ensures that within the subset
M~CK!,S there is a unique3 nearest point4 XQ

g (z) to the data functionD(z). The corresponding
boundary valuexQ~f![M21(XQ

g )PCK is usually referred to as the Tychonov regularized quasi-
solution.

The practical difficulty with the Tychonov procedure is that actual physical constraints do not
normally correspond to the restriction to compact setsCK in C . Instead they are more likely to
take the form of boundedness conditions producing a restriction inC to ballsC B , ixi<B, which
are not compact sets. Fortunately there is a useful role for ball conditions in implementing the
program of stabilization using weak-star compactness. Why and how this works is explained in
detail in Refs. 5 and 6, and in what follows we shall be dealing with physical constraints of this
type.7–9

We begin by mapping the holomorphy domain onto the unit disk. The data setg will be taken
to be on the real axis, as shown in Fig. 1. We shall suppose that the data are given over a
continuumg, but the discussion may be readily adapted to apply to a discrete data set. For
simplicity only real analytic functions are considered, which means that the data are values of a
real function. The data will be denoted byD(z), defined forzeg, with corresponding errorse(z),
and the required function resulting from the analytic continuation will be represented byX(z). In
what followsx~f! will denote a real function which may for example beRe X(eif), Im X(eif),
]Im X(eif)/]f, etc. ThenX(z) can be reconstructed fromx~f!, for any pointz within the disk,
by a Schwarz–Villat type of representation expressed by an equation of the form

X~z!5d1
1

2p E
0

2p

R~z0 ;z,e
if!x~f!df. ~1.1!

R(z0 ;z,e
if) takes the following forms, respectively, according asx~f! is Re X(eif), Im X(eif)

or ]Im X(eif)/]f,

eif1z

eif2z
,

2z sin f

122z cosf1z2
2

2z0 sin f

122z0 cosf1z0
2 , 2 ln

eif2z0
eif2z

. ~1.2!

FIG. 1. The holomorphy domain ofX(z) and the data setg where the data functionD(z) is given.
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The procedure is readily extended to include the case of the Cauchy kerneleif/(eif2z), although
in this case the boundary functionX(eif) will no longer be real. The constantd[X(z0) is a
subtraction constant which arises from the need, in certain cases, to specify the value ofX(z) at
one pointz0, usually chosen to be on the real axis, in order to fully determine the functionX(z).
This occurs when, for example, out of the above alternatives,x~f! is chosen to beIm X(eif) or
]Im X(eif)/]f. If x~f! is chosen to beRe X(eif) orX(eif), then no subtraction is necessary and
sod may be put equal to zero.

To obtain the quasi-solutionxQ~f! for this problem, using bounded rather than compact sets
to achieve stabilization, we consider the following two functionals:6,10

F1@x#[d5
1

2p E
0

2p

„x~f!…2s~f!df, ~1.3!

F2@X#[x25E
g
n~z!„X~z!2D~z!…2 dz, ~1.4!

wheres~f! is a suitably chosen positive weight function, andn(z)[„e(z)…22. We use the func-
tionalF2[X][x2 to provide a measure of the quality of fit ofX(z) to the given dataD(z), and any
functionX for whichF2[X]<x0

2, wherex0
2 is a suitably chosen constant, will be regarded as being

compatible with the dataD(z) within the errorse(z). Together, these two functionals—~1.3!
allowing us to define a restriction within the spaceC of boundary value functionsx~f! to bounded
setsC B , and ~1.4! giving a measure of nearness to the data functionD(z) in terms of the
prescribed errorse(z)—enable us to implement the stabilization procedure described above. What
we do is to minimizeF1[x] subject to the constraintF2[X]<x0

2 ~although we could equally well
have minimizedF2 with the restrictionF1<d0

2!. In fact thex~f! which is constrained in this way,
and the correspondingX(z), may not represent the original function of interest but will more often
correspond to the difference~discrepancy! when a trial function, usually depending on several
parameters, has been subtracted from it. This procedure is explained in detail in Ref. 11.

To solve this stabilized problem of minimizingF1[x] subject to the data conditionF2[X]<x0
2,

the usual approach is to replaceX(z) in Eq. ~1.4! by x~f!, using Eq.~1.1!, so thatF2 becomes
F2[x]. One then constructs the functionalF [x][F1[x]1lF2[x], using a Lagrange multiplierl,
and then optimizes with respect to the functionx~f! by setting the Fre´chet derivative ofF [x]
equal to zero,

dF @x;y#[ lim
a→0

]

]a
F @x~f!1ay~f!#50, ~1.5!

independently of the choice of functiony. At the same time, bearing in mind thatF [x] depends
on the value of the subtraction constantd, and supposing that this value is not already determined
by some other condition, we also optimizeF with respect tod:

]F

]d
50. ~1.6!

In this form the problem yields the required functionx~f! @which in turn definesX(z) through Eq.
~1.1!# as the solution to the following integral equation:

x~f!5
l

s~f! HG~z0 ,f!1
1

2p E
0

2p

K~z0 ;f,f8!x~f8!df8J , ~1.7!

where
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G~z0 ;f!5E
g
n~z8!R~z0 ;z8,e

if!HD~z8!2
1

ng
E

g
n~z9!D~z9!dz9J dz8, ~1.8!

K~z0 ;f,f8!5
1

ng
E

g
n~z8!R~z0 ;z8,e

if!dz8E
g
n~z9!R~z0 ;z9,e

if8!dz9

2E
g
n~z8!R~z0 ;z8,e

if!R~z0 ;z8,e
if8!dz8 ~1.9!

and

ng[E
g
n~z8!dz8. ~1.10!

The value ofl is determined using the conditionx25x0
2. The optimized valued0 of the constant

d, which is required in Eq.~1.1! to obtain the functionX(z), is given by

d05
1

ng
E

g
dz8n~z8!D~z8!2

1

ng
E

g
dz8n~z8!H 1

2p E
0

2p

R~z0 ;z8,e
if!x~f!dfJ . ~1.11!

It is worth noting that, in this case, where we have optimized with respect to the subtraction
constantd, the integral equation~1.7! is in fact independent of the subtraction pointz0. This
follows from the fact thatR(z0 ;z,e

if) can always be expressed in the form

R~z0 ;z,e
if![R~z,eif!2R~z0 ,e

if!. ~1.12!

This is clear for the examples listed in Eq.~1.2!, where the form ofR(z,eif) in each case is
obvious. Using Eq.~1.12! we can easily writeG(z0 ;f) and K(z0 ;f,f8) in a form which is
manifestly independent ofz0:

G~z0 ;f![G~f!5E
g
dz8n~z8!R~z8,eif!$D~z8!2D̄%, ~1.13!

K~z0 ;f,f8!5K~f,f8!5
1

ng
E

g
dz8n~z8!R~z8,eif!E

g
dz9n~z9!R~z9,eif8!

2E
g
dz8n~z8!R~z8,eif!R~z8,eif8!, ~1.14!

where we have introducedD̄ to represent the integral

D̄[
1

ng
E

g
n~z8!D~z8!dz8. ~1.15!

@The term inR(z0 ,e
if) from the right-hand side of Eq.~1.12! has dropped out from Eqs.~1.13!

and ~1.14! since it does not depend on the integration variable and thus leaves a factor
*dz8n(z8)$D(z8)2D̄% which is zero.#

Another important result which holds in this case is that

X̄[
1

ng
E

g
n~z8!X~z8!dz85D̄; ~1.16!
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this follows directly from Eqs.~1.11! and ~1.1!.
It may happen that the value ofX(z) may be known at some point, not necessarily within the

data range, for example at a physical threshold. If that point is chosen as the subtraction point, then
the constantd is determined, sayd5d1. This is obviously an advantage and should improve the
precision of the result forX(z). In this fixed subtraction case we again obtain an integral equation
identical in form with Eq.~1.7! but withG(z0 ;f) andK(z0 ;f,f8) given by

G~z0 ;f!5E
g
n~z8!R~z0 ;z8,e

if!„D~z8!2d1…dz8 ~1.17!

K~z0 ;f,f8!52E
g
n~z8!R~z0 ;z8,e

if!R~z0 ;z8,e
if8!dz8. ~1.18!

II. THE INTEGRAL EQUATION ON THE SEGMENT g

In Sec. I we have summarized the usual approach to the stabilized analytic continuation
problem. This is a necessary background to the primary purpose of the present paper which is to
show that the integral equation~1.7!, expressed in terms of the boundary valuesx~f8!, may be
replaced by an integral equation which applies toX(z) directly and is written on the physically
accessible data segmentg. It is convenient as well as elegant to be able to focus all one’s attention
on the data region without any explicit reference to the boundary functionx~f!; it is also by no
means obvious that it should be possible to do this, given the inherent instability of the analytic
continuation from an open curveg. In this section we show how this can be achieved, and derive
the integral equation ong for X(z). Like Eq. ~1.7! this is again a Fredholm equation of the second
kind, the solution of which defines directly the analytic continuation away from the segment. The
analytic continuation is discussed further in Sec. III where, in particular, an explicit expression is
obtained for the continuation ofX(z) to the boundary.

If in Eq. ~1.1! we substitute the right-hand side of Eq.~1.7! for x~f!, we obtain, after inserting
the expressions~1.8! and ~1.9! for G(z0 ;f), K(z0 ;u,u8):

X~z!5d01
l

2p E
0

2p df

s~f!
R~z0 ;z,e

if!H E
g
dz8n~z8!R~z0 ;z8,e

if!„D~z8!2D̄…

1
1

2p E
0

2p

df8F 1ng
E

g
dz8n~z8!R~z0 ;z8,e

if!E
g
dz9n~z9!R~z0 ;z9,e

if8!

2E dz9n~z9!R~z0 ;z9,e
if!R~z0 ;z9,e

if8!Gx~f8!J . ~2.1!

We see now that we are in a position to carry out thef8 integration explicitly using Eq.~1.1!;
integratingR(z0 ;z9,e

if8)x~f8! yieldsX(z9)2d0 and so we have eliminated the boundary values
x~f8! from Eq. ~2.1!, introducing instead the functionX(z9) defined ong. The result is

X~z!5d01
l

2p E
0

2p df

s~f!
R~z0 ;z,e

if!H E
g
dz8n~z8!R~z0 ;z8,e

if!„D~z8!2D̄…

1
1

ng
E

g
dz8n~z8!R~z0 ;z8,e

if!E
g
dz9n~z9!„X~z9!2d0…

2E
g
dz9n~z9!R~z0 ;z9,e

if!„X~z9!2d0…J . ~2.2!
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This may be simplified, using Eq.~1.16!, to the following form:

X~z!5d01
l

2p E
0

2p df

s~f! HR~z0 ;z,e
if!

3E
g
dz8~z8!R~z0 ;z8,e

if!„D~z8!2X~z8!…J . ~2.3!

Notice that thed0 which appears twice within the integral in Eq.~2.2! does not contribute, since
the two corresponding terms cancel. To eliminate the otherd0 appearing at the beginning of the
right-hand side of Eqs.~2.2! and~2.3!, perhaps the most convenient way is again to use the result
X̄5D̄ @Eq.~1.16!#. InsertingX(z) from Eq. ~2.3! into Eq. ~1.16! gives

D̄5d01
l

2p E
0

2p df

s~f! H 1

ng
E

g
dz9n~z9!R~z0 ;z9,e

if!

3E
g
dz8n~z8!R~z0 ;z8,e

if!„D~z8!2X~z8!…J . ~2.4!

This is now subtracted from Eq.~2.3! giving the result

X~z!5D̄1lE
g
dz8n~z8!SR~z0 ;z,z8!2

1

ng
E

g
dz9n~z9!R~z0 ;z9,z8! D „D~z8!2X~z8!…,

~2.5!

where we have definedR(z0 ;z,z8) by

R~z0 ;z,z8![
1

2p E
0

2p df

s~f!
R~z0 ;z,e

if!R~z0 ;z8,e
if!. ~2.6!

If we now introduce the kernelK (z0 ;z,z8) defined by

K ~z0 ;z,z8![R~z0 ;z,z8!2
1

ng
E dz9n~z9!R~z0 ;z9,z8!, ~2.7!

we obtain the following compact form of the integral equation forX(z):

X~z!5D̄1lE
g
dz8n~z8!K ~z0 ;z,z8!D~z8!2lE

g
dz8n~z8!K ~z0 ;z,z8!X~z8!. ~2.8!

There are several comments which may be made about this integral equation. The first is to
observe that it may conveniently be expressed as an equation forX (z)[X(z)2D(z), instead of
for X(z). In this case we have

X ~z!5„D̄2D~z!…2lE
g
dz8n~z8!K ~z0 ;z,z8!X ~z8!. ~2.9!

The second important point to make is that whereasK (z0 ;z,z8), defined by Eqs.~2.7!, ~2.6!, and
~1.12!, is not independent ofz0, it is nevertheless possible to replace it in the integral equation
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~2.8! by another kernelK (z,z8) which is not only independent of the subtraction pointz0 but is
also symmetric inz andz8. This is seen as follows. We first use Eqs.~2.7!, ~2.6!, and ~1.12! to
writeK (z0 ;z,z8) as

K ~z0 ;z,z8!5
1

2p E
0

2p df

s~f!
$R~z8,eif!2R~z0 ,e

if!%$R~z,eif!2R̄~eif!%, ~2.10!

where, following an obvious notation, we have definedR̄(eif) as

R̄~eif![
1

ng
E

g
dz8n~z8!R~z8,eif!. ~2.11!

Using again the fact thatX̄2D̄50, we obtain, after substituting Eq.~2.10! into Eq. ~2.8!,

X~z!5D̄2
l

2p E
0

2p df

s~f!
E

g
dz8n~z8!R~z8,eif!$R~z,eif!2R̄~eif!%$X~z8!2D~z8!%.

~2.12!

To make the kernel symmetric we can replace the factorR(z8,eif) in the above equation by
R(z8,eif)2R̄(eif) without changing the value of the integral. We are now in a position to
introduce a new kernelK (z,z8), symmetric inz,z8 and independent ofz0, defined as follows:

K ~z,z8!5
1

2p E
0

2p df

s~f!
$R~z8,eif!2R̄~eif!%$R~z,eif!2R̄~eif!%. ~2.13!

Using K (z,z8) we may write the integral equation in the following compact, manifestly
z0-independent and symmetric form:

X~z!5D̄2lE
g
dz8n~z8!K ~z,z8!$X~z8!2D~z8!%. ~2.14!

The above result@Eq. ~2.14!# relates to the situation where the subtraction constantd was not
predetermined. The calculation leading to Eq.~2.14! incorporated a process of optimization with
respect tod ~leading to the optimal valued0!. The calculation in the fixed subtraction case, where
the valued5d1 of the subtraction constant at a specified pointz0 is known, is somewhat different.
The integral equation forX(z) is derived in the same way as above, but using Eqs.~1.17! and
~1.18! for G(z0 ;f) andK(z0 ;f,f8). The result in this case is

X~z!5d12lE
g
dz8n~z8!R~z0 ,z,z8!$X~z8!2D~z8!%. ~2.15!

The kernel of this integral equation isR(z0 ;z,z8), which is symmetric inz and z8 but, as we
would expect in this case, does depend on the subtraction pointz0.

As in the case of the integral equation forx~f!, the parameterl has in each case to be
determined from the conditionx25x0

2 @wherex2 is defined in Eq.~1.4! andx0
2 is a given constant

which specifies the precision of the data. We use the convexity of the functionalx2 to impose the
condition on the boundaryx25x0

2, rather than as an inequalityx2<x0
2#. Notice that it is the same

parameterl which appears in the equations forX(z) on the segmentg as in the equations on the
boundaryx~f!, so that the numerical value obtained forl should be the same in either of the two
approaches.
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III. ANALYTIC CONTINUATION TO THE BOUNDARY

The integral equations~2.14! and~2.15! automatically provide an analytic continuation away
from the integration regiong, since the domain of definition ofX(z) on the left-hand side of these
equations is not restricted tog. This procedure is often referred to as Nystrom continuation. We
know that in general the analytic continuation fromg to the boundary will be unstable, in the sense
that for two holomorphic functions which are close together ong, even if these possess boundary
valuesx~f! on uzu51 which areL2, nevertheless the two corresponding functionsx~f! may be far
apart. However, the functionsX(z) obtained as solutions to the integral equations are stable with
respect to changes inD(z) and, in fact, for any such solutionX(z), an explicit representation for
the boundary value functionx~f! may be obtained. This is seen directly from Eq.~2.3! which has
precisely the form of the generalized Schwarz–Villat representation given by Eq.~1.1! provided
that we make the identification

x~f!52
l

s~f!
E

g
dz8n~z8!R~z8,eif!$X~z8!2D~z8!%. ~3.1!

In deriving this we have used Eq.~1.12! for R(z0 ;z8,e
if), and the relationX̄5D̄.

We may consider this representation, which gives the boundary functionx~f! in terms of the
functionX(z) on the segmentg, as aninverse Schwarz–Villat representation. It is important to
recognize that this inverse representation only applies in the very specific case of functionsX(z)
which are solutions of the integral equations. Notice that the result depends onl, the value of
which has to be determined from thex2 condition. As an alternative to using Eq.~2.14! or ~2.15!
to perform an analytic continuation away fromg we can use Eq.~3.1! together with Eq.~1.1!.
Taken together these yield the functionX(z) at any pointz within the unit disk.

In the case of a fixed subtraction constantd1, the corresponding representation forx~f! is

x~f!52
l

s~f!
E

g
dz8n~z8!R~z0 ;z8,e

if!$X~z8!2D~z8!%. ~3.2!

As one would expect, this result is dependent onz0 whereas Eq.~3.1! was not.

IV. CONCLUSION

We have been concerned in this paper with the problem of analytic continuation from ap-
proximate numerical data given on an interior segment, to the boundary of the domain of holo-
morphy. The usual approach to this problem leads, after a stabilization condition has been intro-
duced, to an integral equation for the boundary values of the function. A representation of
Schwarz–Villat type, Eq.~1.1!, allows the value of the functionX(z) at any point in the holo-
morphy domain to be determined from the boundary values obtained from this integral equation.
What we have shown here is that the same result can be achieved using an integral equation for
X(z) directly, the integration being over the physically accessible data segmentg instead of the
boundary. We have derived these alternative integral equations and have shown that the solutions
for X(z) define an analytic continuation extending to the boundary. Like the other equations they
are Fredholm equations of the second kind.
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8A. Tychonov and V. Arsenine,Méthodes de Re´solution de Proble`mes Mal Pose´s, Editions Mir, Moscow, 1976; the
Russian edition is from 1974~Isdatel’svo Nauk!.

9S. Ciulli, C. Pomponiu, and I. Sabba-Stefanescu, ‘‘Analytic Extrapolation Techniques and Stability Problems in Disper-
sion Relations Theory,’’ Schladming Winterschool 1973, which appeared in Phys. Rep. C17, 135–224~1975!.

10S. Ciulli, F. Geniet, G. Mennessier, and T. D. Spearman, Phys. Rev. D36, 3494~1987!.
11S. Ciulli and T. D. Spearman, Nuovo Ciment. A83, 352 ~1984!.

941M. Ciulli and T. D. Spearman: Analytic continuation from empirical data

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



On some representations of current algebras in two
dimensions and their central extensions

Sava Donkov
Department of Physics, Sofia University, 5 James Baucher Boulevard,
1126 Sofia, Bulgaria

Orlin Stoytchev
Institute of Nuclear Research and Nuclear Energy, 72 Tsarigradsko Chaussee,
1784 Sofia, Bulgaria

~Received 25 July 1995; accepted for publication 25 September 1995!

A class of unitary representations of the group of maps from a Riemannian mani-
fold to a compact semisimple Lie group which are a modification of the so-called
energy representations is considered. Their irreducibility is proved in any dimen-
sion >2. This extends the known results of irreducibility for certain cases in
dimension 2. Next, the corresponding algebra representations are studied and
their irreducibility in dimension 2 is also proved. These are extended in a natural
way to representations of certain central extensions of the algebras. Very explicit
formulas are given, particularly on the two-dimensional torus, for the algebra
extensions and the representations. ©1996 American Institute of Physics.@S0022-
2488~96!02801-3#

I. INTRODUCTION

Let G be a compact semisimple Lie group andX a Riemannian manifold. Consider the space
GX[Map(X,G) of smooth maps fromX to G, which send all points outside a compact set to the
identity of G. This space is a group with respect to pointwise multiplication, i.e.,
(g1g2)(x):5g1(x)g2(x), g1 ,g2PGX. When equipped with a Frechet-type topology, it becomes a
topological group. The pointwise exponential map sends elements of the~infinite-dimensional! Lie
algebraC0

`~X,G![G
X, i.e., functions with values in the Lie algebraG of G, to elements ofGX and

this is a local homeomorphism. This can be used to giveGX the structure of an infinite-
dimensional manifold modeled on the Frechet spaceC0

`~X,G!.
The simplest case isX5S1, the so-called loop groups. These groups, their central extensions

and the corresponding algebras~Kac–Moody algebras! have been thoroughly studied and the
representation theory, at least of the so-called positive-energy representations, is quite complete.
Among the vast literature on the subject we mention the monographs by Pressley and Segal1 and
by Mickelsson,2 which also contain much information on the general case.

By contrast, the case dimX.1 is much less investigated. The main contributions to the
representation theory date back to a period from the mid-1970s to the early 1980s. The first
interesting irreducible unitary representations of these groups, the so-called energy representa-
tions, were constructed~in different settings! in papers by Albeverio and Ho”egh-Krohn,3

Ismagilov,4 and Gelfand, Graev, and Versˇik.5 Reference 4 contains the first proof of irreducibility
of representations of this type for the case dimX>5 andG5SU~2!. This result was extended in
Refs. 5 and 6 to an arbitrary semisimple compact Lie groupG and dimX54. Later it was shown
in Ref. 7 that irreducibility holds also for dimX53 and under some conditions on the data,
determining the representation, for dimX52. The case dimX51 is reducible.7 Reference 5 con-
tains a description of a modification of the energy representation, related to an arbitrary fixed
subbundle of the cotangent bundle ofX. Further in our paper we call such representations re-
stricted energy representations. Irreducibility of the restricted energy representations is deduced in
Ref. 5 from irreducibility of the corresponding energy representations. Thus, by putting together

0022-2488/96/37(2)/942/11/$10.00
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the results of Refs. 5–7, one can deduce irreducibility for dimX53 and under some conditions,
for dimX52.

The present paper is devoted mainly to a study of the restricted energy representations ofGX

and its algebraGX, in particular in the case dimX52. Our interest in this case is motivated by
several factors. First, we have made the observation that there is a direct proof of irreducibility in
all cases when dimX.1, which we present in Sec. II. Thus we extend the known results about
irreducibility. Furthermore, our proof is simpler than the proof in Ref. 7 which would be required
to treat, e.g., the case dimX53. Second, these are, in a sense, minimal representations—the
infinite-dimensional Hilbert space is in a way ‘‘smallest.’’ The case of restricted energy represen-
tations for dimX52 admits a simpler~though equivalent! formulation where we work with
Hilbert spaces ofG-valued functions, instead of 1-forms and vector fields instead of subbundles.
Third, the restricted energy representations, at least at the level of algebras, admit a very natural
generalization to representations of certain central extensions of the algebras. In particular, for the
case dimX52 these are central extensions and representations, determined by two vector fields.
By contrast, the same scheme does not work for the usual energy representations. We should point
out that Ref. 5 contains a hint of such a central extension and a representation at the group level.
Finally, these representations when dimX52 have a certain ‘‘one-dimensionality,’’ in the sense
that they are continuous with respect to a topology onG

X which is determined by the uniform
norms of the functions and of their directional derivatives~in the direction of the vector field!. We
hope that this may lead to the possibility of constructing new irreducible representations of loop
groups.

We have tried to make this paper as self-contained as possible, in view of the fact that most of
the material which we build on is probably not so well-known to a large mathematical physics
audience. Therefore we begin Sec. II by a somewhat lengthy description of the energy represen-
tation and the restricted energy representation. Then we follow up by proving irreducibility. In
Sec. III we derive the corresponding algebra representation. A similar formula given in the Ap-
pendix in Ref. 6 contains some errors. We have chosen a notation which is familiar to physicists
and in which the formulas become rather simple. In this section we prove irreducibility of the
algebra representations when dimX52, using irreducibility at the group level. This is not a trivial
statement and the proof fails in dimensions higher than 2. In fact, quite possibly, it is not true.
Section IV is devoted to certain central extensions of the algebras and their representations. In our
approach these arise very naturally by making a simple generalization of the way the operators of
the representation are defined. We describe as an example the case whereX is the two-dimensional
torus. There, considerations can be restricted to the dense subalgebra of Fourier polynomials and
the formulas for the central extensions and the representations have a simple, purely algebraic
form. A recent paper by Etingof and Frenkel8 also considers central extensions of current groups
and algebras in two dimensions. By translating our results into their language, we can provide
candidates for irreducible representations of the extensions they construct. This will be treated
elsewhere.

II. THE ENERGY REPRESENTATION AND THE RESTRICTED ENERGY
REPRESENTATION

We begin by a brief description of the energy representation of the groupGX ~see Refs. 5–7!.
Let V[V0

1~X,G! denote the space of compactly supported 1-forms onX with values in the Lie
algebraG of the groupG and letD be its dual space, i.e., the space ofG-valued generalized
1-forms. The bilinear form

~v1 ,v2!:5E
X
~v1~x!,v2~x!!xr~x!dx ~1!
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is a scalar product onV. Here the measuredx is the volume form, determined by the Riemannian
metric h, i.e., in local coordinatesdx 5 Adethdx1•••dxn andr is a smooth everywhere positive
density.~Except when dimX52, this density can be absorbed by redefining the metric.! The scalar
product~v1,v2!x in each fiberx is given by the scalar product onTxX* induced fromh and an
Ad-invariant inner product onG, i.e., a multiple of the Killing form in each simple component of
G. The spaceD becomes a~finite! measure space when equipped with the Gaussian measurem
with zero mean and covariance equal to the scalar product~1!. In other wordsm is the Gaussian
measure corresponding to the heuristic expressiondm( f )5exp[21/2(f , f )]PxPX d f(x). The
energy representation is realized in the spaceL2~D ,m!. First there is a natural~reducible! actionV
of GX on V given by the pointwise adjoint action ofG on G, namely for anygPGX we define
(V(g)v)(x):5Adg(x)v(x). Note that due to the invariance of the Killing form,V leaves the inner
product~1! invariant. Because of this the dual action (V8(g)F)(v):5F(V(g21)v), FPD , pre-
serves the measurem. This means that the operatorsU0(g) in L2~D ,m! defined by

~U0~g!F!~F !:5F~V8~g21!F !, FPL2~D ,m!, FPD

give a unitary representation ofGX. The reader may realize thatU0(g) is nothing but the second
quantized operator in the bosonic Fock space, corresponding to the one-particle operatorV(g).

At this point it is still not clear why one should considerG-valued 1-forms and not just
G-valued functions, when all steps so far work for the latter case as well. The reason lies in the
fact that the representationU0 is reducible, as will be explained shortly, and the~irreducible!
energy representation is obtained by modifyingU0 by a suitable 1-cocycle. A natural object of this
type is the Maurer–Cartan cocycle~see below! which takes values precisely in theG-valued
1-forms.

The reducibility ofU0 can best be seen through the well-known Ito–Segal–Wiener canonical
isomorphism betweenL2~D ,m! and the Fock space% n50

` SnH with H being the completion and
complexification ofV andSnH being itsnth symmetric tensor power. Up to unessential conven-
tions, under this correspondence the constant function 1PL2 goes to the scalar 1~PS0H! ~the
vacuum vector!, the linear functionsFv(F):5 iF (v) are sent to the elementsvPH and the
generalized Hermite polynomials~normal ordered products! Fv1

•••Fvk
: obtained from the ordi-

nary products by the Gramm–Schmidt orthogonalization procedure go to the elements of the type
Sk(v1^ ••• ^ vk). It is evident that under this isomorphism of Hilbert spacesU0 goes to the
representation% n50

` SnV which is reducible, e.g., leaves everyn-particle subspace invariant.
Consider now the mapb:GX→V which in matrix notations is defined asb(g):5dg g21. It

satisfies the 1-cocycle conditionb(g1g2)5b(g1)1g1(b(g2))g1
215b(g1)1V(g1)b(g2). The

mapb is known as the Maurer–Cartan cocycle. The energy representation is defined as follows:

~U~g!F!~F !:5exp@ iF ~b~g!!#~U0~g!F!~F !5exp@ iF ~b~g!!#F~V8~g21!F !. ~2!

The cocycle condition forb assures that this is a representation and its unitarity is obvious from
the unitarity ofU0. Let us adopt the notationUa for any representation defined as in Eq.~2! but
with an arbitrary cocyclea in place of the Maurer–Cartan cocycleb.

The construction above can be generalized by considering, instead of smooth Riemannian
metric h and weightr, objects which are piecewise smooth, i.e., such that are smooth outside a
closed set ofdx measure zero, bounded together with their first derivatives and bounded away
from zero. In other words one can allow for jumps. This possibility is due to the fact~most easily
seen from the Fock space realization ofL2~D ,m!! that the set of distributions onX with singularity
in some fixed subset with zero measure inX hasm measure zero.

Instead of the Maurer–Cartan cocycleb in Eq. ~2!, one could use a more general cocycleEb
whereE is an invertible bounded operator onV ~or rather the piecewise smooth category that
generalizes it! which has to commute with the representationV. But V is a direct integral overX
of mutually nonequivalent representationsAdg(x) , so it is apparent thatE has to be a~piecewise
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smooth! functionE(x) whereE(x) for eachxPX is a bounded invertible operator onTxX*^G

which has to be a multiple of the identity on each simple component ofG. This, however, is
equivalent to redefining the inner product~1!, and thus the Gaussian measure. Indeed, consider a
measure mE with covariance (Ev1 ,Ev2). The map sending exp@iF (v)]PL2~D ,mE! to
exp@iF (Ev)]PL2~D ,m! ~such functions form total sets in the respectiveL2 spaces! is easily seen
to preserve scalar products and it extends by linearity and continuity to a unitary equivalence
between the representationU in the spaceL2~D ,mE! and the representationUEb in the space
L2~D ,m!. Therefore the modification of the Maurer–Cartan cocycle just described can be absorbed
by redefiningh, r and the choice of invariant product inG.

In the present paper we are interested in a modification of the energy representation which is
in a sense a singular version of the one described in the last paragraph. Consider a functionE(x)
which takes values in the orthogonal projections inTxX* . ThenEb is again a cocycle forV.
One cannot expect, however, the representationUEb to be irreducible in this case. Indeed, let
VE % VE' be the direct sum decomposition ofV into the range ofE and its orthogonal comple-
ment andDE % DE' be the corresponding direct sum decomposition of the dualD . The Gaussian
measurem is a product of the Gaussian measures onDE andDE' corresponding to the inner
products onVE and VE' induced from Eq.~1! and there is a natural isomorphismL2(D ,m)
> L2(DE ,mE) ^ L2(DE',mE') which sends the representationUEb on L2~D ,m! to the tensor
product ofUEb on L2~DE,mE! and U0 on L2(DE',mE'). The second factor is reducible~see
above! and thereforeUEb is reducible as well. However, the first factor is irreducible as will be
discussed in what follows. This is true in all cases whenE(x)Þ0,1, a.a.xPX and the result is
independent of dimX, quite contrary to the energy representation where the question of irreduc-
ibility is intricately tied to dimX.6,7 In particular, for dimX52, one obtains an irreducible repre-
sentation by fixing any piecewise smooth one-dimensional subbundle ofTX* and lettingE(x) be
the projection onto this subbundle. We shall call representations obtained in this fashion, namely
by a restriction to some fixed subbundle ofTX* , restricted energy representations.

Irreducibility or reducibility of the energy representation is tied to a specific property of the
spectral measure of the representation when restricted to a certain Abelian subgroup. Namely,
choose any Cartan subalgebraC,G and letCX be the additive group ofC0

` maps fromX to C. The
pointwise exponential map is a homomorphism fromC

X to GX andW(a):5U~expa!, aPC
X is a

unitary representation ofCX. The orthogonal decompositionG5C%C
' induces a direct sum de-

compositionD 5 DC % DC' which gives rise to an isomorphismL2(D ,m) > L2(DC ,mC)
^ L2(DC',mC'); corresponding to it a tensor product decomposition of the representation
W5W8^W9, where

~W8~a!F!~F !5exp@ iF ~b expa!#F~F !, FPDC ,

~W9~a!F!~F !5F~V8~exp~2a!!F !, FPDC'.

BecauseCX is an Abelian subalgebra of the Lie algebraG
X, we haveb expa5da, aPC

X. The
spectral measure ofW8 is the Gaussian measure on the dual space ofC

X, i.e., the space of
C-valued distributions onX ~or equivalently the space of continuous characters onC

X!, with zero
mean and covariance given by the bilinear form (da1 ,da2) on C

X where the inner product~1! is
used. A sufficient condition for irreducibility of the energy representation is6 that the Sobolev
space obtained fromCX by completing it with respect to the inner product (da1 ,da2) admits a
Hilbert–Schmidt extension that does not contain linear combinations ofd-functions. ~Strictly
speaking, this has to be true for every open cubeY,X.!

Consider now a subbundleE of the cotangent bundle and the restricted energy representation
corresponding to it. All the steps in the proof of irreducibility can be repeated without change, the
only difference is that the spectral measure of the representationW8 is the Gaussian measure with
zero mean and covariance (E da1 ,E da2) where by a slight abuse of notation we useE(x) for the
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orthogonal projection onto the subbundleE. The subbundleE can be specified by a distributionE8
~of the same dimension! onX, i.e., a subbundle of the tangent bundle, e.g., by using the orthogonal
decompositionTxX5E8(x)%E8(x)'.

Lemma II.1: Let Y be an open cube inRn, n.1 (with compact closure) and let W be the
completion of C0

`(Y) with respect to the norm

iai25(
i51

m E
Y

]ā

]xi

]a

]xi
r i~x!dx, ~3!

where0,m,n is some fixed integer andr i(x), i51,...,m are some smooth densities on Y,
continuous and strictly positive onY. Then the space W admits a Hilbert–Schmidt extension
which does not contain linear combinations ofd-functions.

Proof: A delta functiondx onW, belonging to some extension ofW, is an element of that
extension with the property (dx ,a)5a(x), ;aPW, where~ , ! is the inner product inW. ~Amore
precise formulation would be throughd-sequences.! Due to the specific structure of the inner
product inW, anyd-function contains as factors ordinaryd-functionsdxj , over those coordinates
xj with respect to which there is no differentiation in Eq.~3!.

Let $ek8% be an orthonormal basis with respect to a ‘‘flat’’ inner product~ , !8 onW, i.e., one
in which all ri above are set to 1. Choose a square-summable sequence of positive numbers$gk%.
Then the operatorG:5(kgk(ek8 , • )ek8 is strictly positive and Hilbert–Schmidt. Indeed, noting
that iek8i2 < supi ,x r i(x)iek8i82 5 supi ,x r i(x) and choosing a basis$ej % ~with respect to~ ,!!, we
have

(
j

~e j ,Ge j !5(
j

(
k

gk~e j ,ek8!~ek8 ,e j !5(
k

gkiek8i2,`.

The basis$ek8% can be chosen as a product of bases on the Sobolev spaceW̊2
1(Ym) ~corresponding

to the firstm coordinates! and (n2m) copies ofL2 spaces. The same product structure can be
used when choosing the Hilbert–Schmidt operatorG. Thus, picking up any of the last (n2m)
coordinates, it is enough to show that the correspondingL2 space has a Hilbert–Schmidt extension
that does not containd-functions. Let us takeek8 : 5 eikx, kPZ as basis functions in
L2([0,2p],dx/2p) and letG:5(e08 , • )e081(kÞ0(1/uku)(ek8 , • )ek8 . Summing up the series we
find thatG has a kernelK(x,y)5122 lnu12ei (x2y)u. A d-function d(x2x0) will be contained in
the extension defined byG if its G-norm is finite, i.e., if*dx dy d(x2x0)d(y2x0)K(x,y),`,
which obviously fails. This completes the proof for a singled-function. For an arbitrary linear
combination ofd-functions we must use the fact that in calculating theG-norm, the mixed terms
of the form*dx dyd(x2x0)d(y2x1)K(x,y) are finite. h

The Lemma just proven together with the discussions of irreducibility above show that the
following is true:

Proposition II.2: Let E8 be an integrable piecewise smooth distribution on X and E the
subbundle of T*X determined by it. Then the restricted energy representation UEb corresponding
to E is irreducible.

We need integrability ofE8 so that around each point inX we can find a coordinate map with
the property that slices (xm11,...,xn)5const are integral manifolds ofE. Then our Lemma ap-
plies. The densitiesri in Eq. ~3! are obtained from the overall densityr in Eq. ~1! and the
components and determinant of the Riemannian metrich. As shown in Ref. 6, the restricted
energy representation is irreducible in all cases when irreducibility holds for the energy represen-
tation. This is true because for any subbundleE and its orthogonal complementE' we haveU
5 UEb ^ UE'b and irreducibility ofU implies irreducibility of the factors. In particular this means
that the restricted energy representation is irreducible7 for anyG, h, r, andE when dimX>3. The
only cases when irreducibility ofUEb does not follow from irreducibility ofU are in fact certain

946 S. Donkov and O. Stoytchev: On some representations of current algebras

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



cases whenE8 is a one-dimensional distribution on a two-dimensional manifold. Any one-
dimensional distribution is integrable~locally, which is what we need!, so the statement of Propo-
sition II.2 is actually valid without the integrability assumption.

Without going into any detail we shall point out that the same property of the spectral measure
which assures irreducibility is also sufficient to show nonequivalence of any two representations
determined by two different sets of data.5–7 More specifically we have the following extension of
the results of Refs. 5–7, concerning this question:

Proposition II.3: Two restricted energy representations of GX determined by two sets of data
(E,h,r) and (E8,h8,r8), respectively, are equivalent if and only if E5E8 (a.e.) and the inner
products on the space of sections of E induced by h andr and by h8 andr8, respectively, coincide.

III. THE LIE ALGEBRA REPRESENTATIONS. THE TWO-DIMENSIONAL CASE

In this section we give explicit formulas for the representations of the Lie algebraG
X coming

from restricted energy representations ofGX. We specialize the results to dimX52 and show
irreducibility of the algebra representations in this case.

For a continuous representationU of GX we define a~continuous! representationL of G
X in

the usual way:

L~a!F:5 lim
t→0

S 1t ~U~exp ta!2Id!F D ~4!

and the domain ofL(a) consists of thoseF for which the limit exists. By Stone’s theorem
unitarity and strong operator continuity ofU imply that iL (a) is self-adjoint.

Proposition III.1: Let X be two-dimensional and let U be either an irreducible energy repre-
sentation or a restricted energy representation (which is always irreducible by Proposition II.2).
Then the corresponding representation L of the Lie algebraG

X is also irreducible.
Proof:Again we can choose an open submanifoldY,X of full measure, diffeomorphic to the

open disk and use the fact thatL2~D ,m! is the same forY andX. AsG
Y,G

X, it is enough to show
irreducibility of L when restricted toGY. So we shall only considerX being an open disk inR2.
The Hilbert spaces of our representations depend only on the Lie algebra ofG and obviously so
do the operatorsL(a). We can replaceG by its universal covering group, which is again a
compact semisimple group. Suppose there exists a proper closed subspace invariant under all
operatorsL(a). By spectral theory it will also be invariant underU~expa!. By continuity ofU
and the fact that the invariant subspace is closed we could conclude that it is invariant with respect
to all U(g) and thus arrive at a contradiction, if we can show that the elements expa, aPG

X are
dense inGX. Any element ofGX is actually a based mapg:S2→G, sending the south pole to the
identity of G ~recall thatX is the open two-disk and thatGX consists of maps with compact
support, i.e., maps which send all points outside a compact set to the identity!. It is well known~cf.
e.g., Ref. 9! that outside a so-called singular set, every elementg(x) of a simply connected
compact groupG can be represented uniquely as expax and that the singular set is a closed subset
of codimension not less than 3. Since we are mapping a two-dimensional manifold intoG, by the
transversallity theorem any mapg8:S2→G can be made to avoid the singular set by an arbitrarily
small perturbation and the perturbed mapg(x) can be written uniquely as expa(x). ~This is in
fact the wayp2(G)50 is shown, which is a necessary condition for the above to be true.! h

It is interesting to note that dimX52 is a critical dimension in this Proposition. For higher
dimensions one cannot always avoid the singular set by a small perturbation and irreducibility of
the algebra representation may fail.

The representation ofGX defined by Eq.~4! takes a particularly simple form if one uses
standard bosonic Fock space notations. Let us introduce for anyvPV the usual creation operator
B* ~v! and annihilation operatorB~v! which on ann-particle state act as follows:
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B* ~v!~B* ~v1!B* ~v2!•••B* ~vn!u0&)5B* ~v!B* ~v1!B* ~v2!•••B* ~vn!u0&,

B~v!~B* ~v1!B* ~v2!•••B* ~vn!u0&)5(
i51

n

~v,v i !B* ~v1!•••B* ~v i21!

3B* ~v i11!•••B* ~vn!u0&.

As usual~ , ! means the inner product~1!. Let L0(a) be the second quantized operator, corre-
sponding tov(x)→[a(x),v(x)]:

L0~a!B* ~v1!B* ~v2!•••B* ~vn!u0&5(
i51

n

B* ~v1!•••B* ~v i21!B* ~@v,v i # !

3B* ~v i11!•••B* ~vn!u0&.

With these notations the representation of the Lie algebra defined by Eq.~4! becomes

L~a!5L0~a!1B* ~da!2B~da!. ~5a!

Although the derivation is not very simple, the result is. One can check directly that this is a Lie
algebra representation. Antihermiticity of the operatorsL(a) is almost explicit. We can take as a
domain of allL(a) the subspace of finite sums of finite-number particle states. Of course we know
a priori that iL (a) are essentially self-adjoint as generators of strongly continuous one-parameter
unitary groups.

We would like to point out that the simplicity of the action ofL(a) does not help much in
understanding the problem of irreducibility. This can be appreciated if one considers the energy
representation in the case dimX51, which is known to be reducible.7 At the same time the
formula for the algebra representation is entirely similar. In fact the only way we know of showing
irreducibility of this type of representations of the algebra is by exponentiating the operators, i.e.,
going to the group representations.

The representation defined by Eq.~5! is extended almost without change to a representation of
the complexified Lie algebraGC

X :

L~a!5L0~a!1B* ~da!2B~dā!. ~5b!

~ā is a complex conjugation relative to the real algebraG
X.!

When dimX52 the restricted energy representations are specified by piecewise smooth one-
dimensional distributions onX. Any distribution can be specified by a piecewise smooth nonzero
vector field onX ~as we allow piecewise smooth objects, nonorientable line bundles can also be
represented by vector fields~with jumps!!. The whole construction can easily be reformulated in
terms ofG-valued functions and vector fields acting on them without any reference to tangent and
cotangent bundles and their subbundles. The one-particle Hilbert space can in this case be taken to
be L2~X,dx;GC! wheredx is the Riemann–Lebesgue measure. Note thatZa is an element of
L2~X,dx;GC! for any piecewise smooth vector fieldZ. Every piecewise smooth, a.e. nonzero
vector fieldZ determines an irreducible representation ofGX and through Eq.~4! also an irreduc-
ible representation ofGX. For one and the same measuredx, different vector fields determine
nonequivalent representations. Any rescaling of the measure is equivalent to an appropriate res-
caling of the vector field. This possibility was discussed in the previous section. Here, however,
this is true in the two-dimensional case due to the fact that we are dealing withG-valued functions
and notG-valued 1-forms. Thus for any vector fieldZ as above and any Riemannian metric onX
one obtains an irreducible representation ofGC in the bosonic Fock space over the one particle
Hilbert spaceL2~X,dx;GC! given by the formula
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L~a!5L0~a!1B* ~Za!2B~Zā!. ~6!

The operatorsL(a) are anti-Hermitian for reala, which is evident from the formula.
Example:Let X5S13S1, with coordinates (x,y)P@0,2p!3@0,2p! and the standard measure

~1/2p!dx dy. Let $ta%a51
r be a basis inG, orthonormal with respect to the chosen invariant form

onG andCab
g be the structure constants ofG. Consider the linearly independent set ofGC-valued

functionsTa
n,m :5tae

i (nx1my), n,mPZ. The linear span of this set is the so-called Fourier polyno-
mial subalgebra, which is dense inGC

X . The commutator is obviously

@Ta
n,m ,Tb

k,l #5 (
g51

r

Cab
g Tg

n1k,m1 l .

Any piecewise smooth vector field can be written asZ(x,y)5 f (x,y)(]/]x)1g(x,y)(]/]y). An
~unnormalized! basis in the Hilbert space of the representation will be given by vectors of the type

Ea1 ,a2 ,...,as

n1 ,m1 ;n2 ,m2 ;...;ns ,ms:5B* ~Ta1

n1 ,m1!B* ~Ta2

n2 ,m2!•••B* ~Tas

ns ,ms!u0&.

Denoting byf̂ pq and ĝpq the Fourier coefficients off andg, we obtain the following formula for
the representation of the polynomial subalgebra:

L~Ta
n,m!Ea1 ,a2 ,...,as

n1 ,m1 ;n2 ,m2 ;...;ns ,ms ;5(
j51

s

(
g51

r

Caa j

g Ea1 ,..,a j21 ,ag ,a j11 ,...,as

n1 ,m1 ;...;nj21 ,mj21 ;nj1n,mj1m;nj11 ,mj11 ;...;ns ,ms

1 i (
p,q52`

`

~n f̂pq1mĝpq!Ea,a1 ,a2 ,...,as

n1p,m1q;n1 ,m1 ;n2 ,m2 ;...;ns ,ms

2 i(
j51

s

~n f̂nj2n,mj2m1mĝnj2n,mj2m!

3daa j
Ea1 ,...,a j21 ,a j11 ,...,as

n1 ,m1 ;...;nj21 ,mj21 ;nj11 ,mj11 ;...;ns ,ms.

The infinite sum, of course, is to be interpreted in the sense of convergence in the Hilbert space.

IV. A CENTRAL EXTENSION OF THE ALGEBRA AND ITS REPRESENTATIONS

The operators defined by Eq.~6! can be generalized by considering a complex vector field
Z5Z11 iZ2 . It is obvious that Eq.~6! still defines a linear map fromGC

X to the~unbounded! linear
operators inH. It is also immediate that the operatorsL(a) remain Hermitian whenaPG

X. There
is no reason for these operators, however, to give a representation of the algebra. A straightforward
calculation gives

L~a!L~b!2L~b!L~a!5L~@a,b# !1 ic~a,b!, ~7a!

where

c~a,b!:5
1

i
@~Zb̄,Za!2~Zā,Zb!#. ~7b!

It is obvious that ifZ is a real vector field we havec(a,b)[0 and Eq.~7a! expresses simply the
fact that Eq.~6! defines a representation. In general, forZ5Z11 iZ2 we obtain

c~a,b!52@~Z1b̄,Z2a!2~Z1ā,Z2b!#.
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The functionalc:GC
X 3 GC

X→C is bilinear antisymmetric and it is not difficult to check that it
satisfies the cocycle condition

c~@a,b#,c!1c~@c,a#,b!1c~@b,c#,a!50.

Thus Eqs.~7a! and ~7b! show that whenZ is a complex vector field, Eq.~6! defines a represen-
tation of a central extensionG̃C

X of the algebraGC
X , depending on the two vector fieldsZ1,2. The

Lie bracket inG̃C
X is given by

@a,b# ˜5@a,b#1c~a,b!. ~8!

Formula~8! also gives an extension byR of the real algebraGX. Note that we are working all the
time with anti-Hermitian representations, so an element~a,a! should be represented by the opera-
tor L(a)1 ia. Not all choices of vector fieldsZ1,2 give a nonzero cocyclec. A necessary and
sufficient condition forcÞ0 isZ1*Z2 2 Z2*Z1 Þ 0, whereZi* are the formal adjoints with respect to
the inner product inL2(X,dx). Any nonzero cocyclec of this type is nontrivial. Indeed, assuming
the converse, i.e., that it is a coboundary of some 1-cochainc1, we must have
c(a,b)5dc1(a,b)5c1([a,b]). We can always find two functionsf 1,2PC0

`(X), such that
(Z1f 2 ,Z2f 1)2(Z1f 1 ,Z2f 2)Þ0. Then by fixing anya0PGC and takinga5 f 1a0 , b5 f 2a0 , the
right-hand side becomes zero while the left-hand side does not. This completes the argument.

The central extension does not depend separately on the two vector fieldsZ1,2. Again, since
we allow for the vector fields to be piecewise smooth we can fix some local coordinates and
choose the integration measuredx to be justdx dy in each coordinate patch~remember, that more
general measures will not give us anything new, since this is equivalent to rescaling the vector
fields!. Let in the local coordinates

Zi5 f i
]

]x
1gi

]

]y
, i51,2.

Then, introducing the functionw:5f 1g22 f 2g1 and using integration by parts we obtain

c~a,b!52S a, ]b

]x

]w

]y
2

]b

]y

]w

]x D1possible boundary terms.

In other words, up to integrals over one-dimensional submanifolds~the boundary terms!, the
central chargec can be written~for simplicity, letG be simple! as

c~a,b!5E
X
Tr~adb!`dw ~9!

for some~piecewise smooth! functionw. If we restrict ourselves to the smooth category, then Eq.
~9! obviously defines a 2-cocycle. It depends only on the combinationa db as required by the
general result of Ref. 1~Prop. 4.2.8! about the universal central extension ofG

X.
It is also worth pointing out that a representation, defined by Eq.~6!, is invariant~in the sense

of unitary equivalence! with respect to local phase transformations of the complex vector fieldZ.
In other words, replacingZ(x) by eiu(x) Z(x) leads to a representation which is unitarily equiva-
lent to the initial one. This can be shown by introducing the unitary operator~U~1! gauge trans-
formation!

UB* ~v1!B* ~v2!•••B* ~vn!u0&5B* ~v18!B* ~v28!•••B* ~vn8!u0&,
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wherev i8(x) 5 eiu(x) v i(x) and noticing thatU intertwines the representation determined byZ(x)
and the one determined byeiu(x) Z(x). A straightforward computation shows that the combination
w5f 1g22 f 2g1 , which determines the central extension, is invariant with respect to such local
phase transformations, as it should be.

Example:We consider again the example of the torus. Using the same notations as for the case
of nonextended algebra and writingf̂ i

pq, ĝi
p,q, i51,2, p,qPZ for the Fourier coefficients of the

vector fieldsZi , i51,2, we obtain the following expression for the central charge:

c~Ta
n,m ,Tb

k,l !52dab~ ln2km!gn1k,m1 l , ~10!

where we have used the following definition:

gn,m :5 (
p,q52`

`

~ f̂ 1
pqĝ2

p1n,q1m2ĝ1
pqf̂ 2

p1n,q1m!. ~11!

At this point we may forget about the way we obtained the numbersgn,m . Any infinite matrix will
provide a central extension. If we introduce the notationcnm,kl :5( ln2km)gn1k,m1 l , then the
cocycle condition requires that

cn1s m1r ,kl1cnm,s1k r1 l1ck1n l1m,sr50,

which can be checked directly. Thus we have the following central extension of the Fourier
polynomial subalgebra on the torus:

@Ta
n,m ,Tb

k,l # ˜5 (
g51

r

Cab
g Ta

n1k,m1 l12dab~ ln2km!gn1k,m1 l . ~12!

The representation of this algebra, determined by the two vector fieldsZ1,2 has the following
explicit expression:

L~Ta
n,m!Ea1 ,a2 ,...,as

n1 ,m1 ;n2 ,m2 ;...;ns ,ms ;

5(
j51

s

(
g51

r

Caa j

g Ea1 ,...,a j21 ,ag ,a j11 ,...,as

n1 ,m1 ;...;nj21 ,mj21 ;nj1n,mj1m;nj11 ,mj11 ;...;ns ,ms

1 i (
p,q52`

`

~n~ f̂ 1
pq1 i f̂ 2

pq!1m~ ĝ1
pq1 i ĝ2

pq!!

3Ea,a1 ,a2 ,...,as

n1p,m1q;n1 ,m1 ;n2 ,m2 ;...;ns ,ms

2 i(
j51

s

~n~ f̂ 1
nj2n,mj2m

2 i f̂ 2
nj2n,mj2m

!1m~ ĝ1
nj2n,mj2m

2 i ĝ2
nj2n,mj2m

!!

3daa j
Ea1 ,...,a j21 ,a j11 ,...,as

n1 ,m1 ;...;nj21 ,mj21 ;nj11 ,mj11 ;...;ns ,ms.

Once again, at this point we do not need to refer to any vector fieldsZ1,2. We have an~infinite!
matrixgn,m , which defines the central extension of the algebra and then we need to choose fourl 2

sequences$ f̂ i
pq%p,q52`

` , $ĝi
pq%p,q52`

` , i51,2, so that Eq.~11! holds. Then the formula above will
give a representation of Eq.~12!. Of course, not all different choices of$ f̂ i

pq%p,q52`
` , $ĝi

pq%p,q52`
`

will lead to nonequivalent representations, as pointed out before.
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V. CONCLUDING REMARKS

There are a few important open problems concerning the discussed central extensions and
their representations. First of all, we have not addressed the question of irreducibility of these
representations. We believe that for generic choices ofZ1,2 irreducibility will still hold. Second, we
have not treated the problem of integrability of the central extensions, i.e., when they correspond
to central extensions of the group. Further, we only know that~anti!hermiticity holds, but we have
not investigated whether the operators of the representation are actually essentially~anti! self-
adjoint. Finally we have not studied the problem of exactly parametrizing thenonequivalent
representations, corresponding to a given central extension.
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We describe aq-deformation of the Lorentz group in terms of aq-deformation of
the van der Waerden spinor algebra. ©1996 American Institute of Physics.
@S0022-2488~96!00502-0#

I. INTRODUCTION

Weak deformations which test the stability of quantum mechanics are of interest as a matter of
principle. One deformation which has been the subject of considerable study results from the
replacement of the commutators or anticommutators of dynamically conjugate operators by their
q-commutators. As far as these studies have shown, there is no obstruction to the formulation of
a ‘‘q-quantum mechanics’’ for finite systems.1 In the field theoretic context, however, this is not a
well-defined procedure and may lead to violation of the Poincare´ group.2

In an alternative approach, one may begin with an explicit deformation of this group. We shall
here examine theq-deformation of the Lorentz group byq-deforming its two-dimensional repre-
sentation. Although theq-Lorentz group has already been studied by several authors,3 the present
treatment may be of interest as a simple modification of the van der Waerden calculus.

II. SPINOR ALGEBRA FOR LORENTZ GROUP

We shall first summarize the familiar spinor algebra for the Lorentz group. Let

sk5~s0,sW !, s05S 1 0

0 1D ~2.1!

and

X5xks
k5S x01x3 x12 ix2

x11 ix2 x02x3
D . ~2.2!

Then

detX5x0
22xW25hklxkxl ,

~2.3!

hkl5S 1 21

21

21

D .
HereX is also Hermitian:

X5X†. ~2.4!

Let

X85LXL†. ~2.5!
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Then

~X8!†5X8. ~2.6!

However, we shall now require

detL51. ~2.7!

Then

detX85detX. ~2.8a!

or

~x0
22xW2!85x0

22xW2. ~2.8b!

HereL has four complex matrix elements related by detL51. These are the six independent real
parameters needed to describe a Lorentz transformation, andL is a two-dimensional representation
of the Lorentz group.

Let jA be a two-rowed basis for the two-dimensional representation,L,

jA→LABjB, ~2.9!

andh a basis for the conjugate representation

h Ȧ→L̄ ȦḂh Ḃ, ~2.10!

where the conjugate representation is distinguished by a dotted index. Likewise, letj be a two-
rowed basis forL21:

jA5~L21!A
BjB . ~2.11!

Again there is a conjugate representation:

x Ȧ→~ L̄21!Ȧ
Ḃx Ḃ . ~2.12!

Then upper and lower indices behave in the usual way as contravariant and covariant, so that
expressions likejAjA are invariant.

The two-dimensional Levi–Civita symbol,eAB , may be used to define the determinant ofL:

eAB detL5LCAL
D
BeCD . ~2.13!

Since detL51,

eAB5LCAL
D
BeCD . ~2.14!

ThereforeeAB is a covariant two-spinor that is taken into itself by spin transformations while

eABj
AhB ~2.15!

is invariant.
Let us defineeAB by

eAB5eAB . ~2.16!
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Then

eACeBC5dB
A . ~2.17!

Also

eAB5~L21!AC~L21!BDeCD. ~2.18!

The spin tensorseAB andeAB provide ways of lowering and raising indices. Thus

jB5jAeAB , ~2.19!

jA5eABjB , ~2.20!

and

jAhA5jBeBAh
A52hAeABj

B52hBjB ~2.21!

if j andh commute. ThereforeeAB serves as a two-dimensional metric.
One next introduces the matrices contravariant to (sAẋ

m ) with respect toe:

~ s̄m!ẊA5e ẊẎeAB~sm!BẎ . ~2.22!

Then if (sm)BẎ is the original set~1,sW !, defined in~2.1!,

~ s̄m!ẊA5~1,2sW ! ~2.23!

The following relations are also useful:

s̄msn1sns̄m52hnm, ~2.24!

Tr s̄msn52hnm, ~2.25!

or

~ s̄m!ẊA~sn!AẊ52dn
m ~2.26!

and

~sn!AẊ~sn!BẎ52dA
Bd

Ẋ

Ẏ
. ~2.27!

With the aid of thes-matrices one may pass between the four-dimensional and spin repre-
sentation

TAẊ BẎ...
CẆ...5sa

AẊsb
BẎs

CẆ

c
Tab...c... , ~2.28!

and

Tab...c...5sa
AẊs

b
BẎsc

CẆTȦẊ BẎ...
CẆ... . ~2.29!

Any finite irreducible representation ofL is equivalent to some spin representation which is
separately symmetric in all dotted and undotted indices. HereD(k,l ) is the usual notation to
describe 2k dotted and 2l undotted indices.
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III. SPIN REPRESENTATION OF A VECTOR

In the notation just introduced, the vectorxa has the spin representationXAẊ where

XAẊ5sa
AẊxa, ~3.1!

2xa5sa
AẊX

AẊ. ~3.2!

If

XAẊ5cAc̄ Ẋ, ~3.3!

then

2xa5csac̄. ~3.4!

The transformation ofXAẊ is given by

~XAẊ!85c8Ac̄8Ẋ5~LABcB!~ L̄ ẊẎc̄Ẏ!5LAB~cBc̄ Ẏ!~L†!Ẏ
Ẋ5LABX

BẎ~L†!Ẏ
Ẋ ~3.5!

or

X85LXL†, ~3.6!

where

X5~XAẊ!5xasa ~3.7!

so that we recover~2.5!.
From ~3.6! one may obtain the vector representation ofL in the following familiar way. We

have

( x8as
a5( ~LsbL†!xb , ~3.8!

xb85
1

2 ( ~Tr s̄bLscL†!xc , ~3.9!

or the vector representation ofL is

Lb
c5 1

2 Tr s̄bLscL† ~3.10!

in terms of the spin representation ofL.

IV. THE q-DEFORMATION OF THE LORENTZ GROUP

We base our work on the followingq-deformation of the covariant Levi–Civita tensor:

eq5S 0 q21/2

2q1/2 0 D , eq
2521, eqeq

t 5S q21 0

0 qD . ~4.1!

Repeating~2.13! in terms ofeq we defineT, theq-deformed spin representation ofL, as follows:

eqDq5TteqT ~4.2!
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5TeqT
t. ~4.3!

Here t means transpose, andDq is by definition theq-determinant.
We know that these relations define the GLq~2! group. That is, if

T5S a b

c dD , ~4.4!

then ~4.2! and ~4.3! may be simultaneously satisfied only if the following relations hold:

ab5qba, bc5cb, ac5qca,
~4.5!

bd5qdb, Dq5ad2qbc, cd5qdc,

and

~Dq ,Tkl!50. ~4.6!

HereDq is theq-determinant and~4.2! may be regarded as a definition of this determinant since

~eq!AB detq T5TCAT
D
B~eq!CD ~4.7!

5TA
CTB

D~eq!CD ~4.8!

as in ~2.13!.
The only restriction on the matrixL is ~2.7!. We shall now impose the corresponding condi-

tion onT. Then detq T51 and

eq5TeqT
t ~4.9!

5TteqT. ~4.10!

Note also

detq T
t5detq T51. ~4.11!

We may now try to take over Eq.~2.5! with L replaced byT:

X85TXT†, detq T51. ~4.12!

The previous arguments no longer go through, however, since the matrix elements ofT are
noncommuting. In the limitq51, T approachesL, and~4.12! then describes a Lorentz transfor-
mation. However,~4.11! has the same meaning as~2.5! only in theq51 limit when the matrix
elements (a,b,c,d) all commute and lie in the complex plane. In general~4.12! will have no
classical meaning. Nevertheless a corresponding spinor algebra may again be constructed.

V. q -SPINORS

Except when explicitly otherwise indicated, let us now understand bye the eq matrix. One
may next define a contravariante by

e125q1/2, e2152q21/2, ekk50, ~5.1!

so thateAB(q)5eAB(q
21) or
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eACeBC5dB
A . ~5.2!

TheneAB is the metric in spin space and may be used to raise and lower indices. Thus ifjA is a
covariant spinor, the corresponding contravariant spinor is

jB5eBAjA ~5.3!

and

jA5jCeCA . ~5.4!

By ~4.7! eAB is an invariant tensor since

eAB5TA
CTB

DeCD . ~5.5!

Multiply ~5.5! by jAxB. Then

jAeABx
B5jC8eCDxD8, ~5.6!

where

jC85jATA
C ~5.7a!

xD85xBTB
D. ~5.7b!

The invariant quadratic forms~5.6! may also be written as follows:

jAeABx
B5jBxB5jAx̃A , ~5.8!

where

jB5jAeAB , ~5.9a!

x̃A5eABx
B5xBeBA

t . ~5.10a!

By ~5.2! the inverses of~5.9a! and ~5.10a! are

jC5eCBjB ~5.9b!

xC5x̃AeAC. ~5.10b!

Given ~5.7! and ~5.9a! one finds

jB85jCTC
AeAB . ~5.11!

By ~5.9b!

jB85eCDjDTC
AeAB . ~5.12!

Denote the matrixieCDi by ê to distinguish it fromieCDi5e. Then

jB85jD~ ê tTe!DB . ~5.13!

However,
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ê~q!5e~q21!52e t~q! ~5.14!

and ~5.13! becomes

jB852jD~eTe!DB . ~5.15!

By ~4.9! or ~4.10!

eTe52~Tt!21. ~5.16!

Therefore

j8B5jD„~T
t!21

…

D
B . ~5.17!

Note that (Tt)21Þ(T21) t here. One checks that

j8BxB85jBxB. ~5.18!

This invariant may be written as

jAxA5eBAj
BxA ~5.19!

5q21/2~j1x22qj2x1!. ~5.20!

Therefore the invariant equation

jAxA50 ~5.21!

implies the invariance of the commutation rules

j1x25qj2x1. ~5.22!

Just as in the Lorentz case, one must also make use of the conjugate representations. Corre-
sponding to~5.7! and ~5.17! one has

j̄ Ċ85 j̄ ȦT̄Ȧ
Ċ ~5.23!

and

j̄B85 j̄ Ḋ„~ T̄
t!21

…

Ḋ
Ḃ , ~5.24!

wherej̄ Ȧ is the basis forT̄, the conjugate representation, and the dot again indicates the conjugate
representation. The conjugate is now in the SUq ~2! algebra, not in the complex plane.

An alternative procedure begins with~4.7! instead of~4.8!. Then

eAB5TCAeCDT
D
B , jAeABx

B5~jCeCDxD!8, ~5.25!

where

jC85TCAjA, xD85TDBxB, ~5.26!

instead of~5.7!.
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VI. THE sq MATRICES

Let us set

~sq
m!BẎ5~1,sW ! ~6.1!

just as for the Lorentz case.
We now introduce the matrices contravariant to (sq

m)BẎ with respect to the metriceq :

~ s̄q
m!ẊA5eq

ẊẎeq
AB~sq

m!BẎ . ~6.2!

Then

~ s̄q
m!ẊA5S q 0

0 q21D S 0 21

21 0 D S 0 i

2 i 0D S 2q 0

0 q21D , ~6.3!

which satisfies the following relations:

~ s̄q
m!ẊA~sq

n!AẊ52hmn, ~6.4!

~sq
n!AẊ~ s̄qn!

ẎB52d
Ẋ

Ẏ
dA
B , ~6.5!

where

hnm5S 1
2~q1q21! 0 0 1

2~q2q21!

0 21 0 0

0 0 21 0

2 1
2~q2q21! 0 0 2 1

2~q1q21!

D . ~6.6!

VII. THE q-SPIN REPRESENTATION OF VECTORS

Define theq-vector by

xa5~sq!a
AẊXAẊ , ~7.1!

whereXAẊ is the bispinor

XAẊ5cAc̄ Ẋ . ~7.2!

Then

Xa5c~sq!ac̄. ~7.3!

The transformation ofXAẊ reads as follows:

X8AẊ5~TA
BcB!~ T̄Ẋ

Ẏc̄ Ẏ!5TA
B~cBc̄ Ẏ!~T†!ẎẊ , ~7.4!

where

T̄Ẋ
Ẏ5~ T̄t!ẎẊ5~T†!ẎẊ . ~7.5!

Then ~7.4! may be written
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X85TXT†, ~7.6!

whereT† means the Hermitian adjoint matrix. This equation is formally the same as~3.6! with L
replaced byT. In addition

detq T5detL51, ~7.7!

but

detq X8Þdetq X, ~7.8!

unlessq51, since

detq ABÞdetq A detq B ~7.9!

unless

~Ai j ,Bkl!50.

Although detq X is not conserved, one may continue by rewriting~7.6! as follows,

( xa8~sq!a5T( xa~sq!aT
†, ~7.10!

and solving to give the transformation equation forxa:

xa85( Tabx
b, ~7.11!

where

Tab5
1
2 Tr s̄q

aT~sq!bT
†. ~7.12!

VIII. INVARIANTS AND IRREDUCIBLE REPRESENTATIONS 4

Although the usual Lorentz interval, represented by~detX!1/2, is no longer invariant, there are
of course new invariants belonging to the deformed group. Just as the invariants of the Lorentz
group are the same as the invariants of the unimodular linear group SL~2!, here they are the same
as those of SLq~2!. The basic invariant may be expressed in terms of either the covariant or
contravariant metric as follows:

jAeABx
B50, ~8.1a!

jAêABxB50, ~8.1b!

or

j1x22qj2x150, ~8.2a!

j2x12qj1x250. ~8.2b!

Take the special casej5x. Then

x2x15qx1x2 ~8.3!

and
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x1x2•x2x15x2x1•x1x2 . ~8.4!

By the binomial theorem applied to~8.1!

~ ix tex!2 j

~2 j !!
5( Ṽ~ jm!V~ jm!~2q!m, ~8.5!

where

V~ jm!5
x2
j1mx1

j2m

@~ j1m!! ~ j2m!! #1/2
e~q21u j1m!, ~8.6!

Ṽ~ jm!5
x1
j1mx2

j2m

@~ j1m!! ~ j2m!! #1/2
e~qu j2m!, ~8.7!

and

e~qun!5qn~n21!/2. ~8.8!

Therefore

eix
tex5( Ṽ~ jm!V~ jm!~2q!m51. ~8.9!

The invariant terms of~8.5! may be written

Q~ j !5Ṽ~ j !Cj~2q!V~ j !, ~8.10!

where

Cj~q!5S qj �

q2 j
D . ~8.11!

Here Ṽ( jm) andV( jm) are the 2j11-dimensional vectors which transform underT as

Ṽ8~ jm!5(
2 j

j

Ṽ~ jm8!D̃ j~m8m!, ~8.12!

V8~ jm!5(
2 j

j

D j~m,m8!V~ jm8!. ~8.13!

One finds

D̃ j~m8,m!5Njm8
jm e~qu j2m!

e~qu j2m8!
q2 j 2( qsK j1m

j2m82t L
q2
K j2m

t L
q2
bj2m82tam1n81tdtcj2m2t.

~8.14!

Here

K nsL 5
^n&q!

^s&q! ^n2s&q!
, ^nq&5

qn21

q21
, ~8.15!
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where^n& is the basic integer.
These 2j11-dimensional vectors are the higher-dimensional spin tensors that correspond to

the higher rank Lorentz tensors, and the invariantsQ( j ) replace the Lorentz invariants such as the
interval ~detX!1/2.

To put ~8.6! into correspondence with the bispinor of~7.2!, one setsj51
2 in ~8.6! to obtaincA,

and then makes use of the conjugate representation in order to formxAx̄ Ẋ.
With these results one may put the higher-dimensional representations of SLq~2! into corre-

spondence with the higher-dimensional representations of SL~2!, or equivalently the Lorentz
group.

IX. q -PENROSE TENSORS

With the aid of thee-tensor, Penrose5 showed how to decompose a reducible representation of
the Lorentz group into its irreducible parts. As theq-analogue of his procedure we may propose
relations such as the following:

FAẊBẎ~q!5eAB~q!f̄ ẊẎ~q!1e ẊẎ~q!fAB~q! ~9.1!

and

Fmn~q!5FAẊBẎ~q!sm
AẊ~q!sn

BẎ~q!. ~9.2!

Whenq51, these are the Penrose relations for the decomposition of an antisymmetric tensor of
the second rank. Whenq51, e is antisymmetric, thef-spinors are symmetric, andFmn is anti-
symmetric. Thef-spinors are the basis for the irreducible representationsD~0,1! andD~1,0!.

WhenqÞ1 we shall still require

e ẊẎ~q!f̄ ẊẎ~q!50 or qf̄ 1̇2̇~q!5f̄ 2̇1̇~q! ~9.3a!

and

eAB~q!fAB~q!50 or qf12~q!5f21~q!. ~9.3b!

Whenq51, ~9.3a! and~9.3b! are satisfied because of the symmetry off and antisymmetry ofe.
WhenqÞ1, these relations fix the symmetry off. Symmetry and antisymmetry are not preserved
by SLq~2! transformations. Equation~9.2! defines theq-analogue of a second-rank antisymmetric
tensor.

Similarly we write for theq-Weyl tensor

WAẆBẊCẎDŻ~q!5eẆẊ~q!e ẎŻ~q!WABCD~q!1eAB~q!eCD~q!W̄ẆẊẎŻ~q! ~9.4!

Wmnrs~q!5WAẆBẊCẎDŻsm
AẆ~q!sn

BẊ~q!s r
CẎ~q!ss

DŻ~q!, ~9.5!

where

eAB~q!WABCD~q!50 or qW12CD5W21CD , ~9.6a!

eCD~q!WABCD~q!50 or qWAB125WAB21, ~9.6b!

eẆẊ~q!W̄ẆẊẎŻ~q!50 or qW̄b1̇2̇ẎŻ5W̄2̇1̇ẎŻ , ~9.6c!

e ẊŻ~q!W̄ẆẊẎŻ~q!50 or qW̄ẆẊ1̇2̇5W̄ẆẊ2̇1̇ . ~9.6d!
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Whenq51, one has the Penrose decomposition of the Weyl tensor. WhenqÞ1, the above rela-
tions describe aq-deformation of this tensor.

X. CHARGE CONJUGATION

The entire development in this paper is based oneq , the deformed Levi–Civita tensor defined
by ~4.4! and~4.10!, whereT is a two-dimensional representation of SL2~2!. In an arbitrary 2j11-
dimensional representation,Dj , these equations become6

~Dj ! tEjD j5DjEj~Dj ! t5Ej , ~10.1!

where

Ej~m,m8!5~2q1!
md~m1m;0!. ~10.2!

Thene corresponds to the special casej51
2 ~Ej is undefined up to a factor!.

Otherwise expressed

TtET5TETt5E ~10.3!

or E intertwinesTt andT21.
On the other hand the charge conjugation matrix of particle physics is defined with respect to

the Lorentz transformationL by

LtCL5C, ~10.4!

i.e.,C intertwinesLt andL21.
ThereforeE is the natural operator forq-charge conjugation and approachesC when T

approachesL.
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I. INTRODUCTION

Consider the affine algebrasl(n)̂ l , where~n21! is the rank andl is the level.1–3 Following
Refs. 4 and 5, the branching functions of the coset

C n,l 1 ,l 2
5sl~n!̂ l 1^sl~n!̂ l 2 /sl~n!̂ l 11l 2

~1!

are characters of the highest weight modules~HWMs! of Wn algebras,
6 whereW2 is the Virasoro

algebra.7 We are interested in computing these branching functions.

A. q -series identities

An important observation, made independently in Ref. 8 in the context of affine algebras and
in Ref. 9 in the context of branching functions, is that different approaches to computing the
characters lead to completely different expressions for them. Equating different expressions of the
same character leads to generalizations of the Rogers–Ramanujan identities. In the present work,
we are interested in the identities related to the branching functions.

1. Boson –fermion identities

Because one side of these identities is generated using operators that obey bosonic commu-
tation relations, while the other is generated using operators that obey fermionlike exclusion
principles, these identities are also known as boson–fermion identities.

In Ref. 5, the branching functions of the cosetC n,l 1 ,l 2
were obtained by counting certain

configurations, known asweighted paths. These paths appear naturally in using the corner transfer
matrix method to solve statistical mechanical models.10 The expressions obtained are of the
bosonic type. In the present work, we restrict our attention to the cosetC n,1,1, and obtain expres-
sions for the branching functions by counting the Ferrers graphs that appear in the crystal base
description of the HWM’s ofsl(n)̂1. The expressions obtained are of the fermionic type, and
finitize the Lepowsky and Primc character formulas.8
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2. Polynomial identities

In fact, we do not work directly in terms of the characters, which are formal infinite series.
Instead, we work in terms of polynomials which depend on a parameterL, and reduce to the
characters in the limitL→`. In that sense, the identities we obtain are stronger than identities
between characters.

Equating the expressions of Ref. 5, and those obtained in the present work, we obtain poly-
nomial identities, one for each branching function ofC n,1,1. For fixedn, there areO ~n2! such
functions, and corresponding identities. These polynomial identities are generalizations of those
considered by Schur in his approach to provingq-series identities.11

B. Two ways to count

Though the Ferrers graphs that we count are in one-to-one correspondence with the weighted
paths, the expressions that we obtain are different from those of Ref. 5 because our approach to
counting these objects is inherently different. We wish to outline the usual method of counting, in
order to emphasize the contrast to ours.

1. Indirect counting: Sieving

In Ref. 5, the counting was achieved using asieving methodto obtain recurrence relations
which can solved. The main idea of the sieving approach can be summarized as follows:12

Suppose one wishes to count the number of objects in a certain classP0 which satisfy certain
conditions.13 This is typically a difficult problem, since the conditions satisfied byP0 can be quite
complicated. However, one can approach itindirectly as follows:

As a first step, one considers a larger class of objectsQ0, that includesP0, but satisfies weaker
conditions, and hence is easier to evaluate. Suppose one manages to do that. The next step would
be to evaluate the differenceP15Q02P0 , and subtract it to obtainP05Q02P1 ~hence the name
sieving!. However, evaluatingP1 directly is once again typically just as hard as the initial problem
of evaluatingP0. Hence, it should also be evaluated in two steps: We consider a larger class of
objectsQ1 that is easier to evaluate, and subtract that of the differenceP25Q12P1 . We obtain
P05Q02Q11P2 . It is easy to see how the above procedure generalizes to give
P05Q02Q11•••1Qeven2Qodd1••• .

The objects we are interested in—Ferrers graphs and paths—have dimensions. For largeri , Pi

typically contains larger objects. If there are no restrictions on the dimensions of the objects being
counted, then the above sieving procedure continues indefinitely. If there are such restrictions, then
for sufficiently largei , the procedure terminates. Either way, the procedure amounts to writing a
recurrence relation for the set$P0 ,P1 ,...% and solving it.

2. Direct counting: Sectoring

In contrast to the above, the approach used in this paper relies on a direct counting of the
objects of interest. The main idea is to divide the set of all objects into sectors, each of which is
easier to compute, and then to sum over all sectors. An outline of this approach is given below.

C. Outline of proof

~1! Given the set of graphs we wish to count, we propose to distinguish a certain subset to be
calledparent graphs. The remaining graphs are callednon-parents.

~2! We propose a set of rules which reducesanynon-parent graph uniquely to a parent graph by
removing nodes from it. Using these rules we can decompose any non-parent graph into a
parent graph plus a set of objects calledg-components. The rules are such that a parent graph
cannot be further reduced to another parent graph.
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~3! We show that the above set of rules is invertible. Each non-parent can be uniquely obtained
from a parent by attaching g-components. Consequently, the set of non-parents which reduce
to a given parent may be regarded as thedescendantsof that parent.

~4! From the above, we classify the set of all graphs into sectors. Each sector contains precisely
one parent plus its descendants.

~5! We show that, given a parent graph, the set of all its descendants is generated by a product
over Gaussian polynomials.

~6! Since we know the explicit expression for the Gaussian polynomials in each sector, summing
over all sectors, with the proper weighting which follows from the weight of the parent graph,
we obtain the desired generating function of the graphs.

D. Plan of paper

In Sec. II, we outline a number of technical details related to weighted paths on the set of
dominant integral weights ofsl(n)̂2, and recall the bosonic generating function as evaluated in
Ref. 5. In Sec. III, we introduce the main objects of this paper, K-graphs, and discuss their
properties. In Sec. IV, we describe the special set of K-graphs called parents. In Sec. V, we
describe the graph components to be added to a parent to generate more general K-graphs, called
descendants. In Sec. VI, we describe how the descendants are obtained from their parent, and why
each graph is either a parent, or descends from a uniquely defined one. In Sec. VII, we evaluate the
number of descendants of a certain parent. In Sec. VIII, we obtain fermionic expressions for the
finite analogs of all branching functions of the cosetC n,1,1. In Sec. IX we summarize our results
to obtain the main theorem of this paper: polynomial identities for the finite analogs of the
branching functions. This section also contains a discussion of our results.

II. PATHS

In this section, we consider weighted paths on the set of level-2 dominant integral weights of
sl(n)̂ , and recall their generating function as computed in Ref. 5.

A. Roots and weights

We start with some definitions from the theory of affine algebras.1 Let Li ,a i ( i50,...,n21),
and d be the fundamental weights, the simple roots, and the null root of the affine Lie algebra
sl(n)̂ , respectively. The subscripti of Li can be extended toiPZ by settingL i5L i 8 for
i[ i 8~modn!. Let î5L i112L i ( i50,...,n21) be the weights of the vector representation of
sl(n), andr5( i50

n21L i be the Weyl vector.
Remark 1:For the rest of this work, we will simply usea[b to indicatea[b ~modn!.
Let P5ZL0%•••%ZLn21%Zd be the weight lattice.1,2 There is an invariant bilinear form~•u•!

on P defined by

~L i uL j !5min~ i , j !2
i j

n
, ~L i ud!51, ~dud!50, ~2!

for 0< i , j<n21.
We are not interested in the full weight lattice, but in certain restrictions of it:
Definition 1: ~P2

1! P2
1 is the set of level-2 dominant integral weights, i.e.,

P2
15$L i1L j u0< i< j<n21%.
Examples ofP2

1 in the case ofn52, and 3 are shown in Fig. 1.
We can define paths onP2

1 as follows:
Definition 2 (paths):For LPZ>0, we define a pathp asp5(l0 ,...,lL) with all l iPP2

1 and
l i112l iP$0̂,1̂,...,n2 1̂%.

We are interested in particular sets of paths of lengthL defined by the following.

967Foda, Okado, and Warnaar: sl(n)̂1 ^ sl(n)̂1 /sl(n)̂2 polynomial identities

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Definition 3: @P L(L i1L j ,Lk)#.

P L~L i1L j ,Lk!5$p5~l0 ,...,lL!ul05L i1L j ,lL5Lk1L i1 j2k1L%. ~3!

For a pathpPP L(L i1L j ,Lk) we callL i1L j ,Lk , andL its initial point, boundary, and length,
respectively.

We note that P L(L i1L j ,Lk) is a finite analog ~length L! of the set of
(Lk ,L i1 j2k)-restricted paths of Ref. 14 and 15.

With the paths inP L(L i1L j ,Lk) we associate a special pathp̄ called the ground-state path,
as follows:

Definition 4 (ground-state path p)̄:

p̄5~Lk1L i1 j2k ,Lk1L i1 j2k11 ,...,Lk1L i1 j2k1L!PP L~Lk1L i1 j2k ,Lk!.

Note that the initial point of the ground-state path may be different from that of the paths in
P L(L i1L j ,Lk).

We can encode a path in terms of a sequence of integers as follows:
Definition 5 (sequence of integers):For a pathp5(l0 ,...,lL)PP L(L i1L j ,Lk) we define a

sequence of integersi(p)5(m0 ,...,mL), where m̂ l 5 l l 11 2 l l , and where we have used
lL115Lk1LL1 i1 j2k11. We denote the elementml of i(p) by i(p) l .
Note thati( p̄) of p̄ in Definition 4 is given byi( p̄) l [i1 j2k1l .

Example 1:The ground state pathp̄ associated toP 6(L i1L2 i ,L0) for n53:

p̄5~2L0 ,L01L1 ,L01L2,2L0 ,L01L1 ,L01L2,2L0!,

i~ p̄!5~0,1,2,0,1,2,0!.

Example 2:A path in p~1!PP 6~2L0,L1! for n53:

p~1!5~2L0 ,L01L1 ,L01L2 ,L11L2 ,L01L1 ,L01L2 ,L11L2!,

i~p~1!!5~0,1,0,2,1,0,2!.

Example 3:A path in p~2!PP 6~2L0,L0! for n54:

p~2!5~2L0 ,L01L1,2L1 ,L11L2,2L2 ,L21L3 ,L01L2!,

i~p~2!!5~0,0,1,1,2,3,2!.

FIG. 1. Examples of the setP2
1 . A directed bond froml to l8~l,l8PP2

1! indicates that a path can go froml to l8. ~a!
n52, ~b! n53.
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B. Weighted paths

Let p be a path andp̄ be the ground-state path associated top, with integer sequences
i(p)5(m0 ,...,mL) and i( p̄)5(m̄0 ,...,m̄L), respectively. We define an energy functionE by the
following.

Definition 6 (energy of a path):

E~p!5 (
l 51

L

l „u~m l 212m l !2u~m̄ l 212m̄ l !…, ~4!

with u the step function given by

u~m!5 H 0 ~m,0!

1 ~m>0!. ~5!

1. Connection with cosets of affine algebras

Consider the cosetC n,1,1. The branching functions corresponding to this coset can be defined
as follows. LetV~L! be ansl(n)̂ HWM with highest weightL, and letuL& be its highest weight
vector. Consider the tensor product decomposition

V~Lk! ^V~L i1 j2k!5 (
LPP2

1
VLk ,L i1 j2k ,L

^V~L!. ~6!

Among all vectors in the tensor product on the left-hand side,VLk ,L i1 j2k ,L
is the space of highest

weight vectors whose weights are equal toL modZd. The connection betweenVLk ,L i1 j2k ,L
, and

P L(L i1L j ,Lk) is as follows: It has been shown in Ref. 14 that in the limit ofL→`, there is a
bijection between the set of base vectors inVLk ,L i1 j2k ,L i1L j

, and the set of paths in
P L(L i1L j ,Lk). This implies that the paths ofP L(L i1L j ,Lk) are characterized by weights.
Under this bijection the ground-state path associated toP L(L i1L j ,Lk) is identified with uLk&
^ uL i1 j2k&PVLk ,L i1 j2k ,Lk1L i1 j2k

.
It turns out that the weight of a path can be expressed in terms of its energy function as
Definition 7: @weight of a pathpPP L(L i1L j ,Lk)#

wt~p!5L i1L j2E~p!d. ~7!

2. Finite analogs of branching functions

Given the above considerations, we define finite analogs of the branching functionsBL for the
cosetC n,1,1 as the generating function of the weighted paths inP L(L i1L j ,Lk):

BL~L i1L j ,Lk!5 (
pPP L~L i1L j ,Lk!

qE~p!. ~8!

C. Bosonic expressions

We are interested in expressions for the generating functionBL(L i1L j ,Lk). In Ref. 5, the
following bosonicexpression forBL(L i1L j ,Lk) was obtained using recurrence relations based
on the sieving method explained in Sec. I:

Theorem 1: Let l5( i50
n21l2̂i1ZdPP, with all li>0 and( i50

n21l i5N. For suchl set

F FNl G G
q

5
~q!N

~q!l0
•••~q!ln21

, ~9!
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with (q)m5Pk51
m (12qk)(m>1) and (q)051. Also, letW denote the Weyl group ofsl(n)̂ ~see,

e.g., Ref. 5, p. 91!. Then

BL~L i1L j ,Lk!5q2uL i1 j2ku
2/2 (

wPW
~detw!bL,i1 j2k„Lk1L i1 j2k1L1r2w~L i1L j1r!…,

~10!

where

bL,i~l!5qul2L i1Lu2/2 F FLl G G
q

. ~11!

For proof we refer the reader to Ref. 5.

III. K-GRAPHS

Using matrices as intermediate structures, we give an alternative representation of the
weighted paths onP2

1 in terms of Ferrers graphs~or, equivalently, Young diagrams! which satisfy
certain restrictions. We refer to these Ferrers graphs, which were introduced and extensively
studied by the Kyoto school~see Refs. 14 and 16 and references therein!, as K-graphs.

A. Interpolating matrices

In this subsection, we associate a matrixM (p) with two rows to each path
pPP L(L i1L j ,Lk).

Definition 8 (domain wall): Let i(p)5(m0 ,...,mL) be the integer sequence of
pPP L(L i1L j ,Lk). If m l −ml 21[hl 11~0,hl ,n!, we say that there is a domain wall in the
sequencei(p) of heighthl at positionl .

Given a pathp with N domain walls of heightsh1 ,...,hN at the positionsx1 ,...,xN , respec-
tively, we define the interpolating matrixM (p) as follows:

Definition 9 (interpolating matrix):

M ~p!5S x1 ~x22x1! ••• ~xN2xN21!

h1 h2 ••• hN
D . ~12!

Example 4:The interpolating matrix ofp~2! in Example 3 is

M ~p~2!!5S 1 2 3

3 3 2D .
B. K-graph representation of a path

Let p be a path andM (p) its interpolating matrix of the form

M ~p!5Sw1 w2 ••• wN

h1 h2 ••• hN
D . ~13!

Consider a two-dimensional square lattice with an (x,y)-coordinate system. Set
W5w11•••1wN , H5h11•••1hN . Starting from~0,2H!, we draw a polygon by movingw1
steps to the right, thenh1 steps up, thenw2 steps to the right, etc., until we reach the point~W,0!.
Connecting~0,2H! and~W,0! with the origin by straight line-segments, the resulting graph isthe
Ferrers graphor Young diagramcorresponding to the original path@see Fig. 2~a!#.

Definition 10 (K-graph):A Ferrers graph obtained from a pathp on P2
1 , as described above,

is called a K-graph.
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Definition 11: ~G L(L i1L j ,Lk)! G L(L i1L j ,Lk) is defined as the set of K-graphs corre-
sponding to the set of pathP L(L i1L j ,Lk).

Definition 12 (profile of a graph):The set of horizontal and vertical line segments used to
construct a K-graph form the profile of a graph.

Example 5:The K-graph corresponding to the interpolating matrix of Example 4 is shown in
Fig. 2~b!.

Definition 13 (concave corner):A corner of the formd.
Definition 14 (convex corner):A corner of the formc.
Definition 15 (plain of width w):A horizontal line segment ofw nodes~or boxes! marked by

a concave corner to its left and convex corner to its right.
Definition 16 (cliff of height h):A vertical line segment ofh nodes~or boxes! marked by a

convex corner at its bottom and a concave corner at its top.
Notice that a cliff on a K-graph corresponds to a domain wall in the corresponding integer

sequence.
Remark 2:From now on, we concentrate on K-graphs inG L(2L0 ,Lk), unless otherwise

stated.

1. From a graph to its sequence of integers

For a graphGPG L(2L0 ,Lk), we can recover the corresponding integer sequencei(p) as
follows. Let

M5Sw1 w2 ••• wN

h1 h2 ••• hN
D ~14!

be the interpolating matrix corresponding toG. SetH5h11•••1hN , and take the integer se-
quence (0,1,2,...,n21,0,1,...,n21,0,1,...) of lengthH1L11. Starting from the left moving to
the right, we now keep the firstw1 integers, then remove the nexth1 integers, then keep the next
w2 integers, remove the nexth2 integers, etc. The remaining sequence of exactlyL11 integers
corresponds toi(p).

2. From a graph to a path

To go from a graphGPG L(2L0 ,Lk) to its corresponding pathp5(l0 ,...,lL) on P2
1 we

simply first construct the sequence of integersi(p)5(m0 ,...,mL) as described above. We then
computell +15ll 1m̂l usingl052L0.

FIG. 2. ~a! The general form of a K-graph.~b! A K-graph inG 6~2L0,L0! for n54.
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3. Conditions on G L(2L0 ,Lk)

Among all K-graphs, those inG L(2L0 ,Lk) are characterized by the following conditions:
K1: W<L, with W the number of nodes in the first row.
K2: H1k[0, with H the number of nodes in the first column.
K3: hi211wi1hi[0 and 0,hi,n for 1< i<N, with h05n.
K1 is obvious.K2 is obtained by considering theLth component ofi(p) and the boundary

condition. To obtainK3, suppose thei th cliff occurs at ther th position. We can assumel r 5 la

1 Lb ,l r2wi
5 La1 Lb2wi

forsomea,b.Nowwehavei(p) r21[ b2 1, i(p) r2wi
[ b2wi . Since

there are cliffs at the r th and (r2wi)-th position, we should havei(p) r[a and
i(p) r2wi21[a21. Thus we gethi[a2b, hi21[b2wi2a, which givesK3.

C. Fermionic expressions

We now wish to calculate the following sum.

FL~L i1L jLk!5 (
GPG L~L i1L j ,Lk!

quGu/n, ~15!

where uGu denotes the number of nodes inG. Regarding the above, we have the following
theorem.14,16

Theorem 2:Let p be a path inP L(L i1L j ,Lk) andG(p) be the corresponding K-graph. The
number of nodes ofG(p) is given by

uGu5 (
l 50

n21

ml , ~16!

whereml is determined from

~Lk1L i1 j2k!2wt~p!5 (
l 50

n21

ml a l . ~17!

Using

~L i ua j !5d i j ~ i , j50,...,n21!,

we obtain

ml5„L l u~Lk1L i1 j2k!2wt~p!… ~ l50,...,n21!.

Since we define the sum~15! in the ‘‘principal picture,’’ i.e., each node has equal weight 1/n,
it is invariant under the Dynkin diagram automorphisms. Thus we can reduce the calculation of
~15! to that ofFL(L01L j ,Lk). From now on, we hence assumei50.

Setting (Lk 1 L j2k) 2 (L0 1 L j ) 5 ( l 50
n21m̄l a l , we have( l 50

n21m̄l 5 k( j 2 k) for j>k,5(k
2 j )(n2k) for j,k. CalculatinguLku

21uL j2ku
22uL j u

2 and comparing~15! with the bosonic
expression, we obtain

FL~L01L j ,Lk!5q~ uLku
21uL j2ku

22uL j u
2!/2BL~L01L j ,Lk!. ~18!

In the remainder of this paper we will compute a fermionic type of expression forFL . Given
~18! and the bosonic expression~10! for BL , this gives rise to polynomial identities for the finite
analogs of the branching functions of the cosetC n,1,1.
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IV. PARENTS

From the set of all K-graphs inG L(2L0 ,Lk) we select a subset of graphs to be called parent
graphs, or simply parents. LetmW t5(m1 ,...,mn21)P~Z>0!

n21, such that

k1 (
i51

n21

imi[0, ~19!

and letM be the interpolating matrix of a graphGPG L(2L0 ,Lk), with entries

M ~p!5Sw1 w2 ••• wN

h1 h2 ••• hN
D . ~20!

Definition 17~parent associated to mW !: G is the parent associated tomW if

h1 ,...,hmn21
5n21

hmn21
11,...,bmn211mn22

5n22

~21!
A

hN2m111 ,...,hN51,

with N5( i51
n21mi , and

hi211wi1hi52n, 1< i<N, ~22!

where we recall thath05n.
Example 6:The K-graph ofp~2! shown in Fig. 2~b! is the parent associated tomW t5~0,1,2!.

A. The number of nodes of a parent graph

Let C be the Cartan matrix ofsl(n), i.e., Ci j52d i , j2d i , j212d i , j11( i , j51,...,n21). The
inverse ofC is then given by the following formula:

~C21! i j5H i ~n2 j !

n
~ i< j !

j ~n2 i !

n
~ i. j !.

, ~23!

With this definition we have the following lemma:
Lemma 1:The number of nodes of the parent associated tomW is given bynmW tC21mW .
Though the proof of this statement is rather elementary, we need to take some care as some of

the entries ofmW can actually be zero. In the following we use the notation^ i & to denote
(j51
i mn2 j . Clearly,^ i &2^ i21&5mn2 i . We now compute the number of nodes of a parentN(mW )

as follows:

N~mW !5(
i51

N

(
j51

i

hiwj5 (
k51

n21

(
i511^k21&

^k& S (
l 51

k21

(
j511^l 21&

^l &

1 (
j511^k21&

i D hiwj . ~24!

Now use~22! andh11^ i21&5•••5h^ i &5n2 i to get
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N~mW !5 (
k51

n21

(
i511^k21&

^k&

~n2k!S (
l 51

k21

(
j511^l 21&

^l &

$2l 2~h^l 21&2~n2l !!d j ,^l 21&11%

1 (
j511^k21&

i

$2k2~h^k21&2~n2k!!d j ,^k21&11% D . ~25!

Finally, after some changes of variables, we obtain

N~mW !52(
k51

n21

(
l 51

k21

l ~n2k!mkml 1 (
k51

n21

~n2k! (
i51

mn2k S 2ik2 (
l 51

k

(
j51

mn2l

~h^l 21&2~n2l !!d j ,1D
52(

k51

n21

(
l 51

k21

l ~n2k!mkml 1 (
k51

n21

(
i51

mn2k

k~n2k!~2i21!. ~26!

Summing overj and i this results innmW tC21mW .

V. g-COMPONENTS

Now that we have distinguished a subset of all K-graphs as parents, we wish to describe the
minimal connected configuration of nodes that can be removed or added to a K-graph in
G L(2L0 ,Lk) to obtain another K-graph inG L(2L0 ,Lk). Since, as we will see in Sec. VII, these
configurations are generated by Gaussian polynomials, we call themg-components. Eventually,
we will show that those graphs which are related by addition and removal ofg-components belong
to the samesector, and we will use this observation to relate any non-parent graph to a parent
graph.

Definition 18: @~i,j!-component# For all i51,...,n21, and all j51,...,i , we define an (i , j )-
component as a connected configuration ofn nodes, as shown in Fig. 3.
Some important characteristics of an (i , j )-component are the following.

G1 It consists ofn nodes.
G2 It has total heighti .
G3 It has total widthn2 i11.
G4 It has~at most! two cliffs, one~the lower! of height i2 j and one~the upper! of height j .
We further note that for an~i,i!-component the lower cliff vanishes, resulting in a configura-

tion with a single cliff.
Definition 19 (i-component):An ~i,j!-component for arbitraryj is called ani-component.
Definition 20 (g-component):An ~i,j!-component for arbitraryi andj is called ag-component.

FIG. 3. An (i , j )-component.

974 Foda, Okado, and Warnaar: sl(n)̂1 ^ sl(n)̂1 /sl(n)̂2 polynomial identities

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



We are now interested in the addition/removal ofg-components to/from a K-graph. Clearly, in
adding or removing ag-component to or from a K-graph inG L(2L0 ,Lk), we demand that the
resulting graph is again a graph inG L(2L0 ,Lk). However, on top of this we impose one addi-
tional condition, which basically defines our sectors.

A. Removing an i-component

The removal of an~i,j!-component from a K-graph inG L(2L0 ,Lk) is allowed provided the
following two conditions are satisfied:

R1 The resulting graph is again a K-graph inG L(2L0 ,Lk).
R2 If j5 i as in Fig. 4, we demand thatw.2(n2 i ).
Definition 21 (i-candidate):An i-component one is allowed to remove from a K-graph is

called ani-candidate.
Since for any K-graph inG L(2L0 ,Lk) we havehj211wj1hj[0, three kinds of candidates

can occur.

~1! bj211wj1hj5n andwj21.1. In this case we can remove an (hj211hj ,hj )-component.
~2! hj211wj1hj52n andwj.2(n2hj ). In this case we can remove an (hj ,hj )-component.
~3! hj211wj1hj>3n. In this case we can remove an (hj ,hj )-component.

Scanning the profile of a non-parent graph, severali -candidates may occur.
Definition 22 (leading i-candidate):The leading i -candidate is the down- and left-most

i -candidate.~see Fig. 4.!

B. Attaching an i -component to a graph

Attaching ani -component to a K-graph inG L~2L0,Lk! is allowed provided the following
conditions are satisfied:

A1 The resulting graph is again a K-graph inG L~2L0,Lk!.
A2 We do not generate ani 8-candidate, withi 8. i .
Definition 23 (i-vacancy):An i -vacancy is a position on the profile such that one is allowed to

attach ani -component.
An important statement abouti -vacancies is the following. Given a sequence$cliff,plain,cliff %

of dimensionshj21,wj ,hj such thathj211wj1hj5n andhj211hj5 i , then the following holds:
Lemma 2:If wj115n2 i , the above sequence is not ani -vacancy.

To prove this, assume the above sequence is ani -vacancy. Hence we can attach an
( i ,hj11)-component as shown in Fig. 5~a!. Note that in doing so the height of thej th cliff
increases by 1 tohj8 5 hj 1 1, and the width of the (j11)-th plain decreases by 1 to
wj118 5wj11215n2 i21. Thus we compute

0,hj81wj118 1hj115hj1n2 i1hj11< i1~n2 i !1~n21!52n21. ~27!

FIG. 4. Removing an (i ,i )-component is only allowed whenw.2(n2 i ). The extra dotted lines in the resulting graph are
to indicate the nodes which are removed.
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Sincehj8 1 wj118 1 hj11[ n,weconclude thathj8 1 wj118 1 hj115 n, andhj8 1 hj115 i 1 1.How-
ever, these are the characteristics of an (i11)-candidate. By the second condition for attaching
i -components this contradicts our assumption that the initial sequence was ani -vacancy.

With the above lemma we note that two kinds of vacancies may occur. The first occurs if we
have a sequence$cliff,plain,cliff % of dimensionshj21,wj ,hj such thathj211wj1hj5n and
wj11.n2hj2hj11. In this case we can always attach an (hj211hj ,hj11)-component, as
shown in Fig. 5~a!. The second occurs if we have a sequence$cliff,plain,cliff % of dimensions
hj21,wj ,hj such that hj211wj1hj>2n. In this case we can always attach an
(hj21,1)-component@see Fig. 5~b!#.

VI. DESCENDANTS

In previous sections, we classified all admissible K-graphs into parents and non-parents. We
need to show that each non-parent is adescendantof a unique parent. More precisely, we show the
following.

~1! Given a non-parent graph, there is a reduction procedure, such that one can reduce it to a
unique parent graph.

~2! The reduction procedure is reversible: given a parent graph, there is a composition procedure
to recover the original non-parent graph.

Because the reduction procedure is reversible, any non-parent graph is a descendant of a
unique parent graph. Thus the set of all admissible K-graphs can be divided into nonoverlapping
sectors. Each sector contains and is labelled by a parent graph. Any admissible K-graph belongs to
one and only one sector.

A. Reducing non-parent graphs

Given a non-parent K-graph, we can reduce it to a parent graph as follows.
Red0 Seti5n21.
Red1 Search for the leadingi -candidate and, if it exists, remove it.
Red2 Repeat the above step until no morei -candidates are found.
Red3 Seti→ i21 and, if i>1, repeat Red1–Red3.
To prove that a reduced graph is indeed a parent, we proceed as follows: Consider a profile

with a sequence$cliff,plain,cliff % of dimensionshj21,wj ,hj , respectively. Suppose that the part of
the profile below the above sequence belongs to a parent, i.e.,hk211wk1hk52n andhk21>hk
for k51,...,j21. We wish to show that if the above sequence does not represent a candidate, it
belongs to a parent. From Sec. V A we see that unlesshj211wj1hj52n andwj<2(n2hj ) or
hj211wj1hj5n andwj2151, we always have a candidate.

In the first case we get 2n5hj211wj1hj<hj212hj12n and thushj21>hj . This is pre-
cisely the right sequence for a parent and we gethk211wk1hk52n andhk21>hk for k51,...,j .
The second case can, in fact, never occur. Sincehj221wj211hj2152n andhj22,hj21,n we
find thatwj21.1.

FIG. 5. ~a! Attaching an (hj211hj ,hj11)-component withhjÞ1. ~b! Attaching an~hj21,1!-component. The extra dotted
lines in the resulting graphs are to indicate the profile before attaching the g-component.
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B. Generating descendants from parents

Given the parent associated tomW , each cliff of heighti plus the plain immediately to the right
of this cliff forms ani -vacancy. Hence we havemi i -vacancies. To obtain an arbitrary descendant
of the parent under consideration, we proceed as follows.

Gen0 Seti51.
Gen1 Setj51.
Gen2 Attachkj

( i ) i -components to thej th i -vacancy counted from the right.
Gen3 Setj→ j11. If j<mi , go to Gen2. Ifj5mj11, set i→ i11, and if i<n21, go to

Gen1.
To properly interpret these rules, some important remarks need to be made. First, when we say

‘‘attach kj
( i ) i -components to thej th i -vacancy,’’ this should be understood as follows. Attaching

an i -component to ani -vacancy has the effect of moving the vacancy to the right. Hence attaching
thekth i -component means attaching ani -component to the image of thei -vacancy after attaching
the (k21)-th i -component. Second, it may occur that attaching ani -component to ani -vacancy
does not have the effect of moving thei -vacancy to the right, but annihilates the vacancy. Hence,
there are bounds on the numberskj

( i ). In the next section we will show that these bounds are as
follows:

0<kmi

~ i !<•••<k2
~ i !<k1

~ i !<l i , ~28!

with l i fixed by ~31!.

C. Reversibility

There remains the proof that our rules for attaching and removing g-components are revers-
ible. This is true by construction.

VII. PROOF OF GAUSSIANS

In this section we prove that for the case ofG L~2L0,Lk!, the generating function for attaching
the i -components to the parent graph associated tomW is given by the Gaussian polynomial

F l i1mi

mi
G
q

, ~29!

where

FNmG
q

5H ~q!N
~q!m~q!N2m

, 0<m<N,

0, otherwise,
~30!

and

lW 5C21~LeWn211eW r22mW !, ~31!

andeW i the (n21)-dimensional unit vector with entries (eW i) j5d i , j and with 0,r<n fixed by

L22k[r . ~32!

A. The r5n case

To prove the above result we first treat the simpler case ofr5n. In the next subsection we
then show how to modify this to obtain~31! for generalr .

We start with the following important fact, used extensively throughout this section:
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Lemma 3:ForGPG L~2L0,Lk!, letW be the number of nodes in the first row andhN be the
height of theNth ~uppermost! cliff @see Fig. 2~a!#. Then

W2hN[2k. ~33!

We prove this by implementing the conditions K2 and K3 of Sec. III B 3, defining the K-graphs
in G L~2L0,Lk!. Recalling thatW is the number of nodes in the first row of a K-graph, we have

W5(
i51

N

wi[2(
i51

N

~hi211hi ![hN22(
i51

N

hi5hN22H[hN12k, ~34!

which proves our claim.

1. i-strips

We are interested in the placement of thei -components. From the rules for placing the latter,
it is natural to definemi i-stripsas follows:

S1 We define thei -strip as consisting of two regions: a principal region and a tail. The
principal region is defined in terms of a top segment, a bottom segment, and a left and a right
segment. The left and right segments will be called left and right terminal. We start by defining the
principal region.

Consider the profile Pi of the K-graph after attaching alli 8-components, with
i 851,2,...,i21, but before attaching any component of heighti or higher.

If the Nth ~highest! cliff of Pi has heighthN , extend theceilingof Pi by drawing a horizontal
line of width i2hN starting from the top-right corner of the rightmost node of the top row of the
graph, and extending to the right. This line will serve as a ceiling to thei -components that we will
add shortly.

Consider the segment ofPi 2(n2 i ) columns to the right of the right-most cliff of heighti .
This will be the top segment of thei -strip. Let us denote this segment byPi

0.
Now we proceed to define the bottom segment of thei -strip. MovePi

0 to the left by 2(n2 i )
columns, and downward byi rows. Denote this shifted profile byPi

1. This is the bottom segment
that we are looking for.

Finally, close the figure formed by the top and bottom segments as follows: draw a plain of
width 2(n2 i ) followed by a cliff of heighti to the right~left! of Pi

0/Pi
1), called the right~left!

terminal, respectively. As a result, we now have a region enclosed byPi
0 ,Pi

1 and the left and right
terminals. This defines theprincipal regionof the first i -strip.

Next, we define the tail of the firsti -strip as follows: ComputeM[0 to be the largest integer
such thatW1 i2hN1M<L. The tail of thei -strip is a rectangle, of widthM and heighti , that we
place to the right of the principal region in the first row.

The principal region plus the tail define the complete firsti -strip. An example of the first
3-strip in a typical K-graph forsl(4)̂ is shown in Fig. 6~a!.

S2 We draw the secondi -strip by simply shifting the firsti -strip to the left and down by
2(n2 i ) columns andi rows, respectively.

S3 We repeat the step S2~mi21! times. That is, we define the~j11!-th i -strip by translating
the j th i -strip to the left by 2(n2 i ) columns and downwards byi rows. In Fig. 6~b! we have
shown the construction of the 3-strips for a typical example of a K-graph forsl(4)̂.

By construction, adding thei -components corresponding to thej th i-vacancy~counted from
the right! corresponds to filling thej th i -strip from left to right. In constructing an arbitrary
descendant, we will not necessarily fill the completej th i -strip. Furthermore, we will show below
that the filling of the~j11!-th strip is bound by the degree of filling of thej th strip. In particular,
we will show that if thej th strip is filled withkj

( i ) i -components, then the~j11!-th strip cannot be
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filled with more thankj
( i ) i -components. Since eachi -component containsn nodes, and thus

contributes a single factorq, we obtain the following expression for the generating function
attaching thei -components:

Gi~q!5 (
k1

~ i !
50

l i

(
k2

~ i !
50

k1
~ i !

••• (
kmi

~ i !
50

kmi21
~ i !

qk1
~ i !

1k2
~ i !

1•••1kmi

~ i !
. ~35!

Here the numbernl i is the area~5number of nodes! of the first i -strip.
As defined above,Gi can be interpreted as the generating function of all partitions with largest

part<l i and number of parts<mi . Therefore

Gi~q!5F l i1mi

mi
G
q

. ~36!

Before ending this subsection, let us return to Lemma 3. We have stated above that attaching
i -components corresponding to the right-mosti-vacancy corresponds to filling the firsti -strip.
However, some caution needs to be taken, since in constructing the principal region of the first
i -strip we have extended the profile of the K-graph by drawing a plain of widthi2hN in the first
row to the right of theNth cliff. This clearly can only be done for alli51,...,n21, if
L2W>n212hN . If Ls is the smallest possible value ofL for which a K-graph of widthW is
possible, i.e.,

Ls5W1x, 0<x<n21, ~37!

with x fixed by ~32!, we have

x5Ls2W5~Ls22k!2~W22k![r2hN , ~38!

where we have used Lemma 3 and the definition~32! of r . Since we requirex to be at least
n212hN we should thus have thatr5n or n21. For simplicity we now assumer5n.

2. Calculation of l i

To calculate the area of the firsti -strip, we use the simple property that the area remains
unchanged by deforming the strip by removing nodes from below and adding them from above.

We now choose to deform thei -strip such that its upper side corresponds to the profile of its
parent graph, being labelled bymW . For the example of Fig. 6 this is shown in Fig. 7.

From this particular choice of deformation we can simply compute the area overn as

FIG. 6. ~a! The construction of the first ‘‘3’’-strip for a typical K-graphG. The part ofG corresponding to the parent graph
is drawn with open nodes/boxes and the~already! placedi 8-components~i 851,2! are shown in grey. The bold segments are
the left–right terminals of the principal region~marked P!. The tail of the strip is marked with T.~b! The two ‘‘3’’-strips
for the K-graph in~a!.
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l i~r5n!52(
j51

i21

jmi2 j1 i bS L1n2 i22(
j51

n21

jmn2 j D Ync, ~39!

with bxc denoting the integer part ofx. Here the first term corresponds to the area of the principal
region of thedeformed i-strip and the second term to the area of the tail of the deformed strip. In
particular, to compute the former we use the fact that it takes~j11! i -components to move an
i-vacancy@of the type shown in Fig. 5~b!# upwards across a plain of width 2n22i1 j ~j>1!. To
compute the latter, we computeL2(W1 i2hN), using the result~33!.

Recasting the definition~23! of the inverse Cartan matrix as

~C21! i , j5
i ~n2 j !

n
2 (

p51

i21

~ i2p!d j ,p ~40!

and using the mod properties~19! and ~32! we thus obtain

l i~r5n!5
iL

n
22S (

j51

n21
i ~n2 j !

n
2(

j51

i21

~ i2 j !Dmj5L~C21!n21,i22~C21mW ! i . ~41!

This proves~31! for r5n.

3. Proof of Gaussian form

It remains for us to prove that the filling of the~j11!-th i -strip is bound by that of thej th
i -strip.

Let us assume that we have placedkj
( i ) i -components in thej th i -strip, and that thekj

( i )-th
component is ani -component of the form depicted in Fig. 8~a!. Let us further assume that we have
already filled the~j11!-th strip with kj

( i ) i -components~this is of course always possible!. Since

FIG. 7. The deformation of the first ‘‘3’’-strip of the K-graph of Fig. 6, yielding the first ‘‘3’’-strip of its parent graph.

FIG. 8. ~a! A typical i -component. The bold lines indicate part of the boundary of thei -strip. ~b! Thekj
( i )-th i -component

in both thej th and the~j11!-th i -strip. ~c! and~d! The two forbidden placements of an additional~kj
( i )11!-th i -component

~shown in grey! in the ~j11!-th strip.
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the ~j11!-th strip has identical shape as thej th strip, but is translated to the left and down by
2(n2 i ) columns andi rows, we have the configuration shown in Fig. 8~b!.

Our claim is now that upon attaching thekj
( i )-th i -component in the~j11!-th strip we have

annihilated the correspondingi-vacancy. To see this we consider two cases. Either the boundary
separating the strips extends at least one more entry to the right, see Fig. 8~c!, or the boundary
progresses upwards as in Fig. 8~d!. In the first case the lowest sequence$cliff,plain,cliff % could be
an i-vacancy, but since the plain immediately above has widthn2 i , this is not the case thanks to
Lemma 2. Hence placing thei -component in Fig. 8~c! as shown in grey is not allowed. In the
second case, the middle sequence$cliff,plain,cliff % could be ani-vacancy, but again the plain
immediately above has widthn2 i and we can once more apply Lemma 2. Hence also the
placement as shown in Fig. 8~d! is forbidden.

B. The general r case

As remarked at the end of Sec. VII A 1, only forr5n andn21 can we always draw a plain
of width i2hN to the right of theNth cliff without violating the conditionW1 i2hN<L, for any
i . If L22k[r , we can still do so for alli<r . Hence for these cases the principal region of the
i -strips can still be defined as in Sec. VII A 1. However, fori5r1a ~a.0!, we have to reduce the
principal regionP by removing the part ofP which would be occupied by the lasta components
to be attached, ifP were to be completely filled from left to right. Of, course, in this case the tail
no longer is a rectangle, but has a profile of two plains and two cliffs. An example of this reduction
is shown in Fig. 9.

The above considerations lead to the following simple modification of~39!:

l i52(
j51

i21

jmi2 j2 (
p51

n2r21

~n2r2p!dn2 i ,p

1 i bS L1n2 i1 (
p51

n2r21

~n2r2p!dn2 i ,p22(
j51

n21

jmn2 j D Ync
52(

j51

i21

jmi2 j2 (
p51

n2r21

~n2r2p!dn2 i ,p1
i

n S L1n2r22(
j51

n21

jmn2 j D
5l i~r5n!1S i ~n2r !

n
2 (

p51

n2r21

~n2r2p!dn2 i ,pD 5l i~r5n!1~C21!r ,i , ~42!

which proves the claim~31!. Here we note that to obtain the first line of~42! one not only has to
subtract the term(p(n2r2p)dn2 i ,p to account for the reduction of the principal region, but also
to add this same term within theb.c. This occurs since the effective length available for the tail of
the i -strips has of course increased by the decrease of the principal region~see Fig. 9!.

C. Fermionic form for FL(2L0 ,Lk)

We now have computed the number of nodes of the parent associated tomW as well as the
generating function for adding the g-components to this parent. Collecting these two results, we
obtain the following expression for the generating functionFL(2L0 ,Lk) of K-graphs in
G ~2L0,Lk!:

Proposition 1:

FL~2L0 ,Lk!5( qmW
tC21mW )

i51

n21 F l i1mi

mi
G , ~43!
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with lW given by ~31! and ~32! and with the sum taken over allmW P~Z>0!
(n21) satisfying

k1( i51
n21imi[0.

VIII. THE GENERAL CHARACTER

In this section we calculateFL(L01L jLk) for arbitrary j (0< j<n21). As we have already
mentioned in Sec. II, we count the weights in the principal picture, so that any fermionic form can
be reduced to one of the above form.

First consider the following injection:

P L~L01L j ,Lk!→P L1 j~2L0 ,Lk!,
~44!

p5~l0 ,...,lL!°p8,

wherep85(2L0 ,L01L1 ,...,L01L j21,l0 ,...,lL). In terms of K-graphs, we have

G L~L01L j ,Lk!→G L1 j~2L0 ,Lk!,
~45!

G°G8.

HereG8 is obtained fromG by placing the rectangle of widthj and heightH8 in the left-hand side
of G ~see Fig. 10!, where,H being the height ofG, H8 is determined byH82H50 or n2 j ,
H8PnZ2k. It is clear that the image under the injection~45! is the set of K-graphs in
G L1 j (2L0 ,Lk) having the lowest plain of width at leastj .

Now let us recall that we have established the following bijection in the preceding sections:

FIG. 9. Reduction of the 3-strips of Fig. 6. Recalling thati5r1a, we need fori53 andn54 to consider the cases
a50,1,2.

FIG. 10. Embedding of a K-graph inG L(L01L j ,Lk) into G L1 j (2L0 ,Lk).
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P L~2L0 ,Lk!↔$„mW ,~F1 ,...,Fn21!…%. ~46!

HeremW t5(m1 ,...,mn21), satisfying ~19!, characterizes the parent graph, andFi is the Ferrers
graph of a partition with largest part<l i and number of parts<mi . Regarding the image of the
injection ~45!, the following question arises: How can we characterize K-graphs having the lowest
plain of width at leastj as elements in the right-hand side of the bijection~46!? The answer is
given by the following.

Proposition 2:A K-graph in G L(2L0 ,Lk) has a lowest plain of widthw1> j , iff, for n2 j
11< i<n21, the smallest part in the Ferrers graphFi has at leasti1 j2n nodes.

To prove this, letG be such a K-graph,P its parent graph, andM (G) and M (P) the
corresponding interpolating matrices. We writeM (G) as in ~14! andM (P) as

M ~P!5S c01c1 ••• ci211ci ••• cN211cN

n2c1 ••• n2ci ••• n2cN
D ~c050!.

After removing g-components such that the firsti columns ofM (G) equalM (P), we must have
thatwi11> j1ci .

We wish to prove the above assertion by induction oni . For i50, the assertion is clear from
the assumption of the proposition. Next, let us assume the assertion fori21. Let us also assume
that we have arrived at the minimal gap corresponding toci211ci . In order to prove the assertion
for i , we have to show that we can remove an (n2ci)-componentj2ci21 times strictly horizon-
tally. This can indeed be shown through straightforward, though tedious, consideration of the
profile, and the conditions on its various segments. Proposition 2 follows from the above state-
ment.

Applying Proposition 2, we immediately obtain

FL~L01L j ,Lk!5( qmW
tC21mW 1Q)

i51

n21 F l i81mi

mi
G
q

, ~47!

where

Q5 (
i5n2 j11

n21

~ i1 j2n!mi2
j

n (
i51

n21

imi52mW tC21eWn2 j ,

l i85l i uL→L1 j2~ i1 j2n!u~ i1 j2n!,

5@C21~LeWn211eW r1eWn2 j22mW !# i . ~48!

Here l i is defined in~31!, andu in ~5!.
In conclusion, we have the general form of the fermionic sum:
Theorem 3:

FL~L01L j ,Lk!5( qmW
tC21mW 2mW tC21eWn2 j)

i51

n21 F l i1mi

mi
G
q

,

~49!

lW 5C21~LeWn211eW r1eWn2 j22mW !,

where the sum is taken over allmW P~Z>0!
n21 satisfyingk1( i51

n21imi[0, and withr determined
from L1 j22k[r , 0,r<n.
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IX. SUMMARY AND DISCUSSION

In this paper we have presented a method to compute finite analogs of the branching functions
of the coset

sl~n!̂1^sl~n!̂1 /sl~n!̂2 . ~50!

Our approach, based on a direct counting of Ferrers graphs related to the crystal base formulation
of the HWMs of sl(n)̂ , leads to what are known asfermionic polynomials. This complements
earlier results of Ref. 5 where the same finite analogs of branching functions were computed, and
the result was expressed in terms ofbosonic polynomials.

Equating these two results, as formulated in the Theorems 1 and 3, using Eq.~18!, we obtain
the main result of this paper:

Theorem 4: Let mW and eW i be ~n21!-dimensional vectors with entries (mW ) i5mi and
(eW i) j5d i , j , respectively. Also, letC be the Cartan matrix ofsl(n) andW the Weyl group of

sl(n)̂ . Defining the functionbL,i as in ~11!, the following polynomial identity holds for allj ,k
50,...,n21:

(
mW P~Z>0!n21

qmW
tC21mW 2mW tC21eWn2 j)

i51

n21 F ~mW 1C21~LeWn211eW r1eWn2 j22mW !! i
mi

G
q

5q~ uLku
22uL j8u2!/2 (

wPW
~detw!bL, j2k„Lk1L j2k1L1r2w~L01L j1r!…, ~51!

with 0,r<n fixed byL1 j22k[r and with the sum overmW restricted by

k

n
1~C21mW !n21PZ. ~52!

Letting L→` we obtain the followingq-series identities for the branching functions of the
coset~50!.

Corollary 1: Let Q be the root lattice andW̄ be the Weyl group ofsl(n). Then

q~ uL j u
22uLku

2!/2 (
mW P~Z>0!n21

qmW
tC21mW 2mW tC21eWn2 j

P i51
n21~q!mi

5
quL j1ru2/2~n12!2uLk1ru2/2~n11!

~q!`
n21 (

wPW̄

~detw!U~n12!~L̄k1 r̄ !2~n11!w~L̄ j1 r̄ !,~n11!~n12!~q!,

~53!

with the sum overmW again restricted by~52!, and withUl,l defined by

Ul,l ~q!5 (
aPQ

ql ua2l/l u2/2, ~54!

for lP(i51
n21CL̄i .

We note that the left-hand side of~53! coincides with the character expressions of Lepowsky
and Primc8 for theZn-parafermion conformal field theory.

The polynomial identities~51! proven in this work are, strictly speaking, not new, since under
level–rank duality they map onto identities related to the coset
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sl~2!̂n21^sl~2!̂1 /sl~2!̂n . ~55!

The latter were conjectured in Refs. 9 and 17, and proven in Refs. 18–20. However, the proof
presented here isintrinsically of sl(n)̂ type, and we expect it admits generalization to the more
general coset

sl~n!̂ l ^sl~n!̂m /sl~n!̂ l 1m . ~56!

Results related to generalsl(2)̂-type cosets were discussed in Ref. 21. The fermionic character
form for certain sectors of the higher-rank parafermions were proven in Ref. 22.

For the case ofsl(2)̂, the paths considered in this paper admit yet another representation in
terms of Ferrers graphs. These graphs, obeying entirely different conditions than our K-graphs,
were introduced in Ref. 23. They are also more general, in the sense that they lead to character
expressions for allsl(2)̂ cosets of typeC 2,l ,1 , including rational values ofl . Results for this type
of coset have been discussed in Refs. 24 and 25.

NOTES ADDED:

After this work was completed, it was brought to our attention that the main concepts intro-
duced in this work are analogous to, though intriguingly different from, concepts that are essential
to the theory of modular representations of the symmetric group.~For the precise definition of
some of the following terminology, see for example, the book by James and Kerber.26! In particu-
lar, our K-graphs of the cosetC n,1,1 are known asn-regular Young diagrams, ourparent graphs
are analogous ton-cores, our Gaussian polynomials generate the analogs ofn-quotients, our
g-components are analogous tohook–ribbons, and our counting procedure is very much related to
the evaluation of Kostka–Green–Foulkes polynomials. However, there are differences, due to the
fact that our K-graphs obey additional conditions.

Now, to make things even more intriguing, we also learned that the conditions obeyed by our
K-graphs are almost identical to, though stronger than, those obeyed by Young diagrams that
parametrize irreducible representations ofsl(n) which remain irreducible under restriction to
sl(n21). We hope to report on these interesting relationships in future publications.

In a recent preprint A. Schilling has given a recursive proof of fermionic forms for the cosets
referred to in Eq.~56!.27
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A new general eigenvalue formula for the eigenvalues of Casimir invariants, for the
type-I quantum superalgebras, is applied to the construction of link polynomials
associated withanyfinite dimensional unitary irrep for these algebras. This affords
a systematic construction of new two-variable link polynomials associated with any
finite dimensional irrep~with a real highest weight! for the type-I quantum super-
algebras. In particular infinite families of nonequivalent two-variable link polyno-
mials are determined in fully explicit form. ©1996 American Institute of Physics.
@S0022-2488~96!00802-8#

I. INTRODUCTION

Following the celebrated discovery by Jones1 of the so-called Jones’ link polynomial, there
has been considerable interest in recent years in modern knot theory, which has been found to be
closely related, through the quantum Yang–Baxter equation~QYBE!, to various areas of physics
such as solvable models and quantum field theories.2,3 With the equally important discovery of
quantum algebras during the same period by Drinfeld4 and Jimbo5 following the initiatives of the
St. Petersberg group, it was soon realized by Reshetikhin6 and Turaev7 that quantum algebras
provided a useful tool in constructing link polynomials. This idea was further developed in Refs.
8–10 where the authors proposed a simple systematic procedure for the construction of link
polynomials arising from quantum bosonic algebras.

There were many attempts~see, e.g., Refs. 2, 11, and 12! to construct new two- or multi-
variable link polynomials since the work of HOMFLY13 and Kauffman14 concerning two-variable
extensions of the Jones link polynomial. The two-variable HOMFLY and Kauffman link polyno-
mials arise from the minimal representations ofAn andBn , Cn , Dn quantum algebras, respec-
tively.

Subsequently, link polynomials arising from quantum superalgebras have been addressed by
various authors.15–20 Among all quantum superalgebras those of type-I, Uq@gl(mun)# and
Uq@osp~2u2n!#, are particularly interesting because they possess one-parameter families of finite-
dimensional unitary irreps even for genericq. The freedom of having extra parameters in the
irreps opens up new and exciting possibilities in physics.21 For the current case, the link polyno-
mials from such representations will then also depend on these extra parameters, thus naturally
yielding multi-variable link polynomials. We remark however that such multi-variable link poly-
nomials are not related22 to those arising from ‘‘colored’’ braids.11

For the case of quantum superalgebras, the situation is much more complicated than the
bosonic case. The fundamental difficulty is the zeroq-supertrace problem over typical irreps, so
that the usual techniques developed for computing the eigenvalues of Casimir invariants for
quantum bosonic algebras fail in this case. Due to this problem, only very few isolated examples
of multi-variable link polynomials for quantum superalgebras have so far been known. These
include the two-variable link polynomials23 based on Uq@gl~2u1!# and multi-variable ones22 for a

a!Electronic-mail: yzzhang@yukawa.kyoto-u.ac.jp; yzz@maths.uq.oz.au
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special class of representations of Uq@gl(mun)#. In these examples, the authors only considered
representations for which the above mentioned difficulty does not occur.

In this paper, we have succeeded in overcoming the above problem and obtain a well-defined
q-supertrace formula which is applied to compute the eigenvalues of the Casimir invariants. These
results are given in theorems 1, 2, and 3. However, the proof of theq-supertrace formulas are
extremely lengthy and will be published in a separate paper.32 Using these results, we are able to
construct link polynomials associated withanyfinite dimensional unitary irrep of a type-I quantum
superalgebra. Applied to one-parameter families of inequivalent finite dimensional irreps of
Uq@gl(mun)# and Uq@osp~2u2n!# for genericq, our method affords infinite families of nonequiva-
lent two-variable link polynomials in fully explicit form.

This paper will be presented in the following order. After recalling some fundamentals in Sec.
II, we give, in Sec. III an account of the atypicality indices and unitary irreps of Uq~G !. In Sec. IV
we present three theorems concerning the computation of theq-supertraces and therefore the
eigenvalues of Casimir invariants over typical irreps. Section V derives a spectral decomposition
formula for the braid generator and its powers. A general method for constructing link polynomials
is presented in Sec. VI and examples of two-variable link polynomials are illustrated in Sec. VII.
In the last section, we give a brief discussion of our main results.

II. PRELIMINARIES

Let G be a type-I simple Lie superalgebra24 with generators$ei , f i ,hi% and let ai ,
i50,1,...,r , be its simple roots witha0 the unique odd simple root; here we choose the distin-
guished set of simple roots.~Superalgebras allow many inequivalent systems of simple roots. See
Ref. 24. The relation between the different quantum superalgebras obtained by choosing different
systems of simple roots is studied in Ref. 25.! Let ~,! be a fixed invariant bilinear form onH* , the
dual of the Cartan subalgebraH of G . The quantum superalgebra Uq~G ! has the structure of a
Z2-graded quasi-triangular Hopf algebra. Throughout the paper we will assume thatq is generic,
i.e., not a root of unity. We will not give the full defining relations of Uq~G ! here but mention that
the simple raising and lowering generators of Uq~G ! obey more relations than just the usual
q-Serre relations known from quantum bosonic algebras.26–29These necessary extra relations are
referred to as ‘‘extraq-Serre relations.’’ Uq~G ! has a coproductD and antipodeS given by

D~q6hi !5q6hi ^q6hi,

D~ei !5ei ^q2hi /21qhi /2^ei ,

D~ f i !5 f i ^q2hi /21qhi /2^ f i , ~1!

S~a!5q2hrg~a!qhr, a5ei , f i ,hi , ~2!

whereg is the principal anti-automorphism on Uq~G ! and r is the graded half-sum of positive
roots ofG . We omit the formulas for the counit which are not needed here.

The algebra Uq~G ! is a quasitriangular graded Hopf algebra, which means the following. Let
D8 be the opposite coproduct so thatD85TD, where T is the graded twist map:
T(a^b)5(21)[a][ b]b^a, ;a,bPUq~G !. Here [a]PZ2 denotes the grading of elementa: [a]50
if a is even and [a]51 if it is odd. ThenD andD8 are related by the universalR-matrix R in
Uq~G !^Uq~G ! satisfying, among others, the relations

RD~a!5D8~a!R, ;aPUq~G !, ~3!

~ I ^ D!R5R13R12, ~D ^ I !R5R13R23, ~4!
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where if R5(at^bt thenR125(at^bt^1, R135(at^1^bt , etc. It follows from ~4! that R
satisfies the QYBE:

R12R13R235R23R13R12. ~5!

Note that the multiplication rule for the tensor product is defined for homogeneous elements
a,b,c,dPUq~G ! by

~a^b!~c^d!5~21!@b#@c#~ac^bd!. ~6!

It is a well established fact for quasitriangular Hopf algebras, that there exists a distinguished
element4

u5(
t

~21!@ t#S~bt!at , ~7!

where, as above,at andbt are coordinates of the universalR-matrix. One can show thatu has
inverse

u215(
t

~21!@ t#S22~bt!at ~8!

and satisfies

S2~a!5uau21, ;aPUq~G !, D~u!5~u^u!~RTR!21, ~9!

whereRT5T(R). It is easy to check that

v5u21q22hr ~10!

belongs to the center of Uq~G ! and satisfies

D~v !5~v^v !~RTR!21. ~11!

Moreover, on a finite dimensional irreducible moduleV~L! with highest weightLPD1, the
Casimir operatorv takes the eigenvalue

xL~v !5q~L,L12r!. ~12!

Note that the generators$ei , f i ,q
hi,i 5 1,...,r % form generators of the quantum group Uq~G 0!,

whereG 0 is the ‘‘even subalgebra’’ ofG . Specifically,

G 05u~1! %sl~m! %sl~n!, for G5sl~mun!, m,n>2,

G 05u~1! %sl~n!, for G5sl~1un!, n>2,

G 05u~1! %sp~2n!, for G5osp~2u2n!. ~13!

Throughout we letV0~L! denote the finite dimensional irreducible Uq~G 0! module with highest
weightLPD1. We call

Dq
0~L!5 )

bPF0
1

@~L1r,b!#q
@~r,b!#q

~14!
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theq-dimension of the Uq~G 0! irrepV0~L!, whereF0
1 denotes the set of even positive roots ofG .

Here and in what follows we will adopt the notation

@x#q5
qx2q2x

q2q21 . ~15!

III. ATYPICALITY INDICES AND FINITE-DIMENSIONAL UNITARY IRREPS

Let K~L! be the Kac-module associated toV~L!. K~L! is not necessarily irreducible. If it is,
we haveV(L)5K(L) and refer toL and V~L! as ‘‘typical.’’ Recall thatL is typical iff~L
1r,b!Þ0, ;bPF1

1 , whereF1
1 is the set of odd positive roots ofG .

Let us remark that for typical modules the dimensions are easily evaluated to be
dimV(L)52d•dimV0~L!, whered, which is equal tomn for gl(mun) and 2n for osp~2u2n!, is the
number of odd positive roots. This formula is particularly useful in determining tensor product
decompositions of typical modules.

Definition 1: The integer

aL5uF̄1
1~L!u, F̄1

1~L!5$bPF1
1u~L1r,b!50% ~16!

is called the ‘‘atypicality index’’ ofLPD1. In particular, aL50 iff L is typical.
The type-I quantum superalgebras admit two types of unitary representations which may be

described as follows. We make the simplifying assumption thatq.0 ~i.e., q is real and positive!
and define a conjugation operation on the Uq~G ! generators byei

† 5 f i , f i
† 5 ei , hi

† 5 hi which is
extended uniquely to all of Uq~G ! such that (xy)†5y†x†, ;x,yPUq~G !. We call pL type ~1!
unitary if

pL~x†!5pL~x!, ;xPUq~G ! ~17!

and type~2! unitary if

pL~x†!5~21!@x#pL~x!, ;xPUq~G !, ~18!

where the overline denotes Hermitian matrix conjugation. The two types of unitary representations
are in fact related via duality.

Lemma 1: Such unitary representations have the property that they are always completely
reducible and the tensor product of two irreducible unitary representations of the same type
reduces completely into irreducible unitary representations of the same type. Moreover the atypi-
cality indices of the irreps occurring in this decomposition are less than or equal to the atypicality
index of either component.

The finite dimensional irreducible unitary representations for all type-I quantum superalgebras
have been classified in Refs. 30 and 31. For completeness we cite these classification results
below. Let us first of all introduce some notation. For gl(mun), we choose$e i% i51

m ø$d j% j51
n as a

basis forH* with @ei#50, @dj #51 and

~e i ,e j !5d i j , ~d i ,d j !52d i j , ~e i ,d j !50. ~19!

Using this basis, any weightL may written as

L[~L1 ,...,LmuL̄1 ,...,L̄n![(
i51

m

L ie i1(
j51

n

L̄jd j ~20!

and the graded half-sumr of the positive roots is
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2r5(
i51

m

~m2n22i11!e i1(
j51

n

~m1n22 j11!d j . ~21!

For osp~2u2n!, choose$e0%ø$e i% i51
n as a basis forH* with @e0#51, @ei#50 and

~e0 ,e0!521, ~e i ,e j !5d i j , ; i , j51,...,n, ~e0 ,e i !50. ~22!

In this case, any weightL may be expressed as

L[~L̄uL1 ,...,Ln![L̄e01(
i51

n

L ie i ~23!

and the graded half-sumr of the positive roots is given by

r5(
i51

n

~n2 i11!e i2ne0 . ~24!

Proposition 1:(I ) A givenUq@gl(mun)#-module V~L!, with LPD1 , is type~1! unitary iff: (i)
~L1r,em2dn!.0; or (ii) there exists an odd indexvP$1,2,...,n% such that ~L1r,em2dv!
505~L,dv2dn!. In the former case the given condition also enforces typicality on V~L!, while in
the latter case all irreps are atypical.
(II ) TheUq@gl(mun)#-module V~L!, with LPD1 , is type~2! unitary iff: (i) ~L1r,e12d1!,0; or
(ii) there exists an even index kP$1,2,...,m% such that~L1r,ek2d1!505~L,e12ek!. In the former
case V~L! is typical, while in the latter case it is atypical.

Proposition 2: A givenUq@osp~2u2n#!-module V~L! is type~1! unitary iff ~L,a0!>0,wherea0
denotes the unique odd simple root, and type~2! unitary iff (i) ~L1r,e01e1!,0; or (ii) there exists
an index kP$1,2,...,n% such that~L1r,e01ek)505(L,e12ek!; or (iii) L50.

IV. q -SUPERTRACE AND EIGENVALUES OF CASIMIR INVARIANTS

Throughout this section we assumeV~L! is a fixed but arbitrary finite dimensional irreducible
Uq~G !-module. SupposeV(n),V(m)^V(L) is typical and letP@n# denote the central projection
of the tensor product moduleV(m)^V(L) onto its isotypic componentV̄(n)[mnV(n)
,V(m)^V(L) @that isV̄(n)5V(n)% ••• %V(n),mn copies#. We state the followingq-supertrace
formula:

Theorem 1: For m, nPD1 typical,

~ I ^str!~ I ^ pL~q22hr!!P@n#5~21!@n#mn

xm~G0!

xn~G0!
•

Dq
0~n!

Dq
0~m!

, ~25!

where@n# modulo2 is the degree of the weightn, G0 is a central element ofUq~G 0! andxm~G0! is
the eigenvalue ofG0 on theUq~G 0!-module V0~m!:

xm~G0!5 )
bPF1

1

@~m1r,b!#q
@~r,b!#q

. ~26!

The proof of this theorem is very lengthy and detailed, and will be published elsewhere.32

Proposition 3: If the operator cPUq~G !^EndV~L! satisfiesDL(a)c5cDL(a), ;aPUq~G !,
whereDL5~I ^pL!D, then

Ck
L5~ I ^str!$@ I ^ pL~q22hr!#ck%, kPZ1 ~27!
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belong to the center ofUq~G ! and thus form a family of Casimir invariants.
An important example ofc is given by

c5
I ^ I2RL

TRL

q2q21 , ~28!

whereRL5(I ^ pL)R, with R the universalR-matrix.
Now assumeV(m)^V(L) is completely reducible and write

V~m! ^V~L!5 %

n

mnV~n! ~29!

with now mn the multiplicity of the moduleV~n! occurring in the tensor product. This always
occurs whenm andL are unitary of the same type. Moreover, in such a case, each of the modules
V~n! is also unitary. IfcP(I ^ pL)(Z^Z)D(Z) whereZ is the center of Uq~G !, then one can
deduce the following spectral decomposition forc and its powersck, kPZ:

ck5(
n

~xn~c!!kP@n#, ~30!

wherexn(c) is the eigenvalue ofc on V(n),V(m)^V(L). Thus if c is given by the above
example, then we have

xn~c!5
12qC~m!1C~L!2C~n!

q2q21 , ~31!

whereC~L![~L,L12r! denotes the eigenvalue of the second order Casimir invariant ofG .
With the aid of Theorem 1, we can determine the eigenvalues of the Casimir invariantsCk

L on
a finite dimensional typical moduleV~m! @notation as in Eq.~29!#.

Theorem 2: If m,n are all typical, then the eigenvalues of the Casimir invariants on V~m! are
given by

xm~Ck
L!5(

n
~21!@n#mn~xn~c!!k

xm~G0!

xn~G0!
•

Dq
0~n!

Dq
0~m!

, kPZ. ~32!

Remark:Let $li% denote the set of distinct weights inV~L! occurring with multiplicities
ml i

. It can be shown that the above theorem may be extended to all finite dimensional modules
V~m!, mPD1, by replacingn,mn with m 1 l i ,ml i

, respectively, and summing overli . For more
details see Ref. 33. The eigenvalue formula obtained in this way is referred to as the ‘‘extended
eigenvalue formula’’ onV~m!, mPD1. Note that for genericm, the extended eigenvalue formula
determines a polynomial function onH* . It is well defined if allm1li are typical but if some
m1li is atypical it is necessary first to expand the right-hand side of the extended eigenvalue
formula into a polynomial in order to avoid singularities.33

In the case of unitarymPD1 this latter problem can be overcome as follows. We set

F1
1~l!5$bPF1

1u~l1r,b!Þ0% ~33!

so that

uF1
1~l!u1al5uF1

1u. ~34!

Then we have the following.
Theorem 3:The eigenvalues of the Casimir invariants on a unitary module V~m! are given by
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xm~Ck
L!5 (

$nuan5am%
~21!@n#mn~xn~c!!k

PbPF
1
1~m!@~m1r,b!#q

PbPF
1
1~n!@~n1r,b!#q

•

Dq
0~n!

Dq
0~m!

, kPZ1 ~35!

provided that V~L!, V~m! are unitary of the same type. Here the sum overn is over
V0(n),V0(m)^V(L) and mn is the multiplicity of V0~n! in this space.

For a given unitary moduleV~L!, the above formula is well defined for all unitarymPD1 of
the same type.

V. DIAGONALIZATION OF THE BRAID GENERATOR

Let P be the graded permutation operator onV(L)^V(L) defined by P(ux& ^ uy&)
5(21)[x][ y] uy& ^ ux&, for all homogeneousux&, uy&PV~L! and set

s5PR PEnd~V~L! ^V~L!!. ~36!

Here and in what follows we regard elements of Uq~G ! as operators onV~L!. Then ~3! is
equivalent to

sD~a!5D~a!s ;aPUq~G ! ~37!

and ~5! can be written as

~ I ^ s!~s ^ I !~ I ^ s!5~s ^ I !~ I ^ s!~s ^ I !. ~38!

It follows immediately that the operatorssi
6PEnd(V(L)^M), i5$1,2,...,M21% defined by

~39!

generate a nontrivial representation of the rank~M21! braid groupBM .
In the case whens acts onV(L)^V(L) with V~L! unitary, it can be shown thats is

self-adjoint and diagonalizable.34 We remark however that only the type-I quantum superalgebras
admit finite dimensional unitary irreps.

Similar to ~29! we write,

V~L! ^V~L!5 %

n

mnV~n!, ~40!

where againmn is the multiplicity of the moduleV~n! occurring in the tensor product and each of
the modulesV~n! is unitary. In view of the self-adjointness ofs, s is diagonalizable on
V̄(n)[mnV(n)5V(n)% ••• %V(n) ~mn copies!, regardless of the multiplicity. In fact it is possible
to derive a spectral decomposition formula fors, as in the case of quantum bosonic algebras.10

Recall that limq→1 s5P and P is diagonalizable onV(L)^V(L) with eigenvalues61.
Following Ref. 10, letP@6# denote the projection operators defined by

P@6#~V~L! ^V~L!!5W6 , ~41!

where

W65$wPV~L! ^V~L!u lim
q→1

~s71!w50%. ~42!
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Sinces is an Uq~G !-invariant each subspaceW6 determines a Uq~G !-module andP@6# commute
with the action of Uq~G !. As aboveP@n# denotes the projection operator onto the modulesV̄~n!;
then obviously

P@n,6#5P@6#P@n#5P@n#P@6# ~43!

is the projection onto the isotypic componentV̄~n! consisting of eigenvectors ofs with parities
61, respectively@i.e., the component ofV̄~n! in W6 , respectively#.

The diagonalizability ofs, together with the fact that

s25PRP•R5RTR5~v^v !D~v21!, ~44!

implies the following spectral decomposition fors and its powers:

sk5q2kC~L!(
n

q~k/2!C~n!~P@n,1#1~21!kP@n,2# !, kPZ, ~45!

where as beforeC~l![~l,l12r!. It follows in particular thats satisfies the polynomial identity

)
n

~s2q
1
2
C~n!2C~L!!~s1q

1
2
C~n!2C~L!!50 ~46!

which leads to the generalized skein relations for the corresponding link polynomials investigated
below.

VI. LINK POLYNOMIALS

Let uPBM be a word in the generatorssi
6, 1< i<M21 and letû denote the link obtained by

closing the braid. For the construction of link polynomials, the Markov tracef plays an essential
role. It is defined by

~ i! f~uh!5f~hu!, ;u,hPBM ,

~ ii ! f~usM21!5zf~u!, f~usM21
21 !5 z̄f~u!, ;uPBM21,BM . ~47!

Given such a Markov trace, it is well-known that one can define a link polynomialL( û) through

L~ û !5~zz̄!~M21!/2~ z̄z21!e~u!/2f~u!, uPBM , ~48!

wheree~u! is the sum of the exponents of thesi ’s appearing inu. The functionalL( û) enjoys the
following properties:

~ i! L~uĥ !5L~hû !, ;u,hPBM ,

~ ii ! L~u,sM21
61̂ !5L~ û !, ;uPBM21,BM ~49!

and is an invariant of ambient isotopy.
Proposition 4: The functionalf(u) defined by

f~u!5
~ tr^str^ ~M21!!~ I ^ D~M21!~q22hr!u!

dim V~L!
, ~50!

where tr and str denote the trace and supertrace over V~L!, respectively, qualifies as a Markov
trace with
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z5q~L,L12r!, z̄5q2~L,L12r!. ~51!

Corollary 1: It follows that

L~ û !5q2~L,L12r!e~u!f~u!, uPBM , ~52!

defines a link polynomial.
Now consider the family of Casimir invariants

Ck
L5~ I ^str!@ I ^ pL~q22hr!#sk. ~53!

Let jk
L denote the eigenvalues of the invariantsCk

L onV~L!. In view of ~45! and Theorem 2, one
can deduce, forL typical, that they are given explicitly by

jk
L5q2kC~L!(

n
~21!@n#q~k/2!C~n!~mn

11~21!kmn
2!

xL~G0!

xn~G0!
•

Dq
0~n!

Dq
0~L!

, ~54!

wheremn
6 are the multiplicities ofV~n! in W6 , respectively, so that

mn5mn
11mn

2 . ~55!

Note: In the case thatL is typical it necessarily follows that allV~n! in the tensor product
decomposition~40! are also typical so that~54! is always well defined~c.f. Lemma 1!.

Theorem 4: Consider the braid group BM and a braidu of the following general form:

u5~s i1
!k1~s i2

!k2•••~s i M21
!kM21, kiPZ ~56!

with $ i 1 ,i 2 ,...,i M21% an arbitrary permutation of$1,2,...,M21%. Then the following functional is
a link polynomial

L~ û !5q2~L,L12r!( i51
M21ki )

i51

M21

jki
L . ~57!

In the case thatL is typical, jk
L is given by (54).

VII. NEW TWO-VARIABLE LINK POLYNOMIALS

We will now apply the technique developed in previous sections to develop a general method
for obtaining two-variable link polynomials corresponding to any realLPD1. Again we restrict to
the type-I quantum superalgebrasG5gl(mun) or G5osp~2u2n!.

Corresponding to anyreal LPD1 we have the one-parameter family of irreps

V~La![V~L1ad!, aPR,

d5H (
i

d i , for G5gl~mun!

e0 , for G5osp~2u2n!.
~58!

The moduleV~La! is typical and unitary foruau sufficiently large. For example, for the case
G5gl(mun), we have from Proposition 1 a type ~1! unitary module for
a.2(L1r,em2dn)5n212(L,em2dn), and a type ~2! unitary module for
a,2(L1r,e12d1)512m2(L,e12d1). Below we assumea belongs to this range~although
the final formula for link polynomials should apply, by analytic continuation, to all reala!.
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Here we obtain a representation of the braid generatorsPEnd[V(L1ad)^V(L1ad)] and
a formula for two variable link polynomials. Consider the Uq~G 0!-module direct sum decompo-
sition

V0~L! ^K~L!5 %

n

mnV0~n!, ~59!

whereG 0 is the even subalgebra ofG andV0~L! the maximalZ-graded component ofV~L!. Then
for uau sufficient large~i.e., in the range considered above! we have the easily established decom-
position

V~L1ad! ^V~L1ad!5 %

n

mnV~n12ad!. ~60!

Note that this decomposition may be obtained solely from a knowledge of the Uq~G 0! modules
occurring inK~L! and Uq~G 0! tensor product rules. In principal this follows from the known
characters ofK~L! andV0~L!.

From our previous results we have the Casimir invariants

Ck
L5~ I ^str!@ I ^ pL1ad~q22hr!#sk ~61!

which, from ~54!, take the following eigenvalues onV~n1ad!:

jk
L~q,a!5q2kC~L1ad!(

n
~21!@n#q~k/2!C~n12ad!~mn

11~21!kmn
2!

xL1ad~G0!

xn12ad~G0!
•

Dq
0~n!

Dq
0~L!

,

~62!

where use has been made of the fact thatad is orthogonal to all even roots andL1ad, n12ad are
all typical for a in the range considered.

Now for u a braid of the general form~56!, we arrive at at the link polynomial

L~ û !5q2~L1ad,L1ad12r!( i51
M21ki )

i51

M21

jki
L~q,a! ~63!

with jk
L(q,a) given by~62!. In this way we obtain a two-variable link polynomial corresponding

to any realLPD1.

A. Two-variable link polynomials from U q[gl( m zn )]

Following Ref. 35, we assumem>n and for 0<N<mn we call a Young diagram
@l#5@l1,l2,...,lt#, l1>l2•••>lt>0 for the permutation groupSN ~i.e.,l11l21•••1lt5N! allow-
able, if it has at mostn columns andm rows; i.e.,t<m, l i<n. Associated with each such Young
diagram@l# we define a weight of gl(mun)

~64!

Using the basis$e i ,d j%, the weightL@l# may be expressed as
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L@l#52(
i51

t

l iem2 i111t(
j51

l t

d j1(
s51

t

~ t2s! (
j5l t2s11

l t2s

d j . ~65!

Let us consider the one-parameter family of finite-dimensional irreducible
Uq~gl(mun)!-modulesV~La! with highest weights of the formLa5~0,...,0ua,...,a![~0̇uȧ!5ad.
@That is the caseL5~0̇u0̇!.# These irrepsV~ad! are unitary of type~1! if a.n21 and unitary of
type ~2! if a,12m. As mentioned above we assume reala satisfying one of these conditions, in
which caseV~ad! is also typical of dimension 2mn.

We have the following decomposition ofV~ad! into irreps of the even subalgebra
gl(m)%gl(n):

V~ad!5 %

N50

mn

%

@l#PSN

V0~L@l#1ad!, ~66!

where the summation is over allowedN-box Young diagrams. Note that the indexN gives the
Z-graded level of the irrep concerned. Alternatively we may simply write

V~ad!5 %

@l#

V0~L@l#1ad!. ~67!

The number of boxesNl in the Young diagram@l# then gives the level. We can deduce the tensor
product decomposition

V~ad! ^V~ad!5 %

@l#

V~L@l#12ad!. ~68!

The parity of the moduleV~L@l#12ad! is ( 2 1)Nl. The eigenvalue of the second-order Casimir on
the irrepV~L@l#12ad! can be shown to be

C~L@l#12ad!52(
i51

t

l i~l i1122a22i !22an~2a1m!,

C~ad!52an~a1m!. ~69!

Introduce the notation

ga@l#[
1

2
C~L@l#12ad!2C~ad!52(

i51

t

l i~l i1122a22i !2an~3a1m!. ~70!

For u a braid of the general form~56! we arrive at the two variable link polynomial

L~ û !5q2na~a1m!( i51
M21ki )

i51

M21

jki~q,a!, ~71!

where now

jk~q,a!5(
@l#

~21!~k21!Nlqkga@l#
xad~G0!

xL@l#12ad~G0!
•

Dq
0~L@l#12ad!

Dq
0~ad!

. ~72!

In this formula, the sum is again over all allowable Young diagrams. This formula can be made
fully explicit if we make use of the easily established result~which takes a bit of algebra!

997Gould, Links, and Zhang: q-supertrace and two-variable link polynomials

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



xad~G0!• )
bPF1

1
@~r,b!#q5)

i51

m

)
j51

n

@ i2 j1a#q ,

xL@l#12ad~G0!• )
bPF1

1
@~r,b!#q5)

i51

m

)
j51

n

@ i2 j2l i12a#q)
l51

t
@l i2 i22a112 l #q

@l l1l i2 i22a2 l11#q
,

~73!

where, in this last formula, it is implicitly understood thatli50 for m> i.t. We thus obtain

jk~q,a!5(
@l#

~21!~k21!Nlqkga~@l#!xa~@l#!Dq
0~L@l#!, ~74!

where

xa~@l#![
xad~G0!

xL@l#12ad~G0!
5)

i51

m

)
j51

n
@ i2 j1a#q

@ i2 j2l i12a#q
)
l51

t
@l l1l i2 i22a112 l #q

@l i2 i22a112 l #q
. ~75!

As an illustration, let us consider some specific cases in the remaining part of this subsection.
Example „1…: Uq@gl~2u2!#
The tensor product decomposition is

V~ad! ^V~ad!5V~0,0u2a,2a! %V~0,21u2a11,2a! %V~21,21u2a12,2a! %V~0,22u2a

11,2a11! %V~21,22u2a12,2a11! %V~22,22u2a12,2a12!. ~76!

We have in this case~using the Young diagram notation!

~77!

while thexa factors read
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~78!

It follows that

~79!

Example „2…: Uq@gl~mu1!#
We have the tensor product decomposition

V~ad! ^V~ad!5V~ 0̇u2a! %V~ 0̇,21u2a11! %V~ 0̇,21,21u2a12! % ••• %V~21̇u2a1m!.
~80!

In this caseDq
0~L@l#! reads

Dq
0~L@l#!5)

i51

t
@m112 i #q
@ t112 i #q

[
@m#q!

@m2t#q! @ t#q!
~81!

andga@l#, xa~@l#! reduce to, respectively,

ga@l#52t~ t21!2a~a12t !,

xa~@l#!5)
i51

m
@ i1a21#q

@ i12a1t212l i #q
. ~82!

The jk(q,a) have the following form,

999Gould, Links, and Zhang: q-supertrace and two-variable link polynomials

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



jk~q,a!5(
t50

m

~21!~k21!tq2k@ t~ t21!1a~a12t !#)
i51

t
@m112 i #q@ i1a21#q

@ t112 i #q@ i12a1t22#q
)
i.t

m
@ i1a21#q

@ i12a1t21#q
.

~83!

B. Two-variable link polynomials from adjoint representation of U q[gl(2 z1)]

As another illustration of how the general formalism works it is instructive to consider the
caseL5c, c5~1,0u21! the highest weight of the adjoint representation of gl~2u1!. This example
is of interest since it affords the simplest example of a two-variable link polynomial in which a
multiplicity occurs in the tensor product space.

First note that in this casee12e2 is the single even positive root ande12d1,e22d1 are the two
odd positive roots, from which we deduce that for anyL5~L1,L2uL̄1!

Dq
0@L#5@L12L211#q , xL~G0!5@L11L̄111#q@L21L̄1#q . ~84!

For the Kac-moduleK~c! we have the Uq~G 0!-module~G 05gl~2!%u~1!! decomposition~il-
lustrated in terms ofZ-graded levels!:

K~c!5V0~1,0u21! %V0~1,21u0! %V0~0,0u0! %V0~0,21u1! ~85!

which is easily seen to be 22•258 dimensional as required. Thus

V0~c! ^K~c!5V0~1,0u21! ^V0~1,0u21! %V0~1,0u21! ^ @V0~1,21u0! %V0~0,0u0!#

%V0~1,0u21! ^V~0,21u1!

5V0~2,0u22! %V0~1,1u22! %V0~2,21u21! %2V0~1,0u21!

%V0~1,21u0! %V0~0,0u0! ~86!

which yields the tensor product decomposition:

V~c1ad! ^V~c1ad!5V~2,0u2a22! %V~1,1u2a22! %V~2,21u2a21! %2V~1,0u2a21!

%V~1,21u2a! %V~0,0u2a!. ~87!

It is seen thatV~1,0u2a21! occurs twice in the tensor product space. From the aboveZ gradation
on V0(c)^K(c) we obtain

~21!@n#5 H 21, for n5~2,21u2a21!, ~1,0u2a21!

1, otherwise. ~88!

In theq→1 limit the above tensor product module decomposes into symmetric and antisymmetric
components~which determine the parities!:

V~c1ad! ^V~c1ad!5W1 %W2 ~89!

with

W25V~1,1u2a22! %V~2,21u2a21! %V~1,0u2a21! %V~0,0u2a!,

W15V~2,0u2a22! %V~1,0u2a21! %V~1,21u2a!. ~90!
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Note that there is one copy ofV~1,0u2a21! in each of these spaces. For the Casimirs we have

1
2C~n12ad!2C~c1ad!55

2a~a12!, n5~2,0u22!,~1,21u0!

2~a211!, n5~1,0u21!

2~a212a12!, n5~0,0u0!

2~a222a12!, n5~1,1u22!

2a212, n5~2,21u21!.

~91!

Collecting together all of this information and substituting into~62! we arrive at

jk
c~q,a!5q2ka~a12!

@a11#q@a21#q@3#q
@2a11#q@2a22#q@2#q

1q2ka~a12!
@a11#q@a21#q@3#q

@2a12#q@2a21#q@2#q
1~21!k

3q2k~a212a12!
@a11#q@a21#q

@2a11#q@2a#q@2#q
1~21!kq2k~a222a12!

@a11#q@a21#q
@2a#q@2a21#q@2#q

2

~21!kq2k~a222!
@a11#q@a21#q@4#q

@2a12#q@2a22#q@2#q
2~11~21!k!q2k~a211!

3
@a11#q@a21#q

@2a11#q@2a21#q
. ~92!

C. Two-variable link polynomials from U q[osp(2 z2n )]

Consider the one-parameter family of 22n- dimensional irreducible Uq@osp~2u2n!#-modules
V~La! with highest weights of formLa5~au0,...,0![ae0 @and with lowest weightLa

25~a22n!e0#.
V~ae0! is unitary and typical provided thata,0 or a.2n. We therefore consider the tensor
product moduleV(ae0)^V(ae0) with a,0 or a.2n which decomposes as

V~ae0! ^V~ae0!5 %

c50

n

%

d50

n2c

V~Lc,d! ~93!

with

Lc,d5~2a2c22d!e01lc , lc5(
i51

c

e i . ~94!

The decomposition~93! is obtained from known character formulae@c.f. Eq. ~59!#.
From theZ gradation onV~ae0! we can deduce that the level of the moduleV(Lc,d) is equal

to c12d. Thus the parity of the moduleV(Lc,d) is ~@1#!c12d. The Casimir eigenvalues read

C~Lc,d!54~a2d!~n1c1d2a!22c~c21!,

C~ae0!5a~2n2a!. ~95!

For u a braid of the general form~56! we thus arrive at the two variable link polynomial

L~ û !5q2a~2n2a!( i51
M21ki )

i51

M21

jki~q,a!, ~96!

where thejk(q,a)’s are given by
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jk~q,a!5 (
c50

n

(
d50

n2c

~21!~k21!~c12d!qkga
xae~G0!

xLc,d
~G0!

•

Dq
0~Lc,d!

Dq
0~ae!

~97!

with

ga[ 1
2C~Lc,d!2C~ae!. ~98!

After a bit algebra, we end up with

xae~G0!• )
bPF1

1
@~r,b!#q5)

i51

n

@2n112 i2a#q@ i2a21#q ,

xLc,d
~G0!• )

bPF1
1

@~r,b!#q5)
i51

n

@c12d12n112 i22a2d i<c#q•@c12d1 i22a211d i<c#q ,

~99!

wheredi<c equals 1 fori<c and zero otherwise. We thus obtain

jk~q,a!5 (
c50

n

(
d50

n2c

~21!~k21!~c12d!qkgaxa~c,d!•Dq
0~lc!, ~100!

where

xa~c,d![
xad~L0!

xLc,d
~L0!

5)
i51

n
@2n112 i2a#q@ i2a21#q

@c12d12n112 i22a2d i<c#q@c12d1 i22a211d i<c#q
,

Dq
0~lc!5)

i, j

c
@2~n12!2 i2 j #q
@2~n11!2 i2 j #q

)
l51

c
@2~n122 l !#q
@2~n112 l !#q

. ~101!

VIII. DISCUSSION

We have demonstrated how link polynomials can be constructed associated with any finite-
dimensional unitary irrep of a type-I quantum superalgebra. This is achieved by successfully
overcoming a fundamental problem in computing the eigenvalues of Casimir invariants for the
quantum superalgebras. Applying our results to one-parameter families of inequivalent irreps, we
have been able to construct infinite families of nonequivalent two-variable link polynomials. Such
two-variable link polynomials were previously known only for some isolated cases. For a class of
braids, we have computed the link polynomials in fully explicit form.
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The decomposition of matrix manifolds into homogeneous spaces of certain groups
is studied in some detail. The results are applied to the derivation of the internal
structure of SU(2,2)3SU(m)- and P43SU(m)-invariant particle models where
the first ~second! factor in the direct product represents external~internal!
symmetry. ©1996 American Institute of Physics.@S0022-2488~96!03302-1#

I. INTRODUCTION

The mathematical description of physical laws is based on observed symmetries and under-
lying geometry. An example is the Poincare´ symmetryP45T43sSO(3,1), with the underlying
space–timeM4 , one of the homogeneous spaces ofP4 , namely

M4>T4>P4 /SO~3,1!. ~1.1!

This fact inspired some physicists1,2 to investigate other homogeneous spaces of the Poincare´
group

P4

Hi
>

P4

SO~3,1!
•

SO~3,1!

Hi
, Hi,SO~3,1!, i51,2, . . . ~1.2!

for possible applicability in physics. For instance, the local coordinates on SO(3,1)/Hi can be
interpreted as internal degrees of freedom of a relativistic particle. In this paper, we wish to
combine an old idea3 of describing the particle structure in complex space rather than in
Minkowski space, with the investigation of the homogeneous spaces of the entire physical sym-
metry group, comprising both types of symmetries, internal as well as external.4 We shall assume,
in accordance with experiment, that the physical symmetry is the direct product
SU(2,2)3SU(m) or P43SU(m),SU(2,2)3SU(m) of external conformal or Poincare´ and in-
ternal SU~m! symmetry ~we keep m arbitrary to include such possibilities as SU~3!,
SU(3)3SU(2)3U(1), etc.!. The Poincare´ group P4 is here considered as a subgroup of
SU(2,2). The natural representation space for a direct productGL(n,C)3GL(m,C) is a complex
matrix manifoldCnm. In the case of SU(2,2)3SU(m) it will be C4m. In this space, both internal
and external symmetries have a common geometrical basis in contrast to space–time, where only
external symmetries are geometrized.

We shall consider homogeneous manifolds of SU(2,2)3SU(m) andP43SU(m) in C4m and
show that there exists one and only one such manifold which admits a unique and consistent
projection onto the compactified complex Minkowski space.

In the case of smallerP43SU(m) symmetry we arrive at the homogeneous manifold

P43SU~m!

SO~2!3SU~m22!
>

P4

SO~3,1!
3

SO~3,1!3SU~m!

SO~2!3SU~m22!
. ~1.3!

A particle structure in this model is described by a 5-dimensional real manifold SO(3,1)/SO(2)
and the manifold SU(m)/SU(m22), depending on the kind of internal symmetry.

0022-2488/96/37(2)/1004/25/$10.00
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The structure of homogeneous submanifolds ofCnm with arbitraryn andm can be investi-
gated, up to a certain point, without essential difficulties~Sections II–IV!. This general case
provides the theory ofn complexm-vectors subject to certain invariance conditions and general-
izes, in a certain sense, the theory of spinors~including bispinors, twistors etc.! to arbitrary
dimensions. When the symmetry is the direct product of more than two groups, one has to
generalize to ‘‘tensor manifolds’’ of tensors with more than two indices.5 One can also consider
supermatrices~supertensors! being representation spaces of direct products of supergroups and
their decomposition into homogeneous structures.6

In the case of sets of vector fields, the general theory provides a classification of all possible
invariance constraints.

In Sections V and VI, we derive the internal structure of SU(2,2)3SU(m)-invariant particle
models determined by the above-mentioned assumptions. This structure is described in terms of
homogeneous spaces~like ~1.3!!. It remains to describe invariant dynamics and invariant differ-
ential operators in these spaces; these questions will be treated elsewhere.

II. MATRIX MANIFOLDS

Let us consider the setCnm of all complexn3m matrices. The elements of this set may be
viewed as arrays ofm complexn-vectors~or m complexn-vectors! or, more geometrically, as
homomorphisms Hom(Cm,Cn) of the vector spaces, i.e., linear mapsCm→Cn. In the context of
chosen bases inCn andCm, the elements ofCnm will be represented by matrices indexed

M5$maa%a51, . . . ,n;
a51, . . . ,m

PCnm>Hom~Cm,Cn!.

The setCnm>Hom(Cm,Cn) decomposes in a natural way into submanifoldsO k
(n,m) of matrices

~maps! of fixed rankk

O k
~n,m! :5$MPCnm:rankM5k%. ~2.1!

The decomposition is given by

Cnm5 ø
k50

min~n,m!

O k
~n,m! , O k

~n,m!ùO l
~n,m!5dklO k

~n,m! . ~2.2!

A matrix of rankk is characterized by the fact that all subdeterminants~minors!

mS a1 ,..., a l

a1 ,..., al
D :5detFma1a1 ... ma1a l

A

A

mala1 ... mala l

G ~2.3!

of order l higher thank vanish, and that there exists at least one nonvanishing subdeterminant of
orderk, say

mS a1 ... ak

a1 ... ak
DÞ0. ~2.4!

Equation~2.4! determines a coordinate neighborhood on the manifoldO k
(n,m) . There are (k

n)(k
m)

such neighborhoods according to the (k
n) possibilities to choosek rows out ofn rows, and the

(k
m) possibilities to choosek columns out ofm columns.

Let us choose onO k
(n,m) a neighborhood corresponding to a particulark3k square submatrix
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K5F ma1a1 ... ma1ak

A A

maka1 ... makak

G , det5KÞ0, ~2.5!

where a1,a2, . . .,ak and a1,a2, . . .,ak are some distinctk numbers from set
$1,2, . . . ,n% and $1,2, . . . ,m%, respectively. Denote the complementary ordered subsets by
ak11, . . .,an andak11, . . .,an , respectively, and denote the complementary matrices by

A5F mak11a1 . . . mak11ak

A A

mana1 . . . manak

G , B5F ma1ak11 . . . ma1am

A A

makak11 . . . makam
G ,

Y5Fmak11ak11 ... mak11am

manak11 ... manam
G . ~2.6!

Due to the fact that, onO k
(n,m) , detK Þ 0 and all higher order subdeterminants vanish, we have,

according to well known properties from linear algebra,

A5aK, Y5aB, B5Kb, Y5Ab, ~2.7!

where

a5$aaj
ai % i51, . . . ,k

j5k11, . . . ,n
b5$ba j

a i % i51, . . . ,k
j5k11, . . . ,n

. ~2.8!

These formulae express the fact that, in an3m matrix of rankk, n2k rows are linear combina-
tion of the remainingk rows.

The decomposition ofM P O k
(n,m) into K, A, B, andY is particularly simple in the neighbor-

hood determined bym(1,...,k
1,...,k). We have in this case

M5FK B

A YG . ~2.9!

It is sufficient to consider this particular case without loss of generality; the general formulae can
be obtained by simply replacing the submatricesK, A, B, andY in ~2.9! by the general subma-
trices~2.5!, ~2.6!. Due to invertibility ofK ~detK Þ 0) we obtain from~2.7!

Y5aKb5AK21B. ~2.10!

These formulae, as well as formulae~2.7!, describe the possible natural coordinate systems on
O k
(n,m) corresponding to the neighborhood detK Þ 0. Coordinatesa and b play a particularly

important role because of their invariance properties. Coordinatesa do not depend on the particu-
lar selection of columns~Greek indices!, while coordinatesb do not depend on the selection of
rows ~Latin indices!.

The (n2k)(m2k) dependent coordinatesY are functions of thek21k(n2k)1k(m2k)
independent coordinates, sayK,A,B. The complex dimension ofO k

(n,m) is, therefore,

dimO k
~n,m!5k~n1m2k!. ~2.11!
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The manifold of the lowest dimension, corresponding tok50, is a pointmaa50 for all
a51, . . . ,n;a51, . . . ,m. The next admissible dimension is alreadyn1m21. The dimension
k(n1m2k) of O k

(n,m) appears fairly often in our considerations, so let us draw7 the analogue of
the Pascal triangle for the quantity

FabG :5b~a2b! ~2.12!

~see Figure 1!. Dimensions ofO k
(n,m) appear here as@k

n1m#. In the casen54, m>4 we have a
decomposition

C4m5O 0
~4,m!øO 1

~4,m!øO 2
~4,m!øO 3

~4,m!øO 4
~4,m! ~2.13!

with corresponding complex dimensionsk(41m2k) with k51, . . . ,4. Thebounded region in
Figure 1 displays possible dimensions; the right hand side of the triangle is cut out by the
requirementk<min(n,m). The casen54,m52 is also indicated in Figure 1 since it corresponds
to the Penrose model.8 Definition ~2.1–2! implies that each manifoldO l

(n,m) with l,k lies in the
boundary ofO k

(n,m) in the sense

O ~n,m!
l ,Ō k

~n,m! , l,k, ~2.14!

where the ‘‘bar’’ denotes closure in the topology induced onO k
(n,m) from the natural topology in

Cnm. We can write therefore

Ō k
~n,m!5 ø

l50

k

O l
~n,m! . ~2.15!

Each manifoldsO (n,m)
l has elements arbitrarily close toO :5O 0

(n,m) , and together they form a
flag of manifolds7 ~see Figure 2! in the sense thatŌ k

(n,m),Ō k11
(n,m) . All closed varietiesŌ k

(n,m) meet
at the pointO and their tangent spaces at this point form a flag of spaces in the usual sense

O5T0Ō 0
~n,m!,T0Ō 1

~n,m!, . . .,T0Ō k
~n,m!, . . .,T0Omin~n,m!

~n,m! >Cnm ~2.16!

FIG. 1. Dimensions of matrix manifolds.
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being an element of the flag manifold

F @0
n1m#,@1

n1m#, . . . ,@min~n,m!
n1m #. ~2.17!

According to the interpretation ofC(n,m) as Hom(Cm,Cn), matrixM belonging to the submanifold
O k
(n,m) represents a homomorphismCm→Cn; its kernel KerM is an (m2k)-dimensional sub-

space ofCm and its image ImM is a k-dimensional subspace ofCn. This is particularly clear in
the example of a matrix

M05F 1k 0

0 0GPO k
~n,m! . ~2.18!

Thus, the canonical decomposition of a homomorphism gives in our case7

Cm→
p

Cm/Ker M→
i

Im M→
e

Cn ~2.19!

~cf., Figure 3! wherep is a canonical projection onto the coset space,i is an isomorphism, and
« is an embedding. This suggests that, at least locally, manifoldO k

(n,m) may be decomposed into

G m2k
m 3GL~k,C!3G k

n , ~2.20!

FIG. 2. Matrix manifolds form a ‘‘flag.’’

FIG. 3. Three maps.
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whereG m2k
m and G k

n are complex Grassman manifolds consisting of all (m2k)-dimensional
subspaces inCm and all k-dimensional subspaces inCn, respectively; group GL(k,C) is the
k2-dimensional set of all isomorphisms between thek-dimensional spacesCm/Ker M and
Im M .

However, globally manifoldO k
(n,m) cannot be trivialized into a direct product~2.20!. Instead,

one may considerO k
(n,m) as a fiber bundle overG m2k

m 3G k
n with the group GL(k,C) as the typical

fiber. Including the natural projections of the Cartesian product of the two Grassman manifolds,
we obtain the following diagram

of three possible fiberings of manifoldO k
(n,m) :

~O k
~n,m! ,G m2k

m 3G k
n ,p!, ~O k

~n,m! ,G m2k
m ,p1!, ~O k

~n,m! ,G k
n ,p2!

where the projections are defined

p:O k
~n,m!→G m2k

m 3G k
n :M→Ker M3Im M

p1 :O k
~n,m!→G m2k

m :M→Ker M ~2.21!

p2 :O k
~n,m!→G k

n :M→Im M

and the typical fibers are isomorphic to GL(k,C), Ckm, andCkn, respectively.
In local coordinates, Grassman manifoldsG m2k

m andG k
n are parameterized by elements of the

matricesa andb respectively, and the fiber GL(k,C) is parameterized by elements of the matrix
K ~cf., ~2.10!!. The fiber bundleO k

(n,m) is not trivializable. In particular, it also contains all the
topological singularities of the Grassman manifold in the base.

Remark: note that since the dimension of a complex Grassman manifold is
dimG k

n5k(n2k), the complex dimension ofO k
(n,m) is, according to ~2.20!, equal to

k(m2k)1k(n2k)1k25k(n1m2k), in a complete agreement with~2.11!.

III. GROUP THEORETICAL DESCRIPTION OF MATRIX MANIFOLDS

Space Cnm>Hom(Cm,Cn) is a natural representation space for the direct product
GL(n,C)3GL(m,C):

M→M 85gMh21, gPGL~n,C!, hPGL~m,C!, ~3.1!

according to the commuting diagram

Cm →
M

Cn

h↓ ↓g

Cm →
M8

Cn

~3.2!
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The manifoldsO k
(n,m) are orbits of GL(n,C)3GL(m,C). Indeed, a linear transformation of rows

and columns does not change the rank of matrix. Moreover, the group GL(n,C)3GL(m,C) acts
transitively on eachO k

(n,m) . We can describe therefore the matrix manifoldsO k
(n,m) as homoge-

neous spaces9 of the group GL(n,C)3GL(m,C):

O k
~n,m!5

GL~n,C!3GL~m,C!

Hk
~n,m! , ~3.3!

whereHk
(n,m) is the isotropy group of the group GL(n,C)3GL(m,C) in O k

(n,m) . For the point

M05F 1k 0

0 0GPO k
~n,m!

the isotropy groupHk
(n,m) can be easily calculated

Hk
~n,m!5Fg1 g2

0 g1
G3Fg121 0

h2 h3
G , ~3.4!

whereg1 P GL(k,C), g2 P Ck(n2k), g3 P GL(n2k,C), h2 P C(m2k)k, h3 P GL(m2k,C). We
check the ~complex! dimensions: dim GL(n,C)3GL(m,C)/Hk

(n,m)5n21m22k22(n2k)2

2(m2k2)2k(n2k)2k(m2k)5k(n1m2k).
Another, equivalent, group-theoretical description ofO k

(n,m) can be obtained by representing
the Grassman manifolds appearing in the base of the fiber bundleO k

(n,m) as homogeneous spaces
of certain groups. There are two possibilities to represent a complex Grassman manifold as a
homogeneous space:

G k
n>

U~n!

U~k!U~n2k!
>
GL~n,C!

Hk
n ~3.5!

whereHk
n is a matrix group defined:

Hk
n5H Fg1 g2

0 g3
G , g1PGL~k,C!, g2PCk~n2k!, g3PGL~n2k,C!J . ~3.6!

It is important to notice that Grassman manifoldsG k
n andG m2k

m of the base of the fiber bundle
O k
(n,m) are invariant under action of the groups1n3GL(m,C) and GL(n,C)31m , respectively,

and transform into themselves under action of the groups GL(n,C)31m and 1n3GL(m,C), re-
spectively. This follows immediately from the remark after formula~2.10! and~2.21! stating that
the coefficientsa (b) of linear combinationsA5aK (B5Kb) do not depend on the columns
~rows! of matrixM .

Let us consider, finally, the transformation properties of the local coordinates onO k
(n,m) with

respect to the group GL(n,C)3GL(m,C). For this purpose, to simplify the notation, we extend
the (n2k)3k andk3(m2k) matricesa andb of ~2.8! to then3k andk3m matrices

a5$aaj
ai % i51, . . . ,k

j51, . . . ,n
, b5$ba j

ai % i51, . . . ,k
j51, . . . ,n

~3.7!

by means of unit matrices

$aaj
ai %5$daj

ai %, $ba j

a i %5$da j

a i % i , j51, . . . ,k. ~3.8!
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~We denote these extended matrices by the same letters; the context will always clarify whether we
have to do with the original or the extended matrices.! With the help of the extended matrices we
can combine relations~2.7!, ~2.11! into a single formula

M5aKb, MPO k
~n,m! , detKÞO . ~3.9!

Equation~3.1! takes, onO k
(n,m) , the form

M 85gaKbh215a8K8b8, ~3.10!

whereK8 is chosen so that detK Þ 0 ~this is always possible because transformation~3.1! does not
change the rank ofM !. Matricesa8 and b8 have, in this neighborhood, the same functional
dependence of the elements ofM 8 as the matricesa andb have of the elements ofM :

a85a~gMh21!5a~gM!,
~3.11!

b85b~gMh21!5b~Mh21!.

The second parts of these equalities express the invariance ofa and b with respect to
1n3GL(m,C) and GL(n,C)31m , respectively.~Cf., the remark after formula~2.6!!. It is also
useful to note the explicit form of the transformation law~3.11!. For this purpose, we write
equationa5AK21 as

aaj
ai5(

l51

k

maja l
~K21!a l ai5

mS a1 ... ...ak

a1 ... ai21ajai11 ...ak
D

mS a1 ... ak

a1 ... ak
D , ~3.12!

wherei51, . . . ,k and j5k11, . . . ,n. The same formula holds fora8 in terms ofM 8

a8a j
ai5

m8S a1 . . . . . .ak

a1 . . . ai21ajai11 . . .ak
D

m8S a1 . . . ak

a1 . . . ak
D 5

gaKbh21S a1 . . . . . .ak

a1 . . . ai21ajai11 . . .ak
D

gaKbh21S a1 . . . ak

a1 . . . ak
D

5

gaS a1 . . . . . .ak

a1 . . . ai21ajai11 . . .ak
D

gaS a1 . . . ak

a1 . . . ak
D ~3.13!

wherei51, . . . ,k and j5k11, . . . ,n. Analogously

ba j

a i5

mS a1 ... a i21a ja i11 ...ak

a1 ... ...ak
D

mS a1 ... ak

a1 ... ak
D ~3.14!

and

1011J. Kocik and J. Rzewuski:: Structure of matrix manifolds and a particle model

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



b8a j

a i5

bh21S a1 ... a i21a ja i11 ...ak

a1 ... ...ak
D

bh21S a1 ... ... ak

a1 ... ak
D . ~3.15!

Relations~3.13! and~3.15! provide an alternative proof of the transformation properties ofa
andb and an explicit form of the transformation law. The second equation of~3.11! follows from
the well known formula for subdeterminants of a product of matrices twoA andB

ABS j 1 ... j l

i 1 ... i l
D 5(

Snl D
AS k1 ... kl

i 1 ... i l
DBS j 1 ... j l

k1 ... kl
D ~3.16!

that is taken for the particular casel5n. Here the sum goes over all (l
n) selections ofl distinct

numbersk1 , . . . ,kl between 1 andn.
Let us consider the infinitesimal form or the transformation law of the local coordinates. The

infinitesimal version of~3.10! and ~3.11! is

M 85M1dM , a85a1da, b85b1db, ~3.17!

with

dM5dgM1Mdh215 i(
k51

r

dlkxkM2 i(
k51

s

dmkMyk ~3.18!

and

da5 (
k51

r

dlk

]a~gM!

]lk
U

l50

, db5 (
k51

s

dmk

]b~Mh21!

]mk
U

m50

~3.19!

where

xk5
1

i

]g

]lk
U

l50

, yk5
1

i

]h

]mk
U

m50

~3.20!

are generators of the factors GL(n,C) and GL(m,C) of the direct product GL(n,C)
3GL(m,C) or of one of its subgroups, andl1 ,l2 , . . . ,l r andm1 ,m2 , . . . ,ms are the corre-
sponding parameters. Formula~3.18! for dM has already its final form; the formulae forda and
db have yet to be expressed in terms of generatorsxk and yk . Differentiate equations
A85a8K8 andB85K8b8 with respect to the corresponding parameters:

]A8

]lk
5

]a8

]lk
K81a8

]K8

]lk
,

~3.21!
]B8

]mk
5

]K8

]mk
b81K8

]b8

]mk
.

This gives
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]a8

]lk
U

l50

5S ]A8

]lk
2a8

]K8

]lk
D

l50

K215 i ~xka2axka!,

~3.22!
]b8

]mk
U

m50

5K21S ]B8

]mk
2

]K8

mlk
b8D

m50

52 i ~byk2bykb!.

Substituting~3.22! into ~3.19! we obtain finally

da5 i(
k51

r

dlk~xka2axka!,

~3.23!

db52 i(
k51

s

dmk~byk2bykb!.

Similarly, one can easily show that

]a8

]mk
U

m50

5
]b8

]lk
U

l50

50, ~3.24!

which confirms the transformation properties ofa andb as exhibited in equation~3.11!, and used
explicitly in ~3.19!.

IV. REDUCTION OF SYMMETRY

Reduction of the symmetry GL(n,C)3GL(m,C) to a subgroup induces in general a decom-
position of the matrix manifoldsO k

(n,m) . Here, we shall consider only the case of the subgroup
SU(n2p,p)3SU(m2q,q) determined by Hermitian metric tensorsF1 andF2 ~not necessarily
diagonal!, with n2p and m2q eigenvalues11 respectively, andp and q eigenvalues21
respectively. For simplicity of the following considerations, we shall assume thatF1 denotes
Hermitian structure in the spaceCn ~two lower indices!, while F2 denotes Hermitian structure in
thedual spaceCm* ~two upper indices!.

Define the following invariants

I n5Tr r n, n51,2,..., ~4.1!

where

r5F2M*F1M ~4.2!

is an automorphism ofCm described by a non-commuting diagram

Cm* ←
M*

Cn*

F2↓ ↑F1

Cm →
M

Cm

~4.3!

and where the Hermitian metric tensorsF1 andF2 are considered as maps to the corresponding
dual spaces. Clearly, the order of matrices inr can be changed by a cyclic permutation without
causing change of the invariants.
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One can easily show that the quantitiesI n are indeed invariants of the group
SU(n2p,p)3SU(n2q,q) and that they are real. Indeed, due tog*F1g5F1 andhF2h*5F2 ,
we have

I n8 :5Tr~r 8!n5Tr~F2M 8*F1M 8!n5Tr~F2h
21*M* g*F1gMh21!n5Tr~F2M*F1M !n5I n

and

I n*5Tr~M*F1*MF2* !n5Tr~F2M*F1M !n5I n .

Another kind of invariant appears as coefficientsJ of the eigenvalue equation for the auto-
morphismr

det~r2l!5 (
n50

m

~2l!nJm2n50, ~4.4!

whereJ’s are defined

Jm2n5
~21!n

n!

dndet~r2l!

dln U
l50

. ~4.5!

These invariants have the explicit form

Jn5(
Smn D

r S a1 ,a2 , . . . ,an

a1 ,a2 , . . . ,an
D , ~4.6!

where the summation extends over all (n
m) possible selections ofn distinct numbersa i from the set

$1,2, . . . ,m%.
There exists a relation between both types of invariants. In casen51 the invariants coincide

J15I 1 ~4.7!

and forn>2 the relation is

Jn5
1

n!(a1 (
a2

. . .(
an

r S a1 ,a2 , . . . ,an

a1 ,a2 , . . . ,an
D5

1

n!
~21!n21~n21!I n1Fn~ I 1 ,I 2 , . . . ,I n21!,

~4.8!

with some polynomialFn of order less thann. Thus, only the firstk invariants are independent on
O k
(n,m) . Indeed, all determinants of order higher thank vanish onO k

(n,m) and, therefore,

Jk1r50, r51,2,.... ~4.9!

Consequently, relation

1

~k1r !!
~21!k1r21~k1r21!I k1r1Fk1r~ I 1 ,I 2 , . . . ,I k1r21!50 r51,2,... ~4.10!

provides a set of equations expressing the higher order invariantsI k1r , r51,2,..., in terms of
I 1 , I 2 ,...,I k . In particular

J15I 1 , 2J25I 1
22I 2 , 6J35I 1

323I 1I 212I 3 . ~4.11!
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The invariants may be used to foliate the space; equations

I n5kn , n51,2, . . . ,k ~4.12!

with constantskn satisfying certain compatibility conditions, determine ak-parametric family of
SU(n2p,p)3SU(m2q,q)-invariant submanifolds of spaceCnm. Their intersections with the
GL(n,C)3GL(m,C)-invariant submanifoldsO k

(n,m) provide a decomposition ofO k
(n,m) into a

k-parametric family of SU(n2p)3SU(m2q) –invariant submanifolds O (k,k)
(n,m) where

k5$k1 ,k2 , . . . ,kk%. The analytic description of these sections is obtained by substituting~3.9!
into ~4.12!:

I l5Tr~F2b*K* a*F1aKb! l5Tr~ f 2K* f 1K ! l5k l* , l51,2, . . . ,k, ~4.13!

where

f 15a*F1a, f 25bF2b* ~4.14!

represent the metrics induced on the columns and rows of the matrixK from the metric tensors
F1 andF2 onM .

The induced metric tensorsf 1 and f 2 depend on the Grassman coordinatesa andb respec-
tively, on the choice of neighborhood, and on the choice of the representation of the initial metrics
F1 andF2 on M . For the purpose of a general discussion we consider the induced metricf (a)
given by ak3k Hermitian matrix being a function of thek(n2k) complex Grassman coordinates
a. The signature of the induced metric is determined by the roots of the secular equation forf ,

det~ f2l1!5~2l!k1~2l!k21Tr f1 . . .1det f5(
i50

k

~2l! ick2 i5)
i51

k

~l i2l!50,

~4.15!

where, similarly as in~4.4!–~4.6!,

ci5(
Ski D

f S a1 ,a2 , . . . ,ana1 ,a2 , . . . ,an
D , i51,2, . . . ,k, ~4.16!

where the sum runs over all (i
k) possible selections ofi distinct numbers from$1,2, . . . ,k%. Roots

l i(a), which determine the induced metric, are functions of the Grassman coordinatesa and
change as thea’s vary over the Grassman manifoldG k

n .
Not all eigenvalues can appear in the induced metric. The induced metric tensor on the

k-plane inCn may have different degree of degeneration. A triple (a,b,c) will denote signature of
a pluses,b minuses, andc zeros of a (a1b1c)-dimensional space. Notation (a,b) means that
c50.

Consider first the planes with non-degenerate induced metric tensors. The number of positive
~negative! roots cannot exceed the number of positive~negative! signs in the original metric. If the
original signature inCn is (n2p,p) then the admissible signatures onk-dimensional planes in
Cn are (k2 l ,l ), for somel satisfying the obvious relations

k2 l<n2p, l<p, 0< l<k ~4.17!

or, jointly,

Lmin< l<Lmax, ~4.18!

where
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Lmin5max$0,k1p2n%, Lmax5min$p,k%.

There are six different situations:

n2p>p and H 0<k<p

p<k<n2p,

n2p<k<n

or n2p<p and H 0<k<n2p

n2p<k<p

p<k<n.

The three possibilities corresponding ton2p>p are illustrated in Figure 4.
Also, degenerate metrics will appear for certain submanifolds ofG k

n corresponding to zero
rootsl i(a)50 of equation~4.13!. There will be zero roots of various orders ranging from 1 tok
described by the vanishing of the first coefficientsci(a) in ~4.15!. Rootl(a) of multiplicity r is
described byr equations

ck2 j~a!50, j50,1, . . . ,r21. ~4.19!

Let us consider a zero root with multiplicity one. It always lies on the border between two
roots of the opposite sign. The corresponding metric has signature (k2 l21,l ,1) and lies inG k

n

between two metrics differing by interchanging a positive with a negative sign, that is to say
between (k2 l ,l ,0) and (k2 l21,l11,0) and may be obtain by replacing one plus of the first, or
one minus of the second, by a zero.

The case of zero with multiplicity two is obtained by descending one step down to the
(k22)-dimensional hyperplane inCn with the metric (k222 l ,l ,2), where now l varies
Lmin< l<Lmax22. Proceeding in this way we obtain, afterr steps, a set of degenerate metrics of
signatures

~k2r2 l ,l ,r !,

wherel and r vary according to

Lmin< l<Lmax2r , 0<r<Lmax2Lmin . ~4.20!

FIG. 4. The lattice of induced metric structures.
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Summarizing, the Grassman manifoldG k
n decomposes into domains, each domain consisting

of hyperplanes that have the same signature of the induced metric. There areLmin2Lmax11 such
domains corresponding to non-degenerate metrics. They are separated by boundaries, each bound-
ary consisting of those hyperplanes that have the same signature of the induced degenerate metric.
The boundaries are determined by equations

ck2 j~a!50, j50,1, . . . ,r21, r51,2, . . . ,Lmax2Lmin .

The dimension of the boundaries decreases withr . These domains and their boundaries represent
again a flag of manifolds of different dimensions meeting at the manifold with lowest dimension
corresponding tormax5Lmin2Lmax. The latter consists ofk-dimensional planes inCn with in-
duced degenerate metric of signature (k2Lmax,Lmin ,Lmax2Lmin) ~cf., ~4.20!!.

The situation is illustrated by Figure 4~see also Ref. 7!. The triangle represents a latticeL of
metrics (i , j ), the first ~second! letter in the bracket denoting the number of positive~negative!
signs. LatticeL becomes partially ordered set if we introduce the ordering relation

~ i , j !<~ i 8, j 8! ⇔ i< j 8 and j< j 8. ~4.21!

Let us assume that the original metricF1 is (n2p,p). The sublatticeL(n2p,p) of all admissible
induced metrics consists, according to~4.17!, ~4.18!, of all those metrics which are in relation
< with the original metric (n2p,p)

L~n2p,p!:5$~ i , j !PLu~ i , j !<~n2p,p!%. ~4.22!

Let us pick up all the admissible metricsRk which lie in thek-th row ~counting from below!, i.e.,
the row corresponding toi1 j5k and representing the set of non-degenerate admissible metrics
induced on thek-dimensional planes from the original metric inCn

Rk~n2p,p!:5$~ i , j !PL~n2p,p!u i1 j5k%. ~4.23!

According to~4.20!, all admissible metrics~degenerate and non-degenerate! lie in the triangle

Lk:5$~ i , j !PL~n2p,p!u~ i , j !<~ i 8, j 8!,i 81 j 85k⇒~ i 8, j 8!PRk%. ~4.24!

They have to be completed up tok signs by an appropriate number of zeros. The number of
metrics in the triangleLk(n2p,p) is

Nk
~n2p,p!51121 . . .1~Lmax2Lmin11!5

1

2
~Lmax2Lmin11!~Lmax2Lmin12!. ~4.25!

Accordingly, Grassman manifoldG k
n decomposes intoNk

(n2p,p) regionsG k2r ,l
(n2p,p) of different

signatures of induced metric tensors and of different dimensions

G k
n5ø

r
ø
l
G k2r ,l

~n2p,p! , ~4.26!

where thel -summation is over the intervals indicated in~4.20!. Manifold O k
(n,m) decomposes into

‘‘chimneys’’ given by the inversep21 of the canonical projectionp of ~2.19! ~cf., Figure 5!

p21~G k2s,l s
~m2q,q!3G k2r ,l r

~n2p,p!!. ~4.27!

Introducing the invariance conditionsI l5k l , l51, . . . ,k, we obtain finally a decomposition of
the SU(n2p,p)3SU(m2q,q) invariant submanifoldsO k

(n,m) into domains corresponding to the
various induced metrics.
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One may note that although the original metricsF1 and F2 are invariant under
SU(n2p,p)3SU(m2q,q), the induced metricsf 1 and f 2 are not. This is due to the fact that the
decomposition of the Grassman manifolds into subdomains depends upon the frame of reference.

V. THE MODEL

To construct a particle model one has to derive the structure of the space of internal param-
eters. The derivation is based on two plausible assumptions.

~1! The physical symmetry group is represented by the direct product SU(2,2)3SU(m) or its
subgroupP43SU(m). Group SU(2,2), the covering group of the conformal group, or its Poincare´
subgroupP4 , represents the external symmetries, while SU~m! represents the internal symmetries,
in accordance with experimental evidence. Representing the external symmetries by SU(2,2)~or
one of its subgroups! provides a common geometrical basisC4m for both internal and external
symmetries in accordance with the idea to describe physical laws in complex vector spaces@3#. So
far, it is not necessary to specifym; one can think, e.g., of SU~3! or SU(3)3SU(2)3U(1).

~2! The internal and external parameters of the particle are represented by local coordinates of
an invariant homogeneous submanifold of the linear representation spaceC4m of
SU(2,2)3SU(m). This manifold has to satisfy the ‘‘correspondence principle:’’ it must admit a
projection on the Minkowski space that is unique and consistent with the symmetry. We shall
prove that there exists one and only one such a submanifold ofC4m.

To find the manifold satisfying the above conditions we use decomposition~2.2!, ~2.13!. For
n54, we have

C4m5O 0
~4,m!øO 1

~4,m!øO 2
~4,m!øO 3

~4,m!øO 4
~4,m!

complemented with fiberings~2.20!, ~2.21!. It follows immediately that the only submanifold
containingG 2

4 in the base isO 2
(4,m) with the local trivializationG 2

43GL(2,C)3G 2
m. It is well

known thatG 2
4 is homeomorphic with the compactified complex Minkowski spaceM4

C , the
homeomorphism~and its inverse! being given by the relations

zm5
il

2
Trsma, a5

1

il
zms̃m, ~5.1!

FIG. 5. Decomposition of a matrix manifold.
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where a is a 232 complex matrix the entries of which are Grassman coordinates of two-
dimensional hyperplanes inC4. According to~2.7!, we haveA5aK andY5aB. The explicit
form of the Grassman coordinates is given by equations~3.12!, ~3.14! specified to the particular
casek52, n54

aj
15

mS a1 a2

j 2 D
mS a1 a2

1 2 D , aj
25

mS a1 a2

1 j D
mS a1 a2

1 2 D , j53,4, ~5.2!

wheres0512 ands i , i51,2,3, are Pauli matrices,s̃ i5s i , s̃052s0 . Parameterl is a ‘‘dimen-
sional parameter’’ with dimension of length and has to be introduced to relate the complex vector
zm with the dimensionless ratios~5.2!.

Following the remark after formula~2.10!, coordinatesaj
k do not depend on the particular

choice of~distinct! a1 anda2 from $1,2, . . . ,m%. This proves the uniqueness of the projection
p1 .

To prove consistency with the group SU(2,2)~the a’s do not transform with the respect to
SU~m!!, we have to investigate the transformation properties of the skew-symmetric forms ap-
pearing in~5.2!

mS a1

a1

a2

a2
D5ma1a1

ma2a2
2ma1a2

ma2a1
5ja1ha2

2ja2ha1
, ~5.3!

wherea1 ,a251,2,3,4, anda1 ,a251,2, . . . ,m. Due to the fact that the ratios of the determinants
appearing in~5.2! do not depend on particular selection of (a1 ,a2), we can drop for simplicity the
second index, introducing temporarily the following notation

ja5maa , ha5mab , a51,2,3,4. ~5.4!

In the case ofn54, there are six skew-symmetric forms and they satisfy one obvious relation

05
1

2
mS a1 a2 a1 a2

a1 a2 a3 a4
D 5

1

8
mS a1 a2

a1 a2
D «a1a2a3a4mS a1 a2

a3 a4
D

5mS a1 a2

1 2 DmS a1 a2

3 4 D 2mS a1 a2

1 3 DmS a1 a2

2 4 D
5mS a1 a2

1 2 DmS a1 a2

3 4 D 1mS a1 a2

1 4 DmS a1 a2

2 3 D . ~5.5!

It is convenient to express these forms and the coordinateskm in terms of Dirac
g-matrices. In the representation

gm5 iF 0 sm

2s̃m 0 G , «5F 0 1 0 0

21 0 0 0

0 0 0 1

0 0 21 0
G g55g1g2g3g4 , g45 ig0 , ~5.6!

we have the following forms
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s:5~j«h!5mS a1

1
a2

2 D1mS a1

3
a2

4 D ,
p:5~j«g5h!5mS a1

1
a2

2 D2mS a1

3
a2

4 D ,
v1 :5~j«g1h!5 imS a1

1
a2

3 D2 imS a1

2
a2

4 D ,
~5.7!

v2 :5~j«g2h!52mS a1

1
a2

3 D2mS a1

2
a2

4 D ,
v3 :5~j«g3h!52 imS a1

1
a2

4 D2 imS a1

2
a2

3 D ,
v0 :5~j«g0h!5 imS a1

1
a2

4 D2 imS a1

2
a2

3 D .
Coordinateszm of the complex Minkowski space~see~5.1!! obtain a simple form

zm5l
vm

s1p
. ~5.8!

Relation~5.5! now takes the form

s22p22vmv
m50. ~5.9!

Recall that representation~5.6! is adapted to the neighborhoodm( 1
a1

2
a2)5 1

2 (s1p) Þ 0 and in
other neighborhoods, other representations must be used. Nevertheless, formulae~5.8! and ~5.9!
are independent of the representation. This becomes clear when one considers transformation
properties with respect to the group SU(2,2). Let us consider an arbitrary representation of
g-matrices satisfying

gmgn1gngm52gmn , gm
15gm ,

~5.10!
g45 ig0 , g55g1g2g3g4

~m,n51,2,3,4! together with a skew-symmetric matrix« satisfying

«T52«, «2521, ~«gm!T52«gm . ~5.11!

The infinitesimal generators of SU(2,2) inC4 can be rewritten in terms of the 434 matrices
~5.10!, as

d5
2 i

2
g5 , pm5 il21g2gm , km52 ilg1gm , mnm5

i

4
@gm ,gn#, g65

1

2
~16g5!.

~5.12!

It is easy to check that these generators satisfy the well known commutation relations of the Lie
algebra of SU(2,2)
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@d,pm#5 ipm , @d,km#52 ikm , @d,mmn#50,

@pm ,pn#5@km ,kn#50, @km ,pn#52igmnd22immn ,

@mmn ,pl#52 igmlpn1 ignlpm , ~5.13!

@mmn ,kl#52 igmlkn1 ignlkm ,

@mmn ,mrl#5 i $gnrmml1gmlmnr2gmrmnl2gnlmmr%.

Let us consider six forms

s5~j«g5h!, p5~j«g5h!, vm5~j«gmh!,

with some factorsj,h P C4, prevailing the arbitrariness of representation of theg ’s. The action of
the generators~5.12! in C4 induces the following action of these generators on the bilinear
asymmetric forms~5.12!:

ds5 ip dp5 is dvm50

pms5 il21vm pmp5 il21vm pmvl5 il21gml~s1p!

kms5 ilvm kmp5 ilvm kmvl5 il21gml~s2p!

mmns50 mmnp50 mmnvl52 igmlvn1 ignlvm .

~5.14!

These transformation properties imply that a vector transforming properly under rotations must
necessarily be of the following form

zm5 f ~s,p!vm ,

where f (s,p) is a function of scalars and pseudoscalarp. This function can be determined by a
further demand that the quantitieszm transform properly under translations:

zm→z8m5zm1am5~11 ianpn!zm ⇔ pnzm52 igmn .

Applying pm to zm5 f (s,p)vm we find that

pmzn5 il21S ] f

]p
2

] f

]sD vmvn2l21gmn f ~s,p!~s1p!52 igmn

is satisfied only if

] f

]p
5

] f

]s
, f ~s,p!5

l

s1p
.

Notice that only translations and rotations are necessary to determine the form~5.8! in an arbitrary
representation~5.10!, ~5.11! of the g-matrices. The behavior with respect dilations and special
conformal transformations follows as a consequence of~5.8!. The complete set of infinitesimal
transformations ofzm under the full conformal group is

dzm52 izm , pmzl52 igml , kmzl51 igmlznz
n22izmzl , mmnzl52 igmlzn1 ignlzm .

~5.15!

1021J. Kocik and J. Rzewuski:: Structure of matrix manifolds and a particle model

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Thus, dilationd and rotationsmmn are linear transformations, and, therefore, they act in the same
way on the real and on the imaginary parts of the complex vectorzm5xm1 iym . Special confor-
mal transformations are non-linear and, therefore, they mixxm andym according to

kmxl5 igml~xnx
n2yny

n!22i ~xmxl2ymyl!,
~5.16!

kmyl52igmlxny
n22i ~xmyl1ymxl!,

Action of translations is also non-linear and~5.15! implies that the real partxm transforms like a
vectorpmxl52 igml whereas the imaginary part is translation invariantpmyl50.

Transformation properties~5.15! prove that the condition of consistency of the projection~5.8!
with the group is satisfied for the complex vectorzm5xm1 iym . The real and imaginary parts of
zm5xm1 iym transform like vectors with respect to rotations and dilations. The fact thatym is
invariant under translations, andxm transforms like a vector, suggests the interpretation ofxm as
the local coordinates of the center of mass and ofym as relative coordinates~coordinate differ-
ences! with respect to the center of mass. This interpretation corresponds to Yukawa’s idea of
bilocal theory.10,11

Relation ~5.9! between the forms~5.7! provides a simple geometrical interpretation of the
projection~5.8!. Dividing ~5.8! and~5.9! by s in the neighborhoods Þ 0 we obtain

zm5l
vm /s

11p/s
,

vm

s
•

vm

s
1
p2

s2
51. ~5.17!

This suggests that formula~5.8! can be viewed as a complex stereographic projection of the
complex hyperboloid~5.9! on the complex Minkowski space. SU(2,2)-transformations of the
variables j,h P C4 induce pseudoorthogonalO(4,2)-transformations of the bilinear skew-
symmetric formss, p, andvm ~5.7!. The last induce conformal transformations of the complex
Minkowski coordinateszm by the intermediary of the complex stereographic projection of the
complex hyperboloid~5.17! in the complex projective spaceCP5 with local coordinatesp/s,
vm /s, m50,1,2,3, onto the complex Minkowski space.

Let us go over now to the calculation of invariants of the theory. According to~4.13–14!, we
have to calculate invariantsI l for the particular metric tensors of SU(2,2) and SU~m! in C4m and
for the particular manifoldO 2

4m, i.e., for k52, l51,2. We shall use a mixed coordinate system
consisting of the elements of the matricesK,a,B. Introducing the 23m matrix

C5~KuB!5$maa% a51,2
a51, . . . ,m

~5.18!

we can write

I l5Tr~F2C* f 1C! l , l51,2. ~5.19!

The metric for the group SU~m! is F251m . The invariant form of the group SU(2,2) is
(j* ,g4h), as one can easily check by applying the generators~5.12! ~note that
Xk(jgh)*52(Xk(jgh)* ). In representation~5.6! we have

F15g452F 0 12
12 0 G ~5.20!

and the invariants take, onO 2
4m, the form

I l5Tr~ f 1CC* ! l , l51,2, ~5.21!

where
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f 15a*F1a52~a*1a!. ~5.22!

Note that the right hand side of~5.22! the original~2.8! ~and not the extended! matrix a appears.
With the help of homeomorphism~5.1! we can express the complex matrixa through the complex
vectorzm

2 f 15a*1a52
1

il
s̃m~zm*2zm!5

2

l
yms̃m ~5.23!

and obtain

I 152
2

l
ymTrs̃

mCC* ,

I 25
4

l2 ymynTrs̃
mCC* s̃nCC* . ~5.24!

We denote

rm52Trs̃mCC*52 (
a51

2

(
a51

m

maa* ~ s̃m! ȧbmb . ~5.25!

One can show that

Trs̃mCC* s̃nCC*5 (
a,b,c,d51

2

(
a,b51

m

maa* s̃m
ȧbmbbmbc* s̃n

ċdmda52
1

2
gmnr lr

l1rmr n . ~5.26!

Therefore the two invariants are in this case

I 15
2

l
ymr

m, I 25
4

l2 H 2
1

2
ymy

mr nr
n1~ymr

m!2J . ~5.27!

Instead of the invariantsI 1 and I 2 we can use, equivalently, the invariantsy•r5ymr
m, and

uyu2•ur u25ymy
mr nr

n and describe the decomposition ofO (4,m)
2 into a two-parametric family of

submanifolds by the two SU(2,2)3SU(m)-invariant equations

ymr
m52c12, ymy

mr nr
n5c1 , ~5.28!

with some constantsc1 andc12. We already know the transformation properties orym with respect
to SU(2,2)~cf., ~5.15–16!!. From these transformation properties it follows thatymy

m is Poincare´
invariant. Let us now derive the transformation properties ofrm . For this purpose we rewrite
rm in terms of theg-matrices in representation~5.6!. According to definition~5.25! and notation
~5.4!, we have

rm52 (
a,b51

2

(
a51

m

maa* ~ s̃m! ȧbmba5 i ~j* g4gmg1j!. ~5.29!

Applying now the infinitesimal SU(2,2) generators~5.12!, we obtain

drm5 ir m , pmr l50, mmnr l52 igmlr n1 ignlrm ,
~5.30!

kmr l52i $gmlr nx
n1xmr l2rmxl2«mlrnr

ryn%.
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It follows that

pmr lr
l5mmnr lr

l50 ~5.31!

in accordance with~5.2!.
Further reduction of the SU(2,2) symmetry to Poincare´ symmetry causes appearance of an-

other invariant, namely the Poincare´ invariant r lr
l. Consequently, there is a further decomposi-

tion of O (4,m)
2 into a three parameter family of submanifoldsO (4,m)

2c described by the equations

ymy
m1c115ymr

m1c125rmr
m1c2250. ~5.32!

Let us consider finally the decomposition of the Grassman manifoldG 2
4 into subdomains

corresponding to different induced metrics. According to~4.18!, the induced signatures are deter-
mined by the roots of the secular equation~4.15!. In our case~cf., ~5.20!, ~5.23!!

f 152
2

l
yms̃m,

l1,25
1

2
Trf 16AS 12Tr f 1D

2

2det f 1, ~5.33!

det f 152
4

l2 ymy
m, Tr f 152

4

l
y0 .

According to the general scheme~4.20! and Figure 4, we have the following six domains corre-
sponding to the six admissible metric types (11), (12), (22), (10), (02), (00) ~see Figure
6!:

FIG. 6. Six label regions corresponding to six types of induced metric structure.
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~11 ! y0,0 ymy
m,0 l1.0 l2.0,

~1 0! y0,0 ymy
m50 l150 l2.0,

~12 ! ymy
m.0 l1,0 l2.0,

~02 ! y0.0 ymy
m50 l1,0 l250,

~22 ! y0.0 ymy
m,0 l1,0 l2,0,

~0 0! y050 ymy
m50 l150 l250.

~5.34!

VI. INTERNAL STRUCTURE

We have, so far determined the decomposition ofO (4,m)
2 into SU(2,2)3SU(m) and

P43SU(m) invariant submanifoldsO (4,m)
2C . To give a common description of both cases, we

introduce the shorthand notation

c1152ymy
m, c1252ymr

m, c2252rmr
m, ~6.1!

corresponding to condition~5.28!, ~5.32!. In the conformally invariant case onlyc12 and
c15c11c22 can be considered as constants. In the Poincare´-invariant case, all three quantities
c11, c12, c22 can be considered as constants. Rewriting the second equation of~6.1! in the form

y05r 0
21~yW rW1c12! ~6.2!

and substituting it into the first, we obtain a second order equation for the coordinates
y1 ,y2 ,y3 , of the vectoryW with coefficients depending onrm , m50,1,2,3, and the constants
c12, c1 :

yW 22
~rWyW1c12!

2

r 0
2 5

c1
rmr

m . ~6.3!

By a proper transformation of the coordinates we can bring this equation into diagonal form

~y18!21~y28!21
c22
r 0
2 ~y38!252

det c

c22
, ~6.4!

which represents various types of second order surfaces in three dimensional space depending on
the values of the coefficients appearing in~6.4!.

To get better insight to the situation, we calculate the quantityc2252rmr
m in terms of the

variablesmaa , a51,2, a51,..,m, ~cf., ~5.25!!. The result is

c2252rmr
m52 (

a1 ,a251

m UmS a1 a2

1 2 D U2. ~6.5!

In the case of SU~m! internal symmetry (q50), c22 is always positive. The valuec2250 is
excluded onO 2

(4,m) in domainsm( 1
a1

2
a2) Þ 0 which we consider. Also

r 05 (
a51

2

(
a51

m

umaau2.0

is strictly positive. Due to these facts, the quadratic form~6.4! is positive definite and the condition
that the surface is real is
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det c5c11c222c12
2 5c12c12

2 ,2. ~6.6!

Otherwise we have to do with disjoint surfaces in the space of variablesym , m50,1,2,3 ~see
Figure 7!. Let us note that detc is always negative whenym is space-like (c11,0).

We can solve equations~5.28!, ~5.32! with respect toy5Ay121y2
21y3

2 or r5Ar 121r 2
21r 3

2 by
eliminatingy0 or r 0 from the equations~cf., ~6.1!!

y22y0
21c115yr cosu2y0r 01c125r 22r 0

21c22. ~6.7!

The result is

y5
c12r cosu6r 0A2det c2c11r

2 sin2u

c221r 2sin 2u
,

r5
c12y cosu6y0A2det c2c22y

2 sin 2u

c111y2 sin2u
, ~6.8!

with the reality conditions for the roots

det c1c11r
2sin 2u,0 or detc1c22y

2sin 2u,0. ~6.9!

The situation is particularly simple for the vectorr i50, r 05Ac22. In this case~cf., Eqs.~6.4!,
~6.8!!

y5A2
det c

c22

is an equation of a sphereS2 with radiusA2det c/c22. It is important to have also a coordinate
free description of the spaces determined by the conditions~5.28! or ~5.32! together with equations
~5.25!, ~5.29!. Here, we shall restrict ourselves to the Poincare´ invariance. In this case one can

FIG. 7. Different values of the invariantc.
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show that the submanifoldsO 2,c
(4,m) are direct products of a real Minkowski spaceM4 and a

homogeneous spaceM int of the group SU(3,1)3SU(m). To convince ourselves of this fact, we
consider a point with coordinatesm̊aa , ẙm satisfying the conditions

ẙ15 ẙ250, m̊1a50, m̊2a850 ~6.10!

for a52,3, . . . ,m anda853,4, . . . ,m, and

r̊ i52m̊aa* ~ s̃ i !
ȧbm̊ba* 50, r̊ 052m̊aa* ~ s̃0!

ȧbm̊ba* 5Ac22,
~6.11!

~ ẙ3!
22~ ẙ0!

252c11, ẙ0r̊ 05c12, detc,0.

This point satisfies conditions~5.32! and the isotropy group of this point is SO(2)3SU(m22).
Moreover, every point satisfying~5.32! can be reached from the point~6.10! by a transformation
of SO(3,1)3SU(m). We can write therefore, globally,

O 2,c
~4,m!5

P4

SO~3,1!
3

SO~3,1!3SU~m!

SO~2!3SU~m22!
, ~6.12!

where c denotes the three real parameterscik satisfying detc,0. The first quotient
M45P4 /SO(3,1) represents the real Minkowski spaceM4 parameterized by coordinates
xm5Rezm . This space is not affected by the invariance conditions~5.32! and it transforms into
itself under dilationsd, translationspm , and rotationsmmn . The internal space

M int5
SO~3,1!3SU~m!

SO~2!3SU~m22!
~6.13!

can be viewed as the direct product of five-dimensional outer internal space SO(3,1)/SO(2)
parameterized by coordinatesym , rm subject to conditions~5.32! which does not depend onm and
is invariant with respect to SU~m! and the inner internal space SU(m)/SU(m22). Both spaces
are translation invariant.

In the case of the larger SU(2,2)-symmetry, the situation is more complicated due to the fact
that special conformal transformations mix the variablesxm , ym , rm ~cf., e.g., ~5.16!!. The
domains described by the admissible metrics (11), (12), (22) correspond toc11 Þ 0. The
degenerate metrics (1 0), (02), and (0 0) correspond toc1150. The last one involves the
additional conditiony050 so that the internal space reduces to one point.

One can give also a local geometrical interpretation of the internal spaceM int. Indeed,
SO(3,1)3SO(2) can be considered locally as the direct product of a three-dimensional hyperbo-
loid H3 and a two-dimensional sphereS2. Vector rm moves onH3 while ym moves on a
2-dimensional ellipsoid~see Figure 7!. Similarly, vectorsm1a andm2a , a51, . . . ,m, move on a
(2m21)-dimensional sphere and on a sphere with two dimensions less, i.e. onS2m23, respec-
tively ~the second vector is additionally restricted by the length and the scalar product!. We can
consider, therefore,M int locally as the direct product

M int5S23H33S2m213S2m23. ~6.14!

Thus, the internal space in thisP43SU(m) invariant particle model is not compact due to the
appearance of the homogeneous manifold SO(3,1)/SO(2) in~6.13! or the hyperboloidH3 in
~6.14!. The other factors SU(m)3SU(m22) in ~6.13!, or S23S2m213S2m23 in ~6.14!, are
compact. Moreover, there is one factor which is independent on the numberm and which has,
therefore, a universal meaning.
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For full physical interpretation, it remains to find the representations SU(2,2)3SU(m) and
P43SU(m) in the corresponding homogeneous spaces. We shall present the results in a separate
publication.
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The coincidence problem for planar patterns withN-fold symmetry is considered.
For theN-fold symmetric module withN,46, all isometries of the plane are
classified that result in coincidences of finite index. This is done by reformulating
the problem in terms of algebraic number fields and using prime factorization. The
more complicated caseN>46 is briefly discussed andN546 is described explicitly.
The results of the coincidence problem also solve the problem of colour lattices in
two dimensions and its natural generalization to colour modules. ©1996 Ameri-
can Institute of Physics.@S0022-2488~95!01710-7#

I. INTRODUCTION

The concept of coincidence site lattices~CSLs! arises in the crystallography of grain and twin
boundaries.1 Different domains of a crystal do have a relationship: There is a sublattice common
to both domains across a boundary, and this is the CSL. This can be seen as the intersection of a
perfect lattice with a rotated copy of it where the set of points common to both forms a sublattice
of finite index, the CSL. Up to now, CSLs have been investigated only for special cases, for
example, for cubic or hexagonal crystals.2 With the advent of quasicrystals infinitely many new
cases arise: quasicrystals also have grain boundaries, and one should know the coincidence site
quasilattices.3,4 In a rather different context, multiple coincidences of families of one-dimensional
~1D! quasicrystals have been applied in constructing quasicrystals with arbitrary symmetry~in
higher dimensions!.5,6 An application of these results was made by Rivier and Lawrence7 to
crystalline grain boundaries, which themselves turn out to be quasicrystalline. This is an important
example of the relevance of a coincidence quasilattice. The experimental evidence was provided
indirectly by Sass, Tan and Balluffi in the 1970s,8 but beautifully by the observations of growth of
quasicrystalline grain at the grain boundary between two crystals by Cassada, Shiflet and Poon9

and by Sidhom and Portier.10 Gratias and Thalal,11 on the other hand, used quasicrystal concepts
in a different context to embed the two crystal grains adjacent to a grain boundary in a higher
dimensional perfect lattice. So an extension of the CSL analysis to all discrete structures is
desirable.

In this paper we give a unified treatment of the coincidence problem for planar structures with
generalN-fold rotation symmetry, extending previous3,13 and parallel12 work and putting it in a
more general setting. This is what is needed for quasicrystallineT-phases that are quasiperiodic in
a plane and periodically stacked in the third dimension. Icosahedral symmetry in 3D requires
different methods and will be described separately.14 Common to both is the necessity of an attack
in two stages: not only do we have to find the coincidence isometries~the universal part of the
problem!, but also the specific modifications of the atomic surfaces~also called windows or
acceptance domains! that are needed to describe the set of coinciding points.

In order to describe this scenario, we start with the coincidence problem of the square lattice
Z2. The set of coincidence transformations forZ2 forms a group, the generators of which can be

0022-2488/96/37(2)/1029/30/$10.00
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given explicitly through their connection with Gaussian integers. Simultaneously, the so-called
S-factor or coincidence index can be calculated for an arbitrary CSL isometry. Though this is not
new, the approach we use here can be generalized to quasiperiodic planar patterns withN-fold
symmetry. The description of this more general case and the tools necessary to tackle it is the main
aim of this paper.

In two dimensions the classification of CSLs is the same as the classification of colour lattices
with rotational symmetry~Ref. 15, Section 5.8!. In that setting theS-factor or coincidence index
is the number of colours and the different coloured sublattices are the different cosets of the CSL
in the original lattice. This is because, as long as the symmetry group consists of 2D rotations, all
members of the symmetry group commute with the CSL rotation, thus ensuring that the CSL is
invariant under the symmetry group. For indecomposable groups in higher dimensions no non-
trivial orthogonal transformation commutes with all symmetries so there is no longer this equiva-
lence. The only non-trivial rotation groups of 2D lattices areC3, C4 andC6. The prime numbers
p for which there existp-colour lattices with these symmetries are listed in Ref. 15, p. 76, and
coincide with the sets of primes in the denominators of the Dirichlet series given at the end of
Section IV for the casesn53 andn54. ~Note thatN52n for n odd andN5n otherwise as will
be explained later.! For non-lattices the solution of the CSL problem in 2D can be regarded as a
classification of colour modules in the plane. Anr-colour n-moduleis a pair of n-modules
~M,M1! such thatM1 has indexr inM and is invariant under the symmetry group ofM, but
no other coset ofM1 is ~see Section III for a definition ofn-modules!. The colour of a point inM
is then determined by its coset modM1. In this light, the results of Sections III and VI can be
interpreted as finding, for eachn, the numbersr for which there arer -colourn-modules and what
thesen-modules are.

The paper is organized as follows. In Section II, we review the coincidence problem for the
square lattice and formulate it in terms of Gaussian integers. This enables us to describe the group
structure and the coincidence indices explicitly and to introduce the concepts needed for the
generalization in Section III. There, the main structure is derived with the aid of the algebraic
number theory of cyclotomic fields, followed by various worked out cases in Section IV. They
include 8-, 10- and 12-fold symmetry, the most important cases for quasicrystallineT-phases, and
thus cover all cases linked to quadratic irrationalities.16 In Section V we then show, in an illus-
trative way, how to use the method for the eightfold symmetric Ammann–Beenker rhombus
pattern and the tenfold symmetric Tu¨bingen triangle tiling. We give an explicit formula for the
necessary correction of the coincidence index. In Section VI we discuss certain details to be dealt
with for N>46, where the variety of modules rapidly increases though this does not affect the
generality of our findings. The caseN546 ~n523! is presented in some detail. This is followed by
some concluding remarks, while the two appendices cover further examples~Appendix A! and
proofs of technical results used in Sections III and IV~Appendix B!.

II. THE SQUARE LATTICE: A WARM-UP EXERCISE

Let us consider the CSL problem for the square latticeZ2. We focus on pure rotations first and
deal with the easy extension to reflections later. Consider therefore a rotation@i.e., an element of
the groupSO(2)5SO~2,R!# and ask for the condition that it maps some lattice point to another
one. Clearly, rotations through multiples ofp/2 do this. They form the cyclic groupC4—an index
2 subgroup ofD4, the point group ofZ2.

But there are more cases, as can already be seen from the growing number of lattice points on
expanding circles, summarized in the coefficients of the theta-function of the lattice, cf. Ref. 17,

QZ2~x!5 (
qPZ2

xuqu25~q3~x!!2511 (
M51

`

r ~M !xM5114x14x214x418x51... . ~1!

1030 Pleasants, Baake, and Roth: Planar coincidences for N-fold symmetry

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Here,q3(x)5 (qPZ x
uqu25 11 2x1 2x41 2x91 ... isJacobi’s theta-functionandr (M ) denotesthe

number of integral solutions of the equationa21b25M , see Ref. 18 for details onr (M ). This
number is only slowly increasing but is unbounded, so there is an infinite number of rotations that
map one lattice point to another.

As is obvious~cf. Ref. 19 and references therein!, the set of coincidence rotations~or CSL
rotations! consists of all rotationsR through anglesw with sin~w!5a/m and cos~w!5b/m rational,
and hence is identical with the groupSO~2,Q!. This requires integral solutions of the Diophantine
equation

a21b25m2, ~2!

where we need consider only theprimitive solutions, i.e., gcd(a,b)51. They are, of course, given
by the primitive Pythagorean triples.18 For a primitive solution, the set of coinciding points forms
a sublattice ofZ2 of indexm, whence 1/m is the fraction of lattice points coinciding. We callm the
coincidence indexof R, denoted bySZ2(R), or S(R) for short. This index is often called the
S-factor.2,3,4

A. The number of CSL rotations with given index

Without determining the rotations explicitly we can calculate their possible indices and the
number of different rotations with each index as follows.

The number ofprimitive solutions of Eq.~2! can be derived from the well-known formula~cf.
Ref. 18!

r ~M !54~d1~M !2d3~M !!, ~3!

@wheredk(M ) counts the number of divisors ofM of the form 4l1k# for the total number of
integer solutions of

a21b25M . ~4!

If we writeM52zM1M3 , whereM1 andM3 are maximal divisors ofM composed of primes
congruent to 1 or 3~mod 4!, respectively, then Eq.~3! can be equivalently expressed as

r ~M !5 H4d~M1!, if M3 is a square,
0, otherwise, ~5!

where d(M1) countsall the divisors ofM1. When ~as in our case! M is a square, the first
alternative in Eq.~5! occurs. The number of primitive solutions,r * (m2), of Eq. ~2! can now be
derived from the ‘‘input-output’’ principle~cf. Ref. 18, Thm 260! as

r * ~m2!5r ~m2!2(
p
r S Smp D 2D1 (

p,p8
r S S m

pp8D
2D2 (

p,p8,p9
r S S m

pp8p9D
2D1••• , ~6!

wherep runs through all prime factors ofm, pp8 through all pairs of distinct prime factors ofm,
and so on. After substituting Eq.~5! on the right hand side of Eq.~6! and then counting the
contributions of the factors ofm one at a time, it can be seen that

r * ~m2!5 H4d* ~m!, if m has prime factors[1~4! only,
0, otherwise, ~7!
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whered* (m) counts the square-free divisors ofm. We note that the number of CSLs~as distinct
from CSL rotations! of indexm in the square lattice is a quarter this number, since each is itself
a square lattice stabilized by the rotation group of the square~of order 4!. ~Note however that not
every sublattice with square symmetry is a CSL.!

So far we have the following
Theorem 1: The coincidence indices of the square lattice are precisely the numbers m with

prime factors[1 (mod 4) only. The number of coincidence rotations fˆ(m) with a given index m is

f̂ ~m!54d* ~m!, ~8!

and the number of CSLs with index m is

f ~m!5d* ~m!. ~9!

B. CSL rotations and Gaussian integers

We have settled the question of what numbers occur as coincidence indices of CSL rotations
of Z2 and how many rotations there are with each index, but there is still more to be said.

We have seen that the set of CSL rotations forms a group@SO~2,Q!, in fact#. Let us introduce
the notation

SOC~Z2!:5$RPSO~2!uS~R!,`% ~10!

for it. We shall investigate its structure and derive independent generators.
The most transparent proof of Eq.~3! ~that given in Ref. 18! depends on factorization in the

ring of Gaussian integers. By making direct use of this idea, we not only find independent
generators forSOC~Z2! but also have a method that readily generalizes to other lattices and
modules.

To this end, we consider the latticeZ2 as the ringZ[ i ] of Gaussian integers, i.e., withi
5A21,

Z@ i #5$a1 ibua,bPZ%, ~11!

together with the~number theoretic! norm,

norm~a1 ib !5~a1 ib !~a2 ib !5ua1 ibu2. ~12!

The ringZ[ i ] consists of all algebraic integers in the cyclotomic fieldQ( i )5$a1 ibua,bPQ%. The
coincidence rotation problem is then equivalent to finding all numbers of norm 1 inQ( i ) because
rotation through an angle means multiplication with the corresponding complex number on the
unit circle and a coincidence can only happen if this complex number is inQ( i ).

Any such number can uniquely be written~up to units! as the quotient of two Gaussian
integers,

eiw5
a

b
5
a1 ib

c1 id
, ~13!

with coprime Gaussian integersa,b of identical norm, norm(a1 ib)5norm(c1 id)5 l , say. Now,
we can profit from unique factorization inZ[ i ] because any integeraPZ[ i ] divides its norm:

aunorm~a!. ~14!

Let l 5 p1
n1
• ... • pr

nr be the~unique! factorization ofl of ~13! into ‘‘ordinary’’ primes ofZ, called
rational primesfrom now on. If any rational primepj stayed prime inZ[ i ] ~i.e., did not split into
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two Gaussian integers!, which happens ifpj[3 ~4!, it would appear both in the numerator and the
denominator of~13! which is inconsistent with coprimality. Thus such a rational prime cannot
divide l .

A similar argument applies to the prime 2, which, although it splits as 25i (12 i )2, also has
only one Gaussian prime factor up to units. The remaining primes are[1 ~mod 4! and split as
p5vpvp into two Gaussian integers. One of them appears in the numerator of~13!, the other in
the denominator, ifpu l . Of course, the actual choice ofvp is only unique up to units and up to
taking the complex conjugate that reflects the point symmetry of the square lattice! One conve-
nient choice for uniqueness~which we will now take! is a rotation angle in the interval~0,p/4!.

This, in fact, solves the above problem constructively: any CSL rotation can be written in the
form

eiw5e• )
P{p[1~4!

S vp

v̄p
D np, ~15!

wherenpPZ, e is a unit inZ[ i ] andP denotes the set of rational primes. Since the group of units
in Z[ i ] is nothing butC4, we find

SOC~Z2!.C43Z~:0! ~16!

and the generators arei ~for C4! andvp/ vp for rational primesp[1 ~4!. By Z(:0) we mean, as
usual, the infinite Abelian group that consists of allfinite integer linear combinations of the
~countably many! generators. The coincidence indexm is obviously 1 for the units inC4 and
p5norm~vp! for the other generators because this counts the number of residue classes of the CSL
in Z2. If the CSL rotationR is factorized as in Eq.~15!, we thus find

S~R!5 )
P{p[1~4!

punpu. ~17!

This solves the rotation part in principle, one can now work along the primesp[1 ~4! to write
down the generators explicitly, e.g.,

413i

5
,
1215i

13
,
1518i

17
,
21120i

29
,
35112i

37
,
4019i

41
, etc,

where the number on the unit circle is shown in a form with denominatorp and rotation angle in
~0,p/4!. All other CSL rotations are obtained by combinations, and one can regain the formula of
Theorem 1 for the number of them with indexm. Sinced* (m) is a multiplicative function@i.e.,
d* (m1m2)5d* (m1)d* (m2) for coprimem1 ,m2# andd* (p

r)52 for a prime powerpr ~r>1!, we
obtain for f (m)5d* (m) the Dirichlet series generating function@18#,

F~s!5 (
m51

`
d* ~m!

ms 5 )
p[1~4!

S 11
2

ps
1

2

p2s
1••• D5 )

p[1~4!

11p2s

12p2s , ~18!

and the Dirichlet series generating function forf̂ (m) is 4F(s).
Finally, the full group of CSL isometries,OC~Z2!, is the semidirect product of the rotation part

SOC~Z2! ~normal subgroup! with the groupZ2 generated by complex conjugation~5reflection in
the x-axis!:

OC~Z2!5SOC~Z2!3sZ2 . ~19!
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Here conjugation of a rotation through an anglew by complex conjugation results in the inverse
rotation through2w. Let us give a brief justification of Eq.~19!. SinceO(2)5SO(2)3sZ2
~semidirect product! with theZ2 of Eq. ~19!, anyplanar isometryT with det(T)521 can uniquely
be written as the product

T5R~w!•Tx ~20!

of a rotation throughw with Tx , the reflection in thex-axis. ButTx leavesZ
2 invariant, soT is a

coincidence isometry if and only ifR~w! is a coincidence rotation.
The calculation of coincidence indices is also simple in this case. The coincidence index for

the reflectionTx is 1. For an arbitrary element ofOC~Z2!, we either meet a rotation~where we
know the result already! or use the factorization~20! again. Then, the coincidence index is
identical with that of its rotation part, so Eq.~20! is all that is needed. This solves the coincidence
problem for the square lattice completely, and we have the following.

Theorem 2: The group of coincidence isometries of the square latticeZ 2 is

OC~Z2!.O~2,Q!.~C43Z~:0!!3sZ2 . ~21!

This group is fully characterized by Eqs. (15), (16) and (19), and the coincidence index of an
element (20) is given by Eqs. (17) and (15).

III. MORE GENERALITY: THE UNIQUE FACTORIZATION CASE

As briefly explained in the Introduction, the corresponding programme for a locally finite
tiling T with N-fold symmetry~or rather for its set of vertex sites! consists of two steps, the first
being the solution of the coincidence problem for the limit translation moduleM~T ! of T ~see
Ref. 20 for details about this concept!. For the moment, we consider only tilings with the property
that the set of vertex sites ofT is a subset ofM~T !, a condition we shall come back to in Section
V. Furthermore, we assumeM~T ! to be what is termed an ‘‘N-lattice’’ in Ref. 21, but which we
shall call an ‘‘n-module’’ ~whereN52n for n odd andN5n otherwise! in line with the math-
ematical practice of reserving the word ‘‘lattice’’ for discrete subgroups. Theprincipal n-module
~the ‘‘standardN-lattice’’ of Ref. 21! is the additive subgroup ofR2, generated by the vectors of
the regularn-star,

~cos~2pk/n!,sin~2pk/n!!, k50,...,n21. ~22!

The other modules are the non-trivial subgroups of the principal module that are invariant under
rotation about the origin through 2p/n. Modules that differ only in scale and orientation are
regarded as equivalent.

Because all modules are invariant under rotation throughp ~since ifx is in the module then so
is2x!, ann-module withn odd is invariant not only under rotation through 2p/n but also through
p/n. Son-modules andN-modules are the same. In view of this we shall assume throughout that
n is either odd or divisible by 4, though this necessitates bearing in mind that for oddn an
n-module has 2n-fold symmetry. The opposite convention is used in Ref. 21, but the one used
here is more convenient for expressing results about cyclotomic fields that we shall need later
because it givesn the parity of the discriminant of the corresponding field.

The first stage of our analysis, occupying all but Section V, is to investigate coincidence
rotations for modules and their associated coincidence site modules, which we designate CSMs.

A. Symmetric modules and cyclotomic fields

Viewed as complex numbers, the vectors~22! arejk, wherej is a primitiventh root of 1, and
the modules are subsets of the cyclotomic fieldK5Q~j!. The principal module is precisely the ring
of integersOK of K, since it is known that$1,j,j

2,...,jf(n)21% is a basis for the integers ofK, where
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f(n), the Euler totient function ofn, is the degree ofK overQ, cf. Chapter 9 of Ref. 22. The other
modules are the ideals ofOK ~to be defined later!, modules being equivalent precisely when they
belong to the same ideal class~defined in Section VI!.

In this section, at the expense of discussing only 29 modules~see Refs. 25 and 21!, we restrict
attention to values ofn for which all n-modules are equivalent. Because of the connection with
algebraic number theory we call this the ‘‘class number 1’’ case and use the designation ‘‘CN1’’ to
indicate results that are special to this case.~The reason behind this terminology is explained in
Sec. VI. Briefly, it is the case when thenth cyclotomic field has class number number 1.! The class
number 1 assumption simplifies the treatment in two ways:

~1! it is enough to solve the coincidence problem for the principal moduleOK only, since all
others are equivalent to it; and

~2! in the class number 1 case each integer inOK has a factorization into irreducible integers
that is unique apart from multiplying the factors by units.~Because of the unique factorization
these irreducible integers can safely be calledprimesin the class number 1 case.!

Though a convenience, the restriction to class number 1 is by no means essential: with only
minor modifications our method applies to any 2D module, as outlined in Section VI.

As in the previous section, a coincidence rotation that takesb to a, say ~a,bPOK! can be
represented by the pointg5a/b on the unit circle. So the CSM problem amounts to finding the
structure of the set of numbersg in K with

ugu51 ~23!

~a subgroup of the multiplicative group ofK!.
The CSM associated withg is OKùgOK5num~g!OK , where num~g!, the numerator ofg, is

given by

num~g!5gcd~nPOKun/gPOK!, ~24!

and is unique up to multiplication by a unit. In particular, num~g!ua. The index of this module in
the original moduleOK is norm~num~g!!, the absolute norm of num~g!, ~Ref. 22, 4.4 and Cor.
2.96!. ~Since units have norm 1 this is independent of the particular numerator chosen. All con-
jugates of the fieldK are complex, so norms of numbers inK are products of pairs of complex
conjugates and hence positive.!

Equation~23! can be reformulated as an algebraic condition with the aid of the maximal real
subfieldL of K:

L:5Q~j1j21!5QS cos2p

n D . ~25!

It is known that whenK has unique factorizationL does too~see p. 231 of Ref. 27!. As an
extension ofL, K has degree 2 and the set of conjugates overL of a numbergPK is just the
complex conjugate pair$g,g%. Consequently, therelative normof g overL, normK/L~g!, is given
by

normK/L~g!5ugu2. ~26!

In this notation, theabsolute normof g is norm~g!5normK/Q(g) and we have the relation

normK/Q~g!5normL/Q~normK/L~g!!. ~27!

Relative norms of integers inK are integers inL and norms of units are units. As in the previous
section~whereL5Q!, aunormK/L(a)5aa for every integera of K, so the only possible prime
factors ofa in K are those that divide norm~a!.
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B. Cyclotomic numbers on the unit circle

When a planar moduleM intersects a rotated or reflected copy of itself in a submodule of
finite index, the isometry~rotation or reflection! is again called a coincidence isometry. The set of
coincidence isometries ofM is denoted byOC~M!. It is again a group, withSOC~M! being its
subgroup of rotations.~These concepts can be put in a more general setting. Some slight exten-
sions of them are already required for the examples in Appendix A, for example.!

In view of Eq. ~26! and our representation ofSOC~OK! as the elements ofK on the unit
circle, we have

SOC~OK!.$gPKunormK/L~g!51%. ~28!

To analyze the right hand side further we need some facts about the arithmetic ofK andL. First,
the unitse of K with ueu51 are precisely the powers ofj, though in general there are also infinitely
many units not on the unit circle.~This follows, e.g., from Ref. 28, Lemma 1.6, and the last
sentence of the remark following it.! Second, if a prime% of L has two non-associated prime
factors inK ~i.e., their ratio is not a unit! then they can be taken as complex conjugates,v and
v. This is becausevu% implies v u%, so, if v andv are not associates,vv is an integer inO L

dividing %, hence is an associate of%. ~HereO L is the ring of integers ofL, of course.! Con-
versely, if% is divisible by just the primev in K and no other~up to units!, then, asv also divides
%, v/v must be a unit. Thus a primevPOK divides a prime%PO L with distinct factors if and
only if v is not an associate ofv. By Eq. ~26!, normK/L~v!5normK/L(v!.

Now suppose thatgPK satisfies normK/L~g!51 and writeg5a/b, wherea,b are integers of
OK with no common factor. Then

normK/L~a!5normK/L~b!5nPO L ~29!

and every prime factor ofn must factorize into two non-associated primes ofK, one of which
dividesa only and the otherb only. Since any such pair can be chosen to be complex conjugates,
g can be written as

g5e)
k

S vk

vk
D nk, ~30!

with e a unit ofK and thenk’s in Z. Taking absolute values in~30! shows thatueu51, whencee is
a root of unity. Different values of thenk’s give g’s with different prime factorizations, which are
therefore not associates, and different roots of unitye give differentg’s within each set of asso-
ciates. So in this more general situation we again have explicit presentations ofSOC~OK! and
OC~OK! almost identical to those forSOC~Z2! andOC~Z2! in the previous section. These are, for
SOC,

SOC~OK!.^j& 3
$v,v%PV

K v

v̄ L .CN3Z~:0!, ~31!

whereV is the set of complex conjugate pairs of non-associated primes inK ~andN5lcm~n,2! as
usual! and, forOC,

OC~OK!5SOC~OK!3s^•&, ~32!

where•̄ is complex conjugation and its action onSOC~OK! is clear.
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The coincidence index of the typical rotation~30! of SOC~OK! is the absolute norm of its
numerator:

)
k

~normK/Q~vk!! unku. ~33!

For each prime pair$v,v%PV the common value norm~v!5norm~v! is a rational prime
powerpd. We call these prime powers thebasic indicesof OK and the primesp themselves the
complex splitting primesfor K ~because, in their factorization overK, they contain at least one
complex conjugate pair of distinct primes!. Then~31!, ~32! and ~33! show the following.

Proposition 1: (CN1) An integer mPN is a coincidence index if and only if it is a product of
basic indices.

To find out what basic indices there are and count how many members of the groupSOC~OK!
have a given index we need to determine how each rational primep factorizes in the fieldsL and
K. It will turn out that the basic indices are powers of distinct primes and that whether a power of
p is a basic index~and what this power is! depends only on the residue class ofp modn.

C. Factorization of primes in algebraic number fields

Before consideringK andL specifically we describe how primes factorize in a general alge-
braic number field extensionF(a).F of degreeD. @We shall use the standard notationF(a)/F
to denote such an extension. A detailed account of the material in this section can be found in
Chapter 2 of Ref. 23#.

Let f (x)50 be the minimal equation satisfied bya with coefficients inF @so the degree of
f (x) is D# and letO andO 8 be the rings of integers ofF andF~a!.

An idealof O is a subseta of O ~non-empty andÞ$0%! such thata1bPa ;a,bPa andlaPa
;lPO ,aPa. We use the notation~a,b,...!O to denote the smallest ideal containinga,b,... ~where
these are numbers inO !. Ideals have a natural multiplication, defined byab5~abuaPa,bPb!O
andO itself is the multiplicative identity. There is an infinite set ofprime idealsin O and every
ideal can be uniquely factorized into prime ideals.

Every ideala in O extends to an ideal (a)O8 in O 8, butO 8 also has other ideals not of this
form. For an ideal a8 of O 8 the relative norm, normF(a)/F(a8! is defined as
~normF(a)/F(a)uaPa8!O —an ideal ofO . Norms are completely multiplicative@i.e., norm(ab!
5norm~a!norm~b!#. Let p be a prime ideal inO . Then (p)O8 factorizes into prime ideals inO 8 as

~p!O85p1
e1...pg

eg, ~34!

and for eachk51,...,g,

normF~a!/F~pk!5pdk, ~35!

wheredk is the residue class degreeof pk . Taking norms of both sides of Eq.~34! shows that

d1e11•••1dgeg5D. ~36!

For the special case ofnormal field extensions@i.e., extensions whereF~a! contains not onlya
itself but also all other roots off (x)50# we havee15•••5eg andd15•••5dg . So in this case

~p!O85~p1 ...pg!
e, ~37!

where eachpk has the same degreed, d•e•g5D and without ambiguity we can define
degF(a)(p!:5d andeF(a)(p!:5e. AlsoeF(a)(p!.1 only for the finitely many primesp that divide
the discriminant of the extensionF(a)/F. ~Such primes are calledramified.!
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Another special case is field extensions wherea can be chosen so thatO 85O @a# ~O 8 has a
simple integral basisoverO !. In this case the factorization of a primep of O into prime ideals of
O 8 mimics the factorization off (x) into irreducible factors over the finite residue class fieldO /p.
So if p factorizes as in Eq.~34! then

f ~x![ f 1~x!e1...f g~x!eg~modp!, ~38!

where eachf k is irreducible of degreedk and distinctf k’s correspond to distinct primespk . This
provides a simple way of calculating the degrees and multiplicities of the prime factors ofp.

The three extensions we have to deal with—K/Q, L/Q andK/L—are all normal and have
simple integral bases, so all the above results apply to them. Also relative degrees are multiplica-
tive: if p is a rational prime having a prime factor% in O L , which in turn has a prime factorv in
OK then

degK/Q~v!5degK/L~v!•degL/Q~% !. ~39!

In particular, degK/L~v! is the same for all prime factorsv in OK of the same rational primep.
The primes ofOK in the non-associated pairs$v,v% are precisely the unramified primes of

relative degree 1 overO L . In view of ~39! and the normality ofK andL, V is the set of all pairs
of distinct prime factors$v,v% in OK that divide rational primesp with

degL~p!5degK~p!~5d, say!, ~40!

and, for any suchv, the absolute norm@cf. ~27! above# is

norm~v!5pd. ~41!

We have the following.
Proposition 2: (CN1) The complex splitting primes for K are the primes satisfying (40) and the

basic indices ofOK are the powers pd of these primes.

D. How to calculate the CSL group and its coincidence indices

Getting more explicit information aboutSOC~OK! and its coincidence indices comes down to
finding degL(p) and degK(p) for rational primesp. The following facts are sufficient to do this;
we state them here and justify them in Appendix B.

To reiterate our notation:K5Q~j! andL5Q~j1j21!, wherej is a primitiventh root of 1, and
p is any rational prime.

Fact 1: If pu”n then degK(p) is the smallestdPN such thatn dividespd21.
Fact 2: If pu”n then degL(p) is the smallestdPN such thatn divides at least one ofpd11 or

pd21.
Fact 3: ~a! If n5pr , for somer , thenp is not a complex splitting prime and degK(p)51.

~b! More generally, ifn5prn1 with pu”n1 thenp is a complex splitting prime inK if
and only if it is a complex splitting prime inK1 ~the cyclotomic field ofn1th roots
of unity!. Moreover, degK(p) 5 degK1(p).

Although these facts alone clearly enable us to identify the complex splitting primes and
calculate their degrees and multiplicities, it is nevertheless worth listing some general conse-
quences of them.

Remark 1:These facts show that whether a primep is a complex splitting prime ofn and what
its degreed is depend only on the residue class ofp modn.

Remark 2:Since, for a primev in OK dividing p, norm~v!5pd, whered5degK(p), Fact 1 has
the well-known consequence that norm~v![1 ~mod n! for every primev in OK with v u” n. In
particular, every coincidence indexm with gcd(m,n)51 satisfiesm[1 ~modn!.

1038 Pleasants, Baake, and Roth: Planar coincidences for N-fold symmetry

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Remark 3:When pu”n is not a complex splitting prime, degK(p)52degL(p), so degK(p) is
even. Facts 1, 2 and 3~a! show that, conversely, ifn is an odd prime power then no primep with
d5degK(p) even is a complex splitting prime. This is because ifnupd215(pd/221)(pd/211)
but nu”pd/221 then, since gcd(pd/221,pd/211)52 ~or 1 if p52!, nupd/211, so degL(p)5d/2.

So, forn an odd prime power,p is a complex splitting prime if and only if degK(p) is odd and
pu”n, and it is unnecessary to compute degrees overL in this case.

Remark 4:By Fact 1 the unramified primes with degK(p)51 ~i.e., the primes thatsplit
completelyin K! are precisely those[1 ~mod n!. So these primes are always complex splitting
primes.

Remark 5:Facts 1 and 2 show that, for primesp[21 ~modn!, degK(p)52 and degL(p)51,
so these primes are never complex splitting primes. Consequently, for everyn, the proportion of
integers that are coincidence indices is 0.

In the next section we apply these facts and remarks to calculate coincidence indices of
specific modules.

E. The number of coincidences with given index

Let f̂ (m)5N• f (m) be the number of elements ofSOC~OK! with indexm. The computational
convenience of representingf̂ (m) this way arises from the fact thatf (m) is more fundamental: it
is a multiplicative function ofm and, as for the square lattice, it counts the CSMs with indexm,
since the rotation group of each module is the group of roots of unity inK and has orderN. In the
general case,f (m) cannot be described as simply as in Eq.~9!, but its Dirichlet series generating
function does have a very simple expression in terms of thez-functions of the fieldsK andL.
Also, for quite sizeable individual values of the index, the number of coincidence isometries can
be calculated from~33! and knowledge of the identity, degrees and exponents of the complex
splitting primes~or, equivalently, from the generating function!.

From the decomposition~31! of SOC~OK! and the function~33! it can be seen thatf (m) is
multiplicative, i.e., gcd(m1 ,m2)51 implies f (m1m2)5 f (m1) f (m2). This makes its Dirichlet se-
ries,

(
m51

`
f ~m!

ms , ~42!

a convenient tool for studyingf : it can be expressed18 as an ‘‘Euler product,’’

)
p

S (
r51

`
f ~pr !

prs D , ~43!

with one Euler factor for each primep, and the individual Euler factors are straightforward to
compute.@The series we obtain will all be absolutely convergent in the right half-plane Re(s).1
and extendable to meromorphic functions on the whole plane. For using the series formally to
calculate individual values off these analytic properties are irrelevant, but they play an essential
rôle in calculating the asymptotic average value off .#

Suppose the rational primep is divisible by the pairs$v1 ,v1%,...,$vg/2,vg/2% of non-
associated primes inK and that eachvj has normK/Q(v j ) 5 pd. Then f (pk) is the coefficient of
p2ks in

S •••1
1

p2ds
1

1

pds
111

1

pds
1

1

p2ds
1••• D g/2, ~44!
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the product ofg/2 two-way infinite sums~one for each pair$v j ,v j%! each having one term for
each value of the correspondingnk in ~33!. ~The symmetry of the sums arises from the fact that the
index depends only onunku, of course.! On summing the series this becomes

S 11p2ds

12p2dsD g/2. ~45!

Since f (m) is multiplicative, for a generalm it is the coefficient ofm2s in

)
C{pum

S 11p2ds

12p2dsD g/2, ~46!

whereC is the set of complex splitting primes forK, and the values ofd and g are those
appropriate to each individual primep. This, in turn, is the coefficient ofm2s in the infinite
product,

FK~s!5 )
pPC

S 11p2ds

12p2dsD g/2. ~47!

To express this more simply we introduce the Dedekindz-functions of number fields.22,28The
z-function of a general algebraic number fieldF is the Dirichlet series generating function for the
number of idealsa of O with norm~a!5m, hence is given by

zF~s!5(
a

1

norm~a!s
5)

p
S 12

1

norm~p!sD
21

, ~48!

wherea runs through all ideals ofF andp through all prime ideals. WhenF is normal we can
collect together prime idealsp dividing the same rational primep to put the product on the right
in the form

)
p

S 12
1

pdsD
2g

, ~49!

where, for each rational primep, d 5 degF/Q(p) andg is the number of prime ideals ofF dividing
it.

A particular case of this is

zQ~s!5 (
m51

`
1

ms5)
p

S 12
1

psD
21

, ~50!

which is the Riemannz-function z(s) itself.
The following table compares the Euler factors ofzK(s) andzL(2s) for each rational primep,

there being three cases to consider.~It follows from Lemma 3 of Ref. 24 and Prop. 2.15~b! of Ref.
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28 that the third case,eK(p)ÞeL(p), occurs for at most one primep: the prime, if any, a power
of which is equal ton.!

p Field Degree
Distinct

prime factors Euler factor

Complex splitting
K
L

d
d

g
g/2

(12p2ds)2g

(12p22ds)2g/2

Not complex splitting
andeK(p)5eL(p)

K
L

d
d/2

g
g

(12p2ds)2g

(12p2ds)2g

eK(p)ÞeL(p)
K
L

1
1

1
1

~12p2s!21

~12p22s!21

On taking the quotients of the Euler factors arising fromK andL and comparing with Eq.
~47!, we see that

zK~s!

zL~2s!
5FK~s!S 11

1

psD * , ~51!

the asterisk indicating that the second factor on the right is present only ifn is a power of a prime
p. So

CN1⇒FK~s!5 H ~11p2s!21zK~s!/zL~2s!, if n is a power of a primep;
zK~s!/zL~2s!, if not. ~52!

We summarize this in the following theorem.
Theorem 3: Let n be one of the 29 numbers for which the cyclotomic field K of nth roots of

unity has class number 1. Then the group of coincidence rotations of an n-fold symmetric module
is the direct product of its finite rotation symmetry group CN and countably many infinite cyclic
groups, as in (31), and the full group of coincidence isometries is the extension of this by a
reflection symmetry. The coincidence index of such an isometry is given by (33) and (30). The
Dirichlet series generating function for

f ~m!5$number o f CSMs o f index m%, ~53!

5
1

N
3$number o f coincidence rotations o f index m%,

~54!

is given by (52).
A principal use of a Dirichlet series is to find asymptotic formul, for sum functions of its

coefficients by means of residue calculus. In the present instance this technique shows, for ex-
ample, that

Number of CSMs of index,X 5 (
m,X

f ~m! ; X•$residue ofFK~s! at s51%. ~55!

In view of Eq. ~52! this residue can be computed from known formul, for the residues of
z-functions at 1 and values ofz-functions at 2. The value of the residue can be regarded as the
‘‘average number of CSMs’’ with a given arbitrarily chosen positive integer as index.
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IV. EXAMPLES: N56, 4, 10, 14, 8, AND 12

After the general derivation of the previous section, let us present some examples explicitly.
We select those relevant to known crystals and quasicrystals. For each example we list the fol-
lowing

~a! The fieldsK andL and the degree@K:Q# of K overQ.
~b! A table giving, for each residue class modn containing primesp, degK(p) @and, if nec-

essary, degL(p) too#. In the bottom line of the table@where degK(p) is given# the degrees of
complex splitting primes are underlined. With each table is a comment describing which facts and
remarks from the previous section were used to compute it.

~c! A list of the types of basic indices, using the notation thatp(a)
b represents thebth powers

of all primes congruent toa modn.
~d! The Dirichlet series generating function off (m), given as a ratio ofz-functions, as an

Euler product and expanded explicitly as far as the 12th nonzero term.@The same notation as in~c!
is used for the primes in the Euler product.#

~e! An explicit formula for f (m) in the style of Eq.~9!. In these formul, ep denotes the
largest exponente for which peum.

~f! The average value off (m), as defined above.
The smallest coincidence indices can be read off as the denominators~with s51! of the

Dirichlet series, with the corresponding values off (m) as the numerators. All values off (m) for
m.1 are even, reflecting the geometrical fact that the reverse of a coincidence rotation is also a
coincidence rotation.

A. n53, the triangular (or hexagonal) lattice

K5Q~A23!, L5Q, @K:Q#52.

p ~mod 3! 1 2 3

degK~p! 1I 2 1

Computed using
Facts 1 and 3~a! and Remark 3.

Basic indices:p~1!.
Dirichlet series:

S 11
1

3sD
21 zK~s!

z~2s!
5)

11p~1!
2s

12p~1!
2s511

2

7s
1

2

13s
1

2

19s
1

2

31s
1

2

37s
1

2

43s

1
2

49s
1

2

61s
1

2

67s
1

2

73s
1

2

79s
1••• .

Number of CSLs with indexm:

f ~m!5H )
pum

2, if m is a product of basic indices;

0, otherwise.

Average number of CSLs:

)

2p
.0.276.

1042 Pleasants, Baake, and Roth: Planar coincidences for N-fold symmetry

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



B. n54, the square lattice

K5Q~ i !, L5Q, @K:Q#52.

p ~mod 4! 1 2 3

degL~p! 1 1 1

degK~p! 1I 1 2

Computed from
Facts 1, 2 and 3~a!.

Basic indices:p~1!.
Dirichlet series:

S 11
1

2sD
21 zK~s!

z~2s!
5)

11p~1!
2s

12p~1!
2s511

2

5s
1

2

13s
1

2

17s
1

2

25s
1

2

29s
1

2

37s

1
2

41s
1

2

53s
1

2

61s
1

4

65s
1

2

73s
1••• .

Number of CSLs with indexm:

f ~m!5H )
pum

2, if m is a product of basic indices;

0, otherwise.

Average number of CSLs:

1

p
.0.318.

C. n55, the tenfold module

K5Q~e2p i /5!, L5Q~A5!, @K:Q#54.

p ~mod 5! 1 2 3 4 5

degK~p! 1I 4 4 2 1

Computed using
Facts 1 and~3a! and Remark 3.

Basic indices:p~1!.
Dirichlet series:

S 11
1

5sD 21 zK~s!

zL~2s!
5) S 11p~1!

2s

12p~1!
2sD 2511

4

11s
1

4

31s
1

4

41s
1

4

61s
1

4

71s
1

4

101s

1
8

121s
1

4

131s
1

4

151s
1

4

181s
1

4

191s
1••• .

Number of CSMs with indexm:

f ~m!5H )
pum

4ep , if m is a product of basic indices;

0, otherwise.

Average number of CSMs:
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5 log t

p2 .0.244.

D. n57, the 14-fold module

K5Q~e2p i /7!, L5Q~cos~2p/7!!, @K:Q#56.

p ~mod 7! 1 2 3 4 5 6 7

degK~p! 1I 3I 6 3I 6 2 1

Computed using
Facts 1 and 3~a! and Remark 3.

Basic indices:p(1), p~2!
3 , p~4!

3 .
Dirichlet series:

S 11
1

7sD 21 zK~s!

zL~2s!
5) S 11p~1!

2s

12p~1!
2sD 3 ~11p~2!

23s!~11p~4!
23s!

~12p~2!
23s!~12p~4!

23s!

511
2

8s
1

6

29s
1

6

43s
1

2

64s
1

6

71s
1

6

113s
1

6

127s
1

6

197s

1
6

211s
1

12

232s
1

6

239s
1••• .

Number of CSMs with indexm:

f ~m!5H )
pum

p[1~7!

~4ep
212! )

pum
pÓ1~7!

2, if m is a product of basic indices;

0, otherwise.

Average number of CSMs:

343A7R
256p3 .0.240,

whereR ~the regulator ofK! is given by

R

4
5 log2S 2 cos2p

7 D2 logS 2 cosp

7 D logS 2 cos3p

7 D.0.525.

E. n58, the eightfold module

K5Q~ep i /4!, L5Q~& !, @K:Q#54.

p ~mod 8! 1 2 3 5 7

degL~p! 1 1 2 2 1

degK~p! 1I 1 2I 2I 2

Computed from
Facts 1, 2 and 3~a!.

Basic indices:p(1), p~3!
2 , p~5!

2 .
Dirichlet series:
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S 11
1

2sD 21 zK~s!

zL~2s!
5) S 11p~1!

2s

12p~1!
2sD 2 ~11p~3!

22s!~11p~5!
22s!

~12p~3!
22s!~12p~5!

22s!

511
2

9s
1

4

17s
1

2

25s
1

4

41s
1

4

73s
1

2

81s
1

4

89s
1

4

97s

1
4

113s
1

2

121s
1

4

137s
1••• .

Number of CSMs with indexm:

f ~m!5H )
pum

p[1~8!

4ep )
pum

pÓ1~8!

2, if m is a product of basic indices;

0, otherwise.

Average number of CSMs:

2& log~11& !

p2 .0.253.

F. n512, the 12-fold module

K5Q~ep i /6!, L5Q~) !, @K:Q#54.

p ~mod 12! 1 2 3 5 7 11

degL~p! 1 1 1 2 2 1

degK~p! 1I 2 2 2I 2I 2

Computed from Facts 1 and 2
and the casesn53 and n54
using Fact 3~b!.

Basic indices:p(1), p~5!
2 , p~7!

2 .
Dirichlet series:

zK~s!

zL~2s!
5) S 11p~1!

2s

12p~1!
2sD 2 ~11p~5!

22s!~11p~7!
22s!

~12p~5!
22s!~12p~7!

22s!

511
4

13s
1

2

25s
1

4

37s
1

2

49s
1

4

61s
1

4

73s
1

4

97s
1

4

109s
1

4

157s
1

8

169s
1

4

181s
1••• .

Number of CSMs with indexm:

f ~m!5H )
pum

p[1~12!

4ep )
pum

pÓ1~12!

2, if m is a product of basic indices;

0, otherwise.

Average number of CSMs:

) log~21) !

p2 .0.231.
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V. APPLICATION TO 2D QUASICRYSTALS

The reader might like to see at least one or two examples where we apply the above results to
planar quasicrystals. For simplicity, we consider the eightfold symmetric Ammann–Beenker tiling
and the decagonal Tu¨bingen triangle tiling29 here, while the slightly more complicated rhombic
Penrose tiling is discussed in Appendix A.

A. The Ammann–Beenker tiling

Consider the eightfold symmetric Ammann–Beenker tiling of Fig. 1 and, in particular, the
coincidence problem of its vertex points for rotations around the symmetry centre. The underlying
module is the standard eightfold module of rank 4, usually obtained as projection of the hypercu-
bic latticeZ4 to a suitably chosen 2D plane. This plane, and its perpendicular complement, are
eigenspaces of an eightfold rotation.

The set of vertex sites of this tiling is just the subset of module points whose corresponding
points inZ4 perpendicularly project into a certain regular octagonal window. It is clear then that a
coincidence of vertex sites implies one in the module, but also the converse is true due to the way
the tiling sites are distributed over the module.

A coincidence rotation can be lifted to 4-space whence it also affects the window. In fact, a
coincidence point must have perpendicular projections both in the original and in the rotated
window! But this results in a slight modification of the fraction of coinciding points, which has to
be corrected by an acceptance factorA. This is nothing but the area ratio of the intersection of the
rotated windows with the original window, see Fig. 2. For a coincidence rotation throughw, it
turns out to be

A512S 12
1

&

D sin~ ĉ !sinS p

4
2ĉ D , ~56!

whereĉP@0,p/4! via

ĉ5c2F4c

p G• p

4
~57!

FIG. 1. Central patch of the exactly eightfold symmetric Ammann–Beenker tiling.
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andc, the rotation angle in perpendicular or internal space, is related to the anglew52 arctan~a
1b&! through an algebraic conjugation:

c52 arctan~a2b& !. ~58!

The acceptance factor~56! is 1 for symmetry rotations and smaller otherwise, the minimal
value beingAmin.0.957 atp/8. The set of coinciding points almost looks like an Ammann–
Beenker pattern again, but some points are missing: the quantity 12A is the frequency of such
failures that were observed in Ref. 3. With a more complicated window, star-shaped say, the
acceptance factor would also become more complicated: with some choices of window it can even
be zero for certain angles. But we will not go into further details here.

B. The Tü bingen triangle tiling

Let us now consider the coincidence problem for the vertices of the decagonal triangular tiling
of Fig. 3. All vertex sites belong to the standard tenfold module that can be obtained by projection
of the root latticeA4 to a suitably chosen plane.

29 For simplicity, we consider the cartwheel tiling
~which is singular! because it has fullD10 symmetry in the sense that aD10 operation produces
mismatches of density zero in the plane~along worms!. We thus have coincidence fraction 1 in
this case. Also, all other coincidences of the tenfold module are realized. As in the previous
example, one has to correct the coincidence fraction, this time by rotating a decagon~the window
of the vertex sites! and intersecting it with the original one. Let us give the correction formula in
slightly more generality. If the window were a regularn-gon, the analogue of Eq.~56! would read

A512S sin~a/2!

sin~a! D 2 sin~ ĉ !sin~a2ĉ !, ~59!

wherea52p/n, ĉ5c2[nc/2p] •2p/n, andc is related tow via an algebraic conjugation.
In the present instance, this relation is that tan~w/2! can be expressed in the form

tan
w

2
5~a1bt!sin

2p

5
~a,bPQ!, ~60!

and then

tan
c

2
5~a1bt8!sin

4p

5
, ~61!

FIG. 2. Intersection of two acceptance domains that are rotated against each other.
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wheret8521/t is the conjugate oft in Q~t!.

C. 12-fold symmetric tilings

As well as eight- and tenfold symmetries, twelvefold symmetry is of practical interest. Here
the calculation ofc is very similar to the eightfold case: given the angle

f52 arctan~a1b) ! ~62!

in tiling space, one obtains the angle

c52 arctan~a2b) ! ~63!

in internal space, which can be used with Eq.~59!.

VI. BEYOND UNIQUE FACTORIZATION

In Section III, we restricted ourselves to the ‘‘class number 1’’ case, where there is essentially
only one n-module. We now show how our method can be adapted to other cases, too. The
smallest value ofn to which Section III does not apply is 23~N546!, mentioned in Ref. 21. Here,
the corresponding cyclotomic field has class number 3, so there are three distinct modules with
46-fold symmetry.~The number of modules increases rapidly withn.21,26!

A. Ideals and ideal classes

Let F be algebraic number field with ring of integersO . The set of ideals ofO can be
extended to form a group by admittingfractional idealsof the form

ab215$gugbPa;bPb%, ~64!

wherea andb are ideals as defined in Section III.~A fractional ideal need not be a subset ofO .!
The identity element of the group of fractional ideals isO . A principal ideal is a fractional ideal
of the form

FIG. 3. Central patch of the cartwheel version of the tenfold symmetric triangle tiling.
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~g!O5$gauaPO %, ~65!

generated by the single numberg. When unique factorization into irreducible integers fails inF
then some ideals must necessarily be non-principal. Two fractional idealsa andb areequivalentif
b5ga for somegPF. The equivalence classes, calledideal classes, form a quotient group of the
group of fractional ideals called theideal class group, H5H(F), which turns out to be finite. Its
order is called theclass number, h(F). The identity element ofH is the class of principal ideals.

The ideal classes inherit complex conjugation fromF: each ideal classCPH has a complex
conjugate classC̄. Complex conjugation is an automorphism ofH of order 2.

B. Ideals as modules

Our definition ofn-modules makes them ideals in the ring of integers of thenth cyclotomic
field ~and with any broader definition ann-module would certainly be equivalent to one of these!.
Multiplication by a complex numberg is equivalent to a combined rotation and scale change in the
plane, so equivalent ideals certainly correspond to equivalent modules. Conversely, equivalent
modules can be transformed into each other by multiplication by a complex numberg, and if both
modules are subsets of an algebraic number fieldK theng is in K and the corresponding ideals are
equivalent.

So the set ofn-modules up to equivalence corresponds to the class group of thenth cycloto-
mic field.

C. Coincidence rotations in the general case

With class number.1, n-modules are no longer all equivalent. So, for comprehensiveness, we
need to consider not justOC(OK) but alsoOC~c! for an arbitrary idealc of OK .

There are two problems to be overcome in extending our method to the generaln-module:
~1! How to classify which of the products on the right of Eq.~30! give rise to numbersg with

ugu51 ~when somevk’s are non-principal ideals! and
~2! how to choose a representative of the reflection coset ofOC, for modules not invariant

under complex conjugation, and how to calculate coincidence indices of reflections from
it.

In this subsection we address the first of these.
For the fractional idealaā21 to give rise to a numbergPK with ugu51 two conditions are

necessary~and the conjunction of these conditions is also sufficient!. They are
~A! aā21 is principal, and
~B! for everyd such that~d!O5aā21, dd5ee for some unite of K.

Condition~B! arises becauseg5ed in Eq. ~30! givesdd5e21e21. Condition~A! is tantamount to
saying that the idealsa and ā are equivalent, in other words thata belongs to a class inH1, the
subgroup ofH consisting of classesC with C̄5C. It is easily checked that Condition~B! also
depends only on the class ofa and is preserved under multiplication and inversion of classes. For
Condition~B! to be applicable at alla must belong to a class inH1. Consequently Condition~B!
is equivalent toa belonging to a class in a certain subgroupH2 of H1.

When Condition~B! is satisfied the numbersg5jde21, wherej runs through theN roots of 1
in K, satisfyugu51. In this case num~g! is the ideala and can still be defined exactly as in Eq.~24!,
provided that ‘‘gcd’’ is interpreted as meaning ‘‘the ideal generated by.’’ Againcùgc5num~g!c
and the coincidence index associated with the rotationg is norm~num~g!! ~independent of the ideal
c!. In the general case, when thev’s may be non-principal ideals, a member of the product group
on the right of Eq.~31! is a pair~root of unity, fractional ideal of the formaā21! and the argument
of Sec. III shows that elements ofSOC~c! correspond precisely to those pairs with the class ofa
in H2. Such pairs form a subgroup of finite index in the full product group. One can choose a set
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of generators for this subgroup in much the same way as one chooses a basis for a lattice of finite
index in a given lattice, and as in that case there is an infinite number of such bases and no
canonical choice.

Although SOC~c! has independent generators as a group, the set of coincidence indices in
general no longer has independent generators as a semigroup.

D. Coincidence reflections in the general case

Our second problem was how to calculate indices of coincidence reflections for a module
class in which no module is invariant under complex conjugation. Choose, for simplicity, a prime
idealp in the class~which is possible since every ideal class is known to contain infinitely many
prime ideals!. Thenpùp̄5pp̄ has index norm~p! in p. Every coincidence reflection ofp has the
form r5g • for somegPC with ugu51. Being a coincidence reflection onp, r~a!5b for some
a,bPp. Henceg5b/aPK. The index ofr is the index ofpùgp̄ in p which is

Hnorm~num~g!!norm~p!, if p u” num~g!;
norm~num~g!!/norm~p!, if p u num~g!. ~66!

We note that there is a reflection of index 1 if and only if the class ofp is in H2 ~when we can
chooseg to be a generator of the fractional idealp/p̄! and that in that case~66! agrees with our
previous way of calculating the index. When the class ofp is not in H2 the smallest reflection
index is obtained by taking~g!5pa/p̄ā, wherea is the ideal of minimal norm such that the class
of pa is in H2. Of course,OC~p̄! is OC~p! conjugated by reflection in thex-axis ~corresponding
isometries having the same index!. We note that this is consistent with~66!: just replacep andg
by their complex conjugates.

Theorem 4: The group of coincidence rotations of a general n-fold symmetric module is the
direct product of its finite rotation symmetry group CN and countably many infinite cyclic groups
which can be effectively computed and depend only on n. The index of any coincidence rotation so
presented can be calculated explicitly. Any such module is equivalent to some prime ideal in the
cyclotomic field of nth roots of unity, and in this form complex conjugation represents the coset of
coincidence reflections whose indices can be computed from (66) (they depend not only on n but
on the individual module). Such a module need not have exact reflection symmetry.

The following table lists some statistics for the first few cyclotomic fields withh.1. We
follow Washington28 in listing fields with their degree,f~n!, as the primary order andn as the
secondary order. For each field we given,N,H,H1,H2 , the smallest rotation index and the small-
est reflection index of the non-principal modules~for the principal module it is always 1!. In
brackets after each index we give the number of different rotations or reflections with that index.
For all fields on our listH2 is the trivial subgroup consisting only of the identity elementE of H.
Also complex conjugation acts on the class group as multiplicative inversion for all these fields.
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Min. rotation Min. reflection index of
n N Degree H H1 H2 index non-principal modules

23 46 22 C3 { E} { E} 599 ~22! 47 ~11!
39 78 24 C2 C2 { E} 157 ~24! 13 ~2!
52 52 24 C3 { E} { E} 313 ~24! 13 ~1!
56 56 24 C2 C2 { E} 64 ~2! 8 ~2!
72 72 24 C3 { E} { E} 729 ~2! 9 ~1!
29 58 28 C2

3 C2
3 { E} 4931 ~28! 59 ~4!

31 62 30 C9 { E} { E} 5953 ~30! H 32125 ~1!:order 9
~5!:order 3

The two sets of figures in the last entry are due to the fact that non-principal modules with
different orders in the class group ofQ(e2p i /31) have different minimum reflection indices.

E. Another example: N546

To illustrate the results of the previous subsection we treat in detail the casen523 ~with
46-fold symmetry!. For thisn, the class groupH of K is H5$E,C,C2%, whereC35E and C̄5C2.
HenceH15$E% and thereforeH25$E% too. The methods of Section III show that the complex
splitting primes are precisely those that are quadratic residues mod 23 and for these deg(p)51 or
11 according to whetherp[1 mod 23 or not. The prime idealsp of OK that divide a given rational
primep are either all principal or all non-principal@because the Galois group Gal~K/Q! permutes
them transitively# and in the non-principal case fall into complex conjugate pairs of ideals, one
from each of the classesC andC2. We partition the set of pairsV into the setsV1, V2 as follows:

V15$$v1 ,v1%,$v2 ,v2%,...%, ~67!

V25$$p1 ,p̄1%,$p2 ,p̄2%,...%, ~68!

where thevi ’s are numbers~corresponding to principal ideals! and where inV2 we have chosen
piPC, p̄iPC2 for eachi . Finding all numbers ofK on the unit circle is equivalent to finding all
principal ideals withK/L-norm equal toO L . ~The numbersg are then the sets of associates of the
generators of these ideals.! These ideals are precisely those of the form

)
l

S v l

v l
Dml

)
k

S pkp̄kD
nk

, ~69!

with Snk divisible by 3~since eachpk/p̄k belongs to the classC
2 of order 3!. This group of ideals

has eachv l /v l as an independent generator of the first factor, and a set of independent generators
of the second factor can be chosen as follows:

~p1 /p̄1!
3, p̄1p2 /p1p̄2 , p̄2p3 /p2p̄3 ,... . ~70!

Although this exhibitsSOC~c! as having independent generators as a group, the set of coin-
cidence indices no longer has independent generators as a semigroup. Instead of basic coincidence
indices one has the prime powers

p @p[1 ~mod 23!# and p11 @p[2,3,4,6,8,9,12,13,16,18~mod 23!#,
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which can be partitioned into two classesP1 andP2 ~corresponding toV1 andV2! according to
whether or not the prime ideals dividingp are principal. As examples:

599,691,829,5911,10111PP1

and

47,139,277,461,967,211,311,1311,2911,3111,4111,7111,7311PP2 .

These examples were computed using the observation~derived from the last paragraph of Chapter
1 of Ref. 28! thatp factorizes into principal primes if and only if it factorizes into principal primes
in Q(A223). A necessary and sufficient condition for this is the solubility of the Diophantine
equation 6x21xy1y25p.

The general product of these numbers has the form

m5p1
a1•••pr

ar~pr11
11 !ar11•••~ps

11!as3$P1-factors%, ~71!

wherep1 ,...,ps
11 are in P2 with p1 ,...,pr[1 ~mod 23! and pr11,...,psÓ1 ~mod 23!. Now, for

k5r11,...,s, define

ek5 H0, if 3uak ,
1, if not. ~72!

Thenm is a coincidence index if and only if

a11•••1ar1e r111•••1esÞ1. ~73!

@The reason for this is that in choosing a principal ideal giving indexmwe can arrange thatSnk
is divisible by 3 in ~69! by changing the sign of somenk’s, provided at least twonk’s are not
divisible by 3. Primes of degree 11 are divisible by only one pair of primes inK, but primes of
degree 1 are divisible by 11 such pairs, so for these we can easily arrange that nonk is divisible
by 3.#

Consequently the first three rotation coincidence indices are 1, 599, 691, the smallest not
composed entirely of primes[1 ~mod 23! is 21147596256 and the smallest with no prime factors
[1 ~mod 23! is 2113115362797056.

The Dirichlet series generating function off (m) can be found much as before, except that the
contribution from non-principal ideals withK/L-norm equal toO L must be omitted. This can be
done using the three characters of the class group: we form three Dirichlet series~HeckeL-series!,
one for each character, by multiplying each norm in the series by the value of the character on its
ideal. The required generating function is then the average of these three series.

For the principal character~identically equal to 1! the corresponding Dirichlet series is exactly
as in Eq.~52!, namely,

S 11
1

23sD
21 zK~s!

zL~2s!
. ~74!

For a non-principal characterx the Euler factor for a primep occurring inP1 is exactly as in~44!
and ~45!. For a primep occurring inP2, however, the Euler factor is

S •••1
h

p2ds
1

h2

pds
111

h

pds
1

h2

p2ds
1••• D g/25S 122p2ds

12p2ds D g/2, ~75!
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whereh351. Since this does not depend on which primitive cube root of unityh is, the Dirichlet
series formed with the charactersx andx are the same, and we have

(
m51

`
f ~m!

ms 5
1

3 S 11
1

23sD 21 zK~s!

zL~2s! H 112 )
pPP2

S 122p2s

11p2s D 11 )
qPP2

S 122q2s

11q2s D J ,
where the first product is over the primesp in P2 @which are[1 ~mod 23!# and the second is over
the 11th powersq in P2.

In line with earlier examples we give the first 12 nonzero terms:

11
22

599s
1

22

691s
1

22

829s
1

22

1151s
1

110

2209s
1

22

2347s
1

22

2393s
1

22

3037s

1
22

3313s
1

22

3359s
1

22

4463s
1••• .

Note that this applies to all three modules.
For the principal module the reflection indices are the same as the rotation indices. For the two

non-principal modules, however, the first three reflection indices are 47, 139, 277.

VII. CONCLUDING REMARKS

Let us summarize our results. We have solved the coincidence problem for planar patterns
with N-fold symmetry by number theoretic methods. The first stage consisted of the analysis of
lattices and modules in the plane where the coincidence indices are integers.

For various cases of interest we have given the solution explicitly, in particular describing the
set of possible coincidence indices and the number of coincidence isometries with a given index.
The method is described in sufficient detail to allow other examples along these lines to be worked
out. This is relatively easy forN,46, but the complication increases astronomically for largerN
as foreshadowed even in the exampleN546, where the class number is only 3.

The second stage was the explicit investigation of discrete structures associated with a given
module. Here, in the non-periodic case, the calculation of the coincidence ratio requires a non-
integral correction factor. We have demonstrated its calculation in several examples.

Furthermore, the approach via algebraic number fields automatically yields sets of indepen-
dent generators for the CSM group and therefore an explicit description of it. The group structure
is interesting in itself because we deal here with infinite discrete groups that are countably gen-
erated and the structure of such groups is not at all obvious.

An obvious next step is to extend the investigation to 3D examples. This is not only an
interesting extension of the technique, but may have concrete realizations. There are two cases to
consider: first theT-phases, i.e., quasicrystals that have a unique quasiperiodic plane and are
periodic in the third direction. The CSMs for rotations around the unique axis are the ones treated
in this paper. CSMs around other axes occur only when special relations hold between the lattice
constants in the plane and perpendicular to the plane, a result familiar from the hexagonal case.2

There are also near-coincidences with small misfits between the two grains, but it is beyond our
scope to deal with these. The second case is the icosahedral one, the only remaining non-
crystalline symmetry in 3D. Here we do not have such a powerful tool as the complex numbers
and the structure of the CSM groups is more complicated, even the rotation part being non-
Abelian in general. Some results are reported in Ref. 13 and will be described more fully in Ref.
14.
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APPENDIX A: OTHER ROTATION CENTRES

In the main text we have analyzed the standard situation of coincidence rotations around
lattice ~or module! points. Here we will briefly comment on rotations around other centres in the
lattice case and on situations with more than one translation class of points.

1. n54: the square lattice revisited

Another obvious rotation problem is that around the centre of a Delaunay cell ofZ2, ~1/2,1/2!
say. This point represents the only class of deep holes ofZ2, cf. Ref. 17, and has the entire point
groupD4 of Z

2 as site symmetry. It is obvious that the coincidence problem is equivalent to that
of the point setG defined by

G5$a1 ibua,bPZ, a1b odd%, ~A1!

which is obtained fromZ22~1/2,1/2! by rotation throughp/4 and dilation by&.
Observe that~A1! can be rewritten as

G5$aPZ@ i #uaÓ0~11 i !%, ~A2!

which solves the problem: as was shown in Sec. II, the coincidence rotations ofZ2 can be
factorized, the generators beingeiw5 i ~rotation throughp/2! or of the formeiw5vp/vp with
N(vp)5p[1 ~4!, hencevpÓ0(11 i ). The former still is a symmetry ofG ~index 1!, and we also
get the latter because both numerator and denominator are inG. Also, the reflection in thex-axis
remains a coincidence operation of index 1. Summarizing:

OC~G!5OC~Z2!, ~A3!

and the coincidence indices are unchanged.

2. n53: the hexagonal packing

Consider the Voronoi complex of the triangular lattice—it is a packing made from regular
hexagons—and letH be its vertex set. Let us consider rotations around the centre of a hexagon,
which is a point of maximal site symmetryD6. If we rotate the complex throughp/6 and dilate by
), thenH can be characterized as

H5$aPZ@%#uaÓ0~11% !% ~A4!

where%5~11i)!/2. SinceN~11%!53 and 3 is not a complex splitting prime inQ~%!, we find
again all rotations and reflections that we had already for the triangular lattice:

OC~H !5OC~A2!, ~A5!

and also the indices remain unchanged.
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3. n53: coincidence definition revisited

Slightly different is the situation where we keep the entire set of lattice points, but rotate
around the centre of a Delaunay cell: the latter is a triangle and its centre has onlyD3 site
symmetry. We rotate again throughp/6 and dilate by), which gives the point set

G5$aPZ@%#ua[1~11% !%. ~A6!

Here, a rotation throughp/3 would change the congruence class ofG from 1 to21, so it is no
longer a coincidence rotation. This reduces the torsion part ofOC from C6 to C3, in agreement
with the reduced site symmetry, while all other generators remain unchanged. In particular, the
reflection in thex-axis leavesG invariant and the index formula applies for all remaining ele-
ments.

One might also consider possible variants of the coincidence concept here: a rotation through
p/3 alone does not produce a coincidence for the setG, while the same rotation followed by a
suitabletranslationcan give a coincidence of index 1. The latter might be more important when
the connection to grain boundary growth is considered. Indeed, especially in view of applications
to nonperiodic discrete point sets, one might define~with obvious meaning!

inf
tPR2

@P:Pù~RP1t !#, ~A7!

to be the coincidence index of an isometryR acting on a point setP. This gets rid of the
dependence of the index on the rotation centre and comes closer to the idea of optimal fitting of
grain fragments.

4. n55: the rhombic Penrose tiling

A complication here is that the vertex sites of the rhombic Penrose tilingT fall into four
different translation classes with respect to the uniquely defined limit translation moduleM~T !,
compare Refs. 29 and 20. We identifyM~T ! with the projection of the 4D root latticeA4 into
tiling space for definiteness. Then each point class has its own window of pentagonal shape. The
windows come in two different sizes@related by a factor oft5(11A5)/2] and in pairs related by
rotation throughp, compare Ref. 29. The vertices of the rhombi are not points of the module
M~T ! ~which also means that none of them is a ‘‘standard’’ rotation centre!.

Let us now consider the coincidence problem of the set of vertex sites with all translation
classes identified. To be explicit, we take the rhombic version of the cartwheel pattern where the
rotation centre is not a rhombus vertex but coincides with the centre of a regular decagon filled
with rhombi. This point is a representative of the fifth translation class, so far absent. The cart-
wheel tiling hasD10 symmetry in the sense that anyD10-operation either maps the tiling upon
itself ~thus, in particular, the set of vertex sites! or produces at most a mismatch of density zero
~along the well-known worms!. All these operations thus have coincidence ratio 1. The corre-
sponding rotation in window space maps windows to windows, because they appear inD10-orbits
around the origin. More than this, it maps translation classes of windows to translation classes of
windows.

For other coincidence isometries, we first observe that the integral span of all vertex points is
again a planar module of rank 4, in our explicit case the projection of the weight latticeA4* , the
dual ofA4, into tiling space. This module is equivalent toM~T ! and possesses therefore the same
coincidence isometries, namely those described in Section III. Consequently, we find all these also
as coincidence isometries of the rhombic cartwheel tiling. The coincidence ratio must now be
corrected in a similar way to that of the Ammann–Beenker tiling in Sec. IV, but the window
system requires a slightly more complicated calculation, which we will not present here.
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Even more complicated would be the coincidence analysis for rotations around vertex points,
in particular with various point classes distinguished. The methods needed are in principle those
described forn53 above, but details will not be given here.

5. n512: a square-triangle tiling

Quasiperiodic square-triangle tilings are attractive for a number of reasons. We mention them
because they can have 12-fold symmetry in the sense of mismatches of at most density zero under
D12-operations, see Ref. 30 for an example. There, all vertex points are in one translation class, so
no problem occurs and we find all coincidence isometries of Section III. But for the correction
factor due to window overlaps one encounters a new difficulty: the window is fractally shaped,
and consequently we see no way of calculating this factor. It is left as an exercise for fractal
readers.

APPENDIX B: PROOFS

Here we give the promised references and proofs of Facts 1–3 in Section III.
Fact 1: This is proved in Ref. 24~Lemma 4! or Ref. 28~Theorem 2.13! for example, but we

sketch the proof here as it leads on naturally to the proof of Fact 2, which is less commonly found
in the literature.

Let P be a prime factor ofp in K. Sincepu”n thenth roots of 1 inK are distinct modP. @The
most straightforward way to see this is from the identity

n5 )
k51

n21

~12jk!, ~B1!

got by puttingx51 in (xn21)/(x21), and noting that every difference of roots of unity is an
associate of 12jk for somek.# The residue class fieldFP5Z@j#/P is a finite field generated overFp
by the residue classj* of j, and since distinct roots of unity are distinct modP, the order ofj* in
FP is n. Every finite extension ofFp is normal with the cyclic Galois group generated by the
Frobenius automorphism x°xp, whose order is the degreed of the extension. Consequently the
degree@FP :Fp# is the smallestd with j* p

d
5j* ; that is, the smallestd with nu(pd21). This

establishes Fact 1, since@FP :Fp# is the degree of the minimal polynomial satisfied byj modp and
hence is degK(p).

Fact 2: Analogously to the above proof, degL(p) is the degreed8 of the residue class field
extensionFp/Fp , wherep is the prime ofL divisible by P and Fp is the residue class field
Z@j1j21#/p. Clearly @FP :Fp#<[K:L]52, so thed of Fact 1 is eitherd8 or 2d8. If d is odd then
d85d, the order ofp modn, and no power ofp is congruent to21 modn.

To treat the case of evend we first note that ifj* k11j*2k15j* k21j*2k2 in FP ~where
0<k1 ,k2,n! then either j* k15j* k2 or j* k15j*2k2. This is becausej* kj ,j*2kj are the
two roots inx of

x22~j* kj1j*2kj !x1150 ~ j51,2!, ~B2!

and when the equations are the same the roots must match in some order. Nowd85d/2 if and only
if Fp is the unique subfield of index 2 inFP , this being the fixed field of the elementx°xp

d/2
of

order 2 in the Galois group ofFP/Fp . Sod85d/2 if and only if

j*1j*215~j*1j*21!p
d/2

5j* p
d/2

1j*2pd/2, ~B3!

which requiresj*21 5 j* p
d/2

~equivalent tonupd/211!, sincej* Þ j* p
d/2
. The exponentd/2 here is

plainly minimal, sincenupa11⇒nup2a21.
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Fact 3: Part~a! is a result of the fact that whenn5pr thenp is totally ramified inK @that is,
p is thef(pr)th power of a degree 1 prime ofK#, see for example Ref. 24, Lemma 3. As a
consequence degK(p)51 andp is not a complex splitting prime because it has only one prime
factor inK.

For part~b! we refer to the Hasse diagram of field inclusions in Figure 4. HereK1 andK2 are
the cyclotomic fields ofn1th andpr th roots of unity andL1 andL2 their maximal real subfields.
ThenK5K1K2 , the compositum ofK1 andK2, and, sincepu”n1, K1ùK25Q ~see Ref. 22 Thm.
9.52 or Ref. 28, Prop. 2.4!. Let p5pK be a prime ofK dividing p. For an arbitrary subfieldF of
K we denote bypF the prime ideal ofF that is divisible byp.

Becausep is unramified inL1 andK1 but totally ramified inK2, it follows thatpL1 andpK1 are
totally ramified inK2L1 andK and, in particular,

degK2L1 /L1~pK2L1!5degK/K1~pK!51. ~B4!

Consequently

degK/K2L1~p!5degK1 /L1~pK1!. ~B5!

Now look at the fieldsL1L2 , K2L1 , L andK. SincepL2 ramifies inK2 but p is unramified inL1,
pL1L2 ramifies inK2L1 and hence inK. By Prop. 2.15~b! of Ref. 28,pL is unramified inK, and
hencepL1L2 ramifies inL. We now have

degL/L1L2~pL!5degK2L1 /L1L2~pK2L1!51, ~B6!

whence

degK/L~p!5degK/K2L1~p!. ~B7!

FIG. 4. Hasse diagram.
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SincepL is unramified inK andpL1 is unramified inK1, Eqs.~B5! and~B7! imply thatpL factors
into two primes ofK if and only if pL1 factors into two primes ofK1. Finally, degK(p)
5degK1(p) is an immediate consequence of the fact thatpK1 is totally ramified inK.
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A. Frölich ~Academic, London, 1967!, Chap. 3.

25J. M. Masley and H. L. Montgomery, ‘‘Cyclotomic fields with unique factorization,’’ J. Reine Angew. Math.286,
248–256~1976!.

26J. M. Masley, ‘‘Solution of the class number two problem for cyclotomic fields,’’ Invent. Math.28, 243–244~1975!.
27J. M. Masley, ‘‘Where are number fields with small class number?,’’ in:Number theory, Carbondale 1979, Lecture Notes
in Mathematics 751, edited by M. B. Nathanson~Springer, New York, 1979!, pp. 221–242.

28L. C. Washington,Introduction to Cyclotomic Fields~Springer, New York, 1982!.
29M. Baake, P. Kramer, M. Schlottmann, and D. Zeidler, ‘‘Planar patterns with fivefold symmetry as sections of periodic
structures in 4-space,’’ Int. J. Mod. Phys. B4, 2217–2268~1990!.

30M. Baake, R. Klitzing, and M. Schlottmann, ‘‘Fractally shaped acceptance domains of quasiperiodic square-triangle
tilings with dodecagonal symmetry,’’ Physica A191, 554–558~1992!.

1058 Pleasants, Baake, and Roth: Planar coincidences for N-fold symmetry

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The identities of the algebraic invariants of the
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It is well known that there are fourteen independent algebraic invariants of the
four-dimensional Riemann tensor. Several authors have written down a set of four-
teen independent invariants, but it is still not known how other invariants can be
expressed in terms of these sets. This paper investigates this problem by looking for
relationships between invariants of the Riemann tensor. Essentially the problem
turns out to be analogous to finding relationships between the invariants of two
333 matrices, one of which is symmetric and trace-free and the other Hermitian. A
number of identities between the invariants can be obtained simply by using a
generalization of the Cayley–Hamilton theorem but others, which depend on the
symmetry of the matrices, are considerably more complex. ©1996 American In-
stitute of Physics.@S0022-2488~96!03602-6#

I. INTRODUCTION

The classification of the Riemann tensor in general relativity has so far focused on the separate
classifications of the Weyl tensor and the Ricci tensor. Many features of these classifications
depend on properties of the algebraic invariants of both of these tensors. Any attempt to classify
the Riemann tensor as a whole would also be expected to depend on the fourteen independent
invariants of the Riemann tensor and the relationships between them. Over the past 50 years a
number of papers have been directed towards understanding these invariants and relationships. In
this time several different sets of fourteen invariants have been presented, including those by
Narlikar and Karmarkar,1 Géhéniau and Debever,2 Greenberg,3 Sobczyk,4 and Sneddon.5 The fact
that a number of the sets proposed were deficient in some sense~see, for example, Sneddon5 and
Carminati and McLenaghan6! is an indication that this task is not as straightforward as it may
seem. The main difficulty is that the relationships between the different invariants are not all that
well understood. It is also the case that none of the sets proposed form a complete set of invariants.
A complete set is a set of invariants$I 1 ,...,I k% ~which can be chosen to be homogeneous poly-
nomial invariants! such that any other polynomial invariant can be expressed as a polynomial in
I 1 ,...,I k , and none of the invariants in the set can be expressed as a polynomial function of the
remainder~Penrose and Rindler,7 Gurevich8!. It would be expected9 that any complete set would
contain more than fourteen invariants, but that they would be connected by some algebraic relation-
ships~syzygies!.

In addition, if either the Weyl tensor or the Ricci tensor is algebraically special, the number of
independent invariants will be less than in the algebraically general case. The precise number will
depend on the algebraic types of these tensors.6,10 In this case the number of independent invari-
ants in any given set may be reduced, as some may become zero and there can be algebraic
relationships between the remainder. It is possible that a set which contains fourteen independent
invariants for algebraically general metrics may, for an algebraically special case, contain fewer
independent invariants than the maximum allowed for that case. This cannot happen for a com-
plete set. For such a set, in any algebraically special subcase, the number of independent invariants

a!Electronic-mail:-Graeme.Sneddon@jcu.edu.au
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will be the maximum allowed for that case. The more recent papers of Carminati and
McLenaghan6 and Zakhary10 ~see also McIntosh and Zakhary11! have each produced a set of
invariants with more than fourteen elements, with the knowledge that there will be relationships
between them. Carminati and McLenaghan showed that for the perfect fluid and Einstein–
Maxwell cases, their set will still contain the maximum number of independent invariants.
Zakhary has shown that his set will have this property for any combination of Petrov type and
Segre type. However, it does not follow that such a set will be complete. Zakhary has also shown
which subset of his invariants will be independent in each of the algebraically special cases.

So far however the syzygies which must exist between the invariants in such sets have proved
elusive and it is still an open question as to which would be the preferred set. As well as these
considerations of the relationships between a~usually! small number of invariants in a complete
set, there is the related problem of establishing the connection between any other invariant and
those in the set. In other words, given a set containing fourteen independent invariants, how can
any other invariant be expressed in terms of that set? Harvey12 has produced a number of rela-
tionships between the invariants, but it turns out that these are not of the required type. It is the
aim of this paper to find some new identities that will help provide a greater understanding of the
nature of the relationships between the invariants. This may in turn lead to some insight into the
relationship between the various sets of invariants that have been proposed and eventually to a
complete set of invariants.

In Sec. II it is shown that the relationships given by Harvey can be written more simply in
terms of the Weyl tensor and trace-free Ricci tensor and that, whenn54, the spinor form of many
of them is actually a straightforward identity. Also one of the invariants used by Carminati and
McLenaghan is expressed in a form which is consistent with the manner in which the invariants in
Ref. 5 were presented. In Sec. III several identities are obtained which are valid for a pair of 333
matrices and a complete set of invariants is found for this case. Many of the invariants of the
Riemann tensor can be expressed in terms of a pair of symmetric 33 3 matrices and in Sec. IV the
results are specialized to this case. Again a complete set is obtained and it is shown how any of
these invariants can be related to those in Ref. 5. In Sec. V the invariants of a trace-free symmetric
matrix together with a Hermitian matrix are considered. This is precisely the situation for the
Riemann tensor. A complete set has yet to be found in this case but it is shown how to obtain one
further identity that could be used to express one of the ‘extra’ invariants of Carminati and
McLenaghan in terms of those in Ref. 5. While it is possible to find several more identities of this
nature, any practical use of these identities may be inhibited by their complexity.

Throughout it is assumed that the Weyl tensor and trace-free Ricci tensor are algebraically
general. While the relationships obtained are still valid in the algebraically special cases, in some
cases they may reduce to trivial identities. In these cases there may well be other relationships that
are not valid in the algebraically general case. The notation used follows that of Sneddon.5 The
Riemann tensorRi jkl can be written in terms of its irreducible parts, namely, the Weyl tensorCi jkl ,
the trace-free Ricci tensorSi j and the Ricci scalarR. If n54, it is common to introduceCABCD

andFABĊḊ the spinor equivalents ofRi jkl andSi j , respectively.
For much of this work though, it is more convenient to work in the space of complex self-dual

bivectors~see, for example, Buchdahl13 or Cahen, Debever, and Defrise14!. Buchdahl has referred
to such quantities as ‘‘rotors.’’ This choice provides a reasonable compromise between the number
of indices required by spinor quantities and the range of the indices~and the detailed symmetries!
of the corresponding tensor quantities. Appendix A gives a summary of the main features of
Buchdahl’s work. Briefly, the dual of a skew-symmetric tensorf i j is given by

* f i j :5 1
2e

i jkl f kl ,

whereei jkl :5(1/A2g)e i jkl . Then

FA↔Fi j :5 1
2~ f

i j2 i * f i j !
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is self-dual. Note that the skew-symmetric index pair is replaced by the single rotor indexA which
can take values from 1 to 3.~It will be clear from the context whether the indicesA,B,... are to be

interpreted as spinor indices or rotor indices.! For the Weyl tensor,*Ci jkl :5 1
2e

i jmnCmn
kl, C

6
i jkl

:51
2(C

i jkl 7 i *Ci jkl ) and the corresponding rotor quantities are

CAB↔C
1
i jkl and C̄ȦḂ↔C

2
i jkl .

For the trace-free Ricci tensor

GAḂ↔ 1
2~E

i jkl2 i *Ei jkl !,

whereEi jkl :52g[ i [kSl ] j ] .
The metric in this space is symmetric and is denoted byaAB . Also needed areeABC:5

(1/Aa)eABC andeABC :5AaeABC wherea :5det~aAB!. The trace of a matrix is denoted by square

brackets~i.e., @C# :5CA
A!. It follows thatCAB is trace-free and symmetric,GAḂ is Hermitian and

K:5GḠ is symmetric. The trace-free part ofK is denoted byL and its tensor equivalent has been
referred to as the Plebanski tensor by McIntosh, Foyster and Lun.15With this notation, the invari-
ants in Ref. 5 are given by

@C2# @C3#

@K# @CK# @C2K#

@K2# @CK2#

@K3#

. ~1!

II. SOME COMMENTS ON EARLIER WORK

In 1987 Xu16 obtained two identities relating the cubic invariants of the Riemann tensor. In a
recent paper, Harvey12 showed how these identities can be obtained easily by using the general-
ized Kronecker delta symbol. He then went on to find several identities between the quartic
scalars. Although the identities of Xu were given in terms ofRi jkl , Ri j , andR, one of them at least
came initially from a much simpler equation involvingCi jkl . In fact, each of the identities dis-
cussed by Harvey takes a much simpler form if it is written in terms ofCi jkl andSi j rather than
Ri jkl andRi j . If n54 and the identities are written of either spinor or bivector quantities, they
simplify even further. In the case of the cubic identities this is not surprising as Xu made use of the
spinor form to obtain these identities initially. This simplification occurs because the content of
these identities is already ‘‘built-in’’ to the spinor and bivector formalisms and they either become
trivial, or cannot be written at all in this form. Thus while these identities may be useful in
simplifying terms in various action principles, they do not help in finding relationships between
the invariants~1! and other invariants.

One further observation is worth noting before looking at these identities in detail. It is
possible to construct eight cubic invariants from those in~1! together withR. The invariant
Si jS

j
kS

k
i is independent of these, and so there will be nine independent cubic invariants of the

Riemann tensor. In their work on tensor polynomials, Fullinget al.17 list only eight ~algebraic!
cubic invariants. Furthermore, Harvey’s identities imply that not all of those will be independent.
The reason for this discrepancy is that the scalars of Fullinget al.do not include those that could
be obtained usingei jkl . This quantity is of course available only in four dimensional spaces.
Similar remarks apply to their quartic invariants.

The cubic identities discussed by Harvey are

dabcde
pqrst Rab

pqR
cd
rsR

e
t50 ~2!
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and

dabcde f
pqrstuRab

pqR
cd
rsR

ef
tu50, ~3!

and are valid forn<4 andn<5, respectively. Putting

Rab
cd5Cab

cd12d@a
@cS

b]
d]1

1
12d

@a
cd

b]
dR,

Ra
b5Sab1

1
4d

a
bR

into ~2! we get

dabcde
pqrst Cab

pqC
cd
rsS

e
t50. ~4!

This follows since, forn54, terms involvingdabcde
aqrst will disappear. The identity then reduces to

SabC
bcdeCacde50. ~5!

~SinceSab is independent ofC
abcd, this identity is actually equivalent to the well-known identity

CbcdeCacde5
1
4d

b
aC

cde fCcde f .! Similarly, ~3! is equivalent to

dabcde f
pqrstuCab

pqC
cd
rsC

ef
tu50 ~6!

or

Ca
c
b
dC

c
e
d
fC

e
a
f
b5

1
2C

ab
cdC

cd
e fC

e f
gh . ~7!

@For n54, Eq. ~4! is also needed to obtain Eq.~6! from Eq. ~3!.# This is the form in which Xu
originally presented the identity and is likely to be more useful in establishing the type of identity
needed to relate other invariants to~1!. It is interesting to note that the identity~5! cannot even be
written in the bivector form since it is impossible to construct any invariants that are of the correct
degree inC andG. Similarly, this identity cannot be written in terms of spinor quantities. The
content of~5! is already included in these formalisms. Equation~7! on the other hand simply
provides two different ways of writing the invariant@C3#1@C̄3#.

Similar remarks apply to the identities for the quartic invariants. These may be written as

dabcde
pqrst Cab

pqS
c
rS

d
sS

e
t50, ~8!

dabcde f
pqrstuCab

pqC
cd
rsS

e
tS

f
u50, ~9!

dabcde fg
pqrstuvCab

pqC
cd
rsC

ef
tuS

g
v50, ~10!

dabcde fgh
pqrstuvwCab

pqC
cd
rsC

ef
tuC

gh
vw50. ~11!

When expanded, these equations are considerably simpler than those given by Harvey. As in the
case of Eq.~5!, Eqs. ~8! and ~10! have no counterparts in the bivector form. Also, Eq.~9! can
involve at most the invariants@C2#[K], @C2K#, and [CGC̄Ḡ]. These invariants are actually
independent, so~9! cannot express any new identity between them. Equation~11! though does
give a useful identity. Each term in this equation will involve either@C4# or @C2#2. The Cayley–
Hamilton theorem for the matrixC can be used to prove the identity@C4#51

2@C
2#2 and so, for

n54, ~11! can result in~at most! the sum of this equation and its complex conjugate. It may also
be noted that each of Eqs.~5! and ~7! and the identities resulting from Eqs.~9! and ~10! can be
obtained from the single tensor identity
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C@ab
abC

cd
c fd

e]
g50 ~12!

after multiplication by appropriate tensor quantities. In other words, skew-symmetrization over
five indices is sufficient to give each of these equations.

Carminati and McLenaghan6 and Zakhary10 have chosen sets of invariants that contain 16 and
17 real invariants, respectively. Some comments are now made on these sets. As indicated in
Appendix A, there are some differences in notation which could result in a change in sign in the
imaginary part of the invariant. Aside from this possibility, most of the invariants of Carminati and
McLenaghan and Zakhary have an obvious counterpart in~1! and these are presented in Table I.
Invariants that appear in the same row in this table are equivalent in the sense that they are
proportional apart from an additive term involving invariants of lower degree. For exampler 3,

whose spinor form isFABȦḂFB
C
Ḃ
ĊFC

D
Ċ
ḊFDAḊȦ, is proportional to 2[K2]23[K] 2. The invari-

ants of Carminati and McLenaghan that are not simply related to those of Sneddon can also be
written in bivector form. To within a multiplicative constant, the correspondences are

Spinor form

r 2 :5FABȦḂFB
C
Ḃ
ĊFCAĊȦ

m3 :5CAB
CDFCD

ȦḂC̄ȦḂ
ĊḊFAB

ĊḊ

m4 :5CA
B
DEFDE

Ȧ
ḂC̄Ḃ

Ċ
ḊĖFB

CḊĖFC
A
Ċ
Ȧ

m5 :5CAB
CDCCD

EFF
EF

ĖḞC̄ĖḞ
ĊḊFAB

ĊḊ

Bivector form

D:5 1
6e

ȦḂĊeABCG
A
ȦGB

ḂGC
Ċ

@CGC̄Ḡ#

eȦḂĊeABC~CG!AȦ~GC̄!BḂGC
Ċ

@C2GC̄Ḡ#.

The choice ofr 2 rather than@K
3# is consistent with their requirement that the invariants be of

lowest possible degree. The identity

2@K3#23@K#@K2#1@K#356 detK56D2. ~13!

shows that the two choices will be equivalent apart from an ambiguity in sign inD. This ambiguity
does have some consequences, as will be seen later.@The real invariantD is the same as
det(GA

Ḃ) to within a phase factor.# The invariantsm3, m4, andm5 ~four real invariants! are chosen
instead of@CK2# ~two real invariants!. Thus there must be two real identities connecting the
invariants of this set.

Carminati and McLenaghan have also noted that the invariant

TABLE I. The comparison between the three sets of invariants.

Sneddon
~Ref. 5!

Carminati and
McLenaghan~Ref. 6!

Zakhary
~Ref. 10!

R R R
@C2# w1 I
@C3# w2 J
[K] r 1 I 6
••• r 2 I 7

@K2# r 3 I 8
@K3# ••• •••
[CK] m1 K
@C2K# m2 L
[CK2] ••• M

••• m3 M 1

••• m4 •••
••• m5 M 2
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~Cade
b2 i *Cade

b!~Cbfg
c2 i *Cbfg

c!SdeSfgSc
a

can be factorized. Since it appears that the factorization was done initially using computer algebra,
it may be of interest that it can also be done ‘‘by hand.’’ In terms ofC andG, this invariant is
proportional to

eȦḂĊeABCC
A
EGE

ȦCB
DGD

ḂGC
Ċ .

In this expression,eȦḂĊGE
ȦGD

ḂGC
Ċ is completely skew-symmetric inE, D, andC and so must be

proportional to eEDC. In fact, eȦḂĊGE
ȦGD

ḂGC
Ċ 5 DeEDC. The invariant then becomes

DeABCe
EDCCA

ECB
D which is equal to2D @C2#.

This same type of calculation can be used to writem4 in terms of the trace of matrix products.
We have

m4}e
ȦḂĊeABCC

A
DGD

ȦGB
ḊC̄Ḋ

ḂGC
Ċ

and can writeeABCG
B
ḊGC

Ċ 5 eĖḊĊV Ė
A whereGA

ḂV Ḃ
C 5 Dd A

C . The characteristic equation for
K, namely,K32 @K#K21 (1/2)(@K#22 @K2#)K5 (detK)I, showsthat

V5D21Ḡ~K22@K#K1~1/2!~@K#22@K2# !I !.

After some further manipulation, we find

m4}D21~@CGC̄ḠK#@K#2@CGC̄ḠK2#2~1/2!@CGC̄Ḡ#~@K#22@K2# !!.

If m3 is already known, theextra information provided bym4 is [CGC̄ḠK][K]2[CGC̄ḠK2].
Finally, Zakhary10 has shown that his set still has the correct number of independent invariants

in each of the cases where eitherC or G is algebraically special. In each case, by making use of
the available tetrad freedom, he has shown how the components of the Weyl spinor and Ricci
spinor can be constructed from these invariants.

III. INVARIANTS OF TWO 333 MATRICES

Initially we look for identities between invariants of two 333 matrices under similarity trans-
formations. These results do not require any symmetry and so are given in terms of general
matricesA andB. In this case there will be ten independent invariants~twenty if the matrices are
complex! and one possible independent set is

@B#

@B2#

@B3#

@A#

@AB#

@AB2#

@A2#

@A2B#

@A2B2#

@A3#

. ~14!

Since skew-symmetrization over four indices must give zero, we have

A@A
AB

B
BC

C
CdD]E50

which can be expanded to give a matrix identity forA, B, andC. ~This is similar to the manner in
which Harvey used the generalized Kronecker delta and essentially gives a generalization of the
Cayley–Hamilton theorem.! If C is replaced withB in this identity, the result is

AB21B2A1BAB2@A#B22@B#~AB1BA!1 1
2~@B#22@B2# !A
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1~@A#@B#2@AB# !B2~@AB2#2@B#@AB#1 1
2~@A#@B#22@A#@B2# !!I50. ~15!

Multiplying by A and taking the trace gives

2@A2B2#1@ABAB#22@A#@AB2#22@B#@A2B#2@AB#22 1
2~@A2#2@A#2!~@B2#2@B#2!50.

~16!

This equation effectively gives@(AB)2# in terms of the set~14!. Several more identities can be
obtained in this way. For example, the Cayley–Hamilton theorem forAB together with~16! and
the identity det(AB) 5 detA detB will give an expression for@(AB)3# in terms of~14!. However,
there will still be some invariants that cannot be expressed in this way.~The invariant [A2B2AB]
seems to be resistant to this approach.! The possibility of using an identity involving skew-
symmetrization over five indices is also unlikely to result in anything other than Eq.~15! and
equations that can be found from it by simple substitutions~such as replacingA with A2!.

The set~14! together with [A2B2AB] actually forms a complete set for the invariants ofA and
B. Any polynomial invariant ofA and B can be expressed as a polynomial function of the
elements of this set. To see this it is sufficient to consider invariants of the form [AiBjAk•••Bm]
where each of the exponentsi , j ,... has the value 1 or 2.~Any higher powers ofA or B can be
expressed in terms of lower powers by using the Cayley–Hamilton theorem.! The proof is essen-
tially by induction on the degreed of the invariant. The cased<4 is straightforward. Ifd55 it is
sufficient to consider [A2BAB]. However, ~15! can be used to show [A2BAB]'0, where the
symbol ‘‘'’’ is used to indicate that the term on the left is equal to the term on the right plus ‘‘a
polynomial involving invariants of lower degree.’’ Ifd56 the terms to consider are [ABABAB],
[A2B2AB], and [B2A2BA]. The first of these,@(AB)3#, has already been dealt with and
[A2B2AB] is itself contained in the complete set. Equation~15! can now be used to show
[B2A2BA]'2[A2B2AB]. For d.6 it is possible, by repeated use of~15! and its generalizations,
to reduce any invariant to the form

@A2B2A2B2•••#1 ‘‘a polynomial involving invariants of lower degree.’’

For example,

@A2B2ABA•••#'2@A2B2A2B•••#2@A2B3A2•••#'2@A2B2A2B•••#.

These terms can be further reduced by using the expression forA4B21B2A41A2B2A2 obtainable
from ~15!. Thus

@A2B2A2B•••#'2@A4B3•••#2@B2A4B•••#'0.

The only time neither of these steps is successful in reducing the degree is for the terms
[A2B2AB] and [B2A2BA] which have been dealt with above.

Finally, there must be a syzygy relating [A2B2AB] to ~14!. It is most likely that this syzygy
can be obtained by starting with

@C#323@C#@C2#12@C3#56 detC

and puttingC5A2B2AB. This can be expected to give a cubic equation for [A2B2AB].

IV. INVARIANTS THAT INVOLVE C AND K

In the case of interest though, bothC andK are symmetric andC is trace-free. In this case,
as well as the relationship [C2K2CK]'2[K2C2KC], we know that [C2K2CK] and
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[K2C2KC] must be equal. Therefore [C2K2CK] can be expressed as a polynomial function of
the invariants~14! with A replaced byC andB replaced byK. Thus the complete set in this case
is

@C2# @C3#

@K# @CK# @C2K#

@K2# @CK2# @C2K2#

@K3#

. ~17!

Since these invariants are not independent, it remains to find the identity connecting@C2K2# with
the other invariants. In order to simplify the form of this identity we write it in terms ofL, the
trace-free part ofK. ~C is already trace-free!. We also introduce

C̃:5C2uI2vL2wL2

with u, v, andw chosen so that [C̃], [ C̃L], and [C̃L2] are all zero. This implies that

u52@L2#~@L3#@CL#2@L2#@CL2# !/~@L2#326@L3#2!,

v5~@L2#2@CL#26@L3#@CL2# !/~@L2#326@L3#2!,

w526~@L3#@CL#2@L2#@CL2# !/~@L2#326@L3#2!.

The expressions for@C̃2#, [C̃2L], [ C̃2L3], and @C̃3# in terms of@C2# etc., are also needed. These
are given in Appendix B. A basis can be chosen in whichK is diagonal, andC̃A

B andL
A
B may be

written as

C̃5S 0 a b

a 0 c

b c 0
D and L5diag~g1 ,g2 ,2g12g2!.

The expressions for@C̃2#, [C̃2L], and [C̃2L2] in terms ofa, b, c, andgi can be solved fora
2,

b2, andc2 to give

a25@2~2g11g2!~g112g2!#
21~22@C̃2L2#12~g11g2!@C̃2L#1~2g1

213g1g212g2
2!@C̃2# !,

b25@2~g12g2!~g112g2!#
21~2@C̃2L2#12g2@C̃2L#2~g1

21g1g212g2
2!@C̃2# !,

c25@2~g12g2!~2g11g2!#
21~22@C̃2L2#22g1@C̃2L#1~2g1

21g1g21g2
2!@C̃2# !.

These may now be substituted into [C̃3] 2536a2b2c2. In the resulting equation, terms involving
g1 andg2 may be written in terms of@L2# and @L3#. The result is the cubic equation

d3@C̃2L2#31d2@C̃2L2#21d1@C̃2L2#1d050, ~18!

where

d3524,

d255@L2#@C̃2#,

d152@L2#@C̃2L#222@L3#@C̃2#@C̃2L#22@L2#2@C̃2#2,

d052 4
3@L

3#@C̃2L#32 1
2@C̃2#@L2#2@C̃2L#21 2

3@C̃2#2@L2#@L3#@C̃2L#1 1
4@L

2#3@C̃2#3

1 1
18~@C̃2#3@L3#21@C̃3#2@L2#3!2 1

3@C̃3#2@L3#2.
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If we substitute for@C̃2#, etc., in~18! we get

c3@C2L2#31c2@C2L2#21c1@C2L2#1c050, ~19!

where

c3524,

c25@CL#215@L2#@C2#,

c152@L2#@C2L#212@C2#@CL2#222@CL#@CL2#@C2L#22@L3#@C2#@C2L#22@L2#@C3#

3@CL2#2@L2#@C2#@CL#212@L3#@C3#@CL#22@L2#2@C2#2,

c052 4
3~@L3#@C2L#31@C3#@CL2#3!1@C2L#2@CL2#22 1

2@L
2#@C2#~@L2#@C2L#21@C2#

3@CL2#2!12@L3#@C3#@C2L#@CL2#2 4
9@L

3#@C3#@CL#31 2
3@CL#2~@L3#@C2#@C2L#

1@L2#@C3#@CL2# !1 1
3@CL#~@L2#2@C3#@C2L#1@L3#@C2#2@CL2# !1 2

3@L
2#@C2#~@L3#

3@C2#@C2L#1@L2#@C3#@CL2# !2 2
3@L

2#@L3#@C2#@C3#@CL#1 1
4@L

2#3@C2#3

1 1
18~@L3#2@C2#31@L2#3@C3#2!2 1

3@L
3#2@C3#2.

If required, the equations involvingK can be obtained by puttingL5K2 1
3[K] I in ~19!.

Equation~19! is valid for all trace-free symmetric matrices whether or not they are algebra-
ically general. The fact that it is a cubic is perhaps not surprising, but it does mean that@C2K2#
cannot be determined uniquely from the set~1!. This is not the same as the situation when the
characteristic polynomial forC say is solved for its eigenvaluesli . In that case the different
values simply amount to a relabeling of the principal directions. The different solutions of~19!
however correspond to quite different relative alignments of the principal directions ofC andK.
It is also difficult to think of an elegant method for obtaining this equation. The equation itself is
not valid unless bothC andK are symmetric. This means that a simple approach of the type used
to obtain~16! cannot be expected to be successful as those equations are valid for all matrices.

Thus ~17! is a complete set for the invariants formed fromC andK and ~19! is the syzygy
connecting these invariants. Equations such as~15! can be used to write any other invariant as a
function of these invariants. An alternative method for expressing other invariants in this way is to
introduce the eigenvalues~li andgi! and eigenvectors~with componentsu( i )

A andv ( i )
A! of C and

K. Even though the space is complex, in the algebraically general case the eigenvectors of each
matrix can still be chosen to be orthonormal. In that caseCA

B5( i l iu( i )
Au( i )B and

KA
B5( i g iv ( i )

Av ( i )B . Also, the matrixMi j :5u( i )
Av ( j )A will be orthogonal and can be calculated

from the equations

(
i , j

~l i !
m~g j !

n~Mi j !
25@CmKn#, m50,1,2, n50,1,2.

The ambiguities in sign can be resolved to the extent that any remaining uncertainty simply
corresponds to changing the sign of one or more of the eigenvectors.@This approach also leads to
an alternative derivation of~19!.# OnceMi j is known it can be used to write down any invariant
involving C andK. In some sense, the six independent real invariants represented byMi j can be
seen as ‘‘replacing’’ the mixed invariants [CK], @C2K#, and@CK2#.
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These considerations suggest that a classification scheme for the full Riemann tensor, and in
particular the interaction between the Weyl tensor and the Ricci tensor, could be based on the
manner in which the two sets of principal directions are aligned. It seems though that the number
of possibilities could be considerable and the physical interpretation would need to be investi-
gated. It should be noted that these questions of the interaction between the Weyl tensor and the
Ricci tensor and their physical interpretation have recently been investigated by Haddow.18 He
looked at the specific cases of Einstein–Maxwell fields and perfect fluids and based his results on
the manner in which the two sets of principal spinors were aligned.

V. INVARIANTS THAT INVOLVE C AND G

The invariants that involveG are a little more difficult to deal with as they will involve both
C and C̄. However the work of the previous section does provide some assistance. The basis
$v ( i )

A% will also diagonalize the matrixGA
Ḃ . The diagonal elementsmi will be real and will satisfy

(m i)
25g i . We haveGA

Ḃ 5 ( i m iv ( i )
Av̄ ( i )Ḃ and it seems as though it would be possible to write

down an expression for any invariant ofC andG. Some caution needs to be exercised here though
as themi are determined only to within a sign. Potentially there will be eight combinations of sign,
but the value ofD provides a little more information as it gives the sign of the product of themi .
Thus for each choice$m1,m2,m3% there will be another three equally valid choices, namely,
$m1,2m2,2m3%, $2m1,2m2,m3% and $2m1,m2,2m3%. Any equation to be satisfied by one choice,
must also be satisfied by the others. Thus any polynomial identity involving these invariants may
well be of fourth degree or higher.

A simple example will illustrate this point. The combinations5m11m21m3 is an invariant,
but cannot be determined uniquely from the invariants [K]5m1

21m2
21m3

2, D5m1m2m3 and
@K2#5m1

41m2
41m3

4. Even thoughs is not the trace ofG, one could imagine a diagonal matrixSA
B

with diagonal elementsmi . Then @S#5s, @S2#5[K], @S4#5@K2# and detS5D and the Cayley–
Hamilton theorem for this matrix can be used to show that

s41@K#s228Ds12@K2#2@K2#250. ~20!

This fourth degree polynomial is actually as much as we can find out about the invariants from
[K], @K2#, andD. If @K3# was used~instead ofD! the best that could be achieved would be an
eighth degree polynomial, namely,

s824@K#s612~2@K2#1@K#2!s414~@K#322@K#@K2#216D2!s21~2@K2#2@K#2!250,

whereD2 is given by ~13!. @The matrixS has no real significance, other than as an aid for
obtaining equations such as~20!.#

The appearance of~20! suggests it is unlikely there will be simple identities for invariants
involving G. Those that might be sought initially are identities for the invariants mentioned in Sec.
II that have been proposed by other authors. These are [CGC̄Ḡ], [C2GC̄Ḡ], [CGC̄ḠK], and
[CGC̄ḠK2]. As an example, an identity is found for [CGC̄Ḡ]. In principle the same techniques
can be used for others of these invariants, but the results are untidy.

We again make use ofC̃ and takeG5diag~m1,m2,m3!. Then

@C̃GCS Ḡ52~m1m2aā1m1m3bb̄1m2m3cc̄!.

If we put

S5diag~2m1m2aā, 2m1m3bb̄, 2m2m3cc̄!,

then
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@S#5s5@C̃GCS Ḡ#,

@S2#54~g1g2a
2ā21g1g3b

2b̄21g2g3c
2c̄2!,

@S4#516~g1
2g2

2a4ā41g1
2g3

2b4b̄41g2
2g3

2c4c̄4!,

and

detS58g1g2g3~abc!~ āb̄c̄!5 2
9D

2@C̃3#@CS 3#.

The equation satisfied bys is

s41@S2#s228~detS!s12@S4#2@S2#250, ~21!

and both@S2# and @S4# can be expressed in terms of the invariants~17!. To accomplish this,
equations can be obtained fora2, b2, andc2, this time in terms ofX:5[ C̃2], Y:5[ C̃2K], and
Z:5[ C̃2K2]. It does not seem appropriate to make use of the trace-free part ofK in this case. We
find

a25@2~g22g3!~g32g1!#
21~2Z22~g11g2!Y1~g1g21g2g31g1g32g3

2!X!,

b25@2~g12g2!~g22g3!#
21~2Z22~g31g1!Y1~g1g21g2g31g1g32g2

2!X!,

c25@2~g32g1!~g12g2!#
21~2Z22~g21g3!Y1~g1g21g2g31g1g32g1

2!X!.

These equations are substituted into the equations for@S2# and @S4# and terms involvinggi are
written in terms of [K], @K2#, and@K3#. For example,f xx , the numerator of the coefficient ofXX̄
in @S2#, will be a symmetric function ofg1, g2, andg3. It can be written in terms of [K], @K2#, and
@K3# by first settingg352g12g2 to find the term independent of [K], then subtracting this from
f xx , dividing the result by [K] and repeating the procedure. This can be carried out for all such
coefficients.~The computer algebra packageMathematicaproved indispensible at this point.! The
results are

V2@S2#5 f zzZZ̄1 f zy~ZȲ1YZ̄!1 f zx~ZX̄1XZ̄!1 f yyY Ȳ1 f yx~YX̄1XȲ!1 f xxXX̄,

where

V2:5~g12g2!
2~g22g3!

2~g32g1!
2

5 1
2@L

2#323@L3#2

5 1
2@K

2#323@K3#216@K#@K2#@K3#2 7
2@K#2@K2#22 4

3@K#3@K3#1 3
2@K#4@K2#2 1

6@K#6

~22!

and

f zz524@K2#214@K#@K3#,

f zy54@K3#@K2#22@K#@K2#22 16
3 @K#2@K3#14@K#3@K2#2 2

3@K#5,

f zx52@K3#21@K2#32 20
3 @K#@K2#@K3#13@K#2@K2#21 8

3@K#3@K3#2 7
3@K#4@K2#1 1

3@K#6,

f yy524@K3#21 10
3 @K#@K3#@K2#1 10

3 @K#3@K3#2 10
3 @K#4@K2#1 2

3@K#6
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f yx52 4
3@K

3#@K2#21@K#~@K2#32 2
3@K

3#2!1 14
3 @K#2@K3#@K2#2 11

3 @K#3@K2#222@K#4@K3#

1 7
3@K#5@K2#2 1

3@K#7,

f xx52 1
4@K

2#~ 14
3 @K3#21@K2#3!1 11

3 @K#@K3#@K2#222@K#2@K2#31 13
18@K#2@K3#2

2 11
3 @K#3@K3#@K2#1 17

6 @K#4@K2#21 8
9@K#5@K3#2 7

6@K#6@K2#1 5
36@K#8.

The expression for@S4# has been obtained similarly and partial results are given in Appendix B.
Neither of these expressions is particularly simple to deal with. It may be that these coefficients
can be written more simply in terms of the trace of higher powers ofK. For instancef zy can be
written as 4[K3][K2]24[K][K4]. However, similar simplifications are not immediately apparent
for the other terms.

We still need to use~B2! to get Eq.~21! in terms of the invariants~17! and also write@C̃GCS Ḡ#
in terms of@CGC̄Ḡ#. The next step would be to eliminate@C2K2# which can be found from one of
the solutions of the cubic~19!. There will be three solutions of~19! and each one will give four
solutions of~21!. Thus the complete equation for [CGC̄Ḡ] in terms of~1! can be expected to be
of twelfth degree at least. In fact the presence ofZ̄ as well asZ in ~21! means that the degree could
be as high as 36.

Similar procedures can be used to find equations that will be satisfied by [C2GC̄Ḡ],
[CGC̄ḠK], and [CGC̄ḠK2]. Again, the degree of these equations may be as high as 36. Whether
the degree is 12 or 36 it is higher than one may have expected. No doubt it is the complexity of
these equations that has inhibited progress in the field.

VI. CONCLUSION

To date the nature of the relationships connecting the algebraic invariants of the Riemann
tensor has been poorly understood. A number of new relationships have been proposed in this
paper and, even though they should be amongst the simplest, they are more complex than may
have been expected. The use of the bivector formalism makes some aspects of the problem a little
more straightforward. It is shown that the invariants of other authors can also be expressed simply
in terms of bivectors and much of the problem is then reduced to finding relationships between
invariants~under similarity transformations! of two 333 matrices.

For invariants involvingC andK only, a complete set of invariants~17! has been found.
Equation~19! is the syzygy connecting them and can be seen as an equation to obtain@C2K2# from
~1!. All other invariants involvingC andK can be written as polynomial functions of this set by
using equations such as~15!. Alternatively, any invariant can be written~at least in principle! in
terms of the eigenvalues ofC andK and the rotation matrix,Mi j , which connects their eigen-
vectors. This would entail the solution of two cubic equations for the eigenvalues, a cubic equation
for @C2K2#, and a set of linear equations for theMi j .

A complete set for invariants involvingC andG has yet to be found. On the other hand ifmi ,
the diagonal elements of the diagonalized matrixGA

Ḃ , are known it would still be possible to
write any invariant in terms ofMi j together withmi and the eigenvalues ofC. Ideally, each of the
sets of invariants of Carminati and McLenaghan and Zakhary could be connected by~respectively!
two or three real identities. Though this has not been accomplished, it has been shown how to
obtain relationships connectingm3, m4, andm5 with the invariants~1!. Equation~21! is one such
relationship form3 though the coefficients ofs i in this equation are quite complicated. Similar
procedures could be used to find relationships form4 andm5.

Overall, one may have hoped for less complicated relationships between the invariants. It may
be possible to find a complete set for invariants involvingC andG together with a set of syzygies
that are not as complicated as~21!. Clearly more work needs to be done to achieve this goal. Also,
the possibility of a different approach should not be ruled out, but the present work offers no
suggestion as to what form such an approach might take.
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APPENDIX A: ROTOR SPACE

This appendix summarises the main features needed from Buchdahl’s work on rotor
calculus.13 In keeping with that work, and so as to avoid the likely confusion of spinor indices and
rotor indices, the less common notation of using Greek letters for spinor indices has been adopted
for this appendix. Also, Buchdahl uses a different definition for the dual of a bivector, namely,
†f kl52 1

2ie
klmnf mn . However, the requirement for a bivector to be self-dual is equivalent to that

used in the main text and so the content of the results will be unaffected. This requirement is also
seen to be consistent with that of Penrose and Rindler when account is taken of their choice of
e0123.0 rather thane1234.0.

In the same way that spinors and vectors are related by the matricesskmṅ , a self-dual bivector
Fkl can be written in terms of a rotorfA by the equation

Fkl5
1
2tAklf

A, ~A1!

where the connecting matricestAkl are skew-symmetric and self-dual in the indicesk and l . The
covariant componentsfA are given byfA5aABf

A where

aAB5 1
4tAkltB

kl

is the metric to be used in rotor space. This choice will ensure thatFklF
kl5fAfA and it follows

that the inverse relation to~A1! is

fA5 1
2t

AklFkl .

The alternating symbol in rotor space,eABC, can now be introduced together witheABC:5
(1/Aa)eABC andeABC :5 AaeABCwherea : 5det~aAB!. It can also be shown that

tAk
mtBlm5gklaAB2eABCt

C
kl

which can be seen as a defining relation for thet-matrices. IffA is any rotor, its complex

conjugate will be denoted byf̄ Ȧ ~or more simply byf Ȧ! and the bivector12t Ȧklf
Ȧ will be

anti-self-dual.
The relationship between the Weyl tensor andCAB is given by

CAB5 1
4t

A
klt

B
mnC

klmn5 1
4t

A
klt

B
mnC

1
klmn. ~A2!

The matrixGAḂ can be related directly toSkl by

GAḂ5 1
2T̂

AḂklSkl . ~A3!

whereT̂AḂkl:5tAkmt Ḃlm is trace-free and symmetric ink and l and Hermitian inA and Ḃ. The
inverse of~A3! is

Skl5T̂AḂklG
AḂ.
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Rotors can also be related directly to symmetric two-index spinors by using the connecting

matriceslAmn :5
1
2tA

klSklmn . Here,S
klm

n :5s [kml̇s l ]
nl̇ is self-dual ink andl . Thus a rotorf

A can
be expressed in terms of a symmetric two-index spinorfmn by

fA5lAmn f
mn. ~A4!

It can be shown thatlAmnlAab 5 2da
(mdb

n) and so the inverse of~A4! is

f mn5 1
2lAmnfA. ~A5!

It also follows thatf mn f
mn5 1

2fAfA and thel-matrices satisfy

lAmalBn
a5emnaAB1eABCl

C
mn .

Equations~A4!–~A5! differ by a factor of 2 from those in Ref. 13. This difference will ensure
that the spinorCmnrs obtained fromCAB in this way will correspond to the usual choice of the
Weyl spinor. There is however one further difference between this notation and the notation used
by Carminati and McLenaghan. In their work, self-dual bivectors are associated with spinors with
dotted indices. For example, their invariantw1 ~whose spinor form isCmnrsCmnrs! is equal to1

4

C
2

klmnC
2
klmn. In our notation it would be equal to14C

1

klmnC
1
klmn. The difference arises from a

different realization of the connection matricesskmṅ in terms of the Pauli matrices.~Compare for
example the choice in Penrose and Rindler with that of Corson,19 noting that Corson gives
expressions forskṅm , the transpose ofskmṅ .! In fact, in the realization given by Penrose and
Rindler, Sklmn as defined above is anti-self-dual. As a consequence, if an invariant such as
CmnrsCmnrs is expressed in terms of the components of the Riemann tensor, the different conven-
tions will lead to expressions which are complex conjugates of each other.

APPENDIX B: ADDITIONAL EQUATIONS

This appendix contains some of the equations that were considered too lengthy for the main
text. The first set of equations expresses invariants involvingC̃ in terms of those involvingC.
These are

@C̃2#5@C2#2 1
2V

22~@L2#2@CL#2212@L3#@CL#@CL2#16@L2#@CL2#2!,

@C̃2L#5@C2L#1 1
2V

22~@L2#@L3#@CL#222@L2#2@CL#@CL2#16@L3#@CL2#2!,

@C̃2L2#5@C2L2#1 1
2V

22~~2@L3#22 1
2@L

2#3!@CL#212@L2#@L3#@CL#@CL2#2@L2#2@CL2#2!,

@C̃3#5@C3#2 1
2V

22~6@L2#~@L3#@CL#2@L2#@CL2# !@C2#13~@L2#2@CL#

26@L3#@CL2# !@C2L#218~@L3#@CL#2@L2#@CL2# !@C2L2#14@L3#@CL#3

26@L2#@CL2#@CL#2112@CL2#3!, ~B1!

whereV is given by Eq.~22!. In terms ofK these equations become

@C̃2#5@C2#2 1
2V

22~~@K2#218@K#@K3#26@K#2@K2#1@K#4!@CK#2

1~212@K3#14@K#@K2# !@CK#@CK2#1~6@K2#12@K#2!@CK2#2!,
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@C̃2K#5@C2K#2 1
2V

22~~2@K2#@K3#1 1
3@K#2@K3#1@K#3@K2#2 1

3@K#5!@CK#2

1~2@K2#214@K#@K3#28@K#2@K2#12@K#4!@CK#@CK2#

1~26@K3#18@K#@K2#22@K3# !@CK2#2!,

@C̃2K2#5@C2K2#2 1
2V

22~~22@K3#21 1
2@K

2#31 14
3 @K#@K2#@K3#2 7

2@K#2@K2#2

22@K#3@K3#1 17
6 @K#4@K2#2 1

2@K#6!@CK#21~22@K2#@K3#12@K#@K2#2

1 14
3 @K#2@K3#26@K#3@K2#1 4

3@K#5!@CK#@CK2#1~@K2#224@K#@K3#

14@K#2@K2#2@K#4!@CK2#2!,

@C̃3#5@C3#2 1
2V

22~~6@K2#@K3#@CK#2@K2#2@CK2#23@K#@K2#2@CK#16@K#@K3#@CK2#

28@K#2@K3#@CK#16@K#3@K2#@CK#2@K#5@CK# !@C2#1~3@K2#2@CK#218@K3#

3@CK2#124@K#@K3#@CK#16@K#@K2#@CK2#218@K#2@K2#@CK#13@K#4@CK# !

3@C2K#1~218@K3#@CK#118@K2#@CK2#16@K#@K2#@CK#26@K#2@CK2# !@C2K2#

1~4@K3#24@K#3!@CK#31~26@K2#118@K#2!@CK2#@CK#2224@K#@CK#@CK2#

112@CK2#3!. ~B2!

The other set of equations is for@S4#. @S4# is given by

V4@S4#5 f zzzzZZZ̄Z̄1 f zzzy~ZZZ̄Ȳ1ZYZ̄Z̄!1 f zzzx~ZZZ̄X̄1ZXZ̄Z̄!1 f zzyy~ZZȲȲ1YYZ̄Z̄!

1 f zzyx~ZZȲX̄1YXZ̄Z̄!1 f zzxx~ZZX̄X̄1XXZ̄Z̄!1 f zyzyZYZ̄Ȳ1 f zyzx~ZYZ̄X̄1ZXZ̄Ȳ!

1 f zyyy~ZYȲȲ1YYZ̄Ȳ1 f zyyx~ZYȲX̄1YXZ̄Ȳ1 f zyxx~ZYX̄X̄1XXZ̄Ȳ!1 f zxzxZXZ̄X̄

1 f zxyy~ZXȲȲ1YYZ̄X̄!1 f zxyx~ZXȲX̄1YXZ̄X̄!1 f zxxx~ZXX̄X̄1XXZ̄X̄!1 f yyyyYYȲȲ

1 f yyyx~YYȲX̄1YXȲȲ!1 f yyxx~YYX̄X̄1XXȲȲ!1 f yxyxYXȲX̄

1 f yxxx~YXX̄X̄1XXȲX̄!1 f xxxxXXX̄X̄. ~B3!

The coefficientsf are given below. Only the part not involving [K] is given. The full equations are
available from the author.

f zzzz5216@K2#~3@K3#22@K2#3!1@K#3$•••%,

f zzzy532@K3#~@K3#22 2
3@K

2#3!1@K#3$•••%,

f zzzx58@K2#2~2@K3#22@K2#3!1@K#3$•••%,

f zzyy58@K3#2@K2#21@K#3$•••%,

f zzyx5
16
3 @K3#@K2#41@K#3$•••%,
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f zzxx5@K2#61 4
9@K

3#2~3@K3#222@K2#3!1@K#3$•••%,

f zyzy532@K3#2@K2#21@K#3$•••%,

f zyzx5
32
3 @K3#@K2#41@K#3$•••%,

f zyyy5216@K3#3@K2#1@K#3$•••%,

f zyyx52 16
9 @K3#2~6@K3#215@K2#3!1@K#3$•••%,

f zyxx52 4
3@K

3#@K2#2~2@K3#21@K2#3!1@K#3$•••%,

f zxzx54@K2#61 16
9 @K3#2~3@K3#222@K2#3!1@K#3$•••%,

f zxyy52 8
9@K

3#2~6@K3#215@K2#3!1@K#3$•••%,

f zxyx52 8
3@K

3#@K2#2~2@K3#21@K2#3!1@K#3$•••%,

f zxxx52 1
2@K

2#72 2
9@K

3#2@K2#~9@K3#21@K2#3!1@K#3$•••%,

f yyyy5
4
9@K

3#2~12@K3#21@K2#3!1@K#3$•••%,

f yyyx5
16
3 @K3#3@K2#21@K#3$•••%,

f yyxx5
2
3@K

3#2@K2#~2@K3#21@K2#3!1@K#3$•••%,

f yxyx5
8
3@K

3#2@K2#~2@K3#21@K2#3!1@K#3$•••%,

f yxxx5
1
3@K

3#@K2#62 4
27@K

3#3~3@K3#2211@K2#3!1@K#3$•••%,

f xxxx5
1
16@K

2#81 1
36@K

3#2@K2#2~17@K3#215@K2#3!1@K#3$•••%. ~B4!

1V. V. Narlikar and K. R. Karmarkar, ‘‘The scalar invariants of a general gravitational metric,’’ Proc. Indian Acad. Sci.29,
91–97~1948!.
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The group U~2,2! and its subgroup SU~2,2! were considered by Penrose in his
study of the conformal compactificationM of the Minkowski spaceM @R. Penrose
and W. Rindler,Spinors and Space-Time~Cambridge University, Cambridge, 1986!
and R. O. Wells, Jr., Bull. Am. Math. Soc.I , 2 ~1979!#. The standard representation
of SU~2,2! in C4 and inM are the corner stones of twistor theory, which was
created by Penrose to the double purpose of obtaining new solutions of Einstein
equations and new insights on gravitational radiation. We think that other represen-
tations of SU~2,2! or U~2,2! could also bring some information in relativity@see
also, Barut O. Asjim, inNoncompact Lie Groups and some of their Applications,
edited by E. A. Tanner and R. Wilson~Kluwer Academic, Dordrecht, 1994!, p. 103#
and, accordingly, we propose an extension of Penrose twistor program. In this
paper we deal with a new U~2,2!-space, which we denote byW. We show first that
the SU~2,2!-spaceM introduced by Penrose is isomorphic to U~2!, endowed with
an action of SU~2,2! given by non-Abelianhomographic transformations. These
transformations keep invariant the equation det(u2v)50, characterizing the pairs
(u,v)PU~2!3U~2! such that ‘‘u lies on the light-cone ofv.’’ By definition, our
spaceW consists of all pairs (u,v)PU~2!3U~2! satisfying the condition det(u
2v)Þ0. The starting point of this article is the observation thatW carries an
SU~2,2!-invariant pseudo-Riemannian metricL:5Tr[(u2v)21u̇ 3(u2v)21v̇], of
signature~4,4!. (W,L) is in fact an irreducible symmetric space in Cartan’s sense,
which is isomorphic to the quotient SO~2,4!/S@O~1,1!3O~1,3!#. As an irreducible
symmetric space, it is an 8-dimensional Einstein space, whose Ricci tensor is pro-
portional to the metric tensor. We study the geodesic paths of this space giving the
general solutions in terms of initial data and studying the constants of motion. In
particular we determine the geodesic paths which exhibit two periods. We also
show that Mach’s principle on inertial motions receives an explanation in our
theory by considering the particular geodesic paths, for which one of the partners of
an interacting pair is fixed and sent to infinity. In fact we study a dynamical system
(W,L) which presents some formal and topological similarities with a system of
two particles interacting gravitationally. (W,L) is the only conformally invariant
relativistic two-point dynamical system. At the end we show thatW can be natu-
rally regarded as the base of a principal GL~2,C!-bundle which comes with a natu-
ral connection. We study this bundle from differential geometric point of view.
Physical interpretations will be discussed in a future paper. This text is an improve-
ment of a previous version, which was submitted under the title ‘‘Hypertwistor
Geometry.’’@See, K. Teleman, ‘‘Hypertwistor Geometry~abstract!,’’ 14th Interna-
tional Conference on General Relativity and Gravitation, Florence, Italy, 1995.#
The change of the title and many other improvements are due to the valuable
comments of the referee, who also suggested the author to avoid hazardous
interpretations. ©1996 American Institute of Physics.@S0022-2488~96!03702-5#

0022-2488/96/37(2)/1076/10/$10.00
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I. A NATURAL CONFORMAL STRUCTURE ON U(2)

The unitary group U~2! has an underlying structure of a compact 4-manifold, which is dif-
feomorphic toS13S3. The Minkowski space can be identified with the spaceM of 232 Hermitian
matrices. For eachaPU~2! there is a Cayley map

Ca :M→U~2!, x°u52a~ I1 ix !~ I2 ix !21.

The inverse is given by the formulax5 i (a2u)21(a1u) and is defined on the image ofCa ,
which is the subsetUa of U~2! consisting of all unitary matricesu satisfying det(a2u)Þ0 ~the
complement of the ‘‘light-cone’’ ofa!. Therefore, the images of the Cayley maps are open dense
subsets of U~2!.

Remark:The use of the Cayley maps enables us to give physical interpretations to objects in
U~2! by passing to the Minkowski space. For instance, the relations

det~u2v !50; detS dudt D50; detS u* du

dt D,0

characterize light intervals, light trajectories, and massive particle trajectories, respectively.
Using the Cayley maps one can easily show that the space

W:5$~u,v !PU~2!3U~2!udet~u2v !Þ0%

is diffeomeorphic to the product U~2!3M . On the other hand, U~2! carries a conformally flat
Lorentz metric, namely,

r:52det~u* du!,

and the group U~2,2! acts on U~2! through~non-Abelian! ‘‘homographic’’ transformations:

u°u8:5~Au1B!~Cu1D !21,

whereA,B,C,D are 232-matrices such that

S A B

C DD PU~2,2!.

The action is not faithful, since matrices in the centerZ of U~2,2! act by identity. The quotient
U~2,2!/Z is isomorphic to SO~2,4! and, as an SO~2,4!-space, U~2! is isomorphic to the quadric
Q,P5~R! defined by the equation

x1
21x2

22x3
22x4

22x5
22x6

250.

An isomorphism is given by the map

@x1 ,x2 ,x3 ,x4 ,x5 ,x6#°~x11 ix2!
21S x31 ix4 x51 ix6

2x51 ix6 x32 ix4
D .

The above formula for the U~2,2!-action on U~2! implies that, for a pathu~•! in U~2!, we have

du8

dt
5~AC21D2B!~Cu1D !21C

du

dt
~Cu1D !21,

and it follows that

1077Kostake Teleman: Conformal Lorentz geometry revisited

J. Math. Phys., Vol. 37, No. 2, February 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Remark 1: The conformal structure ofU~2! defined by the metricr is invariant under the
action ofU~2,2!, and that the Cayley maps are local conformal equivalences. Endowed with this
structure,U~2! is a conformal compactification of the Minkowski space M.

It is also worthwile to note that the isotropy subgroup at2I is the subgroup of U~2,2! formed
by the matrices

1

2 S ixg1g1~g* !21 ixg1g2~g* !21

2 ixg1g2~g* !21 2 ixg1g1~g* !21D ,
with gPGL~2,C! andx*5x.

II. CONFORMAL INVARIANTS

In this section we explain how ideas from the classical projective geometry can be extended
in the non-Abelian context in order to obtain conformal invariants in our geometry.

If R is a ~possibly noncommutative! ring with unit element, we can define the projective line
overR to be the quotientP1(R):5R0

2/R* , whereR* denotes the multiplicative group of invertible
elements andR0

2 is the subset ofR2 consisting of pairsr ,s with r or s invertible.R0
2 is anR* -space

via the diagonal right action.R itself can be regarded as an affine line and can be embedded in
P1(R) via u°[u,1]. If x5[ r ,s]PP1(R), we say as usual thatr ands are homogeneous coordi-
nates ofx.

For a system (A,B,C,D)P(R* )4 with (A21B2C21D) invertible, the corresponding ‘‘con-
formal transformation’’

@r ,s#°@~Ar1Bs!, ~Cr1Ds!#

is not everywhere defined in general, but it is formally invertible.
In the classical~Abelian! projective geometry it is shown that the biratio associated with four

points on the projective line is invariant under conformal transformations. If the four points lie on
the affine line, the biratio is defined by

~u,v;u1 ,v1!:5~u2u1!~u12v !21~v2v1!~v12u!21.

In the noncommutative case the expressions (u2v), (u,v;u1 ,v1) change under a conformal
transformation according to the laws:

~u2v !°~AC21D2B!~Cu1D !21C~u2v !~Cv1D !21

5~AC21D2B!~Cv1D !21C~u2v !~Cu1D !21,

~u,v;u1 ,v1!°@~AC21D2B!~Cu1D !21C#~u,v;u1 ,v1!@~AC
21D2B!~Cu1D !21C#21

which shows that the biratio is still arelative invariant, i.e., invariant up to an inner automorphism
of the ring.

The point is now that ifR is a ring of matrices, the determinant and the trace of the biratio
give absoluteinvariants, since det and Tr are conjugacy-invariant polynomials on the ring of
matrices. Moreover, the relation ofharmonic conjugation (u,v;u1 ,v1)52I is ~absolute! invari-
ant, as in the classical Abelian case.

Supposing now thatu,u1 and v,v1 are points moving on two distinct or identical paths in
U~2! and makingu1 or v1 to approachu or v, we obtain as limits the following differential relative
invariants:

I 1 :5u̇~u2v !21~v2v1!~u2v1!
21, I 2 :5üu̇2122u̇~u2v !21, I 3 :5~ u̇̈2 3

2üu̇
21ü!u̇21,
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and

I 4 :5u̇~u2v !21v̇~u2v !21.

Therefore
Remark 2: The traces and the determinants of I1, I 2, I 3, and I4 are absolute invariants. In

particular L:5Tr(I 4) is an invariant pseudo-Riemannian metric on the subspace W ofU~2!
3U~2! consisting of all pairs(u,v) with det(u2v)Þ0.

Remark 3:
1. The expressionlog~det(I 4)! has a similar form with the Lagrange function of a system of two
particles, interacting gravitationally according to Newton’s Mechanics.
2. The relation I452I is also invariant, hence it defines a conformally invariant subset of the
tangent space T(W).

III. THE GEODESIC PATHS OF THE SPACE (W,L ) AND THE CONSTANTS OF MOTION

In this section we determine explicitly the geodesics of the pseudo-Riemannian manifoldW,
and we find expressions which remain constant along a geodesic.

The Euler–Lagrange equations for the Lagrange functionL can be written in the form

ü52u̇~u2v !21u̇, v̈52v̇~v2u!21v̇. ~1!

It is not difficult to verify that the solution of these equations corresponding to the initial data

u~0!5a, u̇~0!5a1 , v~0!5b, v̇~0!5b1 ~2!

is given by

u~ t !5~a2bat!~ I2at!21, v~ t !5~b1atb!~ I1tb!21, ~3!

where we have used the notations:

a:5~a2b!21a1 , b:5~a2b!21b1 , t:5k21 tanh~kt!, ~4!

andk is any 232-matrix satisfying

k252ba. ~5!

Note that the matrixt is a function oft and k2, which makes sense even whenk is a singular
matrix.

The initial data~2! must fulfill of course the conditions:

a,bPU~2!; det~a2b!Þ0; ia* a1 , ib* b1PM ,

the last two conditions meaning thatia* a1 ,ib* b1 must be Hermitian matrices. For instance, when
a5I ,b52I ,ia1 ,ib1 must be Hermitian matrices andk must be chosen such that 4k252b1a1 .

Notice now that a Cayley mapCd :M→U~2! defines a chart

W.Wd→Md,M3M

of our manifoldW, which is also given by a homographic expression. The LagrangianL, as well
as the Euler–Lagrange equations~1! keep the same form, if we use the coordinatesx,yPM
induced by such a chart, instead of the U~2!-valued coordinatesu,v. In particular the equations~3!
giving the geodesic paths, as well as the formulas giving the parametersa,b,t,k in dependence on
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the initial data, will also have the same form. The only difference is that the initial dataa5x(0),
a15 ẋ(0), b5y(0), b15 ẏ(0) must be Hermitian matrices this time. For instance, fora50,
b5a15I , b152k2, we get

x5tanh~kt!@k1tanh~kt!#21, y5@11k tanh~kt!#21.

We can write now the equations~3! in the form

u5b1~a2b!~ I2at!21, v5a2~a2b!~ I1tb!21,

and we get

u̇5~a2b!~ I2at!21a~ I2k2t2!~ I2at!21,
~6!

v̇5~a2b!~ I1tb!21~ I2k2t2!b~ I1tb!21,

u2v5~a2b!~ I2at!21~ I1at2b!~ I1tb!215~a2b!~ I1tb!21~ I1tbat!b~ I2at!21.
~7!

On the other hand, sincek252ba, we have the identities

I1tbat5I2k2t2, I1at2b5a~t22k22!b5a~ I2k2t2!a21.

We obtain

~u2v !21v̇~u2v !21u̇52~ I2at!k2~ I2at!21,

which shows that, for every geodesic path, it holds

~Tr I 4!~u,v,u̇,v̇ !52Tr k2, ~det I 4!~u,v,u̇,v̇ !5det k4.

Put noww:5(u2v)21,c:5(a2b)21, and let us introduce the Hamiltonian coordinates

p:5wv̇w, q:5wu̇w.

The equations~3! become

p52~ I2at!k2~ I2k2t2!21a21~ I2at!c,

q5~ I2k2ta21!a~ I2k2t2!21~ I2k2ta21!c,

and easy computations show that the expressions

A5pu1qv, B5p1q, C5upu1vqv, D5up1vq ~8!

are constant along every geodesic path. In fact these expressions are the constants of motion
provided by Emmy Noether’s theorem on conservations laws applied to the Lagrange functionL
and to the symmetry group SU~2,2! ~see for instance Ref. 5!.

From the last formulas one easily obtains

v~A2Bu!5~C2Du!, uA2C5~uB2D !v,

hence there exist~constant! homographic transformations mapping one partner into the other. For
instance,

v5~C2Du!~A2Bu!215~uB2D !21~uA2C!.
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SinceA,B,C,D depend symmetrically onu andv, we obtain two other relations by permutingu
andv. We can also see thatu andv are solution of the~non-Abelian! quadratic equation~with
constant coefficients!

u~AB2BD!u1u~BC2A2!1~D22CB!u1~CA2DC!50.

This can be interpreted in the following way:u andv are fixed points of the homographic
transformation

u°„~D22CB!u1~CA2DC!…„~BD2AB!u1~A22BC!…21,

whose coefficients are the entries of the matrixM2, where

M:5S 2D C

2B AD .
This matrix belong to the Lie algebra of the group SU~2,2!, because we always have

A*1A5D*1D50, B*5C, Tr A5Tr D.

The matrixM has an important geometrical interpretation. There is a well-known theorem of E´ lie
Cartan asserting that, in any symmetric space and for any geodesic pathg, there is a one-
parameter groupGg of isometries~called transvections!, which translate the points ofg alongg
itself. In our case, we claim that the groupGg is formed by the matrices exp~tM!, tPR, whereM
is the matrix associated with the geodesicg as explained above. Indeed, from~8! we get easily that
u~•! andv~•! satisfy the equation

u̇5uBu2uA2Du1C. ~9!

On the other hand, the group$exp~tM!utPR% induces on U~2! a tangent vector field whose
trajectories are precisely the solutions of the differential equation~9!. Thusg is invariant under the
transformations exp~tM!.

There is a second important geometric property of Cartan’s symmetric spaces:
Proposition 4: In any symmetric space, each point m is an isolated fixed point of an involutive

isometry Im , which reverses the geodesic paths starting from m.
Using again non-Abelian projective geometry, we can easily find the isometryI m . Let
m5(a,b)PW, and consider a geodesic~u~•!,v~•!! satisfying the initial conditionu(0)5a, v(0)
5b. Using the formulas~3! we can easily verify that

~a,b,u~ t !,u~2t !!5~a,b,v~ t !,v~2t !!52I .

Since, by definition,I m(u(t))5u(2t) and I m(v(t))5v(2t), we see that
Remark 5: The symmetry Im maps any pair(u,v)PW into the pair(u8,v8) formed by the

harmonic conjugatesof u andv with respect to the pair(a,b).
We also notice thatu~•! can be formally obtained fromv~•! by performing the transformation

t°t8:5k22t21 in ~3!. ~Note that in general this change does not correspond to a transformation of
the parametert.! For t56k21, we gett85t, hence

Remark 6: The two points P6 obtained by replacing formallyt by6k21 in the equations (3)
are also constants of motion. For any t, the partners u(t),v(t) are harmonic conjugate with
respect to the constant pair(P1 ,P2):

„P1 ,P2 ,u~ t !,v~ t !…52I .

By ~8!, the matrixM is also given by the expression
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M5S u v

I I D S p 0

0 qD S 2I u

2I v D
and it follows that

detM5det k2.

On the other hand we obviously have

Tr~M2!5Tr~A21D222BC!52 Tr~k2!.

Note finally that, whileA,B,C,D are uniquely determined by a given geodesic path and are
invariant with respect to the translations along that path, the matrixk2 also depends on the initial
data.

IV. THE TOPOLOGICAL BEHAVIOR OF SOME GEODESIC PATHS

The group U~2,2! acts transitively onW. This implies that any geodesic path is equivalent to
a geodesic path with initial data

a5I , b52I .

The isotropy groupH,U~2,2! of (I ,2I ) is

H 12 S g1~g* !21 g2~g* !21

g2~g* !21 g1~g* !21D UgPGL~2,C!J ,
hence it is isomorphic to GL~2,C!.

The motion-equations~3! give in the casea5I ,b52I

u~ t !5~2I1a1t!~2I2a1t!21, v~ t !5~22I1tb1!~2I1tb1!
21, ~10!

and the matrixM associated with such a geodesic becomes

1

4 S 2b11a1 b11a1

2b12a1 b12a1
D .

Since 4k25( ia1)( ib1) is a product of two Hermitian matrices, its eigenvalues are either real or
complex conjugated to each other. This means that

Remark 7: The trace and the determinant of the matrix k2 are, in all cases, real numbers.
These are the main invariants associated with a geodesic path. We shall first consider the case

of two massive interacting particles, i.e., the case when

deta1,0, detb1,0.

It follows detk2.0. Using the isotropy groupH, we can transform the geodesic path~10! into a
geodesic path with

a15 i I , b15 i diag~l,m!, 4k25diag~l,m! with lPR, mPR.

In this case, the matricesu(t),v(t) will remain diagonal, for anyt. Let us consider the interesting
case when bothl,m are negative, and let us introduce thereal matrix h:52 ik. Then

t5h21 tan~ht!5diag„h11
21 tan~h11t !,h22

21 tan~h22t !…,
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where 4h11
2 52l, 4h22

2 52m. The first equation in~10! shows thatu(t) is a diagonal matrix with
complex entries of module 1:

uj j5~2hj j1 i tan~hj j t !!~2hj j2 i tan~hj j t !!21, j51,2. ~11!

The above equations define a path in the torusT25S13S1, which is periodic whenh1/h2 is
rational, and is dense inT2 otherwise. The same holds for the componentsv11(t), v22(t) of the
diagonal matrixv, hence:

Remark 8: We have identified a class of geodesic paths which exhibit two periods Tj5p/hj ,
in some similarity with the behavior of the geodesic paths in the Schwartzschild space.

From ~10! we get the formula

~u2v !215
1

2
cos~2ht!1

i

4
~h211!h21 sin~2ht!

which reminds on the classical formulae givingr21 in Newton’s and Schwartzschild’s theories on
planetary motions.

The caseb150 in ~10! corresponds to a motion in which the partnerv is fixed,v52I , k250,
t5t and u5(21 i t )(22 i t )21I . Using a Cayley chart which sends2I to infinity in the
Minkowski space, we obtain for the first partneru an inertial motion in the Minkowski space

x~ t !5 1
2t.

This case should be related toMach’s principle , asserting that inertial motions of particlesu are
produced by the attraction of particlesv situated at infinity.

Let us discuss other classes of geodesics:
The condition detu̇50 means that the particleu is moving with velocity 1, which is, convention-
ally, the light velocity. Taking in~10! a1, b1 such that deta150 ~or deta15detb150!, we obtain
solutions with the property that one component,~respectively, both components! are light trajec-
tories.

When deta1.0, detb1.0, u andv are tachions. An example is given by the case

a15S 0 i

i 0D , b15S 0 21

1 0 D , 4k25S i 0

0 2 i D .
V. THE PRINCIPAL FIBER BUNDLE U(2,2)˜W

The elements of U~2,2! define distinguished accelerated frames in the Minkowski space,
which we calltwisted frames. This class of frames should have a physical significance, express-
ing some internal symmetry properties of elementary particles. Therefore we think there is some
interest to relate more deeply our previous results to the Lie group U~2,2!.

We study first the principal fibre bundle U~2,2!→W which exhibits the pseudo-Riemannian
manifoldW as a homogeneous space:

We define the mapP:U~2,2!→W by associating to each matrix

N5S A B

C DD PU~2,2!

the image of (I ,2I ) via the homographic transformation~also denoted byN! defined byN:

P~N!:5~u,v !, u5~A1B!~C1D !21, v5~A2B!~C2D !21.

PutK: 5 ( I
I

2I
I ). With each point (u,v)PW and eachgPGL~2,C! we further associate the matrix
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N~u,v,g!:5S h g

uh vgDK, h:52 1
2~u2v !21v~g* !21.

It follows N(u,v,g)PU~2,2! and N(u,v,g)(I ,2I )5(u,v). Moreover, the map
W3GL~2,C!{(u,v,g)°N(u,v,g)PU~2,2! is a diffeomorphism and defines a global trivialization
of the bundleP:U~2,2!→W. In particular, the group U~2,2! is diffeomeorphic to the product
W3GL~2,C!.

The group U~2,2! carries a standard, bi-invariant pseudo-Riemannian metric

s5Tr@~N21dN!2#5Tr@~JN* JdN!2#, J:5S I 0

0 2I D .
The Lie algebraL„U~2,2!… of U~2,2! has a nondefinite Hermitian structure and a corresponding
pseudo-orthogonal decomposition

L„U~2,2!…5L~H ! %L~H !',

whereH is the isotropy group of (I ,2I ).
It is convenient to transform all matrices under consideration according to the rule

N°N8:5KNK21. In this way we obtain a subgroupH8 of the Lie group~K•U~2,2!•K21!, a fiber
bundle P8:~K•U~2,2!•K21!→W, a distributionD85L(H8)',T~K•U~2,2!•K21! and a pseudo-
Riemannian metrics85Tr@(N821dN8)2# on ~K•U~2,2!•K21!. The corresponding trivialization of
P8 is given byN8(u,v,g) 5 K(uh

h
vg
g ), and, using again the notationw:5(u2v)21, we get

N821dN85diag~h,g!21S dh1w du h w dv g

2w du h dg2w dv gD .
It can be easily seen now that the distributionD8 can be defined by any of the two equivalent

equations

dq5w dv g, dh52w du h.

Proposition 9: The principal fibration P:U~2,2!→W is, up to a constant factor, a pseudo-
Riemannian submersion.

Indeed, it is enough to prove thatP8:K•U~2,2!•K21→W is a pseudo-Riemannian submersion.
But the restriction ofs85Tr@(N821dN8)2# to D8 is 2 Tr(w du w dv), which obviously coincides
with twice the restriction to this distribution of the pull-back [P8] * (L) of our LagrangianL.

This mathematical result can be reformulated as follows:
Remark 10: The dynamical system defined by the Lagrange function L:T(W)→R is equivalent

with the dynamical system defined by the Lagrange functions5Tr@(JN* JdN)2#: T~M4~C!!→R
and by the constraints

N* JN5J, dg5w dv g.

Note that

w:5g21~dg2w dv g!

is the connection form of the canonical connection in the principal fiber bundleP:U~2,2!→W; the
corresponding curvature form is

V5dv1v`v5g21~u2v !21 du`~u2v !21 dv g.
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Since the principal bundleP:U~2,2!→W is a sub-bundle of the principal bundle of pseudo-
orthogonal tangent frames of (W,L), the formV gives also the curvature of the Levi–Civita
connection of the pseudo-Riemannian space (W,L).

1Barut O. Asim, ‘‘The extension of Space-Time Physics in the 8th dimensional Homogeneous SpaceD5SU~2,2!/K,’’ in
Noncompact Lie Groups and some of their Applications, edited by E. A. Tanner and R. Wilson~Kluwer Academic,
Dordrecht, 1994!, p. 103.

2R. Penrose and W. Rindler,Spinors and Space–Time ~Cambridge University, Cambridge, 1986!.
3M. Teleman and K. Teleman, ‘‘Un crite´re de classification pour les particules e´lémentaires,’’ Comptes Rendus A275,
943–944~1972!.

4M. Teleman and K. Teleman, ‘‘Sur la classification des particules e´lémentaires,’’ Comptes Rendus A277, 81–82~1973!.
5K. Teleman,Geometrie Diferentiala locala˘ şi globală ~Editura Tehnica, Bucuresti, 1974!.
6K. Teleman, Hypertwistor Geometry~abstract!,’’14th International Conference on General Relativity and Gravitation,
Florence, Italy, 1995.

7R. O. Wells, Jr., ‘‘Complex Manifolds and Mathematical Physics,’’ Bull. Am. Math. Soc.I , 2 ~1979!.
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Comment on Ricci collineations of static spherically
symmetric spacetimes
[J. Math. Phys. 35, 3005–3012 (1994)]

R. Bertolotti, G. Contreras, L. A. Núñez,a) and U. Percocob),c)
Departamento de Fı´sica, Facultad de Ciencias, Universidad de los Andes,
5101 Mérida, Venezuela

J. Carotd)
Departmento de Fı´sica, Universitat de les Illes Baleares, E-07071,
Palma de Mallorca, Espan˜a

~Received 5 July 1995; accepted for publication 9 October 1995!

We present a counter example to a theorem given by Amiret al. @J. Math. Phys.35,
3005–3012~1994!#. We also comment on a misleading statement of the same
reference. ©1996 American Institute of Physics.@S0022-2488~96!04001-9#

In a recent paper, M. Jamil Amiret al.1 have presented a detailed analysis of Ricci collinea-
tions ~RC! for static, spherically symmetric spacetimes, with a special focus on the relationship
between RC and isometries~KV !. This has led the authors to the following theorem.

Theorem 1: Spherically symmetric static spacetimes with a nonzero (and noninfinite) deter-
minant of the Ricci tensor have RCs identical with the Killing vector, but when the determinant is
zero there may be additional degrees of freedom, giving infinitely many RCs for each degree of
freedom.

We have found a counter example to this result. The metric for spherically symmetric static
spacetimes can be written in the form2

ds252en~r ! dt21el~r ! dr21r 2~dq21sin2 f df2!. ~1!

The Ricci tensor for this metric is diagonal and can be written asR005A(r ), R115B(r ),
R225C(r ), andR335C(r )sin2 q. Let us consider the particular case in whichA(r )5C(r )51,
which leads to the metric

n~r !5
r 4

8r 0
2 1h ln

r

r 0
1k, l~r !5n~r !12 ln

r

r 0
, ~2!

with

B~r !52
h11

r 2
, ~3!

wherer 0 , h, andk are constants.
From the equation for RC,

£jRab50, ~4!

a!Electronic mail: nunez@ula.ve
b!Electronic-mail: upercoco@dino.conicit.ve
c!On leave from Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas~IVIC !, Apartado 21827, Caracas
1020-A, Venezuela.

d!Electronic-mail: dfsjcg0@ps.uib.es
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we obtain

j ,t
t 50, ~5!

j ,r
t 1B~r !j ,t

r 50, ~6!

j ,q
t 1j ,t

q50, ~7!

j ,f
t 1sin2 qj ,t

f50, ~8!

B8~r !j r12B~r !j ,r
r 50, ~9!

B~r !j ,q
r 1j ,r

q50, ~10!

B~r !j ,f
r 1sin2 qj ,r

f50, ~11!

j ,q
q 50, ~12!

j ,f
q 1sin2 qj ,q

f 50, ~13!

cot qjq1j ,f
f 50. ~14!

Equations~5! and ~9! can be integrated, givingj t5((r ,q,f) and j r5K(t,q,f)B21/2, respec-
tively. Substituting these expressions into theq-derivative of Eq. ~6! we find that
K(t,q,f)5S1(q,f)t1S2(q,f). Using these results into~7! and ~8!, we obtain an expression
for j:

j t5S~r ,q,f!, j r5
S1~q,f!t1S2~q,f!

B1/2 , ~15!

jq52S ,qt1G~r ,q,f! and jf52S ,ft1C~r ,q,f!. ~16!

Substitution of j into ~6! and ~10!–~14! enables us to completely determine the functions
S(r ,q,f), S1(q,f), S2(q,f), G(r ,q,f), andC(r ,q,f). Then,

j052c4A2~h11! ln r1c0 ,

j15
c4t1c5

A2~h11!
r ,

~17!
j25c1 sin f2c2 cosf,

j35~c1 cosf1c2 sin f!cot q1c3 .

According to Theorem 1,~17! should represent an isometry; however, it is easy to see thatj does
not reduce to a KV unlessc45c550. This result invalidates the theorem stated above. Moreover,
it is straightforward, but tedious, to show that the same condition is necessary forj to reduce to a
Riemann collineation~£jRbcd

a 50!. Therefore~17! is a proper RC.
Next, we should like to make a remark on a misleading statement that appears in Amiret al.:1

‘‘... there is no reason,a priori, why a RC should be a KV orvice versa... .’’ It is easy to show that
any KV is a RC. Indeed, Katzinet al.3 have proved that a necessary and sufficient condition for a
spacetime to admit a curvature collineation~CC! is
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„~£jgim! ; j1~£jgmj! ; i2~£jgi j ! ;m…;k2„~£jgkm! ; j1~£jgmj! ;k2~£jgk j! ;m…; i50. ~18!

Then, it is evident that a KV satisfies the above condition and, as it is well known, every CC is a
RC.

The analysis of RC for the general case of static, spherically symmetric metrics, i.e.,A(r ) and
C(r ) arbitrary, is obviously more involved and its complete solution will be reported elsewhere.
The study of RC fornonstaticspherically symmetric metrics gives interesting results which will
be the subject of a subsequent publication.

Algebraic calculations of the present work have been checked withMAPLE V. The authors wish
to thank the staff of the SUMA, the computational facility of the Faculty of Science~Universidad
de Los Andes!, for making this work possible.

This work has been partially supported by the Consejo de Desarrollo Cientı´fico Humanı´stico
y Tecnológico de la Universidad de Los Andes and the Programa de Formacio´n e Intercambio
Cientı́fico ~Plan III!.
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Erratum: Ricci collineations of static spherically
symmetric spacetimes
[J. Math. Phys. 35, 3005–3012 (1994)]

M. Jamil Amir, Ashfaque H. Bokhari, and Asghar Qadir
Mathematics Department, Quaid-i-Azam University, Islamabad, Pakistan

~Received 22 September 1995; accepted for publication 9 October 1995!

@S0022-2488~96!04101-5#

We are grateful to R. Bertolotti, L. A. Nunez, U. Percoco, and J. Carot for pointing out a
serious error in the statement of Theorem 1 of the above paper.1 Counter examples to it are
available in an earlier paper by two of us2 ~A.H.B. and A.Q.! as cases~Ia! and~IIyi !. The correct
statement is that ‘‘Spherically symmetric static spacetimes with higher than minimal isometries
and with a nonzero~and noninfinite! determinant of the Ricci tensor have RCs identical with the
KVs of the spacetimes, but when the determinant is zero there may be additional degrees of
freedom, giving infinitely many RCs for each degree of freedom.’’ They also feel that the state-
ment ‘‘...there is no reason,a priori, why a RC should be a KV or vice versa...’’ in our paper is
misleading. Our intention was not to say that all KVs are not RCs, but that it is nota priori
obviousthat this is so. We agree that it can be proved easily enough and intuition does suggest it.

1M. J. Amir, A. H. Bokhari, and A. Qadir, J. Math. Phys.35, 3005~1994!.
2A. H. Bokhari and A. Qadir, J. Math. Phys.34, 3543~1993!.
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Null surfaces, initial values, and evolution operators
for spinor fields

Ronald J. Adlera) and Ovid C. Jacobb)
Department of Physics and Astronomy, San Francisco State University,
San Francisco, California 94132
and Stanford Linear Accelerator Center, Stanford, California 94309

~Received 8 June 1995; accepted for publication 13 November 1995!

We analyze the initial value problem for spinor fields obeying the Dirac equation,
with particular attention to the characteristic surfaces. The standard Cauchy initial
value problem for first-order differential equations is to construct a solution func-
tion in a neighborhood of space and time from the values of the function on a
selected initial value surface. On the characteristic surfaces the solution function
may be discontinuous, so the standard Cauchy construction breaks down. For the
Dirac equation the characteristic surfaces are null surfaces. An alternative version
of the initial value problem may be formulated using null surfaces; the initial value
data needed differs from that of the standard Cauchy problem. We study, in par-
ticular, the intersecting pair of characteristicst5x and t52x ~and supress they
and z dependence!. In this case the values of separate components of the spinor
function on the intersecting pair of null surfaces comprise the necessary initial
value data. We present an expression for the construction of a solution from the null
surface data; two analogs of the quantum mechanical Hamiltonian operator deter-
mine the evolution of the system. ©1996 American Institute of Physics.@S0022-
2488~96!02003-X#

I. INTRODUCTION

In this work we discuss the initial value problem for spinor fields obeying the free particle
Dirac equation, with particular regard to characteristic surfaces. The standard Cauchy problem for
a first-order partial differential equation is to use the values of the solution function on an initial
value surface to determine the values of the function in a neighborhood of the surface.1 The
solution of the problem proceeds by showing how the initial value data and the differential
equation determine all the time derivatives of the function on the initial surface and thus allow a
power series development of the function for future times.

If the solution function has a discontinuity across some special surface, then the standard
Cauchy problem cannot be solved using that surface for the initial value data. Such surfaces are
called characteristic surfaces, or simply characteristics. The characteristics of the Dirac equation
for a free particle in flat space are easily shown to be null surfaces. Thus, the discontinuities of the
solution functions propagate at the velocity of light, independent of the mass parameter in the
equations. The characteristics of Maxwell’s equations, the Klein–Gordon equation, and the
vacuum Einstein equations of general relativity are also all null surfaces.1,2

First, we briefly review the standard Cauchy problem for the Dirac equation. Then we obtain
the characteristics~null surfaces!, and, in particular, we study the pair of planar null surfacest5x
and t52x. For this pair of surfaces we solve the analog of the Cauchy problem, surpressing
dependence ony andz. Initial data for this situation consists of the values of disparate components
of the spinor function on thepair of null surfaces. We give a simple evolution operator expression

a!Electronic mail: adler@stars.sfsu.edu
b!Permanent address: Department of Physics and Astronomy, Sonoma State University, Rohnert Park, California 94928.
Electronic mail: jacob@unixhub.slac.stanford.edu
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in terms of null coordinates, which is a direct analog of the usual expression of quantum theory,
except thattwo analogs of the Hamiltonian operator determine the evolution of the solution, that
is, are generators of displacements in the null coordinates.3–7 The result is remarkably similar to
that obtained for the scalar field.8

II. DEVELOPMENT OF A SPINOR FUNCTION FROM A CONSTANT TIME SURFACE

Since the Dirac equation may be expressed in Hamiltonian form, the development of a solu-
tion from initial value data given on a constant time surface is one of the most familiar problems
of physics.9 We express the Dirac equation in Hamiltonian form as10

ic ut~x,t !5@2 ia–“1bm#c~x,t !5Hc~x,t !. ~1!

~We use units in which\5c51. The slash notation indicates differentiation with respect to the
indicated variable, in this case timet.! We write a Taylor series expansion as

c~x,t !5c~x,t ! t501c ut~x,t ! t50t1c utut~x,t ! t50t
2/21••• . ~2!

All of the time derivatives att50 may be readily obtained from the Dirac equation and the value
of the spinor functions att50, which we callh~x!. When substituted in the series, these give the
familiar result,

c~x,t !5c~x,t ! t501~2 iH !c~x,t ! t50t1~2 iH !2c~x,t ! t50t
2/21•••5e2 iHth~x!. ~3!

The indicated exponential of the Hamiltonian operator is thereby seen as the finite time displace-
ment operator.

III. CHARACTERISTICS OF THE DIRAC EQUATION

The characteristics of the Dirac equation are found in the standard way, as discussed in Ref.
1; since the Dirac equation is first order in time, the problem is particularly easy. We suppose that
the initial value of the solution is given on a surfaceS, t5T~x!, by a four component spinor~see
Fig. 1!,

c„x,T~x!…5h~x!, ~4!

and that the solution is given by a Taylor series expansion,

c~x,t !5c~x,t ! t5T1c ut~x,t ! t5T@ t2T~x!#1c utut~x,t ! t5T@ t2T~x!#2/21••• . ~5!

FIG. 1. Initial value surface for the Dirac equation.
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To find the first time derivative in~5!, we first express the gradient of the initial value function
h in terms ofc, as

“h~x!5“c~x,t ! t5T1c ut~x,t ! t5T “T~x!. ~6!

From this and the Dirac equation~1! we may write an equation for the time derivative ofc onS,

i @ I2a–“T~x!#c ut~x,t ! t5T52 ia–“h~x!1bmh~x!. ~7!

This may be solved for the time derivative if the matrix in square brackets has an inverse. The
determinant of that matrix is easily found to be

uI2a–“T~x!u5„12“T~x!2…2. ~8!

Thus the condition thatS be a characteristic is that the above quantity be zero, or

“T~x!251. ~9!

This equation states that the four-vector normal~1,“T! is a null vector, or that the characteristic is
a null surface. It is the same as the characteristic equation for Maxwell’s equations2 and for the
Klein–Gordon equation.1,8 Note that the equation is independent of the mass parameter in the
Dirac equation. The particular null surfaces that we will study in the remainder of this paper are

u5t2x50,
v5t1x50,

u characteristic or null surface,
v characteristic or null surface ~10!

~see Fig. 2!. These are easily seen to be solutions of~9!.

IV. CONSTRUCTION OF A SOLUTION FUNCTION IN TERMS OF NULL COORDINATES

The covariant form of the Dirac equation is10

gai
]

]xa c5mc. ~11!

FIG. 2. The Cartesian coordinatest andx, and the null coordinateu andv.
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We will study this using the null coordinatesu5t2x andv5t1x, and suppress dependence ony
andz in all that follows.11 Then the gamma matrices aregu5g02g1 andgv5g01g1. The Dirac
equation and the gamma matrix algebra in terms of the null coordinates are

Fgui
]

]u
1gvi

]

]vGc~u,v !5mc~u,v !,

~12!
gugv

4
1

gvgu

4
5I , ~gu!25~gv!250.

We define a pair of projection operators as

Lu5
gugv

4
, Lv5

gvgu

4
. ~13!

From ~12!, the usual projection operator properties follow, that is

Lu1Lv5I , LuLu5Lu , LvLv5Lv , LvLu5LuLv50. ~14!

To analyze the Dirac equation on and near the null surfacesu50 andv50, we make an
expansion in the massm, since the solutions of the zero mass Dirac equation are functions of only
u or only v. Thus, we write

c~u,v !5c~0!~u,v !1mc~1!~u,v !1m2c~2!~u,v !1••• . ~15!

Substitution of this into the Dirac equation gives the following set of iterative equations:

Fgui
]

]u
1gvi

]

]vGc~0!~u,v !50, Fgui
]

]u
1gvi

]

]vGc~n!~u,v !5c~n21!~u,v !. ~16!

A solution of the zeroth-order equation is easy by inspection,

c~0!~u,v !5Luf ~u!1Lvg~v !. ~17!

Here the functionsf andg are any differentiable 4-tuple functions ofu andv; we will call these
the generating functions. It is instructive to consider a representation of the gamma matrices in
which the projection operatorsL are diagonal; then theL and the zeroth-order solution are

Lu5S 1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D , Lv5S 0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

D , c~0!~u,v !5S f 1~u!

f 2~u!

g3~v !

g4~v !
D . ~18!

Thus, only two components off and two components ofg enter the solution.
The first-order equation~16! is

Fgui
]

]u
1gvi

]

]v Gc~1!~u,v !5Luf ~u!1Lvg~v !. ~19!

Only a particular solution to this is needed since the homogeneous solution may be absorbed into
the zeroth-order solution. We break the equation intou andv parts by premultiplying bygu and
using ~12! to get
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i
]

]v
Luc

~1!~u,v !5
1

4
guLvg~v !. ~20!

The right side of this is a function ofv only, so the left side must be as well. Thus, we may write
a solution by integration,

Luc
~1!~u,v !5

2 i

4
guLvE

v0

v
g~v8!dv8. ~21!

Herev0 is an arbitrary parameter. In the same way we may obtain a similar expression for thev
projection of the solution,

Lvc
~1!~u,v !5

2 i

4
gvLuE

u0

u

f ~u8!du8. ~22!

The sum of~21! and ~22! gives the complete first-order solution,

c~1!~u,v !5
2 i

4 FguLvE
v0

v
g~v8!dv81gvLuE

u0

u

f ~u8!du8G . ~23!

The second-order equation~16! may now be written as

Fgui
]

]u
1gvi

]

]vGc~2!~u,v !5
2 i

4 FgvLuE
u0

u

f ~u8!du81guLvE
v0

v
g~v8!dv8G . ~24!

As before we premultiply bygu to obtain, with the use of~13! and ~14!,

]

]v
Luc

~2!~u,v !5
21

4
LuE

u0

u

f ~u8!du8. ~25!

Since the right side of this is a function of onlyu, we may write a particular solution by inspec-
tion,

Luc
~2!~u,v !5

21

4
~v2v0!LuE

u0

u

f ~u8!du8. ~26!

In the same way we may obtain thev projection of the solution,

Lvc
~2!~u,v !5

21

4
~u2u0!LvE

v0

v
g~v8!dv8. ~27!

Summing~26! and ~27! we have the complete second-order solution,

c~2!~u,v !5
21

4 F ~v2v0!LuE
u0

u

f ~u8!du81~u2u0!LvE
v0

v
g~v8!dv8G . ~28!

The procedure is now clear, and we may continue to all orders; the even orders are similar in form,
and the odd orders are similar in form. The complete series solution is
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c~u,v !5 (
n50

`
@2~m2/4!~v2v0!Gu#

n

n! S 12
im

4
gvGuDLuf ~u!

1 (
n50

`
@2~m2/4!~u2u0!Gv#

n

n! S 2
im

4
guGvDLvg~v !, ~29!

where the multiple integral operatorGn is defined as

Gu
nf ~u!5E

u0

u

du8E
u0

u8
du9•••E

u0

un21

dun f ~un!. ~30!

The series~29! may be readily summed to give a concise expression for the solution

c~u,v !5expF2Sm2

4 D ~v2v0!GuG S 12
im

4
gvGuDLuf ~u!

1expF2Sm2

4 D ~u2u0!GvG S 12
im

4
guGvDLvg~v !. ~31!

This gives a solution of the free particle Dirac equation for any pair of generating functionsf and
g; the generating functions together have only four independent components, however, so this
initial value data contains the same amount of information as that in the standard Cauchy problem.

V. INITIAL VALUES ON NULL SURFACES

The generating functionsf andg are arbitrary functions, and are simply related to the initial
values of the solution on the null surfaces, as we will now discuss. In this and the following
section we setu05v050 without loss of generality.

To get a relation between the initial values of the functionc on the null surfaces and the
generating functionsf andg, we setu50 and thenv50 in ~31! and easily find

c0~u,0!5S 12
im

4
gvGuDLuf ~u!1Lvg~0!,

~32!

c0~0,v !5S 12
im

4
guGvDLvg~v !1Luf ~0!.

We wish to make a convenient choice for the values off ~0! andg~0!; takingu5v50 in ~32!, we
see that

c0~0,0!5Luf ~0!1Lvg~0!. ~33!

Accordingly, we choosef (0)5g(0)5c0(0,0); then the quantities that appear in the evolution
expression~31! are

S 12
im

4
gvGuDLuf ~u!5c0~u,0!2Lvc0~0,0!,

~34!

S 12
im

4
guGvDLvg~v !5c0~0,v !2Luc0~0,0!.
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Thus, the spinorial expressions in parentheses turn the arbitrary 4-tuple functions into the indicated
initial data on the null surfaces. These expressions may be inverted if it is desired to obtainf and
g,

Luf ~u!5S 11
im

4
gvGuD @c0~u,0!2Lvc0~0,0!#,

~35!

Lvg~v !5S 11
im

4
guGvD @c0~0,v !2Luc0~0,0!#.

In terms of the initial values of the solution, the expression~31! now reads

c~u,v !5exp@2~m2/4!~v2v0!Gu#„c0~u,0!2Lvc0~0,0!…

1exp@2~m2/4!~u2u0!Gv#„c0~0,v !2Luc0~0,0!…. ~36!

This is a complete expression for the evolution of the solution from its values on the pair of null
surfacesu50 andv50. Note that only thesquareof the mass appears in the evolution operators.

The form of the solution in~36! is very similar to that obtained in Ref. 8 for scalar fields
obeying the Klein–Gordon equation; the two exponential evolution operators are identical and
only the forms of the initial data expressions are slightly different since the present one contains
spin information. Thus, in terms of the null coordinates the dynamics of scalar and spinor fields is
remarkably similar, much more so than in terms of the usual Cartesian coordinates.

VI. PLANE WAVES

We wish to verify the consistency of~36! for plane wave solutions of the Dirac equation. We
will show that if the appropriate initial data functions are put into~36!, then the solution function
generated is the appropriate plane wave. We write a plane wave solution in Cartesian and null
coordinates as

c~u,v !5e2 i ~Et2kx!w~E,k!5e2 i ~lu1tv !w~l,t!. ~37!

Herew is the usual Dirac 4-tuple spin function and the null momenta are given by

l5
E1k

2
, t5

E2k

2
, lt5

1

4
~E22k2!5

m2

4
. ~38!

Thus, the appropriate initial value quantities that enter the evolution expression~36! are

c0~u,0!2Lvc0~0,0!5~e2 ilu2Lv!w~l,t!,
~39!

c0~0,v !2Luc0~0,0!5~e2 i tv2Lu!w~l,t!.

We substitute these expressions into~36!, abbreviating for convenienceB52 il, C52 i t,
2m2/45BC, and find

c~u,v !5eBCvGu~eBu2Lv!w~l,t!1eBCuGv~eCv2Lu!w~l,t!

5~eBCvGueBu1eBCuGveCv!w~l,t!2FC~uv !w~l,t!. ~40!

HereFC denotes the function related to a constant generator, defined and evaluated as
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FC~uv !5expF2Sm2

4 D vGuG15expF2Sm2

4 DuGvG15 (
n50

`
~2~m2/4!uv !n

~n! !2
. ~41!

Notice that this function is symmetric inu andv. The quantity in parentheses in~40! is straight-
forward to evaluate; we expand the exponentials in a double series as

~eBCvGueBu1eBCuGveCv!5 (
n50,j50

`
~BCvGu!

n

n!

~Bu! j

j !
1 (

n50,j50

`
~BCuGv!

j

j !

~Cv !n

n!
. ~42!

It is easy to obtain the operation ofGn on powers ofu,

Gu
nuj5

uj1n

~ j11!~ j12!•••~ j1n!
. ~43!

We substitute this into~42! and rearrange summation indices to find

~eBCvGueBu1eBCuGveCv!5 (
n<k

`
~Cv !n

n!

~Bu!k

k!
1 (

n>k

`
~Cv !n

n!

~Bu!k

k!

5 (
n50,k50

`
~Cv !n

n!

~Bu!k

k!
1 (

n50

`
~CBuv !n

n!

5eBu1Cv1Fc~uv !. ~44!

We now combine~40! and ~44! to get the complete solution,

c~u,v !5eBu1Cvw~l,t!5e2 i ~lu1tv !w~l,t!, ~45!

which is the correct plane wave solution. We have thus checked the consistency of a known
solution with our formalism. Moreover, it follows that the evolution operator equation~36! will
produce the correct solution in any case that may be expanded as a superposition of plane waves.

We note that the constant terms in the initial data expression~34! play a very important role
in the formalism and cannot be ignored.

VII. RELATION TO THE HAMILTONIAN VIEWPOINT

The evolution operators in~36! are close symbolic analogs of the usual evolution operator in
expression~3!, as we will discuss in some detail.12

A Taylor series expansion int of a function may be expressed symbolically as an exponential
as follows:

c~x,t !5e~ t2t0!]/]tc~x,t0![ (
n50

`
~ t2t0!

n

n!
c unt~x,t ! t5t0

. ~46!

That is, the quantity in the exponent generates a time shift. In standard quantum mechanics the
time derivative is related to the energy operator by]/]t52 iE. To define the dynamics the energy
operator in terms oft is identified with the Hamiltonian operatorH in terms ofx. That is, a
Schrödinger equation is postulated, with an operator equivalence,

]

]t
52 iH . ~47!
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Then for a wave function the Taylor series expression reads

c~x,t !5e2 i ~ t2t0!Hc~x,t0!, ~48!

which is the standard form for the time evolution operator, as in~3!.
We can use the same procedure to obtain our result~36!—but only symbolically and up to a

normalization and constant terms. We begin with an expression for a double Taylor series expan-
sion of a function ofu andv in analogy with~46!,

c~u,v !5 1
2 @e~v2v0!]/]vc~u,v0!1e~u2u0!]/]uc~u0 ,v !#. ~49!

In analogy with the Schro¨dinger equation, we define the dynamics with the Klein–Gordon
equation, which in terms ofu andv is

]2

]u ]v
c~u,v !52

m2

4
c~u,v !, ~50!

which solutions of the Dirac equation must obey. In analogy with~47!, this allows us to identify
the v derivative operator with the following operator in terms ofu:

]

]v
52

m2

4 S ]

]uD
21

[2
m2

4
Gu . ~51!

Substituting this into~49! we obtain~36!—if we do not concern ourselves about the normalization
factor and the constant terms, which the symbolic derivation does not seem to explain.

In conclusion, our main result~36! presents the evolution of a spinor field in terms of two
analogs of the Hamiltonian operator, and the dynamics of the spinor field is remarkably similar to
that of the scalar field.8
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We twist the monopole equations of Seiberg and Witten and show how these
equations are realized in topological Yang–Mills theory. A Floer derivative and a
Morse functional are found and are used to construct a unitary transformation
between the usual Floer cohomologies and those of the monopole equations. Fur-
thermore, these equations are seen to reside in the vanishing self-dual curvature
condition of an OSp~1u2!-bundle. Alternatively, they may be seen arising directly
from a vanishing self-dual curvature condition on an SU~2!-bundle in which the
fermions are realized as spanning the tangent space for a specific
background. ©1996 American Institute of Physics.@S0022-2488~96!00202-3#

I. INTRODUCTION

In this note, we will demonstrate how the monopole equations of Ref. 1 for an Abelian
connectionA and SU~2! doublet fermions arise in topological Yang–Mills~TYM ! gauge theory2

and in Floer theory3 in particular. As we will see the process is remarkably simple. Along the way,
we will develop a quantum mechanical system whose ground states have support on the fields
which satisfy the twisted monopole equations. What is more, we will find that the inner products
of representatives of the cohomology groups so constructed are formally equal to the Donaldson
invariants.4

Consider the twisted version of the monopole equations. LetT denote the twisting map,S6

the right/left spin bundles over a four-dimensional manifold,X, Lp the bundle ofp-forms, andLO
p

the bundle ofp-forms with odd Grassmann parity. Then for a spinor which in addition to being a
section ofS1 is also a doublet of a rigid SU~2! ~denoted byS ! so thatM5s~S1

^S !, we have
T :s~S1

^S !→LO
1 ; likewise, @P6~L2!5L26 is the projection to~anti-!self-dual two-forms.#,

T :s~S2
^S !→LO

0
% LO

21. With this as background, the equations we are interested in are

P1~Dc!50, D*c50, F15 iP1~ c̄`c!, ~1!

wherec5s(LO
1

^L), D is the covariant exterior derivative given by the connectionA onL, P15
1
2(I1* ) is the self-dual projector, and the ‘‘bar’’ denotes complex conjugation.~A related set of
equations but with bosons instead of fermions was obtained5 from N54 super Yang–Mills and
further studied in Ref. 6.! In the notation of Ref. 1, the elliptic complex on which these twisted
monopole equations are realized form the exact sequence

0→L0→
s

L1
% ~LO

1
^L !→

t

L21
% ~LO

0
% LO

21!→0. ~2!

This complex defines the arena in which we will work in this paper. These equations stand on their
own irrespective of our discussion in the previous paragraph; in particular, the value ofw2(X).

a!Electronic mail: rog@ctpup.mit.edu
b!Electronic mail: ithron@mit.edu
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However, they may be viewed as arising from the twisting of theN52 versions of the monopole
equations on spin manifolds. It should be noted that, unlike TYM, the first equation cannot be
obtained by smoothly varying the connection in the third equation.

In the next section we will see how the twisted monopole equations~1! arise by a reduction of
a class of zero-action solutions of TYM to aU~1! subgroup of the gauge group. Our intention is
not to perform a duality transformation on or any addition~such as twistedN52 hypermultiplets!
to TYM as we would like to see these equations directly in the field space of the quantum field
theory for the Donaldson invariants. In this way, we hope to be able to shed light on the connec-
tion between the Seiberg–Witten invariants1,7–9 and those of Donaldson.4 A step in this direction
will be made in Sec. III. Some other directions spawned by this approach will be discussed in Sec.
IV. Our conclusions may be found in Sec. V.

II. IN TOPOLOGICAL YANG–MILLS

Let us focus on obtaining the twisted monopole equations as a special minimum action
condition in topological Yang–Mills theory on aG-bundle. For simplicity, we will take the
structure group to be SU~2!.

First, we realize that the Eqs.~1! cannot arise by breaking the gauge group toU~1!. Although
breaking the gauge group in TYM is possible by adding

Sm[HQ,E
X
Tr~c`*Df!J 1E

X
V~f! ~3!

to the action for TYM, the equations cannot be obtained in the low-energy effective theory as all
fields are in the adjoint representation here.@Note thatV~f! is a Higgs potential for the BRST
singlet field, which is bounded from below at zero. Although this explicitly introduces a metric~in
a volume preserving, diffeomorphism invariant way!, as long asV is zero in the low-energy
effective field theory, we can ignore this effect.# It is presumably possible to add matter to the
TYM theory so that the fermions which appear on the right-hand side~via a current–current
coupling in the effective action! of Eq. ~1! were not in the adjoint representation of the gauge
group. However, a negative feature of that approach would be to take us outside of the field space
of TYM, thus making it difficult to realize the connection with the Donaldson invariants. Thus, we
now resort to the explicit breaking of the SU~2! gauge group.

As anansatz, let us look for field configurations for which the TYM action2 vanishes. Write
the SU~2! generators asJa[(J,J̄,J3), similarly for the sections of ad(G). @We will use the symbol
Aa, with gauge indexa, to denote the SU~2! connection; while we will useA5A3 for theU~1!
connection, as in the previous section.# The following fields will vanish:A, Ā,l,l̄,f3,x3,h3. We
will in addition set (f,f̄)5(n,n̄), where for nown is a complex constant. Note that the BRST
transformations in this field-restricted sector are [Q8,A]5c3 and$Q8,ca%50.

After integrating outl, the TYM action becomes

S5E
X
F18 F31`*F311

1

8unu2 ~c`c̄ !`* ~c`c̄ !2x̄`*Dc2x`*Dc̄1h̄D*c2hD* c̄ G .
~4!

The first line in this expression may be written as

S05
1

8 E
X
UF311

1

n
P1~ c̄`c!U2, ~5!
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so long asn is pure imaginary. Then, invoking thex, h-equations of motion, we see that the action
is zero on nontrivial field equations which satisfy the twisted monopole equations~1! with
c→unu21/2c.

Now that we have obtained the twisted monopole equations in Donaldson field space, we
might impose them as semi-classical conditions on the polynomial invariants. Indeed, the param-
eter unu is best defined by the Donaldson invariant

^W0&5^ 1
2 Tr~f2!&5 1

4unu2, ~6!

where the brackets mean the evaluation on these special field configurations. For the map from
H2(X) to H

2~M!, the observable,*SW2, becomes

K E
S
W2L 5K E

S
TrS 12 c`c1fF D L 522punuc1~L !@S#, ~7!

proportional to the first Chern class of the line bundle.
Having recovered the twisted monopole equations by hand from TYM, we now wonder why

they should exist in the latter theory in the first place. Well, this is where the ‘‘by-hand’’ procedure
we have just performed actually teaches us something. The first and third equations in~1! are
nothing but the anti-self-dual condition in disguise. To see this, consider starting off with the
equationF 1~A!50 for a SU~2! curvature with connectionA. Then write the connection as a
particular background (A) plus a fluctuation (ĉ) via the expressionsA35A3,
~1/&!~A11iA2!5ĉ and~1/&!~A12iA2!5cR ; i.e.,A3 does not fluctuate while the other connec-
tion components do not have background parts. Upon substituting these expressions into the
F 150 equation, dropping the hats on thecs, and changing their Grassmann parity we arrive at
the first and third twisted monopole equations. Thus we see that it is not surprising that we
obtained them in TYM.

III. IN FLOER COHOMOLOGY

We have seen how the twisted monopole equations appear as a minimum action configuration
in TYM. We will now identify the analogous Floer cohomology condition. Then we will see that
a unitary transformation exists which relates the Floer and monopole cohomologies so con-
structed. It is important that we will be working in the phase space of the Floer theory. As a point
of reference recall that given a closed, orientable three-manifold,Y, the Floer cohomology opera-
tor is ~t is an arbitrary real parameter!

Qt5E
Y
c i
a~x!S d

dAi
a~x!

1
1

2
te i jkF jka~x! D , ~8!

for which the representatives of the cohomology groups are the wavefunctionals,C@Ai
a ,c i

a#
which satisfy the conditionQtC 5 Qt

†C 5 0, wherec†5x̄.
As before, letA[~A6,A! be the connection on the SU~2! bundle,G, overY and takeca to

be the components of a section of the bundle (LO
1

^G). Choose the Morse function to be~see also
Ref. 10!

W8@A,c#5
1

4p E
Y
@A`dA1 i2c̄`D~A!c#, ~9!

and based onQ5*Yc i
ad/dAi

a define the exterior derivative

Qt85e22ptW8@A,c#Qe2ptW8@A,c#
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5E
Y
Fc i

1 d

dAi
1 1c i

2 d

dAi
2 1c i

3S d

dAi
1
1

2
te i jkF jk~A!22i t e i jk„c̄ j~x!ck~x!…D G . ~10!

Clearly, a solution ofQt8C8@Ai
a ,c i

a# 5 0 is anyC8@A,c# which has support only on Eq.~1!
written onX5Y3R,

F0i
15e i jk c̄

jck, ~11!

in the gaugeA0
a5c0

a50.
The Hamiltonian whose vacuum states include solutions to the twisted monopole equations

will take the formH85 1
2$Q8,Q8†%. After some straightforward algebra, one finds the new Hamil-

tonian on the statesC8@A, c# takes the form

H852E
Y
~F0i

12e i jk c̄ jck!
†~F0i

12e imnc̄mcn!. ~12!

Comparing this Hamiltonian to the Floer Hamiltonian, we note some interesting differences. First,
only the Abelian component of the gauge fields play a role. Next, the fermionic partners appear in
a fashion which does not preserve ghost number. Note also that none of the fermions have
appropriate kinetic contributions. All of these features are consistent with the fact that the twisted
monopole equations are simply rewritings of the self-dual curvature condition.

The question remains how to extract the solutionC8 from the Floer cohomology. That is, we
seek aW such that given a Floer representativeC,

C@Ai
a , c i

a#5e22ptW@Ai
a ,c i

a
#C8@A, c#. ~13!

It is not hard to see that such a functional is given by

W@Ai
a ,c i

a#[2
1

4p E
Y
TrSAdA1

2

3
A3D1W8@A, c#. ~14!

Here, the first term inW is recognized as the SU~2! Chern–Simons action. The virtue of the
construction~13! is that it allows us to conjecture that givenX[XløYXr , whereXl andXr are
manifolds whose boundaries are diffeomorphic toY but have opposite orientation, the inner
products are related by

^CuC&5^C8uC8&. ~15!

It is reasonable to presume that theC8 are representatives of a Floer homology group but for
spectral flows governed by the monopole equations and are obtained from the Seiberg–Witten
invariants via surgery. In that case, we conjecture that this equality will unlock the formal rela-
tionship between those invariants and the Donaldson polynomials.

IV. OTHER DIRECTIONS

Apart from the obvious solutions to the usual Floer homology condition, namelyCs which
have support only ond/dAi

a(x)1 1
2te

i jkF jka(x)50↔F 0ia
1 50, another simple solution is evident.

If the condition

F 0ia
1 5k f abce i jkc

jbxkc ~16!
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is met, thenQt 5 Qt
† 5 0 for anyk. However, this solution is not compatible with Eq.~1! due to the

presence of the structure constants and the fact thatc andx are canonically conjugate to each
other. Beyond this, our methodology in the last section may be extended to construct other
cohomologies.

Our procedure suggests another direction to explore. As we discussed before, we do not want
to add topological matter to TYM in order to obtain the monopole equations as this would spoil
the direct connection with the self-dual curvatures of Donaldson theory. Now, in principle, TYM
exists for an arbitrary structure group. With this in mind, we are led to introduce a group which has
both bosonic and fermionic generators; i.e., a supergroup. For simplicity, let us take the group to
be OSp~1u2! with graded commutators:

@Ja , Jb#5eabcJ
c,

@Ja , Qa#52 i 12~ga!a
bQb , ~17!

$Qa ,Qb%5 i ~ga!abJ
a.

As these equations suggest,Ja(Qa) are Grassmann even~odd! generators witha51,2 and theJa
forming a SU~2! subgroup. The~ga! are three-dimensional Clifford matrices:gaP~s3,2s1,s2!. We
introduce a connection one-form on the OSp~1u2!-bundle overX,

A5AaJa1YaQa , ~18!

where the two-component Grassmann odd fieldYa is ~c1,c2!. Its curvature two-form is

F 5F̂aJa1 f aQa ,

F̂a5Fa~A!Ja1 i 12~ga!abYa`YbJa , ~19!

f a5D~A!Ya5dYa2 1
2A

a`Yb~ga!b
a,

whereF~A! is the usual curvature of a SU~2!-bundle. It then follows that the self-dual curvature
equations become

F 150⇒H F1a~A!52 i 12~ga!abP1~Ya`Yb!,

P1„D~A!Ya
…50.

~20!

By enlarging the principle bundle we have incorporated the monopole equations into a single
vanishing self-dual curvature equation.

V. CONCLUSION

We have realized the twisted version of the monopole equations1 in the fields space of topo-
logical Yang–Mills. In addition, we have identified a unitary transformation between the respec-
tive cohomologies and were led to conjecture an equivalence between the Donaldson invariants
and those which follow from the spectral flows governed by the monopole equations. Our method
suggests a number of generalizations, including the appearance of the monopole equations in a
self-dual curvature condition on a super-bundle. In addition, we have found that the twisted
monopole equations arise directly from vanishing self-dual curvature condition on an SU~2!-
bundle in which the fermions are realized as spanning the tangent space for a specific background,
that background being one in which only the connection in the Abelian direction is non-zero and
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its tangent space is null. In this vein, the fermions in the equations span the tangent space to the
point zero which is the background value of the connections in the compliment of theU~1!
subgroup.
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It is shown that for the Calogero–Cohn-type upper bounds on the number of bound
states of a negative spherically symmetric potentialV(r ), in each angular momen-
tum state, that is, bounds containing only the integral*0

`uV(r )u1/2 dr, the condition
V8(r )>0 is not necessary, and can be replaced by the less stringent condition
(d/dr)[ r 122p(2V)12p]<0, 1

2<p,1, which allows oscillations in the potential.
The constants in the bounds are accordingly modified, depend onp andl , and tend
to the standard value forp5 1

2. © 1996 American Institute of Physics.@S0022-
2488~96!00302-2#

I. INTRODUCTION

Among the numerous bounds on the number of bound states in a potential, or more generally
the moments of the eigenvalues, physicists prefer those given by semi-classical expressions. Often
these are only valid in the strong coupling limit and the price to pay to convert them into strict
bounds is to multiply them by some appropriate numerical factor. In the case of the bound of
Calogero and Cohn, who assume monotonicity of the potential, it is a factor two. What we shall
show in this paper is that the requirement of monotonicity of the potential can be considerably
weakened if one is ready to replace this factor two by a correspondingly larger one. This will
broaden the field of application of the bound.

For a regular and spherically symmetric potentialV(r ), which is purely attractive and non-
decreasing~V8>0!, and vanishes at infinity, Calogero1 and Cohn2 have shown that in theS-wave,
the number of bound states for the radial Schro¨dinger equation

w91Ew5Vw, rP@0,̀ !, w~0!50, ~1!

admits the upper bound

n0<
2

p E
0

`

uV~r !u1/2 dr. ~2!

a!Laboratoire associe´ au Centre National de la Recherche Scientifique URA D0063.
b!URA 14-36 du CNRS associe´e àL’Ecole Normale Supe´rieure de Lyon et a` l’Université de Savoie.
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By regular potentials, we mean those which are less singular thanr22 at the origin, and go to zero
faster thanr22 at infinity. More precisely, they satisfy the condition3,4

E
0

`

r uV~r !udr,`. ~3!

In what follows, we always assume that this condition is satisfied.
Recently, the bound has been generalized to higher angular momenta by taking into account

the effect of the centrifugal potentiall ( l11)/r 2, l>0. One finds then, again, with the same
conditions on the potential, namely~3! andV8>0, the upper bound5

nl<11
2

p F E
0

`

uVu1/2 dr2AS p

2 D 21 l ~ l11!G , ~4!

which reduces to~2! for l50.
For negative values ofl , 2 1

2,l<0, and again with the previous conditions onV, one has now5

nl<
1

A2~2l11!
E
0

`

uVu1/2 dr. ~5!

Making l50 here, we do not get the Calogero–Cohn constant 2/p, but&/2, which is slightly
larger. The above bound is singular forl521

2, and we shall see that this cannot be avoided.
With no condition on the potential, except~3!, we have the general Bargmann bound3,6

nl<
1

~2l11!
E
0

`

r uV~r !u dr. ~6!

This bound also has been generalized, again with no condition on potential except~3!, to a large
family of bounds7

nl<
Cp

~2l11!2p21 E
0

`

ur 2Vup
dr

r
, ~7!

wherep is a free parameter, 1<p<3
2, and

Cp5
~p21!p21G~2p!

ppG2~p!
. ~8!

Making p↓1, we get the Bargmann bound~6!, as expected. In~6! and~7!, we have tacitly assumed
V to be negative everywhere. If the potential changes sign, then we should replace in~6! and~7!
V by its negative partV2 .

Now, the question arises whether one could fill the gap between~7!, valid for 1<p<3
2, and~2!,

~4!, and~5!, where we have the integral ofuV(r )up, with p5 1
2. In short, whether one could find,

with some condition on the potential—similar to the Calogero–Cohn conditionV8>0—such that
one would have a bound similar to~7! for 1

2<p<1. The answer is in the affirmative. Indeed,
assuming againV to be negative everywhere, and

d

dr
@r 122p~2V!12p!]<0, 1

2<p<1, ~9!

one can show that8
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nl<
p

~12p!12p~2l11!2p21 E
0

`

~2r 2V!p
dr

r
. ~10!

We should remark here that again, forp51, ~9! imposes no condition on the potential, and
~10! gives us then the Bargmann bound~6!, as expected. On the other hand, forp51

2, we obtain
the Calogero–Cohn conditionV8>0, but then~10! goes to~5! with l50, which is slightly larger
than ~2!, as we have noticed before.

For p strictly inside the interval~12,1!, the potential may have oscillations while staying
everywhere negative. As examples, we give just the two following ones:9

V152r ~2p21!/~12p!e2r /~12p!; ~11!

V252r ~2p21!/~12p!$@11 1
2~sin r1cos r !#e2r%1/~12p!. ~12!

It is easily seen thatV1, which vanishes at the origin, has a minimum before going to zero atr5`,
whereasV2 oscillates indefinitely while going to zero atr5`. Both satisfy~9!.

The purpose of the present paper is to show that, in fact, condition~9! leads to a Calogero–
Cohn-type bound, for allpP@ 12,1!, that is, a bound containing the integral*0

`AuVudr, but, of
course, with a different constant than 2/p. This would be much more satisfactory for strong
attractive potentials since we know that, in the limitl→`, the number of bound states oflV, for
any fixedl>0, has the asymptotic behavior10,11

nl5
l1/2

p E
0

`

uV2u1/2 dr1smaller terms, ~13!

with no condition onV other than the finiteness of the integral.

II. GENERAL PROOF OF A CALOGERO–COHN-TYPE BOUND

Since we assume in general~3!, we must have limr 2V(r )50 asr→0 or r→`. Now, ~9! can
be written

d

dr
$@r 2~2V!#12p/r %52q~r !, ~14!

whereq is some positive function, and the function inside the bracket on the l.h.s. vanishes at
infinity. Assumingq(r ) to be integrable there, which is quite natural, and solving the differential
equation~14! for V, together withV~`!50, we obtain

V~r !52r ~2p21!/~12p!S E
r

`

q~ t !dtD 1/~12p!

. ~15!

The only condition to be imposed onq(r ), besides being positive and integrable forr.0, is that
~3! must be satisfied. As examples, we can takeq(t)5e2t or q(t)5~11sin t!e2t, and we obtain,
respectively,~11! and ~12!.

We have now to deal with the radial Schro¨dinger at zero energy

w l95FV~r !1
l ~ l11!

r 2 Gw l ~16!
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together withwl~0!50, and the well-known nodal theorem,3 which asserts that the number of
bound statesnl(V) is equal to the number of nodes~zeros! of w l(r ) on the realr -axis, origin
excepted. The potential being given by~15!, we can now use the Liouville transformation

r→Z5r 1/2~12p!, w→c~Z!5Z~2p21!/2w„r ~Z!…. ~17!

The change of variable is one-to-one, and appliesrP@0,̀ ! onZP@0,̀ !, r50 corresponding to
Z50. The change of function is such that tow~r50!50 correspondsc~Z50!50. After the trans-
formation,~16! becomes (̇ 5 d/dZ)

c̈~Z!5F Ṽ~Z!1
L~L11!

Z2 Gc~Z! ~18!

together withc~0!50, where

Ṽ~Z!524~12p!2S E
r

`

q~ t !dtD 1/~12p!U
r5Z2~12p!

, ~19!

and

L5L~ l ,p!52 1
21~12p!~2l11!. ~20!

We see that we again have to deal with a Schro¨dinger equation at zero energy, in the variable
Z, with Dirichlet condition at the origin, and a potentialṼ(Z) which is now attractive and
increasing, together with the centrifugal termL(L11)/Z2. Moreover, the zeros ofc on the
positive Z-axis are in one-to-one correspondence with those ofw(r ) on the positiver -axis. It
follows that the number of bound states is the same for~16! as for~18!. However, the advantage
of ~18! is that we can now use the bounds~4! or ~5!, according to the value ofL>0, or2 1

2,L<0.
We would then get bounds which contain*0

`uṼ(Z)u1/2 dZ. This, expressed in terms of the variable
r , is exactly*0

`uV(r )u1/2 dr, and we obtain the desired result. In review, we have the following.
Theorem 1: Under the condition~9! on the potential, we have

nl<11
2

p F E
0

`

uV~r !u1/2 dr2AS p

2 D 21L~L11!G , ~21!

if L, given by~20!, is >0, and

nl<
1

A2~2L11!
E
0

`

uV~r !u1/2 dr, ~22!

if LP~21
2,0#. The first case corresponds tol>(2p21)/4(12p), and the second to2 1

2,l<(2p
21)/4(12p). We should remark here that whenl50, we haveL5 1

22p, which is negative,
except forp51

2, and so, we must use in general~22!. If l50, andp51
2, i.e., the Calogero–Cohn

case, we have the bound~2!, and do not have to use~22!.

III. DIRECT PROOF OF THE GENERALIZED BOUND (22)

We consider theS-wave, described by Eq.~1!. Suppose that there aren0 bound states. This
means thatw0(r ) hasn0 nodes 0, r 1 , ••• , r n0 , `. We assume now the potential satisfies the
following conditions:

V~r !<0, @2r2nV~r !#8<0 for some n>0. ~23!
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We have now the following.
Lemma 1:If V satisfies~23!, the same is true for2V(r )(r2r k)

2n for r.r k . Indeed, we have

uV~r !u~r2r k!
2n5@ uV~r !ur2n#S r

r2r k
D n

,

and both factors are decreasing forr>r k . h

Now, from the Bargmann bound~6! with l50, we have

1<E
r k

r k11
~r2r k!uV~r !udr.

Taking rk5r2r k , this can be written

1<E
0

r k112r k
rkW~rk!drk , ~24!

whereW(rk)5V(rk1r k). Restricting ourselves to the interval (r k ,r k11), and dropping the index
k, let us define

I ~r!5E
0

r
AuW~r8!udr8. ~25!

If V satisfies~23!, Lemma 1 shows thatuW~r!ur2n is also decreasing. Therefore

I ~r!5E
0

r
AuW~r8!ur82nr8n/2dr8>Ar2nuW~r!u3

r11n/2

11n/2
5r

AuW~r!u
11n/2

. ~26!

Now using this inequality, together with~24! anddI/dr 5 AuW(r)u, we obtain

1<E
0

r k112r k
@rAuW~r!u#AuW~r!udr<S 11

n

2D E0r k112r k
I ~r!

dI

dr
dr

5
1

2 S 11
n

2D @ I ~r k112r k!#
2.

Therefore

1<
An12

2
I ~r k112r k!5

An12

2 E
r k

r k11AuV~r !udr. ~27!

Adding up these inequalities for all the intervals, we end up with

n0<
An12

2 E
0

`

uVu1/2 dr. ~28!

In order to apply this inequality to our potential satisfying~9!, we just have to putn5(2p
21)/(12p). Whenp varies between12 and 1,n varies between 0 and̀. In any case, we obtain
finally

n0<
1

2A12p
E
0

`

uV~r !u1/2 dr ~29!
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which is the desired result. h

Let us remark here that, forp51, the r.h.s. of~29! is infinite. Indeed, condition~9! for p51
puts no restriction on the potential. And with no restriction on the potential, the only bound which
is valid in general is the Bargmann bound~6!, which contains the integral ofuVu instead ofuVu1/2.
As is well known,3,6 the Bargmann bound can be saturated byn0 negatived-potentials with
suitable strengths and locations:

V~r !52 (
k51

n0

gkd~r2r k! ~30!

and such a potential gives zero in the r.h.s. of~29!. It follows that the singularity atp51 in front
of the integral in~29! cannot be avoided. We can summarize the results in the following

Theorem 2: For a purely attractive potential satisfying the condition~23! for somen>0, the
number ofS-wave bound states satisfies the bound

n0<
An12

2 E
0

`

uVu1/2 dr. ~31!

IV. IMPROVEMENT OF THE GENERALIZED BOUND (22)

If L5L( l ,p)P~2 1
2,0! we have the following operator inequality due to the local uncertainty

principle:12

2
d2

dz2
1
L~L11!

z2
>2~2L11!2

d2

dz2
. ~32!

Hence the number of bound states of the operator associated to~18! is bounded above by the
number of bound states of (22L11)2d2/dz21Ṽ(z). Applying the Calogero–Cohn bound to this
operator we find

nl<
1

2L11

2

p E
0

`

uV~r !u1/2 dr. ~33!

Together with~22! we therefore have the following.
Theorem 3: Under the condition~9! on the potential and ifLP~21/2,0#, we have

nl<CLE
0

`

uV~r !u1/2 dr, ~34!

where

CL5minS 1

2L11

2

p
,

1

A2~2L11!
D . ~35!

If the potential satisfies condition~23! for someV<0, the number ofS-wave bound states satisfies
the bound

n0<CnE
0

`

uV~r !u1/2 dr ~36!

with
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Cn5minS n12

p
,
An12

2 D . ~37!

In particular

Cn5H n12

p
, if n,nC :5

p228

4

An12

2
, if nC<n,`

. ~38!

We note that limn→0Cn52/p so that we recover in the limitn→0 the optimal bound.

V. THE CASE 0>n>22

From ~31!, we see that if the r.h.s. is less than 1, then there is no bound state. It is easy to see
that this holds not only forn.0, but also for 0.n.22. In other words, if the absolute value of the
potential decreases faster thanr2unu, 0.n.22, then the condition

An12

2 E
0

`

uV~r !u1/2 dr,1 ~39!

guarantees the absence of bound states. As an example, we can consider the Yukawa potential
V52g exp~2mr !/r . Here,n521, and the constant in front of the integral becomes1

2, which is
smaller than the Calogero constant 2/p. However, we must remember that all this is derived from
the Bargmann bound, and therefore we cannot do better than that. Also, generalization ton bound
states forn,0 is impossible because Lemma 1 no longer holds. So the interest ofn,0 is rather
limited.

VI. THE CALOGERO’S SUFFICIENT CONDITION

Here, we would like to see how good the constantCn is in front of ~36!. For this purpose, we
consider the simple power-potential

V~r !52lr nu~12r !. ~40!

Now, a sufficient condition of Calogero13 states that, for a purely attractive potential, if there exists
anR such that

1

R E
0

R

r 2uV~r !udr1RE
R

`

uV~r !udr>1, ~41!

then there is at least one bound state. HereR is arbitrary and can be chosen at will. Applying~41!
to ~40!, and maximizing with respect toR, we find that it is sufficient to have

l>l15~n12!F2~n12!

n13 G1/~n11!

. ~42!

Now, assume that the r.h.s. of~36! is too large, and thatCn can be replaced by a better
~smaller! constantC̃n . Applying now ~36!, with n051 and the better constantC̃n to our potential
~40!, we find that we must haveC̃nAl1*0

1r n/2 dr > 1, that is
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C̃n>
~n12!

2Al1

.SAn12

2 D F n13

2~n12!
G1/2~n11!

. ~43!

It is easily seen~see Appendix! that the factor@~n13!/2~n12!#1/2~n11! is an increasing function of
n and goes to 1 asn→`.

On the other hand the function

p

2

1

An12
F n13

2~n12!G
1/2~n12!

is a decreasing function ofn ~see Appendix!. Therefore this example shows that our constantCn

is not too bad, and that it cannot be improved by more than a factor

@~nC13!/2~nC12!#1/2~nC11!5F121
2

p2G2/~p224!

.0.887.

We should note here that the Schro¨dinger equation with the potential~40! can be solved
exactly at zero energy. The regular solution isw 5 ArJL11/2(AlZ), whereZ5r 11n/2/(11n/2),
and L52n/2~21n!. The exact value ofl for which the first bound state appears is given by
w8~r51!50. This is a transcendental equation whose solution is not simple, and needs numerical
computation. In principle, this exact value ofl could be used instead ofl1 of the Calogero’s
sufficient condition.
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APPENDIX

We must show that the derivative ofF~n!5@~n13!/~n12!#1/2~n11! is positive, which amounts to
the same thing for the derivative ofG~n!5log F~n!. Now, if we writeH(n)52(n11)2G8(n), we
have

H~n!5
1

n12
2

2

n13
2 log

n13

2~n12!
~A1!

and, therefore,

H8~n!5~n11!F 1

~n12!2
2

1

~n13!2G.0. ~A2!

It follows thatH~n! is increasing forn>0. Now,

H~0![2G8~0!5 log~ 4
3!2 1

6.0. ~A3!

Therefore,H~n! is positive forn>0, and the same is true forG8~n!. h

Similarly, we consider the derivative ofG̃~n!521
2 log~n12!1G~n!. If we write

H̃(n)52(n11)2G̃8(n), we find

H̃~n!52
~n11!2

n12
1H~n!, ~A4!
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and, therefore

H̃8~n!52
~n11!~n13!

~n12!2
1H8~n!5~n11!F2

1

n12
2

1

~n13!2G,0. ~A5!

SinceH̃~0!5log 4
32

2
3,0, it follows thatH̃~n!,0 for all n>0.
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Fractional supersymmetry denotes a generalization of supersymmetry which may
be constructed using a single real generalized Grassmann variable,u5 ū,un50, for
arbitrary integern52,3,.... Anexplicit formula is given in the case of generaln for
the transformations that leave the theory invariant, and it is shown that these trans-
formations possess interesting group properties. It is shown also that the two gen-
eralized derivatives that enter the theory have a geometric interpretation as genera-
tors of left and right transformations of the fractional supersymmetry group.
Careful attention is paid to some technically important issues, including differen-
tiation, that arise as a result of the peculiar nature of quantities such as
u. © 1996 American Institute of Physics.@S0022-2488~96!01902-6#

I. INTRODUCTION

Supersymmetry has been a popular and fruitful area of research for at least twenty years.
Study of it in space-time of one dimension, time, has given rise to the important topic of super-
symmetric quantum mechanics~see Refs. 1–3 for reviews!. The most primitive version of super-
symmetric quantum mechanics is one that involves the use of a single real Grassmann number
u such that

u5 ū, u250. ~1.1!

As a result the theory possesses a naturalZ2-grading and a single generatorQ of its supersym-
metry transformations which obeysQ252] t . The distinctive features of supersymmetric theories
which possess such aZ2-grading can be seen by referring to various papers.4–9 The term frac-
tional supersymmetry is currently being applied to a class of generalizations of supersymmetry in
one dimension. Our work on fractional supersymmetry can be presented most straightforwardly by
creating theories withZn-grading by generalization of theories withZ2-grading. Thus we con-
sider theories involving a single real~generalized! Grassmann numberu which obeys

u5 ū, un50, n52,3,4, . . . , ~1.2!

in which the generatorQ of the generalized~‘fractional’! supersymmetry transformations that
leave such a theory invariant obeys

Qn52] t . ~1.3!

The last result accounts loosely for the use of the term ‘fractional’ as an identifier of the theory.
The generalization from ordinary to fractional supersymmetry not only has intrinsic interest

but may also be expected to produce interesting new models in classical and quantum mechanics.
There have been a large number of studies of fractional supersymmetry in recent years.10–18Some
of these deal with a complex Grassmann variableu such thatun50. Others employN different
copies ofu which obey~1.2!, thus developingN-extended fractional supersymmetry. Fractional
supersymmetry is contrasted below with a distinct class of generalizations of basic, orZ2 -graded,
supersymmetry, those which possess parasupersymmetry. There has been a great deal of attention

a!On leave of absence from DAMTP, Cambridge University, Silver Street, Cambridge CB3 9EW, UK, and from St. John’s
College, Cambridge, UK. Electronic mail: azcarrag@evalvx.ific.uv.es; a.j.macfarlane@damtp.cambridge.ac.uk
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given recently to work in this field19–26 and often these papers contain thinking also relevant to
fractional supersymmetry. We believe that the whole area promises both activity and progress in
the future.

This paper discusses two important aspects of fractional supersymmetry. First, we discuss the
fact that the fractional supersymmetry transformations that describe the invariance properties of
the Zn-graded theory form a groupGn . Second, we elucidate certain fundamental technical
matters stemming from unfamiliar features of the algebra. Two areas need attention. One concerns
differentiation with respect tou; the other is the situation surrounding families of multiplicative
rules of the type

eu5q21ue, q5exp~2p i /n!, ~1.4!

involving a Grassmann numberu, its associated transformation parametere and dynamical vari-
ables of Grassmann type. In the former there are difficulties of principle, which we treat; in the
latter it is a matter of demonstrating a coherent rationale behind the formulation and the consis-
tency of results like~1.4! within it.

We give explicit formulas for the elements of the groupGn of transformations that should
leave anyZn-graded theory invariant, and related proofs. Once the status of derivatives with
respect tou is established, we turn to the objects of generalized covariant derivative type that enter
~up to now in anad hocway! into a theory possessing fractional symmetry. We show that these
have the interesting geometrical interpretation of being the generators of the left and right actions
of the fractional supersymmetry groupGn ~as is the case for ordinary supersymmetry27!.

We have introduced into our discussion a quantityq5exp(2pi/n) which obeys

qn51. ~1.5!

To provide some appropriate comment, we recall that fractional symmetry aims at a generalization
of supersymmetry. The latter when quantized, involves one boson and one fermion variable, and
requires use of a 232 matrix representation of the fermion. We plan a generalization~see~4.3!,
~4.1! for n53 or ~7.2! below!, which retains the boson and replaces the fermion by some more
general object, cf.~1.1! and~1.2!. Two classes of variables, which can be represented by matrices
in ann-dimensional vector space are known to us. The parafermions28,29 are one of these; use of
them leads down a path of interest, but not the one we are able to usefully follow at the moment,
toward parasupersymmetry. We follow the other path. Theq-deformed harmonic oscillator30–32

possesses commutation relations in terms of itsa anda† variables that make sense, not only for
q P R, but alsoq P C, when~1.5! applies. In this situation,a anda† are represented~for eachn!
by n3n matrices. Since forn52 we get back in this way to a description of fermions, it is clear
that we are talking about generalizations of these. By looking at then53 case and beyond one can
see that the generalizations are distinct from parafermions. We are not yet in a position to push
satisfactorily the quantization of our theory to a point where the implied interpretation is present
in a consistent well-understood way, but we are describing a plausible scenario for it.

For reasons of notational simplicity and clarity, we present first our ideas for theZ3-graded
case, the first non-trivial generalization of the basic supersymmetry. This already requires that
most of the central issues of theZn case be treated seriously. The paper contains seven sections.
Section II contains introductory material forG3 including its group law, and the reasons behind
expressions such as~1.4!. Section III derives the formula for the transformations ofGn . Section
IV discusses the problem of defining derivatives with respect tou, leading into section V which
shows how the usual derivativesQ andD enter crucially into the construction of a Lagrangian
theory withG3 invariance. Section VI establishesQ andD as the generators of the left and right
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actions ofG3 by introducing a suitable exponentiation of the first order formulas. Section VII
extends our results forn53 to the general case and includes the proof of the exponentiation for
generaln.

II. FRACTIONAL SUPERSYMMETRY TRANSFORMATIONS: THE CASE OF G3

The simplest version of ordinary supersymmetry deals with the transformation

t85t1t1 i eu, u85u1e. ~2.1!

This Z2-graded theory contains a time variablet and a parametert of grade zero, and a real
Grassmann numberu and parametere of grade one. Thus

u5 ū, u250; e5 ē, e250; ue52eu. ~2.2!

We consider generalization to a situation involving a single real Grassmann variableu, such that
u5 ū, un50 , n52,3,4. . . , within a theory that possessesZn-grading; the casen53 provides
the simplest non-trivial generalization of ordinary supersymmetry. Without loss of generality, we
takeu to have grade one in theZ3-grading, and to obey

u5 ū, u350. ~2.3!

TheZ3-generalization of~2.1! is then given by

t→t85t1t1j~e,u!, u→u85u1e, ~2.4!

where

j~e,u!5q~eu21e2u!, ~2.5!

t andt are as in~2.1!, e is a real grade one parameter, such thate5 ē,e350,

eu5q21ue, ~2.6!

andq is a complex cube-root of unity. For definiteness we takeq5exp(2pi/3); replacingq by
q21 in ~2.5! and~2.6! would modify only slightly the appearance of the expressions written below,
but not their content. Equation~2.6! ensures that the two terms of~2.5!, in addition to being of
overall grade zero, are real,e.g.

qeu25q21u2e5q21q2eu25qeu2.

The fact that~2.4! describes a groupG3 of transformations is easy to check. Applying two
transformationsg5(t,e) andg85(t8,e8) to (t,u) we findg95g8g with parameters

e95e81e, t95t81t1q~e8e21e82e![t81t1j~e8,e!, ~2.7!

where, in analogy with~2.6!, we have

e8e5q21ee8. ~2.8!

In fact, we may view~2.4! as the~left! action of the elementg P G3 on aZ3-graded physical
‘manifold’ M , of ‘coordinates’ (t,u), given by

g:~ t,u!°~ t8u8!, u85u1e, t85t1t1j~e,u!; ~2.9!

likewise, we may view~2.7! as describing the left action ofg85(t8,e8) on theG3 group itself.
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The unit and inverse elements are given by~0,0! and (2t,2e). The associativity of the group
law g9(g8g)5(g9g8)g is easily checked, and, in fact, it follows from a two-cocycle condition

j~e9,e8!1j~e91e8,e!5j~e9,e81e!1j~e8,e!, ~2.10!

in which e,e8,e9 are the grade one parameters of three transformations performed in succession,
and which holds for thej(e8,e) given in ~2.7! provided that

e9e85q21e8e, e8e5q21ee8. ~2.11!

As is well known~see,e.g.Ref. 33!, two-cocycles are associated with central extensions of a Lie
group . In their Lie algebra formulation they correspond to a curvature two-form~which is
symmetric rather than antisymmetric in the case of supersymmetry, see Ref. 27!. The structure of
the fractional supersymmetry group opens the possibility of extending these concepts to a~here!
ternary algebra by introducing a ‘curvature’ three-form~cf. Ref. 12!.

To exhibit the origin of~2.6!, ~2.8! and ~2.11!, we observe that in any context where such
results arise, there is a natural ordering of the entities of non-zero grading that enter it. It will
further be seen that this ordering determines consistently~and always according to the same
pattern! the powers ofq that enter the required multiplicative relations. In the case of group
multiplication, the above ordering~in symbolicnotatione8.e.u) requires

e8e5q21ee8, eu5q21ue ~2.12!

used above. To these, we add the resulte8u5q21ue8 ~see below!. For all three, one passes from
the lexical order to the opposite one by using relations that use the same power ofq, hereq21, in
the same places. In the discussion of associativity, the orderinge9.e8.e similarly implies the
results~2.11! used above, and in additione9e5q21ee9.

Similarly, if we had elected to write our fractional supersymmetry transformation as

u85u1h, t85t1t1q2~hu21h2u!, ~2.13!

the reality oft8 would now imply

hu5quh, ~2.14!

and, for the orderingh8.h.u, the same rule would govern matters but with the powerq as in
~2.14!, and inh8h5qhh8. However,~2.13! is equivalent to

u85u1h, t85t1t1q~u2h1uh2!, ~2.15!

so that we prefer the orderingu.h.h8, and write

uh5q21hu, hh85q21h8h, uh85q21h8u. ~2.16!

This is now in full conformity with the other examples discussed. Further, just as our discussion
related toe8.e.u is appropriate to the case of left transformations, the passage involving~2.15!
and u.h.h8 is seen to be similarly suited to the discussion of right translations. The results
~2.15! and ~2.16! are indeed so employed in section VI.

One consequence of results of the type~2.8! is in the form ofq-deformed binomial expan-
sions. For example,

~e81e!m5(
t50

r Fmt Ge8tem2t. ~2.17!
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The braced object here is theq-analogue of the ordinary binomial coefficient, in which ordinary
factorials,e.g. m!, are replaced by

@m#!5@m#@m21#•••@1#, @m#[
12qm

12q
511q1•••1qm21. ~2.18!

It is easy to see and well-known that~2.17! indeed follows by use of~2.8!. Results such as~2.17!
are employed in section III.

We append our notation forq-deformed exponentials for use in sections VI and VII. We write

exp~qk;X!5 (
m50

`
1

@m;qk#!
Xm, ~2.19!

for suitablek, where

@m;qk#!5@m;qk#•••@2;qk#@1#, @m;qk#[
12qkm

12qk
. ~2.20!

In this notation [m] in ~2.18! is [m;q].

III. THE TRANSFORMATION FORMULA FOR Gn

We now extend the work done in the previous section onG3 to theZn-graded case which
employs a single real Grassmann numberu and an associated parametere with the properties

u5 ū, un50; e5 ē, en50; eu5q21ue. ~3.1!

It is understood that no power ofu or e lower than then-th can vanish.
We retain the general structure~2.4! for Gn but seek, for the cocyclej, a formula of the type

j~e8,e!5 (
r51

n21

cre8ren2rqv~r !,

q5exp~2p i /n!, n52,3,4, . . . , ~3.2!

so thatqn51 replacesq351 in previous work. Also, the exponent ofq shown in~3.2! namely

v~r !5
1

2
r ~n2r !, ~3.3!

ensures using~2.8! that each term of~3.2! is real if cr is real. We setc151, and rewrite~3.2! as

j~e8,e!5 (
r51

n21

dre8ren2r . ~3.4!

We must determine the numbersdr in such a way that~2.10! is satisfied, so that whenj is given
by ~3.2! and~3.3!, eq.~2.4! has the requiredGn group multiplication properties. First we note that
the terms on the two sides of~2.10! that are independent ofe agree. Then, with the aid of results
like ~2.17!, we can show that consideration of the terms of~2.10! linear ine allow us to determine
all thedr as multiples ofd1 . Explicitly we find dr5dn2r and

dr
d1

5
@n21#!

@r #! @n2r #!
, r51,2, . . . ,n21. ~3.5!
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Now that~3.4! is fully determined by~3.5! we must prove that~2.10! is identically satisfied. Thus,
we use~3.4!, ~3.5! and ~2.17! to obtain

j~e9,e81e!5 (
r51

n21

(
s50

n2r
e9re8sen2r2sd1@n21#!

@r #! @s#! @n2r2s#!
. ~3.6!

We now observe thatj(e8,e) differs only slightly from what will provide ther50 of the r.h.s. of
~3.6!. In fact, we can write

j~e9,e81e!1j~e8,e!5(
r50

n

(
s50

n2r
e9re8sen2r2sd1@n21#!

@r #! @s#! @n2r2s#!
2d1~e9n1e8n1en!/@n#. ~3.7!

Here, in order to make a tractable double sum we have added and subtracted certain ill-defined
terms. The procedure is necessary to expedite the key step of our proof. In this, we reverse the
order of summations in~3.7! obtaining

(
r50

n

(
s50

r

5(
s50

n

(
r5s

n

5(
s50

n

(
u50

n2s

,

where a shift in the variable of summationr to u5r2s has also been made. The result so obtained
for the left side of~2.10! can now be shown to agree exactly with the analogue of~3.7! obtained
by direct calculation of the r.h.s. of~2.19!, completing the required demonstration.

The remaining ingredients of the group multiplication laws forGn are attended to immedi-
ately. Indeed, an additional calculation to prove associativity is not needed, since the cocycle
property guarantees it.

IV. DERIVATIVES WITH RESPECT TO u

We want to move from the description of the group properties of the fractional supersymmetry
transformation towards the construction of actions and dynamical systems that possess invariance
properties relative to them. This requires a geometrical understanding of the derivatives]/]u, and
of objects in the theory of covariant derivative type. Let us go back toG3 , again as a good
example, aiming in particular to expose and treat the conceptual difficulties that occur in discuss-
ing reality properties of]/]u. It is sufficient for the purposes of this section, although not of
course for the eventual construction of Lagrangian theories, to work with scalar,i.e. grade zero
real superfieldsf , whose expansion in powers ofu involves three real terms~seee.g.Refs. 11, 15,
16, and 18!

f5x1qau1qbu25 f̄5x1q2ua1q2u2b, ~4.1!

in whichx is a grade zero~bosonic! variable, and the variablesa andb are of grades two and one.
The reality of f expressed by~4.1! implies the properties

ub5qbu, ua5q21au. ~4.2!

Comparing~4.1! with ~2.5! now seen to be of scalar superfield nature, we see thatb, of grade one,
is related likee to u, so thatb.u, and a, of grade two, is likewise related toe2, so that
a,u. The latter implies that we should adopt the ruleba5q21ab , although in this section no
call for any such result is made.

To prepare the ground for our discussion of derivatives in theZ3 case, we recall briefly the
case of basic supersymmetry andZ2-grading ~eq. ~1.1!! for which a real scalar field has the
expansion
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f5x1 iuf5x2 ifu. ~4.3!

It is normal to use the left spinorial derivative so that

] f

]u
5] f[]L f5 if, ~4.4!

and to employ]u/]u51 and

u]1]u51 ~4.5!

to do routine manipulations. Since~4.4! is not real for realf there is no case for viewing] as a real
entity. However one did not consider using such an idea as a guide towards~4.5!. Equation~4.5!
is valid because it holds when applied to an arbitrary superfieldf . In fact, the right spinorial
derivative]R can be consistently viewed as a conjugate to]L via

]L f[
] f

]u
[ f

]Q

]u
5]Rf , ~4.6!

which agrees trivially with

]L f5 if, ]Rf52 if.

Similarly, by application to arbitraryf it follows that the conjugate of~4.5!,

]Ru1u]R51,

makes good sense.
Returning to theZ3 case, we see that to compute] f /]u[] f[]L f and ]Rf , we need the

Z3-analogue of~4.5! to treat theu2 terms of~4.1!. We begin by postulating

]u

]u
51 ~4.7!

and a result of the type

]u5au]1b, ~4.8!

in which a,b P C. Equation~4.7! is certainly natural. We discuss whether it can or needs to be
modified~it doesn’t! below. When~4.8! is applied to 1, then~4.7! impliesb51. Applied tou, eq.
~4.8! yields

~]u2!5~11a!u. ~4.9!

Then, using~4.1!, we get

] f

]u
5]L f5q2a1q2~11a!ub, ~4.10!

which is not real for realf . To complete the specification of~4.8!, we stipulate that it must be true
when applied to an arbitrary scalar superfield. It is easy to see that it does so if

11a1a250. ~4.11!
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Thus we find two solutions fora; the two corresponding candidates for the derivative with respect
u are both used in the literature and, as we see below, essential. Ifa5q, we shall write] for the
derivative that obeys

]u

]u
51, ]u5qu]11, @],u#q51. ~4.12!

If a5q21, we writed, and

du

du
51, du5q21ud11, @d,u#q2151. ~4.13!

Also ]d5q21d] ~or @],d#q2150). Both derivatives hereby introduced are acting from the left.
Neither has any natural reality properties that can be uncovered without reference to their partner
right derivatives. The above is sufficient for our own intended applications. However, variations in
the literature exist, and are often associated with implicit assumptions hinting at reality properties
of ]. If one uses~4.8! with or without ~4.7! and without reference to the requirement that, applied
to an arbitrary superfield, it holds true, one might try to complete specification of~4.8! by de-
manding that its correctness ensures the correctness of its adjoint. However, if one assumes] is in
some sense real~which we do not believe to be a tenable view! then ~4.8! implies successively

u]5ā]u1b̄,

au]5aā]u1ab̄, calling foraā51,

]u5au]2ab̄,

reproducing~4.8! whenb52ab̄. The choiceb51, the natural choice, impliesa521, and we are
forced back to theZ2-supersymmetry result as the only non-trivial possibility. If one tries a choice
like a5q , thenb5 iq1/2r ,r P R, so that

]u5qu]1 irq 1/2.

Application of this result to an arbitrary real scalarf fails to give an identity. Also so doesany
attempt to viewc] as a conjugate to], for c P C.

In fact, it is sensible to view]R as the conjugate of]. Since doing so is independent of
whether one is looking at] or d, it is sufficient to give details for the former. Thus we shall
employ here~4.12! and ~4.10!. We take]Ru5(u (]Q /]u))51 and, from~4.9!, by conjugation,
deduce

~]Ru2![S u2
]Q

]u D 5~q211!u.

Then, from~4.1!, we obtain

]Rf5S f ]Q

]u D 5qa1qb~11q2!u5]L f , ~4.14!

where ~4.2! and ~4.10! for ] f[]L f have been used. Similarly, a consistent picture ford,dR
emerges. So, in summary, if on rare occasions one needs a conjugate for], one may not use any
multiple of ], although]R serves perfectly well. Neitherd nor dR are satisfactory candidates for
the rôle of the conjugate of]. We note in passing that the fact that a variable and the derivative
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with respect to it cannot be madesimultaneouslyreal ~or hermitian! is a known feature of non-
commutative geometry and has been discussed in completely different contexts~see,e.g.Ref. 34!.

We note that the result

q]L]Rf5]R]L f ,

treated with care, also makes sense, but forbear from appending any remark about ordering.
We return finally to~4.7!. It is not obviously wrong to let (]u)5c,c P C, but ~4.7! clearly

remains the natural choice. With]R , rather than any multiple of], seen as the true conjugate of
], we are not aware of any compelling reason for usingc Þ 1.

V. COVARIANT DERIVATIVE OBJECTS

The derivatives] andd discussed feature in the literature on fractional supersymmetry in the
definition ~seee.g.Refs. 11, 15, and 18! of the important quantities

Q5]u1qu2] t , ~5.1!

D5du1q2u2] t ; ~5.2!

Q produces the first order generalized supersymmetry transformation. We then write

d~e! f5eQf . ~5.3!

Equation~5.3! implies the superfield component transformations

d~e!x5q2ea,

d~e!a52qeb,

d~e!b5e ẋ.

~5.4!

We note that the ‘u2 component’ off changes by a total time derivative. Proceeding from this
remark towards the construction of actions, we realize thatD has been defined in~5.2! and in
relation to~5.1! in such a way thatDf has the same transformation law asf . It follows that the
same philosophy that worked for supersymmetry may, in principle, be applied to the construction
of actions with the correct invariance properties under generalized supersymmetry transforma-
tions. We just take the ‘u2 component’ of a suitable product, of the correct dimensions, of super-
fields such asf , ḟ ,Df etc. For example~cf. Refs. 15, 16, and 18!

S5E dt
1

2
q ḟD f uu25E dtL, ~5.5!

L5
1

2
ẋẋ1

1

2
q2ḃa2

1

2
qȧb. ~5.6!

Exposition of the canonical formalism that stems from~5.6! is neither problem free in quantum
mechanics, nor in existence at all at the present time to our knowledge in classical mechanics. We
may expect, as is the case inZ2-supersymmetry where symmetric Poisson brackets are associated
with anticommutators, that both formalisms, classical~fractional pseudomechanics! and quantum,
are closely related. There are various issues, in fractional supersymmetry, however, indicating that
a braided structure may be needed and that it may require further study.

The important roˆles ofQ andD having been put into evidence, we note thatDf will transform
like f provided that

d~e!D5Dd~e! , ~5.7!
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or

eQD5DeQ. ~5.8!

Since~2.6! implies u2e5q2eu2, and hence

qDe5eD,

we deduce that~5.7! requires

DQ5qQD, @D,Q#q50. ~5.9!

The consistency of~5.8! as an operator identity demands that, when applied to an arbitraryf , it
gives a superfield identity. The choice~5.2! shows this to be satisfied.

To conclude, we note the further well-known results~cf. Refs. 11, 15, and 18!

D352] t , Q352] t , ~5.10!

which are most easily seen as identities by applying them to arbitraryf .

VI. LEFT AND RIGHT TRANSFORMATIONS

What governed the choices~5.1!, ~5.2!? In the case of~5.1! the application ofeQ to (t,u)
does reproduce~2.4! to first order ine. This however does not allow] to be preferred tod in ~5.1!,
nor conversely. Once~5.1! has been chosen, as seems sensible enough, it is quite easy to find a
derivative in the form~5.2! that satisfies~5.8!. However, this choice has a deep geometrical
interpretation. In fact, we now show thatQ andD can be regarded as the generators of the left and
right actions of the groupG3 on the physical ‘manifold’M of ~2.9!, and that~5.8! expresses the
fact that left and right actions commute. This geometrical picture is a nontrivial generalisation of
one that applies to ordinary supersymmetry where, of course, both actions are linear.

Let us denote the parameters of the left and right transformations ofG3 as e andh. Thus
e.u.h, as discussed in section two, and hence

eu5q21ue, uh5q21hu. ~6.1!

We define the left and right actionsL (e) andR(h) by

L ~e! :u°u85e1u, t°t85t1t1q~eu21e2u!, ~6.2!

R~h! :u°u85u1h, t°t85t1t1q~u2h1uh2!, ~6.3!

which agree with~2.4! and ~2.15!. It is a non-trivial result that these transformations may be
written as exponentials of the generatorsQ andD respectively

L~e!t5exp~q21;eQ!t, ~6.4!

R~h!t5exp~q;hD !t, ~6.5!

where we have used the notation of~2.19!. The proof, which due to the ordering necessarily
involves distinct deformed exponentials, is given below. The commutativity of the two actions
implies

@eQ,hD#50. ~6.6!

This requires the consequences
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De5q21eD, hQ5q21Qh ~6.7!

of ~6.1!, and a hitherto unused relation

eh5q21he. ~6.8!

Then ~6.6! is seen to imply~5.8!.
To prove~6.4!, we use~2.19! in the form

exp~q21;eQ!511eQ1eQeQ/@2;q21#. ~6.9!

A simple computation usingeu5q21ue and (]u2)5@2;q#u gives us~6.4!; the proof depends
crucially on the former and on the occurrence of] rather thand in the definition~5.1! of Q.

We prove~6.5! in the same way, noting again how critically the success of the proof depends
on the actual arrangement of details involvingu,d,h and exp(q;hD).

VII. SUPERFIELDS, DERIVATIVES AND q-EXPONENTIATION FOR Gn

We have already given in section III the definition of the transformation of the groupGn when

u5 ū, un50; e5 ē, en50; ue5qeu. ~7.1!

In general we expect most features of theZ3 - graded theory that are discussed above to allow
fairly direct extension to theZn theory. We will indicate some of these briefly in this section,
without examining in much detail how the general case may yield a theory significantly richer in
content.

In place of~4.1!, we have the expansion of the real scalar superfield

f5x1 (
r51

n21

qv~r !c ru
n2r5 f̄5x1 (

r51

n21

q2v~r !un2rc r , ~7.2!

where the powerv(r ) of q5exp(2pi/n) is chosen to make all terms inf all real; it is given by
~3.3!. Moreover, in place of~4.2!, we now have

uc r5qrc ru, r51, . . . ,n2r ; ~7.3!

in theZ3 case,a andb of ~4.1! would be written asc2 andc1 to conform with~7.2!.
The discussion of derivatives, via~7.1! and

]u5au]11, ~7.4!

yields more possibilities, fora must now obey

11a1a21•••1an2150. ~7.5!

We thus write] r for the derivative which obeys

] ru5qru] r11, r51,2, . . .,n21. ~7.6!

Our previous] and d correspond to]1 and ]n21 . We will continue to use the former notation
because we do not describe any context that involves crucial use of] r for r Þ 1 or r Þ n21. We
note, in particular, the direct consequences of~7.6!

~]us!5@s#us21, ~dus!5q12s@s#us21, s51,2,. . . ,n21. ~7.7!
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Hered directly involves (12q2s)/(12q21), which we have expressed in terms of [s], defined
by ~2.18!.

The definitions~5.1! and ~5.2! of Q,D in section V are now modified to read

Q5]11c1q
v~1!un21] t[]1c1q

v~1!un21] t , ~7.8!

D5]n211c1q
2v~1!un21] t[d1c1q

2v~1!un21] t , ~7.9!

wherev(1) is given by~3.3! and a suitable normalization of the real numberc1 is fixed for
generaln. We note thatQ, so defined, does generate correctly the first order term of the
Gn-transformation for a parametere related tou via ~7.1!. Also

d~e!c15e ẋ ~7.10!

indicates that we can still follow the usual way of obtaining invariant actions from theun21

components of suitable superfields. Further~5.8! again holds. But in place of~5.9!, we usen-th
powers~thereby fixing the normalization ofc1!: theZn theory is of fractional supersymmetry with
fractions 1/n, of course.

Finally, it is to be expected that the exponentiation results of section VI carry over into the
general theory. We rewrite then in general notation

L ~e!t°t85exp~q21;eQ!t, ~7.11!

R~h!t°t85exp~q;hD !t, ~7.12!

where

ue5qeu, hu5quh, he5qeh. ~7.13!

To prove the extension~7.11! of ~6.4! to theZn-graded theory we need to recover

L ~e! :t→t85t1 (
r51

n21

dre
run2r , ~7.14!

wheredr is given by~3.5!, as the expansion of~7.11!

L ~e!t5t1(
r51

n
1

@r ;q21#!
~eQ!r t, ~7.15!

whereQ is given by~7.8!. The first order term, which comes from the action ofeQ on t is clearly
correct:

d1eun215~eQ!t, ~7.16!

sinced15c1q
v(1).

This is the first key element of a proof, by induction, that the individual terms of~7.14! and
~7.15! coincide. We therefore assume this forr51,2,. . . ,k and seek, on the basis of that assump-
tion, to prove it forr5k11. This requires us to show that

dk11e
k11un2k215

1

@k11;q21#
~eQ!dke

kun2k. ~7.17!

Only the term]1[] of Q contributes. The formula]ek5q2kek] then prepares for the use of
~7.7!, and we can see that~7.17! is an equality provided that
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1

@k11;q#
5

q2k

@k11;q21#
. ~7.18!

It is easy to show that~7.18! is true, and the proof is complete.
Proof of ~7.12! proceeds similarly. We remark that the exponentials in~7.11! and ~7.12! are

necessarily different because of the use of the different derivatives] andd in the definitions~7.8!
and ~7.9! of Q andD.
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The O(N) nonlinear sigma model in aD-dimensional space of the form
RD2M3TM, RD2M3SM, orTM3SP is studied, whereRM, TM, andSM correspond
to flat space, a torus, and a sphere, respectively. Using zeta-regularization and the
1/N expansion, the corresponding partition functions—for deriving the free
energy—and the gap equations are obtained. In particular, the free energy at the
critical point onR2q113S2p12 vanishes in accordance with the conformal equiva-
lence to the flat spaceRD. Numerical solutions of the gap equations at the critical
coupling constants are given for several values ofD. The properties of the partition
function and its asymptotic behavior for largeD are discussed. In a similar way, a
higher-derivative nonlinear sigma model is investigated, too. The physical rel-
evance of our results is discussed. ©1996 American Institute of Physics.@S0022-
2488~96!02002-6#

I. INTRODUCTION

Zeta-regularization1 ~for a review see Ref. 2! is a very powerful and elegant method for
regularizing the divergences that appear in quantum field theory. Many applications have been
found, from the calculation of the vacuum energy density or Casimir energy corresponding to
varied configurations~different fields, space–times, boundaries!, to its application in wetting/
nonwetting phenomena in actual condensed matter and solid state systems, to the analysis of phase
transitions coming from the study of effective potentials in several contexts, topological mass
generation, Bose–Einstein condensation phenomena, evaluation of the partition function in string
andp-brane theories, etc.2 From a more mathematical point of view, the method has allowed the
computation of the basic operator tr log~h1X! on a curved manifold, which is very important in
quantum gravity and cosmology.

In this paper we will study the zeta-function regularization of theO(N) nonlinear sigma
model in an arbitrary number,D, of dimensions and on spaces of the formRD2M3TM,
RD2M3SM, andTM3SP. In flat space–time this model has a large number of different applica-
tions ~see Ref. 3 for a review!, in particular, in the theory of critical phenomena and solid state
physics. For example, such a three-dimensional model, which is known to be renormalizable in
this case, may be used in condensed matter physics as an effective field theory of the two-
dimensional quantum antiferromagnet.4 In particular, theO(N) nonlinear sigma model onS13R2

may be applied to describe the low-temperature properties of the quantum antiferromagnet.5 Re-
cently, in connection with the study of higher-dimensional conformal theories,6 where one can use

a!On leave of absence from Tomsk Pedagogical Institute, 634041 Tomsk, Russia. Electronic-mail: sergei@ecm.ub.es

0022-2488/96/37(3)/1128/20/$10.00
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well-known 2d conformal field theory techniques, such a model has been considered in three-
dimensional curved space–time.6 The critical properties of the model were also discussed.

Here we will extend this important analysis, by studying theO(N) nonlinear sigma model in
topologically nontrivial spaces of constant curvature in arbitrary dimensionD. Using zeta-function
regularization and the 1/N expansion techniques we will obtain the partition function and the gap
equation in each of the cases considered, and also numerical solutions of the gap equations for
some spaces. The asymptotic behavior in the limitD→` will be considered, too. Finally, a
higher-derivative generalization of theO(N) nonlinear sigma model will be introduced, and the
corresponding zeta-function on a flat but topologically nontrivial space will be obtained. Numeri-
cal solutions of the gap equations in this last model, for different values ofD, will be discussed,
too. The relevant partition function and gap equations are presented in Secs. II and III, while the
applications toRD2M3TM andRD2M3SM appear in Secs. IV and V, respectively. Our higher-
derivative model is introduced in Sec. VI. In the conclusion we comment on the relevance of our
results and discuss future perspectives. The appendix is devoted to the calculation of the necessary
zeta functions for the spaces under consideration.

II. THE O(N) NONLINEAR SIGMA MODEL IN D DIMENSIONS: PARTITION FUNCTION

Let us consider an arbitraryD-dimensional space of constant~or zero! curvature. It is well
known that the scalar conformally invariant D’Alembertian operator on such a manifold is

2h1jR, ~2.1!

where j5(D22)/4(D21). In what follows we use Euclidean space notations. The partition
function of theO(N) nonlinear sigma model inD dimensions we will be interested in is given as
follows:

Z@g#5E DfDs expH 2
1

2l E dDxAg@f i~2h1jR!f i1s~f i221!#J , ~2.2!

wherefi are scalars in curved space–time,i51,...,N, j5(D22)/4(D21) is the conformal
coupling, s is an auxiliary scalar introduced in order to keep the constraintf i(x)f i(x)51,
coming from the condition ofO(N)-invariance, andl is the coupling constant. Note thats has no
dynamics, as it just plays the role of a Lagrange multiplier. Observe also that we have chosen to
work with the conformally invariant operator2h1jR, in order to better understand the confor-
mally invariant properties of the model.

The theory~2.2! was extensively studied in Ref. 7 in three-dimensional curved space–time at
its nontrivial fixed point. In particular it was shown, in the large-N limit, that such a model is an
example of a conformal field theory at a nontrivial fixed point. Investigation of this theory in
different spaces of constant curvature has suggested that what distinguishes a given model is not
curvature, but the conformal class of its metric.

Our purpose here will be to study the theory inD-dimensional curved space–times of constant
curvature near the nontrivial fixed point in the 1/N expansion. What is even more important, we
will analyze, in addition to the large-N limit, some situations involving the limitD→`, which is
relevant to dimensional dependence investigations in a number of quantum systems.8,9 Numerical
solutions to the gap equations will also be given.

It is convenient to rescalef→Alf. Then

Z@g#5E DfDs expH 2E dDxAgF12 f i~2h1jR1s!f i2
s

2l G J , ~2.3!

where the mass dimensions of the fields and parameters are
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@f#5
D22

2
, @s#52, F1lG5D22, @j#50, ~2.4!

and the dependence ofZ on the metricgmn is explicitly shown. Note that sometimes it is conve-
nient to rewrite the partition function~2.3! as explicitly regularized. In particular, if one uses a
cutoff L for regularizing, it may be adequate to do the change 1/l~L!→LD22/l~L! in order to
work with a dimensionlessl~L!.

The aim is to study the above theory in the large-N limit keeping, as usual,Nl fixed asN→`.
The space–time dimensionD will be arbitrary. Integrating out the firstN21 components off and
rescaling theNth componentfN to A(N21)/2fN , and@~N21!/2#l to l, we obtain

Z@g#5E DfNDs expS 2
N21

2 HTr log~2h1jR1s!

1
1

2 E dDxAgFfN~2h1jR1s!fN2
s

2l G J D . ~2.5!

III. THE GAP EQUATIONS

Since we shall deal with manifolds of constant curvature, we will look for a uniform saddle
point:s(x)5m2, fN(x)5b. Extremizing the action~2.5! with respect tofN(x) maintainings(x)
fixed, and the other way around, we obtain thegap equations

~2h1jR1m2!b50, G~x,x;m2,g!1b221/l50, ~3.1!

where

G~x,x;m2,g!5^xu~2h1jR1m2!21ux& ~3.2!

is the two-point Green’s function at equal points. Once the solutions to these equations have been
found, it is sensible to evaluate the free-energy densityW at the saddle point to leading order in
1/N

W@g,l#5
N

2 FTr log~2h1jR1m2!2E dDxAg
m2

l G . ~3.3!

Applying zeta-function regularization one defines

G~x,x;m2,g!5 lim
s→1

G~x,x;m2,g;s!} lim
s→1

^xuzM~s!ux&,

~3.4!
Tr log~2h1jR1m2!}2zM8 ~0!.

Here zM(s) is the spectral zeta-function of the operator2h1jR1m2 on the space–timeM
under consideration, i.e.

zM~s!5Tr~2h1jR1m2!2s. ~3.5!

The proportionality factors, not explicitly written in~3.4! are determined, in each case, by the
normalization of the physical states, and they have such a form that the dimensionalities match.

By heat-kernel series analysis, it is known that the short-distance divergences of this two-point
Green’s function depend in general on the curvature of the space–time, except for the leading pole
which is independent ofg and, therefore, present in all cases. As a result, in flat space–times with
nontrivial topology such asTD orRD2M3TM, this singular behavior will be the same as in the flat
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spaceRD. That is why it is natural to studyRD first. According to this reasoning, the critical value
of l, at which the theory becomes finite, will be the same for all these space–times.

The gap equations in the space–timeRD, after momentum cutoff regularization, read

m2b50, b25F L

l~L!
2GL~x,x;m2,g!G . ~3.6!

HereGL(x,x;m
2,g) means the Green’s function obtained when setting a cutoffL on the norm of

the integrated momentum. Studying their solutions, one finds that, forb5m50,

L

lc~L!
5E ~L! dDk

~2p!D
1

k2
5

1

~4p!D/2GSD2 D
LD22

D

2
21

, if D.2, ~3.7!

and, forb50,mÞ0,

L

lc~L!
2

L

l~L!
5m2E ~L! dDk

~2p!D
1

k2~k21m2!
52

mD22

~4p!D/2
GS 12

D

2 D1e~L!, ~3.8!

wheree~L! are terms vanishing asL→`. SinceG~12D/2!,0 for oddD.1, this indicates the
unphysical character of the solution whenl,lc . A more detailed study shows thatl5lc is a
critical value separating two different phases.

In the same space–time, when using zeta-function regularization the second gap equation
becomes

b25 lim
s→1

F 1

l~s!
2G~x,x;m2,g;s!G , ~3.9!

where

G~x,x;m2;g,s!5E dDk

~2p!D
1

~k21m2!s
5

mD22s

~4p!D/2
G~s2D/2!

G~s!
. ~3.10!

Following the line of thinking of Ref. 7, we set the valuesm5b50 from the discussion in cutoff
regularization, and realize that now the only consistent way out is

lim
s→1

1

lc~s!
50, ~3.11!

which gives the critical value ofl in this regularization.
In curved space–times without boundaries, heat-kernel expansion gives
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GL~x,x;m2,g!

5E
1/L̃2

`

dt^xue2t~2h1jR1m2!ux&

55
1

~4p!D/2 F a0
D/221

L̃D221
a2

D/222
L̃D241•••1

aD21

1/2
L̃2G1 f 1~L!,

for odd D,

1

~4p!D/2 F a0
D/221

L̃D221
a2

D/222
L̃D241•••1aD24L̃

21aD22 log L̃2G1 f 2~L!,

for even D,

~3.12!

where f 1~L! and f 2~L! are terms that become finite whenL→` and where, for consistency, we
have takenL̃25[G(D/2)](D22)/2L2. As usual, thea2n’s stand for the even Seeley–Gilkey
coefficients,10 and we have taken into account thata2n1150 in the absence of boundaries. Since
a051, for the firstD ’s we immediately obtain

D divergences ofGL(x,x;m
2,g)

3
1

~4p!3/2
2L̃

4
1

~4p!2
~L̃21a2 log L̃2!

5
1

~4p!5/2 S 23 L̃312a2L̃ D
6

1

~4p!3 S 12 L̃31a2L̃
21a2 log L̃2D

7
1

~4p!7/2 S 25 L̃51
2

3
a2L̃

312a4L̃ D
The D53 result does not depend ona2 ,a4 ,..., and is thus independent of the curvature. In
consequence, it is the same for any three-dimensional space without boundaries and therefore it is
enough to find it inR3. For conformally flat manifolds of anyD, the propertyR50 makes
a2 ,a4 ,... vanish with the same consequence, i.e., we can get by with the critical values inRD. This
fact will be used in the study ofRD2M3TM.

WhenRÞ0 in D.3, a particular study of every particular situation is called for. In spaces of
constant positive curvature, such as spheres or some products ofRD by spheres, the first gap
equation reads (jR1m2)b50 with R.0, and admits no other solution thanb50. From the
second equation,L/l~L!5GL(x,x;m

2,g), where the divergent parts of the r.h.s. asL→` are
given by ~3.12!. Next, we form the difference between them50 and them.0 cases:

L

lm50~L!
2

L

l~L!
5

1

~4p!D/2 Fa2~m50!2a2~m!

D/222
L̃D241

a4~m50!2a4~m!

D/224
L̃D261••• G .

~3.13!

To obtaina2n(m) from a2n(m50) is just a matter of replacingj→j1m2/R in every expression of
these coefficients. As an example we considerD55, whose divergences appear in the preceding
table. Sincea2(m50)5(j2 1

6)R, a2(m50)2a2(m)5m2 independently of the value ofR. After
dividing by L we obtain
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1

lm50~L!
2

1

l~L!
5

1

~4p!5/2
p3/4

8
2m2. ~3.14!

This equality stops making sense ifl,lm50, which can be interpreted by regardinglm505lc as
the critical value separating two phases. Since this was obtained by settingb50 andm50, those
are the values we shall set for computing 1/lc in zeta-regularization.7

IV. RD2M3TM

Putting the adequate normalization factors, the Green’s function, and the free energy at the
critical value ofl read

G~x,x;m2,g;s51!5
1

~2p!D2MrM zRD2M3TM~1!,

~4.1!
W

N
52

1

2 S r

2p D D2M

zRD2M3TM~0!.

After calculating the zeta function for our operator on this space–time~see the Appendix!, we can
write

zRD2M3TM~s!5
pD/2

G~s! S 2p

r D 22s1D2MF I MS s2
D2M

2
,

rm

2p D1S rm

2p D D22s

GS s2
D

2 D G . ~4.2!

The second term tells us that the singularities ats50,1 are present only whenD is even, inde-
pendently ofM . HereI M(s2(D2M )/2,rm/2p) is an integral of the type

I M~z,a!5E
0

`

dttz2M /221e2ta2FuMS p

t D21G , ~4.3!

whereu(x) is the Jacobi function

u~x!5 (
n52`

`

e2pxn2. ~4.4!

The key point is that the integrand is well behaved aroundt50, causing no new pole atz5M /2
~i.e., ats5D/2!. Further,I M can be expanded into a Dirichlet series, which reads

I MS s2
D2M

2
,

rm

2p D52D/22sS rm

2p D D22s

(
l51

M SMl D2l11 (
nW P~N* ! l

KD/22s~rmunW u l !
~rmunW u l !D/22s , ~4.5!

whereK is the modified Bessel function andunW u l stands for the Euclidean norm ofnW 5(n1 ,...,nl).
The particular cases we will calculate are those of oddD52d13, M51. Under these con-

ditions the Bessel functions involved are just

KD/221~x!5Kd11/2~x!5Ap

2x
e2x(

k50

d
~d1k!!

k! ~d2k!!

1

~2x!k
,

and we may interchange the summations to obtain
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jR2d123T1~1!5pd13/2S 2p

r D 2dS rm

2p D 2d11F2d12Ap(
k50

d
~d1k!!

k! ~d2k!!2k
Li d111k~e

2rm!

~rm!d111k

1GS 2d2
1

2D G ,
~4.6!

zR2d123T1
8 ~0!5pd13/2S 2p

r D 2d12S rm

2p D 2d13

3F2d13Ap (
k50

d11
~d111k!!

k! ~d112k!!2k
Li d121k~e

2rm!

~rm!d121k 1GS 2d2
3

2D G ,
whereLi is the polylogarithm function. Settingd50 ~D53!, these formulas reproduce, as should
be expected, the ones in Ref. 7.

We look at the solutions of the gap equations for the critical value 1/lc50. The chances are
the following:

~1! m50, bÞ0. This leads to

b252
pd13/2

~2p!2d13

1

r2d11 4Ap
~2d!!

d!
z~2d11!.

Whend50, the rhs diverges and no solution can exist. Ford.0,z(2d11).0 and there is a sign
conflict which prevents the appearance of any solution on this side.

~2! m.0, b50. Now we are posed with solving

(
k50

d
~d1k!!

k! ~d2k!!2k
~rm!d2kLi d111k~e

2rm!1~rm!2d11
G~2d21/2!

2d12Ap
50. ~4.7!

Only d50 admits a relatively simple analytic solution becauseLi 1 is the only polylogarithm that
can be trivially expressed in terms of elementary functions. In that case one obtains~see also Refs.
7 and 11! (rm)c52 log t, with t5~11A5)/2, i.e., (rm)c.0.9624. Of course, it is also possible to
find this same value by numerically solving the above equation ford50, and this is precisely what
we do for the nextd’s. Afterwards, the value found is replaced into~4.6! and ~4.1!, so as to find
the free energyW. We thus arrive at

d (rm)c W/N[rm5(rm)c#

0 0.9624 20.1530

1 no solution

2 2.1775 20.0441

3 no solution

4 3.5504 20.0561

5 no solution

6 3.6841 22.2634

The figure forW/N whend50 coincides with the numerical value of2~2/5p!z~3!, derived in Ref.
7 with the help of polylogarithm identifies from Ref. 12. The rest of the values are the first~and
possibly only! solutions found after scanning a reasonable positive range.
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We can now study the asymptotic behaviors of these expressions forM ~and D! and/or
a@5rm/~2p!# going to infinity. Two cases will be considered:~i! a@1 andM bounded, with
M2D fixed, and~ii ! a@1 andM@1 with a/M→const, again withM2D finite.

Let us start with the first case. As everywhere the dependence onM is throughD2M , it is
enough to studyI M~t,a!, wheret5s2(D2M )/2 with s50 or s51. From the behavior

KD/22s~2paunW u!;S p

4paunW u D
1/2

e22paunW u, ~4.8!

we easily obtain that

I M~t,a!;ps2D/2a~D21!/22s(
l51

M SMl D2lLi ~d11!/22s
~ l ! ~e22pa!, ~4.9!

whereLi P
( l )(x) denotes the generalized polylogarithm, for which we have

Li P
~ l !~x!5 (

n1 ,...,nl51

`
xAn1

2
1•••1nl

2

An121•••1nl
2P

;
xAl

Al P
1O S xAl13

Al13P
D , x!1. ~4.10!

Taking this into account, we obtain

I MS s2
D2M

2
,a D<2ps2D/2a~D21!/22sM2e22pa. ~4.11!

We can now considerM to be large, of course, but never competing witha or the above expres-
sion loses its sense. In order to deal with both limits at the same time, we must consider the case
~ii !. From the well-known behavior ofKn(nz) for constantz andn→`, by calling

ul5 lim
a,D→`

2paAl
D/22s

[const, v l5h~ul !5A11ul
21 log

ul

11A11ul
2
[const, ~4.12!

we obtain

I MS s2
D2M

2
,a D;

&

~11u1
2!1/4

S u12 D D/22sSD22sD D/22s11

e2~D/22s!v1. ~4.13!

V. RD2M3SM

The Green’s function and the Tr log contribution to the free energy are now

G~x,x;m2,g;1!5
1

~2p!D2MaM
zRD2M3SM~1!, ~5.1!

and

W

N
5
1

2 S a

2p D D2M

zRD2M3SM
8 ~0!, ~5.2!

respectively, wherea is the radius of the sphere. Here we will consider the massless case only. By
our discussion on gap equations, inD55 1/lc5G(x,x;0,g,1). Therefore, in these conditions,
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zR52M3SM
(1) for m50 tells us the critical value ofl. Another reason for them50 choice, apart

from simplicity, is that theM5D21 case is conformally equivalent toRD2$0%, and, then,m50
corresponds also to solutions for criticall.

Taking the conformal coupling and the known form of the Riemann scalar for the sphere, we
follow a method analogous to Ref. 13~see also Ref. 14! to construct the required zeta-function,
which is

zRD2M3SM~s!52a2s2D1mp~D2M !/2
G„s2~D2M !/2…

G~s!
HSa~p,2s2D1M !, for M52p12,
Sb~p,2s2D1M !, for M52p11,

~5.3!

where

Sa~p,2z!5
1

~2p11!! (
k50

p

~21!kak~p21!zHS 22p12k12z21,
1

2D ,
~5.4!

Sb~p,2z!5
1

~2p!! (
k50

p21

~21!kbk~p22!zR~22p12k12z!,

zH andzR denote the Hurwitz and Riemann zeta-functions, and theak andbk coefficients are

a0~ j !51, ak~ j !5 (
0< i1,•••, i k< j

S i 11 1

2D •••S i k1 1

2D , k>1,

b0~ j !51, bk~ j !5 (
0< i1,•••, i k< j

~ i 111!•••~ i k11!, k>1. ~5.5!

Our notation is just slightly different from that in Ref. 13. In factak(p 2 1) 5 1/2kak
CC(p 2 1) and

bk(p 2 2) 5 bk
CC(p 2 1), where CC stands for the coefficients employed in Ref. 13. These coeffi-

cients enable one to write

d~M ,l !5 (
k50

kmax~M !

~21!kAk~M !S l1 M21

2 DM2122k

, ~5.6!

where Ak(M )52/(2p11)!ak(p21) and kmax(M )5p for M52p12, while Ak(M )
52/(2p)!bk(p22) andkmax(M )5p21 for M52p11.

In order to study the Green’s function and the Tr log contribution to the free energy we need
to evaluate the above zeta-function ats51 and its derivative ats50. Such quantities will be
expressed in terms of

Sa8 ~p,2z!5
1

~2p11!! (
k50

p

~21!kak~p21!zH8 S 22p12k12z21,
1

2D ,
~5.7!

Sb8 ~p,2z!5
1

~2p!! (
k50

p21

~21!kbk~p22!zR8 ~22p12k12z!,

and the results will follow. Then, we have the following cases.
~1! EvenD2M52q:

~a! M52p12:
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zR2q3S2p12~11«!5pq
~21!q21

~q21!!
2a22q12H F1« 1g1c~q!12 log ~am!GSa~p,22q12!

12Sa8 ~p,22q12!J 1O~«!,

~5.8!

zR2q3S2p128 ~0!5pq
~21!q

q!
2a22q$@g1c~q11!12 log ~am!#Sa~p,22q!12Sa8 ~p,22q!%.

As usual,m is a parameter with mass dimension, introduced by redefiningzM
2h1jR(s)

asm22szM
(2h1jR)/m2

(s), which renders the log arguments dimensionless.
~b! M52p11:

zR2q3S2p11~1!5pq
~21!q21

~q21!!
2a22q122Sb8 ~p,22q12!,

~5.9!

zR2q3S2p118 ~0!5pq
~21!q

q!
2a22q2Sb8 ~p,22q!.

The absence of terms with primelessSb is a consequence of the location of the real zeros of
zR .

~2! OddD2M52q11.
~a! M52p12:

zR2q113S2p12~1!50, zR2q113S2p128 ~0!50. ~5.10!

This vanishing follows from known properties ofzH(x,
1
2) and, as a result of~5.2!,

W/N50. ~5.11!

~b! M52p11:

zR2q113S2p11~1!5pq11/2GS 2q1
1

2D 2a22q11

~2p!!
Sb~p,22q11!,

~5.12!

zR2q113S2p118 ~0!5pq11/2GS 2q2
1

2D 2a22q21

~2p!!
Sb~p,22q21!.

When studying the four kinds of sums~5.4! and ~5.7! for p→` and finite 2z of the type
22q21,22q,22q11,22q12, one has to consider the behaviors of theak andbk coefficients,
which vary within the ranges

a0~p21!51,...,ap~p21!5
G2~p11/2!

p
,

b0~p22!51,...,bp21~p22!5@~p21!! #2, ~5.13!

and also satisfy

ak~p21!;bk~p22!;
p3k

3kk!
, as p→`. ~5.14!
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For thebk coefficients, this property was already observed in Ref. 13.
We must also take into account the following asymptotics:

zR„2~2n11!…;~21!n11
2~2n11!!

~2p!2n11 ,

zH„2~2n11!, 12…;2zR„2~2n11!…,

~5.15!
jR8 „2~2n11!…;2zR„2~2n11!…log n,

zH8 „2~2n11!, 12…;zR8 „2~2n11!…,

which are valid forn@1, and follow from known results about the gamma, Riemann and Hurwitz
zeta-functions.

We show, as an example, the case ofSb(p,22q11). Including the prefactor 1/(2p)!, we
denote the terms in that sum bySb(p,22q11)5(21)p1qSk50

p21tk , where, as one may check for
largep,0,t0,•••,tp21. Therefore

uSb~p,22q11!u,ptp21 . ~5.16!

Combining the information we have with the Stirling approximation for the factorial~or G!
functions, we obtain

ptp215p
2~2q11!!

~2p!2q12!
z~2q12!

@~p21!#2

~2p!!
;

~2q11!! z~2q12!

22q11p2q13/2

p21/2

22p
. ~5.17!

As a result,

Sb~p,22q11!→0, for any finite positiveq,
~5.18!

p→`.

The other three types of sum have the same property but, since the proof is of similar nature, the
details are omitted. In consequence,

zRD2M3TM~1!→0,

zRD2M3TM
8 ~0!→0, ~5.19!

M→`, finite ~D2M !,

i.e., the two-point Green’s function at equal points and the Tr log contribution to the free-energy
vanish in this case of theD→` limit. The importance of that limit lies in the chance of using the
space–time dimension as a perturbation parameter in field theory, with the advantage that it is then
possible to obtain nonperturbative results in the coupling constants,9 such as Green’s functions for
quantum fields in the Ising limit. In this spirit, expansions in inverse powers of the dimension have
proven quite useful in atomic physics.15

Them.0 case is mathematically more involved. A possible way out is the construction of a
power series inam by combining the preceding results with a simple binomial expansion. Such a
method leads to
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zRD2M3SM~s!52a2s2D1M
p~D2M !/2

G~s! (
k50

`
~21!k

k!
~am!2kGS s1k2

D2M

2 D
3HSa~p,2s12k2D1M !, for M52p12,

Sb~p,2s12k2D1M !, for M52p11. ~5.20!

A. A calculation in R23S3

For S3 the degeneracy of each spherical mode@see ~A14!# is just ~l11!2. After applying
standard Mellin-transform techniques, we end up by writing the zeta-function as follows:

zR23S3~s!5
p3/2a2~s21!

G~s! F2
1

2
~am!5/22sGS s2

5

2D2
1

2
J3

~0!~s21,am!1J3
~1!~s21,am!,G ,

~5.21!

where

JM
~0!~z,a!5E

0

`

dttz2M /221e2ta2FuS p

t D21G ,
~5.22!

JM
~1!~z,a!5E

0

`

dttz2M /221e2ta2
d

dt
uS p

t D .
Although not exactly like~4.3!, these integrals may also be written as Dirichlet series involving
modified Bessel functions. Furthermore, forM53 such Bessel functions are expressible by finite
series, and it is then possible to interchange the summations finally arriving at finite sums of
polylogarithm functions. In this way, we obtain

zR23S3~1!52p2F2
1

3
~am!3/22~am!3S Li 2~e22pam!

~2pam!2
1
Li 3~e

22pam!

~2pam!3 D1p2amLi22~e
22pam!G ,

~5.23!

zR23S3
8 ~0!54p2F 115 ~am!5/22~am!5S Li 3~e22pam!

~2pam!3
13

Li 4~e
22pam!

~2pam!4
13

Li 5~e
22pam!

~2pam!5 D
1p2~am!3Li21~e

22pam!G .
Since we are inD55,lc must be the value ofl satisfying the second gap equation forb50,m50,
i.e.,

1

lc
5G~x,x;0,g!5

1

~2p!2a3
zR23S3~1!U

m50

52
1

16p3a3
Li 3~1!52

1

16p3a3
zR~3!.

Next, we replace 1/l with this critical value and solve numerically the second gap equation for
b50 only. The critical value obtained foram is

~am!c52.2689.

CalculatingzR23S3
8 (0) atam5(am)c , we find the finite contribution to the free energy density at

the critical point:
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W

N
52

1

2 S a

2p D 2zR23S3
8 ~0!520.7773.

B. Application to TM3SP

The zeta-function in this space may be written

zTM3SP~s!5S 2p

r D 22s

d2s (
n1 ,...,nM

(
l
d~P,l !H 1d ~n1

21•••1nM
2 !1dF S l1 P21

2 D 21a2m2G J 2s

,

~5.24!

where we are using the notation

d5
r

2pa
, ~5.25!

andd(P,l ) is the degeneracy of thel th P-dimensional spherical mode~A14!. In them50 case,
using ~5.6! this is put in the way

zTM3SP~s!5S 2p

r D 22s

d2s (
k50

kmax~P!

~21!kAk~P! (
n1 ,..,nM

(
l

S l1 P21

2 D P2122k

3F1d ~n1
21•••1nM

2 !1dS l1 P21

2 D 2G2s

. ~5.26!

For oddP,(P21)/2 is an integer and simple properties under dual transformationsd→1/d in the
sense of Sec. IV in the second reference of Ref. 6 may appear, after making the replacements
explained there. It is quite clear that ifP is even, there can be no such invariance—in whatever
sense. However, it can be achieved considering antiperiodic~instead of periodic! field solutions,
which lead to the changeni→ni1

1
2, and making some further alterations. In particular, forM51,

P52, d(2,l )52(l1 1
2) and l1(P21)/25 l1 1

2. As a result, one can then put

zT13S2~s!}(
n,l

S l1 1

2D F1d S n1
1

2D
2

1dS l1 1

2D
2G2s

.

Then, the ensuing free energy will be invariant if one cares to replace the ordinaryd-derivative
with the ‘‘fractional-derivative’’ from Ref. 6. In a similar way, by adequately modifying the
definition of the free energy, we may get thed→1/d invariance in higher dimensions.

Combining the general forms of the previous calculations we find

zTM3SP~s!5
pM /2~2p/r!22s

G~s! (
l50

`

d~P,l !F I MS s, r

2p
m~P,l ! D1S r

2p
m~P,l ! DM22s

GS s2
M

2 D G ,
~5.27!

where

m~P,l ![A 1

a2 S l1 P21

2 D 21m2. ~5.28!

After expandingI M into a Dirichlet series of modified Bessel functions, we realize that forP→`
this part may be neglected because it is exponentially vanishing. CallingzTM3SP

(`) (s) the rest, one
obtains
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zTM3SN
~`!

~s!;

2a2sS r

aD
M

~4p!M /2

GS s2
M

2 D
G~s!

3 HSa~p,2s2M !, for P52p12,
Sb~p,2s2M !, for P52p11, ~5.29!

which is, up to a constant, the zeta-function forRM3SP with m50, whose properties have already
been considered.

VI. HIGHER-DERIVATIVE O(N) NONLINEAR SIGMA MODEL IN RD2M3TM

It is interesting to observe that the model~2.2! may be easily generalized to have higher-
derivative terms. In order not to have to study higher-derivative conformally invariant operators,
we limit ourselves toRD2M3TM, which is relatively simple due to its conformal flatness. Then
we may write

Z@g#5E DfDs expH 2
1

2l E dDxA2g@f ih2f i1s~f i221!#J . ~6.1!

Repeating all the steps in Sec. I, we obtain

W@g,l#5
N

2 FTr log~h21s!2E dDxAg
m2

l G . ~6.2!

The Green’s function and the Tr log part of the above expression are directly linked to the
associated zeta-function, which admits the following power expansion inrs1/4:

zRD2M3TM
~h21s!

~s!5
pD2M

G~s!
s~D2M !/42sF Ap

2~D2M !/2

G„s2~D2M !/4…

G„~D2M12!/4…

1
Ap

22s21 (
k50

`
~21!k

k!

G„2s12k2~D2M !/2…

22kG~s1k1 1
2!

3ZMS 2s12k2
D2M

2 D S rs1/4

2p D 4s14k2D1MG , ~6.3!

whereZM is the usual Epstein zeta-function. This function has poles ats5D/42k, k50,1,2,...,
with the exception~if they coincide! of s50,21,22,..., where it is finite.

Mathematically speaking, this object is harder to deal with than an ‘‘ordinary’’ zeta-function
~i.e., one for a second-order operator!. It can also be expressed by a series of hypergeometric
functions:

zRD2M3TM
~h21s!

~s!5
pD2M

2~D2M !/2G~s!
S 2p

r D D2M24s G„s2~D2M !/4…G„s2~D2M !/41 1
2…

G~s1 1
2!

3 (
nW PZM

2F1S s2
D2M

4
,s2

D2M

4
1
1

2
,s1

1

2
;2S rs1/4

2p D 4~nW 2!22D
3~nW 2!~D2M !/222s, ~6.4!

or by the integral representations
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zRD2M3TM
~h21s!

~s!5
p~D11!/2ss/211/4

23s21/2G~s! S 2p

r D D2M26s21FI D,MS s, rs1/4

2p D
1S rs1/4

2p D D26s21 G~4s112D/2!

2~D11!/223sG~22s121D/2!G , ~6.5!

where

I D,M~s,a!5(
l51

M SMl D2l (
nW P~N* ! l

E
0

`

dtt3s2~D11!/2Js11/2~a2t !e2~p/t !unW u l
2
. ~6.6!

HereJ is the first species Bessel function.
A different strategy is to regardh21s as (h1 is1/2)(h2 is1/2). Then,

1
2Tr log~h21s!5 1

2@Tr log~h1 is1/2!1Tr log~h2 is1/2!#

52S r

2p D D2M

Re z
RD2M3TM8
~h1 is1/2!

~0!. ~6.7!

Taking advantage of the calculation in Sec. IV for2h1m2 whenD52d13, we arrive at the
following expression for the finite part of (W/N)~rs1/4!:

2
1

~4p!d13/2 H 2d13Ap (
k50

d11
~d111k!!

k! ~d112k!!2k
~rs1/4!d112k

3Re@ i ~d112k!/2Li d121k~e
2 i1/2ps1/4!#1GS 2d2

3

2D ~rs1/4!2d13 Re@ i d13/2#J . ~6.8!

Observing that the values at the critical point have to coincide with the extremals ofW/N as a
function of rs1/4, these points are found by numerical examination of~6.8!.

d min of 2
1
2(r/2p)2d12zR2d123T1

8 (0) ~rs1/4!

1 1.65 20.1459
2 2.36 20.1088

For d50, 3, and 4 no solution has appeared, while ford55 we obtain 3.03 and20.3141.
Comparing with numerical estimates for the model~2.2! on the same background, we see that the
properties of the higher-derivative model~6.1! are drastically different.

VII. CONCLUSIONS

In the present paper, using zeta-function regularization, we have calculated the free vacuum
energy~or Casimir energy! for theD-dimensionalO(N) nonlinear sigma model on some spaces
with constant curvature. Explicit expressions for the free energy have been obtained at the critical
point ~when the gap equations have been used! and also in noncritical regime~when the gap
equations have not been used!. For all those spaces withD53,4, the explicit expressions for the
free energy may be easily used in studies of the quantum antiferromagnet.5 Moreover, for 2,D,4
it is known16 that theO(N) model inRD possesses an order–disorder phase transition and hence
its free energy may be very useful for studying dual properties. In this respect, the generalization
to curved backgrounds is of interest.

In particular, we have shown@see Eq. ~5.10!# that the free energy of the model in
R2q113S2p12 vanishes. This generalizes the corresponding result of Ref. 7 inR13S2, and shows
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that inD dimensions the free energy at the critical point forR2q113S2p12 is the same as that for
RD, in accordance with the conformal equivalence between both manifolds.

From another viewpoint, for the development of connections of two-dimensional conformal
field theory ~which is a very powerful tool! with higher dimensional models, it is important to
study the modular properties of such theories.6 In Sec. V B we have checked dual invariance in
Cardy’s sense form50 and antiperiodic modes inS13S2. Hence, the higher-dimensionalO(N)
model may serve as a very useful toy model for studying dual symmetries, which have become
quite popular in recent studies of strings and supersymmetric QCD.

Finally let us note that theD-dimensionalO(N) nonlinear sigma model may be considered as
a toy model of quantum field theory in a Kaluza–Klein framework for studying the question of
spontaneous compactification, for example. As usual, Kaluza–Klein theories are not renormaliz-
able. However, in the model under discussion we may still use the 1/N-expansion in order to
control somehow the quantum corrections.

Observe also that in addition to the 1/N-expansion one can calculate the free energy as an
expansion in inverse powers of the dimension. Such calculations in frames of the toy model under
consideration may be useful in atomic physics.15
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APPENDIX: ON THE CALCULATION OF ZETA-FUNCTIONS

1. General considerations

LetM be a space–time of the typeRD2M3MM, D.M , with the operator2h1m21jR
acting on the whole manifold. Since2 h 5 2hRD2M 2 hMM, the spectrum has the form
p21ln1m21jR, pPRD2M, ln P Sp( 2 hMN). Then, the global zeta-function on
M5RD2M3MM is defined as

zRD2M3MM~s!5E dD2Mp (
n:

lnPSp~2hMM !

~p21ln1m21jR!2s. ~A1!

Such a definition is purely mathematical, i.e., the usual physical factors coming from state nor-
malization are here absent. Notice that each momentum integration is introducing a further mass
dimension. The arbitrary mass scalem, typically supplied in order to render the function dimen-
sionless, is not present either. All these elements may be included at a later stage.

After doing thep-integrations, this zeta-function can be written in terms of the one forMN

zRD2M3MM~s!5p~D2M !/2
G„s2~D2M !/2…

G~s!
zMMS s2

D2M

2 D , ~A2!

with

zMM~z!5 (
n:

lnPSp~2hMM !

~ln1m21jR!2z, ~A3!

where possible degeneracies must be accounted for into this sum.
First, we make the following hypothesis: only theG function has singularities ats2(D2M )/

2, s50, 1—and, obviously, these poles can be encountered for evenD2M only—while zMM and
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its derivative are finite at these points. Such an assumption is right whenMM5TM for oddD, or
MM5SM for the massless case. Using the expansion of theG functions, both around their poles
and around regular points, we obtain the generic results:

~1! EvenD2M52q:

zR2q3MM~11«!5pq
~21!q21

~q21!! H F1« 1c~q!1gGzMM~2q11!1zMM~2q11!J 1O~«!,

~A4!

zR2q3MM8 ~0!5pq
~21!q

q!
$@c~q!1g#zMM~2q!1z

MM8 ~2q!%.

~2! OddD2M52q11:

zR2q113MM~1!5pg11/2G~2q1 1
2!zMM~2q1 1

2!,
~A5!

zR2q113MM8 ~0!5pq11/2G~2q2 1
2!zMM~2q2 1

2!.

When, on the contrary,zMM(z) has poles atz5s2(D2M )/2, s50,1, this function has to be
Laurent-expanded around these singularities before taking the limitss→0,1, and a somewhat
different calculation is required in every particular case.

2. Zeta-function on TM

We study the torus only. Once we have the zeta-function onTM, we can find the one on
zRD2M3MM by application of~A2!. So, when looking atzTN(z) we will have in mind the argu-
mentsz5s2(D2M )/2, s50,1.

For simplicity we take all the radii equal and with valuer. Then

zTM~z!5S 2p

r D 2zZMS z, rm

2p D , ~A6!

where

ZM~z,a!5 (
n1 ,...,nM52`

`

~n1
21•••1nM

2 1a2!2z ~A7!

is an Epstein zeta-function with inhomogeneous term. After Mellin-transforming we obtain

zTM~z!5S 2p

r D 22z 1

G~z!
E
0

`

dttz21e2t~rm/2p!2uMS tp D . ~A8!

The Jacobi theta functionu(x), given by~4.4!, has the property

u~x!5
1

Ax
uS 1xD . ~A9!

Taking advantage of this, we separate the part which diverges att50, i.e., then50 contribution in
the u function, and write
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jTM~z!5S 2p

r D 22z pM /2

G~z! H E
0

`

dttz2M /221e2t~rm/2p!2FuMS p

t D 21G1S rm

2p D M22z

GS z2
M

2 D J
[S 2p

r D 22z pM /2

G~z! H I MS z, rm

2p D 1S rm

2p D M22z

GS z2
M

2 D J . ~A10!

Now the t-integral, that@in accordance with~4.3!# we have calledI M(z,rm/2p), contains no
small-t singularity. This expression has the additional advantage that its second term exhibits the
poles of this function atz5M /2,(M21)/2,... . After writinguM as a binomial expansion~in the
n50 term ofu and the rest of the summatory!, we use the integral representation

E
0

`

dttn21e2a/t2bt52S abD
n/2

Kn~2Aab! ~A11!

and end up with the Dirichlet series

I MS z, rm

2p D52M /22zS rm

2p DM22z

(
l51

M SMl D2l11 (
n1 ,...,nl51

` KM /22z~rmAn121•••1nl
2!

~rmAn121•••1nl
2!M /22z

.

~A12!

These results, combined with~A2!, give rise to~4.2! and ~4.5! for zRD2M3TM(s).

3. Zeta-function on SM

The same method is employed to derive the expressions inzRD2M3MM(s) from the ones for
SM. Taking into account the known spectrum of the D’Alembertian onSM, the Riemann curvature
on this space, and the conformal coupling value ofj, we readily obtain the eigenvalues of our
operator and construct its zeta-function,

zSM~z!5(
l50

`

d~M ,l !F 1a2 S l1 M21

2 D 21m2G2z

, ~A13!

with degeneracies~see e.g. Ref. 17!

d~M ,l !5
~ l1M22!!

l ! ~M21!!
~2l1M21!5S l1M22

l D l1~M21!/2

~M21!/2
. ~A14!

Settingm50 one obtains

zSM~z!5
2a2z

M21 (
l50

` S l1M22
l D S l1 M21

2 D 122z

55
2a2z

~2p11!! (
k50

p

~21!kak~p21!zHS 2112z22p12k,p1
1

2D , for M52p12,

2a2z

~2p!! (
k50

p21

~21!kbk~p22!zH~2z22p12k,p!, for M52p11,

~A15!

with the ak and bk coefficients as written in~5.5!. The Hurwitz functions in~A15! may be
reexpressed with the help of the identities
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zHS z,p1
1

2D5zHS z, 12D2 (
n50

p21 S n1
1

2D
2z

, zHS z, 12D5~2z21!zR~z!,

~A16!

zH~z,p!5zR~z!2 (
n51

p21

n2z.

Afterwards, taking advantage of the properties

(
k50

p

~21!kak~p21!S n1
1

2D
2~p2k!

50, when 0<n<p21,

~A17!

(
k50

p21

~21!kbk~p22!~n11!2~p212k!50, when 0<n<p22,

we may put

zSM~z!5 H2a2zSa~p,2z!, for M52p12,
2a2zSb~p,2z!, for M52p11, ~A18!

where theSa(p,2z) andSb(p,2z) are the ones defined by~5.4!. Observing those finite sums, one
locates the singularities ofzSM(z), which come from the pole ofzH(x,a) or zR(x) at x51:

z51,2,...,p11, for N52p12,

z5 3
2,

5
2,...,p1 1

2, for N52p11.

As a result, we realize that at the points we are interested in, i.e.,z5s2(D2M )/2, s50, 1,
zSM(z) is finite and we may therefore apply~A4! and ~A5!, thus obtaining the values of
zRD2M3SM(1), zRD2M3SM

8 (0) given in Sec. V.
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1147Elizalde, Odintsov, and Romeo: O(N) nonlinear sigma model in D dimensions

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Complete sets of non-self-adjoint observables:
An unbounded approach

Giuseppina Epifanio
Istituto di Fisica dell’Universita`, Via Archirafi 36, I-90123 Palermo, Italy

Todor S. Todorov
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

Camillo Trapani
Istituto di Fisica dell’Universita`, Via Archirafi 36, I-90123 Palermo, Italy

~Received 29 December 1994; accepted for publication 18 October 1995!

The notion of completeness of a setS of compatible observables represented by
maximal symmetric operators is discussed directly in terms of unbounded opera-
tors. In contrast with what happens for self-adjoint observables, the present frame-
work forces us to involve some partial algebraic structures such as the partial
GW* -algebra generated byS . In this way the previous approaches based on von
Neumann algebras and onO* -algebras are generalized. ©1996 American Insti-
tute of Physics.@S0022-2488~96!00402-1#

I. INTRODUCTION

In the last two decades there has been a growing interest in quantum problems where sym-
metric but non-self-adjoint observables are involved.1–5This is basically motivated by the follow-
ing two facts.

First, in the analysis of open quantum mechanical systems,1,6,7 which frequently exhibit an
irreversible behavior, the dynamics is represented, in general, by a one-parameter semigroup of
contractions which is, in turn, generated, in the most favorable situation, by a symmetric operator.

Second, the quantum mechanical axiom of repeatability, which forces us to represent observ-
ables by projection-valued~PV! measures, is violated in many quantum mechanical experiments
which are unrepeatable for their own nature.5 A quite extensive literature is concerned with
problems of this kind, such as the repeated or inexact measurements~localization measurements!,
e.g., Refs. 8–10 or the position measurements of the photon, e.g., Refs. 11, 12, etc. The quantum
measurements are, in all these cases, described by positive-operator-valued~POV! measures which
are not necessarily PV.13,14As is known, the operator determined, via the corresponding integral
representation,15 by a POV measure defined on the line~i.e., an observable!, when it exists, is
symmetric but not necessarily self-adjoint, hence to general quantum measurements on the line
there correspond symmetric observables.~The statistical apparatus based on POV measures finds
even technical applications, e.g., in quantum communication systems16!.

The role played by POV measures and by dynamical semigroups is not, however, the only
reason for considering symmetric observables. They, indeed, occur in many other situations:

~1! the neutral~hence observable! scalar field in~Wightman! quantum field theory provides an
example of a set of not necessarily self-adjoint but symmetric operators defined on a common
dense and invariant domain;

~2! the limit of ~bounded! self-adjoint observables is in general a non-self-adjoint observable;17

~3! generalized symmetries18,19 are represented by semigroups of isometries generated by maxi-
mal symmetric observables.

Finally, it is worth mentioning that also in the usual formulation of quantum mechanics
non-self-adjoint observables may occur: for instance, the momentum operator on the half-line is
maximal symmetric but not self-adjoint.

0022-2488/96/37(3)/1148/13/$10.00
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Of course, in the case of self-adjoint observables it is possible to deal indifferently with the
operators or with the corresponding spectral measures or, still, with the one-parameter groups of
unitary operators that they generate, because of the mathematical equivalence stated by the spec-
tral theorem and by Stone’s theorem. For symmetric operators the relations are no longer so simple
~for an exhaustive discussion we refer to Ref. 15! and some new mathematical difficulties appear
when we try to express, in this more general framework, concepts and problems which play a
relevant role in the traditional formulation of quantum mechanics.

One of them is certainly that of a rigorous description of Dirac’s concept of a complete set of
commuting observables~CSCO! which has an almost 35-year-old history, starting from the pio-
neering Jauch’s paper.20 Therein observables were considered as~possibly! unboundedself-adjoint
operators in Hilbert space and the full discussion was then carried out in terms of the Abelian von
Neumann algebra generated by the PV measures associated to the self-adjoint observables via the
spectral theorem~which, as is known, establishes a one-to-one correspondence between PV mea-
sures and self-adjoint operators!.

In a previous paper,18 we studied the notion of a CSCO when the observables are represented
by unbounded symmetric operators in Hilbert space. This is certainly not the most general situa-
tion, but it corresponds to the reasonable requirement that to each observable it corresponds
sufficiently many vectors with finite expectation value. On the contrary, there is no loss of gen-
erality in the assumption that these symmetric operators are maximal~each symmetric operator
has, indeed, a maximal extension!. Under these assumptions we were able to define the strong
commutativity of a family of maximal symmetric observables via the semigroups of isometries
they generate. With methods which parallel those in Ref. 20, we considered the von Neumann
algebra generated by these semigroups. This von Neumann algebra is no longer Abelian, but only
semi-Abelian;18 nevertheless a notion of maximality can be introduced also in this case.

On the other hand, in Ref. 21, the completeness of a set of commuting self-adjoint observables
was discussed directly in terms of unbounded operators. More precisely, the properties of the
CSCO were described there in terms ofO* -algebras theory;22 the concept ofSV* algebra23 was
used and the connections with the bounded approach developed in Ref. 20 were discussed. For
other approaches to commutation properties, see Refs. 24 and 25.

In this paper we will present a study parallel to that in Ref. 21, in the case where the
observables are represented by symmetric but non-self-adjoint observables. However, as we shall
see in Sec. IV, the transition from the self-adjoint observables description of a CSCO to the present
case involves partial algebraic structures.26–31Actually, with the help of the recently developed
formalism ofpartial GW* -algebras~partialGW* -algebras are, in a sense, theunboundedanalog
of von Neumann algebras!,31 both the bounded approach20 and its unbounded generalization21 are
naturally embedded in the present scheme to include non-self-adjoint observables as well.

In any case, when dealing with unbounded operators, unavoidable problems of domain arise.
In typical situations one supposes that the operators involved in the physical problem constitute an
O* -algebra. There are, however, very simple instances which do not fit into this algebraic frame-
work. This depends, in general, on the fact that the involved operators do not admit aninvariant
domain or, even if they do, this domain is not the most natural for practical purposes. For these
reasons, J. P. Antoine and W. Karwowski26 introducedpartial O* -algebras, whose study has been
then deepened also by other authors.27–31 As said before, also in our investigation on the un-
bounded description of complete sets of compatible symmetric observables~for the sake of sim-
plicity we consider also in this paper only maximal symmetric observables!, these partial
* -algebras will play a relevant role. In our discussion, we will also emphasize some domain
problems which arise independently of how nicely the operators behave. As discussed in Ref. 29,
in fact, the different possible choices of the domain is the main motivation for the appearing of
partialO* -algebras also for families of strongly commuting normal operators.

In Sec. III we reformulate in a suitable form some results of Ref. 18 and discuss the possible
definitions of compatibility and completeness.

1149Epifanio, Todorov, and Trapani: Complete sets of non-self-adjoint observables

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



We show in Sec. IV that a set of strongly commuting non-self-adjoint observables admit
always a common dense and invariant domain where they, obviously, generate anO* -algebra.
Moreover, the algebraic commutativity, which is a specific feature of a CSCO in the self-adjoint
case, is preserved also in the non-self-adjoint case on this domain.~It is perhaps worth mentioning
the fact that the algebraic commutativity is a very weak condition which does not imply compat-
ibility, as Nelson’s example, cf. Sec. IV, shows also in the self-adjoint case.!

We prove, furthermore, that a set of compatible observables generates a partialGW* -algebra
on an appropriate domain. However, in this case, the minimal partialGW* -algebra containing the
von Neumann algebra of the corresponding semigroups is no more Abelian as in the self-adjoint
case. Incidentally, the above discussion shows that partial algebraic structures provide a quite
natural framework where some quantum theoretical application can be conveniently cast and that
they are not so rare or exotic as their mathematical aspects could lead to think.

We discuss, finally, a Nelson-type physical example and some regularity properties of a family
of compatible observables.

II. PRELIMINARIES

LetH be a complex Hilbert space andD a dense subspace ofH. We denote, as usual, by
L†~D ,H! the set of all~closable! linear operatorsX in H such thatD(X)5D , D~X* !$D . The
setL†~D ,H! is a partial * -algebra, with respect to the following operations: the usual sum
X11X2 , the scalar multiplicationlX, the involutionX°X†[X* dD , and the partial multiplication
X1hX2 5 X1

†*X2, defined wheneverX2PR(X1), that is, iffX2D,D(X1
†* ) andX1*D,D(X2* ). A

partialO* -algebra onD is a partial* -subalgebraM of L†~D ,H!, that is,M is a subspace of
L†~D ,H!, containing the identity and such thatX†PM wheneverXPM andX1hX2PM for any
X1 ,X2PM if X2PR(X1). As for L†~D ,H! itself, it is the largest partialO* -algebra on the
domainD .

As usual,22 we put

L†~D !5$XPL†~D ,H!;XD,D and X*D,D%. ~1!

ThenL†~D! is a * -algebra with the involutionX°X†. A *-subalgebra ofL†~D! with identity
operator is called anO* -algebra onD .

In addition, for any†-invariant subset ofL†(D ,H), we define the sets

D̂~M![ ù
XPM

D~X̄!, D* ~M![ ù
XPM

D~X* !, ~2!

so thatD,D̂~M!,D* ~M!. The full closure ofM is the setM̂5$X̄dD̂~M!; XPM%. The partial
O* -algebraM is calledfully closedif D5D̂~M! andself-adjointif D5D* ~M!.

We will often consider onL†~D ,H! the strong* -topology ~shortly s* -topology! defined by
the seminorms

XPL†~D ,H!→max$iXfi ,iX†f i%, fPD .

This topology plays a relevant role in the study ofcommutantsandbicommutantsof subsets of
L†~D ,H!.

Theweak unbounded commutant23
Ms8 of a †-invariant subset ofL†~D ,H! is defined as

Ms85$XPL†~D ,H!u~Af ,X†g!5~Xf ,A†g!;APM, ; f ,gPD%. ~3!

Its bounded partMw8 5 Ms8ùB(H) is called theweak bounded commutantof M, whereB~H!
denotes the set of bounded linear operators inH.
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A fully closed partialO* -algebraM with the propertiesM 5 Mws9 andMw8D#D is called a
partial GW* -algebra.

The main problem, when a†-invariant subsetR of L†~D ,H! is given, is how to construct a
partialGW* -algebra containingR. Of course, the definition itself suggests looking at bicommu-
tants; there are, however, as expected when dealing with unbounded operators, several problems
with domains. The following result, that we will use later, provides the answer.

Proposition 2.1:Let R be a†-invariant subset ofL†~D ,H!. Then the following statements
are equivalent:

~1! Rws9̂ is a partialGW* -algebra onD̂(Rws9 ).
~2! Rws9 5 @(Rw8 )8#s* 5 $XP L†(D ,H); X̄ is affiliatedwith (Rw8 )8%.
~3! Rw8 D̂(Rws9 )5D̂(Rws9 ).

Then, as is clear from the above discussion, a partialGW* -algebraM is a fully closed partial
* -algebra which coincides with thes* -closure of its bounded partMb . This is, indeed, a possible
alternative definition. For further details we refer to Refs. 30–32.

III. COMPATIBLE OBSERVABLES AND COMPLETENESS

As well as in Ref. 18, we will use Naimark’s theory of extensions of symmetric operators in
Hilbert spaceH to a larger Hilbert spaceH̃.H and the related extensions of a POV measure
B~Q! @Q PB~Rn!—the family of Borel sets inRn! inH to a PV measureE~Q! in H̃.15,33We will
use also the extension of a semigroup of isometriesV(t) in H to a groupU(t) of unitary
operators inH̃.15,18,34

For reader’s convenience, we give here first some useful statements, analogous to those
presented in Ref. 18. In view of their physical meaning, discussed in the Introduction, we will
often term self-adjoint or maximal symmetric operators as self-adjoint or maximal symmetric
observables.

Let us now consider the maximal symmetric operatorsSi and their generalized~i.e., POV!
spectral measures$Bi~D!, i51,...,n; DPB~R!%.

Definition 3.1:Let S 5$S1 ,...,Sn% be a set of maximal symmetric operators. The setS is
called strongly commutingif every pair Si ,Sj of elements ofS commute strongly, i.e., the
isometry semigroups thatSi andSj , respectively, generate commute.

Definition 3.2:The operatorsS1 ,...,Sn are calledoperationally compatible, if there exists a
POV measureB~Q!, Q PB~Rn! ~called the joint spectral measure! such that for anyn-tuple
D1,...,DnPB~R! one hasBi(D i)5B~R3•••3Di3 R3•••3R!.

Lemma 3.3:Let $S1 ,...,Sn% be operationally compatible maximal symmetric observables in
H. ThenS1 ,...,Sn admit self-adjoint extensionsA1 ,...,An , respectively, in one and the same
larger Hilbert spaceH̃, andAi commute pairwise strongly, i.e., their spectral projections com-
mute.

Lemma 3.4:Let $S1 ,...,Sn% be a set of strongly commuting maximal symmetric observables
in H. There exist self-adjoint extensionsA1 ,...,An in one and the same larger Hilbert spaceH̃
which commute pairwise strongly.

The link between operational compatibility of observables and commutativity of the repre-
senting operators is provided by the following.

Proposition 3.5:For a set$S1 ,...,Sn% of maximal symmetric operators the statements

~i! S1 ,...,Sn commute pairwise strongly~i.e., via the generated semigroups! and
~ii ! S1 ,...,Sn are operationally compatible

are equivalent.
Proof:We only sketch the proof of~ii !⇒~i!. SetB(D1 ,...,Dn) for the joint spectral measure

of S1 ,...,Sn . Lemma 3.3 implies the existence of strongly commuting self-adjoint extensionsAi ,
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i51,2,...,n, in one and the same larger spaceH̃. SetU(t1,...,tn)5Pk51
n exp(i t kAk); an applica-

tion of Proposition 2.7 of Ref. 18 shows that for the semigroups of isometriesVi(t i) generated by
Si one has

Vi~ t i !,U~0,...,0,t i ,0,...,0!.

ThenVi(t i), i51,2...,n mutually commute.h
From now on, we will use the termcompatiblefor a set$S1 ,...,Sn% of observables satisfying

~i! or ~ii ! of Proposition 3.5.
A physical example of this situation is provided~see Ref. 18! by the three components of the

momentum operator considered on the positive coordinate semi-axes.
In Ref. 18 we made use, for the study of the completeness of a set of compatible observables,

of the notion ofsemi-Abelianvon Neumann algebra whose definition we repeat here for the
reader’s convenience.

Definition 3.6:LetN be a von Neumann algebra; we say thatN is semi-Abelianif N contains
two subalgebrasU andB ~the component algebras ofN! with the following properties

~a! U andB are Abelian,
~b! U ø B generatesN,
~c! U5B* ,
~d! U5U9 ~resp.,B5B9!.

Moreover, we say thatN is maximal semi-Abelian if for anyone of its component algebras, e.g.,
U, the equationU5U8 results.

Remark 3.7:In the corresponding definition given in Ref. 18, the condition~d! was omitted.
There is no loss of generality in this assumption, sinceU, its weak closure,@U#w, andU9 are all
component algebras ofN. Still, in Ref. 18 the definition of maximality was given by means of the
equality @U#w5U8, but as is easy to see, the equality@U#w5U8 implies thatU95U8 and so the
maximality in the sense given in Definition 3.6 implies the maximality in the sense of Ref. 18. The
converse implication is obvious. Therefore the two definitions are equivalent.

If S 5$S1 ,S2 ,...,Sn% is a set of strongly commuting maximal symmetric operators, then, as
shown in Ref. 18, we can consider the von Neumann algebraN generated by the isometry
semigroups $V1 ,...,Vn%, corresponding respectively to$S1 ,...,Sn%, and by their adjoints
$V1* ,...,Vn* %. ~We will call N the von Neumann algebra generated byS !. Then by Definition 3.6,
N is a semi-Abelian von Neumann algebra, with component algebrasU5$V1 ,...,Vn%9 and
B5U* . It is worth remarking that$V1 ,...,Vn%9 need not be a*-algebra and thatN does not
coincide, contrary to the self-adjoint case, with the von Neumann algebra generated by the gen-
eralized spectral families~i.e., the POV measures! of the operatorsS1 ,...,Sn .

35

Remark 3.8:In Ref. 18 the analysis of the completeness was carried out taking into account
the structure of the Abelian componentU rather than that of the whole algebraN. For this reason
the use of semi-Abelian von Neumann algebras seems to be unnecessary. We prefer to maintain it
here for coherence with the language of Ref. 18. One relevant remark is in order: it seems that
manyvon Neumann algebras are semi-Abelian. For instance ifN is generated by two bounded
self-adjoint operatorsA andB, thenN is semi-Abelian~U can be taken to be the Abelian algebra
generated byA1 iB!. For this reasonB~H! itself is semi-Abelian whenH is separable, since one
may chooseA and B as generating two maximal Abelian von Neumann algebras with trivial
intersection. We leave the question as to whether there arenon-semi-Abelian von Neumann alge-
bras and a detailed analysis of the whole question to a future paper.

In Ref. 18 we gave the following definition of complete set of compatible observables
~CSCO!.

Definition 3.9:A setS 5$S1 ,...,Sn% of strongly commuting maximal symmetric operators is
said to be a CSCO if the semi-Abelian von Neumann algebra generated byS is maximal.
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Adopting the same notations as before, we will now show that this definition of CSCO is close
to Dirac’s original concept.

Proposition 3.10:If the setS 5$S1 ,S2 ,...,Sn% is a CSCO, then for any maximal symmetric
observableSn11 strongly commuting with$S1 ,S2 ,...,Sn%, the contraction semigroupVn11 corre-
sponding toSn11 belongs toU5$V1 ,...,Vn%9.

Proof: Let S 5$S1 ,S2 ,...,Sn% be a CSCO andV 5$V1 ,...,Vn%; thenS generates a maximal
semi-Abelian algebra18 with component subalgebraU equal toV 9. Then for the semigroupVn11
corresponding to an additional elementSn11 compatible with Si , 1< i<n, one has
Vn11(t)PU85U. h

Remark 3.11:The converse of the above proposition is not true, in general. However, we may
considerU as a component algebra ofN5~UøU* !9; then, clearly,N8,U8 andU8.U. Under the
additional condition thatN8\U is not empty, if we suppose thatUÞU8, we can find a bounded
self-adjoint operatorXPU8\U ~it suffices to takeXPN8\U!. For thisX one necessarily haseitX¹U,
for any t. So,X does not commute strongly with$S1 ,S2 ,...,Sn%.

IV. THE ALGEBRAIC STRUCTURE OF COMPATIBLE OBSERVABLES

In this section we prove the existence of a domain ofC`-vectors~dense and invariant! for a
CSCO and we show that it generates, in a natural way, a partial algebraic structure on this domain.

Proposition 4.1:Let S 5$S1 ,...,Sn% be a set of strongly commuting maximal symmetric
operators inH. Then there exists inH a common dense domainD such thatSi~D!,D for any
i51,...,n.

Proof: Let Vk(tk), k51,2,...,n, be the strongly continuous one-parameter semigroups of
isometries corresponding toSk . ThenVk(tk) andVj (t j ) commute, for anyk and j . For anyFPH
and fPC0

`~R1
n !, whereR1

n 5P i
n$x:x>0%, defineV(t)5PkVk(tk) and set

F f5E
R1
n
f ~ t !V~ t !F dt,

wheredt:5dt1•••dtn .
Denote asDS the set of all linear combinations ofFf . ThenDS is dense inH. Indeed, let

i (t) be a function of C0
`~R1

n !, whose support is contained in the set
K:5$t5(t1 ,...,tn%:utu<1,tk.0% and with*Ki (t)dt51. For e.0 we puti e(t)5e2ni (t/e). Then
we have

iF i e
2Fi5 I E

R1
n
i e~ t !~V~ t !F2F!dtI<E

R1
n
i e~ t !dt sup

tPeK
iV~ t !F2Fi→0,

ase→0 since eachVk is strongly continuous.
We will now prove that eachSi , i51,...,n, leavesDS invariant.
For eachfPC0

`~R1
n !, we can define a linear operatorU( f ) by

U~ f !F5F f , FPH.

ThenU( f ) is bounded andiU( f )i<i f i1 ~theL1-norm onR1
n !.

A simple computation shows that

V~ t !U~ f !F5U~ f t!F, ;FPH,

where f t(s)5 f (s2t). Then,
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iSjF f5 lim
t j→0

Vj~ t j !2I
t j

F f5 lim
t j→0

U~ f t@ j #2 f !

t j
F,

wheret [ j ]5(0,...,t j ,...,0).
Now,

IU~ f t@ j #2 f !

t j
F1U~] j f !FI<I f t@ j #2 f

t j
1] j f I

1

iFi→0

because of the existence of]j f in theL1-sense forfPC0
`~R1

n !. h

Lemma 4.2:Let S be a maximal symmetric operator inH andA a self-adjoint extension ofS
in a larger Hilbert spaceH̃; then

D~Sk!5HùD~Ak!, k51,2...,

and

Skf5Akf , ; fPD~Sk!.

Thus

D `~S!5HùD `~A!.

Proof: Clearly

HùD~Ak!5$ fPHùD~Ak21!:Ak21fPD~A!%. ~4!

SinceS is maximal symmetric andA extendsS, then

D~S!5HùD~A! ~5!

and

Sf5Af , ; fPD~S!.

To proceed by induction assume that

D~Sk21!5HùD~Ak21! ~6!

and

Sk21f5Ak21f , ; fPD~Sk21!. ~7!

Then from~4!, ~6!, and~7!, we obtain

HùD~Ak!5$ fPD~Sk21!:Sk21fPD~A!%. ~8!

The statement then follows from the fact that for anyk: RanSk21#H. The equality
Skf5Akf , ; fPD(Ak) is now evident. h

Proposition 4.3:Let S 5$S1 ,...,Sn% be a set of compatible maximal symmetric operators. Let

D `~S !5 ù
i51

n

D `~Si !,
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whereD `(Si)5ùk>1D(Si
k). Then the following statements hold:

~i! D `~S ! is a common invariant dense domain for all the elements ofS .
~ii ! SiSj f5SjSi f; fPD `~S !.
~iii ! If one, at least, of the operatorsSiPS is not essentially self-adjoint onD `~S !, then the

Nelson operatorD5(i51
n Si

2dD `~S ! cannot be essentially self-adjoint.

Proof: ~i! By Lemma 4.1,D `~S ! is dense and it is clearly a common domain for all elements
of S . It remains to prove the invariance. LetA5$A1 ,...,An% be the family of commuting
self-adjoint operators extendingS 5$S1 ,...,Sn% to a common larger Hilbert spaceH̃ ~Lemma
3.3!. Then by Lemma 4.2 we obtain

D `~S !5HùD `~A!,

where D `~A!5ùi51
n D `(Ai); by Ref. 21, Proposition 2.1D `~A! is left invariant byAi ,

i51,...,n.
~ii ! Part ~ii ! follows immediately from the strong commutativity of the setA extendingS .
~iii ! Suppose, on the contrary, thatD is essentially self-adjoint onD `~S !. Then, from Ref. 36, p.
351, all the elements ofS would be essentially self-adjoint on the same domain. h

Remark 4.4:In Ref. 21 it was proved also that if all elements ofS are self-adjoint, thenD is
essentially self-adjoint onD `~S !.

We notice also that forn51, Proposition 4.3 says that any maximal symmetric operator has a
dense set ofC ` vectors. This is a particular case of Proposition 1.6.1 of Ref. 22. Furthermore, for
n.1 and compatibleS1 ,...,Sn , Proposition 4.3 asserts the existence of a common dense set of
C `-vectors for allSi .

Making use of the previous proposition and by some simple topological considerations, we
obtain the following.

Proposition 4.5:The setS generates a closed AbelianO* -algebraU~S ! onD `~S !.
Proof: Were U~S ! not closed onD `~S !, then it would admit a closureŨ~S ! to a larger

domainD̃ `~S !. This domain would be invariant for eachSi , i51,...,n, and therefore

D̃ `~S !#D `~Si !

for i51,...,n. This contradicts the assumption. h

Clearly, apart from closedness, the same statement remains true on the domainDS defined in
the proof of Proposition 4.1.

The following lemma generalizes to maximal symmetric operators a well-known statement
which holds true for self-adjoint ones. The proof is completely analogous and is therefore omitted.

Lemma 4.6:Let V(t), t>0, be the isometry semigroup generated by a maximal symmetric
operatorS. If XPB~H! commutes withV(t),;t>0, then

X:D~Sn!→D~Sn! ;n51,2,...,

and

SnX f5XSnf ; fPD~Sn!.

ThusX leavesD `(S) invariant and commutes with theO* -algebra generated byS onD `(S).
Proposition 4.7:Let S 5$S1 ,...,Sn% be a set of compatible maximal symmetric operators. Let

N be the von Neumann algebra generated by the isometry semigroups$V1(t1),...Vn(tn)% and by
their adjoints@whereVi(t i) is the semigroup generated bySi#. ThenNws9 is a partialGW* -algebra
onD `~S !. Moreover,Nws9 is the minimal partialGW* -algebra onD `~S ! containingS .

1155Epifanio, Todorov, and Trapani: Complete sets of non-self-adjoint observables

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Proof: From Ref. 31, Corollary 4.15,Nws9̂ is a partialGW* -algebra onD(Nws9 )̂ , where

D~Nws9 !̂5 ù
XPNws9

D~X̄!.

By Lemma 4.6,S ,Nws9 @or, also,U(S ),Uws9 # and thus we obtain

D `~S !#D~Nws9 !̂5 ù
XPNws9

D~X̄!, ù
XPU~S !

D~X̄!,D `~S !,

where the last inclusion follows from Proposition 4.5.
Therefore,Nws9 is fully closed. To prove the second part, recall that by 2.1, we have

Nws9 5@N#s *5$XPL†~D ,H!;X̄hN%,

whereX̄hN means thatX̄ is affiliated withN. Since~Lemma 4.6! N is the smallest von Neumann
algebra to which allSis are affiliated, for any other partialGW* -algebraR containingS we
would haveRb.N and therefore@N#s *,@Rb#

s * 5 R. This implies thatNws9 is the minimal
partialGW* -algebra containing allSis. h

Remark 4.8:The previous proposition implies, clearly, thatNws9 is the minimal partial
GW* -algebra containing the AbelianO* -algebraU~S !. Nevertheless,Nws9 is not Abelian, in
general. This fact contrasts, evidently, the well-known situation of bounded operator algebras. IfS

consists only of self-adjoint operators, then as shown in Ref. 21,Nws9 is then an Abelian
SV* -algebra onD `~S ! and it is anO* -algebra itself. This depends, essentially, on the fact that
U~S ! is standard~i.e., each symmetric element is essentially self-adjoint! ~Ref. 23, Proposition
6.4!.

Proposition 4.9:For the partialGW* -algebraNws9 generated byS there exist two partial
subalgebrasU~1! andB

~1! ~called the component partial algebras! such that

~a! B
~1!5U

~1!†;
~b! U(1)#(Ub

(1))s8 ~whereUb
(1) denotes the bounded part ofU

~1!!;
~c! Nws9 is the smallest partialGW* -algebra onD `~S ! containingU~1!øB

~1!.

In this case we say thatNws9 is semi-Abelian.
Proof: Let N be the semi-Abelian von Neumann algebra generated byS . ThenN has two

component algebrasU andB satisfying the conditions of Definition 3.6. SetU(1) 5 Uws9 and
B

~1!5U
~1!†.

First we show thatU~1! is a partial algebra~in the sense that ifXhY is well defined for some
X,YPU

~1!, thenXhYPU
~1!!.

Indeed, because of Lemma 4.6, we haveUw8D
`(S ) 5 D `(S ). For this reason, for anyX

P Uws9 andC P Uw8 , XCf5C̄X f , ; fPD `~S !, results. Therefore, ifX,YPU
~1! andXhY is well

defined, we obtain, for anyC P Uw8 and f ,gPD `~S !,

^~XhY! f ,C†g&5^X†*Y f,C†g&

5^Y f,X†C†g&5^Y f,C*X†g&5^C̄Y f,X†g&5^YCf,X†g&

5^Cf ,Y*X†g&5^Cf ,Y†hX†g&.

HenceXhYP Uws9 5 U
(1).

The statement~b! follows from the fact thatU#Uw8 impliesUws9 #Us8 and from the equality
U5Uww9 5(Uws9 )b .
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To prove ~c!, let us consider another partialGW* -algebraP containingU
~1!øB

~1!; then,
Pb.N, wherePb denotes the bounded part ofP. SinceN is the smallest von Neumann algebra

containingUøB, thenNws9 5 @N#s *,@Pb#
s * 5 P.h

Remark 4.10:The condition~b!, i.e., U(1)#(Ub
(1))s8 , does not imply thatU

~1! is Abelian but
only thatUb

(1) is Abelian. We recall that a partial algebraU~1! is Abelian if forX,YPU
~1! such that

XhY is well defined, alsoYhX is well defined andXhY5YhX. This is, indeed, a quite strong
requirement.

In the self-adjoint case, the standardness21 of the correspondingSV* -algebraNws9 implies the
equalityU(1) 5 (Ub

(1))s8 and therefore the Abelianness of bothU
~1! andNws9 .

Making use of the previous proposition, one can easily prove the following.
Proposition 4.11:The partialGW* -algebraM generated byS is semi-Abelian if, and only if,

its bounded partMb is a semi-Abelian von Neumann algebra whose component algebras can be
taken to be the bounded parts ofU

~1! andB
~1!.

Definition 4.12:Let M be a semi-Abelian partialGW* -algebra onD . We say thatM is
maximal semi-Abelian if M is not properly contained in any other semi-Abelian partial
GW* -algebra onD .

The following proposition shows the complete equivalence of theboundedand unbounded
approaches to the problem of complete sets of compatible observables as in the self-adjoint case.21

Proposition 4.13:Let N be the von Neumann algebra generated by a setS of strongly
commuting maximal symmetric operators. The following statements are equivalent:

~i! N is a maximal semi-Abelian von Neumann algebra;
~ii ! Nws9 is a maximal semi-Abelian partialGW* -algebra onD `~S !.

Proof: ~i!⇒~ii ! Let R.Nws9 be a partialGW* -algebra onD `~S !. Then its bounded partRb

is semi-Abelian and containsN; this implies thatRb5N and soR 5 Nws9 .
~ii !⇒~i! If O is a semi-Abelian von Neumann algebra containingN, thenOws9 is a semi-

Abelian partialGW* -algebra onD `~S ! which containsNws9 , by construction. ThenOws9
5 Nws9 and thereforeO5N. h

Propositions 4.7, 4.9, and 4.13 express precisely what we mean when we say that a CSCO
~consisting, in general, of non-self-adjoint observables! gives rise naturally to a partial algebraic
structure. In the self-adjoint case~bounded or unbounded setting! one considers the unitary groups
Ui generated by the self-adjoint observablesAi , i51,2,...,n. Clearly the von Neumann algebraN
generated byUi , i51,2,...,n, is Abelian, as well as the smallestGW* -algebra generated by the
CSCO which, moreover coincides with an AbelianO* -algebra. Furthermore, Proposition 4.13
exhibits the density of the semi-Abelian von Neumann algebra generated by the non-self-adjoint
observablesSi , i51,...,n, in the corresponding partialGW* -algebra. This fact generalizes the
similar result obtained in Ref. 21 in the self-adjoint case.

We conclude this section with a discussion on the relations between strong commutativity of
observables and their algebraic commutativity on a dense domain. We begin with discussing a
Nelson-type example which arises from a concrete physical situation.

Example:Consider a particle which moves in a finite-size crystal medium and has different
massesm1 ,m2 ,m3 along the coordinate axesx,y,z, due to the many-body system effects. Thus
one has a quantum mechanical particle moving in a potential well with infinitely high walls along
the boundary]V of a three-dimensional connected domainV. For the operatorsp2 andE corre-
sponding, respectively, to the squared momentum and to the energy, one has

p25px
21py

21pz
2,
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E5
px
2

2mx
1

py
2

2my
1

pz
2

2mz
,

where

px
252\2

]2

]x2
, py

252\2
]2

]y2
, pz

252\2
]2

]z2
.

The operatorsp2 andE are defined on the following domainD of C `-functions with Dirichlet’s
boundary condition

$uPC `~V̄!:ud]V50%.

Let C0
`~V! denote the set of all infinitely differentiable functions with compact support inV.

As known,37 the Friedrichs self-adjoint extensions,p0
2˜ andE0̃, where

p0
25~p2!dC0

`~V!, E05EdC0
`~V!,

commute strongly if and only ifV is a parallelepiped with sides parallel to the coordinate axes.
Furthermore,p2 andE are essentially self-adjoint onD and for the closuresĒ and ofp2 one has
Ē 5 E0̃, p

2 5 p̃0
2.37 The operatorsĒ andp2 are considered to represent, respectively, the physical

observables of energy and squared momentum.
Suppose now thatV is not a parallelepiped. ThenS1[Ē andS2 [ p2 commute onDS5C0

`~V!
but the groups,V1 andV2, corresponding respectively, toS1 andS2, do not generate an Abelian
von Neumann algebra~considered as a special instance of the semi-Abelian case!. ThusS1 andS2
are not compatible.37 Moreover we check that there are no self-adjoint extensionsS1

1.S1 and
S2

1.S1 in some bigger Hilbert spaceH
1.H which commute strongly. Assume on the contrary

that

E1~D!G1~D8!5G1~D8!E1~D! ~9!

holds for the extensions of the generalized spectral measuresE~D! and G~D8! of S1 and S2
correspondingly. The restrictionS1

1dH is defined onL5$wPH:S1
1wPH%. SinceS̄1 is the mini-

mal closed extension ofS1, thenS̄1,S1
1. Moreover sinceG(S1

1)ùH3H @whereG(S1
1) denotes

the graph ofS1
1# is closed andS1 is self-adjoint, one hasS1

1dH5S1. Due to the invariance ofL
under the self-adjoint operatorS1

1 and sinceS1
1dH is also self-adjoint, it follows for the orthogo-

nal projectionP:H1→H that PS1
15S1

1P. HenceS1
1 is an orthogonal sumS1

15S̄1% S̄1
' and

similarly S2
15S̄2% S̄2

'. Then Eq.~9! would imply strong commutativity ofS̄1 and S̄2, which
contradicts the choice ofV.

Due to the equivalence of strong commutativity and operational commutativity~Proposition
3.5! one restates the above result as follows: forE~D! andG~D! there is no joint POV measure
M ~D3D8!, D3D8#R13R1 such thatM (D3R1)5F(D) andM (R13D8)5G(D8).

In view of this kind of counterexample, we discuss below sufficient conditions for a set
S 5$Si ,iPI % of algebraically commuting maximal symmetric observables to be compatible.

Let all SjPS be defined on a common invariant and dense domainDSPH. Without loss of
generality, we suppose thatiPr(Sj ); j51,...,n. With this choice, we may introduce the skew-
symmetric operatorsTj5 iSj , jPI , and denoteD i , j

n,m5(12e iTi)
n(12e jTj )

mDS , e i ,e j.0.
We say thatS is a regular set onDS if for every pair of observablesSi , SjPS and anyei.0,

ej.0 there exists an integerN.0 such that for all integersn, m.N, D i , j
n,m is dense inH.
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Proposition 4.14:Let S be a regular set of maximal symmetric observablesSj , j51,2,...,m,
commuting algebraically, i.e.,SjSk5SkSj on a common dense and invariant domainDS . Then the
semigroupsVj corresponding toSj commute and the von Neumann algebraN generated by
$Vj : jPI % is semi-Abelian.

Proof: It is sufficient to check thatVi ,Vj for iÞ j commute and thus they generate one of the
Abelian component algebras ofN. In the following we set

S 12
t j
n
Tj D n[R~ t j ,n![Rj ,n ,

thus omitting thet j dependence as unessential for the argument. Recall that, due to the maximality
of Sj , one has Ran~12e jTj !5H. Furthermore, according to Hille–Yosida theorem on
semigroups,38 for any ej.0, ~12e jTj !

21 is bounded and

lim
n→`

S 12
t j
n
Tj D n[ lim

n→`

Rj ,n
21f5Vj~ t ! f

in the norm topology forfPD(Tj ). Setgi[Ri ,nf where fPDS . The commutativity assumption
written for any powern5k, l51,2,..., inRi ,n ,Rj ,n , implies

Ri ,kRj ,l f5Rj ,lRi ,kf , fPDS .

Hence,

Ri ,kRj ,lRi ,k
21gi5Rj ,lgi ,

i.e.,

Rj ,lRi ,k
21gi5Ri ,k

21Rj ,lgi .

A repetition of the argument using this timeRj ,lgi5gj gives

Ri ,k
21Rj ,l

21gj5Rj ,l
21Ri ,k

21gj , ~10!

wheregjPD i , j
n,m

Due to the regularity ofS and to the boundedness ofRm,n
21 ~since eachSm is maximal!, the last

equation holds for an arbitrary vector inH. Since the commutativity property is preserved by
taking strong limits of operators, then Eq.~10! implies thatVi ,Vj commute. h

ACKNOWLEDGMENT

The authors wish to thank the referee for many valuable suggestions which really improved
the paper and for having drawn their attention to the problem and examples discussed in Remark
3.8. One of us~T.S.T.! acknowledges the hospitality of the Istituto di Fisica, Universita` di Pal-
ermo, where a part of this paper was performed.

The authors thank the Italian Ministry of Scientific Research, the National Council of Re-
search~CNR!, the Academy of Sciences, and the National Science Research Fund of Bulgaria for
financial support.

1E. B. Davies,Quantum Theory of Open Systems~Academic, London, 1976!.
2D. A. Dubin and M. A. Hennings,Quantum Mechanics, Algebras and Distributions, Pitman Research Notes in Math-
ematics~Longman, Harlow, 1990!.

3A. S. Holevo,Probabilistic and Statistical Aspects of Quantum Theory~North–Holland, Amsterdam, 1982!.
4G. Ludwig,Foundations of Quantum Mechanics~Springer-Verlag, New York, 1983!.
5S. T. Ali, ‘‘Stochastic Localization, Quantum Mechanics on Phase Space and Quantum Space Time,’’ Riv. Nuovo
Cimento8, 1–128~1985!.

1159Epifanio, Todorov, and Trapani: Complete sets of non-self-adjoint observables

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



6E. B. Davis, ‘‘Generators of Dynamical Semigroups,’’ J. Funct. Anal.34, 421–432~1979!.
7L. Accardi, A. Frigerio, and J. T. Lewis, ‘‘Quantum Stochastic Processes,’’ Publ. RIMS Kyoto Univ.18, 97–133~1982!.
8S. T. Ali and G. G. Emch, ‘‘Fuzzy observables in quantum mechanics,’’ J. Math. Phys.15, 176–182~1974!.
9E. B. Davis, ‘‘On repeated measurements of continuous observables in quantum mechanics,’’ J. Funct. Anal.6, 318–346
~1970!.

10J. M. Jauch and C. Piron, ‘‘Generalized localizability,’’ Helv. Phys. Acta40, 559–577~1967!.
11W. O. Amrein, ‘‘Localizability of particles with zero mass,’’ Helv. Phis. Acta42, 149–190~1969!.
12D. P. L. Castrigiano, ‘‘On Euclidean systems of covariance for massless particles,’’ Lett. Math. Phys.5, 303–309~1981!.
13E. B. Davis and J. T. Lewis, ‘‘An operational approach to quantum probability,’’ Commun. Math. Phys.17, 239–260

~1970!.
14K. Kraus,Operations and Effects in Hilbert space Formulation of Quantum Theory,’’ Lecture Notes in Physics, Vol. 29

~Springer-Verlag, New York, 1974!.
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Topological sectors and measures on moduli space
in quantum Yang–Mills on a Riemann surface
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Previous path integral treatments of Yang–Mills on a Riemann surface automati-
cally sum over principal fiber bundles of all possible topological types in comput-
ing quantum expectations. This paper extends the path integral formulation to treat
separately each topological sector. The formulation is sufficiently explicit to calcu-
late Wilson line expectations exactly. Further, it suggests two new measures on the
moduli space of flat connections, one of which proves to agree with the small-
volume limit of the Yang–Mills measure. ©1996 American Institute of Physics.
@S0022-2488~96!00803-5#

I. INTRODUCTION

In Refs. 1 and 2, we use the path integral formalism to evaluate quantum expectations of
Wilson lines in the Yang–Mills theory onG5SU(N) product bundles over Riemann surfaces of
any genus. Other approaches to these expectations include Sengupta’s stochastic quantization of
Ref. 3 and Blau and Thompson’s use of the Nikolai map to simplify the gauge-fixed path integral
in Ref. 4. Witten, in Ref. 5, derives these expectations combinatorially and via a Hilbert-space
approach using axioms of quantum field theory for any simple Lie groupG. He notes that these
results, by contrast with an approach based on Verlinde’s formula, automatically sum over all
topological types. In the more recent treatment of Ref. 6, he describes how to modify his Hilbert
space approach to treat separately each topological sector. Likewise, in Refs. 7 and 8, Sengupta
extends the stochastic quantization to nonsimply connectedG in a manner which treats separately
each topological sector.

In this paper, we analyze the path integral formulation of Yang–Mills on a principalG-bundle
of fixed topological type. While doing so, we augment Witten’s results on the partition function by
including the insertion of Wilson lines. These agree with Sengupta’s recent results. Our main
focus, however, is on the path integral itself. There is a recognized scarcity of field theories
wherein the path integral can be evaluated~or interpreted! nonperturbatively to obtain something
approaching a well-defined measure on configuration space. With the present extension of the
detailed account of how to perform such an evaluation~in a manifestly gauge-invariant fashion!,
we hope to contribute to the eventual rigorous understanding of gauge-theoretic path integration.

As an immediate benefit, in addition to the above-mentioned extension of Witten’s results, we
obtain new measures on the moduli space of flat connections. For genusg>1, the moduli space,
M of ~irreducible! flat connections is a finite-dimensional manifold. Witten uses the small-volume
limit of Yang–Mills to compute the volume ofM, which he shows agrees with that defined by the
symplectic volume form onM. In Ref. 9, Forman extends this agreement to one between mea-
sures onM. Our approach suggests two new measures onM. We show that one of these, which
was arrived at independently by King and Sengupta in Ref. 10, is equivalent to the small-volume
limit of the Yang–Mills measure.

This paper is organized as follows: Section II gives a brief summary of results forG5SU~N!
product bundles. Section III describes the modifications required to keep track of individual

a!Electronic mail: dfine@umassd.edu
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topological sectors in treating bundles with nontrivial topology. Section IV introduces the new
measures onM and compares them with the small-volume limit of the Yang–Mills measure.

II. REVIEW OF THE PRODUCT CASE

Let P be a principal bundle with symmetry groupG over a Riemann surfaceM with a base
pointmPM . LetA denote the space of connections onP, and letG m denote the group of gauge
transformations which are the identity on the fiber overm. In Ref. 2, we describeA/G m as itself
a principal bundle with affine-linear fiber over Path2g G, the space of 2g-tuples of paths inG
subject to the following relation on the 4g endpoint values {a i(0),a i(1),b i(0),b i(1)} i51

g :

)
i51

g

a i~0!b i~1!21a i~1!21b i~0!51. ~1!

Here, successive factors multiply from the right, andg>1. The projectionj:A/G m→Path2g G is
obtained from holonomy about a certain one-parameter family of closed paths inM determined by
a choice of fundamental domain and 2g generators {ai ,bi} i51

g of p1(M ); the unusual naming of
the components of the elements of Path2g G reflects this genesis. In the genus-0 case, the base
space is simplyVG, the space of based loops inG.

As the holonomies giving rise toj enter into the account of topological sectors, we review
them in more detail here. LetD be a fundamental domain forM and consider a family of paths
from the base pointm to the boundary]D of D such that every point ofM exceptm lies on exactly
one such path. Call these radial paths. Letp be a point of an edge of]D corresponding to a
generator of the fundamental group ofM , and letp21 P ]D denote the point corresponding top
in the identification of the edges of]D. Consider, for a given connectionA, the holonomy of the
closed path originating atm, following the radial path top and returning from the radial path
throughp21. See Fig. 1. Relative to a fixed point on the fiber overm, this holonomy determines
an element ofG which we denote bya i(p) if p is in the edge corresponding to the generatorai
@b i(p) if the corresponding generator isbi#. As p varies along its edge,ai(p) describes a path in
G. The 2g-tuple of such paths inG described asp moves among the edges corresponding to

FIG. 1. A typical radial path.
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generators isj([A]) P Path2g G. The endpoint relation reflects the fact that the radial paths to the
vertices of]D are each traversed twice. In particular, the concatenation of paths whose holonomy
is P i51

g a i(0)b i(1)
21a i(1)

21b i(0) is a contractible path containing no area, so the holonomy is
the identity in accordance with Eq.~1!. The fiber ofj is the affine-linear space kerPr of Lie-
algebra-valued one-forms which vanish in the radial direction.

In this picture, the path integral for the expectation of some function onA/G m , in the
Yang–Mills measurem, is an iterated integral over the linear fibers and the base Path2g G. The
integral over the fibers is Gaussian. Performing this integral yields a path integral expression for
the push-down measurej

*
(m). The main result of Ref. 2 is thatj

*
(m) is the product of Wiener

measures on the components {a i ,b i} of the elements of Path2g G, conditioned to satisfy the
endpoint relation of Eq.~1!. This measure is computed by integrating products of heat kernels on
G. For example, wheng51, the partition functionZ is given by

Z5E H~a~0!21a~1!;2ra!H~b~0!21b~1!;2~r2ra!!,

where the integral is over all possible values ofa~0!, a~1!, andb~0!, andb~1! is determined by the
relationa~0!b~1!21a~1!21b~0!51. Here,H is the heat kernel,r is the total area of the surface, and
ra is the area bounded by the pair of paths whose holonomies determinea~0! and a~1!. The
convolution property of the heat kernel reduces this expression to

Z5E H~~b~0!21a~1!21b~0!a~1!;2r! db~0!da~1!.

More generally, for genusg>1,

Z5E HS )
i51

g

xiyixi
21yi

21;2r D dx dy. ~2!

Since

H~x;t !5(
m

~dim m!xm~x!e22c~m!, ~3!

wherexm is the character of the representationm, andc denotes the quadratic Casimir, the partition
function is the sum

Z5(
m

e24cm r

~dim m!2g22 .

All sums are over the irreducible representations ofG. The induction step in reducing the integral
expression of Eq.~2! to the above sum is given by a pair of integral~orthogonality! relations
among the characters:

E xm~wxyx21y21!dy5
xm~wx!xm~x21!

dim m
,

and

E xm~wx!xm~x21!dx5
xm~w!

dim m
.
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This formalism also treats the insertion of Wilson lines. For example, the expectation of an
unknotted Wilson line, in the representationm, given by the trace of holonomy about a noncon-
tractible, homotopically nontrivial loopC, is

^W m&5
1

ZE xm~x1!HS )
i51

g

xiyixi
21yi

21;2r D dx dy.

As a sum over characters, this is

^W m&5
1

Z (
n

Dmnn

e24cn r

~dim n!2g22 ,

whereDmnn is the Clebsch–Gordan coefficient:xm(x)xn(x)5(Dmnsxs(x).
To make sense of the path integral, we restricted connections inA to have finite Yang–Mills

action and to satisfy a continuity restriction. Without a refinement of this restriction, bundlesP of
different topological types are indistinguishable. Thus, although nominally we treated only product
bundles, our results, when naively extended to non-simply-connected symmetry groups, corre-
spond to a sum over all topological types.

III. SEPARATING THE TOPOLOGICAL SECTORS

To sort out the topological sectors in the case whereG is not simply-connected andg>1, let
G̃ be the covering group ofG. ThenG5G̃/G, whereG is a subgroup$1,u1 ,•••,un% of the finite
center of the simply-connected Lie groupG̃. The topological type ofP can be characterized as
follows: Consider holonomy by a flat connection about contractible paths inM. As elements ofG,
these must be the identity. However, if we lift toG̃, these holonomies, though equal to each other,
can be any elementu of G. This element defines the topological type ofP.

The description in Sec. II ofj goes through as before to yield the same endpoint relation for
Path2g G. However, if we attempt to lift fromG to G̃, the holonomy of the right-hand side of the
relation in Eq.~1! will be replaced by the elementu of G labeling the topological type ofP. This
follows from the fact that the concatenation contains no area~so the holonomy is the same as for
a flat connection! and is contractible. We have thus proven the required refinements of the main
theorems of Refs. 1 and 2:

Theorem 3.1:On a principal fiber bundle of topological type u,A/G m is itself a fiber bundle
with projectionj and affine-linear fiber. The base space Path2g G̃ consists of all 2g-tuples of paths
in G̃, subject to the relation

)
i51

g

a i~0!b i~1!21a i~1!21b i~0!5u. ~4!

Theorem 3.2: The push-down measurej
*
~m! is the product of Wiener measures on the

components of each element of Path2g G̃, conditioned to satisfy Eq.~4!.
These allow us to calculate the partition function and the expectation of Wilson lines on a

bundle of typeu over a surface of genusg. For example, the calculation of the partition function
for a bundle of typeu on the torus~g51! begins as before:

Z~u!5E H~a~0!21a~1!;2ra!H~b~0!21b~1!;2~r2ra!!.

Now, however,b~1! is determined by the relationa~0!b~1!21a~1!21b~0!5u. Thus,
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Z~u!5E H~b~0!21a~1!21b~0!a~1!u21;2r!db~0!da~1!.

More generally, for genusg>1,

Z~u!5E HS )
i51

g

xiyixi
21yi

21u21;2r D dx dy.

In all these expressions the integrals are over copies ofG̃ andH is the heat kernel onG̃.
DecomposingH as a sum of characters~of representations ofG̃! according to Eq.~3!,

Z~u!5(
m

e24cmr

~dim m!2g22

xm~u21!

~dim m!
. ~5!

This agrees with Witten’s results from Ref. 6~Sec. 4! except for a constant factor depending onG
andg but not onr.

Incorporating Wilson lines given by parallel transport about the radial paths used to definej
is as straightforward as in the product case. For instance, the expectation of the Wilson line
xs(a i(p)), given by the trace of holonomy about a noncontractible, homologically nontrivial loop,
is

^xs~a i~p!!&5
1

Z~u!
E xs~x!HS )

i51

g

xiyixi
21yi

21u21;2r D dx dy

5(
m

Dsmm

e24cmr

~dim m!2g22

xm~u21!

~dim m!
.

By contrast, the expectation of a Wilson line coming from a contractible loop is

^xs~a i~p1!
21a i~p2!!&5

1

Z~u!
E xs~ x̄!H~ x̄;2ra!

3HS x̄21)
i51

g

xiyixi
21yi

21u21;2~r2ra!D dx̄ dx dy

5(
mn

Dsmn

e24cn~r2ra!e24cmra

~dim n!2g22

~dimm!

~dim n!

xn~u21!

~dim n!
!,

wherera is the area enclosed by the contractible loop.
Given the ability to disentangle the topological sectors, it is an amusing exercise to compute

the expected value of the topology of a random bundle. That is, letf :G→R, and, viewingf as a
map from topological sectors to the reals, define its Yang–Mills expectation taken over bundles of
all topological types~G andg are fixed! by

^ f &5 (
uPG

f ~u!Z~u!Y(
uPG

Z~u!. ~6!

To evaluate this expression, re-write Eq.~5! as

Z~u!5(
m

e24cmr

~dimm!2g22 lm~u21!,
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wherelm(u)[xm(u)/dimm. Note thatlm is a character for the representationm of G. Let RepG̃
denote the set of equivalence classes of irreducible representations ofG̃, and, for fixed
a P RepG̃, let ~RepG̃!a denote the set of representations which agree witha on G. Expanding
f :G→R in characters asf (u)5(aPRep G̃f ala~u!, and lettinga50 denote the trivial representation
of G̃, we shall prove

Corollary 3.2.1:

^ f &5 (
aPRepG̃

f aS (
mP~RepG̃!a

e24cmr

~dimm!2g22 Y (
mP~RepG̃!0

e24cmr

~dimm!2g22D .
Proof: The characterlm satisfies the orthogonality relation

(
uPG

lm~u!ln~u21!5H #G, if lm~u!5ln~u! for all uPG,

0, otherwise.

Thus thea th component of the numerator in Eq.~6! is

(
uPG

la~u!Z~u!5 (
mPRepG̃

e24cm r

~dimm)2g22 (
uPG

la~u!lm~u21!

5#G (
mP~RepG̃!a

e24cmr

~dimm!2g22 .

Moreover, 15l0~u!, so the denominator in Eq.~6! is the same expression witha replaced by 0.h
Remark 3.1:Since~RepG̃!05RepG, the evaluation of the denominator proves the statement

that naively applying the results of Refs. 1 and 2 to topologically nontrivial bundles is equivalent
to summing over topologies.

Remark 3.2:LetG5SO~3!5SU~2!/G for G5$1,21%, andf~61!561. Labeling the irreducible
representations of SU~2! by their dimensions, which span the positive integers, the odd-integer
representations of SU~2! are trivial onG, while the even-integer representations are not@that is,
ln~21!5~21!n11#. With the conventions of Ref. 1, the Casimir isc(m)51

8(n
221). Thus, the

expected value of the topology of an SO~3!-bundle is

^ f &5 (
n even

e2~1/2!~n221!r

n2g22 Y (
n odd

e2~1/2!~n221!r

n2g22 .

IV. MEASURES ON THE MODULI SPACE OF FLAT CONNECTIONS

LetMm denote the space of flat connections modulo gauge transformations. As Witten de-
scribes in Ref. 5, there is a natural symplectic formv on Mm which defines a measure
mv5[1/#Z(G)](vn/n!). Here n5 1

2 dimMm . Sengupta has shown in Ref. 9 that the small-
volume limit of the Yang–Mills measurem onA/G m described above defines, at least in genus 0,
a second measurem0 onMm . Witten shows these two measures agree on the total volume of
Mm , and in Ref. 10 Forman shows that, in fact,mv5m0 .

The picture ofA/G m as a bundle over Path2g G̃ suggests a new measure onMm . First note
that two points ofMm cannot lie in the same fiber, as there is no 1-formt P kerPr for which
DAt50. Thus, the restriction ofj to Mm , henceforth denotedjuMm

, is invertible. Moreover,
j~Mm!5$gP Path2g G̃: g i is constant%. @This is another way of saying thatMm may be viewed
as the representations ofp1~M! on G̃#. In short,juMm

provides an isomorphism betweenMm and
G̃z
2g, the space of constant 2g-tuples in Path2g G̃. In Theorem 4.2 of Ref. 2, we exhibited a global

sections : Path2g G→A/G m . Here we note the restriction ofs to G̃z
2g is juMm

21 . This is an
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immediate consequence of the fact that, in a given fiber, the connectionA representing a point in
the image ofs is determined up to gauge transformation by the condition that^FA ,DAt& vanishes
for all t P kerPr .

To define a measure onMm , use the Haar measure onG to define a measure onG̃z
2g and then

uses to push this measure forward toMm . In detail, the Haar measure onG defines a measure
mH on G̃z

2g which is the product of Haar measures on the components ofG̃2g, conditioned to
satisfy the endpoint relation. That is,

mH~x1 ,y1 , . . . ,xg ,yg!5dS )
i51

g

xiyixi
21yi

21z21D dx dy,

whered denotes the Dirac delta distribution massed at the identity ofG̃.
Under the isomorphismjuM,mH defines a measuremj onMm. As a measure on functions on

Mm , mj is given as:

E
Mm

fmj5E
G̃2g

f °s~x,y!mH . ~7!

Note that the right-hand side is an obvious measure to define onMm viewed as representations of
p1~M!. This measure may be normalized to define^ f &mj

, the expectation of a function onMm.
In Ref. 11, King and Sengupta arrive at the measuremj by a construction analogous to the

construction ofj reviewed in Sec. II.~They, however, restrict from the outset to connections
representing elements ofMm.! They then argue directly thatmj5mv . Here, by contrast, we will
show thatmj5m0. More precisely,

Theorem 4.1:Up to normalization,mj5m0 on functions which are analytic along the fibers of
A/G m.

Proof: We shall show limp→0^ f &m5^ f uMm&mj
. Writing out the path integral expression for

^ f &m and performing the Gaussian integral over the fibers yields

^ f &m5
1

Z E
Path2g G̃

f̂ ~g!j* ~m!~g!,

where f̂ is obtained fromf (s(g!1t) by performing the Gaussian integral overt P kerPr . Since
j
*
~m! is the product of Wiener measures, and the latter are determined by their behavior on

cylinder sets, we may assume, without loss of generality, thatf̂ ~g! depends ona i andb i evaluated
at pointspi j andqik , respectively, wherej51,2,...,mi andk51,2,...,ni ~and i51,2,...,g!. Then, as
in the examples of Sec. II,

^ f &u5^ f̂ ~a1~p11!,a1~p12!, . . . ,bg~qgng!!&j* ~m!

5
1

Z E f̂ ~x11,x12, . . . ,ygng! )
j51

mi11

H~xi ~ j21!
21 xi j ;Dt i j !

3 )
k51

ni11

H~yi ~k21!
21 yik ;Dsik!dS )

i51

g

xi0yi ~ni11!
21 xi ~mi11!

21 yi0z
21D )

i , j ,k
dxi j dyik , ~8!

whereDt i050, Dt i j is twice the area between the radial loops throughpi j andpi ( j21) andDsik is
defined similarly. Asr approaches 0, so doDt i j andDsik . However, asDt approaches 0,H(x;Dt)
becomes a delta function massed atx. Thus, if we may take the limit prior to integrating,
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lim
r→0

^ f &m5
1

Z E f̂ ~x11,x12,...,ygng! )
j51

mi11

d~xi ~ j21!
21 xi j !

3 )
k51

ni11

d~yi ~k21!
21 yik!dS )

i51

g

xi0yi ~ni11!
21 xi ~mi11!

21 yi0z
21D )

i , j ,k
dxi j dyik .

Performing the integrations overxi j andyik for j ,kÞ0 changes all thexi j ’s andyik’s to xi0’s and
yi0’s, respectively, leaving

lim
r→0

^ f &m5
1

Z E
G̃2g

f̂ ~x10,x10,...,yg0!dS )
i51

g

xi0yi0
21xi0

21yi0z
21D)

i
dxi0 dyi0 . ~9!

The right-hand side is exactly (1/Z)* f̂ uj(Mm)
mH . The assumption we made about interchanging

limit and integration is

lim
t→0

E f ~x!H~y21x;t !dx5E f ~x!d~y21x!dx.

That each side is equal tof (y) follows from the definition of the heat kernel~and the continuity
in t of solutions of the heat equation! on the left and the definition of the distributiond on the right.
We thus have

lim
r→0

^ f &m5
1

Z E f̂ uj~Mm)
mH .

According to Eq.~7!, we must now show

lim
r→0

f̂5 f uMm
+ s. ~10!

First, note that iff constant along the fibers, that is, iff (s(g) 1 t)5 f + s, then, for anyr,
f̂5 f + s. More generally, iff (s(g) 1 t) is annth order polynomial int, then f̂ is annth order
polynomial inr, whose constant term isf +s. This follows from standard manipulations of Gauss-
ian integrals and the fact that, in two dimensions, the arear plays the role of the coupling constant.
Thus, for f polynomial, or, more generally, analytic, int, Eq. ~10! holds ~with the convergence
being uniform!; hence, up to normalization,mj5m0 on analytic functions. h

Remark 4.1:The restriction to analytic functions of the fiber is not terribly severe. In most
field theory, polynomials are sufficient. Moreover, the freedom in choosing the fundamental do-
main is sufficient to ensure that a large class of Wilson lines may be realized as function which are
constanton each fiber.

Theorem 4.1 provides a new proof of Forman’s generalization of Sengupta’s result:
Corollary 4.1.1: The small-volume limit ofm is supported onMm.
Observe that only the restriction off to Mm enters into the above calculation of^ f &m0

.
Specifically, letxR be the indicator function of a measurable setR,A/G m for which R ù
Mm50”, and letxR

smoothbe a smooth, non-negative function which is 1 onRand has support in the
complement ofMm . Now, let {xR

n} be a sequence of analytic functions converging uniformly to
xR
smooth. Then, by the theorem,^xR

n&m0
5^xR

n uMm
&mj

. By the construction of the sequence, there is

someN such thatxR
n vanishes onMm for all n.N. Hence,̂ xR

smooth&m0
5 0 and thuŝ x

R
& 5 0.
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Remark 4.2:We have assumed the existence of the sequence {xR
n}. If A/G m were a finite-

dimensional manifold, the Stone–Weierstrass Theorem would ensure the existence of such a
sequence, but at present the ‘‘proof’’ of the corollary is a heuristic argument.

Comparing the arguments tof̂ in Eqs. ~8! and ~9! shows that one effect of going to the
small-volume limit is to project from Path2g G̃ to G̃z

2g by evaluating each component path att50.
Denote this evaluation map bye: Path2g G̃→G̃z

2g . This projection suggests another measureme

onMm which is the push-forward ofm by the projection fromA/G m toMm given bys+e+j.
That is,

me5s* e* j* ~m!.

As s is an isomorphism andj
*
~m! is the product of Wiener measures described in Sec. III, the

only new feature is the effect of pushing forward bye. This means integrating using the Wiener
measures with fixed left endpoints. The derivation of Eq.~2!, with minor modifications to work in
a fixed topological sector and to integrate only over right end-points, leads to

^ f &me
5
1

ZE f +s~x1 ,...yg!HS )
i51

g

xiyixi
21yi

21;2r D dxi dyi .

Comparing this witĥ f &mj @cf. Eq. ~7!#, it is clear that, up to normalization,

me5
H~P i51

g xiyixi
21yi

21;2r!

d~P i51
g xiyixi

21yi
21;2r!

mj .

The measureme is thus a new measure onMm which agrees withmj only in the limit asr
approaches 0.

V. CONCLUSION

We have extended the path integral formulation of Yang–Mills on Riemann surfaces to treat
each topological sector separately. The result is in agreement with Witten’s approach and is
sufficiently explicit to compute quantum expectations of a large class of Wilson lines. It also
provides a new measure onMm , the moduli space of flat connections.

There are many routes to defining measures onMm . The symplectic formv onMm and the
small-volume limit ofm define the measuresmv andm0, respectively. The view ofA/G m as a
bundle over Path2g G suggests the measuresmj and me . However, this apparent profusion of
measures onMm is in fact a pair of measures. Combining Theorem 4.1 with Forman’s result:

mj5m05mv .
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On the time decay of a wave packet in a one-dimensional
finite band periodic lattice
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Nonstationary Schro¨dinger equation with a periodic finite band potentialp(x) is
considered. The Green’s functionG(x,x8,t) of this equation is investigated when
t→`. Asymptotics forG(x,x8,t) are specified. It is shown that for large ‘‘veloci-
ties’’ v5(x2x8)/t the principal term in asymptotics ofG(x,x8,t), t→` coincides
with the Green’s function forp50. The principal term in the asymptotics of
G(x,x8,t) in the casev→` is equal to a sum of Green’s functions of unperturbed
problems for particles whose masses are equal to effective masses of the Hill
operator under investigation. ©1996 American Institute of Physics.@S0022-
2488~96!02901-2#

I. INTRODUCTION

We consider the Cauchy problem for nonstationary Schro¨dinger equations:

u852 iHu, H52
d2

dx2
1p~x!, u~x,0!5u0~x! ~1.1!

in L2~0,1!, with the real 1-periodicN-band potentialp(x), pPL1~0,1!. The Green’s function
G(x,x8,t) of the problem~1.1! is a nucleus of an integral operator exp(2 i tH ). We specify the
asymptotics of the Green’s functionG(x,x8,t) ~as announced in Ref. 1! using the results of Ref.
2. Asymptotics of the Green’s function for the heat equation was obtained in Ref. 3 and the case
of the wave equation was covered in Ref. 4. The scattering theory for the operatorH and its
perturbations was studied in Refs. 5–7.

We will prove that the Green’s functionG(x,x8,t) is equal to a sum ofN integrals alongN
spectral bands. We find asymptotics of every integral using the stationary phase method. Using
Ref. 2 we see that there exists no more than two stationary points on every bounded spectral band
and just one point on the infinite band. This statement allows us to simplify asymptotics found in
Ref. 1.

Corollaries are obtained for the cases of large and small velocitiesv5(x2x8)/t.
~1! Let v→`, t→`. Then the principal term in the asymptotic expansion ofG(x,x8,t) coin-

cides withG0(x,x8,t) which is a Green’s function for the unperturbed casep50.
~2! Let v→0, t→`. Then the principal term in the asymptotic expansion ofG(x,x8,t) is equal

to a sum of Green’s functionsGl
0(x,x8,t), l51,...,2N11 of the operatorsHl

052(2m l)
21d2/dx2,

l51,2,...,2N11. Here we denote byml the effective mass at the corresponding end of a spectral
band.

Using the asymptotics of the Green’s functionG(x,x8,t) the following asymptotic relations as
v→` are obtained:

E
x8

x812a
uG~x,x8,t !u2dx85

1

pt F (
l51

2N11

um l uuC~x,sl !u21O~ t21!G , xPX, x8PX8, ~1.2!
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E
x

x12a

dxE
x8

x812a
uG~x,x8,t !u2dx85

2

pt F (
l51

2N11

um l u1O~ t21!G , xPX, x8PX8, ~1.3!

whereX,X8 are compact sets,ml is the effective mass, andC(x,sl) is a normalized Floquet–Bloch
function at thel th end of a spectral band,l51,...,2N11. Relations~1.2! and~1.3! show that the
principal term in the asymptotics of the probability for a particle to get from the segment
[x8,x812a] to the pointx or to the segment [x,x12a] does not depend at large times onx8PX8
or x8PX8, xPX, respectively.

II. MAIN RESULTS

Notations and definitions necessary for the formulation of the main results are introduced. As
it is known the spectrums of theN-band Hill operatorH is absolutely continuous and consists of
a sequence of bandss(n)5[s2n21,s2n], n51,...,N ands(N11)5[s2N11,1`), s5øn51

N11s(n).
We call the interval~2`,s1!, (s2n,s2n11), s2n<s2n11, n51,...,N gaps in the spectrum of the
operatorH. If a gap degenerates, i.e., ifs2n5s2n11 then we say that the corresponding bandss(n)
ands~n11! merge.

We denote byE the spectral surface of the operatorH. We can get it from the two copies of
the spectral planeC\s, cut by spectral bands, the upper side of thenth band of the first leaveE1
being identified with the lower side of thenth band of the second leaveE2 ~we call it on an upper
sidesn

1!. A lower side of thenth band of the leaveE1 is identified with its upper side of the leave
E2 ~we call it lower sidesn

2!, s65øn51
N11sn

6.
Consider on the upper sides1

1 in the neighborhood of the points1 a function k(E)
5arccosF(E), whereF(E) is the Lyapunov function for the Hill operatorH. The functionk(E)
can be analytically continued onE so thatE is one-to-one mapped on a Riemann surfaceK
described in Refs. 5 and 6. In particular imagesS6n of bandssn

6 in this mapping are as follows:

Sn5k~sn
1!5@p~n21!10,pn20#, S2n5k~sn

2!52Sn , n51,...,N, ~2.1!

SN115k~sN11
1 !5@pN10,1`!, S2N215k~sN11

2 !52SN11 , R*5ø2N21
N11 Sn .

~2.2!

We denote

S~n!5SnøS2n , n51,...,N11. ~2.3!

From the theorem of decomposition for the Hill operator in the form5,6 it follows that for the
Green’s function of problem~1.1! there is a formula:

G~x,x8,t !5E
R
*

g~x,x8,k,t !dk, t.0, ~2.4!

g~x,x8,k,t !5~2p!21 exp~2 i tE~k!!C1~x,k!C2~x8,k!, ~2.5!

whereC6(x,k) are normalized Floquet–Bloch functions. Hence we get

G~x,x8,t !5 (
n51

N11

I n~x,x8,t !, ~2.6!

I n~x,x8,t !5E
S~n!

g~x,x8,k,t !dk, n51,...,N11, ~2.7!
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where the functionE(k) and consequently the functiong(x,x8,k,t) is analytic ink in a ~small!
neighborhood ofS(n). Further on we assume thatv>0. A case whenv<0 is similar.

We obtain asymptotics of the integralI n(x,x8,t) as t→` using the stationary phase method.
To do it we have to analyze the following equation for stationary points of the integralI n(x,x8,t):

Ek8~k!5v, kPS~n!, n51,...,N11. ~2.8!

First we analyze the functionEk8(k). As

Ek8~2k!52Ek8~k!, Ekk9 ~2k!5Ekk9 ~k!, kPR* , ~2.9!

it is enough to learn a behavior of functionsEk8 ,Ekk9 on Sn , n51,...,N11 to analyze Eq.~2.8!.
Using the results obtained in Ref. 4 we describe this behavior which is as follows:

Proposition II.1: (1) On a finite bandSn , n51,...,N, the function Ek8(k) at first strictly
monotonously increases being equal to zero at the left endp~n21!10 and reaching its maximum
at a point kn which lies just inside the bandSn . Then Ek8(k) strictly monotonously decreases and
is equal to zero at the right endpn20.

(2) On the last infinite band the function Ek8(k) strictly monotonously increases from zero to
infinity.

From Proposition II.1 and Eq.~2.9! follows that the functionEk8 , maps a setS(n) to Vn

5@2Ek8(kn),Ek8(kn)#, n51,...,N, and VN115R. In Ref. 2 it is also shown that the function
Ekk9 onSn , n51,...,N decreases strictly monotonously and is equal to zero in the pointkn . Hence

En
~3!5Ekkk- ~kn!52uEkkk- ~kn!u, n51,...,N. ~2.10!

Let us describe as a corollary a result of the analysis of Eq.~2.8!.
Lemma II.1: (1) Equation (2.8) forv>0 has onS(n), n51,...,N,
(a) two solutions a2n21, a2nPSn , a2n21,a2n if v , Ek8(kn),
(b) one solution a2n215a2n5kn if v 5 Ek8(kn),
(c) no solutions ifv . Ek8(kn).
(2) Equation (2.8) onS(N11) has just one solution for anyv>0.

If in Lemma II.1 the parameterv50 thenEk8(k) 5 0 in four points onS(n), n51,...,N, and
in two points onS~N11!. However, because of the identifications onK and equivalence relations
there are only two different points or one point, respectively.

Denote

X6~x,k!5C6~x,k!exp~7 ikx!, X~x,x8,k!5X1~x,k!X2~x8,k!. ~2.11!

HereX6(x,k) are 1-periodical functions,8 X6(x11,k)5X6(x,k), xPR, kPK .
Now we formulate the main result.
Theorem II.1: (1) Let n51,...,N and t→`. Then uniformly in x,x8PR we have
(a) if a numberd.0 andv obeys the inequalities0 < v < Ek8(kn) 2 d, then

I n~x,x8,t !5
1

A2p i t
(

l52n21,2n
A~Ekk9 ~al !!21 exp@ i t ~val2E~al !!#@X~x,x8,al !1O~ t21!#.

~2.12!

(b) If v > Ek8(kn) 1 d for somed.0 then for any real m:

I n~x,x8,t !5O~ t2m!. ~2.13!
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(2) Let n5N11, t→`. Then uniformly in x,x8PR we have

IN11~x,x8,t !5~1/A2p i tEkk9 ~a2N11!exp$ i t @va2N112E~a2N11!#%@X~x,x8,a2N11!1O~ t21!#.
~2.14!

Here and later we define a main branch of the square root if it is not fixed.
Asymptotics of the Green’s functionG(x,x8,t) for givenv Þ Ek8(kn), n51,...,N is a sum of

Eq.~2.14! and formulas~2.12! with numbersn for which the condition 0< v < Ek8(kn) 2 d holds
true.

We describe corollaries which follow from Theorem II.1.
Corollary II.1: Let the assumptions of Theorem II.1 be true andv→`. Then as t→` we have

asymptotics uniform in x,x8PR:

I n~x,x8,t !5O~ t21!, n51,...,N, ~2.15!

where m is any real number and

IN11~x,x8,t !5
1

2Ap i t
expF i tv24 ~11O~v22!!G~11O~v21!1O~ t21!!. ~2.16!

We see that the principal term in the asymptotics~2.16! coincides with the well known formula:

G0~x,x8,t !5
1

2Ap i t
expS i tv24 D . ~2.17!

Corollary II.2: Let the conditions of Theorem II.1 be satisfied and alsov→0.Then as t→` we
have asymptotics uniform in x,x8PR:

I n~x,x8,t !5
1

A2p i t
(

l52n21,2n
Am l exp i t @2sl1pv@ l /2#1m lv

2/21O~v3!#

3@X~x,x8,sl !1O~ t21!1O~v !#, n51,...,N, ~2.18!

where@l /2# is the entire of l/2 and

IN11~x,x8,t !5
Am2N11

A2p i t
exp@ i t @2s2N111pvN1m2N11v

2/21O~v3!##

3@X~x,x8,s2N11!1O~ t21!1O~v !#. ~2.19!

In Ref. 1 Theorem II.1 and Corollaries II.1 and II.2 were announced but a number of terms in
the sum in Eq.~2.12! and in Eq.~2.14!, i.e., a number of solutions of Eq.~2.8! on S(n) was not
known exactly except in the casesv→0 andv→`. We can now show that there are just two terms
in the sum in Eq.~2.12! and one term in Eq.~2.14! because it was proven in Ref. 2 that the
functionEk8(k) is convex fork.0.

Integrating asymptotics ofG(x,x8,t) for xPX, x8PX8 which is a sum of Eq.~2.18!,
n51,...,N and Eq.~2.19! we get the asymptotic relations~1.2! and ~1.3! using Eqs.~2.11! and
~3.6!.

Let us now consider a case of the confluence of the stationary pointsa2n21, a2nPS(n). Let
a 5 Ek8(kn) 2 v be a small positive parameter anda2n21(a), a2n2n(a) be solutions of Eq.~2.8! in
S(n). Let Ai be the Airy function. The following statement is proved.
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Theorem II.2: Let a<d, andd be a sufficiently small positive number. Then if t→` we have
an asymptotics uniform in x,x8, a:

I n~x,x8,t !5~ tuEn
~3!u/2!21/3 exp@ i t @vkn2En1O~a3/2!##@Ai ~zn!@X~x,x8,kn!1O~a1/2!#

2 i ~ tuEn
~3!u/2!21/3Ai 8~zn!@Xk8~x,x8,kn!1O~a1/2!#1O~ t21!#, ~2.20!

where

zn5zn~ t,a!52at2/3~ uEn
~3!u/2!21/3~11O~a1/2!!. ~2.21!

If a50 we have

I n~x,x8,t !ua505~ tuEn
~3!u/2!21/3 exp@ i t ~vkn2En!#$Ai ~0!X~x,x8,kn!

2 i ~ tuEn
~3!u/2!21/3Ai 8~0!Xk8~x,x8,kn!1O~ t21!%. ~2.22!

We get another theorem which is more convenient whena is fixed.
Theorem II.3: Let a be a sufficiently small number,a→0, so thatat2/3→`. Then there is

asymptotics:

I n~x,x8,t !5
1

2Apt
~auEn

~3!u/2!21/4 exp@ i t ~vkn2En1O~a3/2!!#

3FX~x,x8,kn!cosS 23 t~ uEn
~3!u/~2a3!!21/2~11O~a1/2!!1

p

4 D
1O~a1/2!1O~ t21a23/2!G . ~2.23!

III. PRELIMINARIES

Let us consider the solutionsw(x,E) andu(x,E) of the equation

2y91p~x!y5Ey, EPC ~3.1!

under the conditionsu(0,E)5w8(0,E)51,ux8(0,E) 5 w(0,E) 5 0. The functionsw(x,E), u(x,E),
their derivatives, and the Lyapunov functionF(E) 5 @u(1,E) 1 wx8(1,E)#/2 are the entire functions
of E, real on the real axis. An asymptotics for the functionF(E) when E→` provided
*0
1p(x)dx50 is as follows~see Ref. 8!:

F~E!5cosAE1O~exp~ ImAE!/E!. ~3.2!

A functionAF2(E)21, a branch being determined by the conditionAF2(E)21 . 0,E,s1 ,
EPE1, is an analytical function inE ~see Ref. 5!. In every nondegenerate gap there is just one
~simple! zerozn , n51,...,N of the functionF8(E).

The functionk(E) mentioned above is a one-to-one mapping ofE to the surfaceK , which is
a complex plane with vertical excised slitsgn5(pn1 i en ,pn2 i en). The positive numbersen are
determined from the equalities

shen5uAF2~zn!21u, n51,...,N, ~3.3!

and a slitg2n is symmetrical to the slitgn with respect to the imaginary axis,n51,...,N. The
right-hand side of the slitgn is identified to the left-hand side of the slitg2n , n561,...,6N. The
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image of the first leaveE1 is the upper halfK15$kPK ,Im k.0% of the surfaceK , the image of the
second leave being a lower part,K2 5 K1. The functionk(E) maps the zeroth gap~2`,s1! to the
upper half of the imaginary axis. The gap (s2n,s2n11),E1 is mapped to the identified upper halfs
of the slitsgn , g2n , the gap (s2n,s2n11),E2 being mapped to lower halfs of the slitsgn , g2n ,
n51,...,N. An energyE and quasimomentumk are connected by the relations5,6

cosk~E!5F~E!, sin k~E!5 iAF2~E!21, Ek8~k!52sin k/F8~E!, ~3.4!

whereE(k) is a function reverse to the functionk(E).
As it is shown in Ref. 8 for any EPE1\s there is a single number

m6(E)5@w8(1,E)2u(1,E)62i sink#/~2w~1,E! so that

c~x,E!5u~x,E!1m6~E!w~x,E!PL2~0,6`!. ~3.5!

Normalized Floquet–Bloch solutions are determined as follows:

C6~x,k!5c6~x,k!/N~E!,

N~E!5F E
0

1

c1~x,E!c2~x,E!dxG1/2, E5E~k!, ~3.6!

where a branch of the square root is chosen so that on the spectrum we haveN(E).0. The
properties of the functions~3.6! can be found in Refs. 5 and 6.

Let us introduce a setK d5$k PK ,uk2k(sl)u.d,l51,...,2N11%, d.0, k(sl)5p[ l /2]
1(21)l11(0). Further on we shall need asymptotics whenuku→` ~see Refs. 5 and 6!:

E~k!5k21O~k4/3!, kPK , ~3.7!

E~k!5k21O~1!, kPK d . ~3.8!

Last asymptotics may be differentiated, i.e., we have asuku→`,

Ek8~k!52k1O~k21!, kPK d , ~3.9!

Ekk9 ~k!521O~k21!, kPPK d . ~3.10!

In a neighborhood of pointsk(sl), l51,...,2N11, the functionE(k) has the following form:

E~k!5~k2k~sl !!2/~2m l !1O~~k2k~sl !!4!, l51,...,2N11, ~3.11!

where the effective masses

m l51/Ekk9 ~k!uk5k~sl !
, l51,...,2N11. ~3.12!

For the functionsX6(x,k) ~see Eq.~2.11!! we have6,8

X~x,x8,k!511O~k21!, kPK d , ~3.13!

uX6~x,k!u<C, xPR, kPR* . ~3.14!

1176 N. E. Firsova: Wave packet time decay in a periodic lattice

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



IV. THE PROOF OF THE MAIN THEOREM

In this section we consider the cases 0< v < Ek8(kn) 2 d andv > Ek8(kn) 1 d, d.0.At first we
describe those results on the stationary phase method which we shall need~see for instance Ref.
9!.

Proposition IV.1: Let M5@2e,e#, e.0, be a finite segment and fPC0
`(M ), SPC`(M ), S be

a real function. Then

(1) If the function S(k) has on M a single nondegenerate stationary point k50, i.e., S8~0!50,
S9~0!Þ0 then as t→` the following asymptotics is true:

I ~ t !5E
M
f ~k!exp~ i tS~k!!dk5A 2p

tuS9~0!u
expF i tS~0!1 i

p

4
sgnS9~0!G@ f ~0!1O~ t21!#.

~4.1!

(2) If minkPMuS8(k)u.0 then for any real m we have I(t)5O(t2m) as t→`.
Now we start proving Theorem II.1. Note thatS(n) i.e., a contour of integration in the

integralI n(x,x8,t) is a closed curve because of the identifications onK . In a neighborhood of the
contour of integration the functionsE(k) andX(x,x8,k) are analytic~see Refs. 5 and 6!. From
Eqs.~2.5!, ~2.7!, and~2.11! we have

I n~x,x8,t !5
1

2p E
S~n!

X~x,x8,k!exp~ i tS~k!!dk, S~k!5vk2E~k!. ~4.2!

According to Lemma II.1 by solving Eq.~2.8! we get two stationary pointsa2n21,a2n on
S(n) if uvu ,u Ek8(kn)u or there is none of them ifuvu .u Ek8(kn)u. It is easy to check that in the
neighborhoods of the pointsa2n21,a2n all the conditions of Proposition IV.1~1! are satisfied.
Outside these neighborhoods we use Proposition IV.1~2!. Hence we get formula~2.12!. One
should only take into consideration that

uEkk9 ~al !u21/2 expF2 i
p

4
sgnEkk9 ~al !G5A~Ek9~al !!21/Ai , l51,...,2N.

If v . Ek8(kn) then the asymptotics~2.13! follows from Lemma II.1~c!, Proposition IV.1~2!.
We can consider the casen5N11 the same way.
Let us now prove corollaries from Theorem II.1. At first we letv→` and consider Corollary

II.1. From Eqs.~2.8! and ~3.9! we have

v5Ek8~a2N11!52a2N111O~1/a2N11!. ~4.3!

For largev, Eq. ~4.3! is equivalent to the asymptotics

a2N115
v
2

~11O~v22!!, v→`. ~4.4!

Hence and from Eq.~3.8! we find

E~a2N11!5
v2

4
(11O~v22!), v→`. ~4.5!

From Eqs.~3.10!, ~3.13!, and~4.4! it follows

Ekk9 ~a2N11!521O~v21!, X~x,x8,a2N11!511O~v21!, v→`. ~4.6!
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Hence and from Eqs.~2.11!, ~4.4!, and~4.5! follows Eq. ~2.16!.
We now prove Corollary II.2. Letv→0. Then from Eqs.~2.1!, ~2.8!, and~3.12! we have

v5Ek8~a2n21!5~a2n212p~n21!!/m2n211O~~a2n212p~n21!!2!, n51,...,N. ~4.7!

Hence it follows that

a2n215p~n21!1vm2n211O~v2!, v→`, n51,...,N, ~4.8!

and therefore

E~a2n21!5s2n211O~v3!, Ekk9 ~a2n21!51/m2n211O~v !,

X~x,x8,a2n21!5X~x,x8,s2n21!1O~v !, n51,...,N. ~4.9!

Hence and from Eqs.~2.12! and~4.8! we get the first term in the sum~2.18!. The second term in
Eq. ~2.18! and the asymptotics~2.19! are obtained the same way.

V. THE CASE OF MERGING STATIONARY POINTS

At first we describe well-known results on asymptotics for a case of merging stationary points.
Let a functionS(k,a) have two close simple saddle points onM whena is small. Let us consider
an integral:

I ~ t,a!5E
M
f ~k!exp i tS~k,a!dk ~5.1!

by smalla. Let us introduce
ConditionA1: the functionsF(k) andS(k,a) are holomorphic ink, a whenk is in a neigh-

borhood ofM and uau,d.
Condition A2:Sk8(0,0)5Skk9 (0,0)Þ 0,Skkk- (0,0)Þ 0.
It is known9 that under conditionsA1 andA2 for smallaÞ0 the equationSk8(k,a) 5 0 has just

two nondegenerate saddle points,a1~a! and a2~a! such thata1(0)5a2(0)50. The functions
a1~a! anda2~a! are analytic ofAa by smalla and for l51,2 we have

al~a!5A2Ska9 ~0,0!/Skkk- ~0,0!3S 11 (
m.0

cmam/2D . ~5.2!

The valuesa1 and a2 differ by choosing a sign of the square root. Let 0,a2(a),cAa,
c.0,Aa.0 asa.0.

We now introduce the definitions

A~a!5~S1~a!1S2~a!!/2, B~a!5~3/4!2/3~S1~a!2S2~a!!2/3, ~5.3!

z~a!52t2/3B~a!, ~5.4!

whereSl(a)5S(al(a),a), l51,2. Let us also introduce the functions

T~a!5 (
l51,2

Ql~a! f l~a!, D~a!5B~a!21/2(
l51,2

~21! l11Ql~a! f l~a!, ~5.5!

where

1178 N. E. Firsova: Wave packet time decay in a periodic lattice

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Ql~a!5A~21! l2~B~a!!1/2/Skk9 ~k,a!uk5al
, f l~a!5 f ~al~a!!. ~5.6!

There is a statement~see Ref. 9!.
Proposition V.1: Let the conditions A1 and A2 be satisfied. Then if t→`, uau,d, d being a

sufficiently small number, then the integral (5.1) has an asymptotics uniform ina:

I ~ t,a!5pt21/3 exp@ i tA~a!#@T~a!Ai ~z!1 i t21/3D~a!Ai 8~z!1O~ t21!#. ~5.7!

It is not difficult to check that the conditions of Proposition V.1 are satisfied for the integral
I n(x,x8,t), n51,...,N. Therefore there is an asymptotic:

I n~x,x8,t !5pt21/3 exp@ i tA~a!#@Tn~a!Ai ~zn!1 i t21/3Dn~a!Ai 8~zn!1O~ t21!#, ~5.8!

uniform in a, uau,d. Here we have

An~a!5~S2n21~a!1S2n~a!!/2, Bn~a!5~3/4!2/3~S2n~a!2S2n21~a!!2/3, ~5.9!

zn~ t,a!52t2/3Bn~a!, ~5.10!

whereSl(a) 5 S(k,a)uk5al (a)
5 @vk2 E(k)#uk5al

, l52n21,2n. ForTn(x,x8,a) andDn(x,x8,a)
we get the formulas:

Tn~x,x8,a!5~2p!21 (
l52n21,2n

Ql~a!X~x,x8,al~a!!, ~5.11!

Dn~x,x8,a!5~2p!21Bn
21/2~a! (

l52n21,2n
~21! l11Ql~a!X~x,x8,al~a!!, ~5.12!

where

Ql~a!5A2~21! l11~Bn~a!!1/2/Ekk9 ~al~a!!, l52n21,2n, ~5.13!

In order to investigate the asymptotics~5.8! whena tends to zero we need
Lemma V.1: For n51,...,N and smalla5E8(kn)2v there are the following asymptotics:

An~a!5vkn2En1O~a3/2!, ~5.14!

Bn~a!5a~ uEn
~3!u/2!21/3~11O~a1/2!!, ~5.15!

Tn~x,x8,a!5~p!21~ uEn
~3!u/2!21/3@X~x,x8,kn!1O~a1/2!#, ~5.16!

Dn~x,x8,a!52~p!21~ uEn
~3!u!22/3@Xk8~x,x8,kn!1O~a1/2!#. ~5.17!

Proof: Let us expand a functionS(k,a)5vk2E(k) in a neighborhood of the pointk5kn . We
obtain @see Eq.~2.10!#

S~k,a!5vkn2En2a~k2kn!1uEn
~3!u~k2kn!

3/3!1O~~k2kn!
4!. ~5.18!

Hence we get

a5uE~3!u~al~a!2kn!
2/21O~~al~a!2kn!

3! ~5.19!

asSk8(al(a)) 5 0, l52n21,2n. Solving Eq.~5.19! we obtain
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al~a!2kn5~21! la1/2~ uEn
~3!u/2!21/21O~a!, l52n21,2n. ~5.20!

Putting Eq.~5.20! into Eq. ~5.18! we have fork5al(a):

Sl~a!5S~sl~a!!5vkn2En2
2
3~21! la3/2~ uEn

~3!u/2!21/21O~a2!. ~5.21!

Hence and from Eq.~5.9! we get Eqs.~5.14! and ~5.15!.
We obtain Eq. ~5.16!. From Eq. ~5.18! we see that Ek9(al(a))52Skk9 (al(a))

52uEn
(3)u(al(a)2kn)1O((al(a)2kn)

2). Using Eq.~5.20! we find

Ekk9 ~al~a!!52~21! la1/2~2uEn
~3!u!1/2~11O~a1/2!!, l52n2,2n. ~5.22!

It is not difficult to check that from Eqs.~5.13!, ~5.15!, and~5.22! it follows

Ql~a!5~ uEn
~3!u/2!21/3~11O~a1/2!!. ~5.23!

As X(x,x8,al(a))5X(x,x8,kn)1Xk8(x,x8,kn)(al(a)2kn)1O((al(a)2kn)
2), l52n21,2n we

obtain @see Eq.~5.20!#

X~x,x8,al~a!!5X~x,x8,kn!1~21! la1/2~ uEn
~3!u/2!21/2Xk8~x,x8,kn!1O~a!, l52n21,2n.

~5.24!

From Eqs.~5.11!, ~5.23!, and~5.24! follows Eq. ~5.16! asX(x,x8,kn) is a periodic function.
Let us now considerDn(x,x8,a) in a neighborhood of the pointa50. Transforming Eq.

~5.12! and using Eqs.~5.15! and ~5.23! we get Eq.~5.17! taking into consideration Eq.~5.24!.
Lemma V.1 is proved.

To prove Theorem II.2 one should put Eqs.~5.14!–~5.17! into Eqs.~5.8! and~5.10!. Then we
get Eqs.~5.20! and ~5.21!.

Remark that from Eq.~5.15! it follows thatBn~0!50 and therefore@see Eq.~5.10!# zn~0!50.
Hence and from Eq.~2.20! we obtain Eq.~2.22!. Theorem II.2 is proved.

Let us turn to the proof of Theorem II.3. At first we describe asymptotics of the Airy functions
and their derivatives~see for instance Ref. 9!

Ai ~2z!5
1

Ap
z21/4FcosS 23 z3/21

p

4 D1O~z23/2!G , z→`, ~5.25!

Ai 8~2z!5
1

Ap
z1/4FsinS 23 z3/21

p

4 D1O~z23/2!G , z→`. ~5.26!

Hence from Eq.~2.21! it follows that whenat2/3→` we have

Ai ~zn!5
1

Ap
t21/6a21/4~ uEn

~3!u/2!1/12~11O~a1/2!!

3FcosF23 ta3/2~ uEn
~3!u/2!21/2~11O~a1/2!!1

p

4 G1O~ t21a23/2!G , ~5.27!
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Ai 8~zn!5
1

Ap
t1/6a1/4~ uEn

~3!u/2!21/12~11O~a1/2!!

3FsinF23 ta3/2~ uEn
~3!u/2!21/2~11O~a1/2!!1

p

4 G1O~ t21a23/2!G . ~5.28!

The statement of Theorem II.3 follows Eq.~2.20!.
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Carlos R. Handy, John Maweu, and Leticia Soto Atterberry
Department of Physics and Center for Theoretical Studies of Physical Systems, Clark
Atlanta University, Atlanta, Georgia 30314

~Received 5 April 1995; accepted for publication 17 October 1995!

The eigenvalue moment method~EMM! has proven to be an effective technique for
generating converging lower and upper bounds to the bosonic ground state energy
of singular, strongly coupled, quantum systems. Application of EMM theory re-
quires an appropriate linearization of the highly nonlinear Hankel–Hadamard~HH!
moment determinant constraints for the (n11)3(n11) Hankel matricesMn@u#

[ M̂0
n 1 ( i51

ms M̂ i
nu( i ), dependent on themissing momentvariables$u( i )%[u. We

propose an alternate variational formulation utilizing the functions
Det~Mn11@u#!/Det~Mn@u#!, which we prove to be locally convex over the missing
moment subset satisfying the HH positivity conditions Det~Mn@u#!.0, for n<n.
Additional features of this variational formulation facilitate its application to im-
portant problems such as the octic, sextic, and quartic anharmonic oscillators.
© 1996 American Institute of Physics.@S0022-2488~96!00203-7#

I. INTRODUCTION

The eigenvalue moment method~EMM! is a general procedure for generating converging
lower and upper bounds to the ground state energy of Schro¨dinger Hamiltonians.1–3 It is a non-
perturbative and highly accurate method that utilizes fundamental theorems in mathematics~mo-
ment problems!,4,5 mathematical physics~positivity properties of physical bound states!,6 and
operations research~optimization methods such as linear programming!.7 Its intrinsic Fourier
space representation structure defines a systematic multiscale approach suitable for solving
strongly coupled singular perturbation type systems. Unlike some bounding methods that require
semibounded Hamiltonians or identification of a positive definite decomposition~H5H01V,
whereV is positive definite!,8–10 the EMM approach is independent of such preconditions. In
contrast to some recently developed basis-dependent bounding methods,11,12 EMM is explicitly
independent of any basis set specification. All of these properties suggest that EMM may offer an
important alternative to other methods for yielding precise eigenenergies through converging
bounds.

Many one- and two-dimensional problems have been solved through EMM theory, including
the well-known quadratic Zeeman effect for superstrong magnetic fields.3 Its extension to larger
systems such as the spinless Coulombic three body problem withJ50 ~a three-dimensional
system!, for approximate/exact coequal masses~i.e.,Ps2!,13 will require more efficient computa-
tional schemes, such as that made possible through the variational formulation developed in this
work.

A. Overview of EMM

The basic structure of the EMM formalism, as outlined below through a generic one-
dimensional parity invariant example, begins with the transformation of the Schro¨dinger equation
~with a rational fraction potential!,

2
d2C

dx2
1V~x!C~x!5EC~x!, ~1.1!

0022-2488/96/37(3)/1182/15/$10.00
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into a Stieltjes moment equation representation of the form

u~p!5M̂E~p,0!1(
i51

ms

M̂E~p,i !u~ i !, ~1.2!

for p>0. The latter expresses the linear dependence on the„u(1),...,u(ms)… moments~designated
themissing moments!, through energy-dependent coefficients obtainable algebraically or numeri-
cally. Through an implicit normalization, the missing moments are limited to thems-dimensional
hypercube,@0,1#ms. The ms index is related to the differential equation order for the Fourier
transformed Schro¨dinger equation.

Quantization of the ground state energy proceeds by constraining the missing moments and
energy parameter variable to satisfy the highly nonlinear Hankel–Hadamard~HH! determinental
inequalities:

Dm,n@u#.0, m50, 1 andn>0; ~1.3a!

where

Dm,n@u#[Det„Mm,n~u!…, ~1.3b!

and the (n11)3(n11) Hankel matrices are defined by„Mm,n(u)…i , j[u(m1 i1 j ), for
0< i , j<n. These constraints follow from the positivity of the bosonic ground state wavefunction,
Cgr.(x).0,6 and the well-known Moment Problem theorems for positive functions.4,5 In particu-
lar, the HH inequalities are necessary and sufficient@within the context of Eq.~1.2!# to character-
ize a positive measure.

The missing moment solution set to Eq.~1.3a!, for m12n<N, is denoted byUE
N. It is

convex.2,3 The indexN denotes the maximum moment order used in the corresponding HH
determinants„u(n),0<n<N…. Let UE,n

m denote the missing moment solution set satisfying
Dm,n[u].0 for fixedm and alln<n. It is also convex. Letn[N] andm[N] ~0 or 1! refer to the
unique elements of the decompositionN[2n[N]1m[N], thenUE

N [ UE,n@N#
m@N# ùUE,n@N21#

m@N21# .
The focus of the computational implementation of EMM is to determine, for a givenE

parameter value, the existence or nonexistence ofUE
N. The energy values associated with existing

solution sets define an open interval (EN
L ,EN

U), which, in turn, through the end points, define the
converging lower and upper bounds to the ground state energy,EN

L<Eg<EN
U.

One of the more successful approaches for solving the highly nonlinear HH inequalities
makes use of linear programming~LP! to quickly cutup the unitms hypercube into either the null
set, or a finite polytope containing the solution set.2,3 Either of these outcomes establishes the
nonexistence or existence ofUE

N, respectively. This approach yielded excellent bounds for the
superstrong quadratic Zeeman effect.3 However, because many linear inequalities~cuts! must be
stored, this approach may not be appropriate for larger systems. Variational approaches do not
have this difficulty and as such have been the focus of much recent work.

B. Variational formulations

A first attempt at defining an alternate variational formulation14 involved the globally convex
function ~u[„u(1),...,u(ms)…!,

FE
n@u#[Minm50,1 lm,n@u#, ~1.4!

wherelm,n@u# is the smallest eigenvalue of theMm,n Hankel matrix.15,16We refer toFE
n@u# as the

Volcano functionfor its suggestive graphical representation in the context of the sextic anharmonic
oscillator problem.16 Gradient methods can be used to determine the global maximum of the
Volcanofunction,Vn(E)5MaxuFE

n@u#, enabling the determination of the energy feasibility inter-

1183Handy, Maweu, and Atterberry: Variational moment problem quantization method

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



val, (EN
L ,EN

U), through the relationVn(E).0.14 However, because theVolcano function is con-
tinuous and piecewise differentiable~corresponding to the degenerate intersection of varying
Hankel matrix eigenvalue surfaces! this overall approach is very delicate to implement for mul-
tidimensional problems. Furthermore, the calculation of the Hankel eigenvalues can be costly. For
all of these reasons, the gradient/variational analysis of the Volcano function is not suitable for
large systems.

Despite the above, we have been able to formulate an alternate gradient/variational approach
with many exceptional features. The present approach involves a hierarchy of locally convex
functions on which gradient methods are implemented.

From the definition of the HH determinental constraints the nonlinear convex solution sets
satisfy the subset relations:

@0,1#ms.UE
0.UE

1.•••.UE
N . ~1.5!

Utilizing gradient optimization methods, the sequence of locally convex functions,

Dn@n#
m@n#@u#, for n50,1,..., ~1.6a!

where

Dn
m@u#5

Dm,n@u#

Dm,n21@u#
, ~1.6b!

can be used to systematically locate a convex subset within the previous one,UE
n→UE

n11. Spe-
cifically ~for fixedE!, starting at an arbitrary point,u P @0,1#ms, gradient iteration/optimization on
D0

0 will generate a point,u0, lying in UE
0. A subsequent gradient iteration/optimization with

respect toD0
1 will define a new point inUE

1, and so forth. In general, at the pointuNPUE
N,

gradient iteration with respect toDn@N11#
m@N11# , restricted to theUE

N set, will either generate a point in
UE

N11 or yield a nonpositive maximum. The latter establishes that the particularE value chosen is
not in the feasible energy interval (EN11

L ,EN11
U ).

TheDn
m functions are simply the diagonal entries appearing in the LU decomposition of the

associated Hankel matrix,

Mm,n@u#[Lm,n@u#Dm,n@u#~Lm,n@u# ! t, ~1.7a!

whereL is a lower triangular matrix with unit diagonals andDm,n corresponds to the diagonal
matrix,

Dm,n@u#[S D0
m@u# 0 0 •••

0 D1
m@u# 0 •••

••• ••• ••• •••

0 0 0 Dn
m@u#

D . ~1.7b!

They are easily obtained. In the Appendix we prove that they are locally convex. This is an
important property that removes any multimaxima concerns in implementing the aforementioned
gradient optimization. Also, the gradient vector,]uiDn

m@u#, is easily computed without having to
do any numerical differencing. As such, this overall variational program defines an efficient
approach for studying large systems. We present this alternate LU-EMM gradient method in the
context of three one-dimensional problems: the octic, sextic, and quartic anharmonic oscillators.
The more difficult case is presented first~the octic! in order to define the underlying theory. The
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sextic results are presented in the tables with minimal discussion. The quartic anharmonic problem
affords some interesting graphical illustrations, highlighting the essentials of the theory.

II. IMPORTANT PROPERTIES OF THE LU-EMM VARIATIONAL FORMULATION

From Eq.~1.7!, which denotes the LU decomposition of the symmetric Hankel matrices, and
the determinental relation Det~Mm,n)5Pn50

n Dn
m, one may replace the standard HH determinental

positivity constraints with positivity constraints for the LU diagonals:

Dn
m@u#.0, ~2.1!

for m50,1 andn>0. For future reference, we rewrite the Hankel matrices as explicit functions of
the missing moments~u[„u(1),u(2),...,u(ms)…!,

~Mm,n@u# ! i , j[M̂E~m1 i1 j ,0!1(
l51

ms

M̂E~m1 i1 j ,l !u~ l !, ~2.2a!

for 0< i , j<n. In abbreviated matrix notation we have

Mm,n@u#[M̂E;0
m 1(

l51

ms

M̂E; l
m u~ l !, ~2.2b!

where the expressions are defined by their relative appearance in Eq.~2.2a!.
Despite the fact that the diagonal functions are ratios of successive HH determinants,

Dn
m@u#[Det~Mm,n@u#!/Det~Mm,n21@u#!, and therefore singular, they nevertheless have some

very important properties. Clearly, they are infinitely differentiable at any nonsingular point. In the
following discussion, all energy,E, dependencies are implicitly assumed.

A. Local convexity property for Dn
m[u]

We prove in the Appendix that the LU diagonalDn
m@u#, for n>0, regarded as a function of the

missing moment variables, exists~is finite! and is a convex function~not necessarily of uniform
signature! on the open convex subsetUn21

m [$uuDn
m@u#.0, 0<n<n21, and 0,u( i ),1,

1< i<ms%.

B. Simple expression for “Dn
m[u]

In the Appendix we derive a convenient closed form expression for the gradient vector of the
diagonal functions:

]ulDn
m@u#5^V m;n@u#uM̂ l

muV m;n@u#&, ~2.3!

for 1< l<ms , where theV
m;n vectors are automatically generated through the LU decomposition.

Indeed, as shown by Handy17 ~and discussed in the Appendix!, the usual LU decomposition of a
symmetric matrix,M, is equivalent to considering the set ofgeneralized orthogonal vectors
satisfying^V i uM uV j&5d i , j , where the components of thei th vector satisfyV j, i

i Þ0, V i
i51, and

V j. i
i 50.

C. Singularities of Dn
m[u]

The singularities of the diagonal functions do not pose any difficulties if restricted to theUn
m

subsets. Specifically, from@0,1#ms.U0
m•••.Un

m , it follows that all of the diagonal functions
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Dn<n
m @u# are positive and convex onUn

m. Also, none of them can become singular at the boundary
of Un

m ~when approached from within the set! since a differentiable positive convex function
cannot be singular at a finite point.

The convex functionDn11
m @u# can become singular on the boundary ofUn

m, since it can have
a nonuniform signature onUn

m. Even then, if it becomes singular, it can only do so by becoming
negatively infinite. That is, ifuDn11

m @u→ub#u→`, for ubPBoundary ~Un
m! and uPUn

m, then
Dn11

m @u→ub#→2`. This is also a consequence of the convexity property of the diagonal func-
tions and the boundedness of the subsets in question, since a convex function can become nega-
tively infinite at a finite point. The graphical representation for the quartic anharmonic oscillator
illustrates these results.

The gradient optimization implementation of the proposed LU-EMM variational formulation
always seeks to maximize theDn11

m function over theUn
m subset. As such, one is always moving

away from singularities. Therefore, in conclusion, the singularities of the LU diagonals do not
affect the numerical implementation of the LU-EMM variational gradient optimization approach.

The preceding results were based on the local convexity property of the LU-diagonal func-
tions, and the boundedness of the subsets in question. An alternate proof that theDn<n

m @u# diag-
onal, restricted to theUn

m subset, cannot become positively infinite at the boundary follows from
the eigenvalue-interlacing theorem for symmetric matrices. LetMn<n denote the upper left hand
~11n!3~11n! submatrices for the symmetric matrixMn. Assume that for somek,n,
Det~Mn,k!.0 and Det~Mk!50. Then Det~Mk11!<0. To prove this, letl i

n denote thei th eigen-
value for theMn matrix. From the eigenvalue interlacing theorem,l i

n11<l i
n<l i11

n11, for
i50,...,n, it follows that all of the eigenvalues ofMn,k are positive, while the smallest eigen-
value ofMk is zero. Accordingly, the matrixMk11 can have only one nonpositive eigenvalue.

Let us now assume that the preceding matrices correspond to the Hankel, missing moment-
dependent, matrices~them index is implicit! Mn<n@u#, and thatuPUn ~the convex set on which
all the indicated Hankel matrices have positive determinants!. Let us approach the boundary ofUn

from a particular direction within the set,u→ub . Let k ~as used above! refer to the first submatrix
to have a zero determinant atub . Then from the eigenvalue interlacing property, as well as the fact
that one is approaching the boundary from within the setUn , and the continuity of the determi-
nant function with respects to the moment variables, it follows that Det„Mk11~ub!…50.

With respects to successive determinant ratios of the form

DetMk11@u#

DetMk@u#
5

P i50
k11l i

k11@u#

P i50
k l i

k@u#
, ~2.4!

upon recognizing the positivity of the eigenvalues and 0,l i
k11@u#/l i

k@u#<1, for 0< i<k ~as long
asu lies within the open setUn!, then

Limu→ubSDetMk11@u#

DetMk@u# D50, ~2.5!

or a finite positive number.
This confirms the same conclusion reached through the local convexity property for such

determinant ratios~with positive numerator and denominator determinants!. Only the ratio
DetMn11@u#/DetMn@u# over theUn set, involving a nonpositive numerator determinant, can
have singularities along the boundary. Even then, these must be negative infinity singularities.

Despite the simplicity of the previous results based on the eigenvalue interlacing theorem, it
is the local convexity property for the LU diagonals, as defined above, that is most important with
respects to the overall LU-EMM variational formalism. Not only does local convexity tame the
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singularities, but it also ensures the absence of multimaxima concerns in implementing the gradi-
ent optimization program summarized in the Introduction and further discussed in the ensuing
sections.

III. THE OCTIC ANHARMONIC OSCILLATOR

Consider the Schro¨dinger octic anharmonic potential problem:

2
d2C

dx2
1@mx21gx8#C~x!5EC~x!. ~3.1!

Define the Hamburger moments bym(p)[*2`
1`dx xpC(x). Upon multiplying both sides of Eq.

~3.1! by xp and integrating by parts, there results the moment equation:

m~p18!5g21@2mm~p12!1Em~p!1p~p21!m~p22!#, ~3.2!

for p>0.
The ground state wave function must be symmetric. This allows us to simplify the previous

equation and work with the even-order Hamburger moments:m(2r)[u(r), where the latter are
Stieltjes moments,u(r) 5 *0

1`dy yr(C(Ay)/Ay) ~i.e., y[x2!. Accordingly, the corresponding
Stieltjes moment equation is

u~p14!5g21@2mu~p11!1Eu~p!12p~2p21!u~p21!#, ~3.3!

for p>0. The energy,E, appears as a variable parameter.
The Stieltjes moment equation corresponds to a linear finite difference equation of effective

degree four. Thus, upon initializing the moments$u(0),u(1),u(2),u(3)% one may generate all of

TABLE I. LU-EMM gradient bounds:x21x8.

Nmax Elower Eupper

8 1.42 1.56
9 1.4298 1.5138
10 1.482 72 1.5138
11 1.484 895 6 1.501 368
12 1.484 895 6 1.491 978 732
13 1.490 137 117 68 1.491 837 069 36
14 1.490 851 097 385 6 1.491 769 071 292 8
15 1.490 851 097 385 6 1.491 135 669 296 8
16 1.490 902 320 329 6 1.491 064 526 319 0
17 1.491 009 376 282 6 1.491 064 526 319 0
18 1.491 011 030 783 7 1.491 034 193 799 0
19 1.491 011 494 044 0 1.491 021 222 510 4
20 1.491 018 303 970 5 1.491 021 222 510 4
21 1.491 019 617 313 5 1.491 021 134 954 2
22 1.491 019 617 313 5 1.491 020 057 429 3
23 1.491 019 727 342 4 1.491 019 960 603 8
24 1.491 019 881 294 9 1.491 019 960 603 8
25 1.491 019 883 674 2 1.491 019 915 397 8
26 1.491 019 883 674 2 1.491 019 897 632 6
27 1.491 019 893 584 7 1.491 019 897 493 0
28 1.491 019 895 265 2 1.491 019 897 375 7
29 1.491 019 895 265 2 1.491 019 895 856 2
30 1.491 019 895 454 3 1.491 019 895 732 1
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TABLE II. LU-EMM gradient bounds:x21x6.

Nmax Elower Eupper

6 1.31 1.51
7 1.3802 1.4602
8 1.409 78 1.460 15
9 1.423 38 1.460 15
10 1.423 748 685 05 1.437 720 906 95
11 1.434 926 462 57 1.437 720 906 95
12 1.435 233 851 451 80 1.436 407 518 091 40
13 1.435 245 588 118 20 1.435 691 581 441 25
14 1.435 557 783 444 33 1.435 687 121 508 02
15 1.435 601 758 385 98 1.435 683 241 366 10
16 1.435 601 758 385 98 1.435 627 832 939 62
17 1.435 621 575 046 74 1.435 627 572 194 08
18 1.435 623 674 048 31 1.435 627 212 365 24
19 1.435 623 709 431 48 1.435 624 770 926 56
20 1.435 624 431 248 12 1.435 624 760 311 60
21 1.435 624 576 036 05 1.435 624 760 311 59
22 1.435 624 577 878 80 1.435 624 627 633 20
23 1.435 624 609 224 08 1.435 624 626 140 57
24 1.435 624 617 343 99 1.435 624 625 802 24
25 1.435 624 617 343 99 1.435 624 619 458 56
26 1.435 624 618 485 86 1.435 624 619 331 69
27 1.435 624 618 934 16 1.435 624 619 331 69
28 1.435 624 618 938 13 1.435 624 619 025 59
29 1.435 624 618 977 49 1.435 624 619 018 60
30 1.435 624 619 000 92 1.435 624 619 017 77

TABLE III. LU-EMM gradient bounds:x21x4.

Nmax Elower Eupper

5 1.115 1.460
6 1.346 15 1.4462
7 1.367 160 5 1.436 195
8 1.367 160 5 1.400 987 405
9 1.390 501 064 45 1.400 987 405
10 1.390 710 791 261 00 1.392 703 195 965 50
11 1.392 025 778 365 97 1.392 623 499 777 33
12 1.392 234 980 859 94 1.392 611 545 349 09
13 1.392 234 980 859 94 1.392 385 606 655 60
14 1.392 346 443 948 73 1.392 384 100 397 64
15 1.392 347 573 642 20 1.392 353 598 674 02
16 1.392 349 682 403 34 1.392 352 935 920 53
17 1.392 351 179 021 24 1.392 352 903 385 36
18 1.392 351 179 021 24 1.392 351 748 061 40
19 1.392 351 628 562 96 1.392 351 742 370 99
20 1.392 351 629 701 04 1.392 351 654 738 81
21 1.392 351 630 452 18 1.392 351 646 977 10
22 1.392 351 639 871 39 1.392 351 646 977 10
23 1.392 351 639 942 45 1.392 351 641 789 93
24 1.392 351 641 457 38 1.392 351 641 752 97
25 1.392 351 641 475 11 1.392 351 641 611 08
26 1.392 351 641 475 11 1.392 351 641 551 26
27 1.392 351 641 525 37 1.392 351 641 551 25
28 1.392 351 641 525 62 1.392 351 641 530 80
29 1.392 351 641 529 76 1.392 351 641 530 80
30 1.392 351 641 530 06 1.392 351 641 530 77
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the remaining moments. The initialization moments are referred to asmissing moments. The linear
dependence of the moments on the missing moments may be expressed through the relation

u~p!5(
i50

3

ME~p,i !u~ i !, ~3.4!

where the energy-dependent coefficientsME(p,i ) are numerically or algebraically obtainable and
satisfy theinitialization conditionsME( i , j )[d i , j , for 0< i , j<3.

The homogeneous character of the moment equation requires the imposition of an additional
normalization condition. One choice is

(
i50

3

u~ i !51. ~3.5!

Upon solving foru(0), we mayreexpress the linear dependence of the moments upon the uncon-
strained missing moments by

FIG. 1. LU-diagonal functions for quartic anharmonic oscillator,E51.
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u~p!5(
i50

3

M̂E~p,i !û~ i !, ~3.6!

where û(0)[1 and û( i )[u( i ) for i51,2,3. The associated coefficients satisfy
M̂E(p,0)5ME(p,0) andM̂E(p,i )5ME(p,i )2ME(p,0), for i51,2,3.

Quantization of the ground state energy is achieved by imposing the positivity constraints on
the LU diagonals of the Hankel matrices, as indicated in the previous sections. This is a conse-
quence of the positivity of the ground state wave function. The first two LU-diagonal functions to
be considered,Dn@0#

m@0# and Dn@1#
m@1# , are defined byD0

05u(0)512u(1)2u(2)2u(3) and
D0

15u(1), respectively.
From the positivity of the ground state wave function and the adopted normalization condi-

tion, it follows that 0,u(0),1, as well as 0,u( i51,2,3),1. The last set of relations corre-
sponds to restricting the unconstrained missing moments to the unit cube:
u5„u(1),u(2),u(3)…P@0,1#3[C 3. This restriction also satisfies the requirementu(0),1 as well
as D0

1.0. In order to satisfy 0,u(0), we maytake u[~r,r,r!, whereu(0)5123r.0. An
appropriate choice isr51

4. Note that the point~14,
1
4,
1
4!PUE

1,UE
0.

FIG. 1 ~Continued.!
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Starting at the point~14,
1
4,
1
4!, for a given fixedE and maximum moment orderN, we implement

a gradient iteration ansatz of the form

ul115ul1sl“D1
0@E,ul #, ~3.7!

to determine the maximum ofDn@2#
m@2#@u# [ D1

0@u# over the setUE
1. If any iterate satisfies

D1
0@ul* # . 0, then it establishes the existence of the subsetUE

2. If the gradient iterates converge to
a nonpositive maximum,D1

0@u`#<0, then it establishes the nonexistence ofUE
2. Given the former

possibility, one then continues to perform a gradient optimization for locating the maximum of the
LU diagonalDn@3#

m@3#@u# [ D1
1@u# restricted to theUE

2 subset. Of course, the starting iterate point is
ul* . If the ensuing gradient iteration points yield positiveD1

1 values, then they must correspond to
points inUE

3, establishing the existence of the subset. If the gradient iterates identify a nonpositive
maximum, thenUE

3 does not exist. The entire process continues up to orderN. In this manner one
determines if the chosenE value is physically feasible or not, thereby eventually determining the
feasibility energy interval (EN

L ,EN
U).

The above procedure corresponds to a constrained gradient optimization method. When the
gradient iterates hit the boundary of the corresponding subset, one must define a new gradient

FIG. 2. LU-diagonal functions for quartic anharmonic oscillator,E51.392 352.
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iteration direction consistent with the inward normal vectors to the intersected boundary. These
inward normal vectors are either the inward normal vectors to the@0,1#3 cube, or the gradient
vectors for the LU diagonal functions defining the intersected boundary. The details for imple-
menting this may be found elsewhere.18

The application of the above gradient procedure was done with respect to the octic anhar-
monic oscillator. The ground state energy results are given in Table I and reproduce the same
bounds obtained through the traditional, linear programming based, EMM procedure, as it should.
The LU-EMM gradient method was also applied to the sextic anharmonic oscillator@i.e., replace
the gx8 term in Eq. ~3.1! by gx6#. The results also duplicated the bounds generated by the
traditional EMM approach. These are cited in Table II.

IV. THE QUARTIC ANHARMONIC OSCILLATOR

The quartic anharmonic oscillator is defined by the equation

2
d2C

dx2
1@x21gx4#C~x!5EC~x!. ~4.1!

FIG. 2 ~Continued.!
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The corresponding Stieltjes moment equation for the symmetric states is given by

u~p12!5g21@2u~p11!1Eu~p!12p~2p21!u~p21!#, ~4.2!

for p>0. This corresponds to a one-missing momentproblem, since upon imposing the normal-
ization u(0)1u(1)51 @or u(0)512u(1)#, only one initialization moment variable,u(1), is
required. The implementation of the LU-Gradient technique for this case yields the ground state
energy bounds quoted in Table III. These results also concur with the linear programming based
EMM approach. We also illustrate in Figs. 1 and 2 the first few diagonal functions
$D0

0,D0
1,D1

0,D1
1, etc.%, for the energy valueE51 as well as the physical ground state energy,

Eground51.392 351 641 53~rounded off to 1.392 352!. In both cases, we note that the convexity
properties discussed in the preceding sections are satisfied. That is, theDn

m function is convex
within the positivity interval I n21

m [Un21
m on which all the lower-order diagonal functions

~Dn
m ,n<n21! are positive. In Fig. 1, the last convex functions plotted areD2

0 andD3
1, which are

both negative~within the region depicted!, and therefore confirm the unphysical nature of the

FIG. 2 ~Continued.!
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valueE51. Convexity disappears when the intervals of positivity,I n
m, do not exist, as reflected

by the nonconvex nature ofD3
0 ~for E51! based on the uniformly nonpositive signature ofD2

0 on
theI 1

0 interval.
For the ~more physical! caseE51.392 352, we see that theDn

m functions depicted have
positive regions and remain convex over the appropriate intervals.

A final observation consistent with the convex nature of theDn
ms ~over the appropriate inter-

vals! is the singular behavior Limu1→ub
Dn

m@u1#→ 2 `, when the singular boundary point,ub , is
approached from within the correspondingU2n1m21 set. Recall thatUN ~the intersection of all
theI n

m intervals form12n<N! is the convex set on which all the relevant diagonal functions are
positive,UN[$Dn

m[u].0u2n1m<N and n>0, m50 or 1%. Therefore, on the setUN21 the
functionDn@N#

m@N#@u# can have arbitrary signature.
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APPENDIX: GENERALIZED ORTHOGONAL VECTORS

A convenient alternate formulation17 to the standard LU matrix decomposition of a symmetric
(D11)3(D11) matrix,M ~with matrix element indices initialized at 0!, is to consider gener-
ating a complete set of generalized orthogonal vectors corresponding to

^V i uMuV j&5D id i , j , ~A1a!

for 0< i , j<D, where the vector components satisfy

V i
i[1 and V k

i [0, for k5 i11,i12,...,D. ~A1b!

It is shown in Ref. 17 that the vectors in question can be generated according to the recursion
relation:

V k
l 52Dk

21F (
j5k11

l F(
i50

k

V i
k
M i , j GV j

l G , ~A2!

for k5 l21,l22,...,0. Observe that once the vectorV l is generated, one can then calculateD l as
given from Eq.~A1a! or, equivalently,D l 5 ( i50

l
M l ,iV i

l . We reemphasize one immediate but
important point: as long asD lÞ0, for 0< l<L, thenDL11 exists.

From Ref. 17 the determinant is given by Det~M!5P i50
D D i . Clearly, a zero determinant is

associated with one of theD i becoming zero. This, in turn, limits the generation of theV vectors.
Specifically, ifDk50,...,l21Þ0, we can only generate the vector set$V i u0< i< l %.

Two immediately relevant properties follow from Eq.~A1b!. If the set of vectors$V i u0< i< l %
exists, then any vectorA with componentsAk50, for k. l , can be written asA5( i50

l ciV
i .

Furthermore, ifAl51, thencl51.

1. Derivative formula for D i [u]

Let us now assume au dependence for the symmetric matrixM of the form
„u[(u1 ,...,un)…M@u#[M̂01( i51

n M̂ iui , where theM̂ matrix coefficients areu independent. Let
us define

Dk@u#5^V k@u#uM@u#uV k@u#&. ~A3!
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As long asDk50,...,l21@u#Þ0, then all of these functions, as well asD l , are differentiable. The
derivative for each of these functions is given by

]ujDk@u#5^V k@u#uM̂ j uV k@u#&, for j>1. ~A4!

The proof is immediate. All that is needed is to prove that

^]ujV
k@u#uM@u#uV k@u#&50. ~A5!

This follows from the fact that]ujV
k is completely spanned by the vector set$V i u0< i<k21%

and each of these, in turn, is orthogonal to the vectorM@u#V k, from Eq.~A1!. In greater detail,

]ujV
k@u#5 (

i50

k21

di
j@u#V i@u#, ~A6!

since ]ujV i
k@u# 5 0, for all j and componentsi>k. However, from Eq.~A1! we must have

^V i@u#uM@u#uV k@u#&50, for i50,...,k21. Equation~A5! then follows, and, in turn, Eq.~A4! is
obtained.

2. Proof of local convexity property for D i [u]

Let us now assume that we restrict all$Dk@u#u0<k< l % to a region,U, in which each of the
functions is positive and differentiable. Then each of these, as well asD l11, is a convex function
onU. To prove this, it suffices to show that within the neighborhood of an arbitrary pointvPU,
the tangent plane forDk@u# ~at v! is greater than the function itself~except atv!:

Dk@v#1(
j51

n

~uj2v j !]v jDk@v#>Dk@u#. ~A7!

From Eq.~A3! and the assumed dependenceM@u#[M01( i51
n Miui , the LHS of Eq.~A7! is

equal to^V k@v#uM@u#uV k@v#&; so Eq.~A7! becomes

^V k@v#uM@u#uV k@v#&>^V k@u#uM@u#uV k@u#&. ~A8!

To prove Eq.~A8! we take note of the fact that each of the vectorsV k@v#, for k50,...,l11
can be decomposed into

V k@v#5(
i50

l11

ci
k@u#V i@u#, ~A9!

for fixed v and arbitraryu. That is, at eachuPU we can define a new decomposition with respect
to the generalized orthogonal vectors for the pointu. In particular, becauseV k

k@v#51 and
V i.k

k @v#50, as well asV k
k@u#51 andV i.k

k @u#50, it then follows thatci
k@u#50 if i.k, while

ck
k@u#51. From this it then follows that

^V k@v#uM@u#uV k@v#&5(
i50

k

~ci
k@u# !2D i@u# ~A10!

or

^V k@v#uM@u#uV k@v#&5Dk@u#1 (
i50

k21

~ci
k@u# !2D i@u#. ~A11!
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The summation overi50,...,k21 is positive~even for the casek5 l11!, since we have
assumed to be working in a regionU within which the functions$Dk@u#u1<k< l % are all positive.
Thus, Eq.~A7! is valid, and the functions$Dk@u#u0<k< l11% are all convex.
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The concept of geometric phase for a closed circuit in the ray space is applied to the
manifold of generalized coherent states defined as the eigenstates of isotopic spin
charges. The geometry of the state manifold is elucidated through a calculation of
the Gaussian curvature. ©1996 American Institute of Physics.
@S0022-2488~96!02302-3#

I. INTRODUCTION

The subject of geometric phase has acquired significant attention since its discovery by Berry.1

Although in the initial formulation the adiabatic theorem was required to ensure that the trans-
ported state returns to its original state~apart from a phase factor! so that the evolution in ray
space is periodic, it was immediately realized that this phase depends only on the closed curve in
the projective Hilbert space of rays and the geometric phase can be formulated entirely in terms of
geometric structures on this space.2–6At a fundamental level, it is analogous to the angle through
which a vector turns if it is parallel transported through a closed loop back to the starting point and
is therefore determined by the curvature of the state space in that region.

The object of our article is to study the geometric phase and Gaussian curvature for the case
where the charge concerned is non-Abelian, e.g., the isotopic spin.7 This is motivated by the fact
that in strong interactions isotopic spin is indeed a conserved quantity and therefore a calculation
of the geometric phase keeping this restriction in mind should naturally be undertaken. Prelimi-
nary studies8 with Abelian charge9,10 indicate that the phase in question do depend on the charge.

The relevant geometric object to study is the symplectic two-forms.11,12 In order to construct
s we need to introduce a smooth parametrization of the state space. This is most conveniently
done in terms of coherent states.13–15For the present purpose we confine ourselves to the gener-
alized coherent states for isotopic spin. Although the isotopic spin coherent states are not conven-
tional, it can be parametrized smoothly and a metric can be introduced in the projective Hilbert
space~ray space!. In this case we see that though the charge concerned is non-Abelian, the metric
appears to be in the isothermal form very convenient for the calculation of the Gaussian curvature
of the state space.

The article is organized as follows. In Sec. II A we review some of the properties of gener-
alized coherent states7 that are relevant to our study. In Sec. II B we introduce the notion of
symplectic two-form~or phase two-form! whose integral will yield the geometric phase that we
need and in Sec. III we study the geometric phase and Gaussian curvature for generalized coherent
states.

II. REVIEW OF GENERALIZED COHERENT STATES AND THE SYMPLECTIC
TWO-FORM

A. Generalized coherent states

We introduce bosonic creation and annihilation operators,

a[~a1 ,a2 ,a3!, a†[~a1
† ,a2

† ,a3
†! ~2.1!

satisfying the commutation relations

@ai , aj
†#5d i j , @ai , aj #505@ai

† , aj
†#. ~2.2!
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The total number operator is given by

N5N11N21N35a†.a, ~2.3!

satisfying the commutation relations

@Ni , aj #52d i j aj , @Ni , aj
†#5d i j aj

† , @Ni , Nj #50,
~2.4!

@N, a#52a, @N, a†#5a†,

where

Ni5ai
†ai , i51,2,3. ~2.5!

The isospin operators are given by

I k52 i eklmal
†am ~2.6!

satisfying the usual commutation relations

@ I j , I k#5 i e jkl I l ,

@ I j , ak#5 i e jklal , ~2.7!

@ I j , ak
†#5 i e jklal

†

such that

I25N21N2A†A, ~2.8!

where

A5aiai , A†5ai
†ai

† . ~2.9!

A andA† satisfy the commutation relations

@A, A†#54N16,

@N, A#522A, @N, A†#52A†, ~2.10!

@ I , A#505@ I , A†#.

From the above equations~2.10! it is evident thatA† creates a pair in an isosinglet. Therefore,
states which are eigenstates ofN, I2, and I 3 belonging, respectively, to eigenvalues (l12n),
l ( l11), andm, are given by

u l ,m: l12n&5Ql ,n~A
†!nY m

l ~a†!u0&, ~2.11!

where

Ql ,n5F 2l~n1 l !!

~2n12l11!!n! G
1/2

~2.12!
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is the normalization constant. The solid harmonics16 Y m
l ~a†! are homogeneous polynomials of

degreel in the components of the vector operatora†, viz.a0
†@ [ a3

†# anda6
† @ [ (a2

† 6 ia3
†)/&# and

are given by

Y m
l ~a†!5~21!m@~2l11!~ l1m!! ~ l2m!! #1/2

3 (
k50

~21!k22k2m/2

~ l2m22k!! ~k1m!!k!
~a0

†! l2m22k~a1
† !k1m~a2

† !k

for m>0. For m,0, one usesY 2m
l ~x!5Y m

l ~x* !. It is easily checked thatY m
l ~a†!u0& is an

eigenstate of the operatorsI2 and I 3 belonging to eigenvaluesl ( l11) andm, respectively. Since
A† commutes withI and creates a pair in an isosinglet, (A†)n increases the number of Bosons by
2n without changing the isospin quantum numbers.

Isotopic spin coherent states~or generalized coherent states! being eigenstates of the commut-
ing set of I2, I 3 andA, are obtained from the isospin decomposition of conventional coherent
states as

uj; l ,m&5Vl~ uju! (
n50

` F 2l~n1 l !!

~2n12l11!!n! G
1/2

jnu l ,m; l12n& ~2.13!

such that

Auj; l ,m&5juj; l ,m&, ~2.14!

wherej is a complex number~j5j11i j2!. The normalization factorVl~uju! is given by

Vl~ uju!5@f l~ uju2!#21/2,

with

f l~x
2!5

j l~2 ix !

~2 ix ! l
52l (

n50

`
~n1 l !!

~2n12l11!!n!
x2n, ~2.15!

j l being the spherical bessel function.
The scalar product of two isotopic spin coherent states is given by

^j; l ,muj8; l 8,m8&5d l l 8dmm8F f l~j* j8!

f l~ uju2!f l~ uj8u2!G
1/2

. ~2.16!

These coherent states form a complete set with a measure. We can write the completeness relation
as

(
l50

`

(
m52 l

l E d2j

2p
F l~ uju!uj; l ,m&^j;,l ,mu51,

where

F l~x!5f l~x
2!kl~x!xl11,

andkl(x) is a spherical modified Bessel function.
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B. The symplectic two-form and the metric

We consider a smoothly parametrized space of normalized state vectorsc~j! with

j5~j1 ,j2 ,...,jN!PRN.

The symplectic two-forms is defined as

s5s i j ~j!dj i`dj j , ~2.17!

where the antisymmetric tensorsi j is given by

s i j5ImS ]c

]j i
,

]c

]j j
D . ~2.18!

The symplectic two-form~2.17! has the following properties:~1! ds50 ~d standing for exterior
differentiation!; ~2! s is invariant under a local gauge transformation:

c~j!→c8~j!5eia~j! c~j!. ~2.19!

These properties follow immediately from the fact that locally

s5db,

where

b5b i~j!dj i52 i S c~j!,
]c~j!

]j i
Ddj i ~2.20!

and under a local gauge transformation

b→b85b1da. ~2.21!

Thuss is truly a ray space object. The quantity

g~C5]s!5E
S
s ~2.22!

is the geometric phase associated with a state vector carried around the closed curveC .
A metric may be introduced by observing that the quantityD defined through12

D2@c̃1 , c̃2#5 infd,gic1e
id2c2e

igi5222u~c1 ,c2!u, ~2.23!

where the double bars represent the norm and the tilde represents a ray, has all the properties of a
distance function in the projective Hilbert space. The metric in a given state space is then obtained
by writing

D2@c̃~j1dj!, c̃~j!#5gi j ~j!dj i dj j ~2.24!

and expanding the left-hand side up to quadratic term indj. We remark that the metricgi j ~j! can
be expressed as

gi j5g i j ~j!2b i~j!b j~j!, ~2.25!

where the symmetric tensorgi j is given by
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g i j5ReS ]c

]j i
,

]c

]j j
D ~2.26!

andbi~j! is as defined in Eq.~2.20!.
The symplectic two-form is naturally related to a metric in the following way. The generalized

coherent states13 parametrize the points in some quotient space having the structure of a Ka¨hler
manifold with complex coordinateha . The Kähler metricgab then determines the symplectic
structure through the relation17,18

s5 igab dha*`dhb . ~2.27!

III. GEOMETRIC PHASE FOR ISOTOPIC SPIN COHERENT STATES

We now proceed to investigate the geometric properties for the isotopic spin coherent states.
We observe that both the metricgi j and the two-forms can be easily calculated from the overlap
function

^j; l ,muj8; l ,m&5
f l~j* j8!

@f l~ uju2!f l~ uj8u2!#1/2
, ~3.1!

by noticing that

b i~j!52 i
]

]j i8
^j; l ,muj8; l ,m&uj85j , ~3.2!

g i j ~j!1 is i j ~j!5
]

]j i

]

]j j8
^j; l ,muj8; l ,m&uj85j . ~3.3!

Inserting Eq.~3.1! in Eq. ~3.3!, we obtain

g115
1

4

f l12~ uju2!uju2

f l~ uju2!
1
1

2

f l11~ uju2!
f l~ uju2!

2
1

4

@f l11~ uju2!#2j1
2

@f l~ uju2!#2
,

g225
1

4

f l12~ uju2!uju2

f l~ uju2!
1
1

2

f l11~ uju2!
f l~ uju2!

2
1

4

@f l11~ uju2!#2j2
2

@f l~ uju2!#2
,

g125g2152
1

4

@f l11~ uju2!#2j1j2
@f l~ uju2!#2

, ~3.4!

s11505s22,

s1252s215
1

4

f l12~ uju2!uju2

f l~ uju2!
1
1

2

f l11~ uju2!
f l~ uju2!

2
1

4

@f l11~ uju2!#2uju2

@f l~ uju2!#2
.

From the above results we can obtain the symplectic structure. We takej1 and j2 ~the real and
imaginary parts ofj! as smooth parameters in the state space. From Eq.~3.4! it is clear thatsi j has
only one independent component. Therefore, the symplectic two-form is given by

s52s12 dj1`dj25F12 f l12~ uju2!uju2

f l~ uju2!
1

f l11~ uju2!
f l~ uju2!

2
1

2

@f l11~ uju2!#2uju2

@f l~ uju2!#2 Gdj1`dj2 .

~3.5!
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The geometric phase for a circular curve of radiuss5uju centered at the origin can be obtained
from Eq. ~3.5!:

g5E
s
s5puju2

f l11~ uju2!
f l~ uju2!

52puju
I l13/2~2uju!
I l11/2~2uju!

, ~3.6!

wherefl is given by Eq.~2.15! and I l is the modified Bessel function of orderl .
In the limit of small circles,

I l13/2~2uju!
I l11/2~2uju!

'2
uju

2l13

and we have

g'
puju2

2l13
, ~3.7!

which shows that the phase acquired after a complete circle decreases as the isotopic spin in-
creases.

For large circles, i.e., for largeuju,

I l13/2~2uju!
I l11/2~2uju!

'21

and we have

g'puju, ~3.8!

showing that for large circles the phase is independent of isotopic spin. Inserting Eq.~3.1! in Eq.
~3.2! we obtain

b1~j!5
1

2

f l11~ uju2!j2
f l~ uju2!

,

~3.9!

b2~j!52
1

2

f l11~ uju2!j1
f l~ uju2!

.

From Eqs.~2.25!, ~3.4!, and~3.9! we find

gi j5E~ uju!d i j5E~s!d i j , ~3.10!

wheres5uju and

E~s!5
1

4

f l12~s
2!s2

f l~s
2!

1
1

2

f l11~s
2!

f l~s
2!

2
1

4

@f l11~s
2!#2s2

@f l~s
2!#2

. ~3.11!

The above formula forgi j could also be easily arrived at by the use of Eq.~2.27!. The metric is in
the very convenient isothermal form. We look uponj1 and j2 as orthogonal coordinates with
AEdj1 andAEdj2 being the elements of length ands essentially is the element of area.

The Gaussian curvatureK for a metric in the isothermal form is given by a very simple
formula.19 In our case, it takes the form
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K52
1

2Es

d

ds S s d

ds
ln ED . ~3.12!

Inserting Eq.~3.11! in Eq. ~3.12! and after simplification we obtain

K5424
f l12~s

2!f l~s
2!

@f l11~s
2!#2

2F4f l13~s
2!f l~s

2!

@f l11~s
2!#2

128
f l12~s

2!

f l11~s
2!

28
@f l12~s

2!#2f l~s
2!

@f l11~s
2!#3 Gs21••• .

~3.13!

We now investigate the behavior ofK near the origin. Whens is very small, we have from Eq.
~3.13!,

K5
8

2l15
28F 12l 2173l1109

~2l17!~2l15!2Gs21••• , ~3.14!

which for a few values ofl behaves as follows:

l50:
l51:
l52:

K5 8
52u 872175s

21••• ,

K5 8
72

1552
441s

21••• ,

K5 8
92

2424
891s

21••• .

~3.15!

From the quadratic behavior ofK near the origin it is evident that the space is flat for smalls and
the geometric phase for small circles is proportional tos2, i.e., uju2.
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The dynamical-group approach is developed and applied to investigate the prob-
lems of controllability and quantum chaos in two fundamental models of the
matter–radiation interaction. It provides a new insight into the dynamics of non-
stationary quantum process of the interaction between two-level atoms and a
single-mode radiation field without and with the feedback. A sequence of transi-
tions from the quasiperiodicity to chaos has been numerically observed for two-
level atoms interacting with a self-consistently generated radiation field. The uni-
tary irreducible representations of the SU~2! group of dynamical symmetry in a
noncanonical parametrization is constructed, allowing one to use the results for
describing the time evolution of any driven quantum system with the underlying
SU~2! symmetry. ©1996 American Institute of Physics.@S0022-2488~96!01102-
X#

I. INTRODUCTION

In studying the time evolution of driven quantum systems, the natural question is how one can
attain a desirable state of a system under consideration from a given initial state. In physics of
field–matter interactions, it may be formulated, for example, as follows. Is it possible to use
specifically crafted laser pulses to achieve coherent control of atomic or molecular dynamics?
From this point of view the evolution problem may be regarded as a control problem.

Let our objective be to transfer a quantum dynamical system from an initial statex(t0) to a
desired statex(t) in the timet2t0. Depending on the tasks considered, the variablex(t) may be
a Heizenberg operator, a state vector, a density matrix, etc. The control problem on the finite
interval@t,t0# is to design the vector functionu(t)5$u1 ,...,un% ~belonging to a class of admissible
controls! that allows us to synthesize the time evolution operatorUu~t,t0! providing the mapping

xu~ t0! ——→
Uu~ t,t0!

xu~ t !, ~1.1!

under the condition that it satisfies the operator equation

i\
d

dt
U~ t,t0!5H@u~ t !#U~ t,t0!, U~ t0 ,t0!5I . ~1.2!

Since the evolution equation~1.2! can be regarded as a differential equation in the group of
dynamical symmetry,1–3 it is natural to use group-theoretical methods as for the analysis of general
questions of controllability of driven quantum systems4,5 as for finding the solution of the evolu-
tion equation in terms of the control functionsuj (t) and the structure constants of the Lie algebra
generated by the HamiltonianH(t). The group-theoretical strategy has been successfully applied
to describe the time evolution of numerous physical model systems in different disciplines, ex-
tending from classical mechanics to physics of elementary particles~see, for example, Refs. 6–13
and references therein!. As to the control problems for driven quantum systems, the dynamical-
symmetry approach has been developed by one of the authors~S.V.P.! for the general analytical
description of the coherent population control in multilevel quantum systems14 and then applied
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for controlling population dynamics in semiclassical models of externally driven three-level
atoms15 and for controlling atom-field dynamics in fully quantum, stationary and nonstationary
models of interaction between atoms and cavity radiation fields.16

In recent years, another fundamental aspect of the evolution problem has attracted consider-
able interest. The question is which controlsu(t) may lead to unpredictable behavior of a quantum
dynamical system in the sense of deterministic chaos. Despite the large amount of efforts devoted
to the question, how classical chaos might manifest itself in a quantum case, the answer is still far
from clear~for a review of the status of the subject, see, for example Ref. 17!.

The purpose of this paper is to develop the concept of dynamical symmetry to examine in a
unified manner as problems of controllability of quantum evolution as questions of quantum
manifestations of classical deterministic chaos in the atom-field systems. The simplest, and, in the
same time, most fundamental system for studying matter-radiation dynamics is a single two-level
atom interacting with a single mode of an electromagnetic field. The SU~2! group is a basic group
of dynamical symmetry for this interaction.

The organization of the paper is as follows. We begin in Sec. II with a brief review of the
theory of quantum time evolution on the dynamical Lie groups. In Sec. III we present a general
description of the evolution of an arbitrarily driven quantum system with underlying SU~2! dy-
namical symmetry. In particular, we construct the unitary irreducible representations of the SU~2!
in a noncanonical parametrization that will be used in the next sections. In Sec. IV we consider the
system without any feedback between atoms and a field and show numerically that atomic behav-
ior may be more or less complicated~depending on the type of field polarization and on the ratio
of the driving frequencies!, but it is always fully controlled in the sense of lacking of sensitive
dependence on initial conditions. In Sec. V we consider atoms interacting with a self-consistently
generated electromagnetic field. It is shown that the group-theoretical picture provides further
insight into the dynamics of such a process. In particular, it is discovered, by directly computing
the largest Lyapunov exponent, the sequence of transitions from quasiperiodicity to chaos~as the
coupling strength increases! with chaotic regimes, alternating among quasiperiodic regimes. Sec-
tion VI is devoted to concluding remarks.

II. QUANTUM TIME EVOLUTION ON THE DYNAMICAL LIE GROUPS

Let the Hamiltonian,H, of a quantum dynamical system be the linear form on the generators,
$L j , j51,2,...,n%, of ann-dimensional Lie algebraL,

H~ t !5(
j51

n

uj~ t !L j , ~2.1!

whereuj are the linearly independent complex-valued functions of a real independent variablet
~some of them can be null!. The generators satisfy the commutation relations

@L j ,Lk#5(
l51

n

cjk
l Ll , ~2.2!

wherecjk
l are structure constants. For any quantum system with the Hamiltonian~2.1!, there exists

the time evolution operator that obeys the Schro¨dinger equation,

i\
d

dt
U~ t !5H~ t !U~ t !,U~0!5I . ~2.3!

The time evolution of the system is described by the one-parameter familyU(t) of unitary
transformations defined on the Hilbert space of the system’s state vectors. It is a space where a
representation of the dynamical Lie groupG, connected with the dynamical Lie algebraL, acts.
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It follows from the Frobenius theorem,18 that there exists a neighborhood oft50, in which the
solution of the Eq.~2.3! can be written as

U~ t !5)
j51

n

„expgj~ t !L j…, gj~0!50, ~2.4!

if the generatorsL j ’s satisfy Eq.~2.2!. Substituting the solution~2.4! into Eq. ~2.3! and using the
Baker–Campbell–Hausdorff formula,

eABe2A5B1@A,B#1 1
2 †A,@A,B#‡1••• , A,BP$L j%, ~2.5!

Wei and Norman3 obtained a set of nonlinear ordinary differential equations for the functionsg’s,

uk~ t !5 i\(
l51

n

jklġl , k51,2,...,n. ~2.6!

Since the elementsjkl of the transform matrixj are analytic functions of theg’s, detj is an
analytic function ofg’s. On the other hand,j(t50)5I , and hence detj~t50!Þ0. Therefore a
neighborhood oft50 exists in which detj(t)Þ0. We now can write~2.6! as

i\ġk5(
l51

n

hklul , ~2.7!

whereh[j21. Since dethÞ0, we are assured of the neighborhood oft50, where the solution of
Eq. ~2.7! exists and is unique.

It is worthwhile to emphasize that the equations~2.7! depend only on the structure of the
dynamical Lie algebraL. Based on some well-known results in the theory of the Lie algebras,
Wichmann, Wei, and Norman2,3 have pointed out the reduction principles for the evolution prob-
lem ~2.3!. They can be summarized as follows.

~1! If the dynamical Lie algebraL, generated by the HamiltonianH(t), is commutative, then
the solution of Eq.~2.3! is trivial,

U~ t !5expS 2 i\21E
0

t

H~t!dt D . ~2.8!

~2! For a solvable Lie algebraL there exists a basis and its ordering in whichh forms a
triangular matrix, and the set~2.7! can be resolved in quadratures. The solution~2.4! is globally
valid for all solvable Lie algebras.

~3! The representation by the product of one-parameter subgroups~2.4! is globally valid for
the real simple three-dimensional Lie algebra with the following commutation relations in the
spherical basis,

@L2 ,L1#52aL0 , @L0 ,L6#56L6 , L05L0
† , L15L2

† , ~2.9!

wherea521 for SU~2! algebra anda511 for SU~1,1! algebra.
~4! Let L be a finite-dimensional Lie algebra. Then by the Levi–Mal’tsev theorem, it can be

decomposed into a semidirect sum,

L5S%R, ~2.10!
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of its unique radicalR and a semisimple subalgebraS. The splitting ~2.10! gives rise to the
corresponding decomposition of the Hamiltonian~2.1!,

H5HS1HR , HSPS, HRPR, ~2.11!

to the decomposition of Eq.~2.3!,

i\
d

dt
US5HSUS , i\

d

dt
UR5~US

21HRUS!UR , ~2.12!

and to the decomposition of its solution~2.4!,

U5USUR . ~2.13!

~5! Let S be a finite-dimensional semisimple Lie algebra. Then, by the structure theorem, it
can be uniquely decomposed into the direct sum,

S5(
j51

m

%Sj , ~2.14!

of its simple idealsSj . It follows from ~2.14! that

HS5H11H21•••1Hm , ~2.15!

US5U1U2•••Um , ~2.16!

with Uj satisfies the equation

i\
d

dt
U j5HjU j , j51,2,...,m. ~2.17!

Thus, the structural properties of the dynamical Lie algebras make it possible to reduce a
high-dimensional evolution problem~2.3! to solving evolution subproblems~2.12! and/or~2.17!
of smaller dimensions~in the sense mentioned above!.

III. GENERAL DESCRIPTION OF THE QUANTUM TIME-EVOLUTION OF A DRIVEN SU(2)
SYSTEM

In a variety of physical problems SU~2! appears to be a group of dynamical symmetry. It is
well known3,6,7 that the set of three equations for the SU~2! group parameters~2.7! can be reduced
to a single second-order differential equation. The form of this governing equation depends on the
choice of the basis and its exponential ordering. The right choice of parametrization of the dy-
namical group is especially important if we must explicitly solve the governing equation for a
given physical Hamiltonian.

The Hermitian Hamiltonian of a quantum system with the SU~2! dynamical symmetry can be
cast in the general form,

H~ t !5u0~ t !R01u* ~ t !R21u~ t !R1 , ~3.1!

whereR0 andR6 are the generators that satisfy the commutation relations~2.9! with a521. If we
choose the following noncanonical parametrization of SU~2!:

U5expF S g02 i E
0

t

u0~t!dt DR0Gexpg2R2 expg1R1 , ~3.2!
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then the system~2.7! can be reduced to the governing equation of a comparatively simple form,

g̈2S u̇u1 iu0D ġ1uuu2g50, g~0!51, ġ~0!50, ~3.3!

where

g[exp~g0/2!. ~3.4!

We can now express the rest of the SU~2! group parameters in terms of the functiong,

g25 igġu21 expS 2 i E
0

t

u0 dt D , ~3.5!

ġ152 iug22 expS i E
0

t

u0 dt D . ~3.6!

It follows from Eq. ~3.4! that real and imaginary parts ofg are not independent. It is convenient
to introduce the parameter

g̃[g2 /g. ~3.7!

Every SU~2! group element in the parametrization~3.2! can now be described by a pair of
complex numbersg and g̃ obeying the condition

ugu21ug̃u251, ~3.8!

whereu•••u denotes the modulus of a complex number. All the formulas~3.3!–~3.8! are valid within
any representation of SU~2!.

Using the well-known expressions for the matrix elementsR0 andR6 in the standard basis,

u j ,m&, m52 j ,2 j11,...,j ~3.9!

~see, for example, Ref. 19!, we construct after some algebra the unitary irreducible representations
of SU~2! in the chosen noncanonical parametrization~3.2!,

Um8m
~ j !

5expS 2 im8E
0

t

u0 dt D (
l52 j

j F ~ j2m8!! ~ j2m!!

~ j1m8!! ~ j1m!! G1/2
3

~ j1 l !!

~ j2 l !! ~ l2m!! ~ l2m8!!
gm1m8~ g̃! l2m8~2g̃* ! l2m. ~3.10!

Up to now we said nothing about physical nature of a system with the SU~2! dynamical
symmetry. All the results of this section are valid, of course, for any quantum system with such a
symmetry. Since we are going to demonstrate a variety of regimes of behavior, which are possible
for a driven SU~2! system, it is natural to choose, as an example, a simplest one. We shall deal in
the next sections with the fundamental semiclassical model of field–matter interactions, namely,
with a two-state system driven by a radiation field. This model is usually adopted in magnetic
resonance,20 optical resonance,21,22and quantum acoustics.6 For definiteness, we shall speak about
a two-level atom interacting with a time-varying electric field, both in a prescribed way and in a
self-consistent way. It will be demonstrated further that the time evolution in the group-theoretical
picture is radically different in these cases.
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IV. ATOM-FIELD INTERACTION WITHOUT ANY FEEDBACK

A. Two-level atoms in a prescribed, circularly polarized field

Let us write a circularly polarized light as

E~ t !5E0e~ t !~ i cosvt1 j sin vt !, ~4.1!

whereE0 is the constant amplitude of the electric field strength ande(t) is the dimensionless
variable representing the amplitude modulation that has here the simple form

e~ t !5sin v8t. ~4.2!

The time-dependent Hamiltonian of a two-level atom, interacting with the field~4.1! and~4.2!, is
given by

H~ t !5\v0R01
1
2 \V0e~ t !~R2e

ivt1R1e
2 ivt!, ~4.3!

wherev8 is the modulation frequency andv is the carrier frequency of the wave, which is
mismatched, in general, from the exact atomic resonance frequencyv0 by D[v02v. Here

V0[dE0 /\ ~4.4!

is the constant part of the Rabi frequency andd is the transition electric dipole moment. The SU
~2! generators have the familiar form in the 232 matrix representation,

R05
1

2 U1 0

0 21
U, R25U0 0

1 0
U, R15U0 1

0 0
U. ~4.5!

Factorizing the time-evolution operator as

U5exp~2 ivtR0!U8, ~4.6!

we obtain the following evolution equation:

i\
d

dt
U85H8~ t !U8, ~4.7!

with the transformed Hamiltonian

H8~ t !5\ DR01
1
2 \V0e~ t !~R21R1!. ~4.8!

The evolution matrix~4.6! is found in an explicit form from the general expression~3.10! for
the unitary irreducible representations of SU~2! in the noncanonical parametrization~3.2!:

U5S e2 iv0t/2 0

0 eiv0t/2D S g 2g̃*

g̃ g* D . ~4.9!

The governing SU~2! group parameterg satisfies the following equation that results from Eqs.
~3.3!, ~4.2!, and~4.8!:

g̈2~v8 cot v8t1 iD!ġ1S V0 sin v8t

2 D 2g50, g~0!51, ġ~0!50. ~4.10!
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The solution for the probabilities of finding our two-level system in loweru2& and in upperu1&
states at timet in terms of their values at the initial timet50 is given by

FP1~ t !
P2~ t !G5S ugu2 ug̃u2

ug̃u2 ugu2D FP1~0!

P2~0!G . ~4.11!

It follows from ~4.11! that the squared modulus of the SU~2! group parameter,ug(t)u2, has the
sense of the initial-state population probability in the casePa~0!51, a56.

Equation~4.10!, governing the dynamical evolution of a two-level atom in an inexhaustible
circularly polarized external field~4.1! with harmonic amplitude modulation~4.2!, has been nu-
merically integrated using a scaled dimensionless timet5v0t. The strength of coupling between
an atom and the external field is characterized by the dimensionless parameter

V[V0/2v0 .

We have studied different aspects of the atomic dynamics in the group-theoretical picture.
Such indicators of motion as~1! the squared modulusug(t)u2, ~2! the power spectrum ofg, and~3!
the motion in the phase plane Reg2Im g, have been numerically calculated for an initially
unexcited atom.

All the results show that the time evolution is regular for a circularly polarized field, both with
commensurate and with incommensurate driving frequenciesv andv8. The power spectrum for
the nonresonant excitation~D50.023,V55!, with the incommensurate frequenciesv51 and
v850.201, shows manyd-like peaks, as in the case of quasiperiodic motion. We only represent
here the two-dimensional stroboscopic phase portraits of a two-level atom driven under the same
conditions@Fig. 1~a!#. In other words, we plot trajectories in the plane Reg2Im g for the different

FIG. 1. Stroboscopic two-dimensional phase portraits of a two-level atom driven by a nonresonant, prescribed, laser field
with incommensurate carrier,v, and modulation,v8, frequencies in the case of~a! circular polarization and~b! linear
polarization. The parameters used areD50.023,v51, v850.201, andV55.
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values of the integration time growing from the left to the right.
It should be pointed out that the frequenciesv andv8 are assumed to be incommensurate, if

the period between successive phase coincidence of the functions cosvt and cosv8t is much
longer that the interval of integration. In the casev51 andv850.201, the period of incommen-
surability is equal to 2000p, and the maximal integration interval is 512.

B. Two-level atoms in a prescribed, linearly polarized field

Writing the field in the form

E~ t !5E0e~ t !x cosvt, ~4.12!

with

e~ t !5sin v8t, ~4.13!

the Hamiltonian can be cast as

H~ t !5\v0R01
1
2\V0e~ t !cosvt~R21R1!. ~4.14!

The time-evolution matrix and the solution for the transition probabilities has the same form as in
the case of circular polarization, i.e.~4.9! and~4.11!, respectively. However, the group parameter
g now satisfies the equation

g̈2~v8 cot v8t2v tanvt1 iv0!ġ1S V0 sin v8t cosvt

2 D 2g50. ~4.15!

We have numerically calculated all the relevant characteristics~1!, ~2!, and~3! for an initially
unexcited atom. In addition to the irregular temporal behavior of the squared modulus of the
solution of Eq.~4.15!, we have the broadened power spectrum of this solution. The larger is the
coupling coefficient,V, the more broadband is the spectrum. As for incommensurate and com-
mensurate driving frequencies, the whole allowed phase plane Reg2Im g is occupied by the
motion, apparently in an irregular way. We plot in Fig. 1~b! the two-dimensional stroboscopic
phase portraits of a two-level atom driven by nonresonant linearly polarized external field with
incommensurate driving frequencies.

The analytical results for an externally driven quantum system with the underlying SU~2!
dynamical symmetry can be resumed as follows. Its time evolution is governed by a single
second-order ordinary differential equation in four real variables. However, real and imaginary
parts of the complex variableg are not independent. They can be connected with each other by
means of Eq.~3.4!. In addition, we have the conservation law that it follows from Eqs.~3.5!, ~3.7!,
and ~3.8!. For the Hamiltonians~4.3! or ~4.8!, it has the form

ugu21S 2uġu
V0e

D 251. ~4.16!

This leaves two independent real variables, and by the Poincare´–Bendixson theorem23 therefore
precludes any possibility of chaos for an externally driven SU~2! system.

The explicit form of the time-evolution matrix for any driven SU~2! system is defined by its
matrix elements~3.10!. The problem of population control of two-level systems, interacting with
a prescribed modulated external field, is resolved by Eq.~4.11!, with g satisfying Eq.~4.10! or Eq.
~4.15!.

We can summarize our numerical results for the externally driven two-level system as follows.
If the external field is circularly polarized, the atomic dynamics is~independent on whether the
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driving frequencies are incommensurate or not! regular, in the sense that~a! the oscillations of the
initial-state population probability are periodic,~b! the power spectrum of this variable shows
d-like peaks, and~c! the motion in the phase plane is nonergodic. If the external field is linearly
polarized, the atomic dynamics is~independent on whether the driving frequencies are incommen-
surate or not! irregular, in the sense that~a! the oscillations of the initial-state population prob-
ability is not periodic,~b! the power spectrum of this variable is broadband, and~c! the motion in
the pseudophase plane is ergodic.

In any case, the time evolution is not fully chaotic, since the characteristic Lyapunov expo-
nents are always nonpositive for a two-level atom in a prescribed field.

V. QUANTUM CHAOS IN THE ATOM-FIELD SYSTEM WITH THE FEEDBACK

As it was shown in the preceding section, the equation for the SU~2! group parameter, gov-
erning the time evolution of a two-level atom in a prescribed external field, does not admit truly
chaotic motion. Atomic behavior may be more or less regular, depending on the type of field
polarization and on the ratio of the two driving frequencies, but it always implies the Lyapunov
characteristic exponents to be nonpositive.

Let us now take into account the feedback effects of atoms on the radiation field. It may be
done by the different ways. In the Belobrov–Zaslavski–Tartakovski model,24–26the radiation field
is treated semiclassically from the outset, and the analysis of the time evolution of the coupled
atom-field system is based on the well-known Maxwell–Bloch equations. In the other model,27,28

we haveab initio a quantized single-mode field, and the dynamics of the system is governed by
the Heizenberg equations. To obtain thec-number equations for the expectation values of the
relevant operators, one has to make some sort of their factorization approximation. It has been
shown for both models the atom-field system with the feedback exhibits chaotic time evolution for
the sufficiently large coupling strength.24–28

Further insight into the dynamics of the process of atom-field interaction with the feedback
can be obtained in the group-theoretical picture developed in the preceding sections.

Here we will considerE(t)[E0e(t) as the field generated by a two-level atom enclosed in a
single-mode lossless cavity. The classical Maxwell equation in the dipole and the slowly varying
envelope approximations is written as

ë1v2e52V0v^R11R2&, ~5.1!

where e is the dimensionless time-varying part of the fieldE, V0[dE0/\, v is the radiation
frequency, and̂•••& denotes the quantum expectation value of the relevant operator. The atomic
Hamiltonian is given by Eq.~4.8! with the substitutionv0 for D.

In the group-theoretical picture, the dynamics of the coupled atom-field system is governed by
two ordinary differential equations of the second order:

g̈2S ė

e
1 iv0D ġ1S V0e

2 D 2g50, ~5.2!

ë1v2e64
v

e
Im~g* ġ!50, ~5.3!

with the initial conditions

g~0!51, ġ~0!50, e~0!51, ė~0!50. ~5.4!

The upper~lower! sign in Eq.~5.3! refers to the atom that is initially in the ground~excited! state.
To obtain Eqs.~5.2!–~5.4!, we used the governing equation for the SU~2! dynamical group~3.3!
in the parametrization~3.2! and its two-dimensional irreducible unitary representation~4.9!.
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The set~5.2!–~5.4! describes two coupled oscillators. Physically, it means that the field mode
e determines via~5.2! the atomic motion on the phase plane Reg2Im g, while the atom, in turn,
acts as a source for the field via Eq.~5.3!. For numerical integration, it is convenient to introduce
the alternative set of the first-order equations instead of the second-order ones~5.2! and ~5.3!.
Supposing the atom to be initially in the ground state, we obtain

ġ52
iV0

2
eG, ~5.5!

Ġ5 iv0G2
iV0

2
eg, ~5.6!

ė52vP , ~5.7!

P5ve22V0 Re~g*G!. ~5.8!

This equations possess two integrals of motions. The first one,

gg*1GG*5const, ~5.9!

immediately follows from Eq.~3.8!. It is simply conservation of total probability for the un-
damped two-level system. The second integral,

v0~gg*2GG* !2
v

2
~e21P 2!1V0e~gG*1g*G!5const, ~5.10!

results from the conservation of total energy for the combined atom-field system with the items in
~5.10! describing the atomic, field, and interaction energies, respectively.

Since real and imaginary parts of the complex group parameterg are not independent; we
have the set of ordinary differential equations~5.2! and ~5.3!, or alternatively,~5.5!–~5.8! in five
real variables and two conservation laws,~5.9! and ~5.10!. As it is well known by the Poincare´–
Bendixson theorem,23 we must have three independent variables as a necessary condition for a
dynamical system to be chaotic.

The quantitative characteristics of chaotic motion are the Lyapunov exponents for the trajec-
tory. For anN-dimensional set of first-order differential equations there areN, possibly nondis-
tinct, Lyapunov exponents,29,30

l~Q0 ,Dq0!5 lim
t→`

iDq0i→0

1

t
ln

iDq~Q0 ,t !i
iDq0i , ~5.11!

whereDq is the vector in the phase space having the components$Dqj , j51,...,N% and the norm
iDqi. In Eq. ~5.11!, Dq0 andDq~Q0,t! denote the separation between two initially adjacent tra-
jectories at the initial momentt50 and at timet, respectively, andQ0 is the initial position. In
general, the ordinary limit may not exist, and, therefore,l should be defined as a limit superior.31

If, at least, one of the Lyapunov exponents, is positive, trajectories, starting close together in
phase, separate exponentially as time grows. This very sensitive dependence on initial conditions
is one of the main indicators of chaos.

We have numerically calculated the largest Lyapunov exponentlm for different values of the
coupling strengthV using the fourth-order Runge–Kutta method. Herelm has been calculated in
the following range of the values of the coupling strength: 0aVa10. As it is evident in Fig. 2, the
largest Lyapunov exponent is not a monotonic function ofV. It demonstrates as the domains of
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positive values those of negligibly small~zero! values. Let us, at first, consider three intervals of
nonchaotic motion with~a! 0aVa0.5; ~b! 1.8aVa2.1; and~c! 2.2aVa10.

Within all three ranges ofV we havelm.0, however, the motion in the plane Reg2Im g is
shown to be quite distinct for the intervals~a!, ~b!, and~c!. In Fig. 3 we depict the stroboscopic
two-dimensional phase portraits of the coupled atom-field system in the domains of quasiperiodic
motion for ~a! V50.3 and~b! V51.9. These portraits are the two-dimensional projections of the
five-dimensional phase space of the system on the plane Reg2Im g for the different values of the
integration time growing from the left to the right. Figure 4~a! shows the same forV52.3. AsV
increases, but remaining within one of the intervals~a!, ~b!, and~c!, it is apparent that the motion
in the phase plane Reg2Im g becomes less localized, and the trajectories become wandering.
Whereas forV from the range~a! the motion is localized inside the narrow ring, whereugu2'1, it
occupies more volume in the phase plane forV from the ranges~b! and ~c!.

It is evident in Fig. 2 that the largest Lyapunov exponent becomes positive for two ranges of
V. The first transition to chaos occurs when the coupling strength reaches a threshold value of the
order ofV.0.5. The first abrupt transition to a quasiperiodic motion takes places whenV reaches
the value in the neighborhood of 1.8. The second transition to chaos takes place suddenly when the
coupling strengthV is in the neighborhood of 2.1. The second chaotic regime of oscillations in the
coupled atom-field system seems to be much shorter than the first one, and persists untilV.2.2.

The power spectra have been calculated for different values of the coupling strength. As is
usual, the spectra demonstrates a fewd-like peaks for all three intervals of quasiperiodic motion,
and become broadband in the cases of chaotic regimes.

Representative two-dimensional phase portraits of the system with the coupling strength

FIG. 2. The largest Lyapunov exponentlm for the set of differential equations~5.5!–~5.8!, describing the coupled
atom-field system with the feedback, as a function of the coupling strengthV.
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V51.36, which gives the positive largest Lyapunov exponent of the order oflm.0.4, are shown
in Fig. 4~b! for three different time moments.

In summary, we have numerically observed a nontrivial sequence of transitions from quasip-
eriodicity to chaos in the coupled atom-field system with the feedback. The quantitative criterion
of chaos, the largest Lyapunov exponent, does not increase monotonically with the coupling
strength. The sequence of the transitions is clearly seen in Fig. 2, with two chaotic regimes
alternating among three regular regimes. As far as we know, the alternating regimes of chaos and
periodicity was not found in coupled atom-field models.24–28Our results are rather reminiscent of
the classic Lorenz attractor~see, for example, Ref. 32!.

VI. CONCLUSION

We have shown that the dynamical-symmetry approach is a useful tool for treating the dy-
namics of quantum systems as from the point of view of the problem of controlling quantum
evolution and as from the standpoint of the problem of quantum chaos. Applying this method to
the system of two-level atoms interacting with an electromagnetic field, we have provided a new
insight into the dynamics of such a process. In particular, a sequence of transitions from the
quasiperiodicity to chaos has been numerically observed for a two-level atom interacting with a
self-consistently generated radiation field.

We have focused attention on this atom-field system because it appears to be the simplest and
the most fundamental model for studying interaction between matter and radiation. Since the
group-theoretical approach is based on symmetry properties of the governing Hamiltonian, it is
applicable to a variety of physical situations. In particular the results obtained in this paper can be
used~with a slight modification! for describing the time evolution of any driven quantum system
with the underlying SU~2! dynamical symmetry.

FIG. 3. Stroboscopic two-dimensional phase portraits of the coupled atom-field system oscillating in the quasiperiodic
regime~lm.0! with ~a! V50.3 and~b! V51.9 under the resonance condition,v5v0.

1215L. E. Kon’kov and S. V. Prants: Quantum chaos in the group-theoretical picture

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ACKNOWLEDGMENT

This work was supported by the International Science Foundation, Grant No. NZ 7000.

1W. Magnus, Commun. Pure Appl. Math.7, 649 ~1954!.
2E. H. Wichmann, J. Math. Phys.2, 876 ~1961!.
3J. Wei and E. Norman, J. Math. Phys.4, 575 ~1963!.
4R. W. Brockett, SIAM J. Appl. Math.25, 213 ~1973!.
5V. Jurdjevic and H. J. Sussmann, J. Diff. Eqns.12, 313 ~1972!.
6U. Kh. Kopvillem and S. V. Prants,Polarization Echoes~Nauka, Moskow, 1985!.
7G. Dattoli, J. Gallardo, and A. Torre, J. Math. Phys.27, 772 ~1986!.
8S. V. Prants, J. Phys. A19, 3457~1986!.
9S. D. Howard and S. K. Roy, J. Phys. A22, 4865~1989!.
10I. A. Malkin and V. I. Man’ko,Dynamical Symmetries and Coherent States of Quantum Systems~Nauka, Moskow, 1979!.
11A. M. Perelomov,Generalized Coherent States and Their Applications~Springer-Verlag, Berlin, 1986!.
12S. V. Prants, Phys. Lett. A144, 225 ~1990!.
13S. V. Prants, Mod. Phys. Lett. A8, 2671~1993!.
14S. V. Prants, Automat. Telemekh.~in press! ~1996!, N2.
15S. V. Prants, submitted to Opt. Spectrosc.
16S. V. Prants, J. Russ. Laser Res.16, 83 ~1995!.
17M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics~Springer-Verlag, New York, 1990!.
18P. J. Olver,Applications of Lie Groups to Differential Equations~Springer-Verlag, Berlin, 1986!.
19R. Gilmore,Lie Groups, Lie Algebras and Some of Their Applications~Wiley, New York, 1974!.
20A. Abragam,The Principles of Nuclear Magnetism~Oxford University, London, 1961!.
21R. P. Feynman, F. L. Vernon, and R. W. Hellworth, J. Appl. Phys.28, 49 ~1957!.
22L. Allen and J. H. Eberly,Optical Resonance and Two-Level Atoms~Wiley, New York, 1975!.
23A. Lichtenberg and M. Lieberman,Regular and Stochastic Motion~Springer-Verlag, New York, 1983!.
24P. I. Belobrov, G. M. Zaslavski, and G. Kh. Tartakovski, Zh. Eksp. Teor. Fiz.71, 1799~1976! @Sov. Phys. JETP44, 945

~1976!#.
25P. W. Milonni, J. R. Ackerhalt, and H. W. Galbraith, Phys. Rev. Lett.50, 966 ~1983!.
26K. N. Alekseev and G. P. Berman, Zh. Eksp. Teor. Fiz.94, 49 ~1988! @Sov. Phys. JETP67, 1762~1988!#.

FIG. 4. Stroboscopic two-dimensional phase portraits of the coupled atom-field system oscillating in~a! the quasiperiodic
regime~lm.0! with V52.3 and in~b! the chaotic regime~lm.0.4!, with V51.36 under the resonance condition,v5v0.

1216 L. E. Kon’kov and S. V. Prants: Quantum chaos in the group-theoretical picture

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



27R. F. Fox and J. C. Eidson, Phys. Rev. A36, 4321~1987!.
28G. P. Berman, E. N. Bugakov, and D. D. Holm, Phys. Rev. A49, 4943~1994!.
29V. Oseledetz, Proc. Moscow Math. Soc.19, 179 ~1968!.
30Ya. B. Pesin, Usp. Mat. Nauk32, 55 ~1977!.
31H. Haken,Advanced Synergetics~Springer-Verlag, Berlin, 1983!.
32M. Holodniok, A. Klic, M. Kubicek, and M. Marek,Methods For the Analysis of Nonlinear Dynamical Models~Aca-
demia, Praha, 1986!.

1217L. E. Kon’kov and S. V. Prants: Quantum chaos in the group-theoretical picture

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Geometric phase, bundle classification, and group
representation

Ali Mostafazadeha)
Theoretical Physics Institute, University of Alberta, Edmonton, AB, T6G 2J1, Canada,
Institute for Studies in Theoretical Physics and Mathematics,
P.O. Box 19395-5746, Tehran, Iran, and Department of Physics, Sharif University of
Technology, P.O. Box 11365-9161, Tehran, Iran

~Received 6 September 1994; accepted for publication 9 November 1995!

The line bundles that arise in the holonomy interpretations of the geometric phase
display curious similarities to those encountered in the statement of the Borel–
Weil–Bott theorem of the representation theory. The remarkable relationship be-
tween the mathematical structure of the geometric phase and the classification
theorem for complex line bundles provides the necessary tools for establishing the
relevance of the Borel–Weil–Bott theorem to Berry’s adiabatic phase. This enables
one to define a set of topological charges for arbitrary compact connected semi-
simple dynamical Lie groups. These charges signify the topological content of the
phase. They can be explicitly computed. In this paper, the problem of the determi-
nation of the parameter space of the Hamiltonian is also addressed. It is shown that,
in general, the parameter space is either a flag manifold or one of its submanifolds.
A simple topological argument is presented to indicate the relation between the
Riemannian structure on the parameter space and Berry’s connection. The results
about the fiber bundles and group theory are used to introduce a procedure to
reduce the problem of the nonadiabatic~geometric! phase to Berry’s adiabatic
phase for cranked Hamiltonians. Finally, the possible relevance of the topological
charges of the geometric phase to those of the non-Abelian monopoles is pointed
out. © 1996 American Institute of Physics.@S0022-2488~96!03502-7#

I. INTRODUCTION

In the past ten years, since the revival of the geometric phase,1,2 by Berry,3 the subject has
attracted the attention of many physicists. The main reason for the unusual popularity of this
remarkably simple subject, particularly among the theoretical physicists, has been its rich math-
ematical and physical foundations.

Recently, it was shown that the two holonomy interpretations of Berry’s phase were linked via
the theory of universal bundles.4,5 This remarkable coincidence of the physics of geometric phase
and the mathematics of fiber bundles enables one to set up a convenient framework to analyze the
nonadiabatic phase.5 In the present paper, the results of5 are briefly reviewed and their generali-
zation to arbitrary finite-dimensional unitary systems are presented.

In Sec. II, it is shown how the study of the standard example of a spin in a processing
magnetic field directs one to the Borel–Weil–Bott~BWB! theorem of the representation theory of
compact semisimple Lie groups. In Sec. III, the relation of the BWB theorem to the phenomenon
of a geometric phase is discussed in a general setting. Section IV is devoted to a discussion of the
relation of Berry’s connection and the Riemannian geometry of the parameter space. Section V
includes the discussion of the reduction of the nonadiabatic phase problem to the adiabatic one for
the cranked Hamiltonians. Section VI consists of a short account on the classification of the

a!Electronic-mail: alim@netware2.ipm.ac.ir
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parameter spaces and the topology of non-Abelian monopoles. Section VII includes the conclu-
sions.

II. BUNDLE CLASSIFICATION AND THE HOLONOMY INTERPRETATIONS OF THE
GEOMETRIC PHASE

There are two mathematical interpretations of Berry’s~adiabatic! phase. These are due to
Simon6 and Aharonov and Anandan.7 I shall refer to these two approaches by ‘‘BS’’ and ‘‘AA,’’
which are the abbreviations of ‘‘Berry–Simon’’ and ‘‘Aharonov–Anandan,’’ respectively.

In the BS approach, one constructs a line bundleL over the spaceM of the parameters of the
system. Then,L is endowed with a particular connection that reproduces Berry’s phase as the
holonomy of the closed loop in the parameter space.

Let us consider a quantum mechanical system whose evolution is governed by a parameter-
dependent Hamiltonian:

H5H~x!, xPM .

Assume that for allxPM the spectrum ofH(x) is discrete and that there are no level crossings.
Then, locally one can choose a set of orthonormal basic eigenstate vectors$un,x&%. As functions of
x, un,x& are smooth and single valued. By definition, they satisfy

H~x!un,x&5En~x!un,x&, ~1!

whereEn(x) are the corresponding energy eigenvalues. The Hamiltonian is made explicitly time
dependent by interpreting timet as the parameter of a curve,

C:@0,T#{t→x~ t !PM , ~2!

and setting

H~ t !:5H~x~ t !!, tP@0,T#. ~3!

Then, each closed curveC in M defines a periodic Hamiltonian with periodT. I shall discuss only
the evolution of nondegenerate cyclic states with periodT.

Under the adiabatic approximation the initial eigenstates undergo cyclic evolutions.3 If
ucn(t)& denotes the evolving state vector, i.e., the solution of the Schro¨dinger equation:

H~ t !ucn~ t !&5 i
d

dt
ucn~ t !&

ucn~0!&:5un,x~0!&, ~4!

then

ucn~T!&^cn~T!u.ucn~0!&^cn~0!u. ~5!

After a cycle is completed, the state vector gains a phase factor that consists of a dynamical (eiv)
and a geometric (eig) part,

ucn~T!&5ei ~v1g!ucn~0!&, ~6!

where
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v:52E
0

T

En„x~ t !…dt,

and

eig:5exp R
C
A, ~7!

A:52^n,xudun,x&52^n,xu
]

]xm un,x&dxm. ~8!

The one-formA is known as Berry’s connection one-form.3

In Ref. 6, Simon showed thatA could be interpreted as a connection one-form on a~spectral!
line bundleL overM ,

C→L→M , ~9!

whose fibers are given by the energy eigenrays in the Hilbert spaceH,

Lx :5$zun,x& : zPC%. ~10!

Thus, in the BS approach, Berry’s phase is identified with the holonomy of the loopC,M defined
by the connection one-formA of Eq. ~8!.

In the AA approach one considers a complex line bundleE, or alternatively, the associated
U~1!-principal bundle, over the projective Hilbert spaceP~H!5CPN, N:5dim~H!21:

C→E→P ~H!. ~11!

The fibers over the pointsh5uh&^hu of P ~H!5CPN are the corresponding rays:

Eh :5$zuh& : zPC%, ~12!

in the Hilbert spaceH. ~The topological structure ofE is determined by the topological structure
of CPN. In particular, a natural local trivialization is given by adopting the standard homogeneous
local coordinate charts forCPN. The associated transition functions ofE are determined from
those ofCPN similarly. See Sec. IV for an alternative characterization of the topology ofE.!

The AA connection one-formA ~Ref. 7! is then viewed as a connection one-form onE and
the geometric phase is identified with the corresponding holonomy of loops,

C :@0,T#{t→h~ t !PP ~H!, ~13!

in P ~H!. In the adiabatic approximation one approximatesh(t) by cn(t) of Eq. ~4!.
These two interpretations of Berry’s phase turn out to be linked via the theory ofuniversal

bundles. It is shown in Refs. 4 and 5 thatE ~with N→`! is indeed the universal classifying line
bundle,8–10 and as a result of the classification theorem for complex line bundles,9,8,11 every
complex line bundle can be obtained as a pullback bundle fromE. In particular, there is a smooth
map,

f :M→P ~H!, ~14!

such that

L5 f * ~E!. ~15!
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The mapf is simply given by

f ~x!:5un,x&^n,xu. ~16!

Furthermore, the fact that the phase is obtained from either ofA orA is a consequence of the
theory of universal connections.12,13 In fact, the AA connectionA is precisely the universal
connection, which yields all connections on all complex line bundles as pullback connections. In
particular, Berry’s connection onL is given by

A5 f * ~A!. ~17!

These results are exploited in Ref. 5 to explore the quantum dynamics of Berry’s original example:

H~x!5bx–J, xPS2,R3, ~18!

whereb is the Larmor frequency,x is the direction of the magnetic field, andJ5(Ji), i51,2,3, are
the generators of rotations,JiPso(3)5su(2). In Ref. 5, it is shown that if one considers the case
of precessing magnetic field, i.e., precessingx about a fixed axis, then one can promote Simon’s
construction to the nonadiabatic case, namely, define a nonadiabatic analog of Berry’s connection
and identify the nonadiabatic phase with its holonomy. This can be done in general unless the
frequency of precession,v, becomes equal tob. In the northern hemisphere the nonadiabatic
connectionÃ is given by

Ã5 ik~12cos ũ !df, ~19!

wherek labels an eigenvalue ofH(x) ~alternatively an eigenvalue ofJ3!, and

cos ũ:5
cosu2n

An222n cosu11
, ~20!

n:5
v

b
. ~21!

Here ~u,f! are the spherical coordinates„uP@0,p!…, and n is the ‘‘slowness parameter’’.14 The
adiabatic limit is characterized byn→0. In this limit Ã approaches to Berry’s connection,

A5 ik~12cosu!df. ~22!

Note that unlike the adiabatic case~n→0!, the cyclic states in the more general nonadiabatic
case cannot be approximated by the eigenstates of the initial Hamiltonian. They are given as the
eigenstates of the unitary time evolution operator at timeT. This operator does not generally
commute with the initial Hamiltonian, and they do not share simultaneous eigenstates.

The topology of a line bundle onS2 is determined by its first Chern number,

c1 :5
i

2p E
S2

V, ~23!

whereV is the curvature two-form. For line bundles, the curvature two-form is obtained from the
connection one-form by taking its ordinary exterior derivative.15 A simple calculation shows that
takingV5dÃ results in

c1522k, for n,1. ~24!
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This is quite remarkable since the fact thatc1 is an integer agrees with the fact thatk is a
half-integer. The first statement is an algebraic topological result, whereas the second is related to
group theory. One of the best known mathematical results that links these two disciplines is the
celebrated Borel–Weil–Bott~BWB! theorem.16–19

Equation~24! may also be viewed as an example of a topological quantization of angular
momentum. In the language of magnetic monopoles, which are relevant to the adiabatic case,
k52c1/2 corresponds to the product of the electric and magnetic charges.20,21

III. BOREL–WEIL–BOTT THEOREM AND THE BERRY–SIMON LINE BUNDLES

The BWB theorem constructs all the finite-dimensional irreducible representations~irreps.! of
semisimple compact Lie groups from the irreps. of their maximal tori. The construction is as
follows.

LetG be a semisimple compact Lie group andT be a maximal torus. LetG andY be the Lie
algebras ofG andT, respectively.G can be viewed as a principal bundle over the quotient space
G/T:22

T→G→G/T. ~25!

The homogeneous spaceG/T can be shown to have a canonical complex structure.17 SinceT is
Abelian, its irreps. are one dimensional.22 Thus, each irrep.L of T defines an associated complex
line bundleLL to ~25!:

C→LL→G/T. ~26!

Now, consider aL whose corresponding line bundleLL is an ample~positive! line bundle. Then
LL has the structure of a holomorphic line bundle. BWB theorem asserts that all the irreps. ofG
are realized on the spaces of holomorphic sections of ample~positive! line bundles,LL . In
particular, the spaceHL of the holomorphic sections ofLL provides the irrep. ofG with maximal
weightL.18,17,19

The simplest nontrivial example of the application of the BWB theorem is forG5SU~2!. In
this case,T5U(1)5S1 andG/T5S25CP1. The bundle~25! is the Hopf bundle:22

U~1!5S1→SU~2!5S3→S2. ~27!

L takes non-negative half-integers. It is usually denoted byj in QM. It is common knowledge that
j50, 1

2,1,..., yield all the irreps. of SU~2! and that thej representation has dimension 2j11. The
dimension of the spaceHL can be given by an index theorem.

18,16For SU~2!, it is obtained by the
Riemann–Roch theorem in the context of the theory of Riemann surfaces. The result is

dim~HL!5c~LL!511c1~LL!, ~28!

wherec andc1 denote the total and first Chern numbers ofLL . This means that one must have

c1~LL!52 j . ~29!

Combining ~24! and ~29!, one recovers the line bundleLL as Simon’s line bundleL of ~9! for
k52 j .

In the rest of this section, I shall try to show that there is a general relationship between the
constructions used in the BWB theorem and those encountered in BS interpretation of Berry’s
phase. To proceed in this direction, let us consider the generalization of~18! to an arbitrary
compact semisimple Lie group, namely, consider
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H~x!5e(
i51

d

xiJi , ~xi !PRd2$0%. ~30!

HereJi are the generators ofG ande is a constant with the dimension of energy. SinceH(x) is
assumed to be Hermitian,Ji must be represented by Hermitian matrices. In other words, the group
G is in a unitary representation. In this sense, the example ofG5U(N) plays a universal role.
~This reminds one of the Peter–Weyl theorem.19,22!

The system described by Eq.~30! is studied in Refs. 23 and 24. In Ref. 23, it is argued that,
in general, there are unitary operatorsU(t) that diagonalize the instantaneous Hamiltonian:

H~ t !5U~ t !HD~ t !U~ t !†. ~31!

In view of Eq. ~3!, one has

U~ t !5U„x~ t !…, ~32!

where

x~ t !5„xi~ t !…PG2$0%5Rd2$0%, ~33!

are the points of the loop in the parameter space. In fact, one can show that the parameter space
‘‘is not’’ Rd2$0%, but a submanifold of this space, namely the flag manifoldG/T.

To see this, let me first introduce the root system ofG associated withY and the correspond-
ing Cartan decomposition:

G C5YC% aG a , ~34!

where the subscriptC meanscomplexificationanda stand for the roots. Letl denote the rank of
G , $Hi% i51,2,...,l andEa be bases ofY andG a , respectively.

25,22,18,17Then, one has

@Hi , Hj #50, @Hi , Ea#}Ea , @Ea , E2a#}HaPY,
~35!

@Ea , Eb#}Ea1b , for bÞ2a.

Any group element can be obtained as a product of the exponentials of the generators of the
algebra. In particular,

U~ t !5expF i(
a

xa~ t !EaGexpF i(
i

x i~ t !Hi G . ~36!

Since any diagonal element commutes withHi ’s, it belongs toY. Hence, one has

HD~ t !5(
i
bi~ t !Hi . ~37!

Substituting Eq.~37! in Eq. ~36! and using the resulting equation to simplify Eq.~31!, one obtains
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H~ t !5expS i(
a

xa~ t !EaDHD~ t !expS 2 i(
a

xa~ t !EaD ~38!

5expS i (
a.0

@za~ t !Ea1za* ~ t !E2a# DHD~ t !

3expS 2 i (
a.0

@za* ~ t !Ea1za~ t !E2a# D . ~39!

In Eqs.~38! and~39!, xaPR andzaPC are time-dependent parameters. It is shown in Ref. 23 that,
in general, the geometric phase is given in terms ofxa’s, or alternatively in terms ofza’s, and it
does not depend onHD(t). It is not difficult to see that indeedxa correspond to the coordinates of
the points of the flag manifoldG/T. Alternatively, one can use the complex coordinatesza . This
is reminiscent of the fact thatG/T has a canonical complex structure.17 This completes the proof
of the claim that the true parameter space of the system described by~30! isG/T, or a submanifold
of G/T. I will come back to this point in Sec. VI. The fact thatG/T can be viewed as embedded
in G is useful because it allows one to work with the global Cartesian coordinates systems on
G5Rd.24A natural embedding ofG/T is provided by taking a regular~nondegenerate! elementH0
of Y and considering the adjoint action ofG on G . The orbit corresponding toH0 is a copy of
G/T. Thus, one might note that in Eq.~30!,

x5~xi !PG/T,Rd. ~40!

The fact that the phase information is encoded inU(t) of Eq. ~31! can be used to simplify the
problem, namely one can restrict to the case where theHD(t)5HD(0)5H0 is kept constant, i.e.,

HD5(
i
biHi5:H0PY, bi5const. ~41!

The Hilbert spaceH of the quantum state vectors provides the representation space. It can be
decomposed into irrep. spaces. I shall assume thatH ~or the subspace ofH relevant to the
geometric phase! corresponds to an irrep. with maximal weightL.18 The weights are the simul-
taneous eigenvectors ofHi ’s.

25 They are conveniently denoted byul1,...,ll&, or collectively byul&,
where

Hi ul&5l i ul&, ; i51,...,l . ~42!

Clearly, the weight vectorsul& are the eigenstate vectors of the initial Hamiltonian. Here, I have set
U~0!51 in Eq. ~31!.23 In general, this can be achieved by appropriately choosing the maximal
torusT. Thus, one has

H„x~0!…5HD5H0 ~43!

and

HDul&5(
i51

l

bil i ul&. ~44!

Making the dependence ofHD(H0) on the initial pointx0 :5x~0! explicit, one can write Eq.~44!
in the form
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H0~x0!ul,x0&5El~x0!ul,x0&, El~x0!:5(
i51

l

bil i~x0!. ~45!

The weight vectorsul,x0& are precisely the eigenvectorsun,x0& of the instantaneous Hamiltonian
H0(x0). Sincex0 can be chosen arbitrarily, one can simply drop the subscript ‘‘0,’’ i.e., replacex0
by x andH0(x0) by H(x).

The BS line bundle, in this case, is obtained as the pullback bundle from the universal
classifying bundleE,

Ll
BS:5 f * ~E!, ~46!

induced by the map

f :MPx→ul,x&^l,xuPP ~H!,CP`.

Recalling some basic facts about the flag manifolds and their relation to projective spaces,18 one
finds that, in fact,Ll

BS corresponds to the line bundleLL of the BWB theorem, if the weight vector
ul,x0& is chosen to be the maximal weightL of the representation. First, let us recall18,17 that flag
manifolds are projective varieties, i.e., there exist embeddings ofM into CP`,

i :M�CP`. ~47!

Indeed, one can obtainM5G/T as a unique closed orbit of the action ofG onP ~CN11!5CPN, for
some~N11!-dimensional irrep.~Ref. 18, Sec. 23.3!. The line bundleLL is then the restriction
~pullback under the identity map! of E:

LL5 i * ~E!. ~48!

Let uv0& be a nonzero vector in the representation~Hilbert! space of theL representation of
G,GC be the complexification ofG, and consider the map

F:GC→P ~H!,

defined by

F~ g̃!:5@U~ g̃!uv0&]5U~ g̃!uv0&^v0uU~ g̃!†. ~49!

Here U(g̃) is the representation ofg̃PGC and [U(g̃)uv0&] denotes the ray passing through
U(g̃)uv0&. F is clearly not one to one. LetP be the closed subgroup ofGC defined by

P:5$h̃PGC : U~ h̃!uv0&5cuv0&, for some cPC2$0%%. ~50!

By construction the mapF induces a one-to-one map onGC /P:

F̂:GC /P→P ~H!. ~51!

Now, let us choose

uv0&:5uL,x0&, ~52!

and denote byB the Borel subgroupof GC generated byHi andEa.0. Then,B,P and conse-
quentlyGC/P is a compact submanifold~subvariety! of GC/B. However, one has the identity

GC /B5G/T,
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where by equality I mean the diffeomorphism of homogeneous spaces.17 Thus, in general,
GC/P,G/T.

The extreme case is whenP5B, i.e., M5GC/P5G/T. However, in general,B may be a
proper subgroup ofP, in which case the parameter manifold can be restricted to the submanifold
GC/P of G/T. This depends on the representation, i.e., onL.

Let us consider the general case, i.e.,M5GC/P. The basic vectorsul,x& are parametrized by
the points ofGC/P,G/T and the mapf of ~16! becomes

f :GC /P{x→ul,x&^l,xuPP ~H!. ~53!

In view of the fact thatGC/P,G/T, one may work with the representative ofx5[g]PG/T rather
thanx5[ g̃]PGC/P for the parametersx. The next logical step is to compare the mapF̂ of ~51!
with f . Let xPM,G/T; then every eigenstate vectorul,x& can be obtained by the action ofG on
a nonzero vector. In particular, there is agxPG such that

ul,x&5U~gx!ul,x0&. ~54!

Combining Eqs.~52!, ~53!, ~54!, and specializing tol5L, one finds

f ~x!5U~gx!uv0&^v0uU~gx!5@U~gx!uv0&#. ~55!

Recalling the procedure according to whichx is assigned to represent the parameter~40! of the
system~30!, one can identify [gx]PGC/P,G/T with x, i.e.,

U~gx![U~x!,

and consequently,

f ~x!5@U~x!uv0&]5F̂~x!. ~56!

For the special case ofP5B, the mapF̂ becomes the mapi of ~47!. Thus, according to Eqs.~48!
and ~56!, the following identity is established:

LL5 f * ~E!. ~57!

Equation~57! is valid generally, i.e., even whenPÞB. In this case,M5GC/P is a proper sub-
manifold ofG/T, and the role of the embeddingi of Eq. ~47! is played by

i 8:M�G/T�
i

CP`.

Comparing Eq.~57! with Eq. ~46!, one arrives at the desired result, namely that the bundleLL of
the BWB theorem is identical to the BS bundleLL

BS. In particular, the dimension of the irrep., i.e.,
the Hilbert spaceH is given by the number of the linearly independent holomorphic sections of
LL
BS. The latter is a topological invariant ofLL

BS.
It is well known that the topology of a complex line bundle is uniquely determined by its first

Chern classĉ1.
26,5 ĉ1 is represented by a closed differential two-form onM . It can be character-

ized by a set of@p:5dimH2~M ,Z!# integers by integrating it overp compact two-dimensional
submanifolds ofM , which are called the 2-cells ofM . For example, ifG5SU~2!, M5S2 and the
spaceS2 is the only 2-cell. Therefore,ĉ1 is determined by a single integerc1 via Eq. ~23!.

In general, the following modification of Eq.~23! provides the necessary integers,

c1
a5 ĉ1~sa!:5

i

2p E
sa

V, ~58!
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wheresa is theath 2-cell ~a51,...,p!, c1
a is the first Chern number associated withsa , andV is

the curvature two-form of the line bundle.
For the case of the BWB–BS line bundle,c1

a determine the irreps. On the other hand, the
irreps. are given by the maximal weightL of the representation. The latter can be written as a
linear combination of the so-calledfundamental weights~Ref. 18, Sec. 14.1!, with non-negative
integer coefficients. Let us denote these byLb , b51,...,l . Then,

L5 (
b51

l

kbLb , kbPZ1ø$0%. ~59!

This means that to determine thekb’s and hence the irrep. one needs preciselyl ‘‘independent’’
first Chern numbers. These are obtained by integrating~58! over the 2-cells ofG/T. The 2-cells
are l copies ofS2 that correspond to the canonical SU~2! subgroups ofG. These are generated by
the triplets of the generators (Ea ,E2a ,Ha), wherea’s are thel simple roots ofG , andEa andHa

are as in Eq.~35!. Denoting theseSU~2! subgroups and their maximal tori byGa and Ta ,
respectively, the 2-cells are given by

sa :5Ga /Ta5SU~2!/U~1!5S2. ~60!

The restriction of the curvature two-formV onsa yields Berry’s curvature two-form.
3 Integrating

these two-forms onsa gives rise tol identities of the form~24!. Incidentally, in view of the
relevance of the system of Eq.~18! to magnetic monopoles21 ~30! corresponds to a generalized
magnetic monopole whose charge has a vectorial character with integer components. I shall return
to the discussion of monopoles in Sec. VI.

IV. BERRY’S CONNECTION AND THE RIEMANNIAN GEOMETRY OF THE PARAMETER
MANIFOLD

One of the rather interesting facts about the geometric phase is that the AA connectionA is
related to the Fubini–Study metric on the projective spaceCPN.27 In the language of fiber bundles,
the Riemannian geometry of a manifoldX means the geometry of its tangent bundleTX. In
particular, the Riemannian metric~the Levi–Civita connection! is a metric~resp., a connection! on
TX. The statement that the AA connection is related to the Riemannian geometry ofCPN is
equivalent to say that the universal~AA ! bundle,

E:C→E→CPN,

is related to the tangent bundle,

TCPN:CN→TCPN→CPN.

This is easy to show topologically. The precise relation is demonstrated in the form of the follow-
ing identity:

Det@TCPN#5E* ^E* , ~61!

where Det means the determinant bundle:
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` stands for the wedge product of the vector bundles,E* is the dual line bundle toE, and^ is
the tensor product.8 To see the validity of Eq.~61!, it is sufficient to examine the first Chern
classes of both sides. In fact, sinceCPN has a single 2-cell, namelyCP15S2, one can simply
compare the first Chern numbers. It is well known10 that

c1~E!521. ~62!

Furthermore, for any vector bundleV,

ĉ1@Det V#5 ĉ1@V#. ~63!

Also, it is not difficult to show that

c1~TCP
N!5c1~TCP

1!5x~S2!52, ~64!

wherex stands for the Euler–Poincare´ characteristic. Equations~63! and ~64! imply that

c1@Det TCP
N#52.

The last equality, together with the fact that

c1~E* !52c1~E!

and Eq.~62!, are sufficient to establish the validity of Eq.~61!.
The existence of this relationship between the AA connection and the Riemannian metric on

CPN has triggered the investigation of a similar pattern in the BS approach.28 In Ref. 28, the
authors discuss the case of a general Hamiltonian with a dynamical groupG and a parameter
spaceG/H, whereH is a closed subgroup of symmetries of the Hamiltonian. The analysis pre-
sented above seems to include all these cases. In the following section, I will show that the system
of Eq. ~30! has a universal character. In other words, all the cases discussed in Ref. 28 can be
reduced to the one given by~30!. In all these cases the parameter space,G/H, is a submanifold of
FU(m):5U(m)/Tm, Tm:5[U(1)]m, which is itself embedded intoCP`. Hence, the results of
Ref. 28 are expected because~i! the BS bundle~connection! is the pullback~restriction! of the
universal bundleE; and ~ii ! E is related toTCPN, via Eq. ~61!.

V. REDUCTION OF THE NONADIABATIC PHASE TO THE ADIABATIC PHASE FOR THE
CRANKED HAMILTONIANS

Let us consider an arbitrarym3m HamiltonianH acting onH5Cm. H can be viewed as an
element of the~real! vector space of all complexm3m-dimensional Hermitian matrices. It is very
easy to compute the real dimension of this space and find out that it is equal tom2. Thus,H can
be written as a linear combination ofm2 linearly independent Hermitian matrices. Incidentally, the
generatorsJi of U(m) form a set ofm2 such matrices. This simply indicates that one can always
expressH in the form of Eq.~30!. This may be seen as a realization of the Peter–Weyl theorem.19

The particular representation ofH given by Eq.~30! with G5U(m) for somemPZ1 might not be
a practical choice. For example, the quadratic Hamiltonian,

H5 (
i , j51

3

Qi js i ^ s j ,

with si being Pauli matrices,28,29 is more manageable in this form than in the form of Eq.~30!,
with Ji chosen to be the generators ofU~4!. However, in principle, one can always use the linear
representation, Eq.~30!.
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Actually, one can use the generators ofSU(m) rather thanU(m). This is emphasized in Ref.
23. It can be directly justified by recalling that the~m221! generators ofSU(m) are also linearly
independent, and these together with the (m3m) identity matrixI provide a basis for the space of
(m3m) Hermitian matrices. The HamiltonianH can then be written as a linear combination in
this basis. Clearly, the term proportional toI does not contribute to the geometric phase. This is
often used as an indication of the geometric nature of Berry’s phase.30

An advantage of the linear representation is that it allows one to use the knowledge about the
universal bundles and BWB theorem directly. In particular, in some cases, it is possible to obtain
the nonadiabatic analog of the BS line bundle and the connectionA. The first example of this is
presented in Ref. 5. In this section, I will show that since the above argument does not refer to the
adiabaticity of the system, one can always reduce the Hamiltonian to the linear form. Moreover, if
the time dependence of the corresponding linear Hamiltonian is realized by cranking of the initial
Hamiltonian along a fixed direction,24 then one can obtain a nonadiabatic analogÃ of Berry’s
connectionA as a pullback connection one-form. The geometric phase is then identified with the
associated holonomy of the loops in the space of parameters. This is remarkable because it means
that, as far as the geometric phase is concerned, one does not need the full solution of the
Schrödinger equation. The essential ingredient is the functionF that inducesÃ as a pullback
one-form from the adiabatic connection one-formA.

Wang24 has presented a procedure that essentially computesF. Nevertheless, he does not even
label this function, nor does he implement the idea of universal bundles. Let us see how the
conditions introduced in Ref. 5 are realized in for cranked Hamiltonians. These conditions are the
following.

~1! The cyclic states are the eigenstates of a Hermitian operatorH̃ that depends parametrically
on the points of the parameter manifoldM , i.e., the cyclic states are eigenstates ofH̃(x0) with
x05x(t50).

~2! H̃ is related to the Hamiltonian according to

H̃~x!5H„F~x!…5~HoF!~x!, ~65!

whereF:M→M is some smooth function, such that in the adiabatic limit,F approaches the
identity map.

Let us first see how the first condition is fulfilled for any periodic Hamiltonian. According to
a result of Floquet theory,31 the time evolution operator for any periodic Hamiltonian is of the
form

U~ t !5Z~ t !eitH̃ , ~66!

whereH̃ is a time-independent Hermitian operator andZ is a periodic unitary operator with the
same period as the Hamiltonian, i.e.,

Z~ t1T!5Z~ t !, Z~0!51. ~67!

Clearly, one has

U~T!5eiTH̃, ~68!

which justifies the first condition. The second condition can be seen to hold for the cranked
Hamiltonians, either by referring to the work of Wang24 or following the argument used in the
discussion of the transformation of the Hamiltonian into the linear form. The latter is quite
straightforward. One simply starts by realizing that sinceH̃ is Hermitian, it can also be written in
the linear form:
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H̃~x0!5(
i51

d

x̃0
i Ji , ~69!

where x̃0 :5( x̃0
i )PM must depend on the Hamiltonian~30!, and consequently onC,M . How-

ever, for the cranked Hamiltonians the time dependence of the Hamiltonian is governed by the
action of a one-parameter subgroup ofG, i.e., the operatorU(t) of Eq. ~32! is given by

U~ t !:5exp@ ivtnaEa#, with na5const,

wherev and ~na! are called the cranking rate and direction, respectively. It is clear that for such
systemsx̃0 can only depend on the initial Hamiltonian and thus onx0. The functionF is defined
by

x̃05:F~x0!. ~70!

The only problem is that in some cases, depending on the value of the slowness parametern~v!,
F may be discontinuous or even multivalued. This happens in the case of Eq.~18! for n5v/b51.
But in the generic caseF is smooth and the second condition holds as well. The nonadiabatic
analog of the BS line bundle is then given by

L̃:5F* ~L !. ~71!

It is endowed with the nonadiabatic connection one-form,

Ã:5F* ~A!. ~72!

For completeness, let me briefly review the arguments of Ref. 5, which lead to Eqs.~71! and~72!.
The basic idea is that the existence ofH̃ that satisfies Eq.~69! allows one to imitate Berry’s
treatment of the adiabatic systems. The energy eigenstate vectorsun,x& are replaced by the eigen-
state vectorsuñ,x& of H̃(x). In view of Eq. ~65!, these are given by

uñ,x&5un,x̃&5un,F~x!&. ~73!

The nonadiabatic line bundleL̃ is obtained from the universal line bundleE via the nonadiabatic
analog of the mapf of Eq. ~14!. Denoting the latter byf̃ :M→P ~H!, one has

f̃ ~x!:5uñ,x&^ñ,xu5un,F~x!&^n,F~x!u5~ f oF!~x!.

Then, using the functorial property of the pullback operation, one shows that

L̃5 f̃ * ~E!5~ f oF!* ~E!5~F* o f* !~E!5F* ~L !, ~74!

where in the last equality Eq.~15! is used. This proves Eq.~71!. The proof of Eq.~72! is identical.
An important observation is that unlikeun,x0&, the initial state vectorsuñ,x0& undergo exact cyclic
evolutions.

VI. MORE ON PARAMETER SPACES AND MONOPOLES

In the discussion of the the relation between the BS connection and the Riemannian structure
on the parameter space, the parameter space is taken to beM5G/H, for some arbitrary closed
subgroupH of G.28 It can be shown that all these cases are included in the analysis of the linear
system Eq.~30!.

In Sec. III, I argued that depending on the~maximal weightL of the! irrep. ofG,M is of the
form GC/P,G/T, whereP is defined by Eq.~50!. Let us consider the Weyl chamberW of Y*
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with respect to which the positive and the negative roots are distinguished.18 If L happens to lie on
at least one of the walls ofW , thenB is a proper subgroup ofP, otherwiseP5B. The universal
character of the linear Hamiltonian is also realized, in that all the homogeneous spaces ofG can
be obtained asGC/P by choosingL appropriately. In fact, this is the basic idea of the classification
of the compact homogeneous spaces of semisimple Lie groups. Therefore, in principle, one should
be able to reproduce the results of28 using the relation of Berry’s phase to the theory of universal
bundles.

Let us consider the groupG5SU~3! in its defining~standard! representation. SU~3! is of rank
l52. So any irrep. is given by two integers. The standard representation is itself a fundamental
representation, namely~k151, k250!.18 The maximal weight is on a wall ofW and the Borel
subgroup of upper triangular matrices inSL~3,C!5SU~3!C is a proper subgroup ofP. The sub-
groupP of SL~3,C! consists of the elements of the form

F * * *

* * *
0 0 *

G ,
where * are complex numbers.18 The parameter space isM5SL~3,C!/P5SU~3!/U~2!
5CP25P ~H!. It is interesting to see that in this case the parameter spaceM and projective
Hilbert spaceP ~H! are identical. In fact, this is true for all SU(N11) groups. The defining
representation corresponds to~k151, k25•••5kN50! and the parameter space is
M5SU(N11)/U(N)5CPN5P ~H!. Therefore, the inducing mapf mapsCPN to itself for all
N.1.

The situation is different for the octet representation of SU~3!. In this case one hask15k251.
L lies in the interior ofW , P5B, and the parameter space is the full flag manifoldM5SU~3!/
U~1!3U~1!. The mapf mapsM into P ~H!5CP7. @Note that this representation is eight dimen-
sional, i.e., the representation space forSL~3,C! is C8. Hence,H5C8.#

For G5SU~2!, it is well known that the system of Eq.~18! is related to the magnetic
monopoles.21 The relation of monopoles to the gauge theories and their generalization to arbitrary
compact semisimple gauge groups have been studied in the late 1970s.20 These generalized mono-
poles are callednon-Abelianor multimonopolesfor general groups andcolor monopolesfor
SU(3).32 They are topologically classified by an associated set ofl integers, wherel is the rank.
These are called thetopological chargesof the monopole and they are defined as elements of the
second homotopy groupp2(G/H), whereH is the group of the symmetries of a ground state of the
Higgs fields~a minimum of Higgs potential!.20 ForG5SU(3), there are two possibilities. Either

~ I! H5U~2! or ~II ! H5T5U~1!3U~1!.

These cases have been studied in almost every article written on this subject, e.g. see Refs. 33, 20
and references therein.

If G is simply connected, then a result of algebraic topology indicates that

p2~G/H !5p1~H !.

Applying this result toG5SU~3!, one finds

~ I! p2„SU~3!/U~2!…5p1„U~2!…5Z,

~ II ! p2„SU~3!/U~1!3U~1!…5p1„U~1!3U~1!…5Z%Z.
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Thus, for~I! and~II ! one has, respectively, one and two topological charges. This is precisely the
case with the topological charges of the geometric phase defined earlier. The same correspondence
holds for arbitrary compact, connected semisimple Lie groups.

The possible relevance of the topological charges of monopoles to the representations of the
group have been conjectured by Goddardet al..34 Although the analysis of the present paper does
not prove their conjecture, it provides a formula for the topological charges as integrals of the first
Chern class, defined by Berry’s connection, over the 2-cellssa of Sec. III. There is a simple
topological explanation for the correspondence of the topological charges of the monopoles and
those of the geometric phase. This can be summarized in the identity

p2~G/H !5H2~G/H,Z!,

whereH2~•,Z! denotes the second homology group. This identity is a consequence ofHurewicz
theorem,35 where one uses the fact thatp1(G/H)5H1(G/H)50. The 2-cellssa are indeed the
generators ofH2~G/T,Z!. ForHÞT, some of them may be smashed to a point, as is the case for
G5SU~3! andH5U~2!.

VII. CONCLUSION

The relationship between the phenomenon of Berry’s phase and the Borel–Weil–Bott theorem
is a direct consequence of the application of the universal bundles in the Aharonov–Anandan
definition of the geometric phase. This relationship is appealing, not only because it links quantum
mechanics to yet another central mathematical result, but also because it offers a better under-
standing of the theoretical foundations of geometric phases. The implications of the fact that the
A–A bundles are indeed the universal bundles of mathematics for the study of nonadiabatic phases
is a typical indication of the importance of this observation.

The identification of the mathematical structures used in the holonomy interpretations of the
geometric phase with those employed in the Borel–Weil–Bott theorem sheds light on a number of
unresolved issues. Among these are the determination of the appropriate parameter space and the
relation between the geometry of the parameter space and the geometric structure of the phase.
The BWB theorem leads to the introduction of a set of topological charges, which determine the
topology of the BS line bundles and thus encompass all the topological content of the phase. These
charges seem to be related to, if not identical with, the topological charges of non-Abelian mono-
poles. The integral nature of these charges is a consequence of the topological properties of the
first Chern class. The latter is essentially the reason for the quantization of the charges of the
monopoles.
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Essential spectrum of the Dirac Hamiltonian for a spin 1/2
neutral particle with an anomalous magnetic moment
in an asymptotically constant magnetic field
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The both lower and upper estimates of the lower boundl0
2 of the essential spectrum

sess(H
2! of the square of the Dirac HamiltonianH for a spin 1/2 neutral particle

with an anomalous magnetic moment in an asymptotically constant magnetic field
are obtained. It is found that in a restricted case,l0

2<m2, wherem is the mass of the
particle. Moreover, it is proven thatsess(H

2!5@l0
2,`!. In particular, in the case

where the space dimensiond is odd andd>3, sess(H)5~2`,2l0#ø@l0,`!. In the
case whered52 and 3,sess(H) is exactly identified. ©1996 American Institute
of Physics.@S0022-2488~96!01302-4#

I. INTRODUCTION

From the experimental data on the existence of anomalous magnetic momentl and electric
dipole moment for the Dirac particle1 the study of the Dirac equations with nonminimal interac-
tions seems to be important. In fact, for electrically neutral hadrons, e.g. neutrons, the interaction
of l with an external field becomes significant on the security of the nuclear energy.2 However, the
number of articles devoted to the study of this problem is small. In some special cases exact
solutions for the Dirac equation for this particle are obtained2,3 and the 0-energy ground states are
obtained for the Dirac Hamiltonian for this particle in electric fields.4–6 In Ref. 7 some results on
particles with anomalous moments and further references are contained.

For the spin 1/2 Schro¨dinger operatorH̃(a), which is given by the square of the Dirac
operator D(a) with minimal interaction in Rd, the following results are known: Let
a(x)5( j51

d aj (x)dx
j be a real 1-form called a vector potential andb5da5(bjkdx

j ` dxk,
bjk5]ak/]x

j2]aj /]x
k, be the magnetic field. Assume thatb is asymptotically constant, i.e.

bjk(x)→L jk asuxu→` for some constant matrixL5~Ljk!. We denote bys~A! ~resp.sess(A)! the
spectrum~resp. essential spectrum! of an operatorA and use the unit system where\5c5e51.

Theorem1.1: (Shigekawa Ref. 8) (i) Assume that 0 is an eigenvalue ofL. Then

s~H̃~a!!5sess~H̃~a!!5@0,̀ !.

(ii) Assume that0 is not an eigenvalue ofL. Let6 il1, ...,6 iln , (l j.0) be eigenvalues of
L. Then

sess~H̃~a!!5H (
j51

n

2kjl j ukjPZ1J ,
where Z15$0,1,2,...%.

(iii) In the even dimensional cases,

sess~D~a!1mt!5$Am21lulPsess~H̃~a!�ker~t21!!%

a!Electronic-mail: ogurisu@math.hokudai.ac.jp
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ø$2Am21lulPsess~H̃~a!�ker~t11!!%,

where m is the mass of the particle andt is the grading operator associated to D(a). This result
holds forsess~•! replaced bys(•).

Before Ref. 8, though only in two and three dimensions, but in more general case, Helffer
et al. have been proved a similar result.9 We remark that by the part~iii ! of Theorem 1.1,
inf s~~D(a)1mt)2)>m2.

In this article, we investigate the essential spectrum of the square of the Dirac HamiltonianH
for a spin 1/2 electrically neutral particle with an anomalous magnetic moment in an arbitrary
dimensional asymptotically constant magnetic field. We denote bym the mass of the particle
~m>0!. One of the results obtained in this article is that in a restricted case, infs~H2)<m2 holds.
~See, Theorem 3.2.!

The plan of this article is as follows. In Section II, we defineH and prove three propositions.
In Section III, we prove our main theorems. In Section IV, we treat the case where the space
dimensiond52 or 3. In Section V, we give some discussions.

II. DEFINITION AND PROPOSITIONS

In this section we define the Dirac HamiltonianH for a spin 1/2 neutral particle with an
anomalous magnetic momentlPR\$0% in a d-dimensional magnetic fieldB5~bjk), j ,k51,...,d.
Here,dPN andd>2. Then we prove three propositions.

The Dirac equation for the particle interacting with an electromagnetic fieldF5~Fmn), m,n
50,1, . . . ,d, is given by

S (
m50

d

gmpm2mDf5l (
m,n50

d

smnFmnf,

wherepm5 i ]/]xm, gm are the gamma matrices~g0 is Hermitian andgk anti-Hermitian! satisfying

@gm,gn#152gmn, m,n50,1, . . . ,d,

with g the Minkowski metric such that

g0051, gkk521, k51, . . . ,d, and others components50,

and

smn5
i

4
@gm,gn#, m,n50,1, . . . ,d.

Here, [A,B]15AB1BA, [A,B]5AB2BA. The vector space on whichgm’s act is taken to beCr ,
with r52d/2 for d even andr52(d11)/2 for d odd. Define the Dirac HamiltonianH by

H52 (
k51

d

g0gkpk1lg0 (
m,n50

d

smnFmn1mg0

acting inL2(Rd;Cr!. We consider the case where there exists no electric field:

F0k52Fk050, k51, . . . ,d.

We have

F jk52Fk j5bjk , j ,k51, . . . ,d.

1235Osamu Ogurisu: Dirac Hamiltonian with anomalous magnetic moment

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Hence we have

H52 (
k50

d

g0gkpk1 ilg0(
j,k

g jgkbjk1mg0.

In this article we consider the case whereB is asymptotically constant, i.e.

bjk~x!→L jk as uxu→` ~1!

for some constant matrixL5~Ljk!. Throughout this article, assume that allbjk are bounded real
valued functions and Lebesgue measurable. ThenH is a selfadjoint operator with the domain
D(H)5%

rW2,1~R
d!, whereW2,1(R

d! is theL2-Sobolev space of order 1. By making an orthogonal
transformation, we may assume thatL is of the form

L51
0 h1

2h1 0 0

�

0 hn

2hn 0

0

0 �

0

2 , ~2!

wherehj.0, 0<n<@d/2#. Here @•# denotes the Gauss symbol. Lethj50 for j5n11, . . . ,@d/2#.
ThenH can be decomposed as follows:

H5H01B0 ,

where

H052 (
k51

d

g0gkpk1 ilg0(
j51

n

g2 j21g2 jhj1mg0,

B05 ilg0(
j,k

g jgk~bjk2L jk!.

In the rest of this section, we prove three propositions.
Proposition 2.1: B0 is H0-compact. In particular,sess(H)5sess(H0!.
Proof: Let

S52 (
k51

d

g0gkpk .

We haveS252D with the domainD(S2!5%
rW2,2(R

d!, whereW2,2(R
d! is theL2-Sobolev space

of order 2. By Eq.~1!, for all j ,k51,...,d,bjk2L jk is S
2-compact~see, e.g. Sec. 10.3 in Ref. 10!.

Sincebjk2L jk is S-bounded withS-bound 0, by Theorem 9.11 in Ref. 10,bjk2L jk is S-compact.
Therefore,ilg0g jgk(bjk2L jk! and soB0 is S-compact. Moreover, sinceS is H0-bounded,B0 is
H0-compact. h

As for the essential spectrum ofH, Proposition 2.1 allows us to concentrate our attention on
the case where the magnetic field is a constant one.

Proposition 2.2:sess(H
2)5sess(H0

2).
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Proof: This proposition follows immediately from Proposition 2.1. h

Proposition 2.3: Let d be odd and

G5~2 i !d~d11!/2g1
•••gd.

Then

@H,G#150 on D~H !.

Proof: By direct computations. h

Proposition 2.3 shows that in the case whered is odd,H has a supersymmetric quantum
mechanical structure.

III. THEOREMS

We state the main theorem in this article.
Theorem 3.1:Assume that the magnetic field B is asymptotically constant and

lim
uxu→`

~bjk~x!!5L,

whereL is a constant matrix defined by Eq. (2). Let

l0
25 infsess~H

2!,

l1
2 5minH Sm1l(

j51

n

e jhj D 2Ue j561, j51, . . . ,nJ ,
l2
2 5l1

2 2l2 max
j51,...,n

$hj
2%,

wherel0 , l1>0. Then we have

l2
2 <l0

2<l1
2 .

Moreover

sess~H
2!5@l0

2 ,`!.

In particular, if B is a constant magnetic field, then

s~H2!5@l0
2 ,`!.

Proof: By Proposition 2.2, we prove this theorem in the case whereB is a constant magnetic
field, i.e.B050. Let Ĥ be the Fourier transform ofH. We have

Ĥ52 (
k51

d

g0gkpk1mg01 ilg0(
j51

n

g2 j21g2 jhj ,

wherep5(p1 ,...,pd!PRd. The operatorF:L2(Rd;Cr)→L2(Rd;Cr) given by
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FS f 1

A

f r
D ~p!5S ~2p!2d/2E

Rd
e2 ip•yf 1~y!dy

A

~2p!2d/2E
Rd
e2 ip•yf r~y!dy

D , for S f 1

A

f r
D PL2~Rd;Cr !

is unitary and give a constant fiber direct integral decomposition ofL2(Rd;Cr! overRd with fiber
Cr . Let

Hp52 (
k51

d

g0gkpk1mg01 ilg0(
j51

n

g2 j21g2 jhj

be ar 3 r -matrix valued function inpPRd. Then

Ĥ5E
Rd

%

Hpdp.

Thus, by the general theory of constant fiber direct integral~see, e.g. Ref. 11!,

s~Ĥ2!5$lPRu for all e.0,u$pPRdus~Hp
2!ù~l2e,l1e!ÞB%u.0%,

whereu•u denotes the Lebesgue measure onRd. Therefore, we setl0
2~p!5mins~Hp

2) and prove that
l0
2~p! is continuous inpPRd with l0

2~p!→` as upu→` and that

l2
2 < inf

pPRd
l0
2~p!<l1

2 . ~3!

Let

Ap52 (
k51

d

g0gkpk ,

B5 ilg0(
j51

n

g2 j21g2 jhj1mg0.

Then, we haveHp5Ap1B. We remark that

@g0g j ,g0gk#152d jk, for all j ,k>1;

@g0gk,g0g2 j21g2 j #15H 2g2 j if k52 j21,

22g2 j21 if k52 j ,

0 otherwise;

@g0,g0g2 j21g2 j #50, for all j>1;

@g0g2 j21g2 j ,g0g2k21g2k#50 for all j ,k>1.

Therefore, we have
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Ap
25(

j51

d

pj
2

and

@Ap ,B#152il(
j51

n

~g2 j21p2 j2g2 j p2 j21!hj .

Hence

@Ap ,B#1
2 54l2(

k51

n

~p2k21
2 1p2k

2 !hk
2 .

Therefore, @Ap ,B#1’s eigenvalues are62uluA(k51
n (p2k-1

2 1p2k
2 )hk

2. Moreover, since g0,
ig0g1g2,...,ig0g2n21g2n are simultaneously diagonalizable,

s~B2!5H Sm1l(
j51

n

e jhj D 2Ue j561J .
We denote bŷ •,•& the standard inner product ofCr and setif i5A^ f , f & for fPCr . By the
min-max principle, we have

l0
2~p!5 inf

i f i51
^Hp

2 f , f &

> inf
i f i51

^~Ap
21B2! f , f &1 inf

i f i51
^@Ap ,B#1 f , f &

5(
j51

d

pj
21 min

e j561
H Sm1l(

j51

n

e jhj D 2J 22uluA(
k51

n

~p2k21
2 1p2k

2 !hk
2

5(
j51

d

pj
21l1

2 22uluA(
k51

n

~p2k21
2 1p2k

2 !hk
2. ~4!

Hence

inf
pPRd

l0
2~p!5 inf

r>0
inf

upu25r2
l0
2~p!

> inf
r>0

@r 21l1
2 22uluAr 2 max

j51,...,n
$hj

2%#

5 inf
r>0

@~r2uluA max
j51, . . . ,n

$hj
2%!21l1

2 2l2 max
j51, . . . ,n

$hj
2%#

5l1
2 2l2 max

j51, . . . ,n
$hj

2%5l2
2 .

We prove that infpPRdl0
2~p!<l1

2 . We can take a vectorfPCr such thatif i51, g0f5 f ,

ig0g2 j21g2 j f5n j f , for j51, . . . ,n, ~5!

wherenj51 or 21 and (m1l(n jhj )
25min$(m1l(ejhj)

2uej561%5l1
2 . Then, we have
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Bf5Sm1l(
j51

n

n jhj D f
and, since@Ap ,g

0#150 andg0f5 f ,^Apf , f &50. Hence we have

^Hp
2 f , f &5(

j51

d

pj
21Sm1l(

j51

n

n jhj D 2> inf
igi51

^Hp
2g,g&5l0

2~p!.

Thus,

l1
2 > inf

pPRd
l0
2~p!.

Therefore we have proved Eq.~3!. Note that$fPCr uif i51% is a compact set. Then we can easily
prove thatl0

2~p!5infi f i51^Hp
2 f , f & is continuous inpPRd. By Eq.~4!, we havel0

2~p!→` asupu→`.
Consequently, we obtain the desired result. h

The following theorem is immediately obtained by Theorem 3.1.
Theorem 3.2:Suppose that

2m>Ul(
j51

n

n jhjU
with n j defined by Eq. (5). Then

infsess~H0
2!<m2.

Proof: By the assumption, we have

m2>Sm1l(
j51

n

n jhj D 25l1
2 .

Hence, by Theorem 3.1, we obtain the desired result. h

Remark:In the case where

2m>ulu(
j51

n

hj ,

the assumption in Theorem 3.2 holds.~Note thathj>0 for all j .! This means that in an asymp-
totically constant magnetic field with the constantsmallat infinity, infsess(H0

2)<m2.
In the case whered is odd, using Proposition 2.3, we can identify on the essential spectrum of

H.
Theorem 3.3:Consider the case where d is odd(d>3). Assume the same assumptions and

use the same notations,l0 ,l1 ,l2 , as in Theorem 3.1. Let

S5H ~2`,2ul2u#ø@ ul2u,`!, i f l2
2 .0,

R, i f l2
2 <0,

s5~2`,2l1#ø@l1 ,`!, M5~2`,2m#ø@m,`!.

Then
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S.sess~H !5~2`,2l0#ø@l0 ,`!.s.

In particular, under the same assumption in Theorem 3.2, we have

S.sess~H !5~2`,2l0#ø@l0 ,`!.s.M .

Proof: The operator

G5~2 i !d~d11!/2g1
•••gd

is unitary and, by Proposition 2.3, we haveG*HG52H. Hence we have

sess~H !5$6AmumPsess~H
2!%5~2`,2l0#ø@l0 ,`!.

The rest of conclusions immediately follows from Theorems 3.1 and 3.2. h

IV. SPECIAL CASES

In the case wheren51, i.e.L’s nonzero eigenvalues are only6ih1 ~h1.0!, we can explicitly
calculatel0. Of course, ifd52 and 3, this holds always. We denoteh1 by h for simplicity.

Theorem 4.1:Assume thatL’s nonzero eigenvalues are only6 ih ~h>0!. Let

l05max$m2ulhu,0%.

Then

sess~H
2!5@l0

2 ,`!.

Moreover, if d is odd,

sess~H !5~2`,2l0#ø@l0 ,`!.

Proof: In a way similar to the one in the proof of Theorem 3.1, we can prove this theorem. In
this case we can obtain the exact value ofl0

2~p!, the minimum eigenvalue ofHp
2 . We have

Hp
25(

j51

d

pj
21m21l2h212imlg1g2h12ilg1hp222ilg2hp1

and

~2imlg1g2h12ilg1hp222ilg2hp1!
254l2h2~m21p2

21p1
2!.

Hence,Hp
2’s eigenvalues are

(
j51

d

pj
21m21l2h262ulhuAm21p2

21p1
2.

Thus

l0
2~p!5(

j51

d

pj
21m21ulhu222ulhuAm21p1

21p2
2

5(
j53

d

pj
21~Am21p1

21p2
22ulhu!2.
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Therefore,

inf
pPRd

l0
2~p!5H ~m2ulhu!2 if m.ulhu

0 otherwise.

Consequently, we obtain the desired results. h

In the rest of this section, we consider the case whered52. By Theorem 4.1, we have
sess(H

2!5@l0
2,`!. In this case, we can prove the next theorem.

Theorem 4.2:Let d52 and6 ih be the nonzero eigenvalues ofL. Then

sess~H !5~2`,2m2lh#ø@m2lh,`!.

Proof: Let sj , j51, 2, 3, be the Pauli’s spin matrices. In this case, we can set thatg05s3,
g15is1, g252is2. Then we have

H05s2p11s1p21ms32lh.

We know that

s~s2p11s1p21ms3!5~2`,2m#ø@m,`!.

Hence we obtain the desired result. h

V. DISCUSSIONS

In this article, we have investigated the essential spectrum of the Dirac HamiltonianH for a
spin 1/2 neutral particle with an anomalous magnetic moment in an asymptotically constant
magnetic field. Our results are quite different from those on the essential spectrum of a spin 1/2
Schrödinger operatorsH̃(a)5D(a)2 in an asymptotically constant magnetic field.

It is well known that in even dimensional cases, the lower bound of the spectrum
s~~D~0!1mt!2! of the square of the free Dirac HamiltonianD~0!1mt is equal tom2, wherem is
the mass of the particle, and that the lower bound ofs~~D(a)1mt!2! for the Dirac Hamiltonian
D(a)1mt with minimal interaction is greater than or equal tom2. ~See, Theorem 1.1 and Ref. 8.!
Hence, we have infs~~D(a)1mt!2!>inf~~D~0!1mt!2!5m2. On the other hand, in an asymptoti-
cally constant magnetic field with the constantsmall, the lower bound ofs~H2! of the square of
the Dirac HamiltonianH with the nonminimal interaction through the Pauli term is smaller than or
equal tom2. ~See, Theorems 3.1 and 3.2.! We have a question: When does infs~H2!<m2 hold?

Another phenomenon is as follows. In the case where 0 is not an eigenvalue ofL, sess(H̃(a))
is a discrete set. Hence, all the points of it are an eigenvalue ofH̃(a). On the other hand, for an
arbitraryH with an asymptotically constant magnetic field,sess(H

2! is not a discrete set~it is a
half line!. Another question arises: When issess(H

2! a discrete set?
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Mechanics is developed over a differentiable manifold as space of possible posi-
tions. Time is considered to fill a one-dimensional Riemannian manifold, so having
the metric as lapse. Then the system is quantized with covariant instead of partial
derivatives in the Schro¨dinger operator. ©1996 American Institute of Physics.
@S0022-2488~96!01402-4#

I. INTRODUCTION

In General Relativity, the differential quotient between proper time and coordinate time is
called lapse function. In the present article, this notion is used for an arbitrary classical mechanical
system. Space is considered asn-dimensional Riemannian spaceVn and time is considered as
1-dimensional Riemannian spaceV1 . Then the square of the lapse function turns out to be the
metric of this V1 . Possible applications and comparison with other approaches found in the
literature will be shown in section VI below.

Let us consider a mechanical system. The space of all possible positions shall be the
n-dimensional differentiable manifoldMn . It is endowed with local coordinatesqi ,i51, . . .n.
Most of all mechanical systems have the property thatMn is a subset of R

m 3 (S1)n2m, so that the
first m coordinates are Cartesian ones and the remaining are periodic ones~i.e., angles!. Here, R
denotes the space of reals, Z the space of integers, and the one-dimensional torusS1 can be
defined as factor spaceS15R/ Z . But in general,Mn cannot be covered by one single coordinate
system. The time is denoted byt, andd/dt will be denoted by a dot. So,q̇i is the velocity of a
moving particleqi(t). Therefore, the velocity at timet is an element of the tangent spaceTxMn of
Mn at x5qi(t). The tangent bundleTMn is the union of all tangent spaces.

Contrarily to the usual procedure we now introduce the lapse functionN(t) which shall be an
arbitrary positive function.~Here and below all functions shall have the necessary differentiability
properties.! The proper timet is defined by

t5E N~ t !dt. ~1!

It is uniquely determined up to an integration constant, i.e., without specifying the point where
t50. The space of all possible times is a connected oriented one-dimensional Riemannian space
V1 with coordinatex15t and metricg115N2(t). The orientation is chosen such that increasing
time leads into the future. So, Eq.~1! represents the proper timet as proper length within this
V1 .

Remark: The definition is chosen such that proper time doesnotdepend on the velocity, so we
do not cover relativistic effects.

Each positive functionN(t) defines a gauge, and results should not depend on it. In this
manner, we define the following gauge-invariant quantity, the proper velocityv i

v i5
1

N
q̇i . ~2!
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We have to prove thatv i does not depend on the special choice ofN; this follows from Eqs.~1!,~2!
via the equation

v i5
dqi

dt
.

The actionI is the integral of a LagrangianL

I5E Ldt ~3!

and is supposed to be a coordinate-, gauge-, and T-invariant quantity. T-invariance means thatI
does not change if the orientation ofV1 is reversed. The range of integration in Eq.~3! is a
connected subset ofV1 , i.e., any fixed time-interval; but we do not specify now which kind of
interval is used.

We restrict ourselves to first-order Lagrangians, i.e.,L is a function

L:TMnx V1→R . ~4!

The next three steps are done by plausible arguments, not by proofs.
First, the explicitt-dependence (t P V1) of L, Eq.~4!, is compatible with gauge-invariance of

I only for the case that thet-dependence ofL is via N(t) only, i.e.,

L5L~qi ,q̇i ,N!. ~5!

Second, the coordinate- and gauge-invariance ofI requires the following form ofL

L5G~qi ,v i !•N, ~6!

whereG is a certain scalar; this becomes plausible from Eqs.~1!,~2!,~3!.
Third, we assume thatG can be developed into powers ofv i

G5 (
k50

`

a i1 , . . . i k
~k! ~qi !v i1•••v i k ~7!

with certain tensorsa . . .
(k) . Here, and below, the Einstein sum convention is to be applied. Then it

follows from T-invariance, that only even valuesk give a nonvanishing contribution to Eq.~7!.
The simplest nontrivial example for Eq.~7! is the case that onlyk50 andk52 give contri-

butions. To meet the usual notation we define

V52a~0!~qi !,hi j52a i j
~2!~qi !. ~8!

Inserting Eqs.~7!,~8! into Eq. ~6! we get

L5~ 1
2hi jv

iv j2V!•N. ~9!

Without loss of generality,hi j is assumed to be a symmetric tensor inMn . Here, the coordinate-,
gauge-, and T-invariance ofI , Eqs.~3!,~9! is immediately seen; so we also could have taken Eq.
~9! as a definition ofL.

To give the Lagrangian Eq.~9! the structure defined by Eq.~5! we insert Eq.~2! into Eq. ~9!
and get

L5 1
2gi j q̇

i q̇ j2V•N, ~10!
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where we used the definition

gi j5
1

N
•hi j . ~11!

Next, we introduce the momentumpi by

pi5
]L

]q̇i
. ~12!

From Eq.~10! we get

pi5gi j q̇
j . ~13!

It holds: the momentum is gauge-invariant. This is proven by the fact that from Eqs.~2!,~11,~13!
one gets

pi5hi jv
j . ~14!

From Eqs.~12!,~13! we get

]2L

]q̇i]q̇ j
5gi j , ~15!

wheregi j depends onq
i andN only. The analogous gauge-invariant equation to Eq.~15! reads

]pi
]v j

5hi j ~16!

andhi j depends onq
i only.

Remark: One could use Eqs. (12),(15) also for the general case L, Eqs. (6),(7); but then gi j

would in general depend on the velocities, too. If gi j is interpreted as metric, then this would be
the step from Riemannian to Finslerian geometry. A typical example of Finslerian geometry
appears, if the term with k54 in Eq. (7) is allowed to appear.

Let us introduce the Hamiltonian

H5piq̇
i2L. ~17!

The canonical equations make sense only for the case that the velocities can be expressed as
functions of the coordinates, momenta, and time. Looking at Eq.~13! one can see that this takes
place if and only ifgi j is a regular matrix. So, we assume this to be the case in the following and
denote the inverse matrix togi j by g

i j . From Eq.~11! it follows that alsohi j is invertible. The
inverse matrix tohi j is denoted byhi j . It holds

gi j5N•hi j . ~18!

From Eq.~13! we get

q̇i5gi j pj . ~19!

We insert Eqs.~10!,~18!,~19! into Eq. ~17! and get

H5 1
2g

i j pipj1V•N, ~20!
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which can also be written asH5( 12h
i j pipj1V)•N. The canonical equations are

q̇i5
]H

]pi
~21!

and

ṗi52
]H

]qi
. ~22!

Equation~21! is equivalent to Eq.~19!, whereas Eq.~22! represents the equation of motion; in the
next section we discuss it in more detail.

II. THE EQUATION OF MOTION

The acceleration isai5q̈i . In general, the equation of motion expresses the acceleration as
function of coordinates, velocity, and time. To get this structure, we insert Eqs.~13!,~20! into Eq.
~22!. After some calculus we get

ai5
Ṅ

N
q̇i2V,i

•N2q̇ j q̇kG jk
i , ~23!

whereV,i5gi j V, j and G denotes the Christoffel affinity~which is the same both forgi j and
hi j ). As usual,^^,i && is an abbreviation for the partial derivative with respect to the coordinate
^^qi&&.

We can give three results immediately: First, forN andV being constant, the equation of
motion is just the geodesic equation in theMn with Riemannian metricgi j . Second, forN and
gi j being constant, the equation of motion reads 05ai1V,i and equals the classical equation of
motion in the potentialV. Third, using gauge-invariant quantities, we can write the equation of
motion as

05
dv i

dt
1G jk

i v jvk1hi j V, j . ~24!

The first two terms of the r.h.s. represent the covariant derivative of the proper velocity with
respect to proper time.

In the next step we consider, independently of the Hamiltonian, under which condition the
action I @Eq. ~3!# has a stationary value. One should expect that the same equation of motion
appears, but this is not fully trivial to show.

The corresponding Euler–Lagrange equation to the actionI reads

05
]L

]qi
2

d

dt S ]L

]q̇i
D . ~25!

With Eq. ~12! we get

ṗi5
]L

]qi
. ~26!

Comparing with Eq.~22! we have to show that

1247Hans-Jürgen Schmidt: Classical mechanics with lapse

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



]H

]qi
52

]L

]qi
. ~27!

Looking at Eq.~17! one could get the impression that Eq.~27! can be fulfilled for a constant
product piq̇

i only, but this impression is wrong, because in the l.h.s.,H is a function
H(qi ,pi ,N) but in the r.h.s.,L is a functionL(qi ,q̇i ,N). And so, withH @Eq. ~20!# andL @Eq.
~10!#, the validity of Eq.~27! can be proven.

III. THE LOWER-DIMENSIONAL CASES

Let us consider the simplifications for the lower-dimensional cases. Forn51, one knows that
the Riemannian spaceV1 is flat, and so the Lagrangian Eq.~9! reduces to
L5@(m/2) v22V(x)#•N(t) with q15x,v15v andh115m5const. Þ 0. With N51 this is the
usual point particle in a potentialV.

For n52, the Riemannian spaceV25(M2 ,hi j ) need not to be flat, but it is always confor-
mally flat. So one can always find local coordinates such that the Lagrangian Eq.~9! can be
written as

L5Fm2 v21 M

2
w22W~x,y!G•S~x,y!•N~ t ! ~28!

with q25y,v25w andh225M5const. Þ 0 andW•S5V as additional relations.S Þ 0 is the
suitably chosen conformal factor.

For n>3, however, aVn need not to be conformally flat, and so, in general, the usual kinetic
term with constant masses can be reached neither by a coordinate nor by a conformal transforma-
tion.

IV. QUANTIZATION

The usual quantization procedure is to substitutepk by i\ (]/]q
k) in the Hamiltonian to come

from the function to the operator. If we make this in our approach, then gauge-invariance is
automatically ensured, because bothqk andpk are gauge-invariant quantities.~To prevent misun-
derstandings, we explicitly say:i is an indexP $1, . . .n% if written in index position, and it is the
imaginary unit otherwise.! But to ensure coordinate-invariance, the partial derivative is not suffi-
cient. The most natural way to circumvent this difficulty is to use the covariant derivative with the
sameG as before. Then¹k denotes the covariant derivative with respect toqk.

The world function is denoted byc, it is a function

c:Mn→C , ~29!

where C denotes the set of complex numbers.
The energy of the system isE5H/N. It is a gauge–invariant scalar, and it is constant along

classical trajectories:dE/dt 5 0 which follows from Eqs.~20!,~21!,~22!.
So we get the Schro¨dinger equationĤc5E•N•c with c5c(qi) and

Ĥ52 1
2 \2gi j¹ i¹ j1V•N. ~30!

The zero energy Schro¨dinger equation simply reads

\2hc52Vc, ~31!

whereh denotes the D’Alembertian with respect to the metrichi j , i.e.,h5hi j¹ i¹ j , whereas the
general Schro¨dinger equation can be obtained from this one by a suitable redefinition ofV.
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To circumvent the explicit calculation of the Christoffel affinities we apply the following
formula

h5
1

Ah
] iAhhi j ] j , ~32!

whereh5udethi j u Þ 0.
Remark: One should observe that the form used here is surely the simplest possible way to get

a coordinate–invariant Schro¨dinger equation; however, it is not the only possible one which goes
over to the classical Schro¨dinger equation (i.e., that one with partial derivatives) if hi j becomes
constant. Indeed, one could use the conformally invariant operatorhc5h2jR instead ofh,
where R is the curvature scalar of the metric hi j andj5 (n 2 2)/4(n 2 1).Only for n<2 one has
hc5h; for n 5 2 because ofj50, and for n51 because of R50. But even for n>3 one can
cover this variant by a suitable redefinition of V.

Let us briefly say what happens for the lower-dimensional cases. Forn51, one simply uses
coordinates such thath1151 and one gets the usual equation. Forn52, however, it is a little more
involved. We employ the fact thathi j is conformally flat and so it can be written ashi j5Ahh i j

whereh i j is a matrix in diagonal form where all diagonal elements areP $11,21%. h i j is the
inverse toh i j ; and, by construction, they coincide. Then we insert Eq.~32! into Eq. ~31! and get

\2h i j ] i] jc52AhVc. ~33!

The l.h.s. represents the flat-space D’Alembertian, and the factorAh in the r.h.s. can be absorbed
by a redefinition ofV.

For n>3, however, it requires special circumstances to get the Schro¨dinger equation in the
form of a flat-space D’Alembertian.

V. SOLUTIONS OF THE SCHRÖDINGER EQUATION

From the full set of solutions of the Schro¨dinger equation~31! we are essentially interested in
those solutions which correspond to the classical solutions of the system~21!,~22!. To this end we
apply the WKB-approximation and insert the ansatz

c5a•exp~ iS/\!, ~34!

into Eq. ~31! and get

\2ha1 i\~2a,kS
,k1ahS!2aS,kS

,k52aV, ~35!

whereS,k5hjkS, j . From Eq.~34! we have the situation that now two functions (a,S) represent
one function (c). So we are free to put an additional relation as calibration. It turns out that the
following calibration is useful: we set for a moment\50, insert this into Eq.~35! and use the
resulting equation

S,kS
,k12V50 ~36!

as natural calibration. This is the usual classical limit.
Before we proceed we must be sure that Eq.~36! possesses solutions. If the metrichi j has

indefinite signature, then this is trivial. Lethi j be of definite signature; without loss of generality
it shall be positively definite, for, otherwise, simplyV has to change its sign. In regions where
V<0, Eq.~36! has solutions, but in regions withV.0 it does not have any solutions. One should
remember here, that we have redefinedV such that the whole system has zero energy. So,V.0
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corresponds to a negative kinetic energy; the latter is impossible for a positively definite metric
hi j . We get as the result: the calibration of Eq.~36! is possible if and only if classical motion takes
place there.

Now we insert Eq.~36! into Eq. ~35! and get

05\ha12ia ,kS
,k1 iahS. ~37!

To proceed, there exist different possibilities: first, one again neglects the term with\, second, one
requiresa to be a slowly varying amplitude such thatha is negligible in comparison withhS, or,
third, one thinks ofa andS as real functions and so Eq.~37! splits into real and imaginary parts.
It is not so essential which of these three arguments are applied, because all of them give rise to
the equation

052a,kS
,k1ahS. ~38!

Equation~38! can be solved as follows: letS(qi) be a solution of Eq.~36! with S,k Þ 0. There
exists no time in the system, but we can introduce a timeT by requiring thatd/dT 5 S,k]k . With
b5 ln a2, Eq. ~38! now reads

db

dT
52hS, ~39!

which can be integrated along the trajectories ofT. In an afterwards-interpretation one can iden-
tify T with t, S,k with vk andS,k with pk ; this turns out to be compatible with the classical
(5 nonquantum! equations. But this alone does not suffice: from Eq.~39! one calculates the
functiona(qi) and inserts it together withS(qi) into Eq.~37!. Then the WKB-approximation turns
out to yield results close to the exact solution only for the case that indeed,u\hau is negligible in
comparison touahSu. So one can check in which region the semiclassical approach makes sense.

VI. CONCLUSION

Classical mechanics, as is usually presented, e.g. in Refs. 1 and 2, uses essentially vector
spaces as space of possible positions. Then one has the duality between coordinates and momenta
~which we do loose here! and can build a symplectic manifold. Furthermore, one has usually a
constant mass tensor~which means a constant matrixhi j in our notation!.

Both points are generalized in the present paper. The present approach is inspired by work on
Hamiltonian quantum cosmology, e.g. Ref. 3, where the space of possible positions is the set of all
possible spatial geometries~called superspace!. The set of all possible spatial geometries turns out
to be neither a vector space nor is the matrixhi j a constant one. Even, if one restricts to the
minisuperspace which corresponds to homogeneous spatial geometries, one does not get a vector
space. Example: The set of all homogeneous 3-spaces of Bianchi-type IX@i.e., there exists a
transitive subgroup of the isometry group isomorphic toSO(3)# which is a manifold with bound-
ary, the interior is composed of points corresponding to spaces whose isometry group is
3-dimensional, and the boundary points are formed by spaces with 4-dimensional isometry group
~i.e., the axially symmetric Bianchi-type IX models!, and the edge~the boundary of the boundary!
consists of one line which itself corresponds to the isotropic 3-spheres with 6-dimensional isom-
etry group.~Concerning details to this point see e.g. Ref. 4!.

If Mn is such a manifold with boundary, then a trajectory is simply mirrored at the boundary.
Here we carefully distinguish between co- and contravariant tensor indices, and the Einstein

sum convention is used in its strong version: summation over double indices takes place only for
the case that one of them is in upper (5 contravariant! and the other in lower (5 covariant!
position. It is a nice additional check of the formulas that the necessity to write theS–sign never
appeared.
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The essential result of the present paper is to show that up to dimension two, the Schro¨dinger
equation comes out with the flat-space D’Alembertian whereas for higher dimensions, it requires
a special structure of the action to have this property. This has the following consequence for
quantum cosmology: All models with one- or two-dimensional minisuperspace can be written with
the flat-space D’Alembertian in the Schro¨dinger equation~which is called Wheeler de Witt equa-
tion here!, whereas for higher-dimensional minisuperspace models, e.g. Ref. 5, this property
requires a special structure of the underlying system.

Reformulated for the classical~i.e., nonquantized! system one can state: A system with one or
two degrees of freedom has always a kinetic energy which can be written as sum of terms of the
type6(m/2) v2 with positive constant valuesm, whereas for three or higher dimension this need
not to be the case.

The kind of introducing the covariant derivative in Eq.~30! instead of the partial one is the
mathematical background of the~today widely accepted! solution of the so-called factor-ordering
problem, which filled many papers on quantum cosmology in the eighties, see Ref. 6 which is a
bibliography of papers on the topic.

We always wrote velocities with upper~contravariant! and momenta with lower~covariant!
index; this is more than a purely notational arbitrariness, moreover, it is the only adequate form
from the differential geometric point of view.

A geometric description of nonrelativistic quantum mechanics has already been carried out by
Kuchař7 in 1980. He uses a degenerate metric~i.e., a metric with vanishing determinant!, so that
he needs additional considerations to relate the co- and the contravariant components of it. He
solves the factor-ordering problem by writing the Laplacian covariant with respect to this degen-
erate metric. Contrary to our approach~see also Ref. 5 for more details!, he uses Dirac’s constraint
quantization.

Section 7.2 of Ref. 8 develops classical mechanics in parametrized form. In this form, it
becomes time-reparametrization invariant just as General Relativity is coordinate-invariant. Their
approach takes velocities and momenta on the same footing~both are covariantly written vectors!.

The book9 by Zeh reviews many aspects of thedirectionof time. In subsection 5.2.1 of that
book, also the reparametrization invariance of time is mentioned, Zeh relates this property to
Mach’s principle~regarding time!. Reference 10 presents a geometrization of classical mechanics
by use of a symplectic structure. Reference 11 discusses the recovering of time and the deduction
of the Wheeler de Witt equation in quantum cosmology.

An application of the present approach~the present article is a revised version of the unpub-
lished Potsdam-Report No. 93/10 from January 1993! can be found in section V A of Ref. 12,
where it is used to deduce the Wheeler de Witt equation for the Starobinsky cosmological model.
For further generalizations see e.g. Ref. 13.
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Solvable (nonrelativistic, classical) n -body problems
on the line. II
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A solvablen-body problem is exhibited, which features equations of motion of
Newtonian type,mjẍj5F j , j51,...,n, with ‘‘forces’’ F j that are linear and qua-
dratic in the particle velocities,F j5 ẋ j$(k51

n [ f jk
(1)~x!1ẋkf jk

(2)~x!#%, and depend
highly nonlinearly on the positionsxk[xk(t), k51,...,n, of the n ‘‘particles’’ on
the line. Explicit expressions of the functionsf jk

( i )~x!, in terms of elliptic functions,
are given; they containn14 arbitrary constants, in addition to then ‘‘masses’’mk

and ton arbitrary functionsgk(xk). Special cases in which the elliptic functions
reduce to trigonometric or rational functions are of course included. The technique
whereby this model has been arrived at entails that its initial-value problem is
solvable by quadratures@for any n and arbitrary initial datax~0! and ẋ~0!#. A
discussion of the actual behavior of the solution, and of special cases, is postponed
to future papers. ©1996 American Institute of Physics.@S0022-2488~96!01802-3#

I. INTRODUCTION

In a previous paper a technique was discussed, to identify solvablen-body problems on the
line, characterized by equations of motion of Newtonian type,

mjẍj5F j , j51,...,n, ~1.1!

with the ‘‘forces’’ F j ~appropriately! given functions of the ‘‘particle coordinates’’xk and of their
velocities ẋk . It is a general feature of these models to besolvable by quadratures. Several
examples were exhibited forn52,3,4,5, with the forcesF j explicitly given in terms of elementary
functions.1

The purpose and scope of this paper is to exhibit a model of this kind, solvable forarbitrary
n, with forcesF j ~x,ẋ! explicitly given in terms ofelliptic functions. The model is described in the
following section, and future work to analyze its behavior is outlined in the last section.

Let us complete this introductory section with a brief review of the technique exploited here
to uncover~or, equivalently, to manufacture! solvable models.1,2 The basic idea is to start from a
function that lives in a finite-dimensional functional space, being representable as a linear super-
position of, say,n basic functionssm(x) ~‘‘seeds’’!:

f ~x,t !5 (
m51

n

cm~ t !sm~x!. ~1.2!

Herex is the ‘‘space’’ coordinate, andt the ‘‘time’’ coordinate. It is then generally possible2 to
exhibit an explicit relation between then coefficientscm(t) and then values, f j (t), that the
function f (x,t) takes at then pointsxj (t) ~‘‘nodes’’!:

f j~ t !5 f @xj~ t !,t#. ~1.3!

a!On leave while serving as Secretary General, Pugwash Conferences on Science and World Affairs, Geneva, London,
Rome.
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Hence it is also generally possible to relate, in this manner, a simple~and completely controllable!
time evolution of, say, the coefficientscm(t), to a more complicated~but possibly more interest-
ing; for instance, interpretable as ann-body problem! evolution of the quantitiesf j (t) and/or
xj (t). There are several ways in which this can be done, which have been variously explained in
the literature and have led to the identification of various classes of solvable many-body problems
~see Refs. 1, 2 and the literature quoted there!. The approach used in this paper is a direct
application of that described in detail in the first paper of this series;1 and let us reemphasize that
the main novel feature here is theexplicitexhibition of solvable equations of motion of Newtonian
type involvingelliptic functions.

II. THE MODEL

These solvable models are characterized by the equations of motion~1.1!, with forcesF j ~x,ẋ!
given by the formula1

F j~x,ẋ!5 ẋ j H 2gj8~xj !1 (
k51

n

D jk~x!@mkẋk1gk~xk!#J . ~2.1!

The n functions gj (x) are arbitrary, and the (n3n)-matrix Djk~x! ~which in fact provides a
finite-dimensional representation of the differential operator2! is given by the following formulas:

Djk~x!5dx
~k!~xj ;x!, ~2.2!

wheredx
(k)~xj ;x! is thex-derivative of the functiond(k)~x;x! with respect tox, evaluated atx5xj .

~Of course here and throughout this paperx is then-vector of componentsxk , k51,...,n!. The
‘‘interpolational’’ function d(k)~x;x! is defined, in terms of the scalar variablex andn-vectorx, by
the formula

d~k!~x;x!5D~x1 ,...,xk21 ,x,xk11 ,...,xn!/D~x1 ,...,xn!, ~2.3!

where

D~x!5det@sj~xk!; j ,k51,...,n#, ~2.4!

and the ‘‘seeds’’sj (x) aren functions whose choice remains our privilege, except for the require-
ment that they be linearly independent. This condition is necessary and sufficient to exclude that
D~x! vanish identically; of courseD~x! might vanish for some special values ofx, thereby imply-
ing that the forcesF j ~x,ẋ! become singular for some special configurations of then-body system
@see~2.1!–~2.4!#.

The solution of the initial-value problem is then given1 by the quadrature

mjE
xj ~0!

xj ~ t !
dyF2gj~y!1 (

k51

n

cksk~y!G21

5t, j51,...,n, ~2.5!

of course followed by an inversion@to expressxj (t) in terms oft, rather thant in terms ofxj (t);
at this stage singularities may of course emerge#. Then constantsck are defined in terms of the
initial datax~0!,ẋ~0! by the linear algebraic system

(
k51

n

cksk@xj~0!#5mjẋj~0!1gj@xj~0!#, j51,...,n. ~2.6!
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As indicated above, the main novelty of this paper is the involvement ofelliptic functions, in
a context which allowsexplicit computations based on certain remarkable identities satisfied by
these functions~see the Appendix!. Indeed we now choose then seeds

sj~x!5exp~ax!w~a0 ,x2aj !, j51,...,n, ~2.7!

where then11 constantsa andaj , j51,...,n, are arbitrary~except for the requirement that the
aj ’s be all different,ajÞak mod~2v1,2v2!, wherev1 andv2 are the semiperiods associated with
w(a0 ,z), see below!, and the functionw(a0 ,z) is defined as follows:

w~a0 ,z!5s~a01z!/@s~a0!s~z!#. ~2.8!

Heres(z) is the Weierstrass sigma-function,3 which is of course completely characterized by its
two ‘‘primitive semiperiods’’v1 and v2; and a0 is also an arbitrary constant, except for the
condition a0Þ0 mod~2v1,2v2!, which is of course necessary and sufficient to guarantee that
s~a0!Þ0. We report for convenience some properties ofs(z) and other elliptic functions in the
Appendix.

Using the formulas~A3! and ~A5! one obtains from~2.1!, after some elementary, if tedious,
calculations, the following expression for the forcesF j ~x,ẋ!:

F j~x,ẋ!5 ẋ j(
k51

n

@ f jk
~1!~x!1 ẋkf jk

~2!~x!#, ~2.9a!

f jk
~1!~x!5d jk@2gj8~xj !1gj~xj !uj~x!#1~12d jk!gk~xk!v jk~x!, ~2.10a!

f jk
~2!~x!5d jkmjuj~x!1~12d jk!mkv jk~x!, ~2.10b!

uj~x!5a1z@A0~X!#2z~xj2aj !1 (
s51,sÞ j

n

@z~xj2xs!2z~xj2as!#, ~2.11a!

v jk~x!5@s~xj2xk!#
21$s@xj2xk1A0~X!#/s@A0~X!#%

•exp @a~xj2xk!#@A~xk!/A~xj !#@Sj~x!/Sk~x!#, ~2.11b!

X5n21(
j51

n

xj , ~2.12!

A0~X!5a01nX2(
j51

n

aj5a01(
j51

n

~xj2aj !, ~2.13!

A~x!5)
r51

n

s~x2ar !, ~2.14!

Sj~x!5 )
s51,sÞ j

n

s~xj2xs!. ~2.15!

The zeta-functionz(z) which enters in~2.11a! is defined in the Appendix, where some of its
properties are also reported; it is of course assumed that it is characterized by the same two
semiperiodsv1,2 ass(z).
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III. OUTLOOK

Due to the richness implied by the presence of then12 free parametersa and am ,
m50,1,...,n, even in the simplest case in which the elliptic functionss(z) resp.z(z) reduce
merely toz resp.z21 @see~A11c!#, the model~1.1! with ~2.9!–~2.15! requires considerable elabo-
ration to analyze in detail the behavior of its solutions; although it should be emphasized that~at
least! in this case, the quadrature needed to solve the initial-value problem can be explicitly
performed in terms of elementary functions@provideda50 and simple choices are also made for
the functionsgk(x); for instance the choicegk(x)5rational functions would do; see~2.5!, ~2.7!,
~2.8!, and~A11c!#. Hence we postpone to future papers an analysis of the actual behavior of the
solutions of the model introduced in this paper, as well as a discussion of its relation with other
models, such as the beautiful relativistic ‘‘RS-model’’ due to S. N. Rujsenaars and H. Schneider,4

which features equations analogous5 to ~1.1! with ~2.9a! and f jk
(1)~x!50 @note that this condition

can be easily enforced by choosinggk(x)50, k51,...,n; see~2.10a!#. Let us however end by
noting that the model considered in this paper~which is solvable by quadratures! does not appear
to overlap with the RS-model~which is a completely integrable Hamiltonian system!, except in
some very degenerate case.6
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APPENDIX: ELLIPTIC FUNCTIONS

In this Appendix we report some useful formulas satisfied by the Weierstrass sigma function
s(z) and by other elliptic functions:3

s~z!5z)
j ,k

8~12z/v jk!exp@z/v jk1
1
2~z/v jk!

2#, ~A1a!

v jk52 jv112kv2 . ~A1b!

The product in~A1a! runs over all integers~positive, negative, and vanishing!, except forj5k50
~the prime appended to the product symbol is a reminder of this exclusion!. As it is clear from
these formulas, the sigma function is completely characterized by its two ‘‘primitive semiperiods’’
v1 andv2; it is an entire function, and its quasiperiodicity is displayed by the formula

s~z12v1,2!52s~z!exp@2h1,2~z1v1,2!#, ~A2a!

where the complementary quantitiesh1,2 are defined via the Weierstrass zeta-function~see below!,

h1,25z~v1,2!, ~A2b!

and satisfy the relationh1v22h2v15ip/2.
The two primitive semiperiodsv1 andv2 must of course have different phases, so that the

numbersvjk , see~A1b!, do not all lie on a straight line in the complex plane. The sigma function
is odd,s(2z)52s(z); it is real if v1 is real andv2 imaginary.

There holds for the sigma function the following determinantal identity:7

w~a,z!5s~a1z!/@s~a!s~z!#, ~A3a!

w jk~a!5w~a,xj2yk!, ~A3b!
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det@w jk~a!; j ,k51,...,n#5H sFa1(
r51

n

~xr2yr !G Ys~a!J
•H )

1< j,k<n
@s~xj2xk!s~yk2yj !#J YF )

j ,k51

n

s~xj2yk!G , ~A3c!

as well as the related identity8

)
j51

n

@s~z2xj !/s~z2yj !#5(
r51

n

w~a,z2yr !•F )
m51

n

s~yr2xm!G YF )
s51,sÞr

n

s~yr2ys!G ,
~A4a!

with

a5(
j51

n

~yj2xj !Þ0. ~A4b!

In these formulas the 2n numbersxj ,yj are arbitrary~but different, or else the formulas may
require the taking of appropriate limits!; and in ~A3! @but not in ~A4!, see ~A4b!# a is also
arbitrary, except for the conditionaÞ0 mod~2v1,2v2!, which is necessary and sufficient to ex-
clude the vanishing ofs(a), s(a)Þ0.

We also report the definition of the Weierstrass zeta-function,

z~z!5s8~z!/s~z!. ~A5!

This function is also odd,z(2z)52z(z); it is meromorphic, with simple poles atz50
mod~2v1,2v2!; and its quasiperiodicity is displayed by the formula

z~z12v1,2!5z~z!12h1,2. ~A6!

There holds the following identities:9

)
k51

n

@s~z2xk!/s~z2yk!#5(
r51

n

@z~z2yr !2z~xj2yr !#

•F )
m51

n

s~yr2xm!G YF )
s51,sÞr

n

s~yr2ys!G , j51,...,n.

~A7a!

Here again the 2n numbersxj ,yj are arbitrary~but different!, except for the condition@note the
difference from~A4b!#

(
j51

n

~xj2yj !50. ~A7b!

Finally we report the definition of the WeierstrassP -function:

P ~z!52z8~z!. ~A8!

HenceP (z) is even,P (2z)5P (z), meromorphic with double poles atz50 mod~2v1,2v2!,
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P ~z!5z221(
j ,k

8@~z2v jk!
222v jk

22#, ~A9!

and doubly-periodic:

P ~z1v jk!5P ~z!, j ,k5 integers. ~A10!

Of course in these formulasvjk is defined by~A1b!, and the sum in~A9! has the same range as
the product in~A1a!.

All these elliptic functions become elementary in the degenerate cases in which one or both
semiperiods diverge:

v15`, v25 ipl/2; s~z!5l sinh~z/l!exp~2 1
6z
2/l2!,

z~z!52 1
3z/l

21l21 coth~z/l!, P ~z!5$l2@ 1
31sinh~z/l!#%22; ~A11a!

v15pl/2, v25 i`; s~z!5l sin~z/l!exp~ 1
6z
2/l2!,

z~z!5 1
3z/l

21l21 cot~z/l!, P ~z!5$l2@2 1
31sin~z/l!#%22; ~A11b!

v15`, v25 i`; s~z!5z, z~z!5z21, P ~z!5z22. ~A11c!
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Statistical mechanics of the deformable droplets
on Riemannian surfaces: Applications to reptation
and related problems

Arkady L. Kholodenkoa)
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The statistical mechanics treatment of the Laplace–Young-type problems devel-
oped for the flat surfaces is generalized to the case of surfaces of constant negative
curvature and connected with them to Riemannian surfaces. Obtained results are
mainly used to supply an additional support of the quantum Hall effect~QHE!
analogy employed in recent work@J. Phys.4, 843 ~1994!#, which provides theo-
retical justification of the tube concept used in polymer reptation models. As a
byproduct, close links between QHE, quantum chaos, and the non-Abelian Chern–
Simons quantum mechanics are indicated. ©1996 American Institute of Physics.
@S0022-2488~96!02502-1#

I. INTRODUCTION

In the previous paper, Ref. 1, the statistical mechanics of the Laplace–Young~LY ! and related
equations on flat surfaces was considered. At the classical level the LY equation can be written as

H5
Dp

2s
, ~1.1!

whereH is the mean curvature of surface,s is the surface tension, whileDp is the pressure
difference. In three dimensions,~1.1! can be obtained by minimization of the following functional:

F35sA2DpV, ~1.2!

whereA is the area of surface andV is its volume. Evidently, there is a two-dimensional analog
of F3 , as was shown in Ref. 1. In two dimensions one can write

F25sL2Dp S, ~1.3!

whereL is the length of a closed contour whileS is the area enclosed by this contour. Ifr ~t!
5$x(t),y(t)% is the spatial position of the contour segment characterized by the contour position
t, thenF2 can be rewritten as

F2@r ~t!#5sE
0

L

dtAS dxdt D 21S dydt D 22 Dp

2 U E
0

L

dtS x dydt
2y

dx

dt DU. ~1.4!

The statistical mechanics can be developed by considering a path integral of the type

Z~Dp,s!5E
r ~0!5r ~N!

D@r ~t!#exp$2bF2@r ~t!#%, ~1.5!

where b is the usual Boltzmann’s factor. Traditionally, e.g., see Ref. 2, the ‘‘nonrelativistic’’
analog of~1.4! is studied, i.e.,

a!Permanent address: 375 Hunter Laboratories, Clemson University, Clemson, South Cordina 29634-1905. Electronic-mail:
string@clemson.clemson.edu
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F2@r ~t!#5
1

l E0
L

dtS drdt D 22 Dp

2 E
0

L

dtS x dydt
2y

dx

dt D , ~1.6!

corresponding to the ‘‘motion’’ of the nonrelativistic ‘‘particle’’ of ‘‘mass’’m52/l ~wherel is the
Kuhn’s length! in the constant ‘‘magnetic’’ field characterized by the vector potentialA5$2(Dp/
2)y,(Dp/2)x%.

The detailed analysis of both~1.4! and ~1.6! performed in Ref. 1 shows that these two
problems are closely related so that the solution of one of them facilitates a solution of the other.
In view of that, it is sufficient to study only the statistical mechanics based on~1.6!.

In this paper the situation is going to be complicated by inclusion of the disorder-type random
potential that is to be added to the functionalF2. This complication is motivated by the results of
Ref. 3, where the existence of the tube in the reptation theory of deGennes, Doi, and Edwards
~DDE!,4,5 was investigated using the analogy with QHE. The individual tube cross section can be
obtained by analyzing the path integral based on functional~1.6!, where, instead of pressure
parameterDp, another parameter is used, as described below and in Ref. 3. On another hand, the
traditionally used idea of reptation comes from analysis of static and dynamic models of chains
trapped in the array of obstacles,4–10 i.e. one usually considers some particular chain moving
among other chains motion of which is considered to be frozen. The coarse grained motion of this
selected chain is being modeled by the primitive path~chain!, which at some scale acts as if it is
Gaussian. Because of this, it is natural to select the longitudinal and the transversal directions of
motion of such a primitive chain so that the transversal conformational statistics of such a chain is
described with help of the path integral based on~1.6!. In Ref. 3, the notion of a single tube was
extended to allow the interactions between the tubes. The interactions are of a topological nature.
They affect the very existence of an individual tube. It was shown, that, because of these inter-
actions, the individual tube may or may not exist. The quantum Hall effect~QHE! analogy
developed in Ref. 3 allowed to replace the complicated picture of polymer–polymer interactions
by the much better studied model of classical disks~tube cross sections! ‘‘living’’ in a plane and
interacting with each other via the Coulombic-like potential. Such a statistical system, known as
one component plasma~OCP!, can undergo a phase transition so that in one of the phases one has
‘‘frozen’’ a two-dimensional lattice of disks, while in the other one has a sort of liquid-like state,
where the concept of tube loses its meaning. Ifr is the polymer~monomer! concentration whilea
is the tube radius, then in the ‘‘frozen’’ phase Eq.~4.35! of Ref. 3 providesra5const. This result
is in excellent agreement with the most recent Monte Carlo11 and the real experimental12 data.

In the light of this agreement, the analogy with QHE is developed further in this paper by
considering the stability of an individual tube against perturbations caused by the random ob-
stacles. In QHE this problem is known as a problem of explaining the robustness of QHE against
various kinds of two-dimensional disorders.13 Although the reptation theory is the main theme of
this work, some obtained results can be used to explain other phenomena as well, e.g. suppression
of the first-order phase transitions on surfaces of constant negative curvature, etc.

This work is organized as follows. In Sec. II known results related to static conformational
properties of polymer chains trapped in the regular array of obstacles and on the Bethe lattice are
reanalyzed. In Sec. III it is demonstrated,without any approximations, that the continuum limit of
the equation of motion, known as the Smoluchowski equation,10 is also the usual diffusion equa-
tion on the surface of constant negative curvature known as tractrix.14 Moreover, by means of
changes of variables, the same equation can be recast without any approximations~as compared
with Ref. 15! into the form that describes the diffusion on the Lobachevsky plane. It is shown that
the solutions of the Smoluchowski equation and the diffusion equation on the Lobachesky plane
producethe sameresults in thewhole rangeof permissible changes of variables andnot only in
some limit, as defined in Ref. 15. In Sec. IV it is explained why it is necessary to consider the
Riemannian surfaces instead of the Lobachevsky plane. In short, it is motivated by the necessity
first to consider the classical motion in the chaotic billiards~e.g., arrays of obstacles with some
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periodic boundary conditions imposed! and then, second, to consider the quantum mechanical
analog of such billiards.16 Some results related to this section are presented in the Appendix. In
Sec. V the ‘‘magnetic’’ field~the area constraint! is included into consideration to model the tube
cross section and some qualitative~semiclassical! analysis of the existence and stability of a tube
in such environment is discussed. Unlike the flat case, described by Eq.~1.6!, where for any finite
Dp the corresponding quantum mechanical problem has an infinite spectrum of bound states, in
the present case the spectrum may have only finite~or even zero!! number of bound states. This
fact provides an independent~complementary to Ref. 3! mechanism by which the tube can be
destroyed. In Sec. VI, more systematic~fully quantum mechanical! mathematical treatment of the
results presented in Sec. V is developed. The same treatment could also be used to explain the
suppression of the first-order phase transitions on surfaces of constant negative curvature. Section
VII is devoted to the discussion that is meant to demonstrate the universality of the QHE-like tube
model concept used in reptation theory. Close connections between QHE, quantum chaos, and the
non-Abelian Chern–Simons quantum mechanics are indicated in this section.

II. POLYMER CHAIN IN AN ARRAY OF OBSTACLES. REVIEW OF KNOWN RESULTS
AND ADDITIONAL DEVELOPMENTS

The De Gennes–Doi–Edwards~DDE! reptation model4,5 is based on the assumption that in
dense polymer melt the motion of an individual polymer chain of lengthN takes place inside a
tube created by the instantaneous configuration of other chains. By definition, the tube diameter
a!N so that the chain ‘‘reptates’’ along the tube in an essentially one-dimensional fashion.
Because the existence of a tube is accepted in DDE theory axiomatically, the problem of its
justification remains~see, however, Ref. 3!. One of the most popular ways of justifying the tube
model lies in considering the conformational properties~static and dynamic! of a chain trapped in
an array of fixed obstacles.4–10

In this paper only the static case is going to be discussed. To this purpose, let us imagine first
a regular lattice of obstacles localized at the vertices of a lattice. Let us place a polymer chain into
such an environment and consider how the conformational properties of this chain are affected by
the presence of obstacles. For simplicity, and without loss of generality, it is assumed that the
chain interacts with obstacles only viad-like short range repulsive potential.

The conformational properties of polymer chain in the external fieldV are described with help
of end-to-end distribution functionG~r ,r 8;N!, which obeys the equation of ‘‘motion’’17 given by

S ]

]N
2

l

2d
¹ r
21V~r ! DG~r ,r 8;N!5d~r2r 8!d~N!, ~2.1!

wherel is Kuhn’s step length. The question arises of how to modify~2.1! in order to account for
the periodicity of the lattice. In case ofd dimensions, ifan is some arbitrary lattice period, then it
is always possible to write

an5(
i51

d

niei , ~2.2!

whereni are some integers~positive or negative! while ei are elementary periods~lattice spac-
ings!. Obviously, the potentialV now should be also a periodic function, i.e.,

V~r1an!5V~r !. ~2.3!
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The question remains of how~2.1! should be modified in view of periodicity of the potentialV
reflected in~2.3!? The famous Bloch theorem18 provides an answer. Here, some details are pro-
vided that are essential for the rest of our discussion. To begin, let us assume that the distribution
functionG can be written as

G~r ,r 8;N!5(
n

eenNCn~r !Cn* ~r 8!, ~2.4!

so that the functionCn~r ! obeys a stationary Schro¨dinger-like equation,

Fen2 l

2d
“ r1V~r !GCn~r !50. ~2.5!

In case the potentialV is a periodic function, the solution to Eq.~2.5! can be sought in the form18

C~r !5eik–rCk~r !, ~2.6!

wherek is determined by the boundary conditions

C~r i1Liei !5C~r i ! ~2.7!

or

e6 ikiLi51, ~2.8!

Li being the size of the lattice in thei th direction. Combining Eqs.~2.5! and ~2.6! produces

¹ r
2Ck12ik–“ rCk2

2d

l S e~k!1V~r !1
lk2

2d DCk50. ~2.9!

For rÞan , by construction, we haveV~r !50. Let, moreover,r→i r , so that~2.9! can be rewritten
as

¹ r
2C̃k22k–“rC̃k1E~k!C̃k50, ~2.10!

whereE~k! is defined by~2.9!. Alternatively, one can rewrite~2.10! ~for rÞan! as follows:

]

]N
C̃k~r ,N!5¹ r

2C̃k22k–“ rC̃k . ~2.11!

The regular lattice used above is a very crude approximation of the environment that the indi-
vidual polymer chain encounters in the polymer melt.

It is believed8–10 that this environment is being better modeled by placing our polymer chain
on a Cayley tree~or Bethe! lattice. The standard recursion-type arguments produce then in the
continuum limit the diffusion equation for the end-to-end distribution function in the form given
by10

]P

]N
5D

]2P

]r 2
2c

]

]r
P, ~2.12!

whereD52pq, c5q2p, p5z21, q512p, andz is believed to be a coordination number of the
regular lattice, e.g., see Refs. 6 and 10, or Bethe lattice, e.g., see Refs. 8 and 9. Evidently, Eqs.
~2.11! and~2.12! look mathematically very similar. The only difference they have lies in the fact
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that Eq. ~2.11! is multidimensional while Eq.~2.12! is not ~which is of no surprise for Bethe
lattice-type of calculations!. Both equations should be supplemented with boundary conditions. In
the continuum limit they are given@for ~2.12!# by

P~r ,0!5d~r !, D
]P~r ,N!

]r U
r50

2cP~r ,N!50. ~2.13!

The mathematical treatment of~2.12! ~with c50! supplemented with boundary conditions of the
type given by~2.13!, was discussed in detail in Ref. 19. Because of this, this work is mainly
concentrated on~2.12!, thus ignoring boundary conditions. This is permissible because, as it
follows from analysis given in Ref. 19, once the solution of~2.12! with P(r ,0)5d(r ) is known,
the boundary problem of the type given by~2.13! can be solved as well.

The direct and transparent correspondence between Eqs.~2.11! and ~2.12! is obtained above
without recourse to the conformal mapping, the Lobachevsky plane, etc., as discussed in Ref. 15,
and is based on use of the Bloch theorem only.18 Moreover, Eq.~2.12! is not restricted to its use
in the periodic array of obstacles.15,20–22Indeed, it was first obtained in the classical paper by de
Gennes@e.g., see Eqs.~II.4! and ~II.5! of Ref. 4# based on different arguments. Whence, I just
demonstrated, that the periodicity of the lattice is not essential in developing the reptation model.
This statement will be further elaborated below in connection with chaoticity in classical and
quantum billiards. Toward this goal, it is useful to provide a somewhat different mathematical
interpretation of Eq.~2.12!. This is accomplished in the next section.

III. SMOLUCHOWSKI EQUATION ON THE LOBACHEVSKY PLANE

Following Ref. 10, let us call Eq.~2.12! as Smoluchowski~or rather Smoluchowski–de
Gennes! equation. As is usual in mathematical physics, it is convenient to rewrite~2.12! in the
dimensionless form. To this purpose, let us rescaleN→at and r→bx so that, in terms of such
rescaled variables, one obtains

1

a

]

]t
P~t,x!5

D

b2

]2

]x2
P2

c

b

]

]x
P. ~3.1!

If now one choosesa5D/c2, b5D/c, then Eq.~3.1! acquires the form

]

]t
P~t,x!5

]2

]x2
P2

]

]x
P. ~3.2!

Although ~3.2! has a correct dimensionless form it, nevertheless, is incomplete for the follow-
ing reasons. In~2.12! bothD andc are dimensionless while bothN andr have dimensionality of
length. Thus, it is implicitly assumed in~2.12! that bothN andr are being measured in terms of
the effective step lengthl @e.g., see~2.1!# and that the lengthl is of order of lattice spacings.
Under this condition~2.12!, taken from Ref. 10, holds. If, however,lÞs, then the adjustments
should be made, which are discussed below.

Let us now pose the following question: is it possible to rewrite~3.2! in the form of the
diffusion equation on some curved manifold?

The answer to this question turns out to be affirmative. Indeed, on a curved manifold the
diffusion equation can be written as

]

]t
P5

1

Ag
]a~gabAg]bP!, ~3.3!
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wheregab is the induced metric tensor of this manifold,a,b512d, gab is its inverse, whileg is
the determinant of the metricgab . Following the same arguments as in Refs. 3 and 15, let us
restrict ourselves by the case of two-dimensional manifolds. Indeed, in the polymer melts we can
always choose an arbitrary plane that crosses the melt. In this plane we can study theprojectionof
our three-dimensional random walk. According to Ref. 10, Eq.~2.12! is independent of the di-
mensionality of the underlying lattice~which enters only through the coordination numberz!.
Because in Ref. 15 the planar regular array was studied, it is convenient to compare our results
with that of Ref. 15, thus considering only two-dimensional manifolds. Additional reasons for
studying the two-dimensional case can be found in Ref. 3 and also will become apparent from the
development presented below.

In the two-dimensional case let us consider the first fundamental form of the surface given
by14

ds25dr21e22r dx2, ~3.4!

i.e., we havegrr51, gxx5e22r , grx5grx50, and g5e22r . From here we obtaingrr51,
gxx5e12r , so that

1

Ag
]a~gabAg]b••• !5er

]

]r S e2r
]

]r
••• D1er

]

]x S er ]

]x
••• D . ~3.5!

If the function P is independent ofx @not to be confused withx in ~3.2!#, then we obtain, by
combining~3.3! and~3.5!, equation~2.12! in the original variables. Whence, the above arguments
had just demonstrated, that(2.12) is diffusion equation on a curved manifold.

Let us now examine closer what is the nature of a manifold that is described by~3.4!. To this
purpose, let us introduce a new variabley5er so thatdy5er dr and, whence,

ds25dr21e22r dx25
dy21dx2

y2
. ~3.6!

In the mathematical literature the metric given by the last of Eqs.~3.6! is known as a hyperbolic
metric.14 The Poincare´ model consists of a subset of the complex planeC, defined by

H5$z5x1 iyPCuy.0%, ~3.7!

supplemented with the hyperbolic metric, Eq.~3.6!, onH. As it was known already to Poincare´,23

the geometry of motions inH is that on the Lobachevsky plane. Because metrics given by Eqs.
~3.4! and~3.6! are interconnected, the metric defined by~3.4! is called horocyclical24 and, accord-
ingly, the coordinate system in this metric is called horocyclic.14 It is instructive to understand
better the geometrical meaning of the horocyclical coordinates. To this purpose let us recall some
elementary facts from the differential geometry of surfaces. Following Ref. 25, let us consider the
surfaces of revolution of constant Gaussian curvature. Such surfaces can be described in the
parametric form, given by

x5r cosw, y5r sin w, z5 f ~r !, ~3.8!

so that the first fundamental form of such a surface is given by

ds25~11 f 82!dr21r 2 dw2, ~3.9!

where f 85d f /dr. By means of transformation,

du5A11 f 82 dr, ~3.10!
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Eq. ~3.9! can be brought into the form

ds25du21G~u!dw2, ~3.11!

G5r 2(u).
If K is constant Gaussian curvature, then it can be shown25 that

K52
1

AG
d2AG
du2

. ~3.12!

For K,0, the solution of~3.12! is given by

AG5C1e
u/b1C2e

2u/b, ~3.13!

where2b25K andC1 ,C2 are some constants of integration. Now, if we chooseC150 andb51,
then we arrive back at~3.4!. Whence, both metrics,~3.4! and~3.6!, describe surfaces of constant
Gaussian curvature equal to21. The first fundamental form~3.4! @or its equivalent~3.11!# de-
scribes the surface of revolution known as tractrix.14,25 It is essentially a conical surface that
cannot be embedded~rigorously speaking14! into 3d space. To conclude this discussion, it is
helpful to consider transformation from theH plane to the unit circle, given by the mapping24

w5
z2 i

z1 i
, zPH. ~3.14!

If w5u1 iv, then it can be shown thatu21v2<1, so that the first fundamental form can be
written as

ds25
4~du21dv2!

@12~u21v2!#2
. ~3.15!

The transformation given by~3.14! is isometric, i.e. it preserves the distanced that inH ~or in the
unit disk! is defined by

coshd~z,z8!511
uz2z8u2

2 Im z Im z8
. ~3.16!

In analyzing this result, it is useful to remember that the usual Euclidean distance in the complex
C plane is given by

dE~z,z8!5uz2z8u. ~3.17!

With the help ofd just defined, the solution of~2.12! ~without account of boundary effects! in the
H plane can be found, e.g. see Ref. 24, and is given by

PH~z,z8,t!5
1

2~2pt!1/2
e2t/4E

d~z,z8!

`

dx
xe2x2/4t

Acoshx2coshd~z,z8!
. ~3.18!

This result coincides with that obtained in Ref. 15@e.g., see Eq.~3.10! of Ref. 15# in a completely
different way. The same result can also be obtained with use of the metric of the unit disk~3.15!,
as explained in great detail in Ref. 26~e.g., see p. 3586 of this reference!.

In the case of a unit disk, Eq.~3.3! can be presented as follows:26,31
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1

4
“ r ,w

2 P~r ,w;t!5
1

~12r 2!

]

]t
P~r ,w;t!, ~3.19!

where use has been made of psendospherical coordinates:u5sinhu cosw, v5sinhu sinw ~0
,u,`, 0,w<2p! in ~3.15! and the Laplacian¹r ,w

2 is given in these coordinates by@r5tanh~u/2!#

¹ r ,w
2 5

]2

]r 2
1
1

r

]

]r
1

1

r 2
]2

]w2 . ~3.20!

For additional details, please see Sec. VII. The comparison between our~3.19! and~3.6! of Ref. 15
allows one to restore the missing scale factors@as discussed below~3.2!#. With this remark, to
restore this missing scale factors it is useful to rewrite~3.15! in the following way:27

ds25
4R4~du21dv2!
~R22u22v2!2

, ~3.21!

where, instead of canonicalR51, an arbitrary dimensionless curvature parameterR is chosen.
Comparison between this result and~3.6! of Ref. 15 producesR2.s2/ l 2 ~if N is measured in units
of l !. This fact is going to be used below.

IV. FROM THE LOBACHEVSKY PLANE TO THE RIEMANN SURFACE

In statistical mechanics, it is common to use the periodic boundary conditions. In case of a
plane, use of periodic boundary conditions effectively converts it to the torus,28 i.e. the surface of
genus one. Now, the entire complex plane plus the point at infinity is equivalent to the Riemann
sphere~via stereographic projection!.27 The question arises as to what surface can be related toH?

Let us begin with some elementary observations. Following Arnold~e.g., see Ref. 29, Appen-
dix 1!, let us consider a classical billiard made of a square inside of which there is a small circle
~a hole!. The particle in such a billiard can scatter from the walls and from the circle~hole! and
motion of such a particle is believed to be chaotic. This is so because, according to Arnold, the
topology of such a billiard is the same as that for the sphere with two handles that can be obtained
by gluing together two toruses, each of which having a hole, along the circumference of these
holes. Notice that such a surface cannot be obtained if instead of toruses with holes we would have
two spheres, each having a hole.14

Whence, the major building block of any higher genus surface consists of a sphere with three
punctures and any Riemann surface of genusg.1 is just a collection of trice punctured spheres
along with a gluing prescription,24 which is used for their assembly. In case of Arnold’s ‘‘double
torus,’’ we have the first example of a surface of a constant negative curvature so that the nearby
classical trajectories tend to diverge during their evolution,29,30which is the main characteristic of
the chaotic behavior.

It is important at this moment to realize that the appearance of a constant negative curvature
surface that is seemingly compact isnot in contradiction with the statement made in Sec. III about
the constant negative surfaces that cannot be embedded into three-dimensional Euclidean space.
This will become apparent upon reading the rest of this section.

The example, just described, can be easily generalized. Indeed, following Ref. 24~e.g., see Cr.
5, Sec. 5.3!, let us construct a finite square lattice ofm2 copies of the Arnold’s square. By gluing
these squares together it is possible to insert yet anotherk holes into this lattice thus forming a
surface of genus

g511
m21k

2
, ~4.1!
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kP$0,2,...,2m% if m is even orkP$1,3,5,...2m21% if m is odd. Whence, using Eq.~4.1! for m51
one obtainsg52, in agreement with Arnold. The above example demonstrates that polymer chain
~or rather its two-dimensional projection! ‘‘lives’’ on a two-dimensional surface of genusg. Be-
cause every Riemann surface can be visualized as a sphere withg handles,14,24 we have to
concludethat the problem of finding the distribution function for the polymer chain trapped in an
array of obstacles is equivalent to finding the distribution function for the free chain but on the
Riemannian surface of genus g@1. To understand better the connection between the manifolds of
constant negative curvature and the flat plane domains with punctures, reading of the Appendix at
this time is the most helpful. To complete this presentation, it is necessary to make a connection
between the Poincare´ H plane model and the Riemannian surfaces of genusg. To this purpose, it
is useful again to recall that the usual torus can be obtained by identifying the opposite sides of a
square in the plane. Evidently, the planeR2 can be covered without gaps by squares, and ifG is a
discrete translation~i.e., the matrix that belongs to translation groupG!, then a given squareSq
can be thought of as an image of some fundamental squareŜq, i.e.Sq5GŜq. Because of this, the
torus can be defined as a quotient:R2/G.14Analogously, letG now be a group of translations in the
H plane, such that some fundamental domainGPH with help of the action ofG covers~tessel-
lates! the entireH so that the Riemamann surfaceM is just the quotientH/G. Every higher genus
g Riemann surface can be constructed from the fundamental 4g-gonPH sides of which are
geodesics, i.e. ‘‘straight’’~or horocyclical! lines inH24 ~e.g., genus two surface requires an octa-
gon, etc.,16,31 supplemented with the appropriate group of translationsG in H!. It can be shown32

that G is represented by 232 matrices, which belong to the groupSL(2,R)/$61%5PSL(2,R).
$61% factor is a 232 identity matrix responsible for reflections~recall the Lorentz group!. If zPH
andgPSL(2,R) with chosen sign~e.g. ‘‘1’’ !, then

gz5
az1b

cz1d
. ~4.2!

For compact Riemann surfacesM5H/G it can be shown33 that trg.2, which amounts to dilata-
tions: z→edz, whered is some constant. Transformations given by~4.2! leave the metric~3.16!
invariant, i.e. they are isometries. Because of this fact, the solutionPH given by ~3.18!, is also
invariant with respect to the action ofg and, whence, is the same for all compact surfacesH/G.
This explains a relative success in use ofPH , as advocated in Ref. 15. DDE theory, however,
assumes not only the existence of a primitive path whose conformational statistics is being de-
scribed byPH ,

9,10 but also the existence of a tube through which the primitive path reptates.4,5As
it was noticed in Ref. 5~also see Ref. 3 for additional details!, the existence of a tube can be
modeled by considering the problem of statistics of random walks that enclose a constant area. In
the present case the situation is complicated by the fact that we have to consider, instead of planar
walks, the walks on Riemannian surfaces in the presence of an area constraint. This represents the
subject of the next section.

V. POLYMER CHAIN IN AN ARRAY OF OBSTACLES IN THE PRESENCE OF A TUBE.
QUALITATIVE TREATMENT

In Ref. 1, an extensive study of random walks on flat surfaces in the presence of an area
constraint is presented, while in Ref. 3 it was shown how this flat problem is related to the theory
of reptation, on one hand, and to the formalism used to describe the quantum Hall effect, on the
other. Because of this, it is essential for the reader to consult with the above references for details
related to statistics of planar configurations. Here only the most essential facts needed for further
uninterrupted development are provided. In this paper the emphasis is made mainly on applica-
tions related to DDE reptation theory. The necessary transcription for the Laplace–Young~LY !
type of problems, discussed in detail for the case of flat surfaces in Ref. 1, should become obvious
upon reading of this section and, whence, is not elaborated in detail in this paper.
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It is convenient to subdivide this section into subsections in order to explain better the physics
of the problem.

A. Statistical mechanics of interacting tubes

The classical DDE reptation model4,5 is based on the axiomatic assumption that in a dense
polymer melt there are ‘‘tubes’’~which can appear and disappear! through which the primitive
chain crawls3,4,6–10in an essentially one-dimensional fashion. The existence of tubes in melts can
be easily understood if the analogy with diffusion models in simple liquids is used.34 In the case
of simple liquids, thermal fluctuations cause formation of vacancies inside the liquid so that
diffusion ~or viscosity! is facilitated by their presence. Because the process of formation of va-
cancies is surface tension mediated, solutions of the LY equationH5Dp/2s, whereH is mean
curvature,Dp is the pressure difference, ands is surface tension1 yield only round spheres of the
average size of the host molecule in a simple liquid case. In the case of polymers, the molecules
are extremally elongated, so that one should use the cylindrical shape solutions to theL-Y equa-
tion.

The Doi and Edwards reptation model5 describes the conformations of a polymer chain
trapped inside such a cylindrical tube. The size of a tube is determined with help of the distribution
functionG~r ,r 8,N!, which obeys the following equation of ‘‘motion:’’

S ]

]n
2

l

2d
¹ r
21

w2

6
~x21y2! DG~r ,r 8;N!5d~r2r 8!d~N!, ~5.1!

to be compared with Eq.~2.1!, herer5$x,y,z%. The parameterw is determined from the condition

^x21y2&5
l

w
5a2, ~5.2!

where the tube cross section;a2 is considered to be a phenomenological parameter of the theory
and ^•••& denotes the statistical average performed with the help ofG~r ,r 8;N!, as usual.17

Following Ref. 3, let us imagine an arbitrary plane that crosses the polymer melt and let us
concentrate our attention on the distribution of just defined cross sections in this imaginary plane.
Because of the natural cutoff given by the Kuhn’s lengthl , the requirementa2. l 2 should be
imposed. LetA be an area of an imaginary plane and letnt be the number of tubes~or, rather, their
cross sections! that cross this plane.

If the surface densityr̂ is defined by

r̂5
nt
A
, ~5.3!

then the Wigner–Seitz radiusr w2z can also be introduced via

pr w2z
2 5

1

r̂
. ~5.4!

Evidently, 2r w2z represents an average distance between the centers of two neighboring tubes.
Use of Eq.~5.4! facilitates an introduction of a filling fractionn, defined by

n5S a

rw2z
D 25pa2r̂. ~5.5!

By construction,n<1. Because botha2 and r̂ depend ultimately on the polymer~monomer!
concentrationr, the previous equation can also be rewritten as
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n5pa2~r!r̂~r!, ~5.6!

where botha2 andr̂ are some, in general unknown, functions ofr. In view of ~5.3!, it is expected,
however, thatr̂~r!}r.

Suppose now that there is some interaction between the cross sections~disks! in the plane so
that the gas of disks can be either in a ‘‘solid’’~ordered lattice! or in a ‘‘liquid’’ ~or ‘‘gas’’ ! state.
In the last case a ‘‘liquid’’ of uniform density may occur so that an initially well-defined tube
radiusAa2 may lose its meaning. Like in the theory of liquid–gas transitions~based on the Ising
model!, it is reasonable to anticipate, that if instead the solid–liquid transition takes place, it will
be characterized byn* , which is some model-dependent~usually known! number, 0<n*<1. If this
number is known,~5.6! can be rewritten as

n*5pa2~r* !r̂~r* !. ~5.7!

The last equation implicitly determines the critical polymer~monomer! densityr* . This density
determines the experimentally observed transition from the reptation-like~solid phase! to the
Rouse-like~liquid phase! viscoelastic regime.35 In Ref. 3, the interaction between the cross sec-
tions was caused by the topological effects of entanglements. In the absence of such a topological
mechanism of interactions between the cross sections, they are always stable in the case of flat
surfaces. This is caused by the fact that oscillator-like potential in~5.1! for arbitrary smallw still
produces a countable infinity of discrete energy levels, making the tube stable.

The situation changes dramatically if, instead of flat surfaces, Eq.~5.1! is treated on the
Riemannian surfaces of constant negative curvature.

B. Statistical mechanics of charged particles on curved manifolds. Semiclassical
treatment

The harmonic oscillator model described by~5.1! can be understood also from the point of
view of the magnetic analogy discussed in great detail in Refs. 1 and 3.

The Bloch equation for the density matrixr~r ,r 8;b! for the spinless electron of massm and
chargee51 in the magnetic fieldB can be written in a standard way,36 as

2
]

]b
r5Ĥr. ~5.8!

The above equation is supplemented by the initial condition:

r~r ,r 8;b→0!5d~r2r 8!, ~5.9!

whereb5(KBT)
21. For the constant magnetic field perpendicular tox-y plane,~5.8! acquires the

form

S ]

]b
2

1

2m
¹ r
21

B

2mi S x ]

]y
2y

]

]xD1
B2

8m
~x21y2! D r50. ~5.10!

In view of ~5.1!, the corresponding polymer problem is obtained by making the following replace-
ment:b�N, 1/m5 l /2d, B2/8m�w2/6, d53, and considering only the states that have the total
angular momentum equal to zero. Because for the harmonic oscillator the path integral is quadratic
in the field variables,37 the semiclassical treatment of the path integral produces the exact result
anyway. This observation is helpful because it allows us to obtain solutions to the quantum
mechanical problem using methods of classical mechanics. This remains to be true, even for the
curved manifolds,38 and, therefore, it is instructive to get a feeling of the problem at the classical
level first.
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To this purpose, following Ref. 38,@Eq. ~4.2!#, the ~semi!classical LagrangianL for the
particle of massm52 and chargee51 moving on theH plane in the presence of the magnetic
field B can be written as follows:

L5
R2

y2
~ ẋ21 ẏ2!2

bẋ

y
2

1

16R2 . ~5.11!

Here use has been made ofR2 defined after~3.21!, andb5BR2. Proceeding from the Lagrangian
to the Hamiltonian in a standard way and introducing the canonical action-angle variables pro-
duces Bohr–Sommerfield quantization condition, which yields the energy spectrum given by

En5
1

4R2 F141b22S n1
1

2
2bD 2G . ~5.12!

Consider now this expression in the limit ofR2→` ~i.e., large distance between the obstacles!. In
this limit ~5.12! reduces to the familiar Landau result:

En5
B

2 S n1
1

2D , ~5.13!

discussed in great detail in the previous work, Ref. 1. At the same time, by requiringEn to be
non-negative, one obtains the constraint on the magnetic field:

n<ubu2 1
2 . ~5.14!

This constraint indicates that, unlike the flat case given by~5.13!, where for anyB.0 the
spectrumEn is non-negative countable infinity, on the manifold of constant negative curvature the
field strengthB should exceed a certain threshold, e.g.B>1/2R2 ~for n50!, in order for the
discrete spectrum, and, whence, for the tube to exist. The size of the tube;a is determined by the
condition ~e.g., see Ref. 38, p. 191 and take into account that theira is ourR, etc.!,

a

R
5arctanh

AB224ucu
B

, ~5.15!

and also, according Ref. 38@e.g., see Eqs.~4.9! and~4.11! of this reference# there is an additional
relation:

b22R2Ac5n1 1
2 , ~5.16!

where the constantc is related to the period of motion along the circular orbit. Combining Eqs.
~5.14! and~5.16!, one obtainsc50 for n50. Use of this result in~5.15! indicates that in this case
a→`, i.e. the tube does not exist. For the tube to exist, one must require thata/R<1, i.e. that the
size of the tube be less~or equal! to the distance between the obstacles. In this case, using~5.15!
and ~5.16!, one obtains an estimate:

tanh 1.An1 1
2

b
A2b2n2 1

2

b
. ~5.17!

For n50, this produces

b tanh 1.Ab2 1
4 ~5.18!
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or

b.0.86~160.643!. ~5.19!

For compact Riemannian surfaces,b cannot have an arbitrary value and should be quantized
as well.40,41Using the results of Refs. 39–41, one obtains

b5
f

2~g21!
, ~5.20!

where f50,61,62,... . Using~4.1! one can rewrite~5.20! as

b5
f

m21k
. ~5.21!

In view of the results of Sec. V A, it is appropriate to make an identification:m21k.nt , so that
by combining Eqs.~5.19! and ~5.21!, one obtains

f

nt
.0.86~160.643!. ~5.22!

Let A5 fpa2 so that~5.3! can be rewritten aspr̂a25nt/ f . Combining this result with Eqs.~5.5!
and ~5.22! produces an estimate forn* :n*'0.708. The obtained result is too high, as compared
with an earlier resultn*'0.0286~e.g., see Ref. 3!. This can be easily explained by looking at Eq.
~5.5!. Indeed, ifr w2z'2a'R, then 0.25,n<1. Obviously, the tube is well defined only ifa,R
andr w2z@a ~i.e., the tubes are well separated!, so that the estimate just obtained is too crude. In
addition, this estimate is based on the assumption that the tubes do not interact. The interaction
between the tubes can be introduced analogously to the flat case discussed in Ref. 3. Such a
generalization would lead us to the non-Abelian version of the Chern–Simons quantum Hall
effect42,43picture of reptation developed earlier in Ref. 3. The additional compelling arguments in
favor of the non-Abelian generalization of the model developed in Ref. 3 are presented in Sec.
VII. In the meantime, in anticipation of these generalizations, more systematic mathematical
treatment of the results just obtained is desirable since the results presented so far are only
semiclassical. It is given in the next section.

VI. SELBERG TRACE FORMULA AND THE LAPLACE–YOUNG-TYPE EQUATIONS ON
RIEMANNIAN SURFACES: APPLICATIONS TO REPTATION AND RELATED
PROBLEMS

In order to study systematically the problems discussed in previous sections at the quantum
level, it is helpful at this time to provide a summary of the results related to random walks in the
plane in the presence of an area constraint.~e.g., see Ref. 1 for more details!.

A. Review of the flat case results

The probabilityP(A,N) for the random walk to lengthN to enclose a given areaA could be
defined as

P~A,N!5
Z~A,N!

Z~0,N!
, ~6.1!

where
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Z~A,N!5E dr G~r15r25r ,NuA! ~6.2!

and

G~r ,r 8,NuA!5E
r ~0!5r

r ~N!5r8
D@r ~t!#dSA2

1

2 U E
0

N

dtS x dydt
2y

dx

dt DU D expH 2
1

l E0
N

dtS drdt D J 2.
~6.3!

Because the areaA cannot exceedN2/4p ~i.e., the area of the circle that has a perimeter length
equal toN!, the normalization condition forP(A,N) is given by

E
0

N2/4p
dA P~A,N!51. ~6.4!

Using ~6.4!, the mean areâA& can now be defined as

^A&5E
0

N2/4p
dA AP~A,N!. ~6.5!

In case of the Laplace–Young~LY !-type problem, one has to replace (1/l )*0
N dt~dr /dt!2 in

the exponent of~6.3! by s*0
1 dtA(dr /dt)2, where~dr /dt!25(dx/dt)21(dy/dt)2 ands is the

bare surface tension. In Ref. 1 it was shown that the LY and the random walk@e.g., see Eq.~6.3!#
problems are inter-related. Therefore, it is sufficient to study mainly the problem defined by Eq.
~6.3!. In case if there is a pressure differenceDp ~inflated vesicles!, the average area is given by

^A&5
]

]Dp
ln E

0

N2/4p
dA eA DpP~A,N!. ~6.6!

By comparing Eqs.~6.2!, ~6.3!, and~6.6!, one may naively think that integration over the areaA
leads to the removal of thed-function constraint, thus causing us to study the partition function
given by

Z~Dp,N!5E dr G~r ,5r25r ,NuDp!, ~6.7!

where

G~r ,r 8,NuDp!5E
r ~0!5r

r ~N!5r8
D@r ~t!#expH 2

1

l E0
N

dtS drdt D 21 Dp

2 U E
0

N

dtS x dydt
2y

dx

dt DUJ . ~6.8!

Calculations performed in Ref. 1 indicate that, at least for finiteN,

E
0

N2/4p
dA eA DpP~A,N!ÞZ~Dp,N!. ~6.9!

Moreover, the lhs is finite for all finite values ofN andDp while the rhs can be even divergent
~e.g., see the discussion about the rhs given in Ref. 44!. Because, however, the average area given
by ~6.6!, involves ratios, the infinities may not be so harmful. This is indeed the case for small
enoughDp’s @e.g., see Eq.~6.13! below#.

In ~5.2!, the mean size of the tube;a is defined.Evidently, with the appropriate choice ofDp
in (6.8) it is possible to claim that a2'^A&. In the previous paper, Ref. 1, it was explicitly
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demonstrated that the geometric area defined in~6.3! and the algebraic area@i.e., the same as in
~6.3! but without the modulus sign# actually lead to the same kind of expressions forZ(A,N).
Because of this very important fact, many simplifications can be made. Indeed, using a represen-
tation of the propagator~6.8! in terms of eigenfunctions, e.g. see~2.4!, one can rewrite~6.7! in the
standard form of a partition function@e.g., see~4.4! of Ref. 1#:

Z~Dp,N!5 (
n50

`

gne
2Nen, ~6.10!

wheregn is the degeneracy factor. Whence, to calculateZ(Dp,N) it is sufficient to know the
energy levelsen and the degeneracy factorsgn . Both of these were calculated in Ref. 1~and
references therein! so that here I provide only the final result~e.g., see p. 3047 of Ref. 44!,

Z~Dp,N!5
x

sin x
, ~6.11!

wherex5(Dp/2)Nl. The average area can be calculated now according to~6.6!, i.e. one obtains

^A&5
1

Dp
2
Nl

2
cot

Dp Nl

2
. ~6.12!

For smallDp’s this result can be simplified to

^A&. 1
12 Dp~Nl !2.Dpa2l 2, ~6.13!

and this result should be compared with Eq.~5.2!.
Extension of the result~6.10! to curved manifolds is known in the mathematical literature24,33

as a special case of Selberg’s trace formula. For the constant ‘‘magnetic’’ field on compact
Riemannian surfaces of genusg, this formula was obtained by many authors.38,39,45–48Whence,
there is no need here to go into many details that can be found in the literature. Nevertheless, to
facilitate the reader’s understanding of this literature, it is essential to provide some key elements
of these treatments, which are needed for proper understanding of the final new results presented
in this section. The key general reference on Selberg’s trace formula is the paper by McKean,33

which is highly recommend for proper understanding of the subsequent material.

B. Automorphic forms and tensors on Riemannian surfaces

Traditionally, these subjects are known in physical literature in connection with the string
theory46 or with chaotic systems.16,31,39 Here known results are used to study new physically
relevant problems.

Following Ref. 47, the time-independent Schio¨dinger equation for the nonrelativistic particle
of massm, chargee ‘‘living’’ in the H plane in the presence of magnetic fieldB is given by

F2
\2

2m
y2S ]2

]x2
1

]2

]y2D2 i\
eB

m
y

]

]x
1
e2B2

2m GCn5EnCn . ~6.14!

This result should be compared with~5.10!. The comparison indicates the different choice of
gauge in~6.14!, as compared to~5.10!. The choice of gauge in~6.14! coincides with that sug-
gested by Landau1 for the analogous flat problem. Putting in~6.14!, \515e, with the rest of
identifications the same as in~5.10! converts~6.14! into the corresponding polymer problem. In
view of the discussion following Eqs.~3.2!, ~3.21!, and~5.11!, Eq. ~6.14! can be rewritten as40

F2y2 S ]2

]x2
1

]2

]y2D22iby
]

]x
1b2GCn5enCn, ~6.15!
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whereen54R2En . As was discussed in Ref. 40, on compact Riemannian manifolds, the ‘‘mag-
netic’’ field b can take only values prescribed by~5.21!. For simplicity, only the case whenb is
integer is considered. A more general situation, whenb is rational, is considered in Ref. 41. Such
a restriction is fortunately not too severe because the result~5.12! is not affected by this limitation.

As in the planar case discussed in Ref. 3, it is convenient to introduce a complex variable
z5x1 iy and to rewrite~6.15! in terms ofz, taking into account that

]

] z̄
5
1

2 S ]

]x
2 i

]

]yD and
]

]z
5
1

2 S ]

]x
1 i

]

]yD . ~6.16!

By definition, functionf (z) is automorphic if

f ~gz!5 f ~x!, ~6.17!

where the productgz is defined in~4.2!. The above definition can be extended by introducing the
automorphic form of weight (p,q), with p,q being integers, via

f ~gz!5~cz1d!p~cz̄1d!qf ~z!. ~6.18!

In this definition the phase factor is chosen to be equal to unity44 and, whence, it is not explicitly
written. Equation~6.18! allows one to define a scalar product in the Hibbert space, which is
defined onH/G,46–48 i.e. if f 1 and f 2 are two functions that have the property described by~6.18!,
then

^ f 1u f 2&5E
H/G

d2z

y2
ypyqf̄ 1f 2 . ~6.19!

Thus, the defined scalar product allows one to introduce an analog of the Fourier series, which in
this case is called the Poincare´ series. If functionh(z) is decaying at infinity fast enough, then any
automorphic form of weight (p,q) can be presented in the form46,48

f h~z,z̄!5 (
gPG

~cz1d!p~cz̄1d!qh~gz!. ~6.20!

C. Selberg trace formula

Using the results just obtained, let, in particular,Kb
t(z,z8) be a Riemann surfaceH/G analog

of the density matrixr defined by~5.8!, then, in view of~6.20!, it can be presented in a form47

Kb
t~z,z8!5 (

gPG
S cz̄81d

cz81dD
bS z2g z̄8

gz82 z̄D
b

gb
t~z,gz8!, ~6.21!

wheregb
t(z,gz8) has two parts: discrete~bound states! and continuous~scattering states!.24,33,48

For compact Riemann surfaces, the whole spectrum is, rigorously speaking, discrete,24 neverthe-
less, the subdivision just described can be made anyway.33,39,48This is so because, as it is argued
in Ref. 48, the ‘‘truly discrete’’ part of the spectrum remainsunchangedfor both compact and
noncompact~e.g., leaky toruses16! Riemann surfaces. Use of the compact surfaces is more advan-
tageous because it is easier to define the magnetic fieldB on such surfaces,40 and, in addition, in
this caseB is quantized. The explicit form ofgb

t is rather complicated in general.45,47 In view of
~6.10!, it is more useful to calculate the Selberg trace given by

u~t!5E
H/G

d2z

y2
Kb

t~z,z̄!discr5~g21! (
0<n,b21/2

~2b22n21!e2t~2nb1b2n22n!, ~6.22!
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where the last result is taken from Ref. 48@e.g., see Eqs.~27!–~29! and ~47!#. In view of Eq.
~5.12!, this result can be rewritten in the usual units as follows:

u~N!.
g21

4R2 (
0<n,b21/2

~2BR222n21!exp$2NEn%, ~6.23!

whereEn is the same as in Eq.~5.12!.
For R→`, and in view of~5.12!, one obtains a standard flat plane result:1,2

u~N!}
B

sin~BN/2!
, ~6.24!

which is also in accord with~6.11! ~up to an unimportant constant!. For finiteR, this is, of course,
no longer true, so that a qualitative analysis of Sec. V can be used.

The result given by Eq.~6.23! provides justification to the semiclassical results, Eqs.~5.12!
and ~5.14!, discussed in Sec. V. In addition, as a byproduct, one can easily obtain some results
related to suppression of the first-order phase transitions on surfaces of constant negative curva-
ture. Indeed, letB}Dp; then, according to Eq.~6.23! the droplet may exist only ifDp R2>3

2

@sinceu(N) cannot be negative#. For small enoughR’s the droplets can become more and more
unstable and disappear by breaking into smaller and smaller pieces. This fact explains why even
large spills of oil from tankers eventually disappear in a stormy sea~whereR’s are sufficiently
small!.

VII. DISCUSSION: THE INEVITABILITY OF THE QHE INTERPRETATION OF REPTATION
THEORY

A polymer chain in the array of obstacles is traditionally believed to be an adequate model,
which explains reptation.4,6–10Extension of this model presented in the previous sections is also
able to explain~qualitatively! the transition from the reptation~facilitated by the tube formation!
to the Rouse regime~which does not require the tube! in the way, which, at first sight, looks very
different from that developed in Ref. 3. It is argued here that this is actuallynot the case and that
the physical picture developed in this work is consistent with that presented earlier in Ref. 3.

A. Connection with the Calogero–Sutherland model

To begin, let us return once again to Eqs.~3.19! and ~3.20!. Let us recall that the distance
elementds2 on the sphere of constant radiusR is given byds25R2~du21sin2 u dw2!. Analo-
gously, for the pseudoshere~hyperboloid! the distance element is given by
ds25R2~du21sinh2 u dw2!. In terms of u, w coordinates, Eqs.~3.19! and ~3.20! can now be
rewritten as26,31

S 1

sinh u

]

]u S sinh u
]

]u D1
1

sinh2 u

]2

]w2DP~u,w;t!5R2
]

]t
P~u,w;t!. ~7.1!

Assuming, as before, that the distribution functionP is w independent, the above equation can be
reduced to

L̂P~x2x8;t![S d2dx2
1coth2 x

d

dxDP~x2x8;t!5R2
]

]t
P~x2x8;t!, ~7.2!

wherex[u. Evidently, the distribution functionP(x;t) can be found if the eigenvalue problem for
the operatorL̂ is solved. In connection with this eigenvalue problem, let us consider now a
seemingly unrelated eigenvalue problem related to the ‘‘particle’’ in the potentialq2 sinh22 x, with
q being some adjustable constant. This eigenvalue problem can be formulated, as usual, as
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Ĥwn[F2
1

2

d2

dx2
1q2 sinh22 xGwn5Enwn . ~7.3!

If can be shown49 that the function

w05~sinh x!m ~7.4!

is the solution of~7.3! with the eigenvalueE052m22, provided thatm~m21!52q2. This function
is non-normalizable since it is increasing forx→`. Whence,E0 does not belong to the spectrum
of the operatorĤ. Following Ref. 49, upon substitution ofwn5w0fn into ~7.3!, it is being
converted into the equation

L̂fn52~m21n2!fn , ~7.5!

where the operatorL̂ is the sameas in ~7.2!. Whence,~7.2! and ~7.5! havethe same eigenfunc-
tions. The one-body HamiltonianĤ defined by Eq.~7.3! can be easily generalized to the many-
body case and is known in the literature as the Calogero–Sutherland~CS! Hamiltonian.49,50 It is
given by51

ĤCS52(
i51

n
1

2

d2

dxi
2 1a(

i, j

n
v2

sinh2~xi2xj !v
, ~7.6!

where n is the number of particles in the~one-dimensional!! system anda and v are some
constants. Forv→0, Eq. ~7.6! is known as the Calogero Hamiltonian.

To use the CS Hamiltonian in the reptation problem, several issues need to be resolved. First,
~7.2! describes the ‘‘motion’’ of an individual primitive chain~so far in the absence of the ‘‘mag-
netic field’’!. For noninteracting chains the total Hamiltonian should be evidently just a sum of
one-body Hamiltonians. Therefore, naively, the total HamiltonianĤT should look like

ĤT5(
i51

n F2
1

2

d2

dxi
2 1

q2

sinh2 xi
G1Ĥ int . ~7.7!

Second, from Ref. 3, it is known, however, that the interaction between the tubes~cross sections!
is of topological nature so thatĤ int cannot have a small parameter and is to be considered as just
a perturbation. Third, since the eigenvalue problem for the many-body CS Hamiltonian can be
solved exactly,50–52 the eigenvalues and eigenfunctions of this model are known. As was noticed
already in Ref. 52, to find these eigenfunctions and eigenvalues it is sufficient to know only the
two-body scattering phase shift. Because the two-body problem is always reducible to the one-
body problem, we are effectively coming back to Eq.~7.3! @and, whence, to~7.2!#. More rigorous
arguments explaining this fact can be found in Ref. 49. Fourth, as was rigorously demonstrated in
Ref. 51 ~also see Ref. 53!, the wave functions of the CS and Knizhnik–Zamolodchikov~KZ!
equations are practically the same. This fact was implicitly present already in Ref. 52. In Ref. 3 it
was demonstrated that the Laughlin wave function@e.g., see Eq.~3.24! of Ref. 3# can be also
obtained with help of the KZ equation@e.g., see Eqs.~5.2! and ~5.3! of the same reference#.
Whence, we are coming inevitably to the conclusionthat the CS Hamiltonian (perhaps with an
extra quadratic term to account for the ‘‘magnetic’’ field54), can be also used to describe the
interacting tube model developed inRef. 3. This statement provides a missing link between the
results of Ref. 3 and that known from polymer physics.4–10

In Ref. 3 the Abelian variant of Chern–Simons quantum mechanics was actually discussed,
while use of the KZ equation requires, in general, use of the non-Abelian quantum mechanics.42,43

Nevertheless, as was already argued in Ref. 3, the actual final results do not change so that the
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arguments presented above remain valid. Since the CS Hamiltonian is widely known in the theory
of chaotic/disordered systems,55,56 the results outlined above provide yet another application for
the CS models.

B. Landau diamagnetism in the presence of impurities, and the topological origin of
the robustness of the QHE: Applications to reptation

Consider once again a one ‘‘electron’’ problem described by the Hamiltonian given by~5.1!.
In the theory of QHE, such a type of problem with additional random potentialV̂ was known for
some time. The most comprehensive solution of such a problem for various types of disorder was
obtained in Ref. 57. This solution, however, ‘‘does not illumine the question of robustness of the
QHE. It does not either clarify what is exactly meant by localization in the presence of magnetic
field’’ ~e.g., see p. 688 of Ref. 58!.

The peculiarity of the situation is well summarized in the review paper by Pruisken.13 On one
hand, in the absence of a magnetic field, even in the presence of very weak disorder, all electronic
states are localized in two dimensions, i.e. conductivity is zero. On another hand, in the presence
of a rather strong magnetic field the conductivity reappears and, moreover, the value of Hall
conductivity isindependentof the degree of disorder.

Using polymer’s language, the above situation can be restated as follows. In the absence of an
area constraint, the propagatorPH given by~3.18! produces for the square of end-to-end distance
~or the square of the radius of gyration!, the result9

^Rg
2&5

z

z22

A2p

8
lAN, ~7.8!

to be compared with the usual free Gaussian chain case:^Rg
2&5 lN/6. If time is identified withN,

then the diffusion coefficientD in the last case can be estimated asD;d^Rg
2&/dN5const, while

in the first caseD;d^Rg
2&/dN ; 1/AN. Because the diffusion and the conductivity are connected

via the Einstein relation,59 it is obvious that the result~7.8! leads to localization~i.e., an absence
of ‘‘conductivity’’ !. At the same time, according to the main postulates of DDE reptation theory
the statistics of the primitive path for largeN should be Gaussian-like,5,35 i.e. ‘‘conduction’’ should
take place.

Using the results of Sec. IV, the following conclusions could be drawn. First, the classical
motion of the fictitious particle in an Arnold-type billiard is chaotic. Moreover, the dynamical
systems of such a type that evolve on surfaces of constant negative curvature are known as an
Anosov type.60 These Anosov-type systems are known to be robust with respect to perturbations.30

Using the results of the appendix, it should be obvious that this robustness takes place in the
‘‘quantum’’ case too, because the short time asymptotic expansions are insensitive to the way the
holes in the plane are distributed. Second, in Secs. V and VI, it was demonstrated that the presence
of the ‘‘magnetic’’ field changes the propagatorPH ~3.18! into that given by~6.21!. The last one
has both the scattering~‘‘continuous’’! and the bound~‘‘discrete’’! parts and the ‘‘continuous’’ part
is not the same as that given by~3.18! ~for more details, e.g., see Refs. 45 and 47!. It would be of
interest to calculatêRg

2& using the continuous part ofKb
t defined by~6.21!. Even if one can

succeed in doing so, the calculation cannot be considered as complete, because, so far, in the
presentation given above the tube–tube interactions are not included. There is, however, a better
way to look at the localization problem. It is discussed in the next section.

C. Related problems

The localization described above takes place for Gaussian~i.e., fully flexible! chains. If
instead the Dirac chains1 are used, then the localization no longer takes place, as was shown
recently in the context of QHE in Ref. 61. The local rigidification of the initially flexible chains in
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the polymer melt happens due to the topological and geometrical constraints.62 In the context of
the problems discussed in this paper, it would be necessary to study spinors and Dirac-type
equations on Riemann surfaces.63 These problems are similar to that studied in the theory of
superstrings.64 Connections between CS andc51 conformal field theory were recently discussed
in Ref. 65, while in Ref. 66 connections between CS and two-dimensional QCD were established.
These results are also supported by the discovered connection between CS and two-dimensional
Yang–Mills theory.67

Finally, the metric~3.15! is similar to that discussed in connection with the gravitational
Aharonov–Bohm effect.68,69This observation is very helpful because of a wealth of accumulated
knowledge about the gravitational analog of QHE.70–73

Note added:When this paper was completed, another two very important papers came to my
attention. First, in the paper Gutkin74 a very detailed connection between the polygonal billiards
and the Riemannian surfaces is given, which is helpful for better understanding of Sec. IV.
Second, another application of the ideas discussed in this work can be inferred from reading of the
recently published Ref. 75.
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APPENDIX: SHORT TIME HEAT KERNEL EXPANSIONS AND THE CURVATURE
EFFECTS

Although the spectrum of the heat equation in the plane is well known, it is much less known
that the spectrum of the heat equation studied in the restricted polygonal domain with holes
exhibits rather remarkable properties. Following Ref. 76, let us consider the simplest case of the
heat equation for the propagatorG, given by

]G

]t
5¹ r

2G~r ,r 8,t !, ~A1!

in a planar circular domainV. Define now the trace ofG via

u~ t !5E E
V

dr G~r ,r ,t !, ~A2!

then for smallt it can be shown thatu(t) is given by the following universal expansion:

u~ t !.
uVu
4pt

2
L

8~pt !2
1
1

6
1O~ t1/2!, ~A3!

whereuVu is the area of a circular domain whileL is the total perimeter length. In case if, instead
of a circular domain, we would choose an annulus~i.e., a circular domain with a hole! then, it
could be shown that

u~ t !.
uVu
4pt

2
L

8~pt !2
2
1

6
1O~ t1/2!. ~A4!
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The change is sign@16 in ~A3! vs 21
6 in ~A4!# has a profound effect. Indeed, already Kac77 has

shown that for smallt ’s and ‘‘smooth’’ polygons withr holes one can write the following asymp-
totic result:

u~ t !.
uVu
4pt

2
L

8~pt !1/2
1
1

6
~12r !1O~ t1/2!, ~A5!

so that forr50 we obtain~A3! while for r52 we obtain~A4!. Following McKean and Singer,78

it can be shown that for smooth Riemannian open two-dimensional manifolds with a compact
one-dimensional boundary, the short time asymptotic expansion ofu(t) is given by

u~ t !.
uVu
4pt

2
L

8~pt !1/2
1
1

6
~12g!1O~ t1/2!, ~A6!

whereg is the number of handles~or genus! of the surface. Whence, by comparing~A5! and~A6!,
one is led to the conclusion that Arnold’s billiard, discussed in Sec. IV, at least locally, behaves as
the Riemannian surface of genus two, as claimed in the main text.

Following Dowker,20 it is also instructive to consider a propagator for a planar regular trian-
gular lattice of obstacles. For such an array of obstacles the short time asymptotic expansion of
u(t) is given by

u~ t !.
uVu
4pt

6
1

2
. ~A7!

This result cannot be compared directly with that given by~A6!. Instead, another formula by
McKean and Singer78 should be used:

u~ t !.
area

4pt
1
12h

3
, ~A8!

which is valid for smooth manifolds without a boundary. Comparison between~A7! and ~A8!
indicates thath'2. A more accurate comparison is not possible, unfortunately, in view of some
minor errors in Dowker’s work,~e.g., see Ref. 22 for a more complete analysis!.
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Universitéde Corse, Quartier Grossetti B.P. 52, 20250 Corte, France

~Received 15 February 1995; accepted for publication 28 February 1995!

In this article a nonlinear one-dimensional stationary transport equation with gen-
eral boundary conditions is considered where an abstract boundary operator relates
the incoming and the outgoing fluxes. Existence results are proved in the case
where the collision operator is of the Hammerstein type. In particular, it is shown
that these results remain valid for multidimensional geometry with vacuum bound-
ary conditions. Sufficient conditions are given in terms of collision frequency and
scattering kernel assuring the existence and uniqueness of solutions. The article
ends with the discussion of the case of multiplying boundary conditions. ©1996
American Institute of Physics.@S0022-2488~95!00607-6#

I. INTRODUCTION

In this article we are concerned with the existence and uniqueness results of the transport
equation

j
]c

]x
~x,j!1s„x,j,c~x,j!…1lc~x,j!5E

21

1

k„x,j,j8,c~x,j8!…dj8 ~1.1!

under general boundary conditions wherexP[2a, a] for a parameter 0,a,` and jP@21, 1#.
This equation describes the transport of particles~neutrons, photons, molecules of gas, etc.! in a
plane parallel domain with a width of 2a mean free paths. The unknown of this equation is a
scalar functionc~x,j! which represents the number~or probability! density of gas particles having
the positionx and the direction cosine of propagationj. ~The variablej may be thought of as the
cosine of the angle between the velocity of particles and thex-direction.! The functionss~.,.,.! and
k~.,.,.,.! are nonlinear functions ofc and are called, respectively, the collision frequency and the
scattering kernel.

The transport equation was considered in different fields of mathematical physics to describe
transport processes of particles. Thus, in kinetic theory of gas where we must describe the inter-
action of gas molecules with the solid walls bounding the region where the gas flows, the theo-
retical problem is to relate the distribution function of molecules leaving a solid surface to the
distribution of the molecules arriving at the same surface. However, the boundary conditions
which describe this interaction are very complex because the reaction of a gas molecule with a
wall is so complicated and determined by many competing factors as to appear random and then
their mathematical precise formulation is very controversial~c.f. Ref. 1!. Nevertheless, a model
which is often used consists of supposing that a part of the outgoing flux is re-emitted in a
deterministic way~specular reflexion!, whereas the other part is re-emitted in random directions
~diffuse reflections!.

In our framework, the boundary conditions are modeled by

c uG25Hc uG1, ~1.2!

whereG2 ~resp.G1! is the incoming~resp. outgoing! part of the phase space boundary,c uG2 ~resp.
c uG1! is the restriction ofc to G2 ~resp.G1!, andH is a linear bounded operator from a suitable

0022-2488/96/37(3)/1336/13/$10.00
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function space onG1 to a similar one onG2. The known classical boundary conditions~vacuum
boundary, specular reflections, periodic, diffuse reflexions, generalized and mixed type boundary
conditions2–6! are special examples of our general framework.

The purpose of the present article is to discuss theexistence and uniquenessresults of the
equation~1.1! supplemented withgeneral boundary conditions~1.2! in one-dimensional geometry
where an abstract boundary operatorH relates the outgoing flux to the incoming one. We recall
that for linear transport equation the existence and uniqueness theory is well known in a general
context~see, for instance, Ref. 7 or 8, Ch. 11 and 12!.

For purely absorbing walls, i.e.,H50, this problem has been considered by C. V. Pao,9 in the
space of continuous functions. In Sec. IV we extend Pao’s results to general boundary conditions
andLp-spaces in one-dimensional context.

To conclude this Introduction let us briefly discuss the content of this paper. We start with a
preliminary part~Sec. II! where we fix the different notations and introduce the function spaces
used in the sequel. Thus, we define the streaming operator and the boundary conditions in a rather
general setting and present some preliminary results. In Sec. III we investigate the boundary value
problem~1.1!–~1.2! in the case wheres~.,.,.!50 andk„x,j,j8,c(x,j8)…5k(j,j8) f „j,j8,c~x,j8!….
Existence results are given~Theorems 3.1, 3.2, 3.5, and 3.6! for a large class of scattering kernels
k~.,.! and functionsf ~.,.,.!. The multidimensional case is also considered with purely absorbing
walls. The analysis isessentially based on new compactnessresults obtained in Refs. 10 and 11
and Schauder’s fixed point theorem. Section IV is devoted to the existence and uniqueness results
for the problem~1.1!–~1.2!. The main results of this section are Theorems 4.1 and 4.2~where the
global and the local problems are considered!. In Sec. V, we discuss briefly how to extend the
results of Secs. III and IV to multiplying boundary conditions.

II. CHOICE OF FUNCTIONAL FRAMEWORK

We shall treat the problem~1.1!–~1.2! in the following functional setting.
Now let Xp :5Lp[(2a,a)3(21,1),dxdj], 1<p,`, and

Xp
o :5Lp@$2a%3~21,0!,ujudj#3Lp@$a%3~0,1!,ujudj#:5X1,p

o 3X2,p
o

equipped with the norm:

ico;Xp
oi5@ ic1

o ;X1,p
o ip1ic2

o ;X2,p
o ip#1/p5F E

21

0

uc~2a,j!upujudj1E
0

1

uc~a,j!upujudjG1/p;
Xp
i :5Lp@$2a%3~0,1!,ujudj#3Lp@$a%3~21,0!,ujudj#:5X1,p

i 3X2,p
i

equipped with the norm:

ic i ;Xp
i i5@ ic1

i ;X1,p
i ip1ic2

i ;X2,p
i ip#1/p5F E

0

1

uc~2a,j!upujudj1E
21

0

uc~a,j!upujudjG1/p.
We define the partial Sobolev spaceWp by

Wp5H cPXp such that j
]c

]x
PXpJ .

It is well known that any functionc in Wp has traces on$2a% and$a% in Xp
o andXp

i ~see Ref. 7
or 8!. They are denoted, respectively, byc o andc i and represent the outgoing and the incoming
fluxes ~‘‘ o’’ for outgoing and ‘‘i ’’ for incoming!.

Let H be the following boundary operator:
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5
H:Xp

o→Xp
i ,

u→Hu,

Hu5FH11 H12

H21 H22
GFu1u2G ,

whereH11PL(X1,p
o ;X1,p

i ), H12PL(X2,p
o ;X1,p

i ), H21PL(X1,p
o ;X2,p

i ) andH22PL(X2,p
o ;X2,p

i ).
We define the free streaming operatorTH by

5
TH :D~TH!,Xp→Xp ,

c→THc~x,j!52j
]c

]x
~x,j!,

D~TH!5$cPWp such that Hco5c i%,

wherec o5(c1
o ,c2

o)[ resp.c i5(c1
i ,c 2

i )# is in Xp
o ~resp.Xp

i !.
It is well known ~see Ref. 10, Section 1! that for iHi<1, $lPC/Rel.0%,r(TH), where

r(TH) stands for the resolvent set ofTH . For more informations concerning the operatorTH we
refer to Ref. 10.

We end this section by giving an elementary estimate which plays an essential role in the
proofs of the results discussed below.

Proposition 2.1:Assume thatiHi<1. Then, for alll such that Rel.0, we have

i~l2TH!21i<
1

Rel
. ~2.1!

L

For the reader’s convenience, let us first recall the following:
Let X be an arbitrary real or complex Banach space;X* denotes its dual space. For eachxPX

define

T ~x!5$x*PX* :ix* i25ixi25^x,x* &%.

Let xPX, T (x) is nonempty by Hahn–Banach theorem. A linear operatorA with domain and
range both inX is called dissipative if for everyxPD(A) there is ax*PT (x) such that
RêAx,x* &<0.

Let ~V,S,m! be a measure space andX5Lp(V,S,dm) with ~1<p,`!, T ~0!5$0% and for
0ÞuPX, T (u) has solely one element, that is,

T ~u!5$iui22puuup22u% for 1,p,`.

For p51, in order to show the dissipativity of the operatorA it is sufficient to show that
Rê Au,s0(u)&<0 for all u in D(A) where

s0~u!~x!5H 1 when u~x!.0,
0 when u~x!50,
21 when u~x!,0.

Proof of Proposition 2.1:Let us first show thatTH is dissipative onXp for pP@1,̀ !. To this
end we treat separately the casesp51 and 1,p,`.

~i! Let 1,p,` and considercPD(TH); we have
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^THc,ucup22c&5E
2a

a E
21

1

ucup22cS 2j
]c

]x D ~x,j!dxdj.

Taking into account the fact thatj(]/]x)(ucup)5pucup22cj(]c/]x), we may write

^THc,ucup22c&52
1

p E
2a

a E
21

1

j
]

]x
~ ucup!dxdj5

1

p
@ ic i iX

p
i

p
2ic0iX

p
0

p
#<0 ~becauseiHi<1!.

~ii ! Consider now the casep51. Let cPD(TH); then we have

^THc,s0~c!&52E
2a

a E
21

1

j
]

]x
~c!~x,j!s0~c!~x,j!dxdj

52E
2a

a E
21

1

j
]

]x
ucudxdj5@ ic i iX

1
i 2ic0iX

1
0#<0 ~becauseiHi<1!.

Therefore, one concludes thatTH is dissipative onXp(1<p,`).
Now, considercPD(TH) and letw5lc2THc ~Rel.0!:

Relici25Rel^c,c* &5Re~l^c,c* &!

<Re@l^c,c* &2^THc,c* &# ~becauseTH is dissipative!

5Rê w,c* &<iwiici .

Consequently,ici<iwi/Rel, which completes the proof. Q.E.D.

III. TRANSPORT EQUATIONS INVOLVING HAMMERSTEIN OPERATORS

Here and throughout this article, we use the definitions and notations introduced above. As
stated in the Introduction we shall prove several existence results for the problem~1.1!–~1.2! in
the situation wheres~.,.,.!50 andk„x,j,j8,c(x,j8)…5k(j,j8) f „j,j8,c~x,j8!…. The functionsk~.,.!
and f ~.,.,.! will be made precise below. Our analysis is essentially based on new compactness
results obtained in Refs. 10–12.

A. Slab geometry

In this paragraph we assume that the boundary operatorH satisfies the estimateiHi<1. Let
us consider the following boundary value problem:

H lc1j
]c

]x
~x,j!5E

21

1

k~j,j8! f „x,j8,c~x,j8!…dj8,

c i5H~c0!, Rel.0,

~3.1!

wherexP[2a, a], j andj8P@21, 1# while f is a measurable function defined by

H f :V3C→C,

~ t,u!→ f ~ t,u!

with V5[2a, a]3@21, 1#. We denote byK the linear bounded operator
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H K:Xp→Xp ,

c→E
21

1

k~j,j8!c~x,j8!dj8,

where the scattering kernelk:~21,1!3~21,1!→R is assumed to be measurable.
Let r.0; we denote bySr the ballSr 5 $c P Xp ,iciXp < r %.
For our subsequent analysis, the following definitions are required.
Definition 3.1:12A bounded operatorK, defined as above, is said to be regular if its restriction

to Lp~21,1! is compact. L
Definition 3.2:We say thatf :V3C→C satisfies the Carathe´odory conditions (C) provided

that

~C! H t→ f ~ t,u! is measurable onV for all uPC,
u→ f ~ t,u! is continuous onC for almost all tPV.

L

If f satisfies the Carathe´odory condition, then we define an operatorN , called the Nemytskii
operator on the set of functionsc:V→C by ~N c!~x,j!5f „x,j,c(x,j)… for every ~x,j!PV.

In Lp-spaces, the Nemytskii operator has been extensively studied~cf., e.g., Ref. 13 and the
bibliography therein!. We now quote a result~Proposition 3.1! which states a basic fact for the
theory of these operators inLp-spaces.

Proposition 3.1:~Ref. 14, p. 35! If the operatorN acts fromLp~V! to Lq~V! with 1<q,`,
thenN is continuous and takes bounded sets into bounded sets. L

Throughout this subsection we suppose

H K is regular onXp ,

1,p,`,

f satisfies the condition~C!.

Theorem 3.1:Suppose that the operatorN acts fromXp into Xp . Then for eachr.0 there
is l0.0 such that the problem~3.1! has at least one solution onSr for all l satisfying Rel.l0.L

Proof: Let l be a complex number. It is clear that if Rel.0, lPr(TH) ~cf. Sec. II! and
consequently, the problem~3.1! may be transformed into

H c5F~l!c,

c i5H~c0!,

whereF(l)5(l2TH)
21KN .

Let r.0. According to~2.1! and the Proposition 3.1 we obtain for everycPSr

iF~l!ci<i~l2TH!21iiKiiN ~c!i<
iKiM ~r !

Rel
, ~3.2!

where M (r ) denotes the upper bound ofN on Sr . Hence, by settingl05iKiM (r )/r , for
Rel.l0, ~3.2! shows thatF~l! mapsSr into itself. On the other hand, Proposition 3.1 and Ref.
10, Theorem 2.1, imply thatF~l! is completely continuous onSr . Now, by using Schauder’s
theorem, one concludes thatF~l! has at least one fixed pointc*PD(TH)ùSr and the proof is
complete. Q.E.D.

The next corollary is a slightly more general form of the previous theorem.
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Corollary 3.1: Suppose that there is a positive numbera and a measurable function
b:V→@0,̀ ! in Xp such that

u f „x,j,c~x,j!…u<ub~x,j!u1auc~x,j!u ;~x,j!PV and cPXp . ~3.3!

Then for eachr.0 there isl0.0 such that the problem~3.1! has at least one solution onSr for all
l satisfying Rel.l0. L

Proof: Thanks to~3.3!, N is continuous onXp and takes bounded sets into bounded sets~cf.
Ref. 14, Theorem 5.2, p. 35!. Now the rest of the proof may be sketched in a similar way to that
of the Theorem 3.1. The details are therefore omitted. Q.E.D.

Remark 3.1:The hypothesis~3.3! is a sufficient condition which guarantees thatN is con-
tinuous and bounded fromXp into Xp . In fact, this condition is not only sufficient but also
necessary forN to mapXp into Xp ~see, for instance, Ref. 14, p. 35!. L

Theorem 3.2:Suppose thatf satisfies the condition~3.3!. Then for eachr.0 andlPr(TH)
there ism.0 such that the problem

H lc1j
]c

]x
~x,j!5mE

21

1

k~j,j8! f „x,j8,c~x,j8!…dj8,

c i5H~c0!

~3.4!

has at least one solutionc*PD(TH)ùSr verifying ic* i5r . L
Proof:As in Corollary 3.1,N is continuous onXp and maps bounded sets into bounded sets.

This together with Ref. 10, Theorem 2.1, implies that the mapF(l):5(l2TH)
21KN is com-

pletely continuous onXp . Let r.0 and denote by

G~c!5H r F~l!~c!

iF~l!~c!i if cPSr and F~l!~c!Þ0,

0 if cPSr and F~l!~c!50.

G is also completely continuous and takes the convex setSr into itself. Hence by Schauder’s
theoremG has a fixed pointc* , i.e., Gc*5c* . Clearly, ic* i5r . Settingm5r /iF(l)c* i , we
obtain (l2TH)

21KN ~c* !5m21c* . Consequently,c*PD(TH)ùSr
1 and

lc*1j
]c*

]x
~x,j!5mE

21

1

k~j,j8! f „x,j8,c* ~x,j8!…dj8,

which achieves the proof. Q.E.D.
The remainder of this section is devoted to the existence of positive solutions of the problem

~3.1!. Let Xp
1 denote the positive cone of the Banach spaceXp . A bounded operatorA:Xp→Xp is

called positive if and only ifA(Xp
1),Xp

1 ~and also if and only ifc<w impliesAc<Aw!.
Let us now assume the positivity of the boundary operatorH. As a consequence of this

assumption the operator~l2TH!21 is positive onXp for all l.0 ~cf. Ref. 10, p. 57!. Finally, for
all r.0, we define the setSr

1 by Sr
1 :5SrùXp

1.
Theorem 3.3:Suppose thatK is positive andN acts fromXp into Xp with N (Xp

1),Xp
1.

Then for eachr.0 there isl0.0 such that the problem~3.1! has at least one solution onSr
1 for

all l.l0. L
In the same way, we have also the following.
Theorem 3.4:Suppose thatK is positive andN acts fromXp into Xp with N (Xp

1),Xp
1.

Then for eachr.0 andl.0 there ism.0 such that the problem~3.4! has at least one solution
c*PD(TH)ùSr

1 verifying ic* i5r . L
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The proof of the Theorem 3.3~resp. Theorem 3.4! may be modeled very closely after the
proof of the Theorem 3.1~resp. Theorem 3.2!. We replace solely the setSr by Sr

1 andlPr(TH)
by l.0.

B. Multidimensional geometry

In this paragraph we shall show that the results of the previous subsection are also valid for
multidimensional geometry with vacuum boundary conditions,H50. In fact, the free-streaming
operatorT0 ~i.e.,H50! is defined by

5
T0 :D~T0!,Lp~D3V!→Lp~D3V!,

c→T0c~x,v !52v
]c

]x
~x,v !,

D~T0!5H cPLp~D3V! Yv
]c

]x
PLp~D3V!,c uG250J ,

(x,v)PD3V, where the configuration spaceD is an open and bounded subset ofRN, N>1, the
velocity space V is an arbitrary open subset ofRN while the set G2 is given by
G25$(x,v)P]D3V/v is ingoing atxP]D%, and finallyc uG2 denotes the restriction ofc to G2.

It is well known thatr~T0!.$lPC/Rel.0% and for Rel.0, i~l2T0!
21i<1/Rel ~see, for

instance, Ref. 7 or 12!.
Now we consider the problem

H lc1v
]c

]x
~x,v !5E

V
k~v,v8! f „x,v8,c~x,v8!…dv8,

c uG250, Rel.0,

~3.5!

wheref is defined as in the previous paragraph withV5D3V. The functionk~.,.! is the kernel of
a bounded operatorK defined onLp(D3V) by c→*Vk(v,v8)c(x,v8)dv8. We assume that the
restriction of K to Lp(V) is compact.

Theorem 3.5:Suppose that the operatorN acts fromLp(D3V) into Lp(D3V). Then for
eachr.0 there isl0.0 such that the problem~3.5! has at least one solution onSr for all l
satisfying Rel.l0. L

Proof: Note that forl such that Rel.0 the problem~3.5! may be transformed into

c5F~l!c, c uG250,

with F(l)5(l2TH)
21KN .

The remainder of the proof is similar to that of Theorem 3.1. We must solely replace Ref. 10,
Theorem 2.1, by Ref. 12, Lemma 2.1. L

Again by using Ref. 12, Lemma 2.1, and following the same strategy as in the proof of
Theorem 3.2, we can establish the following result:

Theorem 3.6:Suppose thatf fulfills the condition~3.3!. Then for eachr.0 andlPr~T0!,
there ism.0 such that the problem

H lc1v
]c

]x
~x,v !5mE

v
k~v,v8! f „x,v8,c~x,v8!…dv8,

c uG250,

~3.6!
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has at least one solutionc*PD(T0)ùSr verifying ic* i5r . L
It is well known thatT0 generates a positive strongly continuous semigroup onLp(D3V) ~cf.

Ref. 12!, so ~l2T0!
21 is a positive operator onLp(D3V). If, further, we suppose thatK andN

are also positive onLp(D3V). Then the use of Ref. 12, Lemma 2.1, together with Schauder’s
theorem and the reasoning above makes it easy to deduce the following corollary.

Corollary 3.2: Let r be a real number satisfyingr.0. Then
~i! there isl0.0 such that the problem~3.5! has at least one solution onSr

1 for all l satisfying
Rel.l0, and

~ii ! for any l.0 there ism.0 such that the problem~3.6! has at least one solution
c*PD(T0)ùSr verifying ic* i5r . L
We close this section by pointing out that the results obtained in this section are open forp51.

IV. EXISTENCE AND UNIQUENESS RESULTS

Consider again the problem~1.1!–~1.2! which can be rewritten as

H ~l2TH!c~x,j!5 f „x,j,c~x,j!…,

cPD~TH!, Rel.0,
~4.1!

where

5
f ~x,j,c!5 f 1~x,j,c!1 f 2~x,j,c!,

f 1~x,j,c!52s„x,j,c~x,j!…,

f 2~x,j,c!5E
21

1

k„x,j,j8,c~x,j8!…dj8.

~4.2!

In the following, we shall give some sufficient conditions on the functionss~.,.,.! and k~.,.,.,.!
which guarantee the existence of a unique solution of the problem~4.1!. To this purpose, we make
the following assumptions.

~H1!: s~x,j,c! is defined forxP[2a, a], jP@21, 1#, cPXp with values inXp , and there is
a functionr~x,j! satisfying

r1 :5 ess2sup
~x,j!P@2a, a#3@21, 1#

ur~x,j!u,`,

such that

us~x,j,c1!2s~x,j,c2!u<ur~x,j!uuc12c2u for all c1 ,c2 in Xp . ~4.3!

~H2!: k~x,j,j8,c! is defined for xP[2a, a], j, j8P@21, 1#, cPXp with values in
Lp([2a, a]3[21, 1]3[21, 1],dxdjdj8), and there exists a functionx~x,j,j8! satisfying

x1 :5H E
21

1

ess2sup
xP@2a,a#

S E
21

1

ux~x,j,j8!uqdj8D p/qGdjJ 1/p,` for 1,p,`,

x2 :5H E
21

1

„ ess2sup
xP@2a,a#,jP@21,1#

ux~x,j,j8!u…djJ ,` if p51,

such that
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uk~x,j,j8,c1!2k~x,j,j8,c2!u<ux~x,j,j8!uuc12c2u for all c1 ,c2 in Xp . ~4.4!

Under the hypotheses~H1! and ~H2! we may define a mappingF from Xp into itself by

~Fc!~x,j!5 f „x,j,c~x,j!… ;cPXp , ~4.5!

where f is defined in~4.2!. The following lemma shows thatF is Lipschitz continuous inXp .
Lemma 4.1:Assume that~H1! and ~H2! hold. Then the mappingF satisfies

iF~c1!2F~c2!iXp<2@~r1!
p1~x1!

p#1/pic12c2iXp for all c1 ,c2 in Xp ~4.6!

~1,p,`! and

iF~c1!2F~c2!iX1<~r11x2!ic12c2iX1 for all c1 ,c2 in X1 for p51. ~4.7!

Proof: Let c1 andc2 be two elements ofXp . Using ~4.5! we may write

uF~c1!~x,j!2F~c2!~x,j!u5u f ~x,j,c1!2 f ~x,j,c2!u.

Now, by ~H1! and ~H2! we have

uF~c1!2F~c2!u<ur~x,j!uuc12c2u1E
21

1

ux~x,j,j8!uuc12c2udj8. ~4.8!

Let us first consider the case 1,p,`.
The use of the inequality (ua1bu)p<2p(uaup1ubup) and Holder’s inequality gives

uF~c1!2F~c2!up<2pF ur~x,j!upuc12c2up1S E
21

1

ux~x,j,j8!uuc12c2udj8D pG
<2pF ~r1!

puc12c2up1S E
21

1

ux~x,j,j8!uqdj8D p/qS E
21

1

uc12c2updj8D G
<2pF ~r1!

puc12c2up1ess2sup
xP@2a,a#

H S E
21

1

ux~x,j,j8!uqdj8D p/qJ
3S E

21

1

uc12c2updj8D G .
Therefore, Fubini’s theorem gives

iF~c1!2F~c2!iXp
p <2pF ~r1!

pic12c2iXp
p 1E

21

1

ess2sup
xP@2a,a#

H S E
21

1

ux~x,j,j8!uqdj8D p/qJ
3djic12c2iXp

p G .
Consequently,

iF~c1!2F~c2!iXp<2@~r1!
p1~x1!

p#1/pic12c2iXp,

which proves~4.6!.
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Let p51. After integrating both sides of Eq.~4.8! with respect tox andj, we obtain

E
2a

a E
21

1

uF~c1!2F~c2!udxdj

<r1ic12c2iX11E
2a

a E
21

1

ess2sup
jP@21,1#

ux~x,j,j8!udxdj8E
21

1

uc12c2udj8

<r1ic12c2iX11ic12c2iX1E21

1

ess2sup
~x,j!P@2a,a#3@21,1#

ux~x,j,j!udxdj

<~r11x2!ic12c2iX1,

which implies~4.7! and completes the proof. Q.E.D.
Let g~.,.! be any function inXp , and set

f~x,j!5 f „x,j,g~x,j!…

so thatf(x,j)5F(g)(x,j). Consider the problem

H lc1j
]c

]x
5f,

c i5Hc0, Rel.0.

~4.9!

Since Rel.0, then lPr(TH) and therefore the problem~4.9! has a unique solution
c5~l2TH!21f in D(TH).

Now we are in a position to prove the following result:
Theorem 4.1: Assume that the hypotheses~H1! and ~H2! hold. Then, forl satisfying

Rel.2[(r1)
p1(x1)

p] 1/p ~1,p,`!, the problem~4.1! has a unique solutionc~x,j! in D(TH).
For p51, the same result holds if Rel.~r11x2!.
Proof: Let gPXp(1,p,`) be given and letc in D(TH) be the unique solution of the

problem~4.9! ~see above!. Then, we have

~l2TH!c5f5F~g!.

However, Rel.0. Hence the operator~l2TH! is invertible and

c5~l2TH!21F~g!. ~4.10!

The use of Proposition 2.1 allows us to write for anyg1 ,g2 in Xp

i~l2TH!21F~g1!2~l2TH!21F~g2!iXp<
1

Rel
iF~g1!2F~g2!iXp

<
2@~r1!

p1~x1!
p#1/p

Rel
ig12g2iXp.

Therefore, for Rel.2[(r1)
p1(x1)

p] 1/p, the operator (l2TH)
21F is a contraction mapping on

Xp . It follows from the contraction mapping principle that~4.10! has a unique fixed pointc* , i.e.,

c*5~l2TH!21F~c* !.

This implies thatc*PD(TH) and (l2TH)(c* )5F(c* ), i.e.,c* is the solution of the problem
~4.1!.
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For p51, the same calculations as above conduct to the equation

i~l2TH!21F~g1!2~l2TH!21F~g2!iX1<Fr11x2

Rel G ig12g2iX1.

Now, a similar reasoning as previously gives the result and completes the proof. Q.E.D.
Remark 4.1:~a! In cases contains a linear part, that is,s(x,j,c)5s1(x,j)c1s2(x,j,c)

wheres1~x,j! is essentially bounded in [2a, a]3@21, 1# ands2~x,j,c! satisfies~H1!, then the
existence and uniqueness of a solution stated in Theorem 4.1 remain true sinces1~x,j! is also
Lipschitz continuous. Observe that in this casel must satisfy Rel.2l* where

l*5 ess2inf
~x,j!P@2a, a#3@21, 1#

Re„s1~x,j!….

~b! In caseF(c)5K(c) whereK is a bounded linear operator onXp , then it is Lipschitz
continuous with Lipschitz constantiKi . Thus Theorem 4.1 is an extension to the linear case. On
the other hand, ifF(c)5K(c)1F0(c), whereF0 is Lipschitz continuous, then so isF~c! and the
result remains true. L

Remark 4.2:We have seen that under the hypotheses of the Theorem 4.1, (l2TH)
21F is a

contraction mapping, for suitablel in r(TH), on the Banach spaceXp ~1<p,`!. Let c0 be a
given function inXp and define the sequencecn successively by

cn5~l2TH!21F~cn21!, n51,2,...,

wherelPr(TH).
Therefore, the sequence$cn% converges to the unique solutionc~x,j! of the problem~4.1! for

all l such that Rel.2[(r1)
p1(x1)

p] 1/p if 1,p,` and Rel.@r11x2# for p51. Moreover,

icn2ciXp<
t

Rel1t S t

Rel D n21

ic12ciXp, ~4.11!

where

t5 H2@~r1!
p1~x1!

p#1/p, if 1,p,`,
@r11x2#, if p51.

The estimate~4.11! follows immediately from the standard proof of the contraction mapping
principle and the fact thatt/Rel is the contraction constant of the operator (l2TH)

21F. L
In the hypotheses~H1! and~H2! the functionss~.,.,.! andk~.,.,.,.! are assumed to satisfy some

global Lipschitz conditions onXp . In case~4.3! and ~4.4! hold only for c1 and c2 in some
neighborhood of the origin ofXp , we may modifys andk away from the origin, so that they
satisfy Lipschitz conditions on the hole spaceXp , and then establish the existence of a unique
‘‘local solution’’ to the problem~4.1!.

Let r be a non-negative real number and denote bySr the set

Sr5$cPXp ,iciXp<r %.

Assume that

~H3!H for some r.0,
us~x,j,c1!2s~x,j,c2!u<ur~x,j!uuc12c2u ~;c1 ,c2PSr !,
uk~x,j,j8,c1!2k~x,j,j8,c2!u<ux~x,j,j8!uuc12c2u ~;c1 ,c2PSr !,

1346 Khalid Latrach: On a nonlinear stationary transport equation

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



wherer~x,j! andx~x,j,j8! satisfy the same hypotheses as in~H1! and ~H2!.
Then we have the following.
Theorem 4.2:Assume that~H3! holds for somer.0. Then, the problem~4.1! has a unique

solutionc* in D(TH) for any l such that Rel.4[(r1)
p1(x1)

p] 1/p ~1,p,`!. Moreover, this
solution exists so long asic* iXp<r .

For p51, the same result holds if Rel.2~r11x2!. L
Proof: Define a mappingQ from Xp to Xp ~1,p,`! by

Q~c!5H f ~x,j,c!, if ici<r ,

f S x,j,r c

ici D , if ici.r .

ThenQ is an extension off from Sr to the hole spaceXp . Now, let c1, c2 in Xp ~1,p,`!. A
simple calculations give

iQ~c1!2Q~c2!iXp<
2@~r1!

p1~x1!
p#1/p

Rel
iR~c1!2R~c2!iXp,

whereR is the radial retraction mapping fromXp on Sr defined by

R~c!5H c if ici<r ,

r
c

ici if ici.r .

Clearly,RsatisfiesiR(c1) 2 R(c2)iXp < 2ic1 2 c2iXp for allc1,c2 inXp ~cf. Ref. 15!. Therefore,
we have

iQ~c1!2Q~c2!iXp<
4@~r1!

p1~x1!
p#1/p

Rel
ic12c2iXp.

Consider now the problem

H ~l2TH!c5Q~c!,

cPD~TH!, Rel.0.

It follows from the proof of Theorem 4.1 that for Rel.4[(r1)
p1(x1)

p] 1/p, the preceding prob-
lem has a unique solutionc* in Xp .

For p51 the same calculations as previously leads to

iQ~c1!2Q~c2!iX1<2
r11x2

Rel
ic12c2iX1,

which gives the desired result. Q.E.D.

V. MULTIPLYING BOUNDARY CONDITIONS

The aim of this section is to show that the results of Secs. III and IV hold also for multiplying
boundary conditions. To this purpose, in all that follows, we shall assume that the boundary
operatorH verifies the estimateiHi.1. Let us first point out a few preliminary facts.

Let l052l*1~1/2a!Log(iHi) and defineGl0
:5$lPC/Rel.l0%. As it has been proven,

~cf., Ref. 11!, the resolvent set of the operatorTH , r(TH), containsGl0
.
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Remark 5.1:Unlike in Sec. II, generally the strip 0,Rel<l0 is not included in the resolvent
set ofTH . However, with additional hypotheses on the boundary operatorH, we can obtain more
information about its structure~see Ref. 11!. L

We note that the crucial arguments in the previous analysis~Secs. III and IV! are the estimate
~2.1! and the compactness results obtained in Ref. 10 for the class of regular collision operatorsK.
So, in order to extend the previous results to multiplying boundary conditions, we must first
establish the analogous of these arguments to the case of multiplying boundary conditions. Let us
remark that the compactness results used above hold true even ifiHi.1 for all l P Gl0

~cf., Ref.
11, Theorem 3.1! while the lemma below, proven in Ref. 11, gives the analogous of the estimate
~2.1! for l P Gl0

.
Lemma 5.1:~Ref. 11, Proposition 3.1! Let H be a multiplying bounded boundary operator.

Then there existsl0PR such that for Rel.l0, we have

i~l2TH!21i<
n

Rel
, ~5.1!

wheren is a non-negative constant. L
Now we are in a position to assert that the results obtained in Sec. III A remain valid if instead

of consideringiHi<1, we supposeiHi.1. Their proofs may be modeled very closely after those
of these results. It suffices to replace the statementlPr(TH) by lPG0, Eq.~2.1! by ~5.1!, and Ref.
10, Theorem 2.1, by Ref. 11, Theorem 3.1.

In the same way Theorems 4.1 and 4.2 hold also true for multiplying boundary conditions
with Rel.max„l0, 2n[(r1)

p1(x1)
p] 1/p! if 1,p,` and Rel.max~l0,n@r11x2#! if p51. For

the proofs, we must solely replace the statement Rel.0 by lPG0 and Eq.~2.1! by ~5.1!.
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The solution of the classical open-chainn-body Toda problem is derived from an
ansatz and is found to have a highly symmetric form. The proof requires an unusual
identity involving Vandermonde determinants. The explicit transformation to
action-angle variables is exhibited. ©1996 American Institute of Physics.@S0022-
2488~96!02103-9#

The Toda chain is one of the paradigmatic examples of an integrable many-body system of
interacting particles. The discovery of its conserved integrals of motion1,2 and its subsequent
solution3–5 were important steps in the development of the theory of integrable systems.6 An
almost universal feature of analytical studies of the Toda system is the use of the Lax pair
formalism. In this paper, an alternative derivation of the solution of the classical open-chain
n-body Toda system is given.

The derivation proceeds essentially from an ansatz about the form of the solution and there-
fore lacks the power and generality of the Lax pair treatment. The solution, however, has an
elegant structure that is not evident in previous representations. More, it can be interpreted as the
classical canonical transformation from the Toda system to a free theory. This is an important clue
to constructing the classical and quantum solutions by a sequence of elementary canonical
transformations.7 Following the successful solution of the three-body Toda problem with this
approach,8 work is in progress on the classical and quantum open-chainn-body problems.

The Hamiltonian for the~n11!-body open chain Toda system is

H5
1

2 (
k51

n11

pk
21 (

k51

n

eqk2qk11. ~1!

The arguments of the exponential potentials can be interpreted as expressions for the root vectors
of An in the Cartan basis.

5 A coordinate transformation will put the root vectors into the Chevalley
basis and separate out the motion of the center of mass. The transformation is given by

q1°q11
qn11

n11
,

qk°2qk211qk1
qn11

n11
~2<k<n!,

qn11°2qn1
qn11

n11
, ~2!

pk°
1

n11 S (
j5k

n

~n112 j !pj2 (
j51

k21

jp j D 1pn11 , ~1<k<n!,
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pn11°
21

n11 S (
j51

k21

jp j D 1pn11 .

The transformed Hamiltonian is

Ha5
1

2~n11! S (
k51

n

k~n112k!pk
21 (

k52

n

(
j51

k21

2 j ~n112k!pjpkD
1
n11

2
pn11
2 1e2q12q21 (

k52

n21

e2qk2qk212qk111e2qn2qn21. ~3!

This leads to the equations of motion,

q̈152e2q12q2,

q̈k52e2qk2qk212qk11 ~2<k<n21!, ~4!

q̈n52e2qn2qn21.

The solution of these equations has the remarkably simple form

e2qm5 (
j 1,•••, j m

n11

f j 1••• f jmD2~ j 1 ,...,j m!e~m j 1
1•••1m j m

!t, ~5!

whereD2( j 1 ,...,j m) is the square of the Vandermonde determinant,

D2~ j 1 ,...,j m!5 )
j i, j k

~m j i
2m j k

!2, ~6!

and f k andmk are arbitrary constants, satisfying

)
k51

n11

f k5D22~1,...,n11!,

~7!

(
k51

n11

mk50.

~There are additional constraints on the range of thef k if one requires theqm be real.! The solution
has 2n free parameters, as required. The solution in the original variables is determined from the
transformation~2! to be composed of ratios of these solutions times a factor for the center of mass
motion.

To derive the solution, make the ansatz

e2qm5 (
j 1,•••, j m

n11

f j 1••• j m
e~m j 1

1•••1m j m
!t, ~8!

where themk are arbitrary real numbers. Note that this ansatz defines a variable,

e2qn115 f 1•••n11e
~m11•••1mn11!t. ~9!
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Such a variable might naturally appear in the final equation of~4! to give q̈n
52e2qn2qn212qn11. That this variable does not appear can be interpreted as meaning that one has
setqn1150. This ultimately is the origin of the restrictions~7! on thef k andmk . The equation for
q̈1 is also of the form of the others if there is aq050. The open-chain Toda system thus has fixed
end points in this sense. The ansatz and solution are compatible with the slightly more general
problem, wheree2qn11 5 cekt. Then, in the solution, one would havePk51

n11f k5cD22(1,...,n11)
and(k51

n11mk5k.
Considere2qm. Differentiating twice and multiplying bye2qm leads to

2q̈me
22qm5e2qm] t

2e2qm2~] te
2qm!2. ~10!

But from the equations of motion,2 q̈me
22qm 5 e2qm212qm11 ~usingq0505qn11!. Substituting

the ansatz into the resulting equation gives (2<m<n21)

(
j 1,•••, j m
k1,•••,km

j 1,k1

n11

f j 1••• j m
f k1•••kmS (i51

m

m j i
2(

i51

m

mki D 2expS S (i51

m

m j i
1(

i51

m

mki D t D

5 (
j 1,•••, j m21
k1,•••,km11

n11

f j 1••• j m21
f k1•••km11

expS S (
i51

m21

m j i
1 (

i51

m11

mki D t D . ~11!

The equation form51 is

(
j 1, j 2

n11

f j 1f j 2~m j 1
2m j 2

!2e~m j 1
1m j 2

!t5 (
j 1, j 2

n11

f j 1 j 2e
~m j 1

1m j 2
!t. ~12!

The equation form5n involves f j 1••• j n
, where 1< j 1,•••, j n<n11. As one is choosingn

integers out ofn11, this is more succinctly labeled byf r̂ , wherer is the integer that is not in the
set. Similarly,f rŝ means the two integersrÞs do not appear, and the indices off are the remain-
ing n21 integers. With this notation, the equation form5n is

(
r,s

n11

f r̂ f ŝ~2m r1ms!
2expS S 2m r2ms12(

k51

n11

mkD t D 5 (
r,s

n11

f rŝexpS S 2m r2ms1 (
k51

n11

mkD t D .
~13!

Assume themk are all distinct and that they have no accidental degeneracies in their linear
combinations, such asm j 1

1 m j 2
5 m j 3

1 m j 4
. The asymptotic behavior of the exponentials can be

used to equate like terms in the sums. The degenerate cases can be recovered later by continuity
in themk . Let

f j 1••• j m
5 f j 1••• f jmD2~ j 1 ,...,j m!, ~14!

where thef j k are~so far! arbitrary constants andD2( j 1 ,...,j m) is the square of the Vandermonde
determinant~6!. With this definition, them51 equation~12! is easily verified. Them5n equation
~13! is satisfied if the constraints~7! on the f k andmk are imposed. The proof that Eq.~11! is
satisfied reduces to a hierarchy of identities for Vandermonde determinants.

On the left-hand side of~11!, there are two sets of indices$j a% and$kb%. Sincej 1,k1 , at most,
they can havem21 indices in common. The asymptotic behavior of the exponential is given by a
sum over themi indexed by the combined setS5$ j a ,kb%. Different partitions ofS into sets$j a%
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and$kb% ( j 1,k1) will have the same asymptotic behavior. The number of such terms will depend
on the number of distinct indices between the two sets, and these constitute separate cases. Let 2r
denote the number of distinct indices.

Consider the caser51, labeling the common indicess1 ,...,sm21 and the distinct onesj 1 and
k ( j 1,k). There is a unique term on both sides of~11! with the asymptotic behavior given by this
set of indices, and one has

f j 1s1•••sm21
f $ks1•••sm21%

~m j 1
2mk!

25 f s1•••sm21
f $ j 1ks1•••sm21%

, ~15!

where the curly brackets indicate that the indices should be arranged in increasing order. Using
~14!, the constant factorsf i cancel and one has a relation between Vandermonde determinants,

D2~ j 1 ,s1 ,...,sm21!D
2~k,s1 ,...,sm21!~m j 1

2mk!
25D2~s1 ,...,sm21!D

2~ j 1 ,k,s1 ,...,sm21!.
~16!

Using the relation

D2~k,s1 ,...,sm21!5D2~s1 ,...,sm21! )
i51

m21

~mk2msi
!2 ~17!

and its relatives, the dependence on the common indices is seen to cancel and one is left with the
identity

~m j 1
2mk!

25D2~ j 1 ,k!. ~18!

It is a general feature for allr that the dependence on the constant factors and the common
indices cancels on both sides, so without loss of generality one can focus on the distinct indices
alone. Reindex the setS of distinct indices by the integers 1 to 2r . PartitionS into two sets
a5$1,a2,...,ar% and b5$b1,...,br% and denote the collection of such partitionsPab . Separately
partitionS into setsg5$g1,...,gr21% andd5$d1,...,dr11%, calling the collection of partitionsPgd .
DenoteD2(a;r )5D2(1,a2 ,...,a r), and similarly for the rest. The numberr of indices involved in
the Vandermonde determinant is made explicit to reduce confusion. Both sides of Eq.~11! will be
equal if the following identity between Vandermonde determinants holds:

(
Pab

D2~a;r !D2~b;r !S (
a

ma2(
b

mbD 25(
Pgd

D2~g;r21!D2~d;r11!. ~19!

It seems likely that this identity has a group theoretical interpretation, but in its absence, the
identity can be proved inductively as follows.9 Divide both sides byD2(S;2r ). This gives the
equation

(
Pab

~(ama2(bmb!2

Pa,b~ma2mb!2
5(

Pgd

1

Pg,d~mg2md!2
. ~20!

Denote the left-hand side of the equation byLr and the right-hand side byRr . The equation
L15R1 holds trivially. Assume thatLr215Rr21. The inductive step will be made by considering
the pole structure ofLr andRr . SinceLr andRr are analytic functions of themi without zeros, if
they can be shown to have the same residue at all of their poles, they must be equal.

Choose two indices from the setS, neither equal to 1, and let their associatedmi be labeledz
anda. ~The index 1 is special because it has a preferred role in the partitioning. Which of the
original mi is associated to the index 1 is, however, arbitrary, so one can investigate the pole
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structure at themi missed here by reindexing the setS.! Let S8 denote the setS with these two
indices removed, and leta8,b8,g8,d8 denote partitions ofS8 as defined above, withr replaced by
r21.

Consider the residue ofLr at z5a. Lr has a double pole atz5a if zPa andaPb or vice
versa. In the former case, the residue is computed to be

Res
z5a

Lr uzPa,aPb5
2

PS8~a2mS8!
2 (
Pa8b8

S 1

(a8ma82(b8mb8
2(

b8

1

a2mb8
D ~(a8ma82(b8mb8!

2

Pa8,b8~ma82mb8!
2 .

~21!

In the alternative casezPb,aPa, the residue is

Res
z5a

Lr uzPb,aPa5
2

PS8~a2mS8!
2 (
Pa8b8

S 2
1

(a8ma82(b8mb8
2(

a8

1

a2ma8
D

3
~(a8ma82(b8mb8!

2

Pa8,b8~ma82mb8!
2 . ~22!

Adding these, the residue ofLr at z5a is

Res
z5a

Lr52
2Lr21

PS8~a2mS8!
2 (

S8

1

a2mS8
. ~23!

The residue atz5a of Rr is similarly composed of terms wherezPg,aPd andvice versa.
The full residue is

Res
z5a

Rr52
2Rr21

PS8~a2mS8!
2 (

S8

1

a2mS8
. ~24!

This is seen to equal the residue ofLr at z5a, givenLr215Rr21. Since this result holds for all
pairs of the originalmi , one concludes thatLr5Rr and the induction is complete.

To exhibit the solution~5! as a canonical transformation from~3! to a Hamiltonian indepen-
dent of coordinates, one must introduce final coordinates and momenta and find a relation between
them and thef j andmk so that the transformation is canonical. It is clear that one can redefinef j
by an overall constant,

f j5ex̄j f̃ j . ~25!

The arguments of the exponentials then define the final coordinates,

xj5m j t1 x̄ j . ~26!

There should only ben independent degrees of freedom, and the coordinatexn1152( i51
n xi is

not independent because it is related to the others by the constraints~7!. It is useful, however, to
introduce a temporary form of the final Hamiltonian,

H̃5
1

2 (
i51

n11

m i
2. ~27!
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The mj are not the momenta conjugate toxj because if the constraintmn1152( i51
n m i were

eliminated, the wrongẋ j would follow from Hamilton’s equations. It is necessary to introducen
momentakj conjugate to thexj , so thatẋ j5]H̃/]kj5m j . The relation betweenkj andmj is found
to be

kj5m j2mn115m j1(
i51

n

m i , ~28!

or in reverse~jÞn11!,

m j5kj2
1

n11 (
i51

n

ki ,

~29!

mn1152
1

n11 (
i51

n

ki .

The final Hamiltonian is then

H̃5
n

2~n11! (
j51

n

kj
22

1

n11 (
i, j

kikj . ~30!

The next step is to find an equation for the evolution of the original momenta. This is easily
done by taking a time derivative of the solution~5!,

e2qm5 (
j 1,•••, j m

n11

f̃ j 1••• f̃ j mD2~ j 1 ,...,j m!exj 11•••1xjm, ~31!

to find

2q̇me
2qm5 (

j 1,•••, j m

n11

f̃ j 1••• f̃ j mD2~ j 1 ,...,j m!~m j 1
1•••1m j m

!exj 11•••1xjm. ~32!

Using Hamilton’s equations with the Hamiltonian~3!, one can expressq̇m in terms of the momenta
as

q̇m5
1

~n11! Fm~n112m!pm1 (
i51

m21

i ~n112m!pi1 (
i5m11

n

m~n112 i !pi G . ~33!

The result is

21

~n11! Fm~n112m!pm1 (
i51

m21

i ~n112m!pi1 (
i5m11

n

m~n112 i !pi Ge2qm

5 (
j 1,•••, j m

n11

f̃ j 1••• f̃ j mD2~ j 1 ,...,j m!~m j 1
1•••1m j m

!exj 11•••1xjm. ~34!

Finally, by requiring that the Poisson brackets be preserved under the transformation, one can
determine thef̃ j in terms of theki ’s. The result is that (jÞn11)
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f̃ j5~21! j21kj
21)

iÞ j

n

~kj2ki !
21,

~35!

f̃ n115)
i51

n

ki
21.

One confirms that thef j satisfy the constraint~7!. ~Note that the maximal symmetry is evident in
terms of themi ’s, sincekj5m j2mn11 and kj2ki5m j2m i .! The proof that this is the correct
form for the f j follows by constructing the Poisson brackets and collecting like exponentials.
Conditions are quickly found that thef j must be particular products of differences between
momenta. It is then seen that there are no additional requirements.

Using ~29! and ~35! in ~31! and ~34! gives the explicit canonical transformation between the
open-chainn-body Toda Hamiltonian in the Chevalley basis~3! and a Hamiltonian~30! that is
independent of coordinates. The reduction to action-angle variables is essentially complete. From
this point, one can attempt to construct a product of elementary canonical transformations that
produces this full transformation. This has been done for the three-body system8 and work is in
progress on then-body system. The value of such a product is that, when it is found in the
quantum system, it allows the construction of integral representations of the eigenfunctions of the
system.
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We present the results of further analysis of the integrability properties of theN54
supersymmetric Korteweg–de Vries~KdV! equation deduced earlier by two of us
@F. Delduc and E. Ivanov, Phys. Lett. B309, 312~1993!# as a Hamiltonian flow on
N54 SU~2! superconformal algebra in the harmonicN54 superspace. To make
this equation and the relevant Hamiltonian structures more tractable, we reformu-
late it in the ordinaryN54 and further inN52 superspaces. InN52 superspace it
is represented by a coupled system of evolution equations for a generalN52
superfield and two chiral and antichiral superfields, and involves two independent
real parameters,a and b. We construct a few first bosonic conserved charges in
involution, of dimensions from 1 to 6, and show that they exist only for the fol-
lowing choices of the parameters:~i! a54, b50; ~ii ! a522, b526; ~iii ! a522,
b56. The same values are needed for the relevant evolution equations, including
N54 KdV itself, to be bi-Hamiltonian. We demonstrate that the above three options
are related via SU~2! transformations and actually amount to the SU~2! covariant
integrability condition found in the harmonic superspace approach. Our results
provide a strong evidence that the uniqueN54 SU~2! super KdV hierarchy exists.
Upon reduction toN52 KdV, the above three possibilities cease to be equivalent.
They give rise to thea54 anda522 N52 KdV hierarchies, which thus prove to
be different truncations of the singleN54 SU~2! KdV one. © 1996 American
Institute of Physics.@S0022-2488~96!03002-1#

I. INTRODUCTION

The Korteweg–de Vries~KdV! hierarchy and its supersymmetric extensions were the subject
of many studies for the last several years. Besides supplying nice examples of integrable systems,
they bear a deep relation to conformal field theory, 2D gravity, matrix models, etc. One of the
remarkable properties of these systems is that they are related, via the second Hamiltonian struc-
ture, to the classical~super!conformal algebras: Virasoro algebra in the bosonic case andN>1
superconformal ones in the case ofN>1 superextended hierarchies.1–14 Generalized KdV type
systems related toWn algebras and their supersymmetric extensions also received a great deal of
attention~see, e.g., Ref. 15 and references therein!.

Up to now, supersymmetric KdV hierarchies have been constructed forN51, 2, 3, and 4,
based on the above mentioned relation to superconformal algebras.3–14An interesting peculiarity
is that, beginning withN52, the supersymmetric KdV equations turn out to be integrable~give
rise to the whole hierarchy or, in other words, have an infinite number of conservation laws in
involution! only for special choices of the parameters in the Hamiltonian. There exist only three
integrableN52 KdV hierarchies: thea54, a522, anda51 ones,8–10with a a parameter entering
into theN52 KdV Hamiltonian, despite the fact that for any value ofa the relatedN52 super
KdV possessesN52 SCA as the second Hamiltonian structure. The generalizedN52 KdV system
associated withN52 W3 algebra~‘‘ N52 super Boussinesq hierarchy’’! has similar properties as
established in Refs. 16 and 15. For theN53 super KdV equation associated withN53 SCA the
requirement of integrability also strictly fixes the value of a free parameter in the Hamiltonian,13
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though the existence of the whole hierarchy in this case has not yet been proven~the Lax pair
representation has not been found!. Only a few higher order conservation laws in involution have
been constructed. Nevertheless the existence of such quantities is highly nontrivial and provides
strong evidence in favor of the integrability of the associatedN53 super KdV.

Another higherN extension ofN52 super KdV, theN54 one, has been constructed in Ref.
14. We proceeded from theN54 SU~2! ~‘‘small’’ ! superconformal algebra17 as the second Hamil-
tonian structure. This extension is, in a sense, more economic than theN53 one, becauseN54
SU~2! SCA by its component currents content is a natural generalization ofN52 SCA. LikeN52
SCA, it contains only currents with canonical dimensions: a dimension 2 conformal stress tensor,
four dimension 3/2 fermionic currents and three dimension 1 affine su~2! currents.N53 SCA
includes an extra current with a subcanonical dimension 1/2.17 BothN54 SU~2! andN52 SCAs
belong to the family of u(N) Knizhnik–Bershadsky superconformal algebras~which are nonlinear
in general, starting withN53!.

In our construction14 we used the formalism ofN54, 1D harmonic superspace~HSS! as the
most natural one for representingN54 SU~2! SCA in a manifestly supersymmetric form. We
found that the general superfieldN54 KdV Hamiltonian,H3, consists of two pieces. One is an
integral over the wholeN54 HSS and the second is an integral over an analytic subspace of this
HSS, containing half the number of odd coordinates. This second piece involves a set of SU~2!
breaking constants which are naturally combined into a symmetric rank 4 SU~2! spinor cilk j

~symmetric traceless rank 2 tensor!. We did not construct a Lax pair for theN54 KdV equation,
but instead addressed the question of the existence of higher order conserved quantities, like in the
N53 KdV case.13 We found that such quantities exist and, hence, thatN54 KdV can lead to an
integrable hierarchy, provided~i! the SU~2! breaking tensor is expressed as a square of some
constant real SU~2! vectorai j5aji , ~i , j51,2!, and~ii ! the norm of the latter is proportional to the
reciprocal of the level of the affine su~2! subalgebra ofN54 SU~2! SCA

ci jkl5 1
3~a

i j akl1aikajl1ail ajk!, ~1.1!

uau2[2ai j ai j5
20

k
. ~1.2!

We also showed that under these restrictions theN54 KdV equation is bi-Hamiltonian, i.e., it
possesses a first Hamiltonian structure, the relevant Hamiltonian being the dimension 4 conserved
chargeH4 ~next in dimension toH3!. We considered a reduction to theN52 case and found that,
under a certain embedding of U~1! subalgebra in SU~2!, thea54 integrable version8 of N52 KdV
comes out.

In Ref. 14 we limited ourselves to the construction of the dimension 4 higher order conserved
charge. On the other hand, it is known that in theN52 case the even dimension bosonic conserved
charges exist only for thea54 hierarchy.8,9 As pointed out in Ref. 14, to learn whether the other
two N52 hierarchies admit an extension toN54, perhaps under different restrictions on the
parametersai j , the construction of the dimension 5 conserved charge forN54 KdV would be
crucial. In theN52 case it exists for all three super KdV hierarchies and is given by different
expressions in every case.9 It is very complicated to construct such a quantity directly in HSS. At
the same time, forN52 superfield computations there exist powerful computer methods based on
the package ‘‘Mathematica.’’18 Keeping this in mind, it is tempting to reformulateN54 super
KdV in terms ofN52 superfields.

This is one of the main purposes of the present paper. We rewrite theN54 super KdV inN52
superspace as a coupled system of equations for a general dimension 1 superfield~this is just the
N52 KdV superfield! and dimension 1 chiral and antichiral conjugated superfields. This system
involves two independent parameters which are the components of the SU~2! breaking tensorci jkl

in a fixed SU~2! frame. We explicitly construct the dimension 5 and 6 conserved charges for this
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system~beside reproducing in theN52 formalism the charges found in Ref. 14!. They exist if and
only if the restrictions~1.1!, ~1.2! hold. This is a very strong indication thatN54 KdV, with
conditions~1.1!, ~1.2!, gives rise to an integrable hierarchy and that the latter is unique. One more
argument in favor of the integrability is that under the same restrictions on the parameters the
N54 super KdV system is bi-Hamiltonian. In this article we check this property also for the
evolution equations associated with other conserved charges. One more new result of this article
is the observation that two inequivalent reductions of the sameN54 KdV to theN52 one are
possible. They depend on how the U~1! symmetry of the latter is embedded into the original SU~2!
group. One of these reductions was described in Ref. 14 and it leads to thea54, N52 KdV. The
second one yields thea522,N52 KdV. Thus these two differentN52 KdV hierarchies prove to
originate from the single higher symmetryN54 KdV hierarchy.

The paper is organized as follows. In Sec. II we recall, with some further comments, the basic
points of our construction ofN54 super KdV inN54, 1D HSS. In Sec. III we rewriteN54 KdV
in ordinaryN54, 1D superspace and then inN52 superspace, and show the possibility of two
different reductions toN52 super KdV. In Sec. IV the dimension 4, 5, and 6 conserved charges
are constructed and shown to exist only with the restrictions~1.1!, ~1.2!. Concluding remarks are
collected in Sec. V. Two appendices contain some technical details.

II. N54 KdV IN 1D HARMONIC SUPERSPACE

Here we recapitulate the salient features ofN54 super KdV equation in the harmonic super-
space formulation basically following Ref. 14. We use a slightly different notation and add some
comments.

A. N54 SU(2) SCA

We started in Ref. 14 with theN54 SU~2! superconformal algebra. In ordinaryN54, 1D
superspace with coordinates

ZM[~x,u i ,ū j !, ~ i , j51,2!, ~2.1!

this SCA is represented by the dimension 1 supercurrentVi j (Z)5Vji (Z), (Vi j )†5e ike j l V
kl, sat-

isfying the constraints~see, e.g., Ref. 19!:

D ( iVjk)50, D̄ ( iVjk)50. ~2.2!

Here

Di5
]

]u i
2

i

2
ū i

]

]x
, D̄ i52

]

]ū i
1

i

2
u i

]

]x
, $Di ,D̄

j%5 id j
i ], $Di ,Dj%50, ~2.3!

the SU~2! indices i , j are raised and lowered by the antisymmetric tensorse i j ,e i j ~e
i j e jk5dk

i ,
e1252e1251! and (i 1 ...i n) means symmetrization~with the factor 1/n!!. It is straightforward to
check that the constraints~2.2! leave inVi j only the following independent superfield projections

Vi j , jk5DiVi
k , j̄k52D̄ iVi

k , T5D̄ iDkVik . ~2.4!

Theu independent parts of these projections,wi j (x),z l(x),z̄l(x),T(x), up to inessential rescalings
coincide with the currents ofN54 SU~2! SCA: the SU~2! triplet of spin 1 currents generating
SU~2! affine Kac–Moody subalgebra, a complex doublet of spin 3/2 currents and the spin 2
conformal stress-tensor, respectively. Superfield Poisson brackets between theN54 SU~2! super-
currents leading to the classicalN54 SU~2! SCA for these component currents will be presented
below.
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The sameN54 SU~2! supercurrent admits an elegant reformulation in theN54, 1D harmonic
superspace.

The latter is defined as an extension of$ZM% by the harmonic variablesui
6 describing a

2-sphere;SU~2!/U~1!

$ZM%⇒$ZM,u1 i ,u2 j%,

u1 iui
251, ui

1uj
22ui

2uj
15e i j ~2.5!

~see Refs. 20 and 21 for details of the harmonic superspace approach!.
In what follows we will need the derivatives in harmonic variables which are given by

D11[]115u1 i
]

]u2 i , D22[]225u2 i
]

]u1 i ,

D05@D11, D22#5u1 i
]

]u1 i2u2 i
]

]u2 i . ~2.6!

The operatorD0 measures the U~1! charge of functions on the harmonic superspace. This charge
is defined as the difference between the numbers of the1 and2 indices. The preservation of this
U~1! charge is one of the basic postulates of the harmonic superspace approach. It expresses the
fact that the harmonic variables belong to the sphereS2 ~actually contain two independent param-
eters! and the harmonic superfields are functions on this sphere as well. Let us notice that this U~1!
charge commutes with the automorphism SU~2! group which acts on the doublet indicesi , j .

Also, instead ofDi ,D̄ j we will use their projections onu6 i

D65Diui
6 , D̄65D̄ iui

6 . ~2.7!

Nonvanishing~anti!commutators of these projections with themselves and with the harmonic
derivativesD11, D22 are

$D2, D̄1%5 i ], $D1, D̄2%52 i ], ~2.8!

@D11, D2#5D1, @D22, D1#5D2 ~and c.c.!. ~2.9!

We define now theN54, 1D harmonic superfieldV11(Z,u) subjected to the constraints

D1V1150, D̄1V1150, ~2.10!

D11V1150. ~2.11!

@Their consistency stems from the fact that the differential operators in~2.10!, ~2.11! are mutually
~anti!commuting.# The harmonic constraint~2.11! implies thatV11 is a homogeneous function of
degree 2 inu1 i

V11~Z,u!5Vi j ~Z!ui
1uj

1 . ~2.12!

Then, in view of the arbitrariness ofu1 i ,u1 j , the constraints~2.10! imply for Vi j the original
constraints~2.2!. Thus the superfieldV11 obeying~2.10!, ~2.11! represents theN54 SU~2! con-
formal supercurrent in the harmonicN54 1D superspace~see also Ref. 22!.
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The constraints~2.10! can be viewed as Grassmann analyticity conditions covariantly elimi-
nating inV11 the dependence on half of the original Grassmann coordinates, namely, on theiru2

projectionsu25u iui
2, ū25 ūiui

2. SoV11 is ananalyticharmonic superfield living on an analytic
subspace containing only theu1 projections ofu i ,ūj

$zM%5$z,u1,ū1,u1,u2%,

z5x2
i

2
~u1ū21u2ū1!, u65u iui

6 , ū65 ū iui
6 . ~2.13!

This harmonic analytic superspace is closed under the action ofN54, 1D supersymetry@and
actually under the transformations of the wholeN54 SU~2! SCA, see below#. Thus, one may
construct additional superinvariants as integrals over this superspace. This opportunity will be
exploited when constructing theN54 super KdV Hamiltonian and higher order conserved quan-
tities.

In the analytic basis$z,u6, ū6, ui
6% the covariant spinor derivativesD1,D̄1 are reduced to

the partial derivatives

D152
]

]u2
, D̄152

]

]ū2
,

and the conditions~2.10! indeed become Grassmann Causchy–Riemann conditions stating the
independence ofV11 on u2,ū2 in this basis

V115V11~z!.

Now the irreducible componentswi j (x),z l(x),z̄l(x),T(x) naturally appear in theu1,ū1 expansion
of V11 as the result of solving the harmonic constraint~2.11!. The analyticity-preserving har-
monic derivativeD11 in the analytic basis, when acting on analytic superfields, is given by the
expression

D115]112 iu1ū1]z ,

and using this expression in Eq.~2.11! yields

V11~z!5wi j ui
1uj

12 2
3u

1jkuk
11 2

3ū
1j̄kuk

11u1ū1~ i ]wikui
1uk

21 1
3T!, ~2.14!

where the numerical coefficients are inserted for agreement with the definition~2.4!.
It is easy to implement the superconformalN54 SU~2! group as a group of transformations in

analytic superspace~2.13!. Actually, there exist two different realizations of this group in the
superspace~2.13!23,24which yield as their closure the ‘‘large’’N54 SO~4!3U~1! superconformal
group.25,26 The realization for which justV11 serves as the supercurrent can be written in the
following concise form24

dz5~]22D1122!l, du15 i
]

]ū1
D11l, dū152 i

]

]u1
D11l,

dui
15~D11]l!ui

2[~D11L0!ui
2 , dui

250. ~2.15!

Here, the analytic functionl~z! satisfies the harmonic constraint

~D11!2l~z!50 ~2.16!
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and collects all the parameters ofN54 SU~2! superconformal transformations

l~z!5l1l~ i j !ui
1uj

21u1« iui
21 ū1«̄ iui

21 iu1ū1]l~ i j !ui
2uj

2 , ~2.17!

l(z),« i(z),«̄i(z),]l ( i j )(z) being, respectively, the parameters of the conformal, supersymmetry
and SU~2! affine transformations.

This realization of theN54 SU~2! superconformal group is fully determined by the require-
ment that the harmonic derivativeD11 transforms as

dD1152~D11L0!D0. ~2.18!

The transformation law ofV11 is almost uniquely fixed from the preservation of the harmonic
constraint~2.11!:

dV11.V118~z8!2V11~z!52L0V112
k

2
D11]L0, ~2.19!

wherek is a free parameter~its meaning will become clear soon!.
In what follows we will never actually need to know the explicit coordinate structure of the

analytic superspace and howV11 is expressed there. We will only make use of the constraints
~2.10!, ~2.11! and of some important consequences of them, e.g.,

~D22!3V1150, D2~D22!2V115D̄2~D22!2V1150, ~2.20!

and those quoted in Appendix A.
After we have represented theN54 SU~2! supercurrent as a harmonic superfieldV11, it

remains to write the Poisson bracket between twoV11’s which yields theN54 SU~2! SCA
Poisson brackets for the component currents. Surprisingly, this superfield Poisson bracket is al-
most uniquely determined by dimensionality and compatibility with the constraints~2.10!, ~2.11!.
It reads

$V11~1!,V11~2!%5D ~11u11 !D~122!,

D ~11u11 ![~D1
1!2~D2

1!2S F S u11u22u1
1u2

1D 2
1

2
D2

22GV11~2!2
k

4
]2D , ~2.21!

whereD~122!5d(x12x2)~u
12u2!4 is the ordinary 1DN54 superspace delta function and

~D1!2[D1D̄1.

We refer to Ref. 21 for more details on harmonic distributions. Note that the harmonic singularity
in the rhs of~2.21! is fake: it is cancelled after decomposing the harmonicsu2

6 i over u1
6 i with

making use of the completeness relation~2.5! and the general formula~A6! from Appendix A.
Using the algebra of spinor and harmonic derivatives and also the completeness condition

~2.5!, one can check that the rhs of~2.21! is consistent with the constraints~2.10!, ~2.11! with
respect to both sets of arguments and antisymmetric under the interchange 1⇔2. Note that we
should require the preservation of the harmonic U~1! charge independently for the points 1 and 2
in order to guarantee that both sets of harmonic variablesu1i

6 andu2i
6 parametrize the correspond-

ing internal spheresS2.
To be convinced that~2.21! gives rise to the correct Poisson brackets for the component

currents, we deduce from~2.21! the Poisson brackets of SU~2! affine Kac–Moody currents. After
simple algebraic manipulations we obtain forwa[s i

a jwj
i the familiar relation:
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$wa~1!,wb~2!%5eabcwc~2!d~122!2
k

2
dab]2d~122!. ~2.22!

All other currents can also be checked to satisfy the structure relations ofN54 SU~2! SCA. We
see that the central chargek in ~2.21! is the level of the affine su~2! subalgebra.

It is straightforward to rewrite the Poisson structure~2.21! in ordinaryN54, 1D superspace.
There it looks much more complicated: it involves intricate combinations of SU~2! indices, etc.
We will quote it in the next section as an intermediate step in the derivation of theN52 superfield
form of this structure.

Finally, we point out that the Poisson structure~2.21! allows us to write theN54 supercon-
formal transformation law of the supercurrent in the following basis-independent form

d*V11~z8!54i E @dz22#l~z!$V11~z!,V11~z8!%⇒ ~2.23!

d*V11~z8!52~]l!V111~2l2D22D11l!]V112~D11]l!D22V11

1 i ~D2D11l!D̄2V112 i ~D̄2D11l!D2V112
k

2
D11]2l, ~2.24!

where [dz22]5dz[du]D2D̄2 is the measure of integration over the analytic superspace~the
integral over harmonics is defined in the standard way:*[du]151 and the integral of any sym-
metrized product of harmonics is vanishing20!. It is easy to see that this variation obeys the
defining constraints~2.10!, ~2.11!. In the analytic basis of the harmonic superspace, it becomes the
active form of the variation~2.19!. The coefficient before the inhomogeneous term in~2.19! has
been chosen for consistency with the fundamental Poisson structure~2.21!. Note that in deriving
~2.24! from ~2.23! and ~2.21! we essentially exploited the identity~A6! from Appendix A.

It is interesting to note that the Poisson bracket~2.21! can be used to introduce the notion of
primarity for analytic harmonicN54 superfields. Namely, let us consider a generalization ofV11,
the analytic superfieldsL1 l(D0L1 l5 lL1 l) subjected to the same harmonic constraint~2.10!

D11L1 l50

~they can be chosen real forl52n!. The homogeneousN54 SU~2! superconformal transforma-
tion law of L1 l unambiguously follows from the preservation of this constraint

dL1 l5 lL0L1 l .

This law can be equivalently reproduced by a formula of the type~2.23!, with the following
Poisson bracket betweenV11 andL1 l

$V11~1!, L1 l~2!%5
1

2
~D1

1!2~D2
1!2S F l S u11u22u1

1u2
1D 2D2

22GL1 l~2!D~122! D . ~2.25!

This bracket can be viewed as the manifestly supersymmetric definition ofN54 SU~2! primarity
for the constrained analytic superfieldsL1 l ~at the classical level!. It would be of interest to know
whether one can define appropriate Poisson brackets between the superfieldsL1 l so that they
form, together with~2.21! and~2.25!, a closed algebra providing an extension~perhaps, nonlinear!
of N54 SU~2! SCA.
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B. N54 super KdV

To deduce the super KdV equation with the second Hamiltonian structure given by theN54
SU~2! SCA in the form~2.21! we need to construct the relevant Hamiltonian of the dimension 3.
The only requirement we imposea priori is that ofN54, 1D supersymmetry. The most general
dimension 3,N54 supersymmetric HamiltonianH3 one may construct out ofV

11 consists of two
pieces

H35E @dZ#V11~D22!2V112 i E @dz22#c24~u!~V11!3. ~2.26!

Here [dZ]5dx[du]D2D̄2D1D̄1 is the integration measure of the full harmonic superspace. We
see that the U~1! invariance of the integral over analytic subspace requires the inclusion of the
harmonic monomialc24(u)5ci jkl ui

2uj
2uk

2ul
2 which explicitly breaks SU~2! symmetry. The co-

efficientsci jkl belong to the dimension 5 spinor representation of SU~2!, i.e., form a symmetric
traceless rank 2 tensor, and completely break the SU~2! symmetry, unlessc24 is of the special
form

c24~u!5~a22~u!!2, a22~u!5ai j ui
2uj

2 . ~2.27!

After taking off the harmonics this condition becomes Eq.~1.1!. In this case, the symmetry
breaking parameter belongs to the dimension 3~vector! representation of SU~2!, and thus has U~1!
as a little group. We point out that the presence of the trilinear term in the Hamiltonian is
unavoidable if one hopes to eventually obtain an integrable super KdV equation~it should be
reduced in some limit to theN52 super KdV family which is integrable only providing the
relevant Hamiltonian contains a trilinear term!. Thus one necessary condition for the integrability
of N54 super KdV is that SU~2! is broken, at least down to its U~1! subgroup.

Using the Hamiltonian~2.26!, we construct the relevant evolution equation:

Vt
115$H,V11%. ~2.28!

After some rather tedious but straightforward computations, it may be cast into the following
form:

Vt
115 i ~D1!2H k2 D22Vxx

112FV11~D22!2V112
1

2
~D22V11!2G

x

2
3

20
kA24~V11!x

2

1
1

2
A26~V11!3J . ~2.29!

HereA24 andA26 are differential operators on the 2-sphere;SU~2!/U~1!

A245 (
N51

4

~21!N11c2N24
1

N!
~D22!N,

A265
1

5 (
N50

4

~21!Nc2N24
~52N!

~N11!!
~D22!N11. ~2.30!

We have used the notation:

c2N245
~42N!!

4!
~D11!Nc24, N50,...,4. ~2.31!
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Equation~2.29! is theN54 SU~2! super KdV equation we sought for. It is easy to check that
its rhs satisfies the same constraints~2.10!, ~2.11! as the lhs. One might bring~2.29! into a more
explicit form using the algebra~2.8!, ~2.9! @the first term takes then the familiar form
2(k/2)Vxxx

11#, but for technical reasons it is convenient to keep the analytic subspace projector
~D1!2 in front of the curly brackets in~2.29!. The Hamiltonian~2.26! and Eq.~2.29! can be
rewritten in ordinaryN54 superspace~Sec. III!, but they look there very intricate, like the Poisson
bracket~2.21!. For instance, the second term in~2.26! would involve explicitu’s, so that it would
be uneasy to see that it is supersymmetric. Thus harmonic superspace seems to provide the most
appropriate framework for a manifestlyN54 supersymmetric formulation ofN54 super KdV
equation. The last comment concerns the presence of theN54 SU~2! SCA central chargek in
~2.29!. Making in ~2.29! the rescalingst→bt, V11→b21V11, c→bc, we can in principle
change this parameter to any nonzero value. However, in order to have a clear contact with the
original N54 SU~2! Poisson structure~2.21!, for the time being we prefer to leaveN54 super
KdV in its original form.

C. Conserved charges

As was mentioned in the Introduction, theN52 super KdV equation is integrable only for
a54, 22, 1. Since the SU~2! breaking tensorci jkl is a direct analog of theN52 KdV parameter
a ~and is reduced to it upon the reductionN54→N52, see Sec. III!, one may expect that the
N54 super KdV equation is integrable only when certain restrictions are imposed on this tensor.
To see which kind of restrictions arises, in Ref. 14 we required the existence of nontrivial con-
served charges for~2.29! which are in involution with the Hamiltonian~2.26!. Here we recall the
results of that analysis.

Conservation of the dimension 1 charge:

H15E @dz22#V11 ~2.32!

imposes no condition on the parameters of the Hamiltonian.
A charge with dimension 2 exists only provided the condition~2.27! ~~1.1!! holds. It reads:

H25 i E @dz22#a22~V11!2. ~2.33!

The conservation of this charge implies a stringent constraint onai j , namely

s[a12a222~a0!25
1

2
ai j ai j52

10

k
, ~2.34!

where

a125D11a05 1
2~D

11!2a225ai j ui
1uj

1 .

This is just the second condition~1.2! quoted in the Introduction. Note that with the convention
~2.27! this condition implies foraik the following reality properties

~aik!†52e i j ekla
kl⇔~a12!†5a12, ~a11!†52a22. ~2.35!

Assuming that the central chargek is an integer@if we restrict ourselves to unitary representations
of the SU~2! Kac–Moody algebra27#, Eq. ~2.34! means thatai j parametrizes some sphere
S2;SU~2!/U~1!, such that the reciprocal of its radius isquantized. It is interesting to explicitly find
the evolution equation produced byH2 through the Hamiltonian structure~2.21!

1364 Delduc, Ivanov, and Krivonos: N54 super KdV hierarchy in N54 and N52 superspaces

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Vt8
11

53$H2 ,V
11%⇒ ~2.36!

Vt8
11

5
i

2
~D1!2$kÃ22Vx

1123Ã24~V11!2%,

Ã225a0D222 1
2a

12~D22!2,

Ã245a22D222 1
3a

0~D22!21 1
18a

12~D22!3, ~2.37!

@the factor 3 in~2.36! was chosen for further convenience#. This equation is the first nontrivial one
in the conjecturedN54 KdV hierarchy. As was recently noticed,28 theN52 counterpart of this
equation can be interpreted as a ‘‘disguised’’ form of theN52 supersymmetric extension of the
nonlinear Schro¨dinger equation~NLS!. Thus, it is natural to expect that Eq.~2.37! is related in an
analogous way to theN54 extended NLS.

The last conserved charge we constructed in Ref. 14 is a dimension 4 oneH4 ~the dimension
3 conserved charge is theN54 KdV Hamiltonian itself!. H4 exists under the same restrictions
~2.27!, ~2.34! @or, equally,~1.1!, ~1.2!# on ci jkl and reads:

H45E @dZ#a22V11~D22V11!21
i

6 E @dz22#F76 ~a22!3~V11!42ka22~Vx
11!2G .

~2.38!

It is curious that it yields the sameN54 KdV equation~2.29! via the first Hamiltonian structure
associated with the Poisson bracket

$V11~1!,V11~2!%~1!5 ibS a0~1!2a12~1!
u1

2u2
1

u1
1u2

1D ~D1
1!2~D2

1!2D~122!. ~2.39!

Here,b is an arbitrary real constant. This bracket is related to the original one~2.21! by the shift

V11→V111 iba12~u!. ~2.40!

Taking as a new Hamiltonian

H ~1!52 i
9k

4b
H4 , ~2.41!

we reproduce~2.29! as the Hamiltonian flow:

Vt
115$H ~1! ,V

11%~1! . ~2.42!

This comes about in a very nontrivial way, since both the new Poisson bracket~2.39! and the new
Hamiltonian ~2.41! are proportional to the SU~2! breaking parameterai j , while the super KdV
equation~2.29! includes terms containing no dependence onai j . The key point is that these terms
appear in~2.42! multiplied by the factor

2
k

10
s52

k

20
ai j ai j ,

which is independent of harmonic coordinatesu6 and is constrained to be 1 from the condition
~2.34!.
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Thus the conditions~2.27! and~2.34! @~1.1!, ~1.2!# are necessary not only for the existence of
the first nontrivial conservation laws for Eq.~2.29!, but also for it to be bi-Hamiltonian. This
property persists for the evolution equations associated with other conserved charges. For instance,
with respect to the structure~2.39! Eq. ~2.37! with aik constrained by~1.2! hasH3 as the Hamil-
tonian.

The presence of the bi-Hamiltonian structure and the existence of nontrivial conserved
charges are indications thatN54 KdV equation~2.29! with the restrictions~2.27!, ~2.34! @~1.1!,
~1.2!# is integrable, i.e., gives rise to a wholeN54 super KdV hierarchy. Clearly, in order to prove
this, one should, before all, either find the relevant Lax pair or prove the existence of an infinite
number of conserved charges of the type given above~e.g., by employing recursion relations
implied by the bi-Hamiltonian property1,11!. Unfortunately, at present it is a very nontrivial and
technically complicated problem to analyze these issues in full generality in the framework of
harmonic superspace. Even the direct construction of the next, dimension 5 chargeH5, turned out
to be too intricate. In Sec. III we will reformulateN54 KdV in N52 superspace where powerful
computer methods for such calculations have been developed. One thing which can be proven in
a relatively simple way in the framework of the HSS formalism is that Eq.~2.27! @Eq. ~1.1!# is a
necessary condition for the existence of higher-order conserved charges for~2.29!. We end the
present section with the proof.

First of all, it is clear that after the reduction toN52 such charges should become those of the
integrableN52 super KdV equations~see Sec. III for details of this reduction!. Any such charge
of dimension, say,l is known to contain in the integrand a term;Vl , whereV is theN52 super
KdV superfield ~N52 superconformal stress-tensor!.8,9 These terms can only be obtained by
reduction of analytic integrals of the form

;E @dz22#b22~ l21!~V11! l , ~2.43!

where

b22~ l21!5bi1 ...i2~ l21!ui1
2 ...ui2~ l21!

2 . ~2.44!

If the corresponding charge is to be conserved, the highest order contribution to the time derivative
of ~2.43! @coming from the third order term in the rhs of~2.29!# should vanish separately. A simple
analysis shows that it is possible if and only if

b22~ l21!;~a22! l21, c245~a22!2. ~2.45!

Note that in our previous paper14 an erroneous statement that this condition is necessary only for
l52n was made.

III. N54 KdV IN N52 SUPERSPACE
A. N54 KdV and N54 SU(2) SCA in ordinary N54 superspace

We first rewrite Eq.~2.29! in ordinaryN54 superspace, where it is expressed as an equation
for the superfieldVi j (Z) constrained by Eqs.~2.2!. A straightforward calculation, that makes use
of the identities given in Appendix A, yields

Vt
i j5H 2

1

2
kVxx

i j 22Vx
( i l Vl

j )1
2i

3
TVi j2

4i

9
j ( i j̄ j )2

3

10
~ckl f ( iVklVf

j )!x1
3

10
kckl f ( iVklxVf

j )

2
i

10
kci jkl S TVkl1 4

3
j (kj̄ l )D J

x

2
3

10
ckl f gVklVfgVx

i j2
3

5
ckl f gVkl~Vf

i Vg
j !x

2
i

5
ckl f ( i~Bk

j )Vl f1Vk
j )Bl f !. ~3.1!
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Here,

Bi j[TVi j1 8
3j

( i j̄ j ), ~3.2!

the irreducible superfield projectionsjk,j̄l ,T were defined in~2.4! and the subscript ‘‘x’’ corre-
sponds as before tox-derivative. We have verified that both sides of Eq.~3.1! respect the con-
straints~2.2!.

It is also straightforward to rewrite the Poisson bracket~2.21! in ordinaryN54 superspace

$Vi j ~Z1!,V
kl~Z2!%52D ~ i j ukl !D~122!, ~3.3!

D ~ i j ukl !5
1

4 H F iVikD jl ]1
1

3
Vike j l D41

i

2
]VklDi j1

1

6
~ j̄ke i l D2D̄ j1jke i l D̄2Dj !

1
i

4
kS e j l Dik]22

i

3
e ike j l D4] D G1~k↔ l !J 1~ i↔ j !. ~3.4!

Here

Di j[D ( i D̄ j ), D2[DiDi , D̄2[D̄ i D̄
i , D4[Di jDi j , ~3.5!

and the differential operator~3.4! is evaluated at the pointZ2.
TheN54 KdV Hamiltonian~2.26! and the other conserved charges presented in the previous

section can also be appropriately rewritten. However, it is not very enlightening to do so, because,
as was already said above, only those pieces of these charges which live in the whole harmonic
superspace retain a manifestly supersymmetric form after passing to the standardN54 superspace
@e.g., the integrand in the first term in~2.26! becomes;Vi jVi j #. The ordinaryN54 superspace
form of the analytic harmonic superspace pieces explicitly includesu’s. Below we will rewrite
these conserved quantities viaN52 superfields, so that both kinds of terms will be represented as
integrals over the sameN52 superspace without explicitu’s in the integrands.

B. From N54 to N52

To make a reduction toN52 superspace, we split theN54, 1D superspace~2.1! as follows

$ZM%5~x,u,ū ! ^ ~h,h̄ ![$Zm% ^ ~h,h̄ ! ~3.6!

with

u[u1, ū[ū1 , h[u2, h̄[ū2 . ~3.7!

We also split the set of covariant spinor derivatives into those acting inN52 SS$Zm% and those
acting on the extra spinor coordinatesh,h̄

D1[D, D̄1[D̄, D2[d, D̄25d̄,

$D, D̄%5 i ], $d, d̄%5 i ], ~3.8!

~all other anticommutators are vanishing!. Then we put the constraints~2.2! into the form

DV2250, dV1150, dV125 1
2DV

11, dV2252DV12, ~3.9!
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D̄V1150, d̄V2250, d̄V1252 1
2D̄V

22, d̄V11522D̄V12. ~3.10!

The first equations in the sets~3.9! and~3.10! are most essential. They tell us that the superfields
V11 andV225(V11)† are chiral and anti-chiral in theN52 superspace. The remainder of con-
straints and their consequences

dd̄V125D̄DV12, dd̄V115 iVx
11, d̄dV225 iVx

22, ~3.11!

serve to express all the coefficientN52 superfields in theh,h̄ expansion ofV12, V11, andV22 in
terms of spinor and ordinary derivatives of the lowest orderN52 superfields

V~Zm![V12~ZM !uh50 , F~Zm![V11~ZM !uh50 , F̄~Zm![V22~ZM !uh50 , ~3.12!

D̄F50, DF̄50. ~3.13!

Note thatV(Zm) is not constrained by~3.9!, ~3.10!.
Thus, by going toN52 superspace we have explicitly solved the constraints~2.2! in terms of

an unconstrainedN52 superfieldV and a pair of conjugate chiral and anti-chiralN52 superfields
F,F̄. Now it is clear how to obtain theN52 superfield form of Eq.~3.1!. Its rhs obeys the same
constraints~2.2! as the lhs, so one should express all theN54 spinor derivatives in the former
throughN52 spinor derivatives, by using the constraints in the form~3.9!, ~3.10!. Then one puts
h5h̄50 in both sides of the equations obtained. Some useful relations are

z152
3

2
DV11, j2523DV12, j̄1523D̄V12,

j̄252
3

2
D̄V22, T53@D,D̄#V12. ~3.14!

The last step needed to putN54 KdV in a convenientN52 superfield form consists of
choosing an appropriate frame with respect to the global SU~2! that acts on both the doublet
indices in~3.1! and the doublet indices of theN54 superspace Grassmann coordinates. It is easy
to show that this frame can always be chosen so that only two real components in the SU~2!
breaking tensorcikl j are nonzero

c1212[
5

6
a, c11115c2222[

5

6
b, c11125c222150 ~3.15!

~the numerical factors were introduced for further convenience!. Note that this is still true ifci jkl

is bilinear in the constant vectoraik in accord with Eq.~2.27!. In this important case

ci jkl5 1
3~a

i j akl1aikajl1ail ajk!. ~3.16!

For three independent SU~2! fixations ofaik

~a! a115a2250, a12Þ0; ~b! a1250, a115a22Þ0;

~c! a1250, a1152a22Þ0, ~3.17!

the components ofci jkl satisfy ~3.15!. The values ofa andb are given by

~a! a5 4
5a

12a12, b50; ~b! a5 2
5a

11a11, b53a
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~c! a52 2
5a

11a22, b523a. ~3.18!

As we will see below, only these choices of the SU~2! frame allow an unambiguous reduction to
N52 KdV.

The whole tensorci jkl @or aik in the case~2.27!,~3.16!# can be restored by an appropriate
SU~2! rotation. It is instructive to describe how these SU~2! rotations, which are manifest in the
original N54 superspace, are realized onN52 superfieldsV,F,F̄

d*V52l0S u
]

]u
2 ū

]

]ū
DV1l1@F1D~uF!#2l2@F̄2D̄~ ūF̄!#,

d*F5l0S 22u
]

]u
1 ū

]

]ū
D F1l2D̄~ ūV!,

d* F̄5l0S 222u
]

]u
1 ū

]

]ū
D F̄1l1D~uV!. ~3.19!

For completeness, we also give the transformation properties of the superfields under the second
complex supersymmetry, implicit in theN52 superfield notation

d*V5 1
2e

2DF1 1
2ē2D̄F̄,

d*F52ē2D̄V, d* F̄52e2DV. ~3.20!

After these preparatory steps and choosing, for convenience,k52 henceforth, we deduce the
N54 SU~2! KdV equation in anN52 superfield form as the following system of coupled evolu-
tion equations

Vt52Vxxx13i ~@D,D̄#VV!x2
i

2
~12a!~@D,D̄#V2!x23aVxV

21
1

4
~a24!~FxF̄2F̄xF!x

1
i

2
~a21!~DFD̄F̄!x2

3

2
a~VFF̄!x1

1

8
b~F22F̄2!xx2

3

4
b@V~F21F̄2!#x

1
i

2
b@D,D̄#@V~F22F̄2!#, ~3.21!

F t52Fxxx2
5

4
bFxF

22D̄@6i ~DVF!x2 i ~a12!D~VF!x#

1D̄DF3iaSV2F1
1

4
F2F̄D1 ib~VF̄!x1 ibSV2F̄1

1

4
F̄2F D G , ~3.22!

F̄t52F̄xxx2
5

4
bF̄xF̄

21D@6i ~D̄VF̄!x2 i ~a12!D̄~VF̄!x#

1DD̄F3iaSV2F̄1
1

4
F̄2F D2 ib~VF!x1 ibSV2F1

1

4
F2F̄D G . ~3.23!

We have explicitly checked that Eqs.~3.21!–~3.23! are covariant under the second hidden super-
symmetry~3.20!. It is also obvious from the form of Eqs.~3.22!, ~3.23! that they are consistent
with theN52 chirality properties ofF,F̄.

Proceeding in a similar way, one can rewrite the second and first Poisson bracket structures
~2.21! and ~2.39! in terms of theN52 superfields

$VA~1!,VB~2!%5DABD~2!~122!, ~3.24!
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D115
1

4 S iV]1 i ]V2D̄VD2DVD̄1
k

4
@D,D̄#] D

D125
1

4
~ i ]F12FD̄D2DFD̄ !, D135

1

4
~ i ]F̄12F̄DD̄2D̄F̄D !,

D215
1

4
~2FDD̄1DFD̄ !, D235SVDD̄1DVD̄2

k

4
DD̄] D

D315
1

4
~2F̄D̄D1D̄F̄D !, D325SVD̄D1D̄VD1

k

4
D̄D] D ,

D225D3350 ~3.25!

$VA~1!,VB~2!%~1!5D ~1!
ABD~2!~122!, ~3.26!

D ~1!
11 52

1

4
ba12], D ~1!

12 5
i

2
ba11D̄D, D ~1!

13 5
i

2
ba22DD̄,

D ~1!
21 5

i

2
ba11DD̄, D ~1!

22 50, D ~1!
23 5 iba12DD̄,

D ~1!
31 5

i

2
ba22D̄D, D ~1!

32 5 iba12D̄D, D ~1!
33 50. ~3.27!

In these formulas we made use of the condensed notation

VA[~V,F,F̄!

and defined theN52 superspace delta function by

D~2!~122![~d2d̄2D~122!!uh5h̄50 .

The differential operatorsDAB,D (1)
AB are evaluated at the second point ofN52 superspace.

Using the relation between theN54 andN52 superspace integration measures

@dZ#5m~2!@du#dd̄, @dz22#52m~2!@du#@~uūdd̄21!u1
2u2

21udu1
2u1

21 ūd̄u2
2u2

2#,
~3.28!

with

m~2![dx du dū5dx DD̄, ~3.29!

and the constraints~3.9!,~3.10!, it is also easy to get theN52 superfield form of theN54 KdV
Hamiltonian~2.26!

H35E m~2!H 8D̄V DV12iFxF̄1
i

3
a~V316VFF̄!1 ib~VF21VF̄2!J . ~3.30!

Note that each of the three parts of~3.30!, viz. those with the coefficientsa and b and the
remainder, are separately invariant with respect to the hidden supersymmetry transformations
~3.20!. At the same time, only the first piece~containing no dependence ona andb! respects the
invariance under the SU~2! transformations~3.19! @it comes from the first integral in the original
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expression~2.26!#. Applying ~3.19! to the terms proportional toa andb, one can restore all five
components of the initial SU~2! breaking tensorcikl j . These will appear with appropriateN54
superinvariant combinations ofV,F,F̄ and derivatives of the latter.

It is a straightforward exercise to rederive Eqs.~3.21!–~3.23! as the evolution equations with
respect to theN52 superfield Hamiltonian structure~3.24!,~3.25!,~3.30!

Vt
A5DBA

dH3

dVB . ~3.31!

As was mentioned in Sec. II, the sameN54 super KdV equation, provided the constraints
~1.1!, ~1.2! hold ~their form in theN52 notation will be discussed in the next subsection!, can be
regarded as an evolution equation with respect to the first Poisson structure~2.39!,~3.26! with H4
as the Hamiltonian, Eq.~2.42!. In N52 superfield language, this form ofN54 KdV is as follows

Vt
A52 i

9

2b
D ~1!

BA dH4

dVB . ~3.32!

TheN52 superfield form of the conserved chargeH4 ~2.38! will be given below~Sec. IV!.

C. Reduction to N52 super KdV and the integrability conditions

The first line of Eq.~3.21!, up to unessential redefinitions, is just the rhs ofN52 super KdV
equation,8,9 with the parametera related to the SU~2! breaking tensor ofN54 super KdV as

a5 6
5c

1212. ~3.33!

Thus, the reduction toN52 KdV is obtained by putting

F5F̄50 ~3.34!

in Eqs.~3.21!–~3.23!. As a result of the reduction, one gets

Vt52Vxxx13i ~@D,D̄#VV!x2
i

2
~12a!~@D,D̄#V2!x23aVxV

2. ~3.35!

This equation is related to the standard form ofN52 KdV equation given in Refs. 8 and 9 via the
redefinitions

V5Ṽ, ]x5 i ]̃x , ] t52 i ]̃ t , D5 1
2~D11 iD 2!, D̄52 1

2~D12 iD 2!,

D1
25D2

25 ]̃x . ~3.36!

We should point out that the above reduction is consistent because Eqs.~3.22! and~3.23! are
homogeneous inF,F̄ and, for this reason, condition~3.34! together with Eq.~3.35! yield a
particular solution of the original set~3.21!–~3.23!. The superfieldV satisfies Eq.~3.35! and is
unconstrained otherwise. All the conserved charges ofN54 KdV become conserved charges of
N52 KdV in the reduction limit.

This is not the case for anyother choice of the SU~2! frame beside those leading to~3.15!.
This is because for nonzeroc1112andc2221 there appear extra pieces in the equations forF,F̄, that
do not vanishafter the reduction~3.34!. For example, for Eq.~3.22! these pieces are as follows

DF t52 2
5ic

1112D̄D@3VVx14V3#. ~3.37!
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In this case, the reduction toN52 KdV is inconsistent, because the superfieldV becomes con-
strained in theN52 KdV limit @the rhs of Eq.~3.37! should vanish after imposing~3.34!#. To
avoid confusion, we mention that the systems associated with these other choices of the SU~2!
frame are simply other ‘‘SU~2! gauges’’ of the sameN54 super KdV equation. They can be
rotated into Eqs.~3.21!–~3.23! by an appropriate SU~2! transformation. Only in theN52 KdV
limit, where SU~2! covariance gets broken, different choices of the SU~2! frame turn out to lead to
inequivalent systems.

Now let us see which values ofa correspond to the restrictions~2.27!,~2.34! @or ~1.1!,~1.2!#
that are required forN54 KdV to be integrable. According to the reasonings just mentioned, only
three directions of the SU~2! vector ai j , summarized in Eq.~3.17!, allow for an unambigous
reduction toN52 super KdV. Indeed, only under this choice the components

c111252~c2221!†5a11a12

are zero. Then, substituting the relations~3.17! into ~2.34! we find three cases for whichN54
super KdV in theN52 superfield form~3.21!–~3.23! is expected to be integrable

~a! a54, b50; ~b! a522, b526; ~c! a522, b56. ~3.38!

In the fullN54 case these possibilities are all equivalent since they are related by SU~2! rotations.
Nevertheless, they yield inequivalent systems upon the reduction~3.34!. Remarkably,these are
precisely two integrable N52 KdV hierarchies, the a54 and a522 N52 KdVs.8,9

Thus, the singleN54 SU~2! super KdV equation~2.29! @or its equivalent forms~3.1! and
~3.21!–~3.23!# with the restrictions~2.27! and~2.34! @~1.1!,~1.2!# embodies as particular solutions
two of the three integrable inequivalentN52 super KdV equations. Below we will explicitly
construct theN52 superfield form of the dimension 5 and 6 conserved charges forN54 KdV and
show that they exist only for the values of the parametersa andb listed in Eq.~3.38!. This is a
strong evidence that a uniqueN54 SU~2! KdV hierarchy exists, yielding by reduction thea54
anda522, N52 KdV hierarchies~3.34!. Reversing the argument, we conclude that only these
two N52 KdV hierarchies can be promoted to theN54 SU~2! KdV hierarchy. It is worth noting
that in this respect the latter is complementary to theN53 super KdV one13which yields, upon the
reduction toN52 superspace, thea51, N52 KdV.

In the rest of this section we discuss how to recover the restrictions~1.2!, ~1.1! directly at the
level of theN52 superfield formulation, starting from theN52 superfield system~3.21!–~3.23!,
with the parametersa andb restricted to the values~3.38! by some reasoning~e.g., coming from
the study of higher-order conserved quantities!. The only extra assumption will be that the param-
etersa andb correspond to a SU~2! fixed form of some constant tensorcikl j in accordance with
the definition~3.15!. In other words, we assume that the system~3.21!–~3.23! still ‘‘remembers’’
about its manifestly SU~2! covariant andN54 supersymmetric origin.

First of all, computing two independent invariants ofcikl j ,

A[ci jkl ci jkl , B[cik j l c
j l
f tc

f t
ik ,

for three options in~3.38!, we find that in all cases the invariants take the same values

A5 2
3 10

2, B52 2
9 10

3, ~3.39!

from which it follows that the above choices represent the same tensorc0
ikl j in different SU~2!

frames~up to possible discrete reflection-type transformations ofcik j l !. Further, according to the
Lemma proved in Appendix B, the necessary and sufficient conditions forci jkl to have the special
form ~1.1! are the following two:

A356B2, B,0. ~3.40!
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The values~3.39! satisfy these criterions, from which follows the constraint~1.1! for c0
ikl j . From

~1.1! and ~3.15! we find

a5 2
5~2a

12a121a11a22!, b5 6
5a

11a115 6
5a

22a22, a12a115a12a2250. ~3.41!

Then, for the three options in~3.38!, we have the following solutions foraik

~a! a1256A5, a115a2250; ~b! a1250, a115a2256 iA5;

~c! a1250, a1152a2256A5. ~3.42!

In all these three cases

uau252ai j ai j52~a12a122a11a22!510 ~3.43!

that is precisely the constraint~1.2! at k52. Note that the reconstruction of the vectoraik from the
knownc0

i jkl is unique modulo some reflections ofaik, as is seen from the explicit solution~3.42!.
Finally, we note that, when analyzing the integrability properties ofN54 super KdV in the

N52 superfield formulation, we actually do not need to keep track of all these subtleties concern-
ing the relation betweenci jkl andaik, etc. One can forget about theN54 superfield origin of the
system~3.21!–~3.23! and view it as some two-parameter extension ofN52 KdV equation. Then
the specific values~3.38! of the parametersa andb come out as the values at which this system
possesses higher-order conserved charges and is bi-Hamiltonian~see the next section!. Of course,
in order to see that the three options in Eq.~3.38! are actually equivalent to each other, one should
take into account the fact that the system~3.21!–~3.23! respects a hidden SU~2! symmetry, or,
eqivalently, admits a manifestlyN54 supersymmetric and SU~2! covariant description discussed
in Sec. II. The above discussion was aimed just at carefully clarifying the links between this latter
description and theN52 superfield one.

IV. CONSERVED CHARGES IN THE N52 SUPERFIELD FORMULATION

In this section we put into anN52 superfield form all theN54 super KdV conserved charges
given in Ref. 14 and Sec. II and present two new ones:H5 andH6. We find that all these charges
exist under the same restrictions~3.38! which, as was discussed in the end of the previous section,
actually amount to the original constraints~1.1!, ~1.2!.

A. The charges H1 and H2

In order to find theN52 superfield representation of the conserved charges initially written as
integrals overN54 HSS and its analytic subspace, we proceed in the same way that was used to
get theN52 superfield form ofH3, Eq. ~3.30!. Namely, we make use of the relations~3.28! and
~3.9!,~3.10! and do the harmonic integrals in the end.

The chargeH1 ~2.32! is of the same form as in theN52 KdV case

H1522E m~2!V. ~4.1!

Starting withH2, nontrivial contributions of the superfieldsF,F̄ come out

H25
4i

3 E m~2!H a12SV21
1

2
FF̄D2a11VF̄2a22VFJ . ~4.2!

Like in H3, three terms in~4.2! are separately invariant under the hidden supersymmetry~3.20!
but are mixed by the SU~2! transformations~3.19!. Assuming for the moment that the coefficients
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aik arearbitrary, we have checked the conservation of~4.2! with respect to Eqs.~3.21!–~3.23!,
both ‘‘by hand’’ and using the computer, and found (H2) t to vanish under the following conditions

~a! a54, b50, a12Þ0, a115a2250;

~b! a522, b526, a1250, a115a22Þ0;

~c! a522, b56, a1250, a1152a22Þ0. ~4.3!

Keeping in mind the discussion in the end of the previous section@see Eqs.~3.42!#, these solu-
tions, up to relative scaling factors, precisely correspond to the conditions~1.1!, ~1.2! found from
the computations in HSS.

This is the appropriate place to give theN52 superfield form of the evolution equation~2.37!
associated with the HamiltonianH2. It can be obtained either by a direct transition toN52
superfields in~2.37! or using theN52 Poisson structure~3.24!, ~3.25!

Vt8
A

53DBA
dH2

dVB . ~4.4!

Both these equivalent ways yield the sameN52 superfield system

Vt85a12~ i @D,D̄#V22V22FF̄!x1a11~ 1
2F̄xx12~VF̄!x1 i @D,D̄#~VF̄!!

2a22~ 1
2Fxx22~VF!x1 i @D,D̄#~VF!!,

F t85 iD̄D$a12~Fx14VF!22a11~Vx1V21 1
2FF̄!2 3

2a
22F2%,

F̄t852 iDD̄ $a12~F̄x24VF̄!22a22~Vx2V22 1
2FF̄!1 3

2a
11F̄2%. ~4.5!

This system can be derived in one more way, via the first Poisson structure~3.26!,~3.27! with H3
as the Hamiltonian. However, this is possible only under the constraints~1.1!,~1.2!. Requiring the
equations

Vt8
A

5D ~1!
BA dH3

dVB ~4.6!

to coincide, up to an overall renormalization factor, with Eqs.~4.5! immediately leads to the
restrictions~4.3! and, hence, to~1.1!,~1.2!. Thus, like in the case of theN54 KdV equation, the
system~4.5! is bi-Hamiltonian only provided the basic conditions~1.1!,~1.2! hold. Of course, these
conditions can also be deduced by demandingH3 to be conserved with respect to Eqs.~4.5! with
for the moment arbitrary coefficientsaik, viz.

$H2 ,H3%50. ~4.7!

Clearly, this is equivalent to demandingH2 to be conserved with respect toN54 KdV Eqs.
~3.21!–~3.23!.

Finally, we observe that in theN52 KdV limit ~3.34! H2 is nonzero for the option (a) in ~4.3!
and identically vanishes in the two other cases. As we will see, this property persists for theN54
KdV chargesH4 andH6. It reflects the fact that the even dimension bosonic conserved quantities
exist only for thea54, N52 KdV, but not for thea522 one.9
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B. The charges H4, H5, and H6

We have found theN52 superfield form of the conserved chargeH4 in two ways: first starting
from the harmonic superspace expression~2.38! and, second, constructing the most general di-
mension 4 expression directly inN52 superspace and then checking under which restrictions on
the coefficients it is conserved with respect to Eqs.~3.21!–~3.23! ~in doing this, we made use of
the computer!. Both ways lead to the same answer.

Proceeding in the first way and representingH4 as

H45E m~2!~H4
I 1H4

II1H4
III !, ~4.8!

where the three pieces in the integrand precisely correspond to the three terms in the expression
~2.38!, we get

H4
I 52

4

3 H a12~4VDVD̄V2VDFD̄F̄!1a11S 2F̄D̄VDV1
i

4
F̄2FxD

1a22S 2FD̄VDV2
i

4
F2F̄xD J ,

H4
II5

i

36 H 25 ~2~a12!313a12a11a22!~8V413F2F̄2124V2FF̄!14~a11!2a12~F̄3F16V2F̄2!

14~a22!2a12~F3F̄16V2F2!28~a11!3VF̄32
8

5
~4~a12!2a111~a11!2a22!~4V3F̄

13F̄2FV!28~a22!3VF32
8

5
~4~a12!2a221~a22!2a11!~4V3F13F2F̄V!J ,

H4
III 5

4i

9 H a11VxF̄x1a22VxFx2a12SVxVx1
1

2
FxF̄xD J . ~4.9!

On the other hand, the results of the second calculation can be summarized as follows:

Ĥ45E m~2!S a1V41 ia2V
3F1 ia3V

3F̄13a1V
2FF̄1

3a1
8

F2F̄21 i
5a3
4

VF31 i
3a2
4

VF2F̄

1 i
3a3
4

VFF̄21 i
5a2
4

VF̄32 i
3a1
2

V2@D,D̄#V1 i
3a2
2

VxVF2
3a2
2

@D,D̄#VVF

2 i
3a3
2

VxVF̄2
3a3
2

@D,D̄#VVF̄2 i
3a1
2

VDFD̄F̄2 i
3a2
4

F̄FFx1 i
3a3
4

FF̄F̄x

1
a1
2
VVxx2 i

a2
2
VFxx2 i

a3
2
VF̄xx1

a1
4

FF̄xxD , ~4.10!

where in Table I we listed the values of the coefficients and parametersa andb for which the
charge~4.10! is conserved. We stress that there are only these three solutions. Substituting into
Eqs.~4.9! the values~3.42! of ai j which correspond to three different choices of the parametersa
andb in Table I, we find that the relevantH4 and Ĥ4 differ ~modulo full derivatives! merely by
unessential scaling factors. These factors are not fixed by requiring the conservation of theN54
KdV charges in theN52 superfield formalism and can always be chosen so as to achieve the full
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coincidence betweenH4 andĤ4. Thus, the independentN52 superfield calculation entirely con-
firms the conclusions aboutH4 made in our previous paper14 in the framework of the HSS
formalism.

Having at our disposal the explicitN52 superfield form ofH4 we can check the first Hamil-
tonian structure representation~3.32! for N54 KdV system~3.21!–~3.23!. Like in the case of the
set ~4.5!, the necessary conditions for the existence of such a representation are the above con-
straints on the parametersa andb. Actually, an alternative and technically more simple way to
obtain ~4.10! with the coefficients from Table I is to start from the most generalN52 superfield
expression forĤ4 and to require it to reproduce Eqs.~3.21!–~3.23! via the Poisson structure
~3.26!, ~3.27!.

Note that for the second and third lines in Table I, the chargeH4 identically vanishes in the
N52 KdV limit ~3.34! in accordance with the absence of the even dimension bosonic conserved
charges for thea522, N52 KdV hierarchy.

Let us now present the conserved chargeH5. As was already mentioned, it is a very compli-
cated technical problem to construct it directly in the harmonic superspace formalism. This be-
comes feasible in theN52 superfield approach due to the possibility to use a computer. We start
from the most general dimension 5N52 superfield expression forH5 with undetermined coeffi-
cients and then examined the restrictions imposed on these coefficients by the conservation con-
dition (H5) t50. Like in the case of the lower-dimension charges, we have found only three
solutions listed in Table II:

H55E m~2!H i4 FF̄xxx2V@D,D̄#Vxx2 ia1V
2Vxx12iV@D,D̄#V@D,D̄#V1 ia2VFFxx

1
ia2
2

VFxFx1 ia3VFxxF̄1 ia4VFxF̄x1 ia3VFF̄xx22VDFxD̄F̄12VDFD̄F̄x

1 ia2VF̄F̄xx1
ia2
2

VF̄xF̄x12a4V
3@D,D̄#V1

3ia2
2

V2FFx1
3a2
2

V@D,D̄#VF2

1
3ia4
2

V2FxF̄2
3ia4
2

V2FF̄x13a4V@D,D̄#VFF̄212DVD̄VFF̄2
3ia2
2

V2F̄F̄x

1
3a2
2

V@D,D̄#VF̄22
ia2
4

F̄xF
32

3ia3
4

F2F̄F̄x1
ia2
4

FxF̄
32 ia5V

52 ia2V
3F2

25ia5V
3FF̄2 ia2V

3F̄22 ia6VF42
ia2
2

VF3F̄2 ia7VF2F̄22
ia2
2

VFF̄32 ia6VF̄4J .
~4.11!

Thus,H5 exists under the same restrictions~3.38! on theN54 KdV parametersa andb @or
their manifestly SU~2! covariant form~1.1!, ~1.2!# as in the previous cases. After reduction to

TABLE I. Coefficients inĤ4.

a1 a2 a3

a54, b50 1 0 0
a522, b526 0 21/2 21/2
a522, b56 0 1/2 21/2
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N52 super KdV by settingF5F̄50, H5 is reduced to the 5 dimension conserved charges of the
a54 anda522, N52 KdV hierarchies, respectively, for the first line and the last two lines in
Table II.

It is interesting to see how this conserved charge looks in the original manifestlyN54
supersymmetric formulation. It is a matter of straightforward though somewhat cumbersome com-
putation to find that the followingN54 superfield expression yields~4.11! after passing toN52
superfields and imposing the constraint~1.2!

H55
1

2 E @dZ#F14 ~D22V11!41 i ~D22V11!2~D2!2V111
15

4
~a22!2~D22V11!2~V11!2

2
1

2
~D22Vx

11!2G 1
i

4 E @dz22#F 63100 ~a22!4~V11!525~a22!2~Vx
11!2V11G . ~4.12!

The last conserved charge we have explicitly constructed isH6. Once again, it exists only for
the above three choices of theN54 KdV parameters. We present it here only for the choicea54,
b50 since the expressions for the two other choices are very long and complicated. Of course,
they can be obtained from thea54, b50 expression via finite SU~2! rotations.

This chargeH6 reads

H65E m~2!$6F̄xxxxF112VVxxxx2240i D̄VxDVxV2120i @D,D̄#VxxV
2160i VD̄F̄DFxx

160i VD̄F̄xDFx160i VD̄F̄xxDF2240i D̄VDVF̄xF2240i D̄VDVxF̄F

260@D,D̄#V@D,D̄#VF̄F2120@D,D̄#V@D,D̄#VV21240i @D,D̄#VVF̄xF

1120i @D,D̄#VVxF̄F1120i @D,D̄#VxVF̄F215F̄2~Fx!
2130F̄F̄xxF

2115~F̄x!
2F2

1240V2F̄xxF1120V3Vxx1480VVxF̄xF1360VVxxF̄F1180~Vx!
2F̄F

11440i D̄VDVVF̄F245i @D,D̄#VF̄2F22720i @D,D̄#VV2F̄F2240i @D,D̄#VV4

190 VF̄2FFx290 VF̄F̄xF
21240V3F̄Fx2240V3F̄xF120 F̄3F31360V2F̄2F2

1480V4F̄F164i V5%. ~4.13!

Finally, we wish to stress that all the conserved chargesHn , n51,...6, are in involution with
respect to both Poisson brackets

$Hn ,Hm%5$Hn ,Hm%~1!50. ~4.14!

This property can be easily deduced from the bi-Hamiltonian nature of the conjecturalN54 KdV
hierarchy. The bi-Hamiltonian structure can be expressed as the following general recursion rela-
tion ~up to relative scaling factors between the conserved charges!

TABLE II. Coefficients inH5.

a1 a2 a3 a4 a5 a6 a7

a54, b50 3 0 22 24 16/5 0 6
a522, b56 22 25 3 1 6/5 35/8 9/4
a522, b526 22 5 3 1 6/5 35/8 9/4
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DAB
dHn

dVA 5D ~1!
AB dHn11

dVA . ~4.15!

We have explicitly checked~4.15! for all Hn presented above, limiting ourselves, for simplicity, to
the casea54, b50 and keeping in mind that the other two integrable cases can be generated from
this one by SU~2! transformations~3.19!. Actually, as we already mentioned,postulating the
relations ~4.15! gives an alternative method to construct higher-order conservation laws, even
more simple than the direct method we resorted to in this section. We do not foresee any reason
why the construction procedure of these laws based on the relations~4.15! should terminate at any
finite step. Both the existence of the nontrivial conserved chargesH2, H4, H5, andH6 and the
above bi-Hamiltonian property are strong indications that theN54 super KdV equation with the
restrictions~1.1!, ~1.2! produces the wholeN54 super KdV hierarchy and so is integrable. In
order to rigorously prove this, it is of primary importance to find the appropriate Lax representa-
tion. We believe that in theN52 superfield formalism this problem will be simpler than in the
harmonic superspace formulation and can be solved along the lines of Refs. 10, 11, and 28.

V. CONCLUSION

As the main goal of the present work, we have obtained theN54 super KdV equation of Ref.
14 in anN52 superfield form and studied the question of its integrability in this approach. We
reproduced the results of Ref. 14 and constructed two new conserved bosonic quantities forN54
super KdV, the dimension 5 and 6 onesH5 andH6. They were found to exist under the same
restrictions on the SU~2! breaking parameters~1.1!, ~1.2! as the lower dimension charges given in
Ref. 14. The bi-Hamiltonian structure of theN54 KdV equation was extended to the whole set of
evolution equation associated with the HamiltoniansHn that have been constructed. Requiring the
existence of this structure gives rise to the same conditions~1.1!, ~1.2! on the parameters. These
results suggest that the unique integrableN54 SU~2! KdV hierarchy exists, with the choice of the
SU~2! breaking parameters as in Eqs.~1.1!, ~1.2!. TheN52 superfield formulation allowed us also
to show that two inequivalent reductions toN52 KdV are possible. They yield, respectively, the
integrablea54 and a522 cases ofN52 KdV. Thus the singleN54 SU~2! KdV hierarchy
incorporates as particular solutions two of the threeN52 KdV hierarchies.

Among the problems for future study, besides the construction of a Lax pair representation for
theN54 SU~2! KdV, let us mention a generalization to the case of the ‘‘large’’N54 supercon-
formal algebra25,26with the affine subalgebra so~4!3u~1!. The relatedN54 super KdV hierarchy
is expected to embrace both theN54 SU~2! andN53 KdV ones as particular cases. Also, it would
be interesting to construct generalizedN54 super KdV systems associated with nonlinearW type
extensions ofN54 superconformal algebras. One of possible ways to define such extensions was
mentioned in Sec. II A.
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APPENDIX A: USEFUL IDENTITIES

In this appendix we collect a number of useful identities.
First of all, we present some consequences of the constraints~2.2! and their harmonic super-

space version~2.10!, ~2.11!:

DiVkl52 1
3~e ikj l1e i l jk!, D̄ iVkl5 1

3~e ikj̄ l1e i l j̄k!, ~A1!
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DiD̄ jVkl52
i

2
~e jkVx

il1e j l Vx
ik!2

1

6
~e i l e jk1e ike j l !T, ~A2!

DiD jVkl5D̄ i D̄ jVkl50, ~A3!

D2V1152
2

3
jkuk

1 , D̄2V115
2

3
j̄kuk

1 , ~A4!

~D2!2V1152
i

2
D22Vx

112
1

3
T. ~A5!

When deducing Eqs.~2.29! and~2.37! from the harmonic superspace Poisson structure~2.21!
and rewriting the latter in ordinaryN54 superspace, one needs to decompose the objects given in
terms of one set of harmonic variables, sayui

6, over another set,v i
6, using the completeness

condition ~2.5!. The general decomposition formula for some object bilinear in harmonics,

S11~u![Sikui
1uk

1

@S11 can stand, e.g., forV11 or (D1)25D1D̄1#, is as follows

S11~u!5S11~v !~v2u1!21 1
2~Dv

22!2S11~v !~v1u1!22Dv
22S11~v !~v2u1!~v1u1!.

~A6!

Analogous relations for other harmonic projections ofSik, namelyS12 andS22, can be obtained
by applyingDu

22 to both sides of Eq.~A6! and making use of the harmonic differentiation rules

D22ui
15ui

2 , D22ui
250.

APPENDIX B: LEMMA

In this appendix we prove the following Lemma.
Lemma:Let cikl j be an arbitrary rank 4 symmetric SU~2! spinor subjected to the reality

condition

~cikl j !†5e i i 8ekk8e l l 8e j j 8c
i 8k8 l 8 j 8.

The necessary and sufficient conditions for it to be a square of some real rank 2 symmetric SU~2!
spinoraik,

ci jkl5 1
3~a

i j akl1aikajl1ail ajk!, ~aik!†52e i l ek ja
l j , ~B1!

are the following ones

~ I !A356 B2, ~ II !B,0; ~A[ci jkl ci jkl , B[cik j l c
j l
f tc

f t
ik!. ~B2!

Proof: The proof is simpler in the vector notation, withcik j l represented by a real traceless
symmetric rank 2 tensor andaik by a real vector

cikl j⇒cmn5
1

2
ci j kl~sm! i

k~sn! j
l , aik⇒am5

1

&

aik~sm! i
k ; ~m,n...51,2,3!

A5cmncmn, B52cmncnrcrm.

Here,~sm!k
l are Pauli matrices.

In this notation, the relation~B1! amounts to
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cmn5aman2 1
3d

mn~arar!. ~B3!

Then the necessity of~B2! immediately follows from computing the invariantsA andB for the
tensor~B3!

A5 2
3~a

2!2, B52 2
9~a

2!3, a2[amam.0.

In order to show that~B2! is also sufficient forcmn to be representable in the form~B3!, let us
go to the frame wherecmn is a diagonal traceless matrix with the following nonzero entries

c115l1 , c225l2 , c3352~l11l2!, ~B4!

l1,l2 being arbitrary for the moment. After substituting this into the first of conditions~B2! we get
the equation

~l12l2!
2~l112l2!~2l11l2!50, ~B5!

which has the following nonzero roots

~a! l15l2 ; ~b! l1522l2 ; ~c! l2522l1 . ~B6!

The inequality in~B2! takes the form

l1l2~l11l2!,0 ~B7!

and restricts the solutions~B6! in the following way

~a! l1,0, ~b! l1.0, ~c! l1,0. ~B8!

Now it is an elementary exercise to see that these three solutions correspond to three different
choices of the vectoram in ~B3! ~up to the reflectionam→2am!

~a! am5~0,0,A3ul1u!; ~b! am5SA3

2
ul1u,0,0D ; ~c! am5~0,A3ul1u,0!.

This proves the sufficiency of the conditions~B2!.
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In this paper we give a simple formula to obtain hereditary symmetries related to
the isospectral eigenvalue problem of integrable equations. Using this formula,~i!
we prove that eigenfunctions of hereditary strong symmetry are symmetries for the
whole hierarchy, which improves the result of Fokas and Anderson@J. Math. Phys.
23, 1066 ~1982!#; ~ii ! we find new integrable equations; and~iii ! we give strong
symmetries of these new integrable equations and various equations for eigenfunc-
tions of the isospectral eigenvalue problems. ©1996 American Institute of Phys-
ics. @S0022-2488~96!01202-9#

I. INTRODUCTION

As is well known, there is a deep connection between certain integrable nonlinear evolution
equations in 111 dimensions and certain linear isospectral eigenvalueequations.1–3 The isospec-
tral eigenvalue equation algorithmically implies a certain linear integrodifferential operatorF
called the strong symmetry~or the recursion operator!. This operator plays a central role in the
understanding of the algebraic–geometrical structure of integrable evolution equations. Some
important results about the recursion operator can be found in Refs. 4–6. Moreover, if an operator
F has an algebraic–geometrical property called hereditary, then the equationsut5Kn5Fnux
possess the Lax pairsFs5ls, s t5Knus, so finding new hereditary symmetry is equivalent to
finding new integrable equations.

Therefore, many authors have found various methods to find strong symmetries. Two general
and algorithmic methods are the following:

~1! Fokas and Amderson proved that a linear isospectral eigenvalue problem gives rise to a strong
symmetry.7

~2! Fuchssteiner showed that Ba¨cklund transformations yield transformations between strong
symmetries, thus they generate a class of strong symmetries from agiven.8

The first method is useful only when the isospectral eigenvalue problem is found and these
two methods are tedious. It is not easy to find explicitly strong symmetry using the above methods.

In Ref. 9, Strampp pointed that for certain nonlinear integrable equations

ut5K~u!, ~1.1!

their Lax pairs can be transformed into

F~u!s5ms, s t5Kus, ~1.2!

respectively, whereF is a strong hereditary symmetry operator of~1.1!, Ku is the Gateaux de-
rivative of K with respect tou, andm is a constant. In fact, for an equation such as the KdV
equation, the Schro¨dinger equation, there exists an explicit relationship betweenF and the Hamil-
tonian operatoru,7

uF15Fu, ~1.3!
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whereF1 denotes the adjoint ofF, Using the result in Ref. 7s is a symmetry for the whole
hierarchy

ut5Kn5FnK~u!, n51,2,... . ~1.4!

But for an equation such as Burgers equation, the relation~1.3! does not exist, and we cannot use
the result in Ref. 7 to prove thats is a symmetry for the whole hierarchy~1.4!.

In Sec. III regarding the linear isospectral eigenvalue equation as a Miura transformation we
prove a property about hereditary symmetry and prove that the eigenfunctions of hereditary strong
symmetries are symmetries for the whole hierarchy, which improve the result in Ref. 7. In Sec. IV
we give a formula to obtain strong symmetries of equations which the eigenfunctions of isospec-
tral eigenvalue problems satisfy. Using this formula we also construct a new class of integrable
equations~4.5!; these equations have strong symmetries and Lax pair and can also be treated as
the symmetry constraints of the original equations. Section V gives some examples. We obtain
strong symmetries of nonlinear equations for eigenfunctions in Lax pairs of Burgers equation, the
KdV equation, the Schro¨dinger equation, and the Harry Dym equation and construct new inte-
grable equations.

II. BASIC NOTIONS

We consider an evolution equation

ut5K~u! ~2.1!

on a normed spaceM of vector-valued functions on the real line,K is a suitableC` vector field
onM . We also assume the space of smooth vector fields onM is some spaceV of C` functions
on the real line vanishing rapidly at6`.

The derivative ofK(u) in the directionv is denoted byKu(u)[v] and can be calculated by

Ku~u!@v#5
]K~u1mv !

]m U
m50

. ~2.2!

A function s is a symmetry of~2.1! if

s t5Kus.

An operator-valued functionF(u) is called a strongsymmetry10 ~or recursion operator in the
terminology of Ref. 11! for ~2.1! if

]F

]t
5@Ku , F#[KuF2FKu , ~2.3!

where]F/]t is the total derivative andu satisfies~2.1!. F maps symmetries of~2.1! onto sym-
metries of~2.1!. Obviously, if Eq.~2.1! has a strong symmetryF, then it has a Lax pair

F~u!w5mw, wt5Kuw.

An operator-valued functionF(u) is called a hereditarysymmetry10,12 if

Fu@Fv#w2Fu@Fw#v5F~Fu@v#w2Fu@w#v ! ~2.4!

is valid for any functionsv,wPM .
It is well known that IfF(u) is a hereditary and strong symmetry for~2.1!, thenF is a strong

symmetry for the following equations:
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ut5„F~u!…nK~u!, n50,1,2..., ~2.5!

that is,~2.5! inherits its strong symmetry from~2.1!.

III. HEREDITARY SYMMETRY AND LAX PAIR

In what follows, letV be the algebra of operator valued function onV which has no zero
divisors.

We consider the eigenvalue problem of the hereditary symmetry which does not depend on
time t explicitly.

F~u!s5ms. ~3.1!

Proposition 3.1: Suppose (a)F is a nonconstant hereditary symmetry, (b) (3.1) is equivalent
tou5 f (s,m), (c)F(u),T21F 2 FT21P V(T[ f s) (orF,TPV), then

Fu@s#5T21F2FT21. ~3.2!

Proof: Substitutingu5 f (s,m) into ~3.1! we obtain an identity

F„f ~s,m!…s[ms.

Taking the Gateaux derivative with respect tos in two sides we have

Fu@•#s52FT211mT21. ~3.3!

On the other hand,F is a hereditary symmetry operator, and we get an identity from~2.4!

Fu@Fs#2Fu@F•#s5F~Fu@s#2Fu@•#s!. ~3.4!

Substituting~3.3! into ~3.4! yields

~m2F!~Fu@s#2T21F1FT21!50,

and we get~3.2! becauseV has no zero divisors.
Lemma 3.2: Under the assumption of Proposition 3.1 and

T21K5Kus, ~3.5!

then

T21Kn5Knus, n50,1,2,...,

where Kn5FnK.
Proof:We prove it by induction. Whenn5m11, we find

T21Kn5T21FKm5~Fu@s#1FT21!Km5Fu@s#Km1FKmus5~FKm!us5K ~m11!us.

Theorem 3.3:Under the assumption of Proposition 3.1 ands the symmetry of (2.1), if u is a
solution of (2.5), then

s t5Knus;

that is,s is a symmetry of (2.5).
Proof:
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s t5T21ut5T21Kn .

Using Lemma 3.2,

s t5Knus.

Remark 1:Almost all well-known integrable equationsK5ux , and then the condition~3.5! in
Lemma 3.2 and the condition ‘‘s is a symmetry ofut5ux’’ in Theorem 3.3 are satisfied automati-
cally.

Remark 2:Let V be equal to the space of those fast decreasing functions or the space of those
C` functions vanishing rapidly at2`. Let V(D,D21) denote the algebra of operator-valued
functions onV generated by functions of the following type:

u→D, u→D21, u→ f ~u~n!!, u→g~u~2n!!,

where f andg are allowed to be arbitrary entire analytic functions, and whereu(n) areu(2n) are
thenth derivative and thenth integral ofu. It was proved thatV(D,D21) has no zerodivisors.12

In many cases, to check~3.2!, we may check the the following identity directly:

TFu@s#T5F~u!T2TF~u!.

Formula~3.2! has some applications. Section IV uses it to give new hereditary symmetry and
new integrable equations. Many integrable equations possess two sets of symmetries, called
K-symmetries andt-symmetries.13 Recently Lou used inverse strong symmetry to find new
symmetries,14,15 and this formula also played a central role in obtaining the Lie algebra of these
symmetries.16,17

Now we turn to the usual Lax pair of~2.5!,

L~u!c5lc, ~3.6a!

c t5Anc, ~3.6b!

whereL(u) andAn are certain linear differential operators.
Theorem 3.4: Suppose (a)F is an nonconstant hereditary symmetry; (b) the isospectral

eigenvalue problem (3.6a) is equivalent to

u5p~c,l!; ~3.7!

and (c) there exists an invertible transformation

s5h~c! ~3.8!

to convert (3.6a) into (3.1) wherem is a constant related tol, with s a symmetry of (2.1). (d)F,
suF2FsuPV (or F,cu ,scPV). Then (3.6) is transformed to

F~u!s5ms, s t5Knus. ~3.9!

Proof: Because

T[us5uccs ,

we can use Theorem 3.3 to prove this theorem easily.
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IV. NEW HEREDITARY SYMMETRY AND NEW INTEGRABLE EQUATION

A. Eigenfunction equation

Under the assumption of Theorem 3.4, Theorem 3.4 gives a method to obtain hereditary
symmetry. In fact, from the result in Refs. 7 and 8 we know thatT21FT is a hereditary symmetry
iff F is a hereditary symmetry andT21FT is a strong symmetry of

s t5Ku„f ~s,l!…s ~4.1!

iff F is a strong symmetry of~2.1!. From ~3.2!

C~s!5T21FT5Fu@s#T1F~u!5Fu@s#uccs1F~u!. ~4.2!

We need not calculate the inverse operatorT21 by using this formula, which is very useful in
calculating hereditary symmetry. Similarly, a strong hereditary symmetry of the equation

c t5A1„p~c!…c5pc
21K„p~c!… ~4.3!

is

C25cs@Fu@s#uccs1F~u!#sc5cs@Fu@s#uc1F~u!sc#. ~4.4!

Remark:For most equations having the relation~1.3!

s5uGl , ~4.48!

whereGl is the gradient ofl which is calculated from the isospectral eigenvalueproblem
~3.6a!.7 j

Konopelchenko first found that~4.3! is an integrableequation;18 he calls~4.3! an eigenfunc-
tion equation.

B. Constraints equation

Under the assumption of Proposition 3.1, formula~3.2! tell us to construct other new inte-
grable equations aboutu:

ut5s~u,m!. ~4.5!

wheres only satisfies~3.1!. It should be noted that we do not requireu to satisfy any other
equations here!

In fact ~3.2! is just the definition thatF(u) is a strong symmetry of~4.5!, so~4.5! has the Lax
pair

F~u!w5lw, wt5suw. ~4.6!

Substitutingu5 f (s,m) into ~4.5! we get the equation ofs,

f t~s,m!5s; ~4.7!

~4.2! is its strong symmetry.
Furthermore, if an isospectral eigenvalue problem~3.6a! can be transformated into~4.6a! by

the transformations5h~c!, then we have the integrable equation ofc,

f t„h~c!,m…5h~c!, ~4.8!

which has a strong symmetry with the form~4.4!.
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Remark:Eq. ~4.5! can be regarded as the symmetry~ut ands! constraints of the equation
which possesses strong symmetryF and symmetrys,19 so we call it the constraints equation.
Equations~4.5! and ~4.8! also possessK symmetries andt symmetries.17 Equation~4.8! is con-
nected with the equations studied in Refs. 14, 15, and 19.

Using the formulas given here we can get strong symmetries of various equations in Refs. 14
and 15 and others. In Sec. V, for instance, we study some important equations.

V. EXAMPLES AND APPLICATIONS

~A! Burgers equation9,20

ut5K~u!5uxx1uux . ~5.1!

An isospectral eigenvalue problem for~5.1! is given by

cx1
u

2
c5lc, ~5.2a!

where the eigenfunctionc evolves in time according to the equation

c t5S l22
u2

4
2
ux
2 Dc. ~5.2b!

By using the transformation

s5cx , ~5.3!

we obtain

F~u!s5ls, s t5Kus, ~5.4!

where

F5D1
u

2
1
ux
2
D21, D5

]

]x
, DD215D21D51.

From Theorem 3.3,cx is a symmetry for the whole hierarchy

ut5Fnux .

We finds satisfies

s t52lsx1sxx2
4ssx

D21s
1

2s3

~D21s!2
. ~5.5!

It has a strong hereditary symmetry

C15D1l22~ ln D21s!xxD
2122~ ln D21s!x ; ~5.6!

furthermore,

c t52lcx1cxx2
2cx

2

c
. ~5.7!

Its strong hereditary symmetry is
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C25D1l2
2cx

c
. ~5.8!

~B! The KdV equation

ut5K1~u!5F~u!ux5uxxx16uux , ~5.9!

where

F5D214u12uxD
21

is a strong hereditary symmetry.
Its Lax pair is

cxx1uc5lc, c t5~2u14l!cx2uxc. ~5.10!

Let

s5~c2!x , ~5.11!

then ~5.10! becomes

Fs54ls, s t5Kus, ~5.12!

wheres is a symmetry of the whole hierarchyut5Fnux , that is, its Lax pair

cxx1uc5lc, c t5Bncx2
Bnx

2
c

is transformed into

Fs54ls, s t5Knus.

The eigenfunctions in the Lax pair~5.12! satisfies

s t5sxxx16lsx2 S 3s2

2D21s D
xx

. ~5.13!

A strong hereditary symmetry of this equation is

C15D214u12uxD
211~4s12sxD

21!~2D21l2u!
D21

2D21s
, ~5.14!

where

u5l2
2sxD

21s2s2

4~D21s!2
. ~5.15!

F also is a strong symmetry of the following new integrable equation foru:

ut5s, ~5.16!

with s defined in~5.15!. Equation~5.14! is just a strong symmetry of the new integrable equation
abouts which also defined by~5.16! with u defined by~5.15!.

Thec of the Lax pair~5.10! satisfies18
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c t5cxxx16lcx23
cxxcx

c
. ~5.17!

One of its strong hereditary symmetries is

C25D222
cx

c
D14l2

cxx

c
2
2cx

2

c2 24cxD
21S 1c D

xx

; ~5.18!

~5.18! is also a strong symmetry of the new integrable equation

S cxx

c D
t

522ccx . ~5.19!

This equation was first studied in Ref. 19 and it can be transformed into sinh-Gordonequation,19

here we give its strong symmetry.
~C! The Schro¨dinger equation

ut5K15Fux ~5.20!

with

u5S qr D , F~u!5 i SD22qD21r 22qD21q

2rD21r 2D12rD21qD ;
the corresponding Lax pair is

c1x5lc11qc2 , c2x52lc21rc1 ,

c1t5~2il22 iqr !c11 i ~qx12lq!c2 , ~5.21!

c2t5 i ~2r x12lr !c12 i ~2l22qr !c2 .

Taking the transformation

s5S c1
2

c2
2D , ~5.22!

~5.21! becomes

Fs52ils, s t5K1us, ~5.23!

wheres is a symmetry for the whole hierarchyut5Fnux . A strong hereditary symmetry of the
eigenfunction equation abouts is

C1~s!5 i S a11 a12

a21 a22
D ~5.24!

with

a115s1D
21

r

As1s2
S s1x

s1
2D D1l2

s1x

2s1
1D,
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a125s1D
21

q

As1s2
S s2x

s2
2D D2

qAs1

As2

,

a2152s2D
21

r

As1s2
S s1x

s1
2D D2

rAs2

As1

,

a2252s2D
21

q

As1s2
S s2x

s2
2D D2l1

s2x

2s2
2D,

where

q5
s1x22ls1

2As1s2

, r5
s2x12ls2

2As1s2

. ~5.25!

F(u) is a strong symmetry of the following integrable equation aboutu;

qt5s1 , r t5s2 , ~5.26!

with s1,s2 defined in~5.25!. Furthermore,~5.24! is a strong symmetry of the integrable equation
~5.26! abouts with (q,r ) defined in~5.25!.

A strong hereditary symmetry of the eigenfunction equation aboutc is

iS c1D
21

r

c2
S c1x

c1
2D D1l1D c1D

21
q

c1
S c2x

c2
2D D2q

2c2D
21

r

c2
S 2D1

c1x

c1
D1r c2D

21
q

c1
SD2

c2x

c2
D2l2D

D , ~5.27!

where

q5
c1x2lc1

c2
, r5

c2x1lc2

c1
. ~5.28!

Equation~5.27! is also a strong symmetry of the new integrable equation aboutc

qt5c1
2, r t5c2

2. ~5.29!

~D! The Harry Dym equation:

ut5K~u!52~11u!xx
21/2, ~5.30!

arising as the integrability condition of the following equations:

cxx1~11u!l2c50,
~5.31!

c t524~11u!23/2cxxx22„~11u!23/2
…xcxx .

By using the transformation

s5~c2!xxx ~5.32!

~5.32! becomes
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F~u!s522l2s, s t5Kus, ~5.33!

where

F~u!5 1
2D

3~11u!21/2D21~11u!21/2. ~5.34!

Its inverse operator is

F21~u!52~11u!D221uxD
23; ~5.35!

~5.34! and ~5.35! are two strong symmetries.s is a symmetry for the whole hierarchy
ut5FnK(u). Two strong symmetries corresponding to the equation ofs in ~5.33! are

C1~s!52
1

4
@D3v3sD21v1D3vD21v3s#F2D23sD2112D21sD2322D22sD22

4~D23s!2

2
„2D21sD23s2~D22s!2…D23

2~D23s!3 G1
1

2
D3vD21v,

~5.36!

C1
21~s!5@2sD221sxD

23#F2D23sD2112D21sD2322D22sD22

4~D23s!2

2
„2D21sD23s2~D22s!2…D23

2~D23s!3 G12~11u!D221uxD
23,

where

u5212
~AD23s!xx

l2AD23s
, v5~11u!21/2. ~5.37!

Equations~5.34! and ~5.35! are two strong symmetries of the integrable equation ofu

ut5s~u! ~5.38!

with s defined in~5.37!. On the other hand,~5.36! are two strong symmetries of the integrable
equation~5.38! of s.

Two strong hereditary symmetries for the eigenfunction equation aboutc are

C2~c!52
D3

8c F „D3v3~c2!xxxD
21v1D3vD21v3~c2!xxx…S 2

D2

l2c
1

cxx

l2c D1
1

2
D3D21vG ,

C2
21~c!5

D23

2c F „2~c2!xxx1~c2!xxxxD
23
…S 2

D2

l2c
1

cxx

l2c2D2
2cxxcx

l2c
2
2cxxx

l2 2
4cxx

l2 DG ,
~5.39!

wherev5(2cxx/l
2c)21/2.

Equations~5.39! are also two strong symmetries of the new integrable equation

S cxx

c D
t

52l2~c2!xxx . ~5.40!
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VI. CONCLUSION

In this paper, we give a formula for obtaining hereditary strong symmetries of nonlinear
equations for eigenfunctions and the constraints equation. Using this formula we prove that eigen-
functions of hereditary strong symmetries are symmetries for the whole hierarchy. Applying the
strong symmetries given here we can easily obtainK symmetries andt symmetries and their Lie
algebraic structure of eigenfunction equations~4.1!, ~4.3!, and constraints equations~4.5!.21,22At
last, the Darboux transformations~DTs! of ~3.6! give the Bäcklund transformations~BTs! for the
eigenfunction equations~4.3!. For example, associated with the KdV equation~5.9! there exists a
DT23

u@1#5u12~ ln c1!xx , ~6.1!

c@1#5cx2
c1x

c1
c, ~6.2!

wherec1 is the fixed solution of~5.10! with l5l1, then ~6.2! becomes a BT for Eq.~5.14!, in
particular~5.14! has a auto-BT

c@1#5
1

c
.

ACKNOWLEDGMENTS

I am most pleased to thank Professor Chaohao Gu and Professor Hesheng Hu for their
guidance. I also thank Dr. Z. X. Zhou, Dr. W. X. Ma, and Dr. Q. Ding for their helpful comments.

This work was supported by the Doctoral Programme Foundation of the Institution High
Education of China, the Shanghai Natural Science Foundation of China, and the Shanghai Science
and Technology ‘‘Morning Star’’ planning of China.

1C. S. Garder, J. M. Green, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett.19, 1095~1967!.
2C. S. Garder, J. M. Green, M. D. Kruskal, and R. M. Miura, Commun. Pure Appl. Math.27, 97 ~1979!.
3P. D. Lax, Commun. Pure Appl. Math.21, 467 ~1968!.
4A. S. Fokas, Stud. Appl. Math.77, 253 ~1987!.
5P. M. Santini and A. S. Fokas, Commun. Math. Phys.115, 375 ~1988!.
6A. S. Fokas and P. M. Santini, Commun. Math. Phys.116, 449 ~1988!.
7A. S. Fokas and R. L. Anderson, J. Math. Phys.23, 1066~1982!.
8A. S. Fokas and B. Fuchssteiner, Nonlinear Anal. TMA5, 423 ~1981!.
9W. Strampp, J. Math. Phys.25, 2905~1984!.
10F. Magri, J. Math. Phys.19, 1156~1978!.
11P. J. Olver, J. Math. Phys.18, 1212~1977!.
12B. Fuchssteiner, Nonlinear Anal. TMA3, 849 ~1979!.
13Y. S. Li and Y. Cheng, inTopics in Soliton Theory and Exactly Solvable Nonlinear Equations, edited by M. A. Blowitz,
B. Fuchssteiner and M. Kruskal~World Scientific, Singapore, 1987!.

14S. Y. Lou, J. Math. Phys.35, 1755~1994!.
15S. Y. Lou, J. Math. Phys.35, 2336~1994!.
16Q. Ding and B. Q. Lu,The General Lie Algebraic Structure of Symmetries~preprint 1994!.
17B. Q. Lu, The Lie Algebraic Structure of Symmetries of One Class of Integrable Equations~preprint, 1994!.
18B. G. Konopelchenko, inNonlinear Evolution Equations and Dynamical Systems, edited by S. Carillo and O. Ragnisco

~Springer-Verlag, Berlin, 1990!.
19J. M. Verosky, J. Math. Phys.32, 1733~1991!.
20B. Q. Lu, Phys. Lett. A191, 96 ~1994!.
21G. Z. Tu, J. Phys. A21, 1957~1988!.
22W. X. Ma, J. Phys. A23, 2707~1990!.
23V. B. Matveev and M. A. Salle,Darboux Transformation and Solitons~Springer-Verlag, Berlin, 1991!.

1392 Bao Qun Lu: Strong symmetry and integrable system

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Soliton solutions and gauge equivalence for the problem
of Zakharov–Shabat and its generalizations

Y. Vaklev
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In a paper by Takhtadjan and Faddeev@Hamiltonian approach to the soliton theory
~in Russian! ~Nauka, Moskov, 1986!# theN-soliton solutions, related to the nonlin-
ear Schro¨dinger equation~NSE!, are given. A generalization of this approach al-
lows us to apply it not only to the NSE, but to the whole hierarchy of the
Zakharov–Shabat problem, to the quadratic bundle problem, and to the ones gauge
equivalent to them@where one can find, for example, the Heisenberg ferromagnet
equation, the relativistic Mikhailov model~which, in appropriate reduction, is
equivalent to the massive Thirring model!, the derivative nonlinear Schro¨dinger
equation~which is equivalent to the derivative Landau–Lifshitz equation!, etc.#.
We have used an appropriate reduction, giving us interesting, from a physical point
of view, results. Thus we manage to obtain the soliton solutions for the whole
hierarchy of the quadratic bundle problem~free and under reduction! and for the
ones gauge equivalent to it. This result was first announced in previous articles by
Vaklev, but here we manage to solve the determinants given there and to present the
searched result as simple fractions of products of numerical differences. ©1996
American Institute of Physics.@S0022-2488~96!02802-9#

I. PRELIMINARIES

One can find theN-soliton solution for the particular case of the nonlinear Schro¨dinger
equation in Ref. 1. An equivalent modification of the same method could be applied to any
nonlinear evolution equation~NLEE! from the whole hierarchy of the Zakharov–Shabat system.
Here we shall use a generalization of the approach used in Ref. 1. By means of that we also
manage to obtain theN-soliton solutions of all NLEEs related to the quadratic bundle
problem3,8–10

@2Dx1q0~x,t !1lq~x,t !1r ~x,t !2l2#v~x,t,l!50, ~1!

whereDx , qk , k50,1, andr are of the form

Dx :5
i

2
s3dx , qk :5S 0, qk

1

qk
2 , 0

D ,
q~x,t !:5q1~x,t !, r ~x,t !:52 1

2q
1~x,t !q2~x,t !.

~One can see that the Zakharov–Shabat system follows from Eq.~1! imposingq50 and setting the
spectral parameterm5l2.!

In this article we use the so-called ‘‘Expansion over ‘squared solutions’ method’’
~EOSSM!.11–13 This method allows us to examine simultaneously the whole classes of NLEE’s
related to the corresponding auxiliary linear problems. If one does the same in the Lax approach,
he has to look for a great number of Lax pairs working separately equation by equation. The
EOSSM unifies the result of such an activity and allows to write it in a complete form. For
example the whole class of NLEE’s related to the problem~1! can be written as3,10–13

0022-2488/96/37(3)/1393/21/$10.00
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iSQt1F~L!Q50, ~2!

where~here we follow the notations of Ref. 5 with some insignificant modifications!:

L:5S Z10, 11Z1

L0 , Z01
D , S:5s03s3 ,

Q~x,t !:5S qq0D , L0 :5Dx1r1Z0 ,

Zkl :5
i

2
qk~x,t !S E

x

`

dy1E
x

2`

dyD ^ql ,@s3 ,•#2&, k,l50,1,

Zk :5Zkk , @X,Y#6 :5XY6YX, X,YPgl~n,c!,

^X,Y&5 1
2 tr XY, X,YPgl~2,c!,

andF~l! is the dispersion law of the form

F~l!5 (
l52k

c

f ll
l , k,cPR1 , k,c,`. ~3!

The results obtained by means of Lax approach correspond to the ones given here at a fixed value
of the dispersion law~3!. In order to obtain, for example, the soliton solutions of the relativistic
Mikhailov model8,14 we fix it F~l!5l22:

h1,x,t1m2h122ih1h2h1,x50,

h2,x,t1m2h212ih1h2h2,x50.

@It is equivalent~in case of an appropriate reduction!3 to the massive Thirring model.# The de-
rivative nonlinear Schro¨dinger equation~DNSE!

in t1nxx1 i e~ unu2n!x50

is gauge equivalent@see Sec. V, Eq.~35!# to the one obtained by the choice of the dispersion law
F~l!5l2. It is gauge equivalent as well to the derivative Landau–Lifshitz equation~DLLE!

St2
i

2
@S,Sxx#21

1

4v2 ~Sx!
250

~see, e.g., Ref. 5 and the references given there!. In order to obtain these results, we have to
impose the reduction

q050 ~4!

to the problem~1!. In this case the new problem has some symmetry properties leading to
evenness of the dispersion law~3!. Thus the corresponding class of NLEE’s related to problem~3!
under~4! can be given as
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is3q1,t1F~L1!q150, L1 :5~11Z1!~Dx1r !,

F~l2!:5 (
l52 k̃

c̃

f 2ll
2l , k̃,c̃PR1 , k̂,c̃,`. ~5!

~We note that ifL in Eq. ~2! is taken in power two,L1 in Eq. ~5! corresponds to power one.!
We would like to note that the topic of the presented work has been developing very inten-

sively. Many papers appear and many new results are given. For example, in Ref. 15 new results
for the MNLS equation were obtained. A part of them can be found here by setting the dispersion
law ~3!:5

F~l2!524l418v2l224v4.

~The corresponding NLEE is given in Sec. V.! In the points of the spectruml j
656 iv the used5

transformation is singular. We have to evaluate there the whole quantities separately. That is why
the results given in Ref. 15 differ from the ones given in Ref. 8 and from the ones presented here.
It is difficult for us to quote all the results. The new point in the presented paper is that by means
of EOSSM we obtain results not only for a fixed value of the dispersion function, but for the
whole class of NLEEs~2,5!.

II. SOLITON SOLUTIONS

One can draw some analogy between the Zakharov–Shabat problem and the problem of the
quadratic bundle~1!. The results in both cases are close. As we have mentioned, the results for the
Zakharov–Shabat problem follows by settingq50 andm5l2. We would like to note that some of
the quantities used here are changed and others are absent. That is why the limit has to be
performed carefully.

The Jost solutionsc andf corresponding to the problem~1! are built as usual:

c~x,t,l!:5~c2,c1!~x,t,l!:5c~x,t,l!exp~ il2xs3!,

f~x,t,l!:5~f2,f1!~x,t,l!:5f~x,t,l!exp~ il2xs3!;

lim
x→`

c~x,t,l!5s0 , lim
x→2`

f~x,t,l!5s0 , ~6!

wherec andf are solutions of~1! ands0 is gl~2! unit matrix. For these solutions the following
representations are valid:8–10

c6~x,t,l!5e66(
j51

N z j
7~x,t !

l j
72l

cj
7~x,t !1

1

2p i EG

dk

k2l
r7~ t,k!c7~x,t,k!exp72ik2x,

~7!

where we note by

z j
6~x,t !:5c0 j

6 exp6 i @2~l j
6!2x2F~l j

6!t#,

c0 j
6 :5

b6~ t,l!

da6~l!

dl
U

l5l
j
6 ,t50

, cj
6~x,t !:5c6~x,t,l j

6!, ~8!

e1:5S 01D , e2:5S 10D , r6:5
b6~ t,l!

a6~l!
.
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By means ofa6,b6 we denote the reflection coefficients for the quadratic bundle~1!. The con-
tinuous spectrum of Zakharov–Shabat problem coincides with the line: Imm50, since for prob-
lem ~1! the same spectrum is given by the contourG: Im l250 ~see Fig. 1!. The simple rootslj

6

~at whicha6(l j
6)50!, lj

6¹G give the discrete spectrum of problem~1!.
We remind that forf from Eq. ~6! is correct:

f j
6~x,t !56bj

6~ t !c j
6~x,t !,

where@compare Eq.~8!# fj
6 is f6 at the pointlj

6. If we define

bj
6~ t !5b6~l,t !ul5l

j
6,

we can write

bj
6~ t !5bj0

6 exp6 iF ~l j
6!t,

whereF is the dispersion law for problem~1!, bj0
6 are complex constants.

In the case of a reflectionless potential since

r650, ~9!

the representations~7! turn into an algebraic system of 2N equations for the 2N quantitiesck
6

@Eq. ~8!#. Due to the Cramer formulas one obtains theN-soliton solutionc of the problem of the
quadratic bundle~1! in the form

c~x,t,l!5s01
s3

uKu (
j51

N S (
s51

N zs
2

v js
1 uK ~s!

2 u, uK ~ j !
2 u

uK ~ j !
1 u, (

s51

N zs
1

v js
2 uK ~s!

1 u
D ~x,t !S z j

1~x,t !

l j
12l

, 0

0,
z j

2~x,t !

l j
22l

D

FIG. 1. The contourG.

1396 Y. Vaklev: Soliton solutions and gauge equivalence

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



5s02
s3

uKu (
j51

N S (
s51

N zs
2

v js
1 uK ~s!

2 u, uK ~ j !
2 u

uK ~ j !
1 u, (

s51

N zs
1

v js
2 uK ~s!

1 u
D ~x,t !S z j

1 , 0

0, z j
2D ~x,t !

3F 1l 1
1

l2 S l j
1 , 0

0, l j
2D 1oS 1l2D G . ~10!

In the relations~10! we have used the notations~compare Refs. 6 and 7!

Ki ,l
6 :5d i ,l2z l

6(
s51

N zs
7

v is
6v ls

6 , vk j
6 :56~lk

62l j
7!;

K ~ j !i ,l
6 :5Ki ,l

6 2d l , j~Ki , j
6 21!, ~11!

uXu:5detX, XPgl~2,c!.

It remains to give explicitly the determinantsuKu and uK ( j )
6 u in order to have the result in an

explicit form. $One can see here, because of the symmetry properties of the summarized quantities
entering in determinantuKu @see Eq.~14!#, that it does not depend on ‘‘6.’’ % We have obtained
them from definition~11! using their expansion over the principal minors. The terms entering the
expansion can be simplified applying the Binet–Cauchy formula to them. We succeeded to solve
these determinants explicitly.~We have solved also the ones used in Ref. 7; in spite of that it
concerns another case which we shall examine further.! The result for the case of the Zakharov–
Shabat problem coincides with those in Ref. 1 and repeats the ones given in Refs. 5, 8, and 10 for
the one soliton solutions in case~1!. For theN-soliton solutions, whenN>2, the result is new. We
use the known from the linear algebra formula@compare with formula~II.8.49! of Ref. 1#:

U 1

ai11bj 1
,

A
1

ain1bj 1
,

...,
�

...,

1

ai11bjn
A
1

ain1bjn

U5 )
k, l51

n

~aik2ai l !~bj k2bj l ! )
m,s51

n

~aim1bj s!
21,

wherei 1 ,...,i n , j 1 ,...,j n can be different increasing number sets. Thus we have~compare Refs. 6
and 7!

uQ j 1 ,...,j n

6 i1 ,...,i nu:5U 1

v i1 j 1
6 ,

A
1

v i nj 1
6 ,

...,
�

...,

1

v i1 j n
6

A
1

v i nj n
6

U5~61!n )
k, l51

n

~l i k
62l i l

6!~l j l
72l j k

7! )
m,s51

n

~l im
6 2l j s

7!21,

uQ j 1 ,...,j n

6 i1 ,...,i nu5uQ i1 ,...,i n

7 j 1 ,...,j nu. ~12!

For the determinant of the difference, we have obtained
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uQp1 ,...,pn

6 i1 ,...,i n2Qp1 ,...,pn
6 j ...,j u5)

k51

n S 12
v i kpk

6

v jpk
6 D uQp1 ,...,pn

6 i1 ,...,i nu. ~13!

By means of the relations~12! and ~13! from the definition~11! one obtains

uKu~x,t !5 (
k50

N

~21!N2k (
i1,•••, i N2k51
p1,•••,pN2k51

N

)
s51

N2k

~z i s
6zps

7 !~x,t !uQp1 ,...,pN2k

6 i1 ,...,i N2ku2,

uK ~ j !
6 u~x,t !5 (

k51

N

~21!N2k (
i1,•••, i N2k51

iÞ j
p1,•••,pN2k51

N

)
s51

N2k

~z i s
6zps

7 !~x,t !S 12
v i sps

6

v jps
6 D uQp1 ,...,pN2k

6 i1 ,...,i N2ku2,

(
i1,•••, i N2k51

N U
k5N

~••• !:5 )
s51

N2k

~••• !U
k5N

:51. ~14!

We have expansions ofc for l@1:

cd~x,t,l!5s02
i

l
s3E

x

`

dy^q1 ,q0&~y,t !1oS 1l D ,
ca~x,t,l!5

1

2l
q11

1

2l2 Fq0~x,t !1 is3q1~x,t !E
x

`

dy^q1 ,q0&~y,t !G1oS 1l2D ,
where, as it is known,

Xd:5 1
2s3@s3 ,X#1 , Xa:5 1

2s3@s3 ,X#2 .

Thus we have the potentialsq0 ,q from this expansion and Eq.~10! for the case of the quadratic
bundle problem~1!:

q05
2

uKu (
j51

N S 0, z j
2uK ~ j !

2 u

z j
1uK ~ j !

1 u, 0
D F S l j

1 , 0

0, 2l j
2D 1

(k,l51
N

z l
6zk

7

v lk
6 uK ~ l !

6 u

uKu
G ,

~15!

q52
2

uKu
s3(

j51

N S 0, z j
2uK ~ j !

2 u

z j
1uK ~ j !

1 u, 0
D

in an explicit form. The quantitiesuKu and uK ( j )
6 u are given explicitly by Eqs.~12! and~14!. Thus

we have represented the result in a form of simple fractions of numerical differences.

III. THE REDUCTION CASE

In order to investigate the solutons of DNSE, its gauge equivalent DLLE, etc., we have to use
the quadratic bundle problem~1! under the reduction~4!.

One can see5 that in case of reduction,

q05vs3q, vPC,

to problem~1! it leads to
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c~x,t,l!5s3c~x,t,2l!s3→c~x,t,2l!57s3c~x,t,l!.

Thus if l6 belongs to the discrete spectrum of Eq.~1!, then so do2l6 . This is not true for Eq.
~7! in general. Due to these symmetry properties of the coefficients entering Eq.~7! and of the
trivial fact

1

l2l j
62

1

l1l j
6 5

2l j
6

l22~l j
6!2

,
1

l2l j
6 1

1

l1l j
6 5

2l

l22~l j
6!2

the new representation, in the case of reflectionless potential~9! and reduction~4!, has the form

c6~x,t,l!5e662(
j51

N z j
7~x,t !

~l j
7!22l2 l j

7~l!cj
7~x,t !, ~16!

wherezj
6 andcj

6 are given again by Eq.~8! and

l j
1~l!:5S l j

1 , 0

0, l
D , l j

2~l!:5S l, 0

0, l j
2D .

@We would like to note that for convenience we have denoted the solution of problem~1! under
reduction~4! by the same letter as it was done in relations~7!; but as we have mentioned above
these solutions in general differ.#

From the representation~16! one derives~we shall not repeat the calculations since it was
done in Ref. 7!:

c~x,t,l!5s012s3(
j51

N S 1

uM2~x,t !u
, 0

0,
1

uM1~x,t !u
D

3S 2~l j
1!2(

s51

N zs
2uM ~s!

2 u
D js

1 , luM ~ j !
2 u

luM ~ j !
1 u, 2~l j

2!2(
s51

N zs
1uM ~s!

1 u
D js

2

D ~x,t !

3S z j
1~x,t !

~l j
1!22l2 , 0

0,
z j

2~x,t !

~l j
2!22l2

D , D i j
6 :56@~l i

6!22~l j
7!2#. ~17!

The new point here is that we manage to solve explicitly the determinants entering the given
expressions. The determinantsuM6u and uM ( j )

6 u in Eq. ~17! are given by@compare relations~12!
and ~14!#

uM6u~x,t !5 (
k50

N

~24!N2k (
i1,•••, i N2k51
p1,•••,pN2k51

N

)
s51

N2k

~z i s
6zps

7 !~x,t !~lps
7 !2uJp1 ,...,pN2k

6 i1 ,...,i N2ku2,
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uM ~ j !
6 u~x,t !5 (

k51

N

~24!N2k (
i1,•••, i N2k51

iÞ j
p1,•••,pN2k51

N

)
s51

N2k

~z i s
6zps

7 !~x,t !~lps
7 !2S 12

D i sps
6

D jps
6 D uJp1 ,...,pN2k

6 i1 ,...,i N2ku2,

J j 1 ,...,j n

6 i1 ,...,i n5J i1 ,...,i n

7 j 1 ,...,j n:5S 1

D i1 j 1
6 ,

A
1

D i nj 1
6

,

...,
�

...,

1

D i1 j n
6

A
1

D i nj n
6

D ,

uJp1 ,...,pn

6 i1 ,...,i nu25 )
l,m51

n

@~l i l
6!22~l im

6 !2#2@~lpl
7!22~lpm

7 !2#2 )
k,s51

n

@~l i k
6!22~lps

7 !2#22.

Here and further we shall denote byp the potentialq for the problem~1! under reduction~4!. The
result is given by7

p~x,t !54(
j51

N S 0, 2
z j

2uM ~ j !
2 u

uM2u

z j
1uM ~ j !

1 u
uM1u

, 0
D ~x,t !. ~18!

One can see that we have represented the result in a form of simple fractions of numerical
differences.

IV. REGULARITY AND ASYMPTOTIC BEHAVIOR

Going over to theN-soliton solution case, we impose~see Refs. 6 and 7!

l j
2:5~l j

1!2:5mj1 imj
1, ~l j

2!25l j
2,

~19!
F~l j

6!5F j6 iF j
1, argc0 j

1c0 j
2 Þ~2k11!p.

The case of reduction~4! conserves the conditions for~lj
6!2 andF(l j

6) changing the last one for
c0 j

6 , into

arg c0 j
1c0 j

2 12 argl j
6Þ~2k11!p. ~20!

One obtains the asymptotic behavior of the solutionsq0, q @Eq. ~15!#, andp @Eq. ~18!# analyzing
the behavior of the corresponding products ofzk

6 forming their entries. We define the velocities

v j :5
F j
1

2mj
1 . ~21!

Let us observe the investigated quantities ‘‘tracing them’’ by fixed velocityvh , namely

x2vht5c, c5constPR1 . ~22!

We choose the numeration of the points of the discrete spectrum so that the velocitiesv j @Eq.
~21!# to be ordered in the following way:
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v1,v2,•••,vN .

This allows one to evaluate that

lim
j,h

x2vht5c
x,t→2`

z j
65`, lim

j.h
x2vht5c
x,t→2`

z j
650; lim

j,h
x2vht5c
x,t→`

z j
650, lim

j.h
x2vht5c
x,t→`

z j
65`.

Thus from the relations~14!, one obtains

lim
t,x→2`

uK~x,t !u5 lim
t,x→2`

F ~21!h)
s51

h

zs~x,t !uQ1,...,h
61,...,hu21~21!h21)

s51

h21

zs~x,t !uQ1,...,h21
61,...,h21u2G ,

lim
t,x→`

uK~x,t !u5 lim
t,x→`

F ~21!N2h11)
s5h

N

zs~x,t !UQh,...,N
6h,...,NU2

1~21!N2h )
s5h11

N

zs~x,t !uQh11,...,N
6h11,...,Nu2G ,

lim
t,x→2`

(
j51

N

~l j
6!a~z j

6uK ~ j !
6 u!~x,t !5 lim

t,x→2`

~21!h21zh
6~x,t ! (

j51
i1,•••, i h2151

iÞ j

h

~l j
6!a

3 )
s51

h21

zs~x,t !S 12
v i ss

6

v js
6 D uQ1,...,h21

6 i1 ,...,i h21u2,

lim
t,x→`

(
j51

N

~l j
6!a~z j

6uK ~ j !
6 u!~x,t !5 lim

t,x→`

~21!N2hzh
6~x,t ! (

j5h
i1,•••, i N2h5h

iÞ j

N

~l j
6!a

3 )
s5h11

N

zs~x,t !S 12
v i s2hs

6

v js
6 D uQh11,...,N

6 i1 ,...,i N2hu2,

zk5zk
1zk

2 , a50,1, x2vht5c,

Q1,...,h21
61,...,h21uh51 :5Qh11,...,N

6h11,...,Nuh5N :51. ~23!

The sums, entering the last two relations~23!, can be calculated explicitly. We have done it due to
the properties of the Vandermonde determinants and the explicit form of these given by Eq.~12!
~see Appendices A and B!:

(
j51

i1,•••, i h2151
iÞ j

h

~l j
6!a)

k51

h21 S 12
v i kk

6

v jk
6 D uQ1,...,h21

6 i1 ,...,i h21u2

5S lh
672i (

a51

h21

ma
1 D a )

l51

h21 S 12
v l l

6

vhl
6 D 2uQ1,...,h21

61,...,h21u2,
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(
j5h

i1,•••, i N2h5h
iÞ j

h

~l j
6!a )

k5h11

N S 12
v i k2hk

6

v jk
6 D uQh11,...,N

6 i1 ,...,i N2hu2

5S lh
672i (

a5h11

N

ma
1 D a )

l5h11

N S 12
v l l

6

vhl
6 D 2uQh11,...,N

6h11,...,Nu2, a50,1. ~24!

Now we apply the results~23! and ~24! to q @Eq. ~15!#, imposing condition~22!:

lim
t,x→2`
x2vht5c

q6~x,t !572)
k51

h21 S lh
72lk

7

lh
72lk

6D 2 lim
t,x→2`
x2vht5c

zh
7~x,t !

11
1

4 Im2 lh

Pk51
h21Ulh2lk

lh2l̄k
U4zh~x,t ! ,

~25!

lim
t,x→`

x2vht5c

q6~x,t !572 )
k5h11

N S lh
72lk

7

lh
72lk

6D 2 lim
t,x→`

x2vht5c

zh
7~x,t !

11
1

4 Im2 lh

Pk5h11
N Ulh2lk

lh2l̄k
U4zh~x,t ! .

@For convenience we use simultaneously both ways of definition oflk
6, given by relation~19!.#

In case of reduction~4! the asymptotic behavior ofp6 looks like

lim
t,x→2`
x2vht5c

p6~x,t !574 lim
t,x→2`
x2vht5c

P l51
h21F ~lh

7!22~l l
7!2

~lh
7!22~l l

6!2
G 2zh7~x,t !

11
~lh

6!2

~mh
1!2

P l51
h21Ulh

22l l
2

lh
22l̄l

2U4zh~x,t !
,

~26!

lim
t,x→`

x2vht5c

p6~x,t !574 lim
t,x→`

x2vht5c

P l5h11
N F ~lh

7!22~l l
7!2

~lh
7!22~l l

6!2
G 2zh7~x,t !

11
~lh

6!2

~mh
1!2

P l5h11
N Ulh

22l l
2

lh
22l̄l

2U4zh~x,t !
.

The expression giving the asymptotic behavior ofq0 @Eq. ~15!# is not simple. That is why in the
majority of papers the reduction~4! was imposed.

One can see that the asymptotic behavior ofq andp, Eqs.~25! and~26!, reminds one of the
one soliton solutions with some changedzk

6 @Eq. ~8!#. As a matter of fact, onlybk
6 changes@see

the comment of notations~8!#. It is so because the discrete spectrum$lk
6% does not change.

Using the functionals generating the infinite series of conservation quantities related to the
problem~1! in case~9! one derives

da6~l!

dl U
l5l

h
6

57
i

2 Im lh
)

hÞk51

N
lh

62lk
6

lh
62lk

7 , q0Þ0,

~27!
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da6~l2!

dl U
l5l

h
6

57
ilh

6

mh
1 )

hÞk51

N
~lh

6!22~lk
6!2

~lh
6!22~lk

7!2
, q050.

If we put relation~27! in definition ~8! for zh
6, we can write

zh
6~x,t !5 )

hÞk51

N
lh

62lk
7

lh
62lk

6 z1h
6 ~x,t !, q0Þ0,

~28!

zh
6~x,t !5 )

hÞk51

N
~lh

6!22~lk
7!2

~lh
6!22~lk

6!2
z1h

6 ~x,t !, q050.

The quantitiesz1h
6 in relation~28! arezh

6 taken atN51. They form the one soliton solutions for the
quadratic bundle problem~1! @free or under reduction~5!# satisfying conditions~19! and ~20!,
respectively.

We define as usual:

xh ,x0h5
1

2mh
1 lnAubh0

1 bh0
2 u;

hh
6 ,h0h

6 5
1

2
arg

bh0
7

bh0
6 1~2k11!

p

2
, k50,61,... .

Thus in case of the quadratic bundle~1! with q0Þ0, we obtain

Dxh :5
1

mh
1 S (

k5h11

N

lnUlh2l̄k
lh2lk

U2 (
k51

h21

lnUlh2l̄k
lh2lk

D ,
~29!

Dhh
6572S (

k5h11

N

arg
lh2l̄k
lh2lk

2 (
k51

h21

arg
lh2l̄k
lh2lk

D .
In case of reduction~5! ~compare Ref. 8!

Dx0h:5
1

mh
1 S (

k5h11

N

lnUlh
22l̄k

2

lh
22lk

2U2 (
k51

h21

lnUlh
22l̄k

2

lh
22lk

2U D ,
~30!

Dn0h
6572S (

k5h11

N

arg
lh
22l̄k

2

lh
22lk

22 (
k51

h21

arg
lh
22l̄k

2

lh
22lk

2D .
One can obtain the result of Ref. 8 imposing the reduction~4!, an additional reduction toq, and
settingF~l!5l22 in the problem of the quadratic bundle~1!. Because of the reduction~4!, a pair
of eigenvalues corresponds to the one soliton solution; that is why the result of Ref. 8 follows from
Eq. ~30! puttingN52. Our result concerns the general case~not only the one studied in Ref. 8, and
not only forN52!. We note again that the result~29! is related only toq; for q0 ~as mentioned
above! the result is different and complicated. This trouble does not appear in the case of reduction
~4!.

In order to obtain the one component equations~nonlinear Schro¨dinger equation, DNSE,
DLLE, MNLS, etc.!, we impose an additional reduction:

q*652q7, p*652p7, ~31!
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which leads to

arg c0
1c0

250.

This reduction cancels the imaginary part in the denominators of the one soliton solutions in the
caseq0Þ0, but in the caseq050 remains a constant:

6
i argl j

6

2mh
1 .

V. GAUGE TRANSFORMED CASE

Let g̃ be a solution of the Zakharov–Shabat problem in the pointm5m0, andg a solution of
problem~1! in the pointl5l0. Then the auxiliary linear problems

~ iS̃dx2m!ṽg~x,t,m!50,

@ iSdx1~l2l0!S81l0
22l2#vg~x,t,l!50,

where

S̃:5Adg̃21s3 , S:5Adg21s3 , S8:5Adg21q,

~2Dx1q!g̃50, ~2Dx1q01l0q1r2l0
2!g50, ~32!

ṽg :5g̃21ṽ, vg :5g21v

are gauge equivalent to the problems of Zakharov–Shabat and Eq.~1!, respectively. We also have
that in the case of reduction~4! the problems

F iS0dx1 i ~l02l!

2l0
Sx
01l0

22l2Gvg0~x,t,l!50,

@2Dx1~l1 ivs3!q̃2l2#ṽ50,

where

~2Dx1l0q1r2l0
2!g050, S0:5Adg

0
21s3 , vg0 :5g0

21v,

~33!

ṽ:5S exp is3E
x

`

dy rD v, q̃:5S exp 2is3E
x

`

dy rD q
are gauge equivalent to problem~1! under reduction~4!.2,5,16 ~For convenience we do not use the
more general case studied in Ref. 5.!

One can derive by means of the explicit form ofc̃ andc @Eq. ~10! and Eq.~14!#, that S̃ and
S @Eq. ~32!# have the form
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S̃~x,t !5F s31
1

uK̃u
(
j51

N S z̃ j
2~x,t !

m j
2

, 0

0,
z̃ j

1~x,t !

m j
1

D
3S 2(s51

N
z̃s

1

ṽ js
2

uK̃ ~s!
1 u, uK̃ ~ j !

2 u

uK̃ ~ j !
1 u, 2(s51

N
z̃s

2

ṽ js
1

uK̃ ~s!
2 u
D ~x,t !G g̃~x,t !,

S~x,t !5F s31
1

uKu (
j51

N S z j
2~x,t !

l j
22l0

, 0

0,
z j

1~x,t !

l j
12l0

D
3S 2(s51

N
zs

1

v js
2 uK ~s!

1 u, uK ~ j !
2 u

uK ~ j !
1 u, 2(s51

N
zs

2

v js
1 uK ~s!

2 u
D ~x,t !Gg~x,t !.

The quantitiesg̃ andg are defined as

g̃~x,t !5c̃~x,t,0!, g~x,t !5c~x,t,l0!exp~2 il0xs3!, ~34!

wherec̃, are the Jost solutions for the Zakharov–Shabat problem andc are taken from Eq.~10!.
The gauge transformed potentialS8 @Eq. ~32!# is obtained by

g21~x,t !5c21~x,t,l0!5s02
s3

uKu (
j51

N S z j
2~x,t !

l j
22l0

, 0

0,
z j

1~x,t !

l j
12l0

D
3S (s51

N
zs

1

v js
2 uK ~s!

1 u, uK ~ j !
2 u

uK ~ j !
1 u, (s51

N
zs

2

v js
1 uK ~s!

2 u
D ~x,t !,

q(x,t) @Eq. ~15!# andg(x,t) @Eq. ~34!#. The last potentialS0 @Eq. ~33!# can be written as
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S0~x,t !5F s312(
j51

N S z j
2~x,t !

~l j
2!22l0

2 , 0

0,
z j

1~x,t !

~l j
1!22l0

2
D

3S 22~l j
2!2(s51

N
zs

1

D js
2 uM ~s!

1 u, l0uM ~ j !
2 u

l0uM ~ j !
1 u, 22~l j

1!2(s51
N

zs
2

D js
1 uM ~s!

2 u
D ~x,t !

3S 1

uM1u
, 0

0,
1

uM2u
D ~x,t !Gg0~x,t !,

where

g0~x,t !:5c~x,t,l0!uq050 exp~2 il0xs3!.

Thus we have the soliton solutions of the NLEEs5

iSt1F~Lg!S50

and in the case of reduction~4!,

is3q̃t1F~L̃!q̃50, iSt
01 1

2F~Lkg!@s3 ,S
0#250. ~35!

We have used the notations~5!, ~32!, ~33!, and

Lg :5S Z̃101l0s0 , s01Z̃1

L̃01Z22l0Z̃10, Z̃0122l0Z̃12l0s0
D ,

S:5S 2 1
2@s3 ,S#2

^s3 ,S&S8
D , St:5S 2St

1
2@S,St8#2

D ,
L̃:5~Dx1v2!~11Z̃!, Lkg5S 11

Z

l0
2D ~L̃01l0

2!,

L̃0 :5
i

4
@S,dx#2 ,

i

4
@S0,dx.#2 , Z̃:5

1

2
~ Z̃11Z̃2!,

Z:5 1
2~Z

11Z2!, Zab :5
1
2~Zab

1 1Zab
2 !, a,b50,1,

Z̃6:5 i q̃E
x

6`

dy^q̃,@s3 ,•#2&, Z1
6 :5 iS8E

x

6`

dy^S8,@S,•#2&,

Z6:52
i

4
SxE

x

6`

dy^Sy ,@S,•#2&,2
i

4
Sx
0E

x

6`

dy^Sy
0,@S0,•#2&,

1406 Y. Vaklev: Soliton solutions and gauge equivalence

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Z̃10
6 :5

1

2
S8E

x

6`

dy^Sy ,@S,•#2&, Z̃01
6 :5

1

2
SxE

x

6`

dy^S8,@S,•#2&.

~The NLEEs given in Ref. 5 are more complicated because as mentioned, we studied a more
general case, which is gauge equivalent to the one presented here.!

We would like to give an example related to the dispersion law:

F~l2!524l418v2l224v4,

given in Sec. I. One obtains from the first Equation~35! under reduction~31!,

q̃:5S 0, u

2eu* , 0D ,
the following NLEE:

iut1uxx1 i e~ uuu2u!x12ev2uuu2u50.

~We note5 thatl2n in the dispersion law leads toL̃n in Eq. ~35!.! The equation given in Ref. 15,

iut1uxx1 i ~ uuu2u!x12ruuu2u50,

can be obtained from the above equation setting

v56Ar, r.0, v56 iAr, r,0, e51.

As mentioned in Sec. I, the used transformation in Ref. 5 is singular in the points of the spectrum

l j
656 iv

because

l56Am21v2

vanishes in those points@see formula~4.3! in Ref. 5#. So we havelj
6PG ~one can see that 0,

6ivPG! but, as we required,lj
6¹G have to be realized.

Finally we would like to note that among the NLEEs@Eq. ~35!#, one can find the relativistic
Mikhailov model mentioned in the beginning~equivalent, in an appropriate reduction, to the
massive Thirring model!, the DNSE and its gauge equivalent—DLLE, etc.4,5

APPENDIX A: WANDERMONDE-TYPE DETERMINANTS

Let us denote byWn the Wandermonde determinant

Wn :5Ua1n21, a1
n22, ..., 1

a2
n21, a2

n22, ..., 1

A A � A

an
n21, an

n22, ..., 1

U5 )
j,k51

n

~aj2ak!, )
j,k51

N

~••• !un51 :51.

One can prove that
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W̃n :5Ua1n , a1
n22, a1

n23, ..., 1

a2
n , a2

n22, a2
n23, ..., 1

A A A � A

an
n , an

n22, an
n23, ..., 1

U5S (
i51

n

ai DWn . ~A1!

The proof of relation~A1! can be carried out by induction. Indeed, one can easily check it for
n51,2,3. Let us have it satisfied for somen5k. DevelopingWk11 over the first column we derive

S (
i51

k11

ai DWk115S (
i51

k11

ai D @a1
kWk

~1!2a2
kWk

~2!1•••1~21!k21ak
kWk

~k!1~21!kak11
k Wk

~k11!#

5a1
k11Wk

~1!2a2
k11Wk

~2!1•••1~21!k21ak
k11Wk

~k!1~21!kak11
k11Wk

~k11!

1S (
i51
iÞ1

k11

ai D a1kWk
~1!2S (

i51
iÞ2

k11

ai D a2kWk
~2!1•••1~21!k21S (

i51
iÞk

k11

ai D akkWk
~k!

1~21!kS (
i51

iÞk11

k11

ai D ak11
k Wk

~k11! ,

where we have denoted by

Wk
~s! :5Ua1k21, a1

k22, a1
k23, a1

k24, ..., 1

A A A A � A

as21
k21, as21

k22, as21
k23, as21

k24, ..., 1

as11
k21, as11

k22, as11
k23, as11

k24, ..., 1

A A A A � A

ak11
k21, ak11

k22, ak11
k23, ak11

k24, ..., 1

U . ~A2!

One can see that the firstk11 terms give usW̃k11. We see that relation~A1! is satisfied by
definition for the secondk11 terms. This gives

S (
i51

k11

ai DWk115W̃k111a1
kW̃k

~1!2a2
kW̃k

~2!1•••1~21!k21ak
kW̃k

~k!1~21!kak51
k W̃k

~k11! ,

where by analogy with definitions ofWn , Eqs.~A1! and ~A2!, we denote

W̃k
~s! :5U a1

k , a1
k22, a1

k23, a1
k24, ..., 1

A A A A � A

as21
k , as21

k22, as21
k23, as21

k24, ..., 1

as11
k , as11

k22, as11
k23, as11

k24, ..., 1

A A A A � A

ak11
k , ak11

k22, ak11
k23, ak11

k24, ..., 1

U .
Thus the secondk11 terms in the above sum become zero because they are in fact the develop-
ment of the determinant
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U a1
k , a1

k , a1
k22, ..., 1

a2
k , a2

k , a2
k22, ..., 1

a3
k , a3

k , a3
k22, ..., 1

A A A � A

ak11
k , ak11

k , ak11
k22, ..., 1

U50

over the first column, which concludes the proof.

APPENDIX B: EXPLICIT CALCULATIONS OF SOME DETERMINANTS

Let us calculate

~ lhs!5 (
i1,•••, i n215s1

iÞ j5s1
p1,•••,pn215fix.

sn

)
l51

n21 S l j
62l i l

6

l j
62lpl

7D uQp1 ,...,pn21

6 i1 ,...,i n21u2

5 (
k51
p5fix.

n P l51
lÞk

n
~lsk

62lsl
6!

Pm51
n21 ~lsk

62lpm
7 !

uQp1 ,...,pn21

6s1 ,...,sk21 ,sk11 ,...,snu25 (
k51

n

)
m51

n21

~lsk
62lpm

7 !

3)
l51

k21

~lsk
62lsl

6! )
l5k11

n

~lsk
62lsl

6!

P
1< l,m,n
l ,mÞk

1<a,b<n21
~lsl

62lsm
6 !2~lpa

7 2lpb

7 !2

Pm51
n21 ~lsk

62lpm
7 !2P

1< l<n
lÞk

1<a<n21
~lsl

62lpa

7 !2
.

One can derive it by means of the relations

(
l,m51

n

~al2am!5)
l51

k21

~al2ak! )
l5k11

n

~ak2al ! )
l,m51
l ,mÞk

n

~al2am!,

)
m51

n21

~ak2bm!5~ak!
n212~ak!

n22(
s51

n21

bs1•••1~21!n22ak (
s1,•••,sn2251

n21

)
l51

n22

bsl

1~21!n21)
l51

n22

bl ; ~B1!

)
l,m51
l ,mÞk

n

~al2am!5Wn21
~k! ,

whereWn21
(k) was defined by Eq.~A2! ~in our caseak :5lk

6!. Thus we derive

~ lhs!5 (
k51

n P l,m5s1

sn ~l l
62lm

6!Pa,b5p1

pn21 ~la
72lb

7!2

P 1< l<n
1<a<n21

~lsl
62lpa

7 !2
~21!k21F ~lsk

!n212~lsk
!n22 (

m51

n21

lpm
7

1•••1~21!n22lsk
6 (

m1,•••,mn225p1

pn21

lm1

7 ,...,lmn22

7 1~21!n21lp1
7 ,...,lpn21

7 GWn21
~k!
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5
P l,m5s1

sn ~l l
62lm

6!Pa,b5p1

pn21 ~la
72lb

7!2

P s1< l<sn
p1<a<pn21

~l l
62la

7!2
Wn

5
P l,m5s1

sn ~l l
62lm

6!2P1<a,b<n21~lpa

7 2lpb

7 !2

P s1< l<sn
p1<a<pn21

~l l
62la

7!2
5 )

l51

n21 S lsn
62lsl

6

lsn
62lpl

7D 2

uQp1 ,...,pn21

6s1 ,...,sn21u2.

Here we have used that

(
k51

n

~21!k21~lsk
6!n2nWn21

~k! 5U ~l1
6!n2n, ~l1

6!n22, ..., 1

~l2
6!n2n, ~l2

6!n22, ..., 1

A A � A

~ln
6!n2n, ~ln

6!n22, ..., 1

U5u~22n!Wn ,

u~x!:50, x<0, u~x!:51, x.0.

In the same way one obtains

(
i1,•••, i n215s1

iÞ j5s1
p1,•••,pn215fix.

sn

l j
6 )
l51

n21 S l j
62l i l

6

l j
62lpl

7D uQp1 ,...,pn21

6 i1 ,...,i n21u2

5 (
k51

n P l,m5s1

sn ~l l
62lm

6!Pa,b5p1

pn21 ~la
72lb

7!2

P s1< l<sn
p1<a<pn21

~l l
62la

7!2
~21!k21lsk

6F ~lsk
!n212~lsk

!n22 (
m51

n21

lpm
7

1•••1~21!n22lsk
6 (

m1,•••,mn225p1

pn21

lm1

7 ,...,lmn22

7 1~21!n21lp1
7 •••lpn21

7 GWn21
~k!

5
P l,m5s1

sn ~l l
62lm

6!Pa,b5p1

pn21 ~la
72lb

7!2

P s1< l<sn
p1<a<pn21

~l l
62la

7!2 F W̃n2S (
m51

n21

lpm
7 DWnG

5
P l,m5s1

sn ~l l
62lm

6!Pa,b5p1

pn21 ~la
72lb

7!2

P s1< l<sn
p1<a<pn21

~l l
62la

7!2 F (
m51

n

lsm
6 2 (

m51

n21

lpm
7 GWn

5
P l,m5s1

sn ~l l
62lm

6!2Pp1<a,b<pn21
~la

72lb
7!2

P s1< l<sn
p1<a<pn21

~l l
62la

7!2 Flsn
62 (

m51

n21

~lsm
6 2lpm

7 !G
5S lsm

6 7 (
m51

n21

vsmpm
6 D )

l51

n21 S lsn
62lsl

6

lsn
62lpl

7D 2

uQp1 ,...,pn21

6s1 ,...,sn21u2.

Let us calculate as well
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(
i1,•••, i n215s0

iÞ j5s0
p1,•••,pn215fix.

sn21

)
l51

n21 S l j
62l i l

6

l j
62lpl

7D uQp1 ,...,pn21

6 i1 ,...,i n21u2

5 (
k50
p5fix.

n21 P sl50
slÞsk

sn21
~lsk

62lsl
6!

Pm5p1

pn21 ~lsk
62lm

7!
uQp1 ,...,pn21

6s0 ,...,sk21 ,sk11 ,...,sn21u2

5 (
k50

n21

~21!k21)
m51

n21

~lsk
62lpm

7 ! )
l5s0

sk21

~l l
62lk

6! )
l5sk11

sn21

~lsk
62l l

6!

3

P
s0< l,m<sn21

l ,mÞk
p1<a,b<pn21

~l l
62lm

6!2~la
72lb

7!2

Pm51
n21 ~lsk

62lpm
7 !2P

s0< l<sn21
slÞsk

p1<a<pn21

~l l
62la

7!2

5 (
k50

n21 Ps0< l,m5sn21
~l l

62lm
6!Pp1<a,b<pn21

~la
72lb

7!2

P s0< l<sn21
p1<a<pn21

~l l
62la

7!2
~21!k21

3F ~lsk
!n212~lsk

!n22 (
m51

n21

lpm
7 1•••1~21!n22lsk

6

3 (
m1,•••,mn225p1

pn21

lm1

7 ,...,lmn22

7 1~21!n21lp1
7 ,...,lpn21

7 GWn21
~k!

5
P l,m5s0

sn21 ~l l
62lm

6!Pa,b5p1

pn21 ~la
72lb

7!2

P s0< l<sn21
p1<a<pn21

~l l
62la

7!2
Wn

5
P l,m5s0

sn21 ~l l
62lm

6!2Pp1<a,b<pn21
~la

72lb
7!2

P s0< l<sn21
p1<a<pn21

~l l
62la

7!2
.

Here we have denoted byWn21
(k) andWn the same determinants asWn21

(k) andWn , in which instead
of ls1

6 ,...,lsn
6 one must putls0

6 ,...,lsn21

6 . In a similar way one obtains

(
i1,•••, i n215s0

iÞ j5s0
p1,•••,pn215fix.

sn21

l j
6 )
l51

n21 S l j
62l i l

6

l j
62lpl

7D uQp1 ,...,pn21

6 i1 ,...,i n21u2

5 (
k50
p5fix.

n21

~21!k21lsk
6

P l5s0
lÞk

sn21
~lsk

62l l
6!

Pm5p1

pn21 ~lsk
62lm

7!
uQp1 ,...,pn21

6s0 ,...,sk21 ,sk11 ,...,sn21u2

5
P l,m5s0

sn21 ~l l
62lm

6!Pa,b5p1

pn21 ~la
72lb

7!2

P s0< l<sn21
p1<a<pn21

~l l
62la

7!2
lsk

6F ~lsk
!n212~lsk

!n22 (
m51

n21

lpm
7
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1•••1~21!n22lsk
6 (

m1,•••,mn225p1

pn21

lm1

7 ,...,lmn22

7 1~21!n21lp1
7 ,...,lpn21

7 ]Wn21
~k!

5
P l,m5s0

sn21 ~l l
62lm

6!Pa,b5p1

pn21 ~la
72lb

7!2

P s0< l<sn21
p1<a<pn21

~l l
62la

7!2 F W̃n2S (
m51

n21

lpm
7 DWnG

5
P l,m5s0

sn21 ~l l
62lm

6!Pa,b5p1

pn21 ~la
72lb

7!2

P s0< l<sn21
p1<a<pn21

~l l
62la

7!2 F (
m50

n21

lsm
6 2 (

m51

n21

lpm
7 GWn

5
P l,m5s0

sn21 ~l l
62lm

6!2Pp1<a,b<pn21
~la

72lb
7!2

P s0< l<sn21
p1<a<pn21

~l l
62la

7!2 Fls0
62 (

m51

n21

~lsm
6 2lpm

7 !G
5Fls0

62 (
m51

n21

~lsm
6 2lpm

7 !G )
l51

n21 S ls0
62lsl

6

ls0
62lpl

7D 2

uQp1 ,...,pn21

6s1 ,...,sn21u2.

Thus we have obtained the results

(
i1,•••, i n215s1

iÞ j5s1
p1,•••,pn215fix.

sn

)
l51

n21 S 12
v i l pl

6

v jpl
6 D uQp1 ,...,pn21

6 i1 ,...,i n21u25 )
l51

n21 S 12
vsl pl

6

vsnpl
6 D 2

uQp1 ,...,pn21

6s1 ,...,sn21u2, ~B2!

(
i1,•••, i n215s1

iÞ j5s1
p1,•••,pn215fix.

sn

l j
6 )
l51

n21 S 12
v i l pl

6

v jpl
6 D uQp1 ,...,pn21

6 i1 ,...,i n21u2

5S lsn
67 (

a51

n21

vsapa

6 D )
l51

n21 S 12
vsl pl

6

vsnpl
6 D 2

uQp1 ,...,pn21

6s1 ,...,sn21u2, ~B3!

(
i1,•••, i n215s0

iÞ j5s0
p1,•••,pn215fix.

sn21

)
l51

n21 S 12
v i l pl

6

v jpl
6 D uQp1 ,...,pn21

6 i1 ,...,i n21u25 )
l51

n21 S 12
vsl pl

6

vs0pl
D 2

uQp1 ,...,pn21

6s1 ,...,sn21u2, ~B4!

and

(
i1,•••, i n215s0

iÞ j5s0
p1,•••,pn215fix.

sn21

l j
6 )
l51

n21 S 12
v i l pl

6

v jpl
6 D uQp1 ,...,pn21

6 i1 ,...,i n21u2

5S ls0
67 (

a51

n21

vsapa

6 D )
l51

n21 S 12
vsl pl

6

vs0pl
D 2

uQp1 ,...,pn21

6s1 ,...,sn21u2. ~B5!

We also have@see Eq.~B1!# the relation
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)
m51

n21

bm~ak2bm!5 )
m51

n21

bmFakn212ak
n22(

s51

n21

bs1•••1~21!n22ak (
s1,•••,sn2251

n21

)
l51

n22

bsl

1~21!n21)
s51

n21

bsG .
Thus by analogy with Eqs.~B2!, ~B3!, and~B4! one writes

(
i1,•••, i n215s1

iÞ j5s1
p1,•••,pn215fix.

sn

)
l51

n21

~lpl
7!2S 12

D i l pl
6

D jpl
6 D uJp1 ,...,pn21

6 i1 ,...,i n21u25 )
l51

n21

~lpl
7!2S 12

Dsl pl
6

Dsnpl
6 D 2

uJp1 ,...,pn21

6s1 ,...,sn21u2,

(
i1,•••, i n215s1

iÞ j5s0
p1,•••,pn215fix.

sn21

)
l51

n21

~lpl
7!2S 12

D i l pl
6

D jpl
6 D uJp1 ,...,pn21

i1 ,...,i n21 u25 )
l51

n21

~lpl
7!2S 12

Dsl pl

Ds0pl
6 D 2

uJp1 ,...,pn21

6s1 ,...,sn21u2.

The result is obtained in the same way as it was done when proving Eqs.~B2!, ~B3!, ~B4!, and
~B5! and by means of substitution ofak with ~lk

6!2 andbk with ~lk
7!2.
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Instability proof for Einstein–Yang–Mills solitons
and black holes with arbitrary gauge groups

Othmar Brodbecka) and Norbert Straumannb)
Institute for Theoretical Physics, University of Zu¨rich, Winterthurerstrasse 190,
8057 Zürich, Switzerland

~Received 28 November 1994; accepted for publication 4 October 1995!

We prove that static, spherically symmetric, asymptotically flat soliton and black
hole solutions of the Einstein–Yang–Mills equations are unstable for arbitrary
gauge groups, at least for the ‘‘generic’’ case. This conclusion is derived without
explicit knowledge of the possible equilibrium solutions. ©1996 American Insti-
tute of Physics.@S0022-2488~96!02902-8#

I. INTRODUCTION

In several recent papers1–4 we have studied important aspects of the Einstein–Yang–Mills
~EYM! system for arbitrary gauge groups. In particular, we investigated the classification and
properties of spherically symmetric EYM solitons~magnetic structure, Chern–Simons numbers!
and a generalization of the Birkhoff theorem for the non-Abelian case. We also worked out the
generalization of the first law of black hole physics~Bardeen–Carter–Hawking formula!, allowing
for additional Higgs and dilaton fields.5,6 For other studies of these and related topics, we refer to
Refs. 7–10.

In the present paper, we prove that static, spherically symmetric, asymptotically flat solutions
of the EYM equations are unstable for any gauge group, if they are ‘‘generic’’~defined in Sec. II!.
In a recent letter,11 we have already sketched how we arrived at this result for solitons. Here we
present details of the proof and extend it to black holes. We also discuss some further mathemati-
cal issues involved.

This general instability was expected since the Bartnik–McKinnon solutions12 for the gauge
group SU~2! and the related black hole solutions13–15 are unstable.16–19A mathematical proof of
this expectation presents, however, quite a challenge, since one cannot rely on any knowledge of
the possible solutions~apart from regularity and boundary conditions!.

Our strategy is based on the study of the pulsation equations, describing linear radial pertur-
bations of the equilibrium solutions, and involves the following main steps: First we show that the
frequency spectrum of a class of radial perturbations is determined by a coupled system of radial,
respectively, one-dimensional ‘‘Schro¨dinger equations.’’ Negative parts in the spectrum of the
effective Hamiltonian imply linear instability. With the help of suitably constructed trial functions,
it is then proven that the spectrum contains always a negative part~for ‘‘generic’’ solutions!.

We have recently used a similar procedure to establish the instability of the gravitating,
regular sphaleron solutions of the SU~2! EYM–Higgs system with a SU~2! Higgs doublet,20 which
have been constructed numerically in Ref. 21. Our results contain, as a special case, the conclusion
of Ref. 22 for the gauge group SU~2!. Here, we analyze the regular SU~2! case further. We show
that the effective Hamiltonian for ‘‘sphaleron-like’’ perturbations has the form of a ‘‘deuteron’’
Hamiltonian.

The paper is organized as follows: In Sec. II we recall some basic facts and equations of our
previous work,2,4 which will be needed in the present analysis. In Sec. III we then derive the
linearized perturbation equations for solitons and black holes and bring them into a convenient,
partially decoupled form. The resulting eigenvalue problem is discussed in Sec. IV and in Sec. V

a!Electronic-mail: brodbeck@physik.unizh.ch
b!Electronic mail: norbert@physik.unizh.ch
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we show the existence of unstable perturbations. The ‘‘deuteron’’ interpretation for the unstable
modes of a SU~2! soliton is presented in Sec. VI. In the Appendix, we elaborate on mathematical
issues, related to the self-adjointness of the effective Hamiltonian and the connection between the
negative part in its spectrum and unstable solutions of the perturbation equations.

II. SPHERICALLY SYMMETRIC EYM FIELDS

We begin with a convenient description of gauge fields with spherical symmetry~for deriva-
tions see Ref. 2!.

Let us fix a maximal torusT of the gauge groupG with corresponding integral latticeI
~5kernel of the exponential map restricted to the Lie algebraLT of the torusT!. In addition, we
choose a basisS of the root systemR of real roots. The corresponding fundamental Weyl chamber,

K~S!5$HPLTua~H !.0, for all aPS%, ~2.1!

plays an important role in what follows.
To a spherically symmetric gauge field there belongs a canonical elementHl P IùK(S),

which characterizes the corresponding principal bundleP(M ,G) over the space–time manifold
M , admitting a SU~2! action. If the configuration is also regular at the origin,Hl is restricted to a
small, finite subset ofIùK(S), which is described in Ref. 4. In the present discussion, we exclude
~for technical reasons! the possibility thatHl lies on the boundary of the fundamental Weyl
chamber. The term ‘‘generic’’ always refers to fields for which the classifying elementHl is
contained in theopenWeyl chamberK(S).

The SU~2! action onP(M ,G) by bundle automorphisms induces an action on the base
manifold M . A SU~2! invariant connection inP(M ,G) defines an invariant connection in the
sub-bundle over each single orbit of the action onM . By Wangs theorem, the induced connections
are described by a linear mapL:LSU~2!→LG, which depends~at least locally! smoothly on the
orbit and satisfies

L15@L2 ,L3#, L25@L3 ,L1#, L352Hl/4p, ~2.2!

whereLk :5L(tk) and 2i tk are the Pauli matrices. These equations imply thatL1 :5L11iL2
lies in the following direct sum of root spacesLa of LGC :

L1P %

aPS~l!

La , S~l!:5$aPR1ua~Hl!52%, ~2.3!

whereR1 denotes the set of positive roots inR ~relative to the basisS!. In the generic caseS~l!
turns out to be a basis of a root system contained inR ~see Appendix A of Ref. 4!.

TheLG-valued functionsL6 on the orbit space determine part of the connection onP(M ,G).
Before we give a parametrization of the YM potential in a convenient gauge, we fix our conven-
tions in parametrizing the Lorentz metric onM and introduce some further notation. We use
standard Schwarzschild-like coordinates and set

ds252NS2 dt21N21 dr21r 2~dq21sin2 q dw2!, ~2.4!

where the metric functionsN5:122m/r andS depend only onr and t.
A suitably normalized Ad(G)-invariant scalar product onLG will be denoted bŷ•,•&. We use

the same symbol for the Hermitian extension toLGC ~linear in the second argument!, and u•u
means the corresponding norm. Note that the original Ad(G)-invariance extends onLGC to

^X,@Z,Y#&1^@c~Z!,X#,Y&50, ~2.5!

wherec is the conjugation inLGC .
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In Ref. 2, it is shown that the gauge potentialA can be chosen to have the form

A5Ã1Â, ~2.6!

with

Â5L2 dq1~L3 cosq2L1 sin q!dw ~2.7!

and

Ã5Ã dt1B̃ dr, ~2.8!

where Ã and B̃ commute withHl ~i.e., with L3!. SinceHl is assumed to be generic, its
centralizer is the infinitesimal torusLT. Hence,Ã andB̃ areLT valued andÃ is thus Abelian.

For the example of the gauge group SU~2!, Hl is an integer multiple of 4pt3: Hl54pkt3
with kPZ, and the only solutions of~2.2! areL15L250, L35kt3 , and

L15wt12w̃t2 , L256w̃t16wt2 , L356t3 . ~2.9!

The gauge potentialA contains a ‘‘trivial,’’ Abelian part, which decouples from the EYM
equations. To demonstrate this, let us first construct a convenient decomposition ofLT. For a
given potential we restrict the sum in Eq.~2.3! to the smallest subsetS of S~l!, for which

L1P %

aPS,S~l!

La . ~2.10!

Since every root spaceLa is Ad(T)-invariant, and since the residual gauge group of the potential
A is just the torusT, the subsetS is unique and depends only on the invariant connection. With the
help ofS we now splitLT:

LT5^S& % ^S&', ~2.11!

where^S& denotes the linear span ofS. The decomposition~2.11! is independentof the chosen
Ad(G)-invariant scalar product4 and satisfies

@^S&',L1#50. ~2.12!

This property motivates us to set

Ã5a1A, B̃5b1B, L35L3'1L3i , ~2.13!

with a,b,L3'P^S&' andA,B,L3iP^S&. For our instability proof we adopt the following~mixed!
gauge:

A[0, b[0, lim
r→`

a50. ~2.14!

If we now insert the parametrizations~2.4!, ~2.6!–~2.8!, ~2.13!, and ~2.14! into the EYM
equations, we obtain a system of partial differential equations for the metric functionsN, S and the
YM amplitudesL6 ,B. As noted above and as Eq.~2.12! indicates, the equation fora decouples.
Specializing the results of Ref. 2~and using slightly different notation!, they read as follows.

The Einstein equations give two constraint equations for ther derivative~denoted by a dash!
and thet derivative~denoted by a dot! of m,
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m85
k

2
$NG1r 2pu%, ṁ5

k

2
NH ~2.15!

~k:58p3Newton’s gravitation constant!, and the (rr ) equation reduces to

S8

S
5

k

r
G, ~2.16!

where

G5 1
2 $~NS!22uL̇1u21uL18 1@B,L1#u2%, ~2.17!

H5Rê L̇1 ,L18 1@B,L1#&, ~2.18!

pu5
1

2r 4
$uF̂ iu21uF̌ iu21uP'u21uQ'u2%, ~2.19!

with

F̂ i5
i

2
@L1 ,L2#2L3i , F̌ i5

r 2

S
Ḃ ~2.20!

and

P'5L3' , Q'52
r 2

S
a8. ~2.21!

The YM equations decompose into

2

NS S r 2S Ḃ D •1†L1 ,L28 1@B,L2#‡1@L2 ,L18 1@B,L1#‡50, ~2.22!

1

S S 1

NS
L̇1D •2 1

S
~NS$L18 1@B,L1#%!82N†B,L18 1@B,L1#‡1

i

r 2
@F̂ i ,L1#50,

~2.23!

2S r 2S Ḃ D 8
1

1

NS
$@L1 ,L̇2#1@L2 ,L̇1#%50. ~2.24!

The Abelian electric part of the potential satisfies

Q'52
r 2

S
a85const ~P^S&'!, ~2.25!

and hence decouples.
Equation~2.24! is the Gauss constraint. For static solutions, all time derivatives disappear,B

can be gauged away, and the basic equations simplify considerably.@For the Bartnik–McKinnon
solutions,L is of the form~2.9! with w̃50, L3i5L35t3, andÃ50 in ~2.6!.#
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III. PERTURBATION EQUATIONS

In this section we study time-dependent perturbations of a given static, asymptotically flat
solution of the coupled EYM equations~2.15!, ~2.16!, and ~2.22!–~2.25!. Regular solutions are
‘‘purely magnetic’’ @Ã50 in ~2.6!# with vanishing YM charge~P'5Q'50 and limr→` F̂ i50!.
Unfortunately, this is not yet proven with satisfactory weak fall-off conditions, but there is strong
evidence for this~see Refs. 4 and 23 for partial results.! The perturbation equations we derive also
hold for black holes, if their gauge potentialsA have the form

A5a dt1Â, ~3.1!

with

a~r !5Q'E
r

` S

y2
dy, ~3.2!

for a constant vectorQ' in ^S&' @i.e.,A5B50 in Eq. ~2.13!#. We call such gauge fields ‘‘es-
sentially magnetic.’’

From now on,L6 , N, S, etc. refer to an essentially magnetic equilibrium solution and
time-dependent perturbations are denoted bydL6 , dB, etc. All basic equations are linearized
around the equilibrium solution. In order to decouple the perturbationda, we impose the addi-
tional constraintdQ'50.

First, we linearize the right-hand sides of the Einstein equations~2.15! and ~2.16!. SinceB
and L̇6 vanish for the equilibrium solution, the first-order variation of the sourceG is

dG5Rê L18 ,dL18 &2Rê L18 ,@L1 ,dB#&. ~3.3!

Here, the last term vanishes, because the property~2.5! of the scalar product implies

22 RêL18 ,@L1 ,dB#&5^@L1 ,L28 #1@L2 ,L18 #,dB&, ~3.4!

and the YM equation~2.22! for the equilibrium solution shows that

@L1 ,L28 #1@L2 ,L18 #50. ~3.5!

Thus,

dG5Rê L18 ,dL18 &. ~3.6!

The only first-order variation forpu comes fromduF̂ iu252^F̂ i ,dF̂ i&. Using

dF̂ i5
i

2
@L1 ,dL2#2

i

2
@L2 ,dL1# ~3.7!

@see Eq.~2.20!#, we have

dpu5
1

r 4
Rê i @F̂ i ,L1#,dL1&. ~3.8!

Now we can work out the variation of the first Einstein equation in~2.15!. With ~3.6!, ~3.8!,
and ~2.16! for the equilibrium solution, we find
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dm852
S8

S
dm1

k

2 HN Rê L18 ,dL18 &1ReK i

r 2
@F̂ i ,L1#,dL1L J . ~3.9!

For the commutator in the last term we use the unperturbed YM equation~2.23!, i.e.

i

r 2
@F̂ i ,L1#5N

S8

S
L18 1N8L18 1NL19 , ~3.10!

whence

dm852
S8

S
dm1

S8

S H k

2
N Rê L18 ,dL1&J 1H k

2
N Rê L18 ,dL1&J 8

~3.11!

or

~dm S!85H k

2
NSRê L18 ,dL1&J 8

. ~3.12!

Therefore,dm must be of the form

dm5
k

2
N Rê L18 ,dL1&1

f ~ t !

S
, ~3.13!

wheref (t) is a function oft alone. This function is determined by considering the variation of the
second Einstein equation in~2.15!, which gives

dṁ5
k

2
N Rê L18 ,dL̇1&. ~3.14!

Thus, we have also

dm5
k

2
N Rê L18 ,dL1&1g~r !, ~3.15!

with a functiong(r ) of r alone. By comparing~3.13! and ~3.15!, we arrive at the remarkably
simple result,

dm5
k

2
N Rê L18 ,dL1&, ~3.16!

which generalizes an observation already made in Ref. 16.
The variation of the Einstein equation~2.16! is immediately obtained with~3.6!,

dSS8

S D5
k

r
N Rê L18 ,dL18 &. ~3.17!

Also, before linearizing the YM equations, we introduce a suitable decomposition ofL1 and
dL1 . To do so, we choose a base elementea of the root spacesLa and expand the unperturbedL1

as well as its perturbationdL1 :

L15 (
aPS

waea , dL15 (
aPS

dwaea . ~3.18!
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Then, we have

dL65dX66 i dY6 ~3.19!

with

dX15 (
aPS

Re~dwa!ea , dY15 (
aPS

Im~dwa!ea , ~3.20!

and the corresponding expansion fordX2 and dY2 with ea replaced byc(ea)PL2a , because
dL25c~dL1! and thus

dX25c~dX1!, dY25c~dY1!. ~3.21!

We calldX6 ,dY6 the ‘‘real’’ ~or ‘‘gravitational’’! and ‘‘imaginary’’ ~or ‘‘sphaleron-like’’! parts of
the perturbationsdL6 . It was shown in Ref. 4 that the unperturbedL1 can be chosen to have only
a real part.

This decomposition will lead to a significant decoupling of the perturbation equations. Note,
in particular, that the variationsdm anddpu in ~3.8! and~3.16! depend only on the real partdX1 :

dm5
k

2
N^L18 ,dX1&, ~3.22!

dpu5
1

r 4
^ i @F̂ i ,L1#,dX1&. ~3.23!

We consider now the first variation of the YM equation~2.23!. Its decomposition into real and
imaginary parts yields

2
1

NS2
dẌ152NdX19 2

~NS!8

S
dX18 2

i

r 2
@L1 ,dF̂ i#

1
i

r 2
@F̂ i ,dL1#2dN L19 2dS ~NS!8

S DL18 ~3.24!

and

2
1

NS2
dŸ152N$dY19 1 i @L1 ,dB#81 i @L18 ,dB#%

2
~NS!8

S
$dY18 1 i @L1 ,dB#%1

i

r 2
@F̂ i ,dY1#. ~3.25!

The third term on the right-hand side of~3.24! is indeed real and can be written, using~3.7!, as

i

r 2
@L1 ,dF̂ i#5

1

r 2
ad~L1!ad~L2!dX1 . ~3.26!

Equation~3.24! can be simplified further. From~3.22! and the equilibrium equation~3.10!, we
deduce
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2dNL19 5
2

r
dm L19 5kN Rê L18 ,dX1&L19 5k Rê L18 ,dX1&H 2

~NS!8

S
L11

i

r 2
@F̂ i ,L1#J ,

and the Einstein equations~2.15! and ~2.16! give

2d
~NS!8

S
52

2

r 2
dm1kr dpu . ~3.27!

If we use here~3.22! and ~3.23!, we see that the last two terms in~3.24! can be expressed as
follows:

2dN L19 2d
~NS!8

S
L18 5

1

NS2 H 2L18 krm2H ~NS!8

S
1
N

r J ^L18 ,dX1&1L18 k
m2

r

3^@ i F̂ i ,L1#,dX1&1@ i F̂ i ,L1#k
m2

r
^L18 ,dX1&J , ~3.28!

where

m2:5
NS2

r 2
. ~3.29!

Inserting these expressions into~3.24! gives the following pulsation equation for the real ampli-
tudedX1 of the YM field:

dẌ11UXX dX150, ~3.30!

where the operatorUXX is given by

UXX5p*
21m2 ad~ i F̂ i!2m2 ad~L1!ad~L2!2L1km2$12kr 2pu%^L18 ,•&

1L18 k
m2

r
^@ i F̂ i ,L1#,•&1@ i F̂ i ,L1#k

m2

r
^L18 ,•&, ~3.31!

andp
*
denotes the differential operator,

p*52 iNS
]

]r
. ~3.32!

It is remarkable that the perturbationsdY6 anddB do not appear in~3.30! and that the back
reaction of gravitation ondX1 can be described by an effective potential@the last three terms in
~3.31!#.

Equation~3.25! can easily be brought into the form

dŸ11UYY dY11UYBANr dB50, ~3.33!

where

UYY5p*
21m2 ad~ i F̂ i!, ~3.34!

UYB5p*m ad~L1!1m ad~p*L1!. ~3.35!

We have thus achieved a partial decoupling, because neitherdX1 nor the metric perturbations
appear in~3.33!.
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We proceed with the linearization of the YM equation~2.22!. The variation of the last two
terms is

2@L1 ,@L2 ,dB##1@L1 ,dL28 #2@L28 ,dL1#1conjugate, ~3.36!

which leads~with dL65dX66 idY6! to

2$@L1 ,@L2 ,dB##1 i @L1 ,dY28 #1 i @L28 ,dY1#%1$@L1 ,dX28 #2@L28 ,dX1#%1conjugate.

Here, the terms in the first curly bracket are inLT, while those in the second are iniLT. The latter
are compensated by their conjugates, and we find

ANrdB̈1UBBANrdB1UBY dY150, ~3.37!

with

UBB52m2 ad~L1!ad~L2!, ~3.38!

UBY52m ad~L2!p*1m ad~p*L2!. ~3.39!

At this point, we collect the results obtained so far as follows: Let

F5S fY

fB
D5S dY1

ANrdB D , ~3.40!

then ~3.33! and ~3.37! can be written as a 232 matrix equation,

F̈1UF50, ~3.41!

with

U5S UYY UYB

UBY UBB

D . ~3.42!

The operators in this matrix are given in Eqs.~3.34!, ~3.35!, ~3.38!, and~3.39!.
The perturbation equations~3.30! and~3.41! do not include the Gauss constraint~2.24!, whose

linearization is easily found to be

] tH p* 1

m
fB1ad~L2!fYJ 50. ~3.43!

The role of this constraint will be discussed below.
In concluding this section, we emphasize once more that the perturbation equations also hold

for black holes, if these are assumed to be of an essentially magnetic type@see Eq.~3.1!#. We also
would like to note that a comprehensive discussion of the pulsation equations for the SU~2!
YM–Higgs sphaleron can be found in Ref. 24.

IV. TRANSFORMATION TO A HYPERBOLIC SYSTEM

A look at the second-order differential operatorU shows that it is not elliptic and, thus, the
system ~3.41! of partial differential equations is not hyperbolic. With the help of the Gauss
constraint~3.43! it is, however, possible to derive a hyperbolic system for the subspace of physical
perturbations orthogonal to a space of pure gauge modes. This reformulation of the perturbation
equations will turn out to be very useful for several purposes.
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We need first some notation. It is natural to introduce the following scalar product for
LGC-valued functions on~r 0,`!,R1 :

^fuc&5E
r0

`

^f,c&dr* , ~4.1!

with the weighted measure

dr*5
dr

NS
.

For a black hole, the lower limitr 0 is the radius of the horizon and for a regular solution it is zero.
The operatorsUXX andU are symmetric with respect to this scalar product on a dense domain of
L2 functions. This can be seen easily, using

^fup*c&5^p*fuc&, ~4.2!

for smooth functions, which vanish atr 0, and

^fuad~Z!c&52^ad„c~Z!…fuc&, ~4.3!

for arbitraryLGC-valued functionsf, c, Z in L2 @see~2.5!#.
A ‘‘gauge mode’’FG is, by definition, a perturbation of the form

FG52 iG x, ~4.4!

whereG is the linear operator,

G x5S 2ad~L1!x
~1/m!p* x D , ~4.5!

andx is a ^S&C-valued function. Note that such variations arise if~2.6! is subjected to~T-valued!
gauge transformationsg5exp~2ex!. Equation~2.7! and ~2.8! show that this induces the infini-
tesimal transformation,

L1→L12ad~L1!x, ANrB→ANrB2 i
1

m
p* x. ~4.6!

It is not surprising that the following identity holds:

UG50, ~4.7!

whence

UFG50. ~4.8!

‘‘Physical perturbations’’FP satisfy, by definition,

G̃FP50, ~4.9!

whereG̃ is the linear operator,

G̃F5p*
1

m
fB1ad~L2!fY . ~4.10!
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The componentfY is assumed to have values in the subspace~2.10! of LGC andfB has to be
^S&C-valued. Hence, physical perturbations are, by definition, those for which the curly bracket in
~3.43! vanishes.

Roughly speaking, a physical perturbation is orthogonal to all gauge modes. More precisely,
modulo boundary termswe have

i ^FPuFG&5^FPuG x&5^G̃FPux&50, ~4.11!

which follows easily with Eqs.~4.2! and ~4.3!.
The identity

G̃U50, ~4.12!

which can be verified by direct calculation, is related to the Gauss constraint,

] tG̃ F50, ~4.13!

in the following way: Assume Eq.~4.13! is satisfied fort5t0, then the dynamical equation~3.41!
implies that~4.13! is satisfied for all times. Indeed, we conclude with~4.12! that

] t
2~G̃F!5G̃ ~] t

2F!52G̃ ~UF!50. ~4.14!

As a corollary we have a solution of~3.41!, which lies initially in the physical subspace~4.9! and
satisfies initially the Gauss constraint~4.13!, will satisfy the ‘‘strong’’ Gauss constraint~4.9! for all
times. For physical perturbations we can thus use this strong form to bring Eq.~3.41! to a
hyperbolic form. After some manipulations, one finds

U5$p*
21V%2G m2G̃ , ~4.15!

where

V5S VYY VYB

VBY VBB
D ~4.16!

is the following ~matrix-valued! potential:

VYY5m2K21m2 ad~ i F̂ i!, ~4.17!

VYB52~p*m!K112m ad~p*L1!, ~4.18!

VBY522~p*m!K212m ad~p*L2!, ~4.19!

VBB5m2K22
~p*

2m!

m
, ~4.20!

with

K252ad~L1!ad~L2!, ~4.21!

K656ad~L6!. ~4.22!

Modulo the strong Gauss constraintG̃F50, Eq. ~3.41! is thus equivalent to

] t
2F52$p*

21V%F. ~4.23!
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This system is clearly hyperbolic. We emphasize that this new system implies the strong Gauss
constraint for all times, if it is satisfied initially:G̃Fu t0 5 G̃ ] tFu t0 5 0. The argument runs as
follows: As a result of~4.8!, ~4.15!, and~4.23!, G̃F satisfies the hyperbolic equation

] t
2~G̃F!52G̃ G m2~G̃F!52H p* 1

m2 p*1K2J m2~G̃F!. ~4.24!

Uniqueness of the Cauchy problem for the hyperbolic system~4.24!, with appropriate boundary
conditions atr 0, then implies our claim.

We specialize now to harmonic perturbations proportional toe2 ivt and obtain for the ampli-
tude ofF, denoted by the same letter, the two eigenvalue problems:

UF5v2F ~4.25!

and

$p*
21V%F5v2F. ~4.26!

The second equation has the form of a~vector-valued! Schrödinger equation.
In the next section, we prove that the spectrum ofU has a nonempty negative part~which is

presumably discrete!, by constructing a smooth trial functiondF for which ^dFuUudF& is strictly
negative. This implies that the operatorp

*
21V also has a negative part in the spectrum. This can

be seen as follows:
If we can show that there exists a smooth functionx, such that

i G̃ dF5G̃ G x5H p* 1

m2 p*1K2J x, ~4.27!

then we have a decomposition,

dF5dFP2 iG x, ~4.28!

into smooth physical and gauge components. Using also~4.8!, we have

^dFuUudF&5^dFPuUudFP&5^dFPup*
21VudFP&,0, ~4.29!

which would imply our claim.
SinceG̃ G is a positive operator and sincei G̃ dF is smooth, we expect on the basis of elliptic

existence and regularity theorems that~4.27! indeed has a smooth solution. This is one of several
mathematical points that will be discussed in the Appendix. Another issue will be, whether the
operatorp

*
21V is essentially self-adjoint on a dense domain of smooth functions, which satisfy

the boundary conditions implied by the physics of the problem. This will be analyzed in Sec. VI
and in the Appendix.

The relation between the operatorsU andQ:5p
*
21V, given explicitly in ~4.15!, can be

summarized~on a formal level! as follows: As a result of~4.7! and ~4.15!, both operators split
relative to the decomposition of theL2 space of perturbations into physical and gauge degrees of
freedom,L25HP%HG , and their restrictions satisfy

QuHP
5UuHP

, UuHG
50, QuHG

5G m2G̃ uHG
>0.

The last inequality follows from

^FGuGm2G̃ uFG&5^G̃FGum2uG̃FG&,
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for FGPHG . In particular, the negative part of the spectra ofU is contained in that ofQ and the
discrete spectra of the two operators coincide.

V. INSTABILITY OF GENERIC EYM SOLUTIONS

We are now ready to establish the main point of this paper: For a given solution with
L15(aPSwaea , we construct a one-parameter family of field configurationsL~t!1 , B ~t! , such
that ^dFuUudF&,0 for the variation

dF5S dfY

dfB
D5S 2 i ]tL~t!1ut50

ANr]tB~t!ut50
D . ~5.1!

The families we consider are of the form

L~t!15Ad„exp~tZ!…$L1 cos~t!1 iT1 sin~t!%, ~5.2!

B~t!52tZ8, ~5.3!

whereT1 is a real element in the subspace~2.10!, satisfying

@T1 ,T2#522iL3i , ~5.4!

andZ is a ^S&-valued function ofr with

lim
r→r0 ,`

ad~L1!Z5 iT1 , suppZ8,~r 0 ,`!. ~5.5!

If S is not empty such an elementT1 always exists~see Appendix A of Ref. 4!. A functionZ
with the required properties can be found if

lim
r→r0 ,`

waÞ0, for all aPS. ~5.6!

This can be seen as follows: Let$ha%aPS be the dual basis of 2pS and put

Z5 (
aPS

Zaha , T15 (
aPS

Taea ~5.7!

and

Za5 H 2Ta /wa~r 0!,
2Ta /wa~`!,

for r,r 01~12e!,
for r.r 01~11e!, ~5.8!

for an e.0. Then, both conditions in~5.5! are satisfied.
For a regular~uncharged! solution, condition~5.6! is fulfilled andS is not empty.4 Thus, a

family ~5.2!, ~5.3! alwaysexists for solitons.
We note some properties of the families above. For the gauge group SU~2!, these are closely

related to families studied by other authors.25 The equilibrium solution is clearly obtained fort50.
Applying a gauge transformation withg5exp(tZ), we obtain

L~t!1→L1 cos~t!1 iT1 sin~t!, B~t!→0. ~5.9!

The first variations of~5.2! and ~5.3! are
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dfY5 i ad~L1!Z1T1 , dfB52 i
1

m
p*Z, ~5.10!

and these satisfy by construction the desired boundary conditions,

lim
r→r0 ,`

dfY50, lim
r→r0 ,`

dfB50. ~5.11!

@dfB has even compact support in~r 0,`!#. Since an equilibrium solution satisfies

p*L1ur05p*L1u`50, ~5.12!

we also have

lim
r→r0 ,`

p* dfY50. ~5.13!

This choice of trial functions fulfills our goal:dF is normalizable and̂dFuUudF& is finite and
turns out to be strictly negative.

The first of these two points is simple. SincedfB in ~5.10! has compact support, we have to
check only whether

E
r0

`

udfYu2
dr

NS
,`. ~5.14!

By construction,

dfY5H (
aPS

TaS wa

ws ~r 0!
21Dea , for r,r 01~12e!,

(
aPS

TaS wa

wa ~r`!
21Dea , for r.r 01~12e!.

~5.15!

Hence, the integrand has a finite limit forr→r 0 ~even for extreme black hole solutions!. SinceN
andS both approach one at infinity, the integral is finite ifL12L1~`! converges to zero faster
than r21/2.

The calculation of̂ dFuU udF& is somewhat tedious. Considerable simplifications occur by
separating a gauge mode indF:

dF5dF̃2 iG Z, ~5.16!

with

dF̃5ST1

0 D , G Z5S 2ad~L1!Z
1

m
p*Z

D . ~5.17!

We stress that neitherdF̃ nor G Z are normalizable. Nevertheless, we haveUG Z50, and thus
~5.16! and ~5.17! give ~with a slight abuse of notation!

^dFuUudF&5^dF̃uUudF̃&1 i ^G ZuUdF̃&5^dF̃uUudF̃&1 i ^UG ZudF̃&1^ad~p*L1!Z,T1&ur0
`

5^dF̃uUudF̃&. ~5.18!
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The boundary term does not contribute because of Eq.~5.12!. From this, we obtain the interme-
diate result,

^dFuUudF&5E
r0

`

m2^T1 ,ad~ i F̂ i!T1&dr*52E
r0

`

m2^F̂ i ,L3i&dr* , ~5.19!

where we have used~2.5! and the property~5.4! of T1 .
Finally, we show that the last term has a definite sign:

2E
r0

`

m2^F̂ i ,L3i&dr*52E
r0

`

up*L1u212m2uF̂ iu2 dr* . ~5.20!

After a partial integration, we find with the unperturbed YM equation~2.23!,

E
r0

`

up*L1u2 dr*52 i ^p*L1 ,L1&ur0
` 2E

r0

`

m2^L1 ,ad~ i F̂ i!L1&dr* . ~5.21!

The boundary term vanishes because of Eq.~5.12!, and since

2uF̂ iu25^F̂ i ,i @L1 ,L -#22L3i&5^L1 ,ad~ i F̂ i!L1&22^F̂ i ,L3i&, ~5.22!

we have established the crucial result,

^dFuUudF&52^p*L1up*L1&22^mF̂ iumF̂ i&52E
r0

` HNuL18 u21
2

r 2
uF̂ iu2JS dr.

~5.23!

This expression is clearly finite and strictly negative.
One can show that expression~5.23! is also equal to the second variation of the Schwarzschild

mass for the one-parameter family~5.2!, ~5.3!. @This is the way we arrived originally at the
variation~5.10!.# For a systematic discussion of the relation between variational principles for the
spectra of radial pulsations and second variations of the total mass, we refer to Ref. 26.

In summary, we have proven~apart from technical subtleties! that static, spherically symmet-
ric, asymptotically flat solutions of the EYM equations are unstable. More precisely, we have
established the following.

Theorem 1: A generic, regular solution isunstable,if the (magnetic) YM charge vanishes
(i.e., if limr→`L(r ) is a homomorphism from LSU~2! to LG) and if asymptotically
L12L1~`!;r2a with a.1

2.
For a black hole~with horizon atr h andL15(aPSwaea!, the assumptions are somewhat

more restrictive and ‘‘trivial’’ solutions have to be excluded. We call a generic, essentially mag-
netic solution ‘‘trivial’’ if either S is empty or each amplitudeva is constant. These are clearly just
the Reissner–Nordstro¨m solutions.

Theorem 2: A generic, essentially magnetic, nontrivial black hole solution isunstable,if
limr→r h ,`

wa Þ 0 for all aPS and if asymptoticallyL12L1~`!;r2a with a.1
2.

We would like to stress that we were able to draw this conclusion, assuming only weak
asymptotic conditions for the solutions. In particular, the fall-off condition is mild and is certainly
fulfilled for the Bartnik–McKinnon and the related black hole solutions, as was shown rigorously
in Ref. 27. The same is true for the regular solutions, which have been found numerically by
Künzle for the group SU~3!.23 ~For both types, the exponenta is equal to unity.!
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VI. SPHALERON-LIKE INSTABILITIES AS BOUND STATES OF A FICTITIOUS
DEUTERON PROBLEM

We now address the question whether the operatorp
*
2 1 V in the eigenvalue problem~4.26! is

essentially self-adjoint on a dense domain of smooth functions, which satisfy the boundary con-
ditions implied by the physics of the problem. That this is indeed the case will be shown in the
present section for SU~2! solitons. The discussion of the general case is deferred to the Appendix.

For regular SU~2! solutions, it turns out that the eigenvalue equation~4.26! can be interpreted
as a fictitious deuteron problem for a neutron–proton potential, consisting of a central part, a
tensor force, and a spin-orbit coupling. All parts are determined by the unperturbed soliton and can
be shown to be bounded. The corresponding Schro¨dinger operator is thus essentially self-adjoint
on the subspace of smooth functions with compact support and self-adjoint on the Sobolev space
H2~R3!. These facts will be used later in an analysis of the instabilities, implied by the existence
of bound states~see the Appendix!.

In order to bring the operatorp
*
2 1 V to a standard Schro¨dinger form, we introduce the new

radial coordinate,

r~r !5E
0

r dy

NS
, ~6.1!

in terms of whichp
*

52 id/dr. Sincem2 behaves like 1/r2 near the origin, we separate from the
potential~4.16! the singular term

V~r!5
J2

r2
1Ṽ~r!, ~6.2!

where

J25S K2~0! 2iK1~0!

22iK2~0! K2~0!12D , ~6.3!

and the remainderṼ is bounded.
For a generic soliton, the eigenvalues ofJ2 are equal toj ( j11) with j5k61, whereby the

integerk runs through a~strictly! positive, finite set. This set always containsk51 and is uniquely
determined byL35L3i.

In a representation in whichJ2 is diagonal,J2/r2 thus describes the central barriers of a finite
set of partial waves.

We now discuss in detail the equations for the gauge group SU~2!. For this group, onlyS and
D waves occur in Eq.~4.26!. In the variabler and with the parametrization

L15wt15w~t11 i t2!, L35t3 ,

and

S fY

fB
D5

uS

)

S t1

t3
D1

uD

A6
S 2t1

2t3
D , ~6.4!

the eigenvalue equation~4.26! takes the form
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H 2
d2

dr2
1

1

r2 S 0 0

0 6D 1ṼJ S uSuDD 5v2S uSuDD . ~6.5!

For the potentialṼ we find

Ṽ5
1

3 S ṼSS ṼSD

ṼDS ṼDD
D , ~6.6!

where

ṼSS5$m9/m18~mw!816m2w2%22m2~12w2!, ~6.7!

ṼSD5&$m9/m12~mw!8%1&m2~12w2!, ~6.8!

ṼDS5ṼSD , ~6.9!

ṼDD52$m9/m24~mw!813m2w229/r2%2m2~12w2!, ~6.10!

and adashdenotes a derivativewith respect tor.
It is amusing and helpful to note that this coupled eigenvalue problem has the same form as

the Schro¨dinger equation for the relative motion of a two-body proton–neutron system with the
three standard termsVC(r ) ~central potential!, VT(r )S12 ~tensor interaction! andVLS(r )L–S ~spin-
orbit interaction!. For total angular momentumJ51 and total spinS51, the possible orbital
angular momenta areL51 andL50,2. Because of parity conservation, theP wave decouples
from theS andD waves. The remaining equation, describing coupledS andD waves, reads, in
suitable units,

H 2
d2

dr2
1

1

r 2 S 0 0

0 6D 1S VC A8VT

A8VT VC22VT23VLS
D J S uSuDD 5ES uSuDD . ~6.11!

These equations have first been derived by Rarita and Schwinger.28 Our eigenvalue problem~6.5!
is clearly just a special case of~6.11! and we can, by identification, express the three potentials in
terms of the functionsN,S,w of the Bartnik–McKinnon solutions.

We present numerical results elsewhere~also see Ref. 29! and emphasize here only, that with
this interpretation the mathematical nature of our eigenvalue problem is automatically settled,
because the perturbationṼ is completely harmless. We come back to this in the Appendix, where
we also discuss the operator corresponding to the strong Gauss constraint.
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APPENDIX A: ESSENTIAL SELF-ADJOINTNESS OF THE EFFECTIVE HAMILTONIAN

For black holes, the operatorQ 5 p
*
2 1 V in ~4.15!, with the expressions~4.17!–~4.20! for the

matrix-valued potentialV, is effectively a standard Schro¨dinger operator on the whole real line
~see Ref. 17!, and is thus essentially self-adjoint onC` functions with compact support.~The
potentialV is bounded for black holes.! For solitons, we can use Weyl’s limit point–limit circle
criterion ~see Ref. 30, Sec. X.1 or Ref. 31! for the first two terms of the operator,
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Q52
d2

dr2
1
J2

r2
1Ṽ~r! ~A1!

@see~6.2! and ~6.3!#. SinceṼ is bounded, the Rellich–Kato theorem implies that the domains of
~essential! self-adjointness are not changed by this additive term.

Another method that will be used later is to liftQ to a Schro¨dinger operatorHQ onR3 and to
use powerful results for these kind of operators. In Sec. VI we showed how this can be achieved
if the gauge group is SU~2!: HQ can then be chosen to be of the standard form for a deuteron
problem. This operator is essentially self-adjoint onC0

2~R3!^C4 and self-adjoint on the Sobolev
spaceH2~R3!^C4 ~see, e.g., Ref. 30, Sec. X 2!. Restricting these domains to the subspace ofS and
D waves, provides the domains we are interested in for the original operatorQ. For instance,Q is
essentially self-adjoint on

D~Q!5$~uS ,uD!uuSPC0
`@0,̀ !,uS~0!50;uDPC0

`~0,̀ !%. ~A2!

Although we have not yet generalized this construction to arbitrary gauge groups, the gener-
alization ofD(Q) is obvious: TheS waves have to be restricted as in~A2! and the higher waves
have to lie inC0

`~0,̀ !. We also note at this point that the variation~5.10! lies in the domain of
definition of the self-adjoint extension of„Q,D(Q)….

If we would restrict theS waves also toC0
`~0,̀ !, the operatorQ would not be essentially

self-adjoint. For eachSwave sector, it would actually have a one-parameter family of self-adjoint
extensions. The self-adjoint extension, given above, is just the Friedrichs extension, and one can
show that it is the only one that is compatible with the strong Gauss constraint~4.9!.

The existence and smoothness problems in connection with Eq.~4.27! can also be solved by
lifting the equation toR3 and using standard existence and regularity theorems for elliptic opera-
tors onR3. @The details can easily be worked out forG5SU~2!.#

APPENDIX B: SPECTRAL PROPERTIES AND UNSTABLE PERTURBATIONS

In Sec. IV it was shown that the perturbation equations for even parity perturbations are
equivalent to the hyperbolic system,

] t
2F52QF. ~B1!

We also recall that these equations imply the propagation of the strong Gauss constraint. As a main
point of this paper we proved that the self-adjoint operatorQ, restricted to the subspace of
physical states, satisfying the strong Gauss constraint, has a nonempty negative spectral part. This
fact implies, of course, that there are unstable Hilbert space solutions of~B1!. We just have to
choose the initial dataF0 such thatEQ~2`,0! F0Þ0, whereEQ~•! denotes the projection valued
measure belonging toQ ~see below!. It is even possible to chooseF0PC0

` , because the smooth
functions with compact support are dense in the Hilbert spaceL2.

The question now arises whether such a Hilbert space solution is even a~classical! solution of
the system of partial differential equations~B1!, in other words, whether the Hilbert space solu-
tions withF0PC0

` are automatically smooth. For black holes, the positive answer to this question
is contained in a paper by Wald.32 His analysis does, however, not directly apply to solitons,
because he assumed that space is acompleteRiemannian manifold.

A direct attack of the problem on the half-line~0,̀ ! is again difficult. Once more, a way out
is lifting the problem toR3,

] t
2F52HQF, ~B2!
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where the analysis of Ref. 32 applies. We showed earlier, how this can be done for SU~2!. Since
the required smoothness properties certainly do not depend on the gauge group, it is not worth-
while to elaborate further on this. We would like, however, to present here a simplified version of
Wald’s argument.

Consider a hyperbolic system onR3Rn of the form ~B2! with a smooth elliptic operatorA
~instead ofHQ!, which is essentially self-adjoint onC0

`~Rn!. For systems of this kind, a lot is
known about the Cauchy problem~a standard reference is Ref. 33!. In particular, one knows~see
Theorem 23.2.2 in Vol. III of Ref. 33!, that the Cauchy problem with initial dataF0, Ḟ0PC0

`~Rn!
has a unique solution inC`~R3Rn!, which for any fixed timet is inC0

`~Rn!. This smooth solution
must agree with the Hilbert space solution of the Cauchy problem because the latter is also unique.

Let us now assume that the spectrums(A) of A has a nonempty intersections(A)2 with
~2`,0!. We also assume thats(A) is bounded from below~this is the case forA5HQ!. The
Hilbert space solution of the Cauchy problem can easily be expressed in terms of the projection
valued measureE~•! belonging toA. It suffices, for what follows, to take as initial data
Fut505F0, ] tFu t5050. Then, the corresponding Hilbert space solution of

F̈t52AF t ~B3!

is

F t5E~$0%!F01E
~0,̀ !

cos~ tAl!dE~l!F01E
s~A!2

cosh~ tA2l!dE~l!F0 , ~B4!

as can easily be verified. Note, in particular, thatFt505E~R!F05F0, as required.
With standard rules~see, e.g., Ref. 34, Chap. 13!, we obtain from this,

^F0uF t&5iE~$0%!F0i21E
~0,̀ !

cos~ tAl!dmF0
~l!1E

s~A!2

cosh~ tA2l!dmF0
~l!

~B5!

and

iF ti2>E
s~A!2

cosh~ tA2l!dmF0
~l!, ~B6!

wheremF0
is the finite measurêF0uE~•!F0& on R, whose support is contained ins(A). As

emphasized above, we can chooseF0 such that (suppmF0
)ùs(A)2 is nonempty. Then~B5! and

~B6! imply that both quantities on the left diverge exponentially. This exponential grows translates
to an average exponential grows of theclassicalsolution of the hyperbolic system for smooth
initial data with compact support.

These considerations conclude our instability proof.
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Up to a conjecture in Riemannian geometry, we significantly strengthen a recent
theorem of Eardley by proving that a compact region in an initial data surface that
is collapsing sufficiently fast in comparison to its surface-to-volume ratio must
contain a future trapped region. In addition to establishing this stronger result, the
geometrical argument used does not require any asymptotic or energy conditions on
the initial data. It follows that if such a region can be found in an asymptotically flat
Cauchy surface of a spacetime satisfying the null-convergence condition, the space-
time must contain a black hole with the future trapped region therein. Further, up to
another conjecture, we prove a strengthened version of our theorem by arguing that
if a certain function~defined on the collection of compact subsets of the initial data
surface that are themselves three-dimensional manifolds with boundary! is not
strictly positive, then the initial data surface must contain a future trapped region.
As a byproduct of this work, we offer a slightly generalized notion of a future
trapped region as well as a new proof that future trapped regions lie within the
black hole region. ©1996 American Institute of Physics.@S0022-2488~96!00103-
0#

I. INTRODUCTION

Given an initial data set for the gravitational field1 (S,gab ,Kab) associated with a Cauchy
surface in an asymptotically flat spacetime, can we tell whether gravitational collapse has pro-
ceeded to such a point that a black hole has formed in that spacetime? In principle, the answer is
yes: Given a complete description of the matter fields in the spacetime~i.e., their initial data and
evolution equations!, then using Einstein’s equation, evolve the initial data to reconstruct the entire
spacetime and then see whether the spacetime has a nonempty black-hole region and, if so,
whether and where it intersectsS. In practice, however, carrying out this construction is a highly
nontrivial task, even in the vacuum case and even when done numerically.2

While there is currently no simple algorithm for determining from an initial data set whether
a black hole has formed, if a future trapped region exists inS, it must lie within the black-hole
region, provided the spacetime satisfies the null-convergence condition.3–5 Recall that a closed
subsetC of S having the structure of a three-manifold with smooth~or at leastC2) boundary,
bounded away from spatial infinity, is said to be a future trapped region if the convergence of the
future-directed null geodesics orthogonal to]C and outward directed~in the sense that the pro-
jection of null geodesic tangent vectors onC into S point outward fromC! is non-negative
everywhere on]C.4 Denoting the induced metric on]C by hab , the mean extrinsic curvature

6 of
]C in S by H, and the extrinsic curvature ofS in the spacetime byKab , C is a future trapped
region if

H<Kabh
ab ~1.1!

on ]C. Likewise, the total future trapped region ofS ~being the closure of the union of all future
trapped regions inS! along with its boundaryA ~the future apparent horizon, on which
H5Kabh

ab), is contained within the black-hole region~under the same conditions as before!.7 So,
in initial data sets with a non-empty total future trapped region, gravitational collapse has pro-
ceeded sufficiently far so that black holes have formed.

0022-2488/96/37(3)/1434/15/$10.00
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Are there any simple conditions that guarantee the existence of a future trapped region in an
initial data set? Thorne’s ‘‘hoop conjecture’’ offers a test of this type: If a body of massM is
sufficiently compact so that a hoop of circumference 4pM can encircle the body no matter how
it is rotated there about, then the body must be contained within a horizon.8,9 While a precise
version of this conjecture remains to be proven, Schoen and Yau have proven that an initial data
set containing a regionV with sufficient matter density must contain a future or past apparent
horizon.10 This interesting result has the slight weaknesses that its requirement on the matter
content is so strict that arbitrarily small vacuum regions inV are not allowed and that, as a
time-symmetric theorem, we cannot conclude that the apparent horizon must be a future horizon.
~Of course, this last criticism can be avoided by restricting oneself to initial data sets that do not
contain past trapped regions.! Further, a number of necessary conditions and sufficient conditions
have been found for spherically symmetric initial data sets.11 More recently, using Jang’s equation
and its properties as established by Schoen and Yau,12 Eardley has recently provided a remarkably
simple proof of the following theorem.13,14

Theorem (Eardley). Fix an asymptotically flat initial data set for the gravitational field1

(S,gab ,Kab) satisfying the dominant-energy condition. If there exists a compact regionV,S
such thatKab(g

ab2nanb) is no less than the surface-to-volume ratio ofV for all unit vectors
na everywhere onV, thenS must contain an apparent horizon.

Were the apparent horizon afuture apparent horizon, then, as noted, the conditions of this
theorem would guarantee that gravitational collapse has proceeded sufficiently far that a black-
hole region has formed. Unfortunately, as given, the theorem alone does not allow one to draw this
conclusion as it suffers from the same problem of Schoen and Yau’s theorem10 in that the possi-
bility that all such horizons will be past apparent horizons has not been eliminated. However, the
time-asymmetry in the hypotheses of Eardley’s theorem (Ka

a is strictly positive onV indicating
that the region is collapsing ‘‘on average’’! is a strong indication that there should be a future
apparent horizon somewhere inS.

By changing our viewpoint, Eardley’s theorem suggests an alternative argument having the
advantage of producing a strengthened version of the above theorem under weaker hypotheses. In
particular, we can now show thatS must in fact contain a future apparent horizon. Further, this
argument has an entirely geometric character, which is to be compared to Eardley’s argument,
which, through the use of Jang’s equation, has an analytic character.

To begin, notice that the induced metrichab on a two-surfaceS ,S can be written as
hab5gab2nanb, wherena is either of the two unit-normal vectors toS . Therefore, the hypoth-
esis of the above theorem guarantees that, onS , Kabh

ab is bounded from below by the surface-
to-volume ratio ofV, which we denote bys(V). Notice that this bound is independent of the
two-surface inV. This suggests that if there exists a region inV ~having the structure of a
three-manifold with boundary! whose boundary’s mean extrinsic curvatureH is bounded above by
s(V), then Eq.~1.1! would hold on the boundary, and hence the region would be a future trapped
region.

Does such a region exist inV? The appearance of the surface-to-volume ratios in Eardley’s
theorem suggests that we study this quantity as function on the collection of regionsC in V.
Consider a regionC,V that is ‘‘nearly degenerate’’ in the sense that it is either flat like a pancake
of thicknessr , thin like a cigar of radiusr , or small like a sphere of radiusr . Then, we expect~as
in the flat space case! thats(C)'const/r , for r sufficiently small, showing that regions that are
nearly degenerate in the sense that they are small in one or more dimensions have very large
surface-to-volume ratios. This suggests that there is some sufficiently well-behaved region inV
having minimal surface-to-volume ratio. In fact, we conjecture that there always exists a region
Ĉ,V, having the structure of a differentiable manifold with boundary, that minimizess over
such regionsC,V. ~See conjecture 1 in Sec. IV.! Remarkably, it then follows thatH<s(V) on
any open subset of]Ĉ where the surface isC2, i.e., on the portion having a well-defined and
continuous extrinsic curvature.~The proof of this fact is given in Sec. II.!
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Putting this all together, we have

H<s~V!<Kabh
ab ~1.2!

on the open subset of]Ĉ that isC2, where the first inequality is a consequence of the minimizing
property ofĈ and the second follows by hypothesis. Were]Ĉ everywhereC2, thenĈ would be
a future trapped region. As explained in Sec. IV, this is not always the case. However, it is
expected that]Ĉ is sufficiently well-behaved so that Eq.~1.2! holds over a sufficiently large
subset of]Ĉ thatĈ is indeed a future trapped region, in the sense that it must lie in the black-hole
region of the spacetime. In particular, we conjecture that]Ĉ is everywhereC22 ~see below! and
C2 everywhere except on a closed setZ of measure zero.~See Sec. IV for the statement and
discussion of this conjecture.! Therefore, although Eq.~1.1! may not hold everywhere on]Ĉ, it
does hold on]Ĉ\Z, which, with the fact that the surface isC22, is sufficient to guarantee the
region is trapped.~See theorem 5 in Sec. V B.! This proves the following strengthened version of
Eardley’s theorem.

Theorem 1.Fix an initial data set for the gravitational field1 (S,gab ,Kab) and fix a subset
V,S that is a compact three-manifold withC2 boundary. IfKabh

ab is no less than the surface-
to-volume ratio ofV for all rank 2 orthogonal projection maps15 hab everywhere onV, then there
exists a future trapped region inV, provided conjecture 1~stated in Sec. IV! holds for
(V,gab).

Denoting the eigenvalues ofKa
b by (k1 ,k2 ,k3), ordered so thatk1<k2<k3 , it is worth

noting that the minimum ofKabh
ab over all rank 2 orthogonal projection maps15 hab is precisely

k11k2 . Therefore, the sole condition of theorem 1 is that the sum of the two lesser principal
~extrinsic! curvatures be no less than the surface-to-volume ratio ofV, everywhere onV.

We can now assert~assuming conjecture 1! that if such a regionV exists in a Cauchy surface
of an asymptotically flat spacetime4 satisfying the null-convergence condition,3 the spacetime
must contain a black hole with the future trapped region therein.

Comparing the two theorems, we see that while neither locates the future apparent horizon,
theorem 1 does tell us some subset ofV, namely Ĉ, is contained within the future apparent
horizon. Further, we see that theorem 1 dispenses with the asymptotic and energy conditions that
were needed by Eardley because of their use in Schoen and Yau’s analysis of Jang’s equation.

The remainder of this work is organized as follows. In Sec. II, we prove the lemma providing
the boundH<s(V) on ]Ĉ. In Sec. III, we review Eardley’s argument and then present a
strengthened version of theorem 1. In Sec. IV, we state and discuss the two conjectures in Rie-
mannian geometry needed for this work. In Sec. V, we offer a new proof that future trapped
regions are trapped, which is then modified to establish the same result for our weaker notion a
future trapped region, and then we discuss the possibility of further extending the notion of a
future trapped region. Lastly, in Sec. VI, we discuss the strengths and weakness of our results.

Our conventions are those of Ref. 4 with the notable exception that our sign convention for
the extrinsic curvature of our initial data surfaces is such that positiveK is associated with
collapse in the sense that it measures theconvergenceof future-directed geodesic normals to the
surface. On the other hand,H measures thedivergenceof the outward geodesic normals to the
surface of a region within an initial data surface.

Recall that a map between manifolds is said to beCk2 if the mapping isCk21 and its
(k21)-order derivatives of the functions defining the mapping are locally Lipschitz.5,16 Thus, a
C22 embedded surface isC1 and the derivative of the embedding map is locally Lipschitz.

It proves very convenient to make the following definitions. Given a manifoldN ~possibly
with boundary!, defineC k(N)@C k2(N)# to be the collection of compact subsets ofN having the
structure of a manifold withCk (Ck2) boundary. It is useful to keep in mind that
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C 0~N!.C 12~N!.C 1~N!.C 22~N!.C 2~N!.•••. ~1.3!

Elements ofC k(N) and C k2(N) need not be connected, i.e., they can have many connected
components. Further, ifV P C k(N), thenV P C k(V), and, similarly, ifV P C k2(N), thenV
PC k2(V).

Lastly, for a mapf:A→B, f@A# denotes the image ofA in B, A\B denotes the set of
elements inA that are not inB, andĀ denotes the closure ofA.

II. PROOF THAT H<s(V) ON Ĉ

Denote the surface area, volume, and surface-to-volume ratio of a regionC P C 1(S) by
A(C), V(C), ands(C)5A(C)/V(C), respectively. More explicitly,

A~C!5E
]C

eab , ~2.1a!

V~C!5E
C
eabc , ~2.1b!

whereeabc is the volume element constructed fromgab andeab is the volume element constructed
from the metrichab induced on]C by gab .

Lemma 1.Fix a pair (V,gab), whereV is a compact three-dimensional manifold withC1

boundary andgab is a smooth Riemannian metric onV. If Ĉ P C 1(V) is such that
s(Ĉ)<s(C) for all C P C 1(V) andO is an open subset of]Ĉ where the surface isC2, then
H<s(Ĉ)<s(V) onO, whereH is the mean extrinsic curvature6 of ]Ĉ. If, further,O is in the
interior of V, thenH5s(Ĉ) onO.

Proof. The idea of the proof is simple: We calculates as a function along certain well-
behaved curves inC 1(V) containingĈ, calculate its derivative atĈ, and then use the fact that
Ĉ minimizess in C 1(V).

Although there are many curves inC 1(V), by which we mean one-parameter family of
regionsCl P C 1(V), for simplicity, we shall restrict ourselves to families arising from a smooth
deformation of a regionC P C 1(V) in the sense thatCl5fl@C# for some one-parameter family
of mapsfl :V→V such thatfl is a diffeomorphism betweenV andfl@V#, with f0 being the
identity map onV. Our requirement thatV andfl@V# be diffeomorphic is sufficient to guarantee
that ](fl@C#)5fl@]C#, which makes the following calculations easier than they would be
otherwise.

A particularly simple class of such deformations, which is sufficient for our purposes, are
those associated with the flows of fixed vector fields onV.16 @That is, given a fixed vector field
ja, for p P V, fl(p) is the point along the integral curve ofja containingp a parameter distance
l from p.# In order that these deformations be well defined on all ofV for some positivel, it is
necessary to restrict ourselves to vector fields that are inward pointing everywhere on]V ~where
we consider vectors tangent to]V as inward pointing, sojknk<0 everywhere on]V, where
nk is the unit outward normal to]V). Otherwise, a pointp P ]V whereja is strictly outward
pointing would be mapped ‘‘out of’’V, and hence the deformation constructed from it would not
be defined for any positivel, no matter how small. A deformationfl constructed from an inward
pointing vector field is well defined for alll>0 and is a diffeomorphism betweenV and
fl@V#.

Fix any inward pointing vector fieldja whose support intersects]C within O and construct its
one-parameter family of deformationsfl . EvaluatingA andV on Cl5fl@C# using Eqs.~2.1!,
differentiating with respect tol, and then evaluating atl50, we find that
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A8~C!5E
O
H~jknk!eab , ~2.2a!

V8~C!5E
O

~jknk!eab , ~2.2b!

whereH is the mean extrinsic curvature of]C andnk is the outward unit normal to]C. Differ-
entiating the equalitys(Cl)5A(Cl)/V(Cl), evaluating atl50, and using Eqs.~2.2!, we find
that

s8~C!5
1

V~C!
E
O
„H2s~C!…~jknk!eab . ~2.3!

Using this equation, we now establish our bound onH.
We begin with the case whereO is in the interior ofV. Fix any pointp P O. To show that

H(p)5s(Ĉ), suppose, for contradiction, thatH(p).s(Ĉ). Then, using the facts thatp is in the
interior of V and H is continuous atp, it is not difficult to show that there exists an open
neighborhoodN of p and a vector fieldja such that:~1! the support ofja is N̄; ~2! ]Ĉ is C2 on
N̄ù]Ĉ; ~3! (N̄ù]V)50” ; ~4! „H2s(Ĉ)….0 onNù]Ĉ; ~5! (jknk),0 onNù]Ĉ. Notice that
ja, being zero on]V, is inward pointing, so the one-parameter family of deformationsfl

constructed fromja is defined for alll>0. Using Eq.~2.3!, we see thats8(Ĉ),0, which is
impossible as otherwise, for sufficiently smalll, the regionfl@Ĉ# would have a smaller surface-
to-volume ratio thanĈ. Similarly, if H(p),s(Ĉ), there exists an open neighborhoodN of p and
a vector fieldja satisfying the above except with the inequalities in~4! and ~5! both reversed.
Using Eq. ~2.3!, we again find thats8(Ĉ),0, which is again a contradiction. Therefore,
H(p)5s(Ĉ), as claimed.

Otherwise, fix any pointp P O. To show thatH(p)<s(Ĉ), suppose, for contradiction, that
H(p).s(Ĉ). Then, there exists an open neighborhoodN of p and a vector fieldja satisfying the
above with~3! replaced by:~3’! ja is inward pointing onN̄ù]V. Again the one-parameter family
of deformationsfl constructed fromja is defined for alll>0. Using Eq.~2.3!, we see that
s8(Ĉ),0, which is contradicts the minimality ofs at Ĉ. Therefore,H(p)<s(Ĉ), as claimed.

Lastly, thats(Ĉ)<s(V) follows simply from the facts thatĈ minimizess overC 1(V) and
V P C 1(V). This completes the proof of lemma 1. h

III. STRENGTHENING THEOREM 1

We begin with two definitions. First define the scalar fieldk on S by setting

k~p!5min
hab

~Kabh
ab!, ~3.1!

for eachp P S, where the minimum is over the set of all rank 2 orthogonal projection maps15

hab at p. That is,k(p) is the sum of the two lesser principal~extrinsic! curvatures atp. Second,
for any continuous functionf on S, define the functionWf on C

1(S) by setting

Wf~C!5E
C
f eabc , ~3.2!

for eachC P C 1(S). Note that withf51,W1(C)5V(C).
The idea behind the proof of theorem 1 was to use the properties of the region that minimizes

the surface-to-volume ratios on C 1(V). Noting thats5A/V5A/W1 , one way to proceed in
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generalizing theorem 1 is to analyze the properties of the region that minimizesA/Wk on
C 1(V). Assuming the relevant generalized version of conjecture 1 holds, it can be shown that
there is a future trapped region inV provided thatA(V)/Wk(V)<1 andk is non-negative~and
not everywhere zero! onV. However, such an argument must fail ifk is negative somewhere on
V since, by choosing regions with large area in regions wherek is negative, we can findC
P C 1(S) for which the ratioA(C)/Wk(C) is negative and as large as we wish~i.e.,A/Wk has no
finite lower bound in this case!. The fact thatk cannot be even slightly negative on small subsets
of V makes this route unattractive, so we take an alternative path suggested by the argument
Eardley used in proving his theorem.

A. Eardley’s argument

Fix an asymptotically flat initial data set for the gravitational field1 (S,gab ,Kab) with sources
satisfying the dominant energy condition. Schoen and Yau have shown that such an initial data set
does not contain an apparent horizon~either future or past! if and only if there exists a scalar field
f satisfying Jang’s equation everywhere onS.12 Eardley’s argument is that certain initial data are
inheritly incompatible with the existence of a global solution of Jang’s equation, and therefore a
~future or past! apparent horizon must be present. This argument goes as follows.

Defining

ha5
Daf

A11DmfDmf
, ~3.3!

whereDa is the derivative operator onS associated withgab , Jang’s equation takes the simple
form

Dah
a5Kab~g

ab2hahb!. ~3.4!

Noting thathmhm,1 everywhere, define the scalar fieldk̃ on S by setting

k̃~p!5 inf
uxu,1

~Kab~g
ab2xaxb!!, ~3.5!

at each pointp P S, where the infimum is over all vectorsxa at p with xmxm,1. ~By continuity,
the value ofk̃ is unchanged if we modify its definition by taking the minimum over all vectors
xa at p with xmxm<1.) Using the fact that forxa Þ 0

Kab~g
ab2xaxb!5~12xmxm!Kabg

ab1~xmxm!Kab~g
ab2xaxb/~xmxm!!, ~3.6!

it is not difficult to show that

k̃5min~Ka
a ,k!<k ~3.7!

at each point. Define the functionS̃ on C 1(S) by setting

S̃~C!5A~C!2Wk̃~C!, ~3.8!

for eachCP C 1(S).
If a global solution of Jang’s equation exists, it follows that

Dah
a>k̃, ~3.9!

everywhere onS. Integrating Eq.~3.9! over any regionC P C 1(S) and using the fact that
hknk,1 everywhere on]C, wherenk is the outward unit normal to]C, we find that
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S̃~C!.0. ~3.10!

That is, S̃ is a strictly positive function onC 1(S). Therefore, if there exists a regionV
P C 1(S) with S̃(V)<0, a global solution of Jang’s equation cannot exist, and, thus, by Schoen
and Yau’s results, a~future or past! apparent horizon must be present withinS.

In this argument, we see that the functionS̃ on C 1(S) arises rather naturally. This suggests
that we should attempt to strengthen the above result by showing that when there existsV
P C 1(S) with S̃(V)<0 a future trapped region must exist withinV ~without the need for any
asymptotic or stress-energy conditions!. However, it turns out that we can do a little better using
the functionS on C 1(S), defined by

S~C!5A~C!2Wk~C!, ~3.11!

for eachC P C 1(S), rather thanS̃. Since k̃<k, it follows that S(C)<S̃(C), and, hence, if
S̃(V)<0, thenS(V)<0. So a future trapped region theorem usingS̃ follows from such a theorem
for S. ~See theorem 3, below!.

It is worth noting that for many initial data sets,S and S̃ will coincide. Using the facts that
Ka

a5k11k21k3 and k5k11k2 , it follows that k̃,k if and only if Kab is negative definite
(Kabx

axb,0 for all non-zeroxa), and k̃5k otherwise. Therefore, ifKab is nowhere negative
definite on S, i.e., nowhere is the surface positively expanding in all directions, then
S(C)5S̃(C) for allC P C 1(S).

B. New argument

Our first notable property ofS is that any regionĈ P C 2(S) that is a stationary point ofS is
a future trapped region.

Theorem 2.If Ĉ P C 2(S) is a stationary point ofS ~in the sense thatS8(Ĉ)50 for all smooth
variations ofC!, thenĈ is a future trapped region.

Proof.Fix any regionC P C 2(S) and any open subsetO of ]C. Then, for all smooth vector
fields ja whose support intersects]C within O

S8~C!5E
O

~H2k!~jknk!eab . ~3.12!

Therefore, repeating the argument used in lemma 1 and using the fact thatĈ is in the interior of
S ~asS has no boundary!, we find thatH5k on ]Ĉ. However, ask<Kabh

ab on ]Ĉ, where
hab is the metric induced on]Ĉ, H<Kabh

ab on ]Ĉ. Therefore,Ĉ is a future trapped region.
h

Note that if Ĉ P C 2(S) is a local minimum ofS in the sense that there is an open set
N,S such thatS(Ĉ)<S(C) for all C P C 2(S) with C,N, thenĈ is a stationary point ofS.
Further, for momentarily static initial data sets (Kab50 on S), k50 on S, soS is simply the
surface area ofC. Therefore, in this case, the problem of finding stationary points ofS is exactly
the problem of finding surfaces whose area is stationary~in the sense of theorem 2!, e.g., minimal
two-surfaces.17

Since finding stationary points ofS is a difficult task, it is desirable to have an alternate
condition that guarantees the existence of a future trapped region. Mimicking the proof of theorem
1, we fix a regionV P C 2(S) and then analyze the properties of a region that minimizesS on
C 1(V). If S(V).0, Smay not have a minimum onC 1(V). To see this, note that as there exist
regions with arbitrarily small surface areas and volumes, infC 1(V)(S)<0. Yet, for an initial data set
with k<0 ~as is the case for a maximal hypersurface!, there is no regionĈ P C (V) that attains the
infimum ~being zero! as any such region necessary hasS(Ĉ)>A(Ĉ).0. However, for any region
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V with S(V)<0, we conjecture thatS does have a minimum onC 1(V). ~In fact, we conjecture

that the minimizing regionĈ is a member ofC 22(V) and has further nice differentiable proper-
ties. See conjecture 2 in Sec. IV.! The idea behind this conjecture is that if infC 1(V)(S),0 ~which
is guaranteed to be the case ifS(V),0), a sequence of regionsCi with S(Ci) approaching this
infimum cannot become degenerate in the sense that their volumes go to zero or their areas
become infinite, while if infC 1(V)(S)50, thenS(V)50, soV itself is a minimizing region. Note
that infC 1(V)(S) must be finite as

inf
C 1~V!

~S!>2maxV~k!V~V!; ~3.13!

a lower bound that holds even ifk is negative somewhere onV. This is to be compared to the
difficulty in establishing a similar result for the surface-to-volume ratio functions and lack of any
finite lower bound onA/Wk whenk is negative somewhere onV. Using these ideas, the follow-
ing theorem shows that ifS is not strictly positive onC 2(S), thenS must contain a future trapped
region.

Theorem 3.If S(V)<0 for someV P C 2(S), then there exists a future trapped region in
V, provided conjecture 2~stated in Sec. IV! holds for (V,gab).

Proof. By conjecture 2, there existsĈ P C 22(V) that minimizesS on C 1(V) and further
]Ĉ is C2 on ]Ĉ\Z, whereZ is a closed set of measure zero. Therefore, for all one-parameter
family of deformations constructed from an inward pointing vector field onV whose support
intersects]Ĉ where the surface isC2, we have 0<S8(Ĉ). Using Eq.~3.12!, with C5Ĉ and
repeating the argument used in lemma 1, we find thatH<k on ]Ĉ\Z. However, ask<Kabh

ab on
all of ]Ĉ, wherehab is the metric induced on]Ĉ, H<Kabh

ab on ]Ĉ\Z. Therefore,Ĉ is a future
trapped region. h

Note that ifk<0 on S ~as is the case for maximal hypersurfaces!, then there is no region
V meeting the condition of theorem 3 asS(V)>A(V).0. Further, the condition of Eardley’s
theorem and theorem 1 thats(V)<minV(k) implies thatA(V)<minV(k)V(V)<Wk(V) and,
therefore,S(V)<0, which is the sole condition of theorem 3. Therefore, theorem 3 is stronger
than theorem 1, which is stronger than Eardley’s theorem.

It is interesting to note thatS(C) can be expressed as a pure surface integral by introducing
any vector fieldza on S ~or merely onV) having the property thatDaz

a5k, whereDa is the
derivative operator associated with the metricgab . With this, we have

S~C!5E
]C

~12zknk!eab . ~3.14!

For instance, a particularly simple choice ofza is that given by takingza5Daf for a scalar field
f. Then,f must be a solution of Poisson’s equationDaD

af5k and can be fixed uniquely by
fixing boundary data forf on ]V ~e.g.,f50 on ]V) or a boundary condition onf at infinity
~though whether this can always be accomplished is more subtle!. We will not pursue this formu-
lation any further here as nothing new seems to be gained from this viewpoint.

In theorems 1 and 3, we have restricted ourselves to regionsV with C2 boundary for the sake
of simplicity, and we expect that both theorems hold under weaker conditions. It would seem that
the weakest differentiability condition that should be imposed is that for which it makes sense for
a region to speak of a region being future trapped.

IV. TWO GEOMETRICAL CONJECTURES

The relevance of theorems 1 and 3 rests heavily upon the following two conjectures, which we
believe to be true.
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Conjecture 1.Fix a pair (V,gab), whereV is a compact three-dimensional manifold with
C2 boundary andgab is a smooth Riemannian metric onV. There existsĈ P C 22(V) such that
s(Ĉ)<s(C) for all C P C 1(V).@ In other words,s has a minimum onC 1(V) and a minimizing
region is a member ofC 22(V).# Further, ]Ĉ is C2 everywhere except on the closed set of
measure zero given by]W , whereW 5(]Vù]Ĉ) ~and ]W is constructed viewingW as a
subset of either]V or ]Ĉ).

Conjecture 2.Fix a triple (V,gab ,k), whereV is a compact three-dimensional manifold with
C2 boundary,gab is a smooth Riemannian metric onV, andk is a smooth scalar field onV. If
S(V)<0, then there existsĈ P C 22(V) such thatS(Ĉ)<S(C) for all C P C 1(V).@ In other
words,S has a minimum onC 1(V) and a minimizing region is a member ofC 22(V).# Further,
]Ĉ is C2 everywhere except on the closed set of measure zero given by]W , where
W 5(]Vù]Ĉ) ~and]W is constructed viewingW as a subset of either]V or ]Ĉ).

Note that although]W is by its definition a closed subset of]Ĉ, its being a set of measure
zero does not appear to be guaranteed as there exist boundaries of positive measure.

In conjectures 1 and 2, we have asserted that the surface]Ĉ is a C22 submanifold that is
almost everywhereC2. It is too much to expect that]Ĉ will be everywhereC2 as we expect a
discontinuity in its mean extrinsic curvatureH where]Ĉ ‘‘first intersects’’ ]V, i.e., on]W . To
see this, suppose conjectures 1 and 2 are true. Then, write]Ĉ as the disjoint union of three sets as
follows

]Ĉ5~]Ĉ\W !ø~W \]W !ø~]W !. ~4.1!

As ]Ĉ\W is in the interior ofV, H5s(Ĉ) and H5k in conjectures 1 and 2, respectively.
However, as]Ĉ coincides with]V on the open setW \]W , H will equal the mean extrinsic
curvature of]V onW \]W . Therefore, in general, we expect thatH will suffer a discontinuity on
]W . So, asH will not always beC2, ]Ĉ will not always beC2. However, note that this argument
suggests that the lack in continuity in the second-order partial derivatives defining the surface arise
from mere jumps and not divergences. It is this property that suggests that the surface isC22.

While we shall not attempt to do so here, conjectures 1 and 2 can probably be proven using
the ideas and techniques of geometric measure theory.18 Very roughly, we consider a subset
V (V) of C 12(V) whose members are sufficiently well-behaved that they have finite volume and
surface area~using the Hausdorff measure!. One then argues thatS is a continuous function~in
some natural topology! on V (V) and that the subset ofV (V) defined by thoseC P V (V) such
thatS(C)<S(V) is compact. It then follows immediately that there is a regionĈ P V (V) that
achieves the minimal value ofS on this set. The last step would be to establish thatĈ is actually
a member ofC 22(V) andC2 on ]Ĉ\]W ~and that]W is a set of measure zero!. We leave the
task of showing that these steps can actually be completed open for investigation.

V. FUTURE TRAPPED REGIONS ARE TRAPPED

Although there exists theorems showing that future trapped regions must lie within the black
hole region of the spacetime, the arguments, as given, require that their surfaces be everywhere
C2.4,5 Here, we show that the same result holds for regions with boundaries that are not quite this
smooth, and so deserve to be called future trapped regions. To make our method of proof clear, we
first cover the case where the surface of the region is everywhereC2. After this, we modify the
proof to accommodate our more general regions. We then discuss the possibility of further gen-
eralizations.

While our method of proof is similar to the existing proofs for smooth regions, there is a
notable difference in the final derived contradiction. The Hawking and Ellis argument ends with
the contradiction that the area of]C is no less than the area of]J1(C)ùI 1, which, being at
infinity, is infinite. The Wald argument ends with the contradiction that the future expansion of the
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null generators of]J1(C) is non-positive on]C and yet positive nearI 1. Here, we end with the
contradiction that there are null generators of]J1(C) extending beyondI 1 that possess a point
conjugate to]C on I 1.

Actually, it should be noted that the Wald argument contains a slight error in that the local
cross-sections ofI 1 constructed need not have the requisite differentiability properties in order
that nearby cross-sections of]J1(C) have strictly positive future expansion. A simple counterex-
ample is provided by a smooth closed regionC in a flat spatial hypersurfaceS in Minkowski
spacetime with the property that all ofC lies to one side of a flat planeP in S except for a closed
region]CùP having a non-empty interior~as a subset ofP ). Then, it is not difficult to see that
the null generators of]J1(C) having past endpoint on]CùP intersectI 1 and have zero
expansion everywhere. Of course, the Wald argument can easily be fixed by introducing an area
type argument, or by adopting the method of theorem 4, which can be viewed as such a fix as it
has much of its inspiration from the Wald argument.

Our notion of asymptotic flatness is that given in Ref. 4. We denote the manifolds of the
‘‘physical’’ and ‘‘unphysical’’ spacetime byM andM 8, respectively. We remind the reader that
M5M 8\(J1( i 0)øJ2( i 0), where i 0 is the point representing spatial infinity. Therefore,
]M5( i 0øI 1øI 2), whereI 65(]J6( i 0))\ i 0 are future and past null infinity.

Furthermore, the theorems we prove are for strongly asymptotically predictable spacetimes,4

which are simply those asymptotically flat spacetimes for which there exists an open globally
hyperbolic subsetV of M 8 containingJ2(I 1)ùM ~where the closure is as a subset ofM 8). Note
that ]M,V. It can be shown that all globally hyperbolic asymptotically flat spacetimes are
strongly asymptotically predictable. Further, the globally hyperbolic asymptotic regionV can be
chosen so that it contains all ofM and an asymptotically flat Cauchy surfaceS for M together
with spatial infinity i 0 is a Cauchy surface forV. Therefore, the requirement that a subsetC of
S be closed and bounded away from infinity~so there exists a neighborhood ofi 0 disjoint fromC!
is equivalent to the condition thatC be closed as a subset ofS85(Sø i 0).

A. Regions whose surfaces are C2

Theorem 4.Fix a smooth strongly asymptotically predictable spacetime4 satisfying the null-
convergence condition.3 Let S8 be a smooth asymptotically flat Cauchy surface forV and let
C,(S8ùM ) be a future trapped region in the sense thatC is a closed subset ofS8, ]C is C2,
and the convergence of the outward future-directed null normals to]C is everywhere non-
negative. Then, (CùJ2(I 1))50” .@That is,C,(S8ùB), whereB is the black-hole region of the
spacetime.#

Proof. In the following, all of our constructions are carried out solely within the asymptotic
globally hyperbolic regionV. Therefore, statements regarding the openness or closedness of sets
refer to these properties inV alone. SinceC does not containi 0 ~as C is a subset ofM !,
J1(C) does not containi 0. Further,J1(C) is closed, sinceC is a closed subset ofS8. ~See
exercise 8 from chapter 8 of Ref. 4.! Therefore, there is a neighborhood ofi 0 disjoint from
J1(C).

Suppose, for contradiction, that (CùJ2(I 1)) Þ 0” . Then, (J1(C)ùI 1) Þ 0” , and, hence,
(J1(C)ùI1( i 0)) Þ 0” . It then follows that (]J1(C)ùI1( i 0)) Þ 0” . To see this, fix any pointp
P (J1(C)ùI1( i 0)). Then, as there exists a timelike curveg from i 0 to p @which must lie entirely
within I1( i 0)# and there exists an open neighborhood ofi 0 disjoint from the closed setJ1(C), the
curve g must leaveJ1(C) and therefore intersect]J1(C), showing that (]J1(C)ùI1( i 0))
Þ0” .

Recall that ifp is any point on a null generator of]J1(C) whose past endpoint on]C has an
open neighborhood on which]C isC2, there must not be a point conjugate to]C between]C and
p.4,5 Pick a pointp P (]J1(C)ùI1( i 0)) and a null generatorn of ]J1(C) containingp. Then
n cannot possess a point conjugate to]C in M ~with respect to either the physical or unphysical
metric! nor onI 1 ~with respect to the unphysical metric!. However, in the physical portion of the
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spacetimeM , it follows from the null Raychaudhuri equation and the null-convergence condition
that the~physical! future convergence of the null generators of]J1(C) is not only non-negative
on ]C, it is non-negative everywhere to the future.4,5 Furthermore, if such a generator has positive
convergencer0.0 at some point, then it must possess a conjugate point within an affine param-
eter time 2/r0 thereafter, provided the generator can be extended this far. Therefore, asn is future
complete in the physical metric inM ~as it intersectsI 1), the ~physical! convergence alongn
must be zero inM . Therefore, in the infinitesimal sense, the physical area of a bundle of outgoing
future-directed null rays orthogonal to]C is constant alongn ~in M !. In terms of the unphysical
metric, this area is that given by the physical area multiplied by the square of the conformal factor.
As this conformal factor is zero onI 1, it follows thatn possesses a point conjugate to]C where
it intersectsI 1 ~with respect to the unphysical metric!, which is a contradiction. h

B. Regions whose surfaces are not quite C2

The problem with the proof of theorem 4 when]C is not everywhereC2 is that it may happen
that because of our choice ofp in the last paragraph,n may have its past endpoint at a place on
]C where the surface is notC2, thus making the final conjugate point argument inapplicable.
When ]C is everywhereC22 and C2 on ]C\Z, whereZ is a closed set of measure zero,
although we do not have complete freedom in what choice to make forp, it turns out we can
always find one so that the past endpoint of its associated null generator has a neighborhood within
]C on which the surface isC2, i.e., its past endpoint is somewhere on]C\Z. The idea is that it
is impossible for only the generators of]J1(C) with past endpoint onZ to make it beyond
I 1 as there are not ‘‘enough of them’’ to make up a ‘‘local piece’’ of]J1(C), asZ is a set of
measure zero in]C.

We capture this idea using the notion of Hausdorff measure.18 On a differentiable manifoldN
with Riemannian metric, for any two pointsa andb in N, defined(a,b) to be the greatest lower
bound on the lengths ofC1 curves inN connectinga to b @so (N,d) is a metric space#. For any
subsetS,N, set diam(S)5supa,bPS(d(a,b)). Then, for any subsetA,N and numbersk and
d.0, set

Hd
k~A!5 inf (

j
nkS diam~Sj !

2 D k, ~5.1!

where nk is the volume of a unit-ball in flatRk when k is a non-negative integer~so n051,
n152, n25p, n354p/3, etc.! and an arbitrary positive constant otherwise, and where the infi-
mum is taken over all countable coverings$Sj% of A ~i.e.,A,ø jSj ) with diam(Sj )<d. With this,
theHk-measure of a setA is defined as

Hk~A!5 lim
d→0

Hd
k~A!. ~5.2!

This limit is well defined~although possibly infinite! asHd
k(A) is non-decreasing ind. It is worth

noting that if Hk(A),` then Hm(A)50 for all m.k. It can be shown that ifA is a
k-dimensionalC1 embedded submanifold ofN with k<dim(N), thenHk(A) corresponds to the
usual ‘‘volume’’ of this submanifold. For instance, in the case dim(N)53,H1(A) is the length of
a one-dimensional submanifoldA, H2(A) is the area of a two-dimensional submanifoldA, and
H3(A) is the volume of a three-dimensional submanifoldA.

With this, we say a subsetA of a differentiable manifoldN hasHk-measure zero if
Hk(A)50. It can be shown that this notion is independent of which Riemannian metric is chosen,
and, therefore, whether a subset of a~paracompact! manifold hasHk-measure zero is dependent
solely upon the set. In the case wherek5dim(N), Hk-measure zero is identical to the usual
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Lebesgue notion of measure zero on a differential manifold. Furthermore, iff is a locally
Lipschitz map from the manifoldN to another differentiable manifold, it follows that if
Hk(A)50, thenHk( f @A#)50.

Using these concepts, we can now prove that our generalized future trapped regions are indeed
trapped.

Theorem 5.Fix a smooth strongly asymptotically predictable spacetime4 satisfying the null-
convergence condition.3 Let S8 be a smooth asymptotically flat Cauchy surface forV and let
C,(S8ùM ) be a future trapped region in the sense thatC is a closed subset ofS8, ]C is
everywhereC22 and, on]C\Z, ]C isC2 and the convergence of the outward future-directed null
normals to ]C is non-negative, whereZ is a closed set of measure zero. Then,
(CùJ2(I 1))50” .@That is,C,(S8ùB), whereB is the black-hole region of the spacetime.#

Proof.Suppose, for contradiction, that (CùJ2(I 1)) Þ 0” . Then, using the same argument as
in theorem 4, it again follows that (]J1(C)ùI1( i 0)) Þ 0” . We claim that there existsp
P (]J1(C)ùI1( i 0)) with an associated null generatorn having past endpoint on]C\Z, an open
subset of]C where the surface isC2. We show this by arguing that there are not enough
generators with past endpoint onZ to make up]J1(C) in I1( i 0) as follows.

First, the subsetZ̃ of ]J1(C) consisting of those points with null generators having past
endpoint onZ hasH3-measure zero. To see this, denote byK the subset ofTV ~the tangent
bundle associated withV! consisting of all pairs (p,ka) wherep P ]C and ka is an outward
future-directed null vector normal to]C at p. Using the fact that]C is C22, it follows that there
exists a locally Lipschitz map from]C3R ontoK,TV. Next, since]J1(C)\C is generated by
null geodesics with past endpoint on]C and future-directed outgoing tangent vector normal to
]C, we see that]J1(C)\C is a subset of the projection of exp(K ) onto V ~where exp is the
smooth diffeomorphism fromTV to TV defined by the geodesic flow onTV!. As both exp and the
projection map are smooth, it follows that]J1(C)\C is a subset of the image of a subset of
]C3R under a locally Lipschitz map. Therefore, sinceZ3R hasH3-measure zero as a subset of
]C3R ~which follows from the fact thatZ hasH2-measure zero as a subset of]C) and since
Z̃ is a subset of the image of a subset ofZ3R under a locally Lipschitz map, it follows that
Z̃ hasH3-measure zero inV. ~Note that it is in the establishment of this result that we use the
fact ]C is C22 and not merelyC1.)

Next, pick any pointq P (]J1(C)ùI1( i 0)) and an open neighborhoodO of q with
O,I1( i 0). Using the fact that]J1(C) is an achronalC12 embedded three-dimensional submani-
fold of V ~see proposition 6.3.1 of Ref. 5!, it follows that ]J1(C)ùO has positive
H3-measure.~To see this, note that we can chooseO so that it is diffeomorphic to an open subset
of R4 with ]J1(C)ùO corresponding to the graph of aC12 function of three variables.! There-
fore, as the subset of]J1(C) consisting of generators with past endpoint onZ has
H3-measure zero, it follows that there must exist a pointp P ]J1(C)ùO with an associated null
generatorn that has past endpoint on]C\Z. ~In fact, there are many such points.!

Arguing as we did in theorem 4 shows thatn contains a point conjugate to]C ~with respect
to the unphysical metric! wheren intersectsI 1 ~being between]C andp!, which is a contradic-
tion. h

C. Possible generalizations

In extending the notion of a future trapped region, we have restricted ourselves to regionsC
with C22 surfaces that are furtherC2 everywhere except on a closed set of measure zero. We have
done this because this is both what we expect of the surfaces constructed~conjectures 1 and 2! and
these are regions for which we can carry through all the relevant arguments~theorems 3 and 5!.
However, a much greater extension seems possible. For instance, it is plausible that the notion of
a future trapped region can be extended to regions with surfaces that are merelyC22. Such a
surface is twice differentiable everywhere except on a set of measure zeroZ. If the convergence
of a family of future-directed outgoing null geodesics orthogonal to a surface can be defined on
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]C\Z and the conjugate point argument used in theorem 5 can be applied to the generators with
past endpoint on]C\Z, the notion of a future trapped region with aC22 surface would be a
well-defined concept.

However, it would seem that the best notion of a region being future trapped would not
involve any differentiability conditions. For example, consider the analogous problem of what we
mean by a closed regionC in flat space having a surfaceS that is everywhere locally convex.
Here, we have a precise notion that imposes no differentiability conditions on the surface: For
each pointp P S there is a neighborhoodN in S such that (12l)x1ly P C for all x,y P N and
l P @0,1#. ~That is, the convex hull ofN is a subset ofC.! Likewise, we say the surface of a region
C is locally concave if it is locally convex when viewed as the surface of the closure of the
complement ofC. Note that this flat space notion has a natural generalization to curved spaces:
We call the surfaceS of a closed regionC locally convex if for each pointp P S there is a
neighborhoodN in S and a convex normal neighborhoodU containingN such that for all points
x,y P N the geodesic fromx to y ~within U, being unique! lies withinC. In theC2 case, the above
implies the the extrinsic curvatureHab of S is positive semi-definite.

We want a geometric condition that, in theC2 case, leads to the boundH5Ha
a<Kabh

ab.
Surely, such a notion would be based on a demand that the areas of all local cross sections of
]J1(C) are non-increasing to the future~at least sufficiently near]C). The problem is to capture
this idea in a well-defined sense. For instance, one needs for]J1(C) to be sufficiently well-
behaved so that the surface areas of suitable cross-sections are well-defined. This is probably not
such a problem as]J1(C) is an embeddedC12 submanifold for any setC. Then, to show that
such regions are indeed trapped, an area-type argument similar to that used by Hawking and Ellis
would probably be the most natural method to use. However, how is one to show that the areas of
cross-sections are non-increasing to the future when the null Raychaudhuri equation cannot be
implemented? Clearly, some subtlety is needed here.

Note that a naive condition such as]C being everywhereC12 and, on]C\Z, ]C is C2 and
the convergence of the outward future-directed null normals to]C is non-negative, whereZ is a
closed set of measure zero, is insufficient. A simple counterexample is provided by takingC to be
a solid cube in a flat spatial hypersurface in Minkowski spacetime. Here,]C is everywhere
C12 and, except along the edges and vertices~a closed setZ of measure zero!, the surface is
C` and the convergence of the outward future-directed null normals to]C is zero. However,C is
clearly ‘‘visible’’ from I 1, i.e., it is not trapped. In the proof of theorem 5, the problem with such
surfaces is that one does not have a one-to-one correspondence between the null generators of
]J1(C) and]C, and, as a result, the portion of]J1(C) consisting of the generators having past
endpoint onZ has positiveH3-measure. For example, at a vertex, an entire ‘‘octant’s worth’’ of
null generators of]J1(C) intersect]C at a single point. In this case, all null generators of
]J1(C) that do make it beyondI 1 have past endpoints onZ.

Lastly, one might expect that a differentiability condition that would be sufficient to establish
that a regionC is future trapped is that]C is everywhereC1 andC2 on an open dense subsetD
of ]C ~with the convergence of the outward future-directed null normals being non-negative on
D!. In fact, this was the approach first taken herein, but was abandoned because of a difficulty. The
idea is that if a null generatorn associated with a pointp P (J1(C)ùI1( i 0)) has its past endpoint
onD, the argument proceeds as in theorem 4, while if not, then it would seem that we could find
a point arbitrarily nearp in (J1(C)ùI1( i 0)) with an associated generator having past endpoint
onD. ~After all, D is dense in]C.) While this may be true, proving it appears to be difficult. For
instance, although one might expect that there would exist a neighborhood ofnù]C ~within
]C) such that all null generators with past endpoint thereon remain on]J1(C) long enough to
enter I1( i 0), it turns out that this need not be the case if we just use the fact that]C is C1.
Whether this does hold when the additional conditions on]C are used is not clear.
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VI. DISCUSSION

Theorems 1 and 3 provide us with simple tests for the existence of future trapped regions
within an initial data set, but how effective are they?

First, the conditions of theorems 1 and 3 are quite strong in the following sense. Recall that
theorem 1 requires that minV(k)>s(V) ~as does Eardley’s theorem!. Using the fact thatk is the
sum of the two lesser principal~extrinsic! curvatures (k1 ,k2 ,k3), it is not difficult to show that

Ka
a5k11k21k3>

3

2
k>

3

2
s(V).0 everywhere onV, showing that this region is everywhere

contracting ‘‘on average.’’ However, ifKa
a is non-negative,k need not be positive. This shows

that the regionV is more than contracting ‘‘on average.’’ Indeed, on a maximal hypersurface
(Ka

a50 everywhere onS), k<0 ~with equality only whereKab50) everywhere onS. In this
respect, the condition of theorem 1~and Eardley’s theorem! is quite strong. While theorem 3
merely requires thatS(V)<0, sok need not be positive on all ofV, k still must be positive over
a sufficiently large subset ofV in order to meet this condition.

Second, while both theorems give sufficient conditions for the existence of future trapped
regions, neither condition is necessary. This is easily seen by constructing a momentarily static
initial data set~soKab50, and hencek50, onS) that contains a minimal two-surface bounding
a compact regionC. This regionC is future ~and past! trapped and yet, asS(C)5A(C) is
positive, the condition of neither theorem 1 nor 3 is met.

Third, neither theorem is very sensitive to the ‘‘local’’ existence of a future trapped region in
the following sense. Suppose we have a future trapped surfaceS such that both families of
future-directed orthogonal null congruences have strictly positive convergence onS. Construct a
three-dimensional regionV by ‘‘thickening’’ S a small distancer within an initial data surface
containingS. Then, forr sufficiently small,V is a future trapped region. However, for sufficiently
small r , s(V) will be larger than infV(k) andS(V) will be positive, and hence neither theorem
enables us to deduce thatV itself is a future trapped region.

Fourth, the conditions of theorems 1 and 3 are quite robust in the sense that if we have a
regionV that satisfies the condition of either theorem with strict inequality and then deform it to
create a new regionV8 by ‘‘pushing’’ very thin fingers of the surface ofV into V ~in arbitrarily
complex ways!, then, provided our fingers are sufficiently thin, the surface area, volume, and the
integral ofk for V8 will be sufficiently near those ofV so that the conditions of both theorems
will be met forV8. More generally, if we constructV8 by excising sufficiently thin regions from
V, both theorems guarantee the existence of a future trapped region withinV8. This is perhaps
somewhat surprising at first given thatV8 can be topologically quite complex. However, noting
that the mean curvature of the portions of the surface ofV8 created by excising ‘‘very thin
fingers’’ is very large and negative, we realize thatĈ less the thin regions is nearly a future trapped
region—all that is needed is a bit of adjusting near the edges where the excised region intersects
Ĉ.

Fifth, and last, theorems 1 and 3 do have a slight advantage in numerical search for the
existence of future trapped regions as the calculation ofs(V) or S(V) requires only the calcu-
lation of a surface area and a volume integral, which are not as sensitive to numerical inaccuracies
that would arise in calculating the mean extrinsic curvatureH of a two-surface inS to test
whether the surface is future outer trapped@i.e., testing whether the condition given by Eq.~1.1!
holds on the boundary#.

So, while theorems 1 and 3 do offer tests for the existence of future trapped regions, their
inability to detect the existence of future trapped regions in some instances, e.g., in initial data sets
associated with maximal hypersurfaces and ‘‘thin’’ future trapped regions, leads us to wonder
whether stronger tests of the type considered here can be devised to give sufficient conditions for
the existence of future trapped regions.
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Radiation-filled Friedmann–Robertson–Walker universes are quantized according
to the Arnowitt–Deser–Misner formalism in the conformal-time gauge. Unlike
previous treatments of this problem, here both closed and open models are studied,
only square-integrable wave functions are allowed, and the boundary conditions to
ensure self-adjointness of the Hamiltonian operator are consistent with the space of
admissible wave functions. It turns out that the tunneling boundary condition on the
universal wave function is in conflict with self-adjointness of the Hamiltonian. The
evolution of wave packets obeying different boundary conditions is studied, and it
is generally proven that all models are nonsingular. Given an initial condition on
the probability density under which the classical regime prevails, it is found that a
closed universe is certain to have an infinite radius, a density parameterV51
becoming a prediction of the theory. Quantum stationary geometries are shown to
exist for the closed universe model, but oscillating coherent states are forbidden by
the boundary conditions that enforce self-adjointness of the Hamiltonian
operator. ©1996 American Institute of Physics.@S0022-2488~96!02503-5#

I. INTRODUCTION

The lack of a consistent quantum theory of the full gravitational field and its sources has
stimulated the development of quantum cosmology, a less complete but more tractable method to
investigate the influence of quantum effects on the evolution of the universe. The primordial
universe, when presumably curvatures and densities approach the Planck scale, is believed to be
the privileged scenario in which the quantum aspects of gravity are expected to become important
or even dominant. In its broadest sense, quantum cosmology consists in ‘‘freezing out’’ all but a
finite number of degrees of freedom of the gravitational field plus its sources~through imposition
of symmetry requirements! and then quantizing the remaining ones. This procedure, initiated by
DeWitt,1 is expected to provide some general insights on what an acceptable quantum theory of
gravity should be like, although it cannot be strictly valid and is open to criticism.2 Such a line of
attack has been extensively explored to quantize Friedmann–Robertson–Walker~FRW! universes
with varying matter content, such as a scalar field,3–6 radiation,7–9 a spinor field,10 dust,9,11–14or a
Rarita–Schwinger field.15

The present paper is dedicated to a further study of the quantum theory of a radiation-filled
FRW universe. Differently from previous investigations of this system,7–9 here we discuss both
closed and open models, deal only with normalizable wave functions, and pay full attention to the
domain of self-adjointness of the Hamiltonian operator. We follow the Arnowitt–Deser–Misner
~ADM ! genuine canonical quantization method.16 In this approach one has to solve the constraint
equations at the classical level and go over to a reduced phase space spanned by independent
canonical variables alone, and this process demands a definite choice of time. Although often
leading to complicated and time-dependent Hamiltonians, this formalism has the great advantage
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b!On leave of absence from Departamento de Fı´sica, Universidade Federal Fluminense, Outeiro de Sa˜o João Batista s/n,
24020-005 Centro, Nitero´i, RJ, Brasil. Supported by Conselho Nacional de Desenvolvimento Cientı´fico e Tecnolo´gico
~CNPq!, Brasil.
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of reducing the problem to one of standard quantum mechanics, enabling one to make full use of
the powerful theory of linear operators in Hilbert space. In our treatment the time variable is
chosen as conformal time, as this enormously simplifies the form of the Hamiltonian operator,
making the quantum dynamics exactly soluble. Further reasons for choosing conformal time are
given in Ref. 8.

After the ADM reduction of phase space, only one degree of freedom remains, which is taken
to be the scale factorR. SinceR is restricted to positive values, it becomes necessary to impose
boundary conditions on the wave functions belonging to the domain of the Hamiltonian operator
to ensure its self-adjointness. For the simplest of such boundary conditions, the time evolution of
wave packets of the Gaussian type is worked out, and it is shown in full generality for the first
time that both the closed and open models are nonsingular. It is remarked that in the context of the
ADM quantization the so-called tunneling boundary condition on the universal wave function is in
conflict with self-adjointness of the Hamiltonian operator, or, equivalently, with unitarity of the
quantum evolution. This is not an artifact of the particular quantization scheme adopted here, since
the ADM and Wheeler–DeWitt descriptions are equivalent for the model at hand.7 An initial
condition such that the probability density is sharply concentrated atR50 and under which the
classical regime sets in is considered. In the closed case, under such an extreme initial condition
the probability of finding any finite radius for the universe vanishes. Therefore a density parameter
V51 becomes a prediction of the model, without neither sacrificing the requirement of square
integrability on the wave functions nor imposing boundary conditions inconsistent with the space
of admissible state vectors. A physically questionable aspect of the initial condition adopted is
pointed out, however. Stationary quantum geometries are shown to exist for the closed model, but
the existence of oscillating coherent states of the geometry is precluded by the boundary condi-
tions required to enforce self-adjointness of the Hamiltonian operator, a result at variance with
previous findings.9

The layout of this paper is as follows. In Sec. II the classical model is specified and the ADM
reduction of phase space7 is briefly reviewed. In Sec. III the problem of the necessary boundary
conditions to ensure self-adjointness of the Hamiltonian operator is considered, and the respective
propagators are written down when the two simplest of such boundary conditions are adopted. In
Sec. IV the motion of wave packets obeying different boundary conditions is obtained in closed
form, and it is verified that the singularity is avoided in all cases. A special initial condition under
which the quantum model is forced into the classical regime is discussed, and the consequences
for the case of a closed universe are considered. Stationary quantum geometries are taken up in
Sec. V, with particular emphasis on how the restricted domain of self-adjointness of the Hamil-
tonian operator influences such states. Section VI is devoted to some final comments.

II. DYNAMICS OF THE CLASSICAL MODEL

The line element for a homogeneous and isotropic universe can be written in the FRW form
~we takec51!

ds25gnl dx
n dxl52N~ t !2 dt21R~ t !2s i j dx

i dxj , ~2.1!

wheresi j denotes the metric for a 3-space of constant curvaturek511, 0, or21, corresponding
to spherical, flat, or hyperbolic space-like sections, respectively.

The matter content will be taken to be a perfect fluid, and Schutz’s canonical formulation of
the dynamics of a relativistic fluid in interaction with the gravitational field will be employed.17

The degrees of freedom ascribed to the fluid are five scalar potentialsw,a,b,u,S in terms of which
the four-velocity of the fluid is written as

Un5
1

m
~w ,n1ab ,n1uS,n!, ~2.2!
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wherem is the specific enthalpy. By means of the normalization condition

gnlU
nUl521, ~2.3!

one can expressm in terms of the velocity potentials. The action for the gravitational field plus the
perfect fluid is

S5E
M
d4xA2g~4!R12E

]M
d3xAhhi j Ki j1E

M
d4xA2gp, ~2.4!

in units such thatc516pG51. In Eq. ~2.4!, p is the pressure of the fluid,~4!R is the scalar
curvature derived from the space–time metricgnl ,hi j is the 3-metric on the boundary]M of the
4-manifoldM , andKi j is the second fundamental form of the boundary.18 The surface term is
necessary in the path-integral formulation of quantum gravity in order to rid the Einstein–Hilbert
Lagrangian of second-order derivatives. Variations of the pressure are computed from the first law
of thermodynamics.

Compatibility with the homogeneous space–time metric is guaranteed by taking all of the
velocity potentials of the fluid as functions oft only. We shall takep5~g21!r as an equation of
state for the fluid, whereg is a constant andr is the fluid’s energy density~we shall eventually put
g54

3!. In the geometry characterized by~2.1!, the appropriate boundary condition for the action
principle is to fix the initial and final hypersurfaces of constant time. The second fundamental form
of the boundary becomesKi j52ḣi j /2N. As described in its full details in Ref. 7, after inserting
the metric~2.1! into the action~2.4!, using the equation of state, computing the canonical mo-
menta and employing the constraint equations to eliminate the pair~u,pu!, what remains is a
reduced action in the Hamiltonian form

Sr5E dt$ṘpR1ẇpw1ṠpS2NH%, ~2.5!

where an overall factor of the spatial integral of~dets!1/2 has been discarded, since it has no effect
on the equations of motion. The super-HamiltonianH is given by

H52S pR
2

24R
16kRD 1pw

gR23~g21!eS. ~2.6!

The lapseN plays the role of a Lagrange multiplier, and upon its variation it is found that the
super-HamiltonianH vanishes. This is a constraint, revealing that the phase space contains
redundant canonical variables.

According to the ADM presciption, in order to perform a bonafide canonical quantization, one
must go over to a reduced phase space spanned by independent canonical variables alone. This can
be achieved by first making a choice of time and then solving the super-Hamiltonian constraint
equationH50 for the canonical variable conjugate to the time chosen in the first step. This
ensures that the final action preserves its canonical form, and the Hamiltonian in the reduced phase
space is identical to the canonical variable whose Poisson bracket is unity with whatever was
chosen as time, but now expressed as a function of the remaining independent canonical
variables.16 In the conformal-time gaugeN5R ~that is, henceforwardt denotes conformal time!,
and forg54

3 ~radiation! this procedure leads to the very simple reduced action7

Sr5E dtH ṘpR2S pR22416kR2D J . ~2.7!
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Only one degree of freedom is left, namely the scale factorR, and the Hamiltonian in the reduced
phase space is

H5
pR
2

24
16kR2. ~2.8!

Hamilton’s equations of motion lead immediately to

R̈1kR50. ~2.9!

The solution forR(t) can be written as

R~ t !5R0H sin t, if k511,
t, if k50,
sinh t, if k521,

~2.10!

with a suitable choice for the origin of conformal timet. The standard cosmic timet is related to
conformal time by

dt5R dt; ~2.11!

hence

t5R0H 12cos t, if k51,
t2/2, if k50,
cosht21, if k521,

~2.12!

with the convention thatt50 whent50. In the spatially flat case~k50!, for instance, one recovers
the usual behaviorR5Ct1/2 for the scale factor.19 It is seen that Hamilton’s principle based on the
reduced action~2.7! gives rise to the same equations of motion as those obtained by first varying
the full action~2.4! and then simplifying them through the use of the space–time symmetries of
homogeneity and isotropy and of the equation of statep5r/3. Such a consistency check is
indispensable if quantization in minisuperspace is to have any meaning at all.

III. QUANTIZATION, SELF-ADJOINTNESS, AND BOUNDARY CONDITIONS

The remarkably simple form of the Hamiltonian~2.8! makes it possible to find exact results
for the cosmic evolution at the quantum level. The quantum dynamics is not so straightforward as
one might think at first sight because the scale factorR is restricted to the domainR.0, so that the
minisuperspace quantization in theR representation deals only with wave functions defined on the
half-line ~0,̀ !. It is well known that in such circumstances one usually has to impose boundary
conditions on the allowed wave functions, otherwise the relevant operators will not be self-adjoint,
the most important of all operators being the Hamiltonian, which must be self-adjoint in order that
the time evolution be unitary. The need to impose boundary conditions to ensure self-adjointness
has been long recognized by practitioners of the ADM formalism as applied to quantum
cosmology.3,11Very recently, it has also been seen to have nontrivial cosmological implications in
the Wheeler–DeWitt approach.20 What does not appear to have been duly emphasized is that
self-adjointness conditions depend on the set of allowed state vectors. It has been argued by
adherents of the many-worlds interpretation8 and of the pilot-wave formulation21 of quantum
theory that non-normalizable wave functions are unavoidable in quantum cosmology. Irrespective
of whether their arguments are physically well founded or not, what we want to stress here is that
the self-adjointness conditions must be consistent with the point of view adopted, if the results
obtained are to be regarded as trustworthy.
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As follows from the substitutionpR→2 id/dR, the Hamiltonian operator associated with the
classical Hamiltonian function~2.8! is ~we take\51!

Ĥ52
1

24

d2

dR2
16kR2, ~3.1!

defined on the half-line~0,̀ !. The condition forĤ to be symmetric~which, in turn, is a necessary
condition forĤ to be self-adjoint! is

~c1 ,Ĥc2!5~Ĥc1 ,c2! ~3.2!

or

E
0

`

c1* ~R!
d2c2

dR2
dR5E

0

` d2c1*

dR2
c2~R!dR, ~3.3!

where the asterisk stands for the complex conjugate. Integrating by parts twice, this leads to

S c1*
dc2

dR
2
dc1*

dR
c2D ~`!5S c1*

dc2

dR
2
dc1*

dR
c2D ~0!. ~3.4!

If both c and its derivative are square integrable, the left-hand side of~3.4! vanishes, and we
are left with

S c1*
dc2

dR
2
dc1*

dR
c2D ~0!50. ~3.5!

Then it can be shown22 that to ensure the validity of this condition it is necessary and sufficient
that the domain ofĤ be restricted to those wave functions such that

c8~0!5ac~0!, ~3.6!

with aP~2`,`#. This generic boundary condition was explicitly taken into account in Ref. 11 and
implicitly used in the simplest casesa50 anda5` in Ref. 7, in which only square-integrable
wave functions were considered acceptable.

If the potential is unbounded from below, the Hamiltonian may possess eigenstates
cPL2~0,̀ ! such thatc8 is not square integrable. In this case, or if non-normalizable wave func-
tions are allowed, the correct condition for symmetry of the Hamiltonian is Eq.~3.4!, and as such
it has been recently employed in Ref. 20. However, in Ref. 8 non-square-integrable wave func-
tions were argued to be necessary in quantum cosmology, but, inconsistently with this point of
view, Eq. ~3.6! was imposed on the allowed wave functions to allegedly enforce self-adjointness
of the Hamiltonian operator. As a consequence of demanding that the initial wave function when
t50 be perfectly localized at the singularityR50, Tipler8 was led to a universal wave function of
the form

c~R,t !5F 3i

4LP sin t
G1/2 expF S 3p

4i D ~cot t !S RLPD
2G[A~ t !exp@ iB~ t !R2#, ~3.7!

whereLP denotes the Planck length, and that satisfies the boundary condition~3.6! for a50. Since
this wave function is not square integrable, it should obey Eq.~3.4!, that is,

lim
R→`

@4iA*BR#50, ~3.8!
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which is not satisfied because bothA(t) and B(t) are different from zero. Therefore, a wave
function of the form~3.7! cannot represent a possible state of the universe. This means that
Tipler’s initial condition on the wave function of the universe, together with his imposition of
boundary condition~3.6! with a50, are in conflict with the requirement thatĤ be a self-adjoint
operator, and this renders the conclusions of Ref. 8 invalid.

In the present work we shall deal only with square integrable wave functions, so that the set
of admissible states in theR representation is the Hilbert spaceL2~0,̀ !. Therefore, the domain of
self-adjointness of the Hamiltonian operator is restricted to those wave functions that obey~3.6!.
For the sake of simplicity, here we shall address ourselves only to the casesa50 anda5`, that
is, the boundary conditions we shall be concerned with are

c8~0,t !50 ~3.9a!

or

c~0,t !50. ~3.9b!

Both of these conditions refer to what happens to a wave packet when it hits the singularityR50.
The boundary condition~3.9b! was advocated by DeWitt to keep wave packets away from the
singularity, but, in general, it is not powerful enough to prevent wave functions from becoming
concentrated in the neighborhood ofR50.23As a matter of fact, it has been argued11 that DeWitt’s
boundary condition is just not relevant to the issue of quantum gravitational collapse.

The time development of the models is fully determined once one is in possession of the
propagator or the Green’s function. LetG(x,y,t) be the propagator for the problem in the usual
Hilbert spaceL2~2`,`!. Then the propagator for the problem in the restricted Hilbert space
L2~0,̀ ! is

G~a!~R,R8,t !5G~R,R8,t !1G~R,2R8,t !, ~3.10!

if the boundary condition is~3.9a!, or

G~b!~R,R8,t !5G~R,R8,t !2G~R,2R8,t !, ~3.11!

if the boundary condition is~3.9b!, as noted by several authors.24,8,25

The general Green’s function for the Hamiltonian~3.1! on the usual Hilbert spaceL2~2`,`!
is

G~x,y,t !5F 6Ak
p i sin~Akt!G

1/2

expH 6iAk
sin~Akt!

@~x21y2!cos~Akt!22xy#J , ~3.12!

as one immediately obtains from the expression of the propagator for the harmonic oscillator26 by
settingm512 andv5Ak. In the limiting casek50 the well-known free-particle propagator is
regained, whereas fork521 all one has to do is make use of the simple formulas cos(i t )5cosht
and sin(i t )5 i sinht. The latter case corresponds to the quantum mechanics of a particle in an
inverted oscillator potential, studied extensively in Ref. 27.

In the quantum cosmology a` la Hartle–Hawking–Vilenkin–Linde, an essential role is played
by initial or boundary conditions. One of these is the so-called tunneling boundary condition,28,29

according to which the wave function of the universe must consist only of outgoing modes at
singular boundaries of superspace. In our present context this amounts mathematically to

J5
i

2 S c*
]c

]R
2c

]c*

]R D
R50

.0, ~3.13!
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whereJ is the probability current density. However, from~3.6! it follows immediately thatJ50
becausea is a real number. One is forced to conclude that, at least for this minisuperspace model,
the tunneling boundary condition cannot be implemented because it is irreconcilable with self-
adjointness of the Hamiltonian operator or, equivalently, unitarity of the time evolution. Further-
more, since the ADM and Wheeler–DeWitt descriptions are equivalent for the present model,7 this
difficulty is not an artifact of the particular quantization scheme adopted here.

IV. EVOLUTION OF THE QUANTUM MODELS

We shall now dedicate some paragraphs to the description of the main features of the dynami-
cal evolution of our quantum cosmological models. This will be done by first following the time
development of wave packets and then by studying the effect of imposing a very special initial
condition.

A. Motion of wave packets

Let us start by working out the dynamical evolution of representative initial wave packets. The
first initial state to be considered is the one described att50 by the normalized wave function

c0
~a!~R!5S 8s

p D 1/4e2bR2, ~4.1!

whereb5s1ip with p real ands.0, corresponding to the boundary condition~3.9a!.
The initial wave function~4.1! is an even function ofR, so that

c~a!~R,t !5E
0

`

G~a!~R,R8,t !c0
~a!~R8!dR8

5E
0

`

G~R,R8,t !c0
~a!~R8!dR81E

0

`

G~R,2R8,t !c0
~a!~R8!dR8

5E
2`

`

G~R,R8,t !c0
~a!~R8!dR8. ~4.2!

Inserting the propagator~3.12! and the initial wave function~4.1! into ~4.2! and performing the
Gaussian integration, one finds

c~a!~R,t !5S 8s

p D 1/4H 6Ak
cos~Akt!@b tan~Akt!26iAk#

J 1/2

3expH 6iAk
tan~Akt! S 11

6iAk
cos2~Akt!@b tan~Akt!26iAk#

DR2J . ~4.3!

An important quantity is the expectation value of the scale factor

^R̂& t
~a!5E

0

`

Ruc~a!~R,t !u2 dR, ~4.4!

which can be readily computed from the wave function~4.3!. We find
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^R̂& t
~a!5

1

12
A 2

ps H As2 sin2 t1~62p tan t !2 cos2 t,

As2t21~62pt!2, if k50,

As2 sinh2 t1~62p tanh t !2 cosh2 t,

if k511,

if k521.

~4.5!

Notice that, in all cases,^R̂& t
a never vanishes. Fork50 or k521 andp.0, the expectation value

of the scale factor initially decreases, reaches a minimum value, and then grows steadily without
limit, whereas ifp,0 there is a continuous expansion without bound. As expected, for larget the
highest expansion rate belongs to the hyperbolic model~k521!. For k51 the universe oscillates
between a minimum and a maximum radius. An interesting interpretation of this behavior in terms
of reflection of parts of the wave packet as they hit the originR50 can be found in Ref. 11.

It should be stressed that the previous results establish that, at the quantum level, the singu-
larity is avoided in all cases~that is,k50,61!, according to the following reasonable criterion:11,30

the quantum system is singular at a certain instant if^cu f̂ uc&50 for any quantum observablef̂
whose classical counterpartf vanishes at the classical singularity,c being any state of the system
at the instant under consideration. For FRW models the relevant quantum observable isf̂5R̂,
sinceR50 defines the classical singularity. This criterion is in consonance with the usage in
quantum cosmology. Indeed, sinceR̂ is a positive operator onL2~0,̀ !, if ^R̂& t50 thenc(t) is
sharply peaked atR50, and a strong peak in the wave function at a certain classical configuration
is regarded in quantum cosmology as a prediction of the occurrence of such a configuration.29

We now turn our attention to the boundary condition~3.9b!. As an initial wave function let us
choose

c0
~b!~R!5S 128s3

p D 1/4 Re2bR2. ~4.6!

Taking advantage of the odd character of this wave function, we can write

c~b!~R,t !5E
0

`

G~b!~R,R8,t !c0
~b!~R8!dR85E

2`

`

G~R,R8,t !c0
~b!~R8!dR8. ~4.7!

Insertion of~4.6! and ~3.12! into ~4.7! yields

c~b!~R,t !5S 128s3

p D 1/4F 216ik3/2

sin3~Akt!G
1/2Fb2

6iAk
tan~Akt!G

23/2

R

3expH 6iAk
tan~Akt! S 11

6iAk
cos2~Akt!@b tan~Akt!26iAk#

DR2J . ~4.8!

The expectation value of the scale factor is found to be

^R̂& t
~b!52^R̂& t

~a! , ~4.9!

so that there is no singularity for boundary condition~3.9b! either.
As a matter of fact, we have shown only that the states evolving from~4.1! or ~4.6! are such

that ^R̂& t never vanishes. Incomplete analyses like ours of the quantum gravitational collapse
problem have been made before.7,9 This is insufficient, however, because in order to establish that
the quantum cosmological models are nonsingular one has to prove that^R̂& tÞ0 for anyevolving
statec(t) for which ^R̂& t is defined. A somewhat indirect proof of this will be given below.

Classically, the presence of the singularity att50 makes it physically mandatory to restrict the
conformal timet to positive values. The absence of singularity at the quantum level makes such a
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restriction unnecessary, so that2`,t,` and the quantum cosmological models are not naturally
endowed with an origin of time. This kind of situation is also encountered in dust-filled FRW
models in the cosmic-time gauge.11

B. Special initial condition

Having a quantum dynamical framework to describe the evolution of the universe is not
enough to explain its present state, one has to face the problem of initial conditions, the gist of
modern quantum cosmology. In the path-integral approach to quantum cosmology, both the
Hartle–Hawking and the Vilenkin–Linde proposals appear to suffer from vagueness and lack of
generality, and can hardly be said to lead unambiguously to a unique universal wave function.29 In
the present minisuperspace model the Vilenkin–Linde tunneling boundary condition is not even
implementable, as we have seen in Sec. III.

With this in mind, we proceed tentatively to examine the outcome of imposing initial condi-
tions on the probability density associated with the universal wave function. We content ourselves
with discussing the extreme situations→`, in which caseuc0u

2 becomes sharply concentrated
aroundR50:

lim
s→`

uc0
~a!~R!u25d~R!. ~4.10!

Under such circumstances the universe starts with certainty from the singularityR50, so that
~4.10! may be regarded as the condition for a quantum explosive birth of the universe, or what
might be called a quantum big bang. Fors sufficiently large Eq.~4.5! reduces to

^R̂& t'
1

12
A2s

p H sin t, if k511,
t, if k50,
sinh t, if k521,

~4.11!

so that the classical regime sets in—compare the above equation with~2.10!.
Now for the promised proof that̂R̂& tÞ0 for any evolving statec(t), implying that our

quantum cosmological models are nonsingular. If^R̂& t1 5 0 for somet1, thenuc(R,t1)u
25d(R).

Suppose thatc(R,t) with t.t1 is a state evolved fromc(R,t1) taken as an initial condition. By
letting s→`, it follows from ~4.11! that ^R̂& t5`. Therefore, no state with a finite expectation
value of the scale factor can arise fromc(R,t1). Since quantum mechanics is time reversible, no
statec(R,t0) with t0,t1 and finite^R̂& t0 can evolve toc(R,t1), which proves that̂R̂& tÞ0 for all
evolving statesc(t) for which the expectation value of the scale factor is finite.

Let us focus our attention particularly on the closed model~k511!, the only one for which
the following considerations are meaningful. In our present treatment, which deals only with
normalized wave functions, the probabilityP(R,R1 ;t) that at timet the radius of the universe is
smaller than a given radiusR1 is given by

P~R,R1 ;t !
~a!5E

0

R1
uc~a!~R,t !u2 dR

5S 8s

p D 1/2F 36

cos2 t@s2 tan2 t1~62p tan t !2#G
1/2

3E
0

R1
expH 2

72sR2

cos2 t@s2 tan2 t1~62p tan t !2# J dR. ~4.12!

With the change of variable,
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x5
A72s

cos t@s2 tan2 t1~62p tan t !2#1/2
R, ~4.13!

one gets

P~R,R1 ;t !
~a!5

2

Ap
E
0

R
* e2x2 dx, ~4.14!

where

R*5
A72s

cos t@s2 tan2 t1~62p tan t !2#1/2
R1 . ~4.15!

Notice thatR
*
→0 ass→`, henceP(R,R1 ;t)50 for an explosive quantum beginning of the

universe. This leads to the prediction that the density parameterV equals unity in the limit of a
truly explosive birth of the universe. Such a prediction was called ‘‘inflation without inflation’’ by
Tipler,8 but here it is derived without having to resort to non-normalizable wave functions.

If the initial wave function is chosen as~4.6!, corresponding to the boundary condition~3.9b!,
Eq. ~4.9! shows that ifs is sufficiently large the classical regime takes over. For the closed model
one readily finds

P~R,R1 ;t !
~b!5

4

Ap
E
0

R
* x2e2x2 dx. ~4.16!

Again, in the limits→` the probability that at timet the radius of the universe is smaller than a
given radiusR1 is zero. Note that ass→` the wave packet~4.6! also satisfies~4.10!, thus
providing a concrete illustration of the fact that an initial wave function whose associated prob-
ability density is concentrated entirely atR50 can be harmonized with the boundary condition
~3.9b!. Besides, the predictionV51 does not appear to be sensitive to boundary conditions of the
type ~3.6! on the wave function itself, but to result exclusively from the condition~4.10! that its
modulus squared be sharply concentrated atR50 when t50. An initial condition on the wave
function itself that gives rise toV51 is known,8 but then one has to give up the square integra-
bility requirement, and the resulting universal wave function does not belong to the domain of
self-adjointness of the Hamiltonian operator, as remarked in Sec. III.

Unfortunately, this state of affairs is still physically dubious. The inevitable singularity makes
the restrictiont>0 dynamicallyobligatory in classical cosmology. On the other hand, it is only the
impositionof the initial conditionuc0(R)u

25d(R) that makes the instantt50 so especially dis-
tinguished as to induce the restrictiont>0 upon the quantized model too. This is so because no
unitary evolution from an earlier time could have led to such a perfectly localized state att50.
This questionable feature is also present in Tipler’s treatment,8 in which use is made of non-
normalizable wave functions. Although inconclusive, our tentative considerations were intended to
suggest that it may be physically reasonable to impose initial conditions on some probability
distribution engendered by the wave function rather than on the universal wave function itself.

V. QUANTUM STATIONARY GEOMETRIES

In the case of the closed FRW model, the Hamiltonian operator~3.1! possesses square-
integrable eigenfunctions. Consider the normalized wave functions

cn~R!5S A48
Ap2nn!

D 1/2Hn~A12R!exp~26R2!, ~5.1!
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whereHn denotes thenth Hermite polynomial. They satisfy

Ĥcn5~n1 1
2!cn , ~5.2!

wheren is a non-negative integer. For evenn the wave functions~5.1! satisfy both Eq.~5.2! and
the boundary condition~3.9a!, whereas for oddn they obey both Eq.~5.2! and the boundary
condition ~3.9b!. The effect of the boundary conditions is to exclude either even or odd eigen-
functions. This does not agree with Ref. 9, where no boundary conditions are imposed on the wave
functions belonging to the domain ofĤ, with the result that all values forn are allowed. For a
universe in any of the stationary states~5.1!, nothing changes with time. This is a purely quantum
effect since radiation-filled FRW universes do not possess classical static solutions.

Amore significant effect of imposing self-adjointness boundary conditions is the preclusion of
oscillating coherent states, that is, nondispersive Gaussian wave packets whose center oscillates
just like a solution to the classical equations of motion. From the general form of such wave
functions,31 one recognizes at once that the general boundary condition~3.6! cannot be satisfied,
even if the real parametera is allowed to be time dependent. It is clear, therefore, that a coherent
state such that the classical solution~2.10! emerges as the expectation value of the scale factor
does not exist, in contradiction with the findings in Ref. 9.

VI. CONCLUDING REMARKS

In this paper we dealt with square-integrable wave functions only, that is, we limited ourselves
to the orthodox framework of quantum mechanics in Hilbert space. Interpretational controversies
apart, it is in this arena that the requirement of self-adjointness on the quantum observables is most
naturally justified and easily understood. Accordingly, being careful about domains of operators
becomes a necessity in quantum cosmology, and in the case of radiation-filled FRW universes the
simplest boundary conditions required to enforce self-adjointness ofĤ were taken into account.
Initial or boundary conditions introduced with the purpose of selecting a unique wave function are
customarily unrelated to the former, although on occasion this has been the object of confusion in
the literature. Sometimes, however, these two types of boundary conditions interfere with each
other, as we pointed out in Sec. III.

An important distinction should be emphasized between the classical and quantum cosmolo-
gies discussed in this paper. An origin of time comes into beingdynamicallyin classical gravity
due to the inevitable singularity, while no origin of time occurs naturally in quantum gravity,
except ifinducedby a choice of initial conditions. On the other hand, admitting the hypothesis that
a suitable initial condition exists, it is open to doubt whether it should be imposed on the wave
function itself or on some probability distribution derived thereof.

Our treatment differs from the one based upon consideration of conformal fluctuations about
a given geometry. Apart from lack of application of boundary conditions to ensure self-
adjointness, there is a physically more important difference. In Ref. 9 fluctuations are discussed
about aspecificFRW classical solution of Einstein’s equations, whereas the ADM approach
considers fluctuations that encompass all possible universes of the FRW kind. Although these
standpoints may be classically undistinguishable, they are not necessarily equivalent in the quan-
tum realm. This raises the question of what the relation between these approaches is and which, if
any, is appropriate from the physical point of view, a study we reserve for the future.

We have circumscribed our analysis to radiation as the cause of curvature, that is, to a matter
content consisting of a perfect fluid with polytropic indexg54

3. It can be shown32 that in the
conformal-time gauge the form of the classical equation of motion of all Friedmann models with
anyg fluid as a source can be reduced to that of a harmonic oscillator after a suitable change of
variables. This suggests the possibility of extending the previous quantum treatment to cosmo-
logical models whose matter content is a perfect fluid with an arbitrary polytropic index. This is
presently under investigation.
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In this paper we prove that the only spherically symmetric black hole solution to
the SU~2! Einstein–Yang/Mills equations that has zero temperature at the event
horizon is the extreme Reissner–Nordstro¨m solution. No assumptions are made on
the signs of the metric coefficients, save that the metric has Lorentz
signature. ©1996 American Institute of Physics.@S0022-2488~96!02803-2#

I. INTRODUCTION

Black holes having a degenerate horizon, that is, vanishing surface gravity,k50, are called
extremal. In view of Hawking’s celebrated formula~see Ref. 1!,

k52pt,

wheret is the temperature at the horizon, this implies that such black holes have zero horizon
temperature, and thus do not radiate;~however, see Refs. 2 and 3!. The quantum mechanical
stability of extremal black holes makes them very interesting objects, in various contexts. First,
they are natural candidates for the final states of the evaporation process. Second, the scattering of
quantum fields off extremal black holes can be described entirely within the semiclassical approxi-
mation, and this allows one to analyze the information loss in black hole evaporation without
confronting the problem of unknown Plank-scale physics.4 Finally, it was suggested in Ref. 5 that
extreme black holes resemble, in a certain sense, elementary particles—in fact, it was recently
shown in Ref. 6 that extremal black holes can be identified with elementary string excitations.

In Ref. 7 it was shown that the only black-hole solution of the static, spherically symmetric,
coupled Einstein–Yang/Mills~EYM! equations@with SU~2! gauge group#, which has zero surface
gravity, is the extreme Reissner–Nordstro¨m ~ERN! solution. More precisely, if the Einstein metric
is written in the form

ds252A~r !B~r !22 dt21A21~r !dr21r 2~du21sin2 u df2!, ~1.1!

and the SU~2! Yang/Mills field is ~cf. Refs. 7–10!

F5w8~r !t1 dr`r du1w8~r !t2dr`~sin u df!2„12w2~r !…t3 du`~sin u df!, ~1.2!

wheret1,t2,t3 form a basis for the Lie algebra su~2!, then if

lim
r↘ r̄

A~r !505 lim
r↘ r̄

A8~r !, A~r !>0, for r. r̄ , ~1.3!

the metric must be the ERN metric; namelyA(r )5[( r21)/r ] 2, B(r )[1,w(r )[0, and the Yang–
Mills curvature 2-form takes values in the Lie algebra u~1!. It was also proved in Ref. 7 that for
the metric~1.1!, the surface gravityk50 if and only if A8 vanishes at the black hole horizonr̄ .

In this paper we shall strengthen the above result, so as to also apply to the interior of a black
hole. Namely, we will prove that if (A,w) is a smooth solution of the EYM equations, defined for
r. r̄ , such thatA is positive for some larger , and if
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lim
r↘ r̄

A~r !505 lim
r↘ r̄

A8~r !, ~1.4!

then again the metric~1.1! is the ERN metric,w(r )[0, and the Yang/Mills curvature 2-form lies
in u~1!; cf. Theorem 3.1 The proof of this result ismuchmore difficult than the proof in Ref. 7,
becauseA(r ) is not assumed to be positive forr. r̄ .

Finally, we remark that it was proved in Ref. 10;~also see Ref. 11!, that if A( r̄ )50 and
A8( r̄ )Þ0, then the singularity in the metric atr5 r̄ can be transformed away by a ‘‘Kruskal-like’’
change of coordinates in which the YM field remains well behaved. Moreover, it was proved in
Ref. 12 that for the ERN solution, the metric singularity atr5 r̄ can also be transformed away. It
thus follows from our result here that forany SU~2! spherically symmetric EYM black hole
solution with event horizon atr5 r̄.0, the singularity in the metric atr5 r̄ can be transformed
away by a change of coordinates, whereby the YM field remains well behaved.

II. PRELIMINARIES

As discussed elsewhere,~cf. Refs. 8 and 9!, the static, spherically symmetric EYM equations,
with gauge group SU~2! can be written in the form

rA81~112w82!A512
u2

r 2
, ~2.1!

r 2Aw91F r ~12A!2
u2

r Gw81w~12w2!50, ~2.2!

B8

B
5
2w82

r
, ~2.3!

where

u~r !512w2~r !. ~2.4!

Since~2.1! and~2.2! do not involveB, we can use these to obtainA andw, and then use~2.3! to
find B. Herew(r ) is the connection coefficient that determines the Yang–Mills curvature 2-form;
see Refs. 8 and 9. If we write

F~A,w,r !5r ~12A!2
u2

r
, ~2.5!

then ~2.1! and ~2.2! can be written in the more compact form

rA812w82A5F/r , ~2.6!

r 2Aw91Fw81w~12w2!50. ~2.7!

If „A(r ),w(r )… is a specific solution of~2.1!,~2.2!, then we writeF(r )5F„A(r ),w(r ),r ….

III. THE THEOREM

In this section we shall prove the following theorem.
Theorem 1: Let „A(r ),w(r )… be a smooth solution of~2.1! and ~2.2!, satisfying

lim
r↘ r̄

A~r !505 lim
r↘ r̄

A8~r !, ~3.1!
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for somer̄>0, and assumeA(r 1).0 for somer 1.max~r̄ ,1!. Then (A,w) is the extreme Reissner–
Nordström ~ERN! solution; namely,

A~r !5S r21

r D 2, w~r ![0. ~3.2!

Remarks:
~1! If ~3.2! holds, then from~2.3! we haveB(r )[1.
~2! Theorem 1 was proved in Ref. 7 under the additional hypothesis thatA(r )>0 for r. r̄ . We

show here that the theorem is still true under the far weaker hypothesisA(r 1).0 for some
r 1.max~1,r̄ !.

Proof of Theorem 1:There are three cases to consider; namely, forr̄>0, the following occurs.
Case (i).There is a sequencer n↘ r̄ such that

~21!nA~r n!.0. ~3.3!

In this case we say thatA oscillates; cf. Fig. 1.
Case (ii). A(r ),0 for r. r̄ , r near r̄ ; cf. Fig. 2.
Case (iii). A(r ).0 for r. r̄ , r near r̄ .

As mentioned above, a proof of the Theorem in case~iii ! was given in Ref. 7, under the additional
hypothesis thatA(r )>0 for r. r̄ .

We shall prove that neither of the cases~i! or ~ii ! can occur, and that if case~iii ! occurs, the
solution is the ERN solution. The proof is further divided into two subcases; namely either the
solution (A,w) is ‘‘smooth up to the boundary;’’ i.e., (A,w)P(C13C2)[ r̄ , r̄1e) for somee.0, or
(A,w) is not smooth atr̄ . The following proposition is subsumed by Theorem 1. The simple proof
is given here in order to demonstrate that the difficulties occur when neitherA norw is assumed
to be smooth atr̄ .

Proposition 2:Suppose that (A,w)P(C13C2)[ r̄ , r̄1e) for somee.0. If ~3.1! holds, then
r̄51, and the solution is the ERN solution~3.2!.

Before giving the proof, we shall need a preliminary result.

FIG. 1. A oscillates.

FIG. 2. A,0 nearr̄ .
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Lemma 3:If (A,w) is a solution of the EYM equations defined in an open interval aboutr 0,
and if we havew2(r 0)<1, A8(r 0)50 andA(r 0),0, thenr 0,1.

Proof: If r 0>1, then from~2.1! we obtain the contradiction

0.„112w82~r 0!…A~r 0!512
u2~r 0!

r 0
2 >0.

j

Proof of Proposition 2:If r̄50, then~as in Ref. 10! expandingA andw in Taylor polynomials
gives

A~r !5A01A1r1O~r 2!,

w~r !5w01w1r1O~r 2!,

and we easily obtain from~2.1! and~2.2! thatA051. Thus,A~0!51 and this violates~3.1!. If r̄.0,
then from~2.6! we seeF( r̄ )50 so ~2.5! gives r̄ 25ū2, where

ū512w̄2, w̄5w̄~ r̄ !. ~3.4!

From ~2.7! we concludeūw̄50, so sincer̄.0, we obtainw̄50, and thusr̄51. Now A(r 1).0,
A~1!50, so minA(r ) in the interval @1,r 1# cannot be negative, in view of Lemma 3; hence
A(r )>0 on 1<r<r 1 . To invoke the results of Ref. 7, we must show thatA(r )>0 for all r.1. To
do this, suppose thatr 2 was the first zero ofA,r 2.r 1 . If w

2(r 2)<1, then from~2.1! we find
A8(r 2).0, so A(r ),0 for somer,r 2 , r near r 2, and this is impossible. Ifw2(r 2).1, then
w2(r 3).1, andA(r 3).0 for somer 3,r 2 , r 3 nearr 2. If (ww8)(r 3).0, it was shown in Ref. 10,
Proposition 2.2, thatw8 tends to infinity for somer.r 3 , thereby violating the smoothness as-
sumption. If (ww8)(r 3),0, it was shown in Ref. 10, Proposition 2.3, thatA( r̄ ).0, thereby
violating ~3.1!. If (ww8)(r 3)50, thenw8(r 3)50, so~2.2! implies the contradiction (uw)(r 3)50.
ThusA(r ).0 if r.r 1 , soA(r )>0 if r. r̄ ; hence the results of Ref. 7 apply to show (A,w) is the
ERN solution. j

Remark:One case in which Proposition 2 applies is the following; namely, suppose that
„A(r ),w(r )… is the solution of~2.6! and ~2.7!, defined forr. r̄ , whereA( r̄ )50, andA(r ).0 for
r. r̄ , r nearr̄ . Then by Ref. 10, Theorems 3.4 and 3.7, the solution can be extended to be smooth
at r̄ , if r̄.0, and if r̄50, A~0!51; hence Proposition 2 applies. Thus,in proving Theorem 1, we
may assume that either case (i) or case (ii), above, hold. That is, we may assume that either there
is a sequence rn↘ r̄ such that (3.3) holds, or else that A(r ),0 for r near r̄, r. r̄ .

In what follows, we shall assume only that

~A,w!P~C13C2!~ r̄ , r̄1e!,

for somee.0; this case is far more difficult.
Notes.~1! We do not assume thatA or w is smooth atr̄ , nor do we assume that our solution

is regular, as in Ref. 10.
~2! The proof given in this paper is considerably more difficult than that in Ref. 10 because

since we allowA to change signs forr nearr̄ , the curve„w(r ),w8(r )… cana priori be ‘‘all over’’
thew2w8 plane. That is, bothA andw can oscillate unboundedly andw8 can be unbounded. We
shall, in fact, show that none of the above can occur; this will require that we ‘‘systematically’’
rule out all such pathological behavior.

~3! In what follows, we assume that (A,w) is not the ERN solution, and we shall prove that
~3.1! leads to a contradiction.

Proof of Theorem 1:We begin with the following lemma.
Lemma 4:There does not exist a sequencer n↘ r̄ satisfyingw(r n)

251.
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Proof: Suppose that the contrary holds. Then, by passing to a subsequence if necessary, we
may assume, without loss of generality, thatw(r n)51, andw8(r n)>0, for n51,2,... . We claim
that for eachn, A(r n)<0. To see this, suppose thatA(r n).0. Then, ifw8(r n)50, it follows by
uniqueness thatw(r )[1 andA(r )511c/r for some constantc. This violates~1.2!. Thus, we may
assume thatw8(r n).0. It follows that the orbit enters the regionw.1, w8.0, for r.r n , r near
r n , with A(r ).0. From Ref. 10, Proposition 2.2, it follows thatw8 tends to infinity for somer. r̄ ,
so the solution cannot be smooth. This contradiction proves our claim; i.e.A(r n).0. Now, since
u(r n)50, ~2.1! gives

r nA8~r n!1A~r n!522~Aw82!~r n!11,

and sinceA(r n)<0, we have

r nA8~r n!1A~r n!>1.

But this cannot hold for largen, in view of ~3.1!. j

Corollary 5: There is anr̃. r̄ such thatw2(r )Þ1 if r̄,r, r̃ .
In view of this corollary, we may assume that precisely one of the following holds:

w~r !.1, if r̄,r, r̃ , ~3.5!

w~r !,21, if r̄,r, r̃ , ~3.6!

or

21,w~r !,1, if r̄,r, r̃ . ~3.7!

In order to consider these cases, we shall need some preliminary results. We begin by noting
that from ~2.1!, we have

rA81A12Aw82512
u2

r 2
<1. ~3.8!

Also, given anyd.0, ~3.1! shows that forr near r̄ , rA8(r )1A(r ).2d, and so from~3.8!,

2Aw82<11d. ~3.9!

Thus we have the following.
Lemma 6:There is ane.0 such that

A~r !w82~r !<1, if r̄,r, r̄1e. ~3.10!

ThusAw82 is bounded from above ifr is nearr̄ . Our first goal is the show thatAw82 is bounded
~Proposition 10!; as a first step in this direction we have the following.

Lemma 7:Let r̄.0, and assume thatw(r ) is bounded forr near r̄ . Then (Aw82)(r ) is
bounded forr near r̄ .

Proof: Assume that the result is false. In view of~3.10!, we may assume that there is a
sequencer n↘ r̄ such that (Aw82)(r n)→2`. But from ~2.1!, we see that ifr̄.0 andw is bounded,
it follows thatAw82 is bounded in view of~3.1!. j

Lemma 8:Let r̄>0, and assume that there is ane.0 such that ifr is close tor̄ ,

~Aw82!~r !<2 1
22e. ~3.11!
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ThenAw82 has a negative limit atr̄ ~which may equal2`!, A(r ) is negative forr near r̄ , and
w82(r )→` as r↘ r̄ .

Proof: Let

f5Aw82; ~3.12!

then ~cf. Refs. 9 and 10! f satisfies the equation

r f 81S 2 f1 F

r Dw8212
u

r
ww850. ~3.13!

SinceA(r )→0, asr↘ r̄ , we seew82(r )→`. Also, for r near r̄ ,

2 f1
F

r
52 f112A2

u2

r 2
<22e2A2

u2

r 2
,2e2

u2

r 2
<2e. ~3.14!

We shall now show that

f 8~r !.0, if r is near r̄ . ~3.15!

To do this, we only consider thoser for which r̄,r, r̃ @c.f. ~3.5!–~3.7!#.
Suppose first that for all suchr , the sequence$w2(r )% is bounded. Then from~3.14!, we have,

at suchr ,

S 2 f1 F

r Dw8212
u

r
ww8,2ew822

u2

r 2
w821

2u

r
ww8. ~3.16!

If ( u/r )w8→0, asr↘ r̄ , then ~3.14! shows that (2f1F/r )w821(2u/r )ww8,0, so from~3.13!
we conclude that~3.15! holds. On the other hand, iflimr↘ r̄ u(u/r )w8u . 0, then as$w(r )% is
bounded anduw8(r )u→`, we see from~3.16! that ~3.15! holds. Thus,~3.15! holds if $w2(r )% is
bounded nearr̄ .

Suppose now thatw2(r n)→` for some sequencer n↘ r̄ ; we shall show that for largen, ~3.15!
holds. Thus, ifw2(r n)→`, we have, atr5r n ,

2
u2

r n
2 w8212

u

r n
ww85

2u

r n
2 @uw8222ww8r n#

5
2u

r n
2 @~12w2!w8222ww8r n#

,
2u

r n
2 F2

w2

2
w8222ww8r nG , ~3.17!

if n is large. Letxn5w(r n)w8(r n); thenxn
2→`, and if h(xn)52xn

2/222xnr n , then if xn→1`,
h(xn)5(xn/2)(2xn14r n)→2` @sinceu(r n)→2`#, while if xnk→ 2 ` for some subsequence

$nk%, thenh(xnk) 5 ( 2 xnk/2)(xnk 2 4r nk)→2 `. Thus,~3.17!and~3.16! show that~3.15!holds, at
xnk, so that~3.15! is valid. Thus limr↘ r̄ f (r ) exists and is<2 1

2, soA(r ) is negative forr nearr̄ ,
andw82(r )→` as r↘ r̄ . This completes the proof of Lemma 8. j

Lemma 9: Let r̄50; then (Aw82)(r ) is bounded forr near 0.
Proof: SupposeAw82 is not bounded nearr50. Then, in view of Lemma 6,Aw82 is not

bounded from below, so we can find a sequencer n↘0 such that (Aw82)(r n)<21
22e, for some

1466 J. A. Smoller and A. G. Wasserman : Uniqueness of zero surface gravity SU(2) Einstein

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



e.0. By the last lemma,Aw82 has a negative limit atr50, and asAw82 is unbounded nearr50,
we see that (Aw82)(r )→2` as r↘0. Thus, from the last lemma, we have

A~r !,0, for r near 0, ~3.18!

w8~r ! is of one sign for r near 0, ~3.19!

lim
r↘0

w82~r !5`. ~3.20!

Next, from~2.1! limr↘0@u
2/r 2 1 2(Aw82)(r )# 5 1, and asAw82→2`, we see

lim
r↘0

u2~r !

r 2
5`. ~3.21!

Thus r 2/u2→0 asr↘0, so

lim
r↘0

2~Aw82!~r !

u2/r 2
521. ~3.22!

Since~3.21! holds, we have

2
F

r
5211A1

u2

r 2
.
u2

2r 2
for r near 0. ~3.23!

Now, in view of ~3.19! and~3.20!, either limr↘0 w8(r ) 5 1` or limr↘0 w8(r ) 5 2`. Then,
in either case limr↘0 w(r ) exists. Suppose first that limr↘0 w8(r ) 5 ` @the case where
w8(r )→2` will be discussed below#. We considerr in the range 05r̄,r, r̃ ; cf. ~3.5!–~3.7!.
Then there are three possibilities:w(r ) is bounded, limr↘0 w(r ) 5 2`, or limr↘0 w(r )
5 1`. Note first that sincew8(r )→`, if w(r )→1`, thenw is bounded near 0; cf. Fig. 3. Thus

FIG. 3. w is bounded nearr50.
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we shall suppose that

lim
r↘0

w8~r !5`, ~3.24!

and either

lim
r↘0

w~r !52`, ~3.25!

or

w~r ! is bounded nearr50; ~3.26!

we shall obtain a contradiction in both cases.
Now for r near 0, we have, from~2.7! and ~3.23!,

rAw95
2F

r
w82

u

r
w.

u2

2r 2
w82

u

r
w>

1

4

u2

r 2
w8, ~3.27!

because~3.25! or ~3.26! holds. That is, if~3.26! holds, then~3.21! implies

u2

4r 2
w82

u

r
w5

u

4r Fur w824wG.0, if r is near 0,

while if ~3.25! holds, then sincew5o(u),

u2

4r 2
w82

u

r
w5

u

4r F ~12w2!

r
w824wG.0.

Thus, forr near 0,~3.27! and ~3.22! give, for r near 0,

2w9>
1

4

u2

~2Ar2!
w85

1

4

u2

r 2 S 1

2Aw82D w83

r
>
c2

r
w83,

wherec is a positive constant. Now let 0,t,s, wheres is near 0. Then, from~3.28! we obtain

1

2 F 1

w82~ t !
2

1

w82~s!G52
1

2

1

w82~r !
U
t

s

5E
t

s w9

w82
dr>c2E

t

s dr

r
5c2 ln

s

t
,

so that

1

2 F 1

w82~ t !
2

1

w82~s!G>c2 ln
s

t
. ~3.28!

Now let t→0; then the left side of~3.28! is bounded@because of~3.20!#, but the right side tends
to `. This contradiction shows that the lemma holds if~3.24!, and either~3.25! or ~3.26! holds.

Now suppose that

lim
r↘0

w8~r !52`, ~3.29!

and either
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lim
r↘0

w~r !5`, ~3.30!

or ~3.25! holds; we shall indicate how to obtain a contradiction.@It is easy to see that if~3.29!
holds then limr↘ r̄w(r )Þ2`.] In this case we obtain, from~2.7!, ~3.23!, and~3.29!,

rAw9<
u2

2r 2
w82

u

r
w<

u2

4r 2
w8,

if r is near 0, so that, using~3.22!,

2w9<
1

4

u2

~2Ar3!
w85

1

4 F u2/r 2

2Aw82G w83

r
<c2

w83

r
,

sow9>(2c2/r )w83, and thus (2w9/w83)>c2/r . If we again integrate fromt to s, we get

1

2

1

w82~r !
U
t

s

>c2 lim
s

t
,

and lettingt→0 gives a contradiction, as before. This completes the proof of Lemma 9.j
We next have the following.
Proposition 10:(Aw82)(r ) is bounded ifr is nearr̄ .
Proof: From Lemma 9, we may assume thatr̄.0. Now chooser such thatr̄,r, r̃ , wherer̃

is defined in Corollary 5. Thus, as we have shown above,~3.5!–~3.7! are valid. Now ifw(r ) is
bounded, then Lemma 7 implies thatAw82 is bounded nearr̄ . Thus, we may assume thatw is
unbounded nearr̄ , so that forr̄,r, r̃ , eitherw(r ).1 orw(r ),21. Since the proofs are similar
in both cases, we shall restrict attention to the casew(r ).1 for r̄,r, r̃ .

Thus, assume thatw is unbounded nearr̄ , andw(r ).1 for r̄,r, r̃ . Now suppose thatAw82

is not bounded forr near r̄ . Then, as in the proof of Lemma 9, limr↘ r̄ (Aw82)(r ) 5 2`, and
~3.18!–~3.20! are valid. Thus, from~3.19!, we conclude that limr↘ r̄ w(r ) exists; hence

lim
r↘ r̄

w~r !51`. ~3.31!

Also, the orbit cannot stay in the regionw8.0 for r nearr̄ , for otherwise it would follow thatw
is bounded nearr̄ ; cf. Fig. 3. Thus the orbit enters the regionw8,0, and in view of~3.19!, we may
assume thatw8(r ),0 if r is nearr̄ ; cf. Fig. 4. In view of~3.19! we have

lim
r↘ r̄

w8~r !52`. ~3.32!

From ~2.7! we can write

Aw9w821
F

r 2
w831

uw

r 2
w8250. ~3.33!

Now, from ~2.1!,

rA81A12Aw82512
u2

r 2
,

so that forr near r̄ , sincer̄.0,

~Aw82! is well approximated by2c1
2w4, ~3.34!
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for some constantc1
2Þ0. Also,

F

r 2
w831

uw

r 2
w825

1

r
w832

A

r
w832

u2

r 3
w831

uw

r 2
w82,

and asr̄.0, we see that forr near r̄ ,

S F

r 2
w831

uw

r 2
w82D is well approximated by2c2

2w4w83, ~3.35!

for some constantc2
2Þ0. Thus, forr near r̄ , solutions of~3.33! are well approximated by the

equation

2c1
2w4w92c2

2w4w8350, ~3.36!

or, writing c25(c2/c1)
2, ~3.36! becomes

w91c2w8350, ~3.37!

wherec is a nonzero constant. Now the solution of~3.37! satisfying~3.32! is

w8~r !52
1

A2c2
1

Ar2 r̄
, r. r̄ ,

which implies thatw(r ) is bounded nearr̄ , contrary to~3.31!. This contradiction completes the
proof of Proposition 10. j

FIG. 4. w8,0 for r near 0.
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Proposition 10 yields a few useful corollaries. First, if we definev(r ) by ~cf. Ref. 8!

v~r !5~Aw8!~r !, ~3.38!

thenv satisfies the equation

v81
2w82

r
v 1

uw

r 2
50. ~3.39!

Corollary 11:limr↘ r̄ v(r ) 5 0.
Proof: v2(r )5A(r )„Aw82(r )…→0 asr↘ r̄ . j

Corollary 12: w(r ) is bounded forr near r̄ , and if r̄50, then limw2(r )51.
Proof: Consider Eq.~2.1!: the left side is bounded nearr̄ so thatu2/r 2 is also bounded near

r̄ . If r̄.0 thenu2 is bounded, sow is bounded nearr̄ , while if r̄50, thenw2(r )→1 asr↘ r̄ . j

We shall now consider the case wherew8 is bounded nearr̄ .
Proposition 13:Assume that there is anM.0 such thatuw8(r )u<M for r near r̄ , then

Theorem 1 holds.
To prove this proposition, we shall need a lemma.
Lemma 14:If w8 is bounded nearr̄ , then

A is of one sign nearr̄ , ~3.40!

w8 is of one sign nearr̄ , ~3.41!

and

lim
r↘ r̄

u2

r 2
51. ~3.42!

Proof: First note thatw8 bounded nearr̄ implies thatw is uniformly continuous nearr̄ , so that
limr↘ r̄ w(r ) 5 w̄ exists. Next, sincew8 is bounded nearr̄ , ~2.1! shows that limr↘ r̄ (u

2/r 2) 5 1, so
~3.42! holds and

u

r
→61, as r↘ r̄ . ~3.43!

Now writing ~3.39! in the form

r 2v812w82vr1uw50, ~3.44!

we see that ifw̄Þ0, limr↘ r̄ rv8(r ) 5 6w̄ Þ , sov8 is of one sign nearr̄ , and using Corollary 11,
v is of one sign nearr̄ , so ~3.40! and~3.41! hold. On the other hand, ifw̄50, ~3.42! implies that
r̄51, so from~3.39!, we havev8~1!50 andv9~1!Þ0. Thusv is again of one sign nearr̄ so ~3.40!
and ~3.41! hold. j

We can now give the following.
Proof of Proposition 13:The last-lemma implies thatA is of one sign nearr̄ . If A.0 nearr̄ ,

then the result in Ref. 7~cf. the remark after the proof of Proposition 2!, shows that (A,w) is the
ERN solution. Thus we may assume that

A~r !,0, if r is near r̄ , ~3.45!

and we shall show that this leads to a contradiction.
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First, suppose thatw̄50. Then from~3.42!, we see thatr̄51, and as in the proof of Proposi-
tion 2, the solution must be the ERN solution. Thus, we may assume that

w̄Þ0. ~3.46!

Let r̄,r 2,r 3 wherer 3 is nearr̄ . We consider two cases:

ūw̄Þ0 ~3.47!

or

ūw̄50. ~3.48!

Using ~2.7!,

E
r2

r3
r 2Aw9 dr1E

r2

r3

Fw8 dr1E
r2

r3
uw dr50. ~3.49!

Suppose first that~3.47! holds. Then

E
r2

r3
r 2Aw9 dr5r 2Aw8U

r2

r3

2E
r2

r3
~r 2A!8w8 dr,

and lettingr 2↘ r̄ gives, for some intermediate pointj,

E
r̄

r3
r 2Aw95r 3

2A~r 3!w8~r 3!2@j2A8~j!12jA~j!#w8~j!~r 32 r̄ !,

so that

E
r2

r3
r 2Aw9 dr5o~r 32 r̄ !. ~3.50!

Similarly, sinceF(r )5r2rA2u2/r→0 asr↘ r̄ @in view of ~3.42!#, we have, for some interme-
diate pointh,

lim
r2↘ r̄

E
r2

r3
Fw8 dr5E

r̄

r3
Fw8 dr5~Fw8!~h!~r 32 r̄ !5o~r 32 r̄ !. ~3.51!

Finally, we have, for some intermediate pointz,

lim
r2↘ r̄

E
r2

r3
uw dr5E

r̄

r3
uw dr5~uw!~h!~r 32 r̄ !5O~r 32 r̄ !, ~3.52!

where the constant is nonzero, in view of~3.47!. Taking the limit r 2↘ r̄ in ~3.49!, and using
~3.50!–~3.51! gives the contradiction

o~r 32 r̄ !5O~r 32 r̄ !.

Now suppose that~3.48! holds. In view of~3.46!, this meansū50 so ~3.42! implies r̄50.
Thus,w̄561, and, for definiteness, suppose thatw̄51 ~the proof forw̄521 is similar, and will be
omitted!. As above,~3.49! gives
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E
0

r3
r 2Aw9 dr5r 3

2A~r 3!w8~r 3!2E
0

r3
„r 2A8~r !12rA~r !…w8~r !dr.

But

r 3
2A8~r 3!w8~r 3!5o~r 3

3!

@sinceA(r 3)5o(r 3)#, and for some intermediate pointj,

E
0

r3
„r 2A812rA~r !…w8~r !dr5„j2A8~j!12jA~j!…„w~r 3!2w~0!…5o~r 3

3!;

thus

E
0

r3
r 2Aw9dr5o~r 3

3!. ~3.53!

Similarly, for some intermediate pointh,

E
0

r3
Fw8 dr5~Fw8!~h!r 35o~r 3

3!, ~3.54!

because

F~r !5r S 12
u2

r 2
2AD5r ~rA812Aw82!5o~r 3

2!.

However, for some intermediate pointz, we have

E
0

r3
uw dr5E

0

r3 u

r
wr dr5

u~z!

z
w~z!

r 3
2

2
5O~r 3

2!,

and this gives a contradiction, in view of~3.53! and~3.54!. This completes the proof of Proposi-
tion 13. j

In view of this last result,we may assume in what follows that

w8~r ! is unbounded forr near r̄ . ~3.55!

Our strategy for completing the proof of Theorem 1 is to first show that Theorem 1 holds,
provided that bothA(r ) andw8(r ) are of one sign~not necessarily the same!, for r near r̄ , and
then to prove that this assumption is always valid.

Proposition 15:Assume thatw8(r ) andA(r ) each are of one sign forr nearr̄ ; then Theorem
1 holds.

Proof: As we have remarked earlier, we may assume that~3.45! holds, and also in view of
Proposition 13, we may also assume that~3.55! holds. We shall show that our assumptions lead to
a contradiction.

First recall that sinceAw82 is bounded nearr̄ , it follows from Corollary 12 that forr nearr̄ ,
w is bounded, and ifr̄50, then w2(r )→1. Furthermore, asw8 is of one sign nearr̄ , w̄
5 limr↘ r̄ w(r ) exists and is finite. We assume for definiteness that

w8~r !.0, for r near r̄ ; ~3.56!

if w8,0 nearr̄ , the proof is similar.
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The proof is now divided into two cases:r̄50 and r̄.0.
Case 1. r̄50. Since limr↘0 w

2(r ) 5 1, ~3.56! implies that forr near 0, either~a! 21,w(r )
,0, or ~b! 1,w(r ),11e, for some smalle.0; cf. Fig. 5. Now from Corollary 11,v~0!50, and
from ~3.19!, v8(r ).0, for r near 0, andv8~0!>0. This implies thatv(r ).0 for r near 0, and this
is impossible becauseA,0 andw8.0.

Case 2. r̄.0. Sincew has a finite limit atr̄ , it follows from ~2.1! that limr↘0(Aw82)(r )
5 2L, whereL>0. If L.0, thenw82→` as r↘ r̄ , and ~3.56!, together with~3.39! shows that
v8( r̄ ).0, for r nearr̄ , which is impossible, as we have just seen. Thus we may assume thatL50.

If 21<w̄<0, or w̄>1, then~3.19! and~3.39! show thatv8(r ).0 for r nearr̄ so that ife.0
is small, we have, for some intermediate pointj,

v~ r̄1e!5v~ r̄1e!2v~ r̄ !5ev8~j!.0,

and this is a contradiction. Thus, we can assume thatw̄,21, or 0,w̄,1. Now asL50, ~2.6!
implies thatF( r̄ )50, soū5 r̄ . Also, from Refs. 8 and 9,

F8~ r̄ !5
2u2

r̄ 2
12Aw821

4uww8

r̄
,

so thatF8( r̄ ).0. ThusF~r !.0 for r. r̄ , r nearr̄ , so~2.6! implies thatA8(r ).0 for r nearr̄ , and
hence asA( r̄ )50, we get the contradictionA(r ).0 for r near r̄ . This completes the proof of
Proposition 15. j

Now in view of Corollary 5, we may assume that forr nearr̄ , one of the following must hold:

FIG. 5. w8.0, w2 near 1, forr near r̄.
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~I!
~II !
~III !

w2~r !,1,
w~r !.1,
w~r !,21.

Our objective is to show that in each of these cases, bothA(r ) andw8(r ) have fixed signs forr
near r̄ . Then Proposition 15 will complete the proof of Theorem 1. We begin with the most
difficult case; namely the following.

Case I: w2(r ),1 for r near r̄ .
In order to carry out our program in this case, we shall first rule out ‘‘infinite rotation’’ of the

orbit „w(r ),w8(r )… about the origin. There are two cases to consider; namely

lim
r↘ r̄

w~r !50, andw8 is not of one sign nearr̄ , ~3.57!

or

21< lim
r↘r

w~r !<0< lim
r↘ r̄

w~r !<1 ~3.58!

and

lim
r↘r

w~r !, lim
r↘ r̄

w~r !;

cf. Figs. 6 and 7.
Proposition 16:It is impossible for~3.57! to hold.
Proof: DefineQ8(r )52w82/r , Q(r 1)50. Then,Q(r ),0 if r̄<r,r 1 and~2.1! can be written

as

~reQ A!85S 12
u2

r 2 DeQ. ~3.59!

Also, ureQ(r )A(r )u<urA(r )u, so that

reQ~r !A~r !→0, as r↘ r̄ . ~3.60!

Now if r̄21/r̄>0, then~3.57! and~3.59! imply that for r nearr̄ , (reQA)8>0, so that for suchr ,

reQ~r !A~r !5reQ~r !A~r !2 r̄ eQ~ r̄ !A~ r̄ !5„jeQ~j!A~j!…8.0,

for some intermediate pointj. It follows thatA(r ).0 for r near r̄ , and this is contrary to our
assumptions; cf. the remark after the proof of Proposition 2.

If r̄21/r,0, then a similar argument shows thatA(r ),0 for r near r̄ . Thus from~2.7!, if
w8(r )50, thenw9(r ).0, for 0,w(r ),1, andw9(r ),0, if 21,w(r ),0; cf. Fig. 8. Thus,w8(r )
is of one sign forr near r̄ , contrary to our assumption~3.57!. This completes the proof of
Proposition 16. j

We now turn to the remaining case; namely~3.58!. To handle, this case, we first note that

r̄.0, ~3.61!

if ~3.58! holds. Indeed,~3.58! implies that we can find a sequencer n↘ r̄ such thatw(r n)50. Then
~2.1! gives
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r nA8~r n!1„112w82~r n!…A~r n!512
1

r n
2 ,

and since the left side is bounded~Proposition 10!, it follows that$1/r n
2% is also bounded, and this

proves~3.61!.
Proposition 17:It is impossible for~3.58! to hold.
Proof: If ~3.58! holds, then we can find ane,

0,e, 1
4 ,

such that eitherlimr↘ r̄ w(r ) . 2e, or limr↘ r̄ w(r ) , 22e. Without loss of generality, let us as-
sume that the former inequality holds; cf. Fig. 9.

Thus there exist sequences of points$an% and$bn%, such that

bn.an.bn11. r̄ , bn→ r̄ , ~3.62!

w~an!50, w~bn!52e, ~3.63!

and if an,r,bn , then

w~an!,w~r !,w~bn!, ~3.64!

FIG. 6. The case where~3.57! holds.
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and finally,

w8~r !.0; ~3.65!

see Fig. 9. We note that the intervals [an ,bn] are all disjoint from each other.
Lemma 18:There existd.0,h.0, and an integerN.0, and sequences$cn%, $dn%, defined for

n>N,

an<cn,dn<bn , ~3.65!

such that ifr satisfiescn<r<dn , then

A~r ! is of one sign, ~3.66!

uf~r !u>h, ~3.67!

w~dn!2w~cn!>d. ~3.68!

Before giving the proof, we shall need a few lemmas. We begin with the following easy result.
Lemma 19:SupposeF„A(r ),w(r ),r …[F(r )Þ0 on I5[a,b], wherea.0. ThenA can have at

most one zero onI .

FIG. 7. The case where~3.58! holds.
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Proof: From ~2.6!, if A(r )50 for somerPI , we seerA8(r )5F(r )/rÞ0. ThusA8 is of one
sign, and this implies thatA can have at most one zero onI . j

Lemma 20:SupposeF„A(r ),w(r ),r …[F~r !Þ0 on the intervalI5@a,b#, wherea.0, and that
w(a)50, w(b)52e.0. Then there exist numbersc,d, a<c,d<b such thatw(d)2w(c)>e/2,
andA has one sign on [c,d].

Proof:We break the proof up into two cases; namely,A(a)A(b)Þ0 andA(a)A(b)50.
Case 1. A(a)A(b)Þ0.
If sgnA(a)5sgnA(b), then setc5a, d5b, and the result holds in view of Lemma 19. If

sgnA(a)ÞsgnA(b), choosez such thatw(z)5e, a,z,b. If A(z)Þ0, then in view of Lemma
19, one of the following must hold; namely, eitherA(a)A(z).0 orA(z)A(b).0. In the first case,
choosec5a, d5z, and in the second case, choosec5z, d5b. If A(z)50, choosez8PI with
w(z8)53e/2. ThenA(z8)Þ0, and we proceed as before to reach the desired conclusion; this
completes the proof in case 1.

Case 2. A(a)A(b)50.
In view of Lemma 19, we cannot have bothA(a)50 andA(b)50. Thus supposeA(a)50,

A(b)Þ0; ~the proof in the other case is similar!. Now choosezPI , z neara, such thatA(z)Þ0,

FIG. 8. w8 is of one sign nearr̄ .
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and apply the result in Case 1 to the situation wherea is replaced byz. This proves Lemma 20.j

Proof of Lemma 18:We break the proof up into three cases:r̄.1, r̄,1, r̄51.
Suppose first thatr̄.1. Then set

r̄2
1

r̄
52h,

whereh.0. Since limr↘ r̄ A(r ) 5 0, then ifr. r̄ ,

F~A,w,r !5r2rA2
u2

r
.r2rA2

1

r
. r̄2

1

r
2rA.

Thus there exists as, 0,s,e such that if 0,r2 r̄,s, then

F~A,w,r !.h. ~3.69!

Now we only consider thosen for whichbn, r̄1s; @cf. ~3.62!#. Then withI n5[an ,bn], we apply
Lemma 20 to conclude that~3.65!–~3.68! hold, with d5e/2.

Suppose now thatr̄,1. Then set

r̄2
1

r̄
522h,

whereh.0. Since

F~A,w,r !5r2
u2

r
2rA,

and rA(r )→0 as r↘ r̄ , andu(r )512w2(r ), we see that we can find as.0 such that if 0,r
2 r̄,s, and 0,w,s,

FIG. 9. limr↘ r̄w(r ).2e.
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F~A,w,r !,2h. ~3.70!

Again, we only consider thosen for which bn, r̄1s. Now as 0<w(r )<2e if an<r<bn , we
choosebn8 such thatw(bn8) 5 min(s,2e). ThenF(r ),2h on the interval@an ,bn8#. Another appli-
cation of Lemma 20 shows that we can achieve~3.65!–~3.68!.

Finally, consider the caser̄51. Considerw satisfyinge<w<2e. Then for thesew,

12
u2

r
>12~12e2!2[2h.0,

sincee,1/4. Thus, ifr is sufficiently close to 1, say 0,r21,s, thenF(A,w,r ).h. Takingn so
large thatbn, r̄1s, and definingcn by w(cn)5e, and settingdn5bn , we see that Lemma 20
again applies, and we can achieve~3.65!–~3.68!. This completes the proof of Lemma 18. j

We now can give the following proof.
Proof of Proposition 17:From Lemma 18, we see that we have infinitely many intervals,

Jn5[cn ,dn],[an ,bn], where~3.66!–~3.68! hold onJn . We now consider two cases.
Case a.For infinitely many intervalsJn ,

~AF!~r !.0, if rPJn . ~3.71!

Case b.For all but a finite number of intervalsJn ,

~AF!~r !,0 if rPJn . ~3.72!

The proof is somewhat involved, so before giving the details, we shall discuss the strategy.
The basic idea is to show that there is az.0 such that

dn2cn>z; ~3.73!

then sincer̄,an<cn,dn<bn andbn→ r̄ , ~3.73! would give the desired contradiction. Now, in
order to carry out this program, we need the following fundamental lemma.

Lemma 21.Let 0, r̄,a,b,2r̄ , and assume that (A,w) is a solution of~2.1!, ~2.2! on
J15@a,b# or J25@2b,2a#. Assume too that on this interval,w2(r ),1,

0,u~Aw82!~ r̄ !u,L ~3.74!

and

uF~r !u>h, ~3.75!

for some positive constantsL andh. Then

ub2au>z.0, ~3.76!

wherez is a constant depending only onr̄ , L, h, and

D[uw~b!2w~a!u. ~3.77!

Proof: Assume first that we are onJ1 , and that onJ1 both

w8.0 ~3.78!

and

AF.0. ~3.79!
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Define the constantm by

m5maxS 1h ,
16r̄ 2L

hD D . ~3.80!

We claim that

if rPJ1 and w8~r !>m, then w9~r !,0. ~3.81!

To see this, we have from~2.7!,

r 2Aw91Fw81uw50,

and asuFw8u.1 and uuwu,1/2 on J1 , it follows that sgn(Fw81uw)5sgnFw85sgnF; thus
sgnw95sgn~2AF!,0, and this proves~3.85!. It follows from this that

if r̃PJ1 and w8~ r̃ !<m, then w8~r !,m for r. r̃ , rPJ1 . ~3.82!

Now definej by

w~j!5
w~a!1w~b!

2
.

Then if for somer̃PJ1 , r̃<j, we havew8( r̃ )<m, thenw8(r )<m for all r> r̃ . In this case, we
would have, for some intermediate pointu,

ub2au>ub2 r̃ u5
uw~b!2w)~ r̃ !u

uw8~u!u
>

D/2

m
5z,

and this would prove the result. Thus,we may assume that

w8~r !>m, for all rPJ1 , r<j. ~3.83!

We will show that this leads to a contradiction.
We first claim that

w9

w82
,

2Fw8

2r 2Aw82
, if rPJ1 . ~3.84!

Indeed,~2.7! gives

2w9

w82
5

Fw81uw

r 2Aw82
.

Fw8

2r 2Aw82
, ~3.85!

becauseuFw8u.1, and uuwu,1
2 imply that sgn(Fw81uw)5sgn~Fw8!. Thus using ~3.78!,

sgn@(Fw81uw)/r 2Aw82#5sgn[Fw8/A]5sgnw8.0, and this gives~3.84!.
Next, we show

2Fw8

2r 2Aw82
<2c2w8~r !, if rPJ1 , r<j, ~3.86!

where
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c25
h

8r̄ 2L
. ~3.87!

To see this we have, forrPJ1 , r<j,

Fw8

2r 2Aw82
5U Fw8

2r 2Aw82
U> hw8

2r 2L
>

hw8

8r̄ 2L
, ~3.88!

sincer<j,b<2r̄ , and this gives~3.86!.
Now if rPJ1 , r<j, ~3.84! and ~3.88! give

w9

w82
<2c2w8.

Integrating this froma to j gives

2
1

w8~j!
,

1

w8~a!
2

1

w8~j!
<2c2„w~j!2w~a!…52

c2D

2
,

so thatw8(j),2/c2D516r̄ 2L/hD<m, and this contradicts~3.83!. Thus the lemma is proved if
we are onJ1 , and both~3.78! and ~3.79! hold.

Now suppose that we are onJ2 , and both~3.78!, and~3.79! hold. It is clear that in this case
the same proof works; we merely substitute2b for a and2a for b.

Next, consider the case wherew8,0, ~on J1 or J2!, and~3.79! holds. Note that if (A,w) is a
solution of~2.1!, ~2.2!, then so is (A,2w). Also, if (A,w) satisfies the hypotheses of the lemma,
so does (A,2w); this shows that the casew8,0 is reduced to the casew8.0.

Finally, suppose thatAf,0, onJ ~whereJ5J1 or J2!. We extend the functionsA andw to
2J by defining

„A~2r !,w~2r !…5„A~r !,w~r !…, rPJ.

SinceF(2r )52F(r ), we see thatAF.0 on2J. Thus, applying what we have already proved
to2J gives that (2A,2w) satisfies the conclusions of the lemma, and hence so does (A,w). This
completes the proof of Lemma 21. j

We now return to the proof of Proposition 17. For this, we shall use Lemmas 18 and 21. Thus,
choosen so large thatbn,2r̄ ; cf. ~3.62!. Now we apply Lemma 21 to the intervalsJn5[cn ,dn];
the hypotheses of Lemma 21 are valid because of Proposition 10, and~3.65!–~3.67!, of Lemma
18. We conclude that for largen, dn2cn>z, where z is independent ofn. Thus for largen,
bn2an>z, and this contradicts~3.62!. The proof of Proposition 17 is complete. j

We now return to the proof of Theorem 1. For this, recall that from Corollary 5, we have that
for r nearr̄ , one of the following must hold: eitherw2(r ),1, orw(r ).1, orw(r ),21. In view
of Propositions 16 and 17, the orbit„w(r ),w8(r )… cannot have infinite rotation about~0,0!; thus
for r nearr , we may assume that the orbit does not crossw50. We shall show that in all of the
above cases bothA andw8 are each of fixed sign forr near r̄ , and then Proposition 15 will
complete the proof of Theorem 1.

To carry out this program, we first note that forr near r̄ , we cannot have both
A(r )505w8(r ). Indeed, forr near r̄ , our above remarks imply that (uw)(r )Þ0, so that~2.2!
implies that not bothA(r ) andw8(r ) can be zero. Similarly, not bothA(r ) andA8(r ) can be zero
for somer. r̄ , since if this were so,~2.6! impliesF(r )50 so ~2.7! would give the contradiction
(uw)(r )50.
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Now let us denote the regionw,21 by a5a1øa2 ~cf. Fig. 10!; the region21,w,0 by
b5b1øb2 ; the region 0,w,1 by c1øc2 ; and the region 1,w by d1ød2 . For r nearr̄ , we
may assume that the orbit lies in precisely one of the regionsa, b, c, or d.

Lemma 22: If v(s)50, for s near r̄ , then (uwv8)(s),0.
Proof: If s is nearr̄ , then (uw)(s)Þ0, by our above remarks. Thus from~3.39!,

~uwv8!~s!52
u2~s!w2~s!

s2
,0,

and this proves the lemma. j

We can now complete the proof of Theorem 1. Namely, ifr is near r̄ , then we have
(uw)(r )Þ0. Thus the last lemma shows thatv changes sign at every zero. Sincev can have at
most one sign change in each of the regionsa, b, c, or d, A, andw8 can have at most one sign
change between them. Thus forr nearr̄ , A andw8 each are of fixed sign. As we have noted above,
Proposition 15 completes the proof of Theorem 1. j
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A conformal gauge theory of~211!-dimensional gravity is developed within a
fiber-bundle structure. Here gravitational field variables are triads and Lorentz
gauge potentials, both introduced under a nonlinear realization, which leads to a
spontaneous break of symmetry. The most general gravitational Lagrangian density
is given in a quadratic form of the conformal invariant gauge fields. We also obtain
the Poincare´ gauge theory in vacuum. In a weak-field limit the gravitational field
equations for a static and spinless point-like source, are naturally reduced to the
Newtonian case. ©1996 American Institute of Physics.@S0022-2488~96!01502-6#

I. INTRODUCTION

Models with lower-dimensional gravity have demonstrated considerable attention recently,
with the purpose to study gravity as a field theory. We remind that Einstein’s theory of general
relativity ~GR! has no Newtonian limit and no dynamical degrees of freedom in~211!
dimensions,1–3 but it has nontrivial global structures. At the classical level analogies between
Yang–Mills ~YM ! gauge theory and GR have long been studied, under their common basic
geometrical setting. A conformally invariant gauge theory in~211! dimensions is equivalent to a
YM gauge theory of the conformal group in three dimensions, with a Chern–Simons action. This
means that conformal gravity is finite and exactly soluble.4

We recall that when we look for a space–time gauge model for gravity, it is necessary to
investigate the features of space–time gauge-like characteristics, because on any differentiable
manifold there is the bundle of affine frames, naturally defined, whose structural group is the
affine linear groupAL~n,R!. In particular, for the space–time case, the requirement of Lorentz
frames reducesAL~n,R! to the Poincare´ group~P4!. Gravitational gauge theories for theP4 group
have been extensively studied as alternative theories for gravity. The structure ofP4 gauge field
equations for gravity, and their Einsteinian content, under duality conditions for the sourceless
case, was first pointed out by Baekleret al.5

A YM gravitational model for theP4 group, under an Inonu–Wigner contraction of the gauge
fields, has been pointed out before. In that case, the absence of metric for the group manifold,
becauseP4 is not a semisimple group, does not allow one to establish a Lagrangian density in this
theory. Such a problem has been circumvented by means of Lie algebra invariants.6 The disagree-
ments to aP4 gauge model for gravity may be justified by two main reasons: it is not a Lagrangian
gauge theory under gauge-like conditions, and if one tries to quantize it, vertices are not well
defined.7 However, in spite of the absence of a group metric, a~22d! gauge theory for the Poincare´
group can be constructed.8 We notice that a Poincare´ ~211!-dimensional gauge theory for gravity
was also developed recently by Kawai,9 where has been shown among other things that solutions
of the vacuum Einstein equation satisfy gravitational field equations in the vacuum of the Poincare´
theory.

In a previous paper we have pointed out that the inclusion of a source in the rotational sector
of a YM theory for gravity with the groupP4, violates the conservation law of Einstein’s tensor.10

The purpose of the present paper is to develop a conformal gauge theory of~211!-dimensional
gravity, and analyze the aspects of this approach in two cases: a Poincare´ gauge theory properly,
which is obtained as a subtheory of the conformal case, and afterward Newton’s theory of gravity
in a spinless weak-field limit.

0022-2488/96/37(3)/1485/16/$10.00
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II. FIBER-BUNDLE STRUCTURE WITH CONFORMAL SYMMETRY

Here we consider a gauge model in a fiber bundleP5(M ,G), whereM is the base-manifold
~Minkowski space–time! andG is the conformal group. TheG algebra ofG is a vector space,
given by the direct sumG5R%T %C %D , whereR andT are, respectively, the rotational and
translation sectors ofG , C is the conformal sector, andD is the sector related to dilatations.
Differential forms are written in a coordinate basis$dxm% in space–time and are valued in theG
algebra. SinceG is a semisimple group, it allows us to write a gauge Lagrangian density in this
approach. In the present paper the space–time metric isgmn and the group metric ishab . Greek
indices are referred to space–time and have the rangem,n,...,0,1,2 and Latin indices have the
respective rangesA,B,...50,1,2,4,6, anda,b,...50,1,2.

A. Preliminary review on conformal transformations

In special relativity~SR! the invariance of the space–time intervalds25dxm dxm5ds82

ensures the constancy of the speed of light, and the equivalence between inertial frames of
reference. SR transformations of coordinates between two frames are Lorentz transformations
added by translationsx8m5Ln

mxn1am, which characterizes the inhomogeneous Lorentz group
~Poincare´ group!. If we extend the conditionds25ds8250, we see that the following transfor-
mations are also possible:~a! dilatations,x8m5xm1exm; ~b! special conformal transformations,
which are generated by an inversion (x8m5k2xm/xnxn), a translation and another inversion
x8m5xm1amx222xmax. Thus, the generalization of SR transformations in~311! dimensions of
the Poincare´ group is given by a 15-parameter group, the conformal group SO~4,2!. Conformal
invariance has been considered in physics for the first time by Bateman,11 pointing out the cova-
riance of Maxwell’s equations under conformal transformations. Afterward it was enhanced that
massive particles are not invariant under conformal transformations, and in 1972 Barut, Rolf, and
Haugen12 developed a theory, including concepts of conformal invariance for mass and charge.
Later, Wess13 pointed out the conformal invariance of the stress-energy tensor, which is the source
of a gauge field theory. The main characteristic of the conformal group is that it encompasses a set
of general transformations that preserve the speed of light. In~211! dimensions this group has ten
parameters~three rotationsL, three translationsP, three conformal transformationsK, and one
dilatationD!, and it is denoted by the SO~3,2! group.

Differential group generators areMAB52 i (hA]B2hB]A), or in theR3 space,

pa52 i ]a , l ab5xbpa2xapb , d5xapa , ka5~2xax
b2x2da

b!pb , ~2.1!

and the action of operators in a matter field is given below for each case:

LabC5 l abC1SabC, PaC5paC,
~2.2!

KaC5kaC1kaC22xb~gabD2SabC!, DC5dC1DC,

whereSab , D, andka represent the respective generators of each sector of the conformal group.
The commutation relations for the conformal group with generatorsJAB are in theR5 space the
usual ones of orthogonal groups, and become in theR3 space,

1

i
@Lab ,Lcd#5hadLbc2hacLbd2hbdLac1hbcLad ,

1

i
@Lab ,Pc#5hbcPa2hacPb ,

1

i
@Lab ,Kc#5hbcKa2hacKb ,

1

i
@Lab ,D#50,

~2.3!
1

i
@Pa ,Pb#50,

1

i
@Pa ,Kb#522~habD1Lab!,

1

i
@Pa ,D#52Pa ,
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1

i
@Ka ,Kb#50,

1

i
@Ka ,D#5Ka ,

1

i
@D,D#50.

B. G -valued connection and curvature forms

The covariant derivative for the conformal group algebra is defined by

DmC5$]m1 i ~ 1
2 Am

ab@L#Lab1Am
a @K#Ka1Am

a @P#Pa1Am@D#D !%C, ~2.4!

where

Am5 1
2 Am

ab@L#Lab1Am
a @P#Pa1Am

a @K#Ka1Am@D#D ~2.5!

is the connection form, transformed according toAm→g21Amg1 ig21 ]mg, wheregPG. The
curvature form is the covariant derivative of the connectionA: V5dA1@A,A#, and under the
action of the group elementg it is transformed byV→g21Vg. In theR5 space we haveVmn5
1
2Vmn

ABJAB , where

Vmn
AB5]mAn

AB2]nAm
AB2~ACm

A An
CB2ACn

A Am
CB!. ~2.6!

In theR3 spaceV has the components

Vmn5Vmn
ab@L#Lab1Vmn

a @P#Pa1Vmn
a @K#Ka1Vmn@D#D, ~2.7!

where

Vmn
ab@L#5]mAn

ab@L#2]nAm
ab@L#2~Acm

a @L#Acb@L#2Acm
a @L#Am

cb@L# !12~Am
a @P#An

b@K#

2Am
b @P#An

a@K# !22~An
a@P#Am

b @K#2An
b@P#Am

a @K# !, ~2.8!

Vmn
a @P#5]mAn

a@P#2]nAm
a @P#2~Acm

a @L#An
c@P#2Acn

a @L#Am
c @P# !

1~Am
a @P#An@D#2An

a@P#Am@D# !, ~2.9!

Vmn
a @K#5]mAn

a@K#2]nAm
a @K#2~Acm

a @L#An
c@K#2Acn

a @L#Am
c @K# !

1~Am
a @K#An@D#2An

a@K#Am@D# !, ~2.10!

Vmn@D#5]mAn@D#2]nAm@D#12~Am
a @P#Aan@K#2An

a@P#Aam@K# !. ~2.11!

C. Triads

Gauge theories of gravity differ from the usual YM theory because they contain a strong
relation to space–time, i.e., the fiber space is isomorphic to the tangent space–time. Such a
isomorphism is represented by the solder formS5Pahm

a dxm, whose components in~211! di-
mensions are the triads, wherePa are generators of translations. In the case where space–time is
a simple transformation of coordinates of the tangent spaceTxM , the triads are given by
hm
a5]mx

a, and we do not have a true gravitational field generated by triads, but instead, we have
fictitious forces like the centrifugal force and the Coriolis force. However, ifhm

a are not integrable,
we can define a true gravitational field that does not vanish under a particular choice of coordi-
nates. Triads allow us to obtain dual physical quantities like (vm,va) that are related byvm5ha

mva

andvm5hm
ava . By the same reason the metrichab is ‘‘projected’’ onto the base manifold by the

triadsgmn5habhm
ahn

b. The field associated to these triads is the torsion field, whose components
areTlm

k 5hl
mhm

n (]mhn
k2]nhm

k )2hl
mAml

k 1hm
mAlm

k , whereAm
kl is the Lorentz potential.
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Inclusion of the above fields in a Lorentz theory is not usual in gauge theories in general. The
potential in a gauge theory is such that]m→]m1iAm with Am→g21Amg1 ig21 ]mg, where the
triad field leads to]m→]m andhm→g21hmg. An argument to considerhm

a as a potential of the
theory is that in a gauge theory for the group of translations the triads are given by the Kibble
prescription14 hm

a5dm
a1Bm

a , whereBm
a is the gauge potential. This implies that dynamical proper-

ties of triads must be the same ones of the gauge potential. At a first view we could assume the
potential in the formḠ5A1S and the field would becomeV5R1T5DGG5DAA1DAS. How-
ever, the best way to include triads in this approach is by means of a nonlinear realization of the
conformal group. The procedure is to extend the definition of triads to the formhm

a5Dmx
a, where

Dm is a generalized group covariant derivative in a nonlinear realization.

D. Nonlinear realization

A simple reason to consider a nonlinear realization is to reduce the gauge symmetry ofG to
a subsymmetryH in a situation of spontaneous break of symmetry. This is the case of a conformal
symmetry that must be broken down in order to be applied to the real world. Moreover, we employ
this argument with the purpose to obtain a representation where some potentials are transformed
covariantly. The first step is to define a ‘‘reduction matrix’’~Lf!ab , whose elements are field
variables.

Salam and Strathdee15 pointed out that for a gauge theory with potentialsAm i , the nonlinear
derivative operator can be split up into covariant termsDmc5(]m1 iBmaM

a)c andDmfb5Bmb ,
whereBma are the potentials in the algebraH, Bmb are the potentials in the algebraG2H, and
fb are fields of the reduction matrix.

Following Salam–Strathdee’s suggestion, we assume that for the conformal group we have
Lf5exp[P1 ifK2 isD], and then we define the new potentials

vm
i j5Lf

21Am
i j @L#Lf2 iLf

21 ]mLf , vm
i 5Lf

21Am
a @P#Lf2Lf

21 ]mLf , ~2.12!

v̄m
i 5Lf

2Am
a @K#Lf2 iLf

21 ]mLf , vm5Lf
21Am@D#Lf2 iLf

21 ]mLf . ~2.13!

Thus, the covariant derivative becomesDmc5$]m1 1
2A

ab
m[L]Lab] %c, and for the field deriva-

tives we obtainDmx
a5vm

a , Dmfa5v̄m
a , Dms52vm , which lead to the transformation laws

v i j
m→hv i j

mh
212 ih ]mh

21 Li j ,
~2.14!

vm
i →hva

i h21, v̄m
i →hv̄m

i h21, vm→hvmh
21.

This means that the potentialsvm
i , v̄m

i andvm are transformed covariantly. Besides, we identify in
the equation forvm

a the definition of triads, in such a way that in this representation they are given
by hm

a[vm
a . Moreover, the new fields are now defined byFmn5Lf

21GmnLf , and they are written
in terms of the new potentials according to

f abmn5]mvn
ab2]nvm

ab2~vcm
a vn

cb2vcn
a vm

cb!12~vm
a v̄n

b2vm
b v̄n

a2vn
av̄m

b1vn
bv̄m

a !,

~2.15!

Tamn5]mvn
a2]nvm

a2~vcm
a vn

c2vcn
a vm

c !1~vm
avn2vn

avm!, ~2.16!

tamn5]mv̄n
a2]nv̄m

a2~vcm
a v̄n

c2vcn
a v̄m

c !2~v̄m
avn2v̄n

avm!, ~2.17!

Fmn5]mvn2]nvm12~vm
a v̄an2vn

av̄am!. ~2.18!
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E. Relations to space–time

For a vector fieldVk the covariant derivative is nowDlV
k5v l

nvm
k DnV

m, thus we can define
an affine connectionGln

m in such a way thatDnV
m5]nV

m1Gln
m Vl and, moreover,

Ak
lm52Glm

n vn
kv l

l2vn
k ]mv l

n. After multiplying both sides of this expression byvl
l vk

n, we get

Glm
n 52Ak

lmvl
l vk

n2vl
l ]mv l

n . ~2.19!

If we now defineTmn
l 5vk

lTkmn , we are led to

Tmn
l 5Gmn

l 2Gnm
l 1dm

l vn2dn
lvm , ~2.20!

which generalizes the torsion tensor. We also obtain that

Gl
mn5$mn

l %1Kl
mn1Dl

mn , ~2.21!

where the first term represents the Christoffel symbols$mn
l %51/2glj(]mgjn1]ngjm2]jgmn), the

second term in the above equation is the contorsion tensor,

Kmn
l 52 1

2 ~Tl
mn2Tm

l
n2Tn

l
m!, ~2.22!

and the third one is related to dilatations

Dlmn5gmnvl2glnvm . ~2.23!

The projection on space–time of the field componentsfmn
ab , given in Eq.~2.15!, is now

fmn
lr 5va

lvb
r f mn

ab5Rlr
mn1~dm

l vb
r v̄n

b2dm
r va

l v̄n
a2dn

lvb
r v̄m

b1dn
rva

l v̄m
a !, ~2.24!

where the first term above stands for the Riemann tensor,

Rrmn
l 5]mGrn

l 2]nGrm
l 1Gsn

l Grn
s 2Gsm

l Grn
s , ~2.25!

and the remaining terms in Eq.~2.24! are concerning special conformal transformations.

III. FIELD EQUATIONS

We can derive now the field equations for a conformal theory, taking into account the corre-
sponding potentials and fields obtained before. We want to establish a general gauge theory of
~211!-dimensional gravity with conformal symmetries, which is reduced to a Newtonian theory in
the limit c→`, but keeping in mind that we must assume an invariant action.

A. Gauge Lagrangian structure

In YM gauge theories the invariant Lagrangian density isL5FmnFmn , however, in a confor-
mal theory, since all sectors ofG constitute independent subalgebras, we can extend the Lagrang-
ian density to the formL5LL1LP1LK1LD , withLL ,LP ,LK , andLD all quadratic in the
potentialsf , T, t andF, respectively. Otherwise, for the rotational sector we have an analogous
relation to the Riemann–Ricci relation,

fmn
ab5vm

a f n
b2vn

af m
b2vm

b f n
a1vn

bf m
a2 1

2 ~vm
avn

b2vn
avm

b ! f , ~3.1!

wheref5vc
r f r

c, which points out that the most general Lagrangian in the rotational sector will be
given in terms off n

b instead of terms inf mn
ab . Hence, the fields that must be taken into account in

the Lagrangian density are
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Pkl5vs lva
r~]rvs

ak2]svr
ak2vcp

a vs
ck1vcs

a vr
ck!12~vs lv̄s

k1va
sv̄s

ahkl!, ~3.2!

Tklm5v l
avm

b ~]avb
k2]bva

k !2vk
mav l

a1vk
lavm

a 1d l
kvm

a va2dm
k v l

ava , ~3.3!

tklm5v l
avm

b @]av̄b
k2]bv̄a

k2~vca
k v̄b

c2vk
cbv̄a

c !2~v̄a
kvb2v̄a

kva!#, ~3.4!

Fkl5vk
rv l

s~]rvs2]svr!12~v l
rv̄kr2v̄ lrvk

r!. ~3.5!

Partial Lagrangian densities are then

LL5a1E
klEkl1a2I

klI kl1a3P, ~3.6!

LP52 f klmf klm1bvkvk1gaklmaklm , ~3.7!

LK5mgklmgklm1nukuk1rbklmbklm , ~3.8!

LD5bFklFkl , ~3.9!

wherea1, a2, a3, b, b, g, m, n, andr are arbitrary coefficients. In the above equations we have
defined the traceless and symmetric components ofT, its trace and its antisymmetrical compo-
nents, given, respectively, by

f klm5 1
2 ~Tklm1Tklm!1 1

4 ~hmkv l1hmlvk!2 1
2 hklvm, ~3.10!

vk5Tl lk , ~3.11!

aklm5 1
3 ~Tklm1Tmkl1Tlmk!. ~3.12!

In an analogous manner we have fort,

gklm5 1
2 ~ tklm1t lkm!1 1

4 ~hmkul1hmluk!2 1
2 hklum, ~3.13!

uk5t l lk , ~3.14!

bklm5 1
3 ~ tklm1tmkl1t lmk!, ~3.15!

and finally forP,

I kl5 1
2 ~Pkl1Plk!2 1

3 hklP, ~3.16!

Ekl5 1
2 ~Pkl2Plk!, ~3.17!

P5Pk
k . ~3.18!

The total action is now

I5E Ag~LL1LP1LK1LD1gLM ! d3x, ~3.19!

whereg5det~gmn!, LM is the Lagrangian density of the matter field, and the integral is taken in
the whole~211! space-time.
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B. Field equation from dI/dvm
i 50

The field equations are derived here according to the usual procedure of Lagrangian theories,
i.e. by means ofdI50, from Eq.~3.19!. This yields

]n

]~AgL!

]@]nAm#
2

]~AgL!

]Am
50, ~3.20!

whereAm is each one of the potentials in our approach. Thus, we have four field equations.
Equation~3.20! then becomes forvm

i ,

vm j

1

Ag
]Ag
]vm

i Lc1vm j

]Lc

]v i
2vm j

]nAg
Ag

]Lc

]~]nvm
i !

2vm j]n

]Lc

]~]nvm
i !

52Ti j , ~3.21!

where we have considered the energy-momentum tensor in the form

Ti j5vm j

1

Ag
dAgLM

dvm
i . ~3.22!

Taking into account thatLc5LL1LP1LK1LD , the field equation~3.21! turns into

22DkF̄i jk12vkF̄ i jk12Hi j14F̄ il j v
l14J@ ik#@ j l #P

kl14J@ lk#
@ l j #Pki22J@ i l #

@ j l #P

14J@ ik#
@ j l #v l

sv̄ks12 f̄ k j
mtkim14F j

lFil23F jlv l
rv̄ ir2h i jLc5Ti j , ~3.23!

where

DkF̄i jk5vmk ]mF̄ i jk1vm
jmF̄ imk1vm

kmF̄ i jm1vm
imF̄m jk , ~3.24!

F̄ i jk5a~ f i jk2 f ik j !1b~h i jvk2h ikv j !12gai jk , ~3.25!

Hi j5F̄k j
mTkim2 1

2 F̄ i
lmTjlm , ~3.26!

Ji jkl52a3h ikh j l P12a1h ikEjl12a2h ikI j l , ~3.27!

f̄ klm5m~gklm2gkml!1n~hklum2hkmv l !12rbklm . ~3.28!

Since the fields are transformed covariantly the only derivative to be considered is the covariant
derivative, and then the potentialsv̄k j andvl are also covariantly transformed. As as consequence,
we conclude that Eq.~3.23! is covariant under transformations of the conformal group, as desired.

C. Field equation from dI/dv i j
m50

The field equation derived from Eq.~3.20! for the potentialvi j
m is

vmk8

]Lc

]v i j
m

2vmk8

]nAg
Ag

]Lc

]~]nv i j
n!

2vmk8]n

]Lc

]~]nv i j
m!

5Si jk 8 , ~3.29!

whereSi jk 8 is the spin density, which is defined by

Si jk 85
2vmk8

Ag
dAgLM

dv i j
m

. ~3.30!
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This yields

2DlJ@ i j #@kl#1~ 4
3 tk

@ lm#2dk
@ lvm]1ak

lm!J@ i j #@ lm#1Hi jk12~hk
@ lvm]J@ i j #@kl#1Gi jk5Si jk ,

~3.31!

where

DlJ@ i j #@kl#5vm l~]mJ@ i j #@kl#1vm
imJ@mj#@kl#1vm

jmJ@ im#@kl#1vm
kmJ@ i j #@ml#1vm

lmJ@ i j #@km#!,
~3.32!

Hi jk5a~ tk j i2tki j !1b~h jkv i2h i lv j !14gai jk , ~3.33!

Gi jk5mvmkv̄
mm~gmji2gmi j!1nvm lv̄

mm~h jmui2h imuj !14rbi jmvk
mv̄m

m , ~3.34!

Ji jkl5a1h ikEjl1a2h ikI j l1a3h ikh j l P. ~3.35!

By inspection we see that Eq.~3.31! is also covariant under gauge transformations.

D. Field equation from dI/dv̄m
i 50

Equation~3.20! for the potentialv̄m
i is written in the form

vm j

]Lc

]v̄m
i 2vm j

]nAg
Ag

]Lc

] ]nv̄m
j 2vm j]n

]L

]~]nv̄m
i !

52Ki j , ~3.36!

where

Ki j5
vm j

Ag
dLAg
dv̄m

i . ~3.37!

This leads to

22Dkf̄ i jk12vk f̄ i jk2 f̄ i
lm~ 4

3 tk@ lm#1ajlm1h j @ lvm]14J@ ik#
@k j #!18F ji5Ki j , ~3.38!

where

Dkf̄ i jk5vmk~]m f̄ i jk1vm
jm f̄ imk1vm

km f̄ i jm1vm
im f̄ m jk!, ~3.39!

f̄ i lm5m~gilm2giml!1n~h i l um2h imul !1rbilm , ~3.40!

Ji jkl5a1h ikEjl1a2h ikI j l1a3h ikh j l P. ~3.41!

Notice that Eq.~3.38! is also covariant under conformal transformations.

E. Field equation from dI/dvm50

In an analogous way to the preceding cases we obtain the conformal covariant equation,

22DkF jk12vkF jk2Flm~ 4
3 t j @ lm#1ajlm1h j @ lvm] !22Fl

jv l1Hkj
k1Gjk

k5Dj , ~3.42!

where

DkF jk5vmk ]mF jk1vm
jmFmk1vm

kmF jm , ~3.43!
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Hi jk5a~ tk j i2tki j !1b~h jkv i2h ikv j !14gai jk , ~3.44!

Gi jk5mvmkv̄
mm~gmji2gmi j!1nvmkv̄

mm~h jmui2h imuj !14rbi jmvk
mv̄m

m . ~3.45!

IV. LINEARIZED FIELD EQUATIONS

A. Weak-field approach

Now we examine the gravitational field equations~3.23!, ~3.31!, ~3.38!, and ~3.42! in the
weak-field limit, i.e. in the case wheream

i 5vm
i 2dm

i , andvi j
m , v̄m

i , andvm are so small that it
suffices to take into account only linear terms inam

i , vi j
m , v̄m

i , andvm . In such a procedure we can
neglect the distinction between Greek indices and Latin indicesa,b,..., since geometric quantities
are now projected on the base-manifold by trivial triadshm

a5dm
a . In this case the space–time

metric is

gmn5hmn1hmn , ~4.1!

wherehmn5amn1anm . The field equation~3.23! thus becomes

22 ]lFmnl5Tmn , ~4.2!

and the field equations~3.31!, ~3.38!, and~3.42! are now, respectively,

2 ]rJ@lm#@nr#1Hlmn5Slmn , ~4.3!

22 ]r f̄ mnr14J@mr#
@rn#18Fnm5Kmn , ~4.4!

22 ]nFmn1Hmn
n5Dm . ~4.5!

To make clear the contribution of the metric tensor in the above field equations, we rewrite
these equations, considering that

2Ai j m5D i j m1Ki j m1Di j m , ~4.6!

whereDi j m are Ricci rotation coefficients,

D i j m5 1
2 vm

k ~Ci jk2Cjik2Cki j !, ~4.7!

with

Ci jk5v j
nvk

l~]nv il2]lv in!. ~4.8!

Notice that in Eq.~4.6!, Ki j m is the contortion andDi j m is an additional term related to dilatations,
i.e. Di j m5v jmvn iv

n2v imvn jv
n. With the above results we are led to

2 f i j mn5Ri j mn~$ %!1 f i j mn~K !1 f i j mn~D !, ~4.9!

where

Ri j mn~$ %!5]mD i j n2]nD i j m2D i
k
mD jkn1D i

k
nD jkm5v ilv j

rRjmn
l ~$ %!, ~4.10!

f i j mn~K !5“mKi j n2“nKi j m2Ki
k
mKjkn1Ki

k
nKjkm , ~4.11!

f i j mn~D !5“̄mDi j n2“̄nDi j m2Di
k
mDjkn1Di

k
nDjkm . ~4.12!
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Here“mKi j n represents the covariant derivative with respect to the Ricci coefficients for Latin
indices, and the covariant derivative with respect to the Levi-Civita´ connection$ jk

i %, for Greek
indices. Also,“̄mDi j n is the covariant derivative with respect toD i j m1Ki j m for Latin indices, and
the covariant derivative related to the Levi-Civita´ connection, for Greek indices. Moreover, each
irreducible part ofPkl given in Eq.~3.2! can be divided in three parts, in such a way that the fields
Ji jkl of Eqs.~3.27!, ~3.35!, and~3.41! may be expressed in the form

Ji jkl5Ji jkl ~$ %!1Ji jkl ~K !1Ji jkl ~D !. ~4.13!

In particular, we also have

Ji jkl ~$ %!52a2h ikRjl ~$ %!12S a32 al2
3 Dh lkh j l R~$ %! ~4.14!

and

]rJ@lm#@nr#~$ %!5]rFa2~hlnRmr2hlrRmn2hmnRlr1hmrRln!1S a32 a2
3 D

3~hlnhmr2hlrhmn2hmnhlr1hmrhln!R~$ %!G . ~4.15!

We now consider Einstein’s tensor in the formGi j5Ri j2
1
2h i j R, whereG52R/2 and the Bianchi

identity“rGmr50, which becomes now]rGmr50. This yields

2 ]rJ@lm#@nr#~$ %!52a2~]lGmn2]mGln!28S a31 a2
6 Dhn[l]m]G. ~4.17!

TheK component then becomesf i j mn(K)5]mKi j n2]nKi j m , which leads to

Emn~K !52 2
3 ]st

s
@mn#2

1
2 ]sa

s
mn2 1

2 ] [nvm] , ~4.18!

Imn~K !5 2
3 ]st

s
~mn!2

2
3 ]stmn

s2 1
2 ] (nvm)1

1
6 hmn ]sv

s, ~4.19!

where the brackets denote antisymmetrization and the parentheses denote symmetrization. We also
see that the termP(K) that appears in the expressions ofJi jkl becomes nowP(K)522 ]rv

r.
Also, after some algebraic manipulation we obtain for the term ina1 in the equations forJi jkl ,

22 ]rJ@lm#@nr#~K !5hn[m]r ]st
rs

l]1
2
3 ]m ]st

s
@ln#2

2
3 ]l ]st

s
@mn#1

1
2 hn[m]l] ]sv

s

1 1
2 ~]n ] [mvl]1hn[lhvm] !1]s ] [mal]n

s, ~4.20!

where we have considered the properties

tsmn1tnsm1tmns50, ts~mn!52 1
2 tmns . ~4.21!

Similarly, for the term ina2 we obtain

22 ]rJ@lm#@nr#~K !5hn[m]r ]st
rs

l]1]m ]stln
s2]l ]stmn

s1 1
6 hn[m]l] ]sv

s

1 1
2 ~]n ] [mvl]1hn[hvm] !, ~4.22!

and finally, theD component of Eq.~4.12! becomes now in this approximation,
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f i j mn~D !5]mDi j n2]nDi j m , ~4.23!

which leads to

Emn~D !5] [nvm] , ~4.24!

Imn~D !5] (nvm)2
1
3 hmn ]rvr , ~4.25!

P~D !54 ]rvr, ~4.26!

2 ]rJ@lm#@nr#~D !5~hn[lhvm]1hn[m]l] ]rvr1]n ] [mvl] !, ~4.27!

2 ]rJ@lm#@nr#~D !5~hn[lhvm]1
1
3 hn[m]l] ]rvr1]n ] [mvl] !. ~4.28!

The field equations are then

22 ]lFmnl5Tmn , ~4.29a!

Zlmn52Slmn , ~4.29b!

Wmn5Kmn , ~4.29c!

Xm5Dm , ~4.29d!

where

Zlmn5a2~]lGmn2]mGln!18S a31 a2
6 Dhn[l]m]G1~a11a2!hn[m]r ]st

rs
l]

1 1
3 @]m]s$2a1t

s
@ln#13a2tln

s%2]l]s$2a1t
s

@mn#13a2tmn
s%#1 1

6 ~3a11a2

248a3!hn[m]l] ]sv
s1 1

2 ~a11a2!$]n ] [mvl]1hn[lhvm]%1a1]s ] [mal]n
s1~a11a2!

3~hn[mhvl]1]n] [lvm] !1 1
3 ~3a11a2248a3!hn[l]m] ]rvr1Hlmn , ~4.30!

Wmn522 ]r f̄ mnr18Fnm1J@mr#
@rn# , ~4.31!

Xm522 ]nFmn1F̄n
mn . ~4.32!

B. Related equations between gravitational sources

Since gravitational sources are linked to conservation laws, these relations define the maxi-
mum degree of freedom we possess to choose sources, and they allow us to obtain important
conclusions in the present approach. Indeed, if we differentiate Eq.~4.29a! and use the fact that
Fmnl is antisymmetric in~nl!, we obtain that]nTmn50, which is the conservation law of the
energy-momentum tensor in the linearized form for a weak gravitational field. Similarly, differ-
entiating Eq.~4.29b! and keeping in mind thatHlmn5Fnml , we obtain

]nFnml5T@mn#5]nSlmn , ~4.33!

which relates the spin tensor to the energy-momentum tensor~Tetrode’s formula!.
Conformal theory also yields an equation for the conformal field,
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]nKmn52Smr
r14Dm , ~4.34!

and another equation for the dilatation field,

]mDm5T. ~4.35!

From Eqs.~4.33!–~4.35! we conclude that at first-order approximation the following occurs
~i! For gravitational sources with nonsymmetrical energy-momentum tensor the spin is nec-

essarily non-null.
~ii ! For gravitational sources whose energy-momentum tensor is not traceless the dilatation

source is necessarily non-null.
~iii ! Either, if the field has spin or if the dilatation field is non-null, the conformal source is

also non-null.
~iv! The only manner to annihilate the conformal source is to take a symmetric and traceless

energy-momentum tensor.
~v! If the trace of the energy-momentum tensor is non-null, both conformal and dilatation

sources are also non-null.
~vi! The conservation law for the energy-momentum tensor and Tetrode’s formula are not

affected by additional symmetries.
~vii ! Elimination of dilatation symmetry does not ensure one the possibility to eliminate the

conformal field, and by the same reason, the elimination of the conformal sector does not ensure
one the possibility to eliminate the dilatation source.

C. Field equation for hmn

Since we desire to verify the consistency of the present approach in space–time, we must
derive an equation for the perturbationshmn on the metric. For that we simplify the field equations
~4.29! by introducing the quantityh̄mn , and that satisfies the conditions

]nh̄mn50, h̄mn5hmn2 1
2 hmnh. ~4.36!

This results for the Einstein tensorGmn521/2hh̄mn . Its is also convenient to decompose Eq.
~4.29a! in symmetrical and antisymmetrical parts, according to

23a ]ltmnl22b~hmn ]lvl2] (mvn)!5T~mn! , ~4.37a!

2a ]ltl@mn#12b] [mvn]24g ]lamnl5T@mn# . ~4.37b!

Also, if we take the trace of Eq.~4.37a! we obtainT524b ]lvl . Hence, we have an isolated
equation for hmn when we symmetrize Eq.~4.29b! in ~mn! and take its divergence in
l:]lZl(mn)52]lSl(mn) .

With the formulas below,

]l~hmn]r ]st
rs

l2 1
2 hnl ]rs trs

m2 1
2 hml]r ]st

rs
n!50, ~4.38a!

]l~]s] (mtn)l
s2h]stmn

s!5
1

3a S hT~mn!2
1

2
~hmnh2]m]n!T12]l ]r] (mSn)lrD ,

~4.38b!

]l@ 1
12 ~3a11a2148a3!~hmn]l ]sv

s2]m]n ]sv
s!1 1

4 ~a11a2!~hmnh2]m]n!]sv
s#

5
a2124a3
24b

~hmnh2]m]n!T, ~4.38c!
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]l@ 1
12 ~3a11a2148a3!~hmn]l ]svs2]m]n ]svs!1 1

4 ~a11a2!~hmnh2]m]n!]svs#

5
a2124a3

6b
~hmnh2]m]n!]svs , ~4.38d!

we can simplify the form of our field equation if we choose a gauge forvs that is similar to the
Lorentz gauge:]svs50. In this case our field equation becomes

2a2h
2h̄mn1

2~a216a3!

3
~hmnh2]m]n!hh̄5Tmn

~ef! , ~4.39!

whereTmn
~ef! is an effective symmetric energy-momentum tensor,

Tmn
~ef!5T~mn!22 ]lSl~mn!2

a2124a3
12b

~hmnh2]m]n!T2
2a2
3a

3@hT~mn!2
1
2 ~hmnh2]m]n!T12]l]r ] (mSn)lr#. ~4.40!

It is important to notice that the parametersa1 andg, and also the conformal and dilatation
sectors, are not present in Eq.~4.39!. This points out that,at a first approximation, the dilatation
sector and the conformal sector do not intervene in the structure of space–time.

V. SOLUTIONS AND SUBTHEORIES

A. Geometric solutions

Let us consider the field due to a spinless point source located at the origin of coordinates,
whereTmn is given by

Tmn5 HMc2d2~r !, m5n50,
0, otherwise, ~5.1!

with r5(x1,x2). In this caseTmn
~ef! has the components

T00
~ef!5Mc2$d2~r !1~P1Q!Dd2~r !%,

T0a
~ef!5Ta0

~ef!50, ~5.2!

Tab
~ef!5Mc2~P2Q!~]a]b2dabD!d2~r ! ~a51,2!,

with D5~]1!
21~]2!

2, P52(a2124a3)/12b, andQ52a2/3a. The equation forh̄ is

~B12C!h2h̄52Mc2d2~r !22Mc2P Dd2~r !, ~5.3!

whereB52a2 andC52(a216a3)/3. The above equation can be solved by the Fourier integra-
tion method, and yields

h̄~k!52
~2p!Mc2

~B12C!k4
2

~4p!Mc2P

~B12C!k2
, ~5.4!

h̄~r !52
Mc2

~B12C! F r 2 ln r

4p G2
2Mc2P

~B12C! F ln r

2p G1C1r
21C2 , ~5.5!

whereC1 andC2 are integration constants. The equation forh̄00 thus becomes
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Bh2h̄0052
Mc2C

~B12C!
d2~r !2

2Mc2CP

~B12C!
Dd2~r !1Mc2d2~r !

1Mc2P Dd2~r !1Mc2Q Dd2~r !, ~5.6!

and has the solution

h̄00~k!5F2
Mc2C

~B12C!B
1
Mc2

B G 2p

k4
1F2

2Mc2PC

~B12C!B
1
Mc2P

B
1
Mc2Q

B G 2p

k2
. ~5.7!

Sinceh005h̄001h̄, we get

h00~r !5
Mc2~3a14b!

24pab
ln r2

Mc2~a216a3!

4pa2~a2124a3!
r 2 ln r1C3r

21C4 , ~5.8!

for aba2(a2124a3)Þ0. If we assumea2 ,a3→`, we obtain in particular for Eq.~5.8!,

h00~r !5
Mc2~3a14b!

24pab
ln r1C5r

21C6 . ~5.9!

B. Relation to the Newtonian theory

If we consider the classical motion of a spinless particle in the field of a spinless gravitational
source, then at first order the particle’s motion is given by the equationd2r /dt252]U/]r , where
U52c2h00/2. Thus, with a convenient choice of parameters, we derive the Newtonian solution
from Eq. ~5.8!. Such a solution, with the conditions

3a14b52
96abpG

c4
, a216a350, C350, ~5.10!

satisfies Newton’s equation for the source given in Eq.~5.1!:

DU54pGMd2~r !. ~5.11!

In similar way we can derive the Newtonian limit from the solution~5.9!, with the conditions

3a14b52
96abpG

c4
, C550. ~5.12!

In this limit the equation forh̄ can be written in the form

D@~B12C!Dh̄12Mc2Pd2~r !#50 ~5.13!

in the sourceless case and

~B12C!Dh̄12Mc2Pd2~r !5c~r ! ~5.14!

if a source is considered, whereDc~r !50. Then, the equation forh̄00 becomes, in the sourceless
case,

DFBDh̄001
2Mc2CP

B12C
d2~r !2Mc2~P1Q!d2~r !G50, ~5.15!

and, with the inclusion of a source,
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B Dh̄001
2Mc2CP

B12C
d2~r !2Mc2~P1Q!d2~r !5f~r !, ~5.16!

whereDf~r !50. If we choose the particular solutionc~r !5f~r !50, we obtain from the above
equation the Newtonian gravitational equation,

DU54pGMd2~r !. ~5.17!

C. Relation to the Poincare ´ theory

From the results obtained in Sec. III and from the field equation forFmn , we conclude that we
are not led to a Poincare´ gauge theory by means of an appropriate choice of sources, fields and
integration constants. This is due to the fact thatTÞ0, in general, in the Poincare´ limit, which
means thatDm , Fmn , and vm are both non-null. Moreover, since the covariant derivative is
expressed in terms ofAi j

m ~and, in consequence, it is also expressed in terms of the potentialvm!,
then a whole Poincare´ theory does not emerge as a natural limit from the conformal theory.

However, outside matter, we can assume vanishing sources, in such a way that we can obtain
from Eq. ~3.38! a particular solutionf̄ i lm50, yieldingGi jk50. If this result is replaced in Eq.
~3.42!, we are led to the particular solutionFlm50. This points out that the Poincare´ gauge theory
in vacuum can be obtained from a choice of gaugevm5v̄m

i 50, and it leads to the field equations

22DkF̄i jk12ukF̄ i jk12Hi j14F̄ il j v
l14J@ ik#@ j l #P

kl14J@ lk#
@ l j #Pki22J@ i l #

@ j l #P2h i jLc5Ti j ,
~5.18!

2DlJ@ i j #@kl#1~ 4
3 tk

@ lm#2dk
@ lvm]1ak

lmJ@ i j #@ lm#1Hi jk12~hk
@ lvm]J@ i j #@kl#5Si jk . ~5.19!

The above equations have been derived already by Kawai.9

D. Comments on the Einsteinian limit

Einstein’s theory of GR is not derivable here as a subtheory. This is due to the fact that such
a theory can only be obtained with the inclusion of linear terms of fields in the Lagrangian density.
Otherwise, we remind that GR is not a conformal invariant theory,16 because the above field terms
are not invariant under conformal transformations.10 Hence, the Einsteinian limit cannot be ob-
tained from a conformal gauge theory of gravity.

VI. CONCLUDING REMARKS

Here we developed a conformal theory for~211!-dimensional gravity, which is similar to YM
gauge theories and that has a Newtonian limit. This approach has the following characteristics.

~i! The framework was developed in a fiber bundle with the~211! Minkowski space–time as
a base manifold, whose structural group is the conformal group with ten generators. The group
algebra manifold is the direct sum of the sectors of rotations, translations, dilatations, and special
conformal transformations.

~ii ! We have considered a nonlinear realization of the gauge fields in order to obtain a break
of symmetry and to get a theory applicable to the physical space–time, with triads being the
potential in the sector of translations.

~iii ! We have assumed a Lagrangian density that is quadratic in the fields, in order to maintain
the invariance of these fields under conformal transformations, and also, to verify a similarity
between this approach and YM gauge theories.

~iv! The affine connection is generalized here toGl
mn5$mn

l %1Kl
mn1Dl

mn , where
Dlmn5gmnvl2glnvm is defined in the dilatation sector.

~v! The field equations are given by Eqs.~3.23!, ~3.31!, ~3.38!, and~3.42!.
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~vi! At a first approximation the field equations are given by Eqs.~4.29!.
~vii ! Gravitational sources whose energy-momentum tensor is traceless, necessarily maintain

the nullity of a conformal source.
~viii ! Either, if the field has spin or if the dilatation source is non-null, then the gravitational

source will be also non-null.
~ix! The unique way to annihilate both sectors of dilatations and conformal transformations is

to assume a symmetric, traceless, and spinless energy-momentum tensor;
~x! The conservation law of the energy-momentum tensor and Tetrode’s formula are not

affected by additional symmetries.
~xi! At a first approximation the sectors of dilatations and conformal transformations do not

affect the structure of space–time.
~xii ! The Newtonian theory is obtained here as a particular limit of a spinless weak field;
~xiii ! The Poincare´ theory in vacuum is also obtained as a subtheory, however, inside matter,

the sectors of dilatations and conformal transformations are not annihilated.
~xiv! Since GR is not conformally invariant, it cannot be derived here as a subtheory.
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We use the methods of group theory to reduce the equations of motion of theCP1

model in ~211! dimensions to sets of two coupled ordinary differential equations.
We decouple and solve many of these equations in terms of elementary functions,
elliptic functions, and Painleve´ transcendents. Some of the reduced equations do
not have the Painleve´ property. The existence of a Lax pair, making the model
integrable, is hence very unlikely, even though it possesses many properties of
integrable systems~such as stable ‘‘numerical solitons’’!. © 1996 American Insti-
tute of Physics.@S0022-2488~96!03202-X#

I. INTRODUCTION

Over the past few years, it has become clear that many physical processes can be described
well in terms of various partial nonlinear differential equations. The areas providing such equa-
tions range from solid state physics, hydrodynamics, and particle physics to biophysics and bio-
chemistry. As the equations are nonlinear, in general, they are hard to solve; in fact, so far no
general method of solving these equations is known and each equation has to be treated on its
own. However, a particular class of equations, which are derived from the so-called integrable
models can be solved using some very general techniques1 ~inverse scattering methods, Ba¨cklund
transformations,...!. These equations are very special and their solutions have very special prop-
erties. Many of these equations have solutions that are localized in space and propagate at a
constant speed. Such solutions, usually called solitons, or extended structures in general, have
received a lot of attention in recent years. However, most of these equations depend on two space
~or space–time! variables and, as such, can only describe phenomena that are quasi-two-
dimensional. When they involve more variables, either all variables come in a very nonsymmetric
way, or the models are very special.

Most applications in nature involve three spatial dimensions, and in many applications all
spatial variables come on an equal footing. When the applications involve, for example, particle
physics or relativity, the underlying models are Lorentz covariant. Such models are, generally,
nonintegrable and the methods mentioned above do not apply. On the other hand, some of them
can be studied numerically. Such studies have involved full simulations of similar models in
~211! dimensions or simulations of various reduced models~i.e., approximations to the original
models!. Some of these studies2 have found that even though the models were not integrable, the
behavior of their extended structures resembled the behavior that was expected had the models
been integrable~i.e., the structures preserved their shapes well, there was little radiation, etc.!
Moreover, the approximate methods3 gave results that were virtually indistinguishable from the
results of full simulations. Hence we feel that the behavior of integrable models may not be that
unusual; other models, which, strictly speaking, are not integrable, may be ‘‘almost’’ so. Their

a!Electronic-mail: grundlan@crm.umontreal.ca
b!Electronic-mail: wintern@crm.umontreal.ca
c!Electronic-mail: w.j.zakrzewski@durham.ac.uk

0022-2488/96/37(3)/1501/20/$10.00
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extended structures show very little difference from what might be expected had the models been
integrable. Moreover, various approximate methods work well and may be used to provide some
insight to the behavior of the solutions of the full equations.

Most of the results, which involve models in~211! dimensions, were obtained in the so-called
CP1 model @also called theS2 or O~3! model# and its modifications.2 This model, in its original
version4 is probably the simplest model in~211! dimensions, which is relativistically covariant
and which admits the existence of localized soliton-like solutions.

TheCP1 s model is defined by the Lagrangian density,

Ls5 1
4~]mf!–~]mf!, ~1.1!

together with the constraintf–f51. The Euler–Lagrange equations derived from~1.1! are

]m ]mf1~]mf–]mf!f50. ~1.2!

The model can be modified by the addition of further terms to the Lagrangian density. The
terms that have been studied the most extensively involve the~211!-dimensional analog of the
‘‘Skyrme’’ term5 and various ‘‘potential’’ terms.2,6 They were added, primarily, to stabilize the
soliton-like structures. In the original model the soliton-like structures were not really stable; any
perturbation would induce their shrinking or expanding, which they could do without any cost of
energy, due to the conformal invariance of the pureCP1 model. Apart from curing the shrinking
and inducing also weak forces between soliton-like structures, the additional forces had little effect
on the dynamics of these structures. Moreover, the affects of nonintegrability of these models were
also not that different from similar effects in the pureCP1 case. Hence, the dynamics of these
models was described well by the dynamics of theCP1 case. The same was true when one looked
at the approximate methods.7

These observations suggest that a lot can be learned from looking at exact solutions of the
CP1 model using the group theoretical method of symmetry reduction.8–10 This method exploits
the symmetry of the original equations to find solutions invariant under some subgroup of the
symmetry group~the classic example one can give here involves seeking solutions in two dimen-
sions that are rotationally invariant!. The method puts all such attempts on a unified footing, and
it has been applied with success to many equations. The method leads to equations whose solu-
tions represent specific solutions of the full equations; the solutions are determined locally and the
method does not tell us whether these solutions are stable or not with respect to any perturbations.

In our case we would like to apply this method to looking for solutions of the originalCP1

model; from the remarks made above we can hope that these solutions will also be approximate
solutions of the modified models. Their stability is harder to predict; but again, guided by the
experience from the numerical simulations we hope that, at least, some of them will be stable with
respect to small perturbations.

In order to perform the symmetry reductions of the pureCP1 model in~211! dimensions we
have to decide what variable to use. To avoid having to use the constrained variables~f!, it is
convenient to use theW formulation of the model that involved the stereographic projection of the
spheref–f51 onto the complex plane. In this formulation, instead of using thef fields, we
express all the dependence onf in terms of their stereographic projection onto the complex plane
W. Thef fields are then related toW by

f15
W1W*

11uWu2
, f25 i

W2W*

11uWu2
, f35

12uWu2

11uWu2
. ~1.3!

In this formulation the Lagrangian density becomes
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L5
]mW ]mW*

~11uWu2!2
, ~1.4!

where* denotes complex conjugation.
To perform our analysis it is convenient to use the polar version of theW variables; i.e. to put

W5R exp(ic) and then study the equations forR andc. The advantage of this approach is that
the equations become simple; the disadvantage comes from having to pay attention thatR is real
and c should be periodic with a period of 2p. ~If the period is not 2p then the solution may
become multivalued, etc.! Thus, if we find solutions that do not obey these restrictions, then these
solutions, however interesting they may be, cannot, in general, be treated as solutions of the
original model.

The equations forR andc take the form

] ttc2]xxc2]yyc12
~12R2!

R~11R2!
~] tc ] tR2]xc ]xR2]yc ]yR!50 ~1.5!

and

] ttR2]xxR2]yyR2
R~12R2!

~11R2!
~] tc ] tc2]xc ]xc2]yc]yc!

2
2R

~11R2!
„~] tR!22~]xR!22~]yR!2…50. ~1.6!

Note that if we putR51 the second equation is automatically satisfied and the first one
reduces to

] ttc2]xxc2yyc50, ~1.7!

i.e., the linear wave equation for the phasec.
In section II we determine the symmetry group of Eqs.~1.5! and ~1.6!. In the following

section we present coupled pairs of reduced ordinary differential equations~ODEs! for all two-
dimensional subgroups of the symmetry group. Sections IV and V are devoted to the presentation
of explicit solutions. We finish the paper with a short discussion of the derived solutions, their
relation to the solutions known before, and their physical relevance.

II. THE SYMMETRY GROUP AND ITS SUBGROUPS

The symmetry group of the system~1.5! and ~1.6! can be calculated using standard
methods.8–10 We actually made use of aMACSYMA package11 that provides a simplified and
partially solved set of determining equations.

Solving those, we find that the symmetry group has the structure of a direct product, namely,

G;SIM~2,1!^SU~2!, ~2.1!

where SIM~2,1! is the similitude group of~211!-dimensional Minkowski space~the Poincare´
group extended by dilations!. The group SU~2! rotates the components of the fields among each
other.

The corresponding Lie algebras, sim~2,1! andsu~2!, can be represented by vector fields acting
on R andc and the space–time coordinates. A suitable basis is given by two Lorentz boostsK1
and K2, one rotationL, three translationsP0, P1, and P2, one dilationD, and threesu~2!
generatorsX, Y, andZ. We have
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K152~x] t1t]x!, K252~y] t1t]y!, L52x]y1y]x ,
~2.2!

P05] t , P15]x , P25]y , D5t] t1x]x1y]y ,

X5
1

2 S SR2
1

RD sin c]c1~R211!cosc]RD ,
~2.3!

Y5
1

2 S SR2
1

RD cosc]c2~R211!sin c]RD ,
Z5]c .

Our aim is to obtain solutions of Eqs.~1.5! and ~1.6! by the method of symmetry
reduction.8–10 In practice, we shall require that solutions are invariant under a two-dimensional
subgroup of the symmetry groupG. This will reduce the original partial differential equations
~1.5! and ~1.6! to a system of ODEs. Subalgebras of sim~2,1! were classified in Ref. 12. A
two-dimensional algebra$Â,B̂% can be either Abelian, [Â,B̂]50, or solvable non-Abelian,
[ Â,B̂]5Â. Subalgebras of the direct sum sim~2,1!%su~2! can be obtained by the Goursat ‘‘twist’’
method.13,14

The result is the following. There exist ten parametric classes of Abelian subalgebras, repre-
sented by

$Â1aZ, B̂1bZ%, ~2.4!

with a,bPR, Z as in ~2.3!, and$Â,B̂% equal to one of the following pairs:

$K1 ,P2%; $D,K21L%; $K21L,P02P1%; $P2 ,P02P1%; $L,P0%;
~2.5!

$P1 ,P2%; $P0 ,P1%; $D,K1%; $D,L%; $D2K1 ,P02P1%.

Further, there exist 15 parametric classes of non-Abelian two-dimensional subalgebras represented
by

Â1cZ,B̂, cPR, ~2.6!

where$Â,B̂% is one of the pairs:

$K1 ,K21L%; $D,P2%; $K1 ,P02P1%; $D,P02P1%; $K11eP2 ,P02P1%;

$D1e~K21L !,P02P1%; $D,P0%; $D1aK1 ,K21L%; $D1aK1 ,P2%;

$D2K11e~P02P1!,K21L%; $D1K21e~P01P2!,P1%; $D1aL,P0%; ~2.7!

$D1aK1 ,P02P1%; $D1K11e~P01P1!,P02P1%; $D1 1
2K1 ,K21L1e~P01P1!%,

with aPR ande561.

III. THE REDUCED EQUATIONS

For each subgroup~2.4! and ~2.6! we find three invariants,j, R, and F, using standard
methods.8–10 In terms of these we express the two functionsR andc of ~1.5! and ~1.6! as

R5R~j!, c5a~x,y,t !1F~j!, j5j~x,y,t !, ~3.1!
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wherea and j are given for each subalgebra in Tables I and II. Derivatives with respect to the
variablej will be denoted by dots. We introduce the two invariant operatorsD and¹2 by setting

D f5 f tt2 f xx2 f yy , ~“ f ,“g!5 f tgt2 f xgx2 f ygy , ~3.2!

and consider three cases separately.
~1! ~“j!2Þ0. We put

Dj

~“j!2
52p52

ġ

g
,

~“a,“j!

~“j!2
5h,

Da

~“j!2
5s,

~“a!2

~“j!2
5 l , ~3.3!

with g5g~j!, h5h~j!, s5s~j!, and l5 l ~j!.
For further use we also introduce

m5ḣ2
ġ

g
h2s ~3.4!

and

B52
h22 l

g2
. ~3.5!

The two PDEs~1.5! and ~1.6! now reduce to

F̈12ṘḞ
~12R2!

R~11R2!
2
ġ

g
Ḟ12

~12R2!

R~11R2!
Ṙh1s50, ~3.6!

R̈2
2R

11R2 Ṙ
22

R~12R2!

11R2 Ḟ22
ġ

g
Ṙ22

R~12R2!

11R2 Ḟh2
R~12R2!

11R2 l50. ~3.7!

For each algebra the functions~3.3! are given in Table I.
In order to solve the above system, we must decouple its two equations. PuttingḞ1h5V we

first rewrite Eq.~3.6! as

V̇12Ṙ
~12R2!

R~11R2!
V2

ġ

g
V2m50, ~3.8!

with m as in Eq.~3.4!.
Form50 we solve~3.6! and obtain

Ḟ5A
~11R2!2

R2 g~j!2h, A5const. ~3.9!

Next, we substituteḞ into Eq. ~3.7! and obtain a second-order ODE forR~j!,

R̈2
2R

11R2 Ṙ
22

ġ

g
Ṙ2A2g2

~12R2!~11R2!3

R3 1
R~12R2!

11R2 ~h22 l !50. ~3.10!

FormÞ0, Eq. ~3.8! is inhomogeneous. We can still decouple it by putting

Ḟ5
Um

U̇
2h ~3.11!
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U̇5
mR2

~R211!2g
. ~3.12!

Using Eq.~3.11!, we can rewrite~3.7! as a third-order ODE for the auxiliary functionU~j!. If we
can solve it we obtainR~j! from ~3.12!. However, in this paper we restrict our attention to the case
of m~j!50.

~2! ~“j!250, Dj50, ~“a,“j!Þ0. The reduced equations decouple immediately and we have

~“a,“j!
~12R2!

R~11R2!
Ṙ52

1

2
Da, ~“a,“j!Ḟ52

1

2
~“a!2. ~3.13!

For ~“a,“j!Þ0 we can integrate directly to obtain

R

R211
5C expH 2

1

2 E Da

~“a,“j!
djJ , ~3.14!

F52
1

2 E ~“a!2

~“a,“j!
dj1F0 . ~3.15!

For ~“a,“j!50 we must have alsoDa50, ~“j!250. ThenR~j! andF~j! are arbitrary functions of
j. In particular, this is true fora50.

~3! ~“j!250, DjÞ0. We obtain two equations that are easy to solve:

F812
~12R2!R8

R~11R2!

~“a1“j!

Dj
52

Da

Dj
, ~3.16!

22
~“a1“j!

Dj
F81

11R2

R~12R2!
R85

~“a!2

Dj
. ~3.17!

IV. ANALYSIS OF SECOND-ORDER ODE

A. General comments

In order to obtain explicit solutions, we need to solve the ODE~3.10! for the functionR~j!.
This equation is in the class analyzed by Painleve´ and Gambier;15–17namely, it is of the form

ÿ5 f ~ ẏ,y,x!, ~4.1!

where f is rational inẏ andy and analytical inx. If this equation has the Painleve´ property~no
movable singularities other than poles!, then it can be transformed into one of the 50 standard
equations listed, e.g., by Ince.17 The Painleve´ test18,19 provides us with necessary~but not suffi-
cient! conditions for Eq.~4.1! to have the Painleve´ property. The solution is expanded about an
arbitrary pointx0 in the complexx plane in a Laurent series,

y~x!5 (
k50

`

akt
k1p, t5x2x0 , ~4.2!

where p is required to be an integer~a negative one if we are interested in points where the
solution itself has a pole!. The coefficients are obtained from a recursion relation of the form

Pkak5hk~x0 ,a0 ,a1 ,...,ak21!. ~4.3!
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Since~4.2! is supposed to represent a general solution, it must depend on two constants;x0
andar for some non-negativer , called a resonance value. This occurs if the functionPr satisfies
Pr50. Thenar is arbitrary and we have a consistency condition, the ‘‘resonance condition,’’
hr(x0 ,a0 ,a1 ,...,ar21)50 ~which must be satisfied identically inx0!. If the above conditions are
satisfied, the Painleve´ test is passed and~4.2! represents a two-parameter family of formal solu-
tions ~locally, within the radius of convergence of the series!.

Turning our attention to Eq.~3.10!, we note that the casesAÞ0 andA50 must be treated
separately.

B. The case AÞ0

The Painleve´ test applied directly fails immediately since a balance between the most singular
terms occurs forp52 1

2, i.e. we have a movable square root branch point. To remedy this problem
we put

R~j!5A2U~j! ~4.4!

and obtain

Ü5U̇2F 1

2U
1

1

U21G12A2g2
~11U !~12U !3

U
1U̇

ġ

g
12~h22 l !

U~11U !

~U21!
. ~4.5!

We can now choose a new variableh to be

h5E g~j!dj, ~4.6!

and transform Eq.~4.5! into

Ü5U̇2F 1

2U
1

1

U21G12A2
~11U !~12U !3

U
1B

U~11U !

~U21!
, ~4.7!

with B as in ~3.5!.
ForB5const this is Eq. PXXXVIII listed, e.g., by Ince.17 It has a first integralK that we use

to write a first-order equation forU:

U̇2524A2U414KU31~8A222B28K !U214KU24A2. ~4.8!

Since we haveAÞ0, we can rewrite~4.8! as

~U̇ !2524A2~U2U1!~U2U2!~U2U3!~U2U4!, ~4.9!

where the constant roots of the right-hand side of~4.9! Ui , i51,...,4 can be expressed in terms of
the constantsA, B, andK.

Equation~4.9! has elementary algebraic and trigonometric solutions, as well as solutions that
resemble solitary waves or kink-like structures~in the symmetry variableh! in the case of multiple
roots. If allUi are distinct, then the solutions of~4.8! involve elliptic functions.20 Explicit solu-
tions will be presented in the next section.

If B in Eq. ~4.7! is not constant, we proceed differently. We again introduce a new independent
variable,

h5exp E g dj, ~4.10!
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and transform Eq.~4.5! into

Ü5U̇2F 1

2U
1

1

U21G2
U̇

h
1
2A2

h2 ~12U !2S 1U2U D12
h22 l

g2h2

U~U11!

U21
. ~4.11!

For

2
h22 l

g2h2 5d5const, ~4.12!

this is the equation for the fifth Painleve´ transcendent.
The values ofm50 andBÞconst occur for the cases 1 and 2 from Table I, and we actually

have

h5j, d52S b26a2

h2D , ~4.13!

so d5const requiresa50.
Hence, we obtain the solutions

U~j!5PV~a,b,g,d;j!,
~4.14!

a52b52A2, g50, d52b2,

for equations describing the group reductions 1 and 2~of Table I! in the case whena50.
For b50, in the cases of these two reductions we haveB52a25const, and we obtain solu-

tions in terms of Eq.~4.8!.
If d in Eq. ~4.12! is not constant, then Eq.~4.5! does not have the Painleve´ property and we

were not able to integrate it in terms of known functions.

C. The case A50, B5const

The transformation~4.4! can also be performed for the caseA50. We use the first integral to
write our equation as

U̇254K~U2U1!~U2U2!,

U1,25L116AL~L12!, L5
B

4K
, KÞ0. ~4.15!

For K50, we find a solution immediately; namely, we have

U5U0e
6A22Bh, B<0. ~4.16!

On the other hand, forA50 in Eq.~3.10!, the Painleve´ expansion~4.2! gives usp521 for the
leading ~most singular! power. Hence, the transformation~4.4! is not required and so we can
transform Eq.~3.10! directly into one of the standard forms.

We put

R52 i
Z~h!1m~j!

Z~h!2m~j!
, h5h~j!, mÞ0, ḣÞ0, ~4.17!

and obtain
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Z̈5
Ż2

Z
2
1

ḣ S ḧ

ḣ
2
ġ

gD Ż1
1

ḣ2m S m̈2
ṁ2

m
2
ġ

g
ṁ DZ1

h22 l

4ḣ2m2

Z42m4

Z
. ~4.18!

If B of Eq. ~3.5! is constant we can chooseh as in Eq.~4.6!, setm51, and obtain the equation

Z̈5
Ż2

Z
1
B

8 S Z421

Z D . ~4.19!

This equation can be integrated directly forB50. ForBÞ0 it has a first integralK in terms of
which we obtain a first-order ODE,

Ż25
B

8
~Z22Z1

2!~Z22Z2
2!, Z1,2

2 52K6AK221. ~4.20!

Again, we have elliptic function solutions. They are, however, not new. SinceR is real ~and
non-negative! we must require that

Z5eis~h!, for m51,0<h,2p. ~4.21!

The relation between the functions~h! andU~h! of Eq. ~4.7! is

A2U~h!5U sin s

12sin sU. ~4.22!

For BÞconst we use the variable~4.10!, again setm51, and reduce Eq.~4.18! to

Z̈5
Ż2

Z
2
1

h
Ż1

h22 l

4g2h2

Z421

Z
. ~4.23!

For d, defined by~4.12!, being constant~d5d0!, Eq. ~4.23! is a special case of the third
PainlevétranscendentPIII ~a,g,b,d:h! and so we have as a solution of Eq.~4.23!,

Z5PIII S 0,0, d0
8
,2

d0
8
;h D . ~4.24!

This equation is, however, not new; it can be transformed into solution~4.14! by making use of
relations between special cases ofPV andPIII .

Again, for d not constant, Eq.~4.23! does not have the Painleve´ property and we are not able
to solve it.

D. Comments on the Painleve ´ analysis and integrability of model

For AÞ0, Eq. ~4.5! passes the Painleve´ test for U(x0)→` for any functionsg~j! and
h2(j)2 l (j). Indeed, we findp521 in the expansion~4.2!. A resonance is obtained fork51; the
resonance condition is satisfied and so the coefficienta1 is a free constant~as isx0!. We did not
investigate the other two possible pole type irregularities, namely,U(x0)→0, orU(x0)→1.

The Painleve´ test only checks whether certain necessary conditions are satisfied. If an equa-
tion of the type~4.1! does actually have the Painleve´ property~as opposed to merely passing the
Painlevétest!, then it can be transformed into a standard form by a Mo¨bius transformation~with
variable coefficients!,

y~j!5
a~j!U„h~j!…1b~j!

d~j!U„h~j!…1r~j!
, h5h~j!, ar2bd561. ~4.25!
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Equation~4.5! is already, to a large extent, standardized. Indeed, the coefficient ofU̇2 has
poles atU50, 1, and`. This puts the equation into Ince’s class IV and the residues have the
correct values. Hence, we havea5r51, b5d50 in Eq. ~4.25!. The only remaining permitted
transformation is that of the independent variable. We have shown above that Eq.~4.5! can be
reduced to the elliptic function equation if and only ifB in Eq. ~4.7! is constant. It can be
transformed into the equation for thePV transcendent if and only if its coefficients satisfy

d

dj S h22 l

g2 D22S h22 l

g2 Dg50. ~4.26!

In all other cases the equation~4.5! cannot be transformed into a standard form, and hence it does
not have Painleve´ property.

The situation is exactly the same forA50. Equation~3.10! passes the Painleve´ test and is
transformed into Eq.~4.18! by a Möbius transformation. The coefficient ofŻ2 has poles atZ50
and Z→` with the correct residues. Hence, onlyZ(j)→a(j)Z(h(j)) is permitted. Equation
~4.18! is of Ince’s type II and has the Painleve´ properties if and only if Eq.~4.26! is satisfied.

Thus we have shown that Eq.~4.5! has the Painleve´ property if and only if the coefficients
satisfyB5const, or if they satisfy Eq.~4.26!.

V. EXPLICIT SOLUTIONS

We have reduced the original system~1.5! and ~1.6! for the function

W5Reic, ~5.1!

to one of the pairs of equations$~3.9!,~3.10!%, $~3.14!,~3.15!%, or ~3.16!, ~3.17!.
Let us first look at the pair$~3.9!,~3.10!%. Equation~3.9! providesF~j! by a quadrature, once

Eq. ~3.10! is solved. In Sec. IV we have further reduced Eq.~3.10!. Using Eq.~4.4! we replace
equations forR~j! by equations forU~j!, whereU~j! must satisfyU~j!<0.

As mentioned above, the algebras 1 and 2 of Table I lead to solutions of the form~4.14!, i.e.
the fifth Painleve´ transcendentPV~j!, for a50, bÞ0.

Algebras 1–23 lead to the elliptic function equation~4.9! for m50,AÞ0,B5const and to Eq.
~4.15! for m50, A50, B5const,KÞ0. In both cases, elementary solutions are obtained in the
case of multiple roots of the polynomial on the right-hand side of the equation.

Many excellent discussions of solutions of the elliptic function equation exist in the literature.
We mention an article by Wadati on wave propagation in nonlinear lattices,21 as well as the
‘‘Handbook’’ of Byrd and Friedman.20 That notwithstanding, in order to keep this article readable
and self-contained, and to specify the values and ranges of parameters occurring in our problem,
we shall present nonsingular solutions of Eqs.~4.9! and ~4.15! explicitly.

The character of the solution depends crucially on the sign ofB in Table I. @B is defined in
~3.5!.# We haveB.0 for algebras,

1 ~b50,aÞ0!, 10 ~a21b2Þ0!, 11 ~aÞ0!, 12 ~aÞ0!,

15 ~a2.b2!, 16 ~bÞ0!,
~5.2!

17 ~a50,bÞ0,x21y22t2.0!, 18 ~a50,bÞ0,x21y22t2.0!,

19 ~a50,bÞ0,x21y22t2.0!;

B,0 for algebras,

2 ~b50,aÞ0!, 13 ~aÞ0!, 14 ~abÞ0!, 15 ~a22b2,0!,
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17 ~a50,bÞ0,t22x22y2.0!, 18 ~a50,bÞ0,t22x22y2.0!, ~5.3!

19 ~a50,bÞ0,t22x22y2.0!.

In all other cases withm50 we haveB50
Let us first run through all elementary functions solutions, remembering that the independent

variable ish given in Eq.~4.6!.
Localized solutions are obtained precisely for the algebras~5.2!. From Eq.~4.15! ~i.e.,A50!

we obtain a kink inR~j! wherej and functionh~j! are read from Table I. Two situations are to be
considered.

I. A50, L522, K,0, B.0
The solution is the following:
1.

R56tanh
1

2
AB

2
~h2h0!, F52E h~h!dh1F0 . ~5.4!

II. AÞ0, B.4(A22K).0, K,0
Equation ~4.9! ~AÞ0! leads to solitary wave~‘‘bump’’- or ‘‘well’’-type solutions ! for the

functionU~h! in the following four cases:
2. U45U35U2,U<U1,0,

U5U21
U12U2

11~U12U4!
2A2~h2h0!

2 . ~5.5!

Equation~5.5! represents an ‘‘algebraic bump.’’
3. U4<U,U35U25U1,0

U5U12
U12U4

11~U12U4!
2A2~h2h0!

2 . ~5.6!

This is an ‘‘algebraic well.’’
4. U4,U35U2,U<U1,0

U5U21
~U12U2!~U22U4!

~U12U4!cosh
2 AA~U12U2!~U22U4!~h2h0!2~U12U2!

. ~5.7!

Equation~5.7! is an ‘‘exponential bump.’’
5. U4<U<U35U2,U1,0

U5U22
~U12U2!~U22U4!

~U12U4!cosh
2 AA~U12U2!~U22U4!~h2h0!2~U22U4!

. ~5.8!

This is an ‘‘exponential well.’’

Further elementary solutions of Eq.~4.9! are trigonometrically periodic.
6. U45U3,U2<U<U1,0, K,0, B.4(A22K).0

U5U31
~U12U3!~U22U3!

U22U31~U12U2!cos
2 AA~U12U3!~U22U3!~h2h0!

. ~5.9!

This type of solution also occurs only for the algebras~5.2!
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7. U4<U<U3,U25U1

U5U12
~U12U4!~U12U3!

U12U31~U32U4!cos
2 AA~U12U4!~U12U3!~h2h0!

. ~5.10!

This solution can occur in the case of algebras~5.2! for U1,0, i.e. all roots negative. It can also
occur forU3,0,U25U1 , and this allows us to haveB<0, Thus, solutions~5.10! can occur for
all algebras~and variablesj! 1–23 in Table I. Notice, however, that they are periodic, rather than
localized, in the variableh.

The remaining solutions are periodic and expressed in terms of Jacobi elliptic functions. We
have the following.

8. A50, K.0, B,28K,0, U2<U<U1,0

U5
U1U2

U21~U12U2!sn
2
„A2~U2K/2!~h2h0!,k…

, k25
U12U2

~2U2!
. ~5.11!

This occurs for the algebras~5.3!.
9. A50, K,0, B.28K.0, U2,U1<U<0

R5A2U1snAU2K

2
~h2h0 ,k!, k25

U1

U2
. ~5.12!

The algebras concerned are those of Eq.~5.2!.
10.AÞ0, U4<U<U3,U2,U1

U5
U1~U32U4!sn

2@b~h2h0!,k#1U4~U12U3!

~U32U4!sn
2@b~h2h0!,k#1U12U3

,

k25
~U12U2!

~U12U3!

~U32U4!

~U22U3!
, b5AA~U12U3!~U22U4!.

~5.13!

This can occur forU1,0; then we must haveB.4„A21(2K)….0, i.e. the algebras~5.2!. It
can also occur forU3,U4,0,U2,U1 , then all of the algebras 1–23 of Table I can occur.

11.AÞ0, U4,U3,U2<U<U1,0

U5
U4~U12U2!sn

2@b~h2h0!,k#1U1~U22U4!

~U12U2!sn
2@b~h2h0!,k#1U22U4

, ~5.14!

with k2 andb as in Eq.~5.13!. we must haveB.4„A21(2K)….0 and hence algebras~5.2!.
12.AÞ0, U4,U,U1 , U2,35p6 iq, q.0

U5
@CU42DU1#cn@b~h2h0!,k#1DU11CU4

~C2D !cn@b~h2h0!,k#1C1D
,

C5~U12p!21q2, D5~U42p!21q2, ~5.15!

k25
~U12U4!

22~C2D !2

4CD
, b52A~CD!1/4.

This situation can occur for all algebras 1–23 of Table I.
13.A50,K50,B,0. We obtain the solution~4.16! for algebras~5.3! with j as given in Table

I @andh given by Eq.~4.6!#.
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The algebras No. 24–29 of Table II correspond to variablesj such that~“j!250 and hence to
first-order ODEs. The solutions are readily obtained and we just list them:

No. 24: R5R0 ,c5ay2bx1
a21b2

2b
~x1t !1c0 , bÞ0, ~5.16!

No. 25: R5cAx1t6Ac2~x1t !21, c5
b

2
~ t2x!2

~a1by!2

2b~x1t !
1c0 , ~5.17!

No. 26: R5cAx1t6Ac2~x1t !21, c5b lnAut22x22y2u
ux1tu

1c0 , ~5.18!

No. 27: R5R0 , c5
b

2
lnux1tu1c0 ; ~5.19!

No. 28 and 29 provide nonconstant solutions only forb50. ThenF~j! andR~j! are arbitrary
functions ofj5x1t.

All solutions presented so far are group invariant solutions in the standard sense of the
words.8–10

Let us mention that the PDEs~1.5! and ~1.6! can be reduced to ODEs of the form~3.6! and
~3.7!, by the transformation~3.1!, where j and a are any functions satisfying Eq.~3.3!. The
restriction is thatp, h, s, andl must be functions ofj. Group theory generates solutions of these
equations by the requirement thatF and j in ~3.1! be invariants of subgroups of the symmetry
group. However, other solutions may exist, corresponding, e.g., to so-called ‘‘null variables,’’22,23

to ‘‘conditional symmetries,’’24,25 or simply generated by the ‘‘direct method’’ of Clarkson and
Kruskal.26

Let us just give some examples of such variables.
First, a few words about null variables and the corresponding solutions. Consider a variablej

satisfying

~“j!25Dj50. ~5.20!

The equations forF~j! andR~j! reduce to Eq.~3.13!. As mentioned in Sec. III, if we also have

~“a,“j!5~“a!25Da50 ~5.21!

~e.g., fora5const!, thenF~j! andR~j! are arbitrary functions. We have already encountered this
situation forj5x1t, however, Eq.~5.20! have more general solutions,22,23 that can be written in
terms of Riemann invariants.

Indeed, let us put

j5H~s!, s5~a,x!5a0t2a1x2a2y, ~a,a!50, ~5.22!

wherea is a light-like vector, depending onj @i.e., Eq.~5.22! definesj implicitly #. It is easy to
check thatj of Eq. ~5.22! satisfies Eq.~5.20! for any choice of the functionH and light-like vector
a~j!. The functionH~s! can be chosen to beH~s!5s with no loss of generality, sinceF~j! and
R~j! are themselves arbitrary. Thus, we can replace Eq.~5.22! by

j5a0~j!t2a1~j!x2a2~j!y, a250. ~5.23!

Choosinga to be constant, we recover the variablej5x1t ~up to a Lorentz transformation!. Other
choices give different results, which become explicit if we can solve the algebraic equation~5.23!.
For example, choose
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a5~1,j,A12j2!. ~5.24!

Solving Eq.~5.23! for j, we obtain

j5
~11x!t6A~11x!21y22t2

~11x!21y2
. ~5.25!

ChoosingF~j! andR~j! appropriately, e.g.F~j! constant andR~j! with compact support, we
obtain a localized solution~localized in the variablej!.

An example of a ‘‘conditionally invariant’’ solution is obtained by putting

c5c~j!, R5R~j!, j5Ax21y2

x22t2
. ~5.26!

We havea(x,y,t)50 and

p5
ġ

g
52

1

j
, g5

1

j
, h5s5 l5m50, B50, ~5.27!

in Eqs.~3.6! and ~3.7!. These values could hence be added to those in Table I.

VI. COMMENTS AND CONCLUSIONS

Inserting the variablesj anda of Table I into the formulas of Sec. V, we obtain a great variety
of exact analytic solutions.

Some of our solutions are~possibly up to phase factors, contained in the variablea! really
solutions of the 111-, or 210-dimensionalCP1 model. Thus, algebras 1, 11, 12, and 16 provide
solutions, depending essentially only onx and t. Similarly, algebras 2, 13, and 14 provide essen-
tially static solutions~independent oft!. A sizable literature exists on static solutions.27–31Particu-
larly interesting solutions of this type are obtained for algebra 2 when we havej 5 Ax21y2, and
we takeb50. We obtain elliptic function solutions~5.11! and ~5.15! as well as the elementary
solution ~4.16!, or, more explicitly,

W5W0~x
21y2!n/2einf, ~6.1!

wherea5n is an integer~andf is the azimuthal angle in thexy plane!. This can be identified as
an ‘‘n-soliton solution’’ ~or instanton! and it has finite energy.4 Our static solutions are not new:
they are to be found, e.g., among those obtained by Purkait and Ray, or earlier.27–31

The same algebra gives rise to a very different type of solution. If we takebÞ0, a50 we
expressR~j! in terms of the Painleve´ transcendentPV , as in Eq.~4.14!. The phase isc5bt1c0 so
that we have a global rotation of spins in the horizontal plane. To our knowledge, this type of
solution is new.

Algebra 14 introduces a ‘‘helical’’-type variablej. Solution~4.16! in this case is

W5R0~x
21y2!ab/2~11a2!e2b/~11a2 arctany/x!eibf/a. ~6.2!

This solution is multivalued, even for theb/a integer. This type of variable and solution could be
pertinent in condensed matter applications, concerning, e.g., critical phenomena in multilayered
films.
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In general, our method provides us with ‘‘local solutions,’’ not necessarily defined for all of
R1. The solutions are not necessarily single valued and they can have singularities for real values
of the variablej. Moreover, in view of the existence of the light cone, it is sometimes necessary
to consider space-like and time-like regions of space–time separately, since solutions in these
regions may differ. Typical examples of this phenomenon are provided by algebras 17, 18, and 19.
We list two variablesj in Table I for each of these, one valid fort22x22y2.0, the other for
x21y22t2.0. In all cases we restrict toa50, in order to havem50 in the table. The simplest
solutions are given by Eq.~4.16! for B,0 and~5.4! for B.0.

In the case of algebra 17, the corresponding solutions are

W5R0e
ebAt22x22y2/~x1t !e2 iby/~x1t !, t22x22y2.0,

W5tanh
b

2 SAx21y22t2

x1t
2j0D e2 iby/~x1t !, t22x22y2,0.

~6.3!

The two solutions can be connected on the cone, however, their derivatives will be discon-
tinuous in any case.

Similarly, for algebra 18 of Table I we find the elementary solutions,

W5R0e
b arctanAt22x22y2/ye2 ib arctanhx/t, t22x22y2.0,

~6.4!

W5tanh
b

2 FarctanhAx21y22t2

y
2j0Ge2 ib arctanhx/t, x21y22t2.0.

Finally, for algebra 19 of Table I, we have

W5tanh
b

2 S arctanAx21y22t2

t
2j0D e2 ib arctan/x, x21y22t2.0,

~6.5!

W5W0e
b arctanhAt22x22y2/te2 ib arctany/x, t22x22y2.0.

In many soliton-like problems in field theory, we are interested in solutions that are regular in
R1, i.e., which are valid at all times~though this condition is sometimes relaxed a bit! and which
are defined for2`,x,`, 2`,y,`. Among them particularly important are those whose energy
is finite ~as they describe localized ‘‘soliton-like’’ field structures!. If we restrict our attention to
such field configurations, we see that we should consider the energy density for our fields. As the
energy density is given by

r5
uWtu21uWxu21uWyu2

@11uWu2#2
, ~6.6!

we see that this gives us

r5
~j t

21jx
21jy

2!Ṙ2

@11R2#2
1

~c t
21cx

21cy
2!R2

@11R2#2
, ~6.7!

where c is given as in ~3.1! and Ṙ5dR/dj. We can rewrite
(c t

21cx
21cy

2)5(a t
21ax

21ay
2)1Ḟ2(j t

21jx
21jy

2)12Ḟ(j ta t1jxax1jyay) and then substitute
the expression forḞ given by ~3.9! ~whenm50!.

To get the total energy we should integrater over all space,
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E5E r dx dy. ~6.8!

To perform this integration, in some cases, we can replace the integration overx and y by an
integration overj and another conveniently chosen variable~which may have a finite or an infinite
range!. Thus in the cases of algebras 2, 3, and 19 of the Table I, we can usej and an angle, while
in the cases of 1, 4, 11, 12, 15, and 16,j involves onlyx, and as our variables of integration we
can usej andy. Clearly, in these latter cases the total energy of any nontrivial solution is infinite.

The most extreme case corresponds to the algebra 10. In this casej5t, energy density is
independent ofx and y, and so the total energy is infinite. In this casef3 of ~1.3! is given by
f35„12R2~j!…/„11R2~j!… and is independent ofx andy, whilef1 andf2 depend onx andy only
througha. Thus, treatingfi as components of a spin vector field~of unit length! we see that this
solution describes very coherent movements of spins that move up and down in phase for allx and
y and whose movements in the horizontal plane are modulated bya andF(t).

Similar spin wave interpretations can be given to other solutions. In particular, this is the case
when the symmetry variable is more complicated than in the cases mentioned above. One can
think of applications in condensed matter physics, the theory of nematic liquid crystals, etc., and
even in cosmology. In some of such systems the orientation off does not matter; such cases can
be described by a larger class of our solutions. At the same time we can considerW(x,y,t) as a
Landau–Ginzburg field that arises in many applications in condensed matter physics@as can be
checked, the Landau–Ginzburg equation is very similar to the equation derived from~1.4!#.
Indeed, at least one version of the Landau–Ginzburg equation has been treated using the group
theoretical techniques applied in this paper. The context was that of magnetic phenomena in
external fields.32

However, returning to the field theory soliton-like applications, in which case the reductions 2,
3, 17, 18, and 19 are particularly relevant, we note that using an angular variable of integration
makes it more likely that a given solution will describe a time evolution of a field configuration of
finite energy.

Clearly it would be desirable to analyze further the physical implications of this and other
solutions. We hope to be able to report on this in the near future.
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A duality for endomorphisms of von Neumann algebras
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We consider endomorphisms of von Neumann algebras: LetM be a von Neumann
algebra, represented on a Hilbert spaceH, and letM 8 be the corresponding
commutant. LetaPEnd(M ) be given, and supposeM has a cyclic vector in
H, such that the corresponding state leavesa invariant. Then there is a ‘‘dual’’
completely positive mappingb on M 8 which we find and describe: Each of the
two a andb has an associated spectral group, and we show that the group forb
is contained in that fora. We consider the following three restrictions ona: i! a
is a shift onM, ii! a is strongly ergodic, and iii! a is ergodic. We give spectral
theoretic conditions ona ~using the two groups described above! to fall into each of
the three classes. We also show that the two groups areconjugacy invariants, and
we discuss the case ofcocycle conjugacy. © 1996 American Institute of Physics.
@S0022-2488~96!02603-6#

I. INTRODUCTION

Let M be a von Neumann algebra, and leta:M→M be an endomorphism. A special case of
this, of course, is whena is an automorphism, in which casea(M )5M . ~We will assume thata
is unital, i.e., thata~1!51. If a is then also assumednormal, then ker~a! is a two-sided closed
ideal inM. So, ifM is a factor, thena must be 1–1. In the motivating discussion below, we will
thereforeassumethata is 1–1. Then, of course,a is an automorphism iffa(M )5M ). If there is
no subalgebraN of M, other thanC1, such thata restricted toN is an automorphism, then we say
thata is a shift. This shift property is clearly equivalent to the condition

ùk51
` ak~M !5C1, ~1.1!

so the shifts are the endomorphisms which is on the ‘‘opposite extreme’’ from the automorphisms.
They were defined and studied systematically first in Ref. 1 and many results, examples and
applications followed in the papers,2–7 to mention only a few. Several recent papers~see e.g., Refs.
1, 8–11! have dealt with the caseM5B~H! forH a separable Hilbert space; and others with the
case whenM is the von Neumann hyperfinite II1-factor ~see e.g.,

12–14!. For the first case, we have
structure theoretic results on the conjugacy classes, and their classification; but still only for
special restricted types of shifts. For the second case, there are remarkable results on special
examples, but here we are further away from structure theoretic results and classification. The
basic ideas start with Refs. 15 and 10. But while these papers are concerned with one-parameter
semigroups, the focus here is on single endomorphisms. Our constructions use standard tools from
Refs. 16–23. We also extend earlier work from Ref. 6.~See also Ref. 24 for one of the early
approaches to endomorphisms.!

The present paper nonetheless deals with the general setting, while still motivated both by our
own earlier work onB~H! ~see especially Ref. 7! and also by the Powers–Price results forbinary
shifts on the hyperfinite II1-factor ~see especially Refs. 2 and 3!. The more concrete areas of
application of the present abstract endomorphism theory are to states in quantum statistical me-
chanics~see Refs. 25 and 26!, and to the harmonic analysis of fractal-limit measures~see Ref. 27!.
The framework of Ref. 23 is also general and includes both of these applications.

a!Electronic-mail: jorgen@math.uiowa.edu

0022-2488/96/37(3)/1521/18/$10.00
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By an endomorphisma of a von Neumann algebraM, aPEnd(M ), we mean a homomor-
phism ofM which preserves the unit 1 and the* -operation, i.e.,a~1!51 anda(X* )5a(X)* ,
;XPM . For the caseM5B~H!, Powers1 showed that, if there is a normal invariant pure state
v onM, i.e.,v+a5v, then the conjugacy classes of shifts are labeled by an integral valued index
n, specifically the commutant ofa~B~H!! is of the form Mn where Mn is the type
In-factor, i.e., then by n complex matrices.

Examples of endomorphisms abound in von Neumann algebra theory~see e.g., Refs. 13 and
12!. In fact, R. Longo13 showed that forany inclusionN,M of properly infinite von Neumann
algebras, there is a ‘‘canonical’’aPEnd(M ) such thata(M ),N. Specifically, ifJM , JN denote
the associated modular conjugations~of M resp.,N!, then the formula

a~X!5Ad~G!~X!:5GXG* , ;XPM

satisfies the stated conditions whenG is defined as the productG:5JNJM . Moreover, Longo
showed that the ‘‘canonical’’ endomorphism Ad~G! of M is well defined up to inner automorphism
of N.

Let R be von Neumann’s hyperfinite II1 factor. Continuing from a question in Ref. 13 Jones
~in Ref. 12! determines the~Jones! index @R:b(R)# of an endomorphismbPEnd(R) which is
constructed in turn from a unitary elementUPR, and ashift ~endomorphism! s:R→R, such that

b5 limn→`Ad~Us~U !•••sn~U !!.

The study from Ref. 13 was continued in a different direction by M. Choda in Refs. 28 and 29.
Choda gets information on the Jones-index [M :N] instead from estimates on a certain entropy
which she introduces.

We say that twoa, a8PEnd(M ) are conjugate if there is a bPAut(M ) such that
a85b+a+b21, and we say that they areco-cycle conjugateif there is a unitaryUPM , such that
a8 and Ad(U)+a are conjugate.~Here, Ad(U) denotes the inner automorphism, Ad(U)(X)
5UXU21, ;XPM ). As noted in Ref. 6 for theB~H! case, there is, for eachn, just one
co-cycle-conjugacy classof shifts. But for other factorsM , even the cocycle conjugacy classes are
relatively poorly understood, and wedo not have complete invariants.

In general the conjugacy classes in End(M ) are not amenable to classification. Even for
M5B~H! we show in Ref. 6 that the conjugacy classes form a non-smooth space in the sense of
Dixmier; see Ref. 20. But in Ref. 7 we isolate specific sections~relative to a new group action! in
the ‘‘space’’ of all conjugacy classes.

The present paper has one new invariant which is based on spectral theory. It applies to the
general case whenM is represented on a Hilbert spaceH, and there is a unit vectorV in the same
H such that the corresponding statev5^Vu•V& satisfiesv+a5v onM , wherea denotes the given
endomorphism, and̂•u•& is the inner product onH. Even when we don’t have this condition
satisfiedinitially , we show that there is an associated and related system which has the property;
but it will be for a different~albeit related! von Neumann algebra and an induced endomorphism.
A second main issue in our paper is that of exhibiting explicit conditions on a givena
PEnd(M ) that it be ashift ~in the sense of Powers, i.e.,ùk51

` ak(M )5C1). Our results are based
on a duality betweenaPEnd(M ), and an associatedcompletely positivemappingb:M 8→M 8
whereM 8 denotes the commutant.

We illustrate this last point with the following observation regarding representationsp of the
Cuntz algebraO n , wheren.1 is given and finite. Recall30 thatO n is the~simple! C* -algebra on
the relations,

si* sj5d i j1,and(
i51

n

sisi*51; ~1.2!
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and, moreover, thats P End(O n) is the canonical shift

s~a!:5(
i51

n

siasi* ,;aPO n . ~1.3!

Let p P Rep(O n ,H), i.e., a representation ofO n onH, and setAk5p(sk(O n))8. We shall
suppose thatp has acyclic vectorV P H, and we setv5^Vu•V&. We say thatp is periodic of
period k if

p~sk~si* !!VPAkV,

; i51, . . . ,n. If M5:p(sk(O n))9, then M 85Ak , and s induces an endomorphisma
P End(M ). We refer to Refs. 7 and 6 for details on Rep(O n ,H). The constructions are motivated
by Refs. 31 and 32 and the techniques are drawn from Refs. 33–35 and to some extent Refs. 36
and 37.

The concept ofperiodic representationsof O n is from Ref. 7 where it plays a crucial role in
our analysis of the conjugacy classes of End(B(H)), whenH is a given separable Hilbert space.
In that case~as we also note in Proposition V below!, we are interested inirreducible represen-
tations ofO n , but the periodicity property~1.6! is in fact useful more generally~see also Refs. 26,
38–42 for related ideas!.

Proposition I.1:Let p P Rep(O n ,H) with cyclic vectorV, and setv5^Vu•V&. Suppose
p is periodic with periodk, and letM5:p(sk(O n))9. Let

a~p~sk~a!!!5p~sk11~a!! ~1.4!

;a P O n . Then there isa P End(M ), andb:M 8→M 8, completely positive, such that

v~b~A!X!5v~Aa~X!!;APM 8,;XPM . ~1.5!

Proof: Let Si :5p(si). and let a(X)5( i51
n SiXSi* . Then a(X) is defined for all X

P B(H), and we see that it leavesM invariant, restricts top(sk(O n)) and is given by the stated
formula ~1.4!. By assumption~periodicity! there are elementsLi P M 85Ak such that

p~sk~si* !!V5Li*V,; i51, . . . ,n. ~1.6!

Forb P O n , setX5p(sk(b)), and forA P M 8, set

b~A!:5(
i51

n

LiALi* . ~1.7!

Then

v~b~A!X!5(
i51

n

^VuLiALi*XV&

5(
i

^Li*VuAXLi*V&

5(
i

^p~sk~si* !!VuAXp~sk~si* !!V&

5(
i

v~Ap~sk~sibsi* !!!
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5v~Ap~sk11~b!!!5v~Aa~p~sk~b!!!

5v~Aa~X!!,

which is the desired conclusion. Note that whenA51 in Ak5M 8 then we get the invariance,
v+a5v, holding onM . h

Note that from the Cuntz relations~1.2! it follows that the mappingb:M 8→M 8 in ~1.5!
satisfiesb(1)51, and also that it is completely positive.~For more details onb in the general
case, see Lemma IV below.!

II. ERGODICITY

The setting is a given endomorphisma on a von Neumann algebraM . It is assumed through-
out thatM acts on a fixed Hilbert spaceH containing a cyclic vectorV, iVi51, such that the
statev5^Vu•V& satisfiesv+a5v onM .

Let the data (M ,v,H,V) be given as stated, and leta P End(M ) be such thatv+a5v. Let
Q P M be thesupport projectionfor v viewed as a state onM . Then it follows that

Q<a~Q!<•••<ak~Q!<•••,

so that the limit

limk→`ak~Q!5Q` ~2.1!

exists in M , as projections of a von Neumann algebra form a complete lattice. Clearly
a(Q`)5Q` . We shall say that the given system is inreduced formif Q`51 in M ; and we note
that it is no essential restriction on the system if we assume at the outset that it be in reduced form:
Indeed, suppose it were not in reduced form. Then replaceM with Q`MQ` , andH with
Q`(H). We then have (Q`MQ`)85M 8Q` , and the vectorV5Q`V will also be cyclic for
Q`MQ` on Q`(H). Finally a induces an endomorphisma` of Q`MQ` , i.e., a`

P End(Q`MQ`), by

a`~Q`XQ`!5Q`a~X!Q` , ~2.2!

;X P M , which is just therestriction of a to the subalgebraQ`MQ`,M . Finally, of course,
Q` serves as the identity element inQ`MQ` , and it acts as the identity operator onQ`(H). In
the sequel, we shall assume therefore that a given system, as specified,is in reduced form. If it is
not, it may be replaced with the canonically restricted system~which is in reduced form! without
loss of generality.

It is known43,44 that every isometry in a given Hilbert space decomposes uniquely as an
orthogonal sum of a unitary operator and a shift operator. We now study this decomposition for the
isometryW which was introduced above. But first:

Definitions II.1:Let M be a von Neumann algebra and leta P End(M ) be given such that
a(1)51. Following Powers,1 we say thata is ashift if ùk51

` ak(M )5C1. LetW be an isometry
on a Hilbert spaceH. Following Wold ~see Refs. 43 and 44!, we make theorthogonal decompo-
sitionH5Hu % Hswhere

Hu5ùk51
` WkH, ~2.3!

and

Hs5 (
k50

`

WkN~W* ! ~2.4!
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with N(W* )5$j P H:W* j50%, and the distinct spacesWkN(W* ) mutually orthogonal. The
restrictionWuHu

is unitary, and the spaceN(W* ) iswandering~referring to the orthogonality! for
W. The decomposition is called theWold decomposition, and it is unique as specified.

If v(•)5^Vu•V& is a state onM , corresponding to a cyclic vectorV, and ifv+a5v, then

W~XV!:5a~X!V, ;XPM ~2.5!

defines anisometryonH, andV P Hu . We say thatW is anessential shiftonH if Hu5CV,
i.e., if the unitary subspace for the decomposition is one-dimensional.

It is generally difficult to verify if a givena P End(M ) is ashift in the sense of Powers. But
if there is also a given invariant statev5^Vu•V& as described above, then we have the following
result ~with a partial converse!.

Proposition II.2:Let (M ,v,H,V) be as described and leta P End(M ) be given such that
v5^Vu•V& satisfiesv+a5v on M , and assume further that the system is in reduced form.
Then, if the isometryW from ~2.5! is given to be an essential shift, then it follows thata is an shift
onM in the sense of Powers.

Proof: Let

XPM`:5ùk51
` ak~M ! ~2.6!

be given. ThenXV P Hu , and we are assuming thatHu5CV. It follows that

XV5v~X!V

.

If Q P M denotes the support projection for the statev onM , then we get

QXQ5v~X!Q
.

Applying a to both sides yields

a~Q!a~X!a~Q!5v~X!a~Q!.

ButauM` P Aut(M`) andv(a21(X))5v(X). ReplacingX with a21(X) P M` yields

a~Q!Xa~Q!5v~X!a~Q!,

and by iteration

ak~Q!Xak~Q!5v~X!ak~Q!

for ;k51,2, . . . . Since the system is in reduced form, limk→`ak(Q)51, and it follows that
X5v(X)1, proving thatM`5C1 which is the defining property fora to be a shift onM . h

In Corollary X below we shall show that, if (a,M ) is a strongly ergodic shift, then
Hu5CV, i.e., the correspondingisometry Wmust then have one-dimensional unitary part. In any
case, the dimension ofHu is a conjugacy invariantfor the strongly ergodic endomorphisms of
von Neumann algebras.

III. SPECTRAL THEORY

The next result gives the spectral decomposition for a givena P End(M ) with the stated
properties:
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Theorem III.1:Let M be a von Neumann algebra acting on a Hilbert spaceH, and letV
P H be a cyclic vector with the corresponding statev given onB(H) by

v~A!5^VuAV&, APB~H!.

Let a P End(M ) be given and assumev+a5v onM , and moreover thata is strongly ergodic.
Let

M`:5ùk51
` ak~M !, ~3.1!

and letW:H→H be theisometrydefined by

W~AV!:5a~A!V, ;APM . ~3.2!

Let

H`:5Hu5ùk51
` R~Wk! ~3.3!

be the unitary part in the Wold decomposition ofW onH, and letE(•) be the corresponding
orthogonal spectral resolution-measure ofWuH`. Forj P H`, iji51, letdm(z):5iE(dz)ji2 be
the corresponding measure onT. Then there is am measurable functionb:T→M , ib(z)i<1,
such that

E
T
^b~z!Vuj&b~z!Vdm~z!5j ~3.4!

anda(b(z))5zb(z) a.e. onT. In particular, ifWj5lj, for somel P T, then there is a single
elementb P M , ibi<1 such that

bV5j and a~b!5lb. ~3.5!

The above result yields the spectral decomposition for theunitary part of the Wold decom-
position for the isometryW which is associated to a givena P End(M ) as stated. But, in the
present form, the theorem is difficult to apply as the cyclic vectorV which is given forM at the
outset is typically not separating. Specifically ifM 8 is the commutant, then@M 8V# is a proper
subspace ofH. The projection onto this subspace will be denotedQ in the sequel.

Proof:We first supply some preliminaries in this section and the following two, and then we
return to the proof again in Section VII below.

Lemma III.2:Let M , H, V, a P End(M ), andW be as specified in the theorem, and let
W* :H→H be the co-isometry given by

^W* juh&5^juWh&, ;j,hPH. ~3.6!

Then there is a completely positive mappingb:M 8→M 8 on the commutant such thatb(1)51,
v+b5v, and

W* ~AV!5b~A!V, ;APM 8. ~3.7!

Proof:ForA P M 8 andX P M , we have

^W* ~AV!uXV&5^AVuW~XV!&5^AVua~X!V&

which, in the statev(•)5^Vu•V&, amounts to the identity

^W* ~AV!uXV&5v~A*a~X!!. ~3.8!
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For the algebrasM andM 8, we will use the subscript1 denoting the respective positive elements,
and we claim that, ifA P M18 andX P M1 , then

v~Aa~X!!<iAiv~X!. ~3.9!

But then the Segal Radon–Nikodym theorem25 yields the existence of someB P M18 such that

v~Aa~X!!5v~BX! ~3.10!

for all X P M . To prove~3.9!, we iterate the Cauchy–Schwarz estimate as follows: LetA P M18
andXP M1 . Then

v~Aa~X!!5v~Aa~X!1/2a~X!1/2!

<v~~Aa~X!1/2!2!1/2v~a~X!!1/2

5v~A2a~X!!1/2v~X!1/2<v~A4a~X!!1/4v~X!
1
2 1

1
4

<•••

<v~A2na~X!!2
2n

v~X!
1
2 1

1
4 1•••1

1

2n

<iA2ni2
2n

iXi2
2n

v~X!
1
2 1•••1

1

2n.

Passing to the limit (n→`), and using the spectral radius formula, we get the expression
iAiv(X) on the right hand side, and the desired estimate~3.9! follows from this. LetB P M18 be
the corresponding element serving as a Segal Radon–Nikodym derivative~see Refs. 45 and 25!.
Returning to~3.8! and ~3.10!, we get

^W* ~AV!uXV&5^BVuXV&,

and this now holds for allX P M . SinceV is cyclic forM , and therefore separating forM 8, we
have the identity

W* ~AV!5BV inH, ~3.11!

and withB P M 8 uniquely defined. Moreover the assignmentb:A°B defines a positive mapping
of M 8 into itself with the properties listed in the lemma. But the argument may be repeated with
the tensor factorMn (5 all the n by n complex matrices!, and we conclude thatb(A):5B is
indeedcompletely positive. SettingX51 in M we conclude thatv+b5v holds onM 8. h

WhenM , v andH are given as in the theorem, anda P End(M ), we shall say that the
completely positive mappingb:M 8→M 8 from Lemma III is thedual mapping, and the duality
may be expressed in the identity

v~Aa~X!!5v~b~A!X! ~3.12!

valid for;AP M 8 and;XP M .

IV. A COVARIANCE RELATION

The following is basic for the further analysis in the rest of the paper:
Lemma IV.1:Let (M ,v,H,V) be as in the theorem. Leta P End(M ) be given and letb be

the corresponding dual mapping ofM 8.
~i! Then there is a contractive operatorT:H→H such that
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TAW5b~A! ~4.1!

holds for allA P M 8 as an operator identity onH.
~ii ! Moreover we have the identityT5W* on H whenW* is viewed as a co-isometry.

Specifically, we have for allj P N(W* )5(WH)' thatTj50.
~iii ! WuQ5QWu whereQ P M is the support projection ofv5^Vu•V& onM .
Remark IV.2:SinceW is an isometry onH, H decomposes orthogonally asH5N(W* )

% WH, and ifT is contractive onH and extendingW* , then there must be a contractive operator
C:N(W* )→H such that

T~j11Wj2!5Cj11j2 ~4.2!

for ;j1 P N(W* ) and;j2 P H. ~We will show below that, in this case, in fact this operatorC
will be zero.!

Proof of Lemma IV.1:RecallW is the isometry onH given by

W~XV!:5a~X!V, ;XPM . ~4.3!

To show that a contractive operatorT can be found subject to~4.1!, it is enough to check that the
estimate

ib~A!ji<iAWji ~4.4!

holds forA P M 8 and j P H. SinceV is cyclic, we may restrict to vectorsj of the form
j5XV for X P M . Then

ib~A!XVi25v~~b~A!X!*b~A!X!

5v~b~A!*b~A!X*X!

<v~b~A*A!X*X!

5v~A*Aa~X*X!!

5v~A*Aa~X!*a~X!!

5v~~Aa~X!!*Aa~X!!

5iAW~XV!i2,

which is the desired estimate~4.4!. Note we arenot claiming that

M 8WH5 span$AWj : AP M 8,j P H%

is a dense subspace inH, but T is defined on this subspace by

TAWj:5b~A!j;APM 8,;jPH ~4.5!

and then extended trivially on the orthogonal complement inH. This is the desired conclusion
~4.1! from ~i!.

Proof of (ii): The assertion in~ii ! of Lemma IV is that the contractive operatorC from ~4.2!
which defines the extensionT of W* must be the zero operator. To prove this, letj1 P M (W* ),
j2 P H, ij2i51, andp P C, be given. Using the contractive property, we get

iTj1i212Re~p^Tj1uj2&!<ij1i2.
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Since this holds for;p P C, we conclude thatTj150. Butj1 P N(W* ), soTj15Cj150 which
is the desired conclusion in~ii !.

Part~iii ! of the lemma for the unitary part of the Wold decomposition follows from the results
in Section VI below.

Definitions IV.3:Let M , v, H, V be as stated, and leta P End(M ) satisfyv+a5v. Let
b:M 8→M 8 be the dual completely positive mapping on the commutantM 8. We say that the
system isstrongly ergodicif the only normal functionalsw onM 8 satisfying

w~b~A!!5w~A! for ;APM 8 ~4.6!

are of the form

w~A!5const.3v~A!, ;APM 8. ~4.7!

We say that the systemM , v, a is ergodic if it is as specified, and if the subalgebra

Ma5$XPM :a~X!5X% ~4.8!

is one-dimensional, i.e., if it is of the formMa5C1 where 1 is the identity element inM .
The following result relates the concepts and definitions above:
Lemma IV.4:Let (M ,v,H,V) anda P End(M ) be as specified: in particular,v+a5v on

M is assumed. Suppose the system is in reduced form, and also that it is strongly ergodic. Then it
follows that it is ergodic.

Proof: Let b:M 8→M 8 be the dual completely positive mapping on the commutantM 8, and
let X P Ma be given. Then define the functionalwX onM 8 by

wX~A!5v~XA!, ;APM 8.

We then have~4.6! satisfied as

wX~b~A!!5v~Xb~A!!5v~a~X!A!5v~XA!5wX~A!, ;APM 8.

Since the system is assumed strongly ergodic, it follows thatwX satisfies~4.7!, and in fact

wX~A!5v~XA!5v~X!v~A! for ;APM 8.

Introducing the support projectionQ P M , i.e.,Q is the projection onH onto the closed subspace
@M 8V#,H, we conclude that

QXQ5v~X!Q.

Applying ak, k51,2, . . . tothis, we get

ak~Q!Xak~Q!5v~X!ak~Q!,

and passing to the limitk→`,

Q`XQ`5v~X!Q` . ~4.9!

Since the system is in reduced form, we haveQ`51, so the last formula~4.9! amounts to the
assertionX P C1. We have shown thatMa5C1 which is the desired conclusion, i.e., (a,M ) is
ergodic. h
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V. AN EXAMPLE

The present paper was motivated by our earlier study of endomorphisms ofB(H), Refs. 6
and 7 and we found that the methods had potential also for the case whenB(H) is replaced with
a general von Neumann factor~see Refs. 2 and 3!.

The following result shows that, for the example in Proposition I, the above definitions are
closely connected~but, of course, for the general case of an endomorphism of a von Neumann
algebra, the concepts are distinct!.

Proposition V.1:Let p P Rep(O n ,H) be a cyclic representation and suppose it is periodic of
periodk P $0,1,2, . . .%. Let ak be the induced endomorphism from Proposition I.1, i.e.,

akPEnd~p~sk~O n!!9! ~5.1!

as specified in~1.4!. Then the following three conditions are equivalent:
~i! ak is strongly ergodic onMk :5p(sk(O n))9.
~ii ! p is irreducible, i.e.,p(O n)85C1.
~iii ! The endomorphismap P End(B(H)) given by

ap~A!:5(
i51

n

p~si !Ap~si* !, ;APB~H! ~5.2!

is ergodic.
Proof: The proof of this result is contained in Ref. 7 Section 6, and Lemma 7.8, and the

present paper is motivated by this important special case. Starting withak as in ~i! above and a
cyclic vectorV P H satisfying~1.6!, we define the statev5^Vu•V&. Since the equivalence~ii !
⇔ ~iii ! is straightforward, we consider statesw such that forl P R1 we have

lw~X*X!<v~X*X! for ;XPO n .

Applying this to elementsX of the form

(
i
ci~p~sk~si* !!2Li* !

~as well as higher order monomials! we find that the GNS-representationpw of O n is also periodic
of period k, and the restricted statewuAk

is b(•) invariant whereb ~as in ~1.7!! is given by

b(A)5( iL iALi* , ;A P Ak5p(sk(O n))85Mk8 . The equivalence~i! ⇔ ~ii ! follows from this. In
fact Ref. 7, Section 6 shows that, up to scale, there is a uniqueb-invariant linear functional on
Ak , not just a unique~up to scale! positivefunctional.

VI. EIGENVECTORS IN H AND EIGENELEMENTS IN M

We now return to the general case, and focus on the interplay between the Hilbert space and
the von Neumann algebra in connection with our spectral theory.

Proposition VI.1:Let a P End(M ) be given, and letM , v,H, V be as specified in Theorem
Theorem 3.1. The system is assumed strongly ergodic. In particular, we havev+a5v onM , and
an isometryW onH given by

W~XV!5a~X!V for XPM . ~6.1!

Let j1 P H, j1 Þ 0, be given such that, for somel P C, ulu51, we haveWj15lj1 . Then it
follows that there is anX1 P M such thata(X1)5lX1 , X1V5j1 andiX1i<ij1i .
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Remark VI.2:Let a, M , v, W, H, V be as stated in the proposition. In addition to the
assumption of strong ergodicity, suppose also that the system is in reduced form. Then for every
l P s(W)ùT, we havel̄ P s(W), and the elementXP M , satisfyingXV5j1 anda(X)5lX, for
a solution toWj15lj1 , may be chosenunitary, i.e., X*X5XX*51. To see this, note that a
solutionX as in the proposition must also satisfya(X*X)5X*X anda(XX* )5XX* , but the
only fixed points fora areC1.

Proof of Proposition VI.1:It is no essential restriction to assumeij1i51 for the given
eigenvector. Let

K:5$XPM :iXi<1, XV5j1% ~6.2!

and note that this set isw* -compact and convex inM . Our first goal is to show thatK is
non-empty. The operatorT from Lemma IV satisfiesTWj15j1 , and sinceWj15lj1 , we get
Tj15l̄j1 . SinceiTi<1, this implies thatT* j15lj1 . We claim that the statew(•):5^j1u•j1& is
b-invariant onM 8 whenb denotes thedual completely positive mappingon M 8. Indeed, letA
P M 8, and use Lemma IV again as follows

w~b~A!!5^j1uTAWj1&5^T* j1uAWj1&5^lj1ulAj1&5ulu2^j1uAj1&5w~A!

and this is the desired invariance onM 8 for the statew5^j1u•j1&; i.e., w+b5w holds onM 8.
But the system is assumed strongly ergodic and we conclude that the two statesw and
v5^Vu•V& must agree onM 8. Specifically

^j1uAj1&5^VuAV& ~6.3!

and iAVi5iAj1i holds for allA P M 8. The mappingAV°Aj1 is therefore a well defined
isometry from the subspace@M 8V#5QH intoH and it commutes withM 8. From a theorem of
Krein and Phillips~see Refs. 46, 47 and 48! we conclude that there is a contractive extension
X:H→H of the partial isometry, defined initially only onQ(H), and the extension may be
chosen to also commute withM 8. We haveX P M 95M , iXi<1, andXV5j1 . So X is an
element in the setK. But this set is also invariant under the mappingl21a(•), i.e., l21a(X)
P K for all X P K. To see that l21a(X) P K, note that
l21a(X)V5l21W(XV)5l21Wj15l21lj15j1 for all X P K. We now apply the Schauder-
Tychonoff fixed-point theorem to the restrictionl21a(•)uK ~see Ref. 49 pp. 161–163 and Ref. 50
pp. 453–456! and conclude the existence of someX1 P K such thatl21a(X1)5X1 , and it is clear
that this solutionX1 has the properties which are listed in the conclusion of the proposition.

To apply the fixed-point theorem we must check of course thata(•) is w* -continuous on
K. In the event thata is already normal at the outset, this is automatic. From Refs. 6 and 4 and
5 we know that ifM is type I then the endomorphisma will automatically be normal.

For the general case, we proceed as follows: Let$Xj% be an indexed net of elements inK such
thatXj→X in thew* -topology. Then we must show that for allj, h P H,

^jua~Xj !h& →
j→`

^jua~X!h&. ~6.4!

This is easy in the event thath P R(W), i.e.,h5Wz for somez P H. For then

a~Xj !h5a~Xj !Wz5WXjz,

and ~as j→`) we have,

^jua~Xj !h&5^W* juXjz&→^W* juXz&5^juWXz&5^jua~X!Wz&5^jua~X!h&

which is the asserted convergence~6.4!, in this special case.
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The remaining cases may be reduced to checking vectorsh P N(W* ), and using the von
Neumann BT-theorem~see Ref. 51 p. 106!. We may represent the vectorh in the form
h5ACV whereA P M 8 andC is an ~unbounded! operator affiliated withM 8. Since eachXj

P K, we get

a~Xj !h5a~Xj !ACV5ACa~Xj !V5ACWXjV5ACWj15lACj1

and this last vector is independent of the indexj for the net. So there is no convergence problem
in this case. h

VII. PROOFS

In this section we return to the proof of Theorem III.1.
Proof of Theorem III.1:Let the system (M ,v,H,V) be given as in the statement of the

theorem. It is assumed that

v5^Vu•V& satisfiesv+a5v on M , ~7.1!

and thata is strongly ergodic. Hencea induces an isometry onH given by~6.1!. We must show
that every

jPHu5ùk51
` WkH, ~7.2!

iji51 with spectral measurem has a generalized eigenfunction expansion as stated in~3.4! of the
theorem, and given by someL`-function,b(•):T→M , such thatz°b(z)V is a measurable field
of generalized eigenvectors for the unitary operatorWuHu

~restricted to thej-cyclic subspace, of
course!. Moreover the assertion is that the measurable fieldb(•) with values inM can be chosen
such that

a~b~z!!5zb~z!, a.e. zPT. ~7.3!

Recall that ifj is in fact an eigenvector ofW, then the result follows from Proposition VI above.
It remains therefore to consider only the case where the spectral measurem(•) of j is continuous
on T. From the spectral theorem, we may choose a generalized eigenfunction expansion
$v(z)%zPT in the form

E
T
^v~z!uj&v~z!dm~z!5j. ~7.4!

The compact convex setK corresponding to the one~6.2! above will now be a subset of elements
in L`(T,M ) such thatX(z)V5v(z) a.e. z,iX(•)iL`<1. If X(•) is in K, then the element
Y(z):5z21a(X(z)) will also be inK and the Schauder–Tychonoff theorem49 applies provided we
check thatK Þ B. But we have the fieldv(•) from ~7.4!, and the functionalw onM 8 may be
defined now as follows: forA P M 8, set

w~A!:5E
T
^v~z!uAv~z!&dm~z!. ~7.5!

Let b:M 8→M 8 be the completely positive mapping which is dual toa onM . Then

w~b~A!!5E ^v~z!ub~A!v~z!&dm~z!
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5E ^v~z!uTAWv~z!&dm~z!

5E ^zv~z!uzAv~z!&dm~z!

5E ^v~z!uAv~z!&dm~z!

5w~A!,

where Lemma IV was used again in line two of the calculation. Using the strong ergodicity, we get
that the mapping~for A P M 8):

1^AV°Av~z!

is isometric from a subspace inL2(T,H) into L2(T,H), and it commutes with the action of
L`(T)^M 8. We extend it~using Krein’s theorem, see Refs. 47 and 46! to a contractive mapping
of L2(T,H) commuting with the same algebra. But the extended mapping is then an element in
L`(T,M ); i.e., it is given as an operator onL2(T,H) by j°j8 wherej8(z)5X(z)j(z), a.e.z
P T, andX:T→M is a vector valuedL`-function onT. SinceX(z)V5v(z) a.e. onT, we
conclude thatX is an element in the setK. The fixed-point theorem applies, and the proof is
concluded. h

VIII. INVARIANTS

Let a P End(M ), and letM be represented on a Hilbert spaceH with cyclic vectorV, such
that

v:5^Vu•V& satisfiesv+a5v on M , ~8.1!

and suppose the system is in reduced form. LetW:H→H be the isometry,

W~XV!:5a~X!V, ;XPM , ~8.2!

and let

W5Wu%Ws ~8.3!

be the corresponding Wold decomposition withWu ~resp.,Ws) the unitary~resp., the shift! part.
For the spectrum we haves(W)ùT5s(Wu), and we now show that this set is aconjugacy
invariant.

Corollary VIII.1: Let M be a von Neumann algebra on a Hilbert spaceH, and leta1 ,a2

P End(M ) be as specified above; i.e., we assume there are cyclic vectorsV1 , V2 inH such that
v i5^V i u•V i& satisfyv i+a i5v i ( i51,2), and we assume both are strongly ergodic. LetW1 and
W2 be the corresponding isometries. Ifa1 anda2 are conjugate, then it follows that

s~W1!ùT5s~W2!ùT. ~8.4!

Proof: Let g P Aut(M ) be such thata25g+a1+g21, and letl1 P s(W1)ùT. Let j1 P H

satisfy ij1i51, W1j15l1j1 . By Proposition VI, there is anX1 P M such thatiX1i<1,
X1V15j1 , and a1(X1)5l1X1 . It follows that then a2(g(X1))5l1g(X1) and setting
j25g(X1)V2 , we getW2j25l1j2 . We claim thatj2 Þ 0, sol1 P s(W2)ùT, proving that the
two setss(Wi)ùT ( i51,2) must coincide. From Lemma 4.4 we conclude that both systems are
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in fact ergodic. Froma1(X1)5l1X1 we geta1(X1*X1)5X1*X1 so X1*X1 must be inC1. But
v1(X1*X1)51 from the construction. HenceX1*X151; i.e., X1 is an isometry. But then
g(X1)* g(X1)51, so

ij2i25v2~g~X1!* g~X1!!51

which was the desired property.
For the continuous spectrum the argument is very similar. Letd,s(W1)ùT be a Borel set of

positive spectral measure relative to some vectorj1 P H, ij1i51. From Theorem III, we get an
M -valued function onT, b(z) such thata1(b(z))5zb(z), andb(z)* b(z)51 for all z in the
subsetd,T. But then

a2~g~b~z!!!5zg~b~z!!, ~8.5!

and the integral resolution~3.4! from Theorem III yields a vectorÞ 0 in the spectral subspace of
the unitary part ofW2 corresponding to the same setd. It follows thats(W1)ùT5s(W2)ùT
which is the conclusion in the corollary. h

IX. TWO SUBGROUPS OF THE TORUS T

We now return to the duality between the systems (b,M 8) and (a,M ) wherea P End(M ) is
given andb is the dual mapping inM 8. We show that there is a spectral group for each of the two
systems, and that theb-group is a subgroup of thea-group ~insideT).

Theorem IX.1:Let a P End(M ) whereM is a von Neumann algebra represented on a Hilbert
spaceH with cyclic vectorV such that the corresponding statev5^Vu•V& satisfiesv + a5v on
M . Assume the system is both in reduced form and also strongly ergodic. LetW be the associated
isometry~see~8.2! for definition!, and let

S:5s~W!ùT. ~9.1!

Then we have the following properties satisfied:
~i!

S5$lPT:'XPM , X uniitary, s.t.a~X!5lX%. ~9.2!

~ii ! Defining

G5$XPM :X unitary, 'lPSs.t.a~X!5lX%, ~9.3!

then for eachl P S the correspondingX P G is unique up to scale, i.e., two solutionsX1 , X2 in
G corresponding to the samel P Smust be related byX25zX1 for somez P T.

~iii ! S is a group.
~iv! The assignment

~lPS!°~XlPG! from S to G ~9.4!

is a co-cycle representation; i.e., when the assignment is specified, there is a mapping
z:S3X→T such that

z~l1l2 ,l3!z~l1 ,l2!5z~l1 ,l2l3!z~l2 ,l3! ;l1 ,l2 ,l3PS, ~9.5!

specifically

Xl1
Xl2

5z~l1 ,l2!Xl1l2
for l1 ,l2PS. ~9.6!
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~v! The isometryW from ~8.2! depends on the choice of cyclic vectorV, butS5s(W)ùT is
independent of the choice ofV.

~vi! Let b be the dual completely positive mapping from Lemma IV.1, i.e.,b:M 8→M 8
satisfying

v~b~A!X!5v~Aa~X!!

for ;A P M 8 and;X P M whereM 8 denotes the commutant. Define

S~b!5$lPT:'APM 8s.t.b~A!5lA and A*AQ5AA*Q5Q% ~9.7!

whereQ P M is the support projection ofv onM . ThenS(b) is a subgroup of the groupS in
~9.1!.

Proof: ~i!–~ii ! First note that ifl P T anda(X)5lX for someX P M , thenj5XV in H
satisfiesWj5lj. So ifj Þ 0 inH, then it follows thatl P s(W). Sincel P T by assumption, we
havel in the spectrum of the unitary partWu from the Wold decomposition~8.3! ofW. ButX can
be chosenunitary since bothX*X andXX* are in

Ma5$YPM :a~Y!5Y% ~9.8!

andMa5C1 from an application of Lemma IV. Hence pickX unitary, and note that then both
j15XV andj25X*V will be unit-vectors~in particularÞ 0), andWj15lj1 andWj25l̄j2 .
Hencel215l̄PS.

~iii ! If l1 , l2 P SandX1 , X2 P G are associated unitaries, then

a~X1X2!5a~X1!a~X2!5~l1l2!X1X2 .

SinceX1X2 is also a unitary inM , we conclude thatl1l2 P S, and the unitaryX1X2 may serve as
an associated element inG from ~9.3!.

~iv! The conclusions we stated in~iv! follow from the facts from~i!–~iii !, and a second
application of Lemma IV.4, specifically using that~see ~9.8!! Ma5C1. The existence of the
cocyclez:S3S→T amounts to making a central extensionG̃ from G in ~9.3! as follows:

G̃:5S3G, and ~l1 ,X1!•~l2 ,X2!5~l1l2 ,z~l1 ,l2!X1X2!. ~9.9!

Note that the cocycle property~9.5! for z is equivalent to the assignment~9.9! defining a group
multiplication on the setS3G.

~v! Since, forl P S5s(W)ùT, we may pick the eigenvectorsj for Wj5lj in the form
j5XV, with X P M unitary, anda(X)5lX; it follows thatXV1 Þ 0 for every other choiceof
cyclic vectorV1 in H, and the conclusion~v! follows from this.

~vi! Let S(b) be the set defined in~9.7!. From Ref. 52 Theorem 2.2, we conclude that
S(b) is a subgroup ofT ~with complex multiplication!. If Q is the support projection~from the
statement of~vi! above! then we apply Ref. 52 toQMQ and commutantM 8Q now acting on
QH. ~Note that Ref. 52 applies only to this restricted system, but not to the initially given global
system based ona P End(M ). The fact thatV is generally not separating is important.!

Let A P M 8 be such thatb(A)5lA andAA*Q5A*AQ5Q, andl P T. Then the vector
AV is also cyclic forM onH. Using Lemma IV.1~i! we get

T~AV!5TAWV5b~A!V5l~AV!.

But by ~ii ! in Lemma IV, we haveT5W* , so the vectorj5AV satisfiesW* j5lj, and therefore
Wj5l̄j. But this means thatl̄5l21 P S ~the group from~iii ! above!, and thereforel P Sby ~iii !.
We have proved thatS(b) is a group, and in fact a subgroup ofS. h
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X. SHIFTS ON VON NEUMANN ALGEBRAS

In Proposition II we introduced, for a givena P End(M ) with a cyclic vectorV such that
v5^Vu•V& satisfiesv + a5v, a canonical isometryW on the Hilbert space on whichM is
represented. We showed in Theorem IX.1 that the isometryW, its unitary part, and the corre-
sponding spectral groups are independent of the choice of cyclic vector. In Proposition II.2 we
showed thata must be a shift onM if W is an essential shift onH. Here we show that ifa is
assumed strongly ergodic, then the converse implication also holds.

Corollary X.1:LetM be a von Neumann algebra with cyclic vectorV in a Hilbert space, and
let a P End(M ). Suppose the statev5^Vu•V& satisfiesv + a5v onM and furthermore that the
system is in reduced form, anda is strongly ergodic. Ifa is a shift in the sense of Powers, then
it follows that the spaceHu from the Wold decomposition isone-dimensional.

Proof: We have already noted that the converse implication holds as well. We are now
assuming that

M`5ùk51
` ak~M ! ~10.1!

is one-dimensional. LetW be the induced isometry from~8.2!, and let

Hu5ùk51
` WkH. ~10.2!

ThenWuHu
is unitary, andauM` is an automorphism. We now show thatHu is one-dimensional.

Suppose firstl is in the point spectrum ofWuHu
. Then it follows from Proposition VI that for

someX P M we havea(X)5lX. But thenX P M`5C1 and we conclude thatl51. Suppose
insteadj P Hu has continuous spectrum relative to the spectral resolution ofWuHu

. From Theo-
rem Theorem 3.1 we then get a measurable fieldT→M , x°b(z) P M on the support of the
spectral measure forj such thata(b(z))5zb(z). But b(z) P M`5C1 so there can be no point in
the support other thanz51. Hence we need only show that

H0 :5$jPH:Wj5j% ~10.3!

is one-dimensional. Ifj0 P H0 is given, we get from Proposition VI.1 an elementX0 P Ma ~i.e.,
a(X0)5X0) such thatX0V5j0 . But we proved, in Lemma IV.4, thata must be ergodic, so
X0 P C1, andj05X0V P CV. This ends the proof thatHu5CV which is the asserted conclusion.

h

ACKNOWLEDGMENTS

Research supported by the U. S. National Science Foundation.
This paper continued from joint earlier work between us and coauthors O. Bratteli and G. L.

Price. Many discussions with them, and with colleagues Professor W. B. Arveson, Professor M.
Laca, and Professor R. Werner are gratefully acknowledged.

1R. T. Powers, ‘‘An index theory for semigroups of* -endomorphisms ofB(H) and type II1 factors,’’ Can. J. Math.40,
86–114~1988!.

2R. T. Powers and G. L. Price, ‘‘Binary shifts on the hyperfinite II1 factor,’’ Contemp. Math.~Am. Math. Soc.! 145,
453–464~1993!.

3R. T. Powers and G. L. Price, ‘‘Cocycle conjugacy classes of shifts on the hyperfinite II1 factor,’’ J. Funct. Anal.121,
275–295~1994!.

4M. Laca, ‘‘Endomorphisms ofB(H) and Cuntz algebras,’’ J. Operator Theory30, 85–108~1993!.
5M. Laca, ‘‘Gauge invariant states ofO` , ’’ J. Operator Theory30, 381–396~1993!.
6O. Bratteli, P. E. T. Jorgensen, and G. L. Price, ‘‘Endomorphisms ofB(H), ’’ in Proceedings Symposia in Pure
Mathematics, edited by I. E. Segal~American Mathematical Society, Providence, to appear!.

7O. Bratteli and P. E. T. Jorgensen, ‘‘Endomorphisms ofB(H); II,’’ preprint, 1995, The University of Iowa.

1536 Palle E. T. Jorgensen: A duality for endomorphisms of von Neumann algebras

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



8R. T. Powers, ‘‘New examples of continuous spatial semigroups of* -endomorphisms ofB(H), ’’ preprint, 1993,
University of Pennsylvania.

9P. J. Stacey, ‘‘Product shifts onB(H), ’’ Proc. Am. Math. Soc.113, 955–963~1991!.
10W. Arveson, ‘‘Continuous analogues of Fock space I,’’ Mem. Am. Math. Soc.80 ~1989!, No. 409.
11W. Arveson and A. Kishimoto, ‘‘A note on extensions of semigroups of* -endomorphisms,’’ Proc. Am. Math. Soc.116,
769–774~1992!.

12V. F. R. Jones, ‘‘On a family of almost commuting endomorphisms,’’ J. Funct. Anal.122, 84–90~1994!.
13R. Longo, ‘‘A duality for Hopf algebras and for subfactors; I,’’ Comm. Math. Phys.159, 133–150~1994!.
14M. Enomoto, M. Nagisa, Y. Watatani, and H. Yoshida, ‘‘Relative commutant algebras of Powers’ binary shifts on the
hyperfinite II1 factor,’’ Math. Scand.68, 115–130~1991!.

15H. Araki and E. J. Woods, ‘‘Complete Boolean algebras of type I factors,’’ Publ. Res. Inst. Math. Sci.2, 157–242~1966!.
16H. Araki, A. L. Carey, and D. E. Evans, ‘‘OnO n11 ,’’ J. Operator Theory12, 247–264~1984!.
17O. Bratteli, G. A. Elliott, D. E. Evans, and A. Kishimoto, ‘‘Quasi-product actions of a compact abelian group on a
C* -algebra,’’ Tohoku Math. J.41~2!, 133–161~1989!.

18O. Bratteli, D. E. Evans, F. M. Goodman, and P. E. T. Jorgensen, ‘‘A dichotomy for derivations onO n , ’’ Publ. Res. Inst.
Math. Sci.22, 103–117~1986!.

19L. A. Coburn, ‘‘TheC* -algebra generated by an isometry,’’ Bull. Am. Math. Soc.73, 722–726~1967!.
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The purpose of this article is to derive a superposition formula for the pseudouni-
tary matrix Riccati equation of dimensionN>2. The superposition formula will be
written in closed form in terms of five particular solutions satisfying certain well-
specified conditions defining a fundamental set. Examples will be studied in order
to show how the superposition formula works and how it can be used in numerical
calculations. ©1996 American Institute of Physics.@S0022-2488~96!01703-8#

I. INTRODUCTION

Let us consider a system ofn first-order~real or complex! ordinary differential equations

ym5hm~y1,...,yn,t !, 1<m<n. ~1!

If the system is linear, then we can write the general solution as a linear combination ofn
particular solutions.

A generalization of the concept of linear superposition is that of a fundamental set of solu-
tions. Thus, the system~1! has a fundamental set of solutions if its general solution can be written
as a function ofm particular solutions andn significant constants. Using vector notation, we write

yW ~ t !5FW „yW 1~ t !,...,yWm~ t !,c1 ,...,cn…. ~2!

If the system~1! is nonlinear and formula~2! exists, we shall call it a ‘‘nonlinear superposition
formula.’’

Necessary and sufficient conditions for a fundamental set of solutions to exist for a system of
nonlinear ordinary differential equations~NLODE! were presented by Sophus Lie~see, e.g., Ref.
1! and can be summed up as follows.

The system~1! allows a superposition formula~SF! ~2! if and only if:
~1! The system has the form

ym5 (
k51

r

Zk~ t !hk
m~yW !. ~3!

~2! The vector fields

Xk5 (
m51

n

hk
m~yW !

]

]ym , 1<k<r , ~4!

generate a finite-dimensional Lie algebraL:

@Xk , Xl #5(
j51

r

Ckl
j Xj , r,`. ~5!

The number of solutionsm in a fundamental set then satisfies
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n•m>r . ~6!

For n51 only one nonlinear equation satisfies Lie’s criterion, namely the Riccati equation

ẏ5Z1~ t !1Z2~ t !y1Z3~ t !y
2. ~7!

The SF in this case~well known long before Lie’s work! is

y5
cy2~y12y3!2y1~y22y3!

c~y12y3!2~y22y3!
. ~8!

For n>2 the situation is incomparably richer and a classification of systems of NLODEs with
SFs is equivalent to a classification of Lie algebras that can be realized by vector fields inn
dimensions@see Eq.~4!#.

Such a classification, without further restrictions, is an unmanagable task. What has been
performed is a classification of all indecomposable systems of NLODEs with SFs. These are
systems from which it is not possible to split off a subsystem that itself has a SF. The classification
of indecomposable systems of NLODEs with SFs was related2 to a solved problem, namely that of
classifying transitive primitive Lie algebras.3–6 Many specific indecomposable systems of
NLODEs with SFs were constructed.7–11

In particular, it was shown2 that various types of matrix Riccati equations~MRE!

Ẇ5A1WB1CW1WDW, ~9!

WPFm3 l , APFm3 l , BPFl3 l , CPFm3m, DPFl3m, whereF5C or R andA,B,C,D are given
matrix functions oft, do have a nonlinear SF. Equation~9! is associated with a pair of Lie
algebras,L0#L, whereL is simple andL0 is an irreducible maximal parabolic subalgebra ofL.
We also consider the corresponding Lie groupsG05expL0, G5expL, and the homogeneous
spaceM;G/G0. The Lie groupG will act transitively and primitively onM . The groupG0 is the
isotropy group of the origin inM . The simple Lie algebraL is the one figuring in Lie’s theorem,
L0 is the subalgebra of fields vanishing at the origin.

The SF~2! then has the general form

W~ t !5g~ t !•U, ~10!

whereU is a constant matrix~representing the initial conditions!. Equation~10! represents the
nonlinear action of the groupG on the spaceM . WhenM is realized as a Grasmannian of
k-planes, the components ofW(t) are identified as affine coordinates onM .

In particular, for MREs~9!, the formula~10! reduces to

W~ t !5„g11~ t !U1g12~ t !…„g21~ t !U1g22~ t !…
21, ~11!

wheregmn are matrices of the appropriate dimensions.
The above considerations bring out the physical interest of NLODEs with SFs. Lie’s original

result essentially states that the right-hand side of Eq.~1! must lie in a finite-dimensional Lie
algebra@see Eq.~4!#. This condition is imposed12 on Bäcklund transformations in the theory of
completely integrable infinite-dimensional Hamiltonian systems.13 For equations in the AKNS
hierarchy,14 the algebra is sl~2,R! or sl~2,C! and indeed the corresponding Ba¨cklund transforma-
tions have the form of Riccati equations~in each independent variable!.

The MREs occur as Ba¨cklund transformations for multifield equations, such as those occur-
ring in the s-model15,16 or n-dimensional generalizations of the sine-Gordon equations.17 The
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particular type of MRE that occurs depends on whichs-model is considered. In the case under
consideration, the matricesW, subject to the MRE~9!, will be pseudo-Hermitian@see Eq.~15!
below#, certainly a case of interest in the context of unitarys-models.

The MREs related to the Lie groups SL~N,R! and SP~2N,R! were studied in earlier
publications.7–9

The purpose of this article is to obtain SFs for the pseudounitary MRE, i.e., the case when we
takeG as the group SU(N,N).

II. PSEUDOUNITARY MATRIX RICCATI EQUATIONS AND FUNDAMENTAL SETS OF
SOLUTIONS

A. The equation

Let us realize the Lie algebra su(N,N) and the Lie group SU(N,N) by matricesX and g,
satisfying

XK1KX†50, gKg†5K, K5S 0 I

I 0D ,
XPsl~2N,C!, gPSL~2N,C!, ~12!

respectively, where the cross denotes Hermitian conjugation.
Let us consider the maximal parabolic subgroupGp#SU(N,N) of matricesgp satisfying~12!

and having the form

gp5S g11 0

g21 g22
D , ~13!

and construct the homogeneous space

M;G/Gp . ~14!

We can do this in terms of a Grassmanian of isotropic planes with affine coordinates given by
the matrixW, satisfying

W1W†50, WPCN3N. ~15!

The action of SU(N,N) onM is then given by

W85~g11W1g12!~g21W1g22!
21 ~16!

and is both transitive and primitive. The origin inM is the pointW50 and its isotropy group is
indeedGp of Eq. ~13!.

We can also use redundant ‘‘homogeneous’’ coordinates onM ,

SXYD;SXG0

YG0
D , X†Y1Y†X50, ~17!

X,YPCN3N, G0PGL~N,C!, ~18!

in which the action of SU(N,N) is linear:

SX8
Y8D 5S g11 g12

g21 g22
D SXYD . ~19!

1541S. Lafortune and P. Winternitz: Pseudounitary matrix Riccati equations

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



We have

W5XY21, detYÞ0. ~20!

Following the general theory2 as outlined in the Introduction, we now write the pseudounitary
matrix Riccati equation and the corresponding general form of the superposition formula, respec-
tively, as

Ẇ~ t !5A1WB1B†W1WDW, ~21!

where

W1W†50, A1A†50, D1D†50, A,B,D,WPCN3N ~22!

and

W5~g11U1g12!~g21U1g22!
21, ~23!

where

U1U†50, g12g11
† 1g11g12

† 50, g22g21
† 1g21g22

† 50, g12g21
† 1g11g22

† 5I N . ~24!

The matrixU is constant, the others can be functions oft.
Equation~23! turns into a superposition formula, once the coefficientsgik(t) are expressed in

terms ofm known solutions. Let us first show that this can be done and that forN>2 we have
m55.

B. The fundamental set of solutions

Lie’s lower bound~6! on the numberm of solutions in a fundamental set in the present case
boils down to the following. We can view Eq.~23! for given solutionsWi and the corresponding
initial conditions Ui as algebraic equations for the unknownsgik(t). Their number is
r54N2215dim@SU(N,N)#. Each solution providesn5N2 real equations for these unknowns.
Thus, Eq.~6! impliesm>4 for N>2 andm>3 for N51. The caseN51 corresponds to a scalar
Riccati equation for which the conditionm>3 is saturated~we havem53!. ForN>2 this is not
so, i.e., the 4N2 equations given by four solutions are not linearly independent and hence do not
determineg(t) unambiguously.

In general,m is the minimal number of initial conditionsUi ~and hence of solutionsWi! for
which the joint stabilizer in the groupG is the identity transformation. In the case under consid-
eration, we require that the equations

Ui5~g11Ui1g12!~g21Ui1g22!
21, i51,...,m, ~25!

should imply

g115g225lI ,
~26!

g125g2150.

Let us note that the SU(N,N) matrix g(t) can be replaced by

g8~ t !5g~ t !h21, hPSU~N,N!, ~27!

whereh is a constant matrix. We can useh to standardize the initial data matricesUi into some
convenient form.
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Theorem 1:A fundamental set of solutions for the pseudounitary matrix Riccati equation~21!
with N>2 consists of five solutions with initial condition matricesUi 5 2Ui

† satisfying

~1!

det~U12Uk!Þ0, k52,...,5,
~28!

det~U22Uk!Þ0, k53,4,5.

~2! The matrix is positive definite.

i ~U32U2!~U32U1!
21~U12U2![~h0

†h0!
21,

~29!
h0PCN3N, deth0Þ0.

~3! The matrix anharmonic ratios

Ra5~Ua2U2!~Ua2U1!
21~U32U1!~U32U2!

21, a54,5, ~30!

do not have any common nontrivial invariant eigenspaces and all eigenvalues ofR4 are distinct.
Proof: If the above conditions are satisfied, the matrix,hPSU(N,N)

h5S h1h0 0

0 h1h0
D S I 2U2

2 i ~U32U2!~U32U1!
21 i ~U32U2!~U32U1!

21U1
D , ~31!

used asg in ~16!, will transformU1 ,...,U5 into

U1
s→`, U2

s50, U3
s5 i I N ,

~32!
U4
s5 iL5 i diag~l1 ,...,lN!, U5

s5 iV,

where iV is skew-Hermitian and has no common invariant subspaces withL, i.e., is not block
diagonal. The unitary matrixh1 is the one that diagonalizes the skew-Hermitian matrixih0R4h0

21

@R4 is defined by Eq.~30!#.
Now, let us show that the joint stabilizer of the matrices~32! is only the identity transforma-

tion in Eq. ~25!. Indeed, Eq.~25! for Ui
s, i51,2,3, impliesg2150, g1250, g225g11. For U4

s we
obtain g11 5 diag(eifl,...,eifN), 0<fi,2p. Finally, the relationg11V5Vg11 implies g115lI N
QED.

Comment:In order to be completely general, we should chooseU3
s5 i I p,q with p,qPZ. and

p1q5N. With this choice, the condition~29! is no longer necessary. The number of solutions
needed is still five. Theorem 1, thus modified, defines a dense subset of the set of 5-tuples of
skew-Hermitian matrices.

III. THE SUPERPOSITION FORMULA

We can derive the superposition formula, following the steps outlined in Theorem 1.
Let us assume that we know five solutions,W1(t),...,W5(t), corresponding to the initial data

Ui
s of Eq. ~32!. Using Eq.~23! we find

W15g11g21
21, W25g12g22

21, W35~ ig111g12!~ ig211g22!
21, ~33!

and hence
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W5@g11Ug11
211 iW2~W32W2!

21~ I2W3W1
21!#

3@W1
21g11Ug11

211 i ~W32W2!
21~ I2W3W1

21!#21. ~34!

In order to determineg11 we make use of the remaining two solutionsW4 andW5. From Eq.
~34! we have

g11Ug11
215 i ~ I2WW1

21!21~W2W2!~W32W2!
21~ I2W3W1

21![ iQ~W!. ~35!

We put

g115gsgd, ~36!

wheregd is some diagonal matrix andgs is a matrix that diagonalizesiQ(W4), i.e., its columns
are the eigenvectors ofiQ(W4). Hence,gs is known, up to a common factor for each column. This
ambiguity is absorbed into the matrixgd .

Finally, the diagonal matrixgd is determined from the last solution by solving the system of
linear algebraic equations

gdV5gs
21~ I2W5W1

21!21~W52W2!~W32W2!
21~ I2W3W1

21!gsgd . ~37!

Notice that we never need the solutionW1(t) that is singular fort50, but only the matrixW1
21(t)

that is well defined if we chooseW1
21~0!50.

We have arrived at the following result:
Theorem 2: The general solutionW(t) of the pseudounitary matrix Riccati equation~21! is

given by the superposition formula~34! in terms of five particular solutions, satisfying the initial
conditions specified in Theorem 1. The matrixg11 is given by Eq.~36! and the constant matrixU
is related to the initial condition matrixW~0! by a matrix linear fractional transformation with
constant coefficients.

Comment:If we choose the initial conditions forW1 ,...,W5 to satisfy Eq.~32!, then we have
directlyW(0)5U for any solutionW(t) that we wish to construct.

As mentioned above, we do not need the solutionW1(t), but its inverseV15W1
21. This

matrix satisfies a dual pseudounitary matrix Riccati equation, namely,

V̇52VAV2BV2VB†2D,
~38!

V1~0!50.

In homogeneous coordinates~17!, V1~0! andW1~0! correspond to (0
I ) and (I

0), respectively.
One possible application of the superposition formula~34! is to use it for numerical calcula-

tions. Thus, the needed five particular solutions can be generated numerically from well-chosen
initial conditions for a given pseudounitary matrix Riccati equation. The matrixg11(t) can then be
calculated once and for all and stored in a data bank. Then, we can calculate as many different
solutions as we wish, using Eq.~34!. The input solutions can be chosen to be smooth functions of
t for 0<t<tM , wheretM is some chosen finite time. For other values ofU, solutions may have
poles in the same region. The superposition formula will provide these singularities and make it
possible to pinpoint them with great precision. This procedure was adapted earlier18,19 for matrix
Riccati equations based on SL~2N,R! and SP~2N,R!.

Examples for SU(N,N) matrix Riccati equations will be considered in Sec. IV below.

IV. EXAMPLES

Let us consider the pseudounitary MRE~21!. The fundamental set of solutions forN>2 will
consist of five solutions. Let us choose the initial condition matrices to be
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W1
21~0!50, W2~0!50, W3~0!5 i I , W4~0!5 i diag~1,2,...,N!,

~39!

W5~0!5S 0 i 0

i 0 i

i 0 i

0 � i

i 0

D .

We then calculateQ(W4) of Eq. ~35! and use its eigenvectors as columns ofgs
21 @see Eq.~36!#.

The matrixgd is normalized so that we have (gd)1151.
The five solutions corresponding to these initial conditions will be found using a fourth-order

Runge–Kutta~R–K! algorithm. The MRE is rewritten in vector form

Ẇk5 f k~ t,W!, k51,...,N~N11!/2. ~40!

Here N(N11)/2 is the number of independent complex elements in the matrixW. One then
applies the Kutta–Simpson formula

Wk,i115Wk,i1
1
6~pk12qk12r k1sk!,

k51,...,N~N11!/2, ~41!

where

pk5h fk~ t i ,W i !, qk5h fk~ t i10.5h,W i10.5p!,

r k5h fk~ t i10.5h,W i10.5q!, sk5h fk~ t i1h,W i1r !,

h5t i112t i . ~42!

The vectorsW i andW i11 are the results of two consecutive iterationsi and i11, and their
components areWk,i andWk,i11, respectively. The incrementh is constant.

The first example corresponds to the following 232 coefficients

A5S 0 0

0
i

4
D , B5C†5S 0 2 1

2

1 2 3
4

D , D5S 0 0

0 i D . ~43!

Figure 1~a! shows the graph of the independent elements of one of the solutions of the
fundamental set obtained using the R–K method with an increment ofDt50.1 s. The initial
condition isW(0)5 i I . We note that the real part of the nondiagonal element is zero for allt. This
is because we have, in our particular case, the proprieties thatA*52A, D*52D, B*5B,
C*5C, andW* (0)52W(0). The MREthen givesW* (t)52W(t) so thatW(t) is a purely
imaginary matrix if its initial condition is one. We have also done the calculations for the initial
condition

W~0!5S 0 1

21 0D ~44!

using both methods: R–K and superposition. The agreement was found to be of four to eight
significant digits.
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FIG. 1. The independent elements of solutions obtained with coefficients~43!: Real part ofW12 and imaginary part ofW11,
W12, andW22. ~a! Runge–Kutta solution using incrementDt50.1 and initial conditionW(0)5 i I . ~b! Superposition
solution using incrementDt50.025 and initial conditionW(0)523i I . ~c! The same solution as~b! using increment
Dt50.00025.

1546 S. Lafortune and P. Winternitz: Pseudounitary matrix Riccati equations

J. Math. Phys., Vol. 37, No. 3, March 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Figure 1~b! shows a solution obtained using the superposition formula. The initial condition is
W(0)523i I and the increment isDt50.025 s. We note the singular point betweent50 s and
t51 s. In order to obtain the R–K solution after the singularity, we used the dual equation~38!
with initial conditionV(0)5(23i I )215( i /3)I whose solution does not show a singularity before
t51. We were then able to calculate the inverse of the R–K solution at a timet past the singu-
larity. The agreement with R–K is two to five significant digits for points before the singularity
~t<0.4 s! and one to five significant digits after~t>0.6 s!. Finally, Fig. 1~c! shows a closer look
at the singularity. Here the calculations were done usingDt50.00025. This graph makes it pos-
sible to locate the singularity aroundt50.485 s.

The next example, a 333 case, involves the following coefficients:

A5S 2 i 1 1

21 i sin 2t 1

21 21 i
D , B5C†5S 0 cos 2t 0

1 i 0

0 0 1
D , D5S 0 0 0

0 0 0

0 0 i
D . ~45!

Figure 2~a! shows some of the independent elements of the solutionW(t) found using the R–K
method with the initial conditionW(0)5 i I and an incrementDt50.01. The calculations were also
done with the initial condition

W~0!5S 0 1 0

21 0 1

0 21 0
D ~46!

using both methods: R–K and superposition. The agreement between the two methods was found
to be five to eight significant digits.

Figure 2~b! shows some of the independent elements of the solutionW(t) found using the
superposition method with initial conditionW(0)52 i I (Dt50.01). We note the singularity oc-
curring betweent50 s andt51 s. The same method as previously was used to compare our results
from both methods. The agreement before the singularity~t<0.6 s! is three to nine significant
digits compared to three to seven significant digits after~t>0.65 s!. Finally, Fig. 2~c! shows a
closer look at the singularity. Here the calculations were done usingDt50.001. This graph makes
it possible to locate the singularity aroundt50.624 s.

V. CONCLUSIONS

The main result of this paper is the SF~34! with g11(t) evaluated using Eqs.~35!–~37!.
The SF can be used to investigate properties of the solution space of a given pseudounitary

MRE.
In Sec. IV we have shown that the SF can also be used as a method for calculating solutions

numerically. One of the purposes of including these examples is to show that a set of five smooth
solutions, with no singularities on the considered interval of the real time axis, can be superposed
to produce singular solutions~see the poles on Figs. 1 and 2!. The SF makes it very easy to
pinpoint singularities of solutions occurring in real time. Indeed, we can use our data bank of
smooth solutions to approach a singularity from both sides with arbitrary precision.

Earlier studies of other types of matrix Riccati equations have shown that the SF becomes
particularly efficient for large matrices~N>10!, but this is not the place to illustrate the computer
science aspects of superposition formulas. Here, we have chosen the lowest meaningful dimen-
sions~N52,3! and one case with constant coefficients, the other with variable periodic ones.

We mention that MRE with constant coefficients@constant matricesA,B,D in Eq. ~21!# allow
for constant solutions, obtained by solving the algebraic equation
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FIG. 2. Some independent elements of solutions obtained with coefficients~45!: Real part ofW13 andW23 and imaginary
part ofW11, W12, andW23. ~a! Runge–Kutta solution using incrementDt50.01 and initial conditionW(0)5 i I . ~b!
Superposition solution using incrementDt50.01 and initial conditionW(0)52 i I . ~c! The same solution as~b! using
incrementDt50.001.
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A1WB1B†W1WDW50. ~47!

These can be used as input solutions in the SF. For instance, in the first example of Sec. IV, Eq.
~43!, the MRE has four different stationary solutions. However, only two of them, appropriately
chosen, satisfy conditions~28! of Theorem 1 and can be used in the SF. One of them,

W15
i

2
~231A13!S 1 0

0 1
2
D , ~48!

actually serves as a global attractor: fort→` all solutions converge to this constant one. This is
also demonstrated by our numerical calculation~see Fig. 1!.

Finally, we comment on physical applications of pseudounitary matrix Riccati equations. We
can perform a Cayley–Klein transformation

G5~ I1W!~ I2W!21 ~49!

and the matrixG is unitary, i.e., Eq.~15! implies

GG†5I . ~50!

The unitary matrixG then satisfies a related pseudounitary Riccati equation

Ġ5Ã1GB̃1C̃G1GD̃G ~51!

with

Ã5~A2B2B†1D !/2, B̃5~A1B2B†2D !/2,
~52!

C̃5~A2B1B†2D !/2, D̃5~A1B1B†1D !/2.

The Bäcklund transformations of the unitarys-model then have the form

]G

]x
5R11GS11T1G1GU1G,

]G

]y
5R21GS21T2G1GU2G, ~53!

where the model itself arises as a compatibility condition for the above two matrix Riccati equa-
tions. Our superposition formula Eq.~34! still applies even thoughG ~and all solutions! depend on
two independent variablesx,y.
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We generalize the use of the local scaling transformation developed by E. S. Kry-
achko and E. V. Luden˜a to molecules in order to deform density functions. The
connection with the Jacobian problem is clearly made, and we solve that problem
using a formalism introduced by J. Moser. As a consequence, we can control the
density information contained in a wave function, in some sense, at the same time
as we keep particular regularity and behavior assumptions in the wave function~in
particular concerning the symmetries of the wave function!. The principal aim of
the paper is to develop a correct mathematical background for further utilization in
connection with density functional theory. Theoretical implications and numerical
aspects are also discussed. ©1996 American Institute of Physics.@S0022-
2488~96!04301-7#

I. INTRODUCTION

This paper is motivated by the mathematical modelization, in molecular quantum chemistry,
of anN electron system for a molecule with fixed nuclei. TheN electron system is described by
the following HamiltonianH:

H52(
i51

N

D i1(
i51

N

v~r i !1 (
1< i, j<N

1

r i j
~1!

whereDi denotes the Laplacian with respect to thei th space variabler i , r i j5ur i2r j u, andv is the
external potential~real valued!.

This Hamiltonian acts onLA
2~R3N!, the space of square integrable complex valued functions

C~r1,...,rN! and where the indexA denotes the antisymmetry with respect to the variablesr iPR3.
Such a function is called astateor a wave functionin quantum chemistry~spin is omitted for
simplicity of presentation!.

More generally we denotei f ip5(* u f up)1/p andLp~Rn!5$f :Rn→C u i f ip,`%. Furthermore
H1~R3N!5$CPL2~R3N!u;i , ¹iCPL2~R3N!% andHA

1~R3N! is the restriction to antisymmetric func-
tions.Wedenote alsoiCiH1

2
5i Ci2

2 1 ( i i¹ iCi2
2.

For a stateC in HA
1~R3N! we define the energy

E@C#5^C,HC&, ~2!

where^.,.& denotes the scalar product onL2~R3N!. A fundamental problem in quantum chemistry
is to determineE0, the minimum of the energyE@C# for CPHA

1~R3N! with constraint̂ C,C&51.
To a stateCPLA

2~R3N! we associate itsdensityrC by

a!Electronic mail: boka@mip.ups.tlse.fr
b!Electronic mail: grebert@mip.ups.tlse.fr
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rC~r !5NE
R3~N21!

uC~r ,r2 ,...,rN!u2dr2•••drN ~3!

and we denoteC°r if r5rC .
Lieb proved in Ref. 1~like Harriman2! thatc°r is continuous fromHA

1~R3N! onto I1
N where

I 1
N5 H rPL1~R3!Ur>0, E r5N,r1/2PH1~R3!J . ~4!

This allows him to define~see Levy3 or Lieb1!

E@r#5 inf$E@C#uC°r,CPHA
1~R3N!% ~5!

which satisfies

E05 inf$E@r#urPI 1
N%. ~6!

So he obtained a mathematical formulation of the density functional theory introduced by Hohen-
berg and Kohn.4

In Ref. 5 we have obtained a parametrization of the set$C,C°r% by a decomposition theorem
of the wave functions~a generalization of the approach of Zumbach and Maschke6!. So we have
a formal way to consider the minimization given by formula~5!. However we do not have an
explicit formula forE@r#; thus the minimization~6! is still not easy.

In a series of articles~see Petkovet al.,7 Kryachko et al.8–12!, Kryachko and Luden˜a have
proposed and developed an alternative method, the local scaling transformation, based on defor-
mation of density functions.~See also March and Young.13! For instance, in Ref. 12, a first step
consists in considering the transverse problem to~5!, i.e., to minimize the energy with respect to
the density. More precisely, given two densitiesr0, r and a stateC0 such thatC0°r0, the
problem is to construct a deformation which transformsC0 into a stateCr of densityr and then
to minimize the energyE@Cr# with respect tor. If r1 realizes the minimum, one then computes
Cr1 the state of densityr1 which realized the minimumE@Cr1#. The second step is the minimi-
zation of the energy at fixed densityr1 ~starting from the wave functionCr1!. The algorithm is
then to iterate those two steps. In fact ifC0 is sufficiently closed to the exact state corresponding
to the minimumE0 thenE@Cr1# may already be a good approximation ofE0.

Note that if we are able to generate all the physical densities fromr0 with explicit deforma-
tions then the energyE@Cr# which depends onr andC0, corresponds to an exact density func-
tional whenC0, a generating state, is fixed.

Our aim in this paper is to obtain some deformations which transformC1 of densityr1, into
C0 a state of a given densityr0.

First we formalize mathematically the concept of deformation via the so-called Jacobian
problem. We denoteuDfu5udet(] f i /]xj )u the Jacobian off.

Definition I.1: Letr0 andr1 be two positive functions fromR
3 into R1. The Jacobian problem

associated tor0,r1 consists of finding a C1-diffeomorphismf:R3→R3 such that

;xPR3, r0~x!5uDf~x!ur1„f~x!…. ~7!

We then denoter05 f*r1.
Note that ifr05f*r1 andC1°r1 thenC05T̂ f~C1! solves our problem~i.e.,C0°r0!, where

T̂ f is the unitary operator onLA
2~R3N! defined by

T̂ f~C!~r1 ,...,rN!5)
i51

N

uDf~r i !u1/2C„f~r1!,...,f~rN!…. ~8!
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~This operator is introduced by Petkov, Stoitsov, and Kryachko7 for particularf.! In fact in our first
article5 we obtained for each densityr an explicit deformationfr from R3 onto @0,1#3 such that
fr*N5r ~in the measure sense!, where hereN denotes the constant density equal toN on @0,1#3.
Thus f5fr1

21ofr0 satisfiesr05f*r1. Note that it was one of the solutions proposed by Moser14 in
order to solve the Jacobian problem.

However, although this solution is explicit~up to the inversion offr1!, we do not control well
the regularity of the deformationfr when r has singularities~which is always the case for mo-
lecular systems15!, and we were not able to have more than two invariant points~see below! by
this method.

But in order to define the energyE[C]5^C,HC&, we want theH1 stability of the operator
T̂ f ; i.e., if C is in H1 then T̂ f~C! must be inH1.

Actually there exist several results concerning the Jacobian problem~see in particular Refs.
14, 16–19!. However, they do not solve the problem in a way that allows us to apply them in
quantum chemistry, first because they almost always consider the Jacobian problem on a bounded
domain and in regular cases, and second because we would like to obtain deformations that
preserve the geometry of the molecule.

For instance, if we consider a molecule withP atoms, then we want the position of theP
atoms beinvariant under the deformation. Furthermore, following physical studies, we choose to
characterize the geometry of the densities at thisP singular position~the cusps conditions, see
Kato,15 Pack and Byers Brown20! and at infinity~exponential fall-off condition; see Refs. 21 and
22! as follows.

We denoter5~r,w! in the spherical coordinates~wPS2 andr>0!, andur5r /r the radial unit
vector.

Definition I.2 (cusp): We say thatr:R3→R1 has a cusp in0 if

(i) in the neighborhood of r50,

r~r ,w!5a1b~w!r1o~r ! ~9!

with a .0 and b is a real continuous function on the sphere S2 and o(r ) is uniform with
respect to wPS2;

(ii) ¹r is bounded (where¹ is the gradient in Euclidian coordinates).
r also has a cusp inxPR3 if r(r1x! has a cusp inr50.
Definition I.3 (exponential fall-off ): We say that a functionr:R3→R1 has an exponential

fall-off (at infinity) if, when r5ur u→`,

r~r ,w!5C~w!r be2ar1o~r be2ar ! ~10!

wherea,0, bPR, C(w) P C0(S2,R1* ) and o(r
be2ar) uniform with respect to wPS2.

Note that for the exponential fall-off condition, we could have stated as for the cusp condition
statement~ii !, which in this case would have been¹r /r bounded at infinity. In fact the results of
the paper can be extended to other types of cusp conditions and asymptotic behaviors.

In order to solve the Jacobian problem we use a method introduced by Moser14 which linear-
izes the problem.

In the second section we rapidly recall this process and give some simple lemmas in order to
obtain invariant points.

In the next section we show our principal theorem~Theorem III.1! where we construct a
C1-deformationf which transports a densityr0 into a densityr1 adapted to the geometry given
below. In this theorem we precisely control the behavior off near the cusps and at infinity.

In the fourth section we study the stability of the transformationT̂ f under the symmetries
induced by the point group of a given molecule. In particular we show how to obtain a transfor-
mation that conserves the classes of symmetries of dimension one.
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In the last section we check theH1-stability for the transformationT̂ f @in order that if
CPHA

1~R3N!, thenT̂ fC be of finite energy#, and we state a decomposition theorem~Theorem V.1!
for the wave function. We then consider the practical point of view. More precisely, for a general
exponential fall-off of the densities, we are not able to give an explicit construction of the defor-
mationf. But with reasonable assumptions on the fall-off we show how to recoverf using only the
procedure of Moser. Thus the method developed by Kryachko and Luden˜a can be numerically
generalized for any molecule in order to approximate its fundamental energyE0, or for other
purposes.11,9

The results of this paper are usually stated in the spaceR3 but they can be easily generalized
to Rn.

II. MOSER’S PROCEDURE

A. Linearization of the Jacobian problem

We now recall one of the procedures described in Moser14 and Dacorogna and Moser17 for
solving the Jacobian problem associated tor0 and r1. We shall hereafter refer to it asMoser’s
procedure. We present it inRn and then deal with existence results.

Let r i :R
n→R1* , i50,1, be two continuous non-negative functions satisfying*r05*r1. Regu-

larity assumptions will be made precise later when needed.
Moser introduces a path of densities (r t),tP@0,1#, as follows:

r t~x!5~12t !r0~x!1tr1~x!. ~11!

He then considers the problem of finding for alltP@0,1# a functionft such that

r05ft* r t ~12!

and with initial conditions

f0~x!5x, xPRn. ~13!

Instead of searching forft such that~12! be true, Moser looks for equivalent equations only in
terms of the fluxXt :R

n→Rn, related toft by

dft
dt

5Xt~ ft!, xPRn, tP@0,1#. ~14!

We can then recoverft by exponentiation ofXt .
We recall how to obtain the equations in terms ofXt only, as detailed in Dacorogna and

Moser.17 Let Jt5uDftu. By derivation ofr05Jtr t(ft! with respect tot, we obtain

05 J̇tr t~ ft!1Jtṙ t~ ft!1Jt^¹r t~ ft!, ḟt&. ~15!

After division by Jt , and withx5ft~r !, we have

r0~x!2r1~x!5
J̇t
Jt

~r !r t~x!1¹r t~x!Xt~x!. ~16!

Furthermore by differentiation of (d/dt)ft5Xt~ft!, we obtain

d

dt
Dft5DXt~ ft!Dft ~17!
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which givesJ̇t5div(Xt!~ft!Jt , where div(Xt! denotes the divergence of the vector fieldXt . Finally
we have a linear equation in terms ofXt only,

div~r tXt!5r02r1 . ~18!

Note that more generally denotingr(x,t)5r t(x) andX~x,t!5Xt~x! we obtain the conservation
equation

]r

]t
1div~rX!50.

We can chooseV as a solution of div(V!5r02r1 and then take

Xt~x!5
V~x!

r t~x!
. ~19!

The Jacobian problem~7! is then formally equivalent to Eq.~14! with initial condition ~13! and
whereXt is given by~18! ~see Ref. 17 in the bounded case!. In order to obtain a solution of the
Jacobian problem, we must now show an existence result for~14! and~13! on the whole spaceRn.

The following theorem will be applied toXt5V/rt . We make a strong hypothesis onXt ~i.e.,
it vanishes at infinity!, and in the following sections we shall see how this particular case can be
used.

Theorem II.1: Let K be a finite set ofRn (eventually K50). Let XPC0~@0,1#3Rn, Rn! [we
denoteXt~x! where tP@0,1# and xPRn#. We suppose thatX is of class C1 on @0,1#3~Rn2K!.
(More precisely, for instance, on some open set ofRn11 that contains@0,1#3~Rn2K!.) We sup-
pose furthermore that
(i) ;xPK, ;tP@0,1#, Xt~x!50;
(ii) suptP[0,1] uXt~r !u→0 whenur u→`;
(iii) iDXt~x!i (matrix norm) is bounded on@0,1#3~Rn2K!.

Then the system (14), (13) has a unique solutionft which is for all tP@0,1# a C1-diffeomorphism
fromRn2K onto itself, a homeomorphism onRn, and lets K be invariant. FurthermoreiDfti and
iDft

21i are bounded.
Proof:We first treat the caseK empty, andXt regular. The proof is classical using the fixed

point theorem as follows. ForTP[0,1], letE(T) be the set of functionsfPC0~@0,T#3Rn, Rn! such
that, whenuxu→`,

sup
tP@0,T#

u ft~x!2xu→0. ~20!

We denote indifferentlyf~t,x! or ft~x!. The spaceE(T) is then metric complete for the distance

d~ f,g!5 sup
tP@0,T#,xPRn

u ft~x!2gt~x!u. ~21!

Let gPE(T), t-independent„g~t,x!5g~x!…. Let G be defined onE(T) by

G~ f !~ t,x!5g~x!1E
0

t

Xs„fs~x!…ds. ~22!

From ~ii ! we obtain that G is well defined from E(T) into itself. Furthermore
d„G(f1!,G~f2!…<Thd(f1,f2! wheren5supt,xiDXt~x!i. ThusG is contractant forT small enough,
and we obtain the existence of a fixed pointft on tP[0,T], usingg5f05Id. Then usingg5fT we
obtain the same existence on [T,2T], etc.
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We also have thatft is aC
1-diffeomorphism because it is the exponentiation of the fluxXt .

More precisely, we have for allt,t1 ,t2 ,t3 in @0,1#,

ft2 ,t3oft1 ,t25ft1 ,t3,

ft,t5Id,

whereft1 ,t2(x) is the value at timet2 of the solution of~14! that starts fromx at time t1 . Thus
ft5ft,0 is invertible on the all spaceRn.

Finally for the general case the result is the same using the restriction of the setE(T) to the
functionsft such thatft~x!5x for xPK. We only lose regularity onK. Also classical estimations
give iDfti<eht and a similar bound foriDft

21i. j

B. Invariant points

We show here a simple way to obtain some invariant points@i.e., f~xi!5xi , ; i51,...,P# while
solving the Jacobian problem. The following method seems more constructive than the one pre-
sented in Ref. 17 for instance, where they treat the invariant points as border points.~However,
Theorem III.1 gives lesser regularity than Ref. 17.!

A sufficient condition for havingf~a!5a is to searchft such that;tP@0,1#, ft~a!5a. In terms
of Xt this condition becomes

;tP@0,1#, Xt~a!50. ~23!

So we need to find a solutionU~x! of

div~U!5g, ~24!

U~a!50 ~25!

whereg:Rn→R is a given function.
But considering the linearity of the divergence operator, it remains to prove the following

lemma.
Lemma II.1: Let(aj ,bj !j51•••Pbe a finite set of pairs of points ofRn, with distinct(aj ). There

existsX a regular vector field onRn, of compact support, such thatdiv(X!50 and; j51,...,P,
X~aj !5bj .

Proof:We only need to prove the following result: for alle.0, there existsX, C`-regular on
Rn, such that supp(X!,@2e,e#n, div(X!50 andX~0!5c wherec5~c1,...,cn! is a given vector of
Rn.

To constructX5~X1,...,Xn! we can, for instance, choose

X1~x1 ,...,xn!5f1~x1!f28~x2!•••fn8~xn!, ~26!

X2~x1 ,...,xn!5f18~x1!f2~x2!f38~x3!•••fn8~xn!, ~27!

A ~28!

Xn~x1 ,...,xn!52~n21!f18~x1!•••fn218 ~xn21!fn~xn!, ~29!

wherefj , j51,...,n, areC` functions onR with support included in@2e,e# and such that
f j (0)5cj , j51,...,n21, fn(0)52[cn/(n21)] andf j8(0) 5 1, j51,...,n. j

The following lemma will be used in Theorem III.1. We restrict ourselves to the casen53, for
simplicity of presentation.
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Lemma II.2: Suppose thatdiv(W!50, where W is a regular vector field onR3. Let
Mk5DkW~0!, the differential of order kof W in 0. Let e.0. Then there exists a C`-regular
vector fieldV on R3 such thatsupp(V!,B~0,e!, div(V!50, and;k50,1,2:DkV~0!5Mk.

Proof: The proof is similar; we can, for instance, constructV using a linear combination of
vector fields likeX in the previous lemma. j

III. GLOBAL EXISTENCE RESULT

In this section, we first construct a deformation which solves the Jacobian problem near each
cusp, then we do the same in a neighborhood of the infinity, and finally in the remaining compact
domain where there will be no more constrains. The final deformation will be obtained composing
the three previous deformations.

A. Jacobian problem near a cusp

Proposition III.1: Letr0,r1 be two functions in C`(R3\$0%,R1* )ùC0(R3,R1* ), and let e.0.
Then there exists a C0-diffeomorphismf which has the formf~x!5f~r,w!ur and such that
(i) f is a C`-diffeomorphism onR3\$0%, differentiable in0 and f~0!5~0!;
(ii) f solves the Jacobian problemr05f*r1 on a neighborhood of the origin;
(iii) f is the identity function onR3\B~0,e!

Proof: Using Moser’s procedure, if we define

U~r ,w!5
1

r 2 E0
r

„r0~s,w!2r1~s,w!…s2ds, ~30!

then the radial vector fieldU5U~r,w!ur satisfies

div~U!5
1

r 2
]

]r
@r 2U~r ,w!#5r02r1 .

Note that if we solvedft/dt5Xt~ft! directly by Theorem II.1, we do not obtain regularity forf1 at
x50.

But we can remark that the solution of

dft
dt

5Xt~ ft! ~31!

with Xt5Ut/rt is given by the implicit equation

E
0

f t~r ,w!

r t~s,w!s2ds5E
0

r

r0~s,w!s2ds. ~32!

To see this, first we have

d

dt
f t~r ,w!5

*0
f t~r ,w!

„r0~s,w!2r1~s,w!…s2ds

f t~r ,w!2r t„f t~r ,w!,w…
. ~33!

Now if we put for i50,1:

Ri~r ,w!5E
0

r

r i~s,w!s2ds ~34!

andRt5(12t)R01tR1 , then
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d

dt
@Rt„f t~r ,w!,w…#5 f t~r ,w!2r t„f t~r ,w!,w…

d

dt
f t~r ,w!1~R12R0!„f t~r ,w!,w…

which is zero because of~33!. Thus~32! is proved.
By implicit function theorem equation~32! defines uniquelyf t(r ,w) on a neighborhood of0,

sayB~0,e1!, and fortP@0,1# ~one can finde1 such that 0,e1,e because of the continuity assump-
tion made on theri ’s!. Furthermoref t~0!50 and f tPC`

„B~0,e1!\$0%…. Note that we cannot solve
~32! on R3 because we do not necessarily have for allw:

E
0

1`

r t~s,w!s2ds5E
0

1`

r0~s,w!s2ds. ~35!

We have already proved thatf t is in C0
„B~0,e1!…. But in fact if at5r t~0! we obtain by

straightforward calculus that

f t~r ,w!5S a0at D
1/3

r1o~r ! ~36!

uniformly with respect tot andw, and thusf5f1 is differentiable in0.
Now using ~36! we deduce that for everye1.0 there exists e0.0 such that

;tP@0,1#:ft„B~0,e0!…,B~0,e1!. We then defineŨ5UC whereC is a radialC` function such that
C~x!51 for xPB~0,e1!, C~x!50 for xPR3\B~0,2e1!, and 0<C<1 otherwise. Letf̃t be the radial
solution of

d

dt
f̃t5X̃t~ f̃t! ~37!

with X̃t5Ũ/rt and initial conditionf̃05Id ~see Lemma II.1 for the existence off̃t!. Thenft and f̃t
are radial solutions of the same equation onB~0,e0! and thus are equal on this set. BecauseX̃t is
regular onR32$0% this f̃t satisfies the properties~i! and ~ii ! of the proposition.

Finally, using thatuX̃t~x!u<Cuxu ~for some constantC.0! we can deduce bya priori estima-
tions thate2Ctr< f̃ t(r ,w)<eCtr . Thus we havef̃21

„B~0,2e1!…,B~0,e! with a choice ofe1 such
that 2e15e2Ce. Then~iii ! follows. j

Now if we suppose thatr0 andr1 have cusps in0 we can prove that the diffeomorphismf
constructed in proposition III.1 isC1 onR3 and we can precisely determine the behavior off near
0.

Proposition III.2: Letr0,r1 be two functions with cusps in zero (see definition I.2):

r i~r ,w!5ai1bi~w!r1o~r !. ~38!

Then the diffeomorphismf constructed in proposition III.1 is C1 on R3 and admits the following
behavior in zero:

f ~r ,w!5l0r1l1~w!r 21o~r 2! ~39!

[with o(r 2) uniform in w], where

l05S a0a1D
1/3

, ~40!

4l1~w!5
b0~w!

a0
l02

b1~w!

a1
l0
2. ~41!
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Proof: First we check theC1 regularity in 0, by showing that the differential Df~x!→l0Id
whenx→0. We know that¹ri are bounded near0; thus

]~r02r1!

]r
,
1

r

]~r02r1!

]u
,

1

r sin~u!

]~r02r1!

]f

are bounded near0. On the other hand, using spherical coordinates we have

Df~x!5UTF ] f

]r

1

r

] f

]u

1

r sin~u!

] f

]f

0 f /r 0

0 0 f /r

G U, ~42!

where the matrixU is unitary and given byU5@ur ,uu ,uf#. Thus we have only to verify that

lim
r→01

] f

]r
~r ,w!5 lim

r→01

f ~r ,w!

r
5l0 ~43!

~uniformly in w! and that

lim
r→01

1

r

] f

]u
~r ,w!5 lim

r→01

1

r sin~u!

] f

]f
~r ,w!50. ~44!

For instance, by differentiation of~32! at t51, we obtain

] f

]r
~r ,w! f ~r ,w!2r1„f ~r ,w!,w…5r 2r0~r ,w! ~45!

and thus we prove~43!. We can obtain~44! in the same way, using Eq.~32! at t51 anew.
Finally the behavior~40! is obtained by straightforward calculus. j

B. Jacobian problem at infinity

For the Jacobian problem at infinity we have a similar proposition, except that we can no
longer prove it with Moser’s procedure~at least with Theorem II.1!. We mention also Greene and
Shiohama18 for the Jacobian problem in the non-compact case.

Proposition III.3: Letr0,r1 be two functions of C`(R3,R1* )ùL1(R3). We suppose further-
more thatr0 satisfies the following condition when R→`:

E
R

1`

r0~ t,w!t2dt5o~1! ~46!

uniformly with respect to wPS2. Let R.0 and e.0. Then there exists R1.R and a radial-like
function f~x!5f (r ,w)ur such that
(i) f is a C`-diffeomorphism onR3;
(ii) f is the solution onR3\B~0,R1! of the Jacobian problem

r05f* r1 , ~47!

(iii) f is the identity function on B~0,R!.
We first need a lemma.~In some sense we modifyr0 in r̃. There are similarities with the proof

of Lemma 11 of Dacorogna.16!
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Lemma III.1: Letr0,r1 be two functions of C`(R3,R1* )ùL1(R3), with r0 satisfying relation
(46). Let R.0. Then there exists R1.R andr̃ P C`(R3,R1* ) such that
(i) r̃5r0, r>R1,
(ii) r̃5r1, r<R,
(iii) *R

1`r̃(s,w)s2ds5*R
1`r1(s,w)s

2ds,;w.
Proof: First we chooseR1.R such that;w,

C1~w!5E
R

1`

r1~s,w!s2ds2E
R1

1`

r0~s,w!s2ds.0.

Let e.0 andf1
e be aC` function such that 0<f1

e<1 and

f1
e~r !51, r<R,

f1
e~r !50, r>R1e.

Similarly let f0
e be aC` function such that 0<f0

e<1 and

f0
e~r !50, r<R12e,

f0
e~r !51, r>R1 ,

and choosee.0 such that for everyw:

E
R

R1
s2„f1

e~s!r1~s,w!1f0
e~s!r0~s,w!…ds,C1~w!.

Finally let k be a non-negativeC` function such that supp(k)5[R,R1] and*R
R1k(s)s2 ds51. We

define

r˜~r ,w!5f1
er1~r ,w!1f0

er0~r ,w!1C2~w!k~r !.

Then it suffices to defineC2(w) by

C2~w!5C1~w!2E
R

R1
s2„f1

e~s!r1~s,w!1f0
e~s!r0~s,w!…ds. ~48!

j

Proof of Proposition III.3:We definef (r ,w) by the implicit equation:

E
f ~r ,w!

1`

r1~s,w!s2ds5E
r

1`

r̃~s,w!s2ds. ~49!

This equation has a solution because from the previous lemma we now have

E
0

1`

r1~s,w!s2ds5E
0

1`

r̃~s,w!s2ds. ~50!

The solution isC` because of the implicit function theorem, and furthermore by construction ofr̃
we have

f ~r ,w!5r ;r<R,;w. ~51!

Then f5fur solves the Jacobian problemr05r̃5f*r1 for r>R1 . j
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In the case we have an exponential fall-off at infinity we can precisely determine the behavior
of f.

Proposition III.4: Let r0,r1 be two functions as in Proposition III.3 and with exponential
fall-off (see definition I.3) when r→`:

r i~r ,w!;Ci~w!r b ie2a i r . ~52!

Then the solution of proposition III.3, f (r ,w), is defined for r large enough by

E
f ~r ,w!

`

r1~ t !t
2dt5E

r

`

r0~ t !t
2dt ~53!

and admits the following asymptotic when r→`:

f ~r ,w!5Ar1B log r1C~w!1o~1!, ~54!

where

A5
a0

a1
, B52

~b12b0!

a1
, C~w!5

1

a1
logSA21b1

C1~w!

C0~w! D
[and where o~1! is uniform in w].

Proof:We only have to show the asymptotic forr→`. Let us forget the indexw for clarity.
First we have

C1E
f ~r !

`

tb112ea1tdt;C0E
r

`

tb012ea0tdt. ~55!

We recall that whenr→` and fora.0:

E
r

1`

tme2atdt;
1

a
rme2ar . ~56!

Thus at infinity

C1f ~r !b112e2a1f ~r !;C0r
b012e2a0r . ~57!

Applying the logarithm, we deduce thata1f (r );a0r . Let us denoteg(r )5a1f (r )2a0r . We
have

eg~r !;
C1

C0
Ab112r b12b0 ~58!

from what we deduceg(r ) 5 log$(C1 /C0)A
b112rb12b0% 1 o(1). j

C. Global result

We deal here with the general case. We want to solve the Jacobian problem onR3, for
densities~r0,r1! with cusps and exponential fall-off.

Lemma III.2: LetrPC`~R3,R!, of compact support included in[2R,R] 3(R.0), and such
that

E
R3

r50. ~59!
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Then there exists a vector fieldVPC`~R3, R3! of support included in@2R,R#3 and such that
div~V!5r on R3.

Proof: Let gPC`~R,R! such that g(x)50 for x<2R and g(x)51 for x>R. Thus
supp(g8),[2R,R]. Let

V1~x,y,z!5E
2`

x

r~x8,y,z!dx82g~x!E
2`

1`

r~x8,y,z!dx8,

V2~x,y,z!5g8~x!E
2`

1`E
2`

y

r~x8,y8,z!dx8dy82g8~x!g~y!E
2`

1`E
2`

1`

r~x8,y8,z!dx8dy8,

V3~x,y,z!5g8~x!g8~y!E
2`

1`E
2`

1`E
2`

z

r~x8,y8,z8!dx8dy8dz8.

ThenV5~V1,V2,V3! is a solution. j

Theorem III.1: Let K5$x1,...,xP% be P distinct points ofR3, and R.0 such that K,B(0,R).
Let r0,r1 be two functions of C`(R3 2 K,R1* ), with cusps in each xj (see definition I.2) and
exponential fall-off at infinity (see definition I.3), and such that

E
R3

r05E
R3

r1 .

Then there exists a solutionf of the Jacobian problem

r05f* r1 ~60!

which is a C1-diffeomorphism onR3 and a C`-diffeomorphism onR32K onto itself, that lets K be
invariant, with behavior near the cusps given precisely by Eq. (39) and defined onR3\B(0,R1) (for
some R1.R! as in Proposition III.4.

Proof: We solve separately the Jacobian problem near the infinity, then near the nuclei, and
finally on a compact set where the cusp and infinity problems will disappear. More precisely,
using Proposition III.3 we can deformr1 in r2 ~by aC`-regularf1! such thatr25r0 outside a ball
B(0,R1)(R1.R) and such thatf 1 be the identity function inside the ballB(0,R) that containsK.
Form.0 let us denoteVm5ø jB(xj ,m!. Also, using Proposition III.1 around each nuclei, we can
deform r2 in r3 ~using a deformationf2! such thatr35r0 on a neighborhoodVm1

of the nuclei
~0,m1,m!, and such thatf2 be the identity function outsideVm,B(0,R). If we chooseR andm
such thatB(xj ,m!ùB~xk ,m!5B, ; jÞk, and such thatVm,B(0,R). We haver35r0 near the
nuclei and near infinity, withr35f2*r25f2* ~f1*r1!5~f1of2!*r1.

We have yet to solver05f3*r3. Using Lemma III.2, there existsVPC`~R3,R3! such that
div(V!5r02r3 on R3. Thus we use Lemma II.2 in order to obtain a regularW such that
div(W!5r02r3 on R3 and with DkW~xj !50 for k50,1,2 andxjPK.

We then define fortP@0,1#:

Ut5
W

~12t !r01tr3
.

In order to clarify the proof we consider the casexj50. We haveUt~r,w!5O~r3! uniformly in w
~when r→0!. Furthermore as we know that¹rt is bounded near each cusp we also obtain that
DUt~r,w!5o~r! @using for instance Eq.~42!# and in particularUt is C

1 on R3. Thus by Moser’s
procedure and Theorem II.1, we obtain a deformationf3 such thatr05f3*r3. Furthermore, by easy
calculation we can verify that
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f3~r ,w!5rur1O~r 3!

uniformly in w, whenr→0.
Hence if we definef5f1of2of3 then f is aC

1-diffeomorphism satisfying tor05f*r1 and the
behavior off near the cusps is given by the behavior off2 ~see Proposition III.2!, and the behavior
of f at infinity is given byf1 ~see Proposition III.4!. j

Corollary III.1: Furthermore if¹r t/r t are bounded~i50,1! then in theorem III.1iDfi and
iDf21i are also bounded.

Proof: The study at infinity is similar to the study near a cusp in Proposition III.2. j

Remark III.1: In Theorem III.1, if we relax the hypothesis of exponential fall-off at infinity,
using only the hypothesis of proposition III.3, then the same result holds but off course without
known behavior at infinity.

IV. SYMMETRIES

For a given set of fixed nucleiK5$y1,...,yP% we consider the point group, denotedG, as the
set of orthonormal transformationsQPO(3) that lets the set the molecule invariant.23 Typically if
we look for a solution ofHC5EC we usually want furthermore thatC belongs to a class of
symmetry of the groupG.

In this section we study the following problem. GivenG a class of symmetry of the groupG,
find a deformationf:R3→R3 that solves the Jacobian problemr05f*r1 and furthermore such that
if C1PG ~with C1°r1! thenC05T̂ fC1PG. In fact we want the stability of the operatorT̂ f with
respect to the geometry of the state under study.

Note that in the case thatC belongs to a class of symmetry of dimension one, we have for all
QPG, Q̂C5l(Q)C with l(Q)PC, ul(Q) u51, and whereQ̂ is the operator onLA

2~R3N! defined
by

~Q̂C!~x1 ,...,xN!5C~Q21x1 ,...,Q
21xN!.

We then deduce easily that

;QPG, rC~Qx!5rC~x!. ~61!

Theorem IV.1 „symmetry…: Let K5$y1 ,...,yP% be a nonlinear set of nuclei (i.e., distinct and
nonaligned points ofR3!, and G its associated finite point group. We suppose thatr0,r1 are two
density functions that satisfy the hypothesis of Theorem III.1 (with cusps in eachyi! and also the
symmetry conditions (61). Then there exists a solutionf of the Jacobian problemr05f*r1 satis-
fying the conclusion of Theorem III.1, and furthermore such that for any class of symmetryG of G,
T̂ f~G!,~G!.

In particular when the class of symmetryG is of dimension one, we have solved our problem
because the symmetry conditions~61! are satisfied for wave functions inG. A more general study
will be done elsewhere.

Proof of Theorem IV.1:We assume that the invariant point of the groupG is at the origin of
R3. Although the infinite behavior of the densities may thus be changed, it can be easily shown
that this does not affect the final result of the theorem.

Lemma IV.1: Suppose

;QPG, foQ5Qof.

ThenT̂ f~G!5~G! for any class of symmetryG.
Proof: Let d be the dimension of the class of symmetryG. First note thatT̂ f Q̂5Q̂T̂ f .In the

cased51, for CPG we have for anyQPG, Q̂C5l(Q)C thus Q̂(T̂ fC!5l~Q!~T̂ fC! which
proves that T̂ fCPG. When d.1 and CPG, we know that CPVect$C1,...,Cd% with
Q̂C i5( j ci , j (Q)C j and where$ci , j (Q)% are the matrix coefficients of the representationG in the
basis set~Ci!. As in the
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cased51 we obtain thatQ̂(T̂fCi!5(jci,j~Q!T̂fCj . Hence (T̂fCi!i admits the same matrix repre-
sentation as the (C i) i , and thus belongs toG. Thus,T̂fCPG by linearity. j

Lemma IV.2 (infinity): The deformationf~1!5f obtained in Proposition III.3 commutes with the
elements of G.

Proof: First note that the densityr̃ constructed in Lemma III.1 satisfies the symmetry condi-
tions~61!. Let us denotef~x!5f~r,w!ur~w! in spherical coordinates. Thenf (r ,w) is also defined by

E
0

f ~r ,w!

r1~s,w!s2ds5E
0

r

r̃~s,w!s2ds.

Let QPG. BecauseQ050, we can naturally defineQw by Q(r ,w)5(r ,Qw) and we obtain that
f (r ,Qw)5 f (r ,w) andQur~w!5ur~Qw!. Then foQ~r,w!5f~r,Qw!5f~r,w!ur~Qw!, and this is also
Qof~r,w!. j

We can now suppose thatr05r1 on R3\B(0,R), and we study the solution of the Jacobian
problem near the cusps.

For simplicity of presentation, we denote the relationQ(yj !5yk by Q( j )5k.
First for a given j we define a solutionf j of the Jacobian problemr05f j*r1 inside some

Bj5B(yj ,e1! exactly as in the proof of Theorem III.1, the functionf j being the identity on some
R3\B(yj ,e!, e.e1 @with disjoint setsB(yk ,e!, k51,...,P#.

Now if k is in the cycle generated byj , i.e., if there existsQ in G such thatk5Q( j ), we then
definefk by

fk5Qf jQ
21. ~62!

We then reiterate the same construction for each cycle ofK and obtain the following lemma.
Lemma IV.3 (cusps): Let Bj5B(yj ,e1!, QPG.

(i) The (f j ! are well defined by Eq. (62), and commute:fk o f l5f l o fk .

(ii) If k5Q( j ) and r05f j*r1 on Bj , thenr05fk*r1 on Bk .

(iii) Let f~2!5f1o•••ofP , thenQf
~2!5f~2!Q.

Proof: ~i! We have to show that ifQ0( j )5Q1( j )5k with Q0, Q1PG, then
Q0f jQ0

215Q1f jQ1
21. LetQ5Q0

21Q1 . We haveQ( j )5 j and we want to showf jQ5Qf j . Note that
by constructionf j satisfies

E
0

f j ~r j ,wj !

r1~s,wj !s
2ds5E

0

r j
r̃0~s,wj !s

2ds ~63!

where we have denotedf j 5 f j (r j ,wj )ur j(wj ) in spherical coordinates (r j ,wj ) centered inyj , and
wherer̃05r0 on B(yj ,e1! ~r̃0 will otherwise satisfies similar properties as in Lemma IV.2!. It is
then easy to verify, usingQ( j )5 j , thatr1„Q(r j ,wj )…5r1(r j ,wj ) and thus forr̃0. In a similar way
as for Lemma IV.2, if we defineQwj such thatQ(r j ,wj )5(r j ,Qwj ) ~since0 and yj are both
invariant byQ!, we obtain f j (r j ,wj )5 f j (r j ,Qwj ) andQur j(wj ) 5 ur j(Qwj ); thus f jQ5Qf j .
Commutation comes from the fact thatB(yk ,e!ùB~yl ,e!5B for kÞ l .

~ii ! fk*r15uDfkur1~fk!. From fkQ5Qf j we deduce that uDfku~Q!5uDf j u. Then
(fk*r1!~Q!5uDf j ur1~fkQ!5uDf j ur1~Qf j !5uDf j ur1~f j !5f j*r15r0; hencefk*r15r0.

~iii ! ThusQf~2!5fQ(1)o•••ofQ(P)Q; butQ is one-to-one and letsK5$y1,...,yP% globally invari-
ant, and the (f j ! are commuting. HencefQ(1)o•••ofQ(P)5f1o•••ofP5f~2!. j
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Construction off~3!: We have yet to solve the Jacobian problemr05f*r1 where nowr0,r1 are
equal around each cusp and outside some ballB(0,R), and satisfy the symmetry conditions~61!.
The following construction shows how to do this by a symmetrization process on the fieldXt used
in Theorem III.1.

Let V be the solution of div(V!5r02r1 as in Lemma III.2, and compensated by a regular
function so that DkV~yj !50 for k50,1,2. LetXt5W/rt, where

W5
1

uGu (
QPG

QVQ21 ~64!

and whereuGu denotes the cardinal ofG. Then note that for allQPG, XtQ5QXt @this is true for
W, and r t~Qx!5rt~x!#. We have also div~QVQ21!5div(V!~Q21!5~r02r1!~Q

21!5r02r1; thus
div(W!5r02r1. By integration ofXt we obtainft , solution of the Jacobian problemr05ft*rt .

We can also claim thatftQ5Qft for all tP@0,1#, because bothftQ andQft satisfy the same
differential equation with same initial condition.

Hencef~3!5f$t51% is a solution that commutes with anyQPG. The cusp and infinite behaviors
are unchanged byf~3!, by construction.

Finally, the solution for Theorem IV.1 is obtained by composition of the three previous
functions, i.e.,f~1!o f~2!o f~3!. j

V. APPLICATIONS

A. Stability H1 for the operator T̂f

We recall the definition of a linear operator onL2~R3N! which has been introduced in Ref. 7
~see also Ref. 5!.

Definition V.1: If f is a C1-diffeomorphism fromR32K onto itself, where K is finite, we define
the linear operatorT̂ f from L2~R3N! onto itself by

~ T̂ fC!~x1 ,...,xN!5)
i51

N

uDf~xi !u1/2C„f~x1!,...,f~xN!…. ~65!

Note that T̂ f is a tensor product ofN identical ~unitary! operators: T̂ f5t̂ f ^•••^ t̂ f where
( t̂ ff!~x!5uDf~x!u1/2f(f~x!!.

Proposition V.1:T̂ f is an invertible unitary operator of L2
A~R3N!, i.e., for all CPLA

2~R3N!

E
R3N

uT̂ fCu25E
R3N

uCu2 ~66!

and (T̂ f!
215T̂ f21.

Proof: Immediate, using the change of variables theorem. j

Lemma V.1: Let f be a C1-diffeomorphism fromR32K onto itself where K is finite, and let
q(x!5uDf~x!u. We suppose furthermore that

(i) 'C>0, ;x, u¹q(x!u<Cq~x!;

~ii ! the differentialDf~x! has bounded coefficients onR3.

ThenT̂ f is continuous for the H1-norm, and in particular;CPH1~R3N!, T̂fCPH1~R3N!.
Proof:We just showed thatt̂ f is stable onH1~R3!. In the distributional sense onR32K and

for cPH1~R3!, we have

¹~ t̂ fc!5
1

2

¹q~x!

q~x!
t̂ fc1DfT~x! t̂ f~¹c!. ~67!
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\Note that the second member is inL2~R3! using ~i! and ~ii !. This equality is still true in the
distributional sense onR3, becauset̂fc is in L2~R3!. Estimations for theH1-norm can then be
obtained. j

The following justifies our interest in obtaining a peculiar behavior of the solution of the
Jacobian problem at infinity.

Proposition V.2: Letr0,r1 be two densities chosen as in Theorem III.1 and such that¹r i /r i
be bounded for i50,1.Let f be a solution o f the Jacobian problem as in Theorem III.1.
Then T̂ f and (T̂ f!

21 are both H1-stable.
Proof: From Corollary III.1 we have Df and Df21 bounded. Then fromq5uDfu5r0/r1~f ! we

have by differentiation that

¹q

q
5

¹r0
r0

2DfT
¹r1
r1

, ~68!

and thus is bounded. Thus,¹q1/q1 is bounded, whereq15uD~f21!u51/q(f21!. j

B. Decomposition theorem

The following theorem is similar to Theorem 3.1 stated in Ref. 5, but with regularityH1.
Theorem V.1: Let K5$x1,...,xP%,R3 andr0,r1 be two density functions onR

3, as in theorem
III.1 and such that¹r i /r i be bounded for i50,1.LetC0PHA

1~R3N!. ThenC0°r0 if and only if'f
a C1-diffeomorphism, withDf~x! andDf (x!21 bounded, and'C1PHA

1~R3N!,

H C05T̂ fC1

C1°r1
r05f* r1

Proof: If C0°r0 then choosef a solution of the Jacobian problemr05f*r1 given by Theorem
III.1, and C15(T̂f!

21C0. We know thatC0PHA
1~R3N! by Proposition V.2. Conversely, from

C05T̂ fC1 we obtainrC0
5f* rC1

; thusrC0
5f*r15r0. j

Note that a choice off solution ofr05f*r1 uniquely determines the wave functionC1.

1. Expression for the energy

For the energy terms, we have also similar formula as in our previous paper.5 We first recall
the definition of the 2-density:

dC
2 ~x1 ,x2!5

N~N21!

2 E
R3N26

uC~x1 ,x2 ,x3 ,...,xN!u2dx3•••dxN ~69!

and of the first order reduced density matrix~12RDM!:

DC
1 ~x1 ,x18!5NE

R3N23
C~x1 ,x2 ,...,xN!C~x18 ,x2 ,...,xN!dx2•••dxN . ~70!

If C05T̂ fC1 andq5uDf u then ~see Refs. 8 and 13!:

dC0

2 ~x1 ,x2!5q~x1!q~x2!dC1

2
„f~x1!,f~x2!…, ~71!

DC0

1 ~x1 ,x18!5q~x1!
1/2q~x18!1/2DC1

1
„f~x1!,f~x18!…. ~72!
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Various expressions for the energyE[ T̂ fC1# can then be obtained. For instance, let us denote
g5f21, p5@¹~q1/2)]/q1/2, p̄5p~g!, Df5Df~g!, and~•,•! for the scalar product. LetC1PHA

1~R3N!
andr15rC1

. Then by elementary calculations, withH given by relation~1!, we can separate the
information in f and inC1 as follows:

E@ T̂ fC1#5E
R3

up̄u2r11E
R3

~ p̄,D̄fT¹r1!1NE
R3N

uD̄f~x1!T¹x1
C1~x1 ,...,xN!u2dx1•••dxN

1E
R3
v~g!r11E

R6

dC1

2 ~x1 ,x2!

ug~x1!2g~x2!u
dx1dx2 . ~73!

2. Deformed Hamiltonian

We can also writeE[ T̂ fC#5^C,HfC& whereHf5T̂ f
21HT̂ f is the ‘‘deformed’’ Hamiltonian

and is given by the analytic formula

Hf5(
i51

N

2D f~ i !1(
i51

N

v„g~xi !…1 (
1< i, j<N

1

ug~xi !2g~xj !u
, ~74!

whereg5f21 andDf( i ) is the operatorDf applied onxi , with

D f5
Dq1~g!

q1~g!
1 (

j51,2,3
H D f j~g!12S ¹q1~g!

q1~g!
,¹ f j~g! D J ] j1 (

j ,k51,2,3
„¹ f j~g!,¹ f k~g!…] j]k,

~75!

where we have denotedf5~f1,f2,f3!, q15uDfu1/2, and¹5~]1,]2,]3! in the inner basis ofR3 ~com-
pare with the expression given in Ref. 8, page 666.!

C. Propositions for a numerical resolution

1. The general scheme

We indicate here how to solve numerically the Jacobian problem inR3 with P invariant points
$x1,...,xP% for two classical types of density representations~Slater type and Gaussian type!. Of
course it would be possible to consider other representations of the density functions. With some
hypothesis on the behavior at infinity, we can use directly the Moser’s procedure withXt5V/rt
and whereV is the solution of div(V!5r02r1 given in Lemma III.2 and corrected by Lemma II.1
so thatV~xi!50 ~and if possible with a symmetrizedXt as for the construction off

~3! in the proof
of Theorem IV.1!. So we do not have to construct radial solutions around cusps or at infinity; in
particular we do not use Lemma III.1 for instance. Hence, in these specific cases, we only use a
linear algorithm to calculate the fluxXt .

We remind the reader thatXt5V/rt and

DXt5
DV

r t
2Xt^

¹r t
r t

. ~76!

Thus, in order to apply Theorem II.1, we shall require that the density functions be such that

~i! uV/rtu5o~1! whenx→` ~uniform in tP@0,1#!;
~ii ! ¹r i /r i and iDV/rti bounded~uniformly in tP@0,1# andxPR3!.

The final step is then the integration ofdft/dt5Xt(ft) over tP@0,1#, which we do not discuss
here~see Remark 3 of Sec. III D!.
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2. Use of a Slater-type basis set

In the case we want to expand the densities in a Slater-type basis set, i.e., with basis functions
of the form rme2at around each nuclei, a densityr is assumed to have the following form:

r~x!5(
i51

P

(
j51

Mi

Pi , j~r i !e
2a i , j r i, ~77!

wherer i5ux2xiu is the Euclidian distance betweenx and the nucleixi , ai , j.0 and for simplicity
we assume thatPi , j is polynomial.

We first state a more general lemma that ensures a correct infinite behavior.
Lemma V.2: Suppose thatr0,r1 are regular except eventually on K5$x1,...,xP% (with ¹ri

bounded) and satisfy, whenuxu→`, to

r0~x!;r1~x!;C~w!r be2ar , ~78!

r0~x!2r1~x!5o~r b21e2ar ! ~79!

and furthermore to

u¹r0u and u¹r1u5O~r be2ar !, ~80!

¹~r02r1!5o~r b21e2ar !. ~81!

TakeV as in Lemma III.2 [eventually locally modified so thatV~xi!50#. If *r05*r1, then

(i) uV/rtu5o~1!, and¹r t/r t and iDV/rti are bounded;
(ii) T̂ f and its inverse are both H1-stable.

Proof:We just give a sketch of proof foruV/rtu5o~1!. For the functiong of Lemma III.2 we
can suppose that supp(g),@21,1#. First note that if u f (r !u<Crge2ar ~a.0,C.0!, then, with
r5(x21y21z2)1/2,

~a! *2`
1`u f (x8,y,z)udx8<C2r

g11/2e2ar , for uxu<1,
~b! *x

1`u f (x8,y,z)udx8<(C/a)r g11/2e2ar , for x>1

~for some constantC2.0 independent ofg anda ; the case*2`
x u f udx8, x<21 is similar!.

From these bounds and using Eq.~79! it follows that, with V5~V1,V2,V3!, we have
uV1(x!u5o~rb21/2e2ar). In particularV1/r t5o(r21/2)5o(1). Thus using~a! and~b! anew we can
show thatV2(x!5o~rbe2ar! at infinity; thusV2/r t5o(1).

Finally for V3, whenz→2` anduxu,uyu<1, the bound comes from the bound ofV2. The case
z→1` is similar because*~r02r1!50 andV3(x,y,z)52V3(x,y,2z). j

Thus in the case we are working with densities expanded in a Slater-type basis set as in Eq.
~77! we see easily that a necessary and sufficient condition for the application of the above Lemma
is just that

r0~x!;r1~x!, uxu→`. ~82!

We also have fork50,1

rk~x!;rme2arS (
i51

P0

ci
~k!e2a^x,xi &D , ~83!
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where~a,m! correspond, respectively, to the minimum of the coefficients~ai , j ! and to the maxi-
mum of the degrees of the (Pi , j ), and with the corresponding coefficientsci

(k). Hencer0;r1 if and
only if ci

(0)5ci
(1) for all i51,...,P0 .

In order to use Lemma III.2, we want also to be able to quickly integrate the following
integrals:

E
2`

x

r i~x8,y,z!dx8,

E
2`

1`E
2`

y

r i~x8,y8,z!dx8dy8,

E
2`

1`E
2`

1`E
2`

z

r i~x8,y8,z8!dx8dy8dz8.

But drawback of the above Slater basis set is that the integration is not immediate. So we consider
also the use of a Gaussian basis set.

3. Use of a Gaussian basis set

Denoting x5(x,y,z) and r 25x21y21z2, we choose the Gaussian basis setxpyqzre2ar2

wherep,q,r are non-negative integers anda.0. The final form of a functionr is thus assumed to
be

r„x…5(
i51

P

(
j51

M

Pi , j~x,y,z!e2a i , j ux2xi u
2
, ~84!

wherePi , j (x,y,z) are polynomials~such thatr be strictly non-negative onR
3!. For calculation of

the integrals we have to integrate*2`
x tme2at2dt for a finite number of pairs~m,a!. Thus we need

only a fast integration program for

I ~x!5E
2`

x

e2t2dt. ~85!

~Chemists have already developed and computed fast algorithms for such integrals, forab initio
programs.!

The densitiesr0, r1 developed in this basis set have the following asymptotic behavior when
r5uxu→` ~for k50,1!:

rk~x!;(
i51

P0

Pi
~k!~x!e2aux2xi u

2
, ~86!

where the (Pi) are homogeneous polynomial of orderq, for someqPN and where.a is the
smallest of theai , j . @It is not equivalent to aP(x)e2ar2, in general#. In order that~I! and~II ! be
satisfied we can then show that it is sufficient to have

r0~x!;r1~x!, uxu→`. ~87!

This is realized if and only ifPi
(0)5Pi

(1), for all i51,...,P0 .
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D. Remarks

~1! For solving the divergence problem, div~V!5r02r1, we could be tempted to use the
solution of the Laplacian problemDu5r02r1, i.e.,u52(1/4puxu)* ~r02r1! ~where* stands for
the convolution product!, and then takeV5¹u plus eventually a rotational term as in Ref. 17.

The problem is that¹u has an asymptotic behavior with terms of the form 1/uxun which we
were not able to eliminate by a simple rotational. We recall that in the case the densities have an
exponential fall-off, we also wantV to have an exponential fall-off. Use of Dacorogna and
Moser’s procedure,17 even after scalingR3 to the ball, lead to hardly constructible solutions~the
densities vanishes at the border!.

~2! Exact density functions have a Slater type decreasing at infinity, so the Gaussian basis set
appears as a bad representation of the densities.

However, we think it is not so important for numerical purpose because the process of solving
the Jacobian problem is mainly to determine a deformationf and then to applyT̂ f to a wave
functionC1. The minimization of the energyE@C2# whereC25T̂ fC1 can be done with respect to
parameters put inr2, with r1 a given fictive density andf a solution ofr25f*r1 taken as in Sec.
V C.

Because we impose thatr1;r2 at infinity @f~x!;x at infinity# the infinite behavior ofC2 can
only be improved by another choice ofC1. But the main numerical hope of the above process is
to obtain a good representation around the molecule via density optimization.

~3! The procedure of Moser is a linearization procedure. Thus whenr02r1 is small, and with
V a solution of divV5r02r1 satisfying~I! and ~II ! in Sec. V C, we can take the approximation
fapp~x!5x1h~x! whereh5V/r1, and together with an approximated JacobianJapp5r0/r1~fapp! we
may define analytically an approximateT̂ fapp. Thus the integration ofXt can be avoided for small
deformations~or closed densities!.

~4! One of the problem of the LST procedure proposed by Kryachko, Luden˜a, and co-workers
is the calculation and minimization of the energy because the expression forC25T̂ fC1 is not
analytically integrable in general. A fully numerical program then must be used, which in general
is not easy. Use of a Monte Carlo procedure is under study.
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We consider a single-band approximation to the random Schro¨dinger operator in an
external magnetic field. The random potential is taken to be constant on unit
squares and i.i.d. on each square with a bounded distribution. We prove that the
eigenstates corresponding to energies at the edges of the Landau band are localized.
This is an important ingredient in the theory of the Quantum Hall Effect. ©1996
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I. INTRODUCTION

We consider a two-dimensional infinite system of noninteracting electrons moving in a uni-
form magnetic field of strengthB and a random potentialV. In the symmetric gauge the vector
potential is given byA(x)5[(B/2)x2 ,2(B/2)x1], x5(x1 ,x2)PR2 and the Hamiltonian is

H5„2 i“2A~x!…21V~x!. ~1.1!

The effect of the random potential is to broaden the Landau levels into bands. When the potential
is bounded and the magnetic field is strong enough these bands do not overlap. It is generally
expected that the states lying near the edges of the bands are exponentially localized and the
corresponding spectrum is pure point.1,2 Near the center of the bands the situation is more con-
troversial. One possibility is that there exist truly extended states in some finite-energy range.
Instead, it could happen that the localization length remains finite for all energies, except for one
value, where it diverges~e.g., like a power law!.3–5 This picture is essential for understanding the
occurrence of plateaus in the conductivity as a function of the magnetic field measured in Quan-
tum Hall experiments. In this connection, Kunz6 has shown that the localization length must be
infinite for at least one energy in each band, assuming that the states with energy at the edges of
the bands are exponentially localized.

Rigorous results on random Schro¨dinger operators with magnetic fields are still rare. A few
exact results concerning the density of states have been obtained.7–11 In the present paper we
address the problem of proving that the energies at the edges of the bands correspond to localized
states. For the random potential we choose a model already considered in previous works in the
absence of magnetic field.12,13 The two-dimensional plane is decomposed into unit squares, on
each of which the potential is taken to be constant. The values of the potential on the squares are
i.i.d.s with a bounded probability distribution. The precise hypotheses on the probability distribu-
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tion are stated in Sec. II. When the magnetic field is strong it is reasonable to consider only the
projections of the Hamiltonian onto each Landau level and to neglect the cross terms. The Hamil-
tonian restricted to thenth level is

Hn5B~2n11!Pn1PnVPn , ~1.2!

wherePn denotes the projection onto the level. The termB(2n11)Pn comes from the decom-
position of the purely kinetic part of~1.1! and can be dropped as it modifies the energy only by a
constant. Note that the resulting Hamiltonian is a random integral operator instead of a differential
operator and that the kernels ofPn are known explicitly.

Our main result is that, for the HamiltonianHn , the states at the edges of the corresponding
band are exponentially localized. For simplicity in this paper, we restrict ourselves to the case
n50. Our proof depends on a modification of a theorem of Von Dreifus and Klein.14 This theorem
is only stated here and the proof is given in a companion paper,15 which deals with the easier case
when the distribution of the random potential is unbounded, e.g., Gaussian. In this paper we
concentrate on the case when the distribution is bounded.

We now describe the main features of our analysis. In Sec. II we prove~see Lemma 2.3! that
it is enough to show that, because of the special form of the Hamiltonian, the wave function
decays exponentially on the lattice. This simplification enables us to use the methods of Spencer,16

Von Dreifus and Klein14 for lattice models. However, the fact that the model is formulated in the
continuum makes the model considerably more difficult to analyze and nontrivial modifications
are required, because the relevant Green’s identity~3.3! is more difficult to handle. These are
described in Sec. III. This section also contains the basic step in the proof of localization, Theorem
3.1, which as in Ref. 14 reduces to two main conditions~P1! and~P2!. The proof of this theorem,
which does not depend on the boundedness of the potential, can be found in Ref. 15. In Sec. IV we
verify the conditions~P1! and ~P2!. The condition~P1! is an estimate of the type first proved by
Wegner17 on the probability that an energyE lies within some small distance from the spectrum
of the Hamiltonian for a finite box. This requires bounds on the integrated density of states in finite
boxes. Our Hamiltonian, when restricted to a finite box, turns out to be a Hilbert–Schmidt opera-
tor. Therefore the spectrum has an accumulation point at zero that requires an adaptation of
Wegner’s argument. This feature is intimately related to the fact that the original Laudau levels are
infinitely degenerate. Condition~P2! states that there exist a length scaleL such that the Green’s
function for a box of sizeL decays exponentially fast, with a high probability depending onL. For
bounded potentials the usual proofs in the absence of a magnetic field use the fact that the density
of states is exponentially small near the band edge. These are the so-called Lifshitz tails. Here we
verify ~P2! directly using a Combes–Thomas argument18 and the explicit form of the eigenfunc-
tions ofP0. The main part of the paper is concerned with this problem.

While this paper was being written we received a preprint by Combes and Hislop19 with
similar results, and recently W.-M. Wang also obtained results along the same lines.20 We wish to
compare briefly these papers with the present one.

In Refs. 19 and 20, localization is proved for the Hamiltonian~1.1! in the case where the
random potentialV is sufficiently smooth. Mathematical techniques of percolation theory and
microlocal analysis are used~also see Ref. 21!. The regime studied is that of large magnetic field,
that is, the magnetic length ('1/AB) has to be smaller than the characteristic length over which
the potential varies. In this situation the one-band problem is well approximated by the classical
effective Hamiltonian (2n11)B1V(x). As a consequence the problem is mapped onto a perco-
lation problem for the equipotential lines ofV(x). As far as we know this physical picture goes
back to Ref. 22.

In contrast, the effective Hamiltonian used in this paper for the single band problem is
PnVPn , and therefore the kinetic energy that is contained inPn is not quenched. As a conse-
quence our main theorem holds for arbitrary strength of the magnetic field~for the single band!. In
particular, localization at the band edges occurs even when the magnetic length is large with
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respect to the characteristic length of variation ofV, that is, when the percolation picture loses its
validity. Of course, we have neglected the interband coupling, and if that is taken into account a
condition on the strength ofB would be necessary. However, it is not clear what the optimal
condition would be. We remark that in the present study the random potential is of a different kind
from that in Refs. 19 and 20 since it is discontinuous.

II. THE HAMILTONIAN

Let vn , nPZ2 be i.i.d. random variables with distribution given by a probability measurem

with suppm5X5[a,b], a compact interval inR. We letV 5 XZ2 andP 5 PnPZ2m. FormPZ2 let
tm be the measure preserving automorphism ofV defined by

~tmv!n5vn2m . ~2.1!

The group$tm :mPZ2% is ergodic for the probability measureP.
Let H5L2~R2! and letH0 be the eigenspace corresponding to the lowest eigenvalue~first

Landau level! of the HamiltonianH0 defined in~1.1!. Let P0 be the orthogonal projection onto
H0. The Hamiltonian for our model is the operator onH0, given by

H~v!5P0V~•,v!5P0V~•,v!P0 , ~2.2!

wherevPV and

V~x,v!5 (
nPZ2

1L1~n!~x!vn , ~2.3!

L1(n) being the square of the unit side centered atn,
P0 is an integral operator with kernel

P0~x,y!5
2k

p
exp@2kux2yu212ikx`y#, ~2.4!

wherek5B/4. Since we shall be using both the Euclidean norm and the maximum norm onR2, we
shall use the following convention:

uxu5~x1
21x2

2!1/2, ixi5max~ ux1u,ux2u!,

and forL.0 andxPR2,

B~x,L !5$yPR2:uy2xu<L%, LL~x!5$yPR2:iy2xi< 1
2 L%.

Let $Uy :yPR2% be the family of unitary operators onH corresponding to the magnetic
translations:

~Uyf !~x!5e2iky`xf ~x1y!. ~2.5!

Then fornPZ2,

UnH~v!Un
215H~tnv!. ~2.6!

Note that [P0 ,Uy]50 for all yPR2, so thatUyH0,H0. AlsoUy1
Uy2

5 e2ikyz`y1Uy11y2
. The

ergodicity of$tm :mPZ2% and Eq.~2.6! together imply that the spectrum ofH~v! and its compo-
nents are nonrandom~see, for example, Carmona and Lacroix, Theorem V.2.4!; it is easy to prove
that almost surely the spectrum ofH~v! is equal toX ~cf. Ref. 23!.
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Lemma 2.1:For P-almost allvPV,

s„H~v!…5X. ~2.7!

Proof: For cPH0,

aici2<^c,H~v!c&<bici2,

and therefore

s„H~v!…,X.

To prove the reverse inclusion, it is sufficient to prove that24 for eachEPX and for alld.0 there
existV8,V with P~V8!.0 andcPH0 with ici51, such that for allvPV8, i(H(v)2E)ci,d.
LetEPX andcPH0with ici51. ForR.0, letcR5P01B(0,R)c. Sinceic 2 cRi <i 1B(0,R)cci , we
can chooseR large enough such thaticRi.1/2. LetV85$v:uV(x,v)2Eu,1/2d,;xPB(0,2R)%
then clearlyP~V8!.0. Now

i~H~v!2E!cRi25iP0„V~•,v!2E…P01B~0,R!ci2

<i~V~•,v!2E!P01B~0,R!ci2

<E
B~0,2R!

dx„V~x,v!2E…2ucR~x!u21E
B~0,2R!c

dx„V~x,v!2E…2ucR~x!u2.

~2.8!

If vPV8 for the first integral in~2.8!, we have

E
B~0,2R!

dx„V~x,v!2E…2ucR~x!u2<
1

4
d2icRi2<

1

4
d2. ~2.9!

We now estimate the second integral in~2.8!,

ucR~x!u25S E
B~0,R!

dy P0~x,y!c~y! D 2<E
B~0,R!

dyuP0~x,y!u2, ~2.10!

using the Schwarz inequality andici51. If xPB(0,2R)c andyPB(0,R),

uP0~x,y!u2<
4k2

p2 exp@2kR22kux2yu2#, ~2.11!

so that we have, for the second integral in~2.8!,

E
B~0,2R!c

dx„V~x,v!2E…2ucR~x!u2<
4~b2a!2k2

p2 e2kR2E
B~0,R!c

dxE
B~0,R!

dy e2kux2yu2

<
4~b2a!2k2R2

p
e2kR2E

R2
dx e2kuxu2,

1

4
d2, ~2.12!

if R is sufficiently large. h

The next lemma describes the generalized eigenfunctions ofH~v!. It is proved in Ref. 15~see
Theorem 2.3 and Lemma 6.2! in the case whereX may be unbounded.
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Lemma 2.2: For almost everyEPX with respect to the spectral measure ofH, there existsc,
a polynomially boundedC` function onR2 such thatHc5Ec andP0c5c. Moreover, ifcPH0
thenE is in the pure-point spectrum ofH.

The object of this paper is to prove that almost surely the generalized eigenfunctions ofH
corresponding to points ofX near its edges are localized, in the sense that they decay exponen-
tially and therefore those points are in the pure-point spectrum. The next definition makes precise
what is meant by exponential decay.

Definition: c:R2→R decays exponentially with a rate greater or equal tom if

lim sup
x→`

lnuc~x!u
uxu

<2m. ~2.13!

The main result of this paper is the following theorem, which is proved in Sec. IV.
Theorem 2.3: If the probability measure corresponding to the i.i.d. random variablesvn is

absolutely continuous with respect to the Lebesgue measure and its densityr satisfies a Lipshitz
condition of orders.0 and suppr5[a,b], where2`,a,b,`, then there is aD.0 andm.0,
such that almost surely [a,a1D]ø[b2D,b] is in the pure-point spectrum ofH and the corre-
sponding eigenfunctions ofH decay with a rate greater or equal tom.

The last lemma of this section provides an important simplifying feature in our proof of
localization. It shows that to prove that an eigenfunction decays exponentially it is sufficient to
prove that its average on unit squares decays exponentially.

Lemma 2.4:If c is a generalized eigenfunction ofH and

lim sup
n→`
nPZ2

ln^1L1~n! ,ucu&

unu
<2m, ~2.14!

thenc decays exponentially with rate greater or equal tom.
Proof: If c is a generalized eigenfunction ofH then, by Lemma 2.2,cPC` and is polyno-

mially bounded,uc(x)u,C(11uxu) t, say. Ifc satisfies~2.14! then, givene.0, we can chooseR
such that fornPZ2 with unu.R21/&,

E
L1~n!

uc~x!udx<e2~m2e!unu. ~2.15!

Sincec5R0c, for all xPR2,

uc~x!u<
2k

p E
R2
e2kux2yu2uc~y!udy

5
2k

p E
uyu<R

e2kux2yu2uc~y!udx1
2k

p E
uyu.R

e2kux2yu2uc~y!udy

5
2k

p
~ I 11I 2!. ~2.16!

For the first term, we have

I 1<C~11uRu! tpR2e2k~ uxu2R!2. ~2.17!

We now obtain an exponential bound on the second term,
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I 2< (
nPZ2

unu.R21/&

E
L1~n!

e2kux2yu2uc~y!udy

< (
nPZ2ux2nu<1

unu.R21

E
L1~n!

e2kux2yu2uc~y!udy

1 (
nPZ2ux2nu.1

unu.R21

E
L1~n!

e2kux2yu2uc~y!udy5I 31I 4 . ~2.18!

Now

I 3< (
nPZ2ux2nu<1

e2~m2e!unu<4e2~m2e!~ uxu21! ~2.19!

and

I 4< (
nPZ2

e2~m2e!unue2k~ ux2nu21!2

<e2~m2e!uxu (
nPZ2

e~m2e!ux2nue2k~ ux2nu21!2

<e2~m2e!uxu (
nPZ2

e~m2e!~ unu11!e2k~ unu22!2<C8e2~m2e!uxu. ~2.20!

h

III. THE METHOD

In this short section we describe our method. Our proof is based on the paper of Von Dreifus
and Klein14 ~also see Refs. 25 and 16!. Here we give a summary of the main differences. The
details can be found in Ref. 15.

The main tool in Refs. 14, 25, and 16 are the local Hamiltonians, the Hamiltonian restricted to
bounded regions by Dirichlet boundary conditions, and the corresponding Green’s functions. For
L,R2, here we define the local HamiltonianHL on L2 ~L! by

HL5PLVLPL* , ~3.1!

wherePL51LP0 andVL5V1L . V is also truncated to ensure that for disjoint regions the corre-
sponding local Hamiltonians are stochastically independent. We note that for boundedL, HL is a
Hilbert–Schmidt operator and its spectrums~HL! has an accumulation point at the origin.

For l¹s ~HL! let

GL~E!5~HL2E!21. ~3.2!

If c is an eigenfunction ofH with eigenvalueE¹s(HL), then using the resolvent identity, we
have forxPL @cf. Eq. ~3.12! in Ref. 15#

c~x!52„GL~E!~PLVPLc* 1PLVLcPL* !c…~x!. ~3.3!

Most of the complexity in adapting the proofs of Ref. 14 to this model comes from the fact thatH
is not a local operator.~3.3! contains terms that couple points inL to points outside. However,
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because of the form of the kernel ofP0, the coupling is bounded by a Gaussian. The Green’s
functionGL(E) does not have a kernel in this case. We therefore have to modify the definition of
regularity.

Definition: Letm.0, 0,b,1, EPR and 1
2,s,1. A squareLL(x) is (v,m,b,E,s) regular if

~RA!,d(E,s„HLL
(x)…). 1

2e
2Lb

;
~RB!, for all fPL2„LL(x)…,

^1L1~x! ,uGLL~x!~E!1L̃ L~x!fu&,e2mLi1L̃ L~x!fi ,

whereL̃ L(x) 5 LL(x)\L L̃ (x) andL̃ 5L2Ls.
In order to state the theorem that is used in proving localization, we need to define the

following two conditions: LetE0PR\$0% and fixbP~0,1!, sP~ 12,1! andp.2. We shall say thatL
satisfies condition~P1! if the following occurs.

~P1! There exists q.4p112 and 0,h,1
2uE0u, such that for all L1>L and all

EP(E02h,E01h),

P$d„E,s~HLL1
~0!!…,e2L1

b
%,L1

2q ;

and we shall say thatL satisfies condition~P2! if the following occurs.
~P2! There existsgP~0,1! andm.Lg21, such that

P$LL~0! is ~v,m,b,E0 ,s! regular%>12L2p.

The following theorem is Theorem 4.1 in Ref. 15.
Theorem 3.1: There existsL0(b,s,p,q) such that if there is anL>L0 that satisfies both

conditions ~P1! and ~P2! then there is aD(L,b,s,h).0 so that almost surely, forE0Þ0,
s(H)ù(E02D,E01D) is in the pure-point spectrum and the corresponding eigenfunctions decay
with mass greater or equal tom.

The proof of this theorem can be split up in two parts: one in which condition~P2! is iterated
to pairs of larger and larger blocks and one in which the iterated condition is shown to imply
exponential decay. Because of Lemma 2.4 it is sufficient to iterate on squares centered on points
of Z2. This is very important in adapting the method of Ref. 14, which is for lattice Hamiltonians,
to our model, which is for a continuous system, because it allows us to add probabilities.

Another difference between condition~P2! and the corresponding condition in Ref. 14 is the
dependence ofm on L. In most cases one checks~P2! by proving that the density of states decays
very fast near the edges of the spectrum~Lifshitz tails!. In this paper we check~P2! directly and
this requires that we weaken~P2! to allowm to depend onL.

IV. PROOF OF LOCALIZATION

In this final section we shall show that the conditions of Theorem 3.1 are satisfied, thus
establishing that the eigenfunctions corresponding to points near the edges ofX are localized
~Theorem 2.3!.

From now on we shall assume that the probability measurem is absolutely continuous with
respect to the Lebesgue measure onR and has a densityr that satisfies a Lipshitz condition of
orders.

There exists.0 andK.0 such that

ur~x!2r~y!u<Kux2yus, ~4.1!

for all x,yP[a,b]. This implies that thatr is bounded, and therefore
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m@c,d#,K8~d2c!. ~4.2!

In the next ten lemmas~Lemmas 4.1–4.10! we shall assume that 0,a,b, but we emphasize that
this is not necessary for the final result. Let

NL
.~V,E!5#$ j :lL

~ j !~V!>E%, ~4.3!

where

lL
~1!~V!>lL

~2!~V!>lL
~3!~V!>•••>0

are the eigenvalues ofHL . Note that since this operator is Hilbert–Schmidt,NL
.(V,E) is finite for

E.0. We have the following simple scaling law forNL
.(V,E): If t.0,

NL
.~ tV,tE!5NL

.~V,E!. ~4.4!

Throughout this section we shall use a simplified notation. We letHL 5 HLL(0)
, GL 5 GLL(0)

,
VL 5 VLL(0)

, PL 5 PLL(0)
, LL5LL(0), L̃ L5L̃ L(0),L15L1~0!, andHL5L2„LL~0!…. The fol-

lowing lemma will be required for condition~P1! and for part~RA! of the regularity condition in
~P2!. The proof is a modification of Wegner.17

Lemma 4.1:There exists a constantC.0 such that forE.a.0 and 0,e,1
2E,

P~d„E,s~HL!…,e!<CL4emin~1,s!.

Proof:We first note thatVL
1/2PL* is Hilbert–Schmidt since it has a square integrable kernel and

thereforeHL is trace class. Also,

traceHL5E
L
dxE

L
dyuP0~x,y!u2V~y!. ~4.5!

Now, sinceNL
.(V,E) is the number of eigenvalues greater thanE, it is smaller than the sum of

lL
( i )(V)/a:

NL
.~V,E!<a21 traceHL5a21E

L
dxE

L
dyuP0~x,y!u2V~y!

<a21bE
R2
dxE

L
dyuP0~x,y!u2

<2~pa!21bkuLu. ~4.6!

By ~4.4!,

E„NL
.~V,E2e!2NL

.~V,E1e!…5ESNL
.S EV

E2e
,ED2NL

.S EV

E1e
,ED D . ~4.7!

Writing ~4.7! explicitly, we get
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E„NL
.~V,E2e!2NL

.~V,E1e!…5 )
nPG

S 12
e

ED E
Ea/~E2e!

Eb/~E2e!

dvn rS S 12
e

EDvnDNL
.~V,E!

2 )
nPG

S 11
e

ED E
Ea/~E1e!

Eb/~E1e!

dvn rS S 11
e

EDvnDNL
.~V,E!,

~4.8!

whereG5$nPZ2:L1(n)ùLLÞ0% If we orderG in some way we can then write~4.8! as

E„NL
.~V,E2e!2NL

.~V,E1e!…5(
j

S )
i, j

S 12
e

ED E
Ea/~E2e!

Eb/~E2e!

dvni
rS S 12

e

EDvni D
3S )

i. j
S 11

e

ED E
Ea/~E1e!

Eb/~E1e!

dvni
rS S 11

e

EDvni D D E dvnj

3S S 12
e

ED 1E/~E2e!@a,b#~vnj
!rS S 12

e

EDvnj D 2S 11
e

ED
31E/~E1e!@a,b#~vnj

!rS S 11
e

EDvnj D DNL
.~V,E!. ~4.9!

Thus

E„NL
.~V,E2e!2NL

.~V,E1e!…

<2~pa!21bkuLu2E dvUS 12
e

ED 1E/~E2e!@a,b#~v!rS S 12
e

EDv D
2S 11

e

ED 1E/~E1e!@a,b#~v!rS S 11
e

EDv D U
<2~pa!21bkuLu2S 2e

E
1E

aE/~E2e!

bE/~E1e!UrS S 12
e

EDv D 2rS S 11
e

EDv D Udv

1
E

E1e
mS a,a E1e

E2e D 1
E

E2e
mS b E2e

E1e
,bD D

<CuLu2emin~1,s!, ~4.10!

where we have used~4.1!, ~4.2!, anda<E<b. Note that the constantC is independent ofE. Now

P~d„E,s~HL!…,e!<(
i

P„l iP~E2e,E1e!…<E„NLL

. ~V,E2e!2NLL

. ~V,E1e!…

<CL4emin~1,s!. ~4.11!
h

We shall see later that it is sufficient to prove~P1! and part~RA! of ~P2!. The remaining
lemmas will be used to prove part~RB! of ~P2!.

We first use a Combes–Thomas18-type argument to obtain an upper bound for
^1L1

,uGL1L̃L
fu&.

Lemma 4.2:There existsC.0 andL0.0 such that if 0,e,1 andL.L0 ; then
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PS ^1L1
,uGL1L̃ L

fu&,
C

e
e2CeLi1L̃ L

fi ,;fPHLD>P~d„E,s~HL!…>e!. ~4.12!

Proof: Let U be the operator onHL defined by (Uf )(x) 5 ex0•xf (x), wherex0PR2 with ux0u,1
and let

Q5UHLU
212HL . ~4.13!

ThenQ has a kernelQ(x,y), where

Q~x,y!5~ex0•~x2y!21!HL~x,y!, ~4.14!

HL(x,y) being the kernel ofHL . Therefore

u~Qf!~x!u<
2kb

p E uex0•~x2y!21ue2~k/2!ux2yu2uf~y!udy. ~4.15!

Since

uex0•~x2y!21ue2~k/4!ux2yu2<ux0•~x2y!ueux0•~x2y!ue2~k/4!ux2yu2

<ux0uux2yueux0uux2yue2~k/4!ux2yu2

<ux0ue2ux2yue2~k/4!ux2yu2<e1/2k
1/2

ux0u, ~4.16!

we have

u~Qf!~x!u<~Tufu!~x!ux0u

whereT is the operator with kernelT(x,y) 5 (2kb/p)e1/2k
1/2
e2(k/4)ux2yu2. Thus

iQfi<iTufui ux0u<iTi ux0u ifi , ~4.17!

and thereforeiQi<Kux0u.
Let E satisfyd„E,s(HL)…>e and choosex0 such thatux0u,e/(2K), so thatiQi< 1

2e. Then,
by ~4.13!,

iUGL~E!U21i5i~HL1Q2E!21i,
2

e
. ~4.18!

Now we split upL̃ L into four parts:

L̃ L5 ø
i51

4

L̃ L
~ i ! ,

where L̃ L
( i )5$x:xPL̃ ,ei•x>uxu/&% and e15~1,0!, e25~21,0!, e35~0,1!, and e45~0,21!. We

have

^1L1
,uGL1L̃ L

fu&<(
i51

4

^1L1
,uGL1L̃

L
~ i !fu&. ~4.19!

Now
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^1L1
,uGL1L̃

L
~1!fu&5^1L1

,U21uUGLU
21U1L̃

L
~1!fu&

<iU211L1
iiUGLU

21iiU1L̃
L
~1!ii1L̃ L

fi

<
2

e
iU211L1

iiU1L̃
L
~1!ii1LL

fi . ~4.20!

Clearly,

iU211L1
i<ee/2&K,K8, ~4.21!

and by choosingx05(2e/2&K,0) we get

iU1L̃
L
~1!ci25E

L̃L
~1!
e2x0•xuc~x!u2 dx<e2~e/4K !~L2Ls!ici2, ~4.22!

from which it follows that

iU1L̃
L
~1!i<e2~e/8K !~L2Ls!,e2~e/9K !L, ~4.23!

for L sufficiently large. Thus, using~4.20!–~4.23! we get

^1L1
,uGL1L̃

L
~1!fu&,

2K8

e
e2~e/9K !Li1L̃ L

fi , ~4.24!

and similarly fori52,3,4. Therefore

^1L1
, uGL1L̃ L

fu&,
8K8

e
e2~e/9K !Li1L̃ L

fi . ~4.25!

h

The proof of part~RB! of ~P2! is now reduced to estimatingP~d„E,sL(HL)…,e!. However,
the estimate~4.1! is not good enough and we have to obtain a better one.

We shall make use of the explicit form of the following basis functions forH0. FormPN and
xPR2 let

um~x!5
~2k!~1/2!~m11!

~pm! !1/2
~x12 ix2!

me2kuxu2. ~4.26!

Then $um :mPN% is an orthonormal basis forH0. Note that sinceUy commutes withP0,
$Uyum :mPN% is also an orthonormal basis forH0. We also have that ifmÞn, then

E
B~0,r !

um~x!un~x!dx50, ~4.27!

so that if

f5 (
m50

`

cmum ,

then
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E
B~0,r !

uf~x!u2 dx5 (
m50

`

ucmu2E
B~0,r !

uum~x!u2 dx. ~4.28!

Lemma 4.3:If 0<r<d andmPN, then

E
B~0,d!\B~0,r !

uum~x!u2 dx>~e22kr22e22kd2!E
B~0,r !

uum~x!u2 dx. ~4.29!

Proof: A straightforward calculation gives

E
B~0,d!\B~0,r !

uum~x!u2 dx5 (
k50

m H ~2kr 2!k

k!
e22kr22

~2kd2!k

k!
e22kd2J ~4.30!

and

E
B~0,r !

uum~x!u2 dx512 (
k50

m
~2kr 2!k

k!
e22kr2. ~4.31!

For fixed t>0, we defineF(s) for s>t by

F~s!5 (
k50

m
sk

k!
e2s2S 12 (

k50

m
tk

k!
e2tD e2s. ~4.32!

Then the statement of the lemma is equivalent to the following: Ifs>t>0, thenF(s)<F(t). Now

F8~s!5e2sS 2
sm

m!
1 (

k5m11

`
tk

k!
e2tD

5
e2s

m! S 2sm1tme2t(
k51

`
tkm!

~k1m!! D
<
e2s

m! S 2sm1tme2t(
k51

`
tk

k! D<
e2s

m!
~2sm1tm!<0. ~4.33!

h

In the remaining lemmas we shall prove that the part~RB! of ~P2! is satisfied. From Lemma
4.2 with e5Ld21 andm52L (1/2d21), we get, forL sufficiently large

P~^1L1
,uGL1L̃ L

fu&,e2mLi1L̃ L
fi , ;fPHL!>P~d„E,s~HL!…>Ld21!.

Now, if E.b2e, the inequalityHL<(b22e)1 implies thatd„E,s(HL)….e. Therefore, it is
enough to prove that forL sufficiently large with probability greater than 121/2Lp,

HL<S b2
2

L12dD1. ~4.34!

We shall proceed in the following way.
Let 0,d,1/4 and puteL54L21/21d. For each configuration,vPV and forA,R2 let
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A15$xPA:VL~x,v!.b2eL%,

A25$xPA:VL~x,v!<b2eL%.

Let t be a fixed number, such thatkt.768. We shall say that a configurationvPV satisfies
the condition~C1! if the following holds

~C1! There is a set of regions$Bi% with #$Bi%<L2, such that
~i! LL

1,ø iBi ,
~ii ! diamBi<2t ln L, and
~iii ! d(Bi ,Bj )> At ln L.

Let t be a fixed number such that 16kt4,1. We shall say that a configuration satisfies~C2! if
the following occurs.

~C2! For each kPLLùZ2, we can find a ballDk , center k, and radiusrk , where
~t2/2!~ln L!1/2<rk<t2~ln L!1/2, with a surrounding annulusD̃k of width t~ln L!1/4, such that
D̃kùLL

150”.
We shall first prove~Lemmas 4.4–4.8! that for configurations that satisfy~C1! and ~C2!

simultaneously,~4.34! holds. Then in Lemmas 4.9 and 4.10 we show that such configurations
occur with probability greater than 121/2Lp.

For a configuration that satisfies~C1!, we letBi
( j ) 5 $x P R2:d(x,Bi) , ( j /8)At ln L% for

j51,2,3,4. IffPH we writefi for the restrictionfuBi
(2).

In the following lemma we shall prove that on subsets ofBi
(1), P0f can be approximated by

P0f i .
Lemma 4.4:There existsL0 such that ifL.L0 then, for all configurations that satisfy~C1!, for

all i , for all fPH with ifi<1, and for allA,Bi
(1),

U E
A
u~P0f!~x!u2 dx2E

A
u~P0f i !~x!u2 dxU, 1

L4
. ~4.35!

Proof: Let xPBi
(1); then

u~P0f!~x!2~P0f i !~x!u5U E
R2\Bi

~2!
P0~x,x8!f~x8!dx8U

<S E
R2\Bi

~2!
uP0~x,x8!u2 dx8D 1/2

5
2k

p S E
R2\Bi

~2!
e22kux2x8u2 dx8D 1/2

<
2k

p S e2~kt/64!ln LE
R2
e2kux2x8u2 dx8D 1/2

52Ak

p

1

Lkt/128<2Ak

p

1

L6
. ~4.36!

Thus

uu~P0f!~x!u22u~P0f i !~x!u2u5~ u~P0f!~x!u1u~P0f i !~x!u!uu~P0f!~x!u2u~P0f i !~x!uu

<2Ak

p

1

L6
~ u~P0f!~x!u1u~P0f i !~x!u!. ~4.37!
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Now for L large enough,

E
A
uP0f~x!udx<uAu1/2iP0fi<uAu1/2ifi<uAu1/2,L, ~4.38!

and similarly,

E
A
u~P0f i !~x!u<uAu1/2if i i<uAu1/2ifi,L. ~4.39!

Therefore

E
A
u~P0f!~x!u22u~P0f i !~x!u2udx,4Ak

p

1

L5
,
1

L4
, ~4.40!

for L sufficiently large. h

Lemma 4.5:There existsL0 such that ifL.L0 then, for all configurations that satisfy~C1!, for
all i , for all fPH with ifi<1, and for allA andC subsets ofR2 such thatBi

(3),C,A,

U E
A
u~P0f i !~x!u2 dx2E

C
u~P0f i !~x!u2 dxU, 1

L4
. ~4.41!

Proof: It is sufficient to prove the lemma forA5R2 andC5Bi
(3),

u~P0f i !~x!u<
2k

p E
Bi

~2!
e2kux2x8u2uf i~x8!udx8

<
2k

p S E
Bi

~2!
e22kux2x8u2 dx8D 1/2

<
2k

p S E
Bi

~2!
e22k$d~x,Bi

~2!
!%2 dx8D 1/2

5
2k

p
uBi

~2!u1/2e2k$d~x,Bi
~2!

!%2<Le2k$d~x,Bi
~2!

!%2, ~4.42!

for L large enough. IfxPR2\Bi
(3), d(x,Bi

(2)) . 1
8At ln L. Also, we can find a ballB of radiusL such

thatBi
(3),B. Let B̃ be a ball of radius 2L concentric withB. Now

E
R2\Bi

~3!
u~P0f i !~x!u2 dx<E

R2\B̃
u~P0f i !~x!u2 dx1E

B̃ \Bi
~3!

u~P0f i !~x!u2 dx

<2pL2E
2L

`

e22k~r2L !2r dr14pL4e2~k/32!ln L

5
pL2

2k
e22kL21

4p

Lkt/3224,
1

L4
, ~4.43!

for L sufficiently large. h

In the next two lemmas we obtain an upper bound for the integral ofu(P0f)(x)u
2 over that

part ofBi whereVL(x,v).b2eL as a fraction of the integral overBi
(4).
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If a configuration satisfies both~C1! and ~C2!, for eachi we letKi be the smallest subset of
LLùZ2, such that

Bi
~3!, ø

kPKi

Dk,Bi
~4! .

Then #Ki<C ln L. Note that theDk’s are not disjoint.
Lemma 4.6:There existsL0 such that ifL.L0 then, for all configurations that satisfy both

~C1! and ~C2!, for all i and for allfPH with ifi<1,

E
Bi

1
u~P0f i !~x!u2 dx<S 12

1

L1/4D EBi~4!
u~P0f i !~x!u2 dx1

1

L4
. ~4.44!

Proof: Let

P0f i5 (
m50

`

cmU2kum , ~4.45!

wherekPKi . Since for eachkPKi , Bi
(4)2.D̃k ,

E
Bi

~4!2
u~P0f i !~x!u2 dx.E

D̃k

u~P0f i !~x!u2 dx

5 (
m50

`

ucmu2E
D̃k

2

uum~x2k!u2 dx

>$e22krk
2
2e22k~rk1Ark!2% (

m50

`

ucmu2E
Dk

uum~x2k!u2 dx, ~4.46!

by ~4.28! and Lemma 4.3. Thus

E
Bi

~4!2
u~P0f i !~x!u2 dx>

1

L2kr4
~12e2rL!E

Dk

u~P0f i !~x!u2 dx, ~4.47!

whererL5kt2~ln L!1/2. Summing overKi and dividing by #Ki , we get

E
Bi

~4!2
u~P0f i !~x!u2 dx>

1

L2kt4
~12e2rL!

1

#Ki
E
Bi

~3!
u~P0f i !~x!u2 dx. ~4.48!

By Lemma 4.5 and using #Ki,C ln L we have forL large enough,
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E
Bi

~4!2
u~P0f i !~x!u2 dx>

1

L2kt4 S 12e2rL

C ln L D S E
Bi

~4!
u~P0f i !~x!u2 dx2

1

L4D
>

1

L2kt4

1

2C ln L E
Bi

~4!
u~P0f i !~x!u2 dx2

1

L4

>
1

L1/8
1

2C ln L E
Bi

~4!
u~P0f i !~x!u2 dx2

1

L4

>
1

L1/4 EBi~4!
u~P0f i !~x!u2 dx2

1

L4
. ~4.49!

Now

E
Bi

1
u~P0f i !~x!u2 dx5E

Bi
~4!1

u~P0f i !~x!u2 dx

5E
Bi

~4!
u~P0f i !~x!u2 dx2E

Bi
~4!2

u~P0f i !~x!u2 dx

<S 12
1

L1/4D EBi~4!
u~P0f i !~x!u2 dx1

1

L4
. ~4.50!

h

Lemma 4.7:There existsL0 such that ifL.L0 then, for all configurations that satisfy both~C1!
and ~C2!, for all i and for allfPH with ifi<1,

E
Bi

1
u~P0f!~x!u2 dx<S 12

1

L1/2D EBi~4!
u~P0f!~x!u2 dx1

4

L4
. ~4.51!

Proof: Let c5P0f so thatP0c5c and ici<ifi<1,

u~P0c i !~x!u<E
Bi

~2!
\Bi

uP0~x,x8!uuc~x8!udx81E
Bi

uP0~x,x8!uuc~x8!udx8

<S E
Bi

~2!
\Bi

uP0~x,x8!u2 dx8D 1/2S E
Bi

~2!
\Bi

uc~x8!u2 dx8D 1/2
1S E

Bi

uP0~x,x8!u2 dx8D 1/2S E
Bi

uc~x8!u2 dx8D 1/2
<S 2k

p D 1/2S E
Bi

~2!
\Bi

uc~x8!u2 dx8D 1/21 2k

p
uBi u1/2e2k$d~x,Bi !%

2
. ~4.52!

Therefore, ifL is large enough,

u~P0c i !~x!u2<
2k

p E
Bi

~2!
\Bi

uc~x8!u2 dx81Le2k$d~x,Bi !%
2
. ~4.53!

Hence
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E
Bi

~4!
\Bi

~1!
u~P0c i !~x!u2 dx<

2k

p
uBi

~4!\Bi
~1!u E

Bi
~2!

\Bi

uc~x8!u2 dx81LE
Bi

~4!
\Bi

~1!
e2k$d~x,Bi !%

2
dx.

~4.54!

The last term is less than

L2

L ~kt !/64,
1

L4
.

Using this bound andBi
(2)\Bi,Bi

(4)2,

E
Bi

~4!
\Bi

~1!
u~P0c i !~x!u2 dx<

2k

p
Bi

~4!\Bi
~1!u E

Bi
~4!2

uc~x8!u2 dx81
1

L4
. ~4.55!

Now

U E
Bi

~4!
uc~x!u2 dx2E

Bi
~4!

u~P0c i !~x!u2 dxU<U E
Bi

~1!
uc~x!u2 dx2E

Bi
~1!

u~P0c i !~x!u2 dxU
1E

Bi
~4!

\Bi
~1!

uc~x!u2 dx1E
Bi

~4!
\Bi

~1!
u~P0c i !~x!u2 dx

<
1

L4
1E

Bi
~4!2

uc~x!u2 dx1E
Bi

~4!
\Bi

~1!
u~P0c i !~x!u2 dx

using Lemma 4.4 andBi
~4!\Bi

~1!,Bi
~4!2 ,

<S 11
2k

p
uBi

~4!\Bi
~1!u D E

Bi
~4!2

uc~x!u2 dx1
2

L4
.

~4.56!

Thus, writingA5(2k/p)uBi
(4)\Bi

(1)u,

E
Bi

~4!
u~P0c i !~x!u2 dx<~11A!E

Bi
~4!2

uc~x!u2 dx1E
Bi

~4!
uc~x!u2 dx1

2

L4

5~21A!E
Bi

~4!
uc~x!u2 dx2~11A!E

Bi
1

uc~x!u2 dx1
2

L4
. ~4.57!

Hence by Lemma 4.6,

E
Bi

1
u~P0c i !~x!u2 dx<S 12

1

L1/4D ~21A!E
Bi

~4!
uc~x!u2 dx

2S 12
1

L1/4D ~11A!E
Bi

1
uc~x!u2 dx1

3

L4
. ~4.58!

Therefore, by using Lemma 4.4 and rearranging the inequality, we get

S 11~11A!S 12
1

L1/4D D EBi1uc~x!u2 dx<S 12
1

L1/4D ~21A!E
Bi

~4!
uc~x!u2 dx1

4

L4
. ~4.59!
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Thus

E
Bi

1
uc~x!u2 dx<

~121/L1/4!~21A!

~121/L1/4!~21A!11/L1/4 EBi~4!
uc~x!u2 dx1

4

L4

<S 12
1

L1/2D EBi~4!
uc~x!u2 dx1

4

L4
, ~4.60!

for L sufficiently large. h

Lemma 4.8:There existsL1.0 such that for allL.L1 and for all configurations that satisfy
both ~C1! and ~C2!,

HL<S b2
2

L12dD1. ~4.61!

Proof: Let fPHL with ifi. Then

^f,HLf&5^f,PLVLPL*f&

5^PL*f,VLPL*f&

5^P0f,VLP0f&

5E
LL

V~x!u~P0f!~x!u2 dx

<~b2eL!E
LL

2
u~P0f!~x!u2 dx1bE

LL
1

u~P0f!~x!u2 dx

<~b2eL!E
LL\~øBi

~4!
!
u~P0f!~x!u2 dx1~b2eL!(

i
E
Bi

~4!2
u~P0f!~x!u2 dx

1b(
i
E
Bi

~4!1
u~P0f!~x!u2 dx

<~b2eL!E
LL\~øBi

~4!
!
u~P0f!~x!u2 dx1(

i
H ~b2eL!E

Bi
~4!

u~P0f!~x!u2 dx

1eLE
Bi

1
u~P0f!~x!u2 dxJ

<~b2eL!E
LL\~øBi

~4!
!
u~P0f!~x!u2 dx1(

i
S ~b2eL!1eLS 12

1

L1/2D D
3E

Bi
~4!

u~P0f!~x!u2 dx1
4eL
L4

L2,

by the previous lemma. Thus
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^f,HLf&<~b2eLL
21/2!E

LLø~ø iBi
~4!

!
u~P0f!~x!u2dx1

4eL
L2

<~b2eLL
21/2!iP0fi21

4eL
L2

<~b2eLL
21/2!ifi21

4eL
L2

<S b2
eL
2L1/2D5S b2

2

L12dD .
h

Now we come to the main probabilistic estimate. The next two lemmas will be used in
establishing that the configurations that satisfy~C1! and~C2! simultaneously occur with probabil-
ity greater than 121/2Lp.

Lemma 4.9:Let a.0 andp.0. Then for allL sufficiently large, ifa ln L,aL
2,L1/4,

PS 'xPLLùZ2:#„B~x,aL!ù~Z2!1
….

1

4
dL
1/2D,

1

4Lp
.

Proof:

PS 'xPLLùZ2:#„B~x,aL!ù~Z2!1
….

1

4
aL
1/2D< (

xPLLùZ2
PS #„B~x,aL!ù~Z2!1

….
1

4
aL
1/2D

<L2 (
n5n0

N SNn D eL
n , ~4.62!

wheren05[aL
1/2/4] andN5#„B(x,aL)ùZ2…<gaL

2. Now (n
N)<Nn/n!<(Ne/n)n, so that

(
n5n0

N SNn D eL
n,

1

12~NeeL
/n0!

SNeeL

n0
D n0. ~4.63!

The result now follows from

NeeL

n0
<
4gaL

2eL21/21d

@aL
1/2/4#

<16geL21/41d. ~4.64!

h

Lemma 4.10:Let a.0 andp.0. Then for allL sufficiently large, ifa ln L,aL
2,L1/4, the

probability that for everyxPLLùZ2, there existsr x P (aL/2,aL 2 AaL), such that

„B~x,r x1AaL!\B~x,r x!…ù~R2!150” ,

is greater than 121/4Lp.
Proof:Suppose there existsxPLLùZ2 such that for allr P (aL/2,aL 2 AaL),

„B~x,r1AaL!\B~x,r !…ù~R2!1Þ0” .

Then each of the the concentric annuli,
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B~x,aL!\B~x,aL2AaL!, B~x,aL2AaL!\B~x,aL22AaL!,...,

B„x,aL2~@AaL/2#21!AaL…\B~x,aL2@AaL/2#AaL!,

contains a point of~R2!1, so that at least every other annulus contains a point of~Z2!1. Therefore

#„B~x,aL!ùZ1
2
….@AaL/4#.

By Lemma 4.9 this has a probability less than 1/4Lp. h

We are going to apply this lemma in two instances: one to decouple regions of sizeO~ln L!
and another for regions of sizeO„~ln L!1/2… to get the over-spill of the wave function.

Proposition 4.11:There existsL1.0 such that allL.L1 satisfy ~P1! and ~P2! for each
EP(b2L2d,b].

Proof: Puttinge 5 e2Lb
in Lemma 4.1 we get forE.a.0,

P~d„E,s~HL!…,e2Lb
!<CL4e2Lb min~1,s!. ~4.65!

It follows from ~4.65! thatL satisfies~P1! if sufficiently large.~4.65! also shows that there isL1.0
such that ifL.L1,

PS d„E,s~HL!….
1

2
e2LbD>12

1

2Lp
.

It is then sufficient to prove that ifm52Lg21, whereg51/2d; then

P~^1L1
uGL~E!1L̃ L

fu&,e2mLi1L̃ L
fi , ;fPHL!>12

1

2Lp
.

From Lemma 4.2 withe5Ld21, we get forL sufficiently large,

P~^1L1
,uGL1L̃ L

fu&,e2mLi1L̃ L
fi , ;fPHL!>P~d„E,s~HL!…>Ld21!.

If E.b2e, thenHL<(b22e)1 implies thatd„E,s(HL)….e. Therefore it is enough to prove that
for L sufficiently large with probability greater than 121/2Lp,

HL<S b2
2

L12dD1.
Let aL5t ln L and let$xi : i51,...,N% be the points ofLLùZ2 so thatN<L2. By Lemma 4.10,
with probability greater than 121/4Lp for eachi , we can findr i P (aL/2,aL 2 AaL) such that

„B~xi ,r i1AaL!\B~xi ,r i !…ù~R2!150” .

Let

Ai5B~xi ,r i !

and

Ã i5B~xi ,r i1AaL!.

Let B15A1 and for 1, i<N let

1593Dorlas, Macris, and Pulé: Localization in single Landau bands

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Bi5Ai \ø j, i Ã j ;

if Bi50” it is ignored. Then for all 1, i<N,

diamBi<diamAi52r i<2aL ,

and if i. j , sinceBj,Aj andBi,Ã j
c,

d~Bi ,Bj !.d~Ã j
c ,Aj !5AaL.

If xPLL
1, let i x be the smallesti such thatxPAi . Thenx¹ø j, i x

Ã j , thereforex P Bix
. Thus

LL
1,ø iBi . So we have proved that with probability.121/4Lp condition ~C1! is satisfied. By

applying Lemma 4.10 again, this time withaL5t2~ln L!1/2, we see that with probability
.121/4Lp, condition ~C2! is satisfied. Thus, with probability.121/2Lp both conditions~C1!
and ~C2! are satisfied and Lemma 4.8 gives the required result. h

We are now ready to prove the main theorem of this paper, Theorem 2.3.
Proof of Theorem 2.3:We remove the conditiona.0 and let

ṽn5vn112a,

so that the probability measure corresponding to the random variableṽn has support equal to
@1,c#, wherec5b2a11. Let

Ṽ ~x,v!5 (
nPZ2

1L1~n!ṽn ,

and

H̃ 5P0Ṽ P0 .

Let dP~0,1/4! and letL.max(L0 ,L1), whereL0 is as in Theorem 3.1 andL1 is as in Proposition
4.11. Then there anm.0, and for eachEP[c2L2d,c] there is aDE.0 and VE,V with
P~VE!51, such that forvPVE ,[1,c]ù[E2DE ,E1DE] is in the pure-point spectrum ofH̃ and
the corresponding eigenfunctions decay with rate greater or equal tom. Let

V85 ù
EP@c2L2d,c#ùQ

VE ;

thenP~V8!51 and forvPV8, [c2L2d,c] is in the pure-point spectrum ofH̃ and the correspond-
ing eigenfunctions decay with mass greater or equal tom. Now the eigenfunctions ofH with
eigenvalues in [c2L2d,c] are eigenfunctions ofH̃ with eigenvalues in [b2L2d,b]. Thus, it
follows that almost surely [b2L2d,b] is in the pure-point spectrum ofH and the corresponding
eigenfunctions ofH decay with mass greater or equal tom. Similarly, one can prove the same
result for [a,a1L2d]. h
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Spontaneous symmetry breaking in the SO(3) gauge
theory to discrete subgroups

Gábor Etesia)
Institute for Theoretical Physics, Eo¨tvös University, Budapest, Hungary

~Received 18 September 1995; accepted for publication 13 October 1995!

In this paper we give a systematical description of the possible symmetry breakings
in the SO~3!-gauge theory and show an algorithmical method to construct SU~2!- or
SO~3!-invariant Higgs potentials in an arbitrary irreducible representation using
regular graphs. We close our paper with the explicit construction of the Lagrangian
of the simplest SO~3!→A4 theory. © 1996 American Institute of Physics.
@S0022-2488~96!00304-0#

I. INTRODUCTION

A very interesting area of today’s theoretical physics is the study of the so-called discrete
gauge theories~discrete Yang–Mills theories!.1–3 A familiar way to construct such theories is to
break down the continuous symmetry of a usual gauge theory using Higgs mechanism. However,
if we want to give an explicit example of such a symmetry breaking we need to solve two
nontrivial problems.

First, how could we produce invariant polynomials of the initial gauge group in an arbitrary
representation? This is a very difficult problem of the theory of group invariants and we cannot
answer the question generally even in the very simple case of SU~2!.

Our second problem is to find a representation of the initial gauge groupG for a given
subgroupH,G which possesses the symmetry breakingG→H. Generally this is an algebraic
geometrical question, because we can equivalently say that we must find points on the zero variety
of theG-invariant polynomial having given stabilizer subgroupH under the action ofG.

In the case of the group SU~2! we were able to develop a simple method using regular graphs
to make SU~2!- @and of course SO~3!-# invariant polynomials.

Because the subgroups of the group SO~3! have contacts with regular two- and three-
dimensional polyhedra, using simple methods from the theory of group representations we can list
all possible stabilizer subgroups in an arbitrary irreducible representation of the group SO~3!.

II. STATEMENT OF THE PROBLEM

If we want to break down the symmetry in a given gauge theory with gauge groupG we need
to give explicitly a so-called Higgs-potentialV which is a polynomial in the Higgs scalar fields
and satisfies the following conditions:

~i! V is invariant under the action of the groupG in a given representation;
~ii ! V is bounded;
~iii ! the self-interactions of the scalar fields induced by the polynomialV are renormalizable.

If we want to break the gauge symmetry to a given subgroup of the gauge groupG we need
some more information about the polynomialV. Our starting point is the familiar Lagrangian:

L52 1
4Fa

mnFmn
a 1~DmF!!~DmF!2V~F!. ~1!

a!Electronic mail: etesi@hal9000.elte.hu

0022-2488/96/37(4)/1596/6/$10.00
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HereV:kn→R is a polynomial that satisfies the above properties~k denotesC or R!. We can fix
the minimum of the polynomialV to be zero. LetZ(V50) denote the zero variety ofV; so a
vacuum state of the theory is given byAm

a50 andF5F0PZ(V50). Using the potentialV we
can ‘‘break the symmetry spontaneously down,’’ which means that the vacuum state@which is a
point inZ(V50)# has no more the whole dynamical symmetry~the groupG! but a subgroupH of
G only. This subgroupH has the property that its elements stabilize the vacuum state~i.e.,
HF05F0!. So this subgroupH is the stabilizer subgroupof the pointF0PZ(V50). We are
interested in such situations when this group isdiscrete. Now we are in position to give a precise
formulation of our problem.

Let us consider the field theory~1! with symmetry groupG. @We assume that this group is an
algebraic subgroup of some GL~km!.# Then let us take a discrete subgroup of it. Also take a
representationr:G→GL~kn! of the groupG. We are searching for polynomialsV:kn→R which
satisfy the following conditions:

~i! V is invariant under the actionr of G on kn;
~ii ! V is bounded;
~iii ! andZ(V50) has a subset with stabilizer subgroupH,G.

We have omitted the condition of renormalizability because this is a simple restriction of the
degree of the polynomialV.

In the caseG5SO~3! we can solve the problem generally: We are able to list all possible
symmetry violation and can show a simple algorithmical method to construct Higgs potentials in
arbitrary high-dimensional Higgs representations. Let us see how to do this!

III. CONSTRUCTION OF INVARIANT POLYNOMIALS

Let j be an integer or half-integer number and let us take the space of all homogeneous
complex polynomialsp2 j (x,y) having two variables and homogeneous degree 2j . This space is
naturally identified withC2 j11. By the aid of the canonical two-dimensional representation of
SU~2! we can describe a (2j11)-dimensional representations as follows. If (2b̄

a
ā
b)PSU~2!, the

transformation of a vector (x,y)PC2 is given by

x→ax1by, y→2b̄x1āy.

Using these equations we obtain the transformation rule of a homogeneous polynomial:

(
n50

2 j

anx
ny2 j2n→(

n50

2 j

an~ax1by!n~2b̄x1āy!2 j2n.

Clearly this is a (2j11)-dimensional representation of the group SU~2!. The irreducibility of this
representation is due to the fact that in the two-dimensional representation of the SU~2! there are
not SU~2!-invariant polynomials. Letln denote the roots of the polynomialp2 j (x,1). Now we can
write

(
n50

2 j

anx
ny2 j2n5a2 j)

n51

2 j

~x2lny!.

Definition: Let k,l be positive integer numbers. The graphG is calledk-regular oriented
graph of order l if it has l vertices, in every vertex convergek edges, and every edge has an
orientation.

For example, Fig. 1 shows a four-regular oriented graph of order 5. Now letG be ak-regular
oriented graph of order 2j . We order toG an expression:

1597Gábor Etesi: Spontaneous symmetry breaking

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



a2 j
k )

~mn!
~lm2ln!. ~2!

Here the productP (mn) is understood as the product~2! has to involve a factorlm2ln if in its
graph there is an edge of the form seen in Fig. 2.~We can connect two verticies with more than
one edge; in this situation we count the edges with multiplicity.!

On a graph of order 2j the permutation groupS2 j acts as naturally transposing the vertices of
the graph. This gives the symmetrization of the expression~2!.

Proposition 1: The expression

1

uS2 j u
a2 j
k (

pPS2 j
)
~mn!

~lp~m!2lp~n!! ~3!

is invariant under the action of SU~2!. L
Let sn denote thenth elementary symmetric polynomial with variablesl1 ,...,l2 j . The ex-

pression~3! is clearly symmetric inl1 ,...,l2 j , so it is uniquely expressible as a polynomial in
s1 ,...,s2 j . However, using the well-known relations between the roots and coefficients of a
polynomial,sn5(21)na2 j2n/a2 j , we have the result that~3! is an SU~2!- ~or, if j is an integer,
an SO~3!-! invariant polynomial of the formf (a0 ,...,a2 j ) of homogeneous degreek.

The easy proof is left to the reader.
One can use this method very effectively if one has a computer@because of the symmetriza-

tion of the expression~2!#. We have computed some invariants of SU~2!. Now we show only the
seven-dimensional invariant of degree 2 illustrated in Fig. 3.

IV. CLASSIFICATION OF SYMMETRY VIOLATIONS OF THE SO(3)-THEORY

Now we turn to our second problem to classify all possible symmetry breaking in the SO~3!-
gauge theory. LetG,SO~3! be a subgroup and its trivial representation given by
g→1PGL~1,R!5R* , gPG. We say thatG,SO~3! is a maximal subgroup of the group SO~3! if
there is no subgroupH,SO~3! satisfyingG,H. The clue of the description is the following
simple proposition.

Proposition 2: Let r:SO~3!→GL(V) be an irreducible representation of the group SO~3! and
let G its maximal subgroup. If the direct decomposition ofr according toG contains the trivial
representation ofG, then inV there is a subspaceWG whose points are stabilized by the groupG.
Moreover, the dimension ofWG is equal to the multiplicity of the trivial representation ofG
in r. L

FIG. 2. A typical part of a graph.

FIG. 1. An example: four-regular graph of order 5.
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The straightforward verification of Proposition 2 is left to the reader. So if the subgroupG
satisfies the condition of Proposition 2 the only thing that we need to do is to determine the
characters of the groupG in the representationr. But this is not difficult. First, if we take a review
of the ~discrete! subgroups of SO~3! we find that these groups are closely related to well-known
geometrical objects: These groups are the symmetry groups of the two- and three-dimensional
regular polyhedra. If we take into account this fact we are able to construct these groups as a set
of rotations under which the adequate regular polyhedron remains invariant~but not pointwise!.

However, if we know these rotations we can easily give the characters of the subgroupG in
the representationr since

x j~f!5
sin~ j1 1

2!f

sin~f/2!
.

Here j denotes the weight of the representationr.
If the group is not maximal, i.e., there exists a subgroupH such thatG,H,SO~3!, then we

need to consider the multiplicity of the trivial representation ofG, resp. ofH. If the multiplicity
of the trivialG-representation is bigger than the multiplicity of the trivialH-representation, then
there are points inV whose stabilizer subgroup is the not-maximal subgroupG. Leaving some
technical details we get in summary the Appendix.

V. THE SO(3)˜A4 THEORY

The time has come to examine explicitly a not-usual symmetry violation. Using the Appendix
we can see that it is possible to violate the SO~3!-gauge symmetry to its non-Abelian subgroupA4
using seven-dimensional Higgs representation. We choose for this procedure the potential showed
in Fig. 3. The seven-dimensional representation is constructed by the above polynomial method
and is the seven-dimensional complex irreducible representation of the group SO~3!, too. First we
need to find a seven-dimensionalreal irreducible subspaceR7 of C7 which gives thereal repre-
sentation of the SO~3!. It is not difficult to see that a simple basis of this real subspace is given by
the polynomials which satisfy the functional equation

p~x,y!52 p̄~2 ȳ,x̄!. ~4!

If we want to obtain an orthogonal real representation, we need to multiply the vectors satisfying
~4! by certain numerical factors and obtain

i

A120
~x61y6!;

1

A120
~x62y6!,

1

A20
~x5y1xy5!;

i

A20
~x5y2xy5!,

~5!

FIG. 3. 6a3
2216a2a4140a1a52240a0a6 ; two-regular graph of order 6 and its SU~2!-invariant polynomial.
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i

A8
~x4y21x2y4!;

1

A8
~x4y22x2y4!,

1

A3
x3y3.

In this basis the polynomial illustrated in Fig. 3 has the simple form

a0
21a1

21a2
21a3

21a4
21a5

21a6
2,

which shows that this polynomial is bounded. Now we turn to our next question: how to find the
coordinates of theA4 vacuum. The groupA4 , the fourth alternating group, has two generators
denoted by a, b. Clearly, our points need to be in the linear space
R7ùKer„r(a)2Id…ùKer„r(b)2Id… and have to be normed. After constructing the seven-
dimensional representation ofa andb we obtain the two possible vacuum states in the basis~5!:

6
1

A270S A120
0
0

5A6
0
0
0

D . ~6!

Now we can write up the Lagrangian of the simplest SO~3!→A4 theory:

L52 1
4Fi

mnFmn
i 1~DmF!!~DmF!2l~F0

21•••1F6
221!2. ~7!

Using ~6! and~7! together we are able to study this ‘‘exotic’’ non-Abelian discrete gauge theory.

VI. CONCLUSIONS

In our paper we have studied the SO~3!-gauge theory. We have developed a general method
to construct SO~3!-invariant polynomials and have given a systematical description of the possible
symmetry violations in the SO~3! theory. Our results are important because it is possible that a
general discrete gauge theory in two space–time dimensions possesses a strange field theoretical
symmetry, the so-called quantum symmetry.2,3 With the aid of explicit examples such as the
SO~3!→A4 model we can study this question very effectively.

APPENDIX: LIST OF STABILIZER SUBGROUPS

The following Appendix shows the stabilizer subgroups of the group SO~3! in an arbitrary
(2 j11)-dimensional irreducible representation.

The representation of weightj contains the following stabilizer subgroups systematically:
• if j is even andj>4, then

1,Z2%Z2 ,Z3 ,...,Z j ,D3 ,...,Dj ,O~2!,SO~3!,

• if j is odd andj>5, then

1,Z2%Z2 ,Z3 ,...,Z j ,D3 ,...,Dj ,SO~2!,SO~3!.

Beyond these the not systematical groups are shown in Table I.
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The higher-dimensional representations one can simply list:
• if j>30 and is even, the stabilizer subgroups in the (2j11)-dimensional representations are

1,Z2%Z2 ,Z3 ,...,Z j ,D3 ,...,Dj ,A4 ,A5 ,S4 ,O~2!,SO~3!,

• if j>31 and is odd, then we obtain

1,Z2%Z2 ,Z3 ,...,Z j ,D3 ,...,Dj ,A4 ,A5 ,S4 ,SO~2!,SO~3!.

1M. G. Alford, J. March-Russel, and F. Wilczek, ‘‘Discrete quantum hair on black holes and the non-Abelian Aharonov-
Bohm effect,’’ Nucl. Phys. B337, 695–708~1990!.

2F. A. Bais, P. van Driel, and M. de Wild Propitius, ‘‘Anyons in discrete gauge theories with Chern-Simons terms,’’ Nucl.
Phys. B393, 547 ~1993!.

3F. A. Bais, P. van Driel, and M. de Wild Propitius, ‘‘Quantum symmetries in discrete gauge theories,’’ Phys. Lett. B280,
63–70~1992!.

TABLE I. The not systematical stabilizer subgroups in the low-dimensional irreducible representations of the group SO~3!.

dim r 1 3 5 7 9 11 13 15 17 19

H SO~3! SO~2! Z2%Z2 1 S4 A4 A4 S4 A4

SO~3! O~2! A4 S4 S4
SO~3! Z3 A5

D3

SO~2!
SO~3!

dim r 21 23 25 27 29 31 33 35 37 39

H A4 A4 A4 A4 A4 A4 A4 A4 A4 A4

S4 S4 S4 S4 S4 S4 S4 S4 S4
A5 A5 A5 A5

dim r 41 43 45 47 49 51 53 55 57 59

H A4 A4 A4 A4 A4 A4 A4 A4 A4 A4

S4 S4 S4 S4 S4 S4 S4 S4 S4 S4
A5 A5 A5 A5 A5 A5 A5 A5
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A q-deformation of the Coulomb problem
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The algebra of observables of SOq~3!-symmetric quantum mechanics is extended to
include the inverse 1/R of the radial coordinate and used to obtain eigenvalues and
eigenfunctions of aq-deformed Coulomb Hamiltonian. ©1996 American Institute
of Physics.@S0022-2488~96!02203-8#

I. INTRODUCTION

Much work has been done recently to explore the SOq~3!-symmetric quantum mechanics
developed in Refs. 1 and 2. In particular, much is known about theq deformations of the harmonic
oscillator. The other nontrivial soluble problem in ordinary quantum mechanics is the Coulomb
problem, but for that one needs some notion of an inverse radius. Weich3 considered aq-deformed
Coulomb potential, defining 1/R in a manner dependent upon a particular Hilbert space represen-
tation. This differs from the more standard ‘‘wave-function’’ type approaches used in investiga-
tions of the oscillator~Refs. 4–6, for example!.

Here we approach this problem by defining 1/R as an actual element of the algebra of
observables, thereby achieving representation independence. SinceX25R2 is already defined, we
can then also defineR as well as all of its integral powers. A study of the action of momentum
operators on powers ofR then helps to bring out the interpretation of these operators as symmetric
q derivatives.

Using this definition of 1/R, a self-adjointq deformation of the Coulomb Hamiltonian can be
found, which shares then2-fold degeneracy of the undeformed Hamiltonian for theq analog of
bound states. As in Refs. 3 and 7, we obtain a Balmer-type spectrum for these states with

En52S a

@n#q
D 2, ~1!

where the symmetricq analog ofn is defined as

@n#q5
qn2q2n

q2q21 . ~2!

In addition, we also obtain positive-energy wave functions and a candidateq-CoulombSmatrix.
The paper is structured as follows. After a brief review of SOq~3!-symmetric quantum me-

chanics~Sec. II!, we set up the formalism for dealing with theq-Coulomb problem~Secs. III–V!,
which is then treated in Sec. VI. The detailed proofs of some statements made in the text are
deferred to the five Appendices.

II. SOq(3)-SYMMETRIC QUANTUM MECHANICS

We build upon the algebra of observables as it is defined in Refs. 5 and 3. Theq-deformed
metric and Levi-Civita` tensors are defined as follows:

a!Electronic mail: jafeigen@yukawa.uchicago.edu
b!Electronic mail: freund@yukawa.uchicago.edu
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g i j[g i j[F 0 0
1

Aq
0 1 0

Aq 0 0

G , e1
i j[e i j

1[F 0
1

Aq
0

2Aq 0 0

0 0 0

G ,
e2

i j[e i j
2[F 0 0 21

0
1

Aq
2Aq 0

1 0 0

G , e3
i j[e i j

3[F 0 0 0

0 0
1

Aq
0 2Aq 0

G .
These give rise to anR matrix:

R˜kl
i j 5qdk

i d l
j2ea

i j ekl
a1S 1q21Dg i jgkl ,

which is a solution to the Yang–Baxter equation,

R˜ab
i j R̃cn

bkR̃lm
ac5R̃de

jk R̃l f
idR̃mn

fe ,

and has the inverse

R˜21
kl
i j 5

1

q
dk
i d l

j2ea
i j ekl

a1~q21!g i jgkl .

We use the metric and Levi-Civita` tensors to define scalar and vector products as for the
undeformed tensors:A•B5g i j AiBj and [A3B] k5ek

i j AiBj .
AR

q
3

X
is the SOq~3!-covariant* -algebra defined by the generatorsX1 ,X2 ,X3 subject to the

relations

@X3X#k50

and

Xi*5g i j Xj .

X2[X•X is then real and central in this algebra. In theq51 limit, X1 and X3 correspond to
~1/&!(X6 iY), while X2 is Z. The space of wave functions in harmonic-oscillator treatments of
SOq~3!-symmetric quantum mechanics is an appropriate subspace ofAR

q
3

X
.

One also considers an SOq~3!-covariant* -algebraDR
q
3

X
of operators onAR

q
3

X
, whose generators

are theXi , derivative operators]̄ i , and a scaling operatorm. TheXi act onAR
q
3

X
by left multipli-

cation.m is defined such thatm~1!51; and for allf P AR
q
3

X
, m(Xi f )5qXim( f ). ]̄ i is defined such

that ]̄ i(1)50; and for allf P AR
q
3

X
,

] ī~Xj f !5Fg i j1
1

q
R̃i j
klXk]̄ l G f .

The generators ofDR
q
3

X
then obey the relations
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mXi5qXim, m]̄ i5
1

q
]̄ im,

] īXj5g i j1
1

q
R̃i j
klXk]̄ l , @ ]̄3 ]̄ #k50.

One also defines an inverse ofm:

m215m@11q22~12q2!X• ]̄1q23~12q!2X2]̄2#.

In addition, there is a conjugate set of derivative operators inDR
q
3

X
,

] i[m2@ ]̄ i1~q222q21!Xi ]̄
2#.

]i then satisfy the relations

@]3]#k50

and

] iXj5g i j1qR̃21
i j
klXk] l .

The * operation onm and ]̄ i is defined asm*[q23m21 and (]̄ i)*[2q3g i j ] j .
Neither triplet of derivative operators has a subalgebra isomorphic toAR

q
3

X
, but a linear

combination of the two does. This linear combination is then the triplet ofq-momentum operators,

Pi5
] i1q23]̄ i
i ~11q23!

.

Then (Pi)*5g i j Pj , [P3P] k50, andP2 is a real scalar that commutes with thePi .
TheXi andPj satisfyq-deformed versions of the Heisenberg relations:

i ~PaXb2qR̃21
ab
cdXcPd!5m21S gabW1

q21

qK
eab

mLmD
and

2 i ~XaPb2qR̃21
ab
cdPcXd!5q3mS gabW1

q21

qK
eab

mLmD ,
whereW[m[11q22(12q)X• ]̄] is a real scalar,Li[(1/q)m[X3 ]̄] i , and

K[q2111/q. ~3!

TheLi andW generate aq-deformed angular momentum algebra. VectorsZi ~such as theXi , ]j ,
andPk! satisfy the following relations withLi andW, generalizing the role of theLi as generators
of rotations:

LiZj52e i
cded j

eZcLe1e i j
aZaW,

L•Z5Z•L50,

WZj5KZjW2~K21!e j
rsZrLs .
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In addition,Z2 commutes with theLi andW. TheLi andW also satisfy the following relations:

L25
W221

K21

and

@L3L#k5LkW5WLk .

AR
q
3

X
modulo powers ofX2 can be shown to be a direct sum, indexed by non-negative integers

l , of irreducible representations of the angular momentum algebra. Thel th representation is then
~2l11! dimensional, andW is a Casimir operator with eigenvalue

wl5
ql111q2 l

q11
. ~4!

For q51, the eigenvalue ofL2 in the l th representation becomes the familiarl ( l11).
As a last preliminary result, the momentum operators can be expressed in terms ofW, m, and

X2:

X2Pi5
1

iK ~q21/q!~q21! F1q XiWm212WXim
211q2XiWm2qWXimG , ~5!

and

X2P25
1

K2~q21/q!2 F ~q11!2

q
W22qm2222

1

q
~m21!2G . ~6!

These identities will be essential for calculations in the representation we will introduce later.

III. DEFINITION OF 1/R

1/R is already a well-defined concept in the space of undeformed, complex functions onR3.
Its essential properties are that it is a real, scalar function and thatX2(1/R)25(1/R)2X251. The
simplest generalization of these properties is then to define 1/R to be a real, scalar corepresentation
of SOq~3!. ÂR

q
3

X
is then the* algebra generated by theXi and 1/R, where theXi obey the same

relations as inAR
q
3

X
, 1/R commutes with theXi , and

X2S 1RD 251. ~7!

D̂R
q
3

X
is the SOq~3!-covariant * algebra of operators onÂR

q
3

X
, where we add 1/R to the

generators ofDR
q
3

X
. For this definition to be complete we must have a set of relations involving

1/R, m, and the derivatives. These must be consistent with the relations between 1/R and theXi .
Clearly, since 1/R has dimensions of an inverse length, we should have

m
1

R
5q21

1

R
m.
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Equation~7! allows us to find] i(1/R). Indeed, from

] iX
2S 1RD 25] i~1!50,

it follows from the algebra ofDR
q
3

X
that

] iX
25~q2111!Xi1q2X2] i .

Thus,

~q2111!Xi

1

R2 1q2X2] i S 1R2D50,

and therefore

] i S 1R2D52q22~q2111!
1

R4 Xi . ~8!

Note that we are using the notation that ifA P D̂R
q
3

X
, andf P ÂR

q
3

X
, thenA( f ) P ÂR

q
3

X
is the result

of evaluating the effect ofA on f , whereasAf P D̂R
q
3

X
is the product ofA and f as operators.

The simplest solution for] i(1/R) is

] i
1

R
5q21

1

R
] i2q22

1

R3 Xi . ~9!

Repeated application of Eq.~9! indeed gives~8!. Similarly, one finds that

] ī

1

R
5q

1

R
]̄ i2q2

1

R3 Xi . ~10!

Equation~9! must be checked for consistency with the algebra ofÂR
q
3

X
before we can con-

clude that D̂R
q
3

X
is a consistent operator algebra. In particular, we must show that

] i [(1/R) f ]5] i [ f (1/R)], and] i [X
2(1/R2)]5] i [(1/R

2)X2]50. In addition, if 1/R is truly a scalar,
it should commute with theLi andW. The proofs that these conditions are satisfied are given in
Appendix A.

Having defined 1/R, we can now also define theq-deformed radiusR[(1/R)X2. This has the
following commutation relation with]i :

] iR5] i
1

R
X25Fq21

1

R
]k2q22

1

R3 XkGX25q21
1

R
@~q2111!Xi1q2X2] i #2q22

1

R
Xi

5q21
1

R
Xi1qR] i .

Induction over positive and negativen gives

] iR
n5q21~n!qR

n22Xi1qnRn] i ,

where

1606 J. Feigenbaum and P. G. O. Freund: A q-deformation of the Coulomb problem

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



~n!q[
qn21

q21

is the asymmetricq analog. One can, in fact, develop a theory using] or ]̄ as momentum
operators and rewriteq-deformed harmonic oscillator theories in the language ofR and integral
powers ofR. However, since]2 and]̄2 are not self-adjoint, we will concentrate on the action of the
Pi on elements ofÂR

q
3

X
.

IV. SEPARATION OF VARIABLES

Using the formalism developed in Sec. III, we can now consider theq analog of the separation
of variables problem for the kinetic term of the Hamiltonian. To this end we first introduceq
analogs of spherical harmonics. These are defined, up to a—for us irrelevant—normalization as
elementsYqm

l of ÂR
q
3

X
that obey the following two conditions.

~i! Left multiplication ofYqm
l by L2 or by L2 yieldsYqm

l multiplied by a real eigenvalue; or,
in other words,Yqm

l is an ‘‘eigenfunction’’ of bothL2 andL2.
~ii ! All Yqm

l commute withm.
For illustration, we give the explicit expressions ofYqm

l for l50,1,2,

Yq0
051, Yq21

1 5
1

R
X1 , Yq0

15
1

R
X2 ,

Yq1
15

1

R
X3 , Yq22

2 5
1

R2 X1
2, Yq21

2 5
1

R2 X1X2 ,

Yq0
25

1

R2 FqX1X32S Aq1
1

AqDX2X21
1

q
X3X1G ,

Yq1
25

1

R2 X2X3 , Yq2
25

1

R2 X3
2.

Now, by multiplying Eqs.~5! and ~6! on the left byK/R andK/R2, respectively, we obtain

KPi5
1

i @q2~1/q!#~q21!

1

R F1q XiWm212WXim
211q2XiWm2qWXimG , ~11!

and

K2P25
1

@q2~1/q!#2
1

R2 F ~q11!2

q
W22qm2222

1

q
~m21!2G . ~12!

Sincem commutes with theYqm
l andW commutes with powers ofR, if we expand functions

in terms ofRnYqm
l , Equation~12! is ready made for calculating their momentum squared,

K2P2RnYqm
l 5

1

@q2~1/q!#2
1

R2 F ~q11!2

q
wl
22q2n11222q22n21GRnYqm

l

5
q2l111q22l212q2n112q22n21

@q2~1/q!#2
Rn22Yqm

l .

In terms of the symmetricq analog ofn of Eq. ~2!, we can write this in the simplified form,
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K2P2RnYqm
l 52@n1 l11#q@n2 l #qR

n22Yqm
l . ~13!

This is a clear generalization of the result from ordinary real calculus that

D@r nYlm~u,f!#5~n1 l11!~n21!r n22Ylm~u,f!,

and it is the main result of this section.
Equation~11! is not nearly as useful as its counterpart because the action of theXi onYqm

l is
nontrivial. However, for powers ofR, one can obtain the simple result that

iKPi~R
n!5@n#qR

n22Xi5@n#qR
n21

Xi

R
. ~14!

V. THE FREE PARTICLE

Let us consider a system with the Hamiltonian,

H5K2P2,

with the convenient normalization factorK2 determined by Eq.~3!. Then the Schro¨dinger equation
for this system is theq-deformed Helmholtz equation,

K2P2c5k2c.

The solutions to this are of the formj [q] l(kR)Yqm
l andn[q] l(kR)Yqm

l , where j [q] l andn[q] l are,
respectively, theq-spherical Bessel and Neumann functions,

j @q# l~x!5 (
n50

`
~21!n@2n12l #q!!

@2n#q!! @2n12l11#q!
x2n1 l , ~15!

n@q# l~x!52 (
n50

l21
@2l22n#q!

@2n#q!! @2l22n#q!!
x2n2 l211~21! l11(

n5 l

`
~21!n@2n22l #q!!

@2n#q!! @2n22l #q!
x2n2 l21,

~16!

where for non-negative integersn,

@n#q![ H Pk51
n @k#q , n.0,

1, n50,
~17!

and

@2n#q!![ H Pk51
n @2k#q , n.0

1, n50.
~18!

That Eqs.~15! and~16! give rise to solutions is easily seen by applying Eq.~13!. This eliminates
the zeroth element, and then reindexing gives the desired result, as would be the case for theq51
differential equation.

We can also obtain aq-deformed generalization of the Rayleigh formulas, which provide an
alternative definition of these Bessel and Neumann functions. This will be a more convenient form
for obtainingq-spherical Hankel functions,

h@q# l
~1! ~x![ j @q# l~x!1 in @q# l~x!, ~19!
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and

h@q#2
~1! ~x![ j @q# l~x!2 in @q# l~x!, ~20!

corresponding to incoming and outgoing spherical waves. These results are discussed in Appendix
B.

It is interesting to note that, because thePi do not commute, it is not possible to have a plane
wave with definite momentum, as in ordinary quantum mechanics. The best we could do is specify
the component of the momentum in the direction of propagation. Since, moreover,P2, for ex-
ample, does not commute withL2, the problem of expanding even these quasiplane waves as a
sum ofRnYqm

l terms is nontrivial.

VI. THE q-COULOMB PROBLEM

In ordinary quantum mechanics, the Coulomb Hamiltonian is

H5
p2

2m
2

a

r
;

or if we rescale this by 2m and incorporate the mass intoa,

H5p22
2a

r
.

There are several possible ways toq-deform this. We are interested in a self-adjoint Hamiltonian
that preserves the properties of the ordinary Hamiltonian that make it amenable to finding eigen-
functions. That is to say, we require the existence of aq-deformed Lenz vector that commutes
with the q-deformed Hamiltonian, so that there continue to be degeneracies between solutions
with different angular momentum quantum numbers.

Following Ref. 3, we define ourq-deformed Coulomb Hamiltonian to be

H5K2P22aqS 1R m1m*
1

RD ,
which is clearly self-adjoint@for convenience, the normalization of the kinetic term has again been
chosen with a prefactorK2 determined by Eq.~3!#. Noting thatm*5q23m21, this can be written in
the simpler form,

H5K2P22a
1

R
~qm1q21m21!. ~21!

This Hamiltonian also commutes with the Lenz vector,

Ak[
@W,iKPk#

K21
1

aXk

R
5 iK „PkW2~P3L !k…1

aXk

R
.

The Lenz vector along with the angular momentum operators then generate the algebra given in
Ref. 3.

If we write the eigenvaluesE of the Hamiltonian~21! in the form

E52S a

@g#q
D 2, ~22!
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then the corresponding ‘‘eigenfunctions’’ are~see Appendix C for their derivation!

cg lm5 (
p50

`

Ap~g!Rl S aqgR

@g#q
D p expqS 2ql111p2gaR

@g#q
DYqm

l , ~23!

with

Ap~g!5qpl1~1/2!p~p11!
~12q2!p~q2~ l112g!;q2!p

~q2;q2!p

~q2~ l112g!;q2!p
~q2~2l12!;q2!p

~q4~ l11!;q4!p
~q2~ l11!;q2!p

. ~24!

Here

~a;u!p[ H Pm50
p21 ~12aum!, p51,2,3,...,

1, p50,
~25!

is theq-deformed Pochhammer symbol,7 with u5q2 andq4 in Eq. ~24!, and

expq~x!5 (
n50

`
xn

@n#q!
~26!

is the q-deformed exponential, where we have used the notation of Eq.~17!. qg is obtained in
terms of the energyE from the quadratic equation~22!. This has two solutions:

q2g65
h6Ah22E

A2E
, ~27!

with h given by

h5
~q212q!a

2
. ~28!

~We assumeq,1 to ensure convergence; had we instead setq.1, we would have to everywhere
changeq→q21.!

Note that for a given energy, we actually only have one solution since if we write the solutions
as a power series inR, the difference equation admits only one solution that behaves asRl for
smallR. Whether we write it in terms ofg1 or g2 simply gives us two expressions for the same
result.

In ordinary quantum mechanics, a decaying exponential multiplied by a polynomial in the
radial coordinate is normalizable and gives rise to a bound state. Something very similar happens
in the qÞ1 limit. Consider the wave function~23!, which is a sum of terms, each of which is a
non-negative power ofRmultiplying aq exponential of the form expq„2cq(p)R…. As can be seen
from ~23!, thecq(p) become independent ofp asq→1, thus reproducing the usual result. Then we
define a bound state in theq-deformed case to be a wave function of the type~23! for which the
sum overp truncates at the finite valuep5n2 l21. On account of the factor (q2(l112g);q2)p in
the numerator of~24!, such a truncation occurs ifg equals a positive integern. l . From Eq.~22!,
we then obtain theq-Balmer formula, and we find the corresponding wave functions given by~23!
and ~24!. The q-Balmer formula already appears in Refs. 3 and 7. In Ref. 3, as noted in the
Introduction, the operator 1/R is treated differently. This difference is reflected in our wave
functions.

In principle, these same wave functions~23! should also cover the continuum part of the
spectrum, and one should be able to extract anS-matrix from them. How to do this in a rigorous
fashion remains to be seen. Here we consider the candidateSmatrix suggested by Eq.~24!,
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Sl
~q!~E!5~12q2!~g22g1!

Gq2~ l112g1!

Gq2~ l112g2!
5 )

n50

`
12q2~ l112g21n!

12q2~ l112g11n! , ~29!

where theq-gamma function is defined as in Ref. 8:

Gq2~x!:5
~q2;q2!`

~q2x;q2!`
~12q2!12x. ~30!

TheSmatrix ~29! appears to have all the right features.
~A! For q→1 this S matrix reproduces the familiar CoulombS matrix. In this limit the

prefactor goes to unity, as can be seen from Eq.~27!, and theq-gamma functions become pre-
cisely the ordinary gamma functions that appear in the ordinary CoulombSmatrix.

~B! For integerg1>l11, Sl
(q)(E) has a pole corresponding to aq-Balmer state. Both the

location and the residue of this pole differ from those of its ordinary~q51! Balmer limit.
~C! As can be seen from Eqs.~29! and ~27! the branch point ofSl

(q)(E), the scattering
threshold, is now located atE5h2, with h given in Eq.~28! and not atE50, as in the ordinary
case. This is the most dramatic departure from the ordinary case: the scattering region starts at
E5h2. For q51 this reduces to the expected thresholdE50.
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APPENDIX A: PROPERTIES OF 1/R

We have already satisfied]i [X
2(1/R2)]50. The definition Eq.~9! of ] i(1/R) also satisfies the

other half of the second constraint,

] i
1

R2 5q22
1

R2 ] i2q22~q2111!
1

R4 Xi ,

] i S 1R2 X
2D5Fq22

1

R2 ] i1q2X2] i G~1!2q22~q2111!
1

R2 Xi50.

Trivially, ] i1(1/R)5] i(1/R)15] i(1/R). Suppose that

] i f
1

R
55] i

1

R
f ,

wheref P ÂR
q
3

X
. Then

1611J. Feigenbaum and P. G. O. Freund: A q-deformation of the Coulomb problem

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



] iXj f
1

R
5@g i j1qR̃21

i j
klXk] l # f

1

R

5g i j f
1

R
1qR̃21

i j
klXk] l

1

R
f

5g i j f
1

R
1qR̃21

i j
klXkS q21

1

R
] l2q22

1

R3 Xl D f
5g i j f

1

R
2q22d i

kd j
l 1

R3 XkXl f1q21ea
kle i

jaXkXl f
1

R3

2q21~q21!gklg i j

1

R3 XkXl f1
1

R
R̃21

i j
klXk] l f

5q21g i j f
1

R
1
1

R
R̃21

i j
klXk ] l f2q22

1

R3 XiXj f ,

where we used the fact thatea
klXkXl50. At the same time,

] i
1

R
Xj f5S q21

1

R
] i2q22

1

R3 Xi DXj f5q21
1

R
@g i j1qR̃21

i j
klXk] l # f2q22

1

R3 XiXj f5] iXj f
1

R
.

We must also show that

] i
1

R
f
1

R
5] i f

1

R

1

R

in order to complete this inductive proof. However, this is trivial, having assumed that
] i f (1/R)5] i(1/R) f . Thus,ÂR

q
3

X
andD̂R

q
3

X
are consistently defined.

If 1/R is truly a scalar, it should commute with theLi andW. This is indeed true:

W5m@11q22~12q!X• ]̄ #,

X•
1

R
5g i j Xi ]̄ j

1

R
5g i j XiFq 1

R
]̄ j2q2

1

R3 Xj G5q
1

R
X• ]̄2q2

1

R
,

W
1

R
5mF 1R1~q222q21!S q 1

R
X• ]̄2q2

1

RD G
5mFq 1

R
1q

1

R
~q222q21!X• ]̄ G

5
1

R
m@11~q222q21!X• ]̄ #

5
1

R
W,

Li5mq21@X3 ]̄ # i ,

@X3 ]̄ # i
1

R
5e i

jkXj ]̄k
1

R
5e i

jkXjFq 1

R
]̄k2q2

1

R3 XkG5q
1

R
e i
jkXj ]̄k5q

1

R
@X3 ]̄ # i ,

Li
1

R
5mq21@X3 ]̄ # i

1

R
5mq

1

R
q21@X3 ]̄ # i5

1

R
mq21@X3 ]̄ # i5

1

R
Li .
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APPENDIX B: q -DEFORMED RAYLEIGH FORMULAS

Let D be the symmetricq derivative:

Df ~x![
f ~qx!2 f ~q21x!

~q2q21!x
. ~B1!

Acting on monomials,

Dxn5@n#qx
n21. ~B2!

Let us define the followingq generalizations of some common functions by replacing facto-
rials with q-deformed factorials in their Taylor expansions:

expq~x![ (
n50

`
xn

@n#q!
, ~B3!

cosq~x![ (
n50

`
~21!nx2n

@2n#q!
, ~B4!

sinq~x![ (
n50

`
~21!nx2n11

@2n11#q!
. ~B5!

Then expq( ix)5cosq(x)1 i sinq(x).
Theq-deformed Rayleigh formulas,

j @q# l~x!5~2x! l S 1x D D l S sinq~x!

x D , ~B6!

n@q# l~x!5~2x! l S 1x D D l S 2cosq~x!

x D , ~B7!

can then be proved by induction after noting that

j @q#0~x!5
sinq~x!

x
~B8!

and

n@q#0x52
cosq~x!

x
. ~B9!

Theq-deformed spherical Hankel functions are

h@q# l
~1! ~x![ j @q# l~x!1 in @q# l~x!, ~B10!

andh[q] l
(2) (x) is just the complex conjugate ofh[q] l

(1) (x). Since (2x) l [(1/x)D] l is a linear operator,
it follows thath[q] l

(1) should satisfy

h@q# l
~1! ~x!5~2x! l S 1x D D l S 2 i expq~ ix !

x D .
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One can show by induction that

h@q# l
~1! ~x!5 (

n50

l

q~1/2!@ l ~ l11!2n~n11!#
i n2 l21@ l1n#q!

@2n#q!! @ l2n#q!

expq~ iq
nx!

xn11 , ~B11!

satisfies this Rayleigh formula for alll . Thus, these functions must equal the Hankel functions.
The powers ofq that appear both inside and outside theq exponential arise because

D„xk expq~ax!…5@k#qx
k21 expq~aqx!1aq2kxk expq~ax!

5@2k#qx
k21 expqS a

1

q
xD1aqkxk expq~ax!.

This results from theq-deformed arithmetic in which

@n1k#q5qn@k#q1q2k@n#q5q2n@k#q1qk@n#q . ~B12!

It appears to be a common trend of solutions to self-adjointq-deformed Hamiltonians that they
can be expressed as a series of the form(nAn expq(q

nx).

APPENDIX C: q -COULOMB HAMILTONIAN EIGENVALUE PROBLEM

Let b 5 A2E and@g#q5a/b. In order to obtain a difference equation for theAp , we need to
express~H1b2!c as a series of the form(pBp expq(q

px), whereBp is a function of theAp .
If we simply apply~H1b2! to any term ofc using Eq.~13!, we get

~H1b2!Rl1p expq~2qsbR!Yqm
l 52 (

n50

`
@n1p12l11#q@n1p#q

@n#q!
~2qsb!nRn1p1 l22Yqm

l

2a (
n50

`
~qn1 l1p211q2n2 l2p21!

@n#q!
~2qsb!nRn1p1 l21Yqm

l

1b2Rl1p expq~2qsbR!Yqm
l .

If we decompose [n1p12l11]q[n1p] q , we get terms proportional to [n] q[n21]q ,
q2n[n] q , and q

22n. By resumming these terms, we can rewrite them as powers ofR times
exponentials. We wish to rewrite the entire equation in terms of functions of the form
Rl1p2m expq(2qs1mbR)Yqm

l , wherem is an integer ands is a function ofp. Then we can obtain
a difference equation for the coefficients of these functions. In the following, we assume that
s52 l212p1g. The only terms that need to be rewritten are then
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SK2P22a
1

R
q21m21DRl1p expq~2q2 l212p1gbR!Yqm

l

52 (
n50

`
@n12l1p11#q@n1p#q

@n#q!
~ql111p2gb!nRn1 l1p22Yqm

l 2@g#qb (
n50

`
qn1 l1p11

@n#q!

3~2ql111p2gb!nRn1 l1p21Yqm
l

52 (
n50

`

~@n12l1p11#q@n1p#q2q211n1g@n#q@g#q!
~2ql111p2gb!n

@n#q!
Rn1 l1p22Yqm

l

52 (
n50

`

$~q2p12l12112q2g!@n#q@n21#q1q22n@p12l11#q@p#q1q2n@n#q

3~2q11g@g#qq
p12l11@p#q1q11p@2l121p#q!1q22n@p12l11#q@p#q%

3
~2ql111p2gb!n

@n#q!
Rn1 l1p22Yqm

l

5b2~q2l1212p2q2l1212p22g2q4l14p1422g!Rl1p expq~2q2 l212p1gbR!

3Yqm
l 2b~ql1p11@g#q2q2p13l112g@p#q2ql12p112g@2l1p12#q!R

l1p21

3expq~2q2 l2p1gbR!Yqm
l 2@p12l11#q@p#qR

l1p22

3expq~2q2 l2p111gbR!Yqm
l .

Thus,

~H1b2!Rl1p expq~2q2 l2p211gbR!Yqm
l

5q2l12p122g@2#q2 l2p21@ l1p112g#q~q
212q!b2Rl1p

3expq~2q2 l212p1gbR!Yqm
l 1~q2p13l112g@p#q

1ql12p112g@2l1p12#q2@2#ql1p11@g#q!bR
l1p21

3expq~2q2 l2p1gbR!Yqm
l 2@p12l11#q@p#qR

l1p22

3expq~2q2 l2p111gbR!Yqm
l .

If we sum overp from 0 to`, we can obtain the desired difference equation. We normalize the
wave functions so thatA051. Then

A15ql11b
@2#ql11@ l112g#q

@2l12#q
,

and forp.0,

$@p12l13#q@p12#q%Ap125q2l12p122g@2#ql1p11@ l1p112g#q~q
212q!b2Ap

1~q2p13l132g@p11#q1ql12p132g@2l1p13#q

2@2#q2 l2p22@g#q!bAp11 .

Equation~24! is then a solution to this difference equation. Thus the theorem is proved.
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Reduced SL(2, R) WZNW quantum mechanics
T. Fülöpa)
Institute for Theoretical Physics, Eo¨tvös University, Budapest, Hungary
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The SL~2,R! WZNW→Liouville reduction leads to a nontrivial phase space on the
classical level both in 011 and 111 dimensions. To study the consequences in the
quantum theory, the quantum mechanics of the 011-dimensional, point particle
version of the constrained WZNW model is investigated. The spectrum and the
eigenfunctions of the obtained~rather nontrivial! theory are given, and the physical
connection between the pieces of the reduced configuration space is discussed in all
the possible cases of the constraint parameters. ©1996 American Institute of
Physics.@S0022-2488~96!00903-0#

I. INTRODUCTION

In the past several years the Toda models have been studied intensively. In these field theories
scalar fields are coupled to each other by certain special exponential terms, in a way that corre-
sponds to a simple Lie algebra. The Toda models can be considered as generalizations of the
Liouville theory, which is of particular interest since it appears in many problems of physics and
mathematics. An interesting means of deriving and studying the remarkable properties—
integrability, conformal invariance andW-algebraic symmetry—of the Toda models is offered by
the observation that the Toda theories can be obtained by a suitable reduction of the Wess–
Zumino–Novikov–Witten~WZNW! model.1 The WZNWmodel is a theory of a field that takes its
values from a Lie groupG, and the reduction procedure, by imposing appropriate~first class!
constraints, associates it to a Toda theory that corresponds to the Lie algebra ofG. In the case
G5SL~2,R!, the reduced theory is nothing but the Liouville theory.

However, the connection between the WZNW and Toda models is more intricate. A closer
look at the reduction procedure shows that it yields not exactly the Toda theory but a richer
structure; the Toda theory arises only as a component, a subsystem of it. This aspect was first
noticed in Ref. 2. To study the precise relation of the Toda models to the WZNW ones a recent
work examined the SL~2,R! WZNW→Liouville reduction from the phase space point of view.3

The authors considered the classical SL~2,R! WZNW model, imposed the appropriate constraints,
and described the reduction of the phase space under the constraints. They found that the reduced
phase space contains two subsystems~nonintersecting open submanifolds! that admit a clear
physical interpretation. On both subsets the reduced WZNW theory leads to the Liouville theory
locally, but these two copies of Liouville theories are not independent. The connection between
them comes from a ‘‘border line,’’ a lower-dimensional surface in the reduced phase space con-
necting them. For a better understanding of the situation, the authors of Ref. 3 carried out a similar
analysis on the 011 dimensional, point mechanical analogue of the SL~2,R! WZNW model. This
can be thought of as the space-independent version, the ‘‘zero mode sector’’ of the WZNW model.
In Ref. 3 it was found that, depending on the signs of the constraint parameters, one can arrive at
two different types of reduced theories. In both cases the phase space reduces into two locally
independent parts. The difference is that when the constraint parameters have equal signs the two
halves are disconnected, there is no ‘‘border line’’ between them. As a result a classical motion
cannot touch both parts. Actually, though the reduced Hamiltonian is not of the usual form of the
sum of a kinetic and a potential term, the system behaves as if the two halves of the reduced

a!Electronic mail: fulopt@hal9000.elte.hu
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one-dimensional configuration space were separated by an infinitely high potential barrier. On the
other hand, if the signs of the constraint parameters are opposite, then an analogue of an infinitely
deep potential well characterizes the situation. In this case the two ‘‘half-worlds’’ are connected; a
motion can cross the point that separates the two halves of the reduced configuration space.
Moreover, the negative energy motions will oscillate between the two parts. In Ref. 3 it is con-
cluded that it is not enough to give the~global! reduced theory in the local coordinates of the
reduced phase space. The arising two components of the reduced theory seem to be independent
while actually they may have a physical connection, a correlated behavior which can be discov-
ered only from the global point of view.@Reference 3 also contains results about the SL(n,R)
point particle model and discovers some similar properties forn.2 as well.#

These are the features of the classical theories. What happens on the quantum level? Because
of the expected difficulties of quantizing the SL~2,R! WZNW model it is useful to examine the
point particle version. Turning to the masspoint theory the following questions arise naturally:
what kind of relation connects the two half-worlds in the quantum theory? Are there any oscillat-
ing motions quantum mechanically when the the constraint parameters are of opposite sign?
Similarly we may ask if in the case of coinciding signs the separation remains or a tunneling is
allowed. Moreover, in the first case one may expect negative energy bound states. Are they really
present? In this paper we solve the quantum theory of the masspoint version, and thus we can
answer whether our expectations based on the classical behavior hold. While, as a consequence of
its rather nontrivial characteristics, the point particle problem is interesting in itself, its properties
are expected to shed a light on the field theoretical case, just as it happened on the classical level.3

The paper is organized as follows. In Secs. II and III we present the classical mechanics of the
SL~2,R! masspoint before, resp. after, imposing the point mechanical form of the WZNW
→Liouville constraints. The quantum mechanics of the unconstrained and the constrained systems
are established in Sec. IV. The reduced system splits into two parts in a symmetric way, and in
Sec. V we give the eigenfunctions on one such part. In Sec. VI we investigate the orthogonality
and the completeness properties of these ‘‘half-eigenfunctions.’’ The connection between the two
parts is examined in Sec. VII. In Sec. VIII, we discuss the coordinate independence of the
definition of the constrained system. In Sec. IX we give the conclusions of the paper. The outline
of the larger proofs and calculations belonging to the statements of Sec. VI is presented in the
Appendix.

II. THE CLASSICAL MECHANICS OF THE UNCONSTRAINED THEORY

The SL~2,R! WZNW model is defined by the following action:

S05
m

4p E ds dt Tr@~g21]tg!22~g21]sg!2#1m8E d3xe i jk Tr~g21] igg
21] jgg

21]kg!,

~1!

where s and t coordinate a two-dimensional Minkowski space, andg is an SL~2,R!-valued
function ofs andt being periodic ins with period 2p. The coefficients of the first term, the action
of the SL~2,R! sigma model, and the second, a topological term called the Wess–Zumino term, are
denoted bym/4p andm8, respectively. The point particle version, i.e., the physics of the zero
modes of the field theory~1! is defined by restricting the configurations to the space-independent
onesg5g~t! only. Then the action reduces to

S5
m

2 E dt Tr@~g21]tg!2#. ~2!

The motion of the point particle is a functiong:R→SL~2,R!; we can see that the Wess–Zumino
term does not contribute to the masspoint version. The theory posesses left and right translation
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symmetries under the transformationsg°hg, g°gh21, hPSL~2,R!, and the corresponding con-
served quantities areJ5ġg21 and J̃:5g21ġ, taking their values in sl~2,R!, the Lie algebra of
SL~2,R!.

The equation of motion following from the action~2! is (g21ġ) ˙ 5 0. Its solution is
g(t)5g(0)eAt, whereAPsl~2,R! is a kind of initial data specified by the initial conditions as
A5g(0)21ġ(0). Thesolution can also be written in the formg(t)5g~0!@cosh(rt )11@sinh(rt )/
r ]A# with r 251

2 Tr@A
2#. This formula also holds for Tr@A2#,0 with r being imaginary and for

Tr@A2#50 with cosh(rt )→1, sinh(rt )/r→t. The r 2,0 solutions are closed because of their trigo-
nometrical time dependence and ther 2>0 motions are open.

To study the canonical structure of the theory let us consider a parametrization of SL~2,R!
g(j i), i51,2,3. The Lagrangian, the canonical momenta, and the Hamiltonian are

L~j,j̇ !5
m

2
hkl~j!j̇kj̇ l , pk5

]L

]j̇k
5mhklj̇

l , H~j,p!5
1

2m
hklpkpl , ~3!

wherehkl~j!5Tr[g21]kgg
21] lg] is the metric tensor on SL~2,R!.

Easily, the value of the Hamiltonian on a solution of the equation of motion is equal to the
value of the Lagrangian, thus the energy of a motion isE5(m/2)Tr[A2]5mr2. Consequently, the
motions with negative energy are the closed ones and the motions with non-negative energy are
the open ones.

Let us turn to a special parametrization, namely the one which is based on the Gauss decom-
position:

S a b

g d D 5S 1 a

0 1D S 1/d 0

0 d D S 1 0

c 1D . ~4!

This parametrization describes any~g
a

d
b!PSL~2,R! except those havingd50. With d5j1, a5j2,

andc5j3, $hkl% is of the form

$hkl%5S 2/d2 0 0

0 0 d2

0 d2 0
D . ~5!

Calculating the Hamiltonian in this parametrization yields

H~d,a,c,pd ,pa ,pc!5
1

4m
d2pd

21
1

m

papc
d2

. ~6!

Expression~6! shows thata andc are cyclic coordinates sinceH is independent of them. This is
an advantage of using the parametersd,a,c. Later we will see that this parametrization fits very
well for our further considerations. That is why in the following we will work in these coordinates.

III. THE CONSTRAINED MODEL ON THE CLASSICAL LEVEL

Now we impose the constraints that reduce the SL~2,R! WZNW theory to the Liouville one.
For space-independent configurations they read

Tr@e12ġg
21#5m, Tr@e21g

21ġ#5n, ~7!

wheree125~0
0
0
1! ande215~1

0
0
0!. Expressing~7! in the d,a,c parametrization gives

pa5mm, pc5mn. ~8!
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As pa andpc are constants of the unrestricted motion we see that the constraints mean nothing else
but a special choice of some of the initial conditions. This is a general feature of first class
constraints; that these constants of motion happen to be canonical momenta is the real advantage
of the parametersd,a,c.

The reduced phase space can be obtained by factorizing the complete phase space by the
gauge transformations these first class constraints generate. The action of these gauge transforma-
tions is

g°euLe12geuRe215S 1 uL

0 1 D gS 1 0

uR 1D ~9!

~see Ref. 3! where uL and uR are the two parameters of the transformations. This symmetry
transformation acts ona and c as a°a1uL , c°c1uR , while it leavesd, pd , pa , and pc
invariant. Thus the factorization simply means thatd andpd parametrize the reduced phase space.

Any motion d(t),pd(t) allowed by the constrained dynamics corresponding to the constraint
parametersm and n can be obtained by taking a solutiond(t), a(t), c(t), pd(t), pa , pc of the
unconstrained theory wherepa5mm andpc5mn. Roughly speaking we just have to omita(t)
andc(t). The coordinatedPR survives the reduction, thus one may consider it as the coordinate
of the one-dimensional configuration space of the reduced theory. The constrained dynamics is
governed by the Hamiltonian

H~d,pd!5
1

4m
d2pd

21ms
1

d2
, ~10!

wheres5mn.
Until now we have found the Gauss decomposition a very appropriate way of introducing

coordinates on the group SL~2,R! to reach the canonical structure of the reduced system. Now let
us face the problematic side of this approach.

The topology of SL~2,R! is notR3 butR23S1, consequently it cannot be covered by a single
parametrization. In the case of the Gauss decomposition the signal of this is that the Gauss
decomposition works only fordÞ0 and the elements~g

a
0
b! are left out. As a result the canonical

coordinatesd, a, c, pd , pa , andpc parametrize only two nonintersecting open submanifolds, two
‘‘open halves’’ of the whole phase space, corresponding to the two regions2`,d,0 and
0,d,`. In particular, the pointd50 is left out from the reduced configuration space. In the
meantime, extracted from the solution of the equation of motion, the time dependence ofd is of
the formd(t)5C1 sinh(rt )/r1C2 cosh(rt ), whereC1 andC2 are arbitrary constants. Thus we can
see that there exist motions that cross thed50 surface in the whole phase space, for example, for
imaginary values ofr oscillations occur between the regionsd.0 andd,0. Furthermore, for such
a motionpd tends to infinity as the particle reachesd50. This can be seen frompd(t)52mḋ/d2,
the connection betweenpd and the smoothly varying quantityḋ @cf. ~3! and ~5!#. Hence the
coordinatesd,pd of the reduced phase space seem to be able to describe only those parts of a
motion whend(t)Þ0; they cannot give an account of how the particle moves acrossd50.

Fortunately we can overcome these difficulties. First, let us complete the reduced configura-
tion space by mapping the points~g

a
0
b! of the configuration space of the unconstrained system to

the pointd50 of the reduced configuration space, just as we have mapped the points~g
a

dÞ0
b ! to d.

Second, let the recipe to follow a motion throughd50 be to fit the quantityd 2pd . This recipe is
clear from the unconstrained point of view: we simply fitḋ here. By these tricks we can eliminate
the disadvantage of working with only one parametrization instead of covering SL~2,R! with more
than one patch. Clearly, the canonical formalism of the unconstrained system also owes the
problem of the missingd50. Nevertheless, the solution given here for the reduced system applies
in a straightforward way for the unconstrained one, too.

1620 T. Fülöp: Reduced SL(2,R) WZNW quantum mechanics

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



We will see that thed50 problem also arises in the quantum theory. There it appears as an
irregular singularity of the Hamiltonian atd50 and the challenge will be to define the quantum
theory on the whole configuration space despite this singularity.

Finally let us introduce a canonical transformation which transforms the constrained Hamil-
tonian to a form of a sum of a kinetic and a potential term. This can be achieved by the following
transformation:

x:5& ln d, ~11!

px :5
1

&

dpd . ~12!

The resulting Hamiltonian is

Hx~x,px!5
1

2m
px
21mse2&x. ~13!

The price we have to pay for having such a nice Hamiltonian is that by~11! we restricted
ourselves tod.0 only. @Or, because of thed↔2d symmetry of the system, we restricted ourselves
to d,0, if writing 2d instead ofd in ~11!.# Remarkably, the logarithmic connection betweenx and
d is the point mechanical analogue of the one that relates the field of the reduced SL~2,R! WZNW
theory to the Liouville fieldf in the field theoretical case.2

With the aid of~13! it is easy to analyze the three qualitatively different situations arising. If
s.0, then the potential increases exponentially as we travel to the negativex direction. Thus for
all the allowed motions with positive energies there is a turning point when moving to the negative
direction towardsx52` ~d50!. In this case there is no possibility for the masspoint to cross the
borderd50. Fors50 we have a free particle moving along thex axis. Now the ‘‘point’’ x52`
~d50! cannot be reached in a finite time interval so the masspoint cannot cross the border even in
this case. In the cases,0 an exponentially deep potential valley attracts the particle towards the
negative direction. What’s more, the time needed to reachx52` happens to be finite. This shows
that for s,0 the particle may cross the borderd50.

IV. THE QUANTUM THEORY

Let us define the quantum mechanics of the point particle SL~2,R! WZNW theory via canoni-
cal quantization. We use the coordinatesd, a, andc and work in the coordinate representation. The
wave functions are then complex-valued functions defined for alldPR\$0%, aPR, andcPR. We
define the scalar product as

~C1 ,C2!:5E C1*C2A2h dd da dc. ~14!

Here h denotes the determinant of the matrix$hkl% in the d,a,c parametrization@cf. ~5!#. The
measure in this integral is the usual one used on curved manifolds. It also ensures that if we adopt
the usual left and right transformations for the wave functions,

@DL~h!C#~g!:5C~h21g!, @DR~h!C#~g!:5C~gh!, g,hPSL~2,R!, ~15!

then the scalar product is also invariant. This property is inevitable if we want the left and right
symmetries of the classical theory to be present on the quantum level as well. Observe that these
natural requirements led to the appearance of a nontrivial weight functionr(d):5A2h 5 &udu in
the integral~14!.
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In coordinate representation the canonical momenta are defined as partial derivations with
respect to the corresponding coordinates if the configuration space is flat. For curved configuration
spaces this definition does not give symmetric operators because of the presence of the weight
function in the scalar product. Symmetricity and the requirement [ĵk , p̂l ]5 i\dkl meet in the

definition p̂k :5(\/ i )(]k1
1
2]k ln A2h) ~see Ref. 4, for example!. In our case this gives

p̂d :5(\/ i )[ ]d11/(2d)], p̂a :5(\/ i )]a , and p̂c :5(\/ i )]c .
The classical Hamiltonian~6! does not offer a unique way to define the quantum Hamiltonian

because an ordering ambiguity is present. It is~2\2/2m times! the Laplacian,

DC5
1

A2h

]

]j i SA2hhi j ~j!
]

]j j
C D , ~16!

which proves to suit all our requirements: to be symmetric, to be coordinate invariant, to be
invariant under the left–right transformations~this is satisfied because the metric tensor itself is
left–right invariant!, and to offer an ordering of the classical Hamiltonian~see Ref. 4 as well!.
After determiningD in the d,a,c parametrization we arrive at our Hamiltonian:

~ĤC!~d,a,c!:52
\2

4m

1

udu
]d„udu3]dC~d,a,c!…2

\2

m

1

d2
]a]cC~d,a,c!. ~17!

We mention that we have not defined the wave functions atd50 and the operatorsd̂, p̂d , and
Ĥ are apparently ill defined atd50. These singularities are only coordinate artifacts here. This
won’t be the case for the reduced system as we will see soon.

Now let us consider the quantum analogue of the constraints and see what the reduction
yields. We impose the constraints on the quantum level as

p̂aC5mmC, p̂cC5mnC ~18!

@cf. ~8!#. It is very easy to find the wave functions that satisfy~18!: they are of the form

C~d,a,c!5c~d!e~ i /\!~mma1mnc!. ~19!

Remarkably, the action of the operatorsd̂, p̂d , andĤ on a wave function of this form touches
only its d-depending part. This makes it possible to work withc~d! instead ofC(d,a,c) and to
consider the one-dimensional quantum mechanics driven by a HamiltonianĤ:

~Ĥc!~d!52
\2

4m

1

udu
]d„udu3]dc~d!…1ms

1

d2
c~d! ~20!

together with the scalar product

~c1 ,c2!:5E c1*c2r~d!dd. ~21!

Therefore in the following we investigate the properties of this one-dimensional quantum system.
@The classicalH corresponding to thisĤ is just ~10! as we expect.# Here we witness how the
decoupling of the variablesa,c from the system happens on the quantum level.

The wave functions~19! are not square integrable in the SL~2,R! sense. This is a natural
consequence of the constraints that decrease the degrees of freedom by two. We will require
square integrability ‘‘in the reduced sense,’’ i.e., with respect to the scalar product~21!.

The one-dimensional problem we arrived at is quite an unusual one. The Hamiltonian is not a
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c °2b2c91Vc ~22!

type ~with a real constantb and a potential functionV! and a nontrivial weight function is present
in the scalar product. It would be very convenient if our system could be transformed to an
‘‘ordinary’’ one with a Hamiltonian of the form~22! and with no weight function. This can be
achieved by an appropriate transformation ofd to a new variablex5x~d!, accompanied by a
change ofc~d! to a new wave functionx(x) via c~d!5f ~d!x„x~d!… with a certain functionf . How
Ĥ transforms under such a transformation can be read off from the transformation of the Schro¨-
dinger equation. The requirements fix uniquely how to choosex andx; the result is

x5& ln d, c~d!5
1

d
x~x!, ~23!

~Ĥxx!~x!52
\2

2m
x9~x!1S \2

4m
1mse2&xDx~x!. ~24!

This transformation is just the quantum analogue of~11! and~13!. ~The additional constant in
the potential term ofĤx is due to the ordering procedure we maintained at the definition of the
quantum Hamiltonian.! Unfortunately the problem is the same as well: it works only for the
positive half of the configuration space~or the negative one, if exploiting the symmetryd↔2d!.
Nevertheless,Ĥx will be very useful in understanding the physics encoded inĤ.

V. EIGENFUNCTIONS ON THE HALF-CONFIGURATION SPACE

To get a first impression about the spectrum ofĤ, the ‘‘potential valley’’ of the cases,0
suggests carrying out the Bohr–Sommerfeld quantization procedure. However, if one considers
the phase space arearpd dd for a classical bound motion, it turns out that this integral diverges at
d'0. Thus the Bohr–Sommerfeld quantization is impossible. The reason behind this is thatĤ is
not bounded from below ifs,0. To see this let us consider a square integrable wave functionc
and definecl~d!:5lc~ld!. Thecls are normalized to 1; by inspecting the scaling properties of the
two terms ofĤ @cf. ~20!# one finds that the expectation value ofĤ in a statecl tends to2` if we
let l increase tò .

Fortunately the eigenvalues and eigenfunctions ofĤ can be determined exactly in all the cases
s.0, s50, ands,0. To do this we have to solve the equationĤc5Ec as a differential equation
of second order. This equation has three singular points:d56`, which are regular singular points,
and d50, which is an irregular singular point. Consequently one has to solve this equation re-
stricted to the domainsdPR1 anddPR2, respectively, and then fit together the obtained ‘‘half-
eigenfunctions.’’ Because of the symmetryd↔2d it is enough to work onR1. The restriction of
Ĥ to R1 will be denoted byĤ1 .

In the cases,0 the eigenvalue equation can be transformed to the Bessel equation

z2w91zw81~z22n2!w50 ~25!

by the substitutionsz5k/d andc~d!5d21w(k/d), wheren25124mE/\2 and k5A24m2s/\2.
The two linearly independent solutions of~25!, existing for any complex value ofn, areJn(z) and
Yn(z) ~for the conventions and properties concerning the Bessel functions, cf. Ref. 5!. Similarly,
for s.0 the transformationz5k/d andc~d!5d21w~k/d! leads to the modified Bessel equation

z2w91zw82~z21n2!w50 ~26!
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with n2 being the same as above andk5A4m2s/\2. Now the two solutions of~26! are the
modified Bessel functionsI n(z) andKn(z). In the cases50 the transformation~23! is the most
useful. The eigenfunctions ofĤx are exp~6iKx!, whereK5A2mE/\221/2 @cf. ~24!#. In the
variabled they read

1

d
e6 i&K ln d. ~27!

In the casess.0 ands50 Ĥx is bounded from below. The corresponding condition on the
energy eigenvalues isE>\2/4m. For s50 it means thatK is a non-negative real number. In the
cases.0 the condition givesn2<0, causing that only the functionsI iu(z) andKiu(z), uPR, mean
energy eigenfunctions. Fors,0 the Bessel functions with real indexes lead toE<\2/4m and the
imaginary indexes correspond toE.\2/4m.

To get more acquainted with the eigenfunctions let us carry out a simple check of our physical
picture that is based onĤx . In the casess.0 and s,0, the potential term ofĤx decreases
exponentially to zero asx tends to`. Consequently we expect that forx→` the eigenfunctions
with E>\2/4m behave as plane waves.~For s50 this expectation is satisfied trivially.! To see
whether this is the case we make use of thez'0 behavior ofJiu(z) and I iu(z), which is
Jiu(z)'I iu(z);ziu. The connection between the variablesx andz is z5const exp~2x/&! so we
can see that in the variablex Jiu and I iu are asymptotically plane waves. The momentum corre-
sponding to them isp52\u/&. Considering that, forx→`, V(x) tends not to zero but to\2/4m
and quoting the connection betweenn5iu and E we find that the expectation ‘‘kinetic
energy5p2/2m’’ is satisfied as well. The two other eigenfunctions,Yiu andKiu , are linear com-
binations ofJiu andJ2 iu , resp.I iu and I2 iu . Thus they also behave the way we expect from our
physical picture.

VI. ORTHOGONALITY AND COMPLETENESS

It will be important to form a complete orthogonal system from the half-eigenfunctions, an
orthogonal basis inL2(R1,r). In the cases50 this is simple: the set$exp(6 iKx)uKP@0,̀ !% is a
complete orthogonal system@in the variablexP~2`,`!#. Therefore the same can be said about the
functions~27! in the variabled in L2(R1,r). For s,0 there exist several independent choices of
a complete orthogonal system. The different bases can be indexed by apP~0, 2#. The correspond-
ing eigenvectors@given in the transformed formw(z)# are

Jq~z!, q5p,p12,p14,...,

cosS p

2
pD J0~z!1sinS p

2
pDY0~z!, ~28!

e2 iup~u!Jiu~z!1eiup~u!J2 iu~z!, uP~0,̀ !,

where

eiup~u!5

cosS p

2
pD sinhS p

2
uD 1 i sinS p

2
pD coshS p

2
uD

Acos2S p

2
pD sinh2S p

2
uD 1sin2S p

2
pD cosh2S p

2
uD

~29!

~see the Appendix and Ref. 6!. For the cases.0 only one complete orthogonal system can be built
from the functionsI iu(z) andKiu(z), namely, the set
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$Kiu~z!uuP@0,̀ !% ~30!

~cf. the Appendix and Ref. 6!.
What makes the difference that in the casess50 ands.0 the eigenbasis is unique, while for

s,0 there are infinitely many complete orthogonal systems? The answer is in the self-adjointness
of Ĥ1 . For this reason we determine the deficiency index ofĤ1 . Here Ĥ1 is a differential
operator of second order with real coefficients and two singular pointsd50 andd5`. Its defi-
ciency index is equal to the number of its orthogonal square integrable eigenfunctions correspond-
ing to anonrealeigenvalue~cf. Ref. 7! ~the deficiency index does not depend on the eigenvalue
chosen!. In the cases.0 the deficiency index is zero, because, for a fixed nonrealn2, neither of the
two linearly independent eigenfunctions—I n(z) andKn(z) in the variablez—is square integrable
~cf. the Appendix and Ref. 6!. In the cases,0 Jn is square integrable whileYn is not ~we can
choose Ren.0 without loss of generality!. Thus in this case the deficiency index is 1. Fors50 the
deficiency index is 0, which can be seen most easily in the variablex.

Now, starting with the cases,0, we recall a theorem of Ref. 7, which states that if the
deficiency index is 1, then the operator has several self-adjoint extensions. Reference 7 also gives
a condition for the different domains of definition of the different self-adjoint extensions. ForĤ1

this condition says that a functionc~d! lying in the domain of definition of a self-adjoint extension
~has to be smooth enough, cf. Ref. 7, and! has to satisfy

lim
d→0

Fd3S c*
dUn

q

dd
2
dc*

dd
Un

qD G5 lim
d→`

Fd3S c*
dUn

q

dd
2
dc*

dd
Un

qD G , ~31!

where

Un
q~d!5

1

d
JnS kd D1eiq

1

d
Jn* S kd D ~32!

with a qP@0, 2p! and anPC\R, Ren.0. Togetherq and n index the different self-adjoint
extensions.

Then if one examines which eigenfunctions are included in the domain of definition of a
self-adjoint extension indexed by an arbitrarily chosen value ofq and n, a straightforward if
lengthy calculation shows that these eigenfunctions are exactly the ones that form one of the
complete orthogonal systems~28!. The numberp which characterizes this system is expressed by
q andn as

p5Re n1
2

p
arcsinS sinhS p

2
Im n D sinS q

2 D
Asinh2S p

2
Im n D sin2S q

2 D 1cosh2S p

2
Im n D cos2S q

2 D D ~mod 2!.

~33!

Hence the multiplicity of the eigenbases originates in the multiple self-adjoint extensions of the
differential operatorĤ1 .

In the casess.0 ands50 the deficiency index is zero. The appropriate theorem of Ref. 7
states that then the operator is self-adjoint. Consequently, the domain of definition is unique. All
the eigenfunctions~or, more precisely, all the wave packets superposed from the eigenfunctions—
remember that for boths.0 ands50 all the eigenfunctions are non-normalizable! are lying in the
domain of definition so the eigenbasis is unique as well@up to linear equivalence, i.e., except from
trivial phase factors or, in the cases50, choosing two linear combinations of exp(iKx) and
exp~2iKx! instead of exp(iKx) and exp~2iKx!#.
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VII. THE EIGENFUNCTIONS ON THE WHOLE CONFIGURATION SPACE

To investigate the eigenfunctions of the full system the task is to sew together the half-
eigenfunctions and build up a complete orthogonal system of ‘‘whole eigenfunctions’’~in the
following: eigenfunctions!. In usual quantum mechanical systems, i.e., with a Hamiltonian of the
form ~22! and with no weight function in the scalar product, the conditions for fitting parts of an
eigenfunction together are the continuity of the eigenfunction and the continuity, or in special
cases a given jump, of its~space! derivative. Now we cannot expect that such conditions work. In
fact, thed→0 behavior of the half-eigenfunctions proves to bed21/2 cos~k/d1const! in the case
s,0, d21 exp~6i&K ln d! if s50, andd21/2 exp~2k/d! if s.0. Thus this kind of fitting together
is impossible. The situation is not better in the variablex either; the half-eigenfunctions tend to 0
in the limit x→2` in the casess,0 ands.0, while for s50 they behave as exp~6iKx!. This
infinite growth or decrease and infinitely rapid oscillating behavior of the half-eigenfunctions
originates in the irregular singularity of the Hamiltonian atd50.

Fortunately, the probability current is finite atd→0. It is this quantity we are able to fit.
However, in our case the probability current is not of the usual form. By deriving the continuity
equation for the probability density from the Schro¨dinger equation the probability current proves
to be

\

2&mi
udu3S c*

dc

dd
2
dc*

dd
c D . ~34!

Any c can be expressed as a linear combination of eigenfunctionswk , which makes it possible to
decompose the probability current as a sum of

\

2&mi
udu3S wk*

dw l

dd
2
dwk*

dd
w l D . ~35!

It can be verified that in each cases,0, s50, ors.0 such a quantity has a well-defined finite limit
for d→0 so the probability current is also finite atd→0.

We do not fit the probability current directly but carry out an equivalent procedure. In fact,
fitting the probability current of the half-eigenfunctions is to ensure that the norm of a whole wave
function does not change in time. The latter is equivalent to the self-adjointness of the whole
Hamiltonian. We know that the eigenfunctions of a self-adjoint Hamiltonian are orthogonal. Con-
versely, a complete orthogonal system of the eigenfunctions of the Hamiltonian as a differential
operator defines a self-adjoint Hamiltonian from the differential operator on an everywhere-dense
set inL2(R,r), which is our purpose. That is why it is enough, while it is more interesting as well,
to build up complete orthogonal systems out of the eigenfunctions instead of fitting the probability
current.

Let us start with the cases,0. An eigenfunctionF~d! is generally of the form

aw~2d! if d,0, bw~d! if d.0, ~36!

wherew is a half-eigenfunction defined onR1. From this it follows immediately that at most two
linearly independent eigenfunctions can correspond to an eigenvalue in a~whole! eigenbasis.
Another important observation is that if a valuep corresponds tow, the index of the half-
eigenbasisw is a member of, thisp characterizesF as well. Now let us suppose that a complete
orthogonal system of eigenfunctions does not include two linearly independent eigenfunctions that
correspond to the same eigenvalueandhave the same valuep. ~Later we will examine the other
case as well, i.e., when one can find two such eigenfunctions in the system.! In this case there must
be at least one eigenfunction in this eigenbasis with a differentp. Otherwise we do not have
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completeness: there exist functions that are orthogonal to any basis vector but are not identically
zero; such an example is a whole eigenfunction that is not included in the basis but has the same
valuep.

For two eigenfunctions having differentps ~ , !1 and ~ , !2 , the restriction of their scalar
product to the positive, resp. negative, half of the configuration space are not zero, consequently
they are orthogonal only if one of them is of the form

constHw~2d! if d,0,
lw~d! if d.0, ~37!

and the other is of the form

constH 2l*w~2d! if d,0,
w~d! if d.0, ~38!

~with a differentw but! with the same complexl from the set$ulu<1, if ulu51, then arglP@0,p!%.
Let p1 denote the valuep of the eigenfunction of the first form andp2 denote thep of the other
one. The other eigenfunctions withp1 also must have the form~37! ~with the samel! and the
other eigenfunctions withp2 also must have the form~38!, in order to be orthogonal to these two
eigenfunctions. These forms ensure that the further eigenfunctions are orthogonal to each other as
well. Orthogonality also excludes the existence of any eigenfunctions in the eigenbasis having ap
other thanp1 or p2.

To examine completeness, first let us see whether an arbitrary functionc1 from L2(R,r)
having the form~37! ~where noww is not a half-eigenfunction but an arbitrary half-function! can
be spanned by these eigenfunctions. It is easy to see that this requirement is equivalent to that the
restriction of the eigenfunctions withp1 to R

2 have to form a complete half-eigenbasis~a c1 is
orthogonal to the eigenfunctions withp2, hence only the eigenfunctions withp1 contribute to it!.
After a similar treatment of thec2’s of the form ~38! we conclude that a complete system must
consist of each of the eigenfunctions withp1 @that have the form~37!# and each of the eigenfunc-
tions withp2. Then if anycPL2(R,r) can be given as a sum of ac1 and ac2, then completeness
is reached. With the notation

c~d!5 Hc2~2d!, d,0,
c1~d!, d.0, ~39!

the sum of the functions

c1~d!:5H 1

11ulu2
„c2~2d!1l*c1~2d!…, d,0,

l

11ulu2
„c2~d!1l*c1~d!…, d.0,

~40!

and

c2~d!:5H 2l*

11ulu2
„2lc2~2d!1c1~2d!…, d,0,

1

11ulu2 ~2lc2~d!1c1~d!!, d.0,
~41!
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is c, thus the completeness of the considered system of eigenfunctions, which we shall denote by
(p1 ,p2 ,l), is proven. We remark that the above decomposition ofc is a generalization of the
decomposition of a function to a sum of an even and an odd function, which is actually the case
l51.

Now let us turn to the other case, i.e., when the complete orthogonal system of whole eigen-
functions includes two linearly independent eigenfunctions with a same valuep and corresponding
to the same eigenvalue. In this case the other eigenfunctions must be of thisp as well, otherwise
they cannot be orthogonal to both of these eigenfunctions. Furthermore, the eigenvalues of the
eigenbasis must be identical with the eigenvalues of the half-eigenbasisp and must be doubly
degenerated: in the case of a simply degenerated or missing eigenvalue any~other! eigenfunction
corresponding to this eigenvalue is orthogonal to each eigenfunction from the system, which is in
contradiction with completeness. The constantsa andb @see~36!# for the eigenfunctions of the
system can be arbitrary, the only requirement is that for each eigenvalue the corresponding two
eigenfunctions be linearly independent. The concrete values of theseas andbs are not important,
they only embody a choice of two basis vectors in a two-dimensional linear subspace. Remark-
ably, such an eigenbasis is linearly equivalent to a one which, in the spirit of our notation, can be
denoted by (p,p,l) ~the equivalence holds for an arbitraryl!. Based on this observation one can
prove completeness the same way as for a system (p1 ,p2 ,l).

We see that in contrast to the eigenbases~p1 ,p2 ,l! considered earlier, these latter eigenbases
are characterized by a single numberp. Each of the different eigenbases~p1 ,p2 ,l! andp means
a different self-adjoint extension of the Hamiltonian as a differential operator.

For s.0 ands50 the method to establish an eigenbasis is the same as for an eigenbasis with
a singlep in the cases,0. The difference is that now one starts with only one half-eigenbasis.
Consequently, one arrives at only one eigenbasis~up to linear equivalence!. As a result in these
cases the self-adjoint Hamiltonian is unique.

That fors,0 two different half-eigenbases are needed in general for one eigenbasis may seem
unusual. However, this situation is just an analogue of the case of the operator2]2/]x2 on the
interval @2p, p#. If one wants to build up the eigenfunctions sin[(n/2)(x1p)], n51,2,... of
2]2/]x2 from its half-eigenfunctions, defined on@0,p# and @2p, 0#, he/she will find that two
different half-eigenbases are needed to do this, one for the eigenfunctions with evenns and one for
oddns ~cf. Ref. 6!.

In spite of the unusual form of the Hamiltonian and the presence of the nontrivial weight
function, theĤx form of the Hamiltonian enables us to give the physical interpretation of the
results to some extent.

In the cases,0 we expect that the two half-configuration spaces are in physical connection;
the particle can cross the borderd50. Simple calculations show that this expectation is satisfied
for the self-adjoint extensions~p1 ,p2 ,l!: there is a probability flow from one half to the other one.
Consider for example a wave functionc5c1c11c2c2 wherec1 andc2 are eigenfunctions, one
having p1 and the other having p2. Though (d/dt)~c,c!50, (d/dt)(c,c)1

52(d/dt)(c,c)2Þ0 for genericc1 andc2. Another transparent possibility to show the physical
connectedness of the two halves is that one can easily find examples for a solution of the~time
dependent! Schrödinger equation where the expectation value of the coordinate operatord̂ is
oscillating in time between a positive and a negative value. However, in the case of the self-adjoint
extensionsp, the two halves behave as two closed, independent subsystems. The reason is that for
these eigenbases the restriction of the eigenfunctions on a half-configuration space is a half-
eigenbasis, causing thatĤ decouples to two self-adjoint half-operators.

The casess.0 ands50 are similar to thes,0, p one. The Hamiltonian is simply a pair of
two self-adjoint half-Hamiltonians, the two parts of the configuration space being physically
independent. This result is in accord with the naive pictures of thes.0 ands50 systems based on
Ĥx . For s.0 we can think of an exponentially increasing and thus infinitely wide potential wall
separating the two half-worlds. No wonder that we find no tunneling from one side to the other.
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The situation is similar to the quantum mechanics of the system with the potential

V~x!5 H 0 if uxu.a,
` if uxu,a, ~42!

where it is meaningful to speak about the quantum mechanics of the system on the whole con-
figuration space, yet there is no physical connection between the two allowed parts. In the case
s50 we have two free theories, both on an infinitely large configuration space~understood in the
variablex!. We may argue that under such circumstances a wave packet starting from one side
~e.g., thed.0 one! cannot reach the other side in a finite time period. We cannot say anything
stronger concerning interpretation: these are the limits we are forced into.

VIII. COORDINATE INDEPENDENCE

The reduced quantum system, as we saw, posesses several unusual properties. It is natural to
ask whether these features are only artifacts, caused by the special coordinate system which was
used for the definition of the reduced system. Therefore it is worth examining the possibility of
defining the system in a coordinate-independent way.

The Hamiltonian of the unconstrained quantum theory, a multiple of the Laplacian of the
manifold SL~2,R!, and the scalar product~14! are in fact coordinate invariant. Consequently the
question reduces to whether the constraints can be given a coordinate-independent form. In Sec.
IV the constraints were imposed through the canonical momentum operators. The definition
p̂k :5(\/ i )(]k1

1
2]k lnA2h) does not define a covariant quantity becauseh is not a coordinate

invariant scalar. That is why it is recommended to impose the constraints independently of the
canonical momentum operators.

In the spirit of the Lie derivative, let us introduce the following derivation operators:

~LAC!~g!5
d

ds
C~eAsg!U

s50

, ~RAC!~g!5
d

ds
C~geAs!U

s50

~43!

for anyAPsl~2,R!. The definitions ofLA andRA do not need any coordinate system. Nevertheless,
if expressing them using the coordinatesd, a, andc one finds thatLe125]a andRe21

5]c . Thus we
obtained a coordinate-independent reformulation of the constraints~18!.

One can feel the need for checking whether the operators (\/ im)Le12 and (\/ im)Re21
are

really the quantum equivalents of the classical quantities Tr[e12ġg
21] and Tr[e21g

21ġ]. The
following heuristic argument makes this relation visible.

We consider a wave packet which is in some sense the most similar to a classical trajectory,
determine the expectation value of (\/ im)Le12 and (\/ im)Re21

, and compare it to Tr[e12ġg
21],

resp. Tr[e21g
21ġ], computed on the classical trajectory the wave packet is similar to. In the case

of the free quantum mechanics on a three-dimensional Euclidean space, the Gaussian wave packet

constE d3kIe21/~2s2!~kI 2kI0!2eikI ~xI 2xI0! ~44!

is in some sense the best wave mechanical analogue of a classical trajectory. It is well localized
both in position and in momentum—around the positionxI 0 and the wave vectorkI 0. In the case of
SL~2,R! an appropriate analogue of~44! can be defined~for the details see Ref. 6!. From the time
development of this wave packet one can extract the motion of the peak of the wave packet. The
needed classical quantities can be determined and prove to be equal to the corresponding quantum
expectation values, as expected.6

We saw that both the unconstrained system and the constraints are actually coordinate inde-
pendent. After defining a system in a coordinate-independent way, one can use concrete param-
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etrizations to examine its properties. Turning to the concrete situation, all the properties explored
in the coordinatesd, a, andc are valid everywheredÞ0. For example, the wave functions are
scalars so the infinite growth and infinitely rapid oscillating of the eigenfunctions is a coordinate-
independent fact, since this is the behavior of the eigenfunctions notat but around the invalid
point d50.

IX. CONCLUSIONS

We investigated the properties of the point particle version of the reduced SL~2,R! WZNW
model both on the classical and the quantum levels, for all the possible values of the constraint
parameters. We found that the quantum theory exhibits an analogous behavior to the classical one.
The cases where the two parts are disconnected classically lead to two independent systems on the
quantum level as well, and in the cases where the half-systems have a physical connection, this
connection can also be found in the quantum theory. The only exception is that there is a possi-
bility for a classically connected case to be disconnected quantum mechanically. This is possible
because not only one quantum theory corresponds to a classically connected case. Several self-
adjoint extensions of the Hamiltonian exist, including special ones where the two half-systems
turn out to be independent.

Classical mechanically bounded motions exist, with arbitrary large negative energies, in the
connected cases. The disconnected cases do not allow bounded motions and energy is bounded
from below. These properties are also reflected on the quantum level. It is remarkable that the
quantum theory is formally consistent irrespective of the values of the constraint parameters, while
in the connected cases it leads to systems with a Hamiltonian not bounded from below~no matter
which self-adjoint extension is chosen!. Recently a method was proposed to discuss quantum
mechanical systems that exhibit such a behavior.8 The method implements the concept of Wilson
renormalization. It would be interesting to carry out such an analysis for the system studied here.
Nevertheless, the method of Ref. 8 means a kind of distortion of the system, which is not the
purpose here as here we are interested in the properties of the original system for we want to
obtain indications how the quantum theory of the corresponding field theory behaves. In Sec. III
we have found classical space-independent configurations with arbitrary large negative energy in
the connected cases. This and the quantum properties of the masspoint version make it quite
possible that the energy is essentially not bounded from below in the quantum field theory.

That the energy is not bounded from below is not the only nontrivial property of the connected
case. The most striking result of our analysis is the existence of several self-adjoint extensions
corresponding to one classical system. There is no principle, physical or mathematical, to choose
one out of them as the ‘‘real’’ one. The origin of this behavior is the strong singularity at the border
which separates the two half-systems. This singularity is not present on the unconstrained level. It
is a consequence of the characteristics of the constraints. As this singularity can also be observed
in the classical reduced field theory version,3 we expect to face the problem of the nonunique
self-adjoint energy operator on the quantum level, i.e., in the quantum field theory of the reduced
SL~2,R! WZNW model as well.

The method applied here to present the quantum mechanics of the reduced system was ca-
nonical quantization~supplemented by a coordinate independent approach!. Because of the non-
trivial properties found it would be interesting to examine this system by using other tools,
geometric quantization or functional integration, and see how these methods give account of the
characteristics of the theory.

Additionally we remark that recently a paper carried out an analysis of the relativistic quan-
tum mechanics of a free particle on the SL~2,R! manifold.9 The problem studied there is indepen-
dent of the one presented here. Clearly, in Ref. 9 the group SL~2,R! plays the role of the~curved!
space–time the particle exists in, while in our case SL~2,R! is the ~configuration! spaceof the
unconstrained system.
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APPENDIX: ORTHOGONALITY AND COMPLETENESS

In the Appendix we give the outline of how the statements concerning orthogonality and
completeness of the half-eigenbases can be derived. For further technical details, see Ref. 6.

To find the possible orthogonal systems of the half-eigenfunctions the scalar product of the
half-eigenfunctions is to be studied. This can be done by using the following formula of Ref. 10;

E
a

b

Am~z!Bn~z!
dz

z
5

1

n22m2 @z„Am~z!Bn8~z!2Am8 ~z!Bn~z!…#a
b ~A1!

~A,B5J, Y, I or K! and by using thez'0 andz'` asymptotics ofJn(z), Yn(z), I n(z), and
Kn(z). After determining the scalar products of the half-eigenfunctions one can start to build
orthogonal systems out of them and arrives at~28! and ~30! in the casess,0, resp.s.0.

We demonstrate the proof of completeness of the half-eigensystems on the cases,0, p52
~for the treatment of the casespÞ2 or s.0 only straightforward modifications are needed!. Let us
show thatSN(x1 ,x2)1I N(x1 ,x2) tends tod(x12x2) asN→`, where

SN~x1 ,x2!5 (
q5p

N

&qJq~z1!Jq~z2!, ~A2!

I N~x1 ,x2!5E
0

N11/2 du u

2& sinhpu
@Jiu~z1!1J2 iu~z1!#@Jiu~z2!1J2 iu~z2!#, ~A3!

zi5k exp~2xi /&!, i51,2. After simple manipulations the contour of the integral can be deformed
into a half circle with radiusN1 1

2, lying in the half-plane Imu,0 of the complexu-plane. By
doing this the contour passes through some poles of the integrand, thus the residue of these poles
have to be taken into account. The contribution of these residues happens to be2SN(x1 ,x2). The
large-N behavior of the new integral can be evaluated with the aid of the asymptotics of the
integrand. The result is sin†[(N1 1

2)/&](x12x2)‡/p(x12x2), which tends tod(x12x2).
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Commutator expansion. II. Relativistic reduced Green’s
functions and the Lamb shift calculation

Levere Hostler
Physics Department, Wilkes University, Wilkes Barre, Pennsylvania 18766
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This is a continuation of an earlier paper@J. Math. Phys.34, 5509 ~1993!#. A
projection operator technique is introduced in the Lamb shift calculation in order to
manage spurious infrared divergences. The method provides an efficient tool to
exhibit factors of the field in the commutator expansion of the Lamb shift. Mass
eigenfunction expansion concepts developed elsewhere provide the setting for the
new technique. As a by-product of our method, relativistic reduced Green’s func-
tions are found to appear in a natural way. The method may prove useful, since
reduced Green’s functions are simpler than the full Green’s functions, and behave
like constant operators as regards the parameter integrals. ©1996 American In-
stitute of Physics.@S0022-2488~96!00404-7#

I. INTRODUCTION

We expand on earlier work inspired by a paper of Erickson and Yennie. In keeping with our
earlier notation, the Erickson and Yennie paper1 will still be referred to simply as I. For short we
shall refer to our own previous work2 as II. The notation ‘‘Sec. I,’’ ‘‘Sec. II,’’ etc., shall refer to
the parts of the present paper. Both papers are concerned with the self-energy operatorS for an
electron in an external potential:

S5
a

4p3i E d4k

k2
gm

1

P”2k”2m
gm,

~1!
P”[gm~ i ]m2qAm!.

We can separateS into a sum of termsS5SI1SII1SIII1SIV as follows:

S I5
a

4p3i E d4kE
0

1

dzgm

xm

D2 gm, ~2!

S II5
a

4p3i E d4kE
0

1

dz~12z!gmP”
1

D2 gm, ~3!

S III5
a

4p3i E d4kE
0

1

dzzgmFP” ; 1DG 1

D
gm, ~4!

and

S IV52
a

4p3i E d4kE
0

1

dzzgmFgl;
1

DGPl

1

D
gm,

~5!

D52~k”2zP” !22z~12z!P”P”1zx2m2,
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and expand each separately in a ‘‘commutator series.’’ Each term in such a series has a represen-
tation as a single integral over a virtual electron mass squared parameter. From II, Eqs.~36!–~38!,
the lowest (p50) terms in the commutator series are

S I~0!5
a

4p
mE

1

`

du
u21

u2
gm

r

D
gm, ~6!

S II~0!5
a

4p E
1

`

du
u221

2u3
gmP”

r

D
gm, ~7!

S III ~0!50, ~8!

and

S IV~0!52
a

2pm2 E
1

`

duS u221

2u
2 ln ~u! Dgm

1

D
@Pl ;P” #

1

D
Pl

1

D
gm,

~9!

S u221

2u
2 ln ~u! D5

~u21!3

6
1O„~u21!4…,

in which r[P” P” /m2 is the electron ‘‘mass squared’’ operator, and 1/D51/(u2r) is the Green’s
function of the iterated Dirac equation. All terms in the commutator expansion have similar
one-dimensional integral representations involving the virtual electron mass squared parameteru.
Also, all terms are already renormalized with subtraction pointpm pm50, and are both ultraviolet
and infrared finite. The infrared convergence in Eq.~9! is evidenced by the behavior of the
integrand atu51: poles of the Green’s functions 1/D at u51 are offset by zeros of the factor
„(u221)/2u2ln(u)…5O„(u21)3…. Although not a true expansion in powers of the field in the
sense of I, the commutator expansion does have the virtue that we can treat the general term,
thereby providing a window on the higher-order effects in the Lamb shift.

II. REARRANGEMENT

After forming an expectation value, we try to simplify Eq.~6!, Eq. ~7!, and Eq.~9!, by
replacing Green’s functions 1/D by simplec-numbers 1/(u21). In I this is achieved by moving
Green’s functions to the outside, where they can act on the state and becomec-numbers. Errors for
this involve commutators that in general produce factors of the field representing higher-order
effects. The identity [Pm ; Pn]52 iqFmn provides the basic mechanism for this. Spurious and
mutually canceling infrared divergences are generated in this process by repeated use of the
formula [O; 1/D]5(1/D)[O; r](1/D), a formula that increases the apparent order of the pole at
u51.

We shall here introduce a technique that lets us avoid altogether working with infrared diver-
gences. As a byproduct of our method, we find that relativistic reduced Green’s functions appear
in a natural way. Our method may be useful, since reduced Green’s functions are quite a bit
simpler than the full Green’s function, and reduced Green’s functions do not participate in the
u-integration.

Our technique involves the introduction of projection operators.3 We write •••&5•••P&,
where P is the projector onto the entire degeneracy subspace of the particular state& being
perturbed. The projection operators are then moved to the Green’s functions. The Green’s func-
tions are thereby converted toc-numbers via the identity (1/D)P5[1/(u21)]P. Commutator
correction terms for this are evaluated by means of the formula~II, Eq. 90!:

@O; P#5K@O; r#P1P@O; r#K, ~10!
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which does not increase the order of the pole atu51. In this equationK is the relativistic reduced
Green’s function,4 a simple constant as regards theu-dependence. In a typical situation, for which
the operatorO in Eq. ~10! is eitherO5Pl or O5gm , a factor of the field appears through the
commutator [O; r]. In general, commutator corrections still describe higher-order effects.

To illustrate, let us transform the expectation value^gm~r/D!gm& associated with the integrand
of Eq. ~6! in order to convert the operatorr/D into thec-number 1/(u21):

K gm

r

D
gmL 5 K gm

r

D
gmPL

5 K gm

r

D
@gm; P#1gm

1

u21
PgmL

5 K gm

r

D
@gm; P#1gm

1

u21
@P; gm#1gm

1

u21
gmL

5 K gmS r

D
2

1

u21D @gm; P#1
4

u21L .
The first step here uses the basic property&5P& of the projection operatorP. Also, the relations
rP5P and (1/D)P5[1/(u21)]P were needed. Recall from II thatr, 1/D, K, andP” are mutually
commuting operators. Using Eq.~10!, the calculation may be continued as

S gm

r

D
gmL 5 K gmS r

D
2

1

u21DK@gm; r#1
4

u21L . ~11!

In this equality we exploit the propertyK&50. This is the reason only the first term of Eq.~10!
was needed. Finally, we may exhibit an additional factor of the field by exploiting the identity
^K50 to write ^gmK5^[gm; K]:

S gm

r

D
gmL 5 K @gm ; K#S r

D
2

1

u21D @gm; r#1
4

u21L
52 K @gm ; r#K2S r

D
2

1

u21D @gm; r#1
4

u21L ,
in which the last line follows by expanding the commutator [gm ; K] as @II, Eq. ~93!#

@O; K#5K@O; r#K2K2@O; r#P2P@O; r#K2. ~12!

At this point we have

K gm

r

D
gmL 52 K @gm ; r#K2S r

D
2

1

u21D @gm; r#1
4

u21L . ~13!

We have here converted the factorr/D into the c-number 1/(u21), and have encountered
certain commutator correction terms. To estimate the order of magnitude of such terms, we
introduce nominal order estimates reflecting the behavior after theu-integration, estimated for
bound states. In the language of the Coulomb potential, these estimates are

@gm; r#5O„~Za!3…, K5OS 1

~Za!2D , @gm; P#5O~Za!,

~14!
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12r5O„~Za!2….

The further order estimate„r/D21/(u21)…5O((Za)2 ln„(Za)2…! is valid in Eq.~13! where only
a single factor of„r/D21/(u21)… occurs. Note, however, that this estimate is ‘‘context sensi-
tive.’’ See the Appendix where context sensitive behavior for factors of„1/D21/(u21)… is
discussed. The rule for factors of„1/D21/(u21)… is: one factor contributesO((Za)2 ln„(Za)2…!;
two or more factors collectively always contributeO„(Za)2…! Also, it should be remarked that the
u-integration will, in general, produce complicated functions ofZa. Our nominal order estimate
simply describes the lowest-order effects present.

The nominal order estimateO((Za)3 ln„(Za)2…! applies to the correction terms in Eq.~11!.
The final transformation̂gmK5^[gm; K] noted above and eventually leading to Eq.~13! brings
the nominal order up toO((Za)4 ln„(Za)2…!, the lowest-order effect present in the contribution of
SI~0! to the Lamb shift. The effect of thec-number term 4/(u21) in Eq. ~13! is simply to
renormalize the mass. We drop this term in going over from our present subtraction point
pmp

m50 to a final subtraction pointpmp
m5m2 on the physical mass shell.

By using almost all the same steps, we can obtain a result that parallels Eq.~13!:

K gmP”
r

D
gmL 5 K 2@gm ; r#P” K2S r

D
2

1

u21D @gm;r#2
2P”

u21L . ~15!

Again, the correction term for changing the Green’s function to ac-number is
O((Za)4 ln„(Za)2…! and this is the lowest-order effect contained in the contribution ofSII~0! to
the Lamb shift. The term22P” /(u21) is a charge renormalization term and is dropped in going
over to a subtraction point on the physical mass shell.

Corresponding to Eqs.~13! and ~15! we have

^S IR~0!&5
a

pm3 K qFmngnK
ln~12r!

r
qFmlglL ~16!

and

^S IIR~0!&5
a

pm4 K qFmngnP” KH ~11r!ln~12r!

2r2
1

1

2r J qFmlglL . ~17!

The subscriptR signifies dropping renormalization effects. In these equations the integral over the
virtual mass squared parameter,u, has been performed explicitly. Also, the identities

@gm ; r#52
2iq

m2 Fmngn ~18!

and

K2~12r!5K ~19!

were needed.
For more complicated expressions there is an advantage in making the replacement

1

D
→S 1D2

1

u21D1
1

u21

throughout, and then moving the projection operators to the factors„1/D21/(u21)…, where they
are annulled. Only the commutator correction terms for this move survive. These are provided by
the identities
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S 1D2
1

u21DOP5S 1D2
1

u21D @O; P# ~20!

and

POS 1D2
1

u21D5@P; O#S 1D2
1

u21D . ~21!

This approach is used in the following calculation needed to evaluate^SIV~0!&:
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1
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1
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1

u21
gmL . ~22!

Projection operators have here been exhibited explicitly where they will be needed. The next step
is to move the projection operators to the factors„1/D21/(u21)… and process the commutator
correction terms. The final result is

K gm

1

D
@Pl ; P” #

1

D
Pl

1

D
gmL

5 K @r;gm#KS 1D2
1

u21D @Pl ; P” #S 1D2
1

u21DK@Pl; r#
1

u21
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1 K @r; gm#KS 1D2
1

u21D @Pl ; P” #S 1D2
1

u21DPlS 1D2
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u21DK@gm; r#L
1 K @r; gm#KS 1D2
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The nominal order of magnitude of these terms is estimated using the rules mentioned above.
Reading down from the top, the nominal orders of magnitude in the language of the Coulomb
potential are: first term, (Za)8; next four terms, (Za)7; then a (Za)7 ln„(Za)2… term; then a
(Za)6 term and four (Za)6 ln„(Za)2… terms. The last term, although of order (Za)3 by the rules
enunciated above, will be found to be order (Za)4 if nonrelativistic expressions are substituted.
Only this last term contributes to the lowest-order Lamb shift. We may evaluate its contribution by
substituting into Eq.~9!, and find

^S IV&52
a

8pm2 ^q j”&1••• , j”[gm j m , ~24!

in which j m is the source current of the external field, and••• signifies contributions of the omitted
higher-order terms.

III. CONCLUSION

The projection operator technique introduced here has provided an efficient means of exhib-
iting factors of the field in the commutator expansion of the basic Lamb shift expression corre-
sponding to the one-photon self-energy diagram. With this greater efficiency one naturally may
expect eventually to achieve a greater accuracy in the calculated value of this important quantity.

By our method the infrared divergences complicating the expansions in I are bypassed alto-
gether: all of our expressions are both infrared and ultraviolet finite. The infrared finiteness is
evidenced through the appearance of reduced Green’s functions. This appearance of reduced
Green’s functions in relativistic QED is quite surprising, since reduced Green’s functions have
hitherto typically been associated with nonrelativistic Rayleigh–Schrodinger perturbation theory!

The setting for the projection operator technique is provided by the mass eigenfunction ex-
pansion concepts referred to above and in II. It is this setting that lets us talk about relativistic
reduced Green’s functions associated with an eigenvalue spectrum of mass squared values. It is
expected that the mass eigenfunction expansion concepts will prove useful in QED beyond the
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present example. Applications to other bound state problems are envisioned, for example to
radiative corrections associated with two-photon self-energy diagrams, and to recoil corrections in
hydrogen. Also, positronium calculations may benefit from the new method.
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APPENDIX: A ‘‘CONTEXT SENSITIVE’’ ORDER OF MAGNITUDE ESTIMATE

We discuss here nominal order estimates for factors of„1/D21/(u21)…. Consider II, Eqs.
~36! and ~38!. Thepth term of the commutator expansion is proportional to the integral

E
1

`

du~u21!2p12E
0

1

dj
~12j!p11

~p11!!

jp

„11j~u21!…2
N

D
~BQ D!p, ~A1!

whose behavior nearZa50 we want to investigate. We have setd52, the number of denomi-
nators in the original space time integral forSI , SII , SIII , andSIV @see Eqs.~2!–~5!#. We need to
perform the symmetric insertions implied by the factor (BQ D)

p, replace 1/D by a sum of two terms
as follows:

1

D
→S 1D2

1

u21D1
1

u21
,

and expand. We start with 212p Green’s functions in (N/D)(BQ D)
p. Under the substitution

1

D
→S 1D2

1

u21D1
1

u21

the total number of both„1/D21/(u21)… factors and 1/(u21) factors in each term of the ex-
panded (N/D)(BQ D)

p remains equal to 212p. The result of substituting and expanding is a sum of
terms involving integrals of the form

I[E
1

`

du~u21!2p121aE
0

1

dj
~12j!p11

~p11!!

jp1a

„11j~u21!…21a1b S 1D2
1

u21D
nS 1

u21D
212p2n

,

~A2!

except that the factors„1/D21/(u21)…n are in general separated by ‘‘constant operators,’’ opera-
tors independent ofu andj. The parameters (a,b) have values as follows:~0,0! for SI ; ~0,1! for
SII ; and ~1,0! for SIII andSIV .

The factor (u21)2p121a in Eq. ~A2! exhibits a zero atu51 that offsets the poles of the
factors

S 1D2
1

u21D
nS 1

u21D
212p2n

.

Accordingly, theu-integral converges and thepth term in the commutator expansion is infrared
finite. Indeed, fora51 ~SIII andSIV! there is an extra factor of (u21) beyond what is needed for
convergence. This allowed us to perform one commutator using the identity [O; 1/D]
5(1/D)[O; r]1/D in order to arrive at Eq.~9!, a step that increased the order of the pole, making
it match the order of the zero. The following discussion assumes that the order of the pole exactly
matches the order of the zero, either becausea50 or because one commutator has been per-
formed. Note that all requisite symmetric insertions must be carried out before performing a
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commutator. See II, Sec. III. With this in mind, the total number of both„1/D21/(u21)… factors
and 1/(u21) factors in each term can be written 212p1a, and Eq.~A2! goes over into

I[E
0

1

dj
~12j!p11jp1a

~p11!! E
1

`

du
1

„11j~u21!…21a1b S 2~12r!

u2r D n, ~A3!

an equation that incorporates the identity

S 1D2
1

u21D5
2~12r!

~u2r!~u21!
.

We start out treating the case in which the factors„2(12r)/(u2r)… occur together without
intervening constant operators. Forn51, (a,b)5(0,0), we have

E
1

`

du
1

„11j~u21!…2
1

~u2r!
52

1

„11j~r21!…
2

ln~12r!

„11j~r21!…2
2

ln~j!

„11j~r21!…2
, ~A4!

and forn51, (a,b)5(0,1) or ~1,0!:

E
1

`

du
1

„11j~u21!…3
1

u2r
52

1

2„11j~r21!…
2

1

„11j~r21!…2

2
ln~12r!

„11j~r21!…3
2

ln~j!

„11j~r21!…3
. ~A5!

In either case after supplying a factor2~12r!, we find the lowest-order term present to be
O((Za)2 ln„(Za)2…!. This establishes the nominal order estimate for a single factor of
„1/D21/(u21)….

To determine the behavior for a second factor of„1/D21/(u21)…, we start by differentiating
Eqs.~A4! and ~A5! with respect tor. For (a,b)5(0,0),n52, we find

E
1

`

du
1

„11j~u21!…2
1

~u2r!2
5

j

„11j~r21!…2
1

1

12r

1

„11j~r21!…2

1
2j ln~12r!

„11j~r21!…3
1

2j ln~j!

„11j~r21!…3
, ~A6!

and for (a,b)5(0,1) or ~1,0!, n52:

E
1

`

du
1

„11j~u21!…3
1

~u2r!2
5

j

2„11j~r21!…2
1

2j

„11j~r21!…3
1

1

12r

1

„11j~r21!…3

1
3j ln~12r!

„11j~r21!…4
1

3j ln~j!

„11j~r21!…4
. ~A7!

Next we multiply by„2~12r!…2. The lowest-order term in the resultant expression arises from the
1/~12r! factors in Eqs.~A6! and ~A7!. These terms becomeO„(Za)2…, and this is the collective
effect of two factors of„1/D21/(u21)… in lowest order.

We can investigate the effect of further factors of„1/D21/(u21)… by carrying out further
differentiations with respect tor, and then multiplying by higher powers of„2~12r!…. When these
steps are carried out the increasing powers of (Za)2 due to the additional factors of„2~12r!… are
exactly offset by the increased negative powers of 1/~12r! that arise from the differentiation. The
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result is that further factors of„1/D21/(u21)… lead to no further increase in the lowest-order
present. All additional factors beyond two collectively contribute the sameO„(Za)2… lowest-order
behavior!

Next we have to deal with the terms for which some of the factors in„1/D21/(u21)…n are
separated from each other by constant operators. Here we make use of the mass eigenfunction
expansion of the Green’s function to write~see II, Sec. X!

S 1D2
1

u21D5 (
rAÞ1

2~12rA!

~u2rA!~u21!
PA . ~A8!

When this is substituted for„1/D21/(u21)… we encounter in place of Eq.~A3! c-number inte-
grals of the general form

I5E
0

1

dj
~12j!p11jp1a

~p11!! E
1

`

du
1

„11j~u21!…21a1b

3
„2~12rA!…i A

~u2rA! i A
„2~12rB!…i B

~u2rB! i B
•••

„2~12rZ!…i Z

~u2rZ! i Z
, ~A9!

in which i A is the number of occurrences of a particular eigenvaluerA , and similarly for the other
exponents. We have

i A1 i B1•••1 i Z5n, ~A10!

when there aren factors of„1/D21/(u21)….
For simplicity we shall treat here only the case (a,b)5(0,0), and assume that only two

eigenvalues occur, each exactly once. The principles illustrated by this and the above examples are
sufficient to handle the more general cases. The relevantu-integral is

E
1

`

du
1

„11j~u21!…2
1

~u2rA!

1

~u2rB!
5

j

DADB
1Rj ln~j!2RA ln~12rA!2RB ln~12rB!.

~A11!

The meaning of the symbols is

DA511j~rA21!, DB511j~rB21!, Rj5jS 1

DA
2

1

DB
1

1

DA

1

DB
2 D ,

RA5
1

rA2rB

1

DA
2 , RB52

1

rA2rB

1

DB
2 .

The quantitiesRj , RA , andRB are the residues of the integrand at the three poles:u52(12j)/j,
u5rA , andu5rB . We have the following important ‘‘residue identity:’’

Rj1RA1RB50. ~A12!

It will be noted that the two residuesRA andRB are separatelyO„1/(Za)2…, whileRj isO(1). The
residue identity~A12! expresses the cancellation of theO„1/(Za)2… effects from the sumRA1RB .
After multiplication by (12rA) (12rB) we find that the lowest-order contributions in Eq.~A11!
come from the two terms2RA ln(12rA) and2RB ln(12rB). These will separately contribute
O((Za)2 ln„(Za)2…! to the final result, but when added give a higher-order contribution of
O„(Za)2…. To see this, we introduce a set of quantitiesLA of order unity defined through the
equation
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12rA[~Za!2LA . ~A13!

Then ln(12rA)5ln„(Za)2…1ln(LA), and Eq.~A11! becomes

E
1

`

du
1

„11j~u21!…2
1

~u2rA!

1

~u2rB!

5
j

DADB
2

j

DADB
ln„~Za!2…1Rj ln~j!2RA ln~LA!2RB ln~LB!, ~A14!

whose lowest-order terms will contributeO„(Za)2… after multiplication by (12rA) (12rB), the
O((Za)2 ln„(Za)2…! effects having dropped out because of the effect of the residue identity
~A12!. We conclude that two factors of„1/D21/(u21)… still collectively contributeO„(Za)2…,
when separated by constant operators.

1G. W. Erickson and D. R. Yennie, Ann. Phys.35, 271 ~1965!.
2L. Hostler, J. Math. Phys.34, 5509~1993!.
3See II, Sec. X.
4The definition is

K[(
rAÞ1

PA
12rA

~see II, Sec. X!. The rA represent the distinct eigenvalues of the ‘‘mass squared’’ operator,r. The projector onto the
entire degeneracy subspace belonging torA is represented byPA . The state& being perturbed has eigenvalue 1. For
simplicity, the projector onto the degeneracy subspace of& is represented by justP.
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Dually charged mesoatom on the space of constant
negative curvature

V. D. Ivashchuk and V. N. Melnikova)
Center for Gravitation and Fundamental Metrology, VNIIMS, 3/1 M. Ulyanovoy str.,
Moscow, 117313, Russia

~Received 19 October 1994; accepted for publication 17 February 1995!

The discrete spectrum solutions corresponding to dually charged mesoatom on the
space of constant negative curvature are obtained. The discrete spectrum of ener-
gies is finite and vanishes when the magnetic charge of the nucleus exceeds the
critical value. © 1996 American Institute of Physics.@S0022-2488~96!01603-9#

I. INTRODUCTION

The behavior of atomlike systems in curved backgrounds were studied by many authors~see,
for example, Refs. 1–10 and references cited there!. Many papers were devoted to calculations of
the curvature-induced energy-level shifts within the framework of the perturbation theory.

In this paper we consider the ‘‘motion’’ of massive charged scalar particle~meson! in the field
of static dually charged nucleus on the space of constant negative curvature. We find the discrete
spectrum solutions of the Klein–Gordon equation@see formulas~3.29! and ~3.31!#. The discrete
spectrum of the mesoatom is finite. The largest principle numberN0 @see~3.26!# depends on the
radius of curvaturea and the magnetic chargegm . For sufficiently small values ofa or large
values ofgm the discrete spectrum is empty.

It should be noted that the expression for the energy levels@formula ~3.24! of this paper# was
obtained earlier in Ref. 8. However, the expressions forN0 and the wave functions in Ref. 8 are
wrong.10

II. THE MODEL

We consider the space–timeR3L3(a) with the metric

g5c2dt^dt2g5gmn~x!dxm
^dxn, ~2.1!

where

L3~a![$zuz5~z0,zW !PR4,z0.0,~z0!22~zW !25a2% ~2.2!

is three-dimensional space of constant negative curvature~a is radius of curvature! with the
canonical metric

g5g i j ~xW !dxi ^dxj5a2@dx ^dx1sinh2 x~du ^du1sin2u dw ^dw!#, ~2.3!

0,x,1` ~a sinhx5uzWu!.
We consider a static dually charged nucleus with the electric charge (2Ze) and a magnetic

chargegm , placed in the coordinate originx50. Let U,L3(a) be a domain with the trivial
cohomology groupH2(U,R)50 and$x50%¹U. The electromagnetic four-potentialAm onR3U,
corresponding to the nucleus, has the following form:

a!Electronic mail: mel@cvsi.rc.ac.ru

0022-2488/96/37(4)/1642/8/$10.00
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A5Amdx
m5S 2

Ze

a D ~cothx21!dt1A, ~2.4!

where

F 5dA5gm sin u du`dw ~2.5!

is the strength of the electromagnetic field, corresponding to the magnetic chargegm . The relation
~2.5! is correct, since due toH2(U,R)50 any closed two-form onU is exact, i.e.,dF 50 entails
the existence ofA such thatdA5F . ForU5U6 , where

U65L3~a!\H u5
p

2
6

p

2 J , ~2.6!

the one-form onU5U6 ,

A5A65gm~612cosu!dw, ~2.7!

satisfies the relation~2.5!.
A massive charged scalar particle~meson!, moving in the field of the static dually charged

nucleus, has the following action:

S@w#5
1

c E
M
*

d4x~2detgmn!1/2$\2gmn
„Dm~A* !w* …„Dn~A* !w* …2m0

2c2w̄ *w* %, ~2.8!

whereDm 5 Dm(A* ) [ “m 1 ( ie/\c)Am* , “m is covariant derivative, corresponding to the metric
~2.1!; the symbol*56 andA5A6 is a result of substitution ofA6 from ~2.7! to ~2.4!; m0 is mass
of the scalar particle ande is its charge~opposite in sign to the nucleus charge!. The pair of
functions

w6 :M65R3U6→C ~2.9!

satisfies the overlapping condition

w1~ t,xW !5V~xW !w2~ t,xW !, ~2.10!

xWPU1øU2 , where

V:U1øU2→U~1! ~2.11!

is a smooth overlapping function. The scalar particle~meson! wave function is a smooth section of
a vectorC-bundle with the baseR3(L3(a)\$x50%). This section is defined by the pair of
functions ~2.9!, satisfying the condition~2.10!. ~The functionw6 is the representation of the
functionwuM6 in the local trivialization overM6 .!

The action~2.8! is correctly defined, i.e., the right-hand side of~2.8! does not depend on the
choice of the symbol*56 ~or equivalently on the choice of local trivialization! if the functionV
~2.11! satisfies the following relation onU1øU2 :

A15A21 i
\c

e
V21 dV ~2.12!

@A6 are defined in~2.7!#. It follows from the relations~2.7! and~2.12! that such a function does
exist if and only if the Dirac quantization condition is satisfied:11
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q[egm /\c50,6 1
2,6

3
2,... . ~2.13!

In this case

V5exp@22iq~w2w0!#, ~2.14!

wherew05const.
Varying the action~2.8!, we obtain the following equation of motion:

@\2gmn
„Dm~A* !…„Dn~A* !…1m0

2c2#w*50. ~2.15!

The Lagrangian, corresponding to the action~2.8!, has the following form:

L~w,v !5E
U
*

d3xW~detg i j !
1/2H \2

c2 Uv*1
ie

\
Vw* U

2

2\2g i j

3„Di~A* !w* …„Dj~A* !w* …2m0
2c2w̄ *w* J , ~2.16!

whereV[(2Ze)~cothx21!/a, v1(xW )5Vv2(xW ). The Lagrangian~2.16! is a continuous mapping

L:H3H→R, ~2.17!

whereH3H>TH andTH is tangent vector bundle over the Hilbert spaceH. This Hilbert space
is the configuration space of the Lagrange system. It consists of smooth sections of the monopole
vectorC-bundle overL3(a)\$x50% satisfying the restriction

E
U
*

d3xW~detg i j !
1/2$w̄ *w* ~11V2!1g i j

„Di~A* !w* …„Dj~A* !w* …%,1`. ~2.18!

The scalar product inH is the following:

~c,w![E
U
*

d3xW~detg i j !
1/2$c̄ *w* ~11V2!1g i j

„Di~A* !c* …„Dj~A* !w* …%, ~2.19!

*56. Strictly speaking,H is the completion of the pre-Hilbert space@with scalar product~2.19!#
of smooth sections with compact support inU1øU2 . ~H is the modified Sobolev space.! The
field equation~2.15! is equivalent to the Euler–Lagrange equations for the Lagrange system
(L,H).

III. THE DISCRETE SPECTRUM SOLUTIONS

We seek solutions of the equation of motion~2.15! in the following form:

w~ t,xW !5exp~2 iEt/\!F~xW !, ~3.1!

whereEPC andFPH. The substitution of~3.1! into ~2.15! leads to the following relation:

H @«1Za~cothx21!#21
1

sinh2 x

]

]x S sinh2 x
]

]x D1
1

sinh2 x
Dq*2m2J F*50, ~3.2!

where

«[Ea/\c, m[m0ac/\, a[e2/\c, ~3.3!

1644 V. D. Ivashchuk and V. N. Melnikov: Dually charged mesoatom

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



and

Dq*5b i j Di~A* !Dj~A* ! ~3.4!

is the ‘‘monopole Laplace operator’’12 on the two-dimensional sphereS2 ~b is the canonical metric
on S2!, written in the local trivialization overS

*
2 , *56, whereS6

2 5S2\$u5p/26p/2%. The op-
eratorDq acts on the sections of the monopole vectorC-bundle overS2. Forq50 it coincides with
the Laplace operator onS2. The spectrum ofDq is well known,

12,13 it is discrete,

DqYqlm5@2 l ~ l11!1q2#Yqlm , ~3.5!

where

l5uqu,uqu11,..., m52 l ,2 l11,...,l , ~3.6!

andYqlm are monopole spherical harmonics.13 For the sake of completeness the explicit expres-
sion forYqlm is presented in the Appendix. The relation~3.5! follows from the representation for
Dq ~Ref. 13!:

2\2Dq5~LW q!
22\2q2. ~3.7!

In ~3.7! LW q is the modified~monopole! momentum operator13

~Lq
j !*5« jklz

kS 2 i\
]

]zl
1
e

c
Al* D2\q

zj

uzu
, ~3.8!

j51,2,3, whereAi
6 are the components of the one-form~2.7! in z-coordinates@see~2.2!#

A65At
6dzi5

gm« i j 3z
i dzj

uzu~z36uzu!
. ~3.9!

The components of the operator~3.8! satisfy the commutation relations

@Lq
k,Lq

l #5 i\«kl jLq
j . ~3.10!

The monopole harmonicsYqlm form a complete orthonormal set~on S2! of the eigenfunctions of
the operators (LW q)

2 andLq
3:

@~LW q!
22\2l ~ l11!#Yqlm50, ~3.11!

@Lq
32\m#Yqlm50, ~3.12!

wherel andm satisfy ~3.6!. The equality~3.5! follows from the relations~3.7! and ~3.10!.
Let F be an eigenfunction of the operators (LW q)

2 andLq
3. Then

F* ~x,u,w!5Q~x!~Yqlm!* ~u,w!. ~3.13!

Substituting~3.13! into ~3.2! and taking into account~3.5!, we obtain

H @«1Za~cothx21!#21
1

sinh2 x

]

]x S sinh2 x
]

]x D2
1

sinh2 x
@ l ~ l11!2q2#2m2JQ50.

~3.14!

The inclusionFPH is equivalent to the convergence of the integral
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E
0

`

dx sinh2 xH uQu2S 11
1

sinh2 x D1u]xQu2J ,1` ~3.15!

@this condition follows from~2.18! and ~3.13!#.
We introduce a new variablex,

x52/~cothx11! ~3.16!

~0,x,1 for x.0!. Then Eq.~3.14!, written in x-variable,

d2Q

dx2
1
2

x

dQ

dx
1

1

4x2~12x!2
$@«x12Za~12x!#22m2x224@ l ~ l11!2q2#~12x!%Q50,

~3.17!

has a generalized hypergeometric form.14 The standard procedure~see, for example, Ref. 14! gives
the substitution

Q5x21/21k~12x!1/21l/2v, ~3.18!

leading to the hypergeometric equation for the functionv5v(x)

x~12x!
d2v
dx2

1@112k2~212k1l!x#
dv
dx

1@Za«2~k1 1
2!
22~Za!22l~k1 1

2!#v50,

~3.19!

where

l5Am2112«2, k5A~ l1 1
2!
22~Za!22q2, ~3.20!

andAreif [ r 1/2eif/2, 2p,f<p. Here and below we put the following restriction onZ:Za,1
2.

The solution of~3.19! may be expressed in terms of hypergeometric functions

v~x!5d1F~A1 ,B1 ,C1 ,x!1d2x
22kF~A2 ,B2 ,C2 ,x!, ~3.21!

whered1 ,d2 are arbitrary constants and

A656k1 1
2 @l112Al214Za~«2Za!#,

B656k1 1
2 @l111Al214Za~«2Za!#,

C6562k11.

Using the asymptotic formulas for the hypergeometric functions14 ~for x→0 andx→1!, we
find that the functionQ, defined by~3.18! and~3.21!, satisfies the restriction~3.15!, if and only if
d250 and

A152n, ~3.22!

n50,1,2,... . In this case
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v~x!5constPn
~2k,l!~122x!, ~3.23!

wherePn
(a,b)(z) is the Jacobi polynomial14 ~see also Appendix!.

Solving Eq.~3.22!, we obtain

«5Za1N
@m2112N22~Za!2#1/2

@N21~Za!2#1/2
, ~3.24!

where

N5n1k1 1
2 ~3.25!

is the principal quantum number satisfying the inequality

N,N0[~Za!1/2@~m211!1/22Za#1/2. ~3.26!

Thus, there exists only a finite number of normalizable solutions of the equation of motion
~2.15! that have the form~3.1! and are eigenfunctions of the operators (LW q)

2 and Lq
3. These

solutions are the discrete spectrum solutions.
It follows from the definitions~3.20! and ~3.25! and the inequalitiy~3.26! that the discrete

spectrum is absent forN0<
1
2. ForN0.

1
2 it is also absent if

uqu>uqu05~N0!
22N01~Za!2 ~3.27!

and exists ifuqu,uqu0 . In this case«5«(N)5«„N(n,l ,uqu)…, where the principal quantum number
N is defined in~3.25! and

l5uqu,...,l 0~ uqu!, n50,...,n0~ l ,uqu!. ~3.28!

In ~3.28!

l 0~ uqu![max$ l u l2uqu50,1,...;l ~ l11!2q2,uqu0%,

n0~ l ,uqu![max$nun50,1,...;n1k1 1
2,N0%

@the relations forl 0 andn0 follow from the inequality~3.26!#.
In the initial notations we have the following expression for the energy spectrum:

E5
Ze2

a
1N

@m0
2c41„12N22~Za!2…~\2c2/a2!#1/2

@N21~Za!2#1/2
, ~3.29!

whereN,N0(a), N0(a).
1
2, anduqu,uqu05uqu0(a).

Due to ~3.29!,

Ze2/a,E,m0c
2. ~3.30!

The meson wave function, corresponding to the set of quantum numbers (n,l ,m) is

w5C exp~2 iEt/\!S 2

cothx11D
21/21k

exp@2x~11l!#Pn
~2k,l!S cothx23

cothx11DYqlm ,

~3.31!

whereC is constant andn, l , andm satisfy the restrictions~3.28! and ~3.6! correspondingly;
k5k( l ,uqu) andl5l(E,a) are defined in~3.20!.
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Now we show that the parameterE is the energy, corresponding to the meson wave function,
appropriately normalized. The energy functional, corresponding to the Lagrangian~2.16!, is

E~w,v !5E
U
*

d3xW~detg i j !
1/2

3H \2

c2
v̄ * v*2

e2

c2
V2w*w*1\2g i j

„Di~A* !w* …„Dj~A* !w* …1m0
2c2w*w* J .

~3.32!

The energy is conserved on the solutions of the equation of motion~2.15!: E5E„w(t),ẇ(t)…
5const. The Lagrangian ~2.16! is invariant under the U~1!-transformations:
w°ws5exp~2 ise/\!w. Due to E. Noether’s theorem we haveQ5Q„w(t),ẇ(t)…5const, where

Q~w,v !5E
U
*

d3xW~detg i j !
1/2$ i\~w* v*2v*w* !22eVw*w* % ~3.33!

is the charge functional~Q:H3H→R!. Using ~2.15! and ~3.1!, we getE5EQ/e. The physical
normalization of the wave functionQ5Q„w(t),ẇ(t)…5e entailsE5E. So,E is the energy of the
scalar particle~meson!.

Let us consider the flat-space limit:a→1`. In this caseuqu0, N0→1` and the discrete
spectrum~3.29! contains an infinite number of levels for all values ofq. Forq50 anda→1` the
formulas~3.29! and ~3.31! coincide with the well-known relations~see, for example, Ref. 14!.

Fora;1028 cm ~present cosmological scale!, Z51, andm 5 mp1 ~the mass ofp1-meson! we
haveN0;1020 and uqu0;1040.
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APPENDIX: MONOPOLE SPHERICAL HARMONICS

Here we present the explicit expressions for the monopole spherical harmonicsYqlm ,
l5uqu,uqu11,...,m52 l ,2 l11,...,l ; Yqlm are smooth sections of the monopole vectorC-bundle
over the sphereS2. In the local trivialization overS6

2 5S2\ $u5p/26p/2% the sectionsYqlm are
represented by the complex-valued functions onS6

2 :

~Yqlm!65MqlmPn
~a,b!~cosu!exp„i ~m6q!w…, ~3.34!

where

a52q2m, b5q2m, n5 l1m, ~3.35!

andPn
(a,b)(x) is Jacobi polynomial

Pn
~a,b!~x!5

~21!n

2nn!
~12x!2a~11x!2b

dn

dxn
@~12x!a1n~11x!b1n#

5
G~n1a11!

n!G~a11!
F„2n,n1a1b11,a11,~12x!/2…

~Mqlm are constants!.
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A recursive deformation of the boson commutation relation is introduced. Each step
consists of a minimal deformation of a commutator [a,a†]5 f k(••• ;n̂) into
@a,a†#qk11

5 f k(••• ;n̂), where••• stands for the set of deformation parameters that
f k depends on, followed by a transformation into the commutator
[a,a†]5 f k11(••• ,qk11;n̂) to which the deformed commutator is equivalent
within the Fock space. Starting from the harmonic oscillator commutation relation
[a,a†]51 we obtain the Arik–Coon and Macfarlane–Biedenharn oscillators at the
first and second steps, respectively, followed by a sequence of multiparameter
generalizations. Several other types of deformed commutation relations related to
the treatment of integrable models and to parastatistics are also obtained. The
‘‘generic’’ form consists of a linear combination of exponentials of the number
operator, and the various recursive families can be classified according to the num-
ber of free linear parameters involved, that depends on the form of the initial
commutator. ©1996 American Institute of Physics.@S0022-2488~96!02403-6#

I. INTRODUCTION

The study of deformed oscillators has already yielded a plethora of formal results and appli-
cations, but the attempts to introduce some order in the rich and varied choice of deformed
commutation~quommutation! relations studied by different authors has so far achieved limited
success. Of particular interest in this respect are the treatments due to Jannussiset al.,1,2

Daskaloyannis,3,4 McDermott and Solomon,5 and Meljanacet al.6

The following is a partial list of deformations that have been studied.
~1! The Arik–Coon oscillator7

@a,a†#q[aa†2qa†a51.

~2! The Macfarlane–Biedenharn oscillator8,9

@a,a†#q5q2n̂

that has independently been proposed by Sun and Fu.10

~3! The Chakrabarti–Jagannathan oscillator11

@a,a†#p5q2n̂.

~4! The Calogero–Vasiliev oscillator12

@a,a†#5112n~21! n̂,

which for 2n5p21 is the Chaturvedi–Srinivasan parabose oscillator of orderp.13

~5! The Brzezin´ski–Egusquiza–Macfarlane oscillator14

a!Permanent address: Department of Chemistry, Technion, 32000 Haifa, Israel.
b!Directeur de recherches FNRS; electronic mail: cquesne@ulb.ac.be
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@a,a†#5q2n̂@112n~21! n̂#.

~6! Macfarlane’sq-deformed Calogero–Vasiliev oscillator15

aa†2q6~112nK !a†a5@@112nK##q7~ n̂1n2nK !,

whereK 5 ( 2 1)n̂and [[x]]5(qx2q2x)/(q2q21).

In the present contribution we introduce a notion of minimal deformation, that, along with the
well known flexibility exhibited by the presentation of the quommutation relations within the Fock
space, enables a recursive deformation procedure to be formulated, generating the various types of
deformed oscillators listed above, thus yielding a certain classification principle. Moreover, the
procedure proposed yields a multiparameter generalization of the quommutation relations and
suggests that the ‘‘generic’’ structure involves sums of exponentials of the number operator.

II. EQUIVALENCE OF QUOMMUTATORS AND COMMUTATORS

Let a anda† be two mutually conjugate operators and letn̂ satisfy the commutation relations
[a,n̂]5a and [n̂,a†]5a†. It follows that n̂ commutes witha†a and withaa†. Furthermore, let

aa~ n̂!a†2a†b~ n̂!a5g~ n̂!, ~1!

wherea( l ), b( l ), andg( l ) are given functions such thata( l ) does not vanish for integral and
non-negativel . This quommutation relation contains the form studied by McDermott and
Solomon,5 in which a(n̂)5g(n̂)51. It is a symmetrized version of that studied by Meljanac
et al.6 @corresponding toa(n̂)51#, to which it is easily shown to be equivalent. The transforma-
tions introduced below take place within a Fock space representation that is assumed to exist,
possessing a nondegenerate ground state that satisfiesau0&50. At least within this representation it
is rather likely that the form introduced by McDermott and Solomon5 is sufficiently general. The
nondegeneracy requirement of the ground state has recently been relaxed by several authors16–18

who introduced a doubly degenerate ground state that was found useful in the context of discuss-
ing intermediate statistics. We shall not pursue this extension. From the assumptions specified
above it follows that

a†uk&5AF~k11!uk11& ~2!

and

auk11&5AF~k11!uk&, ~3!

where

F~k!5 (
i50

k21
g~ i !b~ i !b~ i11!•••b~k21!

a~ i11!a~ i12!•••a~k!b~k21!
. ~4!

Hence,aa†5F(n̂11), a†a5F(n̂) and the quommutator [a,a†]Q[aa†2Qa†a is

@a,a†#Q5
g~ n̂!

a~ n̂11!
1(

i50

n̂21
g~ i !b~ i !b~ i11!•••b~ n̂21!

a~ i11!a~ i12!•••a~ n̂! S 1

a~ n̂11!
2

Q

b~ n̂21! D , ~5!

whereQ is arbitrary, but will usually be chosen to be equal to unity, and where the appearance of
the number operator within the upper summation limit~as well as within the summand! has a well
defined meaning when applied to any Fock state.
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Consider the following example. Let

aa†2a†qn̂11a51,

i.e.,a(n̂)51,b(n̂) 5 qn̂11, g(n̂)51. This is equivalent to

@a,a†#511~qn̂21!(
j50

n̂21

q@ j ~2n̂2 j21!#/2.

The quommutation relation obtained forq521, i.e.,aa† 2 a†( 2 1)n̂11a 5 1, can be transformed
with the aid of the identity

(
j50

2k

~21!@~ j21! j #/251

into the equivalent form@a,a†# 5 ( 2 1)n̂, whose significance was discussed by Quesne and
Vansteenkiste.19

As a further example we consider theq-deformed Calogero–Vasiliev oscillator, proposed by
Macfarlane.15 This oscillator can be transformed into

@a,a†#Q5
1

2~q2q21!
$qn̂~q2Q!~q2n11!1q2n̂~Q2q21!~q22n11!

1~2q! n̂~Q1q!~q2n21!1~2q!2n̂~Q1q21!~12q22n!%. ~6!

This can be done either by starting from the quommutator quoted in the Introduction and applying
the procedure illustrated above, or, more simply, using the expressions foraa† and for a†a
presented by Macfarlane.15 In either case, the expression obtained is written separately forn̂ even
and for n̂ odd, and the two expressions are combined with coefficients of the form1

2„1
1 ( 2 1)n̂… and1

2„1 2 ( 2 1)n̂…, respectively. Some further minor rearrangement yields Eq.~6!, that
consists of a linear combination of four exponentials inn̂ ~three, ifQ is chosen to be equal toq,
q21, 2q, or 2q21!.

Another ‘‘exotic’’ quommutator is20,21

aa†2
qn̂1211

q~qn̂11!
a†a51

i.e.,a(n̂)51,b(n̂) 5 (qn̂13 1 1)/@q(qn̂11 1 1)#,g(n̂)51. In this case,

@a,a†#Q511
qn11~q2Q!112qQ

q221
~12q2n̂!,

which, forq5Q reduces to the Macfarlane–Biedenharn oscillator@a,a†#q 5 q2n̂.

III. RECURSIVE DEFORMATION OF THE HARMONIC OSCILLATOR

In the following we will be interested in what appears to be a somewhat more restricted
framework. Starting from [a,a†]5 f 0(n̂) let us assume that at thekth step of a recursive procedure
to be fully explicated below we have obtained the commutation relation

@a,a†#5 f k~ n̂!.

We define the next minimal deformation to be
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@a,a†#qk11
5 f k~ n̂!.

This minimally-deformed relation implies that, in the Fock-space representation,

a†u l &5AFk11~ l11!u l11&

and

au l11&5AFk11~ l11!u l &,

where

Fk11~ l !5(
i50

l21

qk11
i f k~ l212 i !. ~7!

It follows that

@a,a†#5 f k11~ n̂!,

where

f k11~ n̂![Fk11~ n̂11!2Fk11~ n̂!.

This recurrence relation can also be written in the form

f k11~ n̂!5(
i50

n̂

qk11
n̂2 i

„f k~ i !2 f k~ i21!…

provided that we definef k~21![0. From the recurrence relation it follows that if
limq1→1,q2→1,...,qk→1 f k( l )51 for l50,1,..., then limq1→1,q2→1,...,qk11→1f k11( l ) 5 1. In other
words, for allk, if f k(n̂) is a deformation of unity, so isf k11(n̂).

It will be convenient to define

Fk~ l !5 (
0< i1 ,i2 ,...,i k

~ i11 i21•••1 i k5 l2k11!

q1
i1q2

i2•••qk
i k,

which is easily shown to satisfy the limiting property

lim
q1→1,q2→1,••• ,qk→1

Fk~ l !5S l
k21D .

Note that

F1~ l !5q1
l ,

F2~ l !5
q1
l 2q2

l

q12q2
5

q1
l

q12q2
1

q2
l

q22q1
,

F3~ l !5
q1
l

~q12q2!~q12q3!
1

q2
l

~q22q1!~q22q3!
1

q3
l

~q32q1!~q32q2!
,
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or, in general,

Fk~ l !5(
i51

k qi
l

Pm51
k 8~qi2qm!

,

the prime indicating thatmÞ i .
Let us now take

f 0~ l !5 H 1 for l>0,
0 for l,0,

i.e., start from the conventional harmonic oscillator commutation relation,@a,a†#51. With this
initial value it can be shown that fork>1

f k~ n̂!5 (
j50

k21

~21!k212 j S k21
j DFk~ n̂1 j !5(

i51

k

vk,iqi
n̂ , ~8!

wherevk,i 5 Pm51
k 8@(qi 2 1)/(qi 2 qm)#. Applying the residue theorem to the function

f ~z!5
~z21! l

Pm51
k ~z2qm!

we obtain

(
i51

k
~qi21! l

Pm51
k 8~qi2qm!

5 H1, l5k21,
0, 0< l,k21. ~9!

The casel5k21 yields

(
i51

k

vk,i51,

which clarifies the significance of Eq.~8!, suggesting that the coefficientsvk,i , i51,2,...,k, are
the weights in an appropriate average. Substituting Eq.~8! in Eq. ~7! we obtain, fork>1,

Fk11~ l !5(
i51

k
~qi21!k21

Pm51
k11 8~qi2qm!

~qi
l2qk11

l !5 (
i51

k11
~qi21!k21

Pm51
k11 8~qi2qm!

qi
l ,

where use was made of the identity(m51
k11 [(qi21)k21/Pm51

k11 8(qi2qm)]50 that corresponds to
l5k22 in Eq. ~9!. Using the latter identity once more, we obtain the equivalent form

Fk~ l !5(
i51

k

vk,i@ l #qi, ~10!

where@ l #qi 5 (qi
l 2 1)/(qi 2 1) is the Jacksonqi-~basic! integer.Fk( l ) is the weighted average of

the Jacksonq deformations of the integerl , in the k different basesq1 ,q2 ,...,qk . Thus,
F1( l )5 (q1

l 21)/(q121), F2( l )5 (q1
l 2q2

l )/(q12q2)5 (q1
l 21)/(q12q2)1(q2

l 21)/(q22q1),
etc.

Using the Jacksonq-derivativeqDxg(x)[[g(qx)2g(x)]/x(q21) we introduce the multipa-
rameterq-derivative
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q1q2•••qk
Dx[(

i51

k

vk,i qi
Dx ,

which is a weighted average over the corresponding Jacksonqi-derivatives. In particular, the
Macfarlane–Biedenharnq-derivative is a weighted average over Jacksonq-derivatives with re-
spect toq andq21, i.e.,

qD̄x5vq qDx1vq21 q21Dx ,

wherevq5(q21)/(q2q21)5q1/2/(q1/21q21/2) andvq21 5 q21/2/(q1/2 1 q21/2). The multipa-
rameterq-derivative satisfies

q1q2•••qk
Dxx

l5Fk~ l !x
l21,

that enables the introduction of a correspondingq-exponential.
Thus, the minimal deformation of the conventional harmonic oscillator

@a,a†#51,

is the relation

@a,a†#q151,

which is due to Arik and Coon.7 It is easily found thatF1( l ) 5 @ l #q1 [ (q1
l 2 1)/(q1 2 1) and

f 1(n̂) 5 q1
n̂ , i.e., the Arik–Coon oscillator is equivalent with

@a,a†#5q1
n̂ . ~11!

This equivalence had been pointed out by Kumariet al.22 Equation~11! suggests that the Arik–
Coon oscillator gets more and more classical, with increasingn̂, for q1,1, and more and more
quantal forq1.1. In other, more picturesque words, we have an ‘‘energy dependent Planck’s
constant.’’ This feature was discussed in Refs. 23 and 24, where it was referred to as the Tamm–
Dancoff cutoff.

Continuing, we consider the minimal deformation of Eq.~11!, i.e.,@a,a†#q2 5 q1
n̂ . This is the

Chakrabarti–Jagannathan11 two parameter oscillator, which forq15q2
21 reduces to the

Macfarlane–Biedenharn8,9 oscillator. The equivalent commutation relation is

@a,a†#5 f 2~ n̂!, ~12!

where

f 2~ n̂!5F2~ n̂11!2F2~ n̂!.

Whenq15q2
21 this expression reduces to the commutator@a,a†# 5 (q1

(n̂11/2) 1 q1
2(n̂11/2))/(q1

1/2

1 q1
21/2), that ~with a slight change of notation! was noted by Floreanini and Vinet.25

The equivalence between@a,a†#q2 5 q1
n̂ and [a,a†]5 f 2(n̂), and the fact thatf 2(n̂) is sym-

metric inq1 andq2, implies the well-known equivalence of@a,a†#q1 5 q2
n̂ and@a,a†#q2 5 q1

n̂ . It is
perhaps appropriate to emphasize that the latter equivalence, like the former, is only valid within
the Fock space.

The minimal deformation of Eq.~12! yields @a,a†#q3 5 f 2(n̂), which can be written in the
equivalent commutator form
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@a,a†#5 f 3~ n̂!, ~13!

where

f 3~ n̂!5F3~ n̂12!22F3~ n̂11!1F3~ n̂!.

Continuing the recursion we note that sincef k(n̂) is a symmetric polynomial inq1 ,q2 ,...,qk
@cf. Eq. ~8!#, it follows that thek relations

@a,a†#qi5 f k21~q1 ,q2 ,...,qi21 ,qi11 ,...,qk ;n̂!, i51,2,...,k

are all satisfied simultaneously with [a,a†]5 f k(q1 ,q2 ,...,qk ;n̂). Here, the dependence on the
parameters is shown explicitly.

The present multiparameter deformation refers to a single coordinate, unlike the multiparam-
eter quantum groups associated with then-dimensional quantum space quommutation
relations.26–28

At thekth step of the recursion we obtain a commutator which is equal to a linear combination
of k exponentials of the number operator, with coefficients that are fixed by the construction
formulated. We shall now consider a more general starting point, involving a commutator that is
equal to some polynomial in the number operator. It will be found that once the number of
recursions exceeds the degree of the polynomial, the resulting commutator is again equal to a sum
of exponentials, but now with a greater flexibility in the choice of the coefficients.

Taking

f 0~ l !5 Ha0,1l1a0,0, for l>0,
0, for l,0,

i.e., [a,a†]5a0,1n̂1a0,0, we obtain

f 1~ n̂!5a1,01a1,1q1
n̂

wherea1,05a0,1/~12q1! anda1,15a0,02a0,1/~12q1! . Thus,

@a,a†#5112nq1
n̂ ~14!

is the first recursion of the relation [a,a†]5 f 0(n̂) with

f 0~ l !5 H ~12q1!l1~112n! for l>0,
0 for l,0.

In particular, the Calogero–Vasiliev oscillator corresponds to Eq.~14! with q1521. The second
recursion yields

@a,a†#5 f 2~ n̂!5a2,1q1
n̂1a2,2q2

n̂ , ~15!

where a2,15a1,1[(q121)/(q12q2)] and a2,25a1,01a1,1[(q221)/(q22q1)]. For
q15q21,q252q21,q35q,a2,151,a2,252n, the minimal deformation of Eq.~15! is the
Brzeziński–Egusquiza–Macfarlane oscillator.14

The third recursion yields

f 3~ n̂!5a3,1q1
n̂1a3,2q2

n̂1a3,3q3
n̂ ,

where
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a3,15
a2,1

q12q3
~q121!, a3,25

a2,2

q22q3
~q221!,

a3,35
~q32q2!a2,11~q32q1!a2,2

~q32q1!~q32q2!
~q321!,

etc.
Starting from a quadratic expression in the number operator

f 0~ l !5 Ha0,2l
21a0,1l1a0,0, for l>0

0, for l,0

we obtain

f 1~ n̂!5a1,1q1
n̂1a1,2n̂1a1,3,

where

a1,15
q1~a0,21a0,1!1~a0,22a0,1!

~q121!2
1a0,0,

a1,25
2a0,2

12q1
,

a1,35
q1~a0,21a0,1!1~a0,22a0,1!

~q121!2
,

and

f 2~ n̂!5a2,1q1
n̂1a2,2q2

n̂1a2,3

with appropriately defined coefficients. The next recursion yields

f 3~ n̂!5a3,1q1
n̂1a3,2q2

n̂1a3,3q3
n̂ ,

where the coefficientsa3,1, a3,2, anda3,3, that can be expressed in terms ofa0,0, a0,1, anda0,2, can
be chosen to agree with the coefficients of theq-deformed Calogero–Vasiliev oscillator, Eq.~6!,
provided thatQ is chosen to have one of the four values for which Eq.~6! reduces to a sum of
three exponentials, sayQ5q, andq1, q2, andq3 are chosen to beq21, 2q, and2q21, respec-
tively.

Thus, starting withf 0(n̂) that is a polynomial of degreek in n̂ we obtain, upon performing the
recursive minimal deformation procedure, polynomials of decreasing degrees inn̂ combined with
linear combinations of exponentials inn̂. After k steps we obtain just a linear combination of
exponentials, but the originalkth degree polynomial allows a corresponding number of coeffi-
cients in the linear combination to be chosen at will.

IV. NORMAL ORDERING RELATIONS AND MULTIPARAMETER DEFORMED STIRLING
NUMBERS

To derive a normal-ordering formula for the pair of operatorsa and a† satisfying
[a,a†] q5 f (n̂) we first use the identity
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@AB,C#q1q25A@B,C#q21q2@A,C#q1B

to derive the relation

@al ,a†#ql5$ l ~ n̂!%al21, ~16!

where$ l (n̂)%[( i50
l21ql212 i f (n̂1 i ). For f (n̂)51 we obtain$ l (n̂)%1 5 @ l #q1 5 (q1

l 2 1)/(q1 2 1),

that forq151 is equal tol . For f (n̂) 5 q1
n̂ we have$ l (n̂)%2 5 q1

n̂@@ l ##q1 ,q2 where@@ l ##q1 ,q2 5 (q1
l

2q2
l )/(q12q2).
Now, takingq5qk11 and f (n̂)5 f k(n̂) @Eq. ~8!# we obtain, fork>1,

$ l ~ n̂!%k115(
i51

k

~qi !
n̂
qi
l2qk11

l

qi2qk11
vk,i .

Thus,$ l (n̂)%k11 is a multiparameter, operator-valued deformation of the integerl .
Using Eq.~16! we obtain that the coefficients in the normal ordering formula

~a†a!m5(
l51

m

~a†! lCm,l~ n̂!al ~17!

satisfy the initial conditionC1,1(n̂)51 and the recurrence relation

Cm11,l~ n̂!5ql21Cm,l21~ n̂11!1$ l ~ n̂!%kCm,l~ n̂!.

In the appropriate limits this relation reduces to the Stirling,q-Stirling, and operator-valued
q-Stirling coefficients, cf. Ref. 29.

The normally-ordered form of an expression of the type (a†a)m is not invariant with respect
to the different equivalent commutation and quommutation relations that the corresponding pair of
operatorsa anda† satisfies. Starting from the commutation relation [a,a†]5 f k(n̂), we obtain

@al ,a†#5$ l ~ n̂!%k ,

where$ l (n̂)%k 5 ( i50
l21f k(n̂1 i ) 5 ( i51

k vk,i@ l #qi and@ l #qi 5 (qi
l 2 1)/(qi 2 1).Hence, a normal or-

dering expansion of the form of Eq.~17! is obtained, with the coefficient satisfying the recurrence
relation

C̄m11,l~ n̂!5C̄m,l21~ n̂11!1$ l ~ n̂!%kC̄m,l~ n̂!.

Thus, the Arik–Coon quommutation relation gives rise to theq-Stirling numbers as the
coefficients in the normally-ordered expansion, but if the~equivalent! commutation relation
@a,a†# 5 qn̂ is used to effect the normal ordering, the coefficients are operator valued. As an
illustration consider (a†a)2, which, in terms of the Arik–Coon quommutator is given by

~a†a!25q~a†!2a21a†a,

whereas in terms of the equivalent commutator becomes

~a†a!25~a†!2a21a†qn̂a.

These two normally-ordered expressions are related to one another via the identityqn̂ 5 (q
21)a†a11.
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V. THE INVERSE PROBLEM

The following inverse problem may sometimes be of interest: Given a commutator of some
form, can it be transformed into a quommutator that, in some sense, is of simpler form? To
motivate this problem we recall that the normal ordering problem for the Arik–Coon oscillator
[a,a†] q51 yields theq-Stirling numbers as coefficients, whereas the equivalent commutator
relation,@a,a†# 5 qn̂, yields a normal ordering expansion with a new type ofn̂ dependent~‘‘op-
erator valued’’! q-Stirling numbers. Given the latter commutator, we may wish to obtain the
equivalent quommutator that, in this case, yields a simpler normal-ordering formula.

Thus, given [a,a†]5f(n̂), where f~0!51, it can be shown straightforwardly that
aa†2a†b(n̂)a51, where

b~ n̂!5
( i51
n̂11f~ i !

( i50
n̂ f~ i !

.

As an example we takef(n̂) 5 qn̂ that yieldsb(n̂)5q, thus reproducing the Arik–Coon quom-
mutator.

A somewhat different inverse problem involves the transformation of

@a,a†#5f~ n̂!

into the equivalent form

@a,a†#Q5F~ n̂!,

choosingQ so as to makeF(n̂) as simple as possible, for a givenf(n̂). Since in the above
quommutation relationa(n̂)5b(n̂)51, we obtain

F~ n̂!5f~ n̂!1~12Q!(
i50

n̂21

f~ i !,

@cf. Eq.~5!#. Thus,f(n̂) 5 qn̂ yields

F~ n̂!5qn̂S q2Q

q21 D1
Q21

q21
.

The ‘‘best choice’’ is very clear in this case, i.e.,Q5q, yieldingF(n̂)51.
Taking

f~ n̂!5aq1
n̂1bq2

n̂

we obtain

F~ n̂!5aq1
n̂S q12Q

q121 D1bq2
n̂S q22Q

q221 D1a
Q21

q121
1b

Q21

q221
.

In this case we have two equally good choices ofQ, i.e.,Q5q1 andQ5q2 . The former yields

@a,a†#q15F~ n̂!5bS q22q1
q221 Dq2n̂1S a1b

q121

q221D .
For the special casef(n̂) 5 1 1 2npn̂we obtain( i50

l21f( i )5 l12n(pl21)/(p21), so, setting
Q5p it follows that F(n̂)5112n1(12p)n̂. Hence,@a,a†# 5 1 1 2npn̂ is equivalent with
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[a,a†] p5112n1(12p)n̂. Takingp521 we obtain that@a,a†# 5 1 1 2n( 2 1)n̂ is equivalent
with $a,a†%5112n12n̂, cf. Ref. 30. The latter is related to the realization ofosp(n/2,R) in
terms of parabosons, presented by Palev.31

VI. NON-FOCK SPACE REPRESENTATIONS OF THE DEFORMED COMMUTATION
RELATIONS

The equivalence between quommutators and corresponding commutators, presented in Sec. II,
is a central ingredient of the recursive minimal deformation procedure introduced in Sec. III. It
was noted in Sec. II that the transformation proposed is being carried out within the Fock space
representation. Deformed oscillator algebras are known to have additional, non-Fock space,
representations32,33 that are characterized by the existence of a Casimir operator with nontrivial
eigenvalues.34,35We stress that there is no reason to expect these non-Fock space representations
to be the same for different ways of writing the commutation relation that are equivalent within the
Fock space. While we do not wish to delve into a detailed analysis of these non-Fock space
representations for the different algebras discussed, the following general observations indicate
some of the features to be expected.

The algebra [a,a†]5 f k(n̂)5Fk(n̂11)2Fk(n̂) has a Casimir operator

Ck5Fk~ n̂!2a†a.

This can be shown by noting that [Ck ,a
†]5[Fk(n̂)2Fk(n̂21)]a†2a†[a,a†]50. In the Fock-

space representation a stateu0& exists, for which the relationau0&50 is satisfied. Furthermore, since
Fk(n̂)u0&5Fk(0)u0& andFk~0![0, it follows that within this representationCk has eigenvalue 0.
The non-Fock representations are characterized by nonvanishing eigenvalues of the Casimir op-
erator.

The minimal deformation of the algebra just discussed,@a,a†#qk11
5 f k(n̂), has a Casimir

operator as well, i.e.,C̃k5mk(n̂)2nk(n̂)a
†a, wheremk(n̂) andnk(n̂) should be determined so as

to satisfy the condition [C̃k ,a
†]50. By adding a suitable constant one can setmk~0!50, so that the

Casimir operator vanishes on the Fock space representation. To determinemk(n̂) andnk(n̂) we
note that

@C̃k ,a
†#5@mk~ n̂!2mk~ n̂21!2nk~ n̂! f k~ n̂21!#a†1@nk~ n̂21!2qk11nk~ n̂!#~a†!2a.

A sufficient condition for the vanishing of [C̃k ,a
†] is

mk~ n̂!2mk~ n̂21!5nk~ n̂! f k~ n̂21!, ~18!

nk~ n̂!5qk11
21 nk~ n̂21!. ~19!

From Eq.~19! we obtainnk(n̂) 5 qk11
2n̂ , where the normalizationnk~0!51 @which is consistent

with the choicemk~0!50 made above# was chosen. Consequently, Eq.~18! becomes a recurrence
relation formk(n̂), i.e.,mk(n̂) 5 mk(n̂ 2 1) 1 qk11

2n̂ f k(n̂ 2 1). This recurrence relation, along with
the initial conditionmk~0!50, is satisfied by

mk~ n̂!5(
i51

n̂

qk11
2 i f k~ i21!.

For f k(n̂) 5 ( i51
k vk,iqi

n̂ , cf. Eq.~8!, we obtain

mk~ n̂!5qk11
2n̂ (

j51

k11

vk11,j@ n̂#qj5qk11
2n̂ Fk11~ n̂!,
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where the last equality follows from Eq.~10!. It follows that

C̃k5qk11
2n̂ @Fk11~ n̂!2a†a#5qk11

2n̂ Ck11 .

The Casimir operators introduced can be used to investigate the non-Fock space representations of
the various deformed oscillators presented, along the lines of Refs. 32–35.

VII. CONCLUSIONS

A recursive minimal deformation of a commutator into a quommutator, followed by a trans-
formation of the resulting quommutator into a new commutator, to which it is equivalent within
the corresponding Fock space, has been introduced. The familiar deformed oscillators have been
obtained at appropriate steps of this recursive construction, along with multiparameter generali-
zations that would be difficult to guess otherwise. This recursive scheme provides a classification
of the existing deformed oscillators. The multiparameter generalizations may appeal to investiga-
tors who would like to use the deformed oscillator framework in order to fit molecular or nuclear
vibrational spectra, and in similar contexts in which further flexibility would be useful. To what
extent they offer hints of further fundamental developments remains to be seen.
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A quantization of a Lie bialgebra structure on a loop extended SÛ~2! algebra is
considered. An asymptotic expansion forR-matrix is given. ©1996 American
Institute of Physics.@S0022-2488~96!03003-X#

I. INTRODUCTION

It is known that there is a closer relation between the representation theory of Kac–Moody
algebras and quantum groups. The most interesting model in which both of these structures
appears is the two-dimensional Wess–Zumino–Witten~WZW! model.1 The representation theory
of quantum groups allows one to compute the duality matrices in the WZW model.2 In Refs. 3 and
4 it was shown that the exchange algebra for chiral fields in the WZW model can be expressed in
terms of quantum groups. In this paper we use the idea of quantization of Lie bialgebras.5,6 We
show that in the WZW model, a Lie bialgebra structurer can be constructed in a natural way. By
quantizing this Lie bialgebra we obtain a noncocommutative bialgebra, i.e., a Hopf algebra with-
out an antipode. This bialgebra may be thought of as a generalization of a Yangian algebra.5,6

II. A LIE BIALGEBRA STRUCTURE

We consider the WZW model on a cylinder over an arbitrary, semisimple, compact Lie group
G. The fieldg(t,s) is a mapping from the cylinder toG. After introducing complex coordinates
on the cylinder, we split the fieldg(t,s) into holomorphic and antiholomorphic partsg(t,s)
5u(z)v( z̄). The holomorphic current is defined byJ(z)52k]zu(z)u

21(z). Passing by the trans-
formationw5expz to the complex plane we expandJ(w) in the Laurent series

J~w!5( Ja
mw2m21ta,

where$t a% denotes the basis of the Lie algebra ofG with the structure constantsf abc . The basis
is assumed to satisfy the orthornormality condition Tr~tatb)5da,b. The Poisson brackets between
the currents are1

$Ja~w!,Jb~w̃!%52p i f abcJc~w!d~w2w̃!22p ikd8~w2w̃!da,b . ~1!

When we define the matrixC(l,m)5[1/(l2m)](ta^ ta and denoteJ1(w)5(Ja(w)t
a

^ 1, J2(w) 5 (Ja(w)1 ^ ta,Eq. (1) can be written as

$J1~w!,J2~w̃!%52p i @C~l,m!,lJ1~w!1mJ2~w!#d~w2w̃!22p ikd8~w2w̃!( ta^ ta.

~2!

Because of the existence ofd8(w2w̃) in ~2! it is difficult to deal with it. We rewrite~2! in a more
convenient form. To do this we extend the Poisson–Lie structure~1! written in terms ofJa

m

$Ja
m ,Jb

n%5 f abcJc
m1n1mdm1n,0da,bk ~3!

0022-2488/96/37(4)/1662/6/$10.00
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by two variablesk,l with the following Poisson brackets

$k,Ja
m%50, $k,l %50, $ l ,Ja

m%5mJa
m . ~4!

Next we define the extended currentJ as

J5( Ja
mtm

a 1kd1 lc,

where$tm
a ,c,d% is a basis of an untwisted affine Kac–Moody algebraĝ.7 The generalization of the

matrix C(l,m) is the operator

V~l,m!5
1

l2m S ( tm
a

^ t2m
a 1c^d1d^cD .

For J15(Ja
m(tm

a
^1)1k(d^1)1 l (c^1), J251^J Eq. ~2! becomes

$J1 ,J2%5@V~l,m!,lJ11mJ2#. ~5!

The operatorV~l,m!Pĝ@l#^ĝ@l# where byĝ@l# we denoted the loop extension ofĝ and formally
identify the algebrasĝ@l#^ĝ@l#.ĝ^ĝ@l,m#. The operatorV~l,m! satisfies the classical Yang–
Baxter equation5 and this implies the Jacobi identity for the lhs of~5!.

Let us denote byĝ* the Poisson–Lie algebra given by~3! and ~4!. On ĝ* @l# we define a
mappingd* as

d* „J~ln!…5$V* ~l,m!,J1~ln!1J2~mn!%, ~6!

where in this case we denoted byJ1(l
n)5((Ja

mln
^1)tm

a 1(kln
^1)d1( lln

^1)c,J2(m
n)

51^J(mn) andV* (l,m)5[1/(l2m)]((Ja
m

^Ja
2m1k^ l1 l ^k). It is easy to check that the

pair ~ĝ* @l#, d* ! is the Lie bialgebra.5 This Lie bialgebra is dual to~ĝ[l],d) where the cocom-
mutatord can be defined by using~5!. Let us write the explicit form of~6! for n50,61

d* ~Ja
m!50, d* ~k!50, d* ~ l !50,

d* ~Ja
ml!5( f abcJb

m2n
^Jc

n1m~Ja
m

^k2k^Ja
m!,

d* ~kl!50, d* ~ ll!52( mJa
m

^Ja
2m , ~7!

d* ~Ja
ml21!52( f abcJb

m2nl21
^Jc

nm212m~Ja
ml21

^km212kl21
^Ja

mm21!,

d* ~kl21!50, d* ~ ll21!5( mJa
ml21

^Ja
2mm21.

The parameters (Ja
m ,k, Ja

ml61,kl61! generate two subalgebrasĝ8* @l#6 . The quantization of
these Lie bialgebras can be provided independently. But the construction of anR-matrix needs a
quantization of a Lie bialgebra structure onĝ* @l#, i.e., ĝ8* @l# with addedlln generators. We will
show it on the example of the (SÛ

28* @l#6 , d* ! Lie bialgebras.
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III. THE QUANTUM (SÛ28* [l] ALGEBRA

The definition of a quantization of Lie bialgebras can be found in Refs. 5 and 6. Because we
consider an infinite-dimensional Lie algebra and as we will see the antipodal mapping does not
exist, we modify the definition. Namely, by a quantization of the (SÛ

28* @l#6 , d* ! Lie bialgebras
we will mean a bialgebra (Â68* ,D,«! with the basis (Qa,6N

m ,k6N)mPZ,N>0,a51,2,3 a coasso-
ciative comultiplicationD and a counit«, satisfying the asymptotic conditions

lim
h→0

Qa,N
m 5Ja

mlN, lim
h→0

kN5klN, lim
h→0

2
1

2h
~D2D8!5d* ,

where byD8 we denoted the transposed comultiplication andh is a quantum parameter which may
be identified with the Planck’s constant. We will also need later the quantum operatorslN which
have the asymptotic behavior limh→0l N5 llN. The detailed analysis of these operators and the role
which they play inA6* we will leave for a future work. The quantum algebra (A68* ,D,«! is
generated by (Qa,0

m ,k0 ,Qa,1
m ,k1!. The defining relations for this algebra are

@Qa,0
m ,Qb,0

n #5 f abcQc,0
m1n1mdm1n,0da,bk0 ,

@Qn,0
m ,Qb,1

n #5 f abcQc,1
m1n1mdm1n,0da,bk1 ,

~8!
†Qa,1

m ,@Qb,0
n ,Qc,1

r #‡2†Qa,0
m @Qb,1

n ,Qc,1
r #‡

52h2k0
2S r ~m2n!da,bQc,0

m1n1r1n~r2m!da,cQb,0
m1n1r1m~n2r !db,cQa,0

m1n1r
…

2h2f abcmnrdm1n1r ,0 k0
32h2~m1n1r ! f abck0( Qd,0

m1n1r2sQd,0
s

2h2k0( ~ f bcds$Qa,0
n1r2s,Qd,0

m1s%1 f cads$Qb,0
m1r2s,Qd,0

n1s%1 f abds$Qc,0
m1n2s,Qd,0

r1s%!,

where$a,b% denotesab1ba. The comultiplication and the counit read

D~Qa,0
m !5Qa,0

m
^111^Qa,0

m , D~k0!5k0^111^k0 ,

D~Qa,1
m !5Qa,1

m
^111^Qa,1

m 2h( f abcQb,0
m2n

^Qc,0
n 2hm~Qa,0

m
^k02k0^Qa,0

m !,

~9!
D~k1!5k1^111^k1 ,

«~Qa,0
m !50, «~k0!50, «~Qa,1

m !50, «~k1!50.

To avoid divergences we have restricted our considerations to the compact form of the SÛ
28*

algebra.7 As can be seen from~9! the comultiplicationD is not cocommutative. One may ask
whether there exists an operatorR having the property

RD~Qa,N
m !5D8~Qa,N

m !R.

To answer this question we have to quantize the~SÛ28* @l#2 , f* ! Lie bialgebra. The quantum
algebra (A28* ,D,«! is generated by operators (Qa,0

m ,k0 ,Qa,21
m ,k21!. Unfortunately, the formulas

1664 Z. Lipiński: Quantization of a loop extended SÛ(2) affine (2) affine (2) affine (2) affine (2) affine

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



for a comultiplication and the commutation relations inA28* are infinite series inh. The comulti-
plication and commutation relations forQa,0

m ,k0 are the same as in~8! and ~9!. The remaining
formulas read

@Qa,0
m ,Qb,21

n #5 f abcQc,21
m1n1mdm1n,0da,bk211h2m~m1n! f abck21

2 Qc,21
m1n2h2

1

3
m3dm1n,0da,bk21

3

1h2
2

3
mda,bk21( Qc,21

m1n2rQc,21
r 2h2

1

3
mk21( $Qa,21

m1n2r ,Qb,21
r %1O~h3!,

D~Qa,21
m !5Qa,21

m
^111^Qa,21

m 1h( f abcQb,21
m2r

^Qc,21
r 1hm~Qa,21

m
^k212k21^Qa,21

m !

1h2
1

6( f abcf cde~$Qb,21
r ,Qd,21

s % ^Qe,21
m2r2s1Qe,21

m2r2s
^ $Qb,21

r ,Qd,21
s %!

1h2( f abcr ~Qb,21
r

^k21Qc,21
m2r 2Qb,21

m2r k21^Qc,21
r !2h2m2

3~Qa,21
m k21^k211k21^k21Qa,21

m !1O~h3!,

D~k21!5k21^111^k21 ,

«~Qa,21
m !50, «~k21!50. ~10!

Although, we cannot give defining relations forÂ28* similar to ~8!, we will write an asymptotic
expansion forD(Qa,2N

m !, it has the form

D~Qa,2N
m !5Qa,2N

m
^111^Qa,2N

m 1h(
n50

N

„f abcQb,n212N
m2r

^Qc,2n
r

1m~Qa,2n
m

^kn212N2kn212N^Qa,2n
m !…1O~h2!. ~11!

Using the coassociativity property of a comultiplication one can determine the higher order terms
in h but the formulas are not unique. Using the homomorphism property of a comultiplication one
can deduce also the commutation relations betweenA18* andA28* . The simplest formula reads

@Qa,1
m ,Qb,21

n #5 f abcQc,0
m1n1mdm1n,0da,bk02h2

1

3
mk0( $Qa,21

m1n2r ,Qb,21
r %

2h2k21( r $Qb,0
m2r ,Qa,21

n1r %1h2
2

3
mda,bk0( Qc,21

m1n2rQc,21
r

1h2da,bk21( r $Qc,0
m2r ,Qc,21

n1r %1h2m2f abck0k21Qc,21
m1n

1h2
2

3( f abcQd,21
r Qd,21

s Qc,0
m1n2r2s2h2

1

3( f abc

3~Qc,21
r Qd,0

s Qb,21
m1n2r2s1Qb,21

m1n2r2sQd,0
s Qc,21

r !1O~h3!.
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Having defined the quantum algebrasA68* we are able to write down the asymptotic expansion for
the R-matrix. To do this we introduce the operatorslN with the property
[ l N ,Qa,M

m ]5mQa,M1N
m 1O(h). As an example that such operators really exist we give an explicit

form of the comultiplication forlN in the simplest caseN50,61:

D~ l 0!5 l 0^111^ l 0 , D~ l 1!5 l 1^111^ l 11h( mQa,0
m

^Qa,0
2m ,

D~ l21!5 l21^111^ l212h( mQa,21
m

^Qa,21
2m

1h2
1

3( mfabc~Qb,21
2m2r

^Qa,21
m Qc,21

r 2Qa,21
m Qb,21

2m2r
^Qc,21

r !

2h2( m2~Qa,21
m k21^Qa,21

2m 1Qa,21
m

^Qa,21
2m k21!1O~h3!.

TheR-matrix for A* has the following expansion:

R51^122h(
N50

`

~Qa,N
m

^Qa,2N21
2m 1 l N^k2N211kN^ l2N21!1O~h2!.

In the classical limit (1/4h)(R2R8)→V* (l,m).

IV. CONCLUSIONS

We considered a quantization of two Lie bialgebras (SÛ
28* @l#6 , d* ). In the (SÛ28* @l#1

case the relations~8! and~9! defineÂ68* uniquely and the results are exact. Unfortunately, in the
(SÛ28* @l#2 case we were able to give only asymptotic formulas. In addition the formula~10! for
comultiplication is not unique. For example, if we define a comultiplicationD by

D~Qa,21
m !5Qa,21

m
^111^Qa,21

m 1h( f abcQb,21
m2r

^Qc,21
r 1hm~Qa,21

m
^k212k21^Qa,21

m !

1h2
1

6( f abcf cde~$Qb,21
r ,Qd,21

s % ^Qe,21
m2r2s1Qe,21

m2r2s
^ $Qb,21

r ,Qd,21
s %!

1h2( f abcr ~Qb,21
r

^Qc,21
m2r k212k21Qb,21

m2r
^Qc,21

r !2h2m2~k21^Qa,21
m k21

1k21Qa,21
m

^k21!1h2
1

3
m2~Qa,21

m
^k21

2 1k21
2

^Qa,21
m 12Qa,21

m k21^k2112k21

^Qa,21
m k21!1h2

1

3( f abcr ~Qb,21
m2r Qc,21

r
^k211k21^Qb,21

m2r Qc,21
r 1Qb,21

m2r

^k21Qc,21
r 1Qb,21

m2r k21^Qc,21
r 1Qc,21

r k21^Qb,21
m2r 1Qc,21

r
^k21Qb,21

m2r !1O~h3!,

~12!

we obtain another quantization of the SÛ
28* @l#2 Lie bialgebra. As can be checked, there is a

nonlinear transformation which connects these two comultiplications,
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Qa,21
m →Qa,21

m 1h2
1

3
k21( f abcrQb,21

m2r Qc,21
r 1h2

1

3
m2k21

2 Qa,21
m 1O~h3!.

The appearance of the parameterl in this theory may seem strange. To find a physical
interpretation for this parameter it would be natural to consider the WZW model over a loop group
as in, Ref. 8.
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Quantum scattering theory in light of an exactly solvable
model with rearrangement collisions

S. Varmaa) and E. C. G. Sudarshanb)
Center for Particle Physics and Department of Physics, The University of Texas at Austin,
Austin, Texas 78712

~Received 5 June 1995; accepted for publication 6 September 1995!

We present an exactly solvable quantum field theory which allows rearrangement
collisions. We solve the model in the relevant sectors and demonstrate the ortho-
normality and completeness of the solutions, and construct theS-matrix. In light of
the exact solutions constructed, we discuss various issues and assumptions in quan-
tum scattering theory, including the isometry of the Mo¨ller wave matrix, the nor-
malization and completeness of asymptotic states, and the nonorthogonality of
basis states. We show that these common assertions are not obtained in this model.
We suggest a general formalism for scattering theory which overcomes these and
other shortcomings and limitations of the existing formalisms in the
literature. © 1996 American Institute of Physics.@S0022-2488~96!01602-5#

I. INTRODUCTION

Quantum scattering has been an important subject of study since the early days of quantum
physics. Unfortunately, while we have a reasonable understanding and intuition for simple scat-
tering problems, such as single channel scattering, we cannot say the same for more general
scattering problems such as multichannel scattering, rearrangement collisions, field theoretic scat-
tering, problems where bound states appear, and the like. There have been many attempts to
generalize scattering theory to deal with more complicated cases. However, the literature in this
field, though vast, is highly implicit and not constructive. Most authors that have dealt with the
problem have carried over the intuition developed from the study of single channel potential
scattering. This intuition, while quite adequate for simple problems, is ill-equipped to deal with
more complicated scattering problems. Therefore it is important to examine the common claim by
some authors, for example, Haag,1,2 that their formalism is general enough to encompass compli-
cated scattering problems, as well as field theory. Unfortunately, most such formalisms are based
largely on previous results from potential scattering. Furthermore, even when these problems are
addressed in quantum mechanical scattering, field theoretic scattering remains problematical.
Many papers, such as the paper by Gell-Mann and Goldberger,3 treat field theoretic scattering as
somewhat of an afterthought, without much development from first principles, or such as the
papers by Van Hove,4 treat it as a case for discussion. The first clear development of field theoretic
scattering from first principles was the seminal paper by Lehmann, Symanzik, and Zimmerman
~LSZ!.5 However, the LSZ formalism is not applicable in many cases, for example, collisions in
which stable bound states appear. This is, in fact, pointed out by the authors themselves.

All this leads to the question: how many of our results and assumptions, and how much of our
intuition can we carry over from simple single channel potential scattering to more complicated
scattering situations? To attempt to answer this question, we will construct an exactly solvable
sector for a quantum field theory. This model has a three particle sector, and allows rearrangement
collisions. We will use the solutions of this model, along with previous results, to point out where
the existing formalism has defects and shortcomings.

a!Electronic mail: varmint@delphi.com
b!Electronic mail: sudarshan@physics.utexas.edu
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Our model, which we shall call the rearrangement model, is an elaboration of the Lee model,6

and the cascade model,7 but with extra particles and couplings chosen in such a way as to allow
rearrangement collisions. The couplings of the model areB↔Cf andD↔Cu. This model has a
sector, which we shall call the rearrangement sector,Bu↔Cuf↔Df, in which rearrangement
collisions can take place. The model can be applied directly to physical problems involving
rearrangement collisions. We shall, however, leave the applications to subsequent work.

This model is interesting because it is a very simple one, and yet contains the essence of many
phenomena that can take place in an interacting system. It displays the following characteristics:

~1! New states can appear, which have no corresponding states in the original Hamiltonian.
~2! The thresholds and continuous spectra shift, and the spectra ofH andH0 arenot the same.

Furthermore, the continuous spectra are shifted by different amounts.
~3! Genuine rearrangement collisions can take place. We have the subadditivity of the spectra: the

spectra in the higher sectors is the sum of all the spectra in the lower sectors, with possible
additional terms.

We will construct the solutions of this model, and then, in light of the solutions we have
constructed, will examine various assumptions and assertions made in the literature about quantum
scattering theory. In particular, we will focus on four key points, that of the isometry1 of the
Möller wave matrix,8 the normalization1 and completeness9 of the asymptotic states, and the
nonorthogonality of the physicalBu, Cuf, andDf states.10,11We shall show that these assertions
are not obtained in this model. We also comment on the use of the~renormalized! free Hamil-
tonian in the literature,1,3,9,10,12rather than the correct prescription, which is to use the isospectral
comparison Hamiltonian~see Sec. VIII!.

The plan of this work is as follows. We start with a review of scattering theory in both the
single channel and multiple channel cases. In the next three sections, we introduce the Hamil-
tonian of the rearrangement model, show how explicit solutions can be found for this model in the
rearrangement sector, and verify that the solutions obtained are, in fact, solutions to our model. We
then show that the solutions obtained are orthonormal and complete. The Mo¨ller matrix and the
comparison Hamiltonian are written down, and we show that the comparison Hamiltonian is
isospectral with the full Hamiltonian, but not with the free Hamiltonian. Then we calculate the
S-matrix of the system in this sector, demonstrate its unitarity, and calculate its eigenphases. In
Sec. XII, we present a general formalism for scattering theory which overcomes the shortcomings
and limitations of the existing formalisms in the literature. In Sec. XIII we discuss scattering
theory and its relation to the solutions that we constructed, and to previous work. Finally, in Sec.
XIV, we summarize our work and present our conclusions.

II. THE SINGLE CHANNEL FORMALISM

For our purposes, it makes no difference whether we use the time dependent or time indepen-
dent formalisms of scattering theory. We are concerned with the assumptions and results that are
obtained from the formalisms, and they remain essentially the same in both cases. We shall
therefore restrict ourselves to the time dependent formalism in Secs. III and IV. We follow the
treatment of Newton13 for both sections.

The discussion in Secs. III and IV is supposed to be very general. In fact, even though the
method described deals with the nonrelativistic region, ‘‘the formalism set up is such that, pro-
vided there exists a consistent relativistic quantum field theory, the transition to the relativistic
domain is relatively simple.’’14 However, we find that even in such a simple model as our rear-
rangement model, these anticipations arenot fulfilled. This formalism leads to wrong and contra-
dictory results, as will be discussed in Sec. XIII.

We wish to solve the Schro¨dinger equation
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i
]

]t
C~ t !5HC~ t !. ~2.1!

We splitH into a free Hamiltonian and an interaction Hamiltonian,

H5H01H8. ~2.2!

We assume that this split can be carried out: we shall consider the case of rearrangement collisions
later. We define four Green’s functions:

S i ]

]t
2H0DG6~ t !51d~ t !, ~2.3a!

S i ]

]t
2H DG 6~ t !51d~ t ! ~2.3b!

with the initial conditions

G1~ t !5G 1~ t !50, t,0, ~2.4a!

G2~ t !5G 2~ t !50, t.0. ~2.4b!

G1 and G 1 are therefore the advanced Green’s functions, andG2 and G 2 are the retarded
Green’s functions.

These may be solved formally, yielding

G1~ t !52 i e2 iH0tu~ t !, ~2.5a!

G2~ t !5 i e2 iH0tu~2t !, ~2.5b!

G 1~ t !52 i e2 iHtu~ t !, ~2.5c!

G 2~ t !5 i e2 iHtu~2t !. ~2.5d!

LetC0(t) be a state vector satisfying the free Schro¨dinger equation. The operatorG1 can then
be used to express the state vectorC0~t8! for any timet8 later thant, in terms of its value att85t,

C0~ t8!5 iG1~ t82t !C0~ t !. ~2.6!

C0~t8! then satisfies the free Schro¨dinger equation fort8.t, andC0(t8)→C0(t) when t8→t.
Therefore,

lim
t→01

G1~ t !5 lim
t→01

G ~ t !52 i1, ~2.7a!

lim
t→02

G2~ t !5 lim
t→02

G 2~ t !5 i1. ~2.7b!

Similarly, for t8.t we can write

C~ t8!5 iG 1~ t82t !C~ t ! ~2.8!

and for t8,t we have

C0~ t8!52 iG2~ t82t !C0~ t !, ~2.9a!
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C~ t8!52 iG 2~ t82t !C~ t !. ~2.9b!

We now wish to define ‘‘in’’ and ‘‘out’’ states. We start by defining

C0~ t ![ iG1~ t2t8!C~ t8!, ~2.10!

whose time development fort.t8 is governed by the free Hamiltonian, but which at timet0 was
equal toC~t0!. We now let the timet8 approach6`. Then, for the case oft→1`, we have the out
state, and for the case oft→2`, we have the in state. In terms of the in and out states, the
equations forC(t) are

C~ t !5C in~ t !1E
2`

1`

dt8 G 1~ t2t8!H8C in~ t8! ~2.11a!

5Cout~ t !1E
2`

1`

dt8 G 2~ t2t8!H8C in~ t8!. ~2.11b!

Note that these are retarded and advanced Green’s functions for thewhole system. These arenot
the same functions as those that appear in a~time ordered! Dyson series which are, instead, time
orderedparticle propagators. Note also that for every state in the continuous spectrum ofH0, and
only for such states, these formulas define a corresponding state in the spectrum ofH.

If we insert Eq.~2.9b! in Eq. ~2.11a!, we find

C~ t !5V~1 !C in~ t !, ~2.12!

where

V~1 !512 i E
2`

1`

dt8 G 1~ t2t8!H8G2~ t82t !512 i E
2`

1`

dt G 1~2t !H8G2~ t ! ~2.13!

is called the wave operator or the Mo¨ller matrix. We can similarly defineV~2!.
BecauseH8 is Hermitian, Eq.~2.13! gives us the relation

C in~ t !5V~1 !†C~ t !, ~2.14a!

and similarly

Cout~ t !5V~2 !†C~ t !. ~2.14b!

Then, Eq.~2.12! and Eqs.~2.14! give us the relations

C in~ t !5V~1 !†V~1 !C in~ t !, ~2.15a!

Cout~ t !5V~2 !†V~2 !Cout~ t !. ~2.15b!

We now consider the possibility that the free statesCin(t) andCout(t) span the entire Hilbert
space, i.e., they are complete. From this assumption, we conclude thatV~1! andV~2! are isometric,

V~1 !†V~1 !5V~2 !†V~2 !51. ~2.16!

This does not, however, mean that theV’s are unitary: we cannot conclude from Eq.~2.15a! that
Eq. ~2.16! holds with its factors reversed.
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Furthermore, granted the assumption that theCin and Cout each form complete sets, we
conclude that

HV~6 !5V~6 !H0 . ~2.17!

When there are bound states in the spectrum ofH, we proceed as follows. LetC0~E,a! be the
eigenstates of the free Hamiltonian with eigenvalueE, anda be the set of variables necessary to
remove any degeneracy. Then, the completeness of these states can be written as a resolution of
the identity

15(
a

E
0

`

dE C0~E,a!C0
†~E,a!. ~2.18!

We again emphasize that we do not know whether the states ofH0 are complete,a priori. We are
simply proceeding under that assumption. We then insert this into the productVV† to get

VV†5VE
0

`

dE(
a

C0~E,a!C0
†~E,a!V†5E

0

`

dE(
a

C~E,a!C†~E,a!512L.

~2.19!

L is called the unitary deficiency ofV. From the completeness of the set of all states, bound
and scattering, ofH,

L5(
n

Cbd
~n!Cbd

~n!†. ~2.20!

Thus,L projects onto the space spanned by the bound states ofH. If H has no bound states, then
V~1! andV~2! are unitary. BothH andH0 are Hermitian; therefore, the Hermitian conjugate of Eq.
~2.17! gives

H0V
†5V†H. ~2.21!

We now let both sides of Eq.~2.21! act onC~E,a! to get

H0V
†C~E,a!5EV†C~E,a!, ~2.22!

which shows that ifE is in the spectrum ofH but not in the spectrum ofH0 then

V†C~E,a!50,

and so

V†L50. ~2.23!

Thus, the range of the operatorsV~6! is not the entire Hilbert space. Instead, these operators
map the whole space onto the subspace spanned by the continuum eigenstates ofH. We cannot
reach the subspace spanned by the bound states ofH, and therefore, cannot construct an inverse
operator for the whole space. The closest that we can come is to use the operatorsV (6)† which are
inverses ofV~6! on the subspace of states spanned by the scattering states ofH, and which
annihilate the subspace of bound states ofH.

Assuming that the asymptotic states are complete, we construct theS-matrix in the following
manner. We use Eqs.~2.15b! and ~2.12! to write the out state in terms of the in state,

Cout~ t !5V~2 !V~1 !C in~ t !, ~2.24!
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which defines for us theS-matrix

S[V~2 !†V~1 !. ~2.25!

TheS-matrix can be shown to be unitary and isometric. See Newton13 for details; note, however,
that S is only unitary whenV is unitary. ~This point is not clearly stated in Newton, or in the
literature.!

Some mathematical questions about convergences arise in the above. Conventionally, in the
Schrödinger picture~the one in which we are currently working!, one demands that~see Newton13

for details!

lim
t→2`

@C~ t !2c in~ t !#⇒0, ~2.26a!

lim
t→1`

@C~ t !2cout~ t !#⇒0, ~2.26b!

lim
t→2`

c in~0!⇒C~0![V~1 !c in~0!, ~2.26c!

where⇒ denotes the strong limit.
We will find, in our model, that if we construct the asymptotic in and out states correctly, these

limits will be satisfied; however, the states will not be orthonormal or complete. On the other hand,
if we make the usual assumptions of scattering theory, namely that the asymptotic states are
orthonormal and complete, then these limits will not be satisfied.

III. THE MULTIPLE CHANNEL FORMALISM

The above formalism is only adequate for simple single channel cases. For more general
scattering problems, such as rearrangement collisions, we must generalize the formalism. We shall
again follow Newton.13

We want to split up the Hamiltonian into two pieces: one piece,Ha , that is left when the two
initial fragments are taken far apart, and the remaining piece,Ha8 . We can then go through the
same development ofC(t) from Cin(t) as above. However, there is a difficulty that occurs for the
development for the distant future. If rearrangements or breakups can occur, then it is possible that
the ‘‘channel’’ Hamiltonian in the future is different than the channel Hamiltonian in the past.

The various possibilities for ann-particle system are handled by defining a partition of them
into k clusters, denoted byak . Given a partitiona, we defineHa by allowing all distances between
clusters to independently tend to infinity. Therefore,Ha will contain only interactions that are
internal to clusters, but none between them. Then,Ha8 is defined by the requirement thatH 5 Ha

1 Ha8 , and therefore, for any two partitionsa andb, we have

H5Ha1Ha85Hb1Hb8 . ~3.1!

To each partition, there will correspond Green’s functions given by

S i ]

]t
2HaDG6

a~ t !51d~ t !, ~3.2!

with the same boundary conditions as Eqs.~2.4!. If Ha , after removing the kinetic energy of the
center of mass motion and of the centers of mass of its clusters, has at least one bound state, it is
called an arrangement channel. When this condition onHa does not hold, the channel is not of
interest as an initial or final scattering state. IfHa has more than one bound state, then each of
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them defines a separate channel, and therefore, in each channel the clusters are in a specific bound
state but moving freely relative to one another. The channel consisting of the entiren-cluster
partition is the channel 0 because thenHa5H0 .

Now consider the space of each arrangement channela, which we shall denote byHa . Then,
if a hasm fragments, each state inHa will havem groups of bound particles. This means that
unless the channela is the entiren-fragment arrangement channel,Ha will not be the whole
Hilbert space: the ionized eigenstates ofHa will be missing. Furthermore, as eachHa is defined
by different channel Hamiltonians,Ha , theHa’s are generally not orthogonal to each other. In
fact, ‘‘the complete set of basis functions is not linearly independent and, of course, not
orthonormal.’’15

It will be convenient to define the orthogonal projectionsPa onto the channel spaces,Ha . In
other words, we define

Pa
25Pa , Pa

†5Pa , PaHa5Ha , ~3.3!

with the null space ofPa defined as the space spanned by the ionized eigenstates ofHa . Pa

projects states from the full Hilbert spaceH to the channel spacesHa . Obviously, for the
n-cluster arrangement channel, we haveP051.

We now wish to define in and out states. We first define ana state, which is a state that
develops according toHa but is inHa ,

S i ]

]t
2HaDCa~a,t !50, ~3.4!

where the labela contains all the other information including the arrangement channel~even
though including the arrangement channel ina is redundant forCa(a,t), it is convenient for other
purposes!.

We then defineC~1!~a,t! as a state inH that develops according toH,

S i ]

]t
2H DC~1 !~a,t !50, ~3.5!

and for which there exists ana state such that

lim
t→2`

~Ca~a,t !,C~1 !~a,t !!51. ~3.6!

Therefore, the stateCa(a,t) is the in stateCin~a,t! in relation to the stateC~1!~a,t!. Equation
~3.6! demands that the probability of finding the system in stateCa(a,t) in the remote past
approach 1, and therefore, it is equivalent to

Ca
~1 ! ⇒

t→2`

Ca~a,t ! ~3.7a!

or

E dt iGa
1~ t2t8!C~1 !~a,t8! ⇒

t→2`

C in~a,t !, ~3.7b!

with the double arrow denoting the strong limit.
Similarly,
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E dt8~2 i !Ga
2~ t2t8!C~2 !~a,t8! ⇒

t→2`

Cout~a,t !. ~3.8!

Exactly analogous to Eqs.~2.11!, we can now write

C~1 !~a,t !5C in~a,t !1E
2`

1`

dt8 G 1~ t2t8!Ha8C in~a,t8!, ~3.9a!

C~2 !~a,t !5Cout~a,t !1E
2`

1`

dt8 G 2~ t2t8!Ha8Cout~a,t8!. ~3.9b!

We can now define the Mo¨ller matrices, and theS-matrix. The Möller matrices are defined by

C6~a,t !5Va
~6 !Ca~a,t !, ~3.10!

with only those statesCa admitted which are inHa . On the orthogonal complement~i.e., the
ionized eigenstates ofHa! V~6! is defined to be zero,

V~6 !Pa5V~6 !.

Then, on the spaceHa , using Eq.~3.9a!, we find

Va
~1 !5Pa1Ka

~1 ! ,

Ka
~1 !52 i E

2`

`

dt G 1~2t !Ha8G
2
a~ t !Pa52 i E

2`

0

dt eiHtHa8 e
2 iHatPa ,

and therefore,

Va
~1 !5 lim

t→2`

eiHt e2 iHatPa . ~3.11!

We can similarly find, onHa , that

Va
~2 !5 lim

t→`

eiHt e2 iHatPa . ~3.12!

The range ofVa
(1) is the space of all full states that develop from arrangement channela, and

the range ofVa
(2) is the space of all full states that develop into arrangement channela. Let us call

these rangesRa
(1) andRa

(2), and their respective orthogonal projectionsQa
(1) andQa

(2). The
Möller matricesV~6! mapHa ontoRa

6, and from Eqs.~3.10! we find that onRa
(1) andRa

(2),
respectively,

Ca~a,t !5C in~a,t !5V~1 !†C~1 !~a,t !5Cout~a,t !5V~2 !†C~2 !~a,t !. ~3.13!

Therefore, because theCa(a,t) span the spaceHa , we find that the Mo¨ller matricesVa
(6) are

partially isometric from the spaceHa , i.e.,

Va
~6 !†Va

~6 !5Pa . ~3.14!

Similarly, theVa
(6)† are partially isometric from the rangesRa

(6) of theV~6!, i.e.,

Va
~6 !Va

~6 !†5Qa
~6 ! , ~3.15!
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which defines theQa
(6). The full states developing from or into any arrangement channel are

orthogonal to each other as can be seen by direct evaluation of the inner products of asymptotic
states. ‘‘If the two arrangement channels are different, then there must be at least one particle for
which the ‘overlap’ of the two states was negligible in the remote past because it belonged to a
different fragment. Hence that inner product must vanish for all times.’’16

A major point of difference with our results from the rearrangement model is the statement,
‘‘note that the same argument shows that the inner product

~Cb~b,t !,Ca~a,t !! ~3.16!

approaches zero ast→6` ~for aÞb!. But sinceHaÞHb , it is not independent oft and hence it
does not generally vanish forfinite times’’ ~emphasis added!.16 In the rearrangement model, this is
untrue: we show in Sec. VII that our states are all orthogonal to each other.

From the Schro¨dinger equation, one can write

HVa
~6 !5Va

~6 !Ha , ~3.17!

which means thatV intertwinesH andHa . This again is a major difference with the rearrange-
ment model, because we show in Sec. VII thatV intertwinesH and HC , whereHC is the
comparison Hamiltonian, which has the same spectrum asH; here,Ha does not have the same
spectrum asH.

Our channel definitions could also include the single cluster arrangement channel, which is the
channel of all then-particle bound states ofH. If we defineL to be the orthogonal projection onto
that subspace, then for alla we have

Qa
~6 !L50. ~3.18!

Now, every nonbound state must be decomposable into states that arise from, or go into, one of the
other arrangements. Therefore, we assume

L1(
a

Qa
~6 !51, ~3.19!

which is known as asymptotic completeness.
Using Eqs.~3.12!, ~3.17!, and~3.19!, we may then define a unitaryS-matrix,

C~1 !~a,t ! ⇒
t→2`

Cout~ t !5(
b

SbaCa~a,t !, ~3.20!

where

Sba5Vb
~2 !†Va

~1 ! . ~3.21!

The mathematical questions of convergence are the same here as for the single channel case,
as in Eqs.~2.26!.

IV. THE REARRANGEMENT MODEL

To keep contact with earlier work, we shall use a combination of the notations of Refs. 7 and
17, as far as possible. We consider a quantum field theory with five distinct fields,B, C, D, u, and
f, and the corresponding particles~no antiparticles!.

The nonzero commutators are
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@B,B†#5@D,D†#5@C,C†#51,
~4.1!

@u~v!,u†~v8!#5d~v82v!, @f~n!,f†~n8!#5d~n82n!.

Note thatu andf are labeled by continuum parameters, 0,v,n,`, while B, C, andD are
treated as single modes~‘‘infinitely heavy’’ !.18We choose to use the energy as our variable, rather
than momentum, because this makes the model much simpler, and more physically transparent.
We want a total Hamiltonian for the system which allows the transitions

B↔Cf

and

D↔Cu.

Therefore, we choose our Hamiltonian to be

H5H01V, ~4.2!

where

H05mBB
†B1mDD

†D1E dv vu†~v!u~v!1E dn nf†~n!f~n! ~4.3!

and

V5E dv f ~v!u~v!CD†1E dv f * ~v!u†~v!C†D1E dn g~n!f~n!CB†

1E dn g* ~n!f†~n!C†B. ~4.4!

This Hamiltonian has three constants of motion apart from itself. They are

C15B†B1C†C1D†D, ~4.5a!

C25B†B1E dn f†~n!f~n!, ~4.5b!

C35D†D1E dv u†~v!u~v!. ~4.5c!

Therefore, no transitions can occur between sectors labeled by different values of these quan-
tum numbers. Let us start by enumerating the stable sectors. The first such sector is the vacuum
and hasC15C25C350. The next three are:C151, C250, C350; C150, C251, C350; and
C150,C250,C351. These correspond to the statesC, f, andu, respectively. Finally, there is the
sector withC150, C251, C351; it corresponds to a stateuf.

The three lowest nontrivial sectors are

C151, C251, C350, ~4.6a!

C151, C250, C351, ~4.6b!

C151, C251, C351. ~4.6c!
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These correspond toB↔Cf, D↔Cu, andBu↔Cuf↔Df, respectively. The last of these is the
sector in which rearrangement collisions can take place, and as mentioned before, we shall call
this the rearrangement sector.

Our strategy for solving the model in the rearrangement sector will be to first construct the
solutions of the two lowest nontrivial sectors, Eqs.~4.6a! and~4.6b! ~which are exactly analogous
to the Lee model!, and then use these solutions to express the rearrangement sector equations.

V. SOLVING THE MODEL

We start by constructing the solutions for theB↔Cf andD↔Cu sectors. These are exactly
the same as the Lee model, so the solutions are simple. We shall denote noninteracting~‘‘bare’’ !
states by single bras and kets~^,&!, and interacting states~‘‘dressed’’ or ‘‘physical’’! by double bras
and kets~^^,&&!.

The equations we need to solve for the continuum solutions are

Hul&&5lul&& ~5.1a!

in theB↔Cf sector, and

Hum&&5mum&& ~5.1b!

in theD↔Cu sector.
We define

a~z![z2mD2E
0

`

dv
u f ~v!u2

z2v
, ~5.2!

b~z![z2mB2E
0

`

dn
ug~n!u2

z2n
, ~5.3!

rl,B~n![^Cf~n!ul&&, ~5.4!

rm,D~v![^Cu~v!um&&, ~5.5!

sl,B[^Bul&&, ~5.6!

sm,D[^Dum&&. ~5.7!

For shorthand, we will writea~l! for a~l1i e! anda* ~l! for a~l2i e!, and similarly forb~l!. In
terms of these, the solutions are

rl,B~n!5d~l2n!1
g* ~n!sl,B

l2n1 i e
, ~5.8a!

rm,D~v!5d~m2v!1
f * ~v!sm,D

m2v1 i e
, ~5.8b!

sl,B5
g~l!

b~l!
, ~5.8c!

sm,D5
f ~m!

a~m!
. ~5.8d!
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If a(z) develops zeros then we have additional discrete states. Similarly, ifb(z) develops
zeros then again we have additional discrete states. For our purposes, we shall always assume that
botha(z) andb(z) have exactly one zero each, which are denoted byMD andMB , respectively.
There is no loss of generality if we use this assumption because the extension to more than one
zero is trivial. The equations for the discrete states are

HuMB&&5MBuMB&& ~5.9a!

in theB↔Cf sector, and

HuMD&&5MDuMD&& ~5.9b!

in theD↔Cu sector. We define

rB~n![^Cf~n!uMB&&, ~5.10!

rD~v![^Cu~v!uMD&&, ~5.11!

AZB[^BuMB&&, ~5.12!

AZD[^DuMD&&. ~5.13!

In terms of these, the normalized solutions are

rB~n!5AZB
g* ~n!

MB2n
, ~5.14a!

rD~v!5AZD
f * ~v!

MD2v
, ~5.14b!

ZB5F11E dn
ug~n!u2

~MB2n!2G
21

, ~5.14c!

ZD5F11E dv
u f ~v!u2

~MD2v!2G
21

, ~5.14d!

where the last two are obtained by imposition of the orthonormality condition. Note that these
solutions, Eqs.~5.8! and ~5.14!, form a complete orthonormal set.

Now, we use these solutions to construct the solutions in the rearrangement sector. In this
sector we will have four sorts of solutions. The first will correspond to the physicaluCu~v!f~n!&&
sector, the second to the physicaluDf~n!&&, the third to the physicaluBu~v!&&, and the last to one
or more dynamically generated bound states, which we shall denote byuMA&&. Which solution is
obtained will depend on whether we put the delta functions~which represent the plane wave parts
of our solutions! in our solutions. If we put none, we get the discrete states.

We wish to solve the eigenvalue equation

HuE&&5EuE&&. ~5.15!

We expand Eq.~5.15! in terms ofu†~v!ul&&, u†~v!uMB&&, f†~n!um&&, andf†~n!uMD&&. By acting on
these states with the Hamiltonian, and using Eqs.~5.1! and ~5.9! we get

~E2l2v!^^luu~v!uE&&5 f * ~v!^^luC†DuE&&, ~5.16a!
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~E2MB2v!^^MBuu~v!uE&&5 f * ~v!^^MBuC†DuE&&, ~5.16b!

~E2m2n!^^muf~n!uE&&5g* ~n!^^muC†BuE&&, ~5.16c!

~E2MD2n!^^MDuf~n!uE&&5g* ~n!^^MDuC†BuE&&. ~5.16d!

We need to evaluate the unknown matrix elements on the right-hand side of Eqs.~5.16!. We
solve for these elements by insertingH in them, commuting it on one side, and letting it act on
uE&& on the other. For example, we can solve for^^luC†DuE&& in the following manner:

^^luC†DHuE&&5E^^luC†DuE&&⇒^^lu$HC†D1@C†D,H#%uE&&5E^^luC†DuE&&.
~5.17!

We now letH in the first term of Eq.~5.17! act on^^lu, and evaluate the commutator in the second
term. We proceed similarly for the other three equations and, when all the dust settles, get

~E2l2mD!^^luCD†uE&&5E dv f ~v!^^luu~v!uE&&2sl,B* F E dv f ~v!

3H E dl8 sl8,B^^l8uu~v!uE&&1AZB^^MBuu~v!uE&&J
1E dn g~n!H E dm8 sm8,D^^m8uf~n!uE&&

1AZD^^MDuf~n!uE&&J G , ~5.18a!

~E2MB2mD!^^MBuCD†uE&&5E dv f ~v!^^MBuu~v!uE&&2AZBF E dv f ~v!

3H E dl8 sl8,B^^l8uu~v!uE&&1AZB^^MBuu~v!uE&&J
1E dn g~n!H E dm8 sm8,D^^m8uf~n!uE&&

1AZD^^MDuf~n!uE&&J G , ~5.18b!

~E2m2mB!^^muCB†uE&&5E dn g~n!^^muf~n!uE&&2sm,D* F E dv f ~v!

3H E dl8 sl8,B^^l8uu~v!uE&&1AZB^^MBuu~v!uE&&J
1E dn g~n!H E dm8 sm8,D^^m8uf~n!uE&&

1AZD^^MDuf~n!uE&&J G , ~5.18c!

~E2MD2mB!^^MDuCB†uE&&5E dn g~n!^^MDuf~n!uE&&2AZDF E dv f ~v!
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3H E dl8sl8,B^^l8uu~v!uE&&1AZB^^MBuu~v!uE&&J
1E dn g~n!H E dm8 sm8,D^^m8uf~n!uE&&

1AZD^^MDuf~n!uE&&J G . ~5.18d!

We first solve for the physicaluCu~v!f~n!&& states. We start by inverting Eqs.~5.16! and
putting in the requisite delta functions. Note that we may put the product of two delta functions
because this is an infinitely degenerate~double! continuum, which cannot be specified by justE;
rather, we have to label the state with the variablesE andn, with then variable representing the
division of energy between theu andf particles. We then substitute these into the first term of
each of Eqs.~5.18!, and solve for the unknown matrix elements. Having found them, we put them
into Eqs.~5.16! to find our solutions. Defining

bC~E,n,l,v![^^luu~v!uE,n&&, ~5.19a!

bF
C~E,n,MB ,v![^^MBuu~v!uE,n&&, ~5.19b!

dC~E,n,m,n![^^muf~n!uE,n&&, ~5.19c!

dF
C~E,n,MD ,n![^^MDuf~n!uE,n&&, ~5.19d!

we get

bC~E,n,l,v!5d~E2l2n!rn,D~v!2
f * ~v!

~E2l2v1 i e!

sl,B*
a~E2l!

KC~E,n!, ~5.20a!

bF
C~E,n,MB ,v!52

f * ~v!

~E2MB2v1 i e!

AZB
a~E2MB!

KC~E,n!, ~5.20b!

dC~E,n,m,n!5d~m2n!rE2n,B~n!2
g* ~n!

~E2m2n1 i e!

sm,D*
b~E2m!

KC~E,n!, ~5.20c!

dF
C~E,n,MD ,n!52

g* ~n!

~E2MD2n1 i e!

AZD
b~E2MD!

KC~E,n!, ~5.20d!

where

KC~E,n!5
g~E2n! f ~n!

b~E2n!a~n!

1

g~E!
, ~5.21!

g~E!5
ZD

b~E2MD!
1E dm

u f ~m!u2

ua~m!u2
1

b~E2m!
~5.22a!

5
ZB

a~E2MB!
1E dl

ug~l!u2

ub~l!u2
1

a~E2l!
. ~5.22b!

The last equality follows from Eqs.~A10!.
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We now solve for the physicaluDf~n!&& sector. We must again start by inverting Eqs.~5.16!,
but this time need to put just the one requisite delta function in Eq.~5.16d!. We put these equations
in Eqs.~5.18!, and solve for the unknown matrix elements putting in another delta function in Eq.
~5.18a! when inverting because now we must account for the zero ofa~E2l! atMD . We then put
these results in Eqs.~5.16!. Defining

bD~E,l,v![^^luu~v!uE&&, ~5.23a!

bF
D~E,MB ,v![^^MBuu~v!uE&&, ~5.23b!

dD~E,m,n![^^muf~n!uE&&, ~5.23c!

dF
D~E,MD ,n![^^MDuf~n!uE&&, ~5.23d!

we get

bD~E,l,v!5rD~v!d~E2l2MD!2
f * ~v!

~E2l2v1 i e!

sl,B*
a~E2l!

KD~E!, ~5.24a!

bF
D~E,MB ,v!52

f * ~v!

~E2MB2v1 i e!

AZB
a~E2MB!

KD~E!, ~5.24b!

dD~E,m,n!52
g* ~n!

~E2m2n1 i e!

sm,D*
b~E2m!

KD~E!, ~5.24c!

dF
D~E,MD ,n!5rE2MD ,B~n!2

g* ~n!

~E2MD2n1 i e!

AZD
b~E2MD!

KD~E!, ~5.24d!

where

KD~E!5
AZD
g~E!

g~E2MD!

b~E2MD!
, ~5.25!

andg(E) is the same as that defined in Eqs.~5.22!.
In exactly the same way, we can find the solutions for the physicaluBu~v!&& sector. They are

bB~E,l,v!52
f * ~v!

~E2l2v1 i e!

sl,B*
a~E2l!

KB~E!, ~5.26a!

bF
B~E,MB ,v!5rE2MB ,D

~v!2
f * ~v!

~E2MB2v1 i e!

AZB
a~E2MB!

KB~E!, ~5.26b!

dB~E,m,n!5rB~n!d~E2m2MB!2
g* ~n!

~E2m2n1 i e!

sm,D*
b~E2m!

KB~E!, ~5.26c!

dF
B~E,MD ,n!52

g* ~n!

~E2MD2n1 i e!

AZD
b~E2MD!

KB~E!, ~5.26d!

where
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KB~E!5
AZB
g~E!

f ~E2MB!

a~E2MB!
, ~5.27!

andg(E) is the same as that defined in Eq.~5.22!.
Finally, we wish to solve for any dynamically generated discrete states. In this case, we put no

delta functions anywhere. When we follow the procedure of putting Eqs.~5.16! in Eqs.~5.18! and
solving for the unknown matrix elements, we find that the only way to satisfy all the equations is
if g(E) has zeros. Denoting these zeros byMA , we find the discrete state solutions:

bA~MA ,l,v!52
f * ~v!

~MA2l2v!

sl,B*
a~MA2l!

KA~MA!, ~5.28a!

bF
A~MA ,MB ,v!52

f * ~v!

~MA2MB2v1 i e!

AZB
a~MA2MB!

KA~MA!, ~5.28b!

dA~MA ,m,n!52
g* ~n!

~MA2m2n!

sm,D*
b~MA2m!

KA~MA!, ~5.28c!

dF
A~MA ,MD ,n!52

g* ~n!

~MA2MD2n1 i e!

AZD
b~MA2MD!

KA~MA!. ~5.28d!

whereKA(MA) is now an arbitrary normalization factor which is fixed, when demonstrating
completeness, to beAdg(E)/dEuE5MA

~see the discussion after Eq.~7.18!!. For our purposes,
without loss of generality, we assume that there is only one zero ofg(E), denoted byMA , and
thus only one dynamically generated discrete state. The extension to more than one discrete state
is trivial.

In each of Eqs.~5.20!, ~5.24!, ~5.26!, and ~5.28! the superscript refers to the sector that the
solution is in, and the subscriptF refers to solutions expanded in the discrete state part of the Lee
Model sectors. Furthermore, we have anticipated future developments by fixing the arbitrary
constants accompanying the delta functions in Eqs.~5.20!, ~5.24!, and ~5.26!. We do this by
demanding that Eq.~6.3a! and Eq.~6.3b!, or their equivalents for the other two sectors, give the
same result, and that the solutions be orthonormal.

VI. VERIFICATION OF THE SOLUTIONS

We now proceed to verify that Eqs.~5.20!, ~5.24!, ~5.26!, and~5.28! are each solutions to our
problem. To do this, we first transform our solutions into the bare state basis; i.e., in terms of the
noninteracting statesuCu~v!f~n!&, uBu~v!&, and uDf~n!&, using the completeness of the lower
sector solutions. With the expansion coefficients in the physicaluCu~v!f~n!&& sector defined in the
following manner~with the coefficients for the other sectors defined similarly!:

uE,n&&[CC~E,n,v,n!uCu~v!f~n!&1BC~E,n,v!uBu~v!&1DC~E,n,n!uDf~n!&, ~6.1!

where

CC~E,n,v,n![S CC~E,n,v,n!

DC~E,n,n!

BC~E,n,v!
D ~6.2!

and

CC~E,n,v,n![^Cu~v!f~n!uE,n&&,
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BC~E,n,v![^Bu~v!uE,n&&,

DC~E,n,n![^Df~n!uE,n&&,

we have

CC~E,n,v,n!5E dlrl,B~n!bC~E,n,l,v!1rB~n!bF
C~E,n,MB ,v!, ~6.3a!

5E dm rm,D~v!dC~E,n,m,n!1rD~v!dF
C~E,n,MD ,n!,

~6.3b!

DC~E,n,n!5E dm sm,Dd
C~E,n,m,n!1AZDdFC~E,n,MD ,n!, ~6.3c!

BC~E,n,v!5E dl sl,Bb
C~E,n,l,v!1AZBbFC~E,n,MB ,v!, ~6.3d!

with similar equations for the other three sectors~e.g., for the physicaluDf~n!&& sector, we would
replaceCC(E,n,v,n) by CD(E,v,n), bC(E,n,l,v) by bD(E,l,v), etc.!. A good check that we
have solved our equations correctly is to verify that Eqs.~6.3a! and ~6.3b! give the same result.
This is indeed completely trivial if we use Eq.~A14!.

For the physicaluCu~v!f~n!&& sector in the bare basis, we get

CC~E,n,v,n!5rn,D~v!rE2n,B~n!

2KC~E,n!
f * ~v!g* ~n!

~E2v2n1 i e! H E dl
usl,Bu2

~E2l2v1 i e!a~E2l!

1E dm
usm,Du2

~E2m2n1 i e!b~E2m!
1

ZB
a~E2MB!~E2MB2v1 i e!

1
ZD

b~E2MD!~E2MD2n1 i e! J , ~6.4a!

DC~E,n,n!5
f ~n!

a~n!
rn,D~v!2KC~E,n!g* ~n!H E dm

usm,Du2

~E2m2n1 i e!b~E2m!

1
ZD

b~E2MD!~E2MD2n1 i e! J , ~6.4b!

BC~E,n,v!5
g~E2n!

b~E2n!
rE2n,B~n!2KC~E,n! f * ~v!H E dl

usl,Bu2

~E2l2v1 i e!a~E2l!

1
ZB

a~E2MB!~E2MB2v1 i e! J . ~6.4c!

For the physicaluDf~n!&& sector in the bare basis, we get

CD~E,v,n!5rD~v!rE2MD ,B~n!2KD~E!
f * ~v!g* ~n!

~E2m2n1 i e! H E dl
usl,Bu2

~E2l2v1 i e!a~E2l!
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1E dm
usm,Du2

~E2m2n1 i e!b~E2m!
1

ZB
a~E2MB!~E2MB2v1 i e!

1
ZD

b~E2MD!~E2MD2n1 i e! J , ~6.5a!

DD~E,n!5AZDrE2MD ,B~n!2KD~E!g* ~n!H E dm
usm,Du2

~E2m2n1 i e!b~E2m!

1
ZD

b~E2MD!~E2MD2n1 i e! J , ~6.5b!

BD~E,v!5rD~v!sE2MD ,B2KD~E! f * ~v!H E dl
usl,Bu2

~E2l2v1 i e!a~E2l!

1
ZB

a~E2MB!~E2MB2v1 i e! J . ~6.5c!

For the physicaluBu~v!&& sector in the bare basis, we get

CB~E,v,n!5rB~n!rE2MB ,D
~v!2KB~E!

f * ~v!g* ~n!

~E2v2n1 i e! H E dl
usl,Bu2

~E2l2v1 i e!a~E2l!

1E dm
usm,Du2

~E2m2n1 i e!b~E2m!
1

ZB
a~E2MB!~E2MB2v1 i e!

1
ZD

b~E2MD!~E2MD2n1 i e! J , ~6.6a!

DB~E,n!5rB~n!sE2MB ,D
2KB~E!g* ~n!H E dm

usm,Du2

~E2m2n1 i e!b~E2m!

1
ZD

b~E2MD!~E2MD2n1 i e! J , ~6.6b!

BB~E,v!5AZBrE2MB ,D
~v!2KB~E! f * ~v!H E dl

usl,Bu2

~E2l2v1 i e!a~E2l!

1
ZB

a~E2MB!~E2MB2v1 i e! J . ~6.6c!

Finally, for the discrete states, we get

CA~MA ,v,n!52KA~MA!
f * ~v!g* ~n!

MA2v2n H E dl
usl,Bu2

~MA2l2v!a~MA2l!

1E dm
usm,Du2

~MA2m2n!b~MA2m!
1

ZB
a~MA2MB!~MA2MB2v1 i e!

1
ZD

b~MA2MD!~MA2MD2n1 i e! J , ~6.7a!
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DA~MA ,n!52KA~MA!g* ~n!H E dm
usm,Du2

~MA2m2n!b~MA2m!

1
ZD

b~MA2MD!~MA2MD2n1 i e! J , ~6.7b!

BA~MA ,v!52KA~MA! f * ~v!H E dl
usl,Bu2

~MA2l2v!a~MA2l!

1
ZB

a~MA2MB!~MA2MB2v1 i e! J . ~6.7c!

We now verify that Eqs.~6.4!, ~6.5!, ~6.6!, and~6.7! are each solutions of our model. To do this,
we explicitly write down the analogs of Eqs.~5.16! in the bare basis, plug in each set of solutions
in turn, and verify that the equations are satisfied. A straightforward analysis shows that the
following equations must be satisfied in the bare basis~we have written them for the physical
uCu~v!f~n!&& sector, i.e., with the variablen—for the other sectors the variablen is, of course,
missing!:

~E2v2n!C~E,n,v,n!5g* ~n!B~E,n,v!1 f * ~v!D~E,n,n!, ~6.8a!

~E2mB2v!B~E,n,v!5E dn g~n!C~E,n,v,n!, ~6.8b!

~E2mD2n!D~E,n,n!5E dv f ~v!C~E,n,v,n!. ~6.8c!

Putting each of Eqs.~6.4!, ~6.5!, ~6.6!, and~6.7! in turn into Eqs.~6.8!, or their equivalents for the
other sectors, and using Eq.~A14!, we find that each of these sets of solutions satisfies the
equations. Incidentally, a glance at Eqs.~6.8! immediately shows why we could not have solved
the problem directly rather than the somewhat convoluted method we went through: the integral
equations are not separable, and are quite intractable.

VII. ORTHONORMALITY AND COMPLETENESS

We now proceed to verify orthonormality and completeness of the solutions Eqs.~6.4!, ~6.5!,
~6.6!, and~6.7!. We start by verifying orthonormality for the diagonal components beginning with
the scalar product (CC†(E8,n8,v,n),CC(E,n,v,n)), which is given by

E dv dnCC†~E8,n8,v,n!CC~E,n,v,n!

5E dv dn CC* ~E8,n8,v,n!CC~E,n,v,n!1E dv BC* ~E8,n8,v!BC~E,n,v!

1E dn DC* ~E8,n8,n!DC~E,n,n!. ~7.1!

We now use Eqs.~6.3! to write this as
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E dv dn CC†~E8,n8,v,n!CC~E,n,v,n!

5E dv dnF E dl8 rl8B
* ~n!bC* ~E8,n8,l8,v!1rB* ~n!bF

C* ~E8,n8,MB ,v!G
3F E dl rl,B~n!bC~E,n,l,v!1rB~n!bF

C~E,n,MB ,v!G
1E dvF E dl8 sl8,B

* bC* ~E8,n8,l8,v!1AZBbFC* ~E8,n8,MB ,v!G
3F E dl sl,Bb

C~E,n,l,v!1AZBbFC~E,n,MB ,v!G1E dn DC* ~E8,n8,n!DC~E,n,n!.

~7.2!

We then do the integrals overl andl8 to find

E dv dn CC†~E8,n8,v,n!CC~E,n,v,n!5E dl dv bC* ~E8,n8,l,v!bC~E,n,l,v!

1E dv bF
C* ~E8,n8,MB ,v!bF

C~E,n,MB ,v!

1E dn DC* ~E8,n8,n!DC~E,n,n!. ~7.3!

Defining

L1~E8,n8![
f * ~n8!g* ~E82n8!

a* ~n8!b* ~E82n8!
, L2~E,n![

f ~n!g~E2n!

a~n!b~E2n!
, ~7.4!

we find that the sum of the first two integrals is

d~E2E8!d~n2n8!2d~E82n82E1n!
f * ~n8! f ~n!

a* ~n8!a~n!
1L1~E8,n8!L2~E,n!

3H 1

g* ~E8!a* ~E82E1n!
1

1

g~E!a~E2E81n8! J 1
L1~E8,n8!L2~E,n!

g* ~E8!g~E!

3H 2ZB
a* ~E82MB!a~E2MB!

2E dl
usl,Bu2

a* ~E82l!a~E2l! J ~7.5!

while the third integral gives

d~E82n82E1n!
f * ~n8! f ~n!

a* ~n8!a~n!
2L1~E8,n8!L2~E,n!

3H 1

g* ~E8!a* ~E82E1n!
1

1

g~E!a~E2E81n8! J 1
L1~E8,n8!L2~E,n!

g* ~E8!g~E!

3H ZD
b~E2MD!a* ~E82E1MD!

1
ZD

b* ~E82MD!a~E2E81MD!
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1E dm8
usm8,Du2

b* ~E82m8!a~E2E81m8!
1E dm

usm,Du2

b~E2m!a* ~E82E2m! J .
~7.6!

Adding Eqs.~7.5! and ~7.6! together, and doing the integrals by combining them into a single
contour integral~which evaluates simply to its residues!, we find that the only term left is
d(E82E)d(n82n), which is just as required.

We can similarly show that

E dv dn CD†
~E8,v,n!CD~E,v,n!5E dl dv bD* ~E8,l,v!bD~E,l,v!

1E dv bF
D* ~E8,MB ,v!bF

D~E,MB ,v!

1E dn DD* ~E8,n!DD~E,n!5d~E82E! ~7.7!

and

E dv dn CB†~E8,v,n!CB~E,v,n!5E dl dv bB* ~E8,l,v!bB~E,l,v!

1E dv bF
B* ~E8,MB ,v!bF

B~E,MB ,v!

1E dn DB* ~E8,n!DB~E,n!5d~E82E!. ~7.8!

Finally,

CA†~MA ,v,n!CA~MA ,v,n!51. ~7.9!

Now we take up the off-diagonal elements. For

E dv dn CC†~E8,n8,v,n!CD~E,v,n!5E dl dv bC* ~E8,n8,l,v!bD~E,l,v!

1E dv bF
C* ~E8,n8,MB ,v!bF

D~E,MB ,v!

1E dn DC* ~E8,n8,n!DD~E,n!, ~7.10!

we find that the third integral exactly cancels the sum of the first two, giving us 0. We can
similarly show that

E dv dn CC†~E8,n8,v,n!CB~E,v,n!50, ~7.11!

E dv dn VC†~E8,n8,v,n!CA~MA ,v,n!50, ~7.12!

E dv dn CD†
~E8,v,n!CB~E,v,n!50, ~7.13!
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E dv dn CD†
~E8,v,n!CA~MA ,v,n!50, ~7.14!

E dv dn CB†~E8,v,n!CA~MA ,v,n!50. ~7.15!

Therefore, the set of solutions we found, Eqs.~6.4!, ~6.5!, ~6.6!, and~6.7! are orthonormal.
We now consider completeness. We wish to show that

E dE dnCC~E,n,v,n!CC†~E,n,v8,n8!1E dE CD~E,v,n!CD†
~E,v8,n8!

1E dE CB~E,v,n!CB†~E,v8,n8!1CA~MA ,v,n!CA†~MA ,v8,n8!

5S d~n2n8!d~v2v8! 0 0

0 d~n2n8! 0

0 0 d~v2v8!
D . ~7.16!

Let us start with the diagonal elements. The~1,1! element of the matrix is

E dE dn CC~E,n,v,n!CC* ~E,n,v8,n8!1E dE CD~E,v,n!CD* ~E,v8,n8!

1E dE CB~E,v,n!CB* ~E,v8,n8!1CA~MA ,v,n!CA* ~MA ,v8,n8!. ~7.17!

These integrals are most easily done in the following manner. The first term can be rewritten,
using Eqs.~6.3!, as

E dE dn CC~E,n,v,n!CC* ~E,n,v8,n8!H E dl8 rl8,B
* ~n8!bC* ~E,n,l8,v8!

1rB* ~n8!bF
C* ~E,n,MB ,v8!J

5E dE dnH E dl rl,B~n!bC~E,n,l,v!1rB~n!bF
C~E,n,MB ,v!J . ~7.18!

One then rewrites subsequent terms in Eq.~7.17! in a similar fashion as Eq.~7.18!. Since the
integrals are exceedingly tedious, we describe how they are done, and leave it to the interested
reader to verify our results. The integrals overn are done with the help of Eq.~A15!. Then, the
integrals overE are done by converting them into contour integrals. When all the contour integrals
are combined it is found that they add together into one large contour integral~plus the noncon-
tributing circle at infinity!, which evaluates simply to its residues. These residues exactly cancel
the other pieces in the expression, leaving over one or more delta functions for the diagonal terms,
and nothing for the off-diagonal ones. For convenience, the branch cuts and poles of the function
1/g(z), wherez is a complex integration variable in the contour integral, are shown in Figs. 1, 2,
and 3.

One finds that the~1,1! term is d~v2v8!d~n2n8!. In doing this, one has to fixKA(MA)
5 Adg(E)/dEuE5MA

, which fixes the unknown normalization constant in Eqs.~5.28!. One can
similarly show that the~2,2! and the~3,3! terms ared~n2n8! andd~v2v8!, respectively.

1689S. Varma and E. C. G. Sudarshan: Scattering theory with rearrangement collisions

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



For the off-diagonal terms, one proceeds similarly and finds that they are all zero. Thus, our
set of solutions, namely, Eqs.~6.4!, ~6.5!, ~6.6!, and ~6.7! is a complete orthonormal set of
solutions of our model in this sector.

VIII. THE MÖLLER MATRIX AND THE COMPARISON HAMILTONIAN

The matrix~with continuous eigenvalues! of the eigenfunctions, including any discrete solu-
tions, gives us the generalized Mo¨ller matrix by virtue of the results already demonstrated on
orthonormality and completeness.7 It is given by

V~E,n,v,n!5~CC~E,n,v,n!,CD~E,v,n!,CB~E,v,n!,CA~MA ,v,n!! ~8.1!

with the components

S CC~E,n,v,n! CD~E,v,n! CB~E,v,n! CA~MA ,v,n!

DD~E,n,n! DD~E,n! DB~E,n! DA~MA ,n!

BC~E,n,v! BD~E,v! BB~E,v! BA~MA ,v!
D . ~8.2!

It has the properties of being unitary:

VV†51, ~8.3a!

V†V51, ~8.3b!

and of diagonalizing the full HamiltonianH,

HV5VHC , ~8.4a!

V†HV5HC , ~8.4b!

whereHC is called the comparison Hamiltonian. It can be calculated in the following manner.
First, we use the eigenvalue equations to write

HV~E,n,v,n!5~ECC~E,n,v,n!,ECD~E,v,n!,ECB~E,v,n!,MACA~MA ,v,n!!,
~8.5!

and then act on Eq.~8.5! with V† from the left, and make use of the orthonormality relations to get

V†HV5S Ed~E2E8!d~n2n8! 0 0 0

0 Ed~E2E8! 0 0

0 0 Ed~E2E8! 0

0 0 0 MA

D 5HC . ~8.6!

To compareHC with the free HamiltonianH0, we rewriteHC , puttingE5n1t for the ~1,1!
element,E5MD1t for the ~2,2! element, andE5MB1t for the ~3,3! element, and similarly for
E8. Thus,HC becomes

S ~n1t!d~t2t8!d~n2n8! 0 0 0

0 ~MD1t!d~t2t8! 0 0

0 0 ~MB1t!d~t2t8! 0

0 0 0 MA

D . ~8.7!

The free HamiltonianH0 is
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S ~v1n!d~v2v8!d~n2n8! 0 0

0 ~mD1n!d~n2n8! 0

0 0 ~mB1v!d~v2v8!
D . ~8.8!

ComparingHC andH0, we see that we can identifyHC with H0 if we includebothmass and
wave function renormalization terms in the interaction, and ignore the discreteMA state inHC .
The mass renormalization means that we must add a quantityD to H0, whereD is

D5S 0 0 0

0 ~MD2mD!d~n2n8! 0

0 0 ~MB2mB!d~v2v8!
D . ~8.9!

The structure of our solutions, Eqs.~6.4!, ~6.5!, and~6.6!, immediately tells us that we must have
a wave function~and consequent coupling constant! renormalization.

Thus, the fieldsB, C, D, u, andf have the wave function renormalizations

B→Ab8B5
1

AZB
B, ~8.10a!

D→Aa8D5
1

AZD
D, ~8.10b!

C→C, ~8.10c!

u→u, ~8.10d!

f→f. ~8.10e!

Because there are no proper vertex corrections, the coupling constant renormalizations reflect
the wave function renormalizations7

f ~v!→AZDf ~v!, ~8.11!

g~n!→AZBg~n!. ~8.12!

Furthermore, as there are no divergences in this problem, the coupling constant and wave
function renormalizations are inessential, and the mass renormalization makingH01D identifiable
with HC is essential only in this sector. These renormalizations are sufficient for higher sectors as
well. The only change in the higher sectors is due to the mass renormalizations which alter the
continuum thresholds frommD andmB to MD andMB , respectively, but leave everything else
unaffected.

Notice that whileHC andH0 have the same structure~as long asa andb both have zeros, and
g does not!, they have different spectra. Only the double continuum 0,n,E,` is coextensive;
the Df andBu continua are renormalized downwards frommD to MD and frommB to MB ,
respectively. Notice also that, contrary to conventional wisdom,1,3,12the Möller matrix intertwines
the full HamiltonianH with HC , not with H0. However,HC andH do have the same spectrum.

In addition, if we take the unitary transformation ofHC in reverse, we can convert the
comparison Hamiltonian to the full Hamiltonian

VHCV†5H, ~8.13!
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and just as in the cascade model of Ref. 7, we find thatthe notion of an interaction is basis
dependent.

IX. THE S-MATRIX

We have obtained one set of solutions to our problem, namely, Eqs.~6.4!–~6.7!. We can, of
course, obtain another set in which the singular operators of the form (E2v2n1 i e)21 ~which
give the in states! in Eqs.~6.4!–~6.6! are changed to (E2v2n2 i e)21 ~which give the out states!,
while Eqs.~6.7! remain unchanged. Let us denote these solutions, and quantities associated with
them, with a prime. This new set also furnishes a Mo¨ller matrix,

V85~CC8~E,n,v,n!,CD8~E,v,n!,CB8~E,v,n!,CA~MA ,v,n!!, ~9.1!

which satisfies the same properties as the original Mo¨ller matrix, that of unitarity:

V8V8
†
51, ~9.2a!

V8
†
V851, ~9.2b!

and of diagonalizingH,

HV85V8HC , ~9.3a!

V8
†
HV85HC . ~9.3b!

The set of states, Eqs.~6.4!–~6.7! are such that

lim
t→2`

eiHCt e2 iHtCC~E,n,v,n!5S d~n2v!d~E2v2n!

0
0

D , ~9.4a!

lim
t→2`

eiHCt e2 iHtCD~E,v,n!5S 0
AZDd~E2MD2n!

0
D , ~9.4b!

lim
t→2`

eiHCt e2 iHtCB~E,v,n!5S 0
0

AZBd~E2MB2v!
D , ~9.4c!

lim
t→2`

eiHCt e2 iHtCA~MA ,v,n!5CA~MA ,v,n!, ~9.4d!

of which the first three are the plane wave ideal eigenstates of the comparison Hamiltonian.
However, notice that there is the need for awave function renormalizationin CD(E,v,n) and
CB(E,v,n), and that thethreshold is renormalizedin these two cases~i.e., mB→MB and
mD→MD!. Clearly, these states are the in states in our problem. This is again analogous to the
cascade model of Ref. 7.

For t→1` for these in states we have

lim
t→1`

eiHCt e2 iHtCC~E,n,v,n!
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5S d~E2v2n!Fd~n2v!
a* ~n!b* ~E2n!

a~n!b~E2n!
1

2p i

g~E!

f ~n!g~E2n!

a~n!b~E2n!

f * ~v!g* ~n!

a~v!b~n! G
2p i

g~E!

f ~n!g~E2n!

a~n!b~E2n!
ZDd~E2MD2n!

g* ~n!

b~n!

2p i

g~E!

f ~n!g~E2n!

a~n!b~E2n!
ZBd~E2MB2v!

f * ~v!

a~v!

D ,

~9.5a!

lim
t→1`

eiHCt e2 iHtCD~E,v,n!5S 2p id~E2v2n!
AZD
g~E!

g~E2MD!

b~E2MD!

f * ~v!g* ~E2v!

a~v!b~E2v!

AZDd~E2MD2n!Fb* ~n!

b~n!
1

2p i

g~E!
ZD

ug~n!u2

b~n!b~n!G
AZBd~E2MB2v!

2p i

g~E!
ZB

u f ~v!u2

a~v!a~v!

D ,

~9.5b!

lim
t→1`

eiHCt e2 iHtCB~E,v,n!5S 2p id~E2v2n!
AZB
g~E!

f ~E2MB!

a~E2MB!

f * ~v!g* ~E2v!

a~v!b~E2v!

AZDd~E2MD2n!
2p i

g~E!
ZD

ug~n!u2

b~n!b~n!

AZBd~E2MB2v!Fa* ~v!

a~v!
1

2p i

g~E!
ZB

u f ~v!u2

a~v!a~v!G
D ,

~9.5c!

lim
t→1`

eiHCt e2 iHtCA~MA ,v,n!5CA~MA ,v,n!. ~9.5d!

@The limits in Eqs.~9.4! and Eqs.~9.5! are understood for multiplication by smooth functions of
v or n or both, as the case may be.#

The out states behave in an analogous but opposite fashion to the in states. They behave
simply for t→1`, but have a complicated structure ast→2`. Furthermore, the in states at
t→2` and the out states att→1` are identical. Therefore, we can define anS-matrix, and can
compute it in one of several ways. For example, we can compute it using

Cscattered5 lim
t→`

~C~ t !2C~2t !!, ~9.6!

or we can take the scalar product of the in and out states

~C8,C!5S. ~9.7!

Both methods, of course, give the same answer.
The method of the inner products is cleaner and more aesthetically satisfying so we shall

follow it for the calculation. The results are easily checked by doing the calculation by the other
methods.

Schematically, theS-matrix looks like~the ‘‘1’’ subscript means an in state and the ‘‘2’’
subscript means an out state!
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S5S 2^^CufuCuf&&1 2^^CufuDf&&1 2^^CufuBu&&1 2^^CufuMA&&

2^^DfuCuf&&1 2^^DfuDf&&1 2^^DfuBu&&1 2^^DfuMA&&

2^^BuuCuf&&1 2^^BuuDf&&1 2^^BuuBu&&1 2^^BuuMA&&

^^MAuCuf&&1 ^^MAuDf&&1 ^^MAuBu&&1 ^^MAuMA&&

D . ~9.8!

Let us start with the~1,1! component ofS. We wish to calculate

C^^E8,n8,outuE,n, in&&C5E dv dn CC8* ~E8,n8,v,n!CC~E,n,v,n!

1E dv BC8* ~E8,n8,v!BC~E,n,v!

1E dn DC8* ~E8,n8,n!DC~E,n,n!. ~9.9!

We rewrite Eq.~9.9! in terms of the lower sector physical states using Eqs.~6.3! to get

E dv dnF E dl8 rl8,B
8* ~n!bC8* ~E8,n8,l8,v!1rB8* ~n!bF

C8* ~E8,n8,MB ,v!G
3F E dl rl,B~n!bC~E,n,l,v!1rB~n!bF

C~E,n,MB ,v!G
1E dvF E dl8 sl8,B

8 bC8* ~E8,n8,l8,v!1AZBbFC8* ~E8,n8,MB ,v!G
3F E dl sl,Bb

C~E,n,l,v!1AZBbFC~E,n,MB ,v!G1E dn DC8* ~E8,n8,n!DC~E,n,n!.

~9.10!

Doing the integrals overl in Eq. ~9.10! we get

E dl dl8
b* ~l!

b~l!
d~l2l8!E dv bC8* ~E8,n8,l8,v!bC~E,n,l,v!1E dv bF

C8*

3~E8,n8,MB ,v!bF
C~E,n,MB ,v!1E dn DC8* ~E8,n8,n!DC~E,n,n!. ~9.11!

The sum of the first and second integrals gives

d~E2E8!H d~n2n8!
b* ~E2n!a* ~n!

b~E2n!a~n!
1

2p i

g~E!

g~E2n! f ~n!

b~E2n!a~n!

g* ~E2n8! f * ~n8!

b~E2n8!a~n8! J
2d~E82n82E1n!

b* ~E2n! f * ~n8! f ~n!

b~E2n!a~n8!a~n!
1
g* ~E82n8! f * ~n8!g~E2n! f ~n!

b~E82n8!a~n8!b~E2n!a~n!

3H 1

g~E!a~E2E81n8!
1

1

g~E8!a~E82E1n! J
1

1

g~E8!g~E!

g* ~E82n8! f * ~n8!g~E2n! f ~n!

b~E82n8!a~n8!b~E2n!a~n!
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3H 2E dlUsl,BU2 1

a~E82l!a~E2l!
2

ZB
a~E82MB!a~E2MB! J , ~9.12!

and the third integral gives

d~E82n82E1n!
b* ~E2n! f * ~n8! f ~n!

b~E2n!a~n8!a~n!
2
g* ~E82n8! f * ~n8!g~E2n! f ~n!

b~E82n8!a~n8!b~E2n!a~n!

3H 1

g~E!a~E2E81n8!
1

1

g~E8!a~E82E1n! J 1
1

g~E8!g~E!

3
g* ~E82n8! f * ~n8!g~E2n! f ~n!

b~E82n8!a~n8!b~E2n!a~n! H 12 E dmusm,Du2
1

b~E2m!

3S 1

a* ~E82E1m!
1

1

a~E82E1m! D
1
1

2 E dm8usm8,Du2
1

b~E82m8! S 1

a* ~E2E81m8!
1

1

a~E2E81m8! D1
ZD

2b~E2MD!

3S 1

a* ~E82E1MD!
1

1

a~E82E1MD! D
1

ZD
2b~E82MD! S 1

a* ~E2E81MD!
1

1

a~E2E81MD! D J . ~9.13!

Adding Eqs.~9.12! and ~9.13!, and converting the sum of the integrals to contour integrals
~which evaluate to their residues and cancel the other terms with them inside the curly brackets!,
we are left with

C^^E8,n8, inuE,n,out&&C5d~E2E8!H d~n2n8!
b* ~E2n!a* ~n!

b~E2n!a~n!

1
2p i

g~E!

g~E2n! f ~n!

b~E2n!a~n!

g* ~E2n8! f * ~n8!

b~E2n8!a~n8! J . ~9.14!

In a similar fashion, we can do all the otherS-matrix elements. They are

D^^E8,outuE, in&&D5d~E2E8!H b* ~E2MD!

b~E2MD!
1
2p iZD

g~E!

ug~E2MD!u2

b~E2MD!b~E2MD! J , ~9.15!

B^^E8,outuE, in&&B5d~E2E8!H a* ~E2MB!

a~E2MB!
1
2p iZB

g~E!

u f ~E2MB!u2

a~E2MB!a~E2MB! J , ~9.16!

A^^MAuMA&&A51, ~9.17!

B^^E8,outuE, in&&D52p id~E82E!
AZDAZB

g~E!

f * ~E2MB!g~E2MD!

a~E2MB!b~E2MD!
, ~9.18!

D^^E8,outuE, in&&B52p id~E82E!
AZDAZB

g~E!

f ~E2MB!g* ~E2MD!

a~E2MB!b~E2MD!
, ~9.19!
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D^^E8,outuE,n, in&&C52p id~E82E!
AZD
g~E!

g~n! f ~E2n!

a~n!b~E2n!

g* ~E2MD!

b~E2MD!
, ~9.20!

C^^E8,n8,outuE, in&&D52p id~E82E!
AZD
g~E!

g* ~n8! f * ~E2n8!

a~n8!b~E2n8!

g~E2MD!

b~E2MD!
, ~9.21!

B^^E8,outuE,n, in&&C52p id~E82E!
AZB
g~E!

g~n! f ~E2n!

a~n!b~E2n!

f * ~E2MB!

a~E2MB!
, ~9.22!

C^^E8,n8,outuE, in&&B52p id~E82E!
AZB
g~E!

g* ~n8! f * ~E2n8!

a~n8!b~E2n8!

f ~E2MB!

a~E2MB!
, ~9.23!

A^^MAuE,n, in&&C50, ~9.24!

C^^E8,n8,outuMA&&A50, ~9.25!

A^^MAuE, in&&D50, ~9.26!

D^^E8,outuMA&&A50, ~9.27!

A^^MAuE, in&&B50, ~9.28!

B^^E8,outuMA&&A50. ~9.29!

X. UNITARITY OF THE S-MATRIX

We can almost trivially show that theS-matrix that we have obtained is unitary. In equations,
we wish to show that

SS†51. ~10.1!

Let us calculate the~1,1! term inSS†. It is

SS~1,1!
† 5d~E2E8!E dn9Fd~n2n9!

b* ~E2n!a* ~n!

b~E2n!a~n!
1

2p i

g~E!

f * ~n9! f ~n!g* ~E2n9!g~E2n!

a~n9!a~n!b~E2n9!b~E2n! G
3Fd~n82n9!

b~E2n8!a~n8!

b* ~E2n8!a* ~n8!
2

2p i

g* ~E!

f ~n9! f * ~n8!g~E2n9!g* ~E2n8!

a* ~n9!a* ~n8!b* ~E2n9!b* ~E2n8!G
2

~2p i !2

ug~E!u2
d~E2E8!

f ~n!g~E2n!

a~n!b~E2n!

f * ~n8!g* ~E2n8!

a* ~n8!b* ~E2n8!

3FZD ug~E2MD!u2

ub~E2MD!u2
1ZB

u f ~E2MB!u2

ua~E2MB!u2G . ~10.2!

Doing the integral in Eq.~10.2! with the help of Eq. ~A15! we find that the result is
d(E2E8)d(n2n8), exactly as desired. The rest of the terms are done in the same way. We find

SS~2,2!
† 5d~E2E8!, ~10.3!

SS~3,3!
† 5d~E2E8!, ~10.4!
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SS~4,4!
† 51, ~10.5!

with all other terms inSS† being zero, as required. ThusSS†51. In the same way, we can also
show thatS†S51, and therefore, ourS-matrix is unitary.

XI. EIGENPHASES OF THE S-MATRIX

The interesting case for theS-matrix is whenE.0 so that all channels are open. TheS-matrix
must satisfy

Sz5tz, ~11.1!

where utu251, for somez. This is equivalent to the following relations~where we ignore the
discreteA channel, as it is decoupled from everything else, and suppressd~E2E8!!

t2
b* ~E2n!a~n!

b~E2n!a~n!
zn5

2p i

g~E!

f ~n!g~E2n!

a~n!b~E2n! H E dn8
f * ~n8!g* ~E2n8!

a~n8!b~E2n8!
zn8

1AZD
g* ~E2MD!

b~E2MD!
zD1AZB

f * ~E2MB!

a~E2MB!
zBJ , ~11.2a!

t2
b* ~E2MD!

b~E2MD!
zD5

2p i

g~E!
AZD

g~E2MD!

b~E2MD! H E dn8
f * ~n8!g* ~E2n8!

a~n8!b~E2n8!
zn8

1AZD
g* ~E2MD!

b~E2MD!
zD1AZB

f * ~E2MB!

a~E2MB!
zBJ , ~11.2b!

t2
a* ~E2MB!

a~E2MD!
zB5

2p i

g~E!
AZB

f ~E2MB!

a~E2MB! H E dn8
f * ~n8!g* ~E2n8!

a~n8!b~E2n8!
zn8

1AZD
g* ~E2MD!

b~E2MD!
zD1AZB

f * ~E2MB!

a~E2MB!
zBJ . ~11.2c!

We now define the unimodular quantities

t~n![
b* ~E2n!a* ~n!

b~E2n!a~n!
, ~11.3a!

tD[
b* ~E2MD!

b~E2MD!
, ~11.3b!

tB[
a* ~E2MB!

a~E2MB!
. ~11.3c!

These are the basic equations. We can solve them for continuum values or for discrete values
of the eigenphase shifts. Let us start with the continuum values. We invert Eq.~11.2a! and put a
delta function on the right-hand side along with the appropriate normalization. We then multiply
both sides of the equation by

f * ~n!g* ~E2n!

a~n!b~E2n!

and integrate overn to get
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H 12
2p i

g~E!
E u f ~ l !u2ug~E2 l !u2

ua~ l !u2ub~E2 l !u2
t~ l !

t2t~ l !1 i e J E dn8
f * ~n8!g* ~E2n8!

a~n8!b~E2n8!
zn8

5
f * ~t!g* ~t!

a~t!b~t!
1

2p i

g~E!
E u f ~ l !u2ug~E2 l !u2

ua~ l !u2ub~E2 l !u2
t~ l !

t2t~ l !1 i e

3HAZD g* ~E2MD!

b~E2MD!
zD1AZB

f * ~E2MB!

a~E2MB!
zBJ . ~11.4!

Defining

S[12
2p i

g~E!
ZD

ug~E2MD!u2

ub~E2MD!u2
sD

s2sD
2

2p i

g~E!
ZB

u f ~E2MB!u2

ua~E2MB!u2
sB

s2sB
, ~11.5!

we invert Eqs.~11.2b! and~11.2c! to solve for the term in the curly braces on the right-hand side
of Eq. ~11.4!, namely,

AZD
g* ~E2MD!

b~E2MD!
zD1AZB

f * ~E2MB!

a~E2MB!
zB ,

and find

AZD
g* ~E2MD!

b~E2MD!
zD1AZB

f * ~E2MB!

a~E2MB!
zB5S 1S21D E dn8

f * ~n8!g* ~E2n8!

a~n8!b~E2n8!
zn8 .

~11.6!

We now define

x~t!512
2p i

g~E!S
E dl

u f ~ l !u2ug~E2 l !u2

ua~ l !u2ub~E2 l !u2
t~ l !

t2t~ l !1 i e
, ~11.7!

and use this to combine Eqs.~11.4! and ~11.6!, and find

E dn8
f * ~n8!g* ~E2n8!

a~n8!b~E2n8!
zn81AZD

g* ~E2MD!

b~E2MD!
zD1AZB

f * ~E2MB!

a~E2MB!
zB

5
1

x~t!S

f * ~t!g* ~t!

a~t!b~E2t!
. ~11.8!

Therefore, our continuum solutions are

zn5At8d~t2t~n!!1
2p i

g~E!

f ~n!g~E2n!

a~n!b~E2n!

1

~t2t~n!1 i e!x~t!S

f * ~t!g* ~E2t!

a~t!b~E2t!
,

~11.9a!

zD5
2p i

g~E!
AZD

g~E2MD!

b~E2MD!

1

~t2tD1 i e!x~t!S

f * ~t!g* ~E2t!

a~t!b~E2t!
, ~11.9b!

zB5
2p i

g~E!
AZB

f ~E2MB!

a~E2MB!

1

~t2tB1 i e!x~t!S

f * ~t!g* ~E2t!

a~t!b~E2t!
. ~11.9c!

To investigate the spectrum oft, we use the method of Ref. 7. We define the following
quantities, taking advantage of their being unimodular:
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e2iu~n![t~n!, ~11.10a!

e2iuD[tD , ~11.10b!

e2iuB[tB , ~11.10c!

e2id[t. ~11.10d!

We then put these definitions in Eqs.~11.9!, and see thatt(n)5e2iu(n) ranges continuously
along a unit circle in the complex plane fromu5u~0! to u5u(E).

In addition, these solutions are continuum normalized:

E dn zn~t82 i e!zn~t1 i e!1zD~t82 i e!zD~t1 i e!1zB~t82 i e!zB~t1 i e!5d~t82t!,

~11.11!

and will be complete if there are no discrete zeros ofx~t!. If there are, they will have to be
included in the completeness identity. We now find the number of discrete zeros ofx~t!, i.e., the
number of discrete eigenphase shifts of ourS-matrix.

We define

t[
11 ix

12 ix
,

tD[
11 ixD
12 ixD

,

t~n![
11 ix~n!

12 ix~n!
,

tB[
11 ixB
12 ixB

,

put these in Eq.~11.7!, and take real and imaginary parts to get

2
1

2 E dl
u f ~ l !u2ug~E2 l !u2

ua~ l !u2ub~E2 l !u2
x~11x~ l !!

x2x~ l !1 i e
5ImS g~E!

2p i D2
1

2

x~11xD!

x2xD
ZD

ug~E2MD!u2

ub~E2MD!u2

2
1

2

x~11xB!

x2xB
ZB

u f ~E2MB!u2

ua~E2MB!u2
, ~11.12a!

2
1

2 E dl
u f ~ l !u2ug~E2 l !u2

ua~ l !u2ub~E2 l !u2
5ReS g~E!

2p i D2
1

2
ZD

ug~E2MD!u2

ub~E2MD!u2
2
1

2
ZB

u f ~E2MB!u2

ua~E2MB!u2
.

~11.12b!

We observe that Eq.~11.12b! is an identity, by means of Eq.~A15!. To find the number of
zeros ofx~t!, we multiply both sides of Eq.~11.12a! by (x2xD)(x2xB). We then find that the
highest power ofx appearing in Eq.~11.12a! is x3, barring any higher powers contributed by the
integral. Therefore, there are at least three discrete zeros ofx~t!, and thus, at least three discrete
solutions which will have to be included in the completeness identity, Eq.~11.11!.

XII. A GENERAL FORMALISM FOR SCATTERING THEORY

In this section, we describe an approach due to Sudarshan and collaborators,19–25which takes
a very different view of scattering problems, and is quite different in spirit. It is essentially
immune to many of the problems that occur in the conventional approaches in the literature. The
idea is that one always works with the complete set of eigenstates of the full HamiltonianH
properly labeled. This set, by definition, is both orthonormal and complete. The matrix made up of
these eigenstates is the Mo¨ller matrix. This Möller matrix, again by definition, will diagonalize the
full Hamiltonian giving the comparison Hamiltonian.
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In other words, we have a Hamiltonian for the systemH. We wish a physical interpretation of
this object as a scattering system. One starts by considering the complete set of states forH, which
we denote asca(E), whereE is the energy of the eigenstate, anda contains everything else
necessary to uniquely specify the state such as spin, channel, etc. Then,

Hca~E!5Eaca~E!. ~12.1!

Form the generalized Mo¨ller matrixW, by defining

WE,a[ca~E!.

Therefore,

HW5WHC , ~12.2!

where the implied integration is of the Stielje type—i.e., we sum over any discrete indices, and
integrate over any continuous ones. Because we have assumed that the set of eigenstates ofH is
complete, this Mo¨ller matrix has the property that

VV†51, V†V51. ~12.3!

It is thus isometric and unitary, as long as we ensure that the spectra ofH andHC are the same,
and the spectrum multiplicity is properly preserved. The only caveat here is that not all formally
Hermitian Hamiltonians have a complete set of eigenstates. However, all ‘‘reasonable’’ Hamilto-
nians will have a such complete set.

Now, one normally wants an interpretation of a scattering system in terms of asymptotic
states. The point here is that, to get such an interpretation, we should useHC , notH0. We must set
up a correspondence between the set of eigenstates ofHC with H, because unlikeH0, we are
guaranteed thatH andHC are isospectral. Any asymptotic conditions~such as the strong conver-
gence properties of Eqs.~2.26!! should be expressed usingHC , notH0. Thus, it isHC , notH0,
which is the proper starting point for any perturbative scheme. Furthermore, as indicated by our
model, we should endeavor to construct a perturbative scheme to calculate the full states, not the
asymptotic ones, because we cannot say, with any confidence, what the appropriate conditions are
on the asymptotic states~see Sec. XIII for details!. In addition, note another advantage of this
formalism. Any, and all, shifts in the thresholds and spectrum ofH ~such as a mass renormaliza-
tion! are automatically taken care of by this procedure.

Finally, it is worth remarking that, in general,W andHC are not going to be analytic in the
coupling constants. Therefore, the procedure that one occasionally sees in the literature of splitting
H into HC1V8 is not very useful, and not very constructive. BothHC andV8 will be complicated
functions of the coupling constants, and will have all sorts of renormalization factors appearing.

If we are interested in working perturbatively, then we must set up the system carefully. We
give here an analysis of Sudarshan.26 Consider a quantum system defined in a Hilbert spaceH

with the Hamiltonian split in the usual way:

H5H01V, ~12.4!

in which we already know the ideal eigenstates for the continuum, and the proper eigenvectors for
the discrete states. The ideal states are, of course, not normalizable and we must take proper linear
combinations of them to get states that are square integrable, and inH. Then, we set up a
correspondence between eigenstates ofH and eigenstates ofH0, in such a manner that

Hcl5lcl , ~12.5a!
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H0c0l5lc0l . ~12.5b!

Therefore,

~12G0~l!V!cl5c0l , ~12.6a!

G0~l!~l2H0!51, ~12.6b!

whereG0 is the free Green function. From this we can write

cl5~12G0~l!V!21c0l , ~12.7!

thus defining for us a possible Mo¨ller matrix V8 given by

V85~12G0V!21. ~12.8!

Now thisV8 is a possible Mo¨ller matrix in the sense that it intertwinesH andH0:

HV85v8H0 . ~12.9!

Unfortunately, it is not very useful because it is not necessarily unitary, or even isometric. One
must renormalize it correctly so as to get a unitary operator. Furthermore,H and H0 are not
isospectral. Consider the full Green functionG ~l!:

G ~l!5
1

l2H1 i e
5~12G0~l!V!21G0~l!. ~12.10!

While, at first glance, it would seem thatG0 and G have the same singularities, this is not
necessarily true. First,G can have additional singularities from the first factor~12G0(l)V!21 in
Eq. ~12.10!. These can come from bound states produced by the interaction, and more importantly,
from continuum states in which one or more of the particles is composite so that its mass gets
shifted. Second,G can have some of its singularities cancelled when this factor vanishes. There-
fore, G andG0 are not necessarily isospectral, in general. In other words, the statement that
‘‘perturbations vanish at infinity’’ is not valid generally. Rather, this na¨ive asymptotic condition is
not generally fulfilled. This shows us whyV8 failed to be unitary: the new spectra produced by
~12G0(l)V!21 do not appear with a canonical weight. As advertised, we correct this problem by
defining a renormalizedV given by

V5~12G0V!21D21, ~12.11a!

where

D25~12VG0
1!21~12G0V!21. ~12.11b!

However, since this newV is unitary, it connectsH with an isospectral and diagonal Hamiltonian.
We have already seen that this associated diagonal Hamiltonian cannot beH0. Rather, it is a
different object, which we call the comparison HamiltonianHC . For further details, and concrete
examples of this formalism applied to several models, such as the Lee model, the separable
potential model, and the Cascade model, see Ref. 26. In these models, one can explicitly see these
various effects such as shifts in the continuous spectra, the deletion of spectra fromH0 to get the
spectra ofH, and the augmentation of spectra inH0 to get the spectra ofH.
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XIII. PUTTING THE ‘‘GENERIC’’ FORMALISMS TO THE TEST

There are many different approaches to quantum scattering in the literature. The most familiar
of these is potential scattering. Others include the LSZ formalism, the ‘‘almost local’’ formalism,
and the Lax–Phillips formalism. Lax–Phillips27 theory is outside the scope of this work.

The well-known LSZ formalism,5 extended by Mohan,28 postulates the convergence of the
matrix elements of interacting fields to the matrix elements of free fields. However, the formalism
does not apply in many cases. For example, as noted by LSZ themselves, it is inapplicable to
problems in which stable bound states exist. Trouble occurs when this point is forgotten, and the
formalism is extended into areas where it is inapplicable. The ‘‘almost local’’ formalism due to
Haag,1 Ruelle,9 Ekstein,10 Jauch,12 Araki,29 and others tries to be general enough to consider
complicated problems.1 Its basic idea is that it is possible to construct asymptotic ingoing and
outgoing states as strong limits in Hilbert space, if a certain ‘‘spacelike asymptotic condition’’ is
verified by the vacuum expectation values of products of field operators:9 the so called almost
local operators.1

We shall restrict our attention to the conventional, and quite ‘‘generic’’ formalism, as reviewed
earlier in Secs. II and III; as mentioned before, the LSZ formalism isnot applicableto situations
where stable bound states are present, such as our model. We will compare these results to the
results obtained from the rearrangement model.

Conventional formalisms for quantum scattering theory have the following protocol for ge-
neric scattering systems:

~1! They do not use the comparison Hamiltonian.
~2! The asymptotic states are orthonormal.1,9,13

~3! The completeness of the asymptotic states is postulated.1,13

~4! For the case of potential scattering only, the Mo¨ller matrix is isometric but not necessarily
unitary.1,13

~5! The eigenstates of the exact Hamiltonian are never considered.

We shall take up these points one by one, and put them to the test by comparing them to the results
explicitly obtained from our model.

~1! It is essential when taking the limits limt→6`e
iHt e2 iH0tC, whereC is either a wave

function or a field operator, that the continuous spectra ofH andH0 coincide. If they did not there
would be wild oscillations while taking the limit, and the limit would not exist. It is for this
purpose thatH0 is mass-renormalized toH08 . However, in general, this is still not enough. It is
perfectly possible, if there are bound states or unstable particles in the spectrum ofH, that no
amount of tinkering withH0 will make its spectrum coincide withH. This can be seen by
inspection of Eqs.~8.7! and ~8.8!. No amount of renormalization ofH0 can give us the discrete
MA state present inHC , but this may be ignored becauseMA is a discrete point eigenvalue. On the
other hand, we do have the possibility of a continuous spectrum inH corresponding to the
scattering states involving physicalB or D particles.

However, unlikeH andH0, H andHC are guaranteed to be isospectral becauseHC is obtained
by diagonalizingH. Therefore, it isHC , and notH0, that is the proper starting point for any
scattering scheme, perturbative or otherwise. The method for obtaining the correct spectrum ofH
by perturbation theory is discussed in the work of Sudarshan, Chiu, and Bhamathi.30 In simple
cases such as when stable bound states are not present, or field theory with no bound states or
unstable particles,HC can be identified with the renormalizedH0, as noted in Sec. VIII.

In fact, even in cases where~formally! no splitting is made, i.e., no explicit mention or use is
made of anH0, there is still the implicit use ofH0 because, commonly, asymptotic particles are
defined as solutions of free particle equations like the Klein–Gordon equation.

~2! Both formalisms assert the orthonormality of the asymptotic states, and the result is
supposed to be generic. In Eqs.~9.4!, we have obtained the asymptotic states of the rearrangement
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model according to both formalisms. Yet, as we can see from a glance at the Haag–Ruelle
asymptotic wave functions, Eqs.~9.4!, the asymptotic states computed according to their rules do
not form an orthonormal set. This point should not cause confusion. Our full states, namely, Eqs.
~6.4!, ~6.5!, ~6.6!, and~6.7! are, indeed, all orthonormal to each other, as was shown in Sec. VII.
As a result, we have orthonormal sets of in and out states. However, when we calculate the
Haag–Ruelle-type asymptotic states according to either of the formalisms, we find that they are
not orthonormal. This lack of orthonormality stems from a factor of the wave function renormal-
ization constant that appears in each of the asymptotic wave functions. This factor is essential: if
it were not present, the interacting states would not be orthonormal.

~3! As mentioned earlier, Ruelle extends Haag’s work by postulating the completeness of the
in and out states.9 This is also postulated in simple potential scattering.13 This postulate is neces-
sary to prove that theS-matrix is unitary. Again, simply by inspection of Eqs.~9.4!, we can see
that the asymptotic states of the rearrangement model, according to these two formalisms, are not
complete. Again, this point should not cause confusion. Our full states, Eqs.~6.4!, ~6.5!, ~6.6!, and
~6.7! are complete, as was shown in Sec. VII. As a result, our in and out states form complete sets.
However, the set of Haag–Ruelle-type asymptotic states calculated according to either of the two
formalisms isnot complete.

~4! In potential scattering the Mo¨ller matrixV can be defined using the full interacting wave
functions so that it is isometric even in the presence of bound states.1 We see that the Haag–Ruelle
asymptotic solutions, Eqs.~9.4!, obtained by the use ofV, are certainly not orthonormal, whereas
the original interacting wave functions were; therefore, the Mo¨ller matrix computed by their rules
is not isometric, i.e., it is not norm preserving. However, the generalized Mo¨ller matrix that we
defined in Eq.~8.1! is not only isometric, but unitary.

~5! It is important to note that even though these asymptotic wave functions are neither
orthonormal nor complete, they still lead to the correctS-matrix, as can be verified by calculating
it using Eq.~9.6!. If we had insisted upon the asymptotic wave functions being orthonormal and
complete, we would have gotten the wrongS-matrix.

~6! Notice that because of this lack of orthonormality and completeness in the exact asymp-
totic states, the strong limits of Eqs.~2.26! are satisfied. Namely,

lim
t→2`

@C~ t !2c in~ t !#⇒0, ~13.1a!

lim
t→1`

@C~ t !2cout~ t !#⇒0, ~13.1b!

lim
t→2`

c in~0!⇒C~0![V~1 !c in~0! ~13.1c!

are automatically satisfied. This can be seen easily in the following way. For the first two equa-
tions above, the expression on the left-hand side is just the requisite full wave function, but with
the delta function part removed. When we now take the norm and then take the limit, the remain-
der cancels giving zero. Similarly, the third equation above can be shown to be satisfied.

On the other hand, if we had insisted that the asymptotic statesareorthonormal and complete,
the wave function renormalization constants would have been missing from the asymptotic states.
Thus, the delta function pieces would not have cancelled between the full and asymptotic states,
and therefore, these pieces would contribute, and we would get a nonzero result. Thus, in this case,
the strong limit would not hold.

~7! It is important to note that the reason that all these problems occur is that the full states are
never considered. Most formalisms in the literature try to set up the problem in terms of the
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asymptotic states, and are thus forced to make assumptions regarding their properties and behav-
ior. These assumptions are not necessarily correct in general, as is amply demonstrated by the
rearrangement model, and other models such as the cascade model.7

All this points out the importance of the correct normalization of the state vectors, a point
already considered by DeWitt.31 However, his work was restricted to the case of no bound states.
The question of the correct description of the asymptotic states was also considered by Van Hove
in his papers on the description of ‘‘persistent interactions.’’4 However, as noted in those papers,
the formalism developed there does not deal with cases involving bound states, and does not deal
with field theoretic scattering except for a few comments at the end.

In the multichannel case~such as rearrangement collisions!, in the ‘‘channel Hamiltonian’’
formalism, the statement is made that the basis states of one group of channels are not orthogonal
to the others10,11,13because they are eigenstates of different free Hamiltonians. As we can see, in
our model, the physical statesCuf, Df, andBu are strictly orthogonal to each other. Evidently,
this problem arises due to the use of ‘‘channel Hamiltonians’’ in the formalism. It is our belief that
the method of splitting up the interaction differently depending on which channel one is consid-
ering is fundamentally flawed because ‘‘every channel can be distinguished and is observable
independently in experiments. This means that these channels should be orthogonal to each
other.’’32 One method for ensuring orthonormality is given in Ref. 32; however, this method still
suffers from the flaws pointed out above.

It is straightforward to see the problems caused by this lack of orthogonality. We are in-
structed, in these formalisms, to begin with asymptotic states. Let us first consider the channel
Hamiltonian formalism. Then, the asymptotic states are the eigenstates of the channel Hamiltonian
in the sector we are considering. As an example, let us consider

uMBu~v!&&→uMDf~n!&&, ~13.2!

whereMB is the physicalB particle andMD is the physicalD particle. We immediately notice,
even before we consider any scattering, that theuMBu~v!&& state is not orthogonal to theuMDf~n!&&
state, as can be seen by inspection of Eqs.~5.10!, ~5.11!, ~5.12!, ~5.13!, and~5.14!. In other words,
two experimentally distinct channels are not orthogonal to each other. This will clearly lead to the
wrong S-matrix elements because it says that even if there is no scattering, there is a nonzero
probability that theuMBu~v!&& state will turn into theuMDf~n!&& state. We cannot even argue that
the two states are ‘‘asymptotically orthonormal’’10 because they clearly are not. This can easily be
seen by observing that bothuMBu~v!&& and uMDf~n!&& have expansion coefficients in the ‘‘bare’’
uCu~v!f~n!& sector. Therefore, as these states are neither orthonormal nor complete, we cannot
have an isometric or unitaryS-matrix, since orthonormality is necessary for isometry, and com-
pleteness for unitarity. However, we have constructed a set of orthonormal~and complete! solu-
tions for our system, a feat that many authors33 tacitly assume is not possible, and have a perfectly
isometric and unitaryS-matrix.

These problems with theS-matrix can be verified by explicit calculation. Since the calculation
is tedious, we describe the method, and leave it to the interested reader to verify the results. Our
interest is in the scattering of physical states, and so we must start by reexpressing the Hamil-
tonian, Eqs.~4.3! and~4.4!, in terms of the operators which create thephysical BandD particles.
We denote these operators byB andD , respectively. They are found by inspection of Eqs.~5.10!,
~5.11!, ~5.12!, ~5.13!, and~5.14!, which are the wave functions for the physical particles. To find
the expressions for these operators, we promote the statesuCf~n!&, uCu~v!&, uB&, and uD& to
operators, all acting on the vacuum, and read off the expansions for the operatorsB andD . In
other words,

B†5E dn rB~n!C†f†~n!1AZBB†, ~13.3a!
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D†5E dv rD~v!C†u†~v!1AZDD†. ~13.3b!

We reexpress the Hamiltonian in terms of these operators, which can be split into various channel
Hamiltonians, from which theS-matrix is calculated.

We can go even further than this. Consider the stateuMBu~v!&&, which is a product state of the
physicalB particle and a freeu particle. If we wanted the asymptotic state corresponding to this
then, by the Haag–Ruelle protocol, we should find that the components of this state are only in the
uCuf& and uBu& sectors, with no admixture of theuDf& state. However, we can use our exact
solutions to calculate this asymptotic state. We will find that this assertion will not hold true.

To calculate the asymptotic state, we take the limit

lim
t→2`

eiHCt e2 iHt uMBu~v!&&. ~13.4!

Inserting a complete set of states, we have

E dE dn lim
t→2`

eiHCt e2 iHt uE,n&&^^E,nuMBu~v!&&

1E dE dn lim
t→2`

eiHCt e2 iHt uE&&DD^^EuMBu~v!&&

1E dE dn lim
t→2`

eiHCt e2 iHt uE&&BB^^EuMBu~v!&&. ~13.5!

Expanding each of the physical states,uE,n&&, uE&&D , and uE&&B in terms of the bare states
uCu~v!f~n!&, uBu~v!&, and uDf~n!&, and taking the limit, it is immediately obvious that the ex-
pansion coefficients in theuDf~n!& sector are not zero.

As a physical example, consider the case of a proton bound to a fixed nucleus by a potential
VP , and bombarded by a neutron which interacts with the proton and the nucleus through the
potentialsVPN andVN , respectively.

32 The total Hamiltonian of the system is

H5KP1KN1VP1VN1VPN , ~13.6!

whereKP andKN are the kinetic energy of the proton and the neutron, respectively. The initial
state, denoted byF1,i , is given by

H1F1,i5EiF1,i , ~13.7!

where

H5H11V1 , ~13.8a!

H15KP1KN1VP , ~13.8b!

V15VPN1VN . ~13.8c!

Therefore, the initial stateF1,i is a product of a bound proton,fP
B(Ei

B), and of a free neutron
~represented by a plane wave!, uN(Ei2Ei

B), whereEi
B is the binding energy of the proton.

Several possible reactions can occur giving rise to different final products. Let us consider
four such reactions.
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~1! Elastic or inelastic collisions. The proton remains bound to the nucleus, and the neutron is
free after the collision. Therefore, the Hamiltonian is divided in the same manner as above.

~2! Exchange scattering. The neutron knocks out the bound proton and becomes bound to the
nucleus. The Hamiltonian is then divided as

H5H21V2 , ~13.9a!

H25KP1KN1VN , ~13.9b!

V25VPN1VP . ~13.9c!

Therefore, the final state is

H2F2,f5EfF2,f , ~13.10a!

F2,f5uP~Ef2Ef
B!fN

B~Ef
B!. ~13.10b!

~3! Ionization. The neutron knocks out the bound proton and both are free after the collision. The
Hamiltonian is then divided as

H5H31V3 , ~13.11a!

H35KP1KN , ~13.11b!

V35VPN1VP1VN . ~13.11c!

Therefore, the final state is

H3F3,f5EfF3,f , ~13.12a!

F3,f5uP~Ef
P!uN~Ef2Ef

P!. ~13.12b!

~4! Pickup. The proton and the neutron become bound and form a deuteron. The Hamiltonian is
then divided as

H5H41V4 , ~13.13a!

H45KP1KN1VPN , ~13.13b!

V45VP1VN . ~13.13c!

Therefore, the final state is

H4F4,f5EfF4,f , ~13.14a!

F4,f5uc~X,Ef2Ef
B!fPN

B ~r ,Ef
B!. ~13.14b!

Here,X is the center of mass coordinate of the deuteron, andr is the internal coordinate of the
deuteron.

The final states given by Eqs.~13.10!, ~13.12!, and ~13.14!, are eigenstates of different free
Hamiltonians. Thus, in general, they are not orthogonal to each other, and the concomitant prob-
lems follow.

The reason that these methods do not work properly is that the basis used is one in which
bound-state eigenfunctions of the Hamiltonians that bind each fragment are multiplied by plane
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waves for the fragment motion.13 In our model, because we have made no breakup, we get the
physically reasonable result that the wave functions of the bound states are always orthogonal to
the scattering states, and that the basis states of different channels are explicitly orthogonal to each
other. We do not have to worry about making the explicit assumption that as the separation
between the fragments goes to infinity, the overlap becomes negligible. This assumption may or
may not be true, and leads to the problems with ‘‘persistent interactions’’ considered by Van
Hove.4

We compare the results from the conventional formalism with those from the rearrangement
model in Table I.

In addition, even when it is not stated explicitly in the literature, it is often assumed that the
spectra of the bound states and the scattering~continuum! states do not overlap. However, it is
possible to construct models in which the spectra of one or more bound states overlap with the
continuum.34,35Therefore, this assumption is not necessarily true, and will in general depend upon
the details of the model under consideration. It is also possible to construct two different potentials
which can lead to the sameS-matrix with, in one case, redundant poles unnecessary for complete-
ness, and in the other case, with the same poles being absolutely necessary for completeness.36,37

This points out the need for resisting the temptation to identify the poles of theS-matrix with
physical bound states of the system.

More importantly, no authors have as yet worried about the evident normalization problem
with the asymptotic states because they are always assumed to be normalized. These states are not
normalized in the rearrangement model, and consequently, assuming orthonormality of the asymp-
totic states, in general, is very dangerous. In addition, we notice that in this model even though the
asymptotic states are not normalized, the interacting states are.

One approach that tries to avoid all these problems, especially in the cases of unstable par-
ticles and bound states, is that of analytic continuation7,19,23,24,38,39of the state spaceH into a
generalized vector spaceG . This has already been done for the case of the Lee model by
Sudarshan, Chiu, and Gorini,19 Parravicini, Gorini, and Sudarshan,20 and Böhm.40 For instance,
with this method, one can identify resonances and redundant poles, and study the decay of a
metastable quantum system. It can also be used for many other things, such as studying the
Khalfin observation that the decay of a metastable system with an energy spectrum bounded from
below can never be strictly exponential.41 See the above references for details.

XIV. SUMMARY AND CONCLUSION

In this work, we constructed a model that allows rearrangement collisions. We explored the
spectra and the complete set of orthonormal~ideal! eigenfunctions of this rearrangement model in
the rearrangement sector. Because of the structure of the effective Hamiltonian in this sector, we
were able to solve the model exactly. In a similar fashion as for the cascade model,7 we find that

TABLE I. Comparison of the properties of the rearrangement model to
various scattering formalisms.

Property
Conventional
formalism

Rearrangement
model

Asymptotic states normalized? Yes No
Asymptotic states orthogonal? Yes Yes
Asymptotic states complete? Yes No
V isometric? Yes No
S-matrix unitary? Yes Yes
Strong limit satisfied? No Yes
HC used? No Yes
Additional property for the
multiple channel case

Physical states orthogonal No No Yes
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the spectra can be interpreted as aB particle with energyMB,0 coupled to au particle with
energyv, 0,v,`; a D particle with energyMD,0 coupled to au particle with energyn,
0,n,`; and aC particle of energy 0 coupled tou and f particles with energiesv and n,
0,v,n,`. We see that the interacting field theory has a particle interpretation.

Both theB and theD particles suffer mass renormalizations, and these mass renormalizations
alter the threshold of theBu andDf continua, respectively. In Eqs.~6.5b! and~6.6c!, we also see
the presence of both the mass and wave function renormalizations of theB andD particles in the
plane wave parts of their respective wave functions.

We have throughout emphasized the importance of using the comparison Hamiltonian~the
diagonalized form of the effective Hamiltonian! because it is isospectral with the full Hamiltonian.
Its spectrum differs from that of the free Hamiltonian by the alteration of theBu andDf continua,
and by the addition of a discreteA state. These effects are nonperturbative and, as emphasized in
Ref. 7, can only be handled by a renormalized perturbation scheme in whichHC , notH0, is taken
as the starting point.

Our results are surprising when compared to what we would expect from conventional scat-
tering theory. We find that while the interacting state vectors are normalized, the asymptotic states
are not. Moreover, the asymptotic states are neither orthonormal nor complete because of the
presence of the wave function renormalization factors in the physicalDf andBu sectors. We note
that this lack of orthonormality and completeness is absolutely necessary. If we construct the
S-matrix from these states, we get the correct result~i.e., it is the sameS-matrix as the one
constructed from the full state!. On the other hand, if we did not allow the wave function renor-
malization factors because of our demand that the asymptotic states be orthonormal and complete,
we would get the wrongS-matrix. Furthermore, for the strong limits@Eqs.~2.26!# to hold, we must
again make sure to have these nonorthonormal and noncomplete states. We also find that our
physicalCuf, Df, andBu states, while being the basis states for different channels, are strictly
orthogonal to each other. Further, the Mo¨ller matrix, as defined in the literature is not isometric: it
does not preserve the norm of the states. However, we defined a generalized Mo¨ller matrix which
is not only isometric, but unitary. All these results are contrary to the usual formalisms of quantum
scattering theory.

More generally, we argued that the correct procedure, for any HamiltonianH, is to take its
complete set of eigenstates, and an associated isospectral comparison Hamiltonian,HC . The
matrix of normalized eigenfunctions ofH constitutes the generalized Mo¨ller matrix, which is
unitary and intertwinesH andHC .

This model is a very simple one. However, even this simple model is enough to show the
problems with conventional perturbation theory, and the conventional formulations of scattering
theory. It is clearly necessary in the light of this model, and previous work on the existence of
redundant poles in the scattering amplitude36,37 and the presence of discrete solutions degenerate
in energy with the scattering continuum,34,35that a fundamental reexamination be made of some of
the postulates and assumptions of conventional quantum scattering theory.
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APPENDIX: SOME USEFUL FORMULAS

The following formulas are very useful for the calculations in the main text. By our definitions
in Sec. VI we have the following ranges for our variables:

0<l<`, ~A1!

0<m<`, ~A2!
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0<n<`, ~A3!

with E being free to run over all values.
We then have the easily proved identities

ug~l!u25
1

2p i
@b~l!2b* ~l!#, ~A4!

u f ~m!u25
1

2p i
@a~m!2a* ~m!#, ~A5!

ug~l!u2

ub~l!u2
52

1

2p i F 1

b~l!
2

1

b* ~l!G , ~A6!

u f ~m!u2

ua~m!u2
52

1

2p i F 1

a~m!
2

1

a* ~m!G , ~A7!

ug~E2l!u2

ub~E2l!u2
52

1

2p i F 1

b~E2l!
2

1

b* ~E2l!G2ZBd~E2l2MB!, ~A8!

u f ~E2m!u2

ua~E2m!u2
52

1

2p i F 1

a~E2m!
2

1

a* ~E2m!G2ZDd~E2m2MD!. ~A9!

Equations~A8! and ~A9! follow becauseE2l andE2m can be less than zero, and thus pick up
singularities atMB,0 andMD,0, respectively. On the other hand,l andm are always greater
than or equal to zero, and so cannot pick up any singularities.

Another useful identity is

g~E!5E dl
ug~l!u2

ub~l!u2
1

a~E2l!
1

ZB
a~E2MB!

, ~A10a!

5E dm
u f ~m!u2

ua~m!u2
1

b~E2m!
1

ZD
b~E2MD!

. ~A10b!

We can easily show this by means of the contours in Figs. 1 and 2. If we convert the integral in
Eq. ~A10a! into a contour integral by using Eq.~A6!, we get

S 2
1

2p i D EC1dz 1

b~z!a~E2z!
1

ZB
a~E2MB!

, ~A11!

with the contour shown in Fig. 1. Then, we make a change of variables fromz to E2z to get

S 2
1

2p i D ~21!E
C4

dz
1

a~z!b~E2z!
1

ZB
a~E2MB!

, ~A12!

with the contour shown in Fig. 2. Now we deform the contourC4 and write it as the contourC3
plus the circle at infinity, while picking up the contributions from the residues of the integrand.
Note that the circle at infinity gives no result, so we have
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S 2
1

2p i D ~21!~21!E
C3

dz
1

a~z!b~E2z!
1S 2

1

2p i D ~21!~2p i !
ZD

a~E2MD!

1S 2
1

2p i D ~21!~21!~2p i !
ZB

a~E2MB!
1

ZB
a~E2MB!

. ~A13!

TheAZB terms cancel, and the first two terms are Eq.~A10b!, by definition. Therefore, Eq.~A10a!
is equal to Eq.~A10b!, and the identity is established.

We can similarly show that

E dl
ug~l!u2

ub~l!u2
1

a~E2l!

1

~l2n1 i e!
5E dm

u f ~m!u2

ua~m!u2
1

b~E2m!

1

~E2m2n1 i e!

FIG. 1. Contour for Eq.~A10a!.

FIG. 2. Contour for Eq.~A10b!.
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2
1

a~E2n!b~n!
1

ZD
b~E2MD!~E2MD2n1 i e!

2
ZB

a~E2MB!~E2MB2 iv1 i e!
. ~A14!

Using Eqs.~A7!, ~A8!, and~A10! we can get another useful formula:

E dn
u f ~n!u2ug~E2n!u2

ua~n!u2ub~E2n!u2
5

g~E!2g* ~E!

~22p i !
2ZD

ug~E2MD!u2

ub~E2MD!u2
2ZB

u f ~E2MB!u2

ua~E2MB!u2
.

~A15!

Finally, in Fig. 3, we display the branch cuts and poles of 1/g(z) which are used in showing
the completeness of our solution set.
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The methods of reduced phase space quantization and Dirac quantization are ex-
amined in a simple gauge theory. It is pointed out that care needs to be exercised in
implementing the reduced phase space quantization method properly. ©1996
American Institute of Physics.@S0022-2488~96!02903-1#

I. INTRODUCTION

A gauge theory is regarded in the canonical framework as a system with first class
constraints.1 In the classical analysis according to Dirac, the HamiltonianH is the canonical one
Hc plus an arbitrary linear combination of the first class constraintsfi . This means that the
classical trajectories involve arbitrary functions of time: the Lagrange multipliersli . So a given
physical state does not correspond to a unique set of canonical variables on the phase spaceG.
This problem can be circumvented in either of two ways.

~i! Gauge-fixing constraintsxi are introduced, one for eachfi , such that they are preserved in
time, i.e.

$H,x i%.0,

and the matrixCi j5$f i ,x j% is nonsingular.~This then becomes a theory with second class
constraints.! Thus theli ’s are fixed so that evolutions from initial states on the submanifoldG*
defined byf i5x i50 are unique.~For future reference, we will denote byG* 8 the constraint
surfacef i5x i50, and provided detCÞ0 everywhere on the surface we will denote it byG* and
refer to it as the reduced phase space.!

~ii ! Since theli ’s bring in the arbitrary time dependence, all points on an orbitO generated by
the gauge generatorsfi must be regarded as physically equivalent. So ifĜ is the constraint surface
fi50, then the true dynamical trajectories lie onG̃[Ĝ/;, where; is the equivalence relation
P;P8 if P, P8PO .

The surfaceG* is diffeomorphic toG̃ provided the surfacexi50 intersects each orbit inĜ
exactly once. This condition on the gauge-fixing constraintsxi is a prerequisite for the equivalence
of the two approaches. For the first case, the condition of invertibility of the matrixCi j ensures
that locally thexi50 surface intersectsĜ only once, but not necessarily globally. It is here that one
has to be careful in choosing the gauge fixing constraints. This point has bearing on the quanti-
zation of a gauge theory, since quantum theory is sensitive to the global properties of the phase
space to be quantized.

These two approaches have their counterparts in the quantization of gauge theories.
Method A:Reduced Phase Space Quantization—fix the gauge to obtain the spaceG* and

define the Poisson bracket structure on this as the Dirac brackets on the original phase spaceG. G*
so equipped is called the reduced phase space. It can then be directly quantized, which involves
the finding of a commutator algebra representation for Poisson brackets.~This process can be
complicated because the reduced phase spaceG* is not always topologically trivial.! So here one
quantizesafter reducing the phase space.

a!Electronic mail: radhika@imsc.ernet.in
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Method B:Dirac Quantization—canonically quantize the original phase spaceG ~which is
usuallyR2N! and then impose the gauge constraints as operator conditions on the physical quan-
tum states:

f̂ icphys50.

These are sometimes referred to as supplementary conditions. This is quantizationbeforereduc-
tion.

Notice that method A depends manifestly on a choice of gauge-fixing constraintsxi and there
is a vast freedom in this choice, in general. An immediate question is whether method A applied
with two different choices of thexi ’s gives equivalent quantum theories. Method B, on the other
hand, is manifestly independent of any choice of gauge. If the two methods give equivalent
quantum theories, then the manifest gauge invariance of method B reflects the gauge independence
of method A applied for a class ofxi ’s which ensure proper capturing of the reduced phase space.
The discussion of the possible equivalence ofG* and G̃ has a crucial role to play in the equiva-
lence of the quantum theories obtained by these two methods.

These matters are illustrated in the present work in the context of a very simple toy model
gauge theory.

The model considered is described in the first section of the paper. In the second section we
deal with its quantization by method A and the third section, method B. The choice of constraints
and a discussion of a condition for the equivalence of these two methods is discussed in the fourth
section. A discussion of and conclusions from the lessons learned from the exercise comprise the
fifth section. An Appendix is included, giving a short review of the geometric quantization tech-
nique used in the quantization of the reduced phase space, along with the details of the calcula-
tions for the present case.

II. THE TOY MODEL

We consider the phase spaceR4 with canonical coordinatesq1, q2, p1, p2, and the constraints

f[q121q221p1
21p2

22R250 ~1.1!

and

x[p250. ~1.2!

Suppose we regard the constraintf as the gauge generator or the first class constraint andx as the
gauge-fixing condition. The constraint surfaceG* 8 is thus the 2-sphereS2. The matrix

C[$f,x%5S 0 2q2

22q2 0 D ~1.3!

is nonsingular, providedq2Þ0. This immediately shows that reduced phase space cannot beG* 8.
Let us proceed, nevertheless, and see how to obtain the true reduced phase spaceG* .

The Poisson bracket$•,•% onR4 must be modified to the Dirac bracket$•,•%* on the constraint
surface. This is given by

$ f ,g%*5$ f ,g%2(
i , j

$ f ,j i%Ci j
21$j j ,g%, ~1.4!

where ji is a second class constraint andf ,gPC`~R4!. The Dirac brackets of the canonical
coordinates are

1714 Radhika Vathsan: Remarks on quantization of gauge theories

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



$q1,q2%52
p1
q2
, $q1

1,p1%51, $q2,p1%52
q1

q2
, ~1.5!

the rest being zero. Introducing the standard coordinates~u8,q8! on the sphereS2;G* 8, (qi ,pi)
can be parametrized as

q15R sin u8 cosw8, p15R sin u8 sin w8, q25R cosu8, ~1.6!

where 0<u8<p and 0<w8<2p. This is singular atu85p/2, which corresponds to the singularity
of the Dirac brackets~1.6! at q250, at the equator of the sphere. The Dirac bracket, which is also
the induced 2-form fromR4, is

$ f ,g%*5
1

R2 sin u8 cosu8 S ] f

]u8

]g

]w8
2

] f

]w8

]g

]u8D , ~1.7!

defines a symplectic form onG* 8 minus the equator: the constraint surfaceG* 8 is not the reduced
phase space. The reason for this, as shall be demonstrated below, is that the set of points onG* 8
are not in 1–1 correspondence, with the set of inequivalent orbits off on the surfaceĜ[f50.
Also, reduced phase space on which the above Dirac bracket defines a symplectic structure must
be obtained by a gauge-fixing condition that selectsonepoint from each orbitO . The x of Eq.
~1.2! does not satisfy this criterion. This is now shown explicitly.

The orbitsO are the integral curves of the Hamiltonian vector fields corresponding tof,
which are described by the differential equations,

ẋ5$x,f%, ⇒q̇i52pi , ṗi522qi , i51,2. ~1.8!

The general solution is

qi~ t !5Ai cos~2t2a i !, pi~ t !52Ai sin~2t2a i !, ~1.9!

with Ai.0, i.e. circles of radiiAi in theqi2pi planes, with initial conditions specified by the four
parameters (Ai ,a i). Not all such sets specify distinct orbits: if the set (Ai ,a i) lies on the orbit
generated from the set (Ai8 ,a i8) then the two sets describe the same orbit. This happens when
Ai 5 Ai8 Þ 0 anda i8 2 a i 5 2t 2 2np for somet5t, for eachi . If either of theAi ’s is zero, then
there is only one orbit. So distinct orbits can be represented by

q15A1 cos~2t2w!, p152A1 sin~2t2w!,
~1.10!

q25A2 cos~2t !, p252A2 sin~2t !,

where 0<w<2p andAiÞ0. ~Note thatA250 corresponds to justoneorbit for all values ofw.!
Now if an orbitO lies on Ĝ, we also haveA1

21A2
25R2, so that we can write

A15R sinS u

2D , A25R cosS u

2D , ~1.11!

with 0<u<p. The orbits lying onĜ are thus parametrized by the two anglesuP@0,p# and
wP@0,2p#, so that the space of orbits isG̃ 5S2.

The reduced phase spaceG* is obtained by a gauge choicex50, which cuts each of the above
orbits once. The surfacep250 intersects the orbits~1.10! at the pointst5np/2 if A2Þ0 and at
q250 for all t whenA250. Nowq250 represents one orbit, as discussed earlier. Note that this is
the South Pole~u5p! of the space of orbitsG̃ . But the other orbits are intersectedtwice, i.e. at
q256A2 , corresponding to the upper and lower hemispheres of the constraint surfaceG* 8. This
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means that while theequator~q250! maps to the South Pole,both the hemispheres (q256A2)
map to the rest of the sphereG̃ : this means we are double counting. So to get the correct reduced
phase space, we must restrictq2 to be positive~say!, so thatu8 lies in @0,p/2#, which is the upper
hemisphere alone. Now we get the reduced phase space asG*5S2, on which the Dirac bracket
~1.7! actually defines the Poisson bracket:

$ f ,g%*5
4

R2 sin u S ] f

]u

]g

]w
2

] f

]w

]g

]u D , ~1.12!

which is the standard one on a sphere of radiusR/2, with the usual coordinate singularity at the
poles. The symplectic structure induced from that onR4 gives the same result, of course.

So the reduced phase spaceG* of the system isS2 after choosing as the gauge-fixing condition
~1.2!, togetherwith the requirement that each gauge orbit is counted as cut only once.

We now proceed to quantize this system by the two methods A and B outlined in the Intro-
duction.

II. METHOD A: QUANTIZATION OF THE REDUCED PHASE SPACE

Here we have a phase space,S2, that is not a cotangent bundle, and so canonical methods of
quantization cannot be applied. To quantize this, we use the technique of geometric quantization.2

A quick review of this, as well as the calculations forS2, are provided in the Appendix.
The sphere is quantizable only if the radius satisfies the Weil integrality condition:R252N\,

NPZ @cf. Eq. ~A15! in the Appendix#.
Working in the complex coordinates (z,z̄ ) obtained by stereographic projection through the

North Pole, the operator corresponding to an observablef satisfying the quantizability condition
~A29! is given by

f̂5
2\

R2 ~11uzu2!2~] z̄ f ]z2]zf ] z̄ !2~11uzu2!z̄ ] z̄ f1 f ~2.1!

@cf. Eq.~A18!#. This acts on~N11!-dimensional Hilbert space of sections that are locally given by
polynomials inz of order at mostN.

There is a natural physical interpretation of this system. The phase spaceS2 can be interpreted
as describing the classical dynamics of the spin degrees of freedom of a particle, represented by a
vectorJ in R3 such thatJ25j 2. The magnitude ofJ is preserved and the equations of motion are
understood as being of first order in the time derivatives. The componentsJ1, J2, andJ3 are given
in terms of the holomorphic coordinates on the sphere of radiusj by

J15 j
z1 z̄

11uzu2
,

J252 i j
z2 z̄

11uzu2
, ~2.2!

J35 j
uzu221

11uzu2
,

and they satisfy the Lie algebra,$Ja ,Jb%5eabcJc , of SU~2!. Upon quantizing, the integrability
condition ~A15! gives

j5
N\

2
, NPZ1, ~2.3!
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and the spin operators are

Ĵ15
\

2
@~12z2!]z1Nz#, Ĵ25 i

\

2
@~11z2!]z2Nz#, Ĵ35

\

2
@2z]z2N#. ~2.4!

The Hilbert space is ~N11! dimensional. One can see that
( Ĵi

25(\2/4)N(N12)5 j /\( j /\11). This is therefore just the standard quantum theory of an
elementary particle with spinj /\, which can take half-integral values. One can also recover the
Pauli matrices as the representation of theJi ’s in the basis (1,z,...,zN).

III. METHOD B: DIRAC QUANTIZATION

The constrained phase spaceG is now quantized by the Dirac method. Of the two second class
constraints~1.1! and ~1.2!, one, in this casef, is chosen to be the gauge-generating first class
constraint while the other~x in this case! is a gauge-fixing condition that plays no essential part in
this scheme. Now one quantizesR4 by the canonical method, i.e., by the association of operators,

qa→q̂a5qa, ~3.1!

pa→ p̂a5
\

i

]

]qa , ~3.2!

which act on a Hilbert space of square-integrable wave functionsC(q1,q2). Of these, only those
represent physical states that are gauge invariant. So the operator corresponding to the gauge
constraint must annihilate these state vectors~supplementary condition!:

f̂C~q1,q2!50, ~3.3!

⇒Fq121q222\2S ]2

]q12
1

]2

]q22D2R2GC50, ~3.4!

which gives

C~q1,q2!5~const!e2~q121q22!/2Hn~q
1!Hm~q2!, ~3.5!

with

R252N\, ~3.6!

whereN5n1m11 andn andm are non-negative integers. The radius is thus quantized as even
multiples of\, and since for eachR252N\ there areN possible states, the Hilbert space isN
dimensional.

The functionsf (qa,pa) in R
4 that correspond to physical observables are those that commute

with the gauge generator~the so-called first class observables in Dirac’s terminology!, i.e.,

$f, f %50, ⇒q1
] f

]p1
2p1

] f

]q1
1q2

] f

]p2
2p2

] f

]q2
50. ~3.7!

In the variablesza5qa1 i dabpb , we have

~za]za2 z̄ ] z̄ a! f ~za,z̄ a!50, ~3.8!

⇒ f ~za,z̄ b!5~za!ka~ z̄ b!kb, ~3.9!
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with

(
a

ka5(
b

kb .

For the corresponding quantum operators to be well defined, considerations such as that of self-
adjointness may further restrict this class.

For the sake of comparison with the results of the previous section, let us look at theSU~2!
algebra generated by the following combinations of quadratic operators of the typezi z̄ j :

J15
1
4 ~z1z̄ 21z2z̄ 1!, J25

1

4i
~z2z̄ 12z1z̄ 2!, J35

1
4 ~z1z̄ 11z2z̄ 2!. ~3.10!

Quantization,Ji→ Ĵi , is achieved byza→ ẑa and

(
a

Ĵa
25

1

16
~qa21pa

2 !21
1

4
~ i\!25SR2

4 D 22 \2

4
5\2SN2

4
2
1

4D5\2SN22
1

2D SN2 1
1

2D .
~3.11!

If this corresponds to\2j ( j11), we getj5~N21!/2, the standard result. In comparison, geometric
quantization gave an~N11!-dimensional Hilbert space for spinN/2. This slight discrepancy can
be rectified by incorporating the metaplectic correction to geometric quantization~see, for ex-
ample, Ref. 3!, whereupon the two quantization schemes match exactly.

In the present instance, we find that Dirac quantization gives results equivalent to the quan-
tization of the reduced phase space. In particular, the quantization of the parameterR, which
resulted from the Weil integrability condition in the last section, appears here as a result of the
normalizability of the wave functions.

A. Choice of constraints

When a system with second class constraints can be regarded as a gauge theory, half the
constraints can be chosen as first class and generate gauge transformations, and the rest are
gauge-fixing conditions. When there are only two second class constraints as in the example
considered here, one may choose either as the gauge generator. The choices may give different
theories. Dirac quantization requires noa priori criterion for the choice of the first class~gauge!
constraints. Suppose, in the example considered here, that instead off one chosex as the gauge
generator, and letf be the gauge-fixing condition. The constraint surfaceG* 8 and the singular
Dirac brackets remain unaltered. The orbitsO are in this case the linesq2(t)5q2(0)1t, and again
the gauge choicef50 intersects these at two places:q2(t)56q2~0!. So the reduced phase space
G* is again anS2: the upper hemisphere ofG* 8 with the ~singular! equator mapped to the South
Pole; quantization by method A is the same as before. However, in method B, the physical states
are obtained by imposing the constraint condition

x̂C~q1,q2!50, ⇒ ]

]q2
C~q1,q2!50, ~3.12!

i.e.C is a function ofq1 alone. The Hilbert space is infinite dimensional and quantizable observ-
ables are general functions ofq1, p1, andp2. This quantization is manifestly different from that
obtained previously. On the other hand, suppose we make a different gauge choice:x8[q250. G*
is the surfaceq25p250, which isR2, and the Dirac quantization discussed in the beginning of the
section gives the usual quantization on this, so that methods A and B give equivalent results. So
here we see that method A gives different quantizations for different gauge choices.
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This source of this ‘‘discrepancy’’ can be traced to the observation made in the Introduction
regarding the intersection of the gauge-fixing surfaces with the gauge orbits. In the first case
considered here, we carefully obtained the reduced phase space asS3/S15S2, and chose a gauge
that selected one 2-sphere for everyR. In the second case, though we were careful in considering
only one intersection of the surfaces generated by the gauge choicef50 with the gauge orbitsO ,
not all orbits are cut. A gauge choice that intersectsall the gauge orbits isx850. So in the former
case, one was artificially truncating the true phase space by an inappropriate gauge choice, and
thereby obtained a different dynamical system.

Now the Dirac quantization method makes no reference to any gauge fixing and is determined
once the gauge generators~fi ’s! are specified and a supplementary condition is imposed to ensure
that the Hilbert space so constructed is associated with the true phase spaceG̃ . Quantization of the
reduced phase spaceG* can be expected to give equivalent results only whenG* is diffeomorphic
~symplectically! to G̃ . So the gauge-fixing constraintsxi must satisfy not only the condition
det$f i ,x j%Þ0, which ensures the selection of one point from each gauge orbitlocally, but also
that the resultant reduced phase spaceG* be diffeomorphic to the spaceG̃ of orbits. This point
may seem obvious in retrospect, but in practice one may miss it getting a resultant quantum theory,
which may be consistent but not reflect gauge independence.

IV. DISCUSSION AND CONCLUSIONS

In the context of a simple gauge theory, viz.S2 as a phase space, we have analyzed and
compared two methods of quantization, viz. quantization of the reduced phase space and Dirac
quantization, and examined a condition for their equivalence.

Another observation refers to quantizability itself. As is well known, in geometric quantization
there exists a condition on the phase space for quantizability: the Weil integrability condition must
be satisfied if the prequantum bundle is to exist. In the case ofS2 this restricts the radius to discrete
values. This slightly counterintuitive result is not merely a peculiarity of the geometric approach.
As shown in the present example, this quantizability condition reappears though in a different
guise—it is a result of the physical Hilbert space being well defined~square integrability of the
wave functions!. This shows that the quantizability condition is related to the global topological
properties of the phase space.

The comparison of quantizable observables shows that there exists a restricted class of clas-
sical observables that can be consistently quantized. Conditions of self-adjointness and operator
commutativity with the gauge generators must also hold rigorously.

Gauge theories are encountered in many contexts, and in particular cases, either method of
quantization may prove convenient. We have not considered the possible difficulties in applying
either of these methods, but assuming they have been tided over, one needs to be careful about
capturing the true phase space of the Dirac approach~method B! in the reduced phase space of
method A. Further, restrictions may be encountered in parameters entering the theory via the
constraints, for example,R in the present example.
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APPENDIX: GEOMETRIC QUANTIZATION ON S2

This is a brief review of geometric quantization and its application to the quantization ofS2.
The classical phase spaceG is a 2n-dimensional symplectic manifold. The symplectic formv

defines a Poisson algebraA of observables, which areC` functions onG. In formulating a
quantization, i.e. a map fromA to the setQ of operators acting on a Hilbert spaceH, the basic
guidelines were spelt out by Dirac.
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~i! The mapA→Q is linear.
~ii ! Constants are mapped to multiples of the identity operator.
~iii ! For classical observables,f iPA and the corresponding quantum operatorsf̂ iPQ ,

@ f̂ 1 , f̂ 2#5k f̂3 , f 35$ f 1 , f 2%,

where$•,•% is the Poisson bracket and@•,•# is the commutator.k is some constant, canonicallyi\.
Geometric quantization typically achieves this in two stages. The first stage, called ‘‘prequan-

tization’’ involves finding such a map. The prequantum Hilbert space is, however, too large to be
a physically reasonable quantum description. The wave functions depend on all the phase space
variables, so that the standard Schro¨dinger description is not obtained, even in the case ofR2N.
Also, group representations of elementary systems turn out to be reducible. Hence, we need stage
two of geometric quantization, which is the choice of a polarization of the manifold.

The ‘‘prequantum’’ operator corresponding tofPC`~G! is constructed as follows: in local
Darboux coordinates, (qa,pa),

v5dpa`dqa, ~A1!

5d~pa dq
a!, ~A2!

so that the symplectic potential is

u5pa dq
a. ~A3!

The Hamiltonian vector fieldXf corresponding tof is

Xf5
] f

]pa
]qa2

] f

]qa
]pa ~A4!

and

u~Xf !5pa
] f

]pa
. ~A5!

Then the operator representation off is

f̂52 i\Xf1u~Xf !1 f . ~A6!

This acts on sections of a complex line bundleB overG, the connection potential on which isu/\
~the curvature beingv/\!. A compatible Hermitian structure~•,•! must be defined on it. Now,

f̂52 i\ “xf1 f , ~A7!

where“xf5Xf2( i /\)u(Xf). Such a line bundle exists if and only ifv satisfies the Weil inte-
grality condition.4 This might restrict the class of classical phase spaces that can be quantized in
this approach. One way of stating this condition, for a simply connected manifold, is that the
integral ofv/\ over any closed, oriented two-dimensional submanifold ofG is an integral multiple
of 2p.

Stage two of geometric quantization involves the choice of a polarizationP of the manifold.
Sections ofB constant along the polarization form the quantum Hilbert spaceHQ . If the vector
fieldsXm are tangent toP at a pointm on G, then a sections:G→B is said to be polarized if

“xm
s50. ~A8!
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Thus,s is a function of onlyn variables. So, if (s,s) is the Hermitian product onB, the Hilbert
spaceHQ consists of polarized sectionss such that

^s,s&5E
G
~s,s!vn,`. ~A9!

In this scheme, only those observables can be directly quantized that preserve the polarization:
if s is a polarized section, so mustf̂ s be, meaning ifX is a vector field tangent toP then we must
have

“X~ f̂ s!5 f ~“Xs!2 i\ “ @X,Xf #
s50,

i.e. [X,Xf ] must also be tangent toP.
Further refinements such as half-density quantization and metaplectic corrections are not

considered here as this level is sufficient for the case in hand.
This is applied toS2 in the following.
The 2-sphere is a symplectic manifold on which the measure, in spherical coordinates~u,f!,

v5
R2

4
sin u du`df ~A10!

~whereR/2 is the radius! serves as the symplectic form corresponding to the Poisson bracket
~1.12!. It is more convenient to look uponS2 as a Kähler manifold with holomorphic coordinates
zi obtained by stereographic projection through the North~South! Poles:

zn5cotS u

2Deif, zs5tanS u

2De2 if.

So it is covered by two charts,Un andUs , both isomorphic to the complex planeC. Note that
zn51/zs . Working in the northern chart,zPUn'C, the symplectic form is

vn52 i
R2

2
~11uzu2!22 dz̀ dz̄ . ~A11!

The symplectic potential is

un52 i
R2

2
~11uzu2!21z̄ dz. ~A12!

The prequantum line bundleB, which is locallyUi3C, must have a curvaturev/\. This
means that the transition functioncns ~on the overlapUnùUs! must be given by

us2un5 i\d ln cns , ~A13!

which gives

cns5zR
2/2\. ~A14!

This is well defined only forR2/2\PZ. This, of course, is the Weil integrability condition:

E
S2

v

\
52Np⇒R252N\, NPZ. ~A15!
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The Hamiltonian vector field corresponding to a functionf (z,z̄ ) is

Xf5
2i

R2 ~11uzu2!2~] z̄ f ]z2]zf ] z̄ ! ~A16!

and

u~Xf !5~11uzu2!z̄ ] z̄ f . ~A17!

So the quantum operator corresponding tof is

f̂5
2\

R2 ~11uzu2!2~] z̄ f ]z2]zf ] z̄ !2~11uzu2!z̄ ] z̄ f1 f . ~A18!

A natural choice of polarization is the Ka¨hler polarization~onS2 there exist no real polariza-
tions! spanned by the Hamiltonian vector fields generated by the holomorphic coordinates,

Xz52
2i

R2 ~11uzu2!2] z̄ . ~A19!

There then exists a scalarK in the neighborhood of each point, such that the symplectic potential
u given by ~A17! can be expressed as

u52 i ]zK, ~A20!

whereK5(R2/2)ln~11uzu2!. This potential annihilates the vectors~A19!, i.e., u(Xz)50, and is
said to be adapted to the polarization. The polarized sections ofB satisfy

¹Xz
s~z,z̄ !50, ~A21!

⇒] z̄ s50. ~A22!

SoHQ consists of holomorphic sections ofB. In order that the wave functions be well defined on
all of S2, they must be well defined in the overlap regionUnùUz , where they are related by

cn5cnscs ,

i.e.,

csS 1zD5z2Ncn~z!. ~A23!

So c(z) must be a polynomial inz of order at mostN. HQ is therefore spanned by the set
1,z,...,zN! and is~N11! dimensional. Given the scalarK of ~A20!, the Hermitian structure onB
can then be chosen to be

~s,s!5 s̄ se2K/\. ~A24!

So the inner product on the Hilbert space is given by

^c,c&5E
C
c̄ c~11uzu2!2Nv5E

C
c̄ c~11uzu2!2N22 dz dz̄. ~A25!

A similar result holds for the chartUs .
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Quantizable observablesf (z,z̄) in this scheme must satisfy [Xz ,Xf ]PP. Now

@Xz ,Xf #5
2i

R2

]

]z S ~11uzu2!2
] f

] z̄DXz1
2i

R2

]

] z̄ S ~11uzu2!2
] f

] z̄DXz̄ . ~A26!

For this to belong to the polarization, the second term must vanish, i.e.,

]

] z̄ S ~11uzu2!2
] f ~z,z̄!

] z̄ D50, ~A27!

⇒ f ~z,z̄!5
h1~z!1 z̄h2~z!

11uzu2
, ~A28!

whereh1 andh2 are functions ofz alone. For such an observable to be well defined on all ofS2,
one requires that it have the same value in both charts:

h1~z!1 z̄h2~z!

11uzu2
5
h18~z8!1 z̄8h28~z8!

11uz8u2
,

which gives

h18~z!5zh2~1/z!, h28~z!5zh1~1/z!,

where the prime denotes the Southern chart. These must be well defined for allz. Further,
restriction to real functions alone gives a general observable in the form

f ~z,z̄!5
a1bz1b̄z̄1cuzu2

11uzu2
, ~A29!

where the constantsa andc are real andb is complex. Dynamics in this theory can be dictated by
a Hamiltonian chosen from this class of observables. This completes the quantization ofS2.

1P. A. M. Dirac,Lectures on Quantum Mechanics, Yeshiva University, 1964; M. Henneaux and C. Teitelboim,Quanti-
zation of Gauge Systems~Princeton University, Princeton, 1992!.

2N. M. J. Woodhouse,Geometric Quantization, 2nd ed.~Clarendon, Oxford, 1992!.
3G. M. Tuynman, ‘‘Generalized Bergman kernels and geometric quantization,’’ J. Math. Phys.28, 573 ~1987!.
4See Ref. 2 or Simms and Woodhouse,Lectures on Geometric Quantization, Lecture Notes in Physics, 1976, p. 53.
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Directly interacting massless particles—A twistor
approach

Andreas Bettea)
Department of Physics, Stockholm University, Box 6730, S-113 85 Stockholm, Sweden

~Received 11 October 1995; accepted for publication 25 October 1995!

Twistor phase spaces are used to provide a general description of the dynamics of
a finite number of directly interacting massless spinning particles, forming a closed
relativistic massive and spinning system with an internal structure. A Poincare´
invariant canonical quantization of the so obtained twistor phase space dynamics is
performed. ©1996 American Institute of Physics.@S0022-2488~96!03603-X#

I. INTRODUCTION

It is possible that ‘‘elementary’’ massive particles such as electron, proton, neutron, etc. should
be regarded as bound states of afinite number of massless and spinning interacting parts.

In order to investigate such a possibility we develop in this paper a general formalism with its
roots in the Twistor Theory of Penrose1 and in the Theory of Action at a Distance in Relativistic
Particle Dynamics~in its instantaneous form!.2

Somewhat similar attempts to classify elementary particles employing the Twistor Theory but
without any explicit mention of the Theory of Action at a Distance in Relativistic Particle Dy-
namics~R.a-a-a-d!, have been made before by Hughston3 and Popovich.4 Certain other develop-
ments in the same direction appeared in papers written by Perje`s et al.5,6 and Sparling.7

The quantum version of R.a-a-a-d in connection with the Twistor Theory seems to be implicit
in an example worked out by Hughston.8

The framework we are presenting is, however, from the very beginning completely in accor-
dance with R.a-a-a-d. Classical states, which correspond to relativistic quantum bound states of a
massive and spinning composite particle, are represented by points in a finite-dimensional
‘‘twistor phase space.’’ The description is purely Hamiltonian. The suggested quantization proce-
dure is simultaneously canonical and Poincare´ invariant. The arising canonically conjugated quan-
tum mechanical operators represent ‘‘square roots’’ of the null momenta and ‘‘square roots’’ of the
‘‘positions’’ attributed to ~the classical limit of! the massless constituents forming a massive
system.

Exploring the idea of instantaneous relativistic action at a distance2 in the phase space of two
twistors we have shown previously9 how a free massive, spinning point-like particle may be
thought of as a relativistic rigid rotator~endowed with intrinsic spin! composed of two massless
spinning parts. The term ‘‘instantaneous’’ refers to the rest frame defined by the total time-like
four-momentum of the rigid rotator itself. The present paper may be regarded as an extension and
generalization of the same idea. In its very rough state the idea appeared in our report10 from 1979.

The work is organized as follows: First, in the next section some results from the Twistor
Theory are reformulated in a way that exhibits how they tie in with a relativistic, classical,
finite-dimensional phase space mechanics of a massless particle with helicity. Ten Poincare´ cova-
riant functions fulfilling Poisson bracket algebra of the Poincare´ group and a function correspond-
ing to the helicity operator are identified.1

These well-known results in new clothes are generalized in Sec. III, where a twistor phase
space of a massive spinning system composed of an arbitrary finite number of massless parts is
introduced.

a!Electronic mail: ab@vanosf.physto.se
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Again, ten Poincare´ covariant functions fulfilling Poisson bracket algebra of the Poincare´
group are identified. Four functions representing the~real! position four-vector of the total massive
spinning system are also identified.3

A fundamental set of Poincare´ scalar functions forming a closed finite Poisson bracket sub-
algebra is identified. These functions serve as generators~eigenvalues of their quantum mechani-
cal counterparts are tentatively identified with such quantum numbers as electric charge, baryon
number etc.! of the internal symmetries.

A general formula for the four functions representing the Pauli–Luban´ski spin four-vector is
derived.

A general formula for the function representing the square of the relativistic spin in terms of
the generators of the internal symmetries is found.

It is discovered that, provided the relativistic spin does not vanish, the components of the
position four-vector of the total system do not Poisson commute@see~3.27!#.

A certain class of Poincare´ scalar functions in the twistor phase space is selected. Functions in
this class, when used as generators of motion, produce canonical flows, which in Minkowski space
describe a finite number of mutually interacting spinning massless particles forming a closed
freely moving massive and, in general, spinning relativistic system.

The so obtained relativistic dynamics constitutes our general dynamical principle.
In the last section this classical phase space dynamics is canonically quantized in a way that

corresponds to the real polarization of the twistor phase space.11 A Poincaré invariant scalar
product, on the space of functions representing quantum states of the massive spinning system
composed of a finite number of massless parts, is introduced.

The following notation will be used.
Latin letters with lower case Latin indices will denote four-vectors and four-tensors. Lower

case Greek letters with upper case Latin indices~either primed or unprimed! will denote spinors.
Upper case Latin letters with lower case Greek indices will denote nonprojective twistors. Lower
case Latin indices within round brackets are used to number the different massless parts and in this
way label the internal degrees of freedom. A bar over a letter or over an expression denotes
complex conjugation. The usual summation convention over repeated indices is assumed through-
out. The physical units are so chosen thatc5\51. The signature of the metricgi j in Minkowski
space is taken to be1222. The fully antisymmetric alternating four-tensor will be denoted by
ei jkl .

II. THE ELEMENTARY TWISTOR PHASE SPACE

There are no new results in this section except from the way they are presented.
We introduce the notion of a twistor-phase spaceTp, which will be regarded as a space of

classical states arising as a limit of some corresponding~not yet specified! quantum mechanical
description of a massless particle with helicity. The value of such a quantum mechanical helicity
is supposed to arise as an eigenvalue of some appropriate~not yet specified! quantum mechanical
helicity operator. In the classical limit this quantum mechanical helicity operator should then
correspond to a real valued function onTp. Therefore the classical helicity~being a limit of a
quantum mechanical operator whose eigenvalues are discrete! is not a discrete variable. In addi-
tion, following Penrose1 and Hughston,3 ten real valued Poincare´ covariant functions~correspond-
ing to the generators of the Poincare´ algebra! on Tp are identified as~classical! physical observ-
ables.

Definition 1:A nonprojective twistor spaceT is a four-dimensional complex vector space~i.e.,
C4>R8! endowed with the isometry group SU~2,2!.

Remark 1:SU~2,2! is to be identified with~the universal covering of! the so-called conformal
group of the compactified Minkowski space and it contains as one of its subgroups~the universal
covering of! the Poincare´ group, which, in turn, contains as one of its subgroups~the universal
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covering of! the Lorentz group, i.e. SL(2,C). As is well known, the Poincare´ group is the isometry
group of the physical Minkowski space.

In order to see how vectors inT are related to physical Minkowskian quantities~such as
angular and linear four-momenta, position four-vectors, and Poincare´ invariant scalars!, it is con-
venient to choose a basis inT in a very special way. A vector inT given with respect to such a
basis is called a nonprojective twistor. With respect to any such twistor basis, the SU~2,2! metric
is nondiagonal.

Definition 2:A nonprojective twistorZa and the corresponding~twistor! complex conjugated
twistor Z̄a may thus be represented by two Weyl spinors and their conjugates:

Za5~vA,pA8!, Z̄a5~p̄A ,v̄
A8!. ~2.1!

Remark 2:Such a spinor representation of a nonprojective twistor and its twistor conjugate
also explicitly shows how the Poincare´ group acts onT. Coordinates of the two spinors repre-
sented bypA8 andvA are covariant with respect to the~identity connected part of the! Lorentz
group, while four-translationsTa act only on the ‘‘v’’ spinor parts of the twistorZ and its
~twistor! complex conjugate1 Z̄.

Definition 3:The elementary twistor phase spaceTp is spanned byR8, in which each point is
labeled by a nonprojective twistor and its twistor complex conjugate. Further,Tp is equipped with
an SU~2,2! invariant symplectic structure3,12,13defined by the following canonical Poisson bracket
relations:

$Za,Z̄b%5 idb
a , $Za,Zb%5$Z̄a ,Z̄b%50, ~2.2!

which, when written out in terms of spinors, reads as

$vA,p̄B%5 idB
A , $pB8 ,v̄

A8%5 idB8
A8 , ~2.3!

$vA,vB%5$vA,pA8%5$pA8 ,pB8%5$pA8 ,p̄B%50, ~2.4!

$v̄A8 ,v̄
B8%5$v̄A8,p̄A%5$p̄A ,p̄B%5$vA,v̄B8%50. ~2.5!

Remark 3:Points inTp represent classical states of~the classical limit of! a massless particle
with ~any value of its! helicity.

Lemma 1:If the linear four-momentumPa and the angular four-momentumMab52Mba of
a massless particle~Penrose’s abstract index notation14 is used throughout the paper when appro-
priate! are defined1 by the following set of Poincare´ covariant functions onTp:

Pa :5pAp̄A , ~2.6!

Mab :5 i v̄~A8pB8)eAB2 iv~Ap̄B)eA8B8 , ~2.7!

then the canonical Poisson brackets~2.3!–~2.5! imply thatPa andMab fulfill the Poisson bracket
relations of the Poincare´ algebra:3

$Pa ,Pb%50, ~2.8!

$Mab ,Pc%52gc@aPb] , ~2.9!

$Mab ,Mcd%52~gc@aMb]d1gd@bMa]c! . ~2.10!

Proof, which we omit, is just a tedious but straightforward computation. Penrose’s blob notation15

may be useful for this.
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Remark 4:The above Poisson bracket relations define the momentum mapping for the action
of the Poincare´ group onTp.

Remark 5:A point in Tp carries more information about the classical state of a massless
particle than just information about its linear and angular four-momenta. It also defines its helicity
and its phase.

Lemma 2:The helicity ~state! function is given by1

s5 1
2 ~ZaZ̄a!5 1

2 ~vAp̄A1pA8v̄
A8!, ~2.11!

which may be easily deduced if in the definition of the Pauli–Luban´ski spin four-vector:

Sa:5 1
2 eabcdPbMcd , ~2.12!

the expressions in~2.6!–~2.7! and the spinor version ofeabcd are inserted. The result in~2.11!
follows from a simple spinor algebra calculation,13 which yields

Sa5sPa. ~2.13!

Remark 6:Note that the massless particle’s helicity functions coincides with one-half of the
SU~2,2! norm of the corresponding nonprojective twistor.

III. THE GENERAL TWISTOR PHASE SPACE

A generalization of the results presented in the previous section opens some new ways for
applications of the Twistor Theory and of the R.a-a-a-d.

Namely, it becomes possible to formulate a general dynamical principle, which, according to
our interpretations and identifications, describes a closed massive and, in general, spinning system
composed of a finite number of mutually interacting massless and spinning parts.

A direct product of any number ofTp may be used to define a~reducible! phase space for a
massive spinning relativistic particle built up out of the massless ones. In such a direct product
Tp~n! of n ~n>2! copies of the elementary twistor phase spaceTp we exclude all points on all
diagonals, i.e., each point inTp~n! represents a state ofn massless particles with their four-
momenta pointing atn noncoinciding null directions.

Generalizing Definition 3 of the previous section, we let the symplectic structure on the
product twistor phase spaceTp~n! be given by the following set of canonical conformally invari-
ant Poisson brackets:

Definition 4:

$Z~ i !
a ,Z̄b~ j !%5 idb

ad~ i !~ j ! , $Z~ i !
a ,Z~ j !

b %5$Z̄a~ i ! ,Z̄b~ j !%50, ~ i !,~ j !51,2,...,n, ~3.1!

where the index within brackets labels then distinct massless parts.
Lemma 3:If the linear and angular four-momenta functions of the massive and spinning

particle, formed by then massless spinning constituents, are defined by

P a :5pA8~ i !p̄A~ i ! , ~3.2!

Mab :5 i v̄~ j !~A8pB8)~ j !eAB2 iv~ j !~Ap̄B)~ j !eA8B8 , ~3.3!

then the canonical commutation relations in~3.1! imply

$P a ,P b%50, ~3.4!

$Mab ,P c%52gc@aP b] , ~3.5!
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$Mab ,Mcd%52~gc@aMb]d1gd@bMa]c!, ~3.6!

which, as should be expected, again represents Poisson bracket algebra of the Poincare´ group.
Remark 7:Using the canonical~conformally covariant! twistor coordinates@on the 8n- ~real!

dimensional twistor phase space#, we note that they may be used to form 2n22n real-valued
Poincare´ scalar functions.n2 of these are also conformally@i.e., SU~2,2!# invariant.

Definition 5:Then2 real-valued SU~2,2! invariant scalars are represented by real and imagi-
nary parts of the following functions:

a~ i !~ j ! :5Z~ i !
a Z̄ a~ j ! , ā ~ i !~ j !5a~ j !~ i ! , ~3.7!

while the remaining Poincare´ invariant scalars are represented by real and imaginary parts of

m~ i !~ j ! :5I abZ~ i !
a Z~ j !

b 5eC8D8pD8~ i !pC8~ j !52m~ j !~ i ! , ~3.8!

m̄ ~ i !~ j ! :5I abZ̄ a~ i !Z̄ b~ j !5eCDp̄ D~ i !p̄ C~ j !52m̄ ~ j !~ i ! , ~3.9!

whereeAB, eA8B8 denote the metric in the Weyl spinor space, or equivalentlyI ab and I ab denote
the so-called infinity twistor and its dual.1,13

Lemma 4:From the canonical commutation relations in~3.1! it almost trivially follows that

$a~ i !~ j ! ,Z~k!
a %52 id~ j !~k!Z~ i !

a , $a~ i !~ j ! ,Z̄ a~k!%5 id~ i !~k!Z̄ a~ j ! , ~3.10!

$m~ i !~ j ! ,Z~k!
a %50, $m̄ ~ i !~ j ! ,Z~k!

a %52i I amZ̄ m@~ i !d~ j !] ~k! , ~3.11!

$m~ i !~ j ! ,Z̄ a~k!%52i I maZ@~ i !
m d~ j !] ~k! , $m̄ ~ i !~ j ! ,Z̄ a~k!%50. ~3.12!

Lemma 5:As shown by Hughston,3 the real four-vector-valued function onTp~n! represent-
ing, in the Minkowski space, position four-vector of the total system~composed ofn massless
parts! is given by

Xa5XAA8:5
MabP b

m2 1
l

m2 P
a, ~3.13!

where

l :52 1
2 ~ iv~ i !

A p̄ A~ i !2 ipA8~ i !v̄~ i !
A8!, ~3.14!

and where

m2:5P a P
a5m~ i !~ j !m̄ ~ i !~ j ! , ~3.15!

or equivalently by3

Xa5 i
1

m2 @m̄ ~ i !~ j !v~ i !
A p~ j !

A82m~ i !~ j !v̄ ( i )
A8p̄ ( j )

A #. ~3.16!

Now it is a straightforward task to calculate the following Poincare´ invariant and Poincare´ cova-
riant Poisson bracket commutation relations that will be needed in the sequel.

Lemma 6:First we note that from the conformally invariant canonical Poisson bracket rela-
tions ~3.1!, it follows that the 2n22n scalars in~3.7!–~3.9! form a Poincare´ invariant closed
algebra of Poisson brackets:
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$a~ i !~ j ! ,a~k!~ l !%5 ia ~k!~ j !d~ i !~ l !2 ia ~ i !~ l !d~ j !~k! , $a~ i !~ j ! ,m~k!~ l !%52im~ i !@~k!d~ l !] ~ j ! , ~3.17!

$a~ i !~ j ! ,m̄ ~k!~ l !%52im̄ ~ j !@~k!d~ l !] ~ i ! , $m~ i !~ j ! ,m~k!~ l !%5$m̄ ~ i !~ j ! ,m~k!~ l !%50, ~3.18!

which may easily be proved by the help of Lemma 4.
Lemma 7:From the fact thatm( i )( j ) , m̄ ( i )( j ) , and a( i )( j ) are Poincare´ scalar functions, it

trivially follows that they commute with all the generators of the Poincare´ algebra:

$a~ i !~ j ! ,P a%5$a~ i !~ j ! ,Mab%50, ~3.19!

$m~ i !~ j ! ,P a%5$m~ i !~ j ! ,Mab%5$m̄ ~ i !~ j ! ,P a%5$m̄ ~ i !~ j ! ,Mab%50. ~3.20!

Lemma 8:The following commutation relations are also easily deduced from the canonical
commutations relations in~3.1!:

$a~ i !~ j ! ,l %50 ~3.21!

$m~ i !~ j ! ,l %5m~ i !~ j ! . ~3.22!

Lemma 9:From ~3.13! and ~3.17!–~3.22! it now follows that

$a~ i !~ j ! ,X
a%5

1

m2 P
a$a~ i !~ j ! ,l %50, ~3.23!

$m~ i !~ j ! ,X
a%5

1

m2 P
a$m~ i !~ j ! ,l %5

1

m2 P
am~ i !~ j ! , ~3.24!

$P b ,X
a%5db

a , ~3.25!

H 12 P bP
b,XaJ 5P a. ~3.26!

Lemma 10:Similarly, we obtain that

$Xa,Xb%5
1

m4 eabcdS cP d , ~3.27!

where the Pauli–Luban´ski four-vectorS a is defined as in~2.12!, i.e. by

S a:5 1
2 eabcdP bMcd . ~3.28!

Lemma 11:Expressing the right-hand side of~3.28! in terms of spinors defining the corre-
sponding twistors, we obtain

2S a52S AA85m̄ ~ i !~ j !v~ i !
A p~ j !

A81m~ i !~ j !v̄ ( i )
A8p̄ ~ j !

A 1a~ i !~ j !p̄ ~ i !
A p~ j !

A8 , ~3.29!

which, after some spinor algebra manipulations, may be rewritten as

2S AA85@2a~ i !~ j !2d~ i !~ j !a~k!~k!#p̄ ~ i !
A p~ j !

A852a~ i !~ j !p̄ ~ i !
A p~ j !

A82a~ i !~ i !p̄ ~ j !
A p~ j !

A8 . ~3.30!

Remark 8:The formula in~3.30! is also valid forn51 and reproduces the result1 of Lemma
2. For n52 it appeared in Tod’s doctoral dissertation.18 However, the author of this paper has
never come across the general formula in~3.30!, which is valid for any~finite! natural numbern.
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Lemma 12:From the above lemma~Lemma 11! it follows that the square of the value of the
total spins2 ~for n.2! is a function of the invariants in~3.7!–~3.9! ~i.e., is a function of the
generators of the internal symmetries!, given by

24m2s2:54S aS a5~a~ j !~ j !!
2m214a~ j !~ j !a~u!~v !m̄~u!~k!m~k!~v !

14a~ j !~k!a~u!~v !m̄~ j !~u!m~k!~v ! . ~3.31!

Remark 9:For n52 andn53 the formula~3.31! agrees with those previously derived by
Perjès, Hughston, and Sparling. The general formula above is, however, valid for any~finite!
natural numbern>2. As far as we know this formula has not been derived before.

Proposition 1:As explained in the Introduction we wish to regard a closed massive and
spinning system as composed of a finite number of interacting massless parts. For this reason we
notice that any function of the form

H:5 1
2 P bP

b1g~a~ j !~k! ,m~ l !~m! ,m̄~n!~r !!, ~3.32!

whereg is a positive real-valued function of the invariants in~3.7!–~3.9!, generates a canonical
flow in Tp~n!, which in the Minkowski space describes a set ofn mutually interacting massless
particles. This follows from direct calculations, which produce the following equations of the
motion:

Ẋa5$H,Xa%5P aS 11
1

m2

]g

]m~ i !~k! m~ i !~k!1
1

m2

]g

]m̄~ i !~k! m̄~ i !~k!D , ~3.33!

ṗA8~k!5$H,pA8~k!%52 i
]g

]a~ j !~k! pA8~ j ! , Ṗ a5$H,P a%50, ~3.34!

ȧ~k!~ j !5$H,a~k!~ j !%5 i
]g

]a~ j !~ l ! a~k!~ l !2 i
]g

]a~ l !~k! a~ l !~ j !22i
]g

]m̄~k!~ l ! m̄~ l !~ j !12i
]g

]m~ j !~ l ! m~k!~ l ! .

~3.35!

Remark 10:Note that the assumption in~3.32!, stating thatg is a function of the generators
a( i )( j ) ~which are conformal scalars!, makes the motion of the massless parts nontrivial~i.e.,
changes their null momenta during the motion!. All functionsg, which depend onm( i )( j ) and their
complex conjugates only, produce a motion of the massless parts that is trivial in the Minkowski
space.

Assumption 1:From now on we assume thatg is a function of the conformal invariantsa( i )( j )
only:

g5g~a~ j !~k!!. ~3.36!

Proposition 2:Under this condition the equations of motion generated by the canonical flow
in the twistor phase space simplify and read as

Ẋa5$H,Xa%5P a, ~3.37!

ṗA8~k!5$H,pA8~k!%52 i
]g

]a~ j !~k! pA8~ j ! ; Ṗ a5$H,P a%50, ~3.38!
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ȧ~k!~ j !5$H,a~k!~ j !%5 i
]g

]a~ j !~ l ! a~k!~ l !2 i
]g

]a~ l !~k! a~ l !~ j ! . ~3.39!

Remark 11:From ~3.37! it follows that the parameter labeling points on the curves of the
canonical flow generated byH with g such as in~3.36! is linearly related to the proper time of the
total system.

If such a functiong vanishes~or degenerates to a real number! then the functionH and the
function 1

2 m
2 are identical~modulo an additive real number! forming just one constant of the free

motion generated byH.
For nontrivial suchg the functionsH and 1

2 m
2 correspond to two different mutually com-

muting buta priori unrelated constants of the motion generated byH.
Remark 12:The above equations of motion have been explicitly solved9 for n52 and for

g5s2. Such a motion describes a massive relativistic rigid rotator composed of two directly
interacting massless spinning particles.

Assumption 2:Due to the fact that the parameter labeling the curves of the canonical flow
generated byH is linearly related to the proper time of the total system, we make an additional
‘‘physical’’ assumption that for any nontrivialg such as in~3.36! the constant of the motion given
by the value of the functionH is proportional~modulo an additive real numberr ! to the value of
the constant of the motion12 m

2. The proportionality constantk is larger than one-half and ap-
proaches one-half when the functiong approaches zero~modulo an additive real numberr !:

H5km21r , k.
1

2
. ~3.40!

A posteriori this amounts to a ‘‘constraint:’’

m25
g2r

~k2 1
2!
. ~3.41!

The imposition of such a ‘‘constraint’’ seems perhaps somewhat unnecessary at this stage but may
be motivated by the fact that after quantization we wish to interpret ratios of the arising possibly
discrete eigenvalues ofĤ @for some specific choices ofg in ~3.36!# as ratios of the squares of the
quantized masses.

IV. QUANTIZATION

A nonstandard,11 as opposed to the standard procedure introduced by Penrose,1 canonical
twistor quantization is obtained by means of a natural prescription a´ la Dirac,16,17 given by

v̂~ i !
A :52

]

]p̄A
~ i ! , vC ~ i !

A8 :5
]

]pA8
~ i ! , ~4.1!

pC A~ i ! :5p̄A~ i ! , p̂A8~ i ! :5pA8~ i ! . ~4.2!

The Poisson brackets relations in~3.1! will hereby be replaced by the corresponding commutators,
turning the classical twistor phase space dynamics of massless particles into its quantum mechani-
cal analog.

So, by the use of~4.1!–~4.2! the linear four-momentum functions in~3.2!, the angular four-
momentum functions in~3.3!, the scalar functions in~3.7!–~3.9! turn into the corresponding
operators:
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P̂ a :5p̄A~ i !pA8~ i ! , ~4.3!

M âb:5 ip~ i !
A8 ]

]pB8
~ i ! eAB1 i p̄~ i !

A ]

]p̄B
~ i ! eA8B8, ~4.4!

â~ i !~ j ! :52p̄A~ j !

]

]p̄A
~ i ! 1pA8~ i !

]

]pA8
~ j ! , m& ~ i !~ j ! :5p~ i !

A8pA8~ j ! , mC ~ i !~ j ! :5p̄~ i !
A p̄A~ j ! . ~4.5!

The Poisson bracket relations in~3.4!–~3.6! ensure that operators in~4.3! and~4.4! obey commu-
tation relations of the Poincare´ algebra. In addition, all the Poisson bracket commutation relations
in ~3.10!–~3.12!, ~3.17!–~3.27! turn into the corresponding operator commutators.

All functions onTp~n! become~at least formally! operator-valued functions of the canonical
differential operators in~4.1! and of the multiplicative operators in~4.2!. Of course, this may lead
to problems: Ordering problems, nonlocality of the operators arising from functions onTp~n! in
which the ‘‘v’’ parts appear in the denominator, etc.

The multiplicative operators in~4.2! define a Poincare´ invariant 4n real-dimensional configu-
ration vector spaceP spanned byn Weyl spinors and their complex conjugates.

The above~formally! defined operator-valued functions of the canonical operators in~4.1!–
~4.2! act on the infinitely dimensional spaceG of complex-valued ‘‘wave’’ functions defined onP.

A Poincaré invariant scalar product on the space of complex-valued functions onP we
tentatively define as

^ f 1u f 2&:5E @ f̄ 1~p̄B~ i ! ,pB8~ i !! f 2~pB8~ i ! ,p̄B~ i !!#dp~ j !
A8`dpA8~ j !`dp̄~k!

A `dp̄A~k! . ~4.6!

The subspaceN of G consisting of functions having finite norms with respect to this scalar product
defines a Hilbert space of quantum states of the massive spinning composite particle.

The quantized version of our general dynamical principle now reads as the following.
Find common eigenvalues and eigenfunctions of a maximal set of Hermitian mutually com-

muting operators containing the following subset~N refers to the normal ordering of terms!:

P̂ a5p̄A~ i !pA8~ i ! , ~4.7!

Ĥ5 1
2 m& 21N„g~ â~ i !~ j !!…, ~4.8!

Sz52
1

m
Ŝ ana52

1

m
Ŝ AA8nAA85

1

2
~ â~ i !~ j !p̄~ i !

A p~ j !
A81p̄~ i !

A p~ j !
A8 â~ i !~ j !!nAA8

2
1

4
~ â~ i !~ i !p̄~ j !

A p~ j !
A81p̄~ j !

A p~ j !
A8 â~ i !~ i !!nAA8 . ~4.9!

m̂2ŝ2:52Ŝ aŜ a52 1
4 ~ â~ j !~ j !!

2m22N~ â~ j !~ j !â~u!~v !m̄~u!~k!m~k!~v !!

2N~ â~ j !~k!â~u!~v !m̄~ j !~u!m~k!~v !!, ~4.10!

wherem denotes an eigenvalue of the mass andna is any space-like unit four-vector orthogonal
to the time-like direction defined byP̂ a . In other words,na represents a ‘‘z-axis’’ direction.

From the assumption 2 and general group theoretical considerations, it follows that eigenval-
ues of the mass squaredm̂2 are proportional~up to an additive real number! to the eigenvalues of
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N„g(â( i )( j ))… ~which is assumed to be Hermitian!. Moreover, the eigenvalues of the square of the
spin ŝ2 and ofŜz assume the usual values, i.e.,j ( j11) and j z52 j .....,j , with j being a positive
integral number or a positive half-integral number.

For each choice ofg one can choose among the operators in~4.5! a maximal set of mutually
commuting ones that also commute withN„g(â( i )( j ))…. The eigenvalues of these additional opera-
tors may be identified with the internal degrees of freedom of the total system. To each set of
eigenvalues of the mutually commuting internal operators and to each set of the mutually com-
muting external operators’ eigenvalues~the mass,j , j z , total four-momentum of the system! there
corresponds a state function inN that may be calculated~at least in principle! using methods from
nonrelativistic quantum mechanics.

As an example consider the relativistic rigid rotator composed of two~n52! massless con-
stituents with helicity.9 To quantize it we note that the external commuting observables may be
chosen as

P̂ a5p̄A~1!pA8~1!1p̄A~2!pA8~2! , ~4.11!

Ĥ5 1
2 m̂

21 ŝ2, ~4.12!

Ŝ ana5S AA8nAA85
1
4 ~ â~1!~1!2â~2!~2!!~ p̄~1!

A p~1!
A8 2p̄~2!

A p~2!
A8 !nAA81~p̄~1!

A p~1!
A8

2p̄~2!
A p~2!

A8 !nAA8
1
4 ~ â~1!~1!2â~2!~2!!1 1

2 ~ â~1!~2!p̄~1!
A p~2!

A8

1p̄~1!
A p~2!

A8 â~1!~2!!nAA81
1
2 ~ â~2!~1!p̄~2!

A p~1!
A8 1p̄~2!

A p~1!
A8 â~2!~1!!nAA8 ,

~4.13!

ŝ25 1
4 ~ â~1!~1!2â~2!~2!!

21 1
2 ~ â~1!~2!â~2!~1!1â~2!~1!â~1!~2!!, ~4.14!

while internal symmetry operators are given, e.g., by

â~1!~1! , â~2!~2! . ~4.15!

In the rigid rotator case the eigenvalues of the square of the mass are proportional toj ( j11), i.e.,
proportional to the eigenvalues of the square of the spin. In addition, the states~eigenfunctions! of
the rigid rotator are labeled by the eigenvalues of the Euler operators in~4.15!.

To find these relativistic rigid rotator eigenfunctions,f (p (1)
A8 ,p (2)

A8 ,p̄ (1)
A ,p̄ (2)

A ) in N is a much
harder task and will not be pursued in this paper.

V. CONCLUSIONS AND REMARKS

If ‘‘elementary’’ particles such as e.g., electron, proton, neutron, etc. may be regarded as
bound states of afinite number of massless spinning parts, then twistor theory combined with the
idea of relativistic action at a distance provide a very powerful tool for construction of such
models.

In such approaches, as shown in this paper, particle aspects of Penrose’s twistor formalism
should be emphasized, as opposed to the standard treatments where field aspects are at the front.

The nonstandard quantization procedure in~4.1!–~4.2! implies that we lose some of the results
of conventional twistor theory, such as the twistor description of massless free fields in terms of
holomorphic sheaf cohomology, the scalar product on such fields, geometrization of the concept of
positive frequency of the field and the relationship between conformal curvature and the twistor
‘‘position’’ ~twistor variables! and ‘‘momentum’’ ~complex conjugates of the twistor variables!
operators.19
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What we gain is that the real dimension of the relativistic configuration space of massless
spinning particles is one-half the real dimension of the configuration space obtained by means of
the conventional holomorphic twistor quantization.1 Further, the configuration space obtained in
our paper may be given a clear physical interpretation. Wave functions on such a configuration
space define quantum states in~the ‘‘square root’’ of! the linear four-momentum representation of
the massless parts. However, in our opinion the most important gain is the fact that using our
formulation we are able to treatinteractingmassless spinning particles~not fields!, forming a
closed composite bound system.

To apply our ideas to concrete physical systems is, at the moment, hampered by the fact that
there are, as yet, no indications in the model how the functiong in ~3.36! should be chosen.

Nevertheless, the general principle presented in this paper seems to comply with the Twistor
Programme announced by Penrose.20
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A solvable N-body problem in the plane. I
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We introduce and discuss ann-body problemin the plane, characterized by equa-

tions of motion of Newtonian type,rẄ j 5 (k51
n FW jk , j51,..,n, with given ‘‘forces’’

FW jk having the following characteristics:FW jk depends only onrW j ,rWk ,rẆ j ,rẆk ~i.e., only
‘‘one-body’’ and ‘‘two-body’’ forces are present!; FW jk behaves as a~two-
dimensional! vector under rotations in the plane~i.e., the model is ‘‘rotation-

invariant’’!; for j5k,FW jk is linear in rW j and rẆ j ; for jÞk, FW jk5urW j2rWku
22fW jk with

fW jk a homogeneous polynomial of third degree inrW j ,rWk ,rẆ j ,rẆk ~henceFW jk is homo-

geneous of degree one inrW j ,rWk ,rẆ j ,rẆk!; FW jk contains linearly 8 arbitrary~‘‘cou-
pling’’ ! constants. Then-body problem is solvable for arbitraryn and for arbitrary
values of the 8 coupling constants; its solutions display a rich phenomenology. If
the 8 coupling constants are suitably restricted, the model is translation-invariant,
and/or Hamiltonian; of course, when it is Hamiltonian, it is integrable; indeed in
some case a Hamiltonian function can be explicitly displayed, as well as the cor-
responding Lax pair. ©1996 American Institute of Physics.
@S0022-2488~96!03503-0#

I. INTRODUCTION

In this paper we introduce then-body problem in the plane characterized by the equations of
motion of Newtonian type

rẄ j5 (
k51

n

FW jk , j51,...,n, ~1.1!

with

FW jk5~a1a8ẑ` !rẆ j1~b1b8ẑ` !rW j for j5k, ~1.2a!

FW jk5r jk
22fW jk for jÞk, ~1.2b!

with

fW jk52@rẆ j~rẆk•rW jk!1rẆk~rẆ j•rW jk!2rW jk~rẆ j•rẆk!#1~l1l8ẑ` !$~rẆ j1rẆk!@r j
22~rW j•rWk!#

2rW j@rWk•~rẆ j1rẆk!#1rWk@rW j•~rẆ j1rẆk!#%1~m1m8ẑ` !$rW j@r j
222~rW j•rWk!#1rWkr j

2%. ~1.3!

Throughout this paper a superimposed arrow denotes~two-dimensional! vectors in the
plane; but we use for convenience for them a ‘‘three-dimensional’’ notation, denoting byẑ
the unit vector orthogonal to the plane, and by the symbol` the usual three-dimensional vector

a!On leave while serving as Secretary General, Pugwash Conferences on Science and World Affairs, Geneva-London-
Rome.

0022-2488/96/37(4)/1735/25/$10.00
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product. Hence ẑ[~0,0,1!, and, for instance, rW j[(xj ,yj ,0), ẑ`rW j5(2yj ,xj ,0).

We also employ the convenient short-hand notationrW jk[rW j2rWk , and of course
r jk
2 [rW jk•rW jk5xjk

2 1yjk
2 5(xj2xk)

21(yj2yk)
2.

The n-body model~1.1!–~1.3! is solvable for arbitraryn and for arbitrary values of the 8
~real! ‘‘coupling’’ constantsa,a8,b,b8,l,l8,m,m8: then ‘‘particle coordinates’’rW j (t), correspond-

ing to arbitrary initial datarWk(0),rẆk(0), k51,...,n, coincide~see below! with the n roots of an
explicitly known ~time-dependent, complex! polynomial and their time-evolution can therefore be
analyzed rather transparently~although, given the generality of this model, the phenomenology of
the motions it entails is quite rich!. This finding is remarkable, in view of the dearth of solvable
n-body models in more than one dimension; yet it obtains via quite a simple extension~by
complexification! of a one-dimensional model whose solvability had been pointed out almost two
decades ago.1 The interest of the model~1.1!–~1.3! is moreover enhanced by the fact that, pro-
vided the coupling constants are appropriately restricted, it is Hamiltonian~and then, of course,
completely integrable!; indeed in some cases a Hamiltonian function can be explicitly displayed,
as well as a corresponding Lax pair~drawing, again, on results which have been known for quite
some time2!.

To advertise the richness and neatness of this model it might perhaps be mentioned that this
two-dimensional extension was noticed in the course of a personal revisitation of known one-
dimensional models,1 motivated by a request3 to indicate thesimplest yet nontrivialintegrable
model which could be taught to first-year students of mechanics~but of courseall solvable models
are in some sensetrivial !!.

In Sec. II we briefly discuss the invariance properties of the equations of motion~1.1!–~1.3!,
and the motion they entail in some special case for the center-of-mass of the system. In Sec. III we
indicate how this model has been obtained, and how it is solved. In Sec. IV we discuss the
behavior of the solutions; the phenomenology being quite rich, this section is by far the longest,
and it is subdivided into several subsections to treat separately various different cases, including
those in which the system is translation-invariant or Hamiltonian. A concluding Sec. V outlines
future directions of research.

II. INVARIANCE PROPERTIES AND CENTER-OF-MASS MOTION

In this brief section we discuss the invariance properties of the equations of motion~1.1!–
~1.3!, and the motion they entail in some special case for the center-of-massRW of the system,

RW 5n21(
j51

n

rW j . ~2.1!

The system~1.1!–~1.3! is autonomous, since we assume the 8 quantitiesa,a8,b,b8,l,l8,m,m8
to be time-independent~although it should be noted that the technique of solution would also work
if these quantities were time-dependent!. Hence it is invariant under time-translation,t→t1t0 .

The system~1.1!–~1.3! is also invariant under scale-transformation of the particle coordinates
rW j , namely under the transformationrW j→crW j , with c an arbitrary constant.

In the special case in which all 8 coupling constants vanish,a5a85b5b85l5l85m5m850,
the system~1.1!–~1.3! is moreover invariant under time rescaling,t→at with a an arbitrary
constant; and in this special case, sinceFW jk52FW k j @see ~1.2!–~1.3!#, the center-of-mass~2.1!

moves freely:RẄ 5 0. In view of its remarkable simplicity this case~which is Hamiltonian and of
course integrable, and allows theexplicit display of its Hamiltonian structure, including its Lax
representation! is discussed in some detail below~see Sec. IV F!.
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In the slightly less special case in which only the coupling constantsa anda8 do not vanish
~b5b85l5l85m5m850!, the system~1.1!–~1.3! is clearly invariant under space translations
~rW j→rW j1bW ; j51,..,n; bW 5arbitrary constant two-dimensional vector in the plane!. In this case the
center-of-massRW (t), see~2.1!, evolves according to the linear equation

RẄ 5~a1a8ẑ` !RẆ , ~2.2a!

so that~see below!

RW ~ t !5RW ~0!1~a21a82!21
•@RẆ ~0!$a@exp~at !cos~a8t !21#1a8 exp~at !sin~a8t !%

1 ẑ`RẆ ~0!$2a8@exp~at !cos~a8t !21#1a exp~at !sin~a8t !%#. ~2.2b!

In fact, the motion of the center-of-mass can be explicitly displayed also in the general case
~generic values of all 8 coupling constants!; see below.

Finally, and most importantly, the system~1.1!–~1.3! is invariant under rotations in the plane
~xj→xj cosu2yj sinu, yj→xj sinu1yj cosu; j51,..,n; u arbitrary time-independent angle of
rotation!. This is an essential feature to interpret this system as a genuinen-body problem in the
plane.

III. THE ORIGIN OF THE MODEL AND ITS SOLUTION

Almost two decades ago it was shown1 that the one-dimensionaln-body problem character-
ized by the equations of motion

z̈j5a1żj1b01b1zj1 (
k51,kÞ j

n

~zj2zk!
21.$2żj żk1~ żj1 żk!~l01l1zj !

1l2~ żjzk1 żkzj !zj1m211m0zj1m1zj
21m2zj

2zk% ~3.1!

is solvable, since the motion of thesen ‘‘particle coordinates’’zj (t) may be identified with the
motion of then zeros of the polynomial solutionc(z,t),

c~z,t !5)
j51

n

@z2zj~ t !#, ~3.2a!

of the linear partial differential equation

c tt2~l01l1z1l2z
2!czt1

1
2 ~m211m0z1m1z

21m2z
3!czz2@a12~n21!l2z#c t

1@b01b1z2~n21!m2z
2#cz2@ 1

2n~n21!~m12m2z!1nb1#c50, ~3.3!

identified by the initial data implied by~3.2a!,

c~z,0!5)
j51

n

@z2zj~0!#, ~3.4a!

c t~z,0!52c~z,0!(
j51

n

$żj~0!/@z2zj~0!#%. ~3.4b!

Since this solution is a polynomial inz of degreen,
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c~z,t !5zn1 (
m51

n

cm~ t !zn2m, ~3.2b!

to find it, it is generally necessary and sufficient to solve the linear system of ordinary differential
equations satisfied by the coefficientscm(t), m51,..,n, as implied by~3.2b! and ~3.3!. If all the
‘‘coupling constants’’a1, b0, b1, l0, l1, l2, m21, m0, m1, andm2 are time-independent, as we
assume hereafter, the solution of this system is an easy algebraic task; indeed in some cases it can
be performed in closed form~see below!. The solution of then-body problem~3.1! is thus reduced
to finding the zeroszj (t) of a known time-dependent polynomial inz of degreen.1

The potentialities of this approach, both as a source of solvablen-body problems on the line,
and of related mathematical results, have been amply explored and reviewed in a number of
papers.4 And, as it is natural in any investigation that involves the zeros of a polynomial, the idea
to extend the analysis from the real axis to the complex plane was also explored. In this manner
solvablen-body problems in the plane~rather than on the line! can of course be generated. But
these models did not appear to qualify as genuinen-body problems in the plane, because their
equations of motion generally are not invariant under rotations of the frame of reference in the
plane.4

The progress reported in this paper originates from a simple observation: if one focuses on the
subcase of~3.1! characterized by the restrictions

b05l05l25m05m25m350, ~3.5a!

so that the equations of motion read

z̈j5~a1 ia8!żj1~b1 ib8!zj1 (
k51,kÞ j

n

~zj2zk!
21

•$2żj żk1~l1 il8!~ żj1 żk!zj1~m1 im8!zj
2%, ~3.6!

then the system is clearly invariant under rescaling of the dependent variableszj ,zj→czj , and in
particular under the transformation

zj→zj85exp~ iu!zj . ~3.7a!

Note that, to write~3.6! in more explicit form, we have introduced the real and imaginary parts of
the nonvanishing coupling constants, by setting

a15a1 ia8, b15b1 ib8, l15l1 il8, m15m1 im8, ~3.5b!

of course now with the 8 ‘‘coupling constants’’a,a8,b,b8,l,l8,m,m8 all real.
But if one now interprets the real and imaginary parts ofzj ,

zj5xj1 iyi , ~3.8a!

as thex- andy-components of a two-vectorrW j in the plane,

rW j[~xj ,yj ,0!, ~3.8b!

then clearly the transformation~3.7a! corresponds to a rotation in the plane:

rW j→rW j85~xj8 ,yj8,0!, ~3.7b!

xj85xj cosu2yj sinu, ~3.7c!
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yj85xj sinu1yj cosu. ~3.7d!

Hence the subclass~3.6! yields, via the complexification~3.8a!, a rotation-invariant model. And
indeedit is easily seen that, via the position (3.8), the equations of motion (3.6) coincide with
(1.1)–(1.3).

This argument explains the origin of then-body model in the plane characterized by the
rotation-invariant equations of motion~1.1!–~1.3!, and of course it also entails that its solution is
provided, via~3.8!, by then zeros of the polynomial~3.2b!, namely by the formula@see~3.2a, b!#

)
j51

n

@z2zj~ t !#5zn1 (
m51

n

cm~ t !zn2m, ~3.9!

with

cm~ t !5cm
~1 ! exp@nm

~1 !t#1cm
~2 ! exp@nm

~2 !t#, ~3.10!

nm
~6 !5 1

2$a1l~n2m!1 i@a81l8~n2m!#6Dm%, ~3.11!

Dm
2 5@a1l~n2m!#22@a81l8~n2m!#214bm12mm~2n2m21!

1 i $2@a1l~n2m!#@a81l8~n2m!#14b8m12m8m~2n2m21!%, ~3.12!

cm
~6 !56@ ċm~0!2nm

~7 !cm~0!#/Dm . ~3.13!

These relations follow of course from the linear partial differential equation@see~3.3! and
~3.5!#

c tt2l1zczt1
1
2m1z

2czz2a1c t1b1zcz2@ 1
2n~n21!m11nb1#c50, ~3.14!

which entails, via~3.2b!

c̈m2@a11l1~n2m!# ċm2m@b11
1
2m1~2n2m21!#cm50. ~3.15!

As for the initial data,cm~0! andċm~0!, they are related to the initial positionsrW j ~0! and velocities

rẆ j (0) of then particles in the plane, via~3.8!, which of course also imply

żj5 ẋ j1 iẏ j , j51,..,n, ~3.16a!

rẆ[~ ẋ j ,ẏ j ,0!, j51,..,n, ~3.16b!

and via the relations implied by~3.9!:

(
m51

n

cm~0!zn2m52zn1)
j51

n

@z2zj~0!#, ~3.17a!

(
m51

n

ċm~0!zn2m52(
j51

n

żj~0! )
k51,kÞ j

n

@z2zk~0!#, ~3.17b!

which of course entail

c1~0!52(
j51

n

zj~0!, ~3.18a!
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c2~0!5 (
j ,k51; jÞk

n

zj~0!zk~0!, ~3.18b!

c3~0!52 (
j ,k,l51; jÞk,kÞ l ,lÞ j

n

zj~0!zk~0!zl~0! ~13.8c!

and so on, as well as

ċ1~0!52(
j51

n

żj~0!, ~3.19a!

ċ2~0!52 (
j ,k51; jÞk

n

żjzk~0!, ~3.19b!

ċ3~0!523 (
j ,k,l51; jÞk,kÞ l ,l5 j

n

żj~0!zk~0!zl~0!••• . ~3.19c!

Let us emphasize that the key to the solution is the formula~3.9!, that provides aone-to-one
(nonlinear) transformationbetween then ~complex! ‘‘particle coordinates’’zj (t) @see ~3.8!#,
which evolve according to~3.6! namely~1.1!–~1.3!, and then ~complex! ‘‘collective coordinates’’
cm(t), which evolve according to~3.15!, namely~3.10!–~3.13! with ~3.17!. These latter formulas
are of course quite explicit and very simple.

Note in particular that the center-of-mass coordinateRW (t), see~2.1!, is simply related to the
collective coordinatec1(t):

RW ~ t ![~2n Re@c1~ t !#,2n Im@c1~ t !#,0!; ~3.20!

hence its time evolution can be read directly from~3.10!–~3.13! ~with m51!.
Simple and explicit as the time evolution~3.10!–~3.13! is, it is quite rich, and it implies, via

~3.9! and ~3.8!, an even richer gamut of possible behaviors for the particle coordinatesrW j (t).
Several possibilities are surveyed in the following section. A more complete analysis is postponed
to a future paper.

IV. MOTIONS IN THE PLANE AND SPECIAL MODELS

In this section we survey tersely the various possible motions ofn particles in the plane,
whose time evolution is determined by the equations of motion~1.1!–~1.3!. As we have seen in
the previous section, they in fact coincide, via the identification~3.8!, with the motions in the
complex plane of then zeroszj (t) of the time-dependent polynomial of degreen in z whose
expression is displayed in the right-hand-side of~3.9!, with its time-dependent coefficientscm(t)

given explicitly by~3.10!–~3.13! and, in terms of the initial positionsrW j ~0! and velocitiesrẆ j (0) of
then particles in the plane, by~3.17! @with ~3.16! and ~3.8!#.

In particular, we analyze the behavior of the system ast→1`, and also ast→2`, assuming
it starts from given initial data att50. Of course the most important factor which determines the
long-time behavior of the system are the real parts of the quantitiesnm

(6), see~3.11!–~3.12!. Hence
we set

nm
~6 !5rm

~6 !1 igm
~6 ! , m51,..,n, ~4.1!

of course withrm
(6) andgm

(6) real:
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rm
~6 !5 1

2@a1l~n2m!6dm
~1 !#, ~4.2a!

gm
~6 !5 1

2@a81l8~n2m!6dm
~2 !#, ~4.2b!

where of course@see~3.11!–~3.12!#

Dm5dm
~1 !1 idm

~2 ! , ~4.3a!

dm
~6 !5$@~am

2 1bm
2 !1/26am#/2%1/2>0, ~4.3b!

am5@a1l~n2m!#22@a81l8~n2m!#212m@2b1m~2n2m21!#, ~4.3c!

bm52$@a1l~n2m!#@a81l8~n2m!#1m@2b81m8~2n2m21!#%. ~4.3d!

A. The generic case

In this subsection we analyze~on the basis of the results of Appendix A, that should be read
now, before proceeding any further! the behavior of the system in the generic case, when the 8
~real! coupling constantsa,a8,b,b8,l,l8,m,m8 have generic values~namely, we assume that these
8 coupling constants do not satisfy any of the equalities, which characterize instead the special
cases discussed below!.

Let us now consider the values of the 2n quantitiesrm
(6), m51,..,n; since we are looking at

the generic case, we assume they areall different, and we callr1 the largest of these 2n real
numbers andm1 the corresponding value ofm ~of course 1<m1<n!; likewise we callr2 the
smallest of these 2n real numbers, andm2 the corresponding value ofm(1<m2<n):

rm
~6 !<r1 , m51,..,n; rm1

~1 !5r1 , ~4.4a!

rm
~6 !>r2 , m51,..,n; rm2

~2 !5r2 . ~4.4b!

The behavior of the system ast→` is mainly determined by the value ofr1 ~and ofm1 if r1

is positive!; likewise the behavior ast→2` is mainly determined by the value ofr2 ~and ofm2

if r2 is negative!. Indeed ifr1 is negative,r1,0, ast→` all n particles tend to the origin; and
this happens forall initial conditions. In this case, of course,r2 is also negative,r2,0; then, as
t→2`, generallyn2m2 particles tend to the origin andm2 escape to infinity, namely they came
in from a large distance in the remote past~but there exist special systems which display a
different behavior, for instance some of them2 particles might approach a periodic trajectory in a
finite region of the plane rather than going to, or rather coming from, infinity; see Appendix A!.
This behavior corresponds to agenericset of initial conditions; a different behavior occurs for the
specialset of initial data characterized by the conditioncm2

(2) 5 0.

If insteadr1 is positive,r1.0, ast→` generallym1 particles escape to infinity andn2m1

tend to the origin~but again there are special systems that yield a richer behavior: if there is more
than a single value ofm, in the interval 1<m<n, for whichrm attains its maximal valuer1 , then
some particles also tend to a periodic circular trajectory, see Appendix A!; and again this outcome
emerges from generic initial data~the exception, as discussed above, is the case whencm1

(1) 5 0!.

As for the behavior ast→2`: if r2 is also positive,r2.0, all particles tend to~or rather, in the
remote past, came from! the origin ~for arbitrary initial data!; if r2 is negative,r2,0, generally
m2 particles tend to~or rather, in the remote past, came from! infinity and n2m2 tend to~i.e.,
came from! the origin ~but other behaviors are also possible in special cases, see Appendix A!.

This completes the outline of the behavior of solutions of the completely generic system of
type ~1.1!–~1.3!, characterized by 8 coupling constants which do not satisfy any of the equalities
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that characterizes the~more, or less! special cases considered below~or other special cases, which
shall be discussed in future papers!. This analysis has looked mainly at the motions that corre-
spond to generic initial data. In some cases, some of which have been indicated above but without
delving into any detailed analysis, there are~more, or less! special initial data which determine
motions with some qualitative difference from the generic case. This may happen if the initial data
cause some of the quantitiescm

(1) ,cm
(2) to vanish@see~3.10!, ~3.13!, ~3.17!#. Note that the vanish-

ing of all these quantities,cm
(1)5cm

(2)50,m51,..,n, is necessary and sufficient for the system to
be at equilibrium~no time-evolution!; but, as implied by~3.9! or ~3.17!, the only equilibrium
configuration, for the generic system under present consideration, is the rather unphysical one with
all particles piled up at the origin~systems with nontrivial equilibrium configurations are discussed
in Sec. IV G!.

Let us now continue, in the same vein, to survey the types of motion associated with the
system~1.1!–~1.3!, but now for values of the 8 coupling constantsa,a8,b,b8,l,l8,m,m8 which are
restricted by the requirement to satisfy some equalities.

B. Models featuring a limit cycle

The first model we consider is the borderline case which falls between the two possibilities
considered above, namely the case in which the quantityr1 , defined as above@see ~4.4a!#,
vanishes:

r150. ~4.5!

Note that this entails essentially a single~algebraic! constraint to be satisfied by the 8 coupling
constants. Let us moreover assume that, except for~4.5!, the system is generic, in particular such
that rm

(1),r1 , for m51,..,n andmÞm1 ~anda fortiori rm
(2),r1 for m51,..,n!. It is then clear

~see Appendix A! that, in the remote future~t→`!, n2m1 particles tend to the origin, andm1

approach~exponentially in time! the circular~limit-cycle! trajectories

z˜k~ t !5exp~2p ik/m1!~2cm1
!1/m1 exp~ igm1

t/m1!, k51,..,m1 . ~4.6!

Two comments about this formula are now in order.
Note first of all that, for notational convenience, we use here the standard rule to identify a

two-dimensional vector in the plane by the complex number that corresponds to it via the identi-
fication ~3.8!. Clearly, via this identification,~4.6! describes a circular ring ofm1 equispaced
particles which rotates uniformly around the origin.

Second, the notationz̃k(t) has been introduced to emphasize two important points: in the first
place, the ‘‘particle coordinates’’zj (t) do not coincide with the quantitiesz̃k(t), they only ap-
proach them~exponentially fast! as t→`; and second,m1 of then ‘‘particle coordinates’’zj (t),
j51,..,n, approach asymptotically them1 quantitiesz̃k(t), k51,..,m1 @see~4.6!#; but to ascertain
whether, say,z1(t) tends to the origin or to one of the quantitiesz̃k(t), and in such a case to which
one, a more detailed analysis of the motion is required than that given here~indeed, the choice
between these different options depends nontrivially upon the initial data!.

This behavior of the system ast→` emerges essentially out of any initial data; but of course
for the subset of initial data such thatcm1

(1) vanishes,cm1
(1)50, the limit circle~4.6! shrinks to the

origin, so that for this subset of initial data alln particles tend to the origin ast→`.
For the behavior of the system ast→2`, the analysis given in the preceding Sec. IV A is

applicable~of course, withr2,0!.
There clearly exists a plethora of other, non-completely-generic, models; for instance it might

happen that, for some value ofm, nm
(1)5nm

(2), in which case the formula~3.10! would have to be
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modified in a well-known manner. We forsake here the investigation of these possibilities, as well
as the others hinted at above, and proceed to analyze some more special, and perhaps more
interesting, cases.

C. Models with confined and with periodic motions

Let us now consider the model with

a50, l50, b850, m850. ~4.7!

These 4 conditions, together with the 3 inequalities

a8222n@2b1~n21!m#>0, ~4.8a!

@a81~n21!l8#224@b1~n21!m#>0, ~4.8b!

~a81nl8!22~l8212m!21@l8~a81nl8!12b1~2n21!m#2>0, ~4.8c!

are sufficient to guarantee that all the exponentsnm
(6) be imaginary:

nm
~6 !5 igm

~6 ! , ~4.9a!

gm
~6 !5 1

2@a81l8~n2m!#6 1
2$@a81l8~n2m!#222m@2b1~2n2m21!m#%1/2. ~4.9b!

Note that the 3 inequalities~4.8! guarantee that, for all values ofm, 1<m<n, the argument of the
square root in the right-hand-side of~4.9b! is non-negative, so thatgm

(6), as given by this formula,
is real.

It is then clear that, under these conditions, the system~1.1!–~1.3! @which features now, see
~4.7!, the 4 arbitrary constantsa8, b, l8, andm, restricted by the 3 inequalities~4.8!#, yields, from
any initial data,trajectories which remain confinedto a finite region of the plane: see~3.9!, ~3.10!,
and ~4.9!. It is moreover clear that there are special initial conditions for which the motion is
completely periodic, with period, say,T 5 2pn!/gm8

(1) ~orT 5 2pn!/gm8
(2)!; they emerge of course

from initial data such that, of all the 2n constantscm
(6), m51,..,n, see~3.10!–~3.13! and ~3.17!,

only cm8
(1) ~or only cm8

(2)! does not vanish.
This analysis applies of course if the values of the 4 nonvanishing coupling constantsa8, b,

l8, andm are generic. The system might behave differently for special values of these constants,
for instance, if one or more of the 2n quantitiesgm

(6), m51,..,n, vanish; in such a case there
would exist an equilibrium configuration different from the~unphysical! one in which all the
particles pile up at the origin~see Sec. IV G!. Let us mention here only the remarkable special case
in which, fromany initial data, there emerges acompletely periodictrajectory. It is easily seen that
this happens if the following 3 conditions hold@in addition to~4.7!#:

a81nl850, ~4.10a!

2b1~2n21!m50, ~4.10b!

~112m/l82!1/25p/q, q.0, ~4.10c!

with p andq two arbitrary integers~q positive!; we assume here thatupu neither equalsq, nor is
divisible byq ~unlessq51!. Indeed it is easily seen that, in such a case,

gm
~6 !52pm~2q7p!/T8, m51,..,n, ~4.11a!

with
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T854pq/l8, ~4.11b!

implying, see~4.9a! and ~3.10! @and of course~3.9! and ~3.8!#, that in this caseall trajectories,
emerging fromany initial data, are periodic with periodT5T8n!. We are of course assuming here
that l8 does not vanish, so thatT is finite; this entails that alsoa8 does not vanish, see~4.10a!.
Other cases which also feature completely periodic trajectories for any initial data, but with
a85l850 respectivelya8Þ0,l850, are discussed at the end of Secs. IV D, respectively, IV E.

D. Hamiltonian models

In this subsection we consider the models~1.1!–~1.3! in the special case

a5a85l5l850. ~4.12!

What makes these models worthy of focused attention is, that the corresponding equations for
the coefficientscm(t) then read@see~3.15!#,

c̈m2m@b11
1
2m1~2n2m21!#cm50; ~4.13!

hence the evolution of these quantities is obviously, indeed trivially,Hamiltonian. But the trans-
formation~3.9! among the ‘‘particle coordinates’’zj (t) and the ‘‘collective coordinates’’cm(t), as
all point transformations, is certainlycanonical. Hence the equations of motion~3.6! with ~4.12!
are certainly alsoHamiltonian ~how to write in explicit form the corresponding Hamiltonian
function is discussed in a separate paper8!.

It might appear that this argument only applies in the real domain, namely only ifb1 andm1
are real@implying b85m850; see~3.5b!#, andzj (t) andcm(t) are also real; which would exclude
the possibility to conclude that the two-dimensional system~1.1!–~1.3! with ~4.12! is Hamiltonian.
But the Hamiltonian structure can be generally extended from the real to the complex~i.e.,
two-dimensional! case, as we show in Appendix B.

The case withb1 andm1 real, namely@see~3.5b!#

b85m850, ~4.14!

and moreover with

2b1m~2n21!50, ~4.15a!

m.0, ~4.15b!

deserves however to be singled out, because it is again characterized bycompletely periodic
trajectories, with periodT52p(2/m)1/2n!, for any initial data, since in this case@see~3.9!–~3.12!#

nm
~6 !56 i~m/2!1/2m, m51,..,n. ~4.16!

E. Translation-invariant models

As we indicated in Sec. II, the equations of motion~1.1!–~1.3! are translation-invariant if

b5b85l5l85m5m850. ~4.17!

In this subsection we discuss these models. Note that in this case the equations of motion entail
that a particle is acted upon by a nonvanishing force, and contributes by its presence to the force
acting on other particles,only if it moves@with a nonvanishing velocity; except possibly at the
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instant of a collision: see~1.1!–~1.3! with ~4.17!#. Hence, in the context of the initial-value

problem, only particles whose initial velocitiesrẆ j (0) do not vanish, need to be taken into account;
particles whose initial velocities vanish can simply be ignored.

In this case the solution of the initial-value problem is of course still yielded by~3.9! with
~3.8!, but the time-evolution of the coefficientscm(t) now reads@see~3.15!#

cm~ t !5cm~0!1~a1 ia8!21ċm~0!$exp@~a1 ia8!t#21%. ~4.18!

The initial valuescm(0),ċm(0) are still related to the initial positionsrW j ~0! and velocitiesrẆ j (0) of
the n particles in the plane via~3.17! @with ~3.8! and ~3.16!#. In fact, it is easily seen that these
formulas may be combined to yield the following more compact prescription:1 the complex coor-
dinates zj (t) are the n roots of the equation in z,

(
j51

n

żj~0!/@z2zj~0!#5~a1 ia8!/$exp@~a1 ia8!t#21%. ~4.19!

Let us now discuss the motion of then particles in the plane entailed by these formulas; the
main parameter determining its character is the value ofa ~in particular its sign!.

We consider first the case of positivea, a.0. Then, ast→`, one of the particles escapes to
infinity, andn21 remain confined, and approach~exponentially in time,O~exp@2at#!! n21 fixed
positions, whose configuration depends on the initial positions and velocities@they are then21
zeros of the polynomial(m51

n ċm(0)z
n2m#. The trajectory of the particle that tends to infinity

coincidesasymptotically, as t→`, with that of the center-of-mass multiplied byn,rW j (t)'nRW (t)
@see ~3.18!# or, more explicitly @and in complex notation; see ~3.8!#,
zj (t)'2c1(t)'2(a1 ia8!21ċ1~0!exp[(a1 ia8!t#; note that we indicate here withrW j (t), and cor-
respondinglyzj (t), the coordinate of thej th particle, identified as the~single! one that escapes to
infinity ~which one of then particles is subject to such a fate depends nontrivially on the initial
data!. Note that the asymptotic motion of the escaping particle in straight or spiraling depending
whethera8 does or does not vanish.

The outcome we have described is obtained for a generic set of initial data; but there are
special sets of initial data that entail a different outcome. Indeed a necessary and sufficient
condition in order for this asymptotic outcome to emerge, is the condition@on the initial data; see
~3.17b!# ċ1~0!Þ0, which corresponds simply to the requirement that the center-of-mass of the
system not be initially@hence, throughout the motion: see~3.18! and~4.18!# at rest. If instead that
happens, namely ifċ1(0)5 ċ1(t)50, but ċ2~0!Þ0, then, ast→`, n22 particles remain in a finite
region of the plane and tend there to fixed positions, and 2 escape to infinity moving asymptoti-
cally in opposite directions~consistently with the center-of-mass being at rest!, according to the
asymptotic formulasz̃6(t)'6[2c2(t)]

1/2, c2(t)'(a1 ia8!21ċ2~0!exp[(a1 ia8!t#. And the argu-
ments holds further: if the initial data are such that@see~3.17b!# ċm~0!50 for m51,2,..,m821,
and ċm8~0!Þ0, then, ast→`, n2m8 remain confined andm8 escape to infinity. Specifically, the
n2m8 particles which remain confined tend asymptotically, ast→`, to then2m8 zeros of the
polynomial inz,

(
n5m8

n

ċm~0!zn2m50; ~4.20a!

while those which escape to infinity approach asymptotically them8 outgoing spiraling trajectories

z˜k~ t !5exp~2p ik/m8!@2 ċm~0!#1/m8 exp@~a1 ia8!t/m8#, k51,..,m8. ~4.20b!
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As t→2`, all n particles approach instead asymptotically@up to correctionsO~exp@at#!# the
configuration associated via~3.8! with then ~complex! roots of the polynomial equation inz,

zn1 (
m51

`

cm~2`!zn2m50, ~4.21a!

with @see~4.18!#

cm~2`!5cm~0!2~a1 ia8!21ċm~0!. ~4.21b!

This concludes our analysis of the behavior of the system~1.1!–~1.3! with ~4.17! anda.0.
Qualitatively the motion can be summarized as follows: in the remote past, then particles are
almost at restat some positions~which could of course be arbitrarily assigned!; the fact that they
are not completely at rest is of course essential, so that they do interact and take part in the motion
~if they arecompletely at rest, they remain so throughout time and can simply be ignored!. Then
the particles begin to move, andn21 of them always remain in a finite region of the plane,
approaching asymptotically, in the remote future, fixed positions; while one of them shoots off to
infinity, along a straight~if a850! or spiraling~if a8Þ0! trajectory. This outcome corresponds to
the generic case; in special cases~corresponding to special initial, att50, or asymptotic ast→2`,
conditions!, n2m8 particles remain always in a finite region of the plane, approaching asymptoti-
cally, as t→`, a configuration~fixed by the initial data! there, andm8 shoot eventually off to
infinity along outgoing~straight or spiraling! trajectories, approaching asymptotically equispaced
positions on a~fixed or rotating! circle of exponentially diverging radius.

This ends our discussion of thea.0 case. Thea,0 need not be discussed, since the analysis
is essentially identical to that of thea.0 case, except for the exchange oft→` with t→2` and
vice versa.

We end this subsection with an analysis of thea50 case~with a8Þ0; thea5a850 case is
treated in the following subsection!. In this case, the time evolution ofcm(t) is still given by~4.18!
~of course witha50!; hencefrom any initial data, the systems always evolvescompletely peri-
odically, with periodT52pn!/a8.

F. The simplest model: Its behavior, its Hamiltonian structure

In this subsection we discuss the model characterized by vanishing values ofall coupling
constants,a5a85b5b85l5l85m5m850, so that the equations of motion in the plane read@see
~1.1!–~1.3!#

rẄ j52 (
k51,kÞ j

n

@rẆ j~rẆk•rW jk!1rẆk~rẆ j•rW jk!2rW jk~rẆ j•rẆk!#/r jk
2 , ~4.22a!

or equivalently, in complex notation@see~3.8! and ~3.6!#,

z̈j52 (
k51,kÞ j

n

żj żk /~zj2zk!. ~4.22b!

This is the ‘‘simplest model’’ within the class~1.1!–~1.3!; although, in terms of the behavior
of the solutions~see below!, perhaps the simplest case is that considered at the end of the
preceding Sec. IV E.

It is easily seen that the time-evolution of then complex coordinateszj (t) is now given by the
n roots of the equation inz,1
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(
j51

n

żj~0!@z2zj~0!#215t21, ~4.23!

and that in this case the center-of-mass, whosecomplexcoordinate we denote here byZ @see~2.1!
and ~3.8!#,

Z~ t !5n21(
j51

n

zj~ t !, ~4.24!

moves freely:

Z̈~ t !50, ~4.25a!

Z~ t !5Z~0!1Ż~0!t. ~4.25b!

If the initial conditions are such that the~time-independent! velocity, Ż(t)5Ż(0), of the
center-of-mass does not vanish, the system~4.22! evolves as follows: ast→6`, n21 particles
approach asymptoticallyn21 fixed locations@whose configuration depend on the initial condi-
tions, being in fact given by then21 roots of the function ofz appearing in the left-hand-side of
~4.23!#, while one of them shoots off to infinity, approaching asymptotically@up to corrections
O(t21)# the free trajectory

z˜~ t !5nŻ~0!t1(
j51

n

żj~0!zj~0!/@nŻ~0!#1(
j51

n

żj~0!zj~0!/@nŻ~0!#. ~4.26!

Hence the system lookson the wholeexactly the same in the remote future as in the remote
past~‘‘solitonic behavior’’!. Note however that the particle that escapes to infinity in the remote
future need not be the same one that came in from infinity in the remote past, and moreover that,
through the motion, some particles may change location~‘‘game of musical chairs’’: the locations
of the chairs are given, the identity of their occupants may change, from the timet52` when the
particles wander off in the plane, to the timet51` when they sit down again!.

In the special case in which the initial data entail that the center-of-mass velocity vanishes,
then ast→6` only n22 particles tend to finite locations, and 2 emerge to infinity~but they do not
move as free particles; see below!. And if the initial data are further specialized by requiring them
to satisfy additional conditions, the number of particles that escape to infinity increases. Since this
phenomenon is analogous~albeit not identical, due to the symmetrical behavior now ast→1`
and t→2`! to the case discussed in the preceding subsection, we detail here directly the general
outcome: ifċm~0!50 for m51,2,..,m821, andċm8~0!Þ0, then, ast→6`, n2m8 particles tend
asymptotically to fixed locations, given by then2m8 zerosz̃k of the following polynomial of
degreen2m8 in z̃,

(
m5m8

n

ċm~0!z̃n2m50, z̃5 z̃k , k5m811,m812,..,n, ~4.27a!

while m8 particles go to infinity approaching@up to correctionsO(t21)# the asymptotic stellar
trajectories

z˜k~ t !5exp~2p ik/m8!@2 ċm8~0!t#1/m8, j51,..,m8. ~4.27b!
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Here, of course, the quantitiesċm~0!, m51,..,n, are related to the initial data via~3.17b!. Again,
as t→6`, each particle coordinatezj (t) approaches one of the quantitiesz̃k so defined; but to
ascertain whichzj (t) approach whichz̃k(t) ~as t→2`, and ast→1`!, a more detailed analysis
is required, since this depends nontrivially on the initial data.

The system~4.22! is clearly a special case of those considered in Sec. IV D; hence it is
certainly Hamiltonian. But in this case a Hamiltonian function can be explicitly exhibited:

H~q,p!5(
j51

n

exp~apj ! )
k51,kÞ j

n

~qj2qk!
21. ~4.28!

Here the constanta is nonvanishing~aÞ0!, but otherwise arbitrary. Indeed, it is easily seen that
the standard Hamiltonian equations,

q̇ j5]H/]pj , ṗ j52]H/]qj , ~4.29!

yield

q̇ j5a exp~apj ! )
k51,kÞ j

n

~qj2qk!
21, j51,..,n, ~4.30a!

and @after using~4.30a!#

ṗ j5a21 (
k51,kÞ j

n

~ q̇ j1q̇k!/~qj2qk!, j51,..,n. ~4.30b!

Differentiating ~the logarithm of! ~4.30a! with respect to time and using~4.30b! one easily gets

q̈ j52 (
k51,kÞ j

n

q̇ j q̇k /~qj2qk!, j51,..,n. ~4.31!

But this equation coincides with~4.22b! if one identifiesqj with thecomplexvariablezj ,qj5zj ,
j51,..,n. The justification for so doing, and, most importantly, the prescription detailing how to
obtain in this manner a Hamiltonian structure for the real two-dimensional vector system~4.22a!,
are implied by the results reported in Appendix B.

The Hamiltonian evolution equations~4.31! are merely a special case of those associated2 ~in
the real domain! to the beautiful integrable relativistic one-dimensionaln-body problem discov-
ered by S.N.M. Ruijsenaars and H. Schneider.5 Hence one can take over the known (n3n)-matrix
Lax pair,2

L jk5d jkq̇ j1~12d jk!~ q̇ j q̇k!
1/2, ~4.32a!

Ajk52~12d jk!~ q̇ j q̇k!
1/2/~qj2qk!, ~4.32b!

which, as can be easily verified, yields, via the Lax (n3n)-matrix equation,6

L̇5@L ,A#, ~4.33!

precisely the evolution equations~4.31!. And of course the two-dimensionalization of this Lax
equation via complexification@qj5zj , and see~3.8!# is a trivial matter.

There also exist several other Hamiltonians which produce the same evolution equations
~4.31!.8
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G. Models with nontrivial equilibrium and rotating configurations

Let us now return to thegeneralmodel ~1.1!–~1.3!, to investigate the subcases when there
exist nontrivial equilibrium configurations, namely time-independent solutions of~1.1!–~1.3!,

rW j~ t !5 r̄W j , rẆ j~ t !50, j51,..,n, ~4.34a!

or equivalently@see~3.8!#,

zj~ t !5 z̄j , żj~ t !50, j51,..,n, ~4.34b!

with the quantitiesz̄j not all vanishing@we consider trivial, and indeed ‘‘unphysical’’, see~1.2b!,
the ‘‘equilibrium configuration’’z̄j50, j51,...n, which corresponds, see~3.9! as well as~3.10!
and ~3.13!, to cm(t)50,m51,...,n#.

It is clear @see~3.9!, ~3.10!, and ~3.13!# that a necessary and sufficient condition for this to
happen is that, for some valuem5m̄, 1<m̄<n, either nm̄

(1) or nm̄
(2) ~or both nm̄

(1) and nm̄
(2)!

vanish:

nm̄
~1 !50 or nm̄

~2 !50, 1<m̄<n. ~4.35!

Via ~3.11!–~3.12! @or, more transparently, directly from~3.15! and~3.5b!#, it is generally seen that
this requirement entails the following two conditions:

~2n2m̄21!m12b50, ~4.36a!

~2n2m̄21!m812b850. ~4.36b!

These conditions constrain only the values of the coupling constantsb,b8,m,m8; indeed the other
4 coupling constants,a,a8,l,l8, play no role at equilibrium, since the corresponding forces vanish
when the particles are at rest, see~1.2!–~1.3!.

Let us then assume that the constraints~4.36! do hold, for some valuem̄, 1<m̄<n. Then
clearly the equilibrium configuration is characterized by the condition that all other coefficients
cm(t) vanish,

cm~ t !50, m51,..,n, mÞm̄ ~4.37a!

@see~3.9!#. Hence the equilibrium configuration is identified by the condition@see~3.9!#

)
k51

n

~z2 z̄k!5zn1cm̄z
n2m̄, ~4.37b!

with cm̄ an arbitrary complex constant, and, say@see~3.13!#

cm̄5cm̄
~1 ! , cm̄

~2 !50. ~4.37c!

This constant can be rescaled away from~4.37b!, by replacing z with cz and z̄k with
cz̄k ,z→cz,z̄k→cz̄k , with c 5 (cm̄)

1/m̄. This freedom corresponds to the rotation and rescaling
invariance of the model~1.1!–~1.3!, which of course entail that, ifzj5 z̄j , j51,...,n, is an equi-
librium configuration,zj8 5 cz̄j , j51,..,n, with c any complex number, is also an equilibrium
configuration. One may therefore conclude that the equilibrium configurations of the model~1.1!–
~1.3! with ~4.36! are provided, as usual via~3.8!, and up to rotations and rescalings, by the
solutionsz̄k of the polynomial equation inz,

zn1zn2m̄5zn2m̄~11zm̄!50, ~4.38!
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implying of course

z k̄5exp@ i~2k11!p/m̄!, k51,...,m̄, ~4.39a!

z k̄50, k5m̄11,m̄12,...,n. ~4.39b!

Only two cases, therefore, must be considered, if one excludes as ‘‘unphysical’’ any configu-
ration with more than one particle sitting at the origin@see~1.2b!#: the casem̄5n, in which alln
particles sit equispaced on a circle centered at the origin, and the casem̄5n21, in which one
particle sits alone at the origin andn21 sit equispaced on a circle centered at the origin. Both
configurations display, of course, circular symmetry; and they are ‘‘universal’’, namely indepen-
dent of the values of the coupling constants that characterize the different models~1.1!–~1.3!;
provided, of course, these coupling constants satisfy the condition~4.36!, with m̄5n or m̄5n21.
Note that in each case there are in factn! different configurations, corresponding to the different
possible allocations of then particle positionszj to the equilibrium positionsz̄k .

These equilibrium configurations cannot be completely stable, due to the circular and scale
symmetries. Indeed it is clear that the equilibrium configuration~4.39! is a special case of the more
general solution of the equations of motion~1.1!–~1.3! with ~4.36! which reads, via~3.8!,

z˜k~ t !5@2cm̄~ t !#1/m̄z̄k , k51,...,n, ~4.40a!

with z̄k given by ~4.39! and

cm̄~ t !5cm̄~0!1 ċm̄~0!@a1l~n2m̄!1 ia81 il8~n2m̄!#21

•@exp$@a1l~n2m̄!1 ia81 il8~n2m̄!#t%21#. ~4.40b!

Clearly this configuration of the system hasn2m̄ particles sitting at the origin~thus one might
view only the two casesm̄5n and m̄5n21 as ‘‘physically acceptable’’!, and m̄ sitting equi-
spaced on a circle~centered at the origin, with arbitrary initial radius and orientation!, which itself
rotates uniformly and expands or shrinks over time. Again, there aren! such solutions, which
differ merely in the one-to-one matching of then particle coordinateszj (t) with then quantities
z˜k(t), see~4.40a!.

Of course an additional element of possible instability of the equilibrium configuration~4.39!,
or, more generally, of the ‘‘merry-go-round’’ configuration~4.40!, arises from the possibility that
a perturbation excite other ‘‘nonlinear modes,’’ namely that it induce other coefficientscm(t),
with mÞm̄, to become different from zero. Whether such a perturbation would then grow or decay
depends of course on the sign of the quantitiesrm

(6), see~3.10! and ~4.1!–~4.3!.
A study of the behavior of the system~1.1!–~1.3! in the neighborhood of its equilibrium

configuration~4.39! could of course be done in the standard manner,1 by linearizing the equations
of motion ~1.1!–~1.3! around this equilibrium configuration via the position, say,

zj~ t !5 z̄j1ez j~ t !, j51,...,n, ~4.41!

with e a small parameter. In this manner one is then led, in a well-known manner,1 to identify
‘‘remarkable matrices,’’ whose eigenvalues and eigenvectors are known. We forsake here any
further discussion of this topic.

Let us end this subsection by noting that~4.40a!, with cm̄(t) defined by~3.10!–~3.13! @rather
than ~4.40b!#, provides a circularly symmetrical solution to~1.1!–~1.3! for thegeneralcase with
8 arbitrary coupling constants@namely, even if the conditions~4.36! do not hold#.
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H. First-order evolution equations

In this subsection we mention that the results described above~see, in particular, Sec. III!
imply of course the possibility to also solve the models characterized by equations of motionof
first order,

rẆ j5~b1b8ẑ` !rW j1 (
k51,kÞ j

n

r jk
22~m1m8ẑ` !$rW j@r j

222~rW j•rWk!#1rWkr j
2%, ~4.42!

which might also be of applicative interest~perhaps in fluid dynamics!. Suffice here to note that,
via the mapping~3.8!–~3.9!, they correspond to the equations

ċm2m@b1 ib81 1
2~2n2m21!~m1 im8!#cm50, ~4.43a!

implying

cm~ t !5cm~0!exp@m$b1 1
2~2n2m21!m1 i@b81 1

2~2n2m21!m8#%t#. ~4.43b!

I. One-dimensional motions

In this subsection we mention briefly the possibility that the model~1.1!–~1.3! allow motions
which are essentially one-dimensional. It is clear that a necessary condition for this to be possible
is the vanishing of all primed coupling constants,

a85b85l85m850. ~4.44!

It is then clear that, if the initial conditions are characterized by analigned configuration,

rW j~0!5uW 1sj~0!vW , j51,...,n, ~4.45a!

rẆ j~0!5 ṡj~0!vW , j51,...,n, ~4.45b!

with uW andvW two arbitrary 2-vectors in the plane, then the motion maintains, at least for some
time, suchaligned configuration,

rW j~ t !5uW 1sj~ t !vW , j51,...,n, ~4.46!

and it reproduces results which have been known for quite some time.1 Even in this case there is,
however, a possibility that the motion become two-dimensional when two particles collide and are
then scattered, generally in opposite directions in the plane, away from the straight line which
characterized their one-dimensional motion.

V. OUTLOOK

The interest of then-body models considered in this paper originates from the dearth of
solvableexamples ofn-body motion in the plane, besides the trivial case of purely harmonic
oscillators, or other cases obtained by complexification from solvable one-dimensionaln-body
problems, whose relevance is however moot if they lack the property of rotation invariance, which
is crucial for a proper interpretation of such evolutions as representing the motion of particles in
the plane. The interest of the models treated in this paper is moreover underscored by the richness
of the motions they entail, remarkably combined with the simplicity of the solution technique.
This is displayed by the various cases discussed in the preceding section; the presentation of a
more complete analysis remains as a task for the future.
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As part of that analysis, let us mention that the consideration of special motions associated
with symmetrical configurations opens several possibilities, including the identification of new
solvable one-dimensional models, which might then again yield two-dimensional models via
complexification. These extensions can be pursued as applications of the technique of
‘‘duplication’’, 7 but with the additional possibility now to consider multiring circularly-
symmetrical configurations. We postpone such treatments to future papers.

Three avenues of future research appear especially interesting: at least in the case of Hamil-
tonian motions, the consideration of quantal versions of these models; the limit cases obtained by
letting the numbern of particles diverge, including continuum configurations corresponding to
two-dimensional motions of~suitably interacting! strings in the plane; and the ambitious hope to
find, by appropriate extensions of the techniques employed in this paper, interestingn-body
problems which are solvable in three-dimensional space.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF THE ZEROS OF A POLYNOMIAL WHOSE
COEFFICIENTS DEPEND EXPONENTIALLY ON A DIVERGING PARAMETER

Let zj (t), j51,..,n, be then zeros of a polynomial of degreen in z whose coefficients depend
exponentially ont:

@zj~ t !#
n1 (

m51

n

cm~ t !@zj~ t !#
n2m50, j51,...,n, ~A1!

cm~ t !5 c̄m exp@~rm1 igm!t#, m51,...,n. ~A2!

The constants c̄m aren arbitrary ~nonvanishing! complexnumbers, and theconstantsrm,gm are
2n arbitrary real numbers;n is an arbitrary positive integer,n>2.

We now formulate, and then prove, the following
Proposition:As the real parametert tends to~positive! infinity, t→`,

zj~ t !5zj
~1 !~ t !$11O~exp@2pj t# !%, ~A3a!

zj
~1 !~ t !5 z̃j~ t !exp~qj t !, ~A3b!

z˜j~ t !5 z̄j exp~ ir j t !. ~A3c!

Here the superscript ‘‘plus’’ onzj
(1)(t) serves to distinguish this quantity fromzj (t) @clearly

zj
(1)(t) is the ‘‘dominant part’’ ofzj (t) ast→`#, and also as a reminder that we are investigating
the behavior ast→1` ~an analogous superscript should be attached toz̃j (t) and z̄j ; it is omitted
to simplify the notation!. Then complexconstants z̄j , and the 3n real numberspj.0, qj andr j ,
are given by the following prescriptions.

Identify on a Cartesian plane then points with discrete abscissasm51,..,n and ordinatesrm ,
and in addition the origin~abscissam50, ordinater050!. Draw the~clearly unique and continu-
ous, if generally segmented! curve, which is theupper envelopeof the 1

2n(n11) segments con-
necting pairwise thesen11 points~see the example withn57 in Fig. 1!; hereafter we refer to this
segmented line as theupper curve. Associateto each segment of this upper curvethe following
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numbers~the indexs labels subsequent segments of this curve, from left to right!: ms
(2) andms

(1)

are the values ofm that identify the beginning and the end of the segments ~so thatm1
~2!50,

ms
(1)5ms11

(2) ,mS
(1)5n, whereS is the number of segments that make up theupper curve!;

ns5ms
~1 !2ms

~2 ! ~A4!

~hencens is the number of points that lie below the segments, increased by one, see Fig. 1; of
course(s51

S ns5n!;

z~s!5@2 c̄m
s
~1 ! / c̄m

s
~2 !#1/ns ~A5!

~with the conventionc̄051!,

q~s!5@rm
s
~1 !2rm

s
~2 !#/@ms

~1 !2ms
~2 !#, ~A6!

r ~s!5@gm
s
~1 !2gm

s
~2 !#/@ms

~1 !2ms
~2 !#, ~A7!

p~s!5 inf
m51,..,n;mÞms

~1 ! ,ms
~2 !

@~$@m2ms
~2 !#rm

s
~1 !1@ms

~1 !2m#rm
s
~2 !%/@ms

~1 !2mj
~2 !# !2rm#.

~A8!

Note that the last formula implies thatp(s) is positive,p(s).0, since thestraight linedefined, as a
function of the variablem, by the expression$@m 2 ms

(2)#rm
s
(1) 1 @ms

(1) 2 m#rm
s
(2)%/@ms

(1)

2 ms
(2)#, which clearly goes through the points (ms

(2) ,rm
s
(2)) and (ms

(1) ,rm
s
(1)), is, by construc-

tion, aboveall other points (m,rm) with mÞms
(2) ,ms

(1). ~See Fig. 1, and note that we assume
here to be in thegeneric case, thereby excluding that three or more of then11 points identified

FIG. 1. The ‘‘upper curve’’ is bolded~see text for explanation!.
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above lie on one and the same straight line; the exceptional cases when this instead happens are
discussed below.! Then, to each segments, are associatedns asymptotic valueszj

(1)(t) @see
~A3a!#, with the following identification of the parameters in~A3!:

z j̄5z~s! exp~2p in/ns!, n51,...,ns , ~A9!

pj5p~s!, qj5q~s!, r j5r ~s!. ~A10!

To sum up: ast→`, the dominant termszj
(1)(t) in the asymptotic behavior of then zeroszj (t)

@see~A3a!# are divided intoS families ~whereS is the number of segments that constitute the
upper curve!; each family includesns values which, in the complex plane, lieequispacedon a
circle centered at the origin@see~A3!, ~A9!, and ~A5!#, whose radius varies proportionally to
exp(q(s)t) @see~A3!, ~A10!, and~A6!#, and which rotates with constant velocity as entailed by the
factor exp~ir j t) in ~A3b! @see~A10! and ~A7!#. The radius of the circle diverges to infinity or
converges to zero~in either case, exponentially!, depending on whether the segments has positive
or negative slope@see~A10! and ~A6!#; it is constant if the segments is horizontal@so thatq(s)

vanishes, see~A6!#. Note that, in the case ofpositiveslope, namely when the radius of the circle
divergesexponentially ast→`, so that the corresponding zeroszj (t) spiral to infinity, they may,
or may not, actually approach their dominant partszj

(1)(t), see~A3!; this of course depends on the
behavior of thedifference zj (t)2zj

(1)(t), which isO~exp$[q(s)2p(s)] t%! @see~A3! and ~A10!#,
hence which vanishes or diverges depending on whetherp(s) is larger or smaller thanq(s) @see
~A8! and ~A6!#. The zerozj (t) does of course approach, ast→`, its dominant partszj

(1)(t), if
zj
(1)(t) does not diverge ast→`, namely wheneverqj<0.

As mentioned above, this outcome describes~completely! the situation in thegeneric casein
which no point (m,rm) lies on the segment joining two other points, say (m1 ,rm1

) and
(m2 ,rm2

). If instead this is the casefor a point on the upper curve@as it would for instance happen
in the case of Fig. 1 ifr3 were a bit larger, so that the the point~3,r3! would lie exactly on the
segment joining~2,r2! and~5,r5!#, then the formula~A3! remains valid with the same definition of
qj and also~essentially; but see below! of pj @see~A3a,b! and ~A5!–~A7!#, while the definition
~A3c! of z̃j (t) is instead replaced by a new one, as we now indicate.

But let us note first that thens quantitiesz̃j (t) defined by~A3c!, ~A9!, and~A5! are in fact the
ns nonvanishing roots of the algebraic equation inz̃

c m̄
s
~2 ! exp~ igm

s
~2 !t !z̃n2ms

~2 !
1 c̄m

s
~1 ! exp~ igm

s
~1 !t !z̃n2ms

~1 !
50 ~A11!

@see~A4!, ~A5!, and~A9!#. This is the equation applicable in the generic case considered above.
A more general prescription to coverall possible cases requires the following supplementary rule:
if the upper curvecontainsSs points (ms

(s) ,rm
s
(s)), s51,..,Ss , which lie, in the Cartesian (m,rm)

plane, on thesamesegments, of course with

ms
~1!5ms

~2 ! ,ms
~Ss!5ms

~1 ! ,ms
~2 !<ms

~s!<ms
~1 ! , ~A12!

then thens dominant valueszj
(1)(t), see ~A3a!, belonging to the family associated with this

segments, have parameterspj andqj still defined by~A9! and~A6!–~A8! @albeit with the smallest
value in the definition~A8! of p(s) taken only over the values ofm different from every one of the
values ms

(s), s51,..,Ss#; but the quantitiesz̃j (t), see~A3a,b!, instead of being given by~A3c! @or,
equivalently, as thens roots of ~A11!#, are now thens roots of the algebraic equation inz̃,

(
s51

Ss

c̄m
s
~s! exp~ igm

s
~s!t !@ z̃#ms

~1 !
2ms

~s!
50. ~A13!
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The fact that this equation has indeedns roots is implied by~A4! and~A12!. Note that the general
case considered here includes the generic case treated above, since~A11! is the special case of
~A13! with Ss52.

This completes the formulation of theProposition. Before proceeding to prove it, let us note
that, since obviously the shape of theupper curveis mainly determined by the value of the largest
valuer1 attained by then parametersrm , thePropositionentails the following

Corollary: The behavior ast→` of the zeroszj (t), see~A1!–~A2!, is mainly determined by
the single parameter

r15supm51,..,n@rm#, ~A14!

and, ifr1 is non-negative, by the valuem1 ~or the valuesm1
~s! , see below! at whichrm attains its

maximal valuer1 .
Indeed, ifr1 is negative, r1,0, then ast→` all n zeroszj (t) converge~exponentially fast!

to zero,zj (t)→0, j51,..,n.
If insteadr1 vanishes, r150, then ast→`, some of the zeros neither converge to zero nor

escape to infinity, and the remaining ones~if any! converge to zero. Specifically, ifrm50 for
m5m1

~s! andrm,0 for mÞm1
~s! , with s51,..,S andm1

(s)<m1
(S)[m1 , then, ast→`,n2m1 of

then zeroszj (t) converge~exponentially fast! to zero, andm1 of them approach~exponentially
fast! them1 roots of the algebraic equation inz̃

@ z̃#m11 (
s51

S

c̃m
1
~s! exp~ igm

1
~s!t !@ z̃#m12m1

~s!
50. ~A15!

Note that, ifS51, thesem1 roots are given by the explicit formula

z˜k~ t !5exp~2p ik/m1!~2 c̄m1
!1/m1 exp~ igm1

t/m1!, k51,...,m1 . ~A16!

Finally, if r1 is positive, r1.0, some of then zeroszj (t) escape to infinity ast→`. Specifi-
cally, if rm5r1.0 form5m1 andrm,r1 for mÞm1 ~namely, if the maximal, positive, valuer1

is attained only at the single valuem1 of the indexm!, then, ast→`,m1 of the n zeroszj (t)
escape~exponentially fast! to infinity andn2m1 converge~exponentially fast! to zero. If instead,
more generally, rm5r1.0 for m5m1

~s! and rm,r1 for mÞm1
~s! , with s51,..,S and

m2[m1
(1)<m1

(s)<m1
(S)[m1 , then, ast→`,m2 of then zeroszj (t) escape~exponentially fast!

to infinity, n2m1 converge~exponentially fast! to zero, andm12m2 approach~exponentially
fast! them12m2 roots of the algebraic equation inz̃

(
s51

S

c̃m
s
~1 ! exp@ igm

s
~1 !t#@ z̃#m12m1

~s!
50. ~A17!

This more general case differs from the previous one iffS>2; and of course ifS52 ~so that
m1
(1)5m2 andm2

(1)5m1!, them12m2 roots of this equation are given by the explicit formula

z˜k~ t !5exp@2p ik/~m12m2!#@2 c̃m1
/ c̄m2

#1/~m12m2! exp@ i~gm1
2gm2

!t/~m12m2!#,

k51,...,m12m2 . ~A18!

This concludes the formulation of theCorollary, whose proof is obvious enough not to require
any additional elaboration here. Let us rather proceed and prove the aboveProposition. The basic
idea is to assume that, ast→`, two of the n11 terms in the polynomial(m50

n cm(t)z
n2m @see

~A1!; and note that hereafter we set, for convenience,c0(t)51, entailing the validity of~A2! also
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for m50, with c̄051 andr05g050! are of the same order and dominate over all others. Hence our
proof entails the identification of such pairs and the demonstration that they indeed dominate, and
the derivation thereby of the results detailed in the aboveProposition.

Let us then assume that the two terms with, say,m5m1 andm5m2 ~with m2.m1! are of the
same order and dominate over all others~as t→`!, so that by setting

z5 z̃ exp~qt! ~A19!

with

rm1
1~n2m1!q5rm2

1~n2m2!q ~A20!

we can conveniently rewrite Eq.~A1! as follows:

c m̄1
exp~ igm1

t !z̃n2m11 c̄m2
exp~ igm2

t !z̃n2m252 (
m50;mÞm1 ,m2

n

c̄m exp~ igmt !exp~2pmt !z̃
n2m

~A21!

with

pm5rm1
1q~m2m1!2rm . ~A22!

From ~A20! ~which corresponds of course to the condition that the two selected terms are of the
sameorder ast→`! we get

q5~rm2
2rm1

!/~m22m1!, ~A23!

hence, via~A22!,

pm5$@~m2m1!rm2
1~m22m!rm1

#/~m22m1!%2rm . ~A24!

It is now clear that the expression in the left-hand-side of~A21! dominates, ast→`, over every
term in the right-hand-side, provided the quantitiespm , see~A24!, arepositive, pm.0, for all
values ofmÞm1 ,m2 . Since the term inside the curly bracket in the right-hand-side of~A24!
represents, as a function ofm, thestraight line that goes, in the Cartesian plane (m,rm), through
the two points (m1 ,rm1

) and (m2 ,rm2
), it is clear that this condition is satisfied in the generic case

~see the formulation of thePropositionabove!, iff m15ms
(2) andm25ms

(1). With such a choice
we clearly get~A6! from ~A23!, as well as, from~A21!,

c m̄
s
~2 ! exp@ igm

s
~2 !t# z̃n2ms

~2 !
1 c̄m

s
~1 ! exp@ igm

s
~1 !t# z̃n2ms

~1 !
5O~exp@2p~s!t# ! ~A25!

with ~A8!. Clearly this last formula, via~A4!, entails~A3b,c! with ~A5! and ~A7!.
ThePropositionis thereby proved in the generic case. Extending this proof to the general case

~see above! is, we trust, sufficiently easy to justify leaving this task as an easy exercise for the
diligent reader.

Two final remarks.
In the formulations of thePropositionand of itsCorollary, we have, for simplicity, assumed

that none of the coefficientscm(t) in ~A1! vanish identically@see the first sentence after~A2!#. Of
course it is trivial to extend thePropositionand itsCorollary to also include the case in which one
or more of the coefficientscm(t) in ~A1! vanishes; then the corresponding points~m,r! must
simply be ignored in the construction leading to the identification of theupper curve, as well as in
the definition ofr1 ~see A14!, of m1 and so on.
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Another easy extension of the abovePropositionand of itsCorollary treats the other limit,
t→2`. Then the role of theupper curveis taken over by the, analogously defined,lower curve,
while all the formulas stand unchanged. In this case the quantitiesp(s), as defined by~A8!, are of
course, in the generic case, allnegative~rather thanpositive!, and the zeros associated with
segments of thelower curvehavingnegativeslope go to infinity ast→2`, while those associated
with segments of thelower curvehaving positiveslope tend to zero. As for the results of the
Corollary, of course the key role, to determine the behavior of then zeroszj (t) as t→2`, is
played by the value of the quantity

r25 inf
m51,..,n

@rm#; ~A26!

and the formulation of theCorollary relevant to thet→2` limit coincides essentially with that
detailed above for thet→1` case, withr1 replaced byr2 and a reversal of some of the
inequality signs, as obviously appropriate.

Finally let us look, as an explicit example, to the instance illustrated in Fig. 1. In this~generic!
case, ast→1` the 7 zeroszj (t) belong to 3 distinct families, one (s51,m1

(2)50,m1
(1)52)

containing 2 members and spiraling to infinity, a second one (s52,m2
(2)52,m2

(1)55) containing
3 members and also spiraling to infinity~albeit less fast!, and a third one
(s53,m3

(2)55,m3
(1)575n) of 2 members spiraling to zero; while there are only 2 families in the

t→2` limit, one containing 4 members which spiral to infinity, and one with 3 members which
spiral to zero.

In conclusion, let us emphasize that, while these results provide an easy technique to predict
the asymptotic behavior ast→6` of the zeroszj (t) of the polynomial~A1! with ~A2!, there is no
easy way to identifywhich zero behaveshow, nor to connect the behavior of any particular zero
as t→2` with its behavior ast→1`.

APPENDIX B: TWO-DIMENSIONALIZATION VIA COMPLEXIFICATION: PRESERVING A
HAMILTONIAN STRUCTURE

Suppose one is given a Hamiltonian function,H~q,p!, hence the corresponding standard
evolution equations,

q̇ j5]H/]pj , ṗ j52]H/]qj , j51,...,n, ~B1!

implying of course

q̈ j5 (
k51

n

@~]2H/]pj ]qk!~]H/]pk!2~]2H/]pj ]pk!~]H/]qk!#, j51,...,n. ~B2!

From these equations for then ‘‘canonical coordinates’’qj and then ‘‘canonical momenta’’
pj one can obtain evolution equations for 2n12n54n quantitiesby complexification, namely by
setting

qj5xj1 iyj , j51,...,n, ~B3a!

pj5j j2 ih j , j51,...,n, ~B3b!

of course withxj ,yj ,j j ,h j real. Note the~convenient, see below! choice of the minus sign in the
right-hand-side of the second of these equations.

The evolution equations for the 4n real quantitiesxj ,yj ,j j ,h j are, of course, easily obtained
by taking the real and imaginary parts of~B1! or ~B2!: and the capability to solve~B1! or ~B2! in
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thecomplexdomain entails the solvability of these evolution equations, which can of course also
be interpreted as evolution equations for the 2n two-dimensional vectors

rW j[~xj ,yj !, rW j[~j j ,h j !. ~B4!

The question that is addressed in this appendix is whether these~real, two-vector! equations
are themselves Hamiltonian, namely whether there exist a~real! functionH of the 2n two-vectors
rW j ,rW j such that these evolution equations read

rẆ j5]H/]rW j , rẆ j52]H/]rW j , ~B5!

consistently with the interpretation ofrW j as~two-vector! canonical variables andrW j as~two-vector!
canonical momenta.

The ~presumably well-known! answer to this question is positive, if the original Hamiltonian,
considered as a function of the complex variablesqj ,pj , is analytic, namely if, by setting@via
~B3!#

H~q,p!5F~$xj ,yj ,j j ,h j ; j51,..,n%!1 iG~$xj ,yj ,j j ,h j ; j51,..,n%!, ~B6!

of course withF andG real, there hold the equations@see~A3a!#

]F/]xj5]G/]yj , ]G/]xj52]F/]yj , ~B7a!

and @see~A3b!#

]F/]j j52]G/]h j , ]G/]j j5]F/]h j . ~B7b!

Indeed, using these equations, it is easily seen that~B1! coincides with~B5!, provided one sets
@via ~B3!, ~B4!, and~B6!#

H~$rW j ,rW j ; j51,..,n%!5F~$xj ,yj ,j j ,h j ; j51,...n%!. ~B8!

It is also easily seen that a second Hamiltonian structure is also automatically entailed by this
approach, with the new Hamiltonian function yielded byG @see~B6!#, and with an appropriate
redefinition of the canonical variables; hence all two-dimensional models obtained by complexi-
fication from an analytic Hamiltonian are~at least! bi-Hamiltonian.
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A systematic method for the conversion of first class constraints to an equivalent set
of the Abelian constraints based on the Dirac equivalence transformation is devel-
oped. A representation for the corresponding matrix of this transformation is pro-
posed. This representation allows one to reduce the problem of Abelianization to
the solution of a certain system of first order linear differential equations for matrix
elements. ©1996 American Institute of Physics.@S0022-2488~96!01003-4#

I. INTRODUCTION

It is the purpose of this note to describe a practical method for the conversion of non-Abelian
constraints into the Abelian form in the theories with first class constraints. To explain the practical
importance of this procedure, let us briefly recall the general principles of the description of the
standard Dirac theory of Hamiltonian systems with constraints.1–5

For the sake of simplicity we will, as usual, discuss the main ideas using a mechanical system,
i.e., a system with a finite number of degrees of freedom, having in mind that the direct extension
of the results to a field theory is in general possible only in the local sense.

Suppose that the system with 2n-dimensional phase spaceG acquires the following set of
irreducible first class constraintswa(p,q) ~a51,2,...,m!:

sa~p,q!50,
~1!

$wa~p,q!,wb~p,q!%5 f abg~p,q!wg~p,q!.

This means that the dynamics of our system is constrained on a certain submanifold of the total
phase space or, in other words, not all canonical coordinates are responsible for the dynamics.
~Below we will symbolize by notationGc this 2n2m-dimensional submanifold ofG, Gc,G.! The
generalized Hamiltonian dynamics is described by the extended Hamiltonian that is a sum of
canonical HamiltonianHC(p,q) and a linear combination of constraints with arbitrary multipliers
ua(t):

HE~p,q!5HC~p,q!1ua~ t !wa~p,q!. ~2!

The functionsua being arbitrary reflects the presence of coordinates in the theory whose
dynamics is governed in an arbitrary way. According to the principle of gauge invariance for
physical quantities, these coordinates do not affect them and thus can be treated as ignorable. The
main problem that arises is the identification of these coordinates. If theory contains only Abelian
constraints

$wa~p,q!,wb~p,q!%50, ~3!

a!Permanent address: Tbilisi Mathematical Institute, 380093, Tbilisi, Georgia. Electronic-mail: khved@theor.jinrc.dubna.su
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one can find these ignorable coordinates as follows. It is always possible6–9 to define a canonical
transformation to a new set of canonical coordinates

qi°Qi5Qi~qi ,pi !,
~4!

pi°Pi5Pi~qi ,pi !,

so thatm of the newP’s ( P̄ 1 ,...,P̄ m) become equal to the Abelian constraints~3!:

P̄ a5wa~qi ,pi !. ~5!

In the new coordinates we have the following system of canonical equations

Q̇*5$Q* ,HPh%, Ṗ*5$P* ,HPh%,
~6!

PG 50, QG 5u~ t !,

with arbitrary functionsu(t) and with the physical Hamiltonian

HPh[HC~p,q!uwa50[HC~P* ,Q* !u P̄ a50 .

The physical HamiltonianHPh depends only on the remaining (n2m) pairs of new canonical
coordinates (Q1* ,P1* ,...,Qn2m* ,Pn2m* ) which are gauge-invariant physical variables. This means
that the coordinatesQ̄ a conjugated to the momentaP̄ are ignorable coordinates and the canonical
system admits explicit separation of the phase space into physical and nonphysical sectors:

2n5 S q1p1Aqn
pn

D °

2~n2m!H SQ*P* D Physical sector

2mH S Q̄P̄ D Nonphysical sector.

~7!

A straightforward generalization of this method to the non-Abelian case is unattainable; identifi-
cation of momenta with constraints is forbidden due to the non-Abelian character of constraints
~1!. However, there exists a general proof of the possibility of a local replacement of the con-
straints~1! by an equivalent set of constraints forming an Abelian algebra~see, e.g., Refs. 3–5 and
9–12!. This general observation,Abelianization statement, reads as follows:

For a given set of m first class constraints it is always possible to chose locally m new
equivalent constraints

wa~p,q!50⇔Fa~p,q!50 ~8!

that define the same constraint surfaceGC so that the Poisson brackets between the new con-
straints strongly vanish, i.e.,

$Fa~p,q!,Fb~p,q!%50. ~9!

Thus, one can deal with this equivalent set of Abelian constraints to construct the reduced phase
space, the space of physical degrees of freedom. To reveal ignorable coordinates, we need an
explicit form of the new Abelian constraintsFa(p,q). We would like to emphasize that in all
proofs of the Abelianization it has been assumed that the constraints form a functional group.13 In
the present paper, we shall point out two alternative schemes of realization of the Abelianization
procedure: via the resolution of constraints and via ‘‘generalized’’ canonical transformation for
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general non-Abelian constraints of type~1!. The generalized canonical transformations14 are those
preserving the form of all constraints of the theory as well as the canonical form of the equations
of motion. It will be shown that it is possible to convert constraints into the Abelian form in a
constructive fashion with the help of the Dirac equivalence linear transformation

Fa~p,q!5Dagwg~p,q! ~10!

with the nonsingular matrixD

detiDagiu constraintsÞ0.

The main point of our result is that the matrixD can be determined bylinear first-order differ-
ential equations.

The remaining part of this note is devoted to the proof of this statement and the application to
a specific example: non-Abelian Christ–Lee model.15

II. ABELIANIZATION: ALTERNATIVE SCHEMES

A. Abelianization via constraint resolution

The direct way of Abelianization of constraints is as follows~see, e.g., Ref. 5!. Under the
assumption thatwa(p,q) arem independent functions one can resolve the constraints~1! for m of
ps,

pa5Fa~pI ,q!, ~11!

wherepI denotes the remainingps. Let us pass to a new equivalent set of the constraintswa(p,q),

Fa~p,q!5pa2Fa~pI ,q! ~12!

By explicit computing one can be convinced that the Poisson brackets of the new constraints
$Fa(p,q),Fb(p,q)% are independent ofpa ; however, since they again belong to the first class, a
unique possibility is that their Poisson brackets with each other must vanish identically. Thus, after
transformations to the new constraintsFa(p,q) we can realize the above-mentioned canonical
transformation~4! such thatm of the newPs become equal to the modified constraintsFa~12!,

P̄ a5Fa~qi ,pi !, ~13!

with the corresponding conjugate ignorable coordinatesQ̄ a .

B. Abelianization of constraints via the Dirac transformation

In this section, it will be demonstrated that due to the freedom in the representation of
constraint surfaceGc ,

wa~p,q!50,
~14!

$wa~p,q!,wb~p,q!%5 f abg~p,q!wg~p,q!,

one can always pass, with the help of the Dirac transformation, from these first class non-Abelian
constraints to the equivalent ones,

Fa~p,q!5Dab~p,g!wb~p,q!, ~15!

so that the new constraints will be Abelian:
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$Fa~p,q!,Fb~p,q!%50. ~16!

According to~16!, the matrixDab must satisfy the set ofnonlineardifferential equations

$Dag~p,g!wg~p,q!,Dbs~p,g!ws~p,q!%50. ~17!

This formulation of the Abelianization statement means a possibility of finding a particular solu-
tion for this very complicated system ofnonlineardifferential equations. Beyond the question, Eq.
~17! in this form does not represent any practical value but, as it will be shown here, there is a
particular solution to this equation that can be represented as

where each matrixDk has a form of the product ofksm3m matrices:

Dk5Rak1k~p,q! )
i5k21

0

S ak1 i~p,q!, ~19!

S ak[k~k11!

2 D
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and the corresponding matrix elements satisfy a set of first-orderlinear differential equations@see
below~25!–~28!#. Just the linear character of these equations allows one to speak about a practical
usage of the proposed method of Abelianization. As it will be explained below, the constraints
obtained as a result of the action ofk’s matrices@constraints at the (ak1k)th step#,

Fa
ak1k

5~Dk
•Dk21•••D1!abFb

0, ~22!

obey the algebra wherek constraints have zero Poisson brackets with any other. From the alge-
braic standpoint, the proposed method of Abelianization is nothing but an iterative procedure of
constructing ‘‘equivalent’’ algebrasAai of constraintsFa

ai. In am steps them-dimensional non-
Abelian algebra is converted into an equivalent Abelian one so that at theakth step the obtained
algebraAak possesses a center withk elementsZk@A# 5 (F1

ak,F2
ak,...,Fk

ak):

The matrixDk converts the algebraAk into the algebraAk11 in which the center contains one
element more than the previous one.

The proof of the validity of the representation~19! and the equations for matricesS andR
is obtained by induction. Suppose thatFa

ak are a set of constraints~obtained as a result of the

action ofk21 matricesD i! with an algebra having the centerZk@A# 5 (F1
ak,F2

ak,...,Fk
ak). Then,

the matrixDk from ~18! performs the transformation to the new constraints

Fa
ak1121

5Dk
abFb

ak11, ~24!

which form the algebra with the centerZk11@A# 5 (F1
ak11,F2

ak11,...,Fk
ak11,Fk11

ak11) if the matrices
S , R are solutions to the following set of linear differential equations:

$F1
ak1 i21,Sak

ak1 i
% 50

A A A
$Fk21

ak1 i21,Sak

ak1 i
% 50

J ⇒$Fā k

ak1 i21
,Sak

ak1 i
%50, ~25!

$Fk
ak1 i21,Sak

ak1 i
%5 f kakgk

ak1 i21Sgk

ak1 i
2 f kaki11

ak1 i21, ~26!

$F1
ak1k21,Bakbk

ak1k
% 50

A A A
$Fk21

ak1k21,Bakbk

ak1k
% 50

J ⇒$Fā k

ak1k21
,Bakbk

ak1k
%50, ~27!

$Fk
ak1k21,Bakbk

ak1k
%52 f kgkbk

ak1k21Bakgk

ak1k , ~28!

whereak5k11,...m, ā k51,2,...,k21, andf agb
ak1 i are structure functions of the constraint algebra

Aak1 i at the (ak1 i )th step.
Let us begin to construct, in a consecutive order, algebras with the center containing 1,2,...,m

elements. To determine the new algebra with one central element~let w1!, one can act in the
following way:
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~a! First, eliminatew1 from the right-hand side of Eq.~14!;
~b! then realize Abelianization with all others.

To achieve the first step, we can perform the transformation with the matrixS 1,

Fa
15S ab

1 wb ,

of type ~21!:

S 15S 1 0 0 ••• 0

C2 1 0 ••• 0

C3 0 1 ••• 0

A A A � A

Cm 0 0 ••• 1

D . ~29!

In the explicit form it is

F1
15F1

05w1 , Fa1
1 5wa1

1Ca1
1 w1 . ~30!

The algebra of new constraints remains the first class

$F1
1,Fa1

1 %5 f 1a11
1 F1

11 f 1a1g1
1 Fg1

1 ,

~31!
$Fa1

1 ,Fb1
1 %5 f a1b11

1 F1
11 f a1b1g1

1 Fg1
1 .

The new structure functionsf abg
1 are determined through the old onesf abg and the transformation

functionsCa1
1 as follows:

f 1a11
1 5 f 1a11

1 f 1a1g1
Cg1
1 1$F1

0,Ca1
1 %, ~32!

f a1b11
1 5 1

2~ f a1b11
2 f a1b1g1

Cg1
1 1$Ca1

1 ,Cb1
1 %F1

0!2 f 1a11
1 Cb1

1 1$Fa1
0 ,Cb1

1 %2~a1↔b1!, ~33!

f a1b1g1
1 5 f a1b1g1

1Ca1
1 f 1b1g1

2Cb1
1 f 1a1g1

, ~34!

f 1a1g1
1 5 f 1a1g1

. ~35!

Now let us choose the transformation functionsCb1
1 so that the Poisson bracket of the first

constraintF1
1 with all other modified constraints does not containF1

1:

$F1
1~p,q!,Fa1

1 ~p,q!%5 (
gÞ1

f 1a1g
1 ~p,q!Fg

1~p,q!. ~36!

Thesem21 requirementsf 1a11
1 5 0, according to~32!, mean that the transformation function

Ca1
1 must satisfy the following set of linear nonhomogeneous differential equations

$F1
0,Ca1

1 %52 f 1a11
1 f 1a1g1

Cg1
1 . ~37!
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Note that the problem of existence of the solution to a set of that sort of equations has been studied
very well ~see, e.g., Ref. 16!. Suppose we find a particular solutionCa1

1 for ~37!. Then, we can

determine all structure functions of the modified algebra according to Eq.~32!:

f 1a11
1 50, ~38!

f a1b11
1 5 f a1b11

2 f a1b1g1
Cg1
1 1$Ca1

1 ,Cb1
1 %F1

01$Fa1
0 ,Cb1

1 %1$Fb1
0 ,Ca1

1 %, ~39!

f a1b1g1
1 5 f a1b1g1

1Ca1
1 f 1b1g1

2Cb1
1 f 1a1g1

, ~40!

f 1a1g1
1 5 f 1a1g1

. ~41!

Now let us again keep the first constraint unchanged and perform the Dirac transformation for
the remaining part of constraintsFa1

, a152,3,...,m,

F1
25F1

15F1
05w1 , Fa1

2 5Ba1b1
2 Fb1

1 , ~42!

with the requirement that the new constraints have zero Poisson brackets with the first oneF1
1:

$F1
2,Fa1

2 %50. ~43!

One can verify that this requirement means that the transformation functionsBa1b1
are solutions

to the equation

$F1
1,Ba1b1

2 %52 f 1g1b1
Ba1g1
2 . ~44!

In terms of a solution of Eq.~44! the modified algebra has the following structure functions:

f 1a11
2 50, ~45!

f a1b11
2 5Ba1d1

2 Bb1s1

2 f d1s11
1 , ~46!

f a1b1g1
2 5@$Ba1d1

2 ,Bb1s1

2 %Fs1

1 1$Ba1d1
2 ,Fs1

1 %Bb1s1

2 2$Bb1d1
2 ,Fs1

1 %

3Ba1s1

2 1Ba1k1
2 Bb1s1

2 f k1s1d1
1 #~B2!d1r1

21 . ~47!

Thus, as a result of two transformationsD15S 1R2, we obtain the modified algebraA2 of
constraintsFa

2 with the central elementF1
2

$F1
2,Fa1

2 %50, ~48!

$Fa1
2 ,Fb1

2 %5 f a1b11
2 F1

21 f a1b1g1
2 Fg1

2 . ~49!

The structure functionsf a1b1g
2 of algebra~48! and~49! possess a significant property: sinceF1

2 is

the central element, the structure functions obey the following property:

$F1
2, f a1b1g

2 %50. ~50!

To verify this, it is sufficient to calculate the Poisson bracket ofF1
2 with ~49! and use the Jacobi

identity.
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To extend the center of the new algebraA2 by F2
2, we will act by analogy with the previous

case.

~a! EliminateF1
2 andF2

2 from the right-hand side of Eq.~49!.
~b! Then, perform the Abelianization with all others.

To carry out the first point of this program, we will deal with two consecutive transformations
S 3 andS 4. Let us require that the first transformationS 3 of type ~21!,

F1
35F1

2, F2
35F2

2

~51!
Fa2

2 5Fa2
2 1Ca2

3 F1
2, a253,...,m,

leads to the new algebra of constraints so thatF1
3 is again the central element,

$F1
3,Fa1

2 %50, ~52!

and the Poisson brackets of the second constraintF2
3 with all other modified constraints does not

containF1
3:

$F2
3,Fa2

2 %5 (
gÞ1

f 2a2g
3 Fg

3. ~53!

This requirement leads to the following equations:

$F1
3,Ca2

3 %50, $F2
2,Ca2

3 %5 f 2a2g2
2 Cg2

3 2 f 2a21
2 . ~54!

As for the existence of solutions to these equations, one can verify that the integrability condition
for the system of differential equations~54! is nothing else but~50!. In full analogy with the
previous case one can express the new structure functionsf a,bg

3 throughf a,bg
2 and verify that they

obey the following property:

$F1
3, f 2a2g

3 %50. ~55!

Now one can realize the transformationS 4 of type ~21!,

F1
45F1

3, F2
45F2

3,
~56!

Fa2
4 5Fa2

3 1Ca2
4 F2

2,

so thatF1
4 is again the central element,

$F1
4,Fa1

2 %50, ~57!

and the Poisson brackets of the second constraintF4
2 with all other modified constraints do not

containF1
4 andF2

4:

$F2
4,Fa2

4 %5 (
gÞ1,2

f 2a2gFg
3. ~58!

This requirement leads to the following equations:

$F1
4,Ca2

4 %50, $F2
3,Ca2

4 %5 f 2a2g2
3 Cg2

4 2 f 2a22
3 . ~59!
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This system is consistent by virtue of Eqs.~55!. For the new structure function one can again
verify that

$F1
4, f 2a2g

4 %50 ~60!

as for the previous step@see Eqs.~55!#. Now for Abelianization of two constraintsF1
4 andF2

5, it
is enough to perform the last transformation with a matrixR of type ~20! if its elements are
solutions to the equations

$F1
4,Ba2b2

5 %50, $F2
4,Ba2b2

5 %52 f 2g2b2
4 Ba2g2

5 . ~61!

As a result,

$F1
5,Fa

5%5$F2
5,Fa

5%50.

Note that~60! provides a solution to Eqs.~61! to exist. As a result, one can easily verify that the
new structure functions possess the property

$Fā 2

5 , f a2b2g
5 %50, ā 251,2. ~62!

Thus, in five steps~for summary, see Table I! we obtained algebraA5, an equivalent to the initial
one with two central elementsFā 2

5 .

Now let us suppose that by acting in this way we obtain the algebraAk21 ~see Table II!,

$Fa
ak21,Fb

ak21
%5 f abg

ak21
Fg

ak21, ~63!

with the center composed of~k21! elements

TABLE I. Abelianization stages for the algebra with two central elements.

Constraints Algebra Conditions

Fa
0 Fa

05wa $Fa
0 ,Fb

0%5f abg
0 Fg

0

Fa
1 F1

15F1
0 $F1

1,Fa
1%5 f 1ag1

1 Fg1
1 $F1

0,Ca1
1 %5 f 1a1g1

Cg1
1 2 f 1a11

Fa1
1 5Fa1

0 1Ca1
1 F1

0

Fa
2 F1

25F1
15F1

0 $F1
2,Fa

1%50 $F1
1,Ba1b1

2 %52 f 1g1b
1 Ba1g1

2

Fa1
2 5Ba1b1

2 Fb1
1

1 $F1
2,Fa

2%50

Fa
3 F1

35F1
25F1

1 $F1
3,Fa

3%50 $F1
3,Ca2

3 %50
F2
35F2

2 $F2
3,Fa

3%5 f 1ag1
3 Fg1

2 $F2
2,Ca2

3 %5 f 2a2g2
2 Cg2

2 2 f 2a21
2

Fa2
3 5Fa2

2 1Ca2
3 F1

1

Fa
4 F1

45F1
3•••5F1

1 $F1
4,Fa

4%50 $F1
4,Ca2

4 %50
F2
45F2

35F2
2 $F2

4,Fa
4%5 f 2ag2

4 Fg2
4 $F2

3,Ca2
4 %5 f 2a2g2

3 Cg2
4 2 f 2a22

3

Fa2
4 5Fa2

3 1Ca2
4 F2

3

Fa
5 F1

55F1
4•••F1

1 $F1
5,Fa

5%50 $F1
4,Ba2b2

5 %50
F2
55F2

4•••F2
2 $F2

5,Fa
5%50 $F2

4,Ba2b2
5 %52 f 2g2b2

4 Ba2g2
5

Fa2
5 5Ba2b2

5 Fb2
4

2 $F1
5,Fa

5%5$F2
5,Fa

5%50
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Zk215~F1
ak21,F2

ak21,...Fk21
ak21

!,

$Zk21 ,Fa
ak21

%50,

and the structure functions of this algebra have the property

$Fā k

ak21
, f akbkg
ak21

%50, ā k5k21,...,m. ~64!

Now by direct calculations it is easy to verify that via the transformation of the matrixDk with
elements, the solutions to Eqs.~25! and~28!, we obtain the algebraAk with the center composed
of k elements

Zk215~F1
ak21,F2

ak21,...,Fk21
ak21

!,

~65!
$Zk21 ,Fa

ak21
%50.

The conditions~64! represent the integrability conditions for the system of Eqs.~25! and ~28!.
For completion we should only prove the following property of structure functions:

$Fā k11

ak1k
, f ak11bk11g
ak1k

%50. ~66!

To verify this, we can consider the algebra of constraints

$Fak11

ak1k ,Fbk11

ak1k
%5 f

ak11bk11ḡ k11

ak1k
F

ḡ k11

ak1k
1 f ak11bk11gk11

ak1k
Fgk11

ak1k
~67!

and compose the Poisson bracket of~67! with F
ā k11

ak1k
. Taking into account thatF

ā k11

ak1k
are central

elements of the algebraAk, we immediately obtain the desired result~66! with the help of the
Jacobi identity.

TABLE II. Abelianization stages for the algebra withk central elements.

Constraints Algebra Conditions

k21 $F1
ak21,Fa

ak21
%5$F2

ak21,Fa
ak21

%5•••5$Fk21
ak21,Fa

ak21
%50

F1
ak5F1

ak21
•••5F1

1 $F1
ak,Fa

ak%50 $F1
ak,Cak

ak%50
F2

ak5F2
ak21

•••5F2
2 $F2

ak,Fa
ak%50 $F2

ak,Cak

ak%50
A
Fk

ak5Fk
ak21

$Fk
ak,Fa

ak%5 f kag1

ak Fg1

ak $Fk
ak21,Cak

ak%5 f kakgk

ak21Cgk
ak2 f kak1

ak21

Fak

ak5Fa
ak21

1Cak

akF1
1

A A A
A A A

F1
ak1k

5•••5F1
1 $F1

ak1k ,Fa
ak1k

%50 $F1
ak1k ,Bakbk

ak1k
%50

F2
ak1k

5•••5F2
2 $F2

ak1k ,Fa
ak1k

%50
A A A
Fk

ak1k
5Fk

ak21
$Fk

ak1k ,Fa
ak1k

%50 $Bakbk

ak1k ,Fk
ak1k

%5 f kgkbk

ak1k21Bakgk

ak1k

Fak

ak5Bakbk

ak1k
Fbk

ak1k21

k $F1
ak1121,Fa

ak1121
%5$F2

ak1121,Fa
ak1121

%5•••5$Fk
ak1121,Fa

ak1121
%50
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III. CHRIST–LEE MODEL

In this section we will apply the above-described procedure to the well-known example, the
non-Abelian Christ–Lee model described by the Lagrangian

L~x,ẋ,y!5 1
2~ ẋ2@y,x# !22V~x2!,

wherex andy are three-dimensional vectors, (x1 ,x2 ,x3) and (y1 ,y2 ,y3).
It is easy to verify that except for three primary constraints

p5
]L

] ẏ
50,

there are two independent constraints

F1
05x2p32x3p2 , F2

05x3p12x1p3 , ~68!

with the algebra

$F1
0,F2

0%52
x1
x3

F1
02

x2
x3

F2
0. ~69!

The Abelianization procedure for this simple case consists of two stages. At the first step, the
transformationS 1 is reduced to

F1
15F1

0, F2
15F2

01CF1
0, ~70!

and Eq.~25! looks like

$F1
0,C%5

x2
x3

C1
x1
x3
. ~71!

We can write down a particular solution to this equation:

C~x!5
x1
x3

arctanS x2x3D . ~72!

So, as a result of first step, we obtain a new algebra

$F1
1,F2

1%52
x2
x3

F2
1. ~73!

Now let us perform the second transformationR2,

F1
25F1

1,

F2
15BF2

1, ~74!

with the functionB satisfying an equation such as~28!

$F1
1,B%5

x2
x3
. ~75!

A particular solution to this equation reads
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B~x!5 lnSAx221x3
2

x3
D . ~76!

Thus, the constraints equivalent to the initial Abelian constraints are of the form

F1
25x2p32x3p2 ,

~77!

F2
25 lnSAx221x3

2

x3
D F ~x3p12x1p3!1

x1
x3

arctanS x2
x3

D ~x2p32x3p2!G .
IV. CONCLUDING REMARKS

We have discussed the iterative procedure of converting first class constraints in an arbitrary
singular theory to the Abelian form of constraints. Our final goal is to apply the Abelianization
procedure to construct a reduced phase space in the gauge non-Abelian theory and gravity. To
extend the proposed method to field theory, it is necessary to clear up some points. For field
models, where the Poisson brackets of constraints contain derivatives of constraints such as
reparametrization-invariant theories, a direct application of our scheme is impossible. However,
for a wide class of gauge-invariant field models, e.g., the non-Abelian Yang–Mills theory, the
algebra of constraints is similar to the considered algebra, and we expect that the presented method
of Abelianization will be useful in this case. The Abelianization procedure will be applied to the
SU~2! Yang–Mills theory in a separate forthcoming publication.
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The complete Kepler group can be derived by Lie group
analysis

M. C. Nuccia)
Dipartimento di Matematica, Universita` di Perugia, 06123 Perugia, Italy

~Received 6 September 1995; accepted for publication 24 January 1996!

It is shown that the complete symmetry group for the Kepler problem, as intro-
duced by Krause, can be derived by Lie group analysis. The same result is true for
any autonomous system. ©1996 American Institute of Physics.
@S0022-2488~96!01804-4#

I. INTRODUCTION

In Ref. 1, a new concept of symmetry group for ordinary differential equations, which have
xk5xk(t), (k51,2,...,N) as unknown functions, was introduced. Krause defined a complete sym-
metry group by adding two properties to the definition of Lie symmetry group:

~i! the manifold of solutions is a homogeneous space of the group;
~ii ! the group is specific to the system~no other system admits it!.

This definition of the complete symmetry group needed a new type of symmetry to be introduced.
For example, neither Lie point symmetries nor contact symmetries give rise to a complete sym-
metry group for the Kepler problem. The generator of the new symmetry was defined to be

Y5F E j~ t,x1 ,...,xN!dtG] t1 (
k51

N

hk~ t,x1 ,...,xN!]xk, ~1!

which is different from the generator of a Lie point symmetry group2–11because of the appearance
of the integral ofj.

Here, we show that if the system under study is autonomous then the complete symmetry
group can be recovered by Lie group analysis. In particular, the extra symmetries that Krause
claimed not to be found by Lie group analysis for the Kepler problem can be so determined. This
is explained by the following observation. If the system is autonomous, then one of the unknown
functions can be taken to be the new independent variable and the system consequently can be
rewritten. Thus, Lie group analysis applied to the transformed system leads to different results,
and in particular the extra symmetries which were found by applying Krause’s method can be
retrieved.

II. OUTLINE OF THE METHOD

Let us consider the following autonomous system ofN second-order ordinary differential
equations

ẍk5Fk~x1 ,x2 ,...,xN ,ẋ1 ,...,ẋN! ~k51,2,...,N!. ~2!

A generator of a Lie point symmetry group for this system has the form

a!Electronic mail: nucci@gauss.dipmat.unipg.it
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X5t~ t,x1 ,...,xN!] t1 (
k51

N

hk~ t,x1 ,...,xN!]xk. ~3!

System~2! can be converted into the following autonomous system of 2N first-order ordinary
differential equations10

u̇k5uN1k , ~4!

u̇N1k5Fk~u1 ,u2 ,...,uN ,uN11 ,...,u2N!. ~5!

Now, we can choose one of the dependent variables to be the new independent variabley. For
example, let us takeuN5y. Then, system~4!–~5! becomes the following nonautonomous system
of 2N21 first-order ordinary differential equations with independent variabley

duj
dy

5
uN1 j

u2N
, ~6!

duN1 j

dy
5
F j~u1 ,u2 ,...,uN21 ,y,uN11 ,...,u2N!

u2N
, ~7!

du2N
dy

5
FN~u1 ,u2 ,...,uN21 ,y,uN11 ,...,u2N!

u2N
, ~8!

where (j51,2,...,N21). From Eqs.~6! we can deduce that

uN1 j5u2N
duj
dy

,

which when substituted into Eqs.~7! and ~8! yields the following system ofN21 second-order
ordinary differential equations and one first-order equation for the unknownsuj5uj (y), and
u2N5u2N(y)

uj95
1

u2N
2 @F j~u1 ,u2 ,...,uN21 ,y,u18 ,...,uN218 ,u2N!

2FN~u1 ,u2 ,...,uN21 ,y,u18 ,...,uN218 ,u2N!uj8#, ~9!

u2N8 5
FN~u1 ,u2 ,...,uN21 ,y,u18 ,...,uN218 ,u2N!

22N
, ~10!

where8 denotes differentiation byy. A generator of a Lie point symmetry group for this system is
of the form:

Z5V~y,u1 ,...,uN21 ,u2N!]y1 (
j51

N21

Gj~y,u1 ,...,uN21 ,u2N!]uj1G2N~y,u1 ,...,uN21 ,u2N!]u2N,

~11!

which can be transformed into the operatorY in ~1! by substitutinguj ,y,u2N with xj ,xN ,ẋN ,
respectively, and solving the following system forj andhk

Y~xj ![h j5Gj , ~12!
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Y~xN![hN5V, ~13!

Y~1!~ ẋN![
dhN

dt
2j ẋN5G2N , ~14!

whereY~1! denotes the first prolongation ofY. Therefore, Krause’s symmetries can be recovered
by means of Lie group analysis applied to system~9!, or other nonautonomous systems which can
be deduced from~4!–~5! by choosinguj5y. Vice versa,Y in ~1! can be transformed intoZ in ~11!
by means of~12!–~14!.

However, it should be noticed thatZ in ~11! could lead to a more general operator thanY in
~1! because of the appearance ofẋN . In this case, a sort of contact symmetry generalization ofY
would be needed.

Finally, Z can be transformed into a generator of a Lie point symmetry groupX in ~3!, with
t5*j dt, if ~12!–~14! yield thathk do not depend onẋN , and eitherj is constant orj5f (xN) ẋN ,
with f arbitrary function ofxN .

III. KEPLER PROBLEM

The Kepler problem provides a good example of the method outlined in the previous para-
graph. The original Kepler problem is given by the following system:

ẍ15
2Kx1

~x1
21x2

21x3
2!3/2

, ẍ25
2Kx2

~x1
21x2

21x3
2!3/2

, ẍ35
2Kx3

~x1
21x2

21x3
2!3/2

. ~15!

It is well known7 that Lie group analysis applied to~15! yields a five-dimensional Lie symmetry
algebra generated by

X15] t , X253t] t12x1]x112x2]x212x3]x3,

~16!
X35x2]x12x1]x2, X45x3]x12x1]x3, X55x3]x22x2]x3.

Instead, the eight-dimensional complete symmetry group of~15! is generated by
X1 ,X2 ,X3 ,X4 ,X5 , and

Y152S E x1 dtD ] t1x1
2]x11x1x2]x21x1x3]x3,

Y252S E x2 dtD ] t1x1x2]x11x2
2]x21x2x3]x3,

Y352S E x3 dtD ] t1x1x3]x11x2x3]x21x3
2]x3, ~17!

which can be obtained by means of the new generator~1! with N53.1 Krause stated thatY1, Y2,
andY3 cannot be recovered by Lie group analysis. It is true that they are not included in~16!, but
they can be retrieved by applying Lie group analysis to the equivalent nonautonomous systems.

Let us choosex3 to be the new independent variabley. Then, the new system~9! becomes

u195
2K~u12yu18!

~u1
21u2

21y2!3/2u6
2 , u295

2K~u22yu28!

~u1
21u2

21y2!3/2u6
2 , u685

2Ky

~u1
21u2

21y2!3/2u6
, ~18!
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where8 denotes differentiation byy. Note that, because of the symmetric form of~15!, a system
similar to ~18! is derived, whatever dependent variable we choose as the new independent vari-
able. Lie group analysis applied to~18! yields a three-dimensional Lie symmetry algebra gener-
ated by

Z15y2]y1yu1]u11yu2]u2,

~19!
Z252y]y12u1]u112u2]u22u6]u6, Z35u2]u12u1]u2.

If we transform these operators into the form given byY in ~1!, thenZ1 becomesY3 in ~17!, and
Z2 ,Z3 becomeX2 ,X3 in ~16!, respectively. In fact, transformingZ1 into an operator of the form
given byY in ~1! corresponds to solve~12!–~14!, i.e.,

h15x1x3[G1 , ~20!

h25x2x3[G2 , ~21!

h35x3
2[V, ~22!

dh3

dt
2j ẋ350[G2N . ~23!

Substituting~22! into Eq. ~23! yields 2x3ẋ32j ẋ350, which impliesj52x3.
It is easy to show thatY1 @Y2# can be obtained by applying Lie group analysis to the equiva-

lent nonautonomous system, which hasx1 @x2# as the new independent variable.
We have used our own interactive Reduce programs12 to perform Lie group analysis, and

apply Krause’s method with the generator~1!.
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We report results on the quantum thermal statisticsà la Gibbs–Shannon–Szilard–
Jaynes based onq-entropiesSq@r#5(q21)21

„12tr (rq)… (0,q Þ 1) and the in-
ternal energy functionalU@r#5tr (rH) proposed by C. Tsallis@J. Stat. Phys.52,
479–487~1988!#. © 1996 American Institute of Physics.
@S0022-2488~96!01303-5#

I. INTRODUCTION

For a discrete probability distributionr5(r1 ,r2 ,•••), with rn>0, and(nrn51, consider

Sq@r#5~q21!21S 12(
n

rn
qD ,

whereq is a positive real number distinct from 1.Sq@•# was introduced, with a different prefactor,
by Z. Daróczy1 who obtained the basic properties and gave an axiomatic characterization. One
sees easily that limq→1Sq@r#52(nrn ln(rn), the well-known Boltzmann–Shannon entropy. The
quantum mechanical version

Sq@r#5~q21!21
„12tr ~rq!…, ~1!

of theq-entropy appears on p. 247 of Wehrl’s review.2

The monoparametric family of entropiesSq@•# reappears in a paper by Tsallis,3 who proposed
a generalization of standard statistics obtained by maximizing theq-entropy at fixed internal
energy given by(nrnen . This formalism has been applied to self-gravitating systems,4 and leads
to a phase-space distribution with finite associated mass in contradistinction to the results obtained
using the standard statistico-mechanical formalism which lead to an infinite mass. ‘‘Specific heat’’
calculations for the harmonic oscillator using this scheme are given in Ref. 5.

In order to solve the basic problem of maximizingSq@•# at fixed internal energy, Tsallis3

introduced the function

Sq@r#1a(
n

rn2at~q21!(
n

enrn

and after a standard variation obtains the equation

rn
q215

q21

q
a@11t~12q!en#.

The left-hand side must be a non-negative number. If for a givent all the brackets on the
right-hand side are non-zero and have the same sign we get a solution, after determininga by the
normalization condition

a!Becario CONICOR.
b!Investigador CONICET. Electronic mail: raggio@fis.uncor.edu
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rn5F(
n
„11~12q!ten…

1/~q21!G21

„11~12q!ten)
1/~q21!.

The distribution will be non-degenerate:rn.0 for all n. When the brackets on the right-hand side
do not all have the same sign or some are zero, the distribution must be degenerate; it must lie in
a face of the simplex of probability distributions. One has to determine the appropriate range for
t. Although t provides a convenient and explicit parametrization of the distribution with minimal
free energy, it is not the reciprocal temperature associated to the problem. The reciprocal tempera-
ture is given byat(q21), which reads (H is the Hamiltonian operator with spectrum$en%):

b~ t !:5qt@ tr $„11~12q!tH…1/~q21!%#12q. ~2!

The results presented here determine the range of the reciprocal pseudo-temperaturet and the
connection with the reciprocal temperatureb; they also describe precisely the quantum mechani-
cal staterb minimizing the functional

r°btr ~rH !2Sq@r#. ~3!

All analogues of the familiar thermostatistical results known for the caseq51 are obtained. From
the point of view of Boltzmann–Gibbs statistics, we find qualitative changes only forq.1 where
‘‘temperatures’’ inside a certain interval containing 0 are inaccessible, a fact described in Refs. 3,
and 5. However, the 0th-law ~i.e., transitivity of thermal equilibrium! does not hold in this for-
malism.

We point out that Curado and Tsallis6 subsequently proposed another formalism where the
standard energy functionalU@r#5tr (rH) is replaced by the non-affine functional
Uq@r#5tr (rqH) while keepingSq@•# as the entropy. The corresponding non-standard ‘‘thermo-
statistics’’ is studied in Ref. 7 in the same spirit as the present paper. We include here a final
section where we compare both formalisms.

The basic observation for the proofs is an application of Ho¨lder’s classic inequalities to the
quantity(nrn(en2e2) wheree2 is the ground-state energy. WithN 5$n:en.e2%, one obtains

~12q!21 (
nPN

rn
q<~12q!21S (

nPN

rn~en2e2! D qS (
nPN

~en2e2!q/~q21!D 12q

and thus an upper bound onSq@r# in terms of the energy expectation value.
We record here some of the basic properties of theq-entropy. The proofs are written out in

Ref. 8, and are consequences of the fact thatSq@•# is a member of the family of entropy func-
tionals given byr°tr „ f (r)… where f is a concave function defined on the unit interval.9 Spe-
cifically

Sq@r#5tr „hq~r!…,

with hq(x)5(q21)21(x2xq). One hasSq@r#>0 with equality iff r is pure. In the finite dimen-
sional case~dimensiond), Sq@•# is strictly concave and one hasSq@r#<(q21)21(12d12q) with
equality iff r is the normalized trace. In the infinite dimensional case and forq.1, Sq@•# is
strictly concave and one hasSq@r#,(q21)21; moreoverSq@•# is Lipschitz in the trace norm. For
0,q,1 and in infinite dimension,Sq@•# is generically~on a set of second category! ` but the set
where it takes finite values is convex andSq@•# is strictly concave on it.

II. GENERAL REMARKS

Assume given a selfadjoint operatorH on a Hilbert space. In the infinite dimensional case, we
assume thatH is unbounded but its spectrum is purely discrete and consists entirely of eigenvalues
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of finite multiplicity. We enumerate these as$en% according to their multiplicities. We writee2

~resp.e1) for the minimal~resp. maximal! energy:e2 :5 infnen , e1 :5supnen ; and assume the
non-trivial casee2,e1 in the finite-dimensional case. The convex set of density operatorsV is
the state space. The~internal! energy functional isU@r#5tr (rH). In the unbounded case, the
trace is defined by taking any orthonormal basis$cn% of eigenvectors ofH when the correspond-
ing sum(nen^cn ,rcn& is absolutely convergent. With this definition, the setVo of statesr with
finite U@r# is convex.

For anyu in the intervalU5@e2 ,e1# ~but 6` excluded, in the infinite dimensional case!,
we consider the entropy as a function of energy given by

Sq~u!:5 sup
rPVo

$Sq@r#:U@r#5u%, uPU. ~4!

We will distinguish the ‘‘thermodynamic’’ functionals, such asSq@•#, defined on the states from
the ‘‘thermodynamic’’ functions, such asSq , by using square brackets for the arguments of the
former.

Since U@•# is affine, the set of statesr P Vo with U@r#5u is convex. If
u5lu11(12l)u2 where 0,l,1 andu1 ,u2 P U; then

Sq~u!>sup$Sq@lr11~12l!r2#:U@r j #5uj , j51,2%

>sup$lSq@r1#1~12l!Sq@r2#:U@r j #5uj , j51,2%5lSq~u1!1~12l!Sq~u2!,

so the entropy functionSq is concave. Ifv is a maximizing state, i.e.,Sq(u)5Sq@v#,`; then it
is unique becauseSq@•# is strictly concave, and we denote it byvu .

Consider the Legendre-Fenchel transform ofSq given by

fq~b!:5 inf
uPU

$bu2Sq~u!%, bPR. ~5!

The functionb°b21fq(b) is — in appropriate dimensionless variables — the analogue of the
Helmholtz free-energy of the system. We first remark thatfq is equal to theinfimum over states
of the corresponding free-energy functional~3!:

fq~b!5 inf
rPVo

$bU@r#2Sq@r#%. ~6!

Because the functional~3! is strictly convex where it is finite we conclude that ifr is a minimizer
of ~6! — i.e.,fq(b)5bU@r#2Sq@r#, for someb — then it is unique and we denote it byrb .

From ~5! it is clear thatfq is a concave function. From~6! and the positivity ofSq@•# one
concludes that the ‘‘free-energy’’ functionb°b21fq(b) is non-decreasing in the intervals
(2`,0) and (0,̀ ). The inequalitybe61fq(0)<fq(b)<be6 , where the1 sign~resp.2 sign!
applies for negative~resp. positive! b, is obtained directly from~6!, for e6 finite respectively.

If, in the infinite dimensional case,H is unbounded above~resp. below! we have
fq(b)52` for all negative~resp. positive! b. Thus, ifH is unbounded both above and below
thenfq[2` except atb50 whenq.1; the ‘‘thermostatistics’’ is empty.

The next question is if the unique minimizerrb ~resp. maximizervu) is diagonal in an
orthonormal basis diagonalizingH. Let $cn% be such a basis; and define

r̂5(
n

^cn ,rcn&ucn&^cnu.

Then r̂ is a state andU@r#5U@ r̂#. Moreover, one concludes thatSq@ r̂#>Sq@r#, since for any
unit vectorc in the Hilbert space one has^c,rqc&>^c,rc&q if q.1; and^c,rqc&<^c,rc&q if

1778 G. R. Guerberoff and G. A. Raggio: Standard q-statistics

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



0,q,1. This then implies that the minimizer~resp. maximizer! is indeed diagonal. The reader
will notice that all the above results are quite general since they depend exclusively on the strict
concavity property of the entropy functional.10 The problem is now to findrb andvu explicitly for
the specific entropySq@•#. This problem will be solved completely in the following two sections.

III. THE FINITE DIMENSIONAL CASE

We distinguish the two cases depending on whetherq is below or above 1.

A. 0<q<1

Let to5(q21)21(e12e2)
21. For t in the interval (to ,`), let b(t) be defined by@compare

with ~2!#

b~ t !:5qt@ tr $„11~12q!t~H2e2!…1/~q21!%#12q. ~7!

Then, b(•) is a strictly increasing and continuous function, with limt→to
b(t)52` and

limt→`b(t)5`. Thusb(•) maps the interval (to ,`) one-to-one and ontoR. Tsallis’sreciprocal
pseudo-temperatureis given by the mapt:R→(to ,`) inverse tob(•).

Proposition 1: For0,q,1, with HÞc•1 and in finite dimension one has:
1. The mapsU{u°Sq(u) andR{b°fq(b) are strictly concave, differentiable and each

other’s Legendre transforms. One has

Sq~e6!5
1

q21
~12g6

12q!, ~8!

where g6 is the degeneracy of the eigenvaluee6 .
The derivativeR{b° (dfq)/(db) (b)5:U(b) of fq is strictly decreasing and the inverse

of the derivative of Sq . One haslimb→6`U(b)5e7 ; and limu→e6
(dSq)/(du) (u)57`.

2. For each uPU there exists a unique maximizervu with Sq(u)5Sq@vu#. For eachb
PR there exists a unique equilibrium staterb minimizingfq . One has

vU~b!5rb , vu5rb~u! ~9!

whereb(u) is determined uniquely by U„b(u)…5u. One has

U~b!5U@rb#. ~10!
3. For eachbPR, the unique equilibrium staterb is given by

rb5
„11~12q!t~b!~H2e2!…1/~q21!

tr @„11~12q!t~b!~H2e2!…1/~q21!#
. ~11!

From the point of view of Boltzmann–Gibbs thermodynamics there are no qualitative changes
whatsoever; these will appear in the other following case.

B. q>1

For q.1, we define criticalq-dependent reciprocal ‘‘temperatures’’ by

bc
15

qg2
12q

~q21!~e2* 2e2!
.0; bc

25
qg1

12q

~12q!~e12e1* !
,0; ~12!

wheree1* is the first energy below the ceiling energy, ande2* is the first excited state energy. Let
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t15
1

~12q!~e12e1* !
,0, t25

1

~q21!~e2* 2e2!
.0.

An index % denotes the positive part of the indexed operator. Define

b~ t !5qt•H @ tr $„11~12q!t~H2e1!…%

1/~q21!%#12q, for t1,t<0

@ tr $„11~12q!t~H2e2!…%

1/~q21!%#12q, for 0<t,t2
. ~13!

Then, b(•) is a strictly increasing and continuous function with limt→t1
b(t)5bc

2 and

limt→t2
b(t)5bc

1 . Thus b(•) maps the interval (t1 ,t2) one-to-one and ontoI[(bc
2 ,bc

1).
Tsallis’s reciprocal pseudo-temperatureis given by the mapt :I→(t1 ,t2) inverse tob(•).

Proposition 2: For q.1, with HÞc•1 and in finite dimension one has:
1. The mapU{u°Sq(u) is strictly concave and differentiable; (8) is satisfied. The mapR

{b°fq(b) is concave, and differentiable. Moreover

fq~b!5H be21
1

12q
~12g2

12q!, if b>bc
1

be11
1

12q
~12g1

12q!, if b<bc
2

;

andfq is strictly concave onI[(bc
2 ,bc

1). Sq andfq are each others Legendre transforms, but
Sq(u)5 infbPI $bu2fq(b)%. The derivative U(•) of fq is continuous; it satisfies

U~b!5H e2, if b>bc
1

e1, if b<bc
2;

and is strictly decreasing onI with inverse given by the derivative of Sq . One has
limu→e6

(dSq)/(du) (u)5bc
7 .

2. For each uP U there exists a unique maximizervu with Sq(u)5Sq@vu#. For eachb
PR there exists a unique equilibrium staterb minimizingfq . One has

rb5H g2
21P2, if b>bc

1

g1
21P1, if b<bc

2,

where P6 is the orthogonal projection onto the eigenspace to the eigenvaluee6 . Moreover (9) is
satisfied withb(u) in the closure ofI determined uniquely by U„b(u)…5u. (10) is satisfied.

3. For eachbPI , the unique equilibrium staterb is given by

rb55
„11~12q!t~b!~H2e1!…%

1/~q21!

tr @„11~12q!t~b!~H2e1!…%

1/~q21!#
, for bc

2,b<0

„1~12q!t~b!~H2e2!…%

1/~q21!

tr @„11~12q!t~b!~H2e2!…%

1/~q21!#
, for 0<b,bc

1

. ~14!

SinceU(b) is constant outside the closure of the intervalI , we have that the analogue of the
specific heat is zero for all ‘‘temperatures’’T with @12q)g1

q21/q] ( e12e1* ),T,@(q
21)g2

q21/q] ( e2* 2e2). These ‘‘temperatures’’ are thus inaccessible. Notice also that the equi-
librium staterb will be degenerate as soon as the corresponding operator on the right-hand side of
~14! has a non-zero negative part. Atb50 the equilibrium state is the normalized trace. As we
increase b away from zero ~decrease positive ‘‘temperature’’! we reach a b1 where
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11(12q)t(b1)(e12e2)50; at thisb1 the ceiling state is depopulated and remains so if we
increaseb further. Proceeding, we reach ab2 such that 11(12q)t(b2)(e1* 2e2)50 and the
first de-excited state energye1* is depopulated. Continuing, one depopulates successively from
above the energiesen until bc

1 is reached where only the ground-state energy levele2 is popu-
lated. Decreasingb away from 0 ~increasing negative ‘‘temperatures’’! the energy levels are
depopulated successively from below until the ceiling energy levele1 is reached atbc

2 .
We mention here that forq>2 the ‘‘specific heat’’Cq connected to the second derivative of

fq by Cq52b2@(d2fq)/(db2)#(b) has discontinuities at eachb where a depopulation occurs.
This does not happen when 1,q,2.

C. Peierls–Bogoljubov Inequality

In both cases, the equilibrium staterb depends continuously onb and on the Hamiltonian
H specifyingU@•#. From this and the concavity of the mapl°fq

„lH11(12l)H2…(b) on the unit
interval for eachb, one obtains the inequality

fq
~H1!

~b!<fq
~H2!

~b!1btr „rb
~H2!

~H12H2!…;

which in terms of the free-energyf q
(H)(b)5b21fq

(H)(b) is the familiar Peierls–Bogoljubov in-
equality

f q
~H1!

~b!< f q
~H2!

~b!1tr „rb
~H2!

~H12H2!…, b.0;

f q
~H1!

~b!> f q
~H2!

~b!1tr „rb
~H2!

~H12H2!…, b,0.

D. Equilibrium ?

We have referred to the unique minimizerrb of the variational problem~6! as the equilibrium
state. This is pushing the analogy with statistical mechanics too far because the analogue of the
0th-Law of Thermodynamics is not satisfied at all! Indeed, if one considers two non-interacting
systems with HamiltoniansH1 andH2 respectively, then the composite is described by the Hamil-
tonianH5H1^ I1I^H2 on the Hilbert spaceH1^H2 . It is clear from Propositions 1 and 2,
that the unique minimizerrb

(H) associated withH is not a product-state, i.e.,

rb
~H !Þ~rb

~H !!1^ ~rb
~H !!2 ,

where (•••) j denotes the restriction of the state to thej -th subsystem (j51,2) obtained by taking

the partial trace over the other subsystem. Moreover, (rb
(H)) j Þ r

b8

(Hj ) for all possibleb8. Thus it is
impossible to assign a ‘‘temperature’’ to the subsystems; and it follows that ‘‘equilibrium’’ defined
via b is not transitive.

The reason behind this feature is the fact that although the internal energy functional is
additive

U ~H !@r ^ w#5U ~H1!@r#1U ~H2!@w#;

theq-entropy is not

Sq@r ^ w#5Sq@r#1Sq@w#1~12q!Sq@r#Sq@w#.

The variational problem~6! for the composite non-interacting system does not ‘‘factorize.’’
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IV. THE INFINITE DIMENSIONAL CASE

We have already commented on the unbounded case. The relationfq
(H)(2b)5fq

(2H)(b),
obtained directly from~6!, shows that it suffices to study the case whereH is bounded below but
not above. We assume this, and recall our standing assumption that the spectrum ofH is purely
discrete — that is it consists entirely of eigenvalues of finite multiplicities. Thene2 is an eigen-
value, andU5@e2 ,`). We have remarked before thatfq(b)52` for all b,0.

A. 0<q<1

Looking at the corresponding finite dimensional case, the parameterto which gives us the
minimal reciprocal pseudo-temperature is 0. The transformation

b~ t !:5qt@ tr $„11~12q!t~H2e2!…1/~q21!%#12q, t. 0 ~15!

is well defined if the trace

(
n
„11~12q!t~en2e2!…1/~q21! ~16!

is finite. This imposes a condition on the spectrum~notice that 1/(q 2 1),0). An illustrative
example is the spectrumen5nr . If r>1, then~16! is finite for allq P (0,1); if 0,r,1, then~16!
is infinite for allq P (0,12r # and finite for allq P (12r ,1).

The following result isolates the pertinent spectral conditions and describes their interrela-
tions.

Lemma: Let0,q,1, and H be bounded below with purely discrete spectrum.
One has

(
$n:enÞe2%

~en2e2!1/~q21!,` ~17!

if and only if (16) is finite for some t.0; in which case it is finite and continuous for all t.0, the
sum converging uniformly in t for any compact subset of(0,̀ ).

One has

(
$n:enÞe2%

~en2e2!q/~q21!,` ~18!

if and only if

(
n
„11~12q!t~en2e2!…q/~q21! ~19!

is finite for some t.0; in which case it is finite and continuous for all t.0, the sum converging
uniformly in t for any compact subset of(0,̀ ).

Moreover, (18) implies (17).

Remark that whenen5n, ~17! is true, but~18! is true if and only if 12,q,1.
Proposition 3: Let0,q,1, and H be bounded below with purely discrete spectrum. If (18)

holds thenb(•) is well defined by (15), is strictly increasing and continuous, and maps(0,̀ )
one-to-one and onto itself. One has

1. The maps Sq andfq onU5@e2 ,`) and (0,̀ ), respectively, are strictly concave, differ-
entiable and each other’s Legendre transforms. One has Sq(e2)5@1/(q21)# (12g2

12q).
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The derivative U(•) of fq is continuous, strictly decreasing and the inverse of the deriva-
tive of Sq . One haslimb→`U(b)5e2 , and limu→e2

(dSq /du) (u)5`.
2. For each uP U there exists a unique maximizervu with Sq(u)5Sq@vu#. For eachb

P (0,̀ ) there exists a unique equilibrium staterb minimizingfq . One hasvU(b)5rb ,
and vu5rb(u) , where b(u) is determined uniquely by U„b(u)…5u. One has
U(b)5U@rb#.

3.For eachb P (0,̀ ), the unique equilibrium staterb is given by (11) wheret is the inverse
of the map (15).

If (18) fails to hold, thenfq(b)52` for all b>0; and

Sq~u!5H ~q21!21~12g2
12q!, if u5e2

`, if u.e2

.

One hasve2
5g2

21P2.

B. q>1

Looking at the corresponding finite dimensional case, we need only the positive branch~i.e.,
t>0) of the map t°b(t). The relevant maximal reciprocal pseudo-temperature is
t25(q21)21(e2* 2e2)

21, and the critical reciprocal ‘‘temperature’’ isbc
15qg2

12qt2 . The trans-
formation

b~ t !:5qt@ tr $„11~12q!t~H2e2!…%

1/~q21!%#12q, 0,t<t2 ~20!

is always well defined because the operator

„11~12q!t~H2e2!…% ~21!

has finite rank for everyt P (0,t2#. The trace in~20! is always a finite sum. One has
limt→0b(t)505:b(0), andb(t2)5bc

1 . Here, thereciprocal pseudo-temperaturet is given by
the map on@0,bc

1# inverse to the strictly increasing continuous mapb(•).
Proposition 4: For q.1, and H bounded below with purely discrete spectrum, the operator

(21) has finite rank for each tP(0,t2#. One has
1. The map Sq on U5@e2 ,`) is strictly concave and differentiable;

Sq(e2)5 @1/(q21)# (12g2
12q). The mapfq on (0,̀ ) is concave, and differentiable.

Moreoverfq(b)5be21 @1/(12q)# (12g2
12q) for all b>bc

1 andfq is strictly concave
on (0,bc

1). Sq and fq are each other’s Legendre transforms, with Sq(u)5 infbP(0,b
c
1)

3$bu2fq(b)%. The derivative U(•) of fq is continuous and given by U(b)5e2 for all
b>bc

1 ; it is strictly decreasing on(0,bc
1# with inverse given by the derivative of Sq . One

has limu→e2
(dSq /du) (u)5bc

1 .
2. For each uP U there exists a unique maximizervu with Sq(u)5Sq@vu#. For eachb

P (0,̀ ) there exists a unique equilibrium staterb minimizingfq . One hasrb5g2
21P2 for

all b>bc
1 . Moreover vu5rb(u) , where b(u) is determined uniquely in(0,bc

1# by
U„b(u)…5u. One has U@rb#5U(b).

3. For eachb P (0,bc
1), the unique equilibrium staterb is given by

rb5
„11~12q!t~b!~H2e2!…%

1/~q21!

tr @„11~12q!t~b!~H2e2!…%

1/~q21!#
~22!

wheret is the inverse of the map (20).
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V. PROOFS

Proof of the Lemma: Let an(t)511(12q)t(en2e2) for t.0. One has
an(t).(12q)t(en2e2)>0. Forn sufficiently large,an(t)<2(12q)t(en2e2). These two facts
are used to prove everything except the uniform convergence and continuity statements. By
computing second derivatives, it is seen that the functionst°an(t)

1/(q21) andt°an(t)
q/(q21) are

convex. If either of the sums~16! or ~19! converge, they are convex and thus continuous in
t.0 as limits of convex functions; moreover, again by convexity, the convergence is uniform on
compact subsets of (0,`). This implies the continuity. h

The four results are minor variations on a single theme. We first give the proof of the claim
made in point 3. of each result. The key ingredient for this is Ho¨lder’s classic inequality.

Consider the case 0,q,1 of Propositions 1 and 3. For eacht P (to ,`), the operator

A~ t !511~12q!t~H2e2! ~23!

is strictly positive; we writean(t)511(12q)t(en2e2). Due to the Lemma, in the infinite
dimensional case condition~18! implies ~17!, which implies thattr (A(t)1/(q21)) given by~16! is
finite. Thus~15! is well defined, strictly increasing and continuous. Moreover limt→0b(t)50, and
limt→`b(t)5`.

As commented in the introduction, consideration of the ‘‘diagonal’’ stater̂ reduces the varia-
tion in ~6! to states which are diagonal. We have

fq~b!5be22~q21!211 inf
r5 r̂

L@r# where L@r#:5btr „r~H2e2!…1~q21!21tr ~rq!.

Let us rewrite the functionalL in terms of the reciprocal pseudo-temperature via~7! or ~15!:

L@r#5qt@ tr „A~ t !1/~q21!
…#12qtr „r~H2e2!…2~12q!21tr ~rq!

5q~12q!21@ tr „A~ t !1/~q21!
…#12q@ tr „rA~ t !…21#2~12q!21tr ~rq!.

Restricting to diagonalr5 r̂ states and applying Ho¨lder’s classic inequality we have

tr „rA~ t !…5(
n

rnan~ t !>S (
n

rn
qD 1/qS (

n
an~ t !

q/~q21!D ~q21!/q

5tr ~rq!1/qtr „A~ t !q/~q21!
…

~q21!/q.

When the right-hand side of the inequality is finite, there is equality here if and only if
rn
q5can(t)

q/(q21) for all n with a positive constantc. But tr „A(t)q/((q21)
… is precisely the sum

~19!, which by the Lemma is finite when~18! holds. Thus, under the latter condition, and with the
same condition for equality,

L@r#>q~12q!21@ tr „A~ t !1/~q21!
…#12q@ tr ~rq!1/qtr „A~ t !q/~q21!

…

~q21!/q21#

2~12q!21tr ~rq!.

With h:5tr „A(t)1/(q21)
…tr (rq)1/q, andj:5tr „A(t)q/(q21)

…

1/q we rewrite this as

L@r#>~12q!21tr „A~ t !1/~q21!
…

2q

3@~h2j!qjq211jq2hq2~12q!jq2qtr„A~ t !1/~q21!
…#.

1784 G. R. Guerberoff and G. A. Raggio: Standard q-statistics

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The mapx°g(x)5xq is strictly concave for 0,q,1 on the positive reals, and has derivative
g8(x)5qxq21. Thus,

~h2j!qjq215~h2j!g8~j!>g~h!2g~j!5hq2jq

with equality if and only ifh5j. From this we conclude that

L@r#>2~12q!21tr „A~ t !1/~q21!
…

2q@~12q!tr „A~ t !q/~q21!
…1qtr„A~ t !1/~q21!

…#.

Going through the conditions for equality, we conclude that this bound is attained precisely when
r5tr „A(t)1/(q21)

…

21A(t)1/(q21).
In the caseq.1 corresponding to Propositions 2 and 4, we proceed analogously. The recip-

rocal ‘‘temperature’’b(•) as a function of Tsallis’s reciprocal pseudo-temperaturet is given by
~13! and ~20!. Again, we deal with positive operators. It is clear that in the infinite dimensional
case, our spectral assumption implies that the operator~23! can have only a finite number of
strictly positive eigenvalues fort in the interval (0,̀ ); in fact it has exactly one strictly positive
eigenvalue~namely 1) for eacht>t2 .

We consider first positivet ’s, and rewrite the variational problem in terms ofb(t) in the finite
and infinite dimensional cases. With

L@r#5btr „r~H2e2!…1~q21!21tr ~rq!,

we havefq(b)5be22(q21)211 infr5 r̂ L@r#. Using ~13! or ~20! also beyondt2 for all posi-
tive t, we get

L@r#5q~12q!21@ tr „A~ t ! %

1/~q21!
…#12q@ tr „rA~ t !…21#2~12q!21tr ~rq!.

Let R6 be the orthogonal projections onto the subspaces of non-zero eigenvalues ofA(t)% and
A(t)* , respectively; these operators being the positive, respectively negative parts of
A(t)5A(t)% 2A(t)* . Put R512R12R2 . For r5 r̂ we have r5r11r21RrR, where
r65R6rR6 . Moreover rq5r1

q 1r2
q 1(RrR)q, and tr „rA(t)…5tr „r1A(t)%…2tr „r2A(t)*….

We can now write

L@r#5L1@r1#1L2@r2#1~q21!21tr „~RrR!q…,

with

L1@r1#5q~q21!21tr „A~ t ! %

1/~q21!
…

12q@12tr „r1A~ t ! %…#1~q21!21tr ~r1
q !;

L2@r2#5q~q21!21tr „A~ t ! %

1/~q21!
…

12qtr „r2A~ t !*…1~q21!21tr ~r2
q !.

Now, L2@r2#>0 with equality if and only ifr250; and alsotr „(RrR)q…>0 with equality if
and only ifRr5rR5RrR50. Thus,

inf
r5 r̂

L@r#5 inf
$r5 r̂:r5r1%

L1@r#.

Letting K5$n:an(t).0%, and applying Ho¨lder’s inequality withr5 r̂, we get

tr „rA~ t ! %…5 (
nPK

rnan~ t !<S (
nPK

rn
qD 1/qS (

nPK
an~ t !

q/~q21!D ~q21!/q

5tr ~rq!1/qtr „A~ t ! %

q/~q21!
…

~q21!/q;
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there being equality if and only ifrn
q5can(t)

q/(q21) for all n P K with a positive constantc. With
the same condition for equality, we then have forr5r1

L@r#5L1@r#>~q21!21tr ~rq!1q~q21!21@ tr „A~ t ! %

1/~q21!
…#12q

3@12tr ~rq!1/qtr „A~ t ! %

q/~q21!
…

~q21!/q#.

With h:5tr „A(t)%

1/(q21)
…tr (rq)1/q, andj:5tr „A(t)q/(q21)

…

1/q we rewrite this as

L@r#5L1@r#>~q21!21tr „A~ t ! %

1/~q21!
…

2q

3@~j2h!qjq212jq1hq1~12q!jq1qtr„A~ t ! %

1/~q21!
…#.

The mapx°h(x)5xq is strictly convex forq.1 on the positive reals, and has derivative
h8(x)5qxq21. Thus,

~h2j!qjq215~h2j!h8~j!<h~h!2h~j!5hq2jq

with equality if and only ifh5j. From this we conclude that

L@r#5L1@r#

>~q21!21tr „A~ t ! %

1/~q21!
…

2q@~12q!tr „A~ t ! %

q/~q21!
…1qtr„A~ t ! %

1/~q21!
…#.

Going through the conditions for equality, we conclude that this bound is attained precisely when
r5tr „A(t)%

1/(q21)
…

21A(t)%

1/(q21) . We notice that fort>t2 , we getA(t)% 5P2 whereP2 is the
spectral projection ofH onto the eigensubspace to the ground state energye2 . Thus, fort>t2 or
equivalentlyb>bc

1 , we haverb5g2
21P2 whereg25tr (P2) is the multiplicity of e2 .

We now consider the case of negativet ’s in the finite dimensional case whenq.1 ~Proposi-
tion 2!. With

L@r#5btr „r~H2e1!…1~q21!21tr ~rq!,

we havefq(b)5be12(q21)211 infr5 r̂ L@r#. Using~13! also beyondt1 for all negativet, we
get

L@r#5q~12q!21@ tr „B~ t ! %

1/~q21!
…#12q@ tr „rB~ t !…21#2~12q!21tr ~rq!,

whereB(t)511(12q)t(H2e1). We can now repeat the argument of the previous case replac-
ing A(t) by B(t) to get that the infimum is attained precisely when
r5tr „B(t)%

1/(q21)
…

21B(t)%

1/(q21) . Again, for t<t1 , we haveB(t)% 5P1 whereP1 is the projec-
tion onto the eigenspace to the ceiling energye1 etc.

The reader may have noticed that by invoking the non-commutative versions of Ho¨lder’s
inequalities, one can avoid the introduction of the diagonal stater̂.

This completes the proof of the claims made in point 3 of each result. For eacht5t(b) in the
appropriate case-dependent domain, we have found the unique minimizerrb5rb(t) .

We now turn to the differentiability and strict concavity offq . We first remark that if
U@rbo

# is finite, then it is a subdifferential forfq at bo . Indeed,

fq~bo!1~b2bo!U@rbo
#5boU@rbo

#2Sq@rbo
#1~b2bo!U@rbo

#

5bUq@rbo
#2Sq@rbo

#>fq~b!.

It follows that if b2>b1 , then
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~b22b1!U@rb1
#>fq~b2!2fq~b1!>~b22b1!U@rb2

# ~24!

so the mapb°U@rb# is non-increasing.
In the finite dimensional caseU@rb# is clearly finite. Whenq.1 in the infinite dimensional

case,rb is degenerate and has a finite number of non-zero eigenvalues, so againU@rb# is finite.
When 0,q, 1 and in infinite dimension, condition~18! implies that

tr „A~ t !1/~q21!H…5(
n

enan~ t !
1/~q21! ~25!

is also finite and a continuous function oft.0. To see this, notice first that
tr „A(t)1/(q21)H…5tr „A(t)1/(q21)(H2e2)…1e2tr „A(t)

1/(q21)
…. Now

tr „A~ t !1/~q21!~H2e2!…5(
n

~en2e2!an~ t !
1/~q21!; ~26!

but an(t).(12q)t(en2e2), so that (en2e2)an(t)
1/(q21)<„(12q)t…1/(q21)(en2e2)

q/(q21) and
~18! implies that~26! is convergent, and as a limit of sums of convex functions it is convex and
thus continuous.

One can now verify that the mapb°U@rb#[U(b) is continuous sinceb(•) is continuous.
This is immediate in the finite dimensional case or in the infinite dimensional case whenq.1
sinceU is a finite sum of continuous functions. For 0,q,1 we have just established the conti-
nuity of t°tr „A(t)1/(q21)H….

From the continuity ofU and ~24!, one concludes thatfq is differentiable and its derivative
is U.

Suppose thatb1.bo andU@rb1
#5U@rbo

#, so thatU is not strictly decreasing. It follows
from the non-increasing property ofU that U(b)5U@rb#5U@rbo

# , and from ~24!, that
fq(b)5fq(bo)1(b2bo)U@rbo

#, for all b P @bo ,b1#. But thenbU@rb#2Sq@rb#5fq(b)
5fq(bo)1(b2bo)U@rbo

#5boU@rbo
#2Sq@rbo

#1(b2bo)U@rbo
#5bU@rbo

#2Sq@rbo
#, and

uniqueness of the minimizer impliesrb5rbo
. This provides us with a criterion for the strict

decrease ofU or equivalently the strict concavity offq , which can be thus checked in terms of
the minimizers. This we use to prove the corresponding claims of point 1 in each result.

For eachu in the interior ofU there is a uniqueb P (b2,b1) such thatU(b)5u. When
e6 is finite, it can be checked thatU(b6)5e7 . Thus for each possible finite energy valueu there
is a uniqueb5b(u) with U(b)5u.

Consider the Legendre–Fenchel transformfq* (u)5 infbPR$bu2fq(b)% of fq ; for u P U

this definition implies thatSq(u)<fq* (u). But for given finiteu P U there is a uniqueb(u)
such that rb(u) is a minimizer of ~3! and U@rb(u)#5u; thus Sq@rb(u)#<Sq(u)
<fq* (u)<b(u)u2fq„b(u)…5b(u)u2b(u)U@rb(u)#1Sq@rb(u)#5Sq@rb(u)#. It follows that
fq* (u)5Sq(u)5Sq@b(u)#, andrb(u)5vu .

Once we know thatfq is differentiable and strictly concave on (b2,b1) — with the appro-
priateb6 — we get the rest of the claims of points 1 and 2 from general results on the theory of
convex/concave functions as developed in sections 12, 25 and 26 of Ref. 11; or from straightfor-
ward computations.

What remains, is the proof of the claims of the second part of Proposition 3. Assuming that
~18! fails, that is ($n:en.e2%(en2e2)

q/(q21)5`, we first show that if e2,u,e2* then
Sq(u)5`. To do this we construct for a given arbitrary positive realR, a diagonal stater such
that tr (rH)5u andSq@r#>R. Let g5g2 be the multiplicity of the ground-state energye2 and
enumerate theen’s such that e j5e2 for j51,2,•••,g. For any integerN>g11, let
B(N)5(n5g11

N (en2e2)
q/(q21); and
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ln~N!5H „12L~N!…/g, if 1<n<g

~u2e2!B~N!21~en2e2!1/~q21!, if g11<n<N
,

whereL(N)5(u2e2)B(N)
21(n5g11

N (en2e2)
1/(q21). From the inequalityu2e2,(en2e2)

for eachn>g11, we conclude thatL(N),1. Thusln(N) lies in (0,1), and(n51
N ln(N)51.

Moreover,(n51
N ln(N)(en2e2)5u2e2 . Thus the degenerate diagonal stater(N) with non-zero

eigenvaluesln(N), satisfiestr „r(N)H…5u. But

Sq@r~N!#5~q21!211~12q!21S (
n51

g

ln~N!q1 (
n5g11

N

ln~N!qD
>~q21!211~12q!21 (

n5g11

N

ln~N!q

5~q21!211~12q!21~u2e2!qB~N!12q.

Since limN→`B(N)5` we can chooseN sufficiently large so thatSq@r(N)# is as large as we
want, proving the claim. If nowu>e2* then there existsu1 P (e2 ,e2* ) and t P (0,1) such that
u5tu11(12t)u2 . By concavity ofSq we then haveSq(u)>tSq(u1)1(12t)Sq(u2) so that
Sq(u)5` sinceSq(u1)5`. It then follows directly from~5! that fq(b)52` for all b P R.
Finally, by the variational principle,U@r#5e2 if and only if rP25r whereP2 is the projection
onto the eigenspace of the ground-state energy. It is then clear that the stater with rP25r and
maximal entropy is the equipartitiong2

21P2 of pure ground states withq-entropy
(q21)21(12g2

12q).

VI. COMPARISON WITH THE NON-STANDARD FORMALISM

If the reader allows us to refer to the formalism studied here as the standard one, by the
non-standard formalism we mean the one based on the energy-functional

Uq@r#5tr ~rqH !

and the entropySq@•#, as proposed in Ref. 6. Notice thatUq@•# is not affine. Moreover, adding a
constantc to the HamiltonianUq

H1c(r)5Uq
H(r)1ctr(rq). The thermostatistics obtained will

depend on the choice of the zero of energy. Despite these unusual features, the entropy function
Sq — defined by~4! with U@•# replaced byUq@•# — is concave inu, and one can recover a
complete ‘‘thermostatistics’’~without 0th-law!. The detailed analysis is given in Ref. 7. In the
standard formalism the parametrization ofrb in terms ofb is not explicit since one has to invert
the mapt→b(t) to find the reciprocal pseudo-temperaturet as a function ofb. In the non-
standard version, the ‘‘equilibrium’’ state is parametrized directly and explicitly byb: The for-
mula for the non-standardrb is obtained~formally! by replacing (12q)t(b) by (q21)b in the
standard formula. The basic features of the non-standard thermostatics are qualitatively the same
as those described here, after interchanging ‘‘q.1’’ with ‘‘ q,1’’. For q,1, there are inacces-
sible temperatures and the depopulation mechanism operates to produce a degeneraterb .
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Non-standard thermal statistics with q -entropies
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We consider the quantum thermal statisticsà la Gibbs–Shannon–Szilard–Jaynes
based onq-entropiesSq@r#5(q21)21

„12tr (rq)… (0,q Þ 1) and the non-
standard ‘‘internal energy’’ functionalsUq@r#5tr (rqH) proposed by C. Tsallis@J.
Stat. Phys.52, 479–487~1988!#. © 1996 American Institute of Physics.@S0022-
2488~96!01403-1#

I. INTRODUCTION

For a discrete probability distributionr5(r1 ,r2 ,•••), with rn>0, and(nrn51, consider
the monoparametric family of entropies~theq-entropies!:

Sq@r#5~q21!21S 12(
n

rn
qD ,

whereq is a real number distinct from 0 and from 1. One sees easily thatSq is a concave function
on the convex set of probability distributions whenq.0; and that
limq→1Sq@r#52(nrn ln(rn), the well-known Boltzmann–Shannon entropy.

Tsallis1 proposed to build up a ‘‘thermostatistics’’ by maximizing theq-entropies at given
fixed internal energy given by(nrnen . To this end he introduces the function
Sq@r#1a(nrn2ab(q21)(nenrn and after a standard variation obtains the distributionrn
} „12b(q21)en…

1/(q21). Althoughb provides a convenient and explicit parametrization of the
distribution with maximalq-entropy, it is not the reciprocal temperature associated to the problem.
This reciprocal temperature is given byab(q21). Nevertheless, it is possible to perform the
analysis with the correct reciprocal temperature and obtain a ‘‘thermal’’ statistics usingSq@•#
instead of the Boltzmann–Shannon entropy.2 In subsequent papers, Tsallis and coworkers3,4 pro-
posed to build up a ‘‘thermostatistics’’ using theq-entropies but replacing the standard expression
for the internal energy by the functionalUq@r#5(nenrn

q with the sameq used for the entropy.
This functional is not affine forq Þ 1, i.e.,Uq@lr11(12l)r2# Þ lUq@r1#1(12l)Uq@r2# for
the mixture of distributionsr1 , r2 in proportionsl and (12l) respectively. The variational
calculation involving classical distributions only and using Lagrange multipliers was carried out in
Ref. 3, but the analysis is incomplete since the multiplier ranges are not determined or determined
ad hoc. In the last few years, a lot of researchers have explored the features of the formalism
proposed by Tsallis, and have developed applications to physics, astrophysics, biology, econom-
ics, statistical inference problems, etc. For a review see Ref. 4.

In this paper, we consider the ‘‘thermostatistics’’ associated with theq-entropies for 0,q
Þ 1 and the non-standard constraintUq@•#5 constant. We determine by a direct method~using
Hölder’s inequality as the key ingredient! the quantum mechanical state~s! rb minimizing the
functional:

r°bUq@r#2Sq@r#. ~1!

a!Fellow student of CONICOR.
b!Fellow of CONICET. To whom the correspondence should be addressed; electronic-mail: raggio@fis.uncor.edu
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We then proceed to establish all ‘‘thermostatistical’’ results analogous to those known for the case
q51 of Boltzmann–Gibbs statistics. We thus complete the program proposed in Ref. 3 as follows:
For each possible ‘‘internal energy’’u there is a unique statevu among those statesr with
Uq@r#5u which maximizesSq@•#; the q-entropy as a function of the ‘‘internal energy’’ is a
concave differentiable function; for eachb in a certain explicitly determined interval, the mini-
mizer rb is unique and it is equal tovu where u5Uq@rb#, moreoverb is the value of the
derivative ofSq with respect tou evaluated atu; the minimal value of the functional~1! is equal
to the Legendre transform~with respect tou) of Sq as a function ofu. However, despite all these
results we warn the reader that the parameterb, which we call ‘‘reciprocal temperature,’’ does not
satisfy the analogue of the 0th-law of Thermodynamics~See Sec. IV C!.

Sq@•# for discrete probability distributions was introduced, with a different prefactor, by Z.
Daróczy5 who obtained the basic properties and gave an axiomatic characterization. The quantum
mechanical version

Sq@r#5~q21!21
„12tr ~rq!…,

appears on page 247 of Wehrl’s review.6 These entropies are intimately related to the Renyi
entropies.6 We record here some of the basic properties of theq-entropies; the proofs are given in
Ref. 7. Sq@r#>0 with equality iff r is pure. In the finite dimensional case~dimensiond),
Sq@•# is strictly concave and one hasSq@r#<(q21)21(12d12q) with equality iff r is the
normalized trace. In the infinite dimensional case, ifq.1 Sq@•# is strictly concave and one has
Sq@r#,(q21)21; moreoverSq@•# is Lipschitz in the trace norm. If 0,q,1, in infinite dimen-
sion,Sq@•# is generically~on a set of second category! infinity but the set where it takes finite
values is convex andSq@•# is strictly concave on it.

We do not consider the caseq,0. In this case, the expressions forSq make sense in finite
dimensions when the distribution is not degenerate, or when zero is not an eigenvalue of the state.
In infinite dimension however,Sq is identically equal to infinity.

In Sec. II, we study the ‘‘internal energy’’ functionalsUq@•#. In Sec. III, we develop the basic
facts about the ‘‘thermostatistics’’ based on the pairUq@•#, Sq@•#. The variational problem asso-
ciated with the minimization of the functional~1! is worked out in Sec. IV; where some of the
main features of the formalism are established as direct consequences of the results. In Sec. V, we
consider as an illustration the non-standard ‘‘thermostatistics’’ for the harmonic oscillator. The
extension of the results to the multidimensional case, corresponding to fixing the values ofN
functionalsUq based onN Hamiltonians, is considered in Sec. VI. Section VII contains our final
comments. The general results about all the variational problems discussed in this paper are
proved in the Appendix.

In this paper we work with the extended real numbers and use the usual conventions for
addition; the equalities and inequalities appearing here are to be understood in this sense. ByR we
denote the usual real numbers without6`.

II. THE FUNCTIONAL Uq@–#

Assume given a selfadjoint operatorH whose spectrum consists entirely of eigenvalues
$en% which are enumerated according to their multiplicities. Accordingly, in the classical case,
$en% is a~possibly finite! sequence of real numbers. We writee1 ~resp.e2) for the maximal~resp.
minimal! energy:

e1:5sup
n

en ; e2:5 inf
n

en .

We assume the non-trivial casee2,e1 . For q.0, define the ‘‘internal energy’’ functionals

1791Guerberoff, Pury, and Raggio: Nonstandard q-statistics

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Uq@r#5H (
n

enrn
q , in the discrete classical case

tr ~rqH !, in the quantum case.

~2!

In the infinite dimensional case and whenH is unbounded, we have to specify what the trace of
the operatorrqH means. We will make the following assumption:the spectrum ofH is purely
discrete; that is to say it consists entirely of isolated eigenvalues with finite multiplicity, alterna-
tively $en% has no accumulation points.Uq@•# can be defined under milder assumptions, but the
above condition will be necessary to insure existence of the minimizersrb of the functional~1!.
This spectral assumption insures that we have a sequence$Pm% of pairwise orthogonal finite-rank
projectionsPm such thatH5(mêmPm ( êm are the distinct eigenvalues ofH). Now, tr (rqPm) is
finite, even whenrq is not trace-class as can happen for 0,q,1. If the series(mêmtr (r

qPm) is
absolutely convergent, we define it astr (rqH); otherwise, the trace remains undefined. If the trace
is defined then, for any complete orthonormal basis$cn% of eigenvectorscn of H to the eigen-
valueen , one has

tr ~rqH !5(
n

en^cn ,r
qcn&.

We denote the set of all statesr ~i.e., density operators in the quantum case or probability
distributions in the classical case! by V. It is immediate in finite dimensions that forq Þ 1,
Uq@•# is not affine on V. But if r is pure ~i.e., an extremal point ofV), then
Uq@r#5U1@r#5tr (rH). In infinite dimension, the setVq whereUq@•# is defined contains the
convex set ofr ’s whose matrix in an eigenbasis ofH has the block form

S D 0 •••

0 0 •••

A A
D

with D an arbitrary finite density matrix.
We write

Uq
1 :5 sup

rPVq

Uq@r#, Uq
2 :5 inf

rPVq

Uq@r#.

The variational problems posed byUq
6 are solved in the Propositions A.1 and A.2 of the Appen-

dix. If we denote byH1 (H2) the positive,~resp. negative! part of the operatorH; applying
Proposition A.1, we directly determineUq

6 for q.1. And from Proposition A.2 we immediately
obtainUq

6 for 0,q,1:

Uq
155 H e1, if e1>0

2$tr „~H2!1/~12q!
…%12q, if e1,0

for q.1

H $tr „~H1!1/~12q!
…%12q, if e1.0

e1, if e1<0
for 0,q,1

, ~3!
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Uq
255 H e2, if e2<0

$tr „~H1!1/~12q!
…%12q, if e2.0

for q.1

H 2$tr „~H2!1/~12q!
…%12q, if e2,0

e2, if e2>0
for 0,q,1

. ~4!

In this context, the traces in the infinite dimensional case are understood with respect to any
orthonormal basis of eigenvectors ofH, i.e., tr (H6

1/(12q))5(n8uenu
1/(12q) where the sum runs over

the positive~negative! eigenvalues ofH for H1 (H2).
The lack of affinity of the functionalUq@•# manifests itself again since we can have

Uq
1.e1 or Uq

2,e2. As we show in the Appendix, whenUq
65e6 and finite, the extremizers are

eigenstates ofH to the eigenvaluee6 ~pure eigenstates ife6 Þ 0). If Uq
6 Þ e6 and

tr „(H6)
1/(12q)

… is finite, the extremizer is unique and given by the Ho¨lder state:

r65
~H6!1/~12q!

tr ~~H6!1/~12q!
…

~5!

wherer1 (r2) is associated withH1 (H2) in the expressions forUq
6 .

III. BASIC THERMAL STATISTICS

In this section we resume the general program of the thermal statistics. The results quoted
below are independent of the specification of the ‘‘internal energy’’ and entropy functionals.

For any u in the interval @Uq
2 ,Uq

1#, we writeK q(u) for the set ofr ’s with Uq@r#5u
„K q(u),Vq…. We can now define entropy as a function of ‘‘internal energy’’ by

Sq~u!:5 sup
rPKq~u!

$Sq@r#%, uP@Uq
2 ,Uq

1#. ~6!

We are distinguishing the ‘‘thermodynamic’’ functionals, such asSq@•#, defined on the states
from the ‘‘thermodynamic’’ functions, such asSq , by using square brackets for the arguments of
the former.

We consider the Legendre–Fenchel transform ofSq given by

fq~b!:5 inf
uP~Uq

2 ,Uq
1

!

$bu2Sq~u!%, bPR. ~7!

The functionb°b21fq(b) is—in appropriate dimensionless variables—the ‘‘Helmholtz free-
energy’’ of the system whose ‘‘internal energy’’ functional isUq@•#. We first show thatfq is
equal to theinfimum over statesof the corresponding ‘‘free-energy’’ functional~1!, and remark
that the Legendre–Fenchel transform offq w.r.t. b ~the Legendre-Fenchel transform of the
Legendre–Fenchel transform ofSq) is the concave, uppersemicontinuous regularization ofSq :

Lemma 1:

fq~b!5 inf
rPVq

$bUq@r#2Sq@r#%, ~8!

Sq~u!< inf
bPR

$bu2fq~b!%5:~fq!* ~u!. ~9!

Proof : Both statements are general consequences of the definition~7!: ~9! is a general fact in the
theory of Legendre–Fenchel transforms~see e.g., Ref. 8!; moreover
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fq~b!5 infu$bu2suprPK ~u!Sq@r#%5 infuinfrPK ~u!$bu2Sq@r#%

5 infuinfrPK ~u!$bU@r#2Sq@r#%5 infrPVq
$bU@r#2Sq@r#%.

The restriction toVq guarantees that the functionalUq@•# is defined in infinite dimension. h

The problem of ‘‘equivalence of ensembles,’’ at this level, is the proof that one has equality
in ~9!. One has then thatSq is indeed concave~and upper semicontinuous! and a reasonable
entropy function.9 If, however,Sq is not concave, then the appropriate entropy function is in fact
(fq)* . The following simple result will be important here.

Lemma 2: If u is such that there existsb0 P R and ro P Vq satisfying Uq@ro#5u, and
fq(bo)5boUq@ro#2Sq@ro#, then Sq(u)5Sq@ro#5(fq)* (u), and Uq@r# is a subdifferential
(see Ref. 8) offq at bo : fq(b)<fq(bo)1(b2bo)Uq@ro# for all b.

Proof : By the definitions of (fq)* @l.h.s. of ~9!#, and of Sq , the assumptions give:
(fq)* (u)<bou2fq(bo)5bou2boUq@ro#1Sq@ro#<Sq(u). The first claim follows from~9!.
Alsofq(bo) 1 (b 2 bo)Uq@ro# 5 boUq@ro# 2 Sq@ro# 1 (b 2 bo)Uq@ro# 5 bUq@ro# 2 Sq@ro#
> fq(b). h

Lemma 2 tells us when the minimizer of the variational problem~8! is the maximizer of the
variational problem~6!. We will deal with the problem posed by~8!, since it is a variational
problem without constraints onr and thus easier to solve. Once this problem is solved we must
verify that for each possible valueu P (Uq

2 ,Uq
1) there isb satisfying the hypothesis of Lemma 2

to get the solution of the original problem~6!. The next question for any thermal statistics is to
know if one has a unique extremizer, or not. If so, the unique extremizerrb is the equilibrium
state at reciprocal temperatureb. Another natural question arises in connection with the varia-
tional problems. Suppose thatr is a maximizer in~6! or a minimizer in~8! both in the quantum
case; is it true thatr is diagonal?, that is to say, it is diagonalized by some orthonormal basis
which also diagonalizesH.

We now record some general properties of the functionfq :
Lemma 3:R { b°fq(b) is a concave, upper-semicontinuous function, which is continuous

on the interior of the convex (hence connected) subset dom(fq) of R where it takes finite values.
One hasfq(0)52suprPVSq@r#(,0), and bUq

2(1)1fq(0)<fq(b)<bUq
2(1) if b.0

~resp. b,0). Thus, if Uq
15` ~resp. Uq

252`), then fq(b)52` for all b,0 ~resp. all
b.0).

R { b°b21fq(b) is non-decreasing on(2`,0) and on(0,̀ ). In the finite dimensional
case, or in general for q.1, limb→1(2)`b21fq(b)5Uq

2(1) .
If for somebo.0 ~resp.bo,0), one hasfq(bo)5boUq

2(1) , then fq(b)5bUq
2(1) for

everyb>bo ~resp.b<bo).
Proof : The basic properties~concavity, upper semicontinuity, etc.! are well known conse-

quences~see e.g., Ref. 8! of the definition~7!. SinceVq contains all density operators whose
matrix in an eigenbasis ofH has finite rank, the supremum overVq of Sq@•# is equal to the
supremum over the whole state spaceV. The inequality forfq is obtained from~8! using the
inequality 0<Sq@r#<suprSq@r#. The increasing property ofb21fq(b) follows from ~8! using
the positivity ofSq@•# and the fact thatb°2b21 is increasing on the intervals (2`,0) and
(0,̀ ). Using thatSq@•# is finite in finite dimension or whenq.1, one can show the assertion of
the limit for b→6`. The last claim, concerning attainment of the bounds, follows from the
increasing property ofb21fq(b) and the inequality. h

The largest entropy can be computed easily, and from what was said in the Introduction, it
follows that:
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fq~0!5H ~12q!21~12d12q!, ;q in finite dimensiond

H ~12q!21 if q.1,

2` if 0,q,1,
in infinite dimension

.

The following symmetry property is immediate from~8!: fq
(H)(2b)5fq

(2H)(b), where the
superscript indicates the Hamiltonian used inUq@•#.

If, in the infinite dimensional case,H is unbounded both above and below thenfq[2`
except atb50 whenq.1. The ‘‘thermostatistics’’ is empty; and we rule out this case from
further consideration. We assume then that in the infinite dimensional caseH is semibounded.
Under this condition,fq is a proper concave function, that is to say: it does not take the value
` and it is not identically2`.

The inequality of the above lemma implies a familiar fact in Boltzmann–Gibbs thermody-
namics: ifUq

656` — as happens whene656`, that isH is not bounded above~resp. below!
— thenfq(b)52` for all negative~resp. positive! b. We will see in what follows that in the
present context the boundbUq

2(1) can be attained at a finite positive~resp. negative! b; this does
not occur in Boltzmann–Gibbs statistics. Thus, the present formalism presents the feature that
temperatures below~above! a certain positive~negative! value are unattainable. This unfamiliar
feature persists if the constraintUq@•# is replaced by the physical constraintU1@•#.2

IV. DETERMINATION OF fq AND THE MINIMIZERS

We now computefq by solving the variational problem~8!; this will also give us the corre-
sponding minimizers. Notice thatbUq@r#2Sq@r#5(12q)211tr $rq„bH1(q21)21I …%, so that

fq~b!5~12q!211 inf
r

tr $rqA~b,q!%, ~10!

where we have introduced the selfadjoint operatorA(b,q):5bH1(q21)21I . Thus, the problem
is solved by the results of the Appendix as soon as the lower bound
a2(b,q)5 infn$ben1(q21)21% of the spectrum ofA(b,q) is known. But

a2~b,q!5~q21!211b•H e2, if b>0

e1, if b<0
; ~11!

with the usual convention 0(6`)50. Since the solution of~10! is governed — via Propositions
A.1 and A.2 of the Appendix — by whethera2(b,q) is negative or not, there are two ‘‘critical’’
values ofb, the solutions of the equationa2(b,q)50. These numbers can be finite or6`.

We distinguish the two cases 0,q,1 andq.1. As before, all traces in the infinite dimen-
sional case are to be understood with respect to an arbitrary orthonormal basis diagonalizingH.

A. Case q>1

We define positive and negative critical reciprocal temperaturesbc
1(q) andbc

2(q) respec-
tively by

bc
1~q!5H `, if e2>0

1

~12q!e2, if e2,0
; bc

2~q!5H 2`, if e1<0

1

~12q!e1, if e1.0
. ~12!

Notice that ifH is not bounded above~resp. below! thenbc
250 ~resp.bc

150); at least one of
these critical reciprocal temperatures is finite; and if the spectrum has both negative and positive
elements, then both criticalb ’s are finite.

It is immediately verified that
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a2~b,q!5
<0 if b<bc

2~q!,0 with equality iffb5bc
2~q!

.0 if bc
2~q!,b<0

.0 if 0<b,bc
1~q!

<0 if 0,bc
1~q!<b with equality iff b5bc

1~q!

.

Furthermore,a2(b,q)52` if b,bc
250 or b.bc

150. With this, Proposition A.1 of the Ap-
pendix leads us to the solution of~10! as follows:

Theorem 1: Let q.1, and let positive and negative critical reciprocal temperatures be defined
by (12), then

fq~b!5~q21!21$@ tr †„b~q21!H1I …1/~12q!#‡12q21%, if bc
2~q!,b,bc

1~q!, ~13!

fq~b!5H be1, if b<bc
2~q!,0 or b,bc

2~q!50

be2, if b>bc
1~q!.0 or b.bc

1~q!50
. ~14!

Moreover
1. For bc

2(q),b,bc
1(q) there is a unique minimizerrb given by the Tsallis–Hölder state:

rb5
„b~q21!H1I …1/~12q!

tr @„b~q21!H1I …1/~12q!#
~15!

when tr@„b(q21)H1I …1/(12q)#,`; and no minimizer if this trace is̀ in which case
fq(b)5(12q)21 (infinite dimensional case).

2. For 0,e1,` andb5bc
2(q) [ resp.b,bc

2(q)] the minimizers are the eigenstates (resp.
pure eigenstates) of H to the eigenvaluee1.

3. For 2`,e2,0 and b5bc
1(q) @resp. b.bc

1(q)] the minimizers are the eigenstates
~resp. pure eigenstates) of H to the eigenvaluee2.

The unique equilibrium staterb given by~15! whenb P I[„bc
2(q),bc

1(q)… will be referred
to as Tsallis–Ho¨lder ~TH! state. As their name intends to convey, these states were introduced by
C. Tsallis ~in a remark at the bottom of page 483 of Ref. 1, and then in Ref. 3 and subsequent
papers!, and they saturate Ho¨lder’s inequality on the mathematical side. The first important ob-
servation to be made is that, whenever the TH state exists, it is theuniqueminimizer of the
‘‘free-energy’’ functional, and thustheequilibrium state.

Now, before clarifying further features, we give a sketchy description in words of the content
of Theorem 1. Forb P I , the operatorb(q21)H1I is strictly positive. Let

an~b!:5„b~q21!en11…1/~12q!.

The TH state has eigenvalues (rb)n5„(nan(b)…
21an(b) with eigenfunction cn , where

Hcn5encn . In particular, the state is non-degenerate: every eigenstate ofH is populated. Con-
sider the case whenH is bounded below but not above; there being an analogous argument for the
opposite case. Recall thatbc

2(q)50 here. As one increasesb away from 0, (rb)n decreases for
all n with en Þ e2, and increases forn with en5e2. Whenbc

1(q) is reached, assuming it is finite,
i.e.,2`,e2,0, rb5„tr (P2)…21P2 whereP2 is the orthogonal projection onto the eigenspace
to the eigenvaluee2, andtr (P2) gives the multiplicity of this eigenvalue. Atbc

1(q), our result
says that any eigenstate to the eigenvaluee2 minimizes fq„bc

1(q)…5bc
1(q)e25(12q)21.

Abovebc
1(q), only pure eigenstates toe2 are minimizers. Thus, there is a discontinuity here if

e2 is degenerate. However, this is of no relevance sinceb ’s abovebc
1(q) are not accessible:

fq is linear, and its second derivative related to the ‘‘specific heat’’ is zero. Ife2.0, we have
bc

1(q)5` and 0<Uq
2,e2. Here, we get another unusual feature which, for want of a better
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name, we refer to asstrong violation of the third law. Indeed, asb→`, i.e., T→0, the TH
equilibrium staterb tends to the Ho¨lder stater1 of ~5! ~recall thatH15H here! with ‘‘internal
energy’’ Uq

2 . This state is non-degenerate, i.e., all eigenstates are populated, and has non-zero
entropy~independently of the degeneracy of the ground-state energy!. The situation forb,0 in
the case whereH is bounded above is totally analogous.

In what follows we will consider the questions relating to the differentiability of the ‘‘ther-
modynamical’’ functions. Consider the functionUq ~‘‘internal energy’’ as a function of reciprocal
temperature! given byUq(b):5Uq@rb#, whenever the minimizerrb exists andUq@rb# is finite.
In the finite dimensional case, where everything is finite, it can be verified thatUq is continuous
and the derivative offq by direct differentiation in~13! and ~14!. The concavity offq implies
then thatb°Uq(b) is decreasing~recall the assumptione

2,e1) and strictly so forb P I . One
can also verify directly that

lim
b→bc

6
~q!

Uq~b!5Uq
7 .

This guarantees that for eachu P (Uq
2 ,Uq

1) there exists a uniqueb P I such thatUq(b)5u. This,
via Lemma 2 insures thatSq5(fq)* . As a consequence,

8 Sq is strictly concave and differentiable
with derivativeb(u) determined by the inverse of the mapb°Uq(b). One can also verify the
differentiability of Uq connected to the ‘‘specific heat’’Cq by

Cq~b!52b2
dUq

db
~b!. ~16!

Always in the finite dimensional case,Cq is finite and positive for allb P I .
The existence ofrb in the infinite dimensional case imposes conditions on the eigenvalue set.

For the harmonic oscillator spectrum,(nan(b)5` for all q>2. It is perhaps remarkable that
under our assumption on the spectrum ofH ~purely discrete!, the existence ofrb guarantees
differentiability of fq . fq is given, up to trivial summands and a power, by the ‘‘trace’’
(nan(b) of the positive operator„b(q21)H11…1/(12q). If this ‘‘trace’’ converges for some
bo , then rbo

exists and assumingUq(bo) is defined, we know from Lemma 2 that it is a
subdifferential offq at bo .

The following two Lemmas summarize our results about differentiability in the infinite di-
mensional case:

Lemma 4: LetD be the interior of the domain offq . The following conditions
1. fq is differentiable inD ,
2. Uq is continuous inD , are equivalent,
and they imply that Uq is the derivative offq .

Proof : We have remarked, in Lemma 2, thatU is a subgradient forf ~we omit the index
q). If the latter function is differentiable, the subgradient is unique and equal to the derivative.

Consider the left- and right-derivativesf28 andf18 respectively off which exist by concavity
and satisfy:

f~b1!2f~b2!

b12b2
>f28 ~b2!>f18 ~b2!>

f~b3!2f~b2!

b32b2

wheneverb1,b2,b3 . Using the definition off and the minimizing property ofrb we estimate

f~b2!2f~b1!

b22b1
<

b2U~b1!2S@rb1
#2f~b1!

b22b1
5U~b1!;
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f~b3!2f~b2!

b32b2
>

f~b3!2b2U~b3!1S@rb3
#

b32b2
5U~b3!.

Thus,U(b1)>f28 (b2)>f18 (b2)>U(b3) under the same condition for theb ’s. Thus, if U is
continuous,f is differentiable andU its derivative. h

Lemma 5: Suppose H is bounded below but not above [implyingbc
2(q)50]. If

tr@„b(q21)H11…1/(12q)# is finite for someb P I , then it is finite for allb P I . In this case,
rb exists for allb P I andfq is twice differentiable with derivative Uq and second derivative
2b22Cq(b) on I .

Proof :We first notice that~the prime denotes derivation with respect tob)

an8~b!52en„b~q21!en11…q/~12q!, an9~b!5qen
2
„b~q21!en11…~2q21!/~12q!;

so thatan is convex onI . Let us number the eigenvalues ofH as e25eo<e1<e2<•••. It
follows that sn(b):5(k50

n ak(b) is convex onI , and thus if the sequence converges on some
bounded subinterval ofI , the convergence is uniform. Suppose now that the sequence converges
for some bo P I ; then, due to our assumptione15`, for all n sufficiently large
bo(q21)en>1 so that

an~bo!>„2bo~q21!…1/~12q!en
1/~12q! .

It follows from this and the assumption that the spectrum ofH is purely discrete, that the infinite
series(nen

1/(12q) is absolutely convergent. But since, for everyb P I we have

an~b!,„b~q21!en…
1/~12q!

as soon asn is sufficiently large~i.e., as soon asen>0), we conclude thatsn converges uniformly
on any compact subset ofI . We also notice that as soon asen>0, we have

uan8~b!u,„b~q21!…21an~b!, an9~b!,S b
q21

q D 21

uan8~b!u.

This implies that both sequencessn8(b) andsn9(b) converge absolutely for allb P I . From this
one can deduce the existence ofUq and Cq , and then the continuity and differentiability of
Uq , which leads to the differentiability offq in I . The argument continued proves thatfq is
C`. h

B. Case 0 <q<1

The path to be followed is as in the former case, but the results are more involved. There are
two sets of critical temperatures. The supercritical reciprocal temperatures are given by:

bc
1~q!5H 0, if e252`

`, if 2`,e2<0

1

~12q!e2, if e2.0

bc
2~q!5H 0, if e15`

2`, if 0<e1,`

1

~12q!e1, if e1,0

.

~17!

The other set involves the first excited-state energy abovee2, and the first de-excited-state energy
below e1. We define:

e
*
2 :5 inf$en :en.e2%; e

*
1 :5sup$en :en,e1%.
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Notice that in the finite dimensional casee
*
1,e1 ande

*
2.e2; and also that ifH is unbounded

above~resp. below! e
*
15e15` ~resp.e

*
25e252`). The critical reciprocal temperatures are

given by

b
*
1~q!55

0, if e
*
252`

`, if 2`,e
*
2<0

1

~12q!e
*
2, if e

*
2.0

b
*
2~q!55

0, if e
*
15`

2`, if 0<e
*
1,`

1

~12q!e
*
1, if e

*
1,0

.

~18!

One always hasbc
1(q)>b

*
1(q)>0 andbc

2(q)<b
*
2(q)<0. In Table I we show all possibilities

for the critical and supercritical reciprocal temperatures in the semibounded case. We can again
determinea2(b,q) as a function ofb:

a2~b,q!5
>0 if b<bc

2~q!,0 with equality iffb5bc
2~q!

,0 if bc
2~q!,b<0

,0 if 0<b,bc
1~q!

>0 if 0,bc
1~q!<b with equality iff b5bc

1~q!

.

Furthermore,a2(b,q)52` if b,bc
250 or b.bc

150.
Forb ’s inside the interval„bc

2(q),bc
1(q)…, the minimizer is unique and given by the negative

part of the operatorA(b,q). But, in this interval,A(b,q)2 has finite rank. Moreover, forb in the
interval (bc

2(q),b
*
2(q)# ~resp.@b

*
1(q),bc

1(q))), A(b,q)2 has exactly one non-zero eigenvalue,
and the minimizer is the equidistribution of ceiling states~resp. ground states!. This, and Propo-
sition A.2 of the Appendix leads to

Theorem 2: Let0,q,1, and let positive and negative supercritical and critical reciprocal
temperatures be defined by (17) and (18) respectively, then

1. If b,bc
2(q),0 (2`,e1,0) then

fq~b!5be1

and the minimizers are the pure eigenstates to the eigenvaluee1.

fq„bc
2~q!…5H ~12q!21, if 2`,bc

2~q!,0

2`, if bc
2~q!50,which occurs only in infinite dimension.

TABLE I. Critical and supercritical reciprocal temperatures whenH is semibounded in the 0,q,1 case.

e2 e
*
2 bc

1(q) b
*
1(q)

2` 2` 0 0
finite, ,0 finite,<0 ` `
finite, <0 finite,.0 ` „(12q)e

*
2
…

21

finite, .0 finite,.0 „(12q)e2
…

21
„(12q)e

*
2
…

21

e1 e
*
1 bc

2(q) b
*
2(q)

` ` 0 0
finite, .0 finite,>0 2` 2`
finite, >0 finite,,0 2` „(12q)e

*
1
…

21

finite, ,0 finite,,0 „(12q)e1
…

21
„(12q)e

*
1
…

21
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2. Whenbc
2(q)50 the minimizers are not unique. In the other case, the minimizers are all the

eigenstates to the eigenvaluee1.
3. If bc

2(q)<b<b
*
2(q),0 then

fq~b!5bg1
12qe12

g1
12q21

12q

and there is a unique minimizer given by the equidistribution of ceiling states g1
21P1, where

P1 is the orthogonal projection onto the eigenspace to the eigenvaluee1, and g15tr (P1) is the
multiplicity of this eigenvalue.

4. If b
*
2(q),b,b

*
1(q) then the operator„b(q21)H1I …1 , the positive part of the operator

b(q21)H1I (see Sec. II), has finite rank,

fq~b!5~12q!21$12†tr @„b~q21!H1I …1
1/~12q!#‡12q%,

and there is a unique minimizer given by

rb5
„b~q21!H1I …1

1/~12q!

tr @„b~q21!H1I …1
1/~12q!#

. ~19!

5. If 0,b
*
1(q)<b<bc

1(q) then

fq~b!5bg2
12qe22

g2
12q21

12q

and there is a unique minimizer given by the equidistribution of ground states g2
21P2, where

P2 is the orthogonal projection onto the eigenspace to the eigenvaluee2, and g25tr (P2) is the
multiplicity of this eigenvalue.

fq„bc
1~q!…5H ~12q!21, if 0,bc

1~q!,`

2`, if bc
1~q!50 which occurs only in infinite dimension.

6. Whenbc
1(q)50 the minimizers are not unique. In the other case, the minimizers are all the

eigenstates to the eigenvaluee2.
7. If 0,bc

1(q)<b (0,e2,`) then

fq~b!5be2

and the minimizers are the pure eigenstates to the eigenvaluee2.
The TH state is based on the positive part of the operatorb(q21)H1I which has finite rank.

Using the notationDn(b)512b(12q)en the eigenvalues are given by

~rb!n5H S (
k

Dk~b!1/~12q!D 21

Dn~b!1/~12q!, n such thatDn~b!.0

0, n such thatDn~b!<0
,

where the sum runs overk such thatDk(b).0. Not every eigenstate ofH is populated as soon as
b(q21)H1I has non-zero negative part. This is impossible in the exponential Gibbs–Boltzmann
distribution. Now, we discuss the typical features.

In the finite dimensional case, if the spectrum has more than one positive eigenvalue and more
than one negative eigenvalue, both criticalb ’s are not finite. Atb50 the TH state is the normal-
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ized trace. As we increaseb away from 0, all energy eigenstates are populated until we reach
b5„(12q)e1

…

21. At this point, all eigenstates to this highest eigenvalue are depopulated and all
other eigenstates remain populated. As we continue increasingb nothing interesting happens until
we reachb5„(12q)e

*
1
…

21, recall e
*
1.0 here. At this point, the eigenstates corresponding to

e
*
1 are also depopulated. As we continue increasingb we depopulate successively downwards the
positive energy eigenstates until there are none left. From then onwards, only the non-positive
eigenstates are populated. As we continue increasingb we approach asymptotically the Ho¨lder
stater2 of ~5!. Forb,0 we have the same features, but now the negative energy eigenstates are
depopulated successively upwards until only the non-negative energy eigenstates remain popu-
lated, and the Ho¨lder stater1 of ~5! is approached asymptotically asb→2`. There is thus
strong violation of the third law atT506.

If the spectrum is strictly positive,b
*
1(q) is finite andb

*
2(q)52`. As we increaseb away

from 0 the eigenstates are successively depopulated downwards, until there is just ground-states
left; this happens precisely atb

*
1(q); we then haveg2

21P2, the equidistribution of ground states.
As we further increaseb nothing changes until we reachbc

1(q). Our result claims that any
ground-state is a minimizer atbc

1(q) ; and any pure ground-state is a minimizer abovebc
1(q).

But, as before, theb ’s aboveb
*
1(q) are inaccessible. Decreasingb away from 0, all eigenstates

are always populated@sinceb(q21)en11.0] and the Ho¨lder stater1 of ~5! is reached asymp-
totically for b→2`. The features of the strictly negative spectrum case, are analogous to those
of the strictly positive spectrum case reversing signs and directions, and replacing ground- by
ceiling-states and so on.

WhenH is bounded below but not above, we havefq(b)52` for everyb<0. The features
for b.0 are exactly the same as those of the corresponding finite-dimensional case.

The successive depopulation of eigenstates has a drastic effect which cannot be seen at first
glance infq which is a nice concave~in fact differentiable! function. This feature is detected, as
we will discuss below, in the functionUq(b):5Uq@rb# whose graph is a staircase: the derivative
of Uq w.r.t. b, does not exist for eachb ~negative or positive! where a depopulation occurs. More
precisely, the derivative has different limits as we approach theseb ’s from left or right. Since
tr is always a finite sum, we can analyze the differentiability offq term by term. One checks that
Uq(b) is the derivative offq for all b P (b

*
2 ,b

*
1)[I * .

The general expression for the ‘‘specific heat’’Cq can be derived from~16!:

Cq~b!5qb2Z~b!2~11q!
„Z~b!A2~b!2A1~b!2…,

where

Z~b!5(
n

Dn~b!1/~12q!, A1~b!5(
n

Dn~b!q/~12q!en , A2~b!5(
n

Dn~b!~2q21!/~12q!en
2 .

The summations run overn such thatDn.0. From this we can see also thatCq>0. The differ-
entiability of Uq is guaranteed except at all pointsbn5 1/(12q)en lying inside I * . Taking
b5bn7d ~according to whetherbn,

.0! and if we denote:

F1~bn!:5 lim
d→01

F~bn7d!; F2~bn!:5 lim
d→02

F~bn7d!,

andg5(12q)uenud we can prove that:

Z1~bn!5Z2~bn!1 lim
d→01

g1/~12q!,

A1
1~bn!5A1

2~bn!1en lim
d→01

gq/~12q!,
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A2
1~bn!5A2

2~bn!1en
2 lim

d→01

g~2q21!/~12q!,

where Z2(bn), A1
2(bn), and A2

2(bn) are finite quantities. For12,q,1, Z, A1 , and A2 are
continuous atbn , henceCq is continuous for allb P I * . Forq5 1

2, Z andA1 are continuous but
A2

15A2
21en

2 , therefore the ‘‘specific heat’’ presents finite discontinuities atbn . For 0,q, 1
2,

A2
1 diverges (Z andA1 are still continuous! and in consequenceCq

1 diverges:

Cq~b!→H ` if b↑bn.0 or b↓bn,0

finite if b↓bn.0 or b↑bn,0
.

In theq→0 limit, Cq vanishes everywhere except atbn where the lateral divergences survive.
Let us look closely at the case 0,e2,e

*
2 . fq is a straight line in the interval

@b
*
1(q),bc

1(q)) with slopeg2
12qe2 andCq(b)50. At bc

1(q) this line connects to the straight
line be2 which gives the value offq for b>bc

1(q). When the ground state is degenerate, i.e.,
g2>2, these lines have different slope andfq is not differentiable atbc

1(q). There is a discon-
tinuity in Uq at bc

1(q):

lim
b↑bc

1
~q!

Uq~b!5g2
12qe2.Uq

25e25 lim
b↓bc

1
~q!

Uq~b!.

This happens also atbc
2(q) when the ceiling state is degenerate, i.e.,g1>2, ande

*
1,e1,0. The

range of the functionb°Uq(b) is not @Uq
2 ,Uq

1# when there are degeneracies in the ground or
ceiling states and these states have non-zero finite energy. There are then energiesu for which
there is no reciprocal temperature.

When g2.1, we can computefq* , defined in~9!, as follows. To eachu>g2
12qe2, there

corresponds a uniqueb(u) P (2`,b
*
1(q)# and the corresponding minimizers lead us, using

Lemma 2, toSq(u)5fq* (u)5Sq@rb(u)#. For u in the non-thermal interval (e2,g2
12qe2) there is

no b such thatUq@rb#5u. But we can compute the Legendre–Fenchel transform offq directly
for this interval. The result is:

fq* ~u!5bc
1~u2e2!5

1

~12q!e2 u1
1

q21
, for uP@e2,g2

12qe2#.

Thus fq* is a straight line on the non-thermalu-interval. We know by Lemma 1, that
Sq(u)<fq* (u). We also know thatSq(g2

12qe2)5fq* (g2
12qe2) because at this point there is a

minimizerrb
*
1(q) . We can compute the value ofSq at e

2 directly from the definition~6!. Indeed,

the only statesr such thatUq@r#5e2 are the pure eigenstates to that eigenvalue; thus
Sq(e

2)505fq(e
2). Since in the non-thermal intervalSq lies belowfq* and coincides with

fq* at the end-points we conclude that ifSq(u),fq* (u) for someu inside this interval, thenSq is
not concave, and the correct entropy function is~the straight line! fq* on this interval. This strange
effect of degeneracy is rather drastic. In the finite dimensional case, wheng2 is so large that
g2
12qe2.e1, the whole spectrum$en% lies inside the non-thermal interval. The non-thermal
interval disappears as soon ase2<0 even whene

*
2.0 andg2>2. Indeed, herebc

1(q)5` and
the least energyUq

25g2
12qe2 is reached atb

*
1(q) where the minimizer isg2

21P2 and coincides
with the Hölder stater2 of ~5!.

C. A remark about equilibrium

We have been referring to the TH staterb , which is the unique minimizer of the variational
problem~8!, as the equilibrium state at reciprocal temperatureb. In fact, this is a gross abuse of
the analogy with the connection between Boltzmann–Gibbs statistical mechanics and Thermody-
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namics. We should first analyze if this notion of equilibrium entails its transitivity; that is, if the
familiar 0th-law of thermodynamics holds in this formalism.It does not. Suppose one has two
systems with HamiltoniansHj described on the Hilbert spacesH j such thatHj is not a multiple
of the identity (j51,2). The composite noninteracting system is described by the Hamiltonian
H5H1^ I1I ^H2 on the Hilbert spaceH5H1^H2 . The TH staterb at reciprocal temperature
b in I , which is the unique minimizer of~8! with Uq

(H)@r#5trH(r
qH), is not a product-state:

rbÞ~rb!1^ ~rb!2 ,

where (rb) j is the restriction ofrb to a state of thej -th subsystem. Moreover, (rb) j is not a TH
state of the systemj in the sense that it does not minimize~8! with Uq

(Hj )@v#5trH j
(vqH j ) for

any b. Thus, it is impossible to assign a reciprocal temperature to the subsystems when the
composite non-interacting system is in the staterb . It follows that this notion of equilibrium is not
transitive and the analogue of the 0th-law is not true. Thus, a possible connection between this
‘‘thermostatistics’’ and some thermometrical notion cannot be established with the parameterb.

The reason behind this unwanted feature is to be seen in the non-additivity property of the
q-entropy

Sq@r ^ v#5Sq@r#1Sq@v#1~12q!Sq@r#Sq@v#;

and of the functionalUq@•#

Uq
~H !@r ^ v#5Uq

~H1!
@r#1Uq

~H2!
@v#1~12q!~Uq

~H1!
@r#Sq@v#1Uq

~H2!
@v#Sq@r#!.

These properties can be easily checked.
For 0,q,1, Tsallis4 introduced the notion ‘‘thermally forbidden region’’ for the intervals

b<bc
2 and b>bc

1 , and ‘‘thermally frozen region’’ for the intervalsbc
2,b<b

*
2 and

b
*
1<b,bc

1 . For theq.1 case, the intervalsb<bc
2 andb>bc

1 were called ‘‘thermally frozen
region.’’ For us, all these regions are thermally inaccessible, without further discrimination, be-
cause the ‘‘free-energy’’ functionfq , which is well defined, is linear therein. In consequence the
‘‘specific heat’’ in these regions is identically zero. It is worthwhile to stress that the variational
problem posed by~8! only gives a unique minimizer state, the TH equilibrium state, for
bc

2,b,bc
1 .

V. ILLUSTRATION

At present, ‘‘specific heat’’ calculations for non-standard thermal statistics based on
q-entropies~as was worked out in Ref. 3!, are available for the two-level system, a free particle,10

and the Ising chain.11

In this Section we present as an application of the non-standard formalism developed above,
the ‘‘free-energy’’ functionfq and the ‘‘specific heat’’ of the harmonic oscillator characterized by
the spectrum:

en5n2a, n50,1,2,••• ,

wherea P R. Immediately we havee15e
*
15` ande252a, e

*
2512a. The influence ofa is

relevant forq Þ 1. For conventional use, we will present the results of this section as functions of
the temperatureT instead ofb5 1/T . The ‘‘Helmholtz free-energy’’ isTfq(T). Here,H is
bounded below but not above, in consequenceTc

25T
*
252` and the thermally relevant region is

T.Tc
1 for q.1 andT.T

*
1 for 0,q,1.

Case q.1:

1803Guerberoff, Pury, and Raggio: Nonstandard q-statistics

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Tc
15H 0, a<0

~q21!a, a.0
,

fq~T!55
2`, T<0

2
a

T
, 0,T<Tc

1

1

12q H F (
n>0

S ~q21!~n2a!

T
11D 1/~12q!G12q

21J , T.Tc
1

.

The convergence of the series is obtained only forq,2. For q>2, formally we obtain
f(T)5(1/12q) for T.Tc

1 , thenCq(T)50.
Figure 1 illustrates the thermal dependence of the ‘‘specific heat’’ for typical values of

q.1 anda. ForT→` the contribution to the series are from the terms withn..a. Then for a
givenq.1, the ‘‘specific heat’’ curves for different values ofa coalesce asymptotically.

Case0,q,1:

Tc
15H 0, a>0

2~12q!a, a,0
;T
*
15H 0, a>1

~12q!~12a!, a,1

FIG. 1. Thermal dependence ofCq in the harmonic oscillator for typical values ofq.1. Fora<0, Tc50. In the case
q51.2, fora55, Tc

151. The caseq51 is also shown for a comparison with the Boltzmann–Gibbs curve.
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fq~T!55
2`, T<0

2
a

T
, 0,T<T

*
1

1

12q H S ( 8
n

S 12
~12q!~n2a!

T D 1/~12q!D 12q

21J , T.T
*
1,

where(8 runs overn,T/(12q)1a.
Figure 2 shows the thermal dependence ofCq for typical values ofq in the interval (

1
2,1). We

observe strong oscillations in the ‘‘specific heat’’ but it is continuous everywhere. Forq< 1
2 the

functionUq(T) is not differentiable in the pointsTn5(12q)(n2a).0. These points are equally
spaced for the harmonic oscillator. The caseq5 1

2 is presented in Figure 3, where we can observe
the finite discontinuities inCq at Tn . The lateral divergences inCq at Tn for a typicalq, 1

2 are
shown in Figure 4. The ‘‘specific heat’’ was numerically evaluated in all presented pictures.

VI. RESULTS ON THE MULTIDIMENSIONAL CASE

The results of the Appendix apply immediately to the case where one imposesN constraints
via N HamiltoniansH1 ,H2 ,•••,HN .

12 Let

Sq~u1 ,u2 ,•••,uN!5supr$Sq@r#:Uq
~ j !@r#:5tr ~rqH j !5uj , j51,2,•••,N%;

then one has

fq~bW !:5 inf
uW

$bW •uW 2Sq~uW !%5 inf
r
H (
j51

N

b jUq
~ j !@r#2Sq@r#J

FIG. 2. Thermal dependence ofCq in the harmonic oscillator for two values ofq in the region
1
2,q,1 anda50.

1805Guerberoff, Pury, and Raggio: Nonstandard q-statistics

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



for the Legendre–Fenchel transform ofSq at the pointbW 5(b1 ,b2 ,•••,bN) P RN. The solution of
this variational problem is controlled, via Propositions A.1 and A.2 of the Appendix, by the sign
of the least eigenvalue of the operatorA(bW ,q):5( j51

N b jH j1(q21)21I .
In the infinite dimensional case there are domain problems to be taken into account and one

has to establish conditions such that the operator has purely discrete spectrum. To avoid all this we
consider in what follows only the finite dimensional case.

For q.1, let I q :5$bW :a2(bW ,q).0%. Since the function RN { bW °a2(bW ,q):
5 inf$spec„A(bW ,q)…% is concave,I q is a convex subset ofRN. The boundary ofI q defines the

FIG. 3. Thermal dependence ofCq in the harmonic oscillator forq5
1
2 and typical values ofa, showing discontinuities.

FIG. 4. Thermal dependence ofCq in the harmonic oscillator forq50.3 anda50.
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hypersurface of criticalbW ’s; this hypersurface is difficult to describe explicitly and globally when
the Hamiltonians do not commute with each other. There is a unique minimizer whenbW P I q

given by the Tsallis–Ho¨lder state

rbW 5tr „A~bW ,q!1/~12q!
…

21A~bW ,q!1/~12q!.

On the critical hypersurface, the minimizers are ground- or ceiling-states ofA(bW ,q). Outside the
closure ofI q , the minimizers are pure ground- or ceiling- states ofA(bW ,q).

For 0,q,1, the relevant regions areI q :5$bW :a2(bW ,q),0%, and a second regionI q* de-
fined as the complement inRN of the bW ’s with either a2(bW ,q)>0 or such that the operator
A(bW ,q)2 has exactly one non-zero eigenvalue; alternativelyI q* :5$bW :a2(bW ,q),0,
and A(bW ,q)2 has more than one non-zero eigenvalue%. Neither of these sets is convex in general.
ForbW P I q* , the minimizer is unique and given by the Tsallis–Ho¨lder state

rbW 5tr „A~bW ,q!2
1/~12q!)21A~bW ,q…2

1/~12q! .

ForbW P I q /I q* , the minimizer is the equidistribution of ground- or ceiling-states ofA(bW ,q). On
the boundary or outside ofI q the situation is as in the caseq.1.

Clearly, the multidimensional case reduces to the case of only one constraint. Taking an
arbitrary unit vector~i.e., direction! eW in RN, and lettingH(eW )5( j51

N ejH j , the problem is re-
duced to that which we have solved explicitly:

fq
~eW !~b!:5fq~beW !5 inf

r
$bUq

„H~eW !…@r#2Sq@r#%.

Thus the intersections of the setsI q andI q* with the rays inR
N are described explicitly in terms

of direction dependentbc
6(eW ,q)’s and, for 0,q,1, b

*
6(eW ,q)’s.

VII. CONCLUDING REMARKS

We have solved rigorously the variational problem associated with theq-entropies under the
non-affine constraintUq@•#5 constant. We have determined by use of the Ho¨lder inequality the
corresponding quantum states minimizing the functionalbUq@•#2Sq@•#. Then we have estab-
lished all the ‘‘thermostatistical’’ consequences. In particular, the analogue of the 0th-law of
Thermodynamics does not hold in terms ofb.

For q.1 the bizarre feature as perceived from familiar Boltzmann–Gibbs statistics, apart
from the manifest dependence on the energy-zero, is the unattainability of temperatures in the
interval @1/„bc

2(q)… , 1/„bc
1(q)…#, and what we have called strong violation of the third law.

The case 0,q,1 is much richer. Generally speaking the case 0,q,1, presents the same
features as the caseq.1: strong violation of the third law, and unattainability of low temperatures
~but not always!. But the depopulation phenomenon of levels, has a drastic effect in the ‘‘specific
heat,’’ which may present oscillations, discontinuities and lateral divergences.

Note added in proof:We complete a point left open in the case 0,q,1, and show thatSq is
concave. In the last two paragraphs of part B in Sec. IV, we had seen that if the ground-state
energy is degenerate, i.e.,g2>2 ~alternatively the ceiling-state is degenerate,g1>2), then there
are energiesu for which there are no reciprocal temperatures whene2.0. The corresponding
energy interval (e2,g2

12qe2) was referred to as the non-thermal interval. We computed the
Legendre–Fenchel transformfq* of fq for this interval obtaining fq* (u)5bc

1(u2e2)
5 (q21)21(12u/e2). We then said that, due to the general inequalitySq<fq* , and the fact that
Sq5fq* at the end-points of the non-thermal interval, we could conclude thatSq is not concave if
for some non-thermalu we hadSq(u),fq* (u). Here we show thatSq5fq* on the whole non-
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thermal interval, so thatSq is indeed always concave. Take a stater such thatrP25r @recall that
e2.0 is degenerate, i.e.,g25tr (P2)>2]. Then tr (rqH)5e2tr (r

q), so that Sq@r#
5 (q21)21(12Uq@r#/e2). Since 1<tr (rq)5tr (rqP2)<g2

12q , givenu in the non-thermal in-
terval, we can choose ar satisfying the conditions withUq@r#5u and thusSq@r#5fq* (u). On
the other hand, for any stater with Uq@r#5u, we haveSq@r#<Sq(u)<fq* (u). We conclude that
Sq(u)5fq* (u) on the non-thermal interval. The same argument applies to the case of degenerate
ceiling-energy.
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APPENDIX: THE BASIC VARIATIONAL PROBLEM

Here we solve the two variational problems infr tr (r
qA) and supr tr (r

qA) for 0,q Þ 1,
whereA is selfadjoint and its spectrum consists entirely of isolated eigenvalues of finite multi-
plicity. These we number as$an% according to their multiplicities:

A5(
n

anucn&^cnu,

where $cn% is a complete orthonormal basis of eigenvectors forA. We let a1:5supnan ,
a2:5 infnan , and remark that if either of these two numbers is finite, then it is an eigenvalue of
A. The traces in question are always understood as

tr ~rqA!5(
n

an^cn ,r
qcn& ~A.1!

when the series on the right-hand side is absolutely convergent.
The solution requires use of the classic Ho¨lder inequality which we quote from Ref. 13 for the

readers convenience:
Hölder Inequalities: Let k be a real number distinct from0 and from 1, and put

k85k/(k21). Let $an% and $bn% be sequences of non-negative real numbers, then:

(
n

anbn<S (
n

an
kD 1/kS (

n
bn
k8D 1/k8 for k.1, ~A.2!

with equality iff either an
k5cbn

k8 or can
k5bn

k8 for every n with a non-negative real c;

(
n

anbn>S (
n

an
kD 1/kS (

n
bn
k8D 1/k8 for k,1, ~A.3!

with equality iff either anbn50, or an
k5cbn

k8 for every n, with a positive real c.
We will also use the following well known result:
Lemma A.1:For any unit vectorc,

^c,rqc&>^c,rc&q, for q.1

^c,rqc&<^c,rc&q, for 0,q,1
.
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In both inequalities there is equality if and only ifrc5^c,rc&c, i.e., if c is an eigenvector of
r.

Proof : Let $Pm% be a family of orthogonal projections with(mPm5I , and rPm5rmPm ,
where$rm% are the distinct eigenvalues ofr. Then,tr (Pm) is the multiplicity of the eigenvalue
rm , and(m^c,Pmc&51. The mapx°xq is strictly convex~resp. strictly concave! on the unit
interval forq.1 ~resp. 0,q,1); thus

^c,rqc&5(
m

rm
q ^c,Pmc&

>

~<!S (m rm^c,Pmc& D q5^c,rc&q.

In both cases we have equality if and only if either allrm are equal~as happens ifr is the
normalized trace in finite dimensions! or else^c,Pmc&5dm,mo

for somemo . In both cases, it
follows thatrc5rmo

c5^c,rc&c. h

A useful and immediate consequence of the equality condition of this result is that, since the
eigenvalues ofr lie in @0,1#: tr (rq)<( resp.>)tr (r)51 for q.1 ~resp. 0,q,1); with equality
iff r is a pure state (⇔rq5r).

Lemma A.2:Supposea2 > 0. For every stater, one has:
1. For q.1,

a1>tr ~rqA!>H $tr ~A1/~12q!!%12q, if a2.0

0, if a250
. ~A.4!

When0,a1,`, there is equality on the l.h.s. iffr is a pure eigenstate of A to the eigenvalue
a1. Whena2.0, and tr(A1/(12q)) is finite, there is equality in the r.h.s. iff

r5
A1/~12q!

tr ~A1/~12q!!
. ~A.5!

Whena250, there is equality on the r.h.s. iffr is an eigenstate of A to the eigenvalue0.
2. If 0,q,1,

a2<tr ~rqA!<$tr ~A1/~12q!!%12q. ~A.6!

Whentr(A1/(12q)) is finite, there is equality in the r.h.s. iffr is given by (A.5). Whena250 ~resp.
a2.0) there is equality on the l.h.s. iffr is an eigenstate (resp. pure eigenstate) to the eigenvalue
a2.

We call the states such as~A.5! Hölder states because they saturate Ho¨lder’s inequality.
Proof :
1. Caseq.1. Suppose thata1,`. We havetr (rqA)<a1tr (rq)<a1. If a1.0, there is

equality in the second inequality iffr is a pure state. But then there is also equality in the first
inequality if r is a pure eigenstate to the eigenvaluea1. If a15` there is nothing to prove.

Supposea250; then, sincean>0, obviouslytr (rqA)>0 with equality iff ^cn ,r
qcn&50 for

everyn with an.0. The latter condition is equivalent tôcn ,rcn&50 for everyn with an.0.
This is equivalent totr (rA)50 which, with the variational characterization of the bottom of the
spectrum, is equivalent tor being an eigenstate ofA to the eigenvalue 0.

Supposea2.0; then Lemma A.1 and Ho¨lder’s inequality~A.3! with k51/q together with
an.0, produces

tr ~rqA!>(
n

an^cn ,rcn&
q>S (

n
^cn ,rcn& D qS (

n
an
1/~12q!D 12q

.
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There is equality in the last inequality iff^cn ,rcn&5can
1/(12q) for everyn with c.0. But then,

there is equality in the first inequality iffr is diagonal in the $cn% basis, that is
^cn ,rcn&5rn5can

1/(12q) .
If (nan

1/(12q) is finite, then one can determinec by normalization to be ((nan
1/(12q))21 and

obtain the assertions. If the sum is̀, the r.h.s. of~A.4! which is 0 is not attained.
2. Case 0,q,1. We havetr (rqA)>a2tr (rq)>a2. Whena2.0, there is equality in the

last inequality iffr is a pure state; and also in the first inequality iffr is a pure eigenstate ofA to
the eigenvaluea2. Whena250, there is equality in the first inequality iffr is an eigenstate of
A to the eigenvalue 0.

Applying Lemma A.1, and Ho¨lder’s inequality~A.2! with k51/q.1, together with the as-
sumption thatan>0, we get

tr ~rqA!<(
n

an^cn ,rcn&
q<S (

n
^cn ,rcn& D qS (

n
an
1/~12q!D 12q

.

The rest of the claim can be got as in the caseq.1. If (nan
1/(12q) is `, then the r.h.s. of~A.6!

which is` is not attained. h

It is instructive to consider the case whereA is the Hamiltonian of the harmonic oscillator
with eigenvaluesan } n. Here(nan

1/(12q)5` if 0 ,q,1 or q>2; so the r.h.s. of~A.4! which is
0, and the r.h.s of~A.6! which is`, are not attained in these cases.

Having solved the case of a strictly positiveA it is now easy to solve the general case as
follows.

Proposition A.1:For q.1

inf
r

tr ~rqA!5H $tr ~A1/~12q!!%12q, if a2.0

a2, if a2<0
.

If a2.0 and tr(A1/(12q)) is finite there is a unique minimizer, the Ho¨lder state given by (A.5). If
a250 ~resp.2`,a2,0), then the minimizers are the eigenstates (resp. pure eigenstates) of
A to the eigenvaluea2.

sup
r

tr ~rqA!5H 2$tr „~2A!1/~12q!
…%12q, if a1,0

a1, if a1>0
.

If a1,0 and tr„(2A)1/(12q)
… is finite, there is a unique maximizer, the Ho¨lder state given by

(A.5) with the positive operator2A. If a150 ~resp. 0,a1,`), then the maximizers are the
eigenstates (resp. pure eigenstates) of A to the eigenvaluea1.

We recall the definitions of the positiveA1 and negativeA2 parts of the operatorA:
A65(n@(uanu6an)/2#ucn&^cnu. One has that bothA1 and A2 are non-negative, and
A5A12A2 .

Proposition A.2:For 0,q,1,

inf
r

trrqA)5H 2$tr „~A2!1/~12q!
…%12q, if a2,0

a2, if a2>0
.

If a2,0 and tr((A2)
1/(12q)) is finite, then there is a unique minimizer, the Ho¨lder state given by

(A.5) with A2 . If a250 ~resp.a2.0), the minimizers are the eigenstates (resp. pure eigen-
states) of A to the eigenvaluea2.
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sup
r

tr ~rqA!5H $tr „~A1!1/~12q!
…%12q, if a1.0

a1, if a1<0
.

If a1.0 and tr„(A1)
1/(12q)

… is finite, then there is a unique maximizer, the Ho¨lder state given by
(A.5) with A1 . If a150 ~resp.a1,0) the maximizers are the eigenstates (resp. pure eigen-
states) of A to the eigenvaluea1.

Proof of the Propositions:Since supr tr (r
qA)52 infr tr „r

q(2A)…, it suffices to prove the
assertions for the infimum. In view of Lemma A.2, it remains only to consider the casea2,0.
But then, lettingA2 ~resp.A1) be the negative~resp. positive! part of the operatorA, we have

inf
r

tr ~rqA!5 inf
$r:tr ~rqA1!50%

tr „rq~2A2!…52 inf
$r:tr ~rqA1!50%

tr ~rqA2!,

so that Lemma A.2, proves the statements after a careful and detailed analysis of the condition
tr (rqA1)50. h

We want to remark that in this variational problem we can have supr tr (r
qA).e1 or

infr tr (r
qA),e2 because of the lack of affinity of the functionaltr (rqA).
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5Z. Daróczy, ’’Generalized information functions,’’ Inf. Control16, 36–51~1970!.
6A. Wehrl, ‘‘General properties of entropy,’’ Rev. Mod. Phys.50, 221–260~1978!.
7G. A. Raggio, ‘‘Properties ofq-entropies,’’ J. Math. Phys.36, 4785–4791~1995!.
8R. T. Rockafellar,Convex Analysis~Princeton University, Princeton, 1970!.
9Notice that the setK q(u) of states whereUq@•#5u is not convex forq Þ 1; if it were, it would be immediate that
Sq defined by~6! is concave.

10E. P. da Silva, C. Tsallis, and E. M. F. Curado, ‘‘Specific heat of a free particle in a generalized Boltzmann-Gibbs
statistics,’’ Physica A199, 137–153~1993! ~Erratum:203, 160 ~1994!.

11R. F. S. Andrade, ‘‘Remarks on the behavior of the Ising chain in generalized statistics,’’ Physica A203, 486–494
~1994!.

12A. R. Plastino and A. Plastino, ‘‘Tsallis’ entropy, Ehrenfest theorem and information theory,’’ Phys. Lett. A177,
177–179~1993!.

13G. H. Hardy, J. E. Littlewood, and G. Po´lya, Inequalities~Cambridge University, Cambridge, 1934!.

1811Guerberoff, Pury, and Raggio: Nonstandard q-statistics

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Covariant quantum Markovian evolutions
A. S. Holevoa)
Fachbereich Physik, Phillips-Universita¨t Marburg, Renthof 7, D-3550 Marburg, Germany
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Quantum Markovian master equations with generally unbounded generators, hav-
ing physically relevant symmetries, such as Weyl, Galilean or boost covariance, are
characterized. It is proven in particular that a fully Galilean covariant zero spin
Markovian evolution reduces to the free motion perturbed by a covariant stochastic
process with independent stationary increments in the classical phase space. A
general form of the boost covariant Markovian master equation is discussed and a
formal dilation to the Langevin equation driven by quantum Boson noises is
described. ©1996 American Institute of Physics.@S0022-2488~96!01503-X#

I. INTRODUCTION

The classification of Galilean or Poincare covariant elementary systems is a cornerstone in the
mathematical foundations of quantum mechanics.1,2 The question of covariant irreversible evolu-
tions ~such as unstable particles! was also raised some time ago. However, in that case the answer
remained far from being complete; essentially quasi-free dynamical semigroups, corresponding to
Gaussian reservoirs were studied in detail~see Refs. 3 and 4 and the references therein!.

In this paper we fill this gap by giving a complete characterization of Galilean covariant
quantum Markovian evolutions~with zero spin!. We prove in particular that in the case of the full
Galilean covariance~Sec. III! these reduce to the free motion perturbed by a covariant stochastic
process with stationary independent increments in the classical phase space. The reservoir of a
Galilean covariant zero spin system is thus a classical noise, but not necessarily Gaussian: the
variety of possible noises is described by the Levy–Khinchin formula. This result is based on the
characterization of Weyl covariant dynamical semigroups given in Sec. II.

In the second part of this paper~Secs. IV and V! we consider much a broader class of
evolutions, covariant only with respect to the Galilean boosts. The boost covariance is of funda-
mental importance as this is essentially the symmetry of particle motion in arbitrary potential field.
In Sec. IV the general boost covariant Markovian master equation is discussed, based on a non-
commutative generalization of the Levy–Khinchin formula obtained in Ref. 5, which is presented
here in a more accessible form. Then in Sec. V the quantum Langevin equations are given, dilating
this master equation with Boson quantum noise.

Being covariant with respect to noncompact symmetry groups, the generators of evolutions
under consideration are, as a rule, unbounded operators. Existence and uniqueness of a dynamical
semigroup with the generator given by a densely defined operator expression become nontrivial
problems in this case. A recently developed framework for these problems, briefly outlined below
~see also Appendix A!, shifts the accent from the semigroup to the Markovian master equation it
satisfies.

Let B~H! be the algebra of all bounded operators in a Hilbert spaceH. By a dynamical
semigroupin B~H! we shall call a semigroupFt , t>0, of normal completely positive maps in
B~H!, weak*-continuous, satisfyingF05Id @the identity map ofB~H!#, andF t[ I ]<I ~the unit
operator inH!. HereFt is calledunital if F t[ I ]5I . Let T ~H! be the Banach space of trace-class
operators inH, so thatT ~H!*5B~H!. There is a unique strongly continuous preadjoint semi-

a!Permanent address: Steklov Mathematical Institute, Vavilova 42, 117966 Moscow.
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groupC t5(F t)*
in T ~H!, such thatC t*5F t . Denoting its generatorL

*
one has the differ-

ential equation

d

dt
Tr rF t@X#5Tr L* @r#F t@X#, XPB~H!. ~1.1!

If r runs through domL
*

,T ~H!, then this equation determinesFt uniquely. However, in
applicationsL

*
is usually given only on a dense subspaceD. Typically a dense domainD,H is

given and

D5 lin$r:r5uf&^cu, f,cPD%, ~1.2!

while L
*
is defined by an expression of thestandard form:

L* @r#5(
i

uL jf&^L jcu2uKf&^cu2uf&^Kcu, r5uf&^cu, ~1.3!

whereL j ,K are operators defined onD ~or by similar expression with the sum replaced by an
integral!. Thedissipativity condition

(
j

iL jci2<2 Rê cuKc&, cPD , ~1.4!

is assumed~implying in particular thatK is accretive: RêcuKc&>0, cPD!. Equation~1.1! then
reduces to the equation for the matrix elements ofF t[X]:

d

dt
^cuF t@X#f&5L~c;F t@X#,f!; f,cPD , ~1.5!

where

L~c;X;f!5Tr L* @ uf&^cu#X5(
j

^L jcuXLjf&2^KcuXf&2^cuXKf& ~1.6!

is the form-generator.6,7 We call ~1.5! the (backward) Markovian master equation.
If D is a core forL

*
, then this equation determinesFt uniquely, otherwise it may have a

nonunique solution. Of special interest is the case of aunital generator, satisfying TrL
*
@c&^fu#[0

or

(
j

iL jci252 Rê cuKc&, cPD . ~1.7!

Then under the condition thatK is maximal accretive andD is an invariant domain fore2Kt, t>0,
there exists a dynamical semigroupFt

` giving theminimal solutionof Eq. ~1.5! in the sense that
for any other solutionFt the differenceF t2F t

` is completely positive~see Appendix A!. In
generalFt

` may not be unital; however, if it is, thenFt
` is the unique solution of~1.5!.8–10

Under the additional assumption that operatorsL j* , K* are defined on a dense domainD* ,
and

(
j

iL j*ci2,`, cPD* , ~1.8!

one can write also theforwardMarkovian master equation for the preadjoint semigroupCt :
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d

dt
^fuC t@r#c&5L* ~f;C t@r#;c!, f,cPD* , ~1.9!

where

L* ~f;r;c!5Tr rL@ uc&^fu#5(
j

^L j*furL j*c&2^K*furc&2^furK*c&. ~1.10!

HereL denotes the generator of the semigroupFt . AssumingK* to be maximal accretive andD*
to be an invariant domain fore2K* t, t>0, we can prove thatC t

`5(F t
`)
*
is the minimal solution

of the forward equation~see Appendix A!. Thus the situation is similar to that for the
Kolmogorov–Feller differential equations in the theory of Markov processes.11 If Ft

` is not unital,
then there is a positive probability of ‘‘explosion,’’ i.e., exit from the phase space for the corre-
sponding Markov process. Additional ‘‘boundary conditions’’ are required to specify the solution,
which amounts to a certain maximal extension ofL

*
from D.

From the results in Secs. II and III it follows in particular that an explosion can never occur
for the fully Galilean covariant Markovian evolutions. However, this is possible for the boost
covariant evolutions potentially interesting for applications. The mathematical study of these is far
from being complete; the presentation in Secs. IV and V is thus on a formal level, and we only
outline a few rigorous results and a number of problems waiting for their mathematical solutions.

II. WEYL COVARIANT DYNAMICAL SEMIGROUPS

Let Z be a finite-dimensional symplectic space with a nondegenerate symplectic formD(z,z8)
and letz→W(z) be an irreducible representation of the Weyl–Segal CCR:

W~z!W~z8!5exp iD~z,z8!W~z8!W~z! ~2.1!

in a Hilbert spaceH.
Proposition 1:A dynamical semigroupFt in B~H! is Weyl covariant,

F t@W~z!*XW~z!#5W~z!*F t@X#W~z!, zPZ, ~2.2!

if and only if

F t@W~z!#5W~z!etl ~z!, ~2.3!

wherel (z) is a continuous conditionally positive definite function satisfyingl ~0!<0.
Proof: By weak*-continuity the semigroupFt is uniquely defined by the values ofF t[W(z)],

zPZ. From ~2.2! and ~2.1! F t[W(z8)] satisfies the same relation~2.1! as W(z8), hence
F t[W(z8)]W(z8)* commutes withW(z), zPZ. Since the representationz→W(z) is irreducible,

F t@W~z!#5W~z!f t~z!,

wheref t(z) is a complex function. From the definition of dynamical semigroup, it is continuous
in t, z and satisfiesf t1s(z)5f t(z)fs(z), f0(z)51, ft~0!<1. Hencef t(z)5expt l (z), with l (z)
continuous andl ~0!<0. From complete positivity ofFt it follows

12,13 that f t(z) is positive
definite inz for all t>0. Indeed for any finite collections$zj%,Z, $cj%,C,

(
j ,k

c̄ jckf t~zj2zk!5(
j ,k

c̄ jck^W~zj !cuF t@W~zj !W~zk!* #W~zk!c&>0,
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wherecPH is arbitrary unit vector. Then by a theorem of Schoenbergl (z) is conditionally
positive definite.

Conversely, let the operatorF t[W(z)] be defined by~2.3!. There exists a stochastic process
zt , t>0, with stationary independent increments inZ, having the characteristic function

MeiD~z,z t!5et„l ~z!2 l ~0!… ~2.4!

~see, e.g., Refs. 11 and 14!. Then for allXPB~H!

F t@X#5MW~z t!*XW~z t!e
tl ~0!, ~2.5!

since for X5W(z) this follows from ~2.1! and ~2.4!, and then can be extended by
weak*-continuity. One easily sees that the right-hand side defines Weyl-covariant dynamical semi-
group; in particular the semigroup property follows from the fact thatzt has stationary independent
increments. h

ObviouslyFt is unital if and only if l ~0!50. In this case the relation~2.5! gives a dilation of
the Markovian evolutionFt to the unitary stochastic evolution

X→X~ t !5W~z t!*XW~z t!. ~2.6!

Defining the canonical observablesR(z) as self-adjoint operators, linearly depending onz, and
satisfyingW(z)5exp iR(z), one has from~2.6! R(z;t)5R(z)1D(z,z t)I . This is equivalent to the
Langevin–Heisenberg equation

dR~z;t !5D~z,dz t!I , R~z;0!5R~z!, ~2.7!

which due to~2.1! can be viewed as an infinitesimal canonical transformation implemented by the
interaction HamiltoniandHint52R(dz t).

Let us describe the general master and Langevin equations for the evolution~2.5!. By the
multidimensional Levy–Khinchin formula11,14

l ~z!2 l ~0!5 ib~z!2
1

2
a~z!1E

z8Þ0
@eiD~z,z8!212 iD~z,z8!1e~z8!#n~dz8!, ~2.8!

whereb(z) is real linear,a(z) is non-negative quadratic function onZ, andn(dz) is positive Levy
measure onZ\$0% satisfying

E
zÞ0

@1e~z!uzu21„121e~z!…#n~dz!,`. ~2.9!

Here 1e(z) is the indicator of the setuzu,e for some fixed normu•u in Z, ande.0. One has

b~z!5D~z,z0!, a~z!5(
j51

r

D~z,zj !
2, ~2.10!

wherez0PZ, $zj% is a linearly independent system inZ, r<dim Z. The processzt has the Ito
representation14

dz t5dz t
c1E

zÞ0
z1e~z!P̃ ~dzdt!1E z@121e~z!#P~dzdt!, ~2.11!

wherezt
c is the Wiener process inZ with the moments
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MD~z,z t
c!5b~z!dt, DD~z,z t

c!5a~z!dt,

P(dzdt) is the Poisson random measure such that

MP~dzdt!5n~dz!dt,

andP̃ (dzdt)5P(dzdt)2n(dz)dt is the compensated Poisson random measure. Formula~2.11!
gives the decomposition ofzt into the continuous, ‘‘small-jumps’’ and ‘‘big-jumps’’ components,
the stochastic integral for small jumps~of magnitudesuzu,e! converging in the mean-square
sense, while for big jumps converges pathwise, via the condition~2.9!.

Consider the domain

D5 ù
zPZ

domR~z!2.

ThenD is a dense domain inH, invariant underW(z). LetD be defined by~1.2! with this domain
D .

Proposition 2:The dynamical semigroup~2.5! is the unique solution of the Markovian master
equation~1.5! with

L* @r#5 l ~0!r1 i @R~z0!,r#2
1

2 (
j51

r

†R~zj !,@R~zj !,r#‡

1E
z8Þ0

~W~z8!rW~z8!*2r2 i @R~z8!,r#1e~z8!!n~dz8! ~2.12!

for rPD. The domainD is a core forL
*
, andFt is unital if and only ifL

*
is such.

The random density operator

r~ t !5W~z t!rW~z t!* e
tl ~0!, rPD, ~2.13!

satisfies the Langevin–Schroedinger equation

dr~ t !5 i @R~dz t
c!,r~ t !#1E

z8Þ0
„W~z8!r~ t !W~z8!*2r~ t !…P̃ ~dz8dt!1L* @r~ t !#dt,

~2.14!

understood as stochastic equation in the weak operator topology.
Proof: From ~2.3!

d

dt
Tr rF t@W~z!#5 l ~z!Tr rF t@W~z!#, rPdomL* ,

where

Tr L* @r#W~z!5 l ~z!Tr rW~z!.

For rPD

D~z,z8!Tr rW~z!5Tr@R~z8!,r#W~z! ~2.15!

~see Ref. 15!, hence also

D~z,z8!2 Tr rW~z!5Tr†R~z8!,@R~z8!,r#‡W~z8!. ~2.16!
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By using ~2.8!, ~2.9!, and~2.1! we obtain~2.12!.
To show thatD is a core forL

*
, we remark thatrPD impliesr(t)PD, sinceD is invariant

under the Weyl automorphismsr→W(z)rW(z)* . Assuming thatD is not a core forL
*
, we can

find l0.0 such that~l0 Id2L
*
!~D! is not dense inT ~H! ~see Ref. 16, theorem X.49!. Then there

existsX0PB~H!, X0Þ0, such that Tr„l0r(t)2L*
@r(t)#…X050. From~2.5! and ~1.1!

d

dt
Tr rF t@X#5Tr rF t†L@X#‡5M Tr rW~z t!*L@X#W~z t!e

tl ~0!

5M Tr r~ t !L@X#5M Tr L* @r~ t !#X

for XPdomL andrPD. Integrating,

Tr rF t@X#2Tr rX5E
0

t

M Tr L* @r~s!#Xds

for XPD and hence for allXPB~H! by weak*-continuity. TakingX5X0, we obtain

Tr rF t@X0#5el0t Tr rX0 , rPD,

which contradicts the contraction property ofFt . ThusD is a core forL
*
.

It is sufficient to establish the relation~2.14! for r5uc&^cu, cPD . Thenr t5uc t&^c tu, where
ct5exp 1

2[ t l (0)1 i*0
t D(zs ,dzs)]W(z t)c. The vectorct satisfies the following exponential sto-

chastic differential equation

dc t5H iR~dz t
c!1E

zÞ0
„W~z!2I …P̃ ~dzdt!

1F12 S l ~0!I2(
j51

r

R~zj !
2D 1E

zÞ0
„W~z!2I2 iR~z!1e~z!…n~dz!GdtJ c t . ~2.17!

To prove this formula we can use a concrete form of the CCR, e.g., the so-called regular repre-
sentation in the spaceL2(Z):

W~z8!c~z!5c~z1z8!exp
i

2
D~z,z8!,

R~z8!c~z!5@2 i“~z8!1 1
2D~z,z8!#c~z!.

Then

c t~z!5c~z1z t!exp
1

2 F t l ~0!1 i E
0

t

D~z1zs ,dzs!G .
By using the Ito formula14 one arrives at~2.17!. Then the stochastic equation~2.14! for the matrix
elementŝ cur(t)f&5^cuc t&^c tuf& follows from ~2.17! by application of the Ito product rule.

Apparently unitality of the generator~2.12! implies unitality ofFt , since both are equivalent
to l ~0!50. h

The Langevin equation~2.14! gives the dilation of the dynamical semigroupFt with the
classical Wiener process and Poisson random measure as the driving noises. The structure of the
generator~2.12! is in formal agreement with a result of Ref. 17, in which finite-dimensional
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dynamical semigroups admitting dilation with a classical noise were described. It was shown there
that the generator of such semigroup is a sum of ‘‘Gaussian’’ and ‘‘Poissonian’’ terms

†L, @L, X#‡, V*XV2X,

whereL is Hermitean andV is unitary operator. In our case we have unbounded self-adjoint
operators in the ‘‘Gaussian’’ part and the sum of ‘‘Poissonian’’ terms is replaced by integral over
all possible magnitudes of jumps. Also the ‘‘small-jumps’’ correction@the commutator term under
the integral in~2.12!# is peculiar to the infinite-dimensional case.

The generator~2.12! has the standard form since it can be represented as

L* @r#5 l ~0!r1(
j51

r

R~zj !rR~zj !1E
zÞ0

@W~z!21e~z!I #r@W~z!21e~z!I #* n~dz!2Kr2rK* ,

where

K5
1

2 (
j51

r

R~zj !
21E

zÞ0
H 1e~z!@ I2W~z!1 iR~z!#1@121e~z!#

I

2 J n~dz!.

From these formulas one sees that the analog of condition~1.8! holds with D*5D . Thus
C t5(F t)*

is the unique solution of the forward Markovian master equation~1.9! with

L@X#5 l ~0!X1 i @X,R~z0!#2
1

2 (
j51

r

†@X, R~zj !#,R~zj !‡

1E
zÞ0

$W~z!*XW~z!2X2 i @X, R~z!#1e~z!%n~dz!.

III. GALILEAN COVARIANT EVOLUTIONS

Let ~j,t!, jPR3, tPR, be a point in the four-dimensional nonrelativistic space–time, and let
(x,v,R,t):~j,t!→~j8,t8! be the Galilei transformation

z85Rj1x1vt, t85t1t, ~3.1!

wherexPR3 is the space shift of the reference system,vPR3 is the Galilean boost,R is the matrix
of rotation inR3, andtPR is the time shift. The Galilean covariant elementary quantum system is
given by an irreducible projective unitary representation (x,v,R,t)→U(x,v,R,t) of the group of
transformations~3.1!, satisfying

U~x1 ,v1 ,R1 ,t1!U~x2 ,v2 ,R2 ,t2!5exp
im

2
~v1•R1x22x1•R1v22t2v1•R1v2!

3U~R1x21x11t2v1 ,R1v21v1 ,R1R2 ,t11t2!, ~3.2!

wherem is the mass constant.1,2 In particular, the kinematics is described by the unitary repre-
sentations

~x,v !→Wx,v5U~x,v,E,0!, R→UR5U~0,0,R,0!,

whereE is the unit matrix,Wx,v is projective representation ofR33R3, satisfying the Weyl
commutation relation
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Wx1 ,v1
Wx2 ,v2

5exp im~v1•x22x1•v2!Wx2 ,v2
Wx1 ,v1

, ~3.3!

andUR is a unitary representation of the rotation group, satisfying

URWx,v5WRx,RvUR . ~3.4!

The reversible dynamics is given by the one-parameter unitary groupt→Ut5U(0,0,E,2t), sat-
isfying

Wx,vUt5UtWx2vt,v , ~3.5!

URUt5UtUR . ~3.6!

Restricting to the case of zero-spin elementary system, we assume that the representationWx,v is
irreducible. The well-known solution of~3.3!–~3.6! is

Wx,v5exp i ~mv•Q2x•P!, ~3.7!

Ut5expS 2 i t
uPu2

2m D , ~3.8!

whereQ5(Q1 ,Q2 ,Q3), P5(P1 ,P2 ,P3) are canonical position and momentum observables.
Turning to the Markovian dynamics, we assume, following Ref. 3, that it is described by a

dynamical semigroupFt , t>0 in B~H!. Then the covariance conditions~3.5! and ~3.6! are
replaced by

F t@Wx,v* XWx,v#5Wx2vt,v* F t@X#Wx2vt,v , ~3.9!

F t@UR*XUR#5UR*F t@X#UR . ~3.10!

LetL
*
be the generator of the preadjoint semigroup~Ft!*

. LetD,H be the dense domain

D5 ù
x,vPR3

dom~mv•Q2x•P!2, ~3.11!

and letD,B~H! be the domain defined by the relation~1.2!.
Theorem: Let Ft be a dynamical semigroup satisfying the covariance conditions~3.9! and

~3.10!, and assumeD,domL
*
. Then

F t@Wx,v#5Wx2vt,v exp E
0

t

l ~x2vs,v !ds, ~3.12!

where

l ~x,v !5 l 02
1

2
~aPPuxu212aPQmx•v1aQQm

2uvu2!

1E E
uxu21uyu2.0

@eim~x•v82v•x8!21#n~dx8dv8!%. ~3.13!

Here l 0<0, the real 232 matrix @aPQ

aPP
aQQ

aPQ# is positive definite andn is a positive measure on

R33R3\$0%, satisfying the Levy condition
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E E
0,uxu21uvu2,e

~ uxu21uvu2!n~dxdv !1E E
e<uxu21uvu2

n~dxdv !,`, ~3.14!

and invariant in the sensen„(Rdx)(Rdy)…5n(dxdy) for all rotationsR. @The integration in~3.13!
should be taken first over the spheresuxu5r 1, uvu5r 2, and then with respect tor 1 ,r 2 .#

This semigroup is the unique solution of the Markovian master equation~1.5! with

L* @r#5 l 0r2 i F uPu2

2m
,rG2

1

2 (
j51

3

$aPP†Pj ,@Pj ,r#‡12aPQ†Pj ,@Qj , r#‡1aQQ†Qj , @Qj , r#‡%

1E E
uxu21uvu2.0

$Wx,vrWx,v* 2r%n~dxdv !, ~3.15!

MoreoverD is a core forL
*
, andFt is unital if and only ifL

*
is such.

Proof: From the covariance relation~3.9! and irreducibility ofWx,v it follows as in the proof
of Proposition 1

F t@Wx,v#5Wx2vt,vf t~x,v !,

wheref t(x,v) is a continuous function. The semigroup property implies~cf. Ref. 13!

f t1s~x,v !5fs~x2vt,v !f t~x,v !. ~3.16!

From the assumptionD,domL
*
it follows that

f t~x,v !5^fuF t@Wx,v#c&^fuWx2vt,vc&21, f,cPD ,

is differentiable with respect tot; the relation~3.16! then implies

d

dt
f t~x,v !5 l ~x2vt,v !f t~x,v !,

wherel (x,v)5(d/dt)f t(x,v)u t50, whence~3.12! follows.
On the other hand, differentiating~3.9! at t50, we have forrPD

Wx,v* L* @Wx,vrWx,v* #Wx,v5L* @r#1 i @v•P,r#. ~3.17!

This is an inhomogeneous linear equation with respect toL
*
, thus we can write

L* @r#5L
*
0 @r#2 i F uPu2

2m
, rG , ~3.18!

where the second term is the generator of the free particle motion, giving a particular solution of
~3.17!, andL

*
0 is the general solution of the homogeneous equation

Wx,v* L
*
0 @Wx,vrWx,v* #Wx,v5L

*
0 @r#, ~3.19!

expressing Weyl covariance ofL
*
0 . Applying proposition 2@relation ~2.12! for a Weyl covariant

generator# and using rotational covariance~3.10! results in the expression~3.13!, wherel 05 l (0,0)
~single commutator terms disappear due to rotational covariance, provided the order of integration
is as stated in the theorem!. From ~3.12! and ~3.17!,

Tr L
*
0 @r#Wx,v5 l ~x,v !Tr r,
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where~3.15! follows, taking into account~3.3! and ~2.16!.
We now describe a stochastic dilation of the semigroupFt . Let (h t

j t ) be a classical stochastic

process with stationary independent increments inR33R3, defined by the characteristic function

M exp i ~mv•j t2x•h t!5exp t„l ~x,v !2 l 0….

Consider the stochastic differential equations

dQt5
Pt

m
dt1dj t , dPt5dh t , ~3.20!

with initial conditionsQ05Q andP05P. The solution of these equations

Qt5Q1
Pt

m
1j t1

1

m E
0

t

hs ds, Pt5P1h t . ~3.21!

We define stochastic unitary operators

Ut~j,h!5W
„j t1~1/m!*0

t hsds…,ht/m
Ut5US j t1

1

m E
0

t

~hs2h t!ds,
h t

m
,E,2t D ,

so thatUt(j,h)* (P
Q)Ut(j t ,h) 5 (Pt

Qt), and prove that

F t@X#5MUt~j,h!*XUt~j,h!etl0. ~3.22!

It is sufficient to establish this forX5Wx,v . Then

Ut~j,h!*Wx,vUt~j,h!5exp i ~mv•Qt2x•Pt!5Wx2vt,v exp i Fmv•S j t1
1

m E
0

t

hs dsD 2x•h tG .
However,

M exp i Fmv•S j t1
1

m E
0

t

hs dsD 2x•h tGetl05M exp i E
0

t

@mv•djs2~x2„v~ t2s!…•dhs!#e
tl0

5exp E
0

t

l „x2v~ t2s!,v…ds5f t~x,v !,

and the relation~3.22! follows from ~3.12!.
To prove thatD is a core forL

*
, we observe thatD is invariant underU(x,v,R,t) and hence

underUt~j,h!. Then the rest can be proved as in proposition 2. h

The equations~3.20! are the Langevin–Heisenberg equations for the canonical observables
P,Q. They can be interpreted as infinitesimal canonical transformation implemented by the
Hamiltonian

dHt5
uPu2

2m
dt1P•dj t2Q•dh t .

The random density operator

r~ t !5Ut~j,h!rUt~j,h!* etl0
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satisfies the Langevin–Schroedinger equation similar to~2.14!.

IV. BOOST COVARIANT MARKOVIAN MASTER EQUATIONS

If we abandon covariance with respect to space shifts and rotations, we are left with theboost
covariance, the condition obtained from~3.9! by puttingx50:

F t@Vv*XVv#5Vv*U2vt* F t@X#U2vtVv , ~4.1!

where

v→Vv5exp~ imv•Q!, x→Ux5exp~2 ix•P! ~4.2!

are the unitary representations of the shifts in velocity and position, respectively. The generatorL

of the semigroupFt satisfies the equation@the following formal calculation can be made precise
by using the form-generator~1.6! with the appropriate domainD#

VvL@Vv*XVv#Vv*5L@X#1 i @v•P,X#. ~4.3!

The general solution of this equation

L@X#5L0@X#1 i @H,X#, ~4.4!

whereH5uPu2/2m1b•P1Ũ (Q), Ũ (Q) being a real function, andL0 is a solution of the
homogeneous equation

VvL
0@Vv*XVv#Vv*5L0@X#. ~4.5!

By making a gauge transformation we replaceP1mb with P, so that

H5
uPu2

2m
1U~Q!, ~4.6!

whereU~•! is again a real function.
The mathematical study of Eq.~4.5!, under the regularity assumption that an analog of the

conditions~1.7! and ~1.8! holds withD*5D5C0
2~R3! in the Schroedinger representation, is pre-

sented in Ref. 5. The main tool of this study is harmonic analysis of operator-valued cocycles of
the symmetry group. The general solution has the Levy–Khinchin structure similar to~2.12!:

L0@X#5K0~Q!+X1L1@X#1L2@X#1L3@X#, ~4.7a!

whereK0~•! is a nonpositive function~vanishing for a unital generator!, + means the Jordan
product, andL1, L2, L3 are ‘‘continuous,’’ ‘‘big-jumps,’’ and ‘‘small-jumps’’ components, re-
spectively. The continuous component is

L1@X#5 (
k51

r

„P̃ k1Lk~Q!…*X„P̃ k1Lk~Q!…2K1*X2XK1 , ~4.7b!

wherer<3, P̃ k5( j51
3 bk jPj ~bk jPR!, Lk~•! are complex functions, and

K15
1

2 (
k51

r

„P̃ k
212P̃ kLk~Q!1uLk~Q!u2…. ~4.8a!
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The essential ingredient of the discontinuous components are a positive Levy measurem(dx) on
R3, and a family of complex functionsL jx(•); j51,2,...;xPR3, satisfying

E
R3
(
j

uL jx~• !u2m~dx!,`. ~4.9!

The simpler big-jumps component has the form

L2@X#5E
e<uxu

(
j
L jx~Q!*Ux*XUxL jx~Q!2K2+X, ~4.7c!

where

K25
1

2 E
e<uxu

(
j

uL jx~Q!u2m~dx!, ~4.8b!

while the small-jumps component is

L3@X#5E
uxu,e

(
j
„UxL jx~Q!1~Ux2I !v j~x!…*X„UxL jx~Q!

1~Ux2I !v j~x!…m~dx!2K3*X2XK3 , ~4.7d!

where

K35E
uxu,e

(
j

H ~ I2Ux2 ix•P!uv j~x!u21~ I2Ux!L jx~Q!v̄ j~x!1
1

2
uL jx~Q!u2J m~dx!,

~4.8c!

andv j (x) are complex functions satisfying

E
uxu,e

uxu2(
j

uv j~x!u2m~dx!,`. ~4.10!

Several remarks are in order.
~1! The shift covariance~4.5! of the expressions~4.7b!–~4.7d! can be checked by using the

Weyl CCR

UxVv5e2 imx•vVvUx ~4.11!

and its consequence

Vv*PVv5P1mv. ~4.12!

The regularity assumption onL implies certain local properties of the functions
K0~•!,U~•!,L j (•),L jx(•) ~see Ref. 5!, which are omitted here.

~2! In concrete problemsL usually reduces to one of its components. Particular generators of
the formL1 or L2 appeared in Refs. 18 and 19 as a result of taking special~weak-coupling or
low-density! Markovian limit for an open quantum system. To our knowledge the general form of
L1 andL3 was not observed before. Some insight into the physical meaning of the functions
L j ~•! andL jx~•! can be obtained from the Langevin equations to be described in Sec. V.

The termi @b•P1Ũ(Q), X#, incorporated into the Hamiltonian component in~4.4!, may be
also included in any ofL j . The pointx50 is not excluded from the integral in the small-jumps
component. Therefore, ifm(dx) has positive massm0 at x50, it contributes the ‘‘zero-jump’’ term
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m0(
j

@L j0~Q!*XLj0~Q!2uL j0~Q!u2+X#

to L3. Inclusion of this term intoL3 is a convention and it may appear inL1 or L2 as well.
~3! By definingv j (x)50 for uxu>e, one can write the discontinuous partL2,35L21L3 in

the form ~4.7d! with the integral extended to the wholeR3. On the other hand, if the functions
v j (x) are such that

E
uxu,e

(
j

uv j~x!u2m~dx!,`, ~4.13!

then by replacingL jx(•)1v j (x) with L jx~•! and by redefining the Hamiltonian term it is possible
to write the discontinuous part in the form~4.7c! with the integral extended toR3.

~4! Previous remarks show that the decomposition~4.7a! is not unique, the nonuniqueness
being essentially related to the fact that the operatorsL j (Q) andL jx(Q) are defined up to scalar
additive terms. The transformationL j (Q)→L j (Q)1cj , L jx(Q)→L jx(Q)1v j (x) @with v j (x)
satisfying~4.13!# does not change the form of the components, provided the proper compensation
in the Hamiltonian term is made.8

~5! The shift-covariance~4.5! implies that the maximal Abelian algebra of operatorsX5 f (Q)
is invariant under the corresponding evolution. LetfPC2~R3!. Using formulas

i @Pk , f ~Q!#5
] f ~Q!

]Qk
, Ux* f ~Q!Ux5 f ~Q1x!, ~4.14!

one obtains

L0@ f ~Q!#5K0~Q! f ~Q!1 (
k51

3

bk~Q!
] f ~Q!

]Qk
1
1

2 (
l ,k51

3

s lk

]2f ~Q!

]Ql]Qk

1E F f ~Q1x!2 f ~Q!21e~x!(
k51

3

xk
] f ~Q!

]Qk
Gm~dxuQ!, ~4.15!

where

bk~Q!52(
j51

r

bk j Im L j~Q!1E
uxu,e

xk(
j

@ uL jx~Q!1v j~x!u22uv j~x!u2#m~dx!,

~4.16!

s lk5(
j51

r

b j lb jk , m~dxuQ!5(
j

uL jx~Q!1v j~x!u2m~dx!.

This is the generator of a classical~sub-!Markov process in the position spaceR3 ~called process
with locally independent increments20!. It comprises diffusion with the driftb j (Q) and the con-
stant diffusion matrixslk , and jump process with intensitiesm(dxuQ) for jumps of magnitudesx
from a pointQ.

~6! We shall finally briefly comment on the existence and uniquness of the solution of the
boost covariant Markovian master equation~1.5!. According to theorem A1~see Appendix A!, to
establish existence of the minimal solution one has to prove that the operator of the form

K5 iH1K01K11K21K3 ,
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whereH is given by~4.6!, andK1 ,K2 ,K3 by ~4.8a!–~4.8c!, is maximal accretive with a coreD .
Although this problem resembles the well-studied problem of essential self-adjointness for quan-
tum mechanical Hamiltonians~see, e.g., Ref. 16!, there are only few specific results on it~see Ref.
8 for the caseK5K1 in one dimension!.

AssumingK0(Q)50, uniqueness reduces to the unitality of the minimal solution. There is a
general criterion for covariant dynamical semigroups,7 which implies that forL5L0 unitality is
equivalent to nonexplosion of the classical Markov process with the generator~4.15!. Application
of this result to the boost covariant Markovian master equation will be considered elsewhere.

V. THE QUANTUM LANGEVIN EQUATIONS

We start with a formal description of the quantum noise, which will give driving terms in the
Langevin equation, corresponding to the boost covariant generator~4.4! and ~4.7a!. For the con-
tinuous componentL1 it arises from the the representation of CCR

@aj~ t !,al
†~s!#5d j ld~ t2s!, j ,l51,...,r , t,sPR1 , ~5.1!

in the Fock spaceH15G„H1^L2~R1!…, whereH15Cr ~see Appendix B!. The Ito stochastic
differentials

dAj~ t !5E
t

t1dt

aj~s!ds, dAj
†~ t !5E

t

t1dt

aj
†~s!ds, ~5.2!

with dt.0, obey the quantum Ito rule@cf. ~B2!#, to be described below.
The driving noises for the discontinuous partL2,3 live in the Fock space

H2,35G~H2,3^L2~R1!…, whereH2,35L2~R3,m!^l 2, and arise from the CCR:

@ajx~ t !, aly
† ~s!#5d j ldm~x2y!d~ t2s!, j ,l51,2,..., x,yPR3;t,sPR1 , ~5.3!

wheredm is the delta-function inL2~R3,m!. The stochastic differentials

dAj ,dx~ t !5E
t

t1dt

ajx~s!dsm~dx!, dAj ,dx
† ~ t !5E

t

t1dt

ajx
† ~s!dsm~dx!,

~5.4!

dL j ,dx~ t !5E
t

t1dt

ajx
† ~s!ajx~s!dsm~dx!

obey the corresponding Ito rule; to express it we shall use more spectacular formal notation for all
stochastic differentials:

dAj~ t !5aj~ t1 !dt,...,dAj ,dx5ajx~ t1 !m~dx!dt,...,

dL jx~ t !5ajx
† ~ t1 !ajx~ t1 !dtm~dx!, ~5.5!

having in mind that the symbolsaj (t1),..., have meaning only in combination withdt. Then the
Ito rule takes the form

aj~ t1 !aj
†~ t1 !~dt!25dt, ~5.6a!

ajx~ t1 !ajx
† ~ t1 !~dt!2m~dx!5dt, ~5.6b!
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with all other products containing (dt)2 vanishing. Due to the CCR~5.1!, ~5.3! and the definition
of the Ito stochastic differentials~5.2! and ~5.4! the symbolsaj (t1),... must be considered as
commuting with any operator depending on system observables in the Hilbert spaceH and on the
values of all noisesaj (s),..., at timess<t.

To describe interaction of the system with the noise, we introduce the family of operatorsUt ;
tPR1 , in the Hilbert spaceH^G, whereG5G„~H1%H2,3!^L2~R1!… is the full Fock space,
satisfying the left quantum stochastic differential equation of the type~B4!:

dUt5dZtUt , ~5.7!

where

dZt5Hdt1dZt
11dZt

2,3, ~5.8a!

with

dZt
15 (

k51

r

@ak
†~ t1 !„P̃ k1Lk~Q!…2h.c.#dt2K1dt, ~5.8b!

dZt
2,35E (

j
$~Ux2I !ajx

† ~ t1 !ajx~ t1 !1ajx
† ~ t1 !@UxL jx~Q!1~Ux2I !v j~x!#

2@L jx~Q!1v j~x!~ I2Ux* !#* ajx~ t1 !%m~dx!dt2~K21K3!dt, ~5.8c!

where from now on we systematically use the convention thatv j (x)50 for uxu>e ~see Remark 3
in Sec. IV!.

These equations are written by analogy with Eq.~B5!, where the coefficientsW,L,K are taken
from the generatorsL1,L2,L3 @see~4.7b!–~4.7d!#. These coefficients satisfy the formal condi-
tions for the unitarity ofUt . In fact, by applying the exponential formula~B6!, we get the
representation

Ut5expQS 2 i E
0

t

dHsD , ~5.9!

where

dHt5Hdt1dHt
11dHt

2,3 ~5.10a!

is formally self-adjoint with

dHt
15 (

k51

r

$ i @„ak~ t1 !1Lk~Q!…†„P̃ k1Lk~Q!…2h.c.#%dt, ~5.10b!

dHt
2,35E (

j
H @h.c.#~x•P!@ajx~ t1 !1„~ I2eix•P!211~ ix•P!21

…@L jx~Q!1v j~x!##

1L jx~Q!* S x•P2
1

2
ctg

x•P

2 DL jx~Q!2~x•P!uv j~x!u2J m~dx!dt, ~5.10c!

where one should keep in mind thate2 ix•P5Ux and @h.c.# means Hermitean conjugate of the
expression in squared brackets.
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AssumingUt unitary, the time evolution of a system observableX is

X~ t !5Ut* ~X^ I G!Ut ,

whereI G is the unit operator in the noise Fock space. From~5.7a! and~B.9!, we have the quantum
stochastic differential equation

dX~ t !5dZ~ t !*X~ t !Z~ t !1Z~ t !*X~ t !dZ~ t !1dZ~ t !*X~ t !dZ~ t !, ~5.11!

wheredZ(t) 5 Ut* dZtUt . Since

Ut* aj~ t1 !Ut5aj~ t1 !, Ut* ajx
† ~ t1 !Ut5ajx

† ~ t1 !,

dZ(t) is given by the same expression asdZt with P,Q replaced withP(t), Q(t). Due to the fact
that

dZj~ t !*X~ t !dZk~ t !50 for jÞk

@the driving noises indZj (t) 5 Ut* dZt
jUt involve different modes#, we obtain the Langevin–

Heisenberg equation in the form

dX~ t !5 i @H~ t !, X~ t !#dt1dX1~ t !1dX2,3~ t !, ~5.12a!

whereH(t)5uP(t)u2/2m1U„Q(t)…, anddXj (t) are calculated from~5.11! with dZ(t) replaced
with dZj (t). By analogy with~B8! we obtain

dX15 (
k51

r

$@ P̃ 1ReLk~Q!, X#„ak~1 !2ak
†~1 !…

2 i @ Im Lk~Q!, X#„ak~1 !1ak
†~1 !…1L̂1@X#%dt, ~5.12b!

dX2,35E (
j

$~Ux*XUx2X!ajx
† ~1 !ajx~1 !1@„L jx~Q!1v j~x!…*Ux* , X#Uxajx~1 !

2Ux* @Ux„L jx~Q!1v j~x!…,X#ajx
† ~1 !%m~dx!dt1~L̂2@X#1L̂3@X# !dt, ~5.12c!

whereL̂ j@X# 5 Ut*L
j@X#Ut , and the argumentt is omitted from all observables to simplify

notations. The Langevin–Heisenberg equation~5.12a! is a dilation of the forward Markovian
master equation~1.9!, corresponding to the unital generatorL, given by ~4.4! and ~4.7a! with
K0(Q)50, in the sense that averaging Eq.~5.12a! with respect to the vacuum state of the noises
gives this Markovian master equation.

TakingX5 f (Q) in ~5.12a! gives

d f~Q!5 i F uPu2

2m
, f ~Q!Gdt1d f1~Q!1d f2,3~Q!, ~5.13a!

where

d f1~Q!5 (
k51

r

(
j51

3

bk j

] f ~Q!

]Qj
$ i „ak

†~1 !2ak~1 !…12 Im Lk~Q!%dt1
1

2 (
j ,l51

3

s j l

]2f ~Q!

]Qj]Ql
dt,

~5.13b!
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d f2,3~Q!5E (
j

H @ f ~Q1x!2 f ~Q!#•„ajx~1 !1L jx~Q!1v j~x!…†„ajx~1 !

1L jx~Q!1v j~x!…2uv j~x!u2(
k51

3
] f ~Q!

]Qk
xkJ m~dx!dt. ~5.13c!

Thusd f1(Q) describes the diffusion component driven by the classical Wiener process@cf. ~B12!#

dWk~ t !5 i „ak
†~ t1 !2ak~ t1 !…dt, 1<k<r ,

while d f2,3(Q) describes the jump component driven by the classical martingale measure

P~dxdt!5(
j

~ajx~ t1 !1L jx~Q!1v j~x!!†~ajx~ t1 !1L jx~Q!1v j~x!!m~dx!dt

with the compensator14 m(dxuQ) @see~4.16!#.
On the other hand, by takingX5Pl , we obtain

dPl5
]U~Q!

]Ql
dt1dPl

11dPl
2,3, ~5.14a!

where

dPl
152 i(

k51

r H S ak~1 !1
1

2
Lk~Q! D † ]Lk~Q!

]Ql
2h.c.J dt, ~5.14b!

dPl
2,352 i E (

j
H S ajx~1 !1

1

2
L jx~Q! D † ]L jx~Q!

]Ql
2h.c.J m~dx!dt. ~5.14c!

Thus the momentumP is subject to a force represented by a quantum diffusion with coefficients
depending onQ.

The problems of existence, uniqueness, and unitarity of solution of the quantum stochastic
differential equation~5.7! and ~5.8a! with sufficiently general functionsL j ~•! andL jx~•! will be
treated elsewhere. Some results on abstract quantum stochastic differential equations with un-
bounded operator coefficients were obtained in Refs. 21–23, where mainly right equations were
considered. In particular, it was proved in Ref. 22 that the solution of the right equationŨt is
isometric if and only if the related dynamical semigroupFt

` is unital, and a similar condition for
the co-isometry ofŨt holds. Contrary to the case of bounded operators~see Appendix B! the
approaches via right and left equations become inequivalent in general, as they lead, correspond-
ingly, to the backward and forward Markovian master equations. Other questions to be investi-
gated are the rigorous treatment of quantum stochastic integrals and equations with ‘‘big jumps’’
~that are treated pathwise in the classical case! and extension of the time-ordered exponential
representation~B6! to the case of unbounded operator coefficients.
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APPENDIX A: THE BACKWARD AND FORWARD QUANTUM MARKOVIAN MASTER
EQUATIONS

We assume the following regularity properties for a solution of the backward equation~1.5!:
this should be a familyFt ,t>0, of normal completely positive maps inB~H!, uniformly
bounded in norm, satisfyingF05Id, and such that all functionst→Tr rFt[X], rPT ~H!,
XPB~H! are continuous.

Theorem A1: Let K be maximal accretive andD be an invariant domain of the semigroup
exp(2Kt)t,>0. Then there exists the minimal solutionFt

` of Eq. ~1.5!, which is a dynamical
semigroup.

Proof (Sketch):Introducing the dynamical semigroupČ t[r]5e2Ktre2K* t, we see thatD,
defined by~1.2!, is an invariant domain forČ t . DefiningL[r]5( j uL jf&^L jcu for r5uf&^cuPD,
one can show7 that ~1.5! is equivalent to the integral equation

Tr rF t@X#5Tr C t@r#X1E
0

t

Tr L†Čs@r#‡F t2s@X#ds, rPD,XPB~H!. ~A1!

Indeed, under the assumptions of the theorem both equations are equivalent to

d

ds
Tr Čs@r#F t2s@X#52Tr L†Čs@r#‡F t2s@X#, 0<s<t.

Note that in~A1! B~H! may be replaced by any weak*-dense subspace.
The existence of the minimal solution of~A1! is proved by considering iterations10,22

Tr rF t
n11@X#5Tr Čt@r#X1E

0

t

Tr L†Čs@r#‡F t2s
n @X#ds ~A2!

with F t
1[X]5F̌ t[X]5e2K* tXe2Kt. Complete positivity ofL implies thatF t

n112F t
n is com-

pletely positive, and~1.4! implies F t
n[ I ]<I , by induction. By bounded monotone convergence

there exists limn→` F t
n5F t

`, satisfying ~A1!. Since for any other solutionFt the difference
F t2F t

n is completely positive by induction,Ft
` is the minimal solution. For detailed proof of

properties ofFt
` see Refs. 10, 8, and 22. h

Assuming~1.8!, let us consider the forward equation~1.9!. For a solutionC t ;t>0, of ~1.9!
we demand thatC t* should satisfy the regularity properties of solution of the backward equation.
Defining

D*5 lin$X5uc&^fu;f,cPD* %

andL* @X# 5 ( j uL j*c&^L j*fu for X5uc&^fuPD* , we have

Tr L@r#X5Tr rL* @X#, rPD,XPD* . ~A3!

Theorem A2: Let K ~henceK* ! be maximal accretive andD* an invariant domain of the
semigroup exp(2K* t);t>0. ThenC t

`5(F t
`)
*
is the minimal solution of the forward equation

~1.9!.
Proof (Sketch):As in the previous theorem, one can prove that~1.9! is equivalent to

Tr C t@r#X5Tr rF̌t@X#1E
0

t

Tr C t2s@r#L* †F̌s@X#‡ds, rPT ~H!,XPD* ,

whereT ~H! can be replaced by any norm-dense subspace. Consider the iterations
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Tr C t
n11@r#X5Tr rF̌t@X#1E

0

t

Tr C t2s
n @r#L* †F̌s@X#‡ds, ~A4!

with C t
1[r]5Č t[r]. If these iterations converge, then the limit is the minimal solution, by the

same argument as in previous theorem. We shall prove by induction thatC t
n5(F t

n)
*
; then the

convergence will follow from the proof of theorem A1.
We can write~A2! and ~A4! shortly as

F~• !
n115F̌~• !1A@F~• !

n #,

C~• !
n115Č~• !1B@C~• !

n #,

whereA andB are the corresponding integral operators. Following argument of Refs. 11 and 24,
one can see that

A@F̌~• !#5B@Č~• !#*

and

A†B@F~• !* #* ‡5B†A@F~• !#* ‡
* .

It follows thatC (•)
n 5(F (•)

n )
*
. h

APPENDIX B: QUANTUM STOCHASTIC CALCULUS

There is a profound connection between the symmetric Fock space and the Levy–Khinchin
formula for infinitely divisible representations of Lie groups,25 which underlies quantum processes
with independent increments. We give here a brief informal account of quantum stochastic calcu-
lus with one-mode Boson noise in the Fock space. See Ref. 26 for the mathematical presentation
of the general case and Refs. 27 and 28 for physical motivation and applications.

The role of the one-particle space is played by the Hilbert spaceL2~R1! of complex square-
integrable functions oftPR1 @in the case of many modes one takesK^L2~R1!, whereK is the
Hilbert space representing modes#. LetG„L2~R1!… be the Boson Fock space overL2~R1! ~see, e.g.,
Ref. 16! with the irreducible representation of the CCR

@a~ t !, a†~s!#5d~ t2s!, t,s>0,

satisfyinga(t) u0&50, whereu0& is the vacuum state vector. The basic operator processes

A~ t !5E
0

t

a~s!ds, A†~ t !5E
0

t

a†~s!ds, L~ t !5E
0

t

a†~s!a~s!ds ~B1!

obey the quantum Ito rule

dA~ t !dA†~ t !5dt, dL~ t !25dL~ t !,

dA~ t !dL~ t !5dA~ t !, dL~ t !dA†~ t !5dA†~ t !, ~B2!

with all other products, including those comprisingdt, vanishing. Moreover, the quantum stochas-
tic differentials should be regarded as commuting with anyadaptedprocess, i.e., a family of
bounded operators depending for eacht on a(s), a†(s) with s<t, and possibly on operators in
some fixedinitial spaceH. Quantum stochastic integral
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Y~ t !5E
0

t

@X1~s!dL~s!1X2~s!dA†~s!1X3~s!dA~s!1X4~s!ds#

can be defined for sufficiently regular adapted processesXj (t), and the Ito product formula

d~Y1•Y2!5dY1•Y21Y1•dY21dY1•dY2 ~B3!

can be established, where the products are to be calculated by using the quantum Ito table.
LetW be unitary andL andK bounded operators in the initial Hilbert spaceH, satisfying

L* L5K1K* ,

so thatK5 1
2L* L1 iH , whereH is bounded Hermitean operator. The left and right quantum

stochastic differential equations

dUt5dZt Ut , dŨ t5Ũ t dZt , ~B4!

where

dZt5~W2I !dL~ t !1LdA†~ t !2L*WdA~ t !2Kdt, ~B5!

have unique unitary solutionsUt ,Ũ t ,t>0, satisfyingU05Ũ 05I ~see Ref. 26!. These solutions
can be represented in the form of time-ordered exponentials

Ut

Ũ t
J 5H exp←

exp
→ J i E

0

tH FdL~s!2
F

eiF2I
LdA†~s!2h.c.2FH1L*

sin F2F

~2 sinF/2!2
LGdsJ , ~B6!

whereF is a bounded Hermitean operator such thatW5eiF andF/(eiF2I ),..., are the corre-
sponding meromorphic functions of this operator.28

Let

X~ t !5Ut* ~X^ I G!Ut , X̃ ~ t !5Ũ t* ~X^ I G!Ũ t , ~B7!

whereX is a bounded operator inH. From ~B2! and~B3! one derives the following equation for
the familyX(t)

dX5~W*XW2X!dL2W* @L,X#dA†1@L* ,X#WdA1L̂@X#dt, ~B8!

where

L̂@X#5L@X#~ t !5Ut*L@X#Ut , L@X#5L*XL2K*X2XK, ~B9!

and the argument (t) is omitted from all operators in~B8! to simplify notations. The familyX̃ (t)
satisfies similar equation, in which, however,W, L, andL are time independent and the argument
(t) is omitted only fromX̃ and the noises.

Consider the vacuum expectations

F t@X#5^0uX~ t !u0&, F̃ t@X#5^0uX̃ ~ t !u0&, t>0. ~B10!

Averaging ~B8! and the similar equation forX̃ (t), and taking into account that the vacuum
expectation of all noises vanish, one obtains the forward and the backward equations
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dF t@X#5F t†L@X#‡dt, dF̃t@X#5L†F̃t@X#‡dt, ~B11!

whereF t5F̃ t5exptL is a unital quantum dynamical semigroup with the generatorL.
The relations to the classical stochastic processes are as follows. Each of the operator families

Q~ t !5A~ t !1A†~ t !, P~ t !5 i „A†~ t !2A~ t !…,
~B12!

P~ t !5L~ t !1mA†~ t !1m̄A~ t !1umu2t5E
0

t

„a~s!1m…†„a~s!1m…ds

is a family of commuting self-adjoint operators in the Fock spaceG„L2~R1!…, thus unitary equiva-
lent to a classical stochastic process in the correspondingL2 space with 1 as the vacuum vector.
The processesQ(t) andP(t) are unitary equivalent to the standard Wiener process~via Segal’s
‘‘duality maps’’!, whileP(t) is unitary equivalent to the Poisson process of intensityumu2 ~see Ref.
26!. HoweverQ(t), P(t), andP(t) do not commute and hence cannot be diagonalized simulta-
neously.
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On realizations of solutions of the KdV equation
by determinants on operator ideals

H. Aden and B. Carl
Fakultät für Mathematik und Informatik, Universita¨t Jena, Leutragraben 1,
D-07743 Jena, Germany
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Using new developments in the theory of traces, determinants, and elementary
operators on quasi-Banach operator ideals we clarify and extend Marchenko’s
method for realizing solutions of the KdV equation. Moreover, we point out why
abstract traces and determinants on quasi-Banach operator ideals are appropriate
tools for obtaining solutions of the KdV equation. The method we present can also
be applied to other nonlinear equations in soliton physics. ©1996 American In-
stitute of Physics.@S0022-2488~96!01903-6#

I. INTRODUCTION

Within the frame of bounded linear operators and trace ideals on the class of Banach spaces
we give an approach for the realization of solutions of the Korteweg–de Vries equation~KdV!

ut5uxxx16uux .

As an application we obtain solutions of the KdV equation with finitely as well as infinitely many
parameters among theN-soliton solutions.

Given a bounded operatorAPL(E) and a nuclear operatorBPN (E) on a Banach spaceE
with the approximation property such that rank(AB1BA)51, then

u~ t,x!52
]2

]x2
ln det~ I1eAx1A3tB!

is a solution of the KdV equation.
We will provide conditions onA such that foraPE8 andcPE we may find a nuclear operator

B with AB1BA5a^c. In connection with this we refer toA as a generating operator for the
realization of solutions of the KdV equation. In the case where the generating operator is a
diagonal operatorD on certain Banach sequence spaces we may even realize these solutions of the
KdV equation by a corresponding diagonal operator onl 1. Hence, in a sense, thel 1 space is
universal for realizations of the KdV equation generated by diagonal operators.

The summability behavior of the eigenvalues of the operatorB with DB1BD5a^c will be
the key for defining a determinant on an appropriate operator ideal admitting a spectral trace.

Since solutions of the integrated KdV equation

v t5vxxx13vx
2

yield solutions of the KdV equation (u5vx), we will refer to this as KdV equation, too, if no
confusion is possible.

In this paper a more or less abstract model for gaining new solutions of the KdV equation
from a so-called ‘‘germ’’ solution may be described by the following steps:

~1! Let v be a solution of the KdV equationv t5vxxx13vx
2.

0022-2488/96/37(4)/1833/25/$10.00
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~2! By trial and error we give, if possible, an appropriate interpretation ofv5v(t,x) as an
operator familyV5V(t,x):E→E acting on a Banach spaceE and check for this family a corre-
sponding operator KdV equation

Vt5Vxxx13Vx
2.

~3! The main problem is to find appropriate~continuous, linear! functionalst on quasi-Banach
operator ideals transforming the operator familyV(t,x) into the new solutionv5t(V) of the
~scalar! KdV equationv t5vxxx13vx

2.
Because of the nonlinear expressionVx

2 in the operator KdV equation the functionalt has to
satisfy a multiplicativity property

t~S2!5t~S!2,

at least for certain operatorsS. It turns out that a nonvanishing linear functionalt on the smallest
ideal F of finite rank operators with the multiplicativity property at least for rank 1 operators
necessarily has to be the trace onF . Consequently, traces will be the appropriate functionals for
gaining new solutions of the KdV equation from a solution of the corresponding operator KdV
equation. Finally, the new solutions can be described by continuous determinants on appropriate
quasi-Banach operator ideals. They allow a more convenient calculation of the solution. Several
examples are given.

This method is also applicable to other nonlinear equations in soliton physics such as Sine–
Gordon equation, mKdV equation, Toda lattice, etc.1

II. BASIC NOTIONS, TRACES, AND DETERMINANTS

For the convenience of the reader we recall some notions from the theory of~bounded linear!
operators in Banach spaces, traces, and determinants on operator ideals. More about notions and
recent results concerning traces on operator ideals can be found in the Appendix of this paper. For
this area the monographs by Ko¨nig2 and Pietsch3 are a general reference.

In the followingE andF denote real or complex Banach spaces. When dealing with eigen-
values, the considerations are restricted to the complex case only. The value of the functional
aPE8 ~dual Banach space! at the elementxPE is denoted bŷ x,a&. Moreover,L(E,F) stands
for the Banach space of all~bounded linear! operatorsT:E→F acting fromE into F. The usual
norm is given byiTi :5sup$iTxi :ixi<1%. We writeL(E) instead ofL(E,E). GivenaPE8 and
yPF, thena^ y:x°^x,a&y yields an operator fromE into F with ia^ yi5iai•iyi . An operator
TPL(E,F) is said to be a finite rank operator if there exists a so-called finite representation

T5(
i51

n

ai ^ yi .

The collection of all finite rank operators fromE into F is denoted byF (E,F). We again write
F (E) instead ofF (E,E). Finally, l` and l p, 0,p,`, stand for the classical sequence spaces of
all bounded sequences andp-bounded sequences, respectively. With respect to the norm

i~j i !ip :5H S (
i51

`

uj i upD 1/p for 1<p,`,

supuj i u for p5`,

the l p-spaces are Banach spaces for 1<p<`.
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A. Operator ideals

The general notion of an operator ideal or of a quasi-Banach operator ideal, respectively, was
introduced by Pietsch.4 For a recent treatise to this subject we refer to Defant and Floret.5 Suppose
that for every pair of Banach spacesE andF, we are given a subsetA(E,F) of L(E,F). The
class

A:5 ø
E,F
A~E,F !

is called anoperator idealif the following conditions are satisfied:

~i! a^ yPA(E,F) for aPE8 andyPF,
~ii ! S1TPA(E,F) for S,TPA(E,F),
~iii ! YTXPA(E0 ,F0) for XPL(E0 ,E), TPA(E,F), YPL(F,F0).

In particular, we havelTPA(E,F) for TPA(E,F), lPK, whereK stands either for the fieldR
of real numbers orC of complex numbers.

Hence every componentA(E,F) is a linear subset ofL(E,F). We writeA(E) instead of
A(E,E). The classL of all operators is the largest operator ideal and the classF of finite rank
operators is the smallest operator ideal.

A function i•uAi which assigns to every operatorTPA a non-negative numberiTuAi is
called aquasi-normon the operator idealA if it has the following properties:

~i! ia^ yuAi5iai•iyi for aPE8 andyPF,
~ii ! iS1TuAi<cA~iSuAi1iTuAi! for S,TPA(E,F),
~iii ! iYTXuAi<iYi•iTuAi•iXi for XPL(E0 ,E), TPA(E,F), YPL(F,F0). In particular,

ilTuAi5ulu•iTuAi for TPA(E,F), lPK.

Obviously,iTi<iTuAi. In the casecA51 we simply speak of a norm.
An operator idealA is called aquasi-Banach operator idealif all componentsA(E,F) are

complete with respect to the quasi-normi•uAi given onA. In particular, ifi•uAi is a norm, then
A is called aBanach operator ideal.

Remark:The concept of an operator idealA5øE,FA(E,F) also makes sense ifE andF
range only over a certain subclass of Banach spaces. Of particular interest is the case
A:5øH,KA(H,K), whereH andK are arbitrary Hilbert spaces.

An important example of an operator ideal are the so-called nuclear operators in the sense of
Grothendieck. Let us recall that an operatorTPL(E,F) is nuclear if it admits a representation

Tx5(
i51

`

^x,ai&yi ,

whereaiPE8, yiPF and( i51
` iai i•iyi i,`. By N we denote the class of all nuclear operators.

Regarding all possible representations ofTPN (E,F) and taking the infimum

iTuN i :5 infH (
i51

`

iai i•iyi i J ,
one obtains the Banach operator idealN of all nuclear operators. The Hilbert space components
N (H), H being a Hilbert space, are the well-known trace classes of Schatten.
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B. Traces

An approach to traces and determinants which live on certain operator ideals is due to Ko¨nig2

and Pietsch.3 For the following axiomatic concept we refer to Pietsch:3 A complex-valued function
t :øEA(E)→C on an operator idealA is called atrace if for all Banach spacesE andF the
following properties are satisfied:

~i! t is linear on each componentA(E).
~ii ! t(a^x)5^x,a& for all aPE8, xPE.
~iii ! t(XT)5t(TX) for TPA(E,F), XPL(F,E).

It is well known that on the smallest operator idealF of finite rank operators there is a unique
trace which is given by

tr~T!:5(
i51

n

^xi ,ai&,

whereT5( i51
n ai ^xi is any finite representation ofTPF .

A tracet defined on a quasi-Banach operator idealA is said to becontinuousif the function
T°t(T) has this property on all componentsA(E). This is equivalent with the property that
there is a universal constantc>1 such that

~iv! ut(T)u<ciTuAi for all TPA(E) and all Banach spacesE.

C. Determinants

A complex-valued functiond :øEA(E)→C on an operator idealA is called a determinant
if for all Banach spacesE,F the following conditions are satisfied:3

~i! d„(I1S)(I1T)…5d(I1S)d(I1T) for all S,TPA(E).
~ii ! d(I1a^x)511^x,a& for all aPE8, xPE.
~iii ! d(I E1XT)5d(I F1TX) for all TPA(E,F) and allXPL(F,E).
~iv! d(I1zT) is an entire function inz for everyTPA(E).

Here I stands for the identity operator onE.
A determinantd defined on a quasi-Banach operator idealA is said to becontinuousif the

functionT°d(I1T) has this property on all componentsA(E). Moreover,I1T is invertible if
and only if d(I1T)Þ0. The link between traces and determinants in general is governed by the
so-called

Trace-determinant theorem:3 There exists a one-to-one correspondence between continuous
traces and continuous determinants for every quasi-Banach operator ideal.

Furthermore, letd be a continuous determinant on a quasi-Banach operator idealA. Suppose
that theA(E)-valued functionT(z) is defined on a domain of the complex plane. IfT(z) is
differentiable with respect to the quasi-ideal norm at a pointz0, then so is the complex-valued
functiond„I1T(z)…. In the particular case whenI1T(z0) is invertible, the derivative is given by

3

~v! ~d„I1T(z0)…!5ḋ~„I1T(z0)…
21Ṫ(z0)!d„I1T(z0)…, whereḋ is the corresponding trace de-

fined by

ḋ~S!:5 lim
z→0

d~ I1zS!21

z
for SPA~E!.

We now establish a counterpart to the trace formula of finite rank operatorsF .
There exists a unique determinant on the operator idealF
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det~ I1T!:5det~d i j1^xi ,aj&! i , j51
n for T5(

i51

n

ai ^xi , aiPE8, xiPE.

Finally, for illustrating the previous abstract results we consider the Banach operator idealN of
nuclear operators introduced in Sec. II A. It was an important example for developing a trace and
determinant theory of operators in Banach spaces. IfTPN (E), E being a Banach space, is a
nuclear operator and

T5(
i51

`

ai ^xi , aiPE8, xiPE,

a representation ofT, then we may define

t~T!5(
i51

`

^xi ,ai&.

The long outstanding problem was to prove that this expression does not depend on the underlying
representation. Unfortunately, it does! This was shown by Enflo6 when he constructed a Banach
space without the so-called approximation property. However, in most of the classical Banach
spaces, in particular in thel p-spaces, everything goes well. A Banach space has theapproximation
property ~a.p.! if, given any precompact subsetM of E and anye.0, there exists a finite rank
operatorLPF (E) such thatiz2Lzi<e for all zPM .

The unique extension of the determinant formula of finite operators to the ideal of nuclear
operatorsN over the class of Banach spaces with the a.p. may be described by

detN ~ I1T!511 (
n51

`

an for T5(
i51

`

ai ^xiPN ~E!,

where

an~T!:5
1

n! (
i151

`

••• (
i n51

`

detS ^xi1,ai1& ••• ^xi1,ain&

A A

^xin,ai1& ••• ^xin,ain&
D .

In subsequent sections we consider several examples of quasi-Banach operator ideals admitting
continuous determinants.

III. TRACES, DETERMINANTS AND SOLUTIONS OF THE KdV EQUATION

In this section we stress the role of traces and determinants for realizations of solutions of the
KdV equation.

A. Why use traces?

Let V5V(x,t):E→E ~t, xPR! be a smooth family of operators acting on a Banach spaceE
satisfying the ‘‘operator’’ KdV equation

Vt5Vxxx13Vx
2.

The problem arises of how to transformV into a scalar-valued solution of the KdV equation. In
other words we are going to look for a functionalt: V°v that guarantees a transformation of a
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solution of the operator KdV equation into a solution of the KdV equation. Indeed, we analyze the
properties of such a functional by applying it to the operator KdV equation. We recognize that we
need the equation

„t~V!…t5„t~V!…xxx13@„t~V!…x#
2,

which can be achieved if the functionalt is linear, multiplicativet(Vx
2)5t(Vx)

2, and continuous.
Unfortunately, a nonvanishing linear functionalt even on the smallest operator ideal of finite rank
operators F (E), E being an arbitrary Banach space, with the multiplicativity property
t(S2)5t(S)2, does not exist at all! However, if we confine ourselves to the multiplicativity
property for rank 1 operators only, then we shall see that a functionalt necessarily has to be the
trace onF . This observation shows that, in a sense, traces on operator ideals will be appropriate
tools for realizations of solutions of the KdV equation from solutions of the operator KdV equa-
tion. In fact we state a basic lemma.

Lemma III A 1:Let E be a Banach space andt: F (E)→C a nonvanishing linear functional on
the finite rank operators. Then the following assertions are equivalent:

~i! t(S2)5t(S)2 for all SPF (E) with rank (S)51.
~ii ! t(P)51 for all projectionsPPF (E) with rank (P)51.
~iii ! t(a^x)5^x,a& for all aPE8, xPE.

Proof: Step 1. First we show that~i! implies~ii !. Given a rank 1 projectionP, by ~i! we obtain

„t~P!…25t~P2!5t~P!,

yielding t(P)50 or t(P)51. We claim thatt(P)50 is impossible. For doing this we suppose
„t(S)…25t(S2) for all SPL(E) with rank (S)51 and there is a rank 1 projectionP0PF (E) with
t~P0!50. We are going to show thatt(a^c)50 for all rank 1 operators, which immediately
implies thatt is identically zero on the finite rank operatorsF (E).

First of all we assume thata^c is nilpotent, i.e.,̂ c,a&50. Because

~a^c!25^c,a&a^c50

we have by the multiplicativity property oft,

„t~a^c!…25t„~a^c!2…5t~0!50.

Hence,t(a^c)50. Now let ^c,a&Þ0. Then

P5
1

^c,a&
a^c

is a rank 1 projection. Consequently, it remains for us to show that

t~a^x!50 for all aPE8 and xPE with ^x,a&51.

By our assumption there exists a rank 1 projection

P05a0^x0 with t~a0^x0!50.

In a first case we provet(b^x0)50 for all bPE8 with ^x0 ,b&51. Indeed, for the nilpotent
operator (b2a0)^x0 we have alreadyt„(b2a0)^x0…50. Therefore,

t~b^x0!5t~a0^x0!1t„~b2a0! ^x0…50.
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Now we treat the general case. For this purpose letaPE8 andxPE be arbitrary witĥ x,a&51. If
xPspan$x0%, then t(a^x)50 by the previous case. So we assumex¹span$x0%, which means
x0¹span$x2x0%. By the Hahn–Banach theorem there exists an elementbPE8 such that
^x2x0 ,b&50 and^x0 ,b&51. Thus,^x,b&51. From the already proved relations,

t~b^x0!50 and t„b^ ~x2x0!…50,

we obtain

t~b^x!5t~b^x0!1t„b^ ~x2x0!…50.

Next, putQ:5(b1a)^x. Then rank (Q)51 and

t~Q!5t~b^x!1t~a^x!5t~a^x!.

Moreover,

Q25^x,b1a&Q52Q

and

„t~Q!…25t~Q2!5t~2Q!52t~Q!

by the multiplicativity property oft for rank 1 operators. Taking into account these relations and
using again the multiplicativity property for rank 1 operators we infer

t~a^x!5t„~a^x!2…5„t~a^x!…25„t~Q!…25t~Q2!52t~Q!52t~a^x!,

implying

t~a^x!50 for all aPE8 and xPE with ^x,a&51.

Finally, since each rank 1 operatora^x is either nilpotent or a multiple of a rank 1 projection, we
conclude

t~a^x!50 for all aPE8 and xPE,

yielding the desired conclusion.
Step 2: For showing~ii ! implies ~iii ! let S:5a^x with aPE8 and xPE. Without loss of

generality, we assumexÞ0. If ^x,a&Þ0, thenP:5(1/̂ x,a&)a^x is a rank 1 projection. From~ii !
we conclude

15t~P!5
1

^x,a&
t~a^x! or t~a^x!5^x,a&

as desired. In the case where^x,a&50 we choose an elementbPE8 such that̂ x,b&51. Then
P:5b^x is again a rank 1 projection. From rank (S1P)5rank„(a1b)^x…51 and

~S1P!25„~a1b! ^x…25^x,a1b&~S1P!5S1P

we obtain, again by~ii !, that

15t~S1P!5t~S!1t~P!5t~S!11,

yielding
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t~S!5t~a^x!505^x,a&.

Combining both cases we conclude~iii !.
Step 3: It remains for us to show that~iii ! implies ~i!. To this end, letS5a^x. From

S25^a,x&S and ~iii ! we check the multiplicativity formula~i!,

t~S2!5^x,a&t~S!5^x,a&^x,a&5„t~S!…2,

which completes the proof. h

The discussion at the very beginning of this section can be summarized in the following.
Proposition III A 2: ~i! Let E be a Banach space andt:F (E)→C a nonvanishing linear

functional with the multiplicativity property

t„~a^c!2…5„t~a^c!…2

for rank 1 operators. Thent has necessarily to be the trace on the finite rank operatorsF (E),
t5tr.

~ii ! Let A be a quasi-Banach operator ideal such that the finite rank operatorsF (E) are
i•uAi-dense inA(E). If t: A(E)→C is a nonvanishing continuous linear functional on each
ideal componentA(E) with the above multiplicativity property for rank 1 operators, thent is the
unique continuous trace trA onA(E).

Proof: The assertion~i! follows from the previous lemma while~ii ! is a consequence of~i! and
the trace extension theorem~cf. the Appendix!. h

Remarks:~i! A surprising and important fact has been discovered by Kalton.7 Namely, there
exists a quasi-Banach operator idealA with different continuous traces. Ift1Þt2 are such traces,
thent5t12t2 is a continuous linear functional vanishing on the finite rank operatorsF . Hence
the multiplicativity propertyt„(a^c)2…5„(a^c)…250 is automatically satisfied. Butt is not a
trace. This example shows that there are functionals with the multiplicativity property
t„(a^c)2…5„t(a^c)…2 for rank 1 operators and which behave rather strangely if the operator
idealF is not i•uAi-dense in the considered quasi-Banach operator idealA.

~ii ! Let us mention that the property~ii ! of the previous lemma clarifies the fact that
Marchenko8 used rank 1 projections for realizing certain solutions within the frame of operator
algebras.

B. Realizations of solutions of the KdV equation

In what follows we use the background knowledge of the previous section to describe solu-
tions of the KdV equation by traces and determinants of operators. A rather general result is stated
in the following proposition.

Proposition III B 1:LetA be a quasi-Banach operator ideal admitting a continuous tracet.
If V5V(x,t) is anA(E)-valued solution of the operator KdV equation

Vt5Vxxx13Vx
2 ~x,tPR!

such that rank(Vx)51, thenv5t(V) is a solution of the KdV equation

v t5vxxx13vx
2.

Proof: Applying the tracet to the operator KdV equation and using the multiplicativity
property oft for the rank 1 operatorsVx we check

t~Vt!5t~Vxxx!13t~Vx
2!5t~Vxxx!13„t~Vx!…

2.

Finally, the continuity oft yields the desired assertion
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„t~V!…t5„t~V!…xxx13@„t~V!…x#2.
h

An important conclusion for future references is stated in the following theorem.
Theorem III B 2: ~i! Let E be a Banach space,A, BPL(E), and L(x,t):5eAx1A3tB

~x,tPR!. Then the operator family

V5V~x,t !5~ I1L !21~AL1LA!5~ I1L !21eAx1A3t~AB1BA!,

provided that (I1L)21 exists, is a solution of the operator KdV equation

Vt5Vxxx13Vx
2.

Moreover, if rank(AB1BA)51, then

v5tr„~ I1L !21~AL1LA!…

is a solution of the KdV equation

v t5vxxx13vx
2.

~ii ! Let A be any quasi-Banach operator ideal admitting a continuous determinantd. If
APL(E) andBPA(E) such that rank(AB1BA)51, then the solution of~i! may be realized by
the determinantd as

v5tr„~ I1L !21~AL1LA!…52
„d~ I1L !…x
d~ I1L !

.

Proof: Using the equations

Lx5AL and Lt5A3L,

we may show by a tedious calculation thatV5(I1L)21(AL1LA) solves the operator KdV
equation. The proof is straightforward and left to the reader.

The ‘‘moreover’’ part of ~i! follows from Proposition III B 1 by taking, for instance, the
operator idealN 2/3 of

2
3-nuclear operators which admits a continuous trace~cf. the Appendix!.

Indeed, because rank(AB1BA)51, we have thatV5 (I 1 L)21eAx1A3t(AB1 BA),Vx ,Vxxx , and
Vt are rank 1 operators. Therefore,

v5trN 2/3
~V!5tr~V!

is a solution of the KdV equation.
Since the operatorV is a rank 1 operator we may also give an alternative proof similar to Ref.

8. Indeed, we have

AB1BA5a^c with some aPE8 and cPE.

Hence,V may be written as

V5a^c~x,t !

with c(x,t) 5 (I 1 L)21eAx1A3tc. Furthermore,Vt5a^ct ,Vx5a^cx ,Vxxx5a^cxxx . Inserting
this equation into the operator KdV equation we obtain
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a^ct5a^cxxx13~a^cx!
25a^cxxx13^cx ,a&a^cx .

Because ofaÞ0 there is an elementzPE with ^z,a&51. Consequently, the previous equation
applied toz yields

^z,a&ct5^z,a&cxxx13^cx ,a&^z,a&cx

or

ct5cxxx13^cx ,a&cx .

Now, applying the functionala to this equation we obtain

^ct ,a&5^cxxx ,a&13~^cx ,a&!2.

Finally, the continuity of the functionala implies

~^c,a&! t5~^c,a&!xxx13„~^c,a&!x…
2,

which states that

v5^c~x,t !,a&5tr„a^c~x,t !…5tr~V!

is a solution of the KdV equation.
Finally, we turn to~ii !. BecauseBPA(E) we haveL 5 eAx1A3tB P A(E) andLx5ALPA(E).
SinceV5(I1L)21(AL1LA) has rank 1 it follows

tr~V!5tr„~ I1L !21~AL1LA!…5 ḋ„~ I1L !21~AL1LA!…,

where the continuous traceḋ is related by the trace-determinant theorem~cf. Sec. II C! via the
formula

„d~ I1L !…x5 ḋ„~ I1L !21Lx…d~ I1L !.

Using the properties of a trace we obtain

ḋ„~ I1L !21~AL1LA!…5 ḋ„~ I1L !21AL…1 ḋ„~ I1L !21LA…

and

ḋ„~ I1L !21LA…5 ḋ„L~ I1L !21A…5 ḋ„~ I1L !21AL….

Hence,

ḋ„~ I1L !21~AL1LA!…52ḋ„~ I1L !21AL…52ḋ„~ I1L !21Lx….

Combining the previous formulas and using~i! we check

v5tr„~ I1L !21~AL1LA!…52ḋ„~ I1L !21Lx…52
„d~ I1L !…x
d~ I1L !

.

This completes the proof. h

Remark:The previous theorem stresses the fact that the solution
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v5tr„~ I1L !21~AL1LA!…52
„d~ I1L !…x
d~ I1L !

of the KdV equation may be realized by any continuous determinantd(I1L) provided that the
operatorB appearing inL 5 eAx1A3tB belongs to an operator idealA admitting a continuous
determinant and satisfies the rank 1 condition rank(AB1BA)51. The advantage of expressing the
solution of the KdV equation by determinants is that one may avoid the inverse operator (I1L)21.
This provides us the flexibility to study solutions in concrete cases as we will see in subsequent
sections.

IV. REALIZATIONS OF SOLUTIONS BY DETERMINANTS

This section is devoted to several important examples of realizations of solutions of the KdV
equation by determinants. We mainly illustrate the abstract theory of traces and determinants by
applying this machinery to matrix operators on sequence spaces.

A. The equation XA1BX5C

Because of the rank 1 condition, rank(AX1XA)51, of the foregoing Theorem III B 2, the
following problem arises: LetAPL(E) and BPL(F) be bounded operators on the Banach
spacesE andF, respectively. We are interested in the operator equation

XA1BX5C,

whereCPA(E,F) is a given operator of a Banach operator idealA andXPA(E,F) is the
solution. This equation has been studied extensively for the operator idealL of bounded opera-
tors. For our purpose, we consider the operator

F:A~E,F !→A~E,F !, given by F~X!5XA1BX.

The existence and uniqueness of the above problem is equivalent to saying thatF is invertible on
A. Thus, it is natural to ask for the spectrum spec~F! of this operator. Recall the spectrum
spec(T) of a bounded operatorTPL(E) on a Banach spaceE,

spec~T!5$lPCulI2T is not invertible inL~E!%.

A result of Eschmeier9 states that

spec~F!5spec~A!1spec~B!,

where the right-hand side of this equation refers to the Minkowski sum of two sets,

spec~A!1spec~B!:5$l1mPCulPspec~A!,mPspec~B!%.

Consequently,F21:A(E,F)→A(E,F) exists if and only if 0¹spec(A)1spec(B).
Remark:Recently, the first-named author found a different approach to this result which

extends to allp-Banach operator ideals. We will not use this in the sequel.
We note the following lemma, of which use will be made in later arguments.
Lemma IV A 1:Let E,F be Banach spaces, and letAPL(E), BPL(F) be bounded opera-

tors. Then the following assertions are true:
~i! If 0¹spec(A)1spec(B), then for any Banach operator idealA and anyCPA(E,F) there

exists a unique operatorXPA(E,F) satisfying the equation

XA1BX5C.
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~ii ! If

E
0

`

ieBsCeAsuAi ds,`

for a Banach operator idealA, then the operatorX defined by the improper integral

X52E
0

`

eBsCeAs ds

in A(E,F) satisfies the equation

XA1BX5C.

Proof: The assertion~i! follows directly from Eschmeier’s result mentioned above. So we turn
to the proof of~ii !. Observe that the mapf :@0,`!→A(E,F) defined byf (s)5eBsCeAs is con-
tinuously differentiable inA and

d f

ds
~s!5 f ~s!A1Bf~s!.

Moreover, for everyR.0 we have

E
0

R

f ~s!dsPA~E,F !.

Because of our assumption,*0
`ieBsCeAsuAids,`, we find that the operators*0

Rf (s)ds
form a Cauchy-net inA(E,F). The completeness ofA implies that X52*0

`f (s)ds
52limR→`*0

Rf (t)dtPA(E,F).
Since F:A(E,F)→A(E,F), again defined by F(Z)5ZA1BZ, is bounded, we

check F(X)5„2limR→`*0
Rf (s)ds…A1B„2limR→`*0

Rf (s)ds…52limR→`„*0
Rf (s)A1Bf(s)ds…

52limR→`*0
R(d f /ds)(s)ds52limR→`[ f (R)2 f (0)]5C2limR→` f (R). Consequently,

lim
R→`

i f ~R!uAi5iF~X!2CuAi .

Using this and the assumption*0
`if (s) uAids,`, we infer

iF~X!2CuAi50,

implying thatF(X)5C as desired. h

B. Realizations of solutions by determinants of nuclear operators

Under certain restrictions on the operatorAPL(E) appearing in Theorem III B 2 we can
formulate the following version of this theorem.

Theorem IV B 1: Let E be a Banach space with the approximation property andAPL(E).
Then the following assertions are true:

~i! If 0¹spec(A)1spec(A), then for anyaPE8 and cPE there exists a unique operator
BPN (E) satisfying the equationAB1BA5a^c, and

v5tr„~ I1L !21~AL1LA!…52
„detN ~ I1L !…x
detN ~ I1L !

,
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whereL: 5 eAx1A3tB, is a solution of the KdV equation

v t5vxxx13vx
2,

provided that (I1L)21 exists.
~ii ! If

E
0

`

ieA8sai•ieAscids,` for aPE8 and cPE,

then the nuclear operator

B52E
0

`

eA8sa^eAsc ds

is a solution of the operator equation

AB1BA5a^c,

and

v5tr„~ I1L !21~AL1LA!…52
„detN ~ I1L !…x
detN ~ I1L !

,

whereL: 5 eAx1A3tB, is a solution of the KdV equationv t5vxxx13vx
2, provided that (I1L)21

exists.
Proof: PutA:5N on the class of Banach spaces with the a.p. andd:5detN in Theorem

III B 2 and setC:5a^c in Lemma IV A 1.
Combining Theorem III B 2 and Lemma IV A 1 we immediately check the assertions~i! and

~ii ! of the theorem. h

Remark:Since the right-hand sidea^c of the operator equation

AB1BA5a^c

is always nuclear, it follows that the solutionB also has to be nuclear, provided thatA satisfies the
conditions of the previous theorem. However, for specialA we even obtain solutionsB belonging
to quasi-Banach operator ideals admitting a spectral trace and spectral determinant, respectively.

For illustrating our theorem we give an example in the finite-dimensional case.
Example:Let A:CN→CN be anN3N matrix such that 0¹spec(A)1spec(A). Let J be the

Jordan form ofA5T21JT with Jordan blocks

Ji5S ki 1

0

�

�

� 1

0 ki

D , kiPspec~A!.

If a,cPCN, thenB:CN→CN is a solution of the equationAB1BA5a^c if and only if B̃ 5TBT21

is a solution of the equationJB̃ 1B̃ J5(T21)8a^Tc.
Hence,L(t,x) 5 eAx1A3tB 5 T21eJx1J3tB̃ T is related toeJx1J3tB̃ .

1845H. Aden and B. Carl: Solutions of the KdV equation by determinants

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Thus, we may confine ourselves to a matrixA having Jordan form. Moreover, one may show
that det„I1LN(t,x)… has the shape

det„d i j1pi j ~ t,x!ekix1ki
3t
…i , j51
N ,

where thepi j are polynomials int andx generated by the Jordan blocks ofA, and

v52
~det„d i j1pi j ~ t,x!ekix1ki

3t
…!x

det„d i j1pi j ~ t,x!ekix1ki
3t
…

,

is a solution of the KdV equationv t5vxxx13vx
2.

C. Diagonal operators and realizations of solutions by spectral determinants

In this section we continue the investigations of the previous section. We realize solutions

v52
„detl~ I1L !…x
„detl~ I1L !…

of the KdV equation by spectral determinants, whereL: 5 eDx1D3tB is defined by a diagonal
operatorD on a Banach sequence spaceE and an operatorB satisfying the equation

DB1BD5a^c, aPE8, cPE.

It turns out that under certain conditions onD the operatorB belongs to a quasi-Banach operator
ideal A possessing a spectral determinant detl . Moreover, we are going to show that such
solutions, in a universal way, may also be represented by the determinant of a corresponding
operatorL of the ideal componentN ~l 1!. The results complement results of Gesteczyet al.10

For our purpose we need the following quasi-Banach operator ideal which is of eigenvalue
type l 1 and, hence, possesses a spectral trace~cf. the Appendix!. Let E,F be arbitrary Banach
spaces. An operatorTPL(E,F) belongs to the product operator idealL`+H+L1 if there exists a
Hilbert spaceH, an L1-space, and anL`-space, and there are operatorsXPL(E,L1),
RPL(L1 ,H), SPL(H,L`), andYPL(L` ,F) such thatT may be written as a product operator
T5YSRX. Put

iTuL`+H+L1i :5 inf$iYi•iSi•iRi•iXi : T5YSRX%,

where the infimum is taken over all such representations ofT. Then,L`+H+L1 becomes a
quasi-Banach operator ideal in the sense of Pietsch.4 For our purpose we need two lemmas. The
first one is well known for specialists in Banach space theory. However, for the convenience of the
reader we give a proof of it.

Lemma IV C 1:Each operator of the operator idealL`+H+L1 possesses absolutely summable
eigenvalues.

Proof: GivenTPL`+H+L1(E), thenT admits the following factorization:

Now we consider the related operatorU defined by the factorization diagram
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By Grothendieck’s theorem2,11 we know that each operator fromL` into L1 factors through a
Hilbert spaceK. Hence, we may factorizeU according to the following diagram:

Using again Grothendieck’s theorem we infer that the operatorsVSandRWare Hilbert–Schmidt
operators.2,11 Furthermore, the product of Hilbert–Schmidt operators is a nuclear operator. Hence,
UPN (H). Because nuclear operators on Hilbert spaces possess one-summing sequences of ei-
genvalues we infer, by the principle of related operators~cf. the Appendix!, that T is a Riesz
operator having the same nonzero eigenvalues with the same algebraic multiplicities as the eigen-
values of the operatorU. Hence, the sequence of eigenvalues ofT belongs tol 1, which means that
L`+H+L1 is of eigenvalue typel 1. h

Lemma IV C 2:~i! Let (ki)P l` such that infuki1kj u.0. Then

T:5S 1

ki1kj
D
i , j51

`

PN ~ l 1 ,l`!.

~ii ! Let (ki)P l` andki.0, i51,2,3,... . Then

T5S ki1/2kj1/2ki1kj
D
i , j51

`

: l 1→ l`

factors through the Hilbert spaceL2@0,̀ ! according to the following diagram:

whereR is defined on the canonical basis$ei% of l 1 by Rei5 f i with f i(s) 5 ki
1/2e2kis. Moreover,

iRi5A 1
2 and iTi5iRi25 1

2.
Proof: For the proof of~i! we consider the diagonal operatorD:(j i)°(kij i) which defines

diagonal operatorsD1 on l 1 andD` on l` , respectively. Since infuki1kj u.0, it follows by Lemma
IV A 1 ~i! that the equation

D`X1XD15e0^e0 ,

wheree05(1,1,...)P l` , has the unique nuclear solutionX5T5(1/(ki1kj )) i , j51
` PN ( l 1 ,l`).

Now let us turn to~ii !. For the entries ofT we easily check
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^Tej ,ei&5^R8Rej ,ei&5^Rej ,Rei&5E
0

`

f j~s! f i~s!ds5ki
1/2kj

1/2E
0

`

e2~ki1kj !s ds5
ki
1/2kj

1/2

ki1kj
.

Becausei f i i5A1
2, i51,2,..., we haveiRi 5i R8i5A 1

2. Moreover,

iT: l 1→ l`i5 sup
i , j51,2,...

Uki1/2kj1/2
ki1kj

U5 1

2
,

which completes the proof. h

Now we are prepared to prove the following proposition.
Proposition IV C 3:Let E be one of the classical sequence spacesc0, l p(1<p,`) or

weightedl p-spaces and letk5(ki)P l` . If one of the following conditions is satisfied,
~i! infuki1kj u.0, a5(ai)PE8, c5(ci)PE, or
~ii ! ki.0, i51,2,..., (ai /Aki) P E8, (ci /Aki) P E, then

L:5S ajci
ki1kj

e2~kix1ki
3t !D

i , j51

`

defines an operator onE belonging to a quasi-Banach operator ideal admitting a spectral deter-
minant

detl~ I1L !5)
i51

`

„11l i~L !….

Moreover,

v52
„detl~ I1L !…x
detl~ I1L !

,

provided that detl(I1L)Þ0, is a solution of the KdV equationv t5vxxx13vx
2.

Proof: First we treat the case~i!. To this end define diagonal operators

D:E→E, ~j i !°~kij i !,

Da :E→ l 1 , ~j i !°~aij i !, ~ai !PE8,

Dc : l`→E, ~j i !°~cij i !, ~ci !PE,

and an operator

T5S 1

ki1kj
D
i , j51

`

: l 1→ l` .

By Lemma IV C 2~i! we have thatT is nuclear. Consequently,T factors through the Hilbert space
l 2, and the operator

B5DcTDa5S ajci
ki1kj

D
i , j51

`

:E→E

belongs to the idealL`+H+L1. Moreover,
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DB1BD5a^c.

Now we turn to the case~ii ! and show a corresponding result. In analogy to the previous case we
define diagonal operators,

D:E→E, ~j i !°~kij i !,

Da/Ak :E→ l 1 , ~j i !°~ai /Akij i !, ~ai /Aki !PE8,

Dc/Ak : l`→E, ~j i !°~ci /Akij i !, ~ci /Aki !PE,

and an operator

T5S ki1/2kj1/2ki1kj
D
i , j51

`

: l 1→ l` .

Using Lemma IV C 2~ii ! we check that the operatorT factors through a Hilbert space. Hence, the
operator

B5Dc/AkTDa/Ak5S ajci
ki1kj

D
i , j51

`

:E→E

again belongs to the idealL`+H+L1 and satisfies the equation

DB1BD5a^c.

Finally, applying Theorem III B 2 to theoperator

L:5S ajci
ki1kj

e2~kix1ki
3t !D

i , j51

`

:E→E,

we find that in both cases~i! and ~ii !,

v5tr„~ I1L !21~DL1LD !…52
„detl~ I1L !…x
detl~ I1L !

satisfies the KdV equationv t5vxxx13vx
2, where detl is the spectral determinant onL`+H+L1.

h

The following theorem is the main result of this section. It stresses the fact that there is, in a
sense, a universal realization of solutions given in the previous proposition by determinants of
nuclear operators onl 1. To this end, we note that a nuclear operatorTPN ~l 1! may be expressed
by a matrixT5(t i j ) such that

iTuN i5(
i51

`

sup
j

ut i j u,`.

Moreover, the quantitiesan(T) in Sec. II C may be described by the formula
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an~T!:5
1

n! (
i1

`

•••(
i n

`

detS t i1i1 ••• t i1i n

A A

t i ni1 ••• t i ni n

D ,

and for the determinant detN (I1T) we have the expansion

detN ~ I1T!511 (
n51

`

an~T!.

Furthermore, a preliminary lemma is required.
Lemma IV C 4:LetA andB be quasi-Banach operator ideals admitting continuous traces. If

A(E),B(E) and the finite rank operatorF (E) are i•uAi-dense inA(E), then

trA~T!5t~T! for all TPA~E!,

where trA is the unique continuous trace onA(E) andt is any continuous trace onB(E).
Proof: SinceA(E),B(E), we find by the closed graph theorem thatA(E) is continuously

embedded inB(E). Hence,t is a continuous trace onA(E) which is unique by the trace
extension theorem~cf. the Appendix!. h

Theorem IV C 5: Let k5(ki)P l` and let one of the following conditions be satisfied:
~i! infuki1kj u.0, c5(ci)P l 1 , or
~ii ! ki.0, i51,2,••• , (ci /ki)P l 1 .
Then the operator

L5S ci
ki1kj

e2~kix1ki
3t !D

i , j51

`

belongs to the nuclear componentN ~l 1!, and

v52
„detN ~ I1L !…x
detN ~ I1L !

solves the KdV equationv t5vxxx13vx
2, provided that (I1L)21 exists. Moreover, each of the

solutions of Proposition IV C 3 may be expressed in this way.
Proof: The first part of the theorem is an immediate consequence of Theorem IV B 1. Indeed,

let D: l 1→ l 1 be the diagonal operator defined by

D~j i !5~kij i !, ~ki !P l` .

Then, because of our assumptions~i! and ~ii !, Lemma IV A 1 guarantees that

L:5e2Dx2D3tB5S ci
ki1kj

e2~kix1ki
3t !D : l 1→ l 1

is a nuclear operator, where the nuclear operator

B5S ci
ki1kj

D : l 1→ l 1

satisfies the equation

DB1BD5e0^c

1850 H. Aden and B. Carl: Solutions of the KdV equation by determinants

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



with e05(1,1,...)P l` and c5(ci)P l 1 in the case of~i!, and (ci /ki)P l 1 in the case of~ii !,
respectively. Now Theorem IV B 1 implies that

v52
„detN ~ I1L !…x
detN ~ I1L !

is a solution of the KdV equationv t5vxxx13vx
2. This proves the first part of the theorem.

Finally, it remains for us to show that each solution of the KdV equation given in Proposition
IV C 3 may be expressed in this form. We first treat the more involved case~ii ! of the previous
proposition. It is readily seen that the operatorL appearing in Proposition IV C 3,

L5S ajci
ki1kj

e2~kix1ki
3t !D

i , j51

`

:E→E,

where (ai /Aki) P E8 and (ci /Aki) P E, is related to

L˜5S ki1/2kj1/2ki1kj

aici
ki

e2~kix1ki
3t !D

i , j51

`

: l 1→ l 1 .

Hence, for the spectral determinants we have

detl~ I1L !5detl~ I1L̃ !

by the principle of related operators~cf. the Appendix!. According to Lemma IV C 4 it follows

detl~ I1L̃ !5detN ~ I1L̃ !.

This is due to the fact2,4,11 thatL`+H+L1~l 1!,N ~l 1! and that the finite rank operatorsF ~l 1! are
i•uL`+H+L1i-dense inL`+H+L1~l 1!.

Furthermore, because of the assumption (ai /Aki) P E8 and (ci /Aki) P E, we have that
(aici /ki)P l 1 . Thus, by the first part of the theorem,

L55S aici
ki1kj

e2~kix1ki
3t !D

i , j51

`

: l 1→ l 1

defines a nuclear operator froml 1 into l 1. Comparing the determinants ofI1L̃ and I1L5 ,

detN ~ I1L̃ !511 (
n51

`

an~ L̃ !

and

detN ~11L5 !511 (
n51

`

an~L5 !,

respectively, we recognize, again by the principle of related operators, that

an~ L̃ !5an~L5 !, n51,2,... .

Hence,

detN ~ I1L̃ !5detN ~ I1L5 !.
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Obviously,L5 has the desired shape of our theorem and this completes the proof in the case~ii !. In
the case~i! we immediately find thatL is related toL5 . This follows from the fact that, by Lemma
IV C 2, ~1/(ki1kj )! defines a nuclear operator froml 1 into l` . Thus the principle of related
operators implies

detl~ I1L̃ !5detl~ I1L5 !,

where detl(I1L5 ) is the spectral determinant on~N +N !~l 1!. Finally, again by Lemma IV C 4,

detl~ I1L̃ !5detN ~ I1L5 !.

This completes the proof. h

Finally, we will give the first conservation law for solutions of the KdV equation generated by
diagonal operators with positive entries. Taking the assumptions of Theorem IV C 5 and using the
expansion formula for the determinant of nuclear matrices int50, detN (I1L) has the shape

detN „I1L~x,0!…511(
I
dIe

2bIx,

whereI runs through all nonempty finite subsets ofN and where

bI5(
I
ki r and dI5detS ci r

ki r1ki s
D 5S )

r51

n

ci r D S P r.s~ki r2ki s!
2

P r ,s~ki r1ki s!
D ,

I5$ i 1 ,... ,i n%, i 1, i 2,•••, i n ~see Ref. 12, p. 92 for the last equality!.
If ki.0 and ci.0, then det(I1L)Þ0 for all (x,t)PR2. Hence, I1L is invertible and

(I1L)21Lx is infinitely times continuously differentiable. This implies tr„(I1L)21Lx…PC`~R2!.
Theorem IV C 6: Take the assumptions of Theorem IV C 5~i! or ~ii ! with ki.0, ci.0,

i51,2... andkiÞkj for iÞ j . Let

u52
]

]x
tr„~ I1L !21Lx…52

]

]x

„det~ I1L !…x
det~ I1L !

.

Then,uPC`~R2! solves the KdV equation

ut5uxxx16uux

and

E
2`

`

u~x,0!dx52( kiP~0,̀ !ø$`%.

Proof: The proof of the trace relation is a slight modification of the proof in Ref. 10.
Let

v52
„det~ I1L !…x
det~ I1L !

52 tr„~ I1L !21Lx…,

then

E
2`

`

u~x,0!dx5 lim
r→`

v~r ,0!2 lim
r→2`

v~r ,0!.
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Since

iL~r ,0!uN i5(
i

sup
j
Ue2ki r

ci
ki1kj

U<(
i
e2ki rUcikiU→0 as r→`,

we obtain limr→` v(r ,0)50.
Using the preceding remark we find

2v~r ,0!52
( idibie

2bi r

11( idie
2bi r

with dibi.0 and ~di !P l 1 .

As

( idibie
2bi r

11( idie
2bi r

<supbi ,

we only have to prove that

( idibie
2bi r

11( idie
2bi r

>b for all 0,b,supbi and sufficiently large2r .

Let A15$jPN:b2bj,0%Þ0” andA25N\A1, then

(
A1

dj~bj2b!e2~bj2b!r→` as r→2`

and

(
A2

dj~b2bj !e
2~bj2b!r is bounded byb(

A2
dj for all r<0.

Hence, there is anM.0 such that for allr,2M

(
A1

dj~bj2b!e2~bj2b!r>(
A2

dj~b2bj !e
2~bj2b!r1bebr.

This yields

( idibie
2bi r

11( idie
2bi r

>b for all r,2M .

h

V. CONCLUDING REMARKS

As already mentioned the first-named author recently proved the following theorem.13

Theorem V.1: Let E,F be Banach spaces andAPL(E), BPL(F), such that 0¹spec(A)
1spec(B). Then the equation

BX1XA5a^c, aPE8,cPF,

has a unique solutionX belonging to anyp-Banach operator ideal, in particular, to the operator
idealN p of p-nuclear operators for any 0,p<1.
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This theorem guarantees that we may drop the assumption thatE has the approximation
property in the case of Theorem IV B 1~i!. As a further consequence we find that the operator in
IV C 2 ~i! is evenp-nuclear for anyp with 0,p<1. Moreover, the above theorem implies directly
that the operatorL in Proposition IV C 3~i! possesses a spectral determinant for any sequence
spaceE.

Lemma IV A 1 ~ii ! cannot be extended top-Banach operator ideals~p,1!. This was shown
to us by Thomas Ku¨hn,14 who gave an example of a nuclear matrix„cicj /(ki1kj )…PN ~l 2! which
is not p-nuclear for anyp,1.
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APPENDIX

We collect some recent results concerning the existence and uniqueness of traces on operator
ideals.

A quasi-Banach operator idealA with a continuous trace is contained in the Banach operator
ideal of so-called integral operators.3 Therefore, the componentA(E) consists entirely of Riesz
operators. Since the elementslÞ0 of the spectrum of a Riesz operator are isolated eigenvalues
with finite algebraic multiplicity having no point of accumulation except possibly forl50 we may
assign to every Riesz operatorTPL(E) an eigenvalue sequence„ln(T)… by the following rule:

Every eigenvaluelÞ0 is counted consecutively according to its multiplicity and the eigen-
values are arranged in order of nonincreasing absolute values. IfT possesses less thann eigen-
valueslÞ0, thenln(T)5ln11(T)5•••50. By this rule we always have an infinite sequence of
eigenvalues. A useful tool for investigating the behavior of eigenvalues of operators in Banach
spaces is Pietsch’s principle of related operators.3

Principle of related operators.The operatorsSPL(E) andTPL(F) are said to berelatedif
there existsAPL(F,E) and BPL(E,F) such thatS5AB and T5BA. Let SPL(E) and
TPL(F) be related. IfS is a Riesz operator, then so isT. Moreover, both operators have the same
nonzero eigenvalues with the same multiplicities.

We say that a quasi-Banach operator idealA haseigenvalue type lp if, for arbitrary Banach
spacesE, all operatorsTPA(E) are Riesz operators and„ln(T)…Pl p . Moreover, we mention an
important tool of the theory of eigenvalue distributions.

Principle of uniform boundedness.3 Let A be a quasi-Banach operator ideal which is of
eigenvalue typel p . Then there exists a universal constantc>1 such thati„ln(T)…ip<ciTuAi for
all TPA(E) and all Banach spacesE.
The following striking result about spectral traces has been recently obtained by Ransford, Taylor,
and White.15

Spectral trace.LetA be a quasi-Banach operator ideal of eigenvalue typel 1. For arbitrary
Banach spacesE and everyTPA(E) we define

trl~T!:5 (
n51

`

ln~T!.

Then the function trl :øEA(E)→C is a continuous trace and is called thespectral trace.
As already mentioned in Sec. III A, Kalton7 showed the existence of a quasi-Banach operator

idealA admitting different continuous traces.3 In contrast to this result we give an elementary but
useful statement concerning the uniqueness of traces.
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Trace extension theorem.3 LetA be a quasi-Banach operator ideal such that for all Banach
spacesE andF the finite rank operatorsF (E,F) arei•uAi-dense inA(E,F) and such that there
exists a constantc>1 with ut(T)u<ciTuAi for all TPF (E) and all Banach spacesE.
ThenA admits a unique continuous trace denoted by trA .

The unique trace trA :A(E)→C can be defined for allTPA(E) by the i•uAi-continuous
extension of tr:F (E)→C.

There are many useful quasi-Banach operator ideals admitting spectral traces.2,3 Combining
the trace extension theorem with the spectral trace we obtain the so-called spectral trace theorem.

Spectral trace theorem.LetA be a quasi-Banach operator ideal of eigenvalue typel 1. If for
all Banach spacesE andF the finite rank operatorsF (E,F) are i•uAi-dense inA(E,F), then
there is an unique continuous trace onA which is a spectral trace, i.e.,

trA~T!:5 (
n51

`

ln~T!5trl~T! for all TPA~E! and all Banach spacesE.

The trace-determinant theorem~cf. Sec. II C! states that there is a one-to-one correspondence
between continuous traces and continuous determinants. Moreover, a quasi-Banach operator ideal
admits aspectral determinantdetl if and only if it admits a spectral trace, where detl is defined by

detl~ I1T!:5 )
n51

`

„11ln~T!… for TPA~E! and all E.

For the spectral determinant one has the formula~cf. Sec. II C!

~detl„I1T~z!…!̇ 5trl~„I1T~z!…21Ṫ~z!!detl„I1T~z!….

Finally, for illustrating the previous abstract results we consider again the Banach operator ideal
N of nuclear operators.

The approximation property of a Banach spaceE ~cf. Sec. II C! is equivalent to the estimate

trN ~T!<iTuAi for TPF ~E!,

which already appeared in the trace extension theorem.2,3 Hence, by this theorem there exists a
unique continuous trace trN :N (E)→C on the class of Banach spaces with the a.p. given by the
formula

trN ~T!5(
i51

`

^xi ,ai&

for any representationT5( i51
` ai ^xi of TPN (E).

Since the operator idealN is of eigenvalue typel 2 only, we cannot expect that trN is a
spectral trace. For instance,2 the ideal componentsN ( l p), 1<p<`, possess the optimal eigen-
value typel r with 1/r512u 1221/pu. Consequently, forp51 or ` we have the worst eigenvalue
type l 2 and for the Hilbert space componentN ~l 2! the best eigenvalue typel 1. In the case of
N ~l 2! we obtain by the spectral trace theorem in this way Lidskij’s well-known spectral trace
formula

trN ~T!5 (
n51

`

ln~T! for TPN ~ l 2!.

However, in contrast to that, the ideal componentN ~l 1! behaves rather strangely. Indeed, by
Enflo6 there exists an operatorSPN ~l 1! such that
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trN ~S!51 and S250.

Hence the nilpotent operatorS cannot possess any eigenvaluel0Þ0. Thus it is impossible to
compute the trace trN (S)51 from the trivial eigenvalue sequence~0,0,...!.

The previous facts indicate that even for the smallest Banach operator idealN of nuclear
operators, a well-defined trace cannot exist for nuclear operators between arbitrary Banach spaces
as they were originally defined. In view of these difficulties one was interested in smaller operator
ideals admitting traces with all the desired properties. This automatically leads to the notion of a
quasi-Banach operator ideal. Hence, Grothendieck reduced the ideal of nuclear operators to that of
r -nuclear operators, 0,r<1. Let us recall that an operatorTPL(E,F) is r -nuclear if it admits a
representation

Tx5(
i51

`

^x,ai&yi , aiPE8,yiPF,

such that( i51
` iai i

r iyi i
r,`. By N r we denote the collection of allr -nuclear operators. Regard-

ing all possible representations ofTPN r(E,F) and taking the infimum

iTuN r i :5 infH S (
i51

`

iai i r iyi i r D 1/rJ ,
we obtain the quasi-Banach operator idealN r of all r -nuclear operators withN 15N .

It is well known3 that the idealN r is of eigenvalue typel q with 1/q51/r21
2. SinceN 2/3 is

of eigenvalue typel 1 andN r,N 2/3 for 0,r< 2
3 we find that there exists a spectral trace onN r

for 0,r< 2
3. Moreover, in this case we know that by

trN r
~T!5(

i51

`

^xi ,ai& for T5(
i51

`

ai ^xiPN r ,

a trace onN r(E) for all Banach spacesE is defined. Since the finite rank operators are
i•uN ri-dense inN r , we conclude by the spectral trace theorem that, for 0,r<2

3,

trN r
~T!5 (

n51

`

ln~T!5trl~T! for TPN r~E! and all E.

Finally, we mention3 that on the componentsN r( l 1) there exists no spectral trace in the case
2
3,r<1.
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Singular and unstable solutions of the Korteweg–de Vries
hierarchy

H. J. S. Dorren
Department of Theoretical Geophysics, Utrecht University, PO Box 80.021,
3508 TA Utrecht, The Netherlands
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The Korteweg–de Vries~KdV! equation is solved using an inverse scattering trans-
form approach using the continuous part of the spectrum of the Schro¨dinger equa-
tion. It is assumed that the reflection coefficient that corresponds to the initial
condition of the KdV equation is a rational function of the wave number. It is
shown that the Lyapunov exponent of the associated nonlinear evolution equation
can be larger than zero if the reflection coefficient has poles that are close to zero.
A positive Lyapunov exponent suggests that corresponding solutions of the KdV
equation are unstable. This approach is generalized to the KdV hierarchy. ©1996
American Institute of Physics.@S0022-2488~96!01304-2#

I. INTRODUCTION

Many papers have been published concerning the Korteweg–de Vries~KdV! hierarchy, a
topic that is related to a wide variety of physical phenomena, varying from the propagation of
water waves to subjects in quantum field theories. The most common method that is used to find
solutions of the KdV equation is the inverse scattering transformation~IST! that was developed by
Gardner, Greene, Kruskal, and Miura~GGKM!.1,2 It was shown by these authors that the KdV
equation can be solved using the inverse problem of the Schro¨dinger equation assuming that the
time-dependent potential function is a solution of the KdV equation. In the papers by GGKM a
method is presented to formulate the time-dependence of the scattering data of the potential
function that acts as the initial condition of the KdV equation.1,2 It was also shown by GGKM that
soliton solutions could be constructed using the discrete part of the spectrum of the Schro¨dinger
equation.1,2

Meanwhile, it was shown by Lax3 that the IST approach could be applied on a wide variety of
differential equations as long as they form a so called ‘‘Lax-pair.’’ Lax formulated a general
method to compute the time-dependence of the scattering data, followed by investigations of a
great number of nonlinear differential equations using the IST.4,5 It was observed that using the
discrete part of the spectrum leads to soliton solutions of these differential equations.

Solitons are understood to be nondispersive because dispersion effects and effects due to the
nonlinearity cancel each other out. Furthermore, from the observation that solitons maintain their
shape over long time scales indicates that solitons are stable. This is in contradiction with the fact
that the KdV equation is a nonlinear differential equation that can be expected to have unstable
solutions.

It is remarkable that after nearly thirty years of studying the IST, only the discrete part of the
spectrum of the Schro¨dinger equation is taken into account. Recently, from studies of the stability
of the inverse problem of the Schro¨dinger equation,6–10 it was observed that the inverse problem
of the Schro¨dinger equation is very sensitive to small errors in the low energy content of the
spectrum of the reflection coefficient. From this, the idea has risen that using the continuous part
of the spectrum might lead to unstable solutions of the KdV equation. In this paper singular
solutions of the KdV equation are constructed using the continuous part of the spectrum, and it is
shown that these solutions correspond to a positive Lyapunov coefficient.

This paper has the following structure. In Sec. II, solutions of the KdV equation are con-
structed using the continuous part of the spectrum of the Schro¨dinger equation. In Sec. III, it is
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shown that these solutions correspond to positive Lyapunov coefficients. In Sec. IV, singular
solutions for the complete KdV hierarchy are derived. The results are discussed in Sec. V. Tech-
nical issues concerning to the Gelfand–Levitan–Marchenko equation are added in two appendi-
ces.

II. SINGULAR SOLUTIONS OF THE KdV EQUATION

Consider the KdV equation:

uxxx26uxu1ut50,
~1!

u~x,t50!5u~0!~x!.

In Eq. ~1!, u(0)(x) represents the initial condition of the KdV equation att50. The most com-
monly used strategy to generate solutions of the KdV equation is using the inverse scattering
transformation.11 Following this approach, the KdV equation can be solved by using the following
Lax pair:4,12

cxx2uc52k2c, ~2!

~C2ux!c12~u12k2!cx5c t . ~3!

The physical asymptotic behavior of the Schro¨dinger equation~2! is given by

c1~k,x!;H eikx1R1~k!e2 ikx, x,0,

T~k!eikx, x→1`.
~4!

In the limit x→`, the potential functionu and its derivativeux tend to zero, so Eq.~3! reduces to

c t'4k2cx1Cc. ~5!

Substitution of the asymptotic behavior~4! of the functionc in Eq. ~3!, leads to the following
result:

d

dt
R1~k,t !eikx5~4ik31C!R1~k,t !eikx1~24ik31C!e2 ikx. ~6!

Hence, forC54ik3,

d

dt
R1~k,t !58ik3R1~k,t !. ~7!

Solving this differential equation one finds that:

R1~k,t !5R1~k,t50!e8ik
3t. ~8!

In Eq. ~8!, the reflection coefficientR1(k,t50) belongs to the initial conditionu(x,t50). In a
similar fashion it can be derived that the discrete part of the spectrum evolves as

cn~k,t !5cn~kn ,t50!e4kn
3t. ~9!

In Eq. ~9! the bound statescn(kn ,t50) are the residues that correspond to the poles of the
transmission coefficient of the initial conditionu(x,t50) that are positioned at the positive imagi-
nary axis. The numberskn are the discrete eigenvalues of the Schro¨dinger equation.

In most applications of the inverse scattering method, the discrete part of the spectrum of the
Schrödinger equation is used. In this way, soliton solutions can be constructed.4 In contrast to this,
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in this paper the continuous part of the spectrum of the Schro¨dinger equation is used. Furthermore,
it is assumed that the reflection coefficient of this potential function is a rational function of the
wave number. This implies that Sabatiers method,13 which is described briefly in Appendix A, can
be used to solve the inverse problem of the Schro¨dinger equation. Letpi be a pole of the rational
reflection coefficientR1(k) in equation~A10! that corresponds to the initial conditionu(x,t50).
It follows that the pole positionpi remains invariant under the transformation~8!. The residue

however undergoes the transformationRi→Rie
8ipi

3
t. Using this information, the time-dependence

of the kernelK1(x,x,t) can be formulated:

K1~x,x!→K1~x,x,t !5
D81~x,t !

D1~x,t !
, ~10!

where

D1~x,t !5det$d i j2~pi1pj !
21Rj exp@2i ~pjx14pj

3t !#%. ~11!

The solutionu(x,t) of the KdV equation is then equal to

u~x,t !522
d

dx
K1~x,x,t !. ~12!

In two papers by Dorren7,8 the stability of the Marchenko equation is investigated is the case of a
reflection coefficient that is a rational function of the wave number. One of the major results of
these studies is that the inverse problem of the Schro¨dinger equation is unstable for values ofx for
which the the determinantD1(x,t50) is close to zero. Similarly, it can be concluded that if the
space coordinatex is fixed, the kernelK1(x,x,t) is unstable for those values oft, for which the
numerical value of the determinantD1~x5const,t! is close to zero. Due to the fact that the
time-dependence of the spectral reflection coefficientR1(k,t) manifests itself only in the expo-
nent of Eq.~11!, it can be concluded that if the determinantD1(x,t50) is zero for large values
of x, the determinantD1~x5const,t! will also be zero at large timet. If the determinant~11! is
equal to zero for certain values ofx or t, the solutionu(x,t) of the KdV equation is singular.

As an example, the simplest case in whichu(x,t50) is represented by one pole inC1 whose
position is given bypi5 ib is considered. Causality of the solution requires thatb.0. Further-
more, one residue positioned on the imaginary axisRi(t50)5id ~dPR! is chosen. From Eqs.
~10!–~12!, it follows that the corresponding solution of the KdV equation is equal to

u~x,t !5
8dbe22~bx24b3t !

~12~d/b!e22~bx24b3t !!2
. ~13!

It follows from substitution of Eq.~13! in Eq. ~1!, that Eq.~13! is a solution of the KdV equation
for any choice ofd andb. Furthermore, it follows that the solution~13! is unstable with respect
to the ratiod/b, if the denominator of Eq.~13! is close to zero. This implies that ifd/b is larger
than zero, for certain values ofx and t singularities in the solution~13! exist.

If d is chosen negative, a causal solution can never have a vanishing denominator. In this
situation the solution~13! is always stable. The solution~13! can then be reformulated as

u~x,t !5
28b2

S expH bx24b3t2
1

2
logS 2

d

b D J 1exp2H bx24b3t2
1

2
logS 2

d

b D J D 2 . ~14!

Using the fact that sech2(z)54/(ez1e2z)2 andb 5 1
2Ac, the equation takes the following form:
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u~x,t !52
c

2
sech2H 12 Ac~x2ct1x0!J ~15!

in which

x052
1

Ac
logS 2

d

b D . ~16!

For the special choice of a positiveb and a negatived, the logarithm~16! exists and the solution
~13! reduces to the well-known soliton solution.

If d is chosen positive, a new result is obtained. In this case the solution~13! is no longer a
soliton solution. Ifd/b is larger than zero, the solution~13! has singularities for certain values of
x andt. In the most simple case if only one pole and one residue are present, the solution~13! has
a singularity that evolves nondispersively in time. If the initial condition of the KdV equation
u(0)(x) is represented by more poles and residues, then it can be shown that the time evolution of
this initial condition can be decomposed in an infinite series of nondispersive waves. However
their total sum shows dispersive behavior. It can be concluded that if the reflection coefficient
R1(k,t) is used to generate solutions of the KdV equation, a larger class of solutions is obtained
than only the soliton solutions. That the soliton solutions are also present if the continuous part of
the spectrum of the Schro¨dinger equation is used is not surprising since it has been shown that
isolated poles of the reflectionR1(k,t) on the positive imaginary axis are equal to the poles of
transmission coefficient, and that they form the bound states of the potential function.14 In contrast
to this, the reflection coefficientR1(k,t) has poles that are not limited to the positive imaginary
axis. It is concluded that solutions of the KdV equation that can be associated with the reflection
coefficientR1(k,t) form a class of solutions that contains soliton solutions but also singular
solutions.

The solution of the KdV equation which is given by Eqs.~10!–~12! is generated from the
time-evolution of the reflection coefficientR1(k,t) that corresponds to the initial conditionu(x,t
50). This transformation is given by Eq.~8!. If the reflection coefficient is given by Eq.~A10! in
Appendix A, it follows that the poles remain invariant under the transformation~8!. However the
residues undergo the following transformation:

Ri→Rie
8ipi

3t. ~17!

In Appendix B, it is shown that a solution of the Marchenko equation can be decomposed in an
infinite series of exponential functions. By applying the transformation~17! on Eq. ~B9! in Ap-
pendix B, a series solution of the KdV equation that corresponds to the continuous part of the
spectrum of the Schro¨dinger equation can be constructed. This result can be formulated in the
following theorem:

Theorem II.1: The function,

u~x,t !54(
i51

N

Ripie
2i ~pix14pi

3t !14 (
i , j51

N

RiRje
2i $~pi1pj !x14~pi

3
1pj

3
!t%

14(
i j l

N
~RiRjRl !~pi1pj1pl !

~pi1pj !~pj1pl !
e2i $~pi1pj1pl !x14~pi

3
1pj

3
1pl

3
!t%1••• , ~18!

is a solution of the KdV-equation. If the position of the poles pi and the residues Rj of the
reflection coefficient are chosen as in Appendix A, the solution (18) is real.

A proof of Theorem II.1 is given in Appendix B. It follows from Theorem II.1 that a solution
of the KdV equation can be decomposed in an infinite sum of nondispersive basis functions. Their
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total sumu(x,t) exhibits dispersive behavior. The IST can therefore be regarded as a nonlinear
generalization of the Fourier transform that can be applied on nonlinear differential equations like
the KdV equation. It depends on the structure of the kernelK1(x,x,t) whether the series expan-
sion ~18! converges or not. If the determinantD1(x,x,t) is close to zero for certain values ofx or
t, the series expansion~18! will not converge. The convergence ofK1(x,x,t50) is related to the
convergence of~18!:

K1~x,x,t50!5 i(
i51

N

Rie
2ipixH 11(

j51

N
Rj

pi1pj
e2ip j x1

RjRl

~pi1pj !~pj1pl !
e2i ~pj1pl !x1•••J .

~19!

The convergence of the kernelK1(x,x,t50) is achieved for everyx when

U (
i , j51

N
Ri

~pi1pj !
e2ipixU<U (

i , j51

N
Ri

~pi1pj !
U<1. ~20!

This result can be summarized in the following lemma:
Lemma II.1: The kernel K1(x,x,t) diverges if

U(
i , j

N
Ri

~pi1pj !
U>1. ~21!

If the kernelK1(x,x,t) diverges, the corresponding solutionu(x,t) of the KdV equation can be
arbitrarily large. This can be achieved by moving the positions of the poles close to the origin of
the complex plane.

In this section it is argued that singular solutions of the KdV equation exist. Furthermore, it is
shown in Theorem II.1 that they can be decomposed in an infinite sum of nondispersive basis
functions. Their total sum however, exhibits dispersive behavior. The fundamental reason for this
phenomena lays in the structure of Eq.~17!. From this equation it follows that the time-
dependence of the residueRi can be obtained by multiplication with an exponential function in
which only the polespi and the timet are present. Singular solutions of the KdV equation exists
if the determinantD1(x,t) is zero. If the discrete part of the spectrum of the Schro¨dinger equation
is used, singular solutions do not exist since the determinantD1(x,t) can not be zero. The
singular solutions are not in the Faddeev class of physical potential functions~Appendix A!,
however it follows from substitution that these singular solutions satisfy the KdV equation. The
main result of this section is that the instability of the Marchenko equation corresponds to the
existence of singular solutions of the KdV equation. This suggests that Theorem II.1 can be
generalized to all other hierarchies of differential equations that can be solved using the IST. In
Sec. III, it is shown that solutions of the KdV equation which are constructed using the continuous
part of the spectrum can be sensitive to small perturbations in the initial condition.

III. STABILITY ESTIMATES FOR THE KdV EQUATION

In this section it is shown that the time-evolution of the solution of the KdV equation is
sensitive to small errors in the initial condition. This result is obtained using a discrete represen-
tation of the time evolution of the KdV equation~1!:

u~n11!~x!5u~n!~x!1Dt@6ux
~n!~x!u~n!~x!2uxxx

~n! ~x!#. ~22!

In Eq. ~22! u(n)(x)5u(x,t5tn). The derivativesux
(n)(x) anduxxx

(n) (x) are defined byux(x,t5tn)
anduxxx(x,t5tn), respectively. The discrete time step is given byDt. It follows from Eq.~22! that
a solutionu(n11)(x) of the KdV equation can be computed, if at timet5tn the solutionu(n)(x)
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and its derivativesux
(n)(x) anduxxx

(n) (x) are known. Suppose that the solutionu(n)(x) at timet5tn
is contaminated with a small perturbationDu(n)(x). This implies that the derivativesux

(n)(x) and
uxxx
(n) (x) are contaminated, respectively, with errorsDux

(n)(x) and Duxxx
(n) (x). Then, an error

Du(n11)(x) in u(n11)(x) is generated according to

Du~n11!~x!5Du~n!~x!16Dt$ux
~n!~x!@Du~n!~x!#1@Dux

~n!~x!#u~n!~x!%2DtDuxxx
~n! ~x!. ~23!

From Eq.~23!, the derivativesDux
(n11)(x) andDuxxx

(n11)(x) can be computed. Hence by continuing
the process of iteration the errorDu( i )(x) can be computed at arbitrary timet5t i .

If the initial conditionu(0)(x) is contaminated with an errorDu(0)(x), after n iterations an
errorDu(n)(x) in u(n)(x) is generated according to

Du~n!~x!5)
k51

n

A~k21!@Du~0!~x!#. ~24!

The operatorA(n), in Eq. ~24!, is defined by

A~n!@Du~n!~x!#5$116Dt@ux
~n!~x!1u~n!~x!]x#2Dt]xxx%@Du~n!~x!#. ~25!

Equation~24! describes the errorDu(n)(x) in u(n)(x) as a result of an errorDu(0)(x) in u(0)(x).
If a large number of iterations is performed, Eq.~24! can be approximated by

Du~n!~x!5^t ~n!~x!&av
n Du~0!~x!. ~26!

In Eq. ~26!, ^t (n)(x)&av, is the average growth of the errorDu(n)(x) per iteration:

^t ~n!~x!&av5
(k51
n uDu~k!~x!u

n
. ~27!

Equation~26! can be reformulated as

Du~n!~x!5en log^t~n!~x!&avDu~0!~x!5enln~x!Du~0!~x!. ~28!

From Eq.~28!, it follows that the corresponding Lyapunov exponentln(x) is given by

ln~x!5
1

n
logH (k51

n uDu~k!~x!u
n J . ~29!

Equation~29! presents a nonstandard representation of the Lyapunov exponentln(x). However, it
still describes the average growth of errors. If the Lyapunov exponentln(x) is positive, the error
Du(n)(x) in the discrete time-seriesu(n)(x) grow. This implies that the solutionu(n)(x) is sensi-
tive to small errors in its initial condition. Conversely, if the Lyapunov exponentln(x) is nega-
tive, the error in the discrete time-seriesln(x) is damped out. This implies that the solution
u(n)(x) is not sensitive to small errors in the initial conditionu(0)(x).

Usually, the error propagation in discrete systems is examined as a function of the free
parameters in the associated difference equation. An illustrative example is given by quadratic
mapping:15,16

yn115a~11yn!yn , ~30!

where the errorDyn in yn is examined as a function of the parametera. If the difference equation
~23! is investigated, it appears that in this case the free parameters of the iterative solution of the
KdV equation~22! are the polespi and the residuesRi in the solution of the KdV equation~18!.
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It follows from Lemma II.1 that the error in the iteration seriesu(0)(x),u(1)(x),u(2)(x),... grows
for those values ofx for which the solution of the KdV equation is nearly singular. This situation
can be obtained by tuning the ratio(i , j Ri /(pi1pj ) in such a way, that the errorDu

(n)(x) in Eq.
~23! is so large at every timet5tn , that the corresponding Lyapunov exponentln(x) is positive.
If the errorDu(n)(x) is so large that the Lyapunov exponentln(x) is positive, the error in the
iteration seriesun(x) grows for that value ofx. This implies that the time-evolution of these
solutions of the KdV equation is sensitive to small perturbations in their initial condition. A
positive Lyapunov exponent is often associated with unstable behavior.15,16 As a result of this it
can be concluded that singular, or nearly singular solutions of the KdV equation have an unstable
time-evolution.

IV. EXTENSION TO THE KdV HIERARCHY

In this section, it is shown that conclusions that are drawn for the KdV equation can be
extended to the whole KdV hierarchy. It was shown by Lax,3 that the inverse scattering approach
as developed by GGKM1,2 can be extended to a much wider class of equations, the so-called KdV
hierarchy. LetL be the Schro¨dinger operator, then Lax showed that a one parameter family of
operatorsBn satisfying the relation

]L

]t
5@Bn ,L#, ~31!

where [Bn ,L]5BnL2LBn can also be solved using an inverse scattering approach. The one
parameter family of operatorsBn is given by

Bn5
]2n11

]x2n11 1(
j51

n H bj ]2 j21

]x2 j21 1
]2 j21

]x2 j21 bj J . ~32!

In Eq. ~32!, the coefficientsbj depend on the solutionu(x,t) of the KdV hierarchy. Their specific
form follows as a constraint on Eq.~31!. The coefficientsbj consist modulo a constant of multi-
plications of the specific solutionu of the KdV hierarchy and their derivativesun . Furthermore, it
was shown by Lax3 that the discrete eigenvalues ofL are constant in time, and that the corre-
sponding eigenfunctions satisfy the following time-dependence:

]c

]t
5~Bn1C!c, ~33!

whereC is an arbitrary function oft.
This result of Lax is used to find a general time-evolution for the continuous part of the

spectrum of the Schro¨dinger equation. This result is used to show that for the whole KdV hierar-
chy, the positions of the poles are constant in time, and the time evolution of the residues is similar
to that of Eq.~17!. In order to find the time-dependence of the reflection coefficient, Eq.~32! is
substituted into Eq.~33!. This leads to the following expression:

c t5]2n11c1(
j51

n

$bj]2 j21c1~]2 j21bj !c%1Cc. ~34!

By letting the operator]2n21 act on both sides of the Schro¨dinger equation it can be shown that

]2n11c2 (
m51

n21 S n21
m Dumcn212m52k2c2n21 , ~35!
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if Eq. ~35! is substituted into Eq.~34! it is shown that

c t52k2c2n211 (
m51

n21 S n21
m Dumcn212m1(

j51

n

$bj]2 j21c1~]2 j21bj !c%1Cc. ~36!

If x→6`, thenu→0 andum→0 ~m.0!. Hence,]2 j21bj→0, andbj→g j , where the coefficients
gj are constant. Equation~36! then reduces to

c t52k2c2n211Cc1(
j51

n

g j~ ik !2 j21c. ~37!

The physical boundary conditions of Eq.~4! are given by

c5e2 ikx1R1~k,t !eikx, ~38!

c t5
]R1~k,t !

]t
eikx, ~39!

c2 j215~ ik !2 j21$R1~k,t !eikx2e2 ikx%. ~40!

From substitution of Eqs.~38!–~40! into Eq. ~37!, it follows that

C52k2~ ik !2n211(
j51

n

g j~ ik !2 j21. ~41!

From substitution of Eq.~41! into Eq. ~37! it follows that

]R1~k,t !

]t
52k2~2 ik !2n21R1~k,t !1(

j51

n

2R1~k,t !g j~ ik !2 j21. ~42!

Hence, the time-evolution of the reflection coefficient is given by

R1~k,t !5R1~k,t50!expS 22k2~ ik !2n211(
j51

n

2g j~ ik !2 j21D t. ~43!

If we choosen51 andg1523k2 we find the time-evolution of the reflection coefficient of the
KdV equation. The general time-evolution of the solutions of the KdV hierarchy is given by Eq.
~43!. It is clear that this transformation does not change the position of the poles of the reflection
coefficientR1(k,t50), and it affects only the residues. From this it can be concluded that the
general transformation rule for the residues is given by

Ri→Rie
f~pi !t, ~44!

where the functionf(pi) is given by

f~pi !522pi
2~ ipi !

2n211(
j51

n

2g j~ ipi !
2 j21. ~45!

From this it can be concluded that all the members of the KdV hierarchy have solutions similar to
Eq. ~18!. The transformation of the residues is given by Eq.~44!. As a result of this it could be
expected that all the solutions of the KdV hierarchy have solutions that are generalizations of Eq.
~18! and can be expected to have an unstable time-evolution.
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V. DISCUSSION

In the literature, solutions of the KdV equation are usually associated with solitons~an over-
view is given in the book by Ablowitz and Clarkson4!. This result is obtained by solving the KdV
equation using an IST in which the discrete part of the spectrum is used. In this article the KdV
equation is solved using the continuous part of the spectrum. In Sec. II two new results are
derived: the first is that singular solutions of the KdV equation exist and have a nondispersive
time-evolution. Second, it is shown that a solution of the KdV equation, having an initial condition
that is associated with the continuous part of the spectrum can be decomposed into an infinite
series of basis functions as given by Eq.~18!. All of the basis functions exhibit nondispersive
behavior.

These singular solutions do not exist if only the discrete part of the spectrum of the Schro¨-
dinger equation is used because in this case the corresponding determinantD1(x,t) in Eq. ~11!
can not be zero. It is shown explicitly in Sec. III, that by making the ratio(i , j Ri /(pi1pj ) in
Lemma II.1 large enough, the Lyapunov exponentln(x) that corresponds to the series
u(0)(x),u(1)(x),u(2)(x),... can be made positive. From this it can be concluded that the time-
evolution of solutions of the KdV equation associated with the continuous part of the spectrum is
sensitive to small errors in the initial condition. In fact, a positive Lyapunov exponentln(x) is
often associated with a chaotic time-evolution.

The mathematical reason for the singular behavior of the solutions of the KdV equation is
related to the unstable behavior of the inverse scattering problem. In previous studies,6–10 it is
shown that the Marchenko equation is unstable in the low energy part of the reflection coefficient
~poles close to the origin in the upper half-plane!. This is also the reason that in Sec. IV the results
of the KdV equation could be extended to the KdV hierarchy. This suggests that all other hierar-
chies of differential equations that can be solved using an IST approach have singular solutions
that are unstable.

In the real physical world singular solutions of the KdV equations do not exist. However,
from the results of this paper it can be concluded that if the initial condition of the KdV equation
has a large amplitude the corresponding time-evolution is unstable. It is shown that similar be-
havior exists for all the other members of the KdV hierarchy, and it is indicated that these results
can be generalized to all the other hierarchies that can be solved using an IST.
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APPENDIX A: THE INVERSE PROBLEM FOR RATIONAL REFLECTION COEFFICIENTS

In this appendix a brief formulation of the inverse problem for rational reflection coefficients
based upon the formulation of Sabatier13 is given. For a detailed treatment of the mathematics we
refer to the book of Chadan and Sabatier.14 Our starting-point is the following equation:

F6~k,x!215
1

2p i
lim

e→01

E
2`

` 12T~k8!F7~k8,x!

k81k1 i e
dk8

1
1

2p i
lim

e→01

E
2`

` R6~k8!F6~k8,x! exp@62ik8x#

k81k1 i e
dk8. ~A1!
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In Eq. ~A1! F1(k,x) is defined forx.0, andF2(k,x) for x,0, kPC. The functionF6(k,x) is
defined by

F6~k,x!5exp@7 ikx# f6~k,x!. ~A2!

The Jost solutionsf6(k,x) are those solutions of the Schro¨dinger equation satisfying the follow-
ing boundary conditions:

f1~k,x!: limx→` e2 ikxf1~k,x!51, ~A3!

f2~k,x!: limx→2` eikxf2~k,x!51. ~A4!

They satisfy the following integral equations:

f1~k,x!5eikx2E
x

` sin k~x2t !

k
V~ t ! f1~k,t !dt, ~A5!

f2~k,x!5e2 ikx2E
2`

x sin k~x2t !

k
V~ t ! f2~k,t !dt. ~A6!

It is quite well-known14 that the functionsf6(k,x) and therefore also the functionsF6(k,x) are
holomorphic inC1. The potentialV(x) has to be in the Faddeev classL1

1:

E
2`

`

~11uxu!uV~x!u,`. ~A7!

The scattering coefficientsR1(k),R2(k),T(k) are defined by the asymptotic behavior of the
physical solution of the Schro¨dinger equation:

c1~k,x!;H eikx1R1~k!e2 ikx, x,0,

T~k!eikx, x→1`,
~A8!

c2~k,x!;H T~k!e2 ikx, x,0,

e2 ikx1R2~k!eikx, x→1`.
~A9!

In the case of rational reflection coefficients they take the following form:13

R1~k!5
P~2k!

P j51
q ~l j2k! )

m iPM1

m i1k

m i2k )
l lPL1

l i1k

l i2k
, ~A10!

T~k!5
P i51

q ~m i1k!

P j51
q ~l i1k!

, ~A11!

R2~k!5
P~k!

P j51
q ~l j2k! )

m iPM2

m i2k

m i1k )
l lPL2

l i2k

l i1k
. ~A12!

Following Sabatier,13 the degree of the polynomialP(k) has to be smaller thanq. Further,
Im mi.0 except ifmi50, Imll,0. The transmission coefficientT(k) is supposed to be an irre-
ducible fraction, and the setsM1,M2,L1,L2 contain numbersÞ0. If the potential is real then
mk ,lk are pure imaginary. Ifmk ,lk are not pure imaginary then there exists2 mk* , 2 lk* . It can
be shown14 thatT(k) is meromorphic inC1 and if there are poles they are in Imk. If there are no
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bound statesT(k)F7(k,x) is holomorphic inC1 and the first integral of~A1! is zero. If
T(k)F7(k,x) is holomorphic inC

1 and all the polespi of R1(k) are simple, the integral~A1! can
be solved by contour integration in the upper-half plane. The result is

F1~k,x!215 (
pjPP

RjF1~pj ,x!exp@2ip jx#

pj1k
. ~A13!

Solving ~A13!, by letting k run through the set of polesP we obtain a linear set of algebraic
equations that determineF1(pj ) for all values ofj . Solving this set making use of Cramer’s rule
we obtain after puttingy5x:

K1~x,x!5
D18 ~x!

D1~x!
, ~A14!

where

D1~x!5det$d i j2~pi1pj !
21Rj exp@2ip jx#%, ~A15!

andD18 (x) is the derivative ofD1(x) with respect tox.

APPENDIX B: PROOF OF THEOREM II.1

Our starting point is the Marchenko equation without bound states in the wavenumber
domain:14

F1~k,x!511
1

2p i
lim

e→01
E

2`

`

dk8
R1~k8!F1~k8,x!exp@2ik8x#

k81k1 i e
511E

2`

`

C~k,k8!F~k8,k,x!dk8.

~B1!

The functionF1(k,x) is related to kernelK1(x,y) by the following Fourier transform:

K1~x,y!5~2p!21E
2`

`

dk e2 ik~y2x!
„F1~k,x!21…. ~B2!

The kernelC(k8,k) in Eq. ~B1! is given by

C~k,k8!5 lim
e→01

1

2ip

R1~k8!exp@2ik8x#

k81k1 i e
. ~B3!

We can expand Eq.~B1! in a series:

F1~k,x!511E
2`

`

C~k8,k!dk81E
2`

` E
2`

`

C~k,k8!C~k8,k9!dk8 dk91••• ~B4!

or alternatively

F1~k,x!215 lim
e→0

1

2p i E2`

` R1~k8!e2ik8x

k1k81 i e
dk8

1 lim
e→0

1

~2p i !2 E2`

` E
2`

`

dk8 dk9
R1~k8!e2ik8x

k1k81 i e

R1~k9!e2ik9x

k81k91 i e
1••• . ~B5!
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If the reflection coefficientsR1(k) in Eq. ~B3! are rational functions of the wave number the
integrals in Eq.~B4! can be solved analytically by performing a contour integration inC1. This is
justified by the fact that the reflection coefficientR1(k)→O ~1/k! if k→`. The poles of the
denominator of Eq.~B5! are all situated inC2 so the only contribution to the integrals of Eq.~B5!
comes from the poles ofR1(k) which are situated inC1. The following expression is obtained:

F1~k,x!215(
i51

N
Ri

k1pi
e2ipix1 (

i , j51

N
RiRj

~k1pj !~pi1pj !
e2i ~pi1pj !x

1 (
i , j ,l51

N
RiRjRl

~k1pl !~pj1pl !~pi1pj !
e2i ~pi1pj1pl !x1••• . ~B6!

The Fourier transform~B2! can now be performed to obtain the kernelK1(x,y):

K1~x,y!5 i(
i51

N

Rie
ipi ~x1y!1 i (

i , j51

N
RiRj

pi1pj
eip j ~x1y!e2ipix

1 i (
i , j ,l51

N
RiRjRl

~pj1pl !~pi1pj !
eipl ~x1y!e2i ~pi1pj !x1••• . ~B7!

After settingy5x and taking the derivative

V~x!522
d

dx
K1~x,x!, ~B8!

the following expression for the recovered potential is obtained.

V~x!54(
i51

N

Ripie
2ipix14 (

i , j51

N

RiRje
2i ~pi1pj !x

14(
i j l

N
~RiRjRl !~pi1pj1pl !

~pi1pj !~pj1pl !
e2i ~pi1pj1pl !x1••• . ~B9!

Application of the transformation~17! on Eq.~B9! leads to the series solution of the KdV equation
~18!:

u~x,t !54(
i51

N

Ripie
2i ~pix14pi

3t !14 (
i , j51

N

RiRje
2i $~pi1pj !x14~pi

3
1pj

3
!t%

14(
i j l

N
~RiRjRl !~pi1pj1pl !

~pi1pj !~pj1pl !
e2i $~pi1pj1pl !x14~pi

3
1pj

3
1pl

3
!t%1••• . ~B10!
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The integrability of systems of ordinary differential equations with polynomial
vector fields is investigated by using the singularity analysis methods. Three types
of results are obtained. First, a general relationship between the degrees of first
integrals and the so-called Kowalevskaya exponents is derived. Second, it is shown
that all solutions of algebraically integrable systems can be expanded in Puiseux
series. Third, a new method to study partially integrable systems is studied. These
different aspects allow us to study algorithmically the integrability, partial integra-
bility, and nonintegrability of differential systems. ©1996 American Institute of
Physics.@S0022-2488~96!01103-3#

I. INTRODUCTION

In recent years many works have focused on the definition of integrability for dynamical
systems. However, it is well known that ‘‘integrability’’ in a general sense is ill defined. This is
mainly due to a confusion between Hamilton theory, dynamical systems approach, and singularity
analysis. Each field has a different definition for ‘‘integrability’’ which makes sense within the
theory. The difficulty arises when one tries to establish possible relationships between different
fields. The main problem treated here is to find a connection, if any, between the Painleve´ property
and another notion of integrability which could be used to effectively build the solutions or gain
some global knowledge on the dynamics in phase space. While it is widely believed that the
Painlevéproperty is incompatible with chaotic motions, there is to date no rigorous proof of this
simple statement. From the other point of view, it is known that Liouville integrability is not
directly related to the Painleve´ property. Therefore, if we want to draw arrows between these
different fields it is necessary to introduce some rigorous notions of integrability which could be
explicitly related to the Painleve´ property, or, at least, to the Painleve´ test. More generally, one
needs a simple test for the existence or nonexistence of first integrals in a given function space
~polynomial, rational, algebraic,...! and it is the purpose of this paper to show that singularity
analysis provides it.

The algebraic integrability for ann-dimensional systems of ODEs with rational vector fields
is defined as the existence of~n21! algebraic first integrals. This notion of integrability is very
strong. Indeed, Liouville integrability for ann degrees of freedoms Hamiltonian only requires the
existence ofn single-valued first integrals; the remaining~n21! angle variables expressed as
closed one-form are not, in general, algebraic or even single-valued first integrals. Liouville
integrability is therefore a much weaker statement on the singularities than algebraic integrability.
This explains why it has not been possible so far to decide from the singularity analysis the
Liouville integrability for general Hamiltonians. From the other point of view, the notion of
algebraic integrability constrains the solutions of the systems in such a way that general statements
on the meromorphicity of the solutions are possible.

Another problem relates to partial integrability, that is the existence of a certain number of
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first integrals less than the number required for the complete integration. The singularity analysis
has been a successful tool for finding integrable systems. Many new systems, Hamiltonian and
non-Hamiltonian, have been built.1 However, most of the Hamiltonian systems although Liouville
integrable cannot be detected by the singularity analysis. In the same way, most of the dynamical
systems admit a few invariants related to physical conservation laws, but only a handful of them
will admit enough constants of motion to effectively build the complete analytical global solution.
More generally, there is no decision procedure to test the simple question: Is there a polynomial
first integral for a given systems of ODEs? Or, alternatively: Is there a bound for the degree of
polynomial first integrals?

The explicit computation of first integrals is not an easy task. The different techniques depend
on the space of functions considered for the first integrals. If we are interested in polynomial or
rational first integral, then all methods of explicit construction rely on the same idea. Consider a
systemS: ẋ5 f (x) wheref is a given polynomial vector field and let us look for a first integral of
givendegreed. We insert a polynomial or rational ansatz in the system and look for the coeffi-
cients. If no first integral is found, then one has to increase the value ofd and, with good luck and
prayer, hope to obtain a first integral.2–5 Some of these methods are based on the Carleman
procedure for finding first integrals.6–10

The main problem of all these methods is to set the degreed. We show here that the degree
of a first integral is related to the Kowalevskaya exponents. This relation gives a first choice for
the possible values of the degreed.

From the other point of view, it is sometimes possible to prove nonintegrability, that is, the
nonexistence of constants of motion. For Hamiltonian systems, there is the Ziglin theory for then
degrees of freedom systems. This theory has been proved to be useful for the following systems:
the motion of rigid body around a fixed point,11,12 homogeneous potentials,13,14 the Toda
lattices,15,16 a perturbed Kepler potential,17 nonhomogeneous potentials,18 and a reduced Yang–
Mills potential.19

Ziglin’s theory is based on the monodromy properties around particular solutions~straight line
notions!. However, it is quite difficult to apply in general and is limited to low degrees of freedom
and, mostly, homogeneous potentials.

For non-Hamiltonian systems, only a few results on nonintegrability are available. Let us
mention a recent work for homogeneous vector fields due to Moulin-Ollagnieret al.,20 where
some new results on the nonexistence of polynomial first integrals of motion based on algebraic
considerations are given.

Both theories, integrability and nonintegrability, are dichotomous in the sense that, if integra-
bility is not proved by the singularity analysis, then nothing can be said about the existence of first
integrals. Nonintegrability, in the same way, is a statement on the nonexistence of at least one first
integral.

However, most of the systems encountered in physics do not fall in the set of completely
integrable or completely nonintegrable systems. Indeed, if a system admits one or two first inte-
grals, then nonintegrability cannot be proved in general. In Sec. V, we show that singularity
analysis can be effectively used to find partially integrable cases. Therefore, it can be applied ton
degrees of freedom Hamiltonian systems where only~n21! first integrals have to be built to
complete the Liouville integrability. These necessary conditions provide a direct and algorithmic
proof of the nonintegrability of these systems.

This paper is divided as follows. In Sec. II, I review the definitions and the relevant works
concerning algebraic integrability for systems of ODEs. In Sec. III, I present a new and general
result relating the degrees of first integrals for homogeneous vector fields with the Kowalevskaya
exponents. In Sec. IV, the main theorems of this paper are presented. It is proved that algebraic
integrability implies that the solutions can be expanded in Puiseux series. Finally, in Sec. V, I
present a new method for finding necessary conditions for partial integrability for nonhomoge-
neous vector fields whose homogeneous part is partially integrable.
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II. ALGEBRAIC INTEGRABILITY

I briefly recall the main general results concerning the existence of first integrals.

A. Definitions and preparations

Consider a system ofn first-order ODEs:

S~ f ;x,t !: ẋ5 f ~x!, ~2.1!

wherexPRn and f i(x) are polynomial functions ofx.
A first integral I5I (x,t) of S( f ;x,t) is a nonconstant function of (x,t) with the property

“I . f1
]I

]t
50. ~2.2!

This relation holds if and only ifI (x,t) is constant along all particular solutionsx5x(t) of S.
Definition 2.1: An algebraic function I(x)5C is a solution of

q01q1C1q2C
21•••1qs21C

s211Cs50, ~2.3!

where qi(x) are rational functions of x, and s is the smallest positive integer for which such a
relation holds. The relation (2.3) is referred to as the minimal polynomial of I.

Let us recall that two first integrals areindependentif there is at least one pointx0PRn such
that their gradients are linearly independent. In the same way,l first integrals areindependentif
there is a pointx0PRn such that

rank„“I 1~x0!,“I 2~x0!,...,“I l~x0!…5 l . ~2.4!

Let us note that ifx05x(t0) is the initial condition, the first integrals remain independent for
all x(t) ~tPR! solutions ofS with initial conditionsx0. Indeed, the gradients of the first integrals
are solutions of a system of linear differential equations, theadjoint variational equations. This
results from a general property of linear differential equations that linearly independent solutions
remain independent under the flow.21

Two different notions of algebraic integrability were alternatively used in the literature. The
weaker definition is an extension of the Hamilton–Jacobi theorem to more general vector fields:

Definition 2.2: The system S is algebraically integrable in the weak sense if there exist k
independent algebraic first integrals Ii(x)5Ki ( i51,...,k). These k first integrals define an(n
2k)-dimensional algebraic variety. In addition, there must exist other(n212k) independent
first integrals given by the integral of a total differential defined on the algebraic variety:

Ji5 (
j51

n2k Exj
f i j ~x!dxj , i51,...,n212k, ~2.5!

wheref i j (x) are algebraic functions of x.
This definition seems to be useless for non-Hamiltonian systems where the existence of a total

differential is nota priori known. However, in some cases such a situation may occur.22 A
classical example is given by the six-dimensional Euler equations for the rigid body motion
around a fixed point where only four first integrals are required to complete the integration, the
fifth one being given by the integral of a total differential~Ref. 23, p. 108!. However, it is
understood that this definition is, in most cases, likely to be applicable to Hamiltonian systems.

The stronger definition of algebraic integrability is equivalent to the weak definition with the
conditionk5n21.
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Definition 2.3: The system S is algebraically integrable if there exist(n21) independent
algebraic first integrals Ii ( i51,...,n).

Still, there exist other definitions of algebraic integrability for Hamiltonian systems: the so-
calledalgebraic complete integrabilityintroduced by Adler and van Moerbeke24 and thehyper-
elliptically separable systemsby Ercolani and Siggia.25 Their definitions cover systems which can
be integrated in terms of Abelian functions. Whereas their approaches are mainly geometric, our
approach is algebraic in the sense that we are mainly interested in showing the existence of
algebraic functions as constants of the motion rather than proving some particular structure for the
complexified phase space.

B. Reduction of algebraic first integrals

The algebraic first integrals can be reduced to rational first integrals. Indeed, we prove that any
algebraic integral is algebraically compounded from weight-homogeneous rational first integrals.
This can be summarized by the following result:

Lemma 2.4: If the system S: ẋ5 f (x) has l(1< l<n21) independent algebraic first integrals,
then there exist l independent rational first integrals.

We now give a short proof of this result:
Proof 2.4: Let I (x)5C be a nontrivial algebraic first integral andP(C)5q01q1C

1•••1qs21C
s211Cs its minimal polynomial. We apply the operatorf .“ on the polynomial:

f .“„P~C!…505~ f .“q01Cf .“q11•••1Cs21f .“qs21!

1~ f .“C!„q11•••1~s21!qs21C
s221sCs21

…. ~2.6!

Using the fact thatI (x)5C is a first integral~f .“C50!, one finds

~ f .“q01Cf .“q11•••1Cs21f .“qs21!50. ~2.7!

This is a polynomial of degree smaller than the minimal polynomialP(C)50, so that we have
f .“qi50, i51,...,s21. The first integralC5I (x) is nontrivial ~different from a constant!, so that
at least one of theqi(x) is nontrivial@if all qi are trivial, so isI (x)#. Thisqi is a nontrivial rational
first integral of the systemS.

Now, consider another independent algebraic first integralI 8(x)5C8. Its minimum polyno-
mial readsP(C8) 5 q08 1 q18C 1 ••• 1 qs821

8 Cs821 1 Cs8. We know from the previous paragraph
that eachqi8 is a first integral. It follows from the independence ofI with I 8 that there exist (i , j )
( i,s21,j,s821) so that the two rational functionsqi andqj8 are nontrivial and independent~if
all rational functionsqi and qi8 are dependent, so are the first integrals!. Therefore, these two
rational functions are independent nontrivial rational first integrals. Proceeding so, we can buildl
independent rational first integrals from thel algebraic first integrals. h

Let us note that this result was already contained in a paper by Bruns~1887!, in a different
setting~see Ref. 26!.

We conclude that the study of algebraic first integrals reduces to the study of rational first
integrals.

C. Elementary first integrals

Is there a special place for algebraic first integrals among other types of first integrals? Why
not study the existence of more complex or peculiar forms of first integrals? The answers to these
questions lie in a result of Prelle and Singer27 ~see also Refs. 28 and 29!. They show that if there
exists anelementary first integral~that is, a first integral built up from rational functions using
exponentiation, integration, and algebraic functions! for a system of first-order ODEs with poly-
nomial vector fields, then it is of the form
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I 0~x!1( ci log I i~x!, ~2.8!

whereI i(x) are algebraic functions.
Therefore, algebraic functions play a special role in the class of elementary functions since all

elementary first integrals can be built out of them. Our interest is to find the relationship between
the existence of first integrals and the local single-valuedness of the solution. It has been shown by
Ishii30 that the appearance of a logarithmic dependence in the first integrals implies, in general,
that the solutions are multivalued in a neighborhood of their singularities. The solutions lie then on
a Riemann surface. The consequence is that the system has no Puiseux expansion with~n21!
arbitrary coefficients around the movable singularities. In other words, infinitely many-valuedness
of a first integral brings infinitely many-valuedness of the solutions. We will therefore focus on the
existence of algebraic first integrals as the first building blocks of elementary first integrals. The
next step is to show that the single-valuedness of first integrals implies the single-valuedness of
the solutions.

D. Scale invariant systems

The construction of a first integral relies on a decomposition of the vector fieldS in homo-
geneous and nonhomogeneous components. In order to build explicitly a first integral we start
from a truncation of the vector field retaining the higher nonlinear terms and then we consider
lower-order corrections. As a consequence, we first focus our study on a particular class of
systemsS which exhibits some particular scaling properties:

Definition 2.5: The system S:ẋ5f~x! is similarity invariant if there exists gPQn such that S is
invariant under the transformation

x→agx, t→a21t ~2.9!

for all aPR0.
We shall refer tog as theweight of S. More generally, a functionF(x,t) is weight-

homogeneouswith respect tog of weighted degree dif

F~a21t,agx!5adF~ t,x!. ~2.10!

As a consequence, a systemS: ẋ5 f (x) is similarity invariant if each componentf i of the
vector field is weight-homogeneous of weightgi11 with respect to the weightg. Weight-
homogeneous functions are the natural generalization of homogeneous functions and most of the
properties of homogeneous functions can be readily translated in terms of weights.

III. ALGEBRAIC INTEGRABILITY FOR HOMOGENEOUS SYSTEMS

A. Yoshida’s analysis

One of the pioneering works in the domain is due to Yoshida.31,32 Using a singularity-
analysis-type method, he was able to derive necessary conditions for algebraic integrability.

Consider a similarity-invariant system~w.r.t. a weight g! S: ẋ5 f (x). The interest of
similarity-invariant systems lies in the existence of particular scale-invariant solutions of the form

x5ct2g, ~3.1!

where the coefficientscPCn are given by the algebraic equation

f ~c!1cg50. ~3.2!
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For a giveng, there may exist different sets of valuesc which will be referred to as different
balances. We now consider one of these solutions and we introduce the matrixK:

K5Df ~c!1diag~g!, ~3.3!

where„Df (c)…i j5(] f i /]xj )(c) is the Jacobian evaluated onx5c.
Here again, the eigensystem of matrixK can be used to build particular solutions to the

variational equations. Let theKowalevskaya exponentsbe the eigenvalues ofK. ~Sophia Kowa-
levskaya was the first to introduce the determinant ofK to compute the Laurent series solutions of
the rigid body motion: ‘‘Afin que les se´ries... contiennent le nombre suffisant de constantes
arbitraires, il faut que le de´terminant de ces e´quations line´aires ...s’e´vanouisse pour cinq valeurs
différentes dem égales a` des nombres entiers positifs.’’33!

It can be shown that there always exists a Kowalevskaya exponentr521 related to the
arbitrariness oft0.

Yoshida’s results are twofold. First, he proves that, under certain conditions, the weighted
degree of a first integral is a Kowalevskaya exponent. Second, he shows that if one of the
Kowalevskaya exponents is not rational, then the system cannot be algebraically integrable.

Theorem 3.1„Yoshida…: Let I(x) be a weight-homogeneous first integral of weighted degree
d for the similarity invariant system S. Assume that“I (c) is not identically zero for at least one
choice of c. Then, d is a Kowalevskaya exponent.

1. Example: A Hamiltonian system

As an example, we study the following three degrees of freedom Hamiltonian system:34

H5 1
2~p1

21p2
21p3

2!1~x1
4116x2

41mx3
4112x1

2x2
2!. ~3.4!

This Hamiltonian system is weight-homogeneous with respect to the weightsg5~1,1,1,2,2,2!
@where (x1 ,x2 ,x3 ,x4 ,x5 ,x6)5(x1 ,x2 ,x3 ,p1 ,p2 ,p3)#. Moreover, it is integrable with second and
third constants of motion given by

C15p3
212mx3

4, ~3.5!

C25x2p1
22x1p1p228x1

2x2
324x1

3x2
2. ~3.6!

The weights ofH, C1, C2 w.r.t. g are, respectively,dh54, d154, d255. The first step of
Yoshida’s analysis consists of finding all the possible dominant balances, that is, the scale-
invariant solutionsxi 5 ci t

2gi. We found 24 different solutions forci . For each dominant balance,
we can compute the Kowalevskaya exponentsr using relation~3.3! and the gradients of the first
integrals estimated on the scale invariant solutionsx5ct2g. As an example, we give three differ-
ent dominant balances in order to illustrate Yoshida’s theorem:

c5S i

&

,0,
i

A2m
,

2 i

&

,0,
2 i

A2m
D , r5$22,21,21,4,4,5%,

“H~c!Þ~0!, “C1~c!Þ~0!, “C2~c!Þ~0!;

c5S 12 , i

2&
,

i

A2m
,2

1

2
,

2 i

2&
,

2 i

A2m
D , r5$22,21,21,2,4,5%,

~3.7!
“H~c!Þ~0!, “C1~c!5~0!, “C2~c!Þ~0!;
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c5S 2
1

2
,

2 i

2&
,0,2

1

2
,

i

2&
,0D , r5$22,21,1,2,4,5%,

“H~c!Þ~0!, “C1~c!5~0!, “C2~c!5~0!.

In the first case, the gradients of the first integrals do not vanish on the scale-invariant
solution. As a consequence,dh , d1, andd2 are Kowalevskaya’s exponents. In the second case,
“C1 vanishes identically andd1 is not a Kowalevskaya exponent, while in the third case only
“H(c) does not vanish.

Although this result was the first bridge between the degrees of first integrals and the singu-
larity analysis, it is not of great predictive power. Indeed, while the Kowalevskaya exponents can
be computed in a finite procedure, the functional form of the first integral is not knowna priori.
Therefore, the first integrals may not satisfy the assumptions. In particular, it does not forbid the
existence of a first integral of higher degree for which“I (c) could vanish identically. We will
come back to this problem in the following sections.

Let us note that the converse statement holds. Indeed, it will be proved in the next section that
“I (c)Þ~0! if and only if d ~the degree ofI w.r.t. to g! is a Kowalevskaya exponent for the
balance under consideration~whered is considered here with the proper algebraic multiplicity!.

Another interesting point is that this result seems to be valid outside the class of algebraic first
integrals. Indeed, Yoshida’s argument does not rely on the fact thatI is an algebraic function but
only on the weight-homogeneity of the vector field and the first integral.

For Hamiltonian systems there is an interesting relation between the Kowalevskaya exponent
which was first pointed out by Yoshida and given in its final form by Lochak:35

Proposition 3.2 (Lochak, 1985): Let S be a system whose Hamiltonian is H. If r is a Kowa-
levskaya exponent for the system S, then so is h212r (where h is the weighted degree of the
Hamiltonian H).

In other words, the Kowalevskaya exponents always come by pairs for Hamiltonian systems.
This is analogous to the linearized eigenvalues at a fixed point~this analogy is more than formal
and can be made rigorous!.

The next statement is the main result of Yoshida, it connects the occurrence of irrational
Kowalevskaya exponents with nonintegrability:

If the systemS is algebraically integrable in the weak sense, then all Kowalevskaya exponents
are rational.

However, despite the fact that this result has been widely applied and frequently verified, this
last statement is not correct as illustrated in the next example due to Kummeret al.:36

H5p1~p1
21x1

2!1vx1~p2
21x2

2!. ~3.8!

It can be easily verified that this system has Kowalevskaya’s exponents:$21,3,162iv% for
the similarity invariant solution (x1 ,x2 ,p1 ,p2)5(21,0,0,0)t21. However, there exists a second
polynomial first integral:

I5p2
21x2

2. ~3.9!

The correct statement of Yoshida’s theorem is only related to the stronger definition of
algebraic integrability:

Theorem 3.3: If the system S is algebraically integrable, then all Kowalevskaya exponents
are rational.

To the best of my knowledge, there is not published proof of this basic result. Therefore, a
proof will be given in Sec. III D as a corollary of a more general result~see Proposition 3.5!.
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Although Yoshida’s statement was not correct in full generality, Yoshida managed to prove it
in a particular case using Ziglin’s theory of nonintegrability.11,12He studied the case ofn degrees
of freedom Hamiltonian systems with diagonal kinetic contribution and homogeneous potential:

H5 1
2~p1

21•••1pn
2!1V~q1 ,...,qn!, ~3.10!

whereV(x) is homogeneous of degreek but kÞ0,62. The Kowalevskaya exponents always come
by pairsr i1r i1n5(k12)/(k22), so that we can define the difference between two exponents of
each pairDr i5r i1n2r i .

Theorem 3.4„Ref. 14…: If the n numbersDri areQ-independent, then the Hamiltonian system
has no additional first integral beside the Hamiltonian itself.

As a corollary, for the case of planar Hamiltonian systems with homogeneous potential, we
obtain the following: If the HamiltonianH5 1

2(p1
21p2

2)1V(x1 ,x2) possesses a second invariant,
then the Kowalevskaya exponents are rational.14

B. The generalized Kowalevskaya exponents

Consider a systemS( f ;x,t), and assume for the time being thatf is weight-homogeneous.
Beside the Kowalevskaya exponent there is yet another set of indices that can be defined, the
so-calledresonancesof the Painleve´ test.1 The Painleve´ test is an algorithmic procedure which
provides necessary conditions for the Painleve´ property. Essentially, the Painleve´ test checks the
formal existence of Laurent series as a solution. Let us recall the main ingredients of the Painleve´
test:

The first step consists in finding all the truncations off̂ of the vector field

ẋ5 f ~x!5 f̂ ~x!1 f̌ ~x! ~3.11!

such that theleading behavior x5a(t2t
*
)p, aPC0

n, is an exact scale-invariant solution of the
homogeneous system

ẋ5 f̂ ~x!, ~3.12!

wherepPQn with at least one negative component.
It is also required thatf̌ (x)5S i f

( i )(x) is not dominant, that is, at the singularity,

f̌ ~ i !~x!„a~ t2t* !p…5g~ i !~ t2t* !p1q~ i !21 ~3.13!

with q( i )PN0
n.

Eachbalance~a,p! defines a different expansion.
The second step is the computation of theresonances. Each balance defines a new set of

resonances. These resonances are the indicesj of the coefficientsaj in the Laurent series at which
arbitrary constants first appear. It is a standard matter to show that these resonances are given by
the eigenvalues of the matrixR:

R5D f̂ ~a!2diag~p! ~3.14!

where againD f̂ (a) is the Jacobian matrix evaluated ina.
The resonances are labeledr i , i51,...,n, with r 1521. The necessary condition for the

existence of the Laurent series, in this set of variables, is that all resonances are integer~r iPZ!.
The third and last step of the Painleve´ test consists of checking that the arbitrariness of the

coefficientar for the full system~3.11! does not introduce incompatible constraints on the coef-
ficientsaj ( j,r ). This is achieved by computing all coefficients in the Laurent expansions up to
the highest resonances.
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We have introduced two set of indices for a given vector fieldf : the resonances of the
Painlevétest and the Kowalevskaya exponents. The main difference is not in the definition of the
exponents~they are both obtained as the eigenvalues of a matrix built on the Jacobian matrix of a
particular solution!, but rather on the choice of the particular solution. Indeed, in the Painleve´ test,
one looks for a particular solution ofS( f (0)) under the formx5a(t2t

*
)p whereaPC0

n while in
Yoshida’s analysis the particular solution ofS( f ) is x5c(t2t

*
)2g with cPCn ~not in C0

n!!. This
rather subtle difference introduces a shift in the exponents that we now make explicit. Let us stress
before proceeding that both sets of exponents have their own interest and they correspond to
different types of analysis. Yoshida’s analysis stresses that the weight of polynomial functions and
the existence of series involving logarithmic terms is not a relevant feature since only the ratio-
nality of the Kowalevskaya exponents comes into play. From the other point of view, the Painleve´
test is designed to test the existence of Laurent series as formal solution. It is common to mistake
both sets. This is why we explained in length these differences.

Consider the systemS( f ;x,t) ~wheref is weight-homogeneous of weightgPQn!. We build a
particular solution of this system using the singularity analysis, that is, a balance~a,p! of order l .
Therefore, there is a truncation of the vector fieldf5 f (0)1 f (1)1•••1 f ( l 8) (1< l 8<n2 l ) and a
particular solution ofS( f (0)):

x5a~ t2t* !p, ~3.15!

where, without loss of generality~i.e., up to a permutation of indices!, we haveai arbitrary for
i5 l11,...,n.

For each balance~a,p!, there corresponds a particular solution ofS( f ) as defined in the
previous section:

x5c~ t2t* !2g ~3.16!

whereci5a i , i51,...,l , andci50, i5 l11,...,n.
Therefore, to a balance of orderl , there corresponds a particular solution withn2 l vanishing

entries. Moreover, from the homogeneity of the vector field, we can deduce the relation
f (c)5 f ~0!~a! and the shift between the dominant exponentsp and the weightsg. Let ni be the
number of nonvanishing components off ( i ), then we have

pj52gj1q~ i !, j5ni2111,...,ni211ni , i50,...,l 8, ~3.17!

with n2150 andq050
In the same way it is possible to build the eigenvalues of the Kowalevskaya matrix~3.3! from

the resonances:

r i5r i for all i such that r iÞ0, ~3.18!

r i5qi with multiplicity ni . ~3.19!

Now, the correspondence~3.18! can be used as a new definition for the Kowalevskaya expo-
nents for nonhomogeneous vector fieldsS( f ;x,t). Let us note that the number of thesegeneralized
Kowalevskaya exponentscan exceed the number of variablesn. Only n of thesem exponents
corresponds to independent arbitrary constants. However, all exponents may be used to test the
existence of homogeneous first integrals.
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C. Necessary conditions for algebraic integrability

Yoshida’s result only concerns complete integrability. However, following the same argu-
ments, his result can be generalized to study partial or nonintegrability. In this section I establish
a fundamental equality between the Kowalevskaya exponents for nonhomogeneous systems and
the existence of first integrals.

Proposition 3.5: If there is l independent algebraic first integrals I1,...,Il of weighted degrees
d1 ,...,dl for a system x˙5 f (x), then there is l independent linear relations:

(
j51

Ni jr j5di , i51,...,l , ~3.20!

with Ni jPZ.
Proof 3.5:According to Lemma 2.4, we considerl independent rational weight-homogeneous

first integrals. The proof is divided into two parts. First, we show that the existence of a commen-
surate relation between the degrees of the first integrals and the Kowalevskaya exponents. Second,
we show that these relations are linearly independent as a consequence of the independence of the
l first integrals.

The similarity invariant solutionx5ct2g is the first term of a formal solution around a
singularity t

*
:

x5~ t2t* !2g(
i j

`

ai1 ...im)j51

m

j j
i j , ~3.21!

wherejj5l j (t2t
*
)r j , theljs are independent arbitrary constants, andr1,..., rm are the positive

Kowalevskaya exponents. The coefficientsai1 ...im are polynomial in log(t2t
*
) and the sumS i j

is
taken over all positivei j .

Now, consider the weight-homogeneous rational first integralI :

I5
(cix

Ei

(djx
F j

~3.22!

with (Ei2F j ).g5d; i , j .
This first integralI can be evaluated onx5x(t2t

*
) as a function of (t2t

*
) by inserting

~3.21! in ~3.22!:

I5~ t2t* !2d(
i j

Ki1 ...im)j51

m

j j
i j , ~3.23!

wherei jPZ;j .
On the lhs of~3.23!, I is an arbitrary constant, therefore, there exists on the rhs of~3.23!, a

combination of the arbitrary constantsli to order (t2t
*
)0, that is, there exists at least one set of

integers$ i 1 ,...,i j% such thatKi1 ,...,im
Þ0 andi 1r11•••1 i mrm5d with i jPZ;j .

We digress at this point to notice that, had we considered apolynomialfirst integral, rather
than a rational first integral, we would have obtained the relationi 1r11•••1 i mrm5d with
i jPN;j .

We now have to prove the independence of the linear relations. To do so, we consider two
first integralsI andI 8 and show that at least two independent linear relationi 1r11•••1 i mrm5d
can be obtained. The result for the independence ofl linear relations naturally follows.

Let us introduce the variables$j1 5 l1(t 2 t* )
r1,..., jm 5 lm(t 2 t* )

rm, jm11 5 lm11(t
2 t* )

rm11,...,jn215 ln21(t2 t* )
rn21, jn5 (t2 t* )

21%.Theconstants$l1 ,...,ln21,t* % arearbi-
trary independent constants. Locally aroundt

*
, the gradient ofI can be written in terms ofji :
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“I5J.S ]I

]j1
,...,

]I

]jn
D ~3.24!

with J215(]j i /]xj ) is the Jacobian matrix. In terms of the variablesji , the first integralsI , I 8
read

I5(
i j

Ki1 ,...,i n)j51

n

j j
i j , ~3.25!

I 85(
i j8

Ki
18 ,...,i n8
8 )

j51

n

j
j

i j8, ~3.26!

where the sum in the first ~resp. second! integral is over all $ i j% such that
i 1r11•••1 i n21rn211drn50 ~resp.d8! and the coefficientsKi1 ,...,i n

PC.
Using the relation~3.24! and the explicit form ofji in terms of (t2t

*
), we obtain the

gradients ofI , I 8:

“I5J.(
i j

L i1 ,...,i n~ i 1~ t2t* !2r1,...,i n~ t2t* !2rn!, ~3.27!

“I 85J.(
i j8

Li
18 ,...,i n8
8 ~ i 18~ t2t* !2r1,...,i n8~ t2t* !2rn!. ~3.28!

Now, the relationa“I1a8“I 850 implies a5a850. Therefore, written in terms ofi j , i j8 ,
there exists at least one pair of vector-integers$( i 1 ,...,i n), (i 18 ,...,i n8)% such thata( i 1 ,...,i n)
1 a8( i 18 ,...,i n8) 5 0⇒a 5 a8 5 0. The proposition follows. h

As a corollary of our general result we obtain Yoshida’s theorem:32

Corollary 3.6: If there exists at least one irrational or imaginary Kowalevskaya exponent, the
system is not algebraically integrable.

Proof 3.6:From the previous proposition, we know that the existence of~n21! first integrals
implies that there exists~n21! relationsNi .r5di , i51,...,n21. Therefore, there exists a matrix
NPGL ~n21, Z!, such thatN.r5d ~r the vector of Kowalevskaya exponents,d the vector of
degrees!. We findr5N21.d which impliesrPQn21. h

Yoshida’s theorem gives necessary conditions for complete integrability. Conversely, we now
find sufficient conditions for complete nonintegrability, that is, the nonexistence of at least one
first integral:

Corollary 3.7: If all Kowalevskaya exponents areZ-independent, then there is no rational first
integral.

Proof 3.7: If r1,..., rn areZ-independent, there is no relationi 1r11•••1 i n21rn215d where
dPQ. h

Corollary 3.8: If all Kowalevskaya exponents areN-independent, then there is no polynomial
first integral.

Proof 3.8: In the demonstration of the proposition we noticed that in the case of polynomial
first integrals, the fundamental relation between the Kowalevskaya exponents and the degrees of
first integrals readsi 1r11•••1 i n21rn215d, but with i jPN;j . The result follows. h

These two last corollaries are equivalent to a recent result given in Ref. 20. Their results are
obtained in a completely different setting and illustrated on many examples.
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IV. ALGEBRAIC INTEGRABILITY FOR NONHOMOGENEOUS SYSTEMS

We found necessary conditions for a homogeneous system to be integrable. The conditions are
simply given in terms of the Kowalevskaya exponents. More precisely, the maximum number of
independent algebraic first integrals is given by the dimension of the vector space spanned by
Kowalevskaya’s exponents over the integers~the positive integers for polynomial first integrals!.
We can go one step further in our analysis. First, we focus on nonhomogeneous systems and we
show that algebraic integrability brings only finite sheeting of the solution. That is, all solutions
can be expanded in Puiseux series. In the first part, we show the absence of the logarithmic terms
in the series expansions if the degrees of the first integrals are related to the Kowalevskaya
exponents. This is reminiscent of the work of Ishii37 for nth-order differential equations. Then, we
show that the hypothesis on the Kowalevskaya exponents can be dropped and obtain the funda-
mental result that algebraic integrability always brings single-valuedness of the expansions.

A. Algebraic integrability and logarithmic branch points: Part I

We consider a systemS( f ;x,t). We have seen in the previous sections that a necessary
condition for algebraic integrability is that the set of all Kowalevskaya exponentsKa5ø i51

n $r i%
is such that

KaPQn, ~4.1!

for all possible balances~a,p!.
Therefore, we assume thatS follows this assumption. Another assumption is required. We

assume that the systemS is completely integrable with~n21! polynomial first integrals. For each
balance~a,p!, the first integralI i has a weighted degreedi . Let the set of weighted degree
Da5ø i51

n $di% be such that

Da5Ka ~4.2!

for all balances~a,p!.
That is, we assume that the degrees of the first integrals can be identified with the Kowa-

levskaya exponents. This assumption also implies that each balance~a,p! is aprincipal balance.
That is, all the Kowalevskaya exponents but one are positive, and all solutions can be expanded in
Puiseux series with exactly~n21! arbitrary constants. This assumption is fundamental for the rest
of the analysis since it allows us to identify the arbitrary constants in the series expansion with the
arbitrary constants of the first integrals:

Theorem 4.1:Let the system S: ẋ5 f (x)PQM(n) be algebraically integrable with Da5Ka;
balances~a,p!. Then, all solutions can be expanded in Puiseux series.

In particular, ifKaPZn, then the Painleve´ test is satisfied in the variables$x,t%. The situation
for which KaPQn corresponds to the weak Painleve´ case.1 Let us already note that the converse
statement is not true in general. They are, indeed, many systems with the Painleve´ property which
are not algebraically integrable~the Painleve´ equations, for instance!. It would be of much interest
to find which extra conditions are required beside the Painleve´ test for algebraic integrability to
hold.

Proof 4.1:Consider the systemS„f (x);x,t… for given dominant balances~a,p! and assume
first that matrixK is diagonalizable with a set of distinct eigenvaluesKaPQn. We have to show
that the series expansions built on the dominant balance do not exhibit logarithmic branching. In
other words, the compatibility conditions are satisfied for all Kowalevskaya’s exponents. For all
positive Kowalevskaya’s exponents, we definehi5sr i wherehiPN ands is the smallest natural
number for which such a relation holds for alli .

We want to show by recurrence that if the compatibility conditions are satisfied up to the
Kowalevskaya exponentr8, then they will be satisfied for the next Kowalevskaya exponentr.r8.
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For the dominant balance~a,p!, there exists a formal series expansion, solutions of
S„f (x);x,t…:

x5~ t2t* !g(
i51

`

ai~ t2t* ! i /s, ~4.3!

whereai5ai„log(t2t
*
)…5(jai j „log(t2t

*
)…j is a polynomial in log(t2t

*
) of degree less than or

equal toi .
If the compatibility conditions are satisfied up tor85h8/s, then the coefficientsai are inde-

pendent of log(t2t
*
):

ai5ai0 ; i,h, ~4.4!

whereh5rs. We have to prove that the existence of a first integralI of degreed5r implies that
ah is also independent of log(t2t

*
).

The most general form ofah is ah5ah01ah1 log(t2t
*
). The recursion relation for the

coefficientai ~i51,..., h21! reads

K.ai05
i

s
ai01Pi0~a10,...,ai21,0!, i51,...,h21, ~4.5!

wherePi0 is polynomial in its arguments and can be obtained by the recursion relation for the
coefficientsai j .

Taking into account the possibility of a logarithmic contribution forah , the recursion relation
gives rise to a linear system forah j , j50, 1:

K.ah05
h

s
ah01Ph~a1 ,...,ah21!1ah1 , ~4.6!

K.ah15
h

s
ah1 . ~4.7!

The general solution of this system is

ah15mbr , ~4.8!

ah05lbr1dr , ~4.9!

wherebrPCn is the eigenvector ofK of eigenvaluer, lPC is an arbitrary constant, anddrPCn is
a constant vector.

The constantm is fixed by the compatibility condition:

m5b̄r .Ph , ~4.10!

whereb̄r is the eigenvector ofKT.
If the compatibility conditions at Kowalevskaya’s exponentr are satisfied, thenm50.
Now, we consider the first integralI (x)5C, whereC is an arbitrary constant andI (x) is a

function in many variables. This first integral is, by definition, constant along all solutions. There-
fore, it is constant on the formal solution~4.3!. We then expand the first integral in powers of
(t2t

*
):

I F ~ t2t* !g( ai~ t2t* ! i /sG5~ t2t* !2d( bi~ t2t* ! i /s, ~4.11!
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whereai and bi are polynomial functions of log(t2t
*
). Now, the integral is constant on any

solution curve. Therefore, one hasbi50; iÞh. To orderO„(t2t
*
)0…, the coefficientbh can be

estimated:

bh5“I ~a0!.ah01 log~ t2t* !“I ~a0!.ah11O„log~ t2t* !2…. ~4.12!

The general form of the coefficientsah0 and ah1 are known from~4.8!. Therefore, a new
arbitrary constantl enters at orderO„(t2t

*
)0…. This constant has to match the arbitrary constant

of the first integral:

l“I ~a0!.br5C. ~4.13!

Now, consider the first logarithmic contribution to the integralI5I (x), that is, the order
O„log(t2t

*
)… of I „x(t2t

*
)…:

m“I ~a0!.br50. ~4.14!

The constantC is arbitrary, therefore one has¹I (a0).brÞ0, and we conclude thatm50 and
that the compatibility conditions for the Kowalevskaya exponentr is satisfied if the compatibility
conditions up to Kowalevskaya’s exponentr are satisfied. Iterating this process up to the last
positive Kowalevskaya exponent, we see that there is no logarithmic contribution, that is, all
solution can be expanded in Puiseux series. h

1. Problems and limitation

We have seen in this section that algebraic integrability is closely related to the absence of
logarithmic points in the complex plane. This is a first step to a general relationship between
integrability and singularity analysis. There is, however, a limitation in this method in the assump-
tion on the degrees of first integrals, they should be related to the resonances of the system. If the
degreed is not an eigenvalue ofK, then from relation~4.13! with C50, we have

“I ~a0!5~0!, ~4.15!

that is, the gradient of the first integral whose degree is not a Kowalevskaya exponent vanishes
identically, and nothing can be said about the existence of logarithmic singularities in the complex
plane.

This is the main difficulty of the method. For instance, suppose that there exists an irreducible
first integral of degreed.rmax, what can be said about the series expansions? Our proof relies
heavily on the fact that“I (a0)Þ~0!, therefore in the case the gradient vanishes identically, no
information can be found. Can we prove that such integrals do not exist, that is, ifKaPQn, then
one always hasDa5Ka?

We now overcome this difficulty by deriving necessary conditions for integrability of nonho-
mogeneous vector fields independently of the degree of the first integrals.

B. Algebraic integrability and logarithmic branch points: Part II

In the last section we proved that if the degrees of the first integrals are identical to the
Kowalevskaya exponents, then algebraic integrability brings the single-valuedness of the solution.
We now show that this result can be generalized in the sense that the assumption on the reso-
nances can be dropped. Indeed, the key of the former proof is that the first logarithmic contribution
to the first integral is given in terms of the gradient of the first integral around the particular
solutionx5a0t

2g. Therefore, the first integrals whose gradient vanishes on this particular solution
cannot be used to prove single-valuedness.
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We now extend the former result by considering variations around the general solution. We
only retain from the previous assumptions that all balances are principal, that is, for each balance
there exists~n21! positive Kowalevskaya exponents: LetKa5$r1,..., rn21, 21% be the set of
Kowalevskaya’s exponents for the balance~a,g!. Then, for all balances~a,g!,

r i.0 ;r iPKa , i51,...,n21. ~4.16!

Theorem 4.2:Assume that the system S: ẋ5 f (x) has only principal balances and is algebraic
integrable with~n21! first integrals I1 ,...,I n21. Then, all solutions can be expanded in Puiseux
series.

Proof 4.2:Under the assumptions, there exists a formal expansion of the solution around a
movable singularityt

*
of the form:

x5(
i51

`

xiZ
i , ~4.17!

Z5 log~ t2t* !, ~4.18!

xi5~ t2t* !p(
j51

`

ai j ~ t2t* ! j /s[~ t2t* !pC i , ~4.19!

wherepPQn andsPN.
We consider a first integralI . It is constant on all solutions. Therefore, one has

I „x~ t2t* !…5C5~ t2t* !2d@ I ~C0!1Z“I ~C0!.C11O~Z2!#. ~4.20!

SinceI is constant, we obtain to ordersO(Z0), O(Z1):

~ t2t* !2dI ~C0!5C, ~4.21!

“I ~C0!.C150. ~4.22!

These relations hold for all first integralsI i :

~ t2t* !2di I i~C0!5Ci , i51,...,n21, ~4.23!

¹ i~C0!.C150, i51,...,n21. ~4.24!

We conclude from the first expression that the arbitrary constantsCi5Ci(l1 ,...,ln21) are
polynomial in the arbitrary constants~l1,...,ln21! appearing in the seriesC0. The second expres-
sion implies thatC1 is proportional toC0:

C15K~ t !C0 , ~4.25!

whereK(t) is analytic int.
The seriesC1 can be locally expanded aroundt

*
:

C15mp~ t2t* !q1O„~ t2t* !q11
…, ~4.26!

where qPN and mPC is an arbitrary constant andp is the leading exponent of
x05c(t2t

*
)p~11O„(t2t

*
)…!.

From the other point of view, we know from the local analysis@see Eq.~4.8!# that

C15mbr~ t2t* !r1O„~ t2t* !r11
…, ~4.27!
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wherer is the first Kowalevskaya exponent at which the compatibility conditions are not identi-
cally satisfied andm is a constant fixed by the compatibility conditions;br is the eigenvector ofK
of eigenvaluer.

Therefore, we have that eitherm50 or p5br , which is not possible since we know that
p.br50 for all positive Kowalevskaya exponents. We conclude thatm50 andC150.

Now, if C150, we obtain to orderO(Z2)

“I ~C0!.C250, ~4.28!

and the same conclusions apply toC2.
Iterating this process, we conclude thatC i50; i.0, that is, the solution can be expanded in

Puiseux series. h

1. Example: The Lorenz system

As an example, we consider the famous Lorenz system38 which has been thoroughly investi-
gated as a dynamical system39 and eventually became a paradigmatic system for integrability
theories.2,3,5,7,9,40,41From the singularity analysis point of view, it was first studied by Segur42 and
more recently in Ref. 43. The system reads

ẋ5s~y2x!, ~4.29!

ẏ5rx2y2xz, ~4.30!

ż5xy2bz, ~4.31!

~4.32!

wherex,y,z, s, b, rPR.
The Lorenz system has only principal balances withc5(2i ,22i /s,22/s) and g5~1,1,2!.

The resonance set isK15$21,2,4%.
There is one set of parameters values for which the system has two first integrals, namely

$b,s,r%5$1,12,0% with first integrals

I 15~x222sz!et, ~4.33!

I 25~y21z2!e2t, ~4.34!

and the solutions can be expressed in terms of Jacobi elliptic functions.
In addition, there exist two set of values for which the system satisfies the Painleve´ test:

$b,s,r%5$1,2,19% with one time-dependent integral

I 35~x222sz!e2st, ~4.35!

and $b,s,r%5$0,13,r% with the time-dependent integral

I 45~2rx21 1
3y

21 2
3xy1x2z2 3

4x
4!e~4/3!t. ~4.36!

For all other values of the parameters the system does not satisfy the Painleve´ test and we
conclude, using Theorem 3.2:

Proposition 4.3: If$b,s,r%Þ$1,12,0%, the Lorenz system is not algebraically integrable (with
two first integrals).
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2. A conjecture

We have seen that the existence of a complete set of first integrals and only principal balances
constrains the system so that it must have the weak Painleve´ property. Two questions are in order:
Can we relax the conditions on the balances? Are these conditions also sufficient? In Ref. 25 it
was suggested that it is indeed the case. Our conjecture reads then

If a system of ODEs with polynomial vector fields is algebraically integrable, then it enjoys
the weak Painleve´ property.

To date, among all known examples and to the best of my knowledge, there is no counterex-
ample to this conjecture.

V. PARTIAL INTEGRABILITY

A. A natural arbitrary small parameter

We consider a nonhomogeneous system

S: ẋ5 f ~x!, xPKn, ~5.1!

where f i are rational functions ofx overK, a field of constants~typically K5C or K5R!.
The problem is to find necessary conditions for the existence of first integrals. The theory we

developed in the previous sections is only applicable for complete algebraic integrability. As a
consequence, it cannot be directly applied to Hamiltonian systems, since for most of the Liouville
integrable systems only half of the constants of motion are algebraic.

From the other point of view, the integrability conditions related to the Kowaleskaya expo-
nents are based on similarity-invariant systems. However, most of the systems do not exhibit such
a scaling property. Indeed, as soon as dissipation or damping is included under the form of linear
terms, the system will lose the scale invariance. Nevertheless, similarity-invariant systems are the
first-order systems in a perturbation expansion based on the scale invariance. With this idea in
mind we can decompose the problem of finding necessary conditions for the existence ofl first
integrals~l,n21! into two parts.

The first part of the analysis consists of finding conditions for the existence ofl first integrals
of all weight-homogeneous parts of the vector field. According to the weightg, the vector field
can be truncated so that

f ~x!5 f ~0!~x!1•••1 f ~m!~x!, ~5.2!

f ~ i !~a2gx!5a2g211 i f ~ i !~x!. ~5.3!

The leading weight-homogeneous systemẋ5 f (0)(x) is scale invariant under the symmetry
~x→agx, t→a21t!. According to this scaling symmetry, any first integral can be decomposed
into a finite sum of weight-homogeneous components:

I ~x,t !5I ~0!~x!1eI ~1!~x,t !1••• , ~5.4!

I ~ i !~agx!5ad1 i I ~ i !~x!, ~5.5!

wheree51/a.
The following lemma shows that a necessary condition for the existence of a first integral for

a vector field is given by the existence of a first integral for its similarity invariant part.
Lemma 5.1: Let I(x,t) be a first integral of x˙5 f (x,t). Then, I(0)(x) is a first integral of

ẋ5 f (0)(x).
Proof 5.1:The condition forI (x,t) to be a first integral reads

05“I . f1] tI5“I ~0!. f ~0!1e~“I ~0!. f ~1!1“I ~1!. f ~0!1] tI
~1!!1O~e2!. ~5.6!
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This expansion is valid for arbitrarye, indeede is an arbitrary parameter and can assume any
value. Therefore, in the limite→0, one finds 05“I (0). f (0). h

Let us stress again thate is an arbitrary parameter that can assume any value and does not
have to be small. Therefore, our method does not rely on the smallness ofe. If there is a small
parameter in the system a perturbation expansion can be performed~see, for instance, Ref. 44!.

The second part of the analysis is based on the existence of first integrals for the similarity
invariant part. Assuming that such first integrals exist, we derive necessary conditions for the
existence of first integrals for the nonhomogeneous contributions.
Our strategy is the following:

~1! Find necessary conditions for the existence ofl (0, l,n) first integrals of the weight-
homogeneous vector fieldẋ5 f (0).

~2! Build the l first integrals,I i
(0) ( i51,...,l ).

~3! Find necessary conditions for the existence ofl 8 ( l 8< l ) first integrals for the nonhomo-
geneous systems.

~4! Build the l 8 first integralsFi ( i51,...,l 8). EachFi is of the form

F5F ~0!~x!1eF ~1!~x,t !1••• , ~5.7!

F ~0!5P~ I 1
~0! ,...,I l

~0!!, ~5.8!

whereP is a rational, weight-homogeneous function.
The scaling symmetry is interesting in many respects. By contrast to the linear perturbation

theory, starting from the lower linear terms of the systems and building higher-order corrections
valid in the neighborhood of the fixed point, our nonlinear perturbation theory starts from the
highest nonlinear terms and consider lower-orders perturbation. It allows us to build integrable
corrections valid everywhere and for all values of the parameters.

B. Necessary conditions for partial integrability

Here we assume that the analysis has already been performed on the weight-homogeneous
components of the vector fields and the explicit form of the first integrals are known. Therefore,
we study the persistence of the first integrals, or homogeneous combinations of first integrals,
when lower nonlinearities are added to the system.

We consider again the nonhomogeneous system

S: ẋ5 f ~x!. ~5.9!

For this system, there may exist different truncations, that is, different weightsg decomposing
the vector field, according to the scaling~x→agx, t→a21t!, in dominant and nondominant parts.
We consider all such vectorsg and assume that each weight-homogeneous component admits the
maximum number of possible first integrals. For a given vectorg, we have a truncation of the
vector field~5.2!, so thatI i5I i(x) ( i51,...,l ) is a set of independent first integrals for the system
ẋ5 f (0)(x). Each first integral has a given weighted degreehi w.r.t. the weightg:

I i~agx!5ahi I i~x!. ~5.10!

We are interested in the existence of first integrals for the complete system. The most general
form the first integrals can assume is given by

F~x,t !5F ~0!~x!1eF ~1!~x,t !1e2F ~2!~x,t !1••• , ~5.11!

where by constructionF ~0! is built on the first integralsI i :
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F ~0!5P~ I 1 ,...,I l !, ~5.12!

whereP is weight-homogeneous w.r.t. the scaling (I i→ehi I i).
Let us recall that two different first integralsF1 andF2 are independent iff“F1

~0! and“F2
~0! are

linearly independent. Now, we derive necessary conditions for the existence ofF.
First, we note that there is a series expansion involvingl free constants~corresponding to the

l free arbitrary constants! and we compute the followingc2e expansion:44

x5x01ex11e2x21••• , ~5.13!

xi5 (
j50

i2k11

si j @ log~ t2t* !# j , ~5.14!

wheresi jPC„~t2t
*
!… are convergent Laurent series with finite principal parts andk is the first

order ine where logarithmic corrections are required, so thatx reads

x5s001es101e2s201•••1ek„sk01sk1 log~ t2t* !…1O~ek11!. ~5.15!

Second, assuming there exists a first integral, we expandF(x) aroundx0 :

F~x,t !5F~x0!1e„“F ~0!~x0!.x11F ~1!~x0 ,t !…1e2„“F ~0!~x0!.x2

1“F ~1!~x0 ,t !.x11¹2F ~0!~x0!:x1x11F ~2!~x0 ,t !…1O~e3!. ~5.16!

Note thatF(x,t) is constant along all solution curves and the parametere is a scaling param-
eter which assume arbitrary values. As a consequence, each order ine is constant in time. In
particular, there is no logarithmic dependence and we obtain the following.

Lemma 5.2: Assume there exists a first integral F(x,t)5F (0)(x)1eF (1)(x,t)1••• for the
system S. Then the following identity holds:

“F ~0!.sk150. ~5.17!

Proof 5.2: Inserting the expansion ofx in terms ofsi j in ~5.16!, we obtain

F~x,t !5F ~0!~s00!1e„“F ~0!~s00!.s101F ~1!~s00,t !…1•••

1ek~“F ~0!~s00!.„sk01 log~ t2t* !sk11...…!1O~ek11!. ~5.18!

The coefficients ofe are constant at each order and the first logarithmic correction enters to
orderO(ek). Hence, we obtain

“F ~0!.sk150. ~5.19!
h

There is yet another instructive way to complete this result. To do so, we consider a system
S: ẋ5 f (x) and assume it has a first integralI (x,t). Let x̂5 x̂(t) be a solution ofS and introduce
the variational equation,

v̇5Df ~ x̂!.v, ~5.20!

whereDf ( x̂) is the Jacobian matrix estimated on the solutionx̂.
Lemma 5.3 (Poincare´): Let I5I (x) be a first integral of S and let v be any solution of the

variational equation. Then,

“I ~ x̂!.v5C, ~5.21!
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where C is a constant.
Now, considerF ~0!, a first integral ofẋ5 f (0)(x). The solutions00 is a local convergent

Laurent series around the singularityt
*
, andsk1 is, by construction, a solution of

v̇5Df ~s00!.v. ~5.22!

Therefore, using Poincare´’s lemma, we obtain“F (0).sk15C. Inserting this result in~5.18!
and asking the log contribution to vanish identically at each order ine, we obtain Lemma 5.2.

The point of this lemma is to provide a necessary condition forF ~0! to be the homogeneous
part of the nonhomogeneous first integralF(x,t). However, the functional form ofF ~0! is not
known except for the fact that it is built out of the first integralsI i ( i51,...,l ).

Now, consider thel first integralsI i5I i(x) ( i51,...,l ). For each first integral, we define the
conditions

ci5“I i
~0!~s00!.sk1 . ~5.23!

If there existl first integrals for the systemS, they are built on the first integralsI i , and the
existence condition for these first integrals depends on the conditionsci :

Proposition 5.4: Assume there exist l independent analytic first integrals Ii5I i(x) for the
similarity invariant system S0 : ẋ5 f (0)(x). Then, a necessary condition for the existence of l
independent analytic first integrals for x˙5 f (x) is c15c25•••5cl50.

Proof 5.4:Suppose that there existl independent first integralsFi for S. Let F be any of such
integral. According to Lemma 5.3, for each integral we have

“F ~0!~s00!.sk150. ~5.24!

As already explained,F ~0! is weight-homogeneous inI j so that

“F ~0!~s00!5(
j51

l

Ai j“I j
~0!~s00! ~5.25!

with APGL~l ,C!, owing to the independence of the first integrals and the fact that the seriess00
depends onl free parameters.

Therefore the integrability condition reads

(
j51

l

Ai j“I j
~0!~s00!.sk15(

j51

l

Ai j cj50. ~5.26!

SinceAPGL~l ,C!, we haveci50; i51,...,l . h

1. A first example

As a first example, we consider the following three degrees of freedom Hamiltonian:45

H5 1
2~p1

21p2
21p3

2!1 1
4~x1

41x2
41x3

4!1e~m1x2x31m2x3x11m3x1x2!, ~5.27!

wheremiÞ0, i51,2,3
For e50, the system is integrable with three obvious constants of motion, the Hamiltonians of

the decoupled systems

I i
~0!52pi

21xi
4, i51,2,3, ~5.28!

and the solutions can be expanded in Laurent seriess5(x1 ,x2 ,x3 ,p1 ,p2 ,p3):
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s005~ t2t* !p(
i50

`

ai~ t2t* ! i , ~5.29!

where p5~21,21,21,22,22,22!, aiPC6, and a4 is arbitrary ~resonance
rPK15$21,21,21,4,4,4%!.

The series expansion for the perturbed problem can be readily computed:

x5s001es101e2„s201s21 log~ t2t* !…1O~e3!, ~5.30!

wheresi jPC6 „~t2t
*
!….

The first logarithmic contribution enters to orderO~e2!. The integrability conditions read

ci5“I i
~0! .s21, i51,2,3. ~5.31!

The conditionsc15c25c350 gives then

2m2m32m1m32m1m250, ~5.32!

2m2m312m1m32m1m250, ~5.33!

2m2m32m1m312m1m250. ~5.34!

As a consequence, ifm iÞm j , iÞ j , the Hamiltonian is not Liouville integrable, that is there
exists at most another constant of motion beside the Hamiltonian. In Ref. 45, it was shown that the
Hamiltonian~5.27! for m150, m25m351, does not possess a second constant of motion.

2. Another example

The second example is also a three degrees of freedom Hamiltonian:34

H5 1
2~p1

21p2
21p3

2!1~x1x3
21x2x3

2!1e~m1x1
21m2x2

21m3x3
2!, ~5.35!

wheremiÞ0, i51,2,3.
We first consider the unperturbed system~e50!. Is the system Liouville integrable? By in-

spection or using direct methods, a second constant of motion is easily found:

I5p12p2 . ~5.36!

A third constant of motion is lacking to complete the integration:
Lemma 5.5: The Hamiltonian system H5 1

2(p1
21p2

21p3
2)1(x1x3

21x2x3
2) is not Liouville in-

tegrable.
Proof 5.5: We compute the Kowalevskaya exponents for the scale-invariant solution

(x1 ,x2 ,x3 ,p1 ,p2 ,p3)523t23(t/2,t/2,2t,21,21,22): r P $ 2 1,2,3,6,(56 iA23)/2%. The oc-
currence of irrational Kowalevskaya exponents are incompatible with Liouville integrability for
potential with diagonal kinetic part~see Theorem 3.4!. h

Now, we consider the full system~5.35!, and build thec–e expansion up to orderO~e!:

x5s001e„s101s11 log~ t2t* !…1O~e2!, ~5.37!

wherex5(x1 ,x2 ,x3 ,p1 ,p2 ,p3) ands00,s10 are Laurent series. The seriess11 reads

s1152 3
4~m12m2!~1,21,0,0,0,0!1O„~ t2t* !2…. ~5.38!
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The conditions 05“H.s11 and 05“I .s11 lead tom15m2. In this case the second constant of
motion is found to be

I5~p1
21m1x1

2!1~p2
21m1x2

2!22~p1p21m1x1x2!. ~5.39!

We have proved the following.
Proposition 5.6: The Hamiltonian system (5.35) does not have a second constant of motion

unlessm15m2.

VI. CONCLUSIONS

This paper studies the relationship between the singularity analysis and the algebraic integra-
bility. We first considered weight-homogeneous systems and showed that there exists a funda-
mental relationship between the Kowalevskaya exponents and the degrees of the first integrals. We
concluded from this relation that the number of first integrals is equal or less than the dimension
of the vector space spanned by the Kowalevskaya exponents over the integers. I believe that this
relationship, although restricted, is the most complete information one can hope to obtain by using
only the Kowalevskaya exponents. In order to obtain more information on the integrability, or lack
thereof, of a system, one has to take into account the specific structure of logarithmic or algebraic
branch points. As a corollary, we proved the well-known Yoshida’s statement: a necessary con-
dition for complete algebraic integrability is that all Kowalevskaya exponents be rational. A
second important result concerns completely algebraically integrable system. We proved that if all
balances are principal@i.e., ~n21! positive resonances#, then algebraic integrability implies that all
solutions can be expanded in Puiseux series. Moreover, I believe that the assumption that all
balances are principal can actually be removed. The third main result of this paper concerns partial
integrability. Partial integrability seems the most common feature of dynamical systems emerging
from physical model; indeed often by symmetry or conservation laws, a few constants of the
motion exist. Assuming that the weight-homogeneous part of the vector field is algebraically
integrable, we derived necessary conditions for the existence of first integrals based on the non-
existence of logarithmic branch points. This result can be used, for instance, to show that first
integrals disappear in the presence of linear dissipative terms.

I hope that these three aspects put together will give a general picture of the type of informa-
tion concerning integrability one can hope to obtain using singularity analysis. It also provides
direct algorithmic methods to answer such questions.
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For many completely integrable partial differential equations~PDEs! the singular
manifold method of Weiss allows the recovery of the Lax pair and Darboux trans-
formation ~DT!, and so also the Ba¨cklund transformation, from a truncated Pain-
levé expansion. Recently the so-called ‘‘two-singular manifold method’’ has been
proposed in order to handle PDEs such as the modified Korteweg–de Vries
~MKdV ! equation. Here we present a more natural extension of the Weiss singular
manifold method which makes use of only one singular manifold but is capable of
dealing with such PDEs. In this approach we allow the possibility that the DT
might in fact correspond to an infinite Painleve´ expansion, for a certain choice of
the arbitrary coefficients. This then leads us to a new and more consistent definition
of ‘‘singular manifold equation’’~SME!; this can give SMEs different from those
usually presented. The summation of infinite Painleve´ expansions is effected by
seeking a truncation in a new Riccati variableZ. The use of this variable greatly
simplifies the recovery of Lax pairs from Painleve´ analysis. Practical and theoreti-
cal aspects of our approach are illustrated using MKdV as an example. The results
of this analysis are confirmed by the consideration of fifth-order MKdV. We then
make a further extension of this method which allows it to be applied to a PDE in
211 dimensions, and so simultaneously to reductions of the latter to PDEs in 111
dimensions. A corollary of our analysis is a direct proof of the convergence of
infinite WTC expansions for a certain choice of the arbitrary coefficients therein. In
addition, the approach developed here allows us to place within the context of
Painlevéanalysis a larger class of exact solutions than was possible hitherto. Again,
our analysis greatly simplifies the recovery of such solutions. ©1996 American
Institute of Physics.@S0022-2488~96!01404-9#

I. INTRODUCTION: PAINLEVÉ ANALYSIS AND TRUNCATION

A. The Painlevé test

The now well-known connection between complete integrability and the Painleve´ property
was first remarked upon by Ablowitz and Segur,1 who observed that similarity reductions of
nonlinear partial differential equations~PDEs! solvable by an Inverse Scattering Transform give
rise to nonlinear ordinary differential equations~ODEs! whose only movable singularities are
poles. Here ‘‘movable’’ means that the location of the singularity depends upon constants of
integration. Having only poles as movable singularities is a special case of the property required
of an ODE by Painleve´2,3—i.e., that the general solution of the ODE should have no movable
branched singularities—in his search for ODEs defining new functions. The precise nature of this
connection between complete integrability and the Painleve´ property continues to be the subject of
much intensive research.

Ablowitz, Ramani, and Segur4,5 developed an algorithm, based on the work of
Kowalevskaya,6,7 to give necessary conditions for an ODE to have the Painleve´ property. This was
later extended by Weiss, Tabor, and Carnevale~WTC!8 so as to be applicable directly to PDEs.

a!Current address: Institute of Mathematics and Statistics, University of Kent at Canterbury, Canterbury, Kent, CT2 7NF,
United Kingdom.
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The WTC test involves seeking a solution of the PDE, for example an equation inU(x,t),

E@U#50, ~1!

as an expansion of the form

U5wp(
j50

`

Uj
ww j , ~2!

where eachUj
w is a function ofx and t, andw(x,t)50 defines an arbitrary noncharacteristic9

movable singular manifold. Here the superscriptw on the coefficientUj
w denotes the expansion

variable.
This analysis requires first a choice of expansion family, i.e., a choice of leading order

exponentp ~here assumed negative!, leading order coefficientU0
w , and dominant termsÊ[U]. For

each family there is a set of indices$ j 1 ,...,j N% which give the values ofj for which arbitrary data
should be introduced in~2!. Bearing in mind also more recent extensions of the Painleve´ test,10,11

we have the following necessary conditions for the PDE~1! to have the Painleve´ property: for any
family which represents either the general or a particular solutionp must be integer; the indices
must be distinct integers; and all compatibility conditions corresponding to each index must be
satisfied. This test has proved to be an extremely effective tool in testing PDEs for complete
integrability.

However, the WTC approach has also been of use in providing a constructive proof of
integrability. It was shown8,12 that from a truncated expansionUT ,

UT5wp(
j50

2p

U j
ww j , ~3!

it is possible to obtain the Lax pairs of many integrable PDEs. The singular manifold method of
Weiss,12 later phrased algorithmically by Musette and Conte,13 can also give the Darboux trans-
formation ~DT!—and so together with the Lax pair the Ba¨cklund transformation~BT!—for the
PDE. This singular manifold method involves seeking a constraint onw, the so-called ‘‘singular
manifold equation’’~SME!, for the truncation of the WTC expansion at constant level~3! to exist.

We later give a new definition of ‘‘singular manifold equation.’’ For now we simply remark
that ~3! represents the trivial~because finite! summation of~2! for certain choices of the arbitrary
coefficients, and withw subject to the SME. In particular, all arbitrary coefficients of positive
powers ofw in ~2! have been set equal to zero.

B. The invariant Painleve ´ analysis

Conte14 introduced an expansion variablex given in terms of the singular manifoldw by

x5S wx

w
2

wxx

2wx
D 21

, ~4!

such that the coefficientsUj
x of the resulting expansion

U5xp(
j50

`

Uj
xx j ~5!

are invariant under arbitrary homographic transformations onw. This functionx satisfies the
Riccati system
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xx511 1
2Sx2, ~6!

x t52C1Cxx2 1
2~Cxx1CS!x2, ~7!

whereS, the Schwarzian derivative ofw, andC are given by

S5$w;x%5S wxx

wx
D
x

2
1

2 S wxx

wx
D 2, C52

w t

wx
. ~8!

The cross-derivative condition on~6!, ~7! is

St1Cxxx12SCx1SxC50 ~9!

which is identically satisfied in terms ofw.
The Painleve´ expansion~5! is a resummation the WTC expansion~2!; transformation formu-

lae between the coefficientsUj
w andUj

x are given in Ref. 14. The advantage of the invariant
analysis is that the expressions for the coefficients of the expansion are greatly shortened.

The truncated WTC expansion~3! can then be rewritten as

UT5xp(
j50

2p

U j
xx j . ~10!

Musette and Conte13 showed that~second- and third-order! Lax pairs can be recovered algorith-
mically when~10! corresponds to a DT of the form

UT5D log c1u, ~11!

whereD is the singular part operator15 andu is a second solution of the PDE.
This is done by expressingx212cx/c, S andC in terms of three functionsY1 ,Y2 ,Y3 :

x212
cx

c
52 1

2Y1 , S5Y1,x2
1
2Y1

212Y2 , C52Y3 . ~12!

In the case of a second-order Lax pairY150, and the Lax pair is obtained simply as the linear-
ization of the Riccati system~6!, ~7! via x215cx/c :

cxx52 1
2Sc, ~13!

c t52Ccx1
1
2Cxc. ~14!

In the case of a third-order Lax pairY3 is defined in terms ofY1, and the Lax pair is obtained by
identifying it with the resulting projective Riccati system inY1 ,Y2 . Details may be found in Ref.
13.

C. Higher order truncation and a new expansion variable

It was noticed in Ref. 16 that a further advantage of using an expansion variable satisfying a
system of Riccati equations is that it allows the possibility of truncating at a positive power. This
was used to extend the class of exact solutions that it is possible to obtain from a truncated
Painlevéexpansion, as follows. WhenS andC are constant,

S52 1
2k

2, C5c, ~15!

the general solution of the Riccati system~6!, ~7! is
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x215
k

2
tanhS 12 k~x2ct1a! D , ~16!

a being an arbitrary constant.
In the case of a higher order truncation withS andC constant, simple trigonometric identities

allow us to identify negative and positive powers ofx as16

x215
k

2
~t02s0!, ~17!

x5
2

k
~t01s0!, ~18!

where

t0[tanh„k~x2ct1b!…, s0[ i sech„k~x2ct1b!…, b5a1
ip

2k
. ~19!

Clearly,

t0
25s0

211. ~20!

We recall that such higher order truncations correspond to the summation of infinite WTC
expansions for certain choices of arbitrary data.16

Using this higher order truncation we can recover the one-soliton solution of the modified
Korteweg–de Vries~MKdV ! equation.16 The recovery of this soliton solution is important for the
following reason:

If a (truncated) Painleve´ expansion is to lead to the Lax pair and Darboux transformation
for a given PDE then a necessary condition is that it can be made to yield the one-soliton
solution.

However in order to obtain the Lax pair for MKdV using this higher order truncation a further
extension needs to be made: a more general Riccati system than~6!, ~7! has to be used. In Refs.
17 and 18 the Riccati system

Yx5R01R1Y1R2Y
2, ~21!

Yt5S01S1Y1S2Y
2, ~22!

having three cross-derivative conditions, was introduced. This is the so-called ‘‘two-singular
manifold method,’’ and it allowed the recovery of the BTs for the MKdV and sine-Gordon~s-G!
equations~in fact the BT for s-G can be recovered using the standard singular manifold method—
see the Appendix!. In Ref. 19 these results were extended to the scalar Broer–Kaup~BK!
equation.20–22 We noted in Ref. 19 that this approach has the advantages over other
approaches23,24 that a single expansion variableY is used, coefficients ofY in the resulting
expansion of the PDE are set to zero independently, and the spectral parameter is introduced by
the process of solving the resulting determining equations. These points remain true for the new
Riccati variable introduced in Sec. II.
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D. Questions and remarks

We now make the following remarks on the Riccati system~21!, ~22!, when compared to~6!,
~7!:

• No relationship is given betweenY and the WTC singular manifoldw. Is there a correspond-
ing WTC expansion? If so, what is its relationship to the DT obtained? Is there a correspond-
ing singular manifold equation?

• When solving the system of determining equations we are left with some gauge freedom in
the Riccati variableY which means that a new Riccati variable—e.g.,lY/R0 for
MKdV18—has to be introduced in order to remove this freedom. Similar remarks hold for
BK19 ~s-G is discussed in the Appendix!. Can we introduce a Riccati variable for which this
gauge freedom is absent?

• Is it necessary to obtain the DT in advance?

• In Ref. 25 the recovery of solutions polynomial in two functionss, t was considered. These
functions depend on a parameterm such that whenm50, s5s0, andt5t0 given by ~19!.
Thus far only this subclass of solutions polynomial ins0 andt0 has been placed within the
context of Painleve´ analysis; is it possible to remove this restrictionm50 and obtain the full
class of solutions polynomial ins andt from Painleve´ analysis, i.e., from a Painleve´ expan-
sion in asinglevariable?

It is these questions that we address in the following sections. This we do by introducing a
much simpler Riccati system, one which arises in quite a natural way. We explore the practical
and theoretical implications of our analysis using MKdV as an example. The results obtained for
MKdV are then corroborated by an application of this analysis to the fifth order modified
Korteweg–de Vries~MKdV5! equation. The techniques developed here are then further extended
and applied to a PDE in 211 dimensions. We will also see how our approach allows us to place
the full class of solutions polynomial ins andt within the context of Painleve´ analysis.

II. A NEW RICCATI VARIABLE

A. A new Riccati variable: motivation

The Riccati system~6!, ~7! linearizes onto the system~13!, ~14! via x215cx/c. A natural way
therefore to construct a more general Riccati system is to consider the nonlinearization of the most
general second-order scalar linear system given by

hxx5Ahx1Bh, ~23!

h t52Chx1S Ex

D dx8 Dh. ~24!

We note that Lax pairs having a spatial part of the form~23! have been discussed for example in
Ref. 26. The sign ofC and integration ofD in ~24! are chosen for convenience.

The corresponding Riccati system, obtained viaZ215hx/h, is

Zx512AZ2BZ2, ~25!

Zt52C1~AC1Cx!Z2~D2BC!Z2, ~26!

which has as cross-derivative condition

~Zx! t2~Zt!x[x1Z1x2Z
250, ~27!
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where

2x1[At1~AC!x1Cxx22D50, ~28!

2x2[Bt2Dx12BCx1BxC1AD50. ~29!

The integration ofD is performed in~24! since the coefficient ofh in ~24! appears in Eqs.
~25!–~29! by its x-derivative only, and it is only these equations that we will use in seeking a
truncated expansion inZ.

Remarks:
We could, by solving~28! for D, consider a Riccati system with coefficients depending on three
functionsA,B,C instead of four, and having one cross-derivative condition instead of two. How-
ever in practice it is easier to use the above system together with the two cross-derivative condi-
tions ~28!, ~29!.

ForA50 this system reduces to that previously considered, with the identificationB52S/2,
C5C.

An objection that might be raised immediately to the above approach is that it is possible to
setA50 in ~25!, ~26! by a simple gauge transformation, and so this system is in fact equivalent to
the system~6!, ~7!. We shall see that whereas it is true that such a gauge transformation exists,
truncations inZ can give more information than truncations inx.

This gauge transformation is

Z215x211 1
2A, ~30!

and leads to a system of the form~6!, ~7!, with C5C andS being given by

2 1
2S5B1 1

4A
22 1

2Ax , ~31!

where we have used~28! to solve forD. The corresponding transformation between~23!, ~24! and
~13!, ~14! is of course

h5~e~1/2!*xA dx8!c. ~32!

However the equivalence of these two Riccati systems does not mean that consideration of the
Riccati system~25!, ~26! is useless. Consider a truncated expansion of the form16

UT5U0,1
Z log Z1Zp (

j50

2~p1p8!

Uj
ZZj , U0,1

Z constant ~33!

such that the PDE~1! has the resulting expansion

E@UT#5Zq (
j50

2~q1q8!

Ej
ZZj , ~34!

whereq is the singularity order ofE, andp8, q8 correspond to a possible second family~for a
higher order truncation we often havep85p, q85q!.

We note that if we choose to setp850 andU0,1
Z 50, so thatq850 and~33! corresponds to a

standard truncation at constant level, then the transformation~30! gives rise to a corresponding
truncation inx of the form ~10!, and so does indeed correspond to the removal of an arbitrary
gauge. However when the truncation is such that~34! includes positive powers ofZ, i.e.,p8,0 or
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U0,1
Z Þ0, then forAÞ0 there is for each of~33! and~34! no correspondingfinite series inx. In fact

the truncation~33! then corresponds to the summation of an infinite series inx, or f, for certain
choices of arbitrary data~see examples below!.

The above discussion allows us to answer immediately one of the questions raised above, i.e.,
that of relating the expansion variable to the original singular manifoldw. We see from~30!, ~31!
that we may define this new expansion variableZ in terms of the singular manifoldw, together
with an auxiliary functionA, as

Z5S wx

w
2

wxx

2wx
1
1

2
AD 21

, ~35!

where this variable satisfies the Riccati system~25!, ~26!, B andC being also defined in terms of
w andA as

B52
1

2 F S wxx

wx
D
x

2
1

2 S wxx

wx
D 2G1

1

2
Ax2

1

4
A2, ~36!

C52
w t

wx
, ~37!

andD being obtained from~28!.
An immediate consequence of the equivalence of the system~25!, ~26! with ~6!, ~7! is that

there is no possibility of a discrepancy when performing the Painleve´ test; it is sufficient to
perform this test using the variablex introduced by Conte.14

Finally we give, for future reference, four equivalent linearizations of the Riccati system~25!,
~26!. The first is viaZ215hx/h onto ~23!, ~24!.

The second is viaZ215c2/c1 onto

S c1

c2
D
x

5S 2 1
2A 1

B 1
2A

D S c1

c2
D , ~38!

S c1

c2
D
t

5S 1
2~AC1Cx! 2C

~D2BC! 2 1
2~AC1Cx!

D S c1

c2
D . ~39!

This system has of course the same cross-derivative conditions~28!, ~29! as the system~23!, ~24!.
The third is viaZ215(j2/j1)1(A/2) onto ~note the combination ofA andB!

S j1
j2

D
x

5S 0

B1 1
4A

22 1
2Ax

1
0D S j1

j2
D , ~40!

S j1
j2D

t

5S 1
2Cx 2C

1
2Cxx2~B1 1

4A
22 1

2Ax!C 2 1
2Cx

D S j1
j2D . ~41!

These last two linearizations are related via the gauge transformation

S c1

c2
D 5S 1 0

1
2A 1D S j1

j2
D . ~42!
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Sincec25c1,x1
1
2Ac1 andj25j1,x we see that

Z215
c1,x

c1
1
1

2
A5

j1,x
j1

1
1

2
A, ~43!

which corresponds to Eq.~30!, and soc1 andj1 both satisfy the same linear system~13!, ~14! as
c with S being given by~31!. This is our fourth linearization; the corresponding cross-derivative
condition is of course~9! for this choice ofS. This means that when linearization onto a scalar Lax
pair ~13!, ~14! is inappropriate for a particular PDE—for example because the cross-derivative
condition evaluates to an operator acting on that PDE rather than just the PDE itself—an appro-
priate linearization onto a matrix spectral problem~38!, ~39! may still be available.

For S given by ~31!, one should recognize immediately here that the second-order linear
equation~13! can be written as

@~]x2
1
2A!~]x1

1
2A!2B#c50, ~44!

which of course underlies the gauge transformation~42!. In the case whereB is the spectral
parameter this is the well-known factorization of the Schro¨dinger operator, and the corresponding
gauge transformation~42!, or for the Riccati pseudopotential~30!, is by now standard~it can be
found for example in Ref. 27!. The most famous example of such a factorization is of course for
MKdV.

We now use MKdV as an example in order to consider both the practical and theoretical
aspects of our analysis. Of course the question of recovering the spectral problem for MKdV from
Painlevéanalysis has been tackled before;18,24 we use MKdV here simply as an example which
allows us to demonstrate the power and simplicity of our new method. It will also provide the
framework within which to give the correct interpretation of this method as a natural extension of
the Weiss singular manifold method. We will see that while there is clearly a close connection
between the singularity structure and the DT18 ~or the Hirota form23! of the equations
considered—this connection lying behind the ‘‘two-singular manifold method’’—the DT can in
fact be identified with a Painleve´ expansion involving only one singular manifold.

B. Practical considerations: example of MKdV

We now consider once again the recovery of the Lax pair and DT~and so the BT! for the
MKdV equation,

2Ut1SUxx2
2

k2 U
3D

x

50, ~45!

from a truncated expansion as performed in Ref. 18. We will see how the use of the Riccati system
~25!, ~26! greatly simplifies this process, and also that it is not necessary to obtain the DT in
advance. In the next section we discuss the theoretical implications of our results.

For simplicity we consider the potential MKdV~PMKdV! equation,

E@V#[2Vt1Vxxx2
2

k2 Vx
350, U5Vx . ~46!

Equation~46! has two families, both principal, with indices$21,0,4%. The truncated expansion for
either of these families~herek may take either sign! is

VT5k log Z1v, ~47!
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where for the full expansionv is the arbitrary coefficient corresponding to the index at 0. Substi-
tution of this expression into~46! gives

E@VT#[Z23(
j50

6

Ej
ZZj50, ~48!

whereE0
Z[0 andE6

Z[0 since we have already set the leading order coefficient in~47!, and

E1
Z[3~kA22vx!50, ~49!

E2
Z[S kC14kB1kAx2

2

k
vx
2D2

1

k
~5kA22vx!~kA22vx!50, ~50!

E3
Z[S 2v t1vxxx2

2

k2 vx
3D1

1

k
~k2AAx24vxvxx!26B~kA22vx!

2AS kC14kB1kAx2
2

k
vx
2D2S kC14kB1kAx2

2

k
vx
2D

x

1
2

k
A~kA2vx!~kA22vx!13kBx50, ~51!

E4
Z[kD12kBAx2BS kC14kB1kAx2

2

k
vx
2D12kABx2kBxx

1
1

k
B~5kA22vx!~kA22vx!50, ~52!

E5
Z[3kBBx13B2~kA22vx!50. ~53!

The solution of these equations is easily obtained as

A5
2

k
vx , ~54!

B5l2, ~55!

C52
1

k2 ~4k2l222vx
212kvxx!, ~56!

D52
4

k
l2vxx , ~57!

wherel5l(t) is an arbitrary function of integration, andE3
Z becomes

E3
Z[2v t1vxxx2

2

k2 vx
350, ~58!

which tells us thatv is a second solution of~46!. Substitution of~54!–~57! into the cross-
derivative conditions~28!, ~29! then gives
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2x1[2
2

k S 2v t1vxxx2
2

k2 vx
3D

x

50, ~59!

2x2[~l2! t50, ~60!

which tell us thatl is a constant~the spectral parameter!, and that~25!, ~26! form a Riccati
pseudopotential for MKdV inu5vx .

Thus ~38!, ~39! give the matrix spectral problem for MKdV. The corresponding DT is ob-
tained from~47! by settingUT5VT,x , u5vx :

UT5k~ log Z!x1u5k„log~c1 /c2!…x1u. ~61!

A simple gauge transformation yields the AKNS spectral problem for MKdV,28 and the DT~61!
is then equivalent to that given in Refs. 29 and 30.

These results are equivalent to those obtained in Ref. 18. However here the solution of the
determining equations~49!–~53! is much simpler. The reason for this is that the solution obtained
is exact, i.e., we have removed the gauge freedom encountered in Ref. 18. Similar remarks hold
for BK31 ~s-G is discussed in the Appendix!. We have thus answered the second of our questions
about the Riccati variableY.

The above derivation is also much simpler than the approach adopted in Ref. 24, where a Lax
pair for MKdV of the form~23!, ~24! was obtained. This method relies on manipulations involving
two singular manifolds, as opposed to seeking an expansion in a single variableZ satisfying a
system of Riccati equations. As we shall see in the next section, the DT for MKdV can be
represented as a Painleve´ expansion using only one singular manifold; this representation forms a
natural extension of the usual Weiss singular manifold method.

Finally, we note that it is not necessary to obtain the DT in advance; the identification of the
second solution of MKdV results from our analysis. In particular, no use need be made of a second
equation~as KdV was used in Ref. 18!. Similar remarks hold for BK31 and the other examples
discussed herein. This then answers the third of our questions.

In fact, the derivation of the DT for MKdV~and s-G! given in Ref. 18 relies on the fact that
the two functionsc1, c2 appearing in the quotientZ215c2/c1 each satisfy a pair of linear equa-
tions such that the pair forc2 is obtained from the pair forc1 via $c1,u%→$c2,2u%. This places in
advance some restrictions on the coefficients of our Riccati system: see Ref. 31 for details. Of
course, it remains the case that theassumptionof the form of the DT may simplify the process of
obtaining the Lax pair.13

C. Theoretical considerations: example of MKdV

We now consider the theoretical implications of the above analysis. We begin, however, by
insisting on the correct definition of ‘‘singular manifold,’’ i.e. that originally given by WTC.8 The
singular manifold defines the location of the singularity about which our Painleve´ expansion is
made. This Painleve´ expansion involves only one singular manifold. The question we now ask is:
what is the connection between this Painleve´ expansion for MKdV and the DT~61!?

We have already discussed the relationship of the new Riccati variableZ to the original WTC
singular manifoldw. We now see that the DT~61! corresponds to the summation of an infinite
Painlevéexpansion, of course about asingle singular manifold, for certain choices of arbitrary
data. Using~30! we rewrite the DT for MKdV in terms ofx ~which is equivalent to the WTCw!
as

UT5k~ log Z!x1u5kZ212u2kl2Z
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5kx212kl2xS 11
1

k
ux D 21

5kx212kl2x1ul2x22
1

k
u2l2x31••• , ~62!

where for thisx the coefficientsS andC are obtained from~31! and ~54!–~56! as

S522l22
2

k2 u
21

2

k
ux , ~63!

C524l21
2

k2 u
22

2

k
ux . ~64!

The Painleve´ indices of the MKdV equation~45! are$21,3,4%, and so we see that we have an
infinite expansion inx of the form ~5!, whereS andC are given by~63!, ~64!, and the arbitrary
coefficients at 3 and 4 have been chosen as

U3
x5ul2, U4

x52
1

k
u2l2. ~65!

Corresponding to~62! we have an infinite WTC expansion of the form~2!, wherew is subject to
the constraints given by~63! and~64!, and we have again a certain choice of arbitrary coefficients
U3

w andU4
w .

We now note that~63!, ~64! are a parametrization of the relation

S1C16l250, ~66!

which is just the SME of the KdV equation.12 However this SME has now been shown to hold for
the infinite expansion~62!. This prompts us to introduce the following more consistent definition
of ‘‘singular manifold equation:’’

The singular manifold equation of a PDE is the constraint on the WTC expansion variablew
such that, for a certain choice of arbitrary coefficients, the Painleve´ expansion corresponds to
the Darboux transformation of the PDE.

Thus we see that the correct SME for MKdV is in fact~66!, which we give here for the first time
within the context of a Painleve´ expansion involving only one singular manifold. In the standard
singular manifold method it is insisted that the Painleve´ expansion truncate atx0 ~or equivalently
w0!: as is easily seen from~62!, this forcesl50 in ~66!, which explains the absence of the spectral
parameter from the SME given by Weiss.12

We note that in Ref. 24 Eq.~66! has been shown to hold for each of the two singular
manifolds used therein, together with a further constraint involving these two singular manifolds
and the spectral parameter. What we have shown here is that by extending the usual singular
manifold method so as to allow the identification of the DT with aninfinite Painlevéexpansion,
and with a corresponding modification of the definition of singular manifold equation, we can
obtain the SME complete with spectral parameter using only one singular manifold. This SME—a
constraint on the single singular manifold in the expansion—can be obtained from the Painleve´
expansion corresponding toeitherone of the two families of MKdV: we do not need to try to use
these two families in conjunction. This is then in contrast to the approach used in Ref. 24.

Within the context of our new definition of SME, the only difference between the DT of KdV
and MKdV is that, whereas for the former the corresponding Painleve´ expansion truncates, for the
latter it does not: for both we sum the Painleve´ expansion subject to a choice of arbitrary coeffi-
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cients and a constraint~66! on w. Our approach therefore forms a natural extension of the usual
Weiss singular manifold method. The BK equation is another example where, in order to obtain
the correct SME, we have to take into account the fact that it is an infinite Painleve´ expansion
which corresponds to the DT.31 Other examples are presented in Sec. III.

It is not surprising that the SME of MKdV is the same as that of KdV: when seeking a Lax
pair and DT from Painleve´ analysis we expect the SME to yield the Lax pair, and the Painleve´
expansion to yield the DT. Since it is well-known that the KdV and MKdV spectral problems are
related via the gauge transformation~42!, or equivalently27

Z215x211
1

2
A5x211

1

k
u, ~67!

it is only natural that these two equations should have the same SME.
Indeed, if we consider the solutionW5WT of the KdV equation,

2Wt1~Wxx13W2!x50, ~68!

obtained via the Miura map,

WT5SUT

k D
x

2SUT

k D 2, ~69!

whereUT is as in~61!, then we obtain, using~67! to rewrite the resulting expression in terms of
x,

WT522x222w12l2, ~70!

where

w5S uk D
x

2S uk D 2. ~71!

The action of the Miura map on the infinite expansionUT has produced a constant-level truncation
WT . This is of course the truncated Painleve´ expansion corresponding to the DT of KdV, and for
which the SME~66! holds.12

We can mirror iterations of the DT for MKdV using the Painleve´ expansion~62!: settingu50
gives

UT5k~x212l2x!, with S522l2, C524l2. ~72!

This corresponds to Eq.~3.1.9! in Ref. 16, and gives the one-soliton solution. This expression~72!,
although now finite inx, still corresponds to an infinite WTC expansion inw; the significance of
summing such infinite expansions was argued in Ref. 16. The expansion~62! is therefore a
generalization of our previous work, extending the infinite WTC expansion representing the one-
soliton solution to one representing the DT.

We also remark that, since our analysis gives by construction the summation of an infinite
WTC expansion, we obtain in this way a direct proof of the convergence of the MKdV Painleve´
expansion for

0,uxu,uku21u, ~73!

provided that Eqs.~63!, ~64! hold and the arbitrary coefficientsU3
x andU4

x are chosen as in~65!.
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III. FURTHER EXAMPLES

A. MKdV5

We now briefly consider the application of our analysis to the fifth-order MKdV equation
~MKdV5!,

2Ut1SUxxxx2
10

k2 U
2Uxx2

10

k2 UUx
21

6

k4 U
5D

x

50. ~74!

We should expect our results for this equation to be analogous to those already obtained for
MKdV. In particular, we should expect that the SME for MKdV5 is identical to that for fifth-order
KdV ~KdV5!: we will see that this is indeed the case.

We consider the potential form~PMKdV5! of ~74!:

E@V#[2Vt1Vxxxxx2
10

k2 Vx
2Vxxx2

10

k2 VxVxx
2 1

6

k4 Vx
550, U5Vx . ~75!

This equation has the four~k may take either sign! familiesV5k log x1••• andV52k log x1••• ,
with indices$21,0,2,3,6% and$23,21,0,6,8%, respectively. Here we consider the truncated expan-
sion corresponding to either of the two principal families:

VT5k log Z1v, ~76!

where once again for the full expansionv is the arbitrary coefficient corresponding to the index at
0. Substitution of~76! into ~75! gives

E@VT#[Z25(
j50

10

Ej
ZZj50, ~77!

whereE0
Z[0 andE10

Z [0 since the leading order coefficient is already set in~76!. We then find

E1
Z[10~kA22vx!50, ~78!

E9
Z[10B4~kA22vx!110kB3Bx50, ~79!

which then gives

A5
2

k
vx , ~80!

B5l2, ~81!

wherel5l(t) is an arbitrary function of integration. For this choice ofA andB we find

E2
Z[0, E3

Z[0, E7
Z[0, E8

Z[0. ~82!

This then leaves us with the three equations:

E4
Z[kC116kl42

8

k
l2vx

21
6

k3 vx
418l2vxx2

12

k2 vx
2vxx1

2

k
vxx
2 2

4

k
vxvxxx12vxxxx50,

~83!
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E5
Z[S 2v t1vxxxxx2

10

k2 vx
2vxxx2

10

k2 vxvxx
2 1

6

k4 vx
5D2~E4

Z!x2
2

k
vxE4

Z50, ~84!

E6
Z[S kD116l4vxx2

24

k2 l2vx
2vxx14l2vxxxxD2l2E4

Z50. ~85!

From these we easily obtainC andD,

C5216l428l2S vxxk
2
vx
2

k2D 26S vxxk
2
vx
2

k2D 222S vxxk
2
vx
2

k2D
xx

, ~86!

D52
16

k
l4vxx1

24

k3 l2vx
2vxx2

4

k
l2vxxxx, ~87!

and also the information from~84! thatv is a second solution of PMKdV5. Substitution of these
values ofA,B,C,D into the cross-derivative conditions~28!, ~29! gives

2x152
2

k S 2v t1vxxxxx2
10

k2 vx
2vxxx2

10

k2 vxvxx
2 1

6

k4 vx
5D

x

50, ~88!

2x25~l2! t50, ~89!

which tell us thatl is a constant, and that~25!, ~26! form a Riccati pseudopotential for MKdV5 in
u5vx . Thus ~38!, ~39! give the matrix spectral problem for MKdV5; the corresponding DT is
obtained from~76! by settingUT5VT,x , u5vx :

UT5k~ log Z!x1u5k„log~c1 /c2!…x1u. ~90!

The BT now follows just as it does for MKdV.
We note that this calculation is very straightforward, and certainly much less difficult than it

would have been had we used the Riccati system~21!, ~22!. Also, the DT is once again obtained
from the analysis, so no attempt need be made to derive it beforehand.

Our main interest in this example, however, is in the representation of the DT as a Painleve´
expansion and the corresponding SME. Rewriting the DT in terms ofx using~30! we obtain as for
MKdV

UT5kx212kl2xS 11
1

k
ux D 21

5kx212kl2x1ul2x22
1

k
u2l2x31

1

k2 u
3l2x42

1

k3 u
4l2x51••• , ~91!

where for thisx the coefficientsS andC are now obtained from~31! and ~80!, ~81!, ~86! as

S522l212S uxk 2
u2

k2D , ~92!

C5216l428l2S uxk 2
u2

k2D26S uxk 2
u2

k2D 222S uxk 2
u2

k2D
xx

. ~93!
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The Painleve´ indices for this family of MKdV5~74! are $21,2,3,5,6% and so we see that the DT
corresponds to an infinite expansion inx of the form~5!, with S andC as above and the arbitrary
coefficients at 2, 3, 5 and 6 chosen as

U2
x52kl2, U3

x5ul2, U5
x5

1

k2 u
3l2, U6

x52
1

k3 u
4l2. ~94!

Corresponding to this expansion we have an infinite WTC expansion of the form~2!, wherew is
subject to the constraints given by~92! and~93!, and we have again a certain choice of arbitrary
coefficientsU2

w , U3
w , U5

w andU6
w .

The values ofS andC ~92!, ~93! are a parametrization of the relation

C1Sxx1
3
2S

2110l2S130l450, ~95!

which is the SME for KdV5.12 From ~91! we see that constant level truncation inx will only give
the SME for a zero value of the spectral parameter,

C1Sxx1
3
2S

250. ~96!

It is easy to verify that the constant level truncation inx for a principal branch of MKdV5 is
UT5kx21 together with the constraint~96!.

Once again we see that it is an infinite Painleve´ expansion which corresponds to the DT. The
correct SME—the constraint such that the Painleve´ expansion, for a certain choice of arbitrary
coefficients, corresponds to the DT—is~95!: this differs again from the constraint~96! that would
be obtained using the usual singular manifold method. We note that this SME, a constraint on a
single singular manifold, can be obtained from the Painleve´ expansion corresponding to either one
of the two principal families: we do not need to try to use these two families in conjunction.

A corollary of our analysis is a direct proof of the convergence of the Painleve´ expansion for
a principal family of MKdV5 for

0,uxu,uku21u, ~97!

provided that Eqs.~92! and~93! hold and the arbitrary coefficientsU2
x , U3

x , U5
x andU6

x are chosen
as in ~94!.

B. A system in 2 11 dimensions

1. Preliminaries: extension of the Riccati system

We now consider the extension of the method developed above so as to make it applicable to
systems in 211 dimensions. We do this by augmenting the system of Riccati equations~25!, ~26!
as follows:

Zx512AZ2BZ2, ~98!

Zt52C1~AC1Cx!Z2~D2BC!Z2, ~99!

Zy52E1~AE1Ex!Z2~F2BE!Z2. ~100!

This system has the cross-derivative conditions

~Zx! t2~Zt!x[x1Z1x2Z
250, ~101!

~Zx!y2~Zy!x[y1Z1y2Z
250, ~102!
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~Zt!y2~Zy! t[z01z1Z1z2Z
250, ~103!

where

2x1[At1~AC!x1Cxx22D50, ~104!

2x2[Bt2Dx12BCx1BxC1AD50, ~105!

2y1[Ay1~AE!x1Exx22F50, ~106!

2y2[By2Fx12BEx1BxE1AF50, ~107!

2z0[Cy2Et1ECx2CEx50, ~108!

andz1 ,z2 are zero modulox1, x2, y1, y2, andz0. We note that the system~98!–~100! is much
simpler than the natural generalization of~21!, ~22!, which would involve nine undetermined
coefficients.

Under the gauge transformation~30! this system of three Riccati equations is easily seen to be
equivalent to the system of three Riccati equations inx given in Ref. 32:

xx511 1
2Sx2, ~109!

x t52C1Cxx2 1
2~Cxx1CS!x2, ~110!

xy52E1Exx2 1
2~Exx1ES!x2. ~111!

HereE is defined asE52wy/wx . This system has the cross-derivative conditions

St1Cxxx12SCx1SxC50, ~112!

Sy1Exxx12SEx1SxE50, ~113!

Cy2Et1ECx2CEx50. ~114!

The remarks made earlier for the system~25!, ~26! remain true for our augmented system
~98!–~100!: since the systems inZ andx are equivalent it is sufficient to perform the Painleve´ test
usingx, but it may be possible to obtain more information from a higher order truncation inZ than
one inx. The coefficients of the Riccati system, andZ itself, can be given in terms ofw and the
auxiliary functionA.

We now consider for future reference a special case of the system~98!–~100!. Let

C5GE1C̃, D5GF1D̃, Gx50. ~115!

In this case our Riccati system becomes

Zx512AZ2BZ2, ~116!

Zt5GZy2C̃1~AC̃1C̃x!Z2~D̃2BC̃!Z2, ~117!

and the cross-derivative condition now reads

~Zx! t2~Zt!x[ x̃1Z1 x̃2Z
250, ~118!

where
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2 x̃1[At1~AC̃!x1C̃xx22D̃2GAy50, ~119!

2 x̃2[Bt2D̃x12BC̃x1BxC̃1AD̃2GBy50. ~120!

The corresponding system inx obtained by the gauge transformation~30! is

xx511 1
2Sx2, ~121!

x t5Gxy2C̃1C̃xx2 1
2~C̃xx1C̃S!x2, ~122!

whereS is given by~31!. The corresponding cross-derivative condition is

St1C̃xxx12SC̃x1SxC̃2GSy50. ~123!

Clearly, linearization of the Riccati system~116!, ~117! leads to a time evolution for the
eigenfunctions different from that given previously. ForZ215hx/h we obtain the linear system
given by ~23! together with

h t5Ghy2C̃hx1S Ex

D̃ dx8 Dh, ~124!

and forZ215c2/c1 we obtain~38! together with

S c1

c2
D
t

5S G 0

0 G D S c1

c2
D
y

1S 1
2~AC̃1C̃x! 2C̃

~D̃2BC̃! 2 1
2~AC̃1C̃x!

D S c1

c2
D . ~125!

Both of these linearizations have as cross-derivative conditions~119!, ~120!. For the linearization
Z215(j2/j1)1(A/2) we obtain~40! together with

S j1
j2D

t

5S G 0

0 G D S j1
j2D

y

1S 1
2C̃x 2C̃

1
2C̃xx2~B1 1

4A
22 1

2Ax!C̃ 2 1
2C̃x

D S j1
j2D . ~126!

As before the eigenfunctionsc1 andj1 both satisfy the same scalar linear system, in this case~13!
and

c t5Gcy2C̃cx1
1
2C̃xc, ~127!

S being given by~31!: the cross-derivative condition is~123! for this choice ofS. We also have
the same gauge transformations as before:~32! between~23!, ~124! and ~13!, ~127!; and ~42!
between~38!, ~125! and ~40!, ~126!.

From the above we see that for a Riccati system of the form~116!, ~117! we may have a
choice of several linearizations~some of which may be better than others!.

2. Application to a system in 2 11 dimensions

We now consider the application of the analysis developed above to the following system in
211 dimensions:

E1@U,V#[Uxt1Vy1
1
2~UxUy!x50, ~128!

E2@U,V#[Vt1k2Uxxxy1UxyV1 1
2~UxVy1UyVx!50. ~129!
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In order to apply the Painleve´ test to this system we takex as expansion variable, with gradient
given by ~109!–~111!. We find two ~k may take either sign! families, both principal, given by
U52k log x1••• , V522k2x221••• with indices $21,0,2,3,4%. All compatibility conditions are
identically satisfied.

We therefore seek a truncated expansion of the form

UT5U0,1
Z log Z1u, U0,1

Z constant, ~130!

VT5Z22(
j50

4

Vj
ZZj , ~131!

where the gradient ofZ is given by~98!–~100!, and where for the full expansionu is the arbitrary
coefficient corresponding to the index at 0. Substitution of~130!, ~131! into ~128!, ~129! gives

E1@UT ,VT#[Z23(
j50

6

E1,j
Z Zj50, ~132!

E2@UT ,VT#[Z24(
j50

8

E2,j
Z Zj50. ~133!

We find

E1,0
Z [E@~U0,1

Z !212V0
Z#50, ~134!

E2,0
Z [3E@2k21V0

Z#U0,1
Z 50, ~135!

E1,6
Z [2~F2BE!@~U0,1

Z !2B212V4
Z#50, ~136!

E2,8
Z [3B~F2BE!@2k2B21V4

Z#U0,1
Z 50. ~137!

We take

U0,1
Z 52k, V0

Z522k2, V4
Z522k2B2, ~138!

where once againk may take either sign.
We then find

1

3k SE1,1
Z 2

1

4k
E2,1
Z D[C2S kA2

1

2
uxDE2

1

2
uy50, ~139!

which gives

C5~kA2 1
2ux!E1 1

2uy . ~140!

For this value ofC,

E1,1
Z [

1

4k
E2,1
Z [E~V1

Z22k2A!50, ~141!

and so

V1
Z52k2A. ~142!
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Using the above value ofC, we find

1

3kB SE1,5
Z 1

1

4kB
E2,7
Z D[D2S kA2

1

2
uxDF2kBy50, ~143!

which gives

D5~kA2 1
2ux!F1kBy . ~144!

For this value ofD,

E1,5
Z [2

1

4kB
E2,7
Z [2~F2BE!~V3

Z12k2AB22k2Bx!50, ~145!

and so

V3
Z522k2AB12k2Bx . ~146!

Then forC andD as above, and modulo the cross-derivative conditions~105!, ~107!, we
obtain

E1,2
Z [0, E2,2

Z [2kE~V2
Z12k2Ax2kuxx!50, ~147!

E1,4
Z [0, E2,6

Z [2kB~F2BE!~V2
Z22k2Ax1kuxx!50. ~148!

Thus

V2
Z50, ~149!

and

A5
1

2k
ux2

l

k
, ~150!

where l5l(y,t) is an arbitrary function of integration. Using this value ofA in the above
expressions forC andD we get

C52lE1 1
2uy , D52lF1kBy . ~151!

For these values ofA, C andD, our remaining determining equation obtained from the expansion
of E1 becomes

E1,3
Z [2~l t1lly!50, ~152!

which gives us the constraint

l t1lly50 ~153!

on the arbitrary functionl.
The values ofC andD in ~151! are of the form~115! with

G52l, C̃5 1
2uy , D̃5kBy , ~154!

and so we now switch to the Riccati system~116!, ~117!. ForA, C̃ andD̃ given by ~150!, ~154!
the cross-derivative conditions~119!, ~120! read
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2 x̃1[
1

2k S uxt1~kuxx24k2B!y1
1

2
~uxuy!x22~l t1lly! D50, ~155!

2 x̃2[Bt2kBxy1uxyB1 1
2~uxBy1uyBx!50. ~156!

Setting—as is suggested by~155!—

kuxx24k2B5v ~157!

these equations become

2 x̃1[
1

2k
~E1@u,v#22~l t1lly!!50, ~158!

2 x̃2[
1

4k
~E1@u,v# !x2

1

4k2 E2@u,v#50, ~159!

which, recalling the constraint~153!, tell us thatu andv are a second solution of the system~128!,
~129!.

For B given by ~157!, we find thatD becomes

D52lF2
1

4k
~v2kuxx!y . ~160!

For the values ofA, B, C andD obtained here we then find that the remaining three determining
equations obtained from the expansion ofE2 ~E2,3

Z , E2,4
Z , andE2,5

Z ! are identically satisfied modulo
E1[u,v]50, E2[u,v]50 and the constraint~153!.

Remark:If instead we had begun by considering the system obtained by adding functions
p(x,y,t) and q(x,y,t) to E1[U,V] and E2[U,V], respectively, the results of the Painleve´ test
would have beenp5g(y,t), q50. Performing the truncation for the systemF1[E11g50,
F2[E250 would then have resulted at the stage of~152! in the equationg12(l t1lly)50,
which fixes the form ofg in F1. Equations~158!, ~159! then tell us that for thisg, u, andv are a
second solution ofF150, F250. The remaining determining equations from the expansion ofF2
are then identically satisfied moduloF1[u,v]50 andF2[u,v]50, again forg522(l t1lly).

Let us now briefly summarize the results of our truncation for the system~128!, ~129!. Noting
the form of the coefficientsVj

Z we see that this truncation can be written in the form

UT52k log Z1u, VT52k2~Z211BZ!x24k2B, ~161!

where the coefficients of the Riccati system~98!—~100! are given by

A52
l

k
1

1

2k
ux , ~162!

B52
1

4k2 ~v2kuxx!, ~163!

C52lE1
1

2
uy , ~164!

D52lF2
1

4k
~v2kuxx!y , ~165!
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and the arbitrary functionl of y and t is subject to the constraint

l t1lly50. ~166!

The corresponding coefficients of the Riccati system~116!, ~117! are

G52l, C̃5
1

2
uy , D̃52

1

4k
~v2kuxx!y . ~167!

Equations~158! and~159! tell us that~116! and~117! form a Riccati pseudopotential for the
system~128!, ~129!. The linearizationZ215c2/c1 then gives a matrix spectral problem of the form
~38!, ~125!:

S c1

c2
D
x

52
1

4k2 S 2k~2l2ux! 24k2

~v2kuxx! k~2l2ux!
D S c1

c2
D , ~168!

S c1

c2
D
t

5S 2l 0

0 2l
D S c1

c2
D
y

1
1

8k2 S k~2kuxy1uxuy22luy! 24k2uy

~2k2uxxy2kuxxuy22kvy1vuy! 2k~2kuxy1uxuy22luy!
D S c1

c2
D .

~169!

The corresponding Darboux transformation is obtained from~161! as

UT52k log~c1 /c2!1u, VT52k2
„log~c1c2!…xx1v2kuxx , ~170!

where we have used the fact that forc1 andc2 satisfying~38!,

Z211BZ5
c1,x

c1
1

c2,x

c2
. ~171!

The form of the above DT is interesting, since it maps to a new solutionUT ,VT from the
combinationsu andv2kuxx of an old solutionu,v. We note once again that we did not need to
derive the DT in advance~which for this example might prove to be difficult!.

We may also of course linearize our Riccati pseudopotential onto either of the scalar Lax pairs
~23!, ~124!, or ~13! ~127! @we do not consider here~40!, ~126!#. The former gives

hxx52
1

k S l2
1

2
uxDhx2

1

4k2 ~v2kuxx!h, ~172!

h t52lhy2
1

2
uyhx2

1

4k S Ex

~v2kuxx!ydx8 Dh, ~173!

which has the same cross-derivative conditions~158!, ~159! as the above matrix spectral problem.
The latter, withS obtained from~31!, gives

cxx52
1

4k2 @v2~l2 1
2ux!

2#c, ~174!

c t52lcy2
1
2uycx1

1
4uxyc ~175!
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which has the cross-derivative condition

St1C̃xxx12SC̃x1SxC̃2GSy5
1

2k2 E2@u,v#1
1

2k2 S l2
1

2
uxD „E1@u,v#22~l t1lly!…50.

~176!

We note that similar nonisospectral scattering problems in 211 dimensions, withl5l(y,t) sub-
ject to constraints of the form~166!, have been discussed in Ref. 33 for ‘‘breaking soliton’’
equations.

If we now use~30! to rewrite ~161! in terms ofx, we find that this DT corresponds, once
again, to an infinite Painleve´ expansion inx for a certain choice of the arbitrary coefficients@here
A andB are given in terms ofu andv via ~162!, ~163!#:

UT52k log x1u2kAx1 1
4kA

2x22 1
12kA

3x31••• , ~177!

VT522k2x221 1
2k

2A212k2~Bx2AB!x1••• , ~178!

where for thisx, S, C, andE are related via

S5
1

2k2 Fv2S l2
1

2
uxD 2G , C52lE1

1

2
uy . ~179!

For this example obtaining the SME is not as simple as for our previous examples since it is not
a question of eliminating a single field between two expressions. However the two expressions in
~179! can be solved foru andv:

v52k2S1~l2 1
2ux!

2, 1
2uy5C1lE, ~180!

and we can now use the fact thatu andv satisfy ~128! to get

1
2E1@u,v#5vxt1k2Sy1~l2vx!~l2vx!y1~vxvy!x50, ~181!

wherev5u/2 is given by

v5Ey

~C1lE!dy8. ~182!

Equation~176! tells us that the expression resulting from substitution ofu andv into ~129! instead
of ~128! is dependent on that obtained above together with the cross-derivative condition~123!.

Substitution ofv from ~182! into ~181! provides a single constraint onS, C, E, andl, which
we claim should be understood as the SME for the system~128!, ~129!. This claim is supported by
the fact that if we consider the reduction of~128!, ~129! to BK, this SME reduces to that of BK,
and the latter is obtained from the elimination of a single field between expressions forS andC:
details can be found in Ref. 31. We note again that this SME—a constraint which, in accordance
with our new definition, holds when the Painleve´ expansion, for a certain choice of arbitrary
coefficients, corresponds to the DT—can be obtained from the Painleve´ expansion corresponding
to eitherone of the two families~both of which are principal!.

Finally we remark that our method gives a direct proof of the convergence of the Painleve´
expansion for the system~128!, ~129!, for a certain choice of the arbitrary coefficients and withS,
C, andE satisfying~179!, for x in the cut plane with

uxu,2uk~ 1
2ux2l!21u. ~183!
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3. Reductions to systems in 1 11 dimensions

We have for the system~128!, ~129! the Riccati pseudopotential~116!, ~117! together with the
DT ~161!; for the linearizationZ215c2/c1 this DT takes the form~170!. We now consider the
three reductions of the system~128!, ~129! to PDEs in 111 dimensions given by

~]x ,]y ,] t!→~]x ,]x ,] t!, ~184!

~]x ,]y ,] t!→~]x ,] t ,]x!, ~185!

~]x ,]y ,] t!→~]x ,] t ,] t!, ~186!

where in~185! the relabeling ofy as t is simply for convenience.
Case One:(]x ,]y ,] t)→(]x ,]x ,] t).
In this case our system becomes

E1@U,V#[Uxt1~V1 1
2Ux

2!x50, ~187!

E2@U,V#[Vt1~k2Uxxx1UxV!x50, ~188!

which is just the classical Boussinesq system20–22in Ux andV. From the point of view of seeking
a truncated expansion, making this reduction]y5]x means forcingE521 andF50 in ~98!, ~99!,
~100!, so only ~98! and ~99! remain. Also the Riccati system~116!, ~117! becomes just another
copy of ~98!, ~99! with cross-derivative conditionsx̃1[x150, x̃2[x250; this is easily seen by
replacingZy in ~117! by Zx from ~116! and identifying, from~115!,

C52G1C̃, D5D̃, Gx50. ~189!

In the course of solving the determining equations resulting from the truncation we now
obtain at the stage of equation~150! that our function of integration is a function oft only, i.e.,
l5l(t). The constraint~153! then tells us thatlt50, i.e.,l is constant.

Using Eqs.~162!–~165! we thus obtain for the classical Boussinesq system inUx andV the
Riccati pseudopotential~98!, ~99! with

A52
l

k
1

1

2k
ux , ~190!

B52
1

4k2 „v2k~ux!x…, ~191!

C5l1 1
2ux , ~192!

D52
1

4k
„v2k~ux!x…x . ~193!

The corresponding DT underZ215c2/c1 is given by~170!:

~Ux!T52k„log~c1 /c2!…x1~ux!, VT52k2
„log~c1c2!…xx1v2k~ux!x . ~194!

This maps one solutionux ,v of the classical Boussinesq system to another solution (Ux)T ,VT .
We have available of course the other possible linearizations, as discussed above for the system in
211 dimensions.

We thus obtain the Riccati pseudopotential presented in Ref. 19 for the scalar BK equation, an
equation obtained by the elimination ofV from the classical Boussinesq system. However here the
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use of the Riccati system~98!, ~99! simplifies the solution of the determining equations, again
because of the removal of a gauge freedom. Furthermore, we have here obtained the DT for the
field V of the classical Boussinesq system as well as that forU; in Ref. 19 the former is left
defined implicitly by a nonlinear relation. We also note that the extra2k(ux)x term in ~194!
distinguishes this DT from the auto-Ba¨cklund transformation involving two singular manifolds
presented in Ref. 23.

In addition, our analysis provides us with the correct SME for the classical Boussinesq sys-
tem: when]y5]x , ~181! and ~182! yield

Ct13CCx24lCx1k2Sx50. ~195!

This SME is given in accordance with our new definition. Once again the constraint for a constant-
level truncation to exist—i.e., the SME usually given for the classical Boussinesq system—differs
from the SME presented here. This point is discussed in more detail in Ref. 31.

Remarks made earlier for the system in 211 dimensions of course go through for this reduc-
tion: the DT corresponds to the summation of an infinite Painleve´ expansion for a certain choice
of arbitrary coefficients and withS andC given by

S5
1

2k2 Fv2S l2
1

2
uxD 2G , C5l1

1

2
ux ; ~196!

the SME can be obtained from the Painleve´ expansion for either of the two families; and we have
an immediate proof of the convergence, within the same domain as the system in 211 dimensions,
of the Painleve´ expansion for the classical Boussinesq system for this special choice of arbitrary
coefficients andS andC as above.

Case Two:(]x ,]y ,] t)→(]x ,] t ,]x).
In this case our system becomes

E1@U,V#[Uxx1Vt1
1
2~UxUt!x50, ~197!

E2@U,V#[Vx1k2Uxxxt1UxtV1 1
2~UxVt1UtVx!50, ~198!

which is in fact the first negative flow of the classical Boussinesq hierarchy. In following through
the truncation for this reduction we see that we must forceC521 andD50, and relabelE asC
andF asD. We then get the Riccati system~98!, ~99!. The Riccati system~116!, ~117! is then
equivalent to~98!, ~99!, with the same cross-derivative conditionsx̃1[x150, x̃2[x250. This is
easily seen by replacingZt andZy in ~117! by Zx from ~116! andZt respectively, and identifying,
using ~115!,

2GC511C̃, 2GD5D̃, Gx50. ~199!

In this case at the stage of Eq.~150!, when solving the determining equations for the trunca-
tion, we have that the arbitrary function of integration is a function oft only, i.e.,l5l(t). The
constraint~153! then becomesllt50 which tells us thatl is constant.

Using Eqs.~162!–~165! we thus obtain for the above system the Riccati pseudopotential~98!,
~99! with

A52
l

k
1

1

2k
ux , ~200!

B52
1

4k2 ~v2kuxx!, ~201!
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C5
1

l S 11
1

2
utD , ~202!

D52
1

4kl
~v2kuxx! t , ~203!

and the same DT~170! under the linearizationZ215c2/c1.
We have available of course the same linearizations as for our original system in 211 dimen-

sions. Thus for example the Lax pair for the first negative flow of the classical Boussinesq system
having as spatial part an energy-dependent Schro¨dinger operator is

cxx52
1

4k2 Fv2S l2
1

2
uxD 2Gc, ~204!

c t52
1

l S 11
1

2
utDcx1

1

4l
uxtc. ~205!

We do not write down here the other linear problems for the system~197!, ~198!; this is a trivial
exercise.

The expansion inx corresponding to the DT is convergent within the same domain as that for
the system~128!, ~129!, has the same value ofS, but hasC as in~202!. The SME is given by the
substitution of

v5E t

~lC21!dt8 ~206!

into

vxx1k2St1~l2vx!~l2vx! t1~vxv t!x50. ~207!

This SME can be obtained from the Painleve´ expansion for either of the two families.
Case Three:(]x ,]y ,] t)→(]x ,] t ,] t).
In this case our system becomes

E1@U,V#[Uxt1Vt1
1
2~UxUt!x50, ~208!

E2@U,V#[Vt1k2Uxxxt1UxtV1 1
2~UxVt1UtVx!50, ~209!

which under the transformation

U→U22x12t ~210!

becomes~197!, ~198!. We do not therefore consider this example further here beyond remarking
that the values ofA, B, C, andD obtained from~162!–~165! by settingC5E andD5F are
mapped into~200!–~203! above by the transformation~210! together withl→~l21! @and ~153!
tells us thatl is constant#.

4. Reduction to a linearizable subequation

SettingV5kUxx in ~128!, ~129! we findE2[U,kUxx]5k(E1[U,kUxx]) x , and so we have a
reduction to

E@U#[E1@U,kUxx#[Uxt1kUxxy1
1
2~UxUy!x50 ~211!
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~we choose not to integrate this with respect tox!. This equation is presented in Ref. 33 as a 211
extension of Burgers equation, linearizable underU52k log w onto

w t1kwxy50. ~212!

Indeed,~211! has reductions both to Burgers equation inUx and the first negative flow of Burgers
hierarchy. Trivial solutions of~212!

w5 (
j51

N11

e~kjx1 l j y1v j t1d j !, v j1kkj l j50, ~213!

lead to solutions of~128!, ~129! which are 211 analogs of those solutions of the classical Bouss-
inesq system which exhibit fission and fusion.34,35 These latter are obtained under the reduction
]y→]x , i.e. in seeking solutions of~212! of the form ~213! with kj5 l j .

The above reduction can be consistently made in our truncation for~128!, ~129!. Setting
v5kuxx in ~162!–~165! we find

A52
l

k
1

1

2k
ux , ~214!

B50, ~215!

C52lE1
1

2
uy , ~216!

D52lF. ~217!

SinceB50 we havek(UT)xx52k2(Z212A)x1kuxx52k2(Z21)x5VT and so the reduction is
indeed consistent.

So we have for~211! the truncation

UT52k log Z1u. ~218!

The coefficients of the Riccati system~116!, ~117! are given byA andB above and

G52l, C̃5 1
2uy , D̃50, ~219!

and so this Riccati system takes the form

Zx512AZ, ~220!

Zt5GZy2C̃1~AC̃1C̃x!Z, ~221!

with single cross-derivative condition

2 x̃1[At1~AC̃1C̃x!x2GAy50. ~222!

This case havingB5D̃50 is worthy of more careful consideration. The first point to be made
is that the truncation for the fieldW5Ux of the nonlocal equation

33 associated to~211! truncates
at constant-level inZ, and so also inx, since

~UT!x52k~Z212A!1ux52kZ2112l52kx211~l1 1
2ux!. ~223!
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The second point is that whenB5D̃50, the linearization onto a second-order Lax pair~13!, ~127!
would appear to be misleading since this is related by a gauge transformation to~23!, ~124!, and
thus underhx5z to the pair of linear equations

zx5Az, z t5Gzy2~AC̃1C̃x!z, ~224!

i.e. a first-order system. The cross-derivative condition for this system is~222!, which evaluates to

2 x̃1[
1

2k
„E@u#22~l t1lly!…50, ~225!

and we know of course thatl satisfies the constraint~166!. The system~220!, ~221! is of course
already a first-order linear system, although inhomogeneous.

This remark that the apparent second-order linear system obtained by linearization of our
Riccati system can be transformed onto a first-order linear system is of course true also of the
reductions~184!, ~185!, ~186! of ~211! to systems in 111 dimensions, respectively to Burgers
equation inUx , the first negative flow of Burgers hierarchy, and a PDE which under~210! is
mapped onto the first negative flow of Burgers hierarchy.

Thus if, by way of example, we consider the reduction~184!—remembering that this means
E521 andF50—we find from~223! the truncation for Burgers equation12 in W5Ux :

WT52kx211~l1 1
2w!52kx211C, ~226!

wherew5ux , l is a constant~from our previous considerations!, and where for thisx,

S5
1

2k2 Fkwx2S l2
1

2
wD 2G , C5l1

1

2
w. ~227!

Elimination ofw in ~227! gives the relation

k2S2kCx1
1
2~2l2C!250. ~228!

This latter isnot the constraint onS and C found by seeking a constant-level truncation for
Burgers equation; seeking such a truncation gives~226! together with the constraint12

Ct1CCx12kCxx2k2Sx50. ~229!

Equation~228! is, however, the relationimposedby Weiss12 to make~229! consistent with the
cross-derivative condition~9!, since when~228! holds,

St1Cxxx12SCx1SxC5
1

k2 ~2l2C1k]x!~Ct1CCx12kCxx2k2Sx!. ~230!

The advantage of looking at the truncation for Burgers equation as a reduction of that for the
classical Boussinesq system is that the constraint~228! falls out naturally. We also note the further
advantage of our approach that we have built in to our analysis the linearization to the linear
system inh. This means that we are able to recognize immediately that the second-order linear
system inc is related by a gauge transformation to that inh, and thus in turn to the the first-order
linear system inz. For Burgers equation this last—using~224! with ]y5]x—gives

zx5
1

k S 12 w2l D z, z t5
1

k Fl22
1

2 S kwx1
1

2
w2D Gz. ~231!
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Thus it is this first-order linear system that is the result of the truncation for Burgers equation. That
such first-order linear systems result from the truncation for Burgers hierarchy has already been
noted in Ref. 36, using a different approach.

Similar arguments to the above follow also for the reduction of~211! to the first negative flow
of Burgers hierarchy. In this case the relation betweenS andC, obtained by elimination of the
field betweenS52(A2/2)1Ax andC, is—as it is for the 211 equation~211!—nonlocal. The
first-order linear system~224! gives

zx5
1

k S 12 ux2l D z, z t5
1

k F11
1

2
ut2

1

2l S ux1kuxt1
1

2
uxutD Gz, ~232!

wherel is now constant~from our previous considerations!. Again, it is this first order system—
whose compatibility condition is trivially the first negative flow of Burgers hierarchy—which is
the result of the truncation for this reduction.

Finally we remark that we can extend the truncation in the WTC singular manifoldw, as done
in Ref. 8 for Burgers equation and extended in Ref. 36 to the entire hierarchy, to the 211 equation
~211!. Seeking a solution of~211! as

U52k log w1u ~233!

we easily find that we must have

E@U#[E@u#12kF 1w S w t1kwxy1
1

2
~uywx1uxwy! D G

x

50 ~234!

and so identifying different powers ofw we see that~233! provides a Ba¨cklund transformation
from one solutionu of ~211! to a second solutionU, wherew must satisfy

w t1kwxy1
1
2~uywx1uxwy!50. ~235!

This truncation corresponds to those presented in Refs. 8 and 36 for Burgers equation and its
hierarchy respectively. As for members of Burgers hierarchy we can recognize two special cases:
u50 leading to the linearization onto~212! as given in Ref. 33; andw5ux for which ~235!
becomes another copy ofE[u]50. It is a simple matter to write down the corresponding trunca-
tion and two special cases for the associated nonlocal equation inW5Ux .

IV. EXACT SOLUTIONS

Now, as done previously for the system~6!, ~7!, we consider the recovery of exact solutions
from our Riccati system~25!, ~26! by setting the coefficients to be constant. In order to satisfy the
cross-derivative conditions~28!, ~29! we takeA5a, B5b, C5c, wherea, b, andc are constant,
andD50. The general solution of the Riccati system~25!, ~26! is then given by

Z215 1
2@a1k tanh„ 12k~x2ct1a!…#, b1 1

4a
25 1

4k
2. ~236!

We now consider, for this case of constant coefficients, the power series inZ corresponding to the
sum and difference of the logarithmic derivatives ofc1 andc2 satisfying~38!, ~39!. Again using
simple trigonometric identities—and deliberately keeping our notation close to that used in Refs.
25 and 37—we obtain
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~ log Z!x5Z212a2bZ5
c1,x

c1
2

c2,x

c2
52ks,

Z211bZ5
c1,x

c1
1

c2,x

c2
5kt,

J , ~237!

where

s5
Am221

cosh„k~x2ct1g!…1m
, t5

sinh„k~x2ct1g!…

cosh„k~x2ct1g!…1m
, ~238!

and

g5a1
1

k F ip2 1tanh21S akD G5b1
1

k
tanh21S akD , m5

ia

Ak22a2
. ~239!

The functionss andt defined above are as given in Ref. 25; thus we have succeeded in extending
the work in Ref. 16 so as to place this entire class of solutions within the context of Painleve´
analysis. This means that we are now able to recover this class of solutions by making an
expansion in asinglevariable; compare with the methods outlined in Refs. 25 and 37.

For a higher order truncation the relations~237! allow us to identify negative and positive
powers ofZ as

Z215
k

2 S t2s1
a

kD , ~240!

Z5
k

2b S t1s2
a

kD . ~241!

The relations~237! also imply that (kt)22(a2ks)254b5k22a2, and so

t25s222
a

k
s115s222

m

Am221
s11. ~242!

Differentiation of the relations~237! with respect tox, and using the Riccati equation~25! and the
above identity leads to

s852st, t852t22
m

Am221
s11, ~243!

where8 denotes differentiation ofs andt with respect to their argument. This coupled system of
projective Riccati equations and the identity~242!, here easily derived, are of course precisely as
given in Ref. 25.

Finally, we remark that in the casea50 ~m50!, for which Z5x, we haves5s0, t5t0, and
the expressions~240!, ~241! and ~242! reduce to~17!, ~18! and ~20!, respectively. The results of
this section answer the last of the four questions raised in Sec. I D.

A. First negative classical Boussinesq flow

As a first example of the recovery of an exact solution we consider obtaining a solution of
~197!, ~198! by assuming constant values for the coefficients of the Riccati system as described
above. From~200!–~203! we see that such values must satisfy

1922 Andrew Pickering: The singular manifold method revisited

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



a52
l

k
1

1

2k
ux , ~244!

b52
1

4k2 ~v2kuxx!, ~245!

c5
1

l S 11
1

2
utD , ~246!

052
1

4kl
~v2kuxx! t , ~247!

and so we have

u5d12~ka1l!x12~lc21!t, ~248!

v52k2~k22a2!, ~249!

whered is an arbitrary constant~trivial since only derivatives ofU appear in our system!, and
where in~249! we have used the relationb5(k22a2)/4. Thus we obtain the exact solution given
by

UT52k log Z1d12~ka1l!x12~lc21!t, ~250!

VT52k2~kt!x2k2~k22a2!, ~251!

where of course~log Z!x52ks and~log Z!t5cks, s andt being given by~238!. Ignoringd, we
see that this is a four-parameter (a,c,k,l) solution. Asking thatUT,x andUT,t be finite for large
x and t requireska1l50 andlc2150; this then gives the one-soliton solution of~197!, ~198!.

The advantage of our approach, which identifies the solution~250!, ~251! with a WTC ex-
pansion and thus places it firmly within the framework of Painleve´ analysis, is that we can now
recover such solutions using an expansion in a single variableZ.

B. Kaup–Kupershmidt equation

In this section we consider the representation of the one-soliton solution of the Kaup–
Kupershmidt~KK ! equation38,39

E@U#[2Ut1~Uxxxx15UUxx1
15
4Ux

21 5
3U

3!x50. ~252!

Assuming that the coefficients of our Riccati system are constant, as above, we find that~252!
admits the truncated expansion inZ

UT523Z2213aZ211~2b2 1
4a

2!23abZ23b2Z2 ~253!

provided that

c52 1
16~a

42112a2b1256b2!. ~254!

Using ~240!, ~241!, and~242!, and writingb5(k22a2)/4 these expressions may be rewritten as

UT5S 34 a22k2D13k2S ak s2s2D , c52 15
4 a

2~ 3
4a

22k2!2k4. ~255!
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In the casea254k2/3, for whichm52, this gives the one-soliton of KK,

UT53k2
112 cosh„k~x1k4t1g!…

@21cosh„k~x1k4t1g!…#2
, ~256!

again obtained from an expansion in a single variableZ. This soliton solution corresponds to the
summation of an infinite Painleve´ expansion~in both x andw!. We note that the representation
~253! is related to the scalar second-order linear system~23!, ~24!.

The expansion~253! can be written

UT53~Z211bZ!x1~ 3
4a

22k2!, ~257!

and so using~237! we see easily the representation of the one-soliton solution as the second
logarithmic derivative of the product of two entire functions, as remarked in Ref. 37.

V. CONCLUSIONS

We have introduced a new and more consistent definition of SME, as the constraint onw such
that for certain choices of arbitrary data the Painleve´ expansion corresponds to the DT. This
approach, whereby we no longer expect the DT to correspond to a WTC expansion truncated at
constant level, provides a natural extension of the Weiss singular manifold method. The summa-
tion of infinite WTC expansions has been effected by construction using the higher order trunca-
tion allowed when the expansion variable satisfies a system of Riccati equations. For the examples
considered, this new SME can be obtained from the Painleve´ expansion foreither of the two
principal families, i.e. we make use of only one singular manifold. The approach developed here
is algorithmic, although of course other PDEs may require still further extensions of the singular
manifold method.
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APPENDIX: SINE-GORDON EQUATION

We give here for completeness the results of our analysis for s-G,

E@U#[Uxt2sin U50. ~A1!

These results turn out to be equivalent to those given by Weiss40 for the equation

F@V#[2~VVxt2VxVt!2V31V50, V5eiU , ~A2!

and thus we show that s-G can in fact be dealt with using the usual singular manifold method.
Equation~A2! has a Painleve´ expansion with indices$21,2% given by8,14

V5x22(
j50

`

Vj
xx j , ~A3!

whereV0
x524C, V1

x54Cx andV2
x is arbitrary. The Painleve´ expansion for the fieldU of s-G is

then
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U52 i log V52i log x2 i log~24C!1 i
Cx

C
x1U2

xx21••• , ~A4!

where

U2
x5

i

4 SV2
x

C
12SCx

C D 2D ~A5!

is an arbitrary coefficient which enters atx2. We note that the leading order logarithm in the field
U of s-G has previously been remarked upon in Refs. 41 and 42.

From ~A4! it is clear that the natural truncation for s-G is

UT52i log Z1w. ~A6!

Substitution of~A6! into ~A1! gives

E@UT#[Z22(
j50

4

Ej
ZZj50, ~A7!

and the solution of the equationsEj
Z50, together with the cross-derivative conditions~28!, ~29!, is

easily obtained as

A52 iux , B5l2, C52
1

4l2 e
iu, D52 1

2iuxt , ~A8!

wherel is a constant of integration,u5w22i log l, andE4
Z becomes

E4
Z[l2E@u#50, ~A9!

which tells us thatu is a second solution of s-G. RewritingD5(2 i /2)sinu we find that~28!
becomes2x152 iE[u], and so we have the Riccati pseudopotential

Zx511 iuxZ2l2Z, Zt5
1

4l2 e
iu2

1

4
e2 iuZ2, ~A10!

together with the DT, which again it is not necessary to obtain in advance,

UT52i log~lZ!1u. ~A11!

These results are equivalent to those given in Ref. 18 underZ5Y/l. We note that in this case
no gauge freedom arose in the solution obtained in Ref. 18; this is because, although the Riccati
system used does allow such a freedom, the DT taken was too restrictive for this to be incorpo-
rated into the solution. The fact that this freedom is still allowed in the Riccati system inY means
that the recovery of the spectral problem and DT is still much easier using our Riccati variableZ.
The derivation of the DT for s-G in Ref. 18 is subject to the same remarks as is that for MKdV
~see Sec. II B!.

Rewriting the DT in terms ofx using ~30! gives forUT the infinite expansion

UT52i log~lZ!1u52i log x1~u12i log l!22i log~11 1
2Ax!

52i log x1~u12i log l!2 iAx1
i

4
A2x21••• , ~A12!
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with correspondingS andC for this x obtained from~31! and ~A8! as

S52 iuxx1
1

2
ux
222l2, C52

1

4l2 e
iu. ~A13!

These values are a parametrization of the equation

S1
Cxx

C
2
1

2 SCx

C D 212l250, ~A14!

which is therefore the SME for s-G. The Painleve´ expansion corresponding to the DT—having the
previously arbitraryU2

x5( i /4)(Cx/C)
2 and subject to~A14!—is convergent forx in the cut plane

such that

uxu,2uux
21u. ~A15!

The SME~A14! is the same as that given previously for s-G,40,14 obtained from the constant
level truncation for~A2!. If we now consider this equation, we obtain fromUT—writing v5eiu,
and using the identitiesA52Cx/C, v524l2C—a correspondingVT :

VT5eiUT5
v
l2 Z

22524CS x212
1

2 SCx

C D D 2524Cx2214Cxx
212

Cx
2

C
. ~A16!

This is just the standard truncation for~A2! with SME ~A14!.40,14We have thus shown that this
truncation corresponds to the DT for s-G. The matrix spectral problem for s-G is obtained from
~6!, ~7! by27

x215Z212
1

2
A5

c2

c1
1
1

2
iux . ~A17!

So it is possible to obtain the DT and Lax pair~and hence the BT! for s-G using the standard
truncation for the equation in the form~A2!. The Lax pair given by Weiss40—~13!, ~14! with S, C
given by~A13!—is seen to be related to the matrix spectral problem by a simple gauge transfor-
mation.
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Painlevétype,’’ Lett. Nuovo Cimento23, 333–338~1978!.

5M. J. Ablowitz, A. Ramani, and H. Segur, ‘‘A connection between nonlinear evolution equations and ordinary differ-
ential equations ofP-type. I,’’ J. Math. Phys.21, 715–721~1980!.

6S. Kowalevski, ‘‘Sur le proble`me de la rotation d’un corps solide autour d’un point fixe´,’’ Acta. Math. 12, 177–232
~1889!.

7S. Kowalevski, ‘‘Sur une proprie´te du syste`me d’équations différentielles qui de´finit la rotation d’un corps solide autour
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transcendents, their asymptotics and physical applications, edited by D. Levi and P. Winternitz~Plenum, New York,
1992!.

33O. I. Bogoyavlenskii, ‘‘Breaking solitons in 211 dimensional integrable equations,’’ Russian Math. Surveys45, 1–86
~1990!.

34J. Satsuma, K. Kajiwara, J. Matsukidaira, and J. Hietarinta, ‘‘Solutions of the Broer–Kaup system through its trilinear
form,’’ J. Phys. Soc. Jpn.61, 3096–3102~1992!.

35L. Martı́nez Alonso and E. M. Reus, ‘‘Soliton interaction with change of form in the classical Boussinesq system,’’ Phys.
Lett. A 167, 370–376~1992!.

36A. Pickering, ‘‘The Weiss–Tabor–Carnevale Painleve´ test and Burgers’ hierarchy,’’ J. Math. Phys.35, 821–833~1994!.
37R. Conte and M. Musette, ‘‘Linearity inside nonlinearity: exact solutions to the complex Ginzburg–Landau equation,’’
Physica D69, 1–17~1993!.

38D. J. Kaup, ‘‘On the inverse scattering problem for cubic eigenvalue problems of the classcxxx16Qcx16Rc5lc,’’
Stud. Appl. Math.62, 189–216~1980!.

39A. P. Fordy and J. Gibbons, ‘‘Some remarkable nonlinear transformations,’’ Phys. Lett. A75, 325–325~1980!.
40J. Weiss, ‘‘The sine-Gordon equations: complete and partial integrability,’’ J. Math. Phys.25, 2226–2235~1984!.
41M. J. Ablowitz, A. Ramani, and H. Segur, ‘‘A connection between nonlinear evolution equations and ordinary differ-
ential equations ofP-type. II,’’ J. Math. Phys.21, 1006–1015~1980!.

42J. B. McLeod and P. J. Olver, ‘‘The connection between partial differential equations soluble by inverse scattering and
ordinary differential equations ofP-type,’’ SIAM J. Math. Anal.14, 488–506~1983!.

1927Andrew Pickering: The singular manifold method revisited

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Zero curvature formulations of dual hierarchies
Jeremy Schiff
Department of Mathematics and Computer Science, Bar Ilan University,
Ramat Gan 52900, Israel

~Received 28 July 1995; accepted for publication 24 August 1995!

Zero curvature formulations are given for the ‘‘dual hierarchies’’ of standard soli-
ton equation hierarchies, recently introduced by Olver and Rosenau, including the
physically interesting Fuchssteiner–Fokas–Camassa–Holm hierarchy. ©1996
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Through the years since the discovery of the notion of ‘‘integrability’’ in PDEs, quite a
number of integrable PDEs have been discovered, most of which remain obscure for lack of any
physical significance. For nearly 15 years now, the equation

ut12kux2uxxt13uux52uxuxx1uuxxx , ~1!

derived by Fuchssteiner and Fokas,1 has enjoyed such obscurity; but in a recent paper of Camassa
and Holm,2 this equation was rediscovered, and looks likely to be of some importance. Like
Fuchssteiner and Fokas, Camassa and Holm showed that, fork50, Eq. ~1! hasbi-Hamiltonian
structure: if we write m5u2uxx , then Eq.~1! takes the form

mt52J1
dH2

dm
52J2

dH1

dm
, ~2!

where

J15]2]3, J25]m1m] ~3!

are two compatible Hamiltonian operators, and

H25
1

2 E
2`

`

~u31uux
2!dx, H15

1

2 E
2`

`

~u21ux
2!dx. ~4!

The novelty of Camassa and Holm’s work was that they gave aphysical derivationof Eq. ~1!.
Furthermore, fork50, they found solutions to Eq.~1! which they named ‘‘peakons’’~traveling
wave solutions with a corner at their peak!; these take the simple form

u5c exp~2ux2ctu!. ~5!

More generally they showed that

u5(
i51

N

pi~ t !exp~2ux2qi~ t !u! ~6!

gives anN-peakon solution, provided$pi(t),qi(t)% solves Hamilton’s equations for the Hamil-
tonian

HA5
1

2 (
i , j51

N

pipj exp~2uqi2qj u!. ~7!
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Camassa and Holm proved this Hamiltonian system is integrable, and gave its solution forN52.
For kÞ0, solutions of Eq.~1! have been investigated numerically in Ref. 3.

Prior to Camassa and Holm’s work, Rosenau and Hyman4 made the remarkable observation
that a large class of nonlinear PDEs with nonlinear dispersion terms exhibited ‘‘compacton’’
solutions, viz. solitons with compact spatial support. Rosenau5 further showed that this phenom-
enon can also occur in integrable PDEs; in particular, if we replace (x,t) in the Fuchssteiner–
Fokas–Camassa–Holm equation~1! by (ix,i t ), we find the equation

ut12kux1uxxt13uux12uxuxx1uuxxx50 ~8!

and this admits, fork50, the compacton solution

u5c cos~x2ct!, ux2ctu<
p

2
. ~9!

~The compacton solutions of Eq.~8! are actually unstable; but it serves to illustrate that compac-
tons can occur in the framework of integrability; in addition it seems further equations in its
hierarchy have acceptable properties. I thank Philip Rosenau for information on this point.!

In the wake of this work, two apparently widely applicable constructions of integrable PDEs
with nonlinear dispersion terms have been given. The first, due to Rosenau,6 consists of applying
Lagrange transformations to soliton-bearing integrable PDEs, such as the KdV and MKdV equa-
tions. The philosophy here is that the standard solitons in such equations, despite being of infinite
spatial extent, carry finite mass and/or momentum, and hence must be of compact support when
measured in mass and/or momentum units. The second construction, due to Olver and Rosenau7

~again a rediscovery of Fuchssteiner and Fokas’ earlier work;1 the reader should also see the
modern work8 of Fokas!, starts from the observation that the two Hamiltonian operatorsJ1 ,J2
given in Eq.~3! look like recombinations of terms from the two standard Hamiltonian operators of
the KdV equation~see, e.g., Ref. 9!. In fact it turns out that if a bi-Hamiltonian integrable
hierarchy has one Hamiltonian operator which is a constant coefficient differential operator, and
another Hamiltonian operator which is a linear combination of a constant coefficient differential
operator and another operator which scales homogeneously with nonzero degree when the fields
are rescaled, then by recombining terms from these Hamiltonian operators one can construct a new
hierarchy. In Ref. 7 this procedure is followed to construct dual hierarchies of the KdV, MKdV,
Broer–Kaup–Kupershmidt, and Ito hierarchies~the NLS hierarchy is also dualized by a variant of
the general procedure!. The aim of this article is to provide yet another method of constructing
dual hierarchies, reproducing the results of Ref. 7. This time the initial observation is the similarity
of the linear system associated with the Camassa–Holm equation~the linear system is given in Eq.
~6! of Ref. 2!, and the linear system associated with the KdV equation. We will see thatzero
curvature formulationsof dual hierarchies can be obtained by a simple modification of the well-
known zero curvature formulations of the standard soliton equation hierarchies.

The original purpose of this work was twofold. First, for standard soliton equation hierarchies,
the zero curvature formulation is a springboard for revealing many other properties of the hierar-
chies. In particular, in the zero curvature formulation one sees a natural group action on the space
of solutions~the group of ‘‘dressing transformations’’!, which, when it can be made explicit, gives
rise to a host of solutions of the hierarchies~for a compact overview of how the group of dressing
transformations gives rise to the tau-function formalism for the MKdV equation, see Ref. 10!.
Alas, while the zero curvature formulations of dual hierarchies are only slight variations of those
for standard hierarchies, this slight variation complicates the explicit realization of dressing trans-
formations, and we have been unable, as of yet, to compute explicit dressing transformations and
generate solutions this way. The second hope in undertaking this work was that, while Olver and
Rosenau’s construction7 cannotbe extended to, for example, the Boussinesq~SL~3! KdV! equa-
tion ~one Hamiltonian operator is a constant coefficient differential operator, as required, but the
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other is the sum of a constant coefficient differential operator and another term that does not scale
homogeneously under any rescaling of the fields!, it was hoped that the zero curvature formula-
tions would suggest an extension. Extensive experiments in this direction—which will not be
reported here—have so far yielded only negative results. It seems quite possible that dual hierar-
chies can only be constructed for a handful of soliton equation hierarchies, and not for all the
various infinite chains of hierarchies, like the SL(N) KdV hierarchies,11 that exist.

The content of this article is therefore limited to presenting zero curvature formulations of the
existing dual hierarchies. It is to be hoped that these will be of use in further studies of these
hierarchies, and in finding solutions. We will see some minor immediate benefits of our labor; in
particular, we will see that the dual Broer–Kaup–Kupershmidt hierarchy and the dual Ito hierar-
chy are equivalent, and we clarify a little further the structure of the dual NLS hierarchy. Also, of
course, the zero curvature forms we will present can be used to derive ‘‘standard’’ Lax pairs for
the dual hierarchies, via a simple procedure we will illustrate.

~1! Zero curvature formulations. The notion of a zero curvature formulation for a soliton
equation dates back to the work of Ref. 12~and other works in Soviet literature!. In Ref. 12 it was
observed that several equations of physical interest could be written in the form

] tA5]xB1@B, A#, ~10!

whereA,B are functions ofx,t valued in the Lie algebra of the SL~2! loop group, that is,A,B are
traceless, 232 matrix valued functions ofx, t, andl. Equation~10! reduces to the desired soliton
equation by specifying a very particular dependence on the ‘‘spectral parameter’’l. In greater
generality, the majority of~if not all! soliton equation hierarchies can be written in the form

] trA5]xBr1@Br , A#, ~11!

whereA,$Br% ~r runs over an appropriate index set! are functions ofx, $t r%, andl valued in some
matrix Lie algebra, with a certain specifiedl dependence. The classic example is the KdV hier-
archy, for whichrP$1,3,5,...% and

A5S 0 1

u~x,t !1l 0D , Br5S 0 0

l~r11!/2 0D 1S polynomial of

degree
r21

2
in lD . ~12!

~Note that requiring consistency of Eqs.~11! almost fully determines the matricesBr from the
information in Eq.~12!. To precisely determine theBr ’s one should add on~1! the conditions
] trBs 5 ] tsBr 1 @Br ,Bs#, and~2! certain homogeneity conditions. For brevity, we shall overlook
these details in this article.! The utility of this formulation of the hierarchy is that Eqs.~11! are
invariant undergauge transformations:

A→jAj211]xjj21, Br→jBrj
211] trjj21, ~13!

wherej is a function ofx, $t r%, l, valued in the appropriate Lie group. The group of such gauge
transformations that leave the specifiedl dependence ofA,$Br% unchanged is the group of dress-
ing transformations13 referred to above.

Other gauge transformations that are of interest are those that map one hierarchy to another,
known as Miura maps. To illustrate, the MKdV hierarchy is given by Eqs.~11!, with rP$1,3,5,...%
again, and

A5S j ~x,t ! 1

l 2 j ~x,t ! D , Br5S 0 0

l~r11!/2 0D 1S polynomial of

degree
r21

2
in lD . ~14!
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Choosing

j5S 1 0

j ~x,t ! 1D , ~15!

the MKdV choice ofA,$Br% @Eq. ~14!# is mapped to the KdV choice~12!, with u5 j x1 j 2. ~Note
that in Ref. 10, Wilson works with an apparently different zero curvature formulation of MKdV;
he is simply using a different matrix representation of the SL~2! loop group.!

As for all the hierarchies we will consider in this article, ther51 equations for KdV and
MKdV are trivial. In each caseB15A, and the flow equations areut15ux and j t15 j x , respec-
tively. From these equations we seet1 can be identified withx. The first nontrivial equations are
obtained fromr53: for KdV,

B35S 1
4ux l2 1

2u

l21 1
2lu1 1

4uxx2
1
2u

2 2 1
4ux

D yielding ut35
1
4uxxx2

3
2uux , ~16!

and for MKdV,

B35S l j1
1
4~ j xx22 j 3! l2 1

2~ j x1 j 2!

l21 1
2l~ j x2 j 2! 2l j2 1

4~ j xx22 j 3!
D yielding j t35

1
4 j xxx2

3
2 j
2 j x . ~17!

The procedure for extracting standard Lax pairs from zero curvature formulations is as follows.
Equations~11! are consistency conditions for the equations

]xc5Ac, ] trc5Brc. ~18!

~Herec(x,t) is a vector in an appropriate representation of the appropriate Lie algebra.! For KdV
and r53, we eliminatec2 from Eq. ~18! to arrive at the KdV Lax pair:

c1xx5~u1l!c1 , c1t3
5 1

4uxc11~l2 1
2u!c1x . ~19!

The zero curvature formulations of the other standard hierarchies relevant to this article
follow; all are associated with the SL~2! loop algebra.

~1! The Broer–Kaup–Kupershmidt~BKK ! hierarchy.~This hierarchy was brought to promi-
nence by Kupershmidt in Ref. 14, where it was attributed to Broer and Kaup. It seems, however,
that it should also be attributed to Whitham. It is frequently just referred to as a ‘‘Boussinesq-
type’’ hierarchy.!

A5S l1v~x,t ! 1

u~x,t ! 2l2v~x,t !
D ,

~20!

Br5S l r 0

0 2l r D 1S polynomial of
degree r21 in l D , r51,2,3,... .

Taking

B25S l21 1
2vx2v2 l2v

lu2 1
2ux2uv 2l22 1

2vx1v2
D ~21!

yields the lowest nontrivial equation:
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v t25~ 1
2vx2v21 1

2u!x, ut25~2 1
2ux22uv !x . ~22!

~2! The NLS hierarchy.

A5S l c~x,t !

c̄~x,t ! 2l
D , Br5S l r 0

0 2l r D 1S polynomial of
degree r21 in l D , r51,2,3,... . ~23!

Taking

B25S l22 1
2cc̄ lc1 1

2cx

lc̄2 1
2c̄x 2l21 1

2cc̄
D ~24!

yields the lowest nontrivial equation

c t2
5 1

2cxx2c2c̄, c̄ t2
52 1

2c̄xx1cc̄2. ~25!

Miura map to the BKK hierarchy:

j5S 1

Ac
0

0 Ac
D ~26!

giving v52cx/2c, u5cc̄. ~The relationship of NLS to the BKK hierarchy, and many other
‘‘NLS-type’’ equations, was given in Ref. 15.!

~3! The Ito hierarchy.16

A5S 0 1

p~x,t !

l
1q~x,t !1l 0D ,

~27!

Br5S 0 0

l~r11!/2 0D 1S polynomial of

degree
r21

2
in lD 1 f ~x,t !A, r51,3,5,... .

Taking

B35S 1
4qx l2 1

2q

l21 1
2lq1~ 1

4qxx2
1
2q

21p!2~1/2l!pq 2 1
4qx

D ~28!

yields the lowest nontrivial equation

qt35
1
4qxxx2

3
2qqx1px , pt352pqx2

1
2qpx ~29!

~the substitutionp5r 2 returns the standard form of the Ito equation!. The Ito hierarchy is just one
of what we shall call thegeneralized Ito hierarchies~which in turn are just a subset of the
hierarchies discussed in Ref. 17!. For any non-negative integerM there exists a hierarchy with

A5S 0 1

l1S 0D , S5 (
n50

M

sn~x,t !l
2n, ~30!
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andBr ~r51,3,5,...! specified by the requirement that its upper right-hand entry is a polynomial of
degree~r21!/2 in l with leading order coefficient 1. ForM50 this is the KdV hierarchy, for
M51 the usual Ito hierarchy, and forM52 it is a simple exercise to show the lowest nontrivial
equation in the hierarchy takes the form

s0t35
1
4s0xxx2

3
2s0s0x1s1x , s1t35s2x2s1s0x2

1
2s0s1x , s2t352s2s0x2

1
2s0s2x . ~31!

For the KdV and MKdV hierarchies, and for the three hierarchies just listed,the zero curva-
ture formulations of the dual hierarchies are obtained by rescaling entries in the matrices A by
appropriate powers ofl, and adjusting the matrices$Br% to maintain consistency. For example,
for the Fuchssteiner–Fokas–Camassa–Holm hierarchy~the dual of KdV!, we take

A5S 0 1

u~x,t !/l11 0D , ~32!

that isA has the same form as for the KdV hierarchy, but with its~2,1! entry rescaled by a factor
l21. ChoosingBr of the form ‘‘polynomial of degree~r21!/2 in l plus a multiple ofA,’’ it is
straightforward to obtain the flows

utr5@~]xu1u]x!~
1
2]x

322]x!
21# r21/2ux . ~33!

These are the flows of the Fuchssteiner–Fokas–Camassa–Holm hierarchy; in particular, setting
r51, and definingv via u5 1

2vxx22v, we obtain

2v t32
1
2vxxt356vvx2vxvxx2

1
2vvxxx , ~34!

a simple rescaling of Eq.~1!. Note the form ofBr is also obtained from that of the KdV hierarchy,
by rescaling its~2,1! entry by a factorl21.

For the dual of MKdV we take

A5S j ~x,t !/Al 1

1 2 j ~x,t !/Al
D . ~35!

This is of the same as for MKdV@Eq. ~14!#, after a rescaling of the~1,1! and~2,2! entries byl21/2,
and of the~2,1! entry byl21. The appropriate choice forBr this time cannot be found from a
rescaling of the MKdV form: in particular, powers ofAl appear in the off-diagonal terms ofBr .
However,Br can be completely specified~up to an unimportant overall factor! by the requirement
that the sum of its off-diagonal elements be a polynomial inl of degree~r21!/2. For r51 we
haveB15A, as usual, and forr52 we find

B35S Al~ j2 1
4mxx!1~1/Al! js l1s1 1

2Almx

l1s2 1
2Almx 2Al~ j2 1

4mxx!2~1/Al! js
D , ~36!

wherem is related toj by j5 1
4mxx2m, ands5 1

2(
1
4mx

22m2). This gives the flow equation

j t35F j2 Smx
2

4
2m2D G

x

, j5 1
4mxx2m ~37!

~cf. Ref. 7!. The general flow is

j tr5@]xj ]x
21 j ~ 1

4]x
221!21# r21/2j x . ~38!
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Note that there is no obvious Miura map from the dual of MKdV to the dual of KdV. The small
modifications we have made to the matricesA in each case have been sufficient to destroy this,
and in general Miura maps do not survive the dualization procedure. We will see that it is also the
case that new Miura maps can emerge. It remains an interesting open question as to whether there
exists a modification of the Fuchssteiner–Fokas–Camassa–Holm equation.

We now list the zero curvature forms for the duals of the other hierarchies listed above.
~1! The dual BKK hierarchy. We take

A5S 11v~x,t !/l 1/Al

u~x,t !/Al 212v~x,t !/l
D ,

~39!

Br5S b~11v~x,t !/l!2 1
2bx b/Al

Alg1ub/Al 2b~11v~x,t !/l!1 1
2bx

D , r51,2,3,...,

where

b5l r211 (
n50

r22

bn~x,t !l
n, g5 (

n50

r22

gn~x,t !l
n. ~40!

It is straightforward to check this gives the flow

] tr S vuD5@S R21# r21S vxuxD , ~41!

where

S 5S 0 ]xv

2v ]xu1u]x
D , R5S 1 1

2]x
22]x

2]x22 0
D . ~42!

S R21 is ~up to simple rescalings! the recursion operator found in Ref. 7, but in Ref. 7 it is
factored asS̃ R̃21, where

S̃ 5S S ]x 0

0 2D 5S 0 2]xv

2v]x 2~]xu1u]x!
D ,

~43!

R̃5RS ]x 0

0 2D 5S ]x ]x
222]x

2]x
222]x 0

D .
To write ther52 flow in local form, in Ref. 7 the substitution

S vuD5R̃]x
21S VU D5SV22U1Ux

22V2Vx
D ~44!

is introduced, giving the flow

] t2SV22U1Ux

22V2Vx
D5S 2~UV22U21UUx!x

~28UV1V222UVx!x
D . ~45!

From the zero curvature approach it is rather more natural to perform the substitution
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S vuD 5S Ṽ
1
2Ũxx22Ũ22Ṽ2Ṽx

D ~46!

giving the flow

] t2S Ṽ
1
2Ũxx22Ũ22Ṽ2Ṽx

D 5S ~ŨṼ!x

~ 1
2ŨŨxx1

1
4Ũx

22~ŨṼ!x1Ṽ222ŨṼ23Ũ2!x
D , ~47!

or, equivalently,

] t2S Ṽ
1
2Ũxx22Ũ D 5S ~ŨṼ!x

~ 1
2ŨŨxx1

1
4Ũx

21Ṽ223Ũ2!x
D , ~48!

an equation that will appear again later. Note that the relationship ofU,V and Ũ,Ṽ is given by

V5Ṽ2 1
2Ũx1Ũ, U5 1

2Ũ. ~49!

~The origin of this variableŨ is thatb introduced in Eqs.~41! and~42! takes the forml1Ũ for
r52.!

~2! The dual NLS hierarchy. To obtain the dual NLS hierarchy of Ref. 7, take

A5S 1 c~x,t !/Al

c~x,t !/Al 21
D , Br5S a Alb

Alg 2a
D , r51,2,3,..., ~50!

where

a5l r211 (
n50

r22

an~x,t !l
n, b5 (

n50

r22

bn~x,t !l
n, g5 (

n50

r22

gn~x,t !l
n ~51!

to get the flows

] trS c

c̄ D 5F S c]x
21c̄ 2c]x

21c

2c̄]x
21c̄ c̄]x

21c D S 1
2]x21 0

0 1
2]x11

D 21G r21S 2c

22c̄ D . ~52!

Note the unusual form of ther51 flow. For r52 we setc51
2vxe

2x, c̄5 1
2wxe

22x, to get the flow

] t2]xS vwD5vwS vx
2wx

D , ~53!

with conserved quantityvxwx as noted in Ref. 7.
The forms~50! and~51! are not the most natural guess for the zero curvature formulation in

this case; for example, we note that the ansatz does not permit choosingB15A, which is why the
r51 equation obtained above is nonstandard. We therefore consider the more general ansatz

A5S 1 c~x,t !/Al

c̄~x,t !/Al 21
D , Br5S a b/Al

g/Al 2a
D , r51,2,3,..., ~54!

where
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a5l r211 (
n50

r22

an~x,t !l
n, b5 (

n50

r21

bn~x,t !l
n, g5 (

n50

r21

gn~x,t !l
n. ~55!

Equations~50! and~51! are just this with the restrictionb05g050. It turns out that the ansatz~54!
and~55! is consistent providedb05cM(x,t), g05c̄M(x,t) for some functionM(x,t) ~there is
a small further freedom; consistency only determines thean’s up to a constant, which can be fixed
by a homogeneity condition!. In particular, we can now chooseB15A ~for this b05c, g05c̄! to
recover a standardr51 flow equation. For the choiceb05c, g05c̄ it is straightforward to find the
r52 flow equation:

] t2S vwD5S vxx1wvvx
wxx2wvwx

D . ~56!

Defining new coordinatesx8,t28 , via ]x85]x , ] t
28

5 ] t2 2 ]x , we see Eq.~56! is equivalent to Eq.

~53!. This reflects a simple general symmetry of the system~11!: addingcA ~c constant! to each
Br can be exactly cancelled by a change of coordinates fromx,t r to x8,t r8 defined by

]x85]x , ] t
r8
5] tr2c]x . ~57!

Taking b05c, g05c̄ in the ansatz~54! and ~55! is, taking into account the freedom to add a
constant toa0, equivalent to addingA to each of theBr ’s of the ansatz~50! and ~51!, thus
explaining the relationship of Eqs.~53! and~56!. ~Note this freedom we have just mentioned does
not exist inB1, so the twor51 equations we have obtained above arenot related by a change of
coordinates of the form~57!!!

At this stage it may be appropriate to mention another general symmetry of Eq.~11!, for the
case whereA,Br are traceless 232 matrices. Writing

A5A1E
11A2E

21A0E
0, Br5Br1E

11Br2E
21Br0E

0, ~58!

where

E15S 0 1

0 0D , E25S 0 0

1 0D , E05
1

2 S 1 0

0 21D , ~59!

Eq. ~11! is symmetric under

A1→laA1 , A2→l2aA2 , A0→A0 ,
~60!

Br1→laBr1 , Br2→l2aBr2 , Br0→Br0 ,

for any constanta. In both the dual BKK and dual NLS hierarchies, the form ofA has been
obtained by scaling the~1,1! and~2,2! entries ofA in the standard hierarchy byl21, and the~1,2!
and ~2,1! entries byl21/2. The symmetry~60! allows one to express the rescaling of the compo-
nents ofA necessary to pass from the standard to the dual hierarchies in a variety of equivalent
ways. We will exploit this shortly.

~3! The dual Ito and generalized Ito hierarchies. For the dual of the Ito hierarchy we take
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A5S 0 1

11q~x,t !/l1p~x,t !/l2 0D ,
~61!

B5S 2 1
2bx b

b~11p/l1q/l2!2 1
2bxx

1
2bx

D , r51,3,5,...,

with

b5l~r21!/21 (
n50

~r23!/2

bn~x,t !l
n. ~62!

The matrixA has been obtained from that of the standard Ito hierarchy by the same scaling used
to obtain Fuchssteiner–Fokas–Camassa–Holm from KdV, that is, the~2,1! entry ofA has been
multiplied byl21. For r53 we haveb5l1b(x,t), and we find that we can takep5 1

2bxx22b, to
obtain the flow

~ 1
2bxx22b! t35qx1bxxbx1

1
2bbxxx26bbx , qt352qbx1bqx . ~63!

On substitutingq5w2 this becomes

~ 1
2bxx22b! t35~w21 1

4bx
21 1

2bbxx23b2!x , wt3
5~wb!x , ~64!

that is, we have recovered the lowest nontrivial flow in the dual BKK hierarchy, Eq.~48!.
The relationship between the dual BKK hierarchy and the dual Ito hierarchy we have just seen

is an instance of a Miura map ‘‘born’’ after dualization. Exploiting the symmetry~60! of Eq. ~11!,
with a51

2, we observe that the BKK hierarchy has a zero curvature formulation with

A5S 11v~x,t !/l 1

u~x,t !/l 212v~x,t !/l
D . ~65!

Via gauge transformation with

j5S 1 0

11v~x,t !/l 1D ~66!

this is brought to the form

A5S 0 1

11~u12v1vx!/l1v2/l2 0D , ~67!

which is of the form used in Eq.~61!, and therefore defines a Miura map from the dual BKK
hierarchy to the dual Ito hierarchy. When written out in the variables we have used to write the
lowest nontrivial flows of the dual BKK and dual Ito hierarchies, the Miura map becomes an
equivalence.

Finally, we note that the generalized Ito hierarchies can be dualized in the same way as the
KdV and Ito hierarchies, that is, we take

A5S 0 1

11S 0D , S5 (
n50

M

sn~x,t !l
2n21, ~68!

1937Jeremy Schiff: Zero curvature formulations of dual hierarchies

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



with Br ~r51,3,5,...! specified by the requirement that its upper right-hand entry is a polynomial
of degree~r21!/2 in l with leading order coefficient 1. Thus we have at least one infinite family
of integrable hierarchies that affords dualization.
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We study Killing vector fields in asymptotically flat space–times. We prove the
following result, implicitly assumed in the uniqueness theory of stationary black
holes. If the conditions of the rigidity part of the positive energy theorem are met,
then in such space–times there are no asymptotically null Killing vector fields,
except if the initial data set can be embedded in Minkowski space–time. We also
give a proof of the nonexistence of nonsingular~in an appropriate sense! asymp-
totically flat space–times that satisfy an energy condition and that have a null ADM
four-momentum, under conditions weaker than previously considered. ©1996
American Institute of Physics.@S0022-2488~96!01604-1#

I. INTRODUCTION

A prerequisite for an analysis of stationary black holes is the understanding of properties of
Killing vector fields in asymptotically flat space–times. There exist various papers analyzing
properties of Killing vector fields in asymptotically flat space–times.1–4 These papers do not,
however, seem to give answers to the questions asked here. Moreover, the asymptotic conditions
here are considerably weaker than considered in those references. Consider an asymptotically flat
partial Cauchy surfaceS in a space–time (M ,gmn) with a Killing vector fieldXm. In the case of
a stationary black hole one is interested in situations whereXm is time-like in the asymptotic
regions.@Here we say that an asymptotically flat space–time (M ,gmn) with a Killing vector field
Xm is stationary ifXm is time-like in the asymptotic regions ofM .# A natural question to ask is,
how doesXm behave in the asymptotic regions? Now it is easily seen from the equations

“m“nXa5Rl
mnaXl ~1.1!

~which are a well-known consequence of the Killing equations! and from the asymptotic flatness
conditions~cf. Propositions 2.1, Sec. II, for a precise description of the asymptotic conditions
needed here! that there exist constantsAm such that every Killing vector fieldXm that is time-like
for r>R for someR satisfies

Xm2Am→ r→`0,
~1.2!

habA
aAb<0.

Herehab is the Minkowski metric, and we use the signature~2,1,1,1!. It should be emphasized
that the requirement of time-likeness ofXm for large r doesnot exclude the possibility that
habA

aAb vanishes. Indeed, an explicit example of a metric~not satisfying any reasonable field

a!On leave of absence from the Institute of Mathematics, Polish Academy of Sciences, Warsaw.
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equations! with an everywhere time-like Killing vector that is asymptotically null can be found in
Ref. 5~cf. the Remark preceding Theorem A.1, Appendix A of Ref. 5.~Let us point out that by a
null vector we mean a nonzero vector of zero Lorentzian length.! Now in the uniqueness theory of
black holes it is customary to assume thatAm5d0

m in an asymptotically flat coordinate system in
whichS is given by an equationx050. If the orbits of the Killing vector fieldXm are complete~at
least in the asymptotic region! and if Am is time-like, thenS can be deformed~‘‘boosted’’! to a
new partial Cauchy surface for whichAm5d0

m ~in an appropriately redefined asymptotically flat
coordinate system!. If, however,Xm is asymptotically null@by which we mean that the vectorAm

appearing in~1.2! is null#, then no such deformation is possible and we are faced with the
intriguing possibility of existence of stationary space–times in which the Killing vector cannot be
reduced to a standard form, where the flat background metric is diagonal and the vectorAm of
~1.2! equalsd0

m . As has been argued in Ref. 6, the existence of such Killing vector fields does not
seem to be compatible with the rigidity part of the positive energy theorems. Here we make the
arguments of Ref. 6 precise and show the following~the reader is referred to Theorem 3.4 for a
more precise formulation!.

Theorem 1.1:Let ~M,gmn! be a space–time with a Killing vector field that is asymptotically
null along an (appropriately regular) asymptotically flat space-like hypersurfaceS. Then the
ADM energy-momentum vector ofS vanishes.

To say more about space–times considered in Theorem 1.1, one can use the positive energy
theorem. In Sec. IV below we prove the following.

Theorem 1.2„‘‘Time-like future-pointing four-momentum theorem’’ …: Under the condi-
tions of Theorems 4.1 and 4.2 below, suppose that the initial data~S,gij ,Kij! are not initial data for
Minkowski space–time. Then the ADM energy-momentum vector pm of S satisfies

p0.A(
i51

3

~pi !2.

~Various variants of Theorem 1.2 are, of course, well known; cf. Sec. IV for a detailed discussion.!
Theorem 1.1 can be used together with Theorem 1.2 to obtain the following.
Theorem 1.3: Let ~M,gmn! be a maximal globally hyperbolic space–time with a Cauchy

surface satisfying the requirements of Theorems 4.1 and 4.2. Let Xm be a Killing vector field on M
that is asymptotically null along an asymptotically flat Cauchy surface. Then Xm is everywhere
null and ~M,gmn! is the Minkowski space–time.

Theorem 1.3 and the results of Ref. 7@cf. also Ref. 6~Theorem 1.7!# show that there is no loss
of generality in assuming thatAm5d0

m in, say electrovacuum, maximal globally hyperbolic space-
times with an appropriately regular asymptotically flat Cauchy surface. Let us mention that the
results here settle in the positive Conjecture 1.8 of Ref. 6.

This paper is organized as follows. In Sec. II we discuss some general properties of Killing
vector fields in asymptotically flat space–times. In order to minimize the number of assumptions,
we adopt a 311-dimensional point of view; the various advantages for doing that are explained at
the beginning of Sec. II. The main result there is Proposition 2.1, which establishes the asymptotic
behavior of Killing vectors along asymptotically flat space-like surfaces. In that section we also
introduce the notion ofKilling development, which turns out to be very useful in our analysis. In
Sec. III we study the relationship between the ADM four-momentum and the asymptotic behavior
of the Killing vector. The results there can be summarized as follows: IfXm→ r→`A

m along an
asymptotically flat space-like surfaceS, then the ADM four-momentum is proportional toAm. The
proportionality constant is zero whenAm is not time-like. Let us point out that some similar results
can be found in Ref. 1. However, in that reference the possibility of asymptotically null Killing
vector fields is not taken into consideration. Also, in Ref. 1, rather strong asymptotic conditions
are imposed. In a sense most of the work here consists in showing that the asymptotic conditions
needed to be able to obtain the desired conclusions can actually be derived from the decay
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conditions on the matter sources and from the hypothesis of existence of Killing vector fields. In
Sec. IV we prove a positive energy theorem with hypotheses and asymptotic conditions appropri-
ate for our purposes. In Theorems 4.1 and 4.2 there are improvements of known results; cf. the
beginning of Sec. IV for a more detailed discussion.

II. KILLING VECTORS AND SPACE-LIKE HYPERSURFACES

Consider a space–time (M ,gmn) with a Killing vector fieldXm,

“mXn1“nXm50, ~2.1!

where“m is the covariant derivative operator of the metricgmn . Let S be a space-like hypersur-
face inM and suppose that onS the field of unit normalsnm can be defined; this will be the case,
e.g., if (M ,gmn) is time orientable. OnS define a scalar fieldN and a vector fieldYi by the
equations

N52nmX
m, ~2.2!

gi j Y
i dxj5 i * ~gmnX

m dxn!, ~2.3!

wherei denotes the embedding ofS intoM . We use the symbolgi j to denote the pull-back metric
i * gmn . Equation~2.1! with m5 i andn5 j reads as

2NKi j1LYgi j50, ~2.4!

whereL denotes the Lie derivative andKi j is the extrinsic curvature tensor ofi (S) in (M ,gmn),
defined as the pull-back toS of “mnn . ~Ki j as defined here is2Ki j as in Ref. 8; however,Ji as
defined here coincides withJi as defined there.! Set

SN.05$pPS:NÞ0%.

In a neighborhood ofSN.0 we can introduce a coordinate system (u,xi) in whichXm]m5]u and
in which SN.0 is given by the equationu50. The metric on this neighborhood takes the form

gmn dx
m dxn52N2 du21gi j ~dx

i1Yi du!~dxj1Yj du!, ~2.5!

with some functions that do not depend uponu. Let Gmn be the Einstein tensor ofgmn , that is,
Gmn5Rmn2(gabRab/2)gmn , whereRmn is the Ricci tensor ofgmn . We have the 311 decompo-
sition formulas~cf. e.g., Ref. 8!,

2Gmnn
mnn53R1K22Ki jKi j , ~2.6!

Gimn
m5Dj~K

i j2gklKklg
i j !, ~2.7!

Gi j2
1
2g

klGklgi j5
3Ri j1KKi j22KikK

k,

2N21~LYKi j1Di D jN!2 1
2Gmnn

mnngi j . ~2.8!

Heregi j is the tensor inverse togi j , K5gklKkl ,
3Ri j is the Ricci tensor of the metricgi j , and

3R 5 gi j 3Ri j . All the above is, of course, well known; we have written it down in detail to fix the
notation and to spell out the conditions needed for the definition of the fieldsN and Yi . In
particular, we wish to emphasize that we did not need to assume completeness of the orbits ofXm,
we did not need to assume that the orbits ofXm intersectS only once, etc. It is, however, the case
that those last properties are needed for several arguments, e.g., in the uniqueness theory of black
holes~cf., e.g., Ref. 6!. By way of example, consider a maximal globally hyperbolic space–time
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(M ,gmn) with an asymptotically flat Cauchy surface with compact interior, with a metric satisfy-
ing the Einstein–Yang–Mills–Higgs equations, and with a Killing vector fieldXm. While one
expects the orbits ofXm to be complete~cf., e.g., Ref. 7 for an analysis in the vacuum case!, no
proof of such a result has been established so far. It is therefore of interest to establish various
properties of space–times (M ,gmn) with Killing vectors with a minimal amount of global assump-
tions onM . As one is often interested in globally hyperbolic space–times it does not seem to be
overly restrictive to assume the existence inM of a space-like hypersurfaceS satisfying the
hypotheses spelled out at the beginning of this section. The construction above yields then a scalar
field N and a vector fieldYi defined onS, such that Eqs.~2.4!–~2.8! hold. Consider then a set
(S,gi j ,Ki j ,N,Y

i). We shall call theKilling development of(S,gi j ,Ki j ,N,Y
i) the space–time

(M̂ ,ĝmn), where

M̂5R3SN.0 ,

and whereĝmn is given by the equation

ĝmn dx
m dxn52N̂2 du21ĝi j ~dx

i1Ŷi du!~dxj1Ŷj du!,
~2.9!

N̂~u,xi !5N~xi !, ĝi j ~u,x
i !5gi j ~x

i !, Ŷi~u,xi !5Yi~xi !.

Here theu coordinate runs over theR factor inR3SN.0. Clearly the vector fieldX
m]m5]u is a

Killing vector, so that

“̂mXn1“̂nXm50, ~2.10!

where“̂m is the covariant derivative operator of the metricĝmn . Note that

Xi uu505Yi , N̂uu505N. ~2.11!

Consider the extrinsic curvature tensorK̂ i j of the slicesu5const. In general,K̂ i j will have nothing
to do with the tensor fieldKi j . Suppose, however, that~2.4! holds. Equation~2.10!, with i5m and
n5 j ; Eqs.~2.11! and ~2.4! give, then, atu50,

K̂ i j5Ki j . ~2.12!

SinceK̂ i j is u independent, it follows that this last relation holds throughoutM̂ . One also notices
that ~2.12! will hold if and only if ~2.4! holds.

Consider, next, the Einstein tensorĜmn of the metricĝmn . It is given by the hatted equivalent
of Eqs. ~2.6!–~2.8!. Given the set (S,gi j ,Ki j ,N,Y

i), one can define onSN.0 a scalar fieldr, a
vector fieldJi , and a tensor fieldt i j via the equations

2r53R1K22Ki jKi j , ~2.13!

Ji5Dj~2Ki j1Kgi j !, ~2.14!

t i j2
1
2g

kltklgi j5
3Ri j1KKi j22KikK

k
j

2N21~LYKi j1Di D jN!2~r/2!gi j . ~2.15!

If Eq. ~2.4! holds, it follows from~2.11!–~2.12! that we will have

Ĝmnn̂
mn̂n~u,xl !5r~xl !, Ĝinn̂

n~u,xl !52Ji~x
l !, Gi j ~u,x

l !5t i j ~x
l !, ~2.16!

wheren̂m is the unit normal to the slicesu5const.
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It is of interest to consider the case of covariantly constant Killing vector fields. In that case
on a hypersurfaceS as at the beginning of this section, we will have

NKi j1DiYj50, ~2.17!

Ki jY
j1DiN50. ~2.18!

Let us show that if~2.17!–~2.18! hold, then the vector fieldXm]m5]m on the Killing development
(M̂ ,ĝmn) of (S,gi j ,Ki j ,N,Y

i) will be covariantly constant. To see that, note that Eqs.~2.17!,
~2.11!, and~2.12! imply

“̂ iXj50,

at u50, hence, throughoutM̂ . Equation~2.18! similarly gives

“̂ iX050.

As Xm satisfies~2.10!, the equations“̂mXn50 readily follow.
When considering space–times with symmetries, it is essential to have precise information on

the behavior of Killing vector fields in the asymptotic regions. The following is a straightforward
consequence of Eqs.~2.13! and ~2.15! ~cf. also Ref. 9, Theorem 3.3 and Proposition 3.2!. The
notationOk is defined in Appendix A. An outline of the proof is given in Appendix C.

Proposition 2.1: Let R.0 and let ~gij ,Kij! be initial data onSR[R3\B~R!, satisfying

gi j2d i j5Ok~r
2a!, Ki j5Ok21~r

212a!, ~2.19!

with some k.1 and some0,a,1. Let N be a C2 scalar field and Yi a C2 vector field onSR, such
that Eqs. (2.4), (2.13), and the equation

N~t i j2
1
2g

kltklgi j !5N~3Ri j1KKi j22KikK
k
j !2LYKi j2Di D jN2N~r/2!gi j ,

hold, with somer and tij satisfying

uru1ut i j u<C~11r !222a. ~2.20!

Then there exists numbersLmn 5 L@mn# , such that we have

Yi2L i j x
j5Ok~r

12a!, N1L0ix
i5Ok~r

12a!. ~2.21!

If Lmn50, then there exist numbers Am, such that we have

Yi2Ai5Ok~r
2a!, N2A05Ok~r

2a!. ~2.22!

If Lmn5Am50, then Yi[N[0.
Let us remark that ifa51, then Proposition 2.1 holds with the functionr 12a in the right-hand

side of Eq. ~2.21! replaced by 11ulog r u; similarly in ~2.22!, r2a has to be replaced by
r21~11ulog r u!.

A Killing vector field for whichLmn50 will be calledasymptotically translational.
For further use let us mention the following: Consider (gi j ,Ki j ), such that~2.19! holds, and

suppose that (N,Yi) satisfy ~2.22! with someA0Þ0. Suppose finally that~2.4! is weakened to

2NKi j1LYgi j5Ok21~r
2b!, ~2.23!

with someb>1. In that case~2.16! will be replaced by
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Ĝmnn̂
mn̂n2r5Ok21~r

2min~11a,b!2b!, Ĝinn̂
n1Ji5Ok22~r

2b21!,
~2.24!

Ĝi j2t i j5Ok22~r
2b21!.

III. ADM FOUR-MOMENTUM IN SPACE–TIMES WITH ASYMPTOTICALLY
TRANSLATIONAL KILLING VECTORS

In this section we address the following question: Consider a space–time with an asymptoti-
cally flat space-like surfaceS, and with a translational Killing vector fieldXm, that is, there exist
constantsAm such thatXm→ r→`A

m alongS. Then, is it true that
~1! If AmAm>0, then the ADM four-momentumpm vanishes.
~2! If AmAm,0, thenpm is proportional toAm.
We shall show that this is indeed the case, using the three-dimensional framework discussed

in Sec. II. Proposition 2.1 in that section justifies our fall-off conditions on the fieldsN andYi .
The results here are actually slightly more general than stated above, in that we allow for fields
that satisfy the relevant Killing equations up to terms that decay at an appropriate rate; cf. below
for the precise conditions.

Proposition 3.1: Let R.0 and let ~gij ,Kij! be initial data onSR[R3\B~R!, satisfying

gi j2d i j5O2~r
2a!, Ki j5O1~r

212a!, a. 1
2, ~3.1!

Ji5O~r232e!, r5O~r232e!, e.0. ~3.2!

Let N be a C1 scalar field and Yi a C1 vector field onSR, such that

N2A05O1~r
2a!, Yi→ r→`A

i , ~3.3!

for some set of constants~Am!Ó0. Suppose further that

2NKi j1LYgi j5O1~r
222e!. ~3.4!

Let pm be the ADM four-momentum ofSR. Then
(1) If A050, then p050.
(2) If A0Þ0, then pm is proportional to Am.
Remark:The pointwise decay estimates assumed above can be weakened to weighted Sobolev

spaces conditions. To avoid a tedious discussion of technicalities we shall, however, not consider
such fields here.

Proof:Without loss of generality we may assume that botha ande are strictly smaller than 1.
Equation~3.3! and a simple analysis of Eq.~3.4! ~cf., e.g., the proof of Proposition 2.1, Appendix
C! show that

Yi2Ai5O2~r
2a!. ~3.5!

By our asymptotic conditions, Eq.~3.4! can be rewritten as

gi j ,kA
k1Yi

, j1Yj
,i522A0Ki j1O1~r

222e!, ~3.6!

and we have redefinede to be min~e,2a21!.0. The momentum-constraint equation reads as

] iKi j5] jK1O~r232e!, ~3.7!

whereK5gi j Ki j . Taking the divergence of~3.6! and using~3.7! gives

gi j ,k jA
k1DdY

i1] i~Y
j
, j !522A0K ,i1O~r232e!. ~3.8!
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HereDd5( i] i] i . Contractingi with j in ~3.6! allows us to eliminate] jY
j in ~3.8! in terms ofK ,i ,

so that~3.8! leads to

DdY
i52A0K ,i2~gi j , j2

1
2gj j ,i ! ,kA

,k1O~r232e!.

In what follows we shall freely make use of properties of harmonic functions onSR that were
established in, e.g.,~Refs. 10–12!. IncreasingR if necessary we may choose harmonic coordinates
on SR ,

] i~g
i jAdetg!50,

with

gi j2d i j5O1~r
2a!.

@There arises a slight difficulty here, related to the fact that the metric might not satisfy the
conditions~3.1! in harmonic coordinates due to a loss of classical differentiability. All the details
of the proof as written here can be justified if a Ho¨lder differentiability indexl is added in Eqs.
~3.1!–~3.2!. We wish to stress that the statement of our result is correct as stated. This can be
verified by keeping track of weighted Sobolev differentiability of various error terms that arise in
our equations, making use of the estimates of Ref. 11. In order to make the argument more
transparent we have chosen to present our proof without the introduction of weighted Sobolev
spaces.#

If A050, definew to be identically zero; otherwise letw5O1(r
12a) be a solution of

Ddw52A0K. ~3.9!

SettingZi5Yi2Ai2w ,i , one is led to

DdZ
i5O~r232e!,

so that there exist numbersa iPR such that

Zi5
a i

r
1O1~r

212e!.

A contraction overi and j in ~3.6! gives

Zi ,i52
a ixi

r 3
1O~r222e!52

1

2
gii ,kA

k1O~r222e!. ~3.10!

The scalar constraint equation in harmonic coordinates gives

Ddgii5O~r232e!⇒gii531
b

r
1O1~r

212e!, ~3.11!

for some constantb. Equation~3.11! inserted in the formula for the ADM mass yields

m5
1

16p E
S`

~gi j , j2gj j ,i ! dSi52
1

32p E gj j ,i dSi5
b

8
. ~3.12!

Inserting this in~3.10!, one is led to

a i524mAi ,

1945R. Beig and P. T. Chruściel: Asymptotically translational Killing vectors

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



so that one finally obtains

Yi5Ai S 12
4m

r D1w ,i1O1~r
212e!. ~3.13!

Suppose first thatA050. In this case we necessarily haveAiÓ0, and rescalingXm]m if necessary,
we can choose coordinates so thatAi5dz

i . Equation~3.6! now reads as

gAB,z5O~r222e!, ~3.14!

~gzz12Yz! ,z5O~r222e!, ~3.15!

gzA,z5S 4mr D
,A

1O~r222e!. ~3.16!

Let r25x21y2. For r>R, Eq. ~3.16! gives

05xAE
2`

`

gzA,z dz524mE
2`

` dz

~11z2!3/2
1E

2`

`

O~r222e!dz.

To estimate the second integral, it is convenient to consider separately the integrals*2`
2r , *2r

r , and
*r

` . Elementary estimates then show that this integral isO(r2e); passing to the limitr→`, one
subsequently obtainsm50, which establishes point 1. To establish point 2, suppose thatA0Þ0.
After a rescaling ofXm if necessary, we can, without loss of generality, assume thatA051. Eq.
~3.6! thus gives

Ki j52 1
2$Y

i
, j1Yj

,i1gi j ,kA
k%1O1~r

2122a!52 1
2$Z

i
, j1Zj

,i12w ,i j1gi j ,kA
k%1O1~r

2122a!.
~3.17!

Consider the ADM momentumpi @the unusual sign in Eq.~3.18! is due to our convention onKi j ;
cf. the remark in parentheses after Eq.~2.4!#:

pi52
1

8p E
S`

~Ki
j2Kd i

j !dSj . ~3.18!

After insertion of~3.17! in ~3.18!, one finds

pi5
1

16p E
S`

~Zi , j1Zj
,i1Ajgik,k!dSj . ~3.19!

Here thew contribution drops out because of the following calculation:

E
S`

~Ddwd i j2] i ] jw!dSj 5E
S`

~]kw d i j2] jw dki! ,k dSj50. ~3.20!

We have also used the identities

gi j ,kA
k5~gi j A

k2gikA
j !k1gik,kA

j ,

and integration by parts to rearrange thegi j ,kA
k terms. Inserting~3.13! in ~3.19! and using the

harmonic coordinates condition, one obtains

pi5mAi ,
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which had to be established. h

Point 1 of Proposition 3.1 suggests strongly that the ADM four-momentum must vanish when
Am is space-like. We can show that if we assume some further asymptotic conditions on the fields
under consideration. A similar result has been established previously in Ref. 1 under rather stron-
ger asymptotic and global conditions.

Proposition 3.2: Under the hypotheses of Proposition 3.1, suppose further that N is C2 and
that

Nt i j5O~r232e!. ~3.21!

If

~A0!2,(
i
AiAi , ~3.22!

then pm vanishes.
Proof: It follows from Eqs.~3.3!, ~3.4!, and~3.21! that

Yi2Ai5O2~r
2a!, N2A05O2~r

2a!. ~3.23!

Consider first the caseA050; by Proposition 3.1 we havep050. Let c be any function onSR

such thatc ,z5N. Equation~3.21! gives

~Ki j2] i ] jc! ,z5O~r232e!,

so that byz integration one obtains

Ki j2] i ] jc5O~r222e!.

Inserting this in Eq.~3.18!, one obtains

pi52
1

8p E
S`

~Ddcd i j2] i ] jc!dSj

52
1

8p E
S`

~]kcd i j2] jc dki! ,k dSj

50. ~3.24!

Consider, next, the caseA0Þ0; let (M̂ ,ĝmn) be the Killing development of
(SR ,gi j ,Ki j ,N,Y

i) as constructed in Sec. II. As discussed in the paragraph preceding Eq.~2.24!,
Eqs.~3.2! and ~3.21! imply that the Einstein tensorĜmn of ĝmn will satisfy the fall-off condition

Ĝmn5O~r232e!. ~3.25!

Let Lm
n be the matrix of a Lorentz transformation such thatL0

nA
n50. Further, letLS be the

image underLm
n of SRùM̂ in M̂ . On LS the Killing vectorXm satisfiesX0→ r→`0. Equation

~3.25! shows that we can apply the previous analysis to conclude that the ADM four-momentum
of LS vanishes. Moreover, the decay condition~3.25! ensures~cf. e.g., Ref. 13! thatpm transforms
as a Lorentz vector under Lorentz transformations of hypersurfaces, so that the ADM four-
momentum ofSR vanishes as well.

It is of interest to consider Killing vector fields that are covariantly constant. As discussed in
Sec. II, in such a case Eqs.~3.26!–~3.27! below will hold ~with 0 on the right-hand sides!. We
have the following result, which does not cover asymptotically null Killing vectors.
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Proposition 3.3: Under the hypotheses of Proposition 3.1, assume, moreover, that N is C2;
that Eq. (3.21) holds and that

NKi j1DiYj5O1~r
222e!, ~3.26!

Ki jY
j1DiN5O1~r

222e!, AmAmÞ0. ~3.27!

Then the ADM four-momentum pm vanishes.
Proof: Let (M̂ ,ĝmn) be the Killing development of (SR ,gi j ,Ki j ,N,Y

i), as constructed in Sec.
II. From what is said in that section@cf. the discussion following Eqs.~2.17!–~2.18!#, it follows
thatXm]m5]u will satisfy

“̂mXn5O1~r
222e!. ~3.28!

As is well known,14,1 we have

pmA
m5 lim

r→`

1

8p E “̂

[mXn] dSmn ~3.29!

~cf., e.g., Ref. 13 for a proof under the present asymptotic conditions!. By ~3.28! we have
pmA

m50. Now, by Proposition 3.1,pm is proportional toAm , so ifA
mAmÞ0 the result follows.h

The main result of this section addresses the case of asymptotically null Killing vectors.
Unfortunately the proof below requires more asymptotic regularity than one would wish to have.
It would be of some interest to find out whether or not the result below is sharp, in the sense that
decay conditions on three derivatives of the metric and two derivatives of the extrinsic curvature
are necessary.

Theorem 3.4:Let R.0 and let (gij ,Kij) be initial data onSR5R3\B(R), satisfying

gi j2d i j5O31l~r2a!, Ki j5O21l~r212a!, ~3.30!

Ji5O11l~r232e!, r5O11l~r232e!,
~3.31!

a. 1
2, e.0, 0,l,1.

Let N be a scalar field and Yi a vector field onSR such that

N→ r→`A
0, Yi→ r→`A

i , AmAm50,

for some constants AmÓ0. Suppose further that

2NKi j1LYgi j5O31l~r222e!, ~3.32!

t i j5O11l~r232e!, ~3.33!

wheretij is defined by the equation

N~t i j2
1
2g

kltklgi j !5N~3Ri j1KKi j22KikK
k
j !2LYKi j1DiD jN2~r/2!Ngi j . ~3.34!

Then the ADM four-momentum ofSR vanishes.
Remark:There is little doubt that the result is still true withl50. To prove that one would

however, need to extend the weighted-Sobolev estimates of Ref. 11 to the case dimM52, a task
that lies beyond the scope of this paper.

Proof: Arguments similar to the proof of Proposition 2.1, Appendix C, show that
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N2A05O31l~r2a!, Yi2Ai5O31l~r2a!.

RescalingAm if necessary, we can choose the coordinate system so thatA051,Ai5dz
i . Replacing

e by any number smaller than one if necessary, we can assume thate,1 ande<2a21. Taking the
trace of Eq.~3.33! and using the scalar constraint equation, we find

DdN1K ,z5O11l~r232e!.

Here, as before,Dd5]x
21]y

21]z
2. Let w be as in Eq.~3.9!, we obtain

Dd~N2w ,z!5O11l~r232e!;

hence there exists a constantD such that

N2w ,z511
D

r
1O31l~r212e!. ~3.35!

In harmonic coordinates, Eqs.~3.4!, ~3.13!, ~3.33!, and~3.35! give

2 1
2D2gi j5x i j1C i j , ~3.36!

x i j522m]zFdzj] i 1r 1dz
i ] j

1

r G1] i] j
D

r
, ~3.37!

C i j5O11l~r232e!. ~3.38!

HereD25]x
21]y

2. In what follows the indicesA, B, etc. take values in the set$1,2%. Consider the
equation~3.36! with i5z, j5A. We have

D2gzA5~8m22D !]A]z
1

r
1O~r232e!. ~3.39!

It follows from Refs. 12 and 10 that for every fixed value ofz the functionsgzA have the
asymptotic expansion,

gzA5CAB~z!]B ln r1O~1!~r212e ln r!. ~3.40!

Herer25x21y2, the functionsCAB(z) are functions ofz only, and we write

f5O~1!~r2a lnb r!, if u f u1ru]Af u<C~11r!2a@11 ln~11r!#b, ~3.41!

for some constantC that may depend uponz. Let us defineS(r,a) to be a circle of radiusr
centered atx5y50 lying in the planez5a. Equation~3.40! shows that for any fixed value ofz
the limits

lim
r→`

E
S~r,z!

gzB dx
C, lim

r→`
E
S~r,z!

xD ]AgzB dx
C,

exist. It also follows from our asymptotic conditions ongi j , Eq. ~3.30!, that these limits arez
independent. Set

V5 lim
r→`

E
S~r,z!

~xA ]CgzA2gzC!dxC. ~3.42!
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For uzu.R by the Stokes theorem we have

V5E
R2
xA D2gAz5~1!1~2!,

~1!5~8m22D !E
R2
xA ]z]A

1

r
,

~2!5E
R2
xACAz

with CAz as in ~3.36!. The first integral is easily calculated and equals

8p~4m2D !sgnz, ~3.43!

where sgnz denotes the sign ofz. To estimate the second integral, it is convenient to split the
region of integration into the setsr<uzu andr>uzu. One then finds

u~2!u<Cuzu2e, for uzu.R, ~3.44!

with a constantC that doesnot depend uponz. Equations~3.43!–~3.44! are consistent with
]V/]z50 if and only if

4m5D. ~3.45!

Consider now Eq.~3.36! with i5A, j5B. Differentiating this equation with respect toz, one
obtains

D2

]gAB
]z

522D]A ]B]Z
1

r
1O~r242e!. ~3.46!

By hypothesis we have]gi j /]z5O(r212e), and the estimates of Refs. 12 or 10 show that there
exist functionsDABCD(z) such that for any fixed value ofz, we have

]gAB
]z

5DABCD ]C]D ln r1O~1!~r222e ln r!. ~3.47!

Let us set

V85 lim
r→`

E
S~r,z!

~2xAxB]C ]zgAB2xAxA]C ]zgBB12xC ]zgAB24xB ]zgCB!dxC.

~3.47! shows thatV8 is well defined, while~3.30! implies thatV8 is z independent. Foruzu.R we
again use the Stokes theorem to obtain

V85E
R2

~2xAxBD2 ]zgAB2xAxAD2 ]zgBB!.

A calculation as above leads to

V8516pD sgnz1O~ uzu2e!, uzu.R.

HenceD5m50 @cf. Eq. ~3.45!#, which together with Proposition 3.1, establishes our claims.h
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IV. A POSITIVE ENERGY THEOREM

In this section we shall prove a ‘‘future-pointing-time-like-or-vanishing-energy-momentum
theorem,’’ under conditions weaker than previously considered. The main two issues we wish to
address are~1! the impossibility of a null ADM four-momentum and~2! a result that invokes
hypotheses concerning only the fieldsgi j andKi j .

Let us start with an example of a metric with ‘‘null ADM four-momentum.’’ Recall that in
Ref. 15, Aichelburg and Sexl consider a sequence of Schwarzschild space–times with energy-
momentum vector (m,0,0,0). After applying a ‘‘boost’’ transformation to the Schwarzschild
space–time, one obtains an energy-momentum vector (gm,gvm,0,0). Then one takes the limit
v→1, keepinggm equal to a fixed constantp. The resulting space–time has a distributional
metric, and it is not clear if it is asymptotically flat. Nevertheless, it seems reasonable to assign to
the Aichelburg–Sexl solutions a null energy-momentum vector (p,p,0,0). So, in this sense, there
exist space–times with a null energy-momentum vector.

The Aichelburg–Sexl metrics are plane-fronted waves, and it is of interest to inquire whether
any asymptotically flat plane-fronted wave metrics exist. Recall that the usual approach in defining
asymptotic flatness is to introduce coordinate systems on„R3\B(R)…. Thus, consider a plane-
fronted wave metric onR3„R3\B(R)…,

ds2522 du dz1a dz21dx21dy2. ~4.1!

As is well known~cf., e.g., Refs. 16, 17!, the metric~4.1! is vacuum if and only ifa5a(x,y,z),
with

~]x
21]y

2!a50. ~4.2!

Then, leta be any solution of~4.2! such thata51 for uzu>R, butaÓ1. Such solutions are easily
found, and for any finitel we can choosea to satisfy

0<k< l , u]A1•••]Ak~a21!u<Cr2k21.

An example is given by the function

a511f~z!CA1•••Al]A1•••]Al ln r, ~4.3!

wheref(z) is a smooth compactly supported function andCA1•••Al is a totally symmetric tensor
with constant coefficients. We have the following.

~1! If l51, the metric~4.1! with a given by~4.3! will not satisfy the fall-off requirements of
the positive energy theorem; cf. Theorem 4.1 below, because thez derivatives of the metric do not
vanish fast enough asr tends to infinity. This fall-off of the metric is not known to be sufficient
for a well-defined notion of ADM mass~compare Refs. 11, 13, and 18!. However, one can
calculate the ADM integral~3.12! in the coordinate system (x,y,z) as above and find that this
integral vanishes.

~2! For all l>2 the hypersurfacesu5const will have a well-defined vanishing ADM mass.
This does, however, not follow from Theorem 3.4 unlessl>3. ~Strictly speaking, we would need
to have l>4 to be able to apply Theorem 3.4 as is; cf., however, the remark following that
theorem. When we knowa priori that the metric is a plane-fronted wave, we can use independent
arguments to get rid of the Ho¨lder differentiability indexl in Theorem 3.4; no details will be
given.!

Nevertheless, this example shows that nontrivial, vacuum, asymptotically flat plane-fronted
waves exist~with pm50!, as long as no further global conditions are imposed.

With those examples in mind, let us briefly recall what is known about the nonexistence of
appropriately regular space–times with null energy momentum. In Ref. 19 an argument was given
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to support the expectation that the ADM momentum cannot be null for vacuum or electrovacuum
space–times, the general case being left open. In Ref. 20 this case has been excluded under rather
strong global hypotheses on the space–time and under stringent asymptotic conditions. In Ref. 21
a proof was given, assuming only hypotheses on the initial data. However, the proof there is rather
more complicated than ours. Moreover, the asymptotic conditions of Ref. 21 are more restrictive
than ours.

We wish next to emphasize the following issue: The statement that the ADM massm is
non-negative requires only the inequalityr > AJiJi , wherer and Ji are quantities that can be
purely defined in terms of the fieldsgi j andKi j ; cf. Eqs.~4.5!–~4.6! below. Now the published
Witten-type proofs that the vanishing ofm implies, loosely speaking, flatness of the resulting
space–time, involve the full dominant energy condition~TmnX

mYn>0 for all time-like consis-
tently time-oriented vectorsXm andYn! ~cf., e.g., Ref. 22!. Recall that the corresponding statement
of Schoen and Yau23 does not involve any supplementary fieldTmn . ~Their proof, however,
requires rather strong asymptotic conditions on the fields. Moreover, Schoen and Yau require the
trace of the extrinsic curvature to fall-off at least asr23. In general, this can be justified by
applying a ‘‘logarithmic supertranslation’’ in time to the initial data surface, and requires the
supplementary hypothesis that the associated space–time is large enough. Finally, to guarantee
that all the required hypotheses hold on the deformed hypersurface, one needs again the full
dominant energy condition.! Similarly, both the proof in Ref. 20 and the proof in Ref. 21 that
exclude a null ADM energy momentum assume the full dominant energy condition. A result
involving only conditions ongi j andKi j seems to be much more satisfactory from a conceptual
point of view, and it seems reasonable to expect that the desired conclusion could be obtained in
the Witten-type setting without imposing conditions on fields other thangi j andKi j . We show
below that this is indeed the case.

Before passing to the statement of our results, in addition to the papers already quoted, let us
mention the papers,11,24–35where proofs or arguments relevant to the positive energy theorem have
been given. The review paper36 contains some further references.

We have the following.
Theorem 4.1†„Rigid… positive energy theorem‡: Consider a data set~S,gij ,Kij!, with S of

the formS5Sintø i51
I Si , for some I,`. Here we assume thatSint is compact, and that each of the

endsSi is diffeomorphic toR
3\B~Ri! for some Ri.0, with B~Ri!—coordinate ball of radius Ri . In

each of the endsSi the fields~g,K! are assumed to satisfy the following inequalities:

ugi j2d i j u1ur ]kgi j u1urK i j u<Cr2a, ~4.4!

for some constants C.0 anda.1
2, with r 5 AS(xi)2. Suppose, moreover, that the quantitiesr and

J,

2r:53R1K22Ki jKi j , ~4.5!

Jk:5Dl~2Kkl1Kgkl!, ~4.6!

are well defined (perhaps in a distributional sense), and satisfy

Agi j JiJj<r<C~11r !232e, e.0. ~4.7!

Then the ADM four-momentum~m,pi! of any of the asymptotic ends ofS satisfies m> Apjpi . If
m50, thenr[Ji[0, and there exists an isometric embedding i ofS into Minkowski space–time
~R4,hmn! such that Kij represents the extrinsic curvature of i~S! in ~R4,hmn!. Moreover, i~S! is an
asymptotically flat Cauchy surface in~R4,hmn!.

Proof:Under the conditions here the ADM four-momentum of each of the asymptotic regions
of S is finite and well defined.18,11 As discussed, e.g., in Ref. 13, under the present boundary

1952 R. Beig and P. T. Chruściel: Asymptotically translational Killing vectors

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



conditions the Witten boundary integral reproduces correctly the ADM four-momentum. The
arguments of any of the references11,31,13show that one can find solutions to the Witten equation
that asymptote to a constant nonzero spinor in one of the asymptotic ends, and to zero in all the
other ones. Witten’s identity subsequently implies that the ADM momentum of each of the ends
is non-space-like.

Suppose that in one of the endsm vanishes. Then for eachnW PR3 there exists a spinor field
lM(nW ) defined onS satisfying Eq.~B7!, such that the corresponding vector fieldYj (nW ) defined via
Eq. ~B8!, and the scalar fieldN(nW ) defined by Eq.~B9!, satisfy

Yj~nW !→ r→`nW
j , N~nW !→ rå→`unW ud .

HereunW ud is the norm ofnW in the flat metric onR3. As shown in Appendix B, the fieldsN(nW ) and
Yi(nW ) satisfy the linear system of equations@cf. Eqs.~B11! and ~B.12!#,

DiYj1NKi j50, ~4.8!

DiN1Ki jY
j50. ~4.9!

Consider the fields

Yj5Yj„~
1
2,

1
2,0!…2Yj„~2 1

2,
1
2,0!…2Yj„~1,0,0!…, ~4.10!

N5N„~ 1
2,

1
2,0!…2N„~2 1

2,
1
2,0!…2N„~1,0,0!…. ~4.11!

The fieldsYj andN satisfy Eqs.~4.8!–~4.9! by linearity of those equations. Moreover, we have

Yj→ r→`0, N→ r→`1. ~4.12!

Let (M̂ ,ĝmn) be the Killing development of (S,gi j ,Ki j ,N,Yi). As discussed in Sec. II, it follows
from Eqs.~4.8!–~4.9! that the vector fieldXm]m5]u is covariantly constant onM̂ ; ~4.12! implies
then

ĝmnX
mXn521⇒N22gi j Y

iYj51. ~4.13!

By Proposition 3.1 of Ref. 5,S is a Cauchy surface for (M̂ ,ĝmn). We wish to show that (M̂ ,ĝmn)
is geodesically complete. Consider, then, an affinely parametrized geodesicxm(s), and let p
denote the constant of motion associated with the Killing vectorXm:

p5ĝmnẋ
mXn52u̇1Yiẋ

i . ~4.14!

Here Eqs.~2.9! and~4.13! have been taken into account; a dot over a quantity means differentia-
tion with respect tos. Sinces is an affine parameter we have, withe50,61,

2u̇212Yiẋ
i u̇1gi j ẋ

i ẋ j5e. ~4.15!

Equations~4.14! and ~4.15! give

~gi j1YiYj !ẋ
i ẋ j5e1p2. ~4.16!

~4.16! and ~4.15! imply that there exists a functionC(p), such that

uẋug1uu̇u<C~p!. ~4.17!
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ChoosepPR and consider the setVp of maximally extended affinely parametrized geodesics with
that value ofp, with xm(0)PS. We can, without loss of generality, assume thata,1; an analysis
of Eqs.~4.8!–~4.9! along the lines of Appendix C shows thatĝmn2hmn5O1(r

2a). By asymptotic
flatness ofĝmn ~cf. Proposition 2.1! and the interior compactness condition onS, there existsd.0
such that all geodesics inVp are defined forsP(2d,d). Equation~4.17! shows that in that affine
time the value of uuu can change at most byC(p)d, similarly for the value of
r (s)[„x2(s)1y2(s)1z2(s)…1/2 in the asymptotic regions. One can now invoke the fact that theu
translations are isometries to conclude that all geodesics inVp are complete, and the result
follows.

Let us show now that (M̂ ,ĝ) is flat. LetYk
i 5Yi(eW k), whereY

i(nW ) is as at the beginning of this
proof and where theeW k’s, k51,2,3, form an orthonormal basis ofR3. Let N(k)5N(eW k) be the
corresponding lapse functions. OnM̂ define the fieldsX(k)

m by the equation

X~k!
m ]m5N̂~k!n

m]m1Ŷ~k!
i ] i ,

~4.18!
Ŷ~k!
i ~u,xi !5Y~k!

i ~xi !, N̂~k!~u,x
i !5N~k!~x

i !.

Herenm is the field of unit normals to the slices$u5const%. By Eqs.~B11! and ~B12!, we have

“̂ jX~k!
m 50. ~4.19!

By construction of (M̂ ,ĝmn), it also holds that

“̂mX
n5Ĝml

n Xl5Ĝmu
n 50. ~4.20!

As the components ofX( i )
m areu independent by~4.18!, Eq. ~4.20! gives

“̂uX~k!
m 5]uX~k!

m 1Ĝlu
m X~k!

l 50. ~4.21!

Consequently,

“̂mX~k!
n 50. ~4.22!

Differentiating ~4.22!, one obtains

R̂mnrsX~ i !
s 50. ~4.23!

As the vector fieldsX( i )
s are everywhere null and linearly independent, standard algebra gives

R̂mnrs[0. ~4.24!

Consider, next, the universal covering spaceS̃ of S with fields (g̃i j ,K̃ i j ,Ỹi ,Ñ) obtained by

pull-back. Let (M̄ ,ḡmn) be the Killing development ofS̃,g̃i j ,K̃ i j ,Ỹj ,Ñ). Clearly,M̄ is the universal
covering space ofM̂ with ḡmn being the pull-back ofĝmn . It is easily seen that (M̄ ,ḡ) inherits
from (M̂ ,ĝ) the following properties:

~1! (M̄ ,ḡmn) is globally hyperbolic with Cauchy surfaceS̃;

~2! (M̄ ,ḡmn) is geodesically complete; and

~3! (M̄ ,ḡmn) is flat.
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As M̄ is simply connected, it follows, e.g., from Ref. 37. Theorem 2.4.9 that (M̄ ,ḡmn) is the

Minkowski space–time~R4,hmn!. As S̃ is a Cauchy surface forM̄ , it is necessarily a graph over a
space-like planet50 in ~R4,hmn!. In particular,S̃ has only one asymptotically flat end~compare

also@Ref. 38, Lemma 2#!. If S had been nonsimply connected, thenS̃ would have had more than

one asymptotic end. It follows thatS 5 S̃, M̂5R4, and our claims follow. h

To exclude the case of a null ADM four-momentum, we need to assume some further asymp-
totic regularity conditions.

Theorem 4.2:Under the hypotheses of Theorem 4.1, suppose, moreover, that in some of the
asymptotic ends it holds that

gi j2d i j5O31l~r2a!, Ki j5O21l~r212a!, ~4.25!

r5O11l~r232e!, ~4.26!

with some0,l,1. Then the ADM four-momentum of that end cannot be null.
Remark:It can be shown by rather different techniques that the result is still true withl50;

we shall, however, not discuss that here.
Proof: Consider an asymptotic endS1 in which Eqs.~4.25!–~4.26! hold and that has a null

ADM four-momentumpm. As discussed in the proof of Theorem 4.1 and in Appendix B, the
hypotheses of Proposition B.1 and Corollary B.2 are satisfied. We can thus apply Theorem 3.4 to
conclude that the ADM four-momentum of the end under consideration vanishes, and the result
follows from Theorem 4.1. h

Let us close this section by proving Theorem 1.3: By the arguments given above,r andJi

vanish onS. It follows from a result of Hawking and Ellis~Ref. 39, Chap. 4, Sec. 4.3! that
(M ,gmn) must be a vacuum. By uniqueness of the maximal globally hyperbolic vacuum develop-
ments, it follows that the Killing development constructed in the proof of Theorem 4.2~cf.
Appendix B! coincides with the maximal globally hyperbolic development of (S,gi j ,Ki j ), and
Theorem 1.3 follows.
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APPENDIX A: DEFINITIONS AND CONVENTIONS

We say that (M ,gmn) is a Ck space–time ifM is a paracompact, connected, Hausdorff,
orientable manifold ofCk differentiability class, with aCk21 Lorentzian metric. We use the
signature~2,1,1,1!.

Consider a functionf defined onSR[R3\B(R), whereB(R) is a closed ball of radiusR.0.
We shall writef5Ok(r

b) if there exists a constantC, such that we have

0< i<k, u] i f u<Crb2 i .

For sP~0,1! we shall writef5Ok1s(r
b) if f5Ok(r

b) and if there exists a constantC, such that
we have
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uy2xu<r ~x!/2⇒u]kf ~x!2]kf ~y!u<Cux2yusr b2k2s.

Let us note thatf5Ok11(r
b) implies f5Ok1s(r

b) for all sP~0,1!, so that the reader unfamiliar
with Hölder-type spaces might wish to simply replace, in the hypotheses of our theorems, the
k1s by k11 wherever convenient.

APPENDIX B: COVARIANTLY CONSTANT SPINORS

In this appendix we prove a differential geometric proposition on initial data sets (S,gi j ,Ki j )
having a nowhere vanishing spinor field that is covariantly constant onS with respect to the
‘‘Sen-connection’’40 @cf. Eq. ~B7! below#. This result forms the local input of the rigidity part of
the positive-mass theorem. Similar results in the literature we are aware of implicitly or explicitly
use Cauchy developments (M ,gmn ,f

A) of (S,gi j ,Ki j ,c
A) for some fieldsfA with Cauchy data

cA, with energy-momentum tensorTmn satisfying thefull dominant energy condition~cf. the
discussion at the beginning of Sec. IV!. For our results below, neither the existence of such a
Cauchy evolution nor, in fact, the DEC for the given triple (S,gi j ,Ki j ) ~i.e., Agi j JiJj < r! is
required.

In the case of a ‘‘bad’’ matter model—such as, e.g., dust as a source for the Einstein
equations—an evolution is not known to exist. Similarly, even for ‘‘good’’ models, such as
vacuum Einstein equations, the differentiability hypotheses on the initial data in Theorems 4.1 and
4.2 are not known to guarantee existence of a Cauchy development.

To motivate our three-dimensional discussion, we shall, as before, start with the four-
dimensional picture. Consider thus a space–time (M ,gmn) with gmn in C

2 and a nowhere zeroC2

spinor fieldlM onM , satisfying

“mlN50⇔“MM8lN50, ~B1!

i.e.,lM is covariantly constant. We use capital letters in the second half of the alphabet to denote
spinor indices. Since the considerations in this appendix are purely local, there is no question of
the existence of a spinor structure. The spinorial Ricci identities~cf. Ref. 41, Vol. 1, pp. 242–244!
immediately imply that the Ricci scalarRm

m of gmn is zero, and that the spinor equivalent of
Smn :5Rmn2 1

4gmnRl
l, namely the Hermitian spinorfMNM8N8 satisfies

lMfMNM8N850

⇒eMNlPfPRR8(M8l̄N8)1l (MfN)RP8R8l̄
P8eM8N850. ~B2!

This last equation, in tensor terms, says that

X[mSn]l50, ~B3!

whereXm is the null vector corresponding tolMl̄M8 . Consequently,

Rmn5sXmXn , ~B4!

for some functions onM . By Eq. ~B1!, Xm is covariantly constant, i.e.,

“mXn50, with gmnX
mXn50. ~B5!

According to one of several equivalent definitions~cf., e.g., Ref. 17!, Eqs.~B4!–~B5! imply that
(M ,gmn) is app space–time. We have recovered the well-known fact~cf., e.g., Refs. 42, 43, 17!
that a space–time admitting a covariantly constant spinor describes app wave.
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Next, letS be a space-like hypersurface of (M ,gmn) with unit-normalnm . With nMM8 being
the spinor equivalent ofnm , Eq. ~B1! implies that

n(M
M8
“N)M8lP50⇔n[m“n]lP50. ~B6!

Equation~B6! contains only derivatives tangential toS. WhenlM is interpreted as a SU~2!-spinor
on (S,gi j ,Ki j ), ~B6! can be written as~we use the conventions of Appendix A of Ref. 44!,

DMNlP1
i

A2
KMNPQlQ50, ~B7!

whereKMNPQ is theSU(2)-spinor version ofKi j andDMN the covariant derivative onS associ-
ated withgi j .

Let us turn to the three-dimensional formulation of the problem. Suppose that we are given
(S,gi j ,Ki j ) with gi j in C

k, for somek>1, Ki j in C
k21, and aCk-spinorlM satisfying Eq.~B7!.

We want to embedS into some Lorentz manifold (M ,gmn) in which lM extends to a spinor field
obeying Eq.~B1!.

Denote byMi the complex-valued null vector field onS associated withlMlN and define a
real vectorYi by

Yi5
i

AgjkM jM̄ k
e i
j kM j M̄ k , ~B8!

and a real positive scalarN by

N5Agi jM iM̄ j5Agi j YiYj . ~B9!

By, e.g., Ref. 22, Lemma 4.3,lN is nowhere zero; henceN is nowhere vanishing. From~B7!, Mi

satisfies

DiM j52 i e lmjKilMm , ~B10!

which, after some calculation, implies

DiYj1NKi j50. ~B11!

We also note, for use in the body of the paper, the equation

DiN1Ki jY
j50, ~B12!

which follows from ~B9! and ~B11!. Now define (M̂ ,ĝmn) to be the Killing development
~R3S,ĝmn! of (S,gi j ,Ki j ) based on (N,Yi), i.e.,

ĝmn dx
m dxn52N2~xl !du21gi j ~x

l !@dxi1Yi~xl !du#@dxj1Yj~xl !du#. ~B13!

This, as shown in Sec. II, hasX5]/]u as a covariantly constant null vector, the induced metric on
u50 coincides withgi j , and the extrinsic curvature isKi j . The field of unit normalsnm to the
hypersurfaces$u5const% is Lie derived by this Killing, vector field,

LXnm50, ~B14!
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which can be seen as follows: By constructionX(u)51. Since Lie derivation and exterior differ-
entiation commute, we have thatLX du50. By the Killing property ofX, LX(du,du) is also
zero, and Eq.~B14! follows. But, by the covariant constancy ofX, i.e.,

“̂mXn50, ~B15!

this implies that

Xn
“̂nnm50. ~B16!

Now extendlM off u50 to a spinor fieldl̂M on (M ,ĝmn) by requiring

Xm
“̂ml̂M50. ~B17!

Consider the expression

UMNP5n(M
M8
“̂N)M8l̂P . ~B18!

By Eqs.~B6!–~B7!, UMNP vanishes foru50. Now compute

Xm
“̂mUMNP5n(M

M8Xm
“̂ umu“̂N)M8l̂P , ~B19!

where we have used~B16!. SinceX is covariantly constant,Xm
“̂m commutes with covariant

differentiation. Applying this on the right-hand side of~B19! and using~B16!, we infer

Xm
“̂mUMNP50. ~B20!

Thus

n(M
M8

“̂N)M8l̂P50⇔n[m “̂n] l̂P50. ~B21!

By ~B17! we also have that

~Nnm
“̂m1Yi

“̂ i !l̂M50. ~B22!

Due to ~B21! the second term in~B22! is zero. AsN is nowhere vanishing, we obtain

nm
“̂ml̂P50. ~B23!

Sincenm is time-like and again using~B21! we get

“̂ml̂P50, ~B24!

as promised.~Strictly speaking, the above calculations requirek>2. One can use a slightly
different argument to show that Proposition B.1 is correct as stated.! Combining the above calcu-
lation with Eq.~B4!, we obtain the following.

Proposition B.1: Let k>1 and let ~S,gij ,Kij!, gijPCk, KijPCk21 be such that there exists a Ck

spinor field satisfying Eq. (B7). Then there exists a nowhere zero vector field Yi in Ck, such that

DiYj1NKi j50, ~B25!

whereN: 5 Agi j YiYj . If, moreover,k>2, then the fields (r,Ji ,tkl) defined in Eqs.~2.13!–~2.15!
satisfy

NJi5rYi , N2t i j5rYiYj . ~B26!
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In the case where the ADM four-momentumpm is null, the Witten argument gives rise to a
spinor field onS obeying Eq.~B7! ~cf. the discussion and the references in the proof of Theorem
4.1!. Proposition B.1 and an analysis of Eqs.~B11!–~B12! similar to that of Appendix C lead to
the following.

Corollary B.2: Let~S,gij ,Kij! satisfy the hypotheses of Theorem 4.1 and let pm be null. Then
there exists a nowhere zero C1 field Yi with Yi2Ai5O1~r

2a! for some constants Ai, so that Eq.
(B25) holds. If, moreover, the hypotheses of Theorem 4.2 are satisfied, then Yi2Ai5O3~r

2a!, and
(B26) holds.

APPENDIX C: PROOF OF PROPOSITION 2.1

Equation~2.4! gives the equation

Di D jYk5Rmi jkY
m1Dk~NKi j !2Di~NKjk!2Dj~NKki!. ~C1!

HereRmi jk is the curvature tensor of the metricgi j . Consider the system of equations,

]N

]r
5
xi

r
] iN, ~C2!

] rYi5
xj

r
~DjYi1G i j

k Yk!, ~C3!

] rDiN5
xk

r
~Dk DiN1Gki

j D jN!, ~C4!

] rDiYj5
xk

r
~Dk DiYj1Gki

l DlYj1Gk j
l DiYl !. ~C5!

Here we are implicitly assuming that, in~C4! and~C5!, the termsDk DiN andDk DiYj have been
eliminated using~2.15! and ~C1!. Set f5( f A)5(N,r D iN,Yj ,r D iYj ), g5(Af

Af A. We have

U]g]r U< Cg

r
, ~C6!

and byr integration one finds

u f u<C~11r b!, ~C7!

for some constantsC,b. Suppose thatb.2, using~C7! and~C2!–~C5!, one finds byr integration
u f u<C(11r b2a), so that~C7! has been improved bya. Iterating this process, one obtains~2.21!
and ~2.22!; cf. also Ref. 38. Appendix A, Lemma. Suppose finally thatAm5Lmn50. Iterating
further, one finds

u f u<Cr2s, for any s.0. ~C8!

Note that ifg(r 0)50, at somer 0 , then by~C6! we will haveg[0. Suppose thus that for allr
there holdsg(r )Þ0. For r 1>r 0 we then have, by~C6!,

]g

]r
>2

Cg

r
⇒ ln„g~r 1!r 1

C
…> ln„g~r 0!r 0

C
….
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Passing withr 1 to infinity from ~C8!, we obtaing(r 0)50, which gives a contradiction, and the
result follows. h
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1960 R. Beig and P. T. Chruściel: Asymptotically translational Killing vectors

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



40A. Sen, ‘‘On the existence of neutrino ‘zero-modes’ in vacuum spacetimes,’’ J. Math. Phys.22, 1781–1786~1981!.
41R. Penrose and W. Rindler,Spinors and Spacetime~Cambridge University, Cambridge, 1984!, Vol. 1.
42K. P. Tod, ‘‘All metrics admitting super-covariantly constant spinors,’’ Phys. Lett. B121, 241–244~1983!.
43A. Taub, ‘‘Space-times admitting a covariantly constant spinor field,’’ Ann. Inst. Henri Poincare´ 41, 227–236~1984!.
44A. Ashtekar,Lectures on Non-Perturbative Canonical Gravity~World Scientific, Singapore, 1991!.
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All the similarity solutions, describing the Petrov-type D, plane symmetric perfect
fluid distributions of imbedding class one, have been derived by using the Lie
continuous point group similarity transformation method. ©1996 American Insti-
tute of Physics.@S0022-2488~96!02303-7#

I. INTRODUCTION

The perfect fluid distributions expressed by a five-dimensional~5-D! flat metric ~metric of
imbedding class one! are either of Petrov-type O or Petrov-type D1. All the solutions of type O are
known,1 but type D solutions are yet to be exhausted. The type D solutions available so for include
~i! all the perfect fluid distributions with geodesic flow,2 ~ii ! all the stiff self-gravitating fluids
admitting a three-parameters group of isometries with the trajectoriesr5constant,t5constant,3

~iii ! the most general static solution with nongeodesic flow by Kohler and Chao4 and some of its
nonstatic analogues due to Guptaet al.5 In the present article, the authors have considered a plane
symmetric metric in 5-D flat form and derived all possible similarity solutions of type D by using
the Lie continuous point group similarity transformation method~STM!. The solutions so obtained
do not belong to a class of solutions with geodesic flow. The basic idea of similarity transforma-
tion method of solving PDE and ODE is mentioned in Appendices A and B, respectively.

II. BASIC EQUATIONS OF THE PROBLEMS

A five flat metric can be expressed as

ds252~dz1!22~dz2!22~dz3!21~dz4!26~dz5!2. ~2.1!

Let us introduce plane symmetry by introducing

z15~ t2r !u cosf, z25~ t2r !u sin f, z35
u2

2
~ t2r !1r ,

z45
u2

2
~ t2r !1t, z55u~r ,t !, ~2.2!

and consequently~2.1! turns out to be

ds252dr22~ t2r !2~du21u2 df2!1dt26du2. ~2.3!

However,~2.3! can be transformed to the following metrics depending upon the1ve or 2ve sign
beforedu2:

ds252dr22r 2~du21u2df2!12 dr dt1du2 ~2.4!

and

ds252t2~du21u2 df2!1dt212 dr dt2du2. ~2.5!
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The Einstein’s field equations, so that the metric~2.5! may describe perfect fluid distribution,
can be furnished as below:

8pT1
15

2ur
tm2 @ur

2utt1urt2uruturt #1
ur
2

t2m
58p@~r1p!v1v

12p#, ~2.6!

8pT2
258pT3

358pe2
2~utturr2urt

2 !

m2 1
ur
2

t2m
528pp, ~2.7!

8pT4
45

2ur
tm2 @2urr1ut

2urr1urt2uruturt #1
ur
2

t2m
58p@~r1p!v4v

42p#, ~2.8!

8pT1
45

2ur
tm2 ~uruturr2urr2ur

2urt !58p~r1p!v1v
4, ~2.9!

8pT4
15

2ur
tm2 ~urututt1urt2utt2ut

2urt !58p~r1p!v4v
1, ~2.10!

m511ur
222urut , v1v11v4v451, v25v25v35v350, ~2.11!

wherer, p, andv i are energy-density, pressure, and flow-vector, respectively.
The consistency of~2.6!–~2.11! demands the condition

e~e1R!50, ~2.12!

wheree is the eigenvalue of conformal tensor and is given by

8pe5
2urr utt1urt

2

m2 2
ur
tm2 @2urr ~12ut

2!1ur
2utt12urt~12urut!#1

ur
2

t2m
@11ur

222urut#.

~2.13!

It has been verified that the vanishing of the first factor implies the vanishing of the conformal
curvature tensor and the corresponding fluid distribution will be conformally flat and hence of the
type O. However, the vanishing of the second factor corresponds to a fluid distribution with
nonvanishing conformal tensor and hence of the type D in the present case. In the later case, we
come across a partial differential equation to be satisfied byu(r ,t) as

2urr utt1urt
2 1

ur
t

@2urr ~12ut
2!1ur

2utt12urt~12urut!#1
ur
2

t2
~11ur

222urut!50.

~2.14!

Associated expressions for pressure and density are given by

8pp5
ur
2

mt2
, ~2.15!

8pr5
ur
2

mt2
1
2~urr utt2urt

2 !

m2 . ~2.16!

A similar discussion in the case of the metric~2.4! yields a negative pressure; therefore, the study
of the metric~2.4! is being dropped out in the present article.
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III. SIMILARITY SOLUTIONS OF THE EQUATIONS

The Lie symmetries of Eq.~2.14! are

T5at, ~3.1!

R5ar1bt31g, ~3.2!

U5au1d, ~3.3!

wherea, b, g, andd are constants.
Now, we are going to find all similarity solutions~see Appendix A!. The following subcases

occur: ~i! a50, ~ii ! aÞ0.
Case„i…. a50:

dt

0
5

dr

bt31g
5
du

d
~3.4!

which immediately yields

u5
r

at31b
1 f ~ t !, ~3.5!

where

a5
b

d
, b5

g

d

when inserted in~2.14! requires

ḟ5
d f

dt
52

1

14~at31b!2
@8a3t9242ab2t3114at327b327b114ct2#, ~3.6!

wherec is an arbitrary constant.
Consequently, the metric~2.5! takes the form

ds252~at31b!22dr22t2~du21u2df2!1F12H ḟ2 3art2

~at31b!2 J 2Gdt2
12F12

1

at31b H ḟ2 3art2

~at31b!2 J Gdr dt. ~3.7!

The corresponding expressions for pressure and density can be furnished as

8pp5
7~at31b!

t2@214ct2142art2115a3t9121at3~abt32b211!#
,

~3.8!

8p~r2p!5
218a2t4~at31b!2

@~at31b!31at31b16art222 ḟ ~at31b!2#2
;

clearly r<p in the above case.
Case„ii …. aÞ0:
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dt

at
5

dr

ar1bt31g
5

du

au1d
~3.9!

which immediately suggests the form of ‘‘u’’ as

u5
ty~h!2d

a
with h5

2ar2bt312g

t
. ~3.10!

On inserting~3.10! into the original Eq.~2.14! we get

y9~y22ax!12xy8322yy821
a

2
y850, ~3.11!

wherey85dy/dx andx5a1h.
Now, in order to solve Eq.~3.11!, the procedure can be divided into two parts.

A. When y22ax50

Equation~3.11! is satisfied and the corresponding metric and expressions for pressure and
density are furnished as below:

ds252F11
1

at
~2ar2bt312g!G21

dr22t2~du21u2df2!

1F12
$a1~1/t !~ar22bt31g!%2

a$a1~1/t !~2ar2bt312g!%Gdt21 2

t F ar1bt31g

a1~1/t !~2ar2bt312g!Gdr dt,
~3.12!

8pr53~8pp!5
a

bt4
. ~3.13!

It is worth pointing out that the obtained solution is of Petrov type O.

B. When y2Þax

The similarity method~see Appendix B! provides the infinitesimalsj andh as

j5a0y and h5
aa0

2
. ~3.14!

Now Eq. ~3.11! can be reduced to the first-order equation by means of two invariantsu andv as
follows:

dx

a0y
5

dy

aa0/2
5

d~y8!

2a0y82
. ~3.15!

Consequently, two solutions of~3.15! provideu andv as

u~x,y!5
y22ax

a
~3.16!

and
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v~x,y,y8!5
a22yy8

ay8
. ~3.17!

Equations~3.16! and ~3.17!, using~3.11!, give

v
dv
du

1
v2

2u
52

4

a
~3.18!

which, on integration, provides

v25
4u

a
1

b0

u
, ~3.19!

whereb0 is constant. Equation~3.19!, together with~3.16! and ~3.17!, give

y8F2y1A4~y22ax!1
a3b0

y22axG5a. ~3.20!

Ordinary differential equations can further be integrated as follows. Let

y22ax5W

andx andW be functions ofy. Then Eq.~3.20! assumes the shape

dW

dy
52A4W21a3b0

W
. ~3.21!

On integration, we get

y52EA W

4W21a3b0
dW1g0 ~3.22!

which is hyperbolic or elliptic integral.6

Equation~3.22! relatesW and y ~and hencey and x! implicitly. However, the metric and
expressions for density and pressure can be furnished in terms ofy andx as follows:

ds2524a2F2y1A4~y22ax!1
a3b0

y22axG22

dr22t2~du21u2df2!

1F12
1

a2 H y2
2a~ar1g1bt3!

t~2y1A4~y22ax!1~a3b0 /~y
22ax!!

J 2Gdt2
12F12H 2

~2y1A4~y22ax!1~a3b0 /~y
22ax!!

J
3H y2

2a~ar1g1bt3!

t~2y1A4~y22ax!1~a3b0 /~y
22ax!!

J Gdr dt, ~3.23!

8pr5
4a2@b0a

2~y22ax!112bt2~y22ax!216bb0a
2t2#

t2@b0a
2112bt2~y22ax!2#

, ~3.24!
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and

8pp5
4a2~y22ax!

t2@b0a
2112bt2~y22ax!#

. ~3.25!

IV. DISCUSSIONS AND CONCLUSIONS

In the foregoing section, three metrics, e.g.,~3.7!, ~3.12!, and~3.23!, have been obtained. Out
of these~3.12! is not new, as it is conformally flat and all the conformally flat~type O! solutions
are known. As far as~3.7! and ~3.23! are concerned, it will be demonstrated that both of these
possess nonvanishing acceleration and do not belong to the class of solutions, due to Barnes2 and
hence are new. Workers in the field have not indicated the solutions with nongeodesic flow
through the metric~2.5! so far. Quite possible~but the authors are not aware! that some of the
workers in the field might have obtained the above solutions in different context other than the
imbedding class one.

„a… Metric „3.7…. The metric can be transformed to the following normal form:

ds252dR21~14at3114b!21@Q184at2~at31b!~R2 f !#dt22t2~du21u2df2! ~4.1!

through the transformation

r5FR1S at44 1bt2 f D G~at31b!, ~4.2!

where

Q542at3151a3t9142ab2t31147a2bt6128ct2. ~4.3!

The metric~4.1! in no way belongs to the most general metric due to Barnes2 for geodesic flow,
i.e.,

ds252@h~r !t1at21g~r !#2dr22t2~du21u2df2!1t2 dt2

except in one case whena50 in ~4.1! which corresponds to a Zeldovich fluid with acceleration
zero. The flow vector for~4.1! reads as follows:

v152F 18a2t2M

7~at31b!P2218a2t2M G1/2,
v25v350,

v45
14~at31b!

M F2
36a2t2

p2
1
14~at31b!

M G21/2

,

where

P512a~R2 f !1$14t2~at31b!2%21$84a2t61102a4t121378a2b2t6

1396a2bt9156act5184abt3184ab3t3156bct2%,

M584at2~at31b!~R2 f !142at3151a3t9142ab2t31147a2bt6128ct2.

„b… Metric „3.23…. In this case, metric potentials are available in implicit form and therefore
its transformation into the normal form is not possible explicitly. However, associated acceleration
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vector reveals that the metric and, hence, the corresponding fluid distribution is with nongeodesic
flow. Following are the expressions for flow vector and acceleration vector:

v15
1

a2 F 1K S a3b0

y22ax
112abt2D G1/2F S 2y1A4~y22ax!1

a3b0

y22axD ~y22ax!2

1
a

t
Ay22axS 4~y22ax!1

a3b0

y22axD
1/2

~ar1bt31g!G ,
v25v350,

v45@y22ax#F 1K H 12abt21
a3b0

y22ax J H 4~y22ax!1
a3b0

y22ax J G1/2,
and acceleration vector (v̇1,0,0,v̇4) is

v̇15
2a4b0

Jt F A4~y22ax!1~a3b0 /y
22ax!

2y1A4~y22ax!1~a3b0 /~y
22ax!!

G
3F12

2~y22ax!

K
$a4b0

2124a2bb0t
2~y22ax!1144b2t4~y22ax!2%G

and

v̇452
v̇1
a2 Fa

t
~ar1bt31g!1~y22ax!3/2H A4~y22ax!1~a3b0 /y

22ax!

2y1A4~y22ax!1~a3b0 /~y
22ax!!

J 21G ,
where

J5b0a
2~y22ax!112bt2~y22ax!213bb0a

2t2,

K5a4b0
2~y22ax!13a5bb0

2t2124a2bb0t
2~y22ax!2

136a3b2b0t
4~y22ax!21144b2t4~y22ax!3.

It is clear that the acceleration is zero only wheny is constant or equal toax, or b050.
It is worth pointing out here that all the spherically symmetric and hyperbolic symmetric

similarity solutions are found to satisfy the barotropic equation of state pressure equal to energy
density.

APPENDIX A: STM FOR SECOND-ORDER PDE

The Lie continuous point group similarity transformation method7 involves the invariance of
the partial differential equation

H~r ,t,u,ur ,ut ,urr ,urt ,utt!50 ~A1!

under a family of one-parameter infinitesimal continuous point group transformation such as

u5u1eU~r ,t,u!1O~e2!, ~A2!

r5r1eR~r ,t,u!1O~e2!, ~A3!
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t5t1eT~r ,t,u!1O~e2!, ~A4!

whereU, R andT are the infinitesimals of the variablesu, r , and t, respectively, ande is an
infinitesimal parameter. Similarly derivatives ofu are transformed, according to

ur5ur1e@Ur #1O~e2!, ~A5!

ut5ut1e@Ut#1O~e2!, ~A6!

urr5urr1e@Urr #1O~e2!, ~A7!

and so on, where [Ur ], [Ut], [Urr ], etc. are the infinitesimals of the transformations of derivatives
ur , ut , urr , etc., respectively, and are given by

@Ur #5Ur1~Uu2Rr !ur2Trut2Ruur
22Tuurut , ~A8!

@Ut#5Ut1~Uu2Tt!ut2Rtur2Tuut
22Ruurut , ~A9!

@Urr #5Urr1~2Uru2Rrr !ur2Trr ut1~Uuu22Rru!ur
222Truurut2Ruuur

3

2Tuuur
2ut1~Uu22Rr !urr22Trurt23Ruurr ur2Tuurr ut22Tuurtur , ~A10!

@Utt#5Utt1~2Utu2Ttt!ut2Rttur1~Uuu22Ttu!ut
222Rtuurut2Tuuut

3

2Ruuut
2ur1~Uu22Tt!utt22Rturt23Tuuttut2Ruuttur22Ruurtut , ~A11!

@Urt #5Urt1~Uru2Ttr !ut1~Utu2Rtr !ur2Truut
21~Uuu2Rru2Tut!urut2Rtuur

22Tuuurut
2

2Ruuutur
22Trutt1~Uu2Rr2Tt!urt2Rturr22Tuuturt22Ruururt2Tuurutt2Ruuturr .

~A12!

The invariance requirement of~A1! under the set of transformations~A2! to ~A12! leads to the
invariant surface condition:

R
]H

]r
1T

]H

]t
1U

]H

]u
1@Ur #

]H

]ur
1@Ut#

]H

]ut
1@Urr #

]H

]urr
1@Urt #

]H

]urt
1@Utt#

]H

]utt
50.

~A13!

On solving the~A13!, the infinitesimalsR, T, andU can be uniquely determined, which give
the similarity group under which the system~A1! is invariant.

By the infinitesimal transformations~A2!–~A4!, we have

u„r1eR1O~e2!,t1eT1O~e2!…5u1eU1O~e2!. ~A14!

By comparing the coefficient ofO~e! on either side of~A14! gives

R
du

dr
1T

du

dt
2U50, ~A15!

which is a quasilinear equation of first order and admits a solution by Lagrange method as

u5 f ~s!, where s5s~r ,t !. ~A16!
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On substituting~A16! into Eq.~A1! the latter turns out to be an ordinary differential equation
involving only the derivatives with respect to the variables ~called similarity variable!.

APPENDIX B: STM FOR SECOND-ORDER ODE

Now we shall provide the necessary details of the similarity transformation method7 for
reducing a second-order ordinary differential equation into a first-order equation.

A second-order equation

F~x, y, y8, y9!5y92v~x, y, y8!50 ~B1!

admits all the transformations of one-parameter infinitesimal group

x5x1j~x,y!t, ~B2!

y5y1h~x,y!t, ~B3!

wherej andh are the infinitesimals andt is an infinitesimal parameter.
The general condition for group invariance is

j
]F

]x
1h

]F

]y
1h8

]F

]y8
1h9

]F

]y9
50, ~B4!

where

h85hx1~hy2jx!y82jyy82 ~B5!

and

h95hxx1~2hxy2jxx!y81~hyy22jxy!y822jyyy831~hy22jx!y923jyy8y9. ~B6!

The condition~B4! with reference to~B1! reads as

2j
]v

]x
2h

]v

]y
2@hx1~hy2jx!y82jyy82#

]v

]~y8!
1hxx12~hxy2jxx!y8

1~hyy22jxy!y822jyyy831@hy22jx23jyy8#v50. ~B7!

Equation~B1! can be reduced to a first-order equation by finding out two invariants of the
group (u,v) which, in turn, are found from solving the characteristic differential equations

dx

j~x,y!
5

dy

h~x,y!
5

d~y8!

h8~x,y,y8!
~B8!

as

u~x,y!5a and v~x,y,y8!5b. ~B9!

Then, the second-order differential equation can be expressed as

dv
du

5f~u,v !5
vx1vyy81vy8y9

ux1uyy8
. ~B10!
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The compatibility between general relativity and the property that space–times are
embedded manifolds is examined. It is shown that the signature of the embedding
space is uniquely determined when its dimension is the smallest possible. In this
case, the twisting vector transforms as a Yang–Mills potential under the signature
preserving symmetry group, whose curvature is described by Ricci’s equation. The
use of complex embeddings is also discussed in association with signature and
topology changes. ©1996 American Institute of Physics.
@S0022-2488~96!02703-2#

I. INTRODUCTION

It has been known for a long time that Riemannian manifolds can be seen as a submanifold of
some higher dimensional space. This embedding corresponds to the inverse of Riemann’s prob-
lem: To find the extrinsic geometry for a given intrinsic~metric! one. The existence of the
embedding is the object of the fundamental theorem of submanifolds~as an extension of the
fundamental theorem of curves and surfaces!.1 The adaptation of the embedding program to the
case of a pseudo-Riemannian manifold offers little difficulty,1,2 and there is a long list of refer-
ences on applications to space–times of general relativity.3–9

It is clear that if we embed a space–time but insist on using only its intrinsic properties~that
is, those derived from the metric only!, then there is nothing to gain except the mathematical
exercise.10 However, the embedding equations state that the metric~the gravitational field! of the
embedded space–time is induced by that of the embedding space via the embedding parametri-
zation. Thus, as in a vielbein formalism, the embedding functions transfer some of the physical
properties of the space–time either to the metric or to the parametrization of the embedding space.
Furthermore, since the space–time acts as an arena for all physical phenomena, we cannot avoid
considerations on the physics at the interface between the two manifolds. Conceivably a extremely
high energy process in space–time~possibly above 1 TeV!!, such as a collision of particles could
eject some particles outside space–time, or else we should be able to explain why it does not
happen.11 If particles are ejected, then the conservation laws and particle structure should be
adapted to this new condition. The possible contribution of the embedding space to particle
kinematics, including internal structure has been conjectured long ago.5,6

Thus, in this embedding picture of space–time there are some unavoidable questions such as:
What is the meaning of the extrinsic objects of a space–time and in particular of its extrinsic
curvature? Why should the space–time remain as a stable four dimensional submanifold instead of
being ‘‘diluted’’ or ‘‘evaporated’’ in the ambient space, as a consequence of the above conjecture?
Is the metric of the space–time the only physically meaningful quantity among all embedding
functions?

There are at least two basic problems which must be considered before we should answer

a!Electronic mail: maia@mat.unb.br

0022-2488/96/37(4)/1972/10/$10.00
1972 J. Math. Phys. 37 (4), April 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



some of these questions. The first problem~the signature problem!, described in section II refers
to the existence of different signatures for a given space–time and the same embedding dimension.
We show that this may be solved with a natural condition to be imposed on the embedding
dimension. The other problem described in section III refers to the physical meaning of one of the
fundamental forms the space–time called the twisting vector.~Also known as the torsion vector,
frequently mistaken by the torsion tensor.! We show that this is a well defined connection in
space–time whose curvature is described by Ricci’s equation.

We start with some comments and review briefly the main properties of space–time embed-
dings. The dimensionD of the embedding space depends on the differentiable character of the
embedding functions. If we agree with Janet and Cartan that those functions are analytic, then the
embedding space has dimensionD<d(d11)/2.12 However, analytic functions may be too special
as compared to differentiable functions to describe high energy processes. If we use a differen-
tiable embedding, then the number of dimensions increases toD<d(d13)/2.13 Of course, in most
known situations we need less than those limits and in the case of physics it makes sense to adopt
a principle of economy of dimensions: If a given space–time has been proven to be embeddable
in D dimensions, then we will not use more thanD dimensions. We will see that this principle is
also relevant for the uniqueness of the signature.

The choice of the geometry of the embedding space presents a second problem for, if the
embedding space has anything to do with physics, then its curvature will be a dynamical object.
Therefore, unlike the purely mathematical embedding problem, physics may imply a dynamical
embedding model, where the geometry and topology of the embedding space changes continu-
ously with time. Comparing with Kaluza–Klein theory it would be natural to assume that such
geometry could be derived from the Einstein–Hilbert action. On the other hand, following another
trend, the space–times could also be regarded as four-membranes in the embedding space whose
dynamics follows from the Nambu action.7 In any of these situations, the four-dimensional intrin-
sic geometry of the embedded space–time would emerge only at the low energy limits of the
theories. Nonetheless, known results for Euclidean metrics say that it is always possible to deter-
mine a flat embedding space for a given manifold. Therefore, we may also assume at least as an
initial step, that at the end there will be a flat space embedding for any space–time~which could
be taken to be to some kind of ground state!.

Consider a space–timeV4 with metric gi j , solution of Einstein’s equations and its local
isometric embedding in a flatD-dimensional manifoldMD . That is, a 1:1 mapY :V4→MD such
that1

gi j5Ym
,iY

n
, jG mn , N A

m
Y n

,iG mn50, N A
m
N B

n
G mn5gAB5eAdAB, ~1!

wherexi are coordinates in space–time andN A areD24 vector fields orthogonal to the embed-
ded space–time.~Lower case Latin indices run from 1 to 4 and capital Latin indices run from 5 to
D. All Greek indices run from 1 toD. The indicated antisymetrization applies only to indices of
the same kind closer to the brackets.! HereeA561 andG mn denote the components of the metric
of MD in the embedding coordinatesYm. SinceMD is flat we may use Cartesian coordinates
with metric componentshmn .

The embedding coordinatesYm(xi) can be obtained by integrating the Gauss and Weingarten
equations:

Y ; i j
m 5gMNbi jMN

m
N , ~2!

N A; j
m 52gmnbjmAY

m
,n1gMNAjAMN

m
N, ~3!

wherebi jA are the components of the second fundamental form andAiAB are the components of
the twisting vector. SinceMD is flat we may always chooseYm as Cartesian coordinates. In this
case, we obtain explicitly
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bi jA52Ym
,iN

n
A, jhmn5Ym

,i jN A
n hmn . ~4!

It follows thatbi jA is symmetric in the first two indices. Likewise, the expression of the twisting
vector is:

AiAB5N m
AN

n
B,ihmn , ~5!

so thatAiAB52AiBA . These two quantities, determine completely the extrinsic geometry of the
space–time, giving a measure of the local shape of the space–time as compared to the tangent
space.

Obviously, if the embedding of the space–time is given by the embedding coordinates~as for
example in Ref. 14! then all we have to do is calculateN m

A , bi jA andAiAB .
15 However, if we do

so we learn very little over what we already know from the intrinsic geometry. As mentioned
before, the situation may be different if we assume that the embedding is not known, but that it
results from the space–time dynamics. Since in generalbi jA and AiAB are independent of the
metric, we may express this dynamics in terms of those variables instead of the embedding
coordinatesYm. The integrability conditions for~2! and ~3! are the well known Gauss, Codazzi
and Ricci equations for submanifolds which may be written respectively as

Ri jkl52gMNbi @kMbjlN ,

bi @ jA;k#5gMNA@kAMbjiN , ~6!

A@ jAB;k#1gMNA@ jMAAk]NB52gmnbm@ jAbk]nB .

There are some specific procedures for integrating these equations, as for example in Refs. 4 and
8. However, their physical implications are often neglected. We will come back to them in section
III.

II. THE UNIQUENESS PROBLEM

Assuming that the space–time has a Lorentz signature, then the embedding space has neces-
sarily a pseudo-Euclidean signature, possibly with several time-like directions, one of them nec-
essarily lying on the tangent plane. For a give space–time, it is possible to find different embed-
ding signatures with the same dimension. If the embedding space has physical significance, then
such ambiguity is not acceptable. In particular, a given gravitational field would produce different
trajectories in higher dimensions. The above mentioned principle of economy of dimensions has
the following consequence:

Theorem 1: If D is the smallest dimension in which we can isometrically embed a non-flat
space–time V4 in a real spaceMD , then the signature of the embedding space is unique.

Suppose that we have two embeddings of the same space–timeY :V4→MD and
Y 8:V 4→MD8 which differ only in signature: (p,q) in the first case and (p8,q8) in the second.
Since the tangent spaces toV4 have the same Minkowski signature, without loss of generality they
may be identified. That is, we may define a mapT:MD→M8D such that its derivativeT*
restricted to the tangent spaceTV4 is the identity:T* cTV45T1*5Id. On the other hand, the

restrictionT2* to the subspacesV4
' of MD orthogonal to the space–time, is a general linear

transformation~Fig. 1!. In terms of the embedding coordinates and normal vectors this is equiva-
lent to

Y 8m
,i5Ym

,i , N B85TABN A . ~7!

And from its definition~4!, the second fundamental form transforms asbi jB8 5TABbi jA . The
Gauss equation forY 8 is
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Ri jkl52g8MNbi @kM8 bl ] jN8 , ~8!

Comparing with Gauss’ equation forY , we obtain

2(
A55

D

g9ABbi @kAbl ] jB50, ~9!

where we have denoted

g9AB5gAB2g8MNTAMT
B
N . ~10!

It remains to be seen if~9! admits a non-trivial solutiong9AB of the form eA9dAB , with
e9A561. We have the following possibilities:

~a! All g9AB coincide with gAB: g9AB5gAB ;A,B55, . . . ,D. In this case we have
g8MNTM

A TN
B50 which is not possible since the left hand side of equation~8! becomes identically

zero, contradicting the hypothesis of a non-flatV4 .
~b! Only some values ofg9AB coincide withgAB. For example, suppose thatg9AB Þ gAB for

A,B55, . . . ,D1 andg9AB5gAB for A,B5D111, . . . ,D, where 5,D1,D. From ~9!, it follows
that

2 (
A,B55

D1

g9ABbi @kAbl ] jB12 (
A,B5D111

D

gABbi @kAbl ] jB50.

Therefore, replacing the last term in the Gauss equation of~6!, we get

Ri jkl52 (
A,B55

D1

gABbi @kAbl ] jB12 (
A,B5D111

D

gABbi @kAbl ] jB52 (
A,B55

D1

~gAB2g9AB!bi @kAbl ] jB .

Since, the quadratic formgAB2g9AB can always be diagonalized, we may write
gAB2g9AB5g98AB5eA98d

AB. Therefore the last equation corresponds to Gauss’ equation for a
third embedding ofV4 in a space withD1 dimensions, contradicting the hypothesis.

~c! The remaining possibility corresponds to a trivial solutiong9AB50, for allA,B55,..,D. In
other words,

gAB5TAMg8MNTN
B . ~11!

FIG. 1. Two embeddings ofV4 .
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In matrix notation, g5Tg8Tt, so that ( detT)25 detg/ detg8. Therefore, we have
det(T)561, or det(T)56 i . In the cases det(T)561 the signature of the embedding space
remains unchanged. In particular when det(T)51, T belongs to the group of pseudo rotations of
the normal vectorsN m

A . Since the tangent space toV4 has a Minkowski signature andMD has
signature (p,q), this group isSO(p23,q21).

On the other hand if det(T)56 i we have different signatures corresponding to a complex
T, producing a complexification ofMD defined by a pair of maps (1,*) from MD3MD to
MD3MD such that16:

~u,v !1~w,x!5~u1w,v1x! and ~u,v !* ~w,t !5~uw2vt,vw1ux!.

A complex embedding may result from a complexification ofMD . In our case, the com-
plexification ofMD induced byT occurs only on the subspace ofMD orthogonal to the space–
timeV4 which remains real and preserves its light cone structure. The resulting complex manifold
MD /C, defines a ‘‘complex embedding’’ of a real space–time.

As an example of the signature change problem consider two well known embeddings of the
Schwarzschild space–time in six dimensional pseudo Euclidean flat spaces: Kasner14

K:V4→M6 ds
2 5 dY1

21dY2
22dY3

22dY4
22dY5

22dY6
2 , Fronsdal9 F:V 4→M68 2 ds2

5 dY 81
22dY 82

22dY 83
22dY 84

22dY 85
22dY 86

2 , given by~here we assume mass units such that
2m51):

K

{
Y15S 12

1

r D
1/2

cost,

Y25S 12
1

r D
1/2

sint,

Y35 f ~r !, S d fdr D
2

5
114r 3

4R3~r21!
,

Y45r senu sinf,

Y55r sinu cosf,

Y65r cosu,

and F

{
Y1852S 12

1

r D
1/2

sinhS t2D ,
Y2852S 12

1

r D
1/2

coshS t2D ,
Y385g~r !, S dgdr D

2

5
~r 21r11!

r 3
,

Y485rsenu sinf,

Y585r sinu cosf,

Y685r cosu.

In the first case we have two time-like dimensions while in the second case we have only one~we
are using2ds2 instead ofds2). Both correspond to the same space–time, except for a difference
in topology: InK, the space–time extends only tor51, while inF it extends tor50. The second
embedding corresponds in fact to the maximal analytic extension of the Schwarzschild space–time
also known as Kruskal’s space–time. Since the Schwarzschild space–time can be seen as a subset
embedded in Kruskal’s space–time defined by an extension mapC.17 Then there is a third
embedding of Schwarzschild’s space–time, given by composite mapFoC ~Fig. 2!, consistent

FIG. 2. The embeddings of Schwarzschild’s space–time.
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with the one defined by Fronsdal and it has the appropriate signature.
It has been noted that the embedding defined by Kasner is not causal.9 Indeed, any curve in

the plane (Y1 ,Y2) with a parameter range greater than 2p is closed in that embedding. Since we
are required to perform genuine non-local experiments in space–time to apply the equivalence
principle and to distinguish causal and non causal propagation, we cannot rely on the implicit
function theorem alone to characterize an embedding properly. Unless he remains strictly local, an
observer in the space–time would be able to detect if his space–time is embedded or not simply
by observing a classical breaking of causality. Consequently, the Kasner embedding is not physi-
cal.

Now, consider the linear transformationT between the two above embeddings. The matrix
representingT is

~TAB!5S a b

c dD .
Replacing in~11! with g5551, g66521 andg558 51, g668 51, we obtain

a21b251, c21d2521, ac1bd50, ~ad2bc!2521.

One possible solution producing a complexT is a5d50, c5 i , b51.
The change of signature ofMD may have some topological consequences.

18 This can be seen
by taking the embedding diagrams for Schwarzschild~Kasner! and Kruskal~Fronsdal! space–
times. In Figure 3, the circle in the left represent an open sphereS2 which intersects regionsRI

2

andRII
2 excluding the planer52m51. The corresponding topology is then (RI

2øRII
2 )3S2. On the

other hand, in the right hand side the resulting topology isR23S2.19

The above result shows that by use of complex embeddings it is possible to preserve the
space–time signature while altering only the signature of the embedding space. For example, we
may use complex transformations to makeMD truly Minkowskian ~with just one time-like di-
mension! and use it as a fixed background in a possible canonical quantization procedure, while
keeping intact the classical space–time signature. In this case the group of rotations of the normal
vectors would beSO(D24). This Minkowskian signature may be relevant for the recent debate
on the need or not of changing the space–time signature to apply path integrals in quantum
cosmology.20

The change of signature of the embedding space may also be a consequence of the space–time
dynamics. Considering the embedding equations as part of the dynamical equations, together with
Einstein’s equations, any 4-surface of discontinuity of the second fundamental formbi j may
induce a classical change of signature ofMD . This would be analogous to the process of classical

FIG. 3. Topology and signature changes.
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change of signature described in Ref. 21, but now extended to four-dimensional hypersurfaces. In
turn, this change of signature of the embedding space may promote eventual topological
changes.22

III. THE TWISTING CONNECTION

In the following we consider the embeddings of a given space–time in a real space with the
same signature~we consider as equivalent signatures which differ only by a factor21, or by a
mere relabelling of the embedding coordinates! (p,q). Therefore the signature preserving sym-
metry isT5SO(p23,q21).

The fundamental theorem of submanifolds says that given the symmetric tensorgi j , D24
tensorsbi jA and (D24)(D25)/2 vectorsAiAB satisfying ~6! then there is a four-dimensional
submanifold of a flat spaceMD which hasgi j as its metric,bi jA as its second fundamental form
andAiAB as its twisting vector.

Actually that theorem gives aD24 parameter family or foliation of embedded manifolds with
parametrization

Zm~xi ,xA!5Ym~xi !1xANA
m.

The metric ofMD in the Gaussian coordinate system (xi ,xA) is

G ab8 5Zm
,aZ

n
,bG mn5S g̃i j1xAxBgMNAiMAAjNB giA

gjB gAB
D , ~12!

where we have denoted

g˜i j5gi j22xAbi jA1xAxBgmnbimAbjnB , and giA5xMAiMA .

Now let us recall a remarkable property of the twisting vector:
Theorem 2: Under an infinitesimal pseudo rotation of the normal vectors N, the twisting

vector transforms as:

AiAB8 5AiAB2 f ABMN
EF AiEFQMN2QAB,i , ~13!

where f ABMN
EF denote the structure constants andQMN denote the parameters of the group

SO(p23,q21).
From ~12! we may express the torsion vector asAiAB5]G iA /]x

B. Therefore under an infini-
tesimal transformation ofSO(p23,q21):

x8 i5xi , x8A5xA1jA.

Keeping only the linear terms inj, the infinitesimal transformation ofAiAB is:

AiAB8 5
]G iA8

]xB8
5~dA

M2jA
M !

]

]x8M
~~d i

m2j ,i
m!~dA

n 2j ,A
n !G mn!.

Sincejk50 andjA5QM
A (xi)xM we end up with

AiAB8 5AiAB22gMNAiM @AQNB]2QM
A,igMB . ~14!

The Lie algebra ofSO(p23,q21) with generatorsLAB is given by

@LMN,LPQ#5 f AB
MNPQLAB,
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where

f AB
MNPQ54adA

@NgM ] @PdB
Q] and f ABMN

PQ 54ad@A
P gB] @MdN

Q , ~15!

wherea is a normalization constant. Therefore,

AiAB8 5AiAB22AiEF

1

4a
f ABMN
EF QMN2QM

AgMB .

Hence, fora51/2 we obtain~13!, which is the same as the transformation of a gauge potential in
Yang-Mills theory, with respect to the gauge groupSO(p23,q21).

The Lie-algebra valued ‘‘twisting’’ vector field is defined as

Ai5AiABL
AB.

The transformation~13! suggests thatAi induce a gauge-like connection inV4 , the twisting
connection, with the corresponding ‘‘gauge’’ covariant derivative operator given by

Di5¹ i1bAi ,

where b is another constant to be appropriately chosen, not necessarily meaning a coupling
constant. This covariant derivative acts on Lie algebra valued functionsf asDi f5¹ i f1b@Ai ,f#.
In particular, for scalar functionsf , Di f5¹ i f , so thatDigjk50. Using the fact that¹ iL

AB50, we
obtain the commutator

@Di ,Dj #5b~¹ iAj2¹ jAi1b@Ai ,Aj # !. ~16!

Next we consider the Clifford algebra associated with the metricgAB defined by

EAEB1EBEA52gABE0,

whereE0 is the identity elementEAE05E0EA5EA. This algebra is closely related with the
isometry group ofgAB. In fact, if the Lie algebra of this group is generated byLAB, then23

LAB5
1

g
@EA,EB#, ~17!

where againg is another scale constant to be chosen. The indices A, B, . . . areraised and lowered
with gAB andg

AB such thatEA5gABEB . Therefore, given the coefficients of the second funda-
mental formbi jA we, may define the Clifford algebra valued tensorsbi j5bi jAE

A.
Theorem 3: If F i j is the curvature associated with the twisting connection, then Codazzi’s

and Ricci’s equations are respectively equivalent to

D @kbi j ]50, ~18!

Fi j522gmnbm@ ibj ]n . ~19!

In fact, since Di and @Di ,Dj # are Lie-algebra valued functions, we may write
@Di ,Dj #5@Di ,Dj #ABL

AB, where we have denoted@from ~16!#

@Di ,Dj #AB5b~¹ iAjAB2¹ jAiAB1bAiMNAjPQf AB
MNPQ!. ~20!

From the definition of structure constants it follows that
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f AB
MNPQLAB5@LMN,LPQ#ABL

AB.

Therefore,~20! may be written as

@Di ,Dj #AB52b~¹@ iAj ]AB1bgMNA@ iMAAj ]NB !. ~21!

Comparing the right hand side of this expression to the left hand side of Ricci’s equation in~6! we
obtain withb521, Di5¹ i2Ai and

@Di ,Dj #5gmnbm@ jAbi ]nB
1

g
@EA,EB#5

4

g
gmnb@ jmbi ]n . ~22!

To complete the demonstration, introduce the notation

DkA
N 5dA

N¹kbjiN2gMNAkAM.

Then the second equation~6! can be written as

D @kA
N bj ] iN50. ~23!

On the other hand, using the definition ofDi , the gauge covariant derivative ofbi j is given by

Dkbi j5¹kbi j2@Ak,bi j #. ~24!

However, we can easily see that

@Ak,bi j #5Akbi j2bi j Ak5
8

g
gABAkCBbi jAE

C.

Consequently,

Dkbji5S dA
M¹k2

8

g
gMNAkANDbi jMEA.

Comparing with~23! it follows that forg58 we obtain Codazzi’s equation~18!:

D @kbi j ]5D @kA
M bi j ]MEA50.

Finally, the curvature associated withAi is Fi j5@Di ,Dj #, so that from~22! we obtain~19!.
As we see, Gauss and Ricci’s equations are equivalent in the sense that the curvature tensors

of the Levi-Civita and twisting connections are expressed in terms of the variablebi j , which act
as a source field subjected to Codazzi’s equation.

For completeness we may also write the Gauss equation in the same algebraic form. This is
easily accomplished using the definition of the Clifford algebra$EA% in the first equation of~6!,
obtaining

Ri jklE
05bi @kbl ] j2bj @kbl ] i . ~25!

In conclusion, the conditions for the embedding of a space–time may be compatible with the
physics of the space–time, provided the integrability conditions are included as part of the dy-
namics and with the adoption of the principle of economy of dimensions.

The hidden internal indicesA,B,.. in the algebraic form of the equations~18!,~19! and ~23!,
merely reflect the degrees of freedom for the embedding which is defined up to a transformation
of the normal vectors. As such they do not affect the number of independent equations. To
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understand the space–time as a four-dimensional submanifold and why it stays like that, depends
on further understanding ofbi j andAi as physical fields in addition to the metric~the gravitational
field!. This requires further considerations on the fundamental theorem of submanifolds as adapted
to the case of space–times, which will be presented in a subsequent paper.
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Geodesic motion of test particles in van Stockum space–time, which represents the
internal gravitational field produced by a rigidly rotating dust cylinder, is studied.
In particular, it is found that confinement occurs quite generally in the radial direc-
tion, while the motion in the axial direction is free. The possible relevance of the
confinement to the extragalactic jet formation is pointed out. ©1996 American
Institute of Physics.@S0022-2488~96!00503-6#

I. INTRODUCTION

After the pioneering work of Levi-Civita~LC!,1 Lanczos,2 van Stockum,3 and Marder,4

space–times with cylindrical symmetry have been studied intensively, because of both their math-
ematical simplicity and~more important! their physical relevance to our realistic world.5,6 How-
ever, due to the particular difficulties that they possess, our understanding on such space–times is
still by far from mature. For example, even in the simplest case of the LC solution,1 its physical
interpretation is not completely understood, yet. In general, it contains two independent param-
eters, in contrast to the spherical case, in which there is only one mass parameter. It was not clear
until quite recently that one of them corresponds to topological defects.4,7 The second parameter,
s, is still unclear, although most believe that it is connected with the mass per unit length. It is this
belief that gives rise to a serious problem: In which form it is related to such a mass, since the two
values,s50, 1

2, all correspond to a flat space–time.8 This problem has been further studied quite
recently.7,9

On the other hand, partially motivated by the inflationary Universe scenario,10 a large class of
exact solutions to the Einstein vacuum equations with a nonvanishing cosmological constant was
recently found by Santos,11 which represents the gravitational field outside a cylindrically distrib-
uted matter source, and studied in detail by Bonnor, MacCallum, and Santos.12

To get some insight into those space–times, another alternative is to study the geodesic
motion of test particles in the space–times. As a matter of fact, in this paper, as well as in the
forthcoming ones, we shall engage ourselves on this problem. In particular, in the present paper
we shall study the geodesic motion in the van Stockum space–time,3 which represents the gravi-
tational field produced by a rigidly rotating dust cylinder with a finite thickness. The matching of
this space–time to the vacuum Lewis space–time13 was also completed in Ref. 3, and studied in
detail by Bonnor.14 Since here we are mainly interested in the geodesic motion of test particles
inside the dust cylinder, we shall restrict ourselves only to the internal solution of the rigidly
rotating dust cylinder, i.e., the van Stockum space–time.

a!Internet: nos@on.br
b!Internet: wang@on.br
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II. GEODESIC MOTION IN VAN STOCKUM SPACE–TIME

The van Stockum dust cylinder is given by3

ds25gab dxa dxb52 f dt212k dt df1em~dr21dz2!1 l df2, ~1!

where f , k, m, and l are given by

f51, k5ar2, m52a2r 2, l5r 2~12a2r 2!, ~2!

with a being an arbitrary positive constant. The coordinates are numbered

x05t, x15r , x25z, x35f, ~3!

ranging

2`,t,`, 2`,z,`, 0,f,2p, ~4!

and the hypersurfacesf50 andf52p being identified. The energy density and the four velocity
of the dust are

kr54a2ea
2r2, um5d0

m , ~5!

wherek is the gravitational coupling constant. The angular velocity of the fluid with respect to a
locally nonrotating frame14 is v5a(12a2r 2)21. Since near the axis,v→a, we can interpreta as
the angular velocity of the fluid on the axis.

Now we calculate the geodesics,

d2xa

dl2 1Gbg
a dxb

dl

dxg

dl
50, ~6!

of a test particle in the space–time~1!, wherel is an affine parameter along the geodesics.
Substituting Eqs.~1! and ~2! into Eq. ~6!, we obtain

ẗ12a2r ṙ ṫ22a3r 3ṙ ḟ50, ~7!

r̈2a2r ~ ṙ 22 ż2!2r ~122a2r 2!ea
2r2ḟ222area

2r2ṫḟ50, ~8!

z̈22a2r ṙ ż50, ~9!

f̈1
2

r
~12a2r 2! ṙ ḟ12

a

r
ṫ ṙ50, ~10!

where the overdot stands for differentiation with respect to the affine parameter. For time-like
geodesics, it is the proper timet. Integrating Eqs.~7!, ~9!, and~10!, we obtain

ṫ5E~12a2r 2!1aPf , ~11!

ż5Pze
a2r2, ~12!

ḟ5Pf

1

r 2
2aE, ~13!
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whereE, Pz andPf are integration constants. Instead of integrating Eq.~8! we can use the line
element~1! and obtain

2e52 ṫ212ar2ṫḟ1e2a2r2~ ṙ 21 ż2!1~12a2r 2!r 2ḟ2, ~14!

wheree50, 1, or21 if the geodesics are null, time-like, or space-like. In the following, we shall
be concerned only with the null and time-like geodesics.

Introducing the momenta of the test particle defined by

pa5gabẋ
b, ~15!

we obtain from Eqs.~2! and ~11!–~13!,

p052E, p15e2a2r2ṙ , p25Pz , p35Pf . ~16!

HenceE can be interpreted as the total energy of the particle, and will be always taken non-
negative.Pz can be interpreted as its momentum alongz and Pf its angular momentum. We
restrict the study of geodesic motion of test particles to 0<ar<1, since atar51 the circle of this
radius about the axis is a closed null curve. At greater values ofar.1 it defines closed time-like
curves about the axis.14

Introducing the quantity

x[ar, ~17!

we can rewrite Eq.~8! as

ẍ5a2xex
2S 2aEPf2e2E2x222Pz

2ex
2
1a2Pf

2 12x2

x4 D . ~18!

From the above equation we have

ẍ85a2ex
2F2e~112x2!22Pz

2ex
2
~114x2!12E2

g~x!

x4 G , ~19!

where the prime stands for differentiation with respect tox and

g~x!5C2~2x41 3
2 x

22 3
2!1C~2x61x4!2x82 3

2 x
6, ~20!

with

C5
aPf

E
. ~21!

If Pf<0, orC<0, we have from Eq.~20!, g,0, which means from Eq.~19! that ẍ8,0. But if
Pf.0, since from Eq.~20!,

g~0!52 3
2 C

2,0, g~1!52 5
2 13C2C2,0, ~22!

and there are no realC roots forg(x)50 in the interval 0<x<1, we also haveg(x),0. Hence
ẍ8,0 for Pf.0. Thereforeẍ(x) is steadily decreasing for increasing values ofx for Pf<0 as
well as forPf.0.

On the other hand, setting
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V0[E212aEPf2e, V~x![E2x21Pz
2ex

2
1
a2Pf

2

x2
, ~23!

Eq. ~14! can be written as

ẋ25a2ex
2
@V02V~x!#. ~24!

Note thatV(x) is non-negative. Thus, in order to have Eq.~24! meaningful for realx, we must
haveV0.0, which is equivalent to

E.~a2Pf
21e!1/22aPf . ~25!

To further study the motion of test particles, we consider the cases wherePf50 andPfÞ0
separately.

Case A: Pf50. For this case Eqs.~18! and ~24! become

ẍ52a2xex
2
~e1E2x212Pz

2ex
2
!, ~26!

ẋ25a2ex
2
@E2~12x2!2~e1Pz

2ex
2
!#. ~27!

From Eq.~27! we can see that for the radially moving photons,e50 andPz50, the maximum
radius that the photons can reach isx51. The acceleration of these photons is zero at the sym-
metry axis, and is increasing exponentially with its direction being always inward asx increases.
As a result, all of them will be drawn backward when they reach the maximum radiusx51, where
their velocity becomes zero. As they move inward from thereon, they reach at the axis with
nonzero velocity, and are reflected by it, and then move outward. This procedure will be repeated
endlessly.

For photons withPzÞ0 and, or, time-like particles, the motion is similar alongx, and the
difference is that the maximum radius that they can reach is less than 1. But meanwhile they have
motion too in the axial direction with velocity given by Eq.~12!,

ż5Pze
x2, ~28!

which means that the particles increase their speed alongz when distancing radially from the axis,
while diminish their axial speed when moving radially toward the axis.

Therefore, for this class of photons and time-like particles, they are always confined inside the
cylinder x51. We observe that, in spite ofPf50, the particles have angular velocity different
from zero since~13! gives

ḟ52aE, ~29!

because of the dragging of space–time.
Case B: PfÞ0. From~23! we find

V8~x!52xSE21Pz
2ex

2
2
a2Pf

2

x4 D . ~30!

Thus, the equationV8(x)50 has only one solution, say,x5xc , which satisfies

E21Pz
2exc

2
5
a2Pf

2

xc
4 . ~31!
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On the other hand, from Eq.~23! we find that whenx→0 or `, V(x)→`. Therefore it is
concluded thatx5xc is the point whereV(x) has its minimum~cf. Fig. 1!.

From Eq.~24! and Fig. 1 we can see that if the equation

V02V~x!50, ~32!

has two real roots, say,xmin andxmax, with 0,xmin,xmax<1, then motion of the test particles will
be confined inside the shellxmin<x<xmax. If Eq. ~32! has only one real root, say,x5x0 , with
0,x0<1, then the motion will be confined outside the cylinderx5x0 . Note that the test particles
with PfÞ0 can never reach the axisx50, since in this case the accelerations at the axis are
infinitely large and directed outward@cf. Eq. ~18!#. So, any particle, both time-like and null,
moving inward initially, will be pulled out before they reach the axis by a huge force proportional
to x23. This indicates that the gravitational collapse of a cylinder with rotation can never develop
singularities at the axis, and instead, after it collapses along the radius, it will be bounced out.15,16

If Eq. ~32! has no real solution in the interval 0,x<1, it means that motion of test particles is
forbidden. Thus, to study the motion of test particles now reduces to study the roots of Eq.~32! for
0,x<1. From Fig. 1, we can see that the number of the roots crucially depends on the fact of
whetherxc<1. Clearly, ifxc>1, the number of roots of Eq.~32! is one or zero, depending on if

DV[V02V~1!52aEPf2~e1a2Pf
21ePz

2!, ~33!

is greater than or equal to zero, or less than zero, respectively.
Whenxc,1, Eq. ~32! will have two, one, or zero roots, depending on if

dV[V02Vmin , ~34!

is greater than, equal to, or less than zero, respectively. To see whether the minimum ofV(x)
occurs inside the cylinderx51 or not, it is sufficient to considerV8(x) given by Eq.~30! at x51
is greater than, equal to, or less than zero. WhenV8(1).0, we must havexc,1; whenV8(1)50,
we havexc51; and whenV8(1),0 we must havexc.1 ~see Fig. 2!.

From Eq.~30! we find that

V8~x51!52@E22~a2Pf
22ePz

2!#. ~35!

Thus, we have the following three distinguishable subcases:

FIG. 1. The generic behavior of the functionV(x), defined by Eq.~3.7! in the text. It has only one minimum atx5xc .
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~ i! UPf

Pz
U.Ae

a
, E25a2Pf

22ePz
2 @V8~1!50#; ~36!

~ ii ! UPf

Pz
U.Ae

a
, E2,a2Pf

22ePz
2 @V8~1!,0#; ~37!

FIG. 2. Three distinguishing cases for the functionV(x): ~a! V8(x51)50; ~b! V8(x51),0; and~c! V8(x51).0.
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~ iii ! E2.a2Pf
22ePz

2 @V8~1!.0#. ~38!

Let us consider them case by case.
Case B(i). From Eqs.~25! and ~33!, we find that when any of the two conditions,

~a! Pf,0;

or

~b! Pf.0, E,
1

2aPf
~e1a2Pf

21ePz
2!, ~39!

holds, we will haveDV,0. Since in the present case we haveV8(x51)50 @cf. Eq. ~36!#, then
we haveDV5V02V(1)5V02Vmin,0. Thus, for anyx, we always haveẋ2 5 a2x2e2x2@V0

2 V(x)# , 0. In other words, in these two subcases the motion of test particles is forbidden. When
DV>0, which is equivalent to

Pf.0, E>
1

2aPf
~e1a2Pf

21ePz
2!, ~40!

and when Eq.~25! is fulfilled, Eq. ~32! has a solution,x5x0 , in which the motion is confined
outside the cylinderx5x0 @cf. Fig. 2~a!#.

Case B(ii). From Eq.~33!, we find that when Eq.~39! is satisfied, Eq.~32! has no real solution
for 0,x<1. Therefore, the motion in this case is forbidden. When Eqs.~25! and~40! are fulfilled,
Eq. ~32! has a real solutionx5x0 for 0,x<1. In this case the motion is confined outside the
cylinder x5x0 @see Fig. 2~ii !#.

Case B(iii). From Fig. 2~c!, we can see that whenDV>0 and Eq.~25! holds, Eq.~32! has one
real solution,x5x0 . Thus, in this case, the motion is confined outside the cylinderx5x0 . When
DV<0, the nature of the roots of Eq.~32! depends on the signs ofdV defined by~34!. In
particular, whendV.0, Eq. ~32! has two real solutions,x5xmin andx5xmax, and the motion is
confined inside the shellxmin<x<xmax. The biggerdV is, the thicker the shell. AsdV→01, the
shell becomes infinitely thin. WhendV,0, Eq.~32! has no solution and the motion is forbidden.

III. DISCUSSION AND CONCLUSION

Interesting features arise from the geodesic motion of test particles in a cylinder filled with
dust rigidly rotating. The space–time generated by van Stockum solution produces the property of
confinement for test particles in the radial direction, while the motion in the axial and azimuthal
directions is free. It means that the particles are constrained to move endlessly inside a shell of the
cylinder. This property was noticed in Go¨del space–time17 independently by Kundt18 and by
Chandrasekhar and Wright.19

We show that null particles can reach the maximum radiusx51, which is the causal limit of
van Stockum’s space–time, whenPz5Pf50. In this case, the null particles move radially be-
tween the axis,x50, andx51 where they attain null velocities. In spite ofPf50, these particles
have angular velocity different from zero because of the dragging of space–time. IfPzÞ0 and, or,
the particles are massive, the radial motion is similar but do not reach up tox51. Meanwhile, they
have a motion along the axis, increasing their axial speed when distancing radially from the axis,
and diminishing their axial speed when moving toward the axis.

If the test particles havePfÞ0, they can never reachx50, since in this case the accelerations
at the axis are infinitely large and directed outward. So any particle, massless or massive, initially
moving in the radial direction will be pulled out before reaching the axis of the cylinder. This fact

1988 Opher, Santos, and Wang: Geodesic motion in van Stockum space–time

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



indicates that the gravitational collapse of a rotating cylinder filled with matter can never develop
singularities at the axis.15,16For this case test particles can leave or be confined inside the cylinder
x51, depending on the values of its initial parametersE, Pz , andPf .

We mention that the particles that consist the dust cylinder also move along geodesic lines.
This can be seen by simply calculating their four accelerations from Eq.~5!, which is given by

am[um
;nu

n50. ~41!

In analogy to Eq.~15!, we can also define the four momenta for the particles by

Pa[Egabu
b5E~2da

t 1ar2da
f!, ~42!

whereE[mc, andm denotes the rest mass of the particles,c is the speed of light. Then, its square
is

PaP
a52c2m2. ~43!

From Eq.~42!, we can see that these particles have no motion in the radial and axial directions, but
they do have in the angular direction. Moreover,Pf now depends on the radial coordinater , in
contrast to that of test particles. This is because the dust cylinder is rigidly rotating, and, as a
result, the particles that consist the dust cylinder are also rigidly rotating. Consequently, particles
at different radii will move with different velocities. Moreover, since the space–time is cylindri-
cally symmetric and stationary, we expect that these particles have no motion in the radial and
axial directions.

Ubiquitous extragalactic jets appear in active galaxies and various models have been sug-
gested for their origin. A classic model is that of Blandford and Rees.20 In their model a hot
plasma is assumed to be steadily generated at the center of the galaxy. The central object is
surrounded by a gravitationally confined rotating gas cloud. The thermal pressure of this gas cloud
constrains the outflowing relativistic plasma within two oppositely directed channels. An equilib-
rium flow is possible only if the channel shape adjusts so that a nozzle forms where the external
pressure has dropped to one-half its central value. The shape of the channel is assumed to adjust
itself to a de Laval nozzle. This configuration, with a light fluid supporting a heavier fluid in a
gravitational field, is well known to be unstable. Recently, Goncalves, Jatenco-Pereira, and
Opher21 suggested that Alfve´n waves, created above the steep density gradient near galactic
nuclei, are the origin of extragalactic jets. The differential rotation and turbulent motion in galactic
nuclei create a bipolar magnetic field by dynamo action and the twisting and the reconnection of
the magnetic field lines produce Alfve´n waves. Various Alfve´n wave damping mechanisms were
investigated.

Here we point out that the confinement of the test particles in the radial direction might
provide another source for the extragalactic jet formation. Our arguments go as follows: The
gravitational field produced by jets usually is negligible compared with the one produced by the
matter at the center of the galaxy. Thus, to the first-order approximation, it is sufficient to model
those jets as made of test particles. Also, almost all the galaxies are rotating, as a first step, we can
model the center of a galaxy by a rotating cylinder. This approximation seems reasonable as long
as the gravitational field in the middle of the rotating galaxy is concerned, though we admit that it
is indeed highly simplified. Assuming that the above simplified model can capture some essence
of physics, we can see that the confinement can be related to the jets. Certainly, to have this idea
really work, more realistic models should be built. For example, a rotating dust cloud with axial
symmetry and being asymptotically flat in all the three spatial directions as that considered in Ref.
22. Work in this direction is in progress.
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17K. Gödel, Rev. Mod. Phys.21, 447 ~1949!.
18W. Kundt, Z. Phys.145, 611 ~1956!.
19S. Chandrasekhar and J. P. Wright, Proc. Natl. Acad. Sci.47, 341 ~1961!.
20R. D. Blandford and M. J. Rees, Mon. Not. R. Astron. Soc.169, 395 ~1974!; Contemp. Phys.16, 1 ~1975!.
21D. R. Goncalves, V. Jatenco-Pereira, and R. Opher, Astron. Astrophys.279, 351 ~1993!.
22W. B. Bonnor, J. Phys. A10, 1674~1977!.

1990 Opher, Santos, and Wang: Geodesic motion in van Stockum space–time

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Overall rotation of a many-body system in Dixon’s theory
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Using Dixon’s theory, an expression for the angular momentum of anN-body
system, whose constituent bodies are monopoles that do not interact gravitationally,
is obtained. In this expression the contributions to the angular momentum due to
the rotational and internal motions of the material system are separated. It is also
shown how the existence of a frame with respect to which the total angular mo-
mentum of anN-body system is reduced to an expression formally similar to that
corresponding to a rigid body instantaneously equivalent to the material system
considered. Finally, in space–times of small curvature, a separation of the energy
into a part due to the rotational motion and other due to the internal motion, is
investigated. ©1996 American Institute of Physics.@S0022-2488~96!00909-8#

I. INTRODUCTION

Dixon’s theory1 gives an exact framework to describe the motion of extended material sys-
tems in a relativistic spacetime endowed with a prefixed metric structure. In this theory one uses
a countably set of multipolar moments covariantly defined satisfying a finite set of ordinary
differential equations which generalize the laws of motion obtained in the pole–dipole approxi-
mation by Mathisson2 and Papapetrou.3 Dixon’s laws of motion have been confirmed by Ku¨nzle4

using a presymplectic approach, and by Bailey and Israel5 using the Lagrangian formalism.
In this article we consider a material system constituted by an ensemble ofN bodies which are

monopoles that do not interact gravitationally, and we analyze the motion referred to a rotating
frame whose origin is on the center of the mass line. Firstly, we study the separability of the
angular momentum into a part due to the overall rotation and a part due to both the internal
motions and the choice of the temporal vector in the reference frame. Secondly, we analyze the
existence of a frame with respect to which the total angular momentum of the material system is
reduced to an expression formally analogous to that corresponding to a rigid body with the same
instantaneous configuration~in a sense which will be precise!. And, finally, we study the vanishing
of the coupling terms in the expression of the energy.

In Newtonian mechanics the problems of separation inN-body systems were solved a long
time ago by Tisserand.6 He proved that for a system of particles in nonrigid motion satisfying the
Liouville equations there exist frames—Tisserand axes—with their origin on the center of mass
with respect to which the angular momentum is the same as that of a rigid body instantaneously
equivalent to theN-particle system. Using a Tisserand frame one obtains a separation of the
kinetic energy into a part due to the internal motion and another due to the overall rotation of the
material system. In such a frame the Coriolis energy vanishes. The Tisserand axes can also be
defined by the condition of the kinetic energy being minimum relative to such frames.

A similar energy separation has been obtained by Jellinek and Li7 in the polyatomic molecule
theory using an Eckart frame. They have shown that for a fixed total angular momentum in the
center of mass frame, the configuration of theN-body system for which the total kinetic energy is
minimum corresponds to that of an instantaneous rigid body. Marsdenet al.8 have obtained simi-
lar results for general rotating structures using a generalization of the block diagonalization theo-
rem ~see, e.g., Ref. 9!.
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The remainder of this article is as follows: in Sec. II we establish basic definitions, assump-
tions and notation. In Sec. III we obtain one expression for the total angular momentum as a sum
of three quantities associated with the motion of the center of mass, the motion of the bodies
relative to the center of mass frame, and the overall rotation motion. This last contribution is
written in a way analogous to that of a rigid body. In Sec. IV we show that in some cases, it is
possible to define a frame~Tisserand frame! relative to which the total angular momentum is given
only by a term associated to the overall rotation motion. Finally, in Sec. V we study the coupling
terms which appear in the energy expression, noting that, even in a Tisserand frame, such terms do
not vanish. We have verified that if the Riemannian curvature is small enough and constant, one
can choose a frame with angular velocity equal to the mean angular velocity, such that in the first
order of approximation with respect to the curvature the coupling terms vanish.

II. DEFINITIONS AND BASIC ASSUMPTIONS

A. Geometric model

LetR be a region in the space–time (M ,g) of the general relativity, such that topologically
it is diffeomorphic to a product manifoldS3I whereS is a three-dimensional manifold andI is
an interval inR. We assume that inR there exists a differentiable functiont globally defined on
R whose gradientDt is timelike everywhere and, also, that onR a foliation is defined such that
its leaves are spacelike hypersurfacesSt given by the level surfaces of the functiont.

Now, let l :z(t) be an arbitrary timelike curve of classC1 contained in the regionR. On the
curve l a field of unitary timelike vectorsn(t) orthogonal toSt , for eachtPI , is defined. In
Dixon’s theory the parametrization ofl is chosen so that

^n~ t !,u~ t !&51, ~1!

whereu(t):5dz/dt is tangent to the curvel at the pointz(t). Here we assume that for eachtPI
and eachxPS t there exists a unique spacelike curveY:x~z!, zP@0,1#,R, joining the points
z(t)5x(0) and x5x~1!, being its support contained inSt . Then one can define the distance
function10 by

s~z,x!5
1

2 E
0

1K dx~z!

dz
,
dx~z!

dz L dz. ~2!

If the exponential map expz :TzS t → S t is bijective, for all t, then the vector
X:52]s(z,x)/]zPTzM is equal toX5expz

21x, andX can be interpreted as the position vector
of the pointx relative toz.

Given a geodesic variation ofY

a:@0,1#3@2d,d# → M , ~z,t ! ° a~z,t !, ~3!

with a~z,0!5Y andd.0, we denote byu(x) the Jacobi field defined on the geodesicY in the form

u~x!:5
]a

]t
~z,0!. ~4!

In particular, ifz50, we denote byu(z) the corresponding vector. Under a variation ofY with end
pointsz,x moving on the curvesz(t)5a(0,t), x(t)5a(1,t), respectively, the derivative of the
position vectorX with respect tot is given by

Ẋ5DX•u~x!1DX•u~z!, ~5!
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where we have used the the following notation:~1! D andD ~see Ref. 11! denote the covariant
derivatives with respect to the variablesx andz, respectively;~2! Ż:5dZ/dt, for all vectorZ; ~3!
A•B denote the contracted product of two tensorsA andB. Then covariant derivatives can be
interpreted as linear mapsDX andDX

DX:TxM → TzM , DX:TzM → TzM . ~6!

Since one has assumed that for eachxPS t there is no point conjugate tox onSt then there exist
the inverse maps (DX)21 and~DX!21, so that using the vectorsX, ẊPTzM one can define onSt

the vector fieldu(x) by

u~x!5K~z,x!u~z!1H~z,x!Ẋ, ~7!

where the propagatorsH(z,x) andK(z,x) are the two-point tensors of type~0
1
1
0! defined by

H~z,x!:5~DX!21, K~z,x!:52~DX!~DX!21. ~8!

B. Description of the material system

We now consider a material system consisting ofN-bodies of massesmA (A51,2,...,N)
modeled in space–time as a set of timelike curvesxA(sA) contained in the regionR and param-
etrized by the arclengthsAPI A, R. At each pointxPM the matter distribution is described by
the symmetric tensor given by the sum of the energy tensors associated with the bodies

T~x!5udetgu21(
A51

N E
I

mA* vA~x! ^vA~x!d~x2xA!dt, ~9!

wherevA :5dxA/dsA is the normalized four-velocity of the bodyA, d(x2xA) is the Dirac distri-
bution, andmA* is defined by

mA* :5mA

dsA
dt

. ~10!

Let n(x) be the unit normal vector field on an arbitrary leafSt of the foliation ofR. The
metric tensorg onM induces onSt a Riemann metric

g~x!:5g~x!2n[~x! ^n[~x!, ~11!

where[ denotes the index lowering operator. LetdS denote the volume element onSt defined by
the metricg. In Dixon’s theory, given an energy-momentum distributionT(x) one defines1 the
linear momentum vectorp(z,S)PTzM and the angular momentum bivectorS(z,S)PL2(TzM )
relative to a reference curvel and a leafSt as

p~z,S!:5E
S t

K~z,x!„T~x!•n~x!…dS ~12!

and

S~z,S!:5E
S t

X`@H~z,x!„T~x!•n~x!…#dS, ~13!

respectively. Thus, for the energy-momentum~9! one obtains
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p~z,S!5 (
A51

N

mA*K~z,x!vA~x!, ~14!

S~z,S!5 (
A51

N

mA*XA`„H~z,x!vA~x!…. ~15!

Now, from the second expression in Eq.~8! one can define, for each body, a vectorpA(x) by

pA~z!:52~DXA!21
„pA~z!…. ~16!

Using the vectorspA(x) one can write Eq.~15! in the equivalent form

S~z,S!5 (
A51

N

XA`pA~z! ~17!

formally analogous to the classical expression of the angular momentum.
From now on we assume that the energy-momentum distribution and the curvature of the

space–time satisfy the conditions stated by Schattner,12 to assure the existence and uniqueness of
the center of mass line defined by

S~z,S!4n[~z!50. ~18!

The reference curvel will be taken to be the center of the mass line. The angular momentum
~vector! relative to the curvel and the foliationSt is the vector fieldSdefined on the reference line
by

S5!~S`n!, ~19!

where! denotes the Hodge star operator. Due to Eq.~18! the vectorsS andn satisfy the orthogo-
nality conditions

S4n[50. ~20!

III. ANGULAR MOMENTUM RELATIVE TO A ROTATING FRAME

Let $ek(t)% and $ek8(t)% ~k,k850,1,2,3! be orthonormal frame fields on the linel satisfying
e0(t)5e08(t)5n(t), for all tPI , and such that the frame$ek(t)% satisfies the Dixon transport law
without rotation

ėk5~n`n!4ek
[ , ~21!

while $ek8(s)% satisfies the Dixon transport law with rotation

ėk85~n`ṅ1V8!4ek
[ , ~22!

whereV8 is the angular velocity bivector of the frame$ek8% relative to$ek%. For this bivector the
orthogonality condition

V84n[50 ~23!

holds. FromV8 one can define the angular velocity~vector! v8 as

v8:5!~V8`n8!. ~24!
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The frames$ek(t)% and $ek8(t)% are related by a pure spacelike rotationR(t). We use the
following notation:Z(t) refers to an arbitrary vector inTzM expressed in the frame$ek(t)% while
Z8(t) refers to the same vector expressed in the frame$ek8%. So, ifZ8 is a spacelike vector thenZ
is given by

Z~ t !5R~ t !Z8~ t !. ~25!

Differentiating Eq.~25! with respect tot one obtains

Ż5R~ Ż81V84Z8!. ~26!

The components of the vectorX5expz
21x with respect to the bases$ek(t)% and $ek8(t)%

define, respectively, on the submanifoldSt normal coordinate systems$X
a% and$Xa% with a pole

atz. Moreover, choosingX05X805t one obtains in the regionR normal coordinate systems$Xm%
and $X8m% with base linel . Following Dixon, we treat a two-point tensort(z,x) of type ~r

s
0
0! as a

tensor dependent on of the variablesz andX. Sincedx5H(z,x)dX, we have that the Jacobian of
the coordinate transformation of (z,x) into (z,X) is given byH(z,x). Therefore, if$Xm% is chosen
to be a normal coordinate system then the Jacobian is reduced to the unit matrix. Henceforth we
will use only normal coordinates.

From Eqs.~16! and ~26! one obtains for the vector fieldp(z) relative to the frame$ek8% the
expression

pA8 ~z!5mA* ~UA81ẊA81V84XA8 !, ~27!

where

UA8 :52R21
„DXA•u~z!… ~28!

has been defined. Then, from Eqs.~19!, ~17!, and~27! we obtain for the total angular momentum
S8(z) relative to the center of mass linel and the foliationSt the expression

S8~z!5S8REL1S8DEF1S8ROT ~29!

where

S8REL:5 (
A51

N

!~XA8`UA8`nA8 !mA* , ~30!

S8DEF:5 (
A51

N

!~XA8`ẊA8`nA8 !mA* , ~31!

S8ROT:5 (
A51

N

!~XA8`V8•XA8`nA8 !mA* . ~32!

If the space–time is flat then, in suitable coordinates,DX is given by the unit matrix and one
getsUA8 (z) 5 R21u(z). Furthermore, ifu(z) is parallel ton(z), thenS8REL vanishes.

On the other hand, if the position vectors of each body relative to the frame$ek8% are inde-
pendent of the parametert thenS8DEF vanishes. So,S8DEF may be regarded as the angular mo-
mentum due to the deformation of the material system.

Finally, S8ROT may be interpreted as the angular momentum due to the overall rotation of the
material system. In fact, if we define the inertia momentum map
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I8:TzM → TzM , v8 ° (
A51

N

!„XA8`~V84XA8 !`n8…mA* , ~33!

whereV8 andv8 are related by Eq.~24!, then Eq.~32! can be written as

S8ROT5I8•v8 ~34!

or in the equivalent form

S8ROT5 (
A51

N

@mA* ~XA8•XA8 !12XA8 ^XA8 #•v8. ~35!

Expressions~34! and ~35! for SROT are similar to those in classical rigid body dynamics. Note,
however, that the evolution of the inertia tensorI(t), does not correspond to that associated with
a rigid body ~see Ref. 13!. For motions of the material system satisfyingS8REL1S8DEF50 at a
fixed time t, SROT coincides with the total angular momentum of an ensemble ofN bodies of
massesmA* whose instantaneous configuration is the same as the configuration of the material
system considered~at that instantt!. Next, we verify that at each time there exists a rotating frame
with angular velocityÃ8 such that the total angular momentum relative to this frame is Eq.~34!.

IV. EXISTENCE OF TISSERAND’S AXES IN GENERAL RELATIVITY

Assuming that no external moments act on an arbitrary material system whose multipolar
structure is of the type pole–dipole, the total angular momentumS(z) relative to a frame$em(z)%
defined by Eq.~21! satisfies1

Ṡ5p`v. ~36!

Using the angular momentum vectorSP^n&', defined by Eq.~19!, Eq. ~36! can also be written as

P~Ṡ!50, ~37!

whereP is the projector ontôn&' associated to~11!.
From Eqs.~26! and~37! it follows that the equation for the angular momentum relative to the

frame$em8 (z)% defined by Eq.~22! is given by

P~V84S81Ṡ!50. ~38!

Furthermore, since the orthogonality conditionS8•n8[50 is equivalent to Eq.~20!, Eq. ~38! can
be expressed as

Ṡ852~ ṅ8[
•S8!n82P„!~v8`n8!4S8…. ~39!

Then, for anN-body system with angular momentumS8(z) given by Eq.~29!, Eq. ~39! is the
relativistic analog to the Liouville equation~see Ref. 6!.

We now suppose that$em8 (z)% is rotating relative to$em(z)% with angular velocityÃ8, and that
the angular momentumS8 is given by Eq.~34!. Then the angular velocityÃ8 satisfies the linear
differential equation

I8Ã̇852„ṅ8[
4~I8•Ã8!…n82P@!~Ã8`n8!4~I8•Ã8![#2 İ8•Ã8. ~40!

Here the inertia tensorI8(t) is taken to be a known function oftPI . Fix an initial valueÃ8~0! for
the angular velocity, Eq.~40! determines a unique vector fieldÃ8(z) on the reference curvel . On
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the other hand, given an initial frame$em8 (0)%, Eq. ~22! ~with V8 replaced byÃ8! defines a unique
orthonormal frame field$ẽ m8 (t)% with respect to which the angular momentum satisfiesS85I8•Ã8.
So, this frame field corresponds precisely with the Tisserand axes.14

V. SEPARATION OF THE ENERGY

Let us consider the linear momentum written in the form

pA8 ~z!5DXA8•~pA8
INT1pA8

ROT!, ~41!

wherepA8
INT andpA8

ROT are defined by

pA8
ROT:5mA*V84XA8

[ , pA8
INT :5mA* ~UA81ẊA8 !, ~42!

which represent the parts ofpA8 associated to the overall rotation of the material system and the
rest of motions, respectively.

Let jA8 be one-form fields defined on each curvexA(t) as

jA8 :5mA
21pA8 .

At each time the energy of the material system is defined by

E5 (
A51

N

^pA8 ,jA8 &. ~43!

In a neighborhood of the curvel the derivativeDXA8 can be represented as a power series
whose summands depend on the Riemann tensor, Riem. Thus, if the curvature is small,DX can be
approximated retaining in the series the summands of first order in Riem given explicitly in
Synge.10 We write

DXA~z,x!5g~z!1G A~z,x!1O~ uRiemu2!, ~44!

whereg(z) is the metric tensor at the pointz, andG A is the summand of first order in Riem.
Therefore Eq.~43! is equivalent to

E5 (
A51

N

mA
21^pA8 ,pA8 &1mA

21^pA8 ,G A•pA8 &1mA
21^G A•pA8 ,G A•pA8 &. ~45!

In first approximation with respect to the curvature one gets from Eqs.~45! and~41!, the expres-
sion

E5 (
A51

N

mA
21^pA8

INT ,pA8
INT&1mA

21^pA8
ROT,pA8

ROT&12mA
21^pA8

INT ,pA8
ROT&

12mA
21^pA8 ,G A•pA8 &1O~ uRiemu2!. ~46!

Let us first consider the zero order of approximation to Eq.~45!. In this case the only coupling
term is(A51

N ^pA8
INT ,pA8

ROT&. From Eq.~42! this term can be written as

(
A51

N

mA
21^pA8

INT ,pA8
ROT&5 (

A51

N

pA8
INT
•~!~v8`n8!4XA

[!mA*mA
21. ~47!

But, given the unitary orthogonal vectorsV,WPTzM the equation
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Y•„!~V`W!4Z[
…5W•„!~V`Z`Y!… ~48!

is satisfied for allY,ZPTzM . Thus Eq.~47! takes the form

(
A51

N

mA
21^pA8

INT ,pA8
ROT&5v8•(

A51

N

!~pA8
INT`XA8`n8!

dsA
dt

, ~49!

where we have used definition~10!.
We now choose a frame which rotates with an angular velocityÃ such that the angular

momentum~29! is reduced to

S̃ ~z!5I•Ã ~50!

so that the sum of Eqs.~30! and ~31! vanishes

(
A51

N

!~XA8`pA8
INT`n8!mA*50. ~51!

Note that in general relativity the above choice of the frame is not sufficient to establish the
vanishing of the expression~49!. However, if the coefficientsdsA/dt in Eq. ~49! coincide, one gets
a separation ofE into a part associated with the overall rotation and other due to internal motions.

Let us return to the expression of first order~46!. In this order of approximation the following
coupling terms are also present:

2(
A51

N

~mA
21^pA8

INT ,G A•pA8
ROT&1mA

21^pA8
ROT,G A•pA8

INT&!. ~52!

Now, given arbitrary vectorsY(0),Z(0)PTzM , let Y(z),Z(z)PTxM be the images of
Y(0),Z(0), respectively, obtained by parallel transport fromz to the pointx~z! on the geodesic
xA~z!; we have

^Y~0!,G A•Z~0!&5
3

2 E
0

1

S „Y~z!,V~z!…V~z!•Z~z!~12z!2 dz, ~53!

whereV~z! is the tangent vector toxA~z!, andS (A,B)C is the symmetrized Riemann tensor10

defined by

S ~A,B!C52 1
3„R~A,C!B1R~A,B!C… ~54!

for all A,B,CPTxM , satisfying the properties

S ~A,B!5S ~B,A!, ~55!

S ~A,B!C•D5S ~A,B!D•C, ~56!

S ~A,B!C•D5S ~C,D !A•B. ~57!

So, from Eqs.~53! and ~55!–~57! one obtains for Eq.~52! an equivalent expression of the form

4(
A51

N

mA
21^pA8

INT ,G A•pA8
ROT&. ~58!
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In arbitrary space–times this expression is nonvanishing. However, one exception occurs when the
space–time is of constant curvature. Indeed, if the curvature is constant, then

S ~Y,V!V•Z5 2
3K@~Y•Z!~V•V!2~Y•V!V•Z!], ~59!

whereK is the Riemannian curvature. Consequently Eq.~58!, in this special case, is equivalent to

4K(
A51

N

mA
21E

0

1

@~pA8
INT
•pA8

ROT!~V•V!2~pA8
INT
•V!~V•pA8

ROT!#~12z!2 dz ~60!

and, sincexA~z! is a geodesic, the term in square brackets in Eq.~60! is independent ofz.
Therefore Eq.~60! becomes

4

3
K(
A51

N

mA
21~pA8

INT
•pA8

ROT!~V•V!2
4

3
K(
A51

N

mA
21~pA8

INT
•V!~V•pA8

ROT!. ~61!

If the coupling term~47! vanishes, then the first sum in~61! also vanishes. Finally, using Eq.~48!
we obtain

V•pA8
ROT5V•~!~v8`n8!4XA8

[!mA*5v8•„!~V`XA8`n8!…mA* , ~62!

which vanishes sinceV andXA8 are parallel.

VI. CONCLUSION

We have shown in Eq.~29! that the total angular momentum of an ensemble ofN-bodies,
relative to a frame satisfying the Dixon transport law along the center of mass line, admits a
separation in three terms. Apart from two summands depending, respectively, on the deformation
and overall rotation motions~analogous to those which appear in Newtonian mechanics! in this
separation a summand which depends on the choice of the unit vector fieldn on the center of mass
line is also present.

On the other hand, we have verified that one can choose a Tisserand-type frame relative to
which the total angular momentum is, for eachtPI , similar to that corresponding to a rigid solid.
In the associated inertia tensor the mass of the bodies has been substituted bymA* defined in Eq.
~10!. So, the inertia tensor depends both on the geometric configuration and the parametrization of
the timelike curve associated to each particle.

Finally, in Eq.~46! an approximate expression for the energy of anN-body system has been
obtained in the case of small Riemannian curvature. The choice of a Tisserand-type frame does not
imply, in general, that the coupling terms~47! and ~52! presented in Eq.~46! vanish. We have
studied a case in which such coupling terms vanish. For this we have assumed~1! that the world
lines in the material system all have the same parametrization and~2! that the curvature is
constant.
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Obstructions to pin structures on Kleinian manifolds
L. J. Alty and A. Chamblin
Department of Applied Mathematics and Theoretical Physics, Silver Street,
Cambridge CB3 9EW, England
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We develop various topological notions on four-manifolds of Kleinian signature
~2211!. In particular, we extend the concept of ‘‘Kleinian metric homotopy’’ to
nonorientable manifolds. We then derive the topological obstructions to pin-Klein
cobordism for all of the pin groups. Finally, we discuss various examples and
applications which arise from this work. ©1996 American Institute of Physics.
@S0022-2488~96!03101-3#

I. INTRODUCTION

Let M be any smooth four-manifold, then we say that a metricg on M is of Kleinian
signatureif it has signature~2211!. In recent work,1 we derived the topological obstruction to
spin-Klein cobordism, and in this paper, we treat the interesting and nontrivial problem of extend-
ing this work to nonorientable manifolds.

An orientable Kleinian manifold (M ,g) has orthonormal frame bundlet(M ) with structure
group SO~2,2!. We say thatM admits aspin structureif and only if there exists a 221 covering,
t (̄M )→t(M ), such that the following diagram commutes:

where Spin~2,2! is the double cover of SO~2,2!.
WhenM is nonorientable, one cannot reduce the tangent bundlet(M ) to a bundle with

structure group SO~2,2!; indeed,t(M ) can only be reduced to a bundle with structure group
O~2,2!. In analogy with the above construction, we then seek all groups O~̄2,2! which are double
covers of O~2,2!; that is, we seek all groups O~̄2,2! so that the following sequence is exact:

1→Z2→Ō~2,2!→O~2,2!→1.

In fact ~see, e.g., Refs. 2 and 3!, there are eight distinct such groups which are double covers
of O~2,2!. Following Dabrowski,2 we will call these covers thepin groupsfor Kleinian signature
and write them as

ha,b,c:Pina,b,c~2,2!→O~2,2!

with a,b,cP$1,2%.
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In order to interpret the signsa, b, andc, it is convenient to keep some of the terminology
from Lorentzian geometry. Thus we will say that a vectorvPTp(M ) is spacelikeif g(v,v).0,
timelike if g(v,v),0, andnull if g(v,v)50.

Now we recall that O~2,2! is not path-connected; there are four components, given by the
identity connected component O0~2,2! and the three components corresponding to ‘‘space’’ inver-
sionS, ‘‘time’’ inversion T, and the combination of these two,ST ~i.e., O~2,2! decomposes into
a semidirect product, O~2,2!.O0~2,2!(~Z23Z2!! ~i.e., O~2,2! is the disjoint union
O~2,2!.O0~2,2!øS~O0~2,2!!øT~O0~2,2!!øST~O0~2,2!!!. By space inversion, we mean reflection
about a plane,v', perpendicular to some spacelike vectorv; likewise, time inversion is reflection
about a plane perpendicular to a timelike vector. The signs ofa, b, andc then correspond to the
signs of the squares of the elements in pina,b,c(2,2) which cover space inversion, time inversion,
and a combination of the two, respectively.

Indeed, with these conventions we can write out the explicit form of the groups Pina,b,c(2,2);
they are given by the semidirect product2

Pina,b,c~2,2!.
~Spin0~2,2!(Ca,b,c!

Z2
,

whereCa,b,c are the double coverings ofZ23Z2, as outlined in Refs. 2 and 3.
On surveying the above constructions, one might wonder why we are concerned with devel-

oping the obstruction theory for Pina,b,c(2,2) fiber bundles, since withp1~O~2,2!!.Z3Z, and so
there is no way that the pin bundles will allow us to represent all of the information contained in
the tangent bundle in a simply connected manner.3 Indeed, if we wished to represent the infor-
mation in t(M ) in a simply connected manner, we would seek a bundlej(M ), with structure
group Ôgiven by the exact sequence

1→p1~O~2,2!!.Z3Z→Ô→O~2,2!→1,

whereas the pin groups are given by the short exact sequence

1→Z2→Pina,b,c~2,2!→O~2,2!→1.

It follows that any pin bundleP(M ) ~i.e., any bundle with fiber Pina,b,c(2,2)! will not represent
information in a simply connected way. This means that at a pointpPM there exist pathsr1,
r2PPina,b,c(2,2) which might act on the fiberP(M )up equivalently ~in the sense that, for
xPP(M )up , r1(x)5r2(x)!, but with the property thatr1 and r2 ~viewed as curves in
Pina,b,c(2,2)! are not homotopic. Indeed, one sees that the ‘‘particles’’ corresponding to such a
simply connected representation could have arbitrary fractional statistics and would be
‘‘anyons.’’4 The point is that for both Riemannian and Lorentzian signature~in four dimensions!
one obtains a simply connected representation of tangent bundle information by passing to a
fermionic ~or pin! bundle; it is only for Kleinian signature that this does not work and one needs
to introduce some anyonic structure.

At any rate, these mathematical considerations aside, the primary reason why we wish to
understand the obstructions to pin bundles comes from physics. In particular, recent work on
signature change~see, e.g., Refs. 5–8! has suggested that we should allow for regions of non-
Lorentzian signature in our description of nature. The idea is that we should consider manifolds of
the formM>MLøMR andM 8 > ML8øMK8 , where~for example! MR is some Riemannian mani-
fold, ML andML8 are some Lorentzian manifolds, andMK8 is some Kleinian manifold~where
0”Þ]ML5S5]MRand]ML8 5 S8 5 ]MK8 Þ 0”, so that the signature is said to ‘‘change’’ across the
three-surfacesS andS8, which are generically taken to be stationary with respect to the ambient
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four-metrics!. If one is going to assert that there are ‘‘regions’’ of Kleinian signature, then one
should try to make sense of field theory8 in signature~2211!. In particular, one must make
sense of the Dirac equation:

iga]ac50, ~1!

where$ga,gb%52gab. Solutions of Eq.~1! will generically take values in some pin bundle, and so
this is one reason the cobordism problem is so interesting. There are other physical applications
for Kleinian signature manifolds, including theN52 superstring theory.9 In this theory, the Weyl
anomaly cancels provided the string propagates in a four-dimensional target space, and if the
worldsheet has Lorentzian signature then the target space must have Kleinian signature.

II. KLEIN METRIC HOMOTOPY

We wish to understand the topology of Klein metrics on four-manifolds which are not nec-
essarily orientable. The fundamental result we begin with is the following lemma of Steenrod:10

Lemma 1:Let M be a smooth four-manifold without boundary. ThenM admits a globally
defined~nonsingular! Klein metric if and only if there exists a globally defined~nonsingular! field
of 2-planes onM .

In Ref. 1, we restricted our consideration to fields of oriented 2-planes; i.e., since we were
only considering orientable four-manifoldsM , we assumed that there were no closed loopsg in M
around which we could propagate a 2-plane,P, and end up with the opposite orientation~of the
planeP!. Technically, this meant that we assumed our plane fields to be sections of the fiber
bundle overM with fiberG2,4>S23S2, whereG2,4 is ~by definition! the set of oriented 2-planes
in R4.

If, however,M is nonorientable then there will exist loops inM such that, when we propagate
plane fields around them, the orientation of the planes will be reversed. In this case, we must now
define aplane fieldto be a section of the bundle of unoriented planes. That is, letG̃2,4 denote the
set of unoriented plane fields inR4. Then a field of 2-planes is a section of the fiber bundle with
fiber G̃2,4.

This situation is reminiscent of what happens in Lorentzian geometry when one passes from
the study of time-orientable geometries to non-time-orientable geometries3,11; there, one passes
from a vector field to a ‘‘line’’ field~i.e., an undirected or unoriented vector field!. However, the
analogy should not be taken too far. In Lorentzian geometry, non-time-orientability is a serious
matter since it implies that we have no local notion of an ‘‘arrow of time,’’ and thus many of our
thermodynamical notions become tenuous.

For Kleinian geometry, there is no ‘‘arrow of time,’’ since at a point there is a ‘‘2-plane’s’’
worth of timelike directions. In other words, when we identify a Kleinian metricg with a 2-plane
field P, we can essentially takeP to be the plane spanned by the set of timelike directions~at each
point!. Indeed, in this paper we will always takeP to be a ‘‘timelike’’ plane field. It follows that
there is no sensible notion of causal structure, or of causality, in a Kleinian manifold. In fact, there
are ‘‘closed timelike curves’’ through every point. One can always just ‘‘rotate’’ into one’s own
past. Indeed, time itself has a chirality~i.e., the orientation of the plane fieldP!. These consider-
ations, if anything, make it clear that orientability is less relevant in Kleinian geometry than it is
in Lorentzian geometry.

Now that we have made sense of what we mean by a ‘‘field of unoriented 2-planes,’’ we need
to consider the obstruction to constructing such a 2-plane field which is globally nonsingular. To
do this, we first examine the details of Hirzebruch and Hopf’s12 original treatment of the subject.

Let M be an oriented smooth manifold, andP some field of oriented 2-planes onM . Generi-
cally, P will be singular on a finite set of points,$p1 ,p2 ,...,pn% in M . Each singularitypi of P
will have associated to it an index. The index of the singularitypi is the homotopy type of the map
~defined by the plane fieldP! from a little three-sphere,S3(pi), surroundingpi to G2,4. Such
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homotopy classes are in one-to-one correspondence with elements ofp3(G2,4).Z%Z. Thus, the
index ofP at pi is classified by a pair of integers~intuitively, this index measures the ‘‘winding’’
of P as one moves aroundS3(pi)!. We denote the index ofP atpi by the symbol ind(P,pi). Since
there are generically finitely many singular pointspi , one can form theindexof P onM :

index of P on M5(
i51

n

ind~P,pi !.

In Ref. 12, Hirzebruch and Hopf developed a result which gives the exact form of the index
for orientable manifolds without boundary. The statement of their result is as follows:

LetM be an oriented compact four-manifold without boundary. LetH denote the free Abelian
groupH2(M ,Z!/torsion subgroup, and letS denote the intersection pairing onH defined by the
cup-product~i.e.,S defines a map fromH^H to Z by taking the cup-product of elements inH and
evaluating them on the fundamental orientation class ofM !. Define the cosetW#H/2H by wPW
if S(w,x)5S(x,x) mod 2 for allxPH. Finally, letV denote the set of integers$S(w,w)uwPW%,
then we have~Refs. 12 and 13!

Theorem 1: Let M be an oriented compact four-manifold without boundary. ThenM has a
field of 2-planes with finite singularities. The total index of such a field is given by a pair of
integers (a,b). The following integers, and only these, occur as the index for some plane field on
M :

a5 1
4~a23s22x!, b5 1

4~b23s12x!,

wherea, bPV, x5x(M ) denotes the Euler number ofM , ands5s(M ) denotes the Hirzebruch
signature ofM .

We wish to be able to calculate the index of a plane field on a nonorientable manifold, and
thus it is instructive to examine the proof of this theorem to see exactly which steps are invalid
when one passes to the nonorientable case.

To begin with, recall that theStiefel manifold V2,4 is defined to be the set of oriented dyads
14

$v1 ,v2% in R4. It is clear that any dyad$v1 ,v2% induces a planeP ~i.e.,P is spanned byv1 andv2!
and so we have the inclusion

w:V2,4→G2,4.

Likewise, we can consider the Stiefel manifoldṼ2,4 of unoriented dyads inR4; then we have the
inclusion

w˜:Ṽ2,4→G̃2,4.

Now, in Ref. 12, the construction begins by considering theskeleton15 of M . Let M1 denote
the 1-skeleton,M2 the 2-skeleton, etc., then we always can put a dyad field$v1 ,v2% ~a section of
the fiber bundle with fiberV2,4 or Ṽ2,4! on the 2-skeleton. IfM is oriented, we can take this dyad
field to be oriented; ifM is not oriented, we will generically have to take the dyad field to be
unoriented. We then want to extend the dyad field onM2 to a dyad field onM3. In the oriented
case, the obstruction to doing this isw3(M )14, the third Stiefel–Whitney class ofM . Of course,
for a compact orientedM , w3(M )50, and so one is able to conclude12 that the obstruction to
extending a plane field to all ofM must be an element ofH4(M ;p3(G2,4)).H4(M ;Z%Z!
.H4(M ;Z!%H4(M ;Z!.Z%Z.

WhenM is not oriented, it might be thought that there is some other obstruction to extending
a dyad field~and thus a plane field! fromM2 toM3. However, this is not the case. Although Wu’s
formula14 shows thatw3(M ) can be nonvanishing forM nonoriented,w3(M ) will no longer be
the obstruction to extending the fieldP to M3 since we are now allowing the plane field to be

2004 L. J. Alty and A. Chamblin: Obstructions to pin structures on Kleinian

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



unoriented. Indeed, the obstruction to this extension vanishes as long asP is a section of aG̃2,4
bundle. It follows that the obstruction to extending an unoriented plane fieldP over an unoriented
four-manifoldM is an element ofH4(M ;p3(G̃2,4)). But G2,4 is the 221 cover ofG̃2,4 and so

p3~G2,4!.p3~G̃2,4!.Z%Z.

Thus, in both the oriented and nonoriented cases, the obstruction to extendingP overM is an
element ofH4(M ;Z%Z!.

At first, this may seem strange, since for a nonorientable manifoldM , H4(M ;Z!.Z2, and so
the total index would seem to be an element of

H4~M ;Z%Z!.H4~M ;Z! %H4~M ;Z!.Z2%Z2 ,

and so the index is only defined ‘‘up to parity.’’ However, as we shall see, the parity of the index
is the only thing relevant in the construction of our obstructions.

Before continuing with the derivation of the form of the index, it is necessary to recall some
elementary topological objects which we will make use of later. To begin with, we have that a
manifold M admits a globally defined metric of Kleinian signature if and only if the tangent
bundle ofM (t(M )) can be globally decomposed into the Whitney sum

t~M !.t1
% t2,

where t1 is the subbundle oft(M ) generated by spacelike vectors andt2 is the subbundle
generated by timelike vectors. Letw1(M )5w1(t(M )) denote thefirst Stiefel–Whitney classof
M . As is well known,14 w1(M )50 if and only if M is orientable. Sincew1 is a 1-cochain, this
means thatM is orientable if and only if there are no closed loops,gPM , such thatw1[g]Þ0.
Under the Whitney sum,w1(t(M )) can be decomposed as

w1~t~M !!5w1~t1!1w1~t2!. ~2!

We shall adopt the notationw1
15w1(t

1) andw1(t
2)5w1

2. Thus,M is space-orientableif and
only if w1

150, and time-orientableif and only if w1
250. Note that if there exists some loop,

gPM , such that M is neither space nor time-orientable, thenM is orientable since
w1(t(M ))5w1

11w1
2511150 mod 2. ~We always count mod 2 since these cochains always

take values inZ2
3.! As we shall see,w1

1 andw1
2 are critical components of the obstructions to all

of the pin structures.
Let us denote thesecond Stiefel–Whitney class, w2(M )5w2(t(M )). Recall that this class

vanishes if and only ifM admits a spin structure.
Now as in Theorem 3, we can apply Wu’s formula and obtain the identity

~w2~M !1w1~M !^w1~M !!^x25x2^x2 for any x2PH2~M ;Z2!, ~3!

where ‘‘̂ ’’ is the cup product.14 Since we are allowingM to be nonorientable, we work inZ2
coefficients and write the intersection pairing

h:H2~M ;Z2!3H2~M ;Z2!→Z2 . ~4!

This is defined byh(x,y)5x•y5(x2^y2)_w1 , wherex2 , y2PH2(M ;Z2! satisfyx2_w5x and
y2_w5y, wPH4(M ;Z2! is the fundamental homology class and ‘‘_ ’’ denotes cap product.
Taking the dual of Eq.~4! yields the intersection pairing onH2(M ;Z2!.

As we saw in Ref. 3, the following result of Kervaire and Milnor16 holds even for nonorient-
ableM :

Lemma 2:Let M be a smooth four-dimensional manifold. Letu(]M ) ~the mod 2 Kervaire
semicharacteristic! be given by

2005L. J. Alty and A. Chamblin: Obstructions to pin structures on Kleinian

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



u~]M !5dimZ2
~H0~]M ;Z2! %H1~]M ;Z2!!mod 2.

Then the rank of the intersection pairing h satisfies

rank~h!5~u~]M !1e~M !!mod 2,

wheree(M ) is the Euler number ofM .
It is now easy to check3 that rank(h)50 if and only if

w21w1^w150 mod 2.

Combining this observation with Lemma 2 then yields
Lemma 3:Let M be a smooth four-dimensional manifold with tangent bundlet(M ). Then

w2~t~M !!1w1~t~M !!^w1~t~M !!50⇔~u~]M !1e~M !!mod 250.

We have now developed enough mathematical machinery to calculate the index of a nonori-
entable plane field on a general~not necessarily oriented! four-dimensional manifoldM . Our basic
strategy is the following: IfM is oriented, we are done~we just apply the Hirzebruch–Hopf result,
Theorem 1!. If M is not orientable, we pass to theoriented double cover M˜ of M and apply
Theorem 1 onM̃ . We then ‘‘push down’’ the plane fieldP̃ on M̃ , under the projectionp: M̃ →M ,
and deduce the form of the index ofP5p* ( P̃ ) onM . Since any plane fieldP onM can be so
obtained, we thus derive the general form of the index onM .

Suppose then we are given some smooth four-dimensional manifoldM without boundary,
with Klein metric ‘‘gK’’ defined onM . As we have seen, the metric corresponds to some two-plane
field P on M . The singularities of the metricgK therefore correspond to the singularities of the
plane fieldP. Construct the~oriented! 221 cover overM , denotedM̃ , with projectionp: M̃ →M .
Now lift the plane fieldP ~which will generally be a section of aG̃ 2,4 bundle,B, overM ! to a
plane fieldP̃ over M̃ ~whereP̃ will now be a section of aG2,4 bundle,B̃ , over M̃ !. SinceM̃ is
oriented, we know the form of the total index ofP̃ on M̃ is, by Theorem 1,

ind~ P̃ ,M̃ !5 1
4~a23s22x,b23s12x!, ~5!

wheres5s(M̃ ), x5x(M̃ ). As in Theorem 1, we find that

a5s~M̃ !mod 8, b5s~M̃ !mod 8, ~6!

hence

a2s58n, nPZ, b2s58m, mPZ, ~7!

so the index becomes

ind~ P̃ ,M̃ !5 1
4~8n22~s~M̃ !1x~M̃ !!, 8m22~s~M̃ !2x~M̃ !!!, ~8!

wherem andn are some integers. It follows that we must have

s~M̃ !5x~M̃ !mod 2. ~9!

We must now determine how the parity ofx(M̃ ) is related to the parity ofx(M ). To do this we
introduce a new invariant.

Definition: Let M be a smooth four-dimensional manifold with boundary]M
>S1øS2ø•••øSn the disjoint union of finitely many~not necessarily orientable! closed three-
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manifolds. Let]M̃ >S̃ 1øS̃ 2ø•••øS̃ n denote the oriented double cover of]M ~that is,S̃ i is the
oriented double cover ofS i for eachi , and]M̃ is the disjoint union of theS̃ i .! Then we define the
elementU(]M )PZ2 by the formula

U~]M !5~u~]M !2u~]M̃ !!mod 2.

Thus,U(]M ) measures~modulo 2! the total number of torsion generators ofH1(]M ) which
are ‘‘destroyed’’ when we pass to the double cover.

For example, suppose that]M>S13RP2, thenu(]M )51 sinceRP2 has a torsion generator;
and ]M̃ >S13S2 so u(]M̃ )50, henceU(]M )51. Similarly all the torsion generators are de-
stroyed if we take]M>RP3.

On the other hand, there are torsion generators which do not completely ‘‘unwrap.’’ For
example, take]M>S13K, whereK denotes the Klein bottle. We then find thatu(]M )50, where
one of theH1(]M ) factors is torsion, and that]M̃ >S13T2 hasu(]M̃ )50. HenceU(]M )50,
which makes sense since the torsion generator inK lifts to a nontrivial loop inT2.

We must also introduce another new invariant, which we define as follows:
Definition: Let M be a smooth four-manifold, with or without boundary. Then we define the

elementd(M )PZ2 as follows:

d~M !55
0 iff there do not exist distinct

two-cycles c,c8PH2~M ! such that

w2@c#Þ0 and w1^w1@c#50, but

w2@c8#Þ0 and w1^w1@c8#Þ0

1 iff there do exist such two-cycles

c,c8PH2~M !

.

Now suppose we are given a manifoldM with boundary]M . Let M̃ and ]M̃ denote the
respective double covers. Then by Lemma 3, we have

u~]M !1x~M !5w2~M !1w1^w1~M !mod 2,
~10!

u~]M̃ !1x~M̃ !5w2~M̃ !mod 2.

Thus, we see thatx(M )1U(]M )5x(M̃ ) mod 2 if and only if

w2~M !1w1~M !^w1~M !5w2~M̃ !mod 2.

We therefore obtain
Lemma 4:LetM be a smooth nonorientable four-dimensional manifold with boundary. LetM̃

denote the oriented double cover ofM , as above. Then

U~]M !1x~M !5x~M̃ !mod 2

if and only if d(M )50.
Proof: ~⇒! Suppose U(]M )1x(M )5x(M̃ ) mod 2, then w2(M )1w1(M )^w1(M )

5w2(M̃ ) mod 2. There are three cases to consider:
~i! w2(M )5w2(M̃ )50,
~ii ! w2(M )51 andw2(M̃ )50,
~iii ! w2(M )515w2(M̃ ).
If ~i! holds, thenM andM̃ are both spin, and so we trivially haved(M )50.
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If ~ii ! holds, thenM̃ is spin, butM is not. It follows that there exists some two-cycle

cPH2(M ) such thatw2[c]Þ0, and that this two-cycle lifts~underp: M̃ →
221

M ! to a two-cycle
c˜PH2(M̃ ) such thatw2[ c̃]50. Sincew2[c]1w1^w1[c]5w2[ c̃] for any such two-cycle we
must havew1^w1[c]51 for all two-cyclescPH2(M ) such thatw2[c]51. Thus we must have
d(M )50.

If ~iii ! holds, then neitherM nor M̃ is spin. SinceU(]M )1x(M )5x(M̃ ) mod 2, it follows
that for all two-cyclescPH2(M ) such thatw2[c]Þ0, we must havew1^w1[c]50, and so
d(M )50.

~⇐! Conversely, suppose thatd(M )50. Then case~i! givesx(M )1U(]M )5x(M̃ ) mod 2
trivially.

Likewise, if ~ii ! holds, then on any of the two-cyclesc, for whichw2[c]51, we must have
w1^w1[c]51, thusx(M )1U(]M )5x(M̃ ) mod 2.

Finally, case~iii ! again implies that neitherM nor M̃ is spin. However,d(M )50 again
impliesw2(M̃ )5w2(M )1w1(M )^w1(M ) mod 2 and thusx(M )1U(]M )5x(M̃ ) mod 2. h

Thus, U(]M )1d(M )PZ2 is an invariant which tells us whether the Euler number of a
manifoldM has the same parity as the Euler number of the double coverM̃ of M . For conve-
nience, we will henceforth write

I ~M ,]M !5U~]M !1d~M !.

Suppose we are given some four-dimensional manifoldM with boundary]M and its double
coverM̃ . Next form the double1 of each manifold, i.e., we doubleM to get 2M , andM̃ to get 2M̃ .
2M̃ is then the oriented cover of 2M . As in Lemma 1, we have that

s~2M̃ !50, ~11!

and so the index of any plane fieldP̃ on 2M̃ becomes

ind~ P̃,2M̃ !5 1
4~8n22x~2M̃ !,8m12x~2M̃ !!, ~12!

wherem, nPZ. We also know that

x~2M̃ !52x~M̃ !, ~13!

and so we obtain

ind~ P̃,2M̃ !5~2n2x~M̃ !,2m1x~M̃ !!. ~14!

We can assume that there are an equal number of singularities in each ‘‘half’’ of the double
2M . As in 1, we then push all of the singularities over]M into one of the halves. Then by
construction, one of the halves of 2M is free of singularities, and taking this half we have
constructed a nonsingular plane field onM . The degree of the map from]M to G̃2,4 ~defined by
the plane field! must be, combining Eq.~14! with Lemma 4,

~2n2x~M !1I ~M ,]M !,2m1x~M !1I ~M ,]M !!mod 2. ~15!

As in Lemma 1, we shall call this degree theKlein kinkof the metricgK ~determining the plane
field! with respect to]M and we denote it

kink~]M ;gK!.

Combining the above, we obtain
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Theorem 2: Let M be any smooth four-dimensional manifold with the boundary
]M>S1øS2ø•••øSnÞ0”, where$S i u i51,...,n% is some collection of closed three-manifolds.
Then there always exist globally defined nonsingular metricsgK of Kleinian signature onM .
Furthermore every such metric must satisfy kink(]M ;gK)5(k1 ,k2) where

ki5x~M !1I ~M ,]M !mod 2, i51,2.

Thus for an arbitrary nonsingular Klein metricgK onM , the parity of the kink number ofgK
on ]M is completely determined.

III. OBSTRUCTIONS TO PIN STRUCTURES

As detailed in the Introduction, there are eight double covers of O~2,2!, which we denote

ha,b,c:Pina,b,c~2,2!→O~2,2!,

wherea is the sign of the square of space inversion,b is the sign of the square of time inversion,
andc is the sign of the square of the two combined. The obstructions to constructing a globally
well-defined bundle, with fiber Pina,b,c(2,2), can be deduced using the constructions in Theorem
3. Indeed, we obtain the following:

Theorem 3: Let M be a Kleinian four-manifold~with tangent bundlet(M ) an O~2,2!
bundle!. ThenM admits either Pin1,1,1~2,2! or Pin1,1,2~2,2! structure if and only if

w2~M !50.

Theorem 4: Let M be a Kleinian four-manifold~with tangent bundlet(M ) an O~2,2!
bundle!. ThenM admits either Pin2,1,1~2,2! or Pin2,1,2~2,2! structure if and only if

w2~M !1w1
1^w1

150.

Theorem 5: Let M be a Kleinian four-manifold~with tangent bundlet(M ) an O~2,2!
bundle!. ThenM admits either Pin1,2,1~2,2! or Pin1,2,2~2,2! structure if and only if

w2~M !1w1
2^w1

250.

Theorem 6: Let M be a Kleinian four-manifold~with tangent bundlet(M ) an O~2,2!
bundle!. ThenM admits either Pin2,2,1~2,2! or Pin2,2,2~2,2! structure if and only if

w2~M !1w1
1^w2

11w1
2^w1

250.

With these results, we can now investigate the obstructions to pin-Klein cobordism.

IV. OBSTRUCTIONS TO PIN-KLEIN COBORDISM

In this section$S i u i51,...,n% will always denote some collection of closed three-manifolds.
Definition:We will say that there exists a Pina,b,c(2,2) cobordism for$S i u i51,...,n% if and

only if there exists a Kleinian four-manifoldM ~with a globally nonsingular Kleinian metricgK!
admitting Pina,b,c(2,2) structure and satisfying

]M>S1øS2ø•••øSn .

Corollary 1: There exists either a Pin1,1,1~2,2! or a Pin1,1,2~2,2! cobordismM for
$S i u i51,...,n% if and only if

~u~]M !1ki1I ~M ,]M !!5~w1
1^w1

11w1
2^w1

2!mod 2,
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whereki is either of the integers in kink(]M ;gK)5(k1 ,k2).
Proof: ~⇒! Suppose such a pin-Klein cobordism,M , exists. Then by Theorem 2, we know

that

ki5~x~M !1I ~M ,]M !!mod 2 ~16!

~since the Kleinian metricgK is nonsingular!. Furthermore, by Theorem 3, we must have

w2~M !50, ~17!

and by Lemma 3, we know that

w2~M !1w1
1^w1

11w1
2^w1

25~u~]M !1x~M !!mod 2. ~18!

Thus, combining Eqs.~16!, ~17!, and~18!, we obtain

~u~]M !1ki1I ~M ,]M !!5~w1
1^w1

11w1
2^w1

2!mod 2. ~19!

~⇐! Conversely, suppose Eq.~19! holds. Take any globally defined Klein metricgK on M ,
then we must have

ki5~x~M !1I ~M ,]M !!mod 2.

Hencew250, and soM is pin-Klein with the pin bundle fiber being Pin1,1,6~2,2!. h

Using the above proof as a model, we also obtain:
Corollary 2: There exists either a Pin2,1,1~2,2! or a Pin2,1,2~2,2! cobordismM for

$S i u i51,...,n% if and only if

~u~]M !1ki1I ~M ,]M !!5w1
2^w1

2 mod 2,

whereki is either of the integers in kink(]M ;gK)5(k1 ,k2).
Corollary 3: There exists either a Pin1,2,1~2,2! or a Pin1,2,2~2,2! cobordismM for

$S i u i51,...,n% if and only if

~u~]M !1ki1I ~M ,]M !!5w1
1^w1

1 mod 2,

whereki is either of the integers in kink(]M ;gK)5(k1 ,k2).
Corollary 4: There exists either a Pin2,2,1~2,2! or a Pin2,2,2~2,2! cobordismM for

$S i u i51,...,n% if and only if

~u~]M !1ki1I ~M ,]M !!50 mod 2,

whereki is either of the integers in kink(]M ;gK)5(k1 ,k2).
Thus we see that the obstructions to Pina,b,c(2,2) cobordism depend only on boundary data

~i.e.,u(]M ) and kink(]M ;gK)5(k1 ,k2)!, the values ofa,bP$6%, the choice of orientation~i.e.,
w1

1^w1
1 andw1

2^w1
2! and the invariantI (M ,]M ).

Finally, we note that in all the above corollaries, the expressionu(]M )1ki1I (M ,]M ) may
be replaced by the expressionu(]M̃ )1ki1d(M ), since I (M ,]M )5U(]M )1d(M )5(u(]M )
1u(]M̃ ))mod 21d(M ).

V. EXAMPLES AND APPLICATIONS

The constructions introduced in this paper have many applications to theoretical physics. We
now give some examples and applications.
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Example 1:Let K denote the Klein bottle andT>S13S1 the Torus. Then form a Kleinian
metric onM>K3T by taking the product metric formed by using the natural negative definite
metric onK and the natural positive definite metric onT. AlthoughM is nontime orientable~since
traversing the orientation-reversing loop inK inverts the timelike subbundle!, M is still spin since
w2(K)50, and so all Pina,b,c(2,2) structures are allowed onM .

Now suppose that we takeM to be the product spaceM>RP23T where, as above, we endow
M with the natural product metric such thatRP2 is timelike. Then we clearly have
w1

2^w1
2~RP2!51 andw2(M )51 mod 2. Thus not all pin structures will be allowed. Indeed, one

easily calculates that Pin1,1,6~2,2! and Pin2,1,6~2,2! structures will not be allowed, while
Pin1,2,6~2,2! and Pin2,2,6~2,2! are allowed.

Example 2:An interesting application is to Kaluza–Klein-type theories in which some of the
internal dimensions are allowed to be timelike. We could take the ground state of such a theory to
be a manifold of the formM3S1 whereM is a Lorentzian three-manifold, and the internal space
S1 is timelike. Then the total metric onM3S1 would have signature2211, and the obstruction
to this metric being nonsingular would again be the condition that there exists a plane field. We
could even allow the Kleinian metric to spin around, so that the internal space fluctuates from
being timelike to being spacelike~so that the signature of the space-timeM would change from
211 to122!. That is, in terms of the effective three-dimensional theory, this would correspond
to signature change.

In general, in order to produce a nonsingular theory, we may wish to consider manifoldsM
with Kleinian, or even more exotic, signatures. For example, ifM>S23S2 thenM does not admit
a nonsingular Lorentz metric, but does admit a nonsingular Klein metric. Such choices will
generically change the types of pin structures which are admitted in the Kaluza–Klein~or other!
type theory.

Example 3:There has been considerable interest recently in the study of signature changing
space-times.5–8 In an extension to the example given in Example 1 we note that we can have the
nucleation of a single Kleinian region across a single zero-kink surface homeomorphic toS3. As
an example, letM be the Kleinian manifold formed by removing a four-ball fromRP23S2 such
that theS2 factor is timelike. We have]M>S3, and soI (M ,]M )50. In order to produce
signature change we require that the kink on]M is zero. Then sinceu(S3)51, we see that such
a signature change scenario is possible sinceM admits a Pin2,1,6~2,2! structure.

Example 4:Finally, we note that our results would be potentially useful in generalizing the
Penrose flag-plane construction17 to nonorientable manifolds.
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Polynomial invariants corresponding to the fundamental representation of the
gauge group SO(N) are computed for arbitrary torus knots in the framework of
Chern–Simons gauge theory making use of knot operators. As a result, a formula
that relates the Kauffman and the HOMFLY polynomials for torus knots is
presented. ©1996 American Institute of Physics.@S0022-2488~96!03103-4#

I. INTRODUCTION

Knot operators1,2 have shown to be a powerful tool in Chern–Simons gauge theory3 to obtain
general expressions for knot invariants related to torus knots and links. Computations by other
methods4–10have been successful for specific knots but not to obtain general expressions for knot
sequences as torus knots. Knot operators have been used in Ref. 11, where a formula for the
invariants for torus knots and links carrying arbitrary representations of the gauge group SU~2! has
been presented. For the fundamental representation it covers the case of the Jones polynomial,12,13

while for higher-dimensional representations it covers the case of the Akutsu–Wadati
polynomials.14 They have also been used in Ref. 15, where a formula for the HOMFLY
polynomial16,13 for arbitrary torus knots and links has been presented. For the case of torus knots
the formula obtained in Ref. 15 for the HOMFLY polynomial coincides with the one presented by
Jones in Ref. 13 and later reobtained using quantum groups by Rosso and Jones in Ref. 17.

Knot operators were constructed in Refs. 1 and 2 for the gauge group SU(N). In this paper we
will present the form of these operators for arbitrary simple compact groups. Then, we will use
them to compute knot invariants for arbitrary torus knots carrying the fundamental representation
of SO(N). As a consequence, a formula for the Kauffman polynomial18 for this type of knots is
obtained. This formula turns out to be equivalent to the one obtained in Ref. 19 using a different
method. Comparing this formula for the Kauffman polynomial to the one obtained in Refs. 13, 17,
and 15 for the HOMFLY polynomial, we obtain a rather simple relation between them. Denoting
the HOMFLY polynomial for a torus knot$n,m% @n andm are coprime integers, (n,m)51# in
terms of its standard variablesa andz by Pn,m(a,z), and the Kauffman polynomial~Dubrovnik
version! by Yn,m(a,z), we find

Pn,m~a,z!5
1

2
„Yn,m~a,z!1Yn,m~a,2z!…1

z

2~a2a21!
„Yn,m~a,z!2Yn,m~a,2z!…. ~1.1!

This is the main new result presented in this paper. The existence of a formula like~1.1! is rather
remarkable. In general, the Kauffman polynomial contains very many more terms than the
HOMFLY polynomial. This means that an important cancellation of terms occur in~1.1!. Notice
also that this formula indicates that at least for torus knots the Kauffman polynomial distinguishes
more knots than the HOMFLY polynomial. Two torus knots that have the same Kauffman poly-
nomial also have the same HOMFLY polynomial, but it might occur that two torus knots have the
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same HOMFLY polynomial but different Kauffman polynomials. At least for torus knots one can
state that the Kauffman polynomial is more fundamental than the HOMFLY polynomial.

As a byproduct of formula~1.1!, it will be obtained in Sec. IV a formula for the Alexander–
Conway polynomial in terms of the first derivative ata51 of the corresponding Kauffman poly-
nomial.

The paper is organized as follows. In Sec. II we present the generalization of the construction
of knot operators based on Chern–Simons gauge theory for an arbitrary simple compact gauge
group. In Sec. III we calculate the Kauffman polynomial for torus knots, obtaining a result in full
agreement with a previous calculation. In Sec. IV we prove formula~1.1! and derive a formula for
the Alexander–Conway polynomial for torus knots in terms of the corresponding Kauffman poly-
nomial. In Sec. V we add final comments and remark on our results. The conventions used in this
paper are conveniently compiled in an Appendix.

II. KNOT OPERATORS FOR ARBITRARY SIMPLE GAUGE GROUP

In this section we present the generalization of the operator formalism developed in Refs. 1
and 2 for an arbitrary simple compact gauge group and the construction of the corresponding knot
operators. We begin introducing Chern–Simons gauge theory. LetM be a boundary-less three-
dimensional manifold and letA be a connection associated to a principalG-bundle for some
simple Lie groupG. The action that defines Chern–Simons gauge theory has the form

Sk~A!5
k

4p E
M
TrSA`dA1

2

3
A`A`AD , ~2.1!

where Tr is the trace over the fundamental representation of the simple gauge groupG, and, for
the moment,k is an arbitrary real number. Under a gauge transformation,

A→g21 dg1g21Ag, ~2.2!

the action~2.1! transforms as

Sk~A!→Sk~A!2
k

12p E
M
Tr~g21 dg`g21 dg`g21 dg!. ~2.3!

The last quantity is closely related to the winding number of the mapg:M→G, which is defined
as

Y~g!5
1

48p E
M

emnr f abcc2Cm
aCn

bCr
c , ~2.4!

whereCm
a is given by

g21 ]mg5Cm
aTa, ~2.5!

beingTa, a51,...,dim(G), the generators of the simple groupG. In ~2.4!, f abc are the structure
constants corresponding to this group, andc2 the squared length of the longest simple root ofG.
The quantityY(g) in ~2.4! is always 2p times an integer.20 To study its relation to the second term
on the right-hand side of~2.3! we must take into account that the generators can be chosen in such
a way that

Tr~TaTb!52yc2dab, ~2.6!
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wherey is the Dynkin index of the fundamental representation of the simple groupG. It is clear
from ~2.6! that this index is independent of the scale chosen for the gauge group generators. From
~2.4! and ~2.6!, it follows that ~2.3! can be written as

Sk~A!→Sk~A!22ykY~g!. ~2.7!

The values ofy for SU(N) and SO(N) are 1/2 and 1, respectively. For other groupsy is a
half-integer or an integer~see the Appendix!. Therefore, ifk is an integer the action~2.1! changes
into 2p times an integer and the exponential exp„iSk(M )… is gauge invariant. Furthermore, for the
case of SO(N), it is enough to requirek to be a half-integer. Defining

x52yk, ~2.8!

one has, in general, the following quantization condition:

x52ykPZ. ~2.9!

For values ofk satisfying the quantization condition~2.9!, the partition function of the theory
is defined as

Zk~M !5E @DA#M exp„iSk~A!…, ~2.10!

where the functional integration is over gauge nonequivalent connections. This partition function
is a topological invariant because the actionSk(A) does not depend on the metric onM . Other
topological-invariant quantities are constructed, introducing operators in the integrand of the func-
tional integral present in~2.10!. These operators must be gauge invariant and metric independent
to lead to topological-invariant quantities. Wilson lines constitute an important class of these
operators. Letg be a close curve inM and letR be an irreducible representation of the gauge
group. The Wilson line operator associated tog andR is

WR
g~A!5TrRS P expE

g
AD , ~2.11!

whereP denotes a path-ordered product alongg. We will be interested in computing the vacuum
expectation values of products of these operators, i.e., functional integrations of the form

E @DA#MS )
i51

n

WRi
g i D exp„iSk~A!…. ~2.12!

In order to generalize the operator formalism developed in Refs. 1 and 2, let us assume that
there are some Wilson linesLi on the manifoldM . We will perform a Heegaard splitting onM in
such a way that no Wilson line is cut. The case in which this does not happen has been studied in
Ref. 21. In this formalism, the vacuum expectation values are expressed as an inner product of
states in a Hilbert space. These states are defined as functional integrals over configurations on
each of theg-handlebodiesM1 andM2, which result from the Heegaard splitting. In order to
construct these states let us introduce complex local coordinates on the Riemann surfaceS, which
corresponds to the common boundary ofM1 andM2,

z5s11 is2 , z̄ 5s12 is2 , ~2.13!

and let us use complex components for the part of the gauge connection parallel to the surfaceS:
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Az5
1
2 ~A12 iA2!, Az̄5 1

2 ~A11 iA2!. ~2.14!

Our aim is to define wave functionals that will be functional integrals over field configurations in
the g-handlebodies, resulting after the splitting with the value ofAz̄ fixed at the boundary. The
inner product will be implemented as an integration over the componentsAz and Az̄ on the
common boundary.

Following Refs. 1 and 2, we will use the formalism of the holomorphic quantization. Wave
functionals associated to theg-handlebodyM1 enclosingp Wilson lines are defined as

C1@Az̄#5E @DA#M1S )i51

p

WRi
g i D expS iSk~A!2

k

2p E
S
Tr~AzA z̄ !D , ~2.15!

where @DA#M1
represents the functional integration measure over gauge orbits such thatAz̄ is

fixed at the boundaryS. A similar expression defines the wave functionalC2[Az] for the
g-handlebodyM2. The vacuum expectation value~2.12! is given by the following inner product:

~C2uC1!5E @DAz DAz̄#S expS kp E
S
Tr~AzA z̄ ! DC2@Az̄#C1@Az̄#. ~2.16!

Let us recall a few important facts related to this formalism. Boundary terms like the one in~2.15!
are introduced to make the wave functional well defined, i.e., depending onAz̄ on the boundaryS.
Also, such a term is the one responsible for having a functional integral in~2.15!, which is
extremal for gauge configurations, such that the field strength ofA vanishes in the interior ofM1.

The commutation relations of the canonically conjugate fieldsAz andAz̄ on S can be read
from the exponent of the exponential inserted in~2.16!. They take the form

@Az̄
a ~s!,Az

b~s8!#5
p

2yc2k
dabd~2!~s2s8!. ~2.17!

Our next step is to compute explicitly the wave functionals~2.15! in order to obtain a description
of the Hilbert space of the theory. To carry this out we will use standard parametrizations of the
gauge fieldsAz andAz̄ on the Riemann surfaceS. We will address the situations corresponding to
genus zero and one.

A. Genus-zero handlebody

LetM1 be a solid ball andS5S2 its boundary. OnS2 the fieldsAz andAz̄ can be parametrized
as

Az̄5u21 ] z̄u, Az5ū21 ]zū, ~2.18!

where u is a single-valued mapu:S2→Gc, Gc being the complexification ofG. Since Az̄
†

52Az , one has thatu
†5ū21. The gauge transformations~2.2! take the following form for fields

on the surfaceS2:

Az̄→g21 ] z̄g1g21Az̄g, Az→g21 ]zg1g21Azg, ~2.19!

whereg is a mapg:S2→G. In the parametrization~2.18! these gauge transformations take the
simple formu→ug.

The next step is to express the measure@DAz DAz̄#S2 in ~2.16! in terms of an infinite product
of de Haar measures ofGc. This involves the computation of a Jacobian, which takes the form22,23
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@DAz DAz̄#S25expS g~

2y
G~uū21! D udet ]z] z̄udu dū, ~2.20!

whereg~ is the dual Coxeter number ofG andG~a! is the Wess–Zumino–Witten action:20

G~u!5
1

2p E
S2
Tr~a21 ]za a21 ] z̄a!1

i

12p E
M1

emnr Tr~ ã21 ]mã ã21 ]nã ã21 ]rã !.

~2.21!

In ~2.21! a is a mapa : S2→G, andã is one of the extensions of this map to the interior of the
solid ballM1. The measure~2.21! does not depend on the choice of extension of the mapa. For
different choices, the resulting Wess–Zumino–Witten actions differ by 2iy times an integral of
the form~2.4!, whereM5S2. Therefore, sinceg~ is always an integer, the measure~2.20! is well
defined. It is also important to remark that this measure is gauge invariant.

In order to write wave functionals in terms ofu and ū, one would like to factor the measure
~2.20! appropriately. This is, however, not obvious due to the Polyakov–Wiegmann condition22

satisfied by the Wess–Zumino–Witten action:

G~ab!5G~a!1G~b!1^a,b&, ~2.22!

where we have introduced

^a,b&5
1

p
Tr~a21 ] z̄a ]zb b21!. ~2.23!

As in Refs. 1 and 2, we will solve this problem making the following choice of measure on the
boundaries ofM1 andM2: take the measure~2.20! without those factors that only depend on the
gauge variables that are not being integrated over in the path integral representation of the wave
functional. Working in a gauge where the radial component ofA onS2 vanishes, this amounts to
the choice

expS g~

2y
„G~ ū21!1^u,ū21&…Ddū, for C1 , ~2.24!

and

expS g~

2y
„G~u!1^u,ū21&…Ddu, for C2 . ~2.25!

In doing this, an extra factor exp~^u,ū21&! has been introduced. One must account for it in~2.16!.
This implies that the exponential factor in~2.16! has to be redefined to

expS 1p S k1
g~

2y D ES
Tr~Az̄Az! D , ~2.26!

so that the inner product~2.16! becomes

~C2uC1!5E du dūudet ]z] z̄uexpK 1p S k1
g~

2y D ES
Tr~Az̄Az!L C2@Az̄#C1@Az̄#, ~2.27!

whereAz andAz̄ are given by~2.18!.
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As shown in Refs. 1 and 2, the form of the wave functional is determined using gauge
invariance. Under the gauge transformations~2.19!, the wave functional~2.15! transforms as

C@Az̄#→C@g21Az̄g1g21 ] z̄g#5expS 2S k1
g~

2y D S G~g!1
1

p E
S
Tr~Az̄ ]zg g21! D DC@Az̄#,

~2.28!

where the variation of the factor~2.24! introduced in the measure has been taken into account.
Notice that in doing the gauge transformation~2.28!, an extension to the interior ofM1 of the map
g on the boundaryS has been done. The result~2.28! is independent of the choice of extension
whenk satisfies the quantization condition~2.9!. The solution to~2.28! has the form

C@Az̄#5j expS 2S k1
g~

2y DG~u! D . ~2.29!

It is known3 that the Hilbert space for the case of the solid ball is one dimensional. Independently
of the form of the Wilson lines contained in the solid ball, the corresponding wave functional must
be proportional to~2.29!. The wave functional~2.29! satisfies the Gauss law emanating from the
Chern–Simons action~2.1!:

F z̄z
a C@Az̄#50, ~2.30!

whereF z̄z
a are the components of the gauge field strength. To verify~2.30! one must use the

commutation relations for the gauge fieldsAz andAz̄ resulting from~2.27!.

B. Genus-one handlebody

In this section we describe the construction of the operator formalism for the case of genus
one:S5T2. The strategy is similar to the one in the previous section. The nontrivial homology
structure of the torusT2 will provide a richer framework. Let us first introduce some data to
characterize the torus.

We will denote the holomorphic abelian differential of a torusT2 with modular parametert by
v(z). Labeling the homology cycle onT2, which is contractible in the handlebody bya, and the
one that is not byb, the holomorphic formv(z) satisfies

E
a
v51, E

b
v5t, E

T2
v`v̄5Im t. ~2.31!

The gauge fieldsAz andAz̄ on T
2 can be parametrized in the following way:23

Az̄5~uau!21] z̄~uau!, Az5~uaū!21]z~uaū!, ~2.32!

whereu is a single-valued map,u:T2→Gc, andua a non-single-valued map,ua :T
2→G, which

takes the form

ua5expS ip

Im t E z̄
v̄~z8!a•H2

ip

Im t Ez

v~z8!ā•H D , ~2.33!

where

a5(
i51

l

ail
~ i !, H5(

i51

l

Hil
~ i !, ~2.34!
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l( i ), i51,...,l , being the fundamental weights of a simple groupG of rank l . A summary of the
group-theoretical conventions used in this paper is contained in the Appendix. Notice thatua is in
the maximal torus ofG and thatua

15ua
21. As before,u†5ū21, so thatAz

† 5 2Az .
The generalization of the measure~2.20! for the case of the torus has the form23

@DAz DAz̄#T25expS g~

2y
G~uū21,C! D uP~a,t!u4~ Im t! l expS 2

g~

y
^ua ,ua

21& D ~2.35!

udet ]z] z̄udu dū dua dua
† ,

whereG(g,B) is the gauged Wess–Zumino–Witten action,24

G~g,B!5G~g!2
1

p E
S
Tr~g21Bz̄gBz2Bz̄ ]zg g211g21 ] z̄g Bz2BzB z̄ ! ~2.36!

and

P~a,t!5expS g~c2p

4 Im t
a2DQg~,r

A
~a,t!, ~2.37!

Qg~,r
A (a,t) being the Weyl antisymmetrized theta function of levelg~ ~see the Appendix!, and

r5(
i51

l

l~ i !. ~2.38!

The fieldC in the measure~2.35! is

Cz̄5ua
21 ] z̄ua , Cz5ua

21 ]zua , ~2.39!

while the measuredua dua
† takes the form

dua dua
†5

dla dl ā

~ Im t! l
. ~2.40!

The measure~2.35! is invariant under the gauge transformations~2.19!, which now take the
form

u→ug, ~2.41!

which will be called of type~i!; under transformations that leave the fieldsAz andAz̄ invariant,

u→ĝ21u, ua→uaĝ, ~2.42!

whereĝ is a map fromT2 into the Cartan torus ofG; and under modular transformations. This last
set of transformations is described in the Appendix. The transformations~2.42!, which will be
denoted as type~ii !, involve mapsĝ that are labeled in the following way:

ĝm,n5expS 2p i

c2 Im t S ~n1mt!•HE z̄
v~z!2~n1mt̄ !•HEz

v~z! D D , ~2.43!

n andm being elements of the lattice generated by the long roots ofG, which will be denoted by
LR , i.e.,n,mPLR . Notice that the maps~2.43! are not connected to the identity map.
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The analog of the Polyakov–Wiegmann condition~2.22! for the case of the Wess–Zumino–
Witten action20 takes the form

G~uū21,C!5G~u!1^ua ,u&1G~ ū21!1^ū21,ūa
21&2^ua ,ua

21&2
1

p E
S
Tr~CzC z̄ !. ~2.44!

This expression leads to similar factorization problems as the ones found from~2.22!. Following
Refs. 1 and 2 we take

expS g~

2y
„G~uū21,C!2G~u!2^ua ,u&…Ddū dua† , for C~Az̄ !, ~2.45!

and

expS g~

2y
„G~uū21,C!2G~ ū21!2^ū21,ua

21&…Ddu dua , for C~Az!. ~2.46!

After comparing the products of these two factors to the one in~2.35!, one finds that the inner
product~2.16! now takes the form

~C2uC1!5E du dū dua dūauP~a,t!u4~ Im t! l expS 2
g~

2y
^ua ,ua

21& D
3expS 1p S k1

g~

2y D ES
Tr~AzA z̄ ! Dc2@Az̄#c1@Az̄#. ~2.47!

As in the genus-zero case, the general form of the wave functional is obtained using argu-
ments based on its properties under symmetry transformations. Performing a gauge transformation
of type ~i! ~2.41!, one finds

C@Az̄#→expS 2S k1
g~

2y D „G~g!1^uau,g&…DC@Az̄#. ~2.48!

Using the Polyakov–Wiegmann condition~2.22! one finds that the solution to~2.48! can be
written as

C@Az̄#5jc2yk1g~~uau!L~ua!, ~2.49!

wherej is a constant,L(ua) is arbitrary, andc2yk1g~(uau) is a functional that satisfies

c2yr~uav !5c2yr~ua!exp„2r ~G~v !1^ua ,v&!…, ~2.50!

for any single-valued mapv:T2→G.
To search for solutions to~2.50!, let us perform a symmetry transformation of type~ii ! ~2.42!.

One finds

C@Az̄#→expS g~

2y
„G~ ĝ!1^ua ,ĝ&…DC@Az̄#, ~2.51!

which implies the following property forL(ua) in ~2.49!:

L~uaĝ!5expS g~

2y
„G~ ĝ!1^ua ,ĝ&…DL~ua!. ~2.52!
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Comparing to~2.50!, it turns out thatL(ua) andc2yr(ua) are related in the following way:

L~ua!5@cg~~ua!#
21. ~2.53!

We need now to solve for~2.50!. Let us consider the situation in which the mapv is a map
as in~2.43! of the formĝn@ i #,0

with n[ i ]5( j51
l n[ i ]

j a ( j ) andn[ i ]
j 5d i

j , a( j ) being the simple roots of
the groupG. Equation~2.50! takes the form

c2yr~ua1n@ i #
!5expS 2yrS p

c2 Im t
n@ i #•n@ i #1

p

Im t
a•n@ i #D Dc2yr~ua!. ~2.54!

For maps of the formg0,m@ i #
with m[ i ]5( j51

l m[ i ]
j a ( j ) andm[ i ]

j 5d i
j , one finds

c2yr~ua1m@ i #r
!5expS 2yrS ptt̄

c2 Im t
m@ i #•m@ i #1

p

Im t
a•m@ i #t̄ D Dc2yr~ua!. ~2.55!

The two types of maps under consideration generate the maps~2.43!, as described in Ref. 2. The
general solution to Eqs.~2.54! and~2.55! can be expressed in terms of theta functions of levelr :

c2yr,p~a,t!5expS yrpc2a2

2 Im t DQ2yr,p~a,t!, ~2.56!

wherep is an element of the weight lattice modulo 2yr times the root lattice, i.e.,pPLW/2yrLR .
The properties of the theta functionsQ2yr,p(a,t) are briefly summarized in the Appendix.

Our analysis leads to the following form for the wave functional:

C@Az̄#5j expS 2S k1
g~

2y D „G~u!1^ua ,u&…D c2yk1g~~ua!

cg~~ua!
, ~2.57!

wherej is a constant andc2yk1g~(ua) andcg~(ua) represent certain linear combinations of the
solutions~2.56!. As shown in Refs. 1 and 2, theu dependence of the wave functional can be
integrated out, obtaining an effective theory. Using~2.57!, the inner product~2.47! becomes

~C8uC!5E dua dua
†uP~a,t!u4~ Im t! l expS 2S k1

g~

y D ^ua ,ua
21& D

3j 8̄jFc2yk1g~8 ~ua!

cg~8 ~ua!
G c2yk1g~~ua!

cg~~ua!
E du dū

3expS 2S k1
g~

2y D G~uū21,C!D , ~2.58!

which, after using the result23

E du dū expS 2S k1
g~

2y DG~uū21,C! D5~ Im t!2 l/2uP~a,t!u22 expS g~

2y
^ua ,ua

21& D ,
~2.59!

becomes

2021J. M. F. Labastida and E. Pérez: Relation between Kauffman and HOMFLY polynomials

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



~C8uC!5E dua dua
†uP~a,t!u2~ Im t! l/2 expS 2S k1

g~

y D ^ua ,ua
21& D

3 j̄ 8jFc2yk1g~8 ~ua!

cg~8 ~ua!
G c2yk1g~~ua!

cg~~ua!
. ~2.60!

Weyl invariance forces us to choose antisymmetric combinations of the solutions~2.56!.
Defining

l2yr,p~a,t!5 (
wPW

e~w!c2yr,w~p!~a,t!, ~2.61!

whereW is the Weyl group ande(w) is the signature of the elementwPW, the effective inner
product~2.60! becomes

~l2yk1g~,qul2yk1g~,p!5uju2E dla dl ā ~ Im t!2 l/2 expS 2~2yk1g~!
pc2

2 Im t
a•ā D

3l2yk1g~,q~a,t!l2yk1g~,p~a,t!. ~2.62!

From this inner product for the effective theory one can read the commutation relations of its basic
operators:

@ ā i ,aj #5
2 Im t

p~2yk1g~!c2 d j
i . ~2.63!

The statesl2yr,p of the form~2.61!, which are independent inLW/2yrLR , constitute the physical
states or Hilbert space of the theory. The set of weights labeling those states constitute the
fundamental chamberF 2yr.

Knot operators are associated to Wilson lines. They correspond to the form of these operators
when represented in the framework of the Hilbert space that has been constructed. Let us consider
a torus knot labeled by two coprime integersn andm, and their corresponding Wilson line:

WL
~n,m!5TrLS P exp E

n,m
AD . ~2.64!

We use the convention in whichn(m) denotes the number of times that the Wilson line winds
along theb-cycle ~a-cycle! on the torus.

We are interested in the form of this operator when the single valued mapu in ~2.32! has been
integrated out. In other words, we need the expression for the Wilson line~2.64! whenu51. Using
~2.33! it turns out to be

WL
~n,m!5TrLS expS ip

Im t
„~nt̄ 1m!a•H2~nt1m!ā •H)…D D

5 (
mPML

expS 2
p

Im t
~nt̄ 1m!a•m1

2~nt1m!

~2yk1g~!c2 m•
]

]aD , ~2.65!

where in the last step we have used~2.63!, and the fact thatH is made out of diagonal matrices
whose entries are related to the components of the set of weightsmPML , ML being the set of
weights corresponding to an irreducible representation of highest weightL. Using the standard
properties of the theta functions that are compiled in the Appendix, one finds
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WL
~n,m!l2yk1g~,p5 (

mPML

expS 2ipm2nm

c2~2yk1g~!
1

4ipmp•m

c2~2yk1g~! Dl2yk1g~,p1nm . ~2.66!

These operators are called knot operators. They satisfy the following important relation:

WL
~1,0!ur&5ur1L&, ~2.67!

where ur& is the state corresponding to the weight~2.38!. As discussed in Refs. 1 and 2, this
relation allows us to think of the operatorsWL

~1,0! as creation operators since they create the state
corresponding to the highest weightL when acting on the vacuum stateur&.

One important ingredient in the computation of knot invariants for torus knots is the knowl-
edge of the corresponding representation on the set of homeomorphisms onT2. These homeomor-
phisms are generated by modular transformationsS andT on T2, which possess the following
representation:25

Tp,p85dp,p8e
2p i ~hp2c/24!,

Sp,p85
i uD1u

~2yk1g~!1/2
SVol LR*

Vol LR
D (
wPW

e~w!e2@4p ip•w~p8!#/c2~2yk1g~!, ~2.68!

whereuD1u is the number of positive roots,LR is the lattice of long roots, andLR* is its dual. In
~2.68!, hp and c represent the conformal weight and central charge of the corresponding two-
dimensional conformal field theory:

hp5
p22r2

c2~2yk1g~!
, c5

2yk dim~G!

2yk1g~ . ~2.69!

Knot operators provide a very useful tool to compute knot invariants in lens spaces. These
spaces are boundary-less three-dimensional manifolds that can be built by joint of two tori. The
gluing is carried out by a homeomorphism whose representation in the Hilbert space that we have
constructed is written in terms of the generators~2.68!. If we denote this representation byF, the
vacuum expectation value for a Wilson line corresponding to a torus knot carrying an irreducible
representation of highest weightL of a simple groupG is

VL
~n,m!uF5

^ruFWL
~n,m!ur&

^ruFur&
. ~2.70!

To connect with the standard form in which polynomial invariants are written, we need to correct
~2.70! in three aspects. First of all in~2.70!, a choice of frame for the knot and the manifold has
been done. Invariants are usually expressed in the standard frames and we must correct~2.70! so
that the contribution from the knot framing factor is cancelled, and that the appropriate choice of
F is made. Taking the three-sphere as our choice of lens space, which will be the case of interest
in this paper, the standard frame is accomplished consideringF5S, S being one of the two
generators of modular transformations. As shown in Ref. 2, the correction relative to the frame of
the knot is easily accomplished, multiplying by

e22p inmhr1L, ~2.71!

wherehr1L is the conformal weight given in~2.69!. The second aspect leading to an additional
correction for~2.70! is the fact that the orientation chosen for the torusT2 is opposite to the
standard one. We must therefore do the following changem→2m. Finally, the third aspect is that
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usually knot invariants are normalized in such a way that their value for the unknot is one. We
must therefore normalize~2.70! by its value for the unknot. These three aspects lead to the
following proposition.

Proposition 2.1:The normalized knot invariant for a torus knot$n,m% in the standard framing,
carrying aG irreducible representation of highest weightL on S3 in the standard framing, is

XL
~n,m!5e2p inmhr1L

VL
~n,2m!uS3

VL
~1,0!uS3

5e2p inmhr1L
^ruSWL

~n,2m!ur&

^ruSWL
~1,0!ur&

. ~2.72!

The structures of the knot operators~2.66! and the matrixSp,p8 in ~2.68! allow to express this
invariant in terms of the variable

t5e2p i /~2yk1g~!, ~2.73!

which encloses all the dependence onk. The main purpose of this paper is to compute~2.72! for
the fundamental representation of the group SO(N). This will lead to the Kauffman polynomial18

for torus knots. The resulting formula agrees with the one given in Ref. 19. The comparison of this
formula to the corresponding known expression for the HOMFLY polynomial13,15,17will allow to
prove ~1.1!.

III. KAUFFMAN POLYNOMIAL FOR TORUS KNOTS

In this section we will make use of Proposition 2.1 to compute the Kauffman polynomial for
torus knots. We must evaluate~2.72! for the fundamental representation of SO(N), i.e., we must
makeL5l~1!. The result is stated in the following theorem.

Theorem 3.1:The Kauffman polynomial for a torus knot$n,m% is given by

Xl~1!
~n,m!

5
@1#lnm

@1#1@0;1# S (
g1b115n

b,g>0

t2~m/2!~b2g!l2m~21!gS 1

@n#
1

1

@b2g;1# D
3

1

@b#! @g#! )
j52g

b

@ j ;1#1 H0,1, n odd
n evenD , ~3.1!

where

@p#5tp/22t2p/2, @p;y#5tp/2ly2t2p/2l2y, l5t ~N21!/2, t5e2p i /~2k1g~!, ~3.2!

with g~5N22.
Proof: The rest of this section deals with the proof of this theorem. As SO(N) has two

different algebras, depending on whetherN is odd or even, we will have to study both cases
separately. We will begin with SO~2l11!, Bl being the corresponding algebra. The main feature of
this case is that the simple roots ofBl are not all of the same length. Notice that since an$n,m%
torus knot is isotopically equivalent to the$2n,2m% torus knot, we can restrict ourselves to torus
knots withn.0. Also, we will consider the case in whichl.n. Our results, however, as in the
case of the HOMFLY polynomial computed in Ref. 5, are valid for arbitraryl . In this proof we
make the following choice of normalization for the long roots:

c252. ~3.3!

Notice also that for SO(N) the Dynkin index for the fundamental representation isy51 and
therefore~2.73! becomes
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t5e2p i /~2k1g~!. ~3.4!

A. SO(2 l11)

Let us begin working out the action of the knot operatorWl(1)
(n,m) on the vacuum state. Using

~2.66!, ~3.3!, and the form oft in ~3.4!, we have

Wl~1!
~n,2m!ur&5 (

i51

2l11

t2~1/2!m i
2nm2mm i•rur1nm i&, ~3.5!

wheremi , i51,...,2l11, are the weights inMl(1) whose explicit expression is given in~A20!.
Following the framework described in the previous section, we must find the canonical represen-
tatives in the fundamental chamberF 2k1g~ ~notice that 2yr52yk1g~ andy51! of the weights
appearing in the sum. The weights present in~3.5! have the following structure:

r1nm15~n11,1,...,1!,

A,

r1nm j5~1,...,1,12n,11
j

n,1,...,1!,

A,

r1nm l5~1,...,1,12n,112n!,

r1nm l115r,

r1nm l125~1,...,1,11n,122n!, ~3.6!

A,

r1nm l111 j5~1,...,1,11n, 12n
l2 j11

,l ,...,1!,

A,

r1nm2l115~12n,1,...,1!.

Every weight in the weight lattice can be written asw(m)1(2k1g~)a, wherew is an element of
the Weyl group,a is a long root, andm is a weight whose components are non-negative. In the
Hilbert space constructed in the previous section the weights that possess one or more components
that vanish are represented by null vectors. Since 2l11.n there is no need to add terms of the
form (2k1g~)a to the weights in~3.6! to bring them to a form in which their components are
non-negative. A series of Weyl reflections will be sufficient. Ifn51 all the weights in~3.6! except
the first one andr1nm l11 have one vanishing component, and therefore there are only these two
contributions in the sum present in~3.5!. If n.1, notice first that the weightsr1nm1 and
r1nm l11 in ~3.6! are already inF 2k1g~. For the rest we have the following cases:
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1. Case i52,..., l

(a) 2<i<n. We perform the chain of Weyl reflections:

r1nm i→
s1

••• ——→
s i22

——→
s i21

n i5~n112 i ,1,...,2
i

,...,1!, i52,...,l21,

r1nm l→
s1

••• ——→
s l22

——→
s l21

n l5~n112 l ,1,...,1,3!.
~3.7!

The weighti5 l will not be considered, as we restrict ourselves ton, l .

(b) i.n. The chain of Weyl reflections is like the one in~3.7!:

r1nm i ——→
s i112n

••• ——→
s i21

5~1,...,1, 0
i2n

,1,...,2
i

,...,1!, i51,...,l21,

r1nm l ——→
s l112n

••• ——→
s l21

5~1,...,1, 0
l2n

,...,1,3!.
~3.8!

After n11, reflections the weights get a vanishing component and therefore all these weights
correspond to null vectors and do not contribute to the sum in~3.5!. This fact is very important in
this calculation because it implies that the sum~3.5! is truncated. Its upper limit turns out to ben
instead of 2l11.

2. Case i5 l12,...,2l11

As i.n for the weights in this case, we would expect that all of them would achieve a
vanishing component after a chain of Weyl reflections. What actually happens is that forn odd an
extra weight will contribute:

r1nm l12→
s l

5~1,...,1,22n,2n21!5r, for n51.

For j52,...,l , one has the following situations:

n< j ,

r1nm l111 j ——→
s l2 j1n21

••• ——→
s l2 j11

5~1,...,1, 2
l2 j

,...,1,..., 0
l2 j1n

,...,1!;

j,n,2 j21,

r1nm l111 j ——→
s l1 j2n

•••→
s l

——→
s l21

••• ——→
s l2 j11

5~1,...,1, 2
l2 j

,...,1••• 0
l1 j212n

,...,1!;

n52 j21,
~3.9!

r1nm l111 j ——→
s l2 j11

•••→
s l

——→
s l21

••• ——→
s l2 j11

5„1,...,1,2j2n,n2~2 j22!...,1…5r;

2 j21,n, l ,

r1nm l111 j ——→
s l1 j2n11

•••→
s l

——→
s l21

••• ——→
s l2 j11

5~1,...,1, 0
l1 j2n

,...,1••• 2
l2 j11

,...,1!.
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We see that all the vectors have a vanishing component, except whenn52 j21, where the weight
nl111 j5r belongs toF 2k1g~. Taking into account these considerations, we find that the weights
contributing to the sum in~3.5! are

n i5e~v i !•~n112 i ,1•••2
i

•••1!, i51,...,n,

n l115e~v l11!•r,

n l111 i5e~v l111 i !•r, n52i21,

~3.10!

wheree~v! is the signature of the Weyl chain, given by the number of Weyl reflections we have
made to bring the weights to this form:

v i5s1•••s i21 , ⇒e~v i !5~21! i21,

v l115I , ⇒e~v l11!5~21!051,

v l111 i5s l112 i•••s l21s ls l21•••s l2 i11 , ⇒e~v l111 i !5~21!2i21521.

Using these results and the scalar products in~A22!, the sum in~3.5! becomes

WL
~n,2m!ur&5(

i51

n

t2~nm/2!2m~2l1122i !~21! i21un i&1 H 0,
ur&,

n odd;
n even. ~3.11!

This equation is valid for anyn>1 as long asl.n. The vacuum expectation value~2.70! that
enters~2.72! takes the form

Vl~1!
~n,2m!

5
^ruSWl1

~n,2m!ur&

^ruSur&
5(

i51

n

t2~nm/2!2m~2l1122i !~21! i21
Sr,n i

Sr,r
1 H0,1, n odd;

n even.
~3.12!

The weightsni have the general expressionn i5r1(n2 i ,0•••1
i

•••0)5r1L. If L is a highest
weight, the ratioSr,r1L/Sr,r can be written in terms of the character associated toL with the help
of the Weyl formula,

Sr,r1L

Sr,r
5

(wPWe~w!tr•w~r1L!

(wPWe~w!tr•w~r! 5chLF2
2p i

2k1g~ rG . ~3.13!

All the weights entering~3.12! can be thought of as highest weights, and therefore we can express
Vl(1)
(n,2m) in terms of characters:

Vl~1!
~n,2m!

5(
i51

n

t2~nm/2!2m~2l1122i !~21! i21 ch~n2 i !l~1!1l~ i !F2
2p i

2k1g~ rG1 H0,1, n odd;
n even.

~3.14!

Let us compute firstVl(1)
(1,0) , which is the quantity entering the denominator in~2.72!. From

~3.12! and ~3.13! it follows that one needs to compute the character for the fundamental repre-
sentation. This calculation is done very simply just summing over the weights of the representa-
tion:
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chl~1!F2
2p i

2k1g~ r G5 (
mPMl~1!

t2m•r511(
j51

l

t2m j •r1 (
k51

l

t2m l111k•r511
t l2t2 l

t1/22t21/2.

~3.15!

Using this result, it turns out that

Vl~1!
~1,0!

511
l2l21

t1/22t21/2, ~3.16!

which has been written entirely in terms of the variablesl and t in ~3.2! ~notice that in this case
N52l11!. This result agrees with previous calculations for the unknot.7,10

For representations different from the fundamental one, however, it is more useful to compute
the character using its expression in terms of a product over positive roots:

chLF2
2p i

2k1g~ rG5 (
mPML

t2m•r5 )
a.0

t ~1/2!a•~r1L!2t2~1/2!a•~r1L!

t ~1/2!a•r2t2~1/2!a•r . ~3.17!

In this equation, the symbola.0 indicates that the product has to be performed over all the
positive roots. ForBl , these are given in the Appendix. Our next task is to compute the characters
appearing in~3.14! with the help of this formula.

In order to simplify our notation, from now on we will denote chL[22p ir/(2k1g~)] simply
by chL . Also, we introduce the following notation regardingq numbers andq factorials:

@p#5tp/22t2p/2,
~3.18!

@p#!5@p#@p21#•••@1#, @0#!51.

This allows us to write the character formula in the form

chL5 )
a.0

@a•~r1L!#

@a•r#
. ~3.19!

In order to compute~3.14! we must perform the products in~3.19! for weights of the form
(n2 i )l (1)1l ( i ). Taking into account the form of the positive roots listed in~A6!, this suggests
the organization of the product in~3.19! splitting the set of positive roots in two groups, I and II,
depending on whether the positive root contains the simple roota~1! or not. Another thing we have
to take into account is that the metric between fundamental weights and simple roots of this
algebra, for the normalization chosen for the long roots, is the following:

a~ i !•l
~ j !5diag~1•••1,12!, ~3.20!

due to the fact that the simple roota( l ) is shorter than the others. Let us carry out the computation
of the character.

The products of the positive roots with the Weyl vector are

b~ j !•r5 l2 j1 1
2 , g~ j ,k!•r511k, d~ j ,k!•r52l22 j2k, ~3.21!

and with the weightsn i5r1(n2 i ,0•••1
i

•••0), i51,...,l21:
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(a) group I, positive roots witha(1)

b~1!•n i5 l211 1
2 1n2 i11,

g~1,k!•n i511k1n2 i1 H1,0, i<k11;
k< i22; ~3.22!

d~1,k!•n i52l222k1n2 i1 H1,2, i<k11;
k< i22;

(b) group II, positive roots withouta(1)

b~ j !•n i5H l2 j1 1
2 11, j< i ;

l2 j1 1
2 , j. i ;

g~ j ,k!•n i5H 11k, j. i , or i> j1k11;

21k, j< i< j1k;
~3.23!

d~ j ,k!•n i5H 2l22 j2k, j. i ;

2l22 j2k11, i< j< j1k;

2l22 j2k12, i> j1k11.

We have these two contributions to the characters:

)
aPI

@a•n i #

@a•r#
5

@ l1 1
2 1n2 i #

@ l2 1
2#

)
k50

i22
@11k1n2 i #

@11k# )
k5 i21

l22
@21k1n2 i #

@11k# )
k50

i22
@2l1n2 i2k#

@2l222k#

3 )
k5 i21

l22
@2l212k1n2 i #

@2l222k#

5
1

@n#@2l1n22i11#

@n2 i1 l1 1
2#

@ l2 1
2#

@2l1n2 i #!

@n2 i #! @2l22#!
~3.24!

and
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)
aPII

@a•n i #

@a•r#
5)

j52

i @ l2 j111 1
2#

@ l2 j1 1
2#

)
j52

i21

)
k50

i2 j21
@2l22 j2k12#

@2l22 j2k# )
j52

i

)
k5 i2 j

l2 j21
@2l22 j2k11#

@2l22 j2k#

3)
j52

i

)
k5 i2 j

i2 j21
@21k#

@11k#

5
@ l2 1

2#

@ l2 i1 1
2#

@2l22i11#

@ i21#!

@2l22#!

@2l2 i #!
. ~3.25!

Taking into account~3.24! and ~3.25! we finally obtain a formula for the character in terms ofq
numbers:

ch~n2 i !l~1!1l~ i !5 )
a.0

@a•n i #

@a•r#
5S 1

@n#
1

1

@n12l22i11# D 1

@n2 i #! @ i21#! )
j52~ i21!

n2 i

@2l1 j #.

~3.26!

From this it is straightforward to write an expression for~3.14! involving only the variablest and
l. First we introduce the notation

@p;y#5tp/2ly2t2p/2l2y, b5n2 i , g5 i21. ~3.27!

Recall thatl is defined asl5t (N21)/25t l . One finds

Vl~1!
~n,2m!

5 (
g1b115n

g,b>0

t2~m/2!~b2g!l2m~21!gS 1

@n#
1

1

@b2g;1# D
3

1

@b#! @g#! )
j52g

b

@ j ;1#1 H0,1, n odd;
n even. ~3.28!

It remains only to obtain the deframing phase factor. The conformal weight for the fundamental
representation of SO~2l11! is given by~2.69!:

hr1l~1!5
~r1l~1!!22r2

2~2k1g~!
5

l

~2k1g~!
, ~3.29!

which gives the deframing factor

e2p inmhr1l~1!5t lmn5lnm. ~3.30!

From ~3.28!, ~3.30!, and ~3.16!, one obtains the final expression for the knot invariant~2.72!,
which equals the one stated in Theorem 3.1. This ends the proof for the case SO~2l11!.

B. SO(2 l )

As the calculation procedure is the same as in the previous case, we will simply give the main
results at each step. The Lie algebra is nowDl and its main features are summarized in the
Appendix.

The action of the knot operator on the vacuum state is given by
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Wl~1!
~n,2m!ur&5(

i51

2l

t2~1/2!m i
2nm2mm i•rur1nm i&, ~3.31!

wherem i51,...,2l are the weights inMl(1) whose expression is in~A25!. The vectorsr1nm i

have the structure

r1nm15~n11,1,...,1!,

A

r1nm j5~1,...,1,12n,11
j

n,1,...,1!,

A

r1nm l215~1,...,1,12n,11n,11n!,

r1nm l5~1,...,1,12n,11n!,

r1nm l115~1,...,1,11n,12n!, ~3.32!

r1nm l125~1,...,1,11n,12n,12n!,

A

r1nm l1 j5~1,...,1,11n,12
l2 j

n,1,...,1!,

A

r1nm2l215~11n,12n,1,...,1!,

r1nm2l5~12n,1,...,1!,

and those who contribute to the sum in~3.31!, for the casen, l , after taking the suitable chain of
Weyl reflections, and the corresponding signature, are

n i5~21!~ i21!
•~n112 i ,1,...,2

i

,...,1!, i51,...,n,
~3.33!

n l111 i5r, n52i .

We see that, very similarly to the SO~2l11! case, the number of weigths we have to take into
account is bounded byn and that there is an extra one in the case ofn even. So the expression
~3.31! becomes, after using the scalar products in~A27!,

Wl~1!
~n,2m!ur&5(

i51

n

t2~nm/2!2m~ l2 i !~21! i21un i&1 H 0,
ur&,

n odd;
n even. ~3.34!

The quantityVl(1)
(1,0) is obtained from the character of the fundamental representation:
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Vl~1!
~1,0!

5 (
mPMl~1!

t2m•r511
l2l21

t1/22t21/25
@1#1@0;1#

@1#
, ~3.35!

where for the last equality we have use the definitions~3.18! and~3.27!. To calculateVl(1)
(n,2m) we

again need the characterization of the positive roots that is contained in~A7!. Then one computes
the products of these roots with the Weyl vector and the weigthsni . From these we obtain the
following formula for the characters:

)
a.0

@a•n i #

@a•r#
5S 1

@n#
1

1

@n12l22i # D 1

@n2 i #! @ i21#! )
j52~ i21!

n2 i

@2l1 j21#. ~3.36!

Using again~3.27!, one gets

Vl~1!
~n,2m!

5 (
g1b115n

g,b>0

t2~m/2!~b2g!l2m~21!gS 1

@n#
1

1

@b2g;1# D
3

1

@b#! @g#! )
j52g

b

@ j ;1#1 H0,1, n odd;
n even ~3.37!

The framing factor for this case is given by

e2p inmhr1l~1!5t ~nm/2!~2l21!5lnm. ~3.38!

It is easy to see that taking into account~3.38!, ~3.35!, and~3.37! we obtain the expression~3.1!
for the knot invariant associated to the fundamental representation of SO(2l ). Notice also that
althoughl is defined in a different way with respect to the rank of the algebra,l , its definition is
the same for both cases in terms of the variableN of SO(N). This completes the proof of Theorem
3.1.

C. Natural variables of the Kauffman polynomial and Yokota’s formula

The Dubrovnik version of the Kauffman polynomial, as described on p. 215 of Ref. 26,
depends on two variables,a ~which is calleda in Ref. 26! andz. We will refer to these variables
as the natural ones. In those variables the skein rules have the simple form shown in Ref. 26. We
will denote the Dubrovnik version of the Kauffman polynomial, normalized in such a way that for
the unknot its value is unity, byYK(a,z), and will try to identify these variables in terms of ours.
This can be done comparing the skein rules in Ref. 26 to the skein rules obtained from Chern–
Simons theory in Refs. 5, 7 and 8. It turns out that

a5l5e2p ihr1l~1!, z5@1#5t1/22t21/2. ~3.39!

The formula in Theorem 3.1 can therefore be stated as

Yn,m~l,t1/22t21/2!5Xl~1!
~n,m! , ~3.40!

whereXl(1)
(n,m) is given in ~3.1!.

To compare our formula~3.40! to the one obtained by Yokota in Ref. 19 we will use~3.39!
and the identification done in Ref. 19 between its variables,q and a, and the natural ones.
Proceeding in this way one concludes that the relation between our variables and Yokota’s is

q5t21/2, a252~ql!21. ~3.41!
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Taking into account that Yokota uses an orientation opposite to ours, and therefore we must
compare~3.40! to its formula forYn,m(a

21,2z), one finds complete agreement after substituting
~3.41! in the formula given in Ref. 19.

IV. RELATION BETWEEN THE HOMFLY AND KAUFFMAN POLYNOMIALS FOR TORUS
KNOTS

The HOMFLY16 and Kauffman polynomials18 have the common characteristic of being func-
tions of two variables defined for oriented links, although their behavior under change of orien-
tation of some of the link components is quite different. On the other hand, the skein rules that
define them are also different: in the first one the relation is established among three diagrams and
in the second one among four. Both are able to differentiate in many cases one knot from its
mirror image, although Kauffman’s is more powerful in this sense. These two polynomials are
considered as independent, in the sense that there is not a subtle change of variables taking one
into the other. In Ref. 27 there are examples of knots with the same Kauffman and different
HOMFLY, and vice versa. We will prove that for the particular case of torus knots there is a
relation between these two polynomials. Let us begin recalling the expression of the HOMFLY
polynomial for torus knots. It was first obtained in Ref. 13, reobtained in Ref. 17 using quantum
groups, and in Ref. 15 from the Chern–Simons theory with gauge group SU(N). The correspond-
ing invariant has the form15

Pn,m~a,z!5Pn,m„~lt !1/2,t1/22t21/2)

5S 12t

12tnD l~1/2!~m21!~n21!

lt21 (
p1 i115n
p,i>0

~21! i tmi1~1/2!p~p11!
P j52p

i ~lt2t j !

P j51
i ~ t j21!P j51

p ~ t j21!

5
@1#~lt !1/2m~n21!

@21;2 1
2#

(
b1g115n

b,g>0

~21!gt ~m/2!~b2g!
1

@n#@b#! @g#!
3 )

j52g

b

@ j21;2 1
2#,

~4.1!

where

l5tN21, t5e2p i /k1g~
. ~4.2!

If one performs one of these two changes of variables,

t1/2→t21/2 or t1/2→2t1/2, ~4.3!

one finds that~3.1! transforms into

Yn,m~a,2z!5Yn,m~l,t21/22t1/2!

52
@1#lnm

@1#2@0;1#
3S (

g1b115n
g,b>0

t2~m/2!~b2g!l2m~21!g

3S 1

@n#
2

1

@b2g;1# D 1

@b#! @g#!
3 )

j52g

b

@ j ;1#1H 0, n odd

21 n evenD ~4.4!

It is worthwhile to remark that this is exactly the formula obtained when one calculates the
polynomial for torus knots associated to the fundamental representation of Sp(N) from Chern–
Simons theory. This can be shown explicitly using the methods developed in the previous section,
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or from the form of the skein rules for the fundamental of Sp(N) obtained in Refs. 7 and 8 from
Chern–Simons gauge theory. Let us compare~3.1!, ~4.1!, and~4.4!. The crucial point is that, using
the auxiliary variableq, these three expressions can be written as follows:

Yn,m~a,q2q21!5
anm@1#q

@1#q1a2a21 S (
g1b115n

g,b>0

q2m~b2g!a2m~21!g

3S 1

@n#q
1

1

qb2ga2qg2ba21D 1

@b#q! @g#q!

3 )
j52g

b

~qja2q2 ja21!1 H0,1, n odd
n evenD , ~4.5!

Yn,m„a,2~q212q!…52
anm@1#q

@1#q2a1a21 S (
g1b115n

g,b>0

q2m~b2g!a2m~21!g

3S 1

@n#q
2

1

qb2ga2qg2ba21D 1

@b#q! @g#q!

3 )
j52g

b

~qja2q2 ja21!1H 0, n odd

21, n evenD , ~4.6!

and

Pn,m~a,q212q!5
am~n21!@1#q
a2a21 (

g1b115n
g,b>0

q2m~b2g!~21!g
1

@n#q@b#q! @g#q!

3 )
j52g

b

~qja2q2 ja21!, ~4.7!

where

@n#q5qn2q2n. ~4.8!

The structure on the right-hand side of~4.7! shows that the HOMFLY polynomial,Pn,m(a,z), can
be expressed in terms of a linear combination of the polynomialsYn,m(a,z) andYn,m(a,2z). In
fact, after performing some algebra from~4.5!, ~4.6!, and~4.7!, one obtains

Pn,m~a,z!5
1

2
„Yn,m~a,z!1Yn,m~a,2z!…1

z

2~a2a21!
„Yn,m~a,z!2Yn,m~a,2z!…. ~4.9!

This ends the proof of the relation~1.1! between the HOMFLY and Kauffman polynomials, which
was presented in the Introduction.

Fora51, the ordinary version of the Kauffman polynomial,FK(a,z), becomes the unoriented
polynomial invariant of ambient isotopy discovered in Refs. 28 and 29 which is usually denoted
by QK(z)5FK~1,z!. Similarly, we define

Q̃K~z!5YK~1,z!. ~4.10!
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It turns out that for torus knots, after performing the limitN→1 in ~3.1!, which is equivalent to
a→1, one finds

Q̃n,m~z!51. ~4.11!

In the case of the HOMFLY polynomial, the limita→1 leads to the Alexander–Conway polyno-
mial, DK(z)5PK~1,z!. From ~4.9! and ~4.11!, one finds

Dn,m~z!511
z

4

]

]a
„Yn,m~a,z!2Yn,m~a,2z!…U

a51

. ~4.12!

Notice that this expression is consistent with the fact thatDn,m(z) must be 1 plus a polynomial
containing only even powers ofz.

V. CONCLUSIONS AND PROSPECTS

In this paper we have presented the construction of the operator formalism, originally dis-
cussed in Ref. 1 and Ref. 2 for the groups SU~2! and SU(N), respectively, for an arbitrary simple
group. The main result in this respect is the general form for knot operators presented in~2.66!.

Knot operators are utilized to compute the knot invariant corresponding to the fundamental
representation of the gauge group SO(N). The resulting formula is presented in~3.40! and~3.1!,
and shown to agree with a previous expression for the Kauffman polynomial. This formula is
compared to known expressions for the HOMFLY polynomial and the relation~1.1! between the
Kauffman and the HOMFLY polynomials for torus knots is proved.

Our result ~1.1! confirms that the Kauffman polynomial is more fundamental than the
HOMFLY polynomial. The simplicity of the relation obtained suggests that it could be obtained
by other methods. In this respect it would very interesting if it could be reobtained using skein
rules.

It would be also worthwhile to study how our results fit in Jaeger’s expansions for the
Kauffman polynomial in terms of HOMFLY polynomials~see, for example, p. 219 of Ref. 26!.
Finally, one should also study if there exist similar formulas for other sets of knots. In this respect
one would like to start studying the situation in sets characterized by a generalization of the notion
of a torus knot. A torus knot is a knot that can be placed on the surface of a standardly embedded
torus inS3 without self-intersection. There are knots that can be placed on a standardly embedded
genus two surface without self-intersection, but not on a genus one surface. One could analyze, for
example, if there is a relation of the type~1.1! for these knots. In general, one could study the
problem for knots placed on a genusg surface. Work in this direction will be presented elsewhere.
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APPENDIX: GROUP THEORY AND THETA FUNCTIONS

1. Group-theoretical conventions

In this section of the Appendix we will summarize our group-theoretical conventions. LetG
be a compact simple group of rankl , with generatorsTa, a51,...,dim(G), which are chosen to be
anti-Hermitian. For the fundamental representation ofG they are normalized as follows:

Tr~TaTb!52yc2dab, ~A1!
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wherey is the Dynkin index of the fundamental representation andc2 is the squared length of the
longest simple root ofG. The value ofy for the groups SU(N), SO(N), Sp(N), E6, E7, E8, F4,
andG2 are 1/2, 1, 1/2, 9, 12, 30, 6, and 3, respectively.

We will denote thel fundamental roots ofG by ai , i51,...,l . In the explicit calculations
carried out in Sec. III they have been chosen in such a way that the long roots have length&, i.e.,
c252. The Cartan matrixgi j ,

gi j52
a~ i !•a~ j !

a~ i !•a~ i !
, ~A2!

takes the following forms for the two Lie algebrasBl @l5~N21!/2, N odd# andDl @l5N/2, N
even# associated to the simple group SO(N), which is the one that has been considered in this
paper:

gi j ~Bl !51
2 21 0 0 • • • • 0

21 2 21 0 • • • • 0

0 21 2 21 • • • • 0

• • • • • • • • •

• • • • • • • • •

0 0 0 0 • • 2 21 0

0 0 0 0 • • 21 2 21

0 0 0 0 • • 0 22 2

2 , ~A3!

and

gi j ~Dl !51
2 21 0 0 • • • • • 0

21 2 21 0 • • • • • 0

0 21 2 21 • • • • • 0

• • • • • • • • • •

• • • • • • • • • •

0 0 0 0 • • • • 0 0

0 0 0 0 • • 21 2 21 21

0 0 0 0 • • 0 21 2 0

0 0 0 0 • • 0 21 0 2

2 . ~A4!

We will denote the root lattice byLR . This l -dimensional space is generated by the funda-
mental rootsa( i ) , which can be taken as a basis, the root basis. Any vectorx in this basis has
componentsxi given by

x5(
i51

l

xia~ i ! . ~A5!

Among all the roots inLR there is a subset that plays an important role in the calculation
performed in the paper. These are the positive roots. For SO(N) they take the following form:30

algebraBl ,

2036 J. M. F. Labastida and E. Pérez: Relation between Kauffman and HOMFLY polynomials

J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



b~ j !5a~ j !1•••1a~ l ! , j51,...,l ,

g~ j ,k!5a~ j !1•••1a~ j1k! , i51,...,l21, k51,...,l2 j21, ~A6!

d~ j ,k!5a~ j !1•••1a~ j1k!12~a~ j1k11!1•••1a~ l !!, j51,...,l21, k50,...,l2 j21;

algebraDl ,

a~ j ! , j51,...,l ,

b~ j !5a~ j !1•••1a~ l22!1a~ l ! , j51,...,l22,

g~ j ,k!5a~ j !1•••1a~ j1k! , j51,...,l22, k51,...,l2 j , ~A7!

d~ j ,k!5a~ j !1•••1a~ j1k!12~a~ j1k11!1•••1a~ l22!!1a~ l21!1a~ l ! ,

j51,...,l23, k50,...,l232 j .

The fundamental weightsl( i ), i51,...,l , satisfy

2
a~ i !•l

~ j !

a~ i !•a~ i !
5d i

j . ~A8!

The fundamental weights generate overZ an l -dimensional lattice called the weight lattice,
which will be denoted byLW . The latticesLR andLW are dual to each other andLRPLW . The
l -dimensional basis expanded by the fundamental weights is called the Dynkin basis. Any vector
x has in this basis componentsxi given by

x5(
i51

l

xil
~ i !. ~A9!

The matrixGi j5l ( i )
•l ( j ) gives the metric in weight space, so it allows us to rise indices. Its

expression for the algebrasDl andBl is

Gi j ~Dl !5
1

2 1
2 2 2 • • • 2 1 1

2 4 4 • • • 4 2 2

2 4 6 • • • 6 3 3

• • • • • • • • •

• • • • • • • • •

2 4 6 • • • 2~ l22! l22 l22

1 2 3 • • • l22 l /2 ~ l22!/2

1 2 3 • • • l22 ~ l22!/2 l /2

2 , ~A10!

and
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Gi j ~Bl !5
1

2 S 2 2 2 • • • 2 1

2 4 4 • • • 4 2

2 4 6 • • • 6 3

• • • • • • • •

• • • • • • • •

2 4 6 • • • 2~ l21! l21

1 2 3 • • • l21 l /2

D . ~A11!

Among the weights inLW there is one that plays an important role in Chern–Simons theory
because it can be regarded as the vacuum. This weight is denoted byr and all its components are
one:

r5(
i51

l

l~ i !. ~A12!

The irreducible representations ofG are characterized by highest weightsL. Highest weights
can be written uniquely as a linear combination of fundamental weights with non-negative integer
coefficientshi ,

L5(
i51

l

hil
~ i !. ~A13!

The set of weights of an irreducible representation of highest weightL will be denoted asML . To
build this set one may use the following rule: if a weightmPML has thekth Dynkin component
greater than zero~i.e.,mk.0!, then the vectors obtained by subtractingtak (t51,...,mk) from m
are also elements ofML . One can start applying this rule toL and then to the successive weights
obtained to build the different elements ofML . The multiplicities of each weight can be obtained
using Freudenthal’s formula.31

The Weyl group is generated byr reflectionsai , i51,...,l , on weight space,

xPLW , a i~x!5x2
2

a~ i !•a~ i !
a~ i !~a~ i !•x!. ~A14!

It divides the weight latticeLW into domains. The fundamental domain or Weyl chamber is
chosen to be the one containing all the weightsxPLW , such that

a~ i !•x>0. ~A15!

The Weyl character for an irreducible representation of highest weightL is defined as

chL~a!5 (
mPML

ea•m, ~A16!

wherea5ail
( i ). The Weyl character satisfies the equation31

chL~a!5
(wPWe~w!ew~L1r!•a

(wPWe~w!ew~r!•a , ~A17!

known as the Weyl character formula. Whena52r, we have an expression for the character25

that is particularly useful:
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(
mPML

e2m•r5 )
a.0

e~1/2!a•~r1L!2e2~1/2!a•~r1L!

e~1/2!a•r2e2~1/2!a•r , ~A18!

wherea.0 denotes a sum over all positive roots.
An important set of weights used in this work is the one made by Weyl-antisymmetric

combinations of weights inLW/sLR , wheres is an arbitrary non-negative integer. This set of
weights builds the fundamental chamberF s .

2. Fundamental representation of SO(2 l11)

The fundamental representation ofBl is associated to the highest weightL5l~1!5~1,0,...,0!,
and the corresponding weight space is

Ml~1!5$m i :1< i<2l11%, ~A19!

where

m15l~1!5~1,0,...,0!,

m j5m j212a~ j21!5~0,...,21
j

,1,0,...,0!, j51...l21,

m l5m l212a~ l21!5~0,...,0,21,2!, ~A20!

m l115m l2a~ l !50,

m l111 i52m l112 i , i51,...,l .

We can write these weights as follows:

m j5@2d j21,i1d j ,i #l
~ i !, j51,...,l21,

m l5@2d l21,i12d l ,i #l
~ i !, ~A21!

m l111 i52m l112 i , i51,...,l .

We also need the scalar productsr•mi andm i•m i . Using the form~A20! and ~A11!, we can
easily find

m i
251, i51,...,2l11, iÞ l11,

m l11
2 50,

r•m i5
1
2 @2l2~2i21!#, i51,...,l , ~A22!

r•m l1150,

r•m l111 i52 1
2 ~2i21!, i51,...,l .

The action of the Weyl reflections on the fundamental weightsl( i ) follows from ~A14!:
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s1~x!5~2x1 ,x21x1 ,x3 ,...,xl !,

s i~x!5~x1 ,...,xi211xi ,2xi ,xi1xi11 ,...,xl !, i51,...,l22,

s l21~x!5~x1 ,...,xl23 ,xl221xl21 ,2xl21 ,xl12xl21!,
~A23!

s l~x!5~x1 ,...,xl22 ,xl211xl ,2xl !.

3. Fundamental representation of SO(2 l )

In this section we present the results concerning the fundamental representation ofDl . It is
associated to the highest weightL5l~1!5~1,0,...,0!, and the corresponding weight space is

Ml~1!5$m i ;1< i<2l %, ~A24!

where

m15l~1!5~1,0,...,0!,

m j5m j212a~ j21!5~0,...,21
j

,1,0,...,0!, j51,...,l22,

m l215m l222a~ l22!5~0,...,0,21,1,1!, ~A25!

m l5m l212a~ l21!5~0,...,0,21,1!,

m l1 i52m l112 i , i51,...,l .

We can write these weights as follows:

m j5(
i51

l

@2d j21,i1d j ,i #l
~ i !, j51,...,l jÞ l21,

m l215@2d l22,i1d l21,i1d l ,i #l
~ i !, ~A26!

m l1 i52m l112 i , i51,...,l .

We also need the scalar productsr•mi andm i•m i . Using the form~A26! and~A10!, we easily
find

m i
251, i51,...,2l ,

r•m i5 l2 i , i51,...,l , ~A27!

r•m l1 i52~ i21!, i51,...,l .

The action of the Weyl reflections on the fundamental weightsli follows from ~A14!:

s1~x!5~2x1 ,x21x1 ,x3 ,...,xl !,

s i~x!5~x1 ,...,xi211xi ,2xi ,xi1xi11 ,...,xl !, i51,...,l23,

s l22~x!5~x1 ,...,xl24 ,xl231xl22 ,2xl22 ,xl211xl22 ,xl1xl22!, ~A28!
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s l21~x!5~x1 ,...,xl23 ,xl221xl21 ,2xl21 ,xl !,

s l~x!5~x1 ,...,xl23 ,xl221xl ,xl21 ,2xl !.

4. Theta functions of level s

The theta functions of levels ~s being an arbitrary positive integer! play a fundamental role in
the construction of the Hilbert space presented in Sec. II. They are defined as follows:25

Qs,p~a,t!5 (
nPLR

expH 2p i ts

c2 S n1
p

sD
2

12p isS n1
p

sD •aJ , ~A29!

whereLR stands for the long root lattice. These functions are well defined for Imt.0, which
makes the sum convergent. We will consider the case wherep belongs to the weight latticeLW .

The Theta functions in~A29! satisfy some important properties.32 The first one, which follows
trivially from its definition ~A29! is the following: a displacement ofp by a vector insLR does
not change~A29!,

Qs,p1sa~a,t!5Qs,p~a,t!, aPLR . ~A30!

This shows thatp in Qs,p(a,t) lives in the domainpPLW/sLR . Another important property is
the following. Considerm andn two vectors inLR ,m,nPLR . Then

Qs,pS a1
2~m1nt! i

t

c2 D 5e2p ist@~n•n!/c2#22p isn•aQs,p~a,t!. ~A31!

Of particular interest in our analysis are the Weyl antisymmetric combinations of Theta functions
of level s. Let us define them as

Qs,p
A ~a,t!5 (

wPW
e~w!Qs,w~p!~a,t!, ~A32!

wheree(w) is the signature of the permutation corresponding the Weyl group elementw. These
functions satisfy

Qs,p
A ~a,t!5e~w!Qs,w~p!

A ~a,t!, ~A33!

so they are Weyl antisymmetric. This property implies some relations between the antisymme-
trized theta functions of levels. Finally, we recall the behavior of the theta functions under
modular transformations. The modular group is generated by the transformationS,

t→2
1

t
, a→

a

t
, ~A34!

and the transformationT,

t→t11, a→a. ~A35!

The theta functions of levels transform under them as

Qs,pS at , 21

t D 5SVol LR*

Vol LR
D 1/2S t

isD
l/2

e~ ips/t!a2c2 (
qPLW /sLR

e24p i @~p•q!/sc2#Qs,q~a,t!,

~A36!
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and

Qs,p~a,t11!5e2p i ~p2/sc2!Qs,p~a,t!. ~A37!

In ~A36!, Vol LR is the volume of the fundamental cell of the long root latticeLR , and
Vol LR* that of its dual lattice,LR* . The values of their quotient are

SVol LR*

Vol LR
D 1/25H N21/2, SU~N!,

1
2 , SO~N!,

22N/4, Sp~N!.

~A38!
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We consider a class of sums involving Bessel functions summed over the square
array. The sums involve the length~j! of an arbitrary vector lying within the central
unit cell. We establish conditions under which the sums reduce to polynomial forms
in j ~possibly with a single logarithmic term in addition!, and show how these
polynomials may be conveniently evaluated. ©1996 American Institute of Phys-
ics. @S0022-2488~96!00403-X#

I. INTRODUCTION

In solving the problem of wave propagation through two-dimensional periodic media by the
extended Rayleigh method, one needs to evaluate lattice sums of the form

Sl
Y~k,k0!5 (

pÞ0
Yl~kRp!e

il wpeik0–Rp, ~1!

with lPZ, extending over nonzero array vectorsRp5p1e11p2e2, p5(p1 ,p2)PZ2. Here,e1 ande2
are fundamental translation vectors of the array and, in polar coordinates,Rp5(Rp ,wp). Also,Yl

are Bessel functions of the second kind,k0 is the Bloch momentum, andk is the wave number of
the propagating wave. The series in~1! are conditionally convergent, but, by means of Poisson
summation formula, we can derive a representation in terms of absolutely converging series over
the reciprocal array:1

Sl
Y~k,k0!Jl~kj!52Y0~kj!d l ,02 i l

4

A (
h

Jl~Qhj!

Qh
22k2

eil uh, ~2!

wherej is a vector in the central unit cell,Qh5Kh1k0 @in polar coordinatesQh5(Qh ,uh)# and
Kh , hPZ2, are the reciprocal array vectors. Also,A is the area of the unit cell in the direct array,
d l ,0 is the Kronecker symbol, andJl represents Bessel functions of the first kind. The series in~2!
converge as 1/Qh

2.5 but, for numerical evaluations, we may accelerate the convergence by inte-
grating with respect toj.1

A specific set of lattice sums is involved in the study of the behavior of the physical system in
the quasistatic limit, whenk5ak01bk0

2 andk0→0. The constanta defines the dynamic refrac-
tive index of the periodic media,2,3 while b represents the second-order correction. Such calcula-
tions involve lattice sums~Schlömilch double series! having the form

S l ,m,n~j!5 (
hÞ0

Jl~Khj!

Kh
n eimch, ~3!

with l ,m50,61,62,...,n52,3,...,and, in polar coordinates,Kh5(Kh ,ch). Note that, for nega-
tive indices, the lattice sums~3! satisfy the relations

S 2 l ,m,n~j!5~21! lS l ,m,n~j!, ~4!
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S l ,2m,n~j!5S l ,m,n* ~j!, ~5!

where the asterisk denotes complex conjugation.
The purpose of this paper is to present the cases when exact analytic expressions can be

obtained for the lattice sums~3!. Note that we will restrict our attention to vectorsj lying in the
central unit cell, with 0,j,d @with d5min ~ue1u,ue2u!#.

It is remarkable that polynomial formulas can be established for a wide class of double sums
of the form~3!, which appear not to have been considered previously. Indeed, standard tabulations
of integrals and sums4–8 have remarkably few results concerning double series. We hope the
results we derive here will be of use to some, and the methods used may be generalized by others
to deal with other classes of functions. We suspect similar results will be able to be found for
double sums of bases of functions involved in the solution of the Helmholtz equation~e.g., for
Mathieu functions!.

II. THE SQUARE ARRAY

For simplicity, we will consider a square array but the results can be easily extended to a
rectangular array. Thus, the array vectors have the form

Rp5d~p1 ,p2!, p5~p1 ,p2!PZ2, ~6!

with d being the array constant, and the vectorj, which is restricted to the central unit cell, being
represented as

j5d~x,y!, 0<x,y,1. ~7!

Also, the vectors of the reciprocal array are

Kh5
2p

d
~h1 ,h2!, h5~h1 ,h2!PZ2. ~8!

The symmetry of the square array implies that the lattice sums~3! vanish, unlessm is zero or
a multiple of four, so that we have to evaluate lattice sums of the form

Sl ,4m,n~j!5
1

dn (
hÞ0

Jl~Khj!

Kh
n ei4mch, ~9!

with l ,m50,1,2,..., n52,3,.... Here, we have introduced the factor 1/dn to compensate the
dimension ofKh , making the lattice sums~9! pure numbers. Forn50 or 1, the series in~9! has
a meaning only in the context of the theory of generalized functions, and distributive behavior can
occur wheneverj coincides with an array pointRp . Also, form50 andn52, all the series in~9!
are nonanalytic functions ofj, at j50.

III. THE CASE m50

A. Recurrence relations

Now, we make use of the integrals:9,6

E
0

a

xl11Jl~bx!dx5al11
Jl11~ba!

b
, ~10!

E
0

a

x2 l11Jl~bx!dx5
bl22

2l21G~ l !
2a2 l11

Jl21~ba!

b
, ~11!
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to obtain the lattice sums of types (l11,0,n11) and (l21,0,n11), from the lattice sums of type
( l ,0,n). Thus, we have

E
0

j

h l11Sl ,0,n~h!dh5dj l11 Sl11,0,n11~j!, ~12!

E
0

j

h2 l11Sl ,0,n~h!dh5
d2 l12

2l21G~ l ! (
hÞ0

1

~Khd!n2 l122dj2 l11 Sl21,0,n11~j!, n2 l.0.

~13!

For a square array, the first series on the right-hand side of~13! takes the form10,11

(
hÞ0

1

~Khd!s
5

4

~2p!s F (
h1 ,h251

`
1

~h1
21h2

2!s/2
1 (

p51

`
1

psG5
4

~2p!s
zS s2DbS s2D , ~14!

wherez(s) is the Riemann zeta function and

b~s!5 (
n50

`

~21!n~2n11!2s. ~15!

Actually, ~12! and~13! act as raising and lowering operators with respect tol , respectively, at
the same time increasingn. The inverse of these operators, decreasingn, may be obtained on the
basis of the formulas9

F1b xl11Jl11~bx!G85xl11Jl~bx!, ~16!

F1b x2 l11Jl21~bx!G852x2 l11Jl~bx!, ~17!

where the prime denotes a differentiation with respect tox. Consequently, with the definition~9!
we have

Sl21,0,n21~j!5dj2 l@j lSl ,0,n~j!#8, ~18!

Sl11,0,n21~j!52dj l@j2 lSl ,0,n~j!#8. ~19!

Another recurrence relation between the lattice sums may be derived by using the recurrence
relations satisfied by the Bessel functions:6

2l

z
Jl~z!5Jl21~z!1Jl11~z!. ~20!

Consequently, we obtain

Sl12,0,n~j!5~ l11!S 2dj DSl11,0,n11~j!2Sl ,0,n~j!. ~21!
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B. l1n5even

First, we will consider the lowest-order lattice sum in the set

S0,0,2~j!5
1

d2 (
hÞ0

J0~Khj!

Kh
2 . ~22!

To evaluate the lattice sum~22! we use the formula12

1

d2 (
hÞ0

eiKh–j

Kh
2 5S j

2dD
2

@11cos~2w!#2
1

6p
ln 22

1

2p
ln U u1~pa,q!

@u18~0,q!#1/3
U, ~23!

wherej5d(x,y)5(j,w), a5y1 ix, q5exp~2p!. Also, u1(z,q) andu18(z,q) represent the theta
function and its first derivative with respect toz.13 On the left-hand side of~23! we expand the
exponential in terms of Bessel functions:6

eiKh–j5 (
l52`

`

i lJl~Khj!eil ~w2ch!. ~24!

Then, we expand in Taylor series the logarithm of the theta function:

lnuu1~pa,q!u5 lnS j

2dD1 ln@2pu18~0,q!#1p
u19~0,q!

u18~0,q!
S j

2dD sin w1••• . ~25!

By substituting the series expansions~24! and~25! in ~23!, and equating the terms independent of
w, we obtain

S0,0,2~j!52
1

2p
lnS j

2dD1v01S j

2dD
2

, ~26!

where

v052
1

6p
@3 ln p14 ln 212 ln u18~0,q!#520.318 895 593 319 827. ~27!

The recurrence relations~12!, ~13!, ~18!, ~19!, and~21! allow us to obtain any lattice sums of
the type (l ,0,n), with l1n5even, from the lattice sum of the type~0,0,2!. For example, starting
with ~26! and using~12!, we obtain

S1,0,3~j!52
1

2p S j

2dD lnS j

2dD1S v01
1

4p D S j

2dD1
1

2 S j

2dD
3

. ~28!

By applying a second time~12!, we have

S2,0,4~j!52
1

4p S j

2dD
2

lnS j

2dD1
1

2 S v01
3

8p D S j

2dD
2

1
1

6 S j

2dD
4

. ~29!

Now, by applying~13! on ~28!, we obtain the equation

S0,0,4~j!5
1

2p S j

2dD
2

lnS j

2dD1
l

24p22S v01
1

2p D S j

2dD
2

2
1

4 S j

2dD
4

, ~30!

where we have used the formulas6
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z~2!5p2/6, b~2!5l, ~31!

with l50.915 965 594 177 219 denoting the Catalan constant. Also, with~26! and~28!, by means
of the recurrence relation~21!, we are led to the formula

S2,0,2~j!5
1

4p
2
1

2 S j

2dD
2

. ~32!

@Note that we obtain the same result by acting with~19! on ~28!.# From ~32!, by using~12!, we
have

S3,0,3~j!5
1

8p S j

2dD2
1

6 S j

2dD
3

. ~33!

Note that we may continue indefinitely this procedure~see Fig. 1!.
As a numerical verification of the formulas~26! and ~28!–~33!, we have compared their

results with numerically evaluated partial sums of high orders in the corresponding definition~9!,
and have obtained a relative error less than 1025. In the numerical evaluations, we used a square
array of 1001 by 1001 points in the reciprocal array, so that the relative errors are, in fact
truncation errors. Also, Fig. 2 compares the result of~32! with direct summation. Note the nonzero
value forj50: the sum, as defined by~9!, is actually a nonanalytic function ofj at the pointj50.

C. l1n5odd

For l.n we may include the term forh50 in the series~9! without changing its value, and
we may apply the Poisson summation formula:

(
h

f ~Kh!5S d

2p D 2(
p
F~Rp!, ~34!

where

F~Rp!5E f ~k!e2 ik–Rp dk. ~35!

FIG. 1. The recurrence relations between lattice sums of the type (l ,0,n) with l1n5even. The equation numbers on the
first four arrows identify the relevant recurrence relation. The same set of recurrence relations apply to the lattice sums with
l1n5odd.
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From ~9! and ~35! we are led to a particular form of the Weber–Schafheitlin integral,6

F~Rp!5
2p

dn E
0

` Jl~kj!J0~kRp!

kn21 dk. ~36!

The integral converges forl2n.22, n.0, and 0,j,Rp , and may be expressed as a hyper-
geometric function:6

F~Rp!5
j lpG@~ l2n12!/2#

2n22Rp
l2n12 dnG~ l11!G@~n2 l !/2# 2F1S l2n12

2
,
l2n12

2
; l11;S j

Rp
D 2D . ~37!

In our case we havel.n>2 and 0,j,Rp , ;pÞ0, so that the conditions of convergence are
satisfied. Forp50 we haveR050, j.0, and the integral in~36! becomes

F~0!5
2p

dn E
0

` Jl~kj!

kn21 dk, ~38!

with n>2 andl.n, so that6

F~0!5
2p

dn
jn22

22n11G@~ l2n12!/2#

G@~ l1n!/2#
. ~39!

Consequently, from~34! we have

Sl ,0,n~j!5
22n

p

G@~ l2n12!/2#

G@~ l1n!/2# S j

dD n22

1
22n

p (
pÞ0

j ld2n12G@~ l2n12!/2#

Rp
l2n12l !G@~n2 l !/2# 2F1S l2n12

2
,
l2n12

2
; l11;

j2

Rp
2D . ~40!

The hypergeometric function has a series expansion of the form6

FIG. 2. The lattice sumS2,0,2(j) obtained by direct summation~—! over the reciprocal array with 1001 by 1001 points, and
from the analytic formula~32! ~---!, for small values ofj/d. Note that, as the direct summation region is enlarged, the
region of numerical instability~here 0,j,0.005d! contracts.
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2F1~a,b;c;z!5
G~c!

G~a!G~b! (
k50

`
G~a1k!G~b1k!

G~c1k!

zk

k!
. ~41!

In our casea1b2c52n11,0, so that the hypergeometric series in~40! is absolutely conver-
gent. The series overp contains terms of the form 1/Rp

2k1 l2n12, with exponents 2k1 l2n12>3,
so that these series are also absolutely convergent, and we may change the order of summation in
~40!. Thus, we have10,11

(
pÞ0

1

Rp
s 5

4

ds F (
p1 ,p251

`
1

~p1
21p2

2!s/2
1 (

k51

`
1

ksG5
4

ds
zS s2DbS s2D , ~42!

and

Sl ,0,n~j!5
22nG~q!

pG~q1n21! S j

dD
n22

1
22n12~21! l2n

p2 (
k50

`
@G~k1q!#2

k! ~k1 l !!
z~k1q!b~k1q!S j

dD
2k1 l

,

~43!

whereq5( l2n)/211. Therefore, in the casel1n5odd, the lattice sums~9! become power series
in j.

For example, withl53 andn52, the lattice sum may be expressed in the form

S3,0,2~j!5
1

6p
2

1

p2 (
k50

` @G~k1 3
2!#

2

k! ~k13!!
zS k1

3

2DbS k1
3

2D S j

dD
2k13

. ~44!

A direct comparison of the formula~44! with numerically evaluated partial sums of high orders
~square array of 2001 by 2001 points in the reciprocal array! from the corresponding definition~9!
shows a relative error less than 1025, for 0,j,d.

The equation~43! is valid for l.n but, starting with~44!, by means of the recurrence relations
~12!, ~13!, ~18!, ~19!, and~21!, we may obtain any lattice sum withl1n5odd.

IV. THE CASE mÞ0

In this case, the recurrence relations~12!, ~18!, ~19!, and ~21! are still valid. Due to the
dependence of the lattice sums onch , the recurrence relation~13! takes the form

E
0

j

h2 l11Sl ,m,n~h!dh5
d2 l12

2l21G~ l ! (
hÞ0

eimch

~Khd!n2 l122dj2 l11 Sl21,m,n11~j!, n2 l>0.

~45!

For a square array, the series in~45! may be written as14

(
hÞ0

eimch

~Khd!s
5

1

~2p!s (
h1 ,h2Þ0,0

eimch

~h1
21h2

2!s/2
5

1

~2p!s Fss
~m!2

p

2
ds,2G , ~46!

wherech5arctan (h2/h1). Actually, in our case, the lattice sums~46! are identical with the lattice
sums over the direct array. They are nonzero ifm is a multiple of four, except fors52, when the
corresponding lattice sums are conditionally convergent. Highly accurate numerical values ofsm

(m)

have been given by many authors.14–19 Also, the lattice sumssm22
(m) have been evaluated in

connection with problems of elastostatics.14,17–19With these notations, from~45! we obtain the
recurrence relation,
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E
0

j

h2 l11Sl ,m,n~h!dh5
d2 l12

2l21G~ l !~2p!n2 l12 Fsn2 l12
~m! 2

p

2
d l ,nG2dj2 l11 Sl21,m,n11~j!,

n2 l>0. ~47!

Now, for l>n>2 andm.0, we may obtain an explicit dependence onj of the lattice sums
~9! by means of the Poisson summation formula~34!. Thus, we have

Sl ,4m,n~j!5(
h

Jl~Khj!

~Khd!n
ei4mch2

1

l ! S j

2dD
l

d l ,n5S d

2p D 2(
p
F~Rp!2

1

l ! S j

2dD
l

d l ,n , ~48!

where we have considered that the argument ofK050 is c050. Also,F~Rp! is given by~35!:

F~Rp!5
2p

dn
ei4mwpE

0

` Jl~kj!J4m~kRp!

kn21 dk. ~49!

Here, we have used the polar coordinates for the vectors in the direct array,Rp5(Rp ,wp). The
Weber–Schafheitlin integral in~49! converges forl14m2n12.0 andn.0. It vanishes for
Rp50 and may be expressed as an absolutely converging hypergeometric series:6

j lG@~ l2n14m12!/2#

2n21Rp
l2n12l !G@~4m2 l1n!/2# 2F1S l2n14m12

2
,
l2n24m12

2
; l11;

j2

Rp
2D , ~50!

for 0,j,Rp . Consequently,~48! becomes

Sl ,4m,n~j!52
1

l ! S j

2dD ld l ,n1 (
pÞ0

j ld2n12ei4mwpG@~ l2n14m12!/2#

2npRp
l2n12l !G@~4m2 l1n!/2#

32F1S l2n14m12

2
,
l2n24m12

2
; l11;

j2

Rp
2D . ~51!

The hypergeometric series reduces to a polynomial of degreeq if l24m2n12522q, with
q50,1,2,3,... . This condition also impliesl2n5even. In these cases the lattice sum may be
represented as a polynomial of degree 2q1 l in j:

Sl ,4m,n~j!5
22nG~4m2q!

pG~11q! (
s50

q
~4m2q!s~2q!s

s! ~s1 l !!
s2s1 l2n12

~4m! S j

dD
2s1 l

2
1

l ! S j

2dD
l

d l ,n , ~52!

where (a)051, (a)s5a(a11)•••(a1s21) represents Pochhammer’s symbol. Otherwise, we
obtain a power series inj:

Sl ,4m,n~j!5
22n

pG~12w14m!G~w24m! (
s50

`
G~w1s!G~w24m1s!

s! ~s1 l !!

3s2s1 l2n12
~4m! S j

dD
2s1 l

2
1

l ! S j

2dD
l

d l ,n , ~53!

with w5( l2n)/212m11.
The simplest analytic form of the lattice sums, formÞ0, appears in the casel54m andn52,

whenq50 and, from~52!, we have
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S4m,4m,2~j!5
s4m

~4m!

16pm S j

dD
4m

. ~54!

A characteristic lattice sum is obtained forl5n52 andm.0:

S2,4m,2~j!5
m

2p (
s50

2m21
~2m11!s~22m11!s

s! ~s12!!
s2s12

~4m! S j

dD
2s12

2
1

8 S j

dD
2

. ~55!

The importance of this lattice sum resides in the fact that, for everym.0, we have a table of the
form displayed in Fig. 3 and, starting with~55!, by means of the recurrence relations~12!, ~18!,
~19!, ~21!, and~47!, we may obtain any lattice sum in the set.

For example, ifm51, we have

S2,4,2~j!5
1

p Fs2
~4!2

p

2 G S j

2dD
2

2
4

p
s4

~4!S j

2dD
4

, ~56!

where14,18,19

s2
~4!54.078 451 161 1614, s4

~4!53.151 212 002 153 9. ~57!

From ~56!, by means of recurrence relations~47! and ~12! we obtain, respectively,

S1,4,3~j!5
1

~2p!2
s2

~4!̃S j

2dD2
1

p
s2

~4!̃S j

2dD
3

1
2

p
s4

~4!S j

2dD
5

, ~58!

S3,4,3~j!5
1

3p
s2

~4!̃S j

2dD
3

2
1

p
s4

~4!S j

2dD
5

, ~59!

with s2
(4)̃ 5 s2

(4) 2 p/2. Then, by applying~12!, ~18!, and~47! to ~58!, we are led to expressions for
other lattice sums:

S2,4,4~j!5
1

8p2 s2
~4!̃S j

2dD
2

2
1

3p
s2

~4!̃S j

2dD
4

1
1

2p
s4

~4!S j

2dD
6

, ~60!

FIG. 3. The recurrence relations between lattice sums of the type (l ,4m,n) with m51 and l1n5even. The equation
numbers on the arrows identify the relevant recurrence relation. The same set of recurrence relations apply to the lattice
sumsl1n5odd.
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S0,4,2~j!5
1

~2p!2
s2

~4!̃2
2

p
s2

~4!̃S j

2dD
2

1
6

p
s4

~4!S j

2dD
4

, ~61!

S0,4,4~j!5
1

~2p!4
s4

~4!2
1

~2p!2
s2

~4!̃S j

2dD
2

1
1

2p
s2

~4!̃S j

2dD
4

2
2

3p
s4

~4!S j

2dD
6

. ~62!

Also, from ~62! by using~12!, we have

S1,4,5~j!5
1

~2p!4
s4

~4!S j

2dD2
1

8p2 s2
~4!̃S j

2dD
3

1
1

6p
s2

~4!̃S j

2dD
5

2
1

6p
s4

~4!S j

2dD
7

. ~63!

The series over the reciprocal array in~63! is rapidly convergent. By evaluating it at some
different values ofj, we may obtain, if we need them, numerical values for the lattice sums

s2
(4)̃ ands4

~4! .

V. CONCLUSIONS

We have been unable to find any references in the standard compilations of sums to the results
presented here. Given the simplicity of the expressions we have derived, there is motivation for
further work on similar sums over arrays and lattices. It would also be of interest to study in more
detail the distributive nature of these sums, in order to remove the restriction 0,j,d on the value
of this length parameter.
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We find a one-parameter family of quadratic Poisson structures onR43SL(2,C)
which satisfies the properties:~a! that it reduces to the standard Poincare´ algebra for
a particular limiting value of the parameter~which we associate with the ‘‘canoni-
cal limit’’ !, as well as,~b! that it is preserved under the Lie–Poisson action of the
Lorentz group~and the Lie–Poisson transformations reduce to canonical ones in
the canonical limit!. As with the Poincare´ algebra, our deformed Poincare´ algebra
has two Casimir functions which correspond to ‘‘mass’’ and ‘‘spin.’’ The constant
mass and spin surfaces inR43SL(2,C) define symplectic leaves which we param-
etrize with space–time coordinates, momenta, and spin. We thereby obtain realiza-
tions of the deformed Poincare´ algebra for both spinning and spinless particles. The
formalism can be applied for finding a one-parameter family of canonically in-
equivalent descriptions of the photon. ©1996 American Institute of Physics.
@S0022-2488~96!00604-X#

I. INTRODUCTION

A number of authors have examined deformations of the Poincare´ algebra in quantum theory,
in addition to investigating the effects of deforming the usual symmetries of space–time.1–7 Of
course, there exists no unique procedure for carrying out such deformations and certainly one
cannot apply physical insight since effects of such deformations are not expected to be relevant
away from the Planck scale. The proposals which have been made so far are generally within the
mathematical framework of Hopf algebras, and they often rely upon making a contraction of the
quantum de Sitter algebra.

Another approach, which is the one that we shall follow here, is to deform the Poincare´
algebra already at the classical level.8 Then the deformed algebra is to be realized in terms of
Poisson brackets rather than commutation relations, and the construction should be made within
the framework of Poisson–Lie groups in order to later make connection with Hopf algebras in the
quantum theory.

The classical analysis is considerably simpler than its quantum counterpart for a number of
reasons. One advantage, of course, is that the elements of the algebra, i.e., the classical observ-
ables, are commuting variables. In addition to this, to check the consistency of the algebra we
essentially only need to verify the Jacobi identity~although this may not always be so easy!.
Furthermore, in the classical theory symmetries are associated with ordinary Lie groups, and not
quantum groups.

With regard to the group of classical symmetries, which we shall denote byS , we shall here
only be concerned with the Lorentz group@or actually, SL(2,C)#. To it we attach a Poisson
structure which is consistent with left or right group multiplication, thereby makingS a Poisson–
Lie group. Such Poisson structures are well known. Our choice of Poisson brackets$ , %S is such
that it corresponds to the classical limit of the defining relations for SLq(2,C).

9

With regard to the space of classical observables, which we denote byO , we shall examine a

0022-2488/96/37(4)/2053/18/$10.00
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one-parameter family of algebras defined on the Poincare´ group, or more precisely on
R43SL(2,C). These algebras are chosen to be preserved under the Lie–Poisson action ofS .
Furthermore, they reduce to the Poincare´ algebra for a particular limiting value of the parameter.
We associate the limiting value with the ‘‘canonical limit.’’ This is becauseS has trivial Poisson
brackets in the limit, i.e.,$ , %S→0, and hence the Lie–Poisson action ofS on O reduces to the
canonical one.

For all values of the deformation parameter,S will act onO in the standard way. That is, in
O we can identify ‘‘momentum’’ and ‘‘angular momentum’’ variables; the momentum transforms
as a Lorentz vector, while angular momentum transforms according to the adjoint representation
of SL(2,C). This defines a map,s :S 3O→O . For us,s must be a Poisson map, which means that
if f 1 and f 2 are functions onO , then

$ f 1 , f 2%O +s5$ f 1+s, f 2+s%O3S , ~1!

where the product Poisson structure is assumed onO3S . ~Simply put, this means that the
symmetry variables have zero Poisson brackets with the classical observables.!

Our deformed Poincare´ algebra onO can be completely specified by four quadratic Poisson
bracket relations$ , %O which we give below. The brackets are evaluated between variables, i.e.,
‘‘momenta’’ and ‘‘angular momenta,’’ spanningR43SL(2,C). The momenta will be expressed in
terms of a 232 Hermitean matrixp̃, while the angular momenta are contained in a 232 complex
unimodular matrixg. The four Poisson bracket relations can be written in terms of a classical
r -matrix ~and its Hermitean conjugater †!. Here r is assumed to satisfy the modified classical
Yang–Baxter equations. Using tensor product notation, the four relations are as follows:

$ p̃
1
,p̃
2
%5r p̃

1
p̃
2

1 p̃
1
p̃
2
r †2 p̃

2
r †p̃

1
2 p̃

1
r p̃
2
, ~2!

$g
1
,g
2
%5r †g

1
g
2

1g
1

g
2
r2g

2
rg
1

2g
1
r †g

2
, ~3!

$g
1
,ḡ
2
%5rg

1
ḡ
2

1g
1

ḡ
2
r2ḡ

2
rg
1

2g
1
r ḡ
2
, ~4!

$ p̃
1
,g
2
%5r †p̃

1
g
2

1 p̃
1

g
2
r2g

2
r †p̃

1
2 p̃

1
r †g

2
, ~5!

whereḡ5g†21. The 1 and 2 labels refer to two separate vector spaces, withp̃
1

5 p̃ ^ 1, p̃
2

5 1

^ p̃, g
1

5 g ^ 1, andg
2

5 1 ^ g, 1 being the unit operator acting on the vector spaces. Herer acts

nontrivially on both vector spaces. We shall utilize the following 434 matrix realization forr :

r5
il

2 S 1 21

4 21

1

D , ~6!

l being a real parameter.
Equations~2!–~5! thus give a one-parameter family of quadratic Poisson structures onO . We

outline some of their properties. Equations~2! and ~3! can be shown to define skew symmetric
brackets, the former being invariant under Hermitean conjugation. Jacobi identities involvingp̃, g,
and ḡ are satisfied in part due to ther -matrix satisfying the modified classical Yang–Baxter
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equations.~We, however, found it more convenient to use algebraic manipulation packages to
check them.! It can be verified that det~g! has vanishing brackets with all observables and hence
Eqs.~2!–~5! are consistent with the unimodularity condition.

O , unlikeS , does not define a Poisson–Lie group. In Sec. II, we shall show, however, that the
quadratic algebra onO defined by Eqs.~2!–~5! is preserved under the Lie–Poisson action ofS .
There we shall also show that the algebra is a deformation of the standard Poincare´ algebra, the
latter being recovered whenl→0. In that limit ~the canonical limit!, the Lie–Poisson transforma-
tions reduce to canonical transformations. Like with the Poincare´ algebra, the algebra described by
Eqs.~2!–~5! has two Casimir invariants. One of the Casimirs is the square of the momenta, while
the other is the square of a vector corresponding to the Pauli–Lubanski vector. We can therefore
associate the two classical Casimir functions with ‘‘mass’’ and ‘‘spin.’’

In Secs. III and IV, we parametrize the symplectic leaves ofO with variables which we
associate with space–time coordinatesx, momentap̃, and spings . We give a realization of the
algebra defined by~2!–~5! in terms ofx and p̃ in Sec. III. The Poisson structure forx and p̃ was
already written down in Ref. 10, and it too was shown to be preserved under the Lie–Poisson
action of S . These Poisson brackets forx and p̃ were also shown to be a deformation of the
canonical Poisson brackets for a relativistic particle, i.e.,$xm ,pn%5hmn , h5diag ~21,1,1,1!. In
Sec. III ~and in the Appendix!, we shall realize the algebra forg in terms of space–time coordi-
natesx and momentap̃. The resulting expression forg is a deformation of the usual expression for
the orbital angular momentum of a relativistic particlej mn5xmpn2xnpm . Only hereg is an
infinite series inx and p̃ ~andl!. We shall show that the deformed Pauli–Lubanski vector is zero
for this realization~for any value ofl!, and hence we conclude that we have a description of a
spinless particle. We also remark that if the classical Hamiltonian for the system is taken to be the
momentum squared~i.e., det p̃! times a Lagrange multiplier, then the resulting dynamics is
identical to that of a free massless particle~for any value ofl!. We thus arrive at a one-parameter
family of canonically inequivalent descriptions for the photon. Upon quantization, the resulting
photon states are expected to transform under the action of the quantum Lorentz group SLq(2,C).

In Sec. IV, we show how the algebra~2!–~5! can be realized for a spinning particle. Thus here
the Pauli–Lubanski vector is not zero. Unlike in the standard Hamiltonian description, we find that
the spin associated with a particle must have nonvanishing Poisson brackets with both the space–
time coordinates and the momenta. This is a consequence of the result thatO , unlikeS , is not a
Poisson–Lie group. When the mass shell constraint is taken for the Hamiltonian, the classical spin
is found to have a trivial dynamics, i.e., there is no spin precession, and this is just as in the
standard theory.11

In Sec. V, we give a preliminary discussion of the quantization of the Poisson bracket algebra
~2!–~5!, while concluding remarks are made in Sec. VI. The issue of quantization will be dis-
cussed more fully in a later article.

II. THE DEFORMED POINCARÉ ALGEBRA

Here we will examine the two distinct Poisson manifoldsS andO , which are associated
respectively with the space of symmetries and the space of classical observables. As stated in the
Introduction, we shall identifyS with the six-dimensional Lorentz group@or more precisely, its
covering group SL(2,C)#, having Poisson brackets$ , %S corresponding to that of a Poisson–Lie
group.9,10 O will be assumed to beR43SL(2,C) with Poisson brackets$ , %O , which are essen-
tially given by Eqs.~2!–~5!.

In Sec. II A, we review the Poisson structure onS ~Refs. 9 and 10!, while we elaborate on the
Poisson brackets~2!–~5! in Sec. II B. ~For simplicity of notation we shall drop the subscriptsS
andO on the Poisson brackets.! Finally, in Sec. II C we write down the classical Casimir functions
on O .
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J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



A. Symmetries

Let g be a 232 complex unimodular matrix which we use to parametrize the space of
symmetriesS . ForS to be a Poisson–Lie group its Poisson brackets must be compatible with left
and right group multiplication. The requirement of compatibility is satisfied for the set of brackets,

$g
1
,g
2
%5@r , g

1
g
2
#, ~7!

where we again utilize tensor product notation, withg
1

5 g ^ 1, g
2

5 1 ^ g and ther -matrix defined

in Eq. ~6!. Since ther -matrix is proportional tol, the group elements have zero Poisson brackets
in the canonical limit. The Jacobi identity holds due to ther -matrix satisfying the modified
classical Yang–Baxter equation. It can also be checked from Eq.~7! that det(g) has zero Poisson
brackets with all components ofg and hence we may consistently set det(g)51. ~The Leibniz
identity for the Poisson brackets is assumed to be valid here and throughout this article.!

The transformations of the observables involveg as well as its Hermitean conjugate. There-
fore in addition to Eq.~7! we will need to know the Poisson brackets forg† or ḡ5(g†)21. For this
we demand that the Poisson structure forg and g† is consistent with complex conjugation,
antisymmetry, and the Jacobi identity. All three of these conditions are met for the following set
of relations:10

$g
1
,ḡ
2
%5@r , g

1
ḡ
2
#, ~8!

$ḡ
1
,g
2
%5@r †, ḡ

1
g
2
#, ~9!

$ḡ
1
,ḡ
2
%5@r , ḡ

1
ḡ
2
#, ~10!

in addition to~7!. The Poisson brackets~7! and ~8!–~10! coincide with the classical limit of the
SLq(2,C) commutation relations given in Refs. 7 and 9.

We note that Eqs.~7! and~10! can be rewritten withr replaced byr †. This is becauser2r †

serves as an adjoint invariant for SL(2,C). More specifically, using the matrix representation~6!
for r we have the identity

r2r †5 il~2P21!, ~11!

where1 is the unit operator~now acting on the entire tensor product space! andP is the permu-
tation operator, i.e.,P switches the two vector spaces. Thus, for example,g

1
P 5 Pg

2
andg

2
P

5Pg
1
.

B. Observables

Here we discuss the Poisson structure onO . Following Eqs.~2!–~5! it is expressed in terms of
the ten observables contained inp̃ andg. The former corresponds to the momenta and it trans-
forms as a Lorentz vector, i.e., it is associated with the~ 12,

1
2! representation of the Lorentz group.

The latter corresponds to the angular momenta and it transforms as the~1,0! and ~0,1! represen-
tations. We shall show that the Poisson structure~2!–~5! is a deformation of the standard Poincare´
algebra and that it is preserved under the Lie–Poisson action of the Lorentz group.

We first discuss the Poisson brackets~2! for the momentap̃. Actually, these brackets were
already given in Ref. 10. There we wrotep̃ as a 232 Hermitean matrix
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p̃5S 2p01p3 p12 ip2

p11 ip2 2p02p3
D , ~12!

pm being the space–time components. Under a Lorentz transformation

p̃→ p̃85ḡp̃g21. ~13!

The Poisson structure forp̃ is required to be compatible with such transformations, i.e., the
Poisson brackets forp̃ should be preserved upon assuming the Poisson brackets~7! and~8!–~10!
for g and ḡ. ~As stated earlier, we assume the product Poisson structure onO3S , meaning that
g and ḡ have zero Poisson brackets with all observables.! The Poisson brackets are also required
to be skewsymmetric, invariant under Hermitean conjugation and satisfy the Jacobi identity.

A solution to all of the above requirements is Eq.~2!. It is easy to check that Eq.~2! is
compatible with Lorentz transformations,

$ p̃
1
,p̃
2
%→$ p̃

1
8,p̃

2
8%5$ḡ

1
p̃
1
g
1

21,ḡ
2
p̃
2
g
2

21%5r p̃
1

8p̃
2

81 p̃
1

8p̃
2

8r †2 p̃
2

8r †p̃
1

82 p̃
1

8r p̃
2

8. ~14!

Since ther -matrix is proportional tol, all of the brackets between the momentum components
vanish in the limitl→0 and we recover the canonical result. The skewsymmetry of the bracket
and invariance under Hermitean conjugation is also easily checked.

In terms of the space–time components ofp̃, Eq. ~2! can be written as

$pi ,pj%52le i jkpk~p01p3!,
~15!

$pi ,p0%50, i , j ,k51,2,3.

Thus the time componentp0 is in the center of the algebra. Also in the center is the magnitude of
spatial componentsApipi and consequently the invariant mass-squared, i.e.,pmpm5det(p̃). We
expect that analogous central elements appear in the quantum theory, indicating that simultaneous
measurements of the ‘‘energy,’’ the magnitude of the ‘‘momentum’’ and one of the spatial com-
ponentspi of the momentum are possible.4

We next take up the Poisson structure of the angular momenta. The angular momentaj can be
represented by a 232 complex traceless matrix. Actually, however, we find it more convenient to
deal with an exponentiation ofj which we denote byg5eil j . Like g, g is unimodular, i.e.,
det~g!51, and hence it is an SL(2,C) matrix. ~Unlike g, g will not span a Poisson–Lie group.!
Our space of classical observables is spanned byp̃ andg. It is thusR43SL(2,C).

Under Lorentz transformations,

g→g85ggg21. ~16!

The Poisson structure forg is required to be compatible with this transformation. It is also
required to be antisymmetric, consistent with the constraint det~g!51 and satisfy the Jacobi iden-
tity. A solution to these requirements is Eq.~3!. Under a Lorentz transformation,

$g
1
,g
2
%→$g

1
8,g

2
8%5$g

1
g
1
g
1

21,g
2

g
2
g
2

21%5r †g
1
8g
2
81g

1
8g
2
8r2g

2
8rg

1
82g

1
8r †g

2
8, ~17!

and hence Eq.~3! is preserved. From Eq.~3! it can be checked that det~g! has zero Poisson
brackets with all components ofg and hence we may consistently set det~g!51.
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In addition to Eq.~3!, we need to specify the Poisson brackets ofg† or ḡ5(g†)21. For this we
again demand that they be preserved under Lorentz transformations and that they are consistent
with the Jacobi identity. These conditions are met for Eq.~4!. By applying complex conjugation to
~3! and ~4! we obtain additional relations. They are

$ḡ
1
,ḡ
2
%5r ḡ

1
ḡ
2

1ḡ
1

ḡ
2
r †2ḡ

2
r †ḡ

1
2ḡ

1
r ḡ
2
, ~18!

$ḡ
1
,g
2
%5r †ḡ

1
g
2

1ḡ
1

g
2
r †2g

2
r †ḡ

1
2ḡ

1
r †g

2
. ~19!

The remaining Poisson brackets of the observables are between the momentap̃ and the
variablesg and ḡ. For these mixed brackets we find Eq.~5! along with its complex conjugate

$ p̃
1
,ḡ
2
%5r p̃

1
ḡ
2

1 p̃
1

ḡ
2
r2ḡ

2
r †p̃

1
2 p̃

1
r ḡ
2
. ~20!

Using Eqs.~4! and ~20!, we have checked that$det~g!,p̃%5$det~g!,ḡ%50 and therefore that these
Poisson brackets are consistent with the condition of unimodularity.

The Poisson structure of all ten observables is given by Eqs.~2!–~5! and ~19! and ~20!.
@Actually, we only need to specify Eqs.~2!–~5! as the remaining relations are obtained by con-
jugation.# We have used algebraic manipulation packages to verify that the Jacobi identity forp̃,
g, andḡ is satisfied.

We next show that the algebra generated byp̃, g, and ḡ is a deformation of the
standard Poincare´ algebra, the latter being recovered in the limitl→0. For this we substitute
g5eil j andḡ 5 eil j

†
into the Poisson bracket relations and expand aroundl50, keeping only the

lowest order contributions. As stated earlier, Eq.~2! gives

$ p̃
1
,p̃
2
%→0. ~21!

The lowest-order contributions to Eqs.~3! and ~4! are quadratic inl, yielding

$ j
1
, j
2
%→2P~ j

2
2 j

1
!, $ j

1
, j
2

†%→0, ~22!

where we used Eq.~11!. Lastly, from Eq.~5! we obtain

$ p̃
1
, j
2
%→ p̃

1
~2P21!. ~23!

The limiting algebra in Eqs.~21!–~23! is the Poincare´ algebra. It can be expressed in a more
familiar form, i.e.,

$pm ,pn%50, ~24!

$ j mn , j rs%5hmr j ns1hns j mr1hms j rn1hnr j sm , ~25!

$pm , j nr%5hmrpn2hmnpr , ~26!

h5diag~21,1,1,1!, ~27!

upon applying the matrix representation@cf. Eq. ~12!# for p̃, along with the following representa-
tion for the 232 complex traceless matrixj :
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j5S 2 i j 121 j 30 2 i j 232 i j 202 j 311 j 10

2 i j 231 i j 201 j 311 j 10 i j 122 j 30
D . ~28!

C. Casimirs

Like the Poincare´ algebra, the algebra generated byp̃, g, and ḡ has two central elements,
which we will associate with ‘‘mass’’ and ‘‘spin.’’

With regard to the mass, this classical Casimir function is identical in form to that of the
Poincare´ algebra.@This, however, is not the case at the quantum level.4 To define the latter, one
introduces a deformed determinant.# That is,pmpm5det(p̃) is the Casimir function. From Eqs.~2!,
~5!, and~20!, we have that

$det~ p̃!,p̃%5$det~ p̃!,g%5$det~ p̃!,ḡ%50, ~29!

and therefore that it is in the center of the algebra.
With regard to the spin, the second Casimir function can be defined as the square of a new

vectorwm. For this we define

w̃5
1

2l
~ḡ21p̃g2 p̃!; ~30!

w̃ is a 232 Hermitean matrix, so we can write

w̃5S 2w01w3 w12 iw2

w11 iw2 2w02w3
D . ~31!

It is a deformation of the standard Pauli–Lubanski vector. To see this, we substituteg5eil j and
g 5̄ eil j

†
in Eq. ~30! and expand aroundl50, yielding

w̃5
i

2
~ p̃ j2 j †p̃!1O ~l!. ~32!

The zeroth-order term inl is the Pauli–Lubanski vector.
Under Lorentz transformations,w̃ transforms asp̃ does, i.e.,w̃→w̃85ḡw̃g21. In addition, we

find that its Poisson brackets with the observablesg andḡ are identical in form to those ofp̃, i.e.,

$w̃
1
,g
2
%5r †w̃

1
g
2

1w̃
1

g
2
r2g

2
r †w̃

1
2w̃

1
r †g

2
, ~33!

$w̃
1
,ḡ
2
%5rw̃

1
ḡ
2

1w̃
1

ḡ
2
r2ḡ

2
r †w̃

1
2w̃

1
r ḡ
2
. ~34!

These equations are to be compared with~5! and ~20!. The Poisson brackets forw̃ with p̃ are
given by

$w̃
1
,p̃
2
%5rw̃

1
p̃
2

1w̃
1
p̃
2
r †2 p̃

2
r †w̃

1
2w̃

1
r p̃
2
, ~35!

which in terms of space–time components can be expressed as follows:

$wi ,pj%52l„e i jn~p01p3!2d j3e iknpk…wn ,
~36!

$wi ,p0%52le i jkpjwk , i , j ,k51,2,3, $w0 ,pm%50.

We then find that, in analogy to Eq.~29!,
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$det~w̃!,p̃%5$det~w̃!,g%5$det~w̃!,ḡ%50, ~37!

and hence thatwmw
m5det(w̃) is a classical Casimir function.

We expect that there are no additional independent Casimir functions and therefore that the
symplectic leaves inO are eight-dimensional, just as is the case with the Poincare´ algebra. In the
two sections which follow, we shall show how to parametrize the symplectic leaves with variables
which one can naturally associate with position, momenta, and spin.

For completeness we compute the Poisson brackets forw̃ with itself. From Eqs.~33!–~35!, we
find

$w̃
1
,w̃
2
%5rw̃

1
w̃
2

1w̃
1
w̃
2
r †2w̃

2
r †w̃

1
2w̃

1
rw̃
2

2 iP~w̃
1
p̃
2

2w̃
2
p̃
1
!, ~38!

or, in terms of the space–time components ofw̃,

$wi ,wj%5e i jk„w0pk2p0wk12l~w01w3!wk…,
~39!

$w0 ,wi%5e i jkpjwk , i , j ,k51,2,3.

From Eqs.~36! and~39!, we deduce that the set of commuting operators in the quantum theory can
be enlarged to those associated with

p0 , p3 , and w0 ,

in addition to the two Casimirspmp
m andwmw

m.
@We note that in Ref. 4, a set of commuting operators for the spinless particle was found in an

analogous quantum system. The set contained operators associated withp0 , p3 , and the third
component of angular momentum. All of these operators were shown to have a discrete quantum
spectrum for the case of a particle with nonzero mass.~From Ref. 10, we surmise that such a
particle is not free, but instead has a nontrivial interaction with the space–time.! With regard top0
and p3 , we expect that a similar spectrum will occur for us. We do not know what the third
component of angular momentum corresponds to in our formalism, nor do we know if an analog
of w0 can be included in the set of commuting operators of Ref. 4.#

III. SPIN ZERO REALIZATION

Here we discuss a realization of our deformed Poincare´ algebra defined by Eqs.~2!–~5! in
terms of space–time coordinatesxm and the momentapm . The realization is based on the system
described in Ref. 10, where we deformed the standard symplectic structure for a relativistic
particle. As we shall see, this realization has the Casimir det(w̃) equal to zero, and we therefore
associate it with the description of a~deformed! spinless relativistic particle. Actually, here we get
the even stronger constraint thatw̃50, or, from ~30!,

p̃g5ḡ p̃. ~40!

This result is analogous to what is obtained in the standard Hamiltonian description of spinless
particles, where all of the components of the Pauli–Lubanski vector vanish.

From Eq.~12! the four components of momentumpm are contained in the momentum matrix
p̃. With regard to the space–time coordinatesxm , we find it convenient to introduce the following
232 Hermitean matrix

x5S 2x02x3 2x11 ix2

2x12 ix2 2x01x3
D . ~41!
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In contrast top̃, x transforms according to

x→x85gxḡ21. ~42!

As stated previously, the Poisson structure forx and p̃ is a deformation of the canonical
Poisson brackets for a relativistic particle. In addition, it should be preserved under the Lie–
Poisson action of the Lorentz group, satisfy the Jacobi identity, and be Hermitean. The following
Poisson brackets are consistent with all of the above conditions:

$x
1
,x
2
%5rx

1
x
2
1x

1
x
2
r †2x

2
rx
1
2x

1
r †x

2
, ~43!

$x
1
,p̃
2
%5rx

1
p̃
2

1x
1
p̃
2
r †2 p̃

2
rx
1
2x

1
r †p̃

2
2P~ f

1

†1 f
2
!, ~44!

along with Eq.~2!. Here f is a 232 complex matrix. For Eq.~44! to be preserved under Lorentz
transformations, it must transform likeg, i.e.,

f→g fg21. ~45!

Here f must be a nontrivial function ofl. This is since in order to recover the canonical Poisson
bracket relations, we need thatf tends to the unit matrix1 whenl→0, while it cannot be1 for all
l because, as some work shows, it would then violate the Jacobi identity. In this regard, the issue
of whether the Jacobi identity is satisfied was only partially addressed in Ref. 10. Here we find
~with the aid of algebraic manipulation packages! that the Jacobi identity involving the position
and momentum variables holds provided thatf satisfies the following Poisson brackets withx and
p˜:

$ p̃
1
, f
2
%5r †p̃

1
f
2
1 p̃

1
f
2
r2 f

2
r †p̃

1
2 p̃

1
r †f

2
1 il p̃

1
f
2
, ~46!

$x
1
, f
2
%5r †x

1
f
2
1x

1
f
2
r †2 f

2
rx
1
2x

1
r †f

2
2 ilx

1
f
2
. ~47!

In the above, it appears that we have enlarged the phase space spanned byx and p̃ to also
include the variablesf . However, it is not necessary to regardf as independent variables. Rather,
it is possible to expressf in terms ofx and p̃, and still satisfy the Poisson brackets~46! and~47!,
as well as recover the correct canonical limitf→1. This was done in Ref. 10, where we wrotef
according to

f5exp $ ilJ%, where sinlJ5lxp̃. ~48!

By this we meant the following Taylor expansion:

f511 ilxp̃2
1

2
~lxp̃!22

1

8
~lxp̃!4•••2

1•3•5• ••• •~2n23!

2•4•6• ••• •2n
~lxp̃!2n••• . ~49!

It is easily seen that this expression Lorentz transforms as in Eq.~45! and that it tends to the unit
matrix 1 whenl→0. It can also be shown that it is in agreement with the Poisson brackets~46!.
We do this in the Appendix. In a similar manner, it can be shown to be in agreement with the
Poisson brackets~47!. Also in a similar manner, we can use Eq.~48! to obtain the brackets forf
with itself and with f †. We find

$ f
1
, f
2
%5r †f

1
f
2
1 f

1
f
2
r2 f

2
r f
1
2 f

1
r †f

2
, ~50!
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$ f
1
, f
2

†%5r f
1
f
2

†1 f
1
f
2

†r2 f
2

†r f
1
2 f

1
r f
2

†. ~51!

We have checked that these relations are consistent with the Jacobi identity.
We next would like to expressg is terms ofx and p̃. We note that the Poisson bracket forf

with itself is identical in form to the Poisson bracket~3! for g with itself, the only difference
between them being that whileg appearing in Eq.~3! is unimodular,f is not. In this regard, we
note that we are not allowed to set det(f ) equal to one, because although det(f ) has zero brackets
with f and f † @which follows from Eqs.~50! and ~51!#, it does not have zero brackets with the
coordinates or the momenta. Instead, from Eq.~46!, we find that

$x,det~ f !%522ilx det~ f !,
~52!

$ p̃,det~ f !%52il p̃ det~ f !.

Alternatively, we can easily define a unimodular matrix fromf by simply dividing byAdet(f).
This is in fact how we make the identification withg. That is, we set

g5
f

Adet~ f !
, ~53!

and thereby have an expression forg in terms ofx and p̃. It then follows that if we again write
g5eil j and use Eq.~48!, then j corresponds to the traceless part ofJ5(1/l)sin21(lxp̃),

j5J2 1
21 Tr J. ~54!

Upon keeping terms linear inl, in the expression~49! we see thatj reduces to the usual expres-
sion for orbital angular momentum in the canonical limitl→0, i.e.,

j→xp̃2 1
21 Tr xp̃.

The identification~53! of g in terms ofx andp̃ is valid because from it we can recover the full
set of Poisson brackets~3!–~5! starting from the brackets forf @specifically,~46!, ~50!, and~51!#.
Since we also have Eq.~2!, we obtain a realization of the entire deformed Poincare´ algebra. Using
Eqs.~47! and~52!, we can further obtain the brackets between the space–time coordinatesx and
g :

$x
1
,g
2
%5r †x

1
g
2

1x
1

g
2
r †2g

2
rx
1
2x

1
r †g

2
. ~55!

It now only remains to show that the condition~40! is satisfied or, equivalently, that the
deformed Pauli–Lubanski vector is zero. This follows using results from the Appendix, specifi-
cally Eqs.~A3! and ~A5!, which lead to

p̃eilJ5eilJ
†
p̃, ~56!

If we now divide both sides of this equation byAdet(f) and use~53!, we obtain Eq.~40!. Hence
we have the description of a~deformed! spinless particle. We can then associate the expression for
g in terms ofx and p̃ with the ‘‘orbital angular momentum’’ of the particle.

In Ref. 10, we made some remarks concerning dynamics on a Poisson manifold spanned byx
and p̃. We showed that if the standard mass shell constraint is chosen for the Hamiltonian
function, i.e.,

H5a„det~ p̃!2m2
…, ~57!
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then it, along with the Poisson brackets~2!, ~43!, and ~44!, yields a nontrivial interaction of the
particle with the space–time whenl and m are different from zero~a denotes a Lagrange
multiplier!. In Ref. 10 we solved for the particle trajectory and found that it originates and
terminates at singular points. The particle has a lifetime equal to

U Tr~gp!

l det~ p̃!
U, ~58!

wherep5s2p̃
Ts2 , T denoting transpose ands2 being the second Pauli matrix. Thus whenl and

m are different from zero, it appears that the dynamics corresponds to a kind of ‘‘virtual’’ particle
which is off its ‘‘physical’’ mass shell.@In this regard, det(p̃)5m2 does not define the ‘‘physical’’
mass shell since we identify the conserved quantityp̃ with the deformed momentum and not the
‘‘physical’’ momentum.#

We note that the expression~58! is singular for the case of a massless particle, i.e.,m50,
indicating that such a particle has an infinite lifetime. Actually, we can show that the Hamiltonian
~57! with m50 @along with the Poisson brackets~2!, ~43!, and~44!# describes a free photon~or
any massless particle! for arbitrary values ofl. For this we compute the Hamiltonian equations of
motion:

ẋ5
d

dt
x5a$x,det~ p̃!%52a~ f p1p f†!, ~59!

ṗ̃5
d

dt
p̃5a$ p̃,det~ p̃!%50. ~60!

It then follows that form50,

ẋp̃52a~ f p1p f†! p̃50, ~61!

where we have used the mass shell constraintp̃p5pp̃5det(p̃)150, in addition to the series
expansion Eq.~49! for f . The traceless part of Eq.~61! is equivalent toẋmpn2 ẋnpm50 and hence

ẋm5kpn . ~62!

The trace of Eq.~61! implies thatẋmpm50, and thus gives no constraint on the proportionality
constantk. We therefore arrive at afree lightlike trajectory. Furthermore, sincel is arbitrary, we
get an entire family of canonically inequivalent Hamiltonian descriptions of a photon trajectory.
Upon quantization, the resulting states are expected to transform covariantly under the action of
the quantum Lorentz group SLq(2,C).

Actually, to truly describe a photon, we should introduce a spin and check that its equation of
motion is the usual one. That is, there should be no classical spin precession. Spin will be
introduced in Sec. IV. There we indeed find that there is no precession of the classical spin~even
for the casemÞ0!.

IV. INCLUSION OF SPIN

In the standard description of a relativistic particle,11 spin is introduced as an additional term
in the angular momentum. This term is defined to have zero Poisson brackets with coordinates and
momenta, and it, unlike the orbital angular momentum, gives a nonvanishing contribution to the
Pauli–Lubanski vector. We shall look for an analogous prescription for including spin in our
deformed Poincare´ algebra.

There is, of course, no unique procedure for including spin in the deformed Poincare´ algebra.
We should require that it reduce to the standard prescription in the limitl→0. In what follows, our
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choice shall be to multiply the SL(2,C) matrix g obtained in the previous section on the right by
another SL(2,C) matrix which we denote bygs . The former matrix is once again to be regarded
as the orbital angular momentum, whilegs plays the role of ‘‘spin.’’ Thus we replace

g→ggs5
fgs

Adet~ f !
. ~63!

To get back the standard prescription, i.e.,j→ j1s, whenl→0, we can takegs5eils, s being a
traceless complex matrix. Furthermore, using Eq.~63! we get that the ‘‘spin’’gs , and not the
‘‘orbital angular momentum’’f /Adet(f), contributes to the deformed Pauli–Lubanski vector equa-
tion ~30!, analogous to what happens in the standard description.@This would not have been the
case if instead of Eq.~63!, we had multipliedg on the left bygs .# Thus we now get

w̃5
1

2l
~ḡs

21p̃gs2 p̃!Þ0,

and furthermore det~w̃!Þ0. We next show thatunlike in the usual theory, the spin has nonzero
Poisson brackets with momentum and position, and that this is a consequence of the fact that the
space spanned by the matricesg does not form a Poisson–Lie group~unlike the space spanned by
matricesg!.

BecauseS is a Poisson–Lie group, the Poisson structure for the SL(2,C) matricesg is
preserved under left or right group multiplication, i.e., the Poisson brackets~7! are compatible
with the group product.12–15As we show below, the analogous statement does not, however, apply
to the Poisson structure for the SL(2,C) matricesg. That is, the Poisson brackets~3! are not
compatible with group multiplication and hence the space spanned byg is not a Poisson–Lie
group.

To see that the Poisson structure for symmetries is preserved under group multiplication, one
defines a variableg8PSL(2,C) which satisfies the same relations asg,

$g
1
8,g

2
8%5@r , g

1
8g
2
8#, ~64!

in addition to$g
1
8,g

2
% 5 0. Then under right multiplicationg→gg8, we obtain

$g
1
,g
2
%→$g

1
g
1
8,g

2
g
2
8%5@r , g

1
g
2
#g
1
8g
2
81g

1
g
2
@r , g

1
8g
2
8#5@r , ~g

1
g
1
8!~g

2
g
2
8!#, ~65!

and hence that the Poisson structure given by~7! is preserved.
Let us now try the same thing for the observablesg. We definegsPSL(2,C) to satisfy the

same relations asg,

$g
1
s ,g

2
s%5r †g

1
sg
2
s1g

1
sg
2
sr2g

2
srg

1
s2g

1
sr
†g
2
s , ~66!

in addition to$gs
1
,g
2
% 5 0. However, it is easily checked that this Poisson structure is not preserved

under right~or left! multiplication g→ggs . Therefore thatg expressed asfgs /Adet(f) does not
give a realization of the relations~3!.

To proceed further we shall drop the assumption that the product space spanned byg andgs

has a product Poisson structure, i.e., we drop the assumption that the spings has zero Poisson
brackets with the orbital angular momentumg ~and hence also with the coordinates and momenta!
in the deformed theory, i.e.,$gs

1
,g
2
% Þ 0. Instead we take

$g
1
s ,g

2
%5r †g

1
sg
2

1g
1
sg
2
r †2g

2
r †g

1
s2g

1
sr
†g
2
, ~67!

or, equivalently,
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$g
1
,g
2
s%5rg

1
g
2
s1g

1
g
2
sr2g

2
srg

1
2g

1
rg
2
s . ~68!

It then can be checked that the productggs carries the same Poisson structure asg @i.e. Eq.~3!#,

$g
1

g
1
s ,g

2
g
2
s%5r †~g

1
g
1
s!~g

2
g
2
s!1~g

1
g
1
s!~g

2
g
2
s!r2~g

2
g
2
s!r ~g

1
g
1
s!2~g

1
g
1
s!r

†~g
2

g
2
s!. ~69!

Thus, in this sense we can preserve the Poisson structure for the observables. We note that the
Poisson bracket relations forg andgs are identical in form to those ofg andg†. Then since the
Jacobi identity holds for the latter variables, it must also hold forg andgs . In addition, we have
that $det~g!,gs%5$det(gs),g%50, and therefore the Poisson brackets~67! are consistent with the
unimodularity of bothg andgs . We note that Eq.~67! is also consistent with the canonical limit,
because if we writeg5eil j andgs5eils, then, to lowest order inl, we obtain thats has zero
Poisson brackets withj .

As stated before, in the standard theory for a relativistic particle the spin has zero Poisson
brackets with the momenta. Here, however, if the Poisson bracket~5! is to be preserved under Eq.
~63!, we need that$g

1
s ,p̃

2
% Þ 0. Specifically, we need

$ p̃
1
,g
2
s%5r †p̃

1
g
2
s1 p̃

1
g
2
sr2g

2
sr
†p̃
1

2 p̃
1
rg
2
s . ~70!

For then

$ p̃
1
,g
2

g
2
s%5r †p̃

1
~g
2

g
2
s!1 p̃

1
~g
2

g
2
s!r2~g

2
g
2
s!r

†p̃
1

2 p̃
1
r †~g

2
g
2
s!, ~71!

which is identical in form to the relation~5!.
We have checked that Poisson brackets~67! and ~70! are consistent with the Jacobi identity

for g, p̃, andgs . We also verified that$det(gs),p̃%50 and thatp̃ has zero brackets withs in the
limit l→0.

Just asgs does not have zero Poisson brackets with the momenta, it also does not have zero
Poisson brackets with the position. That$g

1
s ,x

2
% Þ 0 is easily seen because, if it were not so, we

would not then be able to recover the correct brackets~67! for gs with the orbital angular momenta
g @given as a function ofxp̃ in Eqs.~49! and ~53!#. What works instead is

$x
1
,g
2
s%5rx

1
g
2
s1x

1
g
2
sr
†2g

2
srx

1
2x

1
r †g

2
s . ~72!

From it and Eq.~70! we find that

$~x
1
p̃
1
!n,g

2
s%5r ~x

1
p̃
1
!ng

2
s1~x

1
p̃
1
!ng

2
sr2g

2
sr ~x

1
p̃
1
!n2~x

1
p̃
1
!nrg

2
s . ~73!

Hence the Poisson brackets betweengs andanypolynomial function ofxp̃ has precisely the same
form as the Poisson brackets betweengs andg given in Eq.~67!. Thus

$ f
1
,g
2
s%5r f

1
g
2
s1 f

1
g
2
sr2g

2
sr f

1
2 f

1
rg
2
s . ~74!

From previous arguments we then also know that$det(f ),gs%50. The Poisson brackets~67!
betweeng andgs are realized forg 5 f /Adet(f ) by dividing both sides of Eq.~74! by Adet(f).
Now g expressed asfgs/Adet(f ) realizes the Poisson bracket relations~3!. From Eq.~72! it also
follows that$x

1
,s
2
%→0 whenl→0 and hence we recover the usual canonical limit.

To summarize, we have obtained a realization of the deformed Poincare´ algebra defined by
Eqs.~2!–~5! with det(w̃)Þ0. ~Actually for this we also need to have the Poisson brackets between
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gs andḡ. We shall assume that a consistent set of such brackets exist.! Thus unlike in the previous
section, we now have a description of a particle with spin. We have shown that we get back the
standard description of a spinning particle whenl→0. Under Lorentz transformations,gs must
transform as doesg, i.e., gs→ggsg

21. It is easy to check that all Poisson brackets withgs are
compatible with such transformations and once again that the Lorentz group induces a Lie–
Poisson action on the observables.~Here we assume, as usual, that the classical observables,
includinggs , have zero Poisson brackets with the classical symmetry variablesg and ḡ.!

Finally, we remark about the spin dynamics. For this purpose we want again to utilize the
Hamiltonian function~57!. We then need to compute the Poisson bracket ofgs with det(p̃). From
Eq. ~70!, we find that this Poisson bracket vanishes. This means that for the Hamiltonian function
~57!, the classical spin has a trivial dynamics~i.e., there is no precession!. This is just as in the
standard formulation of a classical spinning particle.11

V. TOWARDS QUANTIZATION

Here we make some preliminary remarks concerning quantization. We plan to address this
issue more fully in a subsequent publication.

There exists a standard quantization scheme~called deformation quantization! which can be
applied in this case. It is known to deform the space of symmetriesS to a Hopf algebra, specifi-
cally, SLq(2,C).

9 We remark on this first. We then comment on a possible quantization of the
classical observables. The system which results appears to be different fromq-Poincare´ algebras
discussed previously in the literature.3–7

With regard to the symmetries, one standardly replacesg by an SLq(2,C) matrix, which we
denote byT, and the Poisson brackets~7! by the corresponding quantum commutation relations.
The matrix elements inT are constrained by the condition that the ‘‘deformed’’ determinant is
equal to one, and this is the analogue of the unimodularity condition ong. The commutation
relations are given in terms of a quantumR matrix, satisfying the quantum Yang–Baxter equa-
tions, and can be written according to

R
12
T
1
T
2

5T
2
T
1
R
12
. ~75!

This algebra can presumably be realized on the spaceS of classical symmetries with the use of a
star product. In order to recover the correct classical limit one only requires thatR

12
→1 2 i\r

1 O (\2) when\→0.
In addition to Eq.~75!, one needs the quantum analogues of the Poisson brackets~8! and~10!.

For this we introduce another SLq(2,C) matrix T̄ which in analogy to the classical observableḡ is
related toT by: T̄5T†21. Then along with Eq.~75!, we write

R
12
T
1
T̄
2

5T̄
2
T
1
R
12
, ~76!

R
12
T̄
1
T̄
2

5T̄
2
T̄
1
R
12
, ~77!

which corresponds to Eqs.~8! and~10! when\→0. By switching vector space indices 1 and 2, we
see that we can replaceR

12
in Eqs. ~75! and ~77! by R

21

21. ThusR
12

R
21

must commute withT
2
T
1

and T̄
2
T̄
1
. This is analogous to the statement thatr2r † is an adjoint invariant in the classical

theory.
Concerning the quantum observables, we shall require that their algebra is preserved under the

action of the quantum symmetries, in analogy to what happens in the classical theory. We also
want that this algebra is consistent with the classical Poisson bracket algebra in the limit\→0.
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A quantum algebra for the momenta was already given in Ref. 7 that is consistent with these
properties, so we will adopt it here. There one replaces the classical variablep̃ by a 232 matrix
P whose elements are operator valued. The Poisson brackets~2! are replaced by what were
referred to as reflection equations,

R
12
P
1
R
12

21P
2

5P
2
R
21

21P
1
R
21
. ~78!

With this choice, one can easily obtain the correct classical limit. For this one notes that, using the
matrix expression~6! for r , one obtains thatR

21
→11i\r†1O ~\2! when \→0. Furthermore, as

desired, the commutation relations~78! are preserved under SLq(2,C) transformations. Here in
analogy to Eq.~13!, one assumes thatP transforms as a vector under the action of the quantum
Lorentz group, i.e.,

P→P85T̄PT21, ~79!

and that the matrix elements ofT and T̄ commute with those ofP. Then using the relations
~75!–~77!, one obtains that the left-hand side of~78! transforms according to

R
12
P
1
R
12

21P
2
→R

12
P
1
8R
12

21P
2
85T̄

2
T̄
1
R
12
P
1
R
12

21P
2
T
1

21T
2

21

5T̄
2
T̄
1
P
2
R
21

21P
1
R
21
T
1

21T
2

215P
2
8R
21

21P
1
8R
21
, ~80!

and hence that Eq.~78! is preserved.
We may assume that the quantum matrixP is Hermitean, analogous to the fact that the

classical matrixp̃ is Hermitean. It is easy to check that this property is consistent with the
transformation property~79!. It is also consistent with the commutation relation~78!, provided
that we have the following condition on the quantumR-matrix:

R
12

†5R
21
. ~81!

An R-matrix which satisfies this requirement, as well as the Yang–Baxter equations, and has the
correct classical limit is

R
12

5q21/2S q 1

q2q21 1

q

D , q5e\l. ~82!

It remains to specify the quantum analogues of Poisson brackets~3!–~5!. For this we associate
the classical observablesg and ḡ with operator-valued 232 matricesG and Ḡ, which in analogy
to ~16! transform as

G→G85TGT21, Ḡ→Ḡ85T̄ḠT̄21, ~83!

under the action of SLq(2,C). As withT, we can assume that matrix elements ofG are constrained
by the condition that the ‘‘deformed’’ determinant is equal to one, in analogy to the unimodularity
condition ong. We propose that theGs satisfy the following commutation relations amongst
themselves and withP:
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R
21

21G
1
R
21

G
2

5G
2
R
12

G
1
R
12

21, ~84!

R
12

G
1
R
12

21Ḡ
2

5Ḡ
2
R
12

G
1
R
12

21, ~85!

R
21

21P
1
R
21

G
2

5G
2
R
21

21P
1
R
12

21. ~86!

It can be checked that from these relations one recovers the correct quadratic algebra, i.e., Eqs.
~3!–~5!, as\→0. Also, using Eqs.~75!–~77! and the assumption that the matrix elements ofT and
T̄ commute with those ofG andḠ, it can be checked that the commutation relations~84!–~86! are
preserved under SLq(2,C) transformations~79! and~83!. The procedure is analogous to that used
in Eq. ~80!.

If we defineḠ5G†21 in analogy to what was done in the classical theory, then by taking the
Hermitean conjugates of Eqs.~84!–~86! we get the quantum analogs of the Poisson brackets
~18!–~20!. Using ~81!, we obtain

R
12

Ḡ
1
R
12

21Ḡ
2

5Ḡ
2
R
21

21Ḡ
1
R
21
, ~87!

R
21

21Ḡ
1
R
21

G
2

5G
2
R
21

21Ḡ
1
R
21
, ~88!

R
12
P
1
R
12

21Ḡ
2

5Ḡ
2
R
21

21P
1
R
12

21, ~89!

which correspond to Eqs.~18!–~20! whenl→0.
Although the set of symmetry operators$T% defines a Hopf algebra, the same does not seem

to be the case for the set of quantum operators$G%. In this regard we do not know how to define
a coproduct for the latter. This is not too surprising since the set of classical variables$g% did not
define a Poisson–Lie group. For this reason it appears that our quantum algebra defined in Eqs.
~78! and~84!–~86! differs from those given previously.3–7 Equations~78! and~84!–~86! define a
set of the quadratic commutation relations between the quantum mechanical observablesP, G, and
Ḡ, which nevertheless are preserved under the action of a Hopf algebra. Whether or not it is
necessary to impose higher-order relations on the observables remains to be checked.

From the observablesp, G, and Ḡ, it is possible to construct the quantum mechanical de-
formed Pauli–Lubanski vector, and also Casimir operators corresponding to mass and spin. It
should then be possible to look for eigenvectors of these operators along with the quantum
analogues ofp0 , p3 , andw0 . This will be addressed in a forthcoming article. We can also hope
to obtain realizations of the quantum algebra for the cases of a spinless and spinning relativistic
particle in a manner similar to what was done in Secs. III and IV.

VI. CONCLUDING REMARKS

Here we outline additional future avenues of research.
We have obtained a deformation of the Poincare´ algebra which is covariant with respect to the

Lie–Poisson action of the Lorentz group. It is of interest to know whether or not this algebra can
also be made to be covariant under the Lie–Poisson action of the translation group, and hence
under the action of the full Poincare´ group. It is also of interest to know whether or not the angular
momentag can somehow play the role of generators of Lorentz transformations, as in the canoni-
cal theory, and also whether or not the momentap̃ can somehow play the role of generators of
translations. One thing which is clear is that infinitesimal Lorentz transformations are not obtained
~as in the canonical theory! by simply taking Poisson brackets withg. Similarly, translations are
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J. Math. Phys., Vol. 37, No. 4, April 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



not obtained by simply taking Poisson brackets withp̃. ~Generators of Lie–Poisson symmetries
have been found previously in physical systems. In Ref. 16 we examined the system of a isotropic
rigid rotator. That system was invariant under the Lie–Poisson action of the chiral symmetry
group. There we were able to find the generators of the chiral symmetry, and they took values in
a group which was dual to the symmetry group. Similar novel features are anticipated for the
Lie–Poisson generators of the space–time symmetries of a relativistic particle.!

In Secs. III and IV, realizations for the deformed Poincare´ algebra were found which were
associated with a single relativistic particle. It is of interest to know how one constructs represen-
tations for two or more particles. This is not straightforward because as we found in Sec. IV, the
Poisson structure for the observablesg is not compatible with the group product, i.e., the space
spanned byg is not a Poisson–Lie group. Also, it can be checked that the Poisson structure for the
observablesp̃ is not compatible with addition of the momenta. Just as we found in Sec. IV that the
spin does not commute with the orbital angular momentum, we can already conclude the angular
momenta for different particles does not commute, and we also suspect that the momenta of
different particles does not commute.
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APPENDIX: VERIFICATION OF EQ. (46)

Here we show that the Poisson brackets~46! for p̃ with f can be deduced using the realization
for f in terms ofx and p̃ given in Eq.~48!. For this we will assume the Poisson brackets~2! and
~44!.

We start by computing the brackets forp̃ with sinlJ5lxp̃. From Eqs.~2! and~44! we obtain

$ p̃
1
, sin~lJ

2
!%5r †p̃

1
sin~lJ

2
!1 p̃

1
sin~lJ

2
!r †2sin~lJ

2
!r †p̃

1
2 p̃

1
r † sin~lJ

2
!1l~ f

1

†1 f
2
! p̃
1

P.

~A1!

To determine the brackets ofp̃ with f , we also need$ p̃
1
, cos(lJ

2
)%. We can deduce it by knowing

the brackets forp̃ with cos2 lJ512sin2 lJ, which are easily obtained from Eq.~A1!,

$ p̃
1
, cos2~lJ

2
!%5r †p̃

1
cos2~lJ

2
!1 p̃

1
cos2~lJ

2
!r †2cos2~lJ

2
!r †p̃

1
2 p̃

1
r † cos2~lJ

2
!

2l S sin~lJ
2
!~ f

1

†1 f
2
!1~ f

1

†1 f
2
!sin~lJ

1

†! D p̃1 P, ~A2!

where we have used

p̃ sin~lJ!5sin~lJ†! p̃. ~A3!

Then a solution is

$ p̃
1
, cos~lJ

2
!%5r †p̃

1
cos~lJ

2
!1 p̃

1
cos~lJ

2
!r †2cos~lJ

2
!r †p̃

1
2 p̃

1
r † cos~lJ

2
!2 il~ f

1

†2 f
2
! p̃
1

P.

~A4!

To check that Eq.~A2! follows from Eq.~A4!, we can apply the identities

p̃ cos~lJ!5cos~lJ†!p̃, ~A5!

and

2069A. Stern and I. Yakushin: Lie–Poisson deformation of the Poincaré algebra
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sin~lJ
2
!~ f

1

†1 f
2
!1~ f

1

†1 f
2
!sin~lJ

1

†!5 i cos~lJ
2
!~ f

1

†2 f
2
!1 i ~ f

1

†2 f
2
!cos~lJ

1

†!. ~A6!

The former identity follows after writingJ as an infinite series inxp̃, while the latter follows after
writing f5cos(lJ)1 i sin(lJ). Finally, from Eqs.~A1! and~A4!, and using a third identity, i.e.,
Eq. ~11!, we then obtain the desired result Eq.~46!.

1P. Podles and S. Woronowicz, Commun. Math. Phys.130, 381 ~1990!.
2U. Carow-Watamura, M. Schlieker, M. Scholl, and S. Watamura, Z. Phys. C48, 159 ~1990!.
3W. B. Schmidke, J. Wess, and B. Zumino, Z. Phys. C52, 471 ~1991!.
4O. Ogievetsky, W. B. Schmidke, J. Wess, and B. Zumino, Commun. Math. Phys.150, 495 ~1992!; M. Pillin, W. B.
Schmidke, and J. Wess, Nucl. Phys. B403, 223 ~1993!.

5X.-C. Song, Z. Phys. C55, 417 ~1992!; M. Pillin, J. Math. Phys.35, 2804~1994!; U. Meyer, DAMTP 94-10, hep-th/
9404054.

6M. Pillin, W. B. Schmidke, and J. Wess, Nucl. Phys. B403, 223 ~1993!.
7J. A. de Azca´rraga, P. P. Kulish, and F. Rodenas, Lett. Math. Phys.32, 173 ~1994!; Valencia preprint FTUV 94-21;
FTUV 94-64.

8S. Zakrzewski, ‘‘Poisson Poincare´ groups,’’ Warsaw preprint, hep-th/9412099.
9See, for example, L. Takhtajan, inIntroduction to Quantum Group and Integrable Massive Models of Quantum Field
Theory, edited by M-L. Ge and B-H. Zhao~World Scientific, Singapore, 1990!.

10A. Simoni, A. Stern, and I. Yakushin, J. Math. Phys.36, 5588~1995!.
11See, for example, A. P. Balachandran, G. Marmo, B. Skagerstam, and A. Stern,Gauge Symmetries and Fibre Bundles,
Applications to Particle Dynamics, Lecture Notes in Physics, Vol. 188~Springer-Verlag, New York, 1983!.

12V. G. Drinfel’d, Sov. Math. Dokl.27, 68 ~1983!; in Proc. Int. Congr. Math.~Berkekey!, Vol. 1 ~Academic, New York,
1986!.

13M. A. Semenov-Tian-Shansky, Publ. RIMS, Kyoto Univ.21 ~6!, 1237 ~1985!; Theor. Math. Phys.93, 312 ~1992! ~in
Russian!.

14J.-H. Lu and A. Weinstein, J. Diff. Geom.31, 501 ~1991!.
15A. Yu. Alekseev and A. Z. Malkin, Commun. Math. Phys.162, 147 ~1994!; A. Yu. Alekseev and I. T. Todorov, Nucl.
Phys. B421, 413 ~1994!.

16G. Marmo, A. Simoni, and A. Stern, Int. J. Mod. Phys. A10, 99 ~1995!; A. Stern and I. Yakushin, Mod. Phys. Lett. A
10, 399 ~1995!.

2070 A. Stern and I. Yakushin: Lie–Poisson deformation of the Poincaré algebra
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Many applications require approximate values of path integrals. A typical approach
is to approximate the path integral by a high dimensional integral and apply a
Monte Carlo~randomized! algorithm. However, Monte Carlo algorithm requires
roughly e22 integrand evaluations to provide ane approximation. Moreover, the
error bound ofe is guaranteed only in a stochastic sense. Do we really need to use
randomized algorithms for path integrals? Perhaps, we can find adeterministic
algorithm that is more effective even in the worst case setting. To answer this
question, we study theworst case complexityof path integration, which, roughly
speaking, is defined as the minimal number of the integrand evaluations needed to
compute an approximation with error at moste. We consider path integration with
respect to a Gaussian measure, and for various classes of integrands. Tractability of
path integration means that the complexity depends polynomially on 1/e. We show
that for the class ofr times Frechet differentiable integrands, tractability of path
integration holds iff the covariance operator of the Gaussian measure has finite
rank. Hence, if the Gaussian measure is supported on an infinite dimensional space
then path integration is intractable. In this case, there exists no effective determin-
istic algorithm, and the use of randomized algorithms is justified. In fact, for this
class of integrands, the classical Monte Carlo algorithm is~almost! optimal and the
complexity in the randomized setting is proportional toe22. On the other hand, for
a particular class of entire integrands, the worst case complexity of path integration
is at most of ordere2p with p depending on the Gaussian measure. Hence, path
integration is now tractable. Furthermore, for any Gaussian measure, the exponent
p is less than or equal to 2. For the Wiener measure,p52/3. For this class, we
provide effective deterministic algorithms which solve the path integration problem
with ~worst case! cost that is usually much less than the~randomized! cost of the
classical Monte Carlo algorithm. ©1996 American Institute of Physics.@S0022-
2488~96!01204-6#

I. INTRODUCTION

Approximate computation of integrals is undoubtedly one of the most important problems of
computational mathematics. In many cases, integrals involve functions of finitely many variables
d. Not surprisingly, the univariate cased51 is best understood and has a rich and well-developed
theory. Elements of the classical theory of univariate integration can be found in almost all
numerical analysis textbooks. The study of the complexity of continuous problems has started
from the pioneering work of Sard and Nikolskij on univariate integration; see Refs. 1 and 2.

The multivariate case, withd finite and greater than one, is much harder and is a subject of
very active research. For larged, a typical approach is to use Monte Carlo~randomized! algo-
rithms. However, for some classes of integrands, deterministic algorithms can be also very effec-

a!Electronic mail: greg@cs.engr.uky.edu
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tive. An example is provided by integrands with bounded mixed derivatives, for which algorithms
based on low discrepancy points can be used. The state of the art can be found in Ref. 3.
Complexity of multivariate integration in various settings is also an active research area. An
account of recent progress can be found in Refs. 4–11.

In this paper, we consider the cased51`. That is, we deal with integrals of functions of
infinitely many variables. This is usually called thepath integrationproblem. The name is derived
from the most typical case, in which we integrate over continuous functions~paths! with respect
to the Wiener measure, see Ref. 12. Sometimes, instead of path integration, the namefunctional
integration is used; see Refs. 13 and 14. The latter stresses that we integrate over a class of
functions.

One may suspect that the path integration problem is merely of theoretical interest. However,
the opposite is true. Path integrals occur in many applied fields, including quantum physics and
chemistry, differential equations, and financial mathematics, as well as average case complexity.
Here are a few examples. In the forties, R. P. Feynman introduced path integration in quantum
physics; see Ref. 12. The work of Feynman initiated a very fruitful stream of research in quantum
physics and chemistry which continues to be active; see, e.g., Refs. 13 and 15–23. A rigorous
mathematical foundation for Feynman path integration can be found in Ref. 24. In the fifties, M.
Kac observed that the approach of Feynman can be used for the solution of parabolic differential
equations, and established what today is called the Feynman-Kac formula; see Ref. 25. In fact,
solutions of many differential and operator equations can be expressed as path integrals; see Ref.
14. Also many problems in financial mathematics are expressed as generalized Feynman-Kac
formulas, and hence their solution may be reduced to computing path integrals; see Ref. 26–28.
Finally, in average case complexity, we need to estimate the average error of an algorithm; this
error is, once more, given as a path integral. A more complete list of applications is given in the
introduction of Ref. 14.

A typical approach to computing path integrals is to switch to a multivariate integral and
apply a Monte Carlo~randomized! algorithm. That is, the infinite dimensional integral is approxi-
mated by ad dimensional integral, whered may be large~or even huge!. Then the classical Monte
Carlo algorithm can be used since its speed of convergence, although not great, does not depend
on d. This approach usually requires on the order ofe22 integrand evaluations to obtain the
expected error at moste, see Sec. II for more details.

Due to this relatively high cost of Monte Carlo and only stochastic error assurance, one would
like to know weather there is an effectivedeterministicalgorithm which approximates path inte-
grals with a small~deterministic! error. Obviously, the existence of such a deterministic algorithm
depends on the probability measurem occurring in the path integral as well as on the classF of
integrands. Hence, for a given measurem and a given classF, we wish to find theworst case
complexityof path integration. Roughly speaking, the worst case complexity is proportional to the
minimal number of integrand evaluations needed to compute an approximation with worst case
error at moste.

We are mainly interested in how the complexity depends one. If the complexity is of order
e2p with p,2 then we beat the bounde22 of the classical Monte Carlo algorithm. Forp52, the
bounds are of the same order. However, even forp.2, we may prefer to use a deterministic
algorithm since its error is guaranteed to be at moste, whereas for the classical Monte Carlo
algorithm we only know that its expected error is at moste. Moreover, with deterministic algo-
rithms, we do not have to cope with the problem of generating random numbers or functions.

This discussion motivates the concept of tractability of path integration. Namely, we say that
the path integration problem istractable if the worst case complexity depends polynomially on
1/e. In other settings such as the randomized or average case settings, tractability of path integra-
tion is obvious in classes for which theL2 norms of integrands are uniformly bounded. However,
for problems that are not path integration, the study of tractability in other settings is an interesting
subject; see Refs. 29 and 30.
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Tractability of path integration depends on the probability measurem and the classF of
integrands. We now comment on the assumptions regardingm andF.

We begin with the measurem. In most applications of path integration, the classical Wiener
measure~Brownian motion! is used. The Wiener measure is an example of a Gaussian measure
which is appropriate for many applications. Its role can be hardly overestimated. It would be
tempting to study path integration only for the Wiener measure. However, we prefer to be more
general and to study path integration for arbitrary Gaussian measures, and to illustrate the results
for the Wiener measure as a primary example. In this way we will better understand the influence
of the Gaussian measure on the complexity of path integration. Of course, it would also be
interesting to study path integration for a non-Gaussian measure, although no such application is
known to us.

We now turn to the classF of integrands. Here, the situation is far more complex since there
is no class of integrands which plays a dominant role corresponding to the Wiener measure. Even
for the multivariate case, there is no class which is singled out. On contrary, many different classes
seem to be relevant and their choice depends on the particular application. Usually these classes
are characterized by some global smoothness properties of the integrands.

For path integration, we follow the multivariate approach and we analyze classes defined by
global smoothness. First, we consider the class of integrands that arer times continuously Frechet
differentiable. We prove that in this case, tractability of path integration holds iff the covariance
operator of the Gaussian measure has finite rank. Hence, the problem of path integration is
intractable if the Gaussian measure is supported on an infinite dimensional space. Then it is
reasonable to switch to the randomized setting. It turns out that the classical Monte Carlo algo-
rithm is ~almost! optimal and the complexity in the randomized setting is proportional toe22.

Next we analyze a specific class of entire functions. For this class, the path integration
problem is tractable, and the worst case complexity is of ordere2p with p depending, in particular,
on the Gaussian measure used. For the Wiener measure, we havep52/3, which means that we
need substantially fewer integrand evaluations than for the classical Monte Carlo algorithm even
though we guarantee that the worst case error is at moste. We stress, however, that to get this
result we assume that integrands are entire functions and that we can use derivatives as permis-
sible information. It is well known that the classical Monte Carlo algorithm requires no smooth-
ness of the integrands; it is enough to assume that they are square integrable.

The classes of integrands studied in this paper are characterized by global smoothness prop-
erties. In a forthcoming paper, see Ref. 31, we consider a different class of integrands. This class
is related to the Feynman–Kac formula. More precisely, this is the class of potential and initial
conditions functions which define the heat equation. Although these functions do not need to be
very smooth, we prove tractability of path integration, and in many cases, the worst case com-
plexity is substantially smaller thane22.

II. FORMULATION OF THE PROBLEM

In this section we formulate the path integration problem and explain a typical computational
approach to approximating path integrals. We also define the worst case complexity and tracta-
bility of path integration.

Let X be a separable Banach space. The norm inX is denoted byi•iX . An example ofX is
provided by the spaceX5C~@0,1#! of continuous scalar functions defined on@0,1# with the sup
norm, ixiX5suptP[0,1]ux(t)u.

We assume thatX is equipped with a zero mean Gaussian measurem; see, e.g., Ref. 32. An
example ofm is provided by the Wiener measurem5w for which X5C~@0,1#! and

E
C@0,1#

x~ t1!x~ t2!w~dx!5min$t1 ,t2%.
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It is known thatX can be embedded in the Hilbert spaceL2~@0,1#!. It is an obvious corollary
of the Banach~sometimes called the Banach–Mazur or Banach–Alaoglu! theorem which states
that X is isometrically isomorphic to a subspace ofC~@0,1#! which, in turn, can be treated as a
subspace ofL2~@0,1#!. This means that there exists a one-to-one linear continuous mapping
Im:X→L2~@0,1#!. We denote the inner product ofL2~@0,1#! by ^•,•&. Then the measuren5m Im21

is also a zero mean Gaussian measure onL2~@0,1#!. Let Cn :L2([0,1])→L2([0,1]) be the covari-
ance operator ofn. The operatorCn is self-adjoint, non-negative definite, and has finite trace. That
is, there exists an orthonormal system$h i% i of L2~@0,1#!, ^h i ,h j&5d i , j , for which

Cnh i5l ih i , l1>l2>•••>0 and (
i51

`

l i,1`. ~1!

Observe that if alll150, then the path integration problem becomes trivial. Indeed,m is then
an atomic measure at zero andS( f )5 f (0). This, of course, can be solved exactly by using one
function value. To omit this trivial case, we assume that at least one eigenvalue is positive,

l1.0.

Without loss of generality, we may assume thathiPIm(X). Indeed, the measuren is concen-
trated on Im(X), n@Im(X)#51, andhiPIm(X), where the closure of Im(X) is taken in the norm of
L2~@0,1#!. Hence, we can approximatehi with an arbitrarily small error by elements of Im(X). To
avoid this cumbersome approximation ofhi , we assume, for simplicity, thathi belong to Im(X).

For the Wiener measurem5w, we have

Im~x!5x, h i5& sinS 2i21

2
pxD , l i5

4

p2~2i21!2
.

Let F be a class of~Borel! measurable real functions defined onX. An example of suchF
studied in this paper is the classF5Fr of r times Frechet differentiable functions for which
i f ( i )i5supxPXi f ( i )(x)i<1 for i50,1,...,r . Here, f ( i )(x) is an i -linear form fromXi to R, and its
norm is defined asi f ( i )(x)i 5 supixj iX<1u f ( i )(x)x1x2 ...xi u .

Thepath integrationproblem is defined as approximating integrals off from F. That is, we
want to approximate the expectation off with respect to the Gaussian measurem,

S~ f !5E
X
f ~x!m~dx!, ; fPF. ~2!

SinceX is usually infinite dimensional, the integrandf in ~2! depends on infinitely many variables.
That is why the path integration problem can be viewed as an integration of functions of infinitely
many variables.

We now illustrate the path integrals problem for finite and infinite dimensional spacesX.
Assume first thatX5Rd for some finited, and letm be the standard Gaussian measure withli as
the eigenvalues of its covariance operator. Then~2! becomes

S~ f !5
1

~2p!d/2
1

Al1l2•••ld
E
Rd
f ~ t1 ,t2 ,••• ,td!exp@2t1

2/~2l1!2•••2td
2/~2ld!#dt,

wheret5[ t1 ,t2 ,...,td]PRd.
Hence, for finite dimensional spacesX, the path integration problem reduces to finite dimen-

sional integration with respect to a Gaussian measure.
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Assume now thatX is of infinite dimension. We now show howS( f ) can be approximated by
finite dimensional integrals. Letx5Im21~Im x!. Note that Im21 is well defined on the set Im(X)
which is of a full n measure. Hence, Im21~Im x! is defined almost everywhere. By changing
variablesy5Im(x) we may rewrite~2! as

S~ f !5E
L2~@0,1# !

f @ Im21~y!#n~dy!.

The elementsy from L2~@0,1#! can be approximated by

Pdy5(
i51

d

^y,h i&h i .

Then the integralS( f ) is approximated bySd( f d), where f d : R
d→R is defined by

f d~ t!5 f @ Im21~ t1h11t2h21•••1tdhd!#,

for t5[ t1 ,t2 ,...,td]PRd, and

Sd~ f d!5
1

~2p!d/2
1

Al1l2•••ld
E
Rd
f d~ t!expS 2t1

2

~2l1!
–•••–

td
2

~2ld!
Ddt. ~3!

Observe thatSd is a finite dimensional integral, as for the case of a finite dimensional spaceX.
However, unlike the latter case, the eigenvaluesli tend to zero, andl i<a/ i with
a5( i51

` l i,1`. Hence, there is a decreasing dependence on the successive variablest i in ~3!.
For a functionf that satisfies the Banach–Lebesgue theorem„it is enough to assume thatf is

continuous anduf @Im21(Pdy)#u<g@Im21(y)#, ;d, for some functiong for which S(g) is finite…,
we have

S~ f !5 lim
d→`

Sd~ f d!.

This suggests that to approximateS( f ) it is enough to choose a sufficiently larged and approxi-
mate a finite dimensional integralSd( f d). The choice ofd depends on the smoothness of the
elements ofF. For example, assume thatF5FLip is the class of Lipschitz functions,

FLip5$ f :X→R, u f ~x1!2 f ~x2!u<Ki Im~x1!2Im~x2!iL2~@0,1# ! , ;x1 ,x2PX%,

for some positive constantK. Then for fPFLip we have

uS~ f !5Sd~ f d!u<KS E
L2~@0,1# !

(
i5d11

`

^y,h i&
2n~dy!D 1/25KS (

i5d11

`

l i D 1/2.
Hence, to guarantee that the erroruS( f )2Sd( f d)u<e, ; fPFLip , it is enough to defined as the
smallest integer for which

(
i5d11

`

l i<e2/K2.

For l i5Q( i2k) with k.1, we get

d5Q@~K/e!2/~k21!# as e→01.
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For the Wiener measure we havek52 and

d5
1

p2 SKe D 2@11o~1!# as e→01.

Hence, for infinite dimensional spacesX, we can approximate path integration byd dimen-
sional integrals with respect to a Gaussian measure, whered5d~e! goes to infinity as the error
tolerancee goes to zero. How fastd~e! goes to infinity depends on the decay of the eigenvalues of
li .

In either case ofX, we see that path integrals may be approximated byd dimensional inte-
grals, whered is typically ~very! large. For fPL2(X,m), the high-dimensional integration is
usually done by the classical Monte Carlo algorithm applied to the functionf d ,

Sd~ f d!;MCn~ f d ;u!5
1

n (
i51

n

f d~ui !,

whereu5[u1 ,u2 ,...,un]PRnd andui are independent random points ofRd which are distributed
according to the Gaussian measure of zero mean and variancesl1,l2,...,ld . It is well known that

E@Sd~ f d!2MCn~ f d ;u!#25
1

n F E
L2~@0,1# !

h2~Pdy!n~dy!2S E
L2~@0,1# !

h~Pdy!n~dy! D 2G ,
whereh5 f +Im21 andE stands for the expectation with respect to the random selection of the
pointsui .

Note that

E@S~ f !2MCn~ f d ;u!#25uS~ f !2Sd~ f d!u21E@Sd~ f d!2MCn~ f d ;u!#2

and

E
L2~@0,1# !

h2~Pdy!n~dy!5E
L2~@0,1# !

@h~Pdy!2h~y!1h~y!#2n~dy!

<2E
L2~@0,1# !

@h~y!2h~Pdy!#2n~dy!

12E
L2~@0,1# !

h2~y!n~dy!.

Obviously,*L2(@0,1#)h
2(y)n(dy) 5 *Xf

2(x)m(dx). Hence, for the classFLip of Lipschitz functions
we have

E@S~ f !2MCn~ f d ;u!#2<K2~112n21! (
i5d11

`

l i 1
2

n E
X
f 2~x!m~dx!.

To guarantee that the randomized error of the classical Monte Carlo algorithm is at moste, we
choosen of ordere22 andd, such that(i5d11

` l i is of order~e/K!2. For l i5U( i2k), the cost of
the classical Monte Carlo algorithm with randomized error at moste is proportional to the cost of
computinge22 values of functions ofd5U[(K/e)2/(k21)] variables.

The goal of this paper is to investigate whether path integration can be solved bydeterministic
algorithms in theworst casesetting. More precisely, we are interested in theworst case complexity
comp~e,F! of path integration. This is defined as the minimal cost among all deterministic algo-
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rithms which compute an approximation whose error is at moste for all fPF. In what follows, we
assume that the cost of one integrand evaluation isc, and the cost of one arithmetic operation or
comparison of real numbers is unity. Of course,c>1, and in many casesc is much larger than
unity. The precise definition of comp~e,F! can be found, e.g., in Ref. 8. Here we only mention that
in our case comp~e,F! can be~roughly! defined as the minimal number of integrand evaluations
needed to compute an approximation whose error is at moste for all fPF.

It is usually difficult to find comp~e,F!. That is why we settle for some characteristics of
comp~e,F!. We say that the path integration problem istractablein the worst case setting iff there
exist two non-negative numbersK andp such that

comp~e,F !<Kce2p, ;eP~0,1!. ~4!

The smallest~or rather infimum of! p for which ~4! holds is called theexponentof the path
integration problem,

p~F !5 inf$p : limsup
e→01

ep comp~e,F !,1`%.

III. FINITE REGULARITY

In this section, we study tractability of path integration for the classF5Fr of r times con-
tinuously Frechet differentiable functions, wherer is a non-negative integer,

Fr5$ f :X→R : f ~r ! is continuous andi f ~k!~x!i<1, ;xPX, k50,1,...,r %.

As we shall see, tractability of path integration depends on the eigenvaluesli of the correlation
operatorCn in ~1!.

Theorem 1: ~i! If r50 or all the eigenvaluesli are positive, i.e., li.0, ; i>1, then the path
integration problem is intractable. ~ii ! If r>1 and only k eigenvaluesli are positive, i.e., lk.0
andlk1150, then the path integration problem is tractable with exponent k/r , i.e.,

comp~e,Fr !5U~ce2k/r !.

The assumption that all eigenvaluesli are positive is natural since, otherwise, the measurem is
concentrated on a finite dimensional subspace ofX which contradicts the essence of the path
integration problem. Hence, Theorem 1 provides a negative result about tractability of path inte-
gration. It indicates that the classFr of finite smoothness is too large to permit tractability of path
integration in the worst case setting. To get tractability in the worst case setting, we need to shrink
the classFr . This can be done in different ways. One of them is to consider a class of entire
functions, i.e., functions with infinite smoothnessr51`, and this is the subject of Sec. IV.
Another one will be reported in a forthcoming paper.31

For completeness, we also consider the case where onlyk eigenvalues are positive. Then, as
we shall see, the path integration problem becomes ak dimensional weighted integration problem
and is tractable with exponentk/r . Note, however, that ifk is large relative tor then the exponent
is large.

Remark 1 Intractability of path integration in the worst case setting can be broken by switch-
ing to the randomized setting. Indeed, for the classFr , the Monte Carlo algorithm applied to
Sd( f d), as discussed in Introduction, yields an approximation whose expected error is at moste
and cost equals~c11!e22. The Monte Carlo algorithm is almost optimal. Indeed, it can be proven
that the complexity of the path integration problem for the classFr in the randomized setting is

compran~e,Fr !5U~ce22!, ;r>0,

assuming that the eigenvaluesli of ~1! do not go to zero too fast, i.e.,l i5V( i2k) for somek.1.
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Without any assumption on the eigenvaluesli , one can prove that the complexity
compran~e,Fr! goes to infinity faster thane221d for any positived.

For the definition of the randomized setting see, e.g., Ref. 8. The proof of the lower bound on
the complexity uses results of Refs. 33 and 4 for the finite dimensional case, and the proof of
Theorem 1.

Proof of Theorem 1:We first prove~i!. Suppose on the contrary that we have tractability, i.e.,

comp~e,Fr !<Kce2p ~5!

for some nonnegativeK andp.
For r50 let d51, and forr>1 let d be an integer such thatd.rp. ForD5[0,1]d define the

classCr ,d(D) of functionsg:Rd→R which arer times continuously differentiable, whose support
is contained in the setD, and for whichig( i )~t!i<1 for all tPRd and i50,1,...,r . Here, the norm
ig( i )~t!i is defined as in Sec. II with the 2-norm oft, i.e., iti25(j51

d t j
2.

For gPCr ,d(D), Ry5[ ^y,h1&,^y,h2&,... ,̂ y,hd&] for yPL2~@0,1#!, andP5R+Im: X→Rd de-
fine

f ~x!5g~Px!, ;xPX.

It is easy to check that

f ~ i !~x!x1x2•••xi5g~ i !~Px!~Px1!
T~Px2!

T•••~Pxi !
T, ;x1 ,x2 ,...xiPX.

This yields

u f ~ i !~x!x1•••xi u<iPx1i•••iPxi i<i Im~x1!i•••i Im~xi !i<b i ix1iX•••ixi iX ,

whereb5iImi. Hence

i f ~ i !~x!i<b r , ;xPX, ; i<r .

This means thatb2r f belongs toFr . SincehiPIm(X), we haveP(X)5Rd, and it is easy to check
that

S~ f !5E
D
g~ t!rd~ t!dt, ~6!

where the weightrd is given by

rd~ t!5
1

~2p!d/2Al1l2•••ld

exp@2t1
2/~2l1!2t2

2/~2l2!–•••– td
2/~2ld!#.

Observe thatrd is well defined since theli are positive for 1< i<d. Indeed, ifr50 thend51 and
l1.0, and if r>1 then all eigenvaluesli are positive.

The essence of~6! is that the~e/br! complexity of path integration cannot be smaller than the
e complexity of d dimensional weighted integration in the classCr ,d(D). Since~5! holds, this
implies that the latter complexity is alsoO~ce2p!. We now show that this is not true.

Letmn5mn[C
r ,d(D)] denote the minimal error of algorithms usingn function values for the

weighted integration problem~6! in the classCr ,d(D). It is known, see, e.g., p. 58 of Ref. 8, that

mn5 inf
t1 ,t2 ,...,tnPD

sup
gPCr ,d~D !,g~ ti !50

E
D
g~ t!rd~ t!dt.
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Clearly, the above supremum will not increase if we additionally constraing by addingg>0.
There exists a positive numbera5a(d,l i) such thatrd~t!>a.0, ;tP@0,1#d. Hence

mn>a inf
t1 ,t2 ,...,tnPD

sup
gPCr ,d~D !,g>0,g~ ti !50

E
D
g~ t!dt.

The right-hand side is known to beU(n2r /d); see Ref. 4. Hence,mn5V(n2r /d).
If r50, thenmn is bounded uniformly from below inn by a positive number. This means that

for small e, the complexity is infinite, and we have intractability of path integration.
If r>1, then to guaranteemn<e we have to taken5V(e2d/r). This also means that the

complexity isV~ce2d/r!. Sinced/r.p, this is a contradiction, which completes the proof of~i!.
We now prove~ii !. We will be using the notation and results from the proof of part~i!. Since

we have onlyk positive eigenvalues,

S~ f !5E
Rk
g~ t!rk~ t !dt,

where

g~ t!5 f @ Im21~ t1h11t2h21•••1tkhk!#.

As in the proof of ~i!, we conclude that there exists a positive numberg5g(k) such that
ggPCr ,k~Rk!.

From ~i! we also conclude that

comp~e,Fr !5V~ce2k/r !.

Thus, we need a matching upper bound. First, we change variablesui 5 t i /Al i to get

S~ f !5E
Rk
h~u!wk~u!du,

whereh(u) 5 g(Al1u1 ,...,Alkuk) and

wk~u!5~2p!2k/2exp~2iui2/2!, iui25(
i51

k

ui
2.

There exists a positive numberM5M (k,r ,$l i%) depending onk,r , and the eigenvalues, such that
M21hPCr ,k~Rk!.

Note that our problem can be expressed as

S~ f !5E
iui<2

h~u!wk~u!du1(
i51

` E
2i<iui<2i11

h~u!wk~u!du. ~7!

Without loss of generality assume thatn is a power of two. We will approximate the successive
terms in~7!, i50,1,...,211log2 n, usingn/2

i11 points. We choose these pointst i , j to minimize the
error of approximating the functionh in theL2 sense over the domain

Di5$tPRk : i ti<2i11%.

Letmj (Di) denote the error of such an approximation whenj function values are used. It is easy
to check that
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mj~Di !5O@2i ~r1k/2!mj~D0!#, ; i .

Here and below the factors in theO notation may depend onk andr . It is known, see, e.g., Ref.
4, that

mj~D0!5U~ j2r /k!.

There is a linear algorithm,Ai(h) 5 ( j51
n/2i h(t i , j )hi , j* for some functionshi , j* , whose error is

mj (D0). We approximate thei th term of ~7! by

E
Di \ Di21

Ai~h!~u!wk~u!du,

where

D2150”.

Clearly, its error is bounded by

ih2Ai~h!iL2~Di !
iwkiL2~Di \Di21! .

Observe that

iwkiL2~Di \Di21!5O@exp~222i21!#.

Hence, the total erroren of this approximation is bounded by

en5OSmn/2~D0!1 (
i51

211 log2 n

exp~222i21!mn/2i11~Di !1E
iui>n

exp~2iui2/2!duD .
Since the last term isO@exp~2n!# we finally have

en5OFn2r /kS 11 (
i51

211 log2 n

exp~222i21!2i ~r1k/21r /k!D G .
Since the series(i51

` exp(222i21)2i (r1k/21r /k) is convergent, we conclude thaten5O(n2r /k).
Settingn5O(e2k/r), and keeping in mind that our algorithm is linear~so that its cost is propor-
tional tocn!, we conclude that the complexity is bounded byO(cek/r). This completes the proof
of ~ii !. h

IV. ENTIRE F

In this section, we demonstrate tractability of path integration for a certain classF of entire
functions defined on an infinite dimensional spaceX. We do this assuming additionally that we
can compute the derivatives of integrands at zero.

First, we need to analyze the case of entire functions defined on the finite dimensional space
Rd, and then we extend the analysis to the spaceX. In what follows, the spaces of entire functions
will depend on a sequence of positive numbersbk such that

max
k

lkbk,1 and max
k

bk,`. ~8!

Without loss of generality, we assume that
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lkbk>lk11bk11 , ;k.

Sincelk are summable, so arelkbk , and, in particular, they converge to zero. As we shall
see, the complexity of the problem depends on how fast they decay. More precisely, it depends on
the sum-exponent plb of the sequence$lkbk%k defined as follows:

plb5 infH p : (
k51

`

~lkbk!
p,`J . ~9!

Of course, we always haveplb<1.

A. Finite dimensional case

In this subsection, we considerd dimensional integration for a class of entire functions
defined onRd.

Let N1
d denote the set of multi-indicesi5[ i 1 ,i 2 ,...,i d] with non-negative integersi k . By uiu

we mean(k51
d i k . Consider the Hilbert spaceHd of entire functionsf : Rd→R with the inner

product

^ f ,g&Hd
5 (

iPN1
d

f ~ i!~0!g~ i!~0!

Pk5I
d i k!bk

i k
,

where

f ~ i!~0!5
] u iu f ~0!

]x1
i1...]xd

id
.

Define the function

Rd~x,t !5expS (
k51

d

xktkbkD , x,tPRd.

Note that

Rd
~ i!~•,t !ux505)

k51

d

tk
i kbk

i k,

and therefore,

^ f ,Rd~•,t !&Hd
5 (

iPN1
d
f ~ i!~0!)

k51

d tk
i k

i k!
5 f ~ t !.

Note that the last series is absolutely convergent, since it is bounded by

S (
iPN1

d

f ~ i!~0!2

Pk51
d i k!bk

i kD 1/2S (
iPN1

d
)
k51

` tk
2i kbk

i k

i k! D 1/2

5i f iHd
expS (

k51

d

tk
2bk/2D .

This verifies thatHd is a space of entire functions and thatRd is its reproducing kernel.~Basic
information on reproducing kernel Hilbert spaces can be found, e.g., in Ref. 34.! Let Fd be the unit
ball of Hd ,
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Fd5$ fPHd : i f iHd
<1%.

As in the previous section, letSd be the following linear functional fromHd to R:

Sd~ f !5
1

Pk51
d A2plk

E
Rd
expS 2 (

k51

d

tk
2/~2lk!D f ~ t !dt.

We approximateSd by algorithms that usef
~j!~0! as information aboutf . For a given finite subset

M,N1
d , we computef (2i)(0) for iPM and define the algorithm

Ad,M~ f !5 (
iPM

f ~2i!~0!)
k51

d lk
i k~2i k21!!!

~2i k!!
. ~10!

We prove thatAd,M is optimal in the class of algorithms that use informationf (2i)(0) for iPM .
Here, optimality is understood in the sense of minimizing the worst case error. The worst case
error of the algorithmf( f ) 5 f@ f (2i)(0):i P M # in the unit ballFd of Hd is defined as

e~f!5 sup
fPFd

uSd~ f !2f~ f !u.

Theorem 2.The algorithm Ad,M is optimal and we have

e2~Ad,M !5 (
i¹M

)
k51

d
~lkbk!

2i k
„~2i k21!!! …2

~2i k!!
. ~11!

For anyaP~0,2!,

e2~Ad,M !<Cd,amax
i¹M

)
k51

d

~lkbk!
i ka ~12!

with

Cd,a5)
k51

d

„12~lkbk!
22a

…

21/2.

Proof: Take an arbitrary algorithmf that uses informationf (2i)(0) for iPM . Due to Smolyak’s
theorem~see, e.g., p. 76 of Ref. 8!, we know that the worst case error is minimized by a linear
algorithm. Therefore, we may assume thatf is linear,f( f ) 5 ( iPMai f

(2i)(0) for some weights
ai . Observe that forai 5 ai* with ai* 5 Pk51

d lk
i k(2i k 2 1)!!/(2 i k)! we havef5Ad,M .

SinceHd is a reproducing kernel Hilbert space and bothSd and f are continuous linear
functionals, the worst case error off is equal to the average case error off for a certain space and
a certain measure~see, e.g., p. 304 of Ref. 8 and Ref. 35!. More precisely, there exists a separable
Banach spaceBd of functions defined onRd such thatHd is a dense subset ofBd . The spaceBd

is equipped with a zero mean Gaussian measurend whose covariance function is the reproducing
kernelRd ,

Rd~x,t !5E
Bd

f ~x! f ~ t !nd~d f !.

Then
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e2~f!5E
Bd

uSd~ f !2f~ f !u2nd~d f !.

Since for everyx5[x1 ,...,xd]PRd and everyfPHd ,

f ~x!5 (
iPN1

d
f ~ i!~0!)

k51

d xk
i k

i k!
,

we have

Sd~ f !5 (
iPN1

d
f ~2i!~0!)

k51

d lk
i k~2i k21!!!

~2i k!!
.

It is easy to check that

E
Bd

f ~ i!~0! f ~ j !~0!nd~d f !5Rd
~ i,j !~0,0!5d i,j)

k51

d

i k!bk
i k,

whered i,j is the Kronecker delta. From this, we conclude that

e2~f!5 (
iPM

~ai2ai* !2)
k51

d

~2i k!!bk
2i k 1 (

i¹M
)
k51

d
~lkbk!

2i k@~2i k21!!! #2

~2i k!!
.

Hence, the worst case error is minimized iffai 5 ai* . That is,f5Ad,M and the error ofAd,M is
given by ~11!.

We now estimatee2(Ad,M) as follows:

e2~Ad,M !<Smax
i¹M

)
k51

d

~lkbk!
i kaD S (

iPN1
d

)
k51

d
~lkbk!

i k~22a!
„~2i k21!!! …2

~2i k!! D .
We now compute the last sum. Note that it has the same form as~11! for M50” and l̃k5lk

12a/2,
b̃k5bk

12a/2. This corresponds to the square of the error of the zero algorithm for approximating

S̃d~ f !5
1

Pk51
d A2pl̃k

E
Rd
e2(k51

d tk
2/~2l̃k! f ~ t !dt,

where the functions f are now from a reproducing kernel Hilbert space with
kernel R̃d(x,t)5exp((k51

d xktkb̃k). That is, denoting this sum byg, we have

g5E
Bd̃

uS̃d~ f !u2ñd~d f !5E
Rd

exp@2(k51
d xk

2/~2l̃k!#

Pk51
d A2pl̃k

E
Rd

exp@2(k51
d tk

2/~2l̃k!#

Pk51
d A2pl̃k

R̃d~x,t !dt dx.

It is easy to verify that the right-hand side equalsPk51
d [12(lkbk)

22a]21/2. This completes the
proof. h

We now choose a subsetM such that the error of the algorithmAd,M is at moste. For
aP~0,22plb!, let
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Md,a~e!5H iPN1
d : )

k51

d

~lkbk!
i k.~e2/Cd,a!1/aJ . ~13!

Note that the sequence$Cd,a%d is increasing and

Ca5 lim
d→`

Cd,a5)
k51

`

@12~lkbk!
22a#21/2 ~14!

exists. It is finite sincea,22plb implies that(k51
` (lkbk)

(22a),1`. Denote

Ad,a~e!5Ad,Md,a~e! . ~15!

The next theorem presents the error and cost bounds of the algorithmAd,a~e!.
Theorem 3:For every d, e.0, andaP~0,22plb!, the algorithm Ad,a~e! has error at moste,

and its cost is at most~c12!nd,a~e!. Here, nd,a~e! is the cardinality of the set Md,a~e! and denotes
how many derivative evaluations of f are used, and

nd,a~e!<Kae22~22a!/a, ~16!

where

Ka5)
i51

`

@12~l ib i !
22a#21 sup

eP~0,1!

e2~22a!/aS 21
ln Ca /e

2

a ln 1/~l1b1!
D,1`.

Proof: The bounde on the error of the algorithm follows directly from~12! of Theorem 2.
We now prove the bound onnd,a~e!. Note thata,22plb implies thatKa is finite. Let

p52~22a!/a.
For d51, we have

n1,a~e!<11$~ ln Ca /e
2!/@a ln 1/~l1b1!#%<K1,ae2p,

where

K1,a5 sup
eP~0,1!

epS 21
ln Ca /e

2

a ln 1/~l1b1!
D .

Hence~16! holds ford51 sinceK1,a<Ka .
By induction, suppose thatnd21,a(e)<Kd21,ae2p. Then,

nd,a~e!<(
i51

`

nd21,a@e/~ldbd!
a i /2#<Kd21,ae2p(

i50

`

~ldbd!
a ip/25Kd,ae2p,

where

Kd,a5Kd21,a@12~ldbd!
22a#215K1,a)

i51

d

@12~l ib i !
22a#21

<K1,a)
i51

`

@12~l ib i !
22a#215Ka .
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This proves~16!. The algorithmAd,M is linear and its weightsai* can be precomputed. Hence, its
cost is equal tond,a~e! derivative evaluations,nd,a~e! multiplications, andnd,a~e!21 additions.
Hence, it is bounded by~c12!nd,a~e!, as claimed. This completes the proof. h

Theorem 3 presents an upper bound on the worst case complexity of multivariate integration
Sd in the unit ballFd . Namely

comp~e!<~c12!Kae2p* ,

wherep*52~22a!/a. Sincea can be arbitrarily close toa*522plb , we may have

p*.
2plb

22plb
.

Sinceplb<1, the exponentp* of the multivariate problemSd is always bounded by two. Hence,
it is no larger than the exponent of 1/e in the cost function of the classical Monte Carlo method.
It can be even smaller than 2. For instance, forlkbk5Q(k2r) with r.1, we have

p*.
2

2r21
. ~17!

Observe thatlkbk5Q(k2r) holds forbk.1 and for the~r22!-fold Wiener measurem. For the
classical Wiener measurem, we haver52 andp*.2/3.

B. Infinite dimensional case

We now consider the infinite dimensional case,d51`. To that end, letN1
` denote the set of

infinite multi-indices i5@i 1 ,i 2 ,...# with non-negative integersi k for which uiu5(k51
` i k is finite.

This means that anyiPN1
` has almost all coefficients equal zero.

We define the Hilbert spaceH` of entire functions as a limiting case of spacesHd . That is,
H` is a space of entire functionsf : X→R with inner product

^ f ,g&H`
5 (

iPN1
`

~ f ~ i!~0!Pk51
` ~ Im21 hk!

i k!~g~ i!~0!Pk51
` ~ Im21 hk!

i k!

Pk51
` i k!bk

i k
,

where, as before,hk are the eigenelements of the covariance operatorCn .
This is a reproducing kernel Hilbert space whose reproducing kernel is

R`~x,t !5expS (
k51

`

^Im~x!,hk&^Im~ t !,hk&bkD , x,tPX.

Consider the classF as the unit ball ofH` , i.e.,

F5$ fPH` : i f iH`
<1%.

This class is a limiting case of the unit ballsFd in the spacesHd , and all the results from the
previous section apply. More precisely, for a given finite subsetM of N1

` , let

AM~ f !5 (
iPM

S f ~2i!~0!)
k51

`

~ Im21 hk!
2i kD )

k51

` lk
i k~2i k21!!!

~2i k!!
. ~18!

For aP~0,22plb! and
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Ca5)
k51

`

@12~lkbk!
22a#21/2,

see~14!, let

Ma~e!5H iPN1
` : )

k51

`

~lkbk!
i k.~e2/Ca!1/aJ . ~19!

We have the following theorem.
Theorem 4: (i) The algorithm AM is optimal in the class of algorithms that use the same

information, and its worst case error is given by

e2~AM !5 (
iPN1

`
\M

)
k51

`
~lkbk!

2i k@~2i k21!!! #2

~2i k!!
.

(ii) For every e and aP~0,22plb!, the algorithm AMa(e)
has error at moste, and its cost is

bounded by

~c12!Kae22~22a!/a.

(iii) The path integration problem is tractable and its exponent p(F) is bounded by

p~F !<
2plb

22plb
.

For l ib i5Q( i2r) with some r.1, we have

p~F !5
2plb

22plb
5

2

2r21
,

if the information is restricted to function and derivative values at zero.
Proof: The proof of~i! and~ii ! follows from the results of the previous section. Indeed, given

d and fPF, let

f d~ t!5 f @ Im21~ t1h11•••1tdhd!#, with t5@ t1 ,...,td#PRd.

Thenf d
( i)(0) 5 f (u iu)(0)(Im21 h1)

i1•••(Im21hd)
id, andi f diHd

<i f iH`
. Hence,f d belongs to the unit

ball of the spaceHd .
For a givenM , let dM5max$k : i kÞ0 for someiPM %. Then, for everyfPF, we have

AM~ f !5Ad,M~ f d!, ;d>dM .

SinceS( f )5limd→` Sd( f d), the first part of Theorem 4 follows from Theorem 2.
Let na~e! be the cardinality of the setMa~e!. Sincend,a(e)<nd11,a~e! for every d, and

nd,a(e)5na(e) for d > dMa(e)
, the second part follows from Theorem 3.

We now prove~iii !. Obviously, it is enough to show that 2/~2r21! is a lower bound onp(F)
in the class of information restricted to function and derivative values at zero. Consider arbitrary
information consisting ofn function and derivative values at 0. This corresponds to a subsetM of
N1

` having cardinalityn. The minimal worst case error is given bye2(AM), where the algorithm
AM is given by~18!. We have
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e2~AM !5 (
iPN1

`
)
k51

`
~lkbk!

2i k@~2i k21!!! #2

~2i k!!
2 (

iPM
)
k51

`
~lkbk!

2i k@~2i k21!!! #2

~2i k!!
.

Observe that the first sum is greater than 11(k51
` (lkbk)

2/2. Since the second sum has onlyn
elements, we have

e2~AM !>
1

2 (
k5n

`

~lkbk!
25Q~n2~2r21!!.

To guarantee that the error is at moste we have to taken5V(e22/(2r21)). This completes the
proof of Theorem 4. h
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After the publication of this paper it was brought to the author’s attention that its content
overlaps a part of an earlier article by I. Mezic´ and S. Wiggins,1 which contains many other results
on the geometry of three-dimensional, divergence-free vector fields.

1I. Mezić and S. Wiggins, J. Nonlinear Sci.4, 157 ~1994!.

0022-2488/96/37(4)/2089/1/$10.00
2089J. Math. Phys. 37 (4), April 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Why the Thirring model cannot fulfill canonical
anticommutation relations

Klaus Baumann
Institut für Theoretische Physik, Universita¨t Göttingen, Bunsenstrasse 9,
D-37073 Go¨ttingen, Germany

~Received 2 May 1995; accepted for publication 2 January 1996!

Perturbative and constructive arguments show that the Gross–Neveu model with
N>2 flavor degrees is asymptotically free. Assuming canonical anticommutation
relations~CAR!, which are quite plausible, and some technicalities, we show for
the Thirring model, i.e., the case ofN51 flavor, that the fields are necessarily free.
This explains from an axiomatic point of view the different behavior depending on
the number of flavors. ©1996 American Institute of Physics.@S0022-
2488~96!01504-5#

I. INTRODUCTION AND RESULTS

The Thirring1 model is a soluble relativistic field theory of interacting Fermi fields in 111
space time dimensions. The Gross–Neveu2 model is a generalization thereof toN>2 flavor de-
grees of freedom, i.e., there areN complex spinor fieldsci and the bare interaction is given by

2gS (
i51

N

c̄ ig
mc i D S (

j51

N

c̄ jgmc j D . ~1.1!

From perturbation theory3 and from the constructive approach4,5 it is known that forN>2 the
massive Gross–Neveu model is asymptotically free. It may even be that the fields fulfill canonical
anticommutation relations~CAR!. This is quite satisfactory because in an earlier paper6 we have
shown that in 111 dimensions only 4-Fermi interaction may be compatible with CAR. On the
other hand, all explicitely known solutions of the massless Thirring model7 ~i.e., N51! have
noncanonical field dimensions except for the noninteracting case. To shed some light on this
strikingly different behavior depending on the numberN of flavors we shall use an axiomatic
approach. Assuming CAR, irreducibility of the fields, and some technicalities we shall show that
for N51 free fields are the only solutions.

Let us outline how the paper will be organized:
At the end of this section we shall give the precise assumptions, state our results, and make

some comments. In Sec. II we derive estimates onl -fold commutators based onL2-bounds for the
fields inherent in CAR. In Sec. III we use these estimates to characterize the structure of multiple
commutators, where also first and second time derivatives are involved. The methods used in these
two sections are closely related to those used by Powers8 to prove his famous ICAR-theorem. In
Sec. IV we derive a second order field equation. Using the Jost–Lehmann–Dyson representation
we shall show that free fields are the only solutions. This closes the proof of our theorem. Finally,
in Appendices A and B we give some mathematical background which in our opinion is necessary
for a complete and thorough treatment of the problem.

General assumptions: Within the Wightman framework of quantum field theory we consider
a complex Fermi field c5~c1,...,c2N! with 2N components and its adjoint field
c†5(c1

† ,...,c2N
† ) in 111 space-time dimensions. For convenience of notation we put

c2N11 :5c1
† ,...,c4N :5c2N

† .
We assume
~i! canonical anticommutation relations~CAR!
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$ck~ t,x!,c l~ t,y!%5dk12N,ld~y2x!. ~1.2!

~ii ! Irreducibility of the smeared time zero fieldsck(0,f ) with fPL2~R! andk51,...,4N, i.e.,
the only bounded operators commuting with allck( f ) arec-numbers.

~iii ! Technical assumption:~a! On the dense domainD15$P ~c~0,f !!V,fPS ~R!% ~polyno-
mials in the smeared time zero fields acting on the vacuum! there exist the operatorsċk(0,f ).
~b! The following limits shall exist in the strong sense onD1

lim
t→0

1

t
@c~ t, f !2c~0,f !#5ċ~0,f ! ~1.3!

for all fPS ~R!.
Remark:Concerning the domainD1 these technical assumptions can be weakened, but we

cannot assumeċ(t, f ) to be aboundedoperator, because this implies immediately thatc is a free
field ~see Lemma 5!.

Main theorem: Under the above general assumptions withN51 and the additional technical
assumption~iii ! ~c! On the domainD1 there exist the operatorsc̈k(0,f ) for all fPS ~R!. ~d! The
following limits shall exist in the strong sense onD1

lim
t→0

1

t2
@c~ t, f !22c~0,f !1c~2t, f !#5c̈~0,f ! ~1.4!

for all fPS ~R!.
We shall show thatc is necessarily a free field.
Remark:Similar to CAR the technical assumptions~iii ! impose restrictions on the high energy

behavior of the theory. Free Dirac fields do fulfill all these assumptions of course.
Crucial for this proof is the fact that there are at most four independent fields available! This

result demonstrates thatN51, i.e., just one flavor degree of freedom, is a very special case.
Nontrivial solutions of the Thirring model~regardless of mass! will always behave in a nonca-
nonical way and never fulfill CAR. Neither the special form of the bare interaction nor Lorentz
covariance do play any role.

II. ESTIMATES OF l -FOLD COMMUTATORS

Let C[c0(t, f 0),c1( f 1),...,c l( f l)] denote anl -fold commutator, i.e.,

C@c0~ t, f 0!,...,c l~ f l !#5 H $@ ...@$c0~ t, f 0!,c1~ f 1!%c2~ f 2!#•••c l~ f l !%,
@$...@$c0~ t, f 0!,c1~ f 1!%c2~ f 2!#•••c l~ f l !#,

l odd,
l even, ~2.1!

where the fieldsc1,...,c1 are fields at time zero~whenever we writec without a time argument we
meanc at t50!. All test functionsf 0 ,...,f l are elements ofS ~R! and in additionf 0 shall have
compact support contained in an interval of lengthL.

Lemma 2.1:In the limit t→0 we have the estimate

iC@c0~ t, f 0!,...,c l~ f l !#i}utu~ l21!/2. ~2.2!

Remark:To prove this lemma only CAR and locality are needed. So this lemma and its corollaries
are true for an arbitrary number of independent Fermi fields too.

Corollary 2.2: If two of the Fermi fieldsc1,...,cl are equal then the estimate is improved by
a factorutu, i.e.,

iC@c0~ t, f 0!,...,c l~ f l !#i}utu~ l11!/2. ~2.3!
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Corollary 2.3: If we replace the distributionC[c0(t,x0),...,c l(xl)] by C@c0(t,x0),
...,c l(xl)]Pm51

M (xkm 2 xlm) with km ,l mP$0,1,...,l % then the estimate is improved by a factorutuM,
i.e.,

I E dx f~x0!••• f ~xl !C@c0~ t,x0!,...,c l~xl !# )
m51

M

~xkm2xlm!I}utu~ l2112M !/2. ~2.4!

Corollary 2.4: If we interchange two of the test functionsf 1 ,...,f l then we get for the
difference of the two corresponding multiple commutators the estimate

iC@c0~ t, f 0!,...,ck~ f k!•••cm~ f m!•••#2C@c0~ t, f 0!,...,ck~ f m!•••cm~ f k!•••#i}utu~ l11!/2.
~2.5!

Proof: ~i! From CAR it follows

ic~ t, f !i<i f i2 ~L22norm of f !. ~2.6!

With the help of a partition of unity~in L2-sense! consisting of characteristic functionsxm
t of

length utu and centered aroundmutu we have

f5(
m

fxm
t . ~2.7!

Because of locality and because of the Jacobi identities

@A$B,C%#1@B$C,A%#1@C$A,B%#50, ~2.8!

$A@B,C#%1$B@A,C#%1@C$A,B%#50, ~2.9!

we get

C@c0~ t, f 0!,...,c l~ f l !#5 (
m0 ,m1 ,...,ml
umk2m0u<1

C@c0~ t, f 0xm0

t !,...,c l~ f lxml

t !#. ~2.10!

The sum overm0 has at most~L/utu)12 terms because suppf 0 is contained in an interval of length
L. Now

ic~ t, fxm
t !i5ic~0,fxm

t !i5i fxm
t i2<i f i`utu1/2 ~2.11!

and therefore

iC@c0~ t, f 0!,...,c l~ f l !#i<S Lutu 12D2l3l i f 0i`•••i f l i`utu~ l11!/2}utu~ l21!/2. ~2.12!

This proves Lemma 2.1.
Remark:For evenl we can improve Lemma 2.1 by a factorutu1/2 using the same methods but

by estimatingi$C†,C%i instead ofiCi !
~ii ! For our convenience we consider only the casel odd. Assume thatck1

andck2
are the

same fields. We can use the Jacobi identities to rearrange the fields in the multiple commutator
under consideration such thatck1

and ck2
are at the last two positions. We have to estimate

$[Cl22,c( f l21]c( f l)% whereCl22 is somel22-fold commutator. Nowc is a Fermi field and
therefore the Jacobi identity implies
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$@Cl22 ,c~ f l21!#c~ f l !%5 1
2~$@Cl22 ,c~ f l21!#c~ f l !%2$@Cl22 ,c~ f l !#c~ f l21!%!

5
1

2 (
m0 ,m1 ,...,ml
umk2m0u<1

~$@Cl22 ,c~ f l21xml21

t !#c~ f lxml

t !%

2$@Cl22 ,c~ f lxml21

t !#c~ f l21xml

t !%!, ~2.13!

where in the last lineCl22 is a short hand notation ofC@c0(t, f 0xm0

t ),...,c l22( f l22xml22

t )#. Now

~ fxm
t !~x!5 f ~xm

t !xm
t ~x!1~ f ~x!2 f ~xm

t !!xm
t ~x!, ~2.14!

where the pointxm
t is defined to be the center of the characteristic functionxm

t and by linearity we
get

c~ fxm
t !5 f ~xm

t !c~xm
t !1c~~ f2 f ~xm

t !!xm
t !. ~2.15!

But

ic~~ f2 f ~xm
t !!xm

t !i<F E
2t/2

t/2

u f ~xm
t 1x!2 f ~xm

t !u2dxG1/2
<i f 8i`F E

2t/2

t/2

x2 dxG1/2
5i f 8i`~ 1

12!
1/2utu3/2, ~2.16!

whereasic( f (xm
t )xm

t )i<i f i`utu1/2. So to prove Corollary 2.2 we have to control only products of
terms like f (xm

t )c(xm
t ). All other contributions behave already likeutu( l11)/2.

$@Cl22 ,c~ f l21#c~ f l !%5 (
m0 ,m1 ,...,ml
umk2m0u<1

$@Cl22 ,c~xml21

t #c~xml

t !%
1

2
~ f l21~xml21

t ! f l~xml

t !

2 f l~xml21

t ! f l21~xml

t !!1O~ utu~ l11!/2!. ~2.17!

The distance between the pointsxml

t andxml21

t is less or equal to 3utu because the indicesml and

ml21 differ at most by 2. This implies the bound

u f l21~xml21

t ! f l~xml

t !2 f l~xml21

t ! f l21~xml

t u

<u f l21~xml21

t !uu f l~xml

t !2 f l~xml21

t !u1u f l~xml

t !uu f l21~xml21

t !2 f l21~xml

t !u

<3utu@ i f l21i`i f l8i`1i f l i`i f l218 i`#. ~2.18!

This additional factorutu in front proves Corollary 2.2.
~iii ! Corollary 2.3 is obvious because by locality we may assume without loss of generality

uxkm2xlmu<3utu. ~2.19!
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~iv! The proof of Corollary 2.4 uses the same ideas as are used in the proof of corollary 2.2.
As in ~ii ! we consider only the casel odd and we use the Jacobi identities to rearrange the fields
such thatck andcm are at the last two positions. We have to estimate

i$@Cl22 ,c l21~ f l21!#c l~ f l !%2$@Cl22 ,c l21~ f l !#c l~ f l21!%i . ~2.20!

Except for a factor of 2 this equals the right hand side in the first line of Eq.~2.13! with the only
difference that the Fermi fields in the positionsl21 and l are not necessarily the same but this
does not hamper the following argumentation.

III. MULTIPLE COMMUTATORS INVOLVING ċ RESP. c̈

Now we have the technical tools to get some structural results on multiple commutators at
time 0 but involvingċ and c̈.

Theorem 3:
~1! Under the above assumptions we have

$@$ċk0
~x0!,ck1

~x1!%ck2
~x2!#ck3

~x3!%5lk0k1k2k3)i51

3

d~xi2x0!, ~3.1!

with lk0k1k2k3
P C bounded by 24A3 andlk0k1k2k3

antisymmetric under the exchange of two
neighboring indicesk0 ,k1 ,k2 ,k3 .
~2! If in addition c̈k0

( f ) exists then

$@$c̈k0
~x0!,ck1

~x1!%ck2
~x2!#•••ck5

~x5!%5lk0 ;k1•••k5)i51

5

d~xi2x0!, ~3.2!

with lk0 ;k1•••k5
bounded and antisymmetric with respect tok1 ,...,k5 .

~3! If furthermore the model is built up from just four independent Fermi fieldsc1 ,c2 ,c3

5c1
† ,c45c2

† then

$@$c̈k0
~x0!,ck1

~x1!%ck2
~x2!#ck3

~x3!%5@Ak0 ;k1k2k3
1Bk0 ;k1k2k3

•]0#)
i51

3

d~xi2x0! ~3.3!

with A andB antisymmetric w.r.t.k1 ,k2 ,k3 .
Proof: ~i! Statement~1! has already been proven in Ref. 6 and for statement~2! we use the

same line of argumentation. To keep the paper self-contained let me sketch the proof:
From Lemma 2.1 it follows that

lim
t→0

I F H F H ck0
~ t, f 0!2ck0

~ f 0!

t
,ck1

~ f 1!J ck2
~ f 2!Gck3

~ f 3!J ck4
~ f 4!G I50, ~3.4!

because for finitet it behaves}(1/utu)utu3/2 and furthermore

lim
t→0

I H F H ck0
~ t, f 0!2ck0

~ f 0!

t
,ck1

~ f 1!J ck2
~ f 2!Gck3

~ f 3!J I,`. ~3.5!

By irreducibility of the time zero fields we get

$@$ċk0
~ f 0!,ck1

~ f 1!%ck2
~ f 2!#ck3

~ f 3!%5~V,$@$ċk0
~ f 0!,ck1

~ f 1!%ck2
~ f 2!#ck3

~ f 3!%V!. ~3.6!
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By locality it is obvious that$@$ċk0
(x0),ck1

(x1)%ck2
(x2)#ck3

(x3)% has its support on the mani-
fold x05x15x25x3 only and from Corollary 2.3 we conclude that

$@$ċk0
~x0!,ck1

~x1!%ck2
~x2!#ck3

~x3!%~xkj2xki ![0. ~3.7!

This gives immediately

$@$ċk0
~x0!,ck1

~x1!%ck2
~x2!#ck3

~x3!%5ld~x12x0!d~x22x0!d~x32x0!. ~3.8!

If we want to interchange two neighboring fields we have to use either the Jacobi identities~2.8/9!
or the relation

$ċk~x0!,c l~x1!%1$ck~x0!,ċ l~x1!%50, ~3.9!

which follows from CAR via differentiation with respect to time. This proves statement~1! and
also—by small modifications—statement~2!.

~ii ! To prove statement~3! we start from~2! and we observe that at least two of the fields
ck1

,...,ck5
must be equal because there are only four different fields by assumption. Under these

circumstances it follows from Corollary 2.2 that

$@$@$c̈k0
~ f 0!,ck1

~ f 1!%ck2
~ f 2!#•••ck5

~ f 5!%[0 ~3.10!

for all possible fieldsck5
and all test functionsf 5. Furthermore

C4 :5@$@$c̈k0
~ f 0!,ck1

~ f 1!%•••ck4
~ f 4!# ~3.11!

is a bounded operator for any choice of test functions~this can be seen by estimating$C4
† ,C4%

using the methods of Lemma 2.1!. Because all oddn-point functions vanish, there exists a unitary
and Hermitean operatorUI ~see Ref. 9! such that

UIV5V, UIck~ t, f !UI
2152ck~ t, f !. ~3.12!

With the help ofUI we can reformulate~3.10! as follows

@UIC4 ,ck5
~ f 5!#5UI$C4 ,ck5

~ f 5!%50 ~3.13!

and by irreducibility we conclude

UIC45~V,UIC4V!5~V,C4V!50 ~3.14!

becauseC4 is an odd monomial in the Fermi fields. ButUI is unitary and therefore

~3.15!

In contrast toC4 the operatorC3 is not a priori a bounded operator, so it is not allowed to
conclude naively from irreducibility thatC3 is a c-number too. We have to proceed more care-
fully.
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First of allC3 can be uniquely extended to a closed operatorC̄3, because the adjoint operator
C3
† is densely defined. From~3.15! it follows that C̄3 commutes with allck( f ) for fPS ~R!. Due

to the facts that

~i! S ~R! is dense inL2~R!,
~ii ! ck( f ) are bounded byi f i2, and
~iii ! C̄3 is a closed operator

it follows that C̄3 commutes with allck( f ) for fPL2~R!. Since the fields act irreducibly on the
Hilbert spaceH, it follows from the generalized Schur lemma thatC̄3 is a c-number~see Ap-
pendix B for details!. Therefore

$@$c̈k0
~ f 0!,ck1

~ f 1!%ck2
~ f 2!#ck3

~ f 3!%5~V,$@$c̈k0
~ f 0!,ck1

~ f 1!%ck2
~ f 2!#ck3

~ f 3!%V!.
~3.16!

From Corollary 2.3 withM52 we see

$@$c̈k0
~x0!,ck1

~x1!%ck2
~x2!#ck3

~x3!%~xl12xm1
!~xl22xm2

![0. ~3.17!

So we end up with the representation

$@$c̈k0
~x0!,ck1

~x1!%ck2
~x2!#ck3

~x3!%5~A2B1]12B2]22B3]3!k0 ;k1k2k3)i51

3

d~xi2x0!,

~3.18!

with 434 matricesA,Bi .
Finally we have to showB15B25B35:B. If so, we can write

~A2B1]12B2]22B3]3!)
i51

3

d~xi2x0!5~A1B]0!)
i51

3

d~xi2x0!. ~3.19!

To proveB15B25B35:B we combine Corollary 2.4 with Corollary 2.3. As a result we get

E
R4

$@$c̈k0
~x0!,ck1

~x1!%ck2
~x2!#ck3

~x3!%~xl2xm!• f 0~x0! f 1~x1!@ f 2~x2! f 3~x3!

2 f 3~x2! f 2~x3!#dx0 dx1 dx2 dx350, ~3.20!

and consequently we get for the difference

D:5$@$c̈k0
~ f 0!,ck1

~ f 1!%ck2
~ f 2!#ck3

~ f 3!%2$@$c̈k0
~ f 0!,ck1

~ f 1!%ck2
~ f 3!#ck3

~ f 2!%

5dE
R
~ f 0f 1f 2f 3!~x!dx, for somed. ~3.21!

On the other hand a direct calculation ofD using relation~3.18! gives

D5~B32B2!H E
R
~ f 0f 1f 28 f 3!~x!dx2E

R
~ f 0f 1f 2f 38!~x!dxJ , ~3.22!

for all f kPS ~R!. This can only be true ifB25B3 andd50. In a similar way we showB15B2 .
From the Jacobi identities we get the antisymmetry with respect tok1 ,k2 ,k3 of the coeffi-

cientsAk0 ;k1k2k3
andBk0 ;k1k2k3

under the exchange of two neighboring indices.
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IV. A FIELD EQUATION FOR c

Theorem 4: Under the above assumptions the fieldcI with the four componentsc1,...,c4
fulfills the second order differential equation

cÏ ~ t,x!2@A~0!1A~1!]x#cİ ~ t,x!2@B~0!1B~1!]x1B~2!]x
2#cI ~ t,x!50, ~4.1!

with constant 434 matricesA( i ) andB( j ).
Proof: It suffices to prove~4.1! at t50 because time translations are implemented by unitary

operators.
~i! The starting point is the representation formulas~3.3! resp.~3.1! for the three-fold com-

mutators

$@$c̈k0
~x!,ck1

~x1!%ck2
~x2!#ck3

~x3!%5@Ak0 ;k1k2k3
1Bk0 ;k1k2k3

•]x#)
i51

3

d~xi2x!, ~4.2!

respectively,

$@$ċk0
~x!,ck1

~x1!%ck2
~x2!#ck3

~x3!%5l•ek0k1k2k3)i51

3

d~xi2x!. ~4.3!

We assumelÞ0, because otherwisec is a free field from the very beginning as has been shown
in Ref. 6.
For fixed indexk0 it should be possible to subtract a suitable linear combination ofċ l and
]xċ l ,l51,2,3,4 fromc̈k0

such that

H F H c̈k0
~x!2(

l51

4

~Ak0l
~0!ċ l~x!1Ak0l

~1!]xċ l~x!!,ck1
~x1!J ck2

~x2!Gck3
~x3!J [0 ~4.4!

for all indicesk1, k2, andk3. The coefficientsAk0l
(1) andAk0l

(2) are determined by the equations

Ak0 ;k1k2k3
5l(

l51

4

Ak0l
~0!
•e lk1k2k3, Bk0 ;k1k2k3

5l(
l51

4

Ak0l
~1!
•e lk1k2k3. ~4.5!

If two of the three indicesk1, k2, andk3 agree thenAk0 ;k1k2k3
5 0 5 Bk0 ;k1k2k3

. Therefore there are
only four different sets of indices such thatAk0 ;k1k2k3

andBk0 ;k1k2k3
do not vanish identically,

namely$1,2,3%, $2,3,4%, $1,3,4,%, $1,2,4,%.
As a result we get~remembere123451!

Ak01
~0! 5

1

l
Ak0 ;234

, Ak02
~0! 52

1

l
Ak0 ;134

, Ak03
~0! 5

1

l
Ak0 ;124

, Ak04
~0! 52

1

l
Ak0 ;123

~4.6!

and similar expressions forAk0l
(1) .

~ii ! Now we want to apply irreducibility to Eq.~4.4! smeared with test functions

H F H c̈k0
~ f !2(

l51

4

~Ak0l
~0!ċ l~ f !1Ak0l

~1!~]xċ l !~ f !!,ck1
~ f 1!J ck2

~ f 2!Gck3
~ f 3!J [0. ~4.7!
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The operator@$c̈k0
( f ) 2 ( l51

4 (Ak0l
(0)ċ l( f ) 1 Ak0l

(1)(]xċ l)( f )),ck1
( f 1)%ck2

( f 2)# is unbounded, it

contains the operatorC3 of Eq. ~3.15!, but we can proceed as we did in Sec. III withC3 and
conclude that

F H c̈k0
~ f !2(

l51

4

~Ak0l
~0!ċ l~ f !1Ak0l

~1!~]xċ l !~ f !!,ck1
~ f 1!J ck2

~ f 2!G
5S V,F H c̈k0

~ f !2(
l51

4

~Ak0l
~0!ċ l~ f !1Ak0l

~1!~]xċ l !~ f !!,ck1
~ f 1!J ck2

~ f 2!GV D 50

~4.8!

because the vacuum expectation value of three Fermi fields vanishes.
Following the same line of argumentation we can even go a step further and use irreducibility

again to obtain

H c̈k0
~ f !2(

l51

4

~Ak0l
~0!ċ l~ f !1Ak0l

~1!~]xċ l !~ f !!,ck1
~ f 1!J

5S V,H c̈k0
~ f !2(

l51

4

~Ak0l
~0!ċ l~ f !1Ak0l

~1!~]xċ l !~ f !!,ck1
~ f 1!J V D . ~4.9!

~iii ! We want to determine the singularity structure of the two-point function~4.9!. By locality
the corresponding commutator function at equal times consists of ad-distribution and finitely
many derivatives thereof. From Corollary 2.3 we get

I E
R2

$ck~ t,x!,c l~y!%~y2x!M f ~x!g~y!dx dyI}utuM ~4.10!

but this implies

~V,$ċk~x!,c l~y!%V!~y2x!2[0, resp.~V,$c̈k~x!,c l~y!%V!~y2x!3[0. ~4.11!

Therefore

S V,H c̈k0
~x!2(

l51

4

~Ak0l
~0!1Ak0l

~1!]x!ċ l~x!,ck1
~y!J V D

5Ck0k1
~0! d~y2x!1Ck0k1

~1! d8~y2x!1Ck0k1
~2! d9~y2x!. ~4.12!

But because of CAR we have

d~y2x!5$ck1
† ~x!,ck1

~y!% and ck1
† 5ck112 mod 4. ~4.13!

So there exist matricesB~0!, B~1!, andB~2! such that

H c̈k0
~x!2(

l
@Ak0l

~0!1Ak0l
~1!]x#ċk0

~x!2(
l

@Bk0l
~0!1Bk0l

~1!]x1Bk0l
~2!]x

2#ck0
~x!,ck1

~y!J [0,

~4.14!

for all k0 ,k1P$1,2,3,4%. Or written with test functions
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H c̈k0
~ f !2(

l
@Ak0l

~0!ċk0
~ f !1Ak0l

~1!~]xċ !k0~ f !1Bk0l
~0!ck0

~ f !1Bk0l
~1!~]xc!k0~ f !1Bk0l

~2!

3~]x
2c!k0~ f !#, ck1

~g!J [0, ~4.15!

for all gPS ~R! and allk151,2,3,4. Irreducibility proves the theorem notwithstanding the fact that
the operator under consideration is unbounded.

V. PROOF OF THE MAIN THEOREM

~i! Theorem 4 is valid under the assumptions of the main theorem. In Fourier space the second
order differential equation~4.1! looks as follows:

$2p0
22 ip0A

~0!2p0p1A
~1!2B~0!1 ip1B

~1!1p1
2B~2!%c̃~p0 ,p1!50. ~5.1!

For up1u,C, C.0 arbitrary, and sufficiently largeup0u the operator

H 212
1

p0
~ iA ~0!1p1A

~1!!2
1

p0
2 ~B~0!2 ip1B

~1!2p1
2B~2!!J ~5.2!

is invertible. Thereforec̃k(p0 ,p1)50 if up1u,C and if p0
2.M22C2 for someM2.0. But by the

Jost–Lehmann–Dyson representation it follows that

c̃k~pI !V50 if pI
2.M2. ~5.3!

In a former paper10 we have shown that under these circumstancesc can be decomposed into
c(x0 ,x1) 5 c (0)(x0 ,x1) 1 c (1)(x0 ,x1), wherec

(0) is a generalized free field, i.e.,

$c~0!~x0 ,x1!,c
~0!~y0 ,y1!%5~V,$c~0!~x0 ,x1!,c

~0!~y0 ,y1!%V!, ~5.4!

andc (1) fulfills the wave equationhc (1)(x0 ,x1)50. Both fields are local and

$c~0!~x0 ,x1!,c
~1!~y0 ,y1!%5~V,$c~0!~x0 ,x1!,c

~1!~y0 ,y1!%V!. ~5.5!

~ii ! Our aim is to show that the operatorsċk(x0 , f ) are bounded for allk51,...,4 and all
fPS ~R!.

From CAR we see that at equal timesx05y0 we have

$c~1!~x0 ,x1!,c
~1!~x0 ,y1!%5~V,$c~1!~x0 ,x1!,c

~1!~x0 ,y1!%V!. ~5.6!

The general solution ofhc (1)(x0 ,x1)50 is of the form

c~1!~x0 ,x1!5c~1 !~x01x1!1c~2 !~x02x1! ~5.7!

and from locality we get$c (1)(x0 1 x1),c
(2)(y0 2 y1)%[0. Because of

]0c
~1 !~x01x1!5]1c

~1 !~x01x1!, ]0c
~2 !~x02x1!52]1c

~2 !~x02x1! ~5.8!

and by differentiating~5.6! with respect tox1 andy1 we have

2102 Klaus Baumann: Why the Thirring model cannot fulfill CAR

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



$ċ~1!~x0 ,x1!,ċ
~1!~x0 ,y1!%5$ċ~1 !~x01x1!,ċ

~1 !~x01y1!%1$ċ~2 !~x02x1!,ċ
~2 !~x02y1!%

5~V,$ċ~1!~x0 ,x1!,ċ
~1!~x0 ,y1!%V!. ~5.9!

Thereforeċ (1)(x0 , f ) is bounded. Obviouslyċ
(0)(x0 , f ) is bounded too becausec (0) is a gener-

alized free field.
~iii ! Finally we want to prove the following.

Lemma 5: If in addition to CAR and irreducibility we requireċk(t, f ) for all k and all
fPS ~R! to be bounded operators thenck are free fields.

Proof: For «.0 let $hl
«, lPZ% be a smooth partition of unity such that

~i! hl
«PD([( l2 3

4)«,(l1
3
4)«]),

~ii ! 0<hl
«(x)<1,

~iii ! ( lPZhl
«(x)[1,

Take fPD([2L,L]) andg1 ,g2 ,g3PS ~R! and putt50. For any«.0 we have

$@$ċk0
~ f !,ck1

~g1!%ck2
~g2!#ck3

~g3!%5 (
l0 ,l1 ,l2 ,l3

$@$ċk0
~ f hl0

« !,ck1
~g1x l1

« !%

3ck2
~g2x l2

« !#ck3
~g3x l3

« !%, ~5.10!

where the indices of summation are restricted tou l 02 l 1u<1, u l 22 l 1u<2, andu l 32 l 1u<3 because
of locality. l 1 has about~2uLu12!/« values and we have

$ċk0
~ f @hl121

« 1hl1
« 1hl111

« #!,ck1
~g1x l1

« !%5$ċk0
~ f !,ck1

~g1x l1
« !%. ~5.11!

Therefore

i$@$ċk0
~ f !,ck1

~g1!%ck2
~g2!#ck3

~g3!%i<
2uLu12

«
iċk0

~ f !iig1i`ig2i`ig3i`2
35•7«3/2

→0 as « goes to 0. ~5.12!

All operators under consideration are bounded, so we can apply irreducibility twice and we get

$ċk0
~ f !,ck1

~g1!%5~V,$ċk0
~ f !,ck1

~g1!%V!. ~5.13!

Finally using Corollary 3.3 to determine the singularity structure of the 2-point function~5.13! and
irreducibility again we see thatcI must obey a first order differential equation

cİ ~ t,x!1@A1B]x#cI ~ t,x!50. ~5.14!

APPENDIX A: AN UPPER BOUND FOR l

From Theorem 3 we know

$@$ċk0
~ f 0!,ck1

~ f 1!%ck2
~ f 2!#ck3

~ f 3!%5lk0k1k2k3ER~ f 0f 1f 2f 3!~x!dx. ~A1!

If we take f 0 ,...,f 3 equal to the characteristic function of the interval@0,1# the integral on the rhs
is just 1. For this choice we get
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i$@$ċk0
~ f 0!,ck1

~ f 1!%ck2
~ f 2!#ck3

~ f 3!%i5ulk0k1k2k3
u. ~A2!

We approximateċk0
( f 0) by (1/t)(ck0

(t, f 0) 2 ck0
( f 0)) and have to estimate

1

utu
i$@$ck0

~ t, f 0!,ck1
~ f 1!%ck2

~ f 2!#ck3
~ f 3!%i

5
1

utu (
m

$@$ck0
~ t, f 0xm

t !,ck1
~ f 1~xm21

t 1xm
t 1xm11

t !!%ck2
~ f 2~xm21

t 1xm
t

1xm11
t !!#ck3

~ f 3~xm21
t 1xm

t 1xm11
t !!%i . ~A3!

The sum has at most~1/utu!12 terms. From the bounds

ick0
~ t, f 0xm

t !i<ixm
t i25utu1/2, ick~ f !~xm21

t 1xm
t 1xm11

t !i<u3tu1/2 ~A4!

we get immediately the following estimate for the rhs of~A3!

<8
1

utu S 1utu 12D utu1/2u3tu3/2→24)'41.57. ~A5!

APPENDIX B: IRREDUCIBILITY FOR UNBOUNDED OPERATORS

Whereas the fieldsc(t, f ) are bounded operators because of CAR, this is no longer true
a priori for the time derivativesċ(t, f ), c̈(t, f ),... . Nevertheless we want to use irreducibility
arguments for these fields too. So we have to explain why this is correct. We do this in some detail
even if most of the material collected here can be found in rudimentary form already in the article
by Powers.8

Lemma B1:For fPL2~R! let ck( f ), k51,...,2K be an irreducible representation of the CAR
algebra in the Hilbert spaceH and letT be a closed operator onH satisfyingck( f )T,Tck( f )
for all k51,...,2K and fPL2~R!.
ThenT5l1 with lPC.

Proof:We refer to the bookNormed Algebrasby M. A. Naimark.11 From Sec. 21.2 we cite
the following.

‘‘ Corollary 1: Supposex→Ax , x→Bx are irreducible representations inH resp.H8 ~of a
fixed symmetric algebra! and thatT is a closed linear operator fromH into H8 satisfying
BxT,TAx .

Then eitherT50, or the representations are equivalent andT5rU, wherer is a positive
number.’’

U is an isometry fromH to H8. Specializing to the caseH5H8 we getU unitary. If
Ax5Bx then AxU5UAx and thereforeU5u1 with uPC, uuu51. As a consequence we have
T5ru1 with ru5lPC. If we take asAx the irreducible algebra generated by1, ck( f ), fPL2~R!
we get Lemma B1.

In our framework the operatorsT show up as limits of bounded operators inB~H!. The
following lemma gives a criterion whetherT is closable.

Lemma B2:For tPR$0% let A(t)PB~H!. On a dense domainD1,H we assume that
s2lim t→0A(t)F5AF exists and alsos2lim t→0A(t)

†F5ÂF.
ThenA is closable and can be uniquely extended to the closed operatorĀ.

Proof: A and Â are densely defined. For allF1, F2PD1 we have (F1 ,AF2)5(ÂF1,F2).
This impliesA†.Â andA† is densely defined. ThereforeA is closable.

Corollary B3: Let D15$P ~c( f )!V, fPS ~R!% andH5D̄1. Let A(t) be either
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1

t
@ck~ t, f !2ck~0,f !# fPD~R! or ~B1!

1

t2
@ck~ t, f !22ck~0,f !1ck~2t, f !# ~B2!

and assume the existence ofs2lim t→0A(t)5A onD1 in the strong sense. ThenA is closable. The
same is true for the multiple commutatorsC(t) like $A(t),ck1

( f 1)%,@$A(t),
ck1

( f 1)%ck2
( f 2)],$@$A(t),ck1

( f 1)%ck2
( f 2)#ck3

( f 3)% and so on, i.e.,s2lim t→0C(t)5C exists on
D1 andC is closable.
For fPS ~R! obviously we haveck( f )D1,D1 and icki<i f i2 because of CAR.

Lemma B4:For fPS ~R! and allk assume

i@A~ t !,ck~ f !#i<cutua,a.0 ~B3!

then onD Ā we have for allfPL2~R!

@Ā,ck~ f !#50. ~B4!

We prove the lemma in three steps:

~i! OnD1 we have forfPS ~R!

@A,ck~ f !#50. ~B5!

Proof: Let FPD1

iA~ t !ck~ f !F2ck~ f !A~ t !Fi<i@A~ t !,ck~ f !#iiFi→0 as t goes to 0

s2 lim
t→0

A~ t !ck~ f !F5Ack~ f !F exists becauseck~ f !D1,D1 ,

s2 lim
t→0

ck~ f !A~ t !F5ck~ f !AF exists becauseck~ f ! is bounded. ~B6!

~ii ! OnD Ā we have forfPS ~R!

@Ā,ck~ f !#50. ~B7!

Proof: On D1 the operatorsA and Ā agree. To eachFPD Ā there exists a sequence
~FnPD1unPN! such that

lim
n→`

~ iF2Fni1iĀF2ĀFni !50. ~B8!

By ~i! we haveĀck( f )Fn5ck( f )ĀFn . Now ck( f ) is bounded and therefore

lim
n

ck~ f !ĀFn5ck~ f !ĀF resp. lim
n

ck~ f !Fn5ck~ f !F ~B9!

exist. ButĀ is closed and thereforeĀck( f )F5vk( f )ĀF.
~iii ! OnD Ā we have forfPL2~R!

@Ā,ck~ f !#50. ~B10!
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Proof:We haveick( f )i<i f i2. To eachfPL2~R! there is a sequence~f nPS ~R!unPN! such
that lim ni f2 f ni250. ForFPD Ā we get by~ii ! the relationĀck( f n)F5ck( f n)ĀF and trivially
lim nck( f n)F5ck( f )F, respectively, limnck( f n)ĀF5ck( f )ĀF. Therefore limnĀck( f n)F
5ck( f )ĀF exists and becauseĀ is closed we getĀck( f )F5ck( f )ĀF for FPD Ā .
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We find the minimal mathematical structure to represent quantum eigenstates with
complex eigenvalues with no need of analytic continuation. These eigenvectors
build doublets in non-Hilbert spaces. We construct exact solutions for the
Friedrichs model that continuously join the ones of the free Hamiltonian. We ex-
tend the Wigner operator to these non-Hilbert spaces and enlarge the concept of
normalized vectors via the definition of the doublets. Making use of these doublets,
we describe systems whose states have initial conditions out of Hilbert space.
© 1996 American Institute of Physics.@S0022-2488~96!00204-4#

I. INTRODUCTION

As it is generally known, unstable quantum states can be rigorously represented by~Gamow!
vectors of rigged Hilbert spaces defined using Hardy class functions.1–4 Then a natural question
arises: is this the most general rigorous mathematical model for unstable quantum states?

The aim of this paper is to find the minimal mathematical structure to represent quantum
states in non-Hilbert spaces and to conjecture a provisional definition of probability for them. In
this approach we describe the states in an eigenbasis of the free Hamiltonian$u1&,uv&%, wherev
~0<v,`! is the frequency which represents the energy of the system andu1& is a discrete eigen-
state of eigenvaluev0.0.

We know that the eigenvalue problem for unbounded self-adjoint operators is not solvable in
Hilbert space.5 The Gelfand–Maurin theorem6–8 deals with this problem and allows the appear-
ance of eigenvalues that belong eventually to the complex plane. This is the case, for example, of
the Hamiltonian of a discrete harmonic oscillator coupled to a bath described by the Fredrichs
model which is usually solved by analytic continuation~and, in this case, there are unstable
quantum states that belong to the above mentioned rigged Hilbert space9–14! or by perturbation
methods.15

In this work we construct exact solutions for the Friedrichs model that are continuous in the
coupling constant. This is a desirable property of the solutions we are looking for. In other words,
we would like to bypass the Poincare´ cathastrophe16 generalized to the quantum domain. Then, all
the solutions emerge in a natural way, with no need of analytic continuations17 or perturbative
methods15 and they belong to a vector space that contains Hilbert spaceH. This extended space
is defined by the construction itself. Rigged Hilbert space will be a particular case of this con-
struction and we believe that it encompasses other mathematical structures where unstable quan-
tum states can be rigorously defined~nuclear spaces or convex algebras of operators18!.

Furthermore, as the extended wave functions do not belong to Hilbert space any more, they
lose their usual role in the probabilistic interpretation. Making use of the Friedrichs example, we
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introduce a doublet, namely the wave function plus a partner wave function, both belonging to
convenient extended spaces, which seems to yield a criterion for extending the definition of
probability.

The paper is organized as follows: in Sec. II we show that the requirement of continuity in the
coupling parameter implies the appearance of complex eigenvalues. In Sec. III we define an
operation~the star operation! which assigns a real number to the components of the doublet in
generalized spaces. Section IV is devoted to well posing the Hamilton equations in the new space
and in Sec. V we find the spectrum of the Hamiltonian. In Sec. VI we discuss the relation between
the star operation and an extension of the time reversal Wigner operator. In Sec. VII we discuss
the problem of defining probabilities and finding mean values in non-Hilbert spaces. In Sec. VIII
we give a brief resume of the results. In Appendix A we show that our treatment allows us to
recover the non-pure-exponential decay in Hilbert space. In Appendix B we study the statistics of
a non-Hilbert eigenvector and its corresponding energy.

II. COMPLEX EIGENVALUES AND ANALYTICITY IN THE COUPLING PARAMETER

In this section we study the consequences of demanding a well-behavedl→0 limit for the
eigenvectors and eigenvalues of the Friedrichs HamiltonianH. This Hamiltonian reads

H5H01H int , ~1!

where

H05v0u1&^1u1E
0

`

vuv&^vudv

is the free Hamiltonian,

H int5lE
0

`

g~v!@ uv&^1u1u1&^vu#dv,

v0 is the discrete eigenvalue,vPR
1 is the continuous spectrum, and the eigenvectors of the free

Hamiltonian satisfy

^1u1&51, ^1uv&5^vu1&50, ^vuv8&5d~v2v8!,

lPR and the interactionlg(v) causes transitions between the discrete and continuous states. Let
uc& be a vector belonging to the vector spaceJ spanned by the eigenvectors ofH0 , the space
whereH0 andH are defined,

uc&5w1u1&1E
0

`

w~v!uv&, uc&PJ, ~2!

where

w15^1uc& and w~v!5^vuc&.

In Hilbert spaceH, where quantum mechanics of stable states is formulated, the coefficients
satisfy

w1w1*1E
0

`

w~v!w* ~v!dv,` ~3!
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~* indicates complex conjugation!. With this condition,H and its conjugated space have the
topology of the norm. Nevertheless, asH0 andH are unbounded continuous operators, we can
relax condition~3! to work in the less restrictive vector spaceJ.H.

In terms of wave functions, we have the evolution equations

^1uHuc&5v0w11lE g~v!w~v!dv5 i
]

]t
w1 , ~4!

^vuHuc&5vw~v!1lg~v!w15 i
]

]t
w~v!. ~5!

As ~4! and ~5! are true for anyuc&, we have

^1uH5v0^1u1lE
0

`

g~v!^vudv5^1u i
]

]t
, ~6!

^vuH5v^vu1lg~v!^1u5^vu i
]

]t
. ~7!

If we call ^ 1̃ u and ^ṽu the left eigenstates ofH, we have

^ 1̃ uH5ṽ0^ 1̃ u5^ 1̃ u i
]

]t
, ~8!

^ṽuH5ṽ^ṽu5^ṽu i
]

]t
, ~9!

H being a self-adjoint operator acting onH and ṽ0 , ṽPR.

To obtain the vectors that diagonalize the Hamiltonian, let^1u, ^vu and^ 1̃ u, ^ṽu be linked by
the ansatz

^ 1̃ u5j^1u1E
0

`

f~v!^vudv, ~10!

^ṽu5jṽ^1u1E
0

`

fṽ~v!^vudv. ~11!

Taking into account that we have not defined a topology inJ, all we can demand of the vectors
with respect to the continuous parameterl is that

lim
l→0

^ 1̃ uc&5^1uc&, ~12!

lim
l→0

^ṽuc&5^vuc&, ~13!

;uc&eJ and

lim
l→0

ṽ05v0 . ~14!

For short we will write~12! and ~13! as
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lim
l→0

^ 1̃ u5^1u, ~15!

lim
l→0

^ṽu5^uv, ~16!

and refer to them as ‘‘the weak limits.’’
The ansatz~10! and~11! plus the dynamical evolution lead to the following equations for the

coefficientsj, f~v!:

~ṽ02v0!5lE
0

`

f~v!g~v!dv, ~17!

~ṽ02v!f~v!5jlg~v!. ~18!

If ṽ0PR
1, the solution to~17! and ~18! is

f~v!5d~ṽ02v!1
lg~v!

~ṽ02v6 i e!
. ~19!

This solution should be rejected because when replacing~19! in ~10! the d-function causes the
undesired behavior

l50⇒^ 1̃ u5j^1u1^v0uÞ^1u. ~20!

Therefore to guarantee that thed-function disappears fromf~v!, ṽ0 must not belong toR1. In
this case we have

f~v!5
lg~v!

~ṽ02v!
. ~21!

Replacing~21! in ~17! we have the condition

a~ṽ0!•j50 with a6~v!5v02v2l2E
0

` g2~v8!dv8

v6 i e2v8
, ~22!

where

a1~v!2a2~v!522p il2g2~v!. ~23!

If a were different from zero,j had to be zero, and we would have again, in Eq.~10!, the
undesired behavior

l50⇒^ 1̃ uÞ^1u.

So we needa(ṽ0)50.
In this section we have considered only real eigenvalues. Therefore, reminding the reader that

the eigenvalueṽ0 does not belong toR
1, if ṽ0 is real, it must belong toR

2. However, asv0.0,
whenl approaches continuously 0,ṽ0 goes through the forbidden zoneṽ0.0. So we conclude
that there is no acceptableṽ0 real solution. Then the rootṽ0 of a~v!50 must be complex and it
cannot be an eigenvalue of a self-adjoint Hamiltonian operator overH.
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III. THE STAR OPERATION

In order to diagonalize the Hamiltonian preserving continuity inl, we reformulate the prob-
lem from the very beginning, namely, from the field equations~6!–~9!. Let us define the spaceJ8
of the linear functionals overJ

F„w1 ,w~v!…5neC

where„w1,w~v!… are the components of vectoruc&eJ. In spaceJ, in spite of the fact that we have
lost the notion of normalizability, a physical meaningful concept of probability can be defined all
the same as we shall see. To do this, let us define a mapping! on vectors ofJ:

!:J→J8

!:„w1 ,w~v!…→„w1 ,w~v!…![„w1
!,w!~v!…,

F
„w1 ,w~v!…~„w1 ,w~v!…!5w1w1

!1E
0

`

w~v!w!~v!5^c!uc&,

satisfying
~a! F

„w1 ,w(v)…
(„w1 ,w(v)…) is a ~finite! number constant in time and

~b! @„w1,w~v!…!#!5„w1,w~v!…. Then vector

uc&5w1u1&1w~v!uv&

and its partner

^c!u5w1
!^1u1w!~v!^vu5F

„w1 ,w~v!…~• !,

whose coefficients obey conditions~a! and~b!, are said to belong to the spacesF andF!. These
spaces satisfyH,F,J andH8,F!,J8. ~We will show in Appendix B that there is at least
one vector inF which does not belong toH.! Properties~a! and~b! make brâ c!u a convenient
partner of ketuc& in order to define probabilities.

Of course, ifuc&PH we have that

^c!u5^cu, w1
!5w1* , and w!~v!5w* ~v!,

and the usual state of affairs is reproduced.
As we shall see in Sec. IV, the time evolution ofw1

! andw!~v! is completely determined by
the action of the Hamiltonian overw1 andw~v! and conditions~a! and ~b!.

IV. FIELD EQUATIONS IN THE EXTENDED SPACE F%F!

We demand the action of the ‘‘partner’’ of the Hamiltonian, namelyH!, which determines the
temporal evolution ofF

„w1 ,w(v)…
to satisfy

H!F
„w1 ,w~v!…„w1 ,w~v!…5F

„w1 ,w~v!…~H„w1 ,w~v!…!. ~24!

In order to find it explicitly, we use the fact that the temporal evolution of„w1,w~v!… is given by
~4! and~5! and the independence of time requested by condition~a! of Sec. III. Then, in compo-
nents, Eq.~24! reads

v0w1w1
!1lE

0

`

g~v!w~v!w1
!~v!dv1E

0

`

vw~v!w!~v!dv1lE
0

`

g~v!w1w
!~v!dv

52 iw1] tw1
!2 i E

0

`

w~v!] tw
!~v!dv, ~25!
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which splits into

v0u1&1lE
0

`

g~v!uv&dv5~2 i !
]̄

]t
u1&, ~26!

vuv&1lg~v!u1&5~2 i !
]̄

]t
uv&, ~27!

which are nothing but the ket version of~6! and ~7! ~]̄ indicates left derivative!.
Now we want to obtain the diagonal form of the complete set of equations in theF%F!

extended space of doublets$uc&,^c!u%. The set of equations for the bras has the same form as~8!
and ~9! but, in order to indicate that the Hamiltonian eigenvalues may be complex, we call them
z0̃ , z̃ instead ofṽ0 , ṽ:

^ 1̃uH5 z̃0^ 1̃u5^ 1̃u i
]

]t
, ~28!

^z̃ uH5 z̃^ z̃ u5^z̃ u i
]

]t
. ~29!

The ket set of the diagonal equations is obtained from Eq.~24! using ~28! and ~29!. They are

H!u 1̃&5 z̃0u 1̃&5~2 i !
]̄

]t
u 1̃ &, ~30!

H!uz̃ &5 z̃ u z̃ &5~2 i !
]̄

]t
uz̃ &. ~31!

Kets u 1̃ &, uz̃ & are the right eigenvectors ofH!.

We want to emphasize that, in general,^ 1̃ u Þ ( u 1̃ &)! and^z̃ u Þ (uz̃ &)!, i.e.,^ 1̃ u and^ z̃ u are
not necessarily the partners ofu 1̃&, uz̃ &. Indeed, the star operation is not always well defined
among the right and left eigenvectors ofH.

V. THE SPECTRUM OF THE HAMILTONIAN

The Friedrichs model has been long treated in the literature. Recently, in Ref. 15, it was found
a basis that diagonalized the Hamiltonian preserving continuity in the coupling parameterl using
a perturbative method. On the other hand, in Ref. 17 an exact solution was obtained regardless of
the continuity inl.

Here we find a diagonal basis for the same problem that it is not only an exact solution but
also preserves the desired continuity inl. In order to diagonalize the Hamiltonian we will use an
ansatz to relate the diagonal and nondiagonal basis, namely,

^ 1̃ u5j^1u1E
0

`

f~v!^vudv, ~32!

u 1̃&5j!u1&1E
0

`

f!~v!uv&dv, ~33!

^ z̃ u5j z̃^1u1E
0

`

f z̃~v!^vudv, ~34!
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uz̃ &5j z̃
! u1&1E

0

`

f z̃
!~v!uv&dv. ~35!

Applying the Hamiltonian to the ansatz~32!–~35! we obtain

f~v!5j
lg~v!

z̃02v
, f!~v!5j!

lg~v!

z̃02v
,

jS v02 z̃02l2E
0

` g2~v!

z̃02v
dv D 50⇒a~ z̃0!50.

Requiring the good behavior with respect tol, the coefficientf z̃(v) results:

f z̃~v!5d~ z̃2v!1j z̃

lg~v!

z̃2v
. ~36!

Here d( z̃2v) is the d-function generalized to complex numbers. This extension of Dirac’s
d-function as mentioned by Gelfand and Shilov19 goes beyond the tempered distributions and was
used by Nakanishi20 in the discussion of the Friedrichs model. In order to preserve the good limit,
d( z̃2v) must be different from zero for everyz̃, i.e., $z̃% must coincide withR1. So we callṽ
this real variable:

fṽ~v!5d~ṽ2v!1jṽ

lg~v!

ṽ2v
, ~37!

jṽ~ ṽ2v0!5lg~ṽ !1jṽl2E
0

` g2~v!

ṽ2v
dv, ~38!

i.e.,

jṽ5
lg~ṽ !

a~ṽ !
and fṽ~v!5d~ṽ2v!1

l2g~v!g~ṽ !

~ṽ2v!a~ṽ!
.

The singularities ina(ṽ) and (ṽ2v)21 must be avoided making the shift6 i e. We do not write
it explicitly so as not to embarrass the notation. The equivalent star equations to~37! and ~38!
yield

jṽ
! 5

lg~ṽ !

a~ṽ !

and

fṽ
! ~v!5d~ṽ2v!1

l2g~v!g~ṽ !

~ṽ2v!a~ṽ!
.

Putting it all together, the change of basis that diagonalizes the Hamiltonian results in

^ 1̃ u5j^1u1jE
0

` lg~v!

z̃02v
^vudv, ~39!
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u 1̃&5j!u1&1j!E
0

` lg~v!

z̃02v
uv&dv, ~40!

^ṽu5
lg~ṽ !

a~ṽ !
^1u1E

0

`Fd~ṽ2v!1
l2g~v!g~ṽ !

~ṽ2v!a~ṽ!G^vudv, ~41!

uṽ&5
lg~ṽ !

a~ṽ !
u1&1E

0

`Fd~ṽ2v!1
l2g~v!g~ṽ !

~ṽ2v!a~ṽ!G uv&dv, ~42!

where

@jj!#215
]a~z!

]z U
z5 z̃0

[a8.

When the initial conditions belong toH, solutions~39!–~42! are such that temporal evolution
keeps the state intoH. As we have already said,^ṽu of Eq. ~41! must be understood as^ṽ6u and
the same foruṽ& of Eq. ~42!. Taking this into account, a straightforward computation proves that
they are nothing but the retarded and advanced Lippman–Schwinger solutions, which are exact
solutions of the Friedrichs model.21

We will also need the inverse of the ansatz. To obtain it, we posed the inverse problem and,
after some calculation, we obtained

^1u5h^ 1̃u1E
0

` lg~ṽ !

a~ṽ !
^ṽudṽ, ~43!

u1&5h!u 1̃&1E
0

` lg~ṽ !

a~ṽ !
uṽ&dṽ, ~44!

^vu5
lg~v!

z̃02v
h^ 1̃ u1E

0

`Fd~v2ṽ !1
l2g~v!g~ṽ !

~ṽ2v!a~ṽ!G^ṽudṽ, ~45!

uv&5
lg~v!

z̃02v
h!u 1̃&1E

0

`Fd~v2ṽ !1
l2g~v!g~ṽ !

~ṽ2v!a~ṽ!G uṽ&dṽ. ~46!

The composition of the transformations~39!–~42! and~43!–~46! gives the identity transformation,
so one is the inverse of the other. Having found a regular transformation which has a regular
inverse, we conclude that we have found a new basis for the spaceF%F! and also the spectrum
of the Hamiltonian.

VI. THE STAR OPERATION AND TIME REVERSAL

In order to avoid the difficulties of the bra–ket notation when dealing with antilinear
operators,22 we will use the wave function formalism to generalize the time reversal operator and
to compare it with the star operation.

We know that inH the action of the time reversal operatorT, in the wave function formal-
ism, comes from the conjugation of the Schro¨dinger equation, i.e., we have

T:H→H,

w→w* and t→2t.

2114 Castagnino et al.: Doublet representation of non-Hilbert eigenstates

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



In F, Schrödinger equations~28!–~31! ~with z̃5ṽ! in the wave function formalism read

Hw̃15 z̃0w̃15 i
]

]t
w̃1 , ~47!

Hw̃~ ṽ !5ṽw̃~ ṽ !5 i
]

]t
w̃~ ṽ !, ~48!

H!w̃1
!5 z̃0w̃1

!52 i
]

]t
w̃1

!, ~49!

H!w̃!~ṽ !5ṽw̃!~ṽ !52 i
]

]t
w̃!~ṽ !. ~50!

As we can immediately see, in the extended space the appearance of complex eigenvalues
forces the time reversal to be related to the star operation which is not a simple complex conju-
gation. In the extended space we can define an extension ofT,

T̃:F→F!, T̃21:F!→F,

whose action can be represented by

w→w! when t→2t.

On the other hand, asz̃05ṽ02 ig/2 with gPR
1 ~conventionally!, solution to Eq.~47!,

w̃1~ t !5w̃1~0!exp~2 i z̃0t !5w̃1~0!exp~2 i ṽ0t !exp~gt/2!,

is not defined whent→`. Analogously, solution to Eq.~49!,

w̃1
!~ t !5w̃1

!~0!exp~ i z̃0t !5w̃1
!~0!exp~ i ṽ0t !exp~2gt/2!,

is not defined whent→2`. So, temporal evolution described by Eqs.~47!–~50! is not defined in
the whole interval@2`, `# but in @2`, `! for solutions which evolve withH and in~2`, `# for
those which evolve withH* . This fact could be related to the splitting of the system evolution
group into two semigroups15 for the case of non-pure states and will be studied elsewhere.

VII. DISCUSSION ABOUT PROBABILITY AND MEAN VALUE OF OBSERVABLES IN
EXTENDED SPACES

In this section we will sketch a discussion about a possible probabilistic interpretation for our
extended formalism. Consider that the system is initially free and that the self-interaction begins at
t50 and finishes at an arbitrary timet, when the system becomes free again. During the interac-
tion, eigenvalues of the operatorH may be complex and states represented byuc& and ^c!u may
also belong to the extended space. In order to define probability in this space we consider again the
scalar quantity

^c!uc&5w1w1
!1E

0

`

w~v!w!~v!dv5^c̃!uc̃&5w̃1w̃1
!1E

0

`

w̃~ṽ !w̃!~ṽ !dṽ ~51!

that we have introduced in Sec. III to construct the spaceF! and we normalize it to 1. Herêc!uc&
is a scalar conserved under the change of basis and constant in time and reduces to the standard
norm whenuc& belongs toH. However, we cannot be assured that each term of Eq.~51! is a real
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number. Nevertheless, if it is so, we are able to interpret each term of the sum~51! as a probability
itself, i.e.,w1(t)w1

!(t) represents the probability of finding the system in the discrete eigenstate of
the free Hamiltonian and

E
v

v1Dv

w~v,t !w!~v,t !dv

represents the probability of finding the system in the continuous spectrum with frequencies into
@v, v1Dv# after the interaction. In this case, we have a natural extension of the definition of
probability fromH to the extended spaceF%F!.

Notice that, even in cases in which the! operation is well defined in the extended space and
is conserved in time and under changes of basis, these facts are not enough to guarantee that the
first term and any partial integral in the sum~51! belong to the interval@0, 1#. As it was pointed
out,23 we can interpretate this fact as being related with initial conditions not possible to be
realized or representing a situation for which probability cannot be verified directly or a combi-
nation of both. These situations would be impossible, not in the sense that the chance for their
occurrence is zero, but in the sense that the conditions of preparation or verification of those states
are unattainable. The problem of an adequate interpretation of negative probabilities has been long
studied. See, for example, Refs. 23 and 24.

With our definition of probability the mean value of a constant of motionA is defined as

Ā5S iaiP~w i !1E aP „w~a!…da5S iaiw iw i
!1E aw~a!w!~a!da,

whereai anda belong to the discrete and continuous spectra ofA, respectively.Ā is in general a
complex number and reduces to a real one whenA is a self-adjoint operator onH. Notice that
when the eigenvaluesai are positive real numbers, the mean valueĀ is a positive real number if
probability also is. This allows us to have states with positive defined unperturbed energy out of
H. Namely, even in the extended space, when the initial conditions are so that their corresponding
probabilities belong to@0, 1#, we can guarantee the positivity of the mean value of the unperturbed
energyH̄0 :

H 0̄5v0u1&^1u1E
0

`

vuv&^vudv.

So we can relate reality and positivity of probability with positivity of this energy. It is in this
sense that we have said that negative probabilities correspond to impossible initial conditions.

Regardless our interpretation is merely a conjecture we will use to see how it works in two
cases: in Appendix A the conjecture applied to a Hilbert space vector lets us reproduce the
non-pure exponential decay. In Appendix B we use the conjecture to compute probabilities and
mean values of energy for a system whose initial conditions are out ofH.

VIII. CONCLUSIONS

We have found an exact solution of the Friedrichs model which for the continuous spectrum
coincides with the Lippman–Schwinger solutions. To find the right and left eigenvectors of the
Hamiltonian with interaction, we have neither made use of analytic continuations nor perturbative
methods. As we have preserved continuity in the coupling parameterl, our approach is also
applicable to systems that must be treated in a perturbative way. We also found the minimal
mathematical structure to represent quantum states. To generalize the notion of probability from
H, we defined the star operation in Sec. III and constructed the doublets of wave functions. The
star operation is also related to the time reversal operation in the extended space. The main tool
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that we have is the scalar magnitude defined by Eq.~51!. This scalar magnitude, built up with a
doublet of wave functions, plays in the extended space an analogous role to the norm inH and
reduces to it when the star operation reduces to the conjugation. Then we have a probabilistic
interpretation of this extension of the norm. Further restrictions conducing to the choice of a
particular topology will be imposed when they appear necessary because of physical reasons. In a
forthcoming work we will try to apply our formalism to more realistic models like those of Refs.
25–29.

Finally we show in Appendix A that our approach gives the correct non-purely exponential
decay amplitude and, in Appendix B, our formalism is applied to describe quantum states out of
H.
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APPENDIX A: THE NON-PURE EXPONENTIAL DECAY

Here we apply our formalism to study the decay of a state whose initial condition belongs to
H and that represents, att50, a particle with energyv0:

^1u5S w151
w~v!50D .

Then, aŝ 1u belongs toH, we have

~^1u!![u1!&5u1&5S w1
!51

w!~v!50D .
Temporal evolution in the diagonal basis is

w̃1~ t !5
1

Aa8
e2 i z̃0t, w̃1

!~ t !5
1

Aa8
ei z̃0t,

w̃~ ṽ,t !5
lg~ṽ !

a~ṽ !
e2 i ṽt, w̃!~ṽ,t !5

lg~ṽ !

a~ṽ !
ei ṽt.

So, in the nondiagonal basis, the wave functions are

^1u1~ t !&5w1~ t !5
e2 i z̃0t

a8
1E

0

` l2g2~ṽ !

a2~ṽ !
e2 i ṽt dṽ,

^1!~ t !u1&5w1
!~ t !5

ei z̃0t

a8
1E

0

` l2g2~ṽ !

a2~ṽ !
ei ṽt dṽ.

Changing the contours of integration appropriately~see Appendix A of Ref. 17! and Eq.~23!,
w1(t) results in

w1~ t !52
i

2p E
G

e2 izt

a~z!
dz.
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With our definition, the probability of having the system in the discrete state isw1w1
!. By direct

computation it can be seen that

w1
!~ t !5w1* ~ t !

as corresponds to a vector belonging toH. So

w1w1
!5w1w1*5uw1u2

predicts the correct non-pure exponential decay amplitude with the Zeno30,31 and Khalfin
effects.32,33

APPENDIX B: PROBABILITY AND UNPERTURBED ENERGY OF A NON-HILBERT
EIGENSTATE

We consider now a system whose initial state is the discrete eigenstate ofH with eigenvalue
z0̃ :

^ 1̃u5S 10D . ~B1!

Given ~B1!, its partner satisfying Eq.~51! is

~^ 1̃u!![u 1̃!&5u 1̃&5S 10D .
Temporal evolution gives

F S e2 i z̃0t

0 D , S ei z̃0t0 D G .
In terms of the eigenfunctions of the free Hamiltonian, the doublet reads

w1~ t !5
1

Aa8
e2 i z̃0t, w1

!~ t !5
1

Aa8
ei z̃0t, ~B2!

w~v!5
lg~v!

z̃02v

1

Aa8
e2 i z̃0t, w!~v!5

lg~v!

z̃02v

1

Aa8
ei z̃0t. ~B3!

As ~B2! and~B3! are solutions of the Schro¨dinger equations that do not belong to Hilbert space,
they need to be given a physical interpretation.

First we check the conservation of probability:

w̃1w̃1
!1E

0

`

w̃~ṽ !w̃!~ṽ !dṽ51

and

w1w1
!1E

0

`

w~v!w!~v!dv5
1

a8
1E

0

` 1

a8

l2g2~v!

~ z̃02v!2
dv5

1

a8
1

a821

a8
51

because
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a5z2v02l2E
0

` g2~v!

~z2v!
dv⇒]a~z!

]z U
z5 z̃0

5a8511l2E
0

` g2~v!

~ z̃02v!2
dv.

With this procedure we have a way to identify a pure state corresponding to a complex
eigenvalue in terms of the eigenfunctions of the free Hamiltonian: it is a state with probability 1/a8
of being in the discrete level with energyv0 and probability~a821!/a8 of being in any levelv of
the continuum, respectively. These probabilities are constant in time as it corresponds to an
eigenstate ofH.

We now compute the mean value of the energy when the interaction finishes:

H̄0~ w̃1 ,w̃1
!!5v0w1w1

!1E
0

`

vw~v!w!~v!dv. ~B4!

Using ~B2! and ~B3! we have

H̄0~ w̃1 ,w̃1
!!5

1

a8~ z̃0!
S v01E

0

`

v
l2g2~v!

~ z̃02v!2
dv D . ~B5!

Some comments are in order:

~1! H̄0 is a real number if probability is.
~2! If the interactiong(v) is such that (w̃1 ,w̃1

!) is a possible initial condition, the unperturbed
energy of the state is a positive number.

~3! Whenl→0, we have the correct limit liml→0 H̄05v0 .
~4! The mean value of the evolution operator during the interaction that corresponds to

(w̃1 ,w̃1
!) state is the complex numberH̄ (w̃1 ,w̃1

!) 5 z̃0 . This is not surprising because it is only

the evolution operator and the energy is not defined during the interaction.
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Small corrections to the uncertainty relations, with effects in the ultraviolet and/or
infrared, have been discussed in the context of string theory and quantum gravity.
Such corrections lead to small but finite minimal uncertainties in position and/or
momentum measurements. It has been shown that these effects could indeed pro-
vide natural cutoffs in quantum field theory. The corresponding underlying quan-
tum theoretical framework includes small ‘‘noncommutative geometric’’ correc-
tions to the canonical commutation relations. In order to study the full implications
on the concept of locality, it is crucial to find the physical states of then maximal
localization. These states and their properties have been calculated for the case with
minimal uncertainties in positions only. Here we extend this treatment, though still
in one dimension, to the general situation with minimal uncertainties both in posi-
tions and in momenta. ©1996 American Institute of Physics.
@S0022-2488~96!00305-3#

I. INTRODUCTION

The short distance structure of conventional geometry can be considered experimentally con-
firmed up to the order of 1 TeV~see, e.g., Ref. 1!. In string theory and quantum gravity certain
corrections to the short distance structure and the uncertainty relations have been suggested to
appear at smaller scales~the latest at the Planck scale! ~see, e.g., Refs. 2–7 and, for a recent
review, Ref. 8!.

Here we continue a series of articles9–15 in which are studied the quantum theoretical conse-
quences of small corrections to the canonical commutation relations

@xi , pj #5 i\~d i j1a i jklxkxl1b i jklpkpl1••• !, ~1!

including the possibility that also@xi , xj #Þ0, @pi , pj #Þ0. A crucial feature of this ‘‘noncommu-
tative geometric’’ ansatz, which was first studied in Ref. 11, is that for appropriate matricesa and
b, Eq. ~1! implies the existence of finite lower bounds to the determination of positions and
momenta. These bounds take the form of finite minimal uncertaintiesDx0 andDp0, obeyed by all
physical states. In fact, the approach covers the case of those corrections to the uncertainty
relations which we mentioned above~see Ref. 12!.

A framework with a finite minimal uncertaintyDx0 can as well be understood to describe
effectively nonpointlike particles than as describing a fuzzy space. As discussed in Refs. 12–15,
the approach, with appropriately adjusted scales, could have therefore more generally a potential
for an effective description of nonpointlike particles, such as, e.g., nucleons or quasi-particles in
solids.

a!Electronic mail address: fehaye@wicc.weizmann.ac.il
b!Electronic mail address: a.kempf@amtp.cam.ac.uk
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Analogously, on large scales a minimal uncertaintyDp0 may offer new possibilities to de-
scribe situations where momentum cannot be precisely determined, in particular on curved
space.13

Using the path integral formulation it has been shown in Ref. 13 that such noncommutative
background geometries can ultraviolet and infrared regularize quantum field theories in arbitrary
dimensions through minimal uncertaintiesDx0 ,Dp0 . However, a complete analysis of the modi-
fied short distance structure, and, in particular, the calculation of the states of maximal localiza-
tion, has so far only been carried out for the special case of the commutation relations
@x, p#5i\~11bp2!, in Ref. 15. The reason is that those cases are representation theoretically much
easier to handle in which eithera or b vanish, i.e., with minimal uncertainties in either position or
in momenta only. We now solve the more general, though still one-dimensional, problem involv-
ing both minimal uncertainties in positions and in momenta.

We define the associative Heisenberg algebraA with corrections parametrized by small
constantsa,b>0,

@x, p#5 i\~11ax21bp2!, ~2!

or, in a notation which will prove more convenient~q>1!,

@x, p#5 i\F11~q221!S x2

4L2
1

p2

4K2D G , ~3!

where the constantsL,K carry units of length and momentum and are related by

4KL5\~11q2!. ~4!

While the first correction term contributes for large^x2&5^x&21(Dx)2, which is the definition of
the infrared, the second correction term contributes for large^p2&5^p&21(Dp)2, i.e., in the ultra-
violet.

The corresponding uncertainty relation

DxDp>
\

2
$11a„~Dx!21^x&2…1b„~Dp!21^p&2…% ~5!

holds in all * -representations of the commutation relations and reveals these infrared and ultra-
violet modifications as minimal uncertainties in positions and momenta:12

~Dxmin!
25L2

q221

q2 F11~q221!S ^x&2

4L2
1

^p&2

4K2D G , ~6!

~Dpmin!
25K2

q221

q2 F11~q221!S ^x&2

4L2
1

^p&2

4K2D G . ~7!

In particular, for all physical states, i.e., for alluc&PD with D,H being any*-representation of
the commutation relations ofA in a Hilbert spaceH, there are finite absolutely smallest uncer-
tainties~all uc& normalized!:

~Dxuc&!5^cu~x2^x&!2uc&1/2>LA12q22 ;uc&PD, ~8!

~Dpuc&!5^cu~p2^p&!2uc&1/2>KA12q22 ;uc&PD. ~9!

We will here only deal with the kinematical consequences of possible corrections to the commu-
tation relations. Arbitrary systems can be considered and studies on dynamical systems, including
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the calculation of the spectra of Hamiltonians and integral kernels such as Green’s functions, have
been carried out for example systems in Refs. 9 and 10. Comparison can also be made with the
features of the discretized quantum mechanics studied, e.g., in Refs. 16–18. An interesting ca-
nonical field theoretical approach with a similar motivation is focusing on generalizing the uncer-
tainty relations among the coordinates.19

II. HILBERT SPACE REPRESENTATION

A crucial consequence of Eqs.~8! and~9! is that there are no eigenvectors tox nor top in any
space of physical states, i.e., in any*-representationD of the generalized commutation relations.
As is clear from the definition of uncertainties, e.g., (Dx) uc&

2 5^cu~x2^cuxuc&!2uc&, eigenvectors to
x or p could only have vanishing uncertainty in position or momentum. In particular, the com-
mutation relations ofA no longer find spectral representations ofx nor of p.

In the situation ofa50 ~or b50!, i.e., withDp050 ~or Dx050!, there is still the momentum
~or position! representation ofA available, in which case the maximal localization states have
been calculated in Ref. 15. Let us now perform the analogous studies for the general case with
a,b.0, where position and momentum space representations are both ruled out.

To this end we use a Hilbert space representation ofA on a generalized Fock space. The
position and momentum operators can be represented as

x5L~a†1a!, p5 iK ~a†2a!, ~10!

where thea anda† obey generalized commutation relations

aa†2q2a†a51 ~11!

and act on the domainD of physical statesD:5$uc&5polynomial~a†!u0&% as

au0&50,

a†un&5A@n11#un11&, ~12!

aun&5A@n#un21&,

where [n] denotes the partial geometric sum or ‘‘q’’-number

@n#5
q2n21

q221
, ~13!

and where theun&:5([n]!) 21/2(a†)nu0&, n51,...,̀ , are orthonormalized,

^n1un2&5dn1 ,n2, ~14!

andD is analytic and dense in the Hilbert spaceH5 l 2.
While x andp ordinarily are essentially self-adjoint, they are now merely symmetric, which is

sufficient to insure that all expectation values are real. The deficiency indices ofx andp are~1,1!,
implying the existence of one-parameter families of self-adjoint extensions. While ordinarily
self-adjoint extensions, e.g., for a particle in a box, need to and can be fixed, there is now the
subtle effect of the self-adjoint extensions not being on common domains, which prevents the
diagonalization ofx or p on physical states, as can also be understood through the uncertainty
relations. For the full functional analytical details see Ref. 12, where these structures have first
been found. We will come back to these functional analytical studies in Sec. VI where we will
explicitly calculate the diagonalizations inH. They are of use for the calculation of inverses ofx
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and p, which are not only needed to describe certain quantum mechanical potentials, but ulti-
mately also to invert kinetic terms, e.g., of the formp22m2 to obtain propagators from the field
theoretical path integral~see Ref. 13!.

III. MAXIMAL LOCALIZATION STATES

The absence of eigenvectors ofx or p in all * -representationsD of the commutation relations
physically implies the absence of absolute localizability in position or momentum, i.e., there are
no physical states that would haveDx50 or Dp50. More precisely, the uncertainty relation,
holding in allD, implies a ‘‘minimal uncertainty gap:’’

'” uc&PD:Dxuc&,Dx0 and '” uc&PD:Dpuc&,Dp0 . ~15!

The state of maximal localization in positionucx
ml& with given position expectationx and vanishing

momentum expectation is defined through

^cx
mluxucx

ml&5x, ^cx
mlupucx

ml&50, ~Dx! uc
x
ml&5Dxmin . ~16!

Explicitly the minimal uncertainty in position then reads

~Dx! uc
x
ml&

2
5L2

q221

q2 S 11~q221!
^x&2

4L2 D ~17!

with the corresponding~now not infinite! uncertainty in momentum:

~Dp! uc
x
ml&

2
5K2

~q211!2

q2~q221! S 11~q221!
^x&2

4L2 D . ~18!

We focus on maximal localization inx; the case of maximal localization inp is fully analogous.
As shown in Ref. 15, a state of maximal localization is determined by the equation

„~x2^x&!1 ia~p2^p&!…ucx
ml&50, ~19!

wherea5Dx/Dp. Inserting Eqs.~17! and ~18! we obtain

a5
L~q221!

K~q211!
, ~20!

so that the condition reads

S q211

L
~x2^x&!1 i

q221

K
pD ucx

ml&50. ~21!

A. Maximal localization states in the Fock basis

In order to explicitly calculate those states that realize the now maximally possible localiza-
tion we expand theucx

ml& in the Fock basis,

ucx
ml&:5

1

N ~x! (
n50

`

q23n/2cn~x!un&, ~22!

where thecn(x) are real coefficients and
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N ~x!:5 (
n50

`

q23ncn
2~x! ~23!

is a normalization factor~the inserted factorsq23n/2 will be convenient later!.
The condition for maximal localization Eq.~21! reads in the Fock representation:

F ~q211!S a†1a2
x

L D2~q221!~a†2a!G ucx
ml&50. ~24!

Inserting the ansatz equation~22! we are led to the recursion relation

q1q21

2L
xcn~x!5Aq21@n11#cn11~x!1Aq@n#cn21~x!. ~25!

Together with

c21~x!50 and c0~x!51, ~26!

the coefficientscn(x) are therefore determined as polynomials of degreen in x.

B. Relation to continuous q -Hermite polynomials

The coefficientscn(x) are related to the so-called continuousq-Hermite polynomials. An
excellent review on these and otherq-orthogonal polynomials is Ref. 20.

We use the notation of shiftedq-factorials20

~a;q2!n :5 )
k50

n21

~12aq2k!, ~27!

which obey the identity

~a;q2!n5~2a!nqn~n21!~a21;q22!n . ~28!

Furthermore, we define for later convenience

j ~x!:5
arcsinh~vx!

ln q
, x~ j !5

qj2q2 j

2v
, ~29!

where

v:5
1

4L
~q1q21!Aq221. ~30!

The continuousq-Hermite polynomialsHn(zuq
2) are defined through

H21~zuq2!50, H0~zuq2!51, ~31!

and the recurrence relation~see Ref. 20!

2zHn~zuq2!5Hn11~zuq2!1~12q2n!Hn21~zuq2!. ~32!

It is not difficult to check that this recursion relation can be brought into the form of the recursion
relation equation~25! for the coefficientscn(x), by expressing them in terms of theHn(zuq

2) as
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cn~x!5A qn

@n#! ~q221!n
i2nHn~ ivxuq2!. ~33!

As shown in Ref. 20 the continuousq-Hermite polynomialsHn(zuq
2) can be written as

Hn~zuq2!5 (
k50

n S nkD
q2
ei ~n22k!u, z5cosu, ~34!

with theq-binomial coefficients

S nkD
q2

5
~q2;q2!n

~q2;q2!k~q
2;q2!n2k

. ~35!

Inserting Eq.~34! into Eq. ~33! and replacing [n]! by

@n#!5
~2 !n~q2;q2!n

~q221!n
5
qn

2
~q22;q22!n

~q2q21!n
~36!

yields

cn~x!5
1

Aqn2~q22;q22!n
i2n(

k50

n S nkD
q2
ei ~n22k!u, ivx5cosu. ~37!

Because ofivx5 1
2(q

j (x)2q2 j (x)), we may also writeeiu5 iq j (x) and therefore obtain the follow-
ing exact expression for the coefficientscn(x):

cn~x!5
1

Aqn2~q22;q22!n
(
k50

n S nkD
q2

~2 !kq~n22k! j ~x!. ~38!

We derive further useful properties of thecn(x).
Classical limit:For q→1 the recursion relation equation~25! reduces to

x

L
cn~x!5An11cn11~x!1Ancn21~x!. ~39!

By substitutingx5L&z andHn(z)5An!2ncn(x) we obtainH0(z)51 and

2zHn~z!5Hn11~z!12nHn21~z!, ~40!

which is the defining recursion relation for classical Hermite polynomialsHn(z). Thus the clas-
sical limit of the polynomialscn(x) is given by

lim
q→1

cn~x!5
1

An!2n
HnS x

L&
D . ~41!

Representation by the formula of Rodriguez:As a short notation we writex( j ) asxj . Then,
introducing theq-difference operator

Df ~xj !5
f ~xj11!2 f ~xj21!

xj112xj21
, ~42!
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the polynomialscn(xj ) can be expressed as

cn~xj !5
~2 !n

kn
qj

2
Dnq2 j 2, ~43!

where

kn5Aq2n2@n#! S q1q21

2L D n. ~44!

Equation~43! generalizes the formula of Rodriguez,Hn(x)5(2)nex
2
(dn/dxn)e2x2, for classical

Hermite polynomials. A proof for Eq.~43! is outlined in Appendix A.
q-difference equation:The generalized formula of Rodriguez equation~43! implies that

cn~xj11!2cn~xj21!5Aq~12q22n!~qj1q2 j !cn21~xj !, ~45!

which generalizes the differentiation rule (d/dx)Hn(x)5nHn21(x) for classical Hermite polyno-
mials. In order to prove this equation, we rewrite its lhs using Eqs.~42! and ~43!:

cn~xj11!2cn~xj21!5~xj112xj21!Dcn~xj !5~xj112xj21!D
~2 !n

kn
qj

2
Dnq2 j 2. ~46!

Carrying out the first differentiation on the rhs of this formula@c.f. Eq.~A1!#, one obtains a linear
combination of the polynomialscn(xj ) andcn11(xj ), which in turn can be expressed through the
recurrence relation equation~25! in terms ofcn21(xj ).

It can also be shown by induction that Eq.~45! implies the followingq-difference equation for
the polynomialscn(x);

qjcn~xj21!1q2 j cn~xj11!5q2n~qj1q2 j !cn~xj !, ~47!

which corresponds to the differential equation 2xHn8(x)2Hn9(x)52nHn(x) for classical Hermite
polynomials.

Orthogonality:The polynomialscn(x) obey the orthogonality relation

(
j52`

`

~x2 j1k112x2 j1k21!q
2~2 j1k!2cm~x2 j1k!cn~x2 j1k!5Nkq

ndm,n , ~48!

where

Nk5 (
j52`

`

~x2 j1k112x2 j1k21!q
2~2 j1k!2. ~49!

The parameter 0<k<2 can be choosen arbitrarily and fixes a family of positions occurring in the
sum.

Equation~48! can be proved as follows. The casem5n50 is trivial. Forn50 andm.0 one
can show that the lhs of Eq.~48! is equal to

(
j52`

`

~x2 j1k112x2 j1k21!D
mq2~2 j1k!25Dm21q2 j 2U

j52`

j51`

50. ~50!

Keepingm fixed, a further induction forn.0 completes the proof.
Generating function: A generating function of the polynomialscn(x) is
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~ tq2 j ~x!;q22!`~2tqj ~x!;q22!`5 (
n50

`
cn~x!

Aqn~n22!~q22;q22!n
tn. ~51!

In order to verify this expression, we use theq-difference equation Eq.~47! and obtain

qj~ tq2 j11;q22!`~2tqj21;q22!`1q2 j~ tq2 j21;q22!`~2tqj11;q22!`

5~qj1q2 j !~ tq2 j21;q22!`~2tqj21;q22!` , ~52!

which in turn can be proved by inserting the definition of theq-factorials@c.f. Eq. ~27!#.

IV. QUASI-POSITION AND MOMENTUM WAVE FUNCTIONS

Generally, all information on position and momentum is contained in the matrix elements of
the position and momentum operators, and matrix elements can, of course, be calculated in
arbitrary bases, such as the Fock basis. Ordinarily, the position and the momentum information
content of a stateuf& of the particle is easily obtained by writing the state as a position or
momentum space wave functionf(x)5^xuf& or f(p)5^puf&, which is to project onto position
or momentum eigenstates, i.e., to project onto states of maximal localization inx or p.

In the new setting we can now project arbitrary statesuf& onto the states which realize the
maximally possible localization in position~or in momentum!, which are given by Eqs.~16!, ~22!,
and~38!. We call the collection of these projections the quasi-position wave functionf(x) of uf&:

f~x!:5^cx
mluf&. ~53!

Heref(x) yields the probability amplitude for finding the particle in a state of maximal localiza-
tion around the positionx with vanishing momentum expectation. As is easily seen from Eqs.
~16!, ~21!, and~24! the generalization to arbitrary momentum expectations is straightforward. The
framework for quasi-momentum wave functions

f~p!:5^cp
mluf& ~54!

is analogous withf(p) being the probability amplitude for finding the particle in a state of
maximal localization in its momentum, with the momentum expectationp and vanishing position
expectation~again the definition may easily be generalized to include arbitrary position expecta-
tions!.

Aiming at the calculation of examples of quasi-wave functions, we need to complete our
studies on the maximal localization states by calculating their norm and scalar product. To this end
an important technical tool will be the Christoffel–Darboux theorem, for the application of which
we will need the limiting cases of the coefficientscn(x) of the maximal localization states.

A. Limits of ( 21)nc 2n(x ) and (21)nc 2n11(x ) for n˜`

As we prove in Appendix B, the polynomialscn(x), for all odd and for all evenn have the
nontrivial property that their limit forn→` exists. Denoting againxj :5x( j ) these limits are

c1~xj !5 lim
m→`

~2 !mc2m~xj !5Aqj
2/2u2S p j

2
,l D , ~55!

c2~xj !5 lim
m→`

~2 !mc2m11~xj !5Aqj
2/2u1S p j

2
,l D , ~56!

whereu i(z,l) are the Jacobi-, or ellipticu-functions defined as
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u1~z,l!:52l1/4(
n50

`

~2 !nln~n11! sin„~2n11!z…, ~57!

u2~z,l!:52l1/4(
n50

`

ln~n11! cos„~2n11!z…, ~58!

and where in Eqs.~55! and ~56! the constantsl andA are defined as

l:5e2p2/~2 ln q! ~59!

and

A2:5
p

2~q22;q22!`
3 ln q

5
2

q1/4u2~0,q
21!u2

2~0,l!
. ~60!

B. Normalization and scalar product of maximal localization states

In order to evaluate the scalar product of two maximally localized states

^cx
mlucx8

ml&5
1

AN ~x!N ~x8!
(
n50

`

q23ncn~x!cn~x8! ~61!

theq-difference equation~47! can be used to rewrite this expression as

^cx
mlucx8

ml&5
qj1 j 8 f j21,j 8211qj2 j 8 f j21,j 8111qj 82 j f j11,j 8211q2 j2 j 8 f j11,j 811

~qj1q2 j !~qj 81q2 j 8!AN ~x!N ~x8!
, ~62!

where we defined

f j , j 8 :5 (
n50

`

q2ncn~x!cn~x8! ~63!

and where we abbreviatedj :5 j (x) and j 8:5 j (x8). We can computef j , j 8 by applying the
Christoffel–Darboux21 theorem,

(
n50

m

q2ncn~x!cn~x8!5
2LA@m11#

qm11/2~q1q21!

cm11~x!cm~x8!2cm~x!cm11~x8!

x2x8
, ~64!

which can be proved as follows. Form.0 ~the casem50 is trivial!, we use the recursion relation
@c.f. Eq. ~25!#

cm11~x!5A q

@m11# S q1q21

2L
xcm~x!2Aq@m#cm21~x! D ~65!

in order to replacecm11(x) andcm11(x8) on the rhs of Eq.~64!, which then takes the form

rhs5q2mcm~x!cm~x8!2
2LA@m#

qm21/2~q1q21!

cm21~x!cm~x8!2cm~x!cm21~x8!

x2x8
~66!

so that Eq.~64! follows by induction.
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Since the polynomialscm(x) have well-defined limits asm goes to infinity, the Christoffel–
Darboux theorem implies that the expressionf j , j 8 is given by

f j , j 85 (
n50

`

q2ncn~x!cn~x8!5
Aq
2v

c2~x!c1~x8!2c1~x!c2~x8!

x2x8
. ~67!

Inserting Eqs.~55! and ~56! yields

f j , j 85
2A2q1/2~ j

21 j 8211!

qj2q2 j2qj 81q2 j 8
u1S p

2
~ j2 j 8!,l2D u4S p

2
~ j1 j 8!,l2D ~68!

with the definition ofu4 being

u4~z,l
2!:5112(

n51

`

~2 !nl2n2 cos~2nz!. ~69!

In the limit x→x8, Eq. ~68! reduces to

f j , j5 (
n50

`

q2ncn
2~x!5

qj
211/4u2~0,q

21!

~qj1q2 j !u4~0,l
2!

u4~p j ,l2!. ~70!

Inserting Eq.~67! into Eq.~62! we eventually obtain an exact expression for the scalar product of
two quasi-position states:

^cx
mlucx8

ml&5
2A2q~1/2!~ j 21 j 8211!~q221!2~11q22!

AN ~x!N ~x8!Gj , j 8
0 Gj , j 8

1 Gj , j 8
21 u1S p

2
~ j 82 j !,l2D u4S p

2
~ j1 j 8!,l2D ,

~71!

where

Gj , j 8
s

5~q~1/2!~ j2 j 8!1s2q2~1/2!~ j2 j 8!2s!~q~1/2!~ j1 j 8!1s1q2~1/2!~ j1 j 8!2s!. ~72!

Note that the poles in the denominator of Eq.~71! are cancelled by the zeros of theu1-function.
The limit x→x8 yields the norm@Eq. ~23!#

N ~x!5
2qj

2
~q211!u4~p j ,l2!

A2~qj1q2 j !~qj111q2 j21!~qj211q2 j11!u2
2~0,l!l4~0,l

2!
. ~73!

C. Example: The quasi-position wave function of zc0
ml
‹

As an example we draw in Fig. 1 the graph of the quasi-position wave functionf(x) for the
stateuf& that describes maximal localization aroundx50, i.e., for uf&:5ucx

ml&, i.e., with

f~x!5^cx
mluc0

ml&. ~74!

The analytic form of the wave function is given in Eq.~71!. For the width of the main peak note
that the graph shows the overlap of pairs of localization states, each with its finite position
uncertainty.

We have thus generalized the treatment of Ref. 15 where the corresponding graph was cal-
culated and drawn for the special case without a minimal momentum uncertainty~a50,b.0!.
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V. APPROXIMATIONS

For potential applications of the formalism the parametersa andb in Eq. ~2! can be assumed
small, in which case useful simplifications hold.

In the notation of Eq.~3! this is the case whenq→1. Thenl→0 and theu-functions in Eqs.
~55! and~56! can be approximated byu1~p j /2,l!'2l1/4 sinp j /2 andu2~p j /2,l!'2l1/4 cosp j /2.
This implies that

c1~xj !' c̃ 1~xj !:5Bqj
2/2 cos

p j

2
,

~75!

c2~xj !' c̃ 2~xj !:5Bqj
2/2 sin

p j

2
,

where

B45
4 ln q

pAq
. ~76!

The relative error of this approximation is illustrated in Table I. Using Eq.~75! we can give
approximations for the scalar product forq close to 1:

^cx
mlucx8

ml&'
B2q~1/2!~ j 21 j 8211!~q221!2~11q22!

AÑ ~x!Ñ ~x8!Gj , j 8
0 Gj , j 8

1 Gj , j 8
21

sin
p

2
~ j 82 j !, ~77!

where

FIG. 1. Quasi-position wave functionf(x) for uf&:5uc0
ml&, drawn overj (x) for q51.5.

TABLE I. Relative error of the approximation of thec6.

q 1.2 1.5 2 5

U12
c̃ 6~x!

c6~x!U ,5310215 ,1310210 ,231026 ,731023
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N ~x!'Ñ ~x!:5
2qj

2
~q211!

B2~qj1q2 j !~qj111q2 j21!~qj211q2 j11!
. ~78!

For example, for 1,q,1.2, the relative error of this approximation is less than 10214.
It is interesting to consider also the limiting case where

q→1, K~q!:5Aq221

4b
, L~q!5\

q211

2
A b

q221
. ~79!

In this limit the commutation relations equation~3! turn into the relations equation~2! with b finite
buta50, which is the special case considered in Ref. 15. There is then only a minimal uncertainty
in position and no minimal uncertainty in momentum. As can be shown easily, the limitq→1 of
the scalar product equations~77! and ~78! is given by

lim
q→1

^cx8
mlucx

ml&5

sin
p

2
~ j 82 j !

pS j2 j 8

2 D S j2 j 8

2
11D S j2 j 8

2
21D . ~80!

In the limit given by Eqs.~79!, x and j are related linearly throughxj5x( j )5\Ab j . We thus
obtain the limiting expression for the scalar product:

^cx8
mlucx

ml&5
1

p F x2x8

2\Ab
2S x2x8

2\Ab
D 3G21

sinS x2x8

2\Ab
p D . ~81!

This result coincides with the expression found in Ref. 15, thus providing a nontrivial consistency
check: We calculated the scalar product usingq-analysis on a discreteq-Fock space representa-
tion. However, the calculation15 of this scalar product in the special casea50, which we here
recover in the limit, had been performed with entirely different analytic methods in a continuous
representation.

VI. SELF-ADJOINT EXTENSIONS OF x AND p

In this section we continue formal considerations of Ref. 12 where it was proved that the
operatorsx andp separately do have one-parameter families of self-adjoint extensions inH. To be
precise,x onD is symmetric, while its adjointx* is closed but nonsymmetric;x** is closed and
symmetric and has deficiency indices~1,1!. There are families of diagonalizations ofx in H,
though of course not inD. The same holds forp. The corresponding eigenvectors are unphysical
states, separated from the physical domain by the minimal uncertainty gap@see Eq.~15!#.

While in Ref. 12 the existence only of self-adjoint extensions had been proven, we can now
explicitly solve the eigenvalue problem

x•uvx&5xuvx&. ~82!

For the solution we make the ansatz

uvx&5N21~x! (
n50

`

q2n/2dn~x!un& ~83!

yielding the recurrence relation
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x

L
dn~x!5A@n11#q21dn11~x!1Aq@n#dn21~x! ~84!

with d2150 andd051. In fact, Eq.~84! can be transformed into the recurrence relation equation
~25!, i.e., thedn can be transformed into our previously considered coefficientscn :

dn~x!5cn„2x~q1q21!21
…. ~85!

In the expansion ofuvx&, the factorq
2n/2 is different from the corresponding factorq23n/2 in the

expansion of theucx
ml&, implying that the scalar product and normalization constant of the formal

eigenvectors are different from those of the maximal localization states which we had calculated
earlier:

N~x!55
qj

211/4u4~p j ,l2!u2~0,q
21!

~qj1q2 j !u4~0,l
2!

, ~86!

^vxuvx8&5

A2q1/2~ j
21 j 8211!u1Xp2 ~ j2 j 8!l2Cu4Xp2 ~ j1 j 8!,l2C

~x2x8!v̄AN~x!N~x8!
, ~87!

where now

x~ j !:5
qj2q2 j

2v̄
with v̄5

Aq221

2L
~88!

and where we abbreviated againj 8:5 j (x8).
In Fig. 2 we draw the graph of the scalar product overj for j 850. From the zeroes ofu1 we

read off that theuvx& are mutually othogonal forj2 j 8P2N. Using j 8 as a parameter in the range
j 8P @0, 2@ we identify for each value ofj 8 a diagonalization ofx. Thus, j 8 labels the self-adjoint
extensions with the corresponding eigenvalues (xn)nPN being

xn5
q2n1 j 82q22n2 j 8

2Aq221
L5

sinh„~2n1 j 8!ln q…

Aq221
L ~nPN!. ~89!

FIG. 2. Scalar product̂vxuv0& of formal eigenvectors, drawn overj (x).
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Compare this also with the graph of the scalar product which had been calculated only numerically
in Ref. 12. Having found the analytic form of the scalar product in terms ofu-functions, we were
able to determine the one-parameter family of diagonalizations ofx, of which we had so far only
known its existence. As is not difficult to see, we recover for vanishing minimal uncertainty in
momentum, i.e., fora→0, the linear spectrum found in Ref. 15 for that special case.

Analogously to above we obtain the eigenvalues ofp in its self-adjoint extensions~j 9P@0, 2@!:

pn5
q2n1 j 92q22n2 j 9

2Aq221
K5

sinh„~2n1 j 9!ln q…

Aq221
K ~nPN!. ~90!

We stress that the parametersj 8, j 9 of Eqs.~89! and~90! labeldifferentextensions of the domain
D of x andp. Recall that the uncertainty relation implies that the formalx- or p- eigenvectors
which we here calculated do not lie in anycommonextension of the domainD of x andp. They
are not physical states and are separated from the physical domain by the uncertainty gap@see Eq.
~15!#.

However, these families of diagonalizations ofx or p in H- can still be of use, e.g., for the
calculation of inverses ofx and p, which would have been difficult to invert as nondiagonal
operators in the Fock basisx5L(a1a†) andp5iK (a2a†).

VII. OUTLOOK

In quantum field theory, interaction terms, which on ordinary geometry would be ultraviolet
regular but nonlocal, can in fact be regular and strictly local on a geometry with a minimal
position uncertainty. The reason is that an interaction is to be considered strictly local if no
nonlocality could be observed. Intuitively this is the case if a small apparent nonlocality of the
interaction term is unobservable due to a comparatively larger minimal uncertainty in the under-
lying space. We already mentioned that, as has been shown in Ref. 13, quantum field theories can
be naturally regularized when working on a generalized geometry with intrinsic minimal uncer-
tainties. Generally, in order to explicitly compare the size of nonlocality of an arbitrary interaction
term with the size of the intrinsic uncertainty of the generalized geometry it is crucial to have
available the states of maximal localization on this geometry. Similarly, maximal localization in a
momentum space with minimal uncertaintyDp0 is of interest in the context of infrared regular-
ization.

So far, we have studied the properties of the maximal localization states in one dimension
only. The generalized Fourier transformations which map between the~quasi-! position and the
~quasi-! momentum representations have only been studied in the special casea50. For the
general case techniques should be useful which have been developed for the Fourier theory22 on
quantum planes.23 Also, the unitary equivalence ofall Hilbert space representations, in the sense
in which it holds for the ordinary commutation relations, has not yet been proven. Most interesting
further physical insight into the nature of these generalized geometries can be expected from
studies on maximal localization inn dimensions where@xi ,xj #Þ0 and @pi ,pj #Þ0 lead also to
DxiDxjÞ0 andDpiDpjÞ0. Work in this direction is in progress.
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APPENDIX A: GENERALIZED FORMULA OF RODRIGUEZ

In the following we outline a proof for the equivalence of the formula of Rodriguez Eq.~43!
and the recurrence relation Eq.~25!. We use the notationAf(xj ):5

1
2„f (xj21)1 f (xj11)…, which

allows the differentiation of products to be written in the form

D~ f g!5~Df !~Ag!1~Af !~Dg!. ~A1!

We first prove the identity

Dn11q2 j 252S q1q21

2L D 2~q22n11@n#Dn211xq2nDn!q2 j 2. ~A2!

The casen50 can be verified easily by hand. Induction fromn to n11 implies that

Dn11q2 j 25D~Dnq2 j 2!52DS q1q21

2L D 2~q22n13@n21#Dn221xq2n11Dn21!q2 j 2. ~A3!

Comparing the rhs of Eqs.~A2! and ~A3! and using Eq.~A1!, one is led to the condition

„ADn111 1
2~q2q21!xDn2q2nDn21

…q2 j 250, ~A4!

which can be proved by a further induction where the identities

Dx51, Ax5 1
2~q1q21!x, DA2 1

2~q1q21!AD5 1
4~q2q21!2xD2

turn out to be very useful. Once Eq.~A2! is proved, one obtains the recursion relation Eq.~25! by
inserting the formula of Rodriguez which completes the proof.

APPENDIX B: THE LIMITS c6(x )

We prove the limitsc6(x), i.e., we prove Eqs.~55! and ~60!:

c1~xj !5 lim
m→`

~2 !mc2m~xj !5A p

2~q22;q22!`
3 ln q

qj
2/2u2S p j

2
,l D . ~B1!

Let us first rewrite expression Eq.~38! by

c2m~xj !5
1

q2m
2A~q22;q22!2m

(
k52m

m S 2m
m1kD

q2
~2 !m1kq2k j. ~B2!

Choosing an integer 0,r,m, we split up this sum into two parts:

~2 !mc2m~xj !5Sm,r
~1! 1Sm,r

~2! , ~B3!

where

Sm,r
~1! 5

1

q2m
2A~q22;q22!2m

(
k52r

r S 2m
m1kD

q2
~2 !kq2k j, ~B4!

Sm,r
~2! 5

1

q2m
2A~q22;q22!2m

(
k5r11

m S 2m
m1kD

q2
~2 !k~q2k j1q22k j!. ~B5!
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Now letm go to infinity and keepr fixed. Fromq2.1 and Eq.~28! we have the identity

S 2m
m1kD

q2
5q2~m22k2!S 2m

m1kD
q22

. ~B6!

Because of

lim
m→`

S 2m
m1kD

q22
5

1

~q22;q22!`
, ~B7!

the first part converges to

Sr
~1!5 lim

m→`

Sm,r
~1! 5

1

~q22;q22!`
3/2 (

k52r

r

~2 !kq2k j22k2. ~B8!

The second part,Sm,r
2 , can be estimated as follows. As can be seen from Eq.~B6! the inequality

S 2m
m1kD

q22
5

P i5m1k11
2m ~12q22i !

P i51
m2k~12q22i !

<
1

P i51
2m ~12q22i !

5
1

~q22;q22!2m
~B9!

implies that

S 2m
m1kD

q2
<

q2~m22k2!

~q22;q22!`
. ~B10!

Therefore,

uSm,r
~2! u<

2

q2m
2A~q22;q22!2m

(
k5r11

m S 2m
m1kD

q2
q2k j<

2

~q22;q22!2m
3/2 (

k5r11

m

q2~k j2k2!, ~B11!

so that

uSr
~2!u5u lim

m→`

Sm,r
~2! u<

2q2r j22r2

~q22;q22!`
3/2 (

k51

`

q2~k j2k2!. ~B12!

Since the sum on the rhs is finite, this expression tends to zero asr goes to infinity. Thus we
conclude that

c1~xj !5 lim
r→`

Sr
~1!5

1

~q22;q22!`
3/2 (

k52`

`

~2 !kq2k j22k2. ~B13!

The sum on the rhs of this expression is essentially a Jacobiu2-function. In order to see this, notice
that its definition Equation~58! can also be written as

u2~z,e
2t!5Ap

t (
k50

`

~2 !ke2~1/t!~z2pk!2. ~B14!

Insertingt52ln l5p2/~2 ln q! andz5p j /2 we can express the sum in Eq.~B13! by
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(
k52`

`

~2 !kq22k212k j5A p

2 ln q
qj

2/2u2~z,l!, ~B15!

which completes the proof forc1(xj ). The proof forc2(xj ) follows the same lines.
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Discrete decay and continuous measurement
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1216 Monterey Avenue, Berkeley, California 94707
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In this paper measurement is defined via an observation operator with simple,
purely discrete spectrum. When the quantum Zeno effect holds, a continuously
measured quantum process with fixed initial state ‘‘freezes’’ in that state. Such
states are called ‘‘regular’’ states. If the final state is also fixed, then movement
from the initial state to the final state is forced to occur, whether or not the initial
state is regular. This forced movement is studied here in the context of a discrete
state model which contains a distinguished nonregular state which mediates all
transitions. In this model the forced movement between any two states satisfies a
‘‘least action’’ principle, wherein action is identified with change of state transi-
tions. For completeness, the model is also studied when only the initial state is
fixed under continuous measurement. In that case the distinguished state exhibits
exact exponential decay at all times. The model is of interest independently of
issues related to continuous measurement inasmuch as it is a ‘‘discrete’’ approxi-
mation to a ‘‘continuous’’ decay model. More precisely, the distinguished state
exhibits exact exponential decay on a finite time interval which expands without
bound as the discrete decay products densely approach the continuum. This unex-
pected result provides a striking confirmation of Fermi’s ‘‘golden rule.’’ ©1996
American Institute of Physics.@S0022-2488~96!00405-X#

I. OVERVIEW OF THE PAPER

A. Introduction

When the quantum Zeno effect holds,1 a continuously observed quantum process with fixed
initial state ‘‘freezes’’ in that state. Such states are called ‘‘regular’’ states. In nonregular cases the
quantum Zeno effect fails and decay is observed.2 Recently the study of continuously observed
quantum processes where both the initial and final states are fixed was undertaken in Kanter.3

Under hypotheses which imply that all states are regular, it was shown that fixing the final state
forces the process to perform a well-behaved stochastic motion from initial to final state. This
motion satisfies a ‘‘least action’’ principle, wherein action is identified with change of state
transitions. In this paper we will show that this result continues to hold in the nonregular case for
a particularly simple quantum model with decay. For completeness we will also study the effect of
continuous measurement in this model when only the initial state is fixed. The model is of interest
independently of issues related to continuous measurement inasmuch as it is a ‘‘discrete’’ approxi-
mation to a ‘‘continuous’’ decay model. More precisely a distinguished state exists which exhibits
exact exponential decay on a finite time interval which expands without bound as the discrete
decay products densely approach the continuum. This unexpected result provides a striking con-
firmation of Fermi’s ‘‘golden rule.’’

For our purposes a quantum process is characterized by a strongly continuous group
„U(t):tPR… of unitary operators acting on a given Hilbert spaceL, whereR stands for the real
line. We shall assume thatL is separable and single out a particular basis$f j : jPJ% for L,
consisting of the normalized eigenvectors of a quantum observable with simple, purely discrete
spectrum. We shall call$f j : jPJ% a discrete measurement basis. If the quantum process is in the

a!Electronic-mail address: MXK8@PGE.COM
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pure statef before measurement, thenu^fufj &u
2 is the probability that the process is in the pure

statefj just after measurement. We shall say that the elementj in J is observed when the process
is in statefj after a measurement. In between measurements the pure statef evolves according to
the equationf(t)5U(t)f. The infinitesimal generator of the groupU(t), called the Hamiltonian
of the quantum process, is written as the self-adjoint operatorH. @ThusU(t)5eitH .#

The rate of decay of a statefj in the measurement basis is defined as the right-hand derivative
at zero of the function2u^f j uf j (t)&u

2. We say$f j : jPJ% is adiscrete decay modelif there is a
distinguished stated in J such thatfd is not regular. The other states$f j : jÞd% in the basis may
be viewed as decay products from the statefd . @Note that a discrete decay model is specified by
the entire collection̂f j ufk(t)& of functions forj ,kPJ, rather than just the function̂fdufd(t)&.#

In this paper we shall study quantum measurements which are ‘‘nonselective,’’ other than the
selection at initial or final times. Specifically, leta,bPJ and let 05t0,N21

5t1,•••,tN215(N21)N21,tN51 denote the instants at which the quantum process is mea-
sured via the observable corresponding to$f j : jPJ%. We consider an ensemble of independent
replications of theN11 sequential measurements above and then restrict our attention to the
subensemble of replications for whichj 05a is observed at time 0. The observed values
( j n :0<n<N) will have a well-defined statistical distributionPN

a , given this subensemble. This
distribution has physical meaning as a summary of the statistical results to be expected in such an
experiment, i.e., what fraction of measurements do we find the process in statefj at timeN

21 and
in statefk at time 2N21, given that it was in statef0 at time 0. Similarly, if we restrict our
attention to the subensemble of replications for whichj 05a is observed at time 0 andj N5b is
observed at time 1, then the observed values will have a well-defined distributionPN

ab, given this
subensemble. We note that the measuresPN

a andPN
ab are not consistent asN varies. The distri-

bution of the observed value att5 1
2 ~for instance! depends onN, because measurement affects the

evolution of a quantum process.
As N→` the limit of PN

a will yield the distribution of a continuously measured quantum
process with initial statefa , whereas the limit ofPN

ab will yield the distribution of a continuously
measured quantum process with initial statefa and final statefb . The study of the limit asN→`
for the measuresPN

ab is both more difficult and more novel than for the measuresPN
a . The primary

purpose of this paper is to study the limit behavior of the measuresPN
ab in the context of our

discrete decay model. For completeness we will also study the measuresPN
a as well.~We note that

we can trivially construct a discrete decay model by letting the distinguished state
fd5„p~11x2!…21/2, whereH is multiplication by x. Then ^fduU(t)fd&5exp~2utu!. If we let
$f j : jPJ% stand for any orthonormal basis ofL2(R) containingfd , then we get a discrete decay
model. Unfortunately we do not know how to further specify the decay productsfj so as to be
able to characterize the limit behavior of the measuresPN

ab for such a model.!

B. Relation to previous work

In Sec. IV we will establish a result~Theorem A! for our discrete decay model, wherein the
measuresPN

d approach a distribution with exponential waiting time to leavefd as N→`. A
similar result was previously proven for a large class of quantum processes in Kanter,4 however,
it is not evident that our discrete decay model is a member of this class.

The measuresPN
ab were first considered in Kanter,5 whose results we paraphrase in the context

of our discrete decay model as Theorem B in Sec. IV. This theorem establishes the least action
principle associated with our discrete decay model under continuous measurement. Whereas the
original version of Theorem B was proved for quantum processes whose Hamiltonian was a
Hilbert–Schmidt operator, such a strong hypothesis is not necessary here. On the other hand, the
model considered in this paper is special in that the measurement basis contains a distinguished
statefd with the property that no change of state transitions occur unless one of the states
involved isfd .
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Many decay models with a distinguished statefd as above have been postulated, such as the
famous Friedrichs–Lee model.6 These models involve nonseparable Hilbert spaces, and the decay
products$f j : jÞd% contain a continuum of generalized Dirac delta functions. Thus, these models
may be called ‘‘continuous’’ decay models.~Note that our simplistic approach to measurement
relies onJ being countable.!

Discrete decay models have been previously considered by Davis7 and Cohen-Tannoudji
et al.8 In these models the setJ is decomposed as

J5$d%øJ0 , ~1.1!

whereJ0 is a subset of the integers. Given a positive numberD and a complex numberc, these
authors consider a HamiltonianH5H(D,c) satisfying

Hf j5cD1/2fd1 jDf j ~ for jÞd!. ~1.2!

With various levels of precision they show that

lim
D→0

^fdueitHfd&5exp~2pautu! ~ for tPR!, ~1.3!

where a5ucu2. @Davies does not state~1.3! precisely and definesJ05J0~D! to be the set of
integers with absolute value bounded byKD21 for some constantK. Thus, Davies’ model is only
an ‘‘approximate’’ discrete decay model, sincefd is regular and only becomes nonregular in the
limit asD→0. Cohen-Tannoudjiet al. let J05Z and state~1.3! precisely, indicating its connection
with Fermi’s ‘‘golden rule.’’ However, their treatment of the model is not mathematically rigor-
ous.# The parameterD is the energy gap between the decay productsfj . Thus, asD→0, the decay
productsfj densely approach the continuum of Dirac delta functions.

In this paper we shall treat the model~1.2! with J05Z in a mathematically rigorous fashion to
obtain the new and striking result

^fdueitHfd&5exp~2pautu! ~ for utu<2pD21!. ~1.4!

@We derive a recursive expression for^fdue
itHfd& outside the intervalutu<2pD21.# We note that

~1.3! is a direct consequence of~1.4!. We shall see thatfd¹D(H), the domain ofH, and that
under continuous observation the model exhibits exact exponential decay at all times iffd is the
initial state.

C. Summary of other sections

The rest of this paper is divided into five sections. In Sec. II we shall present the main features
of our discrete decay model, but will delay the proofs of some of our results until Secs. V and VI.
In Sec. III we will determine decay rates and bounds for all the statesfj in the measurement basis
for our model. In Sec. IV we will use the results of Sec. III in order to study the limiting behavior
of PN

a andPN
ab for our model. In particular we will state and prove Theorems A and B. In Secs. V

and VI we will put our model on a mathematically rigorous footing. In particular, Sec. VI contains
a derivation of the key equation~1.4!.

II. THE MODEL

In this section we will present the main features of our discrete decay model, though we will
delay the nontrivial proofs of our first two theorems until Secs. V and VI. We start by gathering
some definitions.

Definition 2.1:We letC stand for the set of all complex numbersc and write c̄5u2 iv if
c5u1 iv for u,vPR. We let Z stand for the set of all integers andZ8 for the set of nonzero
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integers. We letR2Z stand for the set of real numbers not inZ. We letL2(Z8) represent the set
of all square summableC-valued sequences indexed byZ8. We let ^•u•& stand for the usual inner
product onL2(Z8), i.e.,

^xuy&5 (
nPZ8

x̄nyn @ for x,yPL2~Z8!#. ~2.1!

From now on all measurement bases will be indexed by the set

Zd5$d%øZ, ~2.2!

this being a special case of~1.1!. In Sec. V we shall show that each positive real numberD and
nonzeroc in C specify a discrete decay model with measurement basis$f j : jPZd%. ~We shall set
D51 for notational simplicity throughout the paper and comment on the general case at the end of
Sec. VI.! Although the models are distinct, they have essentially the same properties, hence no
confusion need arise when we refer tothe model. To briefly summarize, leta5ucu2. We will
construct two sequences (pn :nPZ8) and (ln :nPZ8) depending only ona such thatpn>0,
pn5p2n , lnPR2Z, andln52l2n for all n in Z8. Furthermore the following theorems hold:

Theorem 2.1: ~To be proved in Sec. V.! For j in Zd , define

f j5 H „~pn!1/2:nPZ8… if j5d,
„c~pn!

1/2~ln2 j !21:nPZ8… if jPZ. ~2.3!

Then$f j : jPZd% is an orthonormal collection of vectors inL2(Z8).
We define the unitary group„U(t):tPR… on L2(Z8) via

„U~ t !x…n5~eitln!xn ~ for nPZ8!, ~2.4!

wherex5(xn :nPZ8)PL2(Z8). It is clear thatU(t) is strongly continuous onL2(Z8), and that
the infinitesimal generatorH of U(t) is simply the multiplication operator

~Hx!n5lnxn ~ for nPZ8!. ~2.5!

Of courseHx is defined only forxPD(H), i.e., if

^xuH2ux&5 (
nPZ8

ln
2uxnu2,`. ~2.6!

We letL stand for the closed subspace ofL2(Z8) spanned by$f j : jPZd%.
Theorem 2.2: ~To be proved in Sec. VI.! For all t in R, the inclusionU(t)L,L holds.
We shall show in Sec. V thatfd¹D(H), hencê fduHufd& is not defined. SinceH*5H, all

the remaining numberŝf j uHufk& are formally defined by

^f j uHufk&55 a (
nPZ8

pnln~ln2 j !21~ln2k!21 for j ,kPZ,

c (
nPZ8

pnln~ln2k!21 for j5d,kPZ.
~2.7!

Theorem 2.3:Givenfj as defined in~2.3! andH as in ~2.5!, the infinite sums in~2.7! are
absolutely convergent. Furthermore we can write
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^f j uHufk&5 H jd jk for j ,k in Z,
c for j5d and k in Z, ~2.8!

wheredjk51 if j5k and 0 otherwise.
Proof:We note the identity

ln~ln2k!21511k~ln2k!21 ~ for nPZ8 and kPZ!, ~2.9!

where we remember thatln¹Z, hence both sides of~2.9! are always finite. Since Theorem 2.1
guarantees, among other things, that^f j uf j&,` for all j in Zd , we can use the Cauchy–Schwartz
inequality to conclude that the infinite sums in~2.7! are absolutely convergent. The relation~2.8!
now follows from ~2.9! and the orthonormality of$f j : jPZd%. h

Theorem 2.4:Givenfj andH as in Theorem 2.3, it follows that

^f j uH2uf j&2~^f j uHuf j&!25a ~ for jPZ!. ~2.10!

Proof:We can write

^f j uH2uf j&5 (
nPZ8

apnln
2~ln2 j !22 ~ for jPZ! ~2.11!

as a consequence of~2.3! and ~2.5!. We note the identity

ln
25~ln2 j !212lnj2 j 2 ~ for jPZ! ~2.12!

and apply Theorem 2.1 to conclude that

^f j uH2uf j&5a12 j ^f j uHuf j&2 j 2 ~ for jPZ!. ~2.13!

We recall~2.8! with j5k to get ~2.10!. h

Remark 2.1:The expression on the left-hand side of~2.10! is called the ‘‘energy variance’’ in
statefj . We conclude that all states in the measurement basis exceptfd have the same finite
energy variance. We note also thatf jPD(H) if and only if fj has finite energy variance, as can
easily be verified. Furthermore, we can write

Hf j5cfd1 jf j ~ for jPZ!, ~2.14!

as follows from~2.8!. @No rigorous expression forHfd is possible sincefd¹D(H), as will be
directly demonstrated in Remark 5.2.#

In the next two sections we shall see that the distinction betweenfd and the other states in the
measurement basis has significant consequences when the quantum process is continuously mea-
sured.

III. DECAY RATES AND BOUNDS

In this section we will provide exact results and bounds for the decay out of an initial state
when our model isnot continuously observed.

Definition 3.1:For t in R, let

Qjk~ t !5u^f j ufk~ t !&u2 ~ for j ,kPZd!, ~3.1!

wherefk(t)5U(t)fk andU(t)5exp(i tH ).
Remark 3.1: The normalization ifj i51 for j in Zd ensures that the matrix

Q(t)5„Qjk(t): j ,kPZd… is a doubly stochastic matrix.~All rows and columns sum to 1.!
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Definition 3.2:We sayfj has decay ratebP@0,`! if

lim
t↓0

t21
„12Qj j ~ t !…5b. ~3.2!

We definefj to be regular ifb50 in ~3.2!.
Remark 3.2:SinceQj j (t) is symmetric around 0, it is clear thatb50 in ~3.2! if and only if

Qj j (t) is differentiable at 0. It is also clear that the Zeno effect holds for a continuously observed
quantum process with initial statefj if and only if fj is regular, since limN→`„Qj j (t/N)…

N51 for
all t.0 if and only if the limit in ~3.2! is 0. It is obvious that the conditionf jPD(H) is sufficient
for fj to be regular.

For j in Zd we define the amplitude functions

F j~ t !5^f j uf j~ t !& ~ for tPR!. ~3.3!

We conclude from~2.3! and ~2.4! that

Fd~ t !5 (
nPZ8

pne
ilnt52(

n.0
pn cos~lnt !, ~3.4!

where the last equality follows becausepn5p2n andln52l2n for nPZ8. We shall show in Sec.
VI that

Fd~ t !5exp~2pautu! ~ for utu<2p!. ~3.5!

It follows directly that

lim
t↓0

t21
„12Qdd~ t !…52ap, ~3.6!

i.e., fd has nonzero decay rate 2ap and thus is not regular. In particularfd¹D(H) as will be
directly demonstrated in Remark 5.2.

Definition 3.3:For jPZd ,kPZ, we define

C jk~ t !5^f j ufk~ t !&e
2 ikt ~ for tPR!. ~3.7!

Using ~2.14! or computing directly, we can differentiate~3.7! to obtain

Cdk8 ~ t !5 icFd~ t !e
2 ikt ~ for kPZ!. ~3.8!

It follows that

Cdk~s!5 icE
0

s

Fd~r !e2 ikr dr ~3.9!

sinceCdk~0!50 for kPZ. We conclude

lim
t→0

t22Qdk~ t !5a ~ for kPZ!. ~3.10!

We can also use~2.14! to write

C jk8 ~ t !5 ic^f j ufd~ t !&e
2 ikt ~ for j ,kPZ!. ~3.11!
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SinceU(t) is unitary we know that̂f j ufd(t)& is the complex conjugate of^fduf j (2t)&. A little
calculation then yields

C jk8 ~ t !5 icC̄d j~2t !ei ~ j2k!t5 i c̄Cd j~ t !e
i ~ j2k!t, ~3.12!

where the last equality follows from~3.9!.
Lemma 3.1:For jPZ, fj has decay rate 0.
Proof: It follows from ~3.9! and ~3.12! that

C jk~ t !5d jk2aE
0

tE
0

s

Fd~r !e2 i j r e2 i ~k2 j !s drds ~3.13!

for j ,kPZ. Letting j5k, we interchange order of integration to obtain

C j j ~ t !512aE
0

t

~ t2r !Fd~r !e2 i j r dr. ~3.14!

SinceuFdu<1 we conclude that

12uC j j ~ t !u<~1/2!at2 ~ for jPZ!. ~3.15!

We also haveuCj j u<1, hence

12Qj j ~ t !<at2 ~ for jPZ!. ~3.16!

The lemma now follows. h

Remark 3.3:It follows from ~3.16! and Remark 3.1 that for allt in R

Qjk~ t !<at2 ~ for j ,kPZd , jÞk!. ~3.17!

Furthermore, it follows from~3.13! that

lim
t→0

t24Qjk~ t !5~ 1
4!a

2 ~ for j ,kPZ, jÞk!. ~3.18!

IV. APPLICATIONS TO CONTINUOUS MEASUREMENT

In this section we will define the measuresPN
a andPN

ab in more detail, and we will summarize
their limit behavior asN→` via Theorems A and B.

Definition 4.1:Given n.0 and tP~0,̀ !, let Q(n)(t) stand for then-fold matrix product of
Q(t) with itself. For short we letQ stand forQ(N21) andQ(n) stand forQ(n)(N21). We define
the non-negative measurePN on (Zd)

N11 by

PN~x0 ,...,xN!5 )
n51

N

Qxn21xn
@ for ~x0 ,...,xN!P~Zd!

N11#. ~4.1!

We letVa stand for the set of all sequences (x0 ,...,xN) in (Zd)
N11 such thatx05a, and we define

Vab similarly, with the additional restriction thatxN5b. We note that

PN~Vab!5Qab
~N!5Qab

~N!~N21!. ~4.2!

We define the conditional probability measuresPN
a andPN

ab by conditioningPN on the setsVa and
Vab , respectively.@For example,
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PN
ab~G!5PN~GVab!/PN~Vab! ~4.3!

for G,(Zd)
N11.# Clearly PN

a is the distribution of the Markov chainX0 ,...,XN with transition
kernelQ, constrained so thatX05a; while PN

ab is similarly characterized with the additional
constraint thatXN5b.

We can now state Theorems A and B.
Theorem A: Givena,b in Zd and t.0,

lim
N→`

Qab
~N!~ t/N!5dab exp~22adadpt !. ~4.4!

This result establishes exponential decay valid for allt, which is characteristic of our model in the
context of continuous measurement.

Theorem B: As N→`, the measuresPN
ab assign all but a vanishingly small fraction of their

mass to observed state sequences with exactlyr(a,b) change of state transitions, none of which
returns to a previously observed state. Herer(a,b) is defined by

r~a,b!5 infH r :)
s51

r

^f j s21
uHuf j s

&Þ0J , ~4.5!

where the infimum is taken over all sequencesj 0 ,...,j r in Zd satisfying

a5 j 0Þ j 1Þ•••Þ j r21Þ j r5b. ~4.6!

This result establishes the least action principle for our discrete decay model subject to continuous
measurement and constraints at the initial and final states.

The rest of this section is devoted to establishing a sequence of results leading up to Theorems
A and B. We note first thatr(a,b) in ~4.5! is well defined for our discrete decay model, because
^f j uHufk& is well defined if jÞk. We note also thatr(a,b)50 if and only if a5b. We now
present a definition which will clarify the content of Theorem B.

Definition 4.2: Given any integerr>0, we let Vab
(r ) stand for the set of all sequences

(x0 ,...,xN) in Vab such that for some sequencej 0 ,...,j r in Zd satisfying~4.6! and some sequence
n0 ,...,nr of non-negative integers satisfying

r1(
s50

r

ns5N ~4.7!

we have

xn5 j s S for s1(
t50

s21

nt<n<s1(
t50

s

ntD . ~4.8!

@ThusVab
(r ) consists of those sequences (a,x1 ,...,xN21,b) in Vab which make exactlyr change of

state transitions.#
Remark 4.1:The set of non-negative integersn0 ,...,ns ,...,nr satisfying~4.7! has cardinality

( r
N), as is obvious by interpreting the integersns as the number of spaces betweenr objects placed
in N slots.

Theorem 4.1:For a in Zd

lim
N→`

PN
aa~Vaa

~0!!51. ~4.9!

Proof: SincePN(Vaa
(0))5(Qaa)

N, we can write
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PN~Vaa!5~Qaa!
N1( ~Qaa!

n0QajQjk
~n1!Qka~Qaa!

n2, ~4.10!

where the sum is taken over all non-negative integersn0 ,n1 ,n2 satisfying~4.7! with r52 and over
all j ,k in Zd such thataÞ j andkÞa. Using ~3.17! and Remark 4.1, we conclude that

uPN~Vaa!2~Qaa!
Nu<SN2 DN24a2. ~4.11!

Furthermore, we know from~3.6! and ~3.16! that

lim
N→`

~Qaa!
N5exp~22adadp! ~ for aPZd!. ~4.12!

We obtain~4.9! from ~4.11! and ~4.12!. h

Theorem 4.2:For b in Z

lim
N→`

PN
db~Vdb

~1!!51. ~4.13!

Proof: Givena,b in Zd with aÞb, write

PN~Vab!5PN~Vab
~1!!1( ~Qaa!

n0QajQjk
~n1!Qkb~Qbb!

n2, ~4.14!

where the sum is taken over all non-negative integersn0 ,n1 ,n2 satisfying~4.7! with r52 and all
j ,k in Zd with aÞ j andkÞb. We can also write

PN~Vab
~1!!5( ~Qaa!

n0Qab~Qbb!
n1, ~4.15!

where the sum is taken over all non-negative integersn0 ,n1 satisfying~4.7! with r51. It follows
that

PN~Vab
~1!!>N~Qaa!

N~Qbb!
NQab . ~4.16!

We now use~3.10! and ~4.12! to conclude that

lim inf
N→`

NPN~Vab
~1!!>a exp~22ap!. ~4.17!

On the other hand

uPN~Vab!2PN~Vab
~1!!u<SN2 DN24a2, ~4.18!

using Remark 4.1,~3.17!, and~4.14!. We conclude~4.13! from ~4.17! and~4.18! by settinga5d
and lettingbPZ. h

Theorem 4.3:Let a,b in Z with aÞb. Then

lim
N→`

PN
ab~Vab

~2!!51. ~4.19!

Proof:We can write

2146 Marek Kanter: Discrete decay and continuous measurement

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



PN~Vab!5PN~Vab
~1!!1PN~Vab

~2!!1PNS ø
r53

N

Vab
~r !D . ~4.20!

We use~4.15! to write

PN~Vab
~1!!<NQab , ~4.21!

and we conclude from~3.18! that

lim sup
N→`

N23PN~Vab
~1!!<~ 1

4!a
2. ~4.22!

We now note that

PN~Vab
~2!!<( ~Qaa!

n0Qad~Qdd!
n1Qdb~Qbb!

n2, ~4.23!

where the sum is taken over all non-negative integersn0, n1, andn2 satisfying~4.7! with r52.
Using Remark 4.1, it follows that

PN~Vab
~2!!>SN2 D ~QaaQddQbb!

NQadQdb . ~4.24!

We conclude from~3.6! and ~3.10! that

lim inf
N→`

N2PN~Vab
~2!!>~ 1

2!a
2 exp~22ap!. ~4.25!

Let p5sup(Qjk), where the supremum is taken over allj ,k in Zd with jÞk. We have

PNS ø
r53

N

Vab
~r !D<SN3 D p3 ~4.26!

by virtue of Lemma 3.2 in Kanter.9 It follows from ~3.17! that

PNS ø
r53

N

Vab
~r !D<~ 1

6!a
3N23. ~4.27!

Clearly ~4.19! follows from ~4.20!, ~4.22!, ~4.25!, and~4.27!. h

We conclude the section by supplying proofs for Theorems A and B.
Proof of Theorem A:We shall prove~4.4! for t51. For othert.0 the same proof will work

by redefiningPN in terms ofQ(t) instead ofQ and making other obvious changes of scale in our
argument~e.g.,a is replaced byat2 throughout!. Thus we conclude from~4.2!, ~4.11!, ~4.12!, and
~4.18! that ~4.4! holds if t51 anda5b. Furthermore, fora,b in Zd with aÞb we have

PN~Vab
~1!!<NQab<aN21, ~4.28!

using ~3.17! and ~4.15!. It follows from ~4.2! and ~4.18! that ~4.4! holds if t51 andaÞb. h

Remark 4.2:If a5d, we can interpret~4.4! as stating that under continuous observationfd

decays exponentially with rate 2ap. Furthermore, when decay occurs, the process ‘‘explodes’’ in
the sense that the distribution characterizing where it goes becomes infinitely diffuse. This result
is in accordance with Theorem 2.2 in Kanter,10 although we have not verified that our discrete
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decay model satisfies the Approximation Hypothesis used there. IfaPZ, then~4.4! asserts thatfa

decays at rate zero under continuous observation, in accordance with the Zeno paradox.
Proof of Theorem B:It follows from ~2.8! that

r~a,b!5H 0 if a5b,
1 if aÞb and dP$a,b%,
2 otherwise.

~4.29!

Furthermore, we can readily confirm that no returns to a previously visited state can take place in
a sequence (a,b) or (a, j ,b) with aÞb andaÞ jÞb. Thus Theorem B follows from~4.29! and
from Theorems 4.1–4.3. h

Remark 4.3:The equation~4.29! expresses the distinguished nature of the statefd , in allow-
ing only those change of state transitions which involvefd .

V. ORTHONORMALITY OF THE MEASUREMENT BASIS

In this section we shall prove Theorem 2.1 by obtaining the Mitteg–Leffler expansion of the
Laplace transform of the amplitudeFd in ~3.4!. We start with a definition.

Definition 5.1:An infinite series(nPZ8 f n of meromorphic functions defined on the complex
planeC is said to benormally convergent on Cif the series is uniformly convergent on any
compact set disjoint from any of the poles of the functionsf n .

Remark 5.1:If (nPZ8 f n is normally convergent tof , then(nPZ8 f n
(p) is normally convergent to

f (p), whereg(p) stands for thepth derivative of the meromorphic functiong. ~See Palka.11!
Proof of Theorem 2.1:We start our arguments by defining the meromorphic function

Ka~z!5„z1ap coth~pz!…21 ~5.1!

on the complex planeC. @Herea.0 is a parameter which will be identified withucu2 in ~2.3!.# We
shall show that

Ka~z!5 (
nPZ8

pn~z2 iln!
21 ~5.2!

is normally convergent onC, wherepn andln satisfy the conditions given before Theorem 2.1.
We now need the known fact that„Ka(z)…

21 has only imaginary roots.~See Hille.12! Letting
zn5 iln stand for the roots, we solve forln via the equation

ln5ap cot~lnp!. ~5.3!

Graphical inspection shows that the solutions of~5.3! can be indexed byn in Z8 so that
ln52l2n for n in Z8 and

lnP~n21,n2221! ~ for n.0!. ~5.4!

Since$ iln :nPZ8% comprises the set of all poles ofKa , we conclude thatKa has no poles of the
form i j for jPZ.

As a first step in demonstrating~5.2! we shall show that

Ka~z!5 (
nPZ8

pn„~z2 iln!
212 iln

21
… ~5.5!

is a normally convergent sum onC, wherepn is the residue ofKa(z) at z5 iln for n in Z8. Let
G(z)5„Ka(z)…

21. We compute
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pn5S d

dz
G~z!U

z5 iln
D 21

5„11ap2 sin22~pln!…
21. ~5.6!

We notepn.0 for n in Z8, hence all the poles ofKa are simple.
Let M stand for a positive integer and letCM stand for the boundary of the square with

vertices at (M1221)(616 i ) in the complex plane. It is shown in Palka13 that

ucoth~pz!u<~11e23p!~12e23p!21 ~ for zPCM !, ~5.7!

hence it follows that

uKa~z!u<2M21 ~ for zPCM ! ~5.8!

if M is sufficiently large.~Note uzu>uM u for z in CM .! In particular,Ka is bounded on the system
of contours~CM : M>1! taken as a whole. The validity of~5.5! as a normally convergent sum now
follows from the general criteria for such expansions in Titchmarsh.14

We can use Remark 5.1 to differentiate both sides of~5.5!. We obtain

„Ka~z!…2~12ap2
„sinh~pz!…22!5 (

nPZ8
pn~z2 iln!

22 ~5.9!

as a normally convergent sum onC. Now for j in Z the pointz5 i j is not a pole in the expansion
~5.9!, hence we conclude that

lim
x→ j

„x2ap cot~px!…22~11ap2
„sin~px!…22!5 (

nPZ8
pn~ j2ln!

22, ~5.10!

where the variablex is real. In particular the right-hand side of~5.10! is finite and

a215 (
nPZ8

pn~ j2ln!
22 ~ for jPZ!. ~5.11!

This shows that the vectors~fj : jPZ! all have norm 1.
We now examine the norm offd . We combine~5.3! and ~5.6! to write

pn5~11ap21a21ln
2!21. ~5.12!

Remembering~5.4!, we conclude thatifdi,`. It follows that

(
nPZ8

pnuc~ j2ln!
21u<ifdiif j i,` ~ for jPZ!, ~5.13!

by virtue of the Cauchy–Schwartz inequality. We conclude that

(
nPZ8

pn~ j2ln!
2150 ~ for jPZ! ~5.14!

usingpn5p2n andln52ln for nPZ8. Letting j50, this proves~5.2! as a consequence of~5.5!.
We define the Laplace transform ofFd in ~3.4! via

F̂d~z!5E
0

`

e2ztFd~ t !dt @ for zPC with Re~z!.0#. ~5.15!
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It follows from ~5.2! that

F̂d~z!5„z1ap coth~pz!…21 @ for Re~z!.0#. ~5.16!

We now use the well-known relation

lim
x→`

xF̂d~x!5 lim
t↓0

Fd~ t ! @where xP~0,̀ !# ~5.17!

to concludeifdi51, since limx→1` x„x1ap coth(px)…2151.
In order to verify that$fj : jPZd% are orthonormal, it remains to show thatfj andfk are

orthogonal if jÞk, for j ,k in Z. @Note thatfd is orthogonal tofj for all j in Z on account of
~5.14!.# However, we can write

(
nPZ8

pn~ln2 j !21~ln2k!215~k2 j ! (
nPZ8

pn„~ln2k!212~ln2 j !21
… ~5.18!

for j ,k in Z with jÞk, where absolute convergence is assured by~5.13!. Applying ~5.14!, we
obtain

(
nPZ8

pn~ln2 j !21~ln2k!215^f j ufk&50 ~5.19!

for j ,k in Z with jÞk. This completes the proof of Theorem 2.1. h

Remark 5.2:We note thatfd¹D(H). In fact, ln
2>(unu21)2 for nPZ8 by ~5.4!, hence

pn>221aln
22 for unu sufficiently large by~5.12!. It immediately follows that

^fduH2ufd&5 (
nPZ8

ln
2pn5`, ~5.20!

whencefd¹D(H).
Remark 5.3:Not only is fd¹D(H), but in factfd is not regular by virtue of~3.6!. It is

therefore of interest to write down a spectral condition for regularity to facilitate comparison with
~5.20!. Using results in Feller,15 such a condition is given by

lim
M→`

MP@ uXu>M #50, ~5.21!

whereX is a random variable withE„exp(i tX)…5Fd(t). @ThusX has distributionpn as in~3.4!.#
Arguing as for~5.20! it is easy to see that~5.21! is violated as a consequence of~5.4! and~5.12!.

Remark 5.4:A set of sufficient conditions for the Zeno effect is given in Misra and
Sudarshan.16 ~That paper considers projections more general than the single state projections
f.,f in defining the quantum Zeno effect.! It can be shown that the conditions in Misra and
Sudarshan are all satisfied forfd except the condition thatH be semi-bounded.17 ~Similar con-
siderations are given in Kanter18 with respect to the trivial decay model cited at the end of Section
I A.!

VI. SOLVING THE MODEL

In this section we will use classical Fourier series arguments to prove Theorem 2.2. Along the
way we will give an explicit representation for the transition amplitude functionFd in ~3.4!. In
particular we will show that~1.4! holds.

Lemma 6.1:Let pn andln be given as in~5.2! for n in Z8. We then have
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@ln#<1/2„11~n21!2~ap!22
…

21/2 ~ for n>1!, ~6.1!

where@ln# stands forln minus the greatest integer less than or equal toln. It is also true that
lnpn is a decreasing function ofn for n>~a1a2p2!1/211 and

lim
n→`

npnulnu5a. ~6.2!

Proof: It follows from ~5.3! that

sin2~pln!5„11ln
2~ap!22

…

21. ~6.3!

We now use the well-known inequality

~2/p!x<sin x ~ for 0<x<p/2! ~6.4!

to conclude that

4@ln#
2<„11~n21!2~ap!22

…

21 ~ for n>1!, ~6.5!

since sin2~pln!5sin2~p@ln#! and

0<ln2n115@ln#<
1
2 ~ for n<1! ~6.6!

by ~5.4!. This proves~6.1!.
We letA5a1a2p2 and use~5.12! to write

lnpn5aln~A1ln
2!21. ~6.7!

Letting f (l)5l(A1l2)21, we note thatf 8(l)5(A2l2)(A1l2)22. It follows that f ~l! is de-
creasing forl>A1/2. Using ~6.6!, we conclude thatlnpn is a decreasing function ofn for
n>A1/211. Finally, ~6.2! follows from ~5.4! and ~5.12!. h

Definition 6.1:We let 2pZ stand for the set$2p j : jPZ%.
Lemma 6.2:The functionFd(t) is differentiable at any pointt¹2pZ. The derivativeFd8 is

bounded on any bounded set disjoint from 2pZ and continuous on any closed interval disjoint
from 2pZ.

Proof: Define

C~m,t !522(
n51

m

lnpn sin„~n21!t…. ~6.8!

It follows from Lemma 6.1 and the results of Hardy and Rogosinski19 regarding Fourier series
with decreasing coefficients that the seriesC~`,t! is boundedly convergent onR and is uniformly
convergent on any finite closed interval disjoint from 2pZ.

We now define

Fd~m,t !52(
n51

m

pn cos~lnt !, ~6.9!

and we letD(m,t) 5 Fd8(m,t) 2 C(m,t). For any integers 0,m,M

uD~M ,t !2D~m,t !u<4 (
n5m11

M

lnpnusin~@ln#t/2!u ~6.10!
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by virtue of the trigonometric relation

sin~lnt !2sin„~n21!t…52 sin~@ln#t/2!cos~ln* t !, ~6.11!

whereln* 5 1/2(ln 1 n2 1). It follows from~6.1! that

uD~M ,t !2D~M ,t !u< (
n5m11

M

lnpn„11~n21!2~ap!22
…

21utu. ~6.12!

We now use~5.4! and ~5.12! to write

uD~M ,t !2D~m,t !u< (
n5m11

M

p2a3~n21!23utu. ~6.13!

GivenT.0 it follows that

lim
m→`

S sup (
n5m11

M

uD~M ,t !2D~m,t !u D 50, ~6.14!

where the supremum is taken overt andM such thatutu<T andM.m. We now write

Fd~m,t !22(
n51

m

pn5E
0

t

Fd8~m,s!ds ~ for utu<T!. ~6.15!

SinceFd8(m,t) converges boundedly to a limitF* (t) on [2T,T] by virtue of ~6.14! and the
bounded convergence ofC(m,t), we can letm→` in ~6.15! to obtain

Fd~ t !215E
0

t

F* ~s!ds ~ for utu<T!. ~6.16!

We also know thatF* is continuous on any subinterval of [2T,T] disjoint from 2pZ by virtue
of ~6.14! and the uniform convergence ofC(m,t) on such an interval. It follows by elementary
calculus thatF* 5 Fd8 on [2T,T] and the lemma is proved by lettingT→`. h

Lemma 6.3:We can write

Fd8~ t !5 (
2punu<t

2paFd~ t22punu! ~ for t.0!, ~6.17!

where we adopt the convention that both sides of~6.17! satisfy

f ~ t !5„

1
2~ lim

s↑t
f ~s!1 lim

s↓t
f ~s!… ~ for t.0!. ~6.18!

Proof: Given z in C with Re(z).0, we define

B~z!5E
0

`

(
0<2punu<t

Fd~ t22punu!e2zt dt. ~6.19!

We can write

B~z!5 (
nPZ

E
2punu

`

Fd~ t22punu!e2zt dt, ~6.20!
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where the justification for the interchange of summation and integration is made apparent when we
change variables in~6.20! to obtain

B~z!5 (
nPZ

E
0

`

Fd~s!e2zse22pzunu ds @ for Re~z!.0#. ~6.21!

@Just note that if we take the absolute value of the integrand in~6.21!, then the resulting sum will
be finite and then use Fubini’s theorem, as given by Halmos.20# It follows that

B~z!5F̂d~z!coth~pz! @ for Re~z!.0#, ~6.22!

where the Laplace transformF̂d(z) is given as in~5.15!.
If we now let F̂d8(z) be defined via

F̂d8~z!5 lim
T→`

E
0

T

e2ztFd8~ t !dt, ~6.23!

then it is standard to verify that

F̂d8~z!5zF̂d~z!21. ~6.24!

Combining~5.16!, ~6.22!, and~6.24!, we conclude that both sides of~6.17! have the same Laplace
transform forz with Re(z).0. Also both sides of~6.17! are absolutely integrable on any finite
interval.@We use, in particular, the boundedness ofFd8 on bounded sets proved in Lemma 6.2. The
values ofFd8 on 2pZ are, of course, immaterial in the integral definingF̂d8 in ~6.23!.# It now
follows from the uniqueness result in Widder21 that both sides of~6.17! are equal almost every-
where with respect to Lebesgue measure on the positive real numbers. Since the right-hand side of
~6.17! can be modified on 2pZ so as to satisfy~6.18!, it follows the same is true for the left-hand
side of ~6.17!. h

We can now set forth a very interesting explicit determination of the amplitude function
Fd(t).

Theorem 6.1:Let h(t)5exp(pat)Fd(t) for t>0. Thenh(t)51 for 0<t<2p and

h~ t !5h~2pn!22paE
2np

t

(
m51

n

tmh~s22pm!ds ~6.25!

for 2np<t<2(n11)p, wheretm5exp„pa~2p!m….
Proof: It is clear from Lemma 6.3 thath(t)51 for 0<t<2p. We shall prove~6.25! by

induction onn. We note that

h8~ t !5exp~pat !„paFd~ t !1Fd8)… ~6.26!

for 2np,t,2(n11)p. Using ~6.17!, it follows that

h8~ t !522pa (
m51

n

tmh~s22pm!. ~6.27!

for 2np,t,2(n11)p. h

Remark 6.1:We note thatFd(t) is an even function oft, hence~6.25! gives complete
information aboutFd(t) for all t. In particular we conclude that the exact exponential decay law
~3.5! holds for utu<2p.

Theorem 6.2:For anyt in R, we have
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(
jPZd

Qd j~ t !51. ~6.28!

Proof:We can assumet.0 without loss of generality. Using~3.9! we can rewrite~6.28! as

12Fd~ t !
25a (

kPZ
E
0

tE
0

t

Fd~r !Fd~s!eik~s2r ! drds. ~6.29!

Changing variables in~6.29!, we obtain

12Fd~ t !
25a (

kPZ
E

2t

t

gt~w!eikw dw, ~6.30!

where

gt~w!5E
2w2

t2w1

Fd~r1w!Fd~r !dr, ~6.31!

w15221(w1uwu) and w25221(w2uwu). We note thatgt(w)50 if 2w2>t2w1, i.e., if
uwu>t. It follows we can write

gt~w!5E
2`

1`

ht~r1w!ht~r !dr, ~6.32!

whereht(r )5Fd(r )I [0,t] (r ) and I [0,t] is the indicator function of@0,t#.
We claim that the sum

(
n

gt~w12pn!5 (
uw12pnu<t

gt~w12pn! ~6.33!

is a continuous function ofw. In fact, we can write

(
n

gt~w12pn!5 (
2punu<t12p

gt~w12pn! ~6.34!

for uwu<2p, since uw12pnu>2punu2uwu. This proves the claim, since each summand
gt(w12pn) in ~6.34! is a continuous function ofw and the sum is periodic with period 2p.

The validity of the claim in conjunction with the fact thatgt is non-negative definite@as
follows from ~6.32!# shows that the conditions given by Feller22 for the application of the Poisson
summation formula togt are met. We conclude in particular that

2p (
nPZ

gt~2pn!5 (
kPZ

E gt~w!eikw dw. ~6.35!

Thus ~6.30! is equivalent to the relation

12Fd~ t !
252pa (

2punu<t
E

2~2pn!2

t2~2pn!1

Fd~r12pn!Fd~r !dr. ~6.36!

In order to establish~6.36! it suffices to show that the derivative of both sides are equal, i.e., we
need to show that
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2Fd~ t !Fd8~ t !522pa (
2punu<t

Fd~ t !Fd~ t22punu! ~6.37!

for t¹2pZ. However,~6.37! follows immediately from~6.17! for t.0. h

Proof of Theorem 2.2:We note the identity

Ifd~ t !2 (
jPZd

^fd~ t !uf j&f j I 2512 (
jPZa

Qd j~ t !, ~6.38!

wheref j (t)5U(t)f j for jPZd . In combination with Theorem 6.2 this identity implies that
fd(t)PL for all t in R. It remains to prove thatf j (t)PL for jPZ, where we may assume that
t.0 without loss of generality.

We claim that for alln and j in Z with n>1 we can write

f j~ t !5 i jSn~ t,f j !1dn~ t, j !f j1~ ic ! (
m51

n

Sm~ t,fd!, ~6.39!

where

Sm~ t,fk!5~ ik !m21E
0

tE
0

tm21
•••E

0

t1
fk~ t0!dt0•••dtm21 ~6.40!

for k in Zd and

dn~ t, j !5 (
m50

n21

~ i j t !m/m!. ~6.41!

To show that~6.39! holds whenn51, we notef jPD(H), hence

f j~ t !5 i E
0

t

U~s!Hf jds1f j . ~6.42!

We now use~2.14! to obtain~6.39! with n51. We will finish the proof of the claim by induction
on n. Given the representation~6.39!, we use~2.14! and ~6.42! to conclude that~6.39! is valid
whenn is advanced by one.

We now note thatSm(t,fd)PL for all m by virtue of the fact thatfd(t)PL for all t in R,
which has already been demonstrated. Thus we can establish thatf j (t)PL by showing that

lim
n→`

iSn~ t,f j !i50 ~ for t.0!. ~6.43!

In fact, we have

iSn~ t,f j !i<~ j t !n/n! ~6.44!

sinceifj i51. The right-hand side of~6.44! tends to 0 asn→`, hence the theorem is proved.h

Remark 6.2:For completeness we give some indications of the proof for~1.4! whenDÞ1. We
start by replacingKa(z) in ~5.1! by

KD,a~z!5„z1ap coth~pD21z!…21. ~6.45!

It is then easy to show thatpn in ~5.6! becomes
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pn5„11ap2D21 sin22~pD21ln!…
21. ~6.46!

The arguments for~5.10! and ~5.11! lead us to conclude that the basisfj is now of the form

f j5c~Dpn!
1/2~ln2D j !21. ~6.47!

We replaceC(m,t) in ~6.8! by

C~m,t !522(
n51

m

lnpn sin„~n21!Dt… ~6.48!

and conclude thatFd(t) is differentiable for anyt¹2pDZ. The argument for~1.4! is then
straightforward.
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We continue our study of quantum Riemann surfaces initiated in Refs. 1–3@S.
Klimek and A. Lesniewski, Commun. Math. Phys.146, 103–122~1992!; Lett.
Math. Phys.24, 125–139~1992!; 32, 45–61~1994!#. We construct a one parameter
family of deformations of compact Riemann surfaces of genusg>2. Our construc-
tion does not require any discreteness condition on the value of Planck’s constant.
It coincides with the construction of Ref. 2@Lett. Math. Phys.24, 125–139~1992!#
in the case when Planck’s constant assumes the discrete set of values dictated by
geometric quantization. ©1996 American Institute of Physics.
@S0022-2488~96!01104-X#

I. INTRODUCTION

In a series of papers,1–3 we studied nonperturbative deformation quantization of Riemann
surfaces. Our approach is based on the ideas of Ref. 4~for related developments, see also Refs.
5–7, and references therein!. A satisfactory picture of uniformization of exceptional quantum
Riemann surfaces emerged from these investigations. In the case of higher genus~g>2! Riemann
surfaces, the uniformization on the quantum level is a more complex issue. In fact, ifM is a
Riemann surface andN is a covering ofM , then the quantization ofN is a covering of the
quantization ofM in the sense of Ref. 3 only if the fundamental group of the coveringN→M is
Abelian. Part of the problem is the presence of topological sectors~similar to theu-vacua in gauge
theory! in the quantum theory, which is related to the nonsimple connectedness of the classical
phase space. These sectors are classified by the characters of the fundamental group of the phase
space. This does not reflect the noncommutativity of that group. On the other hand, whether the
fundamental group is commutative or not seems to be important for the quantum uniformization in
the sense of Ref. 3. A similar phenomenon was discussed previously in Ref. 8.

Quantization of Riemann surfaces in the framework of geometric quantization~see, e.g., Ref.
9! requires a restriction on the allowed values of the deformation parameterr ~‘‘the quantization
condition’’!. However, it is desirable to have a definition of quantum Riemann surfaces for all
values of r . A definition consistent with geometric quantization was given in Ref. 2, for
r5n(2g22)21, wherenPN. In principle, quantum uniformization allows for a construction of
quantum Riemann surfaces for all values ofr , using the universal covering, the Poincare´ disk, as
the point of departure. Since the fundamental groups of higher genus Riemann surfaces are
non-Abelian, it is likely, however, that the so defined algebra of quantized functions does not
reduce to the algebra of Ref. 2, whenr5n(2g22)21.

In this paper, we construct quantization of compact Riemann surfaces for arbitrary values of
r.0 in a manner consistent with Ref. 2. Our starting point is a noncompact covering spaceM̂
such that the group of cover transformation is the Abelian groupZ. SinceM̂ is a noncompact
Riemann surface, all holomorphic line bundles are holomorphically trivial,10 and geometric quan-
tization does not impose any restrictions on Planck’s constant. It was explained in Ref. 2 that
geometric quantization of Riemann surfaces leads to certain operator algebras on Hilbert spaces of
automorphic forms. We define the quantization ofM in terms of Toeplitz operators with invariant

0022-2488/96/37(5)/2157/9/$10.00
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symbols on a space of automorphic forms onM̂ , and prove deformation estimates. The proof of
the estimates is based on the methods developed in Ref. 2~see Ref. 11 for a different approach!.

The paper is organized as follows. In Sec. II, we study the fundamental groups ofM andM̂ .
We define and study suitable spaces of automorphic forms onM and M̂ in Sec. III. Section IV
contains proofs of deformation estimates.

II. THE FUNDAMENTAL GROUPS

In this section, we fix our notation and describe certain group theoretic properties of the
fundamental groups of Riemann surfaces which will be useful in later sections. LetM be a
compact Riemann surface of genusg>2. We pick a basis$ai ,bi%, i51,..,g, of one-cycles onM .
The fundamental groupG of M is a finitely generated group with generators$ai ,bi%, i51,...,g,
obeying the relation~see e.g., Ref. 12!

)
i51

g

aibiai
21bi

2151.

We denotea:5ag andb:5bg . An elementgPG can be represented as

g5)
j51

`

)
i51

g

ai
ni , jbi

mi , j ,

where almost all integersni , j ,mi , j are equal to zero. Consider now the homomorphism

g→(
j
mg, jPZ.

One can easily verify that the above map is well defined, i.e., it does not depend on the way we
representg, and is indeed a homomorphism of groups. We denote the kernel of this homomor-
phism byG0. The groupG0 is no longer finitely generated. In fact, it is not difficult to see that the
following elements are its generators:

a,bnaib
2n,bnbib

2n, where nPN, i50,1,...,g21,

and there are no relations among them, i.e.,G0 is the free product of infinite cyclic groups
generated by the above generators.

Let M̂ be a covering ofM with no branching points and such thatp1(M̂ )5G0. The group of
cover transformations of the coveringM̂→M is then equal toZ. Intuitively, M̂ is obtained from
M by cutting along thea cycle and then continuingM across the cut along theb cycle. One can
visualizeM̂ as an infinite cylinder with infinite number of handle bodies attached, each handle
body havingg21 handles.M̂ is a noncompact Riemann surface.

The universal covering space of bothM andM̂ is the unit diskU. The groupsG andG0 can
be thought of as Fuchsian groups onU. For

g5Fa b

ā b̄
GPG,

we denote

g~z!5
az1b

b̄x1ā
, zPU. ~2.1!
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Since the derivative of~2.1! is g8(z)5(b̄z1ā)22, we can set:

g8~z!1/2:5~ b̄z1ā!21.

Let G be eitherG or G0, and letr.0. A multiplier of weight r for the groupG is a map
v:G→C such that12

uv~g!u51,

and

g18~g2~z!!2r /2g28~z!2r /2v~g1!v~g2!5~g1g2!8~z!2r /2v~g1g2!. ~2.2!

In ~2.2!, the standard branch of the logarithm is taken to define ther th power. The existence of
multipliers is a cohomological question, see Ref. 13 for the modern treatment. Equation~2.2! can
be interpreted as the triviality of a 2-cocycle in the group cohomology ofG. A multiplier is
essentially a 1-cochain whose coboundary is that 2-cocycle. It is well-known that multipliers exist
for G if and only if r5n(2g22)21, n51, 2,... . The situation is different forG0.

Proposition 2.1: The second cohomology group H2~G0,Z! of G0 is trivial.
Proof: SinceG05p1(M̂ ), and the universal covering space ofM̂ is contractible, it follows

from Eilenberg–MacLane’s theorem14 that

H* ~G0 ,Z!>H* ~M̂ ,Z!.

By Poincare´ duality,15 H2~M̂ ,Z! is isomorphic to the compactly supported cohomology group of
M̂ in dimension zero. The latter is trivial, asM̂ is noncompact. h

Consequently, multipliers forG0 exist for arbitraryr . Let us also remark that the ratio of two
multipliers is a character of the group.

III. AUTOMORPHIC FORMS

As before, letG be eitherG or G0, and letv be a multiplier for the groupG. Recall that a
holomorphic functionf:U→C is called an automorphic form forG of weightr.0 with multiplier
v, if:12

f~g~z!!5v~g!g8~z!2r /2f~z!, ~3.1!

for eachgPG. Automorphic forms for infinitely generated Fuchsian groups likeG0 have been
studied less extensively than those for finitely generated groups, but there is a fair amount of
information available, see Refs. 16 and 17, and references therein.

LetR be a fundamental polygon forG. ThenR0 : 5 ønPZb
nR is a fundamental polygon forG0.

It has infinitely many sides. Here we use the same symbolb to denote the group element ofG
corresponding to the cycleb5bg . For r5n(2g22)21, we defineH r(G,v) to be the Hilbert
space of automorphic forms forG equipped with the following scalar product:

~f,c!:5E
R
f~z!c~z!dm r~z!, ~3.2!

where the measuredm r(z) is

dm r~z!:5
r21

p
~12uzu2!r22d2z.
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For arbitrary r.0, let H r(G0 ,v) be the space of automorphic forms forG0 with the scalar
product as in~3.2! but R0 replacingR.

If v is a multiplier forG andeiuPS1, we letvu denote a new multiplier forG defined by:

vu~b!5v~b!eiu,

andvu5v on all other generators. In particularv05v. All of the multipliers vu are equal when
restricted to the subgroupG0. The restricted multiplier will be again denoted byv.

Theorem 3.1:With the above definitions, there is a canonical isomorphism

H r~G0 ,v !.E
S1

%

H r~G,vu!du, r5n~2g22!21, n51,2,... .

Proof: For an automorphic formf for G0, define

Uf~z!5b8~z!r /2f~bz!. ~3.3!

We claim that ~3.3! is again an automorphic form, and in factU is a unitary operator on
H r(G0 ,v). Let us first verify~3.1!:

Uf~gz!5b8~gz!r /2f~bgb21bz!5v~bgb21!b8~gz!r /2~bgb21!8~bz!2r /2f~bz!.

Using the chain rule and~2.2!, we obtain~3.1!. Unitary ofU is a consequence of the following
calculation:

~Uf,Uc!5E
R0

b8~z!r /2f~bz!b8~z!r /2c~bz!dm r~z!5E
R0

f~bz!c~bz!dm r~bz!5~f,c!,

where we have used the transformation properties ofdm r(z) and the fact thatR0 is invariant under
b.

The isomorphism of Hilbert spaces that we want to establish is in essence the spectral de-
composition ofU. Explicitly, we define

P:H r~G0 ,v !→E
S1

%

H r~G,vu!du

by the following formula:

Pf~z,u!5 (
nPZ

vu~b2n!Unf~z!. ~3.4!

We need to verify that the right-hand side of~3.4! is inH r(G,vu). If gPG0, this follows from the
fact thatUnf(z) are automorphic forms forG0, and the fact thatvuuG0 5 vuG0 . If g5b, we have

US (
nPZ

vu~b2n!Unf~z! D 5vu~b!S (
nPZ

vu~b2n!Unf~z! D .
The general case follows easily.

We verify thatP is an isometry:
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iPfi25E
2p

p S E
R
uPf~z,u!u2dm r~z! D du

2p

5E
2p

p S E
R
(
n,m

Unf~z!Umf~z!vu~b!n2mdm r~z! D du

2p

5E
R
(
n

uUnf~z!u2dm r~z!

5(
n
E
bnR

uf~z!u2dm r~z!

5E
R0

uf~z!u2dm r~z!.

Similar calculations show that the inverse ofP is given by

P21c~z!5E
2p

p

c~z,u!du.

h

This result implies that the quantization of Riemann surfaces proposed in this paper reduces,
when r5n(2g22)21, to the definition of Ref. 2.

IV. TOEPLITZ QUANTIZATION

In this section, we construct a quantization of the Riemann surfaceM in terms of Toeplitz
operators onH r(G,vu). We first recall the relevant definitions. The reproducing kernel
KG0 ,v
r (z,w) for H r(G0 ,v) is given by the following Poincare´ series:

KG0 ,v
r ~z,w!5 (

gPG0

v~g!21g8~z!r /2Kr~g~z!,w!, ~4.1!

where

Kr~z,w!5~12zw̄!21.

Let CG~U! be theC* -algebra of bounded continuous functions onU which are invariant underG,
so thatCG~U!>C(M ). For fPCG~U!, we define the Toeplitz operatorTG0 ,v

r ( f ) onH r(G0 ,v)
with symbol f by:

~TG0 ,v
r ~ f !f!~z!5E

G0

KG0 ,v
r ~z,w! f ~w!f~w!dm r~w!. ~4.2!

The goal of this section is to prove that the correspondencef°TG0 ,v
r ( f ) is a quantization of

M . This means that forfPCG~U! we have the norm limit

lim
r→`

iTG0 ,v
r ~ f !i5i f i` , ~4.3!

wherei•i denotes the operator norm, and wherei•i` denotes the sup-norm. If, moreover,f ,g are
smooth, then
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lim
r→`

ir @TG0 ,v
r ~ f !,TG0 ,v

r ~g!#1TG0 ,v
r ~ i $ f ,g%!i50, ~4.4!

where$ f ,g% is the usual Poisson bracket,

$ f ,g%~z!5 i ~12uzu2!2@] f ~z!]̄g~z!2]g~z!]̄ f ~z!#. ~4.5!

Theorem 4.1:With the above definitions, the correspondence

f°TG0 ,v
r ~ f !

is a quantization of M.
Proof: The details of analogous estimates were explained in Refs. 1 and 2. Here we follow

Ref. 2, where the estimates were proved for the quantization based on automorphic forms ofG.
However, the compactness of the fundamental domain ofG was used in an essential way in several
places, so that the results cannot be applied to the case ofG0 ~asR0 is not compact inU!. The
main difference is that ‘‘transfer of regularity’’ argument has to be done more carefully in the
present case.

To prove~4.3!, we consider the vectors

fw~z!:5KG0 ,v
r ~w,w!21/2KG0 ,v

r ~z,w!

in H r(G0 ,v), and verify that:

sup
xPR

u f ~w!2~fw ,TG0 ,v
r ~ f !fw!u→0, as r→`, ~4.6!

in a way analogous to Ref. 2. The proof there was based on Lemmas 4.1 and 4.2 which are also
valid for G0,G. Sincef is invariant underG, and not justG0, and since the supremum in~4.6! is
taken over a compact set,~4.6! follows exactly as in Ref. 2.

The estimate~4.4! is a consequence of

ir ~TG0 ,v
r ~ f !TG0 ,v

r ~g!2TG0 ,v
r ~ f g!!1TG0 ,v

r ~~12uzu!2] f ]̄g!i→0, as r→`, ~4.7!

for f ,gPCG
`. To prove~4.7!, one expands (f,TG0 ,v

r ( f )TG0 ,v
r (g)c) in a Taylor series as in Ref. 2

formula ~5.6!. The first three terms in that formula combine to give the second and third terms in
~4.7!. The analog of the fourth term of Ref. 2, formula~5.6!, isO(r22) as in Ref. 1. It remains to
estimate the remainder.

The technique developed in Ref. 1 for estimating the remainder terms can be applied to our
case with one modification. The integral*Uuc(w)u2dm r(w) is infinite if cPH r(G0 ,v), and one
needs to transfer a power of 12uwu2 to make it convergent. This ‘‘transfer of regularity’’ trick was
explained in detail on the last two pages of Ref. 2 forG-automorphic forms. However, the
compactness of the fundamental domain ofG was used in an essential way. We show below that
a modification of the argument used in Ref. 2 can be used in our case.

Lemma 4.2: LetcPH r(G0 ,v) and s.1. Then we have:

E
U

uc~w!u2~12uwu2!sdm r~w!5O~1!ici2.

Lemma 4.3: Let bPSU(1,1) be hyperbolic, let K be a compact set inU, and let t.0. Then
we have:
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sup
zPK

(
nPZ

u~bn!8~z!u t5O~1!.

We will prove these lemmas after we have completed the main line of the argument.
We now use the above lemmas to estimate the term in formula~5.16! of Ref. 2. This will

conclude the proof of Theorem 4.1. That term reads:

E
R03U

uf~z!u~12uzu2!12r /2uc~gz~w!!igz8~w!ur /2
uwu2

~12uwu2!11
dm r~z!dm r~w!, ~4.8!

wheregz(w)5(w1z)/( z̄w11). Let 0,e,1/2. We multiply and divide the integrand by~12
ugz(w) u

2!12e, and use the following elementary bound:

1

~12ugz~w!u2!12e <
O~1!

~12uzu2!12e~12uwu2!
.

The integral in~4.8! is consequently less then

O~1!E
R03U

uf~z!u~12uzu2!e2r /2uc~gz~w!!u~12ugz~w!u2!12eugz8~w!ur /2

3
uwu2

~12uwu2!12
dm r~z!dm r~z!. ~4.9!

Using the Schwarz inequality and changing variables in thec term, we get the following bound:

O~1!ifi S E
R0

~12uzu2!2e2rdm r~z! D 1/2S E
U

uc~w!u2~12uwu2!222edm r~w! D 1/2
3S E

U

uwu4

~12uwu2!24
dm r~w! D 1/2. ~4.10!

With our choice 0,e,1/2, the exponent 222e in the third factor is greater than 1, and so we can
apply Lemma 4.2 to it, and conclude that it isO~1!ici2. The fourth factor isO(r21) by Ref. 2,
formula ~5.18!. One can analyze the second factor in~4.10! as follows:

E
R0

~12uzu2!2e2rdm r~z!5O~r !E
R0

~12uzu2!2edmP~z!

5O~r !(
nPZ

E
b2nR

~12uzu2!2edmP~z!

5O~r !(
nPZ

E
R
~12ubnzu2!2edmP~z!

5O~r !E
R
(
nPZ

u~bn!8~z!u2e~12uzu2!2edmP~z!

<O~r !sup
zPR

(
nPZ

u~bn!8~z!u2e. ~4.11!
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In ~4.11!, dmP(z) is the Poincare´ measure onU, and we have used the fact thatR is compact.
Since 2e.0 it follows from Lemma 4.3 that~4.11! is O(r ). This concludes the transfer of
regularity argument.

Proof of Lemma 4.2:We decomposeU into the translates ofR0:

E
U

uc~w!u2~12uwu2!sdm r~w!5 (
gPG0

E
g21R0

uc~w!u2~12uwu2!sdm r~w!

5 (
gPG0

E
R0

uc~w!u2~12ug~w!u2!sdm r~w!

<S sup
wPU

(
gPG0

~12ug~w!u2!sD ici2.

To estimate the supremum factor, we proceed as in the proof of Ref. 2 lemma 4.2:

15~12uwu2!sE
U

uKs~w,z!u2dms~z!

5~12uwu2!s (
gPG0

E
g21R0

uKs~w,z!u2dms~z!

5~12uwu2!s (
gPG0

ug8~w!usE
R0

uKs(g~w!,z)u2dms~z!

5 (
gPG0

~12ug~w!u2!sE
R0

uKs(g~w!,z)u2dms~z!

> (
gPG0

~12ug~w!u2!s
1

22s ER0dms~z!.

Hence, supwPU(gPG0
(1 2 ug(w)u2)s 5 O(1), if s.1. This concludes the proof of Lemma 4.2.

Proof of Lemma 4.3:Sinceb is a hyperbolic element of SU~1,1!, it has two real eigenvalues
l, 1/l with ulu.1. Letting

bn5Fan bn

b̄n ān
G ,

we havean5O(ulu unu). Furthermore, we have the following bound:

u~bn!8~z!u5ub̄nz1ānu225uanu22u11
b̄n

āN
zu22<uanu22~12uzu!22.

Sincez varies over a compact set andt.0, it follows that the series(nPZu(bn)8(z)u t is bounded,
uniformly in z, by a convergent geometric series. This concludes the proof of Lemma 4.3 and
Theorem 4.1. h
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Radial Coulomb and oscillator systems in arbitrary
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A mapping is obtained relating analytical radial Coulomb systems in any dimension
greater than one to analytical radial oscillators in any dimension. This mapping,
involving supersymmetry-based quantum-defect theory, is possible for dimensions
unavailable to conventional mappings. Among the special cases is an injection from
bound states of the three-dimensional radial Coulomb system into a three-
dimensional radial isotropic oscillator where one of the two systems has an ana-
lytical quantum defect. The issue of mapping the continuum states is briefly con-
sidered. ©1996 American Institute of Physics.@S0022-2488~96!03105-X#

I. INTRODUCTION

Various types of correspondence between the Kepler–Coulomb and the isotropic-oscillator
systems have been extensively investigated since the influential work of Levi-Civita early this
century.1 Among the correspondences of interest are mappings that can be constructed between
the radial equations of the quantum systems. This subject was initiated over 50 years ago in a
paper by Schro¨dinger2 addressing the solution of eigenvalue problems by factorization. Schro¨-
dinger discovered a connection between the radial equation of the three-dimensional quantum
Coulomb problem and the radial equation of aD-dimensional quantum harmonic oscillator. Using
a quadratic transformation in the radial coordinate, he showed that the mapping images all the
states in the three-dimensional discrete Coulomb spectrum only for oscillators withD52 or 4.

Schrödinger’s idea was subsequently rediscovered or investigated by a number of authors.3–7

An extension relating the radial equations of thed-dimensional Coulomb system and the
D-dimensional oscillator for the special case of even dimensionsd5D was given in Ref. 8. A
more general mapping for arbitraryd and evenD that involves a free parameter was presented in
Ref. 9, along with the corresponding mappings to the supersymmetric partners of these systems.
All these correspondences involve oscillators in even dimensions, and they incorporate constraints
on the allowed range of angular momenta. It is possible in general to map all the states of the
d-dimensional Coulomb system into half the states of aD-dimensional oscillator, whered is
greater than one andD must be even.

Recently, it has been proposed that some restrictions on the dimensions or angular momenta
can be removed with the introduction of suitable analytical deformations called quantum defects in
one or both systems.10 The motivation for this derives from the use of supersymmetric quantum
mechanics11,12 in the context of atomic physics,13 where supersymmetry-based quantum-defect
theory ~SQDT!14 provides an explicit example with direct physical relevance.

One goal of the present paper is to investigate the issue of relaxing the dimensional constraints
on the radial correspondences via the introduction of analytical quantum defects. The treatment
incorporates not only the Coulomb and oscillator systems but also their supersymmetric partners.
We show that with a suitable choice of defect it is indeed possible to remove restrictions on the
mappings. For instance, among the examples discussed below is a generalized mapping taking any
state in the three-dimensional radial Coulomb problem into a state in an analytically modified
three-dimensional radial oscillator. We also briefly consider the continuum states of the two radial
systems.

The focus of this work is the set of radial correspondences as summarized above. We do not
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address here the different issue of obtaining surjective mappings between the full
D-dimensional oscillator and the fulld-dimensional Coulomb systems. This interesting question
has been addressed by a number of authors, originating with the parabolic-coordinate transforma-
tion of Levi-Civita1 that relatesD52 to d52 and with the mapping of Kustaanheimo and
Stiefel15 in their work on celestial mechanics that relatesD54 to d53. The latter transformation
in particular has been much investigated in the quantum context,16–19 and in recent years exten-
sions connectingD58 andd55 have been studied.20,21 While more complete than the purely
radial mappings, all these surjective correspondences are restricted to a narrow range of dimen-
sions.

The organization of this paper is as follows. Section II consists primarily of background on the
supersymmetric radial Coulomb and oscillator systems in arbitrary dimensions and the known
correspondences between them. It contains key equations needed in the subsequent sections and
provides a perspective useful for our purposes. In section III, we introduce SQDT for the radial
Coulomb and oscillator systems in arbitrary dimensions, and we define mappings relating these
systems to the supersymmetric sectors of the associated zero-defect cases. The general correspon-
dence between different SQDT for the Coulomb and oscillator systems in arbitrary dimensions is
established in section IV. This permits, for instance, the entire set of Coulomb radial states to be
injected into a subset of the oscillator radial states for any dimensions, including odd oscillator
dimensions. Section V provides a short discussion of some results arising for the continuum
Coulomb states. We summarize in section VI.

To distinguish comparable quantities in the two systems, we adopt the convention that lower-
case letters are used for Coulomb-system variables while upper-case letters are used for oscillator-
system variables. An exception is made in denoting energies, for which the symbolE with various
sub- and superscripts is used in the Coulomb system whileF is used in the oscillator system.

II. PRELIMINARIES

In this section, we establish our conventions and present some preliminary material and
results. Section II A begins with definitions and solutions for the radial Coulomb problem in
arbitrary dimensions, while in section II B we similarly treat the harmonic-oscillator radial prob-
lem. A one-parameter mapping between these systems is presented in section II C. Key equations
for supersymmetric quantum mechanics are given in section II D. The supersymmetric counterpart
of the results in section II A is discussed in section II E, while that of sections II B and II C is
covered in section II F.

A. Coulomb bound states in d dimensions

The quantum Kepler–Coulomb system ind dimensions is governed by the Hamiltonian

h52
\2

2m
¹22

k

r
, ~1!

wherem is the reduced mass,k is the force constant, andr is the usual radial variable. To avoid
normalization issues, we assumed.1. The associated radial equation is obtained from the Schro¨-
dinger equationhc5Ec by separating the wave functionc in generalized polar coordinates,
c(r ,u1 , . . . ,ud21)5s(r )u(u1 , . . . ,ud21). Normalizable solutions to the ensuing radial equation
are found for discrete eigenenergies given by

En,g5
2E0

4~n1g!2
, ~2!

where E052mk2/\2, g5 1
2 (d23), and n is the principal quantum number taking values

n5 l11, l12, . . . ,with l the angular-momentum quantum number arising from the separation of
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variables. Ford>3, l50, 1, 2, . . . as usual. Whend52, the angular-momentum quantum
number takes the values 0,61, 62, . . . . In this case, we define the symboll to represent the
modulus of the angular momentum. Note thatE0 is the magnitude of the ground-state energy in
the lowest dimension considered,d52.

To simplify the equations that follow, we introduce a dimensionless radial variable
y5r /r 0 , wherer 05\2/2km. It is also convenient for later considerations involving supersym-
metry to work with a scaled radial functionw(y)5yg11s(r[r 0y), which effectively removes the
first-order derivative appearing in the radial equation fors. The radial equation becomes

H 2
d2

dy2
1

~ l1g!~ l1g11!

y2
2
1

y
2

E

E0
Jwd,n,l~y!50. ~3!

The eigensolutions involve Sonine-Laguerre polynomials and are given by

wd,n,l~y!5cdnly
l1g11expS 2y

2~n1g! DLn2 l21
~2l12g11!S y

n1g D , ~4!

with normalization

cdnl5F G~n2 l !

2r 0
d~n1g!2l1d11G~n1 l1d22!G

1/2

. ~5!

B. Oscillator bound states in D dimensions

The quantum Hamiltonian for the isotropic harmonic oscillator inD dimensions,D>1, is

H52
\2

2M
¹21

1

2
MV2R2, ~6!

whereM is the oscillator mass,V is the frequency, andR is the usual radial variable. Separating
variables in generalized polar coordinates as before produces a radial equation that has normaliz-
able solutions for energy eigenvalues given by

FN,G5F0~2N12G13!, ~7!

whereG5 1
2 (D23), F05

1
2\V is the ground-state energy for the lowest dimensionD51, and

N is the principal quantum number taking valuesN5L, L12, L14, . . . , with L the quantized
angular momentum arising from the separation of variables. ForD>3, L50, 1, 2, . . . as usual.
For D52, the angular momentum ranges over 0,61, 62, . . . , and wedefine L to be its
modulus. ForD51, the only possibilities areL50 and 1. The corresponding angular variable has
two discrete values, distinguishing the two orientations of the radial vector. These two cases
represent distinctradial systems for the one-dimensional oscillator, as opposed to the full one-
dimensional oscillator with configuration space including both positive and negative coordinate
values. For convenience in what follows, we define the parity of the radial wave functions as even
if L50 and odd ifL51.

Defining the dimensionless variableY5R/R0 with R05(\/MV)1/2 and introducing for later
convenience the scaled radial functionW(Y)5YG11S(R[R0Y), the radial equation becomes

H 2
d2

dY2
1

~L1G!~L1G11!

Y2 1Y22
F

F0
JW~Y!50. ~8!

The eigenfunctions are
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WD,N,L~Y!5CDNLY
L1G11exp~2 1

2Y
2!LN/22 L/2

~L1G1 1/2!~Y2!, ~9!

with normalization

CDNL5F 2G~N/22 L/211!

R0
DG~N/21 L/21 D/2!G

1/2

. ~10!

With our definitions forL above, these expressions hold for all integralD>1. Note that the
D51 normalization coefficients differ from the canonical ones by a factor ofA2 because the
above construction produces a normalization on the half line only.

C. Mappings between the Coulomb and oscillator problems

The wave function~4! can be mapped to the wave function~9! through the quadratic trans-
formation

Y25
y

~n1g!
. ~11!

This correspondence also interconnects the differential equations~3! and~8!. The explicit relation
between eigensolutions is

WD,N,L~Y!5KdnlY
21/2wd,n,l„~n1g!Y2

…, ~12!

where the quantityKdnl maintains the normalization of the wave functions and is given by

Kd,n,l5
~2n1d23!r 0

d/2

R0
d212l . ~13!

The quantityl provides an extra degree of freedom in the mapping.
The ensuing relationships among the dimensionalities and the quantum numbers of the two

systems are9

D52d2222l, N52n221l, L52l1l. ~14!

The last of these equations constrainsl to be integral. It then follows from the first equation that
this mapping has image only in the oscillators of even dimensionD.

For given angular momental andL, the relation~14! between the principal quantum numbers
ensures that the stackn> l11 of Coulomb states is in one-to-one correspondence with the stack
N>L of oscillator states, with ground states coinciding. This relation betweenN andn determines
a condition relating the energiesE andF of the two systems:

FN,G

F0
52A E0

2En,g
. ~15!

The factor of two can be viewed as originating from the scaling ofN relative ton in the second
equation in~14!. Absorbing it in the definitions ofE0 or F0 would change equations~3! or ~8!.

Condition ~14! shows that successive Coulomb angular momental map to every second
oscillator angular momentumL. The entire set of radial statesun,l & of the d-dimensional Cou-
lomb system can be mapped into a subset of the statesuN,L& of the D-dimensional oscillator
providedD satisfies 2<D<2d22. For even or oddl, the mapping is then an isomorphism to
even or oddL, respectively. For givend, the allowed values of the pair (D,l) characterizing this
mapping are distinct: (2,d22), (4,d23), . . . , (2d24,1), (2d22,0). We recover in this way
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Schrödinger’s result that all states of the three-dimensional Coulomb system can be mapped only
into oscillators of dimension two or four. Note that if insteadl is taken to be fixed, so that only a
subset of states is imaged, then the allowed range ofD is4 2<D<2d2214l .

D. Supersymmetric quantum mechanics

For the purposes of the present paper, only a few of the basic results of supersymmetric
quantum mechanics are needed. We restrict our attention to systems with a quantum-mechanical
HamiltonianHS and two supersymmetry chargesQ andQ†, obeying the defining relations of the
superalgebra sqm~2!:

$Q,Q†%5HS , @Q,HS#5@Q†,HS#50. ~16!

The representation of this algebra relevant here is two dimensional and may be parametrized
as11,12

Q5S 0 0

A 0D , Q†5S 0 A†

0 0 D , HS5SH1 0

0 H2D . ~17!

There are two component Hamiltonians in this system and two associated Hilbert spaces. If the
bosonic HamiltonianH1 acts on wave functionsc1, while the fermionic HamiltonianH2 acts on
c2, then the corresponding Schro¨dinger equations can be written as

H6c65F2
d2

dy2
1V6~y!Gc65E6c6, ~18!

whereA is the operatorA52 i ]y2 iU 8 and where the supersymmetric partner potentials are
defined byV6(y)5U827U9, with U85]yU(y) a specified function called the superpotential.

The ground state of a supersymmetric system lies in the bosonic sector and has zero energy.
Every state in the bosonic sector other than the ground state is degenerate with a distinct state in
the fermionic sector, and the operatorsQ, Q† map between these paired states.

E. Supersymmetric Coulomb system

To construct the supersymmetric Coulomb system, the bosonic-sector combinationH12E1

from Eq. ~18! is identified with the radial equation~3!. In the latter, a suitable constant must be
added to the energy eigenvalues and incorporated in the potential to ensure that the ground-state
energy is zero. Thus, the eigenvalues are

Enl
15

1

4~ l111g!2
2

1

4~n1g!2
, ~19!

and the bosonic potential function is

v1~y!5
~ l1g!~ l1g11!

y2
2
1

y
1

1

4~ l111g!2
. ~20!

The last term in Eq.~20! is the energy shift ensuring a zero ground-state energy. Since it must be
constant,l must be fixed to define a supersymmetric partner.

The superpotential is specified by the function13

u~y!5
y

2~ l1g11!
2~ l1g11!ln y. ~21!
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The fermionic Hamiltonian and hence the associated fermionic radial equation can then be calcu-
lated as

H 2
d2

dy2
1

~ l 81g!~ l 81g11!

y2
2
1

y
1

1

4~ l 81g!2 Jw2~y!5En8 l 8
2 w2~y!, ~22!

wherel 85 l11 andn8 takes on all values ofn except the lowest one,l11. The fermionic wave
functionsw2(y) have the same functional form as the bosonic wave functionsw1(y)[w(y)
given in Eq.~4!, but with n and l replaced byn8 and l 8:

wd,n8,l 8
2

~y!5wd,n8,l 8~y!. ~23!

The two sets of eigenvalues are degenerate forn85n: En85n,l 8
2

5Enl
1 .

With fixed l , the bosonic stack of eigenstates in order of increasing energy consists of the
series of ketsun5 l11, l &, un5 l12, l &, . . . , with lowest energy zero. The associated fermi-
onic stack has angular momentum greater by one unit and starts with lowest energy corresponding
to the second state of the bosonic sector:un85 l12, l11&, un85 l13, l11&, . . . . The use of
n8 here is consistent with spectroscopic notation. For example, when the s orbitals of lithium are
interpreted as the supersymmetric partner of the hydrogen atom,n852 corresponds to the ground
state, as expected.

A useful one-to-one correspondence between these two stacks identifies the lowest states with
each other, and successively higher states of the bosonic sector with successively higher states of
the fermionic sector. It is defined by the following replacements in the bosonic wave function:

n°n85n11, l° l 85 l11. ~24!

This stack correspondence relates eigenstates with different eigenvalues. Along with similar stack
correspondences defined below, it plays a useful role in the analyses to follow.

F. Supersymmetric oscillator and composition mapping

The bosonic component of the supersymmetric oscillator can be obtained from the radial
equation~8! under a suitable energy shift. The eigenvalues are

FNL
1 52~N2L !. ~25!

The superpotential is specified via the function

U~Y!5 1
2Y

22~L1G11!ln Y, ~26!

which generates the fermionic equation

H 2
d2

dY2
1

~L81G!~L81G11!

Y2 1Y22~2L812G21!JW2~Y!5FN8L8
2 W2~Y!, ~27!

whereL8 is defined byL85L11. The principal quantum numberN8 takes the valuesN85L8,
L812, L814, . . . . The fermionic wave functionsW2(y) have the same functional form as the
bosonic wave functionsW1(Y)[W(Y) of Eq. ~9!, with N, L replaced byN8, L8, respectively:

WD,N8,L8
2

~Y!5WD,N8,L8~Y!. ~28!

The fermionic energiesFN8L8
2

52(N82L812) are degenerate with the bosonic energies for
N8115N, FN8L8

2
5FN5N811,L

1 .
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In order of increasing energy, the bosonic stack with fixedL consists of the kets
uN5L, L&, uN5L12, L&, uN5L14, L&, . . . , with lowest energy zero. The associated fermi-
onic stack has angular momentum one unit greater and contains the kets
uN85L85L11, L11&, uN85L13, L11&, . . . .

TheD51 case is unusual and warrants special attention. As mentioned above, the ‘‘angular
momentum’’L for the one-dimensional oscillator takes the values zero and one, corresponding to
even and odd parity. The system resembles a single stack, but is composed of two interlocking
substacks. As a result, the spacing between neighboring eigenvalues is half its value in higher
dimensions. Also, in constructing the supersymmetric partner, the energy shift isL dependent.
Consequently, distinct shifts appear for each substack. The formalism thus establishestwo inde-
pendent supersymmetries, each of which respects the parity and only one of which may be
considered at a time. These supersymmetries for the one-dimensional radial oscillator differ from
the usual one for the full one-dimensional oscillator, where a single energy shift is effected and
states of opposite parity are degenerate under the supersymmetry.

In later sections, for reasons that emerge from the construction of the generalized mapping, it
is more natural to focus on the supersymmetric partner of the fermionic oscillator rather than the
fermionic oscillator itself. This system, which we call ‘‘second fermionic,’’ has wave functions
WDN9L9

5 given by

WDN9L9
5

~Y!5WD,N9,L9~Y!. ~29!

Here,L9 is defined byL95L811, andN9 takes valuesL9, L912, L914, . . . . Thedifferential
equation for this system has the same functional form as the fermionic equation~27!, except for
the replacement ofN andL with N9 andL9, respectively.

The oscillator bosonic sector may be put into one-to-one correspondence with the second-
fermionic sector by making the following replacements in the bosonic wave function:

N°N95N12, L°L95L12. ~30!

By composition of this mapping and the ones given in sections II C and II E, a correspondence
may be established between the fermionic sector of the Coulomb system and the second-fermionic
sector of the oscillator. It is given by

WD,N9,L9
5

~Y!5Kd,n8,lY
21/2wdn8 l 8

2
~~n81g!Y2!, ~31!

Y25
y

~n81g!
, ~32!

N952n8221l, ~33!

L952l 81l. ~34!

The dimensions are still related as in Eq.~14!. See Figure 1. We emphasize that this commutative
diagram involves mappings different from those presented in Ref. 9, where the second-fermionic
sector is not considered.

III. GENERALIZED SUPERSYMMETRY-BASED QUANTUM-DEFECT THEORY

In this section, we introduce analytical SQDT for the Coulomb and oscillator systems in
arbitrary dimensions. From the present perspective, the goal is to obtain effective radial equations
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that offer sufficient flexibility to obviate the dimension and angular-momentum constraints of the
usual mappings, while maintaining eigensolutions with analytical structure comparable in simplic-
ity to those of the Coulomb and oscillator systems.

The existence of suitable deformations of the Coulomb and oscillator systems satisfying these
criteria is by no means apparenta priori. In what follows, we take as a guide the SQDT that is
known to provide a useful analytical description of the valence structure of physical atoms in
terms of an effective one-particle radial equation.14 This model determines an effective radial
potential modifying the three-dimensional radial Coulomb equation. It generates solutions with
physical eigenvalues given by the Rydberg expression

En*52E0/4n*
2. ~35!

Here,n* is the principal quantum number modified by subtracting the quantum defectd, which in
general depends on the angular momentum and the principal quantum number. In section III A, we
generalize this model to thed-dimensional situation. For simplicity, we taked and its generali-
zation in arbitrary dimensions to be independent of the principal quantum number. This approxi-
mation is excellent in, for example, real alkali-metal atoms.22

Similar ideas can be implemented for the radial equation of theD-dimensional oscillator. The
resulting oscillator SQDT are presented in section III B. A possible physical application of these
oscillator models is to the description of a valence particle in geonium atoms formed by a group
of charged particles bound in a Penning trap.10

A. Generalized SQDT for the Coulomb system

Given thed-dimensional Coulomb radial equation~3! with fixed angular momentuml , we
seek to implement two modifications via an effective potentialveff(y) added to the left-hand side.
The first desired modification is a shift in dimension, fromd to d*5d1 j , where j is an integer
that in principle could depend onl . We required*.1, so j must satisfyj.12d. The second
desired modification is a shift in energy eigenvalues fromEn,g in Eq. ~2! to thed* -dimensional
extension of the Rydberg series@see Eq.~41! below#. We want both these changes to be imple-
mented while maintaining analytical eigenfunctions with form similar to those in Eq.~4!.

Remarkably, these goals can be accomplished with a relatively simple effective potential,
given by

veff~y!5
~n1g!22~n*1g* !2

4~n1g!2~n*1g* !2
1

~ l *1g* !~ l *1g*11!2~ l1g!~ l1g11!

y2
. ~36!

FIG. 1. Supersymmetric mappings. Relationships are shown interconnecting the bosonic and fermionic partners of the
Coulomb and oscillator systems. The diagram is commutative.
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Here, the quantityg* is defined byg*5(d*23)/2. The quantitiesn* and l * are defined as

n*[ns2d5n1 i2d, ~37!

l *5 l1 i2d, ~38!

whered is the quantum defect determining the energy shifts for the generalized Rydberg series
and wherei5 i ( l ) is an integral-valued function of the angular momentum. In the supersymmetric
interpretation for the valence electron of physical atoms,i ( l ) is the number of filled lower levels
with angular momentuml . The introduction ofns is motivated by the three-dimensional case,
where it is equal to the principal quantum number and takes conventional values in the standard
spectroscopic notation. It satisfiesns5n1 i , wheren takes the usual values characteristic of the
exact Coulomb system. As an example, thes states of the supersymmetric sodium atom in three
dimensions havei (0)52, giving ns53, ns54, ns55 for the first three levels.13 The correspond-
ing values ofn are n51, n52, n53. For the supersymmetric partner of the exact Coulomb
system,i51 and sons5n115n8, consistent with our previous notation for the supersymmetric
case.

The first term of Eq.~36! has the effect of shifting the energy levels, while the second term
performs a corresponding shift in the angular-momentum barrier. The combined effect of both
terms incorporates the desired dimensional shift. With a nonzero quantum defectd( l ), the effec-
tive potentialveff(y) plays the role of a supersymmetry-breaking potential. The resulting radial
equation has analytical solutions given in terms of the usual Coulomb solutionswd,n,l(y) by
wd* ,n* ,l* (y). These solutions exist forn> l11, or ns> l1 i11. Requiring the existence and
orthonormalizability of the wave functions restrictsd2 i according to

d2 i, l1g111 1
2 j . ~39!

It is convenient to define a dimensionless quantitya( l ) by

a~ l !5 i2d1 1
2 j . ~40!

The eigenvalues of the differential equation can then be expressed as

En* ,g*
E0

5
21

4~n*1g* !2
5

21

4~n1g1a!2
. ~41!

In this equation, we have chosen the eigenenergies so that the limiting case withd53 and
i5 j50 reproduces the Rydberg series~35!. For i , d, and j chosen so thata50, we obtain the
bosonic equation of the Coulomb system discussed in section II E, up to an energy shift. If
a51, the fermionic sector of the Coulomb problem is generated instead. Moreover, the supersym-
metric partner of the fermionic sector is generated by settinga52, and each successive iteration
of the supersymmetry incrementsa by one unit.

A useful stack correspondence can be established between the spectrum of the bosonic sector
of the supersymmetric Coulomb system and the SQDT Coulomb spectrum. The map is given by
making the following replacements inwd,n,l

1 :

d°d*5d1 j ,

n°n*5n1 i2d5ns2d, ~42!

l° l *5 l1 i2d.
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B. Generalized SQDT for the oscillator system

The techniques of section III A can also be applied to the radial oscillator system inD
dimensions. For fixed angular momentumL, we can obtain an effective potentialVeff(Y) to be
added to Eq.~8! that maintains analytical eigenfunctions while inducing an integral shift to a new
dimensionD*[D1J>1 and simultaneously modifying the oscillator energy eigenvalues via a
shift to a new principal quantum numberN* . We refer to the resulting theory as the oscillator
SQDT.

The appropriate choice of effective potential is

Veff~Y!52~N2N*1G2G* !1
~L*1G* !~L*1G*11!2~L1G!~L1G11!

Y2 , ~43!

whereG*5(D*23)/2 and the shifted quantum numbers are given by

N*[Ns2I2D[N1I2D, ~44!

L*5L1I2D. ~45!

Here, I5I (L) is an integral-valued function, analogous toi ( l ) in the Coulomb case, that can be
interpreted as the number of inaccessible lower levels. The quantityD(N,L) is the oscillator
equivalent of the Rydberg quantum defectd(n,l ), modifying the radial-repulsion term in the
differential equation. For simplicity in what follows, we takeD to depend only onL, thereby
paralleling the case of alkali-metal atoms for whichd depends only onl . We have also defined a
quantityNs playing the role of the principal quantum number in the spectroscopic notation, given
by Ns5N12I . If the dimension is unmodified andD50, the choiceI51 yields the fermionic
sector of the supersymmetry discussed in section II F. In this limitN85N*5N11 Þ Ns , which
differs from the supersymmetric limit of the Coulomb SQDT wheren85n*5ns . With our defi-
nitions, degenerate levels in the bosonic and fermionic sectors have values ofN differing by 2I
units, but have the same value ofNs .

The first term in Eq.~43! implements the eigenenergy shift to the oscillator analogue of the
Rydberg series, while the second term is the corresponding anharmonic modification to the po-
tential that maintains analytical eigensolutions. The eigenfunctions solving the resulting effective
radial equation are given in terms of the oscillator wave functionsWD,N,L(Y) of Eq. ~9! by
WD* ,N* ,L* (Y). The existence of these solutions requires that the principal quantum number takes
the valuesNs5L12I , L12I12, L12I14, . . . , orN5L, L12, L14, . . . . Requiring or-
thonormalizability of the wave functions restricts the range ofD2I to

D2I,L1G1 3
21

1
2J. ~46!

We can again introduce a useful dimensionless quantityA(L) by

A~L !5I2D1 1
2J. ~47!

The eigenvalues of the differential equation can be expressed as

FN* ,G*
F0

52N*12G*12A1352N12G14A13. ~48!

We have chosen the ground-state eigenenergy in analogy with the Coulomb case~41!. The extra
factor of 2A appears to ensure that the bosonic and fermionic spectra of the limiting supersym-
metric case withD50, J50 have the characteristic degenerate pairing. IfI , D, andJ are selected
so thatA50, then this SQDT system reduces to the bosonic oscillator discussed in section II F, up
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to an energy shift. IfA51, it reduces instead to the fermionic partner. IfA52, the second-
fermionic sector of the supersymmetric oscillator is produced. Each further iteration of supersym-
metry produces an additional unit increment ofA. Note that for fixedL the spacing between
successive eigenvalues is always four units, regardless of the value ofA.

A correspondence can be established between the oscillator SQDT and the bosonic sector of
the supersymmetric oscillator. The images of the wave functions are obtained by making the
replacements

D°D*5D1J, N°N*5N1I2D, L°L*5L1I2D. ~49!

IV. MAPPINGS BETWEEN BOUND STATES OF THE COULOMB AND OSCILLATOR
SQDT

Composition of the mappings in sections II C, III A, and III B allows us to establish a corre-
spondence between thed* -dimensional Coulomb SQDT and theD* -dimensional oscillator
SQDT. This mapping is described in section IV A. One of its striking features is that the odd-
dimensional oscillator can be imaged. In section IV B, we illustrate the mapping with examples
involving the three-dimensional Coulomb and oscillator systems.

A. The general case

The general mapping is given by

WD* ,N* ,L* ~Y!5Kd* ,n* ,l2J/21 jY
21/2wd* ,n* ,l* „~n*1g* !Y2

…, ~50!

Y25y/~n*1g* !, ~51!

D*52d*2222l1J22 j , ~52!

N*52n*221l2 1
2J1 j , ~53!

L*52l *1l2 1
2J1 j , ~54!

A52a. ~55!

This mapping, like the Coulomb-oscillator case discussed in section II C, is based on a quadratic
relationship between the radial variables of the two systems. The constantK can be chosen to
preserve the normalization of the wave functions, in which case it has the functional form given in
Eq. ~13!. Note that Eq.~53! is equivalent to a generalization of Eq.~15!, given by

FN* ,G*
F0

52A E0

2En* ,g*
14a. ~56!

Note also that the allowed ranges of the quantum defects given in Eq.~39! and Eq.~46! are
compatible with Eq.~55!, which guarantees that the image of any orthonormalizable Coulomb
radial system is an orthonormalizable oscillator.

To gain insight about the flexibility of this mapping, consider the choicej50. Then,D* lies
in the range 11J<D*<2d221J with allowed values separated by two units. Since we require
J>12D, anyD*>1 is possible. Moreover,d may take any value greater than one. The above
general mapping therefore relates any Coulomb dimensiond.1 to any oscillator dimension
D*>1. In particular, Eq.~52! shows thatD* is odd if J is chosen to be an odd integer. This is in
striking contrast to the usual restriction ofD to even values only, as given by Eq.~14!.

The Coulomb-oscillator mappings defined earlier are special cases of our general mapping.
The correspondence of section II C is recovered by settingi5d5 j50 in the Coulomb system and
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I5D5J50 in the oscillator system, so thatA52a50. Figure 2 is a commutative diagram
showing the relationship between this simpler mapping and the general mapping. Similarly, the
mapping of section II F between the fermionic sector of the supersymmetric Coulomb system and
the second-fermionic sector of the supersymmetric oscillator is reproduced with the choices
i51, d50, j50 andI52, D50, J50, so thatA52a52.

For the case of constant nonnegative integralA and a, Eq. ~55! controls the relationship
between the supersymmetric sectors of the two systems. While any iteration of the supersymmetry
for the Coulomb system can be taken, onlyeveniterations of the oscillator supersymmetry appear.
This is why we introduced the second-fermionic sector of the supersymmetric oscillator in section
II F. It is therefore possible to combine Figures 1 and 2 in a single commutative diagram. More-
over, the general mapping shows that Figure 1 can be extended downward to incorporate higher
iterations of the supersymmetry. The result is an infinite series of mappings relating Coulomb
systems witha52, 3, 4, . . . to oscillator systems withA54, 6, 8, . . . ,respectively.

B. Three-dimensional Coulomb and oscillator systems

To obtain further insight about the content of the general mapping of section IV A, we next
restrict attention to the special case where both systems are three-dimensional. Since this choice
can be implemented withj50, we assume this in what follows.

The general mapping becomes

W3,N* ,L* ~Y!5K3,n* ,1/2Y
2 1/2w3,n* ,l* ~n*Y2!, ~57!

N*52n*2 3
2, ~58!

L*52l *1 1
2, ~59!

D2I52~d2 i !1l2 1
2. ~60!

The values ofl allowed by Eq.~54! arel50,1. The orthonormality requirements Eq.~39! and
Eq. ~46! become

d2 i, l11, ~61!

D2I,L1 3
2. ~62!

FIG. 2. SQDT mappings. Relationships are shown interconnecting the bosonic and SQDT sectors of the Coulomb and
oscillator systems. The diagram is commutative.
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We can regard Eq.~61! and Eq.~62! as conditions limiting the choice of quantum defects in the
two systems to a semi-infinite region of the (D2I ) versus (d2 i ) plane. The condition~60! then
further restricts the choice to a straight line in this region.

One interesting special case is obtained by requiring that the oscillator be exact in the sense
thatD2I50. Then, Eq.~60! becomes

d2 i52a5 1
2~

1
22l!, ~63!

showing that a nonzero defect in the Coulomb system is necessary. The eigenvalues of the
equations are

En* ,g*5
2E0

~2n1l2 1
2!
2
, ~64!

FN,G5F0~2N12l12!, ~65!

and the relationships among the principal quantum numbers and the angular momenta become

L52l *1 1
2, ~66!

N52n*2 3
2. ~67!

Selectingl51 for definiteness, we see that Eq.~66! maps each successive Coulomb angular
momentuml *5 1

4 , l *5 5
4 , l *5 9

4 , . . . to every second oscillator angular momentum starting at
L5l: L51, L53, L55, . . . . The mapping therefore preserves the degeneracy of states. For
instance, the ketsun*5 9

4 ,l *5 1
4 & and un*5 9

4 ,l *5 5
4 &, which are degenerate in the Coulomb

system, are mapped to the degenerate statesuN53,L51& and uN53,L53& in the oscillator
system. This feature is also a characteristic of the original mapping of section II C. The main
differences here are that the Coulomb effective angular momental * are nonintegral and, more
importantly, that both systems are three dimensional.

A second case of interest is obtained when the Coulomb system is exact, i.e.,d2 i50. The
condition j50 implies thata50 too. Then, Eq.~55! becomesD2I5l2 1

2 , showing that a

nonzero defect is again needed, this time in the oscillator system. The eigenvalues are

En,g5
2E0

4n2
, ~68!

FN* ,G*5F0~2N22l14!, ~69!

and the mapping gives

L*52l1 1
2, ~70!

N*52n2 3
2. ~71!

The first of these equations shows every second oscillator angular momentum is imaged,
which again preserves the degeneracy of states. If, for example, we choosel50, then the de-
generate Coulomb statesun53,l51& and un53,l52& map to the degenerate oscillator states

uN*5 9
2,L*5 5

2 & and uN*5 9
2 ,L*5 9

2 &.

In the above examples, the quantitiesD2I andd2 i are constant. In physical systems such as
alkali-metal atoms,d2 i depends onl and tends towards zero asl increases. This feature can also
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be incorporated in our general mapping. It implies a dependence ofD2I on L, which might
reflect a realistic feature of a physical oscillator such as a cloud of particles caught in a Penning
trap.

As an example, we map the SQDT radial equation for the physical sodium atom into a
three-dimensional SQDT oscillator. In sodium, the inaccessibility of the levels occupied by the ten
inner electrons is implemented by the choicesi (0)52, i (1)51, and i ( l>2)50. The quantum
defectsd( l ) in this case are known.22 Choosing for definitenessl51 and selectingI (0)52,
I (1)51, I (L>2)50, the values ofD can be found from Eq.~60!. Table I lists the results. As
expected, the values ofD tend towards12 asL increases.

V. MAPPINGS FOR CONTINUUM STATES

In previous sections, we have explored mappings between the bound states of the Coulomb
and oscillator systems. It is natural to consider whether similar mappings exist taking the unbound
Coulomb states into an appropriate oscillator. This question is of lesser physical interest at present,
so we restrict ourselves here to a brief outline of a possible approach to this issue.

The Coulomb problem with energiesE.0 can be viewed as a scattering problem. Following
the general procedure of section II A again yields the differential equation~3!, but withE.0. In
terms of the confluent hypergeometric function1F1 , the solutions are

wd,E,l~y!}yl1g11expS 6 iyA E

E0
D 1F1S l1g116

1

2i
AE0

E
,2~ l1g11!,72iyA E

E0
D .

~72!

The upper and lower signs correspond to outgoing and incoming waves, respectively. The results
of section II A can be recovered by takingE to be negative and choosing the upper sign.

It turns out that the appropriate image oscillator system23 is the inverted oscillator, with
potentialU(R)52 1

2MVR2. This system is unbound. The procedure of section II B gives a

differential equation identical to Eq.~8! except that the sign of the potentialY2 is reversed. The
solutionsWD,F,L(Y) are

WD,F,L~Y!}YL1G11expS 6
1

2
iY2D1F1S 12 S L1G1

3

2D7
iF

4F0
,L1G1

3

2
,7 iY2D . ~73!

These functions may not be physically permissible, but are relevant for the purposes of establish-
ing a mapping. With the choice of the upper sign, the wave functions for the usual oscillator may
be obtained up to a constant by the analytic continuationY2→ iY2 andF→2 iF .

A correspondence analogous to the mapping of section II C exists between the continuum
Coulomb states and the inverted-oscillator functions. It is

TABLE I. Possible parameters for a mapping between the radial Coulomb and oscillator systems in three dimensions. For
the choicesj50 andl51, values ofl , i , n, ns , andd are tabulated for sodium along with the corresponding values of
L, I , N, Ns , andD under the mapping~60!. The quantitiesI (L) have been selected to fill all levels belowNs55.

Coulomb system~sodium! Oscillator system
l i n ns d L I N Ns D

0 2 >1 >3 1.35 1 2 >1 >5 1.20
1 1 >2 >3 0.859 3 1 >3 >5 1.218
2 0 >3 >3 0.01 5 0 >5 >5 0.52
3 0 >4 >4 0 7 0 >7 >7 0.50

>4 0 >l11 >l11 0 >9 0 >L >L 0.5
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WD,F,L~Y!}Y21/2wd,E,lS Y2

2AE/E0

D , ~74!

Y252yAE/E0, ~75!

D52d2222l, ~76!

L52l1l, ~77!

F

F0
52AE0

E
. ~78!

There are many similarities between this mapping and the one discussed in section II C. Again,
l must be integral, so only even-dimensional oscillators are available as images. Also, the angular
momentaL are restricted to being either all odd or all even, thus eliminating half the oscillator
states. However, the energy relation~78!, unlike ~15!, involves continuous values ofE andF. It
also reveals that negative energiesF are excluded from the mapping. As one energy tends to zero
the other tends to infinity.

As an aside, we remark that the negative energiesF do appear when considering therepulsive
Coulomb problem. The differential equation of this problem is mapped into the inverted-oscillator
differential equation24 by a map with~74! through~77! unchanged but with a negative sign taken
for the square root in Eq.~78!.

Although this lies outside the scope of the present work, it seems feasible that supersymmetry
could be introduced into these systems along with the corresponding SQDT. We conjecture that
this allows for odd dimensionsD. Since parabolic coordinates have some advantages for scatter-
ing problems, it would also be interesting to perform an analysis in terms of the dual parabolic-
coordinate supersymmetries of Ref. 25 instead of the spherical-coordinate supersymmetry used
here.

VI. SUMMARY

In this paper, we generalized the radial mappings first identified by Schro¨dinger that relate the
Coulomb and oscillator systems. Our principal result is a mapping between the supersymmetry-
based quantum-defect theories for the Coulomb and oscillator systems in arbitrary dimensions. In
particular, odd oscillator dimensions can be accessed as well as the usual even ones. The mapping
and some of its limits are illustrated in Figures 1 and 2.

In deriving this result, we have extended to arbitrary dimensions the analytical SQDT in three
dimensions used to describe physical alkali-metal atoms. An analogous SQDT for the harmonic
oscillator in arbitrary dimensions has also been presented. In suitable limits, these theories repro-
duce the bosonic and fermionic sectors of the corresponding supersymmetric quantum-mechanical
systems. We have elucidated a basic relationship between the supersymmetric radial Coulomb and
oscillator systems: theqth iteration of supersymmetry for the Coulomb system corresponds natu-
rally to the 2qth iteration of supersymmetry for the oscillator. For the special case of the one-
dimensional radial oscillator, we uncovered a quantum-mechanical supersymmetry in which the
parity is restricted to be either odd or even. We have also briefly considered mappings relating the
continuum-spectrum states of the Coulomb and oscillator systems.

The issue of the physical relevance of our results has also been addressed in part. The
three-dimensional Coulomb SQDT is known to provide a good analytical description of the be-
havior of Rydberg atoms. Our mapping provides a means of obtaining an equivalent analytical
oscillator SQDT. An explicit example mapping the sodium atom to an oscillator SQDT is given in
Table I. It is also possible that an oscillator SQDT could be used to describe a suitable physical
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system, perhaps the Penning trap. If this can be realized in practice, the generalized mapping
presented here could provide a connection between two apparently disparate physical systems.
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A simple normal-form approach is used to obtain uniform long-time approxima-
tions to the evolution of a resonant or nonresonant anharmonic oscillator system
governed by a HamiltonianH« which is a self-adjoint operator acting in the Hilbert
spaceH5L2~Rn! ~n>2! and is given formally byH01«V. HereH0 denotes the
Hamiltonian ofn one-dimensional harmonic oscillators whose coupling is repre-
sented by«V, whereV is an operator of multiplication by a smooth function of at
most polynomial growth at infinity and«>0 is a small parameter. We consider the
general situation in whichr>1 of the frequencies of these oscillators are rationally
independent, imposing a standard diophantine condition on the independent fre-
quencies ifr>2. Under these assumptions, which are stated in a mathematically
precise way in the paper, anNth-order approximantcN(t,«) to the exact solution
c~t,«! of the Schro¨dinger equation idc(t,«)/dt5H«c(t,«) satisfying the initial
condition c~0,«!5c0 is constructed inductively,c0 being an arbitrary
«-independent member of a suitable family of smooth functions dense inH. Our
main result is thatcN(t,«) differs fromc~t,«! inH-norm by<const«N11(utu11)
for all tPR and all« in an arbitrary compact interval@0, «0#. © 1996 American
Institute of Physics.@S0022-2488~96!00704-1#

I. INTRODUCTION

Since the earliest days of quantum mechanics, physicists have been interested in developing
approximate methods for calculating the long-time evolution of quantum mechanical systems.
Such methods avoid the troublesome secular terms arising when this evolution is computed via the
usual time-dependent perturbation procedures. Indeed, if such a calculation is carried out by a
method which leads to secular terms, it should be expected to be accurate at most over relatively
small time intervals.

Shortly after the discovery of quantum mechanics, Wigner1 gave a brief but incisive discus-
sion of a way to obtain long-time approximate solutions of the Schro¨dinger equation idc(t)/dt
5Hc(t) for time-independent HamiltoniansH. More recently, two closely related systematic
approaches have been developed for derivingNth-order approximants, free from secular terms, to
the exact evolution of a variety of quantum mechanical systems: the normal-form approach and
quantum averaging. Wigner’s pioneering remarks are best regarded as anticipating quantum av-
eraging in a special case. The earliest systematic treatments of quantum averaging were indepen-
dently given by Lochak2,3 and Case,4 respectively, and the latter’s ideas were elaborated by his
student Lee.5 Such averaging can be viewed as an extension of the Bogoliubov–Mitropolski
averaging method for classical nonlinear systems6 to quantum mechanics. Ellison and his student
Ben Lemlih7,8 were the first to use modern functional analysis methods to develop quantum-
averaging approximations to the long-time evolution of the quartic anharmonic oscillator and other
physically important systems, as well as to derive rigorous error bounds for these approximate
solutions. On the other hand, Kummer9 was the first to discuss systematically a normal-form
approach to quantum evolution over long times. His work was strongly influenced by that of

0022-2488/96/37(5)/2182/24/$10.00
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Moser’s in classical mechanics.10 The approach in Ref. 9 was rigorized and extended in various
ways by Kummer and his students Antoniou11 and Gompa.12–14 In Refs. 12 and 13, two normal-
form methods were applied to obtain anNth normal-form approximation to the evolution of
nonresonant quantum anharmonic oscillator systems whose Hamiltonian operators were time-
independent polynomials in coordinates and momenta. In the first method, this was done in the
setting of Bargmann’s Hilbert space of analytic functions15 by using graded Lie algebra proce-
dures analogous to those applied in normal-form studies of vector fields and classical Hamiltonian
systems.16,17 In Refs. 12 and 14, this method was also applied to time-dependent quantum Hamil-
tonians of the latter polynomial type. The second, somewhat simpler normal-form approach is
closely related to the perturbation theory discussed by Born and Jordan.18 For further bibliographi-
cal information on normal forms in quantum mechanics, the reader is referred to Refs. 9, 13, and
19.

The principal goal of this paper is to construct in a mathematically rigorous way a long-time,
uniform approximation to the solution of the initial-value problem~IVP! defined by20

i
dc~ t,«!

dt
5H«c~ t,«!, ~1.1a!

c~0,«!5c0 . ~1.1b!

HereH« denotes a self-adjoint operator acting in the Hilbert spaceH5L2~Rn! ~n>2! and defined
formally by

H«5H01«V ~1.2!

and d/dt the strongt-derivative inH. In ~1.2!, H0 is the Hamiltonian ofn uncoupled simple
harmonic oscillators or, more precisely, the unique self-adjoint operator inH such that

H05(
j51

n S 2
]2

]xj
2 1v j

2xj
2D ~1.3!

when acting on functions inC0
`~Rn!. Moreover,«>0 is a small parameter andV denotes an

operator of multiplication by aC`~Rn! function which together with its derivatives has at most
polynomial growth at infinity. We assume that the frequenciesv1,...,vn are positive and that an
arbitrary numberr of them ~1<r<n! are rationally independent. Ifr>2, the rationally indepen-
dentvis are assumed to obey a standard diophantine inequality. No other conditions are imposed
on these frequencies.

Using a rigorous version of the second normal-form method in Ref. 13, we will construct for
eachN>1 anNth-order approximantcN(t,«) to the exact solutionc~t,«! of the IVP ~1.1! satis-
fying the uniform error estimate

ic~ t,«!2cN~ t,«!i<const«N11~ utu11! ~1.4!

for tPR, 0<«<«0, where«0 is an arbitrary positive constant andi.i the usualL2~Rn!-norm. This
error estimate is our main result. Although its rigorous proof is lengthy~Sec. IV!, the basic ideas
underlying it are quite simple, as will be clear from its heuristic proof given in the next section.

This paper is the first to carry out this construction for systems of resonant and nonresonant
harmonic oscillators coupled by a local potentialV, which is not necessarily a polynomial, under
very general conditions on the frequenciesvi . Outside of using a version of the last-mentioned
normal-form method and certain other ideas in Refs. 7–9 and 13, our treatment is quite different
from theirs. In particular, the fact that we allow the eigenvalues ofH0 to be degenerate and
consider nonpolynomial coupling introduces nontrivial complications in the rigorous definitions of
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the relevant operators, as well as self-adjointness and convergence complications not encountered
in the works of these authors. Moreover, the elegant algebraic and analytic approaches used in
Refs. 12–14 are inappropriate for dealing with the class of potentials considered here.

The organization of this paper is as follows. In Sec. II, we construct the aboveNth-order
approximant heuristically. In Sec. III, we state our assumptions onV and the frequenciesvi

precisely, and define the dense domainC`(H0) in which our initial state lies. This domain is
invariant under the action of the operators entering the theory, whose exact definitions are given in
that section. Therein we also state Theorem 1, which asserts that the error bound~1.4! holds at the
above-statedt,«-values. This theorem is proven in Sec. IV on the basis of a series of lemmas.
Results needed to establish some of these lemmas are collected in the Appendix.

Some of the conclusions of the present paper were announced without detailed proofs in an
earlier publication,21 whose main purpose was to construct uniform approximations to the long-
time quantum evolution of one-dimensional anharmonic oscillators.

II. FORMAL CONSTRUCTION OF THE NTH-ORDER APPROXIMANT

In this section, we will review the second normal-form approach of Refs. 12 and 13 in a
heuristic way which will prove convenient for the purposes of Secs. III and IV, where the proce-
dure will be reformulated rigorously.22 We fix n>2 in this section.

A central role in the construction of theNth-order approximant~N>1! is played by the
‘‘normalizing’’ operatorSN~«!, which reducesH« to normal form to orderN. By this we mean that
SN~«! is such that

H«SN~«!5SN~«!KN~«!1«N11RN~«!, ~2.1!

whereKN~«!, the normal form ofH« to orderN, is a self-adjoint operator commuting formally
with H« , and«N11RN(«) is a ‘‘remainder,’’ withRN(«)5O(1) in «, again in a formal sense.23

Here

SN~«!5I1(
i51

N

« iS~ i !, ~2.2a!

KN~«!5H01(
i51

N

« iK ~ i !, ~2.2b!

where theS( i )s andK ( i )s are independent of« and eachK ( i ) commutes withH0 formally. One
obtains the following recursive formulas for theS( i )s andK ( i )s by inserting the expressions~2.2a!
and ~2.2b! into ~2.1! and equating coefficients of powers of«:

@H0 , S
~ i !#5K ~ i !2V~ i ! ~ i>1!, ~2.3a!

RN~«!5V~1!S~N!2 (
j50

N21

« j (
k5 j11

N

S~k!K ~N1 j2k11!. ~2.3b!

Here theV( i )s are determined recursively by

V~1!5V, ~2.4a!

V~ i !5V~1!S~ i21!2(
j51

i21

S~ j !K ~ i2 j ! ~ i>2!. ~2.4b!
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The matrix representation of relevant operator equations such as~2.3! and ~2.4! in a basis
which diagonalizesH0 is an indispensable ingredient in our analysis. Denote byZ1

p ~pPN5the
positive integers! the set of all vectorsr5(r 1 ,...,r p) whose componentsr i are non-negative
integers. We will use the familiar basisF5$Fm%~mPZ1

n ! consisting of the complete orthonormal
set of eigenfunctions ofH0 of the form

Fm~x1 ,...,xn!5)
i51

n

wmi

~ i !~xi !, ~2.5a!

where wmi

( i )(xi) is the usual~real! eigenfunction of2d2/dxi
21v i

2xi
2 ~i51,...,n! having unit

L2~R!-norm. Hence for allmPZ1
n ,

H0Fm5lmFm , ~2.5b!

with

lm5(
i51

n

v i~mi1
1
2!. ~2.5c!

Since some of the frequenciesv1,...,vn may be rationally dependent, the eigenvalueslm are
generally degenerate, a fact which will complicate our analysis in Sec. IV.

The scalar product inH5L2~Rn! will be denoted bŷ .,.&, and in accordance with the usual
practice in quantum mechanics it will be supposed to beantilinear in the first entry andlinear in
the second. Assuming for the present that they exist,24 we will denote the quantities
^Fm ,S

( i )Fn&,^Fm ,K
( i )Fn&,^Fm ,V

( i )Fn& by Smn
( i ) ,Kmn

( i ) ,Vmn
( i ) , respectively, and will define the in-

finite matricesS ( i )5(Smn
( i ) ),K ( i )5(Kmn

( i ) ), V ( i )5(Vmn
( i ) ) ~m,nPZ1

n !. In general, given an operator
A in H, its matrix elementŝFm ,AFn& will be denoted byAmn .

25

By ~2.3a! and ~2.5b!,

~lm2ln!Smn
~ i ! 5Kmn

~ i ! 2Vmn
~ i ! ~ i>1!. ~2.6!

SinceK ( i ) has been assumed to commute withH0, Kmn
( i ) 50 if lmÞln . From this and~2.6! it

follows that

Smn
~ i ! 52Vmn

~ i ! /~lm2ln! ~ i>1,lmÞln!, ~2.7!

Kmn
~ i ! 5Vmn

~ i ! dlm ,ln
~ i>1!. ~2.8!

Since Eq.~2.3a! leaves the matrix elementsSmn
( i ) with lm5ln undetermined fori>1, one can

choose them in any manner consistent with the formal self-adjointness of theK ( i )s.26When all the
v1,...,vn are rationally independent, the eigenvalues ofH0 are nondegenerate and thus theK ( i )s are
formally self-adjoint, since then eachK ( i ) is a real diagonal matrix. Hence, in this case the above
matrix elements can be chosen arbitrarily. However, if thevks are not all rationally independent,
such a choice is generally incompatible with the formal self-adjointness of theK ( i )s, and this
would lead to a breakdown of our analysis. We will select these matrix elements in such a way
that it will not be necessary to distinguish between the nondegenerate~nonresonant! and degen-
erate~resonant! cases. Thus, henceforth our remarks will apply to either of these two situations.

Before defining theSmn
( i ) s forlm5ln , we introduce some notation. Given an operatorA inH,

we split it uniquely as follows:

A5Â1Ã, ~2.9a!
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where

Âmn5dlm ,ln
Amn , Ãmn5~12dlm ,ln

!Amn . ~2.9b!

We writeŜ( i )[(S( i ))ˆ, S̃( i )[(S( i ))̃ andŜmn
( i ) [(Ŝ( i ))mn,S̃mn

( i ) [(S̃( i ))mn. We define the operatorsŜ( i )

recursively by

Ŝ~1!50, ~2.10a!

Ŝ~ i !5Ŝ~ i !*52
1

2 (
j51

i21

~S~ j !S~ i2 j !* ! ˆ ~ i>2!. ~2.10b!

Here the notationA* designates the adjoint of an operatorA inH, so that (A* )mn 5 Amn, the bar
denoting complex conjugation. Naturally, at the moment Eq.~2.10b! is completely formal. The
choice~2.10! of the Ŝ( i )s has two important consequences, which follow by using a simple and
ingenious inductive argument presented in Ref. 13. The first is thatSN~«!* is an approximate
right-inverse ofSN~«!:

SN~«!SN~«!*5I1«N11UN~«!, ~2.11a!

whereUN~«! is a polynomial in« defined by

UN~«!5 (
j50

N21

« j (
k5 j11

N

S~k!S~N1 j2k11!* . ~2.11b!

The second consequence is that theK ( i )s are formally self-adjoint. A rigorous version of this
inductive argument will be presented in Sec. IV.

In terms of matrix elements, Eqs.~2.10! can be expressed as follows by using~2.9b!:

Ŝmn
~1!50, ~2.12a!

Ŝmn
~ i ! 5Ŝnm

~ i ! 52
1

2 (
j51

i21

(
rPZ1

n
~S̃mr

~ j !S̃nr
~ i2 j !1Ŝmr

~ j !Ŝnr
~ i2 j !!dlm ,ln

~ i>2!. ~2.12b!

Similarly, we arrive heuristically at the following matrix form of~2.4! by invoking ~2.8!, in
particular,

Vmn
~1!5Vmn , ~2.13a!

Vmn
~ i ! 5 (

rPZ1
n
Vmr

~1!Srn
~ i21!2(

j51

i21

(
rPZ1

n
Smr

~ j !Krn
~ i2 j ! ~ i>2!. ~2.13b!

Equations~2.7!, ~2.8!, ~2.13!, and~2.12! allow us to calculateS ( i ),K ( i ) for i>1 andV ( i ) for i>2
systematically in terms ofV ~1!5(Vmn).

Assuming that the sums in~2.12b! and ~2.13b! converge,24 it follows trivially from ~2.7!,
~2.8!, ~2.12!, and~2.13! that all the matrix elementsSmn

( i ) ,Kmn
( i ) ,Vmn

( i ) ~i>1! are real, making the bars
in the sum overr in ~2.12b! superfluous. However, the reality of these matrix elements does not
play a significant role in this paper, and hence it will usually be ignored.

We define anNth-order approximant to the exact solution of the IVP~1.1! by20

cN~ t,«!5SN~«!exp„2 i tKN~«!…SN~«!*c0 . ~2.14!
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We conclude this section by giving the promised heuristic derivation of the basic error esti-
mate~1.4! for cN(t,«). Differentiating~2.14! formally with respect tot and using~2.1!, we obtain

i
dcN~ t,«!

dt
5H«cN~ t,«!1«N11gN~ t,«!, ~2.15!

whereigN(t,«)i5O(1) in « formally. Integrating~2.15! by the method of variation of constants
and using~2.11a!, we find

cN~ t,«!5exp~2 i tH «!@ I1«N11UN~«!#c02 i«N11E
0

t

exp@2 i ~ t2s!H«#gN~s,«!ds.

~2.16!

By ~2.16!, c~t,«!5exp~2i tH «!c0, the unitarity of exp~2i tH «!, and the boundedness ofigN(t,«)i
andiUN~«!c0i for tPR, 0<«<«0,` @see~4.42!#, because of our hypotheses onV and thevis in
Sec. III, we infer that

ic~ t,«!2cN~ t,«!i5«N11IUN~«!c01E
0

t

exp~ isH«!gN~s,«!dsI
<«N11S iUNc0i1E

0

utu
igN~s,«!idsD

<const«N11~ utu11!

at theset,«-values.

III. ASSUMPTIONS AND MAIN RESULT

The considerations of the previous section were mostly heuristic. In the present section, we
will state precise definitions and assumptions under which the results of this paper hold rigorously.

Until further notice, we fixn>2 and assume that the potentialV in ~1.2! has the following
properties:

~I! V is a maximal operator of multiplication inH5L2~Rn! by a real-valued function in
C`~Rn! which will also be denoted byV.

~II ! For eachr5(r 1 ,...,r n)PZ1
n , there exist non-negative constantsG r ,m r such that

U ] ur uV~x!

]x1
r1•••]xn

r nU<G r~ uxu11!mr

at eachx5(x1 ,...,xn)PRn, whereur u5r 11•••1r n and uxu5( i51
n uxi u.

~III ! The differential operator

1

2 (
j51

n S 2
]2

]xj
2 1v j

2xj
2D 1«V~x1 ,...,xn!

on C0
`~Rn! is essentially self-adjoint inH for each«>0, its unique self-adjoint extension inH

being denoted byH« at each such«. The frequenciesvj are fixed positive numbers.
Remark:Property~III ! is implied by ~I! and ~II ! if 1

2(i51
n v i

2xi
21«V(x) is bounded below on

Rn.27
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Given the set$v1,...,vn% of n positive numbers, there exists a maximum number 1<r<n of
rationally independentvis, which by suitable labeling can~and will! be chosen to be$v1,...,vr%.
Writing u j ur5( i51

r u j i u for the norm of vectorsjPRr, we suppose that the following diophantine
condition is satisfied:

~IV ! If r>2, there exist positive constantsg, h such that for all 0Þk5(k1 ,...,kr)PZr,

U(
i51

r

v ikiU>gukur
2h , ~3.1!

whereZr is the set of all vectors (j 1 ,...,j r) whose components are integers.
Remarks:~1! Note that ~IV ! holds trivially if r51. For in that case,~3.1! is satisfied for

0ÞkPZ if g<v1, h.0.
~2! If r>2, then for eachmPZ1

n one has inf$ulm2lnu:nPZ1
n ,lmÞln%50. This can cause

convergence difficulties in sums@such as the first sum in~2.13b!# which involve differences of this
type as factors in denominators. Condition~IV ! is introduced to help control these small denomi-
nators. These difficulties are analogous to ones occurring in perturbation problems in classical
mechanics.28

~3! It is well known that if r>2 andh>n, then the set of vectors~v1,...,vr! with positive
components for which there exists nog.0 such that the condition~3.1! holds for all 0ÞkPZr has
Lebesgue measure zero.29

In order for our main theorem to have a precise meaning, we need to define theNth-order
approximantcN(t,«) more carefully than in Sec. II. The following definitions and remarks are
made for this purpose, as well as to set the stage for the developments of Sec. IV.

Definition 1: If A is an operator in a complex, separable Hilbert spaceX , then we let30

C`~A!5 ù
j51

`

D~Aj !.

Remarks:~1! If A is self-adjoint, thenC`(A) is dense inX .31 In particular,C`(H0) is dense
in H and contains the Schwartz spaceS~Rn! of functions of fast decrease.

~2! C`(H0) is invariant underH0, V, and the other key operators in this paper.
Our last assumption, which is motivated by these properties ofC`(H0) and by the desire to

avoid unessential complications which would ensue by admitting«-dependent initial states, is as
follows:

~V! The initial statec05c~0,«! has the following properties:

c05c~0,«!PC`~H0!, ~3.2a!

c0 is «-independent. ~3.2b!

Remark:Fix «>0. A simple but important fact is that our assumptions onV andc0 entail the
relationc0PD(H«), and thus that the IVP~1.1! has the unique solutionc~t,«!5exp~2i tH «!c0 for
all tPR. To prove this relation, we use the fact that the operator (H01«V)uC`(H0) is a symmet-
ric extension of the essentially self-adjoint operator (H01«V)uC0

`~Rn!, as follows by~III ! and
C0

`~Rn!,C`(H0). SinceH« is defined as the unique self-adjoint extension of (H01«V)uC0
`~Rn!,

it follows thatD(H«).C`(H0). By this and~3.2a!, c0PD(H«).
Infinite sums were used heuristically in Sec. II. The next definition states the sense in which

such sums will be understood henceforth.
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Definition 2:Fixing pPN, letG5Z1
p ; let $Ca% ~aPG! be an orthonormal set in a Hilbert space

X ; and $Dn% be a sequence of finite subsetsDn,G such thatDn eventually contains any given
finite subset ofG. A sum of the form(aPGga with eachgaPC is defined as limn→` (aPDn

ga in
the C-topology if the limit exists. Analogously, a sum of the form(aPGgaCa is defined as s
2 limn→`(aPDn

gaCa in the strong operator topology inX if the limit exists.
Definition 3:Let C5$Ca% ~aPG! be a complete orthonormal set in a complex Hilbert space

X with inner product̂ .,.&, which we agree is antilinear in the first argument and linear in the
second. HereG is as above. LetA5~Aab!~a,bPG! be a matrix of complex numbers which is
square-summable by rows and columns, i.e.,(aPGuAabu2,` ~bPG! and(bPGuAabu2,` ~aPG!,
respectively. Then the linear operatorA with domain

D~A!5H fPX : (
aPG

U (
bPG

Aab^Cb , f &U2,`J ~3.3a!

and action

Af5 (
aPG

S (
bPG

Aab^Cb , f & DCa ~ fPD~A!! ~3.3b!

will be said to beassociatedwith A wrt C, or A↔A wrt C.
Remarks:~1! Stone32 has considered linear operators associated with infinite matrices in the

sense of Definition 3.
~2! Note that the sums overb in ~3.3a! and ~3.3b! converge absolutely, because of the

square-summability ofA by columns, together with Schwarz’s inequality inl 2~G! and Parseval’s
identity.

~3! Note also that the conditionA↔A wrt C implies: ~i! A* exists,~ii ! C,D(A)ùD(A* ),
and ~iii ! Aab5^Ca ,ACb& ~a,bPG!. Properties~i!–~iii ! follow by the square-summability prop-
erties ofA and the orthonormality and completeness of theCas.

~4! The productAB of two infinite matricesA,B with which linear operatorsA,B in X are
associated wrtC exists. Indeed, the square-summability ofA by columns and ofB by rows
entails that~AB!ab5(sPGAasBsb converges absolutely by Schwarz’s inequality inl

2~G!. How-
ever, even if the productAB of two such operators exists, it is not necessarily associated with
AB wrt C. These and other pathologies of infinite matrices generally severely limit their use-
fulness for investigating the properties of linear operators.33 However, the infinite matrices asso-
ciated with the linear operators considered in this paper are sufficiently well behaved to be
effective tools for the task of deriving its conclusions.

Definition 4:The set of linear operators inH whose domains contain the dense setC`(H0)
and leave it invariant is denoted byM.

In this section and Sec. IV we will proceed in a manner which is partly the reverse of that in
Sec. II. This means that certain definitions in the previous section, when stated precisely, will now
be consequences of Definitions 5~a!–5~c! below.

Definition 5(a):The infinite matricesS̃ ( i )5(S̃mn
( i ) ), Ŝ ( i )5(Ŝmn

( i ) ), V ( i )5(Vmn
( i ) ), K ( i )5(Kmn

( i ) )
~i>1! are defined recursively as follows:

~1! One defines

S̃mn
~ i ! 5H 2Vmn

~ i ! /~lm2ln! lmÞln ,
0, lm5ln ,

~3.4!

for i>1 and definesŜmn
( i ) by ~2.12a! @resp.,~2.12b!# for i51 ~resp.,i>2!.

~2! TheKmn
( i ) s are given by~2.8! for i>1. EachVmn

(1) is defined by~2.13a!, with

Vmn5^Fmn ,VFn&, ~3.5!
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as before, and theVmn
( i ) s by ~2.13b! for i>2.

Remarks:~1! Note thatD(V).S~Rn!.F by ~I! and ~II ! in particular, where againS~Rn!
denotes the Schwartz space of functions of fast decrease onRn andF the harmonic oscillator basis
defined in Sec. II. Thus definition~2.13a! makes sense.

~2! Estimates~4.13! ~Sec. IV! play a central role in showing that the infinite sums overr in
~2.12b! and ~2.13b! converge absolutely. Thus~2.12b! and ~2.13b! make sense as recursive defi-
nitions.

Definition 5(b): ~1! For i>1, the operatorsS̃( i ),Ŝ( i ),K ( i ),V( i ) are those associated with the
respective matricesS̃ ( i ),Ŝ ( i ),K ( i ),V ( i ) wrt F,34 andS( i ) is defined as the operator sumS̃( i )1Ŝ( i ).

~2! For «>0,N>1, the operatorsSN(«),KN(«),RN(«) are defined by the rhs of~2.2a!, ~2.2b!,
~2.3b!, respectively, viewed as operator sums.

Remarks:~1! Since all the matrices in part~1! of Definition 5~b! are square-summable by rows
and columns, as follows by using, in particular, estimates~4.13!, the definitions of
S̃( i ),Ŝ( i ),K ( i ),V( i ) make sense for alli>1.

~2! By Lemma 4~1!,35 S̃( i ),Ŝ( i ),K ( i ),V( i ) ~i>1! are inM, and therefore they andS( i ) ~i>1!,
SN(«),KN(«),RN(«) are densely defined inH. Hence the adjoints of all these operators exist, and
by Lemma 4~2! they also are inM.

Definition 5(c):TheNth-order approximantcN(t,«) is defined for allN>1, tPR, «>0 by

cN~ t,«!5SN~«!exp„2 i tK̄ N~«!…SN~«!*c0 , ~3.6!

whereK̄N~«! is the unique self-adjoint extension~closure! of KN~«! in Definition 5~b!, SN~«! is as
in the latter definition, andc0 is an initial state satisfying conditions~3.2!.

Remarks:~1! The existence ofK̄N~«! is guaranteed by Lemma 6.
~2! Definition 5~c! makes sense in view of~3.2a! and of the facts thatSN(«),SN(«)*PM and

that exp„2i tK̄ N~«!… is a well-defined unitary operator inM @see step~4! of the proof of Lemma
6#. The self-adjointness ofK̄N~«! ensures that this exponential makes sense.

~3! The operatorK̄N~«! just defined is nothing more than a precise version of the operator
denoted byKN~«! is Sec. II. Indeed, all operator equations in that section involvingKN~«! hold
rigorously on appropriate dense domains withKN~«! replaced byK̄N~«!, provided that the remain-
ing operators in these equations are understood in the sense of the present section. This readily
follows from the relevant definitions, together with results proved in Sec. IV.

We are now ready to state our main result.
Theorem 1: Let H0 andV obey conditions~I!–~III !, let ~IV ! hold if r>2, and let the initial

state satisfy condition~V!. Then for eachN>1, 0<«0,` we have the uniform estimate

ic~ t,«!2cN~ t,«!i<CN«N11~ utu11! ~3.7!

if tPR, 0<«<«0, wherei.i is theH-norm andCN5CN~c0,«0! is a positive constant.
Remarks:~1! This theorem is the first rigorous result of this degree of generality applying to

cases in whichV is not a polynomial and/orH0 has degenerate eigenvalues. Its conclusions hold
for n51 under the assumption that~I!–~III ! hold. The proof of this statement which is sketched in
Ref. 21 is much simpler than that of Theorem 1.

~2! Lochak3 ~resp., Case4! arrived at anNth-order quantum-averaging error estimate of type
~3.7! @resp., stronger than~3.7!# under an assumption of operator boundedness which does not hold
in the present context. Besides being partially heuristic, the corresponding proof in Ref. 4 is
incomplete@there is an obvious misprint in Eq.~124! of that reference#. Rigorous estimates of type
~3.7! for various quantum mechanical systems with unbounded Hamiltonian operators were first
derived by Ben Lemlih and Ellison.7,8 Estimates of this kind were proved in Refs. 12 and 13 for
multi-dimensional nonresonant oscillator systems coupled by potentials which are polynomials in
the coordinates and momenta.
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~3! An obvious but important consequence of Theorem 1, noted in Refs. 3 and 4, is that, under
the conditions in Theorem 1,cN(t,«) approximatesc~t,«! uniformly in norm overO~«2d!
t-intervals for eachdP~0,N11#. More precisely, for each suchd and each pair of positive numbers
T,«0,

ic~ t,«!2cN~ t,«!i<CN,d8 «N112d ~3.8!

for 0 < t < T«2d, whereCN,d8 5 CN,d8 (c0 ,«0,T) is a positive constant. This is a very unusual result
in averaging theory, where generally the analogous approximations have only been expected~and
proved! to be valid overO~«21! time intervals. Key properties leading to~3.7!, and hence to~3.8!,
are the linearity of the IVP~1.1!, together with the facts thatc~t,«! andcN(t,«) exist for tPR,
«>0, thatH« is self-adjoint at each such«, and that the uniform boundedness properties~4.41!
hold.

IV. AUXILIARY RESULTS AND PROOF OF THEOREM 1

Lemmas 1–7 below will be used to prove our main result—Theorem 1. In this section, we fix
N>1, n>2, and the numberrP$1,...,n% of rationally independent frequenciesvi . We will denote
the positive integers byN and the non-negative integers byZ1 , and, as usual,Z

n will signify the
set of all vectors (n1 ,...,nn) with integer components~positive, negative, or zero!. Recall that for
j5( j 1 ,...,j r)PRr we definedu j ur5( i51

r u j i u. However, whenj5( j 1 ,...j n)PRn, we will write
u j u5( i51

n u j i u and (v, j )5( i51
n v i j i .

The following simple lemma is relevant to the proofs of Lemmas 3 and 7.
Lemma 1:~1! For anym,nPZ1

n such thatlmÞln , the eigenvalues ofH0 satisfy the inequal-
ity

ulm2lnu>constum2nu2h, ~4.1a!

whereh is the positive constant in Condition~IV ! and const is independent ofm,n.36

~2! The following estimate holds for the multiplicitygm of lm :

gm<~ umu11!n2r. ~4.1b!

Proof: ~1! Fix k5(k1 ,...,kn)PZn such that~v,k!Þ0. Since$v1,...,vr% is a maximal rationally
independent subset of$v1,...,vn%,

~v,k!5
1

M (
i51

r

v iS (
j51

n

t i j kj D , ~4.2!

where eacht i j5t i j (r) is an integer andM5M (r) is a positive integer. Moreover, since~v,k!Þ0,
it follows trivially that kÞ0 and that at least one of the integers(j51

n t i j kj ~i51,...,r! is nonvan-
ishing. Therefore, one has for the fixedr>1 of interest, by~4.2!, ~IV !, and Remark~1! to ~IV !,

u~v,k!u>
g

M S (
i51

r U(
j51

n

t i j kjU D 2h

>constuku2h. ~4.3!

But ~2.5c! implies that

lm2ln5~v,m2n!. ~4.4!

Statement~4.1a! follows immediately forlmÞln from ~4.3! and ~4.4!.
~2! Estimate~4.1b! follows by the rational independence of~v1,...,vr! and a simple combi-

natorial argument. h
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The next lemma provides an estimate which is needed in the proof of Lemma 3, and in turn
that lemma is a basic logical underpinning of the remainder of this section.

Lemma 2:For allm,nPZ1
n ,

uVmnu<constlm
a~1,p!ln

2p ~pPN!, ~4.5!

where const anda~1,p! are independent ofm,n, but may depend onp.
Proof: Since the spectrum ofH0 is in ~0,̀ !, H0

21 exists. Combining this fact with~3.5!, the
self-adjointness ofV andH0 @by ~I! and ~III !#, andVFnPC`(H0) @by ~I! andFnPS~Rn!#, we
may write

uVmnu5u^Fm ,VFn&u5u^Fn ,VFm&u5u^H0
2pFn ,H0

pVFm&u5ln
2pu^Fn ,H0

pVFm&u

<ln
2piH0

pVFmi ~4.6!

at each of the statedm,n,p values.
To complete the proof of the lemma, we will estimateiH0

pVFmi in steps~1!–~3!.
~1! The first step is to prove that

H0
pVFm5 (

k50

p

Ek,plm
p2k@D, V#kFm ~pPN!, ~4.7!

whereD5( j51
n ]2/]xj

2, theEk,ps are constants independent ofm, and the multiple commutator
[A, B] k ~k>0! of two operatorsA andB in a Hilbert space is defined as usual by

@A, B#05B, @A, B#15AB2BA,

@A, B#k5†A,@A, B#k21‡ ~k>2!,

on elements in this space where these definitions make sense.
Equation~4.7! follows easily by induction, noting in particular that it holds forp51, in view

of

H0VFm5VH0Fm1@H0 , V#Fm5lmVFm2 1
2@D, V#Fm ,

where we have used, in particular, the fact that~1.3! holds onS~Rn!.F.
~2! Note that

@D, V# jg5 (
ur u1usu52 j

Frs
~ j !D ur uV.D usug @ j>1,gPS~Rn!#, ~4.8!

where theFrs
( j )s are constants andD ur u 5 ] r /]x1

r1•••]xn
r n, with r5(r 1 ,...,r n),sPZ1

n . For each such
g, Eq. ~4.8! holds trivially for j51 and is easily proved by induction forj>1.

By ~4.7! and ~4.8!,

iH0
pVFmi<const(

k50

p

lp2k (
ur u1usu52k

iD ur uV.D usuFmi ~pPN!, ~4.9!

where the constant is independent ofm.
~3! In this step, we estimateiD ur uV.D usuFmi in ~4.9! for fixed r ,sPZ1

n . In doing this, we will
assume wlg thatmr in condition ~II ! is anon-negative integer.

By considering the regionsuxu,1, uxu.1 in Rn and using~II !, we arrive at the inequality
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iD ur uV.D usuFmi<constF iD usuFmi1I S (
i51

n

xi
2D mr /2

D usuFmI G . ~4.10!

The rhs of~4.10! may be estimated by using the inequality

I S (
i51

n

xi
2D mr /2

D usuFmI<constlm
~k1usu!/2 ~kPZ1 !. ~4.11!

This inequality can be proved by expressing eachxj ,]/]xj ~j51,...,n! inside the norm in terms of
creation and annihilation operatorsaj ,aj

†:

aj5221/2S xj1 i
]

]xj
D , aj

†5221/2S xj2 i
]

]xj
D ,

and using an estimate analogous to one which holds in the casen51.37

By ~4.10!, ~4.11!, and the fact thatlm
2m is bounded as a function ofm for fixed m>0,

iD ur uV.D usuFmi<constlm
~mr1usu!/2 . ~4.12!

The desired inequality~4.5! follows immediately from~4.6!, ~4.9!, and~4.12!. h

Lemma 3:The inductive definitions~2.12b! and ~2.13b! make sense fori>2 andm,nPZ1
n ,

and the following estimates hold for alli ,pPN and all suchm,n:

uVmn
~ i ! u<constlm

a~ i ,p!ln
2p , ~4.13a!

uVmn
~ i ! u<constln

a~ i ,p!lm
2p , ~4.13b!

uS̃mn
~ i ! u<constlm

b~ i ,p!ln
2p ~lmÞln!, ~4.13c!

uS̃mn
~ i ! u<constln

b~ i ,p!lm
2p ~lmÞln!, ~4.13d!

uŜmn
~ i ! u<constlm

g~ i ! ~lm5ln!, ~4.13e!

where the real constantsa( i ,p),b( i ,p),g( i ) and the other constants in these estimates are inde-
pendent ofm,n.

Proof: It will be inductive. Fixing iPN until further notice, we remark that the assumption
that ~4.13a! obtains at eachpPN, together with~2.7! and ~4.1a!, entails forlmÞln :

uS̃mn
~ i ! u<constlm

a~ i ,q!ln
2qum2nuh<constlm

a~ i ,q!1hln
2q1h<constlm

a~ i ,q!1hln
2q1h@h#11 ~qPN!,

~4.14!

where [y] denotes the greatest integer<yPR. In arriving at~4.14! we have also used the crude
inequality um2nu<constlmln , holding formÞn, and the fact thatln

h/ln
[h]11 is bounded for

unu→`. Because of~4.14!, ~4.13c! holds for allpPN, as one sees by settingp5q2[h]21 and
b( i ,p)5a( i ,q)1h. Similar arguments entail that~4.13d! holds for all suchp if ~4.13b! does. We
have thus reduced the task of establishing that Eqs.~4.13! obtain for eachi ,pPN to proving that
~4.13a!, ~4.13b!, and~4.13e! do.

Note that estimates~4.13a!–~4.13e! hold for i51, pPN, by Vmn
(1)5Vmn5Vnm , ~4.5!, ~2.12a!,

and the results of the last paragraph. In steps~1!–~3! below, we will show that if these five
estimates obtain for all 1< i<k for somek>1, they also obtain fori5k11, and thus for all
i>1.38
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~1! In order to prove that~4.13a! holds for i5k11, we will use the inequality

uVmn
~k11!u<(

r
uVmr

~1!u~ uS̃rn
~k!u1uŜrn

~k!u!1(
j51

k

(
r

~ uS̃mr
~ j !u1uŜmr

~ j !u!uKrn
~k2 j11!u , ~4.15!

which is an obvious formal consequence of definition~2.13b! for i5k11.39 Our inductive ap-
proach will show that the first sum overr in ~4.15! converges~the second such sum contains only
a finite series of nonvanishing terms by~2.8! andgm,`!, thereby entailing that the latter defini-
tion makes sense fori5k11, and hence fori>2.

We claim that

(
r

uVmr
~1!u•uS̃rn

~k!u<constlm
a~k,p!ln

2p , ~4.16a!

(
r

uVmr
~1!u•uŜrn

~k!u<constlm
b~k,p!ln

2p , ~4.16b!

(
r

uS̃mr
~ j !u•uKrn

~k2 j11!u<constlm
c~k,p!ln

2p , ~4.16c!

(
r

uŜmr
~ j !u•uKrn

~k2 j11!u<constlm
d~k,p!ln

2pdlm ,ln
~4.16d!

for all pPN and all j51,...,k, where const anda(k,p),...,d(k,p) denote constants independent
of m,n. Choosinga(k11,p)>max$a(k,p),...,d(k,p)%, ~4.13a! follows for i5k11 by ~4.15! and
~4.16!. We will only prove ~4.16a! and ~4.16c! in detail; ~4.16b! and ~4.16d! can be established
similarly to ~4.16c!.

To prove~4.16a!, we need the estimate

(
rPZ1

n
l r

2m,` ~m.n!, ~4.17!

which follows by~2.5c!, the positivity of thevis, and a well-known result.
40 Using ~4.5!, ~4.13a!

for i51,...,k, and~4.17!, we obtain

(
r

uVmr
~1!u•uS̃rn

~k!u<constlm
a~1,q!ln

2p(
r

l r
b~k,p!l r

2q,`

at eachpPN if q5q(k,p) is a positive integer.b(k,p)1n. Thus ~4.16a! holds with a(k,p)
5a„1,q(k,p)….

To prove ~4.16c!, we use~4.13a! and ~4.13d! for i51,...,k, together with~2.8! and the
inequality

gn<constln
n2r ~4.18!

@which follows from ~4.1b! and ~2.5c!# to infer that

(
r

uS̃mr
~ j !u•uKrn

~k2 j11!u<const(
r

lm
b~ j ,s!l r

2s
•l r

a~k2 j11,1!ln
21dlr ,ln

5constlm
b~ j ,s!ln

2s1a~k2 j11,1!21gn<constlm
b~ j ,s!ln

2s1a~k2 j11,1!211n2r

if sPN. Choosing a positive integers5s(k,p).p1ua(k2 j11,1)u1n2p21 for everypPN,
and sinceln

2m is bounded forunu→` for fixed m.0, we conclude that
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(
r

uS̃mr
~ j !u•uKrn

~k2 j11!u<constlm
b„j ,s~k,p!…ln

2p

at each suchp. Thus ~4.16c! holds for all pPN and all j51,...,k if we set c(k,p)
5max1<s<k b„s,s(k,p)….

~2! To show that~4.13b! is true for i5k11, we first note that estimates~4.16a!–~4.16c! hold
with m and n interchanged if a(k,p),b(k,p),c(k,p) are replaced by suitable constants
ã(k,p),b̃(k,p),c̃(k,p) in the respective rhs of these estimates. This remark and the fact that the
rhs of ~4.16d! is symmetric with respect to this interchange obviously imply that~4.13b! holds for
i5k11 if we choosea(k11,p)> than the largest of the seven constantsa(k,p),...,d(k,p),
ã(k,p),...,c̃(k,p). That estimates~4.16a!–~4.16c! hold in the modified form mentioned in the
penultimate sentence follows by arguments similar to, but somewhat simpler than, those used to
prove them in their original form.

~3! Recall that in step~1! we demonstrated inductively that the first sum overr in ~2.13b!
converges absolutely fori>2, and hence that~2.13b! makes sense. We will now complete the
proof of the present lemma by showing that definition~2.12b! also makes sense fori>2 and that
~4.13e! is true at each suchi .

By ~2.12b!, we find formally

uŜmn
~ i ! u<

1

2 (
j51

i21

(
r

~ uS̃mr
~ j !uuS̃nr

~ i2 j !u1uŜmr
~ j !u•uŜnr

~ i2 j !u!dlm ,ln
~ i>2!. ~4.19!

Because of our inductive hypothesis, the sum overr in ~4.19! converges for 1< j< i21,2< i<k
11. This assertion and the fact that~4.13e! holds for i5k11 follow from the assumption that
~4.13d! and ~4.13e! obtain for i51,...,k, together with arguments similar to those adduced to
derive ~4.16a! and ~4.16c!. We have thus proved~4.13e! for arbitrary i>1. Hence our proof that
the sum overr in ~4.19! converges fori5k11 extends to alli>2 and implies that the recursive
definition ~2.12b! makes sense for all suchi . h

Lemma 4:~1! At eachi>1, V( i ),K ( i ),S̃( i ),Ŝ( i ) are well-defined operators inM, and hence so
areS( i ),SN(«),KN(«),RN(«) @Definition 5~b!#.

~2! At each i>1, the adjointsV( i )* ,K ( i )* ,S̃( i )* ,Ŝ( i )* exist and are inM, and hence so are
S( i )* ,SN(«)* ,KN(«)* ,RN(«)* .

Proof: ~1! We fix i>1 in the proof. In order to show thatV( i ),K ( i ),S̃( i ),Ŝ( i ) are well defined,
it suffices to show that the respective matrices with which they are associated are square-
summable by rows and columns. This is trivially true forK ( i ) andŜ ( i ). Indeed, by~2.8!, ~2.12a!,
and ~2.12b! the Kmn

( i ) s andŜmn
( i ) s are nonzero only iflmÞln , and therefore at most for a finite

number ofn-values for eachm, and vice versa. We proceed to show that these two square-
summability properties are possessed byV ( i ), S̃ ( i ).

As to V ( i ), we note that~4.13b! and ~4.17! entail

(
m

uVmn
~ i ! u2<constln

2a~ i ,p!(
m

lm
22p,` ~nPZ1

n ! ~4.20a!

for‘ each positive integerp.n/2. The fact that

(
n

uVmn
~ i ! u2,` ~mPZ1

n ! ~4.20b!

follows similarly from ~4.13a! and ~4.17!. As to S̃ ( i ), its square-summability by rows~resp., by
columns! follows from ~4.13d! @resp.,~4.13c!# via considerations of the type invoked to prove
~4.20a! @resp.,~4.20b!#.

2195A. W. Sáenz: Approximation to quantum evolution

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



We show next thatV( i )PM, i.e., thatH0
pV( i ) fPH for all pPZ1 , fPC`(H0). This is the

case iff

(
m

lm
2pu(

n
Vmn

~ i ! ^Fn , f &u2,` @pPZ1 , fPC`~H0!#, ~4.21!

as follows fromV( i )↔V ( i ), the orthonormality and completeness ofF, and the spectral theorem
for H0

p. By the positivity of thelms and Schwarz’s inequality inl 2~Z1
n !, ~4.21! holds if

(
m,n

lm
p uVmn

~ i ! u•u^Fn , f &u,` @pPZ1 , fPC`~H0!#. ~4.22!

To prove that condition~4.22! is satisfied, we invoke~4.13b!, ~4.17!, and the inequality

u^Fn ,g&u<ln
2r iH0

r gi @rPN,gPC`~H0!#, ~4.23!

whose derivation is similar to that of~4.6!. We thus see that at eachp, f in ~4.22!

(
m,n

lm
p uVmn

~ i ! u•u^Fn , f &u<const(
m,n

lm
p
•ln

a~ i ,q!lm
2q
•ln

2r iH0
r f i

<constS (
m

lm
p2qD S (

n
ln

a~ i ,q!2r D iH0
r f i,`

at everyq,rPN, such thatq.p1n,r.a( i ,q)1n.
In view of ~2.8!, ~4.22! holds withVmn

( i ) replaced byKmn
( i ) . This fact andK ( i )↔K ( i ) entail

K ( i )PM by considerations analogous to those adduced to proveV( i )PM. Considerations of the
same type based on~4.13d! and ~4.13e!, in particular, show thatS̃( i ),Ŝ( i )PM. Recalling the
definition S( i )5S̃( i )1Ŝ( i ), we thus conclude thatS( i )PM. Similarly, SN(«),KN(«),RN(«)PM
because the operators on the rhs of~2.2a!, ~2.2b!, ~2.3b! are inM.

~2! We proceed to prove assertion~2! of the lemma. SinceV( i ),K ( i ),S̃( i ),Ŝ( i ) are defined on the
dense setC`(H0), their adjoints exist. The following considerations show that they are all inM.
We begin by proving thatV( i )* has this property.

SinceV ( i ) is quadratically-summable by rows and columns, so isV ( i )* , and thus it is legiti-
mate to defineV̆( i ) as the operator associated withV ( i )* . To prove thatV( i )* is inM, we will
show thatV̆( i ) is and that

V̆~ i !uC`~H0!,V~ i !* . ~4.24!

Note thatV̆( i )PM if ~4.22!, modified by replacingVmn
( i ) by Vnm

( i ) , holds, as one sees by arguments
similar to those adduced to prove thatV( i )PM is implied by the original equation~4.22!. The
modified form of~4.22! can be proved similarly to the way~4.22! itself was. Next, we note that

(
m,n

uVmn
~ i ! u•u^Fm , f &u•u^Fn ,g&u,` @ f ,gPC`~H0!#, ~4.25!

as follows by considerations of the same type as those leading to~4.22!. By V( i )↔V ( i ),
V̆( i )↔V ( i )* , C`(H0),D(V( i ))ùD(V̆( i )), and~4.25!, we may apply Lemma A3 of the Appendix
@with N 5C`(H0)# to conclude that~4.24! holds.

The propertyK ( i )*PM is entailed by the fact that~4.22! @resp.,~4.25!# obviously holds with
Vmn
( i ) replaced byKnm

( i ) ~resp.,Kmn
( i ) ! and arguments analogous to ones invoked to proveV( i )*PM.
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The relationsS̃( i )* ,Ŝ( i )*PM follow for similar reasons, andS( i )*PM is immediately implied by
them andS( i )*.S̃( i )*1Ŝ( i )* , which is entailed by the definitionS( i )5S̃( i )1Ŝ( i ).41

The relationsSN(«)* ,KN(«)* ,RN(«)*PM follow because the adjoints of the operators on
the rhs of~2.2a!, ~2.2b!, ~2.3b! are inM, and because of familiar relations of the adjoints of
operator sums and products.41 h

The next lemma provides information on the connection betweenV andV~1! which is needed
in the proof of Lemma 6.

Lemma 5:The following statements hold:

V~1!.V, ~4.26a!

V~1!5V on C`~H0!. ~4.26b!

Proof: ~1! SinceF,D(V), V5V* @by ~I! and ~II !#, andV(1)↔V ~1!5(Vmn), Lemma A1 of
the Appendix immediately implies~4.26a!.

~2! The first step in proving~4.26b! is to show that

D~V!.C`~H0!. ~4.27!

To this end, we fixfPC`(H0) and define

f M5 (
unu<M

^Fn , f &Fn ~MPZ1!. ~4.28!

Since the sum~4.28! has only a finite number of terms andF,D(V), it follows that f MPD(V).
Since, in addition,F is an orthonormal basis,

VfM5 (
unu<M

^Fn , f &(
m

VmnFm . ~4.29!

By ~4.28! and fPH,

f5s2 lim
M→`

f M . ~4.30a!

The second step in the proof of~4.26b! is to show that the limit

g5s2 limM→` VfM ~4.30b!

exists, as we will do shortly. From its existence and the fact thatV is closed, Eqs.~4.30! entail that
g5Vf , and hence that~4.27! holds. In turn,~4.26a! and ~4.27! imply ~4.26b!.

The strong limit in~4.30b! exists because

I (
unu>M11

(
m

Vmn̂ Fn , f &FmI< (
unu>M11

(
m

uVmnu•u^Fn , f &u

<const (
unu>M11

(
m

ln
a~1,p!lm

2p .ln
2qiH0

qf i

<constS (
m

lm
2pD S (

unu>M11
ln

2@q2a~1,p!#D→0 ~M→`!

~4.31!
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for all p,qPN such thatp.n andq.n1a(1,p). To obtain the second line of~4.31!, one uses
~4.5!, Vmn5Vnm , and ~4.23!. As to the third line of~4.31!, note that the sums(mlm

2p and
(nln

2[q2a(1,p)] are convergent at the statedp,q values by~4.17!. h

Lemma 6:For each«>0, KN~«! is essentially self-adjoint. Its unique self-adjoint extension
K̄N~«! is the operator associated with the Hermitian matrix

KN~«!5(
j50

N

« jK ~ j !~«!, ~4.32!

whereK (0)5 (lmdlm ,ln
).

Remark:The essential self-adjointness ofKN~«! will not be used in the sequel.
Proof of Lemma 6:It is given in steps~1!–~4! below, in which«>0 should be considered

fixed in the absence of an explicit statement to the contrary, and in which the dependence of the
relevant operators on this parameter will usually be omitted.

~1! In this step, we show that~2.1! holds rigorously onC`(H0). We define

Smn
~ i ! 5^Fm ,S

~ i !Fn& ~ i>1!, ~4.33a!

which together with the definitions ofS( i ),S̃( i ),Ŝ( i ), and because these operators are inM, entails

Smn
~ i ! 5S̃mn

~ i ! 1Ŝmn
~ i ! ~ i>1!. ~4.33b!

Equation~2.7! holds by ~2.12!, ~3.4!, and ~4.33b!. By ~2.7! and definition~2.8!, ~2.6! follows.
Fixing i>1 for the moment, we now prove that~2.3a! holds onC`(H0). To this end, we first
calculate the action of the rhs of~2.3a! on an arbitrary elementfPC`(H0) using Lemma A2@with
r52; A(1),A(2)5H0 ,S

( i ) andA(1),A(2)5S( i ),H0 ; N 5C`(H0); etc.#, whose application is justi-
fied sinceH0 ,S

( i ) and their adjoints are inM, and sinceC`(H0).F. Second, we compute the
action of the lhs of~2.3a! on f by usingK ( i )↔K ( i ), V( i )↔V ( i ), and ~2.8!. Since the results of
these two calculations agree,~2.3a! obtains in the stated sense. A similar approach using~2.3a!,
definitions~2.2b!, ~2.3b!, and ~4.27b!, and the facts that~1.2! holds onC`(H0) and that all the
relevant operators are inM, shows that~2.1! obtains onC`(H0).

~2! Let us postmultiply~2.1! by SN~«!* and premultiply the equation ‘‘adjoint’’ to~2.1! by
SN~«!. Subtracting the second equation from the first, we obtain formally

@H0 , SNSN* #5SN~KN2KN* !SN*2«@V, SNSN* #1«N11~RNSN*2SNRN* !. ~4.34!

We claim that~4.34! obtains rigorously onC`(H0).
42 One can prove this by using the facts that

~2.1! holds on this dense subset, that the operators in~2.1! and their adjoints are inM, and that
the elementary properties of adjoints invoked above hold.41

~3! In this step, we show that each matrixK ( i ) ~i>1! is Hermitian:

Kmn
~ i ! 5Knm

~ i ! ~ i>1!, ~4.35!

and hence that the matrixKN~«! in ~4.32! has this property, which is essential in proving the
self-adjointness ofKN~«!. We will prove ~4.35! by using a rigorous version of the argument in
Ref. 13 alluded to in Sec. II.

Define (SNSN* )
( i ) as the coefficient of«i in SNSN*5(( j50

N « jSN
( j ))((k51

N «kSN
(k)* ). We claim

that

~SNSN* !mn
~ i ! [^Fm ,~SNSN* !~ i !Fn&50 ~1< i<N! ~4.36!
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holds forN>1. We will establish this claim, and at the same time prove~4.35!, in two steps. First,
we note that~4.35! and ~4.36! obtain for each suchN if i51. Indeed,Kmn

(1) 5 Kmn
(1) by ~2.8! and

Vmn
(1) 5 Vmn5 Vnm5 Vnm

(1); and (SNSN* )mn
(1)50 forN>1 by~2.7!, ~2.12a!, the latter property ofVmn

(1),
and

~SNSN* !~1!5S~1!1S~1!* .

Second, fixingN>2 until further notice, we make the inductive hypothesis that~4.35! and~4.36!
obtain for 1< i<k, for some positive integerkP$1,...,N21%, and proceed to show that this
implies that they obtain fori5k11.

Because~4.34! holds on the dense setC`(H0) for each«>0 and both sides of this equation
can be expressed as polynomials in« whose coefficients are operators defined on this set, the
coefficients of equal powers of« on the rhs and lhs are equal onC`(H0). Equating the coefficients
of «k11 and using our inductive hypothesis, we arrive at a relation which can be expressed in the
form

„@H0 , ~SNSN* !~k11!#…mn[^Fm ,@H0 , ~SNSN* !~k11!#Fn&

5~lm2ln!~SNSN* !mn
~k11!5Kmn

~k11!2Knm
~k11!,

in terms of the relevant matrix elements. Whence

Kmn
~k11!5Knm

~k11!, ~4.37a!

~SNSN* !mn
~k11!50 ~lmÞln!. ~4.37b!

We proceed to show that~4.37b! also holds forlm5ln , thereby completing the proof that~4.35!
and ~4.36! obtain for i5k11.

Expressing

~SNSN* !~k11!5S~k11!1S~k11!*1 (
k51

k

S~ j !S~k112 j !*

in terms of matrix elements, one finds

@~SNSN* !~k11!#mn5Smn
~k11!1Snm

~k11!1(
j51

k

(
r

~S̃mr
~ j !S̃nr

~k112 j !1Ŝmr
~ j !Ŝnr

~k112 j !! ~lm5ln!.

~4.38!

The formally obvious occurrence of the sum overr in the rhs of~4.38! can be justified by applying
Lemma A2 of the Appendix@with r52, A(1)5S( j ), A(2)5S(k112 j )* , N 5C`(H0)#, whose use is
legitimate since eachS( i ),S( i )* is in M. Equations~2.12b! and ~4.38! immediately imply that
~4.37b! obtains forlm5ln .

~4! Fixing N>1 henceforth, we will complete the proof of the lemma by showing:~i!
KN,K̄N , ~ii ! KN is essentially self-adjoint, and~iii ! K̄N5K̄N* . Property~i! follows directly from
the relevant definitions and the Schwarz inequality inl 2~Z1

n !. Property~ii ! follows from ~i!,

2199A. W. Sáenz: Approximation to quantum evolution

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



D(KN).C`(H0), ~iii ! ~which we will prove shortly!, and the essential self-adjointness of
K̄NuC`(H0). This essential self-adjointness property is entailed by~iii !, D(KN).C`(H0), and
exp(2 i tK̄ N)PM.43 The last relation follows from

^Fm ,exp~2 i tK̄ N!Fn&50 ~lmÞln!, ~4.39!

the unitarity of exp~2i tK̄ N!, and arguments similar to those adduced to proveV( i )PM @step~1!
of the proof of Lemma 4#. The statement~4.39! is a consequence of the fact that
^Fm ,K̄NFn&5^Fm ,KNFn&50 for lmÞln @by K̄N↔KN and~i!#, which implies thatH0 andK̄N

commute in the usual technical sense.44 In turn, this commutativity entails that
exp(2 i tK̄ N)H0,H0 exp~2i tK̄ N!, from which ~4.39! follows immediately.

Finally, we will prove~iii !. The last-mentioned property of the matrix elements^Fm ,K̄NFn&
and the finite degeneracy of the eigenvalueslm play key roles in the proof. Namely, letting$Ls%
~sPN! be the set of distinct eigenvalueslm of H0 ~say withLs,Lt for s,t!, they entail that each
finite setJs5$mPZ1

n :lmPLs%~sPN! has the properties attributed toJs in the Corollary to
Lemma A4. Applying this corollary~with A5K̄N ,A5KN , Js5Js , C5F!, the self-adjointness
of K̄N follows. This completes the proof of the lemma. h

We recall that theNth-approximantcN(t,«) is defined by~3.6! and that this definition makes
sense in view of~3.2a! and the fact thatSN~«!,SN~«!* ,exp„2i tK̄ N~«!…PM.

Lemma 7:The following statements hold:
~1! For all tPR, «>0, cN(t,«) satisfies the differential equation

i
dcN~ t,«!

dt
5H«cN~ t,«!1«N11gN~ t,«! ~4.40a!

and the initial condition

cN~0,«!5@ I1«N11UN~«!#c0 , ~4.40b!

whered/dt denotes the strong derivative inH, the operatorUN~«! is defined onC`(H0) by
~2.11b!, and

gN~ t,«!52RN~«!exp„2 i tK̄ N~«!…SN*c0 . ~4.41!

~2! At each such«, gN(t,«) is strongly continuous int on R, and the following uniform
boundedness properties hold:

sup
~ t,«!PR3@0, «0#

igN~ t,«!i,0, ~4.42a!

sup
«P@0, «0#

iUN~«!c0i,`, ~4.42b!

where 0<«0,`.
Proof: ~1! We proceed to prove assertion~1! of the lemma, fixing«>0 until further notice and

again suppressing the«-dependence of the pertinent vectors and operators. Our first task is to
justify the equation20

i
dcN~ t !

dt
5SNK̄N exp~2 i tK̄ N!SN*c0 , ~4.43!

which is obtained by formally differentiating~3.6!. Note that the rhs of~4.43! makes sense for
reasons similar to those for which~3.6! does. IfSN were a bounded operator~which it is generally

2200 A. W. Sáenz: Approximation to quantum evolution

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



not!, then it could be interchanged withd/dt ~strong derivative! without further ado, and in view
of the facts that the relevant operators are inM and that~3.2a! holds, ~4.43! would emerge
immediately. We will prove~4.43! by a uniform-convergence argument which justifies this inter-
change.

Write

cN~ t !5(
m

Fm~ t !Fm , ~4.44!

where

Fm~ t !5^Fm ,SN exp~2 i tK̄ N!SN*c0&5^SN*Fm ,exp~2 i tK̄ N!SN*c0&. ~4.45!

By ~4.45! and becauseSN*C0PC`(H0),D(K̄N), it follows thatFmPC1~R!, with

dFm~ t !

dt
52 i ^SN*Fm ,K̄N exp~2 i tK̄ N!SN*c0&52 i ^Fm ,SN exp~2 i tK̄ N!K̄NSN*c0&.

~4.46!

We claim that the series

(
m

dFm~ t !

dt
Fm ~4.47!

obtained from~4.44! by term-by-term strong differentiation converges uniformly wrtt onR in the
strongL2~Rn! sense. This entails thatdcN(t)/dt is given by the series~4.47! at eachtPR, and
hence that~4.43! holds at all sucht.

We will now show that

(
m

sup
tPR

UdFm~ t !

dt U,`, ~4.48!

thus proving that the series~4.47! has the claimed uniform-convergence property.
Now, ~4.48! holds if it does whenFm(t) is replaced by each of the quantitiesF̃m

( j )(t)( j>1)
andF̂m

( j )(t) ~j>0!, whereF̃m
( j )(t) @resp.,F̂m

( j )(t)# is given by the expression after the first equality
in ~4.45!, but with the operatorSN replaced byS̃

( j ) ~resp.,Ŝ( j )!, whereŜ(0)5I . @Recall~2.2a! and
~4.33!.# Fixing j>1, we will prove that

(
m

sup
tPR

UdF̃m~ j !~ t !
dt

U,`, ~4.49!

the proof of the analogous estimates involvingF̂m
(k) ~k>0! being even simpler. SettingwN

5K̄NSN*c0PC`(H0), we have for eachpPN

UdF̃m~ j !~ t !
dt

U5u^Fm ,S̃
~ j ! exp~2 i tK̄ N!wN&u

<(
r ,s

uS̃mr
~ j !u•u^F r ,exp~2 i tK̄ N!Fs&u•u^Fs ,wN&u

<(
r

uS̃mr
~ j !u•grl r

2q~p,r !iH0
q~p,r !wNi

<constlm
2p(

r
l r

a~r ,p!l r
n2rl r

2q~p,r !iH0
q~p,r !wNi<constlm

2p , ~4.50!
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if q(p,r ).2n2r1a(r ,p) for each suchp and all rPZ1
n . Here const is independent ofm. To

arrive at the second line of~4.50!, we have used Lemma A2@with r52, A(1)5S̃( j ),
A~2!5exp~2i tK̄ N!, etc.#, as we may because exp~2i tK̄ N! and the other relevant operators are in
M. The third line of~4.50! follows from ~4.39!, the unitarity of exp~2i tK̄ N!, and~4.23!; and the
fourth line from ~4.18!, ~4.13d!, ~4.23!, and ~4.17!. The desired result~4.49! now follows from
~4.50! and ~4.17! by choosingp.n.

In order to complete the proof of part~1! of the lemma, we still need to show thatcN(t,«)
satisfies~4.40a! and~4.40b! at the statedt,«-values. The former equation follows by using~4.43!
and~4.41!, as well as the facts that~1.2! and~2.1!, with KN replaced byK̄N , hold onC

`(H0), and
that the pertinent operators are inM. Equation~4.40b! is an immediate implication of~3.6! and
~2.11a!. Note thatUN is well defined onC`(H0) by ~2.11b!, since all theS( i )s andS( i )*s are in
M. Note also that Eqs.~2.11! hold onC`(H0) by ~2.2a!, a repeatedly used relation for the adjoint
of an operator sum, the last-mentioned property of theS( i ) s andS( i )*s, and the fact that
(SNSN* )

( i )50 onC`(H0) for 1< i<N. This fact follows from~4.36! and Lemma A1, which is
applicable because the operatorSNSN* is symmetric and inM.

~2! The strong continuity ofgN(t,«) in t on R for fixed «>0 can be shown by arguments
analogous to those invoked to prove~4.49!. The boundedness statements~4.42a! and~4.42b! also
follow from arguments of the latter type. The proof of the lemma is therefore complete.h

With the results of Lemma 7 in hand, we proceed to give a short rigorous proof of our main
result.

Proof of Theorem 1:We fix «>0 in this paragraph. Sincec~t,«! is a solution of the IVP~1.1!
for tPR and sincecN(t,«) solves the IVP~4.40! at all sucht by Lemma 7~1!, it follows that
f N(t,«)5c(t,«)2cN(t,«) is a solution of the IVP

i
d fN~ t,«!

dt
5H« f N~ t,«!2«N11gN~ t,«!, ~4.51a!

f N~0,«!52UN~«!c0 . ~4.51b!

By ~4.51!, together with the self-adjointness ofH« and the strong continuity ofgN(t,«) stated in
Lemma 7~2!, it follows rigorously45 that

i f N~ t,«!i<i f N~0,«!i1«N11E
0

utu
igN~s,«!ids ~4.52!

for tPR.
By ~4.51b!, ~4.52!, and the boundedness properties~4.42! of gN(t,«) andUN~«!c0, we infer

that

i f N~ t,«!i<const«N11~ utu11!

for tPR, «P@0, «0#, where the constant is independent of«. This completes the proof of Theorem
1. h

APPENDIX: SIMPLE LEMMAS ON OPERATORS IN HILBERT SPACE

In this appendix, we state Lemmas A1–A4 and a corollary to Lemma A4. Except for Lemma
A4, this material is applied in Sec. IV in the proofs of Lemmas 4–7. We will use the following
notation: X denotes a Hilbert space spanned by the orthonormal setC5$Ca%,
Aab50~aPG!~aPG!, with G5Z1

p for somepPN, and^.,.& denotes the inner product inX ~anti-
linear in the first argument and linear in the second!. When the matrix element of an operatorA in
X exists, we denote it byAab . The adjoint of an operatorA is written asA* , as usual, andA*
denotes the Hermitian adjoint of a matrixA5~Aab!. In this Appendix, all operators have domains
dense inX and when any operator is assumed to be associated with an infinite matrix, this
association is always wrtC. Hence we will omit explicit references to these two properties.
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We proceed to state three elementary lemmas, the proofs of the first two being based on the
well-known argument in~A1! below.

Lemma A1:Let A be an operator such thatC,D(A)ùD(A* ) and letA1 be the linear
operator associated with~Aab!~a,bPG!. ThenA,A1. In particular, ifAab50 ~a,bPG!, thenA is
a restriction of the zero operator.

Proof: By our assumptions onA,

^Ca ,Ag&5^A*Ca ,g&5 (
bPG

^Ca ,ACb&^Cb ,g&5 (
bPG

Aab^Cb ,g& ~aPG!, ~A1!

from which the lemma immediately follows. h

Lemma A2:Let A(1),...,A(r ) ~2<r,`! be operators such that eachA( i ) has the properties:
~i! A( i )N ,N , whereN is a subset inX such thatC,N ,D(A( i ));
~ii ! D(A( i )* ).C.

Then

^Ca ,A
~1!•••A~r ! f &5 (

b1PG
Aab1

~1! (
b2PG

Ab1b2
~2! ••• (

br21 ,brPG
Abr21br

~r ! ^Cbr
, f & ~ fPM,aPG!,

where the sums overb1,...,br converge absolutely.
Lemma A3: Let A and Ă be operators associated with the respective matrices

A5~Aab!~a,bPG! andA* , and letN be a dense subset inX contained inD(A)ùD(Ă). In
addition, let

(
~a,b!PG3G

uAabuu^Fa ,g&u•u^Fb , f &u,` ~ f ,gPN !. ~A2!

Then

ĂuN ,A* .

Proof: It follows directly from the definitions and the use of~A2! to interchange the order of
summation in the relevant absolutely convergent iterated sums. h

The final lemma is a version of a result of Stone, stated in Theorem 3.4, pp. 91, 92, Ref. 32.46

Lemma A4:Let A be an operator associated with a Hermitian matrixA5~Aab!~a,bPG!.
Moreover, assume that for allf ,gPD(A) the necessarily convergent series

(
a

S (
b

Aab^Cb ,g& D ^Ca , f &, ~A3a!

(
b

S (
a

Aab^Ca , f & D ^Cb ,g&, ~A3b!

have the same sum.47 ThenA is self-adjoint.
Corollary to Lemma A4:Let A be an operator associated with a Hermitian matrix

A5~Aab!~a,bPG!. In addition, assume that there exists a collection of finite subsetsJs ~sPN!
such that

ø
sPN

Js5G, JsùJt5B ~sÞt!, ~A4!

and thatAabÞ0 only if a,bPJs for somesPN. ThenA is self-adjoint.
Proof: Let f ,gPD(A). SinceA↔A5A* , one concludes that
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(
a

U(
b

Aab^Cb ,g&U•u^Ca , f &u,`,

(
b

U(
a

Aab^Ca , f &U•u^Cb ,g&u,`,

i.e., that the sum overa ~resp., overb! in ~A3a! @resp.,~A3b!# converges absolutely. By this
conclusion, together with~A4!, the finiteness of each setJs , and the assumption thatAabÞ0 only
if a,bPJs for somesPN, the convergent sums~A3a! and ~A3b! are both equal to

(
sPN

(
a,bPJ0

Aab^Ca , f &^Cb ,g&.

The self-adjointness ofA now follows from Lemma A4. h
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The background gauge field quantization is a convenient tool for studying weakly
interacting gauge and matter fields or analyzing anomalous current conservation in
fermionic structures. This method is from the mid 1970’s, but it is only today that
it received renewed interest for investigating nonperturbative evolution equations in
Yang–Mills theory, as well as gauge field effective action formulations. We re-
viewed, to start with, the general formulation and assumptions about this method,
and we pointed out some critical observations concerning it. In particular, we focus
on some of the most common equivalence proofs presently known in the literature.
We attempted to give a most convincing demonstration of this equivalence as it
stands between the background gauge field scattering operator and the conventional
one. The result shown here clearly indicates these methods are indeed physically
equivalent. In proving that, we neglected all the infrared problems afflicting the
pure Yang–Mills gauge theory; as a matter of fact, they appear to be a parallel, but
nonintersecting problem with respect to the present one, i.e., to prove the equiva-
lence. © 1996 American Institute of Physics.@S0022-2488~96!01904-0#

I. INTRODUCTION

The theory of the background field quantization method is a convenient tool in order to study
the interplay between classical and quantum interacting fields or to compute, for instance, the
generation of quantum anomalies in fermion-scalar systems as well as to analyze the evolution
equations of a non-Abelian quantum gauge field in four dimensions. Very recently, it has resulted
in a convincing tool in the study of interacting quantum Yang–Mills fields, in effective Lagrang-
ian theories and in beta function computations.1 Also, in the generalization of the Nambu–Jona
Lasinio model of QCD with a background gluon field,2 it seemed to be quite appropriate. Never-
theless, the physical equivalence of such a quantization method with respect to the more conven-
tional one, has never been proved in a full satisfactory way, at least to our knowledge. On the
contrary, it ever seemed to be a bit fragile. We tried, hence, to prove this equivalence in a,
possibly, more exhaustive way.

In Sec. II we recall some of the most popular concepts from the conventional functional
quantization approach to gauge and non-gauge field theories, by introducing the formal scattering
Ŝ operator of the LSZ reduction prescription.3 Then, in Sec. III we deal with the proper definition
of the background gauge field quantization method for a pure Yang–Mills theory, thus opening the
discussion of Sec. IV, where the expression of the gauge invariant effective action is formulated
and analyzed in some detail. But the original contribution to this subject stems from Sec. V, where
an equivalence proof between the ordinary Yang–MillsŜ scattering matrix operator and the
background gaugeŜw one is exhibited. This is obtained after a lengthy and accurate algebraic
computation, which avoids any diagrammatic expansions. Quite general and conclusive remarks
have thus been collected together in Sec. VI. In an appendix we explain our reasons for not
making use throughout the present equivalence demonstration, of the validity of global BRS
symmetry.

0022-2488/96/37(5)/2206/23/$10.00
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II. THE QUANTIZED YANG–MILLS FIELD

We will begin by reviewing some of the basic ingredients in gauge quantum field theory.4 As
is known, in the functional integral approach to gauge, Yang–Mills field theory, the classical
Lagrangian density merely writes

L05
1
2F

mnaFmn
a , ~2.1!

where the repeated indices are summed up and

Fmn
a ~x![]mAn

a~x!2]nAm
a ~x!1 f bc

a Am
b ~x!An

c~x!. ~2.2!

In order to quantize it, one has merely to completeL0 with two known local functionals that
depend on the gauge and auxiliary fields, and to perform then a formal functional integration over
the entire set of resultingeffective quantum fields. For pure Yang–Mills gauge theory, such a
quantum Lagrangian density translates into the so-called ‘‘Faddeev–Popov Lagrangian,’’ viz.

LFP5L01Lgf1L fpg . ~2.3!

Here, beside the classicalL0 term of theAm
a (x) gauge potential, one recognizes theLgf gauge

fixing term used to break classical gauge invariance, written as

Lgf52
1

2a
@F~Am!#2, ~2.4!

and theL fpg term, which is the functional Jacobian determinant expressing the admissibility
condition for the chosen gauge function. In terms of auxiliary ghost fields,c,c̄, one has

L fpg5 c̄a~x!Mab~x,y!cb~y!5tr@]mc
†a~x!•Dmc

a~x!#. ~2.5!

But the physically most important object of this quantization method is the renormalized func-
tional integral of connected Green’s functions,W(J,h)52ln Z[J,h], whose arguments are the
‘‘sources’’ Ja(x), for the set of effective quantum fields present, and the ‘‘external fields’’,ha(x),
coupling to the composite operators of the theory. By expressing auxiliary quantum fields in the
form of a scalar fieldwa(x), all that is written as

Z@J,h#5E Dw DAm exp E d4x$L01Lgf1L fpg%~x!. ~2.6!

To each functional variationdZ(J,h) induced by the external fields, it is possible, moreover, to
correspond the action of a formal operator, to be contracted withZ[J,h], namely

dZ~J,h!

dh~x!
[~Dh~x!•Z!~J,h!. ~2.7!

This is a linear operator ‘‘Dh•,’’ consisting of insertions into the renormalized time-ordered prod-
uct, which definesZ(J,h). Sometimes one writes it as ‘‘[d/dh(x)]* dyL(y),’’ where the quota-
tion marks indicate that actually we are neglecting the quantum corrections induced by the renor-
malization procedure.

In particular we aim to formally express the scatteringŜ operator as the action of a local
operator contracted withZ[J,h]. Such an operator would act by isolating each of the connected
Green’s functions obtained byZ[J,h], would then amputate the propagators present in the exter-
nal lines of the Feynman diagrams, and will set the external momenta on their physical values, the
mass shellvalues. An operator expression ofŜ satisfying that is5
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Ŝ5:exp E d4x d4y c in~x!K~x,y!z
d

dJ~y!
:Z~J,h!U

J5h50

[~SJ•ZJ,h!, ~2.8!

with c[(w,A). In so doing, one introduces theincoming asymptotic fields, win(x), the corre-
sponding classical wave operatorsK(x,y), the sourcesJa(x) for the interacting fields, and the
function z, i.e. the residue at the pole of the propagator, which generates the Fourier transform of
the two point functions on the mass shell. The subsequent choice of a gauge condition,

F~w,Am!50, ~2.9!

makes such a procedure definitely non-gauge invariant, except for very peculiar choices of the
field surfaceF. Note that this surface, implicitly defined by Eq.~2.9!, is properly defined in the
spaceF3R4, which is the quotient space

F3R4'~F3G/action of G on F!3R4. ~2.10!

HereF is the representation spaceF[V%G3R4, whereV is a vector representation of the gauge
groupG andG its Lie algebra. The ‘‘coordinates’’ onF3G are thus the sets~w, Am , e[identity
of G!. To vary thew field on the fibers, that is in theG space, will correspond to introduce a
covariant connection 1-form, defined onG and with values inG . This is the canonical, ‘‘left
invariant’’ connection of Maureer and Cartan,v(x), satisfying

dv52@v,v#, ~2.11!

with the external derivatived acting onG. The particular valuevue[ c̄, is of the greatest impor-
tance for gauge theories, since it is one of the two Faddeev–Popov ghost fields. The invariance of
the gauge condition on the fibers thus becomes

dF5S c̄, dvF

dv D[Mc̄50. ~2.12!

We conclude by recalling a remarkable general invariance property satisfied by this theory under
a particular nonlocal field transformation. This is the so-called Slavnov–Taylor identity, whose
corresponding quantum analog is theBecchi–Rouet–Stora (BRS) global symmetry
transformation,6 which is a very general field transformation involving the fermion and boson
fields together.

III. BACKGROUND GAUGE FIELD QUANTIZATION

The early formulation of such an alternative quantization method traces back on the middle of
the 1970’s,7 when attempts were made to define the gauge covariance of some particular quantum
field models, or, at least, of some subsectors of them. One of the most important efforts on it was
done by De Witt.8

After some alternating issues, a clear formulation has then been consistently developed; in
principle, only at one loop level,9 soon after in the multiloop expansion.10 At present, it is sup-
ported with a detailed proof of its renormalizability,11 obviously only when the corresponding
conventional formulation does possess it.

Initially the background field formulation provided its usefulness in computations with auto-
interacting quantum gauge fields; but after a while it was also applied to many quantum and
classical fields interacting together. The most typical situations occur in the interaction of a
fermion field with a classical gauge potential, giving the form of the chiral anomalies and of
asymmetries in the vacuum state; however, it is also used in the perturbative evaluation of the
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fermion beta function,12 as well as to generate other fermion currents. Even the propagation of
quantum particles in a curved space–time,13 or the evaluation of complex diagrams in quantum
gravity models sometimes looks for it as a useful approximation.

The essence of the argument simply relies on a separation of the classical functional integra-
tion variable~viz. the quantum dynamical field! into two parts; i.e., a classical component, defined
as the ‘‘background field,’’ and the corresponding quantum fluctuation, called the ‘‘fluctuation
field.’’ This procedure reproduces the separation of the solution in conformal field theories, where
one usually defines a classical soliton solution with the addition of a quantum correction.

The Green’s functions in this method, that is, the functional derivatives of the effective action
with respect to the background field, result now in gauge covariant expressions, which become
independent of the gauge condition when the background fields are set on the mass-shell values.
The possible existence of quantum anomalies, indeed, can only be done after defining the ‘‘back-
ground field effective Lagrangian.’’

A. Non-gauge formulation

Let S0[a(x)] be the classical action for a singlet scalar fielda(x),

S0@a#5E d4x L0„a~x!,]ma~x!…, ~3.1!

with the usual meaning of the symbols used. The corresponding quantum generating functional is
then

Z@J#[exp~2W@J# !5NE Da e2$S0@a#1~J,a!%, ~3.2!

where (J,a) is the scalar product. This functional is trivially invariant under a shift of the inte-
grand function of the kind

a~x!→a~x!1 f ~x!, ~3.3!

as it can be easily proved. One introduces the classical component orbackground field, w(x),
together with its quantum fluctuation,f(x), by means of the analogous position

a~x!5f~x!1w~x!, ~3.4!

and one sets

exp~2W̃@w,J# ![N8E Df e2$S0@f1w#1~J,f!%, ~3.5!

with the condition thatw(x) is completely stationary in applying the variational principle toa(x),
i.e.

E Da~x![E Df~x!. ~3.6!

As it is important to note, this definition is well posed, in the sense that the functionW̃[J,w]
cannot be obtained by theW[J] function by the shifta(x)→a(x)1w(x). W̃[J,w] do effectively
depend onw(x), since the only field coupled to an external source is the quantum piecef(x). In
gauge field theory, this difference will result in the gauge fixing term too, since the corresponding
field operator will now be parametrized by thew field.
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In complete analogy with the conventional formulation, one defines theclassical fieldin the
presence of a background field,

f̂~x![
dW̃@w,J#

dJ~x!
, ~3.7!

and the effective action with a background field is

G̃@f̂,w#[W̃@w,J#2~J,f̂ !, ~3.8a!

dG̃@f̂,w#

df̂~x!
52J~x!. ~3.8b!

Hereafter we will indicate scalar products, such as (J,f̂), with the notation

J•f̂[E d4x Jma~x!f̂m
a ~x!. ~3.9!

The relationship betweenW̃ andW is simply

W̃@w,J#5W@J#2J•w, ~3.10!

by which

G̃@f̂,w#5G@f̂1w#[G@w̄~x!#, ~3.11!

where the ‘‘effective field’’w̄(x) is the field resuming all the dynamical status of the theory.
An important consequence of the relationshipG[ w̄]5G̃[ w̄,0], is that one can get the effective

action of thew̄ field by summing up the 1PI one-particle irreducible diagrams of the physical
vacuum in the presence of the effective field only. Proper vertices andSmatrix elements will then
turn out this way, and we will perturbatively construct the effective action by merely summing up
these vacuum Feynman diagrams.

B. Gauge field formulation

In the ordinary Lagrangian formulation, hereafter called theconventionalone, the classical
gauge invariant action for the potentialsAm[Am

aTa, is customarily written as

S05S0@A#[E d4x L0~Am ,]nAm ,...!, ~3.12!

with the dots for higher-order terms, if any. Infinitesimal gauge transformations, parametrized by
the parametersdja(x) act on it through

Am
a→Am8

a5Am
a1Dm

ab@A#djb , ~3.13!

and the covariant derivativesDm
ab[A] constitute the so-called gauge groupG , such that

S d

dAn
c Dm

adDDn
bc2S d

dAn
c Dm

bdDDn
ac5Dm

cdf c
ab. ~3.14!

The Green’s functions generating functional of customary bare Yang–Mills theory includes, as we
saw, the classical action for the integration variableAm(x), a Jacobian determinant for the inte-
gration measure, a source termJm(x)[Ja

mTa coupled to the gauge potential, and a gauge-fixing
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functional, (FmAm)
2, with the 1/a real parameter of it actually included in the definition ofFm.

Frequently, in the following, we will also make use of the shortand notationAiBi to mean the
double contractionAm

aBa
m between Lorentz indices and internal symmetry indices, as already

shown in Eq.~3.9!. We then obtain

Z@J#5exp~2W@J# !5NE DA det~Fa
i Di

b@A# !

3exp2HS0@A#1
1

2 E d4x habhcdFac
m Fbd

n AmcAnd1J•AJ . ~3.15!

An easy and common assumption aboutFab
m is

Fab
m [

1

a
dab]

m, ~3.16!

with dab the Kronecker symbol. In Eq.~3.15!, in addition,N is a normalization constant, given by
^0inu0out&, and hab is the metric tensor of the internal symmetry space. Just as shown in the
non-gauge theory, we make now a change of variable, by setting

Am5am1wm . ~3.17!

The integral functional that turns out is a formally well-defined quantity since we have now
subtracted out the infinite factor of the orbit volume in the gauge group space; analogously to the
former case, we can write

Z̄F@J,w#5exp~2W̄F@J,w#!

5NE Daexp2HS0@a1w#1
1

2 E d4x habFa
i @w#Fb

j @w#aiaj1J•aJ
3det~Fa

i @w#Di
b@a1w#!, ~3.18!

which is in complete analogy with the treatment of Ref. 14. In this formulation the effective action
Ḡ@f̂,w# is deduced fromW̄F[J,w] by means of the customary Le´gendre transform,

â~x![
dW̄F

dJ~x!
@J,w#, ~3.19a!

Ḡ@ â,F@w#,w#5W̄F@J@ â#,F@w#,w#2Jm
•âm . ~3.19b!

Remarkably, all the Green’s functions out of the mass shell as well as all the counterterms needed
to renormalize the physical parameters result gauge covariant, while the entangled Slavnov–
Taylor identities of the original theory take now a very simple form. More explicitly, one writes

e2 Ḡ @ â,w#5N9E Da det@Fa
i @w#Di

b@a1w##

3exp2HS0@a1w#1
1

2 E d4x Fb
ma@w#amaFnc

b @w#anc2
dḠ@ â,w#

dâi
~ai2âi !J ,

~3.20!

corresponding to
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e2G̃@Â,w#5N9E DA det~Fa
i @w#Di

b@A# !

3exp2HS0@A#1
1

2 E d4x Fb
ma@w#~A2w!ma

3Fnc
b @w#~A2w!nc2

dG̃@Â,w#

dÂi
~Ai2Âi !J . ~3.21!

Some of the most striking aspects of the background field method are listed below.
The expectation value of the quantuma field, calledâ, in the limit of Jm→0, satisfies in the

quantum version the same gauge condition originally introduced to break classical gauge invari-
ance, viz.

lim
J→0

^Fa
i âi&50. ~3.22!

The generating functionalW̄F[J,w][W̄†J,F[w],w‡ is invariant, inasmuch as one acts on it with
a background field-induced gauge transformationw→w8 and, simultaneously, one rotates the
source fieldJ(x), i.e.

dW̄F@J,w#

dw i
Di
a@w#1

dW̄F@J,w#

dJi
JjD j ,i

a [0. ~3.23!

In a similar fashion, one proves the relationship

lim
J→0

dḠ

dâm
^Dm

a @ â1w#Pa
b@ â,w#&50, ~3.24!

where, in addition, there appears the ghost field propagator in the background field gauge
Pa

b[ â,w]. This last is defined as the negative inverse of theF b
a operator, that is

F a
b[Fi

bDi
a@ â1w#, ~3.25a!

F a
c@ â,w#Pc

b@ â,w#52db
a . ~3.25b!

Observe that the derivative of this operator,Vm
a
b[F n

aDn
b,m, turns out to be the usual ghost–

ghost–quantum field vertex operator.
The most interesting property of this method, however, is a very peculiar gauge invariance,

valid for the appropriately defined effective action, as we will show in the next section. Such a
property is written as

K dḠ

dw i
Fa

i@w#1
dḠ

dâ j

dD@w#aj
dw i

âi L 50, ~3.26!

for some peculiarḠ[ â,w]. As formerly said, in the present formulation the effective action of the
effective field can be perturbatively constructed by summing only vacuum diagrams with respect
to the â field.

2212 Fabrizio Tinebra: Equivalences in the background field quantization

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



IV. GAUGE INVARIANT EFFECTIVE ACTION

In the context of the background field method, it is possible to generate a very peculiargauge
invariant effective actionG̃[w]. In order to do that, let us be precise in the sense in which such an
invariance holds. As we have seen, in the conventional Yang–Mills generating functional,

Z@J#5NE DA8 ei ~Seff@A8#1J•A8!, ~4.1!

one is mainly concerned with the effective actionSeff , given by

Seff[S0@A8#1
1

2a E d4x@~]•A8!2#1Sfpg@A8#, ~4.2!

plus, in addition, with the so-called source term. Choosing now an arbitrary gauge function,u(x),
the classical actionS0[A8] results invariant under the transformation

duA8m~x!5]mu~x!1@A8m~x!,u~x!#, ~4.3!

i.e.

duS0@A8#[0. ~4.4!

As a matter of fact, by dividing the gauge potential into aquantumpiece, (q), and abackground
component, (b),Am8 5 Am

(q) 1 Am
(b) , the classical actionS0[A8] is indeed invariant under a wider

class of gauge transformations; these are subdivided into two classes, namely

du
~q!Am

~q!5]mu1@Am
~q!1Am

~b! ,u#, du
~q!Am

~b!50, ~4.5a!

and

du
~b!Am

~q!5@Am
~q! ,u#, du

~b!Am
~b!5]mu1@Am

~b! ,u#. ~4.5b!

In each case it results

du
~q!S0@A8#[0, du

~b!S0@A8#[0. ~4.6!

In the framework of the background field method, one can choose such a peculiar effective action
Seff ~namely ourG̃[w] !, such that

du
~b!Seff@w#[0. ~4.7!

In this case the effective actionG̃[w] is said to be the ‘‘gauge (b) invariant effective action.’’ To
get this result let us begin with introducing thebackground gaugegenerating functionalZ̃[J,w] in
the form of

Z̃†J,F@w#,w‡[Z̃F@J,w#5exp$2W̃F@J,w#%

5N8E DÃ exp2HS0@A#1
1

2 E d4x habFa
i @w#Fb

j @w#

3~Ai2w i !~Aj2w j !1J•AJ det~F@w#a
cmDmc

b @A# !. ~4.8!
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In this formulation it is necessary to assumeJ5J[w]. The gauge potentialAm is evidently related
to am via Eq. ~3.17!, namelyÂm5âm1wm , since it results that

W̃F@J,w#5W̄F@J,w#1J•w. ~4.9!

Similarly, the effective action turns out to be

Ḡ†ā,F@ ā#,w‡5W̄F@J,w#2J•â5W̃F@J,w#2J•w2J•â

5W̃F@J,w#2Jm
•Âm[G̃F@Â,w#. ~4.10!

Observe that, in so doing, we introduced intoSeff two ‘‘external sources,’’J(x) andw(x), which
are quite arbitrary and uncorrelated. We are so free to impose another, very useful constraint on
the theory; we are settingJ5J[w], or w5w[J], such that it is

w5Â, or â50. ~4.11!

The resulting effective action, that isG̃F†Â(J[w]),w‡[GF[w], turns out to be our claimed gauge
(b) invariant effective action, satisfying

dG̃F@w,w#

dw i
Fi
a@w#[H dG̃F@Â,w#

dÂi
1

dG̃F@Â,w#

dw i
J U

w5Â

•Fi
a@w#50. ~4.12!

In explicit form, it becomes

e2G̃@Â,Â#5N9E DA det@Fa
i @Â#Di

b@A##exp2HS0@A#1
1

2 E d4x@Fc
ma@Â#~Ama2Âma!

3Fc
nb@Â#~Anb2Ânb!#1

dG@Â#

dÂm
a ~Am

a2Âm
a !J , ~4.13!

with

dG@Â#

dÂm
a [H dG̃@Â,w#

dÂm
a 1

dG̃@Â,w#

dwm
a J U

w5Â

. ~4.14!

It is important to note that to introduce the background component into the customary Yang–Mills
theory can be seen as the development of the ordinary Lagrangian formulation in the presence of
a nonconventionalgauge-fixing term.12 By generalizing the idea of Abbottet al., we will assume

F@w#ab
m Am

b[]mAm
a2g fabcwm

bAm
c5Bw

a~x!, ~4.15a!

where the functionsBw
a(x) are independent ofam(x) and such that

lim
w→0

Bw
a~x![0. ~4.15b!

The adoption of the Feynman rules intoG̃[ Â,w] will result in the usual diagrammatic expansion.
All the well-known Feynman diagrams of the customary formulation will, in fact, emerge but, in
addition to these, some new diagrams, will now result as vertices given by the functional deriva-
tives of G̃[ Â,w] with respect tow. These new vertices require a bit more attention in the diagram-
matic treatment of the theory than the conventional ones. Indeed, in order to derive the physical
consequences by applying the rules of the LSZ reduction prescription to theSmatrix, one should
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examine all of the tree diagrams present in the background field, then to combining these together
with all possible external lines, with the propagators ‘‘amputated.’’ As a matter of fact, the 1PI
Green’s functions are obtained by differentiatingG̃[ Â,w] with respect to the quantumâ field,
leavingw constant. In the gauge invariant version of the background field method, however, it
corresponds to functionally differentiateG̃[ Â,w] with respect to each of the two argumentsÂ and
w, and, after it, to setw5Â. This is why we generate the new vertices in the background theory
and, consequently, why we need to prove that the conventionalSmatrix operator coincides with
that of the background field method, or, in other words, that all the new vertices are physically
influent. Up to date such a question as well as the renormalization itself of this method have been
treated in the physical condition of mass—shell with a perturbation expansion in the background
field, at least to our knowledge. Frequently, moreover, one has used the global symmetries of the
conventional theory, such as the BRS symmetry, to prove things, without any preliminary checks
on it. A careful analysis of these basic assumptions in the background gauge (b) invariant for-
mulation and itsSmatrix operator seems now to be necessary. The results of it are the following.

Let us first recall, (a), that in spite of the fact that the background gauge invariant model
contains many additional (b) vertices, many remarkable shortcomings for the computation of the
renormalization constants15 are valid for it.13 This happens because in thew→Â limit the N-point
vertex functions, radiatively corrected, become interrelated by the simple Ward–Lee identities,
such as

G̃,mn52G̃, jD
j
a,mâ

a
n . ~4.16!

Contrary to this, in the conventional Yang–Mills theory one is ever dealing with the more en-
tangled Slavnov–Taylor identities. Hence, if the theory under consideration is more complex than
bare Yang–Mills, but renormalizable, it will be sufficient to search for the little number of
counterterms allowed, constructed from the most simple, admissible integral invariant terms of it,
gauge (b) invariant and of the correct dimension.

Second, (b) note that the coincidence limitw→Â inside G̃[ f̂,w] leads one to consider the
background gaugew field as a second, effective dynamical variable. As such, it also requires an
additional J8m(x) source term to couple with, as well as an additional gauge fixing operator,
F8m

ab , needed to break gauge symmetry with respect tow.13 Concerning the need of such a term,
let us observe that the condition

w5Â, equivalent to 05â5
dW̄F

dJ
, ~4.17!

shows that the Le´gendre transform fromW̄F to ḠF is singularin this value. Actually it will follow
thatG@w# is no more the Le´gendre transform ofW̃†J@w#,w‡.

As a third observation, (c) we point out that the Slavnov–Taylor identities and related BRS
gauge symmetry are expressed, in their original form, acting on the generating functionalZ̃F[J,w];
it is only after a Légendre transformfrom W̃F that they become a property of theG̃@â,w]
functional. This means, hence, that this symmetry could also be invalidated in the critical value
â50, and it must be explicitly checked. Such a check, however, is a difficult task to do, because
the effective action is normally expressed only in a perturbative sense. In the Appendix we give a
computation showing that global BRS invariance of the effective action in this quite simple model
does not seems to hold anymore.

Going on, (d) if, nevertheless, we were to analyze the bare Yang–Mills effective action and
its BRS symmetry in order to ‘‘graphically demonstrate’’ that all the diagrams containing at least
one functional derivative ofZ̃F with respect tow sum up to zero, then, it would be necessary to
apply these symmetries to the fully corrected functional; we mean a functional that contains the
gauge fixing termF8ab

m for the background fieldfrom the very beginning, i.e. no more by
introducing it only ‘‘when it is required.’’ Let us observe also that, following the simplest formu-
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lation of the BRS invariance, one is led to hypothesize thatthe same cutoffneeded to get the
physical subsector of the quantumAm field states, which spoils these states of their null modes,
must also holdfor the auxiliaryw field. Only with this assumption one can introduceone and the
sameFaddeev–Popov’s pair of ghost fields for the two subspaces considered.

To end up, (e), as previously noted,15 to each order in the loop expansion ofG̃[ â,w], one
encounters subdiagrams of the vertex functionsG̃,i1 ,...,i n

, or renormalization parts, which are not
mere insertions of lower-order vertices and propagators. As a consequence, the renormalization
program in this method will include parts that do not depend on the functional derivatives ofG̃.
The commonly used results of an iterative way to exhibit the renormalizability of a conventional
theory are now insufficient. The final expression ofG̃ will include, at least, one counterterm for
each of the gauge fixing parameters. Nevertheless, the renormalization ofG̃[ Â,w] can be achieved
in an indirect way,11 i.e., by proving that all the divergencies ofW̃F[J,w] can be subtracted with
a finite number of local counterterms. This implies that the wholeG̃[ Â,w] will be subtracted and
regularized and, in particular, thatG̃[w,w] is also finite.

We considered this last question very briefly, by merely assuming that we can add the appro-
priate counterterms to the naiveZ̃F[J,w] generating functional, such that the renormalized ex-
pression of this model formally coincides with the naive one, namely with the expression given
above@see Eqs.~3.20! and~3.21!#. Hereafter, all the involved fields shall then be considered as the
renormalized versions of their naive counterpart, as assumed up to now. Since in the current
literature of the background gauge field method there seems not to be any, fully satisfactory proof
on the equivalence between theŜmatrix operators, namely a demonstration respecting all items,
from (a) to (e), listed above, we proceeded as follows.

V. AN EQUIVALENCE PROOF OF THE S MATRIX

To start with, let us assume, in each closed and bounded domainOL of an assigned space-time
manifoldO , the presence of a local algebraA~OL! of the physical observables of a given theory
or, better, a set of operations acting on the physical observables defined and with support inOL .
We will limit ourselves to consider the presence inO of a self-interacting Yang–Mills field
Am(x); we will neglect, moreover, the presence of gravity into the field dynamics. Then, let us
introduce the particular functional operatorŜ, which, while acting on the local physical observ-
ables, generates the scattering matrix elements for assigned asymptotic conditions. Such a func-
tional, as known, satisfies the algebra of the gauge transformations inOL , namely

Am→Am
e 5@TaAm

a #e5U~e!FTaAm
a2

i

g
U~e!21 ]mU~e!GU~e!21, ~5.1!

Am
a→Am

a1dAm
a5Am

a2
1

g
]mea1 f abcebAm

c , ~5.2!

where the underline means the local restriction toOL . These last create anendomorphism Ginto
the space of theŜ generated physical observables, that is

G L :^Ŝ~OL!&→^Ŝ~OL!&. ~5.3!

In the background gauge quantization method, theŜ scattering operator contracted between as-
ymptotic states,̂ Ŝ&, is parametrized by the same background field, namelyŜ5Ŝ[w]. In a quite
general formulation, this parametrization is reflected in the aforementionednonconventionalgauge
fixing operatorF[w] and in the dependence onw of the source currentJ5J[w], in such a way as

Ŝw[Ŝ@Fw#[Ŝ†F@w#,J@w#,w‡, ~5.4!
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@see Eqs.~2.11! and~3.18!#. Now it turns out that, besides the usual algebraic operations defined
in the vector space of the physical states, one can introduce anothercomposition lawin G L ,
interesting theŜw group elements. With this we mean the combined action of two or more
successive scattering processes, each one parametrized by an independent, arbitrary background
gauge condition, viz.

Ŝh+Ŝz[Ŝ@Fh#+Ŝ@Gz#5^V,ŜhŜz
21V&. ~5.5!

Here theincoming fields of the secondŜh operator are defined as theoutgoing fields of the inverse
Ŝz operator, whereh andz are two arbitrary background field configurations. Since the choice of
the gauge fixing operators,F andG, for any parametrizedŜw scattering operator is arbitrary and
physically influent, we can reduce the previous definition to

Ŝh+Ŝz[Ŝ@Fh#+Ŝ@Fz#, ~5.6!

and to assumeF[w] as in Eqs.~4.15!. It is then easy to derive the composition law@see Eq.~2.8!#,

Ŝh+Ŝz5~Sh•„~Sz•Zz!
21Zh…!, ~5.7!

in such a way as, with our choice ofF[w], it is

Ŝh+Ŝz5Ŝ@Fh2Fz ,Jh2Jz ,h2z# ~5.8a!

5Ŝ@Fh2z ,Jh2z ,h2z#[Ŝh2z . ~5.8b!

In physical terms, Eqs.~5.7! and~5.8! are as follows. A gauge, self-interactingAm field is divided
into a classical background componentzm and a quantum fluctuation fieldam , whence one derives
the associated scattering operatorŜz . After defining the inverse scattering of these fields, one
similarly separates theam field into another classical background componenthm and a remaining
second quantum fluctuationam8 . The matrix elements for the scattering ofam8 in the presence of
the classicalhm field, will thus result the same as those for the scattering of theam field in the
presence of thezm2hm background.

With our composition law the ordinary group properties then read as

Ŝw
21[Ŝ2w5Ŝ@2Fw ,2Jw ,2w#;

Ŝ@Fw#+Ŝ@Fw#215Ŝ@0#[Id;
~5.9!

Ŝ@Fw#+Id5Id+Ŝ@Fw#5Ŝ@Fw#;

~Ŝ@Fh#+Ŝ@Fu#!+Ŝ@Fz#5Ŝ@Fh#+~Ŝ@Fu#+Ŝ@Fz# !.

The key point, now, is to realize that the transition from the generic background gauge field
effective actionḠF[ â,w] to the manifestly gauge (b) invariant expressionG̃F[ Â,w] uw5A , can be
provided by a one parameterautomorphismacting in the quoted subalgebra of parametrizedS
matrix operators,Ŝ[Fw].

We will begin, hence, by substituting the pair of fields (a,w)5(A2w,w) with the pair of
‘‘interpolating fields,’’ (At,tw), where

At
m[~12t!am1twm , ~5.10!
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0<t<1, in such a way as to create at-dependentG̃F[ Â
t,tw] functional. Going on this way, we

will arrive at at parametrization of the sameŜ operator, or, in other words, to a family ofSmatrix
operators,Ŝw

t 5Ŝt[Fw].
To gain our final goal, i.e., the equivalence betweenŜ matrices, two preliminary results are

thus in order. If we can prove, indeed, that the transformationŜw→Ŝw
t is an automorphism in the

group of the local operatorsŜw , while showing, at the same time, that the relationship

~V,Ŝ@Fw#V!5~V,Ŝt@Fw#V!, ;tP@0,1# ~5.11!

also holds, it will follow that the given transformation can be unitarily implemented, i.e.

Ŝw
t 5U~t!ŜwU~t!21. ~5.12!

This will imply that the physical predictions stemming from the model witht51, which is the
background gauge (b) invariant one, are the same of those stemming from thet50 model, viz. the
conventional gauge theory. From the continuity of this transformation, the result will then be true
with eacht value.

We begin, thus, by showing that there is a condition of relative locality between the (a,w) and
(At,tw) pairs of fields. This corresponds to the realistic assumption that the asymptotic Hilbert
spaces of this theory,H in andHout, are unaffected by the previous transformation of field
variables. In fact, to perform a translation of an integration field variablea(x) by a classical
componentw(x), and to follow this with a multiplication by a real numbert, would not affectthe
asymptotic properties of the theory.

From the canonical quantization viewpoint, these conclusions can be easily supported. Let us
recall, indeed, that a pair of quantum field operatorsCa(x) andCb(y) are said to be relatively
local ~antilocal! iff the commutation~anticommutation! relation,

@Ca~x!,Cb~y!#2~1 !50, ;~x2y!2,0, ~5.13!

holds, at least in a weak sense. This property verifies the transitive rule, so that ifCa andCb are
relatively local with respect toCc , they are also relatively local. Since a classical field, likew(x),
defines a set of cyclic states with respect to the vacuum state, it turns out that

@w~x!,a~y!#2505@w~x!,A~y!#2 , ~5.14!

and, by the transitive property,

@a~x!,At~y!#250, ~5.15!

all that is customary in local relativistic causal quantum field theory.
The local operations obtained by acting withŜt on the vacuum then have support in the same

space-time regionOL in which are supported theŜ generated ones. This means the transformation
Ŝ→Ŝt lies inside the same subalgebraG ~OL! in which we definedŜ.

We are now in the position to write down our interpolating transformation, as it emerges by
the former functional integral expression ofW̃F[J,w]. Taking into account the previous remarks,
items from~a! to ~e!, the right starting point just becomes

Z̄F@J,J8,w#5NE Da exp2HS0@a#1
1

2
habE d4x@Fa

i @w#Fb
j @w#aiaj1Fa8

i1Fb8
jw iw j #1Ji•ai

1J8 j•w jd~ â!J det~Fa
i @w#Dbi@a# !det~Fa8

jD jb@w#!, ~5.16!
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whered(x) is Dirac’s delta function. An implicit definition ofḠF will then follow, namely

e2 ḠF@ â,w#5N9E Da det~Fa
i @w#Dib@a1w#!det~Fa8

jD jb@w#!exp2HS0@a1w#

1
1

2 E d4x@~Fa
i @w#ai !

21~Fa8
iw i !

2#1
dḠF@ â,w#

dâm
a ~am

a2âm
a !2

dḠ@ â,w#

dwm
a wm

ad~ â!J .
~5.17!

This is also equivalent to

e2G̃F@Â,w#5N9E DA det~Fa
i @w#Dib@A# !det~Fa8

iDib@w#!

3exp2HS0@A#1
1

2 E d4x@Fb
ma@w#~Â2w!m

aFc
nb@w#~Â2w!n

c1Fb8
mawmaFb8

ncwnc#

3
dG̃@Â,w#

dÂm
a ~Am

a2Âm
a !2

dG̃

dwm
a wm

ad~Â2w!J . ~5.18!

With the freedom of redefining the normalization parameterN insideZ̃F , we can now neglect the
last term of Eq.~5.18!, since it does not depend onam , so as to obtain the correspondingZ̃F[J,w]
functional. With that we can introduce ourinterpolating effective actionGt[ Â

t,tw], which takes
the form

e2Gt[e2G̃F@Ât,tw#[N9E Da exp2HS0@At#1
1

2 E d4x@$Fa
i @tw#~Ai

t2tw i !%
21$Fa8

itw i%
2#

1Jt@Â
t#•~At2Ât!J 3det~Fa

i @tw#Dib@A# !det~Fa8
iDib@tw#!, ~5.19!

0<t<1, where we defined the current

Jt
ma~x![

dGt@Â
t#

dÂt
ma~x!

2
dG̃@Ât,c#

dcma
U

c5tw

. ~5.20!

After a customary Le´gendre transformation of Eq.~5.19!, corresponding to get the interpolating
transformation

W̃F@J,w#→Wt@Jt#[G̃t@Â
t,tw#1Jt•Â

t, ~5.21!

we also obtain

Zt@Jt ,tw#5e2Wt
[N8E Da exp2HS0@At#1

1

2 E d4x hab~Fa
i @tw#Fb

j @tw#

3~Ai
t2tw i !~Aj

t2tw j !1Fa8
iFb8

jt2w iw j !1Jt•A
tJ

3det~Fa
i @tw#Dib@A

t# !det~Fa8
iDib@tw#!. ~5.22!

The limits t→0 and t→1, of the Zt[Jt ,tw] functional, reproduce, respectively, the normally
defined Yang–Mills theory generating functional and the background field~b! gauge invariant one
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of Abbottet al.As a matter of fact, the constant term exp21
2(F8Â)23det(F8D[ Â]), which results

as an additional term in Eq.~5.22!, can be easily reabsorbed into the renormalization procedure of
Wt , or, in other words, into theN8 normalization constant.

Hence, as an effect of the LSZ reduction prescription, we assert that the operator

St[:exp E d4x d4yFAt
m

~ in!~x!Kmn~x,y!
d

dJn
t~y!G : ~5.23a!

5:exp E d4x d4yF ~12t!am
~ in!~x!Kmn~x,y!

d

dJt
n~y!G :, ~5.23b!

while acting onZt[Jt ,tw], for fixed t, defines the interpolating scattering matrix elements of the
At

m andtwm fields, namely theŜt
w[F,F8] operator.

The first preliminary step, that the translationŜ→Ŝt is an automorphismât in the subset of
local scattering operators defined inOL , will soon emerge by showing thatât is a map conserving
the group and commutator operations,

ât~aX+bY!5aât~X!+bât~Y!, ~5.24!

ât~@X,Y# !5@ât~X!,ât~Y!#. ~5.25!

This corresponds to prove that the action

ât~aŜh+bŜz!5abât~Ŝh+Ŝz!5abât~Ŝh2z!, ~5.26a!

is exactly equivalent to the composition

aât~Ŝh!+bât~Ŝz!5abât~Ŝh2z!. ~5.26b!

In the same time it must also be that

ât~Ŝh+Ŝz+Ŝh
21+Ŝz

21!5ât~Ŝ0!5ât~Ŝh!+ât~Ŝz!+ât~Ŝh
21!+ât~Ŝz

21!. ~5.27!

Both of these relations are fulfilled if it results that

Ŝt@Fh2Fz#5Ŝt@Fh#+Ŝt@Fz#. ~5.28!

This is nothing but our formerly defined group operation of thew-parametrized family ofŜmatrix
operators, now extended to the arbitraryt values. It is conceivably true that this assumption holds,
since it is said that the self-interaction of theam1thm field, followed by the scattering with the
am1tzm field, is the same as the self-interaction of theam1t(hm2zm) field. To see this, let us
consider the following two transformations:

@hab~Fh2Fz!a
i ~Fh2Fz!b

j aiaj #→@hab~12t!2~Fth2Ftz!a
i ~Fth2Ftz!b

j aiaj #, ~5.29a!

$hab~12t!2@~Fth!a
i ~Fth!b

j aiaj +~Ftz!a
i ~Ftz!b

j aiaj #%

→$hab~12t!2@~Fth!a
i ~Fth!b

j 2~Ftz!a
i ~Ftz!b

j #aiaj%], ~5.29b!

and the analogous ones for the (Fh8 )a
i operators. By the symmetry in them, n indices, as well as

that in thehab tensor, the difference between the two transformed right-hand sides reduces to

^V,@~Fh! i a ,~Fz!
j
b#ai

aaj
bV&. ~5.30!
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This is indeed zero since the gauge fixing operatorsFh andFz were assumed as independent.
Quite similarly, the determinantal shift,

det@~Fh2Fz!
a
iD

ib~a!#→det@~Fth2Ftz! i
aDib~At!#, ~5.31a!

can be shown to be equivalent to

det@~Fth! i
aDib~At!#+det@~Ftz! i

aDib~At!#→det@~Fth2Ftz! i
aDib~At!#. ~5.31b!

By this we conclude thatât operates on theŜw(Fw ,Jw) family as an automorphism. What it
remains to prove, then, is the validity of the relationship

~V,Ŝ@Fw#V!5~V,Ŝt@Fw#V!, ;tP@0,1#. ~5.32!

To this aim let us write it as

d

ds
~V,Ŝs@Fw#V!U

s5t

50, ;t,sP@0,1#, ~5.33a!

namely

d

ds
~V,ŜsV!U

s5t

5
d

ds
~V,Ŝs1tV!U

s50

5
d

ds
„V,~Ŝt!sV…Us5050. ~5.33b!

In our formulation this translates to

d

ds
@~St•Z

t!s#U
s5J50

50. ~5.34!

As we previously said, theât interpolation is active only when the quantum field to be integrated
over,AI , has been divided into a classical component plus a novel quantum piece, i.e.AI→aI 1wI .
In order to get the action ofâs after the action ofât , it is then necessary to introduce a second
decomposition, quite similar to the former one, which separates the quantuma field into a second
classical component and a third quantum fluctuation, i.e.

aI→aI 81w8. ~5.35!

This defines a functional integralZ̃F,G[J,w,w8] that depends on two background field compo-
nents, as well as on two gauge fixing operators. Hence, we have to interpolate the first interpo-
lating functional integralZt[Jt,tw] between the valuesw850 andw85aI 8, with the condition to
reproduce the known expression of the gauge invariant effective actionG̃[w,w] in the limit
w8→aI 8, t51. We introduce such a ‘‘doubly interpolating effective action,’’Gt,s[ Â

t,s,tw1sw8]
with the positions

Ât,s5~12t!~12s!â81tw1sw8 ~5.36a!

and

F[w1w8. ~5.36b!

It is to be

e2G0,0[e2Gt,sut5s505e2 Ḡ @ â# ~conventional!, ~5.37a!
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e2G1,15e2G̃@F,F# ~gauge invariant!, ~5.37b!

e2Gt,05e2Gt@Ât#

~5.37c!

e2G0,s5e2Gs@As# ~ interpolating!,

e2Gt,15Cte
2G̃@F,F#,

~5.37d!

e2G1,s5Cse
2G̃@F,F#,

with C a real numerical parameter. Analogously, the associated interpolating source current will
be

Jt,s
ma 5

dGt,s@Ât,s#

dÂt,s
ma

2
dG̃@Ât,s,c#

dcma
U

c5tw1sw8

. ~5.38!

Except for very special assumptions, it is also possible to rearrange the incoming field asymptotic
conditions ofw andw8, such that

twm
~in!1sw8m

~in!5~t1s2ts!a8m
~in! , ~5.39!

for arbitrary values oft ands, so as to have

At,s
m

~in!5am8
~ in! , ;t,sP@0,1#. ~5.40!

After introducing the gauge fixing operatorsG[w8] and G8 for the am8 and wm8 fields, quite
analogous to theF[w] and F8 ones, thedoubly interpolating Sˆ t,s operator will turn to be
completed. By the usual group properties of theât,s endomorphism we write it as
Ŝt,s5(St,s•Z

t,s), with

St,s[:exp E d4x d4yFa8m
~in!~x!K8mn~x,y!

d

dJn
t,s~y!G : ~5.41!

and

Zt,s5N E Da8 exp2HS0@At,s#1
1

2 E d4x hab@$G@sw8#a
i G@sw8#b

j 1F@tw#a
i F@tw#b

j %

3~Ai
t,s2tw i2sw i8!~Aj

t,s2tw j2sw j8!1~s2Ga8
iGb8

jw i8w j81t2Fa8
iFb8

jw iw j !#1Jt,s•A
t,sJ

3det@F@tw# i aD@At,s#bi #det@G@sw8# j aD@At,s#bj #det@Fa8
iD@tw#bi #3det@Ga8

jD@sw8# j
b#.

~5.42!

In this way one is led to consider the equation
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05F d

ds
~V,~Ŝt!sV!GU

s5J50

5 lim
s→0

H lim
Jt,s→0

F d

ds
~St,s•Z

t,s@Jt,s#!G J
5 lim

s→0
lim

Jt,s→0
H S St,s :exp E d4x d4yFam8

~ in!~x!Kmn~x,y!F d

ds

d

dJt,s
n ~y!G G :•Zt,sD

2S St,s•F dS0
dAi

t,s @~t21!ai81w i8#1hab~G@sw8#a
i ,kG@sw8#b

j ~12t!2~12s!2a8 ia8 jw8k

2$F@tw#a
i F@tw#b

j 1G@sw8#a
i G@sw8#b

j %~12t!2~12s!a8 ia8 j1sGa8
iGb8

jw8 iw8 j !

1Jt,s•
dAt,s

ds
1Ai

t,sF d2G̃@Âts,c#

dÂi
t,sdÂj

t,s @~t21!aj81w j8#1
d2G̃@Âts,c#

dÂi
t,sdc j8

w j8GU
c5tw1sw8

1det~F@tw#D@A# !det~F8D@tw#!~det~Ga
i , j@sw8#Dib@A#w j8!det~Ga8

iDib@sw8# !

1det~Ga
j @sw#Djb@A# !det~Gi8

aDi jb@sw8#w j !!G•Zt,sD J , ~5.43!

where we put~and analogously for theDa
i [c8] operator!

Ga
i , j@sw8#[

dGa
i @c8#

dc j8
U

c85sw8

. ~5.44!

The first line of Eq.~5.43!, namely ([(d/ds)St,s] •Z
t,s), is zero by formally writing it as

F d
ds

d

dJt,s
G•Zt,s5 lim

s8→s

1

s82s
S dZt,s8

dJt,s8
2

dZt,s

dJt,s
D . ~5.45!

Indeed, from the linearity of theJt,s•A
t,s coupling, and by interchanging the limitss→0 and

s8→s, two identical ands-independent expressions will result in the functional derivatives. In
physical terms, that means theS scattering operator for the LSZ reduction prescription to the
physical states is invariant under a gauge field reparametrization. We have to show, thus, that the
last ten terms in Eq.~5.43!, those enclosed between the external square brackets, compensate
reciprocally to zero. This will conclude the present equivalence proof. Note that in Eq.~5.43! these
ten terms have been written by regrouping as two by two into each line, except for the last two,
which are lonely. We note first that the fifth and sixth terms of it are straightforwardly zero,
5th16th[0, in the prescribed limits, as well as the second and fourth term also do, after a
functional integration by parts, by observing that in the limitJt,s→0 the gauge fixing functions
Bw
a(x), Bw8

b (x) tend to zero, that is

lim
Jt,s→0

2nd14th50. ~5.46!

Concerning the seventh and eighth terms of it, namely those enclosed inside internal square
brackets, let us write them as

7th18th5 lim
Jt,s→0

d

dÂi
t,s F dG̃

dÂj
t,s ~t21!aj81Jt,s

k w8kG5
d

dÂi
t,s F dG̃

dÂj
t,s ~t21!a8 j G . ~5.47!
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By collecting together this resulting term with the first and third ones of Eq.~5.43!, we thus obtain

1st13rd17th18th5
dS0

dAt,s @~t21!a81w8#2
1

2 E d4x~~F@tw# i~t21!ai8!2!

1Ai
t,sF d2G̃t,s

dÂi
t,s dÂj

t,s @~t21!aj81w j8#1
d2G̃t,s

dÂi
t,sdw j8

w j8G . ~5.48!

The term

lim
s→0

dS0@A
t,s#

dAk
t,s wk8[du

~q!S0@A
t#, ~5.49!

annihilates in this limit because theclassical action S0[A
t,s] is a gauge (b) and (q) invariant

action, whence satisfying Eqs.~4.6! with u(x)[sw8(x). Restricting now on a compact manifold,
with the space-time boundary conditions imposing a null gauge fieldA(x), and by performing an
integration by parts on the third and seventh terms, we are then led to formally write Eq.~5.48! as

lim
Jt,s→0

d

dÂt,s
j
HS0@At#1

1

2 E d4x F2@tw#2G̃@Ât#J ~t21!aj8[0. ~5.50!

Still, considering the ninth and tenth terms of Eq.~5.43!, namely the variations in the determi-
nantal factors, we proceed as follows. Let us set

Di
a@sw8#5Di

a@0#1Di
a, j@sw8#w j8 , ~5.51!

so as to have

det~Ga8
iDi

b@sw#!5det~Ga8
iDi

b@0# !1det~Ga8
iDi

b, j@sw#w j !. ~5.52!

By decomposing in such a way the ninth and tenth terms, we find

9th110th5det~Ga8
iDi

b, j@sw8#w j8!3@det~Ga
i , j@sw8#Di

b@At,s#w j8!1det~Ga
i @sw8#Di

b@At,s#!#

1e.t.5det~Ga8
iDi

b, j@sw8#w j8!det$Di
b@At,s#@Ga

i , j@sw8#w j81Ga
i @At,s##%1e.t.,

~5.53!

where the e.t.[‘‘ ending term’’ of the above string will be defined in a moment. Using the linearity
of theDm[c] operator, it is then easy to show that

lim
s→0

Di
a, j@sw#5 lim

s→0
sDi

a, j@w#50. ~5.54!

A quite similar reasoning applied to the ending term, namely to

e.t.5det~Ga
i , j@sw8#Db

i @At,s#w j8!det~Ga8
iDb

i @0# !, ~5.55!

then leads one to conclude that Eq.~5.53! annihilates in thes→0 limit. We recall, indeed, that our
gauge fixing operatorGa

i [w8] is linear with respect tow8(x) @see Eq.~4.15~a!#.
This would terminate the present demonstration on the unitarity of the transformation

Ŝw→Ŝs
t giving also, as a consequence, a confirmation of the equivalence between the scattering

matrix Ŝw operator of the background gauge field method and theŜ of the conventional one.
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VI. CONCLUSION

Even though it is largely known that the scattering theory of the background field method
should be physically equivalent to the conventional one, at least for renormalizable scalar and
one-dimensional gauge field theories, as suggested by many conformal field theory computations,
we succeeded to show it for the case of a non-Abelian, pure Yang–Mills theory. We tried to get
such a proof very explicitly and our treatment was done with much care concerning all the
possible troubling matters, such as those collected at the end of Sec. IV. In the present proof,
indeed, there was no use of any doubtful assumptions, such as the adoption ofone and the same
pair of Faddeev–Popov’s ghost fields for all the involved fields, or the hypothesized fullBRS
invarianceof the background parametrized Lagrangian, or, also, the naive computation of the
cancellations occurring incustomaryFeynman’s diagrammatic expansion in the effective La-
grangian. In the present proof, on the contrary, we assumed to prove the equivalence of the
scattering matrix from the very beginning definition of it, namely as a formal functional operator.
Concerning the general, classical BRS invariance of the model theory considered here, we raised
our perplexities on its supposed validity by computing it in the Appendix. The bare Yang–Mills
gauge theory is also plagued, as is well known, by the most important renormalization problem of
the infrared divergencies. This problem would limit the present scattering matrix definition to a
mere formal, mathematical construct. On the other hand, such a problem does not seems to afflict
the present equivalence proof more heavily than it does for the others, preexisting, equivalence
demonstrations. This means, hence, that one will have to consider the true physical theory, that
underlying the mathematical model dealt with here, simply as the infrared cutoff regularized
version of this last. On a compact manifold, moreover, these problems frequently disappear. In
general, however, we think that the need to cut off the intrinsic divergencies and the physical
equivalence of the scattering theory could likely be considered as two separate and noninteracting
problems. This will hold, at least in our effective action approximate formulation, but we are
planning to investigate this problem further, as well as to check on the other, existing equivalence
proofs.

APPENDIX: BRS TRANSFORMATION OF THE EFFECTIVE ACTION

We point out that in the proof presented here we have never used the global BRS symmetry
of the background gauge field effective action, supposedly for it to be valid, for the gauge (b)
invariant version of it. The reason for our choice lies in a trivial computation, as we show here,
which, however, suggested us to avoid to apply BRS symmetry toSeff , unless it shall be proved
more carefully.

It is seen, in fact, that the exact Yang–Mills effective action of the background field method
does not result BRS invariant, but, rather, such a property will hold only under very particular
assumptions. By postulating, indeed, some ‘‘ad hoc’’ transformation properties for the source
currentJi [w(x)], BRS invariance could, nevertheless, be recovered.

The functional to be varied, in accordance with the BRS transformation rules, is written as

exp2W̃@J,w#5~det ĥ !21/2E @DA Dc Dc̄#expH 2SS0@A#1
1

2a E d4x hab@Fa
i @w#~Ai2w i !

3Fb
j @w#~Aj2w j !1Fa8

iw iFb8
jw j #1E d4x had@ c̄aFd

i @w#Dib@A#cb

1 c̄aFd8
iDib@w#cb#1S .T .D J , ~A1!

where, in observation to the customary assumptions, the source terms of it, named theS .T . term,
will not intervene in the computation of the BRS variation ofW̃. Then we write such a variation,
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dBRS exp2W̃@J,w#5~det ĥ !21/2E @dBRS~DA Dc Dc̄!#e2~Seff1S .T .!

2~det ĥ !21/2E @DA Dc Dc̄#~dBRSSeff!e
2~Seff1S .T .!

52~det ĥ !21/2E @DA Dc Dc̄#~dBRSSeff!e
2~Seff1S .T .!, ~A2!

due to the invariance of the integration measure. In order to calculate~dBRSSeff! we recall the
transformations

dAm
a[2Dm

ab@A#cb dl52~]mdab2g facbAmc!cbdl, ~A3!

dca[2 1
2 g f

abccbcc dl, ~A4!

d c̄a[2
1

a
Fm
ab@w#~A2w!mb dl; ~A5!

and, in addition to these, we have the positions

dS0@A#[0, ~A6!

dF8m
dc[0, ~A7!

dFm
ac@w#[jm

ac dl. ~A8!

Note that one must assume thatF[w] itself, being an operator depending on the background field
w, will undergo some kind of transformation in passing through the critical valuew5Â, when the
w field is itself a dynamical variable. If the gauge fixing operator is linear in thew andA variables,
as is generally the case, the BRS variation ofF[w] will be proportional to the BRS variation of
this field, hence toDm

abcb. In this way the result of the action ofjm
ac on theAmc field shall be

intended, then, as the writing;Dm
accc dl.

The BRS transformation of our effective action thus gives

dBRSSeff5
1

2a
hab2~dFm

ac!~A2w!m
c Fn

bd~A2w!n
d1

1

2a
hab2Fm

ac~dAm
c !Fn

bd~A2w!n
d1had~d c̄a!

3~FD !dbc
b1hadc̄a~dFm

dc!Dm
cbcb1hadc̄aFm

dc~dDm
cb!cb1hadc̄a~FD !db~dcb!

1had~d c̄a!~FD !dbc
b1hadc̄a~dF8!m

dcDm
cbcb1hadc̄a~F8D !db~dcb!

5
1

a
hab~jm

ac~A2w!m
c dl Fn

bd~A2w!n
d1Fm

ac~2Dm
cb@A#cb dl!Fn

bd~A2w!n
d!

1hadH 2
1

a
Fm
ae~A2w!m

e dl~FD !dbc
b1 c̄a~jm

dc dl Dm@A#cb!cb

1 c̄aFm
dc
„2g fceb~dAm

e !…cb1 c̄a~FD !dbF2
1

2
g fbe fcecf dlG1S 2

1

a
Fm
ae~A2w!m

e dl D
3~F8D !dbc

b1 c̄a~F8D !db~2 1
2 g f

be fcecf dl!

2226 Fabrizio Tinebra: Equivalences in the background field quantization

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



5hadH 1a „jm
ac~A2w!m

c
…„Fn

db~A2w!n
b
…dl2

1

a
~Fm

acDm
ce@A#ce!~Fn

db~A2w!n
b!

1
1

a
„Fm

ac~A2w!m
c
…~Fn

dbDn
eb@A#cb!dl1 c̄ajm

dcDm
cb@A#dl cb2 c̄ag fceb~Fm

dcDm
eg@A#cg!

•dl2
1

2
gc̄a~FD !dbf

be fcecf dl1
1

a
„Fm

ae~A2w!m
e
…~F8D@w#!dbc

b dl

2
1

2
gc̄a~F8D@w#!dbf

be fcecf dlJ
~after interchanging them andn indices in the third term!

5hadH 1a @Fn
db~A2w!n

bjm
ac~A2w!m

c 1Fn
de~A2w!n

e~F8D@w#!abc
b#

2
1

a
@Fn

db~A2w!n
bFm

acDm
ce@A#ce2Fn

dc~A2w!n
cFm

aeDm
eb@A#cb#2 c̄a@jm

dcDm
cb@A#cb

1g fcebFm
dcDm

e fcfcb1
1
2 g~FD !dbf

be fcecf1
1
2 g~F8D@w#!dbf

be fcecf #J dl

5hadH 1a Fn
db~A2w!n

b@jm
ae~A2w!m

c 1Fm8
aeDmeb@A#cb#2 c̄a@jm

dcDm
cb@A#cb1g fcebFm

dcDm
e f@A#cfcb

1 1
2 g f

ceb~FD !dccecb1
1
2 g f

ceb~F8D@w#!dccecb#J dl

5hadH 1a Fn
db~A2w!n

b@jm
ac~A2w!m

c 1Fm8
ac~Dm

ce@A#ce!#2 c̄a~jm
dcDm

cb@A# !cb

2gFm*
d fc̄a@ f

f ebDm
eccccb1

1
2 f

cebDm
f ccecb#2 1

2 gFm8*
d fc̄af cebDm

f ccecbJ dl

~by the properties of thef ceb tensor, the fourth and fifth term mutually annihilate!

5hadH 1a Fn
db~A2w!n

b@jm
ac~A2w!m

c 1Fm8
acDm

cece#2 c̄ajm
dcDm

cbcb

2
1

2
gFm8*

dcc̄af f ebDm
f ccecbJ dl, ~A9!

whereFm8* is the operator Hermitian conjugate toFm8 . Finally, by writing explicitly the formaljm

operator as

jm
dc;g fdceDm

e fcf dl, ~A10!

which is undetermined only by a multiplicative constant, we see that the second term vanishes,

jm
dcDm

cb@A#cb;g fdceDm
e fcf dl Dm

cbcb50, ~A11!

as a consequence of the antisymmetry off dce. The final conclusion will thus be resumed as
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H dBRSSeff
dl J 5hadHFm8*

dc
•F c̄af f ebDm

f ccecb1
1

a
Fn
ab~A2w!n

hDm
ceceG

1
1

a
jm*

dcFn
ab~A2w!n

b~A2w)m
c #J . ~A12!

This result, as we previously announced, clearly indicates that the presence of the background field
w, unless other peculiar assumptions concerningS .T ., induces a non-complete invariance of the
effective actionW̃[J,w] introduced above.
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This paper treats propagation of transient waves in nonstationary media, which
has many applications in, for example, electromagnetics and acoustics. The under-
lying hyperbolic equation is a general, homogeneous, linear, first-order 232 system
of equations. The coefficients in this system depend on one spatial coordinate and
time. Furthermore, memory effects are modeled by integral kernels, which,
in addition to the spatial dependence, are functions of two different time coordi-
nates. These integrals generalize the convolution integrals, frequently used
as a model for memory effects in the medium. Specifically, the scattering problem
for this system of equations is addressed. This problem is solved by a generaliza-
tion of the wave splitting concept, originally developed for wave propagation in
media which are invariant under time translations, and by an imbedding or a
Green’s functions technique. More explicitly, the imbedding equation for the re-
flection kernel and the Green’s functions~propagator kernels! equations are de-
rived. Special attention is paid to the problem of nonstationary characteristics. A
few numerical examples illustrate this problem. ©1996 American Institute of
Physics.@S0022-2488~96!00104-8#

I. INTRODUCTION AND BASIC SYSTEM OF EQUATIONS

In a recent paper,1 a new method of analyzing wave propagation in nonstationary or time-
varying media was suggested. This method is an extension of the well-established methods of
wave splitting, invariant imbedding, and Green’s functions techniques~see Refs. 2–8!. Wave
propagation in nonstationary media has also been investigated with other methods~see, e.g., Refs.
9–11!.

Nonstationary media are characterized by material parameters that are changing with time.
Relevant examples are found in, e.g., telecommunication problems, such as fading and modulation
problems, and in problems concerning moving media. The analysis of the wave propagation
phenomena in linear, nonstationary media also serves as an indispensable tool for analyzing wave
propagation in nonlinear media by means of linearization.

The investigation of wave propagation problems in nonstationary media leads to hyperbolic
partial differential equations~PDE! with coefficients varying both in time and space. The purpose
of this paper is to systematically investigate the wave propagation problem in a general nonsta-
tionary medium. This paper presents the theory of the techniques; subsequent papers will develop
numerical solutions to pertinent problems.

Investigations of wave propagation, some of which are mentioned in Sec. II, suggest a gen-
eralized form of the dynamics of the wave fields. In the present work, the parameters of the
medium are assumed to vary in one spatial direction, here taken to thez-direction, and timet. The
basic equation is the following first-order 232 system of equations:

0022-2488/96/37(5)/2229/24/$10.00
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]

]z S u1~z,t !
u2~z,t ! D 5 f ~z,t !S 21 0

0 1D ]

]t S u1~z,t !
u2~z,t ! D 1S a~z,t ! b~z,t !

g~z,t ! d~z,t !
D S u1~z,t !
u2~z,t ! D

1E
2`

t S A~z,t,t8! B~z,t,t8!

C~z,t,t8! D~z,t,t8!
D S u1~z,t8!

u2~z,t8! D dt8. ~1!

The reason for the6 superscript is described in the subsequent sections. The slowness function
f (z,t) is a notation for

f ~z,t !5
1

c~z,t !
.0,

wherec(z,t) is the wave~phase! velocity. In order to model also nonstationary memory effects,
integral terms have been included in the equation. These memory effects are nonlocal in time. In
the integrals, the variablet describes the current time, whereas the variablet8 is an integral
measure, relating to the starting time of the excitation~see also Appendix B!. The system~1! is a
strictly hyperbolic system.

The positive functionf (z,t) is a continuous, bounded function of the variablesz and t
everywhere. Furthermore, it is assumed to be constant outside the slab (0,d)

f ~z,t !51/c0 , z,0, f ~z,t !51/cd , z.d, ~2!

and continuously differentiable, with bounded derivatives, inz and t everywhere inside the slab,
i.e., (z,t)P(0,d)3(2`,`) ~see also Fig. 1!. This implies thatf (0,t)51/c0 and f (d,t)51/cd for
all times t.

The functionsa(z,t), b(z,t), g(z,t), andd(z,t) are equal to zero outside the slab and they
are continuous, bounded functions inside the slab~not necessarily continuous at the edges of the
slab!.

The functionsA(z,t,t8), B(z,t,t8), C(z,t,t8), andD(z,t,t8) are always zero outside of the
slab (0,d). Due to causality, they vanish identically inside the slab providedt,t8. For simplicity,
the functionsA(z,t,t8), B(z,t,t8), C(z,t,t8), andD(z,t,t8) are assumed continuous and bounded
as functions of the variablesz, t, andt8 in the regiont.t8, 0,z,d.

The assumptions described above can, of course, be relaxed, and the results presented in this
paper then hold for a larger class of parameters. However, the purpose of this paper is not to
formulate the results for the weakest set of assumptions possible, but to exploit the potential of the
method for a set of physically reasonable assumptions.

In the scattering application addressed in this paper, the incident wave is assumed to impinge
normally on a slab. Two different scattering problems can be identified. In the direct scattering

FIG. 1. Geometry of the problem.
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problem, the material parameters are known and the goal is to calculate the response of a known
incoming field. On the other hand, the inverse problem assumes knowledge of the incident and the
scattered field~data collected exterior to the medium! and the problem is to infer information
about the material parameters. Both these problems can be investigated by the methods presented
in this paper. However, the main pertinence of the method is in connection with applications to the
direct scattering problem. Some aspects of the nonstationary inverse scattering problem were
analyzed in Ref. 1.

After this introductory section, a few explicit examples of applications are given in Sec. II.
The analysis of the nonstationary characteristic curves is found in Sec. III. The imbedding equa-
tion for the reflection kernel is derived in Sec. IV, and the Green’s functions~propagator kernels!
equations are derived in Sec. V. Some explicit simplifications and concluding remarks are given in
Secs. VI and VII, respectively. Three appendices contain some technical mathematical details and
some numerical illustrations of characteristic traces.

II. EXAMPLES

This section contains a few examples of general interest to the formulation presented in this
paper. The underlying equations of the fields in all these examples are the Maxwell equations:

“3E~r ,t !52
]B

]t
~r ,t !, “3H~r ,t !5

]D

]t
~r ,t !.

Here,E~r ,t! andH~r ,t! are the electric and the magnetic fields, respectively,B~r ,t! is the magnetic
induction, andD~r ,t! is the electric displacement field. All fields are assumed to be quiescent
before a fixed time. This property guarantees that all fields vanish att→2`.

A. Electromagnetic waves in inhomogeneous and dispersive media

To model wave propagation in a nonstationary, inhomogeneous, and dispersive medium, the
following constitutive relations are relevant:1

D~r ,t !5e0S e~z!E~r ,t !1E
2`

t

xe~z,t,t8!E~r ,t8!dt8D ,
B~r ,t !5m0H~r ,t !.

Here e0e(z).0 is the permittivity of the medium, andm0 is the permeability of vacuum. The
nonstationary dispersive effects are modeled by the susceptibility kernelxe(z,t,t8).

The vector wave propagation problem is reduced to a scalar problem by assuming that the
electric field is transverse to the stratification of the medium, and, furthermore, depends only on
the coordinates (z,t). The dynamics of the fields is cast into the form of~1! by the following
nonunique wave splitting:4

S u1~z,t !
u2~z,t ! D5

1

2 S 1 2
c0

Ae~z!
] t

21

1
c0

Ae~z!
] t

21 D S E~z,t !
]zE~z,t ! D ,

where the antiderivative] t
21 is defined as

] t
21g~ t !5E

2`

t

g~ t8!dt8.
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The coefficients of the dynamics,~1!, in this example are

f ~z,t !5Ae~z!/c0 ,

a~z,t !52g~z,t !52
1

4

d

dz
ln e~z!2

1

2c0Ae~z!
xe~z,t,t8!U

t85t

,

b~z,t !52d~z,t !5
1

4

d

dz
ln e~z!2

1

2c0Ae~z!
xe~z,t,t8!U

t85t

,

A~z,t,t8!5B~z,t,t8!52C~z,t,t8!52D~z,t,t8!52
1

2c0Ae~z!

]xe

]t
~z,t,t8!.

Note that the regularity assumptions made on the susceptibility kernelxe(z,t,t8) in Ref. 1
@continuously differentiable inzP(0,L) and t8, and twice continuously differentiable int, t>t8#
are stronger than needed to meet the assumptions made on the functionsA(z,t,t8), B(z,t,t8),
C(z,t,t8), andD(z,t,t8) in Sec. I, and are not needed if the splitting is made from Maxwell’s
equations directly~see Sec. II C!.

B. A generalized wave equation

An obvious extension of the results presented in Ref. 1 concerning propagation of electro-
magnetic waves in inhomogeneous and time-varying media is to allow the permittivitye0e to vary
in time as well as in space. The relevant constitutive relations in this example are

D~r ,t !5e0e~z,t !E~r ,t !, B~r ,t !5m0H~r ,t !,

where the relative permittivitye(z,t).0. This is a model of an inhomogeneous, nondispersive,
nonstationary medium. For the sake of simplicity, the dispersive memory terms in Sec. II A are
omitted. However, the more complex model, where these memory terms are included, is straight-
forward to analyze.

With the usual assumption of an electric fieldE that is transverse to thez-axis and that
depends onz and t only, the wave equation is

]2E

]z2
~z,t !2

]2~ f 2E!

]t2
~z,t !50, ~3!

where

f ~z,t !5Am0e0e~z,t !.

This equation is a special case of a more generalized wave equation

]2u

]z2
~z,t !2

]2~ f 2u!

]t2
~z,t !1A~z,t !

]u

]z
~z,t !1B~z,t !

]u

]t
~z,t !1C ~z,t !u~z,t !50, ~4!

which also has applications in, e.g., linear acoustics in media where the propagation conditions
change rapidly with time.

In order to see how Eq.~4! is related to the general hyperbolic wave equation~1!, the concept
of wave splitting is introduced. The wave splitting can be defined in several different ways. The
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definition adopted here renders a very simpleu6-dynamics for the wave equation in~3!. Thus,
proceeding formally, the wave splitting is defined by the following transformation of the depen-
dent variables:

S u1~z,t !
u2~z,t ! D5

1

2 S 1 2
1

f ~z,t !
] t

21

1
1

f ~z,t !
] t

21
D S u~z,t !

uz~z,t !
D ,

which generalizes the wave splitting introduced in Ref. 4. The new fieldsu6(z,t) satisfy a
first-order 232 system of hyperbolic partial differential equations, which is identical to the gen-
eralizedu6-dynamics in~1!. The explicit expressions of the coefficients are

a~z,t !52
1

2

]

]z
ln f ~z,t !2

3

2

] f

]t
~z,t !2

1

2
A~z,t !1

1

2

B~z,t !

f ~z,t !
,

b~z,t !51
1

2

]

]z
ln f ~z,t !2

1

2

] f

]t
~z,t !1

1

2
A~z,t !1

1

2

B~z,t !

f ~z,t !
,

g~z,t !51
1

2

]

]z
ln f ~z,t !1

1

2

] f

]t
~z,t !1

1

2
A~z,t !2

1

2

B~z,t !

f ~z,t !
,

d~z,t !52
1

2

]

]z
ln f ~z,t !1

3

2

] f

]t
~z,t !2

1

2
A~z,t !2

1

2

B~z,t !

f ~z,t !
,

and

A~z,t,t8!5
1

2

1

f ~z,t ! F f ~z,t8!
]A

]t8
~z,t8!2

]B

]t8
~z,t8!1C ~z,t8!G ,

B~z,t,t8!5
1

2

1

f ~z,t ! F2 f ~z,t8!
]A

]t8
~z,t8!2

]B

]t8
~z,t8!1C ~z,t8!G ,

C~z,t,t8!52A~z,t,t8!,

D~z,t,t8!52B~z,t,t8!.

C. Wave propagation on the transmission line

In this example, propagation of current-voltage waves on a transmission line is considered.
The material of the transmission line, i.e., the conductors together with the insulation, may vary in
time as well as in space. In this model, memory effects are permitted.

The equivalent circuit segment model of Fig. 2 provides the basis of the derivation of the
general transmission line equations. Here,R(z,t) andG(z,t) are the series resistance and the
shunt conductance per unit length of the transmission line, respectively. The series inductance and
the shunt capacitance per unit length, which are denotedL(z,t) andC(z,t), respectively, are both
assumed positive and finite. The voltagev(z,t) and the currenti (z,t) are related, respectively, to
the magnetic fluxF(z,t) and the chargeq(z,t) through

F~z,t !5L~z,t !i ~z,t !1E
2`

t

xm~z,t,t8!i ~z,t8!dt8,
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q~z,t !5C~z,t !v~z,t !1E
2`

t

xe~z,t,t8!v~z,t8!dt8.

The magnetic flux,F(z,t), and the electric charge,q(z,t), depend on the currenti (z,t) and
the voltagev(z,t) at time t, respectively. In addition to these multiplicative terms,F andq are
connected to the previous values of the currents and voltages of the transmission line. The memory
functions are modeled by the two integral terms with the kernel functionsxm(z,t,t8) describing
the inductive susceptibility andxe(z,t,t8) modeling the capacitive susceptibility. Simplifications
occur in a material that is invariant under time translations. In this case, the susceptibility kernels
are functions of the difference argumentt2t8 rather than oft and t8. A comparison between the
pertinent parameter symbols used in this transmission line application and the material properties
of Sec. II A is found in Table I.

The Kirchhoff current and voltage relations are now applied to the circuit mesh of Fig. 2. In
the limit Dz→0, the two general transmission line equations are obtained. They are represented in
the following matrix form:

S 0 C~z,t !

L~z,t ! 0 D ]

]t S i ~z,t !v~z,t ! D 1
]

]z S i ~z,t !v~z,t ! D 5BS i ~z,t !v~z,t ! D , ~5!

FIG. 2. Transmission line model.

TABLE I. Correspondence between the parameter symbols used and the material properties relevant in the two main
applicable problems.

Transmission line Maxwell’s equations

Parameter Symbol Parameter Symbol

Inductance L(z,t) Magnetic permeability m(z,t)
Capacitance C(z,t) Electric permittivity e(z,t)
Series resistance R(z,t) Magnetic conductivity sm(z,t)
Shunt resistance G(z,t) Electric conductivity se(z,t)
Inductive susceptibility xm(z,t,t8) Magnetic susceptibility xm(z,t,t8)
Capacitive susceptibility xe(z,t,t8) Electric susceptibility xe(z,t,t8)
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where the operator matrixB is given by

B5S 0 2G~z,t!2
]C

]t
~z,t!2

]

]t E2`

t

xe~z,t,t8!• dt8

2R~z,t!2
]L

]t
~z,t!2

]

]t E2`

t

xm~z,t,t8!• dt8 0
D,

where the symbol • denotes the place holder for the operand.
This system of equations is easily transformed into the general first-order 232 system of

hyperbolic equations,~1!. The following wave splitting diagonalizes the system~5!:

S u1~z,t !
u2~z,t ! D5

1

2 S 1 AC~z,t !

L~z,t !

1 2AC~z,t !

L~z,t !

D S i ~z,t !v~z,t ! D . ~6!

The explicit expressions of the coefficients are

f ~z,t !5AL~z,t !C~z,t !,

a~z,t !5 1
2@1h1~z,t !1h2~z,t !2h3~z,t !2h4~z,t !#,

b~z,t !5 1
2@2h1~z,t !2h2~z,t !1h3~z,t !2h4~z,t !#, ~7!

g~z,t !5 1
2@1h1~z,t !2h2~z,t !2h3~z,t !1h4~z,t !#,

d~z,t !5 1
2@2h1~z,t !1h2~z,t !1h3~z,t !1h4~z,t !#,

and

A~z,t,t8!52
1

2 F]xe

]t
~z,t,t8!AL~z,t8!

C~z,t8!
1AC~z,t !

L~z,t !

]xm

]t
~z,t,t8!G ,

B~z,t,t8!5
1

2 F]xe

]t
~z,t,t8!AL~z,t8!

C~z,t8!
2AC~z,t !

L~z,t !

]xm

]t
~z,t,t8!G ,

~8!
C~z,t,t8!52B~z,t,t8!, D~z,t,t8!52A~z,t,t8!,

where the functionsh1(z,t), h2(z,t), h3(z,t), andh4(z,t) are given by

h1~z,t !5
1

2
AL~z,t !C~z,t !

]

]t
ln
C~z,t !

L~z,t !
,

h2~z,t !5
1

2

]

]z
ln
C~z,t !

L~z,t !
,

h3~z,t !5AL~z,t !

C~z,t ! FG~z,t !1
]C

]t
~z,t !1xe~z,t,t8!u t85tG ,

h4~z,t !5AC~z,t !

L~z,t !FR~z,t !1
]L

]t
~z,t !1xm~z,t,t8!u t85tG .

2235Åberg, Kristensson, and Wall: Transient waves in nonstationary media

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The regularity requirements of the coefficients stated in Sec. I are met if R(z,t) and G(z,t) are
continuous functions, and C(z,t) and L(z,t) continuously differentiable in bothz andt. Moreover,
the functionsxe(z,t,t8) and xm(z,t,t8) are assumed continuous inz and t8 and continuously
differentiable int.

The next two sections contain the main equations for the solution of the scattering problem in
inhomogeneous, nonstationary, dispersive media. Specifically, the imbedding equation and the
Green’s functions equations are derived.

III. CHARACTERISTIC CURVES

One of the major differences between the treatment of the problems in this paper and earlier
work is that the characteristics of Eq.~1! are nonstationary in time. This complicates many of the
formulas when compared to those applicable to media which admit time translation symmetries.
When the slowness is independent of time but the dynamics is nonstationary, there is still a lack
of invariance under time translation due to lower-order terms. In this case some simplifications can
be made. This is evidenced by comparing the imbedding equation~15! of Sec. IV, the Green’s
functions equations~21! and ~22! of Sec. V, and equations~4.3!, ~5.2!, and~5.3! of Ref. 1.

In Ref. 1, as the slowness wasnot a function of time, it was quite easy to make a transfor-
mation into travel time coordinates to straighten the characteristic curves. In the more general
situation considered here, such a transformation is more difficult to perform and implies that a
problem of almost the same complexity as the original problem has to be solved. No transforma-
tion to straighten the characteristic curves is therefore made in this paper. Thus, the examination
of the properties of the characteristic traces of~1! is appropriate. In Appendix A some of the
properties of the transformation to straighten the characteristic curves are outlined.

The characteristic traces for theu1-equation satisfy

dt1

dz
5 f „z,t1~z!…, ~9!

with an initial condition@the curve passes through the point (z,t)#

t1~z!5t. ~10!

The superscript plus has been used on the characteristic with positive slope; traces with negative
slope appear in later sections and will have superscript minus.

The existence of a unique, locally defined, solution of the initial value problem in~9! and~10!
is guaranteed by the assumption off in Sec. I.12,13 To emphasize the dependence of the initial
conditions, the solution is written in the form

t15t1~z;z,t !, ~11!

where„z,t1(z;z,t)… describes a curve inR2 passing through (z,t) andz is a parameter.
Figure 3 shows the system of coordinates~z,t1!. The position of the physical slab coincides

with the interval (0,d) of the z-axis. The assumptions of the slownessf ensure that a locally
defined flow has been defined.14 Maximal extension of this flow up to any point, at which it
becomes undefined, is ensured. This is a property that depends purely on the slownessf . This flow
forms a group with respect to the parameterz and as such it has a unique inverse and unit element.
For the purposes of this paper, the form of the solution formally represented by Eq.~11! suffices.
The inverse elements are

t1
„z;z,t1~z;z,t !…5t, t1

„z;z,t1~z;z,t !…5t,

and the unit element can be written as
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t1~z;z,t !5t.

One other formula obtained from elementary calculus that is needed in the sequel is

]t1

]t
~z;z,t !U

t5t1~z;z,t !

5S ]t1

]t
~z;z,t ! D 21

or its dual

]t1

]t
~z;z,t !U

t5t1~z;z,t !

5S ]t1

]t
~z;z,t ! D 21

.

In this paper, of particular importance is the case ofz50.
From the presumptions of the functionf (z,t) given in Sec. I and from Eq.~9!, it is clear that

the derivativedt1/dz is a continuous function inz. Furthermore, these presumptions also guar-
antee that the partial derivatives]t1/]z and]t1/]t exist.13

Also note that if (z,t) is a point on the characteristic curve, so is„z8,t1(z8;z,t)…. Thus
t15t1(z;z,t) andt15t1

„z;z8,t1(z8,z,t)… are two equivalent representations of the same char-
acteristic curve.

Integration of Eq.~9! along the characteristic yields an expression for the functiont1:

t1~z2 ;z,t !2t1~z1 ;z,t !5E
z1

z2
f „z8,t1~z8;z,t !…dz8, ~12!

which specifies the time needed for theu1-wave to move from positionz1 to positionz2 along the
characteristic passing through (z,t).

An additional relation for theu1-characteristics, needed for the derivations in Sec. V, is now
derived. In~12!, let z25z andz15z, and differentiate the equation with respect toz and t. This
shows that the function

f~z;z,t !5
]t1

]z
~z;z,t !1 f ~z,t !

]t1

]t
~z;z,t !

is a solution to the uniquely solvable homogeneous Volterra equation of the second kind,

FIG. 3. The characteristic of theu1-equation.
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f~z;z,t !1E
z

z ] f

]t1 „z8,t1~z8;z,t !…f~z8;z,t !dz850,

which therefore must only have the trivial solution. Thus, the following identity holds:

]t1

]z
~z;z,t !1 f ~z,t !

]t1

]t
~z;z,t !50. ~13!

The interpretation of this conservation equation states the obvious result that as (z,t) varies along
one particular characteristic trace, for fixedz, t1 is invariant. Another more simple proof of~13!
is to use the fact thatt15t1(z;z,t) andt15t1

„z;z8,t1(z8;z,t)… are two equivalent represen-
tations of the same characteristic curve. Differentiation wrtz8 then gives the identity~13!.

Some explicit examples of characteristic curves are found in Appendix C.

IV. IMBEDDING EQUATION

The two split fields,u6(z,t), introduced in a previous section, are interrelated. This is because
when the wave propagates through a medium in which the properties are changing, theu6-waves
are related through a scattering operator. This operator is represented by a time integral, which can
be derived from Duhamel’s integral~see Appendix B!. The result is

u2~z,t !5E
2`

t

R~z,t,t8!u1~z,t8!dt8. ~14!

Here, the kernelR(z,t,t8), which is the reflection kernel of a subsection (z,d) of the total slab
(0,d), is identical to the one used in Ref. 1. By causality,R(z,t,t8)50, t,t8.

The reflection kernel,R(z,t,t8), satisfies a partial differential equation, which describes the
variation inR(z,t,t8) as the coordinatesz, t, andt8 vary. This equation, the imbedding equation,
is derived by differentiating~14! and using the dynamics~1!. This operation yields the imbedding
equation for the reflection kernelR(z,t,t8), valid in the domain 0,z,d, t.t8:

]R

]z
~z,t,t8!2 f ~z,t !

]R

]t
~z,t,t8!1

]R

]t8
~z,t,t8! f ~z,t8!

5C~z,t,t8!1d~z,t !R~z,t,t8!1R~z,t,t8!F2
] f ~z,t8!

]t8
2a~z,t8!G

2E
t8

t

R~z,t,t9!b~z,t9!R~z,t9,t8!dt92E
t8

t

R~z,t,t9!A~z,t9,t8!dt9

1E
t8

t

D~z,t,t9!R~z,t9,t8!dt92E
t8

t H E
t8

t9
R~z,t,t9!B~z,t9,t-!R~z,t-,t8!dt-J dt9. ~15!

The initial condition of the reflection kernelR(z,t,t8) is

R~z,t,t8!u t85t52
1

2

g~z,t !

f ~z,t !
~16!

and the boundary condition atz5d, t.t8, is

R~d,t,t8!50.
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The Cauchy problem of the imbedding equation,~15!, with data specified on the plane pa-
rametrized byr5(z,t,t) @see ~16!#, is well posed. This is a consequence of the nonvanishing
functional determinant~Ref. 15, p. 26!

J5U1 0 0

0 1 1

1 2 f ~z,t ! f ~z,t !
U52 f ~z,t !Þ0.

The functional differential equation for the reflection kernelR(z,t,t8) can be solved numeri-
cally given the material parameters. This implies that the solution to the direct scattering problem,
i.e., the determination of the reflected fields, can be computed through~14!. The inverse problem,
i.e., the determination of the material parameters, given the reflection kernelR(z,t,t8), can also be
approached through~15!. This problem will be addressed in another paper.

A. Discontinuity of the reflection kernel

The solution of the imbedding equation,R(z,t,t8), is continuous everywhere except across the
surfacet85h(z,t), whereR(z,t,t8) has a possible jump discontinuity. This finite jump disconti-
nuity is introduced by the possible jump discontinuity ing(z,t) at z5d, i.e., if
g(d2,t)5limz→d20 g(z,t)Þ0 @see~16!#. The normal to the surfacet85h(z,t), i.e., (hz ,ht ,21),
satisfies the characteristic equation

]h

]z
~z,t !2 f ~z,t !

]h

]t
~z,t !5 f „z,h~z,t !…

and, due to~16!, the surface contains the liner5(d,t,t), i.e., t5h(d,t).
The vector field describing the characteristic traces is„1,2 f (z,t), f (z,t8)… and it lies on a

hyper-surface. The projection of this vector field onto the (z,t)-plane is described by

dt2

dz
52 f „z,t2~z!… ~17!

so that this curve, on planest85constant, has representation„z,t2(z;z,t),t8…. To emphasize the
dependence of the initial conditions, the solution to~17! has been written in the form

t25t2~z;z,t !.

Similarly, the projection of the vector field onto the (z,t8)-plane is described by Eq.~9! and this
curve on planest5constant has representation„z,t,t1(z;z,t8)…. All curves of interest here will
originate from the liner5(d,t,t), so that a characteristic trace,G, emanating from this line has
parametric form

G:r ~z,t !5„z,t2~z;d,t !,t1~z;d,t !….

As mentioned previously, theR kernel has a possible initial jump discontinuity on the (d,t,t)-
line, in the direction of increasingt, of size

@R#G~z5d!5
1

2

g~d,t !

f ~d,t !
. ~18!

The bracket notation used here denotes the finite jump discontinuity of the reflection kernelR,
with respect to positivet-direction. This discontinuity propagates along the characteristic as
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d@R#

dz U
G

5S d„z,t2~z;d,t !…2
] f

]t8
~z,t8!U

t85t1~z;d,t !

2a„z,t1~z;d,t !…D @R#G ,

which upon integrating fromd to z, and with use of~18!, yields

@R#G5
1

2

g~d,t !

f ~d,t !
expH E

d

zS d„z8,t2~z8;d,t !…2
] f

]t8
~z8,t8!U

t85t1~z8;d,t !
2a„z8,t1~z8;d,t !…D dz8J .

V. GREEN’S FUNCTIONS

The relationship between the split fieldsu6 in Sec. IV was evaluated at a specificz-value and
the reflection kernelR(z,t,t8) was interpreted as the reflection kernel for a subslab (z,d) of the
physical slab (0,d). This interpretation was performed by the use of an imbedding argument.

In contrast to the analysis presented in the previous section, this section contains an analysis
of the relationship between the exterior excitationu1(0,t) and the internal fieldsu6(z,t) of the
physical slab (0,d). The operator that maps the excitationu1(0,d) to the internal fieldsu6(z,t)
has an integral representation. This representation leads to the definition of the Green’s functions
G6(z,t,t8) of the propagation problem.

From Duhamel’s integral~see Appendix B!, an explicit mapping of the excitationu1(0,t) to
the internal fieldsu6(z,t) can be obtained. For convenience this mapping is evaluated at two
different times. The basic difference between the two definitions in Eqs.~19! and ~20! is that, in
~19!, the time coordinatet is evaluated at the field positionz while, in ~20!, it is evaluated at the
left endpoint of the slab,z50. Both of them are needed to derive the equations in this section. The
expressionst1(0;z,t) and t1(z;0,t) denote specific points along the relevant characteristics of
the wave front~see Sec. III!. The expressions are

u1~z,t !5u1
„0,t1~0;z,t !…p„z,t1~0;z,t !…1E

2`

t1~0;z,t !
G1

„z,t1~0;z,t !,t8…p~z,t8!u1~0,t8!dt8,

~19!

u2~z,t !5E
2`

t1~0;z,t !
G2

„z,t1~0;z,t !,t8…p~z,t8!u1~0,t8!dt8,

or evaluated at timet1(z;0,t) @use the fact thatt1
„0;z,t1(z;0,t)…5t#

u1
„z,t1~z;0,t !…5u1~0,t !p~z,t !1E

2`

t

G1~z,t,t8!p~z,t8!u1~0,t8!dt8,

~20!

u2
„z,t1~z;0,t !…5E

2`

t

G2~z,t,t8!p~z,t8!u1~0,t8!dt8,

where the attenuation factor is defined as

p~z,t !5expH E
0

z

a„z,t1~z;0,t !…dzJ .
In this formula, the integration of the functiona is performed along the characteristics of the first
equation in~1! ~see Sec. III for more details on characteristic curves in nonstationary media and
Appendix B for details on the propagation of finite jump discontinuities along characteristic
curves!. By causality, the Green’s functionsG6(z,t,t8)50 for t8.t.

The Green’s functions equations are derived by performing the calculation of
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]

]z S u1

u2 D
in two different ways. The first way is obtained through explicit differentiation of the definition of
the Green’s functions in~20!, and the second way is obtained by using the general dynamics,~1!.
In both cases repeated use of the definition of the Green’s functions,~20!, and the general dynam-
ics, ~1!, is necessary. The comparison between these two expressions leads to the following
Green’s functions equations, 0,z,d, t.t8:

]G1

]z
~z,t,t8!2a„z,t1~z;0,t !…G1~z,t,t8!1G1~z,t,t8!a„z,t1~z;0,t8!…

2b„z,t1~z;0,t !…G2~z,t,t8!2A„z,t1~z;0,t !,t1~z;0,t8!…
]t1

]t8
~z;0,t8!

2E
t8

t

A„z,t1~z;0,t !,t1~z;0,t9!…
]t1

]t9
~z;0,t9!G1~z,t9,t8!dt9

2E
t8

t

B„z,t1~z;0,t !,t1~z;0,t9!…
]t1

]t9
~z;0,t9!G2~z,t9,t8!dt950, ~21!

and

]G2

]z
~z,t,t8!22 f „z,t1~z;0,t !…S ]t1

]t
~z;0,t ! D 21 ]G2

]t
~z,t,t8!2d„z,t1~z;0,t !…G2~z,t,t8!

1G2~z,t,t8!a„z,t1~z;0,t8!…2g„z,t1~z;0,t !…G1~z,t,t8!

2C„z,t1~z;0,t !,t1~z;0,t8!…
]t1

]t8
~z;0,t8!

2E
t8

t

C„z,t1~z;0,t !,t1~z;0,t9!…
]t1

]t9
~z;0,t9!G1~z,t9,t8!dt9

2E
t8

t

D„z,t1~z;0,t !,t1~z;0,t9!…
]t1

]t9
~z;0,t9!G2~z,t9,t8!dt950, ~22!

with the initial condition

G2~z,t,t8!u t85t52
1

2

g„z,t1~z;0,t !…

f „z,t1~z;0,t !…

]t1

]t
~z;0,t !. ~23!

The initial condition onG1(z,t,t8)u t85t is obtained by integrating~21!, i.e.,

G1~z,t,t8!u t85t52
1

2 E
0

zFb„z8,t1~z8;0,t !…g„z8,t1~z8;0,t !…

f „z8,t1~z8;0,t !…

22A„z8,t1~z8;0,t !,t1~z8;0,t !…G ]t1

]t
~z8;0,t !dz8 ~24!

These differential equations for the Green’s functions generalize those given in, e.g., Refs. 1,
5, and 16. Note that the Green’s functionsG6(z,t,t8)50 for t8.t.
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From the definition of the Green’s functionsG6(z,t,t8), ~20!, and the definition of the
reflection kernelR(z,t,t8), ~14!, at z50, the following boundary conditions ofG6 at z50 and
z5d are obtained for all times:

G1~0,t,t8!50, G2~d,t,t8!50, G2~0,t,t8!5R~0,t,t8!.

The last boundary condition is a special case of a more general interrelationship between the
Green’s functionsG6(z,t,t8) and the reflection kernelR(z,t,t8). Specifically, from the definition
of the Green’s functionsG6(z,t,t8), ~20!, and the reflection kernelR(z,t,t8), ~14!, it is straight-
forward to obtain for 0<z<d, t.t8,

G2~z,t,t8!5R„z,t1~z;0,t !,t1~z;0,t8!…
]t1

]t8
~z;0,t8!

1E
t8

t

R„z,t1~z;0,t !,t1~z;0,t9!…
]t1

]t9
~z;0,t9!G1~z,t9,t8!dt9.

Notice, that

]t1

]t
~z;z,t !U

z5z

51.

This identity is easily obtained by lettingz25z andz15z in ~12! and differentiating with respect
to t and finally lettingz5z.

For completeness, an alternative definition of the Green’s function equations is given:

u1~z,t !5u1
„0,t1~0;z,t !…p„z,t1~0;z,t !…1E

2`

t1~0;z,t !
g1~z,t,t8!p~z,t8!u1~0,t8!dt8,

~25!

u2~z,t !5E
2`

t1~0;z,t !
g2~z,t,t8!p~z,t8!u1~0,t8!dt8.

These Green’s functions may be more suitable for numerical computation, and the use of the
transformation

G6~z,t,t8!5g6
„z,t1~z;0,t !,t8… ~26!

enables Eqs.~21! and ~22! to be transformed into

]g1

]z
~z,t,t8!1 f ~z,t !

]g1

]t
~z,t,t8!2a~z,t !g1~z,t,t8!1g1~z,t,t8!a„z,t1~z;0,t8!…

2b~z,t !g2~z,t,t8!2A„z,t,t1~z;0,t8!…
]t1

]t8
~z;0,t8!

2E
t1~z;0,t8!

t

A~z,t,t9!g1~z,t9,t8!dt92E
t1~z;0,t8!

t

B~z,t,t9!g2~z,t9,t8!dt950

and

]g2

]z
~z,t,t8!2 f ~z,t !

]g2

]t
~z,t,t8!2d~z,t !g2~z,t,t8!1g2~z,t,t8!a„z,t1~z;0,t8!…
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2g~z,t !g1~z,t,t8!2C„z,t,t1~z;0,t8!…
]t1

]t8
~z;0,t8!

2E
t1~z;0,t8!

t

C~z,t,t9!g1~z,t9,t8!dt92E
t1~z;0,t8!

t

D~z,t,t9!g2~z,t9,t8!dt950

with the initial condition

g2~z,t,t8!u t85t1~0;z,t !52
1

2

g~z,t !

f ~z,t ! S ]t1

]t
~0;z,t ! D 21

.

The initial condition ong1(z,t,t8)u t85t1(0;z,t) is obtained from the transformation~26! and the
initial condition forG1(z,t,t8)u t85t in ~24!.

The relation between the reflection kernel and this alternative definition of the Green’s func-
tions reads

g2~z,t,t8!5R„z,t,t1~z;0,t8!…
]t1

]t8
~z;0,t8!1E

t1~z;0,t8!

t

R~z,t,t9!g1~z,t9,t8!dt9.

A. Propagation of discontinuities

The solutions of the first-order system of PDEs~21! and ~22! are continuous along the
characteristic curves associated with the system, but may be discontinuous across these curves.

From ~21! it is seen that the characteristic traces aret5constant forG1 and asG1(0,t,t8) is
continuous for allt and t8, it follows G1 is continuous throughout its domain of definition.
However, examination of the initial condition~23! shows that any discontinuity in the functionsg
and f will be propagated along the characteristic curves described by~22!. The conditions im-
posed on these functions in Sec. I ensureG2(z,t,t) is continuous except possibly atz5d. The
initial value forG2 has the jump discontinuity in the direction of increasingt:

@G2#~d,t,t !5
1

2

g„d,t1~d;0,t !…

f „d,t1~d;0,t !…

]t1

]t
~d;0,t !.

This jump inG2 will propagate along the characteristic curves ofG2.
The characteristic traces forG2(z,t,t8) are independent of the third parametert8 and can be

described by an equationh5h(z;z,t). The notation used here is similar to that used in Eq.~11!.
The functionh satisfies the equation

dh

dz
~z;z,t !522 f ~z,t1

„z;0,h~z;z,t !…!
]t1

]t
~0;z,t !u t5t1

„z;0,h~z;z,t !… .

The discontinuity propagates along the curveY emanating from the line (d,t,t) and whereY
has parametric form

Y:r ~z,t !5„z,h~z;d,t !,t….

It follows that the equation describing the propagation of the discontinuity inG2 is

d@G2#

dz U
Y

5~d~z,t1
„z;0,h~z;d,t !…!2a„z,t1~z;0,t !…!@G2#Y .

Integrating this equation fromd to z yields
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@G2#Y5@G2#Y~z5d! expH E
d

z

„d~z8,t1
„z8;0,h~z8;d,t !…!2a„z8,t1~z8;0,t !……dz8J .

The discontinuous behavior ofg2 can be found from the relationship betweeng2 andG2

@see~26!#, namely

g2
„z,t1~z;0,t !,t8…5G2~z,t,t8!

with the substitutiont→h(z;d,t), and with use of the identity (z5d)

t1
„z;0,h~z;z,t !…5t2

„z;z,t1~z;0,t !…

the appropriate expression for [g2] is found.

VI. EXPLICIT EXPRESSIONS

In this section, the theory presented in the previous sections is illustrated by the examples
from Sec. II.

In Sec. II A, propagation of electromagnetic waves in nonstationary, inhomogeneous, disper-
sive media was considered. A detailed analysis of the imbedding equation and the Green’s func-
tion equations for this example was presented in Ref. 1, and the reader is referred to this paper for
more details.

The generalized wave equation,~4!, in Sec. II B and the transmission line equations,~5!, in
Sec. II C imply no significant simplifications of the results in Secs. IV and V. However, the less
complex wave equation,~3!, offers some simplifications. Accordingly, the wave equation~3! has
an imbedding equation

]R

]z
~z,t,t8!2 f ~z,t !

]R

]t
~z,t,t8!1

]R

]t8
~z,t,t8! f ~z,t8!

51d~z,t !R~z,t,t8!1R~z,t,t8!F2
] f

]t8
~z,t8!2a~z,t8!G

2E
t8

t

R~z,t,t9!b~z,t9!R~z,t9,t8!dt9

and Green’s functions equations

]G1

]z
~z,t,t8!2a„z,t1~z;0,t !…G1~z,t,t8!1G1~z,t,t8!a„z,t1~z;0,t8!…

2b„z,t1~z;0,t !…G2~z,t,t8!50

and

]G2

]z
~z,t,t8!22 f „z,t1~z;0,t !…S ]t1

]t
~z;0,t ! D 21 ]G2

]t
~z,t,t8!

2d„z,t1~z;0,t !…G2~z,t,t8!1G2~z,t,t8!a„z,t1~z;0,t8!…

2g„z,t1~z;0,t !…G1~z,t,t8!50

with
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a~z,t !52
1

2

]

]z
ln f ~z,t !2

3

2

] f

]t
~z,t !,

b~z,t !51
1

2

]

]z
ln f ~z,t !2

1

2

] f

]t
~z,t !,

g~z,t !51
1

2

]

]z
ln f ~z,t !1

1

2

] f

]t
~z,t !,

d~z,t !52
1

2

]

]z
ln f ~z,t !1

3

2

] f

]t
~z,t !.

VII. CONCLUSIONS

This paper contains a detailed analysis of wave propagation of transient waves in media
whose properties are changing in space and time—nonstationary media. The underlying dynamics
of the wave propagation problem is a general, linear, homogeneous, nonstationary, first-order 232
system of hyperbolic equations. A new wave splitting is introduced, which is a generalization of
the well-established wave splitting in media that have time translation symmetries. The scattering
problem is solved by an imbedding or a Green’s functions technique. Specifically, the imbedding
equation for the reflection kernel is derived. This equation is a nonlinear, hyperbolic equation in
one space and two time variables. Furthermore, the Green’s functions equations are derived. They
constitute a system of linear, hyperbolic equations in one space and two time variables. The
characteristic curves of the dynamics are discussed in some detail, and a few numerical illustra-
tions give the typical behavior of the nonstationary properties of these characteristic curves.
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APPENDIX A: STRAIGHTENING THE CHARACTERISTICS

To illustrate how the characteristic of~1! may be straightened, consider

]u6

]z
~z,t !6 f ~z,t !

]u6

]t
~z,t !5F6~z,t,u1,u2!, ~A1!

where f (z,t).0 in the domain of interest.
Introduce the diffeomorphic transformation of the independent variables

z5z~x,s!, t5t~x,s!,

with the associated inverse functions

x5x~z,t !, s5s~z,t !.

The PDE~A1! can then be written in terms of the new independent variables as

S ]x

]z
6 f

]x

]t D ]u6

]x
1S ]s

]z
6 f

]s

]t D ]u6

]s
5G6~x,s,u1,u2!.
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It is easily seen, to straighten the characteristics of the transformed equation, a necessary condition
is

]x

]z
1 f

]x

]t
5aS ]s

]z
1 f

]s

]t D , ]x

]z
2 f

]x

]t
5bS ]s

]z
2 f

]s

]t D , ~A2!

provided

f 2S ]s

]t D
2

2S ]s

]zD
2

Þ0. ~A3!

In this expressiona andb are nonzero constants. The only way to violate this condition is if either
x2as5constant orx2bs5constant.

The constantsa and b cannot be equal if the transformation is to be diffeomorphic. For
convenience, choosea51, b521, so converting the system~A2! to

]

]z S xsD 5S 0 f

f 0D ]

]t S xsD ,
which can be converted by diagonalization to the uncoupled system

]

]z S v1v2D 5S 2 f 0

0 f D ]

]t S v1v2D ,
where

S v1v2D 5
1

2 S 21 1

1 1D S xsD , S xsD 5S 21 1

1 1D S v1v2D .
A convenient set of initial conditions forx ands is

x~z,0!5E
0

z

f ~z8,0!dz8, s~z,0!50.

This initial value problem for the hyperbolic system has a unique solution, which means that the
characteristics can always be straightened. In fact, these initial conditions imply that~A3! is
always satisfied, sincef (z,t).0.

In the special case thatf5 f (z), then the solution of these systems yields

x~z,t !5E
0

z

f ~z8!dz8, s~z,t !5t.

This is the well-known travel time transformation.

APPENDIX B: DUHAMEL’S INTEGRAL

The derivation of the imbedding equation in Sec. IV and the Green’s functions equations in
Sec. V relies on a result that is obtained from Duhamel’s integral.17 Since the basic first-order 232
system of equations,~1!, has coefficients varying both in space and time, a slight modification of
the standard result is needed. Therefore, it is of interest here to give a few of the intermediate steps
leading to the relation~14!, which defines the reflection kernelR(z,t,t8), and to equation~20!
defining the Green’s functionsG6(z,t,t8).
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In order to cover both the definition of the reflection kernel and the definition of the Green’s
functions, a subsection (z0 ,d) of the physical slab (0,d) is considered. The full slab (0,d) is
therefore imbedded in a one-parameter family of sub-slabs (z0 ,d), where the left end of the slab
z0 varies between 0 andd ~see Fig. 4!.

The basic dynamics of the problem is given by~1!:

]

]z S u1~z,t !
u2~z,t ! D 5 f ~z,t !S 21 0

0 1D ]

]t S u1~z,t !
u2~z,t ! D 1S a~z,t ! b~z,t !

g~z,t ! d~z,t !
D S u1~z,t !
u2~z,t ! D

1E
2`

t S A~z,t,t8! B~z,t,t8!

C~z,t,t8! D~z,t,t8!
D S u1~z,t8!

u2~z,t8! D dt8. ~B1!

The domain of interest in this appendix isz0,z,d, t.0.
Problem 1: A specific solution to Eq.~B1! is now considered. This solution satisfies the

following mixed initial-boundary value (t8.0):

u6~z,0!50, z0,z,d,

u1~z0 ,t !5H~ t2t8!, t.0,

u2~d,t !50, t.0.

The boundary condition atz5d shows that there are no sources in the region to the right of the
slab,z.d.

The solution to this problem, which is assumed to be unique, depends on the parameters
z0P(0,d) and t8.0, and the solution is denotedU6(z,t;z0 ,t8), i.e.,

u6~z,t !5U6~z,t;z0 ,t8!.

Causality implies that U6(z,t;z0 ,t8)50 for t8.t1(z0 ;z,t) or, stated equivalently,
t,t1(z;z0 ,t8). The variablet8 denotes the starting time of the excitation at the left boundaryz0
of the sub-slab (z0 ,d). If the medium is invariant under time translations, the solution is only a
function of z andz0 , and the differencet2t8.

The solutionsU6(z,t;z0 ,t8) are continuously differentiable everywhere, except along the
characteristics of theu1-equation~see Sec. III!. With the method of characteristics, it is straight-
forward to show thatU2 is continuous at the leading edge, whileU1 has a finite jump disconti-

FIG. 4. The geometry used in Appendix B.
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nuity there. The leading edge is defined as the characteristic curve in the (z,t)-plane passing
through the point (z0 ,t8), i.e., t5t1(z;z0 ,t8), z0,z,d. The explicit values at the leading edge
are

U1
„z,t;z0 ,t

1~z0 ;z,t !…5expH E
z0

z

a„z,t1~z;z,t !…dzJ ,
U2

„z,t;z0 ,t
1~z0 ;z,t !…50.

Problem 2: Consider now the solution of Eq.~B1! subject to the mixed initial-boundary value
(t8.0)

u6~z,0!50, z0,z,d,

u1~z0 ,t !5g~ t !, t.0, ~B2!

u2~d,t !50, t.0.

Again, the boundary condition atz5d shows that there are no sources in the region to the right of
the slab,z.d. Here,g(t) is an arbitrary continuously differentiable function, which fort.0 can
be approximated from below by the piecewise constant function

g1~ t !5g~0!H~ t !1 (
k51

`

@g~kDt8!2g„~k21!Dt8…#H~ t2kDt8!.

Due to the linearity of the equation~B1!, superposition is used to find the solution of the
approximate boundary valueg1(t). In the limit, Dt8→0, the result is

u6~z,t !5u1~z0,0!U6~z,t;z0,0!1E
0

t1~z0 ;z,t ! ]u1

]t8
~z0 ,t8!U6~z,t;z0 ,t8!dt8,

where the causality of the solutionsU6(z,t;z0 ,t8) has been used to truncate the infinite integra-
tion range and, furthermore, the substitutiong(t)5u1(z0 ,t) for t.0 has been made. It is easy to
verify that the expressionsu6(z,t) satisfy the given mixed initial-boundary value problem, with
the use of~13! and the fact thatU2

„z,t;z0 ,t
1(z0 ;z,t)…50. Integration by parts now shows that

the unique solution of the mixed boundary value problem~B1! and ~B2! is

u1~z,t !5u1
„z0 ,t

1~z0 ;z,t !…U
1
„z,t;z0 ,t

1~z0 ;z,t !…2E
0

t1~z0 ;z,t !
u1~z0 ,t8!

]U1

]t8
~z,t;z0 ,t8!dt8,

~B3!

u2~z,t !52E
0

t1~z0 ;z,t !
u1~z0 ,t8!

]U2

]t8
~z,t;z0 ,t8!dt8.

These equations now offer two possibilities, namely to define the reflection kernelR(z0 ,t,t8) of
the sub-slab (z0 ,d) and the Green’s functionsG6(z,t,t8) of the full slab (0,d).

For the definition of the reflection kernel use the second equation in~B3! and letz5z0 . Define
the reflection kernel

R~z0 ,t,t8!52
]U2

]t8
~z0 ,t;z0 ,t8!.
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The relation between theu6-waves at the left endpoint of the sub-slab is~the subscript onz0 is
dropped!

u2~z,t !5E
2`

t

R~z,t,t8!u1~z,t8!dt8,

which is identical to~14!.
In the definition of the Green’s functionsG6(z,t,t8), let z050 in ~B3!. The result is

u1~z,t !5u1
„0,t1~0;z,t !…p„z,t1~0;z,t !…2E

0

t1~0;z,t !
u1~0,t8!

]U1

]t8
~z,t;0,t8!dt8,

u2~z,t !52E
0

t1~0;z,t !
u1~0,t8!

]U2

]t8
~z,t;0,t8!dt8,

where

p~z,t !5expH E
0

z

a„z,t1~z;0,t !…dzJ .
It is convenient to introduce an extra factorp(z,t8) in the definition of the Green’s functions.

Therefore, the definition ofG6(z,t,t8) is

2
]

]t8
U1~z,t;0,t8!5p~z,t8!G1

„z,t1~0;z,t !,t8…,

2
]

]t8
U2~z,t;0,t8!5p~z,t8!G2

„z,t1~0;z,t !,t8….

APPENDIX C: EXAMPLES ON CHARACTERISTICS OF THE u1-EQUATION

The explicit form of the functionf determines whether a closed form expression can be found
for the characteristics in~9! or not. In most cases this is not possible. In this section, the theory of
the characteristics is illustrated with an analytic and a numerical example.

Analytic example: The functionf (z,t) has to be consistent with the boundary conditions,~2!,
given in Sec. I, and simple enough to permit closed form solutions of~9!. Thus, fort1>0 and
0<z<d, let

f ~z,t1!5
1

v0
@11az~d2z!t1#.

Hered is the thickness of the slab,v0 is a constant, anda is a parameter. Outside the slab, i.e., for
z,0 or z.d, and everywhere fort1,0, let

f ~z,t1!5
1

v0
.

Figure 5 shows the velocity profilec(z,t) inside the slab (d52), surrounded by a medium
with the constant wave velocityv051, anda51. A set of characteristics for this case is illustrated
in Fig. 6.
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If f is inserted into Eq.~9!, a linear first-order ordinary differential equation int1~z! is
obtained. This equation is easily solvable after multiplication with the integrating factoreg(z)

where

g~z!5
1

v0
aS 2

1

2
dz21

1

3
z3D .

The explicit form of the characteristic curve passing through the point (z,t) is

t1~z;z,t !5teg~z!e2g~z!1
1

v0
e2g~z!E

z

z

eg~z8!dz8.

Specifically, the solution atz50 is

t1~0;z,t !5teg~z!2
1

v0
E
0

z

eg~z8! dz8

FIG. 5. The velocity profilec(z,t)51/„11z(d2z)t…, whered52.

FIG. 6. A set of characteristics for the case,f (z,t)511z(d2z)t, whered52.
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and the solution atz starting at (0,t) is

t1~z;0,t !5te2g~z!1
1

v0
e2g~z!E

0

z

eg~z8! dz8.

Differentiation with respect tot andz gives

]t1~z;z,t !

]t
5eg~z!e2g~z!

and

FIG. 7. The velocity profilec(z,t) for the example in~C1! for d55.

FIG. 8. A set of characteristics for the example in~C1! for d55.

2251Åberg, Kristensson, and Wall: Transient waves in nonstationary media

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



]t1~z;z,t !

]z
5tg8~z!eg~z!e2g~z!2

1

v0
eg~z!e2g~z!52 f ~z,t !eg~z!e2g~z!

and ~13! is satisfied.
Numerical example: In Figs. 7 and 8, the phase velocity and a set of characteristics, respec-

tively, for a nonlinear case are depicted. The phase velocity of the nonstationary medium in this
example is

f ~z,t !5H 1, z,0;
11z~d2z!~1.11sin t !, 0,z,d;
1, z.d.

~C1!

These curves have been obtained by numerical integration.
Note that the flow depicted by Figs. 6 and 8 illustrates a flow field that is non-area preserving,

i.e., the flow field has nonzero divergence~compressible!. Compare this with Fig. 9 for which
f (z,t)5 f (z) and so the flow field is area preserving.

1I. Åberg, G. Kristensson, and D. Wall, Inv. Prob.11, 29 ~1995!.
2R. Beezley and R. Krueger, J. Math. Phys.26, 317 ~1985!.
3J. Corones, M. Davison, and R. Krueger, J. Acoust. Soc. Am.74, 1535~1983!.
4J. Corones, M. Davison, and R. Krueger, inInverse Optics, Proc. SPIE 413, edited by A. Devaney~SPIE, Bellingham,
WA, 1983!, pp. 102–106.

5R. Krueger and R. Ochs, Jr., Wave Motion11, 525 ~1989!.
6V. Weston, Inv. Prob.6, 1075~1990!.
7V. Weston, Inv. Prob.8, 919 ~1992!.
8 Invariant Imbedding and Inverse Problems, edited by J. Corones, G. Kristensson, P. Nelson, and D. Seth~SIAM,
Philadelphia, 1992!.

9L. Nizhnik, Sov. Math. Dokl.12, 306 ~1971!.
10L. Nizhnik, Rep. Math. Phys.26, 261 ~1988!.
11L. Nizhnik and V. Tarasov, Select. Math. Sov.10, 219 ~1991!.
12E. Coddington and N. Levinson,Theory of Ordinary Differential Equations~McGraw–Hill, New York, 1955!.
13E. Hille, Lectures on Ordinary Differential Equations~Addison–Wesley, Reading, MA, 1969!.
14D. Arrowsmith and C. Place,An Introduction to Dynamical Systems~Cambridge U.P., Cambridge, 1990!.
15F. John,Partial differential equations, 3rd ed.~Springer-Verlag, New York, 1978!.
16G. Kristensson, inDirect and Inverse Boundary Value Problems, Methoden und Verfahren der Mathematischen Physik,
Band 37, edited by R. Kleinman, R. Kress, and E. Martensen~Peter Lang, Frankfurt am Main, 1991!, pp. 105–119.

17R. Courant and D. Hilbert,Methods of Mathematical Physics~Interscience, New York, 1962!, Vol. 2.

FIG. 9. A set of characteristics for the stationary case,f (z)5110.9 sin 2pz/d, whered52.
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An ongoing big bang model in the special relativistic
Maxwell–Dirac equations
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An exact, analytical solution of the combined Maxwell–Dirac equation is pre-
sented. The solution is regular inside a wedgelike domain of the flat space–time.
On the boundary of that domain, the solution exhibits singular behavior. ©1996
American Institute of Physics.@S0022-2488~96!01505-2#

I. INTRODUCTION

Exact, analytical solutions of interacting second-quantized fields are not available yet. How-
ever, classical interacting fields are more tractable for analysis. The coupled Maxwell–Klein–
Gordon equations have yielded some exact solutions.1 The coupled Eistein–Maxwell equations
have produced scores of exact solutions.2 Exact analytical solutions have been found within the
complicated system of the coupled Einstein–Maxwell–Klein–Gordon equations.3 The coupled
Maxwell–Dirac equations are predecessors of the quantum electro-dynamics. These equations also
provide some valuable insights for the standard theory.4 The initial-value problem of the coupled
Maxwell–Dirac equation has been probed by Flato, Simon, and Taflin.5 The class of exact plane
wave solutions of the typec(x)5a(p)exp[ipmx

m], within the framework of the Maxwell–Dirac
equations, has been thoroughly explored.6 It was discovered that, formÞ0, not a single nontrivial
solution exists! However, infinitely many solutions exist form50. The coupled Maxwell–Dirac
equations in the 111-dimensional space–time is known as the classical Schwinger theory.7 In the
case ofm50, the most general solutions of the classical Schwinger theory have been discovered
recently.8 The massive Schwinger theory is much more complicated to solve. However, a particu-
lar solution of the massive theory was found in the same paper. Our present exact solution in this
paper is based on that solution.

None of the exact solutions of the quasilinear, coupled field equations discussed so far uses
the perturbation methods or Fourier integrals. These are the usual tools people use to explore the
quantum theory of interacting fields. Unfortunately, the Fourier integral techniques discard more
solutions than they generate. For example, consider the one-dimensional wave equation
[( ]x)

22(] t)
2]c(x,t)50. Denumerably infinite number of solutions of this equation, given by

cn(x,t)5(x2t)2n1(x1t)2n, nPZ1, cannot be obtained by use of Fourier integrals. So, we are
not surprised to find that our present solution of the Maxwell–Dirac equations cannot be captured
by the Fourier integrals. However, we have managed to obtain a sequence ofapproximatesolu-
tions which can be expressed as Fourier cosine integrals. In the limitn→`, the sequence of
approximate solutions goes over into the present exact solution, which itself is not amenable to the
Fourier cosine integrals.

Our exact solution can be defined only in a proper subset of flat space–time. This domain
looks like a wedge~see Fig. 1! and solutions become singular on its boundary. That is why it is an
ongoing big bang model in the framework of the special theory of relativity.

II. NOTATIONS AND FIELD EQUATIONS

The flat space–time manifold is denoted byM4. A global Minkowski coordinate chart is used.
A space–time event, which is an element ofM4, is coordinatized byx:5(x0,x1,x2,x3). Here,x0
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denotes the time coordinate. A Greek index takes values from$0,1,2,3% and a Roman index takes
from $1,2,3%. The signature of the metric tensorhmn is 22. Einstein’s summation convention is
followed.

The electromagnetic four-potential is denoted byAm(x). The four-component~Dirac! bispinor
field and its Hermitian conjugate are indicated byc(x) andc†(x), respectively. The four Dirac
matrices are denoted bygm and we shall adopt Weyl’s representation of these matrices. In an open,
convex domainD,R4 corresponding to such a domain inM4, we assume that the potential
functions Am are of the differentiability classC3~D,R4;R! and the bispinor components
c1,c2,c3,c4 are of the classC

2~D,R4;C!. In such a setting, the coupled Maxwell–Dirac equations
~in the units\5c51! can be written as

Mm~x!:5]n]nA
m~x!2 j m~x!50, ~2.1a!

j m~x!:5ec†~x!g0gmc~x!, ~2.1b!

L~x!:5]mA
m~x!50, ~2.1c!

D~x!:5$ igm@]m1 ieAm~x!#2mI~4!%c~x!50, ~2.1d!

g0:5F 0 I ~2!

I ~2! 0 G , gk:5F 0 2sk

sk 0 G . ~2.1e!

Here, e andm are the charge and the mass parameters, respectively. Moreover,I (4),I (2) are
identity matrices andsks are Pauli matrices.

Now we shall make some general observations about the system of equations~2.1a!–~2.1e!.
There exists one differential identity among the equations and it is given by

]mM
m2]m]mL2 ie@c†~x!c0D~x!2D†~x!g0c~x!#[0. ~2.2!

The gauge-invariant, symmetric energy-momentum-stress tensor density is given by

uab~x!:5~ i /2!$c†~x!g0gb@~]a1 ieAa!c#2@~]a2 ieAa!c
†~x!#g0gbc~x!%

2Fc
a~x!Fbc~x!1 1

4habFcd~x!Fcd~x!, ~2.3a!

FIG. 1. Space–time diagram depicting ongoing big bang crunch followed by ongoing big bang.
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Fab~x!:5]bAa2]aAb , ~2.3b!

]bu
ab~x!50. ~2.3c!

By a straightforward computation we obtain

j m~x! j m~x!54e2uc1* ~x!c3~x!1c2* ~x!c4~x!u2>0. ~2.4!

Therefore, the four-current vectorj m(x) is always nonspacelike, irrespective of the real~or com-
plex! values ofm. Preliminary analysis of the system of equations~2.1a!–~2.1e! with mÞ0 reveals
that solutions of the typeuc1u

21uc2u
2.0, c35c4[0 or elsec15c2[0, uc3u

21uc4u
2.0, donot exist.

Therefore, in every nontrivial solution of the system both particles as well as antiparticles must be
present.

The Maxwell’s equations~2.1a! are linear, second-order partial differential equations. In the
absence of the external electromagnetic fields, these equations can be integrated to obtain

Am~x!5eE Ginh~x2x8!c†~x8!g0gmc~x8!d4x8, ~2.5!

whereGinh is a nonhomogeneous Green’s function suitable for a prescribed initial-boundary-value
problem. Substituting~2.5! into ~2.1d! we obtain

@ igm]m2mI4#c~x!1 ie2F E Ginh~x2x8!gmc†~x8!g0gmc~x8!d4x8Gc~x!50. ~2.6!

The above is a nonlinear, integro-differential equation9 for c which automatically incorporates the
electro magnetic self-interactions of the Dirac particle–antiparticle system. The equation~2.6!
implies that the time evolution of the system]0c depends on the local property of the wave
function gk]kc and also on the past history of the system inherent in the integral involving
Green’s function.

III. A PARTICULAR EXACT SOLUTION

We furnish a special, exact solution of the system~2.1a!–~2.1e! by the following:

A1~x!5A2~x![0, ~3.1a!

A0~x!5S m4eD H lnu~x0!22~x3!2u22F ~x0!21~x3!2

~x0!22~x3!2G J , ~3.1b!

A3~x!52S m4eD H lnUx02x3

x01x3U1 4x0x3

@~x0!22~x3!2# J , ~3.1c!

c2~x!5c4~x![0, ~3.1d!

c1~x!5F Am
e~x02x3!GexpH 2 i Sm4 D @~x02x3!lnux01x3u1~x01x3!lnux02x3u#J , ~3.1e!

c3~x!5F Am
e~x01x3!GexpH 2 i Sm4 D @~x02x3!lnux01x3u1~x01x3!lnux02x3u#J , ~3.1f!

j 1~x!5 j 2~x![0, ~3.1g!
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j 0~x!5Sme D F 1

~x02x3!2
1

1

~x01x3!2G , ~3.1h!

j 3~x!5Sme D F 1

~x02x3!2
2

1

~x01x3!2G , ~3.1i!

F01~x!5F02~x!5F12~x!5F23~x!5F31~x![0, ~3.1j!

F03~x!:5]3A02]0A35Sme D F 1

~x01x3!
2

1

~x02x3!G , ~3.1k!

Am~x! j m~x!5S m2eD
2H F 1

~x02x3!2
1

1

~x01x3!2GF lnu~x0!22~x3!2u22S ~x0!21~x3!2

~x0!22~x3!2D G
1F 1

~x02x3!2
2

1

~x01x3!2GF lnUx
02x3

x01x3U1 4x0x3

„~x0!22~x3!2…G J . ~3.1l!

In the above solution there are no external electromagnetic fields. The self-electric field is in the
direction of thex3 axis. There is no self-magnetic field. The current vector density is alongx3 axis.
The self-energy density is given by the equation~3.1l!. The particle wave function is given by
c1(x) and the antiparticle wave function is given byc3(x). The corresponding phase functions
satisfy argc1(x)5argc3(x)12Np, whereN is an integer. The solutions~2a!–~2f! are valid in the
open, unbounded, convex domainD of the flat space–time characterized by

D:5$~x0,x1,x2,x3!:x0.0,~x0!22~x3!2.0,x1PR,x2PR%. ~3.2!

~A similar wedge-shaped domain has been considered10 in general relativity.! The boundary of this
domain is given by the three-dimensional hypersurface:

]D:5$~x0,x1,x2,x3!:x0>0,~x0!22~x3!250,x1PR,x2PR%. ~3.3!

These three-dimensional edges satisfyf(x):5(x0)22(x3)250, and thus imply that
hmn~]mf!~]nf!50. Therefore, the boundary]D constitutes a three-dimensional null hyper-surface
of two-content.11 Precisely on this null boundary, the solutions~2a!–~2f! are undefined or singular.
The particle wave functionc1(x) is singular onx02x350 and the antiparticle wave function
c3(x) is singular onx

01x350. That is why these solutions constitute an ongoing big bang model.
It is understandable that the usual Fourier integral techniques of the relativistic field theory fail

to capture these solutions. However, a sequence of approximate solutions, expressible by Fourier
cosine integrals, exist such that the limit of the sequence yields the present solutions. The key to
this construction of the approximate solutions is the Fourier cosine integral:12

1

~u!~121/n! 5
G~1/n!

p E
01

` cos@pu2~p/2n!#dp

p1/n
, u.0;nP$2,3,4,...%. ~3.4!

Here,G is the usual gamma function. Note that in the limitn→`, the left-hand side tends tou21,
but the right-hand side limit does not exist. The sequence of the approximate solutions are given
by

A~n!
1 ~x!5A~n!

2 ~x![0, ~3.5a!
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A~n!
0 ~x!5F m

4e~122/n!G H ~n/2!@~x01x3!2/n1~x02x3!2/n22#

2
~x01x3!

~x02x3!~122/n!2
~x02x3!

~x01x3!~122/n! J , ~3.5b!

A~n!
3 ~x!52F m

4e~122/n!G H ~n/2!@~x02x3!2/n2~x01x3!2/n#

1
~x01x3!

~x02x3!~122/n!2
~x02x3!

~x01x3!~122/n! J , ~3.5c!

c2~n!~x!5c4~n!~x![0, ~3.5d!

c1~n!~x!5
Am

e~x02x3!~121/n! expH 2 i Smn

8 D @~x01x3!„~x02x3!2/n21…

1~x02x3!„~x01x3!2/n21…#J
5FAmG~1/n!

pe G•expH 2 i Smn

8 D @~x01x3!„~x02x3!2/n21…

1~x02x3!„~x01x3!2/n21!] J E
01

`

~p!21/n cosFp~x02x3!2S p

2nD Gdp, ~3.5e!

c3~n!~x!5
Am

e~x01x3!~121/n! expH 2 i Smn

8 D @~x01x3!„~x01x3!2/n21…

1~x02x3!„~x01x3!2/n21…#J
5FAmG~1/n!

pe G
•expH 2 i Smn

8 D @~x01x3!„~x02x3!2/n21…1~x02x3!„~x01x3!2/n21…#J
3E

01

`

~p!21/n cosFp~x01x3!2S p

2nD Gdp, ~3.5f!

]n]nA~n!
m ~x!2 j ~n!

m ~x!50, ~3.5g!

]mA~n!
m ~x!50, ~3.5h!

$ igm@]m1 ieAm~n!~x!#2mI~4!%c~n!~x!50~1/n!. ~3.5i!

It can be proved that if the terms involving Fourier cosine integrals are not considered, then the
limits n→` of the sequence of approximate solutions in~3.5! are precisely the solutions in~3.1!.

The solutions~3b!, ~3c!, ~3e!, ~3f!, ~3h!, ~3i!, and~3k! exhibit unphysical features in having
simple poles ate50 in the complexe-plane.~Such singular behaviors were predicted in Ref. 13.!
However, in case the mass parameterm is not independent of the charge parametere, and the
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relationm5e2/r 0 holds for some length parameterr 0, these spurious singularities ate50 disap-
pear. Making this assumptionm5e2/r 0 , we can express the solutions in~3.1! as the following
power series ofe:

A1~x!5A2~x![0, ~3.6a!

A0~x!5S e

4r 0
D H lnu~x0!22~x3!2u22F ~x0!21~x3!2

~x0!22~x3!2G J , ~3.6b!

A3~x!52S e

4r 0
D H lnUx02x3

x01x3U1 4x0x3

@~x0!22~x3!2# J , ~3.6c!

c2~x!5c4~x![0, ~3.6d!

c1~x!5F 1

Ar 0~x02x3!
G (
k50

`
1

k! H S 2 ie2

4r 0
D @~x02x3!lnux01x3u1~x01x3!lnux02x3u#J k

,

~3.6e!

c2~x!5F 1

Ar 0~x01x3!
G (
k50

`
1

k! H S 2 ie2

4r 0
D @~x02x3!lnux01x3u1~x01x3!lnux02x3u#J k

,

~3.6f!

uc1~x!u5
1

Ar 0ux02x3u
, ~3.6g!

uc2~x!u5
1

Ar 0ux01x3u
, ~3.6h!

j 1~x!5 j 2~x![0, ~3.6i!

j 0~x!5S er 0D F 1

~x02x3!2
1

1

~x01x3!2G , ~3.6j!

j 3~x!5S er 0D F 1

~x02x3!2
2

1

~x01x3!2G , ~3.6k!

F12~x!5F23~x!5F31~x!5F01~x!5F02~x![0, ~3.6l!

F03~x!5S er 0D F 1

~x01x3!
2

1

~x02x3!G , ~3.6m!

Am~x! j m~x!5S e24r 02D H F 1

~x02x3!2
1

1

~x01x3!GF lnu~x0!22~x3!2u22S ~x0!21~x3!2

~x0!22~x3!2D G1F 1

~x02x3!2

2
1

~x01x3!2GF lnUx02x3

x01x3U1 4x0x3

~x0!22~x3!2G J . ~3.6n!

In the limit e→0, the massm5(e2/r 0) and all solutions in~3.6!, except~3.6e!–~3.6h! vanish. In
that limit, Dirac field components go over into
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c1~x!5
1

Ar 0~x02x3!
, c3~x!5

1

Ar 0~x01x3!
, c2~x!5c4~x![0. ~3.7!

These are exact solutions of themassless, freeDirac equations. Therefore, in this model, the
self-electric field and the mass vanish in case the coupling constante goes to zero.

The solutions (7a–n) of the Maxwell–Dirac equations are also valid in the alternate domain

D#:5$~x0,x1,x2,x3!:x0,0,~x0!22~x3!2.0,x1PR,x2PR%. ~3.8!

The solutions~3.6a!–~3.6n! in the combined domainD#øD can be regarded as a model of an
ongoing big crunch immediately followed by an ongoing big bang in the arena of the special
relativistic Maxwell–Dirac equations.

To picture these domains, it will be convenient to introduce a projection functionp:R4→R
such that

p~x0,x1,x2,x3!:5~x0,x3!.

The corresponding projections of domains are given by

p~D !5$~x0,x3!:x0.0,~x2!22~x3!2.0%,

p~D#!5$~x0,x3!:x0,0,~x0!22~x3!2.0%.

The pictures of these domains inR2, corresponding to two-flats11 in M4, are exhibited in Fig. 1.
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Quantum random walk for Uq(su (2)) and a new example
of quantum noise
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We derive the quantum version of the central limit theorem for sample sums of
q-independentq-identically distributed quantum variables forq P R12$1%. In par-
ticular, we considerUq„su(2)…, for which we obtain in the limit a stateC on the
algebra generated byq-commutingq-oscillators indexed by pairs of real numbers
(r ,s), where 0<r,s, giving a new example of non-additive quantum
noise. © 1996 American Institute of Physics.@S0022-2488~96!00303-3#

I. INTRODUCTION

The aim of this paper is to prove the central limit theorem for sample sums ofq-independent
variables of the Hopf algebraUq„su(2)… type, and thus is a contribution to the area of non-
commutative theory of processes1 with independent ‘‘increments.’’ More precisely, we prove
convergence of finite joint correlations for sample sums ofq-independent,q-identically distributed
random variables indexed by pairs of positive real numbers (r ,s). In particular, we take the sums
of quantum variables ofUq„su(2)… and for that case we find a realization of the limit in terms of
creation and annihilation operators satisfying certainq-commutation relations, which gives rise to
a new example of non-additive quantum noise, defined on a non-separable Hilbert space. How-
ever, it should be pointed out that in this paper we do not prove the functional limit theorem~or
Donsker’s invariance principle2!, but only its simplest case for sample sums and thus it can be
viewed only as the central limit theorem or a quantum random walk for certain quantum
q-variables, in particular those of the ‘‘generic’’Uq„su(2)….

Processes with independent and stationary increments are usually called white noise. They are
used to model a quantum-mechanical heat bath. It is known that functional limit theorems are the
source of both classical and quantum noises. The first quantum version of the functional central
limit theorem was shown by Cockroft, Gudder and Hudson,3 who proved in 1977 a quantum
mechanical analog of the functional central limit theorem and obtained a canonical Wiener
process4 in the limit. Later, the stochastic calculi for the CCR and CAR algebras were developed
by Hudson and Parthasarathy5 and Applebaum and Hudson,6 respectively. Connected with the
concept of free independence of Voiculescu7 was the free white noise studied by Speicher8 with
the stochastic calculus developed in Ref. 9.

The framework for the general theory of quantum white noise on graded*-bialgebras was
proposed by Accardi, Schu¨rmann and von Waldenfels.10 In their approach, a white noise on a
*-bialgebraB is a family (j rs)0<r<t of quantum random variables onB, i.e., homomorphisms
from B into a *-algebraA with a statef̂ with the following properties:
~WN0! increment property:j rs* j st5 j rt for 0<r,s,t, and j rr5d1, whered is the co-unit and*
is the convolution product;
~WN1! independence, i.e., for time-ordered products the following factorization holds:

f̂„ j r1s1~b1! . . . j r nsn~bn!…5f̂„ j r1s1~b1!… . . . f̂„ j r nsn~bn!…

for all n P N, 0<r 1,s1, . . .,r n,sn , whereb1 , . . . ,bn P B, and

j rs~b! j r 8s8~b8!5 j r 8s8~b8! j rs~b!

0022-2488/96/37(5)/2260/19/$10.00
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for all disjoint semi-closed time-intervals@r ,s),@r 8,s8) and anyb,b8 P B;
~WN2! stationarity, i.e.,f̂ + j rs5f̂ + j 0,s2r for r,s;
~WN3! continuity, i.e., limr↓0f̂ + j 0,r(b)5d(b) for all bPB, whered is the co-unit.

Generalized white noises were studied by many authors.11–18Also, certain deformed~or, q-!
white noises were considered. For instance, two examples ofq-white noises were considered by
Schürmann,17,18 whereq is a deformation parameter. Namely, it was shown that the normalized
sample sums converge to the two-dimensional Azema noise and to an interpolation of the two-
dimensional quantum Brownian motion in the case ofq-right- andq-left bialgebras, respectively.

Another approach to constructq-deformed white noises was proposed by Boz˙ejko and
Speicher.11,12 They define certain deformed creation and annihilation operators living in a gener-
alized Fock spaceGq(H), whereH5L2(R), subject to deformed commutation relations. In the
simplest case11 they read

c~ f !c* ~g!2qc* ~g!c~ f !5^ f ,g&1

where f ,g P H andc( f ),c* ( f ) stand for the annihilation and creation operators, respectively.
Then they show that one can define a deformed scalar product onGq(H) which makes them
mutually adjoint. This approach essentially boils down to some non-trivial positivity proofs that
ensure the existence of a scalar product on a subspace of the full Fock space.

In Refs. 19 and 20 it was shown that functional limit theorems for quantum Bernoulli pro-
cesses lead to the Boson and Fermion Brownian motions. Viewing quantum two-level systems as
fundamental in our understanding of quantum central limit theorems~qclt!, we studied first21 the
central limit in the discrete case for theq-analog ofsu(2), namelyUq„su(2)…, theq-deformed
enveloping algebra ofsu(2), andobtained theq-oscillator in the limit, corresponding to the
q-Gaussian distribution. The result produced a commutative diagram, in which the qclt of
Uq„su(2)… gives theq-oscillator, in addition to the qclt of Ref. 19, where the qclt ofsu(2) gives
the harmonic oscillator. Thus, in search for interesting examples of quantum noises, we study in
this work the quantum random walk forUq„su(2)…, which we view as a fundamental structure in
theq-deformed symmetries.

In our approach we obtain a quantum noise from the central limit theorem for sums of
random-walk type. The object we start with is a unital* -algebraC q over C generated~as a
*-algebra! by the set V 1ø$t,t21%, where t,t21 are hermitian, subject totst2s51 and
tsw5e(ts,w)wts, wherewPV 5V 1øV 2 , V 25V 1* ande(ts,v)5q22s, e(ts,v* )5q2s, for
q P R1, vPV 1. We equipC q with the bialgebra structure and refer to it as aq-* -bialgebra.
Later, in Sec. VI, by adding

@v* ,v#5
t22t22

q22q22

we consider the Hopf algebraUq„su(2)…, which leads to the simplest quantum noise covered by
our theory.

Our approach is different from the one presented in Refs. 17 and 18 due to the fact that our
collective variables are in fact not onlyq-independent, but alsoq-identically distributed. This is
achieved by assuming thatf(t)Þ1, wheret can be viewed as a twisted identity. This assumption
is justified by the fact thatf(t)Þ1 if f is the vacuum state of the representations of
Uq„su(2)…, and has its origins in Ref. 21, where we tookf to be the vacuum state of its
fundamental representation~see also Refs. 22–24!. Therefore, the qclt on coalgebras17,18cannot be
applied here.

As we mentioned earlier, the results of Secs. II–V can be applied toq-* -bialgebras. However,
for simplicity, in the outline of the results given below we restrict our attention to the case of

2261Romuald Lenczewski: Quantum random walk for Uq(su(2))

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Uq„su(2)…. Thus we consider sums ofq-independent,q-identically distributed variables indexed
by semi-closed time intervals, i.e., for a statef onC q with f(t)5q, andw P V we put

Srs
N ~w!5Aqrs

Nrs
D rs
N ~w!

where

D rs
N ~w!5 (

i5Nr11

Ns

j i
NrNs~w!

and j i
NrNs :C q→C q

^ ` are given by

j i
NrNs~w!51^Nr ^ ~ t21! ^ ~ i2Nr21!

^w^ t^ ~Ns2 i !
^1^ `,

whereNrs5@Ns2Nr #, qrs5@s2r # and @x#5(q2x2q22x)/(q22q22) is the q-analog ofx. In
other words,Srs

N (w) are normalized collective variables associated withw. Note that the normal-
ization is different from 1/AN, appearing in both the classical probability and the quantum central
limit theorems considered by other authors. However, in the case of Hopf algebrasUq(g) de-
formed normalization has to be used when the vacuum state is considered. Note thatqrs /Nrs is the
q-analog of (s2r )/(Ns2Nr), the latter being 1/AN, and in the limit, whenq approaches 1, it
coincides with it.

Further, we can define normalized ‘‘increments’’

Srs
N ~ ts!5qs~Nr2Ns!D rs

N ~ ts!5qs~Nr2Ns!~1Nr ^ ~ ts! ^ ~Ns2Nr ! ^1^ `!

wheres P $1,21%. It can be shown that in the case ofUq„su(2)…, for all r,s andN P N, D rs
N are

Hopf algebra homomorphisms and, viewed as functions ofr ands, satisfy~WN1–WN4!. How-
ever, the normalized ‘‘increments’’ fail to do so. It is due to the fact that the normalization comes
from a type of group contraction which loses the Hopf algebra structure.

The central limit theorem, understood in our paper in the sense of convergence of correlations,
can be written as

lim
N→`

f̂„Sr1s1
N ~v1! . . .Srnsn

N ~vn!…5C„Br1s1
~v1! . . .Brnsn

~vn!…

wherev1 , . . . ,vn P $v,v* ,t,t21% andf̂5f ^ `. The correlations of the limiting functionalC can
be expressed solely in terms ofqrs , the variance of the limiting processBrs . We show that the
following conditions are satisfied by the limiting correlations fora,1 ~the case ofa.1 is
similar!:

~QN0! qrs is a continuous deformation of the Brownian variance, i.e.,

lim
q→1

qrs5s2r ;

~QN1! independence, i.e.,

C„Br1s1
~c1! . . .Brnsn

~cn!…5CS )
iPI1

Br isi
~v i ! D 3 . . .3CS )

iPI n

Br isi
~v i ! D
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where s15 . . .5sj 1, . . .,sj n21115 . . .5sj n5sp defines the partition $I 1 , . . . ,I n% of

$1, . . . ,p% into subsets corresponding to equal upper end-points of the time intervals, with com-
mutations for disjoint time intervals@r ,s),@r 8,s8):

Brs~w!Br 8s8~w8!5Br 8s8~w8!Brs~w!

for w,w8 P V , andq-commutations for non-disjoint intervals withs8.s:

Brs~w!Br 8s8~w8!5q2d~w8!Br 8s8~w8!Brs~w!;

~QN2! stationarity, i.e.,qrs depends only ons2r ,
~QN3! continuity, i.e. lims↓rqrs50.

In addition, our example of quantum noise satisfies the following commutation relations for
~non-disjoint! time intervals with equal upper end points:
~QN4! for any r,s, r 8,s the operatorsBrs(v), Br 8s(v* ) satisfy the following relations

@Brs~v* !,Br 8s~v !#5Aqrsqr 8sq
2N̂~r ,s!12N̂~r 8,s!14N̂s

whereN̂(rs) , N̂s are the number operators that count the numbers of creation operators with the
upper end-points falling into (r ,s) and$s%, respectively.

This gives a new example of non-additive quantum noise, in which lengths of time intervals
enter in a multiplicative fashion and the scalar product governs the behavior at the upper end-
points.

In Sec. II we give basic definitions and an outline of the combinatorics involved. In Sec. III
we state the qclt onq-bialgebras for fixed time-interval. In Sec. IV we derive two important
lemmas, the Factorization Lemma, and the Clustering Lemma, which provide the rules for calcu-
lating arbitrary limiting correlations. Using those lemmas, in Sec. V, we state and prove the
general version of the functional qclt onq-bialgebras. Finally, in Sec. VI, we give the GNS
construction for the limiting functional in the case ofUq„su(2)…. Thus, we define creation and
annihilation operators acting on some generalized Fock spaceGq(H), whereH5H0^H1 ,
H0 comes from the GNS triple (H0 ,p,v) for the vacuum statef for the two-dimensional
representation ofC q , and the time-domain Hilbert space isH15 l 2@0,̀ ). Note that this example
of noise is given on a non-separable Hilbert space.

II. PRELIMINARIES

Let us start with an outline of the combinatorics used in the sequel. By anordered partition
S of an index setI we understand an r-tupleS5(S1 , . . . ,Sr), whereS1ø . . .øSr5I and
S1 , . . . ,Sr are mutually disjoint. The set of such partitions for fixedr will be denoted by
P r

ord(I ), or P r
ord$1, . . . ,p% for I5$1, . . . ,p%. In turn,P r(I ) will stand for the set of all~non-

ordered! partitions ofI consisting ofr sets, i.e.,$S1 , . . . ,Sr%. Thus, for each partitionS P P r ,
there existr ! ordered partitions naturally associated with it. By thesignaturegS of an ordered
partitionS we understand ther -tuple

~gS1
, . . . ,gSr

!5„#~S1!, . . . ,#~Sr !…

where #(Sj ) denotes the number of elements inSj . Partitions for which #(Sj ) is even for all
j51, . . . ,r are calledevenand the set of all ordered even partitions of$1, . . . ,p% will be denoted
by P e

ord$1, . . . ,p%. Further, for givenv1 , . . . ,vp P V 1øV 2 and an ordered partitionS of
$1, . . . ,p% associated with it, let

Sj
15$kPSj uvkPV 1%, Sj

25$kPSj uvkPV 2%,
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and,gS
j
15#(Sj

1), gS
j
25#(Sj

2). We also put

ugS1u5(
j51

r

gS
j
1, ugS2u5(

j51

r

gS
j
2.

By the set of inversions of an ordered partitionS we will understand the set

WS5$~ i , j !u iPSk , jPSn ,i, j ,k.n%.

Also, for a given ordered partitionS5(S1 , . . . ,Sr) let
rS5(Sr , . . . ,S1), i.e., with sets taken in

the reverse order.
Let now I be a partition of$1, . . . ,p% into r disjoint subsetsS1 , . . . ,Sr . By an ordered

subpartition of$1, . . . ,p% associated with Iwe shall understand any set of ordered partitions of
$I 1 , . . . ,I r%, i.e., any set of the form:

I5$~ I 1
1 , . . . ,I 1

i1!, . . . ,~ I r
1 , . . . ,I r

i r !%

where (I k
1 , . . . ,I k

i k) is an ordered partition ofI k . In turn, such a partition will be calledevenif all
its ordered partitions are even. For instance, let$1, . . . ,8% be the index set and letI5$I 1 ,I 2%,
whereI 15$1,2,4,5%, I 25$3,6,7,8%. Then$($1,2%,$4,5%), ($3,6%,$7,8%)% is an ordered subpartition
of $1, . . . ,8% associated withI , and is different from$($1,2%,$4,5%), ($7,8%,$3,6%)%. Note that the
number of subpartitions associated withI is equal to the product of the numbers of ordered
partitions ofI 1 , . . . ,I k , respectively. The set of ordered subpartitions~even ordered subpartitions!
of the index set$1, . . . ,p% associated withI will be denoted byP I$1, . . . ,p% (P e

I$1, . . . ,p%).
Since all results except the GNS construction given in Sec. V remain valid forC q being a

bialgebra, we start with a more general setting than the specific example ofq-noise given in Sec.
VI. Thus assumeC to be a free*-algebra overC generated~as a*-algebra! by the setV 1 and let
V 5V 1øV 2 , where V 25$v* uv P V 1%. On C we define aZ-gradation byd(v)51,
d(v* )521, d(C )50. The corresponding direct sum decomposition will be denoted by

C5 . . . %C ~21! %C ~0! %C ~1! % . . . .

We also define anN-gradation byd1(v)51,v P V , d1(C)50, extended to all free products in the
only possible way. We denote the direct sum decomposition resulting from thisN-gradation with
superscripts:

C5C ~0!
%C ~1!

% . . . .

The algebraC can be twisted by adding hermitian generatorsts, s P $1,21% subject to
tst2s51 and tsw5e(ts,w)wts, wherew P V and e(ts,v)5q2s, e(ts,v* )5q22s, where
qPR1, v P V 1 . For details, see Ref. 24. The twisted*-algebra thus obtained will be denoted by
C q . Both gradations are extended toC q in the trivial way, i.e.,d(ts)50, d1(t

s)50.
We consider the following coproduct onC q :

D:C q→C q^C q

as the homomorphic extension of

D~1!51^1, D~ ts!5ts ^ ts, D~v !5t21
^v1v^ t

wherev P V . Further, letd be the counit defined byd(1)5d(t)5d(t21)51, d(v)50, v P V .
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III. CENTRAL LIMIT THEOREM FOR FIXED INTERVAL

In this section we first introduce the incrementsD rs
N . Then we calculate the variance

f̂„D rs
N (v* )D rs

N (v)… for v P V 1 in order to find a suitable normalization. Then we define the
normalized incrementsSrs

N and state the qclt for fixedr<s.
Let C q

^ ` be the infinite tensor product of the*-algebraC q . Let f be a state onC q such that
f(ts)5as. We define injectionsj i

NrNs :C q→C q
^ ` by

j i
NrNs~w!51^Nr ^ ~ t21! ^ ~ i2Nr21!

^w^ t^ ~Ns2 i !
^1^ `.

Further, let

D rs
N ~w!5 (

i5Nr11

Ns

j i
NrNs~w!

andD rr
N (w)50 forw P V and

D rs
N ~ ts!51Nr ^ ~ ts! ^ ~Ns2Nr ! ^1^ `.

Note that if r50, s51, thenNr50, Ns5N, and the projection ofD rs
N onto C q

^N becomes the
N21-th iteration of the coproduct. In the case ofUq„su(2)… it can be seen thatD rs

N is a Hopf
algebra homomorphism for any pairr,s andN P N.

We also assume thatf P C q* is left and rightC@ t,t21#5C q
(0)- independent, i.e.,

f~acb!5f~a!f~c!f~b!

for anya,b P C (0). It should be noted that the Cauchy–Schwartz inequality implies that iff is a
state and a homomorphism onC q

(0) , then it isC q
(0)-independent. Also, we shall assume thatf is

even, i.e., vanishes outside of (C q)(0) . In particular, this implies that the first moments of
wPV vanish.

Proposition 3.1. Let vPV 1 and let f be an even functional and letf(ts)5as

PR12$1%. Then

f̂„D rs
N ~v* !D rs

N ~v !…5Nrsf~v* v !

where Nrs5@Ns2Nr # and @x#5(a2x2a22x)/(a22a22).
Proof. Sincef is even, we obtain

f̂„D rs
N ~v* !D rs

N ~v !…5f̂S (
i5Nr11

Ns

j i
NrNs~v* ! j i

NrNs~v !D
5f̂S (

i5Nr11

Ns

1^Nr ^ ~ t22! ^ ~ i2Nr21!
^v* v^ ~ t2! ^ ~Ns2 i !

^1`D
5f~v* v ! (

i5Nr11

Ns

a22~ i2Nr21!12~Ns2 i !

5f~v* v !a2Ns12Nr12 (
i5Nr11

Ns

a24i

5f~v* v !
a2Ns22Nr2a22Ns12Nr

a22a22 5f~v* v !Nrs. h
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Besides, it is clear that

f̂„D rs
N ~ ts!D rs

N ~ ts!…5a2s~Ns2Nr !.

This allows us to take normalized increments of the form

Srs
N ~w!5Aars

Nrs
D rs
N ~w!

for wPV , wherears5@s2r #. Then the normalization constantsAars /Nrs5A@s2r #/@Ns2Nr #
are the analogs ofA(s2r )/(Ns2Nr). Later, when considering the quantum noise obtained from
Uq„su(2)…, we will put a5q, which appears in the commutation factor, obtaining the simplest
example of a one-parameterq-noise. Thenqrs will stand for the variance of thatq-noise. Clearly,
we also have

Srs
N ~ ts!5as~Nr2Ns!D rs

N ~ ts!.

Moreover, we putSrs
N (c1c2)5Srs

N (c1)Srs
N (c2). It can be shown that with the canonical product on

C ^ `, the incrementsD rs
N , viewed as functions ofr ,s, satisfy~WN1–WN4!. However, it is not the

case for the normalized non-additive increments.
Let us now define a two-parameter functionalCa,q[C on the free algebra with unity gener-

ated byV , obtained in the qclt studied in Refs. 20–22. Letv1 , . . . ,vp P V . For an ordered
partitionS5(S1 , . . . ,Sr) of I5$1, . . . ,p% we denote by

vSj5 )
iPSj

v i

where the product is taken in the ascending order of indices. Then, let

C~v1 . . . vp!5(
r51

p

(
S5~S1 , . . . ,Sr !PP e

ord
~ I !

Q~S!D~Sua!)
j51

r

f~vSj !

where

D~Sua!5Dk,r~gS1
, . . . ,gSr

ua!5
~a2421!p/2

~a22gS121!~a22gS1
22gS221! . . . ~a22gS1

2 . . .22gSr21!

for 0,a,1 , andD(Sua)5D( rSua21) for 1,a,`. Here,Q(S) denotes the combinatorial
q-dependent commutation factor:

Q~S!5 )
~ i , j !PWS

e~v i ,v j !

wheree(v i ,v j )5e(t,v i)e(t,v j ) . In particular, whena5q we obtain the limit functional consid-
ered in Ref. 21, to which we will restrict our attention when constructing theq-noise.

For fixed r<s, the followingq-analog of the qclt is merely the theorem proved in Ref. 23,
restated in the new context.

Theorem 3.2.Let v1 , . . . ,vp P V . Letf P C q* be an even functional that is left and right
C q

(0)-independent withf(t)5a P R12$1%. Then, if p52k,

lim
N→`

f̂„Srs
N ~v1! . . .Srs

N ~vp!…5C„Brs~v1! . . .Brs~vp!…
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whereC„Brs(v1) . . .Brs(vp)…[ars
k C(v1 . . . vp). If p is odd, then the above limit vanishes.

In the sequel we will generalize this theorem to correlations indexed by arbitrary~in general,
different! time intervals.

IV. CLUSTERING AND FACTORIZATION LEMMAS

Two main features of the limiting functional we are going to obtain are factorization and
‘‘clustering.’’ Factorization of the correlations for disjoint time-intervals taken in the increasing
order may be considered as standard and it can be easily proven to hold also in our case. However,
we will show that fora,1 (a.1) the limiting correlations also factorize if the upper~lower!
end-points of time intervals are different. On the other hand, increments that have the same upper
~lower! end points cluster together fora,1 (a.1), thus giving rise to the property we call
clustering. This allows us to express the limiting correlations as linear combinations of products of
clustered correlations. It can also be noticed that the casea.1 is analogous to the casea,1 and
therefore we will provide proofs only for the former and merely state the corresponding results for
the latter. In the sequel the symbol3 will always denote multiplication of numbers and is used for
notational clarity.

Lemma 4.1„Clustering Lemma…. Letv1 , . . . ,vp P V . Suppose thatf P C q* is left and right
C q

(0)- independent and even. Letf(t)5a,1. If s15s25 . . .5sp and ri<si , then

lim
N→`

f̂„Sr1s1
N ~v1! . . .Srpsp

N ~vp!…5C„Br1s1
~v1! . . .Brpsp

~vp!…

whereC(Br1s
(v1) . . .Brps

(vp))[A) i51
p ar isC(v1 . . . vp). In particular, when p is odd, then the

above limit vanishes.
Proof. We prove only the non-trivial case, whenr i,si for all i51, . . . ,p. First we consider

the special case of ordered lower end-points, which we choose to prove by induction with respect
to the number of blocks for which the lower end-points of time intervals coincide. A sketch of the
proof of the general case will be given below.

Thus, letn be the number of blocks with different lower end-points and letI 1 , . . . ,I n be the
index sets associated with those blocks. We put

v I i5 )
jPI i

v j .

First we will calculate the limit of

f̂„Sr1s1
N ~v I1! . . .Srnsn

N ~v I n!…

with s15s25 . . .5sp.r 1.r 2. . . ..r p , i.e., in the case of ordered lower end-points. The case
n51 follows from Theorem 3.1. Suppose the statement holds forn5k. For notational conve-
nience we putr k115r , sk115s, r k5t. We also putI k115I . Then we have

Srs
N ~v j !5a rtsSrt

N~v j !D ts
N~ t !1b rtsD rt

N~ t21!Sts
N~v j !

for any j P I , wherea rts5A(arsNrt)/(artNrs) andb rts5A(arsNts)/(atsNrs). Now,

MN[f̂„Sr1s1
N ~v I1! . . .Srksk

N ~v I k!Srs
N ~v I !…

5 (
$J,K%PP ~ I !

cJKa rts
uJu b rts

uKuf̂„Sr1s1
N ~v I1! . . .Srksk

N ~v I k!Srt
N~vK!D rt~ t

uJu!…

3f̂„D ts~ t
2uKu!Sts

N~vJ!…
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where uJu, uKu denote cardinalities of the setsJ and K, respectively, andcJK are constants
obtained from commutations. Using left and rightC (0)-independence off, we obtain

MN5 (
$J,K%PP ~ I !

cJKa rts
uJu b rts

uKua~Ns2Nt!uJu2~Nt2Nr !uKu

3f̂„Sr1s1
N ~v I1! . . .Srksk

N ~v I k!Srt
N~vK!…f̂„Sts

N~vJ!….

TheN-dependent parts of the coefficients are of the form:

S Nrt

Nrs
D uJu/2S Nts

Nrs
D uKu/2

a~Ns2Nt!uJu2~Nt2Nr !uKu

and, if 0,a,1, behave for largeN as

a~Nr2Nt!uJu1~Nt2Ns!uKu

a~Nr2Ns!~ uJu1uKu! a~Ns2Nt!uJu2~Nt2Nr !uKu5a2~Ns2Nt!uJu→0

unlessuJu50. Notice that forJ50” we havecJK51 and the above expression is equal to 1.
Collecting theN-independent part of the coefficientsa rts , b rts and using the induction hypothesis
we obtain

lim
N→`

MN5S arsatsD
uI u/2

lim
N→`

f̂„Sr1s1
N ~v I1! . . .Srksk

N ~v I k!Srksk
N ~v I k11

!…

5S arsatsD
uI u/2

ats
uI u/2S )

i51

k

ar isi
uI i u/2DC~v1 . . . vp!

5S )
i51

k11

ar isi
uI i u/2DC~v1 . . . vp!

which finishes the proof in the case of ordered lower end-points. The general case is proved along
the same lines. Namely, we putR5max$r 1 , . . . ,r p% and we decompose eachSr is(v i) for all
r i,R as above, i.e.:

Sr is
N ~v i !5a r iRs

Sr iR
N ~v i !DRs

N ~ t !1b r iRs
D r iR
N ~ t21!SRs

N ~v i !.

Then the proof boils down to showing that any non-zero power ofa r iRs
makes the term disappear

in the limit. The argument is similar to the one presented above. Namely, eacha r iRs
produces the

N-dependent factor of the forma2(Ns2NR), which goes to zero asN→`. Thus, the only surviving
terms are those involvingSRs

N (v i) only. This finishes the proof. h

Lemma 4.2„Factorization Lemma…. Let v1 , . . . ,vp P V . Suppose thatf P C q* is left and
right C q

(0) -independent and even. Letf(t)5a,1. If s1<s2< . . .<sp , then

lim
N→`

f̂„Sr1s1
N ~v1! . . .Srpsp

N ~vp!…5CS )
iPI1

Br isi
~v i ! D 3 . . .3CS )

iPI n

Br isi
~v i ! D

where s15 . . .5sj 1, . . .,sj n21115 . . .5sj n5sp defines the partition $I 1 , . . . ,I n% of

$1, . . . ,p% into subsets corresponding to equal upper end-points of the time intervals. In particu-
lar, if any ofv I1, . . . ,v I n, wherev I i5) iPI i

v i , is odd with respect to either of the gradations, then
the limit vanishes.
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Proof. The casen51 is just the statement of the Clustering Lemma. Assume now that this
lemma holds forn5k blocks. Add blockI k115I and letI 85$ i P I ur i,sk%, i.e., the subset of
those indicesi in I , for which time intervals@r i ,si) are non-disjoint from all intervals associated
with I k . For anyv i , i P I 8, we use the decomposition familiar from the proof of the Clustering
Lemma:

Sr is
N ~v i !5a r i ts

Sr i t
N ~v i !D ts

N~ t !1b r i ts
D r i t
N ~ t21!Sts

N~v i !

where we denotedsi5s for any i P I 8. Then, supposing that the last block consists ofl elements,
we obtain

MN[f̂„Sr1s1
N ~v1! . . .Srpsp

N ~vp!Srp11,s
N ~vp11! . . .Srp1 l ,s

N ~vp1 l !…

5 (
$J,K%PP ~ I 8!

cJKS )
jPJ

a r j tsD S )
kPK

b r ktsD
3f̂SSr1s1N ~v1! . . .Srpsp

N ~vp!)
jPJ

Sr j t
N ~v j ! )

kPK
D r kt

~ t21! D f̂S D ts~ t
uJu! )

kPK
Sts
N~vk! D

5 (
$J,K%PP ~ I 8!

cJKS )
jPJ

a r j tsD S )
kPK

b r ktsD S )
kPK

a2~Nt2Nrk
!Da~Ns2Nt!uJu

3f̂SSr1s1N ~v1! . . .Srpsp
N ~vp!)

jPJ
Sr j t
N ~v j ! D f̂S )

kPK
Sts
N~vk! D

wherecJK are constants resulting from commutations. As in the proof of the Clustering Lemma,
consider theN-dependent part of each numerical coefficient appearing in the sum. It is of the
following form:

a~Ns2Nt!uJuS )
jPJ

S Nr j t

Nr js
D 1/2D S )

kPK
S Nts

Nrks
D 1/2aNrk2NtD

which, for 0,a,1 and largeN, behaves like

)
jPJ

S aNr j2Nt

aNr j2Ns
aNs2NtD)

jPJ
S aNt2Ns

aNrk2Ns
aNrk2NtD5)

jPJ
a2~Ns2Nt!5a2uJu~Ns2Nt!

and thus tends to zero whenN tends to infinity unlessuJu50, when it goes to one. Thus the only
term that survives in the limit is the one corresponding touJu50. Hence,

lim
N→`

MN5 )
iPI 8

S ar is
ats

D lim
N→`

f̂„Sr1s1
N ~v1! . . .Srpsp

N ~vp!… lim
N→`

f̂„SR1 ,s
N ~vp11! . . .SRl ,s

N ~vp1 l !…

whereRi5max$r p1 i ,sp%, i51, . . . ,l . But the last expression is equal to

S )
i51

p1 l

ar isi
1/2 DC~v I1! . . .C~v I k!C~v I !5CS )

iPI1

Br isi
~v i !D 3 . . .3CS )

iPI k11

Br isi
~v i !D .

h

Thus, the Factorization Lemma says that correlations factorize when they have different upper
end-points.
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The situation fora.1 is similar. We obtain the following.
Lemma 4.1.*Let v1 , . . . ,vp P V . Suppose thatf P C q* is left and rightC q

(0)- independent
and even. Letf~t!5a.1. If r 15r 25 . . .5r p and ri<si , then

lim
N→`

f̂„Sr1s1
N ~v1! . . .Srpsp

N ~vp!)5C~B̃r1s1
~v1! . . . B̃r psp

~vp!…

whereC(B̃r1s1
(v1) . . . B̃r psp

(vp))5A) i51
p ar isiC(v1 . . . vp). In particular, when p is odd, then

the above limit vanishes.
Lemma 4.2.*Let v1 , . . . ,vp P V . Suppose thatf P C q* is left and rightC q

(0) -independent
and even. Letf(t)5a.1. If r 1>r 2> . . .>r p , then

lim
N→`

f̂„Sr1s1
N ~v1! . . .Srpsp

N ~vp!…5CS )
iPI1

B̃r isi
~v i ! D 3 . . .3CS )

iPI n

B̃r isi
~v i ! D

where r 15 . . .5r j 1. . . ..r j n21115 . . .5r j n5r p defines the partition $I 1 , . . . ,I n% of

$1, . . . ,p% into subsets associated with equal lower end-points of the time intervals. In particular,
if any of v I1, . . . ,v I n, wherev I i5) iPI i

v i , is odd with respect to either of the gradations, then the
limit vanishes.

It should be remembered that the dependence ofC on q anda is suppressed in the formulas
given above.

V. CENTRAL LIMIT THEOREM FOR SAMPLE SUMS

We are ready to state the qclt for sample sums, of which Theorem 3.2 as well as the Clustering
and Factorization Lemmas are special cases. In fact, the general case looks similar to the Factor-
ization Lemma, except that we don’t assume any ordering of the end-points, the only restriction
being r i<si for all i51, . . . ,p. Without loss of generality we assume thatr i,si , since if
r i5si for any i , then the limit trivially vanishes.

For a given set of time intervalsT5$@r i ,si)u i51, . . . ,p% let $I 1 , . . . ,I n% be the partition of
$1, . . . ,p% into subsets for which upper~lower! end-points are equal fora,1(a.1). Let us
concentrate on the casea,1. Thus, for anyj ,k P I i we havesj5sk and for anyj P I i , k P I m ,
i Þ m, we havesj Þ sk . Further, fix the order on$I 1 . . . ,I n% according to increasing upper end-
points, i.e., ifj P I i ,k P I m , thensj,sk .

We are going to express the limiting correlations

lim
N→`

f̂„Sr1s1
N ~v1! . . .Srpsp

N ~vp!…5H C„Br1s1
~v1! . . .Brpsp

~vp!… if a,1,

C„B̃r1s1
~v1! . . . B̃r psp

~vp!… if a.1

in terms of the products appearing in Lemmas 4.2., 4.2.*, except for certain commutation factors.
We concentrate on the case ofa,1. To bring the above correlation into the product form we

need to commute certain operators. That is why we associate with the setT the set of inversions
of the upper end-points of time intervals, i.e.,

I T5$~si ,sj !u i, j ,si.sj ,@r i ,si !ù@r j ,sj !Þ0” %.

Clearly, if @r i ,si)ù@r j ,sj )50” , then the variables commute, therefore there is no need to consider
such inversions. On the other hand, each inversion (si ,sj ) P I T contributes a non-trivial commu-
tation factor. Further, for givenv1 . . . ,vp P V , let

I T15$~si ,sj !PI Tuv jPV1%, I T25$~si ,sj !PI Tuv jPV2%.
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Our aim now is to determine the commutation factors resulting from the commutations that need
to be performed in order to bring the products into their ordered forms as in the Factorization
Lemma. It is also perhaps interesting to note that no simple commutation relations can be derived
for Srs

N (w)’s for non-disjoint ~but not equal! time intervals. However, in the limit the~weak!
commutation relations are much simpler.

Proposition 5.1. Let w,w8 P V . If @r ,s)ù@r 8,s8)50” , then Brs(w) and Br 8s8(w8) commute.
If @r ,s)ù@r 8,s8) Þ 0” , s.s8, then

Brs~w!Br 8s8~w8!5q2d~w8!Br 8s8~w8!Brs~w!.

Proof. Consider two cases: Case A:r>r 8, and Case B:r,r 8.
Case A. Let

Srs
N ~w!5a rs8sSrs8

N
~w!Ds8s

N
~ t !1b rs8sD rs8

N
~ t21!Ss8s

N
~w!.

We showed in the proofs of the Lemmas that eachaNs2Ns8a rs8s goes to zero whenN→`, hence
only the second summand gives a non-zero contribution to the limit. Hence, when commuting
Srs
N (w) throughSr 8s8

N (w), we only need to commuteD rs8
N (t21)Ss8s

N (w) throughSr 8s8
N (w8). Using

@Ss8s
N

~w!,Sr 8s8
N

~w8!#50

and

@D rs8
N

~ t21!,Sr 8s8
N

~w8!#5e~ t21,w8!5q2d~w8!,

we obtain the result.
Case B. Let r 1.r 2 . We decompose bothSrs

N (w) andSr 8s8
N (w8), the first one in the same

manner as in Case A, and the second one as

Sr 8s8
N

~w8!5a r 8rs8Sr 8r
N

~w8!D rs8
N

~ t !1b r 8rs8D r 8r
N

~ t21!Srs8
N

~w8!.

In the~weak! limit only the second terms survive in both decompositions. Hence, the commutation
factor obtained in the limit comes from commutingD rs8

N (t21)Ss8s
N (w) through

D r 8r
N (t21)Srs8

N (w8), thus it is equal to the commutator

@D rs8
N

~ t21!,Srs8
N

~w8!#5e~ t21,w8!.

This finishes the proof. h

Theorem 5.2.Letv1 , . . . ,vp P V . Letf P C q* be left and rightC
(0)-independent and even

and let q P R1. Further, if f(t)5a,1, suppose that rj<sj , j51, . . . ,p, and denote by
$I 1 , . . . ,I n% the partition of$1, . . . ,p% into subsets corresponding to equal upper end-points of
the time intervals. Then

lim
N→`

f̂„Sr1 ,s1
N ~v1! . . .Srp ,sp

N ~vp!…5QTCS )
iPI1

Br isi
~v i ! D 3 . . .3CS )

iPI n

Br isi
~v i ! D

where

QT5q2uI T1u22uI T2u
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denotes the commutation factor resulting from commuting variables associated with time intervals
with different upper end-points.

Proof. Immediate from the Factorization Lemma, Proposition 5.1 and the relations:
e(t21,v)5q2, e(t21,v* )5q22, for v P V 1 .

Thus, we can characterize our limiting process using the following notion of independence:
~F! the factorization principle:

C„Br1s1
~v1! . . .Brpsp

~vp!…5CS )
iPI1

Br isi
~v i ! D 3 . . .3CS )

iPI n

Br isi
~v i ! D

whereI 1 , . . . ,I n are as in Theorem 5.2;
~C! commutations for disjoint intervals:

Brs~w!Br 8s8~w8!5Br 8s8~w8!Brs~w!;

(qC! q-commutations for non-disjoint intervals withs8.s:

Brs~w!Br 8s8~w8!5q2d~w8!Br 8s8~w8!Brs~w!.

Thus, ~F! together with~C! and (qC! give ~QN1!, which can be viewed as the definition of
independence.

The following Corollary gives the limiting correlations in a more explicit form.
Corollary 5.3. Under the assumptions of Theorem 5.2 we obtain

C„Br1s1
~v1! . . .Brpsp

~vp!…5 (
IPP e

I $1, . . . ,p%

Q~ I !D~ I !)
i51

n

)
j51

r i

f~vS
j
i !

where

Q~ I !5Q~ I 1! . . .Q~ I n!QT , D~ I !5D~ I 1ua! . . .D~ I nua!

and I is the partition$I 1 , . . . ,I n% and the summation runs over all even ordered subpartitionsI
associated with I.

Note that for a given ordered subpartitionI associated with the partitionI , the commutation
factor Q(I ) is the product of commutation factors associated with ordered partitions of
I 1 , . . . ,I n , respectively, resulting from the commutations witht,t21 within blocks that have the
same upper~lower! end-points, andQT resulting from the commutations bringing the product into
the ordered form.

The casea.1 is completely analogous. As a result we obtain the analogs of Proposition 5.1,
Theorem 5.2 and Corollary 5.2 with

Q̃T5q2uI T2u22uI T1u

and D̃(I )5D( r I 1ua21) . . .D( r I nua21). They lead to
~F*! the factorization principle:

C„B̃r1s1
~v1! . . . B̃r psp

~vp!…5CS )
iPI1

B̃r isi
~v i ! D 3 . . .3CS )

iPI n

B̃r isi
~v i ! D

where I 1 , . . . ,I n denotes the partition of$1, . . . ,p% into subsets corresponding to equal lower
end-points of the time intervals,
~C*! commutations for disjoint intervals;
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B˜rs~w!B̃r 8s8~w8!5B̃r 8s8~w8!B̃rs~w!;

(qC*! q-commutations for non-disjoint intervals withr,r 8:

B˜rs~w!B̃r 8s8~w8!5q22d~w8!B̃r 8s8~w8!B̃rs~w!.

The results obtained thus far can be easily generalized to includeSrs
N (t), Srs

N (t21), but the limits
obtained then can be expressed in terms of correlations withoutt,t21, as in Theorem 5.2, except
that a different commutation factor replacesQT .

VI. AN EXAMPLE OF QUANTUM NOISE

In this section we apply our results toC q5Uq„su(2)…, for which we give the realization of
the limiting quantum stochastic processesBrs(v), Brs(v* ) (B̃rs(v), B̃rs(v* )) as creation and
annihilation operators, respectively, living in a Hilbert space of Fock type. More specifically, they
will be defined on a subspace of the full Fock space

G f~H!5 %

n>0
H^n

whereH^05C, H5H0^H1 , whereH05C2 andH15 l 2@0,̀ ). Let v be the vacuum vector
of the two-dimensional representationp of Uq„su(2)… andf the corresponding vacuum state.
Thus, we have f(v* v)51, f(vv)5f(v* v* )5f(vv* )50. Further, let f(t)5q,
f(t21)5q21.

In H1 we distinguish functions

dp~x!5H 1 if x5p

0 otherwise
,

and the scalar product onH0 is given by^dp ,d r&5dpr . Now, let D be the linear span of vectors

f 1^ . . . ^ f p and V51,

wheref i5p(v)v ^ dsi ands1<s2< . . .<sp . For a givenf5p(v)v ^ ds we will refer tos as the
support off . The ordering of supports defines the partition$I 1 , . . . ,I n% of $1, . . . ,p% and we can
write

f 1^ . . . ^ f p5 ^
j51

n

F j

whereF j5 ^ iPI j
f i . Moreover, we introduce the following notation

Fs)5 ^
sj,s

f j , Fs5 ^
sj5s

f j , F ~s5 ^
sj.s

f j .

Thus, we can also write

f 1^ . . . ^ f p5Fs)^Fs^F ~s

for anysP $s1 , . . . ,sp%.
We also introduce the number operator

N̂s~ f 1^ . . . ^ f p!5Ns~ f 1^ . . . ^ f p!
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where Ns5#$si usi5s%. Thus, it counts functions with supports. Similarly we define other
number operators, such asN̂(r ,s) , N̂s) , N̂s] , with eigenvaluesN(r ,s)5#$si usiP(r ,s)%,
Ns)5#$si usi,s%, Ns]5#$si usi<s%, respectively. In other words, those operators count functions
whose time support falls into appropriate intervals. We will also need number operators that give
us information on the supports of functions with indices smaller than or equal tok. Thus, we
defineN̂s

k andN̂(r ,s)
k with eigenvaluesNs

k5#$si usi5s,i<k% andN(r ,s)
k 5#$si usi P (r ,s),i<k%, re-

spectively.
We first define creation operatorsBrs(v) and annihilation operatorsBrs(v* ) ~by abuse of

notation we use the same notation as in the weak case! on the subspaceDs of D spanned by the
vacuum vector and tensor products of functions with support equal tos. Thus, let

Brs~v !V5Aqrs f ,

Brs~v !~ f 1^ . . . ^ f p!5Aqrs f ^ f 1^ . . . ^ f p

be the creation operators, wheref5p(v)v ^ ds , and let

Brs~v* !V50,

Brs~v* !~ f 1^ . . . ^ f p!5Aqrs(
k51

p

q4~p2k! f 1^ . . . f k21^ f k11^ . . . ^ f p

be the annihilation operators. In fact, we could write the action ofBrs(v), Brs(v* ) on vectors of
the form f ^p, but we choose the above definition, which is open for generalizations and bears
resemblance to the one-particle case of the Fock space considered in Ref. 11~note that here
^ f , f &51).

Proposition 6.1.On the subspace Ds of D spanned by the vacuum vector and tensor products
of functions with support s, the following commutation relations hold:

@Brs~v* !,Br 8s~v !#5Aqrsqr 8sq
4N̂s.

Proof.

@Brs~v* !,Br 8s~v !# f 1^ . . . ^ f p

5Aqrsqr 8sS (
k51

p

q4~p2k! f ^ f 1^ . . . ^ f k21^ f k11^ . . . ^ f p1q4pf 1^ . . . ^ f pD
2Aqrsqr 8s(

k51

p

q4~p2k! f ^ f 1^ . . . ^ f k21^ f k11^ . . . ^ f p

5Aqrsqr 8sq
4pf 1^ . . . ^ f p .

h

We are now ready to consider the general case and defineBrs(v) andBrs(v* ) on all of D. Of
course, the action on the vacuum is the same as above. For other vectors with ordered support we
define the creation operator as follows:

Brs~v !~ f 1^ . . . ^ f p!5q2N~r ,s!Fs)^ „Brs~v !Fs…^F ~s5Aqrsq2N~r ,s!Fs),^ f ^Fs^F ~s .

Thus we can say that the operatorBrs(v) creates functionf5p(v)v ^ ds at the beginning of the
block with the same time supports. If such a block does not exist in the string of functions, it
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creates such a block at the right place. When passing through blocks with support smaller thans,
it producesq2 whenever that support falls into the interval (r ,s); otherwise, it does not produce
any non-trivial commutation factor.

In turn, the annihilation operators will be defined by

Brs~v* !~ f 1^ . . . ^ f p!5q2N~r ,s!Fs)^ „Brs~v* !Fs…^F ~s

5Aqrsq2N~r ,s! (
k5Ns)11

Ns]

q4~Ns2Ns
k
!Fs)^ ~ ^

sj5s, jÞk

f j ! ^F ~s .

If in the tensor productf 1^ . . . ^ f p there are no functions with support equal tos, then we put

Brs~v* ! f 1^ . . . ^ f p50.

The action of the annihilation operators can of course be written using the scalar product on
H0 and extending the summation over all indices and not only those corresponding to functions
with support equal tos, but we choose the above definition for the sake of simplicity. Thus, in
other words, the annihilation operator produces the same commutation factors when passing
through functions with smaller support and then acts on the block with the same support as the
annihilation operator defined previously. Clearly, the previous definitions are special cases of
those just given.

Proposition 6.2. Let s.s8 and w,w8 P V . If @r ,s)ù@r 8,s8)5B, then Brs(w) and
Br 8s8(w8) commute. If @r ,s)ù@r 8,s8) Þ 0” , then

Brs~w!Br 8s8~w8!5q2d~w8!Br 8s8~w8!Brs~w!.

Proof. For s.s8 we have

Brs~w!Br 8s8~w8!~ f 1^ . . . ^ f p!5Brs~w!„q2N~r 8,s8!Fs8)^ „Br 8s8~w8!Fs8…^F ~s8…

5q2N~r 8,s8!12N~r ,s!12d~w8!Fs8)^ „Br 8s8~w8!Fs8…

^ ~ ^
s8,r,s

Fr ! ^ „Brs~w!Fs…^F ~s .

On the other hand,

Br 8s8~w8!Brs~w!~ f 1^ . . . ^ f p!5Br 8s8~w8!„q2N~r ,s!Fs)^ „Brs~w!Fs…^F ~s…

5q2N~r 8,s8!12N~r ,s!Fs8)^ „Br 8s8~w8!Fs8…

^ ~ ^
s8,r,s

Fr ! ^ „Brs~w!Fs…^F ~s

where it is understood thatN(r ,s) andN(r 8,s8) refer to f 1^ . . . ^ f p . h

Proposition 6.3.Let wP V . The following relations hold

N~r 8,s8!Brs~w!5Brs~w!„N~r 8,s8!1d~w!x~r 8,s8!~s!…,

Ns8Brs~w!5Brs~w!„Ns81d~w!ds8s…

wherex (r 8,s8) is the characteristic function.
Proof.Straightforward.
Finally, we derive the commutation relation betweenBr 8s(v* ) andBrs(v). Thus we have
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Proposition 6.4.The following relations hold on D:

@Br 8s~v* !,Brs~v !#5Aqr 8sqrsq
2N̂~r ,s!12N̂~r 8,s!14N̂s

Proof.Using Proposition 6.1, we obtain

@Br 8s~v* !,Brs~v !#~ f 1^ . . . ^ f p!5q2N~r ,s!12N~r 8,s!
„Fs)^ ~@Br 8s~v* !,Brs~v !#Fs! ^F ~s…

5q2N~r ,s!12N~r 8,s!
„Fs)^ ~q4N̂sFs! ^F ~s…

5Aqr 8sqrsq
2N~r ,s!12N~r 8,s!14Ns

„Fs)^Fs^F ~s…

5Aqr 8sqrsq
2N~r ,s!12N~r 8,s!14Ns~ f 1^ . . . ^ f p!,

which ends the proof. h

Let us define a scalar product onD. Thus, writing the vectors in the block form, we put

^V,V&q51, ^V,F1^ . . . ^Fn&q50

and

^F1^ . . . ^Fn ,G1^ . . . ^Gm&q5dnm)
i51

n

^Fi ,Gi&q

where, for blocksF,G with supports,s8, respectively,

^F,G&q5^ f 1^ . . . ^ f p ,g1^ . . . ^gr&q5dss8d rp@@p##!

where @@p##5(12q4p)/(12q4). Let us denote the completion ofD with respect tô .,.&q by
Gq(H).

We can now state the representation theorem.
Theorem 6.5.Letv1 , . . . ,vp P V , f P C q* be the vacuum state of the two-dimensional fun-

damental representation of Uq„su(2)… and letf(t)5q,1. Then, for any ri<si , i51, . . . ,p,

C„Br1s1
~v1! . . .Brpsp

~vp!…5^V,Br1s1
~v1! . . .Brpsp

~vp!V&q .

Moreover, Brs(v) and Brs(v* ) are adjoint with respect tô.,.&q .
Proof. The commutations andq-commutations forBrs(v) and Brs(v* ) ~Proposition 6.2!

agree with the weak ones derived in Proposition 5.1. The factorization~F! also holds and follows
directly from the definition of the action ofBrs(v), Brs(v* ). In turn, relations given by Proposi-
tion 6.1 were in the weak sense derived in Ref. 21 forC„B01(v1) . . .B01(vp)… and that implies
that they hold forC„Br1s

(v1) . . .Brps
(vp)… by the Clustering Lemma. Finally, adjointness fol-

lows from the definition of the scalar product. This finishes the proof. h

The caseq.1 is analogous and we just state the results. Thus, we introduceD̃ spanned by
V and tensor products of functions fromH with supports ordered in the decreasing order. On
D̃ we define the creation operators

B̃rs~v !~ f 1^ . . . ^ f p!5q22N~r ,s!Fs)^ „B̃rs~v !Fs…^F ~s ,

and the annihilation operators

B̃rs~v* !~ f 1^ . . . ^ f p!5q22N~r ,s!Fs)^ „B̃rs~v* !Fs…^F ~s

where, onDr we have
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B̃rs~v !~ f 1^ . . . ^ f p!5Aqrs f ^ f 1^ . . . ^ f p

and

B̃rs~v* !~ f 1^ . . . ^ f p!5Aqrs (
k51

p

q24~p2k! f 1^ . . . f k21^ f k11^ . . . ^ f p ,

with the usual action on the vacuum. Similar commutation relations can be established as for
Brs(v), Brs(v* ).

Proposition 6.6.Let w,w8 P V . Then, if r,r 8 and@r ,s)ù@r 8,s8) Þ 0” , then

B̃rs~w!B̃r 8s8~w8!5q22d~w8!B̃r 8s8~w8!B̃rs~w!.

For disjoint intervals, the operators commute. In turn,

N~r 8,s8!B̃rs~w!5B̃rs~w!„N~r 8,s8!1d~w!x~r 8,s8!~s!…,

Ns8B̃rs~w!5B̃rs~w!„Ns81d~w!ds8s….

Finally,

@B̃r 8s~v* !,B̃rs~v !#5Aqr 8sqrsq
22N̂~r ,s!22N̂~r 8,s8!24N̂s.

Thus, it can be seen that all relations can be obtained from the previous ones by replacingq by
q21.

One can also take the limitq→1. However, it is interesting to note that even then we don’t
obtain the Brownian motion, which is illustrated by the example below. LetB0s5Bs . Then, if
s15 . . .5s45s, we obtain

C„Bs1
~v1! . . .Bs4

~v4!…5s2„f~v1v2!f~v1v3!1f~v1v3!f~v2v4!1f~v1v4!f~v2v3!….

In turn, when there are two different endpoints, for instance

si15si25sÞs85si35si4

then we obtain

C„Bs1
~v1! . . .Bs4

~v4!…5ss8f~v i1v i2!f~v i3v i4!.

This fact shows the non-interchangeability of limits inq and N. Clearly, when we take first
q→1 and thenN→`, we obtain the quantum Brownian motion. In turn, when we take first
N→` and thenq→1, then we obtain a different noise process.

It should be possible to generalize the approach presented in this paper to other quantum
groups by using the more general kind of limit theorem proved in Ref. 23.
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The asymptotic behavior of multichannel parallel relaxation processes for systems
with dynamical disorder is investigated in the limit of a very large number of
channels. An individual channel is characterized by a state vectorx which, due to
dynamical disorder, is a random function of time. A limit of the thermodynamic
type in thex-space is introduced for which both the volume available and the
average number of channels tend to infinity, but the average volume density of
channels remains constant. Scaling arguments combined with a stochastic renor-
malization group approach lead to the identification of two different types of uni-
versal behavior of the relaxation function corresponding to nonintermittent and
intermittent fluctuations, respectively. For nonintermittent fluctuations a dynamical
generalization of the static Huber’s relaxation equation is derived which depends
only on the average functional density of channels,r[W(t8)]D[W(t8)], the chan-
nels being classified according to their different relaxation ratesW5W(t8), which
are random functions of time. For intermittent fluctuations a more complicated
relaxation equation is derived which, in addition to the average density of channels,
r[W(t8)]D[W(t8)], depends also on a positive fractal exponentH which charac-
terizes the fluctuations of the density of channels. The general theory is applied for
constructing dynamical analogs of the stretched exponential relaxation function.
For nonintermittent fluctuations the type of relaxation is determined by the regres-
sion dynamics of the fluctuations of the relaxation rate. If the regression process is
fast and described by an exponential attenuation function, then after an initial
stretched exponential behavior the relaxation process slows down and it is not fully
completed even in the limit of very large times. For self-similar regression obeying
a negative power law, the relaxation process is less sensitive to the influence of
dynamical disorder. Both for small and large times the relaxation process is de-
scribed by stretched exponentials with the same fractal exponent as for systems
with static disorder. For large times the efficiency of the relaxation process is also
slowed down by fluctuations. Similar patterns are found for intermittent fluctua-
tions with the difference that for very large times and a slow regression process a
crossover from a stretched exponential to a self-similar algebraic relaxation func-
tion occurs. Some implications of the results for the study of relaxation processes in
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I. INTRODUCTION

In the last two decades an enormous amount of experimental evidence has been accumulated
showing that the decay of the average survival~relaxation! function ^l ~t!& in many diverse
systems in condensed matter physics and in molecular biology follows the same stretched expo-
nential law of the Kohlrausch–Williams–Watts~KWW! type

^ l ~ t !&5exp@2~Vt !b#, 1.b.0, ~1.1!

whereb is a positive fractal exponent between zero and unity andV is a characteristic frequency.
Equation~1.1! was first proposed by Kohlrausch1 in 1864 to describe the mechanical creep and
was later used by Williams and Watts2 to describe the dielectric relaxation in polymers and by
Weibull3 for describing the failure data in reliability theory. More recently the KWW law has been
used to fit the data on remanent magnetization in spin glasses,4 the decay of luminiscence in
porous glasses,5 the relaxation processes in viscoelasticity6 on the reaction kinetics of
biopolimers,7 and on the dynamics of recombination kinetics in radiochemistry.8 Further applica-
tions include the description of the statistical distributions of open and closed times of ion chan-
nels in molecular biophysics9 or even the description of the survival functions of cancer patients.10

The ubiquity of the stretched exponential law~1.1! has led to the idea that there should be a
kind of universal mechanism generating it which is independent of the details of an individual
process. An argument in favor of this opinion is the close connection between the KWW law~1.1!
and the stable probability densities of the Le´vy type1,11which emerge as a result of the occurrence
of a large number of independent random events described by individual probability densities with
infinite moments. Many attempts of searching for such a universal mechanism for the occurrence
of the stretched exponential have been presented in the literature. A first attempt is a generalization
of a mechanism of parallel relaxation initially suggested by Fo¨rster for the extinction of
luminescence12 and improved by other authors.13 A second model assumes a complex serial
relaxation on a multilevel abstract structure which emphasizes the role of hierarchically con-
strained dynamics.14 A third model is a generalization of the defect-diffusion model of Shlesinger
and Montroll.15 All three of these models have been carefully examined by Klafter and
Shlesinger;16 they have shown that in spite of the different details of the three models a universal
common feature exists which is the existence of a broad spectrum of relaxation rates described by
a scale-invariant distribution. A complementary approach of the universal features of the stretched
exponential which is mathematically oriented is based on the powerful technique of fractional
calculus and its connections with the theory of Fox functions.17

An interesting approach has been suggested by Huber;18 based on a careful examination of the
models used for the description of the extinction of luminescence he has derived a general relax-
ation function

^ l ~ t !&5expH 2E
0

`

r~W!@12exp~2Wt!#dWJ , ~1.2!

wherer(W)dW is the number of channels involved in the relaxation process and characterized by
an individual relaxation rate betweenW andW1dW. If the distribution of rates is self-similar and
obeys a scaling law of the negative power law type

r~W!dW;constW2~11b! dW, ~1.3!
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which is consistent with the general ideas of self-similarity suggested by Klafter and Shlesinger,16

then Huber’s equation~1.2! leads to the stretched exponential law~1.1!. The proportionality
constant in Eq.~1.3! can be easily determined in terms of the fractal exponentb and of the
characteristic frequencyV entering Eq.~1.1!, resulting in

r~W!dW5@G~12b!#21bVbW2~11b! dW, ~1.38!

whereG(x)5*0
`tx21 exp(2t)dt, x.0, is the complete gamma function. Although Huber has

suggested that his equation might be generally valid for any disordered system with static disorder,
the validity range of his derivation, based on the approximation of a product by an exponential,
cannot be easily evaluated.

Recently two of the authors of the present paper have shown that Huber’s equation~1.2! is
exact for a Poissonian distribution of independent channels.19 Moreover, it has been recently
shown that Huber’s equation~1.2! also holds beyond the validity range of the Poissonian distri-
bution: it emerges as a universal scaling law for a uniform random distribution of a large number
of channels characterized by nonintermittent fluctuations.20 This result is consistent with the
general idea that the Huber’s equation~1.2! and the stretched exponential relaxation law~1.1!
derived from it can be generated by a central limit behavior of the Le´vy type which expresses the
contribution of a very large number of weakly connected relaxation channels. The analysis pre-
sented in Ref. 20 also shows that Huber’s equation~1.2! is not the unique universal law which
emerges in the limit of a very large number of weakly coupled channels. For intermittent fluctua-
tions of the number of channels at least one supplementary scaling law exists, which is given by

^l ~ t !&5JHF E
0

`

r~W!@12exp~2Wt!#dWG , ~1.4!

where the function

JH~z!5H@~111/H !z#2Hg„H,~111/H !z… ~1.5!

depends on the incomplete gamma functiong(x,u)5*0
utx21 exp(2t)dt, x.0, u>0, andH is a

positive fractal exponent which characterizes the fluctuations of the number of channels. The
reciprocal value of the fractal exponent, 1/H, is a measure of the intermittency of fluctuations. In
particular in the limit

1/H→0 ~H→`!, ~1.6!

the fluctuations are nonintermittent, the functionJH(z) becomes an exponential

lim
H→`

JH~z!5exp~2z!, ~1.7!

and the scaling law~1.4! reduces to the Huber’s scaling equation~1.1!. The derivation of the
intermittent scaling law~1.4! is based on the searching for a fixed point by means of a stochastic
renormalization group approach technique.21 Unfortunately the renormalization group technique
used in Ref. 20 does not guarantee that the fixed point corresponding to Eq.~1.4! is unique, and
thus other intermittent limit scaling laws corresponding to other fixed points may also exist.

By assuming that the distribution of relaxation rates is given by the scale-invariant law~1.38!,
the intermittent generalization~1.4! of the Huber’s equation leads to the relaxation law

^l ~ t !&5H~Vt !2bH~111/H !2Hg„H,~Vt !b~111/H !…, ~1.8!

which for small times reduces to a stretched exponential
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^l ~ t !&;exp@2~Vt !b#, t!V21, ~1.9!

and for large times it is given by a negative power law

^l ~ t !&;G~11H !~Vt !2bH~111/H !2H, t@V21, H5finite. ~1.10!

As the fractal exponentH increases, the intermittent nature of fluctuations becomes less and less
pronounced, the stretched exponential portion of the relaxation function^l ~t!& given by Eq.~1.8!
becomes longer and longer and the power law tail becomes shorter and shorter; eventually in the
limit H→`, corresponding to nonintermittent fluctuations, the whole relaxation function^l ~t!&
can be represented by a stretched exponential.

All these attempts at coming up with a general derivation of the stretched exponential are
based on the assumption that the disordered distribution of channels is static, i.e., that an initial
fluctuation of the number of channels characterized by different relaxation rates is frozen forever;
during the process of relaxation the distribution of channels remains invariant and described by the
static density functionr(W) dW. A channel initially characterized by a relaxation rateW is
supposed to be characterized by the same rateW at any time in the future. Although reasonable for
some problems of condensed matter physics, the validity of this assumption is questionable in
molecular biology. In the case of protein–ligand interactions7 and of ion channel kinetics9 the
distribution of relaxation channels with different rates is due to the conformational fluctuations of
protein molecules which have a dynamical nature and thus the fluctuations of the numbers of
channels characterized by different relaxation rates are continuously generated and destroyed by
thermal agitation.

The study of rate or relaxation processes with dynamical disorder is an active field of applied
statistical physics.22–26Although at times the possible connection between the stretched exponen-
tial relaxation and the dynamical disorder has also been considered,27 little attention has been paid
to the derivation of dynamic generalizations of the stretched exponential law which emerge in the
limit of a very large number of reaction channels. The purpose of this paper is the searching for
such universal scaling laws which are dynamical analogs of the general static limit laws~1.2! and
~1.4!. The starting point of our approach is the theory developed in Refs. 19 and 20 in which a
general approach of rate processes with dynamical disorder has been suggested on the basis of the
theory of random point processes.28 In Ref. 19 in the particular case of Poissonian channels a
dynamical generalization of the Huber’s equation~1.2! has been suggested

^l ~ t !&5expH 2E E r@W~ t8!#D@W~ t8!#F12expS 2E
0

t

W~ t8!dt8D G J , ~1.11!

where, due to dynamical disorder, the relaxation rate corresponding to an individual channel is a
random function of timeW5W(t8), t>t8>0, r[W(t8)]D[W(t8)] is an average functional den-
sity of channels characterized by different random functionsW5W(t8), D[W(t8)] is a suitable
integration measure over the space of functionsW(t8), and** stands for the operation of path
integration. In the following we shall try to derive the dynamic analog~1.11! of Huber’s law as a
universal limit expression which emerges in the limit of a very large number of weakly interacting
channels. We shall also try to derive a universal dynamical intermittent law which is the analog of
the static scaling law~1.4!:

^l ~ t !&5JHH E E r@W~ t8!#D@W~ t8!#F12expS 2E
0

t

W~ t8!dt8D G J . ~1.12!

Another objective of the article is the application of the universal laws~1.11! and ~1.12! to the
particular case of a self-similar dynamical distribution of channels which is the analog of the static
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equation ~1.38!. Carrying out this program would lead to dynamical generalizations of the
stretched exponential law~1.1! and of its intermittent generalization~1.8!.

The structure of the paper is as follows. In Sec. II we give a general formulation of the
problem in terms of a functional generalization of the theory of random point processes. In Secs.
III and IV the approach developed in Sec. II is used for the derivation of the relaxation functions
~1.11! and~1.12! as universal limit laws for nonintermittent and intermittent fluctuations, respec-
tively, valid for a very large number of weakly interacting relaxation channels. In Sec. V explicit
dynamical generalizations of the stretched exponential law are derived by computing the path
averages in Eqs.~1.11! and ~1.12! in the particular case of a stationary self-similar dynamical
distribution of relaxation channels. In Sec. VI a comparative numerical analysis of the relaxation
equations for static and dynamical disorder is presented. Finally in Secs. VII and VIII some
possibilities of application of our approach are analyzed and some open questions are pointed out.

II. FORMULATION OF THE PROBLEM

We consider a relaxation process in which a random~usually very large! number of relaxation
modes are involved. By following the usual nomenclature in nuclear physics and molecular dy-
namics we shall call these modes relaxation channels. The relaxation channels are abstract entities
which are characterized by different state vectorsx1(t8), x2(t8),..., t>t8>0, which, due to dy-
namical disorder, are random functions of time. The relaxation channels should not be mistaken
for the actual ion channels crossing a cell membrane,9 which are concrete objects.

The stochastic properties of the state vectorsx1(t8),..,xN~t8! attached to the different indi-
vidual relaxation channels can be described by a functional generalization of random point pro-
cesses. A slightly different type of functional random point process has been suggested in Ref. 19.
For describing the dynamics of the relaxation channels we introduce a set of grand canonical
Janossy probability density functionals

Q0 ,QN@x1~ t8!,...,xN~ t8!#D@x1~ t8!#•••D@xN~ t8!#, ~2.1!

with the normalization condition

Q01 (
N51

`
1

N! E E •••E E QN@x1~ t8!,...,xN~ t8!#D@x1~ t8!#•••D@xN~ t8!#51. ~2.2!

HereQN@x1~t8!,...,xN~t8!#D@x1~t8!#•••D@xN(t8)# is the probability that there areN relaxation chan-
nels and that theseN channels are characterized by state vectors close tox1~t8!,...,xN~t8! and
D@x~t8!# is a suitable integration measure over the space of functionsx~t8!. This type of descrip-
tion is based on the implicit assumption that for a given realization of the process the total number
N of channels is a random quantity which does not change in time. The initial numberN of
channels is randomly chosen and then kept constant and only the random vectorsx1~t8!,...,xN~t8!
are variable in time. An alternative description of the stochastic properties of the relaxation
channels is given in terms of the generating functional

L†f @x~ t8!#‡5Q01 (
N51

`
1

N! E E •••E E QN@x1~ t8!,...,xN~ t8!#

3D@x1~ t8!#•••D@xN~ t8!# f @x1~ t8!#••• f @xN~ t8!#, ~2.3!

wheref @x~t8!# is a suitable test functional. The main advantage of using the generating functional
L†f @x~t8!#‡ is that it can be written in a form independent of the integration measureD@x~t8!#,
which is generally unknown.
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Considering a time interval of lengtht we assume that for each channelu51,...,N, there is a
fluctuating probability of decaypu(t). This probability depends on the whole previous history of
the channel, that is,pu(t) is a functional of all previous valuesxu(t8), t>t8>0 of the state vector:

pu~ t !5p@xu~ t8!;t#. ~2.4!

A realization of the survival~relaxation! function l (t), that is, the probability that the relax-
ation process has not occured in a time interval of lengtht, is simply given by the product of the
complementary probabilities 12p@xu(t8);t# attached to all channels, which expresses the prob-
ability that none of theN channels has led to relaxation:

l ~ t !5 )
u51

N

$12p@xu~ t8!;t !#%. ~2.5!

The average relaxation function^l (t)& can be computed by evaluating the average of the fluctu-
ating functionl (t) in terms of the grand canonical Janossy probability density functionals~2.1!,
which describe the random evolution of the channels:

^l ~ t !&5Q01 (
N51

`
1

N! E E •••E E QN@x1~ t8!,...,xN~ t8!#D@x1~ t8!#•••D@xN~ t8!#

3 f @x1~ t8!#••• f @xN~ t8!# )
u51

N

$12p@xu~ t8!;t#%

5L@ f @x~ t8!#512p@x~ t8!;t##, ~2.6!

where we have used the definition~2.3! of the generating functionalL†f @x~t8!#‡. It follows that the
evaluation of the average relaxation function^l (t)& reduces to the computation of the generating
functional L†f @x~t8!#‡, which describes the random couplings between the different relaxation
channels, and to the computation of the probabilityp@x(t8);t#, which describes the individual
behavior of a single channel.

For relating the generating functional,L†f @x~t8!#‡, to the fluctuation dynamics of the number
of channels we introduce the fluctuating functional density of channels

h@x~ t8!#D@x~ t8!# with N5E E h@x~ t8!#D@x~ t8!#, ~2.7!

characterized by a random vector nearx~t8! and the corresponding characteristic functional

G†K@x~ t8!#‡5K expS i E E K@x~ t8!#h@x~ t8!#D@x~ t8!# D L , ~2.8!

whereK@x~t8!# is a suitable test functional. The fluctuations of the functional density of channels
h@x~t8!#D@x~t8!# are described in terms of the corresponding cumulants

Š^h@x1~ t8!#•••h@xm~ t8!#&‹, m51,2,..., ~2.9!

which are assumed to exist and be finite. The characteristic functionalG†K@x~t8!#‡ can be ex-
pressed in terms ofŠ^h@x1~t8!#•••h@xm(t8)#&‹, m51,2,..., by means of the cumulant expansion
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ln G†K@x~ t8!#‡5 (
m51

`
i m

m! E E •••E E Š^h@x1~ t8!#•••h@xm~ t8!#&‹K@x1~ t8!#

3D@x1~ t8!#•••K@xm~ t8!#D@xm~ t8!#. ~2.10!

For establishing a connection between the generating functionalL†f @x~t8!#‡ of the functional
point process and the characteristic functionalG†K@x~t8!#‡ of the functional density of channels
h@x~t8!#D@x~t8!#, we write a realization of the density of channelsh@x~t8!#D@x~t8!# as a sum of
functional Dirac’s delta symbols

h@x~ t8!#D@x~ t8!#5 (
u51

N

d@xu~ t8!2x~ t8!#D@x~ t8!#. ~2.11!

Equation ~2.11! is a functional generalization of the well-known relationship from statistical
mechanics expressing the particle density fields as sums of delta functions.29 We insert Eq.~2.11!
into the definition~2.8! of the characteristic functionalG†K@x~t8!#‡, and compute the average in
terms of the grand canonical Janossy probability density functionals~2.1!. By using the definition
~2.3! of the generating functionalL†f @x~t8!#‡ after getting rid of the functional integral in the
exponent due to the filtration property of the Dirac’s functional symbol and computing the result-
ing sum, we obtain

G†K@x~ t8!#‡5L†f @x~ t8!#5exp~ iK @x~ t8!# !‡. ~2.12!

It follows that the average relaxation function^l (t)& can be expressed as

^l ~ t !&5G†K@x~ t8!#5 ib@x~ t8!;t#‡, ~2.13!

where

b@x~ t8!;t#52 ln~12p@x~ t8!;t# !, ~2.14!

is the bit number30 of the individual probability of nonrelaxation 12p@x(t8);t# attached to an
individual channel with a history characterized by the functionx~t8!, t>t8>0. Equation~2.13! is
a dynamical generalization of a similar relationship derived in Ref. 20 for systems with static
disorder by using a different method that does not make use of the theory of random point
processes.

For deriving an expression for the probability of decayp@x(t8);t# attached to an individual
channel we generalize an assumption made for systems with static disorder by Huber18 and by
Vlad, Schönfisch, and Mackey.20 We assume that a channel characterized by a state vectorx can
be either in an open state with a probabilityl~x! or in a closed state with a probability 12l~x!.
Following Ref. 20 we suppose that the state vectorx of a channel belongs to a certain domainS
of the state space which is simply connected and has the volume

VS5E
S
dx, ~2.15!

and that the probabilityl~x! that the channel is open is simply given by

l~x!5V* ~x!/VS , ~2.16!

whereV* ~x! is a characteristic volume of a neighborhood of the positionx.
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We assume that an open channel characterized by a state vectorx has a rate of relaxationW~x!
that depends only on the state vectorx. Since the state vectorx is a random function of time, the
contribution of an open state to the individual probability of survival~nonrelaxation! 12p@x(t8);t#
is given by

b @W„x~ t8!…#5expS 2E
0

t

W„x~ t8!…dt8D . ~2.17!

The corresponding contribution for a closed state is simply equal tob @W„x~t8!…#51 and the
individual probability of survival 12p@x(t8);t# is given by the average of theb @W„x~t8!…#-factor
corresponding to the two states

12p@x~ t8!;t#5l„x~ t !…expS 2E
0

t

W„x~ t8!…dt8D 112l„x~ t !…, ~2.18!

from which we obtain the following expression for the individual probability of decay

p@x~ t8!;t#5
V* „x~ t !…

VS
H 12expF2E

0

t

W„x~ t8!…dt8G J . ~2.19!

Now the average survival function̂l (t)& is completely characterized by the collective sto-
chastic properties of the fluctuations of the numbers of channels, expressed by the cumulants
Š^h@x1~t8!#•••h@xm(t8)#&‹ given by Eqs.~2.9! or by the cumulant expansion~2.10! of the charac-
teristic functionalG†K@x~t8!#‡ and by the behavior of an individual channel, characterized by the
probability of decay given by Eq.~2.19!. For investigating the scaling behavior emerging in the
limit of a very large average number^N& of channels

^N&5E E Š^h@x~ t8!#&‹D@x~ t8!#→`, ~2.20!

we introduce a limit of the thermodynamic type for which both the total volumeVS available in
thex-space and the average total number^N& of channels tend to infinity, but the average density
of channels,

«5^N&/VS , ~2.21!

remains constant

VS , ^N&→` with «5^N&/VS5const. ~2.22!

For evaluating the different types of asymptotic behavior emerging in the limit~2.22! we assume
that the channels are weakly interacting, that is, as the total space volume increases to infinity,
VS→`, the characteristic volumesV* ~x1!, V* ~x2!,..., of the neighborhoods of the different chan-
nels remain finite and constant; in other words, the increase of the total space volumeVS does not
lead to an increase of the possible overlapping among the neighborhoods attached to the different
channels. This assumption of locality generates the two types of asymptotic behavior investigated
in Secs. III and IV.
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III. LIMIT BEHAVIOR FOR NONINTERMITTENT FLUCTUATIONS

We introduce the relative fluctuations of different orders:

cm@x1~ t8!,...,xm~ t8!#5
Š^h@x1~ t8!#•••h@xm~ t8!#&‹

Pu51
m $Š^h@xu~ t8!#&‹%

, m>2. ~3.1!

If the relative fluctuationscm@x1~t8!,....,xm(t8)#,m>2, decrease to zero in the thermodynamic limit
~2.22!

cm@x1~ t8!,...,xm~ t8!#→0, VS ,^N&→`, with «5const,m52,3,..., ~3.2!

then the fluctuations of the numbers of channels are nonintermittent. For investigating the asymp-
totic behavior of the survival function̂l (t)& for nonintermittent fluctuations in the thermody-
namic limit ~2.22! we introduce the average probability density functional of the state vectorx~t8!
of an individual channel,

j@x~ t8!#D@x~ t8!#5
Š^h@x~ t8!#&‹D@x~ t8!#

**Š^h@x~ t8!#&‹D@x~ t8!#
, ~3.3!

with

E E j@x~ t8!#D@x~ t8!#51, ~3.4!

and combine Eqs.~2.10!, ~2.13!, ~2.14!, ~2.19!, ~2.20!, and~3.1!. We express the cumulants of the
functional density of channels in terms of the relative fluctuationsc1@x1~t8!,...,xm(t8)# and of the
average probability density functionalj@x~t8!#D@x~t8!#. By inserting the resulting expression for
the cumulants into the functional Taylor expansion~2.10! for the logarithm of the characteristic
functionalG†K@x~t8!#‡ and expressing the average relaxation function^l (t)& from Eqs.~2.13!,
~2.14!, and~2.19! we obtain

^l ~ t !&5expH (
m51

`
«m

m! E E •••E E cm@x1~ t8!,...,xm~ t8!#j@x1~ t8!#D@x1~ t8!#...j@xm~ t8!#

3D@xm~ t8!# )
u51

m HVSlnH 12
V* „xu~ t !…

VS
F12expS 2E

0

t

W„xu~ t8!…dt8D G J J J , ~3.5!

where

c151. ~3.6!

From Eqs.~2.22!, ~3.2!, ~3.5!, and ~3.6! it follows that for nonintermittent fluctuations in the
thermodynamic limit in Eq.~3.5! only the term corresponding tom51 survives and the expression
for the average survival function̂l (t)& reduces to the dynamical generalization~1.11! of Huber’s
equation:

^l ~ t !&;expH 2E E r@W~ t8!#D@W~ t8!#F12expS 2E
0

t

W~ t8!dt8D G J asVS ,^N&→`,«5const,

~3.7!

where
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r@W~ t8!#D@W~ t8!#5H «E E V* „x~ t !…j@x~ t8!#D@x~ t8!#d@W~ t8!2W„x~ t8!…#JD@W~ t8!#

~3.8!

is the average density of channels involved in the relaxation process, the channels being classified
according to their relaxation ratesW(t8), t>t8>0.

IV. LIMIT BEHAVIOR FOR INTERMITTENT FLUCTUATIONS

For the study of the asymptotic scaling behavior of the average survival function for inter-
mittent fluctuations a renormalization group technique should be used. In the following we apply
a probabilistic version21 of the Shlesinger–Hughes stochastic renormalization procedure31 which
has been recently applied to the study of space-dependent epidemic processes with high
migration.32 The method consists of starting out from an initial characteristic functional
G†K@x~t8!#‡ of the functional density of states for which the fluctuations are nonintermittent and
constructing, by means of a succession of decimation processes, a renormalized characteristic
functionalG̃†K@x~t8!#‡ for which the fluctuations of the density of states are intermittent. The main
steps of such an approach are presented in another context in Ref. 21 and a simplified derivation
is also presented in Ref. 32. Here we give only the final expression for the renormalized charac-
teristic functionalG̃†K@x~t8!#‡:

G̃†K@x~ t8!#‡5HE
0

1

zH21G†2 i ln@12z†12exp„iK @x~ t8!#…‡#‡ dz;H.0, ~4.1!

whereH is a positive fractal exponent similar to the one entering the static equations~1.4!–~1.10!.
For evaluating the limit scaling law for the average relaxation function^l (t)& corresponding

to the renormalized expression~4.1! we expand in Eq.~4.1! the nonrenormalized characteristic
functionalG†K@x~t8!#‡ in the cumulant expansion~2.10! and express the corresponding cumulants
in terms of the nonrenormalized relative fluctuationscm@x1~t8!;...;xm(t8)# and in terms of the
average renormalized density of channels

«5
^Ñ&
VS

5
H

H11
•

^N&
VS

. ~4.2!

Here we have used the relationship between the nonrenormalized average number of channels^N&
and the corresponding renormalized average^Ñ&:

^Ñ&5^N&H/~H11!. ~4.3!

The relationship~4.3! can be derived from the renormalization group equation~4.1! by means of
functional differentiation followed by the application of the relationships

^N&5E E Š^h@x~ t8!#&‹D@x~ t8!#5E E d ln G@K50#

dK@x~ t8!#
D@x~ t8!#, ~4.4!

^Ñ&5E E ^^h̃@x~ t8!#&&D@x~ t8!#5E E d ln G̃@K50#

dK@x~ t8!#
D@x~ t8!#, ~4.5!

which can be derived by expanding the characteristic functionalsG†K@x~t8!#‡ andG̃†K@x~t8!#‡ in
cumulant series of the type~2.10!.
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By using Eqs.~2.10!, ~2.13!, and~2.14! applied for the renormalized characteristic functional
G̃†K@x~t8!#‡ combined with Eqs.~4.1! and~4.2! and using the same steps as in Sec. III we obtain
the following expression for the average relaxation function^l (t)&:

^l ~ t !&5HE
0

1

zH21 dz expH (
m51

`
1

m! F«S 11
1

H D GmE E •••E E cm@x1~ t8!,...,xm~ t8!#j@x1~ t8!#

3D@x1~ t8!#•••j@xm~ t8!#D@xm~ t8!# )
u51

m HVS lnF12zV* „xu~ t !…~VS!21

3S 12expS 2E
0

t

W„xu~ t8!…dt8D D G J J , ~4.6!

from which, by taking into account the nonintermittency conditions~3.2! for the nonrenormalized
relative fluctuations of the density of channels we obtain the following scaling law in the thermo-
dynamic limit ~2.22!:

^l ~ t !&;JHH E E r@W~ t8!#D@W~ t8!#F12expS 2E
0

t

W~ t8!dt8D G J ,
as VS ,^Ñ&→` with «5^Ñ&/VS5const, ~4.7!

where the functionJH(z) and the functional density of channels involved in the relaxation
process,r[W(t8)]D[W(t8)], are given by Eqs.~1.5! and ~3.8!, respectively.

Equation~4.7! justifies the conjecture~1.12! made without proof in Sec. I. This equation is the
dynamical analog of the intermittent scaling law~1.4! derived for systems with static disorder in
Ref. 20. Just like in the static case the reciprocal value of the fractal exponentH, 1/H, is a measure
of the degree of intermittency of the fluctuations of the number of channels. In particular in the
limit H→` the fluctuations become nonintermittent and Eq.~4.7! reduces to the dynamical ana-
logue~1.2! of Huber’s equation. The renormalization group approach for dynamical disorder used
in this paper has the same drawback as the similar static approach developed in Ref. 20: it does not
guarantee that the limit scaling relationship~4.7! is the unique asymptotic law which emerges in
the thermodynamic limit for intermittent fluctuations. The renormalization group procedure intro-
duced in Ref. 21 does not provide a hint that the fixed point corresponding to Eq.~4.1! is the
unique fixed point of the problem. It is possible that further research may lead to other scaling
laws characteristic for intermittent fluctuations.

V. DYNAMICAL GENERALIZATIONS OF STRETCHED EXPONENTIAL

The main difficulty related to the application of the dynamical scaling laws~3.7! and~4.7! is
connected to the evaluation of the path integral:

I ~ t !5E E r@W~ t8!#D@W~ t8!#F12expS 2E
0

t

W~ t8!dt8D G . ~5.1!

The evaluation of such path integrals would be trivial provided that the functional density of states
r[W(t8)]D[W(t8)] would have a Gaussian behavior. Unfortunately a Gaussian form for
r[W(t8)]D[ t8)] must be ruled out because it does not include the static power law distribution
~1.38! as a particular case.

A formal solution of the problem can be given by introducing an average probability density
functional of the relaxation ratesW(t8), t>t8>0:
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w@W~ t8!#D@W~ t8!#5r@W~ t8!#D@W~ t8!#/^N* &, ~5.2!

with the normalization condition

E E w@W~ t8!#D@W~ t8!#51, ~5.3!

and where

^N* &5E E r@W~ t8!#D@W~ t8!#5«E E V* „x~ t !…j@x~ t8!#D@x~ t8!# ~5.4!

is the average effective number of channels involved in the relaxation process. Generally the
average effective number of channels involved in relaxation,^N* &, is at most equal to the total
average number of channels,^N&. By using the expression~5.2! for the average probability density
functionalw[W(t8)]D[W(t8)], the factorI (t) can be expressed in terms of a dynamical average
of the random function

b @W~ t8!#5expS 2E
0

t

W~ t8!dt8D ~5.5!

@see also Eq.~2.17!#. We have

I ~ t !5^N* &$12^b @W~ t8!#&%, ~5.6!

where the dynamical average^b [W(t8)] & is given by

^b @W~ t8!#&5E E w@W~ t8!#D@W~ t8!#b @W~ t8!#. ~5.7!

In this paper we limit ourselves to the simplest case of dynamical disorder for which the random
process corresponding to the average probability density functionalw[W(t8)]D[W(t8)] is Mar-
kovian. Moreover we consider that the average effective number of channels involved in the
relaxation process,̂N* &, is time independent:

^N* &5const. ~5.8!

Under these circumstances the probability density functionalw[W(t8)]D[W(t8)] can be repre-
sented as

w@W~ t8!#D@W~ t8!#5 lim
m→`

~Dt→0!

@w„Wm ;mDtuWm21 ;~m21!Dt…dWm•••w~W2 ;2DtuW1 ;Dt !dW2

3w~W1 ;DtuW0 ;0!dW1wst~W0!dW0#, t>t8>0, ~5.9!

where

m5t/Dt; ~5.10!

wst~W!dW with E wst~W!dW51, ~5.11!
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is an average one-time stationary probability density of an individual relaxation rate attached to a
given channel corresponding to static disorder and

w~W;tuW8;t8!dW with E w~W;tuW8;t8!dW51 ~5.12!

is the average conditional probability density of the relaxation rateW at time t provided that at
time t8 the relaxation rate wasW8. For a Markov process bothwst(W) andw(W;tuW8;t8) are the
solutions of an evolution equation of the type

] tw5Lw, ~5.13!

whereL is a linear Markovian evolution operator of the Liouville, Fokker–Planck, or the master
type. In this case the probabilitywst(W) is the stationary solution of Eq.~5.13!, whereas the
conditional probability densityw(W;tuW8;t8) is the Green’s function of the equation~5.13! cor-
responding to the initial condition

w~W;t5t8uW8;t8!5d~W2W8!. ~5.14!

For the above-mentioned Markovian systems there is a general method for computing dy-
namical path averages of the type~5.7! without the explicit evaluation of a path integral. The
method was suggested by Lax in the sixties33 in connection with certain problems of quantum
optics and rediscovered independently by Van Kampen.34,35For a recent application of this tech-
nique to the study of a rate process with dynamical disorder, the passage over a fluctuating
activation energy barrier, see Ref. 26. The idea is based on the observation that a realization of the
function b (t)5b [W(t8)] given by Eq.~5.5! obeys a stochastic differential equation with a ran-
dom coefficient:

db ~ t !

dt
52W~ t !b ~ t ! with b ~0!51. ~5.15!

Since Eq.~5.15! is local in time and the coefficientW(t) is Markovian it follows that the pair of
random variables„W(t),b (t)… is also Markovian and the one-time joint probability density,

P~W,b ;t !dWdb with E E P~W,b ;t !dWdb51, ~5.16!

obeys a compound stochastic Liouville equation,33–35

] tP~W,b ;t !5]b $Wb P~W,b ;t !%1LP~W,b ;t !, ~5.17!

with the initial condition

P~W,b ;t50!5d~b21!wst~W!. ~5.18!

The dynamical averagêb [W(t8)] & can be expressed as an average value corresponding to the
joint probability densityP~W,b ;t!:

^b @W~ t8!#&5E E b P~W,b ;t !dWdb5E F~W,t !dW, ~5.19!

where
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F~W,t !5E b P~W,b ;t !db ~5.20!

is a marginal average. By multiplying Eqs.~5.17! and ~5.18! by b and integrating overb after a
partial integration we obtain a closed equation for the marginal averageF(W;t):

] tF~W;t !1WF~W;t !5LF~W;t !, ~5.21!

with the initial condition

F~W;t50!5wst~W!. ~5.22!

From the above considerations it turns out that for a stationary Markovian average random
process the evaluation of the average survival function^l (t)& reduces to the evaluation of the
marginal averageF(W,t) by solving the evolution equation~5.21! with the initial condition~5.22!
followed by the application of Eqs.~3.7!, ~4.7!, ~5.1!, ~5.6!, and~5.19!.

For applying the suggested Markovian approach we should come up with a suitable definition
of the Markovian evolution operatorL. The simplest possible choice would be a Liouville operator
of the type suggested in Ref. 26 determined by starting out from the stationary probability density
wst(W) corresponding to the static density of states~1.38! attached to a stretched exponential of
the type~1.1! and by assuming that the regression of the fluctuations of the relaxation rate is
described by a generally time-dependent regression ratev(t). Now we notice a minor difficulty
related to the self-similar form~1.38! of the static density of statesr(W)dW: due to the infrared
divergence ofr(W) given by Eq.~1.38! atW50, the average effective number^N* & of channels
involved in the relaxation process is infinite:

^N* &5E
0

`

r~W!dW5E
0

`

@G~12b!#21bVbW2~11b!dW5`. ~5.23!

Due to the time independence condition~5.8! for ^N* &, the divergent behavior carries over for
systems with dynamical disorder. This divergence is, however, spurious because the correspond-
ing integral expressions for the average survival function^l (t)& are well behaved. The problem
can be solved by introducing an infrared cutoffW*Þ0 and by passing to the limitW*→0 after
performing the computations.

For a cutoff valueW*Þ0, the total effective average number of channels^N* & is finite:

^N* &5E
W*

`

r~W!dW5@G~12b!#21S V

W* D b

, ~5.24!

and the stationary probability densitywst(W) dW is given by

wst~W!dW5r~W!dW/^N* &5b~W* !bW2~11b!dW, ~5.25!

which obviously fulfills the normalization condition

E
W*

`

wst~W!dW51. ~5.26!

By following the approach suggested in Ref. 26 we expresswst(W) as the normalized solution of
a Bloch-like equation

bS bwst~W!1
]

]W
@Wwst~W!# D50, ~5.27!
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and suggest a dynamical generalization of Eq.~5.27! depending on the regression frequencyv(t):

]w

]t
52bv~ t !Fbw1

]

]W
~Ww!G5Lw, ~5.28!

where the Liouville operatorL is given by

L...52bv~ t !Fb...1 ]

]W
~W...!G . ~5.29!

All solutions of the Liouville equation~5.28! should be properly defined, that is, they should be
non-negative and conserve the normalization to unity at any time

w>0;E
W*

`

w dW51. ~5.30!

By integrating Eq.~5.28! term by term it is easy to check that it conserves the normalization ofw
to unity provided that the following boundary condition is fulfilled:

w~W5W* ;t !5b/W* ; t>0. ~5.31!

Concerning the non-negativity ofw we express any solution of Eq.~5.28! in terms of the
Green’s functionw(W;tW8;t8), which is the solution of Eq.~5.28! with the initial condition
~5.14!, and of the initial conditionw(W;t50):

w~W;t !5E
W*

`

w~W;tuW8;0!w~W8;t50!dW8. ~5.32!

The Green’s functionw(W;tuW8;0) can be easily evaluated by integrating Eq.~5.28! along the
characteristics with the initial condition~5.14! applied fort850 and with the boundary condition
~5.31!, resulting in

w~W;tuW8;0!5hFW* expS bE
0

t

v~ t8!dt8D 2WG S b

W* D SW*

W D 11b

1hFW2W* expS bE
0

t

v~ t8!dt8D GexpS 2b2E
0

t

v~ t8!dt8D
3dFW2W8 expS bE

0

t

v~ t8!dt8D G , ~5.33!

whereh(x) is the Heaviside’s step function. From Eqs.~5.32! and ~5.33! we obtain

w~W;t !5hFW* expS bE
0

t

v~ t8!dt8D 2WG S b

W* D SW*

W D 11b

1hFW2W* S bE
0

t

v~ t8!dt8D G
3expS 2b2E

0

t

v~ t8!dt8DwSW expS 2bE
0

t

v~ t8!dt8D ;t50D . ~5.34!

Both Eqs. ~5.33! and ~5.34! conserve the non-negativity and normalization conditions~5.30!
provided that the initial probability densityw(W;t50) is non-negative and normalized to unity
and is equal to zero for any rate smaller than the cutoff valueW5W* :

2293Vlad et al.: Universal behavior for dynamical disorder

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



w~W;t50!>0; E
W*

`

w~W;t50!dW51; w~W,W* ;t50!50. ~5.35!

By applying the above-mentioned Markovian approach it follows that the marginal average
F(W,t) is the solution of the partial differential equation

] tF~W,t !1WF~W,t !52bv~ t !@bF~W,t !1]W@WF~W,t !##, ~5.36!

with the initial condition

F~W,t50!5b~W* !21~W* /W!11b. ~5.37!

By integrating Eq.~5.36! by means of the method of characteristics we can express the marginal
averageF(W,t) in terms of an arbitrary function. By determining this arbitrary function from the
initial condition ~5.37! we obtain

F~W,t !5b~W* !21SW*

W D 11b

expH 2Wgb~ t !E
0

t

g2b~ t8!dt8J , ~5.38!

whereg(t), the attenuation factor of the regression of fluctuations of the relaxation rate attached
to a given channel, is given by

dg~ t !

dt
52v~ t !g~ t !, g~0!51, ~5.39!

that is,

g~ t !5expS 2E
0

t

v~ t8!dt8D . ~5.40!

From Eqs.~5.1!, ~5.6!, ~5.19!, and~5.38! if follows that the exponentI (t) is equal to

I ~ t !5
bVb

G~12b!
E
W*

` 12exp@2Wgb~ t !*0
t g2b~ t8!dt8#

W11b dW. ~5.41!

As expected in the limitW*→0, the exponentI (t) is well behaved and in this limit the integral
overW in Eq. ~5.41! can be explicitly computed, resulting in

I ~ t !5FVgb~ t !E
0

t

g2b~ t8!dt8Gb

. ~5.42!

From the above computations it turns out that for the model considered in this section the univer-
sal scaling laws~3.7! and~4.7! for dynamical nonintermittent and intermittent fluctuations become

^l ~ t !&5expH 2FVgb~ t !E
0

t

g2b~ t8!dt8GbJ ~5.43!

and

^l ~ t !&5JHH FVgb~ t !E
0

t

g2b~ t8!dt8G J , ~5.44!
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respectively. Equations~5.43! and ~5.44! are dynamical analogs of the stretched exponential law
~1.1! and of its static intermittent generalization~1.8!. The concrete form of these two equations
depends on the dynamics of the regression of the fluctuations of the relaxation rate expressed by
the attenuation functiong(t). A comparison between the relaxation behavior corresponding to
some important types of dynamical disorder and the relaxation behavior of the similar systems
with static disorder is presented in the following section.

VI. STATIC VERSUS DYNAMICAL DISORDER

The dynamical relaxation equations~5.43! and ~5.44! include the stretched exponential~1.1!
and its static intermittent analogue~1.8! as particular cases corresponding to a regression ratev(t)
equal to zero for which there is no attenuation of the fluctuations

v~ t !50, g~ t !51, ~6.1!

and an initial fluctuation of the relaxation rate is frozen forever.
In this paper we limit ourselves to the study of only two types of dynamical disorder. The first

case corresponds to a fast regression of the fluctuations for which the frequencyv(t) is constant
and the attenuation functiong(t) is exponentially decreasing in time:

v~ t !5v05const and g~ t !5exp~2v0t !. ~6.2!

The second case corresponds to a self-similar regression process described by slowly decaying
functionsv(t) andg(t) which obey negative power laws of time ast@t0 :

v~ t !5a/~ t1t0!;a/t as t@t0 , ~6.3!

g~ t !5@ t0 /~ t1t0!#
a;~ t0 /t !

a as t@t0 , ~6.4!

where t0.0 is a possibly very small but, however, different from zero time constant which has
been introduced in order to avoid the divergence of the frequencyv(t) in the limit t→0. The
relationships between these two cases can be clarified by requiring that ast→0 the regression rates
v(t) have the same values, resulting in

v~0!5a/t05v0 . ~6.5!

By using Eq.~6.5! the relationship~6.4! for the attenuation functiong(t) becomes

g~ t !5@a/~v0t1a!#a. ~6.6!

For small values ofa the functiong(t) given by Eq.~6.6! has a long tail of the negative power law
type. As the fractal exponenta increases the tail of the attenuation functiong(t) is getting shorter
and shorter and in the limita→` we recover the exponential decay law~6.2!.

In order to outline the analogies and differences between the relaxation processes in systems
with static and dynamical disorder we compare the static relaxation equations~1.1! and ~1.8! for
nonintermittent and intermittent fluctuations, respectively, with the dynamical relaxation equations
~5.43! and ~5.44! applied in the case of the attenuation functionsg(t) given by Eqs.~6.2! and
~6.4!. It is also of interest to compare the probability densities of the relaxation time

c~ t !dt52F]^l ~ t !&
]t Gdt, ~6.7!

the corresponding moments
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^tm&5E
0

`

tmc~ t !dt5 lim
t→`

tm^l ~ t !&1mE
0

`

tm21^l ~ t !&dt, ~6.8!

and the effective rates of relaxation

Weff~ t !5c~ t !/^l ~ t !&52] t ln^l ~ t !&. ~6.9!

For computing these functions we express the average relaxation functions for nonintermittent and
intermittent fluctuations in terms of the exponentI (t) given by Eq.~5.42!:

^l ~ t !&5exp@2I ~ t !#, ~6.10!

^l ~ t !&5JH@ I ~ t !#. ~6.11!

The application of Eqs.~1.5!, ~5.42!, and~6.7!–~6.11! leads to the following relationships for the
functionsc(t) andWeff(t):

c~ t !5q~ t !I ~ t !exp@2I ~ t !#, ~6.12!

Weff~ t !5q~ t !I ~ t !, ~6.13!

for nonintermittent fluctuations and

c~ t !5q~ t !F H@ I ~ t !#JH@ I ~ t !#, ~6.14!

Weff~ t !5q~ t !F H@ I ~ t !#, ~6.15!

for intermittent fluctuations. Here the functionsq(t) andF H(z) are given by

q~ t !5
d@ ln I ~ t !#

dt
5bH g2b~ t !F E

0

t

g2b~ t8!dt8G21

2bv~ t !J , ~6.16!

F H~z!5~H11!H 11F S 11
1

H D HzHG exp@2z~111/H !#

g@H11;z~111/H !#J
21

. ~6.17!

For applying these equations for systems with nonintermittent or intermittent static disorder
and for systems with nonintermittent or intermittent dynamical disorder with exponential or self-
similar regression we should evaluate the functionsI (t) and q(t) corresponding to all these
particular cases. After some computations we come to

I ~ t !5~Vt !b, q~ t !5b/t, ~6.18!

for static disorder;

I ~ t !5H V@12exp~2v0bt !#

@v0b# J b

, ~6.19!

q~ t !5b2v0 exp~2v0bt !@12exp~2v0bt !#
21, ~6.20!

for nonintermittent and intermittent dynamical disorder with exponential attenuation; and

I ~ t !5$V* @ t1t02t0@ t0 /~ t1t0!#
ab#%b, ~6.21!

q~ t !5b2a~ t0!
21@ t0 /~ t1t0!#

ab12$12@ t0 /~ t1t0!#
ab11%21, ~6.22!
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for nonintermittent and intermittent dynamical disorder with self-similar attenuation. Here

V*5V/~11ab!. ~6.23!

By combining Eqs.~6.7!–~6.22! we can derive six sets of functions^l (t)&, c(t), andWeff(t)
corresponding to nonintermittent and intermittent static disorder, to the two types of nonintermit-
tent dynamical disorder, and to the two types of intermittent dynamical disorder considered in this
article. The resulting equations are rather complicated and to save space they are not given here.
We present only two tables with the different types of limit behavior of these functions for short
and large times, respectively.

Table 1 shows the asymptotic behavior of the average survival function^ l (t)& in the six cases
considered. For nonintermittent fluctuations the dynamical disorder decreases the efficiency of
relaxation both for exponential and self-similar attenuation. The effect is much more pronounced
for exponential attenuation for which the relaxation function tends towards a positive value dif-
ferent from zero ast→` and thus the relaxation process is never complete, not even after an
infinitely large period of time. For self-similar attenuation this decrease in efficiency is less
pronounced. An interesting effect in this case is that both for small and large times the relaxation
process is described by stretched exponentials with the same exponentb and different character-
istic frequencies,V andV*5V/~11ab!,V, respectively. For large times the decrease of effi-
ciency due to dynamical disorder is displayed by the decrease of the characteristic frequency from
V to V* . Similar patterns occur in the intermittent cases for which the dynamical disorder also
slows down the relaxation process. For exponential attenuation after an initial stretched exponen-
tial behavior for large times a self-similar region exists for which the relaxation function is
described by a negative power law of time. The self-similar region is eventually followed by a
horizontal asymptote of the relaxation function which has a positive residual value even in the
limit t→`, a situation which corresponds to incomplete relaxation. Just as in the nonintermittent

TABLE I. Limit behavior of the average relaxation function^ l (t)& for different types of static and dynamical disorder for
small and large times.

Case ^ l (t)& for small times ^ l (t)& for large times

~1! Nonintermittent
static disorder

exp@2(Vt)b# exp@2(Vt)b#

~2! Nonintermittent
dynamical disorder exp@2(Vt)b#; exp@2~V/bv0!

b#5const;
with exponential Vt!V/v0 Vt@V/v0

regression

~3! Nonintermittent
dynamical disorder exp@2(Vt)b#; exp@2(V* t)b#;
with self-similar Vt!Vt0 Vt@Vt0
regression

~4! Intermittent exp@2(Vt)b#; (Vt)2bH(111/H)2HG(11H);
static disorder Vt!1 Vt@1

~5! Intermittent ~a! (Vt)2bH(111/H)2HG(11H);
dynamical disorder exp@2(Vt)b#; V/v0@Vt@1
with exponential Vt!V/v0 ;Vt!1 ~b! (V/bv0)

2bH(111/H)2HG(11H);
regression Vt@V/v0@1

~6! Intermittent ~a! (Vt)2bH(111/H)2HG(11H);
dynamical disorder exp@2(Vt)b#; Vt0@Vt@1
with self-similar Vt!1;Vt!Vt0 ~b! (V* t)2bH(111/H)2HG(11H);
regression Vt@Vt0@1
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case for self-similar attenuation, the decrease in efficiency of the relaxation process is less pro-
nounced in comparison with the case of exponential attenuation. For small times a stretched
exponential behavior exists with a characteristic frequency

V** 5V. ~6.24!

For large times both the intermittent behavior and the regression of fluctuations lead to the slowing
down of the relaxation process. The intermittent behavior is dominant leading to a long time tail
of the average survival function.

Table II displays the asymptotic values of the effective relaxation rateWeff(t) for small and
large times as well as the values of the positive moments of the relaxation time. The expressions
for the effective relaxation rate are consistent with the data presented in Table I for the average
survival function. A survival function of the stretched exponential type corresponds to a negative
power law function of time for the effective relaxation rate of the type

Weff;1/t12b. ~6.25!

Similarly a power law tail of the survival function corresponds to an asymptotic hyperbolic time
dependence of the effective relaxation rate

Weff;1/t as t→`, ~6.26!

whereas a positive residual value of the relaxation function for large times,^l ~`!&.0, corresponds
to an asymptotic value of the effective relaxation rate equal to zero:

Weff;0 as t→`. ~6.27!

TABLE II. Limit behavior for small and large times of the effective relaxation rateWeff(t) and the values of the positive
momentŝ tm&, m>1, of the relaxation time for different types of static and dynamical disorder.

Case
Weff(t)

for small times
Weff(t)

for large times ^tm&,m>1

~1! Nonintermittent
static disorder

bVbtb21 bVbtb21 V2mG(11m/b)5finite

~2! Nonintermittent
dynamical disorder
with exponential

bVbtb21;
Vt!V/v0

;0;
Vt@V/v0

`

regression

~3! Nonintermittent
dynamical disorder
with self-similar

bVbtb21;
Vt!Vt0

b~V* !btb21;
Vt@Vt0

finite

regression

~4! Intermittent
static disorder

bVbtb21;
Vt!1

H/t;
Vt@1

`

~5! Intermittent bVbtb21; ~a! H/t;
dynmical disorder Vt!V/v0 ;Vt!1 V/v0@Vt@1 `
with exponential ~b! ;0;
regression Vt@V/v0@1

~6! Intermittent ~a! H/t;
dynamical disorder
with self-similar

bVbtb21;
Vt!1;Vt!Vt0

Vt0@Vt@1
~b! H/t;

`

regression Vt@Vt0@1
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The analysis of the values of the moments of the relaxation time,^tm&, is of interest because
their divergence may be related to the possible statistical fractal behavior of the probability density
c(t) of the relaxation time. To save space the asymptotic values ofc(t) are not given in Tables
I and II; however, the asymptotic expressions forc(t) can be easily evaluated from these tables by
noticing that from Eq.~6.9! we have

c~ t !5^ l ~ t !&Weff~ t !. ~6.28!

Special attention is deserved by the investigation of the asymptotic behavior of the probability
densityc(t)dt of the relaxation time in the case when a residual value different from zero exists
for the average survival function, a situation which corresponds to incomplete relaxation. In this
case the probability densityc(t)dt of the relaxation time is apparently not normalized to unity
because we have

E
0

`

c~ t !dt52E
0

`

] t^ l ~ t !&dt5^ l ~0!&2^ l ~`!&512^ l ~`!&,1. ~6.29!

The physical explanation of this result is the following: the factor^l ~`!& expresses the proportion
of systems~particles! which never relax. Notice, however, that the violation of normalization of
the probability densityc(t)dt is only apparent because the expression~6.7! for c(t)dt does not

FIG. 1. ~a! The dependence of the average survival function^ l (t)& on the dimensionless timeVt and on the relative
frequency of regressionv0/V for nonintermittent dynamical fluctuations with exponential attenuation,b50.6. ~b! The
dependence of the average survival function^ l (t)& on the dimensionless timeVt and on the attenuation exponenta for
nonintermittent dynamical fluctuations with self-similar regression,b50.6 andVt050.1.
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take into account the contribution of systems~particles! which survive up to infinity. These
particles give rise to a contribution to the expression forc(t)dt having the form of a delta function
displaced to infinity. Equation~6.7! should be rewritten

c~ t !52]^ l ~ t !&/]t1^ l ~`!&d~ t2t* ! with t*→`. ~6.30!

This definition of the probability densityc(t)dt leads to a normalized expression even if
^l ~`!&Þ0.

The significance of the values of the moments of the relaxation time displayed in Table II is
clear. A stretched exponential relaxation function is relatively fast decreasing and the resulting
shape of the tail ofc(t) ensures the convergence of the moments, a situation which corresponds
to static nonintermittent disorder and to dynamical nonintermittent disorder with self-similar re-
gression. In the other four cases presented in Table II the moments are divergent. There are two
different causes for this divergence. For nonintermittent and intermittent dynamical disorder with
exponential regression it is due to the existence of a finite proportion of particles which never
relax. For intermittent static disorder and for intermittent dynamical disorder with self-similar
regression the infinite moments are generated by the self-similar features of the tails of the

FIG. 2. ~a! The dependence of the average relaxation function^ l (t)& on the dimensionless timeVt for nonintermittent
fluctuations corresponding to a static process~full line!, to a dynamical process with exponential attenuation~dashed line!,
and to a dynamical process with self-similar attenuation~dash-pointed!, b50.6, v0/V53, a50.3, Vt050.1. ~b! The
dependence of the average relaxation function^ l (t)& on the dimensionless timeVt for intermittent fluctuations corre-
sponding to a static process~full line!, to a dynamical process with exponential attenuation~dashed line!, and to a
dynamical process with self-similar attenuation~dash-pointed!, b50.6,v0/V53, Vt050.1, andH50.5.
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probability densityc(t)dt. By using Eq.~6.28! and the data displayed in Tables I and II it is easy
to see that in both of these cases the large time behavior of the probability density of the relaxation
time is described by

c~ t !;t2~11bH ! as t→`, ~6.31!

that is,c(t) has a power law tail with a fractal exponent 11bH. It is interesting that this fractal
exponent is independent of the exponenta of attenuation; the proportionality coefficient in Eq.
~6.31! is, however, generallya-dependent.

For a better understanding of the behavior of the average relaxation function^ l (t)& in the
different cases investigated in this paper we present some graphs of this function. As expected
these graphs are consistent with the results of asymptotic analysis presented in Tables I and II. By
examining Fig. 1~a! corresponding to nonintermittent dynamical fluctuations with exponential
regression we notice that the fraction of particles which never relax increases with the increase of
the frequency of regressionv0, a result which is consistent with the asymptotic expression of

FIG. 3. The average relaxation function^ l (t)& for nonintermittent, self-similar fluctuations~full line! in comparison to the
static average relaxation function~dashed line!. In the logarithmic coordinates used the stretched exponential portions of
the relaxation functions appear as straight lines:b50.6,V*[V/~11ab!51s21, andV* t050.1 fora50.1, 1, 10, 100, 1000
~from bottom to top!.

FIG. 4. The dependence of the difference^ l (t)&2^l stat(t)& between the relaxation function for dynamical nonintermittent
fluctuations with self-similar attenuation and the relaxation function for static systems in terms of the logarithm of
dimensionless time ln~V* t!, b50.6,V*[V/~11ab!51s21, andV* t050.1 for a50.1, 1, 10~from bottom to top!.
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^ l (t)& for large time corresponding to this case and presented in Table I. A similar effect can be
noticed in Fig. 1~b! corresponding to nonintermittent dynamical disorder with self-similar attenu-
ation. Although in this case the decrease of efficiency of relaxation due to dynamical disorder is
less pronounced and eventually ast→` all particles relax, the graph clearly shows that an increase
of the attenuation exponenta slows down the relaxation process. Figures 2~a! and 2~b! show some
graphs of the average relaxation function for static disorder, dynamical disorder with exponential
and self-similar regression for nonintermittent and intermittent fluctuations, respectively. For the
consistency of comparison the parametersv0, a, and t0 fulfill the relationship~6.5! so that for
dynamical disorder the initial frequency of regression is the same in all cases. In Fig. 2 the same
pattern is observed in both cases, that is, the exponential regression leads to incomplete relaxation
and, for relatively low values of the attenuation exponent, 1.a>0, the self-similar attenuation
leads to relaxation functions which are very close to the functions corresponding to the static case.
Significant differences occur only if the attenuation exponenta is bigger than the unity.

The relative insensitivity with respect to the variations of the attenuation exponenta of the
average relaxation function for dynamical disorder with self-similar regression is consistent with

FIG. 5. Average relaxation functions for nonintermittent dynamical fluctuations with exponential attenuation~dashed! and
self-similar attenuation~dash-pointed! in comparison with the static stretched exponential law~full line!. In the logarithmic
coordinates used, the stretched exponential portions of the relaxation functions appear as straight lines:b50.6,v0/V53,
a50.3, andVt050.1.

FIG. 6. Average relaxation functions for intermittent dynamical fluctuations with exponential attenuation~dashed! and
self-similar attenuation~dash-pointed! in comparison with the intermittent static average relaxation function~full line!. In
the logarithmic coordinates used, the power law portions of the relaxation functions appear as straight lines:b50.6,
v0/V53, a50.3,Vt050.1, andH50.5.

2302 Vlad et al.: Universal behavior for dynamical disorder

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



the ubiquity in nature of the stretched exponential. The occurrence of the stretched exponential
relaxation for these types of systems is not limited to small values of the exponenta. From Table
I it follows that for nonintermittent self-similar dynamical fluctuations a stretched exponential
emerges for large times for any values of the exponenta, small or large. In this case the passage
from small to large times corresponds to a crossover from a stretched exponential with character-
istic frequencyV to another stretched exponential with a smaller characteristic frequency
V*5V/~11ab!,V. Figure 3 displays this crossover phenomenon for different values of the
exponenta from very small to very large. For this graph multiple logarithmic coordinates have
been used for which the stretched exponential portions of the average relaxation functions appear
as straight lines. Stretched exponential portions of the average relaxation functions exist both for
small and large times for any values of the exponenta, small or large and all these stretched
exponentials have the same exponentb. We emphasize that, even though all these stretched
exponentials have the same exponentb, they may actually look very different because their
characteristic frequencies may vary very much. This fact is clearly illustrated in Fig. 4.

Figure 5 displays the departure of the different relaxation functions from a stretched expo-
nential in the nonintermittent case. Even for small values of the attenuation rates the exponential
regression leads to a large time saturation behavior which is very different from the one described
by a stretched exponential. In contrast the self-similar regression leads to a behavior close to the
one corresponding to a stretched exponential. Similarly in Fig. 6 the departure from the power law
relaxation is investigated for intermittent fluctuations. In this case, too, even for small regression
rates the exponential regression leads to incomplete relaxation whereas the self-similar attenuation
generates an average relaxation function with a long tail which is close to the one corresponding
to the static intermittent case.

The comparative analysis presented in this section shows that for the approach developed in
Sec. V the dynamical disorder decreases the efficiency of relaxation. For small regression rates the
self-similar attenuation of fluctuations leads to relaxation patterns similar to the ones correspond-
ing to the static processes. For exponential attenuation, however, even the slowest regression rate
leads to a different behavior corresponding to incomplete relaxation. For self-similar nonintermit-
tent dynamical disorder the stretched exponential relaxation behavior emerges for large times even
if the attenuation exponenta is very large; the corresponding stretched exponentials, although
characterized by the same fractal exponentb as in the static case, may be very different from the
static stretched exponential, because their characteristic frequencies may vary very much.

VII. DISCUSSION

In this section we discuss some physical implications of the approach suggested in Sec. V.
The physical interpretation of the method of computing path averages based on Eqs.~5.6!–~5.17!
is related to an apparently obscure mathematical problem, the choice of the initial and boundary
conditions for the evolution equations~5.21! or ~5.36! for the marginal averageF(W,t). In order
to ensure the normalization to unity of the average probability densityw(W)dW of an individual
relaxation rate, for solving the evolution equation~5.28! we have used the boundary condition
~5.31!. This boundary condition expresses the generation of new fluctuations which are then
destroyed by the regression process. In contrast, for solving the partial differential evolution
equations~5.21! or ~5.36! for the marginal averageF(W,t) no such similar boundary conditions
have been used. This omission of a boundary condition is required by the main characteristics of
the type of dynamical disorder investigated in Sec. V. The main assumption of our approach is that
the fluctuations are generated at the beginning of the relaxation process and then they regress as
the relaxation process is going on. We start out by considering an initial fluctuation with statistical
properties described by the probability densitywst(W)dW given by Eq.~5.25!, and then we follow
its regression during the relaxation process. As time increases, due to the regression process, the
channels with high relaxation rates lose their reactivity and their rates become smaller and smaller.
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During the relaxation process the size of a set of channels with high relaxation rates is shrinking;
of the average number̂N* & of channels involved in the process, more and more have low
relaxation rates, resulting in the decrease of efficiency described by the model. No mechanism of
transition of a channel from a state characterized by a small relaxation rate to a state with a high
relaxation rate is supposed to exist fort.0. Such a mechanism acts only at the beginning of the
process, fort50, when the fluctuations are generated and thus we should impose a boundary
condition only for this moment:

F~W5W* ,t50!5b/W* . ~7.1!

Such a condition, however, does not need to be taken explicitly into account in the computation
because it is contained in the initial condition~5.37!.

The above considerations are closely related to the physical interpretation of Eq.~5.28! for the
time evolution of the probability densityw(W)dW. From the physical point of view Eq.~5.28! is
a stochastic Liouville equation which describes the regression of fluctuations only and it would
lead to a probability loss*w(W)dW,1 if the generation of new fluctuations is not taken into
account. The introduction of the boundary condition~5.31! compensates the ‘‘probability loss’’
due to the regression process by an ‘‘influx of probability fluid’’ into the system. In contrast, the
compound stochastic Liouville equation~5.17!, which describes the relaxation process and Eq.
~5.36! derived from it, cannot accomodate a boundary condition of the type~5.31!. This limitation
is due to the Markovian approximation introduced in Sec. V. Within its framework a given feature
of the regression process can be modeled only by assuming that the regression frequencyv(t) is
generally time dependent, resulting in a time-inhomogeneous evolution equation for the overall
relaxation process for which a boundary condition of the type~5.31! cannot be formulated in a
simple way.

We emphasize that this type of pure regression mechanism without generation of new fluc-
tuations fort.0 is the only one which includes the case of the static disorder as a particular case,
corresponding to the situation when the rate of regression is equal to zero. If the fluctuations are
generated fort.0, the system is characterized by dynamical disorder, even if the regression
process is missing. Although, at least in principle, this type of dynamical disorder can also be
described by the dynamical Huber law~3.7! or by its intermittent analog~4.7!, it is different from
the type of dynamical disorder considered in Sec. V. Some preliminary research concerning the
generation of fluctuations fort.0 is presented in Ref. 19; it has been shown that, as expected, this
type of dynamical disorder leads to an increase in the efficiency of relaxation, because it generates
an increase in the number of channels with high relaxation rates. In particular, if the regression
process is missing, this type of dynamical disorder leads to a compressed exponential relaxation
described by the average survival function

^ l ~ t !&;exp~2constt11b!; 1.b.0. ~7.2!

Our analysis has shown that the self-similar regression has the remarkable feature that for
small regression rates it does not affect the shape of the average relaxation function, generating
only small corrections. Moreover, even for very large regression rates, for large times the process
is described by a stretched exponential with the same fractal exponentb as in the static case.
These results, which might provide an explanation for the universality of the stretched exponential
relaxation law, are consistent with the ideas developed by West36,37concerning the insensitivity of
the statistical fractal systems to random perturbations. From the mathematical point of view for the
model developed in Sec. V, this insensitivity is due to the slow decrease of the relaxation rates in
the case of self-similar regression, especially for large times.

At the end of this section we point out an apparent contradiction between the results reported
here and the results presented in Ref. 26. In Ref. 26 an analysis of the passage over a fluctuating
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activation energy barrier has been suggested based on a path average technique similar to the one
used in Sec. V. Although both models assume the existence of a pure regression mechanism for
t.0, the analysis from Ref. 26 shows that the dynamical disorder leads to an increase of the
transparency factor of the barrier which apparently contradicts the results reported here. The
explanation of this apparent paradox is simple. In Ref. 26 the regression of fluctuations leads to a
decrease in the height of the activation energy barrier, that is, to an increase of the speed of
relaxation, whereas for our model the regression of fluctuations leads to small rates.

VIII. CONCLUSIONS

In this paper an attempt has been made to construct dynamical analogs of the stretched
exponential relaxation. The main idea of the suggested approach is to search for the asymptotic
relaxation laws which emerge in the limit of a very large number of relaxation modes. The
mathematical structure of the theory is based on a formal functional generalization of the theory of
random point processes for which to each random point a random function is attached. In the limit
of very large numbers of relaxation modes two universal relaxation laws have been identified
corresponding to nonintermittent and intermittent dynamical fluctuations, respectively. An attempt
to evaluate the path averages entering the asymptotic relaxation laws has been made for Markov-
ian systems with pure regression. It has been shown that the regression of fluctuations leads to a
decrease of the efficiency of the relaxation process. For nonintermittent fluctuations the process is
relatively insensitive to the effect of self-similar attenuation of fluctuations, even for high regres-
sion rates. This effect might provide an explanation for the wide applicability of stretched expo-
nential law for describing various relaxation processes with dynamical disorder.

Further research should focus on the evaluation of the path averages for the more general case
when there is a competition between the generation and the extinction of fluctuations and on the
study of suitable applications. Ideal candidates for the application of the theory are the systems in
which a large number of degrees of freedom are involved in the relaxation process, for instance,
the protein–ligand interactions,7 or the ion channel kinetics,9 where the relaxation modes corre-
spond to a large number of molecular conformations.
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The Hamiltonian theory for the two-component AKNS hierarchy and Yajima–
Oikawa hierarchy is considered from the viewpoint of reduction. We show that the
second Hamiltonian structures of the former is a Dirac reduction of the sl~3! current
algebra, while the latter is related to the classicalW4

~3! algebra. ©1996 American
Institute of Physics.@S0022-2488~96!01905-8#

I. INTRODUCTION

The KP hierarchy is universal in the sense that various integrable systems are just special
reductions of it. The best known one is the so-calledn-reduction, which turns out to be the
Gelfand–Dickey hierarchy. Recently, another reduction, known as constrained KP hierarchy, is
proposed and studied considerably.1–4 This hierarchy is the result of generalizing Cao’s
nonlinearization5 to the 211-dimensional case. Interestingly, as the famous Gelfand–Dickey
hierarchy,6 the constrained KP hierarchy is not only mathematically important, but also has physi-
cal relevance. On the one hand, it contains physically applicable models, such as Yajima–Oikawa
model7 and Melnikov model.8 On the other hand, the constrained KP hierarchy is
Bi-Hamiltonian,4 has Darboux transformation,9 can be modified,10 and is relevant to theW algebra
theory.11 We also point out that the constrained KP is shown to be just a special case of a more
general restriction of the KP hierarchy.12

A generalization of the constrained KP hierarchy is considered.13 This may be termed as
multi-component constrained KP hierarchy, since it is the hierarchy associated with the following
Lax operator:

Ln5]n1un22]
n221•••1u01(

i51

m

qi]
21r i . ~1.1!

The corresponding flows may be constructed by means of Fractional Power Method~FPM!.6 In
the casen51, one has multi-component AKNS hierarchy, which includes the important coupled
nonlinear Schro¨dinger equation14 as a special case. For the casesn52 andn53, one has the
multi-component generalizations of the Yajima–Oikawa hierarchy and Melnikov hierarchy, re-
spectively. Sidorenko and Strampp13 further constructed recursion operators for the casesn52 and
n53 by means of variational calculus or residue calculus.15 They claimed that the factorization of
their recursion operators leads to bi-Hamiltonian structures for the related hierarchies~see Ref.
16!. We remark that while the residue calculus is very effective in constructing Hamiltonian
operators, this does not means that each operator calculated this way is Hamiltonian
automatically.15,17Since these operators are rather complicated, direct proof would be too tedious
to do by hand.

This paper is complemental to Sidorenko and Strampp’s results.13 The aim of the paper is
twofold: correcting an error of Sidorenko and Strampp and providing a proof for the Hamiltonian

a!Please direct correspondence to this address.
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nature of their operators. For simplicity, we will consider the simplest nontrivial cases: two-
component cases. We will show that the second Hamiltonian operator of the coupled Yajima–
Oikawa hierarchy is the Dirac reduction of the classicalW4

~3! algebra. This algebra is calculated by
Depireux and Mathieu.18 Thus, as a by-product, the coupled Yajima–Oikawa hierarchy is shown
to be related to thisW algebra. This is interesting in its own right. The generalization to the
multi-component case will be commented on in due course.

The paper is arranged as follows. The next section is on the two-component AKNS systems.
We show that the well-known recursion operator leads to a bi-Hamiltonian structure for this
hierarchy. The Hamiltonian nature of the second operator is proved by showing that it is the Dirac
reduction of the sl~3! current algebra. In Sec. III we present our main results: giving Sidorenko–
Strampp’s operator in its correct form and proving its Hamiltonian nature. That is, we prove
rigorously that the two-component Yajima–Oikawa hierarchy is bi-Hamiltonian. Section IV con-
tains some comments on generalizations of the results of Secs. II and III.

II. THE COUPLED AKNS HIERARCHY

We consider the two-component AKNS system next. This hierarchy has been known for a
long time. In fact, the very important coupled nonlinear Schro¨dinger equation14 is a reduction of
it. Its recursion operator is already calculated out.19 However, to the best of my knowledge, a
proof of the bi-Hamiltonian for the hierarchy is still not available. Even the hereditary property of
the recursion operator is not proved.

We start with the Lax operator

L15]2q1]
21r 12q2]

21r 2 . ~2.1!

The corresponding flows are

L1tk
5@„~L1!

k
…1 , L1#, ~2.2!

where subscript1 means the projection to the differential part.
The recursion operator for the hierarchy~2.2!19 is

R5F R1 2q1]
21r 2 22q1]

21q1 2q1]
21q22q2]

21q1

2q2]
21r 1 R2 2q1]

21q22q2]
21q1 22q2]

21q2

2r 1]
21r 1 r 1]

21r 21r 2]
21r 1 ~R1!* r 1]

21q2

r 1]
21r 21r 2]

21r 1 2r 2]
21r 2 r 2]

21q1 ~R2!*
G ,

~2.3!

whereR1 andR2 are defined by

R15]22q1]
21r 12q2]

21r 2 , R25]2q1]
21r 122q2]

21r 2 . ~2.4!

The recursion operator~2.3! has the following factorization:R5B1~B0!
21 with

B05F 0 0 1 0

0 0 0 1

21 0 0 0

0 21 0 0

G , ~2.5!

and
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B15F 2q1]
21q1 q1]

21q21q2]
21q1 R1 2q1]

21r 2

q1]
21q21q2]

21q1 2q2]
21q2 2q2]

21r 1 R2

2~R1!* 2r 1]
21q2 2r 1]

21r 1 r 1]
21r 21r 2]

21r 1

2r 2]
21q1 2~R2!* r 1]

21r 21r 2]
21r 1 2r 2]

21r 2

G ,
~2.6!

whereRi ~i51,2! are given by~2.4!.
Thus, the hierarchy has the following representation:

qtk5B0

dHk11

dq
5B1

dHk

dq
, ~2.7!

whereq5(q1 ,q2 ,r 1 ,r 2)
T andHk is defined by

Hk5
1

k
„Res~L1!

k
….

The explicit form of the first three Hamiltonians is

H152~q1r 11q2r 2!, H25
1
2~q1r 1x2r 1q1x1q2r 2x2r 2q2x!, H35

1
3~2r 1q1xx2r 2q2xx1q1xr 1x

1q2xr 2x13q1
2r 1

213q2
2r 2

216q1q2r 1r 22q1r 1xx2q2r 2xx!.

The first two flows are

q1t152q1x, q2t152q2x,

~2.8!
r 1t152r 1x, r 2t152r 2x,

and

q1t252q1xx12q1
2r 112q1q2r 2 ,

q2t252q2xx12q2
2r 212q1q2r 1 ,

~2.9!
r 1t25r 1xx22r 1

2q122r 1r 2q2 ,

r 2t25r 2xx22r 2
2q222q1r 1r 2 .

Our next task is to prove the Hamiltonian nature of the operator~2.6!. Since this operator is
obviously skew-symmetric and compatible with the operator~2.5!, the Hamiltonian property of the
operatorB1 will lead us to the conclusion: the coupled AKNS hierarchy~2.2! is a well-defined
bi-Hamiltonian system.

Remarks:

~1! Two compatible Hamiltonian operators ensure that the resulting recursion operator is heredi-
tary. We should stress that the hereditary property is an important property for a recursion operator
since such an operator makes the related flows commute.16

~2! We notice that Asano and Kato20 considered theN3N AKNS system and one may try to
construct the recursion operator of the coupled AKNS hierarchy by some reduction of their
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general formula. However, reduction often destroys the hereditary property, so one has to check
this property for the reduced operator by hand. This will be a much more involved calculation.
To prove our claim, we consider the general sl~3! spectral problem

F f
f1

f2

G
x

5F l2u1 q1 q2

r 1 u11u2 v

r 2 w 2l2u2
GF f

f1

f2

G[~lA1U !F, ~2.10!

now choosing the time evolution of the wave functionF asF t5VF. Then the zero-curvature
representation leads to

Ut5PU~V!2lQU~V!,

where the Poisson tensors defined by

PU5]1@•, U#, QU5@A, •#

introduce a bi-Hamiltonian structure, which is referred as the Zakharov–Shabat bi-Hamiltonian
structure~see Ref. 21 and the references there, for example!. Our main interest is the second one
and a straightforward calculation shows that the explicit form of thePU , which is denoted by
P(q,u) for convenience, reads as

P~q,u!53
0 0 ]1u212u1 w 2q1 0 2q2 0

0 0 v ]2u21u1 2q2 q2 0 2q1

]2u222u1 2v 0 0 r 1 0 0 r 2

2w ]2u11u2 0 0 r 2 2r 2 r 1 0

q1 q2 2r 1 2r 2
2
3] 2

1
3] 0 0

0 2q2 0 r 2 2
1
3]

2
3] 2v w

q2 0 0 2r 1 0 v 0 ]22u22u1

0 q1 2r 2 0 0 2w ]1u112u2 0

4 , ~2.11!

whereq5(q1 ,q2 ,r 1 ,r 2)
T andu5(u1 ,u2 ,v,w)

T.
We remark that this operator leads to so-called sl~3! current algebra.
In order to recover our candidate for the second Hamiltonian structureB1~2.6! from the

Hamiltonian operatorP(q,u) , we have to do a reduction by imposing the constraintu50. Indeed,
the reduction involved here is the so-called Dirac reduction which is discussed by Oevel and
Ragnisco.22 Basically, suppose we are given a space with the coordinatesq, u and a Poisson tensor

P~q,u!5FPqq Pqu

Puq Puu
G

on this space; then the Dirac reduction ofP(q,u) to the subspace spanned byq is provided by the
reduced Hamiltonian operator

Pq
~red!5Pqq~q,0!2Pqu~q,0!~Puu~q,0!…21Puq~q,0!,

where the existence of the operator„Puu(q,0)…
21 is assumed.

In the present case, we have
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Pqq5F 0 0 ]1u212u1 w

0 0 v ]2u21u1

]2u222u1 2v 0 0

2w ]2u11u2 0 0

G ,
Pqu5F2q1 0 2q2 0

2q2 q2 0 2q1

r 1 0 0 r 2

r 2 2r 2 r 1 0

G , Puq5F q1 q2 2r 1 2r 2

0 2q2 0 r 2

q2 0 0 2r 1

0 q1 2r 2 0

G ,
Puu5F 2

3] 2 1
3] 0 0

2 1
3]

2
3] 2v w

0 v 0 ]22u22u1

0 2w ]12u21u1 0

G .
Now the elementary calculation shows that the reduced Hamiltonian operatorPq

(red) is nothing but
our operatorB1. Thus, we complete our proof.

Remark:The first two flows~2.8! and ~2.9! have the following alternative representation:

qtk5B̂0

dHk11

dq
5B̂1

dHk

dq
, ~k51,2!,

whereq5(q1 ,q2 ,r 1 ,r 2)
T, and

B̂05B0

and

B̂15F 2q1]
21q1 2q1]

21q2 ]22q1]
21r 1 22q1]

21r 2

2q2]
21q1 2q2]

21q2 22q2]
21r 1 ]22q2]

21r 2

]22r 1]
21q1 22r 1]

21q2 2r 1]
21r 1 2r 1]

21r 2

22r 2]
21q1 ]22r 2]

21q2 2r 2]
21r 1 2r 2]

21r 2

G .
However, it can be shown that this is NOT a bi-Hamiltonian representation for the flows. In

fact, it can be proved that the resulting operatorR̂5B̂1~B̂0!
21 is not even hereditary.

III. THE COUPLED YAJIMA–OIKAWA HIERARCHY

The hierarchy we are interested in is associated to the following Lax operator:

L25]22u2q1]
21r 12q2]

21r 2 . ~3.1!

The flows, which may be calculated by means of fractional power method, have the following
representation:

utk5B0

dHk11

du
5B1

dHk

du
, ~3.2!

whereu5(u,q1 ,q2 ,r 1 ,r 2)
T and
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Hk5
2

k
„Res~L2!

k/2
… ~3.3!

and

B05F 22] 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 21 0 0 0

0 0 21 0 0

G ~3.4!

and

B153
2 1

2]
31u]1]u q1]1 1

2]q1 q2]1 1
2]q2 r 1]1 1

2]r 1 r 2]1 1
2]r 2

]q11
1
2q1]

3
2q1]

21q1 I ~q1 ,q2! I 1 2 1
2q1]

21r 2

]q21
1
2q2] I ~q2 ,q1!

3
2q2]

21q2 2 1
2q2]

21r 1 I 2

]r 11
1
2r 1] 2I 1* 2 1

2r 1]
21q2

3
2r 1]

21r 1 I ~r 1 ,r 2!

]r 21
1
2r 2] 2 1

2r 2]
21q1 2I 2

* I ~r 2 ,r 1!
3
2r 2]

21r 2

4 , ~3.5!

where I (v1 ,v2)[
1
2v1]

21v21v2]
21v1 , I 1[]22u2 3

2q1]
21r 12q2]

21r 2 , and
I 2[]22u2 3

2q2]
21r 22q1]

21r 1
Remark:We see that the first operatorB0 is the same as the one presented in Ref. 13.

However, the second one,B1, is not their operator. In fact, we may easily show that their operator,
which is mistakenly presented, does not qualify as a Hamiltonian operator.

Our next task is to prove that the hierarchy~3.2! is a bi-Hamiltonian system. That is to say, we
shall proveBi~i50,1! are compatible Hamiltonian operators. The Hamiltonian property ofB0 and
the compatibility condition are obvious. Thus, we need only to prove the Hamiltonian nature of
the operatorB1.

Our strategy is the same as before, and we consider the following more general spectral
problem:

fx5F 0 0 0 1

r 2 w1 v1 0

r 1 v2 w2 0

u1l q2 q1 2w12w2

Gf. ~3.6!

We see that the above form is the one presented in Ref. 18 for the classicalW4
~3! algebra from the

Hamiltonian reduction approach. To construct the related Hamiltonian structures, we may calcu-
late the Zakharov–Shabat bi-Hamiltonian structure21 as we did in Sec. II. Since the argument is
standard, we just give the results here. Two Hamiltonian operators are defined conveniently by the
following Poisson brackets:

$u~x!,u~y!%0522]d~x2y!, $q1~x!,r 1~y!%05d~x2y!, $q2~x!,r 2~y!%05d~x2y!,
~3.7!

and

$u~x!,u~y!%15~ 3
4„2]31]2~w11w2!2~w11w2!]

21~w11w2!]~w11w2!…1u]1]u!d~x2y!,

2312 Q. P. Liu: Coupled AKNS and coupled Yajima–Oikawa hierarchies

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



$u~x!,q1~y!%15„q1]2q1~w112w2!2q2v1…d~x2y!,

$u~x!,q2~y!%15„q2]2q2~2w11w2!2q1v2…d~x2y!,

$u~x!,r 1~y!%15„]r 11r 1]1r 1~w112w2!1r 2v2…d~x2y!,

$u~x!,r 2~y!%15„]r 21r 2]1r 2~w212w1!1r 1v1…d~x2y!,

$u~x!,wi~y!%152 1
4~]1w11w2!]d~x2y!,

$q1~x!,r 1~y!%15„]21]w22u1~w112w2!~]2w2!1v1v2…d~x2y!,

$q1~x!,r 2~y!%15„]v11v1]12~w11w2!v1…d~x2y!, ~3.8!

$q1~x!,v2~y!%152q2d~x2y!,

$q1~x!,w2~y!%152q1d~x2y!, $q2~x!,r 1~y!%15„]v21v2]12~w11w2!v2…d~x2y!,

$q2~x!,r 2~y!%15„]21]w12u1~2w11w2!~]1w1!1v1v2…d~x2y!,

$r 1~x!,v1~y!%15r 2d~x2y!, $r 1~x!,w2~y!%15r 1d~x2y!,

$r 2~x!,v2~y!%15r 1d~x2y!, $r 2~x!,w1~y!%15r 2d~x2y!,

$v1~x!,v2~y!%15~]2w11w2!d~x2y!, $v1~x!,wi~y!%157v1d~x2y!,

$v2~x!,wi~y!%156v2d~x2y!, $wi~x!,wj~y!%15~d i j2
1
4!]d~x2y!,

wherei , j51,2, and all other brackets vanish.
This Poisson bracket algebra~3.8! is equivalent to the classicalW4

~3! algebra.18 We also notice
that the spectral problem~3.6! is a special case of the more general problem considered recently
by Feher and Marshall.23 In their notation, our case corresponds to the partition:n54521111(r
52,s52,p51). Thus, our brackets~3.7! and ~3.8! also follow from their general structures.

We see that the first Hamiltonian bracket~3.7! is degenerate in this general case. That means
the general flows are not a well-defined bi-Hamiltonian system since we are not able to form the
important recursion operator. Therefore, we have to do reduction. Indeed, by Dirac reduction
described in the above section, we find that the Poisson bracket~3.8! is reduced to the bracket
introduced by the operatorB1. Thus, we recover the second structureB1 by the Dirac reduction
and we complete our proof.

Here we remark that we have a by-product: we find that the coupled Yajima–Oikawa hierar-
chy ~3.2! is the hierarchy related to the classicalW4

~3! algebradirectly in the sense of Ref. 18.

IV. SUMMARY

In this paper, we studied the coupled AKNS hierarchy and coupled Yajima–Oikawa hierarchy
from the bi-Hamiltonian viewpoint. We prove rigorously that both hierarchies are well-defined
bi-Hamiltonian systems. For the coupled Yajima–Oikawa hierarchy, we corrected an error of Ref.
13. Also, we showed that this hierarchy is just the one related to the classicalW4

~3! algebra
directly.18 The present consideration may be generalized to the generic multi-component case
although the calculation will be extremely tedious.
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It is interesting and important to construct the modified hierarchies of the hierarchies of Secs.
II and III. We notice that for the nonreduced hierarchies, this problem is considered in Ref. 23. In
general, doing reduction often destroys the related Miura maps, and it is necessary to consider the
reduced hierarchies separately.
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The W11`(gl s)-symmetries of the s -component KP
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Adler, Shiota, and van Moerbeke obtained for the KP and Toda lattice hierarchies
a formula which translates the action of the vertex operator on tau-functions to an
action of a vertex operator of pseudodifferential operators on wave functions. This
relates the additional symmetries of the KP and Toda lattice hierarchy to the
W11`2, respectively,W11` 3 W11`2 algebra symmetries. In this paper we gener-
alize the results to thes-component KP hierarchy. The vertex operators generate
the algebraW11`(gls), the matrix version ofW11`. Since the Toda lattice hierar-
chy is formally equivalent to the 2-component KP hierarchy, the results of this
article uncover in that particular case a much richer structure than the one obtained
by Adler, Shiota, and van Moerbeke. ©1996 American Institute of Physics.
@S0022-2488~96!02004-X#

I. INTRODUCTION

The KP hierarchy is the set of deformation equations

]L

]tk
5@~Lk!1 ,L#,

for the first-order pseudodifferential operator

L[L~x,t !5]1u1~x,t !]
211u2~x,t !]

221••• ,

here]5]/]x and t5(t1 ,t2 ,...). It is well-known thatL dresses asL5P]P21 with

P[P~t,x,t !511a1~x,t !]
211a2~x,t !]

221•••5
t~x,t2@]21# !

t~x,t !
,

wheret is the famoust-function, introduced by the Kyoto group1–3 and [z]5(z,z2/2,z3/3,...).
The wave or Baker–Akhiezer function

C[C~t,x,t,z!5W~t,x,t,]!ezx,

where

W[W~t,x,t,z!5P~t,x,t !ej~ t ! with j~ t !5 (
k51

`

tk]
k

is an eigenfunction ofL, viz.,

a!Electronic mail: vdleur@math.utwente.nl

0022-2488/96/37(5)/2315/23/$10.00
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LC5zC and
]C

]tk
5~Lk!1C.

From this point of view, the introduction by Orlov and Schulman4 of another pseudodifferential
operatorM[M (x,t)5WxW21 which action onC amounts to

MC5
]C

]z

is rather natural.
Recently, Adler, Shiota, and van Moerbeke5,6 proved a conjecture of Orlov and Schulman,

viz., that there exists a relation between (MlLk1 l)2 acting on C and the generators
Wk

( l11);2tk1 l(]/]t) l of theW11`-algebra acting on thet-function. More explicitly, let

Y~t,y,w!5(
l50

`
~y2w! l

l ! (
kPZ

MlLk1 lw2k2 l21

be the generating series of theMlLk1 l and let

W~y,w!5(
l50

`
~y2w! l

l ! (
kPZ

Wk
~ l11!w2k2 l21

5
1

y2w
exp S x~y2w!1 (

k51

`

tk~y
k2wk!D expS 2 (

k51

`
]

]tk

y2k2w2k

k D ~1.1!

be the vertex operator of the KP hierarchy, then one has the following formula:5

2Y~t,y,w!2C~t,x,t,z!5C~t,x,t,z!S exp2 (
k51

`
]

]tk

z2k

k
21D SW~y,w!t~x,t !

t~x,t ! D . ~1.2!

Dickey gave another proof of this formula.7 The ‘‘geometric interpretation’’ of this Adler–
Shiota–van Moerbeke formula is as follows. The transformationelW(y,w)511lW(y,w) is a
symmetry transformation or a kind of auto-Ba¨cklund transformation of the KP hierarchy. If one
rewrites~1.2! as

2lY~t,y,w!2C~t,x,t,z!5C~t,x,t,z!S exp2 (
k51

`
]

]tk

z2k

k
21D S elW~y,w!t~x,t !

t~x,t ! D , ~1.3!

then one easily sees that~1.2! is in fact a formula that relates this Ba¨cklund transformation to the
so-called additional symmetries of the KP hierarchy. To be more precise, lets be the new solution
of the KP hierarchy which one obtains fromt by this Bäcklund transformation, i.e.,s5elW(y,w)t,
then

C~s,x,t,z!5s~x,t !21exp2 (
k51

`
]

]tk

z2k

k
s~x,t !ej~ t !ezx

5
t~x,t !

s~x,t !
exp2 (

k51

`
]

]tk

z2k

k S elW~y,w!t~x,t !

t~x,t ! DC~t,x,t,z!

5C~t,x,t,z!1
t~x,t !

s~x,t ! S exp2 (
k51

`
]

]tk

z2k

k
21D S elW~y,w!t~x,t !

t~x,t ! DC~t,x,t,z!.
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Now using~1.3! one obtains

C~s,x,t,z!5S 12l
t~x,t !

s~x,t !
Y~t,y,w!2DC~t,x,t,z!.

HenceY(t,y,w)2 produces, as a consequence of formula~1.2!, the Bäcklund transformation of
the wave function corresponding tot.

Adler, Shiota, and van Moerbeke also treated in Ref. 6 the Toda lattice hierarchy of Ueno and
Takasaki8 and showed that an analogous formula also holds. In their treatment they considered
two vertex operators, each depending on a different time flowt ( j )5(t1

( j ) ,t2
( j ) ,...), j51,2, of a form

similar to that of~1.1!. Hence TheW11`-algebra of the KP hierarchy is replaced by two copies of
this algebra.

Using 232-matrix pseudodifferential operators instead of infinite shift operators, one can
show that the Toda lattice hierarchy is formally equivalent to the 2-component KP hierarchy as
treated by Kac and the author in Ref. 9. In that case there are however more vertex operators than
only the ones of the form~1.1!, viz., one also has

W~ab!~y,w!5
C~ab!~y,w!

~y2w!dab
exp S x~y2w!1 (

k51

`

~ tk
~a!yk2tk

~b!wk!D
3exp2 (

k51

`
1

kS ]

]tk
~a! y

2k2
]

]tk
~b! w

2kD ,
hereC(ab)(y,w) are operators that act on the twisted group algebra of the root lattice ofsl2. A
natural question now is: Are there also matrix pseudodifferential operators such that a formula as
~1.2! hold for theseW(ab)(y,w)? In this article we show that a similar result holds, not only for the
2-component KP hierarchy, but in general for thes-component KP hierarchy. One finds that the
natural generalization ofW11` is not (W11`)

s butW11`(gls), the central extension of the algebra
of differential operators on~C@t,t21#!s. Hence one can conclude, at least formally as we will show
in Sec. VII, that the results of Ref. 6 for the Toda lattice hierarchy are not complete, but that the
structure is richer.

It is a pleasure to thank Gerard Helminck, Peter van den Heuvel, Pierre van Moerbeke, and
Takahiro Shiota, for useful discussions.

II. a` AND THE KP HIERARCHY IN THE FERMIONIC PICTURE (REF. 9)

Consider the infinite dimensional complex Lie algebraa` : 5 gl` % Cc, where

gl`5$a5~ai j ! i , jPZ11/2uai j50 if u i2 j u@0%,

with Lie bracket defined by

@a1ac,b1bc#5ab2ba1m~a,b!c, ~2.1!

for a,b P gl` anda, bPC. Herem is the following 2-cocycle:

m~Ei j ,Ekl!5d i ld jk„u~ i !2u~ j !… ~2.2!

with Ei j the matrix that has a 1 on the (i , j )-th entry and zeros elsewhere andu: R→C the function
defined by

u~ i !:5 H 0 if i.0,
1 if i<0. ~2.3!
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Let C` 5 % jPZ11/2Cv j be the infinite dimensional complex vector space with fixed basis
$v j% jPZ11/2. The Lie algebraa` acts linearly onC` via the usual formula:

Ei j ~vk!5d jkv i .

We introduce, following Ref. 10, the corresponding semi-infinite wedge spaceF5L1/2̀ C`, this is
the vector space with a basis consisting of all semi-infinite monomials of the formv i1 ` v i2
` v i3••• , wherei 1. i 2. i 3.••• and i l115 i l21 for l@0. In order to describe representations of
the Lie algebra on this space, we find it convenient to define wedging and contracting operators
cj

2 andcj
1 ~jPZ11

2! on F by

c j
2~v i1`v i2`••• !5H 0, if j52 i s for some s

~21!sv i1`v i2•••`v i s`v2 j`v i s11
`••• , if i s.2 j. i s11

,

c j
1~v i1`v i2`••• !5H 0, if jÞ i s for some s

~21!s11v i1`v i2•••`v i s21
`v i s11

`••• , if j5 i s .

These wedging and contracting operators satisfy the following relations~i , jPZ11
2,l,m51,2!:

c i
lc j

m1c j
mc i

l5dl,2md i ,2 j , ~2.4!

hence they generate a Clifford algebra, which we denote byC l .
Introduce the following elements ofF~mPZ!:

u2m&5vm21/2̀ vm23/2̀ vm25/2̀ ••• .

It is clear thatF is an irreducibleC l -module such thatcj
6u0&50 for j.0. Define a representation

r̂ of a` on F by

r̂ ~Ei j !5:c2 i
2 c j

1 :, r̂ ~c!5I , ~2.5!

where : : stands for thenormal ordered productdefined in the usual way~l,m51 or 2!:

:ck
lc l

m5H ck
lc l

m , if l>k

2c l
mck

l , if l,k.
~2.6!

Define thecharge decomposition

F5 %

mPZ
F ~m! ~2.7!

by letting

charge~ u0!)50 and charge~c j
6!561. ~2.8!

It is easy to see that eachF (m) is an irreduciblea`-highest weight module with highest weight
vector um&.

We are now able to define theKP hierarchy in the fermionic picture, it is the equation

(
kPZ1

1
2

ck
1t ^ c2k

2 t50, ~2.9!
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for tPF ~0!. One can prove~see, e.g., Ref. 10 or 11! that this equation characterizes the group orbit
of the vacuum vectoru0& for the the groupGL` . Since the group does not play an important role
in this article, we will not introduce it here.

III. W11`(gl s) AS SUBALGEBRA OF a`

Let ei , 1< i<s be a basis ofCs. By identifying ~C@t,t21#!s with C`, we can embedW11`(gls)
into a` . This, however, can be done in many different ways, the simplest one is the following. We
put ~1<a<s, jPZ1 1

2!:

v j
~a!5vs j1~1/2!~s22a11!5t2 j21/2ea , c j

6~a!5cs j6~1/2!~s22a11!
6 . ~3.1!

Notice that with this relabeling we have:ck
6(a)u0&50 for k.0. We introduce the generating series

of the fermions, the so-called fermionic fields~zPC3!:

c6~a!~z!5
def

(
kPZ1

1
2

ck
6~a!z2k21/2. ~3.2!

We also rewrite theEjk’s:

Ej ,k
~ab!5Esj1~1/2!~s2sa11!,sk1~1/2!~s22b11! , ~3.3!

then r̂ (Ejk
(ab))5:c2 j

2(a)ck
1(b):.

We can associate to~C@t,t21#!s the Lie algebra of differential operators on this space, it has as
basis the operators:

2tk1 l S ]

]t D
l

ei j , for kPZ, lPZ1 , 1< i , j<s.

We will denote this Lie algebra byD(gls). We can embed this algebra via~3.1! into gl` and also
into a` , one finds

2tk1 l S ]

]t D
l

ei j° (
mPZ

2m~m21!•••~m2 l11!E2m2k21/2,2m21/2
~ i j ! . ~3.4!

It is straightforward, but rather tedious, to calculate the corresponding 2-cocycle, the result is as
follows ~see also Refs. 12–14!. Let f (t),g(t)PC@t,t21# anda,bPgls then

mS f ~ t !S ]

]t D
l

a,g~ t !S ]

]t D
m

bD5
l !m!

~ l1m11!!
Rest50dt f

~m11!~ t !g~ l !~ t !trace~ab!.

Hence in this way we get a central extensionW11`(gls)5D(gls)%Cc of D(gls) with Lie bracket

F f ~ t !S ]

]t D
l

a1ac,g~ t !S ]

]t D
m

b1bcG5 f ~ t !S ]

]t D
l

g~ t !S ]

]t D
m

ab2g~ t !S ]

]t D
m

f ~ t !S ]

]t D
l

ba

1mS f ~ t !S ]

]t D
l

a,g~ t !S ]

]t D
m

bD c. ~3.5!

Since we have the representationr̂ of a` , we find that

r̂ S 2tk1 l S ]

]t D
l

ebaD5 (
mPZ

m~m21!•••~m2 l11!:c2m21/2
1~a! cm1k11/2

2~b! :.
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In terms of the fermionic fields~3.2!, we find

(
kPZ

r̂ S 2tk1 l S ]

]t D
l

ebaD z2k2 l215:
] lc1~a!~z!

]zl
c2~b!~z!:. ~3.6!

Now define

Wk
~ab,l11! :5 r̂ S 2tk1 l S ]

]t D
l

ebaD , W~ab,l11!~z!:5(
kPZ

Wk
~ab,l11!z2k2 l21, ~3.7!

then

W~ab!~y,z!:5:c1~a!~y!c2~b!~z!:5(
l50

`
~y2z! l

l !
W~ab,l11!~z!

5(
l50

`
~y2z! l

l ! (
kPZ

Wk
~ab,l11!z2k2 l21. ~3.8!

IV. THE s -COMPONENT BOSON FERMION CORRESPONDENCE

Using a bosonization one can rewrite~2.9! as a system of partial differential equations and
express the basis elements ofW11`(gls) in terms of vertex operators. We begin by introduce
bosonic fields (1< i<s):

a~ i !~z![(
kPZ

ak
~ i !z2k215

def

:c2~ i !~z!c1~ i !~z!:. ~4.1!

Sincea ( i )(z)52W( i i ,1)(z), one easily checks that the operatorsak
( i ) satisfy the canonical com-

mutation relation of the associative oscillator algebra, which we denote bya:

@ak
~ i ! ,a l

~ j !#5kd i jdk,2 l , ~4.2!

and one has

ak
~ i !um&50 for k.0. ~4.3!

It is easy to see that restricted toĝl s , which is the subalgebra generated by the elements
Wk

( i j ,1), F ~0! is its basic highest weight representation~see Ref. 15, Chap. 12!.
We will now describe thes-component boson–fermion correspondence~see Ref. 9!. Let L be

a lattice with a basisd1,...,ds overZ and the symmetric bilinear form (d i ud j )5d i j , wheredi j is the
Kronecker symbol. Let

e i j5 H 21, if i. j
1, if i< j . ~4.4!

Define a bimultiplicative functione: L3L→$61% by letting

e~d i ,d j !5e i j . ~4.5!

Let d5d11•••1ds , Q5$gPLu(dug)50%, D5$a i j :5d i2d j u i , j51,...,s,iÞ j %. Of courseQ is
the root lattice ofsls~C!, the setD being the root system.

Consider the vector spaceC[L] with basiseg, gPL, and the following twisted group algebra
product:
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eaeb5e~a,b!ea1b. ~4.6!

Let C[ t] be the space of polynomials in indeterminatest5$tk
( i )%, k51,2,...,i51,2,...,s and denote

by B5C[ t] ^cC[L] be the tensor product of these algebras. Then thes-component boson–fermion
correspondence is the vector space isomorphism

s:F→
;

B, ~4.7!

given bys~u0&!51 and

sc6~a!~z!s215e6daz6da expS 6 (
k51

`

tk
~a!zkD expS 7 (

k51

`
]

]tk
~a!

z2k

k D , ~4.8!

where

da„p~ t ! ^eg
…5~daug!p~ t ! ^eg. ~4.9!

The transported charge then is as follows:

charge„p~ t ! ^eg
…5~dug!.

We denote the transported charge decomposition byB 5 %mPZ B
(m), then the transported action of

the operatorsam
( i ) is given by

H sa2m
~ j ! s21

„p~ t ! ^eg
…5mtm

~ j !p~ t ! ^eg, if m.0,

sam
~ j !s21

„p~ t ! ^eg
…5

]p~ t !

]tm
^eg, if m.0,

sa0
~ j !s21

„p~ t ! ^eg
…5~d j ug!p~ t ! ^eg.

~4.10!

If one substitutes~4.8! into ~3.8!, one obtains the following vertex operator expression for the
generating series of the fieldsW(ab,l11)(z):

W~ab!~y,z!5
1

~y2z!dab
~X~ab!~y,z!2dab!,

where

X~ab!~y,z!5e~da ,db!e
da2dbydaz2dbX̃~ab!~y,z!, ~4.11!

and

X̃~ab!~y,z!5expS (
k51

`

„tk
~a!yk2tk

~b!zk…D expS 2 (
k51

` S ]

]tk
~a!

y2k

k
2

]

]tk
~b!

z2k

k D D .
The fields for whichl50, give the vertex operator realization of the homogeneous realization

of ĝl s , which was first found by Frenkel and Kac
16 and independently by Segal17 ~see also Ref. 18

for more details!.
Using the isomorphisms we can reformulate the KP hierarchy~2.9! in the bosonic picture.

We start by observing that~2.9! can be rewritten as follows:
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Resz50 dzS (
j51

s

c1~ j !~z!t ^ c2~ j !~z!t D 50, tPF ~0!. ~4.12!

Notice that fortPF ~0!, s~t!5(gPQ tg(t)e
g. Here and further we writetg(t)e

g for tg(t)^eg.

Using~4.8!, Eq.~4.12! turns unders ^ s:F ^ F→
;

C@ t,t8# ^ (C@L# ^ C@L8#) into the following set
of equations; for alla,bPL such that~aud!52~bud!51 we have:

Resz50S dz(
j51

s

e~d j ,a2b!z~d j ua2b22d j !expS (
k51

`

~ tk
~ j !2tk

~ j !8!zkD
3expS 2 (

k51

` S ]

]tk
~ j !2

]

]tk
~ j !8D z2k

k D ta2d j
~ t !~ea!tb1d j

~ t8!~eb!8D 50. ~4.13!

Notice that ifs52, the set of equations~4.13! are formally equivalent~for more generalt! to the
Toda lattice hierarchy of Ueno and Takasaki.8 For this reason,we assume from now on that
t5(tae

a is any solution of~4.13!. Hence formally the results of this article also hold for the Toda
lattice hierarchy, as we will show explicitly in Sec. VII.

In order to define the equations~4.13! in terms of formal pseudodifferential operators it will
be convenient to replacetk

( j ) by tk
( j )1dk,1x and to introduce the notations

j~ j !~ t,z!5(
i51

`

t i
~ j !zi , j~ j !~x,t,z!5zx1j~ j !~ t,z!

and

h~ j !~ t,z!5(
i51

`
]

]t i
~ j !

z2 i

i
.

Next we replacea resp.b by a1di andb2dk then for alla,bPQ and 1< i ,k<s ~4.13! turns into

Resz50 dzS (
j51

s

e~d j ,a1d i2b1dk!z
~d j ua2b1d i1dk22d j !

3ej~ j !~x,t,z!2j~ j !~x8,t8,z!e2h~ j !~ t,z!1h~ j !~ t8,z!ta1d i2d j
~x,t !

3~ea1d j !tb1d j2dk
~x8,t8!~eb2dk!8D 50. ~4.14!

V. THE ALGEBRA OF FORMAL PSEUDODIFFERENTIAL OPERATORS AND THE
s-COMPONENT KP HIERARCHY AS A DYNAMICAL SYSTEM

We proceed now to rewrite the formulation~4.14! of thes-component KP hierarchy in terms
of formal pseudodifferential operators, generalizing the results of Refs. 1–3. For more details see
Ref. 9. For eachaPsuppt:5$aPQut5(aPQ tae

a,taÞ0% we define the~matrix valued! func-
tions

C6~a,z![C6~ta ,x,t,z!5„C i j
1~ta ,x,t,z!…i , j51

s ~5.1!

as follows:
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C i j
6~ta ,x,t,z!5

def

e~d j ,a1d i !z
~d j u6a1d i2d j !e6j~ j !~x,t,z!e7h~ j !~ t,z!ta6~d i2d j !

~x,t !/ta~x,t !

5e~d j ,a1d i !z
~d j u6a1d i2d j !ta6~d i2d j !

~x,t ~k!7d jk@z
21# !/

ta~x,t !e6j~ j !~x,t,z!, ~5.2!

where [w]5(w,w2/2,w3/3,...). It is easy to see that Eq.~4.14! is equivalent to the following
bilinear identity:

Resz50 C1~ta ,x,t,z! tC2~tb ,x8,t8,z!dz50 for all a,bPQ. ~5.3!

Defines3s matricesS6(m)(ta ,x,t) by the following generating series@cf. ~5.2!#:

(
m50

`

Si j
6~m!~ta ,x,t !~6z!2m5e j i z

d i j21e7h~ t,z!ta6~d i2d j !
~x,t !/ta~x,t !

5e j i z
d i j21ta6~d i2d j !

~x,t ~k!7d jk@z
21# !/ta~x,t !. ~5.4!

We see from~5.2! thatC6~ta ,x,t,z! can be written in the following form:

C6~ta ,x,t,z!5S (
m50

`

S6~m!~ta ,x,t !R
6~a,6z!~6z!2mD e6j~x,t,z!, ~5.5!

where

R6~a,z!5(
i51

s

e~d i ,a!eii ~6z!6~d i ua!. ~5.6!

As beforeei j stands for thes3s matrix whose (i , j ) entry is 1 and all other entries are zero. Let

]5
]

]x
,

we can now rewriteC6~ta ,x,t,z! in terms of formal pseudodifferential operators, define

e6j~ t,6]!5(
j51

s

e6j~ j !~ t,6]!ej j ,

P6~a![P6~ta ,x,t,]!5I s1 (
m51

`

S6~m!~ta ,x,t !]
2m, ~5.7!

R6~a![R6~a,]! and W6~a![W6~ta ,x,t,z!5P6~a!R6~a!e6j~ t,6]!

then

C6~ta ,x,t,z!5W6~a!e6zx5P6~a!R6~a!e6j~ t,6]!e6zx. ~5.8!

As usual one denotes the differential part ofP(x,t,]) by P1(x,t,])5( j>0 Pj (x,t)]
j , and

writesP25P2P1 . The linear anti-involution* is defined by the following formula:
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S (
j
Pj]

j D *5(
j

~2]! j + tPj . ~5.9!

Here and furthertP stands for the transpose of the matrixP. Then one has the following funda-
mental lemma:

Lemma 5.1: Let P,Q be two formal pseudodifferential operators, then

~PQ* !5(
i,0

Ri]
i

if and only if

Resz50 dz„P~x,]!ezx…t„Q~x8,]8!e2zx8
…5(

i,0
Ri~x!

~x2x8!2 i21

~2 i21!!
.

Proof: Let y5x2x8, P(x,z)5(Pi(x)z
i andQ(x,z)5(Qi(x)(2z) i , then

Resz50 dz„P~x,]!ezx…t„Q~x8,]8!e2zx8
…5Resz50 dz P~x,z!(

k>0

~21!k

k!

]k tQ~x,2z!

]xk
ykezy

5Resz50 dz (
k,l>0,i , j

~21!k

k!
Pi~x!

]k tQj~x!

]xk
yk1 l

l !
zi1 j1 l

5 (
k>0,i1 j<21

~21!k

k! ~2 i2 j21!!
Pi~x!

]k tQj~x!

]xk
yk2 i2 j21

5 (
k>0,i1 j<21

S i1 j
k DPi~x!

]k tQj~x!

]xk
yk2 i2 j21

~k2 i2 j21!!
.

~5.10!

Next we calculate

„P~x,]!Q* ~x,]!…25S (
i , j

Pi~x!] i1 j tQj~x! D
2

5S (
k>0,i , j

S i1 j
k DPi~x!

]k tQj~x!

]xk
] i1 j2kD

2

5S (
k>0,i1 j2k,0

S i1 j
k DPi~x!

]k tQj~x!

]xk
] i1 j2kD

2

5 (
k>0,i1 j<21

S i1 j
k DPi~x!

]k tQj~x!

]xk
] i1 j2k, ~5.11!

here we have used the fact that (k
i1 j )50 if i1 j.0 and i1 j2k,0. Now comparing~5.10! and

~5.11! gives the desired result. h

Using this lemma one deduces the following

„W1~ta ,x,t,]!W2~tb ,x,t8,]!* …250. ~5.12!
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By putting t5t8, one proves in a similar way as in Ref. 9 that givenbPsuppt, all the pseudo-
differential operatorsP6~a!, aPsuppt, are completely determined byP1~b! from the following
equations

R2~a!215R1~a!* , ~5.13!

P2~a!5„P1~a!* …21, ~5.14!

„P1~a!R1~a2b!P1~b!21
…250 for all a,bPsuppt. ~5.15!

This and the above lemma can be used to prove the following proposition which will be crucial
later on. Adler, Shiota, and van Moerbeke stated this proposition in the 1-component case.6

Proposition 5.2: LetC6(a,x,t,z) satisfy the bilinear identity (5.3) forb5a and let Q(x,t,])
be an arbitrary pseudodifferential operator. Then Q is a differential operator if and only if

Resz50 dz Q~x,t,]!C1~ta ,x,t,z! tC2~ta ,x8,t8,z!50. ~5.16!

Proof: Suppose thatQ is a differential operator, then since by Lemma 5.1
W1(ta ,x,t,])W

2(ta ,x,t8,]) is a differential operator

„Q~x,t,]!W1~ta ,x,t,]!W2~ta ,x,t8,]!* …250. ~5.17!

Conversely, suppose~5.16! holds, then again by Lemma 5.1~5.17! holds. Now putt5t8, and use
~5.13!–~5.14!, then one deduces thatQ(x,t,])250. h

In Ref. 9 Victor Kac and the author also showed the following.
Proposition 5.3: ConsiderC1(ta ,x,t,z) andC2(ta ,x,t,z), aPQ, of the form (5.8), then the

bilinear identity (5.3) for alla,bPsuppt is equivalent to the Sato equation:

]P1~a!

]tk
~ j ! 52„P1~a!ej j ]

kP1~a!21
…2P

1~a!, ~5.18!

for eachaPsuppt and the matching conditions (5.13)–(5.15) for all a,bPsuppt.
As a consequence of~5.18! one obtains for eachW1~a!:

]W1~a!

]tk
~ j ! 5„P1~a!ej j ]

kP1~a!21
…1W

1~a!5„W1~a!ej j ]
kW1~a!21

…1W
1~a!. ~5.19!

Fix t and a,bPQ, introduce the following formal pseudodifferential operatorsL~a!, G, M ~a!,
N~a,b!, D( i j ), C( i j )~a! and differential operatorsBm

( i j )~a!:

2325Johan van de Leur: The W11`(gls)-symmetries of the KP hierarchy

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



L~a!5W1~a!]W1~a!215P1~a!]P1~a!21,

G5x1 (
a50

s

(
k50

`

ktk
~a!]k21eaa ,

M ~a!5W1~a!xW1~a!215P1~a!R1~a!GR1~a!21P1~a!21,

N~a,b!5W1~a!W1~b!215P1~a!R1~a2b!P1~b!21, ~5.20!

D~ i j !5ej~ t,]!ei j e
2j~ t,]!,

C~ i j !~a!5W1~a!ei jW
1~a!215P1~a!R1~a!D~ i j !R1~a!21P1~a!21,

Bm
~ i !~a!5„W1~a!eii ]

mW1~a!21
…1 .

Notice thatM~a! and C( i j )(a) are not well-defined pseudodifferential operators. One should
regard them as a product of operators onC1~a,z!.

Here we writex for xIs . Denote byC( i )(a)5C( i i )(a). Then

@L~a!,M ~a!#5I s , (
i51

s

C~ i !~a!5I s , C~ i j !~a!L~a!5L~a!C~ i j !~a!,

C~ i j !~a!C~kl !~a!5d jkC
~ i l !~a!, L~a!N~a,b!5N~a,b!L~b!,

~5.21!
M ~a!N~a,b!5N~a,b!M ~b!, C~ i j !~a!N~a,b!5N~a,b!C~ i j !~b!,

N~a,b!N~b,g!5N~a,g!.

Remark 5.4: (i) It is our purpose to describe the general operators

Yk
~ab,l11!~a,b!5W1~a!xl]k1 leabW

1~b!21.

One can express them in the operators defined in (5.20), viz.,

Yk
~ab,l11!~a,b!5M ~a! lL~a!k1 lC~ab!~a!N~a,b!.

(ii) Notice that (5.14) is equivalent to N~a,b!250, so from now on we will assume that N~a,b!
is a differential operator.

Proposition 5.5: If for everya,bPQ the formal pseudodifferential operators L~a!, M ~a!,
C( i j )~a! and the differential operators N~a,b! satisfy conditions (5.21) and if the equations

5
L~a!P1~a!R1~a!5P1~a!R1~a!] @or equivalently L~a!P1~a!5P1~a!]#,
M ~a!P1~a!R1~a!5P1~a!R1~a!G,
N~a,b!P1~b!R1~b!5P1~a!R1~a!,
C~ i j !~a!P1~a!R1~a!5P1~a!R1~a!D~ i j !,
]P1~a!

]tk
~ j ! 52„C~ j !~a!L~a!k…2P

1~a!

~5.22!

have a solution P1~a! of the form (5.7), then the differential operators Bk
( j )~a! satisfies the

following conditions:
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5
]L~a!

]tk
~ j ! 5@Bk

~ j !~a!,L~a!#,

]M ~a!

]tk
~ j ! 5@Bk

~ j !~a!,M ~a!#,

]N~a,b!

]tk
~ j ! 5Bk

~ j !~a!N~a,b!2N~a,b!Bk
~ j !~b!,

]C~ i l !~a!

]tk
~ j ! 5@Bk

~ j !~a!,C~ i l !~a!#.

~5.23!

Now ~5.23! implies that

]Ym
~ab,l11!~a,b!

]tk
~ j ! 5Bk

~ j !~a!Ym
~ab,l11!~a,b!2Ym

~ab,l11!~a,b!Bk
~ j !~b!.

Notice that the conditions~5.22! are equivalent to one of the following conditions:

5
L~a!W1~a!5W1~a!],

M ~a!W1~a!5W1~a!x,

N~a,b!W1~b!5W1~a!,
C~ i j !~a!W1~a!5W1~a!ei j ,
]W1~a!

]tk
~ j ! 5Bk

~ j !~a!W1~a!,
5
L~a!C1~a,z!5zC1~a,z!,

M ~a!C1~a,z!5
]C1~a,z!

]z
,

N~a,b!C1~b,z!5C1~a,z!,
C~ i j !~a!C1~a,z!5C1~a,z!ei j ,
]C1~a,z!

]tk
~ j ! 5Bk

~ j !~a!C1~a,z!.

~5.24!

VI. THE ADLER–SHIOTA–VAN MOERBEKE FORMULA

Fix a,bPQ and recall

Yk
~ab,l11!~a,b![Yk

~ab,l11!~ta ,tb!5W1~a!xl]k1 leabW
1~b!21, ~6.1!

then define

Y~ab!~a,b,y,w![Y~ab!~ta ,tb ,y,w!

5(
l50

`
~y2w! l

l ! (
kPZ

w2k2 l21Yk
~ab,l11!~a,b!

5(
l50

`
~y2w! l

l ! (
kPZ

w2k2 l21M ~a! lL~a!k1 lC~ab!~a!N~a,b!. ~6.2!

We write Yk
(ab,l11)~a! and Y(ab)(a,y,w)[Y(ab)(ta ,y,w) for, respectively,Yk

(ab,l11)~a,a!,
Y(ab)(a,a,y,w), then

Y~ab!~a,y,w!5(
l50

`
~y2w! l

l ! (
kPZ

w2k2 l21M ~a! lL~a!k1 lC~ab!~a!.

One deduces the following:
Proposition 6.1:

Y~ab!~a,b,y,w!25C1~a,y!eab]
21tC2~b,w!. ~6.3!
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Proof: First, notice that

„W1~a!xl]k1 leabW
1~b!21

…25(
j51

`

]2 j Res] ] j21W1~a!xl]k1 leabW
1~b!21

5(
j51

`

]2 j Resz50 dz„]
j21W1~a!xl]k1 lezx…eab

t
„W2~b!e2zx

…

5Resz50 dz(
j51

`

]2 jF S ]

]xD
j21S zk1 l

] lC1~a,z!

]zl D GeabtC2~b,z!

5Resz50 dzz
k1 l

] lC1~a,z!

]zl
eab]

21tC2~b,z!.

Hence

Y~ab!~a,b,y,w!25(
l50

`
~y2w! l

l ! (
kPZ

w2k2 l21 Resz50 dz zk1 l
] lC1~a,z!

]zl
eab]

21tC2~b,z!

5(
l50

`
~y2w! l

l !

] lC1~a,w!

]wl eab]
21tC2~b,w!5C1~a,y!eab]

21tC2~b,w!.

h

Proposition 6.1 was obtained in the 1-component case by Dickey.7

Next we calculate

Y~ab!~a,b,y,w!C1~b,z!5(
l50

`
~y2w! l

l ! (
kPZ

w2k2 l21W1~a!xl]k1 leabe
zx

5W1~a!d~w,z!e~y2w!~]/]z!ezxeab5W1~a!d~w,z!e~z1y2w!xeab

5W1~a!d~w,z!eyxeab5d~w,z!C1~a,y!eab , ~6.4!

whered(w,z)5 (nPZ w
2nzn21.

Define

X~ab!~y,w!5X~ab!~y,w!e~y2w!x,
~6.5!

W~ab!~y,w!5(
l50

`
~y2w! l

l ! (
kPZ

Wk
~ab,l11!w2k2 l215~y2w!2dab

„X~ab!~y,w!2dab…,

then

W~ab!~y,w!5:c1~a!~y!c2~b!~w!:e~y2w!x.

It is straightforward that theWk
(ab,l11) have the same commutation relations as theWk

(ab,l11), since
we have only replaced allt1

( j ) by t1
( j )1x and kept]/]t1

( j ) unchanged in the vertex operator~4.11!
of W(ab)(y,w) ~]/]x does not appear in this expression!.

One has the following:
Lemma 6.2:

X~ab!~y,w!c1~ j !~z!ezx5db j~y2w!dabd~w,z!c1~a!~y!eyx1c1~ j !~z!ezxX~ab!~y,w!.
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Proof: Let gPQ, we calculate

X~ab!~y,w!c1~ j !~z!ezxtg~x,t !eg5e~da ,db!e~da2db ,g1d j !e~d j ,g!y~daug1d j !w2~dbug1d j !z~d j ug!

3~12z/y!da j~12z/w!2db jej~a!~x,t,y!2j~b!~x,t,w!1j~ j !~x,t,z!

3e2h~a!~ t,y!1h~b!~ t,w!2h~ j !~ t,z!tge
g1d j1da2db.

Now use the fact that (12z/w)215wd(w,z)2(w/z)(12w/z)21, 12z/y52(z/y)(12y/z) and
thate(dm ,dn)e(dn ,dm)5 2(2 1)dmn, then

X~ab!~y,w!c1~ j !~z!ezxtg~x,t !eg

5db je~da ,db!e~da2db ,g1db!e~db ,g!~y2z!dabd~w,z!y~daug!w2~dbug!z~dbug!

3ej~a!~x,t,y!2j~b!~x,t,w!1j~b!~x,t,z!e2h~a!~ t,y!1h~b!~ t,w!2h~b!~ t,z!tge
g1da

1e~da ,db!e~da2db ,g1d j !e~d j ,g!~2 !da j~2 !db jy~daug!w2~dbug!z~d j ug1da2db!

3ej~ j !~x,t,z!eh~ j !~ t,z!ej~a!~x,t,y!2j~b!~x,t,w!e2h~a!~ t,y!1h~b!~ t,w!tge
g1d j1da2db

5$db j~y2w!dabd~w,z!c1~a!~y!eyx1c1~ j !~z!ezxX~ab!~y,w!%tge
g.

h

Recall the bilinear identity~4.14! with a replaced bya1db2da in a slightly different version,
viz.,

Resz50 dz(
j51

s

c1~ j !~z!ezxta1d i1db2d j2da
~x,t !ea1d i1db2d j2da

3c2~ j !8~z!e2zx8tb1d j2dk
~x8,t8!~eb1d j2dk!850.

Let X(ab)(y,w) act on this identity, then using Lemma 6.2 one obtains:

Resz50 dzH $~y2w!dabd~w,z!c1~a!~y!ezxta1d i2da
~x,t !ea1d i2dac2~a!8~z!

1(
j51

s

c1~ j !~z!ezxX~ab!~y,w!ta1d i1db2d j2da
~x,t !ea1d i1db2d j2dac2~ j !8~z!J

3e2zx8tb1d j2dk
~x8,t8!~eb1d j2dk!850. ~6.6!

Now divide byta(x,t)tb(x8,t8) and remove the factorse
a1d i and (eb2dk)8. Notice that by doing

this, the action ofX(ab)(y,w) is no longer well-defined, for that reason we introduceX̂(ab)(y,w)
by

X̂~ab!~y,w!tg~x,t !5e~da ,db!e~da2db ,g!y~daug!w2~dbug!

3ej~a!~x,t,y!2j~b!~x,t,w!eh~a!~ t,y!1h~b!~ t,w!tg~x,t !

and
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Ŵ~ab!~y,w!5(
l50

`
~y2w! l

l ! (
kPZ

Ŵk
~ab,l11!w2k2 l215~y2w!2dab~X̂~ab!~y,w!2dab!. ~6.7!

Then ~6.6! turns into

Resz50 dzH ~y2w!dabd~w,z!C ia
1~a,y!Ckb

2 ~b,z!81(
j51

s

e2h~ j !~ t,z!

3S X̂~ab!~y,w!ta1d i1db2d j2da
~x,t !

ta1d i2d j
~x,t ! D C i j

1~a,z!Ck j
2~b,z!8J 50. ~6.8!

Using ~6.4! one obtains

Resz50 dzH eii S ~y2w!dabY~ab!~a,y,w!C1~a,z!1(
j51

s

e2h~ j !~ t,z!

3S X̂~ab!~y,w!ta1d i1db2d j2da
~x,t !

ta1d i2d j
~x,t ! D D C1~a,z!ej j J tC2~b,z!850.

Now notice that

e2h~ j !~ t,z!S X̂~ab!~y,w!ta1d i1db2d j2da
~x,t !

ta1d i2d j
~x,t ! D C1~a,z!ej j

5 (
k50

`

cjkL~a!2kC~ j !~a!C1~a,z!

5H S (
k51

`

cjkL~a!2kC~ j !~a!D
2

1
X̂~ab!~y,w!ta1d i1db2d j2da

~x,t !

ta1d i2d j
~x,t !

ej j J C1~a,z!,

hence

Resz50 dz eii S ~y2w!dabY~ab!~a,y,w!1(
j51

s

(
k50

`

cjkL~a!2kC~ j !~a!DC1~a,z! tC2~b,z!850.

Now using Proposition 5.2 forb5a, one obtains

eii S ~y2w!dabY~ab!~a,y,w!21(
j51

s S (
k50

`

cjkL~a!2kC~ j !~a!D
2

D 50.

Hence
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2eii ~y2w!dabY~ab!~a,y,w!2C1~a,z!

5eii(
j51

s

e2h~ j !~ t,z!S X̂~ab!~y,w!ta1d i1db2d j2da
~x,t !

ta1d i2d j
~x,t ! D C1~a,z!ej j

2
X̂~ab!~y,w!ta1db2da

~x,t !

ta~x,t !
eiiC

1~a,z!.

So we obtain the following generalization of the Adler–Shiota–van Moerbeke formula
Theorem 6.3:

~y2w!dab
„2Y~ab!~a,y,w!2C1~a,z!…i j5H e2h~ j !~ t,z!S X̂~ab!~y,w!ta1d i1db2d j2da

~x,t !

ta1d i2d j
~x,t ! D

2
X̂~ab!~y,w!ta1db2da

~x,t !

ta~x,t ! J C i j
1~a,z!. ~6.9!

In a similar way as in the introduction the operatorelX(ab)(y,w) 5 1 1 lX(ab)(y,w) is an auto-
Bäcklund transformation of thes-component KP hierarchy~see also Ref. 9!. Now let

s~x,t !5 (
gPQ

sg~x,t !eg5elX~ab!~y,w! (
gPQ

tg~x,t !eg5 (
gPQ

„tg~x,t !1lX̂~ab!~y,w!tg1db2da
…eg,

then ~6.9! is equal to

2l~y2w!dab
„Y~ab!~ta ,y,w!2C1~ta ,x,t,z!…i j

5H e2h~ j !~ t,z!S sa1d i2d j
~x,t !

ta1d i2d j
~x,t ! D 2

sa~x,t !

ta~x,t ! J C i j
1~ta ,x,t,z!.

So

C i j
1~sa ,x,t,z!5

e2h~ j !~ t,z!sa1d i2d j
~x,t !

sa~x,t !
ej~ j !~x,t,z!

5
ta~x,t !

sa~x,t !
e2h~ j !~ t,z!S sa1d i2d j

~x,t !

ta1d i2d j
~x,t ! D C i j

1~ta ,x,t,z!

5S S 12l
ta~x,t !

sa~x,t !
~y2w!dabY~ab!~ta ,y,w!2D C1~ta ,x,t,z!D

i j

and we obtain the following consequence of Theorem 6.3:
Corollary 6.4: Let t(x,t) be a solution of the s-component KP hierarchy, thens(x,t)

5 elX(ab)(y,w)t(x,t) is a new solution of this hierarchy and the wave functions are related by

C i j
1~sa ,x,t,z!5S S 12l

ta~x,t !

sa~x,t !
~y2w!dabY~ab!~ta ,y,w!2DC1~ta ,x,t,z! D

i j

.

Hence~6.9! relates this Ba¨cklund transformation of thes-component KP hierarchy acting on the
t-function to a ‘‘Bäcklund transformation’’ on the wave function.
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Since the left-hand-side of~6.9! is also equal to

H e2h~ j !~ t,z!S ~X̂~ab!~y,w!2dab!ta1d i1db2d j2da
~x,t !

ta1d i2d j
~x,t ! D

2
„X̂~ab!~y,w!2dab…ta1db2da

~x,t !

ta~x,t ! J C i j
1~a,z!,

we have the following:
Corollary 6.5:

~2„M ~a! lL~a!k1 lC~ab!~a!…2C1~a,z!! i j

5H e2h~ j !~ t,z!S Ŵk
~ab,l11!ta1d i1db2d j2da

~x,t !

ta1d i2d j
~x,t ! D 2

Ŵk
~ab,l11!ta1db2da

~x,t !

ta~x,t ! J C i j
1~a,z!.

Proof: Compare in~6.9! the expansions for the vertex operatorsY(ab)(a,y,w) as in~6.2! and
for Ŵ(ab)(y,w) as in ~6.7!. h

As an application of Corollary 6.5 we see that if

(
a51

s

(
l50

`

(
kPZ

calk„M ~a! lL~a!k1 lC~a!~a!…250,

one finds that that for any 1< j<s

~e2h~ j !~ t,z!21!S (a51
s ( l50

` (kPZ calkŴk
~a,l11!ta~x,t !

ta~x,t !
D 50,

hence

(
a51

s

(
l50

`

(
kPZ

calkWk
~a,l11!ta~x,t !ea5constantta~x,t !ea.

Thus Corollary 6.5 provides an alternative proof of Theorem 6.5 of Ref. 19.

VII. THE ADLER–SHIOTA–VAN MOERBEKE FORMULA FOR THE 2-DIMENSIONAL
TODA LATTICE HIERARCHY

To convince the reader that a generalized Adler–Shiota–van Moerbeke formula also exists for
the 2-dimensional Toda lattice hierarchy of Ueno and Takasaki,8 we reformulate the results of Sec.
VI in the case thats52. We will use most of the notations of the Adler–Shiota–van Moerbeke
paper.6

From now on we assume thats52 and denote bytn(t) 5 ( 2 )n(n21)/2tn(d12d2)
(0,t) ~so put

x50!. Following Ref. 6 we writetPF ~0! as an infinite column vector, viz.,t 5 (tn)nPZ and
introduce the wave or Baker–Akhiezer vectorsCa

6(t,z) 5 „C̃an
6 (t,z)…nPZ for a51,2, where
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C̃1n
6 ~ t,z!5z1/271/2C11

6
„~n1 1

27
1
2!~d12d2!,0,t,z…5

e7h~1!~ t,z!tn11/271/2~ t !

tn11/271/2~ t !
e6j~1!~ t,z!z6n,

~7.1!
C̃2n

6 ~ t,z!57z21/271/2C12
6
„~n1 1

27
1
2!~d12d2!,0,t,z

21
…

5
e7h~2!~ t,z21!tn11/261/2~ t !

tn11/271/2~ t !
e6j~2!~ t,z21!z6n.

Then ~4.13! and ~5.3! is equivalent to

Resz50

dz

z
C1

1~ t,z! tC1
2~ t8,z!2C2

1~ t,z21! tC2
2~ t8,z21!50. ~7.2!

We want to write these wave vectors as the action of infinite matrices acting on the vectors
x(z) 5 x1(z) 5 (zn)nPZandx

2(z) 5 (z2n)nPZ . LetL 5 ( iPZ Eii , then

C1
6~ t,z!5W1

6~ t,L!x6~z!5S1
6~ t,L!e6j~1!~ t,L61!x6~z!,

~7.3!
C2

6~ t,z!5W2
6~ t,L!x6~z!5S2

6~ t,L!e6j~2!~ t,L71!x6~z!,

where

S1
6~ t,L!5(

i50

`

diag„pni
6~ t !…nPZL

7 i , S2
6~ t,L!5(

i50

`

diag„qni
6~ t !…nPZL

6 i , ~7.4!

with the pni
6 andqni

6 defined by

e7h~1!~ t,z!tn11/271/2~ t !

tn11/271/2~ t !
5(

i50

`

pni
6~ t !z2 i ,

e7h~2!~ t,z21!tn11/261/2~ t !

tn11/271/2~ t !
5(

i50

`

qni
6~ t !zi . ~7.5!

As in Ref. 6 it will be convenient to take pairs of matrices, so letD be the algebra of pairs of
infinite ~Z3Z! matrices (P1 ,P2) such that (P1) i j50 for j2 i@0 and (P2) i j50 for i2 j@0. Then

D15$~P1 ,P2!PDuP15P2%,

D25$~P1 ,P2!PDu~P1! i j50 if j> i , ~P2! i j50 if i. j %,

so that (P1 ,P2)5(P1 ,P2)11(P1 ,P2)2 is given by

~P1 ,P2!15~P1u1P2l ,P1u1P2l !,
~7.6!

~P1 ,P2!25~P1l2P2l ,P2u2P1u!,

wherePu andPl denote the upper~including the diagonal! and strictly lower triangular parts of
the matrixP, respectively. It is straightforward to prove the following fundamental lemma~see,
e.g., Ref. 6!:

Lemma 7.1: Let U5(U1 ,U2), V5(V1 ,V2)PD whose coefficients depend on t, then (i) the
following identities hold

Resz50

dz

z
Uix

1~z2~21! i ! t„tVix
2~z2~21! i !…5UiVi ,
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(ii) we have(UV)250 if and only if

Resz50

dz

z
$U1x

1~z! t„tV1x
2~z!…2U2x

1~z21! t„tV2x
2~z21!…%.

Now applying this Lemma to ~7.2!, using ~7.3!, one obtains for
W6(t,L)5„W1

6(t,L),W2
6(t,L)… that

„W1~ t,L! tW2~ t8,L!…25„W1
1~ t,L! tW1

2~ t8,L!,W2
1~ t,L! tW2

2~ t8,L!…250. ~7.7!

Now put t5t8, then one deduces that „S1(t,L) tS2(t,L)…2
5„S1

1(t,L) tS1
2(t,L), S2

1(t,L) tS2
2(t,L)…250, hence fora51,2 one finds

Sa
1~ t,L!5„

tSa
2~ t,L!…21. ~7.8!

Differentiate~7.2! to ]/]t i
(a) and use~7.8! and Lemma 7.1, then it is straightforward to deduce

the following Sato equations forS15(S1
1 ,S2

1) @cf. ~5.18!#

]S1

]t i
~1! 52~S1

1L iS1
121,0!2S

1,
]S1

]t i
~2! 52~0,S2

1L2 iS2
121!2S

1. ~7.9!

From now on letC5~C1,C2!5~C1
1 ,C2

1!, W5(W1 ,W2)5(W1
1 ,W2

1), S5(S1 ,S2)5(S1
1 ,S2

1)
and define

L5~L1 ,L2!5~W1LW1
21,W2L

21W2
21!5~S1LS1

21,S2L
21S2

21!,

then ~7.9! is equivalent to one of the following statements@cf. ~4.24!#:

]S

]t i
~1! 52~L1

i ,0!2S,
]S

]t i
~2! 52~0,L2

i !2S,

]W

]t i
~1! 5~L1

i ,0!1W,
]W

]t i
~2! 5~0,L2

i !1W, ~7.10!

]C

]t i
~1! 5~L1

i ,0!1C,
]C

]t i
~2! 5~0,L2

i !1C.

Next define

M5~M1 ,M2!5~W1e1W1
21,W2e2W2

21!,

where

e15 (
nPZ

nEn,n21 and e25 (
nPZ

nE2n,12n ,

then [La ,Ma]51 and

LC5~z,z21!C, MC5S ]

]z
,

]

]z21DC. ~7.11!

More generally one has
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MkLk1 lC5S zk1 l S ]

]zD
k

,~z21!k1 l S ]

]z21D kDC. ~7.12!

Using ~7.10! or ~7.11! one easily deduces the following Lax equations for the Toda lattice hier-
archy @cf. ~5.23!#. Let X5M or L, then

]X

]t i
~1! 5@~L1

i ,0!1 ,X#,
]X

]t i
~2! 5@~0,L2

i !1 ,X#. ~7.13!

In a similar way as in Sec. VI we derive the generalized Adler–Shiota–van Moerbeke for-
mula. Define@cf. ~6.1!#

Y~ab!~y,w!5(
l50

`
~y2w! l

l ! (
kPZ

Wa~ t,L!eb
l L2~21!b~k1 l !Wb~ t,L!21w2k2 l21. ~7.14!

Notice that the left-hand side of~7.14! for aÞb is not well-defined. One should see this as product
of operators onCb~t,z).

It is easy to show that@cf. ~6.4!#

Y~ab!~y,w!Cb~ t,z!5d~w,z2~21!b!Ca~ t,y
2~21!b!. ~7.15!

Now rewrite ~6.8! for i5k51, a5n~d12d2! andb5~m11!~d12d2! in the new notations:

Resz50

dz

z
S 2~2 !bS w

yda2D db2

~y2w!dabd~w,z!C̃an
1 ~ t,y2~21!a!C̃bm

2 ~ t8,z2~21!b!

1~2 !a1bH e2h~1!~ t,z!S ~w~21!b/y~2 !a!n1a2bX̃~ab!~y,w!tn1a2b~ t !

tn~ t !
D C̃1n

1 ~ t,z!C̃1m
2 ~ t8,z!

2e2h~2!~ t,z!S ~w~21!b/y~21!a!n1a2b11X̃~ab!~y,w!tn1a2b11~ t !

tn11~ t !
D

3C̃2n
1 ~ t,z21!C̃2m

2 ~ t,z21!J D 50.

Next sum over alln andm and use~7.15!, then this turns into

Resz50

dz

z S 2~2 !bS w

yda2D db2

~y2w!dabY~ab!~y~21!a1b
,w!Cb

1~ t,z2~21!b! tCb
2~ t8,z2~21!b!

1~2 !a1b(
nPZ

H e2h~1!~ t,z!S ~w~21!b/y~21!a!n1a2bX̃~ab!~y,w!tn1a2b~ t !

tn~ t !
DEnn

3C1
1~ t,z! tC1

2~ t8,z!2e2h~2!~ t,z!S ~w~21!b/y~21!a!n1a2b11X̃~ab!~y,w!tn1a2b11~ t !

tn11~ t !
D

3EnnC2
1~ t,z21! tC̃2

2~ t,z21!J D 50. ~7.16!

Let
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(
k50

`

ckn
~ i !z2k5e2h~ i !~ t,z!S ~w~21!b/y~21!a!n1a2bX̃~ab!~y,w!tn1a2b~ t !

tn~ t !
D

5
~w~21!b/y~21!a!n1a2bX̃~ab!~y,w!tn1a2b~ t !

tn~ t !
1 (

k51

`

ckn
~ i !z2k,

then ~7.16! is equivalent to

Resz50

dz

z S 2~2 !bS w

yda2D db2

~y2w!dabY~ab!~y~21!a1b
,w!Cb

1~ t,z2~21!b! tCb
2~ t8,z2~21!b!

1~2 !a1b(
nPZ

H (
k50

`

ckn
~1!EnnL1

2kC1
1~ t,z! tC1

2~ t8,z!

2 (
k50

`

ck11,n
~2! EnnL2

2kC2
1~ t,z21! tC2

2~ t,z21!J D 50. ~7.17!

Using the Lemma 7.1 and~7.8! one deduces

S ~2 !a1b(
nPZ

(
k50

`

ckn
~1!EnnL1

2k1db1~y2w!dabY~a,1!~y2~21!a,w!,~2 !a1b(
nPZ

(
k50

`

ck11,n
~2! EnnL2

2k

1db2
w

yda2
~y2w!dabY~a,2!~y~21!a,w!D

2

50.

Hence

2~y2w!dabS w

yda2D db2

Y~ab!~y~21!a1b
,w!2

5~2 !a1bS (
nPZ

(
k51

`

ckn
~1!EnnL1

2k ,(
nPZ

H (
k50

`

ck11,n
~2! EnnL2

2k2c0n
~1!EnnJ D .

Hence we have the following generalization of the Adler–Shiota–van Moerbeke formula for the
Toda lattice hierarchy

Theorem 7.2:

2~y2w!dabY~ab!~ya1b,w!2C~ t,z!

5~2 !a1bS yda2

w D db2S (
nPZ

$e2h~1!~ t,z!21%S ~w~21!b/y~21!a!n1a2bX̃~ab!~y,w!tn1a2b~ t !

tn~ t !
DEnn ,

(
nPZ

H e2h~2!~ t,z21!S ~w~21!b/y~21!a!n1a2b11X̃~ab!~y,w!tn1a2b11~ t !

tn11~ t !
D

2
~w~21!b/y~21!a!n1a2bX̃~ab!~y,w!tn1a2b~ t !

tn~ t !
J EnnDC~ t,z!.
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A method is developed that extends the nonlinearization technique to the hierarchy
of lattice soliton equations associated with a discrete 333 matrix spectral problem.
A new integrable symplectic map and its involutive system of conserved integrals
are obtained by the nonlinearization of spatial parts and the time parts of Lax pairs
and their adjoint Lax pairs of the hierarchy. Moreover, the solutions of the typical
system of lattice equations in the hierarchy are reduced to the solutions of a system
of ordinary differential equations and a simple iterative process of the symplectic
map. © 1996 American Institute of Physics.@S0022-2488~96!00504-3#

I. INTRODUCTION

The study of constructing finite-dimensional integrable systems from soliton hierarchies has
received considerable attention in recent years. At least two systematic approaches, the nonlinear-
ization technique1,2 and the stationary flow technique,3 have been developed through that quite a
few new finite-dimensional integrable systems have been obtained in the Liouville sense.1–5 Very
recently, the two techniques have been generalized to lattice soliton hierarchies associated with
discrete 232 matrix spectral problems,6–8 and thus some integrable symplectic maps,9 i.e., dis-
crete version of classical integrable systems, have been presented.

In this paper, we are going to develop further the nonlinearization technique to treat the lattice
soliton hierarchy associated with a discrete 333 matrix spectral problem. We give a Bargmann
constraint between the eigenfunctions, the adjoint eigenfunctions, and potentials. The discrete 333
matrix spectral problem and its adjoint problem are nonlinearized to be a new integrable symplec-
tic map. The nonlinearization of the time parts of the Lax pairs and their adjoint Lax pairs for the
lattice soliton hierarchy leads to the involutive system of conserved integrals of the symplectic
map. The solutions of the typical system of lattice equations in the hierarchy are reduced to the
solutions of a system of ordinary differential equations and a simple iterative process of the
symplectic map. We first construct the lattice soliton hierarchy associated with the discrete 333
matrix spectral problem and their Hamiltonian structures. Then we discuss the nonlinearization of
Lax pairs and their adjoint ones of the lattice soliton hierarchy in detail.

II. THE LATTICE SOLITON HIERARCHY AND THE HAMILTONIAN STRUCTURES

Let us define the shift operator and difference operators by

Ef~n!5 f ~n11!, D f ~n!5~E21! f ~n!, D1 f ~n!5~E2121! f ~n!, nPZ.

We usually writef (n)5 f , f (n1k)5Ekf , kPZ, for the sake of convenience. Consider the dis-
crete 333 matrix spectral problem:10

0022-2488/96/37(5)/2338/8/$10.00
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Ec~l!5Uc~l!, U5S 0
b2l
c

1
a
0

0
1
0
D , c5S c1~l!

c2~l!

c3~l!
D , ~1!

wherea,b,c are three potentials andl is a constant spectral parameter. The adjoint representation
equation of~1! reads

~EV!U2UV50, V5~Vi j !333 , ~2!

where each entryVi j5Vi j „A(l),B(l),D(l)… of the 333 matrixV is a Laurent expansion ofl:

V115D~l!, V125E21A~l!, V135B~l!,

V215cEB~l!1~b2l!A~l!, V225ED~l!1aA~l!, V235A~l!,

V315E21cE21A~l!2E21acB~l!, V325E21cB~l!,

V335E2D~l!1DaA~l!2~b2l!B~l!,

A~l!5 (
j>21

Ajl
2 j , B~l!5 (

j>21
Bjl

2 j , D~l!5 (
j>21

Djl
2 j .

Then adjoint representation equation~2! is equivalent to the recursion relations:

~E2E21!A2150, ~E221!D211DaA2150, DB2150,

aD~aAj211EDj21!1~Eb2bE21!Aj211~EcE2E21c!Bj215~E2E21!Aj ,
~3!

~cE2E21cE211bDa!Aj211~E21ac2acE!Bj211b~E221!Dj215~E221!Dj1DaAj ,

DEaAj211~E321!Dj212DbBj2152DBj .

The above recursion equations can be solved successively to deduce the following results:

A2150, B2151, D2150,

A05c, B05b, D052E21ac, ~4!

A15c~Eb1b!, B15ac1E21ac1b2, D15E21cE21c2E21ac~Eb1b!.

We define$F j% by the following relation:

cFj52EaAj2E2Dj2EDj . ~5!

It is easy to see that

~D2D1!Dj5D1aAj1D1E21cFj ,

DaAj1~E221!Dj5D1cFj ,
~6!

EDj1aAj5~D2D1!21D1cFj2~D2D1!21D1aAj ,

DEaAj1~E321!Dj5D~D2D1!21D1aAj2~Dc2D1c!F j2D~D2D1!21D1cFj .
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Substituting the above expressions into~3!, we obtain

KGj215JGj , Gj5~Aj ,Bj ,F j !
T, j>0, ~7!

whereK andJ, the so-called Lenard’s operator pair, are two skew-symmetric operators:

K5S Eb2bE212aD~D2D1!21D1a EcE2E21c aD~D2D1!21D1c

cE2E21cE21 E21ac2acE bD1c

cD~D2D1!21D1a 2cDb c@D12D2D~D2D1!21D1#c
D ,

J5S E2E21 0 0

0 0 D1c

0 2cD 0
D .

From ~4! and ~7!, we have

G215S 01
0
D , G05S cb

a
D , G15S c~Eb1b!

b21ac1E21ac
a~Eb1b!2Ec2E21c

D .
Let c~l! satisfy the spectral problem~1! and its auxiliary problem

]

]t
c~l!5V~m!c~l!, ~8!

where

V~m!5~Vi j
~m!!333 , Vi j

~m!5Vi j „A
~m!~l!,B~m!~l!,D ~m!~l!…,

A~m!~l!5 (
j521

m

Ajl
m2 j , B~m!~l!5 (

j521

m

Bjl
m2 j , D ~m!~l!5 (

j521

m

D jl
m2 j .

Then the compatibility condition (]/]t)Ec(l)5E(]/]t)c(l) between~1! and ~8! yields the
discrete zero-curvature equation

]

]t
U5~EV~m!!U2UV~m!,

which implies the lattice solition equations

]

]t
u5Xm11 , u5~a,b,c!T, m>21, ~9!

whereXj5JGj5KGj21, j>0. Whenm521, ~9! is reduced to

]

]t S a~n!

b~n!

c~n!
D 5S c~n11!2c~n21!

a~n21!c~n21!2c~n!a~n!

c~n!„b~n!2b~n11!…
D . ~10!

The Hamiltonian structures of lattice soliton equations~9! can be established by the trace
identity.11 We need the following quantities, which are easy to calculate:
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trS V̂ ]U

]l D52B~l!, trS V̂ ]U

]a D5A~l!, trS V̂ ]U

]b D5B~l!,

trS V̂ ]V

]c D5c21@D~l!1~l2b!B~l!#, ~11!

whereV̂5VU21. By means of the trace identity, we have

S d

da
,

d

db
,

d

dcD „2B~l!…5Fl2«S ]

]l Dl«G SA~l!,B~l!,
D~l!1~l2b!B~l!

c D , ~12!

where« is a constant to be fixed. Equating the coefficients ofl2 j21 on both sides of~12!, we
arrive at

~d/da,d/db,d/dc!Bj115~ j2«!„Aj ,Bj ,c
21~Dj2bBj1Bj11!…, ~13!

and («12)c2150 which implies«522. Notice the third expression of~3!, which together with
~5! leads to

Dj2bBj1Bj115cFj . ~14!

By ~13! and ~14!, we have

~d/da,d/db,d/dc!Hj5Gj
T ,Hj5

Bj11

j12
, j>21. ~15!

Hence we deduce that the desired Hamiltonian form of~9!

]

]t
u5Xm115J~d/da,d/db,d/dc!THm11 , m>21. ~16!

III. A SYMPLECTIC MAP

Let us consider another discrete 333 matrix spectral problem

Ew~l!5~U21!Tw~l!,w~l!5„w1~l!,w2~l!,w3~l!…T, ~17!

which is usually called the adjoint spectral problem of~1!. For N mutual distinct eigenvalues
l1 ,...,lN , the systems associated with~1! and ~17! can be written in the form

E~qj
1,qj

2,qj
3!5~qj

1,qj
2,qj

3!U~u,l j !
T,

~18!
E~pj

1,pj
2,pj

3!5~pj
1,pj

2,pj
3!U~u,l j !

21,

whereqj
i5c i(l j ), pj

i5w i(l j ), 1< i<3, 1< j<N. It is easy to calculate that the functional gra-
dient of the eigenvaluel j with regard to the potentials (a,b,c) is

¹l j5S dl j /da
dl j /db
dl j /dc

D 5S qj
2pj

3

qj
1pj

3

c21~qj
1pj

11l jqj
1pj

32bqj
1pj

3
D . ~19!

Such a gradient satisfies the following equation

K¹l j5l j J¹l j , ~20!
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which can be verified by a straightforward computation.
Consider the Bargmann constraint

G05(
j51

N

¹l j , ~21!

which implies

a5^q2,p3&21~^q1,p1&1^Lq1,p3&2^q1,p3&2!,
~22!

b5^q1,p3&, c5^q2,p3&,

where ^•,•& is the standard inner-product inRN, L5diag (l1 ,...,lN), qi5(q1
i ,...,qN

i )T,
pi5(p1

i ,...,pN
i )T, 1< i<3. Substituting~22! into ~18! yields the discrete Bargmann system

Eq15q2,

Eq252Lq11^q1,p3&q11^q2,p3&21~^q1,p1&1^Lq1,p3&2^q1,p3&2!q21q3,

Eq35^q2,p3&q1,
~23!

Ep15p22^q2,p3&21~^q1,p1&1^Lq1,p3&2^q1,p3&2!p3,

Ep25p3,

Ep35^q2,p3&21@p11~L2^q1,p3&!p3#.

Equations~23! determine a symplectic mapH,

E~q1,q2,q3,p1,p2,p3!5H~q1,q2,q3,p1,p2,p3!, ~24!

because by direct calculations

(
j51

N

(
i51

3

d~Eqj
i !`d~Epj

i !5(
j51

N

(
i51

3

dqj
i`dpj

i .

IV. THE INTEGRABILITY OF THE SYMPLECTIC MAP

In this section, we want to search for the conserved integrals of the symplectic mapH. Let us
consider the adjoint equation of~8!,

]

]t
w~l!52V~m!Tw~l!, ~25!

which together with~17! composes another kind of zero curvature representation for the lattice
soliton equations ~9!. As a matter of fact, we can directly deduce that
(]/]t)U5(EV(m))U2UV(m) if and only if (]/]t)(U21)T52(EV(m))T(U21)T1(U21)TV(m)T.
In what follows we discuss the nonlinearization of~8! and ~25!. Resorting to~7!, ~20!, and the
constraint~21!, we take the following restriction:

Gj5 (
k51

N

lk
j¹6lk , ~26!

which is a special solution of~7!. Equation~26! is equivalent to
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Aj5^L jq2,p3&, Bj5^L jq1,p3&,
~27!

F j5c21~^L jq1,p1&1^L j11q1,p3&2b^L jq1,p3&!, j>0.

Substituting~27! into the first expression of~6!, we obtain a solution ofDj , that is

Dj5^L jq1,p1&, j>0. ~28!

By using ~27!, ~28!, ~23!, and~22!, we have

E21Aj5^L jq1,p2&, E21cBj5^L jq3,p2&,

cEBj1bAj5^L jq2,p1&1^L j11q2,p3&,

E21cE21Aj2E21acBj5^L jq3,p1&,

E2Dj1EaAj2aAj2bBj5^L jq3,p3&2^L j11q1,p3&,

EDj1aAj5^L jq2,p2&, E21c5^q1,p2&, Eac5^q3,p3&.

Substituting the above expressions,~27!, and~28! into N replicas of~8! and~17! associated with
l1 ,...,lN ,

]

]t
~q1,q2,q3!5~q1,q2,q3!V~m!~u,L j !

T,

~29!
]

]t
~p1,p2,p3!52~p1,p2,p3!V~m!~u,L j !,

we arrive at the finite-dimensional Hamiltonian systems

]

]t
qi5

]Fm

]pi
,

]

]t
pi52

]Fm

]qi
, m>21, 1< i<3 ~30!

with the Hamiltonian functions

F215^Lq3,p3&1^q3,p1&1^q1,p2&^q2,p3&2^q3,p3&^q1,p3&.
~31!

Fm5^Lm12q3,p3&1^Lm11q3,p1&1^q1,p2&^Lm11q2,p3&2^q3,p3&^Lm11q1,p3&

1
1

2 (
j50

m

(
i51

3

^L jqi ,pi&^Lm2 jqi ,pi&1(
j50

m

(
1< i,k<3

^L jqi ,pk&^Lm2 jqk,pi&.

To prove the above Hamiltonian functions are in involution in pairs,$Fk ,Fm%50, with respect to
the Poisson bracket by

$ f ,g%5(
i51

3

(
j51

N S ] f

]qj
i

]g

]pj
i2

] f

]pj
i

]g

]qj
i D ,

we consider a bilinear functionQ
ik

l on RN and its partial-fraction expansion and Laurent expan-
sion:
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Q
ik

l5^~l2L!21qi ,pk&5(
j51

N qj
i pj

k

l2l j
5 (

m>21
l2m22^Lm11qi ,pk&.

Let

I l5Q
33

l~L!1Q
31

l1^q1,p2&Q
23

l2^q3,p3&Q
13

l ,
~32!

Tl5
1

2 (
i51

3

Q
ii

lQ
ii

l1 (
1< i,k<3

Q
ik

lQ
ki

l ,

whereQ
ik

l(L
l) 5 ^(l 2 L)21L lqi ,pk&. Noticing the formulas

Q
ik

l~L!5lQ
ik

l2^qi ,pk&,

^~l2L!21~m2L!21qi ,pk&5~m2l!21~Q
ik

l2Q
ik

m!,

we can verify by a direct calculation that

$I l ,Im%5~m2l!21~Q
23

lQ
32

m2Q
23

mQ
32

l1Q
13

lQ
31

m2Q
13

mQ
31

l!,

$I l ,Tm%1$Tl ,Im%5~m2l!21~Q
23

mQ
32

l2Q
23

lQ
32

m1Q
31

lQ
13

m2Q
13

lQ
31

m!, ~33!

$Tl ,Tm%50, ;l,mPC.

Using the bilinear property of the Poisson bracket, we have

$F l ,F m%50, ;l,mPC, ~34!

with F l5I l1Tl . Substituting the Laurent expansion ofQ
ik

l into ~32!, we obtain

F l5 (
m>21

l2m22Fm , ~35!

which together with~34! implies $Fm ,Fl%50 for any l ,m. Hence we have immediately the
following fact.

Theorem 1: The symplectic mapH defined by~24! is completely integrable with the invo-
lutive system of conserved integrals$Fm%.

Theorem 2:Let „q1(t),q2(t),q3(t),p1(t),p2(t),p3(t)… be a solution of the initial value prob-
lem for the system of ordinary differential equations

]

]t
qi5

]F21

]pi
,

]

]t
pi52

]F21

]qi
, 1< i<3,

~36!
~qi ,pi !u t505„qi~0!,pi~0!…,

and
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„q1~n,t !,...,q3~n,t !,p1~n,t !,...,p3~n,t !…5Hn
„q1~ t !,...,q3~ t !,p1~ t !,...,p3~ t !…. ~37!

Then

a~n,t !5^q2~n,t !,p3~n,t !&21~^q1~n,t !,p1~n,t !&1^Lq1~n,t !,p3~n,t !&2^q1~n,t !,p3~n,t !&2!,
~38!

b~n,t !5^q1~n,t !,p3~n,t !&,c~n,t !5^q2~n,t !,p3~n,t !&

solve the system of lattice soliton equations~10!.
Proof: Equations~37! and ~36! are equivalent to~24! and the system

]

]t
qi~n!5

]

]pi~n!
F21„q

1~n!,...,q3~n!,p1~n!,...,p3~n!…,

~39!
]

]t
pi~n!5

]

]qi~n!
F21„q

1~n!,...,q3~n!,p1~n!,...,p3~n!….

By using ~38!, ~39!, and~21!, we obtain

]

]t
u~n,t !5J(

j51

N

¹l j5JG0~n!5X0~n,t !,

which is the system~10!. The proof is completed.
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New no-scalar-hair theorem for black holes
Alberto Saa
Departamento de Fı´sica de Partı´culas, Universidade de Santiago de Compostela,
15706 Santiago de Compostela, Spain
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A new no-hair theorem is formulated which rules out a very large class of non-
minimally coupled finite scalar dressing of an asymptotically flat, static, and spheri-
cally symmetric black hole. The proof is very simple and based on a covariant
method for generating solutions for nonminimally coupled scalar fields starting
from the minimally coupled case. Such a method generalizes the Bekenstein
method for conformal coupling and other recent ones. We also discuss the role of
the finiteness assumption for the scalar field. ©1996 American Institute of Phys-
ics. @S0022-2488~96!00905-1#

I. INTRODUCTION

Black-hole solutions are very rigid in gravitational physics. We know that the Schwarzschild
solution is the only asymptotically flat and spherically symmetric solution of the vacuum Einstein
equations. The no-hair conjecture1 states that the exterior region of a black hole admits only fields
for which there is a geometrical Gauss-like law, as electromagnetic fields for example. Early
no-hair theorems excluding for the exterior region of a black hole minimally coupled
Klein–Gordon,2 massive vectors,3 and spinor4 fields have stressed the conjecture.

The problem of the existence of scalar hairs for black holes has received some attention
recently. Although we know that scalar fields are not elementary fields in nature, they commonly
arise in effective actions. In fact, some scalar actions have been considered recently in astrophysi-
cal contexts~see, for instance Ref. 5!. However, with the conformally coupled case as the only
exception,6–8 only minimally coupled scalar fields have been examined. In Ref. 9 a new theorem
is presented that rules out a multicomponent scalar hair with nonquadratic Lagrangian, but with
minimal coupling to gravity. As it is stressed in Ref. 9, scalar fields effective actions are obtained
by integrating the functional integral of the elementary fields in nature over some of the fields, and
more complicated actions involving nonminimally coupling should arise.

The purpose of the present work is to point toward the filling of this gap by presenting a
theorem that excludes finite scalar hairs of any asymptotically flat, static, and spherically symmet-
ric black hole solution of the system described by the action

S@g,f#5E d4xA2g$ f ~f!R2h~f!gmn]mf]nf%, ~1!

with f (f) and h(f).0. We adopt all the conventions of Ref. 10. Many physically relevant
theories belong to the class described by~1!. Maybe the most popular nonminimal coupling for the
scalars fields corresponds to the choicef (f)512jf2 andh(f)51. The casej5 1

6 corresponds
to the conformal coupling case, and the Bekenstein method11 allows us to construct its exact
solutions from the solutions of the minimally coupled case (j50). A method for generating
solutions for arbitraryj is presented in Ref. 12. The extension of Bekenstein method forn
dimensions (n.3) was obtained recently in Ref. 6, and used to study conformal scalar hairs6,7 and
gravitational waves.13 Dilaton-like gravity is given byf (f)5 1

4h(f)5e22f. The general model of
Bergman, Wagoner, and Nordtved discussed in Ref. 10 corresponds to the choicef (f)5f and
h(f)5 v(f)/f , from which Brans–Dicke theory is obtained from the limitv constant.

0022-2488/96/37(5)/2346/6/$10.00
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The paper is organized as follows. In Section II we present a covariant method for generating
solutions for the system described by~1!. This method will be the central point for the formulation
of the theorem, which is presented in the same section. In Section III, we analyze as particular
cases the Brans–Dicke theory and one of its generalizations in order to shed light on the role of
the finiteness assumption for the scalar field and its relation to naked singularities. The last section
is devoted to some concluding remarks, in particular a comparison between our results and recent
ones.

II. THE THEOREM

The proof of our theorem centers on a covariant method for generating solutions for the
Euler–Lagrange equations of~1! starting from the well-known solutions for the minimally
coupled case,

S̄@ ḡ,f̄#5E d4xA2ḡ $R̄2ḡmn]mf̄]nf̄%. ~2!

The method uses a conformal transformation, and generalizes the Bekenstein one11 and the one
proposed in Ref. 12. Such a method has a long history, and Ref. 14, for instance, presents a good
set of references on the subject. A method of this type was also used in Ref. 15 to show that the
action given by*d4xA2g$F(f,R)2gmn]mf]nf% is equivalent to an Einstein–Hilbert action
plus minimally coupled self-interacting scalar fields, equivalent in the sense that there is a con-
formal transformation andf-redefinition connecting them.

The Euler–Lagrange equations obtained from~1! are

f ~f!Rmn2h~f!]mf]nf2DmDn f ~f!2 1
2gmnh f ~f!50,

~3!
2h~f!hf1h8~f!gab]af]bf1 f 8~f!R50,

where the prime denotes derivation with respect tof. Equations~3! are clearly much more
complicated than the Euler–Lagrange equations derived from~2!, namely

R̄mn2]mf̄]nf̄50,
~4!

h f̄50.

In order to realize how the solutions of~3! and ~4! are related, consider the conformal transfor-
mation gmn5V2ḡmn . Under a conformal transformation, the scalar of curvature transforms as
R(V2ḡmn)5V22R̄26V23hV, and with the choice

f ~f!5V22, ~5!

one gets from~1!

S@V2ḡ,f#5E d4xA2ḡ H R̄2S 32 S d

df
ln f ~f! D 21 h~f!

f ~f! D ḡmn]mf]nfJ . ~6!

Now, definingf̄(f) as

f̄~f!5E
a

f

djA3

2 S ddj
lnf ~j! D 21 h~j!

f ~j!
, ~7!
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with arbitrarya, we get the desired result,S@V2ḡ,f(f̄)#5S̄@ ḡ,f̄#. Due to the assumption off
and h positive, the right-hand side of~7! is a monotonically increasing function off, which
guarantees the existence of the inversef(f̄). The constanta is determined by the boundary
conditions off and f̄. Also, we have that limf̄→`f(f̄)5`.

The transformation given by Eqs.~5! and~7!, therefore, maps a solution (gmn ,f) of ~3! to a
solution (ḡmn ,f̄) of ~4!. The transformation is independent of any assumption of symmetries, and
in this sense is covariant. We can easily infer that the transformation is one-to-one in general, in
the sense that any solution of~3! is mapped in a unique solution of~4!. Also, the transformation
preserves symmetries, which means that ifḡmn admits a Killing vectorj such that £jf̄50, then
j is also a Killing vector ofgmn and £jf50. From this, one concludes if we know all solutions
(ḡmn ,f̄) with a given symmetry we automatically know all (gmn ,f) with the same symmetry.
This is the base of the proof.

The general asymptotically flat, static, and spherically symmetric solution (ḡmn ,f̄) of ~4! is
known. ~See Ref. 16 for some properties of the solution and references.! It is given by a two-
parameter (l,r 0) family of solutions

f̄5A2~12l2!lnR,

ds25ḡmndx
mdxn52R2ldt21S 12

r 0
2

r 2D
2

R22l~dr21r 2dV2!,
~8!

whereR5 (r2r 0)/(r1r 0) . The parameterl can take values in@21,1# in principle, but we
neglect the negative range because the solution will have a negative ADM mass.16 For l51, the
solution is the usual exterior vacuum Schwarzschild solution with the horizon atr 0854r 0 , as one
can check by using the coordinate transformationr 85r (11 r 0 /r )

2. For 0<l,1, ~8! does not
represent a black hole due to the fact that the surfacer5r 0 is not a horizon, i.e., a regular null
surface, but it is instead a naked singularity, as we can check, for instance, by calculating the
scalar of curvature

R̄5
8r 0

2r 4

~r1r 0!
2~21l! 3

12l2

~r2r 0!
2~22l! . ~9!

In total accordance with the original scalar no-hair theorem,2 we see the only black hole solution
of ~8! is that one for whichl51 and consequentlyf50, i.e., the usual Schwarzschild solution.

Any asymptotically flat, static, and spherically symmetric solution of~3! can be obtained from
~8! by means of the transformations~5! and~7!. This provides us with a two-parameter family of
(gmn ,f) solutions. The discussed properties of the transformation~7! and the expression for
f̄(r ) in ~8! lead to the conclusion that the only solution withf finite in the surfacer5r 0 is that
one for whichf is constant forr.r 0 . In this case,~5! is only a rigid scale transformation, and the
solution (gmn ,f5a) is the usual Schwarzschild solution. This is the desired result, which we
formulate for clearness as follows.

Theorem: The only asymptotically flat, static, and spherically symmetric exterior solution of
the system governed by the action

S5E d4xA2g$ f ~f!R2h~f!gmn]mf]nf%, f ~f!,h~f!.0,

with f everywhere finite is the Schwarzschild solution.
It is important to note that the used conformal transformation forbids thatf (f)→` for any

rÞr 0 .
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Our approach can be extended in a straightforward way to other dimensions. The transforma-
tions ~5! and ~7! can be defined for any dimensionn.2. They shall be replaced by

f5V22n,
~10!

f̄~f!5E
a

f

djAn21

n22 S ddj
lnf ~j! D 21 h~j!

f ~j!
.

The general asymptotically flat, static, and spherically symmetric solution for any space–time
dimensionn.3 of ~4! is known.16 Its expression in isotropic coordinates is given by

f̄5An22

n23
~12l2!lnRn ,

~11!

ds25ḡmndx
mdxn52Rn

2ldt21S 12
r 0
2n26

r 2n26D 2/~n23!

Rn
22l/~n23!~dr21r 2dV2!,

whereRn5 (r n232r 0
n23)/(r n231r 0

n23) anddV denotes the metric of the unitary (n22) sphere.
The behavior of the solution~11! is similar to the four-dimensional case. The only true black hole
solution is the usual one (l51), due to the fact that the hypersurfacer5r 0 is not a regular one
if l Þ 1, as one can see from the expression for the scalar of curvature

R̄5
4~n22!~n23!r 0

2~n23!r 2~n24!

~r n231r 0
n23!2~n221l!/~n23! 3

12l2

~r n232r 0
n23!2~n222l!/~n23! . ~12!

By applying ~10! and the same arguments used in the four-dimensional case we can extend our
theorem for any space–time dimensionn.3.

III. AN EXPLICIT EXAMPLE

A closer look at an explicit example will help us to understand the role of the assumption of
finiteness of the scalar field. We see from~8! and~9! that for the minimal coupling, the finiteness
of f̄ is related to the regularity of the horizon. The scalar field diverges in the surfacer5r 0 for
l Þ 1; in this case the scalar of curvature has a nonremovable singularity, which confirms that such
surface is not a regular one, but it corresponds to a naked singularity. We will see that this is the
case for some non-minimal couplings also. To this end, let us consider the Brans–Dicke theory,
for which f (f)5f andh(f)5 v/f . Using the transformations~5! and~7! we can construct its
general asymptotically flat, static, and spherical symmetric solution starting from the minimally
coupled solution (ḡmn ,f̄),

gmn5f21ḡmn f̄5A3

2
1vE

a

fdj

uju
. ~13!

The expression forf̄ is divergent fora50. Also, if we choosea.0, thenf must be positive too
to avoid the singularity. Let us take the solution (ḡmn ,2f̄) of ~4!, and considerf P @a,`),
a.0. In this case we have

S f

a D A3/21v

5S r1r 0
r2r 0

D A2~12l2!

. ~14!
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The expression~14! hides a subtleness in the limit of largev, maybe the most important limit in
Brans–Dicke theory; recent solar system experiments have establishedv.600.10 In the limit
v→`, the left-hand side of~14! can be 1 or̀ , according to iff5a orf.a. Due to the fact that
the right-hand side is bounded for anyl and for r.r 0 , the consistency of the equation implies
that l must be 1 andf5a in the limit v→`. This would guarantee that one gets the General
Relativity in the limitv→`. Taking this into account we have from~13!

f5aR2k,
~15!

ads252R2l1kdt21S 12
r 0
2

r 2D
2

R22l1k~dr21r 2dV2!,

wherek5A4(12l2)/(312v). The two-parameter (l,r 0) family of solutions~15! corresponds
to the general asymptotically flat, static, and spherically symmetrical solution of the Brans–Dicke
theory.

Our theorem states that the only black hole solution of~15! with finite f is the Schwarzschild
one, but, at first sight, we can think that the null-surfacer5r 0 might be a horizon for somel or
v. We can check that such a surface is not a regular null-surface, but instead it is a naked
singularity for any solution with nonconstantf. To this end, consider the scalar of curvature
obtained from~3!,

R5
v

f2g
mn]mf]nf5

4r 0
2r 4

~r1r 0!
412l2k 3

vk2

~r2r 0!
422l1k . ~16!

One has that 422l1k.0 for l P @0,1# and forv P @0,̀ ), and thus~15! has a nonremovable
singularity for anyl Þ 1 andv Þ 0. We see that the only true black hole solution is that one for
whichl51, i.e., again the Schwarzschild solution withf5a, as it was predicted by the theorem.
The casev50 can be ruled out by analyzing the singularities of quadratic invariants, as for
exampleRmnR

mn, that can be written through~3! by means off. We notice that the first no-hair
theorem for Brans–Dicke theory is due to Hawking,17 and that Bekenstein also proved recently the
absence of scalar hairs in Brans–Dicke theory by using his novel no-hair theorem for minimally
coupled scalar fields with non-quadratic Lagrangian.9

We can extend this result for theories such thatv(f) is a C1 function and
limf→`v(f)5vc . For such a case, we can evaluate an asymptotic expression for the scalar of
curvature valid for the vicinity of the horizon, and it will lead us to the conclusion that the only
black hole solution also for this case is the Schwarzschild one. From~7! one can see that for
limf→`v(f)5vc and r→r 0 we have

f~r !'aR2A4~12l2!/~322vc!. ~17!

From ~17! we have that the expression forR valid for r→r 0 is the same one of~16!, from which
we conclude that there is no scalar hair in the model of Bergman, Wagoner, and Nordtved with
limf→`v(f)5vc . The result is valid for any space–time dimensionn.3.

We can easily apply analogous arguments to prove the absence of scalar hair in dilaton gravity
for any space-time dimensionn.3.

IV. FINAL REMARKS

In spite of the theorem’s broad assumptions, there are situations that it does not cover. In
situations where the divergence of the scalar field is not related to a naked singularity it is possible,
in principle, for a scalar hair to exist. This is the case of the Bekenstein conformal scalar hair,11

which obviously escapes from the theorem’s assumptions due to the divergence of the scalar field
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in the horizon. Such divergence is not related to any space–time singularity, and for an observer
that does not interact directly with the scalar field the divergence is physically harmless.

A recent result due to Zannias8 also stresses the relevant role of the divergence of the scalar
field in the existence of hairs. In our approach, the finiteness off guarantees that the only
null-surface ofgmn corresponds tor5r 0 . If f diverges for some point of the space–time, say
r 1 , the conformal factorV(r 1) in ~5! vanishes and consequentlyg00(r 1)50, which would induce
another null-surface forr5r 1 . This is precisely what happens with the Bekenstein conformal hair.
However, in principle one can find out case by case asymptotic expressions for the geometrical
quantities, as we did in Sec. III, and to control the regions very close to the horizons.

We finish noting that two recent works are devoted to problems similar to the ones discussed
here. In Ref. 18 Heusler studies with great detail the case of self-gravitating nonlinear sigma
models, for which the action would be given in our notation by

S@g,f i #5E d4xA2g$R2hjk~f i !gmn]mf j]nfk1W~f i !%, ~18!

wherei P (1, . . . ,N). He proved that the only asymptotically flat, static, and spherically symmetric
black-hole solution of~18! is the Schwarzschild one. Sudarsky19 considered the case where
hjk(f

i)5d jk , getting the same result in a simpler way. These results are in agreement with our
theorem since the caseN51 andW(f)50 corresponds to ourf51 case. However, we believe
that our proof is much more simple.
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Projective group representations in quaternionic Hilbert
space
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We extend the discussion of projective group representations in quaternionic Hil-
bert space that was given in our recent book. The associativity condition for quater-
nionic projective representations is formulated in terms of unitary operators and
then analyzed in terms of their generator structure. The multi-centrality and cen-
trality assumptions are also analyzed in generator terms, and implications of this
analysis are discussed. ©1996 American Institute of Physics.
@S0022-2488~96!01105-7#

I. ASSOCIATIVITY CONDITION FOR QUATERNIONIC PROJECTIVE GROUP
REPRESENTATIONS

In quaternionic quantum mechanics, all symmetries of the transition probabilities are gener-
ated by unitary transformations acting on the states of Hilbert space.1–3 In the simplest case, the
unitary transformationsUa ,Ub ,... form a representation~or vector representation! of the symme-
try group with elementsa,b,...,

UbUa5Uba . ~1!

A more general possibility is that the group multiplication table is represented over therays
corresponding to a complete set of physical states, but not over individual state vectors chosen as
ray representatives. This more general composition rule defines a quaternionicprojective repre-
sentation~or ray representation!, and takes the form~Ref. 4, Sec. 4.3!

UbUau f &5Ubau f &v~ f ;b,a!, uv~ f ;b,a!u51, ~2!

for one particular complete set of statesu f & and a set of quaternionic phasesv( f ;b,a). When we
change ray representative fromu f & to u f f&[u f &f, with ufu51, the phase defining the projective
representation is easily seen to transform as

v~ f f ;b,a!5f̄v~ f ;b,a!f, ~3!

with the bar denoting quaternion conjugation. Equation~3! shows clearly that the projective phase
v must depend on the state labelf as well as on the group elementsa,b; failure to take this into
account can lead4 to erroneous conclusions~as in Ref. 5! concerning quaternionic projective
representations.

The defining relation for quaternionic projective representations given in Eq.~2! can be
rewritten in operator form by defining a left-acting operatorV(b,a),

V~b,a!5(
f

u f &v~ f ;b,a!^ f u, ~4a!

a!Electronic mail address: adler@sns.ias.edu
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which, using Eq.~3!, is seen to be independent of the ray representative chosen for the statesu f &.
Multiplying Eq. ~2! from the right by^ f u and summing over the complete set of statesu f &, we
obtain the operator form of the projective representation,

UbUa5UbaV~b,a!. ~4b!

It is also immediate from the definition of Eq.~4a!, and the fact thatuvu51, that the operator
V(b,a) is quaternion unitary,

V~b,a!†V~b,a!5V~b,a!V~b,a!†51. ~5!

Note that if we were to make the definition of a quaternionic projective representation more
restrictive by requiring that Eq.~2! hold for all states in Hilbert space, rather than for one
particular complete set of states, then we would requireV(b,a)51, since the unit operator is the
only unitary operator which is simultaneously diagonal on all complete bases in quaternionic
Hilbert space. Hence this more restrictive definition excludes quaternionic embeddings of complex
projective representations, whereas these are admitted as quaternionic projective representations
by the definition of Eq.~2!.

A nontrivial condition on the projective representation structure is obtained from the associa-
tivity of multiplication in quaternionic Hilbert space, which implies

~UcUb!Ua5Uc~UbUa!. ~6!

Applying Eq. ~4b! twice to the left-hand side of Eq.~6!, we obtain

~UcUb!Ua5UcbV~c,b!Ua5UcbUaUa
21V~c,b!Ua5UcbaV~cb,a!Ua

21V~c,b!Ua , ~7a!

while applying Eq.~4b! twice to the right-hand side of Eq.~6! gives

Uc~UbUa!5UcUbaV~b,a!5UcbaV~c,ba!V~b,a!. ~7b!

Upon multiplying from the left byUcba
21 , Eqs.~7a! and ~7b! give the operator form of theasso-

ciativity condition:

V~c,ba!V~b,a!5V~cb,a!Ua
21V~c,b!Ua . ~8!

We can also express the associativity condition as a condition on the quaternionic phase
v( f ;b,a) introduced in Eq.~2!, by applying the spectral representation of Eq.~4a! to the operator
form of the associativity condition given in Eq.~8!. From Eq.~4a! we obtain

V~c,ba!5(
f

u f &v~ f ;c,ba!^ f u, ~9a!

which when multiplied from the right by Eq.~4a! gives

V~c,ba!V~b,a!5(
f

u f &v~ f ;c,ba!v~ f ;b,a!^ f u. ~9b!

Equation~4a! and the unitarity ofV(cb,a) also imply that

V~cb,a!215(
f

u f &v~ f ;cb,a!^ f u, ~9c!

and so the associativity condition of Eq.~8! can be rewritten as
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Ua
21V~c,b!Ua5V~cb,a!21V~c,ba!V~b,a!5(

f
u f &v~ f ;cb,a!v~ f ;c,ba!v~ f ;b,a!^ f u.

~10!

HenceUa
21V(c,b)Ua is diagonal in the basis spanned by the statesu f &. Taking matrix elements

of Eq. ~10!, and using the unitarity ofUa , the associativity condition gives the two relations

v~ f ;cb,a!v~ f ;c,ba!v~ f ;b,a!5(
f 9

^ f 9uUau f &v~ f 9;c,b!^ f 9uUau f &, ~11!

and, when̂ f 8u f &50,

05(
f 9

^ f 9uUau f &v~ f 9;c,b!^ f 9uUau f 8&. ~12!

We conclude this section by comparing the quaternionic Hilbert space form of the associa-
tivity condition with the simpler form which is familiar from complex Hilbert space.6,7 In a
complex Hilbert space, the phasev( f ;b,a) introduced in Eq.~2! is a complex number, and
commutes with the phasef, also now complex, which we introduced in Eq.~3! to describe a
change of ray representative. Hence Eq.~3! implies, in the complex case, thatv( f ;b,a) is inde-
pendent of the ray representative chosen for the stateu f &, and it is then consistent to assume that
v( f ;b,a) is independent of the state labelf , so that

v~ f ;b,a!5v~b,a! complex Hilbert space. ~13a!

Substituting Eq.~13a! into Eq. ~4a!, we now obtain

V~b,a!5(
f

u f &v~b,a!^ f u5v~b,a!(
f

u f &^ f u5v~b,a!1, ~13b!

where 1 denotes the unit operator in complex Hilbert space. Since the complex phasev(b,a) is a
c-number in complex Hilbert space, on substituting Eq.~13b! into Eq. ~4b! we learn that

UbUa5Ubav~b,a!5v~b,a!Uba , ~14a!

which is the standard definition of a projective representation in complex Hilbert space. Moreover,
since Eq.~13b! implies thatV(b,a) commutes with the unitary operatorUa , the associativity
condition of Eqs.~8! and ~11! reduces to the familiar complex Hilbert space form

v~c,ba!v~b,a!5v~cb,a!v~c,b!. ~14b!

II. THE ASSOCIATIVITY CONDITION IN GENERATOR FORM

Let us now assume that the symmetry group with which we are dealing is a Lie group, so that
in the neighborhood of the identitye the unitary transformationsUa ,Ub ,Uba ,... can be written in
terms of a set of anti-self-adjoint generatorsG̃A as

Ua5expS (
A

uA
aG̃AD , Ub5expS (

A
uA
bG̃AD , Uba5expS (

A
uA
baG̃AD ,..., ~15a!

with uA
e50 andUe51. Then Eq.~4b! implies thatV(b,a) must be unity when eithera or b is the

identity, and thus the generator form for this operator is
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V~b,a!5expS 12 (
BA

FuB
buA

a Ĩ BA1(
C

uB
buC

buA
aJ̃~BC!A

~1! 1(
C

uB
buA

auC
a J̃B~AC!

~2! 1O~u4!G D , ~15b!

where the parentheses~ ! around a set of indices indicate that the tensor in question is symmetric
in those indices, and where we use the tilde to indicate operators which are anti-self-adjoint. The
parametersu C

ba must be functions of the parametersu A
a andu B

b ,

uC
ba5cC

ba~$uB
b%,$uA

a%!5uC
b1uC

a1
1

2 (
BA

CBACuB
buA

a1O~u3!, ~15c!

where in making the Taylor expansion we have used the fact thatUbe5Ub andUea5Ua , which
fixes the linear terms in the expansion and requires the quadratic term to be bilinear.

We proceed now to derive a number of relations by combining the generator expansions of
Eqs.~15a!–~15c! with the formulas of Sec. I. We begin by substituting Eqs.~15a!–~15c! into Eq.
~4b! using the Baker–Campbell–Hausdorff formula,

expX expY5exp~X1Y1 1
2@X, Y#1••• !, ~16a!

to combine exponents arising from the factors on the left and right. From the left-hand side of Eq.
~4b! we obtain,

UbUa5expS (
B

uB
bG̃B1(

A
uA
aG̃A1

1

2 (
BA

uB
buA

a@G̃B , G̃A#1O~u3! D , ~16b!

while from the right-hand side of Eq.~4b! we obtain

UbaV~b,a!5expS (
C

~uC
b1uC

a !G̃C1
1

2 (
CBA

CBACuB
buA

aG̃C1
1

2 (
BA

uB
buA

a Ĩ BA1O~u3! D .
~16c!

Equating Eqs.~16b! and ~16c! thus gives the relations

@G̃B , G̃A#5(
C

C@BA#CG̃C1 Ĩ @BA# ~17a!

and

05(
C

C~BA!CG̃C1 Ĩ ~BA! , ~17b!

where the square brackets@ # around a set of indices indicates that the tensor in question is
antisymmetric in these indices. We shall restrict ourselves henceforth to the case in which
C(BA)C50, which by Eq.~17b! implies that Ĩ (BA)50; making this assumption then implies that
CBAC5C[BA]C and Ĩ BA5 Ĩ [BA] . In other words, we are assuming that the structure constantsCBAC

for a projective representation have the same antisymmetric form as holds for a vector represen-
tation. Changing the summation indexC toD in Eq. ~17a!, and then taking the commutator of Eq.
~17a! with G̃C , we find

@G̃C , @G̃B , G̃A##5(
D

C@BA#D@G̃C , G̃D#1@G̃C , Ĩ @BA##; ~18a!
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adding to this identity the two related identities obtained by cyclically permutingA,B,C, using the
fact that the left-hand side of the sum vanishes by the Jacobi identity for the commutator, and
substituting Eq.~17a! for the commutators appearing on the right-hand side of the sum, we obtain
the identity

(
DE

~C@BA#DC@CD#E1C@CB#DC@AD#E1C@AC#DC@BD#E!G̃E

1(
D

~C@BA#DĨ @CD#1C@CB#DĨ @AD#1C@AC#DĨ @BD#!

1@G̃C , Ĩ @BA##1@G̃A , Ĩ @CB##1@G̃B , Ĩ @AC##50. ~18b!

We next substitute Eqs.~15a!–~15c! into the associativity condition of Eq.~8!, now keeping
cubic terms in the exponent of the formuA

auB
buC

c , but dropping cubic terms, such asuA
auB

auC
c , that

do not contain all three of the upper indicesa,b,c. For the first factor on the left-hand side of Eq.
~8!, we find from Eqs.~15b! and ~15c! that

V~c,ba!5expS 12 (
BA

S uB
cuA

baĨ @BA#1(
C

uB
cuA

bauC
baJ̃B~AC!

~2! D D
5expS 12 (

BA
FuB

c S uA
b1uA

a1
1

2 (
DE

C@DE#AuD
b uE

a D Ĩ @BA#

12(
C

uB
cuA

buC
a J̃B~AC!

~2! G D , ~19a!

while for the second factor on the left-hand side of Eq.~8! we have

V~b,a!5expS 12 (
BA

uB
buA

a Ĩ @BA#D . ~19b!

Since the exponents in Eqs.~19a! and~19b! both begin at orderu2, through orderu3 we can simply
add exponents to get the product on the left-hand side of Eq.~8!. Proceeding similarly for the first
factor on the right-hand side of Eq.~8!, we obtain

V~cb,a!5expS 12 (
BA

S uB
cbuA

a Ĩ @BA#1(
C

uB
cbuC

cbuA
aJ̃~BC!A

~1! D D
5expS 12 (

BA
F S uB

c1uB
b1

1

2 (
DE

C@DE#BuD
c uE

b D uA
a Ĩ @BA#

12(
C

uB
cuC

buA
aJ̃~BC!A

~1! G D , ~20a!

while for the second factor on the right-hand side of Eq.~8!, use of the Baker–Campbell–
Hausdorff formula gives

Ua
21V~c,b!Ua5expS 2(

A
uA
aG̃AD expS 12 (

CB
uC
c uB

b Ĩ @CB#D expS (
A

uA
aG̃AD
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5expS 12 (
CB

uC
c uB

b Ĩ @CB#2
1

2 (
A

(
CB

uA
auC

c uB
b@G̃A , Ĩ @CB## D . ~20b!

Since the exponents in Eqs.~20a! and~20b! begin at orderu2, it again suffices to simply add the
exponents to form the product appearing on the right-hand side of Eq.~8!. Thus, to the requisite
order, the content of Eq.~8! is obtained by equating the sum of the exponents in Eqs.~19a! and
~19b! to the corresponding sum of exponents in Eqs.~20a! and~20b!. The quadratic terms inu are
immediately seen to be identical on left and right, while the cubic term proportional touA

auB
buC

c

gives ~after some relabeling of dummy summation indices! the nontrivial identity

J̃C~BA!
~2! 1

1

4 (
D

C@BA#DĨ @CD#5 J̃~CB!A
~1! 1

1

4 (
D

C@CB#DĨ @DA#2
1

2
@G̃A , Ĩ @CB##. ~21!

On totally antisymmetrizing with respect to the indicesA,B,C, the terms in Eq.~21! involving
J̃ ~1,2! drop out, and we are left with the identity

(
D

~C@BA#DĨ @CD#1C@CB#DĨ @AD#1C@AC#DĨ @BD#!1@G̃C , Ĩ @BA##1@G̃A , Ĩ @CB##1@G̃B , Ĩ @AC##50.

~22a!

In other words, associativity implies that the sum of the second and third lines of Eq.~18b!
vanishes separately; hence the first line of Eq.~18b! must also vanish, and since the generatorsG̃E

are linearly independent this gives the Jacobi identity for the structure constants,

(
DE

~C@BA#DC@CD#E1C@CB#DC@AD#E1C@AC#DC@BD#E!50. ~22b!

In the complex case, in whichV(a,b)5v(a,b)1 is ac-number, the tensorĨ [AB] is a c-number
‘‘central charge’’ and the commutator terms in Eqs.~18b! and~22a! vanish identically. Therefore,
in the complex case, Eq.~18b! implies both Eq.~22b! and the identity

(
D

~C@BA#DĨ @CD#1C@CB#DĨ @AD#1C@AC#DĨ @BD#!50 complex case, ~23!

and so one obtains the entire content of the associativity condition from the simpler analysis
leading to Eq.~18b!, without having to perform the third-order expansion needed to obtain Eq.
~22a!.

III. GENERAL, MULTI-CENTRAL, AND CENTRAL QUATERNIONIC PROJECTIVE
REPRESENTATIONS

The analysis of Sec. II applies to the general case~apart from the restrictionC(BA)C50! of a
quaternionic projective representation; in order to obtain more detailed results it is necessary to
introduce further structural assumptions. In Ref. 4 two special classes of quaternionic projective
representations are defined. A quaternionic projective representation is defined to bemulti-central
if

@V~b,a!, Ua#5@V~b,a!, Ub#50, all a,b, ~24a!

while it is defined to becentral if

@V~b,a!, Uc#50, all a,b,c. ~24b!
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Expressed in terms of the generators introduced in Eqs.~15a!–~15b!, the multi-centrality condition
takes the form

(
ABC

uA
auB

buC
a @G̃C , Ĩ @BA##5 (

ABC
uA
auB

buC
b @G̃C , Ĩ @BA##50, all a,b, ~25a!

while the centrality condition becomes

(
ABC

uA
auB

buC
c @G̃C , Ĩ @BA##50, all a,b,c. ~25b!

Making the definition

D@AB#C5@G̃C , Ĩ @BA##, ~25c!

we see from Eq.~25a! that multi-centrality requires thatD[AB]C be antisymmetric inA,C and in
B,C as well as inA,B; thus in the multi-central caseD is totally antisymmetric, which we will
indicate by writing it asD[ABC] . From Eq.~25b!, we see that centrality requires thatD[AB]C must
vanish.

Using the generator formulation, we proceed now to discuss successively the general, multi-
central, and central cases in the light of the associativity analysis of Sec. II.

~1! The general case. An example given in Eqs.~13.54g! and ~14.23a! of Ref. 4 shows that
one can have a quaternionic projective representation which is neither central nor multi-central.
The example is constructed fromn independent fermion creation and annihilation operatorsbl

† ,
bl , l 51,...,n, which commute with a left algebra quaternion basisE051,E15I ,E25J,E35K.
Consider the set of three generatorsG̃A defined by

G̃A52 1
2EAN, A51,2,3, ~26a!

with N the number operator

N5 (
l 51

n

bl
†bl . ~26b!

The commutator algebra of these generators has the form of a projective representation of SU~2!,

@G̃B , G̃A#52 (
C51

3

e@BAC#G̃C1 Ĩ @BA# ,

~26c!

Ĩ @BA#5 (
C51

3

e@BAC#

1

2
ECN~N21!,

with e the usual three-index antisymmetric tensor. A simple calculation now shows that

@G̃A , Ĩ @BC##52N~N21!~dABG̃C2dACG̃B!, ~27a!

which is not antisymmetric in either the index pairA,C or the pairA,B, and so the multi-centrality
condition is not satisfied. Another simple calculation shows that

(
D

~e@BAD# Ĩ @CD#1e@CBD# Ĩ @AD#1e@ACD# Ĩ @BD#!50, ~27b!
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by virtue of the Jacobi identity for the structure constante, and also

@G̃C , Ĩ @BA##1@G̃A , Ĩ @CB##1@G̃B , Ĩ @AC##50. ~27c!

Hence the associativity condition of Eq.~22a! is satisfied, with the first and second lines each
vanishing separately.

~2! The multi-central case. Let us now consider the multi-central case, in whichD[AB]C
defined in Eq.~25c! is totally antisymmetric inA,B,C, as indicated by the notationD[ABC] . The
associativity condition of Eq.~22a! then simplifies to

(
D

~C@BA#DĨ @CD#1C@CB#DĨ @AD#1C@AC#DĨ @BD#!13D@ABC#50. ~28a!

A further equation involvingD is obtained from the Jacobi identity

†G̃D , @G̃C , Ĩ @BA##‡2†G̃C ,@G̃D , Ĩ @BA##‡5@ Ĩ @BA# , @G̃C , G̃D#‡, ~28b!

which on substituting Eqs.~17a! and ~25c! becomes

@G̃D , D@AB#C#2@G̃C , D@AB#D#52(
E

C@CD#ED@AB#E1@ Ĩ @BA# , Ĩ @CD##, ~28c!

an equation which holds even in the general case in whichD is not totally antisymmetric. Spe-
cializing Eq. ~28c! to the multi-central case and contracting it withdACdBD , the left-hand side
vanishes because of the antisymmetry ofD, while the commutator term on the right-hand side
becomes(AB[ Ĩ [BA] , Ĩ [AB] ]50, leaving the identity~after relabeling the dummy indexE asC!

(
ABC

C@AB#CD@ABC#50. ~29!

Thus in order for a multi-central projective representation to exist which hasDÞ0 and so is not
also central, there must be a three-index antisymmetric tensorD[ABC] which vanishes when all
three indices are contracted with the structure constantC[AB]C . This condition is not easy to
satisfy and so we pose the question, which we have not been able to answer: Can one construct an
example of a multi-central quaternionic projective representation which is not central, or can one
prove~in general, or with a restriction, e.g., to simple or semi-simple groups! that a multi-central
quaternionic projective representation must always be central? The application of multi-centrality
in Ref. 4 sheds no light on this issue; multi-centrality was used there~e.g., in Sec. 12.3! to show
that quaternionic Poincare´ group projective representations outside the zero energy sector can
always be transformed to complex Poincare´ group projective representations, which in the sector
continuously connected to the identity are known8 to be transformable to vector representations.

~3! The central case. Let us finally consider the central case in whichD50, which by Eqs.
~25c! and ~28c! implies thatĨ [BA] commutes with bothG̃C and Ĩ [CD] for arbitrary values of the
indices. ThusĨ [BA] behaves as a central charge, justifying the name ‘‘central’’ for this case. The
various results obtained in Bargmann6 can be immediately generalized to the quaternionic central
case; for example, the analysis of Ref. 6 can be easily extended to show that the central charges
associated with a quaternionic central projective representation of a semi-simple Lie group can
always be removed by redefinition of the generators; and again, the nontrivial illustration6 of a
complex projective representation, constructed in terms of the phase space translation generators
in nonrelativistic quantum mechanics, can be embedded4 in quaternionic quantum mechanics as a
central projective representation.
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of differential equations

Stephen C. Ancoa) and George Blumanb)
Department of Mathematics, University of British Columbia,
Vancouver, BC V6T 1Z2 Canada

~Received 21 September 1995; accepted for publication 7 November 1995!

An identity is derived which yields a correspondence between symmetries and
conservation laws for self-adjoint differential equations. This identity does not rely
on use of a Lagrangian as needed to obtain conservation laws by Noether’s theo-
rem. Moreover, unlike Noether’s theorem, which can only generate conservation
laws from local symmetries, the derived identity generates conservation laws from
nonlocalas well as local symmetries. It is explicitly shown how Noether’s theorem
is extended by the identity. Conservation laws arising from nonlocal symmetries
are obtained for a class of scalar wave equations with variable wave speeds. The
constants of motion resulting from these nonlocal conservation laws are shown to
be linearly independent of all constants of motion resulting from local conservation
laws. © 1996 American Institute of Physics.@S0022-2488~96!02405-2#

I. INTRODUCTION

Conservation laws can be found for self-adjoint systems of differential equations by Noether’s
theorem.1–3 If a local symmetry admitted by a given system leaves invariant the variational
principle of the system, Noether’s theorem yields a corresponding conservation law of local type.
Conversely, all conservation laws of local type for a given system arise from the local symmetries
admitted by the system. A limitation of Noether’s theorem, however, is that it can only directly
deal with local symmetries and hence conservation laws of local type. This poses a significant
incompleteness in the study of differential equations since conservation laws of nonlocal type are
equally as useful as those of local type. In particular, as will be shown in this article, conservation
laws of nonlocal type yield additional constants of motion and thus expand the utility of methods
of analysis which depend on conservation laws.

In this article we introduce an expression that yields conservation laws from nonlocal sym-
metries as well as local symmetries admitted by an arbitrary self-adjoint system of differential
equations. Significantly, in contrast to the formulation of Noether’s theorem, the expression is
derived from a bilinear identity that makes no use of a Lagrangian. As preliminaries to the
derivation and main results, we now give definitions of local and nonlocal symmetries and con-
servation laws of local and nonlocal type for self-adjoint systems of differential equations.

Consider a system of differential equations~DEs! given by

Gs~x,u,u
1
,...,u

K
!50, s51,...,M ~1.1!

for M>1 dependent variablesu5(u1,...,uM) which are functions ofN>1 independent variables
x5(x1,...,xN), with u

J
denoting allJth order derivatives ofu with respect tox. For the sequel, we

let Di denote total differentiation with respect toxi , where i51,...,N, and we use the index
notation ui1••• i J

g 5 Di1
•••DiJ

ug for differentiations ofu, where g51,...,M , i J51,...,N, and

a!Electronic mail: anco@math.ubc.ca
b!Electronic mail: bluman@math.ubc.ca
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J51,2,... . Hereafter, unless otherwise stated, we use the index conventions that all Greek indices
range from 1 toM , all Latin indices~lower case! range from 1 toN, while summation is assumed
over any repeated indices in all expressions.

Definition 1.1: The Fre´chet derivative associated with system (1.1) is the matrix linear op-
erator

F sr5
]Gs

]ur 1
]Gs

]ui
r Di1•••1

]Gs

]ui1 ••• i K
r Di1

•••DiK
. ~1.2!

Definition 1.2: A symmetry admitted by system (1.1) is characterized by an infinitesimal
generator

X5hm]/]um, ~1.3!

whereh m satisfies

F srhr50 ~1.4!

for every solution u(x) of system (1.1).
Definition 1.3: A local symmetry admitted by system (1.1) is a symmetry with an infinitesimal

generator of the form

X5hm~x,u,u
1
,...,u

P
!]/]um ~1.5!

such that, for all values of x, hm depends on u,u
1
,...,u

P
only through u(x),u

1
(x),...,u

P
(x) evaluated

at x.
Definition 1.4: A nonlocal symmetry admitted by system (1.1) is a symmetry with an infini-

tesimal generatorX5h m]/]um not of the form (1.5), such thath m has other than just a local
dependence on u(x) and derivatives of u(x) to some finite order.

All local symmetries of system~1.1! can be determined by Lie’s algorithm.2,3 No correspond-
ing procedure exists to findall nonlocal symmetries of system~1.1!.

There is an algorithm3–6 to determine special nonlocal symmetries, calledpotential symme-
tries, if one DE of system~1.1! is a divergence expression. These potential symmetries arise as
local symmetries admitted by auxiliary systems associated to system~1.1!. In the case of two
independent variables~N52!, suppose system~1.1! has a DE of the form

Gs~x,u,u
1
,...,u

K
!5D1f

1~x,u,u
1
,..., u

K21
!1D2f

2~x,u,u
1
,..., u

K21
!50, s5M . ~1.6!

Through Eq.~1.6! one can introduce an auxiliary potential variablev and form a potential system
given by

Gs50, s51,...,M21, ~1.7!

D2v5 f 1, D1v52 f 2. ~1.8!

If ( u(x),v(x)) satisfies system~1.7!–~1.8!, then u(x) satisfies system~1.1!; if u(x) satisfies
system~1.1!, then there exists somev(x) ~unique up to the addition of an arbitrary constant! such
that (u(x),v(x)) satisfies system~1.7!–~1.8!. Sincev(x) is determined in terms of integrals of
u(x), a local symmetry of system~1.7!–~1.8! may yield a nonlocal symmetry of system~1.1!. In
particular, such a nonlocal symmetry arises if and only if an infinitesimal generator of a local
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symmetry of system~1.7!–~1.8! does not project onto an infinitesimal generator of a local sym-
metry admitted by system~1.1!. Similar considerations hold for the case of more than two inde-
pendent variables.

Definition 1.5: A conservation law of system (1.1) is a divergence free expression DiC
i50

which holds for every solution of system (1.1) and its differential consequences. The conservation
law is local (conservation law of local type) if and only if it has the form DiC

i(x,u,u
1
,...,u

L
)

5 0 where, for all values of x, Ci depends on u,u
1
,...,u

L
only through u(x),u

1
(x),...,u

L
(x) evalu-

ated at x. Otherwise the conservation law is nonlocal (conservation law of nonlocal type).
Definition 1.6: The adjoint of the Fre´chet derivative (1.2) is the matrix linear operator

F sr* satisfying

VsF srW
r2WsF sr* Vr5DiP

i ~1.9!

for all K times differential functions Vg(x) and Wg(x), for some Pi which depends on xi , ug, Vg,
Wg and the derivatives of ug, Vg, Wg to some finite order.

Definition 1.7: The system (1.1) is self-adjoint if and only if

F sr5F sr* . ~1.10!

In Sec. II, we derive the bilinear identity giving a correspondence between symmetries and
conservation laws for self-adjoint systems of DEs~1.1!. From this identity we obtain an expression
that yields a conservation law for each pair of symmetries,local or nonlocal, admitted by any such
system~linear or nonlinear!. Furthermore, as each such linear system admits a trivial scaling
symmetry, we obtain a conservation law for all nontrivial symmetries of any self-adjoint linear
system of DEs~1.1!. In particular, each nonlocal symmetry admitted by such a linear system
thereby leads to a corresponding nonlocal conservation law.

From the known connection between local conservation laws and local symmetries2,7 for
self-adjoint systems of DEs it follows that all local conservation laws obtained through the bilinear
identity derived in Sec. II are also obtainable from Noether’s theorem. In the case when such a
system is linear, we show in Sec. III that each local symmetry leaving invariant a corresponding
variational principle yields the same conservation law through our bilinear identity as through
Noether’s theorem.

In Sec. IV, as an example of a self-adjoint linear DE, we consider the two-dimensional scalar
wave equation with a variable wave speed. For a large class of wave speeds this equation admits
nonlocal symmetries realized as potential symmetries.3–5 The nonlocal character of these symme-
tries means that we cannot obtain corresponding conservation laws by applying Noether’s theorem
to the variational principle of the scalar wave equation. Moreover, we show that the potential
system for this equation does not have a variational principle, and hence Noether’s theorem cannot
be applied to the potential system to obtain any conservation laws. By using our conservation law
expression derived in Sec. II, we obtain nonlocal conservation laws for the admitted nonlocal
symmetries. In Sec. V, we obtain corresponding constants of motion for the scalar wave equation.
We show that these constants of motion are linearly independent of each other as well as linearly
independent of all constants of motion arising from local symmetries of the scalar wave equation.

In Sec. VI, we expand on some of the ideas and results presented in earlier sections.

II. DERIVATION OF THE CONSERVATION LAW EXPRESSION

We consider a system~1.1! that is self-adjoint. Then the DEs in system~1.1! must satisfy the
following Helmholtz identities:7

]Gs

]ur 5
]Gr

]us 2DiS ]Gr

]ui
s D 1•••1~21!KDi1

•••DiKS ]Gr

]ui1 ••• i K
s D , ~2.1!
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]Gs

]ui1 ••• i j
r 5~21!J

]Gr

]ui1 ••• i J
s 1~21!J11CJ

J11DiJ11S ]Gr

]ui1 ••• i J11

s D
1•••1~21!KCJ

KDiJ11
•••DiKS ]Gr

]ui1 ••• i K
s D , J51,...,K21, ~2.2!

]Gs

]ui1 ••• i K
r 5~21!K

]Gr

]ui1 ••• i K
s , ~2.3!

whereCJ
L5L!/J!(L2J)! for positive integersL>J. As a consequence of these identities, one can

verify by direct calculation that the Fre´chet derivative~1.2! leads to the identity

F srvr5vr
]Gr

]us 2DiS vr
]Gr

]ui
s D 1•••1~21!KDi1

•••DiKS vr
]Gr

]ui1 ••• i K
s D ~2.4!

for arbitrary functionsvr.
Using Eq.~2.4! and the Leibnitz rule for differentiation, one finds that the following bilinear

skew-symmetric identity holds for arbitrary functionsv r andn r:

nsF srvr2vsF srnr5DiF
i@n,v#, ~2.5!

where

F i@n,v#52
1

2 H ns
]Gr

]ui
s vr1~Djn

s2nsDj !S ]Gr

]uji
s vrD 1•••1~Di1

•••DiK21
ns

1•••1~21!KnsDi1
•••DiK21

!S ]Gr

]ui1 ••• i K21i
s vrD J

1
1

2 H vs
]Gr

]ui
s nr1~Djv

s2vsDj !S ]Gr

]uji
s nrD 1•••1~Di1

•••DiK21
vs

1•••1~21!KvsDi1
•••DiK21

!S ]Gr

]ui1 ••• i K21i
s nrD J . ~2.6!

The functionsvr andnr here can have arbitrary~local or nonlocal! dependence onu and deriva-
tives ofu.

This bilinear identity leads to a connection between symmetries and conservation laws:
Theorem 2.1:SupposeX15h1

m]/]um and X25h2
m]/]um are infinitesimal generators of sym-

metries (local or nonlocal) of a self-adjoint system (1.1). The bilinear identity (2.5) then yields the
conservation law

DiF
i@h1 ,h2#50 ~2.7!

with Fi@h1,h2# defined by Eq. (2.6).
We now specialize to the case when system~1.1! is a linear homogeneous system

Gs~x,u,u
1
,...,u

K
!5Gsr~x!ur1Gsr

i ~x!ui
r1•••1Gsr

i1 ••• i K~x!ui1 ••• i K
r 50 ~2.8!
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with coefficientsGsr(x),Gsr
i (x),...,Gsr

i1 ••• i K(x). Every such system admits the trivial scaling
symmetry

Xs5um]/]um. ~2.9!

Using this symmetry as one of the symmetries in Theorem 2.1 now leads to the following corre-
spondence:

Theorem 2.2:Suppose a self-adjoint linear system (2.8) admits a nontrivial symmetry (local
or nonlocal) with infinitesimal generatorX5hm]/]um. Then Eq. (2.7) yields the conservation law

DiF
i@u,h#50, ~2.10!

where

F i@u,h#52 1
2 $usGrs

i ~x!hr1~uj
s2usDj !~Grs

j i ~x!hr!

1•••1~ui1 ••• i K21

s 1•••1~21!KusDi1
•••DiK21

!~Grs
i1 ••• i K21i~x!hr!%

1 1
2 $hsGrs

i ~x!ur1~Djh
s2hsDj !~Grs

j i ~x!ur!1•••1~Di1
•••DiK21

hs

1•••1~21!KhsDi1
•••DiK21

!~Grs
i1 ••• i K21i~x!ur!% . ~2.11!

III. RELATIONSHIP TO NOETHER’S THEOREM

Noether’s theorem only relates local symmetries to conservation laws~of local type! for
self-adjoint systems. The variational principle for a~linear or nonlinear! self-adjoint system~1.1!
has LagrangianL given by2,7

L~x,u,u
1
,...,u

K
!5E

0

1

usGs~x,lu,lu
1
,...,lu

K
!dl. ~3.1!

Definition 3.1: An infinitesimal generatorX5hm(x,u,u
1
,...,u

P
)]/]um is a variational symmetry of

a self-adjoint system (1.1) if and only if

X~K !L~x,u,u
1
,...,u

K
!5DiA

i ~3.2!

for some Ai(x,u,u
1
,...,u

L
), whereX(K) is the Kth prolongation generator given by

X~K !5hm]/]um1~Dih
m!]/]ui

m1•••1~Di1
•••DiK

hm!]/]ui1 ••• i K
m . ~3.3!

Noether’s theorem yields a local conservation law for each variational symmetry admitted by
system~1.1!. Specifically, one can show that

X~K !L5Gshs1DiS
i5DiA

i , ~3.4!

where Si5hs]L/]ut
s 1 (Djh

s 2 hsDj )(]L/]uji
s ) 1 ••• 1 (Dj 1

••• DjK21
hs1••• 1

( 2 1)K21hsDj 1
••• DjK21

)(]L/]uj 1 ••• j K21i
s ).2,3,7Then Eq.~3.4! yields Noether’s identity

DiN
i@h#52Gshs ~3.5!

with Ni [h]5Si2Ai . Consequently, for any solution of system~1.1! we obtain the Noether con-
servation law
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DiN
i@h#50. ~3.6!

Using the Helmholtz identities~2.1! to ~2.3!, along with Noether’s identity~3.5! and the fact
that the Euler–Lagrange operator annihilates divergences, one can show that any variational
symmetryX5h m]/]um satisfies the identity

F srhr52Gr

]h r

]us 1DiSGr

]h r

]ui
s D 1•••1~21!P11Di1

•••DiPSGr

]h r

]ui1 ••• i P
s D . ~3.7!

From Eq.~3.7! it immediately follows that all variational symmetries are local symmetries of
system~1.1!. @The converse does not always hold, as seen from the fact that scaling symmetries
~2.9! generally do not satisfy Eq.~3.7!.#

For the rest of this section we restrict the self-adjoint system~1.1! to be a linear homogeneous
system~2.8!. Before relating conservation laws from Noether’s theorem to conservation laws
arising from the bilinear identity~2.5!, we establish the following result:

Lemma 3.2: Supposehm(x,u,u
1
,...,u

P
) is analytic in u and derivatives of u. Then any local

symmetry generator of the formX5hm(x,u,u
1
,...,u

P
)]/]um admitted by a linear homogeneous

system~2.8! can be expressed as a superposition of homogeneous local symmetry generators:

hm~x,u,u
1
,...,u

P
!5 (

n50

`

h
~n!

m~x,u,u
1
,...,u

P
!, ~3.8!

where

h
~n!

m~x,u,u
1
,...,u

P
!5l2nh

~n!
m~x,lu,lu

1
,...,lu

P
! ~3.9!

for all positive constantsl.
Proof: Since system~2.8! admits the scaling symmetry~2.9!, it must also admit the symmetry

hm(x,lu,lu
1
,...,lu

P
)]/]um for all constantsl. Then the analyticity property ofhm leads to

hm~x,lu,lu
1
,...,lu

P
!5 (

n50

`

lnh
~n!

m~x,u,u
1
,...,u

P
!, ~3.10!

where h
(n)

m(x,u,u
1
,...,u

P
)5]nhm(x,lu,lu

1
,...,lu

P
)/]lnul50 and h

(n)
m(x,u,u

1
,...,u

P

5hm(x,l,u,lu
1
,...,lu

P
)ul50. It then follows that eachh

(n)
m(x,u,u

1
,...,u

P
)]/]um, for n50,1,2,..., is

a local symmetry of system~2.8!. Settingl51 in the superposition~3.10! then yields Eq.~3.8!.h
As an aside we remark that every infinitesimal generator of a point symmetry

X5hm(x,u,u
1
)]/]um has h

(n)
m(x,u,u

1
)50 for nÞ1 when system~2.8! is a scalar PDE of order

K>2 ~with N>2!.8

Without loss of generality we assume that each infinitesimal generator of a symmetry admit-
ted by system~2.8! satisfies the homogeneity property~3.9!. We then have the following identity

us
]hr

]us 1ui
s

]hr

]ui
s 1•••1ui1 ••• i P

s
]hr

]ui1 ••• i P
s 5nhr ~3.11!

for some integern>0.
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We now establish the relationship between Noether’s conservation law expression~3.6! and
our conservation law expression~2.10!:

Theorem 3.3:Suppose a variational symmetry of a self-adjoint linear system (2.8) has an
infinitesimal generatorX5h m]/]um satisfying Eq. (3.11). Then up to the addition of a divergence
free expression, one has

F i@u,h#5~11n!Ni@h#, ~3.12!

for every solution of the system (2.8).
Proof. From the bilinear identity~2.5! we have

DiF
i@u,h#5usF srhr2hsF sru

r. ~3.13!

Since system~2.8! is linear, it satisfies the identity

F sru
r5Gs . ~3.14!

Using the Leibnitz rule for differentiation to manipulate Eq.~3.7!, we get

usF srhr52GrS us
]hr

]us 1ui
s

]hr

]ui
s 1•••1ui1 ••• i P

s
]hr

]ui1 ••• i P
s D 1DiB

i , ~3.15!

where

Bi5usGr

]hr

]ui
s 1~uj

s2usDj !SGr

]hr

]uji
s D 1•••

1~ui1 ••• i P21

s 1•••1~21!P21usDi1
••• DiP21

!SGr

]hr

]ui1 ••• i K21i
s D . ~3.16!

Consequently, after substituting Eqs.~3.14! and ~3.15! into Eq. ~3.13! and then using Eq.~3.11!,
we obtain

DiF
i@u,h#52~11n!hsGs2DiB

i . ~3.17!

Then Noether’s identity~3.5! yields

DiF
i@u,h#5~11n!DiN

i@h#2DiB
i . ~3.18!

Now observe thatBi50 whenGp50, and henceBi50 for every solution of system~2.8!. Thus we
arrive at Eq.~3.12!. h

IV. NONLOCAL CONSERVATION LAWS FOR SCALAR WAVE EQUATIONS

Throughout the sequel, we setx15x, x25t, and we use a subscript notation for total differ-
entiation with respect tox and t.

Consider the scalar wave equation

uxx2c22utt50 ~4.1!

with a variable wave speedc(x). From Eq.~1.8! we introduce the corresponding potential system

v t5ux, vx5c22ut . ~4.2!
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The wave equation~4.1! has nonlocal symmetries which are realized as potential symmetries
resulting from local point symmetries of potential system~4.2! if and only if the wave speed
satisfies the fourth order DE3,4

~cc8~c/c8!9!850. ~4.3!

Such wave speeds are bounded away from zero for2`,x,` whenc(x) satisfies the first order
DE

c85n21 sin~n log c!, n5const , ~4.4!

up to arbitrary scalings ofc andx.9

Classification of the point symmetries of system~4.2! yielding nonlocal~potential! symme-
tries of the wave equation~4.1! leads to two cases3–5 with, respectively, one and two admitted
infinitesimal generatorsX5h]/]u of the form

h5 f ~x,t !u1g~x,t !v2j~x,t !ux2t~x,t !ut , ~4.5!

whereg(x,t) is not identically zero.
Case I (one nonlocal symmetry):The wave speedc(x) satisfies

~c/c8!85g5const. ~4.6!

Here we have

f ~x,t !5a8~ t !~12 1
2g!, g~x,t !52 1

2a9~ t !c~x!/c8~x!,
~4.7!

j~x,t !5a8~ t !c~x!/c8~x!, t~x,t !5a~ t !~g21!1a9~ t !d~x!,

where d(x) is a definite integral of 1/(c(x)c8(x)), and a(t) satisfies the first order ODE
(a/t2)850, which thus leads to the existence of one generatorX5h]/]u.

Case II (two nonlocal symmetries):The wave speedc(x) satisfies

cc8~c/c8!95m5constÞ0. ~4.8!

Here we have

f ~x,t !5b8~ t !~22~c~x!/c8~x!!8!,

g~x,t !52mb~ t !c~x!/c8~x!,
~4.9!

j~x,t !52b8~ t !c~x!/c8~x!,

t~x,t !52b~ t !~~c~x!/c8~x!!821!,

whereb(t) satisfies the second order ODEb92mb50, which thus leads to the existence of two
generatorsX5h]/]u.

Conservation laws for all symmetries admitted by the wave equation~4.1! are obtainable from
Theorem 2.2 since the wave equation is linear and self-adjoint. Hence, each nonlocal symmetry
X5h]/]u admitted in Cases I and II gives rise to a corresponding nonlocal conservation law.
From Eqs.~2.11! and ~4.5!, these conservation laws are given by

~F1@u,h#!x1~F2@u,h#! t50 ~4.10!

with
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F1@u,h#5uhx2hux1~tuux1c22juut! t

5gxuv2guxv1 f xu
21c22guut2c8c21juux1c22jut

21jux
212tuxut , ~4.11!

F2@u,h#5c22~hut2uh t!2~tuux1c22juut!x

5c22~2gtuv1gutv2 f tu
22guux1c8c21juut2tut

22c2tux
222juxut!, ~4.12!

where f ,g,j,t satisfy Eq.~4.7! in Case I and Eq.~4.9! in Case II. The identically divergence free
terms inF1 andF2 have been added to eliminate all terms involving second order derivativesuxx ,
utt , anduxt .

These nonlocal conservation laws arising from the nonlocal symmetriesX5h]/]u cannot be
obtained through Noether’s theorem for the scalar wave equation~4.1! since Noether’s theorem is
applicable only to local symmetries that leave invariant a variational principle for Eq.~4.1!.
Moreover, even though the symmetriesX5h]/]u are realized as local symmetries of the potential
system~4.2!, Noether’s theorem still cannot be applied since, as will now be demonstrated, the
potential system is not self-adjoint and hence has no variational principle. Let

Fu1u2G5Fuv G
define a column vector. Then the Fre´chet derivative~1.2! associated to system~4.2! is given by the
matrix operator

F 5F 2]/]x ]/]t

2c22]/]t ]/]xG . ~4.13!

By direct calculation, using Eq.~1.9!, the adjoint of the Fre´chet derivative is

F *52F , ~4.14!

and thus the potential system is not self-adjoint.

V. NEW CONSTANTS OF MOTION FOR SCALAR WAVE EQUATIONS

Given a conservation law (F1[u,h]) x1(F2[u,h]) t50 arising from Theorem 2.2 for a sym-
metryX5h]/]u of the scalar wave equation~4.1!, we let

C@h#5E
2`

`

F2@u,h#dx. ~5.1!

If u(x,t) has appropriate asymptotic properties asx→6`, then

dC@h#

dt
52F1@u,h#ux52`

x5` 50, ~5.2!

from which it follows thatC@h# defines a constant of motion for Eq.~4.1!.
Now consider compact support initial data

u~x,t0!5w~x!, ut~x,t0!5c~x!, ~5.3!

for the scalar wave equation~4.1!. This determines corresponding data for the potential system
~4.2!, with
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v~x,t0!5u~x!5E
2`

x

c~ x̃!22c~ x̃!dx̃ ~5.4!

~up to the addition of an arbitrary constant!. Evaluating the nonlocal conservation laws given by
Eqs.~4.10! to ~4.12! with this initial data we find

lim
x→6`

F1@u,h#50 ~5.5!

and hence Eq.~5.1! yields constants of motion for the scalar wave equation~4.1!. In terms of the
initial data ~5.3! and ~5.4! we obtain

C@h#5E
2`

`

c~x!22$~g~x,t0!c~x!2gt~x,t0!w~x!!u~x!2g~x,t0!w~x!w8~x!2 f t~x,t0!w~x!2

1j~x,t0!~c~x!21c8~x!w~x!22w8~x!!c~x!2t~x,t0!~c~x!21c~x!2w8~x!2!%dx.

~5.6!

For each wave speedc(x) satisfying Eq.~4.6!, the expressionC@h# yields one constant of motion,
with f ,g,j,t satisfying Eq.~4.7!; for each wave speedc(x) satisfying Eq.~4.8!, the expression
C@h# yields two constants of motion, withf ,g,j,t satisfying Eq.~4.9!.

A. Linear independence of constants of motion

Let C[h1],C[h2],...,C[hk] define k.1 constants of motion arising for the scalar wave
equation~4.1! from symmetriesX15h1]/]u, X25h2]/]u,..., Xk5hk]/]u, respectively.

Definition 5.1: Suppose c1 ,...,ck are constants such that c1C[h1]1•••1ckC[hk] vanishes
for arbitrary initial data (5.3). Then C[h1],...,C[hk] are linearly independent constants of mo-
tion if and only if c15•••5ck50.

The following theorem now establishes that each constant of motion~5.6! arising from the
admitted nonlocal symmetries~4.5! of Eq. ~4.1! in Cases I and II is linearly independent of the
constants of motion arising from all admitted point symmetries of Eq.~4.1!. A subsequent theorem
then establishes further that the two constants of motion~5.6! in Case II are linearly independent
of each other modulo all point symmetry constants of motion.

Theorem 5.2:For the scalar wave equation (4.1), the constants of motion (5.6) obtained from
the admitted nonlocal symmetries (4.5) are each linearly independent of the constants of motion
obtained from all admitted point symmetries.

Proof: Every point symmetry admitted by a scalar linear PDE is characterized by an infini-
tesimal generatorh]/]u either withh linear inu and first order derivatives ofu ~in which case the
symmetry is callednontrivial! or with h independent ofu and derivatives ofu ~in which case the
symmetry is calledtrivial !.8 Thus, for the scalar wave equation~4.1!, every nontrivial point
symmetry as well as every nonlocal symmetry~4.5! has an infinitesimal generator that is linear in
u and first order derivatives ofu. The constants of motion obtained from these symmetries through
Theorem 2.2 are thereby quadratic expressions in terms of initial datau(x,t0) andut(x,t0), while
the constants of motion obtained from trivial symmetries are only linear expressions in terms of
this data.

These properties imply that the constants of motion obtained from nontrivial point symmetries
and nonlocal symmetries~4.5! are linearly independent of all constants of motion obtained from
trivial point symmetries, since these constants of motions have a different scaling dimension under
scalings of initial data. Consequently, to complete the proof of the theorem, we need only establish
that each constant of motion obtained from the nonlocal symmetries~4.5! is linearly independent
of all constants of motion obtained from nontrivial point symmetries.
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Let h̃]/]u correspond to the generator of a nonlocal symmetry~4.5! admitted by Eq.~4.1!,
and leth1]/]u, . . . ,hk]/]u correspond to the generators of all distinct nontrivial point symme-
tries admitted by Eq.~4.1!. Let C[ h̃], C[h1],...,C[hk] denote the resulting constants of motion
obtained through Theorem 2.2.

Consider the one-parameter family of nonnegative initial data:

u~x,t0 ;l!5w~x;l!>0, ut~x,t0 ;l!5c~x;l!>0, ~5.7!

with

v~x,t0 ;l!5u~x;l!5E
2`

x

c~ x̃!22c~ x̃;l!dx̃>0, ~5.8!

such that the supports of

w1~x!5w~x;0!, w2~x!5
]w

]l
~x;0!,

~5.9!

c1~x!5c~x;0!, c2~x!5
]c

]l
~x;0!,

are compact and mutually disjoint. Now define

u1~x!5u~x;0!5E
2`

x

c~ x̃!22c1~ x̃!dx̃,

~5.10!

u2~x!5
]u

]l
~x;0!5E

2`

x

c~ x̃!22c2~ x̃!dx̃.

If c̃,c1 ,...,ck are constants such that

c̃C@h̃#1c1C@h1#1•••1ckC@hk#50 ~5.11!

for arbitrary initial data, then

c̃C@h̃;l#1c1C@h1 ;l#1•••ckC@hk ;l#50, ~5.12!

whereC[h1 ;l],...,C[hk ;l] are the constants of motion evaluated for the one-parameter family
of initial data ~5.9! and ~5.10!. Hence we must have

S c̃ ]C@h̃;l#

]l
1c1

]C@h1 ;l#

]l
1•••1ck

]C@hk ;l#

]l D U
l50

50. ~5.13!

Using the earlier remarks about the quadratic properties ofC@h# for nontrivial point symme-
tries, and taking account of the disjoint supports ofw1(x), w2(x), c1(x), c2(x), we have

]C@h;l#

]l U
l50

50 ~5.14!

for h5h1,...,h5hk . Hence, from Eq.~5.13!, we get
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c̃
]C@h̃;l#

]l U
l50

50, ~5.15!

where

]C@h̃;l#

]l U
l50

5E
2`

`

c~x!22$g~x,t0!~c2~x!u1~x!1c1~x!u2~x!!

2gt~x,t0!~w2~x!u1~x!1w1~x!u2~x!!%dx, ~5.16!

using Eq.~5.6!.
Now we further restrict the initial data so that the supports ofw1(x),w2(x),c1(x),c2(x) are

to the left of each other, respectively. Then Eq.~5.16! reduces to

]C@h̃;l#

]l U
l50

5E
2`

`

c~x!22g~x,t0!c2~x!u1~x!dxÞ0. ~5.17!

Hence Eq.~5.15! leads toc̃50 in Eq. ~5.11!, which implies that the constant of motion arising
from the nonlocal symmetryh̃]/]u is linearly independent of the constants of motion arising from
the nontrivial point symmetriesh1]/]u,...,hk]/]u. h

Theorem 5.3:The two constants of motion (5.6) obtained for the scalar wave equation (4.1)
from the nonlocal symmetries (4.5) in Case II are linearly independent modulo all constants of
motion obtained from point symmetries.

Proof: We proceed by the same argument used in proving Theorem 5.2. Leth̃1]/]u
andh̃2]/]u correspond to the generators of the two nonlocal symmetries~4.5! of Eq. ~4.1!, and let
h1]/]u,...,hk]/]u correspond to the generators of all distinct nontrivial point symmetries. Let
C[ h̃1],C[ h̃2],C[h1],...,C[hk] denote the resulting constants of motion. Consider the same one-
parameter initial data used in the previous proof, with the supports ofw1(x),w2(x),c1(x),c2(x)
lying to the left of each other.

If c̃1 ,c̃2 ,c1 ,...,ck are constants such that

c̃1C@h̃1#1 c̃2C@h̃2#1c1C@h1#1•••1ckC@hk#50 ~5.18!

for arbitrary initial data, then we have

S c̃1 ]C@h̃1 ;l#

]l
1 c̃2

]C@h̃2 ;l#

]l D U
l50

50, ~5.19!

whereC[ h̃1 ;l] andC[ h̃2 ;l] are the constants of motion evaluated for the one-parameter family
of initial data. From Eq.~5.16! we find that Eq.~5.19! simplifies to

E
2`

`

c~x!22~ c̃1g1~x,t0!1 c̃2g2~x,t0!!c2~x!u1~x!dx50, ~5.20!

where, by use of Eq.~4.9!, we have

c̃1g1~x,t0!1 c̃2g2~x,t0!52m~ c̃1b1~ t0!1 c̃2b2~ t0!!c~x!/c8~x!. ~5.21!

Then Eq.~5.20! reduces to

2~ c̃1b1~ t0!1 c̃2b2~ t0!!mE
2`

`

c~x!21c8~x!21c2~x!u1~x!dx50 ~5.22!
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with *2`
` c(x)21c8(x)21c2(x)u1(x)dxÞ0. It then follows thatc̃1b1(t0)1 c̃2b2(t0)50, and since

we can choose the value oft0 freely, we then must havec̃1b1(t)1 c̃2b2(t)50 for all t. However,
from Eq. ~4.9! we note thatb5b1(t) andb5b2(t) are linearly independent functions satisfying
b92mb50. Thus c̃1505 c̃2 . The linear independence of the constants of motionC[ h̃1] and
C[ h̃2] modulo the constants of motionC[h1],...,C[hk] then follows from Eq.~5.18!. h

B. Analytical example of new constants of motion

Theorems 5.2 and 5.3 establish new constants of motion for the scalar wave equation~4.1! for
wave speeds given by Eq.~4.6! in Case I and Eq.~4.8! in Case II. The wave speeds in Case II
satisfying the ODE~4.4! have the most physical interest since they are bounded~above and below!
away from zero. These wave speedsc(x) are implicitly given by the integral

E
c~x0!

c~x! n dc

sin~n log c!
5x2x0 , ~5.23!

wheren andx0 are arbitrary constant parameters. From Eq.~5.23!, c(x) can be shown to increase
monotonically from the asymptotic valuec→1 for x→2` to the asymptotic valuec→ep/n for
x→1`. In physical terms, this describes a medium of two layers, with wave speedsc'1 and
c'ep/n, separated by a smoothly varying transition layer having widthDx'n(ep/n21), con-
trolled by the value ofn.9

The scalar wave equation~4.1! with wave speeds~5.23! has no constants of motion arising
from nontrivial point symmetries other than time translation symmetries generated byX5ut]/]u.
These symmetries give rise through Theorem 2.2 to an energy constant of motion

E5E
2`

`

c~x!22~c~x!21c~x!2w8~x!2!dx, ~5.24!

wherew(x) andc(x) are initial data~5.3!.
Two additional constants of motion arise from the nonlocal symmetries~4.5! admitted by the

scalar wave equation~4.1! with these wave speeds. In terms of the potentialv introduced through
Eq. ~4.2!, the nonlocal symmetry generatorsX5h]/]u have the explicit form~4.5! with

f ~x,t !56~11B~x!!e6t, g~x,t !52A~x!e6t,
~5.25!

j~x,t !562A~x!e6t, t~x,t !522B~x!e6t,

where

A~x!5nc~x!csc~n log c~x!!, B~x!5n cot~n log c~x!!. ~5.26!

The corresponding constants of motion given by Eq.~5.6! are

C65E
2`

`

c~x!22~2A~x!~c~x!6w~x!!u~x!6~w~x!22A~x!w8~x!!c~x!

2 1
2 ~11B~x!!w~x!212B~x!~c~x!21c~x!2w8~x!2!!dx, ~5.27!

wherew(x) andc(x) are initial data~5.3!, andu(x) is determined nonlocally fromc(x) by Eq.
~5.4!. C6 andE comprise a linearly independent set of constants of motion as shown by Theorems
5.2 and 5.3.

The new constants of motionC6 may have utility in the mathematical analysis of wave
propagation for two layered media described by wave speeds~5.23!. In particular,C6 may supple-
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ment the use of the energy constant of motionE in addressing certain problems, such as the time
evolution analysis for dispersal of waves initially localized across the transition boundary between
the layers, and the scattering theory analysis of traveling waves incident on the transition bound-
ary.

VI. CONCLUDING REMARKS

~1! In Sec. II we presented an explicit conservation law arising from any pair of symmetries,
local or nonlocal, admitted by an arbitrary self-adjoint system of~linear or nonlinear! DEs ~1.1!.
This conservation law expression does not require use of a variational principle for the system.
Specializing to self-adjoint systems of linear DEs, we obtained a conservation law from any
admitted local or nonlocal symmetry, by using a scaling symmetry as a second symmetry. A
similar conservation law also can be obtained for any nonlinear system which admits a scaling
symmetry~e.g., the Einstein equations in General Relativity theory!. For variational symmetries
~which are always local symmetries! admitted in the case of self-adjoint linear systems, we
showed in Sec. III that the resulting local conservation laws are the same as those obtained from
Noether’s theorem.~The proof can be generalized straightforwardly to the conservation laws
arising in the case of nonlinear systems with a scaling symmetry.!

The following theorem shows how our conservation law for a pair of symmetries is connected
to Noether’s theorem.

Theorem 6.1: SupposeX15h1
m(x,u,u

1
,...,u

P1
)]/]um and X25h2

m(x,u,u
1
,...,u

P2
)]/]um are

variational symmetries of a self-adjoint (linear or nonlinear) system (1.1). Then the resulting
conservation law (2.7) is the same as the conservation law obtained through Noether’s theorem
for the commutator symmetry

@X1 ,X2#5hm~x,u,u
1
,...,u

P
!]/]um ~6.1!

with P<P11P2 .
Proof: The commutator@X1,X2#5hr]/]ur is given by

hr5S ]h2
r

]us h1
s1

]h2
r

]ui
s Dih1

s1•••1
]h2

r

]ui1 ••• i P2

s Di1
•••DiP2

h1
sD

2S ]h1
r

]us h2
s1

]h1
r

]ui
s Dih2

s1•••1
]h1

r

]ui1 ••• i P1

s Di1
••• DiP1

h2
sD . ~6.2!

From Eq.~2.5! we see that

h1
s
F srh2

r2h2
s
F srh1

s5DiF
i@h1 ,h2#. ~6.3!

Then similarly to the derivation of Eq.~3.15!, the identity~3.7! now leads to

h1
s
F srh2

r52GrS ]h2
r

]us h1
s1

]h2
r

]ui
s Dih1

s1•••1
]h2

r

]ui1 ••• i P2

s Di1
•••DiP2

h1
sD 1DiH

i@h1 ,h2#

~6.4!

for a certainHi [h1 ,h2]. Hence, using Eqs.~6.2! to ~6.4!, we have

Grhr5DiV
i , ~6.5!
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whereV i52F i [h1 ,h2]1Hi [h1 ,h2]2Hi [h2 ,h1]. As the commutator of any two variational
symmetries is itself a variational symmetry, we see from Eq.~3.4! that Eq.~6.5! is a conservation
law obtainable from Noether’s theorem. h

The set of all variational symmetries for a given self-adjoint system~1.1! forms a Lie algebra
A. If all Lie algebra generators can be realized as commutators, in which case we sayA is
‘‘perfect,’’ then Theorem 6.1 yields all local conservation laws for the system. We remark that all
semisimple Lie algebras, as well as the Poincare´ algebra~which is not semisimple!, are perfect.

~2! The questions of how to find and how to characterize useful potential systems in order to
find nonlocal symmetries admitted by a system of DEs is considered in Ref. 6.

Potential systems of a given system~1.1! rely on the existence of at least one divergence free
equation in the system. However, if an appropriate divergence free equation cannot be found, one
may still be able to embed system~1.1! as a subsystem of a related potential system.10 This may
allow one to find nonlocal symmetries which are generalizations of potential symmetries.

~3! The conservation laws derived in Sec. II for a system of DEs~1.1! require that the system
is self-adjoint. If a given system~1.1! is not self-adjoint, one may still be able to find a related
potential system that is self-adjoint. Through the embedding into the potential system, any sym-
metry ~local or nonlocal! admitted by the given system will induce a symmetry of the potential
system.~An induced symmetry will be a nonlocal symmetry unless its generator has strictly local
dependence on the dependent variables in the potential system.! As a result, conservation laws for
the given system can then be obtained as conservation laws arising from the induced symmetries
~local and nonlocal! of each self-adjoint potential system. If a system~1.1! is itself self-adjoint,
conservation laws fromany admitted symmetry will correspondingly arise through each self-
adjoint potential system found for system~1.1! as well as through system~1.1! itself.

For the wave equation~4.1!, the first order potential system~4.2! considered in Sec. IV is not
self-adjoint. There are several different ways, nevertheless, to introduce potential variables for
system~4.2! leading to potential systems that are self-adjoint. As we will discuss in a forthcoming
article, the conservation law expressions arising through each such potential system are different
from the conservation law expressions obtained through the wave equation~4.1! itself. In particu-
lar, the nonlocal symmetries admitted by Eq.~4.1! as point symmetries of system~4.2! induce
nonlocal symmetries of these potential systems, leading to corresponding nonlocal conservation
laws different than the ones derived in Sec. IV. These additional conservation laws for the wave
equation~4.1! are not obtainable by Noether’s theorem applied to any of the self-adjoint potential
systems, since Noether’s theorem only deals with local symmetries.
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The unitary irreducible representations of the central extension of the Poincare´
group in 111 dimensions are constructed by an application of the Kirillov theory.
These are then lifted to projective unitary irreducible representations of the Poin-
carégroup. The 111 Galilean group is treated separately in an appendix. ©1996
American Institute of Physics.@S0022-2488~96!01305-X#

I. INTRODUCTION

We continue a program initiated some time ago to study the properties of symmetry groups of
d11-dimensional space–times withd,3. In earlier publications the Galilean group for the case
d52 was considered, its central extension carried out,1 and the system of unitary irreducible
representations, both faithful and projective, constructed.2 The representations of the Galilean
group have been constructed independently by Grigore3 via considerations of a certain group,
which is the central extension of the universal covering group of the Galilean group. The conclu-
sions of Ref. 3 are in agreement with those of Refs. 1 and 2. In this paper we consider the Poincare´
group ford51 and construct its projective representations. As for the faithful representations of
this group, these are well understood and are discussed, for instance, by Barut and Raczka.4 The
Galilean group ford51 is discussed separately in the Appendix.

As is well understood, the projective representations of a group can be obtained from the
ordinary representations of its universal central extension.5,6 The 111-dimensional Poincare´ group
P~1,1! has a one parameter family of central extensions, as shown by Bargmann.5 This is true of
central extension either by the circle groupT or by the additive groupR of reals. The latter choice
has certain technical advantages since the corresponding centrally extended group is simply con-
nected. Here we focus attention onP̂~1,1!, which is the central extension ofP~1,1! by R.

The groupP̂~1,1! is a ~non-nilpotent! solvable group~recall that a nilpotent group is solvable
but a solvable group is not necessarily nilpotent!. The representations ofP̂~1,1! may be con-
structed by an application of the method of Kirillov,7 wherein the group representations are
induced from one-dimensional representations of certain subgroups associated with the co-adjoint
orbits of the group. An important question for a general~non-nilpotent! solvable group is if the
Kirillov construction yieldsall the irreducible representations of the group. A broad criterion for
this to happen is given by the Auslander–Kostant theorem.8 The latter states that for a connected
and simply connected solvable Lie group of type 1~a Lie group whose representations generate
type 1 Von Neumann algebras!, the Kirillov method, or possibly a generalization of the original
method involving passage from real to complex extension groups, will yield all the irreducible
representations. A less general result was given earlier by Bernat,9 which states that for a solvable
Lie group which is exponential~an exponential group is one for which the canonical map from the
Lie algebra to the group is surjective!, the Kirillov method will give all the irreducible represen-
tations. While it is true thatP̂~1,1! is exponential and of type 1, as will be shown below, it is
actually not necessary to appeal to results of such generality.8,9 A more restrictive result due to
Kirillov, 7 which states that for acompletely solvablegroup his method will yield all the represen-
tations, is sufficient for our purpose. A completely solvable group, as defined in Ref. 7, is a
solvable Lie group G that contains an increasing chain of normal subgroups
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$e%5G0,G1,•••,Gn5G whose dimensions increase by one at each step so that dimGk5k.
Our P̂~1,1! is completely solvable by this definition~see below!.

This paper is organized as follows. In the next section, we study the groupsP~1,1! andP̂~1,1!
and establish some of their properties. The co-adjoint orbits ofP̂~1,1! are obtained in Secs. III and
IV. The unitary irreducible linear representations ofP̂~1,1! are obtained in Sec. V and the corre-
sponding projective ones ofP~1,1! in Sec. VI. Concluding remarks are made in Sec. VII.

The 111 Galilean group is treated separately~from the main body of the paper! in the
Appendix. Here the only contribution that we claim as original is in the construction of the central
extension of the group. Once this is done, the centrally extended group is recognized to be
isomorphic with a certain group whose representations are already known in the mathematical
literature.

II. THE POINCARÉ GROUP AND ITS CENTRAL EXTENSION

We denote byP~1,1! the 111-dimensional Poincare´ group. Letx andt be the coordinates of
space–time. The set of transformations (x,t)→(x8,t8), where

t85t coshz1x sinh z1h, x85t sinh z1x coshz1u ~2.1!

constituteP~1,1! under composition. Herez, h, andu are real parameters and tanhz is the relative
velocity connecting the two inertial frames. Thus the typical group element can be displayed in the
fashion~z,u!, whenu is a 111 vector and the group multiplication law is

~z,u!~z8,u8!5„z1z8,u1d~z!u8…, ~2.2!

where

u5S h
u D and d~z!5S coshz sinh z

sinh z coshzD . ~2.3!

P~1,1! has two distinguished subgroups. Elements of the form~z,0! generate the subgroup of
homogeneous Lorentz transformations, isomorphic with the additive groupR of reals. The normal
subgroup of translations consists of elements~0,u! and is a two-dimensional vector groupR2. The
groupP~1,1! is a semi-direct product of these two subgroups. The groupP~1,1! as defined above
is connected and simply connected and is a solvable~non-nilpotent! group of rank 2, as is easy to
verify.

The central extension ofP~1,1! is given by Bargmann.5 For any pairu,u8 of 111 vectors let
u`u85hu82uh8. Let r5~z,u!, r 85~z8,u8!; r ,r 8PP~1,1!. Then anR-valued representative~of an
equivalence class with respect to coboundaries! two-cocycle onP~1,1! is5

m~r ,r 8!5u`d~z!u8. ~2.4!

The above two-cocycle gives the desired central extensions. We have the central extension of
P~1,1! by T ~circle group! given by $~r ,j!%, rPP~1,1!, jPT, with the composition law

~r ,j!~r 8j8!5„rr 8,jj8 exp~ il/2!m~r ,r 8!…. ~2.5!

On the other hand, the central extension ofP~1,1! by R—the groupP̂~1,1!—consists of elements
~r ,v!, rPP~1,1!, vPR, with the multiplication rule

~r ,v!~r 8v8!5„rr 8,v1v81 1
2m~r ,r 8!…, ~2.6!

whererr 8 is given by Eq.~2.2! andm(r ,r 8) by Eq. ~2.4!. We proceed to analyze the structure of
P̂~1,1!.
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Elements ofP̂~1,1! of the form ~r ,0! with rPP~1,1! restricted to be of the formr5(z,0)
constitute a subgroup isomorphic with the homogeneous Lorentz group. We call this subgroupL.
Elements~r ,v! with r having the formrPP~1,1!5~0,u![~0,h,u! generate a subgroup isomorphic
with the Heisenberg–Weyl group~the group of 333 triangular matrices under matrix multiplica-
tion!; the required isomorphy is given by

~h,u,v![~0,h,u,v!↔S 1 h v1 1
2hu

0 1 u

0 0 1
D . ~2.7!

Call the above subgroupN. First, it is easy to check using Eq.~2.6! that the first derived group
~commutator subgroup! of P̂~1,1! is N, the second derived group isR5$~0,0,v!%, and the third
derived group is trivial; thusP̂~1,1! is a solvable group of rank 3. It is also easy to verify that
P̂~1,1! is not nilpontent. Further,P̂~1,1! has the structure of a semi-direct product. This follows
from the existence of a unique decomposition for every element (r ,v)[(z,h,u,v)P P̂(1,1) given
by

~z,h,u,v!5~0,h,u,v!~z,0,0,0!, ~2.8!

where (0,h,u,v)PN and (z,0,0,0)PL, plus the fact that the only element thatN andL share in
common is the identity ofP̂~1,1!. Thus P̂(1,1)5NL with N normal. The groupP̂~1,1! is con-
nected and simply connected; in fact, the group manifold is justR4 topologically. We note next
that the semi-direct product isregular, in the sense of Mackey. This may be seen as follows. Let
N* denote the dual space ofN ~the space of equivalence classes of unitary, irreducible represen-
tations ofN!. The unitary irreducible representations ofN are of two types:7 ~i! those labeled by
a nonzero real numberl, which is essentially the eigenvalue of the central charge of the Lie
algebra ofN, and~ii ! those labeled by a pair (p0 ,p) of real numbers, which is the case when the
central charge has eigenvalue zero, the group effectively Abelian~'R2!, and (p0 ,p) label the
characters ofR2. Thus the spaceN* may be visualized as a plane with a line perpendicular to it.
Under the action ofL the points ofN* respond as follows: the points on the line, labeled byl, do
not move, since the central charge of Lie (N) commutes with theL-action, and the points on the
plane$(p0 ,p)% behave as 111 vectors. We thus see that theL-orbits inN* are as follows:~i!
one-point orbits for each value ofl, ~ii ! the one-point orbit given by~0,0! on the plane, and~iii !
the sets$(p0 ,p)% with p0

22p256m2, m>0, the corresponding orbits being hyperbolas and
‘‘light-cones.’’ Now, the semi-direct productP̂(1,1)5NL will be regular if there exists inN* a
set~a Borel set! that meets eachL-orbit in N* at exactly one point.10 The desired set is simply the
union of thel-line with S, whereS is a Borel set that meets each planar orbit at one point. The set
Smay be constructed without difficulty. Thus the semi-direct product is regular. Consider now the
stability groups~little groups! of theL-orbits inN* . It is clear from the foregoing discussion that
the stability group of each one-point orbit isL, and the stability group of each non-one-point orbit
is trivial ~one element group!. In every case, the stability group is of type 1. From the last
conclusion and using the regularity of the semi-direct product, it now follows from a theorem of
Mackey10 that P̂~1,1! is a group of type 1. The same conclusion may also be reached from an
analysis of the co-adjoint orbits~see below!.

We shall now show that the groupP̂~1,1! is completely solvable, in the sense of Kirillov.7 For
this purpose, the coordinate system on the group that we have used thus far is not convenient.
Another set of~global! coordinates onP̂~1,1! will be introduced in Sec. IV@see Eq.~4.2!#. Using
the latter, and the corresponding group multiplication law given by Eq.~4.3!, we may verify the
existence of the following sequence of normal subgroups@normal in P̂~1,1!#:

$e%5G0,G1,G2,G35N,G45 P̂~1,1!, ~2.9!
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where dim(Gk)5k. HereG25$(0,x,0,v)%5R2 andG15$(0,0,0,v)%5R, in the notation of Eq.
~4.2!. This proves thatP̂~1,1! is completely solvable.

The sequence~2.9! gives rise to a corresponding sequence at the level of Lie algebras in which
every entryGk is replaced by its Lie algebra Lie (Gk), every Lie (Gk) is an ideal in Lie„P̂~1,1!…,
and dim Lie (Gk)5k. SinceP̂~1,1! is connected, simply connected, and solvable, the existence of
such a sequence of ideals in itsreal Lie algebra implies, via a result due to Dixmier11 ~corollary
to his theorem 3!, that P̂~1,1! is an exponential group.

We pass on to compute the co-adjoint orbits ofP̂~1,1!.

III. COADJOINT ORBITS

The Lie algebra ofP̂~1,1! is a four-dimensional real vector space. We may choose basis
vectorsN, H, P, andE that obey the commutation relations

@N, H#5P, @N, P#5H, @H, P#5E; ~3.1!

N,P,H are the infinitesimal generators of Lorentz transformation, space translations, and time
translation, respectively,E is the central generator. The operatorsH, P, and E generate the
Heisenberg algebra, which is an ideal.

The typical element (z,h,u,v) of the groupP̂~1,1! is

~z,h,u,v!5exp~vE1hH1uP!exp~zN!. ~3.2!

Several comments are in order. First, in writing Eq.~3.2!, we utilized the semi-direct product
structure ofP̂~1,1! plus the fact that the Heisenberg–Weyl group is nilpotent and hence exponen-
tial; hereh, u andv are the exponential coordinates. Thus~3.2! gives a globally valid coordinate
system. The group multiplication law can be derived from Eqs.~3.1! and ~3.2! together with the
use of the Baker–Hausdorff formula; one thus obtains Eq.~2.6!. An alternative route to the same
conclusion will employ a faithful matrix representation of Eq.~3.1!. Such a representation is

N5S 0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

D , H5S 0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

D ,
~3.3!

P5S 0 21 0 0

0 0 0 0

0 0 0 1

0 0 0 0

D , E5S 0 0 0 2

0 0 0 0

0 0 0 0

0 0 0 0

D .
It is useful to noteH25P25E250 andN35N and further that

N25S 0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

D . ~3.4!

A group acts on its Lie algebra with the aid of the adjoint representation. Precisely, this action
is Ad (g)W5gWg21 for gPG, WPLie(G). Use of the above matrix realization together with
Eq. ~3.2! thus allows us to explicitly compute the adjoint action. Let us write the generic element
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W of the Lie algebra asW5aE1bH1cP1dN, wherea,b,c,d are real numbers. Then the
adjoint action ofg21 @it will turn out more useful for us to consider the action of the inverse
element; here,g is given by Eq.~3.2!# is Ad (g21)W5W85a8E1b8H1c8P1d8N, where

a85a2ch1bu1~d/2!~u22h2!,

b85~b1du!coshz2~c1dh!sinh z,
~3.5!

c85~c1dh!coshz2~b1du!sinh z, d85d,

as a straightforward calculation shows.
A group acts on a vector space which is dual to its Lie algebra with the aid of the co-adjoint

representation. LetE* , H* , P* , andN* be a basis in the dual vector space to LieP̂~1,1!. This
means

~E* ,E!51, ~E* ,X!50 for X5H,P,N,

~H* ,H !51, ~H* ,X!50 for X5E,P,N,
~3.6!

~P* ,P!51, ~P* ,X!50 for X5E,H,N,

~N* ,N!51, ~N* ,X!50 for X5E,H,P,

where~,! denotes a scalar product. Let us consider the typical elementl of the dual space

l 5dE*1bH*1gP*1aN* , ~3.7!

and letW be, as before,

W5aE1bH1cP1dN. ~3.8!

Then

~ l ,W!5ad1bb1cg1da. ~3.9!

Let us writel ~W!5~l ,W!. Let K denote the co-adjoint action andK(g)l denote that ofg on l .
Then precisely

„K~g!l …~W!5l „Ad~g21!W… ~3.10!

defines the co-adjoint action. LetK(g)l 5l 85d8E*1b8H*1g8P*1a8N* . Then we compute
from Eqs.~3.5! and ~3.10! that

d85d, b85ud1b coshz2g sinh z,
~3.11!

g852hd2b sinh z1g coshz,

a85a1~d/2!~u22h2!1b~u coshz2h sinh z!1g~h coshz2u sinh z!,

whereg is given by Eq.~3.2!. It follows, from the above, thatb 22g 222da remain invariant
under the co-adjoint action. The co-adjoint orbits~K-orbits! are now easy to enumerate. Each
K-orbit is two-dimensional, since$~a,b,g!% generate an orbit and there is a constraint connecting
these three~real! variables. EachK-orbit is characterized by two numbers: the value ofd and that
of the invariantb 22g 222da. TheK-orbits are of two broad types.
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The K-orbits of P̂~1,1! for the cased50 plainly coincide with theK-orbits of P ~1,1!. A
complete listing of the latter may be found in a recent contribution of Ali and Mueller.12 The
representations constructed from these orbits coincide with the known4 faithful representations of
P~1,1!. We do not discuss these orbits any further.

Consider now theK-orbits corresponding todÞ0. An orbit is characterized byd and the
constantc5b 22g 222da. The point (a052c/2d,0,0,d)[dE*1a0N* belongs to the orbit. In-
deed, we can reach the typical point„a52~c1g 22b 2!/2d,b,g,d… on the orbit from the point
~a0,0,0,d! under the action~3.11! of the group element~0,h,u,0! with h52g/d andu5b/d. Thus
the constantc plays no essential role and we may simply characterize an orbit by the point
~a,0,0,d! belonging to it. Consider now the stability groupH of the orbit, i.e., of the representative
point ~a,0,0,d!. From Eq.~3.11! we obtainH5$(z,0,0,v)%[R^R. From the group multiplication
law ~2.6!, it follows that every element ofP̂~1,1! admits the decomposition

~z,h,u,v!5~z,0,0,v!~0,h8,u8,0!, ~3.12!

whereh85h coshz2u sinhz andu85u coshz2h sinhz. Thush andu may be chosen to~glo-
bally! parametrize the homogeneous space of right cosets ofH in P̂~1,1!. Plainly, the coset space
is R2. TheK-orbit is homeomorphic to the coset space sinceP̂~1,1! is locally compact. Thus the
K-orbit has trivial de Rham cohomology. In particular, the Kostant–Kirillov symplectic two-form
on theK-orbit is exact~the conclusion remains valid ford50 orbits!.12

From the above it would follow, via an application of the Auslander–Kostant theorem, that
P̂~1,1! is a group of type 1, provided thespace of orbitscan be shown to possess theT0 separa-
bility property. As for the latter requirement, we note that eachK-orbit is parametrized by the pair
~a,d! of real numbers@or equivalently by the pair~c,d! of real numbers# and hence the space of
orbits is the planeR2 which hasT0 separability property. The conclusion, once again, is that
P̂~1,1! belongs to type 1.

In the Kirillov method, a vital role is played by the admissible subalgebras corresponding to
an orbit. We proceed to construct these. LetG be a Lie group, Lie (G) its Lie algebra,V aK-orbit
of G, and l̃ a point belong toV. A sub-Lie algebraA of Lie (G) is said to beadmissible~or
polarizing! if the following conditions are satisfied:13

~1! l̃ ([X, Y])50 for arbitraryX and Y belonging toA; here, as before,l̃ (X)[~l̃ ,X!. The
algebraA is said to be subordinate to the pointl̃ .

~2! The codimension ofA in Lie(G) @that is the difference dim Lie(G)2dimA# is one-half the
dimension ofV.

~3! l̃ 1A',V; hereA' is the set of all pointsF belonging to the dual space of Lie(G) for which
F(X)50 for all XPA; this is Pukanszky’s condition.

We select the pointl̃ 5~a,0,0,d! on the orbit. Then we have two admissible subalgebrasA1 and
A2 ; A1 is generated byN, P1 , andE while A2 is generated byN, P2 , andE; hereP65H6P.
First, these are subalgebras since [N, P6]56P6 . The condition~1! above is checked easily.
Thus for A1 , let X5x1N1x2P11x3E and Y5y1N1y2P11y3E. Then [X, Y]
5(x1y22x2y1)P1 and l̃ ([X, Y])50 follows from Eq. ~3.9!. Now dimA653 and dim Lie
„P̂~1,1!…54; thus codimA651; moreover dimV52 ~proved before!. Thus condition~2! is satis-
fied. That condition~3! is fulfilled will be shown in the next section using a different set of group
coordinates better suited for this purpose.

IV. LIGHT-CONE COORDINATES

As we saw above, the basis in our Lie algebra given by the basis vectorsN, P1 , P2 , andE
will be more convenient for the discussion to follow. HereP65H6P and we may note

@N, P6#56P6 , @P2 ,P1#52E. ~4.1!
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Note the existence of a sequence of ideals generated byE, (E,P1), and (E,P1 ,P2) as stated in
the penultimate paragraph of Sec. II. Corresponding to the present choice of the basis in the Lie
algebra, there is a coordinate system for the group manifold. Let us write the typical group element
(z,x,y,v) in the fashion

~z,x,y,v!5evEexP1eyP2ezN. ~4.2!

The new coordinates are related to the old byx1y5h, x2y5u; the parametrization ofv above
is simply related to that in Eq.~3.2!, via the Baker–Hausdorff formula~see below!. The group
multiplication law in these coordinates is given by

~z,x,y,v!~z8,x8,y8,v8!5~z1z8,x1ezx8,y1e2zy8,v1v812ezyx8!. ~4.3!

Note the expression for the inverse

~z,x,y,v!215~2z,2e2zx,2ezy,2xy2v!. ~4.4!

The co-adjoint action in the present coordinate system may be computed exactly as before.
Let the typical pointl on the dual space be

l 5dE*1b̃P1* 1g̃P2* 1aN* . ~4.5!

Then under the action of (z,x,y,v), (d,b̃,g̃,a) go over to (d8,b̃8,g̃8,a8), where

d85d, b̃85e2zb̃22dy, g̃85ezg̃12dx, a85a1xe2zb̃2yezg̃22dxy, ~4.6!

andb̃g̃22da is an invariant of the orbit. Indeed, a comparison of Eq.~4.5! with Eq. ~3.7! shows
b˜5b1g, g̃5b2g. Further, let us call the parameterv in Eq. ~3.2! asv̄ andv be as in Eq.~4.2!;
then v̄5v2xy. From these observations and the fact thatv̄ does not appear in Eq.~3.11!, Eq.
~4.6! now follows easily from Eq.~3.11!. As before, the point~a,0,0,d![aN*1dE* belongs to
theK-orbit, and the subalgebrasA6 with codimension one are subordinate to this point. We may
now verify Pukanszky’s condition. The annihilators areA1

' 5 $jP2* %, j real;A2
' 5 $rP1* %, r real.

Consider the caseA2 . Then ~a,0,0,d!1A2
' is the set$~a,r,0,d!% as r ranges over reals. The

question is do these points belong to theK-orbit? The answer is yes, since a point~a,r,0,d! may
be reached from the point~a,0,0,d! on the orbit, under the action~4.6! of the group element
(z,x,y,v) with z5x5v50 andy52r/2d. One similarly verifies the condition for the subalgebra
A1 . Thus, Pukansky’s condition stands satisfied and the proof of the fact thatA6 areadmissible
subalgebras is now complete.

V. REPRESENTATIONS

In the Kirillov theory, the group representations are constructed as follows. One selects a point
l̃ on the co-adjoint orbit and an accompanying admissible subalgebraA. Let K denote the
subgroup corresponding toA. The point l̃ allows one to constructone-dimensionalrepresenta-
tions ofK ~sinceA is subordinate tol̃ , it is effectivelyAbelian onl̃ !. The group representations
are the induced representations; induced from the one-dimensional representations of subgroupK.

We may note the following general features of the Kirillov theory. First, the precise choice of
l̃ plays no role; one can select any point on the orbit depending on one’s convenience. Second,
one may work with any one of the admissible subalgebras, in case there are more than one such,
corresponding to a chosenl̃ . Thus there is a one-to-one correspondence between representations
and co-adjoint orbits.The representation constructed as above will be irreducible. The represen-
tations can be made unitary with respect to a suitable inner product in a Hilbert space.

Let us select the admissible subalgebraA1 for the chosen pointl̃ 5~a,0,0,d!. LetK denote the
subgroup corresponding toA1 . As before,A1 is spanned by generatorsN, P1 , andE and is a real
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subalgebra; the subgroupK is the set$(z,x,0,v)% in the notation of Eq.~4.2!. NoticeK is not a
normal subgroup, andA1 not an ideal. Letk5(z,x,0,v), kPK, and we set

x~k!5eidveiaz. ~5.1!

Then it follows thatx satisfies the character equationx(k)x(k8)5x(kk8). Thus x is a one-
dimensional representation ofK. We have to carry out the inducing construction from this repre-
sentationx.

At this stage, let us recall the basic idea behind the construction of induced representations.
Let G be a~Lie! group,K a closed subgroup ofG, andLk a ~finite dimensional! unitary repre-
sentation ofK in a Hilbert spaceL. Consider measurableL-valued functionsf onG ~functions of
group parameters! that satisfy the condition

f ~gk!5Lk
21f ~g!, gPG,kPK, ~5.2!

and let

~UL~g0! f !~g!5rg0~g! f ~g0
21g!, ~5.3!

whererg0(g) is a certain positive function~see below!. Then the mapg→UL(g) is a represen-
tation ofG induced by the representationLk of K. The condition~5.2! is the covariance condition
on left cosets and because of it we shall be able to identify the functionsf with certain functions
~L-valued! defined on the left coset spaceX5G/K. Therg0(g) appearing in~5.3! is precisely the
square root of the Radon–Nikodym derivativedm(g0

21x)/dm(x), wherex5p(g) andp:G→X is
the natural projection. Herem is a measure onX that isquasi-invariantunder the action ofG.
Further restrictions on the functionsf will be spelled out as the need arises. In our caseLk is given
by x @see~5.1!# and f are ordinary functions.

We make a remark. The above construction actually gives the group representation on the left
coset space. We may similarly construct representations on the right coset spaceXR5K\G. Now
Eq. ~5.2! will modify to f (kg)5Lkf (g) and Eq.~5.3! to „UL(g0) f …(g) 5 rg0(g) f (gg0). Here
rg0(g) is the square root ofdm(xg0)/dm(x), wherex belongs to the right coset andxg0 is the
right action ofg0 on x.

We proceed to construct the group representations. The covariance condition~5.2! becomes

f ~gk!5x21~k! f ~g!. ~5.4!

Let g5(z8,x8,y8,v8) andk5(z,x,0,v); then using the multiplication law equation~4.3! we have

gk5~z81z,x81ez8x,y8,v81v12ez8y8x!, ~5.5!

and Eq.~5.4! acquires the form

f ~z81z,x81ez8x,y8,v81v12ez8y8x!5e2 idve2 iazf ~z8,x8,y8,v8!. ~5.6!

The solution of~5.6! is shown without difficulty to be given by

f ~z,x,y,v!5e2 iaze2 id~v22xy!F~y!, ~5.7!

whereF(y) is a function ofy alone. One may check that Eq.~5.7! solves Eq.~5.6!. Because of Eq.
~5.7! the group representations defined on functionsf will factor into those defined on functionsF;
that is, on the left coset space whose pointy is.

The next problem is to figure out the form of the Radon–Nikodym derivative. First, we note
that every group elementg admits the decompositiong5skwith kPK andsPG. This is given by
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~z,x,y,v!5~0,0,y,0!~z,x,0,v22xy! ~5.8!

and thus the left coset space may be parametrized byy @the element (0,0,y,0)PG goes over toy
under natural projection#. The left action of the group on the coset space is computed as follows.
With g as above we have

~z,x,y,v!~0,0,y0,0!5~z,x,y1e2zy0 ,v!5~0,0,y1e2zy0,0!„z,x,0,v22x~y1e2zy0!…
~5.9!

and thusy0→e2zy01y under the left action of (z,x,y,v). Similarly, y0→ez(y02y) under the
left action of the inverse (z,x,y,v)21. Thus the Lebesgue measuredy on the left coset space is not
invariant under the group action; it is actually an example of the so-called quasi-invariant measure
that behaves under group action asdy→e2z dy, anddy and its transform share the same null set.
Here we choose the quasi-invariant Lebesgue measuredy and then the Radon–Nikodym deriva-
tive dm(g0

21y)/dm(y) is justez. Thusrg0(g) is e
z/2. We are now in a position to write down the

explicit form of the group representation. From Eq.~5.3! we have

„U~z,x,y,v! f …~z8,x8,y8,v8!

5ez/2f „~z,x,y,v!21~z8,x8,y8,v8!…

5ez/2f „z82z,e2z~x82x!,ez~y82y!,v82v12y~x2x8!…, ~5.10!

where Eqs.~4.3! and~4.4! have been utilized in the second step. Equation~5.10! gives the desired
representation; here the functionsf satisfy the condition given by Eq.~5.7!. We proceed to analyze
the content of the representation obtained. First, we note

„U~evE! f …~z8,x8,y8v8![„U~0,0,0,v! f …~z8,x8,y8,v8!

5 f ~z8,x8,y8,v82v!

5eidv f ~z8,x8,y8,v8!, ~5.11!

where Eq.~5.7! was used at the last step. It follows from the above that

E5 id. ~5.12!

Next we have from Eq.~5.10!

„U~exP1! f …~z8,x8,y8,v8![„U~0,x,0,0! f …~z8,x8,y8,v8!5 f ~z8,x82x,y8,v8!. ~5.13!

Differentiating the above with respect tox and then settingx50, we obtain

„U~P1! f …~z8,x8,y8,v8!52
]

]x8
f ~z8,x8,y8,v8!522idy8 f ~z8,x8,y8,v8!, ~5.14!

where Eq.~5.7! was used at the last step. Thus acting onf (z,x,y,v), P1 is the operator of
multiplication by22idy. The remaining operators of interest are similarly found. We obtain

„U~P2! f …~z,x,y,v!5S 2idx2
]

]yD f ~z,x,y,v!, ~5.15!

„U~N! f …~z,x,y,v!5S 122
]

]z
1y

]

]y
2x

]

]xD f ~z,x,y,v!. ~5.16!
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With the aid of Eq.~5.7! the above action of the operators onf may be translated into action on
the functionsF. The result is

„U~P2!F…~y!52
d

dy
F~y!, ~5.17!

„U~N!F…~y!5S 121y
d

dy
1 ia DF~y!. ~5.18!

The above expressions satisfy the correct commutation relations of operatorsN, P1 , P2 , andE,
as may be verified.

We should finally consider the restrictions on the functionF. From~5.17! we see that forfinite
translation byy to be defined, the functionF must be infinitely differentiable; that is,F is an
analytic function of the real variabley. Next, we shall restrictF to be square integrable with
respect to the Lebesgue measure dy on the left coset space. The set of all such functions, which
may be taken to be real valued, then constitute a separable Hilbert spaceH with respect to the
inner product

~F1 ,F2!5E F1~y!F2~y!dy. ~5.19!

Our representation is then unitary inH and is strongly continuous~continuous in the strong
topology ofH!; it is irreducible because of reasons explained before. This concludes our discus-
sion of the representations ofP̂~1,1!.

VI. PROJECTIVE REPRESENTATIONS OF THE 111 POINCARÉ GROUP

The nontrivial projective unitary irreducible representations of the Poincare´ groupP~1,1! may
now be obtained from the representations of the centrally extended groupP̂~1,1! constructed in
Sec. V.

In the light-come coordinates the typical element of the Poincare´ groupP~1,1! is written in the
fashion (z,x,y) and the multiplication law is

~z,x,y!~z8,x8,y8!5~z1z8,x1ezx8,y1e2zy8! ~6.1!

as follows from Eq.~2.2!. The desired representations ofP~1,1! follow from Eqs.~5.10! and~5.7!
upon settingv5v850. Defining f (z,x,y)[ f (z,x,y,0) we thus have

„U~z,xy! f …~z8,x8,y8!5ez/2e2id~x82x!yf „z82z,e2z~x82x!,ez~y82y!…. ~6.2!

The expressions for the generatorsN,P1 ,P2 of the Lie algebra are exactly the same as those in
Sec. V. The above is a projective representation ofP~1,1!. Indeed, from~6.2! we compute

„U~0,0,y!U~0,x,0! f …~z8,x8,y8!5e2idx8yf ~z8,x82x,y82y!. ~6.3!

On the other hand, from~6.1! and ~6.2!, it follows

~U„~0,0,y!~0,x,0!…f !~z8,x8,y8!5„U~0,x,y! f …~z8,x8,y8!5e2id~x82x!yf ~z8,x82x,y82y!,
~6.4!

and thus

U~0,0,y!U~0,x,0!5e2idxyU„~0,0,y!~0,x,0!…, ~6.5!
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which shows that our representation is projective.

VII. CONCLUDING REMARKS

The faithful representations ofP~1,1! corresponding to timelike and lightlike representations
describe the states of a massive or massless particle in one spatial dimension. The projective
representations ofP~1,1! clearly do not admit a free-particle interpretation; the intriguing question
is if they possess any physical application. Unfortunately, we have not found an answer to this
question, thus far. On the other hand, the groupP̂~1,1! does seem to possess physical utility. A
gaugetheory built uponP̂~1,1! was shown by Cangemi and Jackiw14 to be efficacious in analyz-
ing the structure of 111-dimensional ‘‘black-hole’’ models.

The groupP̂~1,1! is closely related to two other groups of interest in physics and it may not
be out of place to make a few remarks concerning these relationships. The groupP~1,1! is related
to E~2!—the Euclidean group on the plane. Indeed, by replacing the 111 Lorentz transformation
by a planar rotation we pass fromP~1,1! to E~2!. The central extension of these two groups are
similarly related. The central extensionÊ~2! of E~2! by R is locally isomorphic with~shares an
isomorphic Lie algebra with! the quantum harmonic oscillator group; the difference between the
two at the global level resides entirely on the range of one of the group parameters. The parameter
of rotation inÊ~2! is an angle that ranges from 0 to 2p; while the corresponding parameter for the
oscillator group—the time parameter conjugate to the Hamiltonian—ranges over the real line. The
representations of the oscillator group were constructed by Streater15 a long time ago, using the
Kirillov ~actually a generalization of the original Kirillov method involving complex Lie algebras!
as well as the Mackey method. The close parallelism between Streater’s treatment and that of the
present paper should be noted. It also follows that the projective representations ofE~2! can be
obtained very simply from the results of Streater.15 Actually, the projective representations ofE~2!
are useful in the problem of electrons in a uniform magnetic field. An elegant treatment of this
problem has been given by Divakaran and Rajagopal.16

Note added in proof. Projective representations of the 211 and 111 Galilean group are
constructed independently in H. D. Doebner and H. J. Mann, J. Math. Phys.36, 3210 ~1995!.
Many properties of the centrally extended 111 Poincare´ group are discussed in D. Cangemi and
R. Jackiw, Ann. Phys.~NY! 225, 229~1993! and Phys. Rev. D50, 3913~1994!. In particular, the
exactness of the symplectic two-form on the co-adjoint orbit is proved by explicit construction in
the latter. It is a pleasure to thank R. Jackiw for correspondence regarding these and related
matters.

APPENDIX: THE 111 GALILEAN GROUP

The 111 Galilean group is the group under composition of the set of space–time transforma-
tions

x85x2vt1u, t85t1h. ~A1!

The typical group element is (v,h,u) with the multiplication law

~v,h,u!~v8,h8,u8!5~v1v8,h1h8,u1u82h8v !. ~A2!

The group is isomorphic with the Heisenberg–Weyl group, the isomorphism being explicitly

~v,h,u!↔S 1 2v u

0 1 h

0 0 1
D . ~A3!
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The corresponding Lie algebra is a three-dimensional real vector space in which one can choose
basis vectorsN, P, H that satisfy the commutation relations

@N, H#5P, @N, P#50, @H, P#50. ~A4!

We consider the problem of central extension of the Galilean group. It has two equivalence
classes of two-cocycles. We can choose the representative two-cocycles~one from each equiva-
lence class! to be

m1~r ,r 8!5 1
2v

2h82vu8, m2~r ,r 8!5 1
2vh822hu81vhh8, ~A5!

wherer[(v,h,u) and r 85(v8,h8,u8). That the above expressions satisfy the cocycle identities
and are nontrivial~not coboundaries! may be checked along the same lines as in Ref. 1. We may
thus construct the universal centrally extended group as follows. The typical group element is
(r ,u1 ,u2)[(v,h,u;u1 ,u2) with the multiplication law

~r ,u1 ,u2!~r 8,u18 ,u28!5„rr 8,u11u181m1~r ,r 8!,u21u281m2~r ,r 8!…. ~A6!

whereu1 and u2 are a pair of real variables. It is useful to note the corresponding Lie algebra
central extension, which is given by

@N, H#5P, @N, P#5A, @H, P#5B, ~A7!

whereA andB are central charges~commute with every generator!. NoteP is no longer central.
The centrally extended group, as defined above, is connected and simply connected. Further-

more, it is anilpotentLie group~of dimension five!, as is easy to check from Eq.~A6! or from Eq.
~A7!. At this stage we recall the fact that all nilpotent Lie groups of dimension less than 6 were
classified by Dixmier17 in 1959. Thus our centrally extended group must be one in his classifica-
tion. In fact,our group is the groupG5,4 in the Dixmier classification. The complete system of
unitary, irreducible representation ofG5,4 has been given in Ref. 17. Lifting the latter to projective
representations of the Galilean group is trivial~be settingu15u250!, and there remains nothing
more to discuss.
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It is shown that certain embeddable homogeneous spaces of a quantum group that
do not correspond to a quantum subgroup still have the structure of quantum quo-
tient spaces. A construction of quantum fibre bundles on such spaces is proposed.
The quantum plane and the general quantum two-spheres are discussed in detail.
© 1996 American Institute of Physics.@S0022-2488~96!02705-1#

I. INTRODUCTION

A homogeneous spaceX of a Lie groupG may be always identified with the quotient space
G/G0 , whereG0 is a Lie subgroup ofG. When the notion of a homogeneous space is generalized
to the case of quantum groups or noncommutative Hopf algebras the situation becomes much
more complicated. A general quantum homogeneous space of a quantum groupH need not be a
quotient space ofH by its quantum subgroup. By a quantum subgroup ofH we mean a Hopf
algebraH0 such that there is a Hopf algebra epimorphismp:H→H0 . The quotient space is then
understood as a subalgebra ofH of all points that are fixed under the coaction ofH0 onH induced
by p. A quantum homogeneous spaceB of H might be such a quotient space but it is not in
general. There is, however, a certain class of quantum homogeneous spaces, of which the quantum
two sphere of Podles´1 is the most prominent example, that not being quotient spaces by a quantum
subgroup ofH, may be embedded inH. One terms such homogeneous spacesembeddable.2 The
general quantum two sphereSq

2~m,n! is such an embeddable homogeneous space of the quantum
group SUq~2!, and it is a quantum quotient space in the above sense whenn50. In the latter case
the corresponding subgroup of SUq~2! may be identified with the algebra of functions onU~1!. In
this article it is shown that certain embeddable quantum homogeneous spaces, and the general
quantum two-sphereSq

2~m,n! among them, can still be understood as quotient spaces or fixed point
subalgebras. It is shown that there is a coalgebraC and a coalgebra epimorphismp:H→C such
that the fixed point subspace ofH under the coaction ofC onH induced from the coproduct inH
by a pushout byp is a subalgebra ofH isomorphic toB.

The interpretation of embeddable quantum homogeneous spaces as quantum quotient spaces
allows one to develop the quantum group gauge theory of such spaces following the lines of Ref.
3. The study of such a gauge theory becomes even more important once the appearance of the
quantum homogeneous spaces in theA. Connes geometric description of the standard model was
announced.4 For this purpose, however, one needs to generalize the notion of a quantum principal
bundle of Ref. 3 so that a Hopf algebra playing the role of a quantum structure group there may
be replaced by a coalgebra. Such a generalization is proposed~see Ref. 5 for further details!. Since
the theory of quantum principal bundles is strictly related to the theory of Hopf–Galois extensions
~cf. Ref. 6!, a generalization of such extensions is proposed.

The article is organized as follows. In Sec. II the notation used in the sequel is described.
Section III shows a fixed point subalgebra structure of embeddable quantum homogeneous spaces.
A suitable generalization of the notion of a quantum principal bundle in Sec. IV is proposed.
Sections V and VI are devoted to careful study of two examples of quantum embeddable spaces,

a!Electronic mail: T.Brzezinski@damtp.cam.ac.uk
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namely the quantum planeCq
2 ~Ref. 7! and the quantum sphereSq

2~m,n!.1

II. PRELIMINARIES

In the sequel all the vector spaces are over the fieldk of characteristic not 2.C denotes a
coalgebra with the coproductD:C→C^C and the counite:C→k which satisfy the standard
axioms, cf. Ref. 8. For the coproduct the Sweedler sigma notation is used:

Dc5c~1! ^c~2! ~D ^ id !+Dc5c~1! ^c~2! ^c~3! , etc.,

wherecPC, and the summation sign and the indices are suppressed. A vector spaceA is a leftC-
comodule if there exists a mapDL :A→C^A, such that (D ^ id)+DL5( id^ DL)+DL , and
(e ^ id)+DL5 id. ForDL we use the explicit notation

DLa5a~1! ^a~`! ,

whereaPA and alla(1)PC and alla(`)PA.
Similarly a vector spaceA is a rightC-comodule if there exists a mapDR :A→A^C, such

that (DR^ id)+DR5( id^ D)+DR , and (id^ e)+DR5 id. ForDR the explicit notation is used:

DRa5a~0! ^a~1! ,

whereaPA and alla(1)PC and alla(0)PA.
H denotes a Hopf algebra with productm:H^H→H, unit 1, coproductD:H→H^H, counit

e:H→k and antipodeS:H→H. Sweedler’s sigma notation is used as before. Similarly as for a
coalgebra right and leftH-comodules are defined. For a rightH-comoduleA we denote by
AcoH a vector subspace ofA of all elementsaPA such thatDRa5a^1. A right ~respectively, left!
H-comoduleA is a right ~respectively, left! H-comodule algebra ifA is an algebra andDR

~respectively,DL! is an algebra map.
A vector subspaceJ of H such thate(J)50 andDJ,J^H%H^J is called acoideal in H.

If J is a coideal inH thenC5H/J is a coalgebra with a coproductD given byD5~p^p!+D,
wherep:H→C is a canonical surjection. The counite in C is defined by the commutative diagram

.

III. QUANTUM HOMOGENEOUS SPACES

In this section it is shown that if an embeddable quantum homogeneous space satisfies certain
additional assumption it may be identified with a quantum quotient space.

Definition 3.1:2 Let H be a Hopf algebra andB be a leftH-comodule algebra with the
coactionDL :B→H^B. B is an embeddable quantum homogeneous spaceor simply anem-
beddable H-space if there exists an algebra inclusioni :B�H such thatD+ i5( id^ i )+DL , i.e., i is
an intertwiner.

Proposition 3.2: ~1! A left H comodule algebra B is an embeddable H-space if and only if
there exists an algebra characterk:B→k such that the linear map ik :B→H, i k :b°b(1)k(b(`))
is injective. ~2! If B is an embeddable H-space then the linear mapxL :B^B→H^B,
xL :b^b8°b(1)^b(`)b8 is injective.

Proof: ~1! If B is an embeddable quantum homogeneous space thenk5e+i is a character ofB.
Sincei is an intertwiner, for anybPB, compute
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i k~b!5b~1!e~ i ~b~`!!!5 i ~b!~1!e~ i ~b!~2!!5 i ~b!,

thus i k is an inclusion.
Conversely assume that there is a characterk:B→k such thati k is injective. Then clearlyi k is

an algebra inclusion. Furthermore,

D~ i k~b!!5b~1! ^b~2!k~b~`!!5b~1! ^ i k~b~`!!5~ id^ i k!+DL~b!.

Thereforei k is an intertwiner as required.
~2! The canonical mapcan: H^H→H^H, can: u^v°u(1)^u(2)v is a linear isomorphism.

Consider the diagram

. ~3.1!

Clearly, both the rows and the columns of diagram~3.1! are exact. Moreover for anyb,b8PB:

~ id^ i !+xL~b^b8!5b~1! ^ i ~b~`!b8!5b~1! ^ i ~b~`!!i ~b8!5 i ~b!~1! ^ i ~b!~2!i ~b8!

5can~ i ~b! ^ i ~b8!!,

and hence diagram~3.1! is also commutative. Therefore the sequence 0→B ^ B→
xL

H ^ B is exact,
i.e., the mapxL is injective. h

Remark 3.3:The second assertion of Proposition 3.2, i.e., the injectiveness ofxL , is a dual
version of the statement that the action of a group on its homogeneous space is transitive.

Proposition 3.4: Let B be an embeddable H space corresponding to the characterk:B→k.
Define a right ideal Jk,H by Jk5$( j ( i k(bj )2k(bj ))uj ;;bjPB,;ujPH%. Then Jk is a coideal
in H.

Proof: Clearly

e~ i k~b!2k~b!!5e~b~1!!k~b~`!!2k~b!5k~b!2k~b!50.

Furthermore,

D~ i k~b!2k~b!!5 i k~b!~1! ^ i k~b!~2!2k~b!1^15b~1! ^ ~ i k~b~`!!2k~b~`!!!1b~1!k~b~`!! ^1

2k~b!1^15b~1! ^ ~ i k~b~`!!2k~b~`!!!1~ i k~b!2k~b!! ^1.

Therefore for anybPB,

D~ i k~b!2k~b!!PH^Jk %Jk ^H,

so thatJk is a coideal as stated. h

Since Jk is a coideal ofH, the vector spaceC5H/Jk is a coalgebra and the canonical
subjectionp :H→C is a coalgebra map. This in turn implies thatH is a rightC-comodule with the
coactionDR5( id^ p)+D:H→H^C. Let HcoC5$uPH;DRu5 u ^ p(1)%.
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Proposition 3.5: Let B be an embeddable H-space corresponding to the characterk:B→k,
Jk be as in Proposition 3.4 and C5H/Jk . Then: (1) H

coC is a subalgebra of H; (2) B is a
subalgebra of HcoC.

Proof: ~1! Since kerp5Jk is a right ideal inH there is a natural right actionr0:C^H→C of
H on C given by the commutative diagram

.

In other words for anyaPC and uPH, r0(a,u)5p(vu), where vPp21(a). For any u,v
P HcoC we compute

DR~uv !5u~1!v ~1! ^ p~u~2!v ~2!!5u~1!v ~1! ^ r0~p~u~2!!,v ~2!!5uv ~1! ^ r0~p~1!,v ~2!!

5uv ~1! ^ p~v ~2!!5uv^ p~1!.

Thereforeuv P HcoC andHcoC is a subalgebra ofH as required.
~2! For anybPB we compute

DR~ i k~b!!5 i k~b!~1! ^ p~ i k~b!~2!!5b~1! ^ p~ i k~b~`!!!5b~1! ^ k~b~`!!p~1!5 i k~b! ^ p~1!.

Hencei k :B�HcoC is the required algebra inclusion. h

Proposition 3.5 shows therefore that ifHcoC, i k(B) then the embeddableH-spaceB may be
identified with the quantum quotient spaceHcoC. For example, exploiting the argument of the
proof of Proposition 1.2.4 of Ref. 9, one can conjecture that the above inclusion holds ifH is a
faithfully flat B-module.

IV. A POSSIBLE GENERALIZATION OF QUANTUM PRINCIPAL BUNDLES

Once anH-embeddable spaceB is identified with a quotient spaceHcoC, it is natural to view
H as a total space of a principal bundle overB. Therefore one would like to apply the general
theory of quantum principal bundles of Ref. 3 to this case too. In general, however, neitherC is
a Hopf algebra nor, if it happens to be a Hopf algebra,C is a quantum subgroup ofH. Hence the
induced coaction ofC on H is not an algebra map. Therefore, to develop a gauge theory on
embeddable homogeneous spaces one needs to generalize the theory of quantum principal
bundles. In this section such a generalization is proposed. It is based on a simple observation that
the structure of quantum principal bundles is mainly determined by the coalgebra structure of the
quantum group. The notions studied in this section are developed to great extent in Ref. 5.

LetC be a coalgebra and letP be an algebra and a rightC-comodule. Assume that there is an
actionr:P^C^P→P^C of P on P^C and an element 1PC such that

~1! For anyu,vPP,r(u^1,v)5uv (0)^v (1);
~2! the following diagram:

,

wherem is a product inP, is commutative.
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Define B5PcoC5$uPP;DRu5u^1%.
Lemma 4.1:B is a subalgebra of P.
Proof: Take anyu,vPB. Then

DR~uv !5r~u~0! ^u~1! ,v !5r~u^1,v !5uv ~0! ^v ~1!5uv^1. h

Definition 4.2: Let P, C, r, andB be as before. It is said thatP(B,C,r) is a C-Galois
extension or a quantumr-principal bundle (with universal differential structure)if the canonical
mapx:P^ BP→P^C, x:u^ Bv°uv (0)^v (1) is a bijection.

Example 4.3: A quantum principal bundleP(B,H) as defined in Ref. 3 is ar-principal
bundle with the actionr:P^H^P→P^H given byr(u^a,v)5uv (0)^av (1).

Example 4.4:Let H be a Hopf algebra,C a coalgebra, andp:H→C a coalgebra surjection.
ThenH is a rightC-comodule with a coactionDR5( id^ p)+D. Denote 15p~1!PC and define
B 5 HcoC as before. Assume that kerp is a minimal right ideal inH such that $u
2e(u);uPB%,kerp ~compare Sec. III!. Then a canonical right actionr0:C^H→C as in the
proof of Proposition 3.5 can be defined. Furthermore,

r~u^a,v !5uv ~1! ^ r0~a,v ~2!!

for anyu, vPH, aPC. With these definitionsH(B,C,r) is a quantumr-principal bundle.
Proof: First we show thatr:H^C^H→H^C is a right action and it has the properties~1!

and ~2!. Sincer0 is a right action, for anyu, v, wPH, aPC, compute

r~u^a,vw!5uv ~1!w~1! ^ r0~a,v ~2!w~2!!5uv ~1!w~1! ^ r0~r0~a,v ~2!!,w~2!!

5r~uv ~1! ^ r0~a,v ~2!!,w!5r~r~u^a,v !,w!,

and thusr is an action as required. Furthermore,

r~u^1,v !5uv ~1! ^ r0~1,v ~2!!5uv ~1! ^ p~v ~2!!5uv ~0! ^v ~1!

and

r~u~0! ^u~1! ,v !5u~1!v ~1! ^ r0~p~u~2!!,v ~2!!5u~1!v ~1! ^ p~u~2!v ~2!!5DR~uv !.

Thereforer has all the required properties.
To prove that the canonical mapx is bijective we first note that, by assumption,

kerp,m+~kerpuB^H! and then use a suitably modified argument of the proof of Lemma 5.2 of
Ref. 3 to deduce thatx is a bijection. It is clear thatx is a surjection since for any
(kuk^akPH^C we can choose(kukSvk(1)^ Bvk(2)PH^ BH, where ;k,vkPp21(ak), and
compute

xS (
k
ukSvk~1! ^ Bvk~2!D 5(

k
uk~Svk~1!!vk~2! ^ p~vk~3!!5(

k
uk^ p~vk!5(

k
uk^ak .

Next we compute kerx,H^ BH. Take any(kuk^ BvkPkerx. Then (kukvk(1)^ p(vk(2))50.
Applying id^e to the last equality, we find that(kukvk50, i.e., (kuk^vkPkerm. Any ( iwi8
^ wi9 P kerm can be written as(kukSvk(1)^vk(2)PH^H, where;k, vkPker e anduk are lin-
early independent. Thus

xS (
i
wi8^ Bwi9D 5xS (

k
ukSvk~1! ^ Bvk~2!D 5(

k
uk^ p~vk!.

If ( iwi8 ^ Bwi9 P ker x then(kuk^ p(vk)50, thus for allk,p(vk)50. By assumptionvk5( jbk
j vk

j ,
wherebk

j Pker euB5kerpuB . Therefore,
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(
i
wi8^ Bwi95(

k
ukSvk~1! ^ Bvk~2!5(

j ,k
uk~Svk~1!

j !Sbk~1!
j

^ Bbk~2!
j vk~2!

j

5(
j ,k

e~bk
j !ukSvk~1!

j
^ Bvk~2!

j 50.

So kerx50, andx is a bijection as required. h

Therefore it is shown that an embeddableH space which is a quotient spaceB 5 HcoC as
described in Sec. III may be identified with a base manifold of the generalized quantum principal
bundle, or equivalently thatH is aC-Galois extension ofB.

V. MANIN’S PLANE AS A QUANTUM QUOTIENT SPACE

In this section we show that Manin’s plane is a quotient space of the quantum general linear
group GLq~2,C!. Recall that Manin’s planeCq

2 is defined for any nonzeroqPC as an associative
polynomial algebra overC generated by 1,x,y subject to the relationsxy5qyx. It is a quantum
homogeneous space of the quantum linear group GLq~2,C!. GLq~2,C! is defined as follows. First
consider an algebra generated by the matrixt5~g d

a b ! and the relations

ab5qba, ag5qga, ad5da1~q2q21!bg, ~5.1a!

bg5gb, bd5qdb, gd5qdg. ~5.1b!

The quantum determinantc5ad2qbg is central in the algebra~5.1!; thus it can be enlarged with
c21. The resulting algebra is called GLq~2,C!. The quantum linear group GLq~2,C! is a Hopf
algebra of a matrix group type, i.e.,

Dt5t^ t, et51, St5c21S d 2q21b

2qg a D .
The left coaction of GLq~2,C! on Cq

2 is given by

DLS xyD 5S a b

g d D ^ S xyD .
Cq
2 is not only a homogeneous space of GLq~2,C! but also an embeddable GLq~2,C! space. The

linear mapk:Cq
2→C, k(xnym)5dm0,m,nPZ>0 is a character ofCq

2. By Proposition 3.2 it induces
an algebra mapi k :Cq

2→GLq~2,C!, which is explicitly given byi k(x)5a, i k(y)5g. The mapi k is
clearly an inclusion. Thus the right idealJk is generated bya21 and g. The coalgebra
C5GLq~2,C!/Jk may be easily computed. It is spanned byam,n5p(bmcn), mPZ.0, nPZ and
a0,0515p~1!, wherep:GLq~2,C!→C is a canonical surjection. To see that theam,n really spanC,
note that sinceJk is generated bya21 and g as a right ideal in GLq~2,C!, every a which
multiplies any element of GLq~2,C! from the left is replaced by 1 and similarly anyg is replaced
by 0 when the resulting element of GLq~2,C! is acted upon byp. Then we compute

p~akb lgmdncr !5p~b lgmdncr !5dm0p~b ldncr !5dm0q
lnp~dnb lcr !5dm0q

ln~p~addn21b lcr !

2q21p~gbdn21b lcr !!5dm0q
lnp~dn21b lcr11!5•••5dm0q

lnal ,r1n .

Therefore any element ofC5p~GLq~2,C!! may be expressed as a linear combination ofam,n .
The coalgebra structure ofC is found from the coalgebra structure of GLq~2,C!, sinceDC

5 (p ^ p) + DGLq(2,C)
. Explicitly
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Dam,n5 (
k50

m Smk D
q

ak,n^am2k,n1k , e~am,n!5dm0 , ~5.2!

where the quantum binomial coefficients are defined by

Smk D
q

5
@m#q!

@m2k#q! @k#q!
, @m#q5

qm2q2m

q2q21 , @m#q!5)
k51

m

@k#q , @0#q!51.

The next step in the identification ofCq
2 as a quantum quotient space consists of computing the

fixed point subalgebraB 5 GLq(2,C)
coC. For a general monomialakg lbmdncrPGLq~2,C!,

k,l ,m,nPZ>0, rPZ, we find

DR~akg lbmdncr !5akg lcr(
i50

m

(
j50

n

qj ~m2 i !Smi D
q
S nj D

q

am2 ib ign2 jd j
^am1n2~ i1 j !,i1 j1r .

~5.3!

The right-hand side of Eq.~5.3! has the formu^1 for someuPGLq~2,C! if and only ifm5n5r
50. ThusB is spanned by allakg l . ThereforeB, i k~Cq

2! and sincei k~Cq
2!,B by Proposition 3.5

we conclude thatCq
2 > GLq(2,C)

coC. By Example 4.4 GLq~2,C!~Cq
2 ,C,r! is a quantum principal

r-bundle. The actionr0:C^GLq~2,C!→C is given explicitly by

r0~ai , j ,a
kb lgmdncr !5dm0q

i ~n2k!1 lnai1 l , j1n1r .

One can now proceed to define an algebra structure onC so that it becomes a Hopf algebra.
Define the product inC by

ak,lam,n5qlm2knak1m,l1n .

First we notice thata0,051 is the unit element with respect to this product. Next we show that this
product is compatible with the coalgebra structure ofC. Compute

D~ak,l !D~am,n!5(
i50

k

(
j50

m S ki D
q
Smj D

q

ai ,laj ,n^ak2 i ,l1 iam2 j ,n1 j

5qlm2nk(
i50

k

(
j50

m

qim2k jS ki D
q
Smj D

q

ai1 j ,l1n^ak1m2~ i1 j !,l1n1 i1 j

5qlm2nk(
r50

k1m S k1m
r D

q

ar ,l1n^ak1m2r ,l1n1r5qlm2knD~ak1m,l1n!5D~ak,lam,n!.

The third equality is a consequence of the following property of theq-deformed binomial coef-
ficients

;rP@0,k1m#, (
i50

k

(
j50

m

d i1 j ,rq
im2k jS ki D

q
Smj D

q

5S k1m
r D

q

.

Clearly the counit ofC is an algebra homomorphism. Before defining an antipode, we show that
C is a polynomial algebra. Leta5a0,1, a

215a0,21, b5a1,0. Then for anymPZ.0, nPZ,

am,n5q2mnanbm, ab5q2ba, aa215a21a51.
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ThereforeC is a polynomial algebra indeed, and it is isomorphic toCq2
2

@x21#. The coalgebra
structure ofC written in terms ofa andb reads

Da615a61
^a61, Db51^b1b^a, e~a61!51, e~b!50

and hence the antipode is defined asSa615a71, Sb52ba21.
We have just shown thatC may be equipped with an algebra structure ofCq2

2
@x21#, and then

the coalgebra structure ofC becomes a standard coalgebra structure of the latter. Therefore we
have proven

Theorem 5.1:

Cq
25GLq~2,C!coCq2

2
@x21#.

Notice that clearly neither p:GLq(2,C)→Cq2
2

@x21# nor DR5( id^ p)+D:
GLq(2,C)→GLq(2,C) ^ Cq2

2
@x21# are algebra maps. Still, following the proposal of Sec. IV the

generalized principal bundle GLq(2,C)(Cq
2,Cq2

2
@x21#,r,p) can be defined and analyzed. In par-

ticular one can truly develop a gauge theory, define connections and their curvature, closely
following the quantum group gauge theory introduced in Ref. 3.

VI. PODLEŚ’ SPHERE AS A QUANTUM QUOTIENT SPACE

In this section we prove that the quantum two-sphere is a quantum quotient space in the sense
explained in Sec. III. In the presentation of the quantum sphere the conventions of Ref. 10 are
followed.

The general quantum two-sphereSq
2~m,n! is a polynomial algebra generated by the unit and

x,y,z, and the relations

xz5q2zx, xy52q~m2z!~n1z!,

yz5q22zy, yx52q~m2q22z!~n1q22z!,

wherem, n, andqÞ0 are real parameters,mn>0, ~m,n!Þ~0,0!. The quantum sphere is a* algebra
with the * structurex*52qy, z*5z.

The quantum sphereSq
2~m,n! is an SUq~2! homogeneous quantum space. SUq~2! is defined as

a quotient of GLq~2,C! by the relationc51, and has a*-structure given byd5a* , g52q21b* .
The coaction of SUq~2! on Sq

2~m,n! is defined as follows. Let f25x,
f05(11q22)21/2(m2n2(11q22)z), f15y. Then

DLS f2

f0

f1

D 5S a2 ~11q22!1/2ab b2

~11q22!1/2ag 11~q1q21!bg ~11q22!1/2bd

g2 ~11q22!1/2gd d2
D ^ S f2

f0

f1

D .
The quantum sphereSq

2~m,n! is not only a quantum homogeneous space but also an embeddable
SUq~2! space. There is a* characterk:Sq

2~m,n!→C given by

k~x!5qAmn, k~y!52Amn, k~z!50.

Therefore there is also a*-algebra homomorphismi k :Sq
2~m,n!→SUq~2!, which reads explicitly

i k~x!5Amn~qa22b2!1~m2n!ab,

i k~y!5Amn~qg22d2!1~m2n!gd,
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i k~z!52Amn~qag2bd!2~m2n!bg,

and is clearly an inclusion. From now on we assume thatmÞn ~but also see Remark 6.5!. In this
caseSq

2~m,n! depends on two real parameters only, namelyq andp 5 Amn/(m 2 n!. By Proposi-
tion 3.4 the inclusioni k induces a coidealJk,SUq~2!, generated as a right ideal in SUq~2! by the
following three elements:

p~qa22b2!1ab2pq, p~qg22d2!1gd1p, p~qag2bd!1qbg.

Therefore we can construct the coalgebraC(p)5SUq(2)/Jk , and the corresponding quotient
spaceB(p) 5 SUq(2)

coC(p) as described in Sec. III. At the end of this procedure we identifyB(p)
with Sq

2~m,n!, mÞn. We start with the coalgebraC(p).
Proposition 6.1: C(p) is a vector space spanned by15p~1!, xn5p(an) and yn5p(dn),

wherep:SUq(2)→C(p) is a canonical surjection and nPZ.0.
Proof: For anyuPSUq~2! we use the explicit form of the generators ofJk and the relations in

SUq~2! to find that

p~bu!5p~badu!2qp~bgbu!5q21p~abdu!2qp~bgbu!52pp~a2du!1pq21p~b2du!

1pp~du!1pqp~agbu!2pp~bdbu!5pp~du!2pp~au!, ~6.1a!

and similarly

p~gu!5pp~du!2pp~au!. ~6.1b!

From Eq. ~6.1! it follows that for any uPSUq~2!, p(ubmgn)5p(ubm1n). Since SUq~2! is
spanned by the monomialsambkg l ,dmbkg l ~cf. Lemma 7.1.2 of Ref. 11! it suffices to prove that
the following elements ofC(p),

ak2
~n!5p~dkbn2k!, ak1

~n!5p~akbn2k!, ~6.2!

where nPZ.0, k50,1,...,n can be expressed as linear combinations of 1,xm , ym . Clearly
a02
(n)5a01

(n) . Thus we simply write a0
(n). Also, an1

(n)5xn and an2
(n)5yn . For n51,

a0
(1)5p(b)5p(y12x1). For a generaln we apply the rules~6.1! to ak6

(n) and express the latter in
terms ofal6

(m),m,n, andxn ,yn . We make the inductive assumption that for allm,n, al6
(m) can be

written as linear combinations of 1,xr ,yr . Therefore, forn>2 we arrive at the system of equa-
tions:

ak6
~n!6pq6kak116

~n! 7pq7~k21!ak216
~n! 56pq6kak216

~n22! ,
~6.3!

a0
~n!2pa12

~n!1pa11
~n!50,

wherek51,2,...,n21. This is a system of 2n21 equations with 2n21 unknowns provided that
the right-hand sides andxn ,yn are treated as known parameters. Obviously it has a solution if its
determinant is nonzero. The determinantDn of the system~6.3! may be easily computed. It does
not depend onq and it can be reduced to the determinant of the following 2n2132n21 matrix:
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1
1 2p p 0 0 0 ... 0 0 0 0 0

p 1 0 2p 0 0 ... 0 0 0 0 0

2p 0 1 0 p 0 ... 0 0 0 0 0

0 p 0 1 0 2p ... 0 0 0 0 0

.... ..... .... ...... ... .... ...... .... .... ... ...... ..

0 0 0 0 0 0 ... 0 1 0 2p 0

0 0 0 0 0 0 ... 2p 0 1 0 p

0 0 0 0 0 0 ... 0 p 0 1 0

0 0 0 0 0 0 ... 0 0 2p 0 1

2 . ~6.4!

By the Laplace theoremDn can be further developed to give

Dn5A2n221p2~A2n231A2n24!1p4A2n25 ,

whereAm is zero for negativem, A051 and for anym,2n21, Am is the determinant of the
matrix obtained from Eq.~6.4! by removing the first 2n212m rows and columns. The determi-
nantsAm are the standard ones and we finally obtain the determinant of the system~6.3! as a
polynomial

Dn5Pn21~p
2![ (

k50

n21 S 2n212k
k D p2k.

For anyxPR>0, Pn(x)>1, and henceDnÞ0 for any realp. Therefore the system~6.3! always has
a solution and the coalgebraC(p) is spanned byxn , yn , nPZ.0, and 1 as required. h

The vector spaceC(p) has a coalgebra structure induced byp from the coalgebra structure of
SUq~2!. The coproduct reads explicitly

Dxn5 (
k50

n

q2~n2k!kS nkD
q

ak1
~n!

^ak1
~n! , Dyn5 (

k50

n

q~n2k!kS nkD
q

ak2
~n!

^ak2
~n! ,

whereak6
(n) are given by Eq.~6.2!. Therefore the coalgebraC(p) is cocommutative.

Remark 6.2:It is an interesting problem, whether it is possible to define a Hopf algebra
structure onC(p). For example, forn51 we have

Dx15~11p2!x1^x12p2~x1^ y11y1^x12y1^ y1!,

Dy15~11p2!y1^ y12p2~x1^ y11y1^x12x1^x1!.

If one defines

x185
1

m2n
~mx12ny1!, y185

1

m2n
~my12nx1!

thenx18 andy18 are grouplike, i.e.,Dx18 5 x18 ^ x18 andDy18 5 y18 ^ y18 . If it were possible to define a
new basis ofC(p) consisting only of grouplike elements then clearly one would be able to solve
the above problem and makeC(p) into a Hopf algebra of functions onU~1!.

Remark 6.3:According to Ref. 1 quantum spheres can also be defined for a discrete series of
complex numbersp given by p252(qk1q2k)22, k51,2,... . It is shown in Ref. 2 that such
quantum spheres are*-embeddable in SUq~2! for k51.

One easily finds thatPn(x21/4)5(k50
n ck

nxk, where
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ck
n5(

l5k

n

~21/4! l2kS 2n112 l
l D S lkD .

For any n and any 0<k<n, ck
n>c0

n5(n11)/4n and thus all the coefficientsck
n are positive.

ThereforePn(x21/4)Þ0 for all realx>0. This implies that the determinantsDn of the proof of
Proposition 6.1 are nonzero provided thatp2>21/4. Since for anyq, q1q21>2 one sees that the
assertion of Proposition 6.1 holds for the exceptional quantum spheres too.

In a different context, polynomialsPn(x) appeared in Ref. 12. It was shown there that all the
zeros ofPn are real and equal toxk521

4sec
2(pk/2n12), k51,2,...,n. The numbers21/xk are the

discrete values of the index for subfactors of type II1 von Neumann algebras.
Proposition 6.4: Let C(p) be a coalgebra described in Proposition 6.1 and let B(p)

5 SUq(2)
coC(p).Then ik(Sq

2(m,n))5B(p) for all mÞn such that p5 Amn/(m 2 n).
Proof: By Proposition 3.5, i k(Sq

2(m,n)),B(p), therefore one needs to show that
B(p), i k(Sq

2(m,n)). Introduce the gradingd:SUq~2!→Z by

d~a!5d~b!51, d~1!50, d~g!5d~d!521, d~uv !5d~u!1d~v ! ~6.5!

for any monomialsu,vPSUq~2!. A set of all elements of SUq~2! of degreekPZ forms a vector
subspace of SUq~2!, which is denoted by SUq(2)

(k), and SUq(2) 5 % kPZSUq(2)
(k). Moreover if

Du5 ( iui8 ^ ui9 for anyuPSUq(2)
(k), then for alli ,d(ui8) 5 k. To see that the last statement is true

one can explicitly verify it fora, b, g, d and then use definition~6.5! of d to prove it for any
SUq~2!. Therefored induces a grading ofB(p) andB(p) 5 % kPZB(p)

(k).
Next, notice thatB(p) is contained in the subalgebra of SUq~2! spanned by monomials of

even degree. Therefore for anykPZ, B(p)(2k11)50.
To prove the required inclusion observe that due to the form ofp and C(p), B(p) is a

deformation ofB~0!, i.e.,B~0!5lim p→0B(p). Denote byB(p)2n
(2k) the vector space of homoge-

neous polynomialsuPB(p) of degree 2n such thatd(u)52k, uku<n. Notice thatB(p)2n
(2k) and

B(p)2l
(2k) need not be distinct forlÞn. B(0)2n

(2k) is spanned byambn1k2mgn2mdm2k, where
m5k,k11,...,n for k>0 andm50,1,...,n1k for k,0, and hence isn2uku11-dimensional. This
is exactly the dimension ofi k(Sq

2(m,n))2n
(2k). Suppose thatB(p)2n

(2k) is at leastn2uku12-
dimensional. Then one can finduPB(p)2n

(2k) that does not contain any of the monomials spanning
B(0)2n

(2k). If lim p→0uÞ0, then one would obtain thatB(0)2n
(2k) is at leastn2uku12-dimensional,

hence contradiction. limp→0u is meant as the polynomial obtained fromu by replacing its coef-
ficients with theirp50 limits. Assume that limp→0u50. The polynomialu may be written as a
linear combination of monomials of degree 2n with coefficients that vanish as polynomials when
p tends to 0. Therefore there exists a positive integerm such that limp→0p

2mu exists, is finite and
nonzero, and is an element ofB(0)2n

(2k). Thus we have a contradiction again. Since the above
argument does not depend onn and k, and i k(Sq

2(m,n)),B(p) we conclude that
i k(Sq

2(m,n))5B(p). h

Therefore we have shown that formÞn the quantum sphereSq
2~m,n! is a quantum quotient

space. By Example 4.4 one has a principalr-bundle, SUq(2)(Sq
2(m,n),C(p),r,p).

Remark 6.5:When m5nÞ0 the coidealJk is generated as a right ideal in SUq~2! by the
following elements:

qa22b22q, qg22d211, qag2bd.

Therefore for anyuPSUq~2!,

p~du!5p~au!, p~bu!5p~gu!, p~g2u!5q21p~a2u!2q21p~u!,

and hence the coalgebraC5SUq(2)/Jk is spanned by 15p~1!, xn5p(an), yn5p(an21g),
nPZ>1. We conjecture that also for this caseSq

2(m,m) > SUq(2)
coC.
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VII. CONCLUSIONS

In this article we have shown that certain embeddable quantum homogeneous spaces may be
viewed as quantum quotient spaces. The examples of such quantum embeddable spaces include
the general quantum two-sphereSq

2~m,n! and the quantum planeCq
2. The interpretation of quantum

embeddable spaces presented in this article seems specially interesting from the point of view of
quantum group gauge theory, the suitable generalization of which has also been proposed. We
think that it would be interesting and indeed desirable to further develop this generalization of
quantum group gauge theory, and in particular, to construct connections on the quantum spaces
described in this article. For example this would allow for extending the construction of the Dirac
q monopole of Ref. 3 to general quantum spheres. This program of studying coalgebra gauge
theories, which will also incorporate braided group gauge theories, is currently being carried out
and the first results may be found in Ref. 5~cf. Ref. 13!.

Note added in proof.After completing this article I have learned that the results similar to
those of Sec. III were also obtained in M. S. Dijkhuizen and T. H. Koornwinder, Geom. Dedicata.
52, 291 ~1994!.
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A point group symmetrized boson representation~SBR! is introduced that is par-
ticularly convenient for describing molecular vibrations. In this paper the SBR is
elucidated using the example of the moleculeSF6 with Oh symmetry. The advan-
tages of the SBR are that its basis vectors have a clear physical picture, their
number is very small~equal to one-eighth of the dimension of the reducible repre-
sentation forOh), and the irreducible bases for any concrete cases can be obtained
trivially from those for the general case without any projection. All the irreducible
bases for the group chainsOh.D4.C4 orOh.D4.D2 are tabulated once and for
all. As an application, the Hamiltonian in the algebraic model of Iachello and Oss
for stretching vibrations of the moleculeSF6 is diagonalized in the symmetry
adapted bases. ©1996 American Institute of Physics.@S0022-2488~96!02905-4#

I. INTRODUCTION

The theory of point symmetry groups has long played a fundamental role in atomic and
molecular physics.1 In recent times, increasing attention has been devoted to the point groups with
higher symmetry, an interest intensified by the discovery of the fullerene molecule, C60.

2 Perhaps
the most important contribution of this theory is to provide symmetry-adapted bases to simplify
the solution of the Schro¨dinger equation. Despite the spectacular growth in computing power, it
will continue to be important to use such bases, not only to keep the dimensionality of Hamil-
tonian matrices under control, but also to understand the physical significance of the results found.

As a simple example consider a molecule withv vibrational excitation quanta3 ~or vibrons4!
distributed amongn equivalent bonds, and restrict the Hamiltonian to one for whichv is
conserved.3,4 Thus each value ofv defines an invariant subspace,Lv , in which the Hamiltonian is
to be diagonalized. For this case the dimension ofLv is equal to the dimensiondn,v of the totally
symmetric representation@v# of the unitary groupU(n),5

dn,v5S n1v21

v D ,
where

S abD
0022-2488/96/37(5)/2400/26/$10.00
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is the binomial coefficient. For Fullerene,d60,1560 ~one-vibron space!, d60,251830 ~two-vibron
space!, d60,3537,820~three-vibron space!. Clearly, the dimension ofLv increases drastically with
the number of vibrons. Without using the symmetry adapted basis, it is impossible to deal with the
case withv>2.

Basically, in molecular physics we encounter two kinds of symmetry adaptation problems:
~i! Point group symmetry adaptation of a system ofv vibrational quanta3 or vibrons4 distrib-

uted overn bonds. We use

w0[ua1a2•••an)[u1a12a2•••nan&, v5(
i51

n

ai , ~1!

to denote a basis state which hasai vibrons in the bondi , and callai the occupation number for
the bondi .

~ii ! Permutation group symmetry~or spin symmetry! adaptation ofn-electron wave functions.
Suppose that there aren electrons occupyingn orbitsa1 ,a2 ,•••,an . The vector

w0[ua1a2•••an)[uca1
~1!ca2

~2!•••can
~n!&, ~2!

denotes ann-electron state with electroni occupying thei -th orbitsai . The state~1! or ~2! will be
referred to as the normal order state.

Since any point group is isomorphic to a subgroup of the permutation group,Sn , these two
problems are closely related to one another with the following dictionary for translating termi-
nologies:

bond index↔coordinate index;

number of vibrons↔single-particle-state index.

Therefore we can borrow the techniques of the theory of the permutation groups6 for the symmetry
adaptation of Eq.~1!.

Since they are simple in comparison with the permutation groups, it is somewhat surprising
that up to the present the representation problem for point groups has evaded any algebraic
solution. The known solutions have all been obtained by numerical procedures as by the projection
operator method,1,7 eigenfunction method~EFM!,6,8,9 or other methods.3

Besides the fact that it needs repetitive work, another great disadvantage of the numerical
solution is that the explicit expression of an irreducible basis vector does not give a physical
picture and usually involves so many terms that it looks chaotic. For example, the basis vector for
the one-dimensional irrepA2u of Oh in the subspaceLv54 ~to be derived in Sec. V! is

A2u5u1225222351324524215&2u1226222361324624216&

1u1225223251342524125&2u1226223261342624126&

1u1252223521345224152&2u1262223621346224162&, ~3!

where uA1B1•••&[uA&1uB&1•••. Although this may not look too formidable in today’s
terms, it is considerably more complicated than the concise expression to be introduced below, and
the contrast becomes really extreme for more complicated groups, such as the icosahedral group.

In this paper we will introduce a point-group symmetrized boson representation, or SBR for
short, to solve the problem. As is well known, boson representation is always totally symmetric.
Here the symmetrization refers to the bond indices. In theC4h-SBR to be described in Sec. III, the
above irreducible basis vector can be written as
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A2u5u21;1&221u12;1&221u11;2&22 , ~4!

whereu21;1&22 ,u12;1&22 andu11;2&22 just represent the first, second and third lines in Eq.~3!.
For example,u21;1&22 represents a state which has three vibrons distributed over the four hori-
zontal bonds~see Fig. 1! with one bond having two vibrons and the other having one, and one
vibron distributed over the vertical bonds, with the cycle symmetryr ~the quantum number of
C4z)521 and the inversion symmetryi 0521. Equation~4! can be represented by the graphs,

.
In SBR we disregard the irrelevant thing—the indexing of the bonds, and focus on the

essential thing—the distribution of the vibrons over the bonds, thereby greatly simplifying not
only the finding but also the presentation of the irreducible bases.The simplification can be
compared to the one brought about by the second quantization over the first quantization.

In the SBR, the reduction of the regular representation of the groupOh for the group chain
Oh.D4.C4 or Oh.D4.D2 is reduced to a trivial problem, finding the eigenvectors of a
333 matrix

S 0 2 2

2 0 2

2 2 4
D .

Succinct algebraic expressions for the irreducible bases ofOh in the most general cases are
obtained in this way without any use of the characters or irreducible matrix elements, while the
irreducible bases for any specific cases can be obtained from the general case easily by a proce-
dure called assimilation~to be introduced below! without any projection, as in the projection
operator method,1,7 or eigenequation-solution, as in the eigenfunction method.6 All the specific
cases have been worked out and presented in tables; therefore the irreducible basis vectors for the

FIG. 1. Octahedron withOh symmetry. The bonds 1,2,3,4 and 5,6 are called the horizontal and vertical bonds, respec-
tively.
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above two group chains have been obtained once and for all. To show the convenience of the
SBR, the Hamiltonian in the algebraic model of Iachello and Oss for stretching vibrations of
SF6 , which has been solved in a non-symmetrized basis, is resolved in the symmetry adapted
basis. Not only is the dimension of the eigenequation reduced by one order of magnitude, but also
the structure of the eigenstates are obtained. For the icosahedral group, the reduction of the
dimensionality will be more drastic.

Since we are dealing with a venerable subject, and different methods may appear similar
under superficial examination, we have taken great pain in the last section to compare the method
developed in this paper with the prior work in order to establish unambiguously that we are not
repeating a known technology.

The outline of the paper is as follows: We begin with a brief review of the EFM in Sec. II. The
construction of the symmetrized boson representation forOh and the properties of the symmetrical
bases are addressed in Sec. III. The algebraic expressions of the irreducible basis ofOh is derived
in Sec. IV for the most general case and in Sec. V, using the assimilation procedure, for any
specified cases. The Hamiltonian of Iachello and Oss is rediagonalized in Sec. VI. The final
section is a summary of various methods for symmetry adaptation.

II. BRIEF REVIEW OF THE EFM

Since the derivation of algebraic expressions for the symmetry adapted bases utilizes the
EFM, it is appropriate to initiate the exposition with a summary. For details, readers are referred
to Refs. 6 and 8. The essence of the EFM is best illustrated by the three-dimensional rotation
groupSO3 . According to the terminology in Ref. 6, the Casimir operatorJ2 is called the first kind
of complete set of commuting operators~CSCO-I! of SO3 , which is a CSCO in the class param-
eter space. The operator set (J2,Jz) is called the second kind of CSCO~CSCO-II! of SO3 , which
is a CSCO in the configuration space of the unit sphere, the (u,w) space, while (J2,Jz ,J̄z) is
called the third kind of CSCO~CSCO-III!, which is a CSCO in the group parameter space. The
operatorJ̄z is the third component of the angular momentum in the intrinsic coordinate system.
The set of operators (J̄x ,J̄y ,J̄z) are the generators of the intrinsic groupS̄Ō3 , which commutes
with and is anti-isomorphic to the rotation groupSO3 , and describes the rotation of a system~such
as a molecule! around its intrinsic~or body-fixed! axes.6,1 The eigenfunctions of the CSCO-I, -II
and -III in the class parameter space, ordinary configuration space, and group parameter space,
respectively, give the complex conjugate of the primitive characters, the irreducible basis, and the
complex conjugates of the irreducible matrices ofSO3 in theSO3.SO2 classification.

It was shown that the above approach can be extended to any compact group. For a finite
groupG, the Casimir operatorJ2 of SO3 is replaced by the CSCO-I of the finite groupG, denoted
by C, which is a linear combination of a few class operators ofG, and the Casimir operatorJz of
SO2 is replaced by the CSCO-I, denoted byC8, of a canonical subgroupG8 of G. Similarly J̄z is
replaced by the operatorC̄8 of the corresponding subgroupḠ8 of the intrinsic groupḠ, which
commutes with and is anti-isomorphic toG. The intrinsic groupḠ is a generalization of the
intrinsic rotation groupS̄Ō3 .

The eigenvectors of the CSCO-I, -II and -III again give the complex conjugate of primitive
characters, the irreducible basis and the complex conjugate of irreducible matrix elements ofG in
theG.G8 classification. The CSCO-I ofG is also called the CSCO ofG for simplicity. The
CSCO of finite groups are easily found and those for the commonly used point groups are listed
in Table I.

Finding the irreducible basis in the regular representation is equivalent to finding the simul-
taneous eigenvectors of the CSCO-III. For theSO3 and a finite groupG, these equations read,
respectively,
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S J2

Jz

J̄z
D cm

~ j !m̄5S j ~ j11!

m

m̄
D cm

~ j !m̄ , ~5!

S C

C8

C̄8
D cr

~n! r̄ 5S n

r

r̄
D cr

~n! r̄ . ~6!

The eigenvectorcr
(n) r̄ gives the componentr associated with the point groupG with r̄ as the

multiplicity label of the irrepn, but at the same time it gives the componentr̄ associated with the
intrinsic point groupḠ with r as the multiplicity label of the irrepn. Notice thatr̄ andr have the
same set of quantum numbers, just asm,m̄5 j , j21,•••,2 j for theSO3 group.

In the group space, the irreducible basiscr
(n) r̄ becomes the normalized generalized projection

operator Pr
(n) r̄ ~the usual form for the generalized projection operator is denoted as

Pr r̄
(n)5Ahn /gPr

(n) r̄ )

Pr
~n! r̄ 5Ahn

g (
a51

g

Dr r̄
~n!~Ra!*Ra , ~7!

wherehn is the dimension of the irrepn, g the order ofG, Ra the a-th group element, and
Dr r̄
(n)(Ra) is (r,r̄)-th entry of the irreducible matrix. For a one-dimensional irreducible basis,

r5 r̄, and the quantum numbersr and r̄ are redundant. Therefore, for this case we write
cr
(n)r[c (n).
A program packet is written9 based on the EFM which can computeab initio subgroup-

symmetry adapted~both single- and double-valued! irreps and Clebsch-Gordan coefficients of
point groups and space groups. These are numerical solutions. Our aim in this paper is to find
algebraic solutions for the irreducible bases of point groups. We still use the EFM; however,
instead of solving the eigenequation of the CSCO-III in theg-dimensional group space, we solve
the eigenequation of the CSCO-I in the double SBR with dimensions much lower~3 forOh and 4
for I h) than the group orderg. Before introducing the SBR, we review some of the concepts that
will be utilized in its development.

As is well known, each point group is isomorphic to a subgroup of a permutation group.
However, there are two kinds of permutation groups for either of the bases represented by Eqs.~1!
and ~2!.

~i! The coordinate permutation groupSn , whose elementp permutes the bond indices or the
coordinate indices. For example, the permutationp123[(123) is defined as

TABLE I. The CSCO of point groups.

D2 D2d D3 D4 D4d D5 D6

(C2x ,C2y) (2C2,2sd) (3C2) (2C2,2C28) (2S8 ,4sd) (2C5,5C2) (2C6,3C28)
C2v C3v C4v C5v C6v C`v D6d

(C2z ,sy) (3sv) (2C4,2sd) (2C5,5sv) (2C6,3sv) (2Cz(w),sy) (2S12 ,6sd)
D`v T Td O Oh I I h
(2Cz(w),sy , Î ) (4C3) (6sd) (6C2) (6s, Î ) (12C5) (12C5 , Î )
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~123!ua2a3a1&5~123!uca2
~1!ca3

~2!ca1
~3!&

5uca2
~2!ca3

~3!ca1
~1!&

[ua1a2a3&. ~8!

~ii ! The state permutation groupS n whose element̀ permutes the state indicesai .
10 For

example, the action of̀ 123[(a1a2a3) is

`123ua2a3a1&5ua3a1a2&. ~9!

The operatorsp and` commute and are independent, and only when acting on the normal
order statew0 do we havep5`21 ,

pw05`21w0 . ~10!

Obviously, the groupsSn andS n are isomorphic.Sn andS n are called the permutation group on
particle labels and state labels, respectively, in Ref. 11.

Returning to the consideration of the point groups, any such group has the following three
kinds of realization:

~i! A point groupG is isomorphic to a subgroup of the coordinate permutation groupSn ,
which is again denoted byG.

~ii ! G is also isomorphic to a subgroup of the state-permutation groupS n . This subgroup is
called the state-point group and denoted byG . G andG commute and are isomorphic. Corre-
sponding operators,Ra andRa , are two different operators, but because of Eq.~10! Ra and
Ra

21 are equal when acting on the normal order state,

Raw05Ra
21w0 . ~11!

~iii ! The intrinsic point groupḠ, which is defined as follows: For each element of a group
G we can associate a corresponding operatorR̄ in the group spaceLg through the following
equation:

R̄S5SR, for all SPLg . ~12!

It is important to emphasize that Eq.~12! is not an identity, but rather a definition of the operator

R̄. ~For further discussion of this fundamental distinction, the reader should consult Refs. 6 and 8.!
The group formed by the totality of operatorsR̄ is called the intrinsic point group, denoted as
Ḡ, which is a generalization of the intrinsic rotation groupS̄Ō3 . Ḡ commutes with and is
anti-isomorphic toG.

The state-point groupG can be regarded as a realization of the intrinsic point groupḠ on the
product space~1! or ~2!. The relation between the two is

R̄5R21. ~13!

From Eqs.~11! and ~13! we have

Rw05R̄w0 . ~14!

An important fact is that the CSCO-I of the groupsG,G andḠ are equal~cf. J25 J̄2),

C5C5C̄. ~15!
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Therefore, the irreps ofG and Ḡ are labeled by the same quantum number, just as the irreps of
SO3 and S̄Ō3 are labeled by the same quantum numberj . As will be seen, our approach relies
heavily on the interplay of these three groupsG,G and Ḡ. The groupG or Ḡ will provide the
multiplicity operator for distinguishing equivalent irreps ofG. In the group space, we need to use
the intrinsic groupḠ, while in the product space~1! or ~2!, it is more convenient to useG .

As examples, consider the moleculeXY6 . The numbering of its 6 vertices is shown in Fig. 1.
For convenience, the bonds 1–4 and 5 and 6 will be referred to as the horizontal and vertical
bonds, respectively. From Table I it is known that the CSCO-I ofOh is (6s, Î ). Here and in the
following we will change our notation slightly by usingC to denote the class operator 6s which
consists of the six reflection planes instead of denoting the CSCO-I ofOh . The CSCO-I of the
cyclic groupC4 is C4z . According to Fig. 1, we have

C5~12!~34!1~14!~23!1~15!~36!1~16!~35!1~25!~46!1~26!~45!,
~16!

Î5~13!~24!~56!, C4z5~1234!.

Now turn to the state-point group. Let us consider the most general case when the bonds 1–6 all
have different non-zero number of vibrons. Suppose the bonds 1–6 havea– f vibrons, respec-
tively. If we identify a– f with a1–a6 , respectively, then the following state will be our normal
order state

w05uabcde f). ~17!

The counterpart of Eq.~16! for the state-point groups can be obtained from~16! by the index
replacements: 1→a,2→b,•••6→ f ,

C5~ab!~cd!1~ad!~bc!1~ae!~c f !1~a f !~ce!1~be!~d f !1~b f !~de!,
~18!

I5~ac!~bd!~e f!, C 4z5C̄4z
215~abcd!.

Notice thatC5C , Î5I , butC4z Þ C 4z .

III. THE C4-SYMMETRIZED BOSON REPRESENTATION FOR Oh

The standard irreducible basis12 for the groupOh is theOh.D4.D2 basis. The components
of the standard irrepsE,F1 andF2 are labeled by (u,e),(x,y,z) and (j,h,z), respectively, as
given by Griffith.12

Another commonly used group chain isOh.D4.C4 . SinceC4 is a canonical subgroup of
Oh ~each irrep ofC4 occurs at most once in any irrep ofOh), the intermediate groupD4 is
redundant for classifying the basis. Therefore we will refer the second basis as theOh.C4 basis.
The components of the irrepsF1 and F2 in the Oh.C4 group chain will be labeled by
(x8,y8,z) and (j8,h8,z), respectively. The relation between the two bases is

x852A 1
2~x1 iy !,y85A1

2~x2 iy !, j852A1
2~j1 ih!,h85A 1

2~j2 ih!. ~19!

Therefore the basis vectors for the irrepsA andE, as well as the third components of the irreps
F are the same for the two group chains. It is known that for each irrep we only have to calculate
one component, called the principal component, since owing to the existence of the Wigner-Eckart
theorem, that is all we need for calculating the matrix element of any tensor operator and, conse-
quently, any observable. We choose the second component of the irrepE and the third component
of the irrepsF as the principal components. Therefore, by using theOh.C4 group chain we can
get the principal components for both the group chains. The CSCO-II for theOh.C4 group chain
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is (6s, Î ,C4z). The correspondence between its eigenvalues and the standard labels are listed in
Table II. From the table it is seen that we only need to find the basis vectors corresponding to the
real eigenvalues,r561, of C4z .

In the numerical approach to the EFM, we generate the regular representation space from
uabcde f) and then diagonalize the CSCO-III, (6s, Î ,C4z ,C̄4z), in this 48-dimensional space. To
obtain the algebraic solution, our strategy is first to construct the eigenspaceL

r, r̄

i0 of the operators

( Î ,C4z .C̄4z), and then diagonalize 6s in L
r, r̄

i0 with the eigenvaluesr,r̄ and i 0 as parameters. In

this way we obtain a unified expression of the irreducible basescr
(n,i0) r̄ for all possible values of

r,r̄ and i 0 , which is what we mean by an algebraic solution.
Since (C4z , Î ) is the CSCO ofC4h , to finding the eigenvectors of (C4z , Î ) is equivalent to find

the irreducible basis ofC4h , which is most easily done by using the projection operators,

A8w1[A8wr i0
1 5uabcd;e f&r i0

[uabcd;e f&5PrPi0uabcde f), ~20!

wherePr andPi0 are un-normalized projection operators

Pr5(
j50

3

~C4z!
jr* j , Pi0511 i 0Î . ~21!

Notice thatw1 is a normalized, symmetrized vector, where the quantum numbers (r,i 0) are
implied in the notationuabcd;e f&, and the semicolon means symmetrization with respect to the
subgroupC4h . w1 satisfies the following equations:

C4zw
15rw1, Îw15I w15 i 0w

1, C 4zw
15r*w1. ~22!

The eigenvaluesr and i 0 of C4z and Î are referred to as the quantum numbers for cyclic and
inversion symmetries, respectively. In case we need to specify (r,i 0) explicitly, we attach the
subscripts(r,i 0) to the ket symbol. The four bases with (r,i 0)5(1,1),(21,1),(1,21),
(21,21) are denoted as

uabcd;e f&11 , uabcd;e f&21 , uabcd;e f&12 ,uabcd;e f&22 . ~23!

The basisuabcd;e f& has the symmetries

uabcd;e f&5rubcda;e f&5r* udabc;e f&5r2ucdab;e f&5•••5 i 0r
2uabcd; f e&. ~24!

For the cases with realr, from ~20! and~24! it is seen that the basis vectoruabcd;e f&r i0
can be

factorized into two parts,uabcd;&r and u;e f& i0. The first one is related to the horizontal bonds
carrying the quantum numberr, while the second one is related to the vertical bonds carrying the
quantum numberi 0 , i.e.,

TABLE II. The eigenvalues of the CSCO-II, (6s, Î ,C4z), of Oh .

A1g A2g Eg,(u,e) F1g,(x8,y8,z) F2g,(j8,h8,z) A1u A2u Eu,(u,e) F1u,(x8,y8,z) F2u,(j8,h8,z)

6s 6 26 0 22 2 26 6 0 2 22
Î 1 1 1 1 1 21 21 21 21 21
C4z 1 21 (1,21) (2 i ,i ,1) (2 i ,i ,21) 1 21 (1,21) (2 i ,i ,1) (2 i ,i ,21)

x852A1
2(x1 iy), y85A1

2(x2 iy); j852A1
2(j1 ih), h85A1

2(j2 ih).
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uabcd;e f&r i0
5uabcd;&ru;e f& i0, for r561, ~25!

where

uabcd;&r[uabcd;&5Pruabcd)5u~12341r* 23411r* 234121r* 34123!abcd&,
~26!

5uabcd)1rubcda)1r2ucdab)1r3udabc),

u;e f& i0[u;e f&5Pi0u5e6 f&5u~561 i 065!
e f&[u5e6 f1 i 06

e5 f&, ~27!

where we used the notation

u~3412!abcd&[u3a4b1c2d&5u1c2d3a4b&. ~28!

Notice that the bond indices are symmetrized and hidden inuabcd;e f&. Instead of specifying
how many vibrons are in each bond, we only need to specify that there area,b,c,d vibrons
distributed over the four horizontal bonds ande, f vibrons distributed over the vertical bonds with
the cyclic symmetryr and inversion symmetryi 0 . uabcd;e f& is a basis vector in what is called
the C4h-symmetrized boson representation. In analogy with the second quantization formalism
which makes the particle labels meaningless, here the SBR makes the bond indices within the
horizontal or vertical set meaningless, resulting in great simplification.

A usual way to construct a representation of a large group from the irreps of its subgroup is
by using induction13; i.e., by applying the six coset representatives ofOh to w1, we can get six
basis vectors that carry the induced representation. However, the new vectors formed in this way
are no longer eigenvectors ofC4z , since the coset representatives do not commute withC4z . But
to keep within the eigenspace,Lr of C4z is the key point to getting algebraic expressions of the
irreducible bases as a function ofr. Therefore, we have to find another way to generate the
representation ofOh from the irreps of its subgroupC4h .

Since the state permutation operators commutes withC4z and Î , we may applying some state
permutation operators onw1 to generate an eigenspace space ofC4z . How to find these operators?
Due to the fact thatC5C, the diagonalization ofC can be replaced by that ofC . Since in
uabcd;e f& the bond indices are symmetrized and hidden, anduabcd;e f& is a linear combination
of 10 product states, it would be rather difficult to find the action of the reflections~12!, ~34!, etc.
on uabcd;e f&, but it is trivial to find the operation of the state permutation on it. For example
(ab)(cd)uabcd;e f&5ubadc;e f&. Applying the six reflections (ab)(cd),(ad)(bc),(ae)
3(c f),(a f)(ce),(be)(d f) and (b f)(de) in C to uabcd;e f&, yields five additional symmetrized
vectors, as shown in Table III. All these vectors are eigenvectors ofC4z with the same eigenvalues
r. We might choose them as the basis vectors; however it is more convenient to choose the
following six vectors as our basis,

w15
1

A8
uabcd;e f&, w25

1

A8
uadcb; f e&, w35

1

A8
ubed f;ac&,

~29!

w45
1

A8
uec fa;db&, w55

1

A8
ub fde;ca&, w65

1

A8
u f cea;bd&.

TABLE III. The action of six reflections onw15uabcd;e f&.

(ad)(bc) (ab)(cd) (ae)(c f) (a f)(ce) (be)(d f) (b f)(de)
udcba;e f& ubadc;e f& ueb fd;ac& u f bed;ca& uaec f;bd& ua f ce;db&
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Though different choices have no effect on the final results, a proper choice will make the
intermediate steps simpler. The eigenspaceLr

i05$w i : i51, . . . ,6% is a representation space of the

operatorC , called theC4h-symmetrized boson representation~SBR!. Notice thatLr
i0 is invariant

only underC , but not underOh , and thus is not a representation space ofOh . Only if one allows
r to take all possible values, do they carry a representation ofOh . It should be emphasized again
that SBR is not the induced representation.

IV. IRREDUCIBLE BASES OF Oh IN THE REGULAR REPRESENTATION

The original 48-dimensional group space has been reduced to six-dimensional eigenspace
Lr
i0 . To get the expression for irreducible basis ofOh which is ‘‘analytic’’ in the quantum number

r ,̄ and to further reduce the space, we construct the common eigenspaceL
r r̄

i0 of ( Î ,C4z ,C̄4z),

i.e., to combinew1,•••,w6 into eigenvectorswr r̄
i of C̄4z5(adcb). w1 andw2 are already eigen-

vectors ofC̄4z with eigenvaluer̄5r, r* , respectively,

C̄4zw
15

1

A8
udabc;e f&5rw15 r̄w1, C̄4zw

25
1

A8
udcba, f e&5r*w25 r̄w2. ~30!

From Eq.~30! we have

wr r̄
1 5w1d r̄ r , wr r̄

2 5w2d r̄ r* . ~31!

Therefore we only need to combinew32w6 into eigenvectors ofC̄4z . Applying C̄4z5(adcb)
@see Eq.~18!# to w32w6, we get Table IV. Using Table IV, it is easy to obtain the third eigen-
vector of (C4z ,C̄4z),

wr r̄
3 5 1

2P̄
r̄w35 1

2(
j50

3

~C̄4z!
j r̄* jw35 1

2@w31 r̄* rw41~ r̄r!2w51 r̄r*w6#r . ~32!

The basiswr r̄
1 - wr r̄

3 is theC4h3C̄4h- symmetrized basis, and the representation it carries may
be called the double SBR. The diagonalization of the CSCO-III in the 48-dimensional space is
now reduced to diagonalize the operatorC in the three-dimensional space
L

r r̄

i0 5$wr r̄
i : i51,2,3%.

The eigenvalues of the class operator 6s in the eigenspace of (C4z , Î ) are shown in Table V.
The groupOh has ten inequivalent irreps,A1g ,A2g ,Eg ,F1g ,F2g ,A1u ,A2u ,Eu ,F1u , F2u . The
subscripts in the Mulliken notation are related to the eigenvalues (r,i 0) of the operator set
(C4z , Î ), as shown in Table VI. Using Table VI, Table V is reduced to Table VII.

TABLE IV. The action ofC̄4z5(adcb) on w32w6.

w3 w4 w5 w6

C̄4zw
i rw4 rw5 rw6 rw3

TABLE V. The eigenvalues of 6s in the eigenspace of (C4z , Î ).

(r,i 0)5(1,1): A1g Eg,u F1g,z (1,21): A1u Eu,u F1u,z

6s 6 0 22 26 0 2
(r,i 0)5(21,1): A2g Eg,e F2g,z (21,21): A2u Eu,e F2u,z

6s 26 0 2 6 0 22
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To construct the representation matrix ofC in L
r r̄

i0 , we need first find its representation matrix

in the spaceLr
i0 .

By using the symmetries~24!, the basis vectors in the second row of Table III can be
expressed in terms ofw1-w6, and from it we get the action ofC on w1, as shown in the second
row of Table VIII. By index replacements, fromC w1 we can get the action ofC on w2-w6, as
shown in Table VIII.

From Table VIII and~31!–~32!, we can compose the representative matrix ofC in the basis
$wr r̄

i : i51,2,3%. Its transpose has the following form:

M̃5 i 0S 0 ~r1r* !d r̄ r 2r* d r̄ r

~r1r* !d r̄ r 0 2rd r̄ r*

2rd r̄ r 2r* d r̄ r* r2~ r̄1 r̄* !1 r̄2~r1r* !
D . ~33!

It is seen that whenr Þ r̄, r̄* , the matrixM becomes one dimensional and its solution is simply
the basis vectorwr r̄

3 ,

cr
~n! r̄ 5wr r̄

3 , rÞr̄,r̄* . ~34!

Ther Þ r̄,r̄* case can be subdivided into the sub-cases:
~i! Both r andr̄ are real,r,r̄561. According to the possible eigenvalues ofr̄ andr in each

irrep given in Table II, we know that the eigenvectors withr̄561 must belong to the irreps
E,

c
r

~Ei0
!2r

5 1
2~w32w41w52w6!r , r561. ~35!

~ii ! r̄ is imaginary andr561. For the same reason we know that this case must belong to the
irrepsFr i0

, namely

c
r

~Fr i0
! r̄

5 1
2@w31 r̄* rw41~ r̄r!2w51 r̄r*w6#r , r̄56 i ,r561. ~36!

Since we are free to choose the multiplicity separation, the two eigenvectorsc
r

(Fr i0
) r̄ 56 i

with
imaginary quantum numberr̄ can be recombined into two other vectors, labeled by the multiplic-
ity label t51,2,

c
r

~Fr i0
!t51

5
1

A2
@c

r

~Fr i0
!2 i

1c
r

~Fr i0
!i
#5

1

A2
~wr

32wr
5!, r561,

~37!

TABLE VII. The eigenvalues of 6s in the eigenspaceLr, r̄ 5r of (C4z ,C̄4z).

Ar i0
Ei0,r

Fr i0

6s 6r i 0 0 22r i 0

TABLE VI. Notation switchboard.

r i 0 11 21 12 22 r i 0 21 22

Ar i0
A1g A2g A1u A2u Ei0,r

Eg,e Eu,e

Fr i0 ,r
F1g,z F2g,z F1u,z F2u,z
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c
r

~Fr i0
!t52

5
1

A2
r i 0@c

r

~Fr i0
!2 i

2c
r

~Fr i0
!i
#5

1

A2
~wr

42wr
6!, r561.

The above transformation corresponds to the basis transformation shown in Eq.~19! for the irreps
F1 ,F2 of the intrinsic point groupḠ.

For the case withr5 r̄561 we have three linearly independent vectors,

w1, w2, wrr
3 5 1

2~w31w41w51w6!. ~38!

This is the only case where the operatorC56s has to be diagonalized. Using~33! we get the
eigenvalue equation for the coefficientsAi in the expansion ofcr

(n)r5A1w
11A2w

21A3wrr
3 ,

r i 0S 0 2 2

2 0 2

2 2 4
D S A1

A2

A3
D 5nS A1

A2

A3
D . ~39!

The corresponding eigenvectors ofC56s are

c~Ar i0
!5cr

~6r i0!r
5

1

A6
~w11w212wrr

3 !,

c
r

~Ei0
!r

5cr
~0!r5

1

A3
~w11w22wrr

3 !, ~40!

c
r

~Fr i0
!t53

5cr
~22r i0!r

5
1

A2
~w12w2!.

Equations~35!, ~37! and~40!, are the algebraic expression for the standard basis ofOh , and
its compactness in the double SBR is impressive. However, the basis vectors in the double SBR do
not have a clear physical picture and it is preferable to express the irreducible basis in terms of the
SBR, as shown in Table IX. The results are spelled out in more detail in Table X, which covers all
cases.

V. IRREDUCIBLE BASIS OF Oh IN THE NON-REGULAR REPRESENTATIONS

Starting from the most general case with all the integersa-f being non-zero and different, by
letting some equal to zero or equal to one another, we can cover all possible cases for stretching
or bending vibrations of the moleculeXY6 . This procedure is called assimilation.

TABLE VIII. The action of 6s on w i .

w1 w2 w3 w4 w5 w6

(6s)w1 (r1r* ) i 0 r* i 0 r* i 0 r* i 0 r* i 0
(6s)w2 (r1r* ) i 0 r i 0 r* i 0 r i 0 r* i 0
(6s)w3 r i 0 r* i 0 r* i 0 (r1r* ) i 0 r i 0
(6s)w4 r i 0 r i 0 r i 0 r* i 0 (r1r* ) i 0
(6s)w5 r i 0 r* i 0 (r1r* ) i 0 r i 0 r* i 0
(6s)w6 r i 0 r i 0 r* i 0 (r1r* ) i 0 r i 0
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To specify the different cases it is convenient to introduce the concept ‘‘configuration,’’
^ f &, for multi-vibron systems, which is defined as a given distribution pattern ofv vibrons among
then bonds. The subspaceL ^ f & characterized by configuration^ f &5^abcde f& is the one generated
from the basis vectoruabcde f) by the operators ofOh , which carries a reducible representation
of Oh . The space with given number of vibrons is a direct sum ofL ^ f & ,

Lv5(̂
f &

%L ^ f & . ~41!

The following shorthand notation for configuration is also used

^abcde&5^abcde0&,

^abcd&5^abcd00&•••,

^ab;cd&[^ab00cd&5^ac0db&.

The last equation shows that the subspaceL ^ab;cd& can be generated either from the basis vector
uab00cd& or uac0db&. Notice that^ f & is similar to the ‘‘set’’ defined by Halonenet al. in their
Table I.3 For example, forv52, we have^ f &5^2& ~two vibrons in a bond!, ^ f &5^11& ~two
adjacent bonds each has a vibron!, and^ f &5^101& ~two opposite bonds each has a vibron!. It is
convenient to use diagrams to denote configurations. For example, the configurations
^11&,^101&,^21&,^201&,^111&^11;1&,^211& and^21;1& are represented by the diagrams in Fig. 2.

One of the merits of the SBR is that the assimilation is trivial as is shown by the following:

TABLE IX. Analytic expressions for standard basis ofOh .

t A8N w1 w2 w3 w4 w5 w6

Ar i0
1 A 1

6
1 1 1 1 1 1

Ei0 ,r
r 1 A 1

12
2 2 21 21 21 21

Ei0 ,r
2r 2

1
2 1 21 1 21

Fr i0 ,r
1 A 1

2
1 21

2 A 1
2

1 21

3 A 1
2

1 21

TABLE X. Standard basis ofOh in reg. rep.

r i 0 r i 0 t w1 w2 w3 w4 w5 w6

A1g 11 A1u 12 1 1 1 1 1 1
A2g 21 A2u 22 1 1 1 1 1 1
Eg,e 21 Eu,e 22 1 2 2 21 21 21 21

21 22 2 1 21 1 21
F1g,z 11 F1u,z 12 1 1 21

11 12 2 1 21
11 12 3 1 21

F2g,z 21 F2u,z 22 1 1 21
21 22 2 1 21
21 22 3 1 21
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uabcd;00&[uabcd;0&5~11 i 0!uabcd;&,
~42!

u0000;e f&[u0;e f&54dr,1u;e f&,

uabc;&[uabc0;&5u~1231r* 2341r23411r412!abc&,

uab;&[uab0;&5u~121r* 231r2341r41!ab&,

uab;&[ua0b;&5u~131r* 241r2311r42!ab&, ~43!

ua;&[ua0;&5u~11r* 21r231r4!a&,

u;a&[u;a0&5u5a1 i 06
a&,

where uab;&(uab;&) indicates a state with two adjacent~opposite! bonds occupied bya and b
vibrons.

Symmetries of the basis vectors are given by the equations,

uabcd;&5rubcda;&5r2ucdab;&5r* udabc;&,

uabc;&5rubc0a;&5r2uc0ab;&5r* u0abc;&,
~44!

uab;&5r* u0ab;&, ua;&5r* u0a;&, uab;&5r2uba;&,

u;e f&5 i 0u; f e&, u;e&[u;e0&5 i 0u;0e&,

with some special cases to be noted as follows:

ua;bb&5~11 i 0!ua;&u5b6b&, u;bb&5~11 i 0!u5b6b&, uaaaa;&54dr,1u1a2a3a4a&,
~45!

uaa;&52u~131r24!aa&, r561.

It is essential to not confuse the basisu12&5u21&, a two-vibron unsymmetrized state, with
u12;&5u(121r231341r41)12& Þu 21;&, a symmetrized three-vibron state.

In the process of assimilation, we find many different cases, some belonging to the regular
representation and some to non-regular representations. The assimilation for the symmetrized
basis is shown in Table XI.

FIG. 2. Diagramatical representations of some simple configurations^ f & for Oh .

2413Chen, Klein, and Ping: Point-group symmetrized boson representation

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



For non-regular representations, the vectorsw1 . . .w6 are no longer linearly independent.
However, Table IX or X remains valid withw i replaced by the corresponding term in Table XI.
The irreducible bases are no longer normalized and some may become zero or linearly dependent.
We only take the linearly independent ones. Since for vibrational modes,u1a•••6a& carries the

TABLE XI. Assimilation of the symmetrized basis ofOh.
a

^ f & dim T w1 w2 w3 w4 w5 w6

^abcde f& 48 10 uadcd;e f& uadcb; f e& ubed f;ac& uec fa;db& ub fde;ca& u f cea;bd&
^abcde& uabcd;e& i 0uadcb;e& ubed;ac& ruaec;db& udeb;ca& rucea;bd&
^ab;cd& rudac;b& r i 0ucad;b& ucbd;a& ruab;dc& i 0udbc;a& uba;cd&
^ab;bc& rucab;b& r i 0bac;b& ubbc;a& ruab;cb& i 0ucbb;a& uba;bc&
^ab;ab& rubaa;b& r i 0uaab;b& uabb;a& ruab;ba& i 0ubba;a& uba;ab&
^ab;c& uac;b& r i 0uca;b& ucb;a& r i 0uab;c& r i 0ubc;a& uba;c&

^abcd& 24 13 uabcd;0& uadcb;0& ubd;ac& ruac;db& i 0w
3 i 0w

4

^abbc& uabbc;0& uacbb;0& ubc;ab& ruac;cb& i 0w
3 i 0w

4

^abc& uabc;0& ucba;0& ub;ac& r i 0uac;b& i 0w
3 i 0w

4

^abb& uabb;0& ubba;0& ub;ab& r i 0uab;b& i 0w
3 i 0w

4

^ab& uab;0& ruba;0& ub;a& r i 0ua;b& i 0w
3 i 0w

4

^ab;bb& 24 14 rubab;b& i 0w
1 ubbb;a& ruab;bb& i 0w

3 uba;bb&
^ac;bb& rubab;c& i 0w

1 ubcb;a& ruac;bb& i ow
3 uca;bb&

^abbbb& uabbb;b& i 0w
1 ubbb;ab& ruabb;bb& i 0w

3 rubba;bb&
^ab0bb& rubab;b& i 0w

1 ubbb;a& ruab;bb& i 0w
3 uba;bb&

^aaa0b& 24 24 uaaa;b& i 0w
1 uab;aa& r i 0uaba;a& ruba;paa& i 0w

4

^aa;bc& 24 15 rucab;a& r i 0ubac;a& r i 0w
2 ruaa;cb& r i 0w

1 r i 0w
4

^ab;b& 24 15 uab;b& r i 0uba;b& ubb;a& r i 0w
1 r i 0w

3 r i 0w
2

^abb0b& uabb;b& i 0ubba;b& ubb;ab& i 0w
1 r i 0w

3 r i 0w
2

^abbac& 24 16 uabba;c& r i 0w
1 ubca;ab& ruacb;ab& r i 0w

4 r i 0w
3

^abac& 12 17 uabac;0& s1 ubc;aa& ruaa;cb& i 0w
3 i 0w

4

^abbb& uabbb;0& w1 ubb;ab& ruab;bb& i 0w
3 i 0w

4

^aba& uaba;0& w1 ub;aa& r i 0uaa;n& i 0w
3 i 0w

4

^aaa& uaaa;0& w1 ua;aa& r i 0uaa;a& i 0w
3 i 0w

4

^aaab& uaaab;0& w1 uab;aa& ruaa;ba& i 0w
3 i 0w

4

^ababc& 12 18 uabab;c& i 0w
1 ubcb;aa& ruaca;bb& w3 w4

^aabb& 12 19 uaabb;0& rw1 uab;ab& r i 0w
3 i 0w

3 rw3

^aa& uaa;0& rw1 ua;a& r i 0w
3 i 0w

3 rw3

^aa;a& 8 20 uaa;a& r i 0w
1 w1 r i 0w

1 r i 0w
1 w1

^aaaab& 6 21 uaaaa;b& i 0w
1 uaba;aa& rw3 i 0w

3 rw3

^a0b& 6 22 uab;0& w1 u0;ab& rw1 i 0w
3 rw1

^a& ua;0& w1 u0;a& rw1 i 0w
3 rw1

^abab& 6 23 uabab;0& w1 ubb;aa& ruaa;bb& w3 w4

^a0a& 3 24 uaa;0& w1 u0;aa& rw1 w3 rw1

aThis table is valid only for realr. The third column gives the index of the table listing the irreducible basis for the
configuration^ f &.
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identity representation, the configuration^a8b8c8d8e8 f 8& is equivalent tô abcde& with a5a8-
f 8,b5b8-f 8,•••,e5e8-f 8. The irreducible basis for̂abcde& can be obtained from the configu-
ration ^abcde f& by letting f50. By settingabcde equal toac0db, respectively, we get the
configuration^ab;cd&, and by lettingabcd equal to some special values, we get other special
configurations, for examplêab;bc&,^ab;ab& and^ab;c&. As an example, consider the configu-
ration ^abcd&, which has dimension 24. From Table IX and XI, we derive the algebraic expres-
sion of the irreducible basis ofOh for the configuration̂abcd& listed in Table XII. From the latter
we can obtain the explicit form shown in Table XIII. Similarly, we can obtain Tables XIV–XXIV.

The multiplicity of a given irrep in the configuration̂f & can be calculated from character
theory. The result is given in Table XXV~part of it were given previously by Halonen3!. These
results provide a useful check for the correctness of Tables XII–XXIV.

If a given irrep occurs only once in the representation spaceLv , then it is said to be a unique
state. It can be shown that a unique state is necessarily an irreducible basis of the permutation
groupS6 ,

14 which means that these states have a symmetry higher than the geometric symmetry.
The implication of the existence of a higher symmetry in molecules will be discussed in a forth-
coming paper.14

As an application of Tables XII–XXIV, the un-normalized irreducible basis ofOh for
v51-3 are given below with bold-face symbols denoting the unique states. The steps for finding
them are:~1! According to^ f &, find the corresponding table from Tables XII–XXIV.~2! accord-
ing to ^ f & from Table XI find the expression ofw i in the SBR, and thus yields a concise expression
for the irreducible basis vectors. If one needs more explicit~but, unfortunately, more cumbersome!
expressions, one can use Eq.~43! to write out the vectors in the SBR in terms of the unsymme-
trized basis vectors. The results are the following:

v5a,^ f &5^a&, dim5 6. From Table XXII:

TABLE XIII. ^abcd&, dim524.

t r i 0 w1 w2 w3 w4

A1g 11 1 1 2 2
A2g 21 1 1 2 2
Eg,e 1 21 1 1 21 21

2 21 1 21
F1g,z 3 11 1 21
F2g,z 3 21 1 21
F1u,z 1 12 1

2 12 1
F2u,z 1 22 1

2 22 1

TABLE XII. ^abcd&; wr,2
1 5wr,2

2 50.

t w1 w2 w3 w4

Ar i0
1 1 11 i 0 11 i 0

Ei0,r
1 2 2 212 i 0 212 i 0
2 11 i 0 212 i 0

Fr i0 ,r
1 12 i 0
2 12 i 0
3 1 21
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A1g5ua;&111u;a&115(
i51

6

u i a&,

Eg,e5ua;&215u1a22a13a24a&, ~46!

F1u,z5u;a&125u5a26a&.

It is to be noted that only forv51 are the above states unique.
v52,̂ f &5^11&, dim512. From Table XIX:

A1g5~ u11;&1u1;1&)115(
i & j

6

8 u i j &,

Eg,e5u1;1&215u~1221324!~516!&,

F2g,z5u11;&215u~123!~224!&, ~47!

F1u,z5u1;1&125u~1121314!~526!&,

F2u,z5u1;1&225u~1221324!~526!&,

where a prime in the summation symbol means the exclusion of the opposite bondsi j513, 24,
and 56.

TABLE XIV. ^ab;bb& and ^aaa0b&, dim524.

^ab;bb& t r i 0 w1 w3 w4 w6

^aaa0b& t r i 0 w1 w4 w5 w3

A1g 11 2 2 1 1
A2g 21 2 2 1 1
Eg,e 1 21 4 22 21 21

2 21 2 21 21
F1g,z 11 21 1
F2g,z 21 21 1
F1u,z 1 12 1

2 12 1
F2u,z 1 22 1

2 22 1

TABLE XV. ^aa;bc& and ^ab;b&, dim524.

^aa;bc& t r i 0 w1 w2 w4

^ab;b& t r i 0 w1 w2 w3

A1g 11 1 1 1
A2u 22 1 1 1
Eg,e 21 1 1
F1g,z 11 1 21
F2g,z 1 21 1

2 21 1 21
Eu,e 22 1 1 22
F1u,z 1 12 1

2 12 1 21
F2u,z 22 1 21
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v52,̂ f &5^101&, dim53. From Table XXIV:

A1g5~ u11;&1u;11&)115u13124156&, Eg,e5u11;&215u13224&. ~48!

v53,̂ f &5^21&, dim524. From Table XIII:

A1g5~ u21;&1u12;&1u1;2&1u2;1&)115(
i & j

68 u i 2 j1 i j 2&,

A2g5~ u21;&2u12;&1u1;2&2u2;1&)21 ,

Eg,e
t515~2u21;&22u12;&2u1;2&1u2;1&)21 ,

Eg,e
t525~ u1;2&1u2;1&)21 , F1g,z5~ u21;&2u12;&)11 , F2g,z5~ u21;&1u12;&)21 , ~49!

F1u,z
t515u1;2&12 , F1u,z

t525u2;1&12 , F2u,z
t515u1;2&22 , F2u,z

t525u2;1&22 .

v53,̂ f &5^201&, dim56. From Table XXII:

A1g5~ u21;&1u;21&)115(
i & j

6

9 u i 2 j1 i j 2&,

Eg,e5u21;&215u123113222242242&, ~50!

F1u,z5u;21&125u5262562&.

TABLE XVI. ^abbac&, dim524.

t r i 0 w1 w3 w4

A1g 11 1 1 1
A2u 22 1 1 1
Eg,e 21 1 21
F1g,z 11 1 21
F2g,z 1 21 1 1

2 21 1
Eu,e 22 2 21 21
F1u,z 1 12 1 1

2 12 1
F2u,z 22 1 21

TABLE XVII. ^abac&, dim512.

t r i 0 w1 w3 w4

A1g 11 1 1 1
A2g 21 1 1 1
Eg,e 1 21 2 21 21

2 21 1 21
F1u,z 12 1
F2u,z 22 1
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where the double prime in the summation symbol meansi j are restricted to the opposite bonds,
i j513, 24, and 56.

v53,̂ f 8&5^11;1&, dim58. From Table XX:

A1g5u11;1&115u~113!~214!~516!&,

F2g,z5u11;1&215u~123!~224!~516!&,
~51!

F1u,z5u11;1&125u~113!~214!~526!&,

A2u5u11;1&225u~123!~224!~526!&.

v53,̂ f 8&5^111& ~three adjacent bonds!, dim512. From Table XVII:

A1g5
1
2~2u111;&1u1;11&1u11;1&)115 (

i & j &k

6

u i jk &2A1g
^11;1& ,

A2g5
1
2 ~2u111;&1u1;11&2u11;1&)21

Eg,e
t515~4u111;&2u1;11&1u11;1&)21 ,

~52!
Eg,e

t525~ u1;11&1u11;1&)21 ,

F1u,z5u11;1&)125u~13124!~526!&,

F2u,z5u11;1&)225u~13224!~526!&.

For v54, from Table XV we obtain the two unique states:

TABLE XVIII. ^ababc&, dim512.

t r i 0 w1 w3 w4

A1g 11 1 1 1
A2g 21 1 1 1
Eg,e 1 21 2 21 21

2 21 1 21
F1u,z 12 1
F2u,z 22 1

TABLE XIX. ^aa& and ^aabb&, dim512.

r i 0 w1 w3

A1g 11 1 2
Eg,e 21 1
F2g,z 21 1
F1u,z 12 1
F2u,z 22 1
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A2u
^21;1&5u21;1&221u12;1&221u11;2&22

5u~123!~224!~1121314!~526!&1u~12214223134!

3~52262!&, ~53!

Eu,e
^21;1&5u21;1&221u12;1&2222u11;2&22

5u~123!~224!~1121314!~526!&22u~12214223134!

3~52262!&.

The physical picture of the stateA2u
^21;1& is given in the Introduction.

VI. DIAGONALIZATION OF THE HAMILTONIAN IN SYMMETRY ADAPTED BASES

In the algebraic model of Iachello and Oss for stretching or bending vibration of molecules,4,15

each bond is associated with aU ( i )(2) algebra realized in terms of the bosonsai
† andbi

† and they
interact with each other through diagonal and nondiagonal interactionsBi j ~denoted asCi j in Ref.
4! andMi j , respectively. From the matrix elements ofBi j andMi j given in Ref. 4 we can infer
that explicit form of these operators are as follows:

Bi j54@~Jiz1Jjz!
22~Ji1Jj !

2#, Mi j522~Ji•Jj2JiJj !, ~54!

with Ji5Jj5Ni /2, Ni5ai
†ai1bi

†bi and @Ni /2# is the total number of bound states in a Morse
potential, whereBi j andMi j are invariants ofOi j (2) andUi j (2), respectively. Specified for the
XY6 molecule, the Hamiltonian they utilized has the form

H5aB1a8B81lM1l8M 8, ~55!

B5(
i

6

Bi , B85(
i. j

6

Bi j , M5(
i. j

6

Mi j , M 85(
i. j

6

8 Mi j , ~56!

where the prime in the summation symbol indicates exclusion of the opposite bondsi j513, 24
and 56, and

Bi54@~Jiz!
22~Ji !

2# ~57!

TABLE XX. ^aa;a& dim58.

r i 0 w15uaa;a&

A1g 11 1
A2u 22 1
F2g,z 21 1
F1u,z 12 1

TABLE XXI. ^aaaab&, dim56.

r i 0 w1 w3

A1g 11 1 2
Eg,e 21 1
F1u,z 12 1
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is the Hamiltonian for the Morse potential of the bondi .16

Notice that the parametersl andl8 listed in Table I of Ref. 4 are not consistent with Iachello
and Oss’ definition as given in~12!, but are the parameterslT andlT8 shown below:

H5aB1a8B81lTM 81lT8~M2M 8!.

In Ref. 4 the Hamiltonian~55! was diagonalized in the product basis, and it is referred to as a pure
numerical solution. It will be much nicer to diagonalize the Hamiltonian in the symmetry-adapted
basis. The advantages of using symmetry adapted basis are:

~1! The dimension for the expectation equation ofH can be reduced by one order of magni-
tude forOh .

~2! Using symmetry adapted basis we can obtain the structure of the eigenstates ofH, while
no physical pictures of the eigenstates are emerged in a pure numerical solution.

~3! The identification of the eigenstates with irrep labels, a necessary procedure in numerical
solution, is avoided.

We diagonalized theH for the moleculesSF6 ,WF6 and UF6 in the theOh.C4 basis
cr
(n)^ f &t . The parameters are listed in Table XXVI. The mean square deviations from the experi-

mental values are 14.34, 4.78, and 3.76 for the moleculesSF6 , WF6 , andUF6 , respectively. The
fit is a little better than in Ref. 4 where the corresponding mean square deviations are 15.71, 6.60
and 3.79, respectively.

The eigen-energies and wave functions forSF6 are listed in Tables XXVII–XXIX. The
coefficients listed there areaE , f t in the following expansion of the eigenstate

Cr
n~E !5(

f t
aE , f tcr

~n!^ f &t . ~58!

From Tables XXVII–XXIX we can see clearly the distribution pattern of the vibrons in the
eigenstates.

VII. DISCUSSION

In the past, several methods have been available for obtaining the subgroup-symmetry adapted
bases of point groups. A separate discussion for the regular and non-regular representations is
adequate.

TABLE XXII. ^a& and ^a0b&, dim56.

^a& r i 0 ua;& u;a&
^a0b& r i 0 uab;& u;ab&
A1g 11 1 1
Eg,e 21 1
F1u,z 12 1

TABLE XXIII. ^abab&, dim56.

t r i 0 w1 w3 w4

A1g 11 1 1 1
A2g 21 1 1 1
Eg,e 1 21 2 21 21

2 21 1 21
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A. Regular representation

1. The recursive or factorization method

The generalized projection operatorPr r̄
n for the group chainG.H can be factored as a

product of the projection operatorsPn andPr of the groupG and its subgroupH, respectively by
the following formula~see p. 73 in Ref. 6!:

Pr
n[Prr

n 5constPnPr, Pr r̄
n 5constPr

nRaP
r̄ , ~59!

whereRa is a properly chosen operator ofG so thatPrRaP
r̄ Þ 0.

Recently, Harter1 gave a slightly different form for the non-diagonal part,

Pr r̄
n 5constPr

nRaP r̄
n . ~60!

It is to be noted that Eq.~59! is simpler than Eq.~60!. This method depends heavily on hand
calculation.

2. The eigenfunction method

With a computer code, it is much easier to obtain the generalized projection operator by the
EFM. A versatile program package is available.9

B. Non-regular representation

1. Projection operator method in its primitive form (Refs. 1, 7, and 17)

The main shortcomings of this method are that we have to know all the irreducible matrix
elements and the effects of all theg operators. For a high symmetry group it is a daunting task to

TABLE XXIV. ^a0a&, dim53.

r i 0 uaa;& u;aa&

A1g 11 1 1
Eg,e 21 1

TABLE XXV. The multiplicity of an irrep in the configuration̂f &.

dim ^ f & A1g A2g Eg F1g F2g A1u A2u Eu F1u F2u

48 ^abcde&,^ab;cd&,^ab;bc& 1 1 2 3 3 1 1 2 3 3
^ab;ab&,^ab;c&

24 ^abcd&,^abbc&,^abc& 1 1 2 1 1 2 2
^abb&,^ab&,^ab;bb&
^ac;bb&,^ab4&,^ab0bb&
^a30b&

24 ^aa;bc&,^ab;b&,^abb0b& 1 1 1 2 1 1 2 1
^abbac&

12 ^abac&,^ab3&,^aba& 1 1 2 1 1
^aaa&,^a3b&,^ababc&

12 ^aabb&,^aa& 1 1 1 1 1
8 ^aa;a& 1 1 1 1
6 ^a4b&,^a0b&,^a& 1 1 1
6 ^abab& 1 1 2
3 ^a0a& 1 1
1 ^a6&,^0& 1
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generate symmetry adapted bases in view of the mental dexterity required to envisage the effects
of theg operators on a reducible basis vector.3 A further problem is the multiple occurence of a
given symmetry.

2. Coset factored projection operator

Suppose thatH is an Abelian subgroup ofG. The left coset decomposition ofG with respect
to H is denoted byG5( iaiH, ai are the so called coset representatives, or coset leaders. The
projection operator can be factored as1

Pr r̄
n 5

hn

g (
i
Dr r̄

n ~ai !* aiP
r̄ , ~61!

wherePr is defined as in~21!. The coset factorization allows one to tabulate many fewerD(R)
matrices and cuts the arithmetical labor down by a factor ofg/h (h being the order of the
subgroupH) if the dimension of the reducible representation isg/h and one induces the repre-
sentation from a basis vector which belongs to the identity representation ofH.

3. Double coset factored projection operator

A groupG can also be decomposed in the following way:

G5(
i
Hai1(

j
HbjH, ~62!

whereHai5aiH, i.e., the left and right coset are identical, andHbjH is a double coset. The
generalized projection operatorPr r̄

n can be factored as18

Pr r̄
n 5

hn

g F(
i
Dr r̄

n ~ai !*P
rai1(

j
Dr r̄

n ~bj !*P
rbjP

r̄ G . ~63!

The methods~ii ! and ~iii ! cannot yield algebraic expressions for the irreducible basis; there-
fore, tedious work cannot be avoided for each case.

TABLE XXVI. The parameters inH ~all values exceptN are in cm21).

N a a8 l l8

SF6 180 2.9273 21.53031022 .7219 2.8407
WF6 200 2.2889 26.79631022 7.30031023 28.60031022

UF6 250 2.1931 25.28931022 9.57331022 2.1842

TABLE XXVII. The eigen-energies and eigen-functions ofH for SF6 , v51.

Eg Eexp (cm
21) ^1&

645.44 643.35 1.0000
A1g ^1&

773.80 774.54 1.0000
F1u ^1&

948.09 948.10 1.0000
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4. Use of the CG coefficients of point groups

Starting from the irreducible basis for the basic configuration^1&, using the CG coefficients
stepwise, we can construct the irreducible basis for other configurations.3 The trouble is that in
coupling two irreducible basis by means of CG coefficients one obtains the following linear
combination:

Cr
~n!5(

f t
ar, f t

~n! cr
~n!^ f &t , ~64!

wherear, f t
(n) are coefficients,t is the multiplicity label for the irrepn in a given configuration

^ f &, and the sum runs overt and all possiblê f & in the spaceLv with a given vibron number
v. Notice that in the above equation both^ f & andt serve as multiplicity labels for the irrepn in
Lv . The dimension ofLv can be very large for largev, and it is nontrivial to extract the irreduc-
ible basiscr

(n)^ f &t from the sum in Eq.~64!. A code has been used in Ref. 3 to calculate the
irreducible basis ofOh for v 5 1–8.

5. The eigenfunction method (Ref. 6)

The irreducible bases are obtained by solving the eigenvalue equation of the CSCO-II ofG in
the reducible representation space.

All the above methods are numerical. In the present work we have added a new method which
gives algebraic solutions, and has a number of attractive features:

C. Regular representation

One only needs to solve an eigenequation of a 33 3 matrix to get a compact algebraic
solution for irreducible basis ofOh as a function ofi 0 ,r and r̄,

c
r

~n i0
! r̄

5F
r

~n i0
! r̄

~w1,•••,w6!, ~65!

which involves only 6 terms instead of 48 terms in numerical solutions.

D. Non-regular representation

~i! For non-regular representation, irreducible basis vectors are easily obtained from the above
by assimilation,

TABLE XXVIII. Same as the Table XXVII withv52.

A1g Eexp (cm
21) ^2& ^11& ^101&

1288.34 2.5836 .5709 2.5776
1546.17 .4077 .8210 .3996
1890.69 1889.05 .7023 2.0023 2.7119
Eg ^2& ^11& ^101&

1289.65 2.4193 .8075 2.4149
1416.50 .5749 .5899 .5670
1890.69 1889.05 2.7026 .0008 .7116
F2g ^11&

1896.30 1896.53 1.0000
F1u ^2& ^11&

1588.27 1588.10 .8333 2.5528
1719.25 1719.59 .5528 .8333
F2u ^11&

1593.65 1.0000
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c
r

~n i0
!t

5F
r

~n i0
!t

~w j 1,•••,w j d!, ~66!

whered is equal to one eighth of the dimension of the reducible representation, verses 8d terms
in a numerical solution.

~ii ! The statesuabcd;e f& in the SBR have a clear physical picture about the distribution
pattern of the vibrons over the two sets of equivalent bonds, as illustrated in the Introduction.

~iii ! The results are independent of the labeling of bonds. For a molecule with many bonds,
such as fullerene,C60, this independence is of special value.

~iv! The multiplicity separation is automatic: the configuration^ f & naturally provides one of
the multiplicity labels, while the intrinsic operatorC̄4z provides the other.

~v! Facilitate the programming of diagonalization of a Hamiltonian in the symmetry adapted
bases.

It is remarkable that to carry out this process, we utilize only the CSCO’s of a groupG and
its subgroup, with no knowledge required either of the primitive characters or of the irreducible
matrices, and even without using the group table!

As a first application of this new method, we have derived algebraic expressions for the
irreducible bases of the groupOh for all cases of current practical interest and much more. The
application to other groups is straightforward. For example, the algebraic expression of the irre-

TABLE XXIX. Same as the Table XXVII withv53.

A2u Eexp (cm
21) ^11;1&

2844.63 2845.28 1.0000
A1g ^3& ^21& ^201& ^11;1& ^111&

1932.52 .2553 2.4099 .4330 .6441 2.4056
2056.75 .4088 .0229 .6901 2.5962 .0243
2317.09 2.1662 2.5829 2.2761 2.4793 2.5714
2525.39 2.7301 .3724 .4326 2.0010 2.3756
2659.45 2.4549 2.5941 .2699 .0024 .6060
A2g ^21& ^111&

1932.71 .7107 .7035
2536.36 2.7035 .7107
Eg ^3& ^21&t51 ^21&t52 ^201& ^111&t51 ^111&t52

1929.97 2.3029 .5705 .0052 2.5138 .5646 .0051
2057.94 2.2938 2.3090 .4929 2.4960 2.3058 .4855
2186.14 2.2861 2.2899 2.5145 2.4796 2.2877 2.5065
2525.39 .7300 2.3234 2.1864 2.4328 .3246 .1875
2536.37 .0002 .3519 2.6075 .0002 2.3552 .6172
2659.44 2.4551 2.5164 2.2975 .2696 .5229 .3026
F1g ^21&

2534.07 1.0000
F2g ^21& ^11;1&

2539.22 .7982 2.6024
2664.71 .6024 .7982
F1u ^3& ^21&t51 ^21&t52 ^201& ^11;1& ^111&

2226.37 2227.50 2.6112 .6426 2.1791 2.3456 2.1750 2.1773
2237.35 .0381 2.0344 2.4993 .0215 .7095 2.4942
2356.79 2.5609 2.3958 .3242 2.3148 .4715 .3198
2488.96 2488.40 .2646 .6552 .3465 .1465 .4937 .3398
2827.78 2827.55 .4903 2.0026 2.0003 2.8715 2.0004 2.0002
2839.02 2839.04 .0001 .0012 2.7024 .0002 .0015 .7118
F2u ^21&t51 ^21&t52 ^111&

2232.70 2.8251 .4016 .3975
2361.95 .5650 .5874 .5794
2839.01 2840.35 .0008 2.7026 .7116
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ducible bases and irreducible matrices for the icosahedral group will be discussed in the sequent
paper.19 The combination of the algebraic model4 and this new technique provides a powerful tool
for the solution of many problems in physics and chemistry. One is now in a position to compute
in a simple way, even in an algebraic way for the unique states,14 the spectra and infrared or
Raman transition rates of many molecules, including mid-size and large molecules.3

ACKNOWLEDGMENTS

J.Q.C. would like to thank Dr. F. Iachello, Dr. Bin Shao, and Dr. S. Oss for useful discussions.
This work was supported in part by the U. S. Department of Energy under Grant No. 40264-

5-25351 and the Fundamental Research Fund of State Science and Technology Committee of
China.

1W. G. Harter,Principle of Symmetry, Dynamics and Spectroscopy~Wiley, New York, 1993!.
2H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature318, 162 ~1985!.
3L. Halonen and M. S. Child, J. Chem. Phys.79, 559 ~1983!.
4F. Iachello and S. Oss, Phys. Rev. Lett.66, 2976~1991!; J. Mol. Spectros.153, 225 ~1992!.
5M. Hamermesh,Group Theory and Its Application to Physical Problems~Addison-Wesley, Reading, MA, 1962!.
6J. Q. Chen,Group Representation Theory for Physicists~World Scientific, Singapore, 1989!; J. Q. Chen and M. J. Gao,
J. Math. Phys.23, 928 ~1982!.

7A. Fässler and E. Stiefel,Group Theoretical Methods and Their Applications~Birkhauser, Boston, 1992!.
8J. Q. Chen, M. J. Gao, and G. Q. Ma, Rev. Mod. Phys.57, 211 ~1985!.
9J. L. Ping, Q. R. Zheng, B. Q. Chen, and J. Q. Chen, Computer Phys. Commun.52, 355 ~1989!.
10A. Bohr and B. R. Mottelson,Nuclear Structure, Vol. I~Benjamin, New York, 1969!; L. C. Biedenharn and J. D. Louck,
The Racah-Wigner Algebra in Quantum Theory~Addison-Wesley, Reading, MA, 1981!.

11W. G. Harter and C. W. Patterson, Phys. Rev. A19, 2277~1979!.
12J. S. Griffith,Theory of Transition Metal Ions~Cambridge University, Cambridge, England, 1961!.
13C. J. Bradley and A. P. Cracknell,The Mathematical Theory of Symmetry in Solids, Representation Theory for Point
Groups and Space Groups~Clarendon, Oxford, 1972!.

14J. L. Ping and J. Q. Chen, ‘‘Partial dynamical symmetry in molecules’’~preprint, 1996!.
15F. Iachello and S. Oss, J. Chem. Phys.99, 7337~1993!.
16Y. Alhassid, G. Gursey, and F. Iachello, Ann. Phys.~N. Y.! 148, 346 ~1983!.
17F. A. Cotton,Chemical Applications of Group Theory~Wiley, New York, 1971!.
18Q. E. Zhang,Molecular Orbits of Polyhedrons~Science, Beijing, 1987!.
19J. Q. Chen and J. L. Pin, ‘‘Algebraic expressions of the irreducible bases for icosahedral group’’~preprint, 1996!.

2425Chen, Klein, and Ping: Point-group symmetrized boson representation

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



General eigenvalue formula for Casimir invariants
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Induced invariant forms and the multiplicity labeling problem are investigated for
typical summands of the tensor product of an arbitrary finite dimensional irreduc-
ible representation and a typical one, for the type I quantum superalgebras. The
results are applied to obtain a general eigenvalue formula for Casimir invariants,
corresponding to an arbitrary finite dimensional irreducible reference representa-
tion. © 1996 American Institute of Physics.@S0022-2488~96!01704-8#

I. INTRODUCTION

Quantum algebras are well known for their role in solving the Yang–Baxter equation1 which,
in turn, give rise to new exactly solvable models2,3 and link polynomials. Similarly, their
Z2-graded counterparts, quantum superalgebras, play an equally important role in knot theory4 and
supersymmetric integrable models.5–7 For applications in this general area, it is thus desirable to
have a well developedrepresentation~rep! theory for the quantum~super!algebras.

This article is concerned with an important aspect of the rep theory for the type I quantum
superalgebras; namely the determination of a general eigenvalue formula for Casimir invariants.
The type I quantum superalgebras, consisting ofUq[gl(mun)] andUq[osp(2u2n)], are particu-
larly interesting for the following reasons. First, of all the quantum superalgebras~except the
trivially graded case of quantum algebras!, only those of type I admit finite dimensional unitary
reps which will thus be of importance to physical theories where unitarity is a basic requirement.
Second, they admit one parameter families of inequivalentirreducible representations~irreps!
which have interesting applications such as providing solutions to the Yang–Baxter equation, and
corresponding exactly solvable models, with extra~nonadditive! parameters. An example of the
latter is the generalized Hubbard model proposed in Ref. 7 where the parameter labeling the irreps
is directly related to the Hubbard interaction parameter. Another application is to the construction
of two variable link polynomials8 and their multivariable extensions.9

A general method for constructing Casimir invariants, corresponding to an arbitrary reference
irrep, has been previously developed for both quantum algebras10,11 and quantum super-
algebras,12,13 utilizing the universalR matrix. In the case of quantum algebras their eigenvalues
have been explicitly determined,11 based on techniques previously developed for simple Lie
algebras.14,15 However, this problem has not been solved for quantum superalgebras, or their
classical counterparts, mainly due to the zero (q) supertrace problem over typical irreps. In this
article we present a solution to this problem and obtain a general eigenvalue formula for Casimir
invariants, valid for an arbitrary reference irrep. Our results are new, even in the classical limit
q→1, and generalize, to arbitrary reference irreps, the results of Refs. 16 and 17.

Aside from their intrinsic interest to representation theory, particularly in connection with
superdimensions and infinitesimal characters, our results are of importance for obtaining two
variable link polynomials, in fully explicit form, corresponding to any unitary irrep for these
algebras. This gives rise to infinite families of inequivalent two variable link polynomials which
will be studied elsewhere.18 As part of our approach we will also determine a useful method for
obtaining the multiplicities of typical summands occurring in the tensor product of an arbitrary
irrep with a typical one, and investigate the Clebsch–Gordan multiplicity problem for such cases.
Moreover we obtain a symmetry relation for the corresponding Clebsch–Gordan coefficients,

0022-2488/96/37(5)/2426/31/$10.00
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which are defined below with respect to the naturally induced form on the tensor product space.
The article is set up as follows. Section II summarizes previously known results on quantum

superalgebras and their reps. In Sec. III we investigate invariant sesquilinear forms induced on
irreps and their tensor products, and their behavior under duality. Section IV is concerned with an
orthogonal labeling scheme for typical irreps occurring in the tensor product of two irreps and
these results are applied in Sec. V to obtain a new supertrace formula. In Sec. VI we investigate
the 121 correspondence between the imbeddingsV(n)#V(L)^V(m), V(m)#V(L)* ^V(n)
~for m, n typical but L arbitrary! and symmetries of Clebsch–Gordan coefficients. A general
eigenvalue formula for Casimir invariants is then developed in Secs. VII and VIII and we con-
clude in Sec. IX with a brief discussion of our main results.

II. PRELIMINARIES

Throughout,L denotes a type I basic classical Lie superalgebra of rankl11, with Cartan
subalgebraH. We letai , 0< i< l be a distinguished19 system of simple roots ofL with a0 the
unique odd simple root; thena1,...,al constitute the simple roots of the~reductive! even Lie
subalgebraL0 of L. F15F0

1øF1
1 denotes the set of positive roots ofL with F0

1 ~resp.F1
1! the

set of even~resp. odd! positive roots. As usual we define

r05
1

2 (
aPF0

1
a, r15

1

2 (
bPF1

1
b

and setr5r02r1. We let ~ , ! be a fixed bilinear form onH* , the dual of the Cartan subalgebra,
induced by a given nondegenerate invariant bilinear form onL; note that~ , ! is invariant under the
Weyl group ofL0. Associated with any weightl P H* , we havehlPH defined bym(hl)5~m,l!,
;mPH* . In particular we may define the Cartan elementshr0

, hr1
, hr 5 hr0

2 hr1
, hi [ ha i

(0< i< l ), which play an important role below. We let> be the usual partial ordering induced on
H* by the positive roots.

Associated withL we have the quantum superalgebraUq(L) with simple generators:

q6~1/2!hi,ei , f i , 0< i< l .

The defining relations forUq(L) will not be given here and we refer to Refs. 20–23 for details.
We merely note thatUq(L) has the structure of aZ2-graded quasitriangular Hopf algebra with
co-product defined by

D~q6~1/2!hi !5q6~1/2!hi ^q6~1/2!hi, D~x!5x^q2~1/2!hi1q~1/2!hi ^x; x5ei , f i

which extends to an algebra homomorphismD:Uq(L)→Uq(L)^Uq(L) in an obvious way. We
emphasize that the multiplication rule on the latter is defined for homogeneous elements
a,b,c,dPUq(L) by

~a^b!~c^d!5~21!@b#@c#~ac^bd! ~1!

and extended to all ofUq(L)^Uq(L) by linearity; here and below [a]PZ2 denotes the degree
19,20

of homogeneousaPUq(L). Throughout we adopt the sigma notation of Sweedler24 and write

D~a!5(
~a!

a~1! ^a~2! , aPUq~L !. ~2!

The antipodeS is given by

S~a!5q2hrg~a!qhr, aPUq~L !, ~3!
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whereg is theprincipal antiautomorphismdefined onUq(L) by
25

g~1!51, g~x!52x; x5ei , f i ,hi

and extended to aZ2-graded antihomorphism in the obvious way so that for homogeneous
a,bPUq(L):

g~ab!5~21!@a#@b#g~b!g~a!.

We omit the formula for the co-unite: Uq(L)→C, since it is not required below.
It is worth noting thatUq(L) also constitutes aZ2-graded quasitriangular Hopf algebra, with

a co-unit e and antipode S21 under the opposite coproductD85T•D, where
T:Uq(L)^Uq(L)→Uq(L)^Uq(L) is the twist map defined for homogeneousa,b,PUq(L) by

T~a^b!5~21!@a#@b#~b^a!.

This is referred to as theopposite Hopf algebra structureonUq(L). D andD8 are related via the
universalR matrix RPUq(L)^Uq(L) which satisfies the well known relations

RD~a!5D8~a!R, ;aPUq~L !, ~4a!

~1^ D!R5R13R12, ~D ^1!R5R13R23. ~4b!

A direct consequence of these relations is thatR satisfies the graded Yang–Baxter equation6,7,20:
here we again emphasize that all tensor products are to be interpreted in light of Eq.~1!. Then
RT[T(R) also gives rise to a universalR matrix under the opposite Hopf algebra structure on
Uq(L).

We note that the quantum algebraUq(L0), with generatorsq6(1/2)hi, ei , f i (1< i< l ), gives
rise to an even Hopf subalgebra ofUq(L). We letUq(B) @resp.Uq(N)# be theZ2-graded sub-Hopf
algebra ofUq(L) with generatorsq6(1/2)hi, ei ~resp.q6(1/2)hi, f i!, 0< i< l . Following Kac,19 we
define aZ2-consistentZ gradation onUq(L) by

deg~ei !5deg~ f i !50, 1< i< l , deg~hi !50, 0< i< l ,

deg~e0!52deg~ f 0!51.

This gives rise to theZ gradation

Uq~L !5 %
n
Uq

~n!~L !,

whereUq
(n)(L)5$aPUq(L) udeg(a)5n%.

Below an important role is played by the operators

T15 )
bPF1

1
Eb , T25 )

bPF1
1
Fb . ~5!

HereEb ,Fb are ~odd! Cartan–Weyl elements ofUq(L); for details we refer to Ref. 26 for the
caseL5gl(mun) and Ref. 27 for the case ofL5osp(2u2n). We set

G5T1T2 ~6!

which commutes with the elements ofUq(L0). Following the Poincare–Birkhoff–Witt~PBW!
theorem we may write
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G5G01G1 , ~7!

whereG0 is a central element ofUq(L0) andG1PUq
(21)(L)Uq(L)Uq

(1)(L). T6 possess the fol-
lowing important properties:26,27

aT15T1a50, ;aPUq
~1!~L !,

~8!
aT25T2a50, ;aPUq

~21!~L !,

so that from Eq.~7!,

T1T2T15GT15G0T1 . ~9a!

Moreover, it is easily verified that

~1^T1!D~T2!~1^T1!5qhr1^ ~T1T2T1!5qhr1^ ~G0T1!. ~9b!

We now say something about the representation theory ofUq(L). The finite dimensional
irreducibleUq(L) modules are uniquely labeled by their highest weightsL and have the same
dimensions and weight spectrum as the correspondingL modules of the same highest weight. We
denote the set of dominant weights ofL @and henceUq(L)# by D

1. For LPD1, we let V~L!
denote the irreducibleUq(L) module with highest weightL and we letpL be the representation
afforded byV~L!. ThroughoutV0~L! denotes the finite dimensional irreducibleUq(L0) module
with highest weightLPD1, and we let28,29

Dq
0@L#[ )

aPF0
1

@~L1r,a!#q
@~r,a!#q

~10!

be theq dimensionof V0~L!, where we have adopted the convention, maintained throughout,

@x#q[~qx2q2x!/~q2q21!.

We recall26,27 that onV0~L! theUq(L0) central elementG0 of Eq. ~7!, takes the eigenvalue

xL~G0!5c )
bPF1

1
@~L1r,b!#q , ~11!

wherecÞ0 is a representation-independent constant. Following Kac,19 we say thatLPD1 and the
corresponding irreducibleUq(L) moduleV~L! aretypical if this eigenvalue is nonzero, or equiva-
lently,

~L1r,b!Þ0, ;bPF1
1 ;

otherwise,L andV~L! are calledatypical. Note, from definition@cf. Eqs. ~6! and ~7!#, G must
vanish on all irreducible atypical modules.

Every finite dimensional irreducibleUq(L) module admits a naturalZ gradation19,25:

V~L!5 %
k50

d

Vk~L!, ~12!

compatible with theZ gradation onUq(L), in which case we say thatV~L! admits d11 levels
~Vd~L!Þ~0! assumed!. HereVk~L! is theZ-homogeneous subspace consisting of vectors of degree
2k. In view of the PBW theorem we have
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V~L!5Uq~L !v1
L 5Uq~N!v1

L ~13!

with v1
L PV0~L! the maximal weight vector ofV~L!. Throughout the article we assume, unless

otherwise stated, that the maximalZ-graded componentV0~L! has parity11 ~i.e., belongs to the
even subspace ofV~L!!.

If V,W are finite dimensionalUq(L) modules then Hom(V,W), the space of linear maps from
V toW, becomes aUq(L) module with the definition

~a+w!~v !5(
~a!

~21!@w#@a~2!#a~1!w~g~a~2!!v !

for all homogeneousaPUq(L), wPHom(V,W), vPV, with D(a) as in Eq.~2!. Note that this
definition differs from the usual one which here would haveg replaced by the antipodeS.
However, in view of Eq.~3!, these definitions give rise to equivalent representations.

In particularV*5Hom~V,C! becomes aUq(L) module with the definition

~aw* !~v !5~21!@w* #@a#w* ~g~a!!

for all homogeneousaPUq(L), w*PV* , vPV. In rep theoretic terms, let$wi% be a homogeneous
basis forV with [ i ]PZ2 the degree of basis vectorwi . We then have the matrix representationp
defined by

awi5p~a! j i wj , ;aPUq~L !

~summation onj assumed here and below!. If $wi* % denotes the corresponding dual basis forV*
so that

wi* ~wj !5d i j ,

then the dual representationp* is given by

awi*5p* ~a! j i wj* , ;aPUq~L !,

where

p* ~a! i j5~21!@a#@ j #p~g~a!! j i ~14!

for homogeneousaPUq(L). Equivalently

p* ~a!5pT~g~a!!, ;aPUq~L !,

whereT denotes supertranspose.30

With these constructions, we have11,30

Lemma 2.1: The mappingj: V* ^W→Hom(V,W), defined by

j~u* ^w!~v !5~21!@w#@v#u* ~v !w

for all homogeneous u*PV* , vPV, wPW, determines a Uq(L) module isomorphism. h

In particular given a finite dimensional irreducibleUq(L) moduleV~L!, we have the canoni-
cal isomorphism

V~L!* ^V~L!>Hom~V~L!,V~L!!. ~15!
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If $wi% denotes a homogeneous basis forV~L! with corresponding dual basis$wi* % for V~L!* , we
obtain

Lemma 2.2: The identity module occurs exactly once in V(L)* ^V(L) and is spanned by the
vector

wL5(
i

~21!@ i #~q2hrwi* ! ^wi ,

where~21![ i ] is the parity of basis vector wi .
Proof: In view of Eq. ~15! and Schur’s lemma, the identity module must occur exactly once

in the tensor product space. For homogeneousaPUq(L) we have, in the notation of Eq.~2!:

D~a!wL5 (
i ,~a!

~21!@ i #1@ i #@a~2!#~a~1!q
2hrwi* ! ^a~2!wi .

From Eq.~14! we have~summation onj !

a~1!q
2hrwi*5q2hrpL* ~qhra~1!q

2hr! j i wj*

5~21!@ i #@a~1!#q2hrpL~g@qhra~1!q
2hr# ! i j wj*

5~21!@ i #@a~1!#q2hrpL~S21@a~1!# ! i j wj* ,

where the last equality follows from Eq.~3!. We thus arrive at

D~a!wL5 (
i , j ~a!

~21!@ i #~11@a# !~q2hrwj* ! ^a~2!pL~S21@a~1!# ! i j wi

5 (
j ,~a!

~21!~@ j #1@a~1!# !~11@a# !~q2hrwj* ! ^a~2!S
21~a~1!!wj

5(
j

~21!@ j #~11@a# !~q2hrwj* ! ^ (
~a!

~21!@a~1!#@a~2!#a~2!S
21~a~1!!wj

5(
j

~21!@ j #~11@a# !~q2hrwj* ! ^ e~a!wj

5e~a!wL

since, for a nonzero contribution,a must be even. This is sufficient to prove the result. h

Now let Z denote the center ofUq(L). A fundamental role in the construction of central
elements is played by12

Proposition 2.1: If cPEndV(L)^Uq(L) satisfiesDL(a)c5cDL(a), ;aPUq(L), where
DL5~pL^1!D, then

CL5~strq^1!cPZ.

Here strq denotes the q supertrace defined by

strqpL~a!5str pL~q2hra!, ;aPUq~L !

with str the usual supertrace.30 h

An important example is afforded by12

c5~ I ^12RL
TRL!/~q2q21!
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and its powers, whereRL5(pL ^1)R. It is one of our aims in this article to derive a universal
formula for the eigenvalues of the corresponding Casimir invariants

Ck
L5~strq^1!~ck! ~16!

on any finite dimensional irrep, thus solving an outstanding problem in the rep theory of the type
I quantum superalgebras. In particular the eigenvalue formula allows an explicit determination of
link polynomials18 associated with any finite dimensional irreducibleUq(L) moduleV~L!.

Throughout the article we assumeq.0 is a positive real parameter~although our final results
will hold for complexq by analytic continuation!. With this assumption we have a conjugation
operation † defined onUq(L) by

25

ei
†5 f i , f i

†5ei , ~q6~1/2!hi !†5q6~1/2!hi, 0< i< l

which we extend to an~even! algebra antihomomorphism on all ofUq(L) so that

a†5ā, aPC; ~ab!†5b†a†, ;a,bPUa~L !,

where the overbar denotes normal complex conjugation inC. We note that † so defined is indeed
consistent with theUq(L) defining relations as well as the coproduct, i.e.,

D~a!†5D~a†!, ;aPUq~L !,

where

~a^b!†[~21!@a#@b#a†^b†

for all homogeneousa,bPUq(L). ~We stress that this rule defines a conjugation operation on
Uq(L)^Uq(L) whereas the usual prescription (a^b)†5a†^b† does not.! Moreover, ifg denotes
the principal antiautomorphism onUq(L), we have25

g~a†!5g~a!†, ;aPUq~L !

so that, from Eq.~3!,

S~a†!5@S21~a!#†, ;aPUq~L !.

We conclude this section by noting that the operatorsT6 of Eq. ~5! satisfy the conjugation
rule ~up to a scalar!

T1
† 5T2 , T2

† 5T1 . ~17!

Below we assumeT6 normalized so that Eq.~17! applies. With this conventionG5T1T2 is a
self-adjoint operator with respect to † as is the operatorG0PUq(L0) of Eq. ~7!. Taking the
conjugate of Eq.~9a! we arrive at

T2T1T25T2G5T2G0 . ~18!

Finally we observe that

Uq~B!†5Uq~N!, Uq~N!†5Uq~B!, Uq~L !†5Uq~L !.
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III. TYPICAL COMPONENTS AND INDUCED FORMS

A sesquilinear form^ , & : V^V→C on a finite dimensionalUq(L) moduleV is called
symmetricif

^v,w&5^w,v&, ;v,wPV

and invariant if

^av,v&5^v,a†w&, ;aPUq~L !; v,w,PV

with † the conjugation operation onUq(L). If moreover^ , & is nondegenerate then it has all the
properties of an inner product except that it is not generally positive definite. When it is,V gives
rise to a type I unitary module25 ~and thus is completely reducible! but we do not make this
assumption here.

Lemma 3.1: Let V be a finite dimensional Uq(L) module equipped with a symmetric invariant
sesquilinear form̂ , &. If V~n!, V~n8! are two irreducible submodules of V with different highest
weights, then they are orthogonal under the form.

Proof: Let v1
n ,v1

n8 be the maximal weightvectors of V~n!, V~n8! resp.,nÞn8. Then, since the
Cartan elements are self-adjoint under the form, we have

05^v1
n8 ,v1

n &5^v1
n8 ,Uq~B!v1

n &5^Uq~N!v1
n8 ,v1

n &5^V~n8!,v1
n &5^Uq~L !V~n8!,v1

n &

5^V~n8!,Uq~L !v1
n &5^V~n8!,V~n!&.

h

Note that ifV(n)#V is typical then it must split inV. We let

V̄~n!5V~n! %V~n! % ••• %V~n!#V ~m copies!

~m the multiplicity ofV(n)#V! be the corresponding isotypic component. If^ , & onV is nonde-
generate, our aim here is to show that its restriction toV̄~n! is also nondegenerate, so that an
orthogonal labeling scheme can be found which diagonalizes the form onV̄~n!. This result is
obvious, in view of Lemma 3.1, ifV is completely reducible. The problem, however, is that in
generalV contains indecomposables.19

Following Sec. II we set

G5T1T25G01G1

and recall thatG0PUq(L0), G commute with the elements ofUq(L0) and are self-adjoint with
respect to †. From Eq.~8! we have

G25~G01G1!G5G0G5GG0

and more generally we obtain

Gm115GG0
m .

Definition 3.1:We say a finite dimensionalUq(L) moduleV is of atypical typeif its irreduc-
ible composition factors are all atypical. Note that all~nonirreducible! indecomposable modules
are of atypical type as are direct sums of irreducible atypical modules.

Proposition 3.1: Let V be a finite dimensional Uq(L) module of atypical type. Then

T2G0V5GG0V5~0!.

2433M. D. Gould and J. R. Links: Eigenvalues of invariants for quantum superalgebra

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Proof: First V decomposes into a direct sum of irreducibleUq(L0) modules:

V5 %
n

mnV0~n!.

Next G vanishes on all irreducible atypical modules so thatG must be nilpotent onV; hence we
may setGm1150,mPZ1 . Then for eachV0~n! we have

~0!5Gm11V0~n!5GG0
mV0~n!5xn~G0!

mT1T2V0~n!.

Applying T2 to the left we obtain, from Eq.~18!,

~0!5xn~G0!
mT2T1T2V0~n!5xn~G0!

m11T2V0~n!.

Thus eitherxn~G0!50 or elseT2V0~n!5~0!. In either case,

T2G0V0~n!5~0!, ;n ⇒T2G0V5~0! ⇒T1T2G0V5GG0V5~0!.
h

Clearly every finite dimensionalUq(L) moduleV admits aUq(L) module decomposition

V5VT%VA ,

whereVT is the direct sum of the typical irreducible submodules ofV ~which split inV!, called its
typical component, andVA is necessarily of atypical type. From the result above,GG0VA5~0!, so
that

VT5Uq~L !GG0V.

Proposition 3.2: Let V be a finite dimensional Uq(L) module equipped with a symmetric,
invariant nondegenerate sesquilinear form̂, &. Then the restriction of̂ , & to VT ~or VA! is
nondegenerate.

Proof: SinceGG05G0G is self-adjoint under the form,VT andVA must be orthogonal under
^ , &: indeed

^VT ,VA&5^Uq~L !GG0V,VA&5^GG0V,Uq~L !VA&5^GG0V,VA&5^V,GG0VA&50,

where the last equality follows from Proposition 3.1. Thus the restriction of^ , & to VT ~or VA! is
nondegenerate. h

It now follows from Lemma 3.1 and Proposition 3.2 that ifV~n! is a typical irreducible
submodule ofV with isotypic componentV̄(n)5mV(n)#V, then

Corollary (notation as above): The restriction of^ , & to V̄~n! is nondegenerate. h

We recall31 that every finite dimensional irreducibleUq(L0) moduleV0~L! with a real highest
weightLPD1 is equivalent to a unitary module and thus may be equipped with an invariant inner
product^ , & so that

^av,w&5^v,a†w&, ;aPUq~L0!; v,wPV0~L!.

We may then extend this form to the entireUq(L) moduleV~L! with the definition25 @notation as
in Eq. ~12!#

^V0~L!,Vk~L!&50, 0,k<d,

^a†v,w&5^v,aw&, ;aPUq
~1!~L !,
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^av11bv2 ,w&5ā^v1 ,w&1b̄^v2 ,w&, ;a,bPC.

Then it can be shown25,32 that ^ , & so defined gives rise to a symmetric, invariant nondegenerate
sesquilinear form onV~L!. Moreover,25,32

Lemma 3.2: The above form̂, & induced on V~L! is the unique (up to scalar multiples)
symmetric, invariant nondegenerate sesquilinear form on V~L!. h

Throughout we let̂ , & denote the above induced form onV~L! so that its restriction to the
maximalZ-graded componentV0~L! is positive definite~and thus gives rise to an inner product!.
It is worth noting ~by an argument similar to that of Lemma 3.1! that Uq(L0) modules with
different highest weights are orthogonal under this form. In particular the decomposition~12! is
orthogonal with respect tô, &.

Given two irreducible finite dimensionalUq(L) modulesV~L!, V~m! equipped with the natu-
ral induced forms, we have a corresponding sesquilinear form induced onV(L)^V(m) in a
natural way; viz.

^w8^v8,w^v&5^w8,w&^v8,v&, ;w,w8PV~L!; v,v8PV~m!.

Proposition 3.3: The sesquilinear form̂, & on V(L)^V(m) is symmetric, invariant, and
nondegenerate.

Proof: It is easily seen that the form is symmetric. As to invariance we have, in the notation
of Eq. ~2!, for all homogeneousaPUq(L),

^D~a!~w8^v8!,w^v&5(
~a!

~21!@a~2!#@w8#^a~1!w8^a~2!v8,w^v&.

Using

^a~1!w8^a~2!v8,w^v&5^a~1!w8,w&^a~2!v8,v&

5^w8,a~1!
† w&^v8,a~2!

† v&

5~21!@a~2!#@w#^w8^v8,~a~1!
†

^a~2!
† !~w^v !&

we obtain

^D~a!~w8^v8!,w^v&5(
~a!

~21!@a~2!#@a~1!#^w8^v8,~a~1!
†

^a~2!
† !~w^v !&

since, for a nonzero contribution, we must have [w]1[w8]5[a(1)] ~Mod 2!. Moreover
(21)@a(2)#@a(1)#(a(1)

†
^ a(2)

† )5 (a(1)^ a(2))
†,so that

^D~a!~w8^v8!,w^v&5^w8^v8,D~a!†~w^v !&5^w8^v8,D~a†!~w^v !&

which establishes invariance as required. It thus remains to prove^ , & is nondegenerate. h

To this end let$wi% be a basis forV~L! and suppose( iwi ^v i ,v iPV(m) belongs to the
kernel of ^ , & so that

Kw^v,(
i
wi ^v i L 50, ;wPV~L!, vPV~m!.

Then,;vPV(m), we have

Kw,(
i

^v,v i&wi L 50, ;wPV~L!⇒(
i

^v,v i&wi50
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since the form̂ , & on V~L! is nondegenerate. Since thewi constitute a basis this implies

^v,v i&50, ;vPV~m!, ; i⇒v i50, ; i

by the nondegeneracy of the form onV~m!. Thus^ , & on V(L)^V(m) is nondegenerate. h

We may thus apply the results of Proposition 3.2 and its corollary to the tensor product
moduleX[V(L)^V(m). In particular ifV~n! is typical and occurs with multiplicitymn in X then
the restriction of the form̂ , & on X to the isotypic componentV̄(n)5V(n)% ••• %V(n) ~mn

copies! is nondegenerate. This implies that an orthogonal decomposition into irreducible submod-
ules

V̄~n!5 %
j51

mn

Vj~n!

can be found which diagonalizes the form^ , & restricted toV̄~n!. In Sec. IV we shall consider a
convenient such multiplicity labeling.

Given vPVj~n! we have, sincê , & is symmetric,̂ v,v& 5 ^v,v&, so that^v,v& is real. The
form ^ , & restricted to eachVj~n! will be nondegenerate and thus, from Lemma 3.2, will coincide
with the naturally induced form, up to a real scalar multiple. This leads us to

Definition 3.2 (notation as above):If this scalar multiple is positive~resp. negative! we say
that Vj~n! has signature11 ~resp.21!; we denote this signature byej . Thus the form^ , &
restricted to the maximalZ-graded componentV0

j~n! of Vj~n! will be positive ~resp. negative!
definite if ej561, resp. h

We conclude this section with some observations on duality and induced forms. Let$wi% be
aZ-graded basis forV~L! with gi j5^wi ,wj& theoverlap matrixcorresponding to the natural form
on V~L!; thusgi j50, unlesswi ,wj belong to the sameZ-graded level. Theng is a nonsingular
Hermitian matrix and we setgi j5(g21) i j . It follows thatw

i5gjiwj ~summation onj ! gives rise
to a basis forV~L! dual to$wi% under the form

^wi ,wj&5^wj ,w
i&5d j

i .

Moreover,gi j5^wj ,wi&, and we have the expansions

awi5(
j
wj^w

j ,awi&, awi5(
j
wj^wj ,aw

i&.

In rep theoretic terms we have the matrix representation defined by

awi5(
j

pL~a! j i wj

so that

pL~a! j i5^wj ,awi&5^awi ,w
j&5^wi ,a

†wj&⇒awj5(
i

^wi ,aw
j&wi5(

i
pL~a†! j i w

i .

~19!

Remarks:Since the basis$wi% is Z-graded it follows that the dual basis vectorswi ,wi must
belong to the sameZ-graded component. Moreover the restriction of the natural form^ , & to the
minimal Z-graded component, which constitutes an irreducibleUq(L0) module, will be nonde-
generate and thus either positive or negative definite. h

Now let $wi* %,$(wi)* % be corresponding dual bases forV~L!* defined by
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wi* ~wj !5d i j5~wi !* ~wj !.

We then have

~wi !*5gikwk* ~summation onk!. ~20!

Proposition 3.4:

^~wi !* ,wj* &5~21!@ i #d i j

with [ i ]PZ2 the degree of basis vector wi and thus wi* , naturally gives rise to a nondegenerate,
symmetric invariant sesquilinear form which is positive definite on the minimalZ-graded compo-
nent of V~L!* .

Proof: In view of Eq. ~20!, the above result may be expressed

^wk* ,wi* &5~21!@ i #gki5~21!@ i #^wi ,wk& ~* !

from which it follows, with this definition, that̂ , & on V~L!* gives rise to a nondegenerate
sesquilinear form in a natural way. Moreover ifwi ,w

i belong to themaximalZ-graded component
of V~L! we have

^wi* ,wi* &5~21!@ i #^wi ,wi&5^wi ,wi&.0,

where nowwi* belongs to theminimal Z-graded component ofV~L!* , as required. It remains to
establish invariance.

To this end we have, for homogeneousaPUq(L) ~summation over repeated indices assumed
below!

^awk* ,wi* &5^~21!@a#@k#pL~g~a!!k jwj* ,wi* &

5~21!@a#@k#pL~g~a!!k j^wj* ,wi* &

5~21!@a#@k#1@ i #^wk,g~a!wj&^w
i ,wj&,

where the last equality follows from Eq.~* !. Thus

^awk* ,wi* &5~21!@a#@k#1@ i #^wi ,^g~a!wj ,w
k&wj&.

Now from Eq.~19! we have

^g~a!wj ,w
k&wj5^wj ,g~a!†wk&wj5g~a!†wk5g~a†!wk

so that

^awk* ,wi* &5~21!@a#@k#1@ i #^wi ,g~a!†wk&

5~21!@a#@k#1@ i #^g~a!wi ,wk&

5~21!@a#@k#1@ i #pL~g~a!†! i j ^w
j ,wk&,

where the last step again follows from Eq.~19!. Utilizing Eq. ~* !, we thus obtain

^awk* ,wi* &5~21!@a#@k#1@ i #1@ j #pL~g~a†!! i j ^wk* ,wj* &5~21!@a#@k#1@a#^wk* ,pL~g~a†!! i j wj* &

since, in order to obtain a nonzero contribution, we must have [a]5[ i ]1[ j ] ~Mod 2!. Now
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pL~g~a†!! i j wj*5~21!@a#@ i #pL
T ~g~a†!! j i wj*5~21!@a#@ i #pL* ~a†! j i wj*5~21!@a#@ i #a†wi* .

Substituting into the above we finally arrive at

^awk* ,wi* &5~21!@a#~@k#1@ i # !1@a#^wk* ,a
†wi* &5^wk* ,a

†wi* &

since, for a nonzero contribution, we must have [a]5[k]1[ i ] ~Mod 2!. This completes the
proof. h

Throughout the article we may thus assume that the forms induced onV~L!, V~L!* are dually
related as above. With this convention if$wi%,$w

i% areZ-graded dual bases under the natural form
on V~L!, with $wi* %,$(wi)* % the corresponding dual bases forV~L!* , then the dual vector to
wi* under the form onV~L!* is actually (21)[ i ] (wi)* . The significance of the phase~21![ i ] will
be apparent later.

Note: The dual basis vectorswi ,wi* have the same parity~21![ i ] . Thus if we require the
maximalZ-graded componentV0~L! of V~L! have positive parity, then so too must the minimal
Z-graded component ofV~L!* . Hence with our convention the maximalZ-graded component of
V~L!* will then have positive parity ifV~L! has an odd number of levels and negative parity
otherwise.

IV. ORTHOGONAL LABELING FOR V(n)#V(L)^V(m) (m,n TYPICAL)

Here we consider an irreducible typical submoduleV~n! of X5V(L)^V(m) and we assume
throughout thatV~L! is arbitrary butV~m! is typical. We let̂ , & be the natural form onX, induced
by the natural forms onV~L!, V~m!. If V~n! occurs inX with multiplicity mn we let

V̄~n!5V~n! %V~n! % ••• %V~n! ~mn copies!

be its isotypic component. We recall thatV̄~n! splits inX and the restriction of the form̂, & onX
to V̄~n! is nondegenerate. We letP@n# be the corresponding projection ontoV̄~n! which is self-
adjoint under the form.

Throughout an important role is played by the subspace

X0[V~L! ^V0~m!

with V0~m! the maximalZ-graded component ofV~m! which thus constitutes an irreducible
Uq(L0) module. ClearlyX0 give rise to aUq(L0) module and is stable under the action ofUq(B).
MoreoverX0 cyclically generates the tensor product space as aUq(L) module so that, in view of
the PBW theorem,

X5Uq~L !X05Uq~N!X0 .

The Z gradation onV~L! naturally induces aZ gradation onX0; given an irreducibleUq(L0)
moduleV0(n)#X0 , we let @n# denote itsZ-graded level. It is worth noting thatV0~m! is orthogo-
nal, under the natural form, to the remainingZ-graded levels ofV~m!, so that̂ , & restricted toX0
is nondegenerate. We letP0 denote the orthogonal projection ontoX0, induced by theZ gradation
on V~m!, so thatP0 is self-adjoint under the form̂, &, and commutes with the action ofUq(L0).

Now let V̄~n! be the isotypic component ofV(n)#X with nPD1 typical, as above, and let

V̄0~n!5V0~n! % ••• %V0~n! ~mn copies!
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be its maximalZ-graded component so thatV0~n! is an irreducibleUq(L0) module. We let
X0~n!#X0 be the isotypic component ofV0~n!#X0 so that the form̂ , & restricted toX0~n! is
nondegenerate. We then have aUq(L0) module homomorphismP0 :V̄0(n)→X0(n). Here we
show that this in fact determines an isomorphism. We first need

Lemma 4.1: Let Vn5Uq(L)V0~n! be the Uq(L) module generated by V0(n)#X0(n). Then Vn

contains a (unique) typical irreducible Uq(L) module V~n!.
Proof:With the notation of Sec. II, we first observe thatD(T2)V0(n)Þ(0), since, in view of

Eq. ~9b!:

D~T2!V0~n!5~0! ⇒~1^T1!D~T2!V0~n!5~0!

⇒~qhr1^T1T2!V0~n!5~0!

⇒q~n2m,r1!xm~G0!V0~n!5~0!

which would imply, sincem is typical, thatV0~n!5~0!, a contradiction.
Thus D(T2)V0(n)Þ~0! must be the lowest component of a typicalUq(L) module ~since

nPD1 is typical! which must therefore generate an irreducible typical moduleV(n)#Vn .
Note: Above we used the fact that forvPV0~m!, T1T2v5Gv5G0v5xm(G0)v, which fol-

lows from Eq.~7!.
Proposition 4.1:~notation as above!.

P0 :V̄0(n)→X0~n! determines a Uq(L0) module isomorphism.
Proof: It suffices to showP0 is bijective. To see it supposeV0(n)#X0(n) is orthogonal to

P0V̄0~n! under^ , &. Then

05^P0V̄0~n!,V0~n!&5^V̄0~n!,V0~n!&5^V̄~n!,V0~n!&⇒P@n#V0~n!5~0!

which is impossible, since by Lemma 4.1,Uq(L)V0~n! contains a~unique! typical irreducible
submoduleV~n! so that

~0!ÞV~n!5P@n#Uq~L !V0~n!5Uq~L !P@n#V0~n!.

Since the form̂ , & restricted toX0~n! is nondegenerate, this shows thatP0V̄0(n)5X0(n).
To proveP0 is 121 supposeV0(n)#V̄(n) is in the kernel ofP0 ~which constitutes aUq(L0)

module! so thatP0V0~n!5~0!. Then we have

05^X0 ,V0~n!&5^Uq~B!X0 ,V0~n!&5^X0 ,Uq~N!V0~n!&

5^X0 ,V~n!&5^X0 ,Uq~L !V0~n!&5^Uq~L !X0 ,V0~n!&5^X,V0~n!&⇒V0~n!5~0!.

ThusP0 must be 121 and the result is proved.
Corollary: mn5multiplicity of V0(n)#V(L)^V0(m).
Remarks:The above establishes the useful result that for typicaln,mPD1, the multiplicity of

V(n)#V(L)^V(m) is equal to the multiplicity ofV0(n)#V(L)^V0(m). The latter can be
obtained from theL↓L0 branching rules forV~L! together with the known33 characters of the
finite dimensional irreducibleL0 modules. h

We note thatP[n]:X0(n)→V̄0(n)#V̄(n) also determines aUq(L0) module homomorphism
in the reverse direction. In view of Lemma 4.1,P@n# must be 121 since its kernel, which
constitutes aUq(L0) module, is trivial: indeed givenV0(n)#X0(n) we have

Uq~L !P@n#V0~n!5P@n#Uq~L !V0~n!$V~n!Þ~0!

with V~n! the ~unique! typical submodule ofVn5Uq(L)V0(n). On the other hand, from Propo-
sition 4.1, we have dimX0~n!5dim V̄~0!~n!, so thatP@n# must also be onto. We thus arrive at
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Proposition 4.2 (notation as above):

P@n#:X0~n!→V̄0~n! determines a Uq~L0! module isomorphism.
h

Below we assume an orthogonal decomposition ofV̄0(n)#V̄(n) into eigenspaces of the
Uq(L0) invariant operatorP[n]P0P[n], which is self-adjoint under the form̂ , & on
X5V(L)^V(m):

V̄0~n!5 %
j

V0
j~n! ~orthogonal direct sum!

with V0
j~n! an irreducibleUq(L0) module constituting an eigenspace ofP[n]P0P[n] with eigen-

valuelj , say. We allow for the possibility that some eigenvalues may be equal; i.e.,lj5lj , jÞj8,
but we may still assume orthogonality of the corresponding eigenspaces. The above decomposi-
tion induces aUq(L) module decomposition

V̄~n!5 %
j

Vj~n!, ~21!

whereVj(n)5Uq(L)V0
j(n)5Uq(N)V0

j(n) is an irreducibleUq(L) module.
Lemma 4.2: The decomposition~21! is orthogonal.
Proof: For jÞj8 we have

05^V0
j~n!,V0

j8~n!&5^Uq~B!V0
j~n!,V0

j8~n!&5^V0
j~n!,Uq~N!V0

j8~n!&5^V0
j~n!,Vj8~n!&

5^V0
j~n!,Uq~L !Vj8~n!&5^Uq~L !V0

j~n!,Vj8~n!&.5^Vj~n!,Vj8~n!&.
h

Throughout the remainder of this section we adopt this orthogonal multiplicity labeling~al-
though our final results will be independent of the labeling chosen!. In view of Proposition 4.1, we
have aUq(L0) module direct sum decomposition

X0~n!5 %
j

V0~n,j!#X0 , ~22!

whereV0(n,j)[P0V0
j(n) is an irreducibleUq(L0) module.

Lemma 4.3:
~i! V0~n,j! is an eigenspace of P0P[n]P0 with eigenvaluelj.
~ii ! The decomposition (22) is orthogonal.
Proof: ~i! Let v0

j5P0v
jPV0(n,j), where vjPV0

j(n) so that vj is an eigenvector of
P[n]P0P[n] with eigenvaluelj . Then

P@n#v0
j5P@n#P0v

j5P@n#P0P@n#vj5ljv
j⇒P0P@n#P0v0

j5P0P@n#v0
j5ljP0v

j5ljv0
j

which is sufficient to prove the result.
~ii ! For jÞj8 we have, sinceV0

j~n! are eigenspaces ofP[n]P0P[n],

^V0~n,j!,V0~n,j8!&5^P0V0
j~n!,V0~n,j8!&5^V0

j~n!,V0~n,j8!&5^V0
j~n!,P0V0

j8~n!&

5^V0
j~n!,P@n#P0P@n#V0

j8~n!&5^V0
j~n!,V0

j8~n!&50

as required. h
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It is worth noting that the eigenvalueslj are real, sinceP[n]P0P[n] is self-adjoint under the
form ^ , &, moreover

Lemma 4.4.: The eigenvalueslj are all nonzero.
Proof: Supposelj50 for some j, so that P[n]P0P[n]V0

j(n)5~0!. Then for V0(n,j)
5P0V0

j(n) we have

P@n#V0~n,j!5P@n#P0V0
j~n!5P@n#P0P@n#V0

j~n!5~0!

in contradiction to Proposition 4.2.
Corollary: P[n]V0(n,j)5V0

j(n). In particular Vj~n! is the unique irreducible submodule of
highest weightn contained in Uq(L)V0(n,j).

Proof: From above,

P@n#V0~n,j!5P@n#P0P@n#V0
j~n!5V0

j~n!

from which the result follows. h

Since the decompositions~21! and~22! are orthogonal, the restriction of the form^ , & onX to
Vj~n! is nondegenerate as is its restriction toV0(n,j)#X0 . We let P@n,j# be the orthogonal
projection ontoVj~n!, which is thus self-adjoint under the form and commutes with the action of
Uq(L); we therefore have

P@n,j#X5P@n,j#V̄~n!5Vj~n!.

We denote the orthogonal projection ontoV0~n,j!, which is self-adjoint and commutes with the
action ofUq(L0), by P0@n,j#. We conclude this section with some technical results of importance
below.

Lemma 4.5: Let V0(n8)#X0 be an irreducible Uq(L0) module with highest weightn8. Then
~i! P[n,j]V0(n8)5~0! unlessn8<n.
~ii !D(T2)P[n,j]V0(n8)5~0!, nÞn8. Moreover, in the casen85n, we haveD(T2)P[n,

j]V0(n)5~0!, if V0~n! is orthogonal to V0~n,j!.
Proof: ~i! The Uq(L) module generated byV0~n8! will consist of a direct sum of typical

irreducible modules with highest weightsn9>n8 plus an atypical component~possibly zero!. Thus

P@n,j#V0~n8!5~0! unless n>n8,

where we have used the result thatV̄~n! is orthogonal to the atypical component ofX.
As to ~ii !, the last statement is obvious from the corollary to Lemma 4.4. Also from part~i!,

D~T2!P@n,j#V0~n8!5~0!, unless n>n8.

It thus remains to consider the casen.n8. Then we must have

D~T2!P@n,j#V0~n8!5~0!,

or else the left-hand side will give aUq(L0) submodule ofVj~n! with highest weightn822r1
which is less than the highest weightn22r1 of the minimalZ-graded component ofV

j~n!, which
is impossible. h

Utilizing this result we arrive at
Proposition 4.3:~notation as above!.

D~T2!P@n,j#P05D~T2!P0@n,j#.
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Proof: In view of the corollary to Lemma 4.4, (12P[n,j])V0(n,j) is contained in a direct
sum of typical irreducible modules with highest weightsn8.n plus possibly an atypical compo-
nent. Thus, from Proposition 3.1 and the Lemma above, we have

~0!5D~T2!D~G0!~12P@n,j#!V0~n,j!5xn~G0!D~T2!~12P@n,j#!V0~n,j!.

Sincen is typical,xn~G0!Þ0 so that

D~T2!~12P@n,j#!V0~n,j!5~0!

or

D~T2!V0~n,j!5D~T2!P@n,j#V0~n,j!

which, in view of Lemma 4.5, is sufficient to prove the result.

V. SUPERTRACE RESULT (n,mPD1 TYPICAL)

Throughout we adopt the orthogonal labeling forV̄(n)#X5V(L)^V(m) of Sec. IV. We let
$e~n!a% be a~Z-graded! basis forV~n! with corresponding dual basis$e~n!a% under the natural form
on V~n!. We let $ej~n!a% be the corresponding basis forVj(n)#V̄(n) and assume the labeling
normalized so that

^ej~n!a ,e
j8~n!b&5ejdjj8^e~n!a ,e~n!b&

with ej561 the signature ofVj~n! ~cf. Definition 3.2!. Then j gives rise to aUq(L) module
homomorphism

j:V~n!→V~L! ^V~m!, j~e~n!a!5ej~n!a ~23!

in a natural way. It is worth noting thatej(n)a[ejj(e(n)
a) constitutes a dual basis to$ej~n!a%

under the form̂ , & on X restricted toVj~n!:

^ej~n!a,ej8~n!b&5djj8db
a .

We now set

P@n#jj85(
a

uej~n!a&^ej8~n!au5ejej8(
a

uej~n!a&^ej8~n!au ~24!

which commute with the action ofUq(L) and satisfy the algebra

P@n#jj8P@n#hh85dj8hP@n#jh8 , P@n#jj8
†

5ejej8P@n#j8j .

Note that the orthogonal projection ontoVj(n)#V̄(n) is given byP[n,j]5P[n] jj . Our aim here
is to prove the result

Theorem 5.1:

strq^strq@D~T1!P@n#jj8~1^T2!#5~21! uF1
1uq4~r,r1!strq^strq@D~T2!P@n#jj8~1^T1!#5djj8h ,

whereh is a constant independent ofj given by

h5~21!@n#q2~m1n,r1!xm~G0!Dq
0@n#,

with @n# theZ-graded level of V0(n)#V(L)^V0(m).
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Note. It is easily checked that the first equation above holds directly by conjugation: recall, for
APEnd(X), that strq~A* !5strq~A

†!, whereA† is the adjoint ofA with respect to the form̂ , & on
X. It thus suffices to prove the second formula. h

We begin with the diagonal casej5j8. Then utilizing Proposition 4.3 we have, since
(1^T1)X5X0 ,

strq^strq@D~T2!P@n,j#~1^T1!#

5strq^strq@D~T2!P0@n,j#~1^T1!#

5str^str@D~q2hr!D~T2!P0@n,j#~1^T1!#

5q24~r,r1!str^str@D~T2!D~q2hr!P0@n,j#~1^T1!#

5q24~r,r1!~21! uF1
1ustr^str@~1^T1!D~T2!D~q2hr!

3P0@n,j##,

where the last equality follows from the cyclic rule of supertraces. Now@cf. Eq. ~9b!#

~1^T1!D~T2!P05~qhr1^T1T2!P05xm~G0!~q
hr1^1!P0⇒~1^T1!D~T2!P0@n,j#

5q~r1 ,n2m!xm~G0!P0@n,j#. ~25!

Substituting into the above we arrive at

strq^strq@D~T2!P@n,j#~1^T1!#5~21! uF1u1q24~r,r1!xm~G0!q
~r1 ,n2m!str

^str@D~q2hr!P0@n,j##

5~21! uF1u1q24~r,r1!h

with h as in the statement of the theorem.
For the nondiagonal case a bit more work is required. Let$e0

j(n)k% be a basis for the maximal
Z-graded componentV0

j~n! of Vj~n! with dual basis$e0
j(n)k% under the form̂ , & on X and let

$e0(n,j)k%, $e0(n,j)
k% be corresponding dual bases forV0(n,j)#X0 . Recall that̂ , & restricted to

the irreducibleUq(L0) modulesV0
j~n!, V0~n,j! is nondegenerate and thus either positive or nega-

tive definite; we lete561 be therelativesignature of the two forms~the signature of the form on
V0

j~n! is ej , defined previously!.
We may thus write

P0e0
j~n!k5aje0~n,j!k , P0e0

j~n!k5eaje0~n,j!k, ~26!

whereajPC: note, from Proposition 4.1, thatajÞ0. Clearly~no summation!

uaju25e^P0e0
j~n!k,P0e0

j~n!k&5e^e0
j~n!k,P0e0

j~n!k&5e^e0
j~n!k,P@n#P0P@n#e0

j~n!k&

5elj^e0
j~n!k,e0

j~n!k&5elj.0.

Sinceuaju
25eljÞ0 ~cf. also with Lemma 4.4!, Eq. ~26! implies

P@n,j#e0~n,j!k5P@n#e0~n,j!k5aj
21P@n#P0e0

j~n!k5aj
21P@n#P0P@n#e0

j~n!k5aj
21lje0

j~n!k

5eāje0
j~n!k . ~27!

Thus we may write
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D~T2!P@n#jj8P05D~T2!P@n#jj8P0@n,j8#5e8āj8D~T2!(
k

ue0
j~n!k&^e0~n,j8!ku,

where the last equality follows from Eq.~27! together with the definition ofP@n#jj8. Utilizing Eq.
~27! then gives

eājD~T2!P@n#jj8P05e8āj8D~T2!P@n,j#(
k

ue0~n,j!k&^e0~n,j8!ku5e8āj8D~T2!P0@n#jj8 ,

where the last equality follows from Proposition 4.3 and

P0@n#jj8[(
k

ue0~n,j!k&^e0~n,j8!ku

determines aUq(L0) module isomorphism fromV0~n,j8! to V0~n,j!.
For jÞj8, these latter spaces are orthogonal, so we arrive at

eājstrq^strq~D~T2!P@n#jj8~1^T1!!5e8āj8strq^strq@D~T2!P0@n#jj8~1^T1!#

5e8ā
j8q
24~r,r1!

str^str@D~T2!D~q2hr!P0@n#jj8~1^T1!#

5e8ā
j8q
24~r,r1!

~21! uF1
1ustr^str@~1

^T1!D~T2!D~q2hr!P0@n#jj8#

5e8ā
j8q
24~r,r1!

~21! uF1
1uq~r1 ,n2m!mm~G0!str

^str@D~q2hr!P0@n#jj8#50,

where we have employed Eq.~25! and the first equality follows from (1̂T1)X5X0 .
This establishes the theorem as required. We now show that this result holds for an arbitrary

multiplicity labeling forV(n)#V(L)^V(m), and not just the orthogonal scheme adopted above.

Extension to a general labeling

As above, letmn be the multiplicity ofV(n)#X5V(L)^V(m) and let f jj8 be the entries of
an arbitrarymn3mn nonsingular matrix. Corresponding to a basis$e~n!a% for V~n!, with dual basis
$e~n!a%, we define a new labeling scheme:

ej~n, f !a5 f j8je
j8~n!a

~summation over repeated indices assumed here and below!, giving the~not necessarily orthogo-
nal! decomposition intoUq(L) modules:

V̄~n!5 %
j

Vj~n, f !.

Note that any given labeling scheme is obtainable this way and that

^ej8~n!a,ej~n, f !b&5db
a f j8j .

We now introduce aleft dual basisej(n, f )a defined by

^ej8~n, f !a,ej~n, f !b&5dj
j8db

a
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so that

ej~n, f !a5 f̄ jj9ej9~n!a,

wheref jj9 [ ( f21)jj9 . We set

Pf@n#jj85uej~n, f !a&^ej8~n, f !au5 f j9juej9~n!a&^ej-~n!au f j8j-5 f j9jP@n#j9j- f
j8j-

with P@n#jj8 as in Eq.~24!. ThusPf [n,j][Pf [n] jj is the~not necessarily orthogonal! projection
ontoVj(n, f ). As a generalization of Theorem 5.1 we have

Theorem 5.2:

strq^strq@D~T1!Pf@n#jj8~1^T2!#5~21! uF1
1uq4~r,r1!strq^strq@D~T2!Pf@n#jj8~1^T1!#

5djj8h

with h as in Theorem 5.1.
Proof: Using the results above, together with Theorem 5.1, we obtain

strq^strq@D~T1!Pf@n#jj8~1^T2!#5 f j9jstrq^strq@D~T1!P@n#j9j-~1^T2!# f j8j-

5 f j9jhdj9j- f
j8j-

5h f j8j9 f j9j5hdj8j

with h as in Theorem 5.1, as required. In a similar way we can establish the second formula.h

The advantage of this result is that it shows Theorem 5.1 in fact applies to an arbitrary
multiplicity labeling, and not just the orthogonal scheme adopted in Sec. IV. We shall now apply
the result of Theorem 5.2 to investigate the 121 correspondence between the imbeddings
V(n)#V(L)^V(m) andV(m)#V(L)* ^V(n), for m,nPD1 typical.

VI. INDUCED LABELING FOR V(m)#V(L)* ^V(n) (m,nPD1 TYPICAL)

Here we investigate the relationship between the imbeddingsV(n)#V(L)^V(m) and
V(m)#V(L)* ^V(n) for typical m,nPD1 ~but LPD1 arbitrary!. We denote the multiplicity of
V(m)#V(L)* ^V(n) by m~m;L*^n! and similarly forV(n)#V(L)^V(m).

Lemma 6.1: m(n;L ^ m)5m~m;L*^n!.
Proof: From Lemma 2.1 we have

m~n;L ^ m!5dim HomUq~L !~V~n!,V~L! ^V~m!!

5multiplicity of identity irrep in V~n!* ^V~L! ^V~m!

5multiplicity of identity irrep in V~m!* ^V~L!* ^V~n!

5dim HomUq~L !~V~m!,V~L!* ^V~n!!

5m~m;L* ^ n!.
h

Here we assume the orthogonal labeling schemeVj~n! for V(n)#V(L)^V(m) considered in
Sec. IV. Associated withVj~n! is a Uq(L) module monomorphism~natural imbedding! j:
V(n)→V(L)^V(m) given by Eq.~23!. We letj†: V(L)^V(m)→V(n) be its conjugate, which
thus also defines aUq(L) module homomorphism; explicity
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^j†~w^vm!,en&5^w^vm,j~en!&, ;wPV~L!, vmPV~m!, enPV~n!,

where^ , & is the natural form onV(L)^V(m). We note thatj†j8: V(n)→V(n) is an isomorphism
and by construction of the labeling

j†j85ejdjj8I ,

whereI denotes the identity operator onV~n! andej is the signature of the form̂, & restricted to
Vj~n! ~cf. Definition 3.2!.

We note, however, that if$e~n!a% is a basis forV~n! with corresponding dual basis$e~n!a%
under the natural form onV~n!, then

j8j†~w^v !5(
a

j8ue~n!a&^e~n!a,j†~w^v !&

5ej(
a

uej8~n!a&^ej~n!a,w^v&, ;wPV~L!, vPV~m!

so that

j8j†5ejP@n#j8j

with P@n#j8j as in Eq.~24!.
Now let $wi% be a weight basis forV~L!, which is thus naturallyZ-graded, with corresponding

dual basis$wi* % for V~L!* . Following Lemma 2.2, corresponding toj as defined, we introduce a
linear mapĵ: V(m)→V(L)* ^V(n) defined by

ĵ~v !5(
i

~21!@ i #~q2hrwi* ! ^ j†~wi ^v !, ;vPV~m!. ~28!

Lemma 6.2:ĵ determines a Uq(L) module monomorphism.
Proof: ĵ is obviously well defined and nonzero. It remains to prove it gives rise to a homo-

morphism. Now foraPUq(L) we have, following Sweedler,24

D~a!ĵ~v !5D~2!~a!~1^ j†!(
i

~21!@ i #~q2hrwi* ! ^wi ^v, ;vPV~m!,

whereD~2![~D^1!D5~1^D!D. Since j† determines aUq(L) module homomorphism we thus
obtain, in the notation of Eq.~2!:

D~a!ĵ~v !5~1^ j†!(
~a!

FD~a~1!!(
i

~21!@ i #~q2hrwi* ! ^wi G ^a~2!v

5~1^ j†!(
i

~21!@ i #~q2hrwi* ! ^wi ^ (
~a!

e~a~1!!a~2!v,

where we have utilized Lemma 2.2. Since( (a)e(a(1))a(2)5a, we thereby arrive at

D~a!ĵ~v !5(
i

~21!@ i #~q2hrwi* ! ^ j†~wi ^av !5 ĵ~av !, ;aPUq~L !, vPV~m!

as required. h

We thus set
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Vj~m!5 ĵ@V~m!#.

We now show that this defines a complete labeling scheme forV(m)#V(L)* ^V(n) in 121
correspondence with the labeling scheme forV(n)#V(L)^V(m).

Proposition 6.1: The isotypic component V~̄m! of V(m)#V(L)* ^V(n) admits the Uq(L)
module decomposition

V̄~m!5 %
j

Vj~m!.

Proof: Let v1
m be the maximal weight vector ofV~m! andvj(m)1[ĵ(v1

m ) the corresponding
maximal weight vector ofVj~m!. It suffices to show, from Lemma 6.2, that these vectors are
linearly independent. Suppose then that

(
j

ajvj~m!150, ajPC.

Then, by definition, we have

(
i

~21!@ i #~q2hrwi* ! ^ (
j

ajj
†~wi ^v1

m !50 ⇒(
j

ajj
†~wi ^v1

m !50, ; i

⇒(
j

ajj
†~V~L! ^v1

m !50.

(jajj
† determines a Uq(L) module homomorphism, and sinceV(L)^V(m)

5Uq(L)(V(L)^v1
m ), we obtain

(
j

ajj
†50⇒aj50, ;j

because thej† are linearly independent~recall thatj†j85ejdjj8I , I the identity operator onV~n!!.
This is sufficient to prove the result.

Note: With the convention of Eq.~28!, V(m)#V(L)* ^V(n) will have parity11; i.e., its
maximal Z-graded componentV0~m! is implicitly understood to have parity11 in V(L)*
^V0(n). h

Below we show that the decomposition of Proposition 6.1 is in fact orthogonal under the form
^ , & on V(L)* ^V(n). To this end let$v(m)k% be aZ-graded basis forV~m! with corresponding
dual basis$v(m)k% under the natural form onV~m! and setvj5 ĵ(v), vPV~m!. We then have the
overlap matrixgjj8 defined by

^vj~m!k,vj8~m! l&5gjj8d l
k .

A left dual basis to$vj(m)k%#Vj(m) is thus given by

vj~m!k5gjj8vj8~m!k

~summation over repeated indices assumed here and below! where gjj8[(g21)jj8. The ~not
necessarily orthogonal! projection ontoVj~m! is then given by

P@m,j#5P@m#jj ,

where
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P@m#jj85(
k

uvj~m!k&^v
j8~m!ku5(

k
uvj~m!k&^vj8~m!ku.

Our aim then is to show that the overlap matrixgjj8 is diagonal. An important role in our
approach is played by the operators

Q@m#jj85(
k

uvj~m!k&^vj8~m!ku5(
k
gj8j9uvj~m!k&^v

j9~m!ku5gj8j9P@m#jj9 ~29!

with P@m#jj9 as above. TheQ@m#jj8 satisfy the algebra

Q@m#jj8
†

5Q@m#j8j , Q@m#jj8Q@m#hh85gj8hQ@m#jh8 .

We shall need the following result:
Proposition 6.2:

strq^strq@D~T1!Q@m#jj8~1^T2!#5hjj8 ,

where

hjj85gj8jq
2~m1n,r1!xn~G0!Dq

0@m#.

Proof: Using Theorem 5.2 we obtain

strq^strq@D~T1!Q@m#jj8~1^T2!#5gj8j9 strq^strq@D~T1!P@m#jj9~1^T2!#5gj8jh

with h as in Theorem 5.1~but with n andm interchanged! so that

h5q2~m1n,r1!xn~G0!Dq
0@m#,

where we have used the fact thatV0~m! has positive parity inV(L)* ^V0(n) ~cf. note following
Proposition 6.1!, as required. h

Now, from definition, we have the following symmetry relation~notation as above!:

^vj~m!,wi* ^e~n!&5(
j

~21!@ j #^~q2hr~wj !* ! ^ j†~wj
^v~m!!,wi* ^e~n!&

5q~l i ,r!^j†~wi
^v~m!!,e~n!&

5q~l i ,r!^wi
^v~m!,ej~n!&

5^~qhrwi ! ^v~m!,ej~n!&, ;v~m!PV~m!, e~n!PV~n!, ~30!

wherevj(m)[ĵ[v(m)], ej(n)[j[e(n)] and$wi% is the basis dual to$wi% under the natural form
onV~L!: hereli denotes the weight ofwi and thusw

i . As before,$(wi)* % is the basis forV~L!*
naturally dual to$wi% so that (wi)* (wj )5d i j .

Now let $v(m)k%, $e~n!a% be bases forV~m!, V~n! with corresponding dual bases$v(m)k%,
$e~n!a% under the natural forms onV~m!, V~n!, resp. The above symmetry relation together with its
conjugate, then implies the useful relation

ej8^~q
hrwi ! ^v~m! l ,ej~n!a&^ej8~n!b,~qhrwj ! ^v~m!k&

5^~wj !* ^e~n!b,vj8~m!k&^vj~m! l ,wi* ^e~n!a&, ~31!
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where vj5 ĵ(v), ;vPV(m) while ej(n)a5j[e(n)a], e
j(n)a5ejj[e(n)

a]. We are now in a
position to prove orthogonality.

Theorem 6.1„notation as above…:

gjj85ejdjj8g,

where

g5~21!@n#
xm~G0!

xn~G0!

Dq
0@n#

Dq
0@m#

.

Proof: From Eq.~31! above, we have

ej8~q
hrwi ! ^v~m! l ,D~T2!ej~n!a&^ej8~n!b,~qhrwj ! ^T1v~m!k&

5^~wj !* ^e~n!b,D~T1!vj8~m!k&^vj~m! l ,wi* ^T2e~n!a&

⇒ej8^~q
hrwi ! ^qhrv~m! l ,D~T2!ej~n!a&^ej8~n!b,~qhrwj ! ^qhrT1v~m!k&

5^~wj !* ^e~n!b,D~qhr!D~T1!vj8~m!k&^D~qhr!vj~m! l ,wi* ^T2e~n!a&.

Settingi5 j , b5a, k5 l ~no summation! we obtain

^~qhrwi ! ^qhrv~m!k,D~T2!ej~n!a&^ej8~n!a,qhrwi ^qhrT1v~m!k&

5ej8^~w
i !* ^e~n!a,D~qhr!D~T1!vj8~m!k&^D~qhr!vj~m!k,wi* ^T2e~n!a&.

Nowmultiply both sides by (2 1)@ i #1@k# 5 ( 2 1)@a#1uF1
1u and sum oni , k,a to give, using the

definition of Eq.~29!,

ej8 str^str@D~qhr!D~T2!P@n#jj8D~qhr!~1^T1!#

5~21! uF1
1u str^str@D~qhr!D~T1!Q@m#j8jD~qhr!~1^T2!#

which may be rearranged to give

~21! uF1
1uq4~r,r1! strq^strq@D~T2!P@n#jj8~1^T1!#5ej8 strq^strq@D~T1!Q@m#j8j~1^T2!#.

Sincem, n are typical, we may apply Theorem 5.2 to the left-hand side and Proposition 6.2 to the
right-hand side to give, noting that the factorsq2(m1n,r1) cancel from both sides:

~21!@n#xm~G0!Dq
0@m#djj85ej8gjj8xn~G0!Dq

0@m#

from which the result follows.
Corollary: The induced labeling scheme for V(m)#V(L)* ^V(n) is orthogonal with respect

to the induced form.

VII. SUPERTRACE FORMULA FOR TYPICAL PROJECTIONS

Throughout we adopt the notation and conventions of Sec. VI. It is worth noting that Eq.~30!
is reminiscent of a well known symmetry relation satisfied by the Clebsch–Gordan coefficients of
a simple Lie algebra~although in such a case one usually works with an inner product!. We now
come to our main result on partialq supertraces of projections onto typical irreducible submodules
V(n)#V(L)^V(m) ~mPD1 typical as before!.
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Proposition 7.1:

~strq^1!P@n#jj85dj8jg

with g as in Theorem 6.1.
Proof: Using the definition ofvj(m)k5 ĵ[v(m)k]#V(L)* ^V(n) @cf. Eq. ~28!# we have,

from Theorem 6.1,

ejgdjj8^v~m!k ,v~m! l&

5^vj~m!k ,vj8~m! l&

5(
i , j

~21!@ i #1@ j #^q2hr~wi !* ^ j†~wi
^v~m!k!,~q

2hrwj* ! ^ j8†~wj ^v~m! l !&

5(
i , j

~21!@ i #1@ j #q2~r,l i !^~wi !* ,wj* &^j†~wi
^v~m!k!,j8†~wj ^v~m! l !&

5(
i , j

~21!@ i #q2~r,l i !^wi
^v~m!k ,jj8†~wi ^v~m! l !&,

wherewi andwi are assumed to have weightli , and the last equality follows from Proposition
3.4. In view of the fact thatjj8†5ej8P@n#jj8, with P@n#jj8 as in Eq.~24!; we thus arrive at

ejgdjj8^v~m!k ,v~m! l&5ej8(
i

~21!@ i #q2~r,l i !^wi
^v~m!k ,P@n#jj8~wi ^v~m! l !&

5ej8^v~m!k ,@~strq^1!P@n#jj8#v~m! l&.

Thus, in view of Proposition 2.1,~strq^1!P@n#jj8 determines aUq(L) invariant onV~m! with
eigenvalue determined by

ejgdjj8^v~m!k ,v~m! l&5ej8^v~m!k ,v~m! l&~strq^1!P@n#jj8

from which the result follows.
Corollary:

~strq^1!P@n,j#5~21!@n#
xm~G0!

xn~G0!

Dq
0@n#

Dq
0@m#

with P@n,j# the (orthogonal) projection onto Vj(n)#V̄(n). h

Note that the above result is independent of the multiplicity labelingj. Now let

P@n#5(
j

P@n,j#

be the orthogonal projection onto the isotypic componentV̄~n! of V(n)#V(L)^V(m). Then from
the results above, we arrive at

Theorem 7.1:

~strq^1!P@n#5~21!@n#mn

xm~G0!

xn~G0!

Dq
0@n#

Dq
0@m#
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with mn the multiplicity of V(n)#V(L)^V(m) and @n# the Z-graded level of V0(n)#V(L)
^V0(m). h

The multiplicitiesmn are given explicitly by the corollary to Proposition 4.1 while theq
dimensions are given by formula~10! and thexn~G0! by formula ~11!; note that the ratio
xm~G0!/xn~G0! is independent of the constantcÞ0 of Eq.~11!. We emphasize that the results above
only apply to typicalm,nPD1. They will be utilized below to determine the eigenvalues of the
Casimir invariants~16!.

VIII. EIGENVALUE FORMULA FOR CASIMIR INVARIANTS

Let V~m! be an arbitrary~possibly infinite dimensional! irreducibleUq(L) module with high-
est weightmPH* . Then onV~m! the elements of the centerZ take constant values; forzPZ we
denote its eigenvalue onV~m! by xm(z). We note thatxm determines an algebra homomorphism:

19

xm :Z→C, z°xm~z!

called an infinitesimal character. More generally we say that aUq(L) module V admits an
infinitesimal characterxm , mPH* , if the central elementszPZ take constant valuesxm(z) on V.
Note that such a moduleV need not possess a maximal~or minimal! weight vector.

Throughout we letV~L! be a fixed, but arbitrary, finite dimensional irreducibleUq(L) module
with a real highest weightLPD1. We let $li% denote the set of distinct weights inV~L! with mi

the multiplicity of the weightli . Now let cP(Z^Z)D(Z)#Uq(L)^Uq(L); an important ex-
ample is afforded by

c5~1^12RTR!/~q2q21! ~32!

with R the universalR matrix. Following Proposition 2.1, we have the family of Casimir invari-
ants

Cm5~strq^1!~pL ^1!cm. ~33!

To determine their eigenvalues we first need34,35

Definition 8.1:We say thatL is typically subordinateto mPD1 if m,m1li are all ~real!
dominant and typical. We denote the set of suchm by DL

1 . h

From Ref. 35 we have~also cf. Refs. 15 and 34!
Lemma 8.1: The eigenvaluesxm(Cm) of the invariants~33!, mPH* , determine functions on

H* which are uniquely defined by their restriction to DL
1 . h

We thus assumemPDL
1 so that we have the tensor product decomposition

V~L! ^V0~m!5 %miV0~m1l i !

which follows from the fact thatV~L! is subordinate toV0~m!, the maximalZ-graded component
of V~m!, as aUq(L0) module. Thus allUq(L0) modulesV0(m1l i) occur with full multiplicitymi

in V(L)^V0(m) ~cf. Kostant34!. Since them1li are all typical we obtain, from the corollary to
Proposition 4.1, the tensor product decomposition

V~L! ^V~m!5 %
i
miV~m1l i !.

We let P[ i ] denote the orthogonal~central! projection of the tensor product space onto the
isotypic componentV̄(m1l i)[miV(m1l i). We then have the spectral decomposition

cm5(
i

^c&m1l i

m P@ i #,
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where ^c&m1l i
denotes the eigenvalue ofc on V(m1l i)#V(L)^V(m). Sincem,m1li are all

dominant and typical we may apply the results of Theorem 7.1 which gives, for the eigenvalues of
the invariants~33!:

xm~Cm!5(
i

^c&m1l i

m ~strq^1!P@ i #5(
i

~21!@ i #mi^c&m1l i

m xm~G0!

xm1l i
~G0!

Dq
0@m1l i #

Dq
0@m#

, mPDL
1 ,

where [i ] denotes the degree of weightli . In view of Eqs.~10! and ~11! and Lemma 8.1, we
thereby arrive at the following eigenvalue formula:

Theorem 8.1:

xm~Cm!5(
i

~21!@ i #mi^c&m1l i

m )
bPF1

1

@~m1r,b!#q
@~m1l i1r,b!#q

)
aPF0

1

@~m1l i1r,a!#q
@~m1r,a!#q

, mPH* .

Note: The above determines a well defined function onH* . However it will be undefined as it
stands if somem1li is atypical or~m1r,a!50, for someaPF0

1 ~this latter situation can never
occur formPD1!. In such a case the right-hand side must first be expanded in order to avoid
singularities. Note however that the set ofmPH* for which this occurs forms a Zariski closed
subset ofH* . Thus the formula is well defined on a Zariski open, and hence dense, subset ofH* ;
for further details see Ref. 35. h

We now investigate the important special case wherec is given by Eq.~32!; the corresponding
invariants ~33! in this case reduced to those of Eq.~16!. It is a well established result for
~Z2-graded! quasitriangular Hopf algebras that there exists a distinguished element12:

u5(
t

~21!@ t#S~bt!at ,

whereat andbt are the coordinates of the universalRmatrix:R5( tat^bt . Then it can be shown
thatu has inverse

u215(
t

~21!@ t#S22~bt!at

and satisfies

S2~a!5uau21, ;aPUq~L !,
~34!

D~u!5~u^u!~RTR!21.

On the other hand, from Eq.~3! we have

S2~a!5q22hraq2hr, ;aPUq~L !

which follows from the fact that the principal antiautomorphismg satisfiesg25I , the identity map
onUq(L). Thusv [ q2hru must be a central element which, in view of Eq.~34!, satisfies

RTR5~v^v !D~v21!.

Moreover, it can be shown that12

xL~v !5q2~L,L12r!.

Thus withc as in Eq.~32!, we have for its eigenvalues onV(m1l i)#V(L)^V(m):
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^c&m1l i
[ai~m!, ai~m!5

12q22a i ~m!

q2q21 ,

whereai denotes the linear polynomial function onH* given by

a i~m!5 1
2~L,L12r!2 1

2~l i ,l i12~m1r!!, ;mPH* . ~35!

It is worth noting that these are the roots of the characteristic identities36 for the Lie superalgebra
L, and in theq→1 limit, ai(m)→a i(m) while c goes over to the characteristic matrix investigated
in Refs. 16 and 36.

Hence, as a special case of Theorem 8.1, we arrive at the following formula for the eigenval-
ues of the Casimir invariantsCm

L of Eq. ~16!:

xm~Cm
L!5(

i
~21!@ i #miai~m!m )

bPF1
1

@~m1r,b!#q
@~m1l i1r,b!#q

)
aPF0

1

@~m1l i1r,a!#q
@~m1r,a!#q

~36!

for mPH* . This generalizes, and is in agreement with, the results of Ref. 17 obtained for the case
pL is the vector irrep ofUq[gl(mun)] using completely different methods. Again the above
formula is well defined on a Zariski dense subset ofH* , but the right-hand side will need to be
expanded if somem1li is atypical, or~m1r,a!50 for someaPF0

1 . This can always be done, in
principle, sincexm(Cm

L) necessarily determines a well defined function onH* which is given by
formula~36! for genericmPH* . This aspect of the problem will be deferred to another article~see
also Ref. 35!.

In the classical limitq→1, theCm
L give rise to a family of Casimir invariants for the Lie

superalgebraL; they generalize those constructed by Jarvis and Green16 to arbitrary reference
irreps. From Eq.~36! their eigenvalues are given by

xm~Cm
L!5(

i
~21!@ i #mia i~m!m )

bPF1
1

~m1r,b!

~m1l i1r,b! )
aPF0

1

~m1l i1r,a!

~m1r,a!

with ai~m! as in Eq.~35!. This result is also new and generalizes to arbitrary reference irreps the
results of Refs. 16 and 17.

Explicit examples of the above Casimir invariants and their eigenvalues will be given in Sec.
IX ~see also Ref. 35!. Equation~36! also plays a fundamental role in the evaluation of two variable
link polynomials associated with any irrep with a real highest weightLPD1; for further details
we refer to Ref. 18.

IX. EXAMPLES

In order to illustrate the application of our eigenvalue formula we will consider in this section
the case ofUq(gl(mun)) when the reference representation is taken to be the vector irrep~simply
labeledp!. We let $ei% denote the standard basis forH* equipped with the invariant bilinear form

~e i ,e j !5~21!@ i #d i j ,

where theZ2 grading on the indices is given by

@ i #5 H 0,1, i<m
i.m.

From Ref. 37 we have expressions for the co-product intertwiners which read
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~p ^ I !R5I ^ I1~q2q21!(
i< j

~21!@ i #ei
j
^Xj

i ,

~p ^ I !RT5I ^ I1~q2q21!(
i> j

~21!@ i #ei
j
^Xj

i ,

whereej
i denote the standard elementary matrices. Above, theXj

i are elements ofUq(gl(mun))
which are given by

Xj
i5q1/2~~e i ,e i !Ei

i
1~e j ,e j !Ej

j
21!Ej

i , iÞ j ,

Xi
i5~e i ,e i !

q~e i ,e i !Ei
i
21

q2q21 ,

and theEj
i are defined recursively as

Ej
i5Ek

i Ej
k2q2~ek ,ek!Ej

kEk
i , i"k" j .

~Note that the expressions for theXj
i differ slightly from those in Ref. 37 due to a different choice

for the co-product.!
We may write Eq.~32! in the form

~p ^ I !c5(
i , j

~21!@ i #2d i j ei
j
^Xj

i1~q2q21! (
k> i , j

~21!~@ i #1@ j # !~@ i #1@k# !ei
j
^Xj

kXk
i

from which the Casimir invariantsCl of Eq. ~33! can be calculated. Here we will construct the first
and second order Casimir invariants only. The first order Casimir invariant reads

C152(
i
Xi
iq~2r,e i !1~q2q21!(

i> j
~21!@ j #Xj

i Xi
jq~2r,e j ! ~37!

while the second order invariant is given by

C25(
i , j

~21!@ j #4d i j Xj
i Xi

jq~2r,e j !1~q2q21! (
k> i , j

~21!~@ i #1@ j # !~@ j #1@k# !2d i j ~Xi
jXj

kXk
i q~2r,e i !

1Xj
kXk

i Xi
jq~2r,e j !!1~q2q21!2 (

k,l> i , j
~21!@ i #@ j #1@ j #@k#1@ i #@k#Xj

kXk
i Xi

lXl
jq~2r,e j !. ~38!

The sets of even and odd positive roots are, resp, given by

F0
15$e i2e j u1< i, j<m1n,@ i #5@ j #%,

F1
15$e i2e j u1< i, j<m1n,@ i #Þ@ j #%,

in terms of whichr is expressed as

r5
1

2 (
i51

m

~m2n22i11!e i2
1

2 (
j51

n

~m1n22 j11!em1 j .
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To determine the eigenvalues of these invariants acting on the irreducible moduleV~m!,
m5S i51

m1nm ie i , we will apply our formula~36!. The weight spectrum of the vector module is just
$e i% i51

m1n. In this case Eq.~36! simplifies to give

xm~Cl !5 (
i51

m1n

~21!@ i #@ai~m!# l)
jÞ i

q2~e j ,e j !ai~m!2q~e j ,e j !aj~m!1~21!@ j #

ai~m!2aj~m!
, ~39!

where the rootsai~m! are given by

ai~m!5
12q~e i ,e i12m12r!2m1n

q2q21 .

The above eigenvalues are all polynomial functions of the variablesq(me i ) so that Eq.~39!
may be simplified for each value ofl . For the case ofl51 it is known that the eigenvalues are
given by12

xm~C1!5 (
i51

m1n

~q2q21!21~12~21!@ i #q2~m1r,e i !!.

However for higher order invariants one needs to employ computing techniques to simplify these
expressions. For the simple case ofUq(gl2u1)) we have used Mathematica to obtain the following
eigenvalues for the first and second order Casimir invariants:

xm~C1!5~q2q21!21~12q2m12q2m2221q22m322!,

xm~C2!5~q2q21!22~11q2m1~q2m122!1q2m2~q2m22422q22!2q22m3~q22m32622q22!

1~q222q24!~q2m112m22q2m122m32q2m222m322!!.

These results may be checked against those obtained by explicitly evaluating the action of the
invariants on the highest weight state using Eqs.~37! and ~38!.

X. CONCLUSIONS

We have investigated several important aspects of the rep theory of the type I quantum
superalgebras. In particular it was shown in Sec. III that any finite dimensional rep for these
algebras admits a natural decomposition into typical and atypical components. In the case of a
tensor product of two finite dimensional irreps we have shown there is a natural, invariant,
nondegenerate sesquilinear form^ , & induced on the tensor product space with respect to which its
typical and atypical components are orthogonal. This implies that the restriction of the form to the
isotypic component of a given typical submodule is nondegenerate, thus allowing the definition of
corresponding Clebsch–Gordan coefficients with respect to the form^ , &.

These results were applied in Sec. IV to construct an orthogonal multiplicity labeling for
V(n)#V(L)^V(m) with m,nPD1 typical butLPD1 arbitrary. A useful result for the multi-
plicities in the tensor product module was also derived~see Proposition 4.1 and its corollary!. In
Sec. VI we investigated the naturally induced multiplicity labeling forV(m)#V(L)* ^V(n)
which was also shown to be orthogonal under the form on the tensor product space and gives rise
to a symmetry relation for the corresponding Clebsch–Gordan coefficients. It is worth noting that
this approach is capable of further generalization, particularly for the calculation of generator
matrix elements and corresponding Clebsch–Gordan coefficients for unitary irreps.

In Secs. VII and VIII we obtained a general eigenvalue formula for Casimir invariants, valid
for an arbitrary reference irrep. This result is new, even in the classical limit, in which case it
generalizes to arbitrary reference irreps the results of Refs. 16 and 17. Aside from solving an
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outstanding problem in the rep theory of the type I quantum superalgebras, our results are par-
ticularly important for the systematic construction of new two variable link polynomials which
will be investigated elsewhere.18 Finally, the eigenvalue formula of Sec. VIII, derived for real
q.0, can be shown to hold~analytic continuation! for ~generic! complexq.
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Computation of Lie transformations from a power series:
Bounds and optimum truncation
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The problem considered is the computation of an infinite product~composition! of
Lie transformations generated by homogeneous polynomials of increasing order
from a given asymptotic power series. Bounds are computed for the infinitesimal
form of the Lie transformations and for the domain of analyticity of the firstn of
them. Even when the power series is convergent, the estimates exhibit a factorial-
type growth, and thus do not guarantee convergence of the product. The optimum
truncation is determined by minimizing the remainder after the firstn Lie transfor-
mations have been applied.@S0022-2488~96!01203-2#

I. INTRODUCTION

A method based on an infinite product~composition! of Lie transformations~exponentiated
vector fields! generated by homogeneous polynomials of increasing order was developed a long
time ago in order to efficiently perform perturbative calculations in Hamiltonian systems when the
small parameters are the dynamical variables themselves.1,2 Subsequently, the recursion formulas
for the computation of the infinite product from a single Lie transformation generated by a
function analytic at the origin were derived in the nonsymplectic case.3 It was recognized from the
outset1 that the product of Lie transformations can be computed from, or be used to compute, a
power series in the dynamical variables. The relation between Lie transformations and power
series, however, was established only at a formal level, that is order by order.

More recent work has provided firm bounds on the results that can be obtained using the
method. In Refs. 4–6 a variant of the method is applied to the problem of bringing a Hamiltonian
function or a Hamiltonian vector field to normal form. In Ref. 7, and in Ref. 6 for Hamiltonian
systems, sufficient conditions are given on the coefficients of the polynomials and on the domain
of the dynamical variables such that the infinite product of Lie transformations is convergent.
Roughly speaking, the conditions sufficient for convergence are that the coefficients of the poly-
nomials do not grow with order more rapidly than an exponential function, and that the transfor-
mation be restricted to a suitable domain around the origin. It can be expected that the condition
on the coefficients is also necessary in general, since otherwise the norm ofeachvector field over
any finite domain would grow without bound as the order of the polynomial increased.

In this paper we turn to the construction of Lie transformations from an asymptotic, that is not
necessarily convergent, power series. We obtain bounds for the norms of the vector fields that are
computed from such a series and determine the optimum truncation of the product of Lie trans-
formations. Even when the power series is convergent, our results do not guarantee the conver-
gence of the infinite product, giving instead a factorial-type growth for the estimates. The asymp-
totic nature of the bound is not unexpected, however, as remarked in Sec. II. As in Ref. 7, we do
not require that the power series or the Lie transformations be symplectic~i.e., that they arise from
Hamiltonian systems!.

The organization of the paper is as follows: In Sec. II we introduce notation, which for
quantities that appear in both is the same as in Ref. 7, and write down an expression for the
coefficients of the polynomials in terms of the coefficients of the power series. Section III contains
two lemmas which allow us to pass from the expression for the coefficients to an inequality in the
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form of a recursion relation for the norms of the vector fields. In Sec. IV we then use the recursion
relation to obtain a bound on the norms. The analyticity of a finite product of Lie transformations
and the question of optimum truncation of the product are considered in Sec. V, and a summary of
the results is given in Sec. VI.

II. PRELIMINARIES

We study the transformationM formally defined by

Mz5eL2~z!eL3~z!•••eLn~z!•••z, zPCd. ~2.1!

HereLn is a vector field

Ln~z!5(
j51

d

gj
~n!~z!

]

]zj
, ~2.2!

andgj
(n) a homogeneous polynomial inz of ordern>2 with complex coefficients,

gj
~n!~z!5 (

ur u5n
ar j

~n!zr . ~2.3!

The subscriptr stands for the collection of indicesr 1 ,...,r d , ur u5
def
r 11•••1r d , andz

r is defined
by zr 5 z1

r1•••zd
rd. The exponential ofLn is given by the usual infinite series

eLn~z!5(
s50

`
1

s!
@Ln~z!#s, ~2.4!

wheres50 corresponds to the identity transformation. In the definition ofM the linear transfor-
mation has been set equal to the identity, as its computation is not germane to the problem at hand.
The designation of Eq.~2.1! as formal, on the other hand, reflects the fact that we have not
specified a domain inCd, if such one exists, on which the infinite series of Eq.~2.4! acting onz are
convergent forn52,3,.. . We also defineMn as the product of Lie transformations of the form
~2.1! truncated at ordern.

The properties of Lie transformations and their use in perturbation calculations are not dis-
cussed further in this paper. The interested reader is instead directed to Ref. 8 for a sampling of the
surveys of the subject.

Suppose we are given the formal power series

Pk~z!5zk1 (
m52

`

(
ur u5m

brk
~m!zr , ~2.5!

where no restrictions are placed on the behavior of the~complex! coefficientsbrk
(m) as a function of

m,r ,k. We are going to examine the construction of vector fieldsLn chosen in such a way that
Mz andP(z) agree order by order inz. For the moment we do not specify the domain over which
the agreement occurs. A lower bound on this domain,Dn , as a function ofn is given in Sec. V.
If the seriesP(z) is actually convergent, we will denote its domain of analyticity byD . ~D
evidently includes the origin.! In parallel with setting the linear transformation inM equal to the
identity, we have assumed that, to first order inz, P(z)5z.

For a vectorv, regardless of the vector space, we define the normivi by

ivi5max
j

uv j u, ~2.6!
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whereu•u stands for the modulus@except in the definition of index summation, as given following
Eq. ~2.3!#. For brevity we denote the norm ofz by x, x5izi . We also define the quantityaj

(n) by

a j
~n!5 (

ur u5n
uar j

~n!u, ~2.7!

andan by an5ia (n)i . The following relation holds:

iLni5max
j

ugj
~n!~z!u5max

j
U (

ur u5n
ar j

~n!zrU<anx
n. ~2.8!

In the subsequent sections we will obtain a bound foran which will thus enable us to place a
bound oniLni on a given domain forx.

The first step is to write down an expression for the coefficientsar j
(n) in terms of the coeffi-

cientsbr j
(n). We expand the Lie transformations into power series and match terms of the same

order inz to get

(
C n5n21

L2
s2•••Ln

sn

s2! •••sn!
zk5 (

ur u5n
brk

~n!zr . ~2.9!

The symbol(C p5q is defined as a sum overs2 ,...,sp with a condition,

(
C p5q

5 (
s2 , ••• ,sp>0

s212s31•••1~p21!sp5q

. ~2.10!

Note that the operatorsLi
si andL j

sj , iÞ j , do not commute, so the ordering is important.
In Eq. ~2.9! sn can take on only the values of 0 and 1. Together with the fact that

Lnzk5gk
(n)(z), this allows us to transform Eq.~2.9! into a recursion relation forark

(n):

ark
~2!5brk

~2! , ~2.11a!

ark
~n!5brk

~n!2
]z
r

r ! (
C n215n21

L2
s2•••Ln21

sn21

s2! •••sn21!
zk ; n>3, ~2.11b!

where ]z
r /r !5

def
(]z1

r1...]zd
r d)/(r 1!...r d!). ~By the definition of coefficientsa and b the condition

ur u5n holds.!
Before proceeding further we pause to note that even ifD is finite @that isP(z) is convergent

over a finite domain#, we should not expect, in general, that the coefficientsark
(n) are bounded by

an exponentially growing function ofn ~and hence that we will be able to ascertain the conver-
gence ofMnz n→`, as discussed in the Introduction!. For simplicity we setd51, in which case
the indicesr and k can be omitted, and note that the sums(C n215n21 in Eq. ~2.11b! always
contain the terms25sn2151, si50, 3< i<n22, for which

1

n!

dn

dzn
a~2!z2

d

dz
a~n21!zn21

d

dz
z5~n21!a~2!a~n21!. ~2.12!

If no other terms were present on the right side of Eq.~2.11b!, this, of course, would lead to the
factorial growth of a(n) with n. Barring a detailed cancellation of terms in the sums
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(C n215n21, which is to be considered exceptional since none of the coefficientsa~2! through
a(n21) were chosen to ensure such a cancellation, we see that one should not expect thata(n) as
n→` is bounded by an exponentially growing function ofn.

III. A RECURSION RELATION FOR NORMS

With the definition

bn5max
j

S (
ur u5n

|br j
~n!|D , ~3.1!

Eq. ~2.11b! yields

an5max
k

(
ur u5n

Ubrk~n!2
]z
r

r ! (
C n215n21

L2
s2...Ln21

sn21

s2!...sn21!
zkU

<bn1max
k

(
ur u5n

U (
C n215n21

]z
r

r !

L2
s2...Ln21

sn21

s2!...sn21!
U

<bn1 (
C n215n21

1

s2!...sn21!
max
k

(
ur u5n

U]zr
r !

L2
s2•••Ln21

sn21zkU. ~3.2!

Note that the component of the vector on the right side is determined by the component ofz and
is labeled here byk. Our goal is to express the right side of the last inequality in~3.2! in terms of
a2,...,an21. We accomplish this through two lemmas.~The second one will also be used in Sec.
V.!

Consider a vector functionF whose components are homogeneous polynomials of orderl>0,

Fk
~ l !~z!5 (

u i u5 l
f ik

~ l !zi ; 1<k<d, ~3.3!

and for which

max
k

S (
u i u5 l

u f ik
~ l !u D<f l ~3.4!

for someflPR1. Define the quantitiesc, m, andB by

(
utu5m~f l x

l ,s2 ,...,sn!

ctk~F,s2 ,...,sn!z
t5L2

s2•••Ln
snFk

~ l !~z!, ~3.5a!

B~f lx
l ,s2 ,...,sn!x

m~f l x
l ,s2 ,...,sn!5S x2a2

d

dxD
s2

•••S xnan

d

dxD
sn

f lx
l . ~3.5b!

Here use is made of the obvious fact that the power ofx in ~3.5b! is the same as the power ofz
in ~3.5a!. EvidentlyB(f lx

l ,s2 ,...,sn) is a non-negative real quantity andm(f lx
l ,s2 ,...,sn) is a

non-negative integer. The arguments ofc,m, andB have been chosen to be rather explicit, so that
the notation is sufficiently general for the manipulations that follow. When referring to a power of
only one vector field, on the other hand, we denote the summation index bys, dropping the
subscript, and replace the argumentf lx

l of m andB by l . The following holds:
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Lemma 3.1:For integerss,l>0,

max
k

S (
utu5m~ l ,s!

uctk~F,s!u D<B~ l ,s! ~3.6!

and

iLn
sF ~ l !~z!i<B~ l ,s!xm~ l ,s!. ~3.7!

This lemma is given in Refs. 9 and 10, though its proof is only outlined there. In the Appendix we
provide a more complete proof~which extends the relations derived in Appendix A of Ref. 7!.

The product of operators of the formLi
si can now be bounded by the lemma below.

Lemma 3.2:For n>2 and all functionsF of the form ~3.3!, l>0,

max
k

(
utu5m~f l x

l ,s2 ,...,sn!

uctk~F,s2 ,...,sn!u<B~f lx
l ,s2 ,...,sn! ~3.8!

and

iL2
s2•••Ln

snF ~ l !~z!i<B~f lx
l ,s2 ,...,sn!x

m~f l x
l ,s2 ,...,sn!. ~3.9!

Proof is by induction onn and is straightforward. Forn52 inequalities~3.8! and~3.9! hold by
Lemma 3.1, inequalities~3.6! and ~3.7!. Assume now~3.8! and ~3.9! hold for a fixedn and all
functionsF of the form ~3.3!. Then

iL2
s2•••Ln

snLn11
sn11F ~ l !~z!i5iL2

s2•••Ln
snF̃ ~ l 8!~z!i , ~3.10!

where

F˜k
~ l 8!~z!5 (

utu5 l 8
ctk~F,sn11!z

t ~3.11!

with l 85nsn111 l and, by Lemma 3.1,

max
k

(
utu5 l 8

uctk~F,sn11!u<B~f lx
l ,sn11!. ~3.12!

Use of the induction assumption yields

max
k

(
utu5m„B~f l x

l ,sn11!xl 8,s2 ,...,sn…

uctk~ F̃,s2 ,...,sn!u<B„B~f lx
l ,sn11!x

l 8,s2 ,...,sn… ~3.13!

and

iL2
s2•••Ln

snF̃ ~ l 8!~z!i<B„B~f lx
l ,sn11!x

l 8,s2 ,...,sn…x
m„B~f l x

l ,sn11!xl 8,s2 ,...,sn…. ~3.14!

By unfolding the definitions ofm andB we obtain
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B„B~f lx
l ,sn11!x

l 8,s2 ,...,sn…x
m~B~f l x

l ,sn11!xl 8,s2 ,...,sn!

5S x2a2

d

dxD
s2

•••S xnan

d

dxD
sn

B~f lx
l ,sn11!x

l 8

5S x2a2

d

dxD
s2

•••S xnan

d

dxD
snS xn11an11

d

dxD
sn11

f lx
l

5B~f lx
l ,s2 ,...,sn ,sn11!x

m~f l x
l ,s2 ,...,sn ,sn11!, ~3.15!

and so replace B„B(f lx
l ,sn11)x

l 8,s2 ,...,sn… by B(f lx
l ,s2 ,...,sn ,sn11) and

m„B(f lx
l ,sn11)x

l 8,s2 ,...,sn… by m(f lx
l ,s2 ,...,sn ,sn11) in inequalities~3.13! and ~3.14!. With

the further replacement ofctk(F̃ ,s2 ,...,sn) by ctk(F,s2 ,...,sn ,sn11), the proof is complete. h

We can now make progress with inequality~3.2!. Since

max
k

(
ur u5n

U]zr
r !

L2
s2•••Ln21

sn21zkU5max
k

(
ur u5n

ucrk~z,s2 ,...,sn21!u, ~3.16!

use of inequality~3.8! yields

an<bn1 (
C n215n21

1

s2! •••sn21!
B~x,s2 ,...,sn21!. ~3.17!

Note that the apparent dependence of the right side of~3.2! on z ~or izi! has disappeared, as it
should.

The final step is to obtain an explicit expression forB(x,s2 ,...,sn21), which requires the
evaluation of the right side of Eq.~3.5b! for l51, fl51. First we note that

S xn d

dxD
s

xp5

~n21!sGS s~n21!1p

n21 D
GS p

n21D
xp1s~n21!, ~3.18!

where we take, as it is sufficient for our purposes,n, s, andp to be integers, withn>2, s>0, and
p>1. The relation~3.18! is easily proven by induction ons. Repeated use of~3.18! on the right
side of Eq.~3.5b! then leads to

B~x,s2 ,...,sn21!5a2
s2~2a3!

s3•••„~n22!an21…
sn21

GS 11sn21~n22!

n22 D
GS 1

n22D

3

GS 11sn21~n22!1sn22~n23!

n23 D
GS 11sn21~n22!

n23 D •••

GS 11sn21~n22!1•••1s2
1 D

GS 11sn21~n22!1•••12s3
1 D ,

~3.19!

which is the desired, though admittedly cumbersome, expression forB.
With the definitionshn5nan11, tn5nbn11,
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Qm51, m5n21,

Qm511 (
j51

n2m21

~n2 j !sn2 j11 , 1<m<n22, ~3.20a!

and

G ~s2 ,...,sn!5 )
m51

n21 GS sm111
Qm

m D
sm11!GSQm

m D , ~3.20b!

inequality ~3.17! and Eq.~2.11a! become

h15t1 , ~3.21a!

hn<tn1n (
C n5n

h1
s2•••hn21

sn G ~s2 ,...,sn!, n>2. ~3.21b!

In Sec. IV we will use these relations to get an estimate forhn . We call attention to the interesting
fact that the relations~3.21!, and hence the results that follow, do not depend explicitly ond. The
dimensionality of the space enters only through the definition of quantitieshn andtn .

IV. BOUND FOR hn

From inequality~3.21b! we get the following bound onhn :
Theorem 4.1:Let

Kn5 max
1< j<n

F t j
j j~ j21!! G

1/j

, n>1. ~4.1!

Then

hn<~Knn!nn!. ~4.2!

Proof: First we manipulate the ratios ofG functions that appear inG . For 1<m<n21 and
sm11>1,

GS sm111
Qm

m D
GSQm

m D 5S sm11211
Qm

m D S sm11221
Qm

m D •••
Qm

m
<S sm11211

Qm

m D sm11

5
1

msm11
@m~sm1121!1Qm#sm11<

1

msm11
~n112m!sm11. ~4.3!

The last inequality makes use ofmsm111Qm<n11, which follows from the condition on the
sums overs. The last line in Eq.~4.3! is also a valid estimate whensm1150. Hence,

G ~s2 ,...,sn!<
ns2~n21!s3•••2sn

s2! •••sn!1
s22s3•••~n21!sn

, ~4.4!
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and inequality~3.21b! becomes

hn<tn1n (
C n5n

~nh1!
s2@~n21!h2#

s3•••~2hn21!
sn

s2! •••sn!1
s2•••~n21!sn

. ~4.5!

Before proceeding further we establish two inequalities. The first one is given by

mm~11n2m!<nm, n>2, 1<m<n21. ~4.6!

Its validity can be seen directly from the binomial expansion

nm5„m1~n2m!…m>mm1mm~n2m!5mm~11n2m!. ~4.7!

The other one is given by the following statement:
Propositions 4.2:Whenn>2 and the conditionC n5n is satisfied,

1!s22!s3•••~n21!! sn<~n21!!. ~4.8!

To prove this statement note thatC n5n requires that there exist at least one term
(k21)sk>1, 2<k<n. Then definen(k)5n2(k21)sk , and consider three cases:n(k)>2, n(k)51,
andn(k)50.

~i! n(k)>2:

~n21!!5„n~k!1~k21!sk21…!

5„n~k!1~k21!sk21…„n~k!1~k21!sk22…•••„~k21!sk11…! „~k21!sk…!

>n~k!~n~k!21!•••2„~k21!sk…!

5n~k!! „~k21!sk…!

>s2! ~2s3!! •••„~k22!sk21…! ~ksk11!! •••„~n21!sn…! „~k21!sk…!

>1!s22!s3•••~k22!! sk21~k21!! skk! sk11•••~n21!! sn, ~4.9!

which is ~4.8!.
~ii ! When n(k)51 we must havek5n and s25sn51, si50, 3< i<n21, so the result is

immediate.
~iii ! n(k)50 implies (k21)sk5n. As the casek52 is trivial, we consider only~k21!>2,

sk>2. Then,

~n21!!5„~k21!sk21…!

5
„~k21!sk…!

~k21!sk

5
„~k21!~sk21!1~k21!…!

~k21!sk

>„~k21!~sk21!…! ~k21!!>~k21!! sk21~k21!!5~k21!! sk, ~4.10!

which is ~4.8!. The first inequality uses the relation (p
p1q)>p1q whenp,q>2. This completes

the proof of Proposition 4.2. h

The relation~4.2! can now be proven by induction. Forn51 we have

h15t15K1 , ~4.11!
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as required. Assume now that~4.2! holds throughn21. Starting with inequality~4.5! we then
obtain

hn<tn1n (
C n5n

)
m51

n21

@~n112m!~Kmm!mm! #sm11
1

s2! •••sn!1
s2•••~n21!sn

<tn1nKn
n (
C n5n

)
m51

n21

@~n112m!mmm! #sm11
1

s2! •••sn!1
s2•••~n21!sn

<tn1nKn
n (
C n5n

ns212s31•••1~n21!sn)
m51

n21

m! sm11
1

s2! •••sn!1
s2•••~n21!sn

<tn1~Knn!nn! (
C n5n

1

s2! •••sn!1
s2•••~n21!sn

. ~4.12!

For the second inequality we have usedKn>Km , 1<m<n21, for the third one we have used
inequality ~4.6!, and for the fourth one we have used inequality~4.8!. In addition, we have
repeatedly used the condition on the sum to sum the power of the summand. The remaining sums
over s nicely sum to 121/n, as can be demonstrated using Cauchy’s identity11

(
C n115n

1

s2! •••sn!sn11!1
s2•••~n21!snnsn11

51. ~4.13!

Substitution of this result into Eq.~4.12! leads to

hn<tn1~Knn!nn! ~121/n!<~Knn!nn!. ~4.14!

We have used the definition ofKn given by Eq.~4.1!. This completes the proof of Theorem 4.1.h

By unfolding various definitions, Theorem 4.1 can be written as

iLni<~n22!! „Kn21~n21!…n21izin, n>2, ~4.15!

whereKn is given by

Kn5 max
1< j<n

Fmaxl~( ur u5 j11ubrl
~ j11!u!

j j21~ j21!! G1/j , n>1. ~4.16!

Thus even whenP(z) is a convergent series, that isKn<K for someKPR1, n>1, the bound on
the sequence$iLni% exhibits a factorial-type growth withn over any finite domain containing the
origin. Such behavior is typical of asymptotic sequences. Specifically, withnn<n! Cn for some
CPR1, Eq. ~5.5! below, it follows that$iLni% is a Gevrey sequence of order 2.

V. PRODUCT OF LIE TRANSFORMATIONS AND OPTIMUM TRUNCATION

Having obtained an estimate foriLni , we turn to the product of afinite number of Lie
transformations. Such a product is well defined on a nonvanishing domain inCd as the following
result shows.

Theorem 5.1:The quantityMnz, n>2, is an analytic function ofz in the open ball

x,
1

Kn21n
2e1/4

. ~5.1!

Proof: The functionMnz is given by the power series inz
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Mnzk5 (
q51

`

(
C n5q21

L2
s2•••Ln

sn

s2! •••sn!
zk . ~5.2!

We determine a bound on the domain on which the sum overq is absolutely convergent. Lemma
3.2 and Eq.~3.19! yield

U (
C n5q21

L2
s2•••Ln

sn

s2! •••sn!
zkU<I (

C n5q21

L2
s2•••Ln

sn

s2! •••sn!
zkI

< (
C n5q21

iL2
s2•••Ln

snzki

s2! •••sn!
<xq (

C n5q21

B~x,s2 , ••• ,sn!

s2! •••sn!

5xq (
C n5q21

h1
s2•••hn21

sn G ~s2 ,...,sn!. ~5.3!

Before proceeding further we derive two simple inequalities. First we replace the estimate
~4.2! by

hn<~Knn
2!n, n>1. ~5.4!

Justification follows from the well-known formula

n!5A2p nn11/2 exp~2n1u/~12n!!, 0,u,1. ~5.5!

Since the expressionA2pn exp(2 n 1 1/(12n)) is monotonically decreasing withn, and atn52
takes the value 0.50 0163, we getn!<nn for n>1, and the estimate~5.4! from Eq. ~4.2!.

Second, we establish that forn>2 and 1<m<n21

m~n2m11!2>4~n21!, ~5.6!

as can be seen directly:

m~n2m11!224~n21!5~n2m21!~nm13m242m2!>m~n2m21!2>0. ~5.7!

Returning to Eq.~5.3!, we simplify the ratio ofG functions occurring inG . @It is not fruitful
to use Eq.~4.3! here because the condition on the sums overs is different.# For 1<m<n21 and
sm11>1 the following holds:

GS sm111
Qm

m D
GSQm

m D 5S sm11211
Qm

m D S sm11221
Qm

m D •••
Qm

m

5
1

msm11
~msm112m1Qm!~msm1122m1Qm!•••Qm

<
1

msm11
~q2m!~q22m!•••~q2sm11m!

<
1

msm11
~q21!~q22!•••~q2sm11!5

1

msm11

~q21!!

~q212sm11!!
. ~5.8!
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The first inequality relies on the relationmsm111Qm<q. Again, the last line in Eq.~5.8! is also
a valid estimate whensm1150. Using~5.8! and ~5.4!, the sums overs in Eq. ~5.3! become

(
C n5q21

h1
s2•••hn21

sn G ~s2 ,...,sn!

<Kn21
q21 (

C n5q21

~12n2!s2

n2s2
„24~n21!2…s3

~n21!2s3
•••

„~n21!2~n21!22…sn

22sn
G ~s2 ,...,sn!

<~Kn21n
2!q21 (

C n5q21

G ~s2 ,...,sn!

n2s2~n21!2s3•••22sn

<~Kn21n
2!q21 (

C n5q21
S q21
s2

D 1

n2s2 S q21
s3

D 1

@2~n21!2#s3
•••S q21

sn
D 1

@~n21!22#sn

<~Kn21n
2!q21 (

s250

q21

••• (
sn50

q21 S q21
s2

D 1

n2s2 S q21
s3

D 1

@2~n21!2#s3
•••S q21

sn
D 1

@~n21!22#sn

5~Kn21n
2!q21)

m51

n21 S 11
1

m~n2m11!2D
q21

<~Kn21n
2!q21S 11

1

4~n21! D
~n21!~q21!

,~Kn21n
2e1/4!q21. ~5.9!

The first inequality follows from Eq.~5.4! and the fact thatKn is nondecreasing withn, the second
one from Eq.~4.6!, the third one from Eq.~5.8!, the fourth one is evident upon an examination of
the ranges of indicess2 throughsn subject to the conditionC n5q21, the fifth one from Eq.~5.6!,
and the last one from the relation„111/~4~n21!!…4(n21),e. For the first two inequalities we have
used the conditionC n5q21 to sum the power of the summand.

Use of the result~5.9! in Eq. ~5.3! gives

U (
C n5q21

L2
s2•••Ln

sn

s2! •••sn!
zkU< 1

Kn21n
2e1/4

~Kn21xn
2e1/4!q ~5.10!

and so the sum overq in Eq. ~5.2! is absolutely convergent for

x,
1

Kn21n
2e1/4

. ~5.11!

h

The result stated in Theorem 5.1 is a lower bound on the domainDn , n>2, introduced
following Eq. ~2.5!. Even thoughMz cannot be expected to be analytic over any finite domain,
inequality ~5.1! shows thatMnz is. If P(z) is convergent, maxnPNKn is finite and the bound on
Dn shrinks quadratically withn. For a general asymptotic series, on the other hand, the bound may
decrease more rapidly withn, depending onKn .

Since the estimates onDn do not allow the conclusion thatMnz is convergent asn→` even
whenD is finite, we turn to the asymptotic properties of this transformation. Specifically, we
examine the question of optimum truncation whenD is finite. The most natural quantity to
optimize is the difference betweenP(z) andMnz, denoted here byR(n,z):

R~n,z!5
def

iP~z!2eL2•••eLnzi . ~5.12!
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The following gives the relevant estimates onR(n,z).
Proposition 5.2:If bn<cn21 for n>2 and somecPR1, then the remainderR(n,z) is defined

in the open ball

x,
1

cn2e1/4
~5.13!

and satisfies there

R~n,z!,xF ~cxn2C1!
n

12cxn2e1/4G , ~5.14!

with C15e1/41 1
4.

Proof follows from Theorem 5.1. Using Eqs.~5.3! and~5.9! and the condition onb we have

R~n,z!5iP~z!2eL2•••eLnzi

5I (
q5n11

`

(
ur u5q

brk
~q!zr2 (

q5n11

`

(
C n5q21

L2
s2•••Ln

sn

s2! •••sn!
zkI

< (
q5n11

`

xqbq1 (
q5n11

` I (
C n5q21

L2
s2•••Ln

sn

s2! •••sn!
zkI

,
1

c (
q5n11

`

~cx!q1
1

cn2e1/4 (
q5n11

`

~cxn2e1/4!q5xF ~cx!n

12cx
1

~cxn2e1/4!n

12cxn2e1/4G . ~5.15!

For the second inequality we have replacedKn21 by c, which follows from the conditions onbn :

Kn215 max
1< j<n21

F b j11

j j21~ j21!! G
1/j

< max
1< j<n21

F cj

j j21~ j21!! G
1/j

<c, n>2. ~5.16!

Evidently, the infinite sums overq in Eq. ~5.15! are convergent in the open ball given by Eq.
~5.13!. To obtain the estimate~5.14! one more step is needed:

R~n,z!,xF ~cx!n

12cx
1

~cxn2e1/4!n

12cxn2e1/4G
,x

~cx!n1~cxn2e1/4!n

12cxn2e1/4
<x

„cx~n2e1/411!…n

12cxn2e1/4
<x

„cxn2~e1/41 1
4!…

n

12cxn2e1/4
. ~5.17!

h

We turn to optimum truncation. Since the leading order term inMz is z, which is of orderx,
it is useful to divideR by x, so that the resulting quantityR/x can be compared to one. Note also
thatR/x depends onc andx only through the productcx, which we denote byx̄ . The question of
optimum truncation can now be formulated as follows: givenx̄ , find the value ofn, denoted by
nopt, where the estimate forR/x reaches its minimum and find the value of the minimum.

Equation~5.14! is too complicated to carry out the required calculations analytically. We thus
set

1

12 x̄ n2e1/4
,C2 ~5.18!
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for someC2PR1. We do not yet specify the value ofC2. It should, however, satisfy the following
two requirements: first, that it be as small as possible, so as to keep the value of the estimate at
n5nopt as small as possible; and second, that it be sufficiently large so that inequality~5.18! is
satisfied atn5nopt ~and hence for alln<nopt!. We then look for the minimum of the expression
C2( x̄n

2C1)
n. Consideringn as real and differentiating with respect to it, the minimum is easily

found atñ 5 (1/e)(1/Ax̄C1), so that we can take

nopt5 intF1e 1

Ax̄C1
G , ~5.19!

where int@•# stands for the integer part. Note that for a given value ofx̄, nopt is never larger than
the value ofn for which the givenx̄ could be outside of the domain of analyticity ofR(u,z), cf.
Eq. ~5.13!. To obtain an explicit estimate forR(nopt,z)/x we evaluateC2( x̄n

2C1)
n at n5ñ21.

The result is an exponentially small bound for the remainder:

R~nopt,z!

x
,C2e

2 expS 2
2

eAx̄C1
D . ~5.20!

Sinceñ>nopt, the constantC2 can be determined by substituting the expression forñ into Eq.
~5.18!, which yields

C2.
C1e

2

C1e
22e1/4

51.12 7751... . ~5.21!

The proximity of this limit to 1 indicates that both the value ofnopt and the estimate for
R~nopt,z!/x are determined primarily by the leading term in Eq.~5.14!, (x̄n2C1)

n.

VI. SUMMARY

An upper bound on the norm of vector fieldsLn which are computed by requiring thatMz
agrees order by order with a given asymptotic power series is given in Theorem 4.1, Eqs.~4.15!
and ~4.16!. A lower bound on the domain of analyticity ofMnz is given in Theorem 5.1, Eq.
~5.1!.

Even whenD is finite, the estimate forhn grows with order more rapidly than an exponential
function and the estimate forDn goes to zero asn→`. We remarked that one can expect these
statements to hold true even in the exact computation ofMnz. The estimates derived can be used
to optimize the bound for the difference betweenMnz andP(z) as a function ofn for a given
value ofizi . The result is an exponentially small bound for the remainder, given in Eq.~5.20!. It
seems well worthwhile to explore next whether the procedure developed in the preceding sections
can be adapted to Hamiltonian normal form calculations and used to strengthen the estimates of
the type given in Ref. 6 for the norm of generating polynomials and the remainders. One can also
examine the bound that the present results place on the norms of the vector fields in the transfor-
mationM, whenM is computed from a single Lie transformation specified by a vector field
analytic at the origin~a version of the Zassenhaus formula!. Good estimates for the power series
derived from the action of the given Lie transformation on a pointz are necessary to study this
question.~Provided that the analytic vector field is multiplied by a sufficiently small parameter,
such a power series is convergent, as given by standard theorems on ordinary differential equa-
tions.!
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APPENDIX: PROOF OF LEMMA 3.1

We first prove the relation~3.6! by induction ons. For s50, m( l ,0)5 l , ctk(F,0)5 f tk
( l ), and

B( l ,0)5f l . Therefore~3.6! reduces to inequality~3.4!. For s51 we have

LnFk
~ l !~z!5(

j51

d

gj
~n!

]

]zj
(
u i u5 l

f ik
~ l !zi5(

j51

d

(
ur u5n

(
u i u5 l

ar j
~n! f ik

~ l !i jz1
i11r1•••zj

i j1r j21
•••zd

id1r d,

~A1!

which yields

max
k

S (
utu5m~ l ,1!

uctk~F,1!u D<max
k

S (
j51

d

(
ur u5n

(
u i u5 l

uar j
~n!uu f ik

~ l !u i j D
<an max

k
S (
j51

d

(
u i u5 l

u f ik
~ l !u i j D 5anl max

k
S (

u i u5 l
u f ik

~ l !u D<anlf l5B~ l ,1!,

~A2!

as needed. Next, assume that~3.6! holds for a fixeds. Then

Ln
s11Fk

~ l !~z!5(
j51

d

gj
~n!

]

]zj
(

utu5m~ l ,s!
ctk~F,s!zt

5(
j51

d

(
ur u5n

(
utu5m~ l ,s!

ar j
~n!ctk~F,s!t jz1

t11r1•••zj
t j1r j21

•••zd
td1r d, ~A3!

and we have

max
k

S (
utu5m~ l ,s11!

uctk~F,s11!u D<max
k

S (
j51

d

(
ur u5n

(
utu5m~ l ,s!

uar j
~n!uuctk~F,s!ut j D

<an max
k

S (
j51

d

(
utu5m~ l ,s!

uctk~F,s!ut j D
5anm~ l ,s!max

k
S (

utu5m~ l ,s!
uctk~F,s!u D

<anm~ l ,s!B~ l ,s!5B~ l ,s11!. ~A4!

The last inequality uses the induction assumption, whereas the last equality follows from the
recursion relation satisfied byB. This completes the proof of relation~3.6!.

It is now straightforward to establish~3.7!. We proceed again by induction ons. For s50 we
use inequality~3.4! and the special values ofm, c, andB given at the beginning of the Appendix
to see that~3.7! holds. For the cases51, on the other hand, we use relations~A1! and ~A2!
~second inequality! to obtain
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iLnF ~ l !~z!i5I(
j51

d

(
ur u5n

(
u i u5 l

ar j
~n! f ik

~ l !i jz1
i11r1•••zj

i j1r j21
•••zd

id1r dI
<max

k
S (
j51

d

(
ur u5n

(
u i u5 l

uar j
~n!uu f ik

~ l !u i j D xn1 l21<B~ l ,1!xm~ l ,1!. ~A5!

The first inequality is evident from the definition of the norm and for the last relation we have
relied on the fact thatm( l ,1)5n1 l21. Assume now that~3.7! holds for a fixeds. With the help
of relations~A3! and ~A4! ~second inequality! we obtain

iLn
s11F ~ l !~z!i5I(

j51

d

(
ur u5n

(
utu5m~ l ,s!

ar j
~n!ctk~F,s!t jz1

t11r1•••zj
t j1r j21

•••zd
td1r dI

<max
k

S (
j51

d

(
ur u5n

(
utu5m~ l ,s!

uar j
~n!uuctk~F,s!ut j D xm~ l ,s!1n21<B~ l ,s11!xm~ l ,s11!.

~A6!

We have made use of the recursion relation form,m( l ,s11)5m( l ,s)1n21. This completes the
proof of inequality~3.7!.

1A. J. Dragt and J. M. Finn, J. Math. Phys.17, 2215~1976!.
2A. J. Dragt and J. M. Finn, J. Math. Phys.20, 2649~1979!.
3S. Steinberg, SIAM J. Math. Anal.15, 108 ~1984!.
4F. Fasso` and G. Benettin, J. Appl. Math. Phys.~ZAMP! 40, 307 ~1989!.
5F. Fasso`, J. Appl. Math. Phys.~ZAMP! 41, 843 ~1990!.
6P. V. Koseleff,Formal Calculus for Lie Methods in Hamiltonian Mechanics, Doctoral Thesis, Ecole Polytechnique, Paris
~1993! ~in French!.

7I. Gjaja, J. Math. Phys.35, 1361~1994!.
8See, for example, G. E. O. Giacaglia,Perturbation Methods in Non-Linear Systems~Springer-Verlag, New York, 1972!;
J. R. Cary, Phys. Rep.79, 129 ~1981!; A. J. Dragt, inPhysics of High Energy Accelerators, AIP Conf. Proc. No. 84,
edited by R. A. Carrigan, F. R. Huson, and M. Month~AIP, New York, 1982!, p. 147; J. M. Finn, inLocal and Global
Methods of Nonlinear Dynamics, Lecture Notes in Physics 252, edited by A. W. Sa´enz, W. W. Zachary, and R. Cawley
~Springer-Verlag, New York, 1986!, p. 63; and P. Lochak and C. Meunier,Multiphase Averaging for Classical Systems
~Springer-Verlag, New York, 1988!, Appendix 7.
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10W. Gröbner and F. Cap, Report, Office of Naval Research contract N62558-2992~1962!.
11See, for example, J. Riordan,An Introduction to Combinatorial Analysis~Wiley, New York, 1958!.

2471Ivan Gjaja: Computation of Lie transformations

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Geometric interpretation of fractal symmetries
of a finite linear chain
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The recipe of Weyl has been applied to two crystallographically distinct realiza-
tions of a regular orbit of the cyclic group of orderN: the linear chain and the
n-dimensional toroidal crystal, withn being the number of different prime integers
dividingN, and Sylow factors ofN being the Born–von Ka´rmán periods. It follows
that some fractallike symmetries of the linear chain are isomorphic images of
multidimensional inversions, which are purely geometric operators. ©1996
American Institute of Physics.@S0022-2488~96!00505-6#

I. INTRODUCTION

The structure of a finite linear chain has been studied recently1–3 using the method of a
general recipe of Weyl.4,5 The linear chain consisting ofN nodes constitutes a regular orbit of the
cyclic groupCN . This group is the translation group of the chain, and serves as the ‘‘obvious’’
symmetry group of the recipe. Then the ‘‘hidden’’ symmetry group is AutCN , which involves,
according to the recipe, all intrinsic properties of the structure of the linear chain. It was argued in
Refs. 1 and 2 that the only manifestly geometric operation enclosed within the hidden symmetry
group AutCN is, for N.2, the one-dimensional inversion automorphismt21, which reverses the
cyclic order of the chain. All other automorphismstr , with r mutually prime withN, are self-
similar scalings such thatt r( j )5r j modN for each nodej of the chain, and admit therefore an
interpretation of fractallike symmetries which preserve the structure of the linear chain, but defi-
nitely destroy the geometry and ordering of nodes.

In the present paper we aim to extend this investigation of the structure of the finite linear
chain by proposing another crystallographic realization of a regular orbit of the obvious symmetry
groupCN . In our proposal, the set which constitutes an orbit of the free action of the cyclic group
CN can be viewed as ann-dimensional configuration which forms a toroidal crystal with periodic
boundary conditions. The principal axes of thisn-dimensional crystal are labelled by elementsp
of the soclep of N, i.e. of the set of all those prime integers which are divisors ofN. The
dimensionn5upu is equal to the number of elements of the soclep, and the Born–van Ka´rmán
period in the pth direction coincides with the orderNp of the maximal Sylow subgroup
CNp

vCN .
We admit, therefore, another structural realization of a regular orbit of the cyclic groupCN .

Clearly, both realizations, the linear ring and then-dimensional toroidal crystal, exhibit com-
pletely different crystallographic meaning. For example, the coordination number~i.e., the number
of nearest neighbors of a node of a crystal! for the linear ring is clearly 2, whereas for the toroidal
crystal it is 2n @or 2~n21! when 2Pp andN252#. Nevertheless, there are also some structural
similarities between these two realizations which emerge from the hidden symmetry group. In this
paper we aim to point out such similarities, by a systematic use of the recipe of Weyl. In practice,
it involves an analysis of those one-to-one mappings between these two realizations, which are
consistent with the hidden symmetry group AutCN . Some results of our analysis are, in fact, finite
analogies of the theory of incommensurate phases based on projections from multidimensional
crystals.6,7 The associated mathematics is borrowed from number theory.8
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We point out that the multidimensional presentation of a regular orbit of the cyclic groupCN

admits much more geometric interpretation for hidden symmetry operations than the case of a
linear chain, since each dimension yields a one-dimensional inversion.

The paper is organized as follows. In Sec. II we formulate briefly the main definitions and
results for the one-dimensional presentation of the regular orbit of the cyclic groupCN in terms of
the recipe of Weyl. Section III is devoted to discussion of geometry and hidden symmetries of the
toroidal crystal. In Sec. IV we present transformations between these two presentations, and in
Sec. V we provide an example. The conclusions constitute Sec. VI.

II. THE LINEAR CHAIN

Let

Ñ5:$ j u j51,2,...,N% ~1!

be the set of nodes of the linear chain and

CN5$Ñ,1modN% ~2!

be the cyclic group of orderN, with the additive notation. Within the terminology of the recipe of
Weyl,1–5 the setÑ exhibits the obvious symmetry, given by the groupCN . In other words, the set
Ñ is equipped with ordering of the groupCN , that is, with the cyclic order. This ordering is
realized by a bijectionk:Ñ→CN , which is called a map of the groupCN on the setÑ. In
particular, a pramapk0:Ñ→CN can be chosen by identifying the setÑ with the group manifold of
CN , i.e., by putting

k0~ j !5 jPCN , jPÑ. ~3!

The pramapk0 defines canonically the actionP:CN3Ñ→Ñ of the groupCN on the linear ringÑ
by

P~ j !5k0
21+Rreg~ j !+k0 , ~4!

where

Rreg~ j !5S j 8
~ j1 j 8!modND , j 8PCN , ~5!

defines, forjPCN , the left regular representationRreg:CN3CN→CN of the groupCN acting on
itself. Each permutationP( j ), jPCN , realizes the obvious~translational! symmetry of the chain
Ñ.

Clearly, the atlas of all mapsk:Ñ→CN which are compatible with the actionP, i.e., for which
the following diagram of sets and bijections

Ñ ——→
P~ j !

Ñ

k↓ ↓k

CN ——→
Rreg~ j !

CN

, jPCN , ~6!

is commutative, is given by

Atlk0~Ñ,CN!5$k5R8reg~ j !+k0u jPCN%, ~7!
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where

R8reg~ j !5S j 8
~ j 82 j !modND , j 8PCN ~8!

defines, forjPCN , the right regular representationR8reg of the groupCN on itself. The mapk
differs fromk0 in that the origin ink is translated by the elementjPCN .

The hidden symmetry of the recipe of Weyl is given by the group

Aut CN5$t r urPÑ, lcd~r ,N!51% ~9!

of all automorphisms

t r5S j
r j modND , jPCN , ~10!

of the groupCN of obvious symmetry. The symbol lcd(r ,N) in Eq. ~9! denotes the largest
common divisor of integersr andN. The multiplication in the group AutCN is specified by

t rt r 85t rr 8 modN , r ,r 8PAut CN ~11!

~we replacetr by r when convenient!.
The commutative diagram

Ñ ——→
Q~r !

Ñ

k0↓ ↓k0

CN ——→
tr CN

, rPAut CN , ~12!

defines the actionQ:Aut CN3Ñ→Ñ of the hidden symmetry group AutCN on the chainÑ. Each
permutationQ(r ),rPAut CN , of nodes ofÑ, realizes one of the ‘‘hidden’’ symmetries of the
structure of the linear chain. Equations~10! and~12! imply thatQ(r ),rPAut CN , is a fractallike
scaling by the factorr , centered at the nodej5N[0 modN5k0(N).

In general, each modular scaling transformationt r ,rÞ61, yields an essential change of the
initial cyclic order of the crystalÑ in a fractal manner. The only exceptions are elements of the
subgroup

C1h5$t1 ,tN21%vAut CN ~13!

of all geometric symmetries of the chain. The identityt1 preserves the cyclic order, and the
inversiontN215t21 changes it into the opposite one. There are no other geometric symmetries in
the case of the linear ring.

III. THE TOROIDAL CRYSTAL

We proceed to impose another crystallographic arrangement on a regular orbit of the cyclic
groupCN . To this aim, we exploit the arithmetic structure of the integerN. Let

p5:$pPÑu lcd~p,N!5p,p prime% ~14!

be the socle ofN, i.e., the set of all prime divisors ofN(p.1). Then the arithmetic structure ofN
is given by the unique decomposition
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N5 )
pPp

Np , ~15!

where

Np5pap, pPp, ~16!

andap are arithmetic exponents. Accordingly, the Sylow decomposition of the obvious symmetry
group reads

CN> )
pPp

^CNp
5:A, ~17!

where we introduce a special symbolA for the cyclic groupCN presented in the form~17! of the
direct product.

Equation ~17! admits an interpretation of the direct product of cyclic groupsCNp
as the

translation group of a new finite crystalline configuration of nodes in ann-dimensional toroid,
with

n5upu ~18!

being the number of elements in the soclep, and eachpPp corresponding to one principal
direction with the Born–van Ka´rmán periodNp . Thus let

Ñp5$ j p51,2,...,pap%, pPp, ~19!

be a regular orbit of the Sylow subgroupCNp
vCN , and n0

p :Ñp→CNp
be the pramap which

identifies the setÑp with the groupCNp
in the same way as in Eq.~3! for Ñ andCN . Thus the

pramapn0
p constitutes the ordering of the groupCNp

on the setÑp , i.e.,

n0
p~ j p!5 j pPCNp

, j pPÑp . ~20!

Moreover, let

Ñ~n!5:)
pPp

3Ñp ~21!

be the Cartesian product of setsÑp ,pPp, referred hereafter to as the toroidal crystal. The setÑ(n)

is equipped with the ordering of the groupA ~isomorphic to the cyclic groupCN! by means of the
pramapn0:Ñ

(n)→A, defined by

n05 )
pPp

3n0
p , ~22!

in accordance with the Cartesian product structure ofÑ(n). This ordering defines, in fact, an
n-dimensional crystallography on the setÑ(n). We proceed to describe it in some more detail. In
the sequel, we associate the groupsA andCN with the regular orbitsÑ(n) and Ñ, respectively.

Elements of the Abelian groupA can be uniquely presented in a form of ‘‘vectors’’

j5~ j p1••• j pn!, j pPÑp , pPp, ~23!

with pointwise addition
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j ~1!1 j ~2!5„•••~ j p
~1!1 j p

~2!!modNp•••), pPp, ~24!

in the role of group multiplication inA. In particular, the vector

05:~•••Np••• !, pPp, ~25!

is the unit element ofA, i.e., the null vector, and

2 j5~•••~Np2 j p!modNp••• !, pPp, ~26!

is the ~additive! inverse of jPA. We refer herefrom to symbolsj as vectors, and to integers
j pPÑp ,pPp, as to their components.

Let

ep5:~0•••1•••0!, pPp, ~27!

be a ‘‘unit’’ vector in A, i.e., the vector with null components~05Np8 modNp8! for any p8Pp,
p8Þp, and 1 for thepth component. Then eachjPA can be uniquely presented as

j5 (
pPp

j pep . ~28!

Each set

jp5$ j5 j pepu j pPÑp%,Ñ~n!, pPp, ~29!

forms thepth one-dimensional coordinate ‘‘axis,’’ referred hereafter to as thepth equator on the
torus. It is worthwhile to observe that the ‘‘Cartesian coordinate system’’$jpupPp% on the toroi-
dal crystalÑ(n) can be defined globally, i.e., that it suffices to use only one map, e.g., the pramap
n0, to cover the whole manifoldÑ(n) consistently with this coordinate system. As a result, the
manifold resembles locally the linear structure@cf. Eq. ~28!#, but globally it exhibits the structure
of toroid @cf. Eq. ~29!#.

One of characteristics of local properties of a crystalline arrangement is the coordination
numberq, defined as the number of nearest neighbors of a node. In the case of toroidal crystal one
has

q5 H2n21, 2Pp,N252,
2n, otherwise. ~30!

The case 2Pp, N252, is distinguished since the equatorj2 consists of two nodes only, and thus
each of them has only one neighbor.

The sequence~epupPp! of unit vectors forms an analogy of the elementary Bravais cell of the
toroidal crystalÑ(n). Clearly, translations of the groupA of this cell reproduce the whole crystal.

The groupA ~as well asCN! can be looked at as a ring, with the pointwise addition~24! and
multiplication

j ~1!j ~2!5~••• j p
~1! j p

~2! modNp••• !PA, j ~1!,j ~2!PA. ~31!

Accordingly, the group AutA of hidden symmetry becomes the multiplicative group of the ringA,
i.e.,

Aut A5A*,A, ~32!

and consists of all elements of the form
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r5 (
pPp

r pep , lcd~r p ,Np!51. ~33!

The multiplicative inverse ofr is

r215 (
pPp

r p
~21!ep , ~r p

~21!r p!modNp51. ~34!

In particular the neutral element of AutA is

15 (
pPp

ep . ~35!

The notation introduced for groupsA and AutA is well adapted to determination of actions
P(n):A3Ñ(n)→Ñ(n) andQ(n):Aut A3Ñ(n)→Ñ(n) of obvious and hidden symmetry group, respec-
tively, on the toroidal crystalÑ(n). Using the pramapn0:Ñ

(n)→A, we associateP(n) andQ(n) with
the addition and multiplication in the ringA, respectively, so that

P~n!~ j !5S j 8
j1 j 8 D , j 8PÑ~n!,jPA, ~36!

and

Q~n!~r !5S jrj D , jPÑ~n!,rPAut A. ~37!

The actionP(n) establishes the ordering of the groupA on the setÑ(n). Clearly, this action is
abstractly isomorphic withP:CN3Ñ→Ñ related to the linear chain, but the two realizations,Ñ
andÑ(n), are crystallographically different. In particular, the ordering in each equatorjp ,pPp, is
nowadays borrowed from the ringZ of integers, adapted to the value odNp . Thus, e.g., an integer
lPZ can have completely different meanings, namelyl modNp , within each equatorjp ,pPp. It
follows that vectorsj and l j in the toroidal crystalÑ(n) can have, in general, different crystallo-
graphic directions. Also, the cyclic order in each equatorjp is only loosely related to that in the
linear chainÑ.

The actionQ(n) realizes the hidden symmetry of the toroidal crystalÑ(n). The actual arrange-
ment of nodes admits much more geometric symmetry operations than in the case of the linear
chain Ñ. Namely, each automorphismi(p)PAut A, defined by its components as

i p8
~p!

5 H 21 for p85p,
1 otherwise, ~38!

corresponds to the one-dimensional inversion in thepth direction. It reverses thepth component
j p of each vectorjPÑ(n), leaving other components unchanged, i.e.,

ipj5 j22 j pep , pPp. ~39!

In the particular case when 2Pp andN252, the automorphismi~2! becomes identity onÑ(n). In all
other cases, it is a nontrivial symmetry operation.

All automorphismsi(p) generate the group

E5^ i~p!upPp&vAut A, ~40!
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which is the group of all geometric automorphisms of the toroidal crystalÑ(n). It is an Abelian
elementary group

E5$ i$s%us,p% ~41!

with elements labeled by all subsets of the soclep, and multiplication law

i$s%i$s8%5 i$~søs8!\~sùs8!%. ~42!

The order of this group is

uEu5 H2n for 2¹p, or N2.2,
2n21 for N252. ~43!

All other automorphismsrPAut A change the ordering of the toroidal crystal in an essential,
fractallike manner.

IV. PROJECTIONS FROM THE TOROIDAL CRYSTAL ONTO THE LINEAR CHAIN

In discussion of our two realizations of a regular orbit of the cyclic groupCN , we have
considered, in fact, two essentially different arrangements. The main common feature is that both
emerge from the same abstract group and form its regular orbits. Moreover, both realizations
borrow—through the pramapsk0:Ñ→CN and n0:Ñ

(n)→A—the natural order of the ringZ of
integers, but they do it in definitely distinct ways! In the linear chainÑ this order is taken globally
and yields a cyclic arrangement of the whole set, whereas in the toroidal crystalÑ(n) the cyclic
arrangement is prepared for each Sylow subgroupCNp

, pPp, separately. Thus the same group
manifold is associated with two different orderings. In this section we proceed to discuss projec-
tionsm:Ñ(n)→Ñ, which are consistent with the orderings imposed on the setsÑ(n) and Ñ by the
groupsA andCN , respectively.

We start with the set Iso(A,CN) of all isomorphismsb:A→CN between the groups of obvious
symmetry. This set can be looked at as an orbit of the right regular representation
J8:Aut A3Iso(A,CN)→Iso(A,CN) of the group AutA of hidden symmetry, in accordance with

J~r !5S b
b+r ~21!D , bPIso~A,CN!,rPAut A. ~44!

The same set constitutes also an orbit of the left regular representation
U:Aut CN3Iso(A,CN)→Iso(A,CN) of the other hidden symmetry group AutCN , by virtue of

U~r !5S b
r +b D , bPIso~A,CN!,rPAut CN . ~45!

ActionsJ andU, together with a ‘‘praisomorphism’’b0 ~which can be chosen arbitrarily!, equip
the set Iso(A,CN) with group mapsr:Iso(A,CN)→Aut A and s:Iso(A,CN)→Aut CN , respec-
tively, by means of formulas

r~b!5r for b5b0+r
21,bPIso~A,CN!, ~46!

and

s~b!5r for b5t r+b0 ,bPIso~A,CN!. ~47!
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Mutual independence of isomorphic groupsA andCN of obvious symmetry is reflected here in
arbitrariness of praisomorphismb0. Let us chooseb0 in a way which preserves the Cartesian
product structure~17! of the groupA. Each Sylow subgroup

CNp
5$ j pepu j pPÑp%vA ~48!

has a natural embedding~monomorphism! hp :CNp
→CN into CN , given by

hp~ j pep!5 j pN̄p , j pPÑp , ~49!

where

Ñp5N/Np , pPp, ~50!

is the divisor ofN, complementary toNp . Clearly, each monomorphismhp , pPp, preserves the
cyclic order of the Sylow subgroupCNp

, borrowed from the ringZ of integers. All these mono-
morphismshp , pPp, define uniquely the isomorphismb0:A→CN , given by

b0~ j !5 (
pPp

j pN̄p modN, jPA. ~51!

This isomorphism preserves the Cartesian product structure of the groupA, and cyclic orders for
each factorCNp

. It reproduces therefore the crystallography of the toroidal crystalÑ(n).
Such a choice of the praisomorphismb0 is well motivated from the point of view of the

arrangement of the toroidal crystal, but, still, it is not canonical from the point of view of the more
abstract ring structure of the groupA~EndA>A! and the groupCN~EndCN>CN!. It is a well-
known fact from number theory that there is a unique ring isomorphismb8:A→CN , which is
determined by the condition of preserving the multiplicative unit of the ring, which reads

b8~1!51. ~52!

Now, Eq. ~44! implies that there exists such unique automorphism«PA* that

b85b0+«~21!, ~53!

and

(
pPp

«pN̄p modN51, ~54!

where«p are components of the automorphism«; in particular we have

lcd~«p ,Np!51, pPp. ~55!

The canonical isomorphismb8 is thus given explicitly by

b8~ j !5 (
pPp

j p«pN̄p modN. ~56!

The rings EndA>A and EndCN>CN are thus isomorphic, but mutually ‘‘deformed’’. The de-
formation is described in terms of the automorphism«. It is also worthwhile to notice that the
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Bravais cell~epupPp! of the toroidal crystalÑ(n) forms the unique~up to ordering! set of or-
thogonal idempotents of the ringA, whereas the corresponding set for the ringCN consists of
elements

b8~ep!5«pNp , pPp. ~57!

The orthogonality of these idempotents is implied by

«pN̄p«p8N̄p85«pN̄pdpp8 , p,p8Pp, ~58!

sinceN̄pN̄p8mod N50 for pÞp8, and the normalization is already assured by Eq.~54!.
The projectionm:Ñ(n)→Ñ from the multidimensional toroidÑ(n) onto the linear chainÑ

which is consistent with orderings of groupsA andCN on Ñ(n) and Ñ, respectively, can now be
determined as follows. Letn:Ñ(n)→A andk:Ñ→CN be maps which impose appropriate orderings,
e.g.,n P Atln0„Ñ

(n),A…,k P Atlk0(Ñ,CN), and letbPIso(A,CN). Then the projectionm, consistent
with the triad~n,k,b!, is uniquely determined by the requirement that the following diagram

Ñ~n!

——→
m

Ñ

n↓ ↓k

A
——→

b
CN

, ~59!

should be commutative, or, formally, that

m5k21+b+n. ~60!

Mappingsm, given by Eq.~60!, constitute a finite analogy of incommensurate phases as
projections from multidimensional crystals. Let us choose, for simplicity, the natural orderingsn0
andk0, and letb5b0 be specified by Eq.~51!. Then the regularly periodic, finiten-dimensional
crystalÑ(n) is projected by means ofm onto the one-dimensional crystalÑ. Clearly, each dimen-
sion pPp yields a one-dimensional ‘‘sublattice’’N̄p,2N̄p ,...,NpN̄p of Np nodes, with the lattice
constantN̄p . It is well known ‘‘from the beginning’’ that various lattice constants are mutually
commensurate, but the common unit is just 1, which can be readily seen small when comparing to
N̄p for N being large enough and having a rich arithmetic structure~14!–~16!. Lattice constants
N̄p , pPp, can be seen as ‘‘macroscopically’’ incommensurate, just as incommensurate phases
really observed in laboratories, which cannot be experimentally distinguished from ‘‘weakly com-
mensurate’’ structures, with large sizes of Bravais cells.

The projection determined by the isomorphismb0 schuffles the sites belonging to different
dimensionsp, but faithfully reproduces the cyclic order corresponding to eachp. The situation
changes drastically after replacingb0 by the canonical isomorphismb8, given by Eqs.~56! and
~57!. Now, due to the modular magnification of the lattice constantN̄p by the factor«p.1 @cf. Eq.
~57!#, the projectionm changes the cyclic order ofÑp in a fractallike manner. For example, nearest
neighbors in the toroidal crystalÑ(n) become inÑ more separated spatially than the neighbors
from the«p-coordination sphere. Thus, the canonical isomorphismb8 involves much more essen-
tial structural reconstruction of the toroidal crystal than the noncanonical but geometrically more
natural isomorphismb0.

V. AN EXAMPLE

We demonstrate behavior of hidden symmetries of a toroidal crystal in an example of
N536522+32. Our socle is thusp5$2,3%, and the toroidal crystal is two-dimensional, withN254
and N359 being the Born–von Ka´rmán periods in the directione2 and e3, respectively. The
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hidden symmetry group thus consists ofuAut C36u5uAut C4uuAut C9u52+6512 elements. Actions
P(n):A3Ñ(n)→Ñ(n) and Q(n):A3Ñ(n)→Ñ(n) are examplified in Fig. 1 by permutations
P(n)~4e219e3!, P

(n)~e212e3!, Q
(n)~3e2!, andQ

(n)~2e3!, representing, respectively, the pramapn0,
the translation 4e219e3, the one-dimensional inversion along the axise2, and the fractallike
operationr52e3.

The subgroupE of geometric symmetry is

E5$1,i253e21e3 ,i35e218e3 ,i5 i2i353e218e3%. ~61!

The projectionb0, which preserves a bit of crystallography of the toroidal crystal, is given in this
case by the formula

b0~ j !5~9 j 214 j 3!mod 36, ~62!

and presented in Fig. 2~a!. We observe thatb0 preserves the cyclic order of each equator of the
toroidal crystal~i.e., the sequence 9,18,27,36 and 4,8,12,...,36 along unit vectorse2 and e3, re-
spectively!, so that the embedding of each factorCNp

in C36 consists in rescaling its members by
the factorN̄p ~59 and 4 forp52 and 3, respectively!. However,b0 ceases to be an isomorphism
of hidden symmetry groups! We haveb0~1!513Þ1, so that already a multiplicative unit is de-
formed. The subgroupEvAut A of geometric symmetry is mapped underb0 onto the set
$b0~1!513,b0~i2!531,b0~i3!55,b0~i!523%, which is a subset of AutC36, but it does not form any
group. The groupC36 in its natural order is reproduced from the toroidal crystal when starting
from j5e217e35b0

21~1! with the stepDj5e217e3.
The deformation vector for this case is

«5e217e3 , ~63!

FIG. 1. ActionsP(n):A3Ñ(n)→Ñ(n) andQ(n):A3 Ñ(n)→Ñ(n) of the groupA on the toroidal crystalÑ(n) for N536: ~a!
the identity permutationP(n)~4e219e3!, ~b! the translationP(n)~e212e3!, ~c! the one-dimensional inversion along thee2
axisQ(n)~3e2!, and~d! the fractallike symmetryQ(n)~2e3!.
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and the canonical isomorphismb8 is given by the formula

b8~ j !5~9 j 2128j 3!mod 36 ~64!

and shown in Fig. 2~b!. Its restrictionb8uA* to the hidden symmetry groupA* is also an isomor-
phism of this group onto AutC36. In particular,b8~1!51, and the subgroupE of geometric
symmetries of the toroidal crystal is mapped onto the subgroup

$b8~1!51,b8~ i2!519,b8~ i3!517,b8~ i!535%vAut C36. ~65!

From the other side, however, this projection changes the crystallographic arrangement of nodes
of the toroidal crystal: e.g., it preserves the cyclic order for the factorC4, and reverses it for the
factorC9 @cf. Fig. 2~b!#.

VI. FINAL REMARKS AND CONCLUSIONS

We have examined an application of the general recipe of Weyl to a special case of a regular
orbit of the cyclic groupCN , by discussion of two realizations of such an orbit: the linear chain
and then-dimensional toroidal crystal, withn being the number of elements of the socle ofN.
These two realizations differ appreciably by their crystallographic structure, but share the obvious
and hidden symmetry groups of the recipe of Weyl. It follows from our discussion that the
meaning of hidden symmetry operations changes substantially from one realization to another. In
particular, we have demonstrated that fractallike symmetry operations of the linear chain are
isomorphic images of purely geometric symmetries of then-dimensional toroidal crystal. Geo-
metric origin of thesen-dimensional inversions is obscured due to the fact that the two realizations
are related to different orderings of the obvious symmetry group, within the same group structure.
The relation between these two orderings is expressed therefore in terms of a special automor-
phism« belonging to the hidden symmetry group, and describing the deformation of orthogonal
idempotents of rings associated with the two crystallographic arrangements.

FIG. 2. Projections~a! b0 and~b! b8 of the two-dimensional toroidal crystal onto the linear chain forN536. The number
j in the rectangle is the value ofb0~j ! andb8~j ! for ~a! and~b!, respectively. The natural order of the ringZ36 is achieved
when starting fromj51 along the directione217e3 ande21e3 for b0 andb8, respectively.
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We define and study noncommutative generalizations of submanifolds and quotient
manifolds using the derivation-based differential calculus introduced by M.
Dubois-Violette and P. Michor. We give examples to illustrate these definitions.
© 1996 American Institute of Physics.@S0022-2488~96!00705-9#

I. INTRODUCTION

Various noncommutative generalizations of differential forms have been proposed as well as
generalizations of vector bundles and connections. What is still missing is the concept of a
submanifold and of a quotient manifold, that is, how the differential structure of a given algebra
must be related to the differential structure of a subalgebra~‘‘quotient manifold’’! or a quotient
algebra~‘‘submanifold’’!. In this paper, we propose a definition of a noncommutative submanifold
and of a noncommutative quotient manifold within the context of the derivation-based differential
calculus first introduced by M. Dubois-Violette,1 and completed2,3 with P. Michor.

In the first section, we recall various definitions related to this differential calculus. In the
second section, we recall the definition of Hochschild cohomology and other cohomologies which
will be used later. Submanifolds and quotient manifolds are defined respectively in Secs. IV and
V.

II. NONCOMMUTATIVE DIFFERENTIAL STRUCTURES

In noncommutative geometry, the algebra of smooth functions on a manifold is replaced by a
noncommutative algebra~see, for example, Refs. 4 and 5!. Geometric objects are first expressed in
terms of the algebra of functions and then they can be generalized to the noncommutative case. In
this section, we recall the definition of differential forms, central bimodules, and connections as
they are given in Refs. 1–3.

A. Noncommutative differential forms

LetA denote an associative algebra with unit. It is then the generalization of the algebra of
smooth functions on a compact manifold. The center of the algebra will be denoted byZ~A!. The
differential forms we wish to introduce are based on derivations, the algebraic generalizations of
vector fields on a manifold:

Der~A!5$X:A→A/X~ab!1X~a!b1aX~b!%;

Der~A! is naturally aZ~A!-module and a Lie algebra.
The two noncommutative generalizations of the graded differential algebra of differential

forms which we shall need1,2 are constructed as follows. LetCZ(A)„Der(A),A… be the graded
algebra of antisymmetricZ~A!-multilinear mappings from Der~A! toA. Notice that this alge-
bra is not graded commutative. In degree 0 we takeCZ(A)

0
„Der(A),A… 5 A. We introduce a

differentiald by the Koszul formula:

a!Electronic mail address: masson@qcd.th.u-psud.fr
b!Laboratoire associe´ au CNRS, URA-D0063.
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dv~X1 ,...,Xn11!5 (
i51

n11

~21! i11Xiv~X1 ,... .

i
V
...,Xn11!

1 (
1< i, j<n11

~21! i1 jv~@Xi , Xj #,... .

i
V
... .

j
V
...,Xn11!,

for anyv P CZ(A)
n

„Der(A),A… and any set of derivationsXi .
Now, we can introduce the first generalization of differential forms overA. We define

VDer~A! to be the smallest differential graded subalgebra of the algebraCZ(A)„Der(A),A…

which containsA. Every elementv P VDer
n (A) can be written as a finite sum of elements of the

type a0da1•••dan , wheredaPVDer
1 ~A! is the one-formX°XaPA, and where the product is

that ofCZ(A)„Der(A),A….
The second differential graded algebra of forms we shall use is the algebra

CZ(A)„Der(A),A… itself, denoted byVI Der~A!. We refer the reader to Ref. 3 for the relation
betweenVDer~A!, Der~A! andVI Der~A! from the point of view of duality.

There is a canonical Cartan operationi X of the Lie algebra Der~A! on VDer~A! and
VI Der~A!.1 For anyXPDer~A!, one defines the antiderivation of degree21

i X :VDer
n ~A!→VDer

n21~A!

by

~ i Xv!~X1 ,...,Xn21!5v~X,X1 ,...,Xn21!,

with i Xa50 for anyaPA5VDer
0 ~A!. It follows thatLX5 i Xd1diX is a derivation of degree 0 on

VDer~A!.

B. Central bimodules and connections

In ordinary differential geometry, vector bundles of finite rank can be considered from an
algebraic point of view through their space of sections. In fact this space is a finite projective
module over the algebra of smooth functions. In noncommutative geometry, the generalization of
a vector bundle will then be such a module over the algebra. However, sinceA is noncommuta-
tive this can be a right module, or a bimodule.

In Ref. 2 it was proposed that this generalization should at least have the structure of a central
bimodule. We recall that a central bimoduleM is a bimodule overA and which is also a module
over the centerZ~A! ofA in the commutative sense. That is, for anyzPZ~A! andmPM, one
haszm5mz.

It is then easy to introduce the notion of a connection on a central bimodule. A connection on
M is a linear mapping“ from Der~A! into the linear endomorphisms ofM such that

“zXm5z“Xm, “X~amb!5~Xa!mb1a~“Xm!b1am~Xb!

for anyXPDer~A!, zPZ~A!, a,bPA, andmPM.
The curvature of this connection is defined by the usual formula

R~X,Y!5“X“Y2“Y“X2“ @X, Y#

for anyX,YPDer~A!. HereR(X,Y) is anA-bimodule endomorphism ofM, antisymmetric and
Z~A!-linear inX,Y. We refer the reader to Ref. 3 for more properties on these connections.
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III. HOCHSCHILD COHOMOLOGY AND RELATED COHOMOLOGIES

In this section we introduce a class of subcomplexes of the Hochschild complex of an asso-
ciative algebra, and their cohomology. These cohomologies, in degree 1, will be useful in the next
section.

A. Hochschild cohomology

We recall the definition of the ordinary Hochschild cohomology. LetA be an associative
algebra with unit overC, andM a bimodule overA.

We define the complexC~A;M! as follows:Cn~A;M! is the linear space ofC-linear
mappings from A^

n
to M. In degree 0, we set C0~A;M!5M. We set

C~A;M!5%n>0C
n~A;M!. Then we introduce the Hochschild differentiald on the space

C~A;M! by the formula

~d f !~a1^ ••• ^an11!5a1f ~a2^ ••• ^an11!1(
i51

n

~21! i f ~a1^ ••• ^aiai11^ ••• ^an11!

1~21!n11f ~a1^ ••• ^an!an11

for any fPCn~A;M!. BecauseA is an associative algebra, one hasd250. The cohomology of
this differential complex is denoted byH~A;M!. It is the Hochschild cohomology ofA with
values inM.

The bimodule of interest for our purpose isA itself. In this case, the complexC~A;A! is an
associative algebra~see Refs. 6 and 7 and references therein! andH~A;A! inherits a structure of
graded commutative algebra.

Let us consider now the previous case withn51. ThenZ1~A;A!5Im dùC1~A;A! is the
Lie algebra Der~A! of derivations ofA, andB1~A;A!5Ker dùC1~A;A! is the Lie subalgebra
Int~A! of Der~A! of inner derivations ofA. This is an ideal of Der~A!, soH1~A;A! is a Lie
algebra, denoted Out~A!.

B. Relative Hochschild cohomology

We follow here the exposition in Ref. 6~see also Ref. 7!. Let S denote a subalgebra ofA,
andM a bimodule overA. The complexC~A,S ;M! is defined by

C0~A,S ;M!5MS 5$mPM/sm5ms;sPS %

andCn~A,S ;M! is the linear space ofn-linear mappingsf :A^•••^A→M such that

f ~sa1^ ••• ^an!5s f~a1^ ••• ^an!, f ~a1^ ••• ^ans!5 f ~a1^ ••• ^an!s,

f ~a1^ ••• ^ais^ai11^ ••• ^an!5 f ~a1^ ••• ^ai ^sai11^ ••• ^an!

for anyaiPA andsPS . Then f is aS -bimodule homomorphismA^S •••^SA→M.
The Hochschild differentiald mapsCn~A,S ;M! into Cn11~A,S ;M!, and then defines a

cohomologyH~A,S ;M!. This is the relative Hochschild cohomology ofA in M for S . This
cohomology can be calculated on a subcomplex ofC~A,S ;M!.6 Let us denote byC̄~A,S ;M!
the linear subspace ofC~A,S ;M! of elementsf such thatf vanishes when at least one of its
arguments is inS . This is the normalized complex of the relative Hochschild cohomology. These
two complexes have the same cohomology.

Let us now consider the case whereS 5Z~A!. Then the relative Hochschild cohomology is
well adapted to study central bimodules. In degree 0, one hasC0

„A,Z~A!;M…5M for M a
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central bimodule. In higher degrees, one can remark thatA ^ Z(A)••• ^ Z(A)A is a central
bimodule, and then the normalized relative complex is a set of homomorphisms of central bimo-
dules.

For future use, consider the caseS 5Z~A!, M5A, andn51. ThenZ1„A,Z~A!;A… is
exactly the Lie algebra of derivations ofA which vanish on the centerZ~A!. Remark that
B1
„A,Z~A!;A… is equal toB1~A;A!. So, one has the two left exact sequences:

0→Z1„A,Z~A!;A…→Der~A!→Der„Z~A!…,

0→H1
„A,Z~A!;A…→Out~A!→Der„Z~A!…,

which are not short exact sequences in general. The conditionH1
„A,Z~A!;A…50; which means

that any derivation ofA which vanishes onZ~A! is an inner derivation, gives the injectivity of
the canonical homomorphism Out~A!→Der„Z~A!….

C. Constrained Hochschild cohomology

Let us now introduce a new subcomplex of the Hochschild complex. As before,A is an
associative algebra with unit andM is a bimodule overA. Let C be an ideal inA andN a
sub-bimodule ofM such thatcm,mcPN for anycPC andmPM. This is equivalent to saying
thatC is included in the two side ideal

I N 5$aPA/aM,N and Ma,N %.

We define the subcomplexC~A,C ;M,N ! of C~A;M! of the mappingsf :A^•••^A→M
such thatf (a1^ ••• ^an)PN if at least one of theai is in C . In degree 0,C

0~A,C ;M,N !5M.
It is easy to see that this subcomplex is stable by the Hochschild differentiald. So one has a
cohomologyH~A,C ;M,N !. This is the constrained cohomology ofA in M by ~C ,N !. One
has then the following lemma:

Lemma III.1: In the above situation, one has a canonical mapping of graded vector spaces

H~A,C ;M,N !→H~A/C ;M/N !,

where the second cohomology is the ordinary Hochschild cohomology of the bimoduleM/N
over the algebraA/C .

Proof: Let pr:M→M/N denote the projection from the bimoduleM over A on the
bimoduleM/N over A/C , and a→[a] the projectionA→A/C . Then one haspr(am)
5[a]pr(m) for anyaPA andmPM, and a similar formula forma.

Any fPC~A,C ;M,N ! can be mapped intox( f )PC~A/C ;M/N ! by the definition

x~ f !~@a1# ^ ••• ^ @an# !5~pr+ f !~a1^ ••• ^an!.

Then it is easy to see that

pr+d5 d̄+pr,

whered is the Hochschild differential onC~A,C ;M,N ! and d̄ the Hochschild differential on
C~A/C ;M/N !. h

A simpler situation occurs when one takesM5A andN 5C . Then the subcomplex is a
subalgebra ofC~A;A!, but not an ideal. We denote it byCC ~A;A!, and its cohomology by
HC ~A;A!. In degree 1, one has obviouslyBC

1 (A;A) 5 B1(A;A). HereZC
1 (A;A) is the Lie

algebra of derivations ofA which preserveC andBC
1 (A;A) is an ideal in this Lie algebra. Then

HC
1 (A;A) is a Lie algebra.
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IV. NONCOMMUTATIVE SUBMANIFOLDS

In this section, we introduce a noncommutative generalization of the notion of submanifold of
a manifold.

A. The commutative case

We first recall the situation in the commutative case. LetM be a smooth compact manifold,
and letN,M be a closed submanifold. Any smooth functionf :M→R can be restricted toN. Thus
one has a mapping

F ~M !→
p

F ~N!,

whereF (M ) is the algebra of smooth functions onM . This mapping is in fact surjective, and
there exists a short exact sequence

0→C→F ~M !→
p

F ~N!→0,

whereC is the ideal ofF (M ) of functions vanishing onN.
A vector fieldXPG(M ) on M , which satisfiesXfPC for any fPC , can be restricted to a

vector fieldX̄ on N. Thus one has a homomorphism of Lie algebras

GC ~M !→
p

G~N!,

whereGC (M )5$XPG(M )/XC,C %. This mapping is surjective, and there exists a short exact
sequence of Lie algebras:

0→GF→GC ~M !→
p

G~N!→0,

whereGF 5$XPG(M )/XF (M ),C % is an ideal of the Lie algebraGC (M ).

B. The noncommutative case

Now we can generalize these notions to the framework of noncommutative geometry. LetA

be an associative algebra overC with unit and letC be an ideal inA. We denote byQ5A/C the
quotient algebra and byp:A→Q the quotient mapping.

We can consider the two following Lie subalgebras of Der~A!:

G C5$XPDer~A!/XC,C %

and

GA5$XPDer~A!/XA,C %.

One sees thatGA is an ideal inG C . One has a mappingG C→
p

Der(Q ) defined byp(X)p(a)
5p(Xa) for anyaPA andXPG C . The kernel of this mapping is exactlyGA .

Definition IV.1:The quotient algebraQ5A/C will be called a submanifold algebra ofA if
p is surjective. The idealC of A is called the constraint ideal forQ .

In this situation, one has the short exact sequence of Lie algebras

0→GA→G C→
p

Der~Q !→0. ~1!
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The condition of the definition imposes a strong relation between the differential structure onA

and the differential structure onQ . This strong relation is revealed in the following proposition:
Proposition IV.1:There exists a short exact sequence of graded differential algebras

0→VDer,C→VDer~A!→
p

VDer~Q !→0. ~2!

Proof: Let X̄5p(X)PDer~Q ! for anyXPG C and letā5p(a)PQ for anyaPA. Then one
has overQ

dā~X̄!5X̄ā5p~Xa!5p„da~X!….

One then extendsp in a mappingVDer
n (A)→VDer

n (Q ) by the relation

p~a0da1•••dan!5p~a0!dp~a1!•••dp~an!,

and then one has

d+p5p+d

and

i X̄+p5p+ i X .

It is easy to see thatp is surjective; so we obtain the short exact sequence~2!. h

Remark 1:In the short exact sequence~2!, one has

VDer,C
n 5$vPVDer

n ~A!/;XPG C ,i XvPVDer,C
n21 %

withVDer,C
0 5 C . For example, for anyaP C ,daP VDer,C

1 .
Remark 2:In general there are no relations betweenVI Der~A! andVI Der~Q !.
Let us now study the derivations ofQ . Any inner derivation ofA is obviously inG C . In the

quotient homomorphismG C→
p

Der(Q ), these inner derivations are mapped on inner derivations,
from the very definition ofp. It is easy to see thatp restricted to inner derivations is surjective on
inner derivations ofQ ~even ifp does not satisfy the condition of Definition IV.1, i.e.,p is not
surjective! and one hasp„ad(a)…5ad„p(a)… for anyaPA. So, the kernel ofp containsad~C !
5$ad(c)/cPC %,Der~A!.

Lemma IV.1: IfQ5A/C has only inner derivations, then the mappingG C→Der~Q ! is sur-
jective. ThenQ is a submanifold algebra.

Proof: This is a direct consequence of the previous discussion about inner derivations.h

It is now interesting to say something about the other derivations ofQ , that is, about the first
Hochschild cohomology ofQ with values in itself. One has the following lemma:

Lemma IV.2: One has a surjective homomorphism of Lie algebras

HC
1 ~A;A!→H1~Q ;Q !.

Proof: This is a direct consequence of Lemma III.1~with M5A andN 5C !, the previous
remark about inner derivations, and the surjectivity ofp from Definition IV.1. h

One can say something about the kernel of this mapping, if one imposes a supplementary
condition on the idealC .

Proposition IV.2:If the constraint idealC for the submanifold algebraQ satisfies

ad~C !5$ad~a!/aPA and @a,A#,C %.
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or, equivalently, if KerpùInt~A!5ad~C !, then one has the short exact sequence of Lie algebras

0→H1~A;C !→HC
1 ~A;A!→H1~Q ;Q !→0. ~3!

In H1~A;C !, C is considered as a bimodule overA.
Proof: The condition onC means, in fact, that one has the short exact sequence of Lie

algebras

0→B1~A;C !→BC
1 ~A;A!5B1~A;A!→B1~Q ;Q !→0.

The new information is the exactness atBC
1 (A;A). If one associates this short exact sequence

with the short exact sequence~1! written as

0→Z1~A;C !→ZC
1 ~A;A!→Z1~Q ;Q !→0,

then one obtains the exactness of~3!. h

In algebraic geometry~Ref. 8 and references therein!, one works with the commutative alge-
bra with unitA5C[X1 ,...,Xn] of complex polynomials ofn variables. The geometric objects are
considered as zero sets of polynomials. An idealC represents the set of points
V~C !5$xPCn/P(x)50;PPC %. From the point of view of the ‘‘duality’’set of points↔algebra
of functions, the set V~C ! is represented by the algebraQ5C[X1 ,...,Xn]/Rad~C !, where
Rad~C !5$PPC[X1 ,...,Xn]/'kPN PkPC % is the radical ofC . If Q admits ideals, then the set
V~C ! admits subsets. But ifQ does not have any ideal, then the setV~C ! can be considered as a
point. This is equivalent to the fact thatC is a maximal ideal inA. Notice that from the point of
view of ordinary geometry, points are the minimal sets. The only maximal ideals ofA are
generated byn polynomialsXi2ai whereaiPC. The point represented by this ideal is obviously
(ai)PCn. Notice that maximal ideals are in one-to-one correspondence with the characters ofA.
The quotient mappingA→A/C is the restriction at the set of points represented byC . If C is
maximal, the restriction of an elementPPA at C is exactly the value of this polynomial at the
point of Cn represented byC .

This correspondencepoints↔maximal idealsis also used in the theory of commutative Ba-
nach algebras and commutativeC* -algebras.9 In this context, maximal ideals are also in one-to-
one correspondence with characters. IfC is a maximal ideal in the commutative Banach algebra
with unitA, then the quotientA/C is isomorphic toC. ~The quotient mappingA→A/C is a
character!. In the theory of commutativeC* -algebras, by the Gel’fand transformation, the set of
characters is exactly the set of points on which it is possible to put a canonical topology. One says
that a point takes its values in the quotientA/C.C. So, in those two situations, points are
maximal ideals, and take their values in the fieldC.

In noncommutative geometry, an idealC of a given complex algebra with unitA can also be
interpreted as a ‘‘subspace’’ of the noncommutative ‘‘space’’ dually represented byA. This
subspace can be considered as a ‘‘submanifold’’ if the differential structure ofA/C is compatible
with the differential structure ofA. One of the compatibility conditions one can take is Definition
IV.1.

Now, if the ideal is maximal, then the quotient algebra is simple. It is then a ‘‘point,’’ in the
sense that it cannot have ‘‘proper subspaces.’’ However, considering the quotientQ5A/C , one
sees that points take their values in~a priori noncommutative! simple algebras and not in fields as
in the commutative case. There is then a residual structure of purely noncommutative origin. See
Example 5 below for applications in physics.

To any idealC inA, one can constructGA,Der~A!. If C is a maximal ideal, the quotient
of linear spaceTC5Der~A!/GA can be considered as the ‘‘tangent space’’ at the pointC in the
‘‘manifold’’ represented byA. The value of a derivationX at the ‘‘point’’ C is the image ofX by
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the quotient mapping Der~A!→TC . One can also take the value of a one-formaPV1~A! atC by
the definitionaC :TC→Q ,aC ~XC !5p+a(X) for anyXPDer~A! whose value atC is XC . This can
be generalized for anyn-form in Vn~A!.

C. Examples

Example 1:The commutative case.
In the commutative case, any smooth closed submanifold of a smooth compact manifold gives

a submanifold algebra: the algebra of smooth functions on this submanifold.
Example 2:The tensor algebra.
LetA be the free algebra with unit overC generated byn elementsx1,...,xn, with n>2.
Any derivation of A is given by n elements Pi(x1,...,xn)PA. We denote it by

D5(Pi)1< i<n. The value of this derivation on any element ofA is obtained by the Leibniz rule
and the definitionD(xi)5Pi(x1,...,xn).

If one takesC the ideal inA generated byx1, then the algebraQ is the free algebra with unit
overC generated byx2,...,xn, and one hasA5C %Q as vector spaces.

Any derivation inG C is the sum of two kinds of derivation: (Pi)1< i<n, with P
iPQ andP150

~Q is considered here as a subalgebra ofA!, and (Pi)1< i<n, with P
iPC . Any derivation inGA

is of the second kind, and the Lie algebra of derivation ofQ is the set of the first kind derivations
in G C . So the condition of the Definition IV.1 is fulfilled. ThusQ is a submanifold algebra ofA.
In this case, one hasG C5GA%Der~Q !.

As maximal ideals ofA, one has the ideals generated by then elementsxi2ai , whereaiPC.
Then the point associated to such an ideal is a point inCn, with values inC. This situation is
analogous to the situation of the polynomial algebra generated by then variablesxi , for which
there are only those maximal ideals. It is not difficult to see that such an ideal contains the ideals
generated by the expressionsxixj2xjxi . In the case of the tensor algebraA, there are other
interesting maximal ideals, as the following examples show.

Example 3:The Heisenberg algebra.
LetA be the free algebra with unit generated by two elementsx,y. Consider inA the ideal

generated byxy2yx2 i 1. Then the quotient algebra is the Heisenberg algebraH, generated by
two elementsp,q and the relationpq2qp5 i 1. It is well known that this algebra is simple. The
ideal is maximal. In the quotient, we takex°p andy°q.

Now let us consider derivations. If we denote byD5(X,Y) the derivationD(x)5X and
D(y)5Y, then one has

G C5$~X,Y!/@X, y#1@x, Y#PC %,

whereX,YPA, and

GA5$~X,Y!/X,YPC %.

On the other hand, one knows thatH has only inner derivations~see Ref. 5, for instance!, so

Der~H!5$~@A, p#,@A, q# !/APH%

with the same notations as above. It is easy to prove that the mappingG C→Der~H! ~the quotient
by GA! is surjective~one can use Lemma IV.1, but the direct calculation shows in this particular
case how that works!. Indeed, takeAPH and let ĀPA be such thatĀ°A in the quotient
mappingA→H. Then the derivation ([Ā, x],[ Ā, y]) maps to ([A, p],[A, q])PDer~H!. One
must then show that this derivation is indeed inG C . This is equivalent to showing
†[ Ā, x],y]1[x,[ Ā, y] ‡PC . However, this expression equals2†[x, y], Ā‡, which is obviously in
the kernel of the mappingA→H. So, it is inC .
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The Heisenberg algebra is then a submanifold algebra, which can be regarded, from the point
of view of algebraic geometry, as a point in the free algebra with unitA. Its tangent space is the
linear spaceH%H.

Example 4:The matrix algebra.
LetA denote as above the free algebra with unit generated by two elementsx,y. Let qPC be

annth unit root,qn51. Let C denote the ideal inA generated by the relations

xy2qyx, xn21, yn21,

and denote byU andV the images ofx andy in the quotient mappingA→Q . Let us show that
this algebra is the matrix algebraM ~n,C!. Any element ofQ can be written as

(
0<k,l<n21

ak,lU
kVl ,

so dimQ<n2. Now, the following two matrices inM ~n,C!,

U5S 1 0 0 ••• 0

0 q 0 ••• 0

0 0 q2 ••• 0

A A � A

0 0 0 ••• qn21

D , V5S 0 1 0 ••• 0

0 0 1 ••• 0

A A � � A

0 0 ••• 0 1

1 0 ••• 0 0

D
satisfy the relations of the algebraQ , and then generate a subalgebra ofM ~n,C!. Because the only
matrices which commute with this subalgebra are the multiple of identity, this is the full matrix
algebra.

It is well known that the matrix algebra has only inner derivations. By Lemma IV.1,M ~n,C!
can be considered as a submanifold algebra of the tensor algebra. Notice that this algebra is
simple, and so can be considered as a ‘‘point’’ in the tensor algebra.

Example 5:The matrix-valued functions.
Consider, as in Ref. 10, the algebraA5C`(V)^M ~n,C! of matrix-valued functions on a

manifoldV. Let pPV any point of the manifold. TakeC to be the ideal of functions vanishing at
p. This is obviously a maximal ideal. It has been shown in Ref. 10 that
Der~A!5@Der„C`(V)…^1#%@C`(V)^Der„M ~n,C!…#. Then a simple calculation shows that
Q5A/C is the matrix algebraM ~n,C! and is a submanifold algebra ofA. The ‘‘tangent space’’
at p is TpV%Der„M ~n,C!…, whereTpV is the ordinary tangent space ofV at p.

The physical interpretation of this situation is the following: from the point of view of non-
commutative differential geometry, each point of space–time is a matrix, instead ofC ~or R! in
ordinary differential geometry. The structure looks like a fiber bundle, the fiber being a matrix
algebra, but the differential structure is different, because the purely noncommutative differential
structure of the matrix algebra~which is far from being trivial! is taken into account at each point
of V. This supplementary differential structure of points has important consequences for gauge
fields theory, as has been shown in Ref. 10.

This situation can be modified without many changes, by taking the algebra of sections of
bundle overM , with fiberM ~n,C!.
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V. NONCOMMUTATIVE QUOTIENT MANIFOLDS

In this section, we introduce a generalization to the noncommutative framework of the notion
of quotient manifold. We then introduce the generalization of the action of a group on a manifold
which gives a way to construct such quotient manifolds. We give examples and we examine the
possible relations with connections on central bimodules.

A. Quotient manifold algebra

LetA be an associative algebra with unit. LetB be a subalgebra ofA. Then we define the
Lie subalgebras of Der~A!:

ZDer~B!5$XPDer~A!/XB50%

and

N Der~B!5$XPDer~A!/XB,B%.

Notice thatZDer~B! is an ideal inN Der~B!, i.e., @N Der~B!,ZDer~B!#,ZDer~B!. One can call
ZDer~B! the centralizer ofB in Der~A! andN Der~B! the normalizer ofB in Der~A!.

One has a natural homomorphism of Lie algebrasr:N Der~B!→Der~B!, X°X̃, the restriction
of X to B. The kernel of this homomorphism is exactlyZDer~B!.

Definition V.1:The subalgebraB ofA is a quotient manifold algebra ofA if the following
three conditions are fulfilled

~i! Z~B!5BùZ~A!,
~ii ! Der~B!.N Der~B!/ZDer~B!,
~iii ! B5$aPA/Xa50;XPZDer~B!%.

Condition ~i! gives to N Der~B! and ZDer~B! a structure ofZ~B!-module. Then
N Der~B!/ZDer~B! is naturally aZ~B!-module, and condition~ii ! is an isomorphism ofZ~B!-
modules. One then has the short exact sequence of Lie algebras andZ~B!-modules

0→ZDer~B!→N Der~B!→
r

Der~B!→0. ~4!

Now, the Lie subalgebraZDer~B! of Der~A! gives a Cartan operation onVI Der~A!. Condition
~iii ! says thatB is exactly the basic algebra inA for this operation.

Let v P VI Der
n (A) be a basic element for the operation ofZDer~B!, i Xv50, andLXv50 for

anyXPZDer~B!. Thendv is also basic. One can then defineṽ P VI Der
n (B) by the relation

ṽ~X̃1 ,...,X̃n!5v~X1 ,...,Xn!

for any X̃1 ,...,X̃nPDer~B! and any representativesX1 ,...,XnPN Der~B!. By the Koszul formula
and condition~iii !, it is easy to show thatv(X1 ,...,Xn)PB for XiPN Der~B!. Note that condition
~ii ! is essential to ensure the consistency of this definition. Condition~i! shows thatṽ isZ~B!-
linear. The Koszul formula shows then thatdṽ 5 dṽ.

So one has the following lemma:
Lemma V.1: One has a mapping of graded differential algebras

VI Der,B~A!→VI Der~B!,

whereVI Der,B(A) is the subalgebra ofVI Der~A! of basic elements forZDer~B!.
Remark 1:In degree 0, by the very definition, one hasVI Der,B

0 (A) 5 B 5 VI Der
0 (B).

Remark 2:No canonical mapping can be constructed between the basic elements ofVDer~A!
andVDer~B! without more information on the algebrasA andB.
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Remark 3:Condition ~ii ! can be relaxed if we define Der~B! to be the Lie algebra
N Der~B!/ZDer~B!, even ifB admitted other derivations. In this situation, one has a kind of
induced differential structure onB ~see Example 1 below!.

Proposition V.1:If theZ~A!-module induced byN Der~B! in Der~A! is Der~A! itself, then
we have an isomorphism of graded differential algebras

VI Der,B~A!.VI Der~B!.

Proof: First, let us prove that the mappingVI Der,B(A)→VI Der(B) constructed above is injec-
tive. If ṽ is zero inVI Der

n (B), then for anyX1 ,...,XnPN Der~B! we havev(X1 ,...,Xn)50. Now,
v is Z~A!-linear, sov is zero on theZ~A!-module induced byN Der~B! in Der~A!. This
proves injectivity.

Let ṽ P VI Der
n (B) be anyn-form. Definev as an antisymmetricn-Z~B!-linear mapping from

N Der(B) ^ Z(B)••• ^ Z(B)N Der(B) toB by the relation

v~X1 ,...,Xn!5ṽ~X̃1 ,...,X̃n!PB,A

for anyX1 ,...,XnPN Der~B!. Then we extendv on theZ~A!-module induced byN Der~B!, by
Z~A! linearity. Notice thatv is alreadyZ~B! linear. By hypothesis,v is then an element of
VI Der
n (A). We havei Xv50 for anyXPZDer~B!, sov is horizontal for the action ofZDer~B! in

VI Der~A!. Now, notice that the~n11!-form in VI Der~A! which comes fromdṽ is exactlydv,
because by the Koszul formula they coincide onN Der~B!. Sodv is also horizontal, and thenv
is basic inVI Der~A!. This proves surjectivity. h

B. Action

Let M be a manifold andG be a Lie group. An action ofG on M gives a Lie algebra
homomorphismg→G(M ) from the Lie algebrag of G to the Lie algebra of vector fields onM .
Then one has a Cartan operation of the Lie algebrag on the graded commutative differential
algebraV(M ) of de Rham differential forms onM .

In the noncommutative case, we will say we have an action of the Lie algebrag on an
associative algebra with unitA if there is a homomorphism of Lie algebrasg→Der~A!. In this
situation one has an operation ofg on the graded differential algebraVI Der~A!.

Then one can take as subalgebra ofA the basic algebra for this operation. In this situation, if
B is a quotient manifold algebra, then one has the noncommutative version of the quotient
manifold by the ‘‘leaves’’ defined byg.

If the homomorphismg→Der~A! is injective~take the image ofg if not!, one can identifyg
with its image. Then, one has the inclusiong,ZDer~B!, but the equality is not the generic case.
Between these two Lie algebras, one has a third one, theZ~A!-module induced byg in Der~A!,
denoted bygZ(A) . If B is the basic algebra inA for the operation ofg, the condition~iii ! of
Definition V.1 is fulfilled.

C. Examples

Example 1:The inner derivations.
LetA be an associative algebra with unit for which there are inner derivations. Suppose one

hasH1
„A,Z~A!;A…50. Take the operation ofg5Int~A! on A. Then one hasB5Z~A!,

ZDer~B!5g because the first relative cohomology group vanishes, andN Der~B!5Der~A!. Take
then the induced differential structure onB by setting Der~B!5Out~A!5N Der~B!/g. The alge-
bra of differential forms associated toB is then, by Proposition V.1, the algebraVI Out~A! intro-
duced in Ref. 3.

Example 2:The noncommutative torus.
Let Tq denote the complex associative algebra with unit of elements of the form
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a5 (
k,lPZ

cklU
kVl

with

iaim5 sup
k,lPZ

ucklu~11uku1u l u!m,`

and the relation

UV5qVU

for qPC such thatqN51 for NPN. We takeN to be the minimal one for which this is true. The
center of this algebra is the set of elements depending only onUN andVN.

The derivations of this algebra are the inner derivations and the derivations of the form

a~UN,VN!DU1b~UN,VN!DV ,

whereDU(U)5U, DU(V)50, DV(U)50 andDV(V)5V, anda(UN,VN) andb(UN,VN) belong
toZ(Tq).

Takeg5Int(Tq). ThenB5Z(Tq),ZDer~B!5g, andN Der~B!5Der(Tq). We are then in the
situation of the previous example. Then the differential algebra of forms onZ(Tq) is the basic
algebra of the differential algebra of forms onTq . But now, remark that the centerZ(Tq) is
isomorphic to the algebraC`(S13S1) of smooth functions on the~ordinary! torus. This isomor-
phism isUN°e2p i t andVN°e2p is. Then an elementaPZ(Tq) is mapped on the Fourier expan-
sion of an element ofC`(S13S1). Thus, the algebra of forms onZ(Tq) is the de Rham algebra
of forms on the torus.

D. Connections

Let B be a quotient manifold algebra ofA. ThenA is a central bimodule over the algebra
B. Let c:Der~B!→N Der~B! be a splitting of the short exact sequence~4!, considered as a short
exact sequence ofZ~B!-modules~forgetting the Lie algebra structures!.

Proposition V.2:For anyXPDer~B!, the mapping

“X :A→A, a°c~X!a,

is a connection on the central bimoduleA overB.
The curvature of this connection is the obstruction onc to be a splitting of the short exact

sequence~4! of Lie algebras.
Proof: This is an immediate consequence of the fact thatc is aZ~B!-modules homomor-

phism, such thatc(X)b5Xb for anybPB,A. The curvature of this connection is

R~X,Y!5@c~X!, c~Y!#2c~@X, Y# !,

which proves the Proposition. h

Such a connection gives a projectionP:N Der~B!→ZDer~B!,N Der~B! of Z~B!-modules
defined byP(X)5X2c+r(X). Then one hasN Der~B!5Ker P%ZDer~B!.

Conversely, a projectionP:N Der~B!→ZDer~B!,N Der~B! ofZ~B!-modules defines a split,
and so a connection onA.

In Ref. 11, one can find another approach to group actions, bundles, and connections in
noncommutative differential geometry.

Let P(M ,G) be a principal bundle, whereM is the base manifold andG is the structure
group, and letg be its Lie algebra. Denote byA the ~commutative! algebra of smooth functions
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on P, andB the algebra of smooth functions onM . Then one can consider thatB,A because
of the projectionP→M . The Lie algebrag can be injectively mapped intoG(P), the vector fields
onP, and, more precisely, into the vertical vector fields. Thusg operates onA. The algebraB is
obviously the basic algebra for this operation andZDer~B! is exactly the Lie algebra of vertical
vector fields onP.

It is well known that a connection onP can be given as aB-linear mapping
G(M )→G(P),X°Xh, the horizontal lift, with its usual properties, one of them being@g,Xh#50
for all XPG(M ). In fact this mapping is a splitting of~4! @remember here thatB5Z~B!#.

Then one could think that the connections introduced by the construction of Proposition V.2
are generalizations of connections on principal bundles. However, this is not completely true,
because a principal bundle has many more properties than a couple~A,B! of an algebra and a
quotient manifold algebra. For example, one can introduce associated bundles, on which connec-
tions can be transported.

In order to obtain a similar situation, one must introduce a more restrictive definition. Given
a couple~A,B! of an algebra and a quotient manifold algebra, suppose there exists a Lie algebra
g and an injective homomorphism of Lie algebrasg→Der~A! such thatB is the basic algebra for
the operation ofg onA @theng,ZDer~B!#. A connection on this triple~A,B,g! is a splitting
c:Der~B!→N Der~B! of Z~B!-modules compatible with the operation ofg in the sense
@g, c(X)#50 for all XPDer~B!. Such a connection is also given by a covariant projection
P:N Der~B!→ZDer~B! where the covariance means [Y,P(X)]5P([Y, X]) for all YPg and
XPN Der~B!.

In this situation, ifV is a linear space on whichg is represented byh:g→End(V), then one has
an associated central bimodule overB defined by

MV5$ai ^v iPA^V/~Yai ! ^v i1ai ^ h~Y!v i50;YPg%,

where the structure of bimodule overB is localized onA.
Proposition V.3:Let c:Der~B!→N Der~B! be a connection on~A,B,g!. Then, the mapping

“X
V :MV→MV , ai ^v i°„c~X!ai…^v i ,

is well defined and is a connection onMV . This is the associated connection toc onMV .
Proof: ¹X

VMV,MV because@g, c(X)#50. Other properties of¹X
V are immediate conse-

quences of the definition ofc as in Proposition V.2. h

In the case of a principal bundle,MV is the module overB of sections of the associated
vector bundle for~V,h!. This module of sections is considered here as the module of equivariant
mappingP→V.

Let us now turn to a different problem. From the point of view of characteristic classes~even
if there is not yet such a theory for the definition of connection used here!, what is important in a
connection is its curvature. Given a couple~A,B! of an algebra and a quotient manifold algebra,
suppose one has a central bimoduleM overA and a connection“ onM, such that its curvature
is zero if one of its argument is inZDer~B!. Then one can transport the connection on a central
bimodule overB. Define the reduced central bimodule overB

MZDer~B!5$mPM/“Xm50;XPZDer~B!%.

For any X̃PDer~B!, take anyXPN Der~B! such thatr(X)5X̃. Then define, for anym
PMZDer(B),

“̃ X̃m5“Xm.

Then, because the curvature of“ is zero onZDer~B!, this is a well-defined mapping from
MZDer(B) into itself. It is easy to verify that“̃ is a connection, the curvature of which is
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R̃~X̃,Ỹ!m5R~X,Y!m

for anymP MZDer(B).
In the case where Der~A!5Int~A!, it has been shown in Ref. 3 that any central bimoduleM

overA admits the canonical connection“ad(a)m5am2ma. The curvature of this connection is
zero.

Now, in the general case@Der~A!ÞInt~A!#, if one can take this connection on Int~A! and a
prolongement on Der~A!, then the curvature is zero on Int~A!. So one can hope to transport the
connection on a reduced module overB5Z~A! while keeping the same information on the
curvature.

VI. CONCLUSION

In this paper we have proposed definitions of the noncommutative generalization of a sub-
manifold and of a noncommutative quotient manifold. Various examples and related constructions
seem to give them an importance for the study of derivations-based differential structures of
algebras. What must be notice is the different use of the two generalizations of differential forms:
VI Der~A! andVDer~A!. This shows the importance of introducing various generalizations of a
commutative concept adapted to different situations.
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We present a set of tensors which are shift tensors~Wigner tensors! in accordance
with the definitions of Biedenharn and Louck and satisfy the coherence conditions
of Flath and Towber. Our tensors are defined for all connected compact Lie groups
and for finite-dimensional representations of connected reductive Lie groups. Thus,
we have a realization of the coherent tensors in a rather general setting. Moreover,
this realization enables us to confirm most of the conjectures of Flath and Towber
concerning the properties of coherent tensors. ©1996 American Institute of Phys-
ics. @S0022-2488~96!03405-9#

I. INTRODUCTION

In the application of group theory in quantum mechanics, one needs to know the representa-
tions of Lie groups and their Lie algebras and the ways in which tensor products of representations
decompose and recouple. The analysis of tensor coupling and recoupling has been developed to a
fine art for SU~2! and is often referred to as the Racah–Wigner calculus.

Some years ago Biedenharn and his colleagues1 initiated a program to extend the Racah–
Wigner calculus to other unitary groups. They focused on the Racah–Wigner algebras of tensors
on model spaces and introduced the concept of Wigner operators as the components of shift
tensors~also called unit tensors!. These tensors have some remarkable properties. As observed by
Biedenharnet al., they can be labeled byoperator patternsin parallel with the Gel’fand patterns
used to label basis vectors of an irreducible U(n) representation. Moreover, they form a basis for
the Racah–Wigner algebra over the ring of scalar~invariant! operators. Shift tensors have also
been used by Hughes2 and others.

Subsequently, Flath and Towber3 refined the definition of a shift tensor by introducing the
idea of coherence. This enabled them to relate the actions of a tensor on different irreps. It also
enabled them to prove a number of theorems for SU~3! and conjecture the general validity of their
theorems for other connected compact Lie groups.

In this note, we give a set of tensors which are shift tensors and satisfy the coherence
condition of Flath and Towber. They also have the property of being asymptotically orthonormal.
Our tensors are given for connected compact Lie groups or the finite-dimensional representations
of connected reductive Lie groups. The space spanned by these tensors is uniquely determined by
the coherence condition. Thus, we claim to have identified the Biedenharn–Louck–Flath–Towber
tensors in a rather general setting. Moreover, with explicit expressions for the coherent tensors, we
find that most of Flath and Towber’s conjectures concerning their properties follow automatically.

We use the following notations:G is a connected compact semisimple Lie group andg is the
complex extension of its Lie algebra;L is the set of dominant integral weights forG; Vl is a
module for an irrepRl of highest weightlPL. The direct sumV5(lPL Vl is a model space4 for
a universal representationR5(lPL Rl, where the latter is a representation which contains every
irrep ofG once and once only.

If U andW are modules for representations ofG, then aU→W tensor is aG-invariant set of
linearU→W maps. Thus, a tensorT is a module for a representation ofG. Basis elements for a
tensor are referred to as components of the tensor. An irreducible tensorTl is characterized by a

0022-2488/96/37(5)/2498/12/$10.00
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‘highest weightlPL and it has components$Tan
l % indexed by a weightn, relative to a Cartan

subalgebra, and a multiplicity indexa. An irreducible tensorTlm of highest weightl on a model
spaceV is called ashift tensorof shift m if every componentTan

lm of Tlm maps any irreducible
subspaceVl1,V into the irreducible subspaceVl11m,V.

Biedenharnet al.1 sought a particular set of shift tensors$Tlbm% having the property that if
Tlbm~l1! denotes the restriction ofT

lbm to the subspaceVl1,V then the set of tensors$Tlbm~l1!%
~with m fixed! spans the linear space ofV1→Vl11m tensors. We refer to such tensors as
Biedenharn–Louck tensors. As Biedenharn5 has observed, anyV→V tensor can be expressed as a
linear combination of Biedenharn–Louck tensors withG-invariant linear operators~tensors of
highest weightl50! as scalar multipliers; we say that such a set of shift tensors is complete.

We first show that a module for the universal representation is spanned, in a coherent state
representation, by a subset of generalized Wigner functions. We then give a set of Biedenharn–
Louck shift tensors on this space and show that they are coherent according to the definition of
Flath and Towber.3

II. A COHERENT STATE REPRESENTATION

Let $uc an
l &% be an orthonormal basis for an irreducible subspaceVl of a model spaceV and let

$^c an
l u% be the dual basis in Dirac’s bra–ket notation. The inner product in this notation is then

expressed

^cam
l ucbn

l8 &5dll8dabdmn . ~1!

A generalized Wigner functionD bm,an
l is aG→C function with

Dbm,an
l ~g!5^cbm

l uRl~g!ucan
l &. ~2!

From the Peter–Weyl theorem, one knows that the functions$D bm,an
l % span the Hilbert space

L 2(G) and satisfy the orthogonality relation

d~l1!E Db1m1 ,a1n1

l1* ~g!Db2m2 ,a2n2

l2 ~g!dv~g!5dl1l2
db1b2

da1a2
dm1m2

dn1n2
, ~3!

wheredv is a suitably normalized invariant measure.
The orthornormal basis states$uc an

l &% have coherent-state wave functions$c an
l % given by

can
l ~g!5^cl

l uRl~g!ucan
l &5Dl,an

l ~g!, ~4!

where uc l
l& is the ~multiplicity free! highest weight state in the set$uc an

l &% ~cf. Ref. 6 and refer-
ences therein!. Thus, the above coherent state representation is a nonisometric embedding ofV in
L 2(G)

Q:V→L 2~G!; ucan
l &°can

l 5Dl,an
l . ~5!

It follows that the corresponding representation of the dual vector is given by

^Can
l u→d~l!D l,an

l* ~6!

The model spaceV is thereby identified with a subspace ofL 2(G). Conversely, there is a map

P:L 2~G!→V; Dbm,an
l °dmlucan

l &, ~7!

which is uniquely defined by specification of the phases of the~normalized! highest weight states
uc l

l&PVl. The compositionQP is seen to be a projection fromL 2(G) to a subspace isomorphic
to the model space. This subspace is invariant under the right regular representation but not under
the left regular representation. This observation reflects the fact that the mapsP and Q are
equivariant relative to the action of the right regular representation ofG on L 2(G) but not
relative to the action of the left regular representation.
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The set of coherent state wave functions$c an
l % ~i.e., the set of Wigner functions$D l,an

l %
which are of highest weight relative to the left regular representation! are a basis for the so-called
shape algebraL1G used by Flath and Towber.3 Thus, the mapQ:V→L1G,L 2(G) has been
considered by Flath and Towber. As pointed out to us by Flath, the projection mapP was also
used previously by Bernstein, Gelfand, and Gelfand.7 The coherent-state representation gives
these maps a new interpretation.

The combination rule for the shape algebra~the so-called Cartan product! is simple multipli-
cation of wave functions; i.e.,

@ca2n2

l2
•ca1n1

l1 #~g!5ca2n2

l2 ~g!ca1n1

l1 ~g!. ~8!

Recall that Wigner functions can be combined according to the equation

Dbm,an
l ~g!Db1m1 ,a1n1

l1 ~g!5 (
sl3b3a3

~l1b1m1 ,lbmusl3b3m3!

3~l1a1n1 ,lanusl3a3n3!*Db3m3 ,a3n3

l3 ~g!, ~9!

where~l1b1m1,lbmusl3b3m3! is a Clebsch–Gordan coefficient,m35m11m, n35n11n ands in-
dexes the multiplicity of irreps equivalent toRl3 in the Kronecker productRl

^ Rl1 ~cf. Ref. 8, for
example, for a derivation of this equation!. It follows that the Cartan product can be expressed

ca2n2

l2
•ca1n1

l1 5(
b

cbn11n2

l11l2 ~l1l1 ,l2l2ul11l2 ,l11l2!

3~l1a1n1 ,l2a2n2ul11l2 ,b,n11n2!* . ~10!

Thus, if the Clebsch–Gordan coefficients are normalized such that~l1l1,l2l2ul11l2,l11l2! is
equal to 1, according to convention, the Cartan product simplifies to

ca2n2

l2
•ca1n1

l1 5(
b

cbn11n2

l11l2 ~l1a1n1 ,l2a2n2ul11l2 ,b,n11n2!* . ~11!

We shall assume in the following that Clebsch–Gordan coefficients are normalized in this way.
The mapP:L2(G)→V then induces a corresponding Cartan product on the model space in which

uca2n2

l2 &•uca1n1

l1 &5(
b

ucbn11n2

l11l2 &~l1a1n1 ,l2a2n2ul11l2 ,b,n11n2!* . ~12!

To simplify the notation, it will be convenient to write

uca2n2

l2
•ca1n1

l1 &5uca2n2

l2 &•uca1n1

l1 &. ~13!

We can now express Flath and Towber’s definition of a coherent shift tensor in language
familiar to physicists.

Definition (coherent tensor):A V→V shift tensorTm is said to be coherent if each component
of Tm satisfies the equation
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1

d~l3!
^ca3n3

l3 uTan
m uca1n1

l1 &5
1

d~l31l2!
(
a2n2

^ca2n2

l2
•ca3n3

l3 uTan
m uca2n2

l2
•ca1n1

l1 &. ~14!

for all l1 andl2PL, wherel35l11m andd~l!5dim~Vl!. An arbitrary coherent tensor is a finite
linear combination of coherent shift tensors and a coherent linear operator is a component of a
coherent tensor.

III. WIGNER TENSORS

It follows, from Eqs. ~3!–~9!, that the Wigner functions, withlbm held fixed, in the set
$D bm,an

l % are the components of anL 2(G)→L 2(G) tensor with multiplicative action given by
Eq. ~8!. Since the mapsP andQ areG-equivariant@relative to the right action onL 2(G)#, it also
follows that the set of operators

Wan
lbm5PDbm,an

l Q, ~15!

with lbm held fixed, are the components of aV→V tensor with action

Wan
lbmuca1n1

l1 &5(
sa3

~l1l1 ,lbmusl3l3!~l1a1n1 ,lanusl3a3n3!* uca3n3

l3 &, ~16!

wherel35l11m andn35n11n. We see thatWlbm is an irreducibleV→V shift tensor of highest
weightl and shiftm. If we define the coupled state

@Wlbm
^ ucl1&] a3n3

sl3 5 (
a1n1an

~l1a1n1 ,lanusl3a3n3!*Wan
lbmuca1n1

l1 &, ~17!

the action ofWlbm can be expressed in the succinct form

@Wlbm
^ ucl1&] a3n3

sl3 5~l1l1 ,lbmusl3l3!uca3n3

l3 &. ~18!

We now show that the tensors$Wlbm% are complete in the sense that the tensors$Wlbm~l1!%
span the space ofVl1→Vl11m tensors for alll1PL, whereWlbm~l1! denotes the restriction of
Wlbm to Vl1. Recall that the linear space ofVl1→Vl3 tensors has a Hermitian inner product
given8 by

~Al,Bl8!5dll8(
s

^c l3uuAluuc l1&s* ^c l3uuBluuc l1&s , ~19!

where^cl3uuAluucl1&s is a reduced matrix element defined by the Wigner–Eckart theorem

^ca3n3

l3 uAan
l uca1n1

l1 &5(
s

~l1a1n1 ,lanusl3a3n3!* ^c l3uuA luuc l1&s . ~20!

It follows that the tensors$Wlbm% have reduced matrix elements

^cl3uuWlbmuucl1&s5~l1l1 ,lbmusl3l3! ~21!

and that

~Wlbm~l1!,W
lb8m~l1!!5Nbb8

lm
~l1!, ~22!

where
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Nbb8
lm

~l1!5(
s

~l1l1 ,lbmusl3l3!* ~l1l1 ,lb8musl3l3! ~23!

andl35l11m. We have shown, in Theorem 1 of Ref. 8, that the rank of the matrixNlm~l1! is
equal tom~l1,l;l3!, wherem~l1,l;l3! is the multiplicity of irreps equivalent toR

l3 in the tensor
productRl

^ Rl1. Since this theorem is vital for the claims made in this paper, the proof is given,
in more detail, in the Appendix. It follows from the theorem that the tensors$Wlbm~l1!% are a
complete set ofVl1→Vl11m tensors. We shall also show by means of the following claim that
Nbb8

lm (l1)→dbb8 , for finite l, asl1→`. Thus, in the asymptotic limit, the tensors$Wlbm~l1!%
become an orthonormal set. This shows that the shift tensors$Wlbm% are a complete, but not
overcomplete, set.

Fix a highest weightl, and considerVl
^ Vl1 asl1→`. When we writel1→`, we will mean

thatl1 goes to` ‘‘away from the walls,’’ i.e., inside a cone in the positive chamber whose only
intersection with the walls is the origin. In particular, this implies that the Killing form inner
product ~l1,h! goes to infinity for any positive rooth. Roughly speaking, this means that in
Vl1 it is possible to ‘‘ladder down’’ a large number of times from the highest weight, in the
direction opposite to any positive root.

Claim: As l1→`, any highest weight vectoruCl3

sl3& in Vl
^ Vl1 tends to a simple product;

uCl3

sl3&→S (
a

~l1l1 ,lamusl3l3!* ucam
l & D ucl1

l1&. ~24!

Specifically, if we fix a weightm which occurs inVl, then any highest weight vector of weight
l35l11m tends to a simple product.

Proof: Note that ifVl
^ Vl1 contains a highest weight vector of weightl3, thenl3 differs

from l1 by a weightm of Vl. Moreover,l35l11m→` and~l3,h! goes to infinity, asl1→`, for
any positive rooth.

Expand a highest weight vector as

uCl3

sl3&5( eam,bnucam
l &ucbn

l1 &. ~25!

SinceuCl3

sl3& is killed by any raising operatorei , we find

( eam,bn~ei ucam
l &)ucbn

l1 &1( ea8m8,b8n8uca8m8
l &~ei ucb8n8

l1 &)50, ~26!

or, taking the inner product with a fixed̂ca8m8
l u,

( eam,bn^ca8m8
l uei ucam

l &ucbn
l1 &1( ea8m8,b8n8ei ucb8n8

l1 &50. ~27!

If a vector uc
b8n8

l1 &, appearing on the r.h.s. of this equation, is not a highest weight vector, it

is possible to findei so that ei ucb8n8

l1 &Þ0. Moreover, as we now show,iei ucb8n8

l1 &i2

5 ^cb8n8

l1 u f iei ucb8n8

l1 & then tends tò asl1→`, when f i is the Hermitian adjoint ofei in any
unitary representation. Consider the su~2! algebra spanned byei , f i ,hi , with

@ei , f i #5hi , @hi ,ei #52ei , @hi , f i #522 f i . ~28!
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Applied to uc
b8n8

l1 &, it generates a space which is a direct sum of su~2! irreps. The highest weights

of these irreps tend to infinity withl1. So^cb8n8

l1 u f iei ucb8n8

l1 & is a normalized sum of su~2! matrix
elements

^JMuJ2J1uJM&5~J2M !~J1M11!, ~29!

with J tending to` andMÞJ. We conclude thatiei ucb8n8

l1 &i2 5 ^cb8n8

l1 u f iei ucb8n8

l1 &→`.

If ^w~i ,l1b8n8!u is the vector dual toei ucb8n8

l1 &, we can write

ea8m8,b8n852( eam,bn^ca8m8
l uei ucam

l &^w~ i ,l1b8n8!ucbn
l1 &, ~30!

where the sum is over a basisam of Vl and the corresponding basis vectorsbn of Vl1 with
m1n5l3. If iei ucb8n8

l1 &i2→`, then uw~i ,l1b8n8!&→0. Thereforeea8m8,b8n8→0 asl1→`, for all

coefficients for whichei ucb8n8

l1 & Þ 0. This means that the only terms in the expansion~25! that
survive are the leading terms, i.e.,

uCl3

sl3&→(
a

eam,l1
ucam

l &ucl1

l1&. ~31!

This completes the proof of the claim.
Since$uCl3

sl3&% and $ucam
l &ucl1

l1&% are orthonormal sets, it follows that the matrixO, with

coefficients

Osa5~l1l1 ,lamusl3l3!* , ~32!

tends to a unitary matrix asl1→`. Therefore, it follows from the claim that

Nbb8
lm

~l1!5(
s

OsbOsb8
* →dbb8 . ~33!

Theorem I: The tensors$Wlbm% are coherent.
Proof:First observe, from the definition, that the stateuca2n2

l2
• ca1n1

l1 & has coherent state wave

function

ca2n2

l2
•ca1n1

l1 5Dl2 ,a2n2

l2 Dl1 ,a1n1

l1 5(
b

~l1a1n1 ,l2a2n2ul11l2 ,b,n11n2!*Dl11l2 ,bn11n2

l11l2

~34!

whereas, from Eq.~6!, we infer that the dual statêca2n2

l2
• ca3n3

l3 u has wave function

d~l21l3!(
b

~l3a3n3 ,l2a2n2ul31l2 ,b,n31n2!Dl11l2 ,bn11n2

l31l2*

5d~l21l3!Dl3 ,a3m3

l3* Dl2 ,a2n2

l2* . ~35!

It follows that
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(
a2n2

^ca2n2

l2
•ca3n3

l3 uWan
lbmuca2n2

l2
•ca1n1

l1 &

5d~l21l3! (
a2n2

E Dl3 ,a3n3

l3* ~g!Dl2 ,a2n2

l2* ~g!Dbm,an
l ~g!Dl2 ,a2n2

l2 ~g!Dl1 ,a1n1

l1 ~g!dv~g!

5d~l21l3!E Dl3 ,a3n3

l3* ~g!Dbm,an
l ~g!Dl1 ,a1n1

l1 ~g!dv~g!

5
d~l21l3!

d~l3!
^ca3n3

l3 uWan
lbmuca1n1

l1 &, ~36!

where we have used the unitarity relationship

(
a2n2

Dl2 ,a2n2

l2* ~g!Dl2 ,a2n2

l2 ~g!51. ~37!

Thus, the tensors$Wlbm% are coherent according to the definition.
From the way in which the tensors$Wlbm% are defined in terms of Wigner functions, it would

appear to be manifestly appropriate to call themWigner tensorsin parallel with the usage of this
terminology by Biedenharnet al. and Flath and Towber. They are shift tensors, they are irreduc-
ible, and they are coherent. The components of the Wigner tensors are also naturally calledWigner
operators. Operators of this type were used in the paper of Bernsteinet al.7

The relationship between these tensors and Wigner functions through

Dbm,an
l →Wan

lbm5PDbm,an
l Q ~38!

gives a precise group theoretical meaning to thebm labels~operator patterns!. Since thebm labels
of the Wigner functions$D bm,an

l % index a basis for the left regular representation ofG, it is
tempting to suppose that the operators$Wan

lbm%, with l andan held fixed, might span a module for
a corresponding representation. However, as Biedenharn9 has pointed out in parallel circum-
stances, such is not the case. The reason is that the mapsP andQ are not equivariant relative to
a left group action.

Theorem II: The product of two coherent tensors is a tensor which is asymptotically coher-
ent.

Proof: First observe that the space of coherent tensors is uniquely defined by the tensors
$Wlbm~l1!% which are an orthonormal set in thel1→` asymptotic limit. Consider the product

~Wa3n3

l3b3m3Wa2n2

l2b2m2uca1n1

l1 &)~g!5PDb3m3 ,a3n3

l3 ~g!QPDb2m2 ,a2n2

l2 ~g!Dl1 ,a1n1

l1 ~g!. ~39!

The second pair of Wigner functions on the right of this expression can be combined to give

Db2m2 ,a2n2

l2 ~g!Dl1 ,a1n1

l1 ~g!5 (
slba

~l1l1 ,l2b2m2uslbm!

3~l1a1n1 ,l2a2n2uslan!*Dbm,an
l ~g!. ~40!

The only terms in this expression which survive, in the asymptotic limit, are those withl5l11m2.
To show this, we first consider the highest weight state

uCl
sl&5 (

b1m1b2m2

~l1b1m1 ,l2b2m2usll!* ucb2m2

l2 &ucb1m1

l1 & ~41!
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in the tensor product spaceVl1 ^ Vl2. We have already shown that, asl1→`, this state becomes

uCl
sl&→(

b2
~l1l1 ,l2b2m2usll!* ucb2m2

l2 &ucl1

l1&5(
b2

Osb2
ucb2m2

l2 &ucl1

l1& ~42!

with m2 taking the valuel2l1. It then follows that

(
s

~l1l1 ,l2b2m2usll!~l1l1 ,l2b28m2usll!*5(
s

Osb2
* Osb

28
→db2b

28
. ~43!

But, we know that

(
sl8b

u~l1l1 ,l2b2m2usl8bl!u251. ~44!

We conclude that

~l1l1 ,l2b2m2usl8bl!→dll8~l1l1 ,l2b2m2usll!. ~45!

Equation~40! becomes

Db2m2 ,a2n2

l2 ~g!Dl1 ,a1n1

l1 ~g!→(
sb

~l1l1 ,l2b2m2usll!

3~l1a1n1 ,l2a2n2uslan!*Dl,an
l ~g! ~46!

and we have shown that the intermediate projection operatorQP in Eq. ~39! becomes redundant,
i.e.,

QPDb2m2 ,a2n2

l2 ~g!Dl1 ,a1n1

l1 ~g!→Db2m2 ,a2n2

l2 ~g!Dl1 ,a1n1

l1 ~g!. ~47!

Therefore, Eq.~39! gives

~Wa3n3

l3b3m3Wa2n2

l2b2m2uca1n1

l1 &)~g!→ (
slbman

~l2b2m2 ,l3b3m3uslbm!

3~l2a2n2 ,l3a3n3uslan!* ~Wan
lbmuca1n1

l1 &)~g! ~48!

asl1→`. If we denote the coupled product of Wigner tensors by

@Wl3b3m3^Wl2b2m2#an
slbm5 (

a2n2a3n3
~l2a2n2 ,l3a3n3uslan!*Wa3n3

l3b3m3Wa2n2

l2b2m2, ~49!

this equation can be expressed in the succinct form

@Wl3b3m3^Wl2b2m2#an
slbm~l1!→~l2b2m2 ,l3b3m3uslbm!Wan

lbm~l1!. ~50!

This completes the proof.
A corollary of Theorem II is that coherent tensors commute in thel1→` asymptotic limit as

Flath and Towber have conjectured. In particular, the Wigner tensors satisfy the equation

@Wa3n3

l3b3m3, Wa2n2

l2b2m2#uca1n1

l1 &→0. ~51!
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This follows, once the projection operator in Eq.~39! has been shown to be redundant, because
Wigner functions commute.

It is interesting to note that, in specializing to SU~2!, Biedenharn9 defined a shift tensorTjm

with components

Tm
jm5( uc m3

j 3 &~ j 1m1 , jmu j 3m3!^c m1

j 1 u, ~52!

where the sum is over allj 1, m1, j 3, andm3 with j 35 j 11m andm35m11m. Biedenharn’s
tensors act on model states according to the equation

@Tjm
^ uc j 1&]m3

j 3 5uc m3

j 3 & ~53!

wherej 35 j 11m andm35m11m. As Biedenharn observed, these tensors can be coupled accord-
ing to the equation

@Tj 3m3^Tj 2m2#M
J ~ j 1!5A~2J11!~2J811!W~ j 1 j 2 j 4 j 3 :J8J!TM

Jm~ j 1!, ~54!

whereJ85 j 11m2 , m5m21m3, j 45 j 11m21m3, andW( j 1 j 2 j 4 j 3 :J8J) is a Racah coefficient.
The$Tjm% tensors are not coherent. However, by comparison of Eqs.~18! and~53! and noting that
( j 1 j 1 , jmu j 3 j 3)→1 as j 1→`, we see that Biedenharn’s tensors become equal to coherent Wigner
tensors in the limit; i.e.,

Tjm~ j 1!→Wjm~ j 1!, as j 1→`. ~55!

Thus Eq.~54! can be compared with Eq.~50! which, for SU~2!, gives

@Wj 3m3^Wj 2m2#M
J ~ j 1!5~ j 2m2 , j 3m3uJm!WM

Jm~ j 1! ~56!

with m5m21m3. From the equivalence of these two expressions, it follows that

A~2J11!~2J811!W~ j 1 j 2 j 4 j 3 :J8J!→~ j 2m2 , j 3m3uJm! ~57!

as j 1→`, with m25J82 j 1 , m35j 42J8, andm5m21m3.

IV. SUMMARY OF RESULTS

We summarize by listing some of the properties of the above-defined Wigner tensors, which
generalize results of Biedenharn and Louck1 for the unitary groups and confirm conjectures ex-
pressed by Flath and Towber3 and proved by them in special cases.

~i! A tensor of highest weightl is a complex vector space isomorphic toVl. The linear space
T lm~l1! of all V

l1→Vl11m tensors of highest weightl ~and shiftm! has dimension equal to the
multiplicity, m~l1,l,l11m!, of irreps equivalent toRl11m in the Kronecker productRl

^ Rl1.
~ii ! The setW lm of all coherent tensors of highest weightl and shiftm is a complex vector

space of dimension equal to the multiplicity,m~m;l!, of the weightm in the irrepRl. Moreover,

m~m;l!>m~l1 ,l,l11m!, ~58!

and the equality holds for sufficiently largel1.
~iii ! For everyl1PL, the map

W lm→T lm~l1! ~59!
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obtained by restricting the tensors inW lm from V to Vl1 is subjective. Moreover, the coherent
tensors$Wlbm~l1!% become an orthonormal set in thel1→` limit.

~iv! LetW be the linear space of all finite linear combinations of coherent linear operators on
V. Equation~14! shows that the elements ofW are associated to components of tensors on
L 2(G) given by multiplication by Wigner functions. The Wigner functions have a dual role:~i!
as components of tensors onL 2(G), and ~ii ! as elements ofL 2(G). Thus, we obtain a map
p :W →L 2(G), defined by

p~Wan
lbm!5Dbm,an

l . ~60!

With L 2(G) regarded as a module for the right regular representation, this mapp is a group
isomorphism fromW onto a dense subspace ofL 2(G). The correspondence between Wigner
operators and Wigner functions, expressed by this relationship, gives a precise group theoretical
meaning to thebm labels~operator patterns!.

~v! Let l̄ denote the lowest weight in the irrepRl. Then, every product of coherent tensors of
the form

S)
i
Wl i l̄ i D +S)

j
Wl jl j D ~61!

is a coherent tensor. The tensorsWll ~maximal-positive shift tensors! send vectors inVl1 to

vectors inVl11l. The tensorsWl l̄ ~maximal-negative shift tensors! send vectors inVl1 to vectors

in Vl11 l̄ if l11l̄PL and are zero otherwise.
~vi! The commutator of two Wigner tensors is not, in general, coherent. Because of the

completeness of the Wigner tensors, a commutator can be expanded

@Wa3n3

l3b3m3, Wa2n2

l2b2m2#5( SS l2

b2m2

a2n2
,l3

b3m3

a3n3
Ul4

b4m4

a4n4
DWa4n4

l4b4m4, ~62!

where eachS(l2a2n2

b2m2,l3a3n3

b3m3ul4a4n4

b4m4) is a scalar, i.e., a tensor of rankl50. If we write

S(l2a2n2

b2m2,l3a3n3

b3m3ul4a4n4

b4m4)(l1) for the value of this scalar on the spaceVl1, then asl1→`,

SS l2

b2m2

a2n2
,l3

b3m3

a3n3
Ul4

b4m4

a4n4
D ~l1!→0. ~63!

Properties~i!–~iv! have been proved either above or in Ref. 8. Property~v! follows from the
observation that

S)
i
PDl i ,a in i

l i QD +S)
j
PDl j ,a jn j

l j QD 5PS)
i
D

l̄ i ,a in i

l i D +S)
j
Dl j ,a jn j

l j DQ. ~64!

Property ~vi! follows from the corollary to Theorem II and the asymptotic orthonormality of
Wigner tensors, expressed by Eqs.~19! and ~33!.

ACKNOWLEDGMENTS

The authors are pleased to acknowledge helpful discussions with H. de Guise. They also thank
D. E. Flath for bringing the paper of Bernstein, Gel’fand, and Gel’fand7 to their attention and J.
Towber for constructive suggestions.

2507D. J. Rowe and J. Repka: Racah–Wigner algebra and coherent tensors

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



APPENDIX: THEOREM (ROWE AND REPKA, REF. 8)

The rank of the Hermitian matrixNlm~l1! with entries

Nbb8
lm

~l1!5(
s

~l1l1 ,lbmusl3l3!* ~l1l1 ,lb8musl3l3! ~A1!

is equal to the multiplicity ofRl3 in Rl
^ Rl1.

Proof: The proof is given in a sequence of steps.
~i! If cl1

l1 is a highest weight vector in the moduleVl1 for the irrepRl1, then the action of the

group on the subset of vectors

S5$w ^ cl1

l1 ;wPVl% ~A2!

generates the whole ofVl
^ Vl1.

~ii ! Some vector in every invariant subspaceV al3,Vl
^ Vl1 has a nonzero overlap with

some vector inS. For, if this were not so, the action of the group onSmust generate a space which
excludesV al3 and this contradicts~i!.

~iii ! A highest weight vectorCl3

al3 for the invariant subspaceV al3,Vl
^ Vl1 has nonzero

overlap with some vector inS. This is proved by showing that, if it were not so, then no vector in
V al3 could have a nonzero overlap with any vector inS, which contradicts~ii !. Let w ^ cl1

l1 , be

a vector inS which has a nonzero overlap with some vector inV al3 and expand

w ^ cl1

l15Cal3Cal31 (
bl38Þal3

Cbl38Cbl38, ~A3!

whereCbl38 P V bl38. Let Z be a product of raising operators ing, the Lie algebra ofG, which
raises the particular vectorCal3 to a highest weight vector; i.e.,Z is defined such that

ZCal35Cl3

al3. ~A4!

Applying Z to both sides of Eq.~A3! gives

~Zw! ^ cl1

l15Cal3Cl3

al31 (
bl38Þal3

Cbl38ZCbl38, ~A5!

and shows thatCl3

al3 has nonzero overlap with the nonzero vector (Zw) ^ cl1

l1 P S.

~iv! Let wa1n1
(al3) P Vl denote the cofactor ofca1n1

l1 in the expansion of a highest weight

vectorCl3

al3, i.e.,

Cl3

al35wl1
~al3!cl1

l11 (
a1 ,n1Þl1

wa1n1
~al3!ca1n1

l1 . ~A6!

We now claim that, if$Cl3

al3;a 5 1,...,N% is a maximal set of linearly independent highest weight

vectors of highest weightl3 in Vl
^ Vl1, then the corresponding vectors$wl1

(al3)% in Vl are
also linearly independent. For, if they were not, it would be possible to construct a nonzero highest
weight vectorSa aaCl3

al3 for whichSa aawl1
(al3) 5 0 and this would contradict~iii !.

~v! Let wl1
(al3) be expanded on the orthonormal basis$cbm

l % for Vl;
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wl1
~al3!5(

bm
Cbm~al3!cbm

l . ~A7!

Since the vectors$wl1
(al3);a 5 1,...,N% are a linearly independent set, it follows that theN

columns$C~al3!% of the rectangular matrixC~l3! are linearly independent and, hence, that the
rank of the matrixMl with entries

Mbm,b8m8
l

5(
a

Cbm~al3!*Cb8m8~al3! ~A8!

is equal to the numberN of values the multiplicity indexa can take; i.e., the multiplicity of the
l^l1→l3 coupling.

~vi! Finally, if the vectors$Cl3

al3% are an orthonormal set, the coefficientsCbm~al3! are the

Clebsch–Gordan coefficients

Cbm~al3!5~l1l1 ,lbmual3l3!. ~A9!

Moreover, the weightm takes the unique valuem5l32l1. It follows that the matrixNlm~l1! of
the theorem is given by

Nbb8
lm

~l1!5Mbm,b8m
l dm,l32l1

~A10!

and that it has the same rank asMl. This complete the proof of the theorem.
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Eichler integrals and string theory
Leonidas Sandoval, Jr.a)
Department of Mathematics, King’s College London, Strand, WC2R 2LS, London,
United Kingdom
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In this article, it is shown how to obtain objects calledEichler integrals in the
mathematical literature that can be used for calculating scattering amplitudes in
string theory. These Eichler integrals are also new examples of Eichler integrals
with poles. © 1996 American Institute of Physics.@S0022-2488~96!00804-2#

I. INTRODUCTION

The concept of an Eichler integral is closely related to the concept of automorphic forms.
Although automorphic forms have a large range of applications in physics and, in particular, in
string theory, Eichler integrals remain relatively unknown objects to both mathematicians and
physicists. One can picture Eichler integrals as a generalization of the concept of automorphic
forms, and they are related to the better knownBeltrami differentialsthat are used in string theory,
in particular, in the calculation of multiloop scattering amplitudes of strings.

This article begins with a description of the main properties of automorphic forms with some
examples that will be useful when we describe the new Eichler integrals. The definition of Eichler
integrals is given next, with some examples that can be used in string theory.

II. AUTOMORPHIC FORMS

An automorphic form of weightq is a function1 f(z) that transforms in the following way
under a projective transformationPa :

f„Pa~z!…5F]Pa~z!

]z Gqf~z!.

Automorphic forms with just one pole will be more of our interest, since the order of the pole is
limited in a simple way by the Riemann–Roch theorem.2 We now give some examples of these
functions.

A. Example 1

A simple example of an automorphic form of weightq can be given for the case where there
is just one projective transformationP(z), given by

P~z!5w~z2a!1a,

wherea is the finite fixed point of the transformation~the other fixed point is at infinity! andw is
the multiplier. An automorphic formf(z) of weightq can then be given by

f~z!5~z2a!q.

In the case whereP(z) has two finite fixed points, when it can be expressed by

a!Electronic mail: udah257@bay.cc.kcl.ac.uk
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P~z!5
a~z2b!2wb~z2a!

~z2b!2w~z2a!
,

an automorphic form of weightq is given by

f~z!5@~z2a!~z2b!#q.

B. Example 2

In the case of a single projective transformationP(z) with just one finite fixed point, we may
have automorphic forms with poles, given by

fn~z!5~z2a!qS ]

]t D
n21

`~ t !, t5 ln~z2a!2 ln~2a!,

wheren is the order of the pole and̀(t) is the Weierstrass̀ function3 with periods lnw and 2p i .
These functions have poles of orders<n at z50.

In the case ofP(z) having two finite fixed points, we have

fn~z!5@~z2a!~z2b!#qS ]

]t D
n21

`~ t !, t5 lnS z2a

z2b D2 lnS a

b D
instead.

C. Example 3

Still another way of obtaining an automorphic form on a genusg Riemann surface is consid-
ering the following function1 ~called a Poincare´ series!:

f~z,z!5(
a

FdTa~z!

dz G2q z2k

Ta~z!2z
,

wherek is an arbitrary constant and the sum(a is over all the elementsTa(z) of the Schottky
group, which is the group of all possible combinations of the projective transformationsPb(z),
b51,...,g.

Under a transformationz→Tb(z), one gets

f„Tb~z!,z…5(
a

FdTa Tb~z!

dz G2q z2k

TaTb~z!2z
.

We now perform a change of variablesTaTb(z)5Tc(z). Using the chain rule we have

d

dz
Tc~z!5F ddz TaTb~z!G3

d

dz
Tb~z!,

so that we have

f„Tb~z!,z…5@Tb8~z!#q(
a

FdTc~z!

dz G2q z2k

Tc~z!2z
.

Since we are summing over all the elements of the Schottky group, the series above is equivalent
to the original one, so that we have
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f„Tb~z!,z…5@Tb8~z!#qf~z,z!,

i.e. it is an automorphic form of weightq.

D. Example 4

In the multiloop case, let us consider only projective transformationsPa with finite fixed
pointsaa andba . We then consider the following series:

Pw~z!5(
b

~z2ab!~z2bb!

wb~ab2bb!

dwb

e
, ~1!

where the sum is over all the elements of the Schottky group formed by these transformations and
dwb ande are infinitesimals. We then have that

Pw„Ta~z!…5(
b

@Ta~z!2ab#@Ta~z!2bb#

5
Ta8~z!

wa~aa2ba!
2 3(

b

1

wb~ab2bb!
~aa2waba2ab1waab!

3~aa2waba2bb1wabb!Fz2
~aaba2waaaba2abba1waabaa!

~aa2waba2ab1waab!
G

3Fz2
~aaba2waaaba2bbba1wabbaa!

~aa2waba2bb1wabb!
G dwb

e
.

Making then the following change of variables:

ac5
~12wa!aaba2~ba2waaa!ab

aa2waba2~12wa!ab
, ~2!

bc5
~12wa!aaba2~ba2waaa!bb

aa2waba2~12wa!bb
, ~3!

wc5wb , ~4!

we may write

Pw„Ta~z!…5Ta8~z!(
c

~z2ac!~z2bc!

wc~ac2bc!

dwc

e
,

where we have used

dwc5
]wc

]wb
dwb .

Since we are summing over all elements of the Schottky group~with the condition that the fixed
points are finite!, we then see that the expression on the right-hand side is equivalent to the series
we started with, so that

Pw„Ta~z!…5Ta8~z!Pw~z!.
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We may also consider the following two series:

Pa~z!5(
b

~12wb!

wb~ab2bb!
2 ~z2bb!

2
dab

e
, ~5!

Pb~z!52(
b

~12wb!

~ab2bb!
2 ~z2ab!

2
dbb

e
. ~6!

Using the same change of variables~2!–~4! and the fact that

dac5
]ac

]ab
dab5

wa~aa2ba!
2

@aa2waba2~12wa!ab#
2 dab ,

dbc5
]bc

]bb
dbb5

wa~aa2ba!
2

@aa2waba2~12wa!bb#
2 dbb ,

we then obtain

Pa„Ta~z!…5Ta8~z!Pa~z!,

Pb„Ta~z!…5Ta8~z!Pb~z!.

We have then obtained three examples of automorphic forms with weight 1.

III. EICHLER INTEGRALS

An Eichler integral of orderq is defined in the following way:4,5 it is a function f (z) that
transforms like

f „Ta~z!…5F]Ta~z!

]z Gq@ f ~z!1Pq11~z!#,

wherePq11(z) is a polynomial at most of orderq11. It can be pictured as a generalization of the
concept of automorphic form. Eichler integrals are related with automorphic forms in the follow-
ing way:4 given an Eichler integral of orderq, we then have

f~z!5S ]

]zD
2q11

f ~z!, ~7!

wheref(z) is an automorphic form of weightq11, i.e.

f„Ta~z!…5F]Ta~z!

]z Gq11

f~z!.

Here are some examples of Eichler integrals.

A. Example 1

A trivial example of an Eichler integral is given by any polynomial of order 2, i.e. any
function of the form

f ~z!5a1bz1cz2,

wherea, b, andc are constants. Such a function transforms like
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f „Ta~z!…5Ta8~z!F f ~z!1
1

w~a2b!2
~d1ez1 f z2!G ,

where

d5~12w!2a1~12w!~a2wb!b2@wb2~12w!22w~ab21!1wa2#c,

e52~wa2b!~12w!a22ab~12w!2b1@2wb~a1b!22ab~wb1a!#c,

f5~b22wa2!~12w!a1ab~12w!~b2wa!b2wab2~22wa!c.

Differentiating it three times, we obtain

d3

dz3
f ~z!50,

which is a sort of automorphic form~a trivial one! so Eq.~7! holds.

B. Example 2

There are not many examples of Eichler integrals with poles in the literature. The first one was
given by Ahlfors.4 In our notation, his Eichler integral is given by

f ~z,z!5(
b

@z2Tb~z!#21@Tb8~z!#q,

where the sum is over all elements of the Schottky group.
This function transforms in the following way:

f „Ta~z!,z…5@Ta8~z!#q21H f ~z,z!1(
b

F Ta8Tb~z!

„Ta8~z!…q21/221G3@z2Tb~z!#21@Tb8~z!#qJ .
The second term on the right-hand side can be shown to be a polynomial of degreeq. This Eichler
integral has just one simple pole atz5z.

In order to obtain Eichler integrals with poles of higher orders, one just has to form deriva-
tives with respect toz:

f k11~z,z!5
]k

]zk
f ~z,z!,

where f k11(z,z) is an Eichler integral with a pole of orderk11 at z5z.

C. Example 3

As it will be shown now, not all Eichler integrals must transform in such a complicated way.
It is not hard to find examples of Eichler integrals with simple and useful transformations.

As explained before, an Eichler integral can be obtained by simply integrating an automorphic
form a certain number of times. It is possible to show that every automorphic form of weightq can
be expressed in terms of the following Poincare´ series:

g~z,z!5(
b

@Tb8~z!#2q
z2k

Tb~z!2z
, ~8!
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wherek is an arbitrary constant.
If we now take the caseq521, we have simply

g~z,z!5(
b

@Tb8~z!#21
z2k

Tb~z!2z
5(

b
~z2k!F 1

z1~bb2dbz!/~ab2cbz!
2

1

z1db /cb
G ,

and, by~7!, we may obtain an Eichler integral of weight zero simply by integrating this expression
once. Doing this we obtain the following:

f ~z,z!5(
b

~z2k!lnS cb
~ab2cbz!

@~ab2cbz!z1~bb2dbz!#

~cbz1db!
D1c8,

wherec8 is a constant of integration that can be set to zero.
We may then make the following change of coefficients:

am5ab2cbz, cm5cb ,
~9!

bm5bb2dbz, dm5db ,

and the functionf (z,z) becomes simply

f ~z,z!5(
m

~z2k!lnS cmam ~amz1bm!

~cmz1dm! D .
Performing the conformal transformation,

Ta~z!5
aaz1ba
caz1da

,

with caÞ0 in the expression above, we obtain

f „Ta~z!,z…5(
m

~z2k!lnS cmam @am~aaz1ba!1bm~caz1da!#

@cm~aaz1ba!1dm~caz1da!#
D . ~10!

If we now make another change of variables,

ab5amaa1bmca , cb5cmaa1dmca ,
~11!

bb5amba1bmda , db5cmba1dmda ,

we then have

f „Ta~z!,z…5(
b

~z2k!lnS ~cbda2cadb!

~abda2cabb!

~abz1bb!

~cbz1db!
D

5(
b

~z2k!F lnS cbab ~abz1bb!

~cbz1db!
D1 lnS ab~cbda2cadb!

cb~abda2cabb!
D G . ~12!

Since we are summing over all transformationsTb(z) with cbÞ0, the first term of expression~12!
is just f (z,z), and we then have

f „Ta~z!,z…5 f ~z,z!1(
b

~z2k!lnS ab~cbda2cadb!

cb~abda2cabb!
D . ~13!
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The second term of expression~13! can be readily identified as a constant, i.e. a polynomial inz
of degree 0, so that it is proved that the functionf (z,z) is an Eichler integral with weight 0.

We now consider automorphic form~8! with weight22:

g~z,z!5(
b

@Tb8~z!#2
z2k

Tb~z!2z
,

wherek is a constant and the sum is over all elements of the Schottky group. According to the
theory of Eichler integrals, if we integrate an automorphic form of weight22 three times, we shall
obtain an Eichler integral of weight 1. If we takeTb(z) to be of the form

Tb~z!5
abz1bb
cbz1db

,

we may then write this function in the following form:

g~z,z!5(
b

z2k

~ab2cbz!

1

~cbz1db!
3@z1~bb2dbz!/~ab2cbz!#

.

This can be easily integrated. Considering the case wherecbÞ0 and performing integration three
times on this automorphic form, we obtain the following function:

f ~z,z!5(
b

1

2
~z2k!@~ab2cbz!z1~bb2dbz!#2

3 lnS cb
~ab2cbz!

@~ab2cbz!z1~bb2dbz!#

~cb1db!
D

1
1

2cb~ab2cbz!
z2

2~ab2cbz!db11

4cb
2~ab2cbz!2

1c1z
21c2z1c3 , ~14!

wherec1 , c2 , and c3 are constants resulting from the integrations. Choosing these integration
constants in such a way as to cancel with the polynomial part of expression~14!, we then obtain

f ~z,z!5(
b

1

2
~z2k!@~ab2cbz!z1~bb2dbz!#2

3 lnS cb
~ab2cbz!

@~ab2cbz!z1~bb2dbz!#

~cb1db!
D . ~15!

We can now make the change of coefficients~9! and the functionf (z,z) becomes

f ~z,z!5(
m

1

2
~z2k!~amz1bm!2 lnS cmam ~amz1bm!

~cmz1dm! D . ~16!

This expression should be an Eichler integral and we are going to show it indeed is. If we
perform the conformal transformation

Ta~z!5
aaz1ba
caz1da

, ~17!

with caÞ0 in the expression above, we obtain
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f „Ta~z!,z…5(
m

1

2
~z2k!Fam~aaz1ba!1bm~caz1da!

caz1da
G2

3 lnS cmam @am~aaz1ba!1bb~caz1da!#

@cm~aaz1ba!1dm~caz1da!#
D . ~18!

If we now make another change of variables, given by~11!, we then have

f „Ta~z!,z…5Ta8~z!(
b

1

2
~z2k!~abz1bb!

2 lnS ~dbaa2cbba!

~bbaa2abba!

~abz1bb!

~cbz1db!
D

5Ta8~z!(
b

1

2
~z2k!~abz1bb!

2F lnS cbab ~abz1bb!

~cbz1db!
D1 lnS ab~dbaa2cbba!

cb~bbaa2abba!
D G .

~19!

Since we are summing over all transformationsTb(z) with cbÞ0, the first term of expression~19!
is just f (z,z), and we then have

f „Ta~z!,z…5Ta8~z!F f ~z,z!1(
b

1

2
~z2k!~abz1bb!

2 lnS ab~dbaa2cbba!

cb~bbaa2abba!
D G . ~20!

The second term of expression~20! can be readily identified with a polynomial inz of degree 2 so
that it is proved that the functionf (z,z) is an Eichler integral.

D. Example 4

We consider now the case where there is just one projective transformation,

T~z!5
az1d

cz1d
, ~21!

that can be written in terms of the finite fixed pointa and the multiplierw as

T~z!5w~z2a!1a. ~22!

In string theory, and, in particular, in the group theoretic approach,6 we will be interested in
functions that are associated with conformal transformations that cause infinitesimal changes in
the moduli of a Riemann surface with genusg. In one loop, i.e., a Riemann surface with genus 1,
we have one finite fixed pointa, one fixed point at infinity, and the multiplierw. In order to fix the
modular invariance of the theory, we must fix three variables. Besides the one fixed point that has
been already fixed at infinity, we can choose to fix the finite fixed point and one of the variables
associated with the incoming strings so that the multiplierw will be the only variable associated
with the loop left.

We then want a function that has the effect of changing the multiplierw infinitesimally, i.e.
we want a function that transforms like

f „T~z!…5T8~z! f ~z!2
]T~z!

]w

dw

e
, ~23!

i.e.
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f „T~z!…5T8~z!F f ~z!2
dw

ew
~z2a!G ~24!

and

f „S~z!…5 f ~z!, ~25!

whereS(z)5e2p iz and wheree anddw are infinitesimals.
A function that transforms in this way was found in Refs. 6 and 7 in the context of string

theory. It is given by

f ~z!5
dw

ew
~z2a!z̄„ln~z2a!…, ~26!

where the functionz̄(t) is given by

z̄ ~ t !5z~ t !2
z~p i !

p i
t.

The functionz(t) is Weierstrass’z function,

z~ t !5
1

t
1 (

pÞ0
S 1

t2p
1
1

p
1

1

p2D ,
wherep is the semi-period of the function and is given byp5nw11mw2 , ~n,mPZ!, where

w15 ln w, w252p i .

The Weierstrassz function transforms in the following way:

z~ t1w1!5z~ t !12z~w1/2!,

z~ t1w2!5z~ t !12z~w2/2!,

and the term ln(z2a) transforms like

ln„T~z!2a…5 ln w1 ln~z2a!,

ln~e2p iz2e2p ia!5 ln~2p i !1 ln~z2a!,

so that we have

f „T~z!…5T8~z!F f ~z!2
dw

ew
~z2a!G . ~27!

The functionz̄(t) can be related to the theta function3 in the following way:

z̄ ~ t !5
d

dt
ln u~ t,t!,

whereu(t,t) has periodsw15ln w andw252p i .
If we take the third derivative of the functionf (z), we obtain
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g~z!5 f-~z!5
dw

ew

1

~z2a!2 F`~ t !1
z~p i !

p i
2`9~ t !G ,

where t5ln(z2a) and `(t) is Weierstrass’̀ function with periodsw15ln w and w252p i ,
given by

`~ t !52
d

dt
z~ t !

which transforms like

`~ t1w1!5`~ t1w2!5`~ t !,

i.e. it is an elliptic function.
Since`(t) and its derivatives do not change under a transformation oft1ln w or t12p i , we

then have

g„T~z!…5
1

w2 g~z!5@T8~z!#22g~z!,

i.e. g(z) is an automorphic form with weight22, as expected from the relation~7!. So we have
verified thatf (z) is an Eichler integral.

E. Example 5

We shall now search for a function with transformation properties similar to those of~23!, but
now for the case of many projective transformations. We want a function that transforms like

f w„Ta~z!…5Ta8~z! f w~z!2
]Ta~z!

]wa

dwa

e
, ~28!

where

Ta~z!5
aa~z2ba!2waba~z2aa!

~z2ba!2wa~z2aa!
,

for everya51,...,g, i.e. the action ofTa(z) on this function causes infinitesimal changes in the
multiplierswa . So this function must transform like

f w„Ta~z!…5Ta8~z!F f w~z!1
~z2aa!~z2ba!

wa~aa2ba!

dwa

e G . ~29!

In addition to this, we also demand that

f a„Sa~z!…5 f a~z!, ~30!

wherez→Sa(z) is the transformation that takesz once around theaa loop for a51,...,g.
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In order to find the Eichler integral that transforms like this, we shall make analogies between
the function in one loop and the function that we must have for the multiloop case. First we notice
that the seriesPw(z) defined in~1!,

Pw~z!5(
b

~z2ab!~z2bb!

wb~ab2bb!

dwb

e

transforms like

Pw„Ta~z!…5Ta8~z!Pw~z!,

so that it is the generalization for the multiloop case of the polynomial (z2a) for the one loop
case.

Now we must try to find an analog of the Weirestrassz function suitable to the multiloop case.
This can be obtained by first generalizing the concept of au function and of the Weierstrassz
function. This function is given by the hyperellipticz function8,9 or best, thez̄ function defined in
the Appendix. In our first attempt we attach az̄b(v) function to every element of the seriesPw(z),
so that we have

f 1w~z!5(
b

dwb

e

~z2ab!~z2bb!

wb~ab2bb!
z̄b~v !.

This function will not transform the way we want, since the term (z2ab)(z2bb)/(ab2bb) and
the first Abelian integralsvb(z) do not transform in the same way. We then go to the next step,
which is makingz̄ a function not of the first Abelian integralsvb(z), but of variablesub(z) ~such
a change of variables can be justified, as in Baker,8 Sec. 192!, such that

ub~z!5 lnS z2ab

z2bb
D2 lnS aa

ba
D .

Under a changez→Ta(z), these variables will change like

ub„Ta~z!…5
Ta~z!2ab

Ta~z!2bb
5

~aa2waba2ab1waab!

~aa2waba2bb1wabb!

3
@z2~aaba2waaaba2abba1abwaaa!/~aa2waba2ab1waab!#

@z2~aaba2waaaba2bbba1bbwaaa!/~aa2waba2bb1wabb!#
.

Performing the same change of variables as in~2!–~4!, we then obtain

Ta~z!2ab

Ta~z!2bb
5wca

z2ac

z2bc
,

where the coefficientwca is given by

wca5
~12wa!bc2~ba2waaa!

~12wa!ac2~ba2waaa!
,

so that

ub„Ta~z!…5 ln wca1uc~z!.

We then redefine the generalizedu function u(v) in the following way:
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u~u!5 (
n52`

`

expF (
c,d51

g

~nc1dc!
1

2
ln wcd~nd1dd!1 (

c51

g

2p igc~nc1dc!1 (
c51

g

uc~nc1dc!G .
This function transforms like

u~u1V!5expH 2 (
c51

g

pcS uc1 1

2
VcD 2 (

c51

g

@p ipcqc22p i ~qcdc2pcgc!#J u~u!,

whereVb is now given by

Vb5 (
c51

g

~2p i dbcpc1 ln wbcqc!52p ipb1 (
c51

g

ln wbcqc .

Defining now

z̄ b~u!5
]

]ub
ln u~u!, ~31!

we have

z̄ b~u„Ta~z!…!5 z̄b~u!2dab

and

z̄ b~u„Sa~z!…!5 z̄b~u!.

We then define the following function:

f ~z!5(
b

dwb

e

~z2ab!~z2bb!

wb~ab2bb!
z̄b„u~z!…. ~32!

This function transforms like

f w„Ta~z!…5Ta8~z!(
c

dwc

e

~z2ac!~z2bc!

wc~ac2bc!
@ z̄c„u~z!…2dac#

5Ta8~z!F(
c

dwc

e

~z2ac!~z2bc!

wc~ac2bc!
z̄c„u~z!…2

dwa

e

~z2aa!~z2ba!

wa~aa2ba!
G

and

f w„Sa~z!…5 f w~z!.

Since we are summing over all the elements of the Schottky group, we then have

f w„Ta~z!…5Ta8~z!F f w~z!2
dwa

e

~z2aa!~z2ba!

wa~aa2ba!
G ,

f w„Sa~z!…5 f w~z!,

which are the transformation properties we wanted. So we have obtained the Eichler integral that
has the effect of changing infinitesimally the variableswa of a Riemann surface of genusg.
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One way to verify this is a true Eichler integral is to take its third derivative. The result must
be an automorphic form of weight22. Taking the third derivative of~32!, we have

gw~z![
d3

dz3
f a~z!5(

b

dwb

ewb
F ~ab2bb!

~z2ab!~z2bb!
G2@ `̄bc„u~z!…2`̄bc9 „u~z!…#, ~33!

where

`̄bc~u!52
]

]uc
z̄b~u!

is the hyperelliptic̀ function and

`̄bc9 ~u!5 S ]

]uc
D `̄bc~ub!.

It can be easily verified that̄̀bc(u) and its derivatives are invariant under changesz→Ta(z)
andz→Sa(z), so that the functiong(z) transforms like

gw„Ta~z!…5„Ta8~z!…22gw~z!, ~34!

i.e. it is an automorphic form of weight22. This confirmsf w(z) as an Eichler integral.

F. Example 6

In the same way we found a function~Eichler integral! that changes the variableswa of a
Riemann surface infinitesimally we now want to find a function that will change the variablesaa

infinitesimally. This means this function must transform like

f a„Ta~z!…5Ta8~z! f a~z!2
]Ta~z!

]aa

daa

e
,

for everya51,...,g, what implies that we want this function to transform like

f a„Ta~z!…5Ta8~z!F f a~z!1
~12wa!

wa~aa2ba!
2 ~z2ba!

2
daa

e G . ~35!

We also demand that

f a„S~z!…5 f a~z!. ~36!

The method to obtain this function is analogous to the one used in example 5, but now we use,
instead of the seriesPw(z), the series~5!

Pa~z!5(
b

dab

e

~12wb!

wb~ab2bb!
2 ~z2bb!

2.

The function~Eichler integral! with the properties we need is then given by

f a~z!5(
b

dab

e

~12wb!

wb~ab2bb!
2 ~z2bb!

2z̄b~u!. ~37!
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G. Example 7

Similarly, if we want a function that changes the variablesba infinitesimally, we then need it
to transform like

f b„Ta~z!…5Ta8~z! f b~z!2
]Ta~z!

]ba

dba

e
,

i.e.

f b„Ta~z!…5Ta8~z!F f b~z!1
~12wa!

~aa2ba!
2 ~z2aa!

2
dba

e G . ~38!

We also demand that

f b„S~z!…5 f b~z!. ~39!

We then use the series~6!

Pb~z!5(
b

dbb

e

~12wb!

~ab2bb!
2 ~z2bb!

2,

and build the Eichler integral,

f b~z!5(
b

dbb

e

~12wb!

~ab2bb!
2 ~z2ab!

2z̄b~u!, ~40!

which has the correct transformation properties.
This concludes our series of examples. The last three examples can be used in order to

calculate the measure of the scattering ofN bosonic strings in any order of perturbation theory
~orderg! through the Group Theoretic approach to string theory. These are also new examples of
Eichler integrals with poles with some nicer transformation properties.
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APPENDIX: SOME GEOMETRICAL OBJECTS DEFINED ON A GENUS g RIEMANN
SURFACE

1. Generalized u functions

The generalizedq function is defined in the following way:8

q~v;g,d!5 (
n52`

`

expH (
a,b51

g F 1

2p i
vah~2!abvb1p i ~na1da!tab~nb1db!G

1 (
a51

g

@va~na1da!12p iga~na1da!#J ,

2523Leonidas Sandoval, Jr.: Eichler integrals and string theory

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



where the sum(n52`
` means the sum over allna , a51,...,g. Here,va , vb are theg first Abelian

integrals,h (2)ab is a symmetricg3g matrix, tab is the period matrix,na , nb are integers andga ,
da are vectors withg components that are the characteristics of the function.

If all the elements in the rowsp andq are integers, this function transforms like8

q~v1V;g,d!5expH (
a51

g FHaS va1 1

2
VaD 2p ipaqa12p i ~qada2paga!G J q~v;g,d!,

where

Ha5 (
b51

g

@2h~1!abpb12h~2!abqb#,

Va52p i(
b51

g

tabpb12p iqa ,

whereh (1)ab is a symmetricg3g matrix.
We can fixh (2)ab50. This implies

h~1!ab52 1
2 dab .

We then have the following function:

u~v;g,d!5 (
n52`

`

expH (
a,b51

g

p i ~na1da!tab~nb1db!1 (
a51

g

@va~na1da!12p iga~na1da!#J ,
which transforms like

u~v1V;g,d!5expH (
a51

g FHaS va1 1

2
VaD 2p ipaqa12p i ~qada2paga!G J u~v;g,d!.

This is the function that is generally refered to as the generalizedu function in the literature.
We may define the well-known object called the prime form in terms of the generalizedu

function, which is its most general definition. It is given by

E~z,z!5u„v~z!2v~z!…F (
a51

g

]au~0!wa~z!G21/2F (
b51

g

]bu~0!wb~z!G21/2

,

where

]au~0![
]

]va
u~v !U

v50

, ]bu~0![
]

]vb
u~v !U

v50

,

andwa(v), wb(v) are first Abelian differentials.

2. Hyperelliptic z function

We now define thehyperellipticz function:8,9

za~v !5
]

]va
ln q~v;g,d!.
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This function transforms in the following way:

za~v1V!5Ha1za~v !5 (
b51

g

~2h~1!abpb12h~2!abqb!1za~v !.

The analogy with the one loopz functions is complete when we associate the matricesh~1! andh~2!

with the numbersz(w1/2) andz(w2/2), respectively. We then have the identity

(
c51

g

2p i tach~2!cb22p ih~1!ab5p idab .

A function that will be more useful to us is one that is invariant under a changeVa52p iqa
so that we must fixh (2)ab50. Such a function, sayz̄a , is defined by

z̄ a~v !5
]

]va
ln u~v;g,d!

and transforms like

z̄ a~v1V!52pa1 z̄a~v !.

More particularly, this formula shows that the functionz̄ is invariant under a change
Va52p i tabpb for bÞa. It only changes, and then only by a constant term, under the transfor-
mationVa52p i taapa for any pa .

3. Hyperelliptic ` function

We may now define a hyperelliptic̀ function in the following way:8,9

`ab52
]

]vb
za~v !52

]

]vb

]

]va
ln u~v !.

This function is invariant under changesVa52p i(b51
g tab12p iqa , i.e.

`ab~v1V!5`ab .
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(a,b)-derivations on quantum function algebras
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~a,b!-derivations, introduced by Cohn, are defined on several noncommutative
function algebras including the Hopf function algebras of the quantum groups
SLq(n), n52,3, where their interpretation is most apparent. In analogy with alge-
braic groups, left-invariant~a,b!-derivations on the Hopf function algebra of
SLq(n), n52,3, generate its quantum universal enveloping algebraUq~sl(n)!. Deri-
vations and their algebras are also found on the non-Hopf, function algebras of two
noncommutative varieties, which are constructed similarly to SLq~2! and SLq~3!.
General~a,b! derivations~analogs of arbitrary vector fields! are found for SLq~2!
and the quantum plane. The analog of the tangent bundle TSLq~2! is defined, and
its relation to derivations is discussed. Some examples of~a,b! derivations on
commutative algebras are also given. Generalities about~a,b! derivations and their
algebras are discussed. ©1996 American Institute of Physics.
@S0022-2488~96!02305-6#

I. INTRODUCTION

In algebraic group theory, derivations on the commutative Hopf function algebra~FA! of a
Lie group can define the Lie algebra.1 In this article a similar role is considered for~a,b! deriva-
tions ~to be called~a,b!-D! on Hopf FAs dual to quantum groups. More generally~a,b!-Ds and
algebras they generate are found on various other noncommutative, deformed~quantum! FAs.
~a,b!-Ds have been defined and used in the theory of noncommutative rings.2

This work is in the spirit of algebraic groups and fits most naturally into the approach to
quantum groups given by Manin3 in noncommutative algebraic geometry~NAG!. Because of its
greater complexity~compared to algebraic geometry~AG!! NAG is barely in its formative stage.2,4

However, algebraic quantum groups occupy such a special, small corner of NAG that at least
some~a,b!-Ds can be fairly easily defined there, and they seem to fit into the theory in much the
same way that ordinary derivations do in algebraic groups. We explain this a little more after
giving, in the following paragraph, a brief summary of those aspects of algebraic groups which
have been a useful guide.1

The Lie algebra of a Lie groupG ~overk! may be defined as the Lie algebrag of left-invariant
vector fields onG or as the Lie algebraTeG of tangent vectors toG at the identityePG. On the
dual Hopf FA,H, these correspond, respectively, to the Lie algebra of left-invariant derivations
D:H→H denoted by derL(H) and the Lie algebra of derivationsd:H→k denoted by der(H,k).
These are all isomorphic,g>TeG>derL(H)>der(H,k). The universal enveloping algebra~UEA!
of g, U(g), can then be defined asU~derL(H)! ~and similarly for der(H,k)!. In later discussions
this algebra will be denoted by Der. Thus, in summary,U(g)>U~derL(H)![DerL(H).

In this article~a,b!-Ds are defined on the Hopf FAs of SLq~2!, SLq~3!,5 on two FAs which
will often be referred to by their noncommutative varieties we callVq,p~2!, Vq~3!, on two quantum
planes, and on several commutative FAs. For the quantum groups SLq~2! and SLq~3!, ~a,b!-Ds
provide a link between FAs and quantum UEA which parallels that in algebraic groups described
above, e.g., DerL(Hq)>Uq~sl~2!! whereHq is the Hopf FA of SLq~2!. The ~a,b!-Ds on the FAs
of the other noncommutative varieties,Vq,p~2!, Vq~3!, and the quantum planes, are found in order
to show that~a,b!-Ds exist on more general FAs than those of quantum groups. Generally ‘‘FA’’
will mean a noncommutative algebra which is a deformation of a commutative FA, e.g., the ones

0022-2488/96/37(5)/2527/26/$10.00
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just mentioned. In principle, general noncommutative algebras could be considered, but the valu-
able guidance of nearby commutative FAs would not be available.

There is some indication that, roughly, the pattern of~a,b!-Ds found in the above cases may
also be present for~a,b!-Ds on many such varieties. This motivates the definition of aq variety
(q-V) such thatVq,p~2!, Vq~3!, SLq~2!, and SLq~3! appear as examples ofq-Vs. Here the termi-
nology ofq-V is in analogy with an algebraic group, which is a variety. However, this is mostly
formal. Except in Sec. IX, where varieties are explicitly defined, we work entirely with their FAs,
even when ‘‘variety’’ is mentioned. Thus ‘‘derivations onV’’ will mean ‘‘derivations on the FA
of V.’’

Unfortunately our notion of aq-V is too close to quantum groups to expose much about a
possible role for~a,b!-Ds more generally in NAG. A discussion of that question is beyond the
scope of this work.

Here is a summary of the contents. In Sec. II~a,b!-Ds are defined in more generality than is
strictly necessary for the present work. However, an example of this generality is given in Sec. V
in the construction ofq-Vs. In Sec. III we discuss how Hopf algebras can arise from~a,b!-Ds of
an unspecified FA. Section IV is not essential, but it shows the curious possibility of antideriva-
tions on noncommutative FAs. In Sec. Vq-Vs are defined from bialgebras, and the general
structure of their derivations is outlined. Two examples ofq-Vs,Vq,p~2! andVq~3!, are defined in
Secs. VI and VII. In Sec. VI,~a,b!-Ds are defined onVq,p~2! and their derivation Hopf algebra
Der0(A) is found. Left-invariant~a,b!-Ds on SLq~2! and the Hopf algebra DerL(Hq)>Uq~sl~2!!
appear as a special case. The adjoint action ‘‘x’’ is briefly considered in the context of~a,b!-Ds.
In Sec. VII an algebra Der0(A) of ~a,b!-Ds onVq~3! is found and compared withUq~sl~3!!, which
is realized by left-invariant~a,b!-Ds on SLq~3!. In Sec. VIII general~a,b!-Ds and their Hopf
algebra Der are found for the quantum plane. Two subalgebras of Der are found, including a
Euclidean quantum group. Another Euclidean quantum group and the Heisenberg quantum group
are found from a different quantum plane. Some general non-left-invariant derivations are found
on SLq~2!. In Sec. IX we define a noncommutative variety which is formally theq analog of the
tangent bundle of SL~2!. This article is primarily concerned with~a,b!-Ds on noncommutative
FAs. However, in Sec. X,~a,b!-Ds on several commutative FAs are considered. For other ap-
proaches to derivations and quantum groups see Refs. 6–8.

II. (a,b)-DERIVATIONS

In this section~a,b!-derivations2 are defined on a generally noncommutativek-algebraA, and
various preliminary results and general examples of~a,b!-Ds are given for use in later sections.

An ~a,b!-D has two algebra homomorphisms~Homs!, a andb which go into the definition of
the Leibniz rule.~The name ‘‘~a,b!-D’’ will be a generic name for any such derivation as well as
for a specific one involvinga andb.! The following notation will be useful. The action ofa ~or
any Hom! on fPA will be written variously asa( f )5a f5 f a, according to economy and clarity.
The action of a derivationD is similarly denoted byD( f )5Df5 f D. Reference tok, the ground
field, is usually suppressed. Thus Hom meansk-Hom ~k-linear map!, etc.

Let A, A8, andA9 be noncommutativek-algebras, and letM be a leftA8 module and a right
A9 module.M is not necessarily a left–rightA8–A9 bimodule because module multiplication may
not be associative; that is, forf 8PA8, g9PA9, andmPM , it may be thatf 8(mg9)Þ( f 8m)g9; an
example of this occurs in Sec. V. However, algebra Homsa:A→A8 andb:A→A9 may exist such
that

f a~mgb!5~ f am!gb ~2.1!

for all f ,gPA. ThenM is an Ima-Im b bimodule which we call an~a,b! bimodule. AssumeM
to be an~a,b! bimodule. LetD:A→M , a:A→A8, andb:A→A9 be Homs which satisfy
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~ f g!D5 f agD1 f Dgb,
~2.2!

~ f 1f 2!
a5 f 1

a f 2
a , ~g1g2!

b5g1
bg2

b

for all f , g, f 1, f 2, g1, g2PA. D, a, b are linear:D( f1g)5Df1Dg, etc.
The first equation expresses the derivation character ofD in terms ofa andb. The last two

equations just state thata and b are algebraHoms, which, together with the~a,b! bimodule
structure ofM in Eq. ~2.1!, is necessary to makeD well defined on arbitrary products. For
example, the two ways to apply Eq.~2.2! to ( f gh)D agree if (f g)ahD5 f agahD,
f D(gh)b5 f D f bgb, and f a(gDhb)5( f agD)hb[ f agDgb. Equations~2.2! constitute the~a,b!
Leibniz rule, andD is called an~a,b!-D, often denoted by$a,b,D%.

Comments on the Leibniz rule.
~1! It reduces to the ordinary Leibniz rule ifM5A85A95A anda5b5idA , the identity map

on A. This is the usual situation.
~2! Algebra Homs preserve the unit~a1A51A8 andb1A51A9!, soD(1A)50, which makesD

a k-derivation, i.e.,D:k→0. a could be interpreted as an~a,0!-D or a ~0,a!-D, but obviously it
would not be ak-derivation, i.e.,a1A51A8Þ0 ~similarly for b!. In this work the terms ‘‘deriva-
tion’’ and ‘‘ ~a,b!-D’’ will always mean thata,bÞ0.

~3! It allows the possibility of having two derivations which act identically on the generators
of A but differently on products, i.e.,D5D8 on the generators but~a,b!Þ~a8,b8!. It can also
happen thatDÞD8, while D andD8 are both~a,b!-Ds. Both of these situations arise. A zero
~a,b!-D and a zero~a8,b8!-D are equivalent.

~4! The Leibniz rule~2.2! can be represented by commutative diagrams as shown in Fig. 1,
which will be used to define comultiplication in Sec. III.

~5! Our approach will start with~a,b!-Ds and see what structure they generate. On hindsight,
interest in~a,b!-Ds for noncommutativeA may be seen by reversing the logic.A and Der(A) are
contravariantly related, so noncommutativity ofA corresponds to noncocommutativity of Der(A).
This in turn leads via~4! above to~a,b!-Ds and the Leibniz rule. The particular form of the
coproduct of the~a,b!-Ds, as in Eq.~3.6!, is discussed in thecomment on [,]near the end of Sec.
III.

~6! More general objectsuj
i , i , j51,...,n can be defined6:

~ f g!u j
i
5(

k
f uk

i
gu j

k
. ~2.3!

For n52, u2
1 is a ~u1

1,u2
2!-D.

Examples:The Leibniz rule is easily checked in each case.
~1! Let M5A^A have the usual left–rightA–A bimodule structure anda, b:A→A be

algebra Homs. ThenD:A→A^A defined by

D~ f !51^ f b2 f a
^1

is an~a,b!-D. If a5b5idA , thenD is the usual universal derivation defined for noncommutative
algebras.9

~2! Given ~a,b!, mPM defines an~a,b!-D Dm :A→M :

Dmf5 f am2mfb.

~3! A recurring special case of~2! takesM5A85A95A andm51A @usuallym5c1A , cPk;
see~5! below#. Then we writeD5a2b:

~ f g!a2b5 f aga2 f bgb5 f aga2b1 f a2bgb. ~2.4!
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~4! Let D:A→A be an ~a,b!-D and f, c:A→A be algebra Homs, thenwDc is a
~wac,wbc!-D. ~HerewDc[f+D+c, fac[f+a+c, etc., mean composition of maps.! In particu-
lar, if a21 exists, thena21D and Da21 are, respectively,~id,a21b!- and ~id,ba21!-Ds. An
analogous statement holds forb if b21 exists.~In the general case~2.2!, FD is an~a,b!-D, where
F:M→M is an (A8,A9) bimodule homomorphism.!

~5! If D is an ~a,b!-D and fPA, then ‘‘f •D ’’ ~left ‘‘multiplication’’ of D by f ! is not in
general an~a,b!-D or even necessarily a derivation at all.~This is not actually module multipli-
cation; see Sec. VIII.! However, sinceD:k→0, multiplication bycPk makes sense, andcD5Dc
is an ~a,b!-D. In particular,c~a2b! is an ~a,b!-D. Note thata2b52~b2a! is also a~b,a!-D.

III. ALGEBRA OF DERIVATIONS

In this sectionM5A85A95A is an unspecified FA. The~a,b! derivations$a,b,D% on A
generate an associative algebraDer(A). Multiplicationm:Der(A)^Der(A)→Der(A) is given by
composition and the unith:k→Der(A) by h~1!5idA . In generalDer(A) is infinitely generated. In
this section we consider a Hopf subalgebra Der(A),Der(A). Der(A) may also be infinitely
generated. For most of the FAs considered later, we are interested in some finitely generated
~denoted by subscript 0! Hopf subalgebra Der0(A),Der(A). However, this distinction is unim-
portant in this section. Here the purpose is to formulate relations~abbreviated Rels.! which are
natural for derivations to satisfy and which make Der(A) a Hopf algebra. SinceA is unspecified,
Der(A) only attains a general form; the structure constants remain undetermined. This general
form of Der(A) gives a perspective on later examples.

Consider a set of derivations onA, $a i ,b i ,Di% i51,2,..., which generate the algebra
Der(A)5k^a1 ,b1 ,D1 ,...& with as yet unspecified Rels. The Leibniz rule~2.2! does not guarantee
~in contrast to the usual Leibniz rule! that the commutator [Di ,Dj ] of two derivations is again a
derivation. For this,$a i ,b i ,Di% and$a j ,b j ,Dj% have to satisfy certain Rels., which we now find.
Consider the action of [Di ,Dj ] on a productf gPA:

~ f g!@Di ,Dj #5 f DiD jgb ib j2 f D jDigb jb i1 f a ia jgDiD j2 f a ja igD jDi

1 f a iD jgDib j2 f D ja igb jDi1 f Dia jgb iD j2 f a jDigD jb i. ~3.1!

HereiÞ j is assumed; the casei5 j will be discussed below. In general the first four terms on the
right-hand side will make the commutator a derivation if the following Rels. are satisfied:

a ia j5a ja i , b ib j5b jb i , ~3.2a!

Dia j5t i ja jDi , Djb i5t i jb iD j , ~3.2b!

Dja i5t j ia iD j , Dib j5t j ib jDi , ~3.2c!

wheret i j ,t j iPk. If Eqs. ~3.2! hold, then [Di ,Dj ] is an (a ia j ,b ib j )-D:

~ f g!@DiD j #5 f a ia jg@Di , Dj #1 f @Di , Dj #gb ib j .

Rels. ~3.2! are generally satisfied. If they are not satisfied and thus do not cause a pairwise
cancellation among the last four terms in Eq.~3.1!, then at least one of three things happens:~1!
the commutator [Di ,Dj ] is not a derivation,~2! [Di ,Dj ] may still be an (a ia j ,b ib j )-D due to
more complicated cancellations among these terms,~3! [Di ,Dj ] may ‘‘accidentally’’ be a deri-
vation but of a different type, say an~a,b!-D where~a,b!Þ(a ia j ,b ib j ). Situation~2! occurs in
the Euclidean quantum group, example~4! in Sec. VIII, and~3! occurs in Sec. X: see Eq.~10.6!.
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Consider one of the Rels.~3.2b! or ~3.2c!, say the first one. By example~4! of Sec. II,Dia j

is an (a ia j ,b ia j )-D, anda jDi is an (a ja i ,a jb i)-D. These must represent the same derivation.
This is true iff a ja i5a ia j anda jb i5b ia j . Extending this to all the Rels. in Eqs.~3.2b! and
~3.2c! requires two more Rels.:

a jb i5b ia j , a ib j5b ja i . ~3.2d!

If ai
21 andbi

21 exist, then there may be further Rels.:

a ib i5b ia i5 idA . ~3.3!

If so, then the two Rels. in Eqs.~3.2b! and ~3.2c! involving Dj become the same, which can be
written asa iD jb i5t i j D j , wheret i j5(t j i )

21. In addition, the Rels. in Eq.~3.2d! become a con-
sequence of Eqs.~3.3! and~3.2a!. The same comment aboutDi holds if a jb j5b ja j5 idA . Then
one of the Rels.~3.2a! becomes dependent. Rels.~3.3! do not always exist asVq,p~2! shows, but
we impose them when possible.

In the diagonal casei5 j , where [Di ,Dj ]50 is a trivial derivation, Eq.~3.1! reduces to 050
and does not yield any Rels. of the type~3.2!. Thus, the Rels.~3.2! are assumed only foriÞ j . Any
such Rels. which exist fori5 j , do so ‘‘voluntarily’’ as happens forVq,p~2!.

Suppose Rels.~3.2! are satisfied, so [Di ,Dj ] is an (a ia j ,b ib j )-D. Then there are two pos-
sibilities for further Rels. among$a i ,b i ,Di% and$a j ,b j ,Dj%. One is that [Di ,Dj ] is proportional
to (a ia j2b ib j ), which, is also an (a ia j ,b ib j )-D ~see example~3! in Sec. II!:

@Di ,Dj #5ci j ~a ia j2b ib j !, ~3.4!

whereci jPk. The second possibility is that among the derivations$a i ,b i ,Di% i51... there is one,
$a l ,b l ,Dl%, which is proportional to$a ia j ,b ib j ,[Di ,Dj ] %. Then there are Rels.

a ia j5a l , b ib j5b l , @Di ,Dj #5ci j
l Dl . ~3.5!

Generally Der(A) will satisfy Rels.~3.2!, and some combination of Eqs.~3.4! and~3.5!. These
are either verified or imposed as constraints as follows. Each side ofa jb i5b ia j is an algebra
Hom, so it is sufficient to check it on the generators ofA. Each side ofDia j5t i ja jDi is a
derivation of the same type, so if it holds on generators then it extends toA by the Leibniz rule.
Equations~3.4! and ~3.5! are proved similarly. Thet i j in Eqs.~3.2b! and ~3.2c!, ci j in Eq. ~3.4!
andci j

l in Eq. ~3.5! are the structure constants of Der(A).
Der(A) as a Bialgebra. Rels. ~3.2!–~3.5! give Der(A) a bialgebra structure which we now

discuss. The Leibniz rule as represented in Fig. 1 suggests a comultiplication for Der(A), namely,
the map which takes the bottom arrows to the top arrows. Thus we defineD:Der(A)
→Der(A)^Der(A) by

DDi5a i ^Di1Di ^ b i ,

Da i5a i ^ a i , Db i5b i ^ b i . ~3.6!

A coproduct of this form is naturally constructed for any~a,b!-D.
Rel. ~3.3! is assumed whenever possible in order to giveDDi the same form as the coproducts

for the quantized Kac–Moody algebras given in Ref. 5. Other choices, such asa i5 id or b i5 id
could have been made instead of Eq.~3.3!. An example of this is mentioned in connection with the
algebra~6.14!.

Comment. Comultiplication for theu j
i in Eq. ~2.3! would be6
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D~u j
i !5(

k
uk
i

^ u j
k .

The counite :Der(A)→k consistent withD ~i.e., satisfies (e ^ id)D5 id5( id^ e)D! is de-
fined by

e~a i !5e~b i !51, e~Di !50. ~3.7!

As is necessary,D ande respect Rels.~3.2!–~3.5!.
From example~4! of Sec. II,a iD j would appear in Fig. 1 as an (a ia j ,a ib j )-D and so has

comultiplication

D~a iD j !5a ia j ^ a iD j1a iD j ^ a ib j5~a i ^ a i !~a j ^Dj1Dj ^ b j !5D~a i !D~Dj !. ~3.8!

The second equality uses the definition of multiplication in Der(A)^Der(A). Thus,D is an algebra
Hom, which is necessary for Der(A) to form a bialgebra.D is coassociative, which is also
necessary. Therefore the derivations$a i ,b i ,Di% i51,2,... generate a bialgebra~Der(A),m,h,D,e!.

Der(A) as a Hopf algebra. If ai
21 andbi

21 exist for all i , then an antipodei:Der(A)→Der(A)
can be defined by

i~a i !5a i
21, i~b i !5b i

21, i~Di !52a i
21Dib i

21. ~3.9!

FIG. 1. Commutative diagrams expressing the Leibniz rule for an~a, b!-derivation.

2532 L. J. Swank: Derivations on quantum function algebras

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



i preserves Rels.~3.2!–~3.5! and satisfies the compatibility conditions:m(i ^ id)D5he
5m( id^ i)D. Then~Der(A),m,h,D,e,i! forms a generally noncommutative and noncocommuta-
tive Hopf algebra.

Comment:Der(A) is defined to be a minimal algebra in the sense that it contains only those
algebra Homsa i ,b i which appear in derivations, i.e., in$a i ,b i ,Di% i51,2,.... Der(A) could be
enlarged by adding an unnecessaryfPHomk-A(A) to getk^D1 ,a1 ,b1 ,...,f&, which would con-
tain, e.g.,fDi , a (fa i ,fb i)-D. Note that ifDi andDj satisfy Eq.~3.2!, then$ca i ,cb i ,cDi%
and the$fa j ,fb j ,fDj% generally do not, even for new values oft i j and t j i . Thus, [cDi ,fDj ]
would not, in general, be an (ca ifa j ,cb ifb j )-D. ~See, however, the construction of the algebra
~6.13!!. This is true also for necessaryas andbs. Note that Eq.~3.8! also applies to a more general
~fac,fbc!-D, fDc, wheref,c:A→A are any algebra Homs andDf5f^f andDc5c^c.

Special case:Let iÞ j , and supposea i5a j5a andb i5b j5b, i.e.,Di ,Dj are both~a,b!-Ds.
Then the derivation Rels. reduce to

ab5ba, Dia5uaDi , Djb5ubDj ,
~3.10a!

Dja5vaDj , Dib5vbDi ,

wheret i j5u, t j i5v, and Eq.~3.4! becomes

@Di ,Dj #5ci j ~a22b2!. ~3.10b!

This is the form of SLq~2! in Eq. ~6.12!, wherea, b also satisfy Eq.~3.3!.
Comment on [,].The development of Der(A) starting with Eq.~3.1! has relied on the ‘‘clas-

sical’’ commutator. The coproduct~3.6! in Der(A) follows directly from the definition~2.2! ~via
the third of the diagrams in Fig. 1!. The commutator and the coproduct~3.6! ~or equivalently the
~a,b!-Ds! are linked by Rels.~3.2b! and ~3.2c!. On the one hand these Rels. arise as derivation
conditions on the commutator and on the other they impose conditions on thea i ,b i , which show
up in the coproducts~3.6!. Instead of [Di ,Dj ], the adjoint action

8,10DixDj could be considered
in Eq. ~3.1!. This would alter Rels.~3.2b! and ~3.2c!, thereby also possibly alter the coproduct
~3.6!. The resulting derivation algebra Derx(A) may, in general, be different from Der(A).
Derx(A) and Der(A) are compared for the case of SLq~2! at the end of Sec. VI.

Comment on Der(H,k). For algebraic Lie groups, the Lie algebra of left-invariant derivations
D:H→H is isomorphic to the Lie algebra of derivationsD8:H→k; DerL(H)>Der(H,k).1 They
are related byD85eD andD5( id^D8)D. The same result holds for~a,b!-Ds on noncommu-
tative Hopf algebras. Thus, for the FAHq , the algebra of left-invariant~a,b!-Dsa,b, D:Hq→Hq

is isomorphic to the algebra of~a8,b8!-Ds $a8,b8,D8%:Hq→k, i.e., DerL(Hq)>Der(Hq ,k). D
andD8 are related bye:Hq→k: D85eD, a85ea, b85eb, andD5( id^D8)D, a5~id^a8!D,
b5~id^b8!D. Der(Hq ,k) will not be discussed further in this work.

IV. ANTIDERIVATIONS

In this section it is shown how a noncommutative FA,A, allows antiderivations, which are
just a novelty here and are not used elsewhere in the article. An algebra antiHom is a Hom
k:A→A satisfying (f g)k5gk f k. Antiderivations stand in the same relation to algebra antiHoms as
derivations do to algebra Homs.

E will be called a ~p,v! antiderivation~antiD! if E,p,v:A→A are Homs satisfying the
~reversing! Leibniz rule

~ f g!E5gp f E1gEf v,
~41!

~g1g2!
p5g2

pg1
p , ~ f 1f 2!

v5 f 2
v f 1

v
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for fs andgs in A.
The derivations given in the examples at the end of Sec. II have their counterparts for an-

tiderivations which are briefly stated here.~i! Two algebra antiHomsp andv define a~p,v! antiD
E:A→A^A, Ef51^ f v2 f p

^1. ~ii ! mPM and the antiHomsx:A→A8 andk:A→A9 define the
~x,k! antiDEm :A→M given byEmf5 f xm2mfk. ~iii ! D5v2p:A→A is a ~p,v! antiD. ~iv! If
E is a~p,v! antiD andf is an algebra Hom thenfE ~recallfE5f+E! is a~fp,fv! antiD. ~Note
thatfp andfv are algebra antiHoms.! There is a similar statement forEf. Algebra antiHoms
can be used to map derivations to antiderivations and vice versa. Thus, for example, ifD is an
~a,b!-D andk is an algebra antiHom, thenkD is a ~kb,ka! antiD, andDk is an ~ak,bk! antiD.

Many antiderivations can be formed from a derivation and vice versa. For example, if
j5ambnk2k11 and z 5 am8bn8k2k8, then jDz is a ~jbz,jaz! antiD. This suggests that if an
antiautomorphism exists, then there are as many antiderivations as derivations.

V. DERIVATIONS AND q-VARIETIES

This section consists of three parts. The first part presents two types of derivations,L,R, to
add to the examples in Sec. II. In the second part, it is shown howL,R can be used to construct
FAs of the quantum groups SLq~2!, SLq~3! and alsoVq,p~2!, Vq~3! ~given in Secs. VI and VII!.
The latter are not quantum groups, but their construction is inspired by SLq~2! and SLq~3!. We
refer to an object constructed fromL,R as aq-V. The third part describes, in a general way, how
derivations onq-Vs are defined.

~i! Derivations L and R. The derivationsL,R depend only on operations available in any
bialgebraB. Thus,B could be taken to be an arbitrary bialgebra even though applications only use
free matrix bialgebras~to yield q-Vs!.

Let ~B,m,h,D,e! be a bialgebra considered as a FA.L,R:B→B are defined in terms of an
algebra antiHoms:B→B, ( f g)s5gsf s:

he, l5m~ id^s!D, r5m~s^ id !D, ~5.1!

L5 l2he, R5r2he. ~5.2!

R andL are not derivations like Eq.~2.4! becausel andr are not algebra Homs likea andb ~and
he! ~i.e., (f g) lÞ f lgl). Nevertheless,L andR can be interpreted as derivations in the more general
context of Eq.~2.2!. l and r in Eq. ~5.1! are reinterpreted in terms of

l5~ id^ s!D:B→B^Bop, r5~s ^ id !D:B→Bop
^B, ~5.3!

s:B→
s

B→
op

Bop,

whereBop is the opposite algebra toB. s is an algebra Hom~becauses and op are algebra
antiHoms! and thusl andr are also algebra Homs. The targetB of L,R:B→B will be interpreted,
respectively, as~l,he! and~he,r! bimodules. In the notation of Eq.~2.2!, A85B^Bop andA95B
for L ~A85B andA95Bop

^B for R! which uses leftB^Bop ~right Bop
^B! module multiplication

~f ^gop!h5 f hg~h~f op^g!5f hg!. Note that~l,he! and ~he,r! satisfy Eq.~2.1!. With these defi-
nitionsL,R satisfy the Leibniz rule:

~ f g!L5 f lgL1 f Lghe, ~ f g!R5 f hegR1 f Rgr, ~5.4!

which shows thatL is a ~l,he!-D andR is an ~he,r!-D.
~ii ! q-Vs from L,R. Here,L andR in Eqs.~5.2! and ~5.4! can be used to define~the FAs of!

q-Vs such as SLq~2!, SLq~3!, Vq,p~2!, andVq~3!. Let Xi , i51,2,...,n be the generators ofB.
Consider the idealI,B,
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I5~L~Xi !,R~Xi !! i51,2,...,n . ~5.5!

The Rels.L(Xi),R(Xi) are not necessarily independent. Note thatL andR are actually derivations
to I , i.e.,L,R:B→I .

Each choice ofs in L5Ls andR5Rs defines an idealI5I s in Eq. ~5.5!. This defines the FA,
A5As , dual to aq-V, As↔Vs :

As5B/I s . ~5.6!

SLq~2!, Vq,p~2!, and Vq~3! are of this form. The construction ofI for SLq~3! needs several
derivationsL,R to be defined as aq-V. Although this will not be given, the general situation is
briefly discussed here.

Suppose there are many derivations,Llm andRkn , constructed from algebra Homs and anti-
HomsFm ,Sl :B→B as in Eqs.~5.1! and ~5.2!:

Lkl5m~FLk^SLl !D2he, Rmn5m~SRm^ FRn!D2he.

As in Eqs.~5.5! and~5.6! a collection of Rels.R generates an ideal, which in turn defines a FA:

R5$Lkl~Xi !,Rmn~Xi !,Lk8 l 8~Xi !2Rm8n8~Xi !%,
~5.7!

IR5~R!, AR5B/IR .

~iii ! Construction of Der(A). Der(A) ~or Der0(A)! is constructed from the subalgebra
DerI(B),Der(B) of derivations which preserveI :

I D,I , I a,I , I b,I . ~5.8!

If the projection B→A is denoted by f→[ f ] then DPDerI(B) defines DAPDer(A) by
DA[ f ]5[Df ], aA[ f ]5[a f ], etc. This gives a map DerI(B)→Der(A). We will construct deriva-
tionsDPDerI(B) and then not generally distinguish betweenDPDerI(B) and the corresponding
DAPDer(A). DA will be denoted byD. The conditions~5.8! impose Rels. on thea, b, DPDer(A)
which become the Rels. of Der(A).

The general structure of theDPDer0(A), as it exists for the examplesVq,p~2!, SLq~2!, and
Vq~3!, is briefly discussed. Der0(A) may be defined as generated by either or both of two types of
derivationsDl ,Dr :B→B. Consider the decomposition

I5I R1I L , I L5~L~Xi !! i51,2,...,n , I R5~R~Xi !! i51,2,...,n

of the ideal~5.5!. Then Eq.~5.8! is satisfied by$a l ,b l ,Dl% and$a r ,b r ,Dr% each preservingI L and
I R separately:D

lI L,I L , D
lI R,I R . a l I L,I L , a l I R,I R etc. Actually, slightly more is true:

DlL~Xi !50, DlR~Xi !PI R , ~5.9a!

DrR~Xi !50, DrL~Xi !PI L . ~5.9b!

For purposes of example, as a matter of choice, we define Der0(A) to include bothDl ,Dr for
Vq,p~2! but onlyDl for Vq~3!. WhenA is a Hopf algebra theDl(Dr) are actually left-~right-!
invariant.
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VI. (a,b) DERIVATIONS ON Vq,p(2) AND SLq(2)

In this section we define the FA,Aq,p(2)5A, of Vq,p~2! and find a derivation algebra Der0(A)
with the structure~3.2! and ~3.4!. We get DerL(Hq) of the Hopf FA,Hq , of SLq~2! as a special
case.

A is constructed, as in Eq.~5.6!, from the following free matrix bialgebraB and the antiHom
s:B→B:

B5k^T11,...,T22&,

T11
s 5T22, T22

s 5T11, T12
s 52pT12, T21

s 52q21T21,

with q,pPk. GenerallypÞq; the casep5q defining SLq~2! is discussed separately. The Rels.
defined froms ~as in Eq.~5.5!! are

l i j5LTi j5~TTs21! i j , r i j5RTi j5~TsT21! i j ,

whereT is the matrix (Ti j ). One Rel. is dependent. The ideals and algebras of interest correspond-
ing to Eqs.~5.5! and ~5.6! are

I q,p[I5~ l i j ,r i j ! i , j51,2, I q5I up5q ,

A5B/I , Hq5B/I q .

A is not a Hopf algebra, butHq is the Hopf FA of SLq~2!.
Der0(A) is generated by derivations$a i

a ,b i
a ,Di

a%:B→B for a5 l ,r and i51,2 which satisfy

Di
aI,I , a i

aI,I , b i
aI,I . ~6.1!

They are defined on the generators ofB by

D1,2
l Ti j5Ti j61 , D1,2

r Ti j5Ti61 j ,
~6.2!

a i
aTkl5~ai

a!klTkl , b i
aTkl5~bi

a!klTkl,

~T3 j5Ti3[0 by definition! and then extended toB by the Leibniz rule~2.2! ~the scale factors
(a i

a)kl ,(b i
a)klPk!. The Rels. defining Der0(A) follow from Eqs.~6.1! and ~3.2!.

In the present case Rels.~3.2a!–~3.2d! have the form

a i
aa j

b5a j
ba i

a , Di
aa j

b5ui j
aba j

bDi
a , Dj

bb i
a5ui j

abb i
aD j

b , etc., ~6.3!

which are obtained from the substitutionsa i→a i
a, a j→a j

b, b i→b i
a, b j→b j

b, Di→Di
a, Dj→Dj

b,
t i j→ui j

ab, t j i→uji
ba. It is convenient to divide the discussion of Rels.~6.3! into three cases.

Case 1. Two subcases: a5b5 l , i51, j52 and a5b5r , i51, j52. It turns out that all the
constraints on thea i

a, b i
a, andui j

ab that come from Eq.~6.3! are supplied by these two subcases.
Theas andbs in Eq.~6.2! are presented by the diagonal matrices~@...#5diag@...#!

Q5@q1/2,q2~1/2!#, P5@p1/2,p2~1/2!#,
~6.4!

X5@x,x21#, Y5@y,y21#,

wherex,yPk are arbitrary parameters. Thenai
a and bi

a are expressed by their actions on the
matrix T:
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a1
l T5TXQ21, b1

l T5QP21TPX,

a2
l T5TX21P21, b2

l T5PQ21TQX21,
~6.5!

a1
r T5YQ21TQP21, b1

r T5YPT,

a2
r T5Y21P21TPQ21, b2

r T5Y21QT.

a1
aÞa2

a and b1
aÞb2

a but they are related; for example,b1
r b2

r T5PQT. In the case of SLq~2!,
a1
a5a2

a andb1
a5b2

a.
The labell (r ) does not quite mean left~right! invariance inB because the associatedb i

l(a i
r)

is not left- ~right!-invariant:Db i
lÞ( id^ b i

l)D(Da l
rÞa i

r
^ id)D). Note, however, that the product

b1
l b2

l (a1
r a2

r ) is left- ~right!-invariant. Of course, sincea i
l(b l

r) is left- ~right!-invariant so is
a1
l a2

l (b1
r b2

r ). This will make Eq.~6.11! left- or right-invariant.~SinceA has no comultiplication,
left and right invariance are not defined inA.!

Note the two Rels. evident from Eqs.~6.5!:

a1
l a2

l b1
l b2

l 5 idA , a1
r a2

r b1
r b2

r 5 idA . ~6.6!

The four structure constants in Eqs.~6.3! are

u12
l l 5x22p21, u21

l l 5x22q,
~6.7!

u12
rr 5y22p21, u21

rr 5y22q.

Case2. a5b, i5 j . This is the diagonal case, 050, mentioned in the discussion of Eq.~3.2! as not
required and not assumed. Nevertheless, the following ‘‘voluntary’’ commutation Rels. exist:

Di
aa i

a5ui
aa i

aDi
a , Di

ab i
a5v i

ab i
aDi

a ; a5 l ,r ; i51,2. ~6.8!

Note that Eq.~6.3! would have requiredui
a5v i

a. However,ui
aÞv i

a:

u1
l 5v2

l 5x2q21, u2
l 5v1

l 5x2p,
~6.9!

u1
r 5v2

r 5y2q21, u2
r 5v1

r 5y2p.

Case3. aÞb. Here the conditions that make [Di
l ,Dj

r ] a derivation are already implied by Eq.
~6.5!. The structure constants are

u11
lr 5u22

lr 5qp21, u12
lr 5u21

lr 5pq21,
~6.10!

u11
rl 5u12

rl 5u21
rl 5u22

rl 51.

[Di
l ,Dj

r ] is a zero derivation~recorded in Eq.~6.11!!. This completes the discussion of Eq.~6.3!.
From the discussion of Eq.~3.2! and the above results, [D1

a ,D2
a] is an (a1

aa2
a ,b1

ab2
a)-D, in

fact one of the form~3.4!:

@D1
a ,D2

b#5dab~a1
aa2

b2b1
ab2

b!/~~pq!1/22~pq!2~1/2!!. ~6.11!

The above results are summarized in the definition of the following derivation algebra ofA
and the two subalgebras;

Der0~A!5k^a i
a ,b i

a ,Di
a&a51,r ,i51,2, Der0

a~A!5k^a i
a ,b i

a ,Di
a& i51,2, a5 l,r ,
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whose Rels. include all those of the form~3.2!. Explicitly, the Rels. for Der0(A) are Eq.~6.3! with
structure constants~6.7! and ~6.10!, Rels. ~6.8! with structure constants~6.9!, Rels. ~6.6! and
~6.11! and Rels of the form~3.2a! and ~3.2d!. The Rels. for the subalgebras are the appropriate
subsets.~Here,x,yPk are considered to have single fixed values, so Der0(A) is finitely gener-
ated.! Der0

l (A) and Der0
r (A) do not commute~see Eq.~6.10!! becauseai

r andbi
l act both on the

right and left.
Here we note a phenomenon mentioned in Sec. II; two different derivations can act identically

on generators. The first is the (a1
l a2

l ,b1
l b2

l )-D in Eq. ~6.11!. The second is an (id,id)-D, D3
l .

Both giveTi j→(21) jTi j . The analogous situation holds fora5b5r .
The case of SLq~2!. Consider the casep5q whenA5Hq , the Hopf FA of SLq~2!. Unlike A,

comultiplication exists forHq and left, right invariance inHq can be considered. Then
Der0(Hq)5Der0(A)up5q decomposes into two commuting subalgebras:

Der0~Hq!5Der0
l ~Hq!•Der0

r ~Hq!.

Consider one of the subalgebras, say Der0
l (Hq), and choose a subset of derivations with

a1
l b1

l 5a2
l b2

l 5 id. This implies thatx51 in Eq.~6.4! and thata1
l 5a2

l andb1
l 5b2

l . For simplicity,
the generators are renamed:D1

l 5D1 , D2
l 5D2 , a1

l 5a, andb1
l 5b. Then, the following algebra

and relations are obtained:

DerL~Hq!5Der0
l ~Hq!ux515k^D1 ,D2 ,a,b&,

ab5 id, ab5ba, aD6b5q61D6 , ~6.12!

@D1 ,D2#5
a22b2

q2q21 ,

with the Hopf algebra operations~3.6!, ~3.7!, and~3.9!.
Connection with Uq~sl~2!!. The two rational forms ofUq~sl~2!! ~Ref. 11, p. 281! can be

constructed from DerL(Hq). The simply connected form Pis the algebra generated by the two
derivations,E15q1/2bD1 andE25q2(1/2)D2a, and the~renamed! Homsa5a andb5b:

DerL
P~Hq!5k^E1 ,E2 ,a,b&>Uq

P~sl~2!!. ~6.13!

The Rels. have the same form as those of DerL(Hq) in Eq. ~6.12!. However,E1 is an (id,b2)-D
andE2 is a (a2,id)-D, so the Hopf algebra operations found from Eqs.~3.6!, ~3.7!, and~3.9! are
altered accordingly. The factorsq6~1/2! are just to makeE6 agree withD6 on the generatorsTi j .
The adjoint form Q is defined by takingE6 , A5a2, andB5b2 as generators. The algebra and
relations are

DerL
Q~Hq!5k^E1 ,E2 ,A,B&>Uq

Q~sl~2!!,

AB5 id, AB5BA, AE6B5q62E6 , ~6.14!

@E1 ,E2#5
A2B

q2q21 .

E1 is an (id,B)-D andE2 is an (A,id)-D, and the Hopf algebra operations are again determined
accordingly.

Note that the adjoint form can also be obtained from Der0
l (Hq)ux5p5q>DerL

Q(Hq), i.e.,
a1
l 5 id, b2

l 5 id in Eq. ~6.5!. Note also that the simply connected formP can be considered to be
the extension of the adjoint formQ by ‘‘square-root’’ generatorsAA5a, AB5b,11
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DerL
P~Hq!5DerL

Q~Hq!^a,b&,

with the appropriate change to Rels. involvinga,b. This is used to obtain the simply connected
form of Uq~sl~3!! in Sec. VII.

An example of Derx(Hq). As a follow-up to thecomment on@,# near the end of Sec. III,
Derx(Hq) for SLq~2! is presented here and shown to have the adjoint form. LetFi be a left-
invariant (ai ,bi)-D, i51,2, whereF1 ,F2 act on the generators ofHq asD6 in Eq. ~6.12! do. In
this example it is assumed that the adjoint action

F1xF25a1@a1
21F1 ,F2#b1

21 ~6.15!

is a derivation. Equivalently~by example~4! of Sec. II!, thedeformedcommutator [a1
21F1 ,F2] is

a derivation. Becausea1
21F1 is an (id,a1

21b1)-D, the derivation conditions~3.2c! are t2151 and
F1b25b2F1 , which impliesb25 id. This determinesa2: a2Ti15q21Ti1 anda2Ti25qTi2. a1 is
still undetermined; ifa15 id is chosen~only to simplify the following isomorphism!, then
b15a2

21 and Derx(Hq) has the familiar form~6.14!. In fact, the mapF1→E1 , F2→E2 , a2→A,
b1→B gives the isomorphism

Derx~Hq!5k^F1 ,F2 ,a2 ,b1&.DerL
Q~Hq!.

Thus, theadjoint actiongives theadjoint form.
Let ‘‘v’’ be defined analogously to ‘‘x’’: F8vF5i(F (1))F8F (2), whereD(F)5F (1)^F (2)

andi is the antipode. Then, in contrast to Eq.~6.15!, F1vF25a2
21[F1 ,F2b2

21]b2 . The derivation
Hopf algebras resulting from the other adjoint actions,2F2vF1 , F1vF2 , and2F2xF1 , all turn
out to be isomorphic to Derx(Hq), which was defined fromF1xF2 in Eq. ~6.15!.

VII. DERIVATIONS OF SLq(3) AND Vq(3)

The purpose of this section is to see how the picture of derivations in Sec. VI extends to
higher dimensions. We find derivation algebras DerL(Hq) on the Hopf FAHq(3)5Hq of SLq~3!
and Der0(A) on a nonHopf FAAq(3)5A of Vq~3!. It is shown how DerL(Hq) is related to
Uq~sl~3!!. Vq~3! is a deformation of SL~3! and, likeVq,p~2!, does not correspond to a quantum
group. Der0(A) is generated by a set$a l ,b l ,Dl% with the structure of Eq.~5.9a!.

DefiningHq according to Eq.~5.7! requires a lengthy discussion which will not be given.A
has the form~5.6!. Hq andA are presented first; then DerL(Hq) and Der0(A).

The Hopf algebra Hq of SLq~3!. AlthoughHq is well known
5 it is stated here for convenience.

Hq is a quotient of the bialgebra

B5k^T11,...,T33&, Hq5B/I q , ~7.1!

whereI q,B is the ideal generated by the Rels.:

Ti j Til2q21Til Ti j , l. j ,

Ti j Tk j2q21Tk jTi j , i,k,

Til Tk j2Tk jTil , i,k, l. j ,

@Til ,Tk j#2~q2q21!Ti j Tkl , i.k, l. j ,

( T1i1T2i2T3i3~2q21! l ~ i1i2i3!21.

~7.2!

The antipode derives from the antiautomorphisms:B→B defined by

Ti j
s 5~2q21! i2 j detq T~ j i !, ~7.3!
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whereT( i j ) is the 232 matrix obtained by deleting thei th row andj th column of the 333 matrix
T5(Ti j ).

The algebra A. A is defined fromB in Eq. ~7.1! ands in Eq. ~7.3! as an example of Eqs.~5.5!
and ~5.6!:

L~T!5TTs21, R~T!5TsT21,

I5~L~T!,R~T!!, A5B/I .
~7.4!

Relations in~7.4! are implied by those of Eq.~7.2! giving I,I q .
Derivations on Hq . Left-invariant derivations$am

6 ,bm
6 ,Dm

6%, m51,2 onB are defined on the
generators by

D1
1Ti15Ti2 , D1

2Ti25Ti1 , D2
1Ti25Ti3 ; D2

2Ti35Ti2 , ~7.5!

am
6Ti j5~am

6! jTi j , bm
6Ti j5~bm

6! jTi j ~7.6!

for i , j51,2,3 and extended toB by the Leibniz rule. The scale factors~am
6!j , ~bm

6!jPk define
diagonal matrices, and Eq.~7.6! can be written asam

6T5Tam
6 , bm

6T5Tbm
6 . These$am

6 ,bm
6 ,Dm

6%
define derivations onHq if they satisfy the ideal conditions

Dm
6I q,I q , am

6I q,I q , bm
6I q,I q . ~7.7!

The last two conditions of Eq.~7.7! give

detam
651, detbm

651, ~7.8!

which follow from the last Rel. of Eq.~7.2!. The other Rels. of Eq.~7.2! are already preserved by
the Ansatz~7.6!.

The first condition of Eq.~7.7!, after some calculation, implies

a1
65@q21,q,1#b1

6 , a2
65@1,q21,q#b2

6 , ~7.9!

where@...# indicates a diagonal matrix.
From the derivations$am

6 ,bm
6 ,Dm

6% satisfying, Eqs.~7.8! and ~7.9!, we choose a subset nor-
malized by

am
6bm

65 id⇔am
6bm

651, m51,2, ~7.10!

where1 is the 333 identity matrix. These imply thatam
15am

2[am andbm
15bm

2[bm , which are
then represented by the diagonal matrices

a15@q2~1/2!,q1/2,1#,
a25@1,q2~1/2!,q1/2#,

b15a1
21,

b25a2
21 . ~7.11!

Derivations $am ,bm ,Dm
6% defined by Eq.~7.11! form a ‘‘basis’’ in the following sense. A

derivation$am
6 ,bm

6 ,Dm
6% defined only by Eqs.~7.8! and~7.9! can be written in terms of a derivation

$am ,bm ,Dm
6% defined by Eq.~7.11! as$fm

6 + am ,fm
6 + bm ,cm

6fm
6 + Dm

6% wherefm
6 :Hq→Hq is some

left-invariant algebra automorphism of the type~7.6!, andcm
6Pk is a multiplication factor. It is

also possible to writecm8
6Dm

6 + fm
6 .

The basis derivations define the following algebra and Rels:
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DerL~Hq!5k^Dm
6 ,am ,bm&,

ambm5bmam5 id, aman5anam ,
~7.12!

anDm
6bn5q6AmnDm

6 , @Dm
1 ,Dn

2#5dmn

am
22bm

2

q2q21 ,

Dm
62Dn

62~q1q21!Dm
6Dn

6Dm
61Dn

6Dm
6250, mÞn,

whereAmn5 1
2amn andamn is the Cartan matrix for the Lie algebraA2. The last Rels. are proved

by showing that the left-hand side is an~am
2an ,bm

2bn!-D which is zero on the generatorsTi j .
DerL(Hq) has the Hopf algebra operations corresponding to Eqs.~3.6!, ~3.7!, and~3.9!.

Connection with Uq~sl~3!!. Here, two rational forms of Uq~sl~3!! are constructed from
DerL(Hq).

11 Let us define the derivations and Homs,Em
15q1/2bmDm

1, Em
25q2(1/2)Dm

2am ,
Am5am

2 , andBm5bm
2 . Then theadjoint rational form Q is given by~compare Eq.~6.14!!

DerL
Q~Hq!5k^Em

6 ,Am ,Bm&m51,2>Uq
Q~sl~3!!.

Em
1 is an (id,Bm)-D andEm

2 is an (Am ,id)-D with the corresponding Hopf algebra operations,
deduced from Eqs.~3.6!, ~3.7!, and ~3.9!. The factorsq6~1/2! makeEm

6 agree withDm
6 on the

generatorsTi j . DerL(Hq) is not a rational form @q1/2 in Eq. ~7.12!# of Uq~sl~3!!. ~SLq~2! is a
special case; DerL(Hq(2)) is rational because

1
2a1151.!

To obtain thesimply connected rational form P, define the left-invariant automorphisms
am ,bm , represented, as in Eq.~7.11!, by

a15@q2~2/3!,q1/3,q1/3#, b15a1
21, a25@q2~1/3!,q2~1/3!,q2/3#, b25a2

21.

Then the formP is the extension of the formQ by am ,bm :

DerL
P~Hq!5k^Em

6 ,am ,bm&m51,2>Uq
P~sl~3!!.

Em
1 is an (id,bm

2an)-D andEm
2 is an (am

2bn ,id)-D, mÞn, with the corresponding operations of
Eqs.~3.6!, ~3.7!, and~3.9!. The Rels. can be obtained from those of DerL(Hq) by the following
replacements in Eq.~7.12!: am→am andbm→bm in the first three Rels.;Amn→dmn ; am

2→am
2bk and

bm
2→bm

2ak , mÞk, in the next to last Rels.
We end the discussion ofHq with a comment that is relevant in comparing DerL(Hq) with

Der0(A). Derivations onHq of the form

D3
1Ti15Ti3 , D3

2Ti35Ti1 ~7.13!

do not exist. There are no algebra automorphismsa3
6 , b3

6 onHq ~at least of the form~7.6!! such
thatD3

6 is an ~a3
6 ,b3

6!-D. The k-Homs [D2
6 ,D1

6] act like 6D3
6 on generators, but they are not

derivations.~Of course, in the SL~3! limit q→1, [D2
6 ,D1

6] and 6D3
6 both become derivations

which are equal to each other.! Derivations of the typeD3
6 do exist onA, to which we now turn.

Derivations on A. Here Der0(A) is similar to but larger than DerL(Hq). Actually Der0(A) has
a subalgebra isomorphic to DerL(Hq). Thus, we build on the results forHq and use the same
notation for this subalgebra.

Derivations~7.5! and ~7.6! also exist onA because the conditions

Dm
6I,I , am

6I,I , bm
6I,I , ~7.14!

are less restrictive than those in Eq.~7.7!. In fact, the same formulas~7.8! and~7.9! are implied by
the conditions~7.14!. Conditions ~7.10! again giveam

65am and bm
65bm on A which satisfy
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ambm5id. Then we arrive at derivations onA, $am ,bm ,Dm
6%, which satisfy the Rels.~7.12!. The

new results are first stated, and then a few comments are made about how they are derived.
DerivationsD3

6 in Eq. ~7.13!, the new feature ofA, deviate from the pattern ofD1
6 andD2

6 .
After choosing a basis with

a3
6b3

65b3
6a3

65 idA , ~7.15!

D3
6 is an ~a3

6 ,b3
6!-D, wherea3

6 ,b3
6 are represented by the diagonal matrices

a3
15@q2~3/2!,q,q1/2#, b3

15~a3
1!21,

~7.16!
a3

25@q2~1/2!,q21,q3/2#, b3
25~a3

2!21,

which act onT by matrix multiplication on the right as in Eq.~7.6!. The Rels. satisfied by
$a3

6 ,b3
6 ,D3

6% are

ama3
65a3

6am ,

a3
aD3

6b3
a5q62D3

6 ,

amD3
6bm5q6~1/2!D3

6 ,

a3
1a3

25a3
2a3

1 ,

a51,2,

m51,2,

a3
aDm

6b3
a5q6AmaDm

6 , A115A225 5
2, A125A2152 1

2,
~7.17!

@D3
1 ,D3

2#5
a3

1a3
22b3

1b3
2

q22q22 ,

@D2
1 ,D3

1#50, @D1
2 ,D3

2#50.

These results are summarized in the derivation algebra

Der0~A!5k^am ,bm ,Dm
6 ,a3

6 ,b3
6 ,D3

6&m51,2,

which satisfies the Rels.~7.15! and~7.17! as well as the Rels. of DerL(Hq) in Eq. ~7.12!. Der0(A)
is a Hopf algebra, with operations of the form~3.6!, ~3.7!, and~3.9!.

Comment:The extra~a3
6 ,b3

6!-DsD3
6 , existing onA but not onHq , reflect the fact thatI,I q

andD3
6 have to satisfy fewer Rels. inI than in I q . This is not general, but specific to this case.

There could be a situation whereI 2,I 1 and DI 1,I 1 but DI 2úI 2 . Then D would define a
derivation onA15B/I 1 but not onA25B/I 2 .

We now indicate how the above results leading to Der0(A) were derived. As in Eq.~7.8! the
last two conditions of Eq.~7.14! imply

detam
651, detbm

651, m51,2,3,

which in turn help to determine the action ofa,b on Ts:

am
6~Ti j

s !5~am
6! i

21~Ti j
s !, bm

6~Ti j
s !5~bm

6! i
21~Ti j

s !. ~7.18!

The conditionsDm
6I,I , m51,2,3, correspond to Eq.~5.9a!. They are

TaTDs1TDTbs50, TasTD1TDsTbP~TsT21!,
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whose entries are homogeneous third degree polynomials inTi j . These equations are equivalent to
the following simpler ones:

D1
1~T2 j

s !52q21~b1
1!3T1 j

s ,

D2
1~T3 j

s !52q21~b2
1!1T2 j

s ,

D3
1~T3 j

s !52q21~b3
1!2T1 j

s ,

D1
2~T1 j

s !52q~b1
2!3T2 j

s ,

D2
2~T2 j

s !52q~b2
2!1T3 j

s ,

D3
2~T1 j

s !52q~b3
2!2T3 j

s .

Dm
6(Ti j

s )50 otherwise. Equations~7.18! were used in deriving these. Finally, to complete the
discussion of Der0(A), basis derivations satisfyingambm5id and Eq.~7.15! have the solutions
~7.11! and ~7.16!.

The results for SLq~3! andVq~3! ~i.e., DerL(Hq) and Der0(A)! suggest the following conjec-
tures.

~1! For the Hopf FA,Hq(n), of SLq(n), left-invariant derivations,$am
6 ,bm

6 ,Dm
6%, exist for the

6 simple rootsi51,...,n21 of sl(n). There are basis derivations,$am ,bm ,Dm
6l i51,...,n21%,

satisfyinga ib i5 id. They generate DerL(Hq(n)) from which the adjoint form can be defined:
DerL

Q(Hq(n))>Uq
Q(sl(n)). ‘‘ nth root’’ Homs am on Hq(n) exist and give the simply connected

form, DerL
P(Hq(n))[k^Dm

6 ,am ,bm&>Uq
P(sl(n)), as an extension.

~2! Let Vq(n), n.3, be defined in analogy toVq~3! as the FAA(n)5B(n)/I (n) where
I (n)5(TsT21,TTs21) with T the n3n matrix of generatorsTi j of the matrix bialgebraB(n)
ands the antiHom ofB(n) generalizing Eq.~7.3!. Then there are~a,b!-Ds onA(n),

$a i ,b i ,Di
6 ,a j

6 ,b j
6 ,Dj

6u i51,...,n21; j5n,...,n~n21!/2%,

where the (a i ,b i) correspond to the simple roots ofsl(n), and the (a j
6 ,b j

6) to the nonsimple
roots.

~3! Some form of~1! and ~2! generalize to all simple Lie groups.

VIII. GENERAL DERIVATIONS: THE QUANTUM PLANE AND SL q(2)

In this section some general~a,b!-Ds are defined on the FA of SLq~2! and the quantum plane.
The usual quantum plane is

A5k^X,Y&/I , I5~XY2q21YX! ~8.1!

for which we give an infinitely generated Hopf algebra and two finitely generated subalgebras
Der0. Also Der0 algebras on a different quantum plane are given in examples~4! and~5!. They are
isomorphic to Euclidean and Heisenberg quantum groups, respectively.

The results are presented in the following six examples.
~1! An infinitely generated algebra of~a,b! derivations. Derivations on the generators of

k^X,Y& are defined by

EmnX5q~1/2!n~m11!Xm11Yn, EmnY50, m>21,n>0,

FmnY5q~1/2!m~n11!XmYn11, FmnX50, n>21, m>0,

amnX5q~1/2!nX, amnY5q2~1/2!mY,

bmnX5q2~1/2!nX, bmnY5q~1/2!mY.

Emn andFmn are (amn ,bmn)-Ds onA ~for which we use the same notation! because they preserve
the idealI in the sense of Eq.~5.8!.
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Der(A) is the associative algebra generated by the infinite set$amn ,bmn ,Emn ,Fmn%. Der(A)
has the following Rels.:

a005 idA , amnbmn5bmnamn5 idA ,

amnam8n85am1m8,n1n8 , bmnbm8n85bm1m8,n1n8 ,

amnEm8n8bmn5q1/2~m8n2mn8!Em8n8 ,

amnFm8n8bmn5q1/2~m8n2mn8!Fm8n8 ,

@Emn, Em8n8#5~m82m!Em1m8,n1n8 ,

@Fmn, Fm8n8#5~n82n!Fm1m8,n1n8 ,

@Emn, Fm8n8#5m8Fm1m8,n1n82nEm1m8,n1n8 .

These Rels. are verified, according to the discussion in Sec. III, by acting on the generatorsX,Y.
The Rels.aEb5qE equate derivations of the same type, and they guarantee that the commuta-
tors, [E,E], are derivations, which can then be checked onX,Y.

~2! A Hopf algebra Der0(A)>Uq(sl(2)). Let Der0(A) denote the algebra generated by the
following two ~a,b!-Ds onA:

D1X5Y, D1Y50, D2Y5X, D2X50,

aX5q2~1/2!X, aY5q1/2Y, bX5q1/2X, bY5q2~1/2!Y.

Der0(A) is isomorphic toUq(sl(2)) ~see DerL(Hq) in Eq. ~6.12!!. It is not a subalgebra of Der(A)
defined above.

~3! A Euclidean quantum group.Let Der0
E(A)5k^D1 ,D2 ,a,b& be defined by its action on the

quantum plane~8.1!:

D1X51, D1Y50, D2X50, D2Y51,

aX5q2~1/2!X, aY5q1/2Y, bX5q1/2X, bY5q2~1/2!Y.

Der0
E(A) is a Hopf algebra with the Rels.

ab5 idA , ab5ba,

aD1b5q1/2D1 , aD2b5q2~1/2!D2 ,

@D1 ,D2#50.

The derivation conditions are satisfied, and the commutator [D1 ,D2] is the zero~a,b!-D. Der0
E(A)

is a quantum deformation of the Euclidean group of the plane. Namely, seta5b215qK and take
the limit q→1. Then$K,D1 ,D2% generates the Lie algebra of the Euclidean group of the two-
dimensional plane.

~4! A second Euclidean quantum group.This example is the Euclidean quantum group, which
was found as a contraction of SUq~2! and was calledE(2)q .

12 HereE(2)q is presented as an
algebra of~a,b!-Ds. For ease of comparison the notation of Ref. 12 is used here.

Define another quantum plane different from Eq.~8.1!,
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Aj5k^X,Y&/I , I5~XY2YX1jY!, ~8.2!

and two~a,b!-Ds, Py andJ, by their action onAj :

PyX50, PyY51, JX5 iY, JY52 iX,

aX5X2
j

2
, aY5Y, bX5X1

j

2
, bY5Y.

These generate the algebra Der0
E(Aj)5k^Py ,J,a,b& with Rels.

ab5ba5 id, aPyb5Py , aJb5J1
i j

2
Py ,

@J,Py#5
i

2j
~a22b2!.

The derivation Rels.~3.2b! and ~3.2c! ~compare Eq.~3.10a!! which generally have been valid in
this work do not hold here forJ andPy . Nevertheless, [J,Py] is an ~a2,b2!-D of the form~3.10b!.
This demonstrates the case where the last four terms in Eq.~3.1! do not cancel pairwise as a
consequence of Eqs.~3.2b! and ~3.2c!; nevertheless, they do cancel.

The isomorphism Der0
E(Aj)>E(2)q is established by introducing an (id,id)-D Px and ex-

pressing Der0
E(Aj) in terms ofPx :

PxX51, PxY50, a5e2~1/2!jPx, b5e~1/2!jPx.

~5! Heisenberg quantum group.The Heisenberg quantum groupH(1)q has also been found as
a contraction of SUq~2!.12 Here H(1)q is presented as an algebra of~a,b!-Ds acting on the
quantum plane~8.2!. Define two~a,b!-Ds a, a1 by

aX50, aY51, a1X5Y, a1Y50,

aX5X2
j

2
, aY5Y, bX5X1

j

2
, bY5Y.

The algebra Der0
H(Aj)5k^a,a1,a,b& has the Rels.

ab5ba, ab5 id, aab5a, aa1b5a1,
~8.3!

@a,a1#5
21

2j
~a22b2!,

which are of the form~3.10!. The isomorphism Der0
H(Aj)>H(1)q is found in terms of an

( id,id)-D h:

hX51, hY50, a5e2~1/2!jh, b5e~1/2!jh.

This example should be contrasted with the different deformation given in example~4! of Sec. X;
compare Rels.~8.3! with ~10.3!.

~6! Derivations onSLq~2!. General derivations on SLq~2! are more complicated; only a simple
class of derivations onHq is given. We have no results on the algebra Der(Hq). Consider deri-
vations whose action on generators ofHq is defined by
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Dci f
Ti15ci f Ti2 , Dci f

Ti250, ~8.4!

where fPHq is a monomial. In particular consider

DnmkTi15ciT12
n T21

mT22
k Ti2 ,

wherec25c1
215q1/4(k1m1n). Dnmk can be shown to be an (a,b)-D wherea5anmk andb5bnmk

are representable as follows:

aT5WTV, bT5W21TV21, W5KMN, V5K21MNQ21,

K5@qk/4,q2~k/4!#, M5@qm/4,q2~m/4!#, N5@qn/4,q2~n/4!#, Q5@q1/2,q2~1/2!#.

a and b have been normalized byab5 id. As would be expecteda,b are not left- or right-
invariant.

Comment on derivations.The derivation in Eq.~8.4!, abbreviatedDci f
5 D here, provides a

convenient form for a general comment about derivations on noncommutative FAs. If we were to
imitate the commutative theory, we would writeD5 fD1 ~D1 is the ~a,b!-D in Eq. ~6.12!! and
try to interpret this as module multiplication of the derivationD1 by fPHq . That is, Eq.~8.4!
would extend toD(g)5 fD1(g) for any gPHq . However, in noncommutative theory, such an
interpretation ofD would conflict with the Leibniz rule~2.2!. Thus,D is interpreted, not as a
derivationD1 multiplied by an elementfPHq , but as ak-HomHq→Hq defined on products by
the Leibniz rule for a suitable pair~a,b!. At best ‘‘fD1’’ can serve as a mnemonic for the action
~8.4! of D on generatorsTi j . Note that factors of the formf 1Ti j11f 2 could also have been used in
Eq. ~8.4!.

IX. ON THE TANGENT BUNDLE OF SL q(2)

The tangent bundle of an algebraic group can be defined from its Hopf FA. In this section we
apply this definition to SLq~2! to obtain the deformed analog TSLq~2! of the tangent bundle
TSL~2!. The analogy is to the fact that a tangent bundle of a Lie group is itself a Lie group. In
particular, TSL~2! is a Lie group. Here, the ‘‘tangent bundle’’ TSLq~2! of SLq~2! is a deformation
of TSL~2!. That is, the FA of TSLq~2! is a Hopf algebra, which is aq deformation of the Hopf FA
of TSL~2!. First, the commutative case is briefly reviewed for SL~2!.

For a commutativek algebraK ~e.g.,K5k! and the commutative Hopfk algebraH5Hquq51
~see, Sec. VI!, SL~2,K! is the set ofk algebra Homs,

SL~2,K !5Homk2A~H,K !, ~9.1!

called theK points ~K variety! of H.
Define theK algebra~and thereforek algebra! K[ e]5K%Ke with e250 called the ring of

dual numbers.1 The tangent bundle is defined as theK@e# points ofH:

SL~2,K@e#!5Homk2A~H,K@e#! ~9.2!

@written as TSL~2,K! below#.
The tangent bundle is a Lie group overK, so it can be represented as theK points of a Hopf

k algebra, called hereTH, which includes generatorsVi j for the tangent spaces:

TH5k@T11,...,T22, V11,...,V22#/J,

J5~TsT21, TsV1VsT!.

That is, theK@e# points ofH are theK points ofTH, rewritten as
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TSL~2,K !5Homk2A~TH,K !. ~9.3!

The connection with derivations is thatF5f1edPSL~2,K@e#! iff f, d:H→K and

~ f g!f5 f fgf, ~ f g!d5 f fgd1 f dgf. ~9.4!

Thus, SL~2,K@e#! is the set of~f,f!-Ds H→K, wherefPSL~2,K!.
We apply the above ideas toHq and SLq~2!. To get a ‘‘rich’’ set of points ofHq , K should

be replaced by a noncommutativek algebraR which reflects the noncommutativity ofHq . Then
the objects for SLq~2! corresponding to Eqs.~9.1! and ~9.2! are

SLq~2,R!5Homk2A~Hq ,R!, ~9.5!

SLq~2,R@e#!5Homk2A~Hq ,R@e#!. ~9.6!

Denote theR@e# points ofHq by FPSLq(2,R[ e]), and let their images,F(T)5x1ey, x,yPR4

serve as coordinates of the variety~9.6!:

$~x,y!PR8uxsx51, xxs51, xsy1ysx50, xys1yxs50%. ~9.7!

s:R→R is defined from the antipode ofHq : F(Ts)5xs1eys.
The function Hopfk algebra of the variety~9.6! and ~9.7! is

THq5k^T11,...,T22,V11,...,V22&/J,

J5~TsT21,TTs21,TsV1VsT, TVs1VTs!.

Vs is defined from the algebra HomsC: THq→R by C(Vs)5ys. @Note thatJ has the structure of
Eq. ~5.5!. The coalgebra operations onVi j in THq areD(Vi j )5Tik^Vkj1Vik^Tk j ande(Vi j )50.
The antipode iss.# In analogy with Eq.~9.3! theR@e# points ofHq can be represented as theR
points ofTHq . Writing TSLq(2,R) for SLq(2,R[ e]),

TSLq~2,R!5Homk2A~THq ,R!.

How do ~a,b!-Ds fit in with the above ideas? In analogy with Eq.~9.4!, SLq(2,R[ e]) would
be ~f,f!-Ds $f,f,d%: Hq→R, wherefPSLq(2,R). To get~f,c!-Ds with fÞc, we replaceR@e#
by anotherR algebra, which is conveniently defined as an idealI . Let R^e1 ,e2 ,e& be theR
algebra generated by three indeterminates which satisfy

e1
25e1 , e2

25e2 , e1e25e2e150,

e250, e1e5e, ee150, e2e50, ee25e.

Define the idealI5(e1 ,e2 ,e),R^e1 ,e2 ,e&. An elementrPI has the formr5x1e11x2e21ye
with x1 ,x2 ;yPR. 1R , the zeroth power of any generator, e.g., 1R5(e1)

0, ¹I , but 1R(e11e2)
‘‘acts like’’ an identity for I , and 1R→1R(e11e2) gives theR algebra structureR→I .

Now consider theI points ofHq :

SLq~2,I !5Homk2A~Hq ,I !.

F5fe11ce21de:Hq→I is anI point, i.e., (f g)F5 fFgF iff the Homsf,c,d:Hq→R satisfy the
Leibniz rule

~ f g!d5 f fgd1 f dgc, ~ f g!f5 f fgf, ~ f g!c5 f cgc.
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SLq(2,I ) is the set of~a,b!-DsHq→R. Note that 1Hq

F 5 1R(e1 1 e2).

Define the ideal I 85(e1 ,e2 ,e),Hq^e1 ,e2 ,e&, and consider theI 8 points of Hq .
SLq(2,I 8)5Homk2Alg(Hq ,I 8) is the set of ~a,b!-Ds Hq→Hq . For example,C5ae11be2
1DePSLq(2,I 8) could correspond to one of the left-invariant derivations$a,b,D6% of DerL(Hq)
in Eq. ~6.12! or any more general$a,b,D% in Eq. ~8.4!. DerivationsHq→R may be considered as
the image of the map

SLq~2,R!3SLq~2,I 8!→SLq~2,I !,

~w;a,b,D !→C5w~e1a1e2b1eD !.

X. COMMUTATIVE FUNCTION ALGEBRAS

In this section several examples of~a,b!-Ds acting on commutative FAs are given. The FAs
do not contain a deformation parameterq related to noncommutativity, soq in the ~a,b!-Ds and
their algebras is not controlled by the FA but is free to be varied independently. Some of the
derivation algebras are not Hopf.

~1! Representation of Uq~sl~2!! on k[T]. Considerk[T], the FA of polynomials in one inde-
terminateT, thek line. Here~a,b!-Ds D6 on k[T] are defined on the generatorT by

D1T5T2, D2T521, Ta5qT, Tb5q21T, ~10.1!

which extend toTn by the Leibniz rule~2.2!:

~Tn!a5qnTn, ~Tn!b5q2nTn, D6T
n56cnT

n61. ~10.2!

Here and in the following, we abbreviatecn5cn(q)5(qn2q2n)/(q2q21). Der0(k@T#)
5k^a,b,D6& is isomorphic toUq~sl~2!! ~see Eq.~6.12!!.

~2! The ‘‘projectivized’’ representation ofsl~2!.13 Consider the followingk linear maps and
their action onk[T]:

J25D2 , J2T
n52cnT

n21, J15D12cNT , J1T
n5~cn2cN!Tn11.

D6 are defined in Eq.~10.1!, andT means multiplication byT. J2 is a derivation, butJ1 is not.
Let PN(T),k[T] be thek linear subspace of polynomials spanned by 1,T, T2,...,TN. J1 is

constructed so thatJ1T
N50 and therefore restricts to ak-Hom onPN(T). Thus,PN(T) is closed

under the actions of$J6 ,a,b%. Let k^J6 ,a,b& denote the algebra generated by these Homs acting
on PN(T). It has the Rels.

ab5ba5 id, aJ6b5q61J6 ,

@J1 ,J2#5
a22b2

q2q212cN
q1/2a1q2~1/2!b

q1/21q2~1/2! .

J1 is not a derivation, sok^J6 ,a,b& does not have the Hopf structure of Sec. III. Some
relations in this and later examples involve Homs which are not derivations and cannot be verified
by the argument ‘‘both sides are~a,b!-Ds which agree on generators.’’ The relations have to be
proved by acting on a general monomial.

~3! ~a,b! Derivations on the Laurent polynomials. In this example, we define~a,b!-Ds on the
Hopf algebraH5k[T,T21]>k[X,Y]/(XY21) of Laurent polynomials in the indeterminateT
~k5complex numbers!. The set ofk points ofH is Homk2A(H,k)5k* , wherek*5k\$0% is the
punctured complex plane. Two different deformations are stated. For another discussion of deri-
vations onH see Ref. 14.
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Deformation 1. The basis derivationsDn , n50,61,62,... are (an ,an)-Ds defined on genera-
tors by

DnT5Tn11, anT5qnT, ⇒DnT
k5kqn~k21!Tk1n.

The algebra Der1(H)5k^an ,Dn&nPZ has the Rels.

a05 id, anam5an1m , anDm5qmnDman ,

@Dm ,Dn#5~n2m!qmnDm1n .

Rels.~3.2! are satisfied, so [Dm ,Dn] is an (aman ,bmbn)-D, as is given. Der1(H) is an infinitely
generated Hopf algebra of a form discussed in Sec. III. It has no subalgebra isomorphic to
Uq(sl(2)).

Deformation 2. This is an example of a derivation algebra which is not Hopf. Here, the basis
derivations are defined by

DnT52Tn11, Ta5qT, Tb5q21T, ⇒DnT
k52ckT

k1n.

Der(H)5k^a,b,Dn&nPZ has the Rels.

ab5ba5 id, aDnb5qnDn ,

@Dm ,Dn#5c1/2~m2n!$q
2~1/2!~m1n!a1q1/2~m1n!b%Dm1n ,

D052
a2b

q2q21 .

The last Rel. holds because both sides are~a,b!-Ds which agree on generators. Note that in the
casem52n:

@Dn ,D2n#5cn~a1b!D052cn
a22b2

q2q21 .

[Dm ,Dn] is not, in general, a basis derivation but is the sum of an~a2,ab!-D, aDn1m and a
~ba,b2!-D, bDn1m . [Dm ,Dn] is a derivation only form52n, which is when derivation Rels.
~3.2b! and~3.2c! hold. A related fact is that Der(H) does not have the Hopf structure of Sec. III.
But it does have a Hopf subalgebra Der2(H)5k^a,b,D61&, which is isomorphic to DerL(Hq) in
Eq. ~6.12! under$a,b,D61%→$a,b,6D6%.

~4! Creation and annihilation operators. Let a,a1:k[T]→k[T] be k linear operators where
a1 is multiplication byT anda is an ~a,b!-D given by

a1 f5T f , aT51, Ta5xT, Tb5x21T. ~10.3!

Then, the algebraA5k^a,a1,a,b& has Rels.

ab5ba5 id, aa1b5xa1, aab5x21a,
~10.4!

a1a5
a2b

x2x21 , aa15
xa2x21b

x2x21 .

(a1)na is an~a,b!-D, and, in particular,a1a is the indicated~a,b!-D, ~a2b!/(x2x21), which is
the deformed ‘‘number operator.’’ This derivation~and more generallyA! can be expressed in
terms of the (id,id)-D, NTn5nTn, which is the undeformed number operator. Namely,
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a1a5(xN2x2N)/(x2x21), wherea5xN andb5x2N. ~N is not actually the number operator
sincek[T] is not Fock space.! Becausea andb were introduced, the canonical commutator is a
dependent Rel. Here two forms are written in terms ofN:

@a,a1#5
xN11/21xN2~1/2!

x1/21x2~1/2! , aa12xa1a5x2N.

The second form was proposed as aq deformed oscillator algebra.15 This is not a Hopf algebra
~a1 is not a derivation!.

Two comments: ~i! This picture extends ton independent sets of operators and parameters
$ai ,ai

1 ,a i ,b i ,xi%, i51,...,n acting onk[T1 ,...,Tn] with

ai
1~ f !5Ti f , ai~Tj !5d i j ,

~10.5!
a i~Tj !5~xi !

d i j Tj , b i~Tj !5~xi !
2d i j Tj ,

and each set satisfies Eq.~10.4!. ~ii ! The case whena is an (a,id)-D leads to an algebra corre-
sponding to Eq.~10.4! with dependent Rels.,

@a,a1#5xN, aa12xa1a51.

The second form is theq-mutator algebra.16

~5! Deformation of an a,a1 representation ofsl~2!. In this example,a anda1, in Eq. ~10.4!,
are used to constructJ15ja1a1 andJ252jaa, wherex5q1/2 andj5(q1/21q2(1/2))21. Acting
on k[T], the HomsJ6 , a, andb generatek^J6 ,a,b& with the Rels.

ab5ba5 id, aJ6b5q61J6 , @J1 ,J2#5
q1/2a22q2~1/2!b2

q2q21 .

J6 are not derivations, andk^J6 ,a,b& does not have the usual Hopf algebra structure of Sec. III.
The commutator is not an~a2,b2!-D of the formc~a22b2! ~or any derivation!. Here and in the
following, there are Rels. among$J1J2 ,a,b%, and also among$J2J1 ,a,b%, resulting from Eq.
~10.4!, but they are not given. Thus, [J1 ,J2]5... is a dependent Rel. ink^J6 ,a,b&.

~6! Other deformations of U(sl(2)) using a,a1. Let $ai ,ai
1 ,a i ,b i ,xi%, i51,2, be as in Eq.

~10.5! and define twok-HomsJ6 onA5k[T1 ,T2]: J15a1
1a2 , J25a2

1a1 . In contrast to example
~5!, hereJ1 is an~a2,b2!-D ~sincea2 is!, andJ2 is an~a1,b1!-D ~sincea1 is!. Thus, for example,
J1T25T1 extends toA according to

J1~T1
mT2

n!5cn~x2!T1
m11T2

n21.

The Rels. for Der0(A)5k^a i ,b i ,J6& can be worked out keepingx1 ,x2 as two independent
parameters, but we prefer to present two special cases each with a single parameter. As usual,
Rels. of the type~3.2a!, ~3.2d!, and~3.3! exist, but are not stated here.

Deformation 1. x15q, x25q21. Der0(A)1 has Rels.

a iJ6b i5q61J6 , @J1 ,J2#5
a1a22b1b2

q2q21 .

J6 satisfy Eqs.~3.2b! and~3.2c!, which is related to [J1 ,J2] being the~a1a2,b1b2!-D in the last
Rel. Der0(A)1 has the Hopf algebra structure~3.6!, ~3.7!, and~3.9!.

Deformation 2. x15x25q. In this case Der0(A)2 has Rels.
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a1J6b15q61J6 , a2J6b25q71J6 ,
~10.6!

@J1 ,J2#5
a1b22a2b1

q2q21 .

The derivation conditions~3.2b! and~3.2c! are not satisfied, so the commutator [J1 ,J2] does not
have to be an~a1a2,b1b2!-D or any derivation. Nevertheless, it turned out to be an~a1b2,a2b1!-D
as shown. Der0(A)2 can be given a Hopf algebra structure ifJ1 is given a coproductD8 which is
different from the one induced by its~a2,b2!-D structure in Eq.~3.6!: D8J15b2^J11J1 ^ a2 .
The antipode isiJ152b2

21J1a2
21. While this example makes a point, it is due to the flexibility

of a commutative FA.
Comment. We end this section by noting that inconsistencies can arise in trying to define

~a,b!-Ds on commutative FAs with more than one generator. For example, define an~a,b!-D, D,
on k[X,Y] by DX50, DYÞ0, aY5bY5Y, and aXÞbX. Then (XY)D5XaYD but
(YX)D5YDXb. This amounts to trying to define a derivation onk[X,Y]5k^X,Y&/I which fails to
preserve the idealI5(XY2YX).

XI. CONCLUSION

We conclude with three comments about the results, and possible further work.
~1! Application of ~a,b!-Ds on Hopf FAs corresponding to the algebraic quantum groups

SLq~2! and SLq~3! establish an interpretation similar to that of derivations in algebraic groups. The
conjectures at the end of Sec. VII suggest this role of~a,b!-Ds should extend to other algebraic
quantum groups.~a,b!-Ds on slightly more general noncommutativeq-Vs suggest that wider
applications may be tractable.

~2! When the idealI defining a FA,A5k^X1 ,...,&/I , has no special structure of homogeneity
and symmetry~as in quantum algebras! it becomes difficult if not impossible to determinea,b. In
this case explicit~a,b!-Ds in specific examples lose importance. To be interesting here, they
would probably have to be absorbed into a general theory, which would deal with arbitrary ideals.

~3! Whenever differentiation is defined on noncommutative algebras~a,b!-Ds can be consid-
ered. For example, differentiation is obviously of interest on noncommutative smooth FAs.17 Also
derivations have been used onC* algebras.18 Examples would be needed to help interpret
~a,b!-Ds in any new context.

ACKNOWLEDGMENT

The author is grateful to the referee for many helpful comments and questions and for point-
ing out several references, which led to improvements in the article.

1J. E. Humphries,Linear Algebraic Groups~Springer, Berlin, 1981!; W. Waterhouse,Introduction to Affine Group
Schemes~Springer, Berlin, 1979!.

2P. M. Cohn,Free Rings and Their Relations, 2nd ed.~Academic, New York, 1985!.
3Yu. I. Manin, Quantum Groups and Noncommutative Geometry~Montreal University, Montreal, 1988!; Topics in
Noncommutative Geometry~Princeton University, Princeton, NJ, 1991!.

4P. M. Cohn, inApplications of Sheaves, edited by M. P. Fourman, C. J. Mulvey, and D. S. Scott, Lecture Notes in Math.
753 ~Springer, Berlin, 1979!.

5V. G. Drinfeld,Quantum Groups, edited by A. Gleason~AMS, Berkeley, 1987!, pp. 798–820; J. Sov. Math.41, 898
~1988!.

6D. Bernard, Prog. Theor. Phys. Supp.102, 49 ~1990!.
7C. Chryssomalakos, B. Drabant, M. Schlieker, W. Weich, and B. Zumino, Commun. Math. Phys.147, 635 ~1992!.
8P. Schupp, P. Watts, and B. Zumino, Commun. Math. Phys.157, 305 ~1993!.
9A. Connes, inThe Interface of Mathematics and Particle Physics, edited by D. G. Quillen, G. B. Segal, and S. T. Tsou
~Clarendon, Oxford, 1990!; P. Seibt,Cyclic Homology of Algebras~World Scientific, Singapore, 1987!.

10S. Majid, Int. J. Mod. Phys.5, 1 ~1990!.
11V. Chari and A. Pressley,A Guide to Quantum Groups~Cambridge University Press, Cambridge, 1994!.
12E. Celeghini, R. Giachetti, E. Sorace, and M. Tarlini, J. Math. Phys.31, 2548~1990!.

2551L. J. Swank: Derivations on quantum function algebras

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



13A. V. Turbiner, J. Math. Phys.33, 3989~1992!.
14D. Franco and C. Reina, Lett. Math. Phys.29, 215 ~1993!.
15P. P. Kulish, inQuantum Symmetries, edited by H. D. Doebner and V. K. Dobrev~World Scientific, Singapore, 1993!.
16O. W. Greenberg inQuantum Groups, edited by T. Curtrightet al. ~World Scientific, Singapore, 1991!; D. I. Fivel, J.
Phys. A24, 3575~1991!.

17A. Connes,Noncommutative Geometry~Academic, New York, 1994!.
18O. Bratteli,Derivations, Dissipations and Group Actions on C* Algebras~Springer, Berlin, 1986!.

2552 L. J. Swank: Derivations on quantum function algebras

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



On special classes of n -algebras
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We definen-algebras as linear spaces on which the internal composition law in-
volvesn elements:m:V^n⇒V. It is known that such algebraic structures are in-
teresting for their applications to problems of modern mathematical physics. Using
the notion of a commutant of two subalgebras of ann-algebra, we distinguish
certain classes ofn-algebras with reasonable properties: semisimple, Abelian, nil-
potent, solvable. We also consider a few examples ofn-algebras of different types,
and show their properties. ©1996 American Institute of Physics.
@S0022-2488~96!00904-9#

I. INTRODUCTION

In 1973, Nambu1 proposed an interesting generalization of classical Hamiltonian mechanics.
It is based on a new notion of brackets, now calledthe Nambu bracket, generalizing the usual
Poisson bracket, which is a binary operation on an algebra of classical observables on a phase
space, to the multiple operation of higher ordern>3. This new operation is skew-symmetric and
satisfies the Leibniz rule with respect to the usual multiplication of functions as well as the
so-calledfundamental identity, which is a natural generalization of the Jacobi identity. Takhtajan
called this generalization of the Lie algebra to the multiple operation of higher order byNambu–
Lie algebra.2 The homology theory and the deformation theory for Nambu–Lie gebras were
considered in Ref. 3.

The canonical Nambu bracket forn classical observables on the phase spaceRn with coordi-
natesx1 , x2 ,...,xn is defined by$ f 1 , f 2 ,...,f n%:5J( f 1 , f 2 ,...,f n), where the right-hand side
stands for the Jacobian of the mappingf5$ f 1 , f 2 ,...,f n%:R

n→Rn. This formula naturally gener-
alizes the usual canonical Poisson bracket from binary ton-ary operation on classical observables.
The generalized Nambu–Hamilton equation of motion involvesn21 Hamiltonians H1 ,
H2 ,...,Hn21:

d f

dt
5$H1 ,H2 ,...,Hn21 , f %.

The phase flow in the corresponding phase space is divergence-free and preserves the standard
volume formdx1`dx2`•••`dxn—this is the analog of the Liouville theorem. One can find a
description of the foundations of the generalized Nambu mechanics in Ref. 2 as well as a discus-
sion of related higher-order algebraic structures. The author of Ref. 2 suspects that such structures
might clarify many important problems of modern mathematical physics~Yang–Baxter equation,
Poisson–Lie groups, quantum groups! for higher-dimensional cases. For the Yang–Baxter equa-
tion of higher order, it was done by Lawrence.4,5 It should be noted that one of us emphasized in
Refs. 6–9 that ternaryZ3-graded algebras are important for their applications in physics of el-
ementary interactions.

a!Permanent address: International Solomon University, Zabolotny Str. 38, Apt. 61, Kiev 252187, Ukraine.
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Ternary Nambu–Lie gebras (n53) look similar toLie triple systems, introduced in Ref. 10
and studied in Refs. 11 and 12. The Lie triple system is defined as a vector spaceV equipped with
the ternary bracket which satisfies the same fundamental identity as a Nambu–Lie bracket, but
instead of being skew symmetric, satisfies some other condition. The fundamental fact of the
theory of Lie triple systems is the existence of standard imbedding of any such system in certain
Lie algebra, sending the ternary bracket to†@•,•#•‡, where@•,•# stands for the operation in the Lie
algebra. Another, different generalization of Lie algebras for higher-order algebraic operations is
given in Ref. 13.

There were also some attempts to find a generalization of the concept of associative algebras
for higher-order algebraic operations, but only some partial results are presented in Refs. 14, 4, 5,
and 3. In particular, one can introduce in a partially associativen-algebra,14 a natural analog of Lie
brackets satisfying a generalized Jacobi identity in the sense of Ref. 13.

It is well known that semisimple, Abelian, nilpotent, and solvable algebras form the most
important classes of binary associative and Lie algebras. This is why our aim is to find reasonable
generalizations of these notions for higher-order algebraic operations.

We definen-algebrasas linear spaces~mainly finite dimensional! on which the internal
composition law involvesn elements:m:V^n⇒V. The termn-algebra has been introduced by
Lawrence4,5 to denote the objects with a richer structure, but we hope that the use of this term in
our context will not lead to any confusion. The similar notion was used also in Ref. 14. Let us give
an example of such a structure for the casen53. An arbitrary elementaPV^V^V can be
written in the basis$ek% as

a5 (
k,l ,m

aklmek^el ^em ,

which defines a one-to-one correspondence between the elements ofV^V^V and the three-
tensorsaklm , which we call alsocubic matrices.

The natural internal composition law that generalizes the multiplication of ordinary matrices is
given by the following rule:

m~a^b^c! i jk5~a* b* c! i jk :5 (
p,q,r

aipqbp jrcqrk . ~1!

In contrast with ordinary matrix multiplication it is nonassociative, neither in the strong sense, i.e.

„a* ~b* c* d!* e…Þ~a* b* c!* d* eÞa* b* ~c* d* e!,

nor in the sense of other generalizations of associativity presented in Refs. 14, 4, 5, and 3.
Such a ternary product has been in fact introduced by one of the authors7,9 and independently

by Lawrence.4 It is a particular case of a more generaln-fold multiplication defined on the
n-tensors as follows:

m~a~1!
^a~2!

^ ••• ^a~n!! i1i2••• i n
5 (

j kr51~k,r !

l

ai1 j 12••• j 1n
~1! aj 12i2 j 23••• j 2n

~2!

3•••3aj 1k••• j k21ki kj kk11••• j kn
~k! 3•••3aj 1n••• j n21ni n

~n! , ~2!

also studied by Lawrence.4,5
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From the mathematical point of view this structure seems to be rather complicated, so the first
question is whether it is possible to distinguish the subalgebras of 3-tensors~n-tensors! with
reasonable properties. We succeeded here to introduce subalgebras similar to binary Abelian,
nilpotent, solvable, and semisimple algebras.

The groupsS3 andZ3 act on cubic matrices by permuting their indices. Therefore, it is natural
to distinguish subspaces of such matrices that provide the irreducible representations of these
groups; e.g., there is the subspace of totally symmetric cubic matrices satisfying
aklm5almk5amlk5..., etc.

Our paper is organized as follows. In Sec. II we give basic definitions and examples related to
generaln-algebras~for simplicity, over the fieldC!. Many of these definitions, such as a subal-
gebra, an ideal, a homomorphism are scattered in the literature, but we prefer a self-contained
discussion. In Sec. III, using the important notion of a commutant of two subalgebras of an
n-algebra, we distinguish several classes ofn-algebras: semisimple, Abelian, nilpotent, solvable.
We show that the three latter classes are invariant with respect to the operations of taking a
subalgebra, a factor algebra and a homomorphic image. In Sec. IV, we consider the special case of
cubic matrices and discuss a few examples of ternary algebras, which could be interesting for their
applications in physics of elementary interactions.

II. BASIC DEFINITIONS AND EXAMPLES.

Definition 1: We call an n-algebra (nPN) over the field C a linear space A endowed with a
linear mapping (multiplication) m:A^n→A.

One defines in an obvious way a subalgebra of ann-algebraA and then-algebra structure in
thenth tensor powerA^n. The groupSn acts inA

^n in a natural way:

p~g!~a1^ ••• ^an!:5ag~1! ^ ••• ^ag~n! ,

for arbitrarygPSn , a1 ,...,anPA. In particular, the cyclic groupZn is represented automatically
~by means of the reduction ofp!, in the tensor productA^n.

Definition 2: An n-algebra A is called Sn commutative (Zn commutative), if m+p~g!5m for any
gPSn (resp., for any gPZn).

Definition 3: An n-algebra A is said to be strongly associative if

m+~m^ id^ ••• id !5m+~ id^m^ id••• ^ id !5m+~ id^ id••• ^m!,

where all linear mappings act from A^ ~2n21! to A.
There exist other definitions of the associativity inn-algebras~see Refs. 14, 4, 5, and 3!.
Example 1 (Algebra of multidimensional matrices): Consider the set A5Mat(l,n;C) of com-

plex multidimensional matrices a5 (ai1i2••• i n
), with i 1 ,i 2 , . . . ,i n 5 1,2, . . . ,l of dimension

l3l3•••3l5ln. One can introduce the n-fold multiplication on this space (i.e., the product of n
elements) by means of (2). Let us introduce matrix units:

~ei1i2••• i n
! j 1 j 2••• j n

:5d i1 j 1d i2 j 2•••d i nj n.

For their product in the above-mentioned sense, we have

m~ei ~1!
1i

~1!
2••• i ~1!

n
^ ••• ^ei ~n!

1i
~n!

2••• i ~n!
n
! j 1••• j n

5d i ~1!
1 j 1

•••d i ~n!
nj n

d i ~2!
1i

~1!
2
•••d i ~k!

r i
~r !

k
•••d i ~n21!

ni
~n!

n21
.

One can easily see now that all diagonal matrix units are idempotents:
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m~ei ••• i ^ ••• ^ei ••• i ! j 1••• j n
5d i j 1•••d i j n,

and that all nondiagonal matrix units are nilpotents:

m~ei1i2••• i n
^ ••• ^ei1i2••• i n

! j 1 j 2••• j n
50,

if at least two indices are different. If in a product of the diagonal matrix units there are at least
two different indices, the product is equal to 0. The n-algebra of all the diagonal matrices gives an
example of Sn-commutative n-algebra.

Obviously, forn52 we get the usual matrix multiplication. Forn.2, this operation is not
associative, neither in the sense of Definition 3 nor in the sense of other generalizations of
associativity presented in Refs. 3, 4, 5, and 14.

The notion of a determinant of multidimensional matrix~the so-called hyperdeterminant! has
been considered in Ref. 15~the hyperdeterminants have been considered for the first time by
Cayley in the early 1840s!.

Example 2: Any binary algebra A over the field C, with the multiplication p: A^A→A, is an
n-algebra with a naturally extended multiplication by means a binary one as

m:5p+~ id^p!+~ id^ id^p!+~ id^ id^ ••• id^p!:A^n→A. ~3!

If the binary multiplication p is associative, then the multiplication m defined above is obviously
strongly associative, too.

Nevertheless, there exist two-dimensional ternary algebras whose multiplication cannot be
expressed by means of any binary one as~3!. Indeed, suppose thatm(a^b^c)5p„a^p(b^c)…
for anya,b,cPA. Let us fix a basis$e1 ,e2% in A. Thenm andp can be expressed with the help
of structure constants as follows:

m~ei ^ej ^ek!5(
l51

2

ci jk
l el , p~ei ^ej !5(

r51

2

xi j
r er ,

for all i , j ,kP$1,2%. If the above equality is satisfied, it leads to the following system of linear
equations:

ci jk
l 5(

r51

2

xjk
r xir

l ,

for all values ofi , j ,k,lP$1,2%. This system contains 16 equations for 8 variables. It is easy to
chooseci jk

l in such a way that this system will have no solution. Note that the ternary algebra
constructed in Refs. 4 and 5 using the 6j symbols of the representations of quantum groups also
has the multiplication that cannot be expressed via~3! with the help of a binary one.

Definition 4: An n-algebra A is called Zk graded(k P N), if A5A0%A1% ••• %Ak21 (direct
sum of linear spaces) and if there exists a mapping g:Ai→ iP$0,1,...,k 2 1% having the
property: g„m(a1^a2^ ••• ^an)…5g(a1)1g(a2)1•••1g(an21)(mod k) for all a1PAi ,
a2PAj ,...,an21PAl( i , j ,lP$0,1,...,k21%). The elements belonging to the spaces Ai are called
homogeneous of grade i, and we suppose that the product of homogeneous elements is also a
homogeneous element. Evidently,A0 is a subalgebra ofA.

Definition 5: We call ideal of an n-algebra A a linear space B, such that
m(a1^ ••• ^an21^b)PB, m(a1^ ••• ^an22^b^an21)PB, m(b^a1^ ••• ^an21)PB for any
bPB, a1 ,...,an21PA.

If an n-algebra A contains no other ideals except$0% and A, it is called simple.

2556 L. Vainerman and R. Kerner: On special classes of n-algebras

J. Math. Phys., Vol. 37, No. 5, May 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Remark 1: Definition 5 applied to usual binary algebras gives the definition of a two-sided
ideal. Obviously, one can give an analog of the definition of a one-sided ideal extended to the
n-algebras. For example, the n-algebra described in Example 1 is simple, but it has many one-
sided ideals.

Example 3: Consider the following sets (the ‘‘slices’’) in Mat( l ,n;C):

Tip
s :5$aPMat~ l ,n;C!:~ai1i2••• i n

! i1 ,i2 ,••• i n51
l 5d i p

s ~ai1i2••• i n
! i1 ,••• i p21 ,i p11•••,i n51
l %,

where p,s5 1,...,l .

Every such ‘‘slice’’ Ti p
s defines a one-sided ideal in the n-algebra Mat( l ,n;C), because

applying (2), we have for all a(1),...,a(n)PMat( l ,n;C), a(p) P Tip
s :

m~a~1!
^a~2!

^ ••• ^a~n!! i1i2••• i n
5d i p

s (
j kr51~k,r !

l

ai1 j 12••• j 1n
~1! aj 12i2 j 23••• j 2n

~2!

3•••3aj 1k••• j p21ps jpp11••• j kn
~p! 3•••3aj 1n••• j n21ni n

~n! .

If a(q) P Tip
sq, then

m~a~1!,...,a~p!,...,a~n!! i1••• i p21spi p11••• i n

5as1•••sn
~p! m~a~1!,...,a~p21!,a~p11!,...,a~n!! i1••• i p21i p11••• i n

,

where the last of these multiplications coincides with the multiplication in
Mat( l ,n21;C).

Obviously, an ideal is automatically a subalgebra. The intersection of a set of ideals is also an
ideal. If B and C are two ideals ofn-algebra A, then the linear subspaceB1C:5$b
1cubPB,cPC% is also the ideal ofA. So we can introduce a notion of asum of an arbitrary set
of ideals.

Definition 6: A homomorphism of n-algebras(A1 ,m1) and (A2 ,m2) is a linear mapping
r:A1→A2 , such that m2+(r ^ r ^ ••• ^ r)5r+m1 .

The definitions of a homomorphism, a subalgebra, and an ideal have their natural extensions
to the Zk-graded n-algebras. We call thekernel of a homomorphism r the set
Ker~r!:5$aPA1 :r(a)50%.

A representation of then-algebraA in a linear space of dimensionl is a homomorphism ofA
to then-algebra Mat(l ,n;C) ~also see Ref. 4!.

Theorem 1: There exists a one-to-one correspondence between the kernels of the homomor-
phisms of Zn-graded n-algebras(A1 ,m1) and (A2 ,m2) and the ideals of A1 . The images of the
homomorphisms of n-algebras having the same kernels are mutually isomorphic.

Proof: It is obvious that Ker~r! is an ideal ofA1 . Let us suppose indeed thatbPKer~r!, a1 ,
a2 ,...,an21PA1 ; in that case,

r+m1~a1^a2^ ••• ^an21^b!5m2„r~a1! ^ r~a2! ^ ••• ^ r~an21! ^ r~b!…50,

and one hasm(a1^ ••• ^an21^b)PKer~r!. Other properties mentioned in Definition 5 can be
checked in a similar way.

On the contrary, ifB is an ideal in then-algebraA, we can consider the factor spaceA/B of
the classes of equivalency of the formB1a, where (aPA). It is possible to define on this space
a new multiplicationm̃:(A/B)^n→A/B:m̃„(B1a1)^ ••• ^ (B1an)…:5B1m(a1^ ••• ^an). In
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this way we defined the structure ofn-algebra onA/B and we showed that the linear canonical
applicationp:A→A/B is the homomorphism ofn-algebras. The algebraA/B is named the factor-
n-algebra ofA by the idealB. Obviously,B5Ker~p!.

Finally, if r:A1→A2 is a homomorphism ofn-algebras, then then-algebras Im~r! and
A/Ker~r! are isomorphic. This proof is evidently valid also forZn-gradedn-algebras. h

Now one can easily prove that ifB is an ideal in then-algebraA, then the following occurs.
~1! There exists a natural one-to-one correspondence~conserving the inclusion relation! be-

tween all subalgebras ofA/B and all subalgebras ofA containingB.
~2! The above correspondence also gives a one-to-one correspondence between all ideals of

A/B and all ideals ofA containingB, the corresponding factor algebras being isomorphic.

Remark 2: Let us define similarly the dual category of n-coalgebras. We call n-coalgebra
(nPN) over the field C a linear space M endowed with a linear application (comultiplication)
D:M→M^n.

We produce a standard example of ann-coalgebra by considering the algebraM of complex-
valued functions on a group with multioperators16,17 with a uniquen-ary operationv. In this
example (D f )(x1 ,...,xn):5 f „v(x1 ,...,xn)… is the homomorphism of binary algebrasM and
M ^n.

If we introduce the structure of ann-algebra inM with the help of Definition 3 and the similar
structure inM ^n, it is obvious thatD is a homomorphism ofn-algebrasM andM ^n. This means
that we have here an example ofn-bialgebra in the sense of the following definition.

Definition 7: We call an n-bialgebra(nPN) over the field C a linear space A endowed with
a multiplication m: A^n→A and a comultiplicationD:A→A^n, which is the homomorphism rela-
tively m (recall that A^n has a natural structure of n-algebra generated by m).

III. SPECIAL CLASSES OF n-ALGEBRAS

Definition 8: If B,C are two subalgebras of an n-algebra~A,m!, their commutant@B,C#m is the
ideal in ~A,m!, generated by all the elements of the form

@b1 ,b2 ,...,bn ;c1 ,c2 ,...,cn#m5m„~b11c1! ^ ~b21c2! ^ ••• ^ ~bn1cn!…

2m~b1^b2^ ••• ^bn!2m~c1^c2^ ••• ^cn!, ~4!

where b1, b2,...,bnPB, c1, c2,...,cnPC; in other words, the intersection of all the ideals containing
all the above elements. Obviously, [B,C]m5[C,B]m . In particular, we considerA8:5[A,A]m .

Lemma 1: A subalgebra B of an n-algebra(A,m) is an ideal if and only if[A,B]m#B.

Proof: If B is an ideal, all the elements mentioned in~4!, where b1 , b2 ,...,bnPB, c1 ,
c2 ,...,cnPA, are elements ofB, and the necessary inclusion is evident. On the contrary, if this
inclusion is true, then all the elements of the form~4!, whereb1 , b2 ,...,bnPB, c1 , c2 ,...,cnPA,
are elements ofB. If, in particular, allbi50, except one, thenB satisfies the definition of ideal.h

As [A,B]m#A8:5[A,A]m , this lemma says that every subalgebra of then-algebraA con-
tainingA8, is an ideal inA.

Definition 9: We call an n-algebra(A,m) Abelian, if [A,A]m5$0%.
Obviously, this condition is equivalent to the condition

m„~b11c1! ^ ~b2^c2!••• ^ ~bn^cn!…5m~b1^b2^ ••• ^bn!1m~c1^c2^ ••• ^cn!,

where b1 , b2 ,...,bn , c1 , c2 ,...,cnPA. If, in particular, all bi50, except one, then
m(a^b^ ••• ^c)50 for everya, b,...,cPA.
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This means that Abeliann-algebras are exactlyn-algebras with a zero multiplication. So
every subalgebra, factor algebra, and homomorphic image of an Abeliann-algebra is Abelian
itself.

Lemma 2: A factor algebra A/B of an n-algebra A by the ideal B is Abelian if and only if
[A,A]m#B.

Proof: If A/B is Abelian, then we have [b11B,b21B,...,bn1B;c11B,c2
1B,...,cn1B]m5B for every b1 , b2 ,...,bn , c1 , c2 ,...,cnPA, from where
[b1 ,b2 ,...,bn ;c1 ,c2 ,...,cn]PB, which means [A,A]m#B. h

In particular, the factor algebraA/[A,A]m is always Abelian.

Definition 10: We call a normal series of an n-algebra(A,m) such a finite system of subal-
gebras$0%5Ak,Ak21,•••,A1,A05A that every Ai is a proper ideal in Ai21( i51,...,k). The
natural number k is called the length of this series, and the factor algebras Ai21/Ai are called the
factors of this series.

A normal series$0%5Ak,Ak21,•••,A1,A05A of an n-algebra(A,m) is called central
series, if[Ai ,A]m#Ai11 ( i50,1,...,k21).

This definition gives [Ai ,A]m#Ai ( i50,1,...,k21) for any central series, and Lemma 1
shows that allAi are the ideals inA. So a central series is also aninvariant series, i.e., a finite
series of ideals ofA, ordered by inclusion.

Definition 11: We call an n-algebra(A,m) nilpotent, if it has at least one central series.
In particular, every Abeliann-algebra is nilpotent because it has a central series of the form

$0%,A.
We call a lower central chain of an n-algebra A the following chain of ideals:

•••#Âk#Âk21#•••#Â1#Â05A, whereÂk11:5[ Âk ,A]m , k50,1,2,... .

Lemma 3: An n-algebra A is nilpotent if and only if in its lower central chain Aˆ
k5$0% f o for

some natural k.

Proof: In fact, if Âk5$0%, the above lower central chain becomes the central series of the
n-algebraA. On the contrary, consider a central series$0%5Ai,Ai21,•••,A1,A05A of the
n-algebraA. Let Â05A5A0 . Evidently,Â1 :5[A,Â0]m5[A,A]m#A1 and, if it has already been
proved that Âi#Ai , then according to the definition of the lower central chain, we have
Âi11:5[ Âi ,A]m#[Ai ,A]m#Ai11, from whereÂk#Ak5$0%, i.e., Âk5$0%.

Corollary 1: Every subalgebra B of a nilpotent n-algebra A is also nilpotent.

Proof: Let •••#B̂i#B̂i21#•••#B̂1#B̂05B be a lower central chain forB. Then

B̂05B#A5Â0 , B̂15[B,B̂0]m#[A,Â0]m5Â1 , and, if it is already proved thatB̂i#Âi then

B̂i11:5[B,B̂i ]m#[A,Âi ]m#Âi11. From the equalityÂk5$0% we have now thatB̂k5$0%.

Corollary 2: Every homomorphic image H5r(A) of a nilpotent n-algebra A is also nilpotent.

Proof: In fact, let •••#Âi#Âi21#•••#Â1#Â05A and •••#Ĥ i#Ĥ i21#•••#Ĥ1#Ĥ05H
be the lower central chains forA andH, respectively. ThenH5Ĥ05r(A)5r(Â0). Let it be
already proved thatĤ i#r(Âi). Then ;a18 ,...,an8 P Ĥ i , b18 ,...,bn8 P H'a1 ,...,an P Âi ,
b1 ,...,bnPA, such thatal8 5 r(al), bl8 5 r(bl); l 5 1,...,n; this is why r(@a1 ,...,an ;
b1 ,...,bn]m)5@a18 ,...,an8 ;b18 ,...,bn8#m .

As the imager(Âi11) of the idealÂi11 is the ideal inH ~one can verify this directly!, then
from the above relation we haveĤ i115[ Ĥ i ,H]m#r(Âi11). From the equalityÂk5$0% we have
now thatĤk5$0%. h

Definition 12: A normal series$0%5Ak,Ak21,•••,A1,A05A of an n-algebra(A,m) is
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called solvable, if all factor algebras Ai /Ai11 ( i50,1,...,k21) of this series are Abelian, i.e.,
using Lemma 2, if[Ai ,Ai ]m#Ai11 ( i50,1,...,k21). An n-algebra is called solvable if it has at
least one solvable series.

Every nilpotentn-algebra is solvable. In fact, let$0%5Ak,Ak21,•••,A1,A05A be its
central series; then using the relation [Ai ,A]m#Ai11, we have [Ai ,Ai ]m#[Ai ,A]m#Ai11 ( i
50,1,...,k21!. h

Definition 13: We callchain of commutantsof an n-algebra A a chain of its subalgebras
•••#A( i )#•••#A9#A8#A(0)5A, such that A( i11)5[A( i ),A( i )]m , i50,1,2,... .

Lemma 4: An n-algebra A is solvable if and only if in its chain of commutants A(k)5$0% for
some natural k.

Proof: In fact, if A(k)5$0%, then the above chain of commutants becomes a solvable series of
then-algebraA. On the contrary, letA have a solvable series$0%5Ak,Ak21,•••,A1,A05A.
PutA(0)5A05A. Let it be already proved thatA( i )#Ai . Then, using the Definitions 12 and 13,
we haveA( i11)5[A( i ),A( i )]m#[Ai ,Ai ]m#Ai11, from where, in particular,A(k)#Ak5$0%, i.e.,
A(k)5$0%. h

Corollary 3: Every subalgebra B of a solvable n-algebra A is also solvable.
Proof: Let •••#B( i )#•••#B9#B8#B(0)5B be a chain of commutants forB. Then

B(0)5B#A5A(0). If it has already been proved that B( i )#A( i ), then
B( i11):5[B( i ),B( i )]m#[A( i ),A( i )]m#A( i11). From the equalityA(k)5$0% we have now that
B(k)5$0%. h

Lemma 5: If B and C are solvable ideals in an n-algebra A, so is B1C.
Proof: From Definition 8 one can easily get that

~B1C!8#B81C81BùC.

If it has already been proved that (B1C)( i )#B( i )1C( i )1BùC, then (B1C)( i11):
5[(B1C)( i ), (B1C)( i )]m#[B( i )1C( i )1BùC, B( i )1C( i )1BùC]m#[B( i )1C( i ),
B( i )1C( i )]m1BùC#B( i11)1C( i11)1B( i )ùC( i )1BùC#B( i11)1C( i11)1BùC.

Therefore, there must be an integerk such that (B1C)(k)#BùC, which is solvable by
Corollary 3. From this we deduce thatB1C is solvable. h

Now form R(A):5(aBa , wherea runs over the set of all solvable ideals ofA. Due to
Lemma 5,R(A) is the unique maximal solvable ideal inA. After this remark the following
definition makes sense.

Definition 14: The radical R(A) of an n-algebra is the unique maximal solvable ideal of A. In
case R(A)50, A is called semisimple.

Obviously, any simplen-algebra is automatically semisimple. Since then-algebra of multi-
dimensional matrices~Example 1! is simple, it gives automatically the example of semisimple
n-algebra.

In order to show that every homomorphic image of the solvablen-algebra is also solvable, we
need some general facts.

Lemma 6: Let B be an ideal and C a subalgebra of an n-algebra A. Then every element of the
subalgebra$B,C% of A, generated by B and C, may be written as b1c, where bPB, cPC, so one
can write $B,C%5B1C.

Proof: Obviously, all elements of the formb1c are contained in$B,C%. On the other hand,
the set of all elements of this form is a subalgebra ofA, containingB andC. In fact, by the
definition of ideal we have for every b1 , b2 ,...,bnPB, c1 , c2 ,...,cn
PC:m„(b11c1)^ ••• ^ (bn1cn)…5m(c1^ ••• ^cn)1B#B1C. h

The following theorem is often referred to as theisomomorphism theorem.
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Theorem 2: Let B,C be two subalgebras of an n-algebra A, and let B be ideal in the
subalgebra$B,C%. Then BùC is the ideal in C and$B,C%/B is isomorphic to C/(BùC).

Proof: In fact, Lemma 6 shows that every conjugacy class of then-algebra$B,C% by the ideal
B contains at least one element fromC. Then the canonical homomorphism of$B,C% on $B,C%/B
sends the subalgebraC onto this factor algebra. Evidently,BùC is the kernel of this homomor-
phism. Theorem 1 shows thatBùC is the ideal inC. The n-algebras$B,C%/B andC/(BùC)
consist from the conjugacy classes of the formB1c and BùC1c, respectively, so one can
establish an obvious one-to-one correspondence between them and verify directly that it is an
isomorphism. h

A more general case is considered in the following lemma.
Lemma 7: Let B,B8, C,C8 be two subalgebras of an n-algebra A, let B8 be an ideal in B, and let
C8 be an ideal in C. Then B81(BùC8) is the ideal in B81(BùC), C81(CùB8) is the ideal in
C81(CùB), and the n-algebras B81(BùC)/B81(BùC8) and C81(CùB)/C81(CùB8)
are isomorphic.

Proof: Let D5BùC. As C8 is the ideal inC and D#B, then Theorem 2 shows that
DùC85BùCùC85BùC8 is the ideal inD. The same is true forCùB8 and for the sumD8 of
these ideals:D85(BùC8)1(CùB8).

On the other hand, asB8 is the ideal in B, then according to Lemma 6
$B8,BùC%5B81(BùC)5B81D. One can represent every element from thisn-algebra in the
form b81d, whereb8PB8, dPD. There exists a correspondence between all elements of this
form and elements of the formD81d of the algebraE5D/D8.

In fact, one can write the elementb81d as b181d1 , where b18PB8, d1PD, so that
2b181b85d12dPB8ùD#B8ùC#D8; this is why d15(2b181b8)1dPD81d.

The above correspondence is a homomorphism of then-algebraB81D into then-algebraE:
asB8 is the ideal inB81D,D is the subalgebra ofA; thenm„(b18 1 d1) ^ ••• ^ (bn8 1 dn)… 5 b08
1 m(d1 ^ ••• ^ dn), whereb08 P B8, m(d1^ ••• ^dn)PD. The kernel of this homomorphism is
B81(BùC8). In fact, this sum is contained in the kernel, becauseBùC8#D8.

On the other hand, if the image of the elementb81dPB81D is contained inD8, then
dPD85(BùC8)1(CùB8); this is why one can writed5u1v, whereuPCùB8, vPBùC8.
Finally, b81d5b81u1vPB81(BùC8).

One can see now thatB81(BùC8) is an ideal inB81D5B81(BùC), and then-algebras
B81(BùC)/B81(BùC8) andE are isomorphic. One can similarly prove thatC81(CùB8) is
an ideal inC81(CùB), and that then-algebrasC81(CùB)/C81(CùB8) andE are isomor-
phic. h

Remark 3:If C#B,C85$0% Lemma 7 becomes the isomorphism theorem.

Definition 15: We say that a normal series$0%5Bl,Bl21,•••,B1,B05A is a condensa-
tion of a normal series$0%5Ak,Ak21,•••,A1,A05A, if every Ai ( i51,2,...,k21) coincides
with one from Bj (it is obvious that k<l). We say that two normal series are isomorphic if k5 l ,
and there exists such a one-to-one correspondence between their factors, that the corresponding
factors are isomorphic as n-algebras (we do not suppose that precisely the factors with the same
indices are isomorphic).

Theorem 3: Every two normal series for an n-algebra A have isomorphic condensations.
Proof: Let $0%5Ak,Ak21,•••,A1,A05A and$0%5Bl,Bl21,•••,B1,B05A be two

normal series forA. Put Ai j5Ai1(Ai21ùBj ) ~i51,...,k, j50,...,l !, Bji5Bj1(Bj21ùAi) ~i
50,...,k, j51,...,l !. This makes sense according to Lemma 6: in fact, for example,Ai is an ideal
andAi21ùBj is a subalgebra inAi21. One can also remark that fori51,...,k, j51,...,l we have
Ai5Ail#Ai j#Ai j21#Ai05Ai21, Bj5Bjk#Bji#Bji21#Bj05Bj21.

According to Lemma 7,Ai j andBji are the ideals inAi j21 andBji21, respectively, and the
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n-algebrasAi j21/Ai j andBji21/Bji are isomorphic. If now we put allAi j ( j51,...,l21) between
Ai21 and Ai ( i51,...,k), we get a condensation of this series, in which some members can
coincide. Similarly, one can get a condensation of a second series. But using the above isomor-
phism, one can exclude the coinciding members. h

Now we can show that every hormomorphic image of the solvablen-algebra is also solvable.
In fact, according to Theorem 1, it is sufficient to prove this statement for a factor algebraA/B.
Since any condensation of a solvable series is solvable itself, then, according to Theorem 3, there
exists a solvable condensation of a series$0%,B,A. According to the statements formulated just
after Theorem 1, we get a solvable series inA/B. After this remark we are able to prove the
following theorem about semisimplen-algebras.

Theorem 4: If R is the radical of an n-algebra A, then A/R is semisimple, and if B is an ideal
in A, such that A/B is semisimple, then R#B.

Proof: ~1! The ideals ofA/R have the formC/R, whereC is an ideal ofA containingR ~see
the remarks following Theorem 1!. Since (C/R)( i )5(C( i )1R)/R, if C/R is solvable, then, for
somek, C(k)#R. This implies thatC is solvable inA, henceC5R, andA/R is semisimple.

~2! SupposeA/B is semisimple and consider its idealR/B, which is solvable due to the
remark preceding this theorem. Since it should be 0, thenR#B. h

Generally, the class of solvablen-algebras is wider then the class of nilpotent ones, but they
coincide if the multiplication is strongly associative. In this special case one can define a product
of any 11k(n21) elements~herekPNø$0%!.

Lemma 8: An ideal of a strongly associative n-algebra generated by all possible products of
any11k(n21) elements (kPNø$0% is fixed), coincides with the set of all linear combinations of
these elements.

Proof: In fact, multiplying any linear combination of the above products byn21 arbitrary
elements ofA in any order, we get a linear combination of some products of 11(k11)(n21)
elements. Replacing in any such product any group ofn neighboring elements by their product, we
get again a linear combination of the initial form. On the other hand, the above set can be reduced
to the set of all linear combinations of the elements fromA. h

Corollary 4: The subalgebra A( i ) in a chain of commutants of a strongly associative n-algebra
A( iPNø$0%) is the ideal generated by the set of all possible products from ni elements from A.

Proof: For n50 the statement is obvious; forn51 it follows from the definition of a com-
mutant. If this statement holds for some naturali , thenA( i11)5[A( i ),A( i )]m is generated by the set
of all possible products fromn+ni5ni11 elements fromA. h

Note thatni can always be represented as 11k(n21) for somek.

Corollary 5: The idealAi in a lower central chain of a strongly associativen-algebra
A( iPNø$0%) is the ideal generated by the set of all possible products from 11 i (n21) elements
from A.

Proof: For n50 the statement is obvious; forn51 it follows from the definition of commu-
tant. If this statement holds for some naturali , thenAi115[Ai ,Ai ]m is generated by the set of all
possible products of 11( i11)(n21) elements fromA. h

Corollary 6: A strongly associative n-algebra is solvable if and only if it is nilpotent.
Proof: From the previous corollaries we haveA( i ) 5 Ani

, whereni5(ni21)/(n21), so that

A(k)5$0% for some naturalk if and only if Ank
5 $0% for this k. h

In the next section we will look more closely at the ternary algebra of complex-valued cubic
matrices withl52 and 3. Such a study seems to be particularly important in view of the perti-
nence of these matrices to a possible generalization of quantum mechanics and field theory. On the
other hand, in this special case we are able to gather more information about the structure of entire
algebra and its subalgebras.
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IV. CUBIC MATRICES WITH l52 AND 3

Consider the example 1 of multidimensional matrices for the simplest casel52, n53. Let us
show that it is possible to obtain a decomposition of this eight-dimension alternary algebra~as a
linear space! into the direct sum of its three special subalgebras. In fact, there are eight matrix
units in the algebra. Three of them,e111, e222, e333, generate a subalgebra Diag of diagonal
matrices, which is obviouslySn commutative in the sense of Sec. II.

Using the formula~2! in the special case considered here, one can see that the subalgebra
generated by the matrix unitse112, e121, e122 has a zero multiplication, and consequently it is
Abelian in the sense of Sec. IV. The same is true for the subalgebra generated by the matrix units
e221, e212, e211. Thus, we have a decomposition,

Mat~2,3;C!5Diag% $e112,e121,e122% % $e221,e212,e211%,

in which the first summand isSn commutative and the other two are Abelian subalgebras. This
decomposition looks like a decomposition of 232 matrices into the diagonal and two triangular
subalgebras. But it is not unique; one can get at least two similar decompositions:

Mat~2,3;C!5Diag% $e112,e212,e211% % $e121,e122,e221%

and

Mat~2,3;C!5Diag% $e121,e221,e211% % $e112,e122,e212%.

Thus, we have a few examples of Abelian ternary algebras that are automatically nilpotent and
solvable. Recall that the algebra of all multidimensional matrices~Example 1! gives the example
of simplen-algebra, which is automatically semisimple.

Since the groupsSn andZn act ~by permutation of indices! on Mat(l ,n;C), it is also natural
to present thisn-algebra as a direct sum of the corresponding irreducible linear subspaces. If, in
particular,n53 and j5e2p i /3, then introduce the following subspaces:

Mm :5$aPMat~ l ,3;C!:ai jk5 j majki , for all i , j ,k51,2,3%,

where m50,1,2. Form51,2 we have dim(Mm)5( l 32 l )/3, and M05Diag % M08 , where
dim(M08)5 ( l 32 l )/3. Finally,

Mat~ l ,3;C!5Diag%M08%M1%M2 .

Here Diag is theSn-commutative ternary algebra, but other summands are not ternary algebras
with respect to the multiplication~4!. The situation changes if we introduce a new multiplication
that follows the particular symmetry of the given type of matrices. For example, in Refs. 9 and 7,
the following multiplication was introduced for the two matricesr~a! belonging toM1 :

$r~a!,r~b!,r~g!%5r~a!* r~b!* r~g!1 jr~b!* r~g!* r~a!1 j 2r~g!* r~a!* r~b!,

wherea,b,g51,2,...,(l 32 l )/3, r~a!, r~b!, r (g)PM1 ,and

~r~a!* r~b!* r~g!! isk :5(
pqr

rpiq
~a!rqsr

~b!r rkp
~g! ,

wherei ,s,k,p,q,r51,2,...,1.
Then it is obvious that because of the symmetry of the ternaryj bracket, one has

$r~a!,r~b!,r~g!% isk5 j $r~a!,r~b!,r~g!%ski ,
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so that it is easy to see thatM1 is a ternary algebra with respect to thej -bracketmultiplication.
Moreover, forl52 we have

$r~1!,r~2!,r~1!%52r~2!; $r~2!,r~1!,r~2!%52r~1!;

all other combinations being proportional to the above ones with a factorj or j 2, whereas thej
brackets of three identical matrices do obviously vanish.

A natural question to ask now concerns the nature of the automorphisms of this simple ternary
algebra. The most general homogeneous transformation of the cubic matricesr~a! involves all their
indices:

r; ikm
~a! 5Lb

aUi
pUk

rUm
s rprs

~b! , a,b,i ,k,...51,2,

with ~invertible! matricesLb
a , Ui

p chosen in such a way that the ternary relations between the
transformed cubic matricesr̃ (a) remain the same as defined above.

Let us show that even in a simplified case when we chooseUq
p5dq

p, the condition of invari-
ance of the ternary algebra leads to nontrivial solutions for the group of matricesLb

a . As a matter
of fact, we get the following system of equations forLb

a :

L1
1~L2

2L1
12L2

1L1
2!5L2

2; L2
1~L1

2L2
12L1

1L2
2!5L1

2, and

L2
2~L1

1L2
22L1

2L2
1!5L1

1; L1
2~L2

1L1
22L2

2L1
1!5L2

1,

from which it follows that@det~L!#251, so that either

det~L!51 and L1
15L2

2, L2
152L1

2, or

det~L!521 and L1
152L2

2, L2
15L1

2.

This group has two disjoint components; the simply connected component of unit element is
a subgroup, whereas the second component can be obtained from the first one by multiplication by
the matrix (0

1
21
0).

The simply connected subgroup is an Abelian real two-dimensional Lie group of matrices
whose general form is

S a b

2b aD , with a, b complex numbers satisfyinga21b251,

which can be decomposed into a product of two matrices:

S coshc i sinhc

2 i sinhc coshc D ~cPR! and S cosf sin f

2sin f cosf D „fP@0,2p!….

This group can be represented as the isometry group of a Minkowskian hyperboloid param-
etrized with two variables,c and f, as @0<f<2p#3@2`<c<`#, embedded in a three-
dimensional Minkowskian space as the pseudospherex21y22t25R2, so thatx5R coshc cosf,
y5R coshc sinf, t5sinhc.

This invariance group reduces toU(1) if we impose the reality condition on the matrices
r~a!, requiring thatr ikl

(a)5 r̄ lki
(a).

A similar subspace of cubic 23232 matrices can be introduced, with the adjoint representa-
tion of the groupZ3 acting on them, i.e. belonging toM2 :

k ikm5 j 2kkmi5 jkmik ,
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which is close under aj 2-skew ternary commutator composition law. Its group of automorphisms
has the similar structure.

Our next aim is to find a representation of the above ternary algebra in terms of a
j -commutatordefined in an associative algebra of matricesM2(C) as follows:

@A,B,C#:5ABC1 jBCA1 j 2CAB.

It is easy to note that the trace of anyj bracket of three matrices must vanish; therefore, the
matrices that would represent the cubic matricesr~a! must be traceless. Then, it is a matter of
simple exercise to show that any two of the three Pauli sigma matrices divided by& provide us
with a representation of the ternaryj -skew algebra of ther matrices; e.g.

s1s2s11 js2s1s11 j 2s1s1s2522s2, s2s1s21 js1s2s21 j 2s2s2s1522s1

~the same result can be obtained with the couples$s3,s1% or $s2,s3%!. Thus, it is possible to find
nontrivial representations of the nonassociativej -bracket ternary algebra in the associative matrix
algebra.

A similar representation can be found for cubic matricesk~a! with the j 2-skew bracket.
It is also worthwhile to note that ordinary Lie algebras with the skew-symmetric composition

law can be found in the representation of the ternaryj -bracket algebra in associative algebra,
provided the latter is endowed with a central~unit! element. Indeed, we have

@A,1,C#5A1C1 j1CA1 j 2CA15AC1~ j1 j 2!CA5AC2CA. ~5!

The ternary algebra of complex cubic matrices withl53 is much more complicated. Here
again, subspaces displaying a partialZ3-symmetry can be defined, so that the whole algebra of the
dimension 27 decomposes asM5Diag%M0%M1%M2 . The part Diag is three dimensional, while
each of the subspacesMa , a50,1,2 contains eight independent generators. As in the previous
example,M1 becomes a ternary algebra with respect to thej -skewbracket @K (a),K (b),K (c)#
5K (a)*K (b)*K (c)1 jK (b)*K (c)*K (a)1 j 2K (c)*K (a)*K (b).

The group of automorphisms of this algebra is essentially richer than the two-parameter group
discussed above, and we describe it in a separate paper.
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Erratum: On Wick algebras with braid relations
[J. Math. Phys. 36, 2803–2812 (1995)]

Wl”adysl”aw Marcinek and Robert Ral”owski
Institute of Theoretical Physics, University of Wrocl”aw, Pl. Maxa Borna 9, 50-204
Wrocl”aw, Poland

~Received 18 December 1995; accepted for publication 19 December 1995!

@S0022-2488~96!03203-2#

The beginning text of Theorem B is
Theorem B:We have on the algebra following commutation relations for creation and anni-

hilation for the representation of Wick algebraW (B,C) on the braid commutative algebraA...
The corrected version of this text should be as follows:
Theorem B: We have the following commutation relations for creation and annihilation

operators for the representation of Wick algebraW (B,C) on the braid commutative algebraA...
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The most general Skyrme–Sigma models in two and three Euclidean dimensions
described byO~3! and O~4! fields, respectively, are studied first by numerical
methods, and analytic proofs of existence are subsequently given. Particular em-
phasis is given to the special cases of these models, where the topological inequali-
ties can be saturated by self-duality equations. TheO(d11) models ind dimen-
sions exhibit qualitatively similar features. ©1996 American Institute of Physics.
@S0022-2488~96!00105-0#

I. INTRODUCTION

TheO(d11) Sigma models ind Euclidean dimensions described in terms of scalar fieldsfa,
a51,2,..,(d11), subject to the conditionfafa51 can have kinetic terms which are the squares
of then-fold antisymmetrized products of the fieldsf i

a5] if
a, starting fromn5d down ton50,

the last one being a potential term which breaks the globalO(d11) symmetry. That these kinetic
terms should be the squares of antisymmetricn-forms, and not simply the squares of some
arbitrary n-rank tensor field, is because we require that in any kinetic term there should be no
higher power than the quadratic power of a velocity field. In the usual Skyrme model,1 then51
and n52 kinetic terms occur and then53 kinetic term as well as then50 potential term are
absent. We shall refer to the class of such models as Skyrme–Sigma models after the usual
Skyrme model1 in three dimensions which features a quartic kinetic Skyrme term. In the present
paper, we shall study the most general such model in any given dimensiond, and will concentrate
on an interesting limiting case of such models that support self-dual solutions.

While the main aim of the present work is to study the properties of the most generalO(d11)
Skyrme–Sigma model ind Euclidean dimensions, the particular cases ofd52,3 are of definite
physical relevance. In 211 dimensions the inclusion of a~n52! Skyrme term and a~n50!
potential term in the usualO~3! Sigma model renders the otherwise unstable soliton lump, stable.2

In three dimensions, the addition of a~n53! sextic kinetic term and a~n50! potential term
introduces new parameters which are exploited3 in the phenomenological analysis of nuclear
forces. Thus the mathematical problem under consideration in the present work is justified on the
grounds of its physical relevance.

To make a representative study of these models, it is necessary to consider at least up tod53
sinced52 is a very special case. One special feature of thed52 case is that there exist radially
symmetric solutions of arbitrary topological charge, or vorticity, all satisfying the same boundary
conditions while in all higher dimensions starting withd53 the spherically symmetric solution of
a given topological charge satisfies a particular boundary condition specific to that topological
charge. Another special feature of Sigma models in two dimensions is that they can be reparam-
etrized in terms of theCP1 valued fieldsza, a51,2, constrained byz̄aza51, in which case the
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additional free component inz parametrizes a localU~1! invariance in the reparametrized system.
This is a low-dimensional accident.

Even thed53 models are in some sense special in that, due to a low-dimensional accident, it
is possible to express the fieldfa instead as an SU~2! group elementU5fasa, and its inverse
U215U†5fas̃a in the usual way.1 However, in this case the fieldsfa andU have exactly the
same number of independent components and hence the question of a new local invariance result-
ing from the reparametrization does not arise. We shall therefore ignore this special feature of the
three-dimensional models and treat them as typical examples of Sigma models in dimensions
greater than 2.

We define the genericO(d11) Skyrme–Sigma model ind Euclidean dimensions by the
system

L5kd
2df~d!21kd21

2~d21!f~d21!21•••1k1
2f~1!21l0f~0!2 ~1!

in terms of thed form fields defined by

f~n!5f i1i2 ...i n

a1a2 ...an5f [ i1

[a1f i2

a2•••f i n]
an] . ~2!

where the brackets@...# imply total antisymmetrization. The notationf i
a5] if

a is used for the
velocity fields, and the square of the zero-formf~0!25V, which is the only term in~1! that does
not involve velocity fields, is anO(d11) breaking potential. We exclude all kinetic terms fea-
turing a velocity field to a power higher thantwo in the definitions of the models~1!.

The coupling constantskn all have the dimensions of a length, while the constantl0 is
dimensionless. Since our study of the solutions of models~1! will be restricted to radially/
spherically symmetric field configurations only, we shall find it convenient to rescale the radial
variable asr5kr in terms of the constantk with the dimensions of a length, so that the rescaled
radial variabler is dimensionless. At that stage, the dimensional constantskn in ~1! will be
replaced by the dimensionless coupling constantsln defined byln5(kn/k)

2n.
The topological charge densities of these models are

%d5« i1i2••• i d
«a1a2•••adad11f i1

a1f i2

a2•••f i d

adfad11, ~3!

which provides a~topological! lower bound on the density~1!. The topological charge is given by
the volume integral of%,

qd5E %d d
dx5VdE %̄d~r!rd21 dr, ~4!

whereVd is the angular volume ind Euclidean dimensions and%̄d~r! is the density remaining in
the integrand of~8! after imposing spherical symmetry on the fieldsfa5(fa,fd11), a51,2,..,d,
and integrating over the angular coordinates.

The radially/spherically symmetric Ansatz, in whichna is theunit radius vector ind dimen-
sions, is

fa5sin f ~r!na, fd115cos f ~r!. ~5!

Substituting~5! in ~4!, the topological charge reduces to a one-dimensional integral overr with
integrand

§d5rd21%̄d5 f r sin
d21 f , ~6!

where we have used the notationf r5]r f .
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From ~6!, we can now infer a well-known property of the topological charge of the three-
dimensional spherically symmetric Skyrmions,4 namely that by choosing the asymptotic values
suitably as follows,

lim
r→0

f ~r!5mp, lim
r→`

f ~r!50, ~7!

one has a Skyrmion of topological chargem, where the energy of them52 Skyrmion is much
larger than the energy of the unit charge Hedgehog.4 It is easy to see by inspection of the integrals
*sind21 d f between the limits~7!, that forevend the topological charge will vanish except when
m is chosen to be odd and for all oddm it equals one. Forodd d, however, the corresponding
value of the topological charge equalsm, for all even and oddm. Our subsequent analyses of the
d52 andd53 cases therefore will typify these two categories.

The main thrust of the present work is to study a particular aspect of the models~1! for d52,3.
It is the special subclasses of these models that support self-dual solutions.

The first such subclass of solutions is already known, namely the scale invariant hierarchy of
O(2p11) Sigma models in 2p dimensions given in Ref. 5, the first member of which is the
familiarO~3! sigma model6 in two dimensions. These are the subclass of~1! with all kn vanishing
exceptkd/25kp . The self-duality equations for thepth member of that hierarchy are

f~p!5*f~p! ~8!

with *f(p) defined by

*f~p!5« i1••• i pi p11••• i2p
«a1•••apap11•••a2p11f i p11••• i2p

ap11•••a2pf2p11. ~9!

The topologically stable and finiteenergyself-dual solutions of these scale invariant models are
powerlocalized to an arbitrary scale, namely tok introduced above. With the exception of the case
p51, the self-duality equations~8! are overdetermined7 and supportonly spherically symmetric
solutions. The new hierarchy of models that we shall introduce here differ from the scale invariant
hierarchy5 on both those counts. As we shall see below, with a suitable choice ofV in ~1!, they are
exponentiallylocalized. Furthermore, the new hierarchy of self-duality equations are not overde-
termined.

The new hierarchy ofO(d11) models are those obtained from~1! by setting allkn equal to
zero with the exception ofkd andl0:

L05kd
2df~d!21l0V. ~10!

It is clear that theenergydensities~10! can be absolutely minimized by a self-duality equation. In
terms of the dimensionless variableyi5xi /k, wherek is a constant with the dimensions of length
so thatl25(kd/k)

2d, this self-duality equation can be expressed as

%d5d!Al0V

l2
, ~11!

where%d is defined by~3!.
The energy densities for fields satisfying~11! are equal to the topological charge densities,

which are proportional toAV%d . The volume integral of the latter takes the same values as that of
~3!.

The new hierarchy of models~10! is analogous to a class ofd-dimensional symmetry-
breaking globalO(d) models introduced in Ref. 8, and further studied in Ref. 9. We shall discuss
the relative properties of theO(d11) models~10! and of theO(d) models of Ref. 8 in some
detail. In addition to this, we shall discuss some general properties of the full models~1!, but
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always restricting to the radially/spherically symmetric field configurations. The cases ofd52 and
d53 are discussed respectively in Secs. II and III below, each section being subdivided into
subsections dealing with the hierarchy of the full models~1! and the new hierarchy~10! support-
ing self-dual solutions. The self-dual solutions of the restricted models are found explicitly in
Secs. II B and III B, respectively, while the solutions of the full models not admitting self-dual
solutions are studied numerically in Sec. II A.

II. THE TWO-DIMENSIONAL CASE

The full model~1! in this case was studied in detail, in the context of a particular application,
in Ref. 10. We shall nevertheless give a fairly complete account of it here so that the discussion of
the special case~10! can be presented in a natural way. In terms of the dimensionless coordinates
yi5xi /k, ~1! takes the form

L5l2f~2!21l1f~1!21l0V ~12!

in which the potentialV will be specified later.
The radially symmetric field configuration offa5~fa,f3!, with a51,2, is defined by

fa5sin f ~r!na, f35cos f ~r!, ~13!

characterized by its vorticityn, defining the unit vectorna5~cosnu,sinnu! in ~13!, in terms of
the azimuthal angleu. For this field configuration, the system~12! reduces to the following
one-dimensional subsystem given by

L25S l1r1l2n
2
sin2 f

r D f r
21l2n

2
sin2 f

r
1l0rV ~14!

defined via theenergyintegral

E L2 d
2x52pE L2 dr. ~15!

A. The full model

Here we take the full system~14! with all coupling constantsl0, l1, andl2 nonzero, and with
the choice for the potential

V5~12f3!25~12cos f !2 ~16!

differing from the choice made in Ref. 10. This is done in anticipation of the considerations of the
next subsection. The resulting Euler–Lagrange equations are

S l1r1l2n
2
sin2 f

r D f rr1l2n
2
sin f cos f

r
f r
21S l12l2n

2
sin2 f

r2 D f r

2l2n
2
sin f cos f

r
22l0r~12cos f !sin f50. ~17!

Assuming sufficiently strong decay in ther@1 region, we linearize equation~17! around the
asymptotic value off given by ~7!

r2f rr1r f f r2
l2

l1
n2f50, ~18!

2572 Arthur et al.: Skyrme models with self-dual limits

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



which yields the decaying solution

f'
1

rnAl2 /l1
, ~19!

justifying our linearization~18!.
In the r!1 region, we try a power series solution and find

f5p1Arn1Brn12 ~20!

for the two vorticitiesn51 andn52 and find

B52A
6l012l1A

22l2A
4

24~l11l2A
2!

, B52A
l018l2A

2

6l1
, ~21!

respectively, with the constantA to be determined by the numerical integration. In~20!, we have
restricted to the value ofm51 given in the general case in~7!. Recall that for alleven donly odd
values ofm lead to nontrivial topological solutions and all have the same topological charge, and
hencem51 is essentially the unique choice.

The numerical integrations were performed for the systems withl05l15l251, for n51 and
n52 with the values ofA521.5 199 879 andA5212.227 601, respectively. The profiles of the

FIG. 1. ~a! Profiles off for thed52 model~14! with the potential~16! andl05l15l251, for vorticitiesn51,2, from left
to right. ~b! Profiles of the energy densities for the vortices in~a!. Then52 profile is ring shaped.
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functions f are given in Fig. 1~a!, and the energy density profiles in Fig. 1~b!. The total energies
for these two cases were calculated to be:E(n51)58.2 259 968 andE(n52)516.6 605 004
where we find, as in Ref. 10, thatE(n52).2E(n51), so there are no radially symmetric bound
states.

Perhaps the most important lesson learnt from the work of this subsection is that the constant
B in the asymptotic solution~20! for n51 is nonsingular in the limit ofl1→0, as seen from the
first member of~21!, which implies that a self-dual solution to thep51 member of the hierarchy
~10! exists as a limit of then51 solution found above. This is interesting in the background of the
corresponding situation for the two-dimensionalO~2! models studied in Ref. 11. In that case the
self-dual solutions to the systems introduced in Ref. 8 are not smooth limits of the solutions to the
generic systems, analogous to~12! here, introduced in Ref. 11, since the expressions correspond-
ing to ~21! become infinite in this limit.

B. Restricted model: Self-dual solution

Here we ignore the well-known subsystem of~12! with l05l250, where the self-dual solu-
tions are known analytically6 and which is thep51 member of the hierarchy of self-duality
equations~8!. Rather, we consider thep51, ord52, member of the new hierarchy of models~10!
with l150.

Thed52 member of the hierarchy of self-duality equations~11! with V given by~16!, in the
n51 radially symmetric field configuration~13!, reduces to an ordinary first-order equation which
is immediately integrated to give the solution forf in terms ofr2:

cos f5122e2r2, ~22!

where we have setl05l251. It is easy to verify that~22! satisfies the asymptotic conditions~7!
with m51.

We have numerically integrated the equations~17! for the systems withl05l251, and with
progressively smaller values ofl1, starting froml151 down tol150.001. The profiles of the
function f for all these cases are plotted in Fig. 2. The numerical integrations were performed for
eachl1 with the values of the parameterA listed in Table I. The total energies pertaining to each
of these solutions are listed in Table II, in which the lowest value is closest to the energy
pertaining to the self-dual solution which in the normalization used equals 4.

It should be noted here that our ability to obtain a solution satisfying the asymptotic condi-
tions ~7! is dependent on our choice of potential. Our choice of~16!, which is not unique, has led
to the solution~22!, which is differentiable at the origin for vorticityn51 only. It is possible to

FIG. 2. Profiles off with unit vorticity ~n51! for thed52 model~14! with the potential~16!, with l05l251 and withl1
decreasing as in Table II. Lower curves correspond to lower values ofl1.
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find well-behaved solutions for other values of the vorticity with suitable choices ofV, and for
each such choice the corresponding solutions for the system with nonvanishingl1 will be well
behaved for all values of the vorticityn.

III. THE THREE-DIMENSIONAL CASE

In terms of the dimensionless coordinatesyi5xi /k, the full model~1! in this case reduces to

L35l3f~3!21l2f~2!21l1f~1!21l0V. ~23!

The one-dimensional subsystemL3 defined by*L3 d
3x5*L3 dr is now

L35l3

sin4 f

r2
f r
21l2 sin

2 f S 2 f r
21

sin2 f

r2 D1l1~r2f r
212 sin2 f !1l0r

2V, ~24!

leading to the Euler–Lagrange equation

S l3

sin4 f

r2
12l2 sin

2 f1l1r
2D f rr1S 2l3

sin3 f cos f

r2
12l2 sin f cos f D f r

2

12S 2l3

sin4 f

r3
1l1r D f r22l2

sin3 f cos f

r2
22l1 sin f cos f2l0r

2
]V

] f
50,

~25!

where we have not yet specified the potentialV. Unlike in the previous section dealing with the
d52 case, here we shall choose different potentials in the generic case where alllA , A50,1,2,3,
are nonzero, and in the case belonging to the hierarchy~10! where onlyl0 andl3 are nonzero. The
reason for this is that in the second case our choice forV will by necessity be a highly nonlinear
infinite series in the fieldfa like, for example, in the Sine–Gordon model, and it is probably
reasonable to give the numerical demonstration of the existence of the solutions in the generic case
with a simple choice ofV.

TABLE I. The parameterA for n51 vortices for the two-dimensional
model with potentialV( f )5„12cos(f )…2.

l1 A

1.0 21.5199879
0.8 21.5042582
0.6 21.4865913
0.4 21.4664522
0.2 21.4429800
0.001 21.4143832

TABLE II. The total energy ofn51 vortices for the two-dimensional model
with potentialV( f )5„12cos(f )…2.

l1 E

1.0 8.2259968
0.8 7.3986649
0.6 6.5667305
0.4 5.7280508
0.2 4.8781415
0.001 4.0046557
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A. The full model

First we choose the simplest potential, used in Ref. 10,

V512f4. ~26!

Assuming exponential decay in the regionr@1, we linearize~25! around the asymptotic value
f50,

r2f rr12r f r22S 11
l0

2l1
r2D f50, ~27!

which yields the exponentially decaying behavior

f'
1

r
eAl0 /l1r, ~28!

justifying our linearization~27!.
It is appropriate to make a remark about the exponential behavior~27! here. This is a result of

the presence of theO~4! breaking potential~26! in ~24!. Settingl050 would yield the usual
Skyrme model1 supplemented by thesextictermf~3!2 as in Ref. 12. In this case, as also in the
usual Skyrme model,1 the behavior off in ther@1 region is a power decay. The linear equation
~27! with l0 in it set equal to zero in fact admits the solutionf'r22.

In the r!1 region, we try a power series solution and find

f5mp1Ar1A
l01l1A

22 4
3l2A

41l3A
6

14l1192l2A
2130l3A

4 . ~29!

With l05l15l25l351, we have integrated Eq.~25! numerically both for unit topological
chargem51 in ~29! and for topological charge 2 corresponding tom52. The profiles of the
function f are plotted in Fig. 3~a!, and the profiles of their energy densities are plotted in Fig. 3~b!.
The values of the parameterA in ~29! for which the asymptotic behaviors~28! and ~29! were
achieved numerically areA521.4 990 144 for them51 solution andA522.0 554 812 for the
m52 case. The total energies corresponding to these solutions areE(m51)516.0 015 959 and
E(m52)554.3 091 345. We see thatE(m52).E(m51) for the most generalO~4! model as
was the case4 for the usual Skyrme model.1

B. Restricted model: Self-dual solution

To enable us to find a solution which is differentiable at the origin and satisfies the asymptotic
conditions~7!, with m51, we have made a particular choice for the potentialV. Unlike in the
previous section, we have not found an adequate potential which is a simple function of the fields
fa and, to avoid writing a cumbersome expression for it, we express this potential in terms of the
function f pertaining to the spherically symmetric field configuration~5! as

V5 1
4~

1
2 sin 2f2 f !2. ~30!

With this potential, thed53 member of the hierarchy of self-duality equations~11! for the
spherically symmetric field configuration reduces to a first-order equation which is immediately
integrated to givef as a function ofr3:

1

2 S f2 1

2
sin 2f D5

p

2
e2r3. ~31!
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The functionf given by~31! is easily verified to satisfy the requisite asymptotic conditions~7!
with m51 and to be differentiable at the origin.

In the particular normalization we are working in, the energy pertaining to thisunit topologi-
cal charge solution equalsp2/4. This absolutely minimal energy is a lower bound on the energies
of the solutions of all the models defined by this potential but with nonvanishing values of the
coupling constantsl1 andl2.

To demonstrate this, we set out to integrate~25! with the potential~30! this time. The asymp-
totic behavior~28! in the regionr@1 is still valid in this case, but in ther!1 region we compute
it again and find

f5p1Ar1A
l0p

424l1A
222l2A

412l3A
6

30~l112l2A
21l3A

4!
r3. ~32!

Inspecting~32!, we can see that in the limit ofl1 andl2 vanishing,f is well behaved near the
origin. This is because the second term in~32! does not become infinite in this limit. The impli-
cation is that it should be possible to integrate~25! numerically for progressively decreasing
values ofl1 andl2, say withl15l2, approaching the self-dual limit. To this end, Eq.~25! with
the potential~30! was integrated numerically for each pair ofl15l2 for the values of the param-
eterA in ~32! listed in Table III. The profiles of the functionf for these solutions withm51,2, are
plotted in Fig. 4. The total energies pertaining to these solutions were calculated and are listed in

FIG. 3. ~a! Profiles off for the model~24! andl05l15l25l351 with the potential~26! with topological chargesm51,2,
from left to right. ~b! Profiles of the energy densities for the hedgehogs in~a!, left to right.
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Table IV. Again as in the two-dimensional case, the last entry in this table is the value closest to
the energy of the self-dual solution, which in this case isp2/352.4 674 011.

IV. ANALYTIC PROOFS OF EXISTENCE

In this section, we give proofs of existence for the most general two- and three-dimensional
Skyrme models studied in the previous sections. We employ the simplest choices for the potentials
V5(12fd11) with d52,3, respectively, which is the choice made in Ref. 9 in thed52 case, and
also the choice~26! made in thed53 case. One may check that our method actually covers the
general situation whereV5(12fd11)k (k>1). Note that the technically easier situation of the
usual1 hedgehog SU~2! Skyrmions in three dimensions was already considered in Ref. 13. The
two- and three-dimensional cases are given respectively in the following two subsections. Again
thed53 case is less technical and will only be discussed briefly.

A. Two-dimensional case

The energy or mass density for radially symmetric fields is given by~14!, with the choice of
V5~12cos f ! for the potential. Without loss of generality, in the following we shall also use the
specific values of the parameters:l15l25l051. The boundary conditions are stated by~7! with
m51.

The associated Euler–Lagrange equation of~14! governing the detailed behavior of the two-
dimensional Skyrmion solitons is

TABLE III. The parameterA for the m51 hedgehogs for the three-
dimensional model with potentialV( f )5

1
4„
1
2 sin~f /2!2f …2.

l15l2 A

1.0 21.4265617
0.8 21.3910057
0.5 21.3230409
0.2 21.2257928
0.1 21.1788389
0.05 21.1497961
0.01 21.1219012
0.001 21.1146950

FIG. 4. Profiles off with unit topological charge~m51! hedgehogs of thed23 model~24! with the potential~30!, with
l05l351, and withl15l2 decreasing as in Table IV.
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S r1n2
sin2 f

r D d2f

dr2
1S n2 sin f cos fr

df

dr
1F12n2

sin2 f

r2 G D df

dr

5n2
sin f cos f

r
1r sin f , r.0. ~33!

Here is the main result of this subsection, namely the existence of a radially symmetric
Skyrmion in two dimensions.

Theorem 1: For any winding numbern the energy~15! has a minimizer which is a smooth
solution of the two-dimensional Skyrme equation~33! subject to the boundary condition

f ~0!5p, f ~`!50.

Moreover, this solution is strictly decreasing inr.0 and is ultimately concave up.
Note: The properties of the solutionf stated above confirm precisely the numerical results

obtained in Ref. 9. The rate of convergence off at bothr50 andr5` is also established.
We shall apply a variational method to prove the theorem. For this purpose, it turns out that

the most natural admissible space should be defined by the prescription

X5$ f u f ~r! is continuous on@0, `! and absolutely continuous on every compact

subinterval of ~0, `! so that f ~0!5p, f ~`!50, andE~ f !,`%, ~34!

where the energyE( f ) is defined by~14! and ~15!.
Our proof follows from the existence of a solution to the following optimization problem:

h[min$E~ f !u fPX%. ~35!

The proof splits into a few steps.
Lemma 2:Let $ f k% be a minimizing sequence of~35!. We can always modify the sequence to

make it satisfy the uniform bounds

0< f k<p, k51,2,... . ~36!

Proof:We first claim that we can modify$ f k% so that it fulfills

0< f k<2p, k51,2,... . ~37!

In fact, if ~37! is violated at somek, we can define a new functiongkPX by

gk~r!5H 0, if f k~r!<0,

x, if f k~r!<p.

TABLE IV. The total energy of them51 hedgehogs for the three-
dimensional model with potentialV( f )5

1
4„
1
2 sin(f /2)2 f …2.

l15l2 E

1.0 14.6216184
0.8 12.2359948
0.5 8.6076516
0.2 4.9591982
0.1 3.7204152
0.05 3.0983267
0.01 2.5957890
0.001 2.4805067

2579Arthur et al.: Skyrme models with self-dual limits

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Then 0<gk<p, gkPX, andE(gk)5E( f k) in view of ~14!. The lemma is proven.
Hence for any pair of numbers 0,r1,r2 we can use Lemma 2 to assert that~35! has a

W1,2~r1,r2!-bounded minimizing sequence$ f k% satisfying~36!. A standard diagonal subsequence
argument shows that there exists a subsequence of$ f k% for which we still denote by the same
numeration,$ f k%, so that

lim
k→`

f k5 f weakly in W1,2~r1 ,r2! for any 0,r1,r2 . ~38!

The compact embeddingW1,2(r1 ,r2)→C[r1 ,r2] says that

lim
k→`

f k5 f strongly in C@r1 , r2#. ~39!

It then follows from~38!, ~39!, and~14! that

E~ f !< lim sup
r1→0,r2→`

lim inf
k→`

E
r1

r2
E~ f k!dr< lim

k→`

E~ f k!5h. ~40!

In order to show thatf is a solution of~35!, we still need to achievefPX. This fact is
established in the following.

Lemma 3:The functionf obtained above satisfies the boundary condition stated in~34!.
Proof: First for the minimizing sequence$ f k% satisfying~38! and~39! we have in view of the

Schwarz inequality

sin2 f k~r!52E
0

r df k
dr8

sin f k cos f kdr8<2rXE
0

rS df kdr8D
2 sin2 f k8

r
dr8C1/2< 2r

n
supk E

1/2~ f k!.

In particular sin2 f k~r!→0 asr→0 uniformly with respect tok51,2,... . Therefore,f k~r!→p as
r→0 uniformly as well. Thusf ~0!5p as expected.

We next consider the asymptotic behavior off asr→`. We note that~36! is valid for $ f k%.
Consequently,

12cos f k5
f k
2

2! S 12
f k
2

3•4D 1
f k
6

6! S 12
f k
2

7•8D 1
f k
10

10! S 12
f k
2

11•12D 1•••

>
f k
2

2! S 12
p2

3•4D 1
f k
6

6! S 12
p2

7•8D 1
f k
10

10! S 12
p2

11•12D 1•••

.
122p2

4!
f k
2. ~41!

Using ~41! in ~15! we see thatf k satisfies

E
0

`

rS f k21Fdf kdr G2Ddr,C ~42!

with C.0 a constant independent ofk. Applying the conditionf k~`!50, we have by virtue of the
Schwarz inequality again

f k
2~r!522E

r

`

f k
df k
dr8

dr8<
2

r S E
0

`

r8 f k
2~r8!dr8D 1/2S E

0

`

r8F df kdr8G2dr8D 1/2.
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Inserting ~42! into the above we see thatf k~r!→0 asr→` uniformly with respect tok. Thus
f ~`!50 and the lemma follows.

Since fPX, we see that it indeed solves~35!. The standard elliptic theory then implies thatf
is a smooth solution of~33!. To complete the proof of Theorem 1, we have to study also the
monotonicity and concavity off .

Lemma 4:The solutionf of ~35! or ~33! obtained above is actually positive valued.
Proof:Otherwise suppose there is a pointr0.0 so thatf ~r0!50. Sincef ~r!>0, we see thatr0

is a minimum point off and ~df /dr!~r0!50. Using these initial data in~33! and applying the
uniqueness theorem of ordinary differential equations we obtainf ~r![0, which is false. Thus
f ~r!.0 for all r.0.

Lemma 5:Let f be the function stated in Lemma 4. Thenf is strictly decreasing.
Proof: We first show that ~df /dr!~r!<0 everywhere. Otherwise let us assume that

~df /dr!~r0!.0 at somer0.0. Then f (r). f (r0) whenr is nearr0 from the right:r.r0. Set

rmin5max̂ r8P@0, r0#u f ~r8!5min$ f ~r!urP@0, r0#%‰.

The propertyf ~r!→0 asr→` implies that

Smin5$rP~r0 ,`!u f ~r!5 f ~rmin!%

is a nonempty compact subset of~0,̀ !. Define

rmin8 5min$rurPSmin%.

Thenrmin , rmin8 of course. LetrmaxP (rmin ,rmin8 ) be such that

f ~rmax!5max$ f ~r!urP@rmin ,rmin8 #%.

Wealsohavef (rmin)5 f(rmin8 ), f(rmax).
There are two cases we need to consider separately.
~i! f ~rmax!<

1
2p.

Since both sin2 u and 12cosu are increasing functions in 0<u<1
2p, we have

sin2 f ~rmin!,sin2 f ~r!, 12cos f ~rmin!,12cos f ~r!, rP~rmin ,rmin8 !.

We can define a new functiongPX by setting

g~r!5 H f ~rmin!, rP~rmin ,rmin8 !,
f ~r!, otherwise.

ThenE(g),E( f ), which contradicts the property off .
~ii ! f ~rmax!.

1
2p.

In this case we introduce two numbers 0, r0 , r08 by setting

r05max$r,rmaxu f ~r!5 1
2p%,

r085min$r.rmaxu f ~r!5 1
2p%.

Thenf ~r!.1
2p for r P (r0 ,r08). Define

g~r!5 H p2 f ~r!, rP~r0 ,r08!,
f ~r!, otherwise.
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Then we can check thatE(g),E( f ) because sin2 u is even aboutu51
2p and 12cosu is increas-

ing for 0<u<p. Hence we arrive at another contradiction and the proof thatf is nonincreasing is
complete.

We now show thatf is strictly decreasing. In fact, if there are 0,r1,r2 so thatf (r1)5 f ~r2!,
then f (r)5 f ~r1! for all rP@r1,r2#. Inserting this information into Eq.~33! we obtain sinf ~r1!50.
By Lemma 4 we must havef ~r1!5p. The uniqueness theorem of ordinary differential equations
then implies thatf ~r![p, which is false. This proves the lemma.

Lemma 6:The solutionf obtained above is ultimately concave up. More precisely, letr1.0
be the unique point so thatf ~r1!5

1
2p. Then~d2f /dr2!~r!.0 for r.r0, wherer05max$r1,n%.

Proof: Lemma 5 allows us to rewrite~33! in the regionr>r0 as

S r1n2
sin2 f

r D d2f

dr2
5S n2 sin f ucos f ur U dfdr U1F12n2

sin2 f

r2 G D U dfdrU1S r2n2
ucos f u

r D sin f .
The right-hand side of this equation is obviously positive. The lemma follows.

In summary, the proof of Theorem 1 is finished.

B. Three-dimensional case

We now consider the situation in the cased53. The energy density is defined by~24! with the
potential density given by~26! or

V~ f !512cos f . ~43!

Since~24! has the same monotonicity properties as the energy density~14! in the cased52, the
method of the previous subsection shows that an energy minimizer satisfying the boundary con-
dition f ~0!5p, f ~`!50, must be a globally decreasing function which becomes concave up out-
side a local region. So it remains to examine the existence of such a solution.

In fact, it suffices to see whether the boundary behavior of a field configuration can be
controlled. To this end, we observe in view of~24! and the Schwarz inequality that for anyr and
function f defined on@0, `! satisfying f ~0!5p and f ~`!50, there hold

sin2 f ~r!5E
0

r

2 sin f ~r8!cos f ~r8!
df

dr8
~r8!dr8

<2r1/2E
0

r

sin2 f ~r8!S dfdr8D
2

dr8

<Cr1/2E1/2~ f ! for r small,

u f ~r!u<r21/2XE
0

`

~r8!2S dfdr8D
2

~r8!dr8C1/2<Cr21/2E1/2~ f ! for r large.

The above estimates indicate that the boundary condition is easily preserved. Consequently, the
existence of an energy minimizer in thed53 case is ensured as before. Thus we can state the
following.

Theorem 7: In the cased53, the energyE( f )5*L3 dr with L3 being defined in~24! and
the hedgehog field configurationf subject to the boundary conditionf ~0!5p, f ~`!50, has a
minimizer. The functionf is a smooth solution of the associated Euler–Lagrange equation~25!.
Furthermore,f is strictly decreasing in the entire regionr.0 and is concave up forr sufficiently
large.
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The method employed here can be applied to obtain existence and global behavior results for
many other related problems in classical field theory. For example, the SU~3! Skyrme model14

governed by the reduced hedgehog energy functionalM (F)5l1M cl(F)1l2mcl(F), where
l1,l2.0 and

M cl~F !5E H r2

8 S dFdr D 21 sin2 F

4
1
sin4 F

2r2
1S dFdr D 2J dr,

mcl~F !5E ~12cosF !r2 dr,

is useful in modelling the top quark. The fieldF has the same boundary conditionF~0!5p,
F~`!50, as before. We can show without difficulty that Theorem 7 is valid for this model.

V. SUMMARY

We have studied the radially/spherically symmetric solutions to the most general class of
Skyrme models in two and three dimensions, which capture all the features that we are concerned
with in all higherevenandodddimensions. Special attention is given to a subclass of these models
which support self-dual solutions, which are found explicitly. In the general case, the Euler–
Lagrange equations could not be explicitly integrated so their integration was performed numeri-
cally and analytic proofs for the existence of these solutions were given.

In the odd-dimensional cased53 where it is possible to find finite energy topologically stable
solutions of arbitrary topological charge, we have considered the charge-2 solution and found that
it is heavier than two charge-1 solutions, as in the case of the usual Skyrmions.4 In the even-
dimensional cased52, it is possible to findunit charge solutions only, but due to the low
dimensionality it was possible to study solutions of arbitrary vorticityn.

One of the main purposes of this work was the study of the most generald-dimensional
O(d11) Skyrme models, whose properties are typified by thed52 even-, and thed53 odd-,
dimensional cases, respectively. These were studied both numerically and analytically. Our nu-
merical studies lead to the conclusion thatradially and spherically symmetric staticbound states
are absent in all Skyrme models withexponentially localizedhedgehogs withm51.

The other main purpose of this work was the study of a special subclass of the most general
Skyrme models, defined by~10!, which support self-dual solutions. This new subclass of systems
differs from the previously known scale-invariant hierarchy5,6 of scale invariant Skyrme–Sigma
models in a very important respect. The latter5 support self-dual solutionspower localized to an
arbitrary scale related to the scale invariance, while the solutions of the new system~10! by
contrast can be localizedexponentially.

Another very important difference between the self-duality equations of the two hierarchies is
that, with the exception of the first6 member of the former5 case, they are overdetermined7 as a
result of which the only solutions these5 support are spherically symmetric. By contrast, the
hierarchy of self-duality equations~11! are underdetermined. While in this paper we have re-
stricted ourselves to the study of radially/spherically symmetric solutions only, this last property
indicates that there must exist solutions with symmetries less restrictive than radial/spherical.
Indeed, the underdetermined nature of our self-duality equations results in the generation of a
large class of new solutions from any given one. These aspects of the present work are deferred to
a future investigation. It is expected that this would follow the lines of two intensive studies9 of
the analogous properties in a related class ofd-dimensionalO(d) models, where multi-center
solutions were found.
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Perhaps the most interesting property of the systems~10! is that the self-dual solutions it
supports are smoothly related to the non-self-dual solutions of the general systems~1!, by letting
the constantskp in ~1! for p51,2,..,(d21) vanish. This aspect of theO(d) models was studied
recently in detail in Ref. 11.

Finally, we mention a certain inflexible property of our subclass of models~10! which are
essentially characterized by the potentialV. The solutions of thed-dimensional self-duality equa-
tion are functions of the variablerd and are differentiable at the originonly for suitable but
nonunique choices ofV. In dimensionsd.2 the only solutions which are differentiable at the
origin are the spherically symmetric solutions with unit topological charge. Only in dimension
d52 is it possible to find solutions of higher charge with vorticityn, where a given choice ofV
can lead to a well-behaved solution for a givenn only.
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The kind of information provided by a measurement is determined in terms of the
correlation established between observables of the apparatus and the measured
system. Using the framework of quantum measurement theory, necessary and suf-
ficient conditions for a measurement interaction to produce strong correlations are
given and are found to be related to properties of the final object and apparatus
states. These general results are illustrated with reference to thestandard modelof
the quantum theory measurement. ©1996 American Institute of Physics.
@S0022-2488~96!03506-2#

I. INTRODUCTION

Any physical measurement is carried out in order to provide information about a specified
system, its state prior to or after the measurement. The procedure generally is to ascertain the
values of a pointer observable, which have become correlated with some observable of the mea-
sured system. Thus the kind of information available by a given measurement depends on the
statistical dependencies established by the interaction between the apparatus, or some probe sys-
tem, and the object.

The minimal content of the notion of measurement in quantum mechanics is given by the
probability reproducibility requirement; according to this condition, a particular measurement
scheme qualifies as a measurement of a given observableE if for all initial states of the object
system the associated probability distributions ofE are reproduced in the resulting statistics of
pointer readings.1 Regarding a large ensemble of object plus apparatus systems as one individual
system, this situation can be described in terms of strong correlations between the values of the
frequency operators~see, e.g., Ref. 1! associated with the observableE and the pointer observable,
respectively. In the present context we shall not be concerned with the ensembles regarded as
individual objects but rather we shall analyze statistical dependencies between individual members
of the ensembles as they show up in certain correlation quantities. The following three kinds of
correlations appear naturally in the measurement context: correlations between an object observ-
able E and the pointer observable; correlations between the values of these observables; and
correlations between the conditional final states of the object system and apparatus, respectively.
Our goal is to give exhaustive characterizations of the conditions under which these correlations
are established. It will be found that the final component states of the object and apparatus must
possess certain properties in order that such correlations may be strong.

Our investigation builds on previous work published in Ref. 2. Correcting an erroneous
characterization of strong correlations used in that paper, we give here a complete account of
necessary and sufficient conditions for the occurrence of strong correlations. In addition, the scope
of the results is extended beyond unitary measurements and sharp observables to cover arbitrary
measurements and pointer observables and general object observables. Finally, possible fields of

a!Electronic mail: p.busch@maths.hull.ac.uk
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applications are indicated on the basis of the standard model of measurement theory, which was
recently used in various proposals for quantum and atomic optics QND measurements.3

II. FRAMEWORK

2.1. We follow here the Hilbert space formulation of quantum mechanics in which the de-
scription of a physical systemS is based on a complex separable Hilbert spaceH, with the inner
product ^•u•&, and which builds on the dual concepts of states and observables reflecting the
general structure of an experiment: preparation of the system followed by a measurement.

2.2. LetL~H! denote the set of bounded linear operators onH andT ~H! its subset of trace
class operators. Astateof S is given as a positive linear operatorT:H→H of trace one. We let
S ~H!:5$TPT ~H!uT>O, tr[T]51% denote the set of states ofS , and we recall thatS ~H! is a
~s-!convex subset ofT ~H!, the one-dimensional projection operatorsP@w# ~generated by the unit
vectorswPH! being its extremal elements. TheP@w# shall be calledvector states.

2.3. LetV be a set andF a s-algebra of subsets ofV. An observableof S is represented as
~and identified with! a normalized positive operator valued measure, a POV measure,
E:F→L~H!, that is, an operator valued mappingX°E(X) on F with the properties:~i! E(V)
5I , ~ii ! E(X)>O, andE(øXi)5(E(Xi) for any disjoint sequence (Xi),F , with the series
(E(Xi) converging in the weak operator topology ofL~H!. We recall that the projection valued
measures, the PV measures, are a particular case of the POV measures; furthermore a POV
measureE is a PV measure, that is,E(X)25E(X) for all XPF , if and only ifE is multiplicative,
that is,E(XùY)5E(X)E(Y) for all X,YPF . Observables which are represented by PV mea-
sures are calledsharpobservables. It is by now well established that the extension of the notion of
observables from PV measures to POV measures is a necessity in quantum mechanics.

2.4. The probability measure

pT
E :F →@0,1#, X°pT

E~X!:5tr@TE~X!# ~1!

defined by an observableE and a stateT is related to a measurement by virtue of the minimal
interpretation of quantum mechanics:the number pT

E(X) is the probability that a measurement of
the observable E performed on the systemS in the state T leads to a result in the set X. The
intended empirical content of this statement is the following: If the sameE-measurement were
repeated sufficiently many times under the same conditions~characterized byT!, then in the long
run the relative frequency of the occurrence of the measurement results inX would approach the
numberpT

E(X).

III. MEASUREMENT

A. General

3.1. Ameasurement schemefor the ~object! systemS consists of ameasuring apparatusA
@with its Hilbert spaceHA#, apointer observable Z: F A→L~HA! @with its ‘‘space of values’’
~VA ,F A!#, an initial state TA of the apparatus, ameasurement coupling V@a linear state trans-
formation onT ~H^HA!#, and a@measurable# pointer function f:VA→V, with the assumption
that if TPS ~H! is an initial state ofS , then V~T^TA! is the final state of the compound
object–apparatus systemS 1A. Taking the partial traces ofV~T^TA! overHA andH, respec-
tively, one gets the corresponding reduced statesRS ~V~T^TA!! andRA~V~T^TA!! of S and
A, respectively; then the probability measure of the pointer observableZ in the final apparatus
state is completely determined asY°pRA(V(T^TA))

Z (Y) 5 tr@RA(V(T ^ TA))Z(Y)#,YPF A .

3.2. A measurement schemeM:5^HA ,Z,TA ,V, f & defines an observableEM of S with the
space of values~V,F ! via the relation: for anyXPF andTPS ~H!,

pT
EM~X!:5pRA~V~T^TA!!

Z ~ f21~X!!. ~2!
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This is the observablemeasuredby means of the schemeM in the sense that the totality of the
distributionspRA(V(T^TA))

Z ~for all TPS ~H!! of the pointer outcomes in the final apparatus states

determine the POV measureEM via Eq. ~2!. A measurement schemeM is a measurement of a
given observableE if the measured observableEM equalsE.

3.3. There is an important subclass of measurement schemes forS . They consist of a sharp
pointer observableZ, a vector state preparation ofA, TA5P@f#, fPHA , ^fuf&51, and a
unitary measurement couplingV~T^TA!5UT^TAU* , with a unitary mapU on H^HA .
Subsuming the possible pointer function in the definition ofZ by identification ofV andVA , we
denote such a schemeMU :5^HA , Z,P@f#,U& and call it aunitary measurement scheme~with
the understanding thatZ is a sharp observable!. It is a basic result of the quantum theory of
measurement that every observableE of S admits a unitary measurement, that is, there is a
unitary measurement schemeMU such thatEMU 5 E.4 Thus the relation between measurement
schemes and POV measures induced by Eq.~2! defines a map from the former onto the latter. In
spite of this fundamental result, it is important to consider general measurement schemesM,
since in many applications the choices of a sharp pointer and a vector state preparation of the
apparatus are not physically realizable.

3.4. Another basic condition for a measurement scheme^HA ,Z,TA , V, f & to qualify as a
measurement is the requirement that the measurement should lead to a definite result. We take this
requirement to entail, first of all, that the pointer observableZ should have assumed a definite
value after the measurement. One should then be able to ‘‘read the actual value’’ of the pointer
observableZ and deduce from this the value of the measured observable. As is well known, the
task of explaining the occurrence of a definite pointer value at the end of a measuring process
presents one of the major open problems in quantum mechanics. We do not enter this difficult
question here.~For an overview of the issues involved, the reader may wish to consult Ref. 1.!
There are, however, some necessary conditions for the pointer observableZ to assume a definite
value in the final apparatus stateRA~V~T^TA!!, conditions which are tractable and which call
for the study of the correlation properties of a measurement. These conditions are the subject of
the present paper.

B. Reading of pointer values

3.5. The reading of measurement outcomes involves the discrimination between the elements
of a finite ~or, as an idealization, countable! set of alternative pointer values. In order to formulate
this idea in the general context of anE-measurementM, we introduce the notion of areading
scale as a countable partition of the value space of the pointer observable,VA5ø f21(Xi),
induced by a countable partition of the value space of the measured observable,V5øXi , XiPF ,
XiùXj50 for iÞ j . Such a reading scale will be denotedR, and we letI denote its index set.

3.6. A reading scaleR determines discrete, coarse-grained versions of the pointer observable
Z and the measured observableE

ZR: i°Zi :5Z~ f21~Xi !!, iPI , ~3a!

ER: i°Ei :5E~Xi !, iPI . ~3b!

TheZR-value i refers to the pointer readingf21(Xi) which, in turn, is correlated to the value set
Xi of the measured observableE. If E itself is discrete there is a natural~finest! reading scaleR
such thatE5ER andZf5ZR. It should be noted that we have included the pointer functionf in
the definition ofZR so that the two discrete observables~3! do have the same set of values.

3.7. We say that the~discrete! pointer observableZR has the value i in the state
RA~V~T^TA!! if and only the measurement outcome probability for this value equals one:
tr@RA~V~T^TA!!Zi#51. Since tr[TEi ]5tr@RA~V~T^TA!!Zi#, and, in general, 0ÞpT

E(Xi)Þ1,
the pointer observable does not have a value at the end of the measurement. It may, however,
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occur that the stateRA~V~T^TA!! is amixture of eigenstates of ZR with the weights pT
E(Xi).

This is indeed a necessary condition for the assertion that the pointer observableZ has assumed a
definite value with respect to a reading scaleR at the end of the measurementM. We go on to
specify this case further.

3.8. We consider a measurement^HA ,Z,TA ,V, f & of E with a fixed reading scaleR. Any
Xi , iPI , defines a~unnormalized! conditioned state

Vi~T!:5I ^Zi
1/2V~T^TA!I ^Zi

1/2, ~4!

the state ofS 1A on the condition that the pointer observableZR has valuei . The ~trace! norm
of this state is tr[Vi(T)]5tr@V~T^TA!I ^Zi#5pT

E(Xi), and the corresponding~normalized! re-
duced states, thefinal component statesof S andA are

TS ~ i ,T!:5pT
E~Xi !

21RS ~Vi~T!!, ~5a!

TA~ i ,T!:5pT
E~Xi !

21RA~Vi~T!!. ~5b!

~If pT
E(Xi)50, we putTS ( i ,T)5TA( i ,T)5O!. The conditional interpretation of the states~4! and

~5! presupposes, however, that the pointer observableZR has valuei in stateTA( i ,T), that is,
tr@TA( i ,T)Zi#51 for all i andT wheneverpT

E(Xi)Þ0.5 This requirement is always satisfied if the
pointer observable is sharp. In general this is a condition to be imposed on the measurement
scheme. We call it thepointer value-definitenesscondition and note that it may be written in either
of the following equivalent forms:

tr@TA~ i ,T!Zi #51 ~wheneverpT
E~Xi !Þ0!, ~6a!

ZiTA~ i ,T!5TA~ i ,T!, ~6b!

for all iPI and all initial statesT of S .
3.9. For any reading scaleR and any stateTPS ~H! one has

RS ~V~T^TA!!5( pT
E~Xi !TS ~ i ,T!; ~7!

this is to say that the final object state behaves additively with respect to the pointer conditioning:
That is, the state ofS on the plain condition that the measurement has been performed, is the
same as the state ofS after the measurement conditional on the fact that the pointer value is
registered with respect to the reading scaleR.6 Although it also holds true that for anyiPI and
TPS ~H!

TA~ i ,T!5pT
E~Xi !

21Zi
1/2
RA~V~T^TA!!Zi

1/2, ~8!

it is not the case, in general, that the final apparatus stateRA~V~T^TA!! is conditioned with
respect toR; thus, in general,

RA~V~T^TA!!Þ( pT
E~Xi !TA~ i ,T!. ~9!

The requirement thatRA~V~T^TA!! is a mixture of the final component statesTA( i ,T) is
therefore another condition on the measurement;2 we call it thepointer mixture condition

RA~V~T^TA!!5( pT
E~Xi !TA~ i ,T! ~10!
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for all initial statesT of S .
3.10. The pointer value-definiteness condition~6! and the pointer mixture condition~10!

imply that the final apparatus state is a mixture of the pointer eigenstatesTA( i ,T) with the
weights pT

E(Xi); this means that the final apparatus stateRA~V~T^TA!! is conditioned with
respect to the reading scaleR.2,6 One may consider the assumption that in addition to this, the
stateRA~V~T^TA!! admits theignorance interpretationwith respect to the decomposition~10!:
that is, the apparatus@in stateRA~V~T^TA!!# is actually in one of the component states
TA( i ,T), and this is the case with the subjective probabilitypT

E(Xi). As is well known, such an
interpretation of the mixed stateRA~V~T^TA!! is extremely problematic and in most cases
impossible; but if it were the case then the pointer could be claimed to have a definite valuei ~with
respect to a reading scaleR! after the measurement with the subjective probabilitypT

E(Xi).
Setting aside the difficulties with the ignorance interpretation~and thus with explaining the oc-
currence of definite measurement outcomes in quantum mechanics!, it still is important to inves-
tigate more closely the conditions~6! and ~10! and to see how these possible properties of a
measurement are related to the structure of the final state of the object system.

Theorem 3.11:LetM be a measurement of an observable E andR any reading scale. For
any initial state T of the object system, the condition (a) implies the conditions (b) and (c):

~a! TS ~ i ,T!•TS ~ j ,T!5O for iÞ j ;

~b! RA~V~T^TA!!5(pT
E~Xi !TA~ i ,T! for all i ;

~c! ZiTA~ i ,T!5TA~ i ,T! for all i .

If M is a unitary measurementMU , then (a) and (b) are equivalent conditions for any initial
vector state T5P[w] of S .

Proof:
(a)⇒(b)&(c): For eachi , let Fi be the support projection ofTS ( i ,T), that is, the smallest

projection ofQ such thatQTS ( i ,T)5TS ( i ,T). Then one gets~for iÞ j !

TS ~ i ,T!•TS ~ j ,T!50⇔FiTS ~ j ,T!5O

⇔tr@Fi ^ IV j~T!#50

⇔Fi ^Zj
1/2V~T^TA!I ^Zj

1/25O

⇔Fi ^Zj
1/2V~T^TA!1/25O

⇒Fi ^ZjV~T^TA!1/25O. ~a!

By the definition ofFi one also has

FiTS ~ i ,T!5TS ~ i ,T!⇔Fi ^Zi
1/2V~T^TA!I ^Zi

1/25I ^Zi
1/2V~T^TA!I ^Zi

1/2

⇒Fi ^ZiV~T^TA!1/25I ^ZiV~T^TA!1/2. ~b!

Combining~a! and ~b! and using the fact that(Zi5I yields

Fi ^ IV~T^TA!1/25Fi ^ZiV~T^TA!1/25I ^ZiV~T^TA!1/2. ~g!

From this one obtainsI ^ZiV~T^TA!5I ^Zi
2V~T^TA!, which gives~c!. Using ~c!, one shows

similarly that
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I ^ZiV~T^TA!1/25I ^Zi
1/2V~T^TA!1/2.

Inserting this in~g!, multiplying each term with its adjoint and summing overi , one obtains

( Fi ^ IV~T^TA!Fi ^ I5( I ^Zi
1/2V~T^TA!I ^Zi

1/2.

Taking the partial trace with respect toH finally yields ~b!.
(b)⇒(a): This implication will be shown for a unitary measurementMU and for vector state

preparationsT5P@w#. In that caseTA5P@f# andV~T^TA!5P[U(w ^ f)]. Denoting the bior-
thogonal decomposition of this state asU(w ^ f)5(nkcnwnk^ fnk , with cn.0, we obtain
TA(V,T)5(nkucnu

2P[fnk]. Now ~b! implies that all the projectionsZi commute withTA~V,T!.
Therefore, one can choose the orthonormal system$fnk% such thatZifnk5fnk or Zifnk50. Thus
there is a renumbering of this system,$fnk%5$f i l %, such thatZif i l5f i l . It follows that there are
corresponding renumberings$w i l %5$wnk% and $dil %5$cn% such thatU(w ^ f)5(dilw i l ^ f i l .
Then TS ( i ,T)5( l udil u

2P[w i l ]. Since the subsets of vectorswi l with different values ofi are
mutually disjoint and therefore orthogonal, one concludes that~a! holds. This completes the proof.

It can be demonstrated by means of examples that the implication~b!⇒~a! need not hold if the
measurement is not unitary or if the initial pointer state is not pure.1

C. First kind and repeatable measurements

3.12. A measurementM of an observableE is of thefirst kind if the probability for a given
result is the same both before and after the measurement, that is, for anyTPS ~H! and for all
XPF ,

pT
E~X!5pRS ~V~T^TA!!

E ~X!. ~11!

Unitary measurement schemes with a couplingU5eilA^B, lPR, A ~onH! andB ~onHA!
self-adjoint, do give rise to such measurements; we refer to Sec. VIII for an analysis of this model.

3.13. A measurementM of an observableE is repeatableif its repetition does not lead to a
new result. One way to express the requirement is the following: For anyTPS ~H! andXPF , if
pT
E(X)Þ0, then

pTS ~X,T!
E ~X!51, ~12!

~whereTS (X,T) is defined by Eqs.~3a!, ~4! and ~5a! with X5Xi!. Equivalently,M is a repeat-
ableE-measurement if for anyTPS ~H! andXPF , for which pT

E(X)Þ0, it holds true that

E~X!TS ~X,T!5TS ~X,T!. ~13!

Another basic result of measurement theory is that an observableE which admits a repeatable
measurement is discrete.4,7

3.14. According to Eq.~13!, a repeatable measurement drives the object system into an
eigenstate of the measured observableE: i°Ei . The orthogonality conditions of Theorem 3.11 are
then satisfied and the final apparatus stateRA~V~T^TA!! is the mixture of the eigenstates
TA( i ,T) of Z: i°Zi with the weights tr[TEi ].

3.15. It is evident that repeatable measurements are also of the first kind. However, as will be
demonstrated in Sec. VIII, a first kind measurement need not be repeatable, though for sharp
observables the two notions coincide.8
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IV. STATISTICAL DEPENDENCE AND CORRELATIONS

A measurementM of an observableE brings the compound object–apparatus system into an
entangled stateV~T^TA!. The possibility of transferring information fromA to S rests on the
fact that this state entailsstatistical dependenciesbetween quantities pertaining to these systems.
Accordingly, three types ofcorrelationsinherent in the stateV~T^TA! are of special interest for
characterizing the measurement:~i! correlations between the measured observable and the pointer
observable;~ii ! correlations between the corresponding values of these observables; and~iii !
correlations between the final component states of the two subsystems. For their study it is helpful
to recall some basic notions and facts concerning the relation between statistical dependence and
correlation.

4.1. Letm be a probability measure on the real Borel space~R2,B~R2!!, and letm1 andm2 be
the marginal measures ofm with respect to a Cartesian coordinate system: ForX,YPB~R!,

m1~X!5m~X3R!, m2~Y!5m~R3Y!. ~14!

These marginal measures correspond to the coordinate projections~random variables! p1:
(x,y)°x andp2: (x,y)°y in the sense thatm i 5 mp i, that is,m i(X) 5 mp i(X): 5 m(p i

21(X)) for
all XPB~R!, i51,2. Assume that the expectations and the variances ofmi are well defined and
finite: e i5*x dm i(x), s i

25*(x2e i)
2 dm i(x), and lete125*xy dm(x,y). The ~normalized! cor-

relation of the marginal measuresm1 andm2 in m is then defined as

r~m1 ,m2 ;m!:5E ~x2e1!~y2e2!

s1s2
dm~x,y!5

e122e1e2
s1s2

~15!

~whenevers1Þ0Þs2!. The Schwarz inequality entailsur~m1,m2;m!u<1. The marginalsm1,m2 are
uncorrelatedif r~m1,m2;m!50 ~that is, e125e1e2!, strongly correlatedif r~m1,m2;m!51 ~that is,
e122e1e25s1s2!, andstrongly anticorrelatedif r~m1,m2;m!521 ~that is,e122e1e252s1s2!. The
strong correlation conditions can also be written in terms of the coordinate projectionsp1 andp2

r~p1 ,p2 ;m!511 iff p15
s1

s2
~p22e2!1e15: l1+p2 ~m-a.e.!, ~16a!

r~p1 ,p2 ;m!521 iff p152
s1

s2
~p22e2!1e15: l2+p2 ~m-a.e.!. ~16b!

~Here, we have introduced the functionl6 :y° l6(y):56(s1/s2)(y2e2)1e1). A case of spe-
cial interest arises when the marginalsm1 andm2 have the same~finite! first and second moments
so thate15e2, s15s2. Then one has

r~m1 ,m2 ;m!511 iff e125e1
21s1

2, iff p15p2 ~m-a.e.!, ~17a!

r~m1 ,m2 ;m!521 iff e125e1
22s1

2, iff p152p212e1 ~m-a.e.!. ~17b!

4.2. The notion of correlation can be applied to quantify the degree of mutual dependence of
the marginal measures. In order to avoid dealing with unnecessary complications, we assume that
m1 andm2 are no$0,1%-valued measures; equivalently, we lets1Þ0Þs2. m1 andm2 are indepen-
dent if m5m13m2. Otherwise,m1,m2 aredependent. They arecompletely dependentif there is a
~measurable! functionh:R→R such thatm(X3Y)5m2(h

21(X)ùY) for X,YPB~R!. That is, the
marginal measurem2 suffices to determine the whole measurem. The relation of complete depen-
dence is symmetric with respect to the two marginals only ifh is bijective. This is the case of
concern here.
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4.3. It is evident that the statistical independence ofm1,m2 implies r~m1,m2;m!50. However,
the latter condition is not sufficient to ensure their independence.~For a counter example, see, for
instance, Ref. 9!. On the other hand, Eqs.~16a! and~16b! show that strong~anti!correlation entails
complete dependence, the dependence being given by the linear functionl6 . Indeed, the condition
p15l6+p2 ~m-a.e.! implies thatm(X3Y)50 for all X andY for which l6

21(X)ùY50. Thus in
particular, for any X and Y, and with X8 denoting the complement ofX one has
m(X83 l6

21(X)ùY)505m(X3 l6
21(X8)ùY). The additivity properties ofm allow one then to

verify that for allX,Y,m2( l6
21(X)ùY)5m(X3Y), that is,m1 andm2 are completely dependent

with l6 . By a direct computation one can confirm that the converse implication holds true when-
ever the functionh is linear. Therefore, we have

r~m1 ,m2 ;m!511 iff m1 ,m2 are completely dependent withh~y!5ay1b, a.0,
~18a!

r~m1 ,m2 ;m!521 iff m1 ,m2 are completely dependent withh~y!5ay1b, a,0.
~18b!

In both cases the constants area56s1/s2, b5e12ae2 , so thath5 l6 .

V. STRONG CORRELATIONS BETWEEN OBSERVABLES

5.1. According to the condition~2!, in anE-measurement the initialE-outcome distribution is
recovered from the finalZ-outcome distribution. In addition to this basic requirement, a measure-
ment may also establish complete statistical dependence between the measured observable and the
pointer observable after the measurement; that is, the observablesE andZf may become strongly
correlated in the final object–apparatus stateV~T^TA!. In order to avoid technical complications
in the formulation of this correlation, we assume that the value space ofE is the real Borel space,
~V,F !5~R,B~R!!. Then for any stateTPS ~H! the map

m:X3Y°tr@V~T^TA!E~X! ^Zf~Y!# ~19!

extends to a probability measure on~R2,B~R2!!.10 The marginal distributions are

m1 :X°tr@RS ~V~T^TA!!E~X!#, ~20a!

m2 :Y°tr@RA~V~T^TA!!Zf~Y!#5tr@TE~Y!#. ~20b!

Denoting the correlation ofm1 andm2 in m asr~E,Zf ;V~T^TA!!, we say that the measurement
M of E producesstrong observable-(anti)correlationin stateT if this number equals 1~21!.
According to Eq.~18!, this occurs exactly when the probability measures@~20a! and ~20b!# are
completely dependent, with the functionl6 . In order to analyze the statistical dependence ofm1
andm2 we shall make use of the concept of a state transformer~also known as an instrument!
associated with a measurement.

5.2. Consider a measurement^HA ,Z,TA ,V, f & of E. Any XPF defines a non-normalized
state

VX~T!:5I ^Z1/2~ f21~X!!V~T^TA!I ^Z1/2~ f21~X!!, ~21!

the ~trace! norm of which is tr[VX(T)]5pT
E(X). Taking the partial trace ofVX(T) overHA one

gets the~non-normalized! reduced state ofS ,

I X~T!:5RS ~VX~T!!. ~22!
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For anyXPF and TPS ~H!, tr@I X(T)#5tr[TE(X)], and T°I X(T) is a ~contractive! state
transformation. The mappingI :X°I X has the measure property tr@I øXi

(T)# 5 (tr@I Xi
(T)# for

any disjoint sequence (Xi),F and for allTPS ~H!. Moreover, tr@I V(T)#51 for anyT. We call
I the state transformerinduced by the measurementM. It describes the object system’s state
changes under the measurement, and it uniquely defines the measured observable via the relation
tr@I X(T)#5tr[TE(X)]. We note also that pT

E(X)TS (X,T)5I X(T), and, in particular,
RS ~V~T^TA!!5I V(T).

5.3. The probability measure~19! can be written as

m~X3Y!5tr@I Y~T!E~X!#5tr@I X~I Y~T!!#, ~23!

and the second marginal ism2(Y)5tr@I Y(T)#. The strong~anti-!correlation then amounts to

tr@I X~I Y~T!!#5tr@I l
6
21~X!ùY~T!#. ~24!

A special case of complete dependence arises withl1 being the identity function

tr@I X~I Y~T!!#5tr@I XùY~T!#. ~25!

This relation is easily seen to coincide with Eq.~12!.8 Thus if valid for all statesT, Eq. ~25!
expresses the repeatability of the measurement, and we may conclude that any repeatable mea-
surement leads to strong observable-correlations. The repeatability condition~25! is not necessary
for the strong observable-correlation~24!.

5.4. Condition~25! implies, in particular, the equality of the marginal measuresm1,m2 of Eqs.
~20!: for all X,

pT
E~X!5pRS ~V~T^TA!!

E ~X!. ~26!

This is just the first-kind property of the measurement. It may occur that these marginal measures
coincide irrespectively of whether Eq.~25! holds or not; in that case conditions~17! give the
relevant characterisations of strong~anti!correlations.

Theorem 5.5:LetM be a measurement of an observable E, and letR be any reading scale.
Then (a) implies (b), where

~a! E~Xi !TS ~ i ,T!5TS ~ i ,T! for all TPS ~H!, XiPR;

~b! s~pRS ~V~T^TA!!
ER !Þ0 and r~ER,ZR;V~T^TA!!51

for all TPS ~H! with s~pT
ER!Þ0.

If the reading scaleR is finite, then (a) and (b) are equivalent.
Proof: The eigenstate condition~a! is equivalent with the repeatability condition~with respect

to R!. Therefore, if ~a! holds, then also~b! is true. It remains to show that~b! implies ~a!
wheneverR is finite. According to Eq.~18a!, the statementr~ER, ZR;V~T^TA!!51 is equiva-
lent to the complete dependence,m( i , j ) 5 m2( j )d i ,l1( j ) , with a bijective linear mapping
i5 l1( j )5a j1b, a.0, between those valuesi , j for which m2( j )Þ0 ~and hence
m1( i )5m2(

1
a( i2b))Þ0!.

Case 1. Let T be such that 0Þtr[TEi ]Þ1 for all iPI . Then m( i , j ) correlates, via
i5 l1( j )5a j1b, all valuesjPI with valuesiPI . Sincel1 is onto and monotonically increasing,
l1( j )5 j . But the complete dependence condition, withl1( j )5 j , is nothing but Eq.~25! ~with
respect toR!, which is equivalent to~a!.
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Case 2.Let T be any state such that 0Þtr[TEk]Þ1 holds exactly for allkPI1, a proper
nonempty subset ofI . Take anyT8 for which 0Þtr[T8El ]Þ1 exactly for alll P I18 , the comple-
ment ofI1. Then the reasoning of Case 1 applies toT̂:5 1

2T1 1
2T8. Hence,EiI i(T̂)5I i(T̂) for all

iPI . Inserting in this equation the relationI k(T8)5O, which holds forkPI1, it follows that
EiI i(T)5I i(T) for iPI1. But this relation holds trivially also fori P I18 since in that case
I i(T)5O. This completes the proof.

VI. STRONG CORRELATIONS BETWEEN VALUES

6.1. The observableER measured by the schemeM with the reading scaleR is discrete. One
may therefore ask to what degree thevaluesof this observable and the pointer observableZR

become correlated in the measurement. To answer this question requires studying the correlation
r~Ei ,Zi ;V~T^TA!! of the i th values of these observables in the final object–apparatus state, that
is, the correlation of quantitiesEi ^ I and I ^Zi in the stateV~T^TA!

r~Ei ,Zi ;V~T^TA!!5
e122e1e2

s1s2
. ~27!

The respective quantities are easily determined

e125tr@I i
2~T!#, ~28a!

e15tr@I ~ I !~T!Ei #, ~28b!

e25tr@TEi #, ~28c!

s1
25tr@I ~ I !~T!Ei

2#2tr@I ~ I !~T!Ei #
2, ~28d!

s2
25tr @RA~V~T^TA!!Zi

2#2tr@TEi #
2. ~28e!

Strong correlation is then equivalent to

e122e1e25s1s2 ~29!

whenever the right-hand side is nonzero.
6.2. Assume that the final component stateTS ( i ,T) is a 1-eigenstate ofEi ~whenever

pT
E(Xi)Þ0!; then one obtainse125e15e2 for all T. It follows that e122e1e25s1

2<s1s2 and thus
s1<s2. On the other hand, the relatione15e25e12 together withs2

2<e22e2
25e122e1e25s1

2 im-
pliess2<s1. Therefore, the correlationr~Ei ,Zi ;V~T^TA!! equals 1 whenever 0ÞpT

E(Xi)Þ1.
Another interesting implication of the eigenstate conditione125e2 and the ensuing equality

s25e22e2
2 is the fact that the stateTA( i ,T) is a 1-eigenstate ofZi . With these observations we

have established the following result.
Theorem 6.3:LetM be a measurement of an observable E and letR be any reading scale.

Then for any state T ofS , (a) implies (b) and (c):

~a! EiTS ~ i ,T!5TS ~ i ,T! for each i ;

~b! s~Ei ^ I ;V~T^TA!!Þ0 and r~Ei ,Zi ;V~T^TA!!51

for each i with 0ÞpT
E~Xi !Þ1;

~c! TA~ i ,T! is a 1-eigenstate ofZi for each i with pT
E~Xi !Þ0.
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This result entails that a repeatable measurement is a strong value-correlation measurement. More-
over, a necessary condition forM to be a repeatable measurement is that the final component
stateTA( i ,T) ofA is a 1-eigenstate of the pointer observable, that is,M must fulfill the pointer
value-definiteness condition. We recall that this last property and in addition the pointer mixture
property arise already as consequences of the mutual orthogonality of the component states
TS ( i ,T) of S ~Theorem 3.11!. The notion of a correlation between values suggests that the
observables in question do have definite values; yet it turns out that strong value-correlation does
not require pointer value-definiteness, nor repeatability. Even the combination of~b! and~c! does
not require the property~a! to hold, as can be demonstrated by simple examples.1

Theorem 6.4:LetM be a measurement of a sharp observable E andR any reading scale.
For any initial state T ofS , (a) is equivalent to (b) & (c):

~a! EiTS ~ i ,T!5TS ~ i ,T! for each i ;

~b! s~Ei ^ I ;V~T^TA!!Þ0 and r~Ei ,Zi ;V~T^TA!!51

for each i with 0ÞpT
E~Xi !Þ1;

~c! TA~ i ,T! is a 1-eigenstate ofZi for each i with pT
E~Xi !Þ0.

Proof: In view of Theorem 6.3, we only need to show that~b! & ~c! implies ~a!. Hence let
e122e1e25s1s2 hold for eachi . Condition ~c! implies s2

25e22e2
2. Similarly the relationEi

25Ei

impliess1
25e12e1

2. From Eqs.~28! we obtaine12<e1, e12<e2, and therefore

s1s25e122e1e2<s1
2, s1s25e122e1e2<s2

2.

This impliess15s2. On the other hand,

e1e21s1s25e12<e15s1
21e1

2, e1e21s1s25e12<e25s2
21e2

2.

Using s15s2, one concludes thate15e25e12. But the last equation is equivalent to~a!. This
completes the proof.

VII. STRONG CORRELATIONS BETWEEN FINAL COMPONENT STATES

7.1. In the two preceding sections it was demonstrated in which way strong observable and
value correlations serve as characterizations of repeatable measurements. The corresponding
eigenstate conditionEiTS ( i ,T)5TS ( i ,T) entails, in particular, that the final component states of
the object associated with different outcomesi , j are mutually orthogonal,TS ( i ,T)•TS ( j ,T)50.
In some cases this orthogonality can be characterized in terms of strong correlations between the
final component states ofS andA.

Consider a measurement schemeM of an observableE with respect to a reading scaleR.
We say thatM, with R, is astrong state-(anti)correlationmeasurement ofE if for each initial
stateT of S it correlates strongly the final component statesTS ( i ,T) andTA( i ,T) of the object
and the apparatus. This calls for the study of the correlationr~TS ( i ,T),TA( i ,T);V~T^TA!! of
the probability measure defined by the self-adjoint operatorsTS ( i ,T)^ I andI ^TA( i ,T) and the
final object–apparatus stateV~T^TA!.

Theorem 7.2:LetM be a measurement of an observable E andR any reading scale. For
any initial state T of the object system for which the component states TS ( i ,T) and TA( i ,T) are
vector states, (a) is equivalent to (b) & (c):

~a! TS ~ i ,T!•TS ~ j ,T!5O for iÞ j ;
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~b! r~TS ~ i ,T!,TA~ i ,T!;V~T^TA!!51 for each i with 0ÞpT
E~Xi !Þ1;

~c! TA~ i ,T! is a 1-eigenstate ofZi for each i with 0ÞpT
E~Xi !Þ1.

Proof: The equivalence is shown to hold under the assumptionsTS ( i ,T)5P[w i ] and
TA( i ,T)5P[f i ]. These two relations imply thatI ^Zi

1/2V~T^TA!I ^Zi
1/2 is a vector state of the

product form, that is,

I ^Zi
1/2V~T^TA!I ^Zi

1/25pT
E~Xi !P@w i ^ f i #. ~a!

If ~a! holds, then by Theorem 3.11,M fulfils the pointer value-definiteness condition~c!. Thus for
both implications one can make use of the fact thatZif i5f i . Then~a! implies

I ^P@f i #V~T^TA!I ^P@f i #5pT
E~Xi !P@w i ^ f i #.

With this one computes

e125tr@P@w i # ^P@f i #V~T^TA!#5pT
E~Xi !,

e15tr@P@w i #RS ~V~T^TA!!#5(
j
pT
E~Xj !tr@P@w i #P@w j ##,

e25tr@ I ^P@f i #V~T^TA!#5pT
E~Xi !,

s1
25e12e1

2, s2
25e22e2

2.

(a)⇒(b): ~a! is equivalent to tr[P[w i ]P[w j ]]5d i j , one hase15e25e12, ands15s2. Thus
e122e1e25s1s2, that is,~b!.

(b)&(c)⇒(a): Let e122e1e25s1s2. Using the inequalitiese122e1e2<sk
2, k51,2, one con-

cludes thats15s2. Sincee125e2, one also hase122e1e25s2
25e22e2

2, and thereforee15e2. But
from the definition of e1 one hase1>e2, so that the equality of these numbers implies
tr[P[w i ]P[w j ]]50 wheneveriÞ j , that is~a!. This completes the proof.

7.3. One may also ask whether the requirement of strong correlation between theS andA
statesRS ~V~T^TA!! andRA~V~T^TA!! imposes any constraint on the measurement scheme
under consideration. That this cannot be expected in general can be seen in the case of a unitary
measurementMU . Note first that the reduced states ofP[U(w ^ f)] have the same spectra,
including multiplicities. The spectral decompositions can be given in terms of orthonormal sys-
tems$wi%, $fi% defined by the biorthogonal decompositionU(w ^ f)5( iciw i ^ f i(ci.0), and a
straightforward calculation shows that

r~RS ~P@U~w ^ f!#!,RA~P@U~w ^ f!#!;P@U~w ^ f!#!51. ~30!

Hence these states are always strongly correlated.

VIII. EXAMPLES

8.1. A particularly interesting class of measurements arises if the coupling is generated by a
unitary map of the form

U5eilA^B, ~31!

whereA andB are self-adjoint operators inH andHA , respectively, andlPR is a coupling
constant. The operatorA is usually taken to represent the~sharp! observable one aims to measure.
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In order to specify the full measurement scheme and thus the actually measured observable, one
needs to choose the pointer observableZ and fix the initial preparationTA of the apparatus; the
measured observable is then given by Eq.~2!. Using the spectral decomposition ofA,
A5*aEA(da), and denoting

TA
la :5eilaBTAe

2 ilaB, ~32!

the final apparatus state, forTPS ~H!, assumes the form

RA~UT^TAU* !5E tr@TEA~da!#TA
la . ~33!

Since it is of interest to compare the measured observableE with EA we assume from the outset
that the value space ofZ is ~R,B~R!!. In view of the coupling constantl~Þ0! it is also convenient
to introduce a pointer functionf (x)5l21x. The observableE measured by the scheme
^HA ,Z,TA ,f ,U& takes then the following form: For anyXPB~R!,

E~X!5E
R
tr@TA

laZ~lX!#EA~da!. ~34!

The structure of the operatorsE(X) show that in general the measured observableE is not the
sharp observableEA, but a smeared version of it.11 One may ask which choices ofZ andTA
would possibly yieldE5EA. Obviously, this is the case if and only if for~EA-almost! all a
P R,tr@TA

laZ(lX)# 5 xX(a), wherexX is the characteristic function of the setX.
The measurement scheme thus defined is always of the first kind: The measurement outcome

probabilities forE are the same both before and after the measurement; for anyTPS ~H! and for
all XPB~R!,

tr@TE~X!#5tr@UT^TAU*E~X! ^ I #. ~35!

It may also be noticed that the measurement does neither alter the measurement outcome prob-
abilities ofEA, though, as a rule, it is not a measurement ofEA. In fact, if the measurement were
an EA-measurement, it would also be repeatable~3.15! andA would thus have to be discrete,
A5(aiE

A($ai%) ~3.13!. In that case the measurement would also produce all the strong correla-
tions discussed in the previous sections. In general, this is, however, not the case.

Consider next this measurement scheme with a fixed reading scaleR. The pointer observable
Z as well as the measured observableE become discretized,

ZR: i°Zi :5Z~lXi !, ~36a!

ER: i°Ei :5E~Xi !, ~36b!

and the final component states are

TS ~ i ,T!5pT
E~Xi !

21RS ~Vi~T!!5pT
E~Xi !

21E E RS ~EA~da!TEA~da8!

^Zi
1/2eiaBTAe

2 ia8BZi
1/2)

5pT
E~Xi !

21( tn( Lkn
i TLkn

i * ~37a!

with Lkn
i :5E ^ckuZi

1/2fn
la&EA~da!PL~H!,
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TA5( tnP@fn# ~spectral decomposition!

fn
la5eilaBfn ,

$ck%,HA an orthonormal basis,

TA~ i ,T!5pT
E~Xi !

21RA~Vi~T!!5pT
E~Xi !

21E tr@TEA~da!#Zi
1/2TA

laZi
1/2, ~37b!

~provided thatpT
E(Xi)Þ0). If Ei

25Ei for all iPI , the measurement is repeatable with respect to
R, and

E~Xi !TS ~ i ,T!5TS ~ i ,T!, ~38a!

TS ~ i ,T!•TS ~ j ,T!5O, iÞ j , ~38b!

in which case the implications of Theorems 3.11, 5.5, 6.3, 6.4, and 7.2 all hold true. We specify
next two instances of the above model, one in whichEi

25Ei and another one withEi
2,Ei .

8.2. Consider a discrete observableA5(akE
A($ak%), and assume that the set of eigenvalues

of A is closed. As the apparatus~or a part of it, called probe! take a particle moving in one-
dimensional space, so thatHA5L2~R!, and coupleA with its momentumPA according to Eq.
~31!. Since the momentum generates translations on the position, it is natural to choose the
positionQA conjugate toPA as the pointer observable. Assuming that the initial state ofA is a
vector stateP@f#, then, in the position representation~forA! one hasflak(x) 5 f(x 1 lak), with
flak 5 eilakPAf. Assuming that the spacing between the eigenvaluesak is greater than~d/l! and
thatf is supported in~2 d

2,
d
2!, then the pointer statesflak are supported in the mutually disjoint

setslI k , where I k5(ak2(d/2l),ak1(d/2l)). Introducing yet another pointer functiong such
thatg(I k)5$ak% for eachk, andg((økI k)8),$ak :k51,2,...%8, one obtains from Eq.~34!

E~$ak%!5( ^flaiuEQA~lI k!f
lai&EA~$ai%!5EA~$ak%!, ~39!

for eachk, which shows that the observable measured by this scheme is indeedEA. The measure-
ment is repeatable, even a Lu¨ders measurement with the state transformer
T°I k(T)5RS (Vk(T))5EA($ak%)TE

A($ak%), and all the correlations introduced above are
strong.

As an elementary quantum optical application, one may consider the measurement of the
number observableN5a* a of a ~single-mode! signal field by means of coupling it, via
eilN^bp, with one of the quadrature componentsbp5 i /&(b*2b), say, of another single-mode
~probe! field, and using the other quadrature componentbq51/&(b*1b) as the readout observ-
able. With the above choices of the initial probe statef and the pointer functions one obtains a
number measurement. It may be noted that neither the beam splitter coupling nor the number–
number coupling leads to a sharp number measurement.11

8.3. The second illustration of the above model concerns the case ofA being a continuous
observable, such as the position of a particle or a quadrature component of a single-mode elec-
tromagnetic field. Using the quantum optical nomenclature, we takeA5aq51/&(a*1a), the
amplitude quadrature of the~single-mode! signal field with the bosonic annihilation and creation
operatorsa,a* . For B we take the corresponding quadrature componentbq of a ~single-mode!
probe field, with the annihilation and creation operatorsb,b* . Using the phase quadrature
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bp:5 i /&(b*2b)5*RxZ(dx) of the probe field as the readout observable, and assuming that the
probe field is prepared in a vector stateP@f# determines the measured observable~34! to be of the
form

E~X!5E E uf̂u2~y2lx!xlX~y!dy EA~dx!5E uf̂u2~y2laq!xlX~y!dy

[~el* xX!~aq!,

el~y!:5luf̂u2~2ly!, ~40!

whereel* xX denotes the convolution of the density functionel with the characteristic function of
the setX, andf̂ is the Fourier transform off.

In the present case the measured observable is the POV measureE:X°(el* xX)(a
q) and not

the spectral measureX°xX(a
q) of aq; this is to say that the measured field observable is not the

amplitude quadratureaq but a smearing of it. In fact, ife were replaced by a delta function
~concentrated at 0!, then Eq.~40! would simply give the amplitude quadratureaq. But this can
never occur since the readout observablebp has no eigenstates, that is, the initial state of the probe
field cannot be so chosen thate were a delta function. We observe also that the measurement is not
repeatable~sinceE is not discrete! though still of the first kind. Therefore, the strong correlations
are not guaranteed from the outset but need to be studied separately.

Before calculating the observable-correlation produced by the measurement we compare the
variance ofE with that ofaq in a vector stateP@w#. Direct application of Eq.~2! yields ~assuming
that the involved quantities are finite!

Var~E,w!5Var~aq,w!1
1

l2 Var~b
p,f!. ~41!

The initial stateP@f# of the probe field can be chosen such that^fubpf&50. In this case the
measured observable appears, in view of the first moments, as the amplitude quadratureaq.
However, the second moment^fu(bp)2f& never equals 0, meaning that Var~E,P@w#! is strictly
greater than Var~aq,P@w#!. However, in the limit of strong coupling,l→`, the measurement
noise term~1/l2!Var ~bp,P@f#! tends to zero. In any case, this shows once more that the actually
measured observable is not the amplitude quadrature.

The observable-correlation produced by the measurement is now found to be

r~E,Zf ;P@U~w ^ f!#!5
Var~aq,P@w#!

Var~E,P@w#!
, ~42!

a quantity always strictly less than 1. The measurement, though of the first kind, does never lead
to strong observable-correlation. Yet,

lim
l→`

r~E,Zf ;P@U~w ^ f!#!51. ~43!

In order to discuss the value- and state-correlations produced by the measurement scheme one
needs to introduce a reading scaleR. The discrete observableER:i°Ei thus measured is

Ei5~el* xXi
!~aq!, ~44!

whereas the final component states~37a! are of the form
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TS ~ i ,P@w#!5^wuEiw&21E
lXi

LyP@w#Ly* dy with Ly :5f̂~y2laq!. ~45!

Neither the eigenvalue condition~38a! nor the orthogonality condition~38b! can be satisfied for all
initial vector states of the signal field. Therefore, the strong value and state-correlations cannot be
inferred by using Theorems 6.3 and 7.2. Still the value-correlation is always strong:
r~Ei ,Zi ;P[U(w ^ f)] !51 for all i and for anyP@w# for which ^wuEiw&Þ0. Indeed, due to the
commutativity of the operatorsLy of Eq. ~45! with Ei , e12 of Eq. ~28a! equals^wuEi

2w&; further-
more the first kind property of the measurement and the sharp pointer yield for Eqs.~28b!–~28d!:
e15e25^wuEiw&, and s1

25s2
25Var~Ei ,P@w#!. Therefore, e122e1e25s1s2, so that

r~Ei ,Zi ;P[U(w ^ f)] !5Var~Ei ,P@w#!/Var~Ei ,P@w#!51. Finally, a direct computation of the
state-correlationr~TS ~i ,P@w#!,TA( i ,P[w]);P[U(w ^ f)]) shows that this number is not, in gen-
eral, equal to one.

IX. CONCLUSION

In this paper we have investigated possible properties of the final component states of the
object system and the apparatus~or probe! arrived at in a quantum measurement, properties which
must be required if the occurrence of definite measurement outcomes is to be understood as the
conjunction of pointer value definiteness~PVD!, pointer mixture property~PM!, plus the igno-
rance interpretation for the final reduced apparatus state. According to Theorem 3.11, the proper-
ties ~PVD! and ~PM! are ensured if the final component states of the object system are mutually
orthogonal. Considering initial states ofS which are vector states, this latter condition is also
necessary for~PM! in the case of a unitary measurementMU , where ~PVD! is automatically
fulfilled since the pointer is a sharp observable. The orthogonality of the statesTS ( i ,T) is not
always guaranteed.12

Next we have considered conditions for strong correlations between observables, their values,
or between the final component states ofS andA. It turns out that repeatable measurements give
strong observable- as well as strong value-correlations~Theorems 5.5, 6.3, 6.4!. Furthermore,
strong observable-correlation for finite reading scales entails repeatability and thus the orthogo-
nality of the statesTS ( i ,T) and hence~PVD!, via Eq. ~3.11!. On the other hand, strong value-
correlation may occur independently of~PVD!. Finally, strong state-correlation may occur under
more general circumstances than the other correlations since it is independent of the repeatability
property, but its implying the orthogonality of the final component states ofS may be limited to
the case where these states are vector states. However, in that case, and for a unitary measurement
MU , strong state-correlation is equivalent to the said orthogonality and thus to the pointer mix-
ture condition.

In conclusion, we wish to emphasize that our investigation provides an illustration of how
interpretational demands entail formal constraints on measurements that may or may not be ful-
filled in a concrete case. These formal features have thus to be made explicit if the consistency of
an interpretation is to be demonstrated. With these findings we believe to have settled the ques-
tions left open in previous work.2
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In this paper we investigate the canonical quantization of a non-Abelian topologi-
cally massive Chern–Simons theory in which the gauge fields are minimally
coupled to a multiplet of scalar fields in such a way that the gauge symmetry is
spontaneously broken. Such a model produces the Chern–Simons–Higgs mecha-
nism in which the gauge excitations acquire mass both from the Chern–Simons
term and from the Higgs–Kibble effect. The symmetry breaking is chosen to be
only partially broken, in such a way that in the broken vacuum there remains a
residual non-Abelian symmetry. We develop the canonical operator structure of
this theory in the broken vacuum, with particular emphasis on the particle-content
of the fields involved in the Chern–Simons–Higgs mechanism. We construct the
Fock space and express the dynamical generators in terms of creation and annihi-
lation operator modes. The canonical apparatus is used to obtain the propagators for
this theory, and we use the Poincare´ generators to demonstrate the effect of Lorentz
boosts on the particle states. ©1996 American Institute of Physics.@S0022-
2488~96!03106-4#

I. INTRODUCTION

Field theories in (211)-dimensional space–time exhibit many interesting and important
properties related to the masses of the particle excitations of the quantum fields. For example,
gauge theories involving a Chern–Simons term support massive gauge field excitations,1,2 which
differ from the Higgs–Kibble excitations produced in conventional spontaneous symmetry
breaking.3 The combination ofboth spontaneous symmetry breakingand a Chern–Simons~CS!
term for the gauge field leads to the Chern–Simons–Higgs~CSH! mechanism, in which the
physical fields are transmuted in a process that combines the Chern–Simons and Higgs–Kibble
mass-generating effects in a particularly interesting and instructive manner.

An analysis of the covariant gauge field propagator4,5 indicates the presence of two distinct
mass poles, with masses given as complicated functions of the Higgs mass scale~set by the
tree-approximation minimum of the symmetry breaking potential! and the CS mass scale@coming
from the CS coupling parameter which has dimensions of mass in (211)-dimensional space–
time#. The two distinct mass poles may also be seen in a factorization of the Chern–Simons–Proca
equations of motion.6 A Schrödinger representation approach7 provides a simple physical picture
based on a quantum mechanical analogue which identifies the two masses precisely with the two
characteristic frequencies of the planar quantum mechanical model of charged particles moving in
both a uniform magnetic field and a harmonic potential well. In this present paper we investigate
field theoretic aspects of the CSH mechanism more deeply, presenting a detailed analysis of the
canonical quantization of spontaneously broken CS theories. In this work, we pay particular
attention to the relation between the quantized fields and their particle excitation modes and to the
structure of the Poincare´ generators as functionals of these particle excitation operators.

We have chosen to consider a non-Abelian theory in which the non-Abelian gauge symmetry
is spontaneously broken in a manner that preserves a residual non-Abelian symmetry in the broken
vacuum. This choice is motivated by the question of how a spontaneously broken CS theory
‘knows’ to quantum-mechanically protect the residual non-Abelian gauge symmetry from topo-
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logically nontrivial gauge transformations. For non-Abelian Chern–Simons theories, quantum
consistency1 requires that the CS coupling parameter takes quantized integer values, in appropriate
units. Qualitatively, this consistency condition is reminiscent of Dirac’s quantum mechanical
quantization condition for the magnetic monopole,8 but since the Chern–Simons theory is afield
theory further subtleties~such as renormalization! arise. Pisarski and Rao9 showed that, for a
Chern–Simons–Yang–Mills theory~with no matter fields or symmetry breaking!, a consistent
one-loop renormalization involves a finite additive renormalization of the CS mass, with the finite
shift depending on the gauge group and being such that the integer quantization condition is
preserved. Subsequent calculations have confirmed the conjecture9 that there are no further radia-
tive corrections to this result.10 Perturbative analyses of Abelian Chern–Simons theories subject to
spontaneous symmetry breaking confirm the topological basis of the integer quantization of the
renormalization of the CS term.11–13 This work has shown that, in the Abelian case, in which
topological arguments do not apply, the Chern–Simons mass receives a shift, in the broken
vacuum, which is not an integer, but a complicated function of the various bare mass scales.~In
Ref. 14 it is suggested that this shift should not be interpreted as a finite renormalization of the
Chern–Simons mass, but rather as an indication of the appearance of parity-violating terms in the
effective action. This reformulation of the result extends the Coleman–Hill theorem,15 concerning
the absence of loop corrections to the Chern–Simons mass, to the case of Abelian spontaneously
broken Chern–Simons theories.! In a spontaneously broken non-Abelian Chern–Simons theory,
with a completelybroken symmetry in which the invariance of the effective theory to gauge
transformations is no longer supported,13 similar behavior was found.16 More interesting is the
situation in which the non-Abelian gauge symmetry is onlypartially broken, leaving a residual
non-Abeliansymmetry in the broken phase. The presence of the non-Abelian residual symmetry
suggests that the CS coupling parameter should again be quantized, and indeed a direct perturba-
tive computation shows that the CS coupling parameter receives a quantized finite shift which
preserves the quantum consistency condition in the broken vacuum.17 An earlier calculation, by
the authors who first considered this model, incorrectly reported the opposite conclusion.18 This
work confirms the validity of the effective theory that describes the quantum fluctuations of the
field about the spontaneously broken vacuum; it motivates an investigation into the origins of the
massive propagating particle excitations of this model, and the mechanisms by which they obtain
their mass.

In this paper, we consider the canonical quantization of such a non-Abelian model, with a
partially broken symmetry leaving a residual non-Abelian symmetry in the broken phase, and
develop the underlying dynamical theory. We make explicit the representation of the operator-
valued fields in terms of excitations that correspond to observable, propagating particles in the
spontaneously broken vacuum. We formulate the model in (211)-dimensional Minkowski
space–time and for definiteness we consider an octet of SU~3! gauge fields interacting with a
triplet of scalar fields in the fundamental representation of SU~3!. The scalar fieldsF are coupled
gauge-invariantly to the gauge fields, and self-coupled through a quartic potential
V(F†F)52m2F†F1 1

2h(F
†F)2, wherem2.0 andh.0, so that, in the tree approximation, the

scalar fields have nonvanishing vacuum expectation values. The vacuum expectation values of the
three constituent fields inF are chosen so that the residual ‘‘effective’’ fields, which represent
fluctuations of these scalar fields about their tree-approximation vacuum expectation values, still
maintain an unbroken SU~2! symmetry in their coupling to the gauge fields. In the canonical
quantization of this model we construct time-dependent fields in an interaction picture that in-
cludes, in the ‘‘free’’ Hamiltonian that drives it, the interaction terms that become bilinear in fields
when the charged scalar fieldF is expanded about its constant vacuum expectation value. We use
these time-dependent interaction-picture fields to evaluate the propagators. And finally, we con-
struct the particle states that correspond to the two different mass singularities in the propagator
for this model. We express the trilinear and quartic interaction Lagrangian as a functional of these
interaction-picture fields, and obtain a set of vertices that can be used to describe the theory. In
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addressing these problems, we make use of technical developments that originated from separate
earlier work by the authors.7,19–23

In Section II, we formulate the model and describe the spontaneous symmetry breaking
process. In Section III, we construct the required Fock spaces, express the scalar and gauge fields
as superpositions of particle and ghost excitations, and implement Gauss’s law and the gauge
condition. In Section IV, we construct the interaction-picture scalar and gauge fields, and evaluate
their time-ordered vacuum expectation values in the spontaneously broken vacuum state to obtain
the propagators for this theory. In Section V, we construct the Poincare´ generators for this theory,
demonstrate the validity of the Poincare´ algebra, and evaluate the effect of Lorentz boosts on each
of the massive gluon states. Detailed forms of the interaction Lagrangian are given in an Appen-
dix.

II. FORMULATION OF THE MODEL

The Lagrangian for this model is given by

L52
1

4
Fmn
a Famn1

1

4
memnrSFmn

a Ar
a1

2

3
e fabcAm

aAn
bAr

cD
1~DmF!†~DmF!1m2F†F2

1

2
h~F†F!21Lfp1LG, ~1!

whereFmn
a designates the SU~3! gauge field strength

Fmn
a 5]mAn

a2]nAm
a22e fabcAm

bAn
c ; ~2!

we denote byFmn
a the ‘‘Abelian’’ part of the field strength,

Fmn
a 5]mAn

a2]nAm
a , ~3!

and f abc represents the SU~3! structure constants. The implied summations over repeated Latin
superscripts, such asa, b, and c, are from 1 to 8 unless otherwise specified. The covariant
derivative of the scalar tripletDmF is given by

DmF5]mF1 ielaAm
aF, ~4!

where la represents the Gell-Mann matrices which satisfy the commutation relations
@la,lb#52i f abclc. Lfp is the part of the Lagrangian that couples the gauge fields to the Faddeev–
Popov ghosts, and is given by

Lfp5 i ]ms f
a]msp

a22ie fabcAm
as f

b]msp
c1 ies f

a dU a

dxc sp
c , ~5!

wheres f
a andsp

a are the two self-adjoint operator-valued anticommuting scalar Faddeev–Popov
fields;U a is given by

Ua5 i ~12g!~^F&0
†laF82F8†la^F&0! ~6!

anddxc is the infinitesimal gauge shift that parameterizes the first-order gauge transformation of
Ua. LG is the gauge fixing term in the Lagrangian, and is given by

LG5
1

2
~12g!GaGa2@]mA

am2 ie~12g!~^F&0
†laF82F8†la^F&0!#G

a; ~7!
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Ga is the gauge-fixing field used to impose the gauge condition for the t’Hooft gauge,

@]mA
am2 ie~12g!~^F&0

†laF82F8†la^F&0!#50, ~8!

which is a covariant gauge that involves both the tree-approximation vacuum expectation value
~v.e.v.! of the scalar field̂F&0 and the fluctuation of the scalar field about that vacuum expecta-
tion valueF85F2^F&0 . The first-order variation ofL with respect toGa leads to an equation
of motion that enables us to contain the time-evolution of the interaction-picture fields entirely
within a Hilbert space in which matrix elements ofGa always vanish; that fact secures Eq.~8! as
the gauge condition for this model. The technical arrangements that permit — in fact require —
time evolution of the interaction-picture fields to be contained within a subspace in which matrix
elements ofGa vanish will be discussed in Section III.

We choose a scheme for breaking the SU~3! symmetry that preserves an SU~2! symmetry in
the effective Lagrangian. In the tree-approximation vacuum state for this effective Lagrangian, the
self-interactionV(F†F) takes on its classical minimum value for the tree-approximation v.e.v.
^F&0 . A choice for^F&0 that satisfies this requirement is

^F&05
v

A2 S 00
1
D [

v

A2
^f&0 , ~9!

wherev5(2m2/h)1/2. To analyze this model in the broken vacuum, we expand the scalar field
F in terms of its fluctuations about the v.e.v.^F&0 ,

F85F2^F&0 , ~10!

and expand the Lagrangian as

L5L01L11L2 . ~11!

HereL0 represents the ‘‘free’’ Lagrangian in which the interaction have been shut off, andL1 and
L2 represent terms that are first and second order ine, respectively. Note that there are several
coupling constants and mass scales to consider when making this expansion, and we need to be
specific about how coupling constants are ‘‘shut off’’ in takingL to its noninteracting limitL0 .
The CS coupling constantm has dimensions of mass, as doe2 ~the square of the scalar-gauge
coupling!, v2 ~the square of the magnitude of the scalar field v.e.v.!, andev. The noninteracting
limit L0 of the full LagrangianL is defined to be the limite→0 andh→0 with the ‘‘Higgs’’ mass
scaleev kept constant, and the CS mass scale unaffected. Then the noninteracting Lagrangian is

L052
1

4
Fmn
a Famn1

m

4
emnrFmn

a Ar
a1

e2v2

4
Am
aAbm^f&0

†$la,lb%^f&01u]mF8u22
m2

2
~^f&0

†F8

1F8†^f&0!
21 i

ev

A2
Am
a @~]mF8!†la^f&02^f&0

†la]mF8#

2F ]mA
am1 i

ev

A2
~12g!~^f&0

†laF82F8†la^f&0!G
3Ga1

1

2
~12g!GaGa1 i ]ms f

a]msp
a . ~12!

TheO(e) interaction Lagrangian is24
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L15eH f abcFmn
a AbmAcn2

m

3
emnr f abcAm

aAn
bAr

c22i f abcAm
as f

b]msp
c1 is f

a dUa

dxc sp
c

1
ev

2A2
Am
aAbm~F8†$la,lb%^f&01^f&0

†$la,lb%F8!

2 iAm
a @F8†la]mF82~]mF8!†laF8#2A2

m2

ev
u F8u2~^f&0

†F81F8†^f&0!J , ~13!

and theO(e2) interaction Lagrangian is

L25e2S 2 f abcf adeAm
bAdmAn

cAen2
m2

e2v2
uF8u41

1

2
Am
aAbmF8†$la,lb%F8D . ~14!

We note that the presence of the CS term in the original Lagrangian Eq.~11! introduces a new
quadratic piece;eFA in L0 and a new 3-gluon vertex piece;eAAA in L1 .

To identify the physical and unphysical fields in the broken vacuum, we first expressF8 in
terms ofreal scalar fields

F85
1

A2 S i j41j5

i j61j7

2 i j81c
D . ~15!

Then, using the explicit form given in Eq.~9! of the v.e.v.^f&0 , together with the Gell-Mann
matrix anticommutation relations

$la,lb%5 4
3d

ab112dabclc, ~16!

we write the free LagrangianL0 as

L052
1

4
Fmn
a Famn1

m

4
emnrFmn

a Ar
a1

1

2 (
a54

8

M ~a!
2 Am

aAam1 (
a54

8

M ~a!A
am]mja

1
1

2 (
a54

8

]mja]mja1
1

2
]mc]mc2m2c21

1

2
~12g!GaGa2]mA

amGa

1~12g! (
a54

8

M ~a!j
aGa1 i ]ms f

a]msp
a2 i ~12g! (

a54

8

M ~a!
2 s f

asp
a . ~17!

Here the symmetry breaking mass scalesM (a) are given by

M ~a!55
0, a51,2,3,

MD5ev, a54,5,6,7,

MS5
2

A3
ev, a58.

~18!

From Eq. ~17!, we recognizec as the Higgs scalar field, with massA2umu, and ja

(a54, . . . ,8) as themassless unphysical scalar fields. Furthermore, the gauge fieldsAm
a
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(a51,2,3) have a quadratic Lagrangian of the Maxwell–Chern–Simons form, while the gauge
fieldsAm

a (a54, . . . ,8) have an additional Proca-like quadratic term with mass scale parameters
M (a) as given in Eq.~18!.

The interaction LagrangiansL1 andL2 can also be expanded in terms of the real fields in Eq.
~15! and the symmetry breaking mass scales in Eq.~18!; the resulting expansions are recorded in
the Appendix. It is important to observe that~as expected! the gauge fieldAm

a (a51,2,3) form an
SU~2! triplet corresponding to the residual SU~2! symmetry of the broken vacuum. It proves
convenient to group the real scalar fields into SU~2! ‘‘isospinors:’’

C15
1

A2
S i j41j5

i j61j7
D , ~19!

C25
1

A2
S i j41j5

c2 i j8 D , ~20!

and

C35
1

A2
S i j61j7

c2 i j8 D . ~21!

With this notation, the fieldsAm
a (a51,2,3) couple toC1 in an SU~2!-invariant manner, while the

two gauge field doublets (Am
4 ,Am

5 ) and (Am
6 ,Am

7 ) couple toC2 andC3 so that the part of the
isospin invariance that corresponds to rotation in thei51,2 plane is preserved; but this latter
interaction is not invariant to rotation in the entire isospin space. The remaining gauge fieldAm

8 is
an SU~2! singlet.

In earlier work on Abelian theories with Chern–Simons interactions,19–21 we implemented
Gauss’s law and developed a canonical formulation for the entire Lagrangian, with all interactions
included. In a non-Abelian gauge theory, such a program becomes much more problematical. We
will therefore implement Gauss’s law only for the partial theory described byL0 . In this case,
however, because of the spontaneously broken symmetry, even the AbelianL0 contains part of the
interaction — not only the part of theF4 self-interaction implicit in the spontaneously broken
vacuum state, but also the part of the gauge-invariant coupling of the gauge field to the ‘‘charged’’
scalar F that remains bilinear in operator-valued fields afterF has been expressed as
F5F81^F&0 . Although this part of the interaction term is proportional toe, it does not vanish
in the ‘‘interaction-free’’ limit becausee combines withh21/2 to become one of the masses that
are kept constant in theL→L0 limit. Implementing Gauss’s law and the gauge condition, and
developing the canonical formulation of the part of the theory described byL0 , will enable us to
construct the Fock space for the particle states observed in the broken vacuum. In the course of
this work, we will demonstrate the process by which the masses that stem from the Higgs–Kibble
effect3 combine with the topological mass to form the masses of the propagating modes of the
gauge field in this model.L0 , defined as we have specified here, is the Lagrangian that drives the
interaction-picture fields when a Higgs–Kibble effect occurs. The corresponding ‘‘free’’ Hamil-
tonianH0 , which is thee→0 limit of H obtained by this same limiting process, accounts for the
particle spectrum of this model. OnceL0 andH0 have been identified, and Gauss’s law and the
covariant gauge condition have been imposed, the resulting apparatus can be used to develop a
Fock space as well as propagators and vertices for evaluating theS-matrix elements and renor-
malization constants for the full theory, withL1 andL2 included.

The Euler–Lagrange equations determined byL0 are
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]mF
anm2

1

2
memrnFmr

a 2]nGa5M ~a!
2 Aan1]naa, ~22!

]mA
am2~12g!aa5~12g!Ga, ~23!

]m]mc12m2c50, ~24!

and

]m]mja1M ~a!]mA
am5~12g!M ~a!G

a, ~25!

whereaa5M (a)j
a,

]m]ms f
a1~12g!M ~a!

2 s f
a50, ~26!

and

]m]msp
a1~12g!M ~a!

2 sp
a50. ~27!

From these equations, we get

]m]mGa1~12g!M ~a!
2 Ga50. ~28!

Equation ~22! represents the Maxwell–Ampere law~for n51,2) as well as Gauss’s law~for
n50); however, as is to be expected in covariant gauges, this equation differs from the classical
form of Maxwell–Ampere and Gauss’s laws by the gauge-fixing term — in this case,]nGa.
Implementation of the correct form of these laws will have the effect of defining a subspace for the
dynamical time evolution of state vectors in which the gauge-fixing term will have vanishing
matrix elements. Equation~23! will be used to impose the covariant gauge condition:g50
corresponds to the Feynman, andg51 to the Landau version of the covariant~t’Hooft! gauge.

To quantize this theory, we need to express the Hamiltonian in terms of the canonical mo-
menta given byPam5]L0 /](]0Am

a ). These canonical momenta are:

Pam5Fam01
1

2
me0mnAn

a2g0mGa, ~29!

Pc5]0c, ~30!

Pj
a5]0j

a1M ~a!A0
a , ~31!

P f
a5 i ]0sp

a , ~32!

and

Pp
a52 i ]0s f

a ; ~33!

P f
a andPp

a are the conjugate momenta to the fieldss f
a andsp

a , respectively.
The only equation that does not contain any time-derivatives of fields~and therefore is a

constraint! is Pa052Ga. This constraint is manifestly consistent with canonical~Poisson! equal-
time commutation rules, which we impose. The equal-time commutation rules~ETCR! are:

@Al
a~x!,Pn

b~y!#5 id lnd
abd~x2y!, ~34!
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@A0
a~x!,Gb~y!#52 idabd~x2y!, ~35!

@ja~x!,Pj
b~y!#5 idabd~x2y!, ~36!

@c~x!,Pc~y!#5 id~x2y!, ~37!

and all other commutators among these fields are zero. The anticommutation rules for the
Faddeev–Popov ghost fields are

$s f
a~x!,P f

b~y!%5 idabd~x2y!, ~38!

$sp
a~x!,Pp

b~y!%5 idabd~x2y!, ~39!

and all other combinations anticommute.
The Hamiltonian densityH0 , determined byL0 and by the canonical momenta, will be

expressed as

H05 (
a51

8

Ha1Hc1 (
a51

8

Hfp
a ; ~40!

for a51,2,3:

Ha5
1

2
P l

aP l
a1

1

4
Fln
a Fln

a 1
1

8
m2An

aAn
a1

1

2
me lnAl

aPn
a

1A0
aS ] lP l

a2
1

4
me lnFln

a D1Ga] lAl
a2

1

2
~12g!GaGa; ~41!

for a54,5,6,7,8:

Ha5
1

2
P l

aP l
a1

1

4
Fln
a Fln

a 1
1

2 F14m21M ~a!
2 GAn

aAn
a1

1

2
me lnAl

aPn
a

1A0
aF] lP l

a2
1

4
me lnFln

a 2M ~a!Pj
aG1Ga@] lAl

a2~12g!M ~a!j
a#2M ~a!Al

a] lj
a

2
1

2
~12g!GaGa1

1

2
Pj

aPj
a1

1

2
] lj

a] lj
a; ~42!

the other parts ofH0 are

Hc5
1

2
PcPc1

1

2
] lc] lc1m2c2; ~43!

and

Hfp
a 5 iPp

aP f
a1 i ] ls f

a] lsp
a1 i ~12g!M ~a!

2 s f
asp

a . ~44!

The Hamiltonian,H05*dxH0(x), is the ‘‘free’’ kinetic energy limit of the entire Hamiltonian,
with the proviso that in this model the free kinetic energy limit includes the part of the interaction
term in which the constant tree-approximation v.e.v. ofF combines with the chargee to form a
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new constant~dimensionally a mass! whose operator-valued coefficient is bilinear in fields. This
part of the interaction is not shut off in theH→H0 limit, and is absorbed into a generalized, more
encompassing kinetic energy operatorH0 .

III. PARTICLE STATES AND GAUSS’S LAW

Equation~22!, whenn50 and the canonical momenta replace the time derivatives of fields,
has the form25

] lP l
a1

1

2
me ln] lAn

a2M ~a!Pj
a5]0Ga. ~45!

The right-hand side of Eq.~45! would have to vanish to express Gauss’s law. But since
]0Ga50 is not one of the Euler–Lagrange equations, we therefore have to take some further
measures to implement Gauss’s law. For later reference, we will define the ‘‘Gauss’s law opera-
tor’’ Ga as

Ga5] lP l
a1

1

2
me ln] lAn

a2M ~a!Pj
a . ~46!

In order to describe the particle states of this theory, we must construct a ‘‘suitable’’ repre-
sentation for the operator-valued fields in terms of creation and annihilation operators for the
observable propagating particles described by this model — and, in the case of gauge theories,
generally also in terms of additional ‘ghost’ excitations. The first requirement for such a suitable
representation is that it must be consistent with the equal-time commutation rules given in Eqs.
~34!–~37!. This requirement, however, though necessary, is not sufficient to provide for a consis-
tent theory. Another requirement that a representation must satisfy in order to be suitable, is that
the excitation modes for propagating, observable particles must appear in the Hamiltonian
H0 — the Hamiltonian that time-translates the interaction picture fields — in such a manner that
one-particle states or noninteracting multiparticle states are eigenstates ofH0 , with eigenvalues
Ek5Am21k2 for one-particle states of massm and momentumk, and with eigenvalues
( i51
n Ek( i ) for noninteractingn-particle states. Clearly, these states must also remain invariant to

the temporal evolution mediated by exp(2iH0t), except for time-dependent phase factors,
exp(2iEkt) for one-particle, and exp$(i51

n @2iEk(i)t#% for noninteractingn-particle states. In par-
ticular, it is crucial that time-translation by exp(2iH0t) does not cause particle states to penetrate
into the part of the Hilbert space in which probability measure is absorbed by ghost states at the
expense of the observable propagating states. Once a representation in terms of particle modes —
and ghosts, if required — has been constructed and demonstrated to lead to a consistent form of
H0 , that fact confirms the identification of the particle modes: their existence, their masses, their
stability to time-translation as noninteracting states, and ultimately through the use of the other
Poincare´ operators, their other kinematic properties as well. In this way, the canonical quantization
procedure formally demonstrates the existence of propagating particle modes that, in the absence
of explicit representations of the gauge fields as superpositions of creation and annihilation op-
erators, can only be inferred indirectly on the basis of equations of motion and on the supposition
that propagator poles are not ‘‘spurious,’’ but reflect the existence of propagating particle modes.

Although representations in terms of particle excitation operators for many familiar operator-
valued fields — scalar Klein–Gordon fields or spinor Dirac fields, for example — are common-
place and easily obtained, representations for the fields that appear in this model are much less
trivial to construct. The masses of the gauge field excitations in this model combine the topologi-
cal mass induced by the Chern–Simons term with the effect of the v.e.v. of the scalar field, that
causes parts of the cubic and quartic terms in the Lagrangian to mimic mass terms. As a result, we
expect the observable particle modes of the combined scalar and gauge fields to consist of Higgs
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scalars as well as gauge field excitations — massive gluons with both topological mass and mass
from the spontaneously broken symmetry. The eight gauge fields in this model fall into three
classes, and should give rise to particle excitations with different mass: one SU~2! triplet of gauge
fields withM (a)50 and excitation modes that have only topological mass; two doublets of gauge
fields withM (a)5MD excitations whose mass depends on both the topological mass andMD ; and
a singlet similar to the doublet, but withMD replaced byMS. The pole structure of the
propagator4,5 and earlier work on related systems6,7 suggest that the gauge fields in the doublet and
singlet sectors each have two different massive gluon states. The gauge fields in the unbroken
SU~2! triplet have just a single gluon excitation mode. We will make an initialansatz that
incorporates this set of particle states into the representation of the gauge fields. If more particle
states are needed than the ones included in ouransatz,or if an entirely different set is required, it
will be impossible to construct a suitable representation using these excitation modes. If fewer
particle modes are sufficient, then it will become evident that a mode is redundant. Mistakes in the
tentative choices of particle modes will therefore be self-correcting. Conversely, a consistent and
suitable representation of the gauge fields will confirm that the identification of the particle exci-
tations is correct.

It is apparent that the observable, propagating gluon modes listed above will not suffice to
representall the commutation rules included in Eqs.~34! and~35!. Further modes, in the form of
ghost excitations, are required. These ghost modes are identical to the ones that appear in Abelian
Maxwell–Chern–Simons theory,19–21 and that are also required in (311)-dimensional QED
~QED4) in covariant and axial~except for the spatial axial! gauges.26 The excitation operators for
the massive gluons are the annihilation operatorac(k) and its adjoint creation operatorac†(k),
which obey the commutation rule@ac(k),ad†(q)#5dcddkq . For the gauge fields in the doublet
and singlet sectors, the second observable, propagating mode will be designated by the annihila-
tion operatorbc(k) and its adjoint creation operatorbc†(k), which obey the commutation rule
@bc(k),bd†(q)#5dcddkq .

Ghost excitation operators exist in pairs. In this work, we will use the ghost annihilation
operatorsaQ

c (k) andaR
c (k) and their respective adjoint creation operatorsaQ

c !(k) andaR
c !(k) in

the representations of the gauge field. Ghost states have zero norm, but the single-particle ghost
statesaQ

c !(k)u0& andaR
c !(k)u0& have a nonvanishing inner product; similar nonvanishing inner

products also arise forn-particle states with equal numbers ofQ andR ghosts. These properties of
the ghost states are implemented by the commutator algebra

@aQ
c ~k!,aR

d !~q!#5@aR
c ~k!,aQ

d !~q!#5dcddkq ~47!

and

@aQ
c ~k!,aQ

d !~q!#5@aR
c ~k!,aR

d !~q!#50, ~48!

which, in turn, imply that the unit operator in the one-particle ghost~OPG! sector is

1OPG5(
k

@aQ
c !~k!u0&^0uaR

c ~k!1aR
c !~k!u0&^0uaQ

c ~k!#; ~49!

the obvious generalization of Eq.~49! applies in then-particle sectors. The ghost excitations
enable us to satisfy the equal-time commutation relations, Eqs.~34! and ~35!.

The requirements that Gauss’s law (Gc50) be implemented, and that the time evolution
mediated by exp(2iH0t) keep probability measure contained within the subspace spanned by
propagating, observable particle modes, have the following further consequences: The Gauss’s
law operatorGc(x) must be restricted to a linear combination of ghost operators for a single kind
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of ghost. We will therefore expressGc(x) as a superposition ofaQc (k) andaQc !(k) operators only.
Furthermore, the gauge-fixing field,Gc, must be expressed as a superposition of the same
aQ
c (k) andaQ

c !(k) ghost operators as isGc(x).
We have found the required suitable representation of the fields by a combination of unitary

transformations similar to the ones used in previous work19–21and of ‘‘trial fields’’ with arbitrary
parameters which we then adjusted to arrive at ‘‘suitable’’ field representations. For example, we
used the trial field

Al
c~x!5(

k
@a1~k!e lnkn1a2~k!kl #@a

c~k!eik–x1ac†~k!e2 ik–x#1(
k
i @a3~k!e lnkn1a4~k!kl #

3@ac~k!eik–x2ac†~k!e2 ik–x#1(
k

@a5~k!e lnkn1a6~k!kl #@b
c~k!eik–x1bc†~k!e2 ik–x#

1(
k
i @a7~k!e lnkn1a8~k!kl #@b

c~k!eik–x2bc†~k!e2 ik–x#1(
k

@a9~k!e lnkn1a10~k!kl #

3@aQ
c ~k!eik–x1aQ

c !~k!e2 ik–x#1(
k
i @a11~k!e lnkn1a12~k!kl #

3@aQ
c ~k!eik–x2aQ

c !~k!e2 ik–x#1(
k

@a13~k!e lnkn1a14~k!kl #@aR
c ~k!eik–x

1aR
c !~k!e2 ik–x#1(

k
i @a15~k!e lnkn1a16~k!kl #@aR

c ~k!eik–x2aR
c !~k!e2 ik–x#, ~50!

wherea1(k), . . . ,a16(k) are arbitrary real parameters. Similar substitutions were made for the
other fields in the model. The previously specified requirements of ‘‘suitability’’ were then trans-
lated into a set of equations which was solved using a customized operator algebra manipulation
package in MATHEMATICA.27 The resulting gauge field representations for the SU~2!-
symmetric triplet (c51,2,3) that has topological mass only are

Al
c~x!5(

k

8ike lnkn
m5/2 @aQ

c ~k!eik–x2aQ
c !~k!e2 ik–x#1~12g!(

k

2kl
m3/2@aQ

c ~k!eik–x1aQ
c !~k!e2 ik–x#

2(
k

4k2kl
m7/2 @aQ

c ~k!eik–x1aQ
c !~k!e2 ik–x#1(

k

m3/2kl
16k3

@aR
c ~k!eik–x1aR

c !~k!e2 ik–x#

2(
k

Av~k!kl

A2mk
@ac~k!eik–x1ac†~k!e2 ik–x#1(

k

i e lnkn

kA2v~k!
@ac~k!eik–x2ac†~k!e2 ik–x#,

~51!

P l
c~x!52(

k

4ikkl
m3/2 @aQ

c ~k!eik–x2aQ
c !~k!e2 ik–x#1~12g!(

k

e lnkn

Am
@aQ

c ~k!eik–x1aQ
c !~k!e2 ik–x#

1(
k

6k2e lnkn
m5/2 @aQ

c ~k!eik–x1aQ
c !~k!e2 ik–x#1(

k

m5/2e lnkn
32k3

@aR
c ~k!eik–x1aR

c !~k!e2 ik–x#

1(
k

imkl

23/2kAv~k!
@ac~k!eik–x2ac†~k!e2 ik–x#1(

k

Av~k!e lnkn
23/2k

3@ac~k!eik–x1ac†~k!e2 ik–x#, ~52!
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c~x!52(
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k
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k
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~53!

and

Gc~x!5(
k

8ik2

m3/2 @aQ
c ~k!eik–x2aQ

c !~k!e2 ik–x#, ~54!

wherev(k)5Am21k2; and for the doublet and singlet sectors with combined topological and
‘‘Higgs–Kibble’’ mass (c54, . . . ,8), thefields are represented by

Al
c~x!52(
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A vc~k!
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kl
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A0
c~x!52(

k

k

A2vc~k!mc~mc1m̄c!
@ac~k!eik•x1ac†~k!e2 ik•x#
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k
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2(
k

4k3
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3/2

@aQ
c ~k!eik•x1aQ

c !~k!e2 ik•x#
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k

kc~k!~mc2m̄c!
3/2

16k3
@aR

c ~k!eik•x1aR
c !~k!e2 ik•x#, ~57!

and

Gc~x!5(
k

8ik3

kc~k!~mc2m̄c!
3/2@aQ

c ~k!eik•x2aQ
c !~k!e2 ik•x#. ~58!

The unphysical scalar fields forc54, . . . ,8 are

jc~x!52(
k

4ik3

kc~k!~mcm̄c!
1/2~mc2m̄c!

3/2
@aQ

c ~k!eik•x2aQ
c !~k!e2 ik•x#

2(
k

i ~mcm̄c!
1/2~mc2m̄c!

3/2

16k3
@aR

c ~k!eik•x2aR
c !~k!e2 ik•x# ~59!

and their canonically conjugate momenta

Pj
c~x!52(

k
kA m̄c

2vc~k!~mc1m̄c!
@ac~k!eik•x1ac†~k!e2 ik•x#

1(
k
ikA mc

2v̄c~k!~mc1m̄c!
@bc~k!eik•x2bc†~k!e2 ik•x#

2(
k

8k3

~mcm̄c!
1/2~mc2m̄c!

3/2
@aQ

c ~k!eik•x1aQ
c !~k!e2 ik•x#, ~60!

wherevc(k)5Amc
21k2, v̄c(k)5Am̄c

21k2, and

kc~k!5Ak21~12g!mcm̄c. ~61!

mc andm̄c are the masses ofa
c(k) andbc(k) modes, respectively. They are combinations of the

Chern–Simons topological massm and of the Higgs–Kibble massmc ; their values are

mc5
A4Mc

21m21m

2
~62!

and
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m̄c5
A4Mc

21m22m

2
. ~63!

The massesMc are given by Eq.~18!. The Higgs fieldc is treated as a ‘‘standard’’ Hermitian
scalar field;c and its canonical momentumPc and represented as

c~x!5(
k

1

A2V~k!
@a~k!eik•x1a†~k!e2 ik•x# ~64!

and

Pc~x!52(
k
iAV~k!

2
@a~k!eik•x2a†~k!e2 ik•x#, ~65!

whereV(k) is given by

V~k!5A2m21k2. ~66!

The Faddeev–Popov ghost fields are represented as28

s f
c~x!5(

k

1

A2kc~k!
@gf

c~k!eik•x1gf
c !~k!e2 ik•x#, ~67!

sp
c~x!52(

k

i

A2kc~k!
@gp

c~k!eik•x2gp
c !~k!e2 ik•x#, ~68!

P f
c~x!5(

k
iAkc~k!

2
@gp

c~k!eik•x1gp
c !~k!e2 ik•x#, ~69!

and

Pp
c~x!5(

k
Akc~k!

2
@gf

c~k!eik•x2gf
c !~k!e2 ik•x#, ~70!

wheregf
c(k), gp

c(k), gf
c !(k), andgp

c !(k) obey the anticommutation rules

$gf
a~k!,gp

b !~q!%5$gp
a~k!,gf

b !~q!%5dabdkq ~71!

and

$gf
a~k!,gf

b !~q!%5$gp
a~k!,gp

b !~q!%50. ~72!

When Eqs.~55!–~70! are substituted into the HamiltonianH0 given in Eq.~40!, we obtain the
expression

H05 (
c51

8

Hc1Hc1 (
c51

8

H fp
c , ~73!

whereHc is given by
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Hc5(
k

v~k!ac†~k!ac~k!1(
k
k@aR

c !~k!aQ
c ~k!1aQ

c !~k!aR
c ~k!#

2~12g!(
k

64k4

m3 aQ
c !~k!aQ

c ~k! ~74!

for the c51,2,3 sector of unbroken SU~2! gluon triplet, and

Hc5(
k

@vc~k!ac†~k!ac~k!1v̄c~k!bc†~k!bc~k!#

1(
k

kc~k!@aR
c !~k!aQ

c ~k!1aQ
c !~k!aR

c ~k!#, ~75!

for c54, . . . ,8. For thedoublet (c54,5,6,7) and singlet (c58) sectors,mc andm̄c are given by
Eqs.~62! and~63!, respectively; forc51,2,3 there is only a single gluon mode and the massm is
the topological mass. The Higgs HamiltonianHc is given by

Hc5(
k

V~k!a†~k!a~k!; ~76!

and the Faddeev–Popov ghost part of the HamiltonianH fp
c , by

H fp
c 5(

k
kc~k!@gf

c !~k!gp
c~k!1gp

c !~k!gf
c~k!#. ~77!

Inspection confirms thatH0 is diagonal in the particle number for the observable, propagating
particle modes~the massive gluons and the Higgs excitations! of this model and that to this extent
the representations of the gauge fields have turned out to be ‘‘suitable.’’ Explicit construction of
a Fock space for this model will demonstrate that the ghost components of the Hamiltonian also
satisfy the suitability requirement. We can construct a Fock space$uh&% for this model, on the
foundation of the perturbative vacuumu0& which is annihilated by all the annihilation operators:
ac(k), bc(k), aQ

c (k) and aR
c (k), as well asa(k) and the Faddeev–Popov ghosts,gf

c(k) and
gp
c(k). In this construction, we make use of techniques developed in earlier work.19,21,26,29This
perturbative Fock space includes all multiparticle statesuN& consisting of observable, propagating
particles ~Higgs particles and massive gluons! that are created whena†(k), ac†(k), and
bc†(k), respectively, act onu0&. All such statesuN& are eigenstates ofH0 . States, such as
aQ
c !(k)uN& or aQ

c !(k)aQ
d !(q)uN&, in which a single variety of ghost creation operator acts on one

of these multiparticle statesuN& have zero norm; they have no probability of being observed, and
have vanishing expectation values of energy, momentum, as well as all other observables. We will
designate as$un&% that subspace of$uh&% which consists of all statesuN& and of all states in which
a chain ofaQ

c !(k) operators — butno aR
c !(k) operators — act onuN&. States in which both

varieties of ghosts appear simultaneously, such asaQ
c !(k)aR

d !(q)uN&, are in the Fock space
$uh&%, but not in$un&%; because these states have a nonvanishing norm and contain ghosts, they are
not probabilistically interpretable. Their appearance in the course of time evolution signals a
defect in the theory. Since the statesuN& constitute the set of states in$un&% from which all zero
norm states~the ones with ghost constituents! have been excised, we will sometimes speak of the
set of uN& as a quotient space of observable propagating states. The time-evolution operator
exp(2iH0t) has the important property that, if it acts on a state vectoruni& in $un&%, it can only
propagate it within$un&%. We observe that the only parts ofH0 that could possibly cause a state
vector to leave the subspace$un&%, are those that contain eitheraR

c !(k) or aR
c (k) operators. The

only part of H0 that has that feature contains the combination of operators
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Gc5aR
c !(k)aQ

c (k)1aQ
c !(k)aR

c (k). WhenaR
c (k) acts on a state vectoruni&, it either annihilates the

vacuum or annihilates one of theaQ
c !(k) operators in$un&%. In the latter case,Gc replaces the

annihilatedaQ
c !(k) operator with an identical one. WhenaQ

c (k) acts on a state vectoruni&, it
always annihilates it. It is therefore impossible forGc to transform a state vector in$un&% to one
external to$un&% in which anaR

c !(k) operator acts onuni&. The only effect ofGc is to translate
uni& states within$un&%. These features of the HamiltonianH0 confirm that Eqs.~51!–~60! are
suitable representations of the gauge fields.H0 counts the number of massive gluons of momen-
tum k belonging to the unbroken SU~2! sector of the original SU~3! system, and assigns an energy
v(k) to each of them. It similarly counts the two varieties of massive gluons in the doublet and
singlet sectors, and assigns the energyvc andv̄c(k) to thea

c(k) andbc(k) varieties respectively.
And lastly, H0 counts the number of Higgs particles of massA2m and assigns the energy
A2m21k2 to each. Beyond that, the form ofH0 guarantees that any state vector initially in
$un&% is propagated by exp(2iH0t) entirely within $un&%.

We next turn to the implementation of Gauss’s law and the gauge condition. We have previ-
ously noted in Eqs.~45!–~46! that Gauss’s law,Ga(x)50, is not a consequence of the Euler–
Lagrange equations, and that further analysis is required to demonstrate that it is properly imple-
mented. We further observe that, when Eqs.~51!–~70! are substituted into Eq.~46!, Ga turns out
to be a linear combination of only those ghost excitations that can live in the subspace
$un&% — aQ

a (k) andaQ
a !(k). All other excitation operators —aR

a(k) andaR
a !(k), and the annihi-

lation and creation operators for both varieties of propagating particles,ac(k) andbc(k) as well as
ac†(k) andbc†(k), respectively — cancel inGa. The explicit expression forGa obtained from this
substitution is

Ga~x!5(
k

8k3

m3/2@aQ
a ~k!eik•x1aQ

a !~k!e2 ik•x#. ~78!

The implementation of Gauss’s law is an immediate consequence of this expression forGa. A state
vector that describes an observable state is one of theuN& states in the quotient space discussed
earlier. The time evolution generated by exp(2iH0t) has previously been shown to keep any state
vector that initially was anuN& state contained in the subspace$un&%. And the Gauss’s law
operatorGa, as well as any other operator that is a linear combination ofaQ

a (k) and aQ
a !(k)

operators, must vanish in$un&%. These facts provide for the permanent validity of Gauss’s law as
long as the state vector representing the system is initially one of theuN& states — even a state in
$un&% will suffice — and provided that exp(2iH0t) is the time-evolution operator for the system.
Similarly, Gc is also represented as a superposition ofaQ

c (k) andaQ
c !(k) ghost excitation opera-

tors only, so that̂nbuGcuna&50 for the same reason that^nbuGcuna&50. Equation~23! therefore
shows that in the subspace$un&%, the t’Hooft gauge condition,]mA

am2(12g)aa50, holds. We
thus have shown not only that the time-displacement operator exp(2iH0t) keeps state vectors
permanently within the subspace$un&%, but that it is also precisely in this subspace that Gauss’s
law and the gauge condition are permanently implemented.

It is apparent that the explicit representations of the fields we have given in Eqs.~55!–~60! are
instrumental in obtaining the results we have demonstrated above. But the confirmation of the
particle mode content of these fields that the self-consistency of this formulation provides is not
weakened by its dependence on an explicit representation of the fields. A representation in terms
of creation and annihilation operators, and the choice of a Hilbert space in which to embed the
formalism — in this case the Fock spaces$un&% and$uh&% — are inevitably important parts of the
axiomatic structure of the theory. And it is a significant fact that a representation of the operator-
valued fields and a Fock space have been found that permit a consistent interpretation ofH0 as a
kinetic energy operator for a system of noninteracting particles in a new vacuum state, even
though part of the interaction described byL is included inH0 . Moreover, a Fock space has been
constructed within whichH0 time displaces state vectors so that unitarity, Gauss’s law, and the
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gauge condition are all permanently guaranteed. It should be noted that whenall interactions are
included in acompleteHamiltonianH, these conditions no longer apply. Under the influence of
the time-evolution operator exp(2iHt), state vectors ‘‘leak out’’ of$un&%, and probabilistically
uninterpretable state vectors that contain combination of ghosts, for exampleaQ

c !(k)aR
d !(q)uN&,

develop. Combinations of Faddeev–Popov ghosts are then necessary to compensate for such
combinations ofQ andR ghosts,28 and loops of Faddeev–Popov ghost play an important role in
maintaining the unitarity of the theory. One reason for the interpretability of this model is that the
‘‘interaction-free’’ limit we have described — the limit ase→0 andh→0 while e2/h remains
constant — leads to an essentially Abelian theory. The fact that@Ga(x),Gb(y)#50 confirms that
observation. In a non-Abelian theory this commutator would not vanish, but would regenerate the
Gauss’s law operatorGc(x) in a pattern determined by the structure constants of the corresponding
Lie group. Because of the Abelian nature of this limiting form of the theory, the Faddeev–Popov
ghosts are not required in this stage of the work, and have not been included in the Fock space
$uh&% or $un&%.

The more general question that pertains to the containment of the particle modes of the
Heisenberg fields — i.e., the fields in the fully interacting theory — in a suitably defined subspace
within which unitarity is preserved, is beyond our scope in this paper. In the simpler case of an
Abelian gauge theory with a spontaneously broken gauge symmetry, the unitarity of the fully
interacting theory has been resolved in earlier work.22 In the case of non-Abelian gauge theories in
axial gauges, in which Faddeev–Popov ghosts are not required, this demonstration has also been
given.30,31 The demonstration of unitarity of theS-matrix for Yang–Mills theory in covariant
gauges has also been discussed elsewhere.28 For non-Abelian theories in covariant gauges the
demonstration of unitarity demands extensive algebraic manipulations, and is not pertinent to the
main point of this work — the identification of the particle modes generated by the spontaneous
breaking of the gauge theory of this model.

IV. THE PERTURBATIVE THEORY

The propagator for the gauge field is given by

Dmn~x1 ,x2!5^0uT@Am~x1!,An~x2!#u0&, ~79!

whereT designates time ordering,Am(x) is the interaction-picture field

Am~x!5eiH0tAm~x!e2 iH0t, ~80!

Am(x) is the Schro¨dinger picture field, andu0& is the vacuum state of the$un&% space. Similarly,
the propagator for an unphysical scalarj(x) is

Dj~x1 ,x2!5^0uT@j~x1!,j~x2!#u0&, ~81!

and, for the Higgs field,

Dc~x1 ,x2!5^0uT@c~x1!,c~x2!#u0&. ~82!

There are other propagators in this theory, but they vanish forg51 ~Landau gauge! which we use
in our work, and therefore are not of primary interest to us. We find that the relevant interaction-
picture fields forc51,2,3 are
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and
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k
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for c54, . . . ,8, they are

Al
c~x!52(

k
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kl
k
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i e lnkn
k
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ik l
k

@bc~k!eik•x2 i v̄c~k!t2bc†~k!e2 ik•x1 i v̄c~k!t#

2(
k
A m̄c

2v̄c~k!~mc1m̄c!

e lnkn
k

@bc~k!eik•x2 i v̄c~k!t1bc†~k!e2 ik•x1 i v̄c~k!t#

2(
k

4k3kl

kc~k!mcm̄c~mc2m̄c!
3/2

@aQ
c ~k!eik•x2 ikc~k!t1aQ

c !~k!e2 ik•x1 ikc~k!t#

1(
k

~mc2m̄c!
3/2kl

16k3
@aR

c ~k!eik•x2 ikc~k!t1aR
c !~k!e2 ik•x1 ikc~k!t#, ~85!
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A0
c~x!52(

k

k

A2vc~k!mc~mc1m̄c!
@ac~k!eik•x2 ivc~k!t1ac†~k!e2 ik•x1 ivc~k!t#

1(
k

ik

A2v̄c~k!m̄c~mc1m̄c!
@bc~k!eik•x2 i v̄c~k!t2bc†~k!e2 ik•x1 i v̄c~k!t#

2(
k

4k3

mcm̄c~mc2m̄c!
3/2

@aQ
c ~k!eik•x2 ikc~k!t1aQ

c !~k!e2 ik•x1 ikc~k!t#

1(
k

kc~k!~mc2m̄c!
3/2

16k3
@aR

c ~k!eik•x2 ikc~k!t1aR
c !~k!e2 ik•x2 ikc~k!t#, ~86!

jc~x!52(
k

4ik3

kc~k!~mcm̄c!
1/2~mc2m̄c!

3/2
@aQ

c ~k!eik•x2 ikc~k!t2aQ
c !~k!e2 ik•x1 ikc~k!t#

2(
k

i ~mcm̄c!
1/2~mc2m̄c!

3/2

16k3
@aR

c ~k!eik•x2 ikc~k!t2aR
c !~k!e2 ik•x1 ikc~k!t#, ~87!

and

c~x!5(
k

1

A2V~k!
@a~k!eik•x2 iV~k!t1a†~k!e2 ik•x1 iV~k!t#. ~88!

The Faddeev–Popov ghost fields are

s f
c~x!5(

k

1

A2kc~k!
@gf

c~k!eik•x2 ikc~k!t2gf
c !~k!e2 ik•x1 ikc~k!t# ~89!

and

sp
c~x!5(

k

i

A2kc~k!
@gp

c~k!eik•x2 ikc~k!t2gp
c !~k!e2 ik•x1 ikc~k!t#. ~90!

The propagators for the gauge fields can be expressed as

Dmn
ab~x1 ,x2!52 idabE d3k

~2p!3
Dmn

~a!~k!e2 ika~x12x2!a; ~91!

for a51,2,3:

Dmn
~a!~k!5~12g!

kmkn

~kaka1 i e!2
2

kmkn

~kaka1 i e!~kaka2m21 i e!

1
gmn

kaka2m21 i e
1

imemnlk
l

~kaka1 i e!~kaka2m21 i e!
; ~92!

and fora54, . . . ,8:
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Dmn
~a!~k!5

~kaka2mam̄a!gmn

~kaka2ma
21 i e!~kaka2m̄a

21 i e!
1

i ~ma2m̄a!emnrk
r

~kaka2ma
21 i e!~kaka2m̄a

21 i e!

2
g~kaka2mam̄akmkn

@kaka2~12g!mam̄a1 i e#~kaka2ma
21 i e!~kaka2m̄a

21 i e!

2
~12g!~ma2m̄a

2kmkn

@kaka2~12g!mam̄a1 i e#~kaka2ma
21 i e!~kaka2m̄a

21 i e!
. ~93!

These expressions agree with the gauge field propagators reported in Ref. 9 fora51,2,3 and with
Refs. 4, 5, and 18 fora54, . . . ,8. These propagators were obtained by inverting the quadratic
part of the gauge-fixed Lagrangian. The other propagators are given in terms of the Fourier
integral

D~x1 ,x2!52 i E d3k

~2p!3
D~k2!e2 ika~x12x2!a, ~94!

where

Dc~k2!5
21

kaka22m21 i e
, ~95!

Dj
~a!~k2!5

2dab

kaka2~12g!mam̄a1 i e
, ~96!

and

D fp
~a!~k2!5

2dab

kaka2~12g!mam̄a1 i e
. ~97!

In a canonical theory, the vertices are dictated by the interaction HamiltonianH int . Since, in
this model, time derivatives of operator-valued fields appear in the interaction Lagrangian as well
as in L0 , H int will differ from 2*dx(L11L2). The resulting vertices will be determined by
H int , and the propagators will consist of vacuum expectation values of the time-ordered fields that
appear inH int . In expanding theS-matrix for scattering from an initial stateu i & to a final state
u f &,

Sf i5^ f uTexpS 2 i E dt eiH0tH inte
2 iH0t D u i &, ~98!

by using the Wick theorem,32 we will sometimes encounter time-ordered products of fields and, at
other times, time-ordered products of space–time derivatives of fields. When time derivatives of
fields appear as arguments of a time-ordering operation, we will replace the time-ordering operator
T with the ‘‘T-star ordering’’ operatorT * which is defined so that any derivatives acting on
time-ordered fields are to be taken onlyafter time ordering has been carried out. In transforming
T-ordered toT * -ordered fields, additional terms are generated, which contain thed(x02y0) that
is produced when time derivatives are extracted fromT-ordered products of time-differentiated
fields. As was pointed out by Matthews, these extra terms in whichd(x02y0)-functions appear
just cancel the difference betweenH int and2*dx(L11L2), so that the perturbative theory re-
quires only the propagators given in Eqs.~91!–~96! and the vertices dictated by the interaction
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Lagrangian.33 Application of the Matthews rule to a model with a spontaneously broken gauge
symmetry that produces massive gauge excitations also applies to this case.22

V. POINCARÉ STRUCTURE AND LORENTZ TRANSFORMATIONS OF MASSIVE GAUGE
BOSONS

In this section we will construct the six canonical Poincare´ generators in 211 dimensions: the
time-evolution operator,P05H0; the two-component space-displacement operatorPl ; the~scalar!
rotation operatorJ; and the two-component Lorentz boostKl . We will also use the Lorentz boost
generators to transform the single-particle massive gauge boson states, to display their properties
under Lorentz transformations as well as to obtain further confirmation of the consistency of our
canonical formulation of this model.

The canonical Poincare´ generators for this model are:P05*dxP0(x), whereP05H0 with
H0 given by Eq.~40!;

Pl5E dxPl~x!, ~99!

where

Pl52Pj] lj2Pn] lAn1G] lA02Pc] lc2P f] ls f2Pp] lsp ; ~100!

J5E dxe lnxlPn~x!1E dxk rotation~x! ~101!

and

Kl5x0Pl2E dx xlP0~x!1E dx k l
boost~x! ~102!

where

k rotation5e lnAlPn ~103!

and

k l
boost52AlG1A0P l . ~104!

The termk rotation implements the mixing of the space components of the fields during a rotation.
It arises from the fact that, under an infinitesimal rotationdu about an axis perpendicular to the
2-D plane, the components ofAm transform as follows:

dAl~x!52@e i j xi] jAl~x!1e lnAn~x!#du ~105!

and

dA0~x!52e i j xi] jA0~x!du. ~106!

Under an infinitesimal boostdb l along thel -direction, the components ofA
m transform as follows

dA0~x!52@x0] lA0~x!1xl]0A0~x!2Al~x!#db l ~107!

and

dAi~x!52@x0] lAi~x!1xl]0Ai~x!2d i l A0~x!#db l . ~108!
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Use of the canonical commutation rules leads to the following commutation rules for the
Poincare´ generators:

@Pl ,Pn#50, ~109!

@H,Pl #5@H,J#50, ~110!

@H,Kl #5 iPl , ~111!

@Pl ,Kn#5 id lnH, ~112!

@Pl ,J#52 i e lnPn , ~113!

@J,Kl #5 i e lnKn , ~114!

and

@Kl ,Kn#52 i e lnJ. ~115!

We observe that these commutation rules form a closed Lie algebra, and that they are consistent
with the transformations given in Eqs.~105!–~108!.

To facilitate this investigation of the Lorentz transformation of states that are eigenstates to
H0 , we shift to a description of excitation operators that have an invariant norm under Lorentz
transformations. We observe, for example, that the norm of the one-particle stateac†(k)u0&,

uac†~k!u0&25(
q

^0u@ac~q!,ac†~k!#u0&5E dq d~k2q!, ~116!

is not a Lorentz scalar becausedk is not the Lorentz invariant measure for the phase space. The
invariant measure can be established by noting that the invariant delta function

d~k2q!d~k02q0!d~qmq
m2mc

2!Q~q0!5
d~k2q!d@k02vc~k!#

2vc~k!
, ~117!

so that the statesAc†(k)u0&, created by operators that obey

@Ac~k!,Ad†~q!#52vc~k!~2p!2dcdd~k2q!, ~118!

have unit norms in every Lorentz frame. Similarly, the normalized operators for the other modes
of the gauge field obey

@Bc~k!,Bd†~q!#52v̄c~k!~2p!2dcdd~k2q!; ~119!

and the equivalently normalized ghost operators satisfy

@AQ
c ~k!,AR

d !~q!#5@AR
c ~k!,AQ

d !~q!#52kc~k!~2p!2dcdd~k2q!. ~120!

The normalized operators corresponding to the modea(k) of the Higgs field and the two
Faddeev–Papov ghostsgf

a(k) and gp
a(k) are given byâ(k), ĝf

a(k), and ĝp
a(k), respectively.

These normalized operators satisfy the following commutation and anticommutation relations:

@â~k!,â†~q!#52V~k!~2p!2d~k2q! ~121!

and
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$ĝf
a~k!,ĝp

b !~q!%5$ĝp
a~k!,ĝf

b !~q!%52ka~k!~2p!2dabd~k2q!. ~122!

Hence, the boost operatorKl is written as

Kl5 (
c51

8

(
k

mce lnkn
2k2vc~k!

Ac†~k!Ac~k!2 (
c54

8

(
k

m̄ce lnkn

2k2v̄c~k!
Bc†~k!Bc~k!

1 (
c51

8

(
k

i

4 F ]

]kl
Ac†~k!Ac~k!2Ac†~k!

]

]kl
Ac~k!G

1 (
c54

8

(
k

i

4 F ]

]kl
Bc†~k!Bc~k!2Bc†~k!

]

]kl
Bc~k!G

1 (
c54

8

(
k

i

4 F ]

]kl
âc†~k!âc~k!2âc†~k!

]

]kl
âc~k!G

1 (
c51

8

(
k

i

2 F ]

]kl
AQ
c !~k!AR

c ~k!2AR
c !~k!

]

]kl
AQ
c ~k!G

1 (
c51

8

(
k

i

2 F ]

]kl
ĝf
c !~k!ĝp

c~k!2ĝp
c !~k!

]

]kl
ĝf
c~k!G

1 (
c51

8

(
k

5ik l
4k2

@AQ
c !~k!AR

c ~k!2AR
c !~k!AQ

c ~k!#

2~12g!(
c51

3

(
k

16ik3

m3 F ]

]kl
AQ
c !~k!AQ

c ~k!2AQ
c !~k!

]

]kl
AQ
c ~k!G . ~123!

Using the commutations rules given by Eqs.~118! and ~119!, we find that

dAc†~k!5F imce lnkn
k2

Ac†~k!2vc~k!
]

]kl
Ac†~k!Gdb l ~124!

and

dBc†~k!5F2
i m̄ce lnkn

k2
Bc†~k!2v̄c~k!

]

]kl
Bc†~k!Gdb l . ~125!

Equations~124! and ~125! show that all the massive gauge boson states — the single excita-
tion modeAc†(k)u0& in the (c51,2,3) sectors with the residual SU~2! invariance, and the two
excitation modesAc†(k)u0& and Bc†(k)u0& in the (c54, . . . ,8) ‘broken’ doublet and singlet
sectors — transformwithout any mixingwith other modes. The phase factors (mce lnkn /k

2)db l

and 2(m̄ce lnkn /k
2)db l generated by the boost operatorKl , which appear in Eqs.~124! and

~125!, are the cocycles mentioned in Ref. 21. These phase factors have no physical implications.
The physically observable consequence of Eqs.~124! and~125! is that, under a Lorentz transfor-
mation, the topologically massive gauge excitations behave like the massive excitations of a scalar
field — each topologically massive gauge excitation transforms only into itself at a new space–
time point.
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VI. CONCLUSION

In this paper we have presented a detailed analysis of the canonical quantization of sponta-
neously broken topologically massive gauge theory. In 211 dimensions the possibility of includ-
ing a CS term in the gauge field Lagrangian leads to new forms of mass-generating effects for
gauge fields. The resulting CSH mechanism differs in interesting ways from the conventional
Higgs–Kibble mechanism, and in this paper we have explored the CSH mechanism by concen-
trating on the relation between the quantized fields and their particle excitation modes. We have
found, by a series of unitary transformations, a consistent particle-mode representation of the
operator-valued fields and we have constructed the corresponding Fock space which permits a
consistent interpretation of the diagonalized noninteracting HamiltonianH0 as an energy operator
for a system of noninteracting particles in a new vacuum state. Within this Fock space,H0 acts
unitarily as a time-translation generator, in such a way that Gauss’s law and the gauge condition
are manifestly preserved. We have computed the gauge field propagators as vacuum expectation
values of time-ordered products of the gauge field operators, and formulated the corresponding
perturbative expansion of the interacting theory. We have chosen to present our analysis for a
non-Abelian Chern–Simons theory in which the original non-Abelian symmetry is spontaneously
broken, but with a residual non-Abelian symmetry in the broken vacuum. Such a non-Abelian
model clearly illustrates the interplay of the space–time and algebraic features of the CSH mecha-
nism. This particular model is also motivated by the question of its quantum consistency. Indeed,
the result reported in Ref. 17, that the bare quantum consistency condition of
Deser–Jackiw–Templeton2 is maintained at one-loop in such a broken vacuum, was in fact first
obtained by us using the techniques and formalism described in this paper. An interesting further
application would be to the analysis of the non-Abelian versions of the self-dual CSH systems
considered in Ref. 34.
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APPENDIX: INTERACTION LAGRANGIAN

In this Appendix, we record the explicit expansions of the interaction LagrangiansL1 and
L2 in terms of real fields. These interaction Lagrangians define the vertices required for perturba-
tive computations. When the Lagrangians given in Eqs.~13! and~14! are expanded in terms of the
real fields in Eq.~15! and the symmetry breaking mass scales in Eq.~18!, we obtain the following:
theO(e) interaction Lagrangian becomes

L15e fabcFmn
a AbmAcn2

1

3
ememnr f abcAm

aAn
bAr

c1 (
a54

7

eMDA
amAm

ac1
2e

A3
MSA

8mAm
8c

1eMDd
ab4AamAm

b j52eMDd
ab5AamAm

b j41eMDd
ab6AamAm

b j72eM Dd
ab7AamAm

b j6

2 ie@C1
†Am

• t]mC12~]mC1!
†Am

• tC1#

2 ie@C2
†~A4mt11A5mt2!]mC22~]mC2!

†~A4mt11A5mt2!C2#

2 ie@C3
†~A6mt11A7mt2!]mC32~]mC3!

†~A6mt11A7mt2!C3#

2 ie~F8†A8ml8]mF82]mF8†A8ml8F8!

2
em2

MD
c@~j4!21~j5!21~j6!21~j7!21~j8!21c2#
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22ie fabcAm
as f

b]msp
c2 ie~12g!

3MD(
a54

7

cs f
asp

a2 ie~12g!
2

A3
MScs f

8sp
8

2 ie~12g! (
a,b,c54

8

M ~a! f
abcjas f

bsp
c2 ie~12g!

3MD (
a,c54

7

~dac5j42dac4j51dac7j62dac6j7!s f
asp

c ~A1!

and theO(e2) interaction Lagrangian becomes

L252e2f abcf adeAm
bAdmAn

cAen1
1

3
e2Am

aAam@~j4!21~j5!21~j6!21~j7!21~j8!21c2#

1e2dab1AamAm
b ~j5j71j4j6!1e2dab2AamAm

b ~j5j62j4j7!1
1

2
e2dab3AamAm

b @~j4!21~j5!2

2~j6!22~j7!2#1e2dab4AamAm
b ~j5c2j4j8!2e2dab5AamAm

b ~j5j81j4c!

1e2dab6AamAm
b ~j7c2j6j8!2e2dab7AamAm

b ~j7j81j6c!1
1

2A3
e2dab8AamAm

b @~j4!2

1~j5!21~j6!21~j7!222~j8!222c2#2
e2m2

4MD
2 @~j4!21~j5!21~j6!21~j7!21~j8!21c2#2.

~A2!

In these expressions,t designates the Pauli spin matrices, andAm denotes the gauge field triplet
Aam (a51,2,3) in the unbroken SU~2! ‘‘isospin’’ subgroup. The isospinorsCa (a51,2,3) are the
combinations of the Higgs fieldc and theja fields given by Eqs.~19!–~21!.
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There exist operator solutions of theq-Coulomb problem in both configuration and
momentum space. Since the arguments of the corresponding amplitudes are non-
commuting, however, there are problems of physical interpretation. Here we an-
swer the question of physical interpretation by associating with the operator ampli-
tude in momentum space a numerically valued amplitude lying in a Hilbert space
defined by the SUq~2! algebra. This new amplitude, now depending on commuting
arguments, may be interpreted by the usual rules of quantum mechanics and may
also be Fourier transformed to yield the amplitude in configuration space. ©1996
American Institute of Physics.@S0022-2488~96!01706-9#

I. INTRODUCTION

Solutions of theq-deformed Coulomb problem have been found in both momentum1 and
configuration2 space. In both cases the solution amplitudes are operator wave functions lying in
either the SUq~2! or SOq~3! algebra. If a direct physical interpretation of these amplitudes is
attempted, it is necessary to assume that the coordinates are noncommuting in both configuration
and momentum space.

One makes a less radical departure from quantum mechanics by associating numerical wave
functions with the operator wave functions and basing the physical interpretation on these asso-
ciated numerical amplitudes. If one follows the latter path, one is deforming not the underlying
space but the wave functions lying in the usual space. In order to do this, it is necessary to
introduce a Hilbert space on which the operator wave functions can operate. In the following we
shall carry out this procedure for the known operator solutions in momentum space.

II. THE q-DEFORMED MOMENTUM STATES

Let us recall the procedure for obtaining the undeformed states of momentum in a form which
makes explicit the underlying symmetry of the Coulomb problem.3 First one transforms the Schro¨-
dinger differential equation to an integral equation on momentum space. Next momentum space is
mapped onto the group space of SU~2! or SO~3! according to

e~ i /2sw!5
p02 ips

p01 ips
, ~2.1!

wherew fixes the magnitude and axis of rotation whilep0 andp refer to the corresponding energy
and momentum. The integral equation on momentum space then becomes an integral equation on
group space,

E K̃~p,p8!F~p8!dt~p8!5lF~p!, ~2.2!

where the momentump parametrizes the group element anddt~p! is the invariant volume element
on group space:

dt5Agdp, ~2.3!
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whereg is the determinant of the group metric.
HereF~p! andK̃~p,p! are rescaled Fourier transforms of the wave function and the potential,

respectively.
In the Coulomb case~2.2! becomes

E K~p,p8!Dmm8
j

~p8!dt~p8!5~2 j11!Dmm8
j

~p!, ~2.4!

where theDmm8
j (p) are Wigner functions~matrix elements of irreducible representations of the

rotation group!. The actual wave function in momentum space is connected toDmm8
j (p) by a

scaling function,

Fmm8
j

~p!5G2~p!Dmm8
j

~p!, ~2.5!

G5
p0
2

p0
21p2

, ~2.6!

and the energy levels are determined in terms of the eigenvalue~2 j11! of the integral equation by

E52
m

2

e4

\2

1

~2 j11!2
~2.7!

so that the principal quantum numberN is related toj by

N52 j11. ~2.8!

The other indices,m andm8, labellingFmm8
j , refer to thez-components of the Lenz and angular

momentum vectors; butFmm8
j is not an eigenfunction of the total angular momentum.

The ground state corresponds toN51 or j50 and the corresponding wave function is then
simply

G2D00
0 5S p0

2

p0
21p2D

2

1, ~2.9!

which Fourier transforms into the usual exponential for the ground state.
In our earlier work1 the deformation was accomplished by replacing the integral equation~2.4!

by the corresponding Woronowicz integral equation on SUq~2!:

E
W
Kq~a,a8!Dmm8

j
~a8uq!dWt~a8!5lm8

j Dmm8
j

~auq!, ~2.10!

whereW means the Woronowicz integral and wherea anda8 denote two distinct points in the
space of the pseudogroup. The solutions of this equation are the matrix elements of the irreducible
representations of SUq~2!, namelyDmm8

j (auq), and the eigenvalues are

lm8
j

5
q2m8

@2 j11#q
2 . ~2.11!

Assuming the same connection between energy and eigenvalues as in theq51 case, one has
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E~n,m8!52
m

2

e4

\2

q4m8

@n#q
2 , ~2.12!

which approaches the Balmer formula in limitq51. Here the square bracket has its usual meaning

@n#5
qn2q2n

q2q21 . ~2.13!

The deformed wave functions are nowG2Dmm8
j (auq), wherea stands for the set of elements

defining the algebra and on whichDmm8
j (auq) depends.

There is now the problem of interpreting these deformed wave functions since they are
operator rather thanc-number functions. For example, the first four excited states correspond to
N52 or j51/2 and may be displayed as elements of the following matrix:1

Dmm8
1/2

5S a b

2q1b̄ āD , ~2.14!

whereq15q21.
If q51, we may parametrizeDmm8

j by three variables such as the three components ofp ~or
by other coordinate systems such as the Eulerian angles!.

If the components ofp are chosen as parameters, then in the undeformed limit we have

a5
p0
22p2

p0
21p2

1
2ip0p3
p0
21p2

, b5
2ip0~p12 ip2!

p0
21p2

,

d5
p0
22p2

p0
21p2

2
2ip2p3
p0
21p2

, c5
2ip0~p11 ip2!

p0
21p2

, ~2.15!

d5ā, c52q1b̄.

Then the wave functions in momentum space are given by~2.5! where (a,b,c,d) are expressed as
functions of the momentum. After deformation the Wigner functions become theq-Wigner func-
tions depending on (a,ā,b,b̄), which all lie in the SUq~2! algebra and therefore obey the com-
mutation rules of that algebra. If the connection with the components of the momentum described
in ~2.15! were maintained, then of course the components of momentum would also become
noncommuting and momentum space would become a noncommuting space.

Instead of taking the next step of passing to a noncommuting space, however, we shall deform
only the solutions of the Coulomb problem without altering the space in which they lie. This can
be done by passing from the operator wave functions depending on (abcd) to associated numeri-
cal wave functions obtained by evaluating the operator functions on an appropriate Hilbert space,
which we shall next describe.

III. HILBERT SPACE

The natural Hilbert space is already indicated by the algebra: sinceb andc are commuting, we
take their common eigenfunctions as reference states lying in the Hilbert space. We also pass to
the notation (a,b,b̄,ā), where

b̄52qc, ā5d. ~3.1!

Then
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ab5qba, b̄ā5qāb̄, ab̄5qb̄a, bā5qāb. ~3.2!

Assume thatu0& and ^0u are common eigenfunctions ofb and b̄ such that

bu0&5bu0&, ^0ub̄5^0ub*
~3.3!

b̄u0&5b* u0&, ^0ub5^0ub,

whenb andb* are conjugate complex numbers. Assume

^0u0&51. ~3.4a!

Then

^0ubu0&5b, ^0ub̄u0&5b* . ~3.4b!

One now shows thata and ā behave as annihilation and creation operators since

abu0&5qbau0& ~3.5!

or

b•au0&5~q21b!•au0&. ~3.6!

By iteration

b•aNu0&5~q2Nb!•aNu0& ~3.7!

and also

b̄•aNu0&5~q2Nb* !•aNu0& ~3.8!

sinceb and b̄ have the same commutation relations witha. Likewise,

b•āNu0&5~qNb!•āNu0&, ~3.9!

b̄•āNu0&5~qNb* !•āNu0&. ~3.10!

Let

aNu0&5u2N&, ~3.11!

āNu0&5uN& ~3.12!

up to a normalization. Then

bu2N&5~q2Nb!u2N&, ~3.13!

b̄u2N&5~q2Nb* !u2N&, ~3.14!

buN&5~qNb!uN&, ~3.15!

b̄uN&5~qNb* !uN&. ~3.16!

By the usual argument the basis states are orthogonal since
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^NubuM &5^NuqMbuM & ~3.17a!

5^NuqNbuM & ~3.17b!

or, by ~3.13!,

~qM2qN!^NuM &50. ~3.18!

Therefore

^NuM &50, NÞM . ~3.19!

Set

āuN&5lNuN11&, ^Nua5^N11ulN* ~3.20!

or

auN&5mnuN21&, ^Nuā5^N21umN* . ~3.21!

Then

^NuaāuN&5^N11ulN* lNuN11&. ~3.22!

However,

aā1bb̄51. ~3.23!

Therefore

^Nu12bb̄uN&5~lN!2^N11uN11&

and

~lN!2512ubu2q2N, ~3.24!

as we assume the same normalization for all states. Likewise

^NuāauN&5^N21umN*mNuN21&. ~3.25!

However,

āa1q1
2b̄b51; ~3.26!

therefore

^Nu12q1
2b̄buN&5~mN!2^N21uN21&

and

~mN!2512q1
2ubu2q2N. ~3.27!

Therefore to obtain theNth state from the standard stateu0& we form

āNu0&5ā...āu0& ~3.28!
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5 )
0

N21

lsuN& ~3.29!

5 )
0

N21

~12ubu2q2s!1/2uN& ~3.30!

5~ ubu2iq2!N
1/2uN&, ~3.31!

where (xuq)N is the shifted factorial:

~xuq!N5 )
0

N21

~12xqs!. ~3.32!

The normalized eigenstates ofb and b̄ are then

uN&5
āN

~ ubu2iq2!N
1/2 u0&. ~3.33!

IV. EVALUATION OF ^NzDmm 8
j zN8&

After deformation, the Wigner functionsDmm8
j become the operator functions1

Dmm8
j

5Dmm8
j ( K n1

s L
1
K n2

t L
1
q1

~n12s11!t
~2 ! td~s1t,n18 !asbn12sb̄tān22t, ~4.1!

where

Dmm8
j

5S ^n18 &1! ^n28 &1!

^nt&1! ^n2&1!
D 1/2 n65 j6m,

n68 5 j6m8,
~4.2!

and^&1 5 ^&q
1
2 with q15q21. Here (a,ā,b,b̄) lie in the SUq~2! algebra. Let

P5asbn12sb̄tān22t. ~4.3!

Then we must evaluatêNuPuN8&.
Let us rearrangeP:

P5~bn12sb̄tasān22t!qn11t2s. ~4.4!

Note that

asān22t5~asās!ān22t2s5~bb̄uq2!sān22t2s. ~4.5!

Then

P5qn11t2sbn12sb̄t~bb̄uq2!sān22t2s ~4.6!

5qn11t2sbn12s2t~bb̄! t~bb̄uq2!sān22t2s ~4.7!

and

^NuPuN8&5qn11t2s~qNb!n12s2tubu2tq2Nt~ ubu2q2Nuq2!s^Nuān22t2suN8&. ~4.8!
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To evaluate this matrix element note that by~3.20!

ākuN&5 )
N

N1k21

lsuN1k& ~4.9!

5FP0
N1k21ls

P0
N21ls

G uN1k&. ~4.10!

By ~3.31!

5F ~ ubu2uq2!N1k
1/2

~ ubu2uq2!N
1/2 G uN1k&. ~4.11!

Therefore, by~3.19!,

^NuākuN8&5F ~ ubu2uq2!N
~ ubu2uq2!N8

G1/2d~N,N81k! ~4.12!

and

^NuPuN8&5qn11t2sqN~n12s1t !bn12s2tubu2t~ ubu2q2Nuq2!sF ~ ubu2uq2!N
~ ubu2uq2!N8

G1/2d~N,N81n22t2s!.

~4.13!

The double sum on (s,t) in ~4.1! is now restricted by the following conditions;

n18 5s1t, N82N1n25s1t.

Therefore

N82N5n18 2n25m81m ~4.14!

and

^NuDmm8
j uN8&5Dmm8

j ( K n1

s L
1
K n2

t L
1
~2 ! tq1

~n12s11!tq~N11!~n11t2s!bn12s2tubu2t

3~ ubu2q2Nuq2!sF ~ ubu2uq2!N
~ ubu2uq2!N8

G1/2d~s1t,n18 !d~N82N,m1m8!. ~4.15!

In particular,

^0uDmm8
j u0&5Dmm8

j ( K n1

s L
1
K n2

t L
1
q1

~n12s!~12t !
~2 ! tbn12s2tubu2t

3~ ubu2uq2!sd~s1t,n18 !d~m1m8,0!. ~4.16!

In general, if we setN50, then

^0uDmm8
j um1m8&5Dmm8

j ( K n1

s L
1
K n2

t L
1
q~n12s!~12t !~2 ! tbn12s2tubu2t~ ubu2q2!s

3~ ubu2uq2!m1m8
21/2 d~s1t,n18 !. ~4.17!
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In this way one may associate a numerically valued function^0uDmm8
j um 1 m8& with the operator

Dmm8
j . There is, of course, an associated degeneracy since any solution ofN82N5m1m8 is also

acceptable.
The limit of ~4.17! asq→1 is

Dmm8
j ( S n1

s D S n2

t D ~2 ! tbn12s2tubu2t~ ubu2u1!s~ ubu2u1!m1m8
21/2 d~s1t,n18 !, ~4.18!

where

bn12s2tubu2t~ ubu2u1!s~ ubu2u1!m1m8
21/2

5bn12n18 ubu2t~12ubu2!s2~m1m8!/2. ~4.19!

Set

b5sin
u

2
eix. ~4.20!

Then ~4.19! becomes

S sin u

2D
m2m812tS cosu

2D
2s2m2m8

ei ~m2m8!x. ~4.21!

Then

lim
q→1

^0uDmm8
j um1m8&5Dmm8

j ( S n1

s D S n2

t D ~2 ! tS sin u

2D
2t1m2m8S cosu

2D
2s2m2m8

ei ~m2m8!xd~s

1t, j1m8! ~4.22!

as required.
Notice that if we letq approach unity before taking the matrix element, then^0uDm1m8

j um
1 m8& 5 0 unlessm1m850. On the other hand, if we take the matrix element first, then according
to ~4.22! we obtain the correctq51 amplitude.

V. q -DEFORMED AMPLITUDES IN MOMENTUM SPACE

The result obtained for̂0uDmm8
j um 1 m8& depends onq, b, andb* . Sinceb andb* are

eigenvalues rather than operators, they may be parametrized by three commuting parameters
(p1 ,p2 ,p) which we identify with two components and the magnitude of momentum

b5
2ip0~p12 ip2!

p0
21p2

, ~5.1!

b*52
2i ~p11 ip2!

p0
21p2

, ~5.2!

and we also definep3 by

p3
25p22p1

22p2
2. ~5.3!

Herep0 is a constant.
Let
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D~b,b* ![^0uDmm8
j um1m8&. ~5.4!

Then the amplitude in momentum space is

F~p!5S p0
p0
21p2D 2D S 2i „p0~p12 ip2!…

p0
21p2

,
22ip0~p11 ip2!

p0
21p2 D . ~5.5!

This amplitude may be Fourier transformed back to configuration space by the usual rules of
quantum mechanics. In this way we may obtain aq-deformed solution of the Coulomb problem in
configuration space.

VI. REMARKS

The operator form of the amplitude in configuration space obtained by Feigenbaum and
Freund2 is not simply related to the operator form of the amplitude in momentum space discussed
in this paper because the symmetry algebras for the two amplitudes, namely SOq~3! and SUq~2!,
are not the same~although the undeformed algebras are of course the same!. In addition the
momentum amplitude presented here is an eigenfunction of thez-components of the Lenz and
angular momentum vectors while the configuration space amplitude to which it is compared is an
eigenfunction of the total angular momentum and itsz-component. With both of these operator
amplitudes, one has the problem of physical interpretation, i.e., of relating numerical probabilities
to the amplitudes.

In an earlier discussion of the harmonic oscillator a different course was followed.4 There the
amplitude in configuration space is presented as a function which both lies in the SUq~2! algebra
and independently depends on the coordinates of configuration space; further, the coordinates of
configuration space are required to freely commute with the SUq~2! algebra. The amplitude in
momentum space has a similar structure, dependent on both the SUq~2! algebra and the coordi-
nates of the momentum which freely commute with the algebra. The amplitudes in configuration
and momentum space are related by aq-Fourier transform which is integrated over the eigenval-
ues of one of the conjugate operators and maps onto eigenfunctions of the other.

The numerical probability associated with either amplitude is then obtained by a Woronowicz
integration over the SUq~2! algebra. This procedure differs from both conventional quantum
mechanics and quaternion quantum mechanics, since in those cases the amplitude lies in either the
complex plane or the SU~2! algebra, while here it lies in the SUq~2! algebra. The only natural
choice for probability in the SUq~2! case is the Woronowicz measure, since it is invariant under
SUq~2! transformations and still depends onx or p. The same approach can, in principle, be
followed for a system with more degrees of freedom such as theq-Coulomb problem, but this has
not yet been done.
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Sufficient conditions for the existence of the infimumA`B of two quantum effects
A andB are given. The existence ofA`B is characterized for commutingA andB
with pure point spectrum. Properties of a generalized infimum and supremum are
studied. Some previous finite dimensional, commutative results are extended to the
infinite dimensional and noncommutative case. ©1996 American Institute of
Physics.@S0022-2488~96!03306-3#

I. INTRODUCTION

The basic axiomatic elements of the operational approach to quantum mechanics are the
effects.1–5 In this approach, effects represent sharp and unsharp properties of a physical system.
The set of effectsE for a physical systemS carry a natural partial order, where we defineA<B
if the expectation of the values of a measurement ofA does not exceed that ofB for every state
of S. If H is the Hilbert space that describes the states ofS, thenE is represented by the set of
self-adjoint operators onH that satisfy 0<A<I andA<B if and only if ^Ax,x&<^Bx,x& for all
xPH.

Since ~E ,<! is a partially ordered set, it is of interest to study the lattice properties ofE .
Except in the trivial case dim(H)51, E is not a lattice.6,7 This leads to the natural problem of
characterizing those pairs of effectsA,BPE for which the greatest lower bound~infimum! A`B
or the least upper bound~supremum! A~B exists. Although this characterization problem has
been solved for the cases dim(H)52,3,6,8 it remains open in general. It is obvious that ifA andB
are comparable~A<B or B<A! thenA`B andA~B exist. However, there are many examples
of incomparable effects for whichA`B ~or A~B! exist.

In this paper, we give some sufficient conditions for the existence ofA`B and solve the
characterization problem for the case of commuting effects with pure point spectrum.@Note that it
is not necessary to study bothA`B and A~B since they are related by DeMorgan’s laws
(A`B)85A8~B8, (A~B)85A8`B8 when one side of the equations exist, whereA85I2A.#
We also consider the concepts of a generalized infimumAuB and generalized supremumAtB.
We show thatAuB andAtB have many of the properties of the usualA`B, A~B and reduce
to these when they exist. Finally, we extend some finite dimensional, commutative results in Ref.
7 to the infinite dimensional and noncommutative case.

II. A GENERALIZED INFIMUM

Let H be a complex Hilbert space and denote the set of bounded self-adjoint operators onH
by S (H) and the set of~orthogonal! projections onH by P (H). We say that an element
APS (H) is positiveand writeA>0 if ^Ax,x&>0 for all xPH. ForA,BPS (H), we writeA<B
if B2A>0. In this way~S (H),<! becomes a partially ordered set. An elementAPS (H) that
satisfies 0<A<I is called aneffectand the set of effects onH is denotedE(H). It is well known
that ~S (H),<! and ~E(H),<! are not lattices~unless dim(H)<1!.6,7,9 However, we shall intro-
duce generalized infima and suprema that possess many of the properties of the usual infima and
suprema and reduce to these constructs when they exist. ForA,BPE(H), when we writeA`B we
are always referring to the infimum~greatest lower bound! of A andB within E(H). The next two
lemmas give useful properties of the order.

0022-2488/96/37(6)/2637/6/$10.00
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Lemma 2.1:Let A,B,CPE(H). ~a! ThenBABPE(H) and 0<BAB<B2<I . ~b! If C<A,
thenBCB<BAB. ~c! If AB5BA, then 0<AB<B.

Proof: ~a! That B2<I follows from the spectral theorem. The result follows because
^BABx,x&5^ABx,Bx& and

0<^ABx,Bx&<^Bx,Bx&5^B2x,x&.

~b! This follows from

^BCBx,x&5^CBx,Bx&<^ABx,Bx&5^BABx,x&.

~c! The result holds because^ABx,x&5^AB1/2x,B1/2x& and

0<^AB1/2x,B1/2x&<^B1/2x,B1/2x&5^Bx,x&. h

For APS (H), let R(A) be the closure of the rangeAH of A andN(A) be the null space of
A. For A,BPS (H) we denote the projection ontoR(A) by PA and the projection onto
R(A)ùR(B) by PA,B .

Lemma 2.2:Let A,B,CPE(H). ~a! If C<A, then CPA5PAC5C and C<PA . ~b! If
C<A,B, thenCPA,B5PA,BC5C andC<PA,B .

Proof: ~a! If xPN(A), then

0<^C1/2x,C1/2x&5^Cx,x&<^Ax,x&50.

Hence,C1/2x50 soCx50. Therefore,N(A)#N(C) so

R~C!5N~C!'#N~A!'5R~A!.

Hence, for everyyPH we haveCy5PACy soC5PAC and

C5C*5~PAC!*5CPA .

Applying Lemma 2.1~a! gives

C5PACPA<PA
25PA .

~b! If C<A,B then from part~a! we haveR(C)#R(A),R(B) soR(C)#R(A)ùR(B). The result
follows using the same argument as in part~a!. h

For APS (H), we defineuAu5(A2)1/2 where~A2!1/2 is the unique positive square root ofA2.
For A,BPS (H), we define thegeneralized infimum AuB by

AuB5 1
2~A1B2uA2Bu!.

The generalized infimum has been studied by various investigators.7,9,10Of course,AuB always
exists. However, forA,BPE(H), it is not necessarily true thatAuBPE(H) becauseAuB may
not be positive.7,10 Nevertheless, for important special cases, we do haveAuBPE(H). For ex-
ample, ifA andB are comparable or ifA andB commute, thenAuBPE(H). It is shown in Ref.
7 that if dim(H),` andA,B are commuting effects, thenAuB is a maximal lower bound for
A,B. We shall prove a generalization of this result by showing that dim(H),` can be dropped
and thatAB5BA can be replaced by a more general condition.

Theorem 2.3: ~a! If A,BPS (H), thenAuB<A,B and

~A2AuB!~B2AuB!50.

~b! If A,BPE(H) andAuB>0, then
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~A2AuB!`~B2AuB!50.

Proof: ~a! It follows from the spectral theorem thatA2B<uA2Bu. Hence,A2uA2Bu<B so
A1B2uA2Bu<2B and

AuB5 1
2~A1B2uA2Bu!<B.

Similarly, AuB<A. SinceA2B and uA2Bu commute, we have

~A2AuB!~B2AuB!5 1
4~A2B1uA2Bu!~B2A1uA2Bu!5 1

4~ uA2Bu22~A2B!2!50.

~b! SinceAuB<A,B andAuB>0, we haveA2AuB,B2AuBPE(H). Suppose thatCPE(H)
with C<A2AuB,B2AuB. If

xP~A2AuB!Hù~B2AuB!H,

then

x5~A2AuB!y5~B2AuB!z,

for somey,zPH. Hence, by part~a! we have

ixi25^x,x&5^~B2AuB!~A2AuB!y,z&50.

Thus,P5PA2AuB,B2AuB50 so by Lemma 2~b! we haveC5CP50. The result now follows.h
Corollary 2.4: For A,BPE(H), suppose thatAuB>0. ~a! ThenAuB is a maximal lower

bound forA andB in E(H). ~b! If A`B exists, thenA`B5AuB.
Proof: ~a! From Theorem 2.3~a! we have 0<AuB<A,B. Suppose thatAuB<C<A,B. Then

0<C2AuB<A2AuB,B2AuB

Applying Theorem 2.3~b! givesC2AuB50 soC5AuB. ~b! SinceAuB<A`B<A,B, applying
part ~a! givesA`B5AuB. h

If A andB are commuting effects, it follows from the spectral theorem thatAuB>0. Hence,
the conclusions of Corollary 2.4 hold. This generalizes the main result in Ref. 7 to Hilbert spaces
of arbitrary dimension. The next result has been proved in Ref. 10.

Lemma 2.5:For A,BPE(H), AuB50 if and only if AB50.
In Ref. 7 it is shown that ifA,BPE(H) with AB50 and dim(H),`, thenA`B50. We now

show that dim(H),` is unnecessary.
Corollary 2.6: For A,BPE(H), if AB50, thenA`B50.
Proof: If AB50, then by Lemma 2.5 we haveAuB50. Since, by Corollary 2.4~a!, AuB is a

maximal lower bound forA andB, we haveA`B50. h

For APE(H), we defineA8PE(H) by A85I2A.
Corollary 2.7: If A`A8 exists, thenA`A85 1

2(I2u2A2I u).
Proof: SinceA andA8 commute, ifA`A8 exists it follows from Corollary 2.4 that

A`A85AuA85 1
2~A1A82uA2A8u!5 1

2~ I2u2A2I u!. h

The next corollary gives a well-known characterization of projections.11,12

Corollary 2.8:An effectA is a projection if and only ifA`A850
Proof: If A`A850, then by Corollary 2.4,AuA85A`A850. Applying Lemma 2.5, we have

AA850. Hence,A2A25A(I2A)50 soA is a projection. Conversely, ifA is a projection, then
AA850. Applying Corollary 2.6 givesA`A850. h

For A,BPS (H), we defined thegeneralized supremum AtB by

2639Stanley Gudder: Lattice properties of quantum effects

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



AtB5 1
2~A1B1uA2Bu!.

The following theorem is analogous to Theorem 2.3 and Corollary 2.4.
Theorem 2.9: ~a! If A,BPS (H), thenA,B<AtB and

~AtB2A!~AtB2B!50.

Let A,BPE(H) with AtB<I . ~b! Then

~AtB2A!`~AtB2B!50.

~c! AtB is a minimal upper bound forA andB in E(H). ~d! If A~B exists, thenA~B5AtB.
The next result gives relationships betweenAuB andAtB.
Lemma 2.10:For A,BPS (H) we have~a! AuB1AtB5A1B andAtB2AuB5uA2Bu;

~b! (AtB)85A8uB8 and (AuB)85A8tB8.
Proof: ~a! is clear. For~b! we have

A8uB85 1
2~2I2A2B2uA2Bu!5I2 1

2~A1B1uA2Bu!5~AtB!8

and the last equation is similar. h

We conclude that for effectsA andB thatAuB andAtB always exist inS (H) and have
many of the properties of an infimum and supremum, respectively. Moreover, whenA`B(A~B)
exists andAuB(AtB) is in E(H), thenA`B5AuB(A~B5AtB).

III. EXISTENCE OF INFIMA

An important open problem is to characterize the pairs of effectsA,B for whichA`B exists.
This problem was solved for the case dim(H)52 in Ref. 6 where it was shown thatA`B exists
if and only if A and B are comparable or dimPA,B<1. This section presents some sufficient
conditions for the existence of infima and the characterization problem is solved for the case of
commuting effects with pure point spectrum.

Theorem 3.1: Let A,BPE(H). ~a! If PPP (H) satisfiesAP5PA, BP5PB and if A`B
exists, then (PA)`(PB) exists and equalsP(A`B)P. ~b! If A andB both commute withPA,B ,
then (APA,B)`(BPA,B) exists if and only ifA`B exists and moreover, when they exist, they
coincide.

Proof: ~a! By Lemma 2.1~a!, PA,PB,P(A`B)PPE(H). SinceA`B<A,B, by Lemma
2.1~b!, P(A`B)P<PA,PB. Suppose thatC<PA,PB, whereCPE(H). By Lemma 2.1~c! we
haveC<PA<P and applying Lemma 2.2~a! givesCP5PC5C. By Lemma 2.1~c! we have
PA<A, PB<B so C<A,B. Hence, C<A`B so applying Lemma 2.1~b! gives
C5PCP<P(A`B)P. Hence,P(A`B)P5(PA)`(PB). ~b! If A`B exists, it follows from
part ~a! that (APA,B)`(BPA,B) exists. Conversely, suppose that (APA,B)`(BPA,B) exists. As in
part ~a! APA,B<A andBPA,B<B so (APA,B)`(BPA,B)<A,B. Now suppose thatCPE(H) with
C<A,B. Applying Lemma 2.2~b! givesCPA,B5PA,BC5C. By Lemma 2.1~b! we have

C5PA,BCPA,B<PA,BAPA,B5APA,B .

Similarly, C<BPA,B soC<(APA,B)`(BPA,B) and the result follows. h

As a corollary, we obtain the following well known result.9

Corollary 3.2: If A,BPP (H), thenA`B5PA,B .
Proof:We have

APA,B5PA,BA5BPA,B5PA,BB5PA,B .

Applying Theorem 3.1~b! gives
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PA,B5PA,B`PA,B5~APA,B!`~BPA,B!5A`B. h

If A andB both commute withPA,B , then by Theorem 3.1, a sufficient condition for the
existence ofA`B is that APA,B and BPA,B are comparable. The next theorem gives another
sufficient condition.

Theorem 3.3:For A,BPE(H), if dim(PA,B)<1, thenA`B exists.
Proof: Suppose that dim(PA,B)<1 and letCPE(H) satisfy C<A,B. By Lemma 2.2~b!

CPA,B5PA,BC5C. If PA,B50, thenC50 soA`B50. Suppose thatP5PA,BÞ0 so dim(P)51.
Let Px5x with ixi51. Then for everyyPH we have

Cy5CPy5C^y,x&x5^y,x&PCy5^y,x&^Cx,x&x5^Cx,x&Px.

Hence,C5^Cx,x&P. Let

t5sup$0<s<1:sP<A,B%.

We claim thatA`B5tP. Indeed,tP<A because there exists a sequencesi such that 0<si<1,
siP<A and t5lim si . For yPH, we havesi^Py,y&<^Ay,y& so

^tPy,y&5t^Py,y&5 lim~si^Py,y&!<^Ay,y&.

Similarly, tP<B. Since

C5^Cx,x&P<A,B

we have^Cx,x&<t. Hence,C<tP soA`B5tP. h

The next result characterizes the existence ofA`B for commuting effects with pure point
spectrum. In this theorem we assume thatH is separable.

Theorem 3.4: If A andB are commuting effects with pure point spectrum, thenA`B exists
if and only if APA,B andBPA,B are comparable. Moreover, in this caseA`B is the smaller of
APA,B andBPA,B .

Proof: If APA,B andBPA,B are comparable, then applying Theorem 3.1~b!, we conclude that
A`B exists and is the smaller ofAPA,B andBPA,B . Conversely, suppose thatA`B exists. We
can assume without loss of generality thatPA,B5I ~that is,A andB both have full rank!. This is
becauseA`B exists if and only if (APA,B)`(BPA,B) exists @Theorem 3.1~b!# andAPA,B and
BPA,B have full rank onPA,BH. We must now show thatA andB are comparable. By the spectral
theorem, we can writeA5(aiPi , B5(biPi , whereai andbi are the eigenvalues ofA andB
respectively~repeated according to multiplicity! and thePi are one-dimensional projections form-
ing a resolution of the identity. SinceA andB have full rank, we haveai.0, bi.0 for all i .
Suppose thatA andB are incomparable. Then without loss of generality, we may assume that
a1,b1 anda2.b2 . LettingP be the projection onto the two-dimensional subspace generated by
P1H andP2H, we havePA5a1P11a2P2 andPB5b1P11b2P2 . Applying Theorem 3.1~a!, we
conclude that (PA)`(PB) exists. SincePA and PB are incomparable effects on the two-
dimensional Hilbert spacePH, it follows from the two-dimensional case cited previously6 thatPA
or PB is a multiple of a one-dimensional projection. Hence,a150 or b250. But this is a contra-
diction soA andB are comparable. h

Examples are given in Ref. 7 for whichA`A8 exists and for whichA`A8 does not exist.
Such examples follow from the next result.

Corollary 3.5: If H is separable andAPE(H) has pure point spectrum, thenA`A8 exists if
and only ifAPA,A8 and

1
2PA,A8 are comparable.

Proof: Let P5PA,A8. Applying Theorem 3.4,A`A8 exists if and only ifAP andA8P are
comparable. But
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AP<A8P5P2AP

if and only if AP< 1
2P andA8P<AP if and only if AP> 1

2P. j

Example 1:For A5diag~1/2,1,1/3! we haveA85diag~1/2,0,2/3!. ThenA andA8 are incom-
parable, but lettingP5PA,A8 we haveP5diag~1,0,1! and

AP5diag~1/2,0,1/3!< 1
2 diag~1,0,1!5 1

2P,

soA`A8 exists andA`A85diag~1/2,0,1/3!.
Example 2:For A5diag~1/3,2/3! we haveA85diag~2/3,1/3!. Since,PA,A85I andA, 12I are

incomparable,A`A8 does not exist.
Example 3:If A5diag ~0,a! for 0<a<1, thenA`B exists for allBPE~C2!.
Example 4:Let A5diag~1,3/8,0!, B5diag~1,1/3,0! and

C5F 1/2 0 0

0 1/2 1/4

0 1/4 1/2
G .

ThenA`C5diag~1/2,3/8,0! but B`C does not exist.
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On the diagonalization of quantum Birkhoff–Gustavson
normal form

A. S. Nikolaeva)
Institute for High Energy Physics, 142284 Protvino, Moscow Region, Russia

~Received 6 February 1995; accepted for publication 31 August 1995!

An application to quantum mechanics of one of classical perturbation theory meth-
ods, the Birkhoff–Gustavson normal form~BGNF!, is described. In the quantum
case it results in the Van Vleck perturbation theory performed upon Wick normal
ordered operators. Algebraic aspects of this procedure and formal construction of
invariants~integrals of motion! for a perturbed system are considered. It turned out
that a larger set of such operators existed in the quantum mechanics, rather than in
the classical one. It is demonstrated that, according to general results of the quan-
tum mechanical perturbation theory, the quantum BGNF may always be diagonal-
ized, and two formal processes for such diagonalization are constructed. In the
opposite case, the classical BGNF is, in general, nondiagonalizable. This reflects
the fact that the classical perturbation theory cannot handle a system with two or
more resonances. Possible reasons for such different behavior of two very close, in
spirit, perturbation procedures are discussed. Results of the described procedure,
entirely performed upon the Wick normal ordered operators, are equivalent to those
of Rayleigh–Schro¨dinger perturbation expansion. ©1996 American Institute of
Physics.@S0022-2488~96!01803-7#

I. INTRODUCTION

Birkhoff method1 in classical mechanics provides a procedure to transform the original non-
separabled dimensional oscillator Hamiltonian canonically into the normal form consisting of a
power series in one-dimensional uncoupled harmonic oscillator Hamiltonians

H~p1 ,q1 , . . . ,pd ,qd!→H~z1
21h1

2 , . . . ,zd
21hd

2!,

where zk and hk are canonical coordinates and momenta, andH is a formal power series in
zk
21hk

2 . If the seriesH were to converge, the new equation could be easily integrated,d inde-
pendent isolating invariants would exist, and the motion would be multiple periodic. Unfortu-
nately it was shown that the Birkhoff normal form diverged in general because of small divisors
in the coefficients.

The Birkhoff method was applied by Gustavson2 in order to obtain power series expressions
for invariants and analytically predict the Poincare´ surfaces of section for the Henon-Heiles sys-
tem. Doing that, Gustavson had to modify the original Birkhoff method in order to include
resonances. Such calculations showed that, despite the known divergence of the power series
representing the normal form, a truncated series could give accurate approximations to regular
trajectories.3

The Birkhoff–Gustavson normal form was successfully applied to the semiclassical Einstein–
Brillouin–Kemmer quantization of various systems, such as the Henon–Heiles system4,5 and the
hydrogen atom~Stark and Stark–Zeeman effects6! up to very high order of coupling constant.

Ali 7 and then Eckhard8 showed that formalism of the so-called Lie-algebraic perturbation
theory in classical mechanics9,10 might be applied to the Birkhoff–Gustavson normalization and
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extended to quantum mechanical systems, either directly, resulting in the expansion which, in the
classical limit, is reduced to the Birkhoff–Gustavson normal form, or within a framework of an
algebraic quantization.11 This approach culminates in Ref. 12, where the exactness of the algebraic
quantization prescription was proved up to any order of\ for the polynomially perturbed nonde-
generate harmonic oscillator.

An opposite trend of investigations originates from the canonical Van Vleck perturbation
theory.13,14 This procedure is a quantum mechanical analogue of the classical Lie-algebraic per-
turbation method. Surprisingly it dates back about 40 years before the corresponding procedures in
classical mechanics15,16became available. Now the Van Vleck perturbation theory is widely used
in quantum chemistry both for the analytical and numerical treatment of electronic degrees of
freedom and analyses of molecular vibrations~see Refs. 17 and 18 and referencies therein!.
Several equivalent forms of such perturbation expansions were reviewed in Ref. 19. We choose
here the most conceptually simple iterative order by order reduction of the Hamiltonian.

In this paper we will review algebraic aspects of the Birkhoff–Gustavson normalization for
polynomially perturbed quantum mechanical harmonic oscillator. We describe it as a procedure to
construct unitary transformation of an initial Hamiltonian into an operator belonging to the algebra
of invariants for an unperturbed problem. Both the transformation and the transformed Hamil-
tonian are obtained as a~formal! power series in the perturbation constant. Doing this, we discuss
the Gustavson invariants, their validity in the quantum case and a set of new, specific to quantum
mechanics, invariants. Then, we demonstrate that, unlike the classical case, we can construct a
formal process of diagonalization of the quantum mechanical Birkhoff–Gustavson normal form.
In fact this process is a standard block diagonalization used in the Rayleigh–Schro¨dinger pertur-
bation theory, recasted in the form of Wick normal ordered operators. We also describe another
diagonalization process, which is a nonlinear generalization of Bogolyubov transformations used
for the diagonalization of finite dimensional bilinear operator forms.20 After this we discuss pos-
sible origins of the different behavior of classical and quantum mechanical perturbation proce-
dures. Thus the Birkhoff–Gustavson normalization procedure for perturbed quantum mechanical
harmonic oscillator is extended to a full equivalent of the Rayleigh–Schro¨dinger perturbation
expansion applied for such a system~under the Rayleigh–Schro¨dinger perturbation expansion we
assume the standard quantum mechanical perturbation treatment, including the expansion of op-
erator resolvent and the subsequent diagonalization of energy shift operator by degenerate
blocks21,22!. All steps of the described procedure are entirely made with the Wick normal ordered
operators.

Note that all calculations here are only formal, in a sense that neither discussion of power
series convergence nor conditions for the existence of constructed operators are present.

Let us consider ad dimensional system with a Hamiltonian

Ĥ~ p̂,q̂!5 (
k50

d

~ p̂k
21vk

2q̂k
2!1aĤ i~ p̂,q̂!, ~1!

where Ĥ i( p̂,q̂) is some polynomial inp̂i , q̂i . These operators of momentum and coordinate
satisfy the canonical commutation relations

@ p̂i ,q̂ j #52 id i j .

We are going to simplify the Hamiltonian performing subsequent unitary transformations
according to Van Vleck13 method.

A first step in the reduction of our Hamiltonian to the Birkhoff–Gustavson normal form will
be the diagonalization of the unperturbed harmonic oscillator Hamiltonian. To do this, we had to
perform the canonical transformation to the representation of ladder operators
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âk5
1

A2vk

~ p̂k2 ivkq̂k!, k51, . . . ,d, ~2!

âk
15

1

A2vk

~ p̂k1 ivkq̂k!,

with commutation relations

@ âk ,âl
1#5dkl ,

and all other commutators identical to zero.
In terms of the ‘‘number’’ operatorsN̂k5âk

1âk , the initial Hamiltonian will take the form

Ĥ5 (
k50

n

vkS N̂k1
1

2D1aĤ i~ âk
1 ,âk!5Ĥ01aĤ i ,

whereĤ i(âk
1 ,âk) is a polynomial inâk

1 , âk .
Before describing the Birkhoff–Gustavson perturbative treatment of the above system, let us

remember some facts about its zero order approximation.

II. UNPERTURBED SYSTEM—MULTIDIMENSIONAL HARMONIC OSCILLATOR

In what follows it will be very convenient for us to use a compact ‘‘vector’’ notation for
multi-indices. We will write n̄ as an abbreviation for a set ofd non-negative integer indices
(n1 , . . . ,nd). We will use other related notations:

•‘‘scalar’’ product: (v̄n̄)5
def

(
i51

d

v ini ,

•‘‘norm’’: un̄u5
def

(
i51

d

ni ,

•multiindex factorials and binomial coefficients:

n̄! 5
def

n1! . . . nd!,

Cn̄
m̄ 5

def
)
k51

d
Cnk
mk,

•product of operators:âm̄5
def

â1
m1 . . . âd

md ,
•and as a compact form for the system of inequalities we will write:

n̄<m̄ 5
def H n1<m1 ,

. . .
nd<md .

Before performing any actions on operators polynomial inâk
1 , âk , we must, at first, reduce

these operators to some standard ordering in constituent ladder operators. We will use the Wick
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normal ordering prescription, in which any raising operator must be moved, using commutation
relations, to the left and any lowering operator remains on the right. The Wick normal ordered
form of the operatorÂ will look like

Â5( Am̄,n̄
~W! â

1m̄

Am̄!
ân̄

An̄!
. ~3!

Note that we explicitly write out here normalizing denominators. This will be convenient for
us when discussing the Rayleigh–Schro¨dinger transformations. Besides, several identities in this
section will take the remarkably symmetrical form with such normalization.

The reduction to the Wick normal ordering may be extremely efficiently realized with the
computer algebra system, since one may take full advantage of the following identity:

ân̄â1m̄5 (
k̄<n̄
k̄<m̄

k̄!Cm̄
k̄ Cn̄

k̄â1m̄2 k̄ân̄2 k̄. ~4!

This identity is a direct consequence of the Wick theorem on the product of two normal
ordered operators. The theorem states that the Wick normal form of this product is equal to the
sum of normal operator products withall possible couplingsbetween operators. For anyk cou-
plings between multipliers, one hasCn

kCm
k different choices of two sets consisting ofk indices of

â andâ1 in multipliers andk! different couplings between these sets. The generalization to many
dimensional cases using the ‘‘vector’’ notation is straightforward.

Explicitly writing out the normalizing denominators, we will use this reordering identity in the
form

ân̄

An̄!
â1m̄

Am̄!
5 (

k̄<n̄
k̄<m̄

ACm̄
k̄ Cn̄

k̄ â1m̄2k̄

A
„m̄2 k̄…!

ân̄2k̄

A
„n̄2 k̄…!

. ~5!

Now let us more closely consider the structure of the harmonic oscillator Hilbert space~Fock
space! and operators on it.23 This space has a ground stateu0̄& and a complete orthonormal basis set
created by powers of the raising operator

um̄&5
â1m̄

Am̄!
u0̄&.

This basis naturally induces the corresponding basis for operators. Indeed, any operator on
Fock space may be decomposed as

Â5(
m̄,n̄

Am̄,n̄
~M !um̄&^n̄u5(

m̄,n̄
Am̄,n̄

~M ! â
1m̄

Am̄!
P̂0̄

ân̄

An̄!
, ~6!

whereP̂0̄5u0̄&^0̄u is a projector on the ground state. This decomposition is the ‘‘matrix’’ form of
the operatorÂ.

For any Wick normal ordered operator one may obtain its matrix form inserting an identity
expansion
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Â5(
m̄, n̄

Am̄,n̄
~W! â

1m̄

Am̄!
ân̄

An̄!
5(

m̄,n̄
Am̄,n̄

~W! â
1m̄

Am̄! H (k̄ uk̄&^k̄uJ ân̄

An̄!

5 (
m̄,n̄,k̄

Am̄,n̄
~W! â

1m̄1 k̄

Am̄!k̄ !
P̂0̄

ân̄1 k̄

An̄!k̄ !
.

Changing summation indices, we conclude matrix elements of the operatorÂ to be

Am̄,n̄
~M !5 (

k̄<n̄
k̄<m̄

ACm̄
k̄ Cn̄

k̄Am̄2 k̄,n̄2 k̄
~W!

. ~7!

One may obtain the inverse transformation from the matrix to the Wick normal ordered form of an
operator using the following formula for the normal ordered form of the ground state projector23

P̂0̄5:exp~2â1a!:5(
n̄

~21! zn̄z â
1 n̄ân̄

n̄!
. ~8!

It is easy to check that the only nonzero matrix element of the above operator will be between a
ground state wavefunctions. The substitution of this ground state projector into the definition of
matrix form (6) results in the following connection between coefficients of normal and matrix
forms of the operator:

Am̄,n̄
~W!5 (

k̄<m̄
k̄<n̄

~21! zk̄ zACm̄
k̄ Cn̄

k̄Am̄2 k̄,n̄2 k̄
~M !

. ~9!

Note the similarity of coefficients in~5!, ~7!, and~9!.
Now we proceed to the discussion of dynamical features of the harmonic oscillator. It is

amazing that all in the rest of this section is a consequence of the following two commutators:

@N̂k ,âk
m#52mâk

m ,
~10!

@N̂k ,âk
1m#5mâk

1m.

Commutation properties and unitary transformations of operators may be treated in a conve-
nient way with the help of the superoperator formalism.14 Here we will only outline some basics
of it. For any operatorĤ one may introduce the quantum Liouville superoperator which acts on
the operator space

L̂Ĥ5@Ĥ,.#, L̂ĤÂ5@Ĥ,Â#

~we will use thecalligraphic style letters here to denote the superoperators!
Corresponding Liouville operator in the classical mechanics acts upon any function on the

phase space resulting in the Poisson bracket withH:

L̂ H
clA5$H,A%5(

k
S ]H

]pk

]A

]qk
2

]A

]pk

]H

]qk
D .

An interest to studyL̂Ĥ originates from the well-known fact that the exponent of this super-
operator is a unitary map in the operator space
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A˜5eiaL̂ĤÂ5eiaĤÂe2 iaĤ.

Some properties of the general Liouville superoperator are summarized in Appendix A.
Here, in the harmonic oscillator context, we are particularly interested in

L̂Ĥ0
5@(0

nvkN̂k ,.#. Using the commutation properties~10! one can verify that any Wick normal

ordered monomial is an eigenoperator ofL̂Ĥ0

L̂Ĥ0
â1m̄ân̄5~v̄,m̄2n̄!â1m̄ân̄. ~11!

Since it is linear, the superoperatorL̂Ĥ0
admits the decomposition of its domainD into the

direct sumD5N % R, whereN or R are the kernel and the range space, respectively. The
decomposition of the domainD into the desired form means that any element of it can be written
uniquely as the sum of an element in the kernel space and an element in the range space. Now it
may be easily seen that the linear superoperatorL̂Ĥ0

has the above decomposition, since each
term inD is a linear combination of monomial terms, and since each monomial belongs to the
kernel ~range! space ofL̂Ĥ0

if and only if (v̄,m̄2n̄) equals~does not equal! zero.

In other words, every polynomial operatorP̂ on the harmonic oscillator Hilbert space may be
uniquely decomposed into parts commutative and noncommutative withĤ0

P̂5^P̂&1$P̂%,

L̂Ĥ0
^P̂&50, ^P̂&PN , ~12!

L̂Ĥ0
$P%Þ0, $P̂%PR.

In the classical mechanics the above appears as the decomposition of function on the phase space
into thesecularand theperiodicalparts.

For the perturbation theory which we will discuss further, it is crucial that on the range space
of L̂Ĥ0

this superoperator may be inverted. This means that for any polynomial operatorP̂ there

exists another polynomial operatorĜ P R, such that

L̂Ĥ0
Ĝ52L̂ĜĤ05$P̂%.

We will denote this operator asĜ5L̂
Ĥ0

21
P̂. If we demand thatL̂

Ĥ0

21
^P̂&50, then the explicit

construction ofĜ for P̂ will be

L̂
Ĥ0

21
P̂5(8 1

~v̄,m̄2n̄!
Pm̄,n̄

~W!â1m̄ân̄, ~13!

where the prime indicates that all the terms with the vanishing denominators must be omitted from
the sum.

One may easily check that for any Hermitian polynomial operatorP̂, operatorsL̂Ĥ0
P̂ and

L̂
Ĥ0

21
P̂ are anti-Hermitian. We also mention here the superoperatorsP̂R5L̂

Ĥ0

21
L̂Ĥ0

and

P̂ N 512P̂R , projectors onR andN spaces, respectively. Primas14 established formal expres-
sions for these superoperators without any explicit reference to the matrix or the Wick normal
ordered forms
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P̂ N 5 lim
a→0

aE
0

`

dte2ate2 i t L̂Ĥ0, ~14!

L̂
Ĥ0

21
5 i lim

a→0
E
0

`

dte2ate2 i t L̂Ĥ0~12P̂ N !.

Let us describe now a null subspaceN . This is the space of operators commutative with
Ĥ0—a space of invariants of the harmonic oscillator. Due to the linearity ofL̂Ĥ0

and the Liebniz
property

L̂Ĥ~ÂB̂!5Â~L̂ĤB̂!1~L̂ĤÂ!B̂,

this space receives an algebraic structure. In factN is the representation of the algebra of
invariants for the harmonic oscillator, and we are going to describe now its basis.

First of all, there ared invariants, commutative with each other, which corresponded to the
individual dimensions

N̂i5âi
1âi , i , j51, . . . ,d, ~15!

@N̂i ,N̂j #50.

The oscillator HamiltonianĤ0 is the function of these invariants. In the classical mechanics the
corresponding invariants are calledactions.

At this point we will distinguish between the degenerate~resonance in classical mechanics!
and nondegenerate case. One hasr th-fold degeneracy whenever thev i , i51, . . . ,d, are con-
nected byr ~and onlyr ! linearly independent relations of commensurability

(
i51

d

Dkiv i50, k51, . . . ,r , ~16!

where allDki are integers. We will use this in more convenient vector form

~v̄,DW k!50, ~17!

whereDW k is the set ofr independent vectors with integer coefficients. Ifv i are rationally inde-
pendent, the problem is nondegenerate~nonresonance!.

As is known from the classical mechanics, otherwise ergodic on the surface of constant
actions (Ni), the phase space trajectory of the classical oscillator with commensurability relations
between frequencies will be bounded to the lower dimensional tori. Projection of such tori on the
coordinate space of a two-dimensional oscillator, for example, is the famous Lissajous figures. The
quantum mechanical oscillator with commensurable frequencies will have degenerate energy lev-
els. This particular type of the degeneracy is historically namedaccidental, in contrast with the
anotherintrinsical degeneracy of quantum mechanical systems originated from the spatial sym-
metries. Our attention will be focused here on the accidentally degenerate systems, since this type
of degeneracy is responsible for most of the resonances in the classical limit.

In the nondegenerate case operatorsN̂i form a full system ofd invariants for the anisotropic
harmonic oscillator with incommensurable frequencies. But in the degenerate case the harmonic
oscillator has some hidden symmetry~responsible for the accidental degeneracy!, which reveals
itself in the existence of 2r additional noncommutative non-Hermitian invariantsK̂ i and K̂ i

1
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K̂ i5)
k51

d

b̂k
uDiku

~signDik!, b̂k~ l !5H âk1, l511,

âk , l521,
i51, . . . ,r . ~18!

In general not all of these invariants (N̂’s, K̂ ’s and K̂1’s! are independent. We will neither
construct here a maximal set of independent Hermitian invariants, nor explicitly establish their
algebraic properties. We only note that in the classical mechanics the corresponding polynomials
form a Lie algebra, but the quantum mechanical case is more complicated, and nonlinear exten-
sions or quantum deformations of this Lie algebra arise.24

Instead we will focus our attention on the set of operators that form the center of the above
algebra—the set of invariants commutative with all other invariants of the harmonic oscillator. As
was explicitly shown in Ref. 25 any operator commutative with all the above written invariants
(N̂’s, K̂ ’s andK̂1’s! for thed dimensional harmonic oscillator withr commensurability relations
between frequencies is a function ofd independent operators. These operators are divided into two
distinct subgroups

•d2r operators~Gustavson invariants! of form:

Î i5(
j51

d

a i j N̂ j , i51, . . . ,d2r . ~19!

HereaW i is any set ofd2r independent vectors orthogonal to allr commensurability vectors
DW k

(
j51

d

a i j Dk j50,
i51, . . . ,d2r ,
k51, . . . ,r .

A classical version of these invariants appeared in Ref. 2 as ‘‘integrals of motions for normal
form.’’ Since (v̄,DW k)50, it is clear that the oscillator HamiltonianĤ0 is a linear function of
these invariantsÎ i . Sometimes such operators are named the ‘‘first order Casimirs.’’
•New complementaryr periodic invariants~‘‘generalized parities’’25!, without the classical
counterpart, of the form

V̂i5expS 2p i(
j50

d

b i j N̂ j D , i51, . . . ,r . ~20!

HerebW i is a set ofd vectors dual toDW k . Suchb i j satisfy the system

(
j

b i j Dk j5d ik , i51, . . . ,r .

The existence of these invariants for the quantum mechanical oscillator is a direct conse-
quence of the general commutation relationF̂(N̂)â1mân5â1mânF̂(N̂1m2n), which may
be proven for any operator functionF̂ if one compares matrix elements in both sides of the
identity.
As we will see further, these invariants (Î i andV̂i) will survive under the general perturbation

of the harmonic oscillator. Unlike them, the invariantsN̂i and K̂ i will be destroyed under the
perturbation. This means that there is no analytical extension of these invariants to the perturbed
case.

Now, having described the unperturbed system we will return to the perturbed one.
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III. THE BIRKHOFF–GUSTAVSON NORMALIZATION

In this section we will briefly describe the formal reduction of the general Hamiltonian

Ĥ5(
i50

`

a i Ĥ i , ~21!

into a simpler form by unitary transformations with generators chosen from the range ofL̂Ĥ0
. As

we will see further, the word ‘‘simpler’’ means that the transformed Hamiltonian will have the
diagonal or the block-diagonal matrix form. Since we deal now with the Wick normal ordered
operators, we will use the following definition by Gustavson2 for the Hamiltonian in the Birkhoff–
Gustavson normal form~BGNF!:

The Hamiltonian Hˆ 5( i50
` a i Ĥ i is in BGNF up to the orderan if all terms in it of the order

a i , i,n belong to the kernel subspace ofL̂Ĥ0
.

In other words, part of our Hamiltonian transformed into the BGNF will be commutative with
the unperturbed Hamiltonian, and thus belongs to the algebra of invariants for the unperturbed
problem. Note that by assumption our Hamiltonian is normalized~is in BGNF! at least up to the
first order (Ĥ0 P kerL̂Ĥ0

).
This definition of the normalized Hamiltonian was used by Gustavson in the case of the

classical mechanics to describe the formal process of the reduction of the classical Hamiltonian to
a simpler~integrable! form. The original version of normalization process used the formalism of
generating functions, which in quantum mechanics leads to additional complications due to the
noncommutability of operators. An example of a similar approach may be found in Ref. 26.
Fortunately, the original Gustavson algorithm was modified8 using formalism ofgeneratorsof
symplectic transformations,9 which has the direct quantum mechanical counterpart. Let us now
describe it.

Assume that quantum mechanical Hamiltonian of type~21! is in BGNF up to the ordern. Our
aim is to find such unitary transformation, after application of which, the original Hamiltonian will
be normalized up to the ordern11

ĤBG5eia
nĜnĤe2 ianĜn5eia

nL̂ĜnS (
m50

`

amĤmD
5 (

m50

`

amS (
k50

@m/n#
1

k!
L̂

iĜn

k
Ĥm2nkD

5Ĥ01aĤ11•••1an21Ĥn211an~Ĥn1L̂ iĜn
Ĥ0!1O~an11!

5 ~already normalized terms!1an~Ĥn2 i L̂Ĥ0
Ĝn!1O~an11!;

here@m/n# denote an integer part of this quotient.
As was demonstrated in the previous section, we may always find the Hermitian operator

Ĝn52 i L̂
Ĥ0

21
$Ĥn% fromR such that

L̂Ĥ0
Ĝn52 i $Ĥn%.

After the unitary transformation with generatorĜn our Hamiltonian becomes normalized up to the
ordern11 too,

ĤBG5Ĥ01a^Ĥ1&1•••1an21^Ĥn21&1an^Hn&1O~an11!.

2651A. S. Nikolaev: On the diagonalization of quantum normal form

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



It is clear from the above that repeating the procedure forn11, etc., we obtain a formal
process of normalization of the original Hamiltonian to subsequently higher orders.

In summary, we describe the construction for initial Hamiltonian (21) and any numbern of
such unitary transformation

eiaĜ~n!~a!5eia
nĜn•••eia

2Ĝ2eiaĜ1, ~22!

that our Hamiltonian will be in the Birkhoff–Gustavson normal form up to the ordern11. Now
we will demonstrate an application of the above defined procedure to two general classes of
quantum mechanical systems.

A. Nondegenerate systems

In the case when no commensurability relations (16) exist, the unperturbed system has com-
mutative symmetry algebra, and the kernel subspace ofL̂Ĥ0

consists only of polynomials of

N̂k . In this case the Hamiltonian reduced to Birkhoff–Gustavson normal form became diagonal in
representation ofN̂k operators.

A normalized part of the nondegenerate Hamiltonian will be a function ofd Hermitian op-
eratorsN̂k , each being commutative with all others~and the normalized part of Hamiltonian!.
Thesed operators form a Complete Set of Commutative Operators for such system. The explicit
form of these operators in the initial representation is

Ñk5e2 iaL̂Ĝ~n!N̂k5e2 iaĜ1•••e2 ianĜnN̂ke
ianĜn•••eiaĜ1, ~23!

and may be easily calculated as a power series expansions up to the desired order ina.
Approximations of perturbed eigenvalues and eigenfunctions up too(an) are classified by the

complete set ofd quantum numbersnk and are given by

Eñ5HBG~n1 , . . . ,nd!, uñ&5e2 iaĜ~n!un̄&. ~24!

Due to the uniqueness of asymptotic power series ina, the results of the above procedure coincide
with the Rayleigh–Schro¨dinger perturbation expansion for eigenvalues and eigenfunctions of the
perturbed quantum mechanical system.

Note that, if we restore powers of\ in the above formulas, operatorsÑk will naturally realize
the program of the Einstein–Brillouin–Kemmer quantization for all orders ofa in the quasi-
classical approximation.26 This fact leads also to the success of the so-called quasi-classical quan-
tization of the Birkhoff normal form.4

1. Example 1. One-dimensional anharmonic oscillator

The system described by Hamiltonian

Ĥ5 p̂21q̂21aq̂4.

After normalization of the Hamiltonian up toa6

ĤBG52S N̂1
1

2D
1aS 381

3

2 S N̂1
1

2D
2D

2a2S 6732S N̂1
1

2D1
17

8 S N̂1
1

2D
3D
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1a3S 15391024
1
1707

128 S N̂1
1

2D
2

1
375

64 S N̂1
1

2D
4D

2a4S 3051418192 S N̂1
1

2D1
89165

1024 S N̂1
1

2D
3

1
10689

512 S N̂1
1

2D
5D

1a5S 145656932768
1
9317949

16384 S N̂1
1

2D
2

1
587265

1024 S N̂1
1

2D
4

1
87549

1024 S N̂1
1

2D
6D

1•••.

Here we see the first terms of the Rayleigh–Schro¨dinger perturbation expansion for the anhar-
monic oscillator. The growth of numerical coefficients in higher order terms reflects an asymptotic
behavior of perturbative approximations. Using~24! we obtain perturbed eigenfunctions~not
presented here!.

The discussion of perturbation expansion for the quartic anharmonic oscillator and the reasons
why coefficients in eigenvalues series are polynomials with the definite parity of (N̂1 1/2) alone,
may be found in Ref. 27.

B. Accidentally degenerate systems

Now we will consider a case of nonzero number of commensurability vectors (16). The
unperturbed quantum mechanical system in such a case will have accidentally degenerate energy
levels, and, as we have previously discussed, additional noncommutative invariants. Now the
kernel subspace ofL̂Ĥ0

consists of not only polynomials ofN̂k , but also includes all the Wick
normal ordered monomials for which (v,m̄2n̄)50. The corresponding classical system is re-
ferred to as resonance.

Here and in what follows we will suppose that Hamiltonian is in BGNF up to sufficiently high
order ina, and will usually omit the unnormalized part of it, dealing only with the normalized
one.

It is clear from the previous section that the normalized Hamiltonian may be written in the
form of power series in invariants of the unperturbed system. Due to noncommutativity of these
invariants, some ordering for any term in this series must be imposed. Since not all of the above
invariants are independent, this power series may be even nonunique. Series of such type appear
as the ‘‘standard form’’ of the classical BGNF in Ref. 11~in fact no connection was established
in this paper between such series and the invariants of the unperturbed system!.

Becaused invariants Î and V̂ are commutative with all other invariants of the unperturbed
problem, these operators will be commutative with the normalized Hamiltonian as well. This
means that for the degenerate system we again haved commutative with each other and the
Hamiltonian operators~compare tod2r Gustavson invariants for the corresponding classical
system!. But now the reduced HamiltonianĤBG is not a function of Î and V̂ operators only, and
thesed commutative operatorsdo not form the Complete Set of Commutative Operators for the
degenerate system.

Note, that any degenerate eigensubspace of the oscillator Hamiltonian is the degenerate eigen-
subspace for each of thed invariant operatorsÎ and V̂ as well. This follows from the fact that
quantum numbersNW for two eigenvectors ofĤ0 with the same eigenvalue may differ only in
integer coefficient combination ofDW i . As a result eigenvalues ofd operatorsÎ and V̂ will not
classify the degenerate eigenstates of the perturbed system. This is not surprising, since the
splitting of Ĥ eigenvalues depends on theperturbation Ĥi , and cannot be described by operators
originating from the center of the algebra of invariants for theunperturbedsystem. One may
obtain these perturbative invariants in the initial representation similar to those in (23).
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1. Example 2. The Henon –Heiles system

The Henon–Heiles two-dimensional system was originally used by Gustavson2 as the first
example of BGNF. This system is described by~1:1! resonance Hamiltonian

Ĥ5 1
2 ~ p̂1

21q̂1
21 p̂2

21q̂2
2!1a~ q̂2

32 1
3 q̂1

2q2!.

After normalization of Hamiltonian up toa4

ĤBG5S 12
1

9
a22

11

108
a4D1S 12

2

3
a22

61

54
a4D ~ â1

1â11â2
1â2!

2
1

12
a2S 51

47

4
a2D ~ â1

12â1
21â2

12â2
2!2

7

12
a2S 12

1

4
a2D ~ â1

12â2
21â2

12â1
2!

1
1

3
a2S 12

27

4
a2D â11â21â1â2

1a4S 1
101

432
â1

13â1
32

161

144
â1

13â1â2
22

65

16
â1

12â2
1â1

2â21
175

144
â1

12â2
1â2

3

2
235

432
â2

13â2
32

161

144
â1

1â2
12â1

31
47

16
â1

1â2
12â1â2

21
175

144
â2

13â1
2â2D

1 . . . . ~25!

The above discussion systematizes the structure of the normalized Hamiltonian, but unfortu-
nately has not answered the question about eigenvalues and eigenfunctions of the perturbed sys-
tem. The definite solution of this may be obtained following the guidelines of the Rayleigh–
Schrödinger perturbation theory for degenerate systems.

As we have already noticed, in the degenerate case the Hamiltonian reduced to the BGNF is,
in general, not diagonal in theN̂k representation. But, since the normalized part of the Hamiltonian
ĤBG is commutativewith the unperturbed HamiltonianĤ0 , the matrix ofĤBG must beblock-
diagonal in this representation, with blocks corresponding to degenerate eigenstates ofĤ0 . This
apparently becomes evident if one convertsĤBG into the matrix form. Doing this, it is easy to
recognize that the condition (v̄,n̄)5(v̄,m̄) means that all nonzero matrix elements ofĤBG must
connect only states corresponding to the same energy of the unperturbed system.

At this point one usually performs the standard procedure for the Rayleigh–Schro¨dinger
perturbation theory:

With account for the matrix form of Hˆ BG being block-diagonal, one needs solve secular
equations for these blocks and perform a unitary diagonalizing transformation inside each block
independently, obtaining eigenvalues and eigenvectors for the perturbed system.

This procedure supposes the conversion ofĤBG into the matrix form. But it is interesting that
we can perform essentially the same diagonalization in the Wick normal form of operators as well.
This leads to an unusual class of unitary transformations, not infinitesimal in nature, which we will
also refer to as the Rayleigh–Schro¨dinger transformations.

IV. RAYLEIGH–SCHRÖDINGER TRANSFORMATIONS

We will utilize now the obvious fact that due to algebraic structure, the kernel subspace of
L̂Ĥ0

is stable against unitary transformations from it. For any monomial, belonging to the kernel

subspaceN of L̂Ĥ0
~or, equivalently, the algebra of invariants for the harmonic oscillator!, we

introduce the characteristic functionalL
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L~ â1 n̄âm̄!5
def

~v̄,m̄!5~v̄,n̄!. ~26!

This characteristic functional will take values of energy levels of the unperturbed system. The
value of this characteristic functional for a polynomial operator will be the minimum ofL values
for individual monomials in that operator.

Now we can group the terms of the reduced Hamiltonian byL values

ĤBG5(
L

(
m̄,n̄

~v,n̄!5L
~v,m̄!5L

Hm̄,n̄
~W! â

1m̄

Am̄!
ân̄

An̄!
. ~27!

We note here that the expansion of any operator belonging toN into the power series in
â1 and â leads to the expansion in monomials with increasing values of characteristic functional
L.

Whereas all presented in this section is quite clear from the matrix form point of view, it is not
the case with the Wick normal ordered form of operators. Appendix B will shed some light on the
underlying mathematics for products of Wick normal ordered operators belonging toN .

In this appendix we demonstrate that:
•The value of characteristic functionalL for the product of two operators is greater or equal
to that of multipliers

L~ÂB̂!>max~L~Â!,L~B̂!!.

•Terms having the minimal allowed value ofL5L0 in the product of two homogeneous
operators:Â,B̂ P N , L(Â)5L(B̂)5L0 , will obey the matrix multiplication law

(
k̄ l̄

Ak̄ l̄

â1 k̄

Ak̄!
â l̄

Al̄!
(
m̄n̄

Bm̄n̄

â1m̄

Am̄!
ân̄

An̄!
5(

k̄ n̄
S (

m̄
Ak̄m̄Bm̄n̄D â1 k̄

Ak̄!
ân̄

An̄!
1~••• !.

We proceed now to the explicit construction of the diagonalizing transformation. Let us
consider, for any possible value ofL5L0 , a subspace of our Hilbert space spanned by eigen-
vectors ofĤ0 with an eigenvalue equal toL0 . The orthogonal projector on this finite-dimensional
subspace is

P̂5 (
n̄

~v,n̄!5L0

un̄&^n̄u.

Using (9) we convert this projector into the Wick normal ordered form

P̂5 (
L>L0

(
n̄

~v,n̄!5L
H (

k̄< n̄
~v,k̄!5L2L0

~21! zk̄ zCn̄
k̄J â1 n̄ân̄

n̄!
. ~28!

For any unitary matrixum̄n̄ with dimensions equal to those of thisL0 subspace we construct
corresponding operatorû5(um̄n̄um̄&^n̄u with the properties

û1û5 P̂,

ûP̂5 P̂û5û,

@Ĥ0 ,û#50.
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Again we convert this ‘‘unitary inside block’’ operator into the Wick normal ordered form as

û5 (
L>L0 5 (

m̄,n̄,k̄
~v,n̄!5L0
~v,m̄!5L0

~v,k̄!5L2L0

~21! zn̄zum̄,n̄ACm̄1k̄
k̄

Cn̄1k̄
k̄ â1m̄1k̄

A
„m̄1 k̄…!

ân̄1k̄

A
„n̄1 k̄…! 6 . ~29!

To finish the construction of the commutative withĤ0 unitary operator we must extendû to our
full Hilbert space as

Û512 P̂1û. ~30!

This operator is the normal form of the unitary transformation performed in theL0 block of
the matrix form independently. The transformation of this type is used in the Rayleigh–
Schrödinger perturbation theory for the final diagonalization of the degenerate block in the Hamil-
tonian. We explicitly present here expressions@~28!–~30!# to outline the cumbersome structure of
Û in the Wick normal ordered form. The construction of the above operator makes it clear that
performing the subsequent unitary transformations of type (30) we will diagonalize the Hamil-
tonian reduced to BGNF by blocks with increasing values of characteristic functionalL.

Indeed, suppose that all terms in our Hamiltonian with the value of characteristic functional
L,L0 are already diagonalized

ĤBG5 (
~v,k̄!,L0

H k̄ k̄
~L! â

1 k̄âk̄

k̄!
1 (

~v,n̄!5L0
~v,m̄!5L0

H
m̄n̄
~L0! â

1m̄

Am̄!
ân̄

An̄!
1~••• !. ~31!

In order to construct the diagonalizing transformationÛ we must solve the following secular
equation:

detSHm̄n̄
~L0!

1 (
~v,k̄!,L0

H k̄ k̄
~L!
Cn̄
k̄dm̄n̄2En̄n̄dm̄n̄D 50. ~32!

Suppose that we can obtain its solution at least as a power series in some rational power ofa
~Puizeaux series!. After this we will have the diagonalizing unitary finite-dimensional matrix
um̄n̄ and construct its normal form (30). In the transformed operator

ĤD5ÛĤBGÛ
1,

all terms with the characteristic valueL5L0 will also be diagonal.
This process results in the expansion of the Hamiltonian in diagonal operators with increasing

characteristic values ofL, or equivalently, the increasing powers of raising and lowering opera-
tors. If we cut this expansion on some value ofL5L0 , then analytical expressions for all exited
states originating from states of the unperturbed Hamiltonian with the energyE<L0 will be
obtained up to the desired order of perturbation parametera.

After such transformation the diagonalized part ofĤD will be an ~operator! function of d
commutative operatorsÑi . Eigenvalues of these operators will classify eigenvalues of the per-
turbed system with the complete set ofd quantum numbers.
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1. Example 2 (continued). Complete diagonalization of the Henon –Heiles system
As one may see from the previous example, for the reduced to the BGNF Henon–Heiles

Hamiltonian (25), the first excited state, corresponding toL51, is doubly degenerate. But the
reduced Hamiltonian is already diagonal on the subspace spanned by ketsâ1

1u0̄& and â2
1u0̄&.

On subspaces of the next exited states, corresponding toL52 and 3 this Hamiltonian will be
diagonalized by the unitary transformationĤD5ÛĤBGÛ

1, where

Û511
A2
4
â2

12â1
22

1

2 S 12
A2
2 D â212â2

22
A2
4
â1

12â2
22

1

2 S 12
A2
2 D â112â1

2

1S 132
A2
4 D â113â1

31
1

4
â1

13â1
2â21

A2
4
â1

13â1â2
22

1

12
â1

13â2
3

1
1

4
â1

12â2
1â1

32
A2
4
â1

12â2
1â1

2â21
1

4
â1

12â2
1â1â2

21
A2
4
â1

12â2
1â2

3

2
A2
4
â1

1â2
12â1

31
1

4
â1

1â2
12â1

2â22
A2
4
â1

1â2
12â1â2

21
1

4
â1

1â2
12â2

3

1
1

12
â2

13â1
32

A2
4
â2

13â1
2â22

1

4
â2

13â1â2
21S 132

A2
4 D â213â2

31~••• !. ~33!

Here the first row diagonalizesL52 part of ĤBG . It is easy to check the unitarity~up to
L53) of the above transformation. The transformed Hamiltonian will now take the following
diagonal form:

ĤD5S 12
1

9
a22

11

108
a4D1S 12

2

3
a22

61

54
a4D N̂11S 12

2

3
a22

61

54Da4N̂2

1a2S 132
9

4
a2D N̂1N̂2

1
1

2
a2S 132

9

4
a2D ~N̂121!22a2S 11

5

6
a2D ~N̂221!2

1a2S 761
229

216
a2D ~N̂222!32

95

54
a4~N̂122!3

2a2S 761
1

8
a2D N̂1~N̂221!22a2S 732

1

6
a2D N̂2~N̂121!21~••• !. ~34!

Notation (x)n is used here for the Pochammer polynomial

~x!n5x~x11!•••~x1n21!.

Note that (34) holds only for the values of quantum numbersn1 andn2 such thatn11n2<3. This
formula provides us with analytical expressions up too(a4) for the 10 lowest eigenvalues of the
Henon–Heiles system.

An alternative to the above diagonalization process may be established. Since we deal with
the Wick normal ordered operators, it is even more natural to diagonalizeL5L0 terms in (31)
using the explicitly unitary operator

ĤD5ei L̂ŵĤBG5ÛĤBGÛ
1,

2657A. S. Nikolaev: On the diagonalization of quantum normal form

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



where

Û5eiŵ5expS i (
~v,n̄!5L0
~v,m̄!5L0

wm̄n̄

â1m̄

Am̄!
ân̄

An̄!D , ~35!

andwm̄n̄ is a finite dimensional Hermitian matrix such that the exponent of it coincides with the
used above finite dimensional diagonalizing unitary matrixum̄n̄

um̄n̄5~eiw!m̄n̄ . ~36!

It immediately follows from the results of Appendix B thatL5L0 terms in operator (35)
coincide with those of the Rayleigh–Schro¨dinger transformation~28!–~30!, and therefore the
transformed Hamiltonian will also become diagonal inL0 terms. To continue the diagonalization
process, we need to calculate terms with characteristic valueL.L0 in operator exponent (35).
We can perform this exponentiation using the block-diagonality of the operator

ŵ5 (
~v,n̄!5L0
~v,m̄!5L0

wm̄n̄

â1m̄

Am̄!
ân̄

An̄!
.

At first we convert the operatorŵ into the matrix form. Since it is block-diagonal, the
exponent ofŵ is reduced to exponentiation of independent finite-dimensional blocks, and may be
performed by algebraic methods. The last step will be to convert the resulting operator again into
the Wick normal ordered form. Unfortunately secular equations appearing during the application
of this process are, in general, more complicated.

2. Example 3. Exponent of block diagonal operator

Diagonalization ofL52 terms in the Hamiltonian of Henon–Heiles system (25) was done in
Example 2 by the first row of (33). Alternatively we may use the operator:

Û5exp
p

8
~ â2

12â1
22â1

12â2
2!.

For illustration purposes we calculate the Wick normal ordered form of this operator up to
L53 terms using the above procedure

Û511
A2
4
â2

12â1
22

1

2 S 12
A2
2 D â212â2

22
A2
4
â1

12â2
22

1

2 S 12
A2
2 D â112â1

2

1S 132
A2
4

1
1

6
cosSA34 p D D ~ â2

13â2
31â1

13â1
3!

1SA24 2
A3
6

sinSA34 p D D ~ â1
13â1â2

21â1
12â2

1â2
32â1

1â2
12â1

32â3
13â1

2â2!

1S 12 cosSA34 p D 2
A2
4 D ~ â1

1â2
12â1â2

21â1
12â2

1â1
2â2!1~••• !.

We note that (35) is a straightforward generalization of the transformation used by Bogoly-
ubov and Bogolyubov20 for the diagonalization ofL51 bilinear operator forms.
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If we restore the\ in the above constructions, it becomes clear that these diagonalization
processes are of pure quantum origin, without the classical analogue. Indeed, increasing powers of
\ will appear in the denominators of expressions corresponding to the higher energy levels. In the
classical region (Ni→`, \→0, \Ni5const), whenever the multiplicity of the degenerate energy
levels tends to infinity, such diagonalizing transformations, as well as the additional perturbative
invariantsV̂i will not have the definite limit. However more detailed studies of the intermediate
quasiclassical region should be performed.

V. SUMMARY AND DISCUSSIONS

In this paper we have described the Birkhoff–Gustavson normalization as a procedure to
transform the Hamiltonian ofd dimensional harmonic oscillator with polynomial perturbation into
the operator belonging to the algebra of invariants for the unperturbed problem. The transformed
Hamiltonian was obtained~at least formally! as an expansion in powers of perturbation constant
and generators of this algebra.

It is known10 that in the classical perturbation theory thed dimensional system with ther
resonance conditions between frequencies may be~formally! reduced to ther dimensional system.
This reduction is made usingd2r Gustavson invariants, since each of them may be analytically
continued to the invariant of perturbed system. But the classical Hamiltonian with more than one
degree of freedom is, in general, nonintegrable. This means that, in general, the classical pertur-
bation theory failed to give analytical predictions for the system with two or more resonance
conditions. The perturbative description of such systems is possible only for very special classes
of resonance conditions and/or perturbations.

Unlike this, the quantum mechanical perturbation theory does not have this conceptual diffi-
culty and always results in definite~formal, but frequently asymptotic! approximations to eigen-
values and eigenvectors of the perturbed system. As has been shown in the previous section, this
leads to the fact that we can always construct the process of diagonalization of the quantum
mechanical Birkhoff–Gustavson normal form. Possibly, this rather different behavior of two very
close in spirit procedures may be attributed to the existence ofr additional quantum mechanical
invariants.

From the other point of view, we note that the described diagonalization of the quantum
mechanical BGNF is achieved using two different power series expansions. One of them was
made in powers of the perturbation constanta, and the other in powers of ladder operatorsâ and
â1. Classical mechanics is more restrictive. Since all classical variables are commutative, the
BGNF expansion in powers ofa coincides with the expansion in powers ofa anda1. Moreover,
the original definitions by Birkhoff1 and Gustavson2 of normalization procedure were made in
terms of power series in variables, rather than the perturbation constant. Because of this, one
cannot, in general, diagonalize the reduced-to-BGNF classical Hamiltonian.

It is worth mentioning that the described diagonalization process, when applied to the Wick
normal ordered operators, includes the construction of very interesting, not infinitesimally close to
unity, unitary transformations. These transformations may be treated as nonlinear generalizations
of the finite dimensional Bogolyubov transformations.

In summary, we demonstrate that the Birkhoff–Gustavson normalization procedure for the
perturbed multidimensional harmonic oscillator may be extended, in the quantum mechanics, to
the full equivalent of the Rayleigh–Schro¨dinger perturbation expansion for such a system. All
steps of this procedure are performed on Wick normal ordered operators.
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APPENDIX A: THE LIOUVILLE SUPEROPERATOR

We summarize here some of the properties of general Liouville superoperatorL̂Ĥ (a, b and
e constants!:

1. L̂Ĥ is linear:L̂Ĥ(aÂ1bB)5aL̂ĤA1bL̂ĤB,
2. and antisymmetric:L̂ÂB̂52L̂ B̂Â,
3. it obeys the Liebniz rule:L̂Ĥ(ÂB̂)5Â(L̂ĤB)1(L̂ĤA)B̂,
4. and the Jakoby identity:L̂Ĥ(@Â,B̂#)5@Â,L̂ĤB̂#1@L̂ĤÂ,B̂#,
5. or equivalently:L̂@Â,B̂#5@L̂Â ,L̂B̂#,
6. L̂

Ĥ

n
@Â,B̂#5(m50

n Cn
m@L̂Ĥ

m
Â,L̂

Ĥ

n2m
B̂#,

an exponent of it is the linear map which preserves the algebraic properties of operators:

7. eeL̂Ĥ(aÂ1bB)5aeeL̂ĤÂ1beeL̂ĤB̂,

8. eeL̂Ĥ(ÂB̂)5(eeL̂ĤÂ)(eeL̂ĤB̂),

9. eeL̂Ĥ@Â,B̂#5@eeL̂ĤÂ,eeL̂ĤB̂#,

10. and may be decomposed as:eeL̂ĤÂ5eeĤÂe2eĤ.

Properties 1–9 take place both in the quantum and classical case with the corresponding change,
whenever needed, of the commutator to the Poisson bracket (@ .,.#→$.,.%).

APPENDIX B: PRODUCTS OF INVARIANT POLYNOMIALS

Consider the product of two operatorsÂ andB̂ belonging to the kernel subspace ofL̂Ĥ0
. We

assume that minimal values of the characteristic functionalL(â1m̄ân̄)5(v̄,m̄)5(v̄,n̄) for mo-
nomials in each of the above operators areLA andLB , respectively. We are interested in terms
with the minimal value ofL in this product. Using (4) we may write down these terms as

(
k̄ l̄

Ak̄ l̄

Ak̄!l̄ !
â1 k̄â l̄(

m̄n̄

Bm̄n̄

Am̄!n̄!
â1m̄ân̄5 (

k̄ l̄ m̄n̄

D k̄ l̄ m̄n̄â
1 k̄1m̄2min~ l̄ ,m̄!ân̄1 l̄2min~ l̄ ,m̄!1~••• !

5 (
k̄ l̄ m̄n̄

D k̄ l̄ m̄n̄â
1 k̄2 l̄1max~ l̄ ,m̄!ân̄2m̄1max~ l̄ ,m̄!1~••• !,

~B1!

where terms with the greater value of characteristic functionalL are denoted by (•••). The
notation ‘‘max(l̄,m̄)’’ is used for the vector, each component of which is the maximum of the
correspondent component ofl̄ andm̄. CoefficientsD are

D k̄ l̄ m̄n̄5
Ak̄ l̄

Ak̄!l̄ !
Bm̄n̄

Am̄!n̄!
~min~ l̄,m̄!!!Cm̄

m̄2min~ l̄ ,m̄!C l̄
l̄ 2min~ l̄ ,m̄!

.

Let us calculate characteristic valuesL for explicitly written terms in~B1!

L5~v̄,n̄2m̄1max~ l̄,m̄!!5~v̄,max~ l̄,m̄!!> H ~v, l̄!5LA ,
~v,m̄!5LB ,

since allv i.0.
Consider now the homogeneous case, whenever each monomial in both operators has equal

characteristic valueL0 . The minimal allowed value ofL in product ÂB̂ will have terms with
L5L0 , or
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~v̄,max~ l̄,m̄!!5~v̄ , l̄!,

~v̄,max~ l̄,m̄!!5~v̄ ,m̄!.

The above equalities may take place only forl̄5m̄. So, the product of homogeneous inL
polynomials will take the form

(
k̄ l̄

Ak̄ l̄

â1 k̄

Ak̄!
â l̄

Al̄!(m̄n̄
Bm̄n̄

â1m̄

Am̄!
ân̄

An̄!
5(

k̄ n̄
S (

m̄
Ak̄m̄Bm̄n̄D â1 k̄

Ak̄!
ân̄

An̄!
1~••• !. ~B2!

This is the standard matrix multiplication law.
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The quantum analog of the Fisher information metric of a probability simplex is
searched and several Riemannian metrics on the set of positive definite density
matrices are studied. Some of them appeared in the literature in connection with
Cramér–Rao-type inequalities or the generalization of the Berry phase to mixed
states. They are shown to be stochastically monotone here. All stochastically mono-
tone Riemannian metrics are characterized by means of operator monotone func-
tions and it is proven that there exist a maximal and a minimal among them. A class
of metrics can be extended to pure states and a constant multiple of the Fubini–
Study metric appears in the extension. ©1996 American Institute of Physics.
@S0022-2488~96!00706-2#

I. INTRODUCTION

The state space of a classical system withn alternatives is the simplex of probability distri-
butions on then-point-space. The probability simplex is ann21- dimensional manifold with
boundary and its affine structure is fairly trivial. The extreme boundary consists ofn discrete
points. In quantum mechanics, the state space of ann level system is identified with the set of all
n3n positive semidefinite complex matrices of trace 1.~They are called density matrices.! The
casen52 is easily visualized as the unit ball in the three-space.

1

2 S 11x y1 iz

y2 iz 12x D↔~x,y,z!PR3 ~x21y21z2<1!.

The boundary consists of noninvertible matrices and it is an infinite set. The casen52 is simple
but for highern the structure of the topological boundary is rather complicated. The extreme
boundary consists of the density matrices of rank one and forn.2 it is much smaller than the
topological boundary. As far as dimensionality is concerned, the topological boundary has dimen-
sionn222 and the extreme one has dimension 2n22. The extreme states are usually called pure
and they are described in the textbooks by nonzero vectors of a complex Hilbert space of linear
dimensionn. The same state is described by a vectorc as well aslc, wherel is any complex
number different from 0. This means that pure states are in one-to-one correspondence to rays
$lc:0ÞlPC%. The rays form a smooth manifold called complex projective space,CP(n21).

On the level of convex structure the difference between the classical and quantum state space
is well understood. The classical one is a Choquet simplex and different axiomatizations of the
quantum one are available in the literature; the reader may be referred to Ref. 1, for example. Our
main concern here is the possible Riemannian structure in the quantum case. Before turning to that
subject, we review briefly the classical case, that is, the Riemannian structure on the space of
measures.

From the viewpoint of information geometry, the spherical representation of the probability
simplex is adequate, because the squared length of the tangent vector of a curve equals the Fisher

a!Additional address: Mathematical Institute of the Hungarian Academy of Sciences, H-1364 Budapest, PF. 127, Hungary.
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information. Indeed, introduce the parameterszi52Api , where 1< i<n and ( i pi51. Then
( izi

254 and the probability simplex is parametrized with a portion of then-sphere. Letx(t) be a
curve on the sphere. The square of the length of the tangent is

^] tx,] tx&5(
i

~] txi !
25(

i
pi~ t !„] t log pi~ t !…

2,

which is the Fisher information. The geodesic distance between two probability distributionsQ
andR can be computed along a great circle and it is a simple transform of the Hellinger distance.
Reference 2 contains further details as well as statistical applications of this geometric approach.
To the best of our knowledge, Riemannian metric on quantum states was first considered by
Helstrom in connection with state estimation theory.3 Since Helstrom’s work, several other met-
rics appeared in the literature~see, for example, Refs. 4–7! and Uhlmann approached Helstrom’s
metric in a different way.8,9

The present paper is organized as follows. In Sec. II we survey the work of Chentsov both in
the probabilistic and in the quantum case. We explain how he arrived at the study of invariant
metrics on the space of probability measures, motivated by decision theory, and how far he could
go towards the quantum generalization after his unicity result about the Fisher information in the
probabilistic context. The survey on Chentsov’s work is believed to be essential. On the one hand,
his papers are not easy to access and on the other hand our main result is the completion of the
program he initiated. Our results are contained in Secs. III and IV. We construct monotone metrics
by means of operator monotone functions and prove that all monotone metrics are obtained in this
way. It turns out that the symmetric logarithmic derivative metric of Helstron~which is the same
as the metric studied by Uhlmann! is monotone. Furthermore, this metric is minimal among all
monotone metrics. The subject of Sec. IV is the extension of monotone metrics to pure states. We
prove that if the extension exists, then it coincides with the standard metric on pure states up to a
constant factor. Only the metric of the symmetric logarithmic derivative yields the Fubini–Study
extension.

II. THE VIEWPOINT OF CHENTSOV

Chentsov was led by decision theory when he considered a category whose objects are prob-
ability spaces and whose morphisms are Markov kernels. Although he worked in Ref. 10 with
arbitrary probability spaces, his idea can be demonstrated very well on finite ones. In this case a
morphism from the probabilityn-simplexS n to anm-simplexS m is anm3n stochastic matrix.
If P is such a matrix andPPS n , thenPPPS m is considered more random thanP. Generally
speaking, the parametrized family (Qi) is more random than the parametrized family (Pi) ~with
the same parameter set! if there exists a stochastic matrixP such thatPPi5Qi for every value of
the parameteri . Two parametric families (Pi) and (Qi) are equivalent in the theory of statistical
inferences if there are two stochastic matricesP~12! andP~21! such that

P~12!Pi5Qi and P~21!Qi5Pi ~2.1!

for every i . Chentsov said a numerical functionf defined on pairs of measures to be invariant if

~P1 ,P2!;~Q1 ,Q2! implies f ~P1 ,P2!5 f ~Q1 ,Q2! ~2.2!

and monotone if

f ~P1 ,P2!> f ~PP1 ,PP2! ~2.3!

for every stochastic matrixP. A monotone functionf is obviously invariant. Statistics and infor-
mation theory know a lot of monotone functions, relative entropy, and its generalizations are so.
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If a Riemannian metric is given on all probability simplexes, then this family of metrics is called
invariant ~respectively, monotone! if the corresponding geodesic distance is an invariant~respec-
tively, monotone! function. Chentsov’s great achievement was that up to a constant factor the
Fisher information yields the only monotone family of Riemannian metrics on the class of finite
probability simplexes~Ref. 10; see also Ref. 11!. A decade later Chentsov turned to the quantum
case, where the probability simplex is replaced by the set of density matrices. A linear mapping
between two matrix spaces sends a density matrix into a density matrix if the mapping preserves
trace and positivity~i.e., positive semidefiniteness!. By now it is well understood that complete
positivity is a natural and important requirement in the noncommutative case.12,13 Therefore, we
call a trace preserving completely positive mapping stochastic. One of the equivalent forms of the
complete positivity of a mapT is the following:

(
i51

n

(
j51

n

ai*T~bi* bj !aj>0

for all possible choice ofai , bi , andn. A completely positive mappingT satisfies the Schwarz
inequality:T(a* a)>T(a)*T(a).

Chentsov recognized that stochastic mappings are the appropriate morphisms in the category
of quantum state spaces.~Reference 12 contains more information about stochastic mappings; see
also Ref. 13.! The above definitions of invariance and monotonicity make sense when stochastic
matrices are replaced by stochastic mappings. Chentsov~with Morozova! aimed to find the in-
variant~or monotone! Riemannian metrics in quantum setting as well. They obtained the follow-
ing result.14 Assume that a family of Riemannian metrics is given on all spaces of density matri-
ces, which is invariant. Then there exist a functionc(x,y) and a constantC such that the squared
length of a tangent vectorA5(Ai j ) at a diagonal pointD5Diag(p1 ,p2 ,...,pn) is of the form

C(
k51

n

pk
21Akk

2 12(
j,k

c~pj ,pk!uAjku2. ~2.4!

Furthermore, the functionc(x,y) is symmetric andc(lx,ly)5l21c(x,y). This result of Moro-
zova and Chentsov was not complete. Although they had proposals for the functionc(x,y), they
did not prove monotonicity or invariance of any of the corresponding metrics. A complete result
will be given here but now a few comments on~2.4! are in order.

Both the functionc(x,y) and the constant are independent from the matrix sizen. Restricting
ourselves to diagonal matrices, which is in some sense a step back to the probability simplex, we
can see that there is no ambiguity of the metric. Loosely speaking, the unicity result in the simplex
case survives along the diagonal and the off-diagonal provides new possibilities for the definition
of a stochastically invariant metric.

III. RIEMANNIAN METRICS ON QUANTUM STATES

The demand for Riemannian structure on the whole quantum state space or on a parametrized
family of density operators appeared in mathematical physics a long time ago and in rather
different contexts.

In the parametric problem of quantum statistics a family~Du! of states of a systems is given
and one has to decide between several alternative values of the parameter by using measurements.
The set of outcomes of the applied measurements is the parameter setU and we assume that it is
a region inRm. So an estimator measurementM is a positive-operator-valued measure on the
Borel sets ofU and its values are observables of the given quantum system. The probability
measureB°mu(B)5Tr„DuM (B)…~B,U! represents the result of the measurementM when the
‘‘true’’ state is Du . The choice of the estimators has to be made by taking into account the
expected errors. The aim of an optimal decision process is to search for estimators with small
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error. To an error one can attribute several sizes. For example, one can seek a measurement such
that its value is ‘‘approximately’’ equal to the true parameter value. If this holds ‘‘in the mean,’’
then the estimator is free of distorsion and such an estimator is commonly called unbiased. The
accuracy of an unbiased measurement is described by the total mean-square deviation which
should be small on the parameter space if we want to choose an effective estimator measurement.

The quantum state estimation was initiated by Helstrom in the 1960s~Ref. 3, see also Ref.
15!. He followed the Crame´r–Rao pattern of mathematical statistics and introduced the concept of
symmetric logarithmic derivative. LetM be a positive-operator-valued measure onRn. The cor-
responding measurement is an unbiased estimator of the parameteru5~u1,...,um! if

E
Rm

u i dTr~DtM !~u!5t i ~3.1!

for every 1< i<m. @The integration is taken with respect to the measureB°Tr„DtM (B)….# The
symmetric logarithmic derivativesLu

i are observables defined as

]Tr~DuA!

]u i
5
1

2
Tr~„Li~u!Du1DuL

i~u!…A! ~3.2!

for every observableA. The measurement has two characteristic matrices, the covariance matrix
C~u!5„Ci j ~u!… and the information matrixJ~u!5„Ji j ~u!…. They are determined as follows:

Ci j ~u!5E
Rm

~ t i2u i !~ t j2u j !dTr~DuM !~ t !, Ji j ~u!5Tr„DuL
i~u!L j~u!…. ~3.3!

A quantum version of the Crame´r–Rao inequality, due to Helstrom, says that

C~u!>J~u!21 ~3.4!

for an unbiased measurement.~The inequality means that the difference is positive semidefinite.!
The information matrixJ~u! may be regarded as the metric tensor on the parameter space.

From the point of view of the statistical state estimation problem, the numbern of the real
parameters is much smaller than the dimension of the whole state space. However, we can pa-
rametrize the whole state space as well. Assume that the parametrization is affine,

Du5I /n1(
i

u iai , ~3.5!

whereai are traceless selfadjoint matrices. HereDu is positive definite ifu is in a certain open
subset ofRn221 and the mappingDu°u P Rn221 yields an atlas of a single chart. We refer to~3.5!
as the affine parametrization of invertible density matricesDn .

The Riemannian metric of the symmetric logarithmic derivative may be written in the form
~2.4! as

i~Ai j !iD
2 5 (

k51

n

pk
21Akk

2 12(
j,k

2

pj1pk
uAjku2, ~3.6!

whereD5Diag(p1 ,p2 ,...,pn) is a diagonal footpoint andA is a tangent vector atD ~that is,
A5A* and TrA50!. So the Morozova–Chentsov function of the metric of the symmetric loga-
rithmic derivative is
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c~x,y!5
2

x1y
. ~3.7!

Uhlmann obtained essentially the same Riemannian metric in a completely different approach.
He wrote the density matricesD in the form

W*W5D. ~3.8!

Since TrW*W5Tr D51,W can be regarded as a unit vector in a larger Hilbert space, andW is
often called a purification of the density matrixD. There are many choices forW whenD is given.
Let D(t) be a smooth curve of density matrices with purificationW(t). If the arclength ofW(t)
with respect to the standard Fubini–Study metric is minimal, then the so-called paralellity condi-
tion

W~ t !* Ẇ~ t !5Ẇ~ t !*W~ t !, Ẇ~ t !5
dW~ t !

dt
, ~3.9!

is satisfied. The shortest purification curve leads to the Bures distance on the set of density
matrices and the corresponding Riemannian metric is the metric of symmetric logarithmic deriva-
tive ~see Refs. 8 and 9 for details!. It is worthwhile to mention that Dittmann computed several
geometric characteristics of the space of density matrices endowed with the above metric.16 For
example, this space is not locally symmetric and all sectional curvatures are greater than 1.
Braunstein and Caves obtained recently the same metric by optimizing over all generalized quan-
tum measurements that can be used to distinguish neighboring quantum statesD andD1dD.5

If a distance between density matrices expresses statistical distinguishability, then this dis-
tance must decrease under coarse-graining. A good example of coarse-graining arises when a
density matrix is partitioned in the form of a 232 block matrix, and the coarse-graining forgets
about the offdiagonal:

S A B

B* CD °SA 0

0 CD .
In the mathematical formulation, a coarse-graining is a completely positive mapping which pre-
serves the trace and hence sends density matrix into density matrix. Such a mapping will be called
stochastic below. A Riemannian metric is defined to be monotone if the differential of any
stochastic mapping is a contraction. If the affine parametrization is considered, thenDt5D1tA is
a curve for an invertible densityD and for a self-adjoint tracelessA. Under a stochastic mapping
T this curve is transformed intoT(Dt)5T(D)1tT(A) provided thatT(D) is an invertible density
and the real numbert is small enough. The monotonicity condition for the Riemannian metricg
onMn reads as

gT~D !„T~A!,T~A!…<gD~A,A!, ~3.10!

whereD is an invertible density,A is traceless self-adjoint, andT is stochastic. Our goal is to
show many examples of monotone metrics and to give their characterization in terms of operator
monotone functions.

Let us recall that a functionf :R1→R is called operator monotone if the relation 0<K<H
implies 0< f (K)< f (H) for any matricesK andH ~of any order!. The theory of operator mono-
tone functions was established in the 1930s by Lo¨wner and there are several reviews on the
subject, for example, Refs. 17 and 18 are suggested.

Let us introduce some superoperators as
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LD~A!5DA, RD~A!5AD, APMn~C!. ~3.11!

Theorem 3.1:Let f :R1→R1 be an operator monotone function such thatf (t)5t f (t21) for
every t.0 and set a superoperator

KD5RD
1/2f ~LDRD

21!RD
1/2 ~3.12!

acting on matrices. Then the relation

gD~A,B!5Tr„KD
21~A!B… ~3.13!

determines a monotone Riemannian metric onMn .
Proof: Since an operator monotone function is analytic, the bilinear form~3.13! is smooth in

D. The conditionf (t)5t f (t21) on f makes sure thatKD
21(A) is self-adjoint wheneverA is so.

Hence the bilinear form~3.13! is real. For an invertibleD the superoperatorKD is invertible and
positive definite. So~3.13! is really a nondegenerate metric and its monotonicity is to be checked.

In Ref. 19 the following inequality was obtained:

TRF
1/2f ~LERF

21!RF
1/2T!<RT~F !

1/2 f ~LT~E!RT~F !
21 !RT~F !

1/2 , ~3.14!

if E,F are positive definite matrices,T is a stochastic mapping, andT! denotes its adjoint with
respect to the Hilbert–Schmidt inner product. PuttingE5F5D, ~3.14! becomes

TK DT
!<KT~D ! ,

which is equivalent to

T!KT~D !
21 T<KD

21. ~3.15!

The latter condition is exactly the monotonicity of the metric~3.13!. h

It is in order to make a comment on the relation of the functionf in Theorem 3.1 and the
Morozova–Chentsov functionc(x,y) in ~2.4!. Given f , we havec(x,y)51/y f(x/y) and con-
verselyf (t)51/c(t,1). Some examples of functionsf satisfying the hypothesis of Theorem 3.1 are
the following:

2xa11/2

11x2a ,
x21

log x
,

x21

log x

2Ax
11x

, S x21

log xD
2 2

11x
,

11x

2
, ~3.16!

where 0<a<1/2. The lattest functionf gives the Morozova–Chentsov function~3.7! and we
obtain that the metric of the symmetric logarithmic derivative is monotone.

The metrics onM2 provided by Theorem 3.1 are rotation invariant, they depend only onr
5 Ax21y21z2, and split into radial and tangential components:

ds25
1

12r 2
dr21

1

11r
gS 12r

11r Ddn2 where g~ t !5
1

f ~ t !
. ~3.17!

The radial component is independent of the functionf . In the case of the metric of the symmetric
logarithmic derivative, the tangential component is independent ofr .

Theorem 3.2:Every monotone metric is provided by Theorem 3.1.
Proof: A monotone metric is invariant in the sense of Sec. II, and due to the result of

Chentsov and Morozova the metric is of the form~2.4!. Set a functionf as f (t)51/c(t,1), where
c is the function of two variables from~2.4!. By means of this function the monotone metric can
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be written in terms off exactly in the form described in Theorem 3.1@see~3.12! and~3.11!#. What
we have to prove is thatf is operator monotone. This will be shown following Ref. 20.

We choose a particular stochastic mappingT:

T:X[SX1 A

B X2
D °

1

2 SX11X2 A1B

A1B X11X2
D .

With this choice the monotonicity condition yields that

Y° f ~LYRY
21!RY

is a concave mapping, or equivalently

Y° f „Y^ ~Y21! t…~ I ^Yt! ~3.18!

is concave for a positive definite density matrixY. The concavity extends to all positive definite
matrices obviously. We write~3.18! for a block matrix

Y5SY1 0

0 Y2
D ,

then we observe that concavity of~3.18! implies the concavity of the mapping

~Y1 ,Y2!° f „Y1^ ~Y2
21! t…~ I ^Y2

t !. ~3.19!

Now the choiceY25I gives that the mappingY1° f (Y1) must be concave. What we have arrived
at is the operator concavity off which is known to be equivalent to the operator monotonicity of
f ~cf. Ref. 18!. h

Let f 1 and f 2 be functions satisfying the hypothesis of Theorem 3.1 and letK1 andK2 be the
corresponding superoperators defined by~3.12!. If f 1< f 2 , thenKD

1<KD
2 . The inverse changes this

ordering, hencegD
1 (A,A)>gD

2 (A,A) for the corresponding metrics. The relation between operator
monotone functions and monotone metrics established by Theorems 3.1 and 3.2 respects ordering
in the sense that bigger function gives a smaller metric. Comparison of different metrics is
meaningful only under some normalization. The most natural is

gD~A,A!5Tr D21A2 wheneverDA5AD, ~3.20!

which corresponds tof ~1!51. It is known~see Ref. 21! that among all operator monotone func-
tions with f ~1!51 and f (t)5t f (t21) there is a minimal and a maximal. They are

fmin~ t !5
2t

11t
, fmax~ t !5

11t

2
. ~3.21!

So we obtain the following theorem.
Theorem 3.3:Under the normalization~3.20!, the metric of the symmetric logarithmic de-

rivative is minimal among all monotone metrics.
Proof:One has to verify that the functionfmax yields the stated metric. From~3.12! and~3.13!

we have

gD~A,A!52^~LD1RD!21A,A& ~3.22!

andL52~LD1RD!21 is exactly the solution of Eq.~3.2!. Hence~3.22! matches~3.7!.
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We have to emphasize that the theorem states the minimality of the logarithmic derivative
metric only under the essential condition that the whole state space of a spin is parametrized. If
this is not the case, then no information is provided by the theorem. The largest monotone metric
is the metric of the so-called left logarithmic derivative. That appeared in the literature in connec-
tion with Cramér–Rao-type inequalities. Its monotonicity was established in Ref. 7. The fact that
the left logarithmic metric is larger than the symmetric one is elementary and it has been known
~for example, Ref. 15, p. 282!.

The metric corresponding to the Morozova–Chentsov function

log x2 log y

x2y

is the Kubo~or Mori, or Bogoliubov! inner product which showed up in Ref. 7 and was studied in
Ref. 22. In particular, it was proved that the Kubo product is monotone, under more general
assumption than a finite spin, and a conjecture was made. Namely, the scalar curvature of the
Kubo metric is monotone as well. Monotonicity of the Kubo metric is not surprising because this
result is a kind of reformulation of the Lieb convexity theorem.23 However, the monotonicity of
the scalar curvature seems to be an inequality of new type~provided that the conjecture is really
true!. Concerning details we refer to Refs. 7 and 22.

In Ref. 6 Hasegawa introduced a family of metrics. It was proved that they can be obtained by
the above construction of monotone metric.24 The Kubo–Mori metric is an element of the family,
otherwise their physical~or statistical! importance is not clear yet.

IV. EXTENSION TO PURE STATES

The objective of this section is to discuss the extension of monotone metrics ofMn to pure
statesCP(n21). Since pure states form a low-dimensional part of the topological boundary ofMn ,
it should be well specified how the extension is understood.

Let Mn
0 denote the set of all elements ofMn whose eigenvalues are distinct and define a

projectionp:Mn
0→CP(n21) as follows. Letp(D) be the one-dimensional eigenspace correspond-

ing to the largest eigenvalue ofDPMn
0. This map is smooth~see Ref. 25, II.5.8! andMn

0 is a
smooth fiber bundle overCP(n21) with projectionp ~see Ref. 26, I.5.!. @The structure group of this
bundle isU(1)3U(n21), whereU(k) is the group ofk3k unitary matrices.# The fiber space is
p21(e), wheree is the ray generated by the vector~1,0,...,0!PCn.

Let TDp be the differential ofp atD and letHD be the orthogonal complement of KerTDp
in TDMn

0 with respect to a fixed monotone Riemannian metricgD~•,•!. SinceTDp is surjective,
the restriction of TDp gives a linear isomorphism betweenHD and Tp(D)CP

(n21). If
vPTp(D)CP

(n21), then we can define a unique liftṽPHD of v such thatTDp( ṽ)5v. Using this
lift we can define the following inner productkp(D)

D ~•,•! on Tp(D)CP
n21:

kp~D !
D ~u,v !5gD~ ũ,ṽ !, u,vPTp~D !CP

~n21!. ~4.1!

We say that a sequenceDnPMn
0 is radial atpPCP(n21) if p(Dn)5p for every n andDn is

convergent top whenp is considered as a density matrix~that is, a one-dimensional projection
operator!. Now we can define the radial extension ofg~•,•!. A smooth metrick~•,•! on CP(n21) is
called the radial extension ofg~•,•! if for every pPCP(n21),u,vPTpCP

(n21), and for every radial
sequenceDn at p

lim
n→`

gp
Dn~u,v !5kp~u,v !

holds. In the next theorem we give a necessary and sufficient condition for the existence of the
radial extension.
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Theorem 4.1:Let g~•,•! be a monotone Riemannian metric onMn and letf :R
1→R1 be the

corresponding operator monotone function~described in Theorem 3.1!. The radial extensionk~•,•!
of the given metricg~•,•! of Mn exists if and only iff ~0!Þ0. In the case of existence

k~•,• !5
1

2 f ~0!
^•,•&,

where^•,•& is the standard Riemannian metric onCP(n21).
Proof: The proof is based on the direct computation ofkp(D)

D ~•,•!. For any unitary matrixU
andDPMn

0 we have

p~UDU21!5Up~D !,

which implies

TUDU21p~UXU21!5UTDp~X!, XPTDMn
0,

by differentiation. Sincek~•,•! is unitary invariant,

U~Ker TDp!U215Ker TUDU21p and UHDU
215HUDU21.

Moreover,U ṽU215Ũv for any vPTp(D)CP
(n21), hence we obtain

gp~D !
D ~u,v !5gUp~D !

UDU21
~Uu,Uv !. ~4.2!

From this equality it follows that it is sufficient to computekD~•,•! if D is diagonal andp(D) is
the projection ontoe. Assume these and letXPTDMn

0 and let l(t) and v(t) be the largest
eigenvalue and the unit eigenvector corresponding tol(t) of D1tX wheretPR. For sufficiently
small t, D1tXPMn

0 andl(t) andv(t) are smooth functions oft. ForD(t)5D1tX we have

„D~ t !2l~ t !…v~ t !50.

Differentiating this expression we obtain thatl8~0!5x11 and

TDp~X!5v8~0!5S 0, x21
l12l2

,...,
xn1

l12ln
D , ~4.3!

wherel1,...,ln are the eigenvalues ofD, l15l~0!, andX5(xi j ). If XPKer TDp, then the expres-
sion ofTDp(X)

X5S x11 0 ••• 0

0 x22 ••• x2n

A A � A

0 xn2 ••• xnn

D .
Let KD

215 f ~LDRD
21!RD as in ~3.12!. SinceD is diagonal,

KD~X! i j5
xi j

f ~l i /l j !l j
, ~4.4!

hence we getKD~Ker TDp!5Ker TDp. If VPHD , then the last equation gives

2670 D. Petz and C. Sudár: Geometries of quantum states

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



V5S 0 v̄2 ••• v̄n
v2 0 ••• 0

A A � A

vn 0 ••• 0

D , ~4.5!

wherev iPC for i52,...,n. If v5(0,v2 ,...,vn)PT[e]CP
(n21), then~4.3! and ~4.5! give

ṽ5S 0 ~l12l2!v̄2 ••• ~l12ln!v̄n
~l12l2!v2 0 ••• 0

A A � A

~l12ln!vn 0 ••• 0

D .
Now we can expressgD~•,•!:

gD~u,v !5Re(
i52

n
~l12l i !

2

f ~l i /l1!l1
ui v̄ i , ~4.6!

whereu,vPT[e]CP
(n21).

Let us consider now the general case. Let (Dm) be a radial sequence atp and let
u,vPTpCP

(n21). Let Bp
m be linear operators onTpCP

(n21) such that

gp
Dm~u,v !5^Bp

mu,v&p ,

where^•,•&p is the inner product onTpCP
(n21) induced by the standard metric. LetUm be unitary

operators such thatDm
0 5UmDmUm

21 is diagonal andp(Dm
0 )5p0 with p05[e]. Using ~4.2! we

have

Bp
m5Um

21
•Bp0

m
•Um . ~4.7!

Since limm→` l1
m51 and limm→` li

m50 for i52,...,n, by ~4.6!

lim
m→`

iBp0
m 2cIp0ip050, c51/2 f ~0!, ~4.8!

where I p0 is the identity map onTp0CP
(n21) and i•i is the operator norm induced by^•,•&. It

follows from ~4.7! that

iBp
m2cIpi5iUm

21
•Bp0

m
•Um2cUm

21
•I p0•Umi

5iUm
21
•~Bp0

m 2cIp0!•Umi

<iUm
21i•iBp0

m 2cIp0i•iUmi .

SinceUm are isometries fromTpCP
(n21) to Tp0CP

(n21), iUmi51 and by~4.8! we obtain

lim
m→`

iBp
m2cIpi50, c51/2 f ~0!.

So we have proved that the radial extension exists iff ~0!Þ0.
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The special casen52 is very transparent from~3.17! and it explains the terminology ‘‘radial
extension.’’ The 232 case shows also that the conditionf ~0!Þ0 is necessary to speak about
extension. h

V. DISCUSSION

In the classical case, decision theory provides a unique monotone metric, namely, the Fisher
information. In the quantum case, there are infinitely many monotone metrics on the state space.
Among them the metric of symmetric logarithmic derivative possesses several mathematically
attractive properties, it is minimal among all monotone metrics, and its extension to pure state is
exactly the Fubini–Study metric. In accordance with the work of Braunstein and Caves, this seems
to be the canonical metric of parameter estimation theory. However, expectation values of certain
relevant observables are known to lead to statistical inference theory provided by the maximum
entropy principle or the minimum relative entropy principle whena priori information on the state
is available.27 The best prediction is a kind of generalized Gibbs state. On the manifold of those
states, the differentiation of the entropy functional yields the Kubo–Mori metric, which is differ-
ent from the metric of the symmetric logarithmic derivative.4,7 Therefore, more than one privi-
leged metric shows up in quantum mechanics. The exact clarification of this point requires and is
worth further studies.
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I. INTRODUCTION

The properties of bound states in a large variety of physical systems can be described by
writing the Hamiltonian and other operators in terms of a spectrum generating algebra,G. In many
applications the spectrum generating algebra is taken to be the unitary algebraG5U~n11!,1 where
n denotes the dimension. Examples of this approach are the description of the five quadrupole
degrees of freedom of the interacting boson model in nuclear physics in terms of the algebra
U~6!,2 the description of the three dipole degrees of freedom of the vibron model in molecular
physics in terms of the algebra U~4!,3 and the description of the six degrees of freedom~two
dipoles! of the valence quark model of baryons in hadronic physics in terms of the algebra U~7!.4

The algebra U~n11! always admits~for n>2! two subalgebra chains,

~1!

in addition, eventually, to other chains.@The special case,n51, with U~2!.U~1! and U~2!.SO~2!,
in which the two subalgebras U~1! and SO~2! are isomorphic, is treated in detail in Refs. 3 and 5,
and it will not be discussed further.# In the applications mentioned above, the first chain has the
physical meaning of a spherical oscillator inn dimensions, with U~n! being the degeneracy
algebra, while the second chain has the meaning of a displaced~or deformed! oscillator in n
dimensions. The best known example of the latter is the SO~6! chain of the interacting boson
model,6 which has played an important role in nuclear structure physics. In view of the fact that
the algebraic method is presently being applied to a variety of problems in physics with different
number of dimensions, it is of interest to derive a general expression for the transformation
brackets between the two chains given in the group lattice of Eq.~1!, which includes the known
casesn55 andn53,5 but extends the results to arbitraryn~>2!. These transformation brackets are
particularly useful if one wants to evaluate analytically certain quantities of physical interest, in
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particular matrix elements of operators, such as the electromagnetic transition operators, as dis-
cussed at length in Ref. 6. In this paper, the general result for arbitraryn>2 will be presented.

II. SPECTRUM GENERATING ALGEBRA

As mentioned above, many applications of the method of spectrum generating algebras~SGA!
for bound-state problems inn dimensions, have made use of the unitary algebra U~n11!. By
generalizing the well-known cases ofn552 andn53,3 we introduce a realization of U~n11! in
terms ofn11 boson operators, divided into a set ofn operators,bj

†( j 5 1,...,n), which transform
as the fundamental representation of U~n! and an additional boson operator,b0

† 5 s†, which trans-
forms as a scalar under U~n!. The n11 boson operators,bj

†( j 5 0,...,n), span the~n11!-
dimensional space of U~n11!. The elements of U~n11! can be written as the bilinear products,

G[U~n11!; Gjk5bj
†bk ~ j ,k50,1,...,n!. ~2!

The states constructed by applying the boson creation operators to a vacuum state,

B:
1

N
~bj

†!nj~bk
†!nk•••u0& ~3!

~whereN is a normalization constant! transform as the symmetric representation [N] of U~n11!,
whereN is the total number of bosons,

N̂5(
j50

n

n̂ j5(
j50

n

bj
†bj . ~4!

In the algebraic approach to bound state problems, the Hamiltonian~and other! operators are
expressed as functions of the elements of U~n11!, i.e. they are in the enveloping algebra of
U~n11!, and the basis states are the [N] irreps of U~n11!.

In this paper we discuss~i! the explicit construction of the basis states in terms of bosons
operators for U~n11!.U~n!.SO~n! and U~n11!.SO~n11!.SO~n!, and ~ii ! the transformation
brackets relating the basis states in the two chains.

A. The chain U( n11)'U(n)'SO(n)

First we consider the chain

U~n11!.U~n!.SO~n!. ~5!

The basis states of this chain are denoted byu[N],n,t&, whereN is the total number of bosons
with j50,1,...,n, describing the irreps [N][[N,0,...,0] of U~n11!, n is the number of bosons
with j51,...,n, describing the irreps [n][[n,0,...,0] of U~n!, and t is the quantum number
~boson seniority!, describing the irreps~t![~t,0,...,0! of SO~n!. The branching rules are

n50,1,...,N,

t5n,n22,...,1 or 0 ~n odd or even andn.2!, ~6!

t52n,2n12,...,n ~n52!.

The branching of irreps of SO~n! into irreps of~eventual! subalgebras of SO~n!, is of no interest
for the present problem and will not be discussed.

The elements~generators! of U~n! and SO~n! can be written as
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U~n!: Gjk5bj
†bk ~ j ,k51,...,n!,

~7!
SO~n!: L jk5 i ~bj

†bk2bk
†bj ! ~ j,k and j ,k51,...,n!.

The basis states of the chain~5! can be written in a compact form as

u@N#,n,t&5
1

A~N2n!!
~s†!N2nu@n#,n,t&,

~8!
u@n#,n,t&5Bnt~ I n

†!~n2t!/2u@t#,t,t&.

The normalization coefficientBnt can be derived by making use of the SU~1,1! algebra, given in
Eqs.~A2! and ~A3! of Appendix A,

Bnt5~21!~n2t!/2A ~2t1n22!!!

~n1t1n22!!! ~n2t!!!
. ~9!

The operatorI n
† denotes the pair creation operator inn dimensions,

I n
†5(

j51

n

bj
†bj

† , ~10!

and commutes with the generators of SO~n!, @ I n
† ,L jk# 5 0. The operators†( 5 b0

†) has been used in
~8! to make it conform with the standard notation used in the literature.

B. The chain U( n11)'SO(n11)'SO(n)

Next, we consider the chain

U~n11!.SO~n11!.SO~n!. ~11!

The basis states of this chain are denoted byu[N],s,t&, where [N] and t label as before the
symmetric irreps of U~n11! and SO~n!, while ~s![~s,0,...,0! labels the symmetric representation
of SO~n11!. The branching rules are

s5N,N22,...,1 or 0 ~N odd or even!,

t50,1,...,s ~n.2!, ~12!

t52s,2s11,...,s ~n52!.

The generators of SO~n11! and SO~n! can be written as

SO~n11!: L jk5 i ~bj
†bk2bk

†bj ! ~ j,k and j ,k50,...,n!,
~13!

SO~n!: L jk5 i ~bj
†bk2bk

†bj ! ~ j,k and j ,k51,...,n!.

It is customary to separate the generators of SO~n11! into two pieces,

L jk5 i ~bj
†bk2bk

†bj ! ~ j,k and j ,k51,...,n!,
~14!

Dj5 i ~b0
†bj2bj

†b0!5 i ~s†bj2bj
†s! ~ j51,...,n!.
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Using the same SU~1,1! algebra, as discussed in Appendix A, but with the sum in~A2! extending
from j50 to j5n, the basis states of the chain~11! can be written as

u@N#,s,t&5ANs~ I n11
† !~N2s!/2u@s#,s,t&. ~15!

HereANs is a normalization coefficient,

ANs5~21!~N2s!/2A ~2s1n21!!!

~N1s1n21!!! ~N2s!!!
, ~16!

and I n11
† represents the pair creation operator inn11 dimensions,

I n11
† 5(

j50

n

bj
†bj

†5s†s†1I n
† . ~17!

This pair creation operator commutes with the generators of SO~n11!, @ I n11
† ,L jk#5@ I n11

† ,Dj #
50. In Appendix B we show that the statesu@s#,s,t& can be written as

u@s#,s,t&5 (
k50

@~s2t!/2#

Fk~s,t!~s†!s2t22k~ I n11
† !ku@t#,t,t&, ~18!

where the expansion coefficients are given by7

Fk~s,t!5F ~s2t!! ~2t1n22!!!

~2s1n23!!! ~s1t1n22!! G
1/2S 2

1

2D
k ~2s1n2322k!!!

~s2t22k!!k!
. ~19!

Another realization of SO~n11! that is used frequently in physical applications, is by the genera-
torsD̄ j 5 s†bj 1 bj

†s with j51,...,n andL jk 5 i (bj
†bk 2 bk

†bj ) with j,k and j ,k51,...,n. The
corresponding pair creation operator differs fromI n11

† in Eq. ~17! by a relative sign,

Ī n11
† 5s†s†2I n

† . ~20!

III. TRANSFORMATION BRACKETS

The transformation brackets between the two chains are obtained by taking the overlap be-
tween the two sets of basis states. Since both are written explicity in terms of the statesu@t#,t,t&,
the overlap is straightforward and yields the result

cns
t 5^@N#,n,tu@N#,s,t&5A~N2n!!

ANs

Bnt
(
k5k0

@~s2t!/2#

Fk~s,t!S k1
N2s

2
n2t

2

D , ~21!

with k05max„0,12(n2t2N1s)…. For the second realization of the SO~n11! with the pair cre-
ation operator of Eq.~20!, the transformation brackets have an additional sign (21)(n2t)/2. The
transformation brackets of Eq.~21! can be obtained by inserting the expressions for the coeffi-
cients of Eqs.~9!, ~16!, and~19!,
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cns
t 5~21!~N2s2n1t!/2F ~N2n!! ~n1t1n22!!! ~s2t!! ~2s1n21!

~N1s1n21!!! ~N2s!!! ~s1t1n22!! ~n2t!!! G
1/2

3 (
k5k0

@~s2t!/2#

~21!k
~2s1n2322k!!! ~N2s12k!!!

~s2t22k!! ~2k!!! ~N2s2n1t12k!!!
, ~22!

or by introducing Pochhammer’s symbol, (a)k5G(a1k)/G(a), as

cns
t 5S 2

1

2D ~N2s2n1t!/2

~2s1n21!!!

3F ~N2n!! ~N2s!!! ~n1t1n22!!!

~s2t!! ~n2t!!! ~s1t1n22!! ~N1s1n21!!! ~2s1n21!G
1/2

3 (
k5k0

@~s2t!/2#
1

k!

„~N2s!/211…k„~t2s!/2…k„~t2s11!/2…k
„~N2s2n1t!/21k…! „2s2~n23!/2…k

. ~23!

Equations~22! and~23! reduce forn55 andn53 to the expressions derived in Refs. 5, 8, and 9.
For the lowest SO~n11! representations5N, the sum appearing in the general expression for

the transformation bracket can be carried out explicitly to give

cnN
t 5F ~N2t!! ~N1t1n22!!

~N2n!! ~n1t1n22!!! ~n2t!!! ~2N1n23!!! G
1/2

, ~24!

in agreement with the results obtained previously6 for n55 andn53.
Equations~22! and ~23! conclude the derivations of the transformation brackets for arbitrary

n~>2!,

u@N#,s,t&5(
n

cns
t u@N#,n,t&. ~25!

IV. CONCLUSIONS

In this paper, we have reported a closed expression for the transformation brackets between
the chains of Eq.~1! for an arbitrary number of dimensionsn~>2!. These transformation brackets
are useful in a variety of problems that are being investigated at the present time within the
framework of the algebraic method. For example, the casen52 is of interest in the treatment of
bending vibrations of linear molecules, while the casen59 is of interest in the treatment of
rotations and vibrations of nonplanar tetratomic molecules.

The transformation brackets derived here can be used to evaluate matrix elements of an
operatorT̂ in the ‘‘deformed’’ chain~of great physical interest! by a two-step process, i.e. by first
evaluating them in the ‘‘spherical’’ chain~which is a relatively easy calculation! and subsequently
transforming the results to the ‘‘deformed’’ chain,

^@N#,s8,t8uT̂u@N#,s,t&5 (
n8,n

cn8s8
t8 cns

t ^@N#,n8,t8uT̂u@N#,n,t&, ~26!

where the coefficientsc are the transformation brackets derived in this paper.
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APPENDIX A: THE REDUCTION U(n)'SO(n)

The normalization coefficientsBnt andANs of Eqs.~9! and~16!, can be found by making use
of the properties of the SU~1,1! ‘‘quasi-spin’’ algebra for a system of bosons.10,11 Consider a
system of bosons inn dimensions with the algebraic structure

U~n!.SO~n!. ~A1!

The corresponding basis states are characterized byu[n],t&. The operators

Q̂15
1

2 (
j51

n

bj
†bj

† , Q̂25
1

2 (
j51

n

bjbj , ~A2!

Q̂05
1

4 (
j51

n

~bj
†bj1bjbj

†!5
1

2 S n̂1
1

2
n D ,

satisfy the commutation relations

@Q̂1 ,Q̂2#522Q̂0 , @Q̂0 ,Q̂6#56Q̂6 , ~A3!

of the SU~1,1! algebra. The basis states are labeled byuq,q0&. The generators of the SU~1,1!
algebra defined in~A2! commute with the generators of SO~n!, L jk of Eq. ~7!. The relation
between the two sets of basis statesuq,q0& and u[n],t& can be found by using the generators of
~A2!. First, Q̂0 is diagonal in the basis states,

Q̂0uq,q0&5q0uq,q0&,
~A4!

Q̂0u@n#,t&5 1
2~n1 1

2n!u@n#,t&,

and henceq05
1
2(n1 1

2n). Furthermore,Q̂2 annihilates the highest-weight state,

Q̂2uq5q0 ,q0&5Q̂2u@n5t#,t&50, ~A5!

which givesq5 1
2(t1 1

2n). The basis states can be expanded as

uq,q0&5Aqq0
~Q̂1!q02quq,q05q&,

~A6!

Aqq0
5~21!q02qA ~2q21!!

~q02q!! ~q01q21!!
,

or alternatively as

u@n#,t&5Bnt~ I n
†!~n2t!/2u@t#,t&,

~A7!

Bnt5~21!~n2t!/2A ~2t1n22!!!

~n1t1n22!!! ~n2t!!!
.
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The choice of phase in~A6! is conventional.

APPENDIX B: THE REDUCTION SO(n11)'SO(n)

The SU~1,1! algebra of~A2! can be used for the reductions U~n!.SO~n! and U~n11!.SO~n
11!. For the chain~11! we need the further reduction SO~n11!.SO~n!. This is by far more
complex. Here we use Ref. 12 and a generalization of the method discussed on pp. 152–157 of
Ref. 5. The defining equations are

N̂u@N#,s,t&5Nu@N#,s,t&,

ĈSO~n11!u@N#,s,t&5s~s1n21!u@N#,s,t&, ~B1!

ĈSO~n!u@N#,s,t&5t~t1n22!u@N#,s,t&.

The notation for the states is the same as in Sec. II A.ĈG represents the quadratic Casimir
invariant of G. These equations can be expressed in terms of a set of separable differential
equations by introducing hyperspherical coordinates,

~x1 ,...,xn11!→~r ,f,un21 ,...,u1!, ~B2!

by

x15r sin f sin un21•••sin u2 cosu1 ,

x25r sin f sin un21•••sin u2 sin u1 ,

x35r sin f sin un21•••cosu2 ,
~B3!

A

xn5r sin f cosun21 ,

xn115r cosf,

with 0<r,` and 0<f, un21,...,u2,p and 0<u1,2p. The volume element is given by

dx1•••dxn115r n~sin f!n21~sin un21!
n22•••sin u2 dr df dun21•••du2 du1 . ~B4!

The Casimir invariants can be obtained from the Laplacian inn11 dimensions and a recursion
relation between the Casimir operators of the orthogonal groups~see p. 493 of Ref. 12!,

¹n11
2 5

1

r n

]

]r S r n
]

]r D2
1

r 2
Ĉn11~f,u!,

~B5!

Ĉn11~f,u!52
1

~sin f!n21

]

]f S ~sin f!n21
]

]f D1
1

~sin f!2
Ĉn~u!.

Here ~u!5~un21,...,u1!. The number operator expressed in hyperspherical coordinates is given by

N̂5
1

2 F2
1

r n

]

]r S r n
]

]r D1r 21
1

r 2
Ĉn11~f,u!2~n11!G . ~B6!
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The eigenvector equations can be solved by separation of variables and have solutions in terms of
products of Laguerre and Gegenbauer polynomials,

cNsta~r ,f,u!5 f Ns~r !gst~f!Fta~u!,
~B7!

5ANstr
se2r2/2L ~N2s!/2

~2s1n21!/2~r 2!~sin f!tCs2t
~2t1n21!/2~cosf!Fta~u!,

with

ANst5~21!~N2s!/2~2t1n23!!! F2~2s1n11!/2~2s1n21!~N2s!!! ~s2t!!

p~N1s1n21!!! ~s1t1n22!! G1/2. ~B8!

Next we apply Dragt’s theorem to the highest weight state withN5s,

cssta~r ,f,u!5
Asst

Attt
r s2tCs2t

~2t1n21!/2~cosf!cttta~r ,f,u!, ~B9!

by replacing

r→~ I n11
† /2!1/2, cosf→t†5s†/~ I n11

† !1/2, ~B10!

to obtain

u@s#,s,t&5
Asst

Attt
S I n11

†

2 D ~s2t!/2

Cs2t
~2t1n21!/2~ t†!u@t#,t,t&,

~B11!

5F ~s2t!! ~2t1n22!!!

~2s1n23!!! ~s1t1n22!! G
1/2

(
k50

@~s2t!/2# S 2
1

2D
k

3
~2s1n2322k!!!

k! ~s2t22k!!
~s†!s2t22k~ I n11

† !ku@t#,t,t&.

By comparing~B11! with ~18!, one finds the expression of Eq.~19! for the expansion coefficients
Fk(s,t).
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Applications of quantum and classical Fisher information
to two-level complex and quaternionic and three-level
complex systems

Paul B. Slatera)
Community and Organization Research Institute, University of California,
Santa Barbara, California 93106-2150

~Received 31 October 1995; accepted for publication 5 February 1996!

In the Bayesian theory of statistical inference, as first suggested by Harold Jeffreys
in highly influential work, one can employ the square root of the determinant of an
n3n Fisher information matrix as a reparametrization-invariant prior~generally
unnormalized! measure over ann-dimensional family~Riemannian manifold! of
probability distributions. Jeffreys’ ansatz is adopted here to the quantum context,
that is, with regard to density matrices rather than probability distributions, by
computing thequantumFisher information matrices~associated with Helstrom and
Holevo! for the three-, five-, and eight-dimensional convex sets of two-level com-
plex, two-level quaternionic, and three-level complex systems, respectively. In both
the two-level cases, the priors have been normalized to probability distributions
over the 232 density matrices, while, in the much more computationally demand-
ing three-level situation, no such normalization has been accomplished. An argu-
ment is made for the general form, in terms of eigenvalues, that the~unnormalized!
prior should assume over the~n221!-dimensional convex set ofn3n density ma-
trices. © 1996 American Institute of Physics.@S0022-2488~96!00506-3#

In the study of random matrices,1 the objective is often to obtain the distribution of the
eigenvalues in an ensemble ofn3n Hermitian matrices asn→`. The stochastic element is
introduced by assuming that the real~complex! parts of the off-diagonal elements are identically
distributed random variables. The matrices can be regarded as Hamiltonians and their eigenvalues
as energy levels.

Here, a quite different—somewhat complementary—approach to ‘‘random’’ matrices is
taken. Rather than viewing the matrices as Hamiltonians, they are regarded as density matrices,
thus requiring in addition to Hermiticity, the nontrivial properties of non-negative definiteness and
unit trace. Also, the analysis is nonasymptotic in character, focusing on the casesn52 and 3, and
is not—to begin with—principally concerned with the distribution of eigenvalues~two distinct
density matrices can, of course, possess the same eigenvalues!. The matrix ensembles under study
here are the three-dimensional convex set of 232 ~complex! density matrices, the five-
dimensional convex set of 232 ~quaternionic! density matrices, and the eight-dimensional convex
set of 333 ~complex! density matrices.

The random element is introduced by adopting anansatzof Harold Jeffreys,2,3 which has been
widely applied in classical~commutative! probability,4 to the quantum~noncommutative!
domain.5,6 In this generic approach, one computes an appropriate~classical or quantum! Fisher
information matrix4,7 and employs the square root of its determinant as a~prior! measure over a
family of probability distributions~in the classical case! or density matrices~in the quantum case!.
The measure is invariant under reparametrizations, that is, it transforms according to the Jacobian
of the transformation taking one parametrization of the probability distributions or density matri-
ces to another.

a!Electronic mail address: slater@sbitp.itp.ucsb.edu

0022-2488/96/37(6)/2682/12/$10.00
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The Fisher information matrix defines a metric~the Jeffreys’ prior serving as its volume
element!,8 which, in the quantum case, is equivalent9—up to a proportionality factor of 4—to the
Bures metric. This constitutes the extension to mixed states of the Fubini Study metric on pure
states and has been widely studied.10,11

We now consider the three cases under examination.
~i! n52 (complex)
The 232 density matrices, in quaternionic form,12 can be parametrized as

r5
1

2 S 11z x2 iy2 ju2kv

x1 iy1 ju1kv 12z D , ~1!

where i 25 j 25k2521, i j52 j i5k, jk52k j5 i , and ki52 ik5 j . To begin with, let us set
u5v50, so that we have the usual Bloch sphere~unit ball in three-space! representation of the
232 density matrices.

To obtain the 333 quantum Fisher information matrix (J), one must first find the three
symmetric logarithmic derivatives (Lx ,Ly ,Lz) satisfying

5,6,13

]r

]a
5

rLa1Lar

2
, a5x,y,z, ~2!

and then compute entries of the form

Jbg5Tr@r~LbLg1LgLb!/2#, b,g5x,y,z. ~3!

Now,

Lx5
1

~12x22y22z2! S x~z21! 12 ixy2y22z2

11 ixy2y22z2 2x~z11!
D ,

Ly5
1

~12x22y22z2! S y~z21! 2 i ~12x21 ixy2z2!

i ~12x22 ixy2z2! 2y~z11!
D , and ~4!

Lz5
1

~12x22y22z2! S 12x22y22z xz2 iyz

xz1 iyz 211x21y22zD ,
so the quantum information matrix given by~3! is

1

~12x22y22z2! S 12y22z2 xy xz

xy 12x22z2 yz

xz yz 12x22y2
D . ~5!

Its determinant is

1/~12x22y22z2!. ~6!

@The determinant of~1!, with u5v50, is (12x22y22z2)/4.# The square root of~6!, the volume
element~up to a proportionality factor! for the Bures metric,9–11 can be normalized to form the
probability distribution

P~x,y,z!51/p2~12x22y22z2!1/2, x21y21z2<1. ~7!
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Our assertion is, thus, that if one chooses 232 complex density matrices according to this distri-
bution, so doing will constitute a ‘‘random’’ sampling of these two-level quantum systems. If one
averages the von Neumann entropy,2 Tr r ln r, with respect to the prior~7!, one obtains 2 ln 2
27/6'0.2196277 for the average entropy of a 232 density matrix~cf. Ref. 14!.

It is of interest to note that with the substitutionsx5A1/2, y5B1/2, z5C1/2, ~7! becomes the
Jeffreys’ prior probability~a trivariate beta or Dirichlet distribution!

1/p2A1/2B1/2C1/2~12A2B2C!1/2 ~8!

for the ~classical! quadrinomial distribution with probabilitiesA, B, C, and 1–A–B–C.15 Since

E
2~12x22y2!1/2

~12x22y2!1/2

P~x,y,z!dz5
1

p
, ~9!

the ~three! bivariate marginal probabilities of~7! are uniform distributions over unit disks
~x21y2<1,...!. ~So, Laplace’s principle of insufficient reason16 is manifested in such a form.!
Then, the three univariate distributions are of the form~Fig. 1!

E
2~12x2!1/2

~12x2!1/2 1

p
dy5

2~12x2!1/2

p
. ~10!

Under the transformation,x52l21, this becomes a beta distribution

8l1/2~12l!1/2/p, 0<l<1 ~11!

with its two parameters equaling 1.5.
As a numerical illustration of the application of Bayes’ Theorem3,4 to the estimation of

quantum systems,17–19 let us hypothesize an experimental situation in which spin measurements
are performed on each of 14 replicas of a two-level quantum system: three are taken in theX

FIG. 1. Univariate marginal probability distribution, 2~12x2!1/2/p, for two-level complex quantum systems.

2684 Paul B. Slater: Quantum and classical Fisher information

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



direction: with two ‘‘ups’’ recorded, five in theY direction with three ‘‘ups,’’ and six in theZ
direction with two ‘‘ups.’’ Then the posterior~modified! probability distribution over the unit ball
is proportional to the product of the prior~7! and the likelihood.

S 12x

2 D S 11x

2 D 2S 12y

2 D 2S 11y

2 D 3S 12z

2 D 4S 11z

2 D 2, ~12!

since in a two-level system with parametersx,y,z, the probability of an ‘‘up’’ in theX direction
is ~11x!/2 and a ‘‘down,’’ ~12x!/2,... . This product can be normalized, through an integration
over the unit ball, to comprise the posterior probability distribution

7168~12x!~11x!2~12y!2~11y!3~12z!4~11z!2

1903p2~12x22y22z2!1/2
. ~13!

The inverse of the information matrix~5! takes the particularly simple form

S 12x2 2xy 2xz

2xy 12y2 2yz

2xz 2yz 12z2
D . ~14!

This serves as a~Cramér–Rao! lower bound~in the sense of positive definiteness! on the covari-
ance matrix of unbiased estimates of the parameters of the density matrix.5,6,13 @Each diagonal
element of~14! furnishes a bound itself.#

Let us note that by transforming from Cartesian coordinates (x,y,z) to spherical ones
~r ,u1,u2!, the Fisher information matrix~5! assumes a diagonal form

S 1/~12r 2! 0 0

0 r 2 0

0 0 r 2 sin u1
D . ~15!

The prior probability~normalized form of the square root of its determinant! is then

r 2 sin u1
p2~12r 2!1/2

, 0<r<1;0<u1<p;0<u2<2p, ~16!

wherer 2 sinu1 is the Jacobian of the transformation, in accordance with the principle of reparam-
etrization invariance.2–4

~ii ! n52 (quaternionic)
The domain of the five parameters,u,v,x,y,z is the unit ball in five-space,

u21v21x21y21z2<1. Using the relations between the quaternionic elements (1,i , j ,k) and the
Pauli matrices~Ref. 12, p. 495; Ref. 20, p. 197!, the density matrix~1! can be reexpressed as the
434 Hermitian non-negative definite matrix of unit trace,

r5
1

4 S 11z 0 x2 iy u1 iv

0 11z 2u1 iv x1 iy

x1 iy 2u2 iv 12z 0

u2 iv x2 iy 0 12z

D . ~17!

Then, applying the formulas~2! and~3! to this matrix, we obtain the quantum Fisher information
matrix

2685Paul B. Slater: Quantum and classical Fisher information

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



1

~12u22v22x22y22z2!

3S 12v22x22y22z2 uv ux uy uz

uv 12u22x22y22z2 vx vy vz

ux vx 12u22v22y22z2 xy xz

uy vy xy 12u22v22x22z2 yz

uz vz xz yz 12u22v22x22y2

D .

(18)

Its inverse,

S 12u2 2uv 2ux 2uy 2uz

2uv 12v2 2vx 2vy 2vz

2ux 2vx 12x2 2xy 2xz

2uy 2vy 2xy 12y2 2yz

2uz 2vz 2xz 2yz 12z2

D , ~19!

serves as a Crame´r–Rao lower bound, in the sense of non-negative definiteness, on unbiased
estimates ofu,v,x,y,z.5,6,13

The square root of the determinant of~18! can be normalized to the probability distribution

2/p3~12u22v22x22y22z2!1/2, u21v21x21y21z2<1. ~20!

With the transformations,x5A1/2, y5B1/2, z5C1/2, u5D1/2, andv5E1/2, this becomes the Jef-
freys’ prior

2/p3@ABCDE~12A2B2C2D2E!#1/2 ~21!

for a sextanomial distribution.15 The marginal distribution of~20! over any of the five coordinates
is a uniform distribution~2/p2! over a unit ball in four-space. The lower-dimensional marginals
are then of the forms

4~12x22y22z2!1/2/p2, x21y21z2<1, ~22!

2~12x22y2!/p, x21y2<1 ~23!

~Fig. 2! and

8~12x2!3/2/3p, 21<x<1 ~24!

@Fig. 3, cf. ~10! and Fig. 1#. The conditional probability distribution of~20! with u5v50 is
simply ~7!.

In spherical coordinates~r ,u1,u2,u3,u4!, ~18! assumes the diagonal form
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S 1/~12r 2! 0 0 0 0

0 r 2 0 0 0

0 0 r 2 sin2 u1 0 0

0 0 0 r 2 sin2 u1 sin
2 u2 0

0 0 0 0 r 2 sin2 u1 sin
2 u2 sin

2 u3

D . ~25!

FIG. 2. Bivariate marginal probability distribution, 2~12x22y2!/p, for two-level quaternionic quantum systems.

FIG. 3. Univariate marginal probability distribution, 8~12x2!3/2/3p, for two-level quaternionic quantum systems.
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The normalized square root of its determinant is

2r 4 sin3 u1 sin
2 u2 sin u3

p3~12r 2!1/2
, 0<r<1;0<u1 ,u2 ,u3<p,0<u4,2p, ~26!

the numerator of which is~twice! the Jacobian of the transformation from Cartesian to spherical
coordinates. This reflects the property of reparametrization invariance possessed by Jeffreys’
prior2–4 @cf. ~20!#.

A single measurement of a two-level complex quantum system provides 0.140186 ‘‘nats’’ of
information ~1 nat equals 1/1n 2 bits!, while a single measurement of a two-level quaternionic
system furnishes less—0.090 186 2 nats. These results were obtained by computing the relative
entropy ~Kullback–Liebler distance or mutual information! of a posterior distribution based on
one measurement@cf. ~13!, where 14 measurements were hypothesized# with respect to the priors
~10! and ~24!. The relative entropy of the trivariate prior~16! with respect to the uniform distri-
bution ~3r2 sinu1/4p! over the unit ball in three-space is 0.336099, while the relative entropy of
the quintivariate prior~26! with respect to the uniform distribution~15r 4 sin3 u1 sin

2 u2 sinu3/8p2!
over the unit ball in five-space is 0.3629558. The distribution~16!, or, equivalently,~7!, is thus, in
this sense, smoother or less informative, closer to a uniform distribution than~26!, or, equiva-
lently, ~20!.

~iii ! n53 (complex)
A 333 density matrix is of the general form

r5S p r1si t1ui

r2si q v1wi

t2ui v2v i 12p2q
D , ~27!

being Hermitian, non-negative definite and of trace 1.21 Since 3 is a prime number, one can find
a set of four mutually unbiased~orthonormal! bases of three-dimensional complex Hilbert
space.22–24Following Wootters@Ref. 23, formula~3!#, one such set of bases is

B05H S 10
0
D ,S 01

0
D ,S 00

1
D J ,

B15H S S /)1/)
S /)

D ,S 1/)
S /)
S /)

D ,S S /)S /)
1/)

D J ,
~28!

B25H S h/)
1/)
h/)

D ,S 1/)
h/)
h/)

D ,S h/)
h/)
1/)

D J ,
B35H S S /)h/)

1/)
D ,S h/)

S /)
1/)

D ,S 1/)1/)
1/)

D J ,
whereS 5exp~2p i /3! andh5exp~22p i /3!. ~The square of the inner product of any two vectors
from different bases is13.! Now, by solving a set of linear equations, one can reparametrizer @Eq.
~27!# using the relations
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p5b01, q5b02, r5~22b112b122b212b222b312b32!/2,

s5~b112b122b211b222b311b32!/2), t5~b111b212b312b32!/2,
~29!

u5~2b1122b121b2112b221b312b32!/2), v5~b121b222b312b32!/2,

w5~22b112b1212b211b222b311b32!/2),

wherebi j is the expected value ofr in the j th state of thei th base~i50,1,2,3! of ~28!. ~Alternative
parametrizations of three-level quantum systems are, of course, available.21,25–27! It is important to
note thatbi j>0 for all i and j , and( j51

3 bi j 5 1 for all i , so four trinomial probability distributions
are at hand—having a total of eight degrees of freedom.~In the two-level complex case, there are
correspondingly three binomial distributions, while in the two-level quaternionic case, there are
five relevant binomial distributions.!

Formula~3.8! of Ref. 11,

1

4
TrH drdr1

3

12Tr r3
~dr2rdr!~dr2rdr!1

3uru
12Tr r3

~dr2r21dr!~dr2r21dr!J ,
~30!

gives the Bures metric over the 333 density matrices~r!. This has been computed using the
parametrization~29! and placed in matrix form. The result, by the analysis of Ref. 9, is propor-
tional to the 838 quantum Fisher information matrix for the same parametrization.

It has not been possible to symbolically compute the determinant of this matrix since its
entries are all highly involved expressions. However, several conditional results were more easily
obtainable, having fixed some of the eight parameters beforehand. For example, if all the eight
parameters (bi j ) are equated to a single one—call itb—then the square root of the Bures deter-
minant is

3•31/2/256b2~2112b!2~2114b!1/2 ~31!

~Fig. 4!. The range of permissible values ofb is @ 14,
1
2#. If all the parameters exceptbi1 andbi2 ~for

i50, 1, 2, or 3! are set equal to13, the conditional prior is then of the form

3•31/2/32~211bi1!~211bi2!~bi11bi2!„bi2bi2~12bi12bi2!…
1/2 ~32!

~Fig. 5!.
Remarks:In a recent paper~Ref. 19, cf. Ref. 28!, the author has presented results analogous

to those given above forn52 ~both complex and quaternionic!, but based on Fisher information
matrices defined classically. These matrices were obtained by considering ann3n density matrix
to represent a complexn-variate normal~Gaussian! distribution over the vectors ofn-dimensional
Hilbert space. For the casen52 ~complex!, the counterpart of the information matrix~5! was@Ref.
19; Ref. 28, formula~11!#

1

~12x22y22z2!2 S 2~11x22y22z2! 4xy 4xz

4xy 2~12x21y22z2! 4yz

4xz 4yz 2~12x22y21z2!
D . ~33!

The square root of its determinant is

2•21/2~11x21y21z2!1/2

~12x22y22z2!2
, ~34!
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which cannot@cf. ~6! and ~7!# be normalized over the unit ball in three-space, though, through a
limiting procedure,19,28 one can obtain bivariate marginal probability distributions of the form

1/2p~12x22y2!1/2, x21y2<1. ~35!

@The quantum counterpart of this result—reported above—is the uniform distribution~1/p!.# Re-
latedly, one could not then obtain trivariate posterior probabilities@cf. ~13!#, but only bivariate
ones.19

FIG. 4. Univariate unnormalized conditional prior~31! for three-level complex systems.

FIG. 5. Bivariate unnormalized conditional prior~32! for three-level complex systems.
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If the inverse of~33! is subtracted from the inverse of~5!, that is,~14!, the resulting difference has
two eigenvalues both equal to (11x21y21z2)/2, which are clearly positive, and a third, which
can be expressed in spherical coordinates as

112r 223r 4

2~11r 2!
. ~36!

This is positive forr , 0<r,1 ~Fig. 6!. The non-negative nature of these three eigenvalues dem-
onstrates that this difference of inverses is non-negative definite. Hence, in the sense of the
Cramér–Rao lower bound,5,6 the quantum Fisher information analysis provides a greater lower
bound on the covariance matrices of unbiased estimates ofx,y,z than the classical Fisher infor-
mation analysis previously reported.19,28This result is plausible in that one can obtain only partial
information concerning a quantum state through a quantum measurement.

A parallel analysis was also conducted involving the inverses of the quantum and classical
quaternionic 535 Fisher information matrices~19!. Four of the five eigenvalues of the matrix
difference equalled, in spherical coordinates,~31r 2!/4, where r 25u21v21x21y21z2. This
value is clearly positive forr , 0<r<1. The fifth eigenvalue~Fig. 7!,

312r 225r 4

4~11r 2!
~37!

is ~cf. Fig. 6! also non-negative in the range of interest. Consequently, in the quaternionic as well
as complex realms of two-level systems, the inverses of the quantum Fisher information matrices
provide more stringent bounds than do the classical information matrices.19,28For r51, that is, the
pure states, since the unrepeated eigenvalues~36! and~37! are zero, there is a partial degeneracy
in this regard.

For the classical Fisher information analysis of three-level systems, the counterparts of~31!
and ~32! have been found to be

FIG. 6. Unrepeated eigenvalue of difference of inverses of 333 quantum and classical Fisher information matrices for
two-level complex systems~spherical coordinates!.
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3•31/2~3216b124b2!1/2

~2112b!6~2114b!3
~38!

and

3•31/2~122bi112bi1
2 22bi212bi2bi212bi2

2 !1/2

„bi1bi2~12bi12bi2!…
3 . ~39!

Dittmann @Ref. 11, formula~2.4!# has expressed the Bures metric, in general form, as

1
2 Tr~Lr1Rr!21~dr!dr, ~40!

whereLr andRr are the operators of left and right multiplication of matrices byr. It was also
observed thatLr1Rr has the spectrum$l1mu l,m are eigenvalues ofr%. We have computed for
the cases studied above~n52,3! square roots of products of the form@that is, the square roots of
the determinants of (Lr1Rr)

21#

)
i , j51

n

1 Y~l i1l j ! ~41!

and have found that this formula~conjectured to be proportional to the determinant of the quantum
Fisher information matrix for alln! yields, up to proportionality, the results~6!, ~20!, ~31!, and
~32! reported here.@Note that, in this regard, the eigenvalues of the matrices from which~31! and
~32! were generated are~122b! ~repeated! and ~2114b! andbi1, bi2, and 12bi12bi2, respec-
tively.# By the properties of the characteristic polynomial of a matrix,29 these results would
indicate that the three-level quantum prior, in general, is inversely proportional to the product of
the square root of the determinant ofr and the expression obtained by subtracting the determinant
of r from the sum of the three principal minors of order two of the three-dimensional matrixr.

FIG. 7. Unrepeated eigenvalue of difference of inverses of 535 quantum and classical Fisher information matrices for
two-level quaternionic systems~spherical coordinates!.
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Free quantum fields on the Poincare ´ group
M. Toller
Dipartimento di Fisica dell’Universita`, Trento, Istituto Nazionale di Fisica Nucleare,
Gruppo collegato di Trento, Italia
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A class of free quantum fields defined on the Poincare´ group is described by means
of their two-point vacuum expectation values. They are not equivalent to fields
defined on the Minkowski space–time and they are ‘‘elementary’’ in the sense that
they describe particles that transform according to irreducible unitary representa-
tions of the symmetry group, given by the product of the Poincare´ group and of the
group SL~2,C! considered as an internal symmetry group. Some of these fields
describe particles with positive mass and arbitrary spin and particles with zero mass
and arbitrary helicity or with an infinite helicity spectrum. In each case the allowed
SL~2,C! internal quantum numbers are specified. The properties of local commu-
tativity and the limit in which one recovers the usual field theories in Minkowski
space–time are discussed. By means of a superposition of elementary fields, one
obtains an example of a field that presents a broken symmetry with respect to the
group Sp~4,R! that survives in the short-distance limit. Finally, the interaction with
an accelerated external source is studied and it is shown that, in some theories, the
average number of particles emitted per unit of proper time diverges when the
acceleration exceeds a finite critical value. ©1996 American Institute of Physics.
@S0022-2488~96!02005-7#

I. INTRODUCTION

Quantum field theories defined on the Poincare´ group manifoldP instead of the Minkowski
space–time have been introduced by Lurhat1 in 1964. A motivation of these investigations was a
symmetric treatment of translations, rotations, and Lorentz boosts, namely of all the restricted
Poincare´ transformations. Later2,3 it has been recognized that this point of view, in order to be
really consistent, requires a symmetric treatment of velocity, angular velocity, and acceleration;
since in relativistic theories there is an upper bound to the velocity of material objects, one has to
introduce similar limitations to angular velocity and acceleration. The existence of an upper bound
to the proper acceleration has also been suggested in Ref. 4. Brandt5,6 has shown that a maximal
acceleration of the order ofc2lP

21 , where lP is the Planck length, is expected as a quantum
gravitational effect.

The theories studied in Ref. 1 are symmetric with respect to both the left and the right
translations of the groupP . We suggest that the physical symmetry group is smaller, namely it
contains all the left translations, but only the right translations generated by the homogeneous
Lorentz group@or its universal covering SL~2,C!#. The aim of the present paper is to analyze the
free fields onP ~or on its universal coveringP̃ ! that satisfy this weaker symmetry requirement
besides the natural positivity and spectral conditions. We begin by considering ‘‘elementary’’
fields, namely fields that describe particles that transform according to irreducible unitary repre-
sentations~IURs! of the symmetry group. Other fields can be obtained by superposition of el-
ementary fields, which could provide the building blocks for the construction of theories imple-
menting the physical ideas indicated above.

We do not claim to have found all the fields with the assumed properties. A formal proof of
this statement would require a more precise formulation of the problem, for instance, a specifica-
tion of the distribution space to which the fields have to belong. We think that in a first approach

0022-2488/96/37(6)/2694/37/$10.00
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it is more useful to find as many examples as possible and to introduce technical assumptions only
when they are found to be necessary.

In order to clarify the physical meaning of our assumptions, it is convenient to consider the
theories on an arbitrary group manifold as special cases of theories of a much larger class,7–10

based on ann-dimensional differentiable manifoldS endowed with a geometric structure defined
by n vector fieldsAa ~a50,...,n21! linearly independent at every point ofS . If S 5G is a group
manifold, the vector fieldsAa are the generators of the right translations~invariant under left
translations!11 and form a basis of the Lie algebral of G .

In another interesting case,S is the ten-dimensional principal bundle12 of the pseudo-
orthonormal frames~tetrads! of a ~311!-dimensional pseudo-Riemannian space–timeM. The
fields

A45A23, A55A31, A65A12, A75A10, A85A20, A95A30 ~1.1!

are the generators of the structural group of the bundle, namely of the Lorentz group acting on the
tetrads. They define a basis of the ‘‘vertical’’ subspaces of the tangent spaces ofS . The fields
A0 ,...,A3 describe the infinitesimal parallel displacements along the tetrad vectors, namely they
generate the ‘‘horizontal’’ subspaces which define a connection. IfM is the flat Minkowski
space–time, one can identify the bundle of framesS with the Poincare´ group. In a similar way the
de Sitter~or anti-de-Sitter! group can be identified with the bundle of framesS of a pseudo-
Riemannian space–timeM with constant positive~or negative! curvature.

Classical field theories including gravitation based on these ideas have been developed in
Refs. 8–10, 13, and 14. If one identifiesS with a principal bundle with a larger structural group,
one can also treat Maxwell and Yang–Mills fields.8,15 Any classical or quantum field defined on
the pseudo-Riemannian space–timeM can easily be translated into a field defined on the bundle
of framesS . We think, however, that the new formalism should be used to formulate new
physical ideas.

The fieldsAa define a ‘‘teleparallelism’’ inS , namely a set of isomorphisms between all the
tangent spaces ofS and a fixed vector spaceT 5Rn. A closed wedgeT 1,T defines a field of
wedges in the tangent spaces ofS which describes the causal properties of the theory and in
particular the upper bounds to velocity, angular velocity, and acceleration.2,3

It is useful to introduce the structure coefficientsFab
g defined by

@Aa , Ab#5Fab
g Ag , ~1.2!

where [A, B] is the Lie bracket of two vector fields. IfS is a group manifold, they are the
structure constants of the corresponding Lie algebra. IfS is a bundle of frames, some of the
structure coefficients are the components of the curvature and torsion tensors and in a theory of
gravitation they have a dynamical character, namely they depend on the distribution of matter.

In accord with the ideas indicated above, it is natural to consider theories in which all the
structure coefficientsFab

g and all the vector fieldsAa have a dynamical character. In a theory of
this kind, the field equations determine both the fieldsAa that describe the geometry and the fields
cr that describe matter. We assume that this theory is invariant under all the diffeomorphisms of
S and under a symmetry groupF acting linearly in the following way:

cr→Sr
s~k!cs , ~1.3!

Aa→Ca
b~k!Ab , kPF , ~1.4!

whereS andC are linear representations ofF . The representationC is real and one can consider
it as acting on the vector spaceT . It is natural to require that the transformationsC(k) leave the
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wedgeT 1 invariant. It follows from the physical interpretation of the fieldsAa that the element
k cannot depend on the point ofS , namelyF is a global symmetry group.

In the physically most interesting example,S is a ten-dimensional manifold, the groupF
contains a subgroup isomorphic to the restricted Lorentz group SO↑~3,1!, and the representationC
restricted to this subgroup is the direct sum of the vector and the antisymmetric tensor represen-
tations. Actually, in order to treat matter fields with half-integral spin, it is convenient to assume
thatF contains the universal covering of SO↑~3,1!, namely SL~2,C!. Under these conditions, if we
assume thatT 1 is a cone~namely thatT 1ù2T 15$0%! with interior points, this cone is
determined up to a change of the units of time and length.2,3 It has a large symmetry group given
by L~4,R! acting onT by means of its symmetric tensor representation.2 In this framework, it is
natural to assume that the symmetry groupF of the theory is L~4,R! or one of its subgroups that
contain SL~2,C!. Possible choices are SL~4,R!, Sp~4,R! or SL~2,C!.

In the present paper we consider the fieldsAa as fixed classical fields and we concentrate our
attention on the quantum fields that describe matter. The symmetry group of this partial theory
contains only the elements of the symmetry group of the complete theory that do not affect the
geometric fieldsAa . For instance, the elements ofF that do not preserve the values of the
structure coefficientsFab

g represent broken symmetries. If we consider the values of the structure
coefficients as expectation values of some fields in a vacuum state of the complete theory, this is
a spontaneous symmetry breaking.

In Sec. II we discuss some general properties of quantized matter fields on an arbitrary
connected Lie group. In Sec. III we begin the treatment of free quantum fields on the universal
covering P̃ of the restricted Poincare´ group @namely the inhomogeneous SL~2,C! group#. The
subgroup ofF that survives the symmetry breaking must preserve both the coneT 1 and the
structure constants of the Poincare´ Lie algebra. It follows that it must coincide with SL~2,C!, as
we have anticipated above. The unbroken symmetry group of the theory is the product ofP̃ and
SL~2,C!, considered as an internal symmetry group. The free quantum fields are completely
described by the two-point Wightman distributions@or vacuum expectation values,~VEVs!# and
we give a general representation of the distributions that satisfy the appropriate symmetry, spec-
tral, and positivity conditions. In Sec. IV we treat the commutation or anticommutation properties
of the free fields and we discuss the connection between spin and statistics, which is not the usual
one. For instance, a ‘‘scalar’’ field, namely a field with only one component, has to be quantized
with commutators, but it can describe particles with any spin. In Sec. V we treat the positive-mass
case with arbitrary spin and we write explicitly a wide class of VEVs in terms of the matrix
elements of the IURs of SL~2,C!. In Sec. VI we consider the more delicate zero-mass case and
find theories that describe particles with an infinite helicity spectrum~not observed in nature! and
particles with an arbitrary given helicity. Scalar fields that describe particles with zero mass and
given nonvanishing helicity have pathological features.

Since the nontrivial IURs of SL~2,C! are infinite dimensional, the mass spectrum of these
theories is infinitely degenerate. In order to avoid evident contradictions with the known physical
phenomena, we have to require that, when the mass is within the range of presently available
energies, only a finite number of internal states of the particles can be excited by the field with
appreciable probability. This happens when the parameters which label the IURs of SL~2,C!
approach the limitM5 j50, c→1. Actually, in this limit the VEVs tend to the ones that define the
usual scalar free field in Minkowski space–time. This problem is less relevant when the mass is of
the order of the Planck mass. The theories with a broken higher symmetry satisfy these require-
ments automatically.

In Sec. VII we find the differential equations satisfied by the quantum fields defined in the
preceding sections and compare them with some field equations in a flat ten-dimensional space. In
Sec. VII we introduce the concept of ‘‘spin-mass-shell’’ and discuss the relation between the
VEVs on P̃ and the corresponding distributions defined onR10. We show that not all the free
fields on the flat space have a corresponding field onP̃ .
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In the remaining sections we give some examples, in order to illustrate the general formalism.
A more complete treatment will be given elsewhere. In Sec. IX we consider a theory on the flat
space symmetric with respect to the group Sp~4,R! and build the corresponding theory onP̃ . In
this theory the higher symmetry is broken, but the VEVs maintain the higher symmetry in the
short-distance limit. This is an explicit example of a new kind of broken symmetry in quantum
field theory.

In Sec. X we consider an external source, represented by an accelerated disk, interacting with
one of the fields defined in the present paper. We consider with more detail the field introduced in
Sec. IX and we show that the number of particles emitted per unit of proper time diverges when
the acceleration exceeds a finite critical value. This result shows that the formalism really contains,
in some sense, the ideas that provided its motivation. Brandt6 has suggested that, when the
acceleration of a particle approaches a critical value, the energy radiated in the form of quantum
black holes diverges, preventing a larger acceleration. The formalism presented here could provide
a simplified model for this process, if the particles described by our fields are interpreted as
quantum black holes.16 This interpretation, however, raises several difficult problems.

II. QUANTUM FIELDS ON A GROUP MANIFOLD

As we have anticipated in the Introduction, we consider ann-dimensional manifoldS with n
vector fieldsAa ~a50,...,n21! that, being linearly independent, define a basis in each tangent
space ofS . As a consequence, we can identify all the tangent spaces with a single vector spaceT .
These vector fields describe the gravitational field and possibly other gauge fields, while matter is
described by a set of fieldscr , on the manifoldS .7–10 We assume that the complete field
equations, including gravitation, are invariant under all the diffeomorphisms ofS and under a
group F which acts on the matter fields and on the geometric fields according to the linear
formulas~1.3! and ~1.4!.

We consider the fieldsAa as classical external fields and we restrict our considerations to
symmetry transformations that leave them invariant. The transformations which have this property
are implemented by unitary or antiunitary operators acting on the Hilbert spaceH which de-
scribes the states of matter. Since we consider only connected symmetry groups, we deal only with
unitary symmetry operators.17 Moreover, we assume that they form a continuous representation of
the symmetry group.18 The fieldscr are operator-valued distributions onS that act in a dense
linear subspaceD of H. We assume that both the smeared field operators and the symmetry
operators transformD into itself.

Field theories on ann-dimensional manifoldS which has a symmetry group have been
treated in Ref. 7. Here we consider the case in which the vector fieldsAa generate a connected
n-dimensional Lie groupG of diffeomorphisms ofS . It is convenient to assume thatG acts on
the right in the spaceS , namely the action of the elementgPG on the elementsPS is written
as (g,s)→sg. We assume also thatG acts freely and transitively; it follows that if we choose an
origin s0PS , the mappingg→s5s0g is a diffeomorphism ofG ontoS . The action ofG on S
takes the form

s5s0g→s85s0gh5sh, g,hPG , ~2.1!

namely, it corresponds to a right translation ofG . The vector fieldsAa can also be considered as
fields onG , which generate the right translations. They form a basis of the Lie algebral of G , that,
as a vector space, can be identified withT .

The vector fieldsAa are invariant under the left translations ofG ; it follows that a transfor-
mation of the kind

s5s0g→s85s0hg, g,hPG , ~2.2!
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J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



is a symmetry transformation that leaves the geometry ofS invariant. It can be interpreted as a
change of the origins0.

The diffeomorphisms of the kind~2.2! provide a first class of symmetry transformations. They
act on the matter fields in the following way:

cr~s0h
21g!5U~h!21cr~s0g!U~h!, g,hPG . ~2.3!

Note that the indices of the fields are not involved: every component behaves as a scalar field. We
indicate byU(Aa) the generators of the continuous unitary representationU corresponding to the
elementsAa of l. The operatorsiU (Aa) are self-adjoint and are interpreted as the energy, the
momentum, the relativistic angular momentum, and possibly~if n.10! the charges that generate
some gauge transformations. Note that, as it is expected, these operators, as well as the unitary
operatorsU(h), depend on the choice of the frames0.

The diffeomorphisms of the kind~2.1! affect the geometric fields according to the formula

Aa→AbB
b

a~h!, ~2.4!

whereBb
a(h) is the adjoint representation ofG . They give rise to symmetry transformations only

if Eq. ~2.4! can be compensated by a transformation of the kind~1.4!, namely, if

Bb
a~h!5Ca

b~ ĥ21!, hPG , ĥPF . ~2.5!

This condition defines a subgroupG 2,G and we assume thath→ĥ is a continuous homomor-
phism ofG 2 onto a subgroupF 2,F . In the following we writeS(h) instead ofS(ĥ). Then we
have

Sr
s~h!cs~sh!5V~h!21cr~s!V~h!, hPG 2 . ~2.6!

The operatorsV(h) commute with the operatorsU(g) and do not depend on the choice ofs0.
They describe a kind of internal symmetry.

The internal automorphisms ofG , given byg→hgh21, are the product of a right and a left
translation and do not require a separate treatment. The external automorphisms ofG ~for in-
stance, the space–time dilatations in the Poincare´ group! give rise to a new kind of symmetry if
their action on the fieldsAa can be compensated by a transformation of the kind~1.4!. This
compensation is not possible in the cases we shall treat in the following sections.

Several general features of the quantum field theories on Minkowski space–time19,20 can be
extended to the theories on a group manifold. We assume that there is a vacuum stateVPD
invariant with respect to both the representationsU andV, and we define the VEV

„V,cr~s1!cs~s2!V…5W rs~s1 ,s2!. ~2.7!

It follows from Eq. ~2.3! that this quantity can be considered as a distribution onG . In fact, we
have

W rs~s1 ,s2!5W rs~s0g1 ,s0g2!5Wrs~g1
21g2!. ~2.8!

In the following we understand a fixed choice ofs0 and we writecr(g) instead ofcr(s0g). The
VEV of m11 fields is defined in the following way as a distribution onG m:

„V,cr1
~g1!•••crm11

~gm11!V…5Wr1•••rm11

~m! ~g1
21g2 ,...,gm

21gm11!. ~2.9!

If the fields cr(g) are not Hermitean, we have to consider the Hermitean conjugate as a
different field and we use the notation
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cr
†~g!5c r̄~g!, Sr̄

s̄~h!5S̄r
s~h!. ~2.10!

In all the formulas any index can be replaced by a barred index and vice versa, unless it is stated
otherwise. If the field is Hermitean, we have to putr̄5r and the representationS must be real.
Then from the definition we obtain

W̄r1•••rm11

~m! ~g1 ,...,gm!5Wr̄m11••• r̄ 1

~m! ~gm
21,...,g1

21! ~2.11!

and from Eq.~2.6! we obtain the symmetry property

Sr1
s1~h!•••Srm11

sm11~h!Ws1•••sm11

~m! ~h21g1h,...,h
21gmh!5Wr1•••rm11

~m! ~g1 ,...,gm!, hPG 2 .

~2.12!

If we deal with free fields, all the VEVs can be obtained from the two-point distributions by
means of the Wick theorem. In this case, the vectors of the kind

F~ f !5E f r~g!cr
†~g!dgV, ~2.13!

where f is a test function anddg is an invariant measure onG , are dense in the Hilbert space
H ~1! of the ‘‘one-particle’’ states. The square of the norm of the vector~2.13! is given by

„F~ f !,F~ f !…5E f r~g1! f
s~g2!Wrs̄~g1

21g2!dg1dg2>0. ~2.14!

This is the positivity condition. For interacting field theories, we have more complicated positivity
conditions that involve all the other VEVs.

The symmetry operators defined in Eqs.~2.3! and ~2.6! act on the one-particle states in the
following way:

U ~1!~h!F~ f !5F~ f 8!, f 8r~g!5 f r~h21g!, ~2.15!

V~1!~h!F~ f !5F~ f 8!, f 8r~g!5 f s~gh!S̄s
r~h21!. ~2.16!

Equations~2.14!–~2.16! permit, in the usual way, the reconstruction of the one-particle Hilbert
space~as the completion of a quotient! and of the operatorsU (1)(h) andV(1)(h). If the unitary
representationU (1)3V(1) of G3G 2 is irreducible, we say that the free field is ‘‘elementary.’’

III. FREE FIELDS ON THE POINCARÉ GROUP

Now we apply the general results of the preceding section to the Poincare´ group. We consider
the ten-dimensional manifoldS of all the Lorentz reference frames in the Minkowski spaceM

which are left-handed and future-directed. If we fix a reference frames0, for each reference frame
s there is one and only one element of the proper orthochronous Poincare´ groupP that transforms
s0 into s. Then we can identify the spaceS with P and consider quantum fields defined on it.
Actually, in order to treat fields with half-integral spin, it is convenient to use the universal
coveringP̃ of P , namely the semidirect product of the four-dimensional translation groupR4 and
SL~2,C!. For the elements of this group and for their multiplication rule, we use the standard
notation

~x,a!~y,b!5„x1L~a!y,ab…, x,yPR4, a,b,PSL~2,C!, ~3.1!
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whereL(a) is the 434 Lorentz matrix corresponding to the elementaPSL~2,C!. For the scalar
product of two four-vectors we use the notation

gikx
iyk5x•y52x0y01x–y, x–y5x1y11x2y21x3y3. ~3.2!

The one-parameter subgroups of SL~2,C! that correspond to rotations around the axes and to pure
Lorentz transformations along the axes are written as

uk~u!5exp~2 1
2iusk!, ak~z!5exp~ 1

2zsk!, ~3.3!

wheresk are the Pauli matrices.
We assume that the groupF contains SL~2,C! and that it preserves the coneT 1 defined in

Refs. 2 and 3. It is easy to see that the translations~acting onT by means of the adjoint
representation ofP ! and the space–time dilatations~which are external automorphisms ofP̃ and
of the corresponding Lie algebra! do not preserve the coneT 1. It follows that we have to put
G 25SL~2,C!. Then the general equations~2.3! and ~2.6! take the form

cr„~y,b!21~x,a!…5cr„L~b!21~x2y!,b21a…5U~y,b!21cr~x,a!U~y,b!, ~3.4!

Sr
s~b!cs~x,ab!5V~b!21cr~x,a!V~b!. ~3.5!

If V(b)51, from Eq.~3.5! we have

cr~x,a!5Sr
s~a21!cs~x,1!, ~3.6!

and we are dealing with a fieldcs(x)5cs(x,1) defined on the Minkowski space–time. From Eq.
~3.4!, we obtain the usual covariance property

Sr
s~b!cs„L~b!21~x2y!…5U~y,b!21cr~x!U~y,b!. ~3.7!

In the following we consider the case in whichV(b) is not trivial.
A free-field theory is completely described by the two-point VEVs

„V,cr~x,a!cs~y,b!V…5Wrs„~x,a!21~y,b!…5Wrs„L~a21!~y2x!,a21b…. ~3.8!

From the covariance property~3.5! we obtain the formula

Wrs„L~b!x,bab21
…5Sr

m~b!Ss
n~b!Wmn~x,a! ~3.9!

~remember our conventions about the introduction of barred indices!. If the field is not Hermitean,
we assume

Wrs~x,a!5Wrs~x,a!50 ~3.10!

~here the bars over the indices cannot be modified! and the distributionsWrs̄(x,a) and
Wr̄ s(x,a) can be treated independently unless we introduce some requirement of local commu-
tativity ~see Sec. IV!.

The states of the form

F~ f !5E f r~x,a!cr
†~x,a!d4xd6aV, ~3.11!

where f is an arbitrary test function with compact support andd6a is an invariant measure on
SL~2,C!, form a dense set in the Hilbert subspaceH ~1! of the one-particle states. Their norm is
given by the formula
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„F~ f !,F~ f !…5E f r~x,a! f s~y,b!Wrs̄„L~a21!~y2x!,a21b…d4xd6ad4yd6b>0, ~3.12!

which also gives the positivity property of the two-point distribution.
We want to find the solutions of the conditions~3.9! and~3.12! that describe elementary free

fields. More general solutions can be obtained by means of sums or integrals of these solutions. If
we introduce the Fourier transformations

Wrs̄~x,a!5E exp~2 ik•x!W̃rs̄~k,a!d4k, ~3.13!

f̃ r~k,a!5E exp~2 ik•x! f r~x,a!d4x, ~3.14!

Eq. ~3.12! takes the form

„F~ f !,F~ f !…5E f̃ r~k,a! f̃ s~k,b!W̃rs̄„L~a21!k,a21b…d6ad6bd4k>0, ~3.15!

and Eq.~3.9! gives

W̃rs̄„L~b!k,bab21
…5Sr

m~b!S̄s
n~b!W̃m n̄ ~k,a!. ~3.16!

We assume that the distributionW̃rs̄(k,a) vanishes ifk does not belong to the future cone
~spectral condition!. Since the elementary fields have a definite massm, this distribution has
support on the orbit defined by

k•k52m2, k0.0, ~3.17!

and has the form

W̃rs̄~k,a!5~2p!23wrs̄~k,a!u~k0!d~k•k1m2!, ~3.18!

whereu is the step function.
Following a procedure introduced by Wigner,21 we choose a representative element on each

orbit,

k̂5~m,0,0,0!, m.0, ~3.19!

k̂5~1,0,0,1!, m50 ~3.20!

and for each value of the four-momentumk on the orbit, we choose an elementakPSL~2,C! with
the property

k5L~ak!k̂. ~3.21!

Then we see from Eq.~3.16! that we can put

wrs̄~k,a!5Sr
m~ak!S̄s

n~a21ak!wm n̄ ~ak
21aak!, ~3.22!

where

wrs̄~a!5S̄s
n~a!wr n̄ ~ k̂,a!. ~3.23!
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In this way we obtain the integral representation

Wrs̄~x,a!5~2p!23E exp~2 ik•x!Sr
m~ak!S̄s

n~a21ak!wm n̄ ~ak
21aak!u~k0!d~k•k1m2!d4k.

~3.24!

The positivity condition~3.15! takes the form

„F~ f !,F~ f !…5~2p!23E f̃ r~k,aka! f̃ s~k,akb!Sr
m~a21!S̄s

n~b21!

3wm n̄ ~ba21!u~k0!d~k•k1m2!d6ad6bd4k>0, ~3.25!

which is equivalent to the simpler condition

E f r~a! f s~b!wrs̄~ba21!d6ad6b>0. ~3.26!

The little groupK corresponding to the representative elementk̂ is defined by the condition21

L~u!k̂5 k̂, uPK,SL~2,C!. ~3.27!

For m.0 we haveK5SU~2!, the universal covering of the rotation group SO~3!. Form50, we
haveK5Ẽ~2!, a double covering of the Euclidean groupE~2!. From Eq. ~3.16! we get the
condition

wrs̄~uau21!5Sr
m~u!S̄s

n~u!wm n̄ ~a!, uPK . ~3.28!

From Eq.~2.11! we also get the property

W̄rs̄~x,a!5Ws r̄ „~x,a!21
…. ~3.29!

An equivalent condition is

w̄rs̄~a!5ws r̄ ~a21!, ~3.30!

which is a consequence of Eq.~3.26!.
Our problem is to find solutions of the conditions~3.26! and ~3.28!. Then we have to verify

that the product of distributions that appears in Eq.~3.24! is meaningful.
If the theory can be interpreted as a theory in Minkowski space–time, namely ifV(b)51, the

VEVs satisfy the additional symmetry property

Wrs̄~x,ab21!5S̄s
n~b!Wr n̄ ~x,a!. ~3.31!

An equivalent condition is to require that the functionwrs̄(a) defined by Eq.~3.23! does not
depend ona.

IV. LOCAL COMMUTATIVITY

The study of the distributionWrs̄(x,a) can be simplified if we find an elementb in such a
way that

a5bu3~a!a3~b!b21, 22p,a<2p, b>0. ~4.1!
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This is possible outside the four-dimensional submanifold of SL~2,C! where the eigenvalues ofa
are equal. Since these eigenvalues are given by exp„61

2~b2ia!…, we have to avoid the ‘‘singular’’
pointsa50, 2p, b50; namely, we have to impose the condition

coshb2cosa52usinh~ 1
2~b2 ia!u2.0. ~4.2!

We also introduce the quantities

r25~coshb2cosa!21
„coshb x•x2x•L~a!x…, ~4.3!

s25~coshb2cosa!21
„cosa x•x2x•L~a!x…, ~4.4!

which, whena5u3(a)a3(b), take the form

r25~x1!21~x2!2, s25~x0!22~x3!2. ~4.5!

In order to simplify the formalism, we assume thatWrs̄(x,a) is a tempered distribution inx
that depends continuously ona. This is true for the massive free fields described in Sec. V. From
Eqs.~3.9! and ~4.1!, we see that in the open set defined by Eq.~4.2! we have

Wrs̄~x,a!5Sr
m~b!S̄s

n~b!Wm n̄ „L~b21!x,u3~a!a3~b!…. ~4.6!

The spectral condition implies, as in the Minkowskian field theory, that the distribution
Wrs̄„x,u3(a)a3(b)… for fixed values ofa andb is the boundary value of an analytic function of
x defined in the tube ImxPV1 , whereV1 is the open future cone. From Eq.~3.9! we also obtain

Wrs̄~L„u3~c!a3~j!…x,u3~a!a3~b!!

5Sr
m
„u3~c!a3~j!…S̄s

n
„u3~c!a3~j!…Wm n̄ „x,u3~a!a3~b!…. ~4.7!

If we fix the variablesa,b, it is a simple application of the Bargmann Hall Wightman theorem19,20

to find by means of Eq.~4.7! an analytic continuation of the VEV~Wightman function! which is
covariant with respect to the complex two-dimensional Lorentz group acting on the coordinates
x0,x3 and to the real rotations acting on the coordinatesx1,x2. The real points which satisfy the
conditions2,0 belong to the analyticity domain.

The universal covering of the proper complex Lorentz group is SL~2,C!3SL~2,C!. We indi-
cate its elements by the notation (a,b); the real Lorentz transformations correspond to the ele-
ments of the kind (a,ā). If S(a) is the irreducible spinor representationS(s,s8)(a)
5S(s,0)(a)^S(s8,0)(ā), its analytic continuation is given byS(s,s8)(a,b)5S(s,0)(a)^S(s8,0)(b).
S̄(a) is equivalent toS(s8,s)(a) and its analytic continuations is equivalent toS(s8,s)(a,b). We
consider the following product of a complex Lorentz transformation acting onx0,x3 and a real
rotation acting onx1,x2:

„exp~2 1
2ips3!,exp~2 1

2ips3!…„exp~2 1
2ips3!,exp~

1
2ips3!…5~21,1!, ~4.8!

L~21,1!521, S~s,s8!~21,1!5~21!2s. ~4.9!

Then, from the covariance property of the Wightman function, we obtain

Wrs̄„2x,u3~a!a3~b!…5~21!2~s1s8!Wrs̄„x,u3~a!a3~b!…, ~4.10!
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and the same equality holds for realx if s2,0. The same result is valid ifS is a direct sum of
irreducible spinor representations all with the same value of~21!2(s1s8). If we use Eq.~4.6! and
the general expression~4.4! for s2, we see that

Wps̄~2x,a!5~21!2~s1s8!Wrs̄~x,a! ~4.11!

in the open setC,P̃ defined by the condition

cosa x•x2x•L~a!x,0. ~4.12!

One can show that this condition implies Eq.~4.2!.
If we consider a scalar field and we introduce the variables

x5~es coshj8,r cosc8,r sin c8,es sinh j8!, s.0,
~4.13!

x5~eususinh j8,r cosc8,r sin c8,eusucoshj8!, s2,0, e561,

Eq. ~4.7! shows thatW„x,u3(a)a3(b)… does not depend on the variablesc8 and j8. From Eq.
~4.10! we see that ifs2,0 it does not even depend one. In conclusion, fors2,0, W can be
considered as a distribution in the variablesa,b, x1,x2,usu invariant with respect to rotations acting
on x1,x2. In particular, sincea anda21 have the same eigenvalues, from Eqs.~4.3! and~4.4! we
obtain

W~x,a!5W~2x,a!5W~2x,a21!, ~x,a!PC . ~4.14!

The commutator or the anticommutator of a free field is a numerical distribution given by

@cr~x,a!, cs
†~y,b!#65Wrs̄„~x,a!21~y,b!…6Ws̄r~~y,b!21~x,a!!

5Wrs̄„~x,a!21~y,b!…6W̄r̄ s„~x,a!21~y,b!…. ~4.15!

If we consider a Hermitean scalar field, and we use Eq.~3.9!, we have the simpler relation

@c~x,a!, c~y,b!#25W~x2y,ba21!2W~y2x,ab21!52i Im W~x2y,ba21!, ~4.16!

and from Eq.~4.14! we obtain

@c~x,a!, c~y,b!#250 for ~x,a!21~y,b!PC . ~4.17!

We see that in the formulation of local commutativity, Eq.~4.12! is the analog of the inequality
x•x.0 in Minkowski field theory.

In the general case, if we impose a local~anti!commutativity condition of the kind

@cr~x,a!, cs
†~y,b!#650 for ~x,a!21~y,b!PC , ~4.18!

from Eqs.~4.11! and ~4.15! we obtain

Wr̄ s~x,a!57~21!2~s1s8!W̄rs̄~2 x̄,a!, ~x,a!PC . ~4.19!

This relation can be continued analytically in the tube ImxPV1 and, as an equality of distribu-
tions, it holds for any realx. It is compatible with the spectral and covariance conditions, but it
satisfies the positivity condition only if7~21!2(s1s8)51. In conclusion, the local~anti!commuta-
tivity relation ~4.18! is satisfied if we put

Wr̄ s~x,a!5W̄rs̄~2x,a!, ~4.20!
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and the statistics is determined by~21!2(s1s8). We shall see thats1s8 is not directly related to the
spin of the particles described by the field and the usual relation between spin and statistics is not
necessarily valid. From Eq.~3.24! we see that Eq.~4.20! is equivalent to the condition

w r̄ s~a!5w̄rs̄~a!. ~4.21!

For a Hermitean field this condition requires thatwrs(a) is real.
It is interesting to study the integral~3.24! in the scalar case with more detail. Ifw(a)51, Eq.

~3.24! gives the usual VEV for the Minkowskian free scalar field, namely,

W~x!5 i ~4p!21e~x0!d~s2!1~2p!22u~2s2!musu21K1~musu!1~8p!21

3u~s2!ms21
„Y1~ms!2 i e~x0!J1~ms!…, s252x•x5s22r2, ~4.22!

wheree~x0! is the sign ofx0. The corresponding commutator vanishes fors 2,r2.
If the functionw(ak

21aak) decreases for largek, the distributionW(x,a) is less singular. In
order to simplify the integral~3.24!, it is convenient to write the four-vectork in the following
way,

k5~q coshj,p cosc,p sin c,q sinh j!, q5~p21m2!1/2,

0<p,`, 2`,j,`, 0<c,2p, ~4.23!

~2k0!21d3k5 1
2pdpdjdc,

and to choose

ak5u3~c!a3~j!ah . ~4.24!

For m.0 we take

ah5a1~h!, p5m sinhh, q5m coshh, 0<h,`, ~4.25!

and form50

ah5a1~h!u2~
1
2p!, p5q5exph, 2`,h,`. ~4.26!

From Eq.~4.13! we obtain

k•x52eqs cosh~j2j8!1pr cos~c2c8!, s2.0,
~4.27!

k•x5eqususinh~j2j8!1pr cos~c2c8!, s2,0.

The integrations over the variablesj andc in Eq. ~3.24! can be performed in terms of Bessel
functions22 and we obtain the following formula

W~x,a!5~2p!21E
0

`

D„qs,e~x0!… J0~pr!w~a,b,p!p dp, ~4.28!

where

D„qs,e~x0!…5~2p!21u~2s2!K0~qusu!2 1
4u~s2!„Y0~qs!2 i e~x0!J0~qs!… ~4.29!

and
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w~a,b,p!5w„ah
21u3~a!a3~b!ah…. ~4.30!

The commutator of a scalar Hermitean field follows from Eqs.~4.16! and ~4.28! and has the
form

2i Im W~x,a!5 i ~4p!21u~s2!e~x0!E
0

`

J0~qs!J0~pr!w~a,b,p!p dp. ~4.31!

We see that it vanishes fors2,0. Equation~4.31! can be considered as a Hankel transformation.22

By considering the corresponding inverse transformation, one can easily see that a necessary
condition to have a commutator vanishing for larger is that w(a,b,p) is an entire analytic
function ofp2. This does not happen for the elementary fields considered in the following sections.

Whenw(a,b,p) is an even function ofp, it is useful to rewrite Eq.~4.31! as an integral in the
complexp plane,

2i Im W~x,a!5 i223p21u~s2!e~x0!E
C
J0~qs!H0

~1!~pr!w~a,b,p!p dp, ~4.32!

where the integration pathC lies just above the real axis. Forupu→`, Im p.0, we have

pJ0~qs!H0
~1!~pr!.p21~rs!21/2 exp„ip~r2s!…. ~4.33!

If w51 andr.s, we can close the integration path at infinity in the upper half-plane and the
integral vanishes in accord with Eq.~4.22!. Actually, the integral~4.32! is meaningful only in the
sense of distribution theory; in order to deal with a convergent integral, one can multiply the
integrand by (p1 i )2n and take the limitn→0 at the end. Ifw has singularities in the upper
half-plane, one has to take into account their contributions.

V. POSITIVE-MASS FREE FIELDS

In the positive-mass case, we can find the functionwrs̄(a) by exploiting the positivity prop-
erties of the matrix elementsDjmj8m8

Mc (a) of the IURs of SL~2,C! described in Refs. 23–27. The
parameterc is the same as in Ref. 23 and is calledl in Ref. 25. The parameterM is the same as
in Ref. 25 and corresponds to the parameter2 1

2m56k0 of Ref. 23. For the IURs of the principal
series,c lies on the imaginary axis andM is an integral or half-integral number. For the IURs of
the supplementary series,M50 and21,c,1. The representationsDMc andD2M ,2c are unitarily
equivalent. The indicesj , j 8 take the valuesuM u, uM u11,..., and, if we indicate byRmm8

j (u) the
~2 j11!-dimensional representation of SU~2!, we have

Djmj8m8
Mc

~u!5d j j 8Rmm8
j

~u!, uPSU~2!. ~5.1!

Then we put

wrs̄~a!5~2s11!~2J11!21 (
mnn8

Cjs~J,m;n8,r!Cjs~J,m;n,s!Djn jn8
Mc

~a!, ~5.2!

whereC indicates the Clebsch–Gordan coefficients. The parametersM ,c, j ,J,s characterize the
theory; they are fixed and no sum over them is understood. After some calculation we have

wrs̄~uau21!5Rrm
s ~u!R̄sn

s ~u!wm n̄ ~a!, ~5.3!

and we see that Eq.~3.28! is satisfied if
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Sr
s~m!5Rrs

s ~u!, uPSU~2!. ~5.4!

If we indicate byS(s,s8) an irreducible spinor representation, we can put, with an appropriate
choice of the basis,

S~a!5S~s,0!~a! or S~a!5S~0,s!~a!. ~5.5!

In order to prove the positivity property, we substitute Eq.~5.2! into Eq.~3.25! and we obtain
the positive expression

„F~ f !,F~ f !…5E (
mj8m8

u f m j8m8~k!u2u~k0!d~k•k1m2!d4k, ~5.6!

where

f m j8m8~k!5~2p!23/2~2s11!1/2~2J11!21/2Cjs~J,m;n,m!E f̃ r~k,aka!S̄r
m~a21!Djn j 8m8

Mc
~a!d6a.

~5.7!

It is clear that the quantity~5.7! is the wave function in momentum space of the one-particle state
F( f ) and that its indices represent the spin and the internal quantum numbers.

Equation~2.15! takes the form

U ~1!~y,b!F~ f !5F~ f 8!, f 8r~x,a!5 f r
„L~b21!~x2y!,b21a…. ~5.8!

The Fourier transformation~3.14! gives

f̃ 8r~k,a!5exp~2 ik•y! f̃ r~k8,b21a!, k85L~b21!k, ~5.9!

and from Eq.~5.7! we obtain

f m j8m8
8 ~k!5exp~2 ik•y!Rmm9

J
~ak

21bak8! f m9 j 8m8~k8!, ak
21bak8PSU~2!. ~5.10!

We see that the wave function transforms according to the IUR with massm.0 and spinJ defined
by Wigner.21 Equation ~5.7! shows that spin has a double origin, namely the dependence of
f r(x,a) on the indexr and on the group elementa. From Eqs.~3.24! and ~5.2! we have

Wrs~x,2a!5~21!2JWrs~x,a!, ~5.11!

and a similar formula holds for the fieldcr(x,a), which is a one- or two-valued function onP if
2J is, respectively, even or odd.

Equation~2.16! takes the form

V~1!~b!F~ f !5F~ f 8!, f 8r~x,a!5 f s~x,ab!S̄s
r~b21!, ~5.12!

and from Eqs.~3.14! and ~5.7! we obtain

f m j8m8
8 ~k!5 f m j9m9~k!Dj 9m9 j 8m8

Mc
~b21!5D̄ j 8m8 j 9m9

Mc
~b! f m j9m9~k!. ~5.13!

We see that the wave function transforms according to the IURD̄Mc of the internal symmetry
group SL~2,C!. This IUR is equivalent toDMc.

The general formalism described above becomes simpler in some special cases. Ifs50,
S(a)51, we have a scalar field. It isJ5 j and Eq.~5.2! takes the form
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w~a!5wMcj~a!5~2 j11!21(
m

D jm jm
Mc ~a!. ~5.14!

If j5M50, we haveJ5s and

wrs̄~a!5drsD0000
0c ~a!5dpsw

0c0~a!. ~5.15!

In order to give more explicit expressions for the functionswMcj(a), we write the IURs of
SU~2! and of SL~2,C! in the form

Rmm8
j

„u3~f!u2~u!u3~c!…5exp~2 imf!rmm8
j

~u!exp~2 im8c!, ~5.16!

Djmj8m8
Mc

„ua3~z!u8…5(
m9

Rmm9
j

~u!dm9 j j 8
Mc

~z!Rm9m8
j 8 ~u8!. ~5.17!

Then the function defined by Eq.~5.14! can be written as

wMcj
„ua3~z!u8…5wMcj

„a3~z!u3~f1c!u2~u!…5~2 j11!21(
m

dmj j
Mc ~z!rmm

j ~u!

3exp„2 im~f1c!…, u8u5u3~f!u2~u!u3~c!. ~5.18!

The quantitiesdmj j
Mc ~z! are given in Refs. 24 and 25 in terms of elementary functions. It follows

that the expression~5.18!, too, is a combination of elementary functions. For instance, we have

w0c0
„ua3~z!u8…5d000

0c ~z!5„c sinh~z!…21 sinh~cz!, ~5.19!

but the expressions become more and more complicated when the parametersM and j increase. A
useful integral representation ofwMcj(a) is given in Appendix A, where one derives also a simple
approximate expression valid fora→1.

Note that we have

lim
c→1

w0c0~a!5 lim
c→1

D0000
0c ~a!51. ~5.20!

In this limit the distributionwrs̄(a) given by Eq.~5.15! becomes independent ofa and we have
a theory which can be defined in Minkowski space–time. From the unitarity condition we also
have

lim
c→1

D00jm
0c ~a!5 lim

c→1
Djm00
0c ~a!50, j.0, ~5.21!

and if j5M50 the components of the wave function~5.7! tend to zero forj 8.0. We conclude
that the theories withM5 j50 can possibly describe small deviations from the known physical
theories. For other values of the parameters, we get theories which can only apply to the unknown
physics of masses and energies beyond the Planck mass. From the mathematical point of view,
Eqs.~5.20! and~5.21! show that in the limitc→1, the representationD0c becomes reducible and
we have23

lim
c→1

D0c51%D1,0. ~5.22!
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We see from Eq.~3.18! that W̃rs̄(k,a) can be considered as a tempered distribution in the
variablesk that depends continuously on the group elementa and a similar statement holds for its
Fourier transformW(x,a). If a51, Eq. ~5.2! gives

wrs̄~1!5drs , ~5.23!

and from Eq.~3.24! we see thatWrs̄(x,1) is the VEV of a field in Minkowski space, given, in the
scalar case, by Eq.~4.22!. If aÞ1, the functionwrs̄(ak

21aak) decreases for largek and the
distributionWrs̄(x,a) is less singular.

For a scalar field we can use Eq.~4.28! and from Eq.~4.30! we obtain

w~a,b,p!5w„a3~z!u3~f!u2~u!…, ~5.24!

where

coshz5~coshh!2 coshb2~sinhh!2 cosa5coshb1p2m22~coshb2cosa!, ~5.25!

cos
u

2
expS i f

2 D5S coshz

2D
21

cos
a

2
cosh

b

2
1 i S sinh z

2D
21

sin
a

2
sinh

b

2
. ~5.26!

For j5M50, we see that the expression~5.19! is an analytic function of coshz with a branch
point at coshz521. From Eq.~5.25! we see that it is not an entire analytic function ofp2 and the
commutator function~4.31! cannot vanish for larger.

VI. ZERO-MASS FREE FIELDS

In order to use the method described in Sec. V in the zero-mass case, we have to write the
IURs of SL~2,C! in a basis that evidentiates the decomposition of the representation space into
spaces where IURs ofẼ~2! operate. In this case, we have a direct integral decomposition and we
have to introduce a ‘‘continuous’’ basis.28

We start from the realization of the operatorDMc(a) in a space of functions of a complex
variablez:

@DMc~a! f #~z!5~a21z1a11!
2c1M21~a21z1a11!

2c2M21f „~a22z1a12!~a21z1a11!
21
…,

~6.1!

where

a5S a11 a12

a21 a22
D PSL~2,C!. ~6.2!

This representation is equivalent to the one defined in Refs. 23 and 24, which in our notation is
given byD2M ,2c

„u1(p)au1~2p!….
The elements of the little groupẼ~2! have the form

h5S exp~2 1
2if! j exp~2 1

2if!

0 exp~ 1
2if!

D PẼ~2!, ~6.3!

with f real andj complex. We have

@DMc~h! f #~z!5exp~2 iMf! f „exp~ if!z1j…. ~6.4!
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We see thatẼ~2! acts on the complexz plane by means of Euclidean transformations. If we
introduce the~non-normalizable! basis vectors

f km~z!5~zuzu21!2mJ2m~kuzu!, k.0, m50,61,62,..., ~6.5!

the matrix that represents an Euclidean transformation is diagonal in the indexk; namely, we have

f km„exp~ if!z1j…5 f km8~z!Rm8m
k

~h!, ~6.6!

where the matrix

Rm8m
k

~h!5exp~2 im8f!~juju21!m82mJm82m~kuju! ~6.7!

is unitary.27 From Eq.~6.4!, we obtain

@DMc~h! f km#~z!5exp~2 iMf!Rm8m
k

~h! f km8~z!. ~6.8!

We see from Eq.~6.7! that the factor exp~2iMf! can be eliminated by means of a ‘‘translation’’
of the indicesm8,m, which is irrelevant ifM is an integer. IfM is half-odd, we get a represen-
tation of Ẽ~2! that is double-valued onE~2!.

In analogy with Eq.~5.14! we put

w~a!5(
m

„f km ,D
Mc~a! f km…. ~6.9!

Also in this case, the conditions~3.26! and~3.28! are satisfied. In the same way as in Sec. V, we
can show that the fields constructed by means of the distributions found above represent zero-mass
particles with an infinite helicity spectrum21 and with internal quantum numbers described by the
IUR DMc of SL~2,C!. Since particles of this kind are not observed in nature, we shall not discuss
these fields with more detail.

The zero-mass particles present in nature have only one valuem of the helicity~two if parity
is taken into account! and they are described by one-dimensional IURs of the little group21 of the
kind

Rm~h!5exp~2 imf!, hPẼ~2!, m50,6 1
2,61,..., ~6.10!

whereh is given by Eq.~6.3!. These IURs are not contained in the IURs of SL~2,C! and we have
to use a different method in order to find the correspondingw functions. We propose the following
solutions, without explaining how they have been obtained:

w0
0c~a!5ua21u2c22, 0,c,1, ~6.11!

w0
Mc~a!5d2~a21!a22

c2Mā22
c1M, Rec50. ~6.12!

It is easy to show that the symmetry condition~3.28! is satisfied. The positivity condition~3.26!
follows from the formulas

w0
0c~ba21!5E ua22u2cd2~a212z8a22!uz82zu2c22ub22u2cd2~b212zb22!d

2zd2z8, ~6.13!

w0
Mc~ba21!5E ā22

2c2Ma22
2c1Md2~a212za22!b22

c2Mb̄22
c1Md2~b212zb22!d

2z. ~6.14!
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Note thatuz82zu2c22 is a positive integral kernel, the one that defines the scalar product in the
space of an IUR of the supplementary series.23,24

The norm~3.25! in the case~6.11! can be written as

„F~ f !,F~ f !…5E f̄ ~k,z8!uz82zu2c22f ~k,z!u~k0!d~k•k!d2zd2z8d4k, ~6.15!

and in the case~6.12! we obtain

„F~ f !,F~ f !…5E u f ~k,z!u2u~k0!d~k•k!d2zd4k, ~6.16!

where in both cases

f ~k,z!5~2p!23/2E f̃ ~k,aka!a22
c2Mā22

c1Md2~a212za22!d
6a. ~6.17!

Of course, in the first case we have to putM50.
If we consider a Poincare´ transformation of the kind~5.8! and~5.9!, the wave function~6.17!

transforms in the following way,

f 8~k,z!5exp~2 ik•y!RM~ak
21bak8! f ~k8,z!, ~6.18!

wherek8 is given by Eq.~5.9!. This is the transformation property21 of the wave function of a
particle of zero mass and helicityM .

Under the ‘‘internal’’ transformation~5.12! the wave function transforms as

f 8~k,z!5~b221zb12!
2c1M21~b221zb12!

2c2M21f ~k,z8!,
~6.19!

z85~b211zb11!~b221zb12!
21,

namely according to the IURD2M ,2c defined in Refs. 23 and 24, which is equivalent to the IUR
DMc. Note that, if we fix up to equivalence the IURDMc, we have two possible theories with
helicity 6M .

In order to compute the integral~3.24!, we use the variables introduced in Sec. IV. If we put

ã5ah
21u3~a!a3~b!ah , ~6.20!

from Eq. ~4.26! we obtain

ã2152p sinh„ 12~b2 ia!…, ã225cosh„ 12~b2 ia!…. ~6.21!

We see that the quantityd 2~ã21! that appears in Eq.~6.12! is rather badly defined when
considered as a distribution in the variablesk1,k2 for fixed values ofa,b satisfying Eq.~4.2!.
Other difficulties arise when one tries to perform the integrals~3.24! or ~4.28!. We conclude that,
even if the expression~6.12! satisfies the required positivity and symmetry conditions, it does not
give rise to a well-behaved field theory. All the calculations based on this expression have a purely
formal character.

When we substitute Eqs.~6.11! and ~6.21! into Eqs.~4.28! and ~4.31!, the integrals can be
performed in terms of Legendre functions22,29 and we obtain

W0
0c~x,a!52c23p22

„G~c!…2~coshb2cosa!c21~r22s2!2c

3Pc21„~s21r2!~s22r2!21
…, s2,0. ~6.22!

2711M. Toller: Free quantum fields on the Poincaré group
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2i Im W0
0c~x,a!5 i2c22p21e~x0!u~s2!G~c!„G~12c!…21

3~coshb2cosa!c21us22r2u2cPc21„~s21r2!us22r2u21
…. ~6.23!

The real part fors2.0 can be obtained by analytic continuation of Eq.~6.22!. In the special case
r50, we have

W0
0c~x,a!52c23p22

„G~c!…2~coshb2cosa!c21us2u2c~u~2s2!1u~s2!exp„ipce~x0!…!.
~6.24!

Since we are not able to build fields starting from Eq.~6.12!, in order to describe particles
with a nonvanishing helicity we have to use nonscalar fields. From Eq.~6.3! we have

hS 10D5expS 2
1

2
if D S 10D . ~6.25!

We remark that the spinor representationsS(s,0)(h) andS(0,s)(h) are equivalent to symmetrized
tensor products of 2s matrices equal, respectively, toh or h̄ and we adopt conventions in agree-
ment with Eqs.~5.4! and ~5.5!. Then, if we put

S~a!5S~m,0!~a!, m>0, S~a!5S~0,umu!~a!, m<0, ~6.26!

we have

Sr
m~h!5exp~2 imf!dr

m , hPẼ~2!. ~6.27!

As a consequence, the expression

wrs̄~a!5drmdsmua21u2c22 ~6.28!

satisfies the symmetry condition~3.28!.
Equation~6.15! is still valid if we modify Eq.~6.17! in the following way:

f ~k,z!5~2p!23/2E f̃ r~k,aka!S̄r
m~a21!ua22u2cd2~a212za22!d

6a. ~6.29!

Equation~6.18! holds withM replaced bym and Eq.~6.19! holds withM50; this means that the
theory describes zero mass particles with helicitym that transform according to the representation
D0c of the internal symmetry group. In the limitc→1, the expression~6.28! becomes independent
of a and we get a Minkowskian theory of the kind usually adopted to describe neutrinos, photons,
or gravitons.

VII. FIELD EQUATIONS

Now we find the wave equations satisfied by the scalar fields defined in the preceding sec-
tions; nonscalar fields will be treated elsewhere. We indicate byLik52Lki the generators of the
right translations on SL~2,C!, considered as differential operators acting on smooth functions
defined on the group. They satisfy the commutation relations

@Lik , Lrs#5gir Lks2gkrLis2gisLkr1gksLir ~7.1!

of sl~2,C!, commute with the left translations, and have the following commutation property with
the finite right translation represented by the operatorT(b):

T~b21!LikT~b!5L i
r~b!Lk

s~b!Lrs . ~7.2!
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We also need the generatorsLik8 of the left translations, which satisfy commutation relations with
the opposite sign. We have

Lik8 5L i
r~a!Lk

s~a!Lrs , ~7.3!

and their commutation relation with a finite left translationT8(b) is

T8~b!Lik8 T8~b21!5L i
r~b!Lk

s~b!Lrs8 . ~7.4!

We also consider the generatorsAk andAik of the right translations on the groupP̃ that satisfy
the Poincare´ Lie algebra. They act on functions of the kindf (x,a) in the following way:

Ai5Lk
i~a!

]

]xk
, Aik5Lik . ~7.5!

For the generators of the left translations ofP̃ we have

Ai85
]

]xk
, Aik8 5Lik8 1xi

]

]xk
2xk

]

]xi
. ~7.6!

From Eqs.~3.24!, ~7.5!, and~7.6! we obtain immediately the differential equation

gikAiAkW~x,a!5gikAi8Ak8W~x,a!5m2W~x,a!, ~7.7!

which is essentially the Klein–Gordon equation.
If the functionw(a) is a linear combination of matrix elements of the representationDMc(a),

as in Eqs.~5.2! and ~6.9!, it satisfies the differential equations23,24

1
2g

ir gksLikLrsw~a!5 1
2g

ir gksLik8 Lrs8 w~a!5~12c22M2!w~a!, ~7.8!

1
8e

ikrsLikLrsw~a!5 1
8e

ikrsLik8 Lrs8 w~a!52 iMcw~a!. ~7.9!

The functions~6.11! and ~6.12! are not defined in terms of matrix elements, but it is easy to
show directly that they satisfy the differential equations

~L108 2L318 !w~a!50, ~L208 1L238 !w~a!50, ~7.10!

L128 w~a!52 iMw~a!, L308 w~a!5~12c!w~a!. ~7.11!

By means of the formulas

1
2g

ir gksLik8 Lrs8 52~L108 1L318 !~L108 2L318 !2~L208 2L238 !~L208 1L238 !1~L128 !22~L308 !212L308 ,
~7.12!

1
8e

ikrsLik8 Lrs8 5 1
2~L208 2L238 !~L108 2L318 !2 1

2~L108 1L318 !~L208 1L238 !2L308 L128 1L128 , ~7.13!

we can derive also in this case Eqs.~7.8! and ~7.9!.
The Casimir operators that appear in Eqs.~7.8! and~7.9! commute with the left and the right

translations on SL~2,C! and from Eqs.~3.24! and ~7.5! we obtain, for a scalar field,

1
2g

ir gksAikArsW~x,a!5~12c22M2!W~x,a!, ~7.14!

1
8e

ikrsAikArsW~x,a!52 iMcW~x,a!. ~7.15!
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Equations~7.7!, ~7.14!, and ~7.15! identify the mass and the internal quantum numbers and
hold for all the scalar fields. There are other equations that identify spin or helicity. In the
positive-mass case the generators of the little groupK5SU~2! areL12, L23, L31, and from Eqs.
~5.1! and ~5.2!, taking into account the properties of the representations of SU~2!, we obtain

„~L128 !21~L238 !21~L318 !2…w~a!52 j ~ j11!w~a!. ~7.16!

If j50, we have the stronger result

L128 w~a!5L238 w~a!5L318 w~a!50. ~7.17!

From Eqs.~3.19! and ~7.16! we obtain

1
4e

jirs k̂iLrs8 ej
kpqk̂kLpq8 w~a!52m2 j ~ j11!w~a!, ~7.18!

and from Eqs.~3.21!, ~3.22!, and~7.4!

1
4e

jirskiLrs8 ej
kpqkkLpq8 w~k,a!52m2 j ~ j11!w~k,a!. ~7.19!

By substitution into Eq.~3.24! we obtain the differential equation

gikS8 iS8kW~x,a!5m2 j ~ j11!W~x,a!, ~7.20!

where

S8 i5 1
2e

i jrsAj8Ars8 5 1
2 e

i jrs
]

]xj
Lrs8 . ~7.21!

If we also introduce the differential operators

S i5 1
2e

i jrsAjArs5Lk
i~a!S8k, ~7.22!

we have

gikS
iSkW~x,a!5m2 j ~ j11!W~x,a!. ~7.23!

If j50, we have the stronger result

S iW~x,a!5S8 iW~x,a!50. ~7.24!

In the zero-mass case, the generators of the little groupK5Ẽ~2! are L12, (L102L31),
(L201L23). From Eqs.~6.8! and ~6.9! we obtain the differential equation

„~L108 2L318 !21~L208 1L238 !2…w~a!52k2w~a!, ~7.25!

which can be written in the form

1
4e

jirs k̂iLrs8 ej
kpqk̂kLpq8 w~a!52k2w~a!. ~7.26!

By means of the procedure used above, for a field with zero mass and infinite helicity spectrum we
find the equation

gikS
iSkW~x,a!5gikS8 iS8kW~x,a!5k2W~x,a!. ~7.27!
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If we consider a field with zero mass and given helicityM based on the functions~6.11! and
~6.12!, we see that Eqs.~7.10! and ~7.11! can be written in the form

1
2e

jirs k̂iLrs8 w~a!52 iMk̂ jw~a!, ~7.28!

k̂iLik8 w~a!5~c21!k̂kw~a!. ~7.29!

Proceeding as in the other cases, we obtain

S i8W~x,a!52 iMAi8W~x,a!, S iW~x,a!52 iMAiW~x,a!, ~7.30!

AiAikW~x,a!5~c21!AkW~x,a!. ~7.31!

From Eqs.~3.8!, ~3.29!, and~4.20! we obtain

„V,c~x,a!c†~y,b!V…5W̄„~y,b!21~x,a!…, ~7.32!

„V,c†~y,b!c~x,a!V…5W̄„~2y,b!21~2x,a!…. ~7.33!

If the functionW̄(x,a) satisfies a differential equation invariant under left translations and under
the reflectionx→2x, from the Wightman reconstruction theorem19,20we have thatc(x,a) satis-
fies the same equation. In this way we obtain the field equations

gikAiAkc~x,a!5m2c~x,a!, ~7.34!

1
2g

ir gksAikArsc~x,a!5~12c22M2!c~x,a!, ~7.35!

1
8e

ikrsAikArsc~x,a!52 iMcc~x,a!. ~7.36!

For m.0, j.0, we have

gikS
iSkc~x,a!5m2 j ~ j11!c~x,a!, ~7.37!

for m.0, j50, we have

S ic~x,a!50; ~7.38!

for m50 and infinite helicity spectrum, we have

gikS
iSkc~x,a!5k2c~x,a!; ~7.39!

and form50 and helicityM , we have

S ic~x,a!5 iMAic~x,a!, ~7.40!

AiAikc~x,a!5~ c̄21!Akc~x,a!. ~7.41!

We have seen in Sec. VI that there is some difficulty in the definition of fields starting from
the function~6.12!. For these fields, the calculations given above have a purely formal character.

VIII. FLAT-SPACE THEORIES AND SPIN-MASS-SHELLS

We approximate a small region of the group manifoldP̃ by means of a tangent space with
coordinatesxi andxik52xki, which can be identified with the vector spaceT . The operatorsAi

andAik , which appear in the differential equations satisfied by the fields and by their VEVs, can
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be replaced by the partial derivatives with respect to these coordinates. We get in this way a field
theory in the flat ten-dimensional space and the Fourier transforms of the fields and of the VEVs
have their support in a Lorentz invariant manifold defined by some polynomial equations in the
ten-dimensional ‘‘spin-momentum space’’T * with coordinateski and kik52kki . These equa-
tions are obtained from the field equations by means of the substitutionsAi→2 ik i , Aik→2 ik ik .
To indicate the positive-energy part~k052k0.0! of this manifold, we use the term ‘‘spin-mass-
shell.’’ The two-point VEV of the flat-space theory is the Fourier transform of a positive Lorentz
invariant measure on the spin-mass-shell. As we shall see, in some cases the replacement of
noncommuting operators by commuting quantities may lead to inconsistencies or ambiguities.
Nevertheless, the correspondence between theories inP̃ and in the flat space is an unavoidable
heuristic instrument. Note that there is no ambiguity in the higher-degree terms of the equations
defining the spin-mass-shell. If we drop all the other terms, we get a set of homogeneous equations
that define an unambiguous dilatation invariant ‘‘asymptotic’’ manifold.

From Eqs.~7.7!, ~7.14!, and~7.15! we get the following equations valid on the spin-mass-shell
of all the elementary field theories.

gikkikk52m2, 1
2g

ir gkskikkrs5c21M221, 1
8e

ikrskikkrs5 iMc. ~8.1!

In a similar way from Eqs.~7.23!, ~7.24!, ~7.27!, ~7.30!, and~7.31! we obtain other equations valid
for the various specific cases.

Since the spin-mass-shell is Lorentz invariant, it is determined by its intersection with the
hyperplaneki5 k̂i . This intersection can be considered as a manifold in the six-dimensional ‘‘spin
space’’ with coordinateskik and we call it the ‘‘spin-shell.’’ Its dimension is given by the dimen-
sion of the spin-mass-shell minus three. It is convenient to introduce the three-dimensional vectors

k5~k1,k2,k3!, k85~k23,k31,k12!, k95~k10,k20,k30!, ~8.2!

and similar notations for the coordinatesxi ,xrs. Then the last two conditions of Eq.~8.1! take the
form

~k8!22~k9!25c21M221, k8–k95 iMc. ~8.3!

The spin-shell in the casem.0 is described by the equations

~k8!25 j ~ j11!, ~k9!25 j ~ j11!112c22M2, k8•k95 iMc. ~8.4!

Note that the right-hand sides are real and satisfy the inequality

j ~ j11!„j ~ j11!112c22M2
…1M2c25~k8!2~k9!22~k8–k9!2>0. ~8.5!

If j.0, this manifold has dimension three, but ifj5M50, Eq. ~8.4! takes the simpler form

k850, ~k9!2512c2, ~8.6!

and describes a two-dimensional manifold. In both cases the spin-shell is compact and the rotation
group acts transitively on it; namely, the spin-shell is an orbit of the rotation group in the spin
space. It follows that the spin-mass-shell is an orbit of the Lorentz group in the spin-momentum
space.

The orbits of the rotation or of the Lorentz group which correspond to a field on the groupP̃

are called ‘‘allowed orbits.’’ It is useful to consider all the orbits, not necessarily allowed, which
can be classified by means of the invariants~k8!2, ~k9!2 andk8•k9 satisfying the condition~8.5!.
One can also use Eq.~8.4! to introduce the parametersj , c, andM , even when they do not label
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any IUR. Given an orbit withk8•k9Þ0, Eq. ~8.4! determines the real quantitiesj , M and the
imaginary quantityc, up to a common change of sign ofM andc. They satisfy the conditions

j.0, c2,0, 0,M2< j ~ j11!~11„j ~ j11!1uc2u…21!. ~8.7!

Note that only some discrete values of the parametersj andM are allowed and that they are rather
uniformly distributed in the set defined by Eq.~8.7!. These orbits are three-dimensional in the
general case, but have dimension two when the equality sign holds in Eq.~8.5! or in the last
Equation ~8.7!, namely when the vectorsk8 and k9 are parallel. The two-dimensional orbits
correspond to values ofM which are not allowed, but for largej are relatively near to the allowed
valuesM56 j .

If k8–k950, we have two possible choices ofM andc, namely,

M50, 12c25~k9!22~k8!2, j>0, ~8.8!

or

c50, M2215~k8!22~k9!2, j ~ j11!5~k8!2>M221. ~8.9!

There is some ambiguity in the parametrization of the orbits, which disappears if we consider only
allowed orbits and allowed values of the parameters. These orbits are three-dimensional in the
general case and two-dimensional ifk850 or k950. If both these vectors vanish, we have a
zero-dimensional orbit, corresponding toj5M50, c251, namely to a Minkowskian theory.

In the casem50, infinite helicity spectrum, the spin-shell is described by the equations~8.3!
and

~k102k31!
21~k201k23!

25k2.0. ~8.10!

It has dimension three and it is an unbounded orbit of the little groupẼ~2!.
In the casem50, helicityM , from Eq. ~7.30! we obtain the equations

k105k31, k2052k23, k125M . ~8.11!

Equation~7.31! contains products of noncommuting operators and gives ambiguous results. A
direct substitution gives

k305 i ~12c!, ~8.12!

but this result is not compatible with Eq.~8.3!. We consider the equation

k305N~c!, ~8.13!

without specifying the functionN(c), apart from the conditionsN~1!50 andN(c).2 ic for large
imaginaryc. If N(c) is real, Eqs.~8.11! and~8.13! define a two-dimensional unbounded orbit of
Ẽ~2!, unlessM5N50.

In order to complete the list of the orbits ofẼ~2! in the spin space, we have to consider the
zero-dimensional trivial orbit, corresponding to a Minkowskian scalar field, and a set of one-
dimensional bounded orbits defined by the conditions

k105k31, k2052k23, k125k3050, ~k31!
21~k23!

25n2.0. ~8.14!

The corresponding orbits of the Lorentz group are four-dimensional and have a large symmetry
group2,7 locally isomorphic to L~4,R!. It has been shown in Ref. 7 that they are not allowed
according to our definition.
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Now we study the VEVs of the flat-space theories withm.0. Given a positive-mass orbit of
the Lorentz group in the spin-momentum space and positive Lorentz-invariant measurem on it,
the VEV can be written in the form

V~x,x8,x9!5~2p!23E exp~2 ik•x1 ik8–x82 ik9–x9!dm

5~2p!23E exp~2 ik•x1 ik8•x82 ik9•x9!ṽ~ k̂8,k̂9!u~k0!

3d~k•k1m2!d4kd3k8d3k9, ~8.15!

where

k̂ik5L r
i~ak!L

s
k~ak!krs , ~8.16!

ṽ ~k8,k9!d3k8d3k9 represents a positive rotation-invariant measure concentrated on the spin-shell,
andak is defined by Eq.~3.21!.

The integral~8.15! can be written in the form

V~x,x8,x9!5~2p!23E exp~2 ik•x!v~ x̂8,x̂9!u~k0!d~k•k1m2!d4k, ~8.17!

where

x̂ik5L r
i~ak!Ls

k~ak!x
rs ~8.18!

and

v~x8,x9!5E exp~ ik8–x82 ik9–x9!ṽ~k8,k9!d3k8d3k9. ~8.19!

If the vectorsk8, k9 represent an arbitrary point of the spin-shell, we can put

v~x8,x9!5I ~k8,k9,x8,x9!5E
SO~3!

exp~ iRk8•x82 iRk9–x9!d3R, ~8.20!

whereR is a three-dimensional rotation matrix andd3R is the normalized invariant measure on the
rotation group. In the general case, this integral cannot be expressed in terms of elementary
functions, but if the vectorsk8,k9 are parallel or antiparallel, we have

v~x8,x9!5t21 sin t, ~8.21!

where

t25~ ik8ix87ik9ix9!2. ~8.22!

If we consider a theory withj5M50, from Eq.~8.6! we obtain

t25~12c2!~x9!2. ~8.23!

Equation~8.17! is similar to Eq.~3.24! and it is interesting to compare the functionsv~x8,x9!
andw(a), wherea is given by the exponential

a5exp„ 12~x92 ix8!•s…. ~8.24!
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Equation~A27! gives the power expansion of the integral~8.20! up to quadratic terms in the
variablesx8,x9. A comparison with Eq.~A26! shows that, disregarding higher-order terms, we
have

w~a!.v~x8,x9!. ~8.25!

It follows that if f (x) is a test function anda is given by Eq.~8.24!, we have

E f ~x!W~x,a!d4x.E f ~x!V~x,x8,x9!d4x ~8.26!

up to terms of the second order.
In order to simplify the integral~8.17!, we proceed as in Sec. IV, namely, we put

x85~0,0,a!, x95~0,0,b!, ~8.27!

and we use the definitions~4.23!–~4.25!. From Eq.~8.18! we obtain

x̂85~0,2b sinhh,a coshh!5m21~0,2bp,aq!,
~8.28!

x̂95~0,a sinhh,b coshh!5m21~0,ap,bq!.

The analogue of Eq.~4.28! is

V~x,a,b!5~2p!21E
0

`

D„qs,e~x0!…J0~pr!v~x8,x9!p dp, ~8.29!

and in a similar way one writes the analogues of Eqs.~4.31! and ~4.32!, which determine the
commutator.

If in Eq. ~8.20! we replace the integrand by the maximum of its modulus, we obtain the
inequality

uI ~k8,k9,x81 iy8,x91 iy9!u<exp„~k8!2~y8!21~k9!2~y9!2

12~k8•k9!(y8•y9)12ik83k9iiy83y9i…1/2. ~8.30!

For largeupu we have Imq.Im p and, with this approximation, from Eq.~8.28! we obtain

uv~ x̂8,x̂9!u<exp~m21uIm pu~a21b2!1/2„~k8!21~k9!212ik83k9i…1/2!. ~8.31!

If we take into account Eq.~4.33!, we see that in the analogue of Eq.~4.32! we can close the
integration path at infinity in the upper half-plane if

r.s1m21~a21b2!1/2~~k8!21~k9!212ik83k9i !1/2, ~8.32!

and under this condition the commutator of the flat-space theory vanishes. We remark that the
flat-space theory has stronger local commutation properties than the corresponding theory onP̃ .

For j5M50, we can use Eqs.~8.21! and ~8.23! and from Eq.~8.28! we have

t25~12c2!„a2~sinhh!21b2~coshh!2…5„12c2)~b21~a21b2!m22p2…. ~8.33!

If we remark that, for small values ofa andb, Eq. ~5.25! gives

z2.a2~sinhh!21b2~coshh!2, ~8.34!
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we can easily verify Eq.~8.26! in this special case.

IX. A THEORY WITH BROKEN Sp(4,R) SYMMETRY

Now we consider a scalar flat-space theory invariant with respect to a groupF larger than
SL~2,C!. It is defined by a spin-mass-shell which is an orbit ofF and can be decomposed into
orbits of the Lorentz group. As a consequence, its two-point VEV is a superposition~an integral!
of the Lorentz invariant VEVsV~x,x8,x9! described in Sec. VIII. If all the Lorentz orbits which
appear in the decomposition are allowed~apart from a set of vanishing measure!, we can consider
the analogous superposition of the VEVsW(x,a) and we find the VEV of a nonelementary theory
on P̃ which corresponds, in some sense, to theF -invariant theory on the flat space. In general, the
theory onP̃ has lost the symmetry under the large groupF , but some consequence of this higher
symmetry remains in the short-distance limit.

In Refs. 7 and 30 we have described several flat-space theories symmetric with respect to
SL~4,R! or to one of its subgroups isomorphic to Sp~4,R!, which form a one-parameter family.2

The positivity of the energy requires that the spin-mass-shell is contained in a closed invariant
coneT *1, the dual of the coneT 1 that describes the causal properties of the theory. Therefore,
only the allowed Lorentz orbits contained inT *1 are interesting for the purpose we are discuss-
ing. The corresponding spin-shells must be bounded, and this requirement excludes all the zero-
mass allowed theories considered in Sec. VIII, but the Minkowskian zero-mass theory correspond-
ing to the spin-shell reduced to the origin. In addition to this theory, only positive-mass elementary
theories can be used in the construction of a theory onP̃ with broken higher symmetry. If we look
at the definition of the coneT *1,7 we see that form.0 the spin-shell must be contained in the set
defined by

~k8!21~k9!212ik83k9i<m2 ~9.1!

~see Appendix B!. This inequality gives rise to a complicated constraint on the parametersj , M ,
andc; in particular, we obtain

j ~ j11!112c2<m2. ~9.2!

The massm is measured in natural units of the order of the Planck mass and for the observable
particles it is very small. It follows that we must havej5M50 and 12c2!1, namely the theory
must be very near to the Minkowskian limit. We also see that the particles with smallm and
nonvanishing spin cannot be described by scalar fields. We have already remarked in Sec. V that
spin has two different origins: in this case the spin is generated by the field indices, as in Eqs.
~5.15! and ~6.28!. Combined with Eq.~8.32!, Eq. ~9.1! ensures that the commutator of the flat-
space theory vanishes for

r.s1~a21b2!1/2. ~9.3!

We consider the spin-mass-shells described in Refs. 7 and 30 and we exclude the four-
dimensional one, composed of a single zero-mass not-allowed Lorentz orbit. The decomposition
of these spin-mass-shells~disregarding a set of vanishing measure! contains only positive-mass
Lorentz orbits. In general, not all these orbits are allowed, but one can try to replace the integral
over the continuous parametersj andM by a sum over the discrete allowed values. In this way,
we may also obtain a discrete mass spectrum. This procedure will be examined elsewhere; in the
following we consider a particular choice of the groupF isomorphic to Sp~4,R! and a particular
class of orbits in such a way that all the Lorentz orbits that appear in the decomposition are
allowed.

For the description of the spin-mass-shells invariant with respect to Sp~4,R!, locally isomor-
phic to the anti-de-Sitter group SO↑~2,3!, it is convenient to introduce the notation
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k5i52ki55ki , i50,1,2,3, ~9.4!

and to consider the quantitieskuv as the components of an antisymmetric tensor in a five-
dimensional space with metricg555g00521, g115g225g3351. In the following the indices
u,v,w,x,y,z take the values 5,0,1,2,3.

We consider the orbit which contains the point defined byk05s.0, k5k85k950. Then it
also contains the Lorentz orbit that corresponds to a Minkowskian theory with massm5s. It is
six-dimensional and in Ref. 30 it has been calledO 4,(1/2)s,(1/2)s. The following O~2,3!-invariant set
of conditions is satisfied on the orbit for all the values ofs:

euvwxykvwkxy50. ~9.5!

In the four-dimensional formalism these conditions take the form

eikrskikkrs50, eikrskkkrs50, ~9.6!

and in the three-dimensional formalism we can write

k–k850, k8–k950, ~9.7!

k85~k0!21k93k. ~9.8!

It is clear that Eq.~9.8! implies Eq.~9.7! and therefore the whole set of conditions~9.5!. We see
that these conditions are not independent and define a seven-dimensional manifold.

The O~2,3!-invariant manifold defined by Eq.~9.5! can be parametrized by means of the
coordinatesk, k9, k0 and it is easy to control that the measure defined by

~k0!22d3kd3k9dk0 ~9.9!

is invariant under O~2,3!. In order to get an orbit of SO↑~2,3!, we have to introduce the further
invariant condition

1
2 g

uxgvykuvkxy5~k0!22~k!21~k8!22~k9!25s2, ~9.10!

that, together with Eq.~9.8!, gives

k056„

1
2„~k!21~k9!21s2…6 1

2~„~k!21~k9!21s2…224ik93ki2!1/2…1/2. ~9.11!

This formula describes the orbit we are considering if we choose the sign1 twice.
From Eqs.~9.8! and ~9.10! we see that in the decomposition of this orbit into orbits of the

Lorentz group we find, besides the above-mentioned orbit with massm5s, the allowed orbits
labelled, in accord with Eq.~8.4!, by the parameters

M5 j50, m2512c21s2.s2. ~9.12!

In order to find an invariant measure on this orbit, we have to multiply Eq.~9.9! by the
appropriate invariantd-function and integrate overdk0. The result is

dms5d„~k0!22~k!21~k8!22~k9!22s2…~k0!22d3kd3k9dk0

5 1
2~k

0!21
„~k0!22~k8!2)21d3kd3k9, ~9.13!

wherek8 andk0 are given by Eqs.~9.8! and ~9.11!.
The Fourier transform of this measure can be performed in two steps:
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Vs~x,x8,x9!5~2p!23E exp~2 ik•x!A~k0,k,x8,x9!d4k, ~9.14!

A~k0,k,x8,x9!5~k0!22E exp~ ik8–x92 ik9–x9!u~k02221/2
„~k!21~k9!21s2…1/2!

3d~~k0!22~k!21~k8!22~k9!22s2!d3k9. ~9.15!

If k50, we also havek850 and, therefore,

A~k0,0,x8,x9!5u~k02s!~k0!22E exp~2 ik9–x9!d„~k9!22~k0!21s2…d3k9

52p~k0!22
„~k0!22s2…1/2u~k02s!v0c0~x9!, ~9.16!

wherev0c0~x9! is given by Eqs.~8.21! and~8.23! with 12c25m22s2. In general, by means of the
Lorentz transformationak we obtain

A~k0,k,x8,x9!52pm22~m22s2!1/2u~m22s2!u~k0!v0c0~ x̂9!, ~9.17!

wherex̂9 is given by Eq.~8.18! andm25~k0!22~k!2. In conclusion, we have

Vs~x,x8,x9!5~2p!22E exp~2 ik•x!m22~m22s2!1/2u~m22s2!u~k0!v0c0~ x̂9!d4k.

~9.18!

In order to obtain the VEVs of the theory defined onP̃ , we just have to replacev0c0 by w0c0

and we obtain

Ws~x,a!5~2p!22E exp~2 ik•x!m22~m22s2!1/2u~m22s2!u~k0!w0c0~ak
21aak!d

4k.

~9.19!

Also in this case we can introduce the parametersa andb, parametrizek as in Eq.~4.23!, and
perform the integration over the variablesj andc. We obtain

Vs~x,a,b!52E
0

`E
0

`

~q22p2!21~q22p22s2!1/2

3u~q22p22s2!D„qs,e~x0!…J0~pr!t21 sin t pdp qdq, ~9.20!

where

t25~q22p2!21~q22p22s2!~p2a21q2b2! ~9.21!

and

Ws„x,u3~a!a3~b!…52E
0

`E
0

`

~q22p2!21~q22p22s2!1/2u~q22p22s2!

3D„qs,e~x0!…J0~pr!~c sinh z!21 sinh~cz!pdp qdq, ~9.22!

where

c25s22q21p211, coshz5~q22p2!21~q2 coshb2p2 cosa!. ~9.23!
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The field defined byWs satisfies the equations

euvwxyAvwAxyc50, ~9.24!

1
2g

uxgvyAuvAxyc52s2c, ~9.25!

written in the five-dimensional formalism. In fact, it is a direct integral of fields that satisfy Eqs.
~7.34!–~7.36! and ~7.38! with the parameters constrained by Eq.~9.12!. This field describes
‘‘particles’’ with vanishing spin and a continuous mass spectrum lying on the half-linem>s.

The functionVs has been computed in Ref. 30 and, with the conventions adopted here, is
given by

Vs~x,x8,x9!5l1
21l2

21~l11l2!
21 exp„2 1

2s~l11l2!…, ~9.26!

wherel1,l2 are given by

l1,2
2 5A6~A22B!1/2, ~9.27!

A52s21r22a21b2,
~9.28!

B5~s22r22a22b2!224r2~a21b2!

~see Appendix B for more details!. The signs ofl1,l2 are determined in such a way that their real
parts are positive or, if one of them vanishes, it becomes positive after the addition of a small
positive imaginary part tox0.

Starting from Eqs.~9.20!–~9.23!, and introducing the new integration variablesp85ep,
q85eq, it is easy to prove that

lim
e→0

~e3Ws„ex,u3~ea!a3~eb!…!5V0~x,a,b!, ~9.29!

lim
e→0

„e3Vs~ex,ea,eb!…5V0~x,a,b!. ~9.30!

This means that in the short-distance limit, namely near to the unit of the group, the VEVWs

coincides with the distributionV0, symmetric with respect to Sp~4,R!. In other words, the sym-
metry broken by the structure of the Poincare´ group survives in the short-distance limit. We also
see that in the short-distance limit the dependence on the parameters disappears.

X. RADIATION FROM AN ACCELERATED SOURCE

The simplest exercise with a free quantum field is its interaction with an external source. We
consider a scalar Hermitian field and we write the time integral of the interaction Hamiltonian in
the form

F5E H8~ t !dt5E f ~x,a!c~x,a!d4x d6a. ~10.1!

The scattering operator is given by

S5exp~2 iF !5exp~2 1
2iFVi2!:exp~2 iF !: ~10.2!

~time ordering is not necessary, since it introduces only an overall phase factor!. The number of
emitted particles follows a Poisson distribution with average value
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^n&5iFVi2. ~10.3!

This is just the quantity given by Eq.~3.12!.
In general, the functionf that describes the source is not arbitrary; it may be subject to some

conservation law or to some other constraint arising from the field equations. For instance, it is not
clear if a point particle has to be be described by a one-dimensional trajectory inP̃ or by a
manifold with higher dimension as it is discussed in Ref. 31. The formulation of possible con-
straints requires a deeper understanding of the theory and we disregard this problem in the fol-
lowing exercise. We consider a source that is bound to an accelerated frame, obtained from an
initial frame by means of the following one-parameter group of Poincare´ transformations:

t→„~a21 sinh~at!,0,0,a21
„cosh~at!21…!,a3~at!…. ~10.4!

An infinitesimal transformation of this group is the product of a time translation by an infinitesi-
mal amountdt and a boost along thez axis with infinitesimal velocityadt, wherea represents a
constant acceleration. The parametert is the proper time of the accelerated frame.

Since a point source is too singular, we consider a source concentrated on a disk lying in the
x1,x2 plane of the accelerated frame; then we have

F5E P~r !Q~ t !c„~a21 sinh~at!,r cosf,r sin f,a21

3„cosh~at!21…!,a3~at!…rdr df dt, ~10.5!

whereP(r ) is the ‘‘density’’ of the disk andQ(t) is a function equal to one in an interval of
lengthT and going smoothly to zero outside this interval. We expect that whenT is large,^n& is
proportional toT.

Then from Eq.~10.3! we obtain

^n&5E P~r 1!P~r 2!Q~ t1!Q~ t2!W„x,a3~at22at1!…r 1dr1 df1 r 2dr2 df2 dt1 dt2 ,

~10.6!

where

x05a21 sinh~at!, x35a21
„cosh~at!21…, t5t22t1 , x15r 2 cosf22r 1 cosf1 ,

x25r 2 sin f22r 1 sin f1 . ~10.7!

Note thatW depends on the quantities~4.5!, which take the form

r25r 1
21r 2

222r 1r 2 cos~f22f1!, ~10.8!

s52a21 sinh~ 1
2at!. ~10.9!

We can also write

^n&52pE P̂~r!Q̂~ t !W„x,a3~b!…rdr dt, ~10.10!

where

x5~s,r,0,0!, b5at, ~10.11!
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P̂~r!5E P~r !P~r21r 212rr cosf!rdr df, ~10.12!

Q̂~ t !5E Q~ t1!Q~ t1t1!dt1 . ~10.13!

When the proper time intervalT is large, we have

T21Q̂~ t !.12utuT21. ~10.14!

It follows that in the same limit the average number of produced particles per unit of proper time
is given by

T21^n&52pE
2`

`

dtE
0

`

P̂~r!W„x,a3~b!…rdr, ~10.15!

if the integral converges. If we take Eq.~3.29! into account, we can write

T21^n&54pE
0

`

dtE
0

`

P̂~r!ReW„x,a3~b!…rdr. ~10.16!

Now we consider the theory defined in Sec. IX and we look for singularities of the integral
~10.16!. Since the singularities arise for small values oft andr, we approximate the functionW by
means of Eqs.~9.26!–~9.29!; namely, we use the formula

W„x,a3~b!….l1
21l2

21~l11l2!
215~l1

22l2
2!21~l2

212l1
21!5~4rb!21

3~„~r2b!22s2
…

21/22„~r1b!22s2
…

21/2!, ~10.17!

whereb ands are given as functions oft by Eqs.~10.9! and ~10.11!.
After some calculation, we obtain

E P̂~r!ReW„x,a3~b!…rdr5~4b!21E
s

`

„P̂~r1b!2 P̂~ ur2bu!…~r 22s2!21/2 dr1u~b2s!

3~2b!21E
s

b

P̂~b2r !~r 22s2!21/2 dr. ~10.18!

If P̂~r! has a bounded derivative, the first integral on the right-hand side has at most a logarithmic
singularity for smallt. The second integral is present only ifa.1 and for smallt it behaves as

P̂~0!~2at!21 log„a1~a221!1/2…. ~10.19!

As a consequence, ifa.1, the integral overt in Eq. ~10.16! diverges. In other words, if the
accelerationa is larger than a critical value, conventionally taken equal to 1, the number of
particles and the energy radiated per unit proper time become infinite.

APPENDIX A: PROPERTIES OF THE FUNCTIONS wMcj (a)

The quantities defined by Eqs.~5.14! or ~5.18! are elementary functions, but for large values
of j they are too complicated and it is preferable to introduce some integral representations. We
start from the realization23–26 of the representationDMc by means of operators acting on the
square integrable functions defined on SU~2! which have the covariance property
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f „u3~f!u…5exp~2 iMf! f ~u!. ~A1!

An orthonormal basis in this Hilbert space is given by the functions

f jm~u!5~2 j11!1/2RMm
j ~u!. ~A2!

The invariant measured3u on SU~2! is normalized in such a way that the measure of the whole
group is one.

We consider the decomposition

a5k~a!a0 , ~A3!

where

a5S a11 a12

a21 a22
D PSL~2,C!, ~A4!

k~a!5S „p~a!…21 q~a!

0 p~a!
D , p~a!.0, ~A5!

a05S a b

2b̄ ā D PSU~2!, uau21ubu251. ~A6!

We see that

p~a!5~ ua21u21ua22u2!1/2, ~A7!

a5„p~a!…21ā22, b52„p~a!…21ā21. ~A8!

We shall use the properties

p~au!5p~a!, ~au!05a0u, uPSU~2!, ~A9!

p„u3~f!a…5p~a!, „u3~f!a…05u3~f!a0 . ~A10!

The representation operator is defined by

@DMc~a! f #~u!5„p~ua!…2c22f „~ua!0… ~A11!

and the matrix elements we need are given by

Djmjm
Mc ~a!5„f jm ,D

Mc~a! f jm…5~2 j11!E
SU~2!

R̄Mm
j ~u!„p~ua!…2c22RMm

j
„~ua!0…d

3u.

~A12!

If we sum overm and use Eq.~A9!, we obtain the required formula

wMcj~a!5E
SU~2!

„p~ua!…2c22RMM
j

„~uau21!0…d
3u. ~A13!

We can also use the integral representation27
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RMM
j ~u!5~2p!21E

0

2p

FM j
„u3~2f!uu3~f!…df, ~A14!

where

FM j~u!5~a2b̄ ! j1M~ ā1b! j2M ~A15!

and we have used the expression~A6! for the matrixu. If we substitute Eq.~A14! into Eq. ~A13!
and we use the properties~A9! and ~A10!, we obtain

wMcj~a!5E
SU~2!

„p~ua!…2c22FM j
„~uau21!0…d

3u ~A16!

or, more explicitly,

wMcj~a!5E
SU~2!

~ ub21u21ub22u2!c212 j~ b̄221b21!
j1M~b222b̄21!

j2M d3u, ~A17!

where

b5uau21. ~A18!

The exponential mapping can be written in the form

a5exp„ 12~x92 ix8!•s…5coshx1 1
2x

21 sinhx ~x92 ix8!•s, ~A19!

where

x25 1
4~x92 ix8!•~x92 ix8!. ~A20!

If we indicate byR(u) the SO~3! rotation matrix corresponding to the elementuPSu~2! and we
put

y85R~u!x8, y95R~u!x9, ~A21!

we have

b5uau215coshx1 1
2x

21 sinhx ~y92 iy8!•s. ~A22!

In particular, it is

b215
1
2~y192 iy181 iy291y28!x21 sinhx,

b225coshx1 1
2~2y391 iy38!x21 sinhx. ~A23!

If we substitute these expressions into Eq.~A17! and disregard terms of order higher than the
second in the variablesx8 andx9, we can perform the integral by means of the formulas

E
SU~2!

y8 d3u50, ~A24!

E
SU~2!

yr8ys9 d
3u5

1

3
d rsx8•x9 ~A25!
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and other similar consequences of Eq.~A21!. The result is

wMcj~a!.12 1
6 j ~ j11!~x8!22 1

6„j ~ j11!112c22M2
…~x9!21 1

3iMcx8•x9. ~A26!

Now we want to compare the integral~A17! with the integral~8.20!. We can expand the
exponential in Eq.~8.20!, keeping terms up to the second order in the variablesx8 and x9, and
perform the integral by means of Eqs.~A24! and ~A25!. We obtain

I ~k8,k9,x8,x9!.12 1
6~k8!2~x8!22 1

6~k9!2~x9!21 1
3k8•k9x8•x9 ~A27!

and Eq.~8.25! follows immediately.
Another interesting limit can be derived from Eqs.~A17! and ~A23!:

lim
n→`

wnM,nc,n j~exp„~2n!21~x92 ix8!•s…!

5E
SU~2!

exp„~ j2c!y39…exp~
1
2 ~ j1M !~2y392 iy381y192 iy181 iy291y28!!

3exp~ 1
2 ~ j2M !~2y391 iy382y192 iy181 iy292y28!!d3u5I ~k8,k9,x8,x9!, ~A28!

where

k85~2 j ,2 iM ,2M !, k95~ iM ,2 j ,2 ic !. ~A29!

The quantityI ~k8,k9,x8,x9! defined in Eq.~8.20! is an entire analytic function of its arguments and
it depends onk8,k9 through the invariants

~k8!25 j 2, ~k9!25 j 22c22M2, k8•k95 iMc. ~A30!

If we indicate bykn8 ,kn9 the coordinates of a representative point of the orbit defined by the
parametersnM,nc,n j , we have

lim
n→`

vnM,nc,n j~n21x8,n21x9!5 lim
n→`

I ~kn8 ,kn9 ,n
21x8,n21x8!

5 lim
n→`

I ~n21kn8 ,n
21kn9 ,x8,x8!5I ~k8,k9,x8,x8!, ~A31!

where

k85 lim
n→`

~n21kn8!, k95 lim
n→`

~n21kn9!. ~A32!

Since these limits satisfy Eq.~A30!, we see that the limits~A28! and~A31! are equal. This result
can be used to generalize the treatment of Sec. IX to a larger class of theories with a broken higher
symmetry.

APPENDIX B: GEOMETRY OF THE VECTOR SPACES T AND T *

In this Appendix we summarize some results of Refs. 2, 3, and 7. We use the Dirac matrices
with the properties

g igk1gkg i52gik , gk
T52C21gkC, CT52C. ~B1!
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We adopt the Majorana representation in which the Dirac matrices are real and we putC5g0. The
vectors ofT andT * can be labelled, respectively, by means of the real symmetric 434 matrices

x̂5 1
2x

kC21gk2
1
4x

rsC21g rgs , ~B2!

k̂52 1
2kkg

kC1 1
4krsg

rg sC. ~B3!

The closed conesT 1 andT *1 contain the elements labelled by positive semidefinite matrices.
The following formulas are useful:

Tr~ k̂x̂!52kkx
k1 1

2krsx
rs5k0x02k•x1k8•x82k9•x9, ~B4!

A5Tr~Cx̂!25xkx
k2 1

2xrsx
rs52~x0!21~x!22~x8!21~x9!2, ~B5!

2s25Tr~ k̂C21!25kkk
k2 1

2krsk
rs52~k0!21~k!22~k8!21~k9!2, ~B6!

B516 detx̂5„~x0!22~x!22~x8!22~x9!2…224ix3x8i224ix83x9i2

24ix93xi228x0x9•x83x, ~B7!

and a similar formula for detk̂. Note that the parameters which appears in Eqs.~B6! and~9.10!
was indicated by 2s in Ref. 30.

A vector of T belongs toT 1 whenx0 is larger or equal to the largest root of the equation
det x̂50 and a similar statement holds forT *1. For k50 andk05m.0, we have

16 detk̂5„m22~k8!22~k9!2…224ik83k9i2, ~B8!

and the condition for belonging toT *1 is just Eq.~9.1!.
The quantities6l1,2 introduced in Sec. IX are the eigenvalues of the matrix 2Cx̂ ~the factor

2 was not present in Ref. 30!. They are given by Eq.~9.27!, whereA andB are given by Eqs.~B5!
and~B7!. If we assume Eqs.~4.5! and~8.27!, we get Eq.~9.28!. It has been shown in Ref. 30 that
in a flat-space theory invariant under Sp~4,R! the commutator vanishes unless one of the quantities
l1,2
2 is real negative. This means that the commutator vanishes ifA22B,0 or if A.0,B.0. These
conditions are satisfied ifs2,0 or if Eq. ~9.3! holds.
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Recently, it has been observed that a certain class of classical theories with con-
straints can be quantized by a mathematical procedure known as Rieffel induction.
After a short exposition of this idea, we apply the new quantization theory to the
Stückelberg–Kibble model. We explicitly construct the physical state spaceHphys,
which carries a massive representation of the Poincare´ group. The longitudinal
one-particle component arises from a particular Bogoliubov transformation of the
five ~unphysical! degrees of freedom one has started with. Our discussion exhibits
the particular features of the proposed constrained quantization theory in great
clarity. © 1996 American Institute of Physics.@S0022-2488~96!02105-3#

I. INTRODUCTION

Classical gauge field theories may be defined by a set of fieldsA, subject to a set of
constraintsB, which, in turn, generate gauge transformations. The quantization of such theories is
not a unique procedure. Indeed, already in the two best-established quantization methods very
different technical setups are chosen. On the one hand, one has the canonical operator formalism,
originating with Heisenberg and Pauli,1 and now well adapted to handle non-Abelian gauge
theories,2 whereas on the other hand Feynman’s path integral formalism3 allows the quantization
of such theories through the Faddeev–Popov procedure.4 Both methods lead to identical pertur-
bative expansions, but even at a mathematically heuristic level their possible equivalence is only
known in perturbation theory.

It is certainly of general interest to have as many conceptually and mathematically different
quantization schemes as possible, and to examine the particular features of each of them. The hope
of obtaining some hints on how to quantize gravity may provide further motivation for investi-
gating new quantization schemes. Especially, the modern formulation of classical mechanics in
terms of symplectic manifolds and Poisson algebras~see, e.g., Ref. 5! has suggested more refined
quantization procedures, such as geometric quantization6 and strict deformation quantization.7,8

A particular feature of classical gauge theories that should somehow be reflected in the
quantization method is that the physical~reduced! phase space may be written as a so-called
Marsden–Weinstein quotient.9,10 Given that this powerful technique can be used to construct the
physical state space of the classical theory, it appears most natural to look for a quantum analogue
which mimicks it. This was found by one of the authors in Ref. 11 where Rieffel induction,12 a
technique from operator algebra theory used for the construction of representations of algebras,
was shown to provide a satisfactory quantum analogue of the classical Marsden–Weinstein re-
duction. In practice, this allows one to perform a quantization of a classical unreduced model, and
to find ~via Rieffel induction! the quantum-reduced phase space which coincides with a direct
quantization of the reduced classical phase space.

The method advocated in Ref. 11 provides a conceptually and technically new approach to the
quantization of certain gauge field theories. It has already been successfully applied to certain

0022-2488/96/37(6)/2731/17/$10.00
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finite-dimensional constrained systems,11 as well as to free quantum electrodynamics.13,14 These
applications are mainly operator-theoretic, but a certain aspect of the path integral formalism, viz.
the integration over the gauge group, will play a role as well.

The present work draws on these results. Its aim is twofold. First, we would like to present the
strategy of this new quantization method in a form accessible to a wider scientific community.
Therefore, in Sec. II, we briefly review the main line of argument, leading to the quantization
proposal. To keep our presentation reasonably short, we refer for some of the technicalities to the
aforementioned papers. Subsequently, in Sec. III we apply the new quantization scheme to the
Stückelberg–Kibble model. This toy model has often been used in the investigation of the Higgs
mechanism and of spontaneous symmetry breaking, see, e.g., Ref. 15. Here, we have chosen it
since it already shows many of the typical complications of spontaneously broken gauge theories
without the need to restrict oneself to a perturbative discussion.

As we shall demonstrate explicitly for this model, the Rieffel induction procedure provides a
scheme for the construction of the physical state space of a constrained quantum theory, starting
from a larger~unphysical! state space on which the unconstrained theory is defined. Our discus-
sion will focus on the particular properties of this Rieffel-induced physical Hilbert spaceHphys.
Especially, we find thatHphys carries a trivial representation of the gauge group and a massive
representation of the Poincare´ group. Also, the positive spectrum condition turns out to be satis-
fied. As an important by-product, we are able to trace back how ‘‘would-be Goldstone bosons
rearrange to a massive, longitudinal component’’ in a theory exhibiting the Higgs mechanism.

The context of our work is modern symplectic geometry and reduction theory on the classical
side, and algebraic quantum field theory on the quantum side. We only use the ‘‘soft’’ side of
these theories. Good recent introductions are Refs. 5, 16, and 17, respectively.

II. THE QUANTIZATION OF GAUGE THEORIES WITH RIEFFEL INDUCTION

After presenting schematically the strategy which leads to Rieffel induction in the quantiza-
tion of theories with constraints, in the remainder of this section we briefly specify some notational
and technical prerequisites.

A. Quantization of Marsden–Weinstein reduction

The general symplectic reduction procedure, which is quantized by Rieffel induction in its full
generality, is described in Ref. 11. Here we are merely concerned with a special case, viz.
Marsden–Weinstein reduction at the zero level of the moment map,~cf. Refs. 5 and 18!. To
introduce our notation, let us consider free classical electrodynamics. For the functional-analytic
and other details which are suppressed in what follows, we refer the interested reader to Ref. 13.

We start with the spaceM of four-component real-valued weak solutionsAm of the wave
equation whose Fourier-transformed Cauchy-data lie inL2~R3!^C4. That is,M5$AmuhAm50%.
The imaginary part

B~A,A8!52 Im~A,A8!M52 i E d3p

~2p!3
@Am~p!Ām8 ~p!2Ām~p!Am8 ~p!# ~II.1!

of the indefinite covariant scalar product~* ,* !M turnsM into a symplectic space (M ,B), which is
the phase space of the unconstrained classical system. The set of constraints is given by the gauge
groupG, which acts onM via Am→Am1]mg, where

G5$gPS 8~R4!uhg50;dgPM %. ~II.2!

Here, the space of distributionsS 8~R4! is the dual of the usual Schwartz space of rapidly de-
creasing test functions. In the present example, the reduced phase space (Mc ,Bc) of the corre-
sponding constrained system may be obtained by a so-called Marsden–Weinstein reduction.18

This involves the moment mapJ from M into the dual of the Lie algebra ofG. AsG is a vector
space, we may
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identify it with its Lie algebra, so we simply writeJg(A) for the value ofJ(A) on gPG.
Explicitly, the moment map turns out to beJg(A)5Im(]g,A)M ~cf. Ref. 13!. The preimage of its
zero level is

J21~0!5$AmPM u]mA
m50%. ~II.3!

Then,Mc is given by the Marsden–Weinstein quotient

Mc5J21~0!/G, ~II.4!

and Bc inherits its structure fromB. It is easy to see that (Mc ,Bc) defined this way indeed
describes the physical degrees of freedom of free electrodynamics: pickingJ21~0! fixes the gauge
~thus imposing the Gauss law constraint, which on elements ofM becomes the Lorentz gauge
condition!, and quotienting byG removes the gauge degeneracy of the symplectic formB with
respect to the action ofG on J21~0!.

In principle, there are two possibilities to quantize a reduced phase space (Mc ,Bc). Either, we
directly quantize the Marsden–Weinstein reduced~i.e., constrained! classical system (Mc ,Bc), or
we quantize the unconstrained classical system (M ,B) together with the set of constraints. In the
latter case, a scheme has to be found which imposes constraints on the unconstrained quantized
theory, thereby providing a quantum analogue of the classical Marsden–Weinstein reduction.
Examples of such schemes are the Dirac or the BRST method. According to the proposal of Ref.
11, the so-called Rieffel induction procedure of operator algebra theory12 ~which we explain
below! provides a rival scheme, which in all examples studied so far works as well as, or better
than, the methods mentioned above.

More precisely, let us consider schematically a quantization prescriptionQ\ which relates the
symplectic space (M ,B) ~or rather the Poisson algebra of functions on it! to some algebra of field
operators on a Hilbert spaceA, G to some algebraB generated byG, and (Mc ,Bc) to some~a
priori unknown! algebra of observables~in the sense of gauge-invariant operators! Aobs. Then,
according to our quantization proposal, the following diagram commutes:

~M ,B!;G →
Q\

A;B
Marsden–Weinstein Reduction↓ ↓ Rieffel Induction

~Mc ,Bc! →
Q\

Aobs

. ~II.5!

Our program in this paper is to specify the entries of this diagram for the Stu¨ckelberg–Kibble
model. To this end, we briefly recall how, for a linear field theory, a symplectic space (M ,B) can
be related to a field algebraA of canonical commutation relations, and we explain how Rieffel
induction allows one to construct new Hilbert spaces for quantum field theories, thereby eventu-
ally specifyingAobs.

B. Weyl algebras of canonical commutation relations

The general theory behind this subsection is explained in great detail and rigor in, e.g., Ref.
17, and the application to electromagnetism is from Ref. 19. We merely mention some of the main
points.

For f, f8PM , the operatorsW~f!, W~f8!, satisfying the Weyl form of the canonical com-
mutation relation~CCR!

W~f!W~f8!5W~f1f8!e~2 i /2!B~f,f8!, ~II.6!
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specify a field algebra withC* -structure which we denote byA(M ,B). In most cases, one is
primarily interested in the properties of the operator vector potentialAm , for which we use the
same notation as for its classical counterpart, as no confusion will arise. TheAm satisfy the
canonical commutation relations

@Am~x!, An~y!#52 igmn D~x2y!, ~II.7!

whereD denotes the commutator function satisfyinghD50, with initial conditionsD~x,0!50,
(]/]t)D~x,t!ut5052d~3!~x!. To see the connection between~II.6! and~II.7!, we consider the vector
potential A( f )5*d4xAm(x) f

m(x), smeared with real test functionsf . Now, ~II.7! reads
[A( f ),A(g)]5 is( f ,g), wheres( f ,g)52*d4xd4yD(x2y) f m(x)gm(y). Formally, this allows
for the introduction of the operatorsU( f )5e[ iA( f )] , which, according to the Baker–Campbell–
Haussdorff formula, satisfy the Weyl form of the canonical commutation relations
U( f )U(g)5U( f1g)e[2( i /2)s( f ,g)] . Here, however,U( f ) andU( f 8) have the same commutation
relations as long as*d4xD(x2y)„f m(x)2 f 8m(x)…50 for almost ally. To remove this degeneracy
and to obtain a one-to-one correspondence between Weyl operators and test functions, one uses
the mapf→f, defined by the convolutionfm5D* f m . Then, the spaceM of solutions of the wave
equation

hfm50, fm~x,t !5
1

~2p!3
E d3k

2k0
@fm~k!e2 ikx1fm~k!eikx#

is ~our notation does not distinguish between functionsf and their Fourier transforms, since no
confusion should arise!

M5$f5D* f %5L2~R3! ^C4. ~II.8!

Now, the operatorsW(f)5U( f ), fPM , satisfy~II.6! with symplectic formB induced bys and
given in ~II.1!.

Having established the connection between Weyl operators and vector potentials, we can
introduce formal annihilation and creation operatorsam ,am* , e.g., for the free electromagnetic
field,

Am~x!5E d3k

~2p!32k0
@e2 ikxam~k!1eikxam* ~k!#uk05k ,

iA~ f !5E d3k

~2p!32k0
@am~k!fm~k!2am* ~k!fm~k!#5:am~fm!2am~fm!* . ~II.9!

Clearly, in terms of the annihilation and creation operators, the Weyl operators read
W~fm!5exp[am(f

m)2am(f
m)* ], where [am(f

m),an(f8n)* ]5(f8,f)M , ~.,.!M denoting the in-
definite Minkowski inner product. Heuristically, one has

d

dl
W~lf!U

l50

5 iA~ f !. ~II.10!

It is well known that this derivative does not exist in the operator norm but with respect to regular
representations only, and thereby theam ,am* only exist in such representations, too. Nevertheless,
in what follows we shall adopt the formal expressions~II.9! and ~II.10!, even when no explicit
reference to a particular representation is made.

As a final preparatory step, we point out that subalgebras ofA(M ,B) can be specified by
selecting subspaces ofM . In particular, for free QED,
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N5$fmPM ukmfm~k!50%5$fmPM u]mfm~x!50%,
~II.11!

T5$fmPM ufm~k!5 ikmg~k!%5$fmPM ufm~x!5]mg~x!,hg~x!50%

define subalgebrasA(N,B),A(T,B) ofA(M ,B). Note thatT,N, so thatA(T,B),A(N,B).
These subalgebras are Poincare´-invariant, as may be seen by recalling that the action of elements
~L,a! of the Poincare´ groupP onA(M ,B) is defined via the algebraic automorphisma(L,a) ,

a~L,a!„W~fm!…5W„g~L,a!~fm!… with „g~L,a!~fm!…~x!5Lmf8„L21~x2a!…. ~II.12!

C. Rieffel induction

This subsection gives a quick ‘‘review by example’’ of some parts of the theory developed in
Refs. 11 and 13.

In physics, induction methods are mainly known from Wigner’s classification and construc-
tion of all irreducible unitary representations of the Poincare´ groupP . In general, the method of
induced representations of~locally compact! groups allows one to construct a representation of the
complete group from a representation of a subgroup~cf., e.g., Ref. 20!.

Also, in the theory of operator algebras~particularlyC* -algebras! a method exists for con-
structing a representation of an algebra, given a representation of some other algebra.12 The latter
is not necessarily a subalgebra of the former; instead, the two algebras need to be connected by a
bimodule with certain additional properties. Whatever the technical details, the main idea is that
the representation one induces from should be straightforward, and yet capable of producing an
appropriate representation of the algebra one is really interested in. This idea will be fully realized
in our context, for the second algebra will be the algebra generated by the gauge group, and the
representation induced from is the trivial one. With a suitable choice of bimodule, the induced
representation of the algebra of observables turns out to be the vacuum representation on a Fock
space of physical photon states.

To facilitate our presentation, we proceed by example, abstracting general features afterwards.
For free QED, in the diagram~II.5! we choose the field algebraA5A(M ,B) and the ‘‘algebra of
constraints’’B5A(T,B) ~cf. the previous subsection!, where the choice ofB is motivated by
observing that the gauge groupG equalsT @cf. ~II.11!#. Also, we introduce the ‘‘algebra of weak
observables’’Ac :5A(N,B), which is the largest subalgebra ofA5A(M ,B) commuting with
B5A(T,B). For simplicity, we here ignore some mathematical difficulties in defining algebras
B for groupsG which are not locally compact. This greatly simplifies our presentation. For more
details, we refer to Refs. 13 and 14.

The Rieffel induction procedure will produce a representation ofAc induced from a repre-
sentation ofB. To this end, we need a bimodule forAc andB, that is, a linear space on which
Ac acts from the left, andB acts from the right~that is, in an antirepresentation!, so that these
two actions commute. In the case at hand,Ac andB, which is Abelian, are each other’s com-
mutant in the field algebraA, so that a representation ofA on a Hilbert spaceH automatically
defines such a bimodule. Finally, we need a representation ofB to induce from. This is the trivial
one, defined on the Hilbert spaceH tr5C. Schematically,

Ac→H←B→H tr . ~II.13!

The choice of the trivial representation to Rieffel induce from is dictated by the fact that
Marsden–Weinstein reduction of the classical theory is performed from the zero level of the
momentum map@cf. ~II.4!# ~that is, the point 0 in the dual of the Lie algebra of the gauge group
G corresponds to the trivial representation!.21

The restriction of the actionp onH ofA to its subalgebraB defines a representationU of
the gauge group, that is, one hasU~f!5p„W~f!….
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As will be discussed in more detail below, this setup allows the construction of a positive
semidefinite sesquilinear form~.,.!0 on L^H tr , whereL is a suitable dense subspace ofL. In the
present case, this form is given by

~c ^v,w ^w!05vw̄E
G

@Df#„U~f!c,w…. ~II.14!

Here @Df] denotes the nonexistent ‘‘Lebesgue’’ measure on the gauge groupG. The point is,
however, that this flat ‘‘measure’’ combines with a factor in the integrand to define a mathemati-
cally well-defined path integral~cylindrical! measure onG.13 Furthermore,c,w are in H,
v,wPH tr5C, and~.,.! is the inner product onH.

Irrespective of the explicit form of~.,.!0, the induced physical Hilbert space is then defined as
the completion of the quotient ofL^H tr by the null space of~.,.!0, i.e.,

Hphys5~L^H tr!/N , ~II.15!

whereN ,L^H tr is the subset of vectors with vanishing~.,.!0 norm. The collection of vectors in
Hphysof the formc^̃v, defined as the image ofc^vPL^H tr under the quotient projection from
L^H tr toHphys, are clearly dense inHphys. The action of elementsA of Ac onHphys is then
given on this dense set bypphys(A)c ^̃v5„p(A)c…^̃v. Under appropriate continuity
conditions12,13 this action may be extended to all ofH tr .

The reader should note thatHphyssatisfies an essential requirement of a nondegenerate physi-
cal Hilbert space: the gauge degeneracy of elementsAc is removed inpphys~Ac!. To see this,
choose an arbitrary elementW~f!PAc . From equation~II.14!, it is obvious that forf tPT
~which, we recall, coincides with the gauge groupG!, pphys„W~f!…c^̃v5pphys„W(f1f t)…c^̃v
for all vectorsc^̃vPHphys. Hence,pphys„W~f!…5pphys„W(f1f t)…. This removal of the gauge
degeneracy ofAc is independent of the choice ofH, and hence we identifypphys~Ac! with the
representation-independent algebra of observablesAobs @cf. ~II.5!#.

Let us now turn to the abstract setting which has led to the~.,.!0 inner product~II.14!. As
stated, the aim of the Rieffel induction procedure is to obtain a representationpphysofAc induced
from a representation ofB on some Hilbert spaceHx . Our example, and all similar examples
involving gauge theories, have the special feature thatHx5H tr5C, that is, one induces from the
trivial representation of the gauge group. This will imply that the algebra of constraintsB is
represented trivially on the induced spaceHphys. Technically, the construction ofpphys proceeds
according to the following three-step method.

~1! Given a bimoduleL for Ac andB, aB-valued scalar product̂.,.&B has to be found on
L, that is, forc, wPL,H, ^c,w&BPB.22

~2! Given such an operator-valued scalar product, the tensor productL^Hx is equipped with
a sesquilinear form~.,.!0,

~c ^v,w ^w!0 :5„px~^w,c&B!v,w…x . ~II.16!

Crucially, this form is positive semidefinite if the postivity conditionpx~^c,c&B!>0 for all
cPL is satisfied, which is the case in all our examples.

~3! The subspaceN ,L^H tr of vectors with vanishing~.,.!0-norm is determined and the
physical Hilbert space is defined as in~II.15!.

The most difficult part of this procedure is to find^.,.&B . Here, one is guided by mathematical
examples.11 One may consider, e.g.,B5C* (G), theC* -group algebra of a locally compact group
G ~cf. Ref. 17; this is essentially the convolution algebra on the group w.r.t. the Haar measure!.
Then, it can be shown that a rigging map^.,.&B is defined as follows:̂c,w&B has to be some
element ofC* (G), i.e., a function on the group, and we prescribe that the value of this function
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atgPG is given by^c,w&B(g)5„U(g)w,c…, whereU is a continuous unitary representation ofG
onH, commuting withp~Ac!, xPG. Inducing from the trivial representationH tr5C, the general
formalism leads to the prescription

~c,w!05E
G
dx„U~x!c,w…. ~II.17!

~Here and in what follows, we use the shorthand (c,w)0 for (c ^ v,w ^ v)0, sincev,w P C are
complex numbers which can be absorbed in the definition ofc andw.! At least in a heuristic
sense,~II.14! is a special case of this.

So far, our presentation of the Rieffel induction procedure for quantum field theories has been
slightly oversimplified with respect to one point: While the existence of a so-called ‘‘rigged’’
inner product~.,.!0, defined in~II.16!, is always sufficient for the quantization proposal to apply,
it is not always possible to derive it from a mathematically well-defined rigging map^.,.&B . We
refer to Ref. 13 for a discussion of the technical points involved. In such cases, one cannot derive
~II.17!, but it still provides a well-defined starting point motivated by the general theory explained
above.

In fact, in what follows, we shall base our arguments on a suitable generalization of~II.17!.
To sum up: In this chapter, we have seen that Rieffel induction provides a well-defined

scheme for the construction of a physical Hilbert spaceHphys, on which gauge transformations act
trivially. In the corresponding algebra of observablespphys~Ac!, all gauge degeneracies are re-
moved, i.e., Rieffel induction is a method to impose constraints on quantum field theories. The
physical Hilbert spaceHphys is obtained by forming the quotient of a larger Hilbert spaceL^H tr
with respect to a null space.

This is somewhat reminiscent of the BRST~or, in case of QED, the Gupta–Bleuler! proce-
dure, with the major difference that with Rieffel induction no negative-norm subspace exists,
obviating the need to select a physical subspace ofH. Also, certain functional-analytic problems
that appear in the BRST as well as in the Dirac method are absent with our present techniques.11,13

By definition of the inner product on the physical Hilbert spaceHphys calculations of correlation
functions of operators inAc ~as represented onHphys! may be performed inL^H tr .

14

Clearly, an alternative method is to construct the reduced~physical! Hilbert space using
spectral analysis of the algebra of constraints. In this case, however, one has to guess the inner
product on the ‘‘improper’’ subspace of the Hilbert space of the unconstrained system on which
the constraints are zero. Also, the connection with the classical treatment of constraints is obscured
somehow. This may be regarded as a drawback compared to the method advocated here.

III. APPLICATION TO THE STÜCKELBERG–KIBBLE MODEL

In this chapter, we specify~II.13! and ~II.14! for the Stückelberg–Kibble model, thereby
constructing a physical Hilbert spaceHphys for this model. The Stu¨ckelberg–Kibble model is an
Abelian Higgs model with the modulush of the scalar fieldf(x)5h(x)eiw(x) frozen to unity,
h(x)51. It is given by the Lagrangian

L52 1
4FmnF

mn2 1
2~]mw1eAm!~]mw1eAm!. ~III.1!

Despite its linearity, this model has nontrivial features, and has been used as testing ground for
investigations of the Higgs mechanism before.15 Its equations of motion can be written in terms of
a gauge-invariant currentj m5]mw1eAm, satisfying

~h1e2! j m50; ]m j
m50. ~III.2!

In fact, this is nothing but the Proca equation23 of a massive gauge-invariant vector field. To make
this model amenable to treatment by symplectic reduction and quantum induction methods, we
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now make a move that is analogous to rewriting the Maxwell equation forAm as a massless
Klein–Gordon equation plus a subsidiary Lorentz condition. Thus we pass back to the gauge-
dependent fieldsAm andw, and choose what is essentially the ’t Hooft gauge as the subsidiary
condition:

]mA
m5ew. ~III.3!

With this constraint, the equations of motion read

~h1e2!Am50, ~h1e2!w50, ~III.4!

and the gauge groupG5$gu(h1e2)g50% acts onAm ,w via

Am→Am1]mg, w→w2eg. ~III.5!

A. Marsden–Weinstein reduction for the Stu ¨ ckelberg–Kibble model

A mathematically rigorous treatment of the following material, in the style of Ref. 13, is
possible, but we leave the details to the interested reader; instead, readability commands us to give
somewhat loose formulations.

Our investigation of the Stu¨ckelberg–Kibble model starts from the symplectic space
(Msk ,Bsk), defined by

Msk5$~Am ,w!uAmPL2~R3! ^C4,wPL2~R3!;~h1e2!Am5~h1e2!w50%,
~III.6!

Bsk~Am ,w;Am8 ,w8!52 Im~Am ,Am8 !M22 Im~w,w8!.

The gauge groupG acts on this space by the gauge transformation~III.5!. This action is strongly
Hamiltonian, and hence, in particular, it is symplectic. We evidently may identify the gauge group
with the following subspace ofMsk :

Tsk5$~Am ,w!PMskuAm5]mg,w52eg;gPL2~R3!;~h1e2!g50%. ~III.7!

From this, the Marsden–Weinstein reduced space (Mc,sk ,Bc,sk) is easily calculated. With similar
notation as in Sec.~II. A !, the moment map reads

Jg~Am ,w!52 Im~]mg,Am!M22 Im~2eg,w!, ~III.8!

which leads to

J21~0!5$~Am ,w!PMsku]mA
m5ew%. ~III.9!

Hence in view of~III.3! the Marsden–Weinstein quotient reads

Mc,sk5J21~0!/G5$ j mPL2~R3! ^C4u~h1e2! j m50;]m j
m50%. ~III.10!

The symplectic formBc,sk onMc,sk inherits its structure fromBsk , and is given by

Bc,sk~ j , j 8!5
2

e2
Im~ j m , j m8 !M . ~III.11!

Clearly, (Mc,sk ,Bc,sk) is the phase space of a massive vector boson, which indeed represents the
physical degrees of freedom of the Stu¨ckelberg–Kibble model. This completely specifies the
left-hand side of the diagram~II.5!.
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B. Rieffel induction for the Stu ¨ ckelberg–Kibble model

1. Construction of the field algebra

Consider the canonical commutation relations of the operator fieldsAm andw ~denoted by the
same symbol as their classical counterparts!:

@w~x!, w~y!#5 iD~x2y!,
~III.12!

@Am~x!, An~y!#52 igmnD~x2y!,

where the commutator functionD satisfies (h1e2)D(x)50 with initial conditionsD~x,0!50,
~]/]t!D~x,t!ut5052d~3!~x!. In analogy with our discussion of free QED, we specify the formal
connection between the fieldsAm , w and the corresponding Weyl operators,W(fm ,f)
5 eiAm( f

m)1 iw( f ), wherefm5D* f m , f5D* f . Here, either as a consequence of~III.12! or imposed
axiomatically, the operatorsW~fm ,f!, W(fm8 ,f8) satisfy the Weyl form of the canonical com-
mutation relations

W~fm ,f!W~fm8 ,f8!5W~fm1fm8 ,f1f8!e2~ i /2!Bsk~fm ,f;fm8 ,f8!. ~III.13!

The field algebra of the model is then defined as the Weyl algebraA(Msk ,Bsk) generated by the
Ws subject to these commutation relations~cf. Ref. 17!.

Now, we want to construct the quantum counterpart of Marsden–Weinstein reduction, i.e., we
want to complete the right-hand side of the diagram~II.5!. Therefore, we invoke the quantization
prescription for symplectic spaces as discussed in Sec. II. This leads to the field algebra
A[A(Msk ,Bsk) defined by~III.6!. Also, in analogy with our discussion in Sec. II, we choose the
algebra of constraintsB5A(Tsk ,Bsk); once again, the motivation for this is that it is the~C* !
algebra generated by the gauge group. Consequently, the algebra of weak observables, which by
definition is the largest subalgebra ofA(Msk ,Bsk) commuting withB(Tsk ,Bsk), is given by
Ac5A(Nsk ,Bsk), where

Nsk5$~fm ,f!u]mfm5ef%,Msk ; ~III.14!

compare this with~III.9!. The subspacesNsk andTsk,Nsk of Msk are invariant under the action
of symplectic transformationsgL,a associated with elements~L,a! of the Poincare´ group
P ,„gL,a~fm ,f!…(x):5~Lm

nfn ,f!„L21(x2a)… @cf. ~II.12!#. Consequently, the subalgebras,Ac and
B are Poincare´ invariant.

2. Representing the algebra of observables

Rieffel induction starts from the input data of diagram~II.13!. So far, we have determined the
algebra of weak observablesAc5A(Nsk ,Bsk) and the algebra of constraintsB5A(Tsk ,Bsk) of
the Stückelberg–Kibble model; note thatB,Ac . What is needed is a representation of these
algebras on some subspaceL of a Hilbert spaceH. In this subsection, we give such a represen-
tation on a bosonic Fock space~cf. the corresponding procedure for QED in Ref. 13!.

For simplicity, in a first step we introduce a representation for elementsW~fm ,f50!
PA(Msk ,Bsk) only. This will subsequently be generalized to the whole algebra. We start from
the canonical commutation relations for the smeared annihilation and creation operatorsâm ,âm*

â~ f !5âm~ f m!5E d3k

~2p!32k0
@ â0~k! f̄ 0~k!1âi~k! f̄ i~k!#, ~III.15!

namely
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@ â~ f !,â* ~g!#5~g, f !E :5E d3k

~2p!32k0
gm~k!dmn f̄ n~k!. ~III.16!

For reasons to become clear soon, we have employed the so-called Fermi trick19 which consists of
defining the creation and annihilation operators of a vector field such that their commutator is a
Euclidean scalar product. Introducing a vacuum stateu0& with the propertyâ( f ) u0&50 for all f ,
the creation and annihilation operators generate a bosonic Fock spaceH1 in the usual way.
MathematicallyH1 is, of course, the symmetric Hilbert space24 overL2~R3!^C4.

We can now represent the field algebraA, and thence its subalgebrasAc andB, onH1 as
follows:

p„W~fm,f50!…5e@ âm~f̃m!2âm~f̃m!* #, ~III.17!

wheref̃m5(2f̄0, f i!, and the symbolp for a representation has been introduced. The essential
point is that the Euclidean commutation relations~III.16! are able to represent the Minkowski
commutators~III.12! because of the special definition off̃m .

Now, we present a very economical notation for symmetricn-particle states by introducing
‘‘exponential vectors.’’24 To this aim, we represent the algebraAc on the dense subsetL1 ofH1,
which is the span of all exponential vectors

L15H (
i51

N

l ie
c~ i !Ul iPC,c~ i !PL2~R3! ^C4,N,`J ;

~III.18!

ec:51% c %
1

&

c ^ c %
1

A3!
c ^ c ^ c % ••• ,

where the tensor products are understood to be symmetrized. Note that the prefactors 1/An! of the
n-particle contributions toec have been chosen differently from those of a Taylor expansion ofex.
This allows for a simple form of the scalar product onL1,

~ec,ew!5e~c,w!E. ~III.19!

A useful remark is now that symmetricn-particle states can be obtained from suitably normalized
derivatives of exponential vectors,

c1^ s••• ^ scn5
1

An!
d

dr1
•••

d

drn
e( i

r ic iU
r i50

. ~III.20!

The representation ofW~fm ,0! takes a very simple form onL1. From ~III.18! we have
eâm(f

m)ec 5 e(c,f)Eec,eâm(f
m)*ec 5 e(c1f) and hence25

p„W~fm,0!…ec5e~21/2!~f,f!E1~c,f̃ !Ee~c2f̃ !. ~III.21!

The construction given above is easily generalized to the whole algebraA(Msk ,Bsk) acting
on the dense subspaceL5L1^L2 of H5H1^H2, whereH2 is the bosonic Fock space over
L2~R3!. With

L25H(
i

N

l ie
c~ i !Uc~ i !PL2~R3!;l iPC,N,`J , ~III.22!
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the scalar product of vectors inL reads

~ecm ^ec,exm ^ex!5e~cm ,xm!E1~c,x!, ~III.23!

and the action ofA(Msk ,Bsk) ~denoted byp as well, with slight abuse of notation! is

p„W~fm ,f!…ecm ^ec5e~21/2!~fm ,fm!E1~cm ,f̃m!Ee~21/2!~f,f!1~c,f!ecm2f̃m ^ec2f.
~III.24!

It should be pointed out thatL ~which is the natural domain of the rigged inner product13! is only
stable under finite linear combinations of theWs ~which span a dense subalgebra ofA!, and not
under all elements ofA, i.e., strictly speaking, the induction process is performed relative to the
corresponding dense subalgebras ofAc andB. Despite the use of bounded operators, the choice
of L as a dense subspace of the Hilbert space of the unconstrained system is essential whenever
the constraints have continuous spectrum. This is because in that case the rigged inner product is
not defined on the whole Hilbert space. In its abstract formulation, Rieffel induction is even
formulated in terms ofL alone, without a Hilbert space it is embedded in.12

3. Constructing the physical one-particle Hilbert space

With ~III.24!, we have specified the bimoduleL for Ac andB, which in this case is a
subspace of an ‘‘unphysical’’ Hilbert spaceH. Our next step is to construct the corresponding
physical Hilbert space, i.e., to carry out the discussion following~II.13!. In this and the next
subsection, we determine the null spaceN sk for the Stückelberg–Kibble model, thereby eventu-
ally obtainingHphys.

We start from the inner product on elementary vectors inL

~ecm ^ec,exm ^ex!05E
Tsk

@Dg#~p„W~]mg,2eg!…ecm ^ec,exm ^ex!, ~III.25!

which is a natural generalization of~II.14! ~and can, at least heuristically, be derived from an
appropriate rigging map defined by a unitary representation of the gauge group onH!. As in Ref.
13, the heuristic path integral~III.25! can be turned into a well-defined integral wrt a certain
cylindrical measure onTsk5G, but here we shall proceed with the formal flat measureDg , and
certify that all manipulations below can be rigorously justified.

Using the representation~III.24! of A(Nsk ,Bsk), we obtain, with k05Ae21k2, and
dk̃5dk3/~2p!32k0,

~ecm ^ec,exm ^ex!05e* d̃k~21/k0
2
!@~kic i2 iec!k0c01~ki x̄ i1 iex̄ !k0x̄0#

3e* d̃kc i „d i j2~kikj /k
2!…x̄ j1„~e/k0!c i1 i ~ki /k0!c…~kikj /k

2!„~e/k0!x j1 i ~kj /k0!x…,

~III.26!

where we have used (d i j2kikj /k0
2)5~di j2kikj /k

2!1e2kikj /k0
2k2 to write ~III.26! in terms of pro-

jection operators.
To investigate the structure of the null spaceN sk , we derive the~.,.!0 inner product for

n-particle vectors inH from ~III.26!. For one-particle vectors in the~unphysical! spaceH, we
have

d

dr
ercm ^ercU

r50

5cm ^ V81V9^ c, ~III.27!
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whereV5V9^V8 denotes the vacuum state inH. Since such expressions become cumbersome
for higher derivatives, for notational convenience we define

c*
~1!

3•••3c
*
~n! :5

1

An!
d

dr1
•••

d

drn
e( i r icm

~ i !
^e( j r jc

~ j !U
r i50

. ~III.28!

Then, the~.,.!0 inner product on one-particle vectors inH reads

~c* ,x* !05E d̃kc i S d i j2
kikj
k2 D x̄ j1S ek0 c i1 i

ki
k0

c D kikj
k2 S ek0 x j2 i

kj
k0

x D . ~III.29!

Clearly, the two transversal componentsPTc*
:5~d i j2kikj /k

2!cj and a linear combinationPLc*
of the longitudinal component~kikj /k

2!cj ~k! with the scalar componentc~k! survive, while the
remaining two components lie inN sk . To be more precise, we introduce forc

*
theBogoliubov-

transformed componentscL ,cN ,

cL,i~k!:5cosu
kikjc j~k!

k2
1 i sin u

kic~k!

uku
,

~III.30!

cN,i~k!:52sin u
kikjc j~k!

k2
1 i cosu

kic~k!

uku
,

where cosu5e/k0 , sinu5uku/k0. With cL , cT , andcN , the five-component vectorc
*
( i ) can be

specified as

c* ~k!:5„PTcm~k!,cL~k!,cN~k!,c0~k!…, ~III.31!

and the projection operatorPp onto the ‘‘physical’’ one-particle components is given by

~Ppc* !~k!5„PTcm~k!,cL~k!,0,0…. ~III.32!

This is exactly what one expects: the five ‘unphysical’ degrees of freedom have combined into
three physical ones in such a way that the longitudinal component inH has mixed with the scalar
component.

4. The physical Hilbert space Hphys

To extend~III.32! to n-particle states, we rewrite~III.26!, using

expS (
i
r ic*

~ i !D :5expS (
i
r icm

~ i !D ^expS (
i
r ic

~ i !D ,
~III.33!

~ec
* ,ex

* !05~ec
* ,V!0~V,ex

* !0~e
Ppc

* ,ePpx
* !.

Here we have used the remark following~III.29!, which implies that

„exp~Ppc* !,exp~Ppx* !…05„exp~Ppc* !,exp~Ppx* !….

From ~III.33! we obtain
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c
*
~1!3•••3c

*
~n!5

d

dr1
•••

d

drn
~e( i r ic*

~ i !
,V!0e

( i r ic*
~ i !U

r i50

5 (
q50

n

(
~pi !1

qPP q,n

l~pi !1
q~Ppc*

~p1!
!3•••3~Ppc*

~pp!
!1n, ~III.34!

whereP q,n contains all sets ofq indices $(pi)1
q% out of $1,...,n%, such that$(pi)1

q%ø$( p̂i)1
n2q%

5$1,...,n%. Here,

l~pi !1
q5A~q!! ~n2q!!

n!
~c
*
~ p̂1!

3•••3c
*
~ p̂n2q!upq~ I n,q! ,V!0 ~III.35!

arec-number coefficients andn denotes an element inN sk .
Vectors of the type~III.32! generate a Hilbert space of physical one-particle states. The

bosonic Fock space over this one-particle space is evidentlyF phys:5S„L2~R3!^C3…, the symmetric
Hilbert space overL2~R3!^C3. It should be clear from Eq.~III.34! that the induced spaceHphys
from the Rieffel induction procedure is naturally isomorphic to this physical Fock space.26 To
prove this, we define a mapV:L→F phys by linear extension ofV exp~c

*
!5„exp~c

*
!,

V…0 exp~Ppc*
!. It follows from an argument similar to the one in section 3.3 of Ref. 13 that this

map is well defined@which is a nontrivial property, as the basis$exp~c
*
!% is overcomplete#.

Equation~III.33!, and the fact that the inner product inF phys is just the one inH, restricted to the
physical states, then implies the crucial property

~VC,VF!5~C,F!0 , ~III.36!

for all C,FPL, where the inner product on the lhs is evidently the one inF phys. Hence the null
spaceN sk of ~.,.!0 is precisely the kernel ofV, and the quotient mapṼ:L/N sk→F phys can be
extended to a unitary map~denoted by the same symbol! Ṽ:Hphys→F phys.

5. n-point correlation functions and gauge invariance

Having specified the physical Hilbert spaceHphys, the next step is to determine the action of
pphys~Ac!. To this end, we consider the generating functionalvvac for vacuum expectation values,

vvac~fm,f!:5~p„W~fm ,f!…V,V!05e~1/2!~fmfm!Me2~1/2!~f,f!e2~1/k0
2
!„k0f̄0~kmfm1 ief!…,

~III.37!

whereVPH is the ~unphysical! ‘‘vacuum’’ state. By construction, onlyAc5A(Nsk ,Bsk) acts
onH @cf. ~III.14!#, and for~fm ,f!PNsk , k0f05kif i2 ief, we obtain

vvac~fm,f!5e2~1/2!~fm ,PTfm!Ee2~1/2!„~e/k0!f i1 i ~ki /k0!f…~kikj /k
2!„~e/k0!f̄ j2 i ~kj /k0!f̄…

5:~pphys„W̃~Ppf* !…Vphys,Vphys!phys

5e2~1/2!*d k̃@PTf~k!PTf~k!1f̄L,i~k!fL,i ~k!#. ~III.38!

Here, VphysPHphys is the physical vacuum state; it is just the projection ofVPL onto
L/N sk,Hphys.

We observe that for~fm ,f!PTsk , p„W~fm ,f!… equals the unit operator@cf. ~III.7!#. This
implies that the gauge group is represented trivially onHphys. Moreover, one infers that
Aobs:5p~Ac!.A(Nsk/Tsk ,Bc,sk), since the image of a representation of aC* -algebra is iso-
morphic to the algebra quotiented by the kernel of the representation. NowNsk/Tsk.PpNsk as
vector spaces~but not as carrier spaces of actions of the Poincare´ group!!, so that, equally well,
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Aobs.A(PpNsk ,Bsk).
27 Then, it is clear from Sec. III A thatAobs is precisely the Weyl algebra

over the Marsden–Weinstein reduced space~i.e., the physical phase space! of the Stückelberg–
Kibble model. Hence it describes three gauge-invariant, massive field components.

Thus W̃„Ppf*
… can be viewed as a Weyl operator inA(PpNsk ,Bsk). In particular, the

representation ofA(PpNsk ,Bsk) on exponential vectorsecPHphys5S„L2~R3!^C3… is given by

pphys„W̃~Ppf* !…ec5e2~1/2!~Ppf
*
,Ppf

*
!p1~c i Ppf

*
!pe~c2Ppf

*
!,

~III.39!

~c,Ppf* !p5E dk̃@PTf~k!PTf~k!1f̄L,i~k!fL,i~k!#.

From vvac~fm ,f!, n-point correlation functions can be obtained as multiple derivatives of

W̃(Ppf* ): 5 eiÃ( f ), wherePpf*
5D* fPL2~R3!^C3,

i n~pphys„Ã~ f 1!•••Ã~ f n!…Vphys,Vphys!phys

5
d

dr1
•••

d

drn
vvacS (

i
r ifm

~ i ! ,(
i
r if

~ i !DU
r i50

5 (
~pi ,qi ! i

n/2PS n

)
i51

n/2

~pphys„Ã~ f pi !Ã~ f qi !…Vphys,Vphys!phys

3~21!n/2 ~III.40!

for n even, and zero otherwise. Here,S n denotes the set of all symmetric partitions of$1,...,n%
into a set of unordered pairs (pi ,qi). We conclude from~III.40! that then-point correlation
functions can be decomposed into products of two-point correlation functions, i.e., Wick’s theo-
rem is satisfied. The reader should note, however, that this form of Wick’s theorem is satisfied for
elements inA(Nsk ,Bsk) only. The crucial point is that, in general, the~.,.!0 inner product pre-
serves the adjoint for test functions inNsk only. This can be seen by comparing, e.g.,
(d/dr1)(d/dr2)(p„W(S i r ifm

( i ) ,( i r if
( i ))…V,V)0ur i50 with (d/dr1)(d/dr2)(p„W(fm

(1) ,f (1))…V,

p„W(fm
(2),f (2))…V)0ur i50 @cf. III.37!#.

There is an interesting parallel between this restriction of the Rieffel induced expectation
values toA(Nsk ,Bsk) and the general setup of the Gupta–Bleuler indefinite metric formalism as
presented in Ref. 28. In the latter, one starts from an unphysical Hilbert spaceHGB from which
the physical one is obtained as a quotientH8/H9. Without reviewing this construction, we note
thatH has to be restricted to a suitable subspaceH8,HGB before quotienting by a null space
H8. Obviously, in our setting, a similar restriction is needed on the level of the algebra,
A(Nsk ,Bsk),A(Msk ,Bsk). This restriction emerges in a systematic way, for as we pointed out
before, the subalgebra in question is the commutant of the algebra generated by the constraints
~i.e., by the gauge group!.

This observation is closely related to the result of Narnhofer and Thirring29 that covariant
formulations without indefinite inner metric are possible as long as the representation on the
physical Hilbert space is restricted to a certain subalgebra of weak observables. In the example of
Narnhofer and Thirring, nonregular states have to be introduced. This can be avoided in the
Rieffel induction setting@cf. Refs. 13 and 14 for further details#.

6. Positivity of the Hamiltonian and action of the Poincare ´ group

On the algebra of weak observables of the Stu¨ckelberg–Kibble modelA(Nsk ,Bsk), the time
evolution is given as an automorphism groupt,
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t t@W~fm ,f!#5W~eit
AD1e2fm ,e

itAD1e2f!, ~III.41!

where (Df)m5~2Df0,2Df1,2Df2,2Df3!. We want to construct the HamiltonianH, corre-
sponding tott onH. H is a representation-dependent operator, implementing the time evolution
tt in the representationp by

eitHp„W~fm ,f!…e2 i tH5p„t t@W~fm ,f!#…. ~III.42!

Comparing this with the explicit form of the representation in terms of annihilation and creation
operatorsâm* ,âm for the vector field andb̂* ,b̂ for the scalar field, we obtain

H52E dk̃Ak21e2âm* ~k!gmnân~k!1E dk̃Ak21e2b̂* ~k!b̂~k!. ~III.43!

Regarded as an operator onH ~with its Hilbert space inner product!, this Hamiltonian clearly has
the entire real axis as its spectrum. However, it is easy to see that

~C,HC!0>0 ~III.44!

for all CPH. The point is that arbitrary~normalized! components of the physical one-particle
state space,~d i j2kikj /k

2!cj and ~ki /k!ci cosu1ic sinu pick up ~the same! positive energy con-
tributions. For multi-particle states, this holds true due to their decomposition into such compo-
nents. The elements ofH carrying the negative energy spectrum have ended up in the null space.
Hence the induced HamiltonianHphys onHphys is positive.

Finally, we note thatHphys carries a massive representation of the Poincare´ groupP . Indeed,
vvac is Poincare´ invariant onNsk and hence16,17 there exists a Poincare´ invariant vacuum state
VphysPHphys and a representationUp of the Poincare´ group such that

Up~L,a!pphys„W~fm ,f!…Vphys5pphys~W„gL,a~fm ,f!…!Vphys ~III.45!

for all ~fm ,f!PNsk . It is easily shown thatHphys is the generator of the time-translation part of the
representation thus defined. Since the spectrum of the HamiltonianHphysshows a mass gap, we are
dealing with a massive representation (m25e2) of the Poincare´ group, i.e., the three components
of the vectorPpc*

( i ) transform as a massive one-particle state under the action of the little group
SO~3!.20

We conclude thatHphys has the main properties required by a physical Hilbert space; it
transforms trivially under the gauge group, satisfies the positive spectrum condition, and carries a
unitary representation of the Poincare´ group.

IV. CONCLUSION

The quantization proposal employed in this paper provides a detailed scheme for imposing
constraints on gauge quantum field theories. As explained in Sec. II, the main tool of this proposal
is the Rieffel induction procedure, which provides a systematic scheme for the construction of
representations ofC* -algebras. It may be viewed as the quantum counterpart of the symplectic
reduction technique; as we have shown, this is particularly obvious for WeylC* -algebras. This
leads to a new quantization method for gauge field theories.

In the present work, we have applied this method to the Stu¨ckelberg–Kibble model. To this
end, we have defined a field algebraA corresponding to the field content of the Lagrangian, and
an algebra of constraintsB corresponding to the gauge group acting onA. Also, we have
specified a representationp of subalgebras ofA on a~unphysical! Hilbert spaceH. From these
input data, we have constructed a representation of the physical, gauge-invariant fields on a new
Hilbert spaceHphys.
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The construction ofHphys shows some parallels to the Gupta–Bleuler indefinite metric for-
malism. In both settings, a degenerate inner product is defined on a~unphysical! Hilbert spaceH,
andHphys is constructed by quotientingH by a null space with respect to this degenerate inner
product. Yet, there are important differences. In contrast to the indefinite metric inner product^.,.&,
defined onHGB in the Gupta–Bleuler formalism, the~.,.!0 inner product is positive semidefinite.
More importantly, it is a conceptual advantage of our quantization method that~.,.!0 is derived
from first principles~namely from the requirement to impose quantum constraints by a quantized
version of the classical phase space reduction method!, whereas the Gupta–Bleuler formalism
takes^.,.& as starting point without further justification. A similar comment applies to the BRST
technique: although a classical analogue of this procedure exists, the quantum BRST procedure is
not in any satisfactory sense the quantization of the classical scheme.

Another remarkable difference between both formalisms is that the Gupta–Bleuler formalism
restricts the unphysical Hilbert space before forming the quotient whereas the proposal of Ref. 11
restricts itself to a representation of the subalgebraAc of weak observables onH, before quoti-
enting by the appropriate null space. As a consequence, the~.,.!0 inner product preserves the
adjoint for elements inAc only. It remains to be seen how far this feature alters applications of
usual perturbative techniques in more complicated models.

The fact that in our approach the spectral condition does not hold in the Hilbert space of the
unconstrained system is of little importance, since the original inner product in this space is related
to the one in the physical state space only through the rigged inner product. Also, the absence of
a unitary implementation of the full Poincare´ group does not lead to conceptual or technical
complications. In fact, we do not exclude the existence of a Krein space with a suitable dense
subspaceL, on which our method is manifestly covariant in all its steps.

Most of our effort in Sec. III has gone into characterizing the particular features of the
physical state spaceHphys. By construction,Hphys carries a trivial representation of the gauge
group. Also, the states are physical in the sense that they obey a positive spectrum condition and
that they carry a massive representation of the Poincare´ group. Since the Stu¨ckelberg–Kibble
model has been widely used in investigations of the Higgs mechanism, we emphasize again the
result obtained for the one-particle subspace inHphys. The point is that in our proposal, the
particular construction method ofHphys allows one to trace back how the~unphysical! compo-
nents ofH end up in the physical Hilbert space. In the present case, we have shown that the
longitudinal physical one-particle component arises from a particular Bogoliubov transformation
of the unphysical longitudinal and the scalar component. As expected from general considerations,
two of the five components inH have ended up in the one-particle null space.

We conclude our discussion of the Rieffel induction procedure by pointing out that our
presentation has focused on a particular way of applying Rieffel induction to gauge quantum field
theories. Conceptually, the scheme is much wider. It remains to be seen how far other choices for
the inner product~.,.!0 and the unphysical Hilbert spaceH allow for other realizations of the
physical observables of gauge field theories.
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Cristina Stoica
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The Manev problem~a two-body problem given by a potential of the form
A/r1B/r 2, wherer is the distance between particles andA,B are positive con-
stants! comprises several important physical models, having its roots in research
done by Isaac Newton. We provide its analytic solution, then completely describe
its global flow using McGehee coordinates and topological methods, and offer the
physical interpretation of all solutions. We prove that if the energy constant is
negative, the orbits are, generically, precessional ellipses, except for a zero-measure
set of initial data, for which they are ellipses. For zero energy, the orbits are
precessional parabolas, and for positive energy they are precessional hyperbolas. In
all these cases, the set of initial data leading to collisions has positive measure.
© 1996 American Institute of Physics.@S0022-2488~96!00205-7#

I. INTRODUCTION

The question we fully answer in this paper has a long history. We deal with a two-body
problem given by a potential of the formA/r1B/r 2, wherer is the distance between particles and
A,B are positive constants. Newton was the first to consider it in hisPrincipia. In Book I, Article
IX, Proposition XLIV, Theorem XIV, Corollary 2, he claimed that such a force leads to apre-
cessionally ellipticrelative orbit; this means that, with respect to a fixed frame having one particle
at the origin, the other particle moves on an ellipse that rotates in its plane of motion. This was the
only result Newton published in connection with this gravitational model, but he tackled it for
many years to follow his first edition ofPrincipia. The 1888 catalogue of the Portsmouth Collec-
tion of unpublished manuscripts that are stored today in the library of Cambridge University
shows Newton’s interest in this model, interest which was aroused by the difficulties he encoun-

0022-2488/96/37(6)/2748/14/$10.00
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tered in trying to explain the apsidal motion of the moon within the framework of the inverse-
square-force model. After Newton, theA/r1B/r 2 potential was tackled by Clairaut, who finally
abandoned it in favor of the classical one.

Physicists claim today that this is a well-known problem: in an equivalent formulation it
appears as Problem 14 in Chapter 3 of Goldstein’sClassical Mechanics.1 Unfortunately Gold-
stein’s statement is incorrect, as we will further see in the qualitative sections of this paper.
Goldstein, like Newton, thought that all orbits are precessional ellipses, which is wrong. It is an
error that has remained in place for a long time due to the fact that the problem has never been
considered from the point of view of the qualitative theory of dynamical systems. We will see that
the problem is more complex, and we will fully solve it here. For this we will use a powerful
mathematical method: the McGehee transformations—well known in celestial mechanics but little
known among mathematical physicists; we would like to emphasize here the importance of the
McGehee transformations, because they can be applied to the study of solutions of differential
equations near singularities.

Using physical principles, the Bulgarian physicist Manev2 ~or Maneff—in French and German
spelling! obtained a similar potential during the third decade of our century. Assigning the massM
to the particle at the origin, the unit mass to the rotating particle and denotingm5GM, b5A/m21,
g52B/m, whereG is the constant of gravitation, Manev’s potential corresponds to the values
b50, g53m/c2 of the constants, wherec is the speed of light. This model allowed a good
theoretical justification of the perihelion advance of Mercury and of the other inner planets as well
as an accurate description of the moon’s motion.

It is interesting to look at the physical interpretation of Manev’s model. The classical point of
view is that the orbit of celestial objects around the sun must be an ellipse, a parabola, or a
hyperbola~depending on the initial data!. However, because of the perturbation of the other
objects in the system, the orbit is in fact a precessional ellipse, parabola, hyperbola, or can take a
more complicated shape. Unfortunately, this classical point of view encounters difficulties: the
theoretical calculations do not fit the observations, and this happens especially for celestial objects
coming close to the sun. The perihelion advance of Mercury and of the other inner planets cannot
be explained within the the framework of the Newtonian theory.

The study of the solar system can be maintained within the framework of classical mechanics
by substituting Newton’s model with the one of Manev. This is especially convenient for celestial
mechanics. Of help in this sense are the results of the KAM theory. As it has been shown in a
paper by Lacomba, Llibre, and Nunes,3 if the equations of motion describing Manev’s problem are
slightly perturbed by some external force, whichdoes not have to beHamiltonian, ‘‘most’’
invariant cylinders and tori are~topologically! preserved under this perturbation. From the physi-
cal point of view this means that the natural~unperturbed! orbit of a celestial object around the sun
is not an ellipse, parabola, or hyperbola, but a precessional ellipse, precessional parabola, or
precessional hyperbola~as defined in the first paragraph!, the precessional effect becoming more
evident the closer the orbit is to the sun. Under the perturbation of the other celestial objects, the
orbit continues to remain, in general, a precessional ellipse, precessional parabola, or precessional
hyperbola, but there are exceptions. Nevertheless they are unlikely in the sense that the set of
initial data for which they occur has measure zero.

Several other Manev-type models have recently been the subject of research. Mioc4 has
considered Fock’s relativistic field, truncating the negligible terms and obtaining the values
b52~E221!, g56mE2/c2 of the parameters, whereE511h/c2 andh is the total energy per unit
mass of the rotating particle. Saslaw,5 and later Mioc and Radu,6 have considered the motion in
the photogravitational field generated by a source of radiation, taking the valuesb52sL/
(4pmmc), g50 of the parameters, wheres andm are the cross-sectional area and the mass of the
rotating body andL is the luminosity of the central body. The two-body problem with equivalent
gravitational parameter~bÞ0, g50! has been considered by S¸elaru, Cucu-Dumitrescu, and Mioc.7

There are other directions of research where this potential occurs: Ureche8 analyzed the
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astrophysical problem of the free-fall collapse of a homogeneous sphere; Diacu9 considered gen-
eralizations to the three-body problem in the more general mathematical context ofquasihomo-
geneous potentials, showing that Manev’s case represents the only bifurcation of the flow in the
quasihomogeneous case. Diacu10 also studied the gravitational isosceles three-body case, pointing
out possible applications in atomic physics.

The general case of the Manev potential for any positive values of the constantsA andB has
been considered, in Hamiltonian formulation and for negative total energy, by Lacomba, Llibre,
and Nunes~see Ref. 3!, who have also applied KAM~Kolmogorov–Arnold–Moser! theory to a
perturbed Manev potential, to prove the invariance of nonresonant cylinders and tori. The Melni-
kov integral associated with the nonhyperbolic equilibria was computed by Casasayas, Fontich,
and Nunez.11 The analytic solution and the local flow of the Manev model near collision has been
obtained by Diacu, Mingarelli, Mioc, and Stoica.12 The more complicated anisotropic Manev
problem~important for understanding the connections between classical and quantum mechanics!
has been recently investigated by Craig, Diacu, Lacomba, and Perez,13 who have fully understood
the flow near collision and have described some elements of the global flow, obtaining in particu-
lar the complete picture of the zero-energy case.

The goal of this paper is to provide the complete analytic, geometric, and physical description
of the Manev problem. In Secs. II–IV, we compute the analytic solution, which, from the practical
point of view, can be used in numerical endeavors. This has been previously done in different
forms and contexts, the one we use here presenting interest mainly for astronomers. Unfortunately,
the complicated closed form of the solution hides the nice properties of the model, and this is the
reason why Goldstein’s problem is the subject of physical misinterpretations. Therefore we con-
tinue with a qualitative analysis, which reveals the geometrical nature of the orbits. In Sec. V we
use the McGehee technique14 to blow up the collision singularity and offer new, regularized
equations of motion. The main idea of this method is to paste, instead of the collision singularity,
a manifold to the phase space. This manifold, though now part of the phase space, has nothing to
do with the real physical orbits. Its advantage, however, is that, due to the continuity of solutions
with respect to the initial data, it provides information about orbits passing close to collision. The
study of the~fictitious! flow on the collision manifold is therefore important for the understanding
of the local flow near collision. In this case, however, the regularized equations of motion allow us
to provide a full description of the global flow. The flow on the torus is formed by periodic orbits,
except the upper and lower circle, which are formed by degenerate equilibria. We observe that the
global flow has a rotational symmetry, which we use to reduce the dimension of the phase space.
In this reduced phase space, the collision manifold is a circle of equilibria: two of these equilibria
correspond to the circles of equilibria on the torus, while all the others correspond to the periodic
orbits on the torus~see Fig. 2!.

In Sec. VI we treat the negative-energy case. Every energy level is a spherical cap~which is
obviously topologically equivalent with a disk—see Fig. 3!. There are infinitely many heteroclinic
orbits connecting the equilibria of the collision circle, two homoclinic orbits, and infinitely many
periodic orbits. The heteroclinic and homoclinic solutions correspond physically to orbits ejecting
from a collision and also ending in a collision. The periodic orbits correspond to tori of solutions
in phase space. In Sec. VII we prove that most of the tori of solutions correspond to quasiperiodic
orbits ~precessional ellipses!, while a set of measure zero of initial data leads to elliptic orbits. In
Sec. VIII we study the zero-energy and positive-energy cases. Each energy level is topologically
equivalent with an annulus: in the zero-energy case it is a paraboloid with the cap removed~see
Fig. 4!, while in the positive-energy case, depending on the initial data, it is part of a hyperboloid
of one sheet@see Fig. 5~a!#, one sheet of a cone of two sheets with the cap removed@see Fig. 5~b!#,
or one sheet of a hyperboloid of two sheets with the cap removed@see Fig. 5~c!#. All these surfaces
are bordered by the collision circle. From the physical point of view, the zero-energy case solu-
tions correspond to precessional parabolas, whereas the positive-energy ones correspond to pre-
cessional branches of hyperbolas. In all cases, and in general, the set of initial data leading to
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collisions has positive measure. Also, as we have proved in Ref. 12, the collision is not regular-
izable, in the sense that continuity with respect to the initial data is lost after collision.

II. THE RADIUS VECTOR—DIRECT APPROACH

The Manev problem is described by a Hamiltonian system, i.e., a system of the type

q̇5
]H~p,q!

]p
, ṗ5

2]H~p,q!

]q
,

where the Hamiltonian functionH has the propertyH~p,q!5h ~constant!, i.e., it is a first integral
~called the integral of energy! of the system.

In our case, the HamiltonianH is given by

H~p,q!5
1

2
~ up1u21up2u2!2

A

uq12q2u
2

B

uq12q2u2
,

where we have denoted byq5~q1,q2! the configurationof the system of two particles and by
p5~p1,p2! themomentum, A andB being positive constants.

SinceH depends only on the relative positionsq12q2 and not on the position vectorsq1 and
q2, we can reduce the Manev problem to a central force problem by introducing the relative
coordinatesr5q12q2, which transform the Hamiltonian into

H~p,r !5~1/2!upu22A/ur u2B/ur u2.

We will use this formulation of the problem in our qualitative endeavors~Secs. V–VIII!. To
obtain the analytic expression of the solution~Secs. II–IV!, we eliminate the momentum from the
above equations and express them as a second-order system of the form

r̈5
2~11b!mr

r 3
2

gmr

r 4
, ~2.1!

where b5A/m21, g52B/m, m5GM, G is the gravitational constant,b5A/m21, g52B/m,
m5GM, G is the gravitational constant,M is the mass of one particle, the other having mass 1,
and r5ur u.

Using polar coordinates (r ,u), the equations~2.1! become

r̈2ru̇252~m/r 2!~11b1g/r !, rü12ṙ u̇50. ~2.2!

Let us attach to the equations~2.2! the initial conditions

~r ,u, ṙ ,u̇!~ t0!5~r 0 ,u0 ,V0 cosc,V0 sin c/r 0!,

whereV05V(t0), V5uṙ u, and c is the angle between the initial radius vector and the initial
velocity. Since the force field is central, the angular momentum is conserved, so the second
equation in~2.2! yields the integral

r 2u̇5C, ~2.3!

whereC5r 0V0 sinc is the constant of the angular momentum. The integral of energy is

V25 ṙ 21r 2u̇25~m/r !@2~11b!1g/r #1h, ~2.4!

whereh is the energy constant.
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The rectilinear case~which corresponds to the zero angular momentum,C50! is easy to
solve. The phase-space picture is given in Fig. 1.~In fact, we will recover these orbits in the
qualitative analysis performed in Secs. V–VIII.! Throughout Secs. II–IV, we will assumeCÞ0.

Using the relationdt5(r 2/C)du obtained from~2.3!, the first equation in~2.1! takes the
Binet-type form

d2~1/r !

du2
1S 12

gm

C2 D 1

r
5

~11b!m

C2 , ~2.5!

with the initial conditions

S r , d~1/r !

du D ~u0!5S r 0 ,2 1

r 0 tanc D .
The solution of the initial value problem attached to the equations~2.5! depends on the value of
the constanta5gm/C2. We distinguish three cases:~a! a,1, ~b! a51, and~c! a.1:

r5F S 1r 02 ~11b!m

~12a!C2DCa~m!2
Sa~u!

r 0 tanc
1

~11b!m

~12a!C2G21

, ~2.6a!

r5F ~11b!m~u2u0!
2

2C2 2
u2u0
r 0 tanc

1
1

r 0
G21

, ~2.6b!

r5F S 1r 0 1
~11b!m

~a21!C2D C̃a~u!2
S̃a~u!

r 0 tanc
2

~11b!m

~a21!C2G21

, ~2.6c!

where

Sa~u!5~12a!21/2 sin„A12a~u2u0!…, Ca~u!5cos„A12a~u2u0!…,

S̃a~u!5~12a!21/2 sinh„Aa21~u2u0!…, C̃a~u!5cosh„Aa21~u2u0!….

III. THE ORBITAL ELEMENTS—PERTURBATIVE APPROACH

Let us now isolate the Newtonian attraction term per unit mass,2mr /r3, on the right-hand side
of the equations~2.1!, and treat the remaining term2bmr /r 32gmr /r 4 as a perturbing acceleration.
In this way we can tackle the problem in the frame of the classical perturbation theory.

According to this theory, developed primarily by Lagrange and based on the variation of
parameters,15 the real~perturbed! trajectory can be regarded as the envelope of a family of oscu-

FIG. 1. ~a! The caseh,0, wherer 0 5 ( 2 A 2 AA222Bh)/h. ~b! The caseh50. ~c! The caseh.0.
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lating Keplerian orbits~conic sections! whose initial conditions change continuously. The motion
will then be described by a set of relations between the Keplerian orbital elements, their time
derivatives, and time; these form the so-called Newton–Euler or Gauss equations.16 If the com-
ponents of the perturbing accelerations~which appear in these equations! do not contain the time
explicitly, one can choose another independent variable: one of the anomalies~as in Ref. 16, p.
157! or the argument of latitude.

We will further express the trajectory of the particle with respect to the time-dependent
osculating Keplerian orbital elements:a5the semimajor axis, V5the longitude of the ascending
node, i5the inclination, e5the eccentricity, v5the argument of the pericenter, andu5the argu-
ment of the latitude. We will also usep5a(12e2)5the semilatus rectum, v5u2v5the true
anomaly, and the parametersq5e cosv, k5e sinv, which are suitable for the study of small-
eccentricity orbits~those close to circles!, for which the pericenter is not well—or not at
all—defined.17

Let S,T,W denote the radial, transverse, and binormal components of the perturbing accel-
eration, respectively. Since they do not depend explicitly on the timet, we can describe the
perturbed motion by means of the Newton–Euler equations written with respect tou in the form
~see, e.g., Ref. 5!

p852S Zm D r 3T, V85S Zm D r 3W sin u

p sin i
, i 85S Zm D r 3W cosu

p
,

q85S Zm D H r 3kW sin u
cot i

p
1r 2TF r q1cosu

p
1cosuG1r 2S sin uJ ,

~3.1!

k85S Zm D H 2r 3qW sin u
cot i

p
1r 2TF r k1sin u

p
1sin uG2r 2S cosuJ ,

t85
Zr2

Amp
,

where~85d/du andZ 5 @1 2 r 2V̇(cosi)/Amp)21], with the initial conditions

~p,V,i ,q,k,t !~u0!5~p0 ,V0 ,i 0 ,q0 ,k0 ,t0!.

Since the perturbing force in the equations~2.1! is radial, the components of the perturbing
acceleration areS52(m/r 2)(b1g/r ), T5W50. Also notice thatZ51. Replacing these values
into the equations~3.1!, we obtain

p85V85 i 850, q852~b1g/r !sin u, k85~b1g/r !cosu, t85r 2/Amp. ~3.2!

Integrating the first three equations and using the initial data, we obtain that all along the motion
p5p0 , V5V0, and i5 i 0 , which means that thesemilatus rectumis constant and the motion is
planar.

According to the perturbation theory we use, we may describe the real trajectory by the
equation of a conic sectionr5p/~11e cosv!, whose parameters are functions ofu. From the
definition ofq andk, the relationv5u2v, and the constancy ofp, this equation becomes

r ~u!5
p0

~11q cosu1k sin u!
. ~3.3!
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On the other hand, since for osculating conic sectionsp5p05const~the same constant as in the
Kepler problem! andC has the same value as in the Kepler problem18 ~given byC2/m5p!, we put
C25mp0 , which, according to the previous section, leads toa5g/p0. With this expression fora,
and with~3.3!, the coupled equations forq andk in ~3.1! have the exact solution, for~a! a,1, ~b!
a51, and~c! a.1, respectively:

q~u!5$Sa~u!@sin~u2u0!2a cosu0 sin u#1Ca~u!cos~u2u0!%q0

1$Sa~u!@cos~u2u0!2a sin u0 sin u#2Ca~u!sin~u2u0!%k0

2~a1b!Sa~u!sin u1@~a1b!/~12a!#@12Ca~u!#cosu,
~3.4a!

k~u!5$2Sa~u!@cos~u2u0!2a cosu0 cosu#1Ca~u!sin~u2u0!%q0

1$Sa~u!@sin~u2u0!1a sin u0 cosu#1Ca~u!cos~u2u0!%k0

1~a1b!Sa~u!cosu1@~a1b!/~12a!#@12Ca~u!#sin u,

q~u!5@cos~u2u0!2~u2u0!sin u0 cosu#q02@sin~u2u0!2~u2u0!cosu0 cosu#

3k02@~11b!/2#~u2u0!@2 sinu2~u2u0!cosu#,
~3.4b!

k~u!5@sin~u2u0!2~u2u0!sin u0 sin u#q01@cos~u2u0!1~u2u0!cosu0 sin u#

3k01@~11b!/2#~u2u0!@2 cosu1~u2u0!sin u#,

q~u!5$S̃a~u!@sin~u2u0!2a cosu0 sin u#1C̃a~u!cos~u2u0!%q0

1$Sa~u!@cos~u2u0!2a sin u0 sin u#2C̃a~u!sin~u2u0!%k0

2~a1b!S̃a~u!sin u1@~a1b!/~12a!#@12C̃a~u!#cosu,
~3.4c!

k~u!5$2S̃a~u!@cos~u2u0!2a cosu0 cosu#1C̃a~u!sin~u2u0!%q0

1$Sa~u!@sin~u2u0!1a sin u0 cosu#1C̃a~u!cos~u2u0!%k0

1~a1b!S̃a~u!cosu1@~a1b!/~12a!#@12C̃a~u!#sin u.

Plugging~3.4! into ~3.3! we obtain the formulas of the radius vector for~a! a,1, ~b! a51, and~c!
a.1:

r5p0F11b

12a
2S a1b

12a
2e0 cosv0DCa~u!2e0 sin v0Sa~u!G21

, ~3.5a!

r5p0F11b

2
~u2u0!

22e0 sin v0~u2u0!111e0 cosv0G21

, ~3.5b!

r5p0F2
11b

a21
1S a1b

a21
1e0 cosv0D C̃a~u!2e0 sin v0S̃a~u!G21

, ~3.5c!

wheree05(q0
21k0

2)1/2 andv05u02arctan(k0/q0) stay for initial conditions. These formulas are
equivalent to~2.6!.
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IV. RELATIONSHIP BETWEEN TIME AND POLAR ANGLE

In Sec. III we have described the evolution of the radius vector as a function of the argument
of latitude. To complete the integration of the equations~3.1!, we will determine the function
t5t(u), which allows us to express the solution as a function of the time variable. For this,
consider first the following notations:

Ā5
~12a!e0 cosv02~a1b!

11b
, B̄5

~12a!1/2e0 sin v0
11b

, B̃5
~a21!1/2e0 sin v0

11b
,

K52~12a!3/2~11b!22, K̃52~a21!3/2~11b!22,

e*5~Ā21B̄2!1/2, w5~12e* 2!1/2, w̃5~e* 221!1/2,

f ~u!5cot@~1/2!A12a~u2u0!#, f̃ ~u!5coth@~1/2!Aa21~u2u0!#,

X~u!5~Ā11! f ~u!2B̄, Y~u!5~Ā1e* 2! f ~u!2B̄, Z~u!5w21X2~u!,

X̃~u!5~Ā11! f̃ ~u!1B̃, Ỹ~u!5~Ā1e* 2! f̃ ~u!1B̃, Z̃~u!5w22X̃2~u!,

x511e0 cosv0 , y52e0 sin v0 , D52~11b!x2y2,

X̂~u!5
2@~11b!x2y2#~u2u0!2~11b!y~u2u0!

2

x@2x12y~u2u0!1~11b!~u2u0!
2#

,

Ŷ~u!5
u2u0

2x1y~u2u0!
, Ẑ~u!5

~11b!~u2u0!

2y@y1~11b!~u2u0!#
.

Direct computations give us the following relations in each of the cases~a! a,1, ~b! a51, and~c!
a.1, respectively:

t5t01~Kp0
3/2/w3Am!@arctan„w/X~u!…2wY~u!/Z~u!#, for e*,1,

t5t01~Kp0
3/2/3Am!@~213X~u! f ~u!!/X3~u!#, for e*51, ~4.1a!

t5t01~Kp0
3/2/w̃3Am!@w̃Y~u!/Z~u!2arg tanh„w̃/X~u!…#, for e*.1,

t5t02
p0
3/2

DAm
@X̂~u!1„2~11b!/A2D…arg tanh„A2DŶ~u!…#, for D,0,

t5t014p0
2/3Ẑ~u!/Am, for D50, ~4.1b!

t5t01
p0
3/2

DAm
@X̂~u!1„2~11b!/AD…arctan„ADŶ~u!…#, for D.0,

t5t01~K̃p0
3/2/w3Am!@arg tanh„w/X̃~u!…1wỸ~u!/Z̃~u!#, for e*,1,

t5t01~K̃p0
3/2/3Am!@„3X̃~u! f̃ ~u!22…/X̃3~u!#, for e*51, ~4.1c!

t5t01~K̃p0
3/2/w̃3Am!@w̃Ỹ~u!/Z̃~u!1arctan„w̃/X̃~u!…#, for e*.1.
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Relationsp5p0 , V5V0, i5 i 0 , ~3.4!, and ~4.1! give now, in closed form, the solution of the
equations of motion~3.2! of the Manev problem.

V. BLOW UP AND REDUCTION

To begin our qualitative endeavors, let us write the Manev problem in Hamiltonian form, as
we did at the beginning of Sec. II, with a Hamiltonian of the type

H~p,q!5
1

2
~ up1u21up2u2!2

1

uq12q2u
2

k

uq12q2u2
, ~5.1!

where the units~including those of the masses! have been chosen such that the constantsA andB
take the values 1 andk, respectively.

Considering polar coordinatesr.0, uPS1, whereS1 is the segment@0, 2p# with the end
points identified, the Hamiltonian takes the form

H~pr ,pu ,r !5 1
2~pr

21pu
2/r 2!21/r2k/r 2, ~5.2!

wherepr ,pu are the new polar variables.
To blow up the collision singularity that occurs atr50, we formally multiply the energy

integral byr 2 @a detailed justification of this step was given in the local study near the collision
performed in a previous paper that uses McGehee transformations~see Ref. 12!#. The energy
relation takes now the form

1
2r
2pr

21pu
22r2k5hr2. ~5.3!

Introducing further the transformationsv5rpr andu5pu and scaling the time variable by using
dt5r 2 dt, the equations given by the Hamiltonian~5.2! take the form

r 85rv, v85r ~112hr !, u85u, u850, ~5.4!

having the energy relation~5.3! transformed into

v21u222r22hr252k. ~5.5!

The prime denotes here differentiation with respect to the new, fictitious, time variablet.
Define thecollision manifoldas the set of solutions given by relation~5.5! whenr50. Notice

that, geometrically, the collision manifold is a cylinder in the three-dimensional space of the
coordinates (u,u,v), and, sinceuP@0, 2p#, it follows that this cylinder can be identified with a
torus. In fact, the two-dimensional torus representing the collision manifold is imbedded in the full
four-dimensional phase space of the coordinates (r ,u,u,v). The equations~5.4! show that the flow
on the collision manifold is formed almost exclusively by periodic orbits, except the upper and
lower circles of the torus given byr50,u50,v 5 6A2k, which consist of equilibrium points@see
Fig. 2~a!#.

Sinceu does not appear explicitly in the equations~5.4! or in the energy relation~5.5!, we can
further reduce the four-dimensional phase space to dimension three by factorizing the flow toS1.
Exploiting this symmetry~characteristic to this problem!, we will obtain clear pictures of the
global flow in phase space. In what follows we will describe the global reduced flow as well as the
flow in phase space, by regarding the energy as a parameter.

Factorizing the collision manifold toS1, the torus becomes a circle@see Fig. 2~b!#. The points
M andN on this circle correspond to the circles of equilibria on the torus, while all the other
points correspond to the periodic orbits on the torus.
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VI. ORBITS OF ELLIPTIC TYPE

In this section we consider the negative-energy case,h,0. Let us first write the energy
relation ~5.5! in a convenient way as

v21u222h~r11/2h!252k21/2h, ~6.1!

which shows that, in the reduced phase space, every energy level is a two-dimensional sphere@in
the three-dimensional Euclidean space (r ,v,u) with r>0 ~see Fig. 3!#. In other words, every
negative-energy level is homeomorphic with a two-dimensional disk. The boundary of this disk is
r50, v21u252k, i.e., the circle that defines the collision manifold.

The analysis of the equations~5.4! allows us to describe the flow on the negative-energy
levels. There are two equilibria outside the collision manifold, located atr521/2h, v50, u
5 6A2k21/2h. Sinceu is a first integral, all solutions are represented by curves lying in parallel
planes,u5const. Therefore, depending on the constant value ofu, the orbits are heteroclinic if
uuu , A2k, homoclinic foru 5 6A2k, and periodic forA2k ,u uu , A2k21/2h. Note that in the
unreduced phase space all these ‘‘orbits’’ are in fact manifolds. Each manifold consists of the
product between an ‘‘orbit’’ andS.1

The physical interpretation in each of these cases is as follows. The heteroclinic orbit con-
nectingM andN corresponds to rectilinear solutions starting from a collision and ending in a
collision. They are homothetic orbits. All the other heteroclinic orbits connecting equilibria of the
collision circle are, in full phase space, heteroclinic orbits between the periodic orbits on the
collision torus. Physically they also correspond to solutions ejecting from collision and then

FIG. 2. ~a! The collision manifold imbedded in the four-dimensional phase space.~b! The collision manifold in the reduced
phase space.

FIG. 3. The flow on each negative-energy level.
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tending to collision, but the collision is not rectilinear anymore: the particle colliding with the
center spirals around the center. There are, in fact, infinitely many rotations before collision, as we
will prove in Sec. VII. The homoclinic orbits in Fig. 3 correspond, in full phase space, to orbits
ejecting from thebig circle of the torus and returning to it and to orbits ejecting from thesmall
circle of the torus and returning to it.~Thebig andsmallcircles are the ones in the ‘‘equatorial’’
planev50!. Their physical interpretation is similar to that of the heteroclinic ones that spiral at
ejection-collision. As we have already proved in Ref. 11, this also shows that there exists a set of
positive measure of initial data that leads to collisions.

The case of periodic orbits, forA2k ,u uu , A2k21/2h, is the most interesting one from the
mathematical point of view. In full phase space each of these orbits corresponds to a linear flow
on a torus:S13S1. Each torus is therefore filled with either periodic or with quasiperiodic orbits
~this is a well-known fact in the qualitative theory of dynamical systems19!. It is the goal of Sec.
VII to find the frequency ratio and prove that most of the tori are filled with quasiperiodic orbits
and that only a negligible set of them consists of tori foliated by periodic orbits. Physically, the
quasiperiodic solutions correspond to precessional ellipses that fill an annulus densely, whereas
the periodic ones are either elliptic orbits or precessional orbits that close after a finite number of
rotations.

The last case to discuss is that of the two equilibria outside the collision manifold atr521/
2h, v50,u 5 6A2k21/2h. In full phase space they correspond to periodic orbits, and are circular
orbits in physical space. This completes the description of the negative-energy case.

VII. PERIODIC AND QUASIPERIODIC ORBITS

In this section we want to determine the nature of the tori of orbits in Sec. VI. For this we will
compute the frequency ratio, which will tell us whether the corresponding orbits are periodic or
quasiperiodic. Periodic orbits correspond to rational ratios, whereas quasiperiodic ones correspond
to irrational ratios.

Let r5A22h(r11/2h), and observe thatr51/A22h5a represents collision. From the
equations of motion~5.4! we obtain

r85~r11/A22h!v, v852r~r11/A22h!.

Now observing that

v21r252k2
1

2h
2u25I 2,

we introduce polar coordinates~I ,f! in the ~r,v! plane. Notice that

f85
vr82rv8

r21v2
5r1a5I sin f1a.

Taking nowz5tan~f/2!, the equivalent equation

dt5
df

I sin f1a

takes the form

dt5
2dz

az212Iz1a
5

2dz

a@~z1I /a!2112I 2/a2#
.

Note thatI,a corresponds to noncollision orbits. Integrating the last equation, we obtain
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t5
2

aa
arctan

z1I /a

a
1const,

wherea5 A12I 2/a2.
The periodT is given by

T5tu0
T5E

0

2p

F~f!df,

where the right-hand side is a~convergent! improper integral atf5p. Then

T5
4

aa
lim

f→p
FarctanI /a1tanf/2

a
2arctan

I

aaG5
2

aa Fp22 arctan
I

aa G ,
and after replacing the values ofa, a, andI we obtain

T5
2A22h

A2h~2k2u2!
Fp22 arctan

A112h~u222k!

A2h~2k2u2!
G .

Notice now that ifr→a, thena→` andT→`. Also, if I→0, thena→1 andT→2p/a.
Finally, the frequency ratio of the torus is

T

u
5

2

uAu222k
Fp22 arctan

A112h~u222k!

A2h~2k2u2!
G .

It becomes clear now that, for fixedk, most of the values taken by the frequency ratio, as a
continuous function ofu, are irrational. This proves that, except for a set of measure zero of tori
foliated by periodic orbits, most of the tori are generated by quasiperiodic orbits.

VIII. ORBITS OF PARABOLIC AND HYPERBOLIC TYPE

Let us finally consider the zero-energy,h50, and the positive-energy,h.0, cases.
In the zero-energy case, the energy relation takes the form

v21u252r12k,

which implies that the zero-energy level is a paraboloid with the cap removed~see Fig. 4!. ~The
cap is removed becauser>0.! From the topological point of view this is the complement of a disk
bordered by the collision circle, i.e., an annulus. Again, the first integral,u5const, foliates the

FIG. 4. The flow in the zero-energy case.
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zero-energy level into curves lying in parallel planes. The curves are either parabolas, foruuu
> A2k, or arcs of parabolas, foruuu , A2k. There are no equilibria outside the collision circle.

The physical interpretation of the orbits corresponding to the arc of parabola tending toN or
ejecting fromM is that of rectilinear orbits that come from~or tend to! infinity with asymptotic
velocity zero. The other orbits corresponding to arcs of parabolas that tend to~or eject from! the
collision circle are those of precessional parabolas that spiral at collision~ejection! and have
asymptotic velocity zero at infinity. The orbits corresponding to parabolas do not encounter col-
lisions and are precessional parabolas with asymptotic velocity zero at infinity.

In the positive-energy case, the energy relation takes the form

v21u222h~r11/2h!252k21/2h.

Depending on the relation betweenh andk, three possibilities arise:~1! h.1/4k, ~2! h51/4k, and
~3! h,1/4k.

In case~1!, the energy relation describes a hyperboloid of one sheet intersected withr>0 @see
Fig. 5~a!#. The first integral,u5const, foliates the surface in branches of hyperbolas or arcs of
branches of hyperbolas and two pairs of lines. The physical interpretation is similar to that of the
zero-energy case, just that parabolas are now substituted by branches of hyperbolas and the
asymptotic velocity at infinity is not zero but positive.

In case~2!, the energy relation is a cone intersected withr>0 @see Fig. 5~b!#, and the first
integral,u5const, foliates the surface in branches of hyperbolas or arcs of branches of hyperbolas
and two half-lines~those corresponding toM andN!. The physical interpretation of the corre-
sponding orbits is similar to the one of the previous case,~1!.

In case~3!, the energy relation is a hyperboloid of two sheets intersected withr>0, i.e., one
sheet with the cap removed@see Fig. 5~c!#. The first integral,u5const, foliates the surface in
branches of hyperbolas and arcs of branches of hyperbolas. The physical interpretation of the
corresponding orbits is the same as in case~1! above.

This gives the complete picture of the Manev problem.
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The scattering of time harmonic electromagnetic waves by a perfectly conducting
surface that is the boundary of a ‘‘disturbed half-space’’ is considered. This prob-
lem is translated in a boundary value problem for an elliptic system of partial
differential equations. Under appropriate hypotheses an existence theorem and an
integral representation formula for the solution of this boundary value problem is
given. Based on this integral representation formula a new method to compute the
solution of the boundary value problem is proposed. This method involves only
quadratures and is fully parallelizable. Finally some numerical examples of the
results obtained on test problems with this computational method are shown.
© 1996 American Institute of Physics.@S0022-2488~96!00805-5#

I. INTRODUCTION

Integral equation methods are often used to study the electromagnetic scattering by bounded
obstacles~see Refs. 1 and 2!. In this paper we consider the case when the scattering surface is a
plane with a local disturbance. This surface as assumed to be perfectly conducting so that the
electromagnetic field propagates in a ‘‘disturbed half-space.’’ This scattering problem is translated
in a boundary value problem for a system of elliptic partial differential equations. Under appro-
priate hypotheses an existence theorem for the solution of this boundary value problem is proved.
Moreover, we describe a new method to compute the electromagnetic field that is fully parallel-
izable. The analogous problems in the acoustic case have been studied in many papers including
Refs. 3–8.

Let Rn be then-dimensional real Euclidean space,xI 5(x1 ,x2 ,...,xn)
TPRn be a generic vec-

tor, where the superscriptT means transposed, and letCn be then-dimensional complex vector
space, andzI5(z1 ,z2 ,...,zn)

TPCn be a generic vector. Let~•,•! be the Euclidean scalar product,
i•i be the Euclidean norm and@•,•# be the Euclidean vector product. In the following, with abuse
of notation, we use the notation~•,•! and the notation@•,•# to denote also the Euclidean scalar
product and the Euclidean vector product of complex vectors. LetV#Rn be an open set,C k~V!,
k50,1,2,..., be the space of real or complex-valuedk-times continuously differentiable functions
in V with the appropriate sup-norm and letC 0

k~V!, k50,1,2,..., be the normed space of functions
belonging toC k~V! with compact support inV. Let C `~V! be the space of real- or complex-
valued infinitely continuously differentiable functions defined inV, andC 0

`~V! be the space of
C `~V! functions with compact support inV. Let S ~Rn! be the space of fast-decreasing functions

a!Fax:139 ~71! 200534; electronic mail address: recchioni@anvax1.unian.it
b!Fax:139 ~6! 44701007; electronic mail address: apzrm@itcaspur.caspur.it
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in Rn equipped with the usual Frechet structure andS 8~Rn! be the space of tempered distribu-
tions, that is the dual space ofS ~Rn! ~see Ref. 9, p. 219!.

Let r(x1 ,x2)PC0
2~R2!; we denote with suppr,R2 the support ofr. Let

D5$xI 5~x1 ,x2 ,x3!
TPR3ux3,r~x1 ,x2!,~x1 ,x2!

TPR2%. ~1.1!

It is easy to see thatD is an open simply connected unbounded set. LetD̄ be the closure ofD; we
have

Dc5R3\D̄5$xI 5~x1 ,x2 ,x3!
TPR3ux3.r~x1 ,x2!,~x1 ,x2!

TPR2%. ~1.2!

We call disturbed half-space the sets of the form~1.1! and ~1.2!. Let ]D be the boundary ofD,
that is,

]D5$xI 5~x1 ,x2 ,x3!
TPR3ux35r~x1 ,x2!,~x1 ,x2!

TPR2%. ~1.3!

We define

S05$xI 5~x1 ,x2 ,x3!
TPR3ux35r~x1 ,x2!,~x1 ,x2!

TPsuppr%, ~1.4!

so that, sincerPC0
2~R2!, S0 is a compact set,S0,]D, and]D\S0 is an open subset of the plane

$x350%. Let nI (xI ) be the outward unit normal vector to]D; that is,

nI ~xI !5
1

A11S ]r

]x1
D 21S ]r

]x2
D 2 S 2

]r

]x1
,2

]r

]x2
,1D T, xI P]D, ~1.5!

and letgI (xI )5„g1(xI ),g2(xI ),g3(xI )…
T be a continuous complex-valued vector field with compact

support ‘‘tangential’’ to]D, that is, „gI (xI ),nI (xI )…50, ;xI P]D. Let 0I5~0,0,0!T, let k0.0 be a

constant, andi be the imaginary unit, and letxÎ 5 xI /ixI i , for xI Þ0I . We consider the following
boundary value problem:

~D1k0
2!EI ~xI !50, xI PDc, ~1.6!

div EI ~xI !50, xI PDc, ~1.7!

@nI , EI #~xI !5gI ~xI !, xI P]D, ~1.8!

and

@curl EI ~xI !,xÎ #2ik0EI ~xI !50S 1

ixI i D , ixI i→1`, xI PDc, ~1.9!

whereD~•!5( j51
3 ]2(•)/]xj

2, div~•!5( j51
3 ](•)/]xj ,

EI ~xI !5„E1~xI !,E2~xI !,E3~xI !…T, DEI ~xI !5„DE1~xI !,DE2~xI !,DE3~xI !…T,

and

curl EI ~xI !5S ]E3~xI !

]x2
2

]E2~xI !

]x3
,

]E1~xI !

]x3
2

]E3~xI !

]x1
,

]E2~xI !

]x1
2

]E1~xI !

]x2
D T.
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It is easy to see~Ref. 1, Ch. 4! that the scattering of time harmonic electromagnetic waves by a
perfectly conducting surface in a homogeneous isotropic medium that does not contain free elec-
tric charges and fills the disturbed half-spaceDc reduces to the boundary value problem~1.6!–
~1.9!. In fact, letEI i be the incident electric field solution of~1.6! and ~1.7! and letEI s be the
electric field scattered by the perfectly conducting surface]D. We express the scattered fieldEI s as
follows:

EI s5EI 11EI 2, ~1.10!

whereEI 1(xI )5(2E1
i ,2E2

i ,E3
i )T(x1 ,x2 ,2x3) is the electric field that would be scattered by the

perfectly conducting plane$x350%, andEI 2 is the contribution to the scattered field due to the
presence of the perturbationS0. It is easy to see thatEI 2 solves the boundary value problem
~1.6!–~1.9! with gI (xI )52[nI ,EI 11EI i ](xI ), xI P]D. Moreover, we have support ofgI , suppgI #S0 .
Finally, it is easy to see that for time harmonic waves the magnetic field is given by
HI (xI )5(1/ik0)curlEI (xI ). In this paper we study the problem of the existence and uniqueness of
the solution of the boundary value problem~1.6!–~1.9!. In particular, we use the method of
boundary integral equations to establish the existence of the solution. We reduce the boundary
value problem~1.6!–~1.9! to an integral equation of the second kind for a vector density function
aI such that the vector fieldEI solution of ~1.6!–~1.9! is given by

EI ~xI !5E
]D
curlxI$F~xI ,yI !aI ~yI !%ds~yI !, ~1.11!

where curlxI denotes the curl operator with respect to the variablexI , ds(yI ) is the surface measure
on ]D, andF(xI ,yI ) is given by

F~xI ,yI !5
exp~ik0ixI 2yI i !

4pixI 2yI i , xI ÞyI , xI ,yI PR3. ~1.12!

The uniqueness theorem is given for solutions of the boundary value problem~1.6!–~1.9!, while
the existence theorem is given for solutions that can be represented by~1.11! with a suitable
choice of the densityaI in an appropriate function space. We prove an integral representation
formula forEI in terms of the value forxI P]D of [nI , EI ](xI ), @nI , curlEI ](xI ), and a series expansion
of EI whenixI i→` whose leading term contains the so-called far field. Moreover, we introduce a
new numerical method to compute the functionEI (xI ) solution of~1.6!–~1.9! when]D is smooth,
i.e., rPC0

`~R2!. This method is based on the integral representation formula forEI quoted above
and on a new formalism that generalizes the formalism introduced in acoustics by Milder.5

Milder10 has also considered the electromagnetic case obtaining results similar to the ones con-
tained in Sec. V. LetfI (xI )5„f 1(xI ), f 2(xI ), f 3(xI )…

T be a vector field defined inR3. We denote with
fI u]D

the restriction offI on ]D, we think of fI u]D
as a function of (x1 ,x2)

TPR2, i.e., fI u]D
(x1 ,x2)

5 ( f 1,u]D, f 2,u]D, f 3,u]D)
T(x1 ,x2)5 fI „x1 ,x2 ,r(x1 ,x2)…,(x1 ,x2)

TPR2.
Let T ,S8~R2! andH̃ be the vector space given by

H̃5$gI ~x1 ,x2!5~g1 ,g2 ,g3!
T~x1 ,x2!PC3, ~x1 ,x2!

TPR2u' fI :R
3→C3,gI ~x1 ,x2!

5 fI u]D~x1 ,x2!, ~ fI ~xI !,nI ~xI !!50, ;xI P]D, f j ,u]DPT , j51,2,3}.
~1.13!

We define~formally! a nonlocal operatorM̃ :H̃→H̃ such that

~M̃gI !~xI !5vI ~xI !, xI P]D, ~1.14!
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where the vector fieldvI PH̃ is defined as follows:
Let EI be the unique solution of the boundary value problem~1.6!, ~1.7!, ~1.9! with the

boundary condition

@nI , EI #~xI !5gI ~xI !, xI P]D. ~1.15!

Then we define

vI ~xI !5@nI , curl EI #~xI ! xI P]D. ~1.16!

The operatorM̃ allows us to determine the vector fieldEI using the integral representation formula
previously announced.

In Sec. II we give some preliminary results needed to prove the main theorems. In Sec. III we
give a representation theorem forEI , an expansion ofEI when ixI i→`, and a uniqueness theorem
for the solution of the boundary value problem~1.6!–~1.9!. In Sec. IV we introduce a system of
integral equations associated to the boundary value problem~1.6!–~1.9! and we prove an existence
and uniqueness theorem for the solution of this system. In Sec. V we introduce a computational
method that is based on a ‘‘power’’ series expansion of the operatorM̃ . This method involves only
quadratures and is fully parallelizable. In Sec. VI some numerical results obtained on test prob-
lems with the computational method of Sec. V are shown.

II. SOME PRELIMINARY RESULTS

Let R, R8 be positive constants withR8.R, andD, Dc be given by~1.1! and ~1.2!. Let

B~0I ,R!5$yI PR3uiyI i,R%, ~2.1!

VR
15$yI PDcuiyI i5R%, ~2.2!

DR,R85$yI PDcuR,iyI i,R8%, ~2.3!

C~0I ,R,R8!5$yI P]DuR,iyI i,R8%. ~2.4!

We denote withSR0 5 B(0I ,R0)ù]D a compact subset of]D such thatS0#SR0. We have the
following lemma.

Lemma 2.1:Let F(xI ,yI ) be given by~1.12! andnI be given by~1.5!. We have

]F~xI ,yI !

]nI ~yI !
5OS x3

iyI i2D , when iyI i→1`, yI P]D\SR0, xI PDc. ~2.5!

Proof: It follows from some elementary computations and the fact that

„nI ~yI !,xI 2yI …5x3 , xI PDc, yI P]D\SR0. j~2.6!

Let yI 5(y1 ,y2 ,y3)
TPR3, “yI5(]/]y1 ,]/y2 ,]/]y3)

T, R.0, and B(0I ,R) be such that
SR0,B(0I ,R). We define the following integral kernels:

KR~xI ,zI !52E
]D\B~0I ,R!

F~xI ,yI !
]F~yI ,zI !

]nI ~yI !
ds~yI !, xI ,zIP„Dc\B~0I ,R!…øSR0, ~2.7!

and
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VR~xI ,zI !522E
]D\B~0I ,R!

~nI ~yI !,@“yI
F~xI ,yI !, “yI

F~yI ,zI !# !ds~yI !, xI ,zIP„Dc\B~0I ,R!…øSR0.

~2.8!

We have the following Lemma.
Lemma 2.2:Let F be given by~1.12!, xI 5(x1 ,x2 ,x3)

T, andxI *5(x1 ,x2 ,2x3)
T; let ñI be the

outward unit normal vector to]B(0I ,R), and letG6 be given by

G6~xI ,yI !5F~xI ,yI !6F~xI * ,yI !, xI ,yI PR3, xI ÞyI . ~2.9!

The following identities hold:

KR~xI ,zI !2E
VR

1HG1~xI ,yI !
]F

]ñI ~yI !
~yI ,zI !2

]G1

]ñI ~yI !
~xI ,yI !F~yI ,zI !J ds~yI !

5H 0, xI ,zIPSR0,

2F~xI ,zI !, xI PDc\B~0I ,R!, zIPSR0,
~2.10!

and

KR~zI ,xI !1E
VR

1HG2~xI ,yI !
]F

]ñI ~yI !
~yI ,zI !2

]G2

]ñI ~yI !
~xI ,yI !F~yI ,zI !J ds~yI !

5H 0, xI ,zIPSR0,

1F~xI ,zI !, xI PDc\B~0I ,R!, zIPSR0.
~2.11!

Proof:GivenxI P SR0 andzI P SR0, we consider the functionsF(xI ,yI ) andF(yI ,zI ), yI PDR,R8.

Since]DR,R8 5 VR
1øVR8

1
øC(0I ,R,R8), applying Green’s formulas toF(xI ,yI ) andF(yI ,zI ), on

DR,R8 and using the Helmholtz equation we obtain

05E
VR

1H F~xI ,yI !
]F

]ñI ~yI !
~yI ,zI !2

]F

]ñI ~yI !
~xI ,yI !F~yI ,zI !J ds~yI !

1E
V
R8
1 H F~xI ,yI !

]F

]ñI ~yI !
~yI ,zI !2

]F

]ñI ~yI !
~xI ,yI !F~yI ,zI !J ds~yI !

1E
C~0I ,R,R8!

H F~xI ,yI !
]F

]ñI ~yI !
~yI ,zI !2

]F

]ñI ~yI !
~xI ,yI !F~yI ,zI !J ds~yI !,

xI ,zIPSR0. ~2.12!

SinceF satisfies the Sommerfeld radiation condition at infinity, we have

lim
R8→`

E
V
R8
1 H F~xI ,yI !

]F

]ñI ~yI !
~yI ,zI !2

]F

]ñI ~yI !
~xI ,yI !F~yI ,zI !J ds~yI !50, xI ,zIPSR0, ~2.13!

and sinceC(0I ,R,R8) coincides with]D\B(0I ,R) whenR8→1`, from ~2.12! and~2.13! we obtain
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05E
VR

1H F~xI ,yI !
]F

]ñI ~yI !
~yI ,zI !2

]F

]ñI ~yI !
~xI ,yI !F~yI ,zI !J ds~yI !

2E
]D\B~0I ,R!

H F~xI ,yI !
]F

]nI ~yI !
~yI ,zI !2

]F

]nI ~yI !
~xI ,yI !F~yI ,zI !J ds~yI !, xI ,zIPSR0. ~2.14!

Arguing as above withF(xI * ,yI ), F(yI ,zI ), yI PDR,R8, we have

05E
VR

1H F~xI * ,yI !
]F

]ñI ~yI !
~yI ,zI !2

]F

]ñI ~yI !
~xI * ,yI !F~yI ,zI !J ds~yI !

2E
]D\B~0I ,R!

H F~xI * ,yI !
]F

]nI ~yI !
~yI ,zI !2

]F

]nI ~yI !
~xI * ,yI !F~yI ,zI !J ds~yI !, xI ,zIPSR0.

~2.15!

It is easy to see that

G1~xI ,yI !52F~xI ,yI !,
]G1

]nI ~yI !
~xI ,yI !50, xI PSR0, yI P]D\B~0I ,R!, ~2.16!

G2~xI ,yI !50,
]G2

]nI ~yI !
~xI ,yI !52

]F

]nI ~yI !
~xI ,yI !, xI PSR0, yI P]D\B~0I ,R!. ~2.17!

ForxI P SR0 andzI P SR0 from ~2.14!–~2.16! we have~2.10!, and from~2.14!, ~2.15!, and~2.17! we
have~2.11!.

The proofs of the identities~2.10! and~2.11! for xI P Dc\B(0I ,R) andzI P SR0 are analogous to
the previous ones. This concludes the proof. j

Lemma 2.3:Let R.0, B(0I ,R).SR0, VR
1 and ñI be as above, and letF andVR be given by

~1.12! and ~2.8!, respectively. We have

VR~xI ,zI !52E
VR

1
„ñI ~yI !,curlxI$F~xI ,yI !“yI

F~yI ,zI !%…ds~yI !, xI ,zIP„Dc\B~0I ,R!…øSR0. ~2.18!

Proof: Let R8.R.0, let DR,R8 be given by~2.3!, and letn̂I be the outer normal vector to
]DR,R8. Applying the divergence theorem and some elementary vector identities we obtain

E
DR,R8

divyI curlxI$F~xI ,yI !“yI
F~yI ,zI !%dyI

52E
DR,R8

divyI $@“yI
F~xI ,yI !, “yI

F~yI ,zI !#%dyI

52E
]DR,R8

~ n̂I ~yI !,@“yI
F~xI ,yI !, “yI

F~yI ,zI !# !ds~yI !,

xI ,zIP„Dc\B~0I ,R!…øSR0. ~2.19!

We have
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E
DR,R8

divyI $@“yI
F~xI ,yI !, “yI

F~yI ,zI !#%dyI 50, xI ,zIP„Dc\B~0I ,R!…øSR0; ~2.20!

moreover, we obtain by straightforward calculation

lim
R8→1`

E
V
R8
1
„n̂I ~yI !,@“yI

F~xI ,yI !, “yI
F~yI ,zI !#…ds~yI !50. ~2.21!

Let C(0I ,R,R8) be given by~2.4!. Since]DR,R8 5 VR
1øVR8

1
øC(0I ,R,R8) andC(0I ,R,R8) coin-

cides with]D\B(0I ,R) whenR8→1`, from ~2.19! using ~2.20! and ~2.21! we have the thesis.j

Lemma 2.4: Let F and KR be given by ~1.12! and ~2.7!. Let R.0 be such that
SR0,B(0I ,R), we have:

E
]D\B~0I ,R!

H ]F

]xj
~xI ,yI !

]F

]nI ~yI !
~yI ,zI !J ds~yI !5

1

2

]KR

]xj
~xI ,zI !,

j51,2, xI P„Dc\B~0I ,R!…øSR0, zIPSR0. ~2.22!

Proof:ForxI P (Dc\B(0I ,R))øSR0 andzI P SR0 we consider the following functions:

]F

]xj
~xI ,yI !, F~yI ,zI !, yI PDR,R8 , ~2.23!

and

]F

]xj
~xI * ,yI !, F~yI ,zI !, yI PDR,R8 , ~2.24!

the proof now follows as in Lemma 2.2. j

Let F be the Fourier transform defined onS ~R2!, that is,

f̂ ~kI !5~F f !~kI !5E
Ra
f ~jI !e2i~kI ,jI !djI , fPS ~R2!, kI PR2, ~2.25!

andF 21 be the inverse Fourier transform, wherekI 5(k1 ,k2)
TPR2 is the conjugate variable of

jI 5~j1,j2!
TPR2. We continue to denote withF andF 21 the extension ofF andF 21 to S 8~R2!.

Let p:R2→C be the function defined by

p~kI !5p~k1 ,k2!5H Ak022k1
22k2

2,

iAk121k2
22k0

2,

k1
21k2

2<k0
2,

k1
21k2

2.k0
2,

~2.26!

and letl j :R
2→C, j51,2, be the functions defined byl j (kI )5 l j (k1 ,k2)5kj , j51,2. From now on,

with abuse of notation, we denote withf the maximal multiplication operator associated to the
function f (xI ). We define the operatorsq̃, q̃ j , j51,2,:S 8~R2!→S 8~R2!, as follows

q̃5F 21pF , ~2.27!

q̃ j5F 21l jF , j51,2. ~2.28!

Let jI 5(j1 ,j2)
TPR2, xI 5~jI

T,x3)
T be a generic vector inR3, let rPC 0

2~R2! @see~1.1!–~1.3!#, and

Dr be the open set defined by
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Dr5$~jI
T,x3!

TPR3umin$r~jI !,0%,x3 ,jI PR2%. ~2.29!

Let z0PR be a constant such thatz0 , minjIPR2$r(jI )%. For ũPS 8~R2! we define

F1~kI !5
ie2ip~kI !z0

2p~kI !
~F ũ!~kI !, kI PR2, ~2.30!

and

Q̃5H f :Dr→CU'ũPS 8~R2!

such that f ~jI
T,x3!5E

R2
F1~kI !eip~kI !x3ei~kI ,jI !

dkI

4p2 ,

where F1~kI ! is given by ~2.30!, ~jI
T,x3!

TPDrJ . ~2.31!

Moreover, let

F̃~kI !52
eip~kI !z0

2p~kI !
@~k1 ,k2 ,p~kI !!T, „~F u1!~kI !,~F u2!~kI !,~F u3!~kI !…T#, ~2.32!

and

Ã5HFI :Dr→C3, FI ~xI !5„F1~xI !,F2~xI !,F3~xI !…T,

u'uI ,uI ~jI !5„u1~jI !,u2~jI !,u3~jI !…T,jI PR2,ujPS 8~R2!, j51,2,3,

such thatFI ~jI
T,x3!5E

R2
F̃I ~kI !eip~kI !x3ei~kI ,jI !dkI /4p2,

where F̃I ~kI ! is given by ~2.32!, ~jI
T,x3!

TPDrJ. ~2.33!

We have the following.
Lemma 2.5:Let q̃,q̃ j , j51,2, be given by~2.27!, ~2.28!, andfPQ̃ . Thenf is a solution of the

Helmholtz equation inDr and we have

] f

]x3
~xI !5i~ q̃ f !~xI !, xI P$x350%, ~2.34!

] f

]xj
~xI !5i~ q̃ j f !~xI !, xI P$x350%, j51,2. ~2.35!

Moreover, letZ̃ be the operator defined by

Z̃: f ~jI
T,0!→ f „jI

T,r~jI !…, jI PR2, fPQ̃ . ~2.36!

Then the formal expansion ofZ̃ in ‘‘powers of r’’ is given by

Z̃5 (
m50

`
1

m!
rm~iq̃!m, ~2.37!

where we have denoted withr the maximal multiplication operator associated tor(j), jI PR2.

Proof (formal): An easy computation shows that any functionfPQ̃ is a solution of the
Helmholtz equation inDr . Formulas~2.34! and ~2.35! are obtained differentiating the represen-
tation formula offPQ̃ @see~2.31!# and using the definition ofq̃, q̃ j , j51,2. The formal expansion
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in ‘‘powers of r’’ of the operatorZ̃ is obtained from the representation formula offPQ̃ and the
Taylor’s expansion ofeip(jI )r(jI ), with base point zero. j

Lemma 2.6:Let FI PÃ. ThenF jPQ̃ , j51,2,3, andFI (xI ), xI PDr is a divergence free vector
field solution of the vector Helmholtz equation onDr .

Proof: In fact, we have

E
R2
F̃I ~kI !eip~kI !x3ei~kI ,jI !

dkI

4p2 5E
R2
curlxI$FI * ~kI !eip~kI !x3ei~kI ,jI !%

dkI

4p2 , ~jI
T,x3!

TPDr ,

~2.38!

whereFI * is the vector field given by

FI * ~kI !5
ie2ip~kI !z0

2p~kI !
„~F u1!~kI !,~F u2!~kI !,~F u3!~kI !…T. ~2.39!

The thesis follows from the representation formula ofFI PÃ @see~2.33!#. j

III. A REPRESENTATION FORMULA AND THE FAR-FIELD EXPANSION

LetR(Dc) be given by

R~Dc!5$EI :R3\D→C3uEI PC 2~R3\D̄ !ùC 0~R3\D !, div EI , curl EI PC 0~R3\D !%,

and letuEI u2 5 (EI ,EĪ ), where the overbar denotes the complex conjugate.
Lemma 3.1:Let EI PR(Dc) be a solution of the boundary value problem~1.6!–~1.9!. Then

there exist two constantsc.0, R̄.0 such that

E
VR

1
uEI ~xI !u2ds~xI !<c,`, R.R̄, ~3.1!

whereVR
1 is given by~2.2!.

Proof: Let DR5DcùB(0I ,R), and letnI R be the outward unit normal vector to]DR . We have

]DR5VR
1ø„]DùB~0I ,R!…, ~3.2!

nI R~xI !52nI ~xI !, xI P]DùB~0I ,R!, ~3.3!

where ]D is given by ~1.3! and nI by ~1.5!. From the first Green’s theorem and the radiation
condition ~1.9! we have

05 lim
R→1`

E
VR

1
u@curl EI ~yI !, nI R~yI !#u21k0

2uEI ~yI !u2 ds~yI !

522 ImH k0E
]D
„@nI ~yI !, EI ~yI !#,curl EĪ ~yI !…ds~yI !J , ~3.4!

where Im$•% denotes the imaginary part of$•%. The thesis follows from~3.4! and~1.8! noting that
the last integral in~3.4! is convergent. j

Theorem 3.2:Let EI PR(Dc) be the vector field of Lemma 3.1 and letF be given by~1.12!.
Then the following representation formula holds:
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E
]D
curlxI$@nI ~yI !, EI ~yI !#F~xI ,yI !%ds~yI !1

1

k0
2 E

]D
curlxI curlxI$@nI ~yI !, curl EI ~yI !#F~xI ,yI !%ds~yI !

5 HEI ~xI !, xI PDc,
0, xI PD. ~3.5!

Proof: The proof of formula~3.5! is analogous to the proof of a similar formula for the
solution of the Helmholtz equation in the exterior of a bounded domain~see Ref. 1, Th. 4.5, p.
113!. j

Theorem 3.3:Let EI PR(Dc) be the vector field of Lemma 3.1. There existsR.0 such that

EI can be extended to a vector fieldEĨ defined inR3\B(0I ,R) and

EĨ ~xI !5
eik0ixI i

4pixI i (
n50

`
FI n~xÎ !

ixI in , x̂5
xI

ixI i , xI Þ0I , xI PR3\B~0I ,R!, ~3.6!

where the expansion~3.6! converges absolutely and uniformly forixI i.R.
Moreover, we have

„xÎ ,FI 0~xÎ !…50. ~3.7!

Proof: Let R.0, such that B(0I ,R).suppgI øS0 @see ~1.4!, ~1.8!, and ~2.1!#,
SR5B(0I ,R)ù]D, xI 5 (x1 ,x2 ,x3)

T P Dc\B(0I ,R), andxI *5(x1 ,x2 ,2x3)
TPD. We define the fol-

lowing vector functions:

hI 65~h1
6 ,h2

6 ,h3
6!T5curlsI$F~sI ,yI !@nI ~yI !, EI ~yI !#% usI5xI

6curlsI$F~sI ,yI !@nI ~yI !, EI ~yI !#% usI5xI*
,

yI P]D, ~3.8!

and

xI
65~x1

6 ,x2
6 ,x3

6!T5curlsI curlsI$F~sI ,yI !@nI ~yI !,curl EI ~yI !#% usI5xI
6curlsI curlsI$F~sI ,yI !

@nI ~yI !,curl EI ~yI !#% usI5xI*
, yI P]D. ~3.9!

For yI P]D\SR we have

x j
2~xI ,yI !50, j51,2, yI PD\SR , xI PDc\B~0I ,R!, ~3.10!

and

x3
1~xI ,yI !50, yI P]D\SR , xI PDc\B~0I ,R!. ~3.11!

From Theorem 3.2,~3.10!, ~3.11!, and~1.8! we obtain

Ej~xI !5E
SR

h j
2~xI ,yI !ds~yI !1

1

k0
2 E

SR

x j
2~xI ,yI !ds~yI !, j51,2, xI PDc\B~0I ,R! ~3.12!

and

E3~xI !5E
SR

h3
1~xI ,yI !ds~yI !1

1

k0
2 E

SR

x3
1~xI ,yI !ds~yI !, xI PDc\B~0I ,R!. ~3.13!
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Using ~3.12! and~3.13!, EI can be extended to a vector fieldEĨ defined inR3\B(0I ,R), which is a
divergence-free vector field satisfying the vector Helmholtz equation and the radiation condition
~1.9!. This field has an expansion of the form~3.6! @see Ref. 1, Th. 4.8, p. 116#. The proof of~3.7!
follows from ~3.6! and ~1.9!. j

Corollary 3.4: Let xÎ 5 (sinu cosw,sinu sinw,cosu)T. Then, the coefficientsFI n(xÎ )
5 FI n(u,w) in ~3.6! are given by

2ik0nFI n5n~n21!FI n211BFI n21 , n51,2,..., ~3.14!

where

B5
1

sin~u!

]

]u S sin~u!
]

]u D1
1

sin2~u!

]2

]w2 ~3.15!

is the Beltrami operator on the sphere.
Proof: The proof follows from Theorem 3.3, since the expansion in~3.6! satisfies term-by-

term the vector Helmholtz equation. j

Corollary 3.5:LetEI PR(Dc) be the vector field of Lemma 3.1. IfFI 0(xÎ ) [ 0,xÎ 5 x/ixI i , xI Þ0I ,
xI PDc, thenEI ~xI ![0I .

Proof: From Corollary 3.4 it is easy to see thatFI 0(xÎ ) [ 0 impliesFI n(xÎ ) [ 0, n51,2,... . The
proof follows from Theorem 3.3 using the expansion in~3.6!. j

Lemma 3.6:Let EI PR(Dc) be the vector field of Lemma 3.1 and letnI be given by~1.5!. If

ImH k0E
]D
ds~yI !~nI ~yI !,@EI ~yI !, curl EI ~yI !# !J >0, ~3.16!

then we have

EI ~xI !50I , xI PDc. ~3.17!

Proof: The proof follows from a standard argument~see Ref. 1, Th. 4.17, p. 125!, using~1.8!
and ~1.9!. j

Theorem 3.7:Let Im$k0%>0. Then the boundary value problem~1.6!–~1.9! has at most one
solution inR(Dc).

Proof: We assume by contradiction thatEI andEI * are two solutions of the boundary value

problem~1.6!–~1.9!. The vector fieldEĨ 5 EI 2 EI * is a solution of the boundary value problem
~1.6!–~1.9! with homogeneous boundary condition; that is,

@nI ~xI !, EĨ ~xI !#50I , xI P]D. ~3.18!

From condition~3.18! and the properties of the triple product~•,@•,•#! we obtain

ImH k0E
]D
„nI ~yI !,@EĨ ~yI !,curl EĨ ~yI !#…J 50. ~3.19!

The thesis follows from~3.19! and Lemma 3.6. j
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IV. AN EXISTENCE AND UNIQUENESS THEOREM FOR THE SOLUTION OF THE
SYSTEM OF INTEGRAL EQUATIONS

Let SR0 5 B(0I ,R0)ù]D be a compact subset of]D such thatSR0$S0. Let C̃ (SR0) be the

Cartesian product of three copies ofC0(SR0), and letwI P C̃ (SR0) be a vector continuous tangential
density, that is,

~wI ~xI !,nI ~xI !!50, xI PSR0, ~4.1!

wherenI is given by~1.5!.

Let wĨ be the vector function defined on the set]D\SR0 given by

wĨ ~xI !522E
SR0

@nI ~xI !,curlxI$f~xI ,yI !wI ~yI !%#ds~yI !, xI P]D\SR0, ~4.2!

where the integral in~4.2! exists as a Cauchy principal value whenxI P ]SR0.

Lemma 4.1:Let wI , wĨ be given by~4.1! and ~4.2!, respectively. ThenwĨ is a continuous

tangential vector function on]D\SR0, i.e.,wĨ P C̃ (]D\SR0! and we have

w̃1~yI !522E
SR0

]f

]y1
~yI ,zI !w3~zI !ds~zI !12E

SR0

]f

]nI ~yI !
~yI ,zI !w1~zI !ds~zI !

5OS 1

iyI i D , iyI i→1`, yI P]D\SR0, ~4.3!

w˜2~yI !522E
SR0

]f

]y2
~yI ,zI !w3~zI !ds~zI !12E

SR0

]f

]nI ~yI !
~yI ,zI !w2~zI !ds~zI !

5OS 1

iyI i D , iyI i→1`, yI P]D\SR0, ~4.4!

w̃3~yI !50, yI P]D\SR0, ~4.5!

w̃2~yI !~x12y1!2w̃1~yI !~x22y2!5OS f ~xI !

iyI i D , iyI i→1`, yI P]D\SR0, xI PSR0, ~4.6!

wheref P C 0(SR0) is a suitable function.
Proof: The proof follows by an easy computation from the definitions~1.12!, ~4.2!, and

Lemma 2.1. j

Let K be the operator onC̃ (SR0) defined by

~KwI !~xI !52E
SR0

@nI ~xI !, curlxI$f~xI ,yI !wI ~yI !%#ds~yI !

12E
]D\SR0

@nI ~xI !, curlxI$f~xI ,yI !wĨ ~yI !%#ds~yI !, xI PSR0, ~4.7!

wherewI ,w̃I are given by~4.1! and ~4.2!.

Lemma 4.2:The operatorK in ~4.7! is a compact operator onC̃ (SR0).
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Proof: Let B(0I ,R) given by~2.1! such thatB(0I ,R).SR0. From the definition~4.7! we obtain

~KwI !~xI !52E
SR0

@nI ~xI !, curlxI$f~xI ,yI !wI ~yI !%#ds~yI !

12E
~]DùB~0I ,R!!\SR0

@nI ~xI !, curlxI$f~xI ,yI !wĨ ~yI !%#ds~yI !

12E
]D\B~0I ,R!)

@nI ~xI !, curlxI$f~xI ,yI !wĨ ~yI !%#ds~yI !, xI PSR0. ~4.8!

It is easy to see that the first two integrals on the right-hand side of~4.8! have weakly singular
kernels on bounded surfaces, so that they are compact operators onC̃ (SR0) ~see Ref. 1, Th.1.11,
p. 6!. Now we study the last integral in~4.8!. From the definition~4.2! and Lemmas 2.2, 2.3, and
2.4 we have

E
]D\B~0I ,R!

curlxI$f~xI ,yI !w̃I ~yI !%ds~yI !

52E
SR0

ds~zI !w3~zI !E
]D\B~0I ,R!

@“yI
f~xI ,yI !,“yI

f~yI ,zI !#ds~yI !

12E
SR0

ds~zI !curlxI H wI ~zI !E
]D\B~0I ,R!

f~xI ,yI !
]f

]nI ~yI !
~yI ,zI !ds~yI !J , xI PSR0. ~4.9!

By an easy computation we obtain

E
]D\B~0I ,R!

@“yI
f~xI ,yI !, “yI

f~yI ,zI !#ds~yI !

5
1

2 S 2
]KR

]x2
~xI ,zI !1

]KR

]z2
~zI ,xI !,

]KR

]x1
~xI ,zI !2

]KR

]z1
~zI ,xI !,VR~xI ,zI ! D T,

xI PSR0, zIPSR0, ~4.10!

whereKR ,VR are the kernels given by~2.7! and ~2.8!. The thesis follows from~4.9! and ~4.10!
using the representation formulas~2.10!, ~2.11!, ~2.18!, and~2.22!. j

Let wI ,wĨ be the functions given by~4.1! and~4.2!, and letaI be the following vector function:

aI ~xI !5H wI ~xI !, xI PSR0,

w̃I ~xI !, xI P]D\SR0.
~4.11!

Theorem 4.3:Let K andaI be given by~4.7! and ~4.11! and letgI be the vector function in
~1.8! with suppgI #SR0. If wI P C̃ (SR0) satisfies condition~4.1! and is a solution of the integral
equation

wI ~xI !1~KwI !~xI !52gI ~xI !, xI PSR0, ~4.12!

then we have
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U E
]D

curlxI$f~xI ,yI !aI ~yI !%ds~yI !U,`, xI PDc, ~4.13!

aI PC̃ ~]D !, „aI ~xI !,nI ~xI !…50, xI P]D, ~4.14!

and the vectorEI given by ~1.11! is a solution of the boundary value problem~1.6!–~1.9!.
Proof: Formula~4.13! follows from the definition ofaI using Lemmas 2.1 and 4.1. Moreover,

it is easy to see thatEI is a free divergence field, solution of the vector Helmholtz equation~1.6!.
Now we prove the radiation condition~1.9!. Let R.0, B(0I ,R).SR0, andeI 35(0,0,1)TPR3. We
have

EI ~xI !5E
SR0

curlxI$f~xI ,yI !wI ~yI !%ds~yI !1E
~]DùB~0I ,R!!\SR0

curlxI$f~xI ,yI !wĨ ~yI !%ds~yI !

1E
]D\B~0I ,R!

curlxI$f~xI ,yI !wĨ ~yI !%ds~yI !, xI PDc. ~4.15!

Let KR andVR be the kernels defined by~2.7! and~2.8!. Applying Lemma 2.5 and the Lebesgue
Theorem to interchange the order of integration we obtain

E
]D\B~0I ,R!

curlxI$f~xI ,yI !wĨ ~yI !%ds~yI !

5E
SR0

w3~yI !curlyI $KR~yI ,xI !eI 3%ds~yI !1E
SR0

curlxI$KR~xI ,yI !wI ~yI !%ds~yI !

2E
SR0

curlxI$KR~xI ,yI !w3~yI !eI 3%ds~yI !1eI 3E
SR0

VR~xI ,yI !w3~yI !ds~yI !,

xI PDc\B~0I ,R!. ~4.16!

The radiation condition~1.9! follows from ~4.15! and ~4.16! using Lemmas 2.2 and 2.3 and the
theory of electromagnetic field generated by a magnetic dipole. We note that whenaI satisfies
~4.14! the boundary condition~1.8! follows immediately from the jump relations. So, we must
prove ~4.14!. From the definition ofaI given by ~4.11!, using the integral equation~4.12! and
Lemma 4.2, we have

wI ~xI !52~KwI !~xI !, xI P]SR0. ~4.17!

By an easy computation, from the assumption~4.1! and noting that„]f(xI ,yI )/]nI (xI )… 5 0, xI ,yI
P ]D\SR0 @see~1.4!#, we obtain

@nI ~xI !, curlxI$f~xI ,yI !aI ~yI !%#50, xI P]SR0, yI P]D\SR0. ~4.18!

Taking the definitions~4.2!, ~4.7!, and ~4.11! into account, from~4.17! and ~4.18! we obtain
aI PC̃ (]D). Finally from the definition ofaI and Lemma 4.1 it follows„aI (xI ),nI (xI )…50, xI P]D.
This concludes the proof. j

Theorem 4.4:The boundary integral equation~4.12! has a unique solutionwI P C̃ (SR0).
Proof: The thesis follows from the Fredholm theory using Lemma 4.2, Theorems 4.3 and 3.7,

and the jump relation for vector potential with continuous tangential density. j
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V. A METHOD TO COMPUTE THE ELECTRIC FIELD IN A DISTURBED HALF-SPACE

We remind the reader that the content of this section is mainly formal. LetT #S 8~R2! be a
vector subspace of the space of tempered distributions such that the operator compositions used
later are defined inT .

Let r l(x1 ,x2)PC2~R2!, l51,2, be a bounded function onR2, Gl , l51,2, be the following
surfaces:

G l5$xI 5~x1 ,x2 ,x3!
TPR3ux35r l~x1 ,x2!,~x1 ,x2!

TPR2%, l51,2, ~5.1!

andDG l
, l51,2, be the following domains:

DG l
5$xI 5~x1 ,x2 ,x3!

TPR3ux3,r l~x1 ,x2!,~x1 ,x2!
TPR2%, l51,2. ~5.2!

For l51,2, letnI G l
(xI ) be the unit vector normal toGl in xI PG l pointing insideR

3\D̄G l
. We denote

with HG l
the vector spaces

HG l
5$gI ~x1 ,x2!5~g1 ,g2 ,g3!

T~x1 ,x2!PC3,~x1 ,x2!
TPR2u' fI :R

3→C3,gI ~x1 ,x2!

5 fI uG l
~x1 ,x2!,„fI ~xI !,nI G l

~xI !…50,;xI PG l , f j ,uG l
PT , j51,2,3%. ~5.3!

We define two transformationsL̃G l
:HG l

→HG l
, l51,2, such that

~ L̃G l
gI G l

!~xI !5vI G l
~xI !, xI PG l , l51,2, ~5.4!

where the vector fieldvI G l
, l51,2, is defined as the vector fieldvI in ~1.14!, when we replace]D

with Gl , l51,2, in ~1.15! and ~1.16! andDc with R3\D̄G l
, l51,2, in ~1.6!, ~1.7!, and ~1.9!. We

introduce the transformationG̃:HG1
→HG2

such that

~G̃gI G1
!~xI !5gI G2

~xI !, xI PG2 , ~5.5!

wheregI G2
is defined as follows:

Let EI G1
be the unique solution of the boundary value problem

~D1k0
2!EI G1

~xI !50I , xI PR3\D̄G1
, ~5.6!

div EI G1
~xI !50, xI PR3\D̄G1

, ~5.7!

Fcurl EI G1
~xI !,

xI

ixI i G2ik0EI G1
~xI !5oS 1

ixI i D , ixI i→1`,xI PR3\D̄G1
, ~5.8!

@nI G1
, EI G1

#~xI !5gI G1
~xI !, xI PG1 . ~5.9!

We assume that there exists a unique functionFI defined inR3\(DG1
ùDG2

) solution of~5.6!–~5.8!

in R3\(DG1
ùDG2

) that coincides withEI G1
in R3\D̄G1

, and that belongs toÃ @see~2.33!# and

whose components belong toQ̃ @see~2.31!# whenDr is replaced byR3\(DG1
ùDG2

). Then we
define

gI G2
~xI !5@nI G2

, FI #~xI !, xI PG2 . ~5.10!
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In this section we choose

r1~x1 ,x2!50, ~x1 ,x2!
TPR2, ~5.11!

r2~x1 ,x2!5r~x1 ,x2!, ~x1 ,x2!
TPR2. ~5.12!

WehaveG15$x350%,G25]D,DG1
5 $xI P R3ux3 , 0% andDG2

5 D,HG2
5 H̃, with H̃ given by

~1.13!. With this particular choice we have

M̃5L̃G2
; ~5.13!

moreover,

M̃5G̃L̃G1
G̃21. ~5.14!

It is easy to see thatL̃G l
, l51,2, are linear transformation ofHG l

into HG l
, l51,2, andG̃ is a

linear transformation ofHG1
intoHG2

so thatL̃G l
5 „(L̃G l ,i j

)…, G̃5„(G̃i j )…, i , j51,2,3,l51,2, can
be represented by three-by-three operator-valued matrices. From~5.13! we have

M̃5„~M̃ i j !…, M̃ i j5L̃G2 ,i j
, i , j51,2,3. ~5.15!

The computational method proposed here is a consequence of a nonlocal expansion ‘‘in powers of
r’’ of M̃ ~see Proposition 5.9!. The expansion is obtained using~5.14! and expanding the elements
M̃ i j , i , j51,2,3, of the operator-valued matrixM̃ . Different choices of the reference surface
G15$x350% generate different expansions of the operatorM̃ analogous to the one derived here.
We note that the procedure to construct the operatorsG̃, L̃G1

is only formal. In fact, the existence
of the operatorG̃ is based on the assumption that there exists a unique functionFI solution of
~5.6!–~5.8! in R3\(DG1

ùDG2
) that coincides inR3\D̄G1

with the unique solutionEI G1
of the

boundary value problem~5.6!–~5.9!. Moreover, we assume thatFI PÃ with Ã given by ~2.33!.
This is not proved here and is far from obvious. Moreover, the expansion ofM̃ is formal, that is,
its convergence is not proved.

We construct now the expansion ‘‘in powers ofr’’ of M̃ . Let q̃, q̃ j , j51,2, andZ̃ be the
operators given by~2.27!, ~2.28!, and~2.37!, respectively. From~2.37! we have~formally!

Z̃215 (
m50

`

~21!m
1

m!
rm~iq̃!m. ~5.16!

Lemma 5.1:Let Ã be given by~2.33!, EI be the solution of the boundary value problem
~1.6!–~1.9!, let EI PÃ. We have

Z̃:Ej~x1 ,x2,0!→Ej„x1 ,x2 ,r~x1 ,x2!…, j51,2,3,~x1 ,x2!
TPR2, ~5.17!

E3~xI !52~ q̃21q̃1E1!~xI !2~ q̃21q̃2E2!~xI !, xI PG1 , ~5.18!

E3~xI !52~ Z̃q̃21q̃1Z̃
21E1!~xI !2~ Z̃q̃21q̃2Z̃

21E2!~xI !, xI PG2 . ~5.19!

Proof: The thesis follows immediately from Lemmas 2.5 and 2.6. j

Lemma 5.2:Let Q̃ be given by~2.31! and letD̃:Q̃→Q̃, D̃ j :Q̃→Q̃, j51,2, be the operators
defined as follows:

D̃5Z̃~iq̃!Z̃21, ~5.20!
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D̃ j5Z̃~ q̃21,q̃ j !Z̃
21, j51,2. ~5.21!

Then we have

D̃ j D̃5D̃D̃ j , j51,2, D̃1D̃25D̃2D̃1 . ~5.22!

Proof: The proof follows from a simple computation based on the definitions of the opera-
tors Z̃,q̃,q̃ j , j51,2. j

In the following, we denote withI the identity operator.
Lemma 5.3:Let L̃G1

be the operator defined by~5.4! whenG15$x350%. Then we have

L̃G1
5S iq̃1q̃

21q̃2 2i~ q̃1q̃1q̃
21q̃1! 0

i~ q̃1q̃2q̃
21q̃2! 2iq̃2q̃

21q̃1 0

0 0 I
D . ~5.23!

Proof: Let EI G1
be the solution of the boundary value problem~5.6!–~5.9!. The proof follows

evaluating curlEI G1
(xI ) on G1 through the representation formula in~2.33! and using formula

~5.18!, Lemmas 2.5 and 2.6, and the fact that sinceG15$x350% we have

gI G1
~xI !5@nI G1

, EI G1
#~xI !5S 0 21 0

1 0 0

0 0 1
D S EG1,1

~xI !

EG1,2
~xI !

0
D , xI PG1 . ~5.24!

This concludes the proof. j

Lemma 5.4:Let Z̃, G̃, andD̃ j , j51,2, be the operators given by~2.37!, ~5.5!, and~5.21!. Then
we have

G̃5S S I2 ]r

]x2
D̃2D Z̃ ]r

]x2
D̃1Z̃ 0

]r

]x1
D̃2Z̃ S I2 ]r

]x1
D̃1D Z̃ 0

]r

]x1
Z̃

]r

]x2
Z̃ Z̃

D . ~5.25!

Proof:We have assumed that there exists a functionFI (xI )PÃ @see~2.33!# solution of~5.6!–
~5.8! in R3\DG1

ùDG2
that coincides inR3\D̄G1

with the unique solution of the boundary value
problem ~5.6!–~5.9!. The proof follows using~5.19! and ~5.24! from the fact thatnI G1

(xI )
5 (0,0,1)T,;xI P G1, computing the functiongI G2

(xI ),xI P G2, given by~5.10!. j

Proposition 5.5:Let Z̃21,G̃21 be the~formal! inverse of the operatorsZ̃,G̃ respectively. We
have

G̃215S Z̃21S I1 ]r

]x2
h̃21D̃2D 2Z̃21

]r

]x2
h̃21D̃1 0

2Z̃21
]r

]x1
h̃21D̃2 Z̃21S I1 ]r

]x1
h̃21D̃1D 0

2Z̃21
]r

]x1
2Z̃21

]r

]x2
Z̃21

D , ~5.26!
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whereh̃ is the operator defined by

h̃5I2D̃2

]r

]x2
2D̃1

]r

]x1
, ~5.27!

and h̃21 is the ~formal! inverse operator ofh̃.
Proof (formal):From ~5.25! we have

G̃S Z̃21 0 0

0 Z̃21 0

0 0 Z̃21
D 5S I 0 0

0 I 0

0 0 I
D 1S ]r

]x2
0

2
]r

]x1
0

0 I

D S 2D̃2 D̃1 0

]r

]x1

]r

]x2
0D . ~5.28!

Now formula ~5.26! follows from a simple computation. j

Proposition 5.6:Let F , L̃G1
be the operators in~2.25! and ~5.23! and p,l j , j51,2, be the

maximal multiplication operators defined in Sec. II. Then the inverse operatorL̃G1

21 is ~formally!

given by

L̃G1

215S l̃ 11 l̃ 12 0

l̃ 21 l̃ 22 0

0 0 I
D , ~5.29!

where

l̃ 115
i

k0
2 F

21~ l 1p
21l 2!F , ~5.30!

l̃ 1252
i

k0
2 „F

21~p!F 1F 21~ l 1p
21l 1!F …, ~5.31!

l̃ 215
i

k0
2 „F

21~p!F 1F 21~ l 2p
21l 2!F …, ~5.32!

l̃ 2252 l̃ 11. ~5.33!

Proof (formal):The proof follows from formula~5.23! and the definitions~2.27! and ~2.28!.
j

Let us define the following operatorsṼj : Q̃→Q̃ , j51,2:

Ṽj5Z̃~iq̃ j !Z̃
21, j51,2. ~5.34!

We have the following lemma.
Lemma 5.7:Let M̃ be given by~5.14!, M̃5„(M̃ i j )…, i , j51,2,3, and letD̃,D̃ j ,h̃,Ṽj , j51,2, be

the operators given by~5.20!, ~5.21!, ~5.27!, ~5.34! respectively. Then we have

M̃115
]r

]x2
Ṽ11Ṽ1h̃

21D̃21D̃
]r

]x1
h̃21D̃21

]r

]x2
S Ṽ1

]r

]x2
2Ṽ2

]r

]x1
D h̃21D̃2 , ~5.35!

2779Piccolo, Recchioni, and Zirilli: Electromagnetic scattering in disturbed half-space

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



M̃1252D̃1
]r

]x2
Ṽ22Ṽ1h̃

21D̃12D̃
]r

]x1
h̃21D̃12

]r

]x2
S Ṽ1

]r

]x2
2Ṽ2

]r

]x1
D h̃21D̃1 , ~5.36!

M̃215D̃2
]r

]x1
Ṽ11Ṽ2h̃

21D̃21D̃
]r

]x2
h̃21D̃21

]r

]x1
S Ṽ1

]r

]x2
2Ṽ2

]r

]x1
D h̃21D̃2 , ~5.37!

M̃2252
]r

]x1
Ṽ22Ṽ2h̃

21D̃12D̃
]r

]x2
h̃21D̃12

]r

]x1
S Ṽ1

]r

]x2
2Ṽ2

]r

]x1
D h̃21D̃1 , ~5.38!

M̃3152
]r

]x1
1

]r

]x2
D̃1S ]r

]x1
Ṽ11

]r

]x2
Ṽ2D h̃21D̃21S ]r

]x1
D̃

]r

]x1
1

]r

]x2
D̃

]r

]x2
D h̃21D̃2 ,

~5.39!

M̃3252
]r

]x2
2

]r

]x1
D̃2S ]r

]x1
Ṽ11

]r

]x2
Ṽ2D h̃21D̃12S ]r

]x1
D̃

]r

]x1
1

]r

]x2
D̃

]r

]x2
D h̃21D̃1 ,

~5.40!

M̃1350, M̃2350, M̃335I . ~5.41!

Proof: The proof follows from~5.14!, ~5.23!, ~5.25!, and~5.26! by a simple computation.j
To obtain the formal expansion ‘‘in powers ofr’’ of M̃ we need of the expansions of

D̃,D̃ j ,h̃,Ṽj , j51,2, that appear in the elements„(M̃ i j )…, i , j51,2,3, ofM̃ . We have the following
proposition.

Proposition 5.8:Let D̃,D̃ j ,h̃,Ṽj , j51,2, be given by~5.20!, ~5.21!, ~5.27!, and ~5.34!. We
denote withd the functional differentiation with respect tor(xI ). We have

D̃5 (
m50

`

D̃m , D̃ j5 (
m50

`

D̃ j ,m , Ṽj5 (
m50

`

Ṽj ,m , h̃5 (
m50

`

h̃m , j51,2, ~5.42!

where

D̃m5
1

m!
~dmD̃ !@r#, D̃ j ,m5

1

m!
~dmD̃ j !@r#, Ṽj ,m5

1

m!
~dmṼj !@r#, ~5.43!

h̃05I , h̃m52
1

m! S D̃2,m21

]r

]x2
1D̃1,m21

]r

]x1
D , m51,2,... . ~5.44!

In particular the first two terms of these expansions ‘‘in powers ofr’’ are given by

D̃05iq̃, D̃15„r~iq̃!2~iq̃!r…~iq̃!, ~5.45!

D̃ j ,05q̃21q̃ j , D̃ j ,15„r~ q̃21q̃ j !2~ q̃21q̃ j !r…~iq̃!, j51,2, ~5.46!

Ṽj ,05iq̃ j , Ṽj ,15„r~iq̃ j !2~iq̃ j !r…~iq̃ j !, j51,2, ~5.47!

h̃0
215I , h̃1

215q̃21q̃2
]r

]x2
1q̃21q̃1

]r

]x1
. ~5.48!
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Proof (formal): The formulas in~5.43! are obtained from Taylor’s formula with base point
r5r1(xI )50, xI 5(x1 ,x2)

TPR2. We prove formulas~5.46! for D̃ j , j51,2. The~formal! proof of
the expansion ofD̃ andṼj , j51,2, are analogous. The operatorsD̃ j , j51,2, satisfy the following
relation:

D̃ j Z̃5Z̃~iq̃!21~iq̃ j !, j51,2. ~5.49!

A variation in Z̃ induces a variation inD̃ j , j51,2, as follows:

dD̃ j5dZ̃~iq̃!21~iq̃ j !Z̃
212D̃ jdZ̃Z̃

215drD̃D̃ j2D̃ jdrD̃1~drD̃ j D̃2drD̃ j D̃ !, j51,2.
~5.50!

From ~5.50!, applying Lemma 5.2 we obtain

dD̃ j5~drD̃ j2D̃ jdr!D̃, j51,2. ~5.51!

Using the Taylor’s formula ofD̃ j , j51,2, with base pointr5r1(xI )50, xI 5(x1 ,x2)
TPR2, that is,

D̃ j@r11dr#5D̃ j@r1#1dD̃ j1••• , j51,2, ~5.52!

and choosingdr(x1 ,x2)5r(x1 ,x2), we have

D̃ j@r#5D̃ j@0#1~dD̃ j !@0#1 1
2~d2D̃ j !@0#1•••, j51,2. ~5.53!

SinceZ̃[0]5I , D̃[0]5iq̃, D̃ j [0]5q̃21q̃ j , j51,2, from ~5.50! and ~5.53! we obtain~5.46!. For-
mula~5.44! follows from the definition ofh̃ and~5.43!. Formula~5.48! is obtained by applying the
Cauchy rule to the product of the series expansion ‘‘in powers ofr’’ of the operatorsh̃ andh̃21.j

Proposition 5.9:Let M̃ given by ~5.14!. Then M̃5(m50
` M̃m , M̃m5„(M̃ i j ,m)…, i , j51,2,3,

m50,1,2,..., where„(M̃ i j ,m)…, i , j51,2,3, are obtained plugging the expansions in~5.42! into the
formulas~5.35!–~5.41!.

Proof (formal): The proof is a straightforward consequence of Lemma 5.7 and Proposition
5.8. j

We note that due to the definitions of the operatorsq̃,q̃ j , j51,2, the computation of the
expansion of the operatorM̃ involves only quadratures and is fully parallelizable.

Proposition 5.10:Let M̃5(m50
` M̃m be the formal expansion ‘‘in powers ofr’’ of the opera-

tor M̃ obtained in Proposition 5.9. The functionEI (xI ) solution of ~1.6!–~1.9! can be~formally!
expanded as follows:

EI ~xI !5E
]D

curlxI$F~xI ,yI !gI ~yI !%ds~yI !1
1

k0
2 (
m50

` E
]D

curlxI curlxI$F~xI ,yI !~M̃mgI !~yI !%ds~yI !,

xI PDc, ~5.54!

whereF is given by~1.12!.
Proof (formal):The proof follows immediately from~5.13!, Proposition 5.9, and the integral

representation formula~3.5! of Theorem 3.2. j

Formula~5.54! can be used to approximateEI (xI ) truncating the series on the right-hand side
of ~5.54! and using numerical quadrature formulas to compute the relevant integrals, so that the
computation ofEI (xI ) is also fully parallelizable.

Finally we give the first two terms of the expansion ‘‘in powers ofr’’ of the operatorM̃ that
are used to obtain the numerical results of Sec. VI. A simple computation gives

M̃11,05iF 21l 1p
21l 2F , ~5.55!
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M̃11,151F 21l 1p
21l 2F rF 21pF 2rF 21l 1l 2F 1iS ]r

]x2
F 21l 1F

1F 21l 1p
21l 2F

]r

]x2
F 21p21l 2F 1F 21l 1p

21l 1F
]r

]x1
F 21p21l 2F

1F 21pF
]r

]x1
F 21p21l 2F D , ~5.56!

M̃12,052i~F 21pF 1F 21l 1p
21l 1F !, ~5.57!

M̃12,152F 21pF rF 21pF 2F 21l 1p
21l 1F rF 21pF 1rk0

22rF 21l 2
2
F

1iS 2F 21l 1p
21l 1F

]r

]x1
F 21p21l 1F 1

]r

]x2
F 21l 2F 2F 21l 1p

21l 2

F
]r

]x2
F 21p21l 1F 2F 21pF

]r

]x1
F 21p21l 1F D , ~5.58!

M̃21,05i~F 21pF 1F 21l 2p
21l 2F !, ~5.59!

M̃21,151F 21pF rF 21pF 1F 21l 2p
21l 2F rF 21pF 2rk0

21rF 21l 1
2
F

1iS 1F 21l 2p
21l 2F

]r

]x2
F 21p21l 2F 2

]r

]x1
F 21l 1F 1F 21l 1p

21l 2F
]r

]x1

F 21p21l 2F 1F 21pF
]r

]x2
F 21p21l 2F D , ~5.60!

M̃22,052iF 21l 1p
21l 2F , ~5.61!

M̃22,152F 21l 1p
21l 2F rF 21pF 1rF 21l 1l 2F 1iS 2

]r

]x1
F 21l 2F

2F 21l 1p
21l 2F

]r

]x1
F 21p21l 1F 2F 21l 2p

21l 2F
]r

]x2
F 21p21l 1F

2F 21pF
]r

]x2
F 21p21l 1F D , ~5.62!

M̃31,050, ~5.63!

M̃31,15i
]r

]x1
F 21l 1p

21l 2F 2
]r

]x1
1i

]r

]x2
F 21pF 1i

]r

]x2
F 21l 2p

21l 2F , ~5.64!

M̃32,050, ~5.65!

M̃32,152i
]r

]x2
F 21l 1p

21l 2F 2
]r

]x2
2i

]r

]x1
F 21pF 2i

]r

]x1
F 21l 1p

21l 1F , ~5.66!

M̃13,050, ~5.67!
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M̃13,150, ~5.68!

M̃23,050, ~5.69!

M̃23,150, ~5.70!

M̃33,05I , ~5.71!

M̃33,150. ~5.72!

VI. SOME NUMERICAL RESULTS

In this section we show some numerical results obtained computing the electric fieldEI 2(xI ) of
~1.10!.

We compute an approximation ofEI 2(xI ) using formula~5.54! whenG25]D5$x35r(x1 ,x2)%
@see ~1.3!# and the reference surface isG15$x350%. In particular, the first two terms of the
expansion ‘‘in powers ofr’’ of M̃ are used@see~5.55!–~5.72!#. We remind the reader that the
choice of the reference surface influences the numerical approximation of the electric fieldEI 2(xI ).
In fact, to obtain a good approximation using only a few terms of the expansion~5.54!, we can
chooseG15$x35c%, wherec is the constant solution of the following problem:

min
cPR

max
xI PR2

ur~xI !2cu. ~6.1!

FIG. 1. Normalized scattering pattern as a function of the scattered angleus .
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Formula~5.54! with the series truncated atm51 has been implemented in a FORTRAN program.
The computations are performed on a VAX-ALPHA 7000-610, using VMS ALPHA V1.5 double-
precision arithmetic. We use quadrature formulas presented in Ref. 11.

In the numerical experiments we have chosen a plane linearly polarized incident wave; that is,

EI i~xI !5VI eik0~xI ,aI !, xI PR3, ~6.2!

whereVI PR3 is the polarization vector,aI PR3, iaI i51, is the propagation direction of the incom-
ing electric field, andk0.0 is the wave number. Moreover, we assume divEI i(xI )50, xI PR3\D̄;
that is,

~VI ,aI !50. ~6.3!

The functionr @see~1.1!–~1.3!# is given by

r~x1 ,x2!5H h sin~ f x1!e
21/~12x1

2
2x2

2
!, x1

21x2
2,1,

0, x1
21x2

2>1,
~6.4!

with f andh positive constants. The propagation directionaI is given by

aI 5~cosw i sin u i ,sin w i sin u i ,2cosu i !
T, 0<w i,2p,0<u i,p/2. ~6.5!

All of the calculations presented here are for normal incidentui50, andwi arbitrary, for the
polarization vectorVI 5(1,1,0)T, for different values of the scattered angleus and forws5p.

The scattering intensityI ~us! and the associated normalized intensityI n(us) are defined by

FIG. 2. This figure is analogous to Fig. 1 with the scattering intensity patterns instead of the normalized ones.
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I ~us!:5
uFI 0~us ,ws!u

k0
, ws5p, 0<us,

p

2
, ~6.6!

I n~us!:5
uFI 0~us ,ws!u

maxusuFI 0~us ,ws!u
, ws5p, 0<us,

p

2
, ~6.7!

whereFI 0 is the electric far field associated withEI
2 @see~3.6!#, anduFI 0u2 5 (FI 0 ,F̄I 0). We note that

three parameters determine the behavior of the scattered fieldEI 2: the roughnessh, the period
L52p/ f of the corrugation of the surface]D, and the incident wave numberk0.

The following figures show that for sufficiently large values ofk0 whenh!2p/k0 , a Bragg-
like structure is presented with periodicityL and split depthh.

Figure 1 shows normalized scattering patterns as a function of the scattered angleus , calcu-
lated forws5p, k0540, f548, and various values of the roughnessh50.001, 0.002, and 0.005.
These scattering intensity patterns show that the peaks of the intensity are more or less indepen-
dent of the value of the roughnessh.

Figure 2 is analogous to Fig. 1 with the scattering intensity patterns instead of the normalized
ones. We can see that the intensity increases when the roughness increases.

Figure 3 shows the intensity patterns divided byk0h as a function of the scattered angleus for
h50.001,k0520, 40, and 80, andf58. We note that the peaks are located atus'us,m , whereus,m
according to Bragg law is given byus,m5arcsin(mf/k0), m51,2,... .

Figure 4 shows the normalized intensity forus50, i.e., the backscattering direction, as a
function of the incident wave number,k0, and for different values off @see~6.4!#, f5128, 192,

FIG. 3. Intensity patterns divided byk0h as a function of the scattered angleus .
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and 256. We note that a resonance phenomenon occurs, i.e., the first peak of each scattering
pattern appears whenk0/ f'0.15.
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After reviewing the complete Lie group for the full Boltzmann equation, it is shown
that projective transformations play a special role in the general case, and the class
of invariant solutions giving rise to homoenergetic affine flows is presented. Ho-
moenergetic affine flows in the two-dimensional case@potentialU(r )}r22# are
considered in detail: It is shown that the general solution of this problem can be
essentially simplified by projective transformations. ©1996 American Institute of
Physics.@S0022-2488~96!02505-9#

I. INTRODUCTION

The group analysis, which is one of the most powerful general methods in mathematical
physics,1,2 was recently applied to the full spatially inhomogeneous Boltzmann equation in Ref. 3,
where the complete~with certain natural restrictions! Lie group was constructed.

As it occurs to many classical equations of mathematical physics~for example, Euler gas
dynamics equations!, almost all point symmetries of the Boltzmann equation can be easily found
from physical considerations. The only exception, as in the case of Euler equations,1 is perhaps the
so-calledprojective invariance.4,5 Many attempts to construct special classes of relatively simple
solutions to the Boltzmann equation have been previously made by different authors6–10 ~see also
Refs. 11 and 12 for a review! without any connection with group properties of the equation.
However the well known results of Refs. 6–10 could be understood more deeply just on that basis.
We should also mention Refs. 13–18, in which the related problems are treated by means of Lie
group methods. However, all these articles are not concerned with the full Boltzmann equation,
but with very special cases. In the present article we use the results of group analysis of the
Boltzmann equation, with special attention to the projective symmetry and its consequences: the
Lemma from Sec. II clarifies a very special role of projective transformations for the Boltzmann
equation in its general form. Sections III–IV are mostly devoted to the application of projective
transformations to the so-calledhomoenergetic affine flows.11,19 The classification of such flows
for themost symmetrictwo-dimensional Boltzmann equation in the case of a potentialU(r )}r22

is given in Sec. IV. It is shown that arbitrary~with some restrictions! four-parameter solutions can
be expressed through a simpler two-parameter solution by projective transformations.

II. COMPLETE LIE GROUP, PROJECTIVE TRANSFORMATIONS, AND CONSERVATION
LAWS

We consider the Boltzmann equation~BE! for the distribution functionf ~x,v,t! ~xPRn de-
notes position,vPRn velocity, n52,3,..., whilet.0 is the time variable!

0022-2488/96/37(6)/2787/9/$10.00
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] f

]t
1v–

] f

]x
5I ~ f , f !,

x[$x1 ,...,xn%, v[$n1 ,...,nn%,

I ~ f , f !5E
Rn3Sn21

dw dn usS u, u–nu D $ f ~v8! f ~w8!2 f ~v! f ~w!%, ~1!

u5v2w, u5uuu, unu51,

v85 1
2~v1w1un!, w85 1

2~v1w2un!,

wheres~u,m5cosu! denotes the differential cross section~we use the same terminology for all
number of dimensionsn52,3,...! at the scattering angle 0,u<p. We note that for the powerlike
intermolecular potentialU(r )}r2m, m.1, the cross section reads as

s~u,m!5ug21gg~m!, g5
m22~n21!

m
;

the limiting casem5` ~g51! corresponds to hard spheres. A detailed investigation of group
properties of the BE~with respect to Lie transformations! is presented in Ref. 3. The results are
summarized as follows.

The most important~from the physical point of view! class of Lie~i.e., point! transformations
for the BE can be represented as a linear transformation of the distribution function

f u~x,v,t !5exp~uL̂ ! f ~x,v,t !, ~2!

whereL̂ is a first order differential operator, i.e.,

L̂5V~x,v,t !1X~x,v,t !•
]

]x
1V~x,v,t !•

]

]v
1T~x,v.t !

]

]t
, ~3!

u ~positive or negative! being thegroup parameter. The following theorem describes the complete
symmetry group for the BE in this class of transformations.

Theorem:3 The complete list of admissible operatorsL̂ for the BE consists of the following
operators~A!–~C!,

~A! L̂ i j
~0!5S x1 ]

]xj
2xj

]

]xi
D1S n i

]

]n j
2n j

]

]n1
D , i , j51,...,n,

~B! L̂ i
~1!5

]

]xi
, L̂ i

~2!5t
]

]xi
1

]

]n i
, i51,...,n,

~C! L̂ ~3!5
]

]t
, L̂ ~4!5t

]

]t
1x–

]

]x
11,

of the additional symmetry operator~D!:

~D! L̂ ~5!5t
]

]t
1~12r!x–

]

]x
2rv–

]

]v
, r5

m

m~n11!22~n21!
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in the case of powerlike potentialU}r2m, m.1 ~with or without angular cutoff!, and, finally, of
a special symmetry operator~E!:

~E! L̂ ~6!5t2
]

]t
1tx–

]

]x
1~x2vt !–

]

]v
,

valid for the casem52 ~i.e., forU}r22!.
If we now introduce the group transformationsTu5exp(uL̂), it is easy to obtain the explicit

representation of the above written~in infinitesimal form! transformations. In particular one has,
corresponding to the operator~D!, the special class of scaling transformations

f u
~5!5 f @e~12r!ux,e2ruv,eut#,

and, for the special symmetry operator~E!:

f u
~6!5 f F x

12ut
,v1u~x2vt !,

t

12ut G ,
i.e., the class of the so-called projective transformations.1–3 This symmetry is valid only for
potentialU(r )}r22. We consider here a little bit more in detail these nontrivial symmetry trans-
formations.

The specific role of projective transformations for different classical and quantum systems has
been pointed out in Ref. 3. Its role for the Boltzmann equation is connected with the following
lemma.

Lemma. Let f ~x,v,t! be a solution of the generalized Boltzmann equation~1! with time-
dependent differential cross sections~u,m,t!. Then the function

F~x,v,t !5 f F x

11at
,v~11at!2ax,

t

11atG
also satisfies, for 0,t,(1/a), the generalized Boltzmann equation with another time-dependent
cross section:

sa~u,m,t !5~11at!n21sFu~11at!,m,
t

11atG .
This lemma generalizes the related results of Ref. 4. To prove it, it is sufficient to make direct

calculations, which we omit for brevity.
Corollary. The functionF~x,v,t! satisfies the usual Boltzmann equation with powerlike cross

sections~g!~u,m!5ug21gg~m! if and only if the functionf ~x,v,t! satisfies the generalized Boltz-
mann equation with the cross sectionsa

(g)~u,m,t!5~12at!n1g22ug21gg~m!.
Hence, the projective transformations~E! are the equivalence transformations for the whole

class of generalized Boltzmann equations with a time-dependent cross section, i.e., they change
only the cross section, not the general form of the Boltzmann equation. In the special case

s~u,m,t !5g~m!u12n,

which corresponds to the potentialU(r )}r22, the cross section is invariant under these transfor-
mations. We notice that the invariant transformation

F~x,v,t !5 f F xutu ,utuS v2
x

t D ,const2 1

t G
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for the potentialU(r )}r22 was found for the first time by Nikol’skii;8 its connection with the
projective transformations is clear.

Two additional conservation laws can be derived immediately from the above lemma. We
note that the fundamental conservation laws~mass, momentum, and energy! for the Boltzmann
equation do not depend on the cross section. Therefore, for any solutionf ~x,v,t!, with finite total
second moments, the integral

Ea5
1

2 E
Rn3Rn

dx dy f F x

11at
,v~11at!2ax,

t

11atGn2
5
1

2 E
Rn3Rn

dx̃ dỹ f ~ x̃,ṽ, t̃ !@ ṽ1a~ x̃2 ṽt̃ !#2

does not depend on time for any value of the group parametera. Noting that

2Ea52E012aI11a2I 2 ,

where

I 15E dx dv v–~x2vt ! f ~x,v,t !,

I 25E dx dv~x2vt !2f ~x,v,t !,

one can immediately conclude thatI 1,25const. These conservation laws are not new~see, for
instance, Ref. 20!, however their connection with projective transformations seems very impor-
tant.

III. HOMOENERGETIC AFFINE FLOWS AND SOME APPLICATIONS OF PROJECTIVE
TRANSFORMATIONS

The infinitesimal operators~A!–~E! determine a Lie algebra, as it can be verified after a
straightforward calculation of Lie brackets. For all cases~A!–~E! we can construct group invari-
ants and the simplest invariant solutions of the BE, which are functions of these invariants. In this
way we can again find all well known classes of invariant solutions, so that their group nature can
be clarified. However, all really interesting invariant solutions are invariant under multiparameter
groups. Therefore we formally need to classify, for eachp, all corresponding multidimensional
~with dimension not greater thanp! subalgebras of the above-mentioned Lie algebra. This problem
is rather complicated even in one dimension.2 At the same time, most of the solutions obtained in
such a way have no physical meaning.

Just for this reason we restrict ourselves to an interesting example having clear physical sense.
Let us consider a linear combination of vector operatorsL̂ ~1! and L̂ ~2!, i.e.,

L5a–L̂ ~1!1b–L̂ ~2!,

with arbitrary vector parametersa andb. To pass ton-parameter groups, we put

b5Ka⇔bi5(
j
Ki j aj

with any matrix (n3n) K[(Ki j ). Then
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L5(
j

H ajF L̂ j
~1!1(

i
Ki j L̂ i

~2!G J
is then-parameter infinitesimal operator of the corresponding group.

We can obtain, in this case, the independent invariants

c0~ t !5t, c5~c1 ,...,cn!5v2K̂~ t !x,
~4!

K̂~ t !5~I1tK !21K ,

I denoting the identity matrix operator. We note thatK̂(t) is the solution of the Cauchy problem

d

dt
K̂~ t !1K̂2~ t !50, K̂~0!5K .

The corresponding invariant solution reads

f ~x,v,t !5F@v2K̂~ t !x,t#, ~5!

whereF~v,t! satisfies the equation

]F

]t
2@K̂~ t !v#–

]F

]v
5I ~F,F !. ~6!

This class of solutions to the Boltzmann equation is also well known.19 It describes the so-called
homoenergetic affine flows~in the absence of external forces!, first observed in Refs. 6 and 7 for
the moments of distribution function in the case of Maxwellian molecules.

The existence and uniqueness of the corresponding distribution function for the general mo-
lecular model were recently proven in Ref. 19. In that article the solutions~5! were introduced on
the basis of homoenergetic affine flow properties. The above derivation of Eq.~5! on the basis of
symmetry considerations are perhaps simpler and more natural. We shall return to these solutions
later.

The simplest application of group invariant transformations is transforming known exact
solutions into new ones. One can start with the simplest exact solutionf ~x,v,t!5exp~2 n2!, and
then apply to this distribution function any above described transformation. It is easy to show that
we obtain in such a way the complete class of the local Maxwellian solutions.

Less trivial example is given by the Nikol’skii transformation9 of arbitrary space homoge-
neous solutions for powerlike potentials. Let us show that this transformation is closely connected
with the above considered projective invariance. We consider the Boltzmann equation~1! with the
cross sections~u,m!5ug21gg~m!. In accordance with the Lemma from Sec. II~see also Corol-
lary!, one can construct the solution of Eq.~1! in the form

f ~x,v,t !5FFv~11at!2ax,
t

11atG ,
whereF~v,t! satisfies the generalized space homogeneous Boltzmann equation

]F

]t
5~12at!n1g22I ~F,F !.

Putting
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S~t!5E
0

t

dt8~12at8!n1g22

we can replaceF~v,t! by any solutionF@v,S~t!# of the space homogeneous Boltzmann equation.
In conclusion, we obtain the following well known formula for the Nikol’skii solution~see, for
example, Ref. 12!:

f ~x,v,t !5F@v~11at!2ax,Ta~ t !#,

Ta~ t !5E
0

t/~11at!
dt~12at!n1g225

~11at!n1g2121

a~n1g21!~11at!n1g21 , n1g.1.

Hence, the Nikol’skii transformation can be introduced on the basis of projective invariance.
Therefore, if we apply this transformation to the Nikol’skii solution in the special casen1g52,
then we obtain the same solution with another value of the group parametera.

Let us now try to apply this transformation to homoenergetic affine flows described above,
i.e., to the distribution function~5!. Then we obtain, after some calculations,

f a~x,v,t !5FH ~11at!@v2K̂a~ t !x#,
t

11at J , ~7!

where the matrixK̂a(t) is the solution of the Cauchy problem

d

dt
K̂a~ t !1K̂a

2~ t !50, K̂a~0!5K̂~0!1aI.

Hence, the total class of homoenergetic affine flows is invariant under projective transforma-
tions. For the special casen1g52, the above formula~7! defines a solution of the Boltzmann
equation, provided thatF~v,t! satisfies Eq.~6!. We note that the matrixK̂~0! is the main parameter
of this class of solutions. Equation~7! establishes~for n1g52! the exact connection between
solutions f ~x,v,t!, with given matrixK̂~0!, and solutionsf a~x,v,t!, with a one-parameter set of
matricesK̂a(0)5K̂(0)1aI.

In particular we obtain the following correspondence between velocity moments:

Ma
~p!~ t !5E

Rn
dv f a~x,v,t !@v2K̂a~ t !x#p5~11at!2~n1p!M0

~p!S t

11atD , p50,1,... .

We consider below these flows for the two-dimensional~n52! case in more detail.

IV. CLASSIFICATION OF HOMOENERGETIC AFFINE FLOWS FOR THE
TWO-DIMENSIONAL BOLTZMANN EQUATION

We note that in two dimensions the potentialU(r )}r22 corresponds to the valueg50 @see
comment after formula~1!#. Therefore, the casen52,m52 corresponds to the largest number of
symmetries. The Boltzmann equation for the functionF~v,t! in Eq. ~5! in this case reads

]F

]t
2~K̂~ t !v!–

]F

]v
5I ~F,F !5E

R23S1
dw dn gS u–nu D @ f ~v8! f ~w8!2 f ~v! f ~w!#,

~8!
u5v2w, K̂~ t !5@11tK̂~0!#21K̂~0!

with any given~232! matrix K̂~0!.
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In general, the solution of Eq.~8! depends on four parameters~matrix elements! provided that
the initial distribution functionF~v,0! is fixed. We show now how to simplify this four-parameter
solution in the special case when eigenvaluesl1,2 of the matrix K̂~0! are real. Moreover we
assume thatl1>l2>0, so that the solution exists and is positive for allt.0.19 We note also that
any such matrixK̂~0! reduces by rotations to the form

K̂8~0!5S l1 b

0 l2
D , ~9!

therefore we consider only such three-parameter matrices. One more reduction can be obtained by
applying a projective transformation. In order to do it, we first write down the solution of Eq.~8!
with the initial matrix ~9! in the form

F~v,t ![F~v,tul1 ,l2 ,b!.

Then the application of the equality~7! with a5l2 results in the following formula:

F~v,tul1 ,l2 ,b!5FF ~11l2t !v,
t

11l2t
Ul12l2,0,bG .

Hence, it is sufficient to consider the two-parameter row matrix

K̂9~0!5S l b

0 0D⇒K̂9~ t !5@I1tK̂9~0!#21K̂9~0!5
1

11lt
K̂9~0!.

Finally we obtain from Eq.~8! the following equation for the functionF~v,tul,0,b!:

]F

]t
2

1

11lt
~lnx1bny!

]F

]nx
5I ~F,F !.

Putting

F~v,t !5C@v,~1/l!ln~11lt !#~11lt !21,

we obtain the resulting equation forC~v,t!:

]C

]t
2

]

]nx
@~lnx1bny!C#5I ~C,C!.

In the case of zero initial drift velocity~relaxing this condition would be only matter of
technical complication!, and omitting all details, the first moment equations read

r05E
R2
dv C5const, E

R2
dv vC50,

]

]t
pxy1@lpxy1bpyy#52r0Spxy ,

~10!
]

]t
~pxx2pyy!12~lpxx1bpxy!52r0S~pxx2pyy!,
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]

]t
~pxx1pyy!12~lpxx1bpxy!50,

where

pi j5E
R2
dv Cn in j , i , j5x,y;

S5E dn gS u–nu D F12S u–nu D 2G5E
0

2p

du g~cosu!sin2 u.

Substituting herepi j (t)5pi j (0)e
zt, we obtain the following algebraic equation for the eigen-

valuez:

~z1l1r0S!@~z1l!~z1l1r0S!2l2#5b2r0S.

It is convenient to pass to dimensionless values

b̃5
b

r0S
, l̃5

l

r0S
, z̃5

z

r0S
, u5 z̃1l̃,

so that we obtain the simple equation

~u11!@u~u11!2l̃2#5b̃2. ~11!

The general analysis of this equation is similar to the casel̃50 observed in Ref. 11. There is
always one positive rootu5R(l̃2,b̃2), which defines the large time asymptotics of the pressure
tensorpi j ~t! by the formulas

pi j ~t!5pi j* ~0!exp@~2l1ur0S!t#, i , j5x,y, ~12!

wherepi j* (0) are the corresponding projections of initial data.
Finally we return to initial variables and obtain general formulas for densityr~t ul1,l2,b! and

pressurepi j (tul1 ,l2 ,b), which correspond to an arbitrary initial matrix~9!:

r~ tul1 ,l2 ,b!5
r0

~11l1t !~11l2t !
,

pi j ~ tul1 ,l2 ,b!5 p̃i j S 1l ln
11l1t

11l2t
D Y@~11l2t !

3~11l1t !#,

where p̃i j (tul1 ,l2 ,b) are defined by Eqs.~10! with l5l12l2. In particular the asymptotic
formula ~12! results in the following general asymptotic formula:

pi j ~ tul1 ,l2 ,b!5
pi j* ~0!

@~11l1t !~11l2t !#
2 S 11l1t

11l2t
D R/l̃,

wherel̃5~l12l2!/~r0S!, b̃5b/(r0S), R(l̃
2,b2! denotes the maximal positive root of Eq.~11!.

The higher moments of the distribution function can be obtained by the same method. Thus,
using projective transformations one can easily generalize the well known exact results11,21for the
uniform shear flow to the case of arbitrary initial matrixK̂~0! with real eigenvalues. A similar
approach in the three-dimensional case will be considered elsewhere.
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Exact solution of the Ising model on group lattices of
genus g>1

Tullio Regge and Riccardo Zecchina
Dipartimento di Fisica, Politecnico di Torino, I-10129 Torino, Italy

~Received 5 January 1996; accepted for publication 21 February 1996!

We discuss how to apply the dimer method to Ising models on group lattices
having nontrivial topological genusg. We find that the use of group extension and
the existence of both external and internal group isomorphisms greatly reduces the
number of distinct Pfaffians and leads to explicit topological formulas for their sign
and weight in the expansion of the partition function. The complete solution for the
Ising model on the Klein lattice groupL(2,7) withg53 is given. © 1996 Ameri-
can Institute of Physics.@S0022-2488~96!04006-6#

I. INTRODUCTION

Among the known approaches to the exact evaluation of the 2D Ising partition function which
have followed the celebrated Onsager solution,1 the dimer method2–4 fully exploits the combina-
torial and group theoretical properties of the lattices by relating the partition functionZ to the
generating functionZd of close-packed dimer configurations. Though the method is in principle
independent from the dimensionality of the lattice, the corresponding analysis in three dimensions
has never been developed, due to the difficulties in extending Kasteleyn’s Theorem on lattice
orientation. In this paper, we deal with the issue of generalizing the dimer approach to the case of
non-Abelian 2D lattices of high topological genus which should in fact be equivalent to higher
dimensional lattices. Indeed the 3D cubic lattice can be considered as a handlebody 2D lattice of
genusg5N/4 whereN is the number of sites of the lattice. This hints that a non vanishing ratio
g/N may be related to an effective dimensionD.2 of the lattice. The great difficulty of the
problem suggests that a possible concrete way to analyze such lattices is to consider at first graphs
possessing the largest possible symmetry group, and the best candidates appear to be the group
graphs already well-known in the mathematical literature.5–8 In this framework we may consider
the 2D planar lattice with periodic boundary conditions as an example of Abelian lattice group
~translational symmetry group! with genusg51, whereas an example of finite non-Abelian lattice
with g50 is given by the fullerene-like lattice studied in Ref. 9.

The paper is organized as follows. In Sec. II we outline the basic ideas concerning application
of the dimer method to group lattices. In Sec. III we define an extended lattice groupH and relate
it to the homology and cohomology groups (mod2)H1 ,H

1 of the original latticeL, define the
Grassmann algebra over the decorated latticeL# and the Pfaffians as function on orbits ofH1. In
Sec. IV we apply the results of Sec. III to discrete groups of particular interest such as the Klein
groupL(2,7) ~of orderN5168 and genusg53) and discuss the role of external automorphisms.
In Sec. V we analyze in detail the orbits ofH1 ,H

1 under the action ofH, define an invariant
duality mapw:H1→H1 and auxiliary functions of relevant computational interest. Finally, in Sec.
VI we construct explicitly the irreps ofH, apply them to the harmonic analysis onL# and derive
the expansion forZ. Few preliminary numerical results are also given.

II. GROUP LATTICES AS ISING LATTICES

We recall here key points of the dimer procedure which are specific to group lattices~see also
Refs. 10! :

~1! A discrete groupG is defined by a presentation given in terms of a set ofp generators

0022-2488/96/37(6)/2796/19/$10.00
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Ak ,k51, . . . ,p andt relatorsPi ,i51, . . . ,t. ThePi are words in the generators equivalent to
the identity. LetF be the free group on theAk,k51, . . . ,p. Let N be the minimal normal
subgroup ofF containing all relators. Then by definitionG5F /N .

~2! The Cayley latticeL for a group is defined by giving a mapL:G→R3 whereL(g) P R3 is the
point ofR3 corresponding to the group elementg P G. A bond of colork is then a line joining
L(g) to L(Akg). The genusg of L is that of the surface of minimal genusS,R3 on which
L can be drawn. The Ising Hamiltonian is then defined as

E52 (
hPG

(
k51

p

JkshsAkh
, ~1!

where the$sh561% are the spin variables and$Jk% the exchange interactions between con-
nected spins.

~3! Each relatorPi is then represented onL as a closed circuitz(Pi) made of oriented colored
bonds. Ifz(Pi) encloses a simply connected region~tile! on S thenPi is called local relator.
If S has genusg50 then all relators are local. Of particular interest are models whereg is
large.

~4! The group latticeL is interesting on its own but cannot be related directly to the partition
function of an Ising model and to do this we must consider4 a decorated latticeL#. This
amounts to replace each site of coordinationq (q.2) of the original lattice by a sublattice
containing 3(q22) points and 4q29 decorating bonds. The Ising partition function is then
related to the dimer covering generating function on the decorated lattice.

~5! In order to compute the generating function we orientL# according to the Kasteleyn prescrip-
tion by assigning arrows to each bond inherited fromL in such a way that for any closed
circuit l on L#, the number of bonds ofl oriented clockwise is of opposite parity to the
number of sites enclosed byl . For the decorating bonds see Ref. 4 or Sec. V.

~6! The Kasteleyn rules define completely the orientation for lattices of genusg50, whereas for
lattices of higher genus we have to deal with further sign fixing for loops which are not
homologically trivial, i.e., not the boundary of a union of tiles. The assignment of arrows to
L# ~or L) is not invariant under the action ofG but rather under an extensionH of G closely
related to the homologyH1 and cohomologyH1 groups ofL.

~7! The dimer covering generating function of the lattice can be expressed as a weighted sum of
PfaffiansPf(f) , wheref P H1 and with sign given explicitly by theH-invariant function
u(z),z P H1 defined in Sec. V. Harmonic analysis onH allows us to factorize Pfaffians into
determinants of lesser order and external automorphisms induce identifications between
Pfaffians.

III. THE EXTENDED LATTICE GROUP

In this section we first discuss the group extensionH of G. Next we show thatH partitions the
homologyH1 and the cohomologyH1 groups ofL into nonintersecting orbits characterized in
terms of sign functionals. Their role in the expansion of the dimer generating function is then
analyzed.

A. The groups H, H1 and H1

The extended lattice groupH can be obtained fromG by replacing the relatorsPi with new
relators containing the following elements:

~ i! If Pi ,Pj P G are local, thenPiPj
21 ,Pi

2 ,PiAkPi
21Ak

21 are relators inH;
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~ii ! For generic relatorsPi ,Pj P G thenPi
2 ,Pj

2 ,PiPjPi
21Pj

21 are relators inH.
We can write thenPj5Q (Q251) for all local relatorsPj , with AkQ5QAk , i.e. Q is a

central element that we call central signature. PuttingZi5PiQ the nonlocal relators will be written
asZi

2 ,ZiZjZi
21Zj

21 where in generalAkZi Þ ZiAk . The$Zi% generate an Abelian normal subgroup
HZ,H . Particular examples of this extension will be discussed further on.

Nontrivial loops form a chain groupC1(L
#,Z2… . The equivalence classes ofC1(L

#,Z2)
modulo boundaries form the homology groupH1(L

#,Z2). The class of multiplicative functionals
on H1(L

#,Z2) with values61 are then the elements of the cohomology groupH1(L#,Z2).
Notice thatH1(L#,Z2);H1(L,Z2) andH1(L

#,Z2);H1(L,Z2) and therefore we denote them
briefly by the symbolsH1, H1 respectively. When dealing with elements ofHZ, H1 we may use
addition instead of the product as composition rule. We writeg;g8 if g,g8 P H define the same
site onL.

H1 is isomorphic toHZ. To see it consider the closed chainl on L as defined by the
sequenceg05g,gp5hpgp21 ,p51, . . . ,n with hn1p5hp . z(l ) is then defined as

z~ l !5g0
21hnhn21•••h1g05gp

21hp21hp22•••h1hnhn21•••hp11gp . ~2!

Starting fromg0 we moven steps across bonds inL and each bond defines an elementhi P H,
wherehi5Ak

61 , Ak being a generator ofH. If gn;g0 , l is closed,z(l ) P HZ does not depend
on the choice ofg0 on l and defines a mapz:C1(L,Z2)→HZ. Adding a boundaryl 0 to l ~i.e.,
adding the boundary of a union of tiles on the lattice! amounts to replace a sequence of bonds
hi1, . . . ,hin by an equivalent one obtained by using local relators only, therefore
z(l 1l 0)5z(l ) andz induces the mapk:H1→HZ. Given inversely an elementz P HZ, ex-
pressed in terms of relators asz5hn•••h1 , a corresponding closed chainl (z) P C1(L,Z2), and
therefore a cycle inH1(L,Z2), is given by a sequence ofgi , i50, . . .,n, with g051 and
higi215gi . Also if z5hn•••h1 ,z85hm1n•••h11n P HZ and gn;gm1n;1 the chain
l (z1z8)5l (z)1l (z8) P C1(L,Z2) defined byg051 andhigi215gi ,i51•••m1n corresponds
to the elementz1z8 P HZ. Hencek is a group isomorphism.

Right multiplication onL by an elementh P H translates the group lattice and if we replace
gi with gih in l we obtain a closed pathl h which is the right translation ofl by h and a
corresponding elementz(l h)5h21l h which defines the action ofH on l P HZ. In this way
H acts naturally onL# , H1 andH

1 and partitionsH1,H1 into nonintersecting orbits. The use of
orbits greatly simplifies the computation ofZ.

B. Sign functionals and lattice orientation

We assign an orientation toL# according to the Kasteleyn rules and to each siteh P H a
Grassmann variablea(h), with an anticommuting wedge producta(h) ` a(h8)
52 a(h) ` a(h8). Reversing the arrows on all bonds sharing the same sitei corresponds to the
changea(h)→2a(h).

Let l given by~2!. Eachhi is of the formAki

pi wherepi561 determines the orientation of the

arrow in the bond. Closingl means that we must identifya(g0) anda(gn) as

a~g0!5pna~gn!. ~3!

We define then

h~z~ l !!52)
i51

n

pi . ~4!

If z is trivial thenh(z)51. All h(z) defined in this way, hereafter called sign functionals, are
characterized by a particular recursion relation which can be proved as follows. Following Ref. 4
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we introduce a reference dimer configurationC 0 on L# consisting of all bonds ofL# inherited
from L. By definition, any other dimer configurationC when superposed onC 0 generates tran-
sition cyclesz P H1 . In this proof we use transition cycles only. We consider representative chains
l ,l 8,l 9 P C1(L#,Z2) of the pair of intersecting cyclesz,z8 and of the cyclez1z8 as in Fig. 1.
Chainsl ,l 8 run over the sequence of sitesPi , i50,1,2,7,8,9 andi55,6,7,2,3,4 respectively,
while l 9 runs overi50,1,3,4 andi55,6,8,9 but noti52,7. We denote withBi j the bonds joining
Pi ,Pj and with n(l ) the number of anticlockwise arrows onl . The key point is that bonds
B12,B13 are not contained in the intersection ofz and z1z8 and thusB12,B13¹C 0 whereas
B01P C 0 . SimilarlyB34,B27,B56,B89P C 0 . By orientingL# according to the Kasteleyn rules and
counting arrows we see thatn(l 9)[n(l )1n(l 8)11(mod2). The general case whereBi j are
replaced by sequences of bonds corresponds to the addition of boundaries tol ,l 8,l 9 and leads
to the same formula. Hencen(l ) is a function inH1 and h(z1z8)52h(z)h(z8) if z,z8
intersect andh(z1z8)5h(z)h(z8) otherwise , i.e.,

h~z1z8!5h~z!h~z8!~21!V~z,z8!, ~5!

whereV(z,z8)50,1 is the intersection number (mod2) ofz,z8. Given a sign functionalh(z)
thenf(z)h(z) , f P H1, is another sign functional and so is theH-invariant functionu(z),z
P H1 defined in Sec. V.

C. Pfaffians and dimer covering generating function

Consider now the form

f5
1

2 (
h,h8PL#

xhh8a~h!`a~h8!, ~6!

wherexhh850 if h andh8 are not connected inL# ~neighbors!. The factor12 is inserted in order
to avoid double counting, the activity is given byxb5 xhh852xh8h5coth(bJhh8) if the bondb is
oriented with the arrow fromh to h8, b is the inverse temperature andJhh8 the exchange

FIG. 1. Intersection betweenl and l 8 and schematic representation ofz,z8 andz1z8 ~or l ,l 8 and l 9).
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interaction between spins (Jk in the previous notation! which depends only on the colork of the
bond. Under the stated conditions decorating bonds havexhh851. For the sole purpose of safe
handling of signs we assume initiallyxb.0 . All arrows onL# and all signs in~6! are then fixed
by the sign functionalh. The PfaffianPf(h) is defined by

f M /252MM !Pf~h!a~1!`a~2!`•••`a~M !, ~7!

whereM53(q22)N, N is the order of the group~or lattice size! andq is the lattice coordination.
From ~7! one derives the well-known relation

Pf~h!25Det~X~h!!, ~8!

whereX(h) is theM3M matrix of elementsxi j . In generalPf(h) is multilinear function of the
xb considered as independent variables. The partition functionZ is then given by

Z5Zd 2
N)

a
sinh~bJa!

1/2, ~9!

wherea runs on all the oriented bonds of the undecorated group lattice and

Zd522g(
h

shPf~h!, sh561. ~10!

To each dimer configurationC we associate the contribution ofC to Pf(h), a monomial
M (C )5)bxb whereb runs over all oriented bonds ofC . Because of our conventionsM (C ) has
signh(z) wherez is the superposition ofC andC 0 . In generalz is the sum of nonintersecting
cyclesz5( iz i so thath(z)5) ih(z i). The signssh must then be chosen in such a way as to set
equal to 1 in~10! the coefficient of allM (C ) appearing inZd . Once this is done in Sec. V the
xb can be given any sign.

IV. 2D ISING LATTICE AND THE L(2,7) LATTICE GROUP

The above group extension procedure can be naturally applied to a wide class of lattice
groups. Here we discuss two examples: the Abelian 2D Ising lattice ~of genusg51) and the
L(2,7) Klein group. The latter is non-Abelian and of genusg53, and its analysis should hopefully
be of interest in the analysis of more general structures of dimensionD.2.

A. 2D Ising lattice

The Onsager solution for the 2D Ising lattice made use of a rectangularn3m lattice with sites
labelled byi51, . . . ,n and j51, . . . ,m (n even!. In this lattice we identify opposite sides, giving
it a toroidal (g51) topology and turning in a group latticeGnm . This last property makes it
possible to apply harmonic analysis, i.e., Fourier transform methods, which eventually lead to the
final formula. The groupGnm of the lattice is defined by the presentation

ST5TS, Sn51, Tm51, ~11!

for all integersn,m. However in order to satisfy the Kasteleyn rules we must use a central
extensionHnm of ~11! defined by

ST5QTS, Sn5Z1 , Tm5Z2 ,

Q25Z1
25Z2

251, QZ15Z1Q, QZ25Z2Q, Z1Z25Z2Z1 . ~12!

Sites are labeled by elementsh P Hnmwith the condition
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a~hQ!52a~h!. ~13!

The Hnm lattice is actually a covering of theGnm lattice with corresponding variablesa(h)
identified by the above condition which embodies the Kasteleyn rules.

Besides this condition we must set

a~hZ1!5e1a~h!, a~hZ2!5e2a~h!, ~14!

wheree1 and e2 take the values61 in all the possible combinations. These correspond to the
22g54 possible choices off P H1. It is tempting but misleading to label spin sites on the lattice
by elements inGnm . In this case the orientation would no longer be invariant underGnm , a clear
sign that the true symmetry is that of the extended groupHnm .

B. Non-Abelian group lattices of genus g>1

We examine now other types of symmetries which require non-central group extensions and
which are of interest for models inD.2. The natural further step is provided by a vast array of
discrete groups many of which are discussed in detail in the literature~see Refs. 5–8!. Of par-
ticular interest are the Klein groupsL(2,p), wherep is prime. The non-Abelian group of genus
g50 ~the fullerene lattice! studied in Ref. 9 corresponds top55. The next interesting example
which is at the same time non-Abelian and has a nontrivial topology is given by the lattice group
L(2,7) ~also calledT(2,3,7) in the context of hyperbolic tessellations!. TheL(2,7) group , briefly
calledG, has order 168 and is defined by the presentation

U751, V251, ~UV!351, ~VU3!451. ~15!

The analysis of a lattice possessing this kind of symmetry is one of the chief results of this paper
which hopefully opens the way to the investigation of more general and interesting structures. The
group lattice given by~15! has genusg53 ~produced by the nonlocal relator (VU3)4) and can be
tessellated by 24 heptagons and 56 hexagons, for a total of 168 bonds of typeU and 84 bonds of
typeV ~see Ref. 11, pp. 539–549, for more details on the lattice!.

The groupGnm given by~11! is Abelian and has a nontrivial genusg51. On a lattice of genus
g we expect that the Kasteleyn rule determines the orientation up to 2g signs with a total of
22g configurations. Each close path on the latticeL can be considered as an element of the
homology groupH1 and an assignment of all remaining signs as an element of the cohomology
groupH1. It is therefore sufficient to assign signs on a suitable basis of 2g elements ofH1 . In the
toroidal case this was done by givinge1,e2 . In fact Z1 ,Z2 are central in the groupGnm .

The groupG, as defined by~15!, is non-Abelian and has a nontrivial genus, in particular the
Zi are no longer central elements and we deal with the discussed noncentral extensionH of G
defined by

U75Q, V25Q, ~UV!35Q, W[Q~VU3!45Z~1!, ~16!

and additional relators which can be expressed in term of the auxiliary elements

Z~h!5h21Wh, hPH, ~17!

characterized by

Z~h1!Z~h2!5Z~h2!Z~h1!, ~Z~h!!251 , ;h1 ,h2 ,hPH. ~18!

TheZ(h) are not all independent and can be expressed in terms of the subset of 2g56 elements

Zn[Z~Un!5U2nZ~1!Un. ~19!
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ClearlyZn5Zn,(mod7) andZ05Z(1)5Z7 . The following identities equivalent under~18!

Z5Z1Z4Z0Z3Z6Z251, Z1Z3Z5Z0Z2Z4Z651, ~20!

reduces to 6 the number of independent elementsZi and can be proved by repeated application of
relators~16! but not of ~18!.

A genericz P H1can be always written in the additive form( iniZi whereni50,1. Because of
( i50
6 Zi50 we can always choose theni in such a way as to have( ini50 or 1. All elements

Z(h),h P H, can be obtained by repeated conjugation of theZn byU andV. Conjugation byU is
trivial, i.e.U21ZnU5Zn11 . Conjugation byV is less obvious. By using~16! and not~18! we find
that

V21Z0V5Z4 , V21Z1V5Z3
21Z0

21 , V21Z2V5Z4
21Z2

21Z0
21 ,

V21Z3V5Z4
21Z1

21 , V21Z4V5Z0 , V21Z5V5Z5
21 , V21Z6V5Z6

21 , ~21!

which can be further simplified by using~18!. In the additive form~21! and~19! can be written in
full generality as

h21Zih5 (
k50

6

Pik~h!Zk , hPH, ~22!

whereP(h)is a representation mod 2 ofH.
Moreover the groupH has an external automorphismn given by

n~V!5V2152V, n~U !5U21, n~Zp!5Z42p
21 5Z42p. ~23!

V. ORBITS OF HOMOLOGY AND COHOMOLOGY GROUPS

As anticipated, the analysis of orbits and of external automorphisms plays a central role in the
computation ofZd . We thus give here the explicit construction of such orbits inH1 andH1 ,
together with their duality map.

A functionalf P H1 can be defined by the equivalent conditions:

a~gZi !5e ia~g!,f~Zi !5« i , i50, . . . ,6; )
i50

6

e i51, ~24!

f is then identified by (e0 , . . . ,e6) . Let z P H1 and leth
21zh be the translated cycle. Then the

translated functionalfh is defined by

fh~h
21zh!5f~z!. ~25!

We have then

fU~U21ZiU !5f~Zi !5e i5fU~Zi11!, ~26!

and hence

fU~Zi !5e i21 , fU21
~Zi !5e i11. ~27!

Similarly we find

fV~V21Z0V!5f~Z0!5e05fV~Z4!, ~28!
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and

fV~Z0!5e4 , fV~Z3!5e1e4 , fV~Z2!5e0e4e2 ,

fV~Z1!5e3e0 , fV~Z5!5e5 , fV~Z6!5e6 . ~29!

There are 22g564 (g53 denoting the genus ofL) different elements inH1 which fall in 5
different orbits containing 1,7,7,21,28 elements. We list these orbits with only one signature out of
each cyclically permuted septet:

A:~1,1,1,1,1,1,1! ~ trivial!,

B:~1,1,21,1,21,21,21!,

C:~21,21,21,1,21,1,1!,

D:~21,21,21,1,21,21,21!,~21,21,1,1,1,21,21!,~1,1,21,1,21,1,1!,

E:~21,1,21,1,21,1,21!,~1,21,21,1,21,21,1!,~21,1,1,1,1,1,21!,~1,21,1,1,1,21,1!.
~30!

The orbitsB,C are mapped into each other by the action ofn. This proves incidentally that
n is external. We also list in similar fashion the dual orbits inH1 :

A:~0,0,0,0,0,0,0! ~ trivial!,

B:~1,1,0,0,1,0,1!,

C:~1,0,1,0,0,1,1!,

D:~0,0,1,0,1,0,0!,~0,1,1,0,1,1,0!,~0,1,0,0,0,1,0!,

E:~1,0,0,0,0,0,1!,~1,1,1,0,1,1,1!,~1,1,0,0,0,1,1!,~1,0,1,0,1,0,1!, ~31!

as it can be checked by using~28!–~29!.
For generic elementsz,z8 P H1 we use the additive form:

z5(
i50

6

niZi , z85(
i50

6

miZi , ~32!

and define the intersection number (mod2)

t~z,z8!5t~z8,z!5~21!V~z,z8!. ~33!

V is theZ2 valued form of Eq.~5! explicitly given by

V~z,z8!5 (
i ,k50

6

x~ i2k!nimk ~34!

with x( i )51 if i[1,2,5,6(mod7) andx( i )50 otherwise, as it can be verified on the graph
L#. t(z,z8) is invariant under conjugations byH, see~21!, and is multiplicative, i.e.,

t~z,z81z9!5t~z,z8!t~z,z9!. ~35!
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We define also

u~z!5~21!
1

2 (
i ,k50

6

x~ i2k!nink, ~36!

so thatu(Zi)5u(1)51 andu(z) is a sign functional ash in ~5!:

u~z1z8!5u~z!u~z8!t~z,z8!. ~37!

All these definitions can be extended naturally to a wide class of lattice groups.
Then let

mi5 (
k50

6

x~ i2k!nk ~38!

and define the duality mapw,H1→H1:

wS (
i50

6

niZi D 5~~21!m0, . . . .,~21!m6!. ~39!

The 22g elements ofH1 ,H
1 are labeled asz I ,f I ,wherew(z I)5f I , by an indexI51, . . . ,22g

with z1 ,f1 the trivial elements and sorted in such a way that in~31!,~30! w maps corresponding
orbits inH1 ,H

1. Clearly thenf I(zK)5t(z I ,zK). We seth I(z)5f I(z)u(z) , sI5sh I
so that we

may label Pfaffians equally well with elementsf P H1 and rewrite~10! as

Zd522g(
I
sIP f~f I !. ~40!

The importance of orbits should be clear once we realize that in~40! for elementsf I ,fJ in
the same orbit we havePf(f I)5Pf(fJ). In this way the effective number of different terms in
Zd reduces to the number of orbits inH1.

Further reductions arise from external automorphisms. When omitted, as in~40!, we assume
summation ranges onI ,K to be 1•••22g. Sincew commutes with the group operations it maps
orbits in H1 into dual orbits inH1 and we use the same labelA•••E for pairs of dual orbits.
Moreover the 22g322g matrixF5FT of elementsFKI522gt(z I ,zK) is orthogonal. First of all
we have

(
I

FKI
2 5222g(

I
151. ~41!

Next we have

p~K,K8!5(
I

FKIFK8I5222g(
I

fK~z I !fK8~z I !

5222g(
I

fK~z I1j!fK8~z I1j!

5222g(
I

fK~z I !fK8~z I !fK~j!fK8~j!

5p~K,K8!fK~j!fK8~j! ~42!
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thereforep(K,K8)50 if 'j: fK(j)fK8(j) Þ 1. But if ;j:fK(j)fK8(j)51 thenK5K8 there-
fore p(K,K8)50 if K Þ K8. This proves thatF is orthogonal and thatF5F21.

We conclude this section with some rather technical formulas whose roˆle will be crucial in
what follows ~Sec. VIII!.

The sum(Ku(zK) can be readily evaluated by using a standard basis forH1 given by
Xi ,Yi ,i51•••g such that

uS (
i

g

~piXi1qiYi !D 5~21!(
i51

g

piqi, ~43!

where, for instance,

X15Z0 , Y15Z1 , X25Z11Z5 , Y25Z01Z21Z5 , X35Z01Z3 ,Y35Z11Z31Z6.
~44!

In this form (Ku(zK) factors intog independent and equal sums each yielding a factor 2 and
hence(Ku(zK)52g .

Furthermore,

22g(
K

t~z I ,zK!u~zK!522gu~z I !(
K

u~zK1z I !5u~z I ! ~45!

sincezK1z I runs over the whole groupH1 taking every element once just aszK and therefore
(Ku(zK1z I)5(Ku(zK)52g .

VI. IRREPS OF H

The groupH has 168364510752 elements and in order to perform harmonic analysis and
obtain partial block diagonalization ofX(f) and of Pfaffians we must find the unitary irreducible
representations~irreps! of H.

The trivial functional (1,1,1,1,1,1,1) must be dealt with separately and requires the construc-
tion of the irreps of the factor groupH0 of H and central extension ofG defined by

U75Q, V25Q, ~UV!35Q, ~VU3!45Q ~46!

~i.e., Zi51) of order 168325336. Therefore we have the relators

a~gZi !5a~g!, a~gQ!52a~g!. ~47!

Because of~47!, only a subset of the unitary irreps ofH0 is actually used in the harmonic analysis.
In order to see it let us write such irreps asDab

J (g) with J a convenient label and
a,b51, . . . ,dJ wheredJ is the dimension of the irrep . The matrix elements satisfy the orthogo-
nality relations:

(
gPH0

Dab
J ~g!*Da8b8

J8 ~g!5dJJ8daa8dbb8. ~48!

Let us define

aab
J 5 (

gPH0

a~g!Dab
J ~g!. ~49!

Applying ~49! to ~47! we get
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(
gPH0

a~gQ!Dab
J ~g!52aag

J 5aag
J Dgb

J ~Q!. ~50!

But Q is a central element andQ251. Therefore by Schur lemmaDgb
J (Q) must be proportional

to the identity, i.e.,

Dgb
J ~Q!5kdgb , k561 , ~51!

therefore from~50!

kaag
J 52aag

J , ~52!

i.e.,k521. It follows that only irreps havingk521 actually contribute to the Fourier expansion
of a(g). Those irreps which are also irreps of the original groupG ~i.e., those withk51) are
absent from the expansion. There are only 5 irreps ofH0 with k521 of dimension 4,4,6,6,8,
satisfying separately the Burnside condition 421421621621825168. The detailed form is
listed in Appendix A. The matrix elements of these irreps are polynomials inK5exp(ip/7) with
K7521. By abuse of language we may write

Q521 , U7521 , V2521 , ~UV!3521 , ~VU3!4521 , ~53!

instead of~46!.
As for the remaining irreps ofH the most convenient way is to obtain them as induced

representations on the cosets of the subgroupL of H generated by

V, U21VU2, U26VU3, U24VU4, U25VU5, ~54!

as well as the cosets of the groupn(L) generated by

V21, UV21U22, U6V21U23, U4V21U24, U5V21U25. ~55!

All generators and their inverses are of the formUa(b)VUb,b50, . . . ,6. Let us briefly setv5V
and t5U21VU2; we find then

U26VU35vt, U24VU45Z1~ tv !25~ tv !2Z4,

U25VU55vt~vt21!2Z15Z2Z6vt~vt
21!2, ~56!

~vt !45QZ3 , ~ tv !45QZ1Z4 .

It can be verified that$v,t,Zi ,Q% generate the whole subgroupL. Let suppose that a representa-
tion l:L→Hom(L) is given on a linear spaceL of dimensionn. Thenl can be extended to the
induced representationm: H→ Hom(H) whereH% p50

6
Lp andLp are isomorphic toL. Let

c i be a basis onL, c i ,p a basis onLp andc i ,p1752c i ,p . The action ofU onH is then defined
by

Uc i ,p5c i ,p11 , ~57!

henceU7521. Moreover we set

wc i ,05ck,plk,i~w!, wPL. ~58!

From ~56!–~58! derive the representation ofV onH as follows:
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Vc i ,b5VUbc i ,05Ua~b!U2a~b!VUbc i ,05Ua~b!ck,0l~U2a~b!VUb!k,i

5ck,a~b!l~U2a~b!VUb!k,i . ~59!

Sinceb can take all values 0,. . . ,6 wededuce the complete representation ofV on H. The
problem reduces now to that of finding a suitable representation ofL on L. Should we set
Q5Zi51, L becomes the octahedral groupT(2,3,4) of order 24. We are interested in irreps of
L in which all l(Zi) are diagonal andl(Zi

2)51. Eachl(Zi) is then a diagonal block matrix. In
fact we have

Z0c i ,p5Z0U
pc i ,05UpZpc i ,05Upl~Zp!c i ,05l~Zp!c i ,p . ~60!

It is then clear thatm( Zs) is the diagonal matrix with entriesl(Zs), l(Zs11), . . . , l(Zs16),

wherel(Zs) hasn eigenvaluesj i ,s561,i51, . . . ,n,s50, . . . ,6. It follows also that each vector
c i ,p has eigenvalues

Zsc i ,p5j i ,s1pc i ,p , ~61!

which define the elementJ P H1:

J5~j i ,p ,j i ,p11 , . . . ,j i ,p16!. ~62!

For the group n(L) the corresponding formulae are obtained by setting
v85V21,t85UV21U22. We have then

U6V21U235v8t8, U4V21U245Z3~ t8v8!25~ t8v8!2Z0 , ~63!

~v8t8!45QZ0
21 , ~ t8v8!45QZ0

21Z3
21 . ~64!

If an irrep of H contains a signatureJ it contains also the whole orbit including its cyclical
permutations. Nontrivial functionals have 7 distinct cyclical permutation of anyJ corresponding
to p50, . . . ,6 in~62!. The irrepm of H generated byl has dimension 7n and as many signatures.
If it contains different orbits then is reducible. Therefore irreps can be grouped in disjoint subsets
characterized by orbits. Irreps belonging to orbitsA,D,E can be obtained either fromL or n(L)
whereasB andC can be obtained only fromL andn(L) respectively. We list in Appendix B the
explicit representationsl of the groupL corresponding to each orbit by givingl(v),l(t) and
l(Z1). In this way we obtain the irreps of the orbitsA,B,D,E. Irreps of orbitC can be obtained
by applying n to irreps of B. Clearly orbits may appear in some irreps with multiplicities
m51,2,4 wheren/m is the number of inequivalent signatures under cyclical permutations con-
tained in the orbit. The method applied to orbitsA yields representations which reduce into the
irreps already discussed. The dimensions of the irreps satisfy a separate Burnside condition

(
JPO

dJ
25n~O!N, ~65!

wheren(O) is the number of signatures belonging to a given orbitO.

VII. THE DECORATED LATTICE AND THE PARTITION FUNCTION

We need now a more explicit description of the decorated latticeL# along lines already
discussed in Ref. 9. Each elementh P H identifies uniquely a site ofL which we also label with
h,being intended thathQ;hZi;Zih identify the same site ofL. h is connected to other 3 sites
Vh,Uh,U21h and is replaced inL# by 3 sitesha ,hb ,hc to which we associate Grasmann vari-
ables a(h),b(h),c(h). The original oriented bondsh→Vh,h→Uh are replaced by oriented
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bondsha→Vha ,hb→Uhc ~with exchange interactionJV ,JU respectively! together with the ad-
ditional decorating bondsha→hc ,hc→hb ,hb→ha . For each Pfaffian we need boundary condi-
tions of the kind discussed above:

a~hZi !5e ia~h!, a~Qh!5a~hQ!52a~h! ~66!

and the corresponding conditions obtained by replacinga with b,c. Under these assumptions the
2-form ~6! can be rewritten explicitly as

f5 (
hPL

S a~h!`c~h!1c~h!`b~h!1b~h!`a~h!1
y

2
a~h!`a~Vh!1xb~h!`c~Uh! D ,

~67!

wherey5coth(bJV), x5coth(bJU) .
Harmonic analysis onL can be performed by recalling the Fourier components of

a(h),b(h),c(h) given bya(h)5(ab
J Dab

J (h)* aab
J , etc. To this purpose we consider the matrices

aJ,bJ,cJ of elementsaab
J ,bab

J ,cab
J wherea,b5 1•••dJ . By using the orthonormality relations

~48! satisfied by the matricesDab
J (h) we rewrite f5(Jf

J where

f J5TrS aJ†`cJ1cJ†`bJ1bJ†`aJ1
y

2
aJ†`DJ~V!aJ1xbJ†`DJ~U !cJD ~68!

andJ† labels the complex conjugate irrep ofJ. The key point is that different pairsJ,J† lead to
disjoint sets of Grassman variables, moreoverf J1 f J† separates into the sum of partial forms
(a( f

J)aa1c.c. Therefore the final Pfaffian is the product ofdJ partial ~and identical! Pfaffians,
which must be computed explicitly by use of~8!. Once this is done we must determine the
coefficientssI appearing in~40!. Since all thesI and PfaffiansPf(f I) sharing the same orbit
Oof f I are equal we can setSO5n(O)sI ,Pf(f I)5p f(O),;f I P O and~40! reduces to

Zd522g(
O

SOp f~O!. ~69!

The sign inPf(f I) of a term associated with the pathz is given byh I(z)5t(z I ,z)u(z). The
sI must be chosen in such a way as to set the final coefficient ofzK in the expansion~40!:

22g(
I
sIt~z I ,zK!u~zK! ~70!

equal to 1. Taking into account~45! we see that the condition

;I :22g(
I
sIt~z I ,zK!5(

I
sIF IK5u~zK! ~71!

has the simple solution

sI5u~z I !, ~72!

and thusSA51,SB5SC57,SD521,SE5228 andSA1SB1SC1SD1SE5852g.
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VIII. PFAFFIANS AND HARMONIC ANALYSIS ON THE LATTICE

The boundary conditions~66! on the Grassmann variablesa(h),b(h),c(h) imply strong re-
strictions on the Fourier componentsaab

J ,bab
J ,cab

J similar to those already derived forQ. Con-
sider nowPf(f) wheref5(e0 ,e1 ,e2 ,e3 ,e4 ,e5 ,e6). From ~66! we get

(
hPH

a~hZi !Dab
J ~h!5e iaag

J 5aag
J Dgb

J ~Zi !. ~73!

In all the explicit representation ofH listed in the Appendix B the matricesDgb
J (Zi) are diagonal

and

Dgb
J ~Zi !5e i

J~g!dgb . ~74!

Clearly aag
J ,bag

J ,cag
J 50 unlesse i

J(g)5e i ,i50, . . . ,6. Theorbit O of f identifies a subset of
irreps and in~68! only a rectangular submatrix ofaJ,bJ,cJ of dimensiondJ3dJ /n(O) survives
wheredJ is the dimension of the irrep anddJ /n(O)the number of times a given signature inO
appears in the irrep. The total number of surviving components ofaag

J among all irreps is in any
case equal to the orderN of the groupG, i.e., 168.

EachaJ,bJ,cJ is therefore partitioned intodJ /n(O) rectangular submatrices labeled by the
signatures inO. Only one of these matrices needs to be used because they all yield the same final
expression for the Pfaffian. Since in~68! all partial forms f Ja yield identical Pfaffians we may
consider just one contribution and drop the indexa. In this case the square of the partial Pfaffian
can be written as the determinant of the block matrixDJ

DJ5F yDJ~V! 1 21

21 0 12xDJ~U !

1 211xDJ~U21! 0
G . ~75!

Notice thatDJ
†52DJ . Upon multiplication of the last group of columns by (12xDJ(U))21 and

the last group of rows by (12xDJ(U21))21 we find, as in Ref. 9,

Det~DJ!5Det@y~12xDJ~U !!DJ~V!~12xDJ~U21!!1x~DJ~U !2DJ~U21!!# ~76!

and therefore the effective dimension of the final determinant reduces todJ . The dimer generating
functionZd is then

Zd522g(
O

SOp f~O!522g(
O

SO)
JPO

P fJ
dJ /n~O! . ~77!

The degree ofPfJ in x,y is dJ ,dJ/2 and therefore the total degree ofp f(O) in x is
(JPOdJ

2/n(O)5N because of the Burnside condition and half as much fory. Not allDet(DJ) are
distinct, besidesDet(DJ)5Det(DJ†) the external automorphismn mapsp f(B)into p f(C)and
vice versa thusp f(C)5p f(B). The number of independent Pfaffians is therefore further reduced
to four (64→5→4) by the existence of external automorphisms.

If dJ /n(O) is odd the sign ofPfJ 56ADet(DJ) must be fixed unambiguously by computing
it for instance in the limitb→0.Zd becomes then a polynomial inx,y of degreeN,N/2.

12 In Fig.
2 we give the plot of the specific heat corresponding to a ferromagnetic choice of the exchange
interactions, (JU5JV51). The specific heat presents a very sharp peak which prefigures the
transition form and ordered ferromagnetic phase to a disordered paramagnetic one. WhenJU ,JV
have different signs or are both antiferromagnetic~i.e., negative! the model is totally frustrated and
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the specific heat becomes smoother. Moreover, different finite values (. log 2/N) of the ground
state entropy are found, signaling an exponential degeneracy of the ground state.

IX. CONCLUSIONS

In this paper we have developed a formalism capable of dealing efficiently with Ising models
defined on group lattices of nontrivial genusg. In particular we have applied the method to the
Ising model on the Klein groupL(2,7) havingg53 andN5168. We found that the computation
of the partition functionZ is greatly simplified by use of symmetries of an extended group, both
internal and external to the group, which reduce the number of and provide explicit formulas and
topological interpretation for the sign and weight of Pfaffians in the expansion ofZ. We plan to
apply this method to other lattices whereN is large andg is comparable toN.

Note added in proof.A recent paper, to appear in Funct. Am. Appl. by N. P. Dolbilin, Yu. M.
Zinoviev, A. S. Mishchenko, M. A. Slitan’ko, and M. I. Shtoprin contains results that partially
overlap with ours.

FIG. 2. Specific heat versus temperature forJU5JV51.
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APPENDIX A

Fermionic irreps ofH0 :

U ~1!5diag~21,K,2K2,2K4!, U ~2!5~U ~1!!* ,

U ~3!5diag~K,2K2,2K4,2K6,K5,K3!, U ~4!5~U ~3!!* ,

U ~5!5diag~K,2K2,2K4,21,2K6,K5,K3,21!.

V~1!5
2i

A7 1
1

2

1

A2
1

A2
1

A2

1

A2
c1 c3 c2

1

A2
c3 c2 c1

1

A2
c2 c1 c3

2 , ~A1!

with ck5cos(2kp/7), k51,2,3.V(2)5(V(1))* .

V~3!5
2i

7 SA B

B 2AD ,
where

A5S s22A2s3 s12A2s2 s32A2s1
s12A2s2 s32A2s1 s22A2s3
s32A2s1 s22A2s3 s12A2s2

D ,
B5rS s31~A221!s1 s21~A221!s3 s11~A221!s2

s21~A221!s3 s11~A221s2 s31~A221!s1

s11A221s2 s31~A221!s1 s21~A221!s3

D ,
with s15sin(p/7), s252sin(2p/7), s352sin(4p/7) andr5A21A2.

Finally V(4)5(V(3))* and

V~5!5
i

7 SC D

D 2CD ,
where
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C51
s11s2 s11s3 s21s3 A3

2
~s22s1!

s11s3 s21s3 s11s2 A3

2
~s12s3!

s21s3 s11s2 s11s3 A3

2
~s32s2!

A3

2
~s22s1! A3

2
~s12s3! A3

2
~s32s1!

1

2
~s122s21s3!

2 ,
and

D52A31
s2 s1 s3

1

A2
~s12s2!

s1 s3 s2
1

A2
~s32s1!

s3 s2 s1
1

A2
~s22s3!

1

A2
~s12s2!

1

A2
~s32s1!

1

A2
~s22s3!

1

2
~s12s3!

2 .

All these irreps are changed into equivalent and conjugate expressions by replacingK with
2K2.

APPENDIX B

Puttingl(x)5xO for the representationsl belonging to the orbitO we have CaseB:

vB5S i 0

0 2 i D , tB5S ~11 iA2!

2
2
1

2

1

2
~12 iA2!

2

D , Z1,B5I2 ;

CaseC: vC5vB
21 , tC5tB

21 , Z1,C5Z1,B ;
CaseD:

vD
~1!5

1

A2 S 0 0 21 1 0 0

0 0 21 21 0 0

1 1 0 0 0 0

21 1 0 0 0 0

0 0 0 0 2 i 2 i

0 0 0 0 2 i i

D , tD
~1!5

1

A2 S 0 0 A2 0 0 0

0 0 0 A2 0 0

0 0 0 0 2 i 2 i

0 0 0 0 2 i i

2 i 2 i 0 0 0 0

2 i i 0 0 0 0

D ,

Z1,D
~1! 5diag~1,1,1,1,21,21!,

2812 T. Regge and R. Zecchina: Ising model on group lattices of genus g.1

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



vD
~2!5~vD

~1!!* , tD
~2!5~ tD

~1!!* , Z1,D
~2! 5Z1,D

~1! ;

CaseE :

vE
~1!5S 0 0 2 i 0

0 2 i 0 0

2 i 0 0 0

0 0 0 2 i

D , tE
~1!5S 21 0 0 0

0 0 2 i 0

0 0 0 1

0 2 i 0 0

D ,
Z1,E

~1!5diag~1,21,1,21!, vE
~2!5~vE

~1!!* , tE
~2!5~ tE

~1!!* , Z1,E
~2!52Z1,E

~1! ,

vE
~3!51

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 i 0 0 0 0 0

0 0 0 2 i 0 0 0 0

21 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0

0 0 0 0 0 0 i 0

0 0 0 0 0 0 0 2 i

2 ,

tE
~3!51

1

2

2A3
2

0 0 0 0 0 0

A3
2

1

2
0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0
21

2

2A3
2

0 0 0 0 0 0
2A3
2

1

2

0 0
1

2

A3
2

0 0 0 0

0 0
A3
2

21

2
0 0 0 0

2 ,

Z1,E
~3!5diag~21,21,1,1,21,21,1,1!.
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The free streaming operatorT is considered in a convex three dimensional region
V, with diffusive multiplying boundary conditions. Some mathematical properties
of T are examined by writing the particle density as an infinite series which takes
into account successive reflections on]V, and by introducing an operator which in
some sense annihilates the multiplying effect of]V. © 1996 American Institute of
Physics.@S0022-2488~96!01205-3#

I. INTRODUCTION

The basic mathematical properties of the streaming operatorT52vV•¹ usually are a first
step in the study of abstract evolution problems in linear and nonlinear particle transport theory. In
particular, whether or notT with suitable boundary conditions is the generator of a strongly
continuous semigroup$exp(tT), t>0% is a crucial question.1 The behavior ofiexp(tT)i ast→1`
is also of interest because it leads to the asymptotic behavior of the total number of particles.

In this paper, we shall study the free streaming operator in a convex regionV,R3, bounded
by the closedC1 surface]V, under the assumption that the following diffusivemultiplyingbound-
ary condition holds

uV•n~y!u f ~y,V!5E
V8•n~y!.0

a~V,V8,y!V8•n~y! f ~y,V8!dV8, yP]V, V•n~y!,0. ~1!

In relation~1!, f ~y,V! is the density of particles which are atyP]V and have velocityv5vV,
andn~y! is the ~outward directed! normal unit vector aty.

Furthermore,a~V,V8,y! is a surface reflection kernel such that

E
V•n~y!,0

a~V,V8,y!dV5a0~y!.1 at a.e. yP]V, ~2!

a~V,V8,y!50 if 0<V•n~y!,e0 at a.e. yP]V, ~3!

wheree0 is an assigned positive number, withe0!1.
Relations~1! and ~2! imply that particles, which impinge on]V at y with velocity v5vV8

~V8•n~y!.0!, are reflected with velocityv5vV ~V•n~y!,0! and their number is multiplied by a
factor larger than one. Such a multiplication phenomenon leads to some difficulties when one has
to evaluate the norm of the evolution operator exp(tT). As it is shown in what follows, this
difficulty may be overcome by introducing a suitable annihilation operatorB.

Assumption~3! means that particles impinging on]V at y with velocity v, such that the angle
betweenv andn~y! is close to a right angle, are not reflected by]V. Hence, this~mainly technical!

0022-2488/96/37(6)/2815/9/$10.00
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condition cuts off the possibility of having two successive reflections aty and y8 with uy2y8u
small. In any case, the number of this kind of reflections per unit time would be small compared
with the total number of reflections atyP]V.

We finally remark that evolution problems with multiplying boundary conditions are certainly
of mathematical interest.2 However, they are also of physical interest because they may arise in
connection with electron transport in photomultipliers, in algae or bacteria population problems, in
neutron transport~in this case,]V may be the surface that bounds a moderator!. The procedures
that follow can also be used if multiplication is a volume phenomenon~i.e., if it occurs withinV!,
such as in the case of neutron transport in a fissionable material.

II. THE SUCCESSIVE REFLECTION METHOD

In order to overcome the difficulties caused by the particle multiplication phenomenon on]V,
we write the particle densityf ~x,V! as follows

f ~x,V!5(
j50

`

f j~x,V!, ~4!

wheref j ~x,V! is the density of the particles which ‘‘remember’’ justj reflections on the boundary
surface]V. To explain the definition off j , we shall call ‘‘mother’’ a particle just before under-
going a reflection and ‘‘daughters’’ the particles generated by such a reflection. Assume that the
daughters ‘‘remember’’ both the reflection during which they were generated and all the reflection
events remembered by their mother. Then,f j is composed of all particles which remember justj
reflections.

According to definition~4! we introduce the Banach spaceX

X5H f : f5S f 0
f 1
f 2
A
D , f jPL1~V3S!, (

j50

`

i f j i1,`J ,

i f i5(
j50

`

i f j i1 , i f j i15E
V
dxE

S
u f j~x,V!udV, ~5!

and define the free streaming operator as follows

T f52vS V•¹ f 0
V•¹ f 1
V•¹ f 2

A
D ,

D~T!5$ f : fPX;T fPX; f satisfies the boundary conditions~7!% ~6!

uV•n~y!u f j~y,V!5E
V8•n~y!.0

a~V,V8,y!V8•n~y! f j21~y,V8!dV8,

yP]V, V•n~y!,0, j50,1,2,... . ~7!

In ~5!, S is the spherical surface of radius one, whereasf21[0 in the first of~7!. Note that the
boundary condition~7! shows that a reflection event changesf j21 into f j .

By using definitions~5!, ~6!, and~7!, we can write the abstract version of the free streaming
problem inV:
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d

dt
u~ t !5Tu~ t !, t.0; u~0!5u0PD~T!ùX1, ~8!

whereu(t)5u~x,V;t! is now a function from@0,1`! into the spaceX,(d/dt)u is a strong deriva-
tive, andu0 is an assigned initial particle distribution belonging toD(T) and to the positive cone
X1.3–5 We observe that~8! is in fact a system of infinite partial differential equations, coupled
only because of the boundary conditions~7!. In other words,~8! may be put into the form

d

dt
uj~ t !52vV•¹uj , t.0; uj~0!5uj0PX1

1 , j50,1,2,..., ~9!

where theuj ’s must satisfy~7! and be such that2vV•¹ujPX15L1(V3S).
Equation ~8! or system~9! are the mathematical formulation of the successive reflection

method. Such a method has some similarity to the multiple collision technique6 if multiplication
occurs withinV.

III. THE SEMIGROUP GENERATED BY T

To show thatT is the generator of the strongly continuous semigroup$exp(tT), t>0%, we
consider the equation

~zI2T! f5g, ~10!

wherez is a positive constant,g is a given element ofX, and the unknown must be sought in
D(T).

The solutionfPD(T) of ~10! has the form

f j~x,V!5
1

v
Cj~y,V!expS 2

z

v
s0~x,V! D1

1

v E
0

s0~x,V!

expS 2
zs

v Dgj~x2sV,V!ds, ~11!

where, givenx andV, s0~x,V! is such thaty5x2s0~x,V!VP]V.
The constantsCj ~y,V! can be evaluated by using the boundary condition~7! and assumption

~3!:

uV•n~y!uCj~y,V!5E
V8•n~y!.e0

dV8a~V,V8,y!V8•n~y!HCj21~y8,V8!expS 2
z

v
s0~y,V8! D

1E
0

s0~y,V8!
expS 2

zs

v D gj21~y2sV8,V8!dsJ ,
yP]V, V•n~y!,0, j50,1,2,..., ~12!

wherey85y2s0~y,V8!V8P]V andC21[0.
At any fixedyP]V, it follows from ~12! and ~2!

E
V•n~y!,0

uV•n~y!iCj~y,V!udV<x expS 2
z

v
d D E

V8•n~y!.0
V8•n~y!uCj21~y8,V8!udV8

1xE
V8•n~y!.0

dV8V8•n~y!E
0

s0~y,V8!
ugj21~y2sV8,V8!uds,

where
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x5sup$a0~y! yP]V%>1, d5 inf
yP]V

$ inf
V•n~y!>e0

@s0~y,V!#%.0 ~13!

~for example, if]V is a sphere of radiusr , thend52r e0!.
Integration over]V gives

iCj ib<x expS 2
z

v
d D iCj21ib1xE

]V
dsyE

V8•n~y!.0
dV8V8•n~y!

3E
0

s0~y,V8!
ugj21~y2sV8,V8!uds, ~14!

where

iwib5E
]V
dsyE

V•n~y!,0
uw~y,V!udV,

and where we took into account thatV8•n~y!dsy5uV8•n~y8!udsy8. The second term on the right
hand side of~45! can be written as follows:

xE
S
dV8E

]V1~V8!
dsyV8•n~y!E

0

s0~y,V8!
ugj21~y2sV8,V8!uds

5xE
S
dV8E

V
ugj21~x8,V8!udx85xigj21i1 ,

where,x85y2sV8 and where, for each givenV8, ]V1~V8!5$y:yP]V,V8•n~y!.0%.
Hence,~14! becomes

iCj ib<x expS 2
z

v
d D iCj21ib1xigj21i1 , ~15!

and so:

(
j50

`

iCj ib<h~z!igi , ~16!

where

h~z!5
x

12x exp~2~z/v !d!
, ~17!

provided thatx exp~2(z/v)d!,1, i.e.,z.z05(v/d)ln x.
On the other hand, we have from~11!

i f j i1<
1

v E
S
dVE

V
dxH uCj~y,V!uexpS 2

z

v
s0~x,V! D 1E

0

s0~x,V!

expS 2
zs

v D ugj~x2sV,V!udsJ .
By taking into account thatdx5uV•n~y!udsydr with V•n~y!,0 for each fixedV, we obtain

2818 A. Belleni-Morante and S. Totaro: Successive reflection method

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



i f j i1<
1

v E
S
dVH E

]V2~V!
dsyuV•n~y!iCj~y,V!u

3E
0

s0~y,2V!

expS 2
zr

v D dr1E
]V2~V!

dsyuV•n~y!u

3E
0

s0~y,2V!

drE
0

r

expS z s82r

v D ugj~y1s8V,V!uds8J ,
where]V2~V!5$y:yP]V, V•n~y!,0%. Thus, we finally have

i f j i1<
1

z
$iCj ib1igj i1%, ~18!

and consequently

i f i<
h~z!11

z
igi , z.z05

v
d
ln x, ~19!

where we have used inequality~16!.
We can summarize the preceding results as follows.
Lemma 1:Equation~10! has a unique solutionf5(zI2T)21gPD(T);gPX, provided that

z.z05(v/d)lnx. Moreover,i(zI2T)21i<[h(z)11]/z and (zI2T)21[X1],X1.
Let nowgPX1 and assume thatz.z0. Then,fPX1, u f u5 f , and integration overS andV of

the i -th component of~10! gives

zi f j i11vE
S
dVE

V
V•¹ f j~x,V!dx5igj i1 . ~20!

On the other hand, we have by using divergence theorem and condition~7!

E
S
dVV•E

V
¹ f j~x,V!dx5E

S
dVV•E

]V
n~y! f j~y,V!dsy

5E
]V
dsyE

V•n~y!.0
V•n~y! f j~y,V!dV

2E
]V
dsyE

V•n~y!,0
uV•n~y!u f j~y,V!dV

5E
]V
dsyE

V•n~y!.0
V•n~y! f j~y,V!dV

2E
]V
dsya0~y!E

V8•n~y!.0
V8•n~y! f j21~y,V8!dV8.

Hence,~20! becomes

2819A. Belleni-Morante and S. Totaro: Successive reflection method

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



zi f j i11vE
]V
dsyE

V•n~y!.0
V•n~y! f j~y,V!dV

2vE
]V
dsya0~y!E

V8•n~y!.0
V8•n~y! f j21~y,V8!dV85igj i1 .

As a consequence, we obtain

zi f i2vE
]V
dsy~a0~y!21!E

V•n~y!.0
V•n~y!(

j50

`

f j~y,V!dV5igi .

Since f5(zI2T)21gPX1, we conclude that the resolvent operator satisfies the inequality

i~zI2T!21gi>
igi
z
, z.z0 , gPX1. ~21!

Note thatD(T) is dense inX; hence Lemma 1, inequality~20! and some results proved in Ref. 7
lead to the following theorem.

Theorem 1: TPG (M ,z0 ;X), i.e.,T is the infinitesimal generator of the strongly continuous
semigroup $exp(tT), t>0%, such that iexp(tT)i<M exp(z0t), ;t>0. Moreover,
exp(tT)[X1],[X1], ;t>0.

We remark that, in Ref. 7, it is only shown that a suitable constantM exists, but no indication
is given on how to evaluate it. This justifies the introduction of the ‘‘annihilation’’ operatorB in
the following section.

IV. THE ANNIHILATION OPERATOR

Due to Theorem 1, the unique strong solution of problem~8! has the form

u~ t !5exp~ tT!u0 , t>0, u0PD~T!ùX1, ~22!

andu(t)PD(T)ùX1, ;t>0. SinceTPG (M ,z0 ;X), ~22! gives

iu~ t !i5E
S
dVE

V
u~x,V;t !dx<M exp~z0t !E

S
dVE

V
u0~x,V!dx, ~23!

which is an upper bound for the total number of particles withinV at time t. Note that inequality
~23! depends onM , whose value is not easy to evaluate. On the other hand, the factor exp(z0t)
with z05(v/d)ln x has an interesting physical meaning. In fact, the ratiod/v is the minimum time
interval between two successive reflections on]V, whereasx is the maximum multiplication
factor. Hence, an upper bound foriu(t)i can be obtained by assuming that all particles undergo
their first collision at a time very close tot50, the second att5d/v, the third att52d/v,..., and
that they are multiplied byx each time. Then, the total number of particles at timet would be
iu0ixx t/(d/v)5x exp~(v/d)t ln x!iu0i5x exp(z0t)iu0i because 11tv/d is the number of reflection
events during@0,t#.

In order to overcome the difficulty due to the constantM , we introduce the linear bounded
operator
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BS 1 0 0 •••

0 x21 0 •••

0 0 x22 •••

••• ••• ••• •••

D , D~B!5X ~24!

which is such thatB[X1],[X1], iBi51.
Assume now thatfPD(T) and letg5Bf ; then,V•¹f jPX1 and f j satisfies condition~7!.
Moreover,gj5 f j /x

j and soV•¹gjPX1 andgj satisfies the boundary condition

uV•n~y!ugj~y,V!5E
V8•n~y!.0

â~V,V8,y!V8•n~y!gj21~y,V8!dV8,

yP]V, V•n~y!,0, j50,1,2,..., ~25!

whereâ~V,V8,y!5a~V,V8,y!/x.
Condition ~25! suggests to define a new streaming operatorT̂ as follows

T̂g52vS V•¹g0
V•¹g1
V•¹g2

A
D , ~26a!

D~ T̂!5B@D~T!#5$g:gPX;T̂gPX;g satisfies the boundary conditions~25!%. ~26b!

Since

â0~y!5E
V•n~y!,0

â~V,V8,y!dV5a0~y!/x<1,

x̂5sup$â~y!,yP]V%51,

Theorem 2 can be proved by using procedures similar to those of Sec. 2~with â0 andx̂51 instead
of a0 andx!. We remark that~20! and ~25! lead to the relation

zi f i2vE
]V
dsy~ â0~y!21!E

V•n~y!.0
V•n~y!(

j50

`

f j~y,V!dV5igi ,

where f5(zI2T̂)21g and â0~y!<1. Hence, we have

i~zI2T̂!21gi<
igi
z
, ;z. ẑ05

v
d
ln x̂50. ~27!

Furthermore,D(T̂) is dense inX, and so~27! leads to the following theorem.
Theorem 2: T̂PG ~1,0;X! i.e., T̂ is the infinitesimal generator of the strongly continuous

semigroup $exp(tT̂), t>0%, such that iexp(tT̂)i<1, ;t>0. Moreover, exp(tT̂)[X1],[X1],
;t>0.

We also observe that the following commutation property holds

BT f5T̂B f , ; fPD~T!. ~28!

In fact, BfPB[D(T)]5D(T̂); fPD(T) and T̂B f exists and belongs toX. Furthermore, given
any j50,1,2,..., we have
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~BT f ! j5~T f ! j /x
j5~2vV•¹ f j !/x

j ,

~ T̂B f ! j52vV•¹~Bf ! j5~2vV•¹ f j /x
j !,

and ~28! is proved.
Consider now the following modified evolution problem

d

dt
w~ t !5T̂w~ t !, t.0; w~0!5w0PD~ T̂!, ~29!

whose unique strong solution has the form

w~ t !5exp~ tT̂!w0 , t>0. ~30!

By applying the bounded operatorB to both sides of equation~8!, we have

d

dt
Bu~ t !5BTu~ t !, t.0, Bu~0!5Bu0 ,

i.e.,

d

dt
@Bu~ t !#5T̂@Bu~ t !#, t.0; @Bu~0!#5Bu0 , ~31!

where we used~28! and the relationB(du/dt)5(dBu/dt), that holds becauseBPB(X)3.
Comparison of~29! with ~31! shows thatw(t)5Bu(t), provided thatw05Bu0 . Hence, we

have

iBu~ t !i5iw~ t !i<iw0i5iBu0i , ;t>0, ~32!

because of~30! and Theorem 2.
Inequality~32! shows thatBu(t) has the norm bounded by the norm of its initial valueBu0.

Note that (Bu(t)) j5uj (t)/x
j , i.e., thej -th component ofBu(t) is the density of particles, which

rememberj reflections, divided byxj ~which in some sense, annihilates the multiplying effect of
the j reflections!. Moreover, we may obviously take (Bu0) j50; j51,2,... and (Bu0)05u00PX1

1,
with u00~y,V!50;yP]V, whereu00 is the particle density att50 ~under the assumption that at
t50, no particle has yet undergone any reflection!. Then,~32! reads as follows

(
j50

`

x2 jE
S
dVE

V
uj~x,V;t !dx<E

S
dVE

V
u00~x,V!dx. ~33!

V. CONCLUDING REMARKS

We can summarize the preceding results as follows.
Theorem 3: If T is defined by~6! and T̂ by ~26!, thenTPG (M ,z0 ;X),T̂PG ~1,0;X! and

relation ~28! holds. Moreover, the~positive! semigroups generated byT and T̂ are such that

B exp~ tT!u05exp~ tT̂!Bu0 , t>0, u0PD~T!, ~34!

whereB is defined by~24!. SinceD(T) is dense inX, ~34! may be extended to the wholeX.
Relation ~34! is of mathematical and physical interest because it shows that an evolution

problem with particle multiplication may be studied by means of a suitable modified problem
without multiplication. Furthermore,~34! leads to the definition ofB-bounded semigroups.8
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Inequality ~33! indicates that

E
S
dVE

V
uj~x,V;t !dx<x jE

S
dVE

V
u00~x,V!dx, j50,1,2,...,

becauseuPX1 and so all the terms of the infinite series are non-negative. Finally,
let s̄05sup$s0~x,V!,xPV,VPS% be the diameter ofV. Then if t.ns̄0/v, uj[0; j50,1,2,...,n21
and ~33! becomes

(
j5n

`

x2~ j2n!E
S
dVE

V
uj~x,V;t !dx<xnE

S
dVE

V
u00~x,V!dx.

ACKNOWLEDGMENTS

This work was partially supported by the Italian ‘‘Ministero dell’Universita` e della Ricerca
Scientifica e Tecnologica’’ 40% Project ‘‘Problemi nonlineari nell’analisi e nelle applicazioni
fisiche, chimiche e biologiche: aspetti analitici, modellistici e computazionali’’ and 60% research
funds, as well as by GNFM of Italian CNR.

1W. Greemberget al., Boundary Value Problems in Abstract Kinetic Theory~Birkäuser, Basel, 1987!.
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Nonlinear discrete systems with nonanalytic
dispersion relations
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Cedex 05, France
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A discrete system of coupled waves~with nonanalytic dispersion relation! is de-
rived in the context of the spectral transform theory for the Ablowitz–Ladik spec-
tral problem~discrete version of the Zakharov–Shabat system!. This 3-wave evo-
lution problem is a discrete version of thestimulated Raman scatteringequations,
and it is shown to be solvable for arbitrary boundary value of the tworadiation
fieldsand initial value of themedium state. The spectral transform is constructed on
the basis of the]-approach. ©1996 American Institute of Physics.
@S0022-2488~96!02605-5#

I. INTRODUCTION

This paper relates the study of the following discrete coupled system for the three fields
A1(u,n,t), A2(u,n,t) andq(n,t)

A1~u,n,t !2A1~u,n21,t !5e2 inuq~n,t !A2~u,n,t !,

A2~u,n,t !2A2~u,n21,t !52einuq̄~n,t !A1~u,n,t !, ~1!

qt~n,t !5
r~n,t !

2p E
2p

1p

dueinu~A1*A2!~u,n,t !,

whereu P @2p,1p#, n P Z and t P R1. The interaction term here above is defined as the
coupling factor

~A1*A2!~u,n,t !5g~u,t !A1~u,n21,t !Ā2~u,n,t !1ḡ~u,t !A1~u,n,t !Ā2~u,n21,t !, ~2!

whereg(u,t) is an arbitrary function inL2(@2p,1p#) ~which could also be time dependent!, and
where theenergy ratio r(n,t) at the siten ~it will be shown that this quantity is actually
u -independent! is defined as

r~n,t !5
uI 1~u,t !u21uI 2~u,t !u2

uA1~u,n,t !u21uA2~u,n,t !u2
~3!

for the following definition of the boundary valuesI 1(u,t) and I 2(u,t) ~input data!

I 15 limn→1`A1~u,n,t !, I 25 limn→1`A2~u,n,t !. ~4!

One of the main results is the proof that the system~1! with data ~initial-boundary value
problem!

q~n,0!, I 1~u,t !, I 2~u,t ! ~5!

a!Permanent address: Dipartmento di Fisica, Universita` di Lecce, I-73100 LECCE.
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is integrable. In particular this work provides the first instance of an integrable nonlinear discrete
system withnonanalytic dispersion relation.

An interesting limit of the above equation arises when the arbitrary distributiong(u) goes to
a Dirac delta function, for instanced(u). Then the system reads~now Aj (n,t) denotes
Aj (u,n,t)uu50)

A1~n,t !2A1~n21,t !5q~n,t !A2~n,t !,

A2~n,t !2A2~n21,t !52q̄~n,t !A1~n,t !, ~6!

qt~n,t !5r~n,t !@A1~n21,t !Ā2~n,t !1A1~n,t !Ā2~n21,t !#,

and it is called thesharp line limit of ~1!. Although a definite physical application of such an
equation does not exist by now, it still can be understood in the following way.A1 andA2 are the
two envelopes of some high frequency~HF! oscillations~say at frequencyv1 andv2) which
interact resonantly on each siten with a medium constituted of oscillators of envelopeq(n) and
frequencyV5v12v2 , with a coupling intensity proportional to the relative amountr(n) of the
total HF energywhich has reached the siten. Then the physical data are the input values
A1,2(u,n,t) at n5` of the HF external excitations, and the initial state of the medium oscillators.

The method used to build and solve~1! is the inverse spectral~or scattering! transform~IST!
well known also as thenonlinear Fourier transform.1 Indeed the method, in its principle, works
like a Fourier transform. It associates to the field, solution of a nonlinear evolution equation, its
spectral transformwhich evolves linearly. Then the field at timet is reconstructed from the
spectral transform at timet by solving theinverse spectral problem. This method has been widely
studied and extended to various interesting nonlinear evolution problems. We are particularly
interested in three types of extension which will be used all three together.

The first extension involved here is the use ofdiscretespectral problems to solve discrete~in
space! nonlinear evolution equations. Famous instances of integrable discrete systems are the
Toda lattice2 and a special discrete version of the nonlinear Schro¨dinger equation which has been
proposed and integrated by Ablowitz and Ladik by using a discrete version of the Zakharov–
Shabat spectral problem.3 This so called Ablowitz–Ladik spectral problem and the related non-
linear differential–difference equations with polynomial dispersion relations have been exten-
sively studied~see Refs. 4–17!. Recently a different version of the discrete Zakharov–Shabat
system has been proposed in order to keep the canonical Poisson structure of the continuous
case.18

The second domain considered here concerns the extension of the spectral transform to the
case ofnonanalytic dispersion relations.19,20The first instance of such an integrable system is the
self-induced transparency~SIT! equations of McCall–Hahn21 which was shown to possess a Lax
pair in Ref. 22 was given a N-soliton solution in Ref. 23 and later studied and completely solved
in Ref. 24. These systems generically describe wave–wave interactions for which some boundary
value are prescribed. These boundary values are strongly dependent on the physical problem under
consideration. For instance the problem of superfluorescence in two-level media results in the
same equation as SIT but with different boundary values and consequently quite different generic
properties resulting mainly from a linear butnonhomogeneousevolution of the spectral
transform.25

The third extension used is the generalization of the solution of an evolution equation with a
nonanalytic dispersion relation to the case ofarbitrary boundary values.26 In this case, the evo-
lution of the spectral transform can be not only nonhomogeneous but alsononlinearand still has
interesting physical application. In particular the problem of stimulated Raman scattering of a high
energy long laser pulse in a gas has been solved by this technique.27,28

The paper is organized as follows. In Sec. II we summarize the method of solution of the
system~1! and provide there only the resulting formulae.
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In Sec. III the principal Lax operator or, more precisely, the associated spectral problem~a
special reduction of the Ablowitz–Ladik spectral problem! is used to define the spectral data~or
nonlinear Fourier transform!. This is done by selecting the basic set of Jost solutions and then
proving that they obey a Riemann–Hilbert problem in the spectral parameter.

The inverse spectral problem is then solved in Sec. IV by means of the]-formulation of the
spectral problem, which means that thepotentialsare reconstructed from thespectral data. There
the compatiblereductionsare also considered, which will allow in particular to obtain simpler
integrable equations with an easier interpretation.

Section V is devoted to the formulation of the inverse spectral transform on the basis of the]̄-
problem. More precisely, having previously shown that the spectral problem~for the principal Lax
operator! leads naturally to a]̄-problem, we prove here the reverse statement. This is useful in the
following for considering the]̄-problem itself as the starting tool.

The general discrete integrable system with nonanalytic dispersion relations is then con-
structed by requiring a time evolution of the spectral transform with anonanalyticdispersion law
and anonhomogeneousterm.

These results are used in Sec. VI to prove that indeed the system~1! with the arbitrary
boundary values~4! is solvable. That means that we obtain the time evolution of the spectral data
in terms of the boundary values and the spectral transform of the initial datumq(n,0). An
interesting case corresponds to the growth of the fieldq(n,t) on an initial medium at rest, that is
for q(n,0)[0. The method furnishes in such a case the explicit output values of the HF fields
A1(u,n,t) andA2(u,n,t) for n52`.

II. SOLUTION OF THE SYSTEM. A SUMMARY

The general method to generate solutions of~1! is sketched hereafter. The starting point is the
spectral transformof the initial datumq(n,0), namely, the set of two scalar functionsa andb
defined on the unit circle, a sequence of N discrete pointskj outside the unit disc to each of which
are associated N complex constantsCj . This set is given att50 as

a~z,0!, b~z,0!, z5eiu; Cj~0!, kj , ukj u.1, j51,...,N. ~7!

In the language of the scattering theory,a is called thereflection coefficient, b the transmission
coefficient, N the number ofbound states kj , andCj the relatednormalization coefficients. The
effective construction of these data fromq(n,0) is displayed in Sec. III, but here we just consider
that the set~7! is given and we show how to build from it a solution of~1!. It is worth mentioning
that in the linear limit case ofsmall q(x,0), a(z,0) becomes the Fourier transform ofq ~with
parameter 2z), b(z,0) become 1 and all theCj ’s vanish~no discrete spectrum, or else no solitons
in the linear limit!.

The first step is to construct thespectral transformat time t by solving

] ta5a
g1ḡ

2
~ uI 1~u,t !u22uI 2~u,t !u2!2~g1ḡ!I 1I 2 ~8!

2a
1

2p i
P R

C

dz8

z82z
~g1ḡ!~ uI 1u22uI 2u2! ~9!

1a
1

2p i RC
dz8

z8
~guI 1u22ḡuI 2u2!, ~10!

] tkj50, ~11!
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] tCj~ t !52Cj~ t !
1

2p i
P R

C

dz8

z82kj
~g1ḡ!~ uI 1u22uI 2u2! ~12!

1Cj~ t !
1

2p i RC
dz8

z8
~guI 1u22ḡuI 2u2!. ~13!

Unlike in the continuum case, the transmission coefficientb(z,t) cannot be computed directly
from a(z,t) and it becomes necessary to solve the equation

b~z,t !21] tb~z,t !52
1

2

] tuau2

11uau2
1

1

2ip
P R

C

z

z8

dz8

z82z

] tuau2

11uau2
. ~14!

In the integrals here,P denotes the Cauchy principal value andC the unit circle in the complex
plane.

Although not elementary, in the case whenI 1 andI 2 are given independently ofa andb the
above system of equations islinear and can in principle be explicitly solved as soon as theinitial
data ~7! and the boundary values~4! are known. Before going further, it is already worth remark-
ing that if the quantityI 1I 2 does not vanish, then the evolution for the reflection coefficient
a(z,t) has a nonhomogeneous term. Consequently the solution can grow on theinitial vacuum
q(n,0)50 which has the spectral transform

a~z,0!50, b~z,0!51; N50. ~15!

The second step consists in solving the following system of linear integral equations for the
unknownsf i(k,n,t) for uku,1

S f1~k!

f2~k!
D 5S 10D 1

1

2ip R
C

dz8

z82k

k

z8
~z8!2na~z8!S 2f̄2~z8!

f̄1~z8!
D

1(
j51

N
Cj

kj2k

k

kj
~kj !

2nS 2f̄2~1/k̄ j !

f̄1~1/k̄ j !
D . ~16!

The solution of~1! then reads~last step! for z5eiu

S A1

A2
D 5I 1S f1~z!

znf2~z!
D 1I 2S 2z2n

2~z!

f1~z!
D , ~17!

q~n11,t !52f2
~21!~n,t !, ~18!

with f2
(21) the coefficient ofk21 in the Laurent expansion of the solutionf2(k,n,t). This

achieves the solution of the nonlinear system~1! with the arbitrary boundary values~4! as a
sequence oflinear operations.

An interesting information here is the output values~vs the input values! of the fieldsAj

~values forn→2`) which will be proved to be

S A1

A2
D ——→

n→2`

1

11uau2 S I 1b1I 2āb

2I 1ab̄1I 2b̄
D ~19!

for the input
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SA1

A2
D ——→

n→1`
S I 1I 2D ~20!

~note the necessity to compute not only the reflection coefficienta at time t but also the trans-
mission coefficientb). This result, besides having a physical interest, has the nice property of
beingexplicit. Indeed it does not require solving the integral equations~16!. Actually, when the
system~1! is viewed as describing the interaction of radiation componentsAj with matter, the
relevant~measured! physical information is the output values of the radiation components.

Now we can compute the ratior(2`,t) of transmittedphoton number, defined in~3!, as

r~n,t ! ——→
n→2`

11uau2

ubu2
, ~21!

while we have obviously

r~n,t ! ——→
n→1`

1. ~22!

This is unlike in the continuous case for which we would findr(2`,t)51, and results effectively
from the discrete nature of~1!. Indeed a direct calculation leads to the followingtotal photon
numbernonconservation

uA1~z,n21!u21uA2~z,n21!u25~11uq~n!u2!~ uA1~z,n!u21uA2~z,n!u2!. ~23!

As a consequence we obtain from~3! and the above relation

r21~n,t !5 )
i5n11

`

~11uq~ i ,t !u2! ~24!

which proves in particular that the energy ratior(n,t) indeed does not depend on the variable
u.

III. THE SPECTRAL PROBLEM

In the case of the discrete variable, a spectral problem is understood as a difference equation
for some unknownm(n), which involves explicitly an external parameter, thespectral parameter,
and a set of givenn-dependent coefficients, thepotentials. Solving a spectral problem results in
defining the set ofspectral data~functions of the parameterk) in such a way that they are in
bijection with the set of potentials~in some given class of functions!. We shall work here in the
space of 232 matrices and adopt an equivalent form of the reduced Ablowitz–Ladik spectral
problem used in Ref. 3 to integrate the discrete nonlinear Schro¨dinger equation. In our case we are
able to write the spectral transform as a]̄-problem for the matrixm(k,n), which results in a
simple formulation of the inverse problem together with a very convenient tool for building and
solving nonlinear evolutions, in particular those with nonanalytic dispersion relations and bound-
ary value data.

A. Equation and Jost solutions

Let us consider the discrete spectral problem

m~k,n11!2L21m~k,n!L5Q~n11!m~k,n11!, ~25!

with the following definitions
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L~k!5S 1/z 0

0 zD , z25k, Q~n!5S 0 q~n!

r ~n! 0 D , ~26!

wherek is the spectral parameter which belongs to the domainD5C2$0,̀ %. Up to a change of
n→2n, k→1/k and a rescaling by convenient powers ofz of the matrix elements ofm it is just
the special reduction of the Ablowitz–Ladik spectral problem associated to the integrable discrete
nonlinear Schro¨dinger equation. The solution of~25! possesses the property

det$m~k,n21!%5det$m~k,n!%@12r ~n!q~n!#. ~27!

The solution of this spectral problem goes through the construction of some well chosen
solutions~the Jost solutions! out of some particular asymptotic behaviors. These solutions are
denoted bym6 and are defined by the following discrete integral equations

S m11
2 ~k,n!

m21
2 ~k,n!

D 5S 10D 1S 2 (
i5n11

1`

q~ i !m21
2 ~k,i !

(
i52`

n

ki2nr ~ i !m11
2 ~k,i !

D , ~28!

S m11
1 ~k,n!

m21
1 ~k,n!

D 5S 10D 1S 2 (
i5n11

1`

q~ i !m21
1 ~k,i !

2 (
i5n11

1`

ki2nr ~ i !m11
1 ~k,i !

D , ~29!

S m12
2 ~k,n!

m22
2 ~k,n!

D 5S 01D 1S 2 (
i5n11

1`

kn2 iq~ i !m22
2 ~k,i !

2 (
i5n11

1`

r ~ i !m12
2 ~k,i !

D , ~30!

S m12
1 ~k,n!

m22
1 ~k,n!

D 5S 01D 1S (
i52`

n

kn2 iq~ i !m22
1 ~k,i !

2 (
i5n11

1`

r ~ i !m12
1 ~k,i !

D . ~31!

We will make use also of the notation

m1
65S m11

6

m21
6 D , m2

65S m12
6

m22
6 D . ~32!

The above integral equations allow us to obtain, for some given class of potentials, the
analytical properties of the solutions in the domainD of the complexk-plane, for alln. The
function m1

1(k,n) is holomorphic inside the unit circle, the functionm2
2(k,n) is holomorphic

outside the unit circle, the functionm1
2(k,n) is meromorphic outside the unit circle where it has

a finite numberN2 of simple poleskj
2 , the functionm2

1(k,n) is meromorphic inside the unit
circle where it has a finite numberN1 of simple poleskj

1 . Moreover the two solutionsm6 are
continuous on the unit circle.
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B. Riemann–Hilbert problem and spectral data

The method to obtain from the integral equations definingm6 the related Riemann–Hilbert
problem is standard. We proceed through direct computation of the difference of the two column
vectorsm1

1 andm1
2 and obtain the integral equation for this difference. It obeys the same equation

as the quantity2a2(k)k2nm2
2(k,n) ~the quantitya2 is defined below! and, based on the unique-

ness of the solution of such equations, we conclude

m1
1~k,n!2m1

2~k,n!52a2~k!k2nm2
2~k,n!, uku51. ~33!

The same approach is applied tom2
6 and we get

m2
1~k,n!2m2

2~k,n!5a1~k!knm1
1~k,n!, uku51, ~34!

where thereflection coefficientsa2(k) anda1(k) are defined~still for uku51) as

a2~k!5(
2`

1`

kir ~ i !m11
2 ~k,i !, a1~k!5(

2`

1`

k2 iq~ i !m22
1 ~k,i !. ~35!

For future use we define also

b2~k!512(
2`

1`

q~ i !m21
2 ~k,i !, b1~k!512(

2`

1`

r ~ i !m12
1 ~k,i ! ~36!

which are called thetransmission coefficients. Note that, due to the analytical properties ofm21
2

~resp.m12
1 ), b2(k) can be continued analytically inuku>1 ~resp.b1(k) in uku<1). Actually the

vectorsm1
2 andm2

1 have poles where the transmission coefficientsb6(k) have poles and we
derive from the integral equations~after multiplication byk2kj

6 and limit k→kj
6)

Res
kj

2

$m1
2~k,n!%5S 01D ~kj

2!2nCj
21S 2 (

i5n11

1`

q~ i !Res
kj

2

$m21
2 ~k,i !%

2 (
i5n11

1`

~kj
2! i2nr ~ i !Res

kj
2

$m11
2 ~k,i !%

D , ~37!

Res
kj

1

$m2
1~k,n!%5S 10D ~kj

1!nCj
11S 2 (

i5n11

1`

~kj
1!n2 iq~ i !Res

kj
1

$m22
1 ~k,i !%

2 (
i5n11

1`

r ~ i !Res
kj

1

$m12
1 ~k,i !%

D ~38!

with the following definitions of theCj
6’s

Cj
25 (

i52`

1`

~kj
2! i r ~ i !Res

kj
2

$m11
2 ~k,i !%, ~39!

Cj
15 (

i52`

1`

~kj
1!2 iq~ i !Res

kj
1

$m22
1 ~k,i !% ~40!
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which are called thenormalization coefficients.
Since the vectorsm1

1 andm2
2 are holomorphic, we can write down their integral equations

evaluated respectively inkj
1 and kj

2 and compare them to the above integral equations for the
residues. We obtain

Res
kj

2

$m1
2~k,n!%5~kj

2!2nCj
2m2

2~kj
2 ,n!, ~41!

Res
kj

1

$m2
1~k,n!%5~kj

1!nCj
1m1

1~kj
1 ,n!. ~42!

Finally the Riemann–Hilbert problem~33! and ~34! is completed by the behaviors of the
solutionm6 on the boundariesuku50 anduku5` of D , which read

m1
1~k,n! ——→

k→0
S 10D , m2

2~k,n! ——→
k→`

S 01D . ~43!

The vectorial Riemann–Hilbert problem~33!, ~34! with singular points given by~41!, ~42! and the
boundary behaviors~43! constitutes a closed problem which will be solved in the next section.

The behaviors ofm1
2(k,n) at largek and of m2

1(k,n) at small k will be useful for the
following and we define

m11
2 ~k,n! ——→

k→`

f ~n!. ~44!

Then

m21
2 ~k,n! ——→

k→`

r ~n! f ~n! ~45!

and one easily gets thatf (n) satisfies the integral equation

f ~n!512 (
n11

1`

q~ i !r ~ i ! f ~ i !, ~46!

the solution of which is

f ~n!5 )
n11

1`

@12q~ i !r ~ i !#. ~47!

The same computation holds form2
1(k,n) and we have finally

m2~k,n! ——→
k→`

S f ~n! 0

r ~n! f ~n! 1D , ~48!

m1~k,n! ——→
k→`

S 1 q~n! f ~n!

0 f ~n!
D . ~49!

It can be shown easily by using~33! and ~34! that the determinant of the matrixm(k,n) is
analytic in the whole domainD . Hence it follows from the Liouville theorem and the boundary
values~48!, ~49! that
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det$m~k,n!%5 f ~n!. ~50!

Note that, within the reductionr52q̄, f (n)5r(n)21 as given by~24!.

C. Asymptotic behaviors and unitarity relation

By taking the limit at largen directly on the integral equations, the functionsm6 obey for
uku51

m2~k,n! ——→
n→1`

S 1 0

k2na2~k! 1D , ~51!

m2~k,n! ——→
n→2`

S b2~k! 2knâ2~k!

0 b̂2~k!
D , ~52!

m1~k,n! ——→
n→1`

S 1 kna1~k!

0 1 D , ~53!

m1~k,n! ——→
n→2`

S b̂1~k! 0

2k2nâ1~k! b1~k!
D , ~54!

where the followingalternative scattering dataare defined as

â2~k!5(
2`

1`

k2 iq~ i !m22
2 ~k,i !, â1~k!5(

2`

1`

kir ~ i !m11
1 ~k,i !, ~55!

b̂2~k!512(
2`

1`

r ~ i !m12
2 ~k,i !, b̂1~k!512(

2`

1`

q~ i !m21
1 ~k,i !. ~56!

The quantitiesâ6 are also called the reflection coefficientsto the left ~referring to the limit
n→2`) whena6 are the reflection coefficientsto the right.

It is easy to prove the following relations

â25
a1b2

12a2a1 , â15
a2b1

12a2a1 , ~57!

b̂25
b1

12a2a1 , b̂15
b2

12a2a1 . ~58!

Indeed, by using the Riemann–Hilbert problems~33! and ~34! for m ~still for uku51) we have

â25(
2`

1`

k2 iq~ i !m22
1 ~k,i !2a1(

2`

1`

q~ i !m21
1 ~k,i !

5a1S 12(
2`

1`

q~ i !m21
1 ~k,i !D 5a1b̂1, ~59!
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b̂1512(
2`

1`

q~ i !m21
2 ~k,i !1a2(

2`

1`

k2 iq~ i !m22
2 ~k,i !

5b21a2â2, ~60!

and so on for the other relations.
Now from ~27! the determinant ofm(k,n) as n→2` can be computed and, by using the

behaviors ofm(k,n), it leads to the relation

b2b15~12a2a1!)
2`

1`

@12r ~ i !q~ i !# ~61!

which is called theunitarity relation.

D. Reduction

A reductiondenotes a simple~possibly algebraic! relation between the potentials~herer (n)
andq(n)) for which one can derive the counterpart relations for the spectral data. In other word
a reduction is a relation which conserves the bijection between potentials and spectral data.

In the case

r ~n!52q̄~n! ⇔ Q̄~n!5s2Q~n!s2 , ~62!

it is easy to check that the function

n~k,n!5s2m~1/k̄,n!s2 , s25S 0 2 i

i 0 D , ~63!

obeys the same equation asm(k,n). To compare them it is enough to consider their behaviors as
n→6`. Since

s2m
2~1/k̄,n!s2 ——→

n→1`
S 1 2knā2~1/k̄!

0 1
D , ~64!

we conclude that

s2m
2~1/k̄,n!s25m1~k,n!, ~65!

a2~1/k̄!52a1~k!. ~66!

The same calculation atn→2` gives

b2~1/k̄!5b1~k!, ~67!

and also that the alternative scattering data obey similar relations.
For the discrete spectrum, the relation~65! implies

Res
kj

1

$m2
1~k,i !%5Res

kj
1
S 2m̄21

2 ~1/k̄,i !

m̄11
2 ~1/k̄,i !

D . ~68!

Using the basic relations
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Res
k0

$ f ~1/k̄!%52~ k̄0!
2Res
1/k̄0

$ f ~k!%, Res
k0

$ḡ~k!%5Res
k0

$g~k!%, ~69!

the equation~68! becomes

Res
kj

1

$m2
1~k,i !%52~kj

1!2Res
1/k̄j

1
S 2m̄21

2 ~k,i !

m̄11
2 ~k,i !

D . ~70!

This last equation holds if

N15N2, kj
15

1

k̄ j
2

~71!

for which it reads

Res
kj

1

$m2
1~k,i !%52~kj

1!2Res
kj

2
S 2m̄21

2 ~k,i !

m11
2 ~k,i !

D . ~72!

The above relation together with~65! and ~71! then implies

Cj
1

kj
1 5

C̄j
2

k̄ j
2
. ~73!

In the case of the reduction~62! we will use the following simplified notations~already used in
Sec. II!

a5a2, b5b2, Cj5Cj
2 , kj5kj

2 , N5N15N2. ~74!

In order to not over complicate this paper, we do not consider the other reductionr5q̄ for which
similar results can be easily obtained, but which corresponds to a spectral problem without dis-
crete spectrum.

Last, it is useful for the following to rewrite the asymptotic boundary behaviors~51!–~54!
within the reduction~and with the above notations! and for uzu51 as

S b znāg

0 ḡ D ←
n→2`

m2~z,n! ——→
n→1`

S 1 0

z2na 1D , ~75!

S g 0

2z2naḡ b̄
D ←
n→2`

m1~z,n! ——→
n→1`

S 1 2znā

0 1 D , ~76!

g5
b

11uau2
. ~77!

Similarly, the unitarity relation~61! together with the definition~47! reads

ubu25~11uau2! f ~2`!. ~78!
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IV. THE INVERSE SPECTRAL PROBLEM

The inverse spectral problemconsists in reconstructing the potentialsq(n) andr (n) from the
spectral data

a6~k!, b6~k!, uku51;

Cj
6 , kj

6 , ukj
1u,1, j51, . . . ,N1, ukj

2u.1, j51, . . . ,N2. ~79!

A simple way of doing this is to reformulate the analytical properties of the matrixm(k,n) in the
domainD as a]̄-problem.

A. Inverse problem as a ̄-problem

Indeed, the set of fundamental relations~33!, ~34!, ~41! and ~42!, which contain all the
information about the analytical properties ofm(k,n), can be summarized in the formula

]

] k̄
m~k,n!5m~k,n!R~k,n!, kPD , ~80!

where thespectral transformcontains all the information and reads

R~k,n!5S 0 a1~k!d1~k,1!

2a2~k!d2~k,1! 0 D S k2n 0

0 knD

22ipS 0 (
j51

N1

Cj
1d~k2kj

1!

(
j51

N2

Cj
2d~k2kj

2! 0
D S k2n 0

0 knD . ~81!

The distributionsd6(k,1) are defined in the Appendix and the distributiond(k) is normalized by
requiring that**dk ` dk̄d(k)51. Using the method and tools described in the Appendix, and for
the behaviors

m1~k,n! ——→
k→0

S 10D , m2~k,n! ——→
k→`

S 01D , ~82!

we have the following solution of this]-problem

m~k,n!511
1

2ipEED
dl`dl

l2k
m~l,n!R~l,n!S k/l 0

0 1D . ~83!

Due to the particular structure~81! of R(k), the above matrix valued equation has actually to be
understood as two vectorial integral equations, form1

1(k,n) and form2
2(k,n). As will be seen

hereafter, the knowledge of these two vectors is sufficient for completely solving the problem.

B. Reconstruction of the potentials

The potentials are obtained from the asymptotic expansion of the Jost solutionsm2
2 andm1

1 of
~25! via the formulae

q~n11!52m12
2~21!~n!, r ~n11!52m21

1~1!~n!, ~84!
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wherem12
2(21)(n) is the coefficient ofk21 in the Laurent expansion fork→` of m12

2 (k,n), and
m21

1(1)(n) the coefficient ofk in the Taylor expansion fork→0 of m21
1 (k,n). In particular from

~83! we get

r ~n11!5
1

2ip R
C

dza2~z!z2n22m22
2 ~z,n!2(

j51

N2

Cj
2~kj

2!2n22m22
2 ~kj

2 ,n!, ~85!

q~n11!5
1

2ip R
C

dza1~z!znm11
1 ~z,n!1(

j51

N1

Cj
1~kj

1!nm11
1 ~kj

1 ,n!. ~86!

One could easily check that the potentials given by~86! and~85! do obey the reduction~62! when
m(k,n) obeys~65!, a(k) obeys~66!, Cj

6 obeys~73! andkj
6 obeys~71!.

Finally the transmission coefficientsb2(k) andb1(k) are computed from their definitions
~36!, where the entriesm21

2 (k,n) andm12
1 (k,n) are obtained from the solutionm1

1 andm2
2 by using

the explicit relations~33!, ~34!. Equivalently one can use the relations~58! and the behaviors~52!
and ~54! to get (uzu51)

b1~z!5@12a1a2# lim
n→2`

m22
2 ~z,n!, ~87!

b2~z!5@12a1a2# lim
n→2`

m11
1 ~z,n!. ~88!

Remark:From the other components ofm1
1 andm2

2 we obtain in~25! the following relations

m22
2~21!~n!5 (

n11

`

r ~ i !q~ i11!, m11
1~1!~n!5 (

n11

`

r ~ i11!q~ i !. ~89!

V. THE METHOD OF THE ̄-PROBLEM

We have shown in the preceding sections that the spectral problem~25! can be mapped to
the ]̄-problem~80!, namely,

]

] k̄
m~k!5m~k!R~k!, kPD , ~90!

with the boundary behaviors~82!. The solution of such a boundary value problem in the complex
plane solves the Cauchy–Green integral equation

m~k!511
1

2ipEED
dl`dl

l2k
m~l!R~l!S k/l 0

0 1D . ~91!

The purpose of the following is to show that the above integral equation, for the unknown
m and the datumR, can be taken as thestarting tool. More precisely we shall show how a
parametric dependence ofR ~on an integern and on a realt) induces the spectral problem~25!
and a nonlinear evolution equation.

A. The principal spectral problem

We restrict this study to off-diagonal matricesR(k) and consider the integral equation~91! as
the given tool. IfR(k) depends now on an external integern, the solutionm(k,n) solves then
the ]̄-problem~90! with the behaviors
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m~k,n! ——→
k→`

S 1 g~n!

0 f ~n!
D 1km~1!~n!1•••, ~92!

m~k,n! ——→
k→`

S f 8~n! 0

h~n! 1D 1
1

k
m~21!~n!1•••, ~93!

where the functionsf , f 8, g andh have to be evaluated. The determinant ofm(k,n) is analytic in
D as indeed the off-diagonal structure ofR(k,n) implies

]

] k̄
det$m~k,n!%50, ~94!

and from the above behavior the Liouville theorem implies

det$m~k,n!%5 f ~n!5 f 8~n!. ~95!

We chose now the following explicit dependence ofR(k,n) on the discrete variablen

R~k,n11!5L~k!21R~k,n!L~k!, ~96!

with L(k) defined in~26!. The basic fundamental property which allows us to derive from the
choice~96! a differenceequation form in the variablen is the following

]

] k̄
H~k,n!50, H~k,n!5m~k,n11!L~k!21m~k,n!21L~k!. ~97!

The above functionH(k,n) can then be reconstructed from its behaviors on the boundary of
D (k5` andk50) which read from~92! and ~93!

H~k,n! ——→
k→`

1

f ~n! S f ~n!2g~n11!m21
~1!~n! g~n11!

2 f ~n11!m21
~1!~n! f ~n11!

D , ~98!

H~k,n! ——→
k→`

1

f ~n! S f ~n11! 2 f ~n11!m12
~21!~n!

h~n11! f ~n!2h~n11!m12
~21!~n!

D . ~99!

SinceH(k,n) is analytic, these two behaviors are equal, which implies the following four equa-
tions

f ~n11!5 f ~n!2g~n11!m21
~1!~n!, f ~n11!5 f ~n!2h~n11!m12

~21!~n!,
~100!

g~n11!52 f ~n11!m12
~21!~n!, h~n11!52 f ~n11!m21

~1!~n!,

which are solved by firstdefiningthepotentialsas

q~n11!52m12
~21!~n!, r ~n11!52m21

~1!~n!, ~101!

and hence

g~n!5q~n! f ~n!, h~n!5r ~n! f ~n!, ~102!

with the recursion relation forf (n)
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f ~n!5 f ~n11!@12r ~n11!q~n11!# ~103!

of which the solution is indeed given by~47!.
Finally, the solution of the]̄-problem~97! reads

H~k,n!5
1

12r ~n11!q~n11! S 1 q~n11!

r ~n11! 1 D ~104!

which can be written with~97! as thediscrete spectral problem

m~k,n11!L~k!21m~k,n!21L~k!5@12Q~n11!#21, ~105!

where

Q~n!5S 0 q~n!

r ~n! 0 D . ~106!

It is convenient for the following to define the quantity

U~n!5@12Q~n11!#21 ~107!

such that the equation form(k,n) reads

m~k,n11!5U~n!L~k!21m~k,n!L~k! ~108!

which is precisely the spectral problem~25!.

B. Nonanalytic dispersion relations. A theorem

We consider now thatR(k,n) depends also on an external realt and address the problem of
computing the expression of the time dependence of the solutionm of ~91!. The result can be
stated as a theorem.

Theorem:When the spectral transform R(k,n,t) evolves according to

Rt~k,n,t !5@R~k,n,t !,V~k,t !#1M ~k,n,t !, ~109!

where

M ~k,n11,t !5L~k!21M ~k,n,t !L~k!, @L~k!,V~k,t !#50, ~110!

and whereV(k,t) is the nonanalytic dispersion relation

V~k,t !5
1

2ipEED
dl`dl

l2k

]V~l,t !

]l
S k/l 0

0 1D ~111!

the potential Q obeys the following evolution

Qt~n11,t !5Fs3 ,
1

2ipEED
dl`dl

2l
T~l,n,t !G , ~112!

where
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T~k,n,t !5L~k!21m~k,n,t !HM ~k,n,t !2
]V~k,t !

] k̄
J L~k!m21~k,n11,t !. ~113!

This theorem is proved hereafter.

1. The auxiliary spectral problem

Let us define the matrix

V~k,n,t !5$m t~k,n,t !2m~k,n,t !V~k,t !%m21~k,n,t !, ~114!

and compute its]̄-derivative which, from~80!, ~109! and ~110!, obeys

]V~k,n,t !

] k̄
5m~k,n,t !HM ~k,n,t !2

]V~k,t !

] k̄
J m21~k,n,t !. ~115!

To solve the above]̄-problem we need the behaviors ofV1 ask→0 andV2 ask→`. Since

m~k,n,t ! ——→
k→0

S 1 q~n,t ! f ~n,t !

0 f ~n,t !
D 1km~1!~n,t !1•••, ~116!

m~k,n,t ! ——→
k→`

S f ~n,t ! 0

r ~n,t ! f ~n,t ! 1D 1
1

k
m~21!~n,t !1•••, ~117!

it is easy to obtain, thanks also to the choice~111! ~it would not be so in the case of a regular
dispersion relation!

V1~k,n,t ! ——→
k→0

S 00D , V2~k,n,t ! ——→
k→`

S 00D . ~118!

Consequently the solution reads

V~k,n,t !5
1

2ipEED
dl`dl

l2k
S~l,n,t !S k/l 0

0 1D , ~119!

where we have defined

S~k,n,t !5m~k,n,t !HM ~k,n,t !2
]V~k,t !

] k̄
J m21~k,n,t !. ~120!

Now, with the above value ofV, the definition~114! can be written as theauxiliary spectral
problem

m t~k,n,t !5V~k,n,t !m~k,n,t !1m~k,n,t !V~k,t !. ~121!

2. Fundamental property of V(k,n,t)

For simplicity of notations, we omit from now on the variablet. By direct computation the
matrix S obeys the equation

S~k,n11!U~n!5U~n!L~k!21S~k,n!L~k!. ~122!
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The next step consists in seeking an analogous property forV(k,n), by computing the quantities
U(n)21V(k,n11) on one side andL(k)21V(k,n)L(k)U(n)21 on the other side. Using

L~l!21S~l,n!L~l!U~n!21S k/l 0

0 1D 2L~k!21S~l,n!S k/l 0

0 1DL~k!U~n!21

5
l2k

l S 0 2q~n11!s11~l,n!1ls12~l,n!

r ~n11!s22~l,n!2~1/l!s21~l,n! 0 D ,
we obtain finally the required property ofV(k,n)

U~n!21V~k,n11!2L~k!21V~k,n!L~k!U~n!215P~n!, ~123!

P~n!5
1

2ipEED
dl`dl

2l
@s3 ,T~l,n!#, ~124!

T~k,n!5L~k!21S~k,n!L~k!U~n!215U~n!21S~k,n11!. ~125!

We have used here above~122! to rewrite T in a more convenient form, and finally from the
definition ~120! of S(k,n) and the spectral problem~25! it reads

T~k,n!5L~k!21m~k,n!HM ~k,n!2
]V~k!

] k̄
J L~k!m21~k,n11!. ~126!

Note that the matrixT(k,n) obeys a property similar toS(k,n) since it can be checked directly
that

U~n21!T~k,n21!5L~k!T~k,n!U~n!L~k!21. ~127!

3. The evolution equation

The nonlinear evolution ofQ(n,t) is now obtained in the usual way by requiring the com-
patibility between~108! and ~121! which reads

]

]t
m~k,n11,t !5

]

]t
$U~n!L~k!21m~k,n!L~k!%

5V~k,n11,t !m~k,n11,t !1m~k,n11,t !V~k,t !. ~128!

By means of~123! it is then easy to obtain the equation

Ut~n!5U~n!P~n!U~n!, ~129!

which readily gives the evolution~112! sinceU(n)5@12Q(n11)#21. This ends the proof of the
theorem.

C. Reduction

If we consider the reductionr (n)52q̄(n) the matrices

V~k,t !5S v1~k,t ! 0

0 v2~k,t !
D , ~130!
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M ~k,n,t !5S 0 m2~k,t !

m1~k,t ! 0 D S k2n 0

0 knD ~131!

must be compatible with the preservation of the structure ofR(n) in the time evolution equation
~109!. We choose, therefore,v1 andv2 analytic inside and outside the unite circle with limit
values on the two sides of the circle satisfying the symmetry properties (z5eiu)

v1
2~z,t !5v2

1~z,t !, v2
2~z,t !5v1

1~z,t !, ~132!

and we choosem1 andm2 as

m1~k,t !5m2~k,t !d2~k,1![m~z,t !d2~k,1!,
~133!

m2~k,t !5m1~k,t !d1~k,1![m̄~z,t !d1~k,1!,

where

z5
k

uku

andm(z,t) is a givenfunctiondefined on the circleuku51. Note that the discontinuity ofv1

p~z,t ![v1
1~z,t !2v1

2~z,t ! ~134!

is related to the discontinuity ofv2 by the formula

v2
1~z,t !2v2

2~z,t !52 p̄~z,t !. ~135!

The analytic properties ofv1 andv2 are summarized by the formulae (z5k/uku)

]v1

] k̄
5p~z!d~k,1!, ~136!

]v2

] k̄
52 p̄~z!d~k,1!, ~137!

where the distributiond(k,1) is defined in the Appendix. Requiring thatv1→0 for k→0 and
v2→0 for k→`, V(k) is defined by the following Cauchy–Green formula

V~k!5
1

2p i RC
dz

z2k S p~z,t ! 0

0 2 p̄~z,t ! D S k/z 0

0 1D . ~138!

It results that

v1~k!5v2~1/k̄! ~139!

in agreement with the conditions on the boundaries~132!.
It can be shown that with the choices indicated in~132! and~133! the evolution equation~112!

is compatible with the reductionr52q̄. This evolution reads

qt~n11,t !5
1

2p

1

f ~n11,t !E2p

1p

du g~u,n,t !, ~140!
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where

g~u,n!52v1
2~z!m11

2 ~z,n!m12
2 ~z,n11!1v1

1~z!m11
1 ~z,n!m12

1 ~z,n11!

1v2
2~z!zm12

2 ~z,n!m11
2 ~z,n11!2v2

1~z!zm12
1 ~z,n!m11

1 ~z,n11!1a~z!~v1
2~z!

2v2
2~z!!z2nm12

2 ~z,n!m12
2 ~z,n11!1a~z!~v1

1~z!2v2
1~z!!zn11m11

1 ~z,n!m11
1 ~z,n11!

2m~z!z2nm12
2 ~z,n!m12

2 ~z,n11!1m̄~z!zn11m11
1 ~z,n!m11

1 ~z,n11! ~141!

with z5eiu ~remember thata[a2 anda1(z)52ā(z)). Note that in computingT(l,n) in ~112!
the term containingV(k,t) must be written as follows

L21m~n!
]V

] k̄
Lm21~n11!5

]

] k̄
~L21m~n!VLm21~n11!!

2L21m~n!@R~n!,V#Lm21~n11! ~142!

which is a well defined local formulation of a] -problem for a sectionally holomorphic function.
It is convenient, by using equations~33! and ~34!, to rewrite~141! in terms ofm1

1 andm2
2

g~u,n!5p~z!m11
1 ~z,n!m12

2 ~z,n11!1 p̄~z!zm12
2 ~z,n!m11

1 ~z,n11!

2m~z!z2nm12
2 ~z,n!m12

2 ~z,n11!1m̄~z!zn11m11
1 ~z,n!m11

1 ~z,n11! ~143!

which shows explicitly that the evolution equation depends only on the discontinuity ofV(k) on
the unit circle.

VI. INTEGRABLE DISCRETE INITIAL-BOUNDARY VALUE PROBLEM

By using the tools previously developed we prove now that the nonlinear system~1! is
integrable when it is related to the initial boundary value~5!. We rewrite hereafter this system in
the variablez5eiu and with the relation~24! as

qt~n,t ! )
i5n11

`

~11uq~ i ,t !u2!5
1

2pE2p

1p

du einu~A1*A2!~z,n,t !, ~144!

A1~z,n,t !2A1~z,n21,t !5z2nq~n,t !A2~z,n,t !, ~145!

A2~z,n,t !2A2~z,n21,t !52znq̄~n,t !A1~z,n,t !, ~146!

where the interaction term is defined as

~A1*A2!~z,n,t !5g~u,t !A1~z,n21,t !Ā2~z,n,t !1ḡ~u,t !A1~z,n,t !Ā2~z,n21,t !. ~147!

Theorem: With the datum of the initial value q(n,0) and the following arbitrary boundary
values as n→1`

A1~z,n,t !→I 1~z,t !, A2~z,n,t !→I 2~z,t !, ~148!

the above system is solvable by the spectral transform method.
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A. Proof of integrability

The proof is performed by showing that the evolution~144! can actually be written under the
form ~140!. This then gives a unique definition of the functionsm(k) andv(k)1v̄(k) for which
the two equations~140! and ~144! are identical. Hence the evolution~109! of the spectral trans-
form R(k,t) is uniquely given via~132! and ~133!.

The first useful property is thatthe following 5 vectors

S A1~z,n!

z2nA2~z,n!
D , S m11

6 ~z,n!

m21
6 ~z,n!

D , z2nS m12
6 ~z,n!

m22
6 ~z,n!

D , ~149!

solve the equation~146!. Then, by comparison of their asymptotic behaviors asn→1` given in
~148! and in ~53!–~52!, we get

S A1~z,n!

z2nA2~z,n!
D 5I 1~z!S m11

1 ~z,n!

m21
1 ~z,n!

D 1I 2~z!z2nS m12
2 ~z,n!

m22
2 ~z,n!

D . ~150!

Next, to compute the product (A1*A2)(z,n) we make use of the Riemann–Hilbert relations

m1
2~z,n!2m1

1~z,n!5a2~z!z2nm2
2~z,n!, ~151!

m2
2~z,n!2m2

1~z,n!52a1~z!znm1
1~z,n!, ~152!

and rewrite it in terms only ofm1
1 andm2

2

zn11~A1*A2!~z,n11!

52@guI 1u22ḡuI 2u2#m11
1 ~n!m12

2 ~n11!2@ ḡuI 1u22guI 2u2#zm12
2 ~n!m11

1 ~n11!

2~g1ḡ!I 1I 2z
2nm12

2 ~n!m12
2 ~n11!1~g1ḡ!I 1I 2z

n11m11
1 ~n!m11

1 ~n11!. ~153!

Then, thanks to the expression~47!, the two equations~140! and ~144! are identical if and
only if

p~z,t !52g~u,t !uI 1~u,t !u21ḡ~u,t !uI 2~u,t !u2, ~154!

m~z,t !5~g~u,t !1ḡ~u,t !! Ī 1~u,t !I 2~u,t !. ~155!

Finally the theorem is proved and it remains to compute the evolution of the spectral trans-
form.

B. Evolution of the spectral transform

1. Evolution of a(z,t )

The time evolution ofR(k,n,t) is given by~109! with M andV defined in~133! and in~138!.
Taking into account the structure~81! of R(k,n,t) we have

] ta~z,t !5@v1
2~z,t !2v2

2~z,t !#a~z,t !2m~z,t !, ~156!

] tkj50, ] tCj~ t !5@v1~kj ,t !2v2~kj ,t !#Cj~ t !, ~157!

where from~138! and the Sokhotski–Plemelj formula we have
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v1
2~z,t !2v2

2~z,t !52
1

2
p~z,t !2

1

2
p̄~z,t !1

1

2p i
P R

C

dz8

z82z
p~z8,t !

z

z8

1
1

2p i
P R

C

dz8

z82z
p̄~z8,t !, ~158!

v1~kj ,t !2v2~kj ,t !5
1

2p i RC
dz8

z82kj
p~z8,t !

kj
z8

1
1

2p i RC
dz8

z82kj
p̄~z8,t !, ~159!

and the functionsp(z,t) andm(z,t) are given in~154! and ~155!.
As a result the evolution equation ofa andCj can be written

] ta5a
g1ḡ

2
~ uI 1~u,t !u22uI 2~u,t !u2!2~g1ḡ!I 1I 2

2a
1

2p i
P R

C

dz8

z82z
~g1ḡ!~ uI 1u22uI 2u2!

1a
1

2p i RC
dz8

z8
~guI 1u22ḡuI 2u2!, ~160!

] tCj~ t !52Cj~ t !
1

2p i
P R

C

dz8

z82kj
~g1ḡ!~ uI 1u22uI 2u2!

1Cj~ t !
1

2p i RC
dz8

z8
~guI 1u22ḡuI 2u2!. ~161!

2. Evolution of b(z,t)

The definition~58! allows us to obtain readily

b̂ t
1

b̂1
2

b t

b
52

~ uau2! t
11uau2

, ~162!

which actually can be understood as a Riemann–Hilbert problem on the unit circle. Its solution
reads

uku.1:
b̂ t

1

b̂1
5

]

]t S ubu2

11uau2D 11uau2

ubu2
2

1

2p i RC
dz8

z82k

~ ua~z8!u2! t
11ua~z8!u2

, ~163!

uku,1:
b t

b
52

1

2p i RC
dz8

z82k

k

z8

~ ua~z8!u2! t
11ua~z8!u2

. ~164!

Hence, writing the above equation fork5z(120), we get the evolution~14!.
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C. Evolution of the spectral transform from the Lax pair

For completeness, we rederive hereafter the preceding formula~evolution ofa andb, in the
absence of bound states for simplicity!, by using the traditional approach for which the starting
tool is the Lax pair~25!, ~121!. The method consists simply in evaluating the asymptotic boundary
values asn→6` on the auxiliary spectral problem~121!, in which ~forget for a while the
(n,t)-dependence!

V~k!5
1

2ip
EE

D

dl`dl

l2k
m~l!SM ~l!2

]V~l!

]l̄
D m21~l!S k/l 0

0 1
D . ~165!

By using the identity~142!, the equation~121! can be more conveniently written as

m t~k,n,t !5X~k,n,t !m~k,n,t !, ~166!

where

X~k!5
1

2ipEED
dl`dl

l2k
m~l,n,t !~M ~l!1@R~l!,V~l!#!m21~l!S k/l 0

0 1D . ~167!

By inserting in the above equation the explicit forms ofR(k,n,t) given in ~81! with ~66! and no
bound states, ofV(k,t) given in ~138!, and ofM (k,n,t) given in ~131! with ~133!, we get finally

X~k,n,t !5
1

2ip R dz8

z82k

1

f ~n!
x~z8,n,t !S k/z8 0

0 1D , ~168!

with the following definition

x~z!5zn@m̄1~v1
12v2

1!ā#S 2m11
1 m21

1 ~m11
1 !2

2~m21
1 !2 m11

1 m21
1 D

1z2n@m2~v1
22v2

2!a#S m12
2 m22

2 2~m12
2 !2

~m22
2 !2 2m12

2 m22
2 D . ~169!

The main tool is now the asymptotic boundary behaviors~75! and~76! of m6 which allows us
to obtain, by taking the limit asn→1` of zn] tm21

2 (z,n,t), the relations

a t~k!52
1

2
@m2~v1

22v2
2!a#~k!1 lim

n→`

1

2p i
P R dz

z2k S kz D n11

@m2~v1
22v2

2!a#~z!,

052
1

2
@m̄1~v1

12v2
1!a#~k!1 lim

n→`

1

2p i
P R dz

z2k S z

kD
n

@m̄1~v1
12v2

1!a#~z!.

Consequently, with the formula~see Appendix!

lim
n→`

1

2p i
P R dz

z2k S kz D nF~z!52
1

2
F~k!, uku51, ~170!

the preceding relations result precisely in the required evolution~156!.
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In the same way, by taking the limit asn→2` of ] tm11
2 (z,n,t), we readily obtain the

required evolution~14! of the transmission coefficientb(z,t) ~note that there, one should use also
the unitarity relation~78!!.

D. Time evolution of f (n )

It could be useful to have also explicitly the time evolution of the quantityf (n). From~50! we
have

f t~n!5 f ~n! tr$m t~k,n!m21~k,n!% ~171!

and then using the auxiliary spectral problem~171!

f t~n!5 f ~n! tr$X~k,n!%. ~172!

From the expression~173! we obtain that the trace ofX(k,n) is k-independent and reads

tr$X~k,n!%5
1

f ~n!

1

2ip R dz

z
$znm̄m11

1 m21
1 2z2nmm12

2 m22
2 1~p1 p̄!m12

2 m21
1

2~v1
12v2

1!m12
1 m21

1 1~v1
22v2

2!m12
2 m21

2 . ~173!

Due to the analyticity of the function

1

k
~v1~k!2v2~k!!m12~k!m21~k!

inside and outside of the circle the last two terms in the r.h.s. vanish and we obtain for the
evolution equation off (n)

f t~n!5E
2p

1p

du$znm̄m11
1 m21

1 2z2nmm12
2 m22

2 1~p1 p̄!m12
2 m21

1 %. ~174!

This result can also be expressed in terms of the physical quantitiesAj and I j by inverting ~150!
to get on the unit circle

m11
1 5m22

2 5
A1Ī 11Ā2I 2
uI 1u21uI 1u2

,

m21
1 52m12

2 52z2n
Ā1I 22A2Ī 1
uI 1u21uI 1u2

and then by inserting these formulae and those forp1 p̄ andm in ~154! and~155! into ~179!. We
obtain finally

f t~n!5
1

2pE2p

p

dq~g1ḡ!
uI 1u2uA2u22uI 2u2uA1u2

uI 1u21uI 2u2
. ~175!

Note thatf (n) is conserved ifg is pure imaginary.
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APPENDIX: MATHEMATICAL TOOLS

1. Basic distributions

The distributionsd6(l,1) andd~l,1! have support on the circleC of radius 1 in the complex
l-plane and are defined by the following formulae

EE
D

dl`dld6~l,1! f ~l!5 R
C

dz f ~~170!z!, ~A1!

EE
D

dl`dld~l,1! f ~l!5 R
C

dz f ~z!, ~A2!

or, equivalently, by

EE
D

dl`dld6~l,1! f ~l!5 i E
2p

p

du eiu f ~~170!eiu!, ~A3!

EE
D

dl`dld~l,1! f ~l!5 i E
2p

p

du eiu f ~eiu!. ~A4!

Note that the distributionsd6(l,1) can operate on functions which have defined left or right limit
onC , while the distributiond(l,1) can operate on functions continuous onC or with support on
C .

By complex conjugation of the equation~A3! and by the change of variableu→2u, we
obtain

EE
D

dl`dl d6~l,1! f ~l!5 i E
2p

p

du eiu f ~~170!e2 iu!. ~A5!

Next, by means of the change of variablel→1/l ~remember that the domainD does not contain
the pointl50) andu→2u, we obtain

EE
D

dl`dld6S 1l,1D f ~l!5 i E
2p

p

du eiu f ~~160!e2 iu!, ~A6!

and consequently

d6S 1l,1D5d7~l,1!. ~A7!

Now, through the change of variablel→l, we obtain

EE
D

dl`dld6~l,1! f ~l!5 i E
2p

p

du eiu f ~~170!e2 iu! ~A8!

which implies the second symmetry property

d6~l,1!5d6~l,1!. ~A9!

These two relation naturally leads to
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d1~l,1!5d2S 1l,1D . ~A10!

Similar symmetry properties can be obtained ford(l,1).

2. The generalized -formula

Let F1 P C1(D1) where D1 is the open disk of radius 1 centered in the origin and
F2 P C1(CD1), let F1 andF2 satisfy the Ho¨lder condition on the circleC of radius 1 and let
F2 vanish at largez. Then by notingF(z) the function defined asF1(z) for z P D1 and as
F2(z) for zP D2[CD1 we have

F~z!5
1

2p i RC
F1~z!2F2~z!

z2z
dz1

1

2p i EED1

]F/]l

l2z
dl`dl1

1

2p i EED2

]F/]l

l2z
dl`dl,

~A11!

where the circleC is anticlockwise oriented.
If we define the]–derivative of a functionF(z) discontinuous onC as follows

]F

] z̄
5~F1~z!2F2~z!!d~z,1!1fD1~z!

]F

] z̄
1fD2~z!

]F

] z̄
, z5

z

uzu
, ~A12!

wherefA(z)51 for z P A andfA(z)50 for z¹A the generalized]–formula ~191! can be re-
written as

F~z!5
1

2p i EED1øD2

]F/]l

l2z
dl`dl. ~A13!

Formula~A1! can be considered as the local formulation of the generalized Cauchy–Green for-
mula ~A1!.

Subtracting formula~A1! at z5a we obtain

F~z!5F~a!1
1

2p i EC
F1~z!2F2~z!

z2z S z2a

z2aDdz1
1

2p i EEDa,0
1

]F/]l

l2z S z2a

l2aDdl`dl

1
1

2p i EED2

]F/]l

l2z S z2a

l2aDdl`dl ~A14!

if a P D1 and an analogous formula ifa P D2. The second integral on the right hand side is
obtained first by computing it on the setDa,e5$l:l P D,ul2au.e% and then by taking the limit
e→0. Note that the formula remains valid also ifF(z) is going to a constant different from 0 for
z→`.

If for z→` F(z)→F(`) we can apply~A1! to F(z)2F(`) getting

F~z!5F~`!1
1

2p i EC
F1~z!2F2~z!

z2z
dz1

1

2p i EED1

]F/]l

l2z
dl`dl

1
1

2p i EED2

]F/]l

l2z
dl`dl. ~A15!

Finally let us note that the Sokhotski-Plemelj formula on the circle reads
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R
C

dz8

z82~170!z
f ~z8!56 ip f ~z!1P R

C

dz8

z82z
f ~z8!, uzu51, ~A16!

wherePr denote the Cauchy principal value integral.

3. Limits of integrals

Let us prove that

lim
n→`

1

2p i
P R dz

z2k S kz D nF~z!52
1

2
F~k!, uku51. ~A17!

Under the following successive changes of variables

z5eiq, k5eiw, a5q2w, x5na, ~A18!

we derive

1

2p i
P R dz

z2k S kz D nF~z!5
1

4p i
PE

2~p1w!n

~p2w!n
dx

e2 ix

n sin~x/2n!
eix/2nF~ei ~x/n1w!! ~A19!

and taking the limit, for2p,w,p,

lim
n→`

1

2p i
P R dz

z2k S kz D nF~z!5
1

2p i
PE

2`

`

dx
e2 ix

x
F~eiw!

52
1

2pE2`

`

dx
sin x

x
F~eiw!52

1

2
F~eiw!.
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Multi-Hamiltonian structures for a class of degenerate
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In this paper, a class of degenerate~i.e., associated to a degenerate Poisson struc-
ture! completely integrable systems is studied which generalizes the so-called odd
and even master systems introduced and studied by Mumford and by Vanhaecke. It
is shown that all these completely integrable systems, called the generalized master
systems, admit a multi-Hamiltonian formulation, and a systematic construction of
this multi-Hamiltonian structure is described. ©1996 American Institute of Phys-
ics. @S0022-2488~96!01406-5#

I. INTRODUCTION

A dynamical system is said to bebi-Hamiltonianif it can be written in Hamiltonian form with
respect to two different Poisson structures$•,•%1 and $•,•%2, i.e.,

ẋ5$x,H1%15$x,H2%2 ,

for some functionsH1 ,H2PC`(M ), under the additional assumption that the Poisson brackets
$•,•%1 and $•,•%2 are compatible, i.e., their sum is also a Poisson bracket. The existence of bi-
Hamiltonian structures was first observed by Magri1 in the case of the Korteweg–de Vries equa-
tion, and it was remarked by the same author~see, e.g., Ref. 2! that the existence of a bi-
Hamiltonian structure for a mechanical system is closely related to the complete integrability of
the system. In view of this remark, the study of bi-Hamiltonian structures for finite-dimensional
Hamiltonian systems has received considerable interest in the recent literature. It turns out that, in
contrast to the nondegenerate case~where it was shown in Refs. 3–5 that there exists only a
limited number of completely integrable bi-Hamiltonian systems!, many degenerate completely
integrable systems admit a bi-Hamiltonian structure~see, e.g., Ref. 6!, and a number of techniques
for constructing these structures~e.g.,R-matrices,7 master symmetries,8 and reductions of infinite-
dimensional systems9,10! were discovered.

In Ref. 11, Mumford introduced a completely integrable system on the spaceR3g11, whose
~complexified! invariant manifolds can be completed~by adjoining a divisor! into the Jacobian of
a hyperelliptic curve of genusg, given by an equation

y25 f ~x!, f ~x!5x2g111h1x
2g1•••1h2g11 , ~1!

wherehi are the values of certain constants of motionHi of the completely integrable system. The
construction of these completely integrable systems was later adapted to the case where

f ~x!5x2g121h1x
2g1•••1h2g11 ~2!

by Vanhaecke,6 who also made a detailed study of the systems associated to~1! and~2!, which he
called the~odd andeven! master systems, and who constructed a multi-Hamiltonian formulation
for these systems~in the two-dimensional case!.

a!Present address: University of Aberdeen, Department of Mathematical Sciences, Edward Wright Building, Dunbar Street,
Aberdeen AB9 2TY, UK; Electronic mail address: peterb@maths.abdn.ac.uk

0022-2488/96/37(6)/2851/12/$10.00
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In Ref. 12, Vanhaecke constructs, starting from an arbitrary nonzero polynomial
w(x,y)PR[x,y], a Poisson bracket$•,•%w on R2d. Taking the product of this Poisson manifold
with a trivial Poisson manifold~Rk11,$•,•%0! ~with standard coordinatesc0 ,...,ck!, one obtains a
Poisson bracket$•,•%0

w on R2d1k11 which has the functionsc0 ,...,ck as Casimir functions. Con-
sidering a deformation family of polynomials of the form

F~x,y,c!5F~x,y!2xdc~x!, c~x!5c0x
k1•••1ck ,

where F(x,y) is a polynomial depending explicitly ony, it turns out that the coefficients
H1 ,...,Hd of the polynomial

H~l!5H1l
d211•••1Hd5~F„l,v~l!…2ldc~l!!modu~l!

are in involution with respect to the Poisson bracket$•,•%0
w ~for every polynomialw!, and hence

determine a completely integrable system on the Poisson manifold~R2d1k11,$•,•%0
w!.

In the special case wherew51, d5k5g, and

F~x,y!5y21x2g11 or F~x,y!5y21x2g12,

these completely integrable systems turn out to be the odd and even master systems, and all
systems~R2d1k11,$•,•%0

w ,H1! constructed above will therefore be calledgeneralized master sys-
tems.

The aim of this paper is to construct a multi-Hamiltonian formulation for the generalized
master systems. To do this, we start by constructing, for each 0, i<k11, a new Poisson bracket

$•,•% i
xiw . Next, we show that the Hamiltonian vector fields of the generalized master system

~R2d1k11,$•,•%0
w ,H1! can be written in Hamiltonian form with respect to this new Poisson bracket.

Finally, we prove that the Poisson brackets$•,•% i
xiw ,i50,...,k11, are compatible.

The paper is organized as follows. In Sec. II, we collect some preliminary material concerning
bi-Hamiltonian structures and completely integrable systems, and we fix some notation which will
be used in the rest of the paper. In Sec. III, we briefly describe the~two-dimensional! odd master
system and its multi-Hamiltonian structure. In Sec. IV we review the results from Ref. 12 and we
introduce the generalized master systems, and in Sec. V we describe the multi-Hamiltonian struc-
ture for these generalized master systems.

II. PRELIMINARIES

A Poisson manifold~M ,$•,•%! is a smooth manifoldM , endowed with an antisymmetric
R-bilinear mapping

$•,•%:C`~M !3C`~M !→C`~M !,

called aPoisson bracket, which is a derivation in both of its arguments, and which satisfies the
Jacobi identity

ˆ$ f ,g%,h‰1ˆ$g,h%, f ‰1ˆ$h, f %,g‰50

for all f ,g,hPC`(M ). Two functions f ,gPC`(M ) are said toPoisson commute, or to be in
involution, if $ f ,g%50, and a functionf which Poisson commutes withall functionsgPC`(M ) is
called aCasimir function. As the Poisson bracket$•,•% is a derivation in its arguments, every
function fPC`(M ) determines a vector fieldXf onM , given by

Xf~g!5$g, f %
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for all gPC`(M ). If HPC`(M ) generates a nonzero vector field~i.e., H is not a Casimir
function!, H is said to be aHamiltonian, XH its Hamiltonian vector field, and the triple
(M ,$•,•%,H) is called aHamiltonian system.

Let ~M ,$•,•%! be a Poisson manifold of dimensionn which admitsk ~independent! Casimir
functions ~i.e., it is of rank 2d5n2k!. A Hamiltonian system (M ,$•,•%,H) on this Poisson
manifold is said to becompletely integrableif ~apart from the Casimir functionsC1 ,...,Ck! it
admits d independent first integrals~sometimes called theHamiltonians of the system!
H15H,H2 ,...,Hd , which are in involution with respect to the Poisson bracket$•,•%.

Two Poisson brackets$•,•%1 and$•,•%2 on a manifoldM are said to becompatibleif their sum
is again a Poisson bracket, and a set of Poisson brackets are said to be compatible if they are
pairwise compatible. Finally, a Hamiltonian system (M ,$•,•%1 ,H1) is said to bemulti-
Hamiltonian if its Hamiltonian vector field can be written in Hamiltonian form with respect to a
set ofcompatiblePoisson brackets, i.e.,

XH1
5$•,H1%15$•,H2%25•••5$•,Hn%n

for some functionsH2 ,...,HnPC`(M ).
In the rest of this paper, we will use the following notational conventions. Let

u(x)5xd1u1x
d211•••1ud be a polynomial of degreed such thatudÞ0, and leta be an integer.

Then any polynomialP(x) can be decomposed, in a unique way, asP(x)5Q(x)u(x)1xaR(x),
where degR(x),d, and we will denote

Q~x!5FP~x!

u~x! G
a

, xaR~x!5P~x!moda u~x!.

In the case wherea50 we will, in analogy with the notation in Ref. 12, denote

P~x!mod0 u~x!5P~x!modu~x!, FP~x!

u~x! G
0

5FP~x!

u~x! G
1

,

and we have the following.
Lemma 1: Let i be an integer, P(x) be an arbitrary polynomial, and

u(x)5xd1u1x
d211•••1ud be a polynomial such thatudÞ0. Then

„xiP~x!…modi u~x!5xi„P~x!modu~x!….

Proof: If P(x)5u(x)Q(x)1R(x), where degR(x),degu(x), then

xiP~x!5u~x!xiQ~x!1xiR~x!,

and the result follows immediately.

III. MULTI-HAMILTONIAN FORMULATION FOR THE ODD MASTER SYSTEM

In Ref. 11, Mumford constructs a completely integrable system on the spaceR3g11, whose
~complexified! invariant manifolds can be completed into the Jacobian of a hyperelliptic curve of
genusg. In the case whereg52, this completely integrable system is determined by the vector
field
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X55
u̇152v1 ,
u̇252v2 ,
v̇15w22u22u1w11u1

2,
v̇25w32w1u21u1u2 ,
ẇ1522v1 ,
ẇ2522v222v1w112v1u1 ,
ẇ352u1v222v2w1 ,

~3!

and a straightforward computation yields that the functions

H152u12w1 , H252u22u1w12w2 ,

H35v1
22u2w12u1w22w3 , H452v1v22u2w22u1w3 , H55v2

22u2w3 ,

are first integrals of this dynamical system.
In Ref. 6 Vanhaecke shows that this system admits a multi-Hamiltonian structure, which is

constructed as follows. The Poisson structure$•,•%1, given with respect to the coordinates (u,v,w)
by

S 0 0 0 1 0 0 0

0 0 1 u1 0 0 2v1
0 21 0 0 0 1 w12u1

21 2u1 0 0 1 w1 w22u2

0 0 0 21 0 0 0

0 0 21 2w1 0 0 22v1
0 22v1 u12w1 u22w2 0 2v1 0

D ,

has the functionsH1, H2, andH3 as Casimir functions, andX5$•,H4%1, showing that the system
is Hamiltonian with respect to the Poisson structure$•,•%1. Further, the Poisson bracket$•,•%2,
given by

S 0 0 1 0 0 0 0

0 0 0 2u2 0 0 22v2
21 0 0 0 1 w12u1 0

0 u2 0 0 0 2u2 2w3

0 0 21 0 0 0 0

0 0 u12w1 u2 0 0 2v2
0 2v2 0 w3 0 22v2 0

D ,

has the functionsH1, H2, andH5 as Casimir functions, andX5$•,H3%2 , showing the Hamil-
tonian form of ~3! with respect to this second bracket. A similar computation yields that the
Poisson bracket$•,•%3, given by
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S 0 0 2u1 2u2 0 22v1 22v2
0 0 2u2 0 0 22v2 0

u1 u2 0 0 2u1 2w2 2w3

u2 0 0 0 2u2 2w3 0

0 0 u1 u2 0 2v1 2v2
2v1 2v2 w2 w3 22v1 0 0

2v2 0 w3 0 22v2 0 0

D ,

hasH1, H4, andH5 as Casimir functions and that~3! can be written in Hamiltonian form with
respect to this new bracket~with HamiltonianH2!, and that the Poisson bracket$•,•%4, given by

S A B

2 tB CD ,
where

A5S 0 0 u1
22u2 u1u2

0 0 u1u2 u2
2

2u1
21u2 2u1u2 0 0

2u1u2 2u2
2 0 0

D , B5S 22v1 2u1v122v2 2v2u1
22v2 2u2v1 2v2u2

2w21w1u1 2w31u1w2 u1w3

2w31w1u2 u2w2 u2w3

D ,
and

C5S 0 22v1w1 22v2w1

2v1w1 0 2v1w322v2w2

2v2w1 2v2w222v1w3 0
D ,

hasH3, H4, andH5 as Casimir functions, while the vector field~3! can be written in Hamiltonian
form with respect to this bracket~with HamiltonianH1!. Finally, it was shown in Ref. 6 that the
Poisson brackets introduced in this section are compatible, proving that the odd master system is
multi-Hamiltonian.

IV. GENERALIZED MASTER SYSTEMS

It was shown in Ref. 12 that one can associate, to an arbitrary~nonzero! polynomialw(x,y),
a Poisson bracket$•,•%w on the spaceR2d and that, moreover, every polynomialF(x,y) ~depend-
ing explicitly on y! determines a completely integrable system on the Poisson manifold
~R2d,$•,•%w! ~for anyw!. We start this section by reviewing this construction. To this purpose, we
consider the spaceR2d as the space of pairs of polynomials

u~l!5ld1u1l
d211•••1ud ,

v~l!5v1l
d211•••1vd ,

i.e., the coefficients of the polynomialsu,v serve as coordinates onR2d, and we write, e.g.,

$u~l!,v j%5(
i51

d

$ui ,v j%l
d2 i .
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The following result gives explicit expressions for a family of Poisson brackets, indexed by the
space of~nonzero! polynomials in two variables:

Proposition 2:Let w(x,y) be a nonzero polynomial inR[x, y]. Then the bracket$•,•%w, given
in terms of the coordinatesui ,v i by

$ui ,uj%
w5$v i ,v j%

w50,

$u~l!,v j%
w5$uj ,v~l!%w5w„l,v~l!…F u~l!

ld112 j G
1

modu~l!, ~4!

i , j51,...,d, defines a~polynomial! Poisson structure on the spaceR2d. Moreover, all these Pois-
son brackets$•,•%w are compatible.

The next step is the construction, for every Poisson bracket given by~4!, of a collection of
completely integrable systems onR2d. This is the purpose of the following proposition.

Proposition 3:Let F(x,y)PR[x, y] \R[x]. Then the coefficientsH1 ,...,Hd of the polynomial

H~l!5H1l
d211•••1Hd5F„l,v~l!…modu~l!

define, for any nonzero polynomialw(x,y), a completely integrable system on the Poisson mani-
fold ~R2d,$•,•%w!.

Next, we consider the spaceRk11 with standard coordinates (c0 ,...,ck), and we define a
~trivial! Poisson bracket$•,•%0 on this space by putting$ f ,g%050 for all f ,gPC`~Rk11!. Consid-
ering the spaceR2d1k11 as the product of the Poisson manifolds~R2d,$•,•%w! and~Rk11,$•,•%0!, we
obtain a ~product! Poisson structure$•,•%0

w on R2d1k11, which has the coordinate functions
c0 ,...,ck as Casimir functions. Denoting byF(x,y,c0 ,...,ck) a deformation family of polynomials
~i.e., a family of polynomials depending on the parametersc0 ,...,ck!, it is easily seen that Propo-
sition 3 immediately implies the following.

Proposition 4:The coefficientsH1 ,...,Hd of the polynomial

H~l!5F„l,v~l!,c0 ,...,ck…modu~l!

are in involution with respect to the Poisson bracket$•,•%0
w , and hence determine a completely

integrable Hamiltonian system~R2d1k11,$•,•%0
w ,H1!, on the degenerate Poisson manifold

~R2d1k11,$•,•%0
w!.

The explicit expressions for the Hamiltonian vector fields of this system are given by the
following.

Proposition 5:The Hamiltonian vector fieldsXHi
5 $ • ,Hi%0

w ,i 5 1,...,d, of the completely
integrable system~R2d1k11,$•,•%0

w ,H1!, are given by~the coefficients inmd2 i of!

XH~m!ua5
]F

]y
„m,v~m!,c…$ua ,v~m!%w modu~m!,

XH~m!va5FF„m,v~m!,c…

u~m! G
1

$ua ,v~m!%w modu~m!,

XH~m!cb50, ~5!

for all a51,...,d, andb50,...,k.
Remark 1:Puttingd5k52 andw(x,y)51, and lettingF(x,y,c) denote the special deforma-

tion family

F~x,y,c!5y21x52x2c~x!, c~x!5c0x
21c1x1c2 ,
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the construction described in this section yields a completely integrable system whose Hamil-
tonian vector field$•,H1%0

w is given by

u̇152v1 , u̇252v2 , v̇152c0u12c113u1
222u2 ,

v̇25c0~2u22u1
2!1c1u12c22u1

314u1u21v1
2,

ċ150, ċ250, ċ350.

Defining the functions (w1 ,w2 ,w3) by

l31w1l
21w2l1w35FF„l,v~l!…2l2c~l!

u~l! G
1

,

we see that these differential equations determine the odd master system~3! and that, moreover,
the Poisson structure$•,•%0

1 and the invariantsc0 ,c1 ,c2 ,H1 ,H2 are exactly the Poisson structure
$•,•%1 and the invariantsH1 ,...,H5 described in Sec. III. In what follows, the completely integrable
systems associated to a special deformation family of polynomials of the form

F~x,y,c!5F~x,y!2xdc~x!,

will therefore be calledgeneralized master systems.

V. MULTI-HAMILTONIAN FORMULATION FOR THE GENERALIZED MASTER SYSTEMS

The aim of this section is to construct a multi-Hamiltonian formulation for the generalized
master systems~R2d1k11,$•,•%0

w ,H1! introduced in Sec. IV. To this purpose, letw be a nonzero
polynomial,F(x,y,c)5F(x,y)2xdc(x) be a deformation family of polynomials as above, and
denote by

G~l!5ldc~l!1H~l!5c0l
d1k1•••1ckl

d1H1l
d211•••1Hd

the polynomial whose coefficients are given by the Casimir functions of the Poisson bracket$•,•%0
w

and the first integralsH1 ,...,Hd of the generalized master system~R
2d1k11,$•,•%0

w ,H1! associated
to w andF. Choosing any integer 0, i<k11, we can write the polynomialG~l! in the form

G~l!5 f 0l
d1k1•••1 f k2 il

d1 i1l i~g1l
d211•••1gd!1 f k2 i11l

i211•••1 f k , ~6!

and, inspired by the choice of the Casimir functions of the different Poisson structures for the odd
master system~Sec. III and Remark 1!, we now construct a new Poisson bracket$•,•%i

w which has
the functionsf 0 ,...,f k as Casimir functions.

To do this, we start by remarking that

G~l!5F„l,v~l!…modu~l!1u~l!Fldc~l!

u~l! G
1

. ~7!

On the other hand, denoting

f ~l!5 f 0l
d1k1•••1 f k2 il

d1 i1 f k2 i11l
i211••• f k ,

g~l!5g1l
d211•••1gd ,

~6! takes the form
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G~l!5 f ~l!1l ig~l!, ~8!

and comparing~7! and ~8! we obtain

Fldc~l!

u~l! G
1

5F f ~l!2~F„l,v~l!…modu~l!!

u~l! G
i

,

which yields

c~l!5Fu~l!

ld F f ~l!2~F„l,v~l!…modu~l!!

u~l! G
i

G
1

.

The right-hand side of this equation is defined on the subspaceudÞ0. As a consequence, the
mapping

f:R2d1k11→R2d1k11:~u,v,c!°„u,v, f ~u,v,c!…

is bijective onM5R2d1k11\$ud50%, and we can define a new Poisson bracket$•,•%i
w onM by

$ f ,g% i
w5$ f +f21,g+f21%0

w+f.

This Poisson bracket has the functionsf i5ci+f, i50,...,k, as Casimir functions and, moreover, it
is easily seen that

$ui ,uj% i
w5$ui ,uj%0

w , $ui ,v j% i
w5$ui ,v j%0

w , $v i ,v j% i
w5$v i ,v j%0

w , ~9!

for all i , j51,...,d.
Our next step is to show that the Hamiltonian vector fields~5! of the generalized master

system~R2d1k11,$•,•%0
w ,H1! can be written in Hamiltonian form with respect to the Poisson brack-

ets $•,•% i
xiw ,i51,...,k11, the Hamiltonians being given by the remaining coefficientsg1 ,...,gd

of the polynomialG~l!. To this purpose, we need the following two lemmas.
Lemma 6:The functionsc0 ,...,ck ,H1 ,...,Hd are in involution with respect to the Poisson

bracket$•,•%i
w.

Proof: For the sake of simplicity, we use matrix notations in the proof of this theorem. In
particular, we denote

u5~u1 ,...,ud ,v1 ,...,vd!, c5~c0 ,...,ck!,

f5~ f 0 ,...,f k!, h5~H1 ,...,Hd!.

For all A,BP$u,f ,c,h%, we denote by$A,B% the matrix whose entries are given by$Ai ,Bj%, and
for all AP$ f ,h% and allBP$u,c%, we write the Jacobian matrix of the functionsAi with respect to
the coordinatesBj asAB .

As the functionsc0 ,...,ck are Casimir functions of the Poisson bracket$•,•%0
w , the Poisson

matrix @with respect to the coordinates~u,c!# of the bracket$•,•%0
w is of the form

SA 0

0 0D ,
whereA is the ~skew-symmetric! (2d32d) matrix given by$u,u%w.

Next, we compute the Poisson matrix of the bracket$•,•%i
w with respect to the coordinates

~u,c!. It follows immediately from~9! that this Poisson matrix is of the form
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S A B

2 tB CD ,
and taking into account that the functionsf i , i50,...,k, are Casimir functions of the bracket
$•,•%i

w, we obtain that

S A B

2 tB CD S f uf cD 50,

which, together with the fact that detf cÞ0 onM , yields that

B52Afuf c
21, C5 t f c

21t f uAfuf c
21.

The functionsf i are first integrals of the generalized master system~R2d1k11,$•,•%0
w ,H1!. Hence,

they Poisson commute with respect to the bracket$•,•%0
w , implying that

$ f , f %0
w5 t f uAfu50,

and consequently

C50.

Summarizing, the Poisson matrix of the bracket$•,•%i
w is of the form

S A 2Afuf c
21

2 t f c
21t f uA 0

D ,

and we see that

$h,h% i
w5~ thu

thc!S A 2Afuf c
21

2 t f c
21t f uA 0

D S huhcD 5$h,h%0
w2 thc

t f c
21$ f ,h%0

w2$h, f %0
w f c

21hc50.

Analogous computations yield that$c,h% i
w50 and$c,c% i

w50, which concludes the proof of the
lemma.

Lemma 7:Let w(x,y), F(x,y,c), and i be as above. Then

$ua ,v~m!%x
iw modi u~m!5m i$ua ,v~m!%w,

for all a51,...,d.
Proof: A straightforward computation using~4! and Lemma 1 yields

$ua ,v~m!%x
iw modi u~m!5S m iw„m,v~m!…F u~m!

md112aG
1

modu~m! Dmodi u~m!

5S m iw„m,v~m!…F u~m!

md112aG
1

Dmodi u~m!

5m i S w„m,v~m!…F u~m!

md112aG
1

modu~m! D 5m i$ua ,v~m!%w.

We are now ready to prove the following theorem.
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Theorem 8:Let w(x,y), F(x,y,c), i , andG~l! be as above. Then we have, for alla51,...,d,
that

$•,Ha%0
w5$•,ga% i

xiw .

Proof: As the functionsf 0 ,...,f n are Casimir functions of the Poisson bracket$•,•% i
xiw , ~6!

yields

$•,G~m!% i
xiw5m i~$•,g1% i

xiwmd211•••1$•,gd% i
xiw!. ~10!

On the other hand, we can rewriteG~m! as

G~m!5F„m,v~m!…2u~m!FF„m,v~m!…2mdc~m!

u~m! G
1

,

which implies that

$•,G~m!% i
xiw5$•,v~m!% i

xiw ]F

]y
„m,v~m!…2$•,u~m!% i

xiwFF„m,v~m!…2mdc~m!

u~m! G
1

2u~m!H •,FF„m,v~m!…2mdc~m!

u~m! G
1

J
i

xiw

. ~11!

Comparing~10! and ~11!, we see that

m i~$•,g1% i
xiwmd211•••1$•,gd% i

xiw!

5S $•,v~m!% i
xiw ]F

]y
„m,v~m!…2$•,u~m!% i

xiwFF„m,v~m!…2mdc~m!

u~m! G
1

Dmodi u~m!. ~12!

It follows immediately from~4! and ~12! that, for allb51,...,d,

m i~$ub ,g1% i
xiwmd211•••1$ub ,gd% i

xiw!5S $ub ,v~m!%x
iw

]F

]y
„m,v~m!…Dmodi u~m!,

and Lemmas 1 and 7 then yield that

m i~$ub ,g1% i
xiwmd211•••1$ub ,gd% i

xiw!5m i S $ub ,v~m!%w
]F

]y
„m,v~m!…Dmodu~m!,

which, together with Proposition 5, implies that, fora,b51,...,d,

$ub ,ga% i
xiw5$ub ,Ha%0

w .

In a similar way, one proves that, fora,b51,...,d,

$vb ,ga% i
xiw5$vb ,Ha%0

w ,

and we see from Lemma 6 that, forb50,...,k anda51,...,d,

$cb ,ga% i
xiw505$cb ,Ha%0

w ,
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which concludes the proof of the theorem.

Finally, we show that the Poisson brackets$•,•% i
xiw ,i50,...,k11, are compatible. To this

purpose, it suffices to prove the following.
Theorem 9: Let w be an arbitrary polynomial, and suppose thata andi are integers such that

a1 i<k11. Then the Poisson brackets$•,•%a
w and $•,•%a1 i

xiw are compatible.

Proof: To simplify the notation, we denote$•,•%15$•,•%a
w and $•,•%25$•,•%a1 i

xiw . Further, we
write the polynomialG~l! as

G~l!5H0l
d1k1•••1Hd1k ,

and we denote by

$•,•%5$•,•%11$•,•%2

the sum of the two brackets.
To prove the compatibility of$•,•%1 and $•,•%2, it suffices to prove the Jacobi identity

ˆ$ f ,g%,h‰1ˆ$g,h%, f ‰1ˆ$h, f %,g‰50 ~13!

for all functions f ,g,hP$u1 ,...,ud ,v1 ,...,vd ,H0 ,...,Hd1k%. Using the fact that$•,•%1 and $•,•%2
are Poisson brackets and hence satisfy the Jacobi identity,~13! reduces to the ‘‘mixed Jacobi
identity’’

ˆ$ f ,g%2 ,h‰11ˆ$g,h%2 , f ‰11ˆ$h, f %2 ,g‰11ˆ$ f ,g%1 ,h‰21ˆ$g,h%1 , f ‰21ˆ$h, f %1 ,g‰250. ~14!

From Proposition 2 we know that$•,•%w and $•,•%x
iw are compatible. Hence,~14! holds if

f ,g,hP$u1 ,...,ud ,v1 ,...,vd%, and we only have to prove~14! in the case where at least one
function ~say,h! belongs to$H0 ,...,Hd1k%. As Theorem 8 implies that, for alli50,...,d1k, we
have

$•,Hi%25$•,Hj%1 , $•,Hi%15$•,Hk%2 ,

for somej andk, we see that

ˆ$ f ,g%2 ,Hi‰11ˆ$g,Hi%2 , f ‰11ˆ$Hi , f %2 ,g‰11ˆ$ f ,g%1 ,Hi‰21ˆ$g,Hi%1 , f ‰21ˆ$Hi , f %1 ,g‰2

5ˆ$ f ,g%2 ,Hk‰21ˆ$g,Hj%1 , f ‰11ˆ$Hj , f %1 ,g‰11ˆ$ f ,g%1 ,Hj‰11ˆ$g,Hk%2 , f ‰2

1ˆ$Hk , f %2 ,g‰250,

as $•,•%1 and $•,•%2 satisfy the Jacobi identity.
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A completely integrable Hamiltonian system
F. Calogeroa) and J.-P. Françoise
Universitéde Paris VI, UFR 920, 4 Pl. Jussieu tour 46, 5ie`me étage, 75252 Paris, France
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The dynamical system characterized by the HamiltonianH(q,p)
5 ( j ,k51

n pjpkf (qj 2 qk) with f (x)5l1m cos(nx)1m8 sin(nuxu) is completely in-
tegrable. Heren is an arbitrary positive integer andl,m,m8,n are 4 arbitrary con-
stants~l andm real,m8 and n both real or both imaginary!. © 1996 American
Institute of Physics.@S0022-2488~96!02805-8#

I. INTRODUCTION

It has been recently pointed out that the dynamical system characterized by the Hamiltonian

H~q,p!5 (
j ,k51

n

pjpk exp~2uqj2qku! ~1.1!

is completely integrable.1 ~Actually in Ref. 1 it was shown that the evolution of the coordinates
qj (t) entailed by the Hamiltonian~1.1! coincides with the motion of the solitons of an integrable
PDE,2,1 which features ‘‘peaked’’ solitons whose position can be precisely defined. Thereby a Lax
pair representation for these equations of motion was found, andn independent integrals of motion
exhibited. Although it was not proven that thesen integrals are in involution, these results sug-
gested quite convincingly that the Hamiltonian~1.1! is integrable; as it is now demonstrated, see
below.!

Motivated by this remarkable discovery, one of us investigated the integrability of the Hamil-
tonian

H~q,p!5 (
j ,k51

n

pjpkf ~qj2qk!, ~1.2!

and found3 that this system is integrable~indeed, explicitly solvable! if

f ~x!5l1m cos~nx!. ~1.3!

The purpose and scope of this paper is to point out that the Hamiltonian~1.2! is completely
integrable also in the more general case

f ~x!5l1m cos~nx!1m8 sin~nuxu!, ~1.4!

with l,m,m8,n being 4 arbitrary constants.~To keepH real, we assume hereafter thatl andm are
real,m8 andn both real or both imaginary!. Of course special cases of the Hamiltonian~1.2! with
~1.4! are the Hamiltonian~1.1! ~corresponding tol50, m51, m85i, n5i!, as well as the Hamil-
tonian ~1.2! with ~1.3! or with

f ~x!5a1buxu1gx2, ~1.5!

a!Visiting professor.~Permanent position: Professor of Theoretical Physics, University of Rome I ‘‘La Sapienza,’’ Rome,
Italy; on leave while serving as Secretary General, Pugwash Conferences on Science and World Affairs, Geneva, London,
Rome.!
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a, b, andg being 3 arbitrary~real! constants~this corresponds tol 5 a 1 2g/e2, m 5 22g/e2,
m85b/e, n5e, e→0!.

In Sec. II we show that the equations of motion entailed by the Hamiltonian~1.2! with ~1.4!
can be put in ‘‘Lax pair’’ form, and we thereby obtainn constants of motion for this system.

In Sec. III we prove that thesen constants of motion are in involution; this entails the
complete~‘‘Liouville’’ ! integrability of the Hamiltonian~1.2! with ~1.4!.

In Sec. IV we indicate how the problem can be reformulated via a convenient canonical
transformation.

These findings suggest several avenues of additional research, which are outlined in Sec. V.
We end this introductory section with a remark on Arnol’d–Liouville integrability~with

thanks to an anonymous referee for raising this issue!.
A Hamiltonian system is termedintegrable in Liouville senseif there existsn ~n 5 number of

degrees of freedom! globally defined constants of motion generically independent and in involu-
tion ~one of them is of course the Hamiltonian itself!.

If the n constants of motion in involution are of classC1, and some other conditions hold, the
Arnol’d–Liouville theorem affirms the global existence of torii on which the flow generated by the
Hamiltonian~or by any one of the constants of motion! is linear ~‘‘actions-angles’’ representation
of the motion!.

But the Hamiltonian~1.2! with ~1.4! is not of classC1, nor are the othern21 constants of
motion in involution of classC1 ~see below!. Neither are they analytic. Indeed these features
constitute perhaps the most remarkable characteristic of this model.

Hence the classical Arnol’d–Liouville theorem is not applicable to the Hamiltonian~1.2! with
~1.4!. Of course the existence of an integrable model of this type~neitherC1 nor analytic!
underlies the interest of investigating extensions of the Arnol’d–Liouville theorem to include such
systems.

II. LAX PAIR AND CONSTANTS OF MOTION

It was pointed out in Ref. 3 that the equations of motion entailed by~1.2!, namely,

q̇ j52(
k51

n

pkf ~qj2qk!, ~2.1a!

ṗ j522pj(
k51

n

pkf 8~qj2qk!, ~2.1b!

correspond to the (n3n)-matrix Lax equation

L̇5@L , A# ~2.2!

provided the two (n3n)-matricesL andA have the form

L jk5~pjpk!
1/2a~qj2qk!, ~2.3!

Ajk5~pjpk!
1/2g~qj2qk!, ~2.4!

and the two~a priori arbitrary! functionsa(x), g(x), together with the even functionf (x),

f ~x!5 f ~2x!, ~2.5!

satisfy the functional equation

2a8~x1y!@ f ~x!2 f ~y!#2a~x1y!@ f 8~x!2 f 8~y!#5a~x!g~y!2a~y!g~x!. ~2.6!
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@The ansatz~2.4! is actually less general than Eq.~4.9! of Ref. 3, and correspondingly this
functional equation~2.6! is a special case of Eq.~3.4! of Ref. 3; but it is adequate for our present
purposes.#

The first main result of this paper is to exhibit two functions,a(x) andg(x), that satisfy this
functional equation, together with the functionf (x) given by ~1.4!. They read

a~x!5~D1m!1/2 cos~nx/2!1~D2m!1/2 sin~nuxu/2!, ~2.7!

g~x!5nm8 sign~x!$cos~nx/2!2@D1m!/~D2m!#1/2 sin~nuxu/2!%, ~2.8!

with

D25m21m82, D.0. ~2.9!

Several remarks are now in order.
Remark 2.1:The verification that these expressions ofa(x) and g(x), together with the

expression~1.4! of f (x), satisfy the functional equation~2.6!, requires an elementary if tedious
computation, which must cover the three cases:~i! x.0, y.0; ~ii ! x.0, y,0, x1y.0; ~iii !
x.0, y,0, x1y,0 @all other possible cases are then automatically covered due to the obvious
invariance of~2.6! under the interchange ofx andy, as well as under the simultaneous change of
sign of x andy if a(x) and f (x) are even functions andg(x) is odd, as it is indeed implied by
~1.4!, ~2.7!, and~2.8!#.

Remark 2.2:The expression~2.8! of g(x) could be generalized by adding to itaa(x), with a
any arbitrary constant, since such an addition clearly does not affect the functional equation~2.6!.

Remark 2.3:Both f (x), see~1.4!, andg(x), see~2.8!, can be neatly related toa(x), see~2.7!:

f ~x!5l2D1a2~x!, ~2.10!

g~x!52m8~D2m!1/2a8~x!. ~2.11!

Remark 2.4:The functional equation~2.6! can be rewritten as follows:

a2~x1y!F ]

]x
1

]

]yG$@ f ~x!2 f ~y!#/a~x1y!%52a~x!g~y!1a~y!g~x!. ~2.12!

Moreover, if one makes the assumption

g~x!5ca8~x!, ~2.13!

which is a priori arbitrary, buta posterioricorrect@in our case; see~2.11!#, then the right-hand
side of ~2.12! can also be conveniently rewritten:

2a~x!g~y!1a~y!g~x!5cF ]

]x
2

]

]yG@a~x!a~y!# ~2.14a!

5ca2~y!F ]

]x
1

]

]yG@a~x!/a~y!# ~2.14b!

52ca2~x!F ]

]x
1

]

]yG@a~y!/a~x!#, ~2.14c!

entailing various possible reformulations of the functional equation~2.6! with ~2.13!, such as
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F ]

]x
1

]

]yG$@ f ~x!2 f ~y!#/a~x1y!%5cF ]

]x
2

]

]yG@a~x!a~y!/a2~x1y!#. ~2.15!

Remark 2.5:In the special casem850 the functionf (x) takes of course the form~1.3!, while
a~x! andg~x! become

a~x!5~2m!1/2 cos~nx/2!, ~2.16a!

g~x!522mn sin~nuxu/2!. ~2.16b!

This is a different solution of the functional equation~2.6! than that given in Ref. 2, which
reads instead~up to a convenient redefinition of the multiplicative constant!

a~x!5~2m!1/2 sin~nx/2!, ~2.17a!

g~x!50. ~2.17b!

Note that in this case the matrixL is time-independent@see~2.2!, ~2.4!, and ~2.17b!#. It is of
course trivial to verify that both these solutions,~2.16! and ~2.17!, satisfy~2.6! with ~1.3!.

Let us conclude this section by recalling that the possibility to rewrite the equations of motion
~2.1! with ~1.4! in the Lax pair form~2.2! @with ~2.3!–~2.4! and~2.7!–~2.9!# yieldsn constants of
motion, in the guise of then eigenvalues of the Lax matrix~1.3!, or equivalently of itsn sym-
metrical invariants~the n coefficients of the polynomial det@L2xI #, or of the traces ofLm with
m51,2,...,n. We focus in the following on these latter quantities:

Tm5m21 trace@Lm#, m51,2,...,n. ~2.18!

Note that~2.3!, with ~2.7! and ~2.10!, implies the relations

T15~D1m!1/2P, ~2.19!

T25~1/2!@H1~D2l!P2#, ~2.20!

with

P5(
j51

n

pj ~2.21!

andH defined by~1.2!.
In the special casem850 the matrixL is separable of rank 2@see~2.3! with ~2.16a!# and it

therefore possesses only 2 nontrivial eigenvalues~all the others vanish!; hence allTm’s with m.2
can be expressed in terms ofT1 andT2 . In this special case, however, there exists an alternative
Lax matrix, which has the property that not only its eigenvalues, but indeed each of itsn(n21)/2
matrix elements, are constants of motion@see theRemark 2.5above; this Lax matrix is antisym-
metrical, see~2.3! and ~2.17a!#. Of course, forn.3, not all these constants of motion are inde-
pendent; but there exist appropriate linear combinations of them~or rather of their squares!, which
providen independentconstants of motionin involution.3 This implies the complete~‘‘Liouville’’ !
integrability of ~1.2! with ~1.3!; a result which is however hardly interesting, since in this special
case the time evolution of the Hamiltonian system can be exhibited in explicit form in terms of
elementary functions~hence this system is not onlycompletely integrable; it is explicitly
solvable!.3

Hereafter we focus on the general case withm8Þ0. Then the Lax matrix@see~2.3! with ~2.7!
and ~2.9!# is not separable, hence the quantitiesTm , see~2.18!, generally do providen indepen-
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dent integrals of motion. To demonstrate that this system is completely integrable it must more-
over be shown that thesen constants of motion arein involution. This is the second main result of
this paper. The next section is devoted to its proof.

III. PROOF OF INVOLUTIVITY

Our task is to prove that the Poisson brackets,

$Tm ,Tm8%5(
i51

n F S ]Tm
]qi

D S ]Tm8
]pi

D2S ]Tm
]pi

D S ]Tm8
]qi

D G , ~3.1!

vanish:

$Tm ,Tm8%50; m,m851,2,...,n. ~3.2!

Form51 ~or m851! this result is trivial; hereafter we assumem.1 ~andm8.1!.
The definition~2.18! implies the following formulas:

]Tm
]qi

5 (
i1••• im51

n S ]Li1i2
]qi

D Li2i3•••Limi1, ~3.3a!

]Tm
]pi

5 (
i1••• im51

n S ]Li1i2
]pi

D Li2i3•••Limi1. ~3.3b!

The definition~2.3! implies the following formulas:

]L jk

]qi
5~pjpk!

1/2~d i j2d ik!a8~qj2qk!, ~3.4a!

]L jk

]pi
5~1/2!~pjpk!

1/2~d i j1d ik!a~qj2qk!/pi . ~3.4b!

Hence, after a little algebra,

$Tm ,Tm8%5~1/2! (
i1••• imi 81••• i 8m851

n

„~1•••m18•••m8!…~23!

3~34!•••~m1!~2838!~3848!•••~m818!

3$d i1i18@~12!8~1828!2~1828!8~12!#/pi11~1↔2!

1~18↔28!1~1↔2,18↔28!%. ~3.5!

Here, we have introduced the convenient notations

„~1•••m18•••m8!…[pi1•••pimpi 81•••pi 8m8
, ~3.6!

~12![a~qi12qi2!, ~1828![a~qi 812qi 82! and so on, ~3.7a!

~12!8[a8~qi12qi2!, ~1828!8[a8~qi 812qi 82! and so on. ~3.7b!
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The notation~1↔2! indicates of course the exchange of the~summation! indicesi 1 , i 2 ; likewise
~18↔28! indicates the exchange ofi 81, i 82 .

Clearly the product„~1•••m18•••m8!… is invariant under any exchange of summation indices.
Moreover the product ~23!~34!•••~m1! is invariant under the transformation~1↔2,
m↔3,m21↔4,...! @due to the evenness ofa(x)5a(2x), see~2.7!, which implies~12!5~21! and
so on, see~3.7a!#. Likewise the product~2838!~3848!•••~ m818! is invariant under the transforma-
tion ~18↔28, m↔38,m821↔48,...!. Hence

$Tm ,m8%52 (
i1••• imi 82••• i 8m851

n

„~1•••m28•••m8!…~23!~34!•••~m1!~1m8!

3~m8m821!•••~3828!@~12!8~128!2~128!8~12!#. ~3.8!

Note that the transition from~3.5! to ~3.8! has involved two steps: the elimination of the 3
additional terms inside the curly bracket in the r.h.s. of~3.5! @compensated by the replacement of
~1/2! by 2 in front of the sum#, and then the sum over the indexi 81 ~using the Kronecker
d i1i18).

Let us now consider the transformation~28↔2, 38↔3,...,1↔h,...!, under which the product
~23!~34!•••(m1)(1m8)(m8m821)•••~3828! is clearly invariant @as well, of course, as
~1•••m28•••m8!#; incidentally, it would be easy to identifyh, or more precisely the corresponding
summation indexi h ~which might or might not be a primed index!, but this is not needed in the
following. Hence,

$Tm ,Tm8%5 (
i1••• imi 82••• i 8m851

n

„~1•••m28•••m8!…~23!~34!•••~m1!~1m8!~m8m821!•••~3828!

3@~12!8~128!2~128!8~12!1~h28!8~h2!2~h2!8~h28!#. ~3.9!

We now use the remarkable ‘‘functional’’ equality

~12!8~128!2~128!8~12!1~h28!8~h2!2~h2!8~h28!

5~n/2!~D2m!1/2~228!@s121s2h1sh281s281#, ~3.10!

which is proven below. Here we have introduced the convenient notation

s12[sign~qi12qi2!,sh28[sign~qih2qi 82! and so on. ~3.11!

Note that this definition entails oddness ofs12 under exchange of its two indices,s12 5 2s21, and
likewise, of course,s2h 5 2sh2 , sh28 5 2s28h , s281 5 2s128 .

Using ~3.10! we get from~3.9!

$Tm ,Tm8%5 (
i1••• imi 82••• i 8m851

n

Si1••• imi 82••• i 8m8
@s121s2h1sh281s281#, ~3.12a!

Si1••• imi 82••• i 8m8
5~n/2!~D2m!1/2„~1•••m28•••m8!…~23!~34!•••~m1!~1m8!

3~m8m821!•••~3828!~282!. ~3.12b!

Note thatSi1••• imi 82••• i 8m8
depends cyclically on allm1m821 indicesi 1 ,..., i m , i 82 ,..., i 8m8 .

Hence there clearly exists a transformation which interchanges any two chosen indices, and, in a
suitable manner, all other indices pairwise~except one of two which might be
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left unchanged, namely, get transformed into themselves!, and leavesS invariant ~it is actually
easy to identify such a transformation; for instance, if the chosen pair are 1 and 2, the appropriate
transformation is~1↔2,m8↔28,m821↔38,...,m↔3,m21↔4,...!. But s12 changes sign under
any transformation that exchanges 1 and 2~namely, the summation indicesi 1 and i 2); likewise
s2h changes sign under any transformation that exchanges 2 andh, and so on forsh28 ands281 . It
is thus shown that the sum in the r.h.s. of~3.12a! vanishes, and this implies~3.2.! Q.E.D.

There remains to prove the functional equation~3.10!, namely,@see~3.7!#

a8~q12q2!a~q12q3!2a8~q12q3!a~q12q2!1a8~q02q3!a~q02q2!2a8~q02q2!a~q0

2q3!5~n/2!~D2m!1/2a~q22q3!@s121s201s031s31#, ~3.13!

where, for notational convenience,wehave setqi1 5 q1 , qi2 5 q2 , qih 5 q0 , qi 82 5 q3 and of course
sjk [ sign(qj 2 qk). It is now a matter of trivial algebra to verify this formula, using the definition
~2.7! of a(x), namely,

a~qj2qk!5~D1m!1/2 cos@n~qj2qk!/2#1~D2m!1/2sjk sin@n~qj2qk!/2#, ~3.14!

as well as the identity

s12s131s23s211s31s3251, ~3.15!

whose validity is easily checked by considering all possible orderings ofq1 , q2 , andq3 .
Note that these results clearly imply the following:
Proposition 3.1:Let the~nxn!-matrix L ~q,p! be defined by~2.3!, with a(x) a priori arbitrary

except for the requirement that it be even,a(x)5a(2x). Then then quantitiesTm defined by
~2.18! are in involution@see~3.1,2!#, provideda(x) satisfies the following functional equation:

a8~x!a~x1y1z!2a8~x1y1z!a~x!1a8~y!a~z!1a8~z!a~y!

5a~y1z!@b1~x!1b2~y!1b3~z!1b4~x1y1z!#, ~3.16!

where the 4 functionsbs(x) are alsoa priori arbitrary except for the requirement that they be all
odd, bs(2x)52bs(x), s51,2,3,4.

This functional equation is of course inferred from~3.13! via the positionsx 5 q1 2 q2 , y
5q22q0 , z5q02q3 , implying x1y1z5q12q3 , x1y5q12q0 .

IV. A CANONICAL TRANSFORMATION

In this section we introduce new canonical coordinatesxj , yj via the transformation

xj5~2ipj /n!1/2 exp~2 inqj /2!, ~4.1a!

yj5~2ipj /n!1/2 exp~ inqj /2!, ~4.1b!

pj5~2i!21nxjyj , ~4.2a!

qj5n21 arctan@ i~yj
2
uxj

2!/~yj
21xj

2!#. ~4.2b!

It is easy to check that this transformation is canonical:

$xj ,yk%5d jk . ~4.3!

In the new canonical variables the total momentumP, see~2.21!, and the HamiltonianH, see
~1.2! with ~1.4!, read as follows:

2869F. Calogero and J.-P. Françoise: A completely integrable Hamiltonian system

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



P5~2i!21(
j51

n

xjyj ,

H5lP22~n2/8! (
j ,k51

n

@m~xj
2yk

21xk
2yj

2!2 im8sjk~xj
2yk

22xk
2yj

2#, ~4.4!

where we are of course using the convenient notation

sjk[sign~qj2qk!. ~4.5!

Note the extreme simplicity of this Hamiltonian in them850 case, when it takes the separable
form

H5lP22~n2m/4!XY, ~4.6!

X5(
j51

n

xj
2, ~4.7a!

Y5(
j51

n

yj
2. ~4.7b!

This simplicity allows to solve in completely explicit form the equations of motion entailed by this
Hamiltonian, which read

ẋ j52 ilnPxj2~1/2!n2mXyj , ~4.8a!

ẏ j5 ilnPyj1~1/2!n2mYxj , ~4.8b!

and which imply

Ṗ50, ~4.9!

Ẋ522in~l1m!PX, ~4.10a!

Ẏ52in~l1m!PY. ~4.10b!

This is left as an exercise for the diligent reader, who may thereby reobtain the results of Ref. 3.
Let us end this section by reporting~for the general case withm8Þ0! the expressions, in the

new canonical variables, of the matricesL andA:

L jk5~n/4!@2 i~D1m!1/2~xjyk1xkyj !1~D2m!1/2sjk~xjyk2xkyj !#, ~4.11!

Ajk5~n2m8/4!@2 isjk~xjyk1xkyj !2@~D1m!/~D2m!#1/2~xjyk2xkyj !#. ~4.12!

V. OUTLOOK

In this final section we outline directions of research which are suggested by these findings.
There is the task to utilize them in order to explore the behavior of the dynamical system

characterized by the Hamiltonian~1.2! with ~1.4!. While we do not expect an explicit solution to
be obtainable in the general case withm8Þ0, it should be possible to exploit the integrability of the
system to evince much information on its behavior, in both cases:m8 and n real, m8 and n
imaginary. A related problem arises from the ‘‘geometrical’’ interpretation naturally associated to
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a Hamiltonian of type~1.2!, which may be viewed as representing the kinetic energy of a particle
moving on ann-dimensional manifold, whose metric is characterized via the functionf (x). This
question may be enriched by performing canonical~or other! transformations before seeking a
geometrical interpretation. In this connection we note that, in the special casem850, the Hamil-
tonian ~4.4! includes the description of geodesic motion on the sphere.4

Several other questions are suggested by our findings. There exists an integrable nonlinear
PDE whose solitons move according to the Hamiltonian~1.1!;1 is this also true in the general case
@~1.2! with ~1.4!, m8Þ0#? In the special casem850 there exists a quantized version of the Hamil-
tonian~1.2! with ~1.3! which can be rather fully solved;5 is this also true in the general case@~1.2!
with ~1.4!, m8Þ0#?

And what about possible~integrable! generalizations? For instance, one of us~F.C.! found that
the Hamiltonian~1.2! with ~1.3! remains solvable after addition of a termH8,

H8~q,p!5c (
j ,k51

n

~pj2pk!sin@n~qj2qk!#. ~5.1!

It is likely that integrable generalizations of~1.2! with ~1.4! also exist, corresponding to ‘‘other
root systems’’@if one associates~1.2! with the root systemAn], or obtainable via ‘‘duplications,’’

6

or involving the addition to the Hamiltonian of ‘‘one-body terms,’’ or including ‘‘internal degrees
of freedom’’ ~matrix models!, or amounting to ‘‘discretizations’’ of the space variables~lattice
models! or of the time variable~mappings!. And what about complex or multidimensional exten-
sions?

It is moreover evident that, for all models invariant under the translationqj→qj 1 q0 , for
which P is therefore a constant of the motion, the termP2 in the Hamiltonian can rather trivially
be replaced by a largely arbitrary functionF(P), without causing other than cosmetic changes. On
the other hand it is rather clear3 that the Hamiltonian

H5lP21 (
j ,k51

n

pjpk@m1 cos~nqj !cos~nqk!1m2 sin~nqj !sin~nqk!# ~5.2!

is solvable in terms of elliptic functions.7 Note that this model is not invariant under the translation
qj→qj 1 q0 , except in the special casem1 5 m2 5 m, when it reduces to~1.2! with ~1.3!.

And we end with the still extant, and most interesting, question: which is the most general
function f (x) such that the Hamiltonian~1.2! is integrable?

1R. Camassa and D. D. Holm, ‘‘An integrable shallow water equation with peaked solitons,’’ Phys. Rev. Lett.71,
1661–1664~1993!; R. Camassa, D. D. Holm, and J. M. Hyman, ‘‘A new integrable shallow water equation,’’ Adv. Appl.
Mech.31, 1–33~1994!.

2A. Fokas and B. Fuchssteiner, ‘‘Symplectic structures, their Ba¨cklund transformations and hereditary symmetries,’’
Physica D4, 47–66~1981!.

3F. Calogero, ‘‘An integrable Hamiltonian system,’’ Phys. Lett. A201, 306–310~1995!.
4J. Moser, ‘‘Regularization of Kepler’s problem and the averaging method on a manifold,’’ Commun. Pure Appl. Math.
23, 609–636~1970!.

5F. Calogero and J. F. van Diejen, to be published.
6F. Calogero and J.-P. Franc¸oise, ‘‘Integrable dynamical systems obtained by duplications,’’ Ann. Inst. H. Poincare´ 57,
167–181~1992!.

7M. Bruschi, O. Ragnisco, and S. Rauch-Wojciechowski, to be published.
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Supertraces on the algebras of observables of the rational
Calogero model with harmonic potential

S. E. Konstein and M. A. Vasiliev
I. E. Tamm Department of Theoretical Physics, P. N. Lebedev Physical Institute,
117924 Leninsky Prospect 53, Moscow, Russia

~Received 25 September 1995; accepted for publication 7 December 1995!

We define a complete set of supertraces on the algebraSHN~n!, the algebra of
observables of theN-body rational Calogero model with harmonic interaction. This
result extends the previously known results for the simplest cases ofN51 andN52
to arbitraryN. It is shown thatSHN~n! admitsq(N) independent supertraces, where
q(N) is a number of partitions ofN into a sum of odd positive integers, so that
q(N).1 for N>3. Some consequences of the existence of several independent
supertraces ofSHN~n! are discussed, such as the existence of ideals in associated
W`-type Lie superalgebras. ©1996 American Institute of Physics.
@S0022-2488~96!01805-1#

I. INTRODUCTION

In this paper we investigate some properties of the associative algebras that were shown in
Refs. 1–3 to underlie the rational Calogero model4 and were denoted asSHN~n! in Ref. 5. Algebra
SHN~n! is the associative algebra of polynomials constructed from arbitrary elementss of the
symmetric groupSN and the generating elementsai

a obeying the following relations:

sai
a5as~ i !

a s, ~1!

@ai
a ,aj

b#5eabAi j , ~2!

wherei , j51,...,N, a,b50,1, eab52eba, e0151, and

Ai j5d i j1nÃi j , Ãi j5d i j(
l51

N

Kil2Ki j . ~3!

HereKi jPSN with i , j51,...,N, iÞ j , are the elementary permutationsi↔ j satisfying the rela-
tions

Ki j5Kji , Ki jKi j51, Ki jK jl5KjlKli5KliKi j ,

for iÞ jÞ lÞ i and

Ki jKkl5KklKi j ,

if i , j ,k,l are pairwise different. Note that in this paper repeated Latin indicesi , j ,k,..., do not
imply summation.

The defining relations~1!–~3! are consistent. In particular, the Jacobi identities,

†ai
a ,@a j

b ,ak
g#‡1†aj

b@ak
g ,ai

a#‡1†ak
g ,@ai

a ,aj
b#‡50, ~4!

are satisfied.
An important property ofSHN~n! that allows one to solve the Calogero model4 is that this

algebra possesses innersl2 automorphisms with the generators

0022-2488/96/37(6)/2872/20/$10.00
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Tab5
1

2 (
i51

N

~ai
aai

b1ai
bai

a!, ~5!

@Tab,Tgd#5eagTbd1eadTbg1ebgTad1ebdTag, ~6!

which act on the generating elementsai
a as onsl2 vectors,

@Tab,ai
g#5eagai

b1ebgai
a . ~7!

The Calogero Hamiltonian is identified with the Cartan elementT01 which, according to~7!,
inducesZ gradation ofSHN~n!. The latter property allows one2 to construct wave functions via the
standard Fock procedure with the Fock vacuumu0&, such thatai

0u0&50. Thus, the elementsai
a

serve as generalized oscillators underlying the Calogero problem. The concrete realization of these
oscillators in terms of Dunkl differential-difference operators6 was presented in Refs. 1 and 2.

These properties characterize the algebraSHN~n! as a natural generalization of the
Heisenberg–Weyl algebra, the associative algebra of harmonic oscillators. Since the Lie algebra
of quantum operators in the harmonic oscillator problem can be identified with theW11` algebra,

7

the Lie ~super!algebras constructed fromSHN~n! with the aid of supercommutators give rise to a
class of theW11`-type algebras, which have been denoted asWN,`~n! in Ref. 8, where it was
shown that all these algebras contain the Virasoro algebra as a subalgebra. The latter observation
indicates that the algebrasSHN~n! andWN,`~n! can be related to conformal models as well as to
other classes of models in the range from the quantum Hall effect9 to higher-spin gauge
theories10 and KP hierarchy11 whereW`-type algebras prove to be important. An additional
argument in favor of the relationship ofSHN~n! to the quantum Hall effect is due to the known
fact that the Calogero model can be interpreted as a one-dimensional reduction of the full anyonic
problem.12,3

For lower values ofN, a nature ofSHN~n! is rather well understood.SH1~n! is the ordinary
Heisenberg–Weyl algebra~sincen dependence is artificial in this case we will use the notation
SH1!. Properties of this algebra are very well studied~see, e.g., Ref. 13!. Note that since the center
of mass coordinates 1/N( i51

N ai
a decouple from everything else in the defining relations~1!–~3!,

the associative algebraSHN~n! has the structureSHN(n) 5 SH1 ^ SHN8 (n) where, by definition,
SHN8 (n) is the algebra of elements depending only on the relative coordinatesai

a2aj
a.

The properties ofSH28(n) are well studied too.14 The algebraSH28(n) is defined by the
relations

@aa,ab#5eab~112nK !, ~8!

whereK is the only nontrivial element ofS2, while a
a are the relative motion oscillators. For the

particular case ofn50, one recovers the algebraSH1 in the sector of theK independent elements.
In Ref. 14 it was shown thatSH28(n) admits a unique supertrace operation defined by the

simple formula

str~1!51, str~K !522n, str~W!5str~WK!50, ~9!

for any polynomialW P SH28 of the form

W5 (
n51

`

Wa1•••an
aa1•••aan, ~10!

with arbitrary totally symmetric multispinorsWa1•••an
. For the particular case ofn50 one recovers

the supertrace onSH1.
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Furthermore, it was shown in Ref. 14 by explicit evaluation of the invariant bilinear form

B(x,y)5
def
str(xy) that for n5l1~1/2! ~l is any integer! SH28(n) reduces to finite-dimensional ma-

trix algebras up to some infinite-dimensional idealsI that decouple from everything under the
supertrace operation~9!, i.e., str(xy)50, ;xPI .

In Ref. 15 it was then observed thatSH28(n) is isomorphic to the factor of the enveloping
algebraU„osp~1;2!… of osp~1;2! over its ideal generated by the quadratic Casimir operatorC2 by
factoring out all elements of the form (C22c2)U„osp~1;2!…, wherec25

1
16~4n221! is an arbitrary

constant. In its turn this observation clarified the origin of the ideals ofSH28(n) at n5l11
2 as

corresponding to the finite-dimensional representations of osp~1;2!.
Although the algebraSHN~n! is getting interesting applications for anyN, until now under-

standing of its algebraic properties forN.2 is far from being satisfactory. In particular, there is no
interpretation ofSHN~n! in terms of enveloping algebras of finite-dimensional superalgebras, and
nothing is known about ideals ofSHN~n! which information is very important in applications.

In this paper we analyze the existence of the invariant supertrace operation onSHN~n! i.e.,
such a complex-valued linear function str(f ) on SHN~n! that

str~@ f ,g%!50, ; f ,gPSHN~n!, ~11!

with the convention that

@ f ,g%5 f g2~21!p~ f !p~g!g f , ~12!

where the parityp in SHN~n! is defined as follows:

p~ai
a!51, p~Ki j !50. ~13!

Let us note that an attempt to define differently graded traces like, e.g., an ordinary trace~p[0!
unlikely leads to interesting results.

Knowledge of the supertrace operations onSHN~n! is useful in various respects. One of the
most important applications of the supertrace is that it gives rise ton-linear invariant forms,

str~a1a2•••an!, ~14!

that allows one to work with the algebra essentially in the same way as with the ordinary finite-
dimensional matrix algebras, and, for example, construct Lagrangians when working with dynami-
cal theories based onSHN~n!. Another useful property is that since null vectors of any invariant
bilinear form span a both-side ideal of the algebra, this gives a powerful device for investigating
ideals that decouple from everything under the supertrace operation as it occurs inSH2~n! for
half-integern. It is also worth mentioning that having an explicit form of the trilinear form in one
or another basis is practically equivalent to defining a star-product law in the algebra.

An important motivation for the analysis of the supertraces ofSHN~n! is due to its deep
relationship with the analysis of the representations of this algebra, which in its turn gets appli-
cations to the analysis of the wave functions of the Calogero model. For example, given repre-
sentation ofSHN~n!, one can speculate that it induces some supertrace on this algebra as~appro-
priately regularized! supertrace of~infinite! representation matrices. When the corresponding
bilinear form degenerates this would imply that the representation becomes reducible.

As we show, the situation forSHN~n! is very interesting, since starting fromN53 it admits
more than one independent supertrace in contrast to the cases ofN51 andN52. This fact is in
agreement with the results of Ref. 5, where it was shown that there exist many inequivalent
lowest-weight-type representations ofSHN~n! for higherN ~these representations are classified
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according to the representations ofSN!. Another important consequence of this phenomenon is
that the Lie superalgebrasWN,`~n! are not simple, while appropriate, their simple subalgebras
possess nontrivial outer automorphisms.

The paper is organized as follows. In Sec. II we analyze consequences ofSN andsl2 auto-
morphisms ofSHN~n!. In Sec. III we discuss general properties of the supertraces and conse-
quences of the existence of several independent supertraces. In Sec. IV we study the restrictions
on supertraces of the group algebra ofSN considered as a subalgebra ofSHN~n!, which follow
from the defining relations ofSHN~n!. These restrictions are called ground level conditions~GLC!.
They play a fundamental role in the problem, since, as we show in Sec. V, every solution of GLC
admits a unique extension to some supertrace onSHN~n!. In Appendix A it is shown that the
number of independent supertraces onSHN~n! equals the number of partitions ofN into a sum of
odd positive integers. Some technical details of the proof of Sec. V are collected in Appendices B
and C.

II. FINITE-DIMENSIONAL GROUPS OF AUTOMORPHISMS

The group algebra ofSN is the finite-dimensional subalgebra ofSHN~n!. The elementssPSN
induce inner automorphisms ofSHN~n!. It is well known that anysPSN can be expanded into a
product of pairwise commuting cycles,

s5c1c2c3•••ct , ~15!

wherecm , m51,...,t, are cyclic permutations acting on distinct subsets of values of indicesi . For
example, a cycle that acts on the firsts indices as 1→2→•••→s→1 has the form

c5K12K23•••K ~s21!s . ~16!

We use the notationucu for the length of the cyclec. For the cycle~16!, ucu5s. We take a
convention that the cycles of unit length are associated with all values ofi such thats( i )5 i , so
that the relation(mucmu5N is true.

Given permutationsPSN , we introduce a new set of basis elementsBs5$bI% instead of$ai
a%

in the following way. For every cyclecm in the decomposition~15! ~m51,...,t!, let us fix some
index lm , which belongs to the subset associated with the cyclecm . The basis elementsbmj

a ,
j51,...,ucmu, which realize one-dimensional representations of the commutative cyclic group gen-
erated bycm , have the form

bmj
a 5

1

Aucmu
(
k51

ucmu

~lm! jkal ~m,k!
a , ~17!

wherel (m,k) 5 cm
2k( lm) and

lm5exp~2p i /ucmu!. ~18!

From the definition~17!, it follows that

cmbmj
a 5~lm! jbmj

a cm , ~19!

cmbnj
a 5bnj

a cm , for nÞm, ~20!

and therefore

sbmj
a 5~lm! jbmj

a s. ~21!

2875S. E. Konstein and M. A. Vasiliev: Supertraces on the Calogero algebras

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



In what follows, instead of writingbmj
a we use the notationbI with the labelI accounting for

the full information about the indexa, the indexm enumerating cycles in~15!, and the indexj ,
which enumerates various elementsbmj

a related to the cyclecm , i.e., I (I51,...,2N) enumerates all
possible triples$a,m,j %. We denote the indexa, the cycle and the eigenvalue in~19! corresponding
to some fixed indexI asa(I ), c(I ), andlI5~lm!j , respectively. The notations(I )5s0 implies
thatbI

a P Bs0
. B1 is the original basis of the generating elementsai

a ~here1 is the unit permuta-
tion!.

Let M~s! be the matrix that mapsB1→Bs in accordance with~17!,

bI5(
i ,a

Mia
I ~s!ai

a . ~22!

Obviously this mapping is invertible. Using the matrix notations one can rewrite~21! as

sbIs215 (
J51

2N

LJ
I ~s!bJ, ;bIPBs , ~23!

whereL I
J(s)5d I

Jl I .
Every polynomial inSHN~n! can be expanded into a sum of monomials of the form

bI1bI2•••bIss, ~24!

where alls(I k)5s. Every monomial of this form realizes some one-dimensional representation of
the Abelian group generated by all cyclescm in the decomposition~15!.

The commutation relations for the generating elementsbI follow from ~2! and ~3!:

@bI ,bJ#5FIJ5C IJ1n f IJ, ~25!

where

C IJ5ea~ I !a~J!dc~ I !c~J!dl IlJ
21 ~26!

and

f IJ5 (
i , j ,a,b

Mia
I ~s!Mjb

J ~s!eabÃi j . ~27!

The indicesI ,J are raised and lowered with the aid of the symplectic formC IJ

m I5(
J
C IJmJ , m I5(

J
mJC JI ; (

M
C IMC

MJ52d I
J . ~28!

Note that the elementsbI are normalized in~17! in such a way that then-independent part in~25!
has the form~26!.

Another important finite-dimensional algebra of inner automorphisms ofSHN~n! is the sl2
algebra that acts on the indicesa. It is spanned by theSN-invariant second-order polynomials~5!.
Evidently,SHN~n! decomposes into the infinite direct sum of only finite-dimensional irreducible
representations of thissl2 spanned by various homogeneous polynomials~24!.

From the defining relations~1!–~3!, it follows thatSHN~n! is Z2 graded with respect to the
automorphism

f ~aj
a!52aj

a , f ~Ki j !5Ki j , ~29!
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which gives rise to the parityp ~13!. In applications to higher-spin models, this automorphism
distinguishes between bosons and fermions.

The algebraSHN~n! admits the antiautomorphismr,

r~ak
a!5 iak

a , r~Ki j !5Ki j , ~30!

which leaves invariant the basic relations~1!–~3!, provided that an order of operators is reversed
according to the defining property of antiautomorphisms:r(AB)5r(B)r(A). From ~15!, ~16!,
and ~21! it follows that

r~s!5s21, r~bI !5 ibJ, ~31!

where J is related toI in such a way thata(J)5a(I ), s(J)5„s(I )…21, c(J)5„c(I )…21, and
lJ5l I

21. Note that in higher-spin theories the counterpart ofr distinguishes between odd and
even spins.16

III. GENERAL PROPERTIES OF SUPERTRACE

In this section we summarize some general properties to be respected by any supertrace in
SHN~n!.

Let A be an arbitrary associativeZ2-graded algebra with the parity functionp(x)50 or 1.
Suppose thatA admits some supertrace operations strp , where the labelp enumerates different
nontrivial supertraces. We call a supertrace str even~odd! if str(x)50, ;xPA such thatp(x)
51~0!. Let TA be a linear space of supertraces onA. We say that dimTA is the number of
supertraces onA.

Given parity-preserving~anti! automorphismt and supertrace operation str onA, str„t(x)… is
some supertrace as well. For inner automorphismst, „t(x)5pxp21, p(p)50…, it follows from the
defining property of the supertrace that str„t(x)…5str(x). Thus,TA forms a representation of the
factor group of the parity preserving automorphisms and antiautomorphisms ofA over the normal
subgroup of the inner automorphisms ofA. Applying this fact to the original parity automorphism
~21!p, one concludes thatTA can always be decomposed into a direct sum of subspaces of even
and odd supertraces,TA5TA

0
%TA

1 and thatTA
150 if the parity automorphism is inner.

In the sequel we only consider the case where dimTA,` and there are no nontrivial odd
supertraces. LetA5A1^A2 with the associative algebrasA1 andA2 endowed with some even
supertrace operationst1 and t2, respectively. The supertrace onA can be defined by setting
str(a1^a2)5t1(a1)t2(a2),;a1PA1 ,;a2PA2 . As a result, one concludes thatTA 5 TA1 ^ TA2. In
the case ofSHN~n!, one thus can always separate out a contribution of the center of mass coor-
dinates as an overall factor~SH1 admits the unique supertrace!.

If A is finite dimensional then the existence of two different supertraces indicates thatA
admits nontrivial both-side ideals. Actually, consider the bilinear form
B( f ,g)5a1 str1( f g)1a2 str2( f g) with arbitrary parametersa1, a2PC and elementsf ,gPA. The
determinant of this bilinear form is some polynomial ofa1 and a2. Therefore it vanishes for
certain ratiosa1/a2 or a2/a1 according to the central theorem of algebra. Thus, for these values of
the parameters the bilinear formB degenerates and admits nontrivial null vectorsx, B(x,g)50,
;gPA. It is easy to see that the linear spaceI of all null vectorsx is some both-side ideal ofA.
For infinite-dimensional algebras the existence of several supertraces does not necessarily imply
the existence of ideals. As mentioned in the Introduction, the existence of several supertrace
operations may be related to the existence of inequivalent representations. Also, it is worth men-
tioning that for the case of infinite-dimensional algebras and representations under investigation, it
can be difficult to use the standard~i.e., matrixwise! definition of the supertrace. In this situation
the formal definition of the supertraces on the algebra we implement in this paper is the only
rigorous one.

2877S. E. Konstein and M. A. Vasiliev: Supertraces on the Calogero algebras

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Let l A be the Lie superalgebra that is isomorphic toA as a linear space and is endowed with
the product law~12!. It contains the subalgebraslAP l A spanned by elementsg, such that
strp(g)50 for all p. Evidently slA forms the ideal ofl A . The factor algebratA5 l A/slA is a
commutative Lie algebra isomorphic toTA* as a linear space. Elements oftA different from the unit
element ofA ~which exist if dimTA.1! can induce outer automorphisms ofslA . Let us note that
it is this slA Lie superalgebra that usually has physical applications. For the case ofSHN~n! under
consideration, the algebral SHN(n) is identified with the algebraWN,`~n! introduced in Ref. 8. We
therefore conclude that these algebras are not simple forN.2 because it is shown below that
SHN~n! admits several supertraces forN.2. Instead, one can consider the algebrassWN,`~n!.

Let l A contain some subalgebraL such thatA decomposes into a direct sum of irreducible
representations ofL with respect to the adjoint action ofL on A via supercommutators. Then,
only trivial representations ofL can contribute to any supertrace onA. Actually, consider some
nontrivial irreducible representationR of L. Any rPR can be represented as

r5(
j

@ l j ,r j%, l jPL, r jPR, ~32!

since elements of the form~32! span the invariant subspace inR. From ~11! it follows then that
str(r )50, ;rPR.

From the definition of the supertrace, it follows that

str~a1a2!1str~a2a1!50, ~33!

for arbitrary odd elementsa1 anda2 of A. A simple consequence of this relation is that

str~a1a2•••an1a2•••ana11•••1ana1•••an21!50 ~34!

is true for an arbitrary evenn if all ai are some odd elements ofA. Since we assume that the
supertrace is even,~34! is true for anyn. This simple property turns out to be practically useful
because, when odd generating elements are subject to some commutation relations with the right-
hand sides expressed via even generating elements like in~2!, it often allows one to reduce
evaluation of the supertrace of a degree-n polynomial ofai to supertraces of lower degree poly-
nomials.

Another useful property is that in order to show that the characteristic property of the super-
trace~11! is true for anyx,gPA, it suffices to show this for a particular case wherex is arbitrary
while g is an arbitrary generating element of some fixed system of generating elements. Then~11!
for generalx andg will follow from the properties thatA is associative and str is linear. For the
particular case ofSHN~n!, this means that it is enough to set eitherg5ai

a or g5Ki j .
Let us now turn to some specific properties ofSHN~n! as a particular realization ofA.
By identifyingL with sl2 ~5! and taking into account thatSHN~n! decomposes into a direct

sum of irreducible finite-dimensional representations ofsl2, one arrives at the following.
Lemma 1: str(x) can be different from zero only when x is sl2 singlet, i.e.[T

ab,x]50.
Corollary: Any supertrace onSHN~n! is even.
Analogously one deduces consequences of theSN symmetry. In particular, one proves the

following.
Lemma 2: Given cPSN such that cF5mFc for some element F and any constantmÞ1,

str(F)50.Given monomial F5 bI1bI2•••bIss with bIk P Bs and a cycle c0 in the decomposition
(15) ofs, one concludes that str(F)50 if Pk:c(I k)5c0

l I k
Þ 1,wherel I k

are the eigenvalues (21) of

bIk.
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IV. GROUND LEVEL CONDITIONS

Let us analyze restrictions on a form of str(a),aPSN , which follow from the defining rela-
tions ofSHN~n!.

First, we describe supertraces on the group algebra ofSN . Let some permutations decompose
into n1 cycles of length 1,n2 cycles of length 2,... andnN cycles of lengthN. The non-negative
integersnk satisfy the relation

(
k51

N

knk5N ~35!

and fixs up to some conjugations→tst21, tPSN . Thus

str~s!5w~n1 ,n2 ,...,nN!, ~36!

wheres(n1 ,n2 ,...,nN) is an arbitrary function. Obviously the linear space of invariant functions
onSN @i.e., such thatf (tst21)5 f (s)# coincides with the linear space of supertraces on the group
algebra ofSN . Therefore, the dimension of the linear space of supertraces is equal to the number
p(N) of independent solutions of~35!, the number of conjugacy classes ofSN . One can introduce
the generating function forp(N) asP(q)5(n50

` p(n)qn5Pk51
` 1/(12qk). The properties of this

generating function and of the quantitiesp(N) are discussed in detail, e.g., in Ref. 17.
According to the general argument of the previous section, the existence of several indepen-

dent traces implies that the group algebra ofSN must have some ideals. Indeed, it can be shown to
decompose into a direct sum of matrix algebras Matn .

Since the group algebra ofSN is embedded intoSHN~n!, some additional restrictions on the
functionsw(n1 ,n2 ,...,nN) follow from ~11! and the defining relations~2!–~3! of SHN~n!. Actu-
ally, consider some elementsbI such thatlI521. Then, one finds from~11! and ~21! that
str(bIbJs)52str(bJsbI)5str(bJbIs), and therefore

str~@bI ,bJ#s!50. ~37!

Since these conditions restrict supertraces of degree-0 polynomials ofai
a, we call them ground

level conditions~GLC!. Thus, for every permutations and any even integer 2k such that there
exists some cyclec of lengthucu52k in the decomposition~15!, we have GLC~37! with bI such
that c(I )5c. Note, however, that iflJÞ21 or c(J)Þc(I ), then the relation str~[bI ,bJ]s!50 is
trivially satisfied as a consequence ofLemma 2.

It is convenient to rewrite GLC in the following form:

str~c0s0!52str„~@b0k
0 ,b0k

1 #21!c0s0…, ~38!

wherec0 is any cycle of even length 2k in the decomposition of the permutations5c0s0 andb0k
a

is the corresponding variable~17! with ~l0!
k521, i.e., c0b0k

a 52b0k
a c0 , s0b0k

a 5b0k
a s0 and

l05exp(2p i /uc0u).
To work out the explicit form of the restrictions on the functionsw(n1 ,n2 ,...,nN) that follow

from GLC, one has to use the following simple facts from the theory of the symmetric group.
Lemma 3: Let c1 and c2 be two distinct cycles in the decomposition (15). Let indices i1 and i2

belong to the subsets of indices associated with the cycles c1 and c2, respectively. Then the
permutation c5 c1c2Ki1i2

is a cycle of lengthucu5uc1u1uc2u.
Lemma 4: Given cyclic permutation cPSN , let iÞ j be two indices such that ck( i )5 j , where

k is some positive integer, k,ucu. Then cKi j5c1c2 , where c1,2 are some noncoinciding mutually
commuting cycles such thatuc1u5k and uc2u5ucu2k.

Using the definition~17!, the commutation relations~1!–~3! andLemmas 3and4, one reduces
GLC to the following system of equations:
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n2kw~n1 ,...,n2k ,...,nN!52nn2kS 2 (
sÞk,s51

2k21

Osw~n1 ,...,ns11,...,n2k2s11,...,n2k21;...,nN!

12Okw~n1 ,...,nk12,...,n2k21,...,nN!

1 (
sÞ2k;s51

N

snsw~n1,...,ns21,...,n2k21,...,n2k1s11,...,nN!

12k~n2k21!w~n1 ,...,n2k22,...,n4k11,...,nN!D , ~39!

whereOk50 for k even andOk51 for k odd.
Let us note that by virtue of the substitution

w~n1 ,...,nN!5nE~s!w̃~n1 ,...,nN!, ~40!

whereE~s! is the number of cycles of even length in the decomposition ofs ~15!, i.e.

E~s!5n21n41••• , ~41!

one can get rid of the explicit dependence ofn from GLC ~39!. As a result, there are two
distinguishing cases,n50 andnÞ0.

For lowerN the conditions~39! take the form

w~0,1!12nw~2,0!50 ~42!

for N52 @cf. ~9!#,

w~1,1,0!12nw~3,0,0!1nw~0,0,1!50, ~43!

for N53 and

w~2,1,0,0!12nw~4,0,0,0!12nw~1,0,1,0!50,

w~0,2,0,0!12nw~2,1,0,0!12nw~0,0,0,1!50,

w~0,0,0,1!14nw~1,0,1,0!50,

for N54. As a result one finds 1-parametric families of solutions forN51 and N52 and
2-parametric families of solutions forN53 andN54.

Let GN be the number of independent solutions of~39!. As we show in the next section
GN5dim TSHN(n) for all n. In other words, all other conditions on the supertrace do not impose
any restrictions on the functionsw(n1 ,...,nN) but merely express supertraces of higher-order
polynomials ofai

a in terms ofw(n1 ,...,nN) .
In the Appendix A we prove the following.
Theorem 1:GN5q(N), where q(N) is a number of partitions of N into a sum of odd positive

integers, i.e. the number of the solutions of the equation(k50
` (2k11)nk5N for non-negative

integers ni .
One can guess this result from the particular case ofn50, where GLC tell us that

w(n1 ,...,nN) can be nonvanishing~and arbitrary! only when alln2k50. Interestingly enough,GN

remains the same fornÞ0.
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V. SUPERTRACE FOR GENERAL ELEMENTS

In this section we prove the following.
Theorem 2: dimTSHN(n)5GN , where GN is the number of independent solutions of the

ground level conditions (39).
The proof of theTheorem 2will be given in a constructive way by virtue of the following

double induction procedure.
~i! Assuming that GLC are true and str$bI ,Pp(a)s%50, ;Pp(a), s and I provided that

bIPBs and

l~ I !Þ21; p<k,

or

l~ I !521, E~s!< l , p<k,

or

l~ I !521; p<k22,

wherePp(a) is an arbitrary degreep polynomial of ai
a ~p is odd! andE~s! is the number of

cycles of even length in the decomposition~15! of s, one proves that there exists such a unique
extension of the supertrace that the same is true forl→ l11.

~ii ! Assuming that str$bI ,Pp(a)s%50, ;Pp(a), s andbI , such thats(I )5s, p<k one proves
that there exists such a unique extension of the supertrace that the assumption~i! is true for
k→k12 andl50.

As a result this inductive procedure extends uniquely any solution of GLC to some supertrace
on the wholeSHN~n!. @Let us remind ourselves that the supertrace of any odd element ofSHN~n!
is trivially zero bysl2 invariance#.

The inductive proof ofTheorem 2is based on theSN covariance of the whole setting and the
following important lemma.

Lemma 5: Given permutations, which has E~s! cycles of even length in the decomposition
(15), the quantity fIJs for s(I )5s(J)5s and l I5lJ521 can be uniquely expanded as
f IJs5(qaqsq , whereaq are some coefficients and E(sq)5E(s)21,;q.

Lemma 5is a simple consequence of the particular form of the structure coefficientsf IJ ~27!
andLemmas 3and4. The proof is straightforward. Let us stress that it isLemma 5that accounts
for the specific properties of the algebraSHN~n! in the analysis of this section.

In practice, it is convenient to work with the exponential generating functions

Cs~m!5str~eSs!, S5 (
L51

2N

~mLb
L!, ~44!

where s is some fixed element ofSN , b
LPBs , and mLPC are independent parameters. By

differentiating overmL , one can obtain an arbitrary polynomial ofb
L in front of s. The exponen-

tial form of the generating functions implies that these polynomials are Weyl ordered. In these
terms the induction on a degree of polynomials is equivalent to the induction on a degree of
homogeneity inm of the power series expansions ofCs~m!.

As a consequence of the general properties discussed in the preceding sections, the generating
functionCs~m! must be invariant under theSN similarity transformations,

Ctst21~m!5Cs~m̃!, ~45!

where theSN transformed parameters are of the form
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m̃ I5(
J
„M~tst21!M21~t!L21~t!M~t!M21~s!…I

JmJ , ~46!

and matricesM~s! andL~s! are defined in~22! and ~23!.
In accordance with the general argument of Sec. III, the necessary and sufficient conditions

for the existence of even supertrace are theSN-covariance conditions~45! and the condition that

str$bL,~expS!s%50, for any s and L. ~47!

To transform~47! to an appropriate form, let us use the following two general relations, which are
true for arbitrary operatorsX andY and the parametermPC:

X exp~Y1mX!5
]

]m
exp~Y1mX!1E t2 exp„t1~Y1mX!…@X,Y#exp„t2~Y1mX!…D1t,

~48!

exp~Y1mX!X5
]

]m
exp~Y1mX!2E t1 exp„t1~Y1mX!…@X,Y#exp„t2~Y1mX!…D1t, ~49!

with the convention that

Dn21t5d~ t11•••1tn21!u~ t1!•••u~ tn!dt1•••dtn . ~50!

The relations~48! and~49! can be derived with the aid of the partial integration~e.g., overt1!
and the following formula:

]

]m
exp~Y1mX!5E exp„t1~Y1mX!…X exp„t2~Y1mX!…D1t, ~51!

which can be proven by expanding in a power series. The well-known formula

@X,exp~Y!#5E exp~ t1Y!@X,Y#exp~ t2Y!D1t, ~52!

is a consequence of~48! and ~49!.
With the aid of~48!, ~49!, and~21!, one rewrites~47! as

~11lL!
]

]mL
Cs~m!5E ~lLt12t2!str„exp~ t1S!@bL,S#exp~ t2S!s…D1t. ~53!

This condition should be true for anys andL and plays the central role in the analysis of this
section.

There are two essentially distinguishing cases,lLÞ21 andlL521. In the latter case, the
equation~53! takes the form

05E str„exp~ t1S!@bL,S#exp~ t2S!s…D1t, lL521. ~54!

In Appendix B we show by induction that the equations~53! and ~54! are consistent in the
following sense:
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~11lK!
]

]mK
E ~lLt12t2!str„exp~ t1S!@bL,S#exp~ t2S!s…D1t2~L↔K !50,

lLÞ21, lKÞ21 ~55!

and

~11lK!
]

]mK
E str„exp~ t1S!@bL,S#exp~ t2S!s…D1t50, lL521. ~56!

Note that this part of the proof is quite general and does not depend on a concrete form of the
commutation relations ofai

a in ~2!.
By expanding the exponentialeS in ~44! into power series inmK ~equivalentlybK! one

concludes that the equation~53! uniquely reconstructs the supertrace of monomials containingbK

with lKÞ21 ~from now on called regular polynomials! via supertraces of some lower-order
polynomials. The consistency conditions~55! and ~56! then guarantee that~53! does not impose
any additional conditions on the supertraces of lower degree polynomials and allow one to rep-
resent the generating function in the form

Cs5Fs~m!1 (
L:lLÞ21

E
0

1 mL dt

11lL
E D1t~lLt12t2!str„e

t1~tS91S8!@bL,~tS91S8!#et2~tS91S8!s),

~57!

where we have introduced the generating functionsFs for the supertrace of special polynomials,
i.e. the polynomials depending only onbL with lL521,

Fs~m!5
def
str~eS8s!5Cs~m!u~m I50, ;I :l IÞ21! ~58!

and

S85 (
L:bLPBs ,lL521

~mLb
L!; S95S2S8. ~59!

The relation~57! successively expresses the supertrace of higher-order regular polynomials via the
supertraces of lower-order polynomials.

One can see that the arguments above prove effectively the inductive hypotheses~i! and ~ii !
for the particular case where either the polynomialsPp(a) are regular and/orlIÞ21. Note that
for this case the induction on the number of cycles of even length~i! is trivial: one simply proves
that a power of polynomial can be increased by 2.

Let us now turn to the less trivial case of the special polynomials:

str$bI ,~expS8!s%50, l I521. ~60!

Consider the part of str$bI ,~expS8!s%, which is of orderk in m, and suppose thatE(s)5 l11.
According to~54!, the conditions~60! give

05E str„exp~ t1S8!@bI ,S9#exp~ t2S8!s…D1t. ~61!

Substituting [bI ,S8]5m I1n(M f
IMmM , where the quantitiesf IJ andmI are defined in~25!–

~28!, one can rewrite the equation~61! in the form
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m IFs~m!52nE strS exp~ t1S8!(
M

f IMmM exp~ t2S8!s DD1t. ~62!

Now we use the inductive hypothesis~i!. The right-hand side of~62! is a supertrace of at most
a degreek21 polynomial ofai

a in the sector of degreek polynomials inm. Therefore one can use
the inductive hypothesis~i! to obtain

E strS exp~ t1S8!(
M

f IMmM exp~ t2S8!s DD1t5E strS exp~ t2S8!exp~ t1S8!(
M

f IMmMs DD1t,

where we made use of the simple fact that str(S8Fs)52str(FsS8)5str(FS8s) due to the defi-
nition of S8.

As a result, the inductive hypothesis allows one to transform~60! to the following form:

XI[m IFs~m!1n strS exp~S8!(
M

f IMmMs D 50. ~63!

By differentiating this equation with respect tomJ , one obtains, after symmetrization,

]

]mJ
„m IFs~m!…1~ I↔J!52nE strS et1S8bJet2S8(

M
f IMmMs DD1t1~ I↔J!. ~64!

An important point is that the system of equations~64! is equivalent to the original equations
~63!, except for the ground level partFs~0!. This can be easily seen from the simple fact that the
general solution of the system of equations (]/]mJ)X

I(m)1(]/]m I)X
J(m)50 for entire functions

XI~m! is of the formXI(m)5XI(0)1(Jc
IJmJ , whereX

I~0! and cJI52cIJ are some constants.
The part of~63! linear inm is, however, equivalent to the ground level conditions analyzed in the
previous section. Thus~64! contains all information additional to~39!. For this reason we will,
from now on, analyze the equation~64!.

Using again the inductive hypothesis we moveb1 to the left and to the right with equal
weights to get

]

]mJ
m IFs~m!1~ I↔J!52

n

2(M str~exp~S8!$bJ, f IM %mMs!

2
n

2E (
L,M

~ t12t2!str~exp~ t1S8!FJLmL exp~ t2S8! f IMmMs!

3D1t1~ I↔J!. ~65!

The last term on the right-hand side of this expression can be shown to vanish under the supertrace
operation due to the factor of (t12t2), so that one is left with the equation

LIJFs~m!52
n

2
RIJ~m!, ~66!

where

RIJ~m!5(
M

str~exp~S8!$bJ, f IM %mMs!1~ I↔J! ~67!

and

LIJ5
]

]mJ
m I1

]

]m I
mJ. ~68!

2884 S. E. Konstein and M. A. Vasiliev: Supertraces on the Calogero algebras

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The differential operatorsLIJ satisfy the standardsp(2E(s)) commutation relations

@LIJ,LKL#52~C IKLJL1C ILLJK1C JKLIL1C JLLIK !. ~69!

We show by induction in Appendix C that this algegra is consistent with the right-hand side of the
basic relation~66!, i.e. that

@LIJ,RKL#2@LKL,RIJ#52~C IKRJL1C JLRIK1C JKRIL1C ILRJK!. ~70!

Generally, these consistency conditions guarantee that the equations~66! expressFs~m! in
terms ofRIJ in the following way:

Fs~m!5Fs~0!1
n

8E~s! (
I ,J51

2E~s! E
0

1 dt

t
~12t2E~s!!~LIJR

IJ!~ tm!, ~71!

provided that

RIJ~0!50. ~72!

The latter condition must hold for the consistency of~66!, since its left-hand side vanishes at
mI50. In the formula~71! it guarantees that the integral ont converges. In the case under
consideration the property~72! is indeed true as a consequence of the definition~67!.

Taking into accountLemma 5and the explicit form ofRIJ ~67!, one concludes that the
equation~71! expresses uniquely the supertrace of special polynomials via the supertraces of
polynomials of lower degrees or via the supertraces of special polynomials of the same degree
with a lower number of cycles of even length, provided that them-independent termFs~0! is an
arbitrary solution of GLC. This completes the proof ofTheorem 2.

Comment 1: The formulas (57) and (71) can be effectively used in practical calculations of
supertraces of particular elementsof SHN~n!.

Comment 2: Any supertrace on SHN~n! is determined unambiguously in terms of its values on
the group algebra of SN .

Corollary: Any supertrace onSHN~n! is r invariant, str„r(x)…5str(x), ;xPSHN~n!, for the
antiautomorphismr ~30!.

This is true, due toComment 2, becauses ands215r~s! belong to the same conjugacy class
of SN so that str„r~s!…5str~s!.

VI. CONCLUSIONS

In this paper we have shown that the algebrasSHN~n! can be endowed withq(N)-independent
supertrace operations, whereq(N) is the number of partitions ofN into a sum of odd positive
integers. We hope to apply the supertraces constructed in this paper to the analysis of the invariant
forms ofSHN~n!. Although a definition of the supertraces onSHN~n! behaves regularly with the
parametern @in particular, the number of supertracesq(N) is n independent#, one can expect that
this is not the case for the related bilinear forms, which can degenerate for some special values of
n, thus giving rise to ideals ofSHN~n! as it happens14 for the simplest case ofN52. The analysis
of the structure of these ideals is a challenging problem important for various applications of
SHN~n!, including an analysis of its representations. We are going to study this problem for some
lower values ofN.2 in the future publication.

In conclusion, let us note that the method of the analysis of supertraces presented in this paper
is rather general. Practically the only information of the specific structure ofSHN~n! is thatLemma
5 is true. Hopefully one can use the analogous methods for the analysis of supertraces of other
associative algebras.
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APPENDIX A: INDEPENDENCE GN OF n

For the casen50 it was argued in Sec. IV that~39! possessesq(N) independent solutions. Let
us now consider the casenÞ0. By induction on a number of cycles of even lengthe5E~s!, we
show that givens with E(s)5e>1 there is only one independent equation on str~s!, provided
that all equations~39! with E(s)5e8,e are resolved. In this proof we setn51, which does not
lead to the loss of generality due to the scaling property~40!. The first step of the induction
consists of the observation that there are no equations for the caseE~s!50.

Let us consider the case where there are two equations~38! on str~s! for somes. This is only
possible ifs5c1c2s8, wherec1 and c2 are some cycles in the decomposition ofs, such that
uc1u52k, uc2u52l , andkÞ l . Note thatE(s8)5E(s)225e22.

Without loss of generality, let us set

c15K12K23•••K ~2k21!2k , c25K ~2k11!~2k12!•••K ~2k12l21!~2k12l ! , ~A1!

b1
a5

1

A2k
~a1

a2a2
a1•••2a2k

a !, b2
a5

1

A2l
~a2k11

a 2a2k11
a 1•••2a2k12l

a !. ~A2!

Also, we introduce

c5K1~2k11!c1c25K12K23•••K ~2k12l21!~2k12l ! ~A3!

and

ba5
1

A2k12l
~A2kb1a1A2lb2a!5

1

A2k12l
~a1

a2a2
a1...2a2k12l

a !. ~A4!

The corresponding equations~38! take the form

str~s!52str„~@b1
0,b1

1#21!s… ~A5!

and

str~s!52str„~@b2
0,b2

1#21!s…. ~A6!

Using the following simple identity that holds for any trace onSN ,

strS 1

2k (
p51

2k

(
q52k11

2k12l

Kpqs D 52l str~K1~2k11!s!,

one can rewrite the right-hand side of~A5! as

str„~@b1
0,b1

1#21!s…5strXS @b1
0,b1

1#212
1

2k (
p51

2k

(
q52k11

2k12l

KpqDsC12l str~K1~2k11!s!.

~A7!
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The direct analysis based on the commutation relations~2! and ~3! then shows that the first
term on the right-hand side of~A7! is the supertrace of a linear combination of permutations,
which all contain the cyclec2 in their decompositions. The second term is the supertrace of the
permutation that contains the cyclec ~A3! in its decomposition. It is easy to see that for each of
these terms the number of cycles of even length isE~s!21. This allows us to apply the equation
~38! to each of these terms due to the inductive hypothesis. We identifyc0 with c2 and c,
respectively, for the first and second terms on the right-hand side of~A7!. As a result the equation
~A5! turns out to be transformed to the form

str~s!5strX~@b2
0,b2

1#21!S @b1
0,b1

1#212
1

2k (
p51

2k

(
q52k11

2k12l

KpqDsC
1str„~@b0,b1#21!2lK 1~2k11!s…. ~A8!

Analogously, one obtains for~A6!,

str~s!5strX~@b1
0,b1

1#21!S @b2
0,b2

1#212
1

2l (
p51

2k

(
q52k11

2k12l

KpqDsC
1str„~@b0,b1#21!2kK1~2k11!s… ~A9!

Let us prove that the difference of the right-hand sides of~A8! and ~A9! vanishes. With the
aid of the simple consequence of theSN invariance,

1

4kl
strS @bi

0,bi
1# (

p51

2k

(
q52k11

2k12l

Kpqs D 5str~@bi
0,bi

1#K1~2k11!s!, i51,2,

this difference can be transformed to the form

X5str„~2k@b1
0,b1

1#22l @b2
0,b2

1# !K1~2k11!s…, ~A10!

where we have taken into account that

str~@b0,b1#K1~2k11!s!50, ~A11!

as a consequence of the inductive hypothesis and GLC~37!, and that

str„@~@b2
0,b2

1#21!,~@b1
0,b1

1#21!#s…50, ~A12!

since each term in the commutator belongs to the group algebra ofSN and commutes withs so
that ~A12! vanishes for any supertrace on the group algebra ofSN .

Using the relationb1
a 5 1/A2k(A2k12lba 2 A2lb2a) one transformsX to the form

X52 str~„~k1 l !@b0,b1#2Al ~k1 l !@b0,b2
1#2Al ~k1 l !@b2

0,b1#…K1~2k11!s!. ~A13!

Due to theSN invariance the second term on the right-hand side of~A13! can be rewritten as
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22Al ~k1 l !str~@b0,b2
1#K1~2k11!s!

52
Al ~k1 l !

k1 l (
p51

2k12l

str~cp@b0,b2
1#c2pK1~2k11!s!

52
Al

Ak1 l
strS Fb0, (

p51

2k12l

~21!pcpb2
1c2pGK1~2k11!s D

522l str~@b0,b1#K1~2k11!s!. ~A14!

Analogously, one can transform the third term on the right-hand side of~A13!. Using again~A11!,
one concludes thatX50.

Thus, it is shown that the number of solutions of~39! is equal to the number of the conjugacy
classes inSN with E~s!50. This completes the proof ofTheorem 1.

APPENDIX B: CONSISTENCY FOR lÞ21

Let us prove by induction that the equations~55! are true for any twom1 [ mK1
andm2

[ mK2
, such that bothl1 [ lK1

Þ 21 andl2 [ lK2
Þ 21. To implement induction one selects

from ~47! a part of orderk in m and observes that it contains the anticommutator ofbL with a
degreek polynomial inbM, while the part on the right-hand side of the differential version~53! of
~47!, which is of the same order inm has the orderk21 as the polynomial ofbM. This happens
because of the presence of the commutator [bL,S], which is a degree zero polynomial due to the
basic relations~2! and~3!. As a result, the inductive hypothesis allows one to use the properties of
the supertrace, provided that the above commutator is always handled as the right-hand side of~2!
~i.e., it is not allowed to represent it again as a difference of the second-order polynomials!.

Direct differentiation with the aid of~51! gives

~11l2!
]

]m2
E ~l1t12t2!str~e

t1S@b1,S#et2Ss!D1t2~1↔2!

5S E ~11l2!~l1t12t2!str~e
t1S@b1,b2#et2Ss!D1t2~1↔2! D

1S E ~11l2!„l1~ t11t2!2t3…str~e
t1Sb2et2S@b1,S#et3S!D2t2~1↔2! D

1S E ~11l2!~l1t12t22t3!str~e
t1S@b1,S#et2Sb2et3Ss!D2t2~1↔2! D . ~B1!

We have to show that the right-hand side of~B1! vanishes. Let us first transform the second
and the third terms on the right-hand side of~B1!. The idea is to move the operatorsb2 through the
exponentials toward the commutator [b1,S] so that to use then Jacobi identities for the double
commutators. This can be done in two different ways inside the supertrace so that one has to fix
appropriate weight factors for each of these processes. The correct weights turn out to be

D2t„l1~ t11t2!2t3)b
2[D2t~l12t3~11l1!!b25D2tXS l1l2

11l2
2t3~11l1! Db2W1

l1

11l2
b2Q C

~B2!

and
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D2t~l1t12t22t3!b
2[D2t„~l111!t121…b25D2tXS t1~11l1!2

1

11l2
Db2Q2

l2

11l2
b2W C

~B3!

in the second and third terms on the right-hand side of~B1!, respectively. Here the notationsAW and
AQ imply that the operatorA has to be moved from its position to the right and to the left,
respectively. Using~52! along with the simple formula

E f~ t3 ,...,tn11!D
nt5E t1f~ t2 ,...,tn!D

n21t ~B4!

one finds that all terms that involve both [b1,S] and [b2,S] cancel pairwise after antisymmetri-
zation 1↔2.

As a result, one is left with some terms involving double commutators, which by virtue of
Jacobi identities and antisymmetrization all reduce to

E „l1l2t11t22t1t2~11l1!~11l2!…str„exp~ t1S!†S,@b1,b2#‡exp~ t2S!s…D1t. ~B5!

Finally, one observes that this expression can be equivalently rewritten in the form

E „l1l2t11t22t1t2~11l1!~11l2!…S ]

]t1
2

]

]t2
D str„exp~ t1S!@b1,b2#exp~ t2S!s…D1t,

~B6!

and after integration by parts cancel the first term on the right-hand side of~B1!. Thus it is shown
that the equations~53! are mutually compatible for the casel1,2Þ21.

Analogously one can show that the equations~53! are consistent with~54!. Actually, let
l1521, l2Þ21. Let us prove that

]

]m2
str„@b1,exp~S!#s…50, ~B7!

provided that the supertrace is well defined for the lower-order polynomials. The explicit differ-
entiation gives

]

]m2
str„@b1,exp~S!#s…5E str„@b1,exp~ t1S!b2 exp~ t2S!#s…D1t

5~11l2!
21 str„@b1,~b2 exp~S!1l2 exp~S!b2!#s…1••• , ~B8!

where dots denote some terms of the form str~[b1,B]s! involving further commutators insideB,
which therefore amount to some lower-order polynomials and vanish by the inductive hypothesis.
As a result, one finds

]

]m2
str„@b1,exp~S!#s…5~11l2!

21 str~„b2@b1,exp~S!#1l2@b
1,exp~S!#b2…s!

1~11l2!
21 str~„@b1,b2#exp~S!1l2 exp~S!@b1,b2#…s!, ~B9!

which expression vanishes by the inductive hypothesis as well.
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APPENDIX C: CONSISTENCY FOR l521

In order to prove~70! we use the inductive hypothesis~i!. In this appendix we use the
convention that any upper or lower indices denoted by the same letter are automatically symme-

trized, e.g.FII5
def
1/2(FI1I2 1 FI2I1). Let us write the identity

05(
M

str~@exp~S8!$bI , f IM %mM ,b
JbJ#s!2~ I↔J!, ~C1!

which holds due toLemma 5for all terms of degreek21 in m with E(s)< l11 and for all
lower-order polynomials inm ~one can always movef IJ to s, combining them into a combination
of elements ofSN analyzed inLemma 5!.

The straightforward calculation of the commutator on the right-hand side of~C1! gives
05X11X21X3 , where

X152(
M ,L

E str„exp~ t1S8!$bJ,FJL%mL exp~ t2S8!$bI , f IM %mMs…D1t2~ I↔J!,

X25(
M

str~exp~S8!$$bJ,FIJ%, f IM %mMs!2~ I↔J!, ~C2!

X35(
M

str„exp~S8!ˆbI ,$bJ,@ f IM ,bJ#%‰mMs…2~ I↔J!.

The terms bilinear inf in X1 cancel due to the antisymmetrization (I↔J) and the inductive
hypothesis~i!. As a result, one can transformX1 to the form

X15~2 1
2@L

JJ,RII #12 str~eS8$bI , f IJ%mJs!!2~ I↔J!. ~C3!

SubstitutingFIJ5C IJ1n f IJ and f IM5n21~[bI ,bM]2C IM !, one transformsX2 to the form

X252C IJRIJ22„str~eS8$bJ, f IJ%m Is!2~ I↔J!…1Y, ~C4!

where

Y5str~eS8ˆ$bJ, f IJ%,@bI ,S8#‰s!2~ I↔J!. ~C5!

Using that

str„exp~S8!@PfIJQ,S8#s…50, ~C6!

provided that the inductive hypothesis can be used, one transformsY to the form

Y5str„eS8~2@ f IJ,~bIS8bJ1bJS8bI !#2bI@ f IJ,S8#bJ2bJ@ f IJ,S8#bI1@ f IJ,$bI ,bJ%#S8!s….
~C7!

Let us rewriteX3 in the formX35X3
s1X3

a, where
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X3
s5

1

2 (
M

str„eS8~ˆbI ,$bJ,@ f IM ,bJ#%‰1ˆbJ,$bI ,@ f IM ,bJ#%‰!mMs…2~ I↔J!,

X3
a5

1

2 (
M

str„eS8~ˆbI ,$bJ,@ f IM ,bJ#%‰2ˆbJ,$bI ,@ f IM ,bJ#%‰!mMs)2~ I↔J!.

With the aid of the Jacobi identities [f IM ,bJ]2[ f JM,bI ]5[ f IJ,bM], one expressesX3
s in the form

X3
s5 1

2 str„e
S8~$bI ,bJ%@ f IJ,S8#1@ f IJ,S8#$bI ,bJ%12bI@ f IJ,S8#bJ12bJ@ f IJ,S8#bI !s….

X3
a can be transformed to the form

X3
a5

1

2 (
M

str~eS8†FIJ,@ f IM ,bJ#‡mMs!2~ I↔J!. ~C8!

By virtue of the substitutionsFIJ5C IJ1n f IJ and f IM5n21~[bI ,bM]2C IM ! in ~C8! one finds
after simple transformations thatY1X350. From~C3! and~C4! it follows then that the right-hand
side of ~C1! equals 1/2([LII ,RJJ]2[LJJ,RII ])12C IJRIJ. This completes the proof of the consis-
tency conditions~70!.

1A. Polychronakos, Phys. Rev. Lett.69, 703 ~1992!.
2L. Brink, H. Hansson, and M. A. Vasiliev, Phys. Lett. B286, 109 ~1992!.
3L. Brink, H. Hansson, S. E. Konstein, and M. A. Vasiliev, Nucl. Phys. B401, 591 ~1993!.
4F. Calogero, J. Math. Phys.10, 2191, 2197~1969!; 12, 419 ~1971!.
5L. Brink and M. A. Vasiliev, Mod. Phys. Lett. A8, 3585~1993!.
6C. F. Dunkl, Trans. Am. Math. Soc.311, 167 ~1989!.
7C. N. Pope, L. J. Romans, and X. Shen, Phys. Lett. B236, 173 ~1990!; 242, 401 ~1990!.
8E. Bergshoeff and M. A. Vasiliev, Int. J. Mod. Phys. A10, 3477~1995!.
9A. Capelli, C. Trugenberger, and G. Zemba, Nucl. Phys. B396, 465 ~1993!; S. Iso, D. Karabali, and B. Sakita, Phys.
Lett. B 296, 143 ~1992!.

10M. A. Vasiliev, Phys. Lett. B285, 225 ~1992!; Class. Quantum Grav.11, 649 ~1994! ~and references therein!.
11Y. Yamagishi, Phys. Lett. B259, 436 ~1991!; F. Yu and Y.-S. Wu,ibid. 263, 220 ~1991!.
12J. M. Leinaas and J. Myrheim, Phys. Rev. B37, 9286~1988!.
13J. Moyal, Proc. Cambridge Philos. Soc.45, 99 ~1949!; A. Kirillov, Elements of the Theory of Representations~Nauka,
Moscow, 1978! ~in Russian!; M. A. Vasiliev, Fortschr. Phys.36, 33 ~1988!.

14M. A. Vasiliev, JETP Lett.50, 344 ~1989!; Int. J. Mod. Phys. A6, 1115~1991!.
15E. Bergshoeff, B. de Wit, and M. A. Vasiliev, Nucl. Phys. B366, 315 ~1991!.
16M. A. Vasiliev, Ann. Phys.190, 59 ~1989!; S. E. Konstein and M. A. Vasiliev, Nucl. Phys. B331, 475 ~1990!.
17G. E. Andrews,The Theory of Partitions, Encyclopedia of Mathematics and its Applications, edited by G.-C. Rota

~Addison-Wesley, Reading, MA, 1976!.

2891S. E. Konstein and M. A. Vasiliev: Supertraces on the Calogero algebras

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The nonsimultaneous nature of the Schwarzschild R50
singularity
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Rondebosch, 7700, South Africa

~Received 1 August 1995; accepted for publication 25 January 1996!

The relationship between the two well-behaved coordinate systems of Lemaıˆtre–
Tolman–Novikov, and Kruskal–Szekeres–Penrose indicates that the Schwarzs-
child R50 singularity is intrinsically nonsimultaneous. It follows that the simulta-
neous synchronous coordinates of Wald and Yip do not exist on the complete
Schwarzschild manifold. In the process, the coordinate transformations between the
Schwarzschild exterior model in its various common coordinate systems and the
vacuum Lemaıˆtre–Tolman model~which includes Novikov coordinates and the
closed Kantowski–Sachs model! is derived. It is also shown that, contrary to state-
ments in the literature, the closed Kantowski–Sachs model is well-behaved limit of
the Lemaiˆtre–Tolman model. ©1996 American Institute of Physics.
@S0022-2488~96!01605-9#

I. INTRODUCTION AND NOTATION

The spherically symmetric vacuum space–time is most commonly represented by the
Kruskal–Szekeres and Penrose diagrams. The former represents theR50 singularity as a right
hyperbola, and the latter as a pair of parallel lines; the former shape implies a gradual emergence
of the space–time from the past singularity, with the asymptotically flat regions appearing first and
the neck appearing last, and the converse at the future singularity, whereas the latter suggests an
instantaneous and simultaneous appearance or disappearance of the entire manifold. Although the
R50 surfaces are entirely spacelike, and although every point on, say, the past singularity is
equivalent to every other point underT translations, this only establishes local equivalence. If
white holes are generated by the big bang, and we can measure emerging signals, do there exist
observers for whom it would look simultaneous, or at least homogeneous? The transformation
between the causal coordinates of Kruskal–Szekeres and the geodesic coordinates of Lemaiˆtre–
Tolman will show thatR50 is intrinsically nonsimultaneous.

The Schwarzschild1 exterior metric is

ds252S 12
2M

R DdT21 dR2

S 12
2M

R D 1R2 dV2, ~1!

where

dV25du21sin2 u df2. ~2!

The Schwarzschild to Kruskal–Szekeres2,3 and Penrose4–6 transformations are

U5tanu5e~T1R!/4MA R

2M
21, ~3!

a!Temporary address: School of Physics and Chemistry, Lancaster University, Lancaster, LA1 4YB, U.K.
Electronic mail address: cwh@appmath.uct.ac.za
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V5tan v52e~R2T!/4MA R

2M
21, ~4!

where (U,V) and (u,v) are the Kruskal–Szekeres and Penrose coordinates, respectively. The
resulting metrics are

ds25
232M3

ReR/2M
dU dV1R2 dV2, ~5!

ds25
232M3

ReR/2M
du dv

cos2 u cos2 v
1R2 dV2, ~6!

whereR is the solution of

eR/2MS R

2M
21D52UV52tanu tan v. ~7!

The Lemaıˆtre–Tolman metric7,8 represents spherically symmetric inhomogeneous dust in syn-
chronous comoving coordinates,

ds252dt21
R82

11 f
dr21R2 dV2, ~8!

where8[]/]r , and f5 f (r ) is an arbitrary function of coordinate radius that gives both the local
spatial geometry, and the energy of the dust particles as a function ofr . The areal radius
R5R(t,r ) is the solution of

Ṙ25
2M

R
1 f , ~9!

wherė []/]t, and the gravitational mass contained within a comoving sphere of radiusr is
M5M (r ). We will also need

R̈52
M

R2 , ~10!

2ṘṘ85
2M 8

R
2
2MR8

R2 1 f 8, ~11!

and the identity

R85SM 8

M
2
f 8

f DR2Fa81SM 8

M
2
3 f 8

2 f D ~ t2a!GṘ, ~12!

which holds for allf ~See Refs. 9 and 10!. The three~nontrivial! solutions are

elliptic—f,0:

R5
M

~2 f !
~12cosh!, ~13!

~h2sin h!5
~2 f !3/2~ t2a!

M
; ~14!
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parabolic—f50:

R5S 9M ~ t2a!2

2 D 1/3; ~15!

hyperbolic—f.0:

R5
M

f
~coshh21!, ~16!

~sinhh2h!5
f 3/2~ t2a!

M
, ~17!

wherea5a(r ) is a third arbitrary function that gives the time at whichR50—the big bang in
cosmology, or the past singularity in vacuum.

The density is given by

8pr5
2M 8

R2R8
, ~18!

and since the pressure is zero, the dust particles~and therefore the constantr , u, f curves! follow
geodesics of the space–time.

Obviously from~18! we have vacuum ifM is a constant, and this must be equivalent to the
Schwarzschild/Kruskal–Szekeres manifold, since it is spherically symmetric. In a previous
paper—‘‘P1’’11—the vacuum Lemaıˆtre–Tolman models were discussed, and the wormhole topol-
ogy of Kruskal–Szekeres was then extended to models that have nonvanishing density everywhere
including the wormhole. In addition to constantM , complete coverage of the vacuum manifold
requires thatf521 at the narrowest part of the wormhole, whereR850 permanently, andf must
approach 0 or positive values asr→`. The obvious choice fora, at least in models withf<0
everywhere, is

a52
pM

~2 f !3/2
, ~19!

since this makes the past and future singularities time symmetric. For models or regions where
f.0, time symmetry is not possible, and this choice has no particular advantage. The set of all
possible choices forf (r ) and a(r ) corresponds to all the possible families of radial geodesic
coordinates for Schwarzschild, which havet as a global proper time along the geodesics. In other
words the geodesics are orthogonal to the surfaces of constant proper time. A model wheref goes
from 21 to ` corresponds to the inner geodesics expanding and recollapsing from past to future
singularities and the outer geodesics escaping to infinity,i1 ~or collapsing from infinity,i2! ~see
Fig. 5 of P1 and below!. To obtain Novikov’s coordinates~Ref. 12, but see Ref. 13 or 14! for
Schwarzschild from the Lemaıˆtre–Tolman form~see Fig. 4 of P1!, we choose

M5const, ~20!

f5
21

11r 2
, ~21!

a52pM ~11r 2!3/2. ~22!
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II. THE KANTOWSKI–SACHS LIMIT

It is usually stated15,16 that the closed Kantowski–Sachs model15 must be derived from the
spherically symmetric field equations separately from the Lemaıˆtre–Tolman case. This is because
R5R(t) only in the former, but in the latterR85R8(t,r )Þ0. This is not true. We shall show that
the Kantowski–Sachs model is a well-behaved limit of the Lemaıˆtre–Tolman model.

The closed Kantowski–Sachs metric, which describes a homogeneous, synchronous, comov-
ing dust model, is

ds252dt21X2~ t !dr21R2~ t !dV2, ~23!

where

t2t05
A

2
~h2p2sin h!, ~24!

R5
A

2
~12cosh!, ~25!

X5E1SE2 ~p2h!2BD sin h

~12cosh!
, ~26!

and the density is

8pr5
4E

A2~12cosh!2FE1SE2~p2h!2BD sin h

~12cosh!G
, ~27!

andA,E andB are constants. Theh used here, which runs from 0 to 2p, is related to the one used
by Kantowski and Sachs by

hKS5
~h2p!

2
, ~28!

and they also specifiedE50 or 1, thus disallowing rescaling of ther coordinate. They identified
the caseE50 as the region inside the horizon of the vacuum Schwarzschild model.

It is certainly true thatR8 must be zero everywhere, but this does not necessarily make the line
element~8! degenerate, providedA11 f also goes to zero, i.e.,f521. It was first pointed out by
Zel’dovich and Grishchuk17 that many spatially closed Lemaıˆtre–Tolman model necessarily has
points whereR(t5const,r ! is a maximum and thusR850 there. Hellaby and Lake10 further
showed that, for either extremum to be a regular space–time point,R850 also requiresa850,
f 850, andM 850 at these points if shell crossings are to be avoided, as well asf521if a surface
layer is to be avoided. It turns out that there is no reason why these conditions cannot hold
everywhere. So, let us set

R8

A11 f
5X~ t ! ~29!

and then establish what extra conditions are required to reduce the evolution of~12! for the elliptic
case,f,0, to that of~26!. Substituting~13!, ~14!, and~12! into ~29! gives
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R8

A11 f
5

1

~12cosh! F M

~2f!A11 f
SM 8

M
2
f 8

f D ~12cosh!2

2
M

~2f!A11 f
SM 8

M
2
3 f 8

2 f D sinh~h2sinh!2
a8A2 f

A11 f
sinhG

5X~t!5
1

~12cosh! FE~12cosh!1SEp

2
2BDsinh2SE2Dh sinhG. ~30!

Identifying coefficients of cos2 h leads to

f 8→0 ~31!

as expected, while identification of the remaining coefficients ofh sinh, sinh, cosh, and 1 yields

E5
2M 8

~2 f !A11 f
, ~32!

B5
pM 81a8~2 f !3/2

~2 f !A11 f
. ~33!

To complete the transition ofR8/A11 f to a finite function oft only, we requireM 8 anda8 to also
go to zero, so thatE andB are finite,

M 85M1A11 f , ~34!

⇒M5M1E A11 f dr1M0 , ~35!

a85a1A11 f , ~36!

⇒a5a1E A11 f dr1a0 , ~37!

f→21. ~38!

In summary, then, we choose the arbitrary Lemaıˆtre–Tolman functions ofM anda to be as in~35!
and ~37!, and then take the limitf→21 to arrive at the Kantowski–Sachs metric with

E52M1 , ~39!

B5pM11a1 , ~40!

A52M0 , ~41!

t05a01pM0 . ~42!

In terms of the Lemaıˆtre–Tolman variables we then have

X52M12~M1h1a1!
sin h

~12cosh!
, ~43!
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8pr5
2M1

M0
2~12cosh!2X

. ~44!

Two specific examples of the functionf (r ) with the appropriate limit are

f5211 f 1 cos
2~r !, 0< f 1,1, f 1→0, ~45!

f5
2~11 f 2r

2!

~11 f 3r
2!

, f 2< f 3 , f 2→ f 3 ~46!

III. DERIVING THE (r,t) –(U,V) TRANSFORMATION

It is convenient to find the transformation into Schwarzschild coordinates first. In order to
transform the Schwarzschild metric to Lemaıˆtre–Tolman form, we write

T5T~ t,r !, R5R~ t,r !. ~47!

Substituting the derivatives of the above into~1! and setting it equal to~8! results in

2Ṫ2S 12
2M

R D1
Ṙ2

S 12
2M

R D 521, ~48!

22ṪT8S 12
2M

R D1
2ṘR8

S 12
2M

R D 50, ~49!

2S 12
2M

R DT821
R82

S 12
2M

R D 5
R82

11 f
. ~50!

Eliminating Ṫ andT8 between these three equations leads to exactly the Lemaıˆtre–Tolman evo-
lution equation~9!, confirming that the vacuum Lemaıˆtre–Tolman model is just Schwarzschild in
geodesic coordinates.

Substituting forṘ2 from ~9! in ~48! we find

Ṫ5
A11 f

S 12
2M

R D , ~51!

and this in~49! gives

T85
R8Ṙ

S 12
2M

R DA11 f

, ~52!

and one can check using~9!–~11! that both give the sameṪ8. Note, however, that if the mass is
not held constant,M5M (r ), then these equations are not integrable. For regions wheref,0, ~51!
may be transformed, by means of~13!, the derivative of~14!, and

Ṫ5
]T

]h

]h

]t
~53!
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into

]T

]h
5
MA11 f

~2 f !3/2
~12cosh!2

~12cosh12 f !
, ~54!

which integrates with respect toh giving

T2J5
MA11 f

~2 f !3/2
@~h2p!~122 f !2sinh#

22M lnU12~112f!cosh12A~2 f !~11 f !sinh

12cosh12f
U ~55!

where J5J(r ) is a function of integration~cf. Khuri,18 and Misner, Thorne, and Wheeler19!.
Eliminating the parameterh once more with~13! and substituting from~9! converts this to

T2J5
MA11 f ~122 f !

~2 f !3/2
cos21S 12

~2 f !R

M D2
RṘA11 f

~2 f !
22M lnU ~Ṙ1A11 f !2

S 12
2M

R D U , ~56!

and a very similar procedure for the casef.0 gives

T2J52
MA11 f ~122 f !

f 3/2
cosh21S 11

fR

M D1
RṘA11 f

f
22M lnU ~Ṙ1A11 f !2

S 12
2M

R D U . ~57!

Note that

lnU ~Ṙ1A11 f !2

S 12
2M

R D U52 lnU ~Ṙ2A11 f !2

S 12
2M

R D U .
A simpler version forf50 gives

T2J5A2R

M SR16M

3 D22M lnU ~Ṙ11!2

S 12
2M

R DU , ~58!

and one may verify, using Taylor expansions, that this is thef→0 limit of ~56! and~57!. Finally,
substituting from~14! or ~17! as appropriate converts~56! and ~57! to

T2J5~122 f !A11 f ~ t2a!12RṘA11 f22M lnU ~Ṙ1A11 f !2

S 12
2M

R D U , ~59!

which is valid for all values off , and this is confirmed by straight differentiation of~59! with
respect tot ~holding r constant! to retrieve~51! again after applying~9! and ~10!.

It must now be checked that the solution also satisfies~52!, which involves evaluatingJ(r ).
Partial differentiation with respect tor and substitution from~9! and ~11! leads to

T82J85
1

2A11 fRṘS 12
2M

R D H f 8F ~112 f !RS 12
2M

R D „2R23~ t2a!Ṙ…G

1R8@4~11 f !~M1 fR22 fM !#a8F2~11 f !~2 f21!RṘS 12
2M

R D G J . ~60!
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Now ~12! for constantM leads to

@3~ t2a!Ṙ22R# f 852 fR812 f Ṙa8, ~61!

which may be used to eliminatef 8 in ~60!, yielding

T82J85
ṘR8

A11 f S 12
2M

R D2
a8

A11 f
. ~62!

This clearly satisfies~52!, once we have identified

J5E a8dr

A11 f
1J0 , ~63!

whereJ0 is a constant.
The final transformation from vacuum Lemaıˆtre–Tolman to Schwarzschild coordinates then is

T5~122f!A11 f ~ t2a!12RṘA11 f22M lnU~Ṙ1A11 f !2

S 12
2M

R D U1E a8 dr

A11 f
1J0 , ~64!

combined with one of~13!1~14!, ~15!, or ~16!1~17!, which cannot be made independent of the
value of f . From~3! and~4! the vacuum Lemaıˆtre–Tolman to Kruskal–Szekeres transformation is

U5A R

2M
~A11 f2Ṙ!expHR1A11 f @~122 f !~ t2a!12RṘ#1J

4M J , ~65!

FIG. 1. The~a! Lemaı̂tre–Tolman,~b! and~c!, Kruskal–Szekeres, and~d! and~e! Penrose diagrams, showing the constantt @~a!, ~b!, and~d!#
and constantr @~a!, ~c!, and~e!# surfaces for Novikov coordinates.
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V52A R

2M
~A11 f1Ṙ!expHR2A11 f @~122 f !~ t2a!12RṘ#2J

4M J . ~66!

Here Ṙ is just shorthand forA2M /R1 f . A change in the value of the constantJ0 merely
generates a constant translation ofT and constant rescalings ofU andV, so it may safely be set to
zero. The transformations are illustrated in Fig. 1 for the Novikov choice of Lemaıˆtre–Tolman
arbitrary functions.

IV. THE SHAPE OF THE R50 SINGULARITY

In Kruskal–Szekeres and Novikov coordinates the future singularity forms at the middle of
the wormhole and succeeding shells collapse onto it at later times, the covers holding for the past
singularity, whereas the Penrose diagram shows the past and future Schwarzschild singularities as
simultaneous. In Lemaıˆtre–Tolman coordinates one is free to specifya(r ) and therefore can
choose to make one, but not both, of the singularities simultaneous. We define the following
family of Lemaı̂tre–Tolman arbitrary functions

M5const, ~67!

f5
21

11r 2
, ~68!

a52pMa~11r 2!3/2, ~69!

where the parametera determines the degree of curvature of the past and future singularities—
a50 makes the past singularity simultaneous att50, a52 makes the future singularity simulta-
neous att50, anda51 is the standard Novikov choice with the two singularities time symmetric
about t50. The corresponding transformations for variousa values are shown in Fig. 2. It is
apparent that, as the past singularity is brought closer and closer to being simultaneous, the
geodesics crowd ever more tightly aboutr50,t5a, and ata50 they all emerge from a single
point on the past singularity, leaving large regions of the manifold uncharted by the coordinates.
The envelope geodesic is obtained from ther→` limit with a85J5a50. In this limit the
evolution is parabolic~15!, and defining

y5S 3t

4M D 1/3 ~70!

gives the envelope in parametric form:

U5~y21!expH y22 1yS 11
y2

3 D J , ~71!

V52~y11!expH y22 2yS 11
y2

3 D J . ~72!

The next model, defined by the choices

M5const, ~73!

f5211r 2, ~74!

a50, ~75!
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attempts to fill the uncovered regions with geodesics that escape to infinity, by extendingf to
positive values, but still keepinga50. Although there is slightly greater coverage of theU–V
diagram, the curves still all start at the sameU–V event. The new envelope is given by thef→`
limit of ~65! and ~66!, holdingR finite so that~coshh21;f !, i.e.,h→` also. ReplacingA11 f
with f gives

FIG. 2. The Lemaıˆtre–Tolman, Kruskal–Szekeres, and Penrose diagrams, showing the constantt and constantr surfaces
for various values ofa in the family of Lemaıˆtre–Tolman models given by the arbitrary functions~67!–~69!.

2901Charles Hellaby: Nonsimultaneous nature of Schwarzschild R50

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



U5SAcoshh21

2
2Acoshh11

2 D expH coshh21

4 f
1

h

2
1

J

4M J , ~76!

V52SAcoshh21

2
1Acoshh11

2 D expH coshh21

4 f
2

h

2
2

J

4M J , ~77!

FIG. 2. ~Continued.!
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so lettinga8505J andh→` gives

U undetermined,V521, or vice versa, ~78!

which are the light rays emanating fromr50 on the past singularity, and reaching future null
infinity.

In order to establish the same result in general, we take thet→a, R→0, Ṙ→A2M /R limit in
the general expressions~65! and ~66!, arriving at

U→2eJ, V→2e2J, ~79!

which holds for arbitraryr , f (r ), anda(r ). Thus if JÞJ(r ), which is the case ifa850 every-
where, then all constantr curves radiate from oneU–V point on the past singularity.

The one possibility we have not yet considered is the closed Kantowski–Sachs metric, which
is well known to haveR constant on all its constantt surfaces, so that both past and future
singularities are simultaneous. Inserting the Kantowski–Sachs limit of the Lemaıˆtre–Tolman ar-
bitrary functions into~64!–~66! gives

T5J01a1r22M0 lnU Ṙ2

S 12
2M0

R DU , ~80!

U52ṘA R

2M0
expHR1a1r1J0

4M0
J , ~81!

V52Ṙ5A R

2M0
expHR2a1r2J0

4M0
J . ~82!

As expected,t5const→R5const, andr5const→T5const, so all coordinate geodesics pass
through the neck~middle of the wormhole! at its moment of maximum expansion, and the metric
is degenerate there, since there is a global shell crossing at that moment. Although these coordi-
nates do cover the whole of theR50 singularity and make it look simultaneous, they are not
geodesically complete, and more importantly the coordinate geodesics are always in relative
proper motion.

V. OBSERVER COORDINATES

In order to set up reasonable ‘‘observer coordinates,’’ which represent proper distance and
time measurements, at least locally, we must start with a surface of simultaneity over a finite
region, set up parallel timelike geodesics orthogonal to it, and then extend these geodesics a finite
distance off the surface, using proper time along them for the fourth coordinate. Lemaıˆtre–Tolman
coordinates already satisfy all but two of these requirements. A mere rescaling of ther coordinate,

r̃ ~r !5E
0

rR8~ t5const,r !

A11 f
dr ~83!

makesr̃ a local proper distance, and the coordinate geodesics are made parallel by requiring

] tAgrr50→Ṙ850. ~84!

Inserting this and~12! into ~11! and settingM 850 for vacuum gives
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a85
f 8

2M f
„3M ~ t2a!2R2Ṙ…, ~85!

which is always possible to satisfylocally, since the quantities in the brackets depend ona, f , and
M but not directly ona8 or f 8. If a850 is required at some point, this in general requiresf 850,
making it the locus of an extremum in the areal radius withf521.10 Such a point necessarily
occurs at oner value, and the corresponding geodesic is then a constantT curve, never quite
emerging from the horizon. If, however,a5const is required, thenR850 everywhere, and we
have theE505M1 closed Kantowski–Sachs model again, for which the coordinate geodesics
cannot be made locally parallel away fromR50, since

] tAgrr5Ẋ5
2B

A~12cosh!2
5

a1
M0~12cosh!2

Þ0. ~86!

If both E50 andB50, thenX50, making the metric~23! degenerate.

VI. SIMULTANEOUS SYNCHRONOUS COORDINATES

Wald and Yip20 considered conditions for the existence of simultaneous synchronous coordi-
nates~SSCs! at spacelike singularities, as assumed in the Belinskii, Lifschitz, and Khalatnikov
~BKL ! approach to studying singularities~see Ref. 21!. Wald and Yip’s theorem 2 gives three
conditions which allow one to find a Cauchy surfaceS such that Gaussian normal~i.e., synchro-
nous! coordinates set up atS represent the singularity as simultaneous. In other words, the
timelike geodesics of these coordinates all reach the singularity in the same proper timetS from
S. Having set them up, the constantt surfaces are a foliation that approaches the singularity as
t→0. The conditions are, roughly speaking,~i! the ~geodesic proper! time t from S to the singu-
larity ~future causal boundary! is finite and nonzero;~ii ! t is aC1 function throughout the future
of S„D1~S!…; ~iii ! every causal curve hits the singularity~t→0 along all causal curves!.

We have shown that in the Schwarzschild/Kruskal–Szekeres manifold the following obtain

~a! Synchronous coordinates that cover the entire space–time manifold represent both future
and past singularities as nonsimultaneous. Theirt5const surfaces are Cauchy surfaces since
f→0 or positive values asr→`, thus covering the asymptotic regions,R→`.

~b! Synchronous coordinates that make one or both singularities simultaneous do not cover the
whole space–time.~Usually they do not even cover more than oneU–V point on the
singularity that they make simultaneous.! Their t5const surfaces are not~complete! Cauchy
surfaces.

~c! The nonexistence of SSCs for Schwarzschild black holes is due to the fact that the singu-
larities, while entirely spacelike, are not all encompassing—they do not swallow all possible
causal curves. The condition of Wald and Yip’s theorem 2 that fails is condition~i!, which
requirestS ~the maximum lifetime function of the Cauchy surface! to remain finite.

VII. CONCLUSION

We have found the transformation from the general vacuum Lemaıˆtre–Tolman model to
Schwarzschild coordinates, and hence to Kruskal–Szekeres coordinates. Unfortunately this cannot
be extended to nonempty Lemaıˆtre–Tolman models, since the system of partial differential equa-
tions ~pdes! ~51! and ~52! are not integrable ifM is not a constant. Similarly, equivalent expres-
sions forU̇ andU8 are no longer integrable onceM5M (r ), so the Lemaıˆtre–Tolman metric in
double null coordinates cannot be expressed in the form~5!/~6!, and probably contains nonzero
coefficients ofdU2 and/ordV2.

The vacuum Lemaıˆtre–Tolman model allows all possible families of radial geodesic coordi-
nates to be set up, including those which generate observer coordinates in any given locality, as
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well as those, such as the closed vacuum Kantowski–Sachs case, which never have a simultaneous
surface on which the orthogonal timelike geodesics are parallel. Of course most arbitrary choices
will have shell crossings, where the geodesics cross each other, at some time during their evolu-
tion, but this is only a coordinate problem in vacuum. Also there will be many choices that do not
cover the full manifold, including all these that makeR50 simultaneous.

We have shown that it is impossible to find any reasonable set of ‘‘observer coordinates,’’
extended over a finite region of space–time, for which the SchwarzschildR50 singularity is
simultaneous. Furthermore, all possible global synchronous geodesic coordinates that cover the
full spherically symmetric vacuum manifold representR50 as nonsimultaneous. Therefore we
conclude that the Schwarzchild singularity is intrinsically nonsimultaneous, despite the appearance
of the Penrose diagram. It would be interesting to determine whether this is a property of the
spherically symmetric vacuum, or a property of the spatial topology. Nonempty Lemaıˆtre–Tolman
models with the Kruskal–Szekeres topology were investigated in P1 where the horizons were
shown to be split, and it has been shown22 that the Lemaıˆtre–TolmanR50 singularities are
spacelike everywhere~unless a censorship violating singularity23,24 is present, an impossibility in
this topology which lacks an origin of spherical coordinates! but the detailed behavior of the light
rays is not known.
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The Einstein’s field equations of Friedmann–Robertson–Walker universes filled
with a dissipative fluid described by both thetruncatedandnon-truncatedcausal
transport equations are analyzed using techniques from dynamical systems theory.
The equations of state, as well as the phase space, are different from those used in
the recent literature. In the de Sitter expansion both the hydrodynamic approxima-
tion and the non-thermalizing condition can be fulfilled simultaneously. For
L50 these expansions turn out to be stable provided a certain parameter of the
fluid is lower than 1/2. The more general caseL.0 is studied in detail as well.
© 1996 American Institute of Physics.@S0022-2488~96!03205-6#

I. INTRODUCTION

Recently, isotropic spatially homogeneous viscous cosmological models have been investi-
gated using the causal~truncated and nontruncated! Israel–Stewart theory of irreversible pro-
cesses, to modelize the bulk viscous transport.1–3 It is known that dissipative processes may play
a crucial role in the evolution of relativistic fluids both in cosmology and in high-energy astro-
physical phenomena. The most oftenly used theory to describe such irreversible processes has
been long since the first-order non-causal Eckart’s theory4 which however suffers from serious
pathologies and drawbacks, i.e., superluminal velocities and instabilities.5,6 In the late sixties
Müller7 proposed a second order theory in which the entropy flow depended on the dissipative
variables besides the equilibrium ones. Israel and Stewart8,9 and Pavo´n et al.10 developed a fully
relativistic formulation on that basis, the so-calledextendedor transientthermodynamics~see Ref.
11 for a recent and comprehensive review of the state of the art!.

Shortly after Israel’s paper appeared, Belinskiiet al.12 applied it to a viscous cosmological
fluid using the so-calledtruncatedversion, in which some divergence terms in the transport
equations were neglected. Most of the papers dealing with viscous and/or heat conducting cos-
mological models make use of such a truncated transport equation without stating clearly what the
implications of such a simplification may be. Recently, some effort has been invested in analyzing
to what extent the neglecting of the divergence terms can be justified from a physical point of
view.3,13 As far as we know, Hiscock and Salmonson14 were the first to raise this point in the
cosmological context. These authors stressed the key importance of the usually neglected diver-
gence terms when obtaining viscosity-driven inflationary solutions. However, it is now clear that
to get realistic solutions to the Einstein’s field equations, the role played by the equations of state
relating the different thermodynamic quantities is crucial. Hence the claim in Ref. 14 applies only
to a Boltzmann gas.15 In fact, the difficulty in using the extended transport equations lies mainly
in the occurrence of some additional unknown coefficients, whose explicit expressions must be
obtained from techniques other than those coming from thermodynamics, either kinetic or fluc-
tuation theory,16 more than in their intrinsic complexity.

Few exact solutions have been found to the Einstein’s field equations with a non-perfect fluid
described by extended thermodynamics17,18 ~ET for short!. However, they were obtained under
severe restrictions on the values for the free parameters in the transport equations. Obviously, any
further attempt to get a deeper insight on the possible behavior of the solutions must rely on an
approximate analysis of the equations. In this paper, we apply qualitative analysis techniques to
the study of causal viscous Friedmann–Robertson–Walker~FRW! models with and without a
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positive cosmological constant. It is organized as follows. In section II we state the basic equations
governing the models and discuss the equations of state to be used. In section III we apply the
truncated version of ET whereas in section IV a corresponding analysis is carried out using thefull
version. In both cases a null and a positive cosmological constant are considered in turn. In section
V we explore their dynamical consequences, and finally in section VI we summarize the main
conclusions of the paper.

II. BASIC EQUATIONS

We restrict ourselves to a FRW space-time filled with a bulk viscous fluid and a positive
cosmological constantL. The stress-energy tensor is

Tab5~r1p1P!uaub1~p1P2L!gab , ~1!

whereua is the four velocity,r the energy density,p the equilibrium pressure,P the bulk viscous
pressure. Einstein’s field equations for the spatially flat case~the only one we adress in this paper!
are

H25
k

3
r1

L

3
, 3~Ḣ1H2!52

k

2
~r13Pef f!1L, ~2!

whereH[Ṙ/R is the Hubble factor,R(t) the cosmic scale factor of the Robertson–Walker
metric, Pef f5p1P andk58pG/c4. An overdot denotes differentiation respect to timet. We
assume the fluid obeys equations of state of the form

z5arm, p5~g21!r, t5
z

r
, ~3!

wherea is a positive constant, andg the adiabatic index lying in the range 1,g,2 as the sound
velocity vs /c5g21 in the fluid must be lower than the speed of light.t(>0) is the relaxation
time for transient bulk viscous effects, i.e., the time the system takes in going back to equilibrium
once the divergence of the four-velocity has been switched off. The causal evolution equation for
bulk viscous pressure can be cast into the form3

P1tṖ523zH2
b

2
tPS 3H1

ṫ

t
2
Ṫ

T
2

ż

z D , ~4!

whereb50 for the truncated theory andb51 for the full one. Since a dissipative expansion is
non-thermalizing, the relaxation time must exceed the expansion rateH21. This leads to

t21,H, ~5!

which is a condition that reduces the interval of values ofg for which the model holds. As we
shall see this restriction may be violated in the truncated theory as well as in the full theory when
an ideal gas equation of state is assumed. This conflict can be circumvented by resorting to the
expression for the speed of the viscous signalsa[v2/c2;z/tr, which roughly implies3,13

t5
z

ar
, 0,a,1, ~6!

and using~6! instead of~3c!.
Most of the stability analysis below will be carried out for the de Sitter solutions,H5 const.

As the universe undergoes a de Sitter expansion it could be argued that the hydrodynamic de-
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scription~absolutely needed in our study if the results are to hold! might break down. In order for
the fluid approach remains valid the mean collision timetcol must be less~in fact much less! than
the expansion rate, i.e.,tcol,H21. From kinetic theory one hastcol51/ns wheren is the particle
number density ands the cross section for collisions. In generals(T) is an increasing function of
the temperature whereas, for a FRW universe,n } 1/R3(5e23H0t for a de Sitter universe!. From
equations~2a!, ~3a! and ~6! the non-thermalizing condition~5! and the condition for the hydro-
dynamic approximation imply

e3H0t

n0s
,H0

21,
a

a S 3k Dm21

H0
2m22 , ~7!

wheren0 is a positive but otherwise arbitrary integration constant. Later it will be shown that the
second inequality in~7! can be fulfilled when suitable values for the arbitrary parameters are
chosen. Moreover, the first inequality may hold for sufficiently early times~when the inflation era
supposedly took place!. As the temperature remains constant during this period the cross section
s can be taken approximately constant.19

Recently in performing the qualitative analysis of imperfect fluid cosmological models~see
for instance Refs. 1,2,20,21! dimensionless equations of state were used in terms of the dimen-
sionless variablesx andy, defined as

x[3r/Q2, y[9P/Q2. ~8!

The equations of state@Eq. ~3.4a!, ~3.4b! in Ref. 20!#

p/Q25p0x
l , z/Q5z0x

m, ~9!

with Q([3H) the expansion factor, coincide with~3a!, ~3b! only for l5m51/2. Furthermore, for
the spatially flat FRW metric withL50, the case we are interested in, we havex51. Then the
bulk viscous coefficientz varies asQ irrespective ofm, which restricts~9! to just one case:
m51/2 in ~3a!. In this paper we shall consider only thespatially flatcase (k50) which allows us
to take (Ḣ,H) as suitable dynamical variables in the phase space. In this case it appears to be more
natural, especially when the above comments are taking into account, to adopt the oftenly used
equations of state~3! rather than~9! in order to be able to compare our results with those in the
literature form51/2. Consequently, all the fixed points to be analyzed will correspond to either de
Sitter or static spacetimes (X[Ḣ50) the former being physically relevant in inflationary models.
If one is interested in studying non-flat FRW models, the variables (Ḣ,H) become no longer
appropriate and an approach similar to that of Coley20 should by adopted.

III. QUALITATIVE ANALYSIS USING THE TRUNCATED THEORY

From equations~2!, ~3! and the expression~6! for t we find for the Hubble factor the equation

Ḧ13gHḢ1
a

d SH22
L

3 D 12m

Ḣ1
~3H22L!a

2 Fgd SH22
L

3 D 12m

23H G50, ~10!

whered5a(3/k)m21. Equation~10! can be recast into the form

Ḣ5P~H,X!, Ẋ5Q~H,X!, ~11!

where

P~H,X!5X, ~12!
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Q~H,X!523gHX2
a

d SH22
L

3 D 12m

X2
~3H22L!a

2 Fgd SH22
L

3 D 12m

23H G . ~13!

The qualitative analysis begins by linearizing the system~11! for small perturbations–where the
linear theory holds. Then the Jacobian matrix

L5S PH PX

QH QX
D , with PH[

]P

]H
, etc., ~14!

can be constructed. The elements of this matrix must be evaluated at the equilibrium points
(hi ,Xi) ~de Sitter and static solutions! which are found by solving the system
P(hi ,Xi)5Q(hi ,Xi)50. After diagonalizingL and obtaining its eigenvalues we can decide about
the type of fixed points and their stability.

The analysis of the system~12!, ~13! for the two cases withL50 andL.0 will be carried
out in turn.

i. L50
d m51/2

We have the trivial fixed point,

~0,0!,

which corresponds to an unstable static model. However, this case does not make sense as, by
Einstein’s equation~2a!, r50. If g andd fulfill the restriction

g/d53, ~15!

there exists an infinity of fixed points (h0,0), whereh0 denotes an arbitrary positive real constant.
In this case the fixed points are parallel stable straight lines.

d mÞ1/2

In the intervals 0<m,1/2, 1/2,m,2 there are two fixed points,

~0,0!, ~h0 ,0!, ~16!

with

h05S 3d

g D 1/~122m!

, ~17!

whereas form>2 there is only one fixed point (h0,0). The discussion for the point (0,0) mimics
that form51/2.

Let us define the auxiliar parameter,

S15
1

4a S g1
a

g D 2.
Form, 1

22S1 the equilibrium point (h0,0) is an asymptotically stable focus, form5 1
22S1 it is an

asymptotically stable degenerate node, whereas form. 1
22S1 two cases arise. If122S1,m, 1

2,
then the equilibrium point is an asymptotically stable node, whereas ifm.1/2 it is a unstable
saddle point.
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In the paper by Pavo´n et al.22 slightly different techniques were used to analyze the case
m51/2 anda51. Their relevant parameter was ourS1 with a51. Our results agree with those of
the mentioned reference~see Sec. 3.1 of Ref. 22! providing a more accurate classification of the
stability points.

ii. L.0
As we shall see, there are two fixed points: (h0

L,0) and (h1
L,0). From ~10! it follows the

equation for the fixed points,

~3hi
22L!Fgd S hi22 L

3 D 12m

23hi G50, ~18!

which must be solved for different values ofm. However,~18! has an obvious solution indepen-
dent ofm, h0

L5AL/3, which can be shown to correspond to a saddle point. This solution will be
ruled out however since it would imply that the energy density vanishes identically. The other
solutionh1

L will be analyzed form50,12,1, in turn.
d m50

Setting to zero the big square parenthesis in~18! and solving the resulting equation, one obtains

h1
L5

3d

2g
1
1

2
A9d2

g2 1
4L

3
.

We define

S1
L5

222S1

2S121
, L05

27d2

g2

11S1
L

~S1
L!2

.

ForL,L0 the fixed point (h1
L,0) is an asymptotically stable node. IfL5L0 the fixed point is an

asymptotically stable degenerate node whereas forL.L0 it is an asymptotically stable focus.
d m51/2

Now h1
L is given by

h1
L5A L/3

12 9d2/g2.

For 0,9d2/g2,1, (h1
L ,0) is an asymptotically stable node whereas for 9d2/g2.1 the fixed point

is an asymptotically stable focus for anyL.0.
d m51

Now h1
L5g/3d. For L,g2/3d2 we have a saddle fixed point, whereas forg2/3d2,L,L1 ,

where

L15
g2

3d2
S2

L.0, with S2
L5

1

2a S g1
a

g D 211,

the fixed point is an asymptotically stable node. ForL5L1 , it is an asymptotically stable degen-
erate node whereas forL.L1 , it is an asymptotically stable focus.

IV. QUALITATIVE ANALYSIS USING THE FULL THEORY

Actually, a proper study of viscous phenomena in the frame of ET requires the use of the full
equation~4! ~i.e.,b51). The physical implications of neglecting the second term of~4! have been
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analyzed in detail in Refs. 3,13. The use of~4! requires an explicit expression for the temperature
T in terms of other variables such asr and/orn. So far ~with the exception of Ref. 14! the
expression adopted forT has been a power-law

T5br r , ~19!

where r>0 and b.0 are constants, which is the simplest way to guarantee a positive heat
capacity.23 However, we shall see that standard thermodynamic relations restrict the range ofr .
Cãlvao et al.24 found a general equation for the evolution of temperature when two equations of
state,

r5r~T,n!, p5p~T,n!, ~20!

are given. However, their equation was obtained in the context of matter creation whereP is
reinterpreted as a non-equilibrium pressure associated to particle production. The same equation
has been carefully analyzed in Ref. 13, it reads as

Ṫ

T
52QF ~]p/]T!n

~]r/]T!n
1

P

T~]r/]T!n
G . ~21!

Obviously, when the equations of state~20! are known the evolution ofT is no longer free but
fixed by ~21!. However, only in very few cases these equations are explicitly known, as for
instance in the case of a radiation gas or an ideal gas.25 Equation~19! generalizes in a simple way
the Stefan–Boltzmann (R51/4) equation which holds for a radiation-dominated fluid in equilib-
rium. Thus, in that case we get that both equations of stater andp ~when ag-law is used! have
T as the only independent variable, i.e.,]r(p)/]T5dr(p)/dT. A useful and interesting relation
follows from considering the standard thermodynamic relation26

S ]r

]nD
T

5
r1p

n
2
T

n S ]p

]TD
n

, ~22!

which, by virtue of~3b! and ~19!, yields

r5
g21

g S ⇒0,r,
1

2D , ~23!

i.e., r is no longer an independent parameter~we are indebted to Roy Maartens for pointing us out
this restriction!. It has been argued2 that the inequalityr,1 is reasonable from a physical point of
view, since ultrarelativistic and cold non-relativistic matter haver51/4 andr;2/3, respectively.

However, an alternative equation can be used forT instead of~19!. It is well-known that a
relativistic ideal monoatomic gas is described by the two equations of statep5nT and
r53nT1m2M , wherem is the mass of the particles andM the zeroth-order moment of the
Maxwell–Boltzmann distribution function~we use unitskB51, kB being the Boltzmann constant!.
We see that theg-law (g constant! is not compatible with the equations of state of a monoatomic
gas inequilibriumexcept for radiation (m50). In that case we haven } T3 and the two equations
of state forp andr reduce to the Stefan–Boltzmann equation and theg-law with g54/3.

In the remainder of this section the full viscous transport equation will be analyzed resorting
to the two expressions for the temperature mentioned above: a power-law given by~19! and an
ideal gas equation forp together with theg-law definingr, i.e.

p5nT, r5
nT

g21
. ~24!
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Note that now bothT andn are independent variables and only in the equilibrium limit the particle
number density depends exclusively on the temperature,n5n(T) ~see comments above!. It must
be stressed that the Stefan–Boltzmann equation together with an ideal gas equation of state~with
n } T3) impliesP50. So we conclude that out of equilibrium we are forced to adopt one of the
two possibilities:~i! a power-law forT with no dependence onn at all; ~ii ! an ideal gas equation
of state for the pressure together ag-law, with n an independent variable on the same footing as
T. Both approaches will be considered in turn.

A. Potential law for the temperature

Using equations~2!, ~3!, ~6!, ~19! and~23! the equation governing the evolution of the Hubble
factor reduces to

Ḧ1
3

2
@11g~12r !#HḢ1

a

d SH22
L

3 D 12m

Ḣ1
~3H22L!a

2

3Fgd SH22
L

3 D 12m

23S 12
g

2DHG23~r11!
HḢ2

3H22L
50. ~25!

i. L50
d m51/2

As in Section III only the case withg andd fulfilling the restriction

g

d
5
3

2
~22g!, ~26!

is physically meaningful. In such instance there exists an infinity of stable fixed points (h1,0),
with h1 an arbitrary positive real number. The phase portrait are parallel stable straight lines.

d mÞ1/2

There are two fixed points, (0,0) and (h1,0), in the intervalm P @0,12!ø~12,2), where

h15S 3d~22g!

2g D 1/~122m!

. ~27!

Form>2 only the (h1,0) fixed point occurs, which we analyze next as nothing new arises about
the point (0,0).

Let us define the parameter

S25
@g~22a!12a#2

8ag2~22g!
.0.

Form, 1
22S2 the equilibrium point is an attractor in the phase space~asymptotically stable

focus!. For 122S2<m, 1
2 we have asymptotically stable nodes instead. Finally ifm.1/2, the fixed

point is a saddle.

ii. L.0
From Eq.~25! it follows the equation for the fixed points,

~3hi
22L!Fgd S hi22 L

3 D 12m

23S 12
g

2Dhi G50, ~28!
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where, as in the truncated case, only the solutions vanishing the big square parentheses make sense
from a physical point of view. Equation~28! will be solved only for three different values of
m. In this case we must take into account the constraint~23!.

d m50

The fixed point is (h2
L,0) with

h2
L5

3d

2g S 12
g

2D1
1

2
A9d2

g2 S 12
g

2D 21 4L

3
.

Defining the two new parameters,

S3
L5

2~12 g/2!

1/a@12 a/21a/g#222~12g/2!
21.

and

L25
27d2

g2 S 12
g

2D 2 11S3
L

~S3
L!2

,

we see that forL<L2 the fixed point is an asymptotically stable node, whereas forL.L2 it is an
asymptotically stable focus.

d m51/2

The fixed point is

h2
L5A L/3

12 ~9d2/g2!~12g/2!2
,

so

d,
2g

3~22g!
.

Let us introduce

d05
2g

3~22g!
~12S2!

1/2.

For d.d0 , (h2
L,0) is found to be an asymptotically stable node, however ifd5d0 it is an

asymptotically stable degenerate node, whereas ford,d0 the fixed point is an asymptotically
stable focus. In the radiation case—i.e.g54/3- d0,0 and the fixed point is a stable node.

d m51

In this case

h2
L5

g

3d~12 g/2!
.

Let us define the parameter

L35
g2~112S2!

3d2~12 g/2!2
.0.
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ForL.L3 the fixed point is an asymptotically stable focus, and forL5L3 an asymptotically
stable degenerate node.

Finally, whenL,L3 we can distinguish two subcases. Defining

L3*5
g2

3d2~12 g/2!2
,

we have a saddle point for

L,L3* ,

and an asymptotically stable node for

L3*,L,L3 .

B. Ideal gas equation for the temperature

In this section we shall study the specific behavior of the equilibrium points, making use of
the state equations~24!. As neither particle production nor annilation occurs,n obeys the conser-
vation equation

ṅ13Hn50, ~29!

which leads ton } R23. The expression for the temperature,

T5
3

k

g21

n0
R3SH22

L

3 D , ~30!

wheren0.0 is a constant, follows easily. Using~2!, ~3a!, ~3b!, ~4!, ~6! and ~30! we get the
equation

Ḧ1
a

d SH22
L

3 D 12m

Ḣ1
~3H22L!a

2 Fgd SH22
L

3 D 12m

23S 12
g

2DHG26
HḢ2

3H22L
50,

(31)

i. L50
We have the same fixed points as in the truncated theory@see equation~17!#.
In the casem51/2 the discussion runs along the same lines as that of the truncated theory.

After linearizing the system and introducing the parameter

S35
a

4g2 ,

the following will be discussed. Form, 1
22S3 the eigenvalues are complex and the equilibrium

point is an attractor~asymptotically stable focus!. Form5 1
22S3 there is a bifurcation point which

is an asymptotically stable degenerate node. Form.1/2 one has a saddle point. Finally, if
1
22S3,m,1/2 the fixed point results an asymptotically stable node.

ii. L.0
Now the fixed points (h2

L,0) are again the same as in the full theory using a power law for the
temperature.

d m50

For anyL.0 the fixed point is an asymptotically stable focus.
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d m51/2

Defining

d15
g

3
A12

1

2g2,

we note that ifd lies in the interval 0,d,d1 the fixed point is an asymptotically stable focus. If
d5d1 it is an asymptotically stable degenerate node, and ifd1,d,g/3 an asymptotically stable
node for anyL.0.

d m51

Let us define

L45
g2

3d2
~112S3!.

If L,g/3d2 then the fixed point is a saddle point, but ifg/3d2,L,L4 it is an asymptotically
stable node. ForL5L4 it is an asymptotically stable degenerate node, and forL.L4 an asymp-
totically stable focus.

1. Non-thermalizing condition for dissipative de Sitter expansion

i. L50
From ~5! and ~2! one finds

H122m,d/a . ~32!

For the truncated and full theory using an ideal gas equation forT this condition reduces to
g.3a by virtue of ~17!. On the other hand, as the velocity of the viscous pulses, as well as the
speed of sound, cannot exceed the speed of light (1,g,2) we obtain the restrictions ong and
a. If a lies in the range 0,a, 1

3, the two mentioned conditions amount to 1,g,2; whereas if
1
3 ,a, 2

3 these restrictions imply 3a,g,2. Finally, if 2
3,a,1, nog can fulfill both conditions.

For the full theory with a power law for temperature one obtains the restrictiong.gc where

gc5
6a

3a12
.

Two conditions must be fulfilled simultaneously byg : 1,g,2 andg.gc . For 0,a, 2
3, these

restrictions imply 1,g,2 ~sincegc,1); whereas for23,a,1 one has 1,gc,g,2. So for
a,1 the full theory with a power law for temperature always holds.

ii. L.0
Instead of~32! we now have

a

d SH22
L

3 D 12m

,H, ~33!

when a positive cosmological constant is present.
For the fixed point (h1

L,0) ~that of the truncated theory! the restrictions forg are the same that
in the truncated case withL50, whereas for the full theory the restriction~33!, when applied to
the point (h2

L,0), coincides with that of the full theory using a power law for the temperature with
vanishingL.
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V. DYNAMICAL CONSEQUENCES

In this section we study the dynamical implications of linearizing the equation forH. This
linearization allows one to obtain an analytical solution forR(t) near the equilibrium points. The
matrix L is given by~14! and the system of differential equations to solve is

S ḣ
Ẋ
D 5S PH PX

QH QX
D S hXD , ~34!

whereh[H2hi and X̄[X2Xi5X being (hi ,Xi 5 0) the fixed points. Equation~34! can be
written as

ḧ2QXḣ2QHh50, ~35!

where in our modelPH50 andPX51. The corresponding characteristic equation reads as

l65
QX6AQX

214QH

2
,

which coincides with the equation for the eigenvalues ofL . We perturb the system around the
de Sitter solution fort50, i.e.,H(t50)5hi1e(0) and takeḢ(t50)5 ė(0) as initial condition.

A. Saddle points and nodes

In the neighborhood of these points the discriminantD is positive and the eigenvaluesl6 are
real and different. Fordet(L ),0 one has a saddle point, and fordet(L ).0 a node. The solution
of ~35! is

h5c1e
l1t1c2e

l2t,

with

c152
ė~0!2e~0!l2

l22l1
, c25

ė~0!2e~0!l1

l22l1
.

Upon integration, one has for the scale factor

R~ t !}ehi texp F c1l1
el1t1

c2
l2

el2tG , ~36!

which shows superinflationary expansion if initial conditions are taken such thatc1 ,c2 are posi-
tive. This type of evolution forR(t) on time has been obtained previously in a different context.27

In this case the fluid when submitted to a small perturbation, goes away from the equilibrium point
expanding much more rapidly than the de Sitter’s. In the case of nodes, and when
l11l25QX is positive~negative!, the node will be unstable~stable!.

B. Attractors and repellors

We study here the behavior of the scale factor near a sink~an asymptotically stable attractor!
and a source~an asympotically unstable repellor!. The solutions of the characteristic equation are
complex,

l65
QX6 iAuDu

2
,
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whereD5QX
214QH . Then the solution of~35! is

h5c1e
QX

2 tsin
AuDu
2

~ t1c2!.

The integration constants can be determined through the initial conditions. They read as

c25
2

AuDu
tan21F e~0!AuDu

2ė~0!2e~0!Qx
G

and

c15
e~0!

sin ~AuDu/2!c2
.

Integrating the equation forh, one follows that

R~ t !}ehi texp F 2c1
Qx
21uDu SQxsin

AuDu
2

~ t1c2!2AuDucos
AuDu
2

~ t1c2! D G . ~37!

ForQX,0 we have an attractor~the scale factor undergoes an oscillatory approach to the de Sitter
solution! and forQX.0 it is a source, i.e., the scale factor deviates from the de Sitter solution.

C. Degenerate nodes

In this caseD50 andl15l25l5QX/2. The solution of~35! is

h5c1e
lt1c2te

lt.

Because of the initial conditions the integration constants are

c15e~0!, and c25 ė~0!2le~0!.

Integration of the expression forh leads to

R~ t !;ehi texpFelt

l S e~0!1„ė~0!2le…S t2 1

l D D G , ~38!

henceR(t) approaches to or separates from the de Sitter solution depending on the sign ofl. The
rate of evolution is faster than in the de Sitter case.

D. Energy conditions

The weak energy condition~WEC! states thatTabW
aWb>0, whereTab is the energy-

momentum tensor given by~1! andWa a generic timelike vector. In our model this condition
reduces to

r1L>0. ~39!

The dominant energy condition~DEC! imposesTabW
aWb>0 and2TabWa to be a non-spacelike

vector which is equivalent toT00>uTabu.
28 This conditions is fulfilled in our case solely if

2r<p1P<r12L. ~40!
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Finally, the strong energy condition~SEC! requires thatTabW
aWb1 1

2Ta
a>0 which amounts to

r22L13p13P>0. ~41!

These conditions can be rewritten in terms ofH and Ḣ as

WEC: H2>0,

SEC: H21Ḣ<0,

DEC: Ḣ<0 and 3H21Ḣ>0.

As occurs in the standard inflationary scenarios the de Sitter solutions withL>0 satisfy the
WEC and DEC but not SEC.

VI. CONCLUSIONS

We have carried out a detailed analysis on the stability of de Sitter and static cosmological
models, both in the truncated and full theory for the viscous transport equation~with and without
a cosmological constant!. We have shown that the conditions for the hydrodynamic approach and
the nonthermalizing condition in a de Sitter expansion can be fulfilled simultaneously for suffi-
ciently early times. Whenno cosmological constant is considered the stability analysis for the de
Sitter solutions leads to similar results in all the cases, i.e., the models areunstableonly for
m.1/2. It is remarkable that this result holds for both the truncated and the full version of ET. On
the other hand, when apositivecosmological constant is included we see that the models can be
stable form51 if L is bounded from below. It remains to be proved that this result holds for a
genericm.1/2 other than 1.

We have stressed the fact that for a radiation gas a different thermodynamic approach exists,
depending on whether the particle number density is taken as an independent variable or not. In
the case of a power-law for the temperature it exists a relationship betweeng and r .
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Generic caustics in gravitational lensing occur locally either as folds or cusps. This
paper rigorously proves that the total number of cusps,Ncusps, due tog point
masses on a single plane having non-normalized external shearg.0 and continu-
ous matter with constant densitysc , is bounded as follows: 0<Ncusps<12g2. For
vanishing shearg50 we obtain the result 0<Ncusps<12g(g21). Consequences
of these bounds for the global geometry of caustics are discussed. It is also shown
that if g>0 andsc is sufficiently large, then all cusps can be eliminated, that is,
Ncusps50. The paper also includes equations for calculating all the bi-caustics~i.e.,
curves yielding the positions of cusps during a one-parameter evolution! of a single
point-mass lens with continuous matter and shear. The methods of the paper are
based on a new approach to point-mass gravitational lensing using complex quan-
tities and the theory of resultants. ©1996 American Institute of Physics.
@S0022-2488~96!03606-7#

I. INTRODUCTION

This paper is part of a series of mathematical studies aimed at investigating the global prop-
erties of caustics in gravitational lensing. The global geometry of caustics produced by general
multiplane gravitational lens systems has recently been studied by Petters.1 The latter gave count-
ing formulas for general cusps as well as cusps of the first and second kinds. Currently, however,
very little is known concerning the range of possible values for the number of cusps. In this paper,
we determine bounds on the number of cusps due to single plane point-mass lens systems with
continuous matter and external shear. We add that the overall issue of counting cusps is not only
of mathematical interest, but also physically relevant. For example, Wambsganss, Witt, and
Schneider2 have shown that for point-mass lens systems with low surface mass density as much as
40% of all magnification events in a light curve are due to point sources passing outside cusps.

II. BOUNDS ON NUMBER OF CUSPS

Let x1 , . . . ,xg be distinct points in the plane and letg, sc , andm1 , . . . ,mg be non-negative
real numbers. The maph:R22$x1 , . . . ,xg%→R2 given by

h~x!5x2(
i51

g

mi

x2xi
ux2xi u2

2S sc2g 0

0 sc1g D x
is a single-planelensing mapdue to point massesmi on a plane with non-normalized shearg
acting along one of the coordinate axes, and continuous matter having constant densitysc ~in
units of the critical density!. This lens system is calledunderfocused~resp.,overfocused! if
0<sc,1 ~resp., ifsc.1).

The central result of the paper is the following theorem.

0022-2488/96/37(6)/2920/14/$10.00
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Theorem 1: Let Ncuspsbe the total number of cusps ofh.
~i! If g50, then0<Ncusps<12g(g21).
~ii ! If g.0, then0<Ncusps<12g2.
~iii ! If g>0 andsc is sufficiently large, then Ncusps50.
The upper bounds in Theorem 1 apply to the sum of the maximum number of cusps for the

under– and overfocused cases. A detailed discussion of this point is deferred to Section IV and the
Appendix. Theorem 1 and its proof are also illustrated explicitly in the Appendix for the case of
a single point mass with continuous matter and shear.

Theorem 1 can be used to obtain bounds on the total curvature of the caustics due to single
plane point mass lens systems with continuous matter and shear. Recently, Petters3 showed that
the total curvatureKtot of the caustics due to these lens systems is given by:

Ktot522pg1pNcusps.

By Theorem 1~i,ii ! the total curvature is then bounded as follows:

22pg<Ktot<H 2pg~6g21! if g.0

2pg~6g27! if g50.
~1!

The upper bounds in Theorem 1 apply to the sum of the maximum number of cusps for the
under– and overfocused cases. A discussion of this point is deferred to Section IV. In addition,
Theorem 1 and its proof are illustrated explicitly in the Appendix for the case of a single point
mass with continuous matter and shear.

Theorem 1~iii ! yields thatfor sc sufficiently large, all cusps of the lensing maph can be
eliminated.The general issue of cusp elimination for differentiable maps was investigated by
Levine4 in 1965 and later by Eliashberg,5 culminating in the Levine–Eliashberg theorem: a locally
stable map from a compact, oriented, boundarylessn-manifoldM into the plane is homotopic to
a locally stable map with 0 or 1 cusp depending on whether the Euler characteristic ofM is even
or not. However, this theorem cannot be directly applied in lensing because if one starts with a
generic lensing map, there is no guarantee that each stage of the theorem’s homotopy is a lensing
map. An immediate consequence of cusp elimination is thatfor sc sufficiently large, the caustics
consist of g ovals (Petters6) and, hence, the high-tail magnification cross-section is determined
only by folds.

III. PROOF OF MAIN THEOREM

The proofs of Theorem 1~i-ii ! and Theorem 1~iii ! are given in Section III.B and Section III.A,
respectively. Throughout the sequel, suppose thatsc Þ 1 unless stated to the contrary.

A. Elimination of Cusps

Whitney’s singularity theory yields explicit equations characterizing cusp points in terms of
derivatives ofh ~e.g., Lu7!. Unfortunately, these equations are very complicated and hence diffi-
cult to analyze in order to investigate cusp elimination or to determine upper bounds for
Ncusps. On the other hand, the natural ‘‘rational form’’ of the lensing map makes it readily
accessible to complex variable techniques. Thus, following Witt8 we expressh(x) in complex
form (z5x1 iy , xi5zi) as follows:

z~z!5~12sc!z1g z̄1 (
l 51

g
ml

z̄l 2 z̄
.

Critical curves ofh are determined by the vanishing of the Jacobian determinant of the
complex lensing mapz(z):
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det J~z,z̄!5
]z

]z

]z

]z
2

]z

] z̄

]z

] z̄
50.

Since]z/]z is real anda25ww̄ (a P R, w P C) impliesw5uaueiw, we see that the above equation
is solved by

]z

] z̄
5U]z

]zUeiw,wP@0,2p!,

or, equivalently,

u12scueiw5g1 (
l 51

g
ml

~ z̄l 2 z̄!2
. ~2!

Equation~2! can be rewritten as follows:

F~ z̄![ )
l 51

g

~ z̄l 2 z̄!21 (
l 51

g S m̂l )
r51
rÞl

g

~ z̄r2 z̄!2D ,
where

m̂l 5
ml

~ u12scueiw2g!
.

Set

P~ z̄!5 )
l 51

g

~ z̄l 2 z̄!2.

Since

lim
sc→`

F~ z̄!5P~ z̄!

the coefficients ofF( z̄) approach those ofP( z̄) assc→`. Hence, in the latter limit the zeros of
F( z̄) are in one-to-one correspondence with the zeros ofP( z̄), where zeros are counted with
multiplicity, and approach the double zerosz1 , . . . ,zg of P( z̄). This follows from the fact that the
zeros of a complex polynomial are continuous functions of the coefficients of the polynomial.9

For sc sufficiently large, the critical curves lie in small discs about each of the points
z1 , . . . ,zg . Consider any such disc, say,D(zj ;r j ) with radiusr j and centered atzj . The larger the
value ofsc , the smaller one can chooser j . Now, write the lensing map as

z~z!5~12sc!z1g z̄1
mj

z̄j2 z̄
1R~ z̄!,

where

R~ z̄!5 (
l 51
l Þ j

g
ml

z̄i2 z̄
.
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Restrictingz(z) toD(zj ;r j ) and makingr j sufficiently small, we can approximatez(z) arbitrarily
close by

z j~z!5~12sc!z1g z̄1
mj

z̄j2 z̄
.

However,z j (z) is the Chang–Refsdal lens of massmi at positionzj . Witt and Petters10 have
shown that forsc.A4/3g11 the Chang–Refsdal lens has a single simple closed caustic curve
with no cusps, while cusps exist~and more than one caustic is possible! for sc<A4/3g11.
Observe that the caustic ofz j (z) is stable11 if sc.A4/3g11. Thus, for large enoughsc the
caustics ofz(z) have no cusps and consist ofg simple closed curves.

B. Upper Bounds

1. Resultants and Equations for Cusps

We now show that cusps generated by the lensing maph can be characterized as common
solutions of two polynomial equations. Resultants are then used to give a necessary and sufficient
condition for these common solutions. See Erdl and Schneider12 for applications of resultants to
the study of double point-mass lenses on distinct planes.

A point z is mapped byz to a cusp point if and only if (z,z̄) satisfies both of the following
equations:

det J~z,z̄!50 and Hz~z,z̄!50,

whereHz(z,z̄) is the ~complex! tangential vector at the caustic. It is given by

Hz~z,z̄!5
]z

]z
Hz1

]z

] z̄
Hz ,

where

Hz52i
] detJ

] z̄
522i

]z

] z̄

]2z

] z̄ 2

is the~complex! tangential vector at the critical curve. The partial derivatives are given as follows:

]z

]z
5~12sc!;

]z

] z̄
5g1 (

l 51

g
ml

~ z̄l 2 z̄!2
;

]2z

] z̄ 2
5 (
l 51

g
2ml

~ z̄l 2 z̄!3
.

Now let us denote

pz,1~ z̄!5
]z

] z̄
)
l 51

g

~ z̄l 2 z̄!25g )
l 51

g

~ z̄l 2 z̄!21 (
l 51

g

ml )
r51
rÞl

g

~ z̄r2 z̄!2

and

pz,2~ z̄!5
]2z

] z̄ 2 )
l 51

g

~ z̄l 2 z̄!45 )
l 51

g

~ z̄l 2 z̄!S (
l 51

g

ml )
r51
rÞl

g

~ z̄r2 z̄!3D .
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Direct computation shows that the equations detJ(z,z̄)50 andHz(z,z̄)50 are equivalent, re-
spectively, to

PJ~z,z̄![~ detJ! )
l 51

g

~ z̄l 2 z̄!2~zl 2z!25H ~12sc!
2)
l 51

g

~ z̄l 2 z̄!2J )
l 51

g

~zl 2z!22pz,1~ z̄!

3H g )
l 51

g

~zl 2z!21 (
l 51

g

ml )
r51
rÞl

g

~zr2z!2J 50, ~3!

and

PH~z,z̄![
i

4
Hz~z,z̄! )

l 51

g

~zl 2z!3~ z̄l 2 z̄!45~12sc!pz,2~ z̄!

3H g )
l 51

g

~zl 2z!31 )
l 51

g

~zl 2z! (
l 51

g

ml )
r51
rÞl

g

~zr2z!2J
2pz,1

2 ~ z̄! (
l 51

g

ml )
r51
rÞl

g

~zr2z!350. ~4!

Next, consider any two polynomials inx1 andx2:

p~x1 ,x2!5a0~x2!1a1~x2!x11 . . .1am~x2!x1
m

and

q~x1 ,x2!5b0~x2!1b1~x2!x11 . . .1bn~x2!x1
n .

The x1-Sylvester resultant ofp andq is defined by

Res~x2!5 det~Am1n!,

where

Am1n53
am am21 am22 • • • a0 0 0 • • 0

0 am am21 • • • a1 a0 0 • • 0

A A A A A A A A A A A

0 ••• 0 am am21 am22 • • • a1 a0

bn bn21 • • • b0 0 • • • 0

0 bn bn21 • • • b0 • • • 0

A A A A A A A A A A A

0 • • • 0 bn bn21 • • • b0

4 . ~5!

Note that the exact location of thenth andmth columns relative to each other depends on the
values of n and m. The matrix Am1n is described explicitly as follows: Thel th–row of
Am1n , where 1<l <n, consists ofl 21 zeros, followed byam ,am21 , . . . ,a0 , and the remain-
der of the row filled with zeros. Forn11<l <m1n, the l th–row hasl 2n21 zeros followed
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by bn ,bn21 , . . . ,b0 , and the remaining slots having zeros. Note that Res(x2) is a polynomial in
x2 . The Resultant Theorem~e.g., Abhyankar

13,14! yields thatb satisfies Res(b)50 if and only if
eitheram(b)505bn(b), or, p(a,b)505q(a,b) for somea.

Using Eqs.~3! and ~4!, we can expressPJ(z,z̄) and PH(z,z̄) as polynomials inz with
coefficients that are polynomials inz̄:

PJ~z!5a0~ z̄!1a1~ z̄!z1 ••• 1a2g~ z̄!z2g

and

PH~z!5b0~ z̄!1b1~ z̄!z1 ••• 1b3g~ z̄!z3g.

Note that ifg50, thenb3g5b3g2150.
Notation: In order to capture the casesg50 and g.0 simultaneously, let n(g)53g22 if

g50 and let n(g)53g if g.0.
RewritePH as:

PH~z!5b0~ z̄!1b1~ z̄!z1 ••• 1bn~g!~ z̄!zn~g!.

The z-Sylvester resultant ofPJ andPH is then given by

Res~ z̄!5 det@A2g1n~g!#.

By the Resultant Theorem,z̄0 satisfies Res(z̄0)50 if and only if either

a2g~ z̄0!505bn~g!~ z̄0!,

or,

PJ~z0 ,z̄0!505PH~z0 ,z̄0!.

Consequently, the cusps of the lensing maph form a subset of the zeros of Res(z̄).

2. Upper bounds for the degree of Res (z̄)

By the Resultant Theorem we haveNcusps< deg@Res(z̄)#. To find an upper bound for the
degree of Res(z̄), first write

Res~ z̄!5( Wi0 . . . i2gj 0 . . . j n~g!
a0
i0 . . .a2g

i2gb0
j 0 . . .bn~g!

j n~g!

[ Res~a0 , . . . ,a2g ,b0 , . . . ,bn~g!!. ~6!

This expresses the resultant as a polynomial in the variablesa0 , . . . ,a2g ,b0 , . . . ,bn(g) with inte-
ger coefficientsWi0 . . . i2gj 0 . . . j n(g)

. Using the fact15 that the resultant is homogeneous of degree
n(g) in the coefficientsal and degree 2g in bl , we get:

Res~ ta0 , . . . ,ta2g ,lb0 , . . . ,lbn~g!!5tn~g!l2g Res~a0 , . . . ,a2g ,b0 , . . . ,bn~g!!. ~7!

Hence:

deg@ Res~ z̄!#<@n~g!#r1~2g!s,

wherer ands are, respectively, the largest of the degrees of the polynomialsal ( z̄) andbl ( z̄).
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We now determiner ands for g.0 andg50. The coefficients in curly brackets in Eq.~3! are
all of degree 2g for g>0. The first curly bracketed coefficient in Eq.~4! is of degree 4g23 if
g.0; the coefficient vanishes forg50. The second curly bracketed coefficient is of degree
4g23 independent of the value ofg. Wheng.0 the third curly bracketed coefficient is of degree
4g ~it is of degree 4g24 for g50). Hence, ifg50, thenr52g ands54g23. If g.0, we get
r52g ands54g. Thus,

Ncusps< deg@ Res~ z̄!#<@n~g!#r1~2g!s5H 14g2 if g.0

14g2 210g if g50.
~8!

Remark: Computations of the resultant forg52 with Mathematica16 yield a degree of
56514(2)2 for g.0 and 32 forg50. In the latter case, Eq.~8! predicts an upper bound of
14(2)2210(2)536 for the degree of the resultant. This overestimates the degree by 4 forg52.

We now show that forg50 the result of Eq.~8! improves as follows:

Ncusps< deg@ Res~ z̄!#<14g2212g, if g50. ~9!

Note that forg52, Eq. ~9! yields 14(2)2212(2)532 ~see Remark above!. Closer inspection of
the coefficientsal andbl of the polynomialsPJ andPH reveals the following structure:

al ~ z̄!5al ,1~ z̄!1pz,1~ z̄!al ,2 and br~ z̄!5br ,1~ z̄!1pz,1
2 ~ z̄!br ,2 ,

wherel 50, . . . ,2g andr50, . . . ,n(g). Note thatal ,2 andbr ,2 are complex constants. Equations
~3! and ~4! imply:

PJ~zj ,z̄!5 (
l 50

2g

al ~ z̄!zj
l 52pz,1~ z̄!mj )

l 51
l Þ j

g

~zl 2zj !
2

and

PH~zj ,z̄!5 (
l 50

n~g!

bl ~ z̄!zj
l 52pz,1

2 ~ z̄!mj )
l 51
l Þ j

g

~zl 2zj !
3.

Sincepz,1( z̄) ~resp.,pz,1
2 ( z̄)) is not a factor of

(
l 50

2g

al ,1~ z̄!zj
l S resp.,(

l 50

n~g!

bl ,1~ z̄!zj
l D ,

we get

(
l 50

2g

al ,1~ z̄!zj
l 50 and (

l 50

n~g!

bl ,1~ z̄!zj
l 50.

The Resultant Theorem implies that if two single-variable polynomials have a common root,
then their resultant vanishes.17 Thus, Res(a0,1( z̄), . . . ,a2g,1( z̄);b0,1( z̄), . . . ,bn(g),1( z̄))50.

Now, Eq. ~6! implies:
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Res~a0~ z̄!, . . . ,a2g~ z̄!;b0~ z̄!, . . . ,bn~g!~ z̄!!

5Res~a0,1~ z̄!, . . . ,a2g,1~ z̄!;b0,1~ z̄!, . . . ,bn~g!,1~ z̄!!1~sum of terms each containing at least one

factor with a~ ,2!–index)

5(sum of terms each containing at least one

factor with a~ ,2!–index!. ~10!

In addition,

max@deg$al ,1~ z̄!:l 50, . . . ,2g%#52g,

max@deg$pz,1
2 ~ z̄!bl ,2 :l 50, . . . ,n~g!%#54g24 forg50,

max@deg$pz,1~ z̄!al ,2 :l 50, . . . ,2g%#52g22 forg50,

and

max@deg$bl ,1~ z̄!:l 50, . . . ,n~g!%#54g23.

Hence, the maximum of the degrees of the terms in Eq.~10! coincides with the degree of one of
the following terms:

a0,1
i0
•••a2g,1

i2g ~pz,1
2 b0,2!

j 0
•••~pz,1

2 bn~g!,2!
j n~g!, ~11!

~pz,1a0,2!
i0
•••~pz,1a2g,2!

i2gb0,1
j 0
•••bn~g!,1

j n~g! ,

and

~pz,1a0,2!
i0
•••~pz,1a2g,2!

i2g~pz,1
2 b0,2!

j 0
•••~pz,1

2 bn~g!,2!
j n~g!.

By Eq. ~7! we get i 01•••1 i 2g5n(g) and j 01•••1 j n(g)52g, where n(g)53g22 since
g50. Of the above listed terms, the one at Eq.~11! has the largest degree:

~2g!~3g22!1~4g24!~2g!514g2212g.

This establishes Eq.~9!.

3. The polynomial p z,1
g (z̄) is a factor of Res (z̄)

We begin with the following lemma:
Lemma 2: Let p(z)5a01a1z1•••1amz

m andq(z)5b01b1z1•••1bnz
n be polynomials

overC. If p(a)5C0C1 Þ 0 andq(a)5C0C2 Þ 0, then:

Res~a0 , . . . ,a2g ;b0 , . . . ,bn~g!!5C0 Res~C1 ,a1 , . . . ,a2g ;C2 ,b1 , . . . ,bn~g!!.

Proof: First, note that

Res~a0 ,a1 , . . . ,am ;b0 ,b1 , . . . ,bn!

5ResSC0C12 (
l 51

m

al a l ,a1 , . . . ,am ;C0C22 (
l 51

n

bl a l ,b1 , . . . ,bnD .
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Since the last column of the resultant matrix ofp andq containsa0 andb0 with zeros everywhere
else~see Eq.~5!!, we can expand the resultant in the coefficientsa0 andb0 . This yields:

Res~a0 ,a1 , . . . ,am ;b0 ,b1 , . . . ,bn!

5Res~C0C1 ,a1 , . . . ,am ;C0C2 ,b1 , . . . ,bn!

1ResS 2 (
l 51

m

al a l ,a1 , . . . ,am ;2 (
l 51

n

bl a l ,b1 , . . . ,bnD .
The last Resultant vanishes because the polynomials

p1~z!5S 2 (
l 51

m

al a l D 1a1z1•••1amz
m

and

q1~z!5S 2 (
l 51

n

bl a l D 1b1z1•••1bnz
n

satisfyp1(a)5q1(a)50. The lemma now follows since

Res~C0C1 ,a1 , . . . ,am ;C0C2 ,b1 , . . . ,bn!5C0Res~C0 ,a1 , . . . ,am ;C2 ,b1 , . . . ,bn!.

Q.E.D. Lemma
Applying Lemma 2 toPJ andPH with C151 yields that

C052pz,1~ z̄!mj )
l 51
l Þ j

g

~zl 2zj !
2

factorizes out of Res(a0( z̄), . . . ,a2g( z̄);b0( z̄), . . . ,bn(g)( z̄)) for j51, . . . ,g. Hence

~21!gpz,1
g ~ z̄!)

j51

g

mj )
l 51
l Þ j

g

~zl 2zj !
2

is a factor of the resultant.

4. Eliminating zeros of Res (z̄) that do not map to cusps

By the Resultant Theorem not all the zeros of Res(z̄)5 Res(a0( z̄), . . . ,
a2g( z̄);b0( z̄), . . . ,bn(g)( z̄)) may correspond to cusps. On a critical curve withsc Þ 1, we have
u]z/] z̄u5u12scu Þ 0. Consequently, the zeros of the polynomialpz,1( z̄)50 cannot lie on a critical
curve withsc Þ 1. This implies that the upper bound on the number of cusps reduces as follows:

Ncusps< deg@ Res~ z̄!#<H 14g22~2g!g512g2 if g.0

14g2212g2~2g22!g512g2210g if g50.
~12!

There can also be common zeros ofa2g( z̄) andbn(g)( z̄) that are not cusp points. In fact, if
g50, then
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a2g~ z̄!5~12sc!
2)
l 51

g

~ z̄l 2 z̄!2,

a2g21~ z̄!5~12sc!
2F22(

l 51

g

zl G )
l 51

g

~ z̄l 2 z̄!2,

and

b3g22~ z̄!5~12sc! )
l 51

g

~ z̄l 2 z̄!S (
l 51

g

ml )
r51
rÞl

g

~ z̄r2 z̄!3D .
The coefficientsa2g , a2g21 andb3g22 have a common factor. If we now consider the Sylvester
matrix ~see Eq.~5!! and expand its determinant by the first two columns, then:

det@A2g13g22#5a2g det@A1,1#1b3g22 det@A3g22,1#

5a2g det@A1,1#1b3g22@a2g21 det@A3g22,1~1,1!#

1a2g det@A3g22,1~2,1!#1b3g22 det@A3g22,1~3g23,1!##, ~13!

whereA i , j is the submatrix ofA2g13g22 obtained by removing thei th row andj th column. Here,
A i , j (r ,s) is the submatrix ofA i , j obtained by removing ther th row andsth column. We observe
that in the expansion of Eq.~13! the factor

~12sc!
2)
l 51

g

~ z̄l 2 z̄!2

must factorize out of the resultant for the caseg50. Hence,z̄1 , . . . ,z̄g yield double zeros of the
resultant. But noz̄l (l 51, . . . ,g) can be mapped to a cusp point because asz̄→ z̄l the lensing
map satisfiesuz( z̄)u→`. Thus, forg50 we can exclude an additional 2g zeros from Res(z̄). The
latter and Eq.~12! imply:

Ncusps<H 12g2 if g.0

12g~g21! if g50
. ~14!

IV. DISCUSSION

A comparison of Eq.~14! with some special well-studied cases~cf. Witt and Petters18! reveals
that our upper bounds seem much higher than the actual maximum number of cusps for certain
special configurations. The reason for this lies in Eq.~2!, the parametric representation of critical
curves. Two configurations of caustics always occur, namely, the underfocusing case
(0<sc,1) and overfocusing one (sc.1). These two configurations have the same critical
curves due to the factoru12scu in the parametric representation. Assuming the same position of
the stars, all models withsc5t andsc522t, where 0<t,1, have identical critical curves. Since
we only set upper bounds on the number of points on the critical curves that are mapped to cusps,
Eq. ~14! apply simultaneously to the under– and overfocused cases. It is not knowna priori
whether a point on a critical curve is mapped to a cusp for the under– or overfocused situation.
Hence,the results of Eq. (14) yield upper bounds on the sum of the maximum number of cusps for
the under- and overfocused cases.

Example: If g51 andg.0, we obtain exactly 4 cusps~see Fig. 2a! for the underfocused case
with 0<sc,12g ~see Fig. 1!, and a maximum of 8 cusps~see Fig. 2c! for the overfocused case
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with 11g,sc ~cf. Witt and Petters19!. For 12g,sc,11g ~notesc Þ 1) we get 6 cusps in the
under– and overfocused cases~see Fig. 2b and 2d!. The total sum agrees with our upper bound of
12: 418512 for 0<sc,12g (sc.11g, respectively! and 616512 for 12g,sc,11g
~with sc Þ 1). The one-point mass lens with continuous matter and shear is detailed in the Ap-
pendix. We show that each zeroz0 of the resultant Res (z̄) ~see Eq.~A1!! is mapped byh in such
a way that eitherh(z0) is a cusp for the underfocusing case, a cusp for the overfocusing case, or,
is not a cusp point. For this reason, our upper bound on the number of cusps applies simulta-
neously to all three cases. In addition, we believe it is extremely difficult to separate cusps
according to the under- and overfocused cases~see the Appendix!, and, hence, to derive an upper
bound for each such case. Therefore, it is not surprising that there are situations for which our
upper bounds cannot be achieved. For instance, ifg52 andg50, then a maximum of 10 cusps
occur for the separate cases of under– and overfocused lensing~Witt and Petters20!. This yields a
combined maximum of 20 cusps. But Eq.~14! predicts a combined maximum of 24.

Finally, the equations presented in Section III.B can be useful tools in the study of positions
of cusps for the binary point-mass lens. Since there are already two binary events observed
~Udalskiet al.,21 Alard, Mao and Guibert22!, it is important to estimate the number of events that
are passing close to cusps and to compute the corresponding cross section for the cusps~cf. Mao23

and Schneider and Weiss24!. This analysis is important because events passing outside a cusp of a
binary lens can have a symmetrically shaped light curve, which is similar to events for a single
point mass lens. Such cusp events can fake a single point mass event. This may lead to an
underestimation of the fraction of binary or planetary systems in our galaxy~for an estimate about
the expected fraction of binary events cf. Mao and Paczn´ski25!. Therefore, a careful analysis of the
number or fraction of cusp-like events caused by binaries is needed. For such analysis we have to
know the positions of the cusps in terms of the model parameters~e.g. mass of the star, separation
of the binary etc.!. The curves where cusps are located during a one-parameter evolution are called
bi-caustics~see Petters26!. For the case of the one-point mass lens with shear the bi-caustics~as a

FIG. 1. Parameter space for the number of cusps for the one-point mass gravitational lens with shearg and continuously
distributed mattersc . The dashed line divides the under- and overfocused regions. The solid line below the dashed one is
given bysc512g, while the line separating 8 and 6 cusps regions issc511g. The boundary between the 0 and 8 cusps
regions issc511A4/3g.
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function ofg) are indicated as dotted lines in Fig. 2. Such curves can be evaluated with the tools
presented here.

ACKNOWLEDGMENTS

This research was supported in part by NSF Grant DMS-9404522 and in part by a postdoc-
toral fellowship of the Deutsche Forschungsgemeinschaft~DFG! under Gz. Mu 1020/3-1.

APPENDIX: ONE-POINT MASS LENS WITH CONTINUOUS MATTER AND SHEAR

In order to make Theorem 1 and its proof more transparent, we shall discuss the one-point
mass lens with continuous mattersc>0 and shearg.0. The lensing map is given by

FIG. 2. Different caustics for the one point mass lens with different shearsg are shown. Each configuration corresponds
to a parameter space in Fig. 1. The dotted lines indicate the bi-caustic curves where cusps may be located wheng is varied.
The top~a! and~b! show the underfocused cases and the botton~c! and~d! show the overfocused cases.~Note that the case
for 0 cusps is not shown in~c! but for g5A3/4 the cusps merge at the point where the two bi-caustic curves merge. For
smallerg we obtain simply oval caustics.!
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z~z!5~12sc!z1g z̄2
m

z̄
,

where we setm15m andz150 for convenience. The derivatives of the lensing map are:

]z

]z
5~12sc!,

]z

] z̄
5g1

m

z̄ 2
,

]2z

] z̄ 2
52

2m

z̄ 3
.

The points in the deflector plane that are mapped byz to cusps are the common solutions of

PJ~z,z̄!5@~12sc!
22g2!z̄ 22gm]z22m~m1g z̄ 2!50

and

PH~z,z̄!5@~12sc!gmz̄#z31@~12sc!m
2z̄#z2m~m1g z̄ 2!250.

Note thatPJ is a polynomial of degree 2 inz, while PH is of degree 3 inz. To solve these two
polynomial equations simultaneously, we take thez-resultant ofPJ andPH in order to eliminate
the z variable from the equations~see Section III.B~1!!:

Res~ z̄!5gm2@ z̄4~~12sc!
22g2!22gmz̄ 22m2#@ z̄ 2g1m# ~A1!

3@ z̄8g2~~12sc!
22g2!21 z̄6gm~3~12sc!

427g2~12sc!
214g4!

1 z̄4m2~3~12sc!
428g2~12sc!

216g4!2gm3~3~12sc!
224g2!z̄ 21g2m4].

The resultant polynomial is of degree 14. The two zeros ofpz,1( z̄)5 z̄ 2g1m cannot be mapped
to cusps. At such zeros, the derivative]z/] z̄ vanishes, which is not allowed for points mapped to
cusps~see Section III.B~4!!. Hence, the under– and overfocused cases have a combined maximum
of at most 12 cusps. Note that since the term (12sc) appears as a quadratic expression in Eq.
~A1!, the 12 zeros may be mapped to cusps for either the under– or overfocused case.

We emphasize that a zeroz̄0 of the resultant cannot be mapped simultanously to a cusp for the
under– and the overfocused cases. In fact, the tangential vector at the caustic is
Hz5(12t)Hz1(]z/] z̄)Hz for the casesc5t, and Hz5(t21)Hz1(]z/] z̄)Hz for the case
sc522t, where 0<t,1 ~see Section III.B~1!!. SinceHz ,Hz , and]z/] z̄ are independent oft,
both equations cannot vanish simultanously unless we requireHz50. This can happen at a point
z0 on a critical curve only when]2z/] z̄ 250 at z0 . Such solutionsz0 are mapped byh to
beak-to-beak singularities~Witt and Petters27!, which result from the merger of two cusps. Thus,
zeros of the resultant that may seem to map simultanously to cusps for the under– and the
overfocused cases, are actually mapped to beak-to-beak singularities. The latter may be viewed as
degenerate cusps.

The combined maximum of 12 cusps can readily be checked using Fig. 1. To each configu-
ration (g,sc) for the underfocused casesc5t, there exist a configuration for the overfocused case
sc522t with the same critical curve. The corresponding configuration is determined by reflect-
ing about the dashed line. The sum of the number of cusps of both configurations cannot exceed
12 as is shown by Fig. 1. However, for some configurations the total sum is less than 12 which
means that not all solutions of the resultant are necessarily mapped on a cusp.~We note that we
have restricted ourselves tog.0 andsc.0 because of physical reasons. However, in mathemati-
cal terms the values and Fig. 1 may also be expanded to negative values.!
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For completeness we show that the polynomial of degree 8 in Eq.~A1! can be solved ana-
lytically as well when we split up the complex quantitiesz5x1 iy in real and imaginary parts.
~Note that the polynomial of degree 4 can be readily solved.! The vanishing of the real and
imaginary parts of Eq.~A1! yields solutions whosex-component satisfies

16g2@~12sc!
22g2#x414gm@3~12sc!

212~12sc!g24g2#x213~12sc!
2m250 ~A2!

andy-component obeys

y25~2m1~12sc12g!x2!/~2g211sc!. ~A3!

We note that Eq.~A3! is directly obtained from the imaginary part of Eq.~A1!, while we get Eq.
~A2! after substituting~A3! into the real part of Eq.~A1!. The solutions of~A2! and~A3! yield the
eight positions in the deflector plane that might be mapped to cusps for the under- or overfocusing
case.

Finally, Eqs.~A2! and~A3! can also be used to derive the so-called bi-caustic curves, which
give the cusp locations. The off-axis cuspszcusp5jcusp1 ivcusp are given by

16g2@g2~12sc!#jcusp
4 18g2m@8g229~12sc!

2#jcusp
2 227~12sc!

4m2@g1~12sc!#50.

The equation forvcusp can be obtained by replacingjcusp by vcusp andg by 2g. The resulting
bi-caustics relative tog are indicated as dotted lines in Fig. 2. The bi-caustics equations are
derived by eliminatingx andy from the lens equation (j2(12sc)x2gx)(x21y2)1m50 with
Eq.~A2! and Eq.~A3!, via the resultant.
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Defining conditions for irreducible tensor operators associated with the unitary
irreducible corepresentations of compact quantum group algebras are deduced
within the framework of the abstract carrier space formalism. It is shown that there
are two types of irreducible tensor operator, which may be called ‘ordinary’ and
‘twisted’. The consistency of the definitions is demonstrated, and various conse-
quences are deduced, including generalizations of the Wigner–Eckart theorem for
both the ordinary and twisted operators. Examples of irreducible tensor operators
for the standard deformation of the function algebra of the compact Lie group
SU~2! are described to demonstrate the applicability of the new definitions.
© 1996 American Institute of Physics.@S0022-2488~96!03005-3#

I. INTRODUCTION

Most of the applications to physics of the theories of groups and Lie algebras depend on the
Wigner–Eckart theorem, and so it is of great interest to see how this theorem generalizes to other
algebraic structures. In a previous paper,1 hereafter referred to as Paper I, a study of the definitions
and properties of irreducible tensor operators for acompact quantum group algebraA was
initiated by examining the case of the right regular and left regular coaction formalisms, and was
extended to the case of operators associated with the corresponding quantum homogeneous spaces
of A. In the present paper this will be further extended to the case of operators acting in the
abstract carrier spaces of irreducible corepresentations ofA.

The plan of the present paper is as follows. The remainder of this section will be devoted to
putting the analysis that follows into context, first by reviewing briefly the situation for compact
Lie groups, and then by indicating the background for the generalization of compact Lie groups to
compact quantum group algebras. In the next section the most relevant properties of compact
quantum group algebras will be summarized, particular attention being devoted to the essential
role played by corepresentations. This summary is continued in Section III, where the two differ-
ent types of tensor product of corepresentations and their associated Clebsch–Gordan coefficients
are briefly discussed. The heart of the paper is reached in Section IV, where the irreducible tensor
operators are defined and some of their immediate properties are deduced. In particular, it will be
shown there that there aretwo types of irreducible tensor operators, which will be described as
being ordinary and twisted respectively. Themotivationsfor the definitions of Section IV are
deliberately relegated to the Appendix in order to emphasize that the treatment given for the
compact quantum group algebras in Sections IV and V are entirely self-contained. In Section V it
is shown that there aretwo theorems of the Wigner–Eckart type, one for the ‘ordinary’ and one for
the ‘twisted’ irreducible tensor operators. To illustrate the applicability of the new definitions of
Section IV, examples of irreducible tensor operators for the standard deformation of the function
algebra of the compact Lie group SU~2! are described in Section VI. Unless otherwise stated, the
notations, definitions, and terminology are exactly the same as those given in Paper I, which also
contains an account of the relationship of the present line of study to previous work on the
applicability of the Wigner–Eckart theorem to quantum groups.

Because the space of functions defined on a compact Lie groupG is a special example of a
compact quantum group algebra, all the well-known results for compact Lie groups naturally

0022-2488/96/37(6)/2934/21/$10.00
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reappear in this particular case. However, as the detailed analysis shows, the theory in the general
situation is rather more subtle, and exhibits various complications. Nevertheless, the point of view
of the present communication is best introduced by considering first the abstract carrier space
formalism in this very well established and familiar context of a compact Lie groupG ~cf. Refs.
2, 3!. Let Vp be a carrier space for a unitary irreducible representationGp of G , and let
c1
p ,c2

p , . . . ,cdp
p be an ortho-normal basis forVp. Define for eachT P G a linear operator

Fp(T) that acts onVp by the requirement that

Fp~T!~cn
p!5 (

m51

dp

Gp~T!mncm
p ~1!

for all T P G and alln51,2, . . . ,dp . Let Gp, Gq, andGr be any three unitary irreducible repre-
sentations ofG . Then one can consider a set of irreducible tensor operatorsQ1

q ,Q2
q , . . . ,Qdq

q that

each mapVp into Vr and which are such that

F r~T!Qn
qFp~T!215 (

m51

dq

Gq~T!mnQm
q ~2!

for all T P G and alln51,2, . . . ,dq . In this case the Wigner–Eckart theorem deals with inner
products^,& defined onVr and states that thej ,k, andl dependence of̂c l

r ,Qk
q(c j

p)& depends
only on Clebsch–Gordan coefficients for the reduction of the tensor productGp

^ Gq into its
irreducible constituentsGr .

In a minor extension of this formalism, one could introduce an inner product spaceV that is
a direct sum of carrier spaces of certain unitary irreducible representations ofG and which
contains at leastVp

% Vr ~and which, in the extreme case, may contain one carrier space for every
inequivalent irreducible representation ofG ). Then, for eachT P G an operatorF(T) can be
defined which maps elements ofV into V, and which acts asFp(T) onVp, asF r(T) onVr , and
so on. The irreducible tensor operators are then required to each mapV into V and to be such that
F(T)Qn

qF(T)215(m51
dq Gq(T)mnQm

q for all T P G and all n51,2, . . . ,dq . In this case the
Wigner–Eckart theorem deals with inner products^,& defined onV, but is otherwise the same as
above.

As emphasized in Paper I, one most important lesson that can be drawn from these simple
group theoretical considerations concerns theconsistencyof the definitions of the basis vectors
and of the irreducible tensor operators. AsFp(T)Fp(T8)5Fp(TT8) and
Gp(T)Gp(T8)5Gp(TT8) for all T,T8 P G , it follows that if ~1! is valid forT and forT8, then it is
also valid for their productTT8. Similarly, and very significantly, by defining for eachT P G an
operatorC(T) by

C~T!~Q!5F r~T!QFp~T!21 ~3!

for every operatorQ that mapsVp into Vr , the definition~2! can be recast as

C~T!~Qn
q!5 (

m51

dq

Gq~T!mnQm
q ~4!

for all T P G and alln51,2, . . . ,dq . AsC(T)C(T8)5C(TT8) for all T,T8 P G , it follows that
if ~4! is valid forT and forT8, then it is also valid for their productTT8. Put another way, because
of the similarity in form between~1! and~4!, theconsistencyof the definition~2! of the irreducible
tensor operatorsQn

q is ensured by the fact that they too form a basis for a carrier space, this time
for Gq. In the analysis that follows~cf. Section IV!, essentially this argument will be used to
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justify the definitions that will be given for the irreducible tensor operators of the compact quan-
tum group algebras, the only essential difference being that the argument has to be cast in terms
of corepresentationsinstead of representations.

As is well known, the set of functions defined on a Lie groupG form a Hopf algebra,A, and
the dualA8 ofA is the universal enveloping algebra of the Lie algebraL of G . Moreover, the
structure ofG can be encoded into the structure ofA, and, in particular,A is commutative. A
‘deformation’ ~or ‘quantization’! of A8 induces a corresponding deformation ofA, and will
makeA non-commutative as well as being non-cocommutative. Although most attention has been
focused on the deformed Hopf algebrasA8, it has been demonstrated by the pioneering work of
Woronowicz,4–6which itself has been refined and developed by Dijkhuizen and Koornwinder,7–12

that it is of very great interest to produce a self-contained and direct study of generalizations of the
Hopf algebrasA. This can be done by assuming that they have certain characteristic properties,
and the resulting structures have been calledcompact matrix pseudogroupsby Woronowicz,4–6

andcompact quantum group algebrasby Dijkhuizen and Koornwinder.7–12 It is these that provide
the framework for the present paper, which, as intimated above, is devoted to the study of the
irreducible tensor operators for compact quantum group algebras in the abstract carrier space
formalism.

II. COREPRESENTATIONS OF COMPACT QUANTUM GROUP ALGEBRAS

It should be recalled~cf. Refs. 1, 7–12! that aright A-comoduleconsists of a vector space
V and a linear mappingpV from V to V^A such that

~pV^ id !+pV5~ id^ D!+pV ~5!

and

~~ id^ e!+pV!~v !5v^1C ~6!

for all v P V. The operationpV is then said to be aright coactionand provides acorepresentation
of A with carrier spaceV.

Of great importance are the finite-dimensionalirreducible corepresentations, which, for a
compact quantum group algebraA, are assumed to form acountableset ~up to equivalence!.
Moreover each such irreducible corepresentation is equivalent to aunitary corepresentation. Let
pp, for p51,2, . . . , denote the set of unitary irreducible corepresentations ofA ~one being
chosen from every equivalence class!, and letVp be a carrier space ofpp, assumed to be of finite
dimensiondp , with basisv1

p ,v2
p , . . . ,vdp

p . Then there exists a uniquely determined set of ele-

mentsp jk
p of A ~for j ,k51,2, . . . ,dp), called thematrix coefficientsof pp, which are such that

pp~v j
p!5 (

k51

dp

vk
p

^ pk j
p ~7!

for all j51,2, . . . ,dp . The requirements~5! and ~6! then imply that

D~p jk
p !5 (

l 51

dp

p j l
p

^ p l k
p ~8!

and

e~p jk
p !5d jk ~9!

~for j ,k51,2, . . . ,dp). The unitary requirement onpp implies that
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S~p jk
p !5pk j

p* , ~10!

(
l 51

dp

M ~p l j
p* ^ p l k

p !5d jk1A , ~11!

and

(
l 51

dp

M ~p j l
p

^ pkl
p* !5d jk1A ~12!

~for all j ,k51,2, . . . ,dp). For a compact quantum group algebraA this set of matrix coefficients
is assumed~cf. Refs. 1, 7–12! to form a basis forA.

Let P i j
p be a set of projection operators forVp that are defined by

P i j
p ~vk

p!5d ikv j
p ~13!

for all i , j ,k51,2, . . . ,dp . Let p r be another unitary irreducible corepresentation ofA, and let
Lpr be the set of linear operators that map elements ofVp into Vr . A basis forLpr is provided by
the set of operatorsP i j

pr that are defined by

P i j
pr~vk

p!5d ikv j
r ~14!

for all i ,k51,2, . . . ,dp and all j51,2, . . . ,dr . Then

P mn
r +P kl

pr +P i j
p5dk jdml P in

pr ~15!

for all i , j ,k51,2, . . . ,dp and all l ,m,n51,2, . . . ,dr . If Q is any element ofLpr, then

Q~vk
p!5(

j51

dr

qjkv j
r ~16!

for all k51,2, . . . ,dp , whereqjk are the complex numbers that are defined by

qjk5^v j
r ,Q~vk

p!& ~17!

for all k51,2, . . . ,dp and all j51,2, . . . ,dr , ^,& being the inner product ofVr . Moreover one can
write

Q5(
i51

dp

(
j51

dr

qjiP i j
pr . ~18!

III. TENSOR PRODUCTS AND CLEBSCH–GORDAN COEFFICIENTS

A. Ordinary and twisted tensor products

With theordinary tensor productof two irreducible corepresentationspp andpq ofA ~with
carrier spacesVp andVq respectively! being defined as the mappingpp�pq from Vp

^Vq to
Vp

^Vq
^A that is such that

pp�pq5~ id^ id^M !+~ id^ s ^ id !+~pp
^ pq!, ~19!

it is easily shown from~7! that the corresponding matrix coefficients are given by
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~pp�pq!st, jk5M ~ps j
p

^ p tk
q ! ~20!

for all j ,s51,2, . . . ,dp and allk,t51,2, . . . ,dq .
Similarly, with the twisted tensor productof pp and pq being defined as the mapping

pp�̃pq from Vp
^Vq to Vp

^Vq
^A that is such that

pp�̃pq5~ id^ id^M !+~ id^ id^ s!+~ id^ s ^ id !+~pp
^ pq!, ~21!

it is also easily shown from~7! that the corresponding matrix coefficients are given by

~pp�̃pq!st, jk5M ~p tk
q

^ ps j
p ! ~22!

for all j ,s51,2, . . . ,dp and allk,t51,2, . . . ,dq .

B. Clebsch–Gordan coefficients

Suppose that the ordinary tensor productpp�pq is reducible@and hence is completely re-
ducible ~cf. Refs. 1, 7–12!#, and thatnpq

r is the number of times that the irreducible corepresen-
tation p r ~or a corepresentation equivalent to it! appears in its reduction. If the carrier spaces
Vp andVq have basis elementsv1

p ,v1
p , . . . ,vdp

p andv1
q ,v1

q , . . . ,vdq
q respectively, then the set of

elementsv j
p

^vk
q form a basis forVp

^Vq, the carrier space ofpp�pq, and consequently appro-
priate linear combinations form bases for all the irreducible corepresentationsp r that appear in the
reduction of the tensor product. Letwl

r ,a be such a combination, so that

wl
r ,a5(

j51

dp

(
k51

dq S p q

j k
U r , a

l
D v jp^vk

q , ~23!

for l 51,2, . . . ,dr , anda51,2, . . . ,npq
r , and

~pp�pq!~wl
r ,a!5 (

u51

dr

wu
r ,a

^ pul
r , ~24!

for u51,2, . . . ,dr , anda51,2, . . . ,npq
r . The inverse of~23! is

v j
p

^vk
q5(

r
(
a51

npq
r

(
l 51

dr S r , a

l
Up q

j k Dwlr ,a , ~25!

for j51,2, . . . ,dp andk51,2, . . . ,dq . TheClebsch–Gordan coefficientsdefined in~23! form the
elements of adp3dq matrixC, while the inverse coefficients defined in~25! form the elements of
C21, where

C21~pp�pq!C5(
r

%npq
r p r . ~26!

This implies that

~pp�pq! is, j t5(
r

(
a51

npq
r

(
l ,u51

dr S p q

i s
U r , a

u Dpul
r S r , a

l
Up q

j t D ~27!

for i , j51,2, . . . ,dp , ands,t51,2, . . . ,dq .
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Thus, by ~20!, the product of any two basis elements ofA can be expressed in terms of
Clebsch–Gordan coefficients, for

M ~p i j
p

^ pst
q !5(

r
(
a51

npq
r

(
l ,u51

dr S p q

i s
U r , a

u Dpul
r S r , a

l
Up q

j t D ~28!

for i , j51,2, . . . ,dp , and s,t51,2, . . . ,dq . This is essentially the converse of the relation
~I.137!,1 that is, of

h~pul
r*p tk

q ps j
p ! 5 (

a51

nqp
r

(
v51

dr S r , a

l
Uq p

k j D S q p

t s
U r , a

v D
3$~~Fr !21!vu /tr ~~Fr !21!%

~29!

for all j51,2, . . . ,dp , k51,2, . . . ,dq , and l51,2, . . . ,dr . Hereh is the Haar functional and
Fr is a non-singulardr3dr matrix with the property that

(
k51

dr

F jk
r pkl

r 5 (
k51

dr

p jk
r‡Fkl

r ~30!

~for all j ,l 51,2, . . . ,dr), wherep r‡ is the doubly contragredient partner ofp r .

IV. THE IRREDUCIBLE TENSOR OPERATORS

A. Introduction

Let pp,pq, andp r be unitary irreducible right coactions ofA of dimensionsdp , dq , and
dr respectively, and with matrix coefficientsp jk

p , p jk
q , andp jk

r respectively. LetLpr be the
vector space of operators introduced in Section II. It will be shown that there exist two types of
irreducible tensor operators that are members ofLpr and which belong to the corepresentation
pq. These will be denoted byQj

q and Q̃j
q ~for j51,2, . . . ,dq), and will be calledordinary and

twisted irreducible tensor operators respectively. Naturally the two types of irreducible tensor
operators coincide in the special case in whichA is commutative.

It will also be shown that the definitions of both of these types of irreducible tensor operators
are easily extended to the case in whichV is a vector space that is a direct sum of carrier spaces
of unitary irreducible corepresentations ofA and which contains at leastVp

% Vr .

B. Definitions of irreducible tensor operators

1. Definition of the ordinary irreducible tensor operators Q j
q

Theordinary irreducible tensor operators Qj
q belonging to the unitary irreducible right coac-

tion pq of A aredefinedto be members ofL pr that satisfy the condition

~~ id^M !+~p r
^ id !+~Qj

q
^S!+pp!~vp!5 (

k51

dq

Qk
q~vp! ^ pk j

q ~31!

for all vp P Vp and all j51,2, . . . ,dq . Clearly this definition involvesonly quantities defined for
A and its coactions. Both sides~31! are members ofVr

^A. @The motivation behind the defini-
tion ~32! is explained in Section 2 of the Appendix.#

It will now be shown that~31! provides aconsistentdefinition, in that it can be re-expressed
by saying that the operatorsQj

q ~for j51,2, . . . ,dq) form the basis of an irreducible subspace of
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a carrier space for a certain right coaction ofA. This right coaction will be denoted bypL pr, as
its carrier space isL pr. The definition of pL pr is then that it is the mapping ofpL pr into
pL pr^A specified by

pLpr~Q!5 (
i , j51

dp

(
m,n51

dr

~qniP jm
pr ! ^M ~p mn

r
^S~p i j

p !!, ~32!

for all QPL pr, where qni and P jm
pr are defined in~17! and ~14!. @The motivation for the

definition ~33! is given in Section 2 of the Appendix.#
It is then quite easily shown thatpL pr satisfies~5! and ~6! ~with pV and V replaced by

pL pr andL pr respectively!, and hencepL pr is indeed a right coaction with carrier space
L pr. Moreover, it is easily demonstrated that

~pL pr~Q!!~vp^1A!5~~ id^M !+~p r
^ id !+~Q^S!+pp!~vp! ~33!

for all vpPVp and allQPL pr. Thus~31! and~33! imply that the definition~31! can be written
equivalently as

pL pr~Qj
q!5 (

k51

dq

Qk
q

^ pk j
q ~34!

~for all j51,2, . . . ,dq). Because~34! is similar in form to~7!, and aspL pr is a right coaction
with carrier spaceL pr, the consistency of the definition~31! is now ensured.

Now consider the situation in whichV is a vector space that is a direct sum of carrier spaces
of unitary irreducible corepresentations ofA and which contains at leastVp

% Vr . Let p be the
mapping ofV into V^A that coincides withpp on Vp and with p r on Vr , and which acts
similarly on any other carrier spaces that might be contained inV. Then the generalization of~31!
is clearly

~~ id^M !+~p ^ id !+~Qj
q

^S!+p!~v !5 (
k51

dq

Qk
q~v ! ^ pk j

q ~35!

for all v P V and all j51,2, . . . ,dq . @The consistency of the definition~35! is an immediate
consequence of the consistency of~31!#.

2. Definition of the twisted irreducible tensor operators Q ˜
j
q

The twisted irreducible tensor operators Q˜ j
q belonging to the unitary irreducible right coaction

pq of A aredefinedto be members ofL pr that satisfy the condition

~~ id^M !+~ id^ s!+~p r
^ id !+~Q̃j

qR
^S21!+pp!~vp!5 (

k51

dq

Q̃k
q~vp! ^ pk j

q ~36!

for all vp P Vp and all j51,2, . . . ,dq . This definition~36! differs from the corresponding defini-
tion ~31! only in the replacement ofM by Mss and Sby S21 ~neither of which have any effect
in the special case in whichA is commutative!. ~See Section 2 of the Appendix for further
discussion of this pair of substitutions. It should be recorded that Rittenberg and Scheunert13 noted
previously, in the context of what was essentially the abstract carrier space formalism of Section
I as generalized to irreduciblerepresentationsof the dualA8, that these substitutions do produce
another type of irreducible tensor operator, but they did not pursue this observation.!
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The demonstration that~36! provides aconsistentdefinition again involves showing that it can
be re-expressed by saying that the operatorsQ̃j

q ~for j51,2, . . . ,dq) form the basis of an irreduc-
ible subspace of a carrier space for another right coactionp̃L pr of A. This right coaction is
definedas the mapping ofL pr into L pr

^A specified by

p̃L pr~Q!5 (
i , j51

dp

(
m,n51

dr

~qniP jm
pr ! ^M ~S21~p i j

p
^ pmn

r !! ~37!

for all Q P Lpr. @The motivation for the definition~37! is given in Section 3 of the Appendix#.
Then

~p̃L pr~Q!!~vp^1A!5~~ id^M !+~ id^ s!+~p r
^ id !+~Q^S21!+pp!~vp! ~38!

for all vpPVp and allQPLpr. Thus~37! and ~39! imply that the definition~37! can be written
equivalently as

p̃L pr~Q̃j
qR!5 (

k51

dq

Q̃k
qR

^ pk j
q ~39!

~for all j51,2, . . . ,dq), which then ensures its consistency.
In the situation in whichV is a vector space that is a direct sum of carrier spaces of unitary

irreducible corepresentations ofA and which contains at leastVp
% Vr , and with the mapping

p from V into V^A that is defined in the end of the previous subsubsection, the generalization
of ~36! is clearly

~~ id^M !+~ id^ s!+~p ^ id !+~Q̃j
qR

^S21!+p!~v !5 (
k51

dq

Q̃k
q~v ! ^ pk j

q ~40!

for all v P V and all j51,2, . . . ,dq . @Again, the consistency of the definition~40! is an immediate
consequence of the consistency of~36!#.

C. Properties of irreducible tensor operators

1. The identity operator as an irreducible tensor operator

Suppose thatV is a vector space that is a direct sum of carrier spaces of unitary irreducible
corepresentations ofA and which contains at leastVp

% Vr , and thatp is the mapping ofV into
V^A that is defined in the previous subsection. Suppose thatQ is the identity operator idof
V @so thatQ(v)5v for all v P V]. Then, on using~5! and ~6!, together with the Hopf algebra
propertiesM + ( id^S) + D5u + e andu(1C)51A , it follows that

~~ id^M !+~p ^ id !+~ id^S!+p!~v !5v^1A ~41!

for all v P V, which, by~35!, leads to the conclusion that the identity operatorid is anordinary
irreducible tensor operator for the one-dimensionalidentity corepresentation whose sole matrix
coefficient is 1A .

It is easily checked@using ~40! in place of~35!#, that id is also atwisted irreducible tensor
operator for this identity corepresentation.

The same conclusions for identity operators follow directly from~31! and~36! in the special
case in whichp5r .
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2. Two useful identities for the ordinary irreducible tensor operators Q j
q and Q̃ j

q

If Qk
q is anordinary irreducible tensor operator belonging to the unitary irreducible corepre-

sentationpq ofA ~as defined in~31!!, andv j
p ~for j51,2, . . . ,dp) provides a basis for the carrier

spaceVp of the unitary irreducible corepresentationpp of A, then

p r~Qk
q~v j

p!!5(
s51

dp

(
t51

dq

~Qt
q~vs

p!! ^ ~M ~p tk
q

^ ps j
p !!, ~42!

for all j51,2, . . . ,dp , and k51,2, . . . ,dq . By contrast, ifQ̃k
q is a twisted irreducible tensor

operator belongingpq, then

p r~Q̃k
q~v j

p!!5(
s51

dp

(
t51

dq

~Q̃t
q~vs

p!! ^ ~M ~ps j
p

^ p tk
q !!, ~43!

for all j51,2, . . . ,dp andk51,2, . . . ,dq . It should be noted that the factors in the second term of
the right-hand side of~43! are interchanged relative to those of~42!.

The proof of~42! is as follows. On applying~7! and the relationS(pks
p )5psk

p* , the left-hand
side of ~31! ~with vp5vs

p) becomes

~~ id^M !+~p r
^ id !!S (

k51

dp

~Qj
q~vk

p!! ^ psk
p* D .

On multiplying from the right with id^ psi
p , summing overs, and applying the relation

M (psk
p* ^ psi

p )5d ik1A , this reduces top r(Qi
q(v j

p)). However, multiplication of the right-hand
side of ~31! from the right with id^ psi

p and summing over s produces
(s51
dp ( t51

dq (Qt
q(vs

p))^ (M (p tk
q

^ ps j
p )). The line of proof for~43! is similar.

3. Identification of the corepresentations pL pr and p̃L pr of A

It is easily shown from the definition~33! of pL pr that

pL pr~P i j
pr!5 (

m51

dp

(
n51

dr

P mn
pr

^ ~p r�p̄p!nm, j i , ~44!

whereP i j
pr are the operators defined in~14!, and wherep̄p is the corepresentation ofA that is

conjugateto pp, so that its matrix coefficients are given byp̄ jk
p 5(p jk

p )* . Then, by~20! and~22!,

pLpr~P i j
pr!5 (

m51

dp

(
n51

dr

P mn
pr

^ ~p̄p�̃p r !mn,i j . ~45!

This shows thatpLpr is actually the right coaction that is given by thetwisted tensor product

p̄p�̃p r , and that the operatorsP i j
pr are the basis vectors of the carrier spaceL pr of this

coaction.
Taken with~34!, this indicates that the irreducible tensor operatorsQj

q of the definition~31!

exist only ifpq is contained in the reduction ofp̄p�̃p r . As p̄p�̃p r andp r�p̄p are equivalent,1

this implies thatQj
q exists only ifnr p̄

q .0. But nr p̄
q 5nqp

r @cf. ~I.125!, Ref. 1#, soQj
q exists only if

nqp
r .0. @These observations are confirmed by the explicit expressions for the irreducible tensor
operators given in~47! below and by the Wigner–Eckart theorem of~50! below.#

Similarly, one can show from the definition~37! of p̃Lpr that
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p̃Lpr~P i j
pr!5 (

m51

dp

(
n51

dr

P mn
pr

^ ~pp‡�p r !mn,i j , ~46!

wherepp‡ is the corepresentation ofA that isconjugateto the corepresentationpp‡ that is itself
doubly contragredientto pp. This shows thatp̃L pr is the right coaction that is given by the
ordinary tensor productpp‡�p r , and that the operatorsP i j

pr are the basis vectors of the carrier
spaceL pr of this coaction.

Taken with~39!, this shows that the twisted irreducible tensor operatorsQ̃j
q of the definition

~36! exist only ifpq is contained in the reduction ofpp‡�p r . As pp‡ andp̄p are equivalent,7–12

this implies thatQ̃j
q exists only ifnp̄r

q .0. But np̄r
q 5npq

r @cf. ~I.125!, Ref. 1#, so Q̃j
q exists only if

npq
r .0. @These observations are confirmed by the explicit expressions for the twisted irreducible
tensor operators given in~49! below and by the Wigner–Eckart theorem of~52! below#.

4. Explicit expressions for the irreducible tensor operators

If nqp
r .0 there existnqp

r linearly independentordinary irreducible tensor operators that sat-
isfy ~31!. These are given by

Qj
q,a5(

i51

dp

(
l 51

dr S r p̄

l i
Uq , a

j DP i l
pr , ~47!

for a51,2, . . . ,nqp
r and j51,2, . . . ,dq . Here the labelp̄ in the Clebsch–Gordan coefficients

relates to the corepresentationp̄p that is conjugate topp. As noted in the previous subsubsection,
nr p̄
q 5nqp

r @cf. ~I.125!#.
The proof of~47! is as follows. The analogue of~I.130! for the tensor productp r�p̄p is

(
l 51

dr

(
i51

dp

~p r�p̄p!nm,l i S r p̄

l i
Uq , a

j D 5 (
k51

dq S r p̄

n m
Uq , a

k Dpk j
q ~48!

for m51,2, . . . ,dp , j51,2, . . . ,dq , n51,2, . . . ,dr , anda51,2, . . . ,nqp
r . However, by~32!,

~44!, and~47!,

pL pr~Qj
q,a!5 (

i ,m51

dp

(
l ,n51

dr S r p̄

l i
Uq , a

j DP mn
pr

^ ~p r�p̄p!nm,l i .

On applying~48! and ~47!, this reduces to

pL pr~Qj
q,a!5 (

k51

dq

Qk
q,a

^ pk j
q

~for all j51,2, . . . ,dq anda51,2, . . . ,nqp
r ). That is, the operatorsQj

q,a defined in~47! satisfy
~35!, which is equivalent to~32!.

Similarly, if npq
r .0 there existnpq

r linearly independenttwisted irreducible tensor operators
that satisfy~32!. These are given by

Q̃j
q,a5(

i51

dp

(
l 51

dr S p‡ r

i l
Uq , a

j DP i l
pr , ~49!
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for a51,2, . . . ,npq
r and j51,2, . . . ,dq . Here the labelp‡ in the Clebsch–Gordan coefficients

relates to the corepresentationp̄p‡ that is conjugate to the corepresentationpp‡ that is itself
doubly contragredient topp. It should be noted thatnp̄r

q 5npq
r 5np̄‡r

q @c.f. ~I.125!#.
The proof of~49! is similar to that of~47!, but uses the right coactionp̃Lpr in the place of

pLpr. Also needed is the relation

~p̄p‡! i j5 (
k,l 51

dp

Fik
p ~p̄p!kl ~~Fp!21! l j ,

which follows from ~30!, and the corresponding relation

S p̄ r

i l
Uq , a

j D 5 (
k51

dp

~~Fp!21! ikS p̄‡ r

k l
Uq , a

j D .
V. THEOREMS OF THE WIGNER–ECKART TYPE

If pp, pq, andp r are unitary irreducible corepresentations ofA of dimensionsdp , dq , and
dr respectively,v j

p andv l
r are basis vectors belonging to the carrier spacesVp andVr of pp and

p r respectively, andQk
q is anordinary irreducible tensor operator belonging topq @as defined in

~31!#, then

^v l
r ,Qk

q~v j
p!&5 (

a51

nqp
r

S r , a

l
Uq p

k j D ~r uQqup!a , ~50!

for all j51,2, . . . ,dp , all k51,2, . . . ,dq , and all l 51,2, . . . ,dr . Here thereduced matrix
elements(r uQqup)a are given by

~r uQqup!a5(
s51

dp

(
t51

dq

(
u,v51

dr

^vu
r ,Qt

q~vs
p!&S q p

t s
U r , a

v D
3$~~Fr !21!vu /tr ~~Fr !21!% ~51!

for a51,2, . . . ,nqp
r , and ^,& denotes the inner product ofVr . HereFr is the matrix defined in

~30!.
On the other hand, ifQ̃k

q is a twistedirreducible tensor operator belonging topq @as defined
in ~36!#, then

^v l
r ,Q̃k

q~v j
p!&5 (

a51

npq
r

S r , a

l
Up q

j k D ~r uQ̃qup!a , ~52!

for all j51,2, . . . ,dp , all k51,2, . . . ,dq , and all l 51,2, . . . ,dr , where the reduced matrix
elements (r uQ̃qup)a are given by

~r uQ̃qup!a5(
s51

dp

(
t51

dq

(
u,v51

dr

^vu
r ,Q̃t

q~vs
p!&S p q

s t
U r , a

v D
3$~~Fr !21!vu /tr ~~Fr !21!% ~53!

for a51,2, . . . ,npq
r .

The results~50! and ~52! again exhibit the classic Wigner2Eckart theorem behavior, in that
they show that thej , k, and l dependences of the inner products^v l

r ,Qk
q(v j

p)& and
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^v l
r ,Q̃k

q(v j
p)& are determined only by Clebsch2Gordan coefficients, but it should be noted that in

the general case in whichA is non-commutative, the inner products for theordinary andtwisted
irreducible tensor operators involvedifferentsets of Clebsch2Gordan coefficients.

The proof of~50! is as follows. The condition for a corepresentationpV ofA to be unitary is
that

(
@v#

^w,v @1# ,&S~v @2#!5(
@w#

^w@1# ,v&~w@2#!* ~54!

for all v,w P V, the carrier space ofpV , where

pV~v !5(
@v#

v @1# ^v @2# , ~55!

with v @1# P V andv @2# P A @cf. ~I.51!#. Thus withv5Qj
q(v i

p) andw5v l
r , ~54!, ~55!, ~42!, and~7!

imply that

(
s51

dp

(
t51

dq

^v l
r ,Qt

q~vs
p!&S~M ~p t j

q
^ psi

p !!5 (
u51

dr

^vu
r ,Qj

q~v i
p!&~pul

r !* . ~56!

But (pul
r )*5S(p l u

r ), so acting on both sides withS21 ~which is well defined for a compact
quantum group algebra7–12!, multiplying through from the left by (p l k

r )* , summing overl , and
using the relation( l M ((p l k

r )* ^ (p l u
r ))5duk1A , ~56! reduces to

(
l 51

dr

(
s51

dp

(
t51

dq

^v l
r ,Qt

q~vs
p!&~~p l k

r !*p t j
q

^ psi
p !5^vk

r ,Qj
q~v i

p!&1A . ~57!

On acting with the Haar functionalh, and applying~29! and the relationh(1A)51, ~50! follows
immediately. The proof of~52! is similar.

VI. EXAMPLE: IRREDUCIBLE TENSOR OPERATORS FOR THE STANDARD
DEFORMATION OF THE FUNCTION ALGEBRA OF THE COMPACT LIE GROUP SU(2)

It is particularly interesting to study the foregoing theory for the case in whichA is the
standard deformation of the function algebra of the compact Lie group SU~2!,because both this
Hopf algebraA and its dualA8 have been very extensively investigated, the former in the
language of ‘compact matrix pseudogroups’ and the latter as the deformationUq(sl(2)) of the
universal enveloping algebraU(sl(2)) of thesimple Lie algebrasl(2).

A. Structure of the standard deformation of the function algebra of the compact Lie
group SU(2)

It is well known ~cf. Ref. 14! that the irreducible representations of the deformation
Uq(sl(2)) ~for generic q! can be labelled by a single indexj , which takes values 0,12,1,

3
2, . . . , the

irreducible representation corresponding toj being (2j11)-dimensional, with rows and columns
that may be labeled by indicesm8 andm that take values2 j ,2 j11, . . . ,j21,j , exactly as for
the simple Lie algebrasl(2). To each of these representations corresponds acorepresentation of
the dual Hopf algebraA. Consequently the labels for corepresentations ofA will henceforth
always be denoted byj ~possibly with a prime or subscript attached! and the rows and columns of
the corresponding matrix coefficients will be labelled by these indicesm andm8 ~possibly with
subscripts attached!. ~Although q was used in all the other sections of this paper to indicate an
irreducible representation or corepresentation, in this section it will be employed to denote the
standard deformation parameter.!
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All of the irreducible corepresentationsp j ~for j50,12,1,
3
2, . . . ) may betaken to be unitary,

and their matrix coefficientspm8m
j form a basis forA. Moreovereverymatrix coefficientpm8m

j

for j>1 can be written as a polynomial in the matrix coefficients ofp1/2, while p00
0 51A . Let

p1/25SX U

V YD , ~58!

where the entries are assumed to satisfy the relations

XU5q21UX,XV5q21VX,YU5qUY,YV5qVY,

UV5VU,XY2q21UV51A ,YX2qUV51A .
~59!

In the language of ‘matrix pseudogroups’ the matrix coefficientspm8m
j are called ‘quantum

d-functions’ and are denoted bydm8m
j . The work of Nomura15 then implies that

pm8m
j

5q~m82m!~2 j2m81m!/2$@ j1m8#! @ j2m8#! @ j1m#! @ j2m#! %

3(
a

qa~2 j2m81m2a!Xj1m2aUm82m1aVaYj2m82a

@a#! @ j1m2a#! @m82m1a#! @ j2m82a#!
, ~60!

where @n#5(qn2q2n)/(q2q21) and @n#!5@n#@n21#@n22# . . . @2#@1#, and where the sum
over a is over all integers such that the expressions in theq-factorials are non-negative.~The
present quantityq is actuallyq1/2 in the notation of Nomura15,16!. Then, for example

p15S X2 q1/2@2#1/2XU U2

q1/2@2#1/2XV XY1qUV q1/2@2#1/2UY

V2 q1/2@2#1/2VY Y2
D ~61!

and

p3/25S X3 q@3#1/2X2U q@3#1/2XU2 U3

q@3#1/2X2V X2Y1q2@2#XUV q@2#XUY1q2U2V q@3#1/2U2Y

q@3#1/2XV2 q@2#XVY1q2UV2 XY21q2@2#UVY q@3#1/2UY2

V3 q@3#1/2V2Y q@3#1/2VY2 Y3

D . ~62!

The product of any two matrix coefficients can~at least in principle! be deduced from the expres-
sions.

An alternative way of getting the product of any two matrix coefficients is to invoke~28!, for
the Clebsch–Gordan coefficients are known for thisA. Indeed for thisA the Clebsch–Gordan
coefficients exhibit two simplifying features. First, the multiplicity is always just 1, so the index
a in the Clebsch–Gordan coefficients of~23! may be omitted, and second, the Clebsch–Gordan
coefficients can be taken to be purely real. As the Clebsch–Gordan series forp j 1�p j 2 is the direct
sum ofp j with j5 j 11 j 2 , j 11 j 221, . . . ,u j 12 j 2u, ~28! reduces in this case to

M ~p
m
18m1

j 1
^ p

m
28m2

j 2 !5 (
j5u j 12 j 2u

j 11 j 2

(
m8,m52 j

j S j 1 j 2

m18 m28
U j

m8
D S j 1 j 2

m1 m2
U j
mDpm8m

j . ~63!

Various equivalent expressions for the Clebsch–Gordan coefficients appear in the literature, but
the most convenient for application here is that given by Nomura,16 which, in the present notation,
is
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S j 1 j 2

m1 m2
U j
mD

5D~ j 1 , j 2 , j !q
$x~ j 1!1x~ j 2!2x~ j !12~ j 1 j 21 j 1m22 j 2m1!%/2

3$@ j 11m1#! @ j 12m1#! @ j 21m2#! @ j 22m2#! @ j1m#! @ j2m#! @2 j11#%1/2

3(
a

~21!aq2a~ j 11 j 21 j11!/2

@a#! @ j 11 j 22 j2a#! @ j 12m12a#! @ j 21m22a#! @ j2 j 21m11a#! @ j2 j 12m21a#!
,

~64!

where D(a,b,c)5$@2a1b1c#! @a2b1c#! @a1b2c#!/ @a1b1c11#! %1/2 and x(a)5a(a
11), and where the sum overa is over all integers such that the expressions in theq-factorials are
non-negative. In particular

S j1 1
2 j

m1 1
2 2m

U 1
2

1
2

D 5~21! j2mq2 j1
1
2 1

3
2m@ j1m11#1/2$@2#@2 j #!/ @2 j12#! %1/2 ~65!

and

S j1 1
2 j

m2 1
2 2m

U 1
2

2 1
2

D 5~21! j2mq
1
2 1

3
2m@ j2m11#1/2$@2#@2 j #!/ @2 j12#! %1/2. ~66!

The action of the coproductD and counite of A on the generators ofA is given by

D~X!5X^X1U^V, D~Y!5V^U1Y^Y,

D~U !5X^U1U^Y, D~V!5V^X1Y^V,

and

e~X!51,e~Y!51, e~U !50,e~V!50.

Moreover, the action of the star-operation * ofA on the generators ofA may be taken to be

X*5Y, Y*5X, U*52q21V, V*52qU, ~67!

which implies15 that its action on any matrix coefficient is given by

~pm8m
j

!*5~21!m2m8qm2m8p2m8,2m
j . ~68!

As S(pm8m
j )5(pmm8

j )* @cf. ~I.52!, Ref. 1#, it follows that

S~pm8m
j

!5~21!2~m2m8!q2~m2m8!p2m,2m8
j . ~69!

Thus

S2~pm8m
j

!5q22~m2m8!pm8m
j . ~70!

2947J. F. Cornwell: Irreducible tensor operators

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



As the matrix coefficients of the doubly contragredient corepresentationp j‡ are given by
(pm8m

j )‡5S2pm8m
j @cf. ~I.57!, Ref. 1#, it follows that the (2j11)3(2 j11) matrix of ~30! ~which

appears in the expressions for the reduced matrix elements~51! and ~53! of the Wigner–Eckart
type theorems! is diagonaland that its elements are given by

Fm8m
j

5dm8mq
22~ j2m!. ~71!

B. Bosonic creation and annihilation operators as irreducible tensor operators

Let b1
† ,b1 andb2

† ,b2 be two pairs of ‘deformed’ bosonic creation and annihilation operators
andN1 andN2 the associated number operators whose action on the infinite-dimensional Fock
space spanned by the occupation number vectorsuni& is given ~cf. Refs. 17, 18! by

bi
†uni&5@ni11#1/2uni11&,

bi uni&5@ni #
1/2uni21&, Ni uni&5ni uni&, ~72!

for i51,2, where it is assumed that the vacuum state vectorsu0& are such thatbi u0&50 for
i51,2. It is also assumed that every member of the set$b1

† ,b1 ,N1% commutes with every member
of the set$b2

† ,b2 ,N2%. In the deformed generalization of the Jordan–Schwinger realization of
sl(2) ~cf. Refs. 17, 18!, the basis vectors of the carrier spaces of the irreducible representations of
Uq(sl(2)) aregiven by

vm
j 5u j1m, j2m&, ~73!

and these, of course, are also the basis vectors of the carrier spaces of the irreduciblecorepresen-
tationsof A.

Then

Q1/2
1/25b1

†q2 ~1/2! N2, Q21/2
1/2 5b2

†q~1/2! N1, ~74!

and

Q1/2
1/25qb2q

~1/2! N1, Q21/2
1/2 52b1q

2~1/2! N2, ~75!

are two sets of pairs ofordinary irreducible tensor operators that belong to the 2-dimensional
irreducible corepresentationp1/2 of A.

This will now be demonstrated for thefirst pair ~74!, starting from the definition~35!, and
takingV to be the direct sum of all the carrier spaces of all the irreducible corepresentations of
A ~with just one such irreducible corepresentation being included from each equivalence class!.
Define the right coactionp of A by

p~vm
j !5 (

m852 j

j

vm8
j

^ pm8m
j , ~76!

for all j50,12,1, . . . andm5 j , j21, . . . ,2 j . Then in this case~36! becomes

~~ id^M !+~p ^ id !+~Qk
1/2

^S!+p!~vm
j !5 (

l 521/2

1/2

Ql
1/2~vm

j ! ^ p l k
1/2, ~77!

for all j50,12,1, . . . andm5 j , j21, . . . ,2 j . It will now be shown that this is indeed satisfied for
k5 1

2. ~The proof fork52 1
2 is similar.! By ~72!, ~69!, ~74!, and~76!, the left-hand side of~77! for

k5 1
2 is
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(
m952 j21

j

(
m852 j

j

@ j1m811#1/2q2 ~1/2! ~ j2m8!2~m2m8!~21!2~m2m8!

3vm91 ~1/2!
j1 ~1/2!

^M ~pm91 ~1/2! ,m81 ~1/2!
j1 ~1/2!

^ p2m,2m8
j

!. ~78!

Similarly, by ~72!, ~74!, and~76!, the right-hand side of~77! for k5 1
2 is

@ j1m11#1/2q2~1/2! ~ j2m!vm1 ~1/2!
j1 ~1/2!

^ p1/2 , 1/2
1/2 1@ j2m11#1/2q~1/2! ~ j1m!vm2 ~1/2!

j1 ~1/2!
^ p2 ~1/2! , ~1/2!

1/2 ,
~79!

so it remains to show that~78! reduces to~79!. However, by~63! and ~65!, ~78! reduces to

(
m952 j21

j

(
m852 j

j

(
j 851/2

2 j1 ~1/2!

$@2#@2 j #!/ @2 j12#! %1/2q~~1/2! j2m2 ~1/2!!~21!~ j2m!

3S j1 1
2 j

m81 1
2 2m8

U 1
2

1
2

D S j1 1
2 j

m91 1
2 2m

U j 8

m91 1
2 2mD

3S j1 1
2 j

m81 1
2 2m8

U j 81
2
D vm91 ~1/2!

j1 ~1/2!
^ pm91 ~1/2! 2m, 1/2

j 8 . ~80!

On invoking the Clebsch–Gordan orthogonality relation

(
m852 j

j S j1 1
2 j

m81 1
2 2m8

U 1
2

1
2

D S j1 1
2 j

m81 1
2 2m8

U j 81
2
D 5H 1, if j 85 1

2

0, i f j 8Þ 1
2

, ~81!

~80! @and hence~78!# reduces to

(
m952 j21

j

$@2#@2 j #!/ @2 j12#! %1/2q~~1/2! j2m2 ~1/2!!~21!~ j2m!

3S j1 1
2 j

m91 1
2 2m

U 1
2

m91 1
2 2m

D vm91 ~1/2!
j1 ~1/2!

^ pm91 1/22m, 1/2
j 8 . ~82!

However, the remaining Clebsch–Gordan coefficients are zero ifm91 1
22m. 1

2, i.e. if m9.m,
and are zero ifm91 1

22m,2 1
2, i.e. if m9,m21, so these Clebsch–Gordan coefficients are

non-zero only form95m,m21. Thus~82! @and hence~78!# becomes

$@2#@2 j #!/ @2 j12#! %1/2q~1/2 j2m2 1/2!~21!~ j2m!

3HS j1 1
2 j

m2 1
2 2m

U 1
2

2 1
2

D vm2 ~1/2!
j1 ~1/2!

^ p2 ~1/2! , 1/2
1/2 1S j1 1

2 j

m1 1
2 2m

U 1
2

1
2

D vm1 ~1/2!
j1 ~1/2!

^ p1/2 , 1/2
1/2 J ,

which, by ~65! and ~66!, reduces to~79!.
Similarly

Q̃1/2
1/25b1

†q~1/2! N2, Q̃21/2
1/2 5b2

†q2 ~1/2! N1, ~83!

and
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Q̃1/2
1/25q21b2q

2 ~1/2! N1, Q̃21/2
1/2 52b1q

~1/2! N2, ~84!

are two sets of pairs oftwisted irreducible tensor operators belonging to the 2-dimensional irre-
ducible corepresentationp1/2 of A. @This is easily deduced from~78! and ~79!, because in the
special case of this algebraA, ~59! and ~69! imply that the substitutionsM→Mss and
S→S21 merely correspond to the replacement ofq by q21].

It has been observed previously by Biedenharn and Tarlini19 that ~78! provide a pair of
irreducible tensor operators for the 2-dimensional irreducible representation ofUq(sl(2)), their
argument essentially using~A10! and the generalized Jordan-Schwinger realization of the genera-
tors ofUq(sl(2)), together with various identities involving the creation and annihilation opera-
tors. The object of the above analysis in this subsection is to give an explicit demonstration of the
applicability of thenewdefinitions~A10! and~A11! forA, which, of course, apply not merely to
this example but toany compact quantum group algebra.
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APPENDIX: MOTIVATION FOR DEFINITIONS

1. Introduction

The purpose of this Appendix is tomotivatethe definitions that are given in the main body of
the paper for the irreducible tensor operators. This will be done by considering the simple special
case in which the Hopf algebraA is the set of functions defined on afinite groupG of order
g, so that the dualA8 of A is the group algebra ofG . Of course, asA is commutative in this
special case, the resulting expressions are to some extent ambiguous, in that in this special case
M is indistinguishable fromM + s andS is indistinguishable fromS21. The demonstration of the
correctness, consistency, and usefulness of the definitions that are actually employed for the
generalcase are the subject matter of the self-contained arguments of the main body of this paper.

A summary of the basic facts concerning the relationship ofA andA8 may be found in the
Introduction to the Appendix of Paper I.

B. Motivation for definitions of irreducible tensor operators

The starting point of the present argument is~2!, which of course also applies to finite groups,
and which may be rewritten as

p̂8r~x!Qj
qp̂8p~x21!5 (

k51

dq

Gq~x!k jQk
q ~A1!

for all x P G and all j51,2, . . . ,dq . Here the operatorsp̂8p(x) are defined by

p̂8p~x!~v j
p!5 (

k51

dp

Gp~x!k jvk
p , ~A2!

and are related to the corresponding left actionp8p ofA8 ~a mapping of the carrier spaceVp into
Vp

^A8) by the prescription

p̂8p~x!~v j
p!5p8p~x^v j

p!. ~A3!
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As hereSA8(x)5x21 andDA8(x)5x^x, ~A1! can be rewritten in purely Hopf algebraic terms
~for A8) as

~p8r+~ id^Qj
q!+~ id^ p8p!+~ id^SA8^ id !+~DA8^ id !!~x^vp!5 (

k51

dq

Gq~x!k jQk
q~vp! ~A4!

for all x P A8, all vp P Vp, and allj51,2, . . . ,dq . @Here theGq(x)k j are now matrix elements of
the irreducible representationp8q of the Hopf algebraA8].

This condition can be recast entirely in terms of quantities defined for the Hopf algebraA in
the following way. As noted in equation~I.214!, the relationship between a right coactionpV of
A and the corresponding left actionpV8 of A8 ~with the same carrier spaceV) is

pV8 ~a8^v !5~MV,C+~ id^ev !+~s ^ id !+~ id^ pV!!~a8^v ! ~A5!

for all a8 P A8 and allv P V, where the evaluation mapev ~fromA8^A to C) is defined@cf.
~I.41!# by

ev~a8^a!5^a8,a& ~A6!

for all a8 P A8 and alla P A. On applying this twice~once with withpV85p8r and once with
pV85p8p), the left-hand side of~A4! becomes

~MVr ,C+~ id^ev !+~s ^ id !+~ id^ p r !+~ id^Qj
q!+~ id^ pp!+~ id^MVp,C!

+~ id^ id^ev !+~ id^ s ^ id !+~ id^SA8^ pp!+~DA8^ id !~x^vp!. ~A7!

As ~I.209! and ~I.210! can be rewritten as

~MC+~ev^ev !+~ id^ s ^ id !+~DA8^ id !!~a8^a^b!5~ev+~ id^M !!~a8^a^b!

for all a,b P A and alla8 P A8, and

~ev+~SA8^ id !!~a8^a!5~ev+~ id^S!!~a8^a!

for all a P A and alla8 P A8, ~96! can be re-expressed as

~MVr ,C+~ id^ev !+~s ^ id !+~ id^ id^M !+~ id^ p r
^ id !+~ id^Qj

q
^S!+~ id^ pp!!~x^vp!.

~A8!

However, the right-hand side of~A4! can be rewritten using~I.217! as(k51
dq^x,pk j

q &Qk
q(vp), and

hence as

(
k51

dq

~MVr ,C+~ id^ev !+~s ^ id !+~ id^Qk
q

^ id !!~x^vp^ pk j
q !. ~A9!

On equating~A8! and~A9!, as the first three terms are common to both expressions, they can be
removed. The remaining terms act simply as the identity on the factorx, so on removing this now
trivial effect onx, it follows that ~A4! is equivalent to

~~ id^M !+~p r
^ id !+~Qj

q
^S!+pp!~vp!5 (

k51

dq

Qk
q~vp! ^ pk j

q
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for all vp P Vp and all j51,2, . . . ,dq . As this involvesonlyquantities defined forA, it provides
the desired criterion~32!.

Now consider the situation in whichV is a vector space that is a direct sum of carrier spaces
of unitary irreducible corepresentations ofA and which contains at leastVp

% Vr . Let p be the
mapping ofV into V^A that coincides withpp on Vp and with p r on Vr , and which acts
similarly on any other carrier spaces that might be contained inV. Of courseV is also is the direct
sum of carrier spaces of unitary irreducible representations ofA8. Then the generalization of~A4!
to this situation is

~p8+~ id^Qj
q!+~ id^ p8!+~ id^SA8^ id !+~DA8^ id !!~x^v !5 (

k51

dq

Gq~x!k jQk
q~v ! ~A10!

for all x P A8, all v P V, and allj51,2, . . . ,dq . ~Herep8 is the mapping ofV^A8 intoV that
coincides withp8p onVp and withp8r onVr , and which acts similarly on any other carrier spaces
that might be contained inV.! The generalization of~31! to this situation is obviously

~~ id^M !+~p ^ id !+~Qj
q

^S!+p!~v !5 (
k51

dq

Qk
q~v ! ^ pk j

q ~A11!

for all v P V and all j51,2, . . . ,dq .
BecauseM is indistinguishable fromM + s andS is indistinguishable fromS21 in the situation

being considered here, the above arguments would equally well apply with each of the following
3 substitutions:

~1! replaceM byM + s, but leaveS unchanged;
~2! leaveM unchanged, but replaceS by S21;
~3! replaceM byM + s andreplaceS by S21.

However, in the general case in whichA is non-commutative, the possibilities~1! and ~2! are
excludedbecause with them, and in the situation discussed in the previous paragraph, the identity
operator would not be an irreducible tensor operator belonging to the identity corepresentation.
With the substitution~3!, ~31! changes into~36!, which is the defining condition for atwisted
irreducible tensor operatorQ̃j

q . ~Of course the corresponding substitutions forA8 areDA8→s
+ DA8 andSA8→(SA8 )

21, so that the analogues of~A4! and~A10! are

~p8r+~ id^ Q̃j
q!+~ id^ p8p!+~ id^ ~SA8 !21

^ id !+~s ^ id !+~DA8^ id !!~x^vp!

5 (
k51

dq

Gq~x!k jQ̃k
q~vp! ~A12!

~for all x P A8, all vp P Vp, and allj51,2, . . . ,dq), and

~p8+~ id^ Q̃j
q!+~ id^ p8!+~ id^ ~SA8 !21

^ id !+~s ^ id !+~DA8^ id !!~x^v !5 (
k51

dq

Gq~x!k jQ̃k
q~v !

~A13!

~for all x P A8, all v P V, and allj51,2, . . . ,dq).
It is worth noting that~A4!, ~A10!, ~A12!, and~A13! provide the appropriate definitions for

irreducible tensor operators not merely for the context in which they have been derived here~i.e.
for the case in whichA8 is the group algebra of a finite groupG ), but also for the case in which
A8 is the universal enveloping algebraU(L) of a Lie algebraL ~with SA8(a)52a and
DA8(a)5a^111^a for all a(L), and for deformations of such universal enveloping algebras.
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@Of course in the caseA8=U~L!, the criteria~A4! and~A12! coincide and the criteria~A10! and
~A13! also coincide, but this will not be true for deformations ofU(L)].

3. Derivation of the right coactions pLpr and p̃Lpr

Consideration of~3! suggests that one first defines an operatorp
Lpr8 to be the mapping of

A8^Lpr into Lpr that is given by

p
Lpr8 ~x^Q!5p̂8r~x!Qp̂8p~x21!, ~A14!

where the operatorsp̂8p(x) were defined~A2! @and thep̂8r(x) are defined similarly#, and where
Q is any member ofLpr. If a1,a2, . . . form a basis forA8, ~A14! can be re-expressed in purely
Hopf algebra terms~with x5ak) as

p
Lpr8 ~ak^Q!

5~M̂ +~ id^ M̂ !+~p̂8r ^ id^ p̂8p!+~ id^ s!+~ id^SA8^ id !+~DA8^ id !!~ak^Q!. ~A15!

@Here the operator multiplication operationM̂ is defined byM̂ (Q^Q8)5Q + Q8 for all Q,Q8
P L pr.# It is then easily demonstrated thatp

L pr8 is a left actionof A8 with carrier spaceL pr.
After some algebra, it can be shown that~A15! can be rewritten in terms of components as

p
L pr8 ~ak^Q!5 (

i , j51

dp

(
m,n51

dr

^ak,M ~pmn
r

^S~p i j
p !!&qniP jm

pr , ~A16!

where the operatorsP bi
pr are defined in~14! and the matrix elementsqja are defined in~17!. The

corresponding right coactionpL pr of A is then given@cf. ~I.213!# by

pL pr~Q!5(
k

p
L pr8 ~ak^Q! ^ak ~A17!

for all Q P L pr, wherea1 ,a2 , . . . is the dual basis ofA. Thus, by~A16! and~A17!,

pL pr~Q!5 (
i , j51

dp

(
m,n51

dr

~qniP jm
pr ! ^M ~p mn

r
^S~p i j

p !!,

which is ~32!.
On replacingM byM + s andSbyS21, the definition~32! changes into the definition~37! for

p̃Lpr.
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We reformulate Special Relativity by a quaternionic algebra on reals. Usingreal
linear quaternions, we show that previous difficulties, concerning the appropriate
transformations on the 311 space–time, may be overcome. This implies that a
complexified quaternionic version of Special Relativity is a choice and not a ne-
cessity. ©1996 American Institute of Physics.@S0022-2488~96!01106-1#

I. INTRODUCTION

‘‘The most remarkable formula in mathematics is:

eiu5cosu1 i sin u. ~1!

This is our jewel. We may relate the geometry to the algebra by representing complex numbers in
a plane

x1 iy5reiu.

This is the unification of algebra and geometry.’’—Feynman.1

We know that a rotation ofa-angle around thez axis, can be represented byeia, in fact,

eia~x1 iy !5rei ~u1a!.

In 1843, Hamilton in the attempt to generalize the complex field in order to describe the rotation
in the three-dimensional space, discovered quaternions. Quaternions, as used in this paper, will
always mean ‘‘real quaternions’’

q5a1 ib1 jc1kd, a,b,c,dPR.

Today a rotation about an axis passing trough the origin and parallel to a given unitary vector
u[(ux ,uy ,uz) by an anglea can be obtained taking the transformation

e~ iux1 juy1kuz!a/2~ ix1 jy1kz!e2~ iux1 juy1kuz!a/2. ~2!

Therefore, if we wish to represent rotations in the three-dimensional space and complete ‘‘the
unification of algebra and geometry,’’ we need quaternions.

The quaternionic algebra has been expounded in a series of papers2 and books3 with particular
reference to quantum mechanics; the reader may refer to these for further details. For convenience
we repeat and develop the relevant points in the following section, where the terminology is also
defined.

Nothing that U~1,q! is algebraically isomorphic to SU~2,c!, the imaginary unitsi , j ,k can be
realized by means of the 232 Pauli matrices through

~ i , j ,k!↔~ is3 ,2 is2 ,2 is1!

a!Electronic mail address: deleos@le.infn.it
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~this particular representation of the imaginary unitsi , j ,k has been introduced in Ref. 4!. So a
quaternionq can be represented by a 232 complex matrix

q↔Q5S z1 2z2*

z2 z1*
D , ~3!

where

z15a1 ib, z25c2 idPC ~1,i !,

z1*5a2 ib, z2*5c1 id.

It follows that a quaternion with unitary norm is identified by a unitary 232 matrix with unit
determinant. This gives the correspondence between unitary quaternions U~1,q! and Su~2,c! @in a
recent paper5 the representation theory of the group U~1,q! has been discussed in detail#. Let us
consider the transformation law of a spinor~two-dimensional representations of the rotation
group!

c85Uc, ~4!

where

c5S z1z2D , UPSU~2,c!.

We can immediately verify that

c̃5S 2z2
z1

D
transforms as follows,

c̃85U* c̃, ~5!

so

S z1 2z2*

z2 z1*
D 8

5US z1 2z2*

z2 z1*
D

represents again the transformation law of a spinor.
Thanks to the identification~3! we can write the previous transformations by real quaternions

as follows

q85Uq,

with q5z11 jz2 andU quaternion with unitary norm@N~U!5U1U51#. Note that we do not
need right operators to indicate the transformation law of a spinor.

Now we can obtain the transformation law of a three-dimensional vectorr[(x,y,z) by prod-
uct of spinors; in fact, if we consider the purely imaginary quaternion

v5qiq15 ix1 jy1kz, ~ i , j ,k!1[2~ i , j ,k!,

or the corresponding traceless 232 complex matrix
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V5c ic15S ix 2y2 iz

y2 iz 2 ix D ,
a rotation in the three-dimensional space can be written as follows:6

v85UvU1 ~quaternions!,

V85UVU1 ~232 complex matrices!.

For infinitesimal transformations,U511Q•u, we find

Q•r 85Q•r1Q•u Q•r2Q•rQ•u,

where

Q[~ i , j ,k!, u[~a,b,g!.

If we rewrite the above mentioned transformation in the following form,

Q•r 85@11u•~Q21uQ!#Q•r , ~6!

barredoperatorsO uq act on quaternionic objectsF as in ~O uq!F5OFq.
We identify

i21u i
2

,
j21u j
2

,
k21uk
2

,

as the generators for rotations in the three-dimensional space. The factor1
2 guarantees that our

generators satisfy the usual algebra:

@Am , An#5emnpAp , m,n,p51,2,3.

Up until now, we have considered only particular operations on quaternions. A quaternionq
can also be multiplied by unitary quaternionsV from the right. A possible transformation which
preserves the norm is given by

q85UqV , ~U1U5V 1V 51!. ~7!

Since left and right multiplications commute, the group is locally isomorphic to SU~2!3SU~2!,
and so to O~4!, the four-dimensional Euclidean rotation group.

As far as here we can recognize only particular real linear quaternions, namely,

1, i , j , k, 1u i , 1u j , 1uk.

Real linear and complex linear quaternion operators were first systematically discussed in the
paper by Horwitz and Biedenharn.7

We have to hope of describing the Lorentz group if we use only previous objects. Analyzing
the most general transformation on quaternions~see Sec. IV!, we introduce new real linear quater-
nions which allow us to overcome the above difficulty and so obtain a quaternionic version of the
Lorentz group, without the use of complexified quaternions. This result appears, to the best of our
knowledge, for the first time in print.

First we briefly recall the standard way to rewrite special relativity by a quaternionic algebra
on complex~see Sec. III!.

2957Stefano De Leo: Quaternions and special relativity

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



In Sec. V, we present a quaternionic version of the special group SL~2,c!, which is as well-
known collected to the Lorentz group. Our conclusions are drawn in the final section.

II. QUATERNIONIC ALGEBRAS

A quaternionic algebra over a fieldF is a set

H5$a1 ib1 jg1kdua,b,g,dPF %,

with multiplication operations defined by following rules for imaginary unitsi , j ,k:

i 25 j 25k2521, jk52k j5 i , ki52 ik5 j , i j52 j i5k.

In our paper we will work with quaternionic algebras defined on reals and complex, so in this
section we give a panoramic review of such algebras.

We start with a quaternionic algebra on reals

HR5$a1 ib1 jg1kdua,b,g,dPR%.

We introduce the quaternion conjugation denoted by1 and defined by

q15a2 ib2 jg2kd.

The previous definition implies

~cw!15w1c1,

for c, w quaternionic functions. A conjugation operation which does not reverse the order ofc, w
factors is given, for example, by

q̃5a2 ib1 jg2kd.

An important difference between quaternions and complexified quaternions, as remarked by Adler
in his recent book8 ~pag. 8!, is based on the concept ofdivision algebra, which is a finite-
dimensional algebra for whichaÞ0, bÞ0 impliesabÞ0, in others words, which has no nonzero
divisors of zero. A classical theorem9 states that the only division algebras over the reals are
algebras of dimension 1, 2, 4, and 8; the only associative algebras over the reals areR, C , and
HR ;10 the nonassociative division algebras include the octonionsO ~but there are others as well;
see Ref. 11!.

A simple example of anondivisionalgebra is provided by the algebra of complexified quater-
nions

HC5$a1 ib1 jg1kdua,b,g,dPC ~1,I !%,

@I , i #5@I , j #5@I , k#50.

In fact, since

~11 iI !~12 iI !50,

there are nonzero divisors of zero.
For complexified quaternions we have different opportunities to define conjugation opera-

tions; we shall use the following terminology:
~1! The complexconjugate ofqC is
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qC*5a*1 ib*1 jg*1kd* .

Under this operation

~I ,i , j ,k!→~2I ,i , j ,k!

and

~qCpC !*5qC* pC* .

~2! Thequaternionconjugate ofqC is

qC
! 5a2 ib2 jg2kd.

Here

~I ,i , j ,k!→~I ,2 i ,2 j ,2k!

and

~qCpC !!5pC
! qC

! .

~3! In the absence of standard terminology, we call that formed by combining these operations
the full conjugate:

qC
15a*2 ib*2 jg*2kd* .

Under this operation

~I ,i , j ,k!→2~I ,i , j ,k!

and

~qCpC !15pC
1qC

1 .

Note that for real quaternions we have

q![q1.

III. COMPLEXIFIED QUATERNIONS AND SPECIAL RELATIVITY

We begin this section by recalling a sentence of Anderson and Joshi12 about the quaternionic
reformulation of special relativity:

‘‘There has been a long tradition of using quaternions for Special Relativity... The use of
quaternions in special relativity, however, is not entirely straightforward. Since the field of quater-
nions is a four-dimensional Euclidean space, complex components for the quaternions are re-
quired for the 311 space–time of special relativity.’’

In the following section, we will demonstrate that a reformulation of special relativity by a
quaternionic algebra on reals is possible.

In the present section, we use complexified quaternions to reformulate special relativity~for
further details the reader may consult the papers of Edmonds,13 Gough,14 Abonyi,15 Gürsey,16 and
the book of Synge17!.

A space–time point can be represented by complexified quaternions as follows:

X5I ct1 ix1 jy1kz. ~8!
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The Lorentz invariant in this formalism is given by

X *X5~ct!22x22y22z2. ~9!

If we consider the standard Lorentz transformation~boostct2x!

ct85g~ct2bx!, x85g~x2bct!, y85y, z85z

and note that the first two equations may be rewritten as

ct85ct coshu2x sinh u,

x85x coshu2ct sinh u,

where coshu5g and sinhu5bg.
We can represent an infinitesimal transformation by

X 85I ~ct2xu!1 i ~x2ctu!1 jy1kz5X1I
i11u i
2

uX .

We thus recognize, in the previous transformation, the generator

I
i11u i
2

.

It is now very simple to complete the translation. The set of generators of the Lorentz group is
provided with

boost ~ct,x! I
i11u i
2

,

boost ~ct,y! I
j11u j
2

,

boost ~ct,z! I
k11uk
2

,

rotation aroundx
i21u i
2

,

rotation aroundy
j21u j
2

,

rotation aroundz
k21uk
2

.

Therefore a general finite Lorentz transformation is given by

eI ~ iab1 jbb1kgb!1 iar1 jbr1kgr~I ct1 ix1 jy1kz!eI ~ iab1 jbb1kgb!2 iar2 jbr2kgr.

The previous results can be elegantly summarized by the relation

X 85LXL1, L!L51, ~10!
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whereL is obviously a complexified quaternion. In this or a similar way many authors have
reformulated special relativity with complex quaternions.

We remark that the complex component for the quaternions represent a choice and not a
necessity.

IV. A NEW POSSIBILITY

We think that quaternions are the natural candidates to describe special relativity. It is simple
to understand why: quaternions are characterized by four real numbers~whereas complexified
quaternions by eight!, thus we can collect these four real quantities with a point (ct,x,y,z) in the
space–time. In quaternionic notation we have

X5ct1 ix1 jy1kz. ~11!

In the first section we have introduced particularreal linear quaternions, namely,

1, Q, 1uQ,

where

Q[~ i , j ,k!.

In order to write the most general real linear quaternions we must consider the following quanti-
ties:

Qu i , Qu j , Quk.

In fact, the most general transformation on quaternions is represented by

q1pu i1r u j1suk, ~12!

with

q,p,r ,sPHR.

New objects like

ku j , j uk, i uk, ku i , j u i , i u j

will be essential to reformulate special relativity with real quaternions. They represent the wedges
which permit us to overcome the difficulties which in the past did not allow a~real! quaternionic
version of special relativity.

Returning to Lorentz transformations, let us start with the following infinitesimal transforma-
tion ~boostct2x!:

X 85ct2xu1 i ~x2ctu!1 jy1kz5X1
ku j2 j uk

2
uX .

We can immediately note that the generator which substitutes

I
i11u i
2

is
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ku j2 j uk
2

.

So we have the possibility of listing the generators of the Lorentz group without the need to work
with complexified quaternions:

boost ~ct,x!
ku j2 j uk

2
,

boost ~ct,y!
i uk2ku i

2
,

boost ~ct,z!
j u i2 i u j

2
,

rotation aroundx
i21u i
2

,

rotation aroundy
j21u j
2

,

rotation aroundz
k21uk
2

.

In Appendix A we explicitly prove that the action of previous generators leaves

ReX 25~ct!22x22y22z2 ~13!

invariant.
In Appendix B we will give an alternate but equivalent presentation of special relativity by a

quaternionic algebra on reals. There we introduce a real linear quaterniong which substitutes the
metric tensorgmn.

V. A QUATERNIONIC VERSION OF THE COMPLEX GROUP SL(2)

In analogy to the connection between the rotation group O~3! to the special unitary group
SU~2!, there is a natural correspondence18 between the Lorentz group O~3,1! and the special linear
group SL~2!. In fact, SL~2! is the universal covering group of O~3,1! in the same way that SU~2!
is of O~3!.

The aim of this Section is to give, by extending the consideration with which we collect the
special unitary group SU~2! with unitary real quaternions~as shown in Sec. I!, a quaternionic
version of the special linear group SL~2!. Once more the aim will be achieved with help of real
linear quaternions.

A Lorentz spinor is a complex object which transforms under Lorentz transformations as

c85Ac,

whereA is a SL~2! matrix. When we restrict ourselves to the three-dimensional space and to
rotations, this definition gives the usual Pauli spinors

c85Uc,
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whereU is a SU~2! matrix.
Now we shall derive the generators of rotations and Lorentz boosts in the spinor representa-

tion by using real linear quaternions.
The action of generators of the special group SL~2!,

S i 0

0 2 i D , S 0 21

1 0 D , S 0 2 i

2 i 0 D , S 21 0

0 1D , S 0 2 i

i 0 D , S 0 1

1 0D ,
on the spinor

c5S j
h D

can be represented by the action of real linear quaternions

i , j , k, i u i , j u i , ku i

on the quaternion

q5j1 jh.

In Sec. I we have obtained a three-dimensional vector (x,y,z) by product of Pauli spinorsqP :

qP iqP
15 ix1 jy1kz ~qP8 5UqP , U1U51!.

Consequently, we have written its transformation law as follows:

~qP iqP
1!85UqP iqP

1
U1.

Now we start with a Lorentz spinorqL

qL8 5AqL ,

and construct a four-vector (ct,x,y,z) by-product of such spinors:

qL~11 i !qL
15ct1 ix1 jy1kz.

The transformation law is then given by

„qL~11 i !qL
1
…85~AqL!~11 i !~AqL!1.

If we consider infinitesimal transformations

A511
Q

2
•~u1zu i !,

with u[~a,b,g! andz[(ã,b̃,g̃),
we have

T 85T 1
a

2
@ i , T #1

b

2
@ j , T #1

g

2
@k, T #1

ã

2
$ i ,T̃ %1

b̃

2
$ j ,T̃ %1

g̃

2
$k,T̄ %,

where
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T 5qL~11 i !qL
1

and

T̃ 5qLi ~11 i !qL
15T 22qLqL

1 .

In order to simplify next considerations we pose

T 5 ix1 jy1kz1ct5T i1T j1T k1T 1 ,

T̃ 5 ix1 jy1kz2ct5T i1T j1T k2T 1 ,

so the standard Lorentz transformations are given by

T 1→T 11ã iT i1b̃ jT j1g̃kT k , T i→T i2ã iT 11b jT k2gkT j ,

T j→T j2b̃ jT 12a iT k1gkT i , T k→T k2g̃kT 11a iT j2b jT i .

In this way we obtain a quaternionic version of the special group SL~2! and demonstrate~in
contrast with the opinion of Penrose!6 that, if real linear quaternions appear, a ‘‘trick’’ similar to
that one of rotations works to relate the full four-vector (ct,x,y,z) with real quaternions.

VI. CONCLUSIONS

The study of special relativity with a quaternionic algebra on reals has yielded a result of
interest. While we cannot demonstrate in this paper that one number system~quaternions! is
preferable to another~complexified quaternions!, we have pointed out the advantages of using real
linear quaternions which naturally appear when we work with a noncommutative number system,
such as the quaternionic field. As seen in this paper these objects are very useful if we wish to
rewrite special relativity by a quaternionic algebra on reals. The complexified quaternionic refor-
mulation of special relativity is thus a choice and not a necessity. This affirmation is in contrast
with the standard folklore~see, for example, Ref. 12!.

Our principal aim in this work is to underline the potentialities of real linear quaternions. We
wish to remember that many difficulties have been overcome thanks to these objects~which in our
colorful language we have named generalized objects!.4

To remark on their potentialities let us list the situations which have requested their use.
~i! The need of such objects naturally appears, for example, in the construction of quaternion

group theory and tensor product group representations.5 Also starting with only standard quater-
nions i , j ,k in order to represent the generators of the group U~1,q!, we find generalized quater-
nions when we analyze quaternionic tensor products.

Spin
1

2
generators:

i

2
,

j

2
,

k

2
.

Spin 1%0 generators:S i11u i
2

0

0
i21u i
2

D , S j 1u i

1u i j D , S k 21

1 k D .
~ii ! If we desire to extend the isomorphism of SU~2,c! with U~1,q! to the group U~2,c!, we

must introduce the additional real linear quaternion ‘‘1ui .’’ In this way there exists at least one
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version of quaternionic quantum mechanics in which a ‘‘partial’’ set of translations may be
defined;4 in fact, thanks to real linear operators, a translation between 2n32n complex andn3n
quaternionic matrices is possible.

~iii ! In the work of Ref. 19 a quaternion version of the Dirac equation was derived in the form

gm]mc i5mc,

where thegm are two-by-two quaternionic matrices satisfying the Dirac condition

$gm ,gn%52gmn .

In Rotelli’s formalism the momentum operator must be defined as

pm5]mu i ,

which is also a generalized object.
~iv! In this paper, contrary to the common opinion, we have given a real quaternionic formu-

lation of special relativity. In order to obtain that, we have introduced the following real linear
quaternions:

Qu i , Qu j , Quk, Q[~ i , j ,k!.

A quaternionic version of the special group SL~2! has also been given.
We finally note that the process of generalization can be extended also to complexified

quaternions. In a recent paper20 we gave an elegant one-component formulation of the Dirac
equation and, thanks to our generalization, we overcame previous difficulties concerning the
doubling of solutions12–14 in the complexified quaternionic Dirac equation.

In seeking a better understanding of the success of mathematical abstraction in physics and in
particular of the wide applicability of quaternionic numbers in theories of physical phenomena, we
found that generalized quaternions shouldnot be undervalued. We think that there are good
reasons to hope that these generalized structures provide new possibilities concerning physical
applications of quaternions.

‘‘The most powerful method of advance that can be suggested at present is to employ all the
resources of pure mathematics in attempts to perfect and generalize the mathematical formalism
that forms the existing basis of theoretical physics, and after each success in this direction, to try
to interpret the new mathematical features in terms of physical entities...’’—Dirac.21

APPENDIX A: QUATERNIONIC LORENTZ INVARIANT

In this Appendix we prove that the Lorentz invariant8 is

ReX 825ReX 2, ~A1!

where

X5ct1 ix1 jy1kz.

Under an infinitesimal transformation, we have

X 85S 11u
ku j2 j uk

2
1a

i21u i
2

1••• DX ,

so, neglecting second-order terms,
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X 825X 21
u

2
$X ,kX j2 jX k%1

a

2
$X ,iX2X i %1••• .

Equation~14! is then satisfied since

$X ,iX2X i %5~ i21u i !X 2,

$X ,kX j2 jX k%5~1u j2 j !X kX1~k21uk!X jX

are purely imaginary quaternions.
Obviously we can derive the generators of the Lorentz group by starting from the infinitesimal

transformation

X 85X1AX

and imposing that they satisfy the relation

Re$X ,AX %50

~ReX 825ReX 2⇒Re$X ,AX %50!. ~A2!

With straightforward mathematical calculus we can find the generators requested. In order to
simplify the following considerations let us pose

X5a1 ib1 jc1kd, A5q01q1u i1q2u j1q3uk

whereqm5am1 ibm1 jgm1kdm ~m50,1,2,3! are real quaternions.
The only quantities which we must calculate are

Re$X ,X %, Re$X ,iX i %, Re$X ,iX %, Re$X ,kX j %;

in fact, the other quantities can be obtained from previous ones, by simple manipulations:

Re$X ,X %52~1a22b22c22d2!, Re$X ,iX i %52~2a21b22c22d2!,

Re$X , jX j %52~2a22b21c22d2!, Re$X ,kX k%52~2a22b22c21d2!,

Re$X ,iX %5Re$X ,X i %524ab, Re$X ,kX j %5Re$X , jX k%54cd,

Re$X , jX %5Re$X ,X j %524ac, Re$X , jX i %5Re$X ,iX j %54bc,

Re$X ,kX %5Re$X ,X k%524ad, Re$X ,iX k%5Re$X ,kX i %54bd.

The previous relations imply the following conditions on the real parameters of the generatorA:

a050, b150,

g250, d350,

b052a15a, g052a25b,

d052a35g, d252g35u,

g152b25w, b352d15h.
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We can immediately recognize the Lorentz generators given in Sec. IV.

APPENDIX B: QUATERNIONIC METRIC TENSOR

We introduce the usual four-vectorxm by the following quaternion,

X5x01 ix11 jx21kx3,

and define a scalar product of two vectorsX , Y by

~X ,gY !R5Re~X 1gY !5xmgmny
n, ~B1!

whereg is the generalized quaternion

2 1
2~11 i u i1 j u j1kuk!.

We can define a real norm~or metric!

~X ,gX !R5Re~X 1gX !5xmgmnx
n.

The vectors which transform under a Lorentz transformationL will be denoted by

X 85LX ,

with L real linear operators@see Eq.~12!#. From the postulated invariance of the norm we can
deduce the generators of Lorentz group.

If we consider infinitesimal transformations

L511A,

we have

Re~X 81gX 8!5Re„X 1gX1X 1~A1g1gA!X …5Re~X 1gX !,

and therefore

A1g1gA50. ~B2!

Using real scalar products, given an operator

A5q1pu i1r u j1suk, q,p,r ,sPHR,

we can write its Hermitian conjugate as follows:

A15q12p1u i2r1u j2s1uk.

Then Eq.~17! can be rewritten as

gA1h.c.50.

If we pose

gA5B5q̃1 p̃u i1 r̃ u j1 s̃ uk,

we obtain the following conditions on the operatorB:

Re q̃5Vec p̃5Vec r̃5Vec s̃50.
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Noting thatA5gB we can quickly write the generators of Lorentz group. We give explicitly an
example

A15g~1u i !52 1
2~2 i11u i1 j uk2ku j !,

A25gi52 1
2~ i21u i1 j uk2ku j !,

A5A12A25
i21u i
2

, Ã5A11A25
ku j2 j uk

2
.
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The solutions of a system of homogeneous first-order quasilinear evolution equa-
tions for which the propagation velocity depends only on the field value are char-
acterized by their invariance under a particular type of flow. All simple wave
solutions are shown to have this property. The local images of simple wave solu-
tions are the integral curves of a system of ordinary differential equations on the
field space. The model for barotropic compressible flow is an example of a system
that has invariant solutions of higher rank. A solution of this system is invariant
under the flow of the convective derivative if and only if it is divergence-free. The
evolution of initial data is shown to be divergence-free if and only if its differential
is nilpotent. © 1996 American Institute of Physics.@S0022-2488~96!02006-3#

I. INTRODUCTION

In this paper we study systems of differential equations of the form

]ua

]t
1(

i51

n

(
b51

q

Ab
ia~u!

]ub

]xi
50, a51,...,q. ~1.1!

in p5n11 independent variablest, x1,...,xn andq dependent variablesu1,...,uq. We write~1.1!
as a vector equation,

]u

]t
1A1~u!

]u

]x1
1•••1An~u!

]u

]xn
50,

or simply

S ]

]t
1A~u!•

]

]xDu50, ~1.2!

whereA1,...,An areq3q matrix functions. The equation~1.2! is a system of coupled homoge-
neous first-order quasilinear evolution equations, typical of those encountered in fluid
dynamics.1–3 A function u(t,x) is a q-component field defined on ann-dimensional spatial do-
main parametrized by coordinatesx1,...,xn, evolving according to a time parametert. The iden-
tification of a functionu(t,x) with its graph$„t,x,u(t,x)…% is a local correspondence between
functions andp-dimensional submanifolds ofRp3Rq transverse to the projection ontoRp. The
equation~1.2! is a geometric condition on the tangent spaces of the submanifold. Its form is
invariant under arbitrary change of field variables and affine change of space variables.

In this work all manifolds, functions, and transformations areC` and all considerations are
local. The equation~1.2! is autonomous and translation invariant, so we restrict our attention to
solutionsu(t,x) defined on a neighborhood of the pointt50, x50. The relevant initial value
problem consists of solving~1.2! subject to initial data defined on an open subset of the hyper-
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planet50. For sufficiently small initial data there exists a time interval@0,T# in which a gradient
catastrophe for the solution of~1.2! does not occur and the solution does not blow up.4–6 This fact
makes it possible to use the method of characteristics to solve the problems of propagation and
nonlinear superposition of waves over the time interval@0,T#. Using this method, existence,
uniqueness, and the continuous dependence of solutions on initial data have been proved by many
authors.7–9 However, the results thus far obtained are mainly limited to hyperbolic systems with
two independent variables. In this case the solution was constructed in the entire domain, where its
existence was expected.

Exhibiting generic solutions of~1.2! is practically impossible, except for the characteristic
equations discussed in Sec. II. A characteristic equation is simply an invariance condition, and its
general solution is easily described in the implicit form. This suggests that we look for invariant
solutions of the general equation~1.2!. We discuss this approach in Sec. III. In Sec. IV all rank 1
solutions of the general equation are shown to be invariant. The equations that model barotropic
compressible flow are discussed in Sec. V, as an example of a system with higher rank invariant
solutions.

II. CHARACTERISTIC EQUATIONS

The simplest equations~1.2! are those with scalar matrices. This is always the case ifq51. If
A15a1I ,...,An5anI , whereI is theq3q identity matrix, then~1.2! is thecharacteristicequation,

S ]

]t
1a~u!•

]

]xDu50, ~2.1!

of the vector field

V5
]

]t
1a~u!•

]

]x
, ~2.2!

on the space$(t,x,u)% of independent and dependent variables. A functionu(t,x) is a solution of
~2.1! if and only if V is tangent to its graph$„t,x,u(t,x)…%, i.e., if and only if its graph is locally
invariant under the flow ofV. The independent invariants,

x12a1~u!t,...,xn2an~u!t,u1,...,uq,

of V provide a complete local description of the invariant submanifolds. We find that the local
solutions of~2.1! neart50 are defined implicitly by the equations

u5 f „x2a~u!t…, ~2.3!

where f :Rn→Rq is an arbitrary locally defined function. The general solution~2.3! of the charac-
teristic equation~2.1! is well known.10 Note that for each functionf there is a unique solution
u5u(t,x) of ~2.3! defined neart50 with u(0,x)5 f (x) on the domain off . Thus the initial value
problem for~2.1! has a unique solution. Geometrically, the solution manifold is foliated by the
trajectories ofV, i.e., by the characteristic linest°„t,x1a(u)t,u…. In physical terms, the initial
signal f (x) propagates through space at constant velocitydx/dt5a„f (x)…. Note thatV is a trivial
symmetry of its characteristic equation in that the flow ofV carries any solution manifold of~2.1!
into itself, by construction.

III. THE GENERAL PROBLEM

The equation~1.2! is less tractable when the matricesA1,...,An are not scalar. We look for
solutions that are invariant under a vector field~2.2!, i.e., for solutions given implicitly by an
equation~2.3!. Geometrically, we want solution manifolds of~1.2! that are foliated by the char-
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acteristic lines of a vector field with the special form~2.2!. In physical terms, we want solutions
of ~1.2! for which the signal propagation velocity depends only on the field value. Analytically, we
want solutions of the overdetermined system,

S ]

]t
1A~u!•

]

]xDu50, S ]

]t
1a~u!•

]

]xDu50, ~3.1!

for some functionsa1,...,an.
For arbitrary functionsa there is no reason to expect that the system~3.1! has any nonconstant

solutions, i.e., for an arbitrary vector field~2.2! there is no reason to expect that the original
equation~1.2! has nonconstantV-invariant solutions. The problem is to find vector fields~2.2! that
are compatible with the equation~1.2! in the sense that nonconstantV-invariant solutions exist.
The invariance condition~2.1! imposes constraints on initial data so that its unique evolution along
the flow ofV will be a solution of~1.2!. For example, if the componentsa of V are constant then
V is a symmetry of~1.2!, and the constraint on initial data is simply a classical symmetry
reduction of~1.2!. The resulting invariant solutions are unidirectional waves propagating at con-
stant velocitya, independent of the field value. In general, there is no certainty that nonconstant
solutions of this type exist. We are not even assured the existence of nonconstant stationary
solutions of~1.2! ~the casea50!, e.g., consider the casen51 whereA is nonsingular. IfV is not
a symmetry of~1.2! then the constraint on initial data obtained by adjoining all compatibility
conditions of the overdetermined system~3.1! is called a weak symmetry reduction,11–13because
V is a ~trivial! symmetry of the entire system of evolution equations and compatibility conditions.
We do not yet have a satisfactory understanding of the compatibility conditions in the general
case.

The rank of a functionu(t,x) at a point of its domain is the rank of its differential there, as
a linear map fromRp to Rq. For example, the rank of the solution~2.3! of the characteristic
equation~2.1! is equal to the rank of the initial dataf , hence is at most equal to min(n,q) at each
point of its domain. Note that invariance ensures that its rank is less thanp. The rank of a function
is generically constant, so we restrict ourselves to functions with constant rank. The local image of
a function with constant rankm is anm-dimensional manifold: the local image of a rank 0
function is a point, the local image of a rank 1 function is a curve, the local image of a rank 2
function is a surface, etc. The rank 0 functions are trivial solutions of~1.2!, invariant under any
vector field~2.2!. We show in Theorem 1 that any rank 1 solution of~1.2! is invariant under some
vector field~2.2!. At the other extreme, there are no invariant solutions with rankp. Of course, all
solutions of a characteristic equation are invariant. The system of Sec. V is not characteristic, but
nevertheless has invariant solutions of each possible rank.

IV. SIMPLE WAVES

Much of the study of the equation~1.2! has focused on rank 1 solutions, also calledsimple
wavesolutions.2,14,15The structure of higher rank solutions is considerably more subtle.

Theorem 1: Any rank 1 solution of the equation

S ]

]t
1A~u!•

]

]xDu50, ~4.1!

is locally invariant under a vector field of the form

]

]t
1a~u!•

]

]x
. ~4.2!
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Proof: If u(t,x) is a rank 1 solution, then there are locally defined regular functionsr :Rp→R
andg:R→Rq, such thatu(t,x) is locally equal tog„r (t,x)…, and

S S ]r

]t
I1

]r

]x
•A„g~r !…Dg8~r ! D ~ t,x!50. ~4.3!

There is a smoothp3q matrix functionB(u) on a neighborhood of the local image ofg such that
the rows ofB„g(r )… are transpositions of theq-component column vectors,

g8~r !, A1
„g~r !…g8~r !,...,An

„g~r !…g8~r !.

The condition~4.3! is then

~Dr B„g~r !…!~ t,x!50.

We use the coefficients ofB to define vector fields

Va5ba
0~u!

]

]t
1ba

i ~u!
]

]xi
, a51,...,q.

On the solution manifoldS 5$„t,x,u(t,x)…%, we have

Vau~ t,x!5S ba
0
„g~r !…

]u

]t
1ba

i
„g~r !…

]u

]xi D ~ t,x!

5S S ba
0
„g~r !…

]r

]t
1ba

i
„g~r !…

]r

]xi Dg8~r ! D ~ t,x!

5„~Dr B„g~r !…!ag8~r !…~ t,x!50.

This implies thatS is invariant under the vector fieldsV. Note thatba
0Þ0 for somea because

g1(r )Þ0. S is also invariant under the vector field

]

]t
1S ba

i

ba
0 D ~u!

]

]xi
. h

An arbitrary rank 1 function need not be invariant under any vector field of the form~4.2!, hence
need not be a solution of any equation of the form~4.1!. Note also that a rank 1 solution of~4.1!
may be invariant under more than one vector field~4.2!. For a given equation~4.1! and vector field
V of the form ~4.2!, define

D~V!u5 ø
0ÞlPRn

ker„l•A~u!2l•a~u!I …,

for eachu in the domain ofA. For example, if~4.1! is a characteristic equation andn>2 then
D(V)u5Rq for anyV. In general,D(V)u is a union of lines inTuR

q, well defined with respect to
arbitrary change of field variables and affine change of space variables. We interpretD(V) as a
system of ordinary differential equations on the domain ofA. The integral curvesof D(V) are the
one-dimensional submanifolds of this domain, which are tangent at each point toD(V). Thus a
locally defined regular functiong:R→Rq is a parametrization of an integral curve if and only if the
linear system,

~l•A„g~r !…2l•a„g~r !…I !g8~r !50, ~4.4!
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has a nonzero solutionl for each value ofr . An integral curve isgenericif the rank of the system
~4.4! is constant asr varies, in which case there are smooth vector functionsl1(r ),...,l l(r ) that
form a basis of solutions. This definition does not depend on the particular parametrizationg(r ).

Theorem 2: If a rank 1 solution of the equation

S ]

]t
1A~u!•

]

]xDu50,

is invariant under the vector field

V5
]

]t
1a~u!•

]

]x
;

then its local image is an integral curve ofD(V). Conversely, a generic integral curve ofD(V) is
locally the image of a rank 1V-invariant solution.

Proof: If u(t,x) is a rank 1 solution then there are locally defined regular functionsr :Rp→R
andg:R→Rq such thatu(t,x) is locally equal tog„r (t,x)…, and

S S ]r

]t
I1

]r

]x
•A„g~r !…Dg8~r ! D ~ t,x!50. ~4.5!

If u(t,x) is V-invariant then

S ]r

]t
1a„g~r !…•

]r

]xD ~ t,x!50. ~4.6!

Fix a point (t,x) in the domain ofr , and definel5]r /]x(t,x). Then

]r

]t
~ t,x!52l•a~g„r ~ t,x!…!,

by ~4.6!, so we have

„~l•A„g~r !…2l•a„g~r !…I !g8~r !…~ t,x!50,

by ~4.5!. Note that~4.5! implieslÞ0 becauser andg are regular, hence

g8„r ~ t,x!…PD~V!g„r ~ t,x!… .

This proves that the local image ofu(t,x) is an integral curve ofD(V). The converse follows from
Theorem 3. h

Theorem 3: Fix an equation,

S ]

]t
1A~u!•

]

]xDu50; ~4.7!

a vector field,

V5
]

]t
1a~u!•

]

]x
;
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and a generic integral curve ofD(V) parametrized by a functiong(r ). The rank 1V-invariant
solutions of~4.7! defined att50, x50 that map into this curve are locally the functionsu(t,x)
5g„r (t,x)…, wherer (t,x) is implicitly defined by an equation

r5f„l1~r !•~x2a„g~r !…t !,...,l l~r !•~x2a„g~r !…t !…,

wheref is an arbitrary regular function ofl variables defined on a neighborhood of 0PRl such
thatf~0! is in the domain ofg, and wherel1(r ),...,l l(r ) form a smooth basis of solutions of the
linear system,

~l•A„g~r !…2l•a„g~r !…I !g8~r !50.

Proof: Any rank 1 solution that maps into the curve is given locally byg„r (t,x)…, where

S S ]r

]t
I1

]r

]x
•A„g~r !…Dg8~r ! D ~ t,x!50.

We assume thatr is defined att50, x50. The solution isV-invariant if and only if

]r

]t
~ t,x!52S a„g~r !…•

]r

]xD ~ t,x!. ~4.8!

Combining these conditions, we find that

S S ]r

]x
•A„g~r !…2

]r

]x
•a„g~r !…I Dg8~r ! D ~ t,x!50.

Therefore]r /]x is a linear combination ofl1(r ),...,l l(r ) at each point (t,x). In conjunction with
~4.8!, this implies thatdr(t,x) is a linear combination of the covectors,

l j
„r ~ t,x!…•„dx2a~g„r ~ t,x!…!dt…, j51,...,l .

Hence at each point on the submanifoldS 5$r5r (t,x)% of the space$(t,x,r )% the differential
d„r2r (t,x)… is a linear combination ofdr anddr1,...,drl , where

r j~ t,x,r !5l j~r !•~x2a„g~r !…t !, j51,...,l .

Therefore the differentialsdr,dr1,...,drl are dependent onS , i.e., the functionsr ,r 1,...,r l are
dependent onS , becaused„r2r (t,x)…50 onS . But the functionsr 1,...,r l are independent onS ,
becausel1,...,ll are independent. Hence we have

r5f~r 1,...,r l ! ~4.9!

on a neighborhood of the pointr5r ~0,0! on S , for some functionf. The implicit function
theorem provides a unique solutionr5r (t,x) of ~4.9! on a neighborhood oft50, x50 for any
functionf defined on a neighborhood of 0PRl , andr is regular att50, x50 if and only if f is
regular at 0PRl . If f~0! is in the domain ofg, thenu(t,x)5g„r (t,x)… is a rank 1 function defined
at t50, x50 that maps into the given integral curve. Reversing the preceeding arguments proves
thatu(t,x) is aV-invariant solution. h

The case of one space variable is well known.1,2,4,15The equation~4.1! is then simply

]u

]t
1A~u!

]u

]x
50, ~4.10!
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whereA is a singleq3q matrix. Fix a vector field,

V5
]

]t
1a~u!

]

]x
.

The subspace

D~V!u5ker„A~u!2a~u!I …

is nonzero if and only ifa(u) is a characteristic value ofA(u). The integral curves ofD(V) are the
characteristic curves of the matrix functionA(u) with characteristic valuea(u). The regular
V-invariant solutions map into these curves, by Theorem 2. Any integral curve is generic, hence,
is locally the image of a rank 1 solution, again by Theorem 2. Ifg(r ) is a parametrization of an
integral curve then the rank 1 solutions defined att50, x50 that map into this curve are locally
the functionsu(t,x)5g„r (t,x)…, wherer (t,x) is implicitly defined by an equation,

r5f~x2a„g~r !…t !,

wheref is an arbitrary regular function of a single variable such thatf~0! is in the domain ofg,
by Theorem 3. Theorem 1 tells us that this accounts for all rank 1 solutions. The existence of rank
1 solutions of the equation~4.10! is thus related to the existence of characteristic curves of the
matrix A. In the casesn>2 the equation~4.4! is the relevant generalization of the characteristic
equation of a single matrix, and the integral curves ofD(V) for the various vector fieldsV are
generalizations of the characteristic curves of a single matrix function.

V. BAROTROPIC FLOW

We now discuss a system that is not characteristic yet has invariant solutions of each possible
rank. The equations

S ]

]t
1u•

]

]xDu50,
]r

]t
1

]

]x
•~ru!50, r.0, ~5.1!

describen-dimensional ideal compressible fluid flow at constant pressure with no external forces.3

We assume that dissipative effects such as viscosity and thermal conductivity are negligible. There
are n11 independent variablest,x1,...,xn and n11 dependent variablesu1,...,un,r. The field
variablesu andr denote the velocity and density of the fluid, and the equations~5.1! represent
conservation of momentum and of mass. Writing~5.1! in the form ~1.2!, we find that

A15S u1 u1

A �

r 0 ••• 0 u1
D ,...,An5S un un

A �

0 ••• 0 r un
D .

We will solve the initial value problem for~5.1!, and then characterize the solutions invariant
under the convective derivative,

V5
]

]t
1u•

]

]x
. ~5.2!

The overdetermined system~3.1! is equivalent to the equations
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S ]

]t
1u•

]

]xDu50,
]r

]t
1

]

]x
•~ru!50,

]

]x
•u50, r.0,

so a solution of~5.1! is invariant under the vector field~5.2! if and only if its velocity field is
divergence-free. It can be shown that~5.2! is not a symmetry of~5.1!.

The change of coordinates,

t̄5t, x̄5x2ut, ū5u, r̄5r

transforms~5.1! to the system

]ū

] t̄
50,

]r̄

] t̄
1 r̄ trS S I1 t̄

]ū

] x̄
D 21

]ū

] x̄
D 50, r̄.0. ~5.3!

The general solution of the condition]ū/] t̄50 is ū( t̄,x̄)5 f ( x̄), where f :Rn→Rn is an arbitrary
locally defined function. Then

trS S I1 t̄
]ū

] x̄
~ t̄,x̄!D 21

]ū

] x̄
~ t̄,x̄!D 5

]

] t̄
ln~det„I1 t̄D f ~ x̄!…!,

so the condition onr̄( t̄,x̄) is

]

] t̄
ln~ r̄~ t̄,x̄!det„I1 t̄D f ~ x̄!…!50,

which holds if and only if

r̄~ t̄,x̄!5g~ x̄!/det„I1 t̄D f ~ x̄!…,

for some positive locally defined functiong:Rn→R. Thus, the unique solutionu(t,x),r(t,x) of
~5.1! with initial conditions,

u~0,x!5 f ~x!, r~0,x!5g~x!,

is defined implicitly by the equations

u5 f ~x2ut!, r~ t,x!5g„x2u~ t,x!t…/det~ I1tD f „x2u~ t,x!t…!.

The initial dataf andg.0 are arbitrary functions defined on the same open subset ofRn. This
solution is known for the casesn51,2.16,17

Note thatV5]/] t̄, so the invariance conditions are]ū/] t̄50, ]r̄/] t̄50, with the general
solution

ū~ t̄,x̄!5 f ~ x̄!, r̄~ t̄,x̄!5g~ x̄!. ~5.4!

Augmenting~5.3! with the invariance conditions gives us the system

]ū

] t̄
50,

]r̄

] t̄
50, trS S I1 t̄

]ū

] x̄
D 21

]ū

] x̄
D 50, r̄.0,

with solution ~5.4!, whereg.0 is arbitrary and
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]

] t̄
det„I1 t̄D f ~ x̄!…50,

or

det„I1 t̄D f ~ x̄!…51.

This holds if and only if the characteristic polynomial ofDf is

det~eI1Df !5en.

Hence theV-invariant solutions of~5.1! are defined implicitly by the equations

u5 f ~x2ut!, r~ t,x!5g„x2u~ t,x!t…,

where the initial dataf andg.0 are defined on the same open subset ofRn andDf is nilpotent.
The requirement thatDf be nilpotent is a constraint on the initial data, which ensures that its
evolution along the flow ofV is a solution of~5.1!. In the casen51 the invariant solutions are
density waves,

u~ t,x!5c, r~ t,x!5g~x2ct!,

propagating at constant velocity. In the casen52 the local invariant solutions are defined implic-
itly by the equations

u5
]f

]s
~x2ut,y2vt !, v52

]f

]r
~x2ut,y2vt !,

r~ t,x!5g„x2u~ t,x,y!t,y2v~ t,x,y!t…,

wheref andg.0 are defined on the same open subset ofR2 andf(r ,s) satisfies the Monge–
Ampere equation,

S ]2f

]r ]sD
2

5
]2f

]r 2
]2f

]s2
.

For arbitraryn we obtain explicit invariant solutions,

u~ t,x!5~ I1tC!21Cx, r~ t,x!5g„~ I1tC!21x…,

whereg is arbitrary andC is a constantn3n matrix with Cn50. These solutions can have any
rank from 0 ton.
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Two relativistic boson models in the Schro ¨dinger picture
in three space–time dimensions
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Switzerland
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A family of unitary representations of the Poincare´ group is constructed, which
describes two relativistic quantum bosons with weak interaction in three space–
time dimensions. The mathematical formalism is the Schro¨dinger picture of quan-
tum mechanics in the momentum space. The eigenvalue equation for the bound
states is given and compared with the Schro¨dinger equation. ©1996 American
Institute of Physics.@S0022-2488~96!02706-5#

I. INTRODUCTION

Since the discovery of the Schro¨dinger equation in 1926, its relativistic generalization remains
an open problem~see Ref. 1 for an overview of this question!. In the present paper we propose a
family of models for two relativistic quantum bosons with interaction in three space–time dimen-
sions, in which the bound state equation~playing the role of a relativistic Schro¨dinger equation!
agrees with what could be called an elementary~or naı̈ve! relativistic generalization of the two-
particle Schro¨dinger equation~with the kinetic term replaced by its relativistic counterpart and
with a nonlocal interaction term!. These models have been suggested by a new approach to the
bound state problem in bosonic quantum field theory~QFT! in two space–time dimensions. The
mathematical formalism is the Schro¨dinger picture of quantum mechanics~QM! in the momentum
space, as in the standard representation of the two free boson models. More precisely, we start
from such a free model and introduce an interaction by modifying the Hamiltonian and the
Lorentz generators in such a way that the commutation rules of the Poincare´ algebra remain
satisfied. The interaction terms are constructed in terms of an ‘‘interaction kernel,’’ which can be
chosen, in a center-of-mass frame, within a large class of functions. At the present state of this
theory, however, the standard potential interaction used in QM cannot be obtained from this class.

Let us explain how this model has been found. In 1973 a rigorous mathematical construction
for bosonic QFT models with weak coupling in two space–time dimensions has been obtained by
Glimm, Jaffe, and Spencer2 @the so-called weakly coupledP ~w!2 models#. Existence of bound
states in some of these models have been established and the conditions for such states to occur
completely specified~see Ref. 3 for a complete review of the question!. Because of the math-
ematical construction of these models, other questions about the bound states than just their
existence can be asked for. In particular, their eigenspaces can be investigated. A variational
perturbation method has been established to construct an eigenvector by varying suitable combi-
nations of zero-time vectors.4 This construction has revealed the existence~at first perturbation
orders! of stable subspaces under the Poincare´ transformations, describing two particles with
interaction, in the Schro¨dinger picture~because of the restriction to zero-time vectors! ~Sec. III of
Ref. 5!. Such representations of the Poincare´ group can be studied for themselves, without refer-
ence to QFT. We have obtained in Ref. 6 the complete set of such representations, in the weak-
coupling regime, by a nonperturbative construction. They are given from an ‘‘interaction kernel,’’
which, in a center-of-mass frame, can be chosen arbitrarily. Such very simple models can be used
to study in detail the phenomenology of quantum and relativistic particles at low energy, and in
particular the bound state problem~high energy is without interest because particle creation does
not occur!. Moreover, the generalization to an arbitrary number of particles has been obtained7 ~so
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the phenomena of particle creation could be introduced by taking suitable combinations of models
with different particle numbers!.

In the present article we are concerned with the generalization, for the two-particle case, to
three space–time dimensions. The difficulty comes from the higher dimension of the Poincare´
group~passing from 3 to 6! and from the number of commutation relations~passing from 3 to 15!,
which must hold simultaneously.

We consider first a two free boson representation of the Poincare´ group in three space–time
dimensions, acting on functionsf ~p1,p2! of two momenta~p1,p2!PR23R2. The infinitesimal
generators are well known and given by unbounded self-adjoint operators satisfying the commu-
tation rules of the Lie algebra of the Poincare´ group. In this representation, the time variable does
not appear explicitly, and this feature is what we call the ‘‘Schro¨dinger picture.’’ So we have the
QM picture of a fixed state space, the time being a parameter introduced by the Hamiltonian
evolution. Interaction is introduced by modifying the Hamiltonian and the Lorentz generators, in
terms of an ‘‘interaction kernel’’h~P,Q,Q8! wherePPR2 is the total momentum andQ,Q8PR2

are relative momenta. The Hilbert space of the representation is not changed. The commutation
rules lead to several conditions onh, which reduce to a single equation, providedh~P,Q,Q8! is a
function of the normsiPi,iQi,iQ8i only ~this last requirement, which excludes the standard po-
tential interactions of QM, cannot be removed at the present state of this theory!. By the Banach
fixed point theorem this equation can be completely solved in the weak-coupling regime. The
solutions are parametrized by arbitrary functions of the relative momentac~iQi,iQ8i!, which are
nothing else than the interaction kernel in a center-of-mass frame:c~iQi,iQ8i!5h~0,Q,Q8!.

To investigate the physical content of these models, the asymptotic states have to be con-
structed, which assures that they really describe two-particle systems. Moreover, the equation for
the bound states can be written down~consisting of the eigenvalue equation for the mass operator!.
This equation plays the role of arelativistic Schro¨dinger equation. It can be used to show the
existence of bound states~for suitable functionsc!, which ensures that this theory is not trivial.

The connection between these models and QFT is not as simple as in two space–time dimen-
sions, because of their particular interaction term and because in three space–time dimensions
there are few available bosonic models in which bound states are known to exist. Such a connec-
tion could perhaps be obtained at a formal level, for theories admitting point interaction at first
perturbation order.

Let us recall that the idea of modifying the free Poincare´ representation in order to introduce
interaction has been proposed in the 1940s by Dirac,8 but for classical systems. By modifying only
the Hamiltonian and the Lorentz generators he gets what he called an ‘‘instant form dynamics.’’
Dirac’s conclusion was that it provides too complicated equations. In fact, what we have obtained
is a set of solutions to these equations, in the quantum case and in three space–time dimensions,
leading to explicit examples of such dynamics.

In Sec. II we recall the operators of the representation of the Poincare´ group for two free
bosons in the Schro¨dinger picture. The interaction is introduced by modifying some of these
operators, by adding to them new terms obtained from an ‘‘interaction operator’’O . The com-
mutation rules impose three conditions onO , which, under a particular condition, reduce to a
unique ‘‘fundamental equation’’ for the kernel ofO . In Sec. III we give the complete set of
solutions of this equation, in the weak-coupling regime, by applying the Banach fixed point
theorem. In Sec. IV we show that the operators we have obtained are really the infinitesimal
generators of unitary, continuous representations of the Poincare´ group, by applying a theorem by
Fröhlich. In Sec. V the bound state equation is written down and compared with the two-body
Schrödinger equation. The existence of a bound state is shown in an example. Finally, in Sec. VI
we conclude by summing up what we have found: a family of two-particle models~by giving the
construction of asymptotic states! with interaction having a~somewhat weak! link with ~formal!
QFT.
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II. TWO-PARTICLE REPRESENTATIONS OF THE POINCARÉ ALGEBRA

The Lie algebraG of the Poincare´ groupP1
↑ in three space–time dimensions is generated by

the six operatorsH ~Hamiltonian!, P5(P1 ,P2) ~momentum!, J ~angular momentum!, and
L5(L1 ,L2) ~generators of the Lorentz transformations!, satisfying the commutation rules

@P1 ,P2#50, @P1 ,J#52 iP2 , @P2 ,J#5 iP1 , ~1!

@Pj ,H#50, @H,J#50, ~2!

@Pj ,Lk#5 i d j ,kH, @L1 ,J#52 iL 2 , @L2 ,J#5 iL 1 , ~3!

@H,L j #5 iP j , @L1 ,L2#52 iJ, ~4!

for all 1<j , k<2, wheredi , j is the Kronecker tensor. This operator algebra admits two Casimir
operators~i.e., operators that commute with all generators!, the square mass operatorM2, and the
Pauli–Lubanski operatorE, given by

M2:5H22P2, E:52HJ1P1L22P2L1 . ~5!

The representation that describes one spinless particle of massm.0, in the Schro¨dinger
picture, is given by the following choice of operators:

Pjf~p!5pjf~p!, Hf~p!5v~p!f~p!,
~6!

Jf~p!52 i ~p1]22p2]1!f~p!, L jf~p!52 iv~p!] jf~p!,

for all jP$1,2%, p5(p1 ,p2)PR2 and suitable functionsf:R2→C, where we have putv(p):
5 Ap21m2. These operators define a representation of the algebraG , which can be integrated to
give an irreducible, unitary, and continuous representation ofP1

↑ in L2~R2,s! ~complex-valued
functions!, wheres is the measureds~p!:5dp@2v~p!#21 ~see Appendix A!. In this representation
the Casimir operators~5! are simplyM25m2Id andE50.

The representation that describes two identical bosons of massm.0 without interaction, in
the Schro¨dinger picture, is given by the symmetrical tensor product of two copies of the one-
particle representation. By the properties of the tensor product we get a unitary continuous repre-
sentation ofP1

↑ given by the generators

Pjf~p1 ,p2!5„~p1! j1~p2! j…f~p1 ,p2!,

H0f~p1 ,p2!5„v~p1!1v~p2!…f~p1 ,p2!,
~7!

Jf~p1 ,p2!52 i F (
j51

2

„~pj !1]~pj !2
2~pj !2]~pj !1

…Gf~p1 ,p2!,

L0,jf~p1 ,p2!52 i „v~p1!]~p1! j
1v~p2!]~p2! j

)f~p1 ,p2!,

for all jP$1,2%, ~p1,p2!PR4 and suitable functionsf:R4→C. The space of the representation is

H:5LSym
2 ~R23R2,s2! ~8!

@made of symmetrical functionsf~p1,p2!5f~p2,p1!#, wheres2:5s^s. It describes two particles
without interaction~therefore we have put an index 0 toH0 andL0,j !.

The Casimir operators are more complicated, given now by
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M0
2f~p1 ,p2!5@„v~p1!1v~p2!…

22~p11p2!
2#f~p1 ,p2!, ~9!

E0f~p1 ,p2!52 i @v~p1!p22v~p2!p1#`“p12p2
f~p1 ,p2!, ~10!

with the notation (a1 ,a2)`(b1 ,b2):5a1b22a2b1 for all a,bPR2 and “p12p2
: 5 (] (p1)1

2] (p2)1,] (p1)22] (p2)2).
Now we want to modify these operators in order to introduce interaction. To remain in the

Schrödinger picture we keepP and J unchanged and modify onlyH0 and L0. Let O be a
self-adjoint operator~the interaction operator! on which we only impose, for the moment, the
formal commutation relations

@O ,P#50, @O ,J#50. ~11!

We define the interaction representation as follows:

P,J, as in ~7!, H:5H01$O ,H0%, L j :5L0,j1$O ,L0,j%, ~12!

for jP$1,2%, where we have used the notation$A,B%5AB1BA. The Hilbert space of the repre-
sentation is still given by~8!. The particular form of the ‘‘interaction terms’’ of~12! together with
the commutation rules~11! have the following nice consequence.

Lemma 1: The operators (12) satisfy formally the commutation rules (1), (2), and (3) of the
algebraG .

The proof is purely algebraic:~1! has not been changed;~2! is an immediate consequence of
~11!; ~3! follows from a simple algebraic calculation~for more details, see Ref. 6 or 7!. Note that
~3! could be used to establish~12! once we impose the change ofL1,0 only. Until now, no
condition onO except~11! was needed. But the last commutation rules~4! impose the following
complicated equations:

05@$O ,H0%,L0,j #1@H0 ,$O ,L0,j%#1@$O ,H0%,$O ,L0,j%#, ~13!

05@$O ,L0,1%,L0,2#1@L0,1,$O ,L0,2%#1@$O ,L0,1%,$O ,L0,2%#, ~14!

for all jP$1,2%. This gives three equations forO of the same form~made of a linear term plus a
bilinear term!, which must hold simultaneously. We have now to find nontrivial solutionsOÞ0 to
this system.

In order to have a better physical understanding we make the change of variables
~p1,p2!→~P,Q!, given by

P :5p11p2 ,
~15!

Q :5
1

2
~p12p2!2

1

2
P

v~p1!2v~p2!

M0~p1 ,p2!1v~p1!1v~p2!
,

whereM0~p,p2!:5@„v~p1!1v~p2!…
22P2#1/2. The variableP is the total momentum whileQ is the

relative momentum, defined as the momentum in a center-of-mass frame@more precisely,Q is the
transform of 12~p12p2! under a Lorentz transformation leading to a center-of-mass frame; see
Appendix B#.

Under this change of variables the free representation~7! becomes

Pjf~P,Q!5Pjf~P,Q!,

H0f~P,Q!5V~P,Q!f~P,Q!,
~16!
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Jf~P,Q!52 i ~P1]P22P2]P11JQ!f~P,Q!,

L0,jf~P,Q!52 i „V~P,Q!]Pj1L0,j
Q
…f~P,Q!,

for all jP$1,2%, where we have put

JQf~P,Q!:52 i ~Q1]Q2
2Q2]Q1

!f~P,Q!,

L0,1
Q f~P,Q!:5

P2

V~P,Q!12v~Q!
JQf~P,Q!, ~17!

L0,2
Q f~P,Q!:52

P1

V~P,Q!12v~Q!
JQf~P,Q!,

for all suitable functionsf, whereV(P,Q) 5 AP214v(Q)2 ~see the calculation in Appendix B!.
As for ~7!, these operators define a representation of the algebraG that can be integrated to give
a unitary and continuous representation of the Poincare´ groupP1

↑ , in the same function space~8!,
which can be writtenH 5 LEv–Q

2 (R2 3 R2,m), made of functions even inQ @that isf~P,Q!5f~P,
2Q!#, wheredm~P,Q!:5ds~Q!dPV~P,Q!21 ~see Appendix B!. In these variables the Casimir
operators~9!, ~10! concern only theQ variable,

M0
2f~P,Q!54v~Q!2f~P,Q!, ~18!

E0f~P,Q!52v~Q!JQf~P,Q!. ~19!

We call ~17! the relative termsbecause without them@i.e., if we replace formallyJQ by 0 in
~16!# we also get a representation ofG , which is nonequivalent to~7! ~because withE50!. Note
that this particular representation is defined by the same formula as the one-particle representation
~6!, with p replaced byP andm replaced by 2v~Q!. In the two space–time dimension case, the
two free boson representation has such a property~Refs. 6 and 7!. For this reason the relative
terms~17! appear as the main difference between the two- and three-dimensional cases.

To find solutions to~13!–~14! we writeO in the following general form:

Of~P,Q!:5E ds~Q8!

V~P,Q8!
f~P,Q8!

h~P,Q,Q8!

V~P,Q!1V~P,Q8!
, ~20!

where h~P,Q,Q8! is a priori a function of normsiPi,iQi,iQ8i and of the scalar products
P–Q,P–Q8,Q–Q8 only, and satisfies the symmetry condition

h~P,Q,Q8!5h~P,Q8,Q!* , ~21!

together withh~P,Q,Q8!5h~P,Q,2Q8!5h~P,2Q,Q8!, for all P,Q,Q8PR2, where the star* de-
notes the complex conjugation. Note thatO is a symmetric operator that formally satisfies~11!.

We establish in Appendix C that, ifh~P,Q,Q8! is a function of normsiPi,iQi,iQ8i only, the
three equations~13!–~14! reduce to a single nonlinear integro differential equation forh. With the
differential operatorD given by

Dh~P,Q,Q8!:5
V~P,Q!V~P,Q8!

V~P,Q!1V~P,Q8!
] iPih~P,Q,Q8!, ~22!

this equation can be written as follows:
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052Dh~P,Q,Q8!1E ds~Q9!

V~P,Q9!2 H 2
iPi

V~P,Q9!
h~P,Q,Q9!h~P,Q9,Q8!

1Dh~P,Q,Q9!h~P,Q9,Q8!1h~P,Q,Q9!Dh~P,Q9,Q8!J . ~23!

This is the fundamental equation that guarantees the relativistic structure of the theory. Let us sum
up what we have found in the following statement.

Proposition 2: Let h~P,Q,Q8! be a function ofiPi,iQi,iQ8i only, which satisfies (21) and (23).
Then the operators (12), withO given by (20), are symmetric and satisfy algebraically the
commutation rules (1) to (4) of the algebraG .

III. EXISTENCE OF SOLUTIONS OF THE FUNDAMENTAL EQUATION

In this section we are concerned with the solutions to the equation~23!.
Definition: Let B be the Banach space made of bounded, continuous functionsf :~R1!3→C,

where R15@0,̀ !, such that the following derivatived f(u,x,y):5r (u,x)r (u,y)[ r (u,x)
1r (u,y)]21]uf (u,x,y) ~with right derivation atu50!, wherer (u,v):5(u214v214m2)1/2, ex-
ists and is also bounded and continuous, given the norm

uhuB :5ihi`1idhi` . ~24!

The following result assures the existence of a large class of solutions of~23!.
Proposition 3: There exists0,K1,` such that, for all continuous bounded functions

c:R1
2→C satisfyingici`,K1 , there exists one and only one function fPB satisfying
~1! uf u B,2K1,
~2! f (0,x,y,)5c(x,y),
~3! h~P,Q,Q8!5f ~iPi,iQi,iQ8i! satisfies~23! for all P,Q,Q8PR2.

Moreover, h satisfies (21) if c(x,y)5c(y,x)* .
Note thath~P50,Q,Q8!5c~iQi,iQ8i! is an arbitrary function, i.e. there is no restriction on the

interaction kernelh for P50, that is in a center-of-mass frame. The proof is based on the Banach
fixed point theorem. It gives not only existence and uniqueness, as stated in the Proposition, but
also a formula for the solutionh in terms ofc.

Proof: Let us introduce a bilinear operatorb,

b~ f ,g!~u,x,y!:5pE
0

u

dvS 1

r ~v,x!
1

1

r ~v,y! D E0` z dz

r ~0,z!r ~v,z!2 H 2d f~v,x,z!g~v,z,y!

2 f ~v,x,z!dg~v,z,y!1
v

r ~v,z!
f ~v,x,z!g~v,z,y!J , ~25!

whereu,x,yPR1 . By derivation ofb ~in the sense used in the definition ofB!, one gets simply

db~ f ,g!~u,x,y!5pE
0

` z dz

r ~0,z!r ~u,z!2 H 2d f~u,x,z!g~u,z,y!2 f ~u,x,z!dg~u,z,y!

1
u

r ~u,z!
f ~u,x,z!g~u,z,y!J . ~26!

The fundamental equation ~23! can be written as d f2db( f , f )50, where
h~P,Q,Q8!5f ~iPi,iQi,iQ8i!. By integration, this equation becomes

f ~u,x,y!5c~x,y!1b~ f , f !~u,x,y!:5A~ f !~u,x,y!, ~27!
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wherec(x,y) is an arbitrary function~the integration ‘‘constant’’!. This is a fixed point equation
that can be solved by applying the Banach fixed point theorem~Ref. 9, Sec. 1.1! in the Banach
spaceB. From a standard analysis and a simple estimate, it follows thatb: B→B and satisfies

ub~ f ,g!uB ,K18u f uB uguB , ~28!

whereK18 is the constant given by

K185pE
0

` 2 dv
r ~v,0!

E
0

` z dz

r ~0,z!r ~v,z!2
1pE

0

` z dz

r ~0,z!3
.

Let us takeK1 5 (4K18)
21 andc(x,y)PB with ucuB5ici`,K1 . Then the operatorA( f ) sends

the ballB(2K1):5$gPB uguB,2K1% into itself and is a strict contraction onB(2K1) ~see Ref. 6
or 7 for more details!. In such a case, it follows from the Banach fixed point theorem that the
equationf5A( f ) has one and only one solution inB(2K1), given by the limit of convergent
sequencef5limn→` An(0).

Let us suppose thatc satisfies c(x,y)5c(y,x)* . So doesA(0)5c. If gPB satisfies
g(u,x,y)5g(u,y,x)* , so doesb(g,g) and A(g). By an induction argument it follows that
limn→` An(0) satisfies this symmetry, too. h

Remark 1:As previously mentioned, the proof gives a formula for the solutionh in terms of
c, given by a uniformly convergent sequence,

h~P,Q,Q8!5 lim
n→`

An~0!~P,Q,Q8!, ~29!

for all ~P,Q,Q8!PR6, where

A~g!~P,Q,Q8!:5c~ iQi ,iQ8i !1b~g,g!~ iPi ,iQi ,iQ8i !,

for all g~iPi,iQi,iQ8i!PB. The first terms of this sequence are

A~0!5c, A2~0!5A~c!5c1b~c,c!,
(30)

A3~0!5c1b~c,c!1b„b~c,c!,c…1b„c,b~c,c!…1b„b~c,c!,b~c,c!…,

etc. The limit can be seen as a power series ofc that converges uniformly. It is nonzero ifcÞ0
because it is continuous and satisfiesh~0,Q,Q8!5c~iQi,iQ8i!.

Remark 2:Proposition 3 ensures the existence of solutions only in a ball of a Banach space,
that is, in the weak-coupling regime. However, the constantK1 that limits the supremum ofc can
be taken of the order ofm. A small calculation gives

K185
p

4m F E
0

` u

coshu
du1

1

2G5
1.8315...

m
,

and thusK15m/7.3259... . In what follows we will take simplyK15m/8.

IV. UNITARY REPRESENTATIONS OF THE POINCARÉ GROUP

We have established the existence of a large class of operatorsO for which ~12! gives rise to
formal representations of the Lie algebraG ~we call them formal because the problem of operator
domains have not yet been considered!. The natural question arises, under which conditions these
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formal representations can be really defined and can be integrated to provide unitary and continu-
ous representations of the Poincare´ group. By imposing a new condition onc we can specify the
domain of our operators.

Proposition 4: Let c: R1
2→C satisfy c(x,y)5c(y,x)* and the hypothesis of Proposition 3

and, moreover,

sup
~x,y!PR1

2

u~x21m2!3/4~y21m2!3/4c~x,y!u,K2 , ~31!

for some K2.0 sufficiently small. Let h~P,Q,Q8!5f ~iPi,iQi,iQ8i!, where f is the function de-
duced from c in Proposition 3. Then the following conditions are satisfied.

~1! The operators H, P, J, andL are self-adjoint.
~2! The operatorD5m22~H21P2!1J21L2 is self-adjoint and there exists a dense domainD

which is a common core for all operatorsD, H, P, J, andL .
~3! Let A,B be any pair of operators H, P1, P2, J, L1, L2. Then A is defined and symmetric

on BD . Moreover the commutation rules (1) to (4) hold onD .
This proposition gives a precise sense to our Lie algebra representations and to the commu-

tation rules. Moreover, according to a theorem by Fro¨hlich10 ~see remark 2, after the proof!, these
conditions are sufficient to ensure the integrability of the algebra representations, leading, by the
exponential map, to unitary, continuous representations of the universal cover of the Poincare´
group. The interest of Fro¨hlich’s theorem is that it does not require the domainD to be invariant
under all operators, as in Nelson’s classic theorem~Ref. 11, Theorem 5!. The construction of a
common invariant domain for operators as different as ours~multiplication, derivations, and kernel
operators! is a difficult problem that has been achieved in the one-dimensional space case only at
the price of strong conditions onc ~in Ref. 6,c is aC` fast decreasing function, which does not
agree with the corresponding kernel in QFT!. It is probable that with appropriate conditions onc,
Nelson’s theorem can also be used in the present case.

Proof:We proceed in three steps.
First step. We deduce from ~31! two properties of h. Let gPB such that

ug(u,x,y)u1udg(u,x,y)u<k1s(x)
23/2s(y)23/2 for somek1P~0,̀ ! for all (u,x,y,)PR1

3 , where
s(t)5(t21m2)1/2. By using this inequality in the integrals~25!–~26! and the methods leading to
~28!, we get

ub~g,g!~u,x,y!u1udb~g,g!~u,x,y!u<K18
k1
2

m3

1

s~x!3/2s~y!3/2
.

Let c be a function satisfying the hypothesis of the proposition withK2 small enough to have
4K18K2 /m

3 , 1. Let us suppose that for somenPN* we know that
uAn(0)(u,x,y)u1udAn(0)(u,x,y)u,Cns(x)

23/2s(y)23/2 for some constantCn,2K2 and for all
(u,x,y)PR1

3 ~this is true forn51!. Then

uAn11~0!~u,x,y!u1udAn11~0!~u,x,y!u

5uc~x,y!1b„An~0!,An~0!…~u,x,y!u

1udb„An~0!,An~0!…~u,x,y!u

<SK21K18
Cn
2

m3D 1

s~x!3/2s~y!3/2
5

Cn11

s~x!3/2s~y!3/2
,

with Cn11 5 K2 1 K18Cn
2/m3 , 2K2. Thus, for suchc all terms of the sequence

$uAn(0)(u,x,y)u1udAn(0)(u,x,y)u%n51
` is bounded by 2K2[s(x)s(y)]

23/2, and so are their limit.
We have shown that for all~P,Q,Q8!PR6,

v~Q!3/2v~Q8!3/2~ uh~P,Q,Q8!u1uDh~P,Q,Q8!u!,2K2 . ~32!
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For the next step we also need to know thatv(Q)3/2v(Q8)3/2uiPi] iPi DhiPi21u is bounded.
Now iPi] iPi DhiPi21 5 ] iPi Dh 2i Pi21 Dh. A bound for the second term can be obtained from
the equation ~23! and the inequality ~32!, as follows. Let
g~P,Q,Q8!5v~Q!3/2v~Q8!3/2iPi21 Dh~P,Q,Q8!. From ~23! we have

2g~P,Q,Q8!5E dQ9

2v~Q9!4V~P,Q9!3
ĥ~P,Q,Q9!ĥ~P,Q9,Q8!

2E dQ9

2v~Q9!4V~P,Q9!2
„g~P,Q,Q9!ĥ~P,Q9,Q8!1ĥ~P,Q,Q9!g~P,Q9,Q8!…,

whereĥ~P,Q,Q8!:5v~Q!3/2v~Q8!3/2h~P,Q,Q8! for all ~P,Q,Q8!PR6. From this relation and from
~32! follows the estimate for the the sup-normigi` :

2igi`,4K2
2E dQ9

16v~Q9!7
1igi`4K2E dQ9

8v~Q9!6
.

Now *dQ9 v~Q9!26,2m24. Thus we obtain a bound forigi`(22K2m
24). Now 2 2 K2m

24

. 2 2 1/(4mK18) . 2 2 1
8 is positive, so we get a bound forigi` ~we have used the value ofK18

given in Remark 2, after the proof of Proposition 3!.
The existence of] iPi Dh is obtained as follows. In the sequence~29! the variableiPi appears

only in the kernelsV~P,Q!21 or as the limit of integration on a variableu appearing only in such
kernels or as a limit of integration, etc.. It follows that~29! is a sequence of analytic functions of
iPi in a strip along the real axis. To study the convergence we replaceu by u1 ih in the integrals
~25! and ~26!, with uhu small enough for the inequality~28! to be still satisfied~or for a smaller
constantK18 if necessary!. Let us denote bybh anddbh the bilinear operators onB we get, for
suitable fixedh. The fixed-point equation~27!, written for bh , can be solved by the fixed-point
theorem and leads to a sequence like~29!, convergent in the same ball ofB. Because all the
bounds are independent ofh the convergence is also uniform wrth. Thus, the limith~P,Q,Q8! is
analytic for iPi in a neighborhood of the real axis, for all fixedQ, Q8.

To see that] iPi Dh is bounded, we first note thatDh is also given by a convergent sequence
like ~29!, where b is sometimes replaced bydb. Let us write b(g1 ,g2)5*dz[k1

1g1g2
1k2

1 dg1g21k3
1g1 dg2] and db(g1 ,g2)5*dz[k1

2g1g21k2
2 dg1g21k3

2g1 dg2], where theki
j

are functions ofu,x,y,z, which are easily deduced from~25!, ~26!. Let k2 be a constant
such that i*dz[( ]u

nk1
j )g1g21(]u

nk2
j )dg1g21(]u

nk3
j )g1 dg2i`,k2ug1uBug2uB for all nP$0,1%

and jP$1,2%. Let us consider the sequence for] iPi Dh similar to ~29! as a power series inc, as
suggested by ~30!. The sum of n-order terms is bounded, in the sup norm, by
k2K18

n22nN nucuB
n for all nPN, whereN n is the number of terms of ordern in the limit of ~30!.

This number can be calculated by applying the fixed point theorem to the trivial equation onC:
x5k1x2, and from this explicit expression we get the estimateN n,4n. This ensures the con-
vergence of the series, in the sup norm, for allucuB , (4K18)

21. Thus] iPi Dh is bounded.
Let us introduce the functionc̃~iQi,iQ8i!5m23v~Q!3/2v~Q8!3/2c~iQi,iQ8i!. From~31! and the

condition onK2 already used, it follows thatuc̃uB , (4K18)
21, and soc̃ is an acceptable function.

Now the series for ] iPi Dh(P,Q,Q8) can be bounded as follows: for allc we use
uc~iQ9i,iQ-i!u<uc̃~iQ9i,iQ-i!u, except for the first and last factors, which we bound as follows:
uc~iQi,iQ9i!u<v~Q!23/2uc̃~iQi,iQ9i!u, uc~iQ9i,iQ8i!u<v~Q8!23/2uc̃~iQ9i,iQ8i!u, respectively. We
get an overall factorv~Q!23/2v~Q8!23/2 times a series that converges uniformly because each term
can be bounded, as explained above. As a consequence of all these results the following estimate
holds:

v~Q!3/2v~Q8!3/2uiPi] iPi Dh~P,Q,Q8!iPi21u,k3 , ~33!
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for somek3P~0,̀ !, for all ~P,Q,Q8!PR6.
Second step.We show thatD is self-adjoint, using theorems by Nelson and Kato-Rellich.

Because$P,H0 ,J,L0% are the infinitesimal generators of a unitary continuous representation of a
Lie group~by Appendix A and the properties of the tensor product!, it follows from a theorem by
Nelson~see Ref. 11, Theorem 3! that all these operators andD05m22~H0

21P2!1J21L0
2 are self-

adjoint and that there exists a domainD0 that is a common invariant domain and a common core
for all of them. However, the largest common invariant domain is

D5$fPHuH0
n1P1

n2P2
n3Jn4L0,1

n5L0,2
n6D0

n7fPH, for all n1 ,...,n7PN%; ~34!

thusD is also a common core. By the Kato-Rellich theorem~Theorem X.12 of Ref. 12!, D is
essentially self-adjoint onD if

i~D2D0!fi<k4iD0fi1k5ifi , ~35!

for all fPD , for some 0,k4,1 and 0,k5,`.
The bound~35! turns out to be a condition on the interaction terms ofH andL . To establish

such a bound we need a general estimate of the norm of vectors like

fj~P,Q!:5E ds~Q8!

V~P,Q8!
f~P,Q8!j~P,Q,Q8!,

for fPD and a suitable kernelj. By using the Cauchy–Schwarz inequality and the Fubini
theorem, as explained in detail in Ref. 6, we obtain

ifji<k6iji1/2,̀ ifi , ~36!

wherek6:5sup*ds~Q!/„V~P,Q!v~Q!…51
2*ds~Q!v~Q!225p/(2m) and

ijia,` :5 sup
~P,Q,Q8!PR6

v~Q!av~Q8!auj~P,Q,Q8!u, ~37!

for anyaPR. Now

D2D05m22~H22H0
2!1L22L0

2.

For all fPD ,

~H22H0
2!f~P,Q!5E ds~Q8!

V~P,Q8!
f~P,Q8!J~P,Q,Q8!,

where

J~P,Q,Q8!:5„V~P,Q!1V~P,Q8!…h~P,Q,Q8!1E ds~Q9!

V~P,Q9!
h~P,Q8,Q9!h~P,Q9,Q8!.

~38!

By the following inequality:V~P,Q!1V~P,Q8!<2„iPi1v~Q!1v~Q8!…<2„iPi12v~Q!v~Q8!/m…
and the estimate~36!, we obtain

i~H22H0
2!fi,2k6ihi1/2,̀ i~ iPi !fi1F4k6m ihi3/2,̀ 1k6

2ihi1/2,̀
2 G ifi . ~39!
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Because the coefficient ofifi has not to be bounded, we omit to estimate it explicitly hence-
forth. Now let us putLh :5L2L0. We have to control the action ofL22L0

25L0–Lh1Lh–L01Lh
2

on vectorsfPD . Becauseh~P,Q,Q! is only a function of the normsiPi,iQi,iQi, we have
JQh5JQ8h50, and thus the termsL0,j

Q of L0,j give no contribution. Thus, for the vectorLhf, we
find

Lhf~P,Q!5E ds~Q8!

V~P,Q8!
@L0f~P,Q8!#

h~P,Q,Q8!

V~P,Q8!
2 i E ds~Q8!

V~P,Q8!
f~P,Q8!

3F P

iPi
Dh~P,Q,Q8!

V~P,Q8!
2

P

V~P,Q8!2
h~P,Q,Q8!G , ~40!

for all fPD . Using the bound~36! we obtain

iLh, jfi,
k6
2m

ihi1/2,̀ iL0,jfi1
k6
2m

i~ uhu1uDhu!i1/2,̀ ifi , ~41!

for all jP$1,2%. Replacingf by L0f in ~40! leads to the estimate

iLh–L0fi,
k6
2m H ihi1/2,̀ iL0

2fi1i~ uhu1uDhu!i1/2,̀ (
j51

2

iL0,jfi J . ~42!

On the other hand, applyingL0 to ~40! gives

L0–Lhf~P,Q!5E ds~Q8!

V~P,Q8!

V~P,Q!

V~P,Q8!
@L0

2f~P,Q8!#
h~P,Q,Q8!

V~P,Q8!

2 i E ds~Q8!

V~P,Q8!

V~P,Q!

V~P,Q8!
@P–L0f~P,Q8!#

3F23
h~P,Q,Q8!

V~P,Q8!2
1S 2

V~P,Q8!
1

1

V~P,Q! D Dh~P,Q,Q8!

iPi G
2V~P,Q!E ds~Q8!f~P,Q8!~21iPi] iPi!

3F Dh~P,Q,Q8!

iPiV~P,Q8!2
2
h~P,Q,Q8!

V~P,q8!3 G ,
for all fPD . We note in the last term the factoriPi] iPi DhiPi21, the control of which requires
the estimate~33!. By V~P,Q!/V~P,Q8!<„v~Q!1v~Q8!…/m<2v~Q!v~Q8!/m2, the inequality~36!
and some trivial algebra, we obtain

iL0–Lhfi<
k6
m3 S ihi3/2,̀ iL0

2fi13i~ uhu1uDhu!i3/2,̀ (
i51

2

iL0,ifi D 1k7ifi , ~43!

for somek7P~0,̀ ! in which the constantk3 of ~33! is involved. By applyingLh to the expression
~40! and by using~43! we get an estimate of the last term
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iLh
2fi<

k6
2m

i~ uhu1uDhu!i1/2,̀ S iL0–Lhfi1(
j51

2

iLh, jfi D
<

k6
2

2m6 ~ i~ uhu1uDhu!i3/2,̀ !2S iL0
2fi1

7

2 (
j51

2

iL0,jfi D 1k8ifi , ~44!

for somek8P~0,̀ !, where we have usedihi1/2,̀ <m22ihi3/2,̀ . More generally, from the defini-
tion ~37! and the bound~32!, it follows that

i~ uhu1uDhu!i1/2,̀ <m22i~ uhu1uDhu!i3/2,̀ ,
2K2

m2 . ~45!

Finally, by collecting the estimates~39! and ~42! to ~45!, we obtain

i~D2D0!fi<7~a1a2!S I iPi
m

fI 11(
j51

2

iL0,jfi D 1~3a12a2!iL0
2fi1k9ifi , ~46!

for some k9P~0,̀ ! and all fPD , where a:5k6K2/m
3. It remains to find a bound on

i(iPi)fi ,iL0,jfi ,iL0
2fi of the typek10iD0fi1k11ifi for constantsk10 andk11. Following Nel-

son ~Ref. 11, proof of Lemma 6.1!, we find

I iPi
m

f I1(
j51

2

iL0,jfi<)S I iPi
m

f I 21iL0fi21 IH0

m
f I 21iJfi2D 1/2

5)~f,D0f!1/2

,)„f,~ 1
2 D0

21D01
1
2!f…

1/2

5A 3
2i~D011!fi<A3

2~ iD0fi1ifi !. ~47!

The bound oniL0
2fi needs more development. Following Ref. 11~proof of Lemma 6.1! again, we

try to write D0
22~L0

2!2 as a sum of positive and negative operators. For that we use the commuta-
tion rules~1!–~4!, which imply

P2L21L2P25 (
i , j51

2

~PiL j
2Pi1LiPj

2Li !2P224H2,

H2L21L2H25HL2H1L–H2L22P222H2,

J2L21L2J25JL2J1L–J2L2L2,

J2P21P2J25JP2J1P–J2P2P2.

From these relations it follows thatD0
22~L0

2!21m22~4P216H0
2!1L0

2 is a positive operator, and
thus
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~L0
2!2,D0

21m22~4P216H0
2!1L0

2,D0
216D0195~D013!2,

and finally iL0
2fi,i~D013!fi<iD0fi13ifi. By collecting all these results, the estimate~46!

becomes

i~D2D0!fi,~a1a2!S 317A3

2D iD0fi1k12ifi ,

for some constantk12P~0,̀ ! and allfPD . Let us compare this with the requirement~35!. The
necessary conditionk4 : 5 (a1 a2)(31 7A3/2), 1 is satisfied fora<p/40. Becausea5k6K2/m

3

5pK2/(2m
4) we getK2<m4/20.

Third step.We show the essential self-adjointness ofH, P, J, andL onD and establish the
Conclusion 3!. We already know thatH0, P, J, andL0 are essentially self-adjoint onD ~second
step!. ThenH is also essentially self-adjoint onD because

~H2H0!f~P,Q!5E ds~Q8!

V~P,Q8!
f~P,Q8!h~P,Q,Q8! ~48!

is well defined for allfPH @because of~36! and because, by~31!, ihi1/2,̀ ,K2/(4m
2)#. Note the

bound on the operator norm:iH2H0iop<k6ihi1/2,̀ . ForL we consider the bound~41!. From the
Kato-Rellich theorem~Theorem X.12 of Ref. 12! it follows thatL is essentially self-adjoint onD ,
providedk6ihi1/2,̀ /(2m),1 ~note that this condition leads toiH2H0iop,2m and thus implies
the positivity ofH!, which holds, because by~45!: k6ihi1/2,̀ /(2m)<K2k6/m

35a and because
a<p/40 ~see the second step!.

By using the methods of the second step it is easy~but tedious! to check that all productsAB
with AÞB, whereA,B are any pair of operatorsH, P1 ,P2 ,J,L1 ,L2 , are well defined onD
because of~32! and~33! ~the second step of this proof concerned the squaresA2 and can be taken
as examples!. For more details see similar estimates in Ref. 7 in the one space dimension case.
These calculations give clear, explicit expressions that make evident the symmetry property stated
in the Conclusion 3!, and on which the commutation rules, which already hold on an algebraical
level by proposition 2, can be verified analytically. h

Remark 1:From the explicit estimate of the constantsK1 andK2 given in the previous proof,
it follows that the function

c~x,y!5l~x21m2!23/4~y21m2!23/4, ~49!

for all x,yPR1 and all ulu,m4/20, satisfies all the hypotheses of Propositions 3 and 4.
Remark 2:Let us explain how Proposition 4 leads to the integrability condition of Ref. 10. We

first verify the hypothesis of the commutation theorem~Ref. 12, Theorem X.37! or ~Ref. 10,
Theorem 08!. By ~2! the operatorN:5D11 is essentially self-adjoint on the domainD given by
~34!. The first hypothesis follows then from Nelson’s argument used to establish~47! ~without the
index 0!. Now by ~3! the following calculation makes sense onD :
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~Hf,Nf!2~Nf,Hf!5~Hf,L2f!2~Lf,Hf!

5(
j51

2

~L jHf,L jf!2~L jf,L jHf!

5(
j51

2

~HL jf,L jf!1 i ~Pjf,L jf!2~L jf,HL jf!1 i ~L jf,Pjf!

5 i „f,~P–L1L–P!f…,

where we have taken the case ofH as an example. Now for allfPD :

0<i~m21Pj6L j !fi25„f,~m21Pj6L j !
2f)5„f,~m22Pj

21L j
2!f)…6m21

„f,~PjL j1L jPj !f…,

for all jP$1,2%, from which it follows

m21u~f,~P•L1L•P!f!u<„f,~m22P21L2!f…,~f,Nf!,

and then the hypotheses of the commutation theorem are satisfied. The integrability of our algebra
representation follows then from Ref. 10, Corollary 4.

V. THE CASIMIR OPERATORS

We study the modification of the Casimir operators@defined by~5! and given in the two free
particle representations by~18!–~19!# due to the introduction of interaction. From the operators of
the interaction representation~12! and the commutation rules~11! for O , it follows that the
Pauli–Lubanski operatorE takes the form

E5E01$O ,E0%,

whereE0 is the Pauli–Lubanski operator of the free representation, given by~19!. Now the
condition that the kernelh~P,Q,Q8! of the operatorO depends only on the normsiPi,iQi,iQ8i has
the consequence that

JQO5OJQ50, ~50!

from which it follows thatE0O5OE050, and thus

E5E0 . ~51!

Thus, the introduction of interaction has no effect on the Pauli–Lubanski operator. On the other
hand, the square mass operatorM2 takes the form

M2f~P,Q!54~Q21m2!f~P,Q!1E ds~Q8!

V~P,Q8!
f~P,Q8!J~P,Q,Q8!, ~52!

for all fPD , where the kernelJ is given by~38!. Note that the spectrum ofM0
2, the square-mass

operator of the two free particle representations, given by~18!, is absolutely continuous, made of
the complete interval@4m2,`!. The introduction of interaction has the important effect that an
isolated eigenvalue may occur.

Proposition 5: Let c: R1
2→C satisfying the hypothesis of Proposition 4 and h as there. Then

the operator M2 is self-adjoint. Moreover, let c be given by (49); then for all0.l.2m4/20,M2

has an eigenvalue0,mB
2,4m2, and its spectrum is$mB

2%ø[4m2,`).
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Proof: BecauseH and P commute they admit a simultaneous spectral measuredE~r,P!,
wherer.0 is the spectral variable associated toH. In this representationM2 becomes simply the
multiplication operator byr22P2, and thus is self-adjoint. Moreover, the invariant subspaces are
limited in the~r,P! space by the half-hyperboloids$r 5 AP21K2% with K.0, and so is the support
of dE.

Let us consider the one-parameter group of operators$U1(g)%gPR defined by

U1~g!f~r,P!:5f~r coshg1P1 sinhg,P1 coshg1r sinhg,P2!,

for all fPL2~R3,dE! with compact support@note thatU1~g! is not necessarily exp(igL1)#. In the
~r,P! space,U1~g! translates a point~r0,P0! on the hyperboloid$r5~P21r0

22P0
2!1/2% restricted to

the P25P0,2 plane, from a ‘‘hyperbolic angle’’g. ObviouslyU1~g! commutes withM2. In the
same way we define the one-parameter group$U2(g)%gPR , acting on theP2 variable. Thus, by
suitable applications of these groups we can reduce the study of the spectrum ofM to a neigh-
borhood ofP50, that is to the restriction ofM to the subspace,

He :5closureH$fPHuf~P,Q!50, for all iPi.e%, ~53!

for arbitrary smalle.0.
On the other hand, let us consider the operatorMP

2 ~i.e, for fixedP!, given by

Mp
2w~Q!:54~Q21m2!w~Q!1E dsP~Q8!w~Q8!J~P,Q,Q8!, ~54!

for suitablew in the spaceHP5L2~R,dsP!, wheredsP~Q!5ds~Q!V~P,Q!21. HerePPR2 is just
a set of two parameters.

LetHP be the restriction ofH for fixedP, as an operator onHP . BecauseMP
2 5 HP

2 2 P2 the
spectrum ofMP

2 is easily deduced from the spectrum ofHP . We writeHP 5 V 1 Hh,P where
Hh,Pw(Q): 5 *dsP(Q8)w(Q8)h(P,Q,Q8) for all wPHP . Because*uh~P,Q,Q8!u2 dsP~Q!dsP~Q8!
is well defined@by ~32!#, Hh,P is compact. By the ‘‘classical Weyl theorem’’~Ref. 13, Sec. XIII.4!
the essential spectrum ofHP is the same as ofV~P,Q! ~for fixed P!, that is the interval
@V~P,O!,`!. It may exist a finite number of eigenvalues in„0,V~P,0!…, with finite-dimensional
eigenspaces. Moreover,P→Hh,P is an analytic family of compact operators in aC

2 neighborhood
of the real axis @because by giving a small imaginary value toP the integral
*uh~P,Q,Q8!u2 dsP~Q!dsP~Q8! is still defined#. ThusHP is an ‘‘analytic family of type~A!’’ and
by Theorem XII.13 of Ref. 13 the eigenvalues, if there are any, are continuous functions ofP.
Returning to the operatorMP

2 5 HP
2 2 P2 we conclude that its spectrum is made of the interval

@4m2,`! and of a finite number of possible eigenvalues in the interval~0,4m2!, which are con-
tinuous with respect toP.

Now let us consider the case where an eigenvalue exists. By the theory of Ref. 13, Sec.
XIII.16, and more precisely by the point~d! of theorem XIII.85 of this reference, follows that the
spectrum ofM2 restricted to the subspaceHe given by~53!, has, in fact, a gap. By the geometrical
form of the support ofdE this property passes on to the operatorM2 itself.

Let us take now the functionsc given by~49!. Because the eigenvalues ofHP are continuous
in P, they are eigenvalues ofH0 for P50, that is, solutions of the equation

2AQ21m2w~Q!1lv~Q!23/2E dQ8

4~Q821m2!
w~Q8!v~Q8!23/25mBw~Q!,

which admits one and only one eigenvalue 0,mB,2m, with eigenvector
w~Q!5v~Q!23/2

„2v~Q!2mB…
21, wheremB is the unique solution of the implicit equation
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152lE dQ

4~Q21m2!5/2
1

2AQ21m22mB

,

for 0.l.2m4/20. From the geometrical form of the support ofdE, it follows that the spectrum
of M2 is made of only one isolated eigenvaluemB

2 and of the continuous interval@2m,`#. h

Remark:The eigenvalue equation forM2, given by~51!, takes the form

mB
2f~P,Q!54~Q21m2!f~P,Q!1E ds~Q8!

V~P,Q8!
f~P,Q8!J~P,Q,Q8!, ~55!

whereJ is given by ~38! andmB is expected to lie in~0,2m!. ~55! can be considered as a
relativistic Schro¨dinger equationbecause it generates the discrete structure of the bound states.
Note that, due to the variables~15!, it has the same general form as the Schro¨dinger equation, but
with two important differences: the interaction is nonlocal and depends onP. Contrary to the
nonrelativistic case, this dependence cannot be removed, unless a particular referential frame is
chosen, a center-of-mass frame. In that case, i.e. forP50, ~55! reduces to

~mB
224m2!w~Q!54Q2w~Q!1E ds~Q8!

2v~Q8!
w~Q8!J~0,Q,Q8!, ~56!

which, except for the nonlocal interaction, is a Schro¨dinger-like equation. Moreover, forP50 the
operatorM2 is the square ofH, so that the eigenvalue equation~56! can be written forH, and
becomes

mBw~Q!52AQ21m2w~Q!1E ds~Q8!

2v~Q8!
w~Q8!c~ iQi ,iQ8i !, ~57!

wherec~iQi,iQ8i!5h~0,Q,Q8! is a center-of-mass interaction kernel~which can be chosen arbi-
trarily!. Note that~57! corresponds to some kind of elementary~or naı̈ve! generalization of the
Schrödinger equation to the relativistic case.

VI. CONCLUSION

Let us sum up what we have found. We have constructed a family of unitary, continuous
representations of the Poincare´ group in three space–time dimensions, as perturbations of the two
free boson model. These perturbations are nontrivial, in the sense that isolated eigenvalues of the
Casimir operatorM may appear~but the Casimir operatorE, the Pauli–Lubanski operator, re-
mains unchanged!. To affirm that we have really obtained models for two bosons with interaction,
it remains to construct the asymptotic states. For that we only need to show the existence of the
generalized wave operators~Ref. 14, Sec. XI.3!. This can be obtained from Cook’s method
~Theorem XI.4 of Ref. 14!, with A5H and B5H0, and from the further assumption that
cPC2~R1

2 ! ~with right derivation at 0!, with first and second derivatives also bounded@the ex-
ample~49! satisfies these conditions#. Let us consider the functions

F~ t,P,Q!5E ds~Q8!

V~P,Q8!
f~P,Q8!h~P,Q,Q8!e2 i tV~P,Q8!, ~58!

for fPS ~R4! ~the Schwartz space! satisfyingf(P,0,Q2)5]Q1

n f(P,0,Q2) 5 0 for nP$1,...,4%.

Such vectorsf generate a dense subspace ofH. On the other hand, from the techniques of the
first step of the proof of Proposition 4@used to establish~33!# and from the new conditions onc,
it follows thathPC2~R6! with all derivatives bounded. Performing then two integrations by parts
wrt Q18 leads to
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F~ t,P,Q!52
1

32t2 E dQ8 e2 i tV~P,Q8!]Q
18S V~P,Q8!

Q18
]Q

18
f~P,Q8!h~P,Q,Q8!

Q18v~Q8! D ,
from which it follows that the function

t°F E dP ds~Q8!

V~P,Q8!
uF~ t,P,Q!u2G1/25i~H2H0!e

2 i tH0fi , ~59!

is in L1~@1,̀ !!, as required by Cook’s method. In conclusion, providedc satisfies these new
conditions, our models describe really two-particle systems.

However, the connection of these models with other physical theories, like QFT, is a difficult
point. First, because of their particular interaction form, which by~50! can be formulated as
follows: the image of the interaction operatorO is contained in the subspace of states with
vanishing relative angular momentum~the so-called ‘‘s waves’’!. Second, because in three-
dimensional space–time QFT there are few available bosonic models in which bound states are
known to exist~see Ref. 3, Sec. IV!. Following the example of the two space–time dimension
case, we could find a connection for constant kernelc, with QFT models admitting point interac-
tion ~i.e., with alf3

4 term in the Hamiltonian! at first perturbation orders. But these models are
defined only forl>0, in which case bound states are absent. On the other hand, a constantc may
satisfy the hypothesis of Proposition 3, but not of Proposition 4.
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APPENDIX A: ONE-PARTICLE REPRESENTATION

We show that the operators~6! are the infinitesimal generators of a unitary, continuous and
irreducible representation of the universal covering of the Poincare´ groupP1

↑ . Such a represen-
tation is a good candidate for a theory describing a quantum relativistic spinless particle of mass
m.0. To that purpose, and for the next appendix, we need the Lorentz transformLv for an
arbitrary velocityvPR2. It is given by a rotation~putting v parallel to the first axis! followed by
a Lorentz boost~along this axis! and then by the inverse rotation. More precisely, if
v5ivi~cosa,sina!, we get

Lv5S 1 0 0

0 cosa 2sin a

0 sina cosa
D S g bg 0

bg g 0

0 0 1
D S 1 0 0

0 cosa sin a

0 2sin a cosa
D

5S g b1g b2g

b1g 11
b1
2

b2 ~g21!
b1b2

b2 ~g21!

b2g
b1b2

b2 ~g21! 11
b2
2

b2 ~g21!
D ,

where we have putb5~b1,b2!5v/c, c being the speed of light,b5ibi, andg5~12b2!21/2. By
applying this transformation to a three-dimensional vector~p0,p!5(p0,p1 ,p2)PR3, we get a more
compact expression,
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LvS p0p D5S g~p01b–p!

gS p01 b–p

b2 Db1
p`b

b2 b'D , ~A1!

where b•p:5b1p11b2p2 , b':5~b2,2b1!, and p`b5p–b'5p1b22p2b1 . Let us takec51
again. The Poincare´ representation describing one particle of massm.0 without spin is given by
the following result.

Lemma 6: The operators (6) are the infinitesimal generators of a unitary, continuous and
irreducible representation of the universal covering of the Poincare´ group P1

↑ in the space
L2~R2,s!.

We recall thatds~p!5dp@2v~p!#21, wherev(p) 5 Ap21m2.
Proof: Let us consider the following transformations of functionsfPL2~R,s!:

~j,t,a,b!•f~p!:5ei „j–p1tv~p!…f~lb Rap!, ~A2!

for all tPR, j, bPR2, aP@0,2p! and almost allpPR2, whereRa is the matrix of the rotation of
R2 of anglea andlbp is the ‘‘spatial’’ component of the Lorentz transform of„v~p!,p… of speed
b, more precisely, from~A1!:

lbp:5gS v~p!1
b–p

b2 Db1
p`b

b2 b'. ~A3!

We claim that these transformations define a unitary, continuous, and irreducible representation in
L2~R2,s! of the Poincare´ groupP1

↑ , the infinitesimal generators of which are given by~6!.
The unitarity and the group law are easily seen by introducing a third variablep0 together with

a Dirac-delta function in the measure, that is, by replacingL2~R2,s! by L2~R3,S!, where
dS(p0,p1 ,p2)5dp0 dp1 dp2 d(p022p1

22p2
22m2)u(p0), u being the Heaviside function. Be-

cause of the S measure, a vector f(p0,p1 ,p2) is not distinguished from
f(Ap121p2

21m2,p1 ,p2). The transformation~A2! becomes, after Fourier transformation,

~j,t,a,b!–f̃~ t,x!5f̃„~j,t,a,b!21
–~ t,x!…

~wheref̃ is the Fourier transform off! that is, given in terms of the ordinary Poincare´ transfor-
mation on space–time. The group law is now obvious. The unitarity follows from the Poincare´
invariance of the measureS.

The continuity of the representation is easily seen inL2~R2,s!, by standard analysis methods.
The irreducibility is obtained as follows. Letf be a continuous, nonzero function inL2~R2,s!. Let
us show that the only vector orthogonal to$eij–pf(lbp)uj,b P R2% is 0. By the Fourier theory,

E
R2
ds~p!c~p!* eij–pf~lbp!50, for all jPR2, ~A4!

implies thatc~p!50 for almost allp, such thatf~lbp!Þ0. Without loss of generality, we may
assume thatf~0!Þ0. From ~A3! follows that the vectorb52p/v~p! satisfieslbp50, for all
pPR2. Thus, if moreover we impose that~A4! holds for allbPR2 we getc50.

After an elementary calculation, the operators~6! turn out to be the infinitesimal generators of
the representation~61!. n

APPENDIX B: THE RELATIVE MOMENTUM

We explain the change of variable~p1,p2!→~P,Q! given in ~15! and establish some useful
formulas.
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The meaning ofP5p11p2, the total momentum, is clear. The notion of relative momentum is
more subtle. Physically it must be related to the momentum of one of the particles in a center-of-
mass frame.

Let p15„v~p1!,p1… and p25„v~p2!,p2… be the energy momenta of two free particles, of the
same mass to simplify. We define first

P5~P0,P!5p11p2 , q5~q0,q!5 1
2~p12p2!.

Note the useful relationP–q5P0q0. Let Lb be a Lorentz transformation such thatLbP5~M0,0!,
whereM05@~P0!22P2#1/2. Physically,Lb is associated with a change of referential frame, which
put the two particles of momentap1,p2 on one of their center-of-mass frames. Then we define the
relative momentumQ as the spatial projection ofLbq @the relative momentum just defined~as the
center-of-mass frame itself!, is not unique because in its definitionLb could be followed by a fixed
space rotation without consequence#. The calculation of aLb i.e. of ab, is obtained from~A3!.
The condition that the spatial component ofLbP vanishes gives

~12b2!21/2S P01
b–P

b2 Db1
P`b

b2 b'50.

If we choose the direction ofb parallel toP, we get the unique solutionb52P/P0. After some
calculation one getsL2P/P0q 5 (0,Q), where

Q5
q0M0

P2
P2

q`P

P2
P'.

If we write it in the formQ5q1jP, the calculation ofP–Q leads toj52q0[P01M0]
21 and we

finally get the formula~15!.
Let us calculate the operators of the two free boson representation~7! in these variables, to

establish~16!. The normiQi is obtained by the initial definition ofQ and the properties of the
Lorentz transform, which givesQ25~q0!22q2. From the trivial identity ~P0!22P254m2

14@~q0!22q2#, it follows thatM052v~Q!, and then

P05v~p1!1v~p2!5M0
21P25AP214Q214m2,

which is denoted byV~P,Q! in ~16!. The angular momentumJ is easily obtained because a
rotation of the systemp1,p2 leads to the same rotation ofP,Q, which is an obvious consequence
of the formula~15!. The Lorentz generatorL0,1 is obtained as follows. Under an infinitesimal
Lorentz transform of hyperbolic angleg in the first direction~of unit vectore1!, the fundamental
quantities become

P→P1gP0e1 , q→q1gq0e1 ,

P0→P01gP1 , q0→q01gq1 .

Under such a transformation,Q becomes

Q→q1gq0e12
q01gq1

M01P01gP1
~P1gP0e1!'Q1g

P2

M01P0 Q
',

where we have performed a first-order development. The formula forL0,1 given in ~16! is then
easily deduced.L0,2 is obtained in the same way.

The Jacobian of the transformation~p1,p2!→~P,Q! is calculated in two steps. First we perform
the transformation~p1,p2!→~P,q!, with Jacobian 1, and then the transformation~P,q!→~P,Q! with
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Jacobian

UdetS ]Q1

]q1

]Q1

]q2

]Q2

]q1

]Q2

]q2

D U21

5F12S P1

]

]q1
1P2

]

]q2
D q0

M01P0G21

,

which, after a long and tedious calculation, gives 4v~p1!v~p2![M0P
0]21. Thus, the measures2

becomesds2~p1,p2!5dm~P,Q!5dP ds~Q!V~P,Q!21.

APPENDIX C: THE FUNDAMENTAL EQUATION

The fundamental equation~23! is the condition on a kernelh~P,Q,Q8!, depending only on the
normsiPi,iQi,iQ8i, for the relation~13! and~14! to hold. This norm dependence leads to~50! and
thus toL0,jO 5 L0,j

P
O andOL0,j 5 OL0,j

P , whereL0,j
P : 5 2 iV(P,Q)]Pj for all jP$1,2%.

Let us calculate thej th equation of~13!. The linear part inO can be written as

Aj :5@$H0 ,O %,L0,j #1@H0 ,$L0,j ,O %#52~H0OL0,j2L0,jOH01 iP jO !,

where we have used [H0 ,L0,j ]5 iP j and the fact thatPj and O commute. By applying this
operator to a vectorfPD @the domain given by~34!# we obtain, in obvious symbolic notation,

Ajf~P,Q!522iVE ds~Q8!
]Pjfh

V1V8
12iV]PjE ds~Q8!

fh

V1V8
12iP jE ds~Q8!

V8

fh

V1V8

52i E ds~Q8!fS V]Pj
h

V1V8
1

Pj

V8

h

V1V8D
52i E ds~Q8!f~P,Q8!

V~P,Q!]Pj~P,Q,Q8!

V~P,Q!1V~P,Q8!
.

To study the bilinear part, we rewrite~48! and ~40!:

$H0 ,O %f~P,Q!5E ds~Q8!

V~P,Q8!
f~P,Q8!h~P,Q,Q8!,

$L0,jO %f~P,Q!52 i E ds~Q8!

V~P,Q8!
„]Pjf~P,Q8!…h~P,Q,Q!

2 iV~P,Q!E ds~Q8!f~P,Q8!]Pj
h~P,Q,Q8!

V~P,Q8!„V~P,Q!1V~P,Q8!…

Thus, the bilinear part inO gives, in symbolic notation,
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Bjf~P,Q!:5@$H0 ,O %,$L0 ,O %#f~P,Q!

5E ds9

V9
hQ,Q9F2 i E ds8

V8
~] jf8!hQ9,Q82 iV9E ds8 f8] j

hQ9,Q8

V8~V91V8!

1 i ] jE ds8

V8
f8hQ9,Q8G1 iVE ds9S ] j

hQ,Q9

V9~V1V9!
D E dq8

V8
f8hQ9,Q8

5 i E ds9E ds8f8

3S 2hQ,Q9] j
hQ9Q8

V8~V91V8!
1
hQ,Q9

V9
] j
hQ9,Q8

V8
1

V

V8
S ] j

hQ,Q9

V9~V1V9!
D hQ9,Q8D

5 i E ds~Q8!

V~P,Q8!
f~P,Q8!E ds~Q9!

V~P,Q9!2
H 2

Pj

V~P,Q9!
h~P,Q,Q9!h~P,Q9,Q8!

1
V~P,Q!V~P,Q9!]Pjh~P,Q,Q9!

V~P,Q!1V~P,Q9!
h~P,Q9,Q8!

1h~P,Q,Q9!
V~P,Q9!V~P,Q8!]Pjh~P,Q9,Q8!

V~P,Q9!1V~P,Q8!
J .

Becauseh depends onP only throughiPi we can replace]Pj everywhere byPj iPi21] iPi . The
conditionAj1Bj50, which must hold for allfPD , leads to the fundamental equation~23!, for all
jP$1,2%.

The equation~14! is slightly more difficult. By usingJQO50 and by puttingJP:5J2JQ, the
linear part can be written in symbolic notations:

Cf~P,Q!:52~L0,1
P
OL0,2

P 2L0,2
P
OL0,1

P 2 iOJP!f~P,Q!

522VE ds8@~]2f8!]12~]1f8!]2#
h

V1V8

22E ds8

V8
@~P1]22P2]1!f8#

h

V1V8

52
2i

iPi E ds~Q8!

V~P,Q8!
„JPf~P,Q8!…Dh~P,Q,Q8!.

The bilinear part gives

Df~P,Q!:5S 1
2

~CO1OC!1L0,1
P
O 2L0,2

P 2L0,2
P
O 2L0,1

P 1 iO 2JPDf~P,Q!

52
i

iPi E ds8

V8
JPf8E ds9

V9
SDhQ,Q9

hQ9,Q8

V81V9
1

hQ,Q9

V1V9
DhQ9,Q8D

3~2 i !2E ds8

V8
VV8@~]2f8!]12~]1f8!]2#E ds9

V9

hQ,Q9

V1V9

hQ9,Q8

V81V9
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1E ds8

V8
@~P1]22P2]1!f8#E ds9

V9

hQ,Q9

V1V9

hQ9,Q8

V81V9

52
i

iPi E ds8

V8
JPf8E ds9

V92
~DhQ,Q9hQ9,Q81hQ,Q9DhQ9,Q8!

1 i E ds8

V8
JPf8E ds9

V93
hQ,Q9hQ9,Q8.

The conditionC1D50, which must hold for allJPf, leads to the fundamental equation~23!
again.
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Scaling equations determining Haar-type wavelets are considered for three Pisot
numbersb5(11A5)/2, 11A2, 21A3 appearing as dilation factors in scale in-
variance of observed diffraction patterns of quasicrystals. Simple summation for-
mulas for exponentials of the correspondingb integers are derived. ©1996
American Institute of Physics.@S0022-2488~96!03006-X#

I. INTRODUCTION

Wavelets have found many applications in modern science.1,2 They are useful in signal pro-
cessing, numerical solution of differential equations, analysis of fractals, etc. From a quantum
mechanical point of view wavelets represent coherent states of the affine groups defining bases of
Hilbert spaces. A particular interest is paid to such bases built by discrete dilations and translations
of one~or few! function~s!. A self-consistent procedure~multiresolution analysis! of constructing
the latter generating function has been developed for rational dilation factorsb ~see, e.g., Refs.
1–3 and references therein!. Analysis of the irrational factor cases, both algebraic and transcen-
dental ones, is one of the motivations of the present investigation. Although our consideration is
far from complete, the summation formulas derived below may be useful in the description of
some fractals and quasicrystals.

We shall consider three cases:

b5
11A5
2

52 cos
2p

10
;

b511A25112 cos
2p

8
;

b521A35212 cos
2p

12
. ~1!

Powers of these numbers appear as dilation factors in scale invariance of observed diffraction
patterns of quasicrystalline alloys.4 The numbers~1! are known to be unitary Pisot numbers. Let
us give some necessary definitions. A numberb is called an algebraic integer if it satisfies the
equation

xn1an21x
n211•••1a050, ~2!

where the coefficientsak , k50,...,n21 are integers. Note that the highest power ofx appears in
~2! with the coefficient 1. A solution of~2! b is called a Pisot, or a Pisot–Vijayaraghavan number
if b.1 and all other roots of~2! have modulus less than 1@it is assumed that all roots of~2! are

a!On leave from the Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia.
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simple#. A Pisot number is called unitary ifua0u51. Ordinary integers are Pisot numbers but the
rational numbers are not. An interesting property of Pisot numbersb is that the powersb n are not
uniformly distributed modulo 1~more precisely, this sequence converges to 0 modulo 1!. The
Lebesgue measure of numbers with such a property is 0; astonishingly, it is not known whether
fractional numbers belong to this set or not, i.e., in this respect they are more complicated than
some irrational numbers. Pisot numbers form a closed set bounded from below and the lower
boundb0'1.32 is the real root of polynomialx32x21.5 Within this set lies the closed subset of
totally real~i.e., all conjugated roots are real! Pisot numbers, which is bounded from below by the
golden mean (11A5)/2. Theexistence of such bounds should have physical consequences in the
sense that there should be some principal differences between the objects built by the scalings with
the help ofb>b0 andb,b0.

Let us briefly present the main wavelet construction formulas for the scaling factor equal to 2.
The basic equation called the scaling equation~sometimes it is referred to as the refining equa-
tion!,

x~x!5(
k
ckx~2x2k!, kPZ, ~3!

has compact support solutions when the number of nonzero coefficients in~3! is finite. The
simplest representative of such systems appears from the equation

x~x!5x~2x!1x~2x21!, ~4!

determining the Haar scaling function

x~x!5 H1, for xP@0,1#;
0, for x¹@0,1#. ~5!

An orthonormal basis ofL2~R! is built from the wavelet function

h~x!5(
k

~21!kc12kx~2x2k!, ~6!

by discrete dilations and translations,

hj ,k~x!52 j /2h~2 j x2k!, j ,kPZ. ~7!

The scaling factor 2 in the given formulas plays the central role, the whole construction being
based on the dyadic property 1/2j51/2j1111/2j11. However, the base of scaling 2 is too specific,
in many cases dilations by arbitrary real numbers play an important role, e.g., such a situation
takes place for the self-similar potentials discussed in Ref. 6, which are determined by the mixed
differential andq-difference equations. It is expected that the wavelets provide a relevant tool for
analysis of solutions of such equations. In the following sections we discuss how far one can go
in the building of wavelets if the base of scaling is an irrational number.

II. GOLDEN MEAN SCALING FACTOR

Recently, a generalization of the Haar wavelet has been proposed in Ref. 7. It uses thet-adic
property of the ‘‘golden mean’’ numbert5(11A5)/2'1.62:

1

t j
5

1

t j11 1
1

t j12 or t25t11. ~8!
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The numbert is the simplest irrational algebraic integer, by some properties it is quite close to the
number 2. Equation~8! provides a subdivision of the unit interval into two parts@0,1#5@0,1/t#ø@1/
t,1#. The importance of scalings byt and of the Fibonacci numbers associated with that in various
domains of physics~and biology! is well known. It is especially relevant in geometrical studies of
five-fold and ten-fold structures.

It is easy to see that the Haar scaling function~5! satisfies the equation

x~x!5x~tx!1x~t2x2t!. ~9!

The t wavelet of Haar7 has the form

ht~x!5t21/2x~tx!2t1/2x~t2x2t!. ~10!

An orthonormal basis ofL2~R! is constructed in similarity with~7!:

$hj ,b
t ~x!,hj ,2b21

t ~x!%, jPZ, bPtZt
1,

where

hj ,b
t ~x!5t j /2ht~t j x2b!. ~11!

Here Zt
1 denotes the set of positivet integers~including zero!, i.e. real numbers that can be

represented in the form

b5(
l50

j

e lt
l , e l5$0,1%, e le l2150. ~12!

The first t integers are 0,1,t,t2,t211,t3, etc; they tile quasiperiodically positive real line by two
tiles with respective lengths 1 and 1/t, forming what is called the Fibonacci quasilattice. BytZt

1

we denote the set of positive ‘‘even’’t integersb that do not have 1 as the last digit, i.e.e0(b)Þ1.
Some additional information about the generalb-numeration systems is given in the next section.

The Fourier transformation of~9! yields

f~j!5
1

t
fS j

t D1
e2 i j/t

t2
fS j

t2D , f~j!5E
2`

`

x~x!e2 i jx dx. ~13!

Fourier transform of the Haar scaling function is known explicitly,

f~j!5E
0

1

e2 i jx dx5
12e2 i j

i j
, ~14!

in particular,f~0!51. Iterating relation~13! N21 times one derives the equation~cf. with Ref. 8!

f~j!5
FN11

tN
fS j

tND1
FNe

2 i j/tN

tN11 fS j

tN11D , ~15!

where the coefficientsFN~j! satisfy the three-term recurrence relation

FN12~j!5FN11~j!1e2 i j/tNFN~j!, F15F251. ~16!

Note thatFN~0! coincide with the Fibonacci numbers.
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Denote as$bN% the set oft integers~12! that are strictly less thantN. From the general
representation~12! one can deduce that$bN%5$tbN21%ø$11t2bN22%. As a result, one can see
that solution of the equation~16! is given by the following sum:

FN~j!5 (
bP$bN22%

e2 i jb/tN22
. ~17!

The Fibonacci numbersFN~0! thus count thet integers satisfying 0<b,tN22. Since in the limit
N→` one hasf~j/tN!→1, the relation~15! generates an interesting summation formula men-
tioned in Ref. 7,

e2 i j/2
sin j/2

j/2
5
11t2

t3
lim
N→`

1

tN (
bP$bN%

e2 i jb/tN. ~18!

A real part of the lhs of this equality is given by the function sincj5sin j/j. Expanding both sides
of the equation~18! into a Taylor series and equating coefficients in front of the powers ofj, we
get the following estimate of the growth of sums of powers oft integers:

(
0<b,tN

bn→
tN~n11!13

~n11!~11t2!
. ~19!

For n51 this may be compared with the sum of ordinary integers,

(
0<k,2N

k52N21~2N21!→22N21.

It would be interesting to find similar exact formulas for the sums~19!. Repetition of the deriva-
tion of ~18! for the standard scaling Eq.~4! results in the formula

e2 i j/2
sin j/2

j/2
5)

j51

` S 11e2 i j/2j

2
D 5 lim

N→`

1

2N (
0<k,2N

e2 i jk/2N, ~20!

where the summation goes over the ordinary positive integers. In Fig. 1 we depict the function
sincpt versus the real parts of the rhs of~18! for N56 ~j5pt! and the rhs of~20! for N54.

For arbitrary integer scaling factorp, the rhs of~20! is replaced by

)
j51

` S 11e2 i j/pj1•••1e2 i j~p21!/pj

p
D 5 lim

N→`

1

pN (
0<k,pN

e2 i jk/pN, ~21!

which follows from the evident identity 151/p1•••11/p with p terms in the sum. However, it is
not clear how to generalize this relation to the fractional scaling factors.

III. SUMMATION FORMULA FOR THE OCTONACCI NUMBER

Consider now another algebraic integerb511&'2.41, solution of the equationb252b11,
which is sometimes called the octonacci number. This is the simplest unitary Pisot number in the
extension ringZ@1,2 cos 2p/8# and such thatZ@1,b#5Z@1,2 cos 2p/8#. Before considering prop-
erties of this specific number, we would like to describe briefly the generalb-numeration
algorithm.9,10

For a given real numberb.1 any positive real numberx can be represented in the form of
series overb:
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x5 (
l52`

j

e lb
l , e l5$0,1,..,d%, ~22!

whered5b21 if b is an integer and otherwised5@b# the integer part ofb. This representation,
denoted symbolically asx5e j •••e0.e21••• , is unique if the digitsel are restricted in such a way
that for anyk one hasS l,ke lb

l,bk. Forb5t this means that there are no two successive digits
equal to 1. When the expansion~22! contains only non-negative powers ofb, x is said to be ab
integer;b integers can be characterized by a finite algorithm only in special cases.

The above unique decomposition can be obtained by the so-called ‘‘greedy’’ algorithm. For
any x.0 there iskPZ such thatbk<x,bk11. Then putek5[x/bk] and r k5$x/bk% ~curled
brackets$x% denote the fractional part ofx!. Other digitsel , l,k are determined recursively,
e l5[br l11], wherer l5$br l11%. A simple characterization of the constraints upon digits uses the
Rényi expansion of 1 denotedd(1,b)50.e21•••e2 l••• and obtained through the recursion
e2k215[bTb

k1], whereTbx[(bx) mod 1 for anyxP@0,1#.9 For example, one hasd~1,t!50.11.
A numberb is called a beta number if the corresponding Re´nyi expansion of 1 is eventually

periodic @i.e., there exists an integerk such that forl.k all digits e2 l in d~1,b! are obtained by
periodic repetition of some finite set of digits#. For these numbers the notion ofb integers is well
defined in the sense that one can describe them by using a finite algorithm. An important fact is
that any Pisot number is a beta number,10 but there are beta numbers that are non-Pisot algebraic
integers. Pisot numbers are important for building quasicrystals due to some additional properties
~e.g., local inflationary properties! that we do not discuss here.

Returning to the octonacci number, we see thatel5$0,1,25@b#%, and in the correspondingb
numeration the pairs$e l ,e l21% are forbidden to be$2,1% and$2,2% since the Re´nyi expansion of 1
is d~1,b!50.21. The firstb integers are 0,1,2,b,b11,b12,2b,b2,... . These numbers cover the real
line quasiperiodically by two tiles with respective lengths 1 andb2251/b.

The equation satisfied byb determines a subdivision of the unit interval into three pieces such
that the ratio of their lengths is equal to a power ofb:

FIG. 1. The function sincpt and real parts of the rhs of~18! for N56 ~the middle curve! and of the rhs of~19! for N54
in appropriate units. The errors att53 are less than 5% of the maximum att50.
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15
1

b
1
1

b
1

1

b2 . ~23!

This allows one to write a new equation for the Haar scaling function,

x~x!5x~bx!1x~bx21!1x~b2x22b!, ~24!

Fourier transformation of which yields the following ‘‘q-difference’’ equation:

f~j!5
11e2 i j/b

b
fS j

b D1
e2 i2j/b

b2 fS j

b2D . ~25!

Iteration of this equationN21 times results in

f~j!5
GN11

bN fS j

bND1
e2 i2j/bNGN

bN11 fS j

bN11D , ~26!

where the coefficientsGN~j! are determined from the recurrence relation

GN125GN11~11e2 i j/bN11
!1GNe

2 i2j/bN, G050, G151. ~27!

In similarity with the previous case, solution of this recurrence is given by the sum

GN~j!5 (
bP$bN%

e2 i jb/bN21
, ~28!

where the summation goes over the set ofb integers$bN% satisfying the constraints 0<bN,bN

ande0(bN)Þ2 ~i.e., 2 is excluded as the last digit!. The proof of~28! goes by induction. Indeed,
$bN% can be split into three groups:

$bN%5$bbN21%ø$11bbN21%ø$2b1b2bN22%, ~29!

in self-explanatory notations. It is not difficult to see that~29! corresponds exactly to the rule of
addition of exponentials in~27!, ~28!. As a result, in the limitN→`, one gets from~26! the
summation formula

e2 i j/2
sin j/2

j/2
5
11b2

b2 lim
N→`

1

bN (
bP$bN%

e2 i jb/bN. ~30!

This formula differs from~18! and~20! by the presence of the constraint upon the last digit ofb
integers entering the sum. In Fig. 2 we depict sincpt and the real part of the rhs of~30! for N53
in the appropriate units. Analogously to~19!, we can estimate from~30! the growth of the sum of
powers of theb integers belonging to$bN%,

(
bP$bN%

bn→
bN~n11!12

~n11!~11b2!
.

Since we have a subdivision of@0,1# into three intervals, there are two wavelet functions of
the Haar type obtained by orthonormalization ofx(x), x(bx), andx~bx21!:
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h~1!~x!5Ab21x~bx!2
1

Ab21
„x~bx21!1x~b2x22b!…,

~31!

h~2!~x!5
1

Ab21
„x~bx21!2bx~b2x22b!….

Splitting of theb integers into two sets,e0(b)Þ2 ~‘‘even’’ ! ande0(b)52 ~‘‘odd’’ ! appears natu-
rally in the translations of~31! without overlaps. One can check thathj ,b

( l ) (x)5b j /2h( l )(b j x2b)
andhj ,2b21

( l ) (x) define orthonormal vectors ofL2~R!, providede0(b)Þ2. In order to prove that this
sequence forms a basis of the Hilbert space, it is necessary to verify that it is dense that we do not
pursue here.

IV. INFINITE PARTITION OF THE UNIT INTERVAL CASE

There are infinitely many algebraic integers for which one can derive summation formulas
similar to ~18! and ~20!. However, for some of these numbers subdivision of the unit interval
contains infinitely many terms. For example, such a situation takes place forb521)'3.73,
b254b21, when

15
3

b
12(

j52

`
1

b j , or d~1,b!50.322 222... . ~32!

This b is the simplest unitary Pisot number in the extension ringZ@1,2 cos 2p/12#, such that
Z@1,b#5Z@1,2 cos 2p/12#. Theb integers are defined similar to~12!, with el varying from 0 to
@b#53 and the constraint that between any two digitsel53 of the b numeration of arbitrary
number, there should be at least one 0 or 1~i.e., combinations$3,3%, $3,2,3%, etc. are forbidden!.
These numbers tile the positive real line by two tiles with respective lengths 1 andb23; the first
few b integers are 0,1,2,3,b,b11,b12,b13,2b,... .

FIG. 2. The function sincpt and the real part of the rhs of~30! for N53. The approximation is less accurate than in
Fig. 1.
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Using ~32! one constructs a scaling equation for the characteristic function~5!:

x~x!5x~bx!1x~bx21!1x~bx22!1x~b2x23b!1x~b2x23b21!

1 (
k53

`

@x~bkx23bk2122bk222•••22b!1x~bkx23bk2122bk222•••22b21!#,

~33!

or, after Fourier transformation,

f~j!5
1

b
~11e2 i j/b1e2 i j2/b!fS j

b D1
e23i j/b

b2 ~11e2 i j/b2!fS j

b2D
1e2 i j(

k53

`
1

bk ~e2 i j~12b!/bk1e2 i j~22b!/bk!fS j

bkD . ~34!

Let us write the result of successive iterations of this relation in the form

f~j!5 (
k50

` GN
k ~j!

bN1k fS j

bN1kD , ~35!

whereN>1 andG1
k~j! are fixed in~34!. Using the scaled form of~34! and substitutingf~j/bN!

into ~35!, we derive the following recurrence relation:

GN11
k ~j!5GN

0 ~j!G1
k~j/bN!1GN

k11~j!. ~36!

For k50 the first few steps of iteration of this relation allow us to see thatGN
0 ~j! forms the pattern

GN
0 ~j!5 (

bP$bN%
e2 i jb/bN, ~37!

where$bN% are theb integers satisfying 0<bN,bN, with the exception of those forming the left
edge of tiles with lengthb23. The latter means thate0(bN)Þ3, but since we are dealing with the
infinite partition of 1 there are other forbidden numbers as well. Namely, 3b12 and all otherb
integers having as the last digits the sequence$3,2,2,...% do not belong to$bN%.

The summation formula we are interested in arises from~35! in the limit N→`,

e2 i j/2
sin j/2

j/2
5 lim

N→`
(
k50

` GN
k ~j!

bN1k . ~38!

For N→` the recursion~36! simplifies

GN11
0 53GN

01GN
1 , GN11

k 52GN
01GN

k11, k>1. ~39!

SinceGN
0 ~j! is known ~37!, one may invert~39! in order to determineGN

k ~j!, k.0:

GN
k 5GN1k

0 23GN1k21
0 22GN1k22

0 2•••22GN
0 , k.0. ~40!

Substituting this formula into~38!, we find the partial sum

Sl5 (
k50

l

lim
N→`

GN
k ~j!

bN1k 5 lim
N→`

SGN
0

bN S 12
3

b
2

2

b22•••2
2

b l D 1
GN11
0

bN11 S 12
3

b
2

2

b22•••2
2

b l21D
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1•••1
GN1 l21
0

bN1 l21 S 12
3

b D1
GN1 l
0

bN1 l D 5S b11

b
2

1

b l D lim
N→`

GN
0 ~j!

bN . ~41!

Taking the limit l→` in Sl , we find the summation formula

e2 i j/2
sin j/2

j/2
5
11b

b
lim
N→`

1

bN (
bP$bN%

e2 i jb/bN. ~42!

This formula looks similar to the previous ones, but its derivation is not rigorous because we did
not verify that the recursion~36! corresponds indeed to the law of addition of exponents in~37! for
arbitraryN. In Fig. 3 we depict imaginary parts of the lhs of~42! and the rhs forN53 in the
variablet5j/p ~the real part looks very close to the middle curve in Fig. 1!. We are reminded that
b integers from$bN% do not include left edges of the short~b23! tiles. It would be interesting to
understand why for the golden mean number the sum~18! goes over allt integers, whereas in the
last two cases only the long tiles are relevant. If one takes inverse Fourier transforms of the
derived summation formulas, one will find that the characteristic function of the unit interval can
be approximated as a homogeneous sum of weighted Dirac delta functions located at theb-adic
points and, again, it is not clear why one has to abandon some of these points forb511& and
21).

V. DISCUSSION OF THE MULTIRESOLUTION ANALYSIS

Wavelets are known to be related to iterative interpolation. In the case of interpolation of
functions given on the lattice pointsZ the standard procedure consists in fixing the value of
function on the dyadic~for the base 2!, or, more generally, on thep-adic points of the real line.
The rule of interpolation usually takes into account values of the function in several neighboring
points~with some weights! in which the function was fixed at the previous steps of interpolation.11

Due to the translational invariance the interpolation takes place homogeneously over the space.
This is not so for the quasilattices.

FIG. 3. The function~cospt21!/pt and the imaginary part of the rhs of~42! at N53. Two curves almost coincide.
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Suppose that values of a function are fixed in the points of the Fibonacci quasiperiodic lattice
G formed by thet integers. Now there are two tiles with lengths 1 and 1/t. The first step of
subdivision process splits only the long tiles into two parts and the short tiles are left untouched.
In this case the interpolation rule should be more involved than in theG5Z case, but the principle
procedure remains the same.

Now let us discuss briefly a possible form of the multiresolution analysis associated with
quasiperiodic tilings of a Euclidean space. Denote byG a set of points inRn satisfying the
Delaunay property. This means that~a! the distance between any two points ofG is larger than a
fixed realr.0, and~b! there exists a real numberR.0 such that any ball of radiusR contains at
least one point fromG. Such a set is said to form a quasilattice if it is equipped with additional
properties~Meyer quasiaddition, local self-similarity,...!. Assume that there exists an invertible
matrixA whose eigenvalues have modulus larger than 1 and such thatAG,G for all points from
G. A multiresolution analysis of the Hilbert spaceL2~Rn! is a decomposition of it into a chain of
subspacesVj that satisfy the following set of conditions.

~1! Vj,Vj11, jPZ.
~2! The closure ofø jPZVj coincides withL

2~Rn!.
~3!ù jPZVj 5 $0%.
~4! If f (x)PVj then f (Ax)PVj11 and f (A

21x)PVj21.
~5! There is a finite number of scaling functionsx (k)(x)PV0 , k51,...,K, such that the set

$x (k)(x2g), gPG% is an orthonormal basis ofV0.
When G is a crystallographic lattice, e.g.Zn, andK51, such definition is known to have

nontrivial solutions for integer-valued matricesA.12 In the one-dimensional space the above defi-
nition is valid for fractional dilation factors, but there are no compact support scaling functions in
this case.3 Whenb is irrational andG5Z only the sinc x-type scaling functions are admissible.3

For K.1 the scaling equation acquires a matrix form,13 and the corresponding theory is referred
to as a multiwavelet theory. The multidimensional multiwavelets were considered to some extent
in Ref. 14.

Consider how scaling equations for Haar wavelets with an irrational scaling factor described
earlier fit into the multiresolution scheme ofL2~R!. For b5t the subspaceV0 is spanned by two
functions7 $x(x2b),x(x1b11)%, with bPtZt

1 and $x(tx2b),x(tx1b11)% with bPtZt
1odd

~a t integer is odd if its last digit is 1, i.e. if it coincides with the left edge of a short tile!. Despite
the fact that the second scaling function is obtained from the first one by dilation, it is different
from it, and this hints on the multiwavelets. Note however, that in the decomposition
V15V0%W0 , the subspaceW0 is covered only by one wavelet function and the elements ofW0
have support only on the tiles of length 1. The latter means that the support of functions fromWj

in the decompositionVj115Vj %Wj never covers the whole line. This is an interesting property of
the t-multiresolution analysis—it subdivides only ‘‘large’’ tiles into the smaller ones.

Actually all three scaling equations considered by us can be represented in the 232 matrix
form:

x~k!~x!5(
r51

2

(
m50

@b#

cm
krx~r !~bx2m!, ~43!

wherex (1)(x)5x(x), i.e. we indeed have multiwavelets. Note that only translations by integers
are entering the sum in~43!, but in the span ofV0 the functionsx(k)(x) are translated by theb
integers. Forb5t one has~unnormalized! x~2!(x)5x(tx) and

M ~z!5 (
m50

1

cmz
m5S 1 z

1 0D . ~44!

For b511& one hasx~2!(x)5x(bx) and
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M ~z!5 (
m50

2

cmz
m5S 11z z2

1 0 D . ~45!

A more interesting situation takes place for the infinite partition of 1 case, since the new scale
intervenes the scene

x~2!~x!5xS x

b23D ,
so that

M ~z!5 (
m50

3

cmz
m5S 11z1z2 z3

11z z2D . ~46!

The choicez51 in M (z) corresponds to settingj50 in the Fourier transform of the scaling
equations. We remark that in all three casesM ~1! coincides with the matrix of substitutions of
letters used in the construction of corresponding quasiperiodic tilings~for the Fibonacci case this
is the celebrateda→ab, b→a two letter algorithm!. This observation should be relevant for
building Haar-type wavelets for an arbitrary beta number.

The subdivision process in the octonacci number case is similar to the golden mean one—at
each step only the long tiles are split into three pieces and the short ones are left untouched so that
at any step of the subdivision only two types of tiles are present~also, it can be seen that the
support of wavelets inWj does not cover the whole line!. In theb521) case the situation is
different. As it is seen from the matrix form of the scaling equation, the long tiles are split into
four pieces and the short ones into three, so that at each step of the subdivision one has again only
two tiles with respective lengths 1/bj and~b23!/bj . Such a picture of refining of the quasilattice
may happen to be relevant for the quasicrystals growth process.

For completeness we give three Haar-type wavelets necessary for building an orthonormal
basis ofW0 for b521):

h~1!~x!5Ab21x~bx!2
1

Ab21
„x~x!2x~bx!…,

h~2!~x!5Ab~b22!

b21
x~bx21!2A b

b11
„x~x!2x~bx!2x~bx21!…, ~47!

h~3!~x!5A 2b

b11 S x~bx22!2
b

b21
„x~x!2x~bx!2x~bx21!2x~bx22!…D .

In the splitting of length 1 tiles all three functions are appearing, whereas for the~b23! tiles only
h(2)(x) andh(3)(x) are relevant, since their support is less than or equal tob23.

With any beta number one can associate a tiling of the real line by a finite number of tiles.
Therefore it is natural to expect that for an arbitrary beta-number scaling factor one will need only
a finite number of Haar-type wavelets. If the dilation parameter is not a beta number~this does not
necessarily mean that it is transcendental!, probably there will always be an infinity of wavelets of
compact support. Certainly this diminishes an economy reached by the discrete wavelets with
respect to the continuous ones. For example, such a situation seems to take place for the fractional
scaling factors since the Re´nyi expansion for them is not eventually periodic~this contradicts the
intuition that fractional numbers are simple objects!. Because the noncompact support wavelets
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are less sensitive to the origin of the scaling factor, it may occur that there are finitely many
discrete wavelets for some of the nonbeta number scaling factors~e.g., for some kind of fractions
of beta numbers!.

It should be stressed that in principle one can use a split of the unit interval into two sub-
intervals with the help of arbitrary scaling factorb.1. This subdivision can be written tautologi-
cally as 151/b11/a, a5b/~b21!. One may take the Fourier transform of the obvious equality
x(x)5x(bx)1x(ax2a/b) for the characteristic functionx(x) and iterate the resulting relation
as we did it above. This would give a representation of the Fourier transform ofx(x) as an infinite
sum of exponentials with arguments scaled by powers ofb anda. However, the coefficients in
front of these exponentials are not simple and the numbers entering the exponents are difficult to
characterize. The importance of beta numbers, for any of which one can derive summation for-
mulas similar to the discussed ones, stems from the fact that for them there is a finite algorithm for
determiningb integers following from the finite or eventually periodic form of the Re´nyi expan-
sion of 1. Note that the scalings by arbitrary integerp lead to the infinite product representations
of the sinc function, admitting a probabilistic interpretation. The summation formulas we have
derived do not have a similar infinite product representation, but there should be some probabi-
listic meaning of them too.

The key difference between lattices and quasilattices is that the sum of two points of the
lattice remains in the lattice, whereas for quasilattices$g11g2%úG, g1,2PG. Therefore for quasi-
lattices one actually has the orthogonality relations with the larger number of points than those in
G:

E
2`

`

x~ j !~x2g1!x
~k!~x2g2!dx5dg1 ,g2

d jk5d0,g12g2
d jk , ~48!

which is valid, even ifg12g2¹G. Note that there is a correlation between the indicesj,k andg1,2
in ~48!. Whenb is a Pisot number the points of difference set either belong toG or they are close
but not arbitrarily close to the quasilattice, i.e. the difference set obeys the Delaunay property15

~such setsG are called Meyer sets!. E.g., forb5t its points either lie inG or they are obtained
from G by adding 1/t or 1/t2.16 Whether this requires further specification of the form of multi-
resolution analysis is not yet clear. However, most of the tools used for derivation of discrete
wavelet bases from the multiresolution analysis disappear in the nonperiodic setting.

It is worth it to draw attention to the recent work,14 where the crystallographic Coxeter groups
were applied to the construction of wavelets. It is natural to expect that in the context of irrational
scaling factors the higher-dimensional quasicrystallographic structures become relevant and,
again, one may expect strong dependence of the multiresolution analyses on the nature of irratio-
nality of the dilation parameter.
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Moduli-space structure of knots with intersections
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It is well known that knots are countable in ordinary knot theory. Recently, knots
with intersectionshave raised a certain interest, and have been found to have
physical applications. We point out that such knots—equivalence classes of loops
in R3 under diffeomorphisms—are not countable; rather, they exhibit a moduli-
space structure. We characterize these spaces of moduli and study their dimension.
We derive a lower bound~which we conjecture being actually attained! on the
dimension of the~nondegenerate components! moduli spaces, as a function of the
valence of the intersection. ©1996 American Institute of Physics.
@S0022-2488~96!02806-X#

I. INTRODUCTION

At the end of his delicious booklet on catastrophe theory,1 Arnold notices the following.
Consider a set ofn lines through the origin in the plane. Call two such sets equivalent if they can
be mapped into each other by a linear transformation of the plane. The equivalence classes are
discrete forn51,2,3; but forn54, a moment of reflection shows that the equivalence classes are
parametrized by a continuous parameter. Precisely this phenomenon is at the root of the emer-
gence of a rich moduli space structure in the spaces of knots with intersections.

Knots play an increasingly important role in various areas of mathematics and physics.2–4

Classical knot theory5 deals with knots without intersections, but recent applications of knot
theory require knotswith intersectionsto be considered as well.6 For instance, quantum states of
the gravitational field are labeled by knots with intersections in the loop representation approach to
quantum gravity.7,8 Knots can be defined in two ways: as equivalence classes of loops inR3 under
continuous deformations~ambient isotopy! of the image of the loop—‘‘c knots;’’ or as equiva-
lence classes~of unparametrized loops! under invertible smooth transformations~diffeomor-
phisms! of R3-‘‘ d knots.’’ For the non-self-intersecting loops, the two definitions are equivalent,
and there is no distinction betweenc knots andd knots. But the two definitions cease to be
equivalent in the case with intersections. Intersectingd knots are different than intersectingc
knots. The case of intersectingd knots is of particular interest in physics;7 these knots display a
remarkable novel phenomenon, which, to our knowledge, has been rarely noticed~the only men-
tion to this phenomenon we could find in the literature is in Ref. 9!: unlike ordinary knot spaces,
the spaceK d of the intersectingd knots is not countable.

The continuous dimensions of the spaceK d come from the differential structure of the
underlying manifold. The differential structure gives rise to a tangent spaceTp at intersection
points, loops define lines inTp , and diffeomorphisms act linearly onTp . Equivalence under
diffeomorphisms imply equivalence under linear transformations ofTp . We are therefore pre-
cisely in the situation of Arnold’s example—one dimension up. For a large enough number of
lines, linear transformations ofTp fail to be able to align all the lines, and a moduli space structure
emerge. Let us illustrate more in detail how this comes about by means of an example. Consider
a smooth loopa in R3, with a self-intersection pointpPR3, and assume thata goes throughp five
times, so that it has five tangentsv1,...,v5 at p ~assume any three of the five are linearly indepen-

a!Electronic mail: norbert@phyast.pitt.edu
b!Electronic mail: rovelli@pitt.edu
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dent!. Let us denote byKc@a# thec knot to whicha belongs. Consider a loopb in the samec knot
Kc@a#. The loopb will have an intersection point as well, sayq, and five tangentsw1,...,w5 at q.
In order fora andb to be in the samed knot, there must be adiffeomorphism f:R3→R3 sending
a into b. In particular,f mapsp to q. The tangent mapf * maps the tangent space atp, Tp , to the
tangent space atq,Tq , and it should align the tangentsvi ~i51,...,5! to the tangentswi . But f * is
a linear map between three-dimensional spaces, given by the Jacobian matrix off at p; it is a
GL~3! transformation depending on nine parameters. Since the directions of five vectorsvi depend
on ten parameters, it is clear that generically no linear transformation exists that aligns five given
vectorsvi to five given vectorswi . Generically,a andb will not belong to to the samed knot.
There will be—at least—one continuous parameterl—function of the angles between the five
tangents—which is invariant under diffeomorphisms and distinguishesa from b. Actually, as we
shall see, in this example there are two such parameters,l1 andl2; we will give them explicitly
below.d knots are distinguished by such continuous parameters, and therefore fail to be countable.
The space of alld knots in Kc@a# is a finite-dimensional space obtained by quotienting the
infinite-dimensional spaceKc@a# by the infinite-dimensional group DiffR3. Namely, it is a moduli
space, coordinated by the two moduli,l1 andl2.

The same phenomenon repeats in the higher jets—namely for derivatives of the loops higher
than the tangents—in a more intricate manner. Derivatives of ordern transform under diffeomor-
phisms according to~nontrivial! transformation formulas that depend only on the derivatives of
ordern21 ~or lower! of the Jacobian matrix. Since the last have a finite number of components,
a sufficiently high number of segments crossing one intersection will always give rise to new
moduli. Thus,d knots are not countable and exhibit a very rich moduli space structure, coming
from the jets of all orders.

In this paper, we make the above observation precise, we define the moduli spaces of inter-
sectingd knots, and study their general structure and their dimension. We derive some general
results on these dimensions. In particular, our main result is a formula for the dimension of the
~generic components! of these spaces. We show that this formula gives a lower bound on the
dimension of these spaces as a function of the valence of the intersection, and we conjecture that
the formula gives indeed the correct dimension. Our original motivations came from quantum
gravity, and we expect, in particular, that our results could be of interest for that field.

II. STRUCTURE OF THE INTERSECTING d-KNOT SPACE

By loop, we indicate here a smooth mapa: S1→M from the circleS1 to a three-dimensional
manifoldM , which we assume for simplicity having the topology ofR3. We indicate loops by
Greek lettersa,b,..., and denote the space of the loops inR3 asL. We consider two equivalence
relations inL. We say thata andb are c equivalent, and writea;cb if there exist a smooth
one-parameter familyct ,tP@0,1# of smooth, invertible maps from the image ofa to R3 such that
c0a5a andc1a5b. Namely, if the image ofa can be smoothly deformed to the image ofb. This
is clearly an equivalence relation; we call the corresponding equivalence classes inL c knots, and
denote them asKc . We denote the equivalence class to whicha belongs asKc@a# and the space
of c knots asK c . Next we say thata andb ared equivalent, and we writea;db, if there exist
a diffeomorphismt of S1 and a diffeomorphismf of M—connected to the identity—such that
a5f +b+t. This too is an equivalence relation. We call the correspondingd-equivalence classes in
L d knots, and denote them asKd . We denote the equivalence class to whicha belongs asKd@a#,
and the space ofd knots asK d . Thus

K c5
L

;c
, K d5

L

;d
. ~1!

Our aim is to study the structure ofK d . In particular, we want to investigate its continuous
dimensions.d knots can be labeled by a set of discrete parameterskj and continuous parameters
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lj . We will use a Dirac-like notationKd5ukj ,l j&, suggested by the fact thatd knots label
quantum state of space–time in loop quantum gravity. We are interested in studying the appear-
ance and the number of continuous parameterslj , namely the dimensions of thed-knot moduli
spaces.

The space of thec knotsK c is countable. Since every diffeomorphism in the connected
component of the identity induces a smooth deformation of the image of the loop,a;db implies
a;cb, and therefore everyd knot is contained inside a singlec knot. Thus, we have a well-
defined mapi :K d→K c sendingKd@a# to Kc@a#. As the example of the introduction shows, the
mapi is not injective: ac knot is formed, in general, by manyd knots. We callK d

(Kc) the inverse
image ofKc underi , namely the set of thed knots that correspond to thec-knot Kc . The space
K d is thus the union of a countable number of componentsK d

(Kc) , one for everyc knot Kc ,

K d5 ø
KcPK c

K d
~Kc! . ~2!

In other words, the first discrete parameter that characterizes ad-knotKd is thec-knotKc to which
it belongs, and we can writeKd5uKc , other parameters&.

Let us consider one of the componentsKd
(Kc) . A continuous map cannot change the number of

intersectionsI of a loop. Therefore this number is well defined for ac-knotKc . Each intersection
i is further characterized by the numberNi of times the loop crosses it, which we call the valence
of the intersection, following the literature. Thus, a set of integersNi , i51...I—the valence of its
intersections—is associated with everyc knot. Imagine now that three segments cross at the
intersectioni , namelyNi53. Imagine that the corresponding three tangents at the intersection are
linearly dependent. A continuous transformation can alter this linear dependence, but a diffeomor-
phism cannot. Thus, the presence of linear dependency between tangents distinguishes thed knot.
We denote an intersection of valence three with linearly dependent tangents as a degenerate
intersection. Similarly, we denote an intersection of higher valence degenerate if at least one triple
of its tangents is linearly dependent. As we shall better illustrate below, degeneracy of this
kind—a relation between derivatives of the loop that cannot be removed by a diffeomorphism—
may occur for higher than first derivatives of the loops as well. The information about the presence
of degeneracy is discrete, and we represent it collectively by a discrete parameterki for every
intersectioni . We writeKd5uKc ,ki , other parameters& and denote the set ofd knots in the same
c knot and with the same degeneracies asK d

(Kc ,ki ) . We shall writeki50, or just omit theki to
indicate that thei intersection has no degeneracies.

This exhausts the discrete parameters that characterized knots. The remaining parameters
distinguishingd knots are continuous moduli parameters. Thus, the space of intersectingd knots
K d can be written as the union of a denumerable set of componentsK d

(Kc ,ki ) as

K d5 ø
KcPK c

ø
ki

K d
~Kc ,ki ! , ~3!

where the spacesK d
(Kc ,ki ) are finite-dimensional moduli spaces, whose dimensions we are now

going to study.
Let us consider one of these moduli spacesK d

(Kc ,ki ) . A moment of reflection shows that each
modulus is attached to one of the intersections, and that there is no relation between moduli of
different intersections. As we will show below, the number of moduli that characterize ad knot at
one intersection depends on the valenceNi of the intersection, and the possible presence of
degeneracies described byki . Let d(Ni ,ki) be the number of moduli that characterize an inter-
sectioni . Then, there will bed(Ni ,ki) continuous parameterslj

( i ), j51...d(Ni ,ki) characterizing
each intersectioni . Thed knot is then fully characterized by all these parameter for each of its
intersections. Namely

3016 N. Grot and C. Rovelli: Moduli-space structure of knots with intersections

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Kd5uKc ,ki ,l j i
~ i !&, ~4!

where i51...I and j i51...d(Ni ,ki). In other words, the moduli spaceK d
(Kc ,ki ) is the Cartesian

product of one moduli space per each intersection. We denote the moduli space of an intersection
of valenceN and ~possible! degeneracyk, byKN,k . We thus have

K d5 ø
KcPK c

ø
ki

^ iPKc
KNi ,ki

. ~5!

It follows that it is sufficient to study intersections~of any valenceN and with any degeneracyk!
in order to fully determine the general structure ofK d . Below, we will discuss the moduli space
KN5KN,0 of the intersections of arbitrary valence, but with no degeneracy. The case with
degeneracykÞ0 can be treated along similar lines.

III. THE MODULI SPACE KN

Let p be a nondegenerate intersection point of valenceN ~we drop the suffixi since we deal
here with a single intersection! in a loopa. We denote bys ~or t,u,...! a coordinate on the circle
S1 and use coordinatesx

a with a51,2,3 from an atlas ofM . Thuspa will be the coordinates ofp
and we writea:s°aa(s). There areN segments ofa crossingp ~the intersection betweena and
a sufficiently smallM neighborhood ofp!; we denote them bya i

a(s), wherei51...N, and we call
si theN points inS1 defined bya(si)5p. Similarly, we consider a second loopb in the same
moduli space, namely in the samec knot and with the same degeneracies asa. Let q be its
intersection point~corresponding top! andb i

a(s) the coordinates of the segments crossing inq.
The two loops are in the samed knot if there is a diffeomorphism of the three manifold
f :xa° f a(x) and a diffeomorphism of the circlet:s°t(s), such that

f a~a„t~s!…!5ba~s!. ~6!

If we Taylor expand this condition around the intersection point, for each of theN segments, we
obtain

ba~si !1
d

ds
ba~s!U

si

~s2si !1•••1
1

n!

dn

dsn
ba~s!U

si

~s2si !
n1•••

5 f a~a„t~si !…!1
d

ds
f a~a„t~s!…!U

si

~s2si !1•••

1
1

n!

dn

dsn
f a~a„t~s!…!U

si

~s2si !
n1••• . ~7!

From here on, the following notation will be used~for the sake of tradition and brevity!:

ȧ i
a5

d

ds
aa~s!U

si

, a i
~n!a5

dn

dsn
aa~s!U

si

,

f b1 ...bn
a 5

]nf a

]xb1...,]xbnU
p

, t i
~n!5

dn

dsn
t~s!U

si

. ~8!

We now consider each term of the expansion~7! separately. To zero order, we have
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f a~p!5qa. ~9!

To first order

f b
aȧ i

bt i
~1!5ḃ i

a . ~10!

Indices are summed if repeated on different levels. To second order we have

f bc
a ȧ i

bȧ i
c~ t i

~1!!21 f b
aȧ i

bt i
~2!52 f b

aa i
~2!b~ t i

~1!!21b i
~2!a . ~11!

And, for any ordern>2,

f b1•••bn
a ȧ i

b1•••ȧ i
bn~ t i

~1!!n1 f b
aa i

~n!b~ t i
~1!!n1 f b

aȧ i
bt i

~n!1Fi
a5b i

~n!a , ~12!

or

f b1•••bn
a ȧ i

b1•••ȧ i
bn~ t i

~1!!n1 f b
aȧ i

bt i
~n!5b i

~n!a2 f b
aa i

~n!b~ t i
~1!!n2Fi

a , ~13!

whereFi
a is a function of the derivatives off , ai

a, and t of orders lower thann ~namely of
f b1•••bk
a ,...;a i

(k)a ,...;t i
(k) , ..., with k51,...,n21!. Equation~7! is equivalent to the infinite system

~9!–~13!.
Now, the two loopsa andb ared equivalent if this system can be solved for the functionsf

and t, namely for the infinite tower of variablesf b1•••bn
a ,t i

(n) . Therefore, we may regard~9!–~13!

as a system of equations for the unknownsf b1•••bn
a ,t i

(n) . If the system can be solved for everya

andb, then all such loops are in the samed knot and there are no moduli. Namely, the moduli
space has zero dimension. This is the case, for instance, ifN52 ~the lowest valence intersection,
formed by a single crossing!. In fact, one can check in this case that for each ordern the number
of unknowns is larger than the number of equations, and the system can be solved. For higher
valence intersections, however, the system cannot be solved for arbitrarya andb. This means that
there are loops that are not in the samed knot, and we have a moduli space structure.

A moment of reflection shows that the dimension of the moduli space is equal to the number
of ~independent! equations that overdetermine the system. To clarify this point, imagine that the
system is solvable for generala andb only if we leave, say,d ~independent! equations out. By
inserting f and t that solve the rest of the system into these equations we obtaind equations
relatinga andb. If we imagine thatb is fixed, we obtain thend conditions ona, determining the
set ofa’s d equivalent tob. Thus, this set has codimensiond in the space of thea’s. This means
that ad knot has codimensiond in the space of the loops inKN , and therefore that there is ad
parameters space ofd knots inKN . NamelyKN is d dimensional.

Our task is therefore to find—for every givenN—the number ofd of independent equations
by which the system~9!–~13! is overdetermined. This may seem a hard task, given that the system
has an infinite number of equations, but there is a key observation that simplifies the matter. First,
observe that the system has a rather simple structure. As we increase the ordern, at each new
order there are only a finite number of new unknowns that appear. Indeed the unknownsf b1•••bn

a

and t i
(n) appear only at ordern or higher. We denote them as unknowns of ordern. For instance,

at order zero, the only unknowns are the threef a. At order unity, we have the new unknownsf b
a

~nine of them! and t i
(1) ~N of them!, and so on. Now, at each othern, we have the same number

3N of equations in the system. But the number of unknowns increases rapidly, because the
number of components off b1•••bn

a increases withn. Indeed,f b1•••bn
a has 33I n independent entries,

where

3018 N. Grot and C. Rovelli: Moduli-space structure of knots with intersections

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



I n5
~n11!~n12!

2
~14!

is the number of independent components in a completely symmetrized 3333•••33
n-dimensional matrix. It is then easy to see that~for fixed N! the equations of sufficiently high
order can always be solved. More precisely, for everyN, there is a numberm, which we determine
below, such that all equations of order higher thanm can always be solved, and we can safely
forget them. This fact essentially reduces the system to a finite-dimensional system, making the
problem treatable.

A. A gauge

One is now tempted to immediately proceed to determine the number of equations by which
the system is overdetermined by naively counting equations and unknowns order by order, and
subtracting. Unfortunately, there is a complication. At every ordern, the actual number of un-
knowns is less than what a simple count would suggest, because of the particular structure of our
equations. Consider first Eq.~10!. The unknowns are the nine components off b

a and theN
quantitiest i

(1). However, if f b
a ,t i

(1) solve ~10!, so do

f̃ b
a5T fb

a , t̃ i
~1!5T21Ti

~1! , ~15!

for every nonvanishingT. Therefore, the overall scaleT can never be determined by Eq.~10!. In
other words, Eq.~10! depends on only~91N21! functions of the~91N! quantitiesf b

a ,t i
(1). The

remaining one cannot be determined by this equation.
The same happens at higher orders. It is easy to verify that iff b1•••bn

a ,t i
(n) solve the equation

of ordern, so do

f̃ b1•••bn
a 5 f b1•••bn

a 1 f ~b1
a Tb2•••bn)

,

t̃ i
~n!5t i

~n!2Ta1•••an21
ȧ i
a1•••ȧ i

an21~ t i
~1!!2, ~16!

for every symmetric tensorTa1•••an21
. This tensor hasI n21 components. We call this transforma-

tion then-order gauge of the system. Because of the gauge, if we cut off the system at ordern, we
have indeedI n21 less unknowns entering the system than what a naive counting would suggest.
Are there other degeneracies beside the gauge we have just described? We suspect there are not,
but we have not been able to prove this in general. Because of this incompleteness, we cannot
claim that the number we compute below is in fact the dimension of the moduli space, but only
that it is the dimension’s lower bound.

B. Size of the space of solutions

Consider the ordern50, Eq.~9!. We have three unknowns (f a) and three equations there. The
system is linear and can obviously always be solved. Consider next the ordern51, Eq.~10!. There
are 91N unknowns, and 3N equations. But, because of the gauge described above, only 91N21
unknowns can be determined by the equations. Generically, the system can be solved if the
number of equations is less than or equal to the number of unknowns, namely if

3N<91N21. ~17!

In this case, ifN<4. A simple inspection of the equation confirms that forN<4 the three
equations can indeed be solved, and thus they do not give rise to any continuous dimension~since
we assumed an absence of degeneracies at the beginning of our analysis!. What happens ifN55?
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In this case we have 15 equations and 13~independent! unknowns. Which means that the system
is overdetermined by two equations. Again, inspection shows that this is indeed the case. Corre-
spondingly, we expect to have at least a two-dimensional moduli space forN55.

Let us study thisN55. At order 2 we have 3N515 equations and 3I 21N2I 2211I 121521
unknowns, where the termI 221 represents the number of irrelevant variables~the ones that cannot
be solved for! because of the gauge of order 2, and the termI 121 represents the gauge unknown of
order 1 that becomes relevant~can be solved for! at order 2. We have more unknowns than
equations and so we expect the system to be solvable. Indeed, it is solvable. The same happens for
higher orders, and thus we can conclude that the only equations for which the system is overde-
termined are the two of order 1. Thus, an intersection of valence 5 has a two-dimensional moduli
space. In the next section, we will study this example in detail for illustration. Here let us continue
the general analysis.

At any given ordern, we have 3N equations and 3I n1N2I n211I n22 new unknowns, where
again the termI n21 is for the gauge terms of ordern ~that are not being solved for at ordern! and
the termI n22 is for the gauge terms of ordern21 ~that can be solved for in ordern as opposed
to ordern2 1!. Generically, the system can be solved if the number of equations is less than the
number of unknowns:

3N<3I n1N2I n211I n22 , ~18!

which yields

N<
3n217n16

4
. ~19!

Solving this forn, we find that the system is solvable at any ordern.m(N), where

m~N!5:Int2SA48N22327

6 D , ~20!

where Int2(x) is the largest integer smaller thanx. Thus we can forget all equations of order larger
thanm(N) in the system@~9!–~13!#. The remaining system is formed by the 3N3m equations of
ordern<m(N). ~We do not count the three equations of order zero and the three unknownsf a,
which can always be found.! At each ordern ~less or equal tom!, the numberdn of overdeter-
mined equations is

dn5# equations2# unknowns53N2~3I n1N2I n211I n22!, ~21!

~whereI 05I2150!, and the total number of equations by which the system is overdetermined is

d5 (
n51,m

dn5 (
n51,m

2N23I n1I n212I n2252mN1I n2123 (
n51,m

I n . ~22!

Since we are under the assumption that the intersection is nondegenerate, there are no additional
degeneracies in the linear system, and thed equations by which the system is overdetermined are
independent. Thusd gives the lower bound on the dimension of the moduli space that we are
searching. Performing the sum, we get

d~N!5~2N25!m2
5

2
m22

1

2
m3, ~23!

wherem is a function ofN, given in Eq.~20!. Equation~23! is our main result. It gives~a lower
bound on! the dimension of the moduli space of a single nondegenerate intersection of orderN.
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IV. AN EXAMPLE: N55

Let us consider again the simplest nondegenerate case in which a moduli space appear, which
isN55. Thus, we have an intersection pointp crossed by the loopa five times. From Eq.~20! we
havem51 and from Eq.~23! d52, as anticipated. It is instructive to identify the two continuous
degrees of freedom of the knot space. We will do this in two different ways. First, we give a
geometrical construction of these two degrees of freedom, and then we give an explicit algebraic
expression for the two moduli.

Let us fix an arbitrary coordinate chart in the neighborhood ofp, and letȧ i
a for i51,2,3,4,5 be

the components of the five tangents ofa at p. Let us~arbitrarily! pick three of these five tangents,
say ȧk

a for k51,2,3. The three vectorsȧk
a define a basis in the tangent space atp. Clearly the

components of the other two tangents,ȧ4
a and ȧ5

a on this basis, are quantities that do not depend
on the coordinate chosen, and are consequently invariant under diffeomorphisms. If we indicate by
(ȧ21)a

k the 333 matrix inverse to the 333 matrix ȧk
a, such components are given by

b4
k5~ ȧ1!a

kȧ4
a , b5

k5~ ȧ1!a
kȧ5

a . ~24!

The quantitiesb4
k andb5

k are invariant under diffeomorphisms. They transform under a reparam-
etrization of the loop asb4

k°t4tk
21b4

k, wheret i are the five derivatives of the reparametrization in
the intersection point. Assuming, for instance, that the components ofb4

k are positive, we can
always choose these derivatives in such a way that, say,b4

k5~1,1,1!. The length of the last vector,
b5
k, can be arbitrarily rescaled, by fixingt5, but its direction is uniquely determined. This direction

gives the two dimensions of the moduli space.
Notice that the sign of the components ofb4

k determine eight disconnected sectors of the
moduli space, at the boundary of which are degenerate intersections. This is a general feature: the
moduli spaces in general have disconnected components, separated by the degenerate cases.

Given the above discussion, it is not too hard to write the two moduli explicitly. This can be
done, for instance, in the following manner:

l15
~ ȧ21!a

1ȧ4
a~ ȧ21!b

2ȧ5
b

~ ȧ21!c
2ȧ4

c~ ȧ21!d
1ȧ5

d , l25
~ ȧ21!a

1ȧ4
a~ ȧ21!b

3ȧ5
b

~ ȧ21!c
3ȧ4

c~ ȧ21!d
1ȧ5

d . ~25!

It is easy to see that these two quantities are independent and are invariant under diffeomorphisms
of the manifold and reparametrization of the loops.
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The general framework of bicrossproduct Hopf algebras given by Majid is ex-
tended toZ2-graded bicrossproduct Hopf superalgebras. As examples of bi-
crossproduct Hopf superalgebras we provide the graded algebras of functions on
undeformed as well ask-deformedD54 Poincare´ supergroups. ©1996 Ameri-
can Institute of Physics.@S0022-2488~96!01806-3#

I. INTRODUCTION

The inhomogeneous groupsG described by means of the semidirect productG5H›A of a
simple Lie groupH and the Abelian groupA are very important in physical applications~see, e.g.,
Ref. 1!. The most important example is given by theD54 Poincare´ group P 45SO~3,1!›T4,
whereH5SO~3,1! is the Lorentz group andA5T4 describes four Abelian translations. The
Poincare´ group as a semidirect product can be supersymmetrized in two ways.

~i! We keep the factorH5SO~3,1! unchanged but we replace the Abelian subgroupA5T4 by
its superextensionT4;4, with theD54 superalgebra generators„Q̄ȧ5(Qa)

1
…,

$Qa ,Q̄ḃ%52~sm!aḃP
m, $Qa ,Qb%5$Q̄ȧ ,Q̄ḃ%50,

~1.1!
@Qa ,Pm#5@Q̄ȧ ,Pm#50, @Pm ,Pn#50.

TheD54 Poincare´ groupP 4;1 can be written therefore as~see, e.g., Ref. 2!

P 4;15SO~3,1!›T4;4, ~1.2!

where both factors in~1.2! are non-Abelian.
~ii ! One can attach to the factorH5SO~3,1! only two complex supertranslations, e.g., gener-

ated byQa ~a51,2!. In such a way we introduce the graded Lorentz group SO~3,1;2! with the
Lorentz generatorsMmn and two anticommuting odd generatorsQa , satisfying the relations

@Mmn ,Qa#5
i

2
~smn!a

bQb . ~1.3!

Denoting the graded Abelian group generated by generators (Pm ,Q̄ȧ) by T̄4;2, one can write

P 4;15SO~3,1;2!›T̄4;2. ~1.4a!

0022-2488/96/37(6)/3041/9/$10.00
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In fact, there is still another possibility, obtained by substituting in SO~3,1;2! the generators
Qa by Q̄ȧ„SO(3,1;2)→SO(3,1;2)… and replacing inT̄4;2 the generatorsQ̄ȧ by Qa(T̄4;2→T4;2).
One gets

P 4;15SO~3,1;2!›T4;2. ~1.4b!

The advantage of the semidirect products~1.4a!–~1.4b! is the preservation of the graded
Abelian nature of the second factor. It appears that this graded Abelian structure will be preserved
also after thek deformation~compare with Ref. 9, where the four-momenta fork-deformed
Poincare´ algebra commute!.

The main result of this paper is the description of quantumk deformation ofD54 Poincare´
supergroup in the framework of bicrossproduct Hopf superalgebras. It appears that for the standard
~‘‘bosonic’’ ! quantum groups the bicrossproduct Hopf algebraH1xbH2 provides an attractive
proposal for the general framework of quantum deformations of the classical semidirect product of
H1 andH2 supplemented by consistent coalgebra structure.

3–5 Indeed, recently it has been shown
that the dual pair ofk-deformed Poincare´ algebra6,7 andk-deformed Poincare´ group8 can be very
well incorporated9–11 into the bicrossproduct scheme~the general approach proposed recently by
Podleśand Woronowicz12 can be also put into the general bicrossproduct framework!. Our aim
here is to extend such a framework to the ‘‘super’’ case.

Our presentation contains two parts.
~i! It appears that the signature factors that enter into the defining properties of graded bi-

crossproduct Hopf algebras are not known in the literature, and appear in several formulas in a
way that is far from obvious. In Sec. II we describe the general framework describing graded
bicrossproduct Hopf algebras, extending to the super case results presented by Majid.3–5

~ii ! In Sec. III we describe theD54 k-deformed Poincare´ supergroup, presented first in Ref.
13, as the graded bicrossproduct Hopf algebra, i.e. we provide the example of our general scheme.
In this description the graded Hopf algebra is the algebra of functions on a quantum supergroup
with a graded set of generators.

It should be stressed that the bicrossproduct description of Hopf algebra,H5H1xbH2 , implies
the bicrossproduct structure of dual Hopf algebra,H̃5H̃2xbH̃1 , where the ‘‘tilde’’ describes the
dual object. Indeed, the first complete proof of duality betweenD54 k-Poincare´ quantum algebra
andD54 k-Poincare´ quantum group was obtained in Ref. 11 after using the bicrossproduct form
of both dual structures. In the present paper it is first demonstrated that theD54 k-Poincare´
supergroup is an example of graded bicrossproduct Hopf algebra. Because the bicrossproduct
structure ofD54 k-Poincare´ quantum superalgebra is already known,14 we believe that it is only
a technical matter to extend the proof given in Ref. 11 to the supersymmetrized case.

II. BICROSSPRODUCT HOPF ALGEBRAS

First, we shall recall the general definition of bicrossproduct Hopf algebra, due to Majid.3–5

Let H1, H2 ~aPH1 , hPH2! are two Hopf algebras, with the coproductsD(a)5a(1)^a(2),
D(h)5h(1)^h(2). We assume further that the following occurs.

~i! H2 is a rightH1 module algebra, i.e., there exists an actiona: H2^H1→H2 denoted by

a~a^h!5avh, ~2.1!

defining the crossproductH1›H2 .
~ii ! H1 is a leftH2-comodule coalgebra, i.e. there exists a coactionb: H1→H2^H1 , such that

b~h!5h~1!
^h~2!, ~2.2!

whereh(1)PH2 , h
(2)PH1 , which defines the crossproductH1.bH2 .

The following statement is valid.
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Theorem 1: (see Ref. 3, Theorem 3.3)
The linear space H1^H2 is endowed with the Hopf algebra structure and defines the right–left
bicrossproduct Hopf algebra H1xbH2 if the actiona and coactionb satisfy the following com-
patibility conditions:

e~avh!5e~a!e~h!, b~1!51^1, ~2.3a!

D~avh!5~a~1!vh~1!!h~2!
~1!

^a~2!vh~2!
~2!, ~2.3b!

b~hg!5~h~1!vg~1!!g~2!
~1!

^h~2!g~2!
~2!, ~2.3c!

h~1!
~1!~avh~2!! ^h~1!

~2!5~avh~1!!h~2!
~1!

^h~2!
~2!. ~2.3d!

The multiplication structure in H1xbH2 is defined by

~h^a!•~g^b!5hg~1! ^ ~avg~2!!b, ~2.4!

and the comultiplication looks as follows:

D~h^a!5~h~1! ^h~2!
~1!a~1!! ^ ~h~2!

~2!
^a~2!!. ~2.5!

The antipode and the counit are given by the formulas

S~h^a!5„1^S~h~1!a!…•„S~h~2!! ^1…, ~2.6a!

e~h^a!5e~h!e~a!. ~2.6b!

The simplest examples of bicrossproduct Hopf algebras are the following.
~i! Semidirect product of simple Lie algebra and the Abelian algebra, e.g.P 45SO~3,1!xbT4,

considered a Hopf algebra with a primitive coproduct. In such a case„MmnPSO~3,1!, PmPT4…,

a~Pm ^M rt!5PmvM rt5@Pm ,M rt#, b~Mmn!51^Mmn . ~2.7!

~ii ! If H1 is commutative andH2 is cocommutative, the bicrossproductH1xbH2 describes the
Hopf algebra extension in the sense of Singer.15

~iii ! The quantumk deformation ofD54 Poincare´ algebraU„so~3,1!…xbUk~T
4!9,10 as well as

the quantumk deformation odD54 Poincare´ groupC„SO~3,1!…cvCk(T̃
4),9–11whereC„SO~3,1!…

andCk(T̃
4) describe, respectively, the algebra of functions on the Lorentz group and the algebra

of functions on the Abelian translation group@Ck(T̃
4) is dual toUk~T

4!#.

III. Z2-GRADED BICROSSPRODUCT HOPF SUPERALGEBRA

A. Z2-graded Hopf superalgebras

Let us assume thatH is aZ2-graded algebra, i.e., as a vector spaceH5H0%H1. We define
the parity of an elementhPH as follows:

p~h!50, if hPH0 ; p~h!51, if hPH1 . ~3.1!

We introduce the tensor product of twoZ2-graded algebrasH^H8 asZ2-graded algebra,
with the following multiplication rule:

~h^h8!•~g^g8!5~21!p~h8!p~g!hg^h8g8, ~3.2!
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whereh,gPH andh8,g8PH8. Let us introduce the following definitions:16–18

Definition 1: The Hopf superalgebra~H,D,e,S! is given by the following axioms:
~i! H is a Z2-graded algebra.
~ii ! The comultiplication mapD: H→H^H is a homomorphism ofH and is superassocia-

tive, i.e.

~D ^1!D~h!5~1^ D!D~h!, ~3.3!

where the tensor product is defined by (3.2); besidesD(1) 5 1 ^ 1.
~iii ! The counite is linear mapH→C, where

e~hh8!5e~h!e~h8!, ~e ^1!D~h!5~1^ e!D~h!5h. ~3.4!

~iv! The antipode S is defined as linear antiisomorphismH→H with the property
„m(h^h8)5h•h8…

m+~S^1!+D~h!5m+~1^S!+D~h!5e~h!•1. ~3.5!

If we introduce the graded flip operation:

s~h^h8!5~21!p~h!p~h8!h8^h, ~3.6!

and the graded opposite coproduct,

D8~h!5s+D~h!, ~3.7!

we also obtain that

~S^S!D~h!5D8„S~h!…, ~3.8!

as well as

S~hh8!5~21!p~h!p~h8!S~h8!S~h!. ~3.9!

Remark 1:The Hopf superalgebra is a special case of anionic Hopf algebras, withZn grading,
for the special casen52.19 The anionic algebras are the special case of braided Hopf algebras.20–21

Remark 2:The well-known examples of noncommutative and noncocommutative Hopf su-
peralgebras are the quantum deformations of universal enveloping algebras of simple Lie super-
algebras~see, e.g., Refs. 17–19!, as well as the quantum-deformation of the algebra of functions
on a simple Lie supergroups~see, e.g., Ref. 22!.

B. Bicrossproduct Hopf superalgebras

Let us assume thatH1, H2 are two Hopf superalgebras~we puth,g, fPH1, a,b,cPH2!.
We assume further the following.

~i! H2 is a rightH1 module, with the actiona @see~2.1!#, satisfying the grading property

abvh5~21!p~h~1!!p~b!~avh~1!!~bvh~2!!, ~3.10a!

av~hg!5~avh!vg. ~3.10b!

~ii ! H1 is a leftH2-comodule cosuperalgebra with the actionb @see~2.2!#, satisfyingb~1!
51^1 and the following properties:

~1^ b!+b5~D ^1!+b, ~3.11a!
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~e ^1!+b~h!51H1
^h, ~3.11b!

~1^ D!b~h!5m12s23~b ^ b!D. ~3.11c!

Theorem 2: The linear Z2-graded space (superspace)H1^H2 is endowed with the Hopf
superalgebra structure and defines the Z2-graded bicrossproduct Hopf superalgebraH1xbH2
with the following definitions of multiplication, comultiplication, counit and antipode,

~h^a!~g^b!5~21!p~a!p~g~1!!hg~1! ^ ~avg~2!!b, ~3.12!

D~h^a!5~21!p~h~2!
~2!!p~a~1!!h~1! ^h~2!

~1!a~1! ^h~2!
~2!

^a~1! , ~3.13!

e~h^a!5e~h!•e~a!, ~3.14!

S~h^a!5~21!p~h~2!!@p~h~1!!1p~a!#
„1^S~h~1!a!…~S~h~2!! ^1…, ~3.15!

if the following compatibility conditions are satisfied [compare with (2.3a)–(2.3d)]:

e~avh!5e~a!e~h!, ~3.16a!

D~avh!~21!p~a~2!!@p~h~1!!1p~h~2!
~1!!#~a~1!vh~1!!h~2!

~1!
^a~2!vh~2!

~2!, ~3.16b!

b~hg!5~21!p~h~2!!@p~g~1!!1p~g~2!
~1!!#~h~1!vg~1!!g~2!

~1!
^h~2!g~2!

~2!, ~3.16c!

h~1!
~1!~avh~2!! ^h~1!

~2!5~21!p~a!p~h~2!
~1!!1p~h~1!!p~h~2!

~2!!~avh~1!!h~2!
~1!

^h~2!
~2!.

~3.16d!

In the proof we check directly that with the definitions~3.12!–~3.15! and the properties
~3.16a!–~3.16d! the axioms of the graded bicrossproductH1xbH2 being a Hopf superalgebra are
satisfied. In particular, we have to check the associativity of the multiplication~3.12!, i.e.

@~h^a!~g^b!#~ f ^c!5~h^a!@~g^b!~ f ^c!#, ~3.17!

the coassociativity of the coproduct~3.13! @see~3.3!# and, what is the most complicated part, the
homomorphism property of the coproduct,

D„~h^a!~g^b!…5D~h^a!D~g^b!. ~3.18!

The graded bicrossproducts described in this section can be used for the description of quantum
deformations of inhomogeneous supergroups.

IV. AN EXAMPLE: D54 k-DEFORMED POINCARÉ SUPERGROUP IN
BICROSSPRODUCT FORM

TheD54 k-deformed Poincare´ supergroup has been obtained in Ref. 13 by quantization of
ther -matrix Poisson bracket, with the following choice of the classicalr matrix forD54 Poincare´
superalgebra~see also Ref. 23!,

r5Ni`Pi2
i

4
Qa`Q̄ȧ , ~4.1!
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whereMmn5(Mi ,Ni) are Lorentz generators,Pm describe the four-momenta andQa ,Q̄ȧ are four
supercharges described by the doublet of Weyl 2-spinors. The Hopf superalgebra of the functions
on D54 k-deformed Poincare´ supergroup is described by the following relations~see Ref. 13!.

~a! Algebra

~i! Lorentz sector (Aa
b ,Aȧ

ḃ) „we use the spinorial representation of the Lorentz generators, e.g.

Li5
1
4@(s i)a

bLb
a1(s̄ i) ȧ

ḃLb
ȧ#…:

The Lorentz subgroup parameters are classical, i.e.

@Aa
b ,Ag

d #5@Aa
b ,Ag

ḋ #5@Aȧ
ḃ ,Aġ

ḃ#50. ~4.2!

~ii ! Translations~Xm! @we denoteu 5 (u2

u1), ū 5 (u 2̇

u 1̇)#:

@Xi ,Xj #5
i

8k
uTs i

„12~AA1!21
…s j ū2

i

8k
uTs j

„12~AA1!21
…s i ū, ~4.3!

@X0,Xj #52
i

k
Xj1

i

8k
uT@s j ,~AA1!21#ū,

@Aa
b ,Xi #5

1

2k
„~Asn!a

bLn
i ~A!2~s i

•A!a
b
…, ~4.4!

@Aa
b ,X0#5

1

2k
~As i !a

bL i
0~A!.

~iii ! Supertranslations,

$ua,ub%5$uȧ,uḃ%50, $ua,uḃ%5
i

2k
„12~AA1!21

…

ḃa, ~4.5!

$Xi ,ua%5
1

4k
~uTs i !g„122~AA1!21

…a
g , ~4.6!

$X0,ua%52
1

4k
ug
T
„11~AA1!21

…a
g , $Aa

b ,ug%5$Aȧ
ḃ ,ug%50. ~4.7!

~b! Coalgebra,

D~Xm!5Xm ^11Lm
n ~A! ^Xn2

i

2
~Aa

21b
sbġ

m uġ
^ ua1uas

aḃ

m
Aġ

21b
^ uġ!,

D~ua!5ua ^11~A21!a
b

^ ub , D~Aa
b!5Aa

g
^Ag

b . ~4.8!

~c! Antipodes:

S~Xm!52Ln
m~A21!Xn, S~Aa

b!5~A21!a
b , S~ua!52Ab

gub. ~4.9!

In such a way, we have obtained the complete set of relations describing thek deformation of
N51 Poincare´ supergroup.

In order to put the Hopf superalgebra~4.2!–~4.9! in the bicrossproduct algebra form, we
should introduce the complexified chiral superspace coordinates~see, e.g., Ref. 24! as follows:
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zm5xm1
i

2
ua~sm!aḃū ḃ . ~4.10!

Let us introduce the following twok-deformed Hopf superalgebras.
~i! The algebra of functionsC(zm ,ua) on k-deformed chiral superspace~zm ,ua!, with the

following Hopf superalgebra relations:

@zi ,zj #50, @z0 ,zi #52
i

k
zi ,

@z0 ,ua#52
i

2k
ua , @zi ,ua#50, $ua ,ub%50, ~4.11!

and

D~zm!5zm ^111^zm , D~ua!5ua ^111^ ua . ~4.12!

~ii ! The classical Hopf superalgebra of functionsC(Aab ,Aġḃ ,ū ȧ) on the superextension of
the classical Lorentz group, with the following defining relations:

@Aab ,Agd#5@Aab ,Aġ ḋ#5@Aȧḃ ,Aġ ḋ#50,

@Aab ,ū ġ#5@Aȧḃ ,ū ġ#50, $ū ȧ ,ū ḃ%50, ~4.13!

and

D~Aab!5Aag ^Agb , D~Aȧḃ!5Aȧġ ^Aġḃ ,

D~ūȧ!5 ū ȧ ^11~Aȧḃ!21
^ ū ḃ . ~4.14!

One can prove the following statement.
Theorem 3: The D54 k-deformed Poincare´ supergroup can be described as the graded

bicrossproduct Hopf superalgebra,

Ck~P 4;1!5C~zm ,ua!xbC~Aab ,Aȧḃ ,ū ȧ!, ~4.15!

with the following definition of the actiona:

ū ȧvzi52
i

2k
@12~A1A!21#ȧ

ḃū ḃ , ū āvz052
i

2k
~A1A!ȧ

ḃū ḃ ,

ū ȧvub52
i

2k
@12~AA1!21#ȧb ,

Aabvzi5
1

2k
@~Ask!abL ik~A,Ā!2~s iA!ab#,

~4.16!

Āȧḃvzi5
1

2k
@~s i Ā!ȧḃL lk~A,Ā!2~Ās i !ȧḃ#,

Aabvz05
1

2k
~As i !a

bL i0~A,Ā!, Āȧḃvz05
1

2k
~s i Ā!ȧ

ḃL i0~A,Ā!,
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Āabvug5Aȧḃvug50,

and coactionb,

b~zm!5Lm
n~A,Ā! ^zn2 i ~A21sm!aḃū ḃ ^ ua ,

b~ua!5~A21!ba ^ ub . ~4.17!

The proof is obtained by performing the transformation~4.10! of the superalgebra basis~4.2!–
~4.9! and showing that the resulting Hopf superalgebra fits into the graded bicrossproduct super-
algebra framework.

V. FINAL REMARKS

In this paper we give the not known in the literature general definition of graded bicrossprod-
uct Hopf superalgebra and we provided as well an example. Such a scheme can be extended to the
case of anionic groups19 and braided groups.20,21 To our knowledge only the crossproducts of
braided cocommutative Hopf algebra with the quasitriangular Hopf algebras have been
considered.25 It is an interesting task to introduce the general braided bicrossproduct of braided
Hopf algebras and provide some nontrivial examples.
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compared with Fokas’s symmetry and Mikhailov–Shabat–Sokolov formal symme-
try approaches. ©1996 American Institute of Physics.@S0022-2488~96!01005-0#

I. INTRODUCTION

There are several methods1 to examine the integrability of nonlinear partial differential equa-
tions, although in two dimensions most of these methods imply each other.2 The existence of
infinitely many conserved quantities is too strong. For example, Burger’s equation has only one
conservation law.3 One can say that many integrable differential equations can be put into a
bilinear form.4 The converse, however, is not true, since a bilinear form can be constructed for
equations that are not integrable. There are integrable equations like the Harry–Dym equation,
which does not pass the Painleve´ test.5 Several authors6,7 have considered the existence of bi-
Hamiltonian formulation as the fundamental criteria to integrability.

Another approach to integrability is linearization technique.8 If the linearized equation of a
given differential equation supports an eigenvalue equation, then the given differential equation is
integrable. The advantage of using this technique is the following: One member of the associated
linear equation is known by virtue of the nonlinear partial differential equation itself. Unlike the
Painlevéanalysis, the given nonlinear equation can be of any form. We can classify nonlinear
partial differential equations.

II. LINEARIZATION

We can describe the linearization method for evolutionary equations

qt5 f ~q,qx ,qxx ,...! ~1!

in the following way. First we linearize the given differential equation. In other words, we replace
q ~and its derivatives! in ~1! by q1eC differentiate both sides of the resulting expression with
respect toe:

C t5Df~C!, ~2!

whereDf is the Fréchet derivative.3 The equation above can also be written as

C t5(
i50

N

f iC i5(
i50

N
] f

]qi
C i , ~3!

where N is the order of differential equation,q05q, q15qx , q25qxx , C05C, C15Cx ,
C25Cxx , and so on. In the symmetry approach~2! is the main equation,C is the symmetry of the
differential equation, and it is a function ofqi .

The compatible eigenvalue equation is

HC50, ~4!

a!Electronic mail address: satir@newton.physics.metu.edu.tr

0022-2488/96/37(6)/3050/12/$10.00
3050 J. Math. Phys. 37 (6), June 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



whereH depends onqi and a parameterk. If its order~highest derivative inH! is N, then~4! may
be written as

CN5 (
i50

N21

AiC i , ~5!

whereA0 ,A1 ,...,AN21 are functions ofqi and the parameterk. We assume the order of depen-
dence ofAis onqi in advance, similar to the symmetry approach. Compatibility condition of~5!
and ~2!,

CN,t2C t,N50, ~6!

using ~2! gives

(
i50

N21

C iWi50, ~7!

whereWis are functions off i , Ai , and their partial derivatives. Letting

Wi50, ~8!

we obtain a system of differential equations amongf i , Ai , and their partial derivatives. Expanding
Ais in terms of the parameterk will give

Ai5(
j50

N

Ai j k
j , ~9!

whereAi js are functions ofqi . Now substituting~9! into ~8! we obtain an overdetermined system
of differential equations. Letting each coefficient ofki vanish results in first~i! a set of algebraic
equations amongAi j and f i and, second~ii ! a set of a system of differential equations. The
solution of this system will determine the eigenvalue equation~5! which can be integrated to give

FC5kC, ~10!

whereF is the recursion operator.9 Letting

C5( knCn , ~11!

then one obtains

FCn5Cn21 . ~12!

HenceF is transforming a symmetry into another one. Suppose the given differential equation has
Hamiltonian structure so thatC5U1g, whereU1 is the Hamiltonian operator andg is the con-
served covariant. Then from~10! we obtain

~FU12kU1!g50. ~13!

Expandingg5(kngn we find

FU1gn5U1gn21 . ~14!
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HenceFU1 is a candidate for the second Hamiltonian operator. In a sense the integrability in
linearization is equivalent~for the scalar case! to the existence of a recursion operator which
satisfies the eigenvalue equation. In this approach, the order of eigenvalue equationN, the order of
dependence ofAis on the derivative of the dependent variableq, and the order of the spectral
parameter are the key factors in the classification.10

Classification of integrable nonlinear differential equations started almost two decades
ago.11–13 So far the attempts for complete classification have been done for some evolutionary
equations.1,14,15 In this work, the preliminary classifications ofqt5 f (q,qx ,qxx) and
qt5 f (q,qx ,qxx ,qxxx) are given and the results are compared with Olver–Fokas symmetry

3,12 and
Mikhailov–Shabat–Sokolov~MSS!14 formal symmetry approaches.

III. CLASSIFICATION OF q t5f (q ,q x ,q xx )

We consider differential equations of the following form:

qt5 f ~q,qx ,qxx!. ~15!

The linearized form of the equation above can be given as

C t5gCxx1aCx1bC, ~16!

wherea,b,g are functions ofq,qx ,qxx . We assume an eigenvalue equation having the same order
as ~15!:

Cxx5ACx1BC. ~17!

With the expansion ofA, B, andC as

A5A01A1k1A2k
2, B5B01B1k1B2k

2, ~18!

hereAi andBi ~i50,1,2! are functions ofq,qx ,qxx . The highest power ofk is related to the order
of the given partial differential equation.@A different approach from Ref. 8 is used in this work.
The order of the parameter (k) can take any integer value.# Compatibility of~16! and~17! give the
following algebraic equations,

A25
E2

Ag
, A15

E1

Ag
, B25B1

E2

E1
, ~19!

and evolution equations

A0,t5axx1axA01gxxA012gxA0,x1gxA0
212gxB0

12bx1A0,xxg1A0,xa12A0,xgA012B0,xg, ~20!

B0,t52axB01gxxB012gxB0,x1gxA0B01bxx2bxA0

12A0,xgB01B0,xxg1B0,xa, ~21!

B1,t5
1

Ag
~2AgaxB11AggxxB112AggxB1,x1AggxA0B1 ~22!

2bxE112g3/2A0,xB11g3/2B1,xx1g1/2B1,x), ~23!
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g t52
1

2E1
~4axgE112gxxgE12gx

2gE118g3/2gxB122gxaE1

14gxgA0E118A0,xg
2E118g5/2B1,x!. ~24!

A. Case (1)

The first type of integrable equation is given by the linearized equation

C t5hCxx2F2hr q
r

qx2
h1

E1
GCx1Fh~r q

22r qqr !

r 2
qx
22

h1r q

Ah
GC, ~25!

with compatible eigenvalue equation

Cxx5F2
Ahqxx

2Ahqx1E1r
1

Ahqx
2r q

r ~2Ahqx1E1r !
1

2E1r qqx

2Ahqx1E1r
1

E1

Ah
k1

E2

Ah
k2GCx

1F E1r qqxx

2Ahqx1E1r
1
r qqqx

2

r
2
r q
2qx

2

r
2

E1r q
2qx

2

r ~2Ahqx1E1r !
2
E1~2Ahqxx1E1r qqx!

2Ahqx1E1r
k

2
E2~2Ahqxx1E1r qqx!

2Ahqx1E1r
k2GC. ~26!

In linearization, the eigenvalue equation determines the recursion operator for the corresponding
partial differential equation. Equation~26! can be integrated,

F5D2
r qqx
r

, ~27!

to give the recursion operator. The integrable equation can be written as

qt5hqxx2
hr qqx

2

r
1

h1qx
E1

2
h1r

Ah
, ~28!

whereh,h1,E1 ,E2 are constants andr is a function ofq.

B. Case (2)

The second class can be given with linearized equation

C t5hCxx1F2hr qq
r q

qx12hr1h1GCx1Fh~r qqqr q2r qq
2 !

r q
2 qx

212hr qqxGC ~29!

and compatible eigenvalue equation

Cxx5Fqxxqx 2
qxr qq
r q

2r1
E1

Ah
k1

E2

Ah
k2GCx

1F rqxxqx
2

~r qqqr q2r qq
2 !qx

2

r q
2 22r qqx2

E1qxx

Ahqx
k2

E2qxx

Ahqx
k2GC. ~30!
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The equation above can be integrated,

F5D1
r qqqx
r q

1r1qxD
21r q , ~31!

where (D21f )(x)5*2`
x f (z)dz. The integrable equation can be written as

qt5hqxx1
hr qqqx

2

r q
1~2hr1h1!qx . ~32!

Hereh,h1 are constants andr is a function ofq. The equations~28! and ~32! correspond to the
integrable equations of Fokas,12 Ibragimov–Shabat11 and recursion operators~27! and ~31! are
obtained by the integration of the eigenvalue equations.

IV. CLASSIFICATION OF q t5f (q ,q x ,q xx ,q xxx )

We consider differential equations of the general form

qt5 f ~q,qx ,qxx ,qxxx!. ~33!

The linearization of the equation above takes the following form:

C t5aCxxx1bCxx1gCx1dC. ~34!

Here a,b,g,d are functions ofq,qx ,qxx ,qxxx . We consider an eigenvalue equation having the
same order as~33!,

Cxxx5ACxx1BCx1CC, ~35!

using the expansion ofA, B, andC as

A5A01A1k1A2k
2, B5B01B1k1B2k

2, C5C01C1k1C2k
2, ~36!

whereAi , Bi , andCi are functions ofq,qx ,qxx ,qxxx ,qxxxx. The compatibility of~34! and ~35!
will give us for qt5 f (q,qx ,qxx ,qxxx) four classes:

14,15

~1! qt5L1qxxx1L2 ,
~2! qt5(L1qxxx1L2)

221L3 ,
~3! qt5(L1qxxx1L2)

21/21L3 , and
~4! qt5(2L1qxxx1L2)(L1qxxx

2 1L2qxxx1L3)
21/21L4 ,

whereL1, L2, L3, andL4 are functions ofq,qx ,qxx .

A. Classification of q t5L1q xxx 1L2

The classification will determine algebraic equations,

A150, A250, B052
2g

3h
, B15E1 , B25E2 ,

~37!

C052
1

3h
~gx22gA012d!, C152E1A0 , C252E2A0 ,

and evolution equations as follows:

A0,t5gxA01dx1A0,xxxh13A0,xxhA013A0,x
2 h1A0,xg13A0,xhA0

2, ~38!
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g t5
1
2~2gxxxh23gxxhA023gxA0,xh12gxg23dxxh16dxhA016A0,xdh!, ~39!

d t5
1
4~3gxxxhA026gxxhA0

223gxA0,xxh212gxA0,xhA0

14gxd1dxxxh26dxxhA014dxg112dxhA0
216A0,xxdh124A0,xdhA0!, ~40!

whereh,E1 ,E2 are constants.

B. Case (1)

The linearized form of the first subclass is in the form

C t5hCxxx1Fr12 qx
21rGCx1rqqxC ~41!

with compatible eigenvalue equation

Cxxx5
qxx
qx

Cxx1F2
r1
3h

qx
22

2r

3h
1E1k1E2k

2GCx

1F2
22rqxx13rqqx

2

3hqx
2
E1qxx
qx

k2
E2qxx
qx

k2GC, ~42!

wherer1 is constant andr is a function ofq with the condition

rqqq1
4r1
3h

rq50. ~43!

The recursion operator can be obtained by integration:

F5D21
r

3h
1

r1
3h

qx
22

r1
3h

qxD
21qxx1

qx
h
D21rq . ~44!

The integrable equation is in the form

qt5hqxxx1
r1
6
qx
31rqx . ~45!

C. Case (2)

The second subclass is given by the linearized equation

C t5hCxxx1Fe12 qx
21e1e2qx1e3GCx , ~46!

with compatible eigenvalue equation

Cxxx5
qxx

qx1e2
Cxx1F2

e1
3h

qx
22

2e1e2
3h

qx2
2e3
3h

1E1k1E2k
2GCx

1F2
~e2

2e122e3!qxx
3h~qx1e2!

2
E1qxx
qx1e2

k2
E2qxx
qx1e2

k2GC, ~47!

wheree1,e2,e3 are constants. The recursion operator can be obtained by integration
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F5D21
2e3
3h

1
e1
3h

qx
21

2e1e2
3h

qx2
e1
3h

~qx1e2!D
21qxx . ~48!

The integrable equation is in the form

qt5hqxxx1
e1
6
qx
31

e1e2
2

qx
21e3qx . ~49!

Equations~45! and ~49! are classified by Fokas,12 Ibragimov–Shabat,11 and recursion operators
~44! and ~48! are obtained by the integration of the eigenvalue equations.

D. Case (3)

The eigenvalue equation is

Cxxx5Fqxxx1l1qxx1l2qx
qxx1l1qx1l2q

2l3GCxx1Fl3~qxxx1l1qxx1l2qx!

qxx1l1qx1l2q
2l41

E1

l5
2/3 k1

E2

l5
2/3 k

2GCx

1Fl4~qxxx1l1qxx1l2qx!

qxx1l1qx1l2q
2
E1~qxxx1l1qxx1l2qx!

l5
2/3~qxx1l1qx1l2q!

k2
E2~qxxx1l1qxx1l2qx!

l5
2/3~qxx1l1qx1l2q!

k2GC,

~50!

and the linearized equation has the form

C t5l5Cxxx1
3
2l3l5Cxx1

3
2l4l5Cx1l6C. ~51!

The recursion operator is

F5D21l3D1l4 . ~52!

The integrable equation is

qt5l5qxxx1
3
2l3l5qxx1

3
2l4l5qx1l6q, ~53!

whereE1 , E2 , l1, l2, l3, l4, l5, andl6 are constants. Rabelo and Tanenblat also obtained linear
equation using the classification method of pseudo-spherical surfaces with Gaussian curvature
~21!.16

E. New integrable equation in the form q t5(L 1q xxx 1L2)
221L3

The classification will give the following algebraic equations,

A15
E1

a1/3,

~54!
C152 1

3~axa
24/3E11ba24/3E113A0a

21/3E12a22/3E2!,

and evolution equations
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a t52
1

9E1a
~27a2/3A0,xE2a

2118a2/3bxE2a19a2/3axxE2a26a2/3ax
2E219a2/3axE2A0a

212a2/3axE2b181a1/3C1,xa
3181a1/3axC1a

2181B0,xE1a
3227A0,xE1ba2127bxxE1a

2

227bxaxE1a227bxE1A0a
2236bxE1ba127gxE1a

229axxxE1a
219axxaxE1a

218axxE1ba24ax
3E1124ax

2E1b154axE1B0a
219axE1A0ba124axE1b

229axE1ga!,

~55!

b t52
1

9a7/3E1
2 ~218a2/3A0,xE2

2a3181a2/3A0,xE1C1a
4181a2/3C1,xE1A0a

41162a2/3C1,xE1ba3

212a2/3bxE2
2a2181a2/3bxE1C1a

326a2/3axxE2
2a214a2/3ax

2E2
2a26a2/3axE2

2A0a
2

18a2/3axE2
2ba1108a2/3axE1A0C1a

31108a2/3axE1C1ba2181a1/3C0,xE1
2a4

127a1/3B0,xaxE1
2a3181a1/3B0,xE1

2A0a
41135a1/3B0,xE1

2ba3127a1/3A0,xbxE1
2a3

236a1/3A0,xaxE1
2ba2181a1/3A0,xE1

2B0a
4254a1/3A0,xE1

2A0ba3254a1/3A0,xE1
2b2a2

254a1/3C1,xE2a
4127a1/3dxE1

2a329a1/3bxxxE1
2a3118a1/3bxxaxE1

2a2127a1/3bxxE1
2A0a

3

136a1/3bxxE1
2ba219a1/3bx

2E1
2a2127a1/3bxaxxE1

2a2236a1/3bxax
2E1

2a

236a1/3bxaxE1
2A0a

2272a1/3bxaxE1
2ba154a1/3bxE1

2B0a
3227a1/3bxE1

2A0
2a3

281a1/3bxE1
2A0ba2248a1/3bxE1

2b2a29a1/3bxE1
2ga2127a1/3gxxE1

2a3118a1/3gxE1
2ba2

236a1/3axxaxE1
2ba127a1/3axxE1

2B0a
3236a1/3axxE1

2A0ba2236a1/3axxE1
2b2a

132a1/3ax
3E1

2b136a1/3ax
2E1

2A0ba160a1/3ax
2E1

2b2254a1/3axE2C1a
3181a1/3axE1

2C0a
3

181a1/3axE1
2B0A0a

3154a1/3axE1
2B0ba2136a1/3axE1

2A0b
2a132a1/3axE1

2b3

227B0,xE2E1a
4118A0,xaxE2E1a

3154A0,xE2E1A0a
4172A0,xE2E1ba329bxxE2E1a

3

124bxaxE2E1a
2145bxE2E1A0a

3148bxE2E1ba216axxaxE2E1a
2118axxE2E1A0a

3

130axxE2E1ba224ax
3E2E1a26ax

2E2E1A0a
2234ax

2E2E1ba218axE2E1B0a
3

118axE2E1A0
2a326axE2E1A0ba2232axE2E1b

2a!, ~56!

A0,t53C0,xa13B0,xxa16B0,xax13B0,xA0a12B0,xb1A0,xxxa13A0,xxax13A0,xxA0a1A0,xxb

13A0,x
2 a13A0,xbx13A0,xaxx17A0,xaxA013A0B0a13A0,xA0

2a12A0,xA0b1A0,xg

13dx1bxxx12bxxA012bxB01bxA0
213gxx1gxA01axxxA013axxB012axxA0

2

13axC013axB0A01axA0
3, ~57!

B0,t53C0,xxa16C0,xax12C0,xb1B0,xxxa13B0,xxax1B0,xxb13B0,xA0,xa13B0,xbx

13B0,xaxx1B0,xaxA013B0,xB0a1B0,xg13A0,xxB0a16A0,xaxB013A0,xC0a

13A0,xB0A0a12A0,xB0b13dxx22dxA013bxxB013bxC01bxB0A01gxxx2gxxA0

12gxB01axxxB013axxC012axxB0A01axC0A012axB0
21axB0A0

2, ~58!
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C0,t52~2C0,xxxa23C0,xxax2C0,xxb23C0,xA0,xa23C0,xbx23C0,xaxx2C0,xaxA02C0,xg

23B0,xC0a23A0,xxC0a26A0,xaxC023A0,xC0A0a22A0,xC0b2dxxx1dxxA01dxB0

23bxxC02bxC0A023gxC02axxxC022axxC0A022axC0B02axC0A0
2!, ~59!

C1,t52
1

3a4/3 ~a2/3dxE229a1/3B0,xC1a
229a1/3A0,xxC1a

229a1/3A0,xC1,xa
2

218a1/3A0,xaxC1a29a1/3A0,xA0C1a
226a1/3A0,xC1ba23a1/3C1,xxxa

229a1/3C1,xxaxa

23a1/3C1,xxba29a1/3C1,xbxa29a1/3C1,xaxxa23a1/3C1,xaxA0a2a1/3C1,xga

29a1/3bxxC1a23a1/3bxA0C1a29a1/3gxC1a23a1/3axxxC1a26a1/3axxA0C1a

26a1/3axB0C1a23a1/3axA0
2C1a13dxxE1a2dxaxE123dxE1A0a2dxE1b!. ~60!

The linearized equation is given by

C t5F2
8~2qxxE219qxE1V1!

3E2
6

27~2qxxxE2
2127qxxE2E1V1181qxE1

2V1
2!3E1

3GCxxx

1F4~2qxxxE219qxxE1V1!~2qxxE219qxE1V1!
2E2

6

9~2qxxxE2
2127qxxE2E1V1181qxE1

2V1
2!3E1

3 GCxx

1

F ~2~~8E2
412187E1

4V1E3!qxx
2 E2

2118~4E2
41729E1

4V1E3!qxxqxE2E1V1

181~2E2
41243E1

4V1E3!qx
2E1

2V1
2)qxxxE2

2V11324~qxxE213qxE1V1!qxxx
2 E2

4E1
3V1E3

12187~qxxE21qxE1V1!~2E2
41243E1

4V1E3!qx
2E1

3V1
413~40E2

416561E1
4V1E3!

3qxx
3 E2

3E1V1
2181~16E2

412187E1
4V1E3!qxx

2 qxE2
2E1

2V1
318qxxx

3 E2E1
2E3)

G
~2qxxxE2

2127qxxE2E1V1181qxE1
2V1

2!3E1
2

3Cx1U1C ~61!

and the eigenvalue equation is

Cxxx5F ~4qxxxE2
2281qxE1

2V1
2!

„2~2qxxE219qxE1V1!E2…
2
3E1

2~2qxxxE2
2127qxxE2E1V1181qxE1

2V1
2!

2E2
2~2qxxE219qxE1V1!

kGCxx

1
F9~2qxxxE219qxxE1V1!E1V1

2~2qxxE219qxE1V1!E2
1

F 23~4qxxxxqxxE2
3118qxxxxqxE2

2E1V128qxxx
2 E2

3

290qxxxqxxE2
2E1V1281qxxxqxE2E1

2V1
2

2324qxx
2 E2E1

2V1
22729qxxqxE13V1

3)E1
2

G
2~2qxxE219qxE1V1!

2E2
2 k

G
3Cx . ~62!

The eigenvalue equation can be integrated:

D21
9E1V1

2E2
D52k

3E1
2~2qxxxE2

2127qxxE2E1V1181qxE1
2V1

2!

2E2
2~2qxxE219qxE1V1!

D. ~63!
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The new integrable equation is in the form

qt5
2E2

4~2qxxE219qxE1V1!
3

27E1
3~2qxxxE2

2127qxxE2E1V1181qxE1
2V1

2!2
1E3qx1U1q, ~64!

whereE1, E2, E3, U1, andV1 are constants. The equation above is a new integrable equation
which is included in the MSS classification.14

F. q t5(L 1q xxx 1L2)
21/21L3

The leading order term gives the differential equation as

23 f qxxx,3f qxxx15~ f qxxx,2!
250. ~65!

The solution to~65! is given by

qt5~L1qxxx1L2!
21/21L3 , ~66!

whereL1, L2, andL3 are functions ofq,qx ,qxx . The classification has not been finished yet due
to computer limitations. One integrable equation in this class is given by eigenvalue equation

Cxxx5F2D11
E1

21/2E2
2/3 ~E2qxxx1E2D1qx1E2

2/3D2!kGCx1FE1E2
1/3

21/3
~qxxx1D1qxx!kGC

~67!

and linearized equation

C t52
E2

~E2qxxx1E2D1qx1E2
2/3D2!

3/2 Cxxx2
E2D1

~E2qxxx1E2D1qx1E2
2/3D2!

3/2 Cx . ~68!

The eigenvalue equation~67! can be integrated to give the recursion operator

F5D21D1 . ~69!

The integrable equation is given by

qt5
1

~E2qxxx1E2D1qx1E2
2/3D2!

1/21E3qx , ~70!

whereE1, E2, E3, D1, andD2 are constants. This integrable equation is included in S-integrable
equations of Calogero.17

G. q t5(2L 1q xxx 1L2)(L 1q xxx
2 1L2q xxx 1L3)

21/21L4

The differential equation coming from the leading order is

23 f qxxx,3f qxxx15~ f qxxx,2!
213

f qxxx,2f qxxx
qxxx1K1

50, ~71!

whereK15K1(q,qx ,qxx!. The general solution is given by

qt5~2L1qxxx1L2!~L1qxxx
2 1L2qxxx1L3!

21/21L4 ; ~72!
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here L1 ,L2 ,L3 ,L4 are functions to be determined. The classification of the type of nonlinear
partial differential equations above has not been finished yet due to present limitations in the
computing system; we hope to have an extension of the system in the near future.

V. CONCLUSION AND COMPARISON

According to Fokas,1 an integrable equation possess infinitely many generalized symmetries.
Although there exist algorithmic ways of finding symmetries, it is better to use another approach.
One can obtain one symmetry and using the recursion operator infinitely many symmetries can be
generated. Therefore the first step in finding out the integrability of an equation is to find a
Lie–Bäcklund symmetry. Apparently, there exists an intimate connection between linearization
and Fokas’ symmetry approach. The existence of generalized symmetry manifests itself in the
existence of a Lie–Ba¨cklund operator. The existence of infinitely many symmetries is expressed
by the existence of a recursion operator. There is also a close relationship12 between a Lie–
Bäcklund operator and a linearized equation. Because, if Fokas’ admissible Lie–Ba¨cklund opera-
tor is applied on the evolution equation, we obtain the Fre´chet derivative of the equation under
consideration or linearized form of our equation. The recursion operator in linearization is ob-
tained by the integration of the eigenvalue equation.

Let us briefly recall Olver’s symmetry approach, linearization test, and Mikhailov–Shabat–
Sokolov formal symmetry method:

Olver’s symmetry test:The equationut5 f [u] is integrable if there exists infinitely many
non-Lie point symmetries or, equivalently, one non-Lie point symmetry and a recursion operator.
The recursion operator and time-independent part of the linearized equation form a Lax pair
F t1[F,Df ]50.

Linearization test:The equationut5 f [u] is integrable if there exists an eigenvalue equation
HC50 such that it is compatible with linearized equationC t5Df(C). The compatibility condi-
tion is Ht1[H, Df ]50.

Mikhailov–Shabat–Sokolov formal symmetry test:The equationut5 f [u] is integrable if there
exists a pseudo-differential operatorL such thatLt1[L, Df ]50 holds up to sufficiently low
orders.

In all three approaches the crucial point is the existence of the recursion operator. In MSS
formal symmetry and Olver–Fokas symmetry approaches, to get a recursion operator is not as
easy as in the linearization test. These methods are useful for classification purposes, because they
can be applied to arbitrary equations~without polynomial restriction!.

We must also mention that our classification is up to a change of variables. There are partial
differential equations which are not included in the classification~IV.!, but they can be obtained
by a transformation.17 @For example, Eq.~3.13! in Ref. 1 by extended hodograph transformation.#
On the other hand, there are equations which appear in the same class, and are related to each
other by a Miura-type transformation. Moreover, there may be other integrable equations that do
not appear in the classification~IV.!, because of a different eigenvalue problem.

The main idea in this work is to give a new definition of integrability. We conjecture that a
partial differential equation is integrable if its linearized equation can support an eigenvalue
equation. This definition implements a method to check whether a given partial differential equa-
tion is integrable. In addition, one can search an integrable subclass of a given class of partial
differential equation. Linearization is also compared with Fokas’s symmetry and Mikhailov–
Shabat–Sokolov formal symmetry approaches.
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Quantum deformed analogs of the Legendre functions are constructed from shift
operator representations of the quantum deformed orbital angular momentum op-
erators. A Rodriguez formula is found as well as the measure used to orthonormal-
ize the functions. ©1996 American Institute of Physics.
@S0022-2488~96!00406-9#

I. INTRODUCTION

The representations of quantum deformed Lie algebras in terms of difference operators shows
a rich variety of structure that can be traced to the nonuniqueness of the representations.1 For
example, recent work2 on quantum su~2! has produced analytical realizations whose basis func-
tions are rational rather than polynomial in nature. These functions do not conform simply to the
standard classes of quantum deformed orthogonal polynomials but are interesting in their own
right. The classical Legendre polynomials do have well known but not widely used rational forms.
These do not appear naturally as eigenfunctions of differential operators in physics in the com-
monly used coordinate systems. In this paper we will show that the quantum deformed orbital
angular momentum operators possess quantum analogs of these verions of the Legendre functions
as their representation basis functions. From this knowledge a Rodriguez formula will be found
and used to orthonormalize the functions.

II. AN OPERATOR REPRESENTATION OF so(3) q

It is a simple matter to construct a difference operator representation of the angular momen-
tum operators much in the spirit of Ref. 1. The product relations for the algebra are

@Jz , J1#5J1 , ~1!

@Jz , J2#52J2 , ~2!

@J1 , J2#5
q2Jz2q22Jz

q2q21 . ~3!

In the hope that a realization in terms of operators acting on functions over the sphereS2 can be
found, we require that

Jz5
1

i

]

]f
, ~4!

in which f is the azimuthal angle on the sphere. The first two commutators essentially state that

J15eifo1 ~5!

and

0022-2488/96/37(6)/3062/11/$10.00
3062 J. Math. Phys. 37 (6), June 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



J25e2 ifo2 , ~6!

in which the two operatorso1 ando2 have nof dependence. For now we think of them as acting
on a remaining variablex which must be a function of the polar angleu. We define the deforma-
tion parameterq to be

q5es . ~7!

The remaining product~3! suggests the forms

J15eif„A~x!eis]f1B~x!e2 is]f1c~x!…, ~8!

J25e2 if
„A1~x!eis]f1B1~x!e2 is]f1c1~x!…, ~9!

in which for now~1! does not necessarily mean adjoint. We further imagine thatc andc1 must
contain difference operators that provide derivatives with respect tou asq approaches 1, and so
we define

c5ueis]x, ~10!

c15u1eis]x. ~11!

Substitution into the products~1!–~3! gives six relations on the operatorsA,B,c,A1,B1,c1 that
seem to have only exponential solutions. A convenient set of solutions is

A52B15
e2 ix

q2q21 , ~12!

B52A15
eix

q2q21 , ~13!

u52u152
eix1e2 ix

q2q21 . ~14!

This last choice ofu is made to cancel terms of orders21 as the limitq approaches 1. The limits
of these operators asq goes to 1 do not agree with the standard orbital angular momentum
operators and so we define

x5 i ln tan
u

2
, ~15!

which gives the operators the correct undeformed limit. The full set ofq-deformed angular mo-
mentum operators can now be displayed in terms ofu andf:

Jz5
1

i

]

]f
, ~16!

J15
eif

q2q21 S tan u

2
eis]f1cot

u

2
e2 is]f2

2

sin u
es sin u]uD , ~17!

J25
e2 if

q2q21 S 2cot
u

2
eis]f2tan

u

2
e2 is]f1

2

sin u
es sin u]fD . ~18!
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These are in agreement with the results of Ref. 2.

III. HIGHEST WEIGHT EIGENFUNCTIONS

The highest weight eigenfunctions in the 2j11-dimensional subspace is the function annihi-
lated byJ1 :

„q2 je2 ix1qjeix2~eix1e2 ix!e2 is]x
…ei j fc j j50. ~19!

This suggests the unusual form

c j j5
1

(nane
inx , ~20!

in which the coefficients have the recursion relation

am1152
12qj2m21

12q2~ j1m11! am21 . ~21!

This separates the solutions into even and odd cases; for example, in the even case the coefficients
become

a2n~q!5a22n~2q!5~21!n)
m50

n21
12qj22m

12q2~ j12m12! , ~22!

and in both cases theq-binomial theorem allows the series solution to be expressed as

c j j5
ei j fei jx

Pm51
j ~11q2me2ix!

. ~23!

IV. THE q-LEGENDRE FUNCTIONS

The states annihilated byJz would correspond to aq-analog of the Legendre functions. The
most expedient way to build them is by solving the eigenvalue equation for the quadratic Casimir
operator with the appropriate eigenvalue. The operatorC2 can be written as

~q2q21!C25~eix1e2 ix!~q21eix1qe2 ix!~qi ]x2 i ]f1qi ]x1 i ]f2q2i ]x!

2~q21e2ix1qe22ix12! ~24!

and it has eigenvalues

~qj11/22q2~ j11/2!!2

~q2q21!2
. ~25!

The issue of adjoint formation will be addressed in the section on the orthogonality of the eigen-
functions. Application of the Casimir operator to the sought-after functionc j0 results in the
equation

~2eis]x2e2is]x!c j05
q2 j111q2~2 j11!1q21e2ix1qe22ix

~q21e2ix1q1q211qe22ix!
c j0 . ~26!

Let z5eix and extract the denominator fromc j0 by defining
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c j05
f j~z!

Pn51
j ~11q2nz2!

, ~27!

and the result is that the numerator satisfies a difference equation

2~11z2! f j~z!2~11q2 j z2! f j~q
21z!5~11q22 j z2! f j~qz!, ~28!

which can be solved recursively for the series

f j~z!5 (
m50

j

~21!m)
p51

m S qj2~p21!2q2„j2~p21!…

qp2q2p D 2z2m. ~29!

The coefficients ofz2m are simply related to the Gaussian polynomials. Let

S nmD
q

5
~q2q21!~q22q22!•••~qn2q2n!

~q2q21!•••~qm2q2m!~q2q21!•••~qn2m2q2~n2m!!
, ~30!

which reduces to the binomial coefficient asq goes to 1. Then our final expression for the
q-Legendre function

c j05
(m50
j ~21!m~m

j !q
2z2m

Pm51
j ~11q2mz2!

, ~31!

is an obviousq-analog of a common rational expression for the Legendre functions

Pn~ t !5
(m50
n ~m

n !2t2m

~12t !n
. ~32!

The substitutionx5(11t)/(12t) reduces this to the standard Legendre polynomial which can be
shown by computing the generating function

2p (
n50

`

Pn~ t !u
n5E

0

`

(
n50

` S u~11eiuAt !~11e2 iuAt !
~12t ! D ndu5

2p

A122u„~11t !/~12t !…1u2
.

~33!

In the classical case the Rodriguez formula is the equation

Pn5Pn05~J2!nPnn5F ~11t !2
d

dtG
nS t

~12t !2D
n

, ~34!

in the rational representation, up to a normalization factor. The same route to a Rodriguez formula
for theq-deformed functions can be followed. We define scale operators

d1F~z!5F~qz!, ~35!

d2F~z!5F~q21z!, ~36!

and the Jackson derivatives

“2F~z!5
F~z!2F~q21z!

z~12q21!
5

12d2

z~12q21!
F~z!, ~37!
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“1F~z!5
12d1

z~12q!
F~z!, ~38!

change variablesz5eix, and extract thef dependence fromcjm ,

c jm5eimfgjm~z!. ~39!

The action of the lowering operators on the functionsgjm can be expressed as

gj ~ j21!52z21@qj~11q22 j z2!2~11z2!d2#gj j , ~40!

gj ~m21!52z21@qm~11q22mz2!2~11z2!d2#gjm . ~41!

The operator identity

~12q21!z2 jqj~11z2!•••~11q22 j z2!“2

zjF~z!

~11z2!•••~11q22 j12z2!

5z21@qj~11q22 j z2!2~11z2!d2#F~z! ~42!

allows us to writegj0 as the result of aq-power of an operator ongj j by defining

Dm5qm@2z21~11q22mz2!~11q22m12z2!“2#, ~43!

and by writing out repeated applications ofJ2 to gj j we see cancellations of most of the binomials
in the operator identity result in the compact expression

gj05D1D2•••DjF zjgj j
~11z2!•••~11q22 j12z2!G . ~44!

This form will be particularly useful in the section in which the normalization integral is com-
puted.

V. ORTHOGONALITY AND MEASURE

The functionsgj0 are theq-Legendre functions but in an unnormalized state. They can be
shown to be an orthogonal set with respect to a suitably chosen measurem(z) on the positivez
axis. Actual construction of the measure is simpler in the present case than in the examples of
Refs.~3!–~5! because of the availability of the Rodriguez formula. The measure should be chosen
if any ambiguity in its construction arises to have the expected classical limit asq approaches 1.
The appropriate measure can be gotten quickly from the requirement thatg00 be orthogonal to all
gj0 for j.0. We write this condition as

E
0

`

m~z!„2z21~11z2!~11q22z2!…“2F z2gj1
~11z2!~11q2z2!Gdz50, ~45!

and nowq-integrate by parts

E
0

` z2gj1
~11z2!~11q2z2!

“1@qm~z!z21~11z2!~11q22z2!#dz50, ~46!

from which we see that
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m~z!5
z

~11z2!~11q22z2!
, ~47!

up to a multiplicative factor. This does reduce to the correct classical limit. Now the orthogonality
proof can proceed in the same way as in the classical case: express each function in terms of the
Rodriguez formula and integrate by parts to move lowering operators from one function onto the
other where they act as raising operators. This continues until a sufficient number act on the target
function to annihilate it. An expedient would be a similar set of operator identities for the raising
operator, such as the following:

gj15@~z1z21!2~z1z21!d2#gj05~11z2!“2gj0 , ~48!

gj25@~zq1z21q21!2~z1z21!d2#gj15q21z“2z
21~11q2z2!gj1 , ~49!

gj35@~zq21z21q22!2~z1z21!d2#gj25
q22z2

~11q2z2!
~“2z

22~11q2z2!~11q4z2!!gj2 . ~50!

We now illustrate with an example, showingg20 and g10 are orthogonal. An operatorO is
interposed on the possibility that it may be needed and to facilitate simplification of the resulting
expression:

E
0

`

m~z!Fqz21~11z2!~11q22z2!“2

z

~11z2!G
3[q2z22~11z2!~11q22z2!~11q24z2!“2

z2g22
~11z2!~11q2z2!

]Og10 dz

52qE
0

`Fq3z21~11q24z2!“2

z2g22
~11z2!~11q2z2!G

3~11q22z2!“1Og10 dz. ~51!

If this process is to be theq-analog of the classical version, then we must have

~11q22z2!“1Og105Og11, ~52!

from which it is evident that the operatorO decomposes into

O5d2I , ~53!

in which the operatorI transformsq into q21 so that

~11q22z2!“1d2Ig105d2I ~11z2!“2g105d2Ig11. ~54!

Subsequent integrations by parts have the desired effect of raisingd2Ig11 past the point of no
return:

q2E
0

`

q3
zg22

~11z2!~11q2z2!
z“1z

21~11q24z2!d2Ig11dz

5q5E
0

` zg22
~11z2!~11q2z2!

d2I @z“2z
21~11q2z2!g11#dz50, ~55!
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by the use of Eq.~49!. The proof that the functionsgj0 are orthogonal can now proceed as in the
classical case along with a proof thatJ1 andJ2 are formal adjoints. First define the action ofJ1

andJ2 on gjm in terms of the step operators

gj ~m21!5Jm21
m gjm , ~56!

gj ~m!5Jm
m21gj ~m21! . ~57!

Now we develop by use of the operator identities

J1
05~11z2!“2 , ~58!

J2
15q1z“2z

21~11q2z2!, ~59!

Jm11
m 5q2m

zm

~11q2z2!•••~11q2~m21!z2!
“2z

2m~11q2z2!•••~11q2mz2!, ~60!

J0
15qz21~11z2!~11q2z2!“2

z

~11z2!
, ~61!

Jm21
m 5qmz2m~11z2!•••~11q22mz2!“2

zm

~11z2!•••~11q22m12z2!
, ~62!

a shorthand notation for the step operators.
Let

Um5z2m)
n51

m

~11q2nz2!, ~63!

Vm5z2m)
n50

m

~11q22nz2!, ~64!

with U051 andV05(11z2). Then the step operators can be written as

Jm11
m 5q2mzUm21

21
“2Um , ~65!

Jm11
m 5qmVm“2zVm21

21 . ~66!

The additional operator identity is trivial to prove:

d2IVm5qmz21~11z2!~11q22z2!Um21d2I . ~67!

Now apply this toP1
j Jn21

n :

d2I)
n52

j

Jn21
n 5z21~11z2!~11q22z2!F )

n52

j

~2q2nUn21“1Un22
21 !G

3
z

~11z2!~11q22z2!
d2I . ~68!

Apply it to J0
1:
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d2Iqz
21~11z2!~11q22z2!“2

z

~11z2!

5q21z21~11z2!~11q22z2!“1

z

~11q22z2!
d2I . ~69!

Put the two pieces together and use the definition ofm(z) to obtain

d2I)
n51

j

Jn21
n 5q21m21~z!)

n52

j

~2q2nUn21“1zUn22
21 !m~z!d2I . ~70!

The factors in the product are precisely the transposes of the step-up operators and will be
converted intoJn11

n in turn upon integration by parts. In addition we have shown how to construct
adjoints

E
0

`

m~z!F~z!d2IJm21
m G~z!dz5E

0

`

m~z!F~z!m21~z!q2mUm21“1zUm22
21 d2IG~z!dz

52E
0

`

Um22
21 z“2Um21q

2mF~z!m~z!d2IG~z!dz

5E
0

`

m~z!Jm
m21F~z!d2IG~z!dz. ~71!

The proof of orthogonality is now obvious, partial integrations move lowering operators fromg0 j
ontog0k and in the process makes them into raising operators. Ifj.k, this results in the annihi-
lation of g0k.

VI. THE NORMALIZATION INTEGRAL

The norm ofgj0 can also be computed from the Rodriguez formula. Notice that the norm of
g00 is well defined in the limit asq approaches 1 andm(z)dz reduces correctly to sinu du in that
limit,

N005E
0

` q22 dy

~11y!~11q22y!
5

2 ln q

~12q22!
. ~72!

We now demonstrate that

D1D2•••Dj

z2 j

Pn51
2 j ~11q2nz2!

5q2 j 2
~12q22!•••~12q22 j !(n50

j ~21!n~n
j !q

2z2n

~12q21!•••~12q21!Pn51
j ~11q2nz2!

. ~73!

That this is true up to an overall multiplicative factor has already been established; now that factor
is to be determined. The fastest path to this end is to notice that the numerator of the left-hand size
of ~73! always contains a term of orderz2 j . The coefficient can be found by tracking its value with
each application of aDk operator with the result

q2 j 2
~12q22!•••~12q22 j !

~12q21!•••~12q21!
, ~74!

as the coefficient ofz2 j . The operatorsDn to the right ofd2I in the expression
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Nj j5E
0

`

m~z!FD1•••Dj S zjgj j
P0

j21~11q22nz2! D Gd2I FD1•••Dj S zjgj j
P0

j21~11q2nz2! D Gdz ~75!

are now passed throughd2I and moved by partial integration onto the first factor in the integral
resulting in

Nj j5~2q! jE
0

`

m~z!FD2 j •••D21D1•••Dj S zjgj j
P0

j21~11q22nz2! D G
3d2I F S zjgj j

P0
j21~11q2nz2! D Gdz, ~76!

where

D2m5q2mz21~11q2m22z2!~11q2mz2!“2 . ~77!

The evaluation of the long string ofD2k operators ongj0 can be accomplished recursively by
writing

gj05
(n50
j An

~0!z2n

Pn51
j ~11q2nz2!

, ~78!

D21gj05
(n50
j An

~1!z2n

Pn52
j ~11q2nz2!

, ~79!

A

D2k•••D21gj05
(n50
j An

~k!z2n

Pn5k11
j ~11q2nz2!

. ~80!

Since the coefficientsAm
(0) are already known, this recursive tower can be solved for

Am
~1!5

~21!m

12q21 S jmD
q

2 ~12q22m!~12q2 j12!

~12q2 j1222m!
, ~81!

Am
~2!5

~21!m

~12q21!2
S jmD

q

2 ~12q22m!~12q222m!~12q2 j12!~12q2 j14!

~12q2 j1222m!~12q2 j1422m!
, ~82!

A.

The process terminates in

Aj
~ j21!5q2~ j12!~ j21!

~12q2 j !~12q2 j12!•••~12q4 j22!

~12q2!~12q21! j21 ~83!

and

D2~ j21!•••D21gj05Aj
~ j21!

~12z2!

~11q2 j z2!
. ~84!

The final expression forNj j is
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Nj j5
~12q22!•••~12q24 j !

~12q21!•••~12q21!
E
0

` z2 j11 dz

~11q22 j z2!~11q22 j12z2!•••~11q2 j12z2!
, ~85!

Nj j52q2 j ~ j11!
~12q22!•••~12q24 j !

~12q21!•••~12q21!
E
0

` yj dy

~11y!•••~11q4 j12y!
. ~86!

This integral is of the form

I k,N5E
0

` yk21 dy

Pn50
N ~un1y!

, ~87!

which can be evaluated by contour integration using the contour shown in the figure with branch
cut extending to infinity, with result

I k,N5
2p i ~21!N1k21

12e2p ik (
p50

N
u2pN1p~p21!/21pk~21!p

~u!p~u!N2p
. ~88!

The sum can be performed using theq-binomial theorem

I k,N5
2p i

12e2p ik ~21!N1k21
~uk2N!N

~u!N
, ~89!

in which

~u!N5~12u!~12u2!•••~12uN!. ~90!

For the case in whichk is an integer, L’Hopital’s rule gives

I k,N5
ln u

~12uN!~k21
N21!u

. ~91!

The present usage of this integral hasu5q22, k5 j11, andN52 j11 with the conclusion that
the functions

FIG. 1. Path of integration for~87!.
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NjD1•••Dj S z2 j

Pn51
2 j ~11q2nz2! D , ~92!

with

Nj5A ~12q22~2 j11!!~12q21!2 j

2~12q22!2•••~12q22 j !2 ln q22, ~93!

form an orthonormal set of rational functions on the positive ray that areq deformations of the
rational form of the Legendre functions. The normalization coefficientNj correctly reduces to

Nj5
1

2 j j !
A2 j11

2
, ~94!

in the limit asq approaches 1.
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It has recently been discovered@A. A. Ungar, Am. J. Phys.59, 824~1991!; 60, 815
~1992!# that the setRc

35$vPR3 : ivi,c% of all relativistically admissible velocities
in Euclidean three-spaceR3, with a binary operation% given by relativistic veloc-
ity addition, forms a gyrogroup~Rc

3,%!. The gyrogroup~Rc
3,%! reduces to the group

~R3,1! in the limit c→`, 1 being the prerelativistic velocity addition~that is, the
ordinary vector addition in the Euclidean three-spaceR3!. The binary operation%
in Rc

3 is gyroassociativeandgyrocommutative, as opposed to the binary operation
1 in R3 which is associative and commutative. In this article we extend the study
of gyrogroups into that of Lorentz groups. In particular, we find that a gyrogroup
must be equipped with acocycle formin order to be extendible into a Lorentz
group. We thus study gyrogroups that are equipped with a cocycle form, and their
resulting Lorentz groups. Interestingly, the cocycle form needed for the extension
of gyrogroups into Lorentz groups involves acocycle identitywhich is known to be
useful in various branches of mathematics@B. R. Ebanks and C. T. Ng, Aequat.
Math. 46, 76 ~1993!#. © 1996 American Institute of Physics.@S0022-
2488~96!01606-6#

I. INTRODUCTION

The relevance of gyrogroup theory to the study of real and complex Lorentz groups has been
demonstrated in Refs. 1–4. The use of the real~113!-dimensional Lorentz group in the special
theory of relativity ~STR! is well known; and a use of a complex Lorentz group in quantum
mechanics is presented in Ref. 5. The Lorentz group of STR is parametrizable by~i! relativisti-
cally admissible velocities and~ii ! orientations. The values of the orientation parameter form a
group, SO~3!, under rotation composition; and the values of the velocity parameter form a non-
groupgyrogroup, ~Rc

3, %!, under relativistic velocity addition%. The gyrogroup operation% in
Rc
35$vPR3 : ivi,c% turns out to begyrocommutativeand gyroassociative, as opposed to the

prerelativistic velocity addition1 in R3 which is both commutative and associative.
The prefixgyro- that we extensively use stems from analogies shared withThomas gyration.

Thomas gyration, in turn, is an abstraction of the common Thomas precession of STR. Unfortu-
nately, Thomas precession is commonly studied in STR as an isolated peculiarity. In this article,
however, we will see that Thomas gyration plays a central role in STR and in its abstraction,
giving rise to the gyrogroup concept. In fact, it is the notion of the gyrogroup that allows the
abstraction of the Lorentz group acting on spacetime. It was found that the gyrogroup structure is
closely related to that of the so-calledK loop,3 which was discovered in 1965 by Karzel,4 and is
extensively studied in some areas of geometry.6

In Sec. II we introduce the gyrogroup definition, as well as the definition of thecocycle form
that a gyrogroup must possess in order to be extendible into a Lorentz group. It thus turns out that
the study of gyrogroups equipped with a cocycle form is fruitful, giving rise to elegant identities
and exposing previously unknown structure underlying Lorentz groups. Of particular interest is
the special case of the real and complex relativistic gyrogroups and their cocycle forms, presented
in Sec. III. In that section a nonstandard relativistic gyrogroup that results in a nonstandard
Lorentz group is also presented.

0022-2488/96/37(6)/3073/26/$10.00
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The real and complex gyrogroups described in Sec. III are extended in Sec. IV into real and
complex space–times. The action of abstract Lorentz transformations on these abstract space–
times is then explored in Sec. V. Thegyrosemidirect productpresented in Sec. VI enables us in
Sec. VII to study the abstract real and complex Lorentz transformation groups. In particular, we
obtain Lorentz transformation composition laws that generalize the ones discovered in Refs. 7 and
8. Finally, group theoretical interpretation is presented in Sec. VIII.

Remarkably, although the cocycle identity is useful in several branches of mathematics,9 the
role it plays in the structure of the Lorentz group has gone unnoticed, along with the fact that the
form 11u–v/c2 satisfies the cocycle identity in the relativistic gyrogroup~Rc

3,%!. The role played
by the cocycle form in the abstract Lorentz group, described in this article, is indicated by the
appearance of the relativistic cocycle form 11u–v/c2 in the expressions describing both the Lor-
entz transformation in STR and the relativistic velocity addition% in STR.

II. GYROGROUPS AND THEIR COCYCLE FORMS

Definition 2.1 (Groupoids and their automorphism groups): A groupoid (S,1) is a nonempty
setSwith a binary operation1. An automorphismof the groupoid (S,1) is a bijection ofS that
respects the binary operation1 in S. The set of all automorphisms of (S,1) forms a group
denoted by Aut(S,1).

Definition 2.2 (Gyrogroups): A groupoid (P,1) is a gyrogroup ifP contains an element,
denoted by 0, such that

~G1! 01x5x105x

for any xPP; and any elementxPP has an inverse, denoted by2x, satisfying

~G2! 2x1x5x1~2x!50.

Moreover, if for anyx, yPP we define the map gyr[x;y] of P by the equation

gyr@x;y#z52~x1y!1~x1~y1z!!, zPP,

then the following hold:

~G3! gyr@x;y#PAut~P,1 !, gyroautomorphism,

~G4! x1y5gyr@x;y#~y1x!, gyrocommutative law,

~G5a! x1~y1z!5~x1y!1gyr@x;y#z, right gyroassociative law,

~G5b! ~x1y!1z5x1~y1gyr@y;x#z!, left gyroassociative law,

~G6! gyr@0;y#5I , identity gyroautomorphism,

~G7! gyr@x1y;y#5gyr@x;y#, loop property.

The gyroautomorphism gyr[x;y] of the gyrogroup (P,1) is given in Definition 2.2 by its
effect on anyzPP. Alternatively, if L(a) denotes left gyrotranslation bya in (P,1),

L~a!x5a1x

for all a,xP(P,1), then the inverseL21(a) of L(a) is L21(a)5L(2a), and

gyr@x;y#5L21~x1y!L~x!L~y!. ~2.1!
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In the particular case of the special-relativistic gyrogroup, the action of a gyroautomorphism
gyr[x;y] is a rotation known as Thomas precession orThomas gyration. Ambiguously, we say
that the gyroautomorphisms gyr[x;y] are gyrations~or, rotations in the special relativistic case! of
the gyrogroupP.

We will now present the definition and some properties of the cocycle form. In the sequel,
these will prove useful in understanding the structure of Lorentz groups.

Definition 2.3 (The positive ray and the right-half complex plane):R andC denote, respec-
tively, the real line and the complex plane. Thepositive ray is R15$rPR : r.0%, and the
right-half complex planeis C15$zPC : Rez.0%.

Definition 2.4R (A real cocycle form in a gyrogroup):A real cocycle formin a gyrogroup
(P,1) is a map

F : P3P→R1

possessing the following properties. For alla,b,u,n,wPP,

~C1! F~u,n1w!F~n,w!5F~n1u,w!F~u,n!, cocycle identity,9

~C2! F~u,n!5F~gyr@a;b#u,gyr@a;b#n!, gyroinvariance, invariance under gyrations,

~C3R! F~u,n!5F~n,u!, symmetry,

~C4! F~0,0!51, normalization condition.

If, in addition,F satisfies the condition

~C5! F~2u,2n!5F~u,n!, even cocycle form,

we say thatF is even. The definition of a complex cocycle form is similar.
Definition 2.4C (Complex cocycle form in a gyrogroup):A complex cocycle formin a gyro-

group (P,1) is a map

F : P3P→C1

possessing properties~C1!–~C4! of Definition 2.4R, but with property~C3R! replaced by the
following property~C3C!:

~C3C! F~u,n!5F~n,u!, complex symmetry.

Clearly, if F(u,n) is a complex cocycle form, then its modulusuF(u,n)u is a real cocycle
form.

Theorem 2.1:Let F be a real or complex cocycle form in a gyrogroup (P,1). Then, for any
n,xPP,

~ i!

~ ii !

~ iii !

F~0,n!51,

F~n,2n!5F~n1x,2n!F~x,n!,

F~n,2n! is real, satisfyingF~n,2n!5F~2n,n!.

Proof: The cocycle identity~C1! with u50 andn52w gives

F~0,0!F~2w,w!5F~2w,w!F~0,2w!
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implying, by means of~C4!, that F(0,2w)51 for anywPP, thus verifying ~i!. Property~ii !
follows from the cocycle identity~C1! with u5x andw52n, and from~i!. The equality in~iii !
follows from ~i! and from~ii ! with x52n. If F is a complex cocycle form, then the reality of
F(n,2n) follows from ~C3C!.

Definition 2.5 (Gyrogroups with a cocycle form):A gyrogroup (P,1) possessing a cocycle
form F is denoted by (P,1,F).

Definition 2.6 (The Lorentz factorg): Let (P,1,F) be a gyrogroup with a cocycle formF.
For anynPP, the Lorentz factorgn is given by the equation

gn
225F~n,2n!.

We will see in Sec. III that the relativistic gyrogroup possesses an even cocycle form,S~u,v!,
such that its Lorentz factorgv @with gv

22 5 S(v, 2 v)# is the common Lorentz factor of STR.
Theorem 2.2R:Let F(u,n) be an even real cocycle form in a gyrogroup (P,1,F). Then

F~u,n!5
gu1n

gugn
~2.2!

for anyu,nPP.
Proof: By the cocycle identity

F~u1n,w!5
F~n,u1w!F~u,w!

F~n,u!

with w52(u1n), noting thatu1w52n, we have

F„u1n,2~u1n!…5
F~n,2n!

F~n,u!
F„u,2~u1n!…. ~2.3!

By the identity~ii ! in Theorem 2.1 withx5u, and by the symmetry ofF, we have

F~n,2n!5F~n1u,2n!F~u,n!5F~n,u!F~n1u,2n!,

implying

F~n,2n!

F~n,u!
5F~n1u,2n!. ~2.4!

Substituting~2.4! into ~2.3! we have, by properties~C3R! and ~C5! of the even real cocycle
form F(u,n),

F~u1n,2~u1n!!5F~n1u,2n!F~u,2~u1n!!

5F~n1u,2n!F~u1n,2u!

5F~u1n,2u!F~n1u,2n!. ~2.5!

By two applications of identity~ii ! in Theorem 2.1~introducingx5x1 in the first application
andx5x2 in the second application!, with x15n andx25u, and by~2.5! we have

F~u,2u!F~n,2n!5F~u1x1 ,2u!F~x1 ,u!F~n1x2 ,2n!F~x2 ,n!

5F2~u,n!F~u1n,2u!F~n1u,2n!

5F2~u,n!F~u1n,2~u1n!!. ~2.6!
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By Definition 2.6, the extreme left- and right-hand sides of Eq.~2.6! yield

gu
22gn

225F2~u,n!gu1n
22 ,

thus verifying Theorem 2.2R.
A generalization of Theorem 2.2R to any real cocycle form, not necessarily even, is given in

Theorem 4.2. To demonstrate an application of Theorem 2.2R we verify the following.
Lemma 2.1R:Let F(u,n) be an even real cocycle form in a gyrogroup (P,1,F). ThenF

satisfies the identity

F„2~a1b!,a1~b1n!…F~a,b1n!F~b,n!

F~a1b,2~a1b!!F~a,b!
51

for all a,b,nPP.
Proof: By Theorem 2.2R, the identity in Lemma 2.1R can be written as

gn

ga1bga1~b1n!

ga1~b1n!

gagb1n

gb1n

gbgn
Y 1

ga1b
2

ga1b

gagb
51,

noting that

2~a1b!1$a1~b1n!%5gyr@a;b#n,

so that

g2~a1b!1~a1~b1n!!5ggyr@a;b#n5gn ,

thus completing the proof.
Lemma 2.1R and its proof were presented as an instructive demonstration of an application of

Theorem 2.2R. However, the result of the Lemma can be extended to both real and complex
cocycle forms which need not be even. We, therefore, present below a generalization of Lemma
2.1R.

Lemma 2.1:Let F(u,n) be a real or complex cocycle form in a gyrogroup (P,1,F). ThenF
satisfies the identity

F„2~a1b!,a1~b1n!…F~a,b1n!F~b,n!

F„a1b,2~a1b!…F~a,b!
51 ~2.7!

for all a,b,nPP.
Proof: By Theorem 2.1~ii ! we have

F„a1b,2~a1b!…5F„~a1b!1x,2~a1b!…F~x,a1b!

for any xPP. Hence, in particular, forx5gyr[a;b]n, we have by~C2!, ~G5a!, ~G4!, and~C3C!
and by part~iii ! of Theorem 2.1,

F„a1b,2~a1b!…5F„a1~b1n!,2~a1b!…F~n,b1a!5F„2~a1b!,a1~b1n!…F~b1a,n!.
~2.8!

EliminatingF(b1a,n) between identity~2.8! and the cocycle identity

F~a,b1n!F~b,n!5F~b1a,n!F~a,b!

yields ~2.7! as desired.
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We will now present the complex counterpart of Theorem 2.2R.
Theorem 2.2C:Let F(u,n) be an even complex cocycle form in a gyrogroup (P,1,F). Then

uF~u,n!u5
gu1n

gugn

for anyu,nPP. Hence,

F~u,n!5tgyr@u;n#
gu1n

gugn
,

where

tgyr@u;n#5
F~u,n!

uF~u,n!u
,

for anyu,nPP.
Proof: The complex conjugate of Eq.~2.3!, noting thatF(n,2n) is real, takes the form

F„u1n,2~u1n!…5
F~n,2n!

F~n,u!
F„u,2~u1n!…. ~2.9!

By the second identity in Theorem 2.1 withx5u, and by the complex symmetry ofF, we
have

F~n,2n!5F~n1u,2n!F~u,n!5F~n,u!F~n1u,2n!,

implying

F~n,2n!

F~n,u!
5F~n1u,2n!. ~2.10!

Substituting~2.10! into ~2.9! we have, by properties~C3C! and ~C5! of the cocycle form
F(u,n),

F„u1n,2~u1n!…5F~n1u,2n!F„u,2~u1n!…

5F~n1u,2n!F~u1n,2u!

5F~u1n,2u!F~n1u,2n!. ~2.11!

By the second identity in Theorem 2.1, withx5n andy5u, and by~2.11! we have

F~u,2u!F~n,2n!5F~u1x,2u!F~x,u!F~n1y,2n!F~y,n!

5uF~u,n!u2F~u1n,2u!F~n1u,2n!

5uF~u,n!u2F„u1n,2~u1n!…. ~2.12!

By Definition 2.6, the extreme left- and right-hand sides of Eq.~2.12! yield

gu
22gn

225uF~u,n!u2gu1n
22 ,
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thus verifying Theorem 2.2C.
Theorem 2.2C suggests the following.
Definition 2.7 (The time gyration):Let F be a complex cocycle form in a gyrogroup (P,

1,F). The time gyrooperatortgyr is a map

tgyr : P3P→C0
1 ,

whereC0
15$zPC : uzu51, Rez.0%, given by

tgyr@u;n#5
F~u,n!

uF~u,n!u
~2.13!

for anyu,nPP. The tgyr[u;n] are calledtime gyrations. They representrotationsof the complex
planeC.

The real counterpart of tgyr vanishes. IfF(u,n) is a real cocycle form in a gyrogroup
(P,1,F), then clearly tgyr[u;n]51 for anyu,nPP. Therefore, the extension from gyrogroups
with a real cocycle form to gyrogroups with a complex cocycle form is not trivial; time gyration
of a gyrogroup with a complex cocycle form has no real counterpart. As suggested by its term,
tgyr possesses properties similar to those of gyr, as indicated in the following.

Theorem 2.3:The time gyration tgyr in a gyrogroup (P,1,F) with a complex cocycle form
satisfies the identities

~i! tgyr21[u;n]5tgyr@n ;u#,
~ii ! tgyr@0;n#51,

and it possesses the two loop properties

tgyr@u1n;n#5tgyr@u;n#, left loop property~LLP!,

tgyr@u;n1u#5tgyr@u;n#, right loop property~RLP!.

Proof: ~i! and~ii ! follow immediately from the definition of tgyr, from property~C3C! of F,
and from Theorem~2.1! ~i!. To verify the right loop property, let us substitutew5u in the cocycle
identity ~C1!, obtaining the identity

F~u;n1u!F~n,u!5F~n1u,u!F~u,n!. ~2.14!

It follows from ~2.14!, by the complex symmetry property~C3C! of F, that the productF(u,n
1u)F(n,u) in C is real. Hence, the conjugateF(n,u) 5 F(u,n) of F(n,u) is real proportional to
F(u,n1u), that is,

F~u,n!5rF ~u,n1u! ~2.15!

for some positive real constantr . Dividing each side of~2.15! by its magnitude gives the right
loop property~RLP!. Taking the complex conjugate of each side of~2.15! one similarly verifies
the left loop property~LLP!. The proof of the theorem is thus complete.

III. THE REAL AND COMPLEX RELATIVISTIC GYROGROUPS AND THEIR COCYCLE
FORMS

Definition 3.1 [Einstein gyrogroup; the standard relativistic gyrogroup (Vc ,%)]: Let
(V` ,1,•) be a~real or complex! inner product space, and let

Vc5$vPV` : ivi,c% ~3.1!
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be its openc ball; c being an arbitrary fixed positive constant. The inner product^u,v& in V` is
denoted byu–v or v–u if V` is real, and byu–v̄ or v̄–u if V` is complex~we make no attempt to
definev̄ alone!. To avoid unnecessary repetitions, ifV` is real thenu–v̄5u–v. Under this notation,
the groupoidinducedby the inner product space (V` ,1,•) is the pair (Vc ,% ) where the binary
operation% in Vc is given by the abstract relativistic velocity addition

u%v5
1

11ū–v/c2 H u1
1

gu
v1

1

c2
gu

11gu
~ ū–v!uJ , u,vPVc , ~3.2a!

gu being the well-known Lorentz factor of STR~written here for a possibly complexu!,

gu5
1

A12ū–u/c2
. ~3.2b!

The use of the symbolgu in Eq. ~3.2b! and in Definition 2.6 is not ambiguous, as indicated in Eqs.
~3.6! and in a paragraph above these equations.

The groupoid (Vc ,% ) forms a gyrogroup known as the(real or complex) relativistic
gyrogroup.7 Following Ref. 13, it is also called Einstein gyrogroup.

Theorem 3.1 (A complex cocycle form in the complex relativistic gyrogroup):Let (V` ,1,•)
be a complex inner product space, and let (Vc ,% ) be the gyrogroup induced on its openc ball Vc .
Then the map

S : Vc3Vc→C1

given by the equation

S~u,v!511
ū–v

c2
~3.3!

is an even complex cocycle form in the gyrogroup (Vc ,% ), giving rise to the triple (Vc ,% ,S)
~defined in Definition 2.5!.

Proof: We have to verify thatS~u,v! possesses properties~C1!–~C5! of the cocycle form.
Invariance ofS~u,v! under gyrations is obvious; gyrations in the gyrogroup (Vc ,% ) are unitary
transformations ofVc and ofV` , under which the inner product• in V` is invariant. This verifies
~C2!.

The validity of properties~C3!–~C5! for S~u,v! is immediate. It remains to verify the cocycle
identity ~C1!.

The binary operation% in the gyrogroupVc is given by Eq.~3.2!, which can be written as

u%v5Au,vu1Bu,vv ~3.4a!

with

Au,v5
1

11~ ū–v/c2! S 11
1

c2
gu

11gu
ū–vD

and

Bu,v5
1

11~ ū–v/c2!

1

gu
. ~3.4b!

Hence,
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u–̄~v%w!5Av,wū–v1Bv,wū–w5
1

11~ v̄–w/c2! H S 11
1

c2
gn

11gn
v̄–wD ū–v1

1

gn
ū–wJ

and

w̄–~v%u!5Av,uv–w̄1Bv,uu–w̄5
1

11~u–v̄/c2! H S 11
1

c2
gn

11gn
u–v̄D v–w̄1

1

gn
u–w̄J .

With the above definition ofS~u,v! we have~taking c51 without loss of generality!

S~u,v%w!S~v,w!5$11ū–~v%w!%~11 v̄–w!

5S 11
1

11 v̄–w H S 11
gn

11gn
v̄–wD ū–v1

1

gn
ū–wJ D ~11 v̄–w!

511 v̄–w1S 11
gn

11gn
v̄–wD ū–v1

1

gn
ū–w

and

S~v%u,w!S~u,v!5$11w–~v%u!%~11ū–v!

5S 11
1

11ū–v H S 11
gn

11gn
ū–vD v̄–w1

1

gn
ū–wJ D ~11ū–v!

511ū–v1S 11
gn

11gn
ū–vD v̄–w1

1

gn
ū–w,

implying

S~u,v%w!S~v,w!5S~v%u,w!S~u,v! ~3.5!

so thatS~u,v! satisfies the cocycle identity~C1! as desired. The proof of Theorem 3.1 is thus
complete.

Clearly, Theorem 3.1 implicitly presents, as a special case, a real cocycle form in the real
relativistic gyrogroup.

Theorem 3.1 associates the real and complex relativistic gyrogroups with respective real and
complex cocycle formsS. Accordingly, we may denote the real and complex relativistic gyro-
groups (Vc ,% ) by (Vc ,% ,S). Furthermore, following Definition 2.6 the relativistic even real form
S~v,u! induces a Lorentz factorgv , gv

22 5 S(v, 2 v). The factorgv turns out to be the well-known
Lorentz factor of STR, Eq.~3.2b!.

Due to the important role that the cocycle formS~u,v! plays in the relativistic gyrogroup
(Vc ,% ), it seems appropriate to express the binary operation% in Vc in terms ofS~u,v! rather
than ū–v. Equation~3.2! then takes the form

u%v5
1

11gu
S gu1

1

S~u,v! Du1
1

gu

1

S~u,v!
v, ~3.6a!

gu5
1

AS~u,2u!
, ~3.6b!

demonstrating the importance of the conditionsS~u,v!Þ0 andS~u,2u!.0 for all u,vPVc .
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Definition 3.2 [Möbius gyrogroup; the nonstandard relativistic gyrogroup (Vc ,h1 )]: Let
(V` ,1,•) be a real inner product space, and letVc be its openc ball, c being an arbitrary fixed
positive constant. The nonstandard binary operation inVc , h1, is given by the equation

uh1v5
1

N2~u,v! H S 11
2

c2
u–v1

1

c2
ivi2Du1S 12

1

c2
iui2D vJ ~3.7a!

whereN2~u,v!5„N~u,v!…2, N being the map

N : Vc3Vc→R1

given by

N~u,v!5A11
2

c2
u–v1

1

c4
iui2ivi2. ~3.8a!

The pair (Vc ,h1) forms a gyrogroup10,11called thenonstandardrelativistic gyrogroup induced by
the real inner product space (V` ,1,•). Following Ref. 13, it is also called the Mo¨bius gyrogroup.

Theorem 3.2:Let (V` ,1,•) be a real inner product space whose openc ball is Vc . Then
(Vc ,h1,F) is a gyrogroup with a real cocycle form, whereh1 andN are given by Eqs.~3.7a! and
~3.8a!.

Similarly to the proof of Theorem 3.1, the proof of Theorem 3.2 is lengthy but straightfor-
ward.

Remark:If we use the vector product notation

x3y3z52~y–z!x1~x–z!y

and

~x–y!25ixi2iyi22~x–y!2,

then Eqs.~3.7a! and ~3.8a! take the elegant form

uh1v5
11~1/c2!u–v2~1/c2!~u3v!3

@11~1/c2!u–v#21~1/c4!~u3v!2
~u1v! ~3.7b!

and

N~u,v!5A@11~1/c2!u–v#21~1/c4!~u3v!2. ~3.8b!

The resulting space–time is theexpanding Minkowski space, studied in Ref. 10.
Equation~3.7b!, as opposed to Eq.~3.7a!, is elegant in the sense that it exhibits the formal

structure

uh1v5
A2B

A21B2 ~u1v!,

whereA andB2 are scalars, butB is an operator. The elegance of the binary operationh1, as
presented in Eq.~3.7b!, stems from the fact that it is a generalized Mo¨bius transformation.11

In a real inner product spaceV` the standard and the nonstandard relativistic gyrogroups
(Vc ,% ) and (Vc ,h1) of Definitions 3.1 and 3.2 are isomorphic in the gyrogroup isomorphism
sense introduced by You and Ungar.12 In fact, the two binary operations% andh1 in Vc , repre-
senting standard and nonstandard relativistic velocity addition, are related by the gyrogroup iden-
tity
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1
2 (~u%v!5 1

2 (uh1 1
2 (v ~3.9!

in Vc .
12 In identity ~3.9! the map12( of Vc takesuPVc to its unique ‘‘half’’

1
2(u satisfying 1

2(u
%

1
2(u5u, the inverse of which is the map 2( of Vc that takesuPVc to 2(u5u%u.13 It thus

follows from ~3.9! thath1 is expressible in terms of% as

uh1v5 1
2(~2(u%2(v! ~3.10!

in Vc . Interestingly, whenV`5R3, the resulting standard and nonstandard Lorentz groups, studied
in Ref. 10, are experimentally equivalent, as pointed out by Urbantke.14 Their equivalence for
abstractV` is established in Ref. 12.

IV. REAL AND COMPLEX SPACE–TIMES

Definition 4.1:Let (A3B,•) be a gyrogroup whose underlying set is the Cartesian product of
two nonempty setsA andB. The gyro-operator gyr of the gyrogroup (A3B,•) is A central if the
gyration

gyr@~a1 ,b1!;~a2 ,b2!#

generated by (a1 ,b1) and (a2 ,b2) is independent ofa1 , a2PA for all (a1 ,b1), (a2 ,b2)PA3B.
In other words,

gyr@~a1 ,b1!;~a2 ,b2!#~a,b!5~a,gyrB@b1 ;b2#b! ~4.1!

for all aPA andbPB and some map

gyrB@b1 ;b2#:B→B.

The map gyrB is said to be the map ofB induced by theA-central gyro-operator of the gyrogroup
(A3B,•).

Theorem 4.1:Let (P,1) be a groupoid and let~R13P,•! be a groupoid of pairs whose
groupoid operation• is related to the groupoid operation1 in P by the equation

~s,u!•~ t,n!5@F~u,n!st,u1n# ~4.2!

for some map

F : P3P→R1.

Then, the groupoid~R13P,•! is a gyrogroup with anR1-central gyro-operator if and only if the
groupoid (P,1) is a gyrogroup with a cocycle form, (P,1,F), for which F is a real cocycle
form.

Proof: Let (P,1,F) be a gyrogroup equipped with the real cocycle formF(u,n). We will
show that the groupoid~R13P,•! is a gyrogroup whose gyro-operator isR1 central.~G1!: The
neutral element is~1,0!; and ~G2!: The inverse is

~ t,n!215S 1

F~n,2n!t
,2n D . ~4.3!

It remains to show that the groupoid~F13P,•! possesses a gyro-operator gyr given by the
equation

gyr@~s,u!;~ t,n!#5L21@~s,u!•~ t,n!#L@~s,u!#L@~ t,n!#, ~4.4!
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whereL[( t,n)] denotes left multiplication by (t,n).
Let us therefore study the operator gyr in Eq.~4.4! by its effect on (t,n)P~F13P,•!, and

show that it is indeed a gyro-operator of~F13P,•!. We have, by Eq.~4.4!,

gyr@~r ,a!;~s,b!#~ t,n!5„~r ,a!•~s,b!…21
•„~r ,a!•„~s,b!•~ t,n!……

5„F~a,b!rs,a1b…21
•„~r ,a!•„~s,b!•~ t,n!……

5S 1

F„a1b,2~a1b!…F~a,b!rs
,2~a1b! D •„~r ,a!•„F~b,n!st,b1n……

5S 1

F„a1b,2~a1b!…F~a,b!rs
,2~a1b! D

•„F~a,b1n!F~b,n!rst,a1~b1n!…

5S F„2~a1b!,a1~b1n!…
F~a,b1n!F~b,n!rst

F„a1b,2~a1b!…F~a,b!rs
,

2~a1b!1$a1~b1n!% D
5~ t,gyr@a;b#n!, ~4.5!

where in the last equality,~i! the equality between the first entry of pairs follows from Lemma 2.1,
and ~ii ! the equality between the second entry of pairs follows from the definition of the gyro-
operator gyr of the gyrogroup (P,1) in Eq. ~2.1!. All the other equalities in the above chain of
equations are obtained by pair multiplication, as defined in~4.2!. Hence, we have theR1-central
gyrooperator gyr of the groupoid~R13P,•! given by

gyr@~r ,a!;~s,b!#~ t,n!5~ t,gyr@a;b#n!5p2~gyr@a;b# !~ t,n!5Gyr@a;b#~ t,n!, ~4.6!

where

Gyr@a;b#5p2gyr@a;b#) ~4.7!

with the mapp2 from operatorsB of P into operatorsp2(B) of F
13P given by the equation

p2~B!~ t,n!5~ t,Bn!. ~4.8!

We should notice that gyr on the extreme left-hand side of Eq.~4.6! is the gyro-operator of
~R13P,•!, while gyr on the right-hand side of Eq.~4.7! is the gyro-operator of (P,1), as clearly
indicated by the arguments of gyr in these equations.

Equation~4.6! reveals a relation between the gyration gyr[a;b] of the gyrogroup (P,1) and
the operator gyr[(r ,a);(s,b)] of the groupoid~R13P,•!. We will show below that it readily
follows ~i! from this relation and~ii ! from properties of the real cocycle formF that gyr possesses
in ~R13P,•! the gyrooperator properties~G3!–~G7!. Hence, the groupoid~R13P,•! is indeed a
gyrogroup, the gyrooperator of which is theR1-central gyro-operator Gyr~It is appropriate to
interject here that, with one exception, all the gyro-operator properties are valid also when the
cocycle form is complex. It is only the gyrocommutative law which fails when the cocycle form
F is complex rather than real. Hence from the gyrogroup theoretic point of view a complex
cocycle form gives rise to an interesting example of anongyrocommutative gyrogroup, that is, a
‘‘gyrogroup’’ in which the gyrocommutativity axiom has been deleted.!

Let us now verify the validity of properties~G3!–~G7! in the groupoid~R13P,•!. Using the
abbreviationga,b5gyr[a;b] whenever convenient, we have~G3!:

3084 J. D. H. Smith and A. A. Ungar: Abstract space–times and their Lorentz groups

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



gyr@~r ,a!;~s,b!#„~ t1 ,n1!•~ t2 ,n2!…5gyr@~r ,a!;~s,b!#„F~n1 ,n2!t1t2 ,n11n2…

5„F~n1 ,n2!t1t2 ,gyr@a;b#~n11n2!…

5„F~n1 ,n2!t1t2 ,ga,bn11ga,bn2…

5„F~ga,bn1 ,ga,bn2!t1t2 ,ga,bn11ga,bn2…

5~ t1 ,ga,bn1!•~ t2 ,ga,bn2!

5gyr@~r ,a!;~s,b!#~ t1 ,n1!•gyr@~r ,a!;~s,b!#~ t2 ,n2!.

Hence gyr[(r ,a);(s,b)] is an endomorphism of the groupoid~R13P,•!, i.e., it is a map of the
groupoid into itself respecting the binary operation. Moreover, gyr[(r ,a);(s,b)] is invertible: for
all (t,n)PR13P we have

gyr@~r ,a!;~s,b!#•gyr@~s,b!;~r ,a!#~ t,n!5gyr@~r ,a!;~s,b!#~ t,gyr@b;a#n!

5~ t,gyr@a;b#gyr@b;a#n!5~ t,n!.

Hence gyr[(r ,a);(s,b)] is an automorphism of the groupoid~R13P,•!, thus verifying~G3!. ~G4!:
By the symmetry ofF(u,n),

gyr@~r ,a!;~s,b!#„~s,b!•~r ,a!…5gyr@~r ,a!;~s,b!#„F~a,b!rs,b1a…

5„F~a,b!rs,gyr@a;b#~b1a!…

5„F~a,b!rs,a1b…5~r ,a!•~s,b!,

thus verifying~G4!.

~G5a!:

~r ,a!•„~s,b!•~ t,c!…5~r ,a!•„F~b,c!st,b1c…

5„F~a,b1c!F~b,c!rst,a1~b1c!…

5„F~b1a,c!F~a,b!rst,a1~b1c!…

5„F~a1b,ga,bc!F~a,b!rst,~a1b!1ga,bc…

5„F~a,b!rs,a1b…•~ t, gyr@a;b#c!

5„~r ,a!•~s,b!…•gyr@~r ,a!;~s,b!#~ t,c!.

~G5b!:

„~r ,a!•~s,b!…•~ t,c!5„F~a,b!rs,a1b…•~ t,c!

5„F~a1b,c!F~a,b!rst,~a1b!1c…

5„F~b1a,gb,ac!F~a,b!rst,~a1b!1c…

5„F~a,b1gb,ac!F~b,gb,ac!rst,a1~b1gb,ac!…

5~r ,a!•„F~b,gb,ac!st,b1gb,ac…

5~r ,a!•„~s,b!•~ t,gb,ac!…5~r ,a!•„~s,b!•gyr@~s,b!;~r ,a!#~ t,c!…;

~G6!:

gyr@~1,0!;~s,b!#~ t,c!5~ t,gyr@0;b#c!5~ t,c!,

so that gyr[(1,0);(s,b)] is the identity automorphism of~R13P,•!, as required for~G6!.
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~G7!:

gyr@~r ,a!•~s,b!;~s,b!#~ t,c!5gyr@F~a,b!rs,a1b!;~s,b!] ~ t,c!

5~ t,gyr@a1b;b#c!

5~ t,gyr@a;b#c!

5gyr@~r ,a!;~s,b!#~ t,c!

for all (t,c)PR13P, as required for~G7!.
By establishing the validity of properties~G1!–~G7! for the groupoid~R13P,•!, we have

demonstrated that this groupoid is a gyrogroup.
Conversely, let assume that the groupoid~R13P,•! is a gyrogroup whose gyro-operator isR1

central. We will show that (P,1,F) is a gyrogroup possessing the real cocycle formF.
Let the neutral element of the gyrogroup~R13P,•! be denoted by~1,0!, and let the inverse of

(t,n)P~R13P,•! be denoted by (T,2n) for someTPR1. Then clearly the pair (P,1) is a
groupoid with a neutral element 0 and the inversion operation2.

To show that (P,1,F) is a gyrogroup withF being its cocycle form, we have to establish the
validity of properties~G1!–~G7! for the gyrogroup (P,1), as well as the validity of properties
~C1!–~C4! for its cocycle formF.

(G1): The neutral element of (P,1) is 0.
(G2): The inverse ofn in (P,1) is 2n.
(C4): Since ~1,0! is the neutral element of the product~4.2!, we clearly haveF(0,n)

5F(u,0)51 for anyu,nPP, and, in particular,F(0,0)51.
The gyro-operator gyr of the gyrogroup~R13P,•! is given by Eq.~4.4!, where the product

(s,u)•(t,n) is given by Eq.~4.2!. Hence, according to the fifth equality in the chain of equations
~4.5!, we have

gyr@~r ,a!;~s,b!#~ t,n!5„G~a,b,n!t,gyr@a;b#n…, ~4.9!

whereG is the mapG : P3P3P→F1 given by

G~a,b,n!5
F„2~a1b!,a1~b1n!…F~a,b1n!F~b,n!

F„a1b,2~a1b!…F~a,b!
, ~4.10!

and where gyr[a;b] is the map ofP given by

gyr@a;b#52~a1b!1$a1~b1n!%.

But the gyro-operator gyr of~R13P,•! in Eq. ~4.9! is R1 central by assumption. Hence, it follows
from Eq. ~4.9! thatG(a,b,n)51, so that we have, by Eq.~4.10!,

G~a,b,n!5
F„2~a1b!,a1~b1n!…F~a,b1n!F~b,n!

F„a1b,2~a1b!…F~a,b!
51, ~4.11!

and Eq.~4.9! can be written as

gyr@~r ,a!;~s,b!#~ t,n!5~ t,gyr@a;b#n!. ~4.12!

The gyrocommutative law in the gyrogroup~F13P,•! takes the form
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~r ,a!•~s,b!5gyr@~r ,a!;~s,b!#„~s,b!•~r ,a!…. ~4.13!

It can be written, by Eqs.~4.2! and ~4.12!, as

„F~a,b!rs,a1b…5gyr@~r ,a!;~s,b!#„F~b,a!rs,b1a…5„F~b,a!rs,gyr@a;b#~b1a!….

By equating each of the two entries of this equation we thus have~C3R!: F(a,b)5F(b,a) and
~G4!: a1b5gyr[a;b](b1a). (G3): gyr@a;b#, a,bPP, is an automorphism of P. To show this, we
consider the following chain of equations. By means of Eqs.~4.12! and ~4.2! we have

„F~n1 ,n2!t1t2 ,gyr@a;b#~n11n2!…5gyr@~r ,a!;~s,b!#„F~n1 ,n2!t1t2 ,n11n2…

5gyr@~r ,a!;~s,b!#„~ t1 ,n1!•~ t2 ,n2!…

5gyr@~r ,a!;~s,b!#~ t1 ,n1!•gyr@~r ,a!;~s,b!#~ t2 ,n2!

5~ t1 ,gyr@a;b#n1!•~ t2 ,gyr@a;b#n2!

5„F~gyr@a;b#n1 ,gyr@a;b#n2!t1t2 ,gyr@a;b#n11gyr@a;b#n2…,

implying

~C2!: F~n1 ,n2!5F~gyr@a;b#n1 ,gyr@a;b#n2!

and

gyr@a;b#~n11n2!5gyr@a;b#n11gyr@a;b#n2 . ~4.14!

Hence, by Eq.~4.14!, gyr[a;b] is a homomorphism fromP into itself for anya,bPP. To verify
that gyr[a;b] is an automorphism ofP we will show that gyr[a;b] has an inverse,
gyr21[a;b]5gyr[b;a].

The inverse of the gyro-operator gyr[(r ,a);(s,b)] is gyr[(s,b);(r ,a)]. Hence, by Eq.~4.12!
we have

~ t,n!5gyr@~r ,a!;~s,b!#gyr@~s,b!;~r ,a!#~ t,n!

5gyr@~r ,a!;~s,b!#~ t,gyr@b;a#n!

5~ t,gyr@a;b#gyr@b;a#n!.

Thus

gyr@a;b#gyr@b;a#5I ~4.15!

for any a,bPP, I being the identity automorphism ofP. It follows from Eq. ~4.15! that the
inverse of gyr[a;b] is gyr[b;a], as desired.

(G5a): Let us now establish the right gyroassociative law for gyr:P3P→Aut(P,1). By the
right gyroassociative law in the gyrogroup~F13P,•! and by Eqs.~4.2! and ~4.12! we have

~F~u,n1w!F~n,w!rst,u1~n1w!!5~r ,u!•„~s,n!•~ t,w!…

5„~r ,u!•~s,n!…•gyr@~r ,u!;~s,n!#~ t,w!

5„F~u,n!rs,u1n…•~ t,gyr@u;n#w!

5„F~u1n,gyr@u;n#w!F~u,n!rst,u1n1gyr@u;n#w…,

implying
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F~u1n,gyr@u;n#w!F~u,n!5F~u,n1w!F~n,w! ~4.16!

and

u1~n1w!5~u1n!1gyr@u;n#w ~4.17!

for all u,n,wPP. Equation~4.17! establishes the right gyroassociative law for gyr in (P,1).
(G5b):We now wish to verify the left gyroassociative law for gyr:P3P→Aut(P,1). By the

left gyroassociative law in the gyrogroup~F13P,•! and by Eqs.~4.2! and ~4.12! we have

„F~u1n,w!F~u,n!rst,~u1n!1w…5„~r ,u!•~s,n!•~ t,w!

5~r ,u!•„~s,n!•gyr@~s,n!;~r ,u!#~ t,w!…

5~r ,u!•„~s,n!•„t,gyr@n;u#w)…

5~r ,u!•„F~n,gyr@n;u#w!st,n1gyr@n;u#w…

5„F~n,gyr@n;u#w!F~u,n1gyr@n;u#w!rst,u

1~n1gyr@n;u#w!…,

implying

F~n,gyr@n;u#w!F~u,n1gyr@n;u#w!5F~u1n,w!F~u,n! ~4.18!

and

~u1n!1w5u1~n1gyr@n;u#w!. ~4.19!

Equation~4.19! establishes the left gyroassociative law for gyr in (P,1).
(G6): Since gyr[(s,u);(1,0)]5J is the identity automorphism of the gyrogroup~F13P,•!, we

have by Eq.~4.12!

~ t,n!5gyr@~r ,a!;~1,0!#~ t,n!5~ t,gyr@a;0#n!

implying

gyr@a;0#n5n ~4.20!

for any nPP. Hence

gyr@a;0#5I , ~4.21!

I being the identity automorphism ofP.
(G7): The ~left! loop property~G7! for the gyrooperator gyr of the gyrogroup~R13P,•! takes

the form

gyr@~r ,a!•~s,b!;~s,b!#~ t,n!5gyr@~r ,a!;~s,b!#~ t,n!

for any r ,s,tPF1 and anya,b,nPP. Hence by Eqs.~4.2! and ~4.12! we have

~ t,gyr@a;b#n!5gyr@~r ,a!;~s,b!#~ t,n!

5gyr@~r ,a!•~s,b!;~s,b!#~ t,n!

5gyr@„F~a,b!rs,a1b…;~s,b!#~ t,n!

5~ t,gyr@a1b;b#n!.
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Thus

gyr@a1b;b#5gyr@a;b# ~4.22!

for anya,b,nPP. Equation~4.22! verifies ~G7!.
(C1): The cocycle identity follows from Eq.~4.16! and from~G4! and ~C2!:

F~u,n1w!F~n,w!5F~u1n,gyr@u;n#w!F~u,n!

5F„gyr@u;n#~n1u!,gyr@u;n#w…F~u,n!

5F~n1u,w!F~u,n!,

thus completing the proof of Theorem 4.1.
Definition 4.2 (Extended gyrogroups):The gyrogroup~R13P,•! of Theorem 4.1 is said to be

the gyrogroupovera gyrogroup (P,1,F), or the gyrogroupextendedfrom a gyrogroup (P,1,F).
Some properties of a real cocycle formF in a gyrogroup can be established by means of its

extended gyrogroup. A real cocycle formF in a gyrogroup (P,1,F) gives rise to its extended
gyrogroup ~R13P,•!. The gyrogroup structure of the extended gyrogroup~R13P,•!, in turn,
reveals properties ofF some of which are not easily detectable in (P,1,F) itself. An example is
provided by the proof of Theorem 4.2 below, a theorem that generalizes Theorem 2.2R.

Theorem 4.2:A real cocycle formF in a gyrogroup satisfies the identity

F~u,n!F~2u,2n!5
F~u,2u!F~n,2n!

F~u1n,2u2n!
5

gu1n
2

gu
2gn

2 ~4.23!

for all u,nPR1.
Proof: In any gyrogroup (G,1) we have@Ref. 15, Theorem 5.2#

2~a1b!52a2b ~4.24!

for all a,bPG. In the gyrogroup~R13P,•! extended from the gyrogroup (P,1,F) with the real
cocycle formF, Eq. ~4.24! takes the form

~s,u!21
•~ t,n!215„F~u,n!st,u1n…21. ~4.25!

But, by Eqs.~4.3! and ~4.2!, we have

~s,u!21
•~ t,n!215S 1

F~u,2u!s
,2uD •S 1

F~n,2n!t
,2n D5S F~2u,2n!

F~u,2u!F~n,2n!st
,2u2n D

~4.26!

and

„F~u,n!st,u1n…215S 1

F~u1n,2u2n!F~u,n!st
,2u2n D . ~4.27!
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Hence, by Eq.~4.25!, the right-hand sides of Eqs.~4.26! and ~4.27! are equal. From the equality
of their first entries, we obtain the left identity in~4.23!. The right identity in~4.23! follows from
the definition of the factorg in Definition 2.6. The proof is thus complete.

Clearly, if the real cocycle formF is even, then identity~4.23! specializes to~2.2!.

V. REAL AND COMPLEX BOOSTS

In STR a boost is a pure Lorentz transformation; that is, a Lorentz transformation without
rotation. The boosts discussed in this section result from abstraction of the relativistic boosts, and
are restricted to the forward cone.

Definition 5.1 (Boosts of space–time): Let ~R13P,•! be the gyrogroup extended from a
gyrogroup (P,1,F). Left multiplication of any (t,n)P~R13P,•! by B(u)5(gu ,u)P~R13P,•!
is called aboostof (t,n) by uPP. B(u) is called aboost of the space–time ~R13P,•!, param-
etrized by the gyrogroup(P,1). Thus

B~u!~ t,n!5~gu ,u!•~ t,n!, ~5.1!

where the gyrogroup operation• in Eq. ~5.1! is given by Eq.~4.2!.
We will now show that the boosts of the space–time~forward cone! ~R13Vc ,%! param-

etrized by the relativistic gyrogroup (Vc ,% ,S) are the special relativistic Lorentz boosts~also
known aspureLorentz transformations, or Lorentz transformationswithout rotation!.

Since the cocycle formS in the relativistic gyrogroup (Vc ,% ,S) is, by ~3.3!,

S~u,v!511
u–v

c2
, ~5.2!

multiplication in ~R13Vc ,% ! takes the form

~r ,u!–~s,v!5S rsS 11
u–v

c2 D ,u%vD , ~5.3!

where no confusion should arise in the use of a dot to denote both a gyrogroup operation in a
gyrogroup of pairs and an inner product in a vector space.

Let us introduce new notation in which we write the pair~t,v!PR13Vc as

~ t,v!5S tvt D5S txD ~5.4!

with x5vt. The right-hand side of Eq.~5.4! represents a forward time-like event.
Let B~v!5~gv ,v! be a boost of~R13Vc ,% !. Then the boost application to a space–time event

~t,v!P~R13Vc ,%!:

B~u!~ t,v!5~gu ,u!–~ t,v!5S gutS 11
u–v

c2 D ,u%vD ,
takes the following form in the new notation:
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B~u!S txD5S gutS 11
1

c2
u–vD

~u%v!gutS 11
1

c2
u–vD D

5S guS t1 1

c2
u–xD

1

11u–v/c2 H u1
1

gu
v1

1

c2
gu

11gu
~u–v!uJ gutS 11

1

c2
u–vD D

5S gnS t1 1

c2
u–xD

guut1x1
1

c2
gu
2

11gu
~u–x!u

D . ~5.5!

This real boost application agrees with thecomplexboost application in Eq.~2.5! of Ref. 8.
Definition 5.2R (The norm of a real forward time-like space–time event):Let ~R13P,•! be a

space–time over the gyrogroup (P,1,F) with a real cocycle formF, and let (t,n)P~R13P,•! be
an event. The normi(t,n)i of (t,n) is given by

i~ t,n!i25t2F~n,2n!.

Definition 5.2C (The norm of a complex forward time-like space–time event):Let ~C13P,•!
be a space–time over the gyrogroup (P,1,F) with a complex cocycle formF, and let
(t,n)P~C13P,•! be an event. The normi(t,n)i of (t,n) is given by

i~ t,n!i25utu2F~n,2n!.

Theorem 5.1R:Real boosts preserve the norm.
Proof: Let (t8,n8)5B(u)(t,n). Then

~ t8,n8!5B~u!~ t,n!5~gu ,u!•~ t,n!5~F~u,n!gut,u1n!

and, hence,

i~ t8,n8!i25F2~u,n!gu
2t2F~u1n,2u2n!

5t2
gu1n
2

gu
2gn

2 gu
2 1

gu1n
2 ~by Theorem 2.2R!

5t2
1

gn
2 5t2F~n,2n!5i~ t,n!i2.

Theorem 5.1C:Complex boosts preserve the norm.
Proof: Let (t8,n8)5B(u)(t,n). Then,

~ t8,n8!5B~u!~ t,n!5~gu ,u!•~ t,n!5~F~u,n!gut,u1n!

and, hence,
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i~ t8,n8!i25uF2~u,n!gu
2t2uF~u1n,2u2n!

5utu2
gu1n
2

gu
2gn

2 gu
2 1

gu1n
2 ~by Theorem 2.2C!

5utu2
1

gn
2 5utu2F~n,2n!5i~ t,n!i2.

Theorem 5.2R:The real boost composition law is given by the equation

B~u!B~n!5B~u1n!Gyr@u;n#. ~5.6!

Proof: Let ~R13P,•! be the gyrogroup over a gyrogroup (P,1,F) with a real cocycle form
F. Then

B~u!B~n!~ t,w!5~gu ,u!•„~gn ,n!•~ t,w!…

5~gu ,u!•„F~n,w!gnt,n1w…

5„F~u,n1w!F~n,w!gugnt,u1~n1w!…

5„F~n1u,w!F~u,n!gugnt,~u1n!1gyr@u;n#w) @by ~C1!]

5„F~n1u,w!gu1nt,~u1n!1gyr@u;n#w… ~by Theorem 2.2.R!

5„F~gyr@u;n#~n1u!, gyr@u;n#w!gu1nt,~u1n!1gyr@u;n#w…

5„F~u1n, gyr@u;n#w!gu1nt,~u1n!1gyr@u;n#w…

5~gu1n ,u1n!•~ t,gyr@u;n#w!

5~gu1n ,u1n!•Gyr@u;n#~ t,w!

5B~u1n!Gyr@u;n#~ t,w!

for all (t,w)P~R13P,•!, as desired.
Similarly to the definition ofp2 in ~4.8!, we now define the mapp1 from transformationsA of

C into transformationsp1(A) of C
13P by the equation

p1~A!~ t,n!5~At,n!. ~5.7!

Similarly to Eq.~4.7!, we define the map tGyr :P3P→Aut~C13P! by the equation

tGyr@u;n#5p1~ tgyr@u;n#!. ~5.8!

Theorem 5.2C:The complex boost composition law is given by the equation

B~u!B~n!5B~u1n!tGyr@u;n#Gyr@u;n#. ~5.9!

Proof: Let ~C13P,•! be a gyrogroup over (P,1,F) with a complex cocycle formF.
We should remark here that the definition of~C13P,•! over (P,1,F) for F complex is

analogous to the definition of~R13P,•! over (P,1,F) for realF in Definition 4.1. The resulting
complex gyrogroup~C13P,•! satisfies all the gyrogroup axioms with one exception; it does not
obey the gyrocommutative law. Thus, as opposed to the real gyrogroup~R13P,•! over (P,1,F),
its complex counterpart is a groupoid that may be called a nongyrocommutative gyrogroup.

Then we have
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B~u!B~n!~ t,w!5~gu ,u!•„~gn ,n!•~ t,w!…

5~gu ,u!•„F~n,w!gnt,n1w…

5„F~u,n1w!F~n,w!gugnt,u1~n1w!…

5„F~n1u,w!F~u,n!gugnt,~u1n!1gyr@u;n#w… @by ~C1!#

5„F~n1u,w!gu1n tgyr@u;n#t,~u1n!1gyr@u;n#w…

~by Theorem 2.2C!

5„F~gyr@u;n#~n1u!,gyr@u;n#w!gu1n tgyr@u;n#t,~u1n!1gyr@u;n#w…

5„F~u1n, gyr@u;n#w!gu1n tgyr@u;n#t,~u1n!1gyr@u;n#w…

5~gu1n ,u1n!•~ tgyr@u;n#t,gyr@u;n#w!

5~gu1n ,u1n!•tGyr@u;n#Gyr@u;n#~ t,w!

5B~u1n!tGyr@u;n#Gyr@u;n#~ t,w!

for all (t,w)P~C13P,•!, as desired.
It is clear from Theorems 5.2R and 5.2C that the boost inverse toB(u) is B(2u). These

theorems reveal an important distinction between real and complex boosts. While real boost
compositions produce only space gyrations, complex boost compositions produce both space
gyrations and time gyrations. As a result, in Sec. VII, real Lorentz transformations will be param-
etrized by two parameters, while complex Lorentz transformations will be parametrized by three
parameters.

Definition 5.3 (Gyrogroup automorphisms):Let (P,1,F) be a gyrogroup with a cocycle
form. An automorphism Aof (P,1,F) is a bijection ofP that respects1 and preservesF, that is,
A(a1b)5Aa1Ab andF(Aa,Ab)5F(a,b) for any a,bPP. The set of all automorphisms of
(P,1,F) forms a group denoted by Aut(P,1,F). Subgroups of Aut(P,1,F) containing all the
gyrations gyr[a;b] of P(a,bPP) are denoted generically by Aut0(P,1,F).

Theorem 5.3:Boosts ‘‘commute’’ with automorphisms according to the equation

p2~A!B~u!5B~Au!p2~A!.

Proof: Let F1 denote eitherR1 or C1, let ~F13P,•! be the real or complex space–time
~forward cone! gyrogroup over a gyrogroup (P,1,F) with a real or complex cocycle formF, and
let uPP andAPAut(P,1,F). Then for any (t,w)P~F13P,•! we have

p2~A!B~u!~ t,w!5p2~A!~gu ,u!•~ t,w!

5p2~A!„F~u,w!gut,u1w…

5„F~u,w!gut,A~u1w!…

5„F~Au,Aw!gAut,Au1Aw…

5„~gAu ,Au!•~ t,Aw!…

5B~Au!p2~A!~ t,w!,

and, hence, the result.
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VI. THE GYROSEMIDIRECT PRODUCT GROUP

Definition 6.1 (The gyrosemidirect product):Let (P,1) be a gyrogroup, the gyrooperator of
which is denoted by gyr, and let Aut0(P,1) be a subgroup of its automorphism group containing
all its gyrations. Thegyrosemidirect product group

~P,1 !3g Aut0~P,1 ! ~6.1!

is a group of pairs (a,A)PP3Aut0(P,1) with composition law given by

~a,A!~b,B!5~a1Ab,gyr@a;Ab#AB!. ~6.2!

It is anticipated in Definition 6.1 that the gyrosemidirect product~6.2! is a group operation in
the Cartesian productP3Aut0(P,1) of a gyrogroupP5(P,1) and an automorphism group. To
show that this is indeed the case, we view any pair

~a,A!P~P,1 !3gAut0~P,1 ! ~6.3!

as a bijection ofP, given by

~a,A!x5a1Ax ~6.4!

for any xPP. The inverse of the bijection (a,A) is clearly (2A21a,A21). The gyrosemidirect
product~6.2! then emerges as a bijection composition and, hence, a group operation:

~a,A!~b,B!x5~a,A!~b1Bx!

5a1A~b1Bx!

5a1~Ab1ABx!

5~a1Ab!1gyr@a;Ab#ABx

5~a1Ab,gyr@a;Ab#AB!x ~6.5!

for all xPP.
A slightly different gyrosemidirect product, that will be used with the complex Lorentz group,

is the following.
Definition 6.2 (The complex gyrosemidirect product):Let (P,1,F) be a gyrogroup with a

complex cocycle formF, and let gyr and tgyr be its gyro-operator and its time gyro-operator,
respectively. Moreover, letC0 be the group of all unimodular complex numbers. Thecomplex
gyrosemidirect product

~P,1,F !3g$C03Aut0~P,1,F !% ~6.6!

is a group of triples (a,a,A)PP3C03Aut0(P,1,F) with composition law given by

~a,a,A!~b,b,B!5~a1Ab,tgyr@a;Ab#ab,gyr@a;Ab#AB!. ~6.7!

We are now in a position to present the real~complex! Lorentz transformation groups acting
on the real~complex! space–time~F13P,•! over a gyrogroupP5(P,1,F) with a real~complex!
cocycle formF.

VII. ABSTRACT REAL AND COMPLEX LORENTZ TRANSFORMATION GROUPS

Our approach to the study of Lorentz groups by relativistic velocity spaces and the gyrogroups
to which they give rise emphasizes analogies shared with Galilei relativity. These analogies are
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partially summarized in the introductory section of Ref. 8. In particular, a (11n)-dimensional
Lorentz group in our approach appears as the gyrosemidirect product~see Sec. VI! of ~i! a velocity
gyrogroup and~ii ! a rotation group. This is in full analogy with the (11n)-dimensional Galilei
group which is known to be the semidirect product of~i! a velocity group and~ii ! a rotation group.

Our new approach became possible following the discovery in Ref. 1 of the symmetries
concealed in Thomas precession, the abstraction of which is called Thomas gyration allowing us
to introduce the prefix ‘‘gyro.’’ Following our approach to employ analogies shared with Galilean
relativity and symmetries hidden in Thomas gyration, we treat the time coordinate on a different
footing from the space coordinates, as we commonly do in Galilean relativity. Hence, in particular,
the pair (t,n) represents a~generalized! time–space as explained in Eq.~5.4!, and should not be
confused with the common energy-momentum space of STR. The pair (t,n) represents a ‘‘gen-
eralized’’ or an ‘‘abstract’’ time–space in the sense thatn is an element of an abstract gyrogroup
rather than a three-dimensional velocity.

Using techniques developed in the previous sections we generalize in this section results that
were obtained in Refs. 7 and 8 for some special gyrogroups.

Definition 7.1R (The real Lorentz transformation):Let ~R13P,•! be the space–time gyro-
group over a gyrogroup (P,1,F) with a real cocycle formF, and let Aut0(P,1,F) be a subgroup
of Aut(P,1,F) containing all the gyroautomorphisms of P. For any
(u,U)P(P,1,F)3g Aut0(P,1,F), thereal Lorentz transformation L$u;U% acting on the space–
time ~R13P,•! is given by

L$u;U%5B~u!p2~U !.

It follows from Definitions 5.1 and 6.1 that

L$u;U%~ t,n!5B~u!p2~U !~ t,n!

5~gu ,u!•~ t,Un!

5~F~u,Un!gut,u1Un! ~7.1R!

for anyuP(P,1,F), UPAut0(P,1,F) and (t,n)P~R13P,•!.
Theorem 7.1R:Real Lorentz transformations preserve the norm.
Proof: By definition, the real Lorentz transformation

L$u;U% : ~R13P,• !→~R13P,• !

is given by a boost preceded by an automorphism,

L$u;U%5B~u!p2~U !.

Both B(u) and p2(U) preserve the squared normi(t,n)i25t2F(n,2n) in ~R13P,•!: B(u)
preserves the norm by Theorem 5.1R, andp2(U) preserves the norm, since it preserves the
cocycle formF(n,2n) by Definition 5.3. The proof is thus complete.

Theorem 7.2R (The real Lorentz transformation composition law):
The real Lorentz transformations of the space–time~R13P,•! over a gyrogroup (P,1,F)

with a real cocycle form, form a group with group operation given by

L$u;U%L$n;V%5L$u1Un,gyr@u;Un#UV% ~7.2R!

for anyu,nPP andU,VPAut(P,1,F).
Proof: Let ~R13P,•! be a space–time gyrogroup over the gyrogroup (P,1,F) with a real

cocycle formF, and letu,nPP andU,VPAut(P,1,F). Then, the product of two successive real
Lorentz transformations of~R13P,•! is

3095J. D. H. Smith and A. A. Ungar: Abstract space–times and their Lorentz groups

J. Math. Phys., Vol. 37, No. 6, June 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



L$u;U%L$n;V%5B~u!p2~U !B~n!p2~V!

5B~u!B~Un!p2~UV! ~by Theorem 5.3!

5B~u1Un!Gyr@u;Un#p2~UV! ~by Theorem 5.2R!

5B~u1Un!p2~gyr@u;Un#UV!

5L$u1Un!;gyr@u;Un#UV),

as desired.
Theorem 7.2R presents the real Lorentz transformation composition law in terms of parameter

composition, where the parameter composition is the gyrosemidirect product~6.2!. Unlike its real
counterpart, the complex Lorentz transformation involves three parameters.

Definition 7.1C (The complex Lorentz transformation):
Let ~C13P,•! be the space–time gyrogroup over a gyrogroup (P,1,F) with a complex

cocycle formF, and let Aut0(P,1,F) be a subgroup of Aut(P,1,F) containing all the gyroau-
tomorphisms ofP. For any (u,a,U)P(P,1,F)3g$C03Aut0(P,1,F)%, the complex Lorentz
transformation L$u;a;U% acting on the space–time~C13P,•! is given by

L$u;a;U%5B~u!p1~a!p2~U !.

It follows from Definitions 5.1 and 6.2 that

L$u;a;U%~ t,n!5B~u!p1~a!p2~U !~ t,n!5~gu ,u!•~at,Un!5„F~u,Un!guat,u1Un…
~7.1C!

for anyuP(P,1,F), aPC0, UPAut0(P,1,F) and (t,n)P~C13P,•!.
Theorem 7.1C:Complex Lorentz transformations preserve the norm.
Proof: By definition, the complex Lorentz transformation

L$u;a;U% : ~C13P,• !→~C13P,• !

is given by a boost preceded by two automorphisms of~C13P,•!,

L$u;a;U%5B~u!p1~a!p2~U !.

All B(u), p1~a! and p2(U) preserve the squared normi(t,n)i25utu2F(n,2n) in ~C13P,•!:
B(u) preserves the norm by Theorem 5.1C,p1~a! preserves the norm sinceaPC0, andp2(U)
preserves the norm sinceU preserves the cocycle formF(n,2n) by Definition 5.3. The proof is
thus complete.

Theorem 7.2C (The complex Lorentz transformation composition law):The complex Lorentz
transformations of a complex space–time~C13P,•! over a gyrogroup (P,1,F) form a group with
group operation given by

L$u;a;U%L$n;b;V%5L$u1Un;tgyr@u;Un#ab;gyr@u;Un#UV% ~7.2C!

for anyu,nPP, a,bPC0, andU,VPAut(P,1,F).
Proof: Let ~C13P,•! be the space–time gyrogroup over a gyrogroup (P,1,F) with a com-

plex cocycle formF, and letu,nPP andU,VPAut(P,1,F). Then, the product of two successive
real Lorentz transformations of~C13P,•! is
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L$u;a;U%L$n;b;V%5B~u!p1~a!p2~U !B~n!p1~b!p2~V!

5B~u!B~Un!p1~ab!p2~UV! ~by Theorem 5.3!

5B~u1Un!tGyr@u;Un#Gyr@u;Un#p1~ab!p2~UV! ~by Theorem 5.2C!

5B~u1Un!p1~ tgyr@u;Un#ab!p2~gyr@u;Un#UV

5L$u1Un;tgyr@u;Un#ab;gyr@u;Un#UV%

as desired.
Theorem 7.2C presents the complex Lorentz transformation composition law in terms of

parameter composition, where the parameter composition is the complex gyrosemidirect product
~6.7!. Unlike its real counterpart, the complex Lorentz transformation involves three parameters.

VIII. GROUP-THEORETICAL INTERPRETATION

The constructions used in this paper may be interpreted in terms of group theory. The group-
theoretical interpretation is analogous in some ways to the useful interpretation of complex num-
bersa1 ib as 232 matrices

S a 2b

b a D .
Using this interpretation one may reduce complex analysis to matrix theory. For example, the
square of the absolute value becomes the determinant, the real part is half the trace, and conju-
gation is matrix transposition. Of course, one does not normally view the complex numbers in this
way since the matrix notation is excessively cumbersome for the purposes of complex analysis. By
the same token, the gyrogroup approach, as presented in this article, is the most direct and
convenient for computations in STR. In particular, the gyrogroup formalism stays very close to the
familiar formalism of abelian groups. Thus the useful group-theoretical interpretation is of more
purely mathematical interest.16,17

Specifically, our basic idea is to view the abstraction of the well-known relation

„12~u% n!…2

~12u2!~12n2!
5

1

~11u•n!2

in STR, where% is the relativistic velocity addition~3.2!, as a cocycle identity, Eq.~2.2!; that is,
the squaredcoboundaryon the left is equal to the squared cocycle on the right. This identity is the
fundamental relation used to extend the velocity addition law into a Lorentz transformation. In
fact, this extension can be recast using the language of cohomologically trivial central extension of
the Lorentz group. Furthermore, the present work may also have applications to areas of math-
ematical physics outside the foundations of special relativity, since it involves a new approach to
polar decompositions and their relation to Grassmann varieties which occur frequently in various
twistor constructions. As illustrative examples, we show below the relationship between our Theo-
rems 4.1 and 2.2R and common group-theoretical considerations.

The gyrosemidirect product of Definition 6.1 shows how to embed a gyrogroupP into a group
G5P3g Aut0(P), a subgroup of the groupG̃5P3g Aut(P). The inversion mapJ : P→P,
x→2x is an automorphism ofP, and conjugation by the element (0,J) of G̃ gives an involutory
automorphismf of G. Setting P05$(x, I )uxPP% and K5$(0, A)uAPAut0(P)%, one has
f(x,I )5(x,I )21,G5P0K, PùK5$(0, I )%, andP0 is invariant under conjugation by elements of
K. Moreover, elements ofK are fixed byf.
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Conversely, consider a groupG with an involutory automorphismf. Suppose thatG5P0K
with P0ùK5$I %. Suppose that the elements ofK are fixed points off. Supposef acts onP0 by
f : P0→P0 ; x→x21, and suppose thatP0 is invariant under conjugation by elements ofK.
Supposex,y in P imply xyx in P0 , and suppose thatP0→P0 ; x→x2 is bijective, with two-sided
inversex→Ax. ThenP becomes a gyrogroup (P,1) underx 1 y 5 AxyAx. Indeed, forxy5(x
1y)k, one has gyr[x;y]z5kzk21.17

Now embed a gyrogroupP in a gyrosemidirect product groupG, G5PK as above. Since the
inverse of a gyration is a gyration, the group generated by gyrations is just the set of products of
gyrations. Thus the cocycle formF : P3P→R1 satisfying the gyroinvariance may be extended
to a cocycle form onG by F(f1k1 ,f2k2)5F(f1 ,k1f2k1

21). By the standard theory of central
extensions for groups,18 one obtains a central extensionĜ of G by R1. The extension gyrogroup
~R13P,•! of Theorem 4.1 may then be recovered from the extension groupĜ as above. Con-
versely, if ~R13P,•! is a gyrogroup, then (P,1) is, too, by virtue of being a quotient. Theorem
2.2R corresponds to the case where the exact sequence

1→R1→Ĝ→G→1

splits.
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15A. A. Ungar, ‘‘Weakly associative groups,’’ Results Math.17, 149–168~1990!.
16O. Chein, H. O. Pflugfelder, and J. D. H. Smith~eds.!, Quasigroups and Loops Theory and Applications, Sigma Series
in Pure Mathematics~Heldermann-Verlag, Berlin, 1990!, Vol. 8.

17M. Kikkawa, ‘‘On some quasigroups of algebraic models of symmetric spaces, II,’’ Mem. Fac. Lit. Sci. Shimane Univ.
Nat. Sci.7, 29–35~1974!; A. Kreuzer, ‘‘Beispiele endlicher und unendlicherK-loops,’’ Results Math.23, 355–362
~1993!; B. Scirnemi, ‘‘Cappi di Bruck e loro generalizzazioni,’’ Rend. Sem. Mat. Univ. Padova60, 141–149~1978!.

18See, e.g., G. Karpilovsky,The Schur Multiplier~Clarendon, Oxford, 1987!.
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Comment on: The Itzykson–Zuber integral for U(mzn)
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Max Planck Institut fu¨r Kernphysik, Postfach 103980, 69029 Heidelberg, Germany
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@S0022-2488~96!01405-5#

In their recent work, Alfaro, Medina, and Urrutia evaluate the supersymmetric version of the
Harish–Chandra–Itzykson–Zuber~HCIZ! integral1,2 by generalizing the diffusion equation
method of Itzykson and Zuber.2 This integral is of considerable interest in quantum chaos and the
theory of random matrices. In the casen5m, this integral was already calculated,3 also by
generalizing the diffusion equation method of Ref. 2. By using this integral, a new derivation of
the correlation functions of the Gaussian unitary ensemble~GUE! was given which can be viewed
as an irreducible integral representation.3 For the discussion of transitions between ensembles,
those integrals are the essential tool. By applying the ordinary HCIZ integral, Mehta and Pandey4

calculated all correlations for the statistical model of gradually broken time reversal invariance.
Employing the supersymmetric HCIZ integral, the correlations for the statistical model of a gradu-
ally broken quantum number were evaluated in Ref. 5.

After the angular integration over the unitary group, usually further integrations over the
eigenvalues, i.e., thes-variables in Refs. 3 and 5 or thel-variables in the work of Alfaro, Medina,
and Urrutia, are required. Here, two important remarks are in order: First, all permutations in the
determinant yield the same result because of the antisymmetry of the integration measure of the
eigenvalues. This is why one needs only the trace term if further integrations are required.3

Second, boundary contributions to the integral emerge which have no counterparts in the ordinary
case. In Ref. 3, the most important one of those, the Efetov–Wegner term6,7 was given. In the case
of the groupU~1u1!, a complete formula was constructed8 using a very general theory developed
by Rothstein.9

Obviously, the supersymmetric HCIZ has much to do with harmonic analysis in superspaces.
For the groupU~1u1!, graded or super spherical harmonics were derived10 in which anticommuting
indices formally play the role of an angular momentum. The corresponding representations in
terms of graded or super Wigner functions were discussed in Ref. 11. In the general case
U(k1uk2!, such representations involving anticommuting indices were constructed in Ref. 12 by
generalizing the Gelfand–Tzetlin method to supersymmetry. These results have also been used in
Ref. 12 to evaluate the supersymmetric HCIZ integral fornÞm, including all permutation and
exchange terms.

1Harish-Chandra, Am. J. Math.80, 241 ~1958!.
2C. Itzykson and J. B. Zuber, J. Math. Phys.21, 411 ~1980!.
3T. Guhr, J. Math. Phys.32, 336 ~1991!.
4M. L. Mehta and A. Pandey, J. Phys. A16, 2655~1983!; A. Pandey and M. L. Mehta, Commun. Math. Phys.87, 449
~1983!.

5T. Guhr and H. A. Weidenmu¨ller, Ann. Phys.~NY! 199, 412 ~1990!.
6K. B. Efetov, Adv. Phys.32, 53 ~1983!.
7F. Constantinescu and H. F. de Groote, J. Math. Phys.30, 981 ~1989!.
8T. Guhr, Nucl. Phys. A560, 223 ~1993!.
9M. J. Rothstein, Trans. Am. Math. Soc.299, 387 ~1987!.
10T. Guhr, J. Math. Phys.34, 2523~1993!.
11T. Guhr, J. Math. Phys.34, 2541~1993!.
12T. Guhr, Commun. Math. Phys.176, 555 ~1996!, received 22 November 1994.
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and Centro de Estudios Cientı´ficos de Santiago, Casilla 16443, Santiago 9, Chile
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This note is to observe that the integral~B3! calculated in the Appendix B of Ref. 1 is not the
supersymmetric IZ integral for the particular casem5n, but it rather corresponds to the expres-
sion that survives when the IZ integral is subsequently integrated over all the eigenvalues and after
some symmetry properties are taken into account. Since some applications do not require a further
integration over the eigenvalues, the difference between the two expressions is of basic impor-
tance.

The above remark is most easily illustrated with the standard IZ integral, in the case of
ordinaryn3n matrices. In this situation, the result given in Eq.~B3! of Ref. 1 would read

E expS 2
1

2t
tr~s2r!2Ddm~V!5A

tn~n21!/2

D~R!D~S!
expS 2

1

2t
tr~S2R!2D , ~1!

whereD~R! denotes the Vandermonde determinant of the eigenvalues. The numerical constantA
is independent oft and also of the eigenvalues. From the above expression we would conclude,
according to Ref. 1, that the IZ integral is given by

E expS 1t tr~RVSV21! Ddm~V!5A
tn~n21!/2

D~R!D~S!
expS 1t tr~RS! D . ~2!

Nevertheless, we know from Ref. 2 that the correct answer for this integral is

E expS 1t tr~RVSV21! Ddm~V!5B
tn~n21!/2

D~R!D~S!
detS exp1t r isj D . ~3!

The left-hand side of Eq.~2! corresponds only to the diagonal term in the expansion of the
complete determinant which produces the correct answer in Eq.~3!. Only under a further integra-
tion over all the eigenvalues, can the remainingn221 terms reduce to the diagonal one. In other
words, the result~1! is correct only under a symmetric integration over the eigenvalues

E expS 2
1

2t
tr~s2r!2Ddm~V!D2~R!d@R#5A

tn~n21!/2

D~S!
E expS 2

1

2t
tr~S2R!2DD~R!d@R#.

~4!
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b!On leave of absence from Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, Circuito Exterior,
C.U., 04510 Me´xico, D.F.
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An analogous situation occurs in the supersymmetric case, when comparing the expression~B3! of
Ref. 1 with the formula~9! of Ref. 3, in the casem5n.

Summarizing, even though the methods used by Guhr and the authors coincide, the results
obtained are different in the same sense that the corresponding calculations of Ref. 2 and 4 are not
equivalent to each other. Besides, nowhere in Ref. 1 can the expression for the supersymmetric IZ
integral, given in Eq.~9! of Ref. 3, be found, even for the particular casem5n.

In relation to the interesting observation of Ref. 1 about the existence of Efetov–Wegner
terms, we only observe that such terms will appear when the supersymmetric IZ integral is further
integrated over the eigenvalues. They reflect the existence of singularities due to the contribution
of the Berezinian, which need to be regularized. If the regulator chosen is not explicitly super-
symmetric, the Efetov–Wegner terms will be needed to restore a supersymmetric result.

1T. Guhr, J. Math. Phys.32, 336 ~1991!.
2Harish-Chandra, Am. J. Math.79, 87 ~1957!; C. Itzykson and J.-B. Zuber, J. Math. Phys.21, 411 ~1980!.
3J. Alfaro, R. Medina, and L. F. Urrutia, J. Math. Phys.36, 3085~1995!.
4M. L. Mehta, Commun. Math. Phys.79, 327 ~1981!.
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Antisymmetric tensor fields on spheres: Functional
determinants and non-local counterterms
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~Received 26 February 1996; accepted for publication 9 April 1996!

The Hodge–de Rham Laplacian on spheres acting on antisymmetric tensor fields is
considered. Explicit expressions for the spectrum are derived in a quite direct way,
confirming previous results. Associated functional determinants and the heat kernel
expansion are evaluated. Using this method, new non-local counterterms in the
quantum effective action are obtained, which can be expressed in terms of Betti
numbers. ©1996 American Institute of Physics.@S0022-2488~96!02507-8#

I. INTRODUCTION

Modern interest in antisymmetric tensor fields is connected with supergravity theories where
these fields appear as members of a supermultiplet. Kaluza–Klein compactification of higher
dimensional supergravities leads to backgrounds of the formSd3R4, where Sd is the
d-dimensional sphere. Quantum effects on such backgrounds were considered e.g. in Refs. 1,2.
Some general mathematical statements aboutp-forms—very useful in this context—can be found
in the monography by Gilkey.3 Typically, the action for an antisymmetric tensor fieldB reads as

S5E AgdxFi j . . . kFi j . . . k, F5dB, ~1!

whered denotes external differentiation of forms. The action~1! for the p-form Bp is invariant
under gauge transformations,

Bp→Bp1dBp21. ~2!

All quantum corrections in a theory described by the action~1!, including the contribution of
ghosts, can be expressed in terms of determinants of the Hodge–de Rham Laplacian,

DHdR52~d* d1dd* !. ~3!

The spectrum ofDHdR is the same forp- and (d-p)-forms. Consequently, it is enough to evaluate
the determinant ofDHdR for p<d/2. Due to the gauge invariance under the transformation~2! and
to the factorization property,

det
p

~2DHdR!5det
pT

~2DHdR!3 det
~p21!T

~2DHdR! ~4!

a!Electronic mail: eli@zeta.ecm.ub.es
b!Electronic mail: lygren@fm.unit.no
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—where the subscriptT means that the determinant is taken over the space of transversal
forms—we can restrict our considerations to transversalp-forms. We will assume in all those
expressions, as in~4!, that zero modes~harmonicp-forms! are excluded from the determinants.

In Sec. II we will obtain the spectrum of the Hodge–de Rham Laplace operator on the unit
sphereSd, for any dimensiond, acting on transversalp-forms. In Sec. III we will calculate
explicitly the determinants for the sphere, and in Sec. IV the heat kernel coefficients. A complete
list will be given up tod57, a dimension that is important in the compactification of supersym-
metric theories. Finally, a discussion on the transversal Laplacian and non-local counterterms will
be provided in Sec. V. It is proven there that the heat kernel expansion for the Hodge–de Rham
Laplacian on transversalp-forms contains a constant term, even in the case of odd-dimensional
spaces. The new non-local counterterms in the quantum effective action will be expressed in terms
of Betti numbers.

II. SPECTRUM OF THE LAPLACE OPERATOR

In this section we define the spectrum of the Laplace operatorDHdR on the unit sphereSd

acting on transversalp-forms. Forp50,1 this spectrum is well known4:

bl
052 l ~ l1d21!, Dl

05
~2l1d21!~ l1d22!!

l ! ~d21!!
, l50,1,2, . . . ,

~5!

bl
152 l ~ l1d21!122d, Dl

15
l ~ l1d21!~2l1d21!~ l1d23!!

~d22!! ~ l11!!
, l51,2,3, . . . ,

wherebl
p denote the eigenvalues andDl

p their degeneracies. For higher forms the spectrum of the
Laplace operator onSd can be obtained by using standard group theoretical techniques.5–7

For any homogeneous spaceG/H a field FA belonging to an irreducible representation
D(H) can be expanded as8

FA~x!5V2
1
2 (
n,z,q

Adn
dD
DAz,q

~n! ~gx
21!fq,z

~n! , ~6!

whereV is the volume ofG/H and dD5 dim D(H). We sum over representationsD (n) of G
which give D(H) after reduction toH. Here z labels the multiple componentsD(H) in the
branchingD (n)↓H, dn5 dim D (n). The matrix elements ofD (n) have the following orthogonality
property

E
G/H

dxAgDAz,q
~n!* ~gx

21!DAj,p
~n8! ~gx

21!5Vdn
21dDdzjdpqdnn8. ~7!

Consider, for example, the case whend55: S55SO(6)/SO(5). The representations
D(H)5D(SO(5)) describing antisymmetric tensors are just antisymmetric tensor powers of the
vector representation ofSO(5):

p50, D~SO~5!!5@0,0#, p51, D~SO~5!!5@1,0#,
~8!

p52, D~SO~5!!5@1,1#, p53, D~SO~5!!5@1,1#.

We label the representations by their Dynkin indices in square brackets. Notice that we use here
the slightly non-standard definition of the Dynkin indices from the book by Barut and Raezka.9

These indices are more convenient for the reduction of representations. Owing to duality, the
representations in the last two lines of~8! are equivalent.
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In order to construct the harmonic expansion~6! one must find all the representations of
SO(6) which give the representations~8! after reduction toSO(5). For a given irreducible
representation@q1 ,q2# of SO(5) with integer Dynkin indicesq1 and q2 , the representations
@m1 ,m2 ,m3# of SO(6) containing@q1 ,q2# are defined by the conditions9

m1>q1>m2>q2>um3u, ~9!

where allmA are integers andm1 andm2 are non-negative. Any representation satisfying the
nonequality~9! contains the single representation@q1 ,q2#. Summation overz in ~6! may be
omitted. One can easily find all the representations ofSO(6) that are needed

p50, D ~ l !~SO~6!!5@ l ,0,0#, l50,1, . . . ,

p51, D ~ l !~SO~6!!5@ l ,1,0#, l51,2, . . .5@ l ,0,0#,l51,2, . . . ,

p52,3, D ~ l !~SO~6!!5@ l ,1,0#, l51,2, . . . ,5@ l ,1,1#,l51,2, . . . ,5@ l ,1,21#,l51,2, . . . .
~10!

External differentiation maps transversalp21 forms to longitudinalp-forms. This mapping can
be traced back to the corresponding spherical harmonics. Hence, for the transversal forms only the
following representations contribute to the harmonic expansion:

p50, D ~ l !~SO~6!!5@ l ,0,0#,

p51, D ~ l !~SO~6!!5@ l ,1,0#,
~11!

p52, D ~ l !~SO~6!!5@ l ,1,1#,5@ l ,1,21#,

p53, D ~ l !~SO~6!!5@ l ,1,0#,l51,2,3, . . . .

The scalar mode withl50 belongs to the kernel of the Laplace operator and should be regarded
as a harmonic zero-form.

In the space ofp-forms there are two main second-order differential operators, namely the
Hodge–de Rham Laplacian,2DHdR5dd*1d* d, and the ordinary Laplacian,D5¹ i¹ i . On the
sphereSd these two operators differ by a constant, namely

2DHdR5D1p22dp. ~12!

In any homogeneous spaceG/H the Laplace operators can be expressed in terms of the
quadratic Casimir operators ofG andH:

D5C2~G!2C2~H !,2DHdR5C2~G!. ~13!

Using the harmonic expansion~11!, ~8!, and standard expressions9 for the Casimir operators in
~13!, we obtain the eigenvaluesbl

p of the Laplace operatorDHdR acting on transversalp-forms on
S5. The corresponding degeneraciesDl

p are equal to the dimensions of the representations of
SO(6).

bl
252 l ~ l14!24, Dl

25
1

2
l ~ l11!~ l13!~ l14!, l51,2, . . . ,

~14!

bl
352 l ~ l14!23, Dl

35
1

3
l ~ l12!2~ l14!, l51,2, . . . .
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For p50,1 our result coincides with~5!. Other spheres can be dealt with along the same lines. For
d53 we have:

bl
252 l ~ l12!, Dl

25~ l11!2, l51,2, . . . . ~15!

For d54:

bl
252 l ~ l13!22, Dl

25
1

2
l ~2l13!~ l13!, l51,2, . . . . ~16!

For d56:

bl
25bl

352 l ~ l15!26, Dl
25Dl

35
1

12
l ~ l11!~ l14!~ l15!~2l15!, l51,2,3, . . . . ~17!

For d57:

bl
252 l ~ l16!28, Dl

25
1

24
l ~ l11!~ l13!2~ l15!~ l16!,

~18!

bl
352 l ~ l16!29, Dl

35
1

18
l ~ l11!~ l12!~ l14!~ l15!~ l16!, l51,2,3, . . . .

Owing to duality, the spectrum ofDHdR on transversal 4-forms onS7 is the same as on longitu-
dinal 3-forms. The latter one coincides with that on transversal 2-forms. Continuing in this way,
one can define the spectrum for higher values ofp. The remarkable property of equivalence of the
spectra forp52 andp53 onS6 holds only for transversal forms. In the above equations we have
listed some spectra forp.d/2. They are useful in some applications not considered in this paper.
For example, they are needed for the computation of the spectrum of the Laplacian on a ball.10,7,11

There is a general function for the eigenvalues and their multiplicities, which have been
obtained above for some particular cases. It is the following:

Dl~d,p!5
~2l1d21!~ l1d21!!

p! ~d2p21!! ~ l21!! ~ l1p!~ l1d2p21!
,

~19!

bl~d,p!52 l ~ l1d21!2p~d2p21!.

These equations can be obtained by means of lengthy but straightforward calculations repeating
step by step the above derivation of the spectrum onS5. All group theoretical techniques that are
needed can be learned from Chaps. 9 and 10 of Ref. 9. Note that an explicit derivation for the case
of the ordinary Laplacian had been carried out, e.g., in Ref. 5, and that previous results already
existed in the mathematical literature.12,13 Our method is similar to the one in the papers.12,13

However, explicit expressions for the eigenvalues and degeneracies can be found in Ref. 5 only,
where reduction of the harmonic polynomials fromRd11 was used. It is noticeable that a mistake
in previous calculations was reported in Ref. 5, which shows that the computation is not trivial at
all. It thus seems useful to present an alternative derivation of the spectrum, which turns out to be
in complete agreement with Ref. 5 Note that the eigenvalues of the Laplace operator on transversal
p-forms are denoted in Ref. 5 byp11lk , wherek5 l2150,1,... .
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III. CALCULATION OF THE DETERMINANTS FOR THE SPHERE

Here we are going to calculate the determinants corresponding to the Hodge–de Rham La-
placian on spheres of different dimensions,d52,3,4,5,6,7, and for forms of different orders
p51,2,3,4. We shall make use of the formulas~see above!

det~2DHdR!~d!5det~2DHdR!pT
~d!

3det~2DHdR!~p21!T
~d! , ~20!

and employ the definition of determinant through the zeta function of the corresponding operator,
that is

detA5exp~2zA8 ~0!!. ~21!

Owing to the multiplicative property of the determinant—which is obviously fulfilled for the
operators we are going to consider~see Ref. 14 for a discussion of more general cases!—at the
level of the zeta functions the product in~20! transforms into a sum of the corresponding zeta
functions~even before taking the derivative!. We shall arrange our calculations according to this
observation. The general methods employed in Refs. 15,16 will be used~see Ref. 17 for more
references to these techniques!. Related calculations have been carried out in Ref. 18.

Using the general formulas~19! for the spectrum and its degeneracy, one can write the
expression of the zeta function corresponding to ap-form in any dimensiond (p<(d11)/2),
namely

z2D
pT
~d!~s!5(

l51

`

Dl~d,p!@2bl~d,p!#2s

5
1

p! ~d2p21!!(l51

`
~2l1d21!~ l1d21!!

~ l21!! ~ l1p!~ l1d2p21! F S l1 d21

2 D 22S p2
d21

2 D 2G2s

.

~22!

To continue, we notice that the degeneracy is a polynomial inl of orderd21, and we expand it
in powers ofl1(d21)/2:

Dl~p,d!5 (
a50

d21

ea~d,p!S l1 d21

2 D a

. ~23!

Formally, we can write

ea5
1

a

da

dla
Dl~p,d!u l5 ~12d/2! . ~24!

The sum overl can be evaluated easily, e.g.

z2D
pT
~d!~s!5 (

a50

d21

ea~d,p!(
l51

` S l1 d21

2 D aF S l1 d21

2 D 22S p2
d21

2 D 2G2s

5 (
a50

d21

ea~d,p!(
l51

` S l1 d21

2 D a22s

@12 @p2~d21!/2#2@ l1~d21!/2#2#2s

5
1

G~s! (a50

d21

ea~d,p!(
k50

`
G~k1s!

k! S p2
d21

2 D 2kzHS 2s12k2a,
d11

2 D , ~25!
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where we have used the binomial expansion. Note that this expansion is absolutely convergent,
since @p2(d21)/2#2/@ l1(d21)/2#2,1 for p<(d11)/2. The indetermined number 00 when
p5(d21)/2 is consistently defined to be one. HerezH(s,n) is the Hurwitz zeta-function. Forn a
natural number, this zeta-function can be directly related to the Riemann zeta-function through the
formula15–17

zH~s,m!5zR~s!2(
l51

m

l2s. ~26!

For n a half-integer, we can correspondingly subtract terms fromzH(s,1/2), which is again related
to the Riemann zeta-function,

zH~s,1/2!5~2s21!zR~s!. ~27!

For d even,ea50 for a50,2, . . . ,d22, and ford odd,ea50 for a51,3, . . . ,d22. When we
differentiate the zeta-function~25! we must distinguish between these two cases. Ford odd, we
get

z
2D

pT
~d!8 ~0!5 (

a50

~d21!/2

e2aF2zH8 S 22a,
d11

2 D 1 (
k51

`
@p2 ~d21!/2#2k

k
zHS 2k22a,

d11

2 D G .
~28!

While for d even the expression is a bit more complicated since the Hurwitz zeta-function has a
pole when its argument is one. Using the Laurent series expansion

zH~2s11,n!5
1

2s
2C~n!1O ~s!, ~29!

we obtain, ford even,

z
2D

pT
~d!8 ~0!5 (

a50

d
2 21

e2a11F2zH8 S 22a21,
d11

2 D 1 (
k51

a
@p2~d21!/2#2k

k
zHS 2k22a21,

d11

2 D
1

~p2 ~d21!/2!2a12

a11 S 12(l51

a

l212CS d11

2 D D
1 (

a12

`
@p2~d21!/2#2k

k
zHS 2k22a21,

d11

2 D G . ~30!

Continuing in this way and substituting for the derivatives of the Riemann zeta function the
values19

z8~0!52
1

2
ln~2p!,z8~21!520.1654211437,z8~22!520.0304484571,

z8~23!50.0053785764,z8~24!50.0079838115, ~31!

z8~25!520.0005729860,z8~26!520.0058997591,. . . ,

we have obtained the following numerical results for the determinants:
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det~2DHdR!4
~7!50.088786,det~2DHdR!3

~7!50.088786,det~2DHdR!2
~7!51.858601,

det~2DHdR!1
~7!50.775194,det~2DHdR!3

~6!57.103758,det~2DHdR!2
~6!51.726306,

det~2DHdR!1
~6!50.835544,det~2DHdR!3

~5!511.090330,det~2DHdR!2
~5!511.090330, ~32!

det~2DHdR!1
~5!50.581303,det~2DHdR!2

~4!50.128002,det~2DHdR!1
~4!50.621433,

det~2DHdR!2
~3!50.095528,det~2DHdR!1

~3!50.095528,det~2DHdR!1
~2!510.210016.

IV. CALCULATION OF THE HEAT KERNEL COEFFICIENTS

The heat-kernel coefficientsBk are given from the small2t expansion of the heat kernel
K(t),

K~ t !5~4pt !2 d/2 (
k50,1/2,1, . . .

Bkt
k. ~33!

When we consider a manifold without boundaries, as is the case for the sphere, the coefficients
with a half-integerk vanish. There is a close connection between the coefficients for an operator
and its zeta-function. This connection is given by the formulas

Resz~s!5
Bd/22s

~4p!d/2G~s!
, ~34!

ats5m/2, (m21)/2 , . . . .,1/2;2 (2l 1 1)/2 for l50,1,2.. , and

z~2m!5~21!mm!
Bd/21m

~4p!d/2
, ~35!

for m50,1,2, ... . These formulas constitute a very powerful approach to the determination of the
heat kernel coefficients~see, for instance, Refs. 20,21 and the references therein!. Again we
consider separately the casesd odd andd even. Whend is odd we only have to calculate the
residues, since there are only integer coefficients. The residues matching integer coefficients are
located ats5d/22m, m50,1,2 ... . Whenm<(d21)/2,

Resz2D
pT
~d!S d22mD5

1

2 (
a5 ~d21!/22m

~d21!/2

e2a
G~1/21a!

G~d/22m!~12d!/21m1a)! S p2
d21

2 D 12d12m12a

,

~36!

and whenm.(d21)/2,

Resz2D
pT
~d!S d22mD5

1

2 (
a50

~d21!/2

e2a
G~1/21a!

GS d22mD ~12d!/21m1a)!
S p2

d21

2 D 12d12m12a

.

~37!

For even dimension we must consider the point values ats52m and the residues ats5d/22 l ,
l50,1, . . . ,d/221.,
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z2D
pT
~d!~2m!5 (

a50

d/221

e2a11F (
k50

m
~21!km!

~m2k!!k! S p2
d21

2 D 2kzHS 2k22a2122m,
d11

2 D
1

~21!mm!a!

2~11a1m!! S p2
d21

2 D 212a12mG , ~38!

and we get

Resz2D
pT
~d!S d22 l D5

1

2 (
a5 d/2212 l

d/221

e2a11

a!

GS d22 l D S 12
d

2
1 l1aD ! S p2

d21

2 D 22d12a12l

.

~39!

As the actual zeta-functions are sums of the zeta-functions for the transversal field, the heat kernel
coefficients are also just sums of the corresponding coefficients for the transversal fields. Using the
two equations~34! and ~35! we immediately obtain the coefficients from the formulas given
above.

For d57, p54 andp53, we have

B05
35p4

3
,B15

2175p4

3
,B25

2009p4

18
,B35

2553p4

6
,B45

159p4

8
,B55

167p4

24
,

~40!

B65
1289p4

720
,B75

613p4

1680
,B85

71p4

1152
,B95

461p4

51840
,B105

271p4

241920
.

For d57, p52:

B057p4,B15221p4,B25
133p4

10
,B35

371p4

30
,B45

2229p4

40
,B55

21213p4

120
,

B65
22807p4

720
,B75

6483p4

2800
,B85

132847p4

28800
, ~41!

B95
1050881p4

259200
,B105

3147083p4

1209600
.

For d57, p51:

B05
7p4

3
,B15

7p4

3
,B25

2301p4

90
,B35

2203p4

30
,B45

243p4

40
,B55

949p4

120
,

B65
6839p4

720
,B75

9823p4

8400
,B85

2282271p4

28800
,B95

23734393p4

259200
, ~42!

B105
23734393p4

403200
.

For d56, p53:
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B05
64p3

3
,B15

2256p3

3
,B25128p3,B35

275008p3

945
,B45

1472p3

135
,B55

256p3

99
,

B65
373376p3

405405
,B75

40448p3

81081
,B85

1373248p3

3828825
, ~43!

B95
167651072p3

535687425
,B105

65263383424p3

206239658625
.

For d56, p52:

B0516p3,B15248p3,B25
128p3

3
,B35

176p3

315
,B45

248p3

5
,B55

21360p3

297
,

B65
2171328p3

405405
,B75

80096p3

81081
,B85

37236464p3

34459425
, ~44!

,

B95
52062832p3

59520825
,B105

2616564224p3

3618239625
.

For d56, p51:

B05
32p3

5
,B150,B25

2128p3

15
,B35

21408p3

315
,B45

352p3

75
,

B55
11008p3

1485
,B65

5982208p3

2027025
,B75

2164096p3

57915
,

~45!

B85
2952002848p3

172297125
,B95

2337870336p3

72747675
,

B105
28650820224p3

4464061875
.

For d55, p53 andp52:

B0510p3,B15
280p3

3
,B25

70p3

3
,B35

214p3

3
,B45

229p3

18
,B55

237p3

90
,

~46!

B652
p3

12
,B75

253p3

3780
,B85

261p3

30240
,B95

223p3

90720
,B105

211p3

388800
.

For d55, p51:

B055p3,B15
210p3

3
,B25

210p3

3
,B35

2p3

3
,B45

35p3

18
,B55

91p3

90
,

~47!

B65
2p3

12
,B75

22101p3

3780
,B85

23289p3

6048
,B95

232791p3

90720
,B105

2104873p3

544320
.
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For d54, p52:

B0516p2,B15232p2,B25
304p2

15
,B35

2160p2

63
,B45

2176p2

315
,B55

2608p2

3465
,

B65
211104p2

135135
,B75

2448p2

8775
,B85

2443504p2

11486475
, ~48!

B95
2467045792p2

13749310575
,B105

22327539744p2

68746552875
.

For d54, p51:

B05
32p2

3
,B15

232p2

3
,B25

232p2

45
,B35

352p2

189
,B45

928p2

945
,

B55
1952p2

10395
,B65

238848p2

405405
,B75

2262336p2

2027025
,

~49!

B85
23454688p2

34459425
,B95

23024736672p2

41247931725
,B105

212244948288p2

206239658625
.

For d53, p52 andp51:

B056p2,B1526p2,B25p2,B35
p2

3
,B45

p2

12
,B55

p2

60
,

~50!

B65
p2

360
,B75

p2

2520
,B85

p2

20160
,B95

p2

181440
,B105

p2

1814400
.

And for d52, p51:

B058p,B15
216p

3
,B25

8p

15
,B35

32p

315
,B45

8p

315
,B55

32p

3465
,

~51!

B65
3056p

675675
,B75

1856p

675675
,B85

22664p

11486475
,B95

4481632p

2749862115
,B105

104409808p

68746552875
.

V. TRANSVERSAL LAPLACIAN AND NON-LOCAL COUNTERTERMS

In this section we see that the heat kernel expansion for the Hodge–de Rham Laplacian on
transversal p-forms contains a constant term in odd–dimensional spaces. Call
k(t)5(k51

` exp(2tk2). The asymptotic behavior ofk in the limit t→0 is k(t)5 1
2(A(p/t)21),

where corrections are exponentially small and can be neglected in the computation of power-low
asymptotics. The transversal heat kernel,

K~ t;p,d!5(
l51

`

Dl~p,d!exp@ tbl~p,d!#, ~52!
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on odd-dimensional spheres can be put in terms ofk usingDl andbl of Sec. 2:

K~ t;0,3!5212k8~ t !,

K~ t;1,3!522@k8~ t !1k~ t !#,

K~ t;0,5!5211
1

12
e4t@k9~ t !1k8~ t !#,

K~ t;1,5!511
1

3
et@k9~ t !14k8~ t !#,

K~ t;2,5!5
1

2
@k9~ t !15k8~ t !14k~ t !#, ~53!

K~ t;0,7!5212
e9t

360
@k-~ t !15k9~ t !14k8~ t !#,

K~ t;1,7!512
e4t

60
@k-~ t !110k9~ t !19k8~ t !#,

K~ t;2,7!5212
et

24
@k-~ t !113k9~ t !136k8~ t !#,

K~ t;3,7!52
1

18
@k-~ t !114k9~ t !141k8~ t !136k~ t !#,

where the prime denotes differentiation. One can evaluate the coefficientad/2 before t
0 in the

small-t expansion ofK(t;p,d). Derivatives ofk do not contribute and one obtains

ad/25~21!p11. ~54!

At first sight this relation contradicts the general theory22 of the heat kernel, which precludes
integer powers oft on odd-dimensional manifolds without boundary. In fact, the relation~54! is
well known and can be derived from general formulae.22 Consider an odd-dimensional manifold
M without boundary. The space ofp-forms,Lp can be decomposed in a direct sum of eigenspaces
of the Hodge–de Rham Laplacian:

Lp5LpT
% LpL

%Hp, ~55!

whereLT andLL are transversal and longitudinalp-forms, respectively.Hp denotes the space of
harmonicp-forms spanned by zero modes of the Hodge–de Rham Laplacian. The Laplace opera-
tor onall p-forms satisfies the whole set of requirements in Ref. 22 and, hence, the corresponding
coefficient in front of t0 in the heat kernel expansion should vanish. On the other hand, this
coefficient is just the sum of the coefficients in front oft0 for the same operator restricted to the
spaces on the right hand side of~55!. But this immediately gives

05ad/2
p 1ad/2

p211bp , ~56!

where, as above,ad/2 denotes the constant term in the heat kernel expansion for transversal
p-forms. Herebp5 dim Hp is the Betti number. For 0-forms we have

3115Elizalde, Lygren, and Vassilevich: Antisymmetric tensor fields on spheres

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ad/2
0 52b0 . ~57!

The two equations~56! and ~57! can be solved, giving

ad/2
p 5 (

q50

p

~21!p2q11bq . ~58!

The relation~54! is a particular case of~58!. What happens in odd dimensions is that the Betti
numbers ‘‘propagate’’ up the chain leading to the formula~58!.

Consider now the quantum path integral for an antisymmetric tensor field with the action~1!.
The partition functionZp can be expressed in terms of the determinants of the Hodge–de Rham
Laplacian on transversal forms23,24

Zp5 )
q50

p

detqT~2DHdR!2 ~1/2! ~21!p2q
. ~59!

To avoid possible ambiguities in treating the zero modes we suppose thatbp50. The ‘‘total’’ heat
kernel forZp is an alternated sum of heat kernels for transversal forms. As the coefficient multi-
plying t0 leads to a logarithmic divergence in the path integral, on an odd-dimensional manifold
without boundary, we have that this divergence is proportional to

(
q50

p

~p2q11!~21!p2q11bq . ~60!

Such divergence cannot be canceled by means of an integral of a local invariant constructed from
the Riemann tensor and, hence, it requires a non–local counterterm. Some topological effects in
quantum theories of antisymmetric tensor field were discussed in Ref. 24 These effects are,
however, related to the Gauss–Bonnet term, which can be expressed in the function of local
densities and vanishes for odd-dimensional spheres. In the context of three-dimensional Chern–
Simons theory, Eq.~58! has been obtained in Ref. 25.
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Proper time and path integral representations
for the commutation function

S. P. Gavrilova) and D. M. Gitmanb)
Instituto de Fı´sica, Universidade de Sa˜o Paulo, P.O. Box 66318,
05389-970 Sa˜o Paulo, SP, Brasil
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On the example of the quantized spinor field, interacting with arbitrary external
electromagnetic field, the commutation function is studied. It is shown that a proper
time representation is available in any dimensions. Using it, all the light cone
singularities of the function are found explicitly, generalizing the Fock formula in
four dimensions, and a path integral representation is constructed. ©1996 Ameri-
can Institute of Physics.@S0022-2488~96!03806-6#

I. INTRODUCTION

It is known that the solution of quantum field theory problems involves as a rule different
singular functions, e.g., commutation functions, Green functions, and so on. These functions are
well studied for free fields~see, for example, Ref. 1!. Problems appear when an interaction is
presented. In particular, it is important to study singular functions in external backgrounds such as
external fields and curved spaces and in arbitrary dimensions. The latter may be important for
multidimensional version of field theories, which are considered now in relation with the unifica-
tion of all the interactions. One ought to say that the commutation functions play an important role
in QFT with external backgrounds. In contrast with the case without external backgrounds, the
perturbation theory, which takes into account a background exactly, uses complicated~matrix!
propagators. Such propagators contain as component parts, besides the causal and anticausal
Green functions, the commutation functions as well.2,3 Here, we present proper time and path
integral representations for the commutation function and for some related functions in external
fields. On the basis of the proper time representation we study, in particular, light cone singulari-
ties of the function in arbitrary dimensions. Traditionally QED is a testing ground where new
procedures and methods are worked through, not infrequently creating new ideas and more pro-
found understanding of the structure of QFT. That is why we consider here the case of QED with
an arbitrary external electromagnetic field, bearing in mind that the results can be extend to other
theories and backgrounds.

Fock for the first time4 introduced an integral over the proper time to present the regular on
the light cone part of the commutation functionS(x,x8) ~in 311 dimensions! of the spinor fields,
interacting with an external electromagnetic fieldAm(x),

S~x,x8!5 i @c~x!,c̄~x8!#1 , ~1!

wherec(x) and c̄(x8) are the electron–positron field operators. This function obeys the Dirac
equation

~P̂ ngn2m!S~x,x8!50, P̂ n5 i ]n2gAn~x!,
~2!

@gm,gn#152hmn, hmn5diag~1,21,21,21!,
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and the initial condition

S~x,x8!ux05x
08
5 ig0d~x2x8!. ~3!

The commutation functionS(x,x8) is at the same time the propagation function of the Dirac
equation, i.e., it connects solutionsc(x) of the equation in two different time instants,

c~x0 ,x!52 i E S~x,x8!g0c~x08 ,x8!dx8. ~4!

Thus the Cauchy problem can be solved by means of the function. Squaring Eq.~2! one gets

S~x,x8!5~P̂ ngn1m!D~x,x8!, ~5!

where the functionD(x,x8) obey the equation

@~P̂ ngn!22m2#D~x,x8!50, ~6!

and the initial conditions

D~x,x8!ux05x
08
50, ]0D~x,x8!ux05x

08
5d~x2x8!. ~7!

Fock’s solution of Eqs.~6! and ~7! reads

D~x,x8!5e~x02x08!FU~~x2x8!2!DR~x,x8!1
1

2p
eigLd~~x2x8!2!G ,

~8!
e~x02x08!5sign~x02x08!.

The functionL is the line integral of the potentials,

L52E
x8

x

Am~ x̃!dx̃m; ~9!

DR(x,x8) is the Riemann function, which is presented by means of a proper time integral

DR~x,x8!5E
GR

f ~x,x8,s!ds ~10!

over the closed pathGR , ~see Fig. 1! which is a clockwise circle around the points50 with a
small enough radius, inside of which the functionf (x,x8,s) has not any singularities besides the
essential singularitys50. The functionf (x,x8,s) obeys the ‘‘Schro¨dinger equation’’

FIG. 1. Contour of integration forDR function.
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i
d

ds
f ~x,x8,s!5@m22~P̂ ngn!2# f ~x,x8,s!, ~11!

and the boundary condition

lim
s→10

f ~x,x8,s!5 id~x2x8!. ~12!

One has to remark that the same functionf (x,x8,s) appears in the Schwinger representation5

for the causal Green functionSc(x,x8) ~propagator! of the Dirac equation,

~P̂ ngn2m!Sc~x,x8!52d~x2x8!. ~13!

Namely,

Sc~x,x8!5~P̂ ngn1m!E
0

`

f ~x,x8,s!ds, ~14!

where ats→` one has to enter into the complex planes, so that lims→` f (x,x8,s)50. Extension
of the Schwinger representation to the curved space case was made by DeWitt2 and then, devel-
oping his technics, to the gauge theory.6

The Schwinger representation forSc(x,x8) and the Fock representation forS(x,x8) differ
essentially in sense of possibilities of generalization. Thus the Schwinger representation retains its
form for any space–time dimensionalityd. Moreover, the inverse operatorSc can be easily
presented via an exponent by means of the Schwinger proper time representation~super-proper
time representation7!, so that the path integral representations follows.7,8 At the same time the
Fock representation has the specific form~8! for D(x,x8) in d5311. Besides, the form~8!,
which separates the light cone singular part from the regular one, does not give any leading
consideration to write a path integral for the commutation function, similar to one for the propa-
gator.

Below we propose a proper time representation for the commutation function, which has an
universal form in any dimensions. Using it, we find explicitly all the light cone singularities of the
commutation function in arbitrary dimensions, generalizing the Fock’s formula~8!. Moreover,
such a representation allows one to write a path integral for the commutation function. In the
conclusion we present similar representations for some other singular functions of the Dirac
equation on the basis of the results obtained.

II. PROPER TIME REPRESENTATION FOR THE COMMUTATION FUNCTION

Here, we are going to write a proper time representation for the functionD(x,x8) from
formula ~5! in arbitrary space–time dimensionsd>2. To this end we need to find first the
behavior of the functionf (x,x8,s) at s→0. We will use Eqs.~11! and ~12! in d-dimensions,
where

Similar to Schwinger5 we presentf (x,x8s) as a matrix element of an evolution operatorU(s),

f ~x,x8,s!5 i ^xuU~s!ux8&,
~15!

U~s!5e2 iHs, H5m22~Pngn!2,
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whereux& are eigenfunctions for some hermitian operators of coordinatesXm, the corresponding
canonically conjugate operators of momenta arePm , so that

Xmux&5xmux&, ^xux8&5d~x2x8!, E ux&^xudx5I ,

@Pm ,X
n#252 idm

n , ^xuPmux8&52 i ]md~x2x8!, ~16!

Pm52Pm2gAm~X!, @Pm ,Pn#252 igFmn~X!, Fmn~X!5]mAn~X!2]nAm~X!.

The matrix element obeys the conditions

S i ]

]xm2gAm~x! D ^xuU~s!ux8&5^xuPmU~s!ux8&,

~17!

S 2 i
]

]x8m2gAm~x8! D ^xuU~s!ux8&5^xuU~s!Pmux8&.

Introducing the operators

Xm~s!5U21~s!XmU~s!, gm~s!5U21~s!gmU~s!, Pm~s!5U21~s!PmU~s!,

we come to the equations

d

ds
Xm~s!5 i @H,Xm~s!#252Pm~s!,

~18!
d

ds
gm~s!5 i @H,gm~s!#2 ,

d

ds
Pm~s!5 i @H,Pm~s!#2 .

Using the decomposition in powers ofs, one can get forH

H52
1

4s
@X~s!X~s!22X~s!X~0!2X~0!X~0!#2 i

d

2s
1O~1!.

Then the solution of Eqs.~11!, ~12!, and~17! has a form

f ~x,x8,s!us→05 f 0~x,x8,s!@11O~s!#,
~19!

f 0~x,x8,s!5
1

~4ps!d/2
expH 2 i

p

4
~d24!1 igL2

i

4s
~x2x8!2J ,

whereL is the d-dimensional line integral~9!. Thus one can conclude thatf (x,x8,s) has no
singularities in a small enough neighborhood of the points50 ~excluding this point!. Based on
this one can make a key observation in 311 dimensions. Namely, let us consider the Fock
representation~5! and ~8! beyond the light cone (x2x8)2Þ0. In this case the relation holds

U~~x2x8!2!E
GR

f ~x,x8,s!ds5E
G
f ~x,x8,s!ds, ~20!
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whereG ~see Fig. 2! is a contour, which connects the pointss510 ands5e2 ip0, and passes in
the lower part of complex planes in a small enough neighborhood of the points50 so that Eq.
~19! is still valid inside the contourG. Then the functionD(x,x8) can be written in 311 dimen-
sions at (x2x8)2Þ0 in the following form:

D~x,x8!5e~x02x08!E
G
f ~x,x8,s!ds. ~21!

It turns out that Eq.~21! is valid on the light cone as well and, moreover, in any dimensions.
Below we are going to prove this statement.

First of all one can remark that Eq.~19! implies

lim
s→e2 ip0

f ~x,x8,s!52 id~x2x8!. ~22!

Together with Eqs.~11!, ~12!, and~22! this allows one to verify that expression~21! obeys Eq.~6!
at x0Þ x08 .

Now we have to study the behavior of function~21! at x0→x08 . Using the representation~19!
let us select all the light cone singularities in Eq.~21!,

D~x,x8!5I R~x,x8!1 (
n50

@d/2#21

I ~n!~x,x8!, ~23!

I R~x,x8!5e~x02x08!E
G
f R~x,x8,s!ds, ~24!

f R~x,x8,s!5 f ~x,x8,s!2 (
n50

@d/2#21

f ~n!~x,x8,s!,

I ~n!~x,x8!5e~x02x08!E
G
f ~n!~x,x8,s!ds, ~25!

f ~n!~x,x8,s!5
1

n!

dn

dsn F f ~x,x8,s!

f 0~x,x8,s!G
s50

snf 0~x,x8,s!.

Here, I R(x,x8) is a regular on the light cone function, which is zero at (x2x8)2<0. All the
singularities are concentrated in the functionsI (n)(x,x8). It is convenient to make a change of
variablest5s21 in expression~25! to present the latter in the following form:

FIG. 2. Contour of integration forD function.

3122 S. P. Gavrilov and D. M. Gitman: Proper time and path integral representations

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



I ~n!~x,x8!5e~x02x08!a~n!~x,x8!S ddt D @~d22!/2#2n

Y~t2~x2x8!2!ut5~x02x
08!2,

~26!

a~n!~x,x8!5p2@~d21!/2#eigL~4i !2n
1

4n!

dn

dsn F f ~x,x8,s!

f 0~x,x8,s!G
s50

,

where the functionY~t2~x2x8!2! has different forms for even and for oddd. Namely, for evend,

Y~t2~x2x8!2!5Yeven~t2~x2x8!2!52U~t2~x2x8!2!, ~27!

and for oddd,

Y~t2~x2x8!2!5Yodd~t2~x2x8!2!

5ei ~p/4!E
eip`

`

~4pt !1/2 expH 2
i

4
@t2~x2x8!2#tJ dt. ~28!

Now one can see that for evend the functionI ((d/2)21)(x,x8) can be expressed via theU-function
~27!, whereas the rest functionsI (n)(x,x8) are concentrated on the light cone. Thus function~23!
is zero for points, which cannot be causally connected, i.e., for (x2x8)2,0.

Consider the contribution of distributions~27! and ~28! to an integral with some continuous
functions on the coordinates~x2x8! in the case (x0 2 x08)→0. In this case the distributions are zero
beyond the sphere of the radiusux0 2 x08u 1 0, thus formula~27! can be written in the form

Yeven~t2~x2x8!2!52V~At!d~x2x8!, ~29!

whereV(r ) is the volume of thed21 sphere with the radiusr ,

V~r !5crd21, c5p~d21!/2G21S d11

2 D , ~30!

andG(x) is the gamma-function. The least power of~x0 2 x08) in expression~23! comes from
I (0)(x,x8), the latter can be derived from Eqs.~26! and ~29! and has the formI (0)(x,x8)
5 eigL(x0 2 x08)d(x 2 x8). In cased>4, the next power of (x0 2 x08) comes from the function
I (1)(x,x8) ; eigL(x0 2 x08)

3d(x2 x8). At d52 the same power of (x0 2 x08) comes from the func-
tion I R(x,x8) defined by Eq.~24!. Thus we can write for any evend at (x0 2 x08)→0

D~x,x8!ux0→x
08
5eigL@x02x081O~~x02x08!3!#d~x2x8!. ~31!

One can see that Eq.~31! is a continuous function of the time (x0 2 x08) together with its first
derivatives, and obeys Eq.~6! at (x0 2 x08)→0, and the initial conditions~7!.

Expression~28! at (x0 2 x08)→0 ~d is odd! can be presented in the form

Yodd~t2~x2x8!2!5B~t!d~x2x8!, ~32!

where

B~t!5E
V~r0!

Yodd~t2y2!dy. ~33!

The integration in Eq.~33! is going over the volume ofd21 sphere with the radiusr 0 5u x0
2 x08u 1 0. Integral~33! is reducing to one over the radiusr only,
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B~t!5~d21!cE
0

r0
Yodd~t2r 2!r d22 dr, ~34!

wherec was defined in Eq.~30! and we remember thatr 0.t. The former can be calculated and
presented in the form

B~t!5eipd/4p~d22!/2E
eip`

`

t2d/2e2 i tt dt. ~35!

Similar to the even case the least power of (x0 2 x08) in Eq. ~23! comes from the function
I (0)(x,x8). By means of Eqs.~32! and ~35! the latter can be written as

I ~0!~x,x8!5e~x02x08!d~x2x8!
ei3p/4eigL

4Ap
E
eip`

`

t23/2e2 i ~x02x08!2t dt. ~36!

Using the representation

t21/25e2 ip/4
2

Ap
S E

0

A~x02x08!220
eiz

2t dz1EA~x02x08!210

`

eiz
2t dzD

in Eq. ~36! and changing the order of the integration overt and z, we get finally I (0)(x,x8)
5 eigL(x0 2 x08)d(x 2 x8). In the same manner one can verify that the next power of (x0 2 x08) at
d>5 comes from the functionI (1)(x,x8) ; eigL(x0 2 x08)

3d(x 2 x8). In the cased53 the same
power of (x0 2 x08) comes from function~24!. That is why the same dependence Eq.~31! holds at
any oddd.

Thus we have shown that function~21! obeys Eq.~6! and the initial conditions~7! in any
dimensionsd. Then the commutation function can be written in an universal form in any dimen-
sions@by means of Eqs.~5! and ~21!#,

S~x,x8!5e~x02x08!~P̂ ngn1m!E
G
f ~x,x8,s!ds. ~37!

Here, we have used the initial conditions~7! to pute(x0 2 x08) before the operatorP̂ ng
n1m.

It was already seen from Eqs.~23!–~28! that the representation~21! is convenient to select the
light cone singularities. In case of evend one can also getd-dimensional generalization of the
Fock representation. To this end let us write the functionI R(x,x8) from Eq. ~24! by means of an
integral over the closed pathGR , defined in Eq.~10!,

I R~x,x8!5e~x02x08!U~~x2x8!2!E
GR

f R~x,x8,s!ds. ~38!

From f R(x,x8,s) only the term f (n)(x,x8,s) with n5(d/2)21 gives nonzero contribution,
namely,

U~~x2x8!2!E
GR

f ~d/221!~x,x8,s!ds5E
G
f ~d/221!~x,x8,s!ds.

That allows one to rewrite Eq.~23! for evend in the form
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D~x,x8!5e~x02x08!FU~~x2x8!2!DR~x,x8!1 (
n50

~d24!/2

2a~n!~x,x8!S d

dt D ~d24!/22n

3d~t2~x2x8!2!U
t5~x02x

08!2G , ~39!

where a(n)(x,x8) are defined in Eq.~26!, and DR(x,x8) is d-dimensional Riemann function,
defined by integral~10!. At d54 this expression coincides with the Fock’s one~8!.

The expression for the commutation functioni [f(x),f†(x8)]2 of the scalar fieldsf(x) and
f†(x8) one can derive from representation~21! for the functionD(x,x8), putting formally all the
g-matrices to zero. We do not also see any difficulties to extend the results obtained to the curved
space and gauge theories using the Schwinger–DeWitt technics.2,6

III. PATH INTEGRAL REPRESENTATION FOR THE COMMUTATION FUNCTION

Here, we are going to discuss a path integral representation for the commutation function at
d54. For our purpose, it is convenient to deal with the transformed byg55g0g1g2g3 function
S̃(x,x8) 5 S(x,x8)g5, which obeys the properly transformed Dirac equation

~P̂ ng̃n2mg5!S̃~x,x8!50, ~40!

and the initial condition

S̃~x,x8!ux05x
08
52 i g̃0d~x2x8!, ~41!

whereP̂ n5i ]n2gAn(x), andg̃n5g5gn. The matricesg̃n have the same commutation relations as
initial onesgn, [ g̃m,g̃n]152hmn. For all theg-matrices (g̃55g5) we have [g̃m,g̃n]152hmn, m,
n5 0,3,5;hmn5diag~1,21,21,21,21!.

If one presents the functionS̃(x,y) in the form

S̃~x,x8!52~P̂ ng̃n2mg5!D̃~x,x8!, ~42!

then the functionD̃ obeys the equation

~P̂ ng̃n2mg5!2D̃~x,x8!5@~P̂ ngn!22m2#D̃~x,x8!50. ~43!

One can remark that according to the definition and to Eqs.~6! and ~7! there is a relation
D̃(x,x8)52g5D(x,x8)g5, which allows on to conclude that the functionsD̃(x,x8) andD(x,x8)
obey the same initial conditions. Because they obey also the same equation they coincide. Thus
one can write, using the results obtained before Eq.~37!,

S̃~x,x8!52e~x02x08!E
G
~P̂ ng̃n2mg5! f ~x,x8,s!ds. ~44!

By means of the representation~15! for the functionf (x,x8,s), where one can replace the operator
[(Pngn)22m2] by one (Png̃n2mg5)2, and introducing the operator~P̂ ng̃

n2mg5! under the
sign of the matrix element, we get

S̃~x,x8!52 i e~x02x08!E
G
^xu~Png̃n2mg5!exp$ i ~Png̃n2mg5!2%ux8&ds. ~45!

The operator (Png̃n2mg5) can be presented via a Grassmannian integral,
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~Png̃n2mg5!5 i E eix~Pnĝn2mg5!dx,

wherex is a Grassmann variable, which anticommutes withg matrices by the definition. Here, and
in what follows, integrals over Grassmann variables are understood as Berezin’s integrals.9 Thus
the commutation function~45! takes the form

S̃5S̃~xout,xin!5e~xout
0 ,xin

0 !E
G
dsE ^xoutue2 iĤ~s,x!uxin&dx, ~46!

where

Ĥ~s,x!5sSm22P21
ig

2
Fabg̃ag̃bD1~Png̃n2mg̃5!x. ~47!

Now one can present the matrix element entering in expression~46! by means of a path
integral. First, we write exp~2iĤ!5~exp~2iĤ/N))N, and then insert (N21) resolutions of iden-
tity * ux&^xudx5I between all the operators exp~2iĤ/N!. Besides, we introduceN additional
integrations overs and x to transform then the ordinary integrals over these variables into the
corresponding path-integrals,

S̃5e~xout
0 ,xin

0 ! lim
N→`

E
G
ds0E dx0 dx1•••dxN21 ds1•••dsN dx1•••dxN

3)
k51

N

^xkue2 iĤ~sk ,xk!Dtuxk21&d~sk2sk21!d~xk2xk21!, ~48!

whereDt51/N, x05xin , xN5xout. Bearing in mind the limiting process, one can calculate the
matrix elements from Eq.~48! approximately,

^xkue2 iĤ~sk ,xk!Dtuxk21&'^xku12 iĤ~sk ,xk!Dtuxk21&, ~49!

using the resolution of identity* up&^pudp, where

Pmup&5pmup&, ^pup8&5d~p2p8!, ^xup&5
1

~2p!2
eipx.

In this connection it is important to notice that the operatorĤ(sk ,xk) has originally the symmet-
ric form in the operatorsx̂ andp̂. Indeed, the only one term inĤ(sk ,xk), which contains products
of these operators is [Pa ,A

a(X)]1 . One can verify that this is maximal symmetrized expression,
which can be combined from entering operators~see remark in Ref. 10!. Thus one can write
Ĥ(s,x) 5 Sym( x̂,p̂) H(s,x,x̂,p̂), whereH(s,x,x,p) is the Weyl symbol of the operatorĤ(s,x)
in the sector of coordinates and momenta,H(s,x,x,p)5s(m22P 21ig/2Fabg̃ag̃b)
1(P ng̃

n2mg5)x, andP n52pn2gAn(x). That is a general statement,11 which can be easily
checked in that concrete case by direct calculations, that the matrix elements~49! are expressed in
terms of the Weyl symbols in the middle pointx̄ k 5 (xk 1 xk21)/2. Taking all that into account,
one can see that in the limiting process the matrix elements~49! can be replaced by the expres-
sions

E dpk
~2p!4

exp S i Fpk xk2xk21

Dt
2H~sk ,xk ,x̄k ,pk!G DDt, ~50!
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which are noncommutative due to theg-matrix structure and are situated in Eq.~48! so that the
numbersk increase from right to left. For the twod-functions, accompanying each matrix element
~49! in expression~48!, we use the integral representations

d~sk2sk21!d~xk2xk21!5
i

2p E ei @pk~sk2sk21!1nk~xk2xk21!#dpk dnk ,

wherenk are odd variables. Then we attribute formally tog-matrices, entering into Eq.~50!, index
k, and then we attribute to all quantities the ‘‘time’’tk , according the indexk they have,tk5kDt,
so thattP@0,1#. Introducing theT-product, which acts ong-matrices, it is possible to gather all the
expressions, entering in Eq.~48!, in one exponent and deal then with theg-matrices like with odd
variables. Thus we get for the right side of Eq.~48!

S̃5e~xout
0 ,xin

0 !TE
G
ds0E dx0E

xin

xout
DxE DpE

s0

DsE
x0

DxE DpE Dn

3expH i E
0

1FsS P 22m22
ig

2
Fabg̃ag̃bD 1~mg52P ng̃n!x1pẋ1p ṡ1nẋGdtJ , ~51!

where x, p, s, p, are even andx, n are odd trajectories, obeying the boundary conditions
x(0)5xin , x(1)5xout, s(0)5s0 , x~0!5x0. The operation ofT-ordering acts on theg-matrices,
which suppose formally to depend on timet. Expression~51! can be reduced to

S̃5e~xout
0 ,xin

0 !E
G
ds0E dx0E

xin

xout
DxE DpE

s0

DsE
x0

DxE DpE Dn

3expH i E
0

1FsS P 22m22
ig

2
Fab

d l
dra

d l
drb

D 1Sm d l
dr5

2P n

d l
drn

D x1pẋ1p ṡ1nẋGdtJ
3T expE

0

1

rn~t!g̃n dtU
r50

,

where five odd sourcesrn(t) are introduced, which anticommute with theg-matrices by defini-
tion. One can present the quantityT exp*0

1rn(t)g̃
n dt via a path integral over odd trajectories,7

T exp E
0

1

rn~t!g̃n dt5expS i g̃n
] l

]unD
3E

c~0!1c~1!5u
expF E

0

1

~cnċ
n22irnc

n!dt1cn~1!cn~0!GDcuu50 ,

Dc5DcF E
c~0!1c~1!50

Dc expH E
0

1

cnċ
n dtJ G21

, ~52!

whereun are odd variables, anticommuting withg-matrices, andcn(t) are odd trajectories of
integration, obeying the boundary conditions, which are pointed out below the signs of integration.
Using Eq.~52! we get the Hamiltonian path integral representation for the commutation function
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S̃5e~xout
0 ,xin

0 !expS i g̃n
] l

]unD EG
ds0E dx0E

s0

DsE
x0

DxE
xin

xout
DxE DpE DpE Dn

3E
c~0!1c~1!5u

Dc expH i E
0

1

@s~P 22m212igeFabcacb!12i ~P aca2mc5!x2 icnċ
n

1pẋ1p ṡ1nẋ#dt1cn~1!cn~0!J U
u50

.

Integrating over momenta in the path integral, we get

S̃5e~xout
0 ,xin

0 !expS i g̃n
] l

]unD EG
de0E dx0 G~e0 ,x0 ,xout

0 ,xin
0 !, ~53!

G~e0 ,x0 ,xout
0 ,xin

0 !5E
e0

DeE
x0

DxE
xin

xout
DxE DpE DnE

c~0!1c~1!5u
Dc

3M ~e!expH i E
0

1F2
ẋ2

2e
2
e

2
m22gẋA~x!1 iegFmn~x!cmcn

1 i S ẋmcm

e
2mc5D x2 icnċ

n1pė1nẋ Gdt1cn~1!cn~0!J Uu50 , ~54!

whereM (e) is the integration measure,

M ~e!5E Dp expH i2 E
0

1

ep2 dtJ . ~55!

The exponent in integrand~54! can be considered as an effective and nondegenerate Lagrangian
action of a spinning particle in an external field. It consists of two principal parts. The first one,
which unites two summand with the derivatives ofe andx, can be treated as a gauge fixing term
and corresponds to the gauge conditionsė5ẋ50. The rest part of the effective action, in fact,
coincides with the gauge invariant action12 of a spinning particle. One can interpret the paire0 , x0
in representation~53! as a super proper time.

Comparing the path integral representation~53! for the commutation function with one7 for
the Dirac propagator~causal Green function!, one can remark that they are quite similar, one of the
differences is in the contour of integration overs0 . Namely, the path integral representation for the
Dirac propagatorS̃c ~transformed byg5! reads

S̃ c5expS i g̃n
] l

]unD EG
de0E dx0 G~e0 ,x0 ,xout

0 ,xin
0 !, ~56!

where the functionG(e0 ,x0 ,xout
0 ,xin

0 ! has the same form~54!. Thus in case of the commutation
function thec-number component of the super proper time is complex in contrast with the case of
the propagator.

IV. CONCLUSION

The results obtained for the commutation function allows one to get also similar proper time
representation for some other singular functions. For example, it is easy to get for the retarded,
Sret(x,x8) 5 U(x0 2 x08)S(x,x8), and advanced,S

adv(x,x8) 5 2U(x08 2 x0)S(x,x8), functions the
following representations, in which one has to understandU~0!51/2:
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Sret~x,x8!5U~x02x08!~P̂ ngn1m!E
G
f ~x,x8,s!ds, ~57!

Sadv~x,x8!5U~x082x0!~P̂ ngn1m!E
G
f ~x,x8,s!ds. ~58!

Combining the Schwinger representation~14! for the causal Green function and the representation
~37! for the commutation function, one can get proper time representations for positive and
negative frequency functionsS7(x,x8). Namely, let us define them via the Schwinger represen-
tation of the causal Green function,

S7~x,x8!56Sc~x,x8!, 6~x02x08!.0. ~59!

Using the completeness relation

S~x,x8!5S2~x,x8!1S1~x,x8!, ~60!

we get for anyx,x8

S7~x,x8!5U~7@x02x08# !S~x,x8!6Sc~x,x8!. ~61!

In this connection one ought to remark that there is a problem with the causal Green function
definition in case of an arbitrary external field. From the one hand, there exists the Feynman
definition, based on the definition of the inverse operator to the Dirac equation by means of the
prescriptionm2→m22 i e. On the other hand, in the perturbation theory there appears a field
theoretical definition of the propagator in the form

Sc~x,x8!5 i ^0uTc~x!c̄~x8!u0&. ~62!

In the absence of the external field or in fields of special form, which do not violate the vacuum
stability @then the operators of the spinor fields in Eq.~62! have to be taken in the Furry repre-
sentation#, it is possible to verify that the Feynman causal Green function and the propagator~14!
coincide. In the same case one can establish that the former function can be defined via the
Schwinger proper time representation. In external fields, which violate the vacuum stability~create
pairs from the vacuum!, the situation is not so clear. In this case does not exist an unique vacuum
for all the time instances. One has to distinguish the initialu0,in& and final u0,out& vacua.2,3,13 In
virtue of that, one has also to use different kinds of propagators in the perturbation theory,

Sc~x,x8!5 i
^0,outuTc~x!c̄~x8!u0,in&

^0,outu0,in& , ~63!

Sin
c ~x,x8!5 i ^0,inuTc~x!c̄~x8!u0,in&, ~64!

and the positive and negative frequency commutation functions,

S2~x,x8!5 i
^0,outuc~x!c̄~x8!u0,in&

^0,outu0,in& ,

~65!

S1~x,x8!5 i
^0,outuc̄~x8!c~x!u0,in&

^0,outu0,in& .
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It was shown that in special cases of external fields, violating the vacuum stability, the Feynman
causal Green function, presented by means of the Schwinger proper time integral, gives, namely,
the propagator~63!, whereas the propagator~64! demands a modification of the Schwinger con-
tour in the proper time integration.14 At the present time does not exist a proof of the equivalence
between of the Feynman causal Green function and the propagator~63! for any external fields.
Nevertheless, there is a strong believe that they are equivalent. If one excepts such an equivalence,
then the positive and negative frequency commutation functions~65! have the representation~61!
in arbitrary external fields.
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Quantum Lobachevsky planes
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We classify all SL~2,R!-covariant Poisson structures on the Lobachevsky plane
with respect to all multiplicative Poisson structures on SL~2,R! and describe quan-
tizations for all these Poisson structures. ©1996 American Institute of Physics.
@S0022-2488~96!01507-1#

I. INTRODUCTION

A first step into the direction of a quantization of the notions of algebraic geometry~cf. Ref.
1! is the quantization of the three fundamental one-dimensional complex domains: the complex
plane, the Riemannian sphere, and the complex upper half-plane. Quantum planes were considered
in Ref. 2. Quantum Riemannian spheres are discussed in Refs. 3 and 4. A quantum upper half-
plane appears first in Ref. 5~for certain other quantizations of the upper half-plane, see also
Remark 7!. In this letter we consider the case of the quantum complex upper half-plane.

In the theory of quantum groups the classification of certain Poisson structures gives generally
a good insight into the problem of the classification of quantum structures. At first we give the full
solution of the classification problem in the classical limit@i.e., the description of all possible
SL~2,R!-covariant Poisson structures for the upper half-plane with respect to the action of all
possible multiplicative Poisson structures on SL~2,R!!. Further, we describe classes of quantum
structures, which reproduce all listed Poisson structures in the classical limit. We obtain two-
parameter quantizations of the upper half-plane for every action of one of the quantum groups
SLq~2,R!, SUq~1,1!, and SLh~2,R!.

II. PRELIMINARIES

In this section we introduce the basic concepts~see also Refs. 5–7!. Let ~A,D,e! be a Hopf
algebra. A left quantum space~H,f! is an algebraH along with an algebra homomorphism
f:H→A^H such that~D^id!f5~id^f!f and ~e^id!f5id. Two left quantum spaces~H1,f1!
and ~H2,f2! are isomorphic if there is an algebra isomorphismh:H1→H2 , such that
f2+h5~id^h!+f1. Further consider commutative Hopf algebras and commutative quantum spaces.
We say that the Poisson bracket$.,.% onA ismultiplicative if $D(x),D(y)%A^A5D($x,y%), where
A^A carries the Poisson structure of the direct product. We call a Poisson bracket$.,.% on H
covariantif $f(x),f(y)%A^H5f($x,y%), whereA^H carries the direct product structure fromA
andH. We say that two multiplicative or covariant, respectively, Poisson brackets onA and,
respectively,H areequivalentif they intertwine with an automorphism ofA and, respectively,H.

III. THE CLASSICAL CASE

A. Poisson structures on SL(2, R)

Let A5R[a,b,c,d]/(ad2bc21) be the commutative unital algebra of polynomial functions
in the coordinates of

SL~2,R!5H S a b

c dD Ua,b,c,dPR, ad2bd51J .
a!Electronic mail address: leitenb@husc.harvard.edu

0022-2488/96/37(7)/3131/10/$10.00
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HereA becomes a Hopf algebra with respect to the Hopf multiplication

DS a b

c dD 5S a^a1b^c a^b1b^d

c^a1d^c c^b1d^dD
and the counite with

eS a b

c dD 5S 1 0

0 1D .
HereA has the coinversek with

kS a b

c dD 5S d 2b

2c a D .
We consider three types of multiplicative Poisson algebrasAl

A, Al
K, andAN:

~1! Al
A5(A,$,%l), lPR, lÞ0, with

$a,b%l5lab, $a,c%l5lac, $a,d%l52lbc,

$b,c%l50, $b,d%l5lbd, $c,d%l5lcd;

~2! Al
K5(A,$,%l), l.0, with

$a,b%l5l~12a22b2!, $a,c%l5l~a21c221!, $a,d%l5l~a2d!~b2c!,

$b,c%l5l~a1d!~b1c!, $b,d%l5l~b21d221!, $c,d%l5l~12c22d2!;

and
~3! AN5(A,$,%) with

$a,b%5~12a2!, $a,c%5c2, $a,d%5c~d2a!,

$b,c%5c~d1a!, $b,d%5~d221!, $c,d%52c2.

We shortly denoteAl
A~lPR, lÞ0!, Al

K~l.0!, andAN by Al
I (I5A,K,N).

Remark 1:The notationAl
I with I5A,K,N is justified by the fact that the Poisson brackets of

Al
A, Al

K, andAN, respectively, vanish on the subgroups of the KAN-decomposition

GA5H S ex 0

0 e2xD UePRJ ,
GK5H S cosx sin x

2sin x cosxD UxP@0, 2p!J ,
and

GN5H S 1 x

0 1D UxPRJ ,
respectively.

Proposition 1:Every nontrivial multiplicative Poisson structure onA is equivalent to one of
the structuresAl

A~lÞ0!, Al
K~l.0!, AN. All these structures are nonequivalent.
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Proof:We give a sketch proof. Setg5sl~2,R!. BecauseH1(g,g`g)50, every Poisson struc-
ture on SL~2,R! arises from a classicalr -matrix, rPg`g, which satisfies the modified classical
Yang–Baxter equation ~MCYBE! (`1

3adx)C(r )50, ;xPg with a certain element
C(r )Pg`g`g ~cf. Ref. 6!. Becauseg5sl~2,R! is a simple Lie algebra, the one-dimensional
representatioǹ 1

3ad is trivial. That is, the MCYBE is satisfied for everyrPg.
To show that two structures are equivalent, it is enough to show that theirr -matrices are

connected by an automorphism of sl~2,R!. All automorphisms are generated by inner automor-
phisms@i.e., the adjoint action of SL~2,R!# and the automorphisma with

aS a b

c dD 5S a 2b

2c d D .
Let

e215S 0 1

0 0D , e05S 1 0

0 21D , e15S 0 0

1 0D
and r5ae1`e211be0`e11ge0`e21. Studying the adjoint actioǹ 1

2Ad of SL~2,R! and the
action ofa on rPg`g, we recognize thatr is equivalent to one of the following elements:

r l
A5le1`e21 , lPR,lÞ0,

r l
K5l~e0`e11e0`e21!, l.0,

r N5e0`e1 .

All these elements are nonequivalent.
BecauseA consists of the matrix elements of the finite-dimensional representations

r:SL~2,R!→Rn, one can give the Poisson structures by the formula

$ l 1„r1~g!v1…,l 2„r2~g!v2…%5~ l 1^ l 2!„@~r1^ r2!~r 0!,r1~g! ^ r2~g!#v1^v2…

@vPRd, lP~Rd!* , cf. Ref. 8#. The structuresAl
A, Al

K, andAN correspond to the above normal forms
r l
A, r l

K, andr N for r . h

B. Poisson structures on the upper half-plane

Further consider the subalgebraH#A generated by the elementsA5a21b2, B5ac1bd,
D5c21d2 ~cf. Ref. 5! and the left coactionf5DuH :H→A^H with

f~A!5a2^A1b2^D12ab^B,

f~D !5c2^A1d2^D12cd^B,

f~B!5ac^A1bd^D1~ad1bc! ^B.

By the next Proposition we give a complete classification of all possible covariant Poisson
structures onH with respect toAl

I .
Proposition 2:~1! All with respect toAl

I covariant Poisson structures are given by the one-
parameter series:

~i! Hl,m
A ~lPR, lÞ0, mPR!:

$A,B%52lA~B1m!, $A,D%54lB~B1m!, $B,D%52lD~B1m!;
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~ii ! Hl,m
K ~l.0, mPR!:

$A,B%52lA~A1D1m!,

$A,D%54lB~A1D1m!,

$B,D%52lD~A1D1m!;

~iii ! Hm
N~mPR!:

$A,B%52A~D1m!, $A,D%54B~D1m!, $B,D%52D~D1m!

for I5n.
~2! Two Poission algebrasHl,m i

I andHl,m2

I are equivalent if and only ifum1u5um2u.
Proof: ~1! All left invariant Poisson structures@i.e., f($x,y%)5$f(x),f(y)%, ;x,yPH,

whereA^H carries a Poisson structure which is the direct product of the zero structure onA and
of the structure onH# are given by

$A,B%52mA, $A,D%54mB, $B,D%52mD

~mPR!. We obtain the above formulas by the calculation for a fixedm ~for example,m50! and
from the fact that the difference of two left covariant structures is left invariant~cf. Ref. 7!.

~2! The proof of the equivalence follows from the fact that~H,f! has the unique automor-
phismx→2x,;xPH. h

The following Proposition shows that we can realize the Poisson algebrasHl,m
I as subalgebras

of Al
I .
Consider subalgebrasHa,b,g,A generated by elementsĀ,B̄,D̄PA with

Ā:5aa21bb212gab,

B̄:5aac1bbd1g~ad1bc!,

D̄:5ac21bd212gcd.

We haveH1,1,05H, and the correspondence betweenA, B, D, and the overlined elements arranges
an isomorphismHa,b,g>H ~i.e., ĀD̄2B̄251!, if and only if ab2g251.

Proposition 3:Let ab2g251. ThenHa,b,g is a Poisson subalgebra ofAl
I and we have

~i! Ha,b,g>Hl,2g
A ,

~ii ! Ha,b,g>Hl,2a2b
K , and

~iii ! Ha,b,g>Hl,2b
N .

Proof: The isomorphies can be verified by an explicit calculation.
Remark 2:The preceding Proposition admits the realization of allHl,m

I by Ha,b,g with real
a,b,g, except the casesH0

N and Hl,m
K , umu,2. For example,Hl,m

A > H1,11m2,m ,Hl,m
K

> H (m1Am224)/2,(m2Am224)/2,0 andHm
N>H21/m,2m,0. In the other cases we have only complex re-

alizations, for example,Hl,m
K > H (m1 iA42m2)/2,(m2 iA42m2)/2,0 andH0

N>H0,0,i . The realizations are
not unique.
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C. Geometric interpretation

There is an interpretation of the parameterm in terms of fixed pointsz0 of the upper half-
plane.

Let z→(az1b)/(cz1d) be the usual action of SL~2,R! on the complex coordinatez51 iy ,
y.0, of the upper half-plane, i.e.,

x→
ac~x21y2!1~ad1bc!x1bd

c2~x21y2!12cdx1d2
,

y→
y

c2~x21y2!12cdx1d2
.

Further letGz0
be the subgroup of SL~2,R!, which fixes the pointz05x01 iy0 , y0.0. It follows

that the functions

x5x~a,b,c,d!5
ac~x0

21y0
2!1~ad1bc!x01bd

c2~x0
21y0

2!12cdx01d2

and

y5y~a,b,c,d!5
y0

c2~x0
21y0

2!12cdx01d2

are leftGz0
-invariant and can be identified with functions onGz0

G. We recognize thatB̄5xy21,
D̄5y21 generateHy01x

0
2/y0 ,x0 /y0,1/y0

For the parameterm we get the interpretation

m5ctg„arg~z0!…5
Re z0
Im z0

, if I5A,

m52
11uz0u2

Im z0
, if I5K,

m52
1

Im z0
, if I5N.

We remark thatx,y¹H5R[ Ā,B̄,D̄] and Ā,B̄,D̄¹H8:5R[x,y], but H and H8 are dense
subalgebras of the algebra of smooth functions on the upper half-plane~H andH8 are dense on
every compact subset!. With respect to thexy coordinates the Poisson brackets have the form

$x,y%522l~xy1my2!

if I5A,

$x,y%522l~x2y1y1y31my2!

if I5K, and

$x,y%522~y1my2!

if I5N.
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IV. THE QUANTUM CASE

A. The quantum groups Ah
I

First we recall the definition of the three known quantum deformations of SL~2,R!.
The Poisson algebrasAl

I correspond to the quantum algebrasAh
A ~hPR, hÞ2pn, nPN!,Ah

K

~h.0!, andAN. For all these algebras we write shortlyAh
I (I5A,K,N). The algebrasAh

I are
generated by elementsa,b,c,d and relations

ab5eihba, ac5eihca, bd5eihdb,

cd5eihdc, bc5cb, ad2da5~eih2e2 ih!bc,

ad2eihbc5da2eihcb51, hÞ2pn,

for I5A;

ab2ba5 ih~12a22b2!, ac2ca5 ih~a21c221!,

bd2db5 ih~b21d221!, cd2dc5 ih~12c22d2!,

ad2da5 ih~ab1ba1ac1ca1bd1db1cd1dc!,

bc2cb5 ih~ab1ba2ac2ca2bd2db1cd1dc!,

ad1da2bc2cb521h~22a22b22c22d2!, h.0,

for I5K; and

ab2ba5 i~12a2!, ac2ca5 ic2, bd2db5 i~d221!,

cd2dc52 ic2, ad2da5 ic~d2a!, bc2cb5 i~dc1ca!,

ad2bc1 iac5da2cb2 ica51

for I5N.
The algebrasAh

I become Hopf algebras with respect to the Hopf multiplication

DS a b

c dD 5S a^a1b^c a^b1b^d

c^a1d^c c^b1d^dD
and Hopf* -algebras with respect to the involution

a* :5a, b* :5b, c* :5c, d* :5d.

The counite is given by

eS a b

c dD 5S 1 0

0 1D
and the coinversek is given by

kS a b

c dD 5S d 2q21b

2qc a D
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for I5A;

k~a!5
1

4 S S 22
222h2

11h2 Da1S 21
222h2

11h2 Dd2
2h

11h2
b2

2h

11h2
cD ,

k~b!5
1

4 S 2

11h2
a2

2

11h2
d2S 21

222h2

11h2 Db1S 22
222h2

11h2 D cD ,
k~c!5

1

4 S 2

11h2
a2

2

11h2
d1S 22

222h2

11h2 Db2S 21
222h2

11h2 D cD ,
k~d!5

1

4 S S 21
222h2

11h2 Da1S 22
222h2

11h2 Dd1
2h

11h2
b1

2h

11h2
cD ,

for I5K; and

kS a b

c dD 5S d1c 2b1~d2a1c!

2c a2c D
for I5N.

Remark 3:Ah
K is equivalent to the quantum group SUq~1,1!, qPR, which is given by ele-

mentsa,a* ,b,b* and relations

ab5qba, ab*5qb*a,

bb*5b*b, ba*5qa*b, b*a*5qa*b* ,

aa*2q2bb*5a*a2b*b51.

The formulas of SUq~1,1! andAh
K are connected by the transformation of the deformation pa-

rameterh5(12q)/(11q) and by the ‘‘quantum Cayley transformation’’ of the matrix elements

a:5 1
2„a1d1 i~b2c!…,

a*5 1
2„a1d1 i~2b1c!…,

b:5 1
2„a2d2 i~b1c!…,

b*5 1
2„a2d1 i~b1c!….

Remark 4:Instead ofAN one considers Hopf* -algebras SLh~2,R! ~hÞ0!, where the algebra
structure is replaced by

ab2ba5 ih~12a2!, ac2ca5 ihc2, bd2db5 ih~d221!,

cd2dc52 ihc2, ad2da5 ihc~d2a!, bc2cb5 ih~dc1ca!,

ad2bc1 ihac5da2cb2 ihca51.

~cf. Refs. 9 and 10!. All these structures are equivalent toAN by the Hopf* -algebra isomorphism
a→a, b→hb, c→(1/h)c,d→d.
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B. The quantum spaces ( Hh ,k ,d
I ,f)

1. The algebras Hh ,k ,d
I

The Poisson algebrasHl,m
I correspond to the algebrasHh,k,d

a (hÞ2pn),Hh,k,d
k ~h.0!,Hk,d

n ,
k,dPR. For all these algebras we write shortlyHh,k,d

I .
We define theHh,k,d

I as algebras which are generated by elementsA,B,C,D and relations

C5e2 ihB1k~12e2 ih!, AB5e2ihBA1k~12e2ih!A,

BD5e2ihDB1k~12e2ih!D, AD2e2ihBC5d1k~12e2ih!B,

DA2e22ihCB5d1k~12e22ih!B, hÞ2pn

for I5A;

C5B2 ih~A1D1k!, AB2BA5 ih~2kA12A21AD1BC!,

BD2DB5 ih~2kD12D21AD1CB!,

AD2B25d1 ih~kB1AB1BD!,

DA2C25d2 ih~kC1CA1DC!, h.0,

for I5K; and

C5B2 i~D1k!,

AB2BA52iA~D1k!22B~D1k!,

BD2DB52iD~D1k!,

AD2BC5d12iB~D1k!,

DA2CB5d22i~D1k!C

for I5N.
The algebrasHh,k,d

I become*-algebras with respect to the involutions

A* :5A, D* :5D, B* :5C5e2 ihB1k~12e2 ih!, C* :5B

for I5A;

A* :5A, D* :5D, B* :5C5B2 ih~A1D1k!, C* :5B

for I5K; and

A* :5A, D* :5D, B* :5C5B2 i~D1k!, C* :5B

for I5N.
Remark 5:Formally we recover the Poisson structures of Sec. III B in the limitt→`, if we set

B5C, q5lt, k5m, d51, and$x,y%:5lim(1/i t )[x, y].
Next we show that we can realize the*-algebrasHh,k,d

I as*-subalgebras ofAh
I . Let

3138 Frank Leitenberger: Quantum Lobachevsky planes

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Ā:5aa21bb21g~ab1ba!,

B̄:5aac1bbd1g~ad1bc!,

C̄:5aca1bdb1g~da1cb!,

D̄:5ac21bd21g~cd1dc!.

Proposition 4:Let a, b, gPR, andĀ,B̄,C̄,D̄ satisfy the relations of

~i! Hh,g,ab2g2
A ,

~ii ! Hh,2a2b,ab2g2
K , and

~iii ! Hh,2b,ab2g2
N .

Proof: The proof can be given by an explicit calculation.
Remark 6:Proposition 4 admits the realization of allHh,k,d

I , with reala,b,g without the cases
Hh,0,d

K , uku,2, and Hh,0,d
N , d.0. For example, Hh,k,d

A > H1,d1k2,k , Hh,k,d
K

> H(k1Ak224)/2,(k2Ak224)/2,0 andHh,k,d
N >H2d/k,2k,0. In other cases we have only complex real-

izations; for example,Hh,k,d
K > H (k1 iA42k2)/2,(k2 iA42k2)/2,0andH0,0,iAd > Hh,0,d

N .
Remark 7:~1! The special caseH1,1,0 > Hh,0,1

A was first mentioned in Ref. 5, p. 188.
~2! The formulas forHh,k,d

A are similar those from Podles’ sphereC(Xm,l,r) ~cf. Ref. 4!. Both
can be specified from the complex quantum spaceJq,l,r of SLq~2,C! from Ref. 11 by fixing
certain involutions.

~3! In Ref. 12 the quantum spacesHa,b,0>Hh,0,ab
A , a,b>0, were considered.

~4! The quantum spacesHh,k,d
K correspond to one-parameter series of quantum discsCm,q(Ū)

in Ref. 13. Formally the correspondence is arranged by the quantum Cayley transformation~cf.
Remark 3!.

2. The coaction of Ah
I on Hh ,k ,d

I

We will describe an coactionf, i.e., a homomorphismf:Hh,k,d
I →Ah

I
^Hh,k,d

I with ~D^id!f
5~id^f!f and~e^id!f5id such that we can call~Hh,k,d

I ,f! a quantum space with respect toAh
I .

According to Remark 6, considerHh,k,d
I as a subalgebra ofAh

I , i.e., we identifyA,B,C,D
with Ā,B̄,C̄,D̄. We obtain~independent fromI ,h,k,d!

D~A!5a2^A1b2^D1ab^B1ba^C,

D~D !5c2^A1d2^D1cd^B1dc^C,

D~B!5ac^A1bd^D1ad^B1bc^C,

D~C!5ca^A1db^D1cb^B1da^C.

That is,Hh,k,d
I is a left coideal ofAh

I and we have proven the following proposition.
Proposition 5:The homomorphismf:Hh,k,d

I →Ah
I

^ Hh,k,d
I :f: 5 DuH

h,k,d
I defines a left co-

action, that is,~Hh,k,d
I ,f! are left quantum spaces.

Remark 8:EveryHh,k,d
I is equivalent to one of the quantum spaces

Hh,k,61
I ,Hh,k,0

I

with k>0.
Proof: We achievekP@0,̀ ! because of the automorphismX→2X, XPHh,k,d

I , and we
achieved50,61 by the reparametrizationX→(1/Audu)X, XPHh,k,d

I . j
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On localization and regularization
Mauri Miettinena)
Department of Theoretical Physics, Uppsala University,
P.O. Box 803, S-75108, Uppsala, Sweden
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Different regularizations are studied in localization of path integrals. We discuss
the effect of the choice of regularization by evaluating the partition functions for
the harmonic oscillator and the Weyl character for SU~2!. In particular, we solve
the Weyl shift problem that arises in path integral evaluation of the Weyl character
by using the Atiyah–Patodi–Singerh-invariant and the Borel–Weil theory.
© 1996 American Institute of Physics.@S0022-2488~96!01107-3#

I. INTRODUCTION

Quantum localization is a generalization Duistermaat–Heckman theorem1 to infinite dimen-
sions. This theorem states that if the HamiltonianH generates a global circle, or, more generally,
a torus action in the phase spaceG, then the canonical partition function is given exactly by the
saddle-point approximation around the critical points ofH. Extensions to calculation of quantum
mechanical partition functions using phase space path integrals have been represented in, e.g., Ref.
2.

We shall first consider basic ideas of localization. Then we shall carefully regularize the
pertinent functional determinants arising from the path integrals. There is an ambiguity in choos-
ing the regularization scheme because of the spectral asymmetry of first-order differential opera-
tors. Therefore, the result depends on the regularization as in the case of quantum mechanical
anomalies.

Finally, we are going to apply our localization to the quantization of the simple harmonic
oscillator and to the evaluation of the Weyl character of spin. We shall notice that different
regularizations give different energy spectra for the harmonic oscillator. We also show that the
continuum coherent state path integral yields directly the correct character for spin if we choose an
appropriate regularization. In particular, we will consider the relation of character formulas to the
Borel–Weil theory which constructs the irreducible representations of a Lie group as holomorphic
functions. Using this theory we relate the character formulas to the equivariant index of the
Dolbeault complex. The result is that the path integral yields directly the correct character without
an explicit Weyl shift of the highest weight.

II. LOCALIZATION OF PHASE SPACE PATH INTEGRALS

We are interested in exact evaluation of phase space path integrals~partition functions! of the
form

Z~T!5E
LG
DxP fivab~x!iexpS i E

0

T

dt@qaẋ
a2H~x!# D , ~1!

where$xa% are local coordinates inG, Pfivabi is the Liouville measure factor,qa is the sym-
plectic potential, andvab5]aqb2]bqa . The integration is performed over the loop spaceLG
consisting of the phase space loops. The integrability condition3 requires that

a!Electronic mail address: mauri@rhea.teorfys.uu.se

0022-2488/96/37(7)/3141/12/$10.00
3141J. Math. Phys. 37 (7), July 1996 © 1996 American Institute of Physics
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E
S
v52pn

for any two-cycleS in G so that the path integral is single valued. We introduce anticommuting
variablesca to write Pfivabi as a path integral:

Z~T!5E DxDc expS i E
0

T

dtFqaẋ
a2H~x!1

1

2
cavabc

bG D . ~2!

The boundary conditions are periodic also for the fermions, since they are a realization of the
differentials of the bosonic coordinates.

We interpret the path integral~2! in terms of equivariant cohomology inLG. From the bosonic
part of the action we obtain a Hamiltonian vector field inLG,

xS
a5 ẋa2vab]bH,

whose zeroes define the Hamilton’s equations. The equivariant exterior derivative inLG is

dS5d1iS ,

whereiS denotes the contraction along the vector fieldxS . The square ofdS is the loop space Lie
derivative

LS5diS1iSd;
d

dt
2LH .

The actionSB1SF is supersymmetric under the infinitesimal loop space supersymmetry transfor-
mations that are parametrized by a gauge fermiondC:

xa→xa1dCdSx
a5xa1dCca, ca→ca1dCdSc

a5ca1dCxS
a . ~3!

This implies that the action is equivariantly closed:

dS~SB1SF!50.

By an analog of Fradkin–Vilkovisky theorem4 one can show that the path integral remains intact
if we modify the action byS→S1dSC, whereC satisfies the Lie derivative condition

dS
2C5LSC50. ~4!

In the limit l→0 the path integral

Zl~T!5E DxaDca expS i E
0

T

dtFqaẋ
a2H~xa!1

1

2
cavabc

b1ldSCG D ~5!

reduces to~2! andl→` gives localization.
To construct a gauge fermionC we need a metricg in the phase space. The loop space Lie

derivative condition~4! is satisfied if the metricg in G is invariant under the Hamiltonian action
of H

LHg50, ~6!
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which means thatxH is a Killing vector field. This is a very restrictive condition for the Hamil-
tonian: it must generate a global U~1!-action inG. We can choose any metric which satisfies the
condition ~6! and average it over the group action.

We will consider the following selections for the gauge fermion:

C15
1
2gabẋ

acb

gives localization to the constant modes, which are points of the manifold;

C25
1
2gabxH

acb

to the zeroes ofxH , which we assume to be nondegenerate and isolated; and

C35
1
2gabxS

acb

to the classical trajectories. For simplicity we use subscripts 1,2,3 in the actions and partition
functions corresponding to the gauge fermionsC1,2,3. The actions become

S15E
0

T

dtF S qa2
l

2
gabxH

b D ẋa2H1
l

2
gabẋ

aẋb1
l

2
ca~gab] t1 ẋcgbdGac

d !cb1
1

2
cavabc

bG ,
S25E

0

T

dtFqaẋ
a2H1

l

2
gabxH

a ~ ẋb2xH
b !1

l

2
ca]a~gcbxH

c !cb1
1

2
cavabc

bG ,
S35E

0

T

dtFqaẋ
a2H1

l

2
gabxS

axS
b1

l

2
ca]a~gcbxS

c!cb1
1

2
cavabc

bG . ~7!

To take the limitl→` in path integrals we make the decomposition to constant modesx0
a ,c0

a

and to nonconstant modesxt
a ,c t

a and scale the nonconstant modes by 1/Al:

xa~ t !5c0
a1

1

Al
xt
a , ca~ t !5c0

a1
1

Al
c t
a . ~8!

The Jacobi determinant is unity. An expansion to a quadratic order around the constant modes and
the limit l→` gives a Gaussian path integral

Z15E dx0
adc0

a expF2 iTSH2
1

2
c0
avabc0

bD GZfl,1~T!, ~9!

where the fluctuation path integralZfl(T) is a product of fermionic and bosonic parts:

ZF,15E )
t
dc t

a expH 2
i

2 E
0

T

dt c t
agab] tc t

bJ ,
~10!

ZB,15E )
t
dxt

a expH i2 E
0

T

dt xt
a@Rab] t2gab] t

2#xt
bJ .

Here

Rab5Rab1Ṽab

is the equivariant curvature withRab the Riemannian curvature two-form and
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Ṽab5
1
2@“b~gacxH

c !2“a~gbcxH
c !#

the momentum map5 corresponding toxH , “ being the covariant derivative. HereH, v, g andR
are evaluated at the constant modes. The path integralZ2 is given by a sum over the critical points
$xi% of the Hamiltonian:

Z25(
xi

exp@2 iTH#

Pfi]axH
b i

Zfl,2~T!. ~11!

HereZfl,2 is also a product of fermionic and bosonic parts:

ZF,2~T!5E )
t
dc t

a expH i2 E
0

T

dt c t
a]a~gbcxH

c !c t
bJ ,

ZB,2~T!5E )
t
dxt

a expH i2 E
0

T

dt xt
a]a~gbcxH

c !~dd
b] t2]dxH

b !xt
dJ . ~12!

Hereg andxH are again evaluated at the constant modes. Finally, the path integralZ3 reduces to
a sum over theT-periodic classical trajectories

Z35(
xcl

1

Pfidb
a] t2]bxH

a i
exp@ iScl#. ~13!

In practice, it is usually a highly nontrivial problem to find theT-periodic classical trajectories of
a dynamical system.6

III. REGULARIZATION OF FLUCTUATION PATH INTEGRALS

In the following all the path integrals and determinants are evaluated over periodic configu-
rations for both the bosonic and fermionic degrees of freedom. The primes will denote that we
exclude the constant modes. In real polarization the fluctuation parts inZ1,2 become

Zfl,15
1

ADet8idb
a] t2Rb

ai
, Zfl,25

1

ADet8idb
a] t2]bxH

a i
. ~14!

It is quite important to notice that in the reduced determinants one index is covariant and another
contravariant.

In Kähler polarization the fluctuations parts are, using the additional symmetries of the metric
and the Riemann curvature tensor,7

Zfl,15
1

Det8ida
b] t2Ra

bi
, Zfl,25

1

Det8ida
b] t2]axH

b i
. ~15!

These determinants are taken over the holomorphic indices. By this we mean the following: The
relevant matrices can be block diagonalized

A5diag~A1 ,A2 ,...,AN!

with blocks

Ak5S ak1 0

0 ak
2D[S ak 0

0 2ak
D .
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The symbolsak
1 andak

2 denote the holomorphic and antiholomorphic eigenvalues ofA, and we
consider only the eigenvalues corresponding to the holomorphic indices to the determinant.

We have to choose a regularization scheme for the determinants. A standard method is to
apply z- and h-functions. Thez-function regularization does not directly apply to first-order
operators because they have an infinite number of negative eigenvalues. To take them into account
we define theh-function for the first-order operatorB by

hB~s!5 (
bnÞ0

sign~bn!ubnu2s1dim Ker B5
1

G„~s11!/s… E0
`

dt t~s21!/2 Tr@B exp~2tB2!#.

Analytical continuation tos50 gives the Atiyah–Patodi–Singerh-invariant8 of B that measures
the spectral asymmetry ofB and specifies the phase of Det(B). The absolute valueuDet(B) u is
regularized using the formula

uDet~B!u51ADet~B2!51expF2
1

2
zB28 ~0!G .

In real polarization we have to evaluate the square root of a determinant of the antisymmetric
operatorB5] t2A whereA is an antisymmetric matrix. In our caseA is iRa

bi or i]axH
b i . By

determining the spectrum ofB and applyingz-function regularization we obtain, up to an ines-
sential numerical normalization, the result

1

ADet8~] t2A!
5 )

n51

N U an/2

sin~anT/2!
U5 1

TN
Â~TA!, ~16!

where we have defined the function of the matrixX

Â~X!5)
n

xn/2

sin~xn/2!
,

wherexn are the skew-eigenvalues ofX. The result is non-negative since the negative and positive
skew-eigenvalues appear in pairs. Therefore there is no ambiguity with the spectral asymmetry.

Now we consider the determinants in Ka¨hler polarization. It is sufficient to consider the
determinant of a block. Earlier we noticed that the fluctuation path integrals reduce to the deter-
minant of the operatorB5 i ] t2a. The functional Pfaffian in~13! is also similar to this determi-
nant. To regularize

Det8~B!5 )
nÞ0

S 2pn

T
2aD

properly we have to take into account thatB has an infinite number of negative eigenvalues. Thus
there is a problem with the spectral asymmetry.

Therefore, we have to choose a regularization prescription which has a relation to quantum
mechanical anomalies. In the regularization of the determinants it is not possible to maintain all
the symmetries that are present in the classical theory. For example, Elitzuret al.9 considered the
corresponding fermionic problem with antiperiodic boundary conditions. They evaluated the quan-
tum mechanical partition function for a Dirac fermion in an external gauge fieldA(t) in 011-
dimensions,
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Z~T!5E Dc̄Dc expF i E
0

T

dt c̄~ i ] t2a!cG5Det~ i ] t2a!, ~17!

where, because of the gauge invariance of the action, only the constant modea of A(t) contrib-
utes. The classical action has both the invariance under large gauge transformations

a→a1n2p/T, c→c, ~18!

and the charge conjugation invariance

a↔2a, c↔2c̄. ~19!

However, when regularizing the determinant one has to choose which symmetry one wants to
maintain, which leads to a global anomaly. Here we have an analogous situation. It is nota priori
clear what the result of the regularization should be, and there is a genuine ambiguity.

Since the zeroes of the determinant are ataT52pn, the determinant must be proportional to

sin~aT/2!

a/2
.

The proportionality factor can be any function without zeroes, that is, the exponent function. The
determinant is, therefore, up to an irrelevant constant,

Det~ i ] t2a!5
sin~aT/2!

a/2
exp~ ifaT!,

with a phasef whose natural values turn out to be 0 and61
2 since they yield the~anti!symmetries

of the product undera↔2a and a→a12pn/T. However, there is a minor subtlety: in our
localization formulas the zero modes are absent and this destroys these symmetries. Nevertheless,
we may still consider the residual symmetries. The choicef50 corresponds to neglecting the
spectral asymmetry and choosing the~anti!symmetrya→2a to be unbroken. In this regulariza-
tion scheme the inverse determinant is simply

1

Det8~] t2A!
5

1

TN
Â~TA!.

This is the result that usually appears in literature. However, there is another possibility. The
valuesf561

2 correspond to maintaining the symmetrya→a12pn/T and taking into account the
spectral asymmetry by the Atiyah–Patodi–Singerh-invariant. This yields

1

Det8~] t2A!
5 )

n51

N
an/2

sin~anT/2!
expS ianT2 D5

1

TN
Td~TA!, ~20!

where we have defined the following function of the matrixX:

Td~X!5)
n

xn/2

sin~xn/2!
eixn/2.

We take only the eigenvalues corresponding to the holomorphic indices to the determinant.
Let us now write down the resulting localization formulas. The localization to constant modes

yields the expression

3146 Mauri Miettinen: On localization and regularization

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Z1~T!5
1

TN E dx0
adc0

a Ch@2 iT~H2v!#H Â~TR!

Td~TR!
. ~21!

We have defined equivariant generalizations10 of the conventional characteristic classes known as
equivariantÂ and Todd genus, and identified the exponential with the equivariant Chern class.
WhenH50 they reduce to the conventional characteristic classes and the result is a topological
invariant. The localization to the critical points$xi% of the Hamiltonian gives the result

Z2~T!5
1

TN (
xi

exp~2 iTH !

Pf~]xH! H Â~T]xH!

Td~T]xH!
. ~22!

We must use local coordinates in the evaluation of the determinants when localizing to the critical
points of the Hamiltonian. Finally, the localization toT-periodic classical trajectories yields

Z3~T!5
1

TN (
xcl

exp~ iScl!H Â~T]xH!

Td~T]xH!
. ~23!

IV. HARMONIC OSCILLATOR

Now we show that the localization formulas yield the correct partition function for the har-
monic oscillator in a flat phase space. The path integral for it is Gaussian and in principle there is
no reason to apply localization to it. However, it is reasonable to check by some simple examples
that our assumptions and derivations are valid. In particular, we will show that the choice of the
metric in the phase space is not relevant, contrary to claims in literature.11 It is also illustrative to
consider the significance of the regularization schemes we have used.

In real polarization the Hamiltonian isH5 1
2(p

21q2) and the symplectic two-form isdq`dp.
The coherent state representation~Kähler polarization! requires some further investigation, since
we have to fix an operator ordering prescription. In terms of creation and annihilation operators the
normal and symmetric-ordered Hamiltonians are, respectively,

Hn5: 12~a
†a1aa†!:5a†a, Hs5a†a1 1

2. ~24!

The symmetric-ordered Hamiltonian has an explicit zero point energyE05
1
2.

To apply the localization formulas we must choose a metric in the phase space and calculate
the equivariant curvature and the derivatives of the Hamiltonian vector field. If the Lie derivative
conditionLHg50 is satisfied, we can start from an any smooth metric in the phase space and
average it. So we may choose a constant metric

g5S 1 0

0 1D .
The nonzero components of the equivariant curvature are

Rq
p52Rp

q51.

The localization formula~21! yields the result
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Z~T!5E dpdqdcqdcp expF2 iTS 12 p21
1

2
q22cpcqD G 1

2 sin~T/2!

;
1

2 sin~T/2!

5 (
n50

`

exp@ i ~n11/2!T#, ~25!

which is the correct partition function with the zero-point energyE05
1
2.

Let us now digress slightly to discuss the result. In Ref. 11 Dykstra, Lykken, and Reiten
analyzed this problem and they noticed a dependence on the metric. What they did not notice was
that the index structure of the equivariant curvature isRa

b and, therefore, it is invariant under
global scalings of the metric. Furthermore, they used a metric which in polar coordinates near the
origin behaves like

ds25dr21cr2 df2.

This is a metric on a cone, not on a plane whencÞ1 and is not smooth, nor even continuous at the
origin. Therefore it is not surprising that their energy levels depend on the parameterc, which
represents the tip angle of the cone. From this we see that we cannot choose an arbitrary invariant
metric, since it has to respect the topology of the phase space.

The localization to the critical points of the Hamiltonian~22! yields also the correct result.
The only zero ofxH is the origin of the phase space, which gives

Z~T!5
1

PfS 0 1

21 0D
1/2

sin~T/2!
5

1

2 sin~T/2!
.

If we want to apply the localization the classical trajectories, we must classify all theT-periodic
classical trajectories. IfTÞ2pn, the problem reduces to the localization to the critical points of
the Hamiltonian. However, ifT52pn, the zeroes ofxS are not isolated and we have to use a
degenerate version of the localization formula to the classical trajectories.12

We now consider the harmonic oscillator in the Ka¨hler polarization. We will only discuss the
localization formulas to constant modes. The reasoning is similar to other formulas. There are four
cases to consider: the localizations with theÂ genus and Todd genus using two different order-
ings. We will only list the spectra we obtain. The use ofÂ genus yields the spectraEn5n1 1

2

~normal ordering! andEn5n11 ~symmetric ordering!. The Todd genus gives the resultsEn5n
~normal ordering! andEn5n1 1

2 ~symmetric ordering!. The first and fourth results have the correct
zero-point energy. From this example we see that to get correct results from the path integral we
do need some additional information other than the classical action and boundary conditions: we
must choose a regularization scheme that gives physically correct results.

V. CHARACTER FOR SU(2)

We shall now use our localization formulas to derive the Kirillov and Weyl character formulas
for Lie groups.10 The character formula for SU~2! has been widely discussed in literature.13–15

However, there has been some controversy about the Weyl shift problem: the path integral usually
gives almost the correct character up to the substitutionj→ j11

2. We show that the coherent state
path integral and the localization formulas with the Todd genus directly yield the correct character.
In this calculation we use the continuum version of the coherent state path integral and show that
this also yields the correct result, contrary to discussions in literature.16
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To motivate the use of Todd genus we relate the character of a simple Lie groupG in the
highest weight representationl to the index of the twisted Dolbeault complex on the coadjoint
orbit Of ~Ref. 17! of the group. The Borel–Weil theory14,18 constructs the irreducible representa-
tions of G as holomorphic sections of a line bundleL that is associated to a principal bundle
G→G/TG;Of , whereTG is the Cartan torus ofG.

18 The holomorphic sections of this line bundle
~coherent states! form the basis for the irreducible representation. The connection one-form onL
is the symplectic potential

q5
]F

]zk
dzk2

]F

] z̄k
dz̄k,

whereF is the Kähler potential onOf . It can be shown that the twisted Dolbeault operator]̄L
5 ]̄ 1 q z̄ annihilates the normalized coherent statesuz& and thereforeuz&PH0,0(Of ,L). If we can
prove that all the other cohomology groups are trivial, e.g., by Lichnerowicz vanishing theorem,10

we conclude that the dimension of the highest weight representationRl is dimH0,0(Of ,L). Con-
sequently, this is equal to the index of the twisted Dolbeault complex. The Riemann–Roch–
Hirzebruch index theorem relates this analytical index to the topological invariant

ind ]̄L5dim Rl5E
Of

Td~Of !`Ch~L !. ~26!

Indeed, we notice that the localization formula~21! with H50 represents this index provided we
use the Todd class. For SU~2! we obtain the known result for the dimension of the spin-j -
representation

dim Rj5 ind ]̄L52 j11.

This is the correct result without the explicit Weyl shift by the Weyl vectorr51
2.

We shall now use an equivariant version of the index theorem to derive the character formu-
las. The character of an element in the Cartan subalgebra is the partition function for the Hamil-
tonianH that represents it onOf :

x~b!5Str exp@2 iTH#. ~27!

To make a relation to the Dolbeault index we write this as an equivariant index~character index,
G-index, Lefschetz number!.10 One can show that the Laplacians]̄L

†]̄L and ]̄L]̄L
† have equal

nonzero eigenvalues. If all other comohomology classes exceptH0,0 are trivial, as we pre-
sume,]̄L

† does not have zero modes. Consequently, we can write the trace as an equivariant index:

indH~ ]̄L ,T![ lim
b→`

Tr e2 iTH~e2b ]̄ L
† ]̄ L2e2b ]̄ L ]̄ L

†
!

5 lim
b→`

Str exp@2 iTH#expF2bS ]̄L
†]̄L 0

0 ]̄L]̄L
†D G . ~28!

Only the zero modes contribute to the trace. The expression is also independent ofb. Therefore,
in the limit b→0, all we are left with are the zero modes of]̄L . Consequently, the equivariant
index is equal to the character

indH~ ]̄L ,T!5Str exp@2 iTH#.
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Thus, the character is the equivariant index of the twisted Dolbeault complex and therefore we
choose the localization with the Todd class.

To derive the character formulas we apply standard methods to write Str exp[2 iTH] as a
coherent state path integral of the form~2!. Since we can choose an invariant metric on a coadjoint
orbit17 we can localize the path integral to classical trajectories, to constant modes, or to critical
points of the Hamiltonian. The two latter cases yield the Kirillov character formula19 ~2N is the
dimension of the orbit!

x~T!5
1

TN E
Of

Ch@2 iT~H2v!#Td~TR1!, ~29!

and the Weyl character formula

x~T!5
1

TN (
zi

exp~2 iTH !

det1~]xH!
Td~T]xH!, ~30!

respectively. In~30! we have identified the Pfaffian in the real polarization with the determinant
over the holomorphic eigenvalues ofi]axH

b i and the summation is over the critical points of the
Hamiltonian or equivalently the Weyl group.

As the only example we evaluate the character for SU~2!. We write the character as a coherent
state path integral over the coadjoint orbit SU~2!/U(1);S2. We choose complex coordinates by
introducing the stereographic projection from the south pole. The Ka¨hler potential on the orbit
with radius j is F5 j log~11zz̄! from which we obtain the metric and the symplectic one- and
two-forms in the standard fashion. The integrability condition requiresj to be a multiple of12: this
is the topological quantization of spin. The canonical realization forH5J3 is

J352 j
12zz̄

11zz̄

and the path integral for the character becomes~2!,

x j~T!5E DzD z̄DcDc̄ expF i j E
0

T

dtS i żz̄2zzG

11zz̄
1
12zz̄

11zz̄
1

2icc̄

~11zz̄!2D G , ~31!

with periodic boundary conditions. The Lie derivative condition~6! is satisfied forH5J3. This
path integral is given exactly by the WKB approximation.2,16 The relevant quantities in the Kir-
illov formula ~29! are

H2v5 j
12zz̄2cc̄

11zz̄1cc̄
, R15R11V15

12zz̄2cc̄

11zz̄1cc̄
. ~32!

Now one can use the Parisi–Sourlas integration formula

E dzdz̄dcdc̄F~zz̄1cc̄!5p@F~`!2F~0!#,

which gives

x j~T!5
sin~ j11/2!T

sin~T/2!
5 (

m52 j

j

exp@ imT#. ~33!
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This is exactly the correct result without an explicit Weyl shift. Also the Weyl formula~30! gives
the correct result when we use local coordinate charts in the vicinity of the critical points. To get
the correct north pole contribution we invert the coordinatesz→1/z, z̄→1/z̄. This also yields the
correct character~33!:

x j~T!5
exp@2 i jT #

2 sin~T/2!
exp@2 iT/2#1

exp@2 i jT ~21!#

2 sin~2T/2!
exp@ iT/2#

5
sin~ j11/2!T

sin~T/2!

5 (
m52 j

j

exp@ imT#.

On the other hand, usingÂ genus we obtain the result

x j~T!5
sin~ jT !

sin~T/2!
,

which is the correct result up to the Weyl shiftj→ j11/2. So we see that in the character formulas
we have to use the Todd genus instead ofÂ genus to directly get the correct result.

VI. CONCLUSIONS

We have considered phase space path integrals with the property that the Hamiltonian gener-
ates an isometry of the phase space. Using equivariant cohomology in the loop space we were able
to reduce the path integrals to finite-dimensional integrals and sums. We also noticed that the
results were not uniquely defined because of spectral asymmetry. The choice of regularization
yielded equivariantÂ and Todd classes.

We applied localization to the harmonic oscillator and to the quantization of coadjoint orbits.
We showed that localization produces correct results for these systems. In addition, we derived
Kirillov and Weyl character formulas that produce correct characters for Lie groups without the
Weyl shift. We demonstrated this explicitly by evaluating the character for SU~2!. The explanation
for the Weyl shift was the same as in the case of the Coxeter shift20 in Chern–Simons theory, the
h-invariant.

It would be interesting to apply our formalism to more complicated systems such as loop
groups and field theories. Also, it seems possible to use localization and equivariant cohomology
to study quantum integrability, generic supersymmetric theories, and problems in classical me-
chanics, as well.
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In this article we consider a one-dimensional Dirac operator with a potential of
Gevrey classa and study the semiclassical and high-energy asymptotics of the
spectral gaps for a region of energies that in the Schro¨dinger case corresponds to
unbounded motion. An exponential upper bound for the gap’s widths as well as the
asymptotic expansion of their positions are derived for both cases; the first two
terms in the asymptotic expansions are explicitly written down for the scalar po-
tential case. ©1996 American Institute of Physics.@S0022-2488~96!02406-1#

I. INTRODUCTION

The asymptotics of the spectral gaps of the one-dimensional Schro¨dinger operators with
periodic potentials, for both high-energy and semiclassical limits, is fairly well understood~for
polynomial bounds on the error one can see Ref. 1, while for exponential bounds one can see Ref.
2, for an inverse scattering method, or Ref. 3 and references therein for WKB-type methods!. The
extension of this kind of results to more general systems of ordinary differential equations is far
from being straightforward. In this paper we consider the problem of the high-energy asymptotics
and of the semiclassical behavior of the spectral gaps for a general one-dimensional Dirac Hamil-
tonian with a periodic potential, as given by the formula~1!. The class of potentials that we cover
contains the Gevrey classes of any ordera ~in particular fora51 we recover the analytic case that
is the one usually considered!.

The method that we propose starts from the results in Ref. 4 about adiabatic expansions, that
up to the end lead to a ‘‘quantization rule’’ precise enough to provide both the asymptotic
expansion of the position of the spectral gaps, as well as the exponential decrease of their widths.
Analogous results for the Schro¨dinger operator were written down, by using the same method, in
the ~partly unpublished! notes.4 Let us notice that some of the results~e.g., the asymptotic expan-
sion of the position of the gaps! seem to be new, even in the Schro¨dinger case~see, however, Ref.
1 for related results!. Let us also point that the method we use allows us to extend some of the
results below to more general systems of ordinary differential equations, e.g. to the linear Hamil-
tonian systems considered in Ref. 5. Our reason to restrict ourselves to the Dirac case were on the
one hand to keep the length of the note to a reasonable level and on the other hand the fact the
one-dimensional Dirac operator, apart from describing the physical three-dimensional situation
when the periodic potential is actually constant along two spatial directions, appears also in other
contexts. As an example, the so-called AKNS operator~recently studied in Ref. 6 by the inverse
scattering method!, which appeared7,8 in connection with the ‘‘generalized Fourier transform’’ for
nonlinear differential equations, is equivalent to a particular case of the Dirac Hamiltonian that we
consider.

II. THE PROBLEM AND THE MAIN RESULTS

The one-dimensional Dirac Hamiltonian acting onL2~R; C2!, has the following form:

HD~\!:52 i\s1]1ms31V~s!, ~1!

0022-2488/96/37(7)/3153/15/$10.00
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where] is the operator of derivation with respect tos onR, mPR1 , sj for j51,2,3 are the Pauli
matrices:

s15S 0 1

1 0D ; s25S 0 2 i

i 0 D ; s35S 1 0

0 21D ,
andV(s) is a 232 Hermitian matrix-valued function. We assume thatV(s) is C` and periodic
with periodT:

V~s1T!5V~s!. ~2!

Since the Pauli matrices are Hermitian and together withs051 they form a basis for the 232
Hermitian matrices one has

V~s!5(
j50

3

Vj~s!s j , ~3!

whereVj are realC` functions of periodT. By Floquet theory one can show9 that the spectrum
sD~\! of HD~\! has a ‘‘band structure,’’ a pointEPR being insD ~\! if and only if the equation

HD~\! f5Ef ~4!

admits a solutionf that is uniformly bounded onR. Multiplied by s1, ~4! takes the form

i\ ] f ~s!5HE~s! f ~s!; HE~s!52 ims21s1V~s!2Es1 , ~5!

which is a linear ‘‘evolution’’ equation inC2, with a ‘‘time’’ dependent non-Hermitian generator
HE(s). By the above discussion, if the ‘‘motion’’ generated byHE(s) is stable, thenEPsD~\!.
We are thus led to study the stability of the ‘‘motion’’ generated byHE(s). For our method to
work we need that

sup
sPR

sup
tPR

ieitHE~s!i,`. ~6!

Let

l6~s,E!:5V1~s!6$„V0~s!2E…22„m1V3~s!…22V2~s!2%1/2 ~7!

be the eigenvalues ofHE(s). Then~6! holds true for allEPSd , where

Sd :5$EPRu inf
sPR

$„V0~s!2E…22„m1V3~s!…22V2~s!2%>d%, ~8!

whered is a strictly positive constant, since in this casel6(s,E) are real and distinct.
In what follows we assume thatV(s) belongs to the Gevrey class of ordera>1. More exactly,

we suppose the following.
Hypothesis Va : There existM,` anda>1, such that

sup
sP@0,T#

u]kVj~s!u<Mk~k! !a.

Remarks:

1. Since the functionsVj are bounded:Sd.R\[2A,A] for sufficiently largeA.
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2. In the scalar case~8! reduces to

Sd5$EPRu inf
sPR

$„V0~s!2E…22m2%>d%.

Our results are summarized in the following.
Theorem: SupposeV(s) satisfies~2! and the hypothesisVa . Let rD~\! be the resolvent set of

HD~\!.
A. (Semiclassical limit):There exists\0.0 depending uponM and d, such that for all

\P~0,\0# and allEPSd there exist two real functionsf6(s,\,E), such that the following occurs.
~i! f6(s,\,E) have asymptotic expansions in\:

f6~s,\,E!;\21l6~s,E!1 (
k50

`

\kf6,k~s,E!.

More precisely, for anynPN there exists\nP~0,\0# and a positive constantCn,\n
, depending only

on n and\n and such that for anysP[0,T] and any\P~0,\n# one has the estimation

Uf6~s,\,E!2\21l6~s,E!2 (
k50

n

\kf6,k~s,E!U<Cn,\1
\n11.

~ii ! If K,Sd is a compact set and we denote

I ~\,E!:5E
0

T

$f1~s,\,E!2f2~s,\,E!%ds,

E~K;\!:5$EPKu'nPZ:I ~\,E!52pn%,

then there exist constantsk1,`, k2.0 depending only uponM andd, such that

rD~\!ùK,$EPKu'ẼPE~K;\!:uE2Ẽu<k1 exp~2k2\
21/a!%.

B. (High-energy limit):For sufficiently largeE0, there existn0(E0) and for anyn>n0(E0)
there existEn , such that the following occurs.

~i! En have asymptotic expansions inn21 of the form

En;
p

T
n1 (

k50

`

Fk11n
2k.

~ii ! There exist constantsc1,`, c2.0 depending only uponM andE0, such that

rD~\!ù@E0 ,`!,$EP@E0 ,`!u'n>n0 :uE2Enu<c1 exp~2c2n
1/a!%.

Remarks:
~1! If En~\! are the solutions of the equationI (\,E)52pn, it follows from the proof of the

theorem thatEn(\)2En21(\) is of order \. Thus, for \→0 the gaps may accumulate, their
separation diminishing like\, but they shrink exponentially in\.

~2! We would like to emphasize that our theorem does not provide a lower bound for the gap’s
width, so that some gaps may in fact be absent. A formula for the dominant term for the gap’s
width is much harder to obtain and not very much is known, even for the Schro¨dinger case~see
Refs. 1, 3, 10, and references therein!.

~3! The analog of the above theorem for the Schro¨dinger case was given in Ref. 4.
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~4! From the results known for the Schro¨dinger case, one expects that the spectrum ofHD~\!
contained inR\S0 consists of energy bands that shrink exponentially as\→0. The asymptotics of
the first band has been obtained recently.11

~5! The functionsf6(s,\,E) and the constantsFk are easily computable for the case of the
scalar potential (V15V25V350), and the first three terms of the asymptotic expansions given in
the above theorem are

f1,0~s,E!5f2,0~s,E!50,

f1,1~s,E!5f2,1~s,E!5
3

8
m2
„]V0~s!…2$„V0~s!2E…22m2%25/2,

F05p/T F15
1

T E
0

T

V0~s!ds, F252
1

2p E
0

T

„3V0~s!22m2)ds.

One observes that the terms of order zero in the series off6(s,\,E), namelyf6,0(s,E) ~that are
the leading terms of the Berry’s phase! are zero. This is a general feature of the real Hamiltonians.

III. PROOF OF THE THEOREM

We give a detailed proof of part A of the theorem and we indicate the changes that one has to
make in order to prove part B by a similar procedure. The proof combines the technique of
quasi-invariant subspaces4 for the time-dependent evolution~5! with methods from the theory of
stability of motion for linear Hamiltonian systems.12 For the sake of completeness we give in an
Appendix the main definitions and results of Ref. 4 that we need. The proof is divided in a series
of steps.

~1! Consider the Hamiltonian~1!. As we already said, in view of~2! the Floquet theory9

allows one to write a direct integral decomposition ofHD~\! and to show thatEPsD~\! if and
only if ~4! has a uniformly bounded solution onR. The argument can be found in Ref. 9 in a rather
abstract setting that covers our case.

~2! After multiplication withs1 ~4! becomes@see~5!#

i\ ] f ~s!5HE~s! f ~s!.

This equation can be viewed as an evolution equation for a classical system with a linear complex
Hamiltonian. More precisely, if onC2 one considers the operatorJ:5s1 that satisfies

J5J*5J21,

and its associated nondegenerate, nondefinite scalar product:

^u,v&:5~u,Jv !, ~9!

with ~•,•! the usual scalar product onC2, one can verify that

HE~s!5JHE~s!* J5:HE~s!], ~10!

which means thatHE(s) is J Hermitian, i.e.

^u,HE~s!v&5^HE~s!u,v&.

As a consequence, if we denote byU\(s,s0 ;E) the evolution associated to~5!:

i\ ]sU\~s,s0 ;E!5HE~s!U\~s,s0 ;E!; U\~s0 ,s0 ;E!51, ~11!
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then the following relation is verified:

U\~s,s0 ;E!]U\~s,s0 ;E!51,

but due to the fact that the product^•,•& is not positive definite, this relation does not imply that
iU\(s,s0 ;E!i<1, and our problem is precisely to find the values ofE for which we have

sup
sPR

iU\~s,s0 ;E!i5`. ~12!

~3! The conditionEPSd implies thatHE(s) has two distinct real eigenvalues:l6(s,E) given
by ~7!. This implies that

HE~s!5 (
t56

lt~s,E!Pt~s,E!, ~13!

wherePt(s,E) are two projections inC2 satisfying the relations

Pt~s,E!]5Pt~s,E!5Pt~s,E!2; (
t56

Pt~s,E!51,

P1~s,E!P2~s,E!5P2~s,E!P1~s,E!50. ~14!

It follows that the associated eigenvectors satisfy the estimations

u^vt~s!,vt~s!&u>k~s!ivt~s!i2; k~s!.0,

which, together with the fact that one can restricts to the compact interval@0, T#, implies the
existence of a strictly positive constantk.0, such that

u^vt~s!,vt~s!&u>kivt~s!i2, ;sPR,

i.e., the families of subspacesPt(s,E)C
2, t56, are uniformly definite forsPR ~in the sense of

Ref. 13!. Indeed, let us fixv6Þ0 in P6(s,E)C
2 and suppose that^v2 ,v2&50. Any vPC2 can be

written asv5av21bv1 and then^v,v2&50, and since the product^•,•& is nondegenerate it
follows thatv250. More precisely, let us observe thatSd5Sd

1øSd
2, where

Sd
1 :5@sup

sPR
$V0~s!1~„V3~s!1m…21V2~s!1d!1/2%,1`!,R,

Sd
2 :5~2`, inf

sPR
$V0~s!2~„V3~s!1m…21V2~s!1d!1/2%#,R,

and by some elementary algebra one can verify that^v1 ,v1& is positive forEPSd
2 and negative

for EPSd
1, while ^v2 ,v2& is positive forEPSd

1 and negative forEPSd
2.

~4! In order to apply the results from Ref. 4 taking\ as the small parametere, one has to
verify the ‘‘gap’’ and ‘‘smoothness’’ assumptions~see the hypothesisHa of the Appendix!. The
gap condition is evidently verified, since forEPSd

ul1~s,E!2l2~s,E!u>2Ad. ~15!

Let us now consider the smoothness condition. The conditionV a implies directly that the family
HE(s) satisfies forE in an arbitrary compactK:

3157G. Nenciu and R. Purice: One dimensional dirac Hamiltonians

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



sup
sP@0,T#

i]kHE~s!i<Nk~k! !a, ~16!

whereN depends only onM and the compact setK. The needed condition on the resolvent,

R\~s,E!:5„HE~s!2z…21, ~17!

follows from ~16! and the following simple fact that can be proved by a slight modification of the
argument in Ref. 14.

Lemma 1:Let f be a matrix-valued function with components of classC`~R!, satisfying:
( i ) f is of Gevrey class of ordera, for somea>1, i.e.'MPR1 , such that

sup
sPR

i]kf ~s!i<Mk~k! !a,

~ii ! 'd.0, such thatudet f (s) u>d for any sPR.
Then f is invertible for anysPR and defines a functionf̃ (s):5 f (s)21 that is also of the

Gevrey class of ordera, i.e.'M̃PR1 , such that

sup
sPR

i]k f̃ ~s!i<M̃ k~k! !a.

~5! Following Ref. 4, for\ small enough, one constructs~see the Appendix! for t56 the
J-orthogonal projectionsPt,\(s,E) satisfying~14! with Pt(s,E) replaced byPt,\(s,E):

Pt,\~s,E!;Pt~s,E!1 (
k51

`

Et,k~s,E!\k ~18!

~in the sense of an asymptotic series!, and also satisfying the estimation

i i\ ]Pt,\~s,E!2@HE~s!,Pt,\~s,E!#i<k1 exp~2k2\
21/a!, ~19!

wherek1 ,k2 depend uponM ,d, andK. In particular,

lim
\→0

iPt,\~s,E!2Pt~s,E!i50. ~20!

Moreover, from ~20! and the fact thatPt(s,E)C
2 are uniformly definite, it follows that

Pt,\(s,E)C
2 are also uniformly definite, i.e., there existsk.0, such that for allvPC2,

u^Pt,\~s,E!v,Pt,\~s,E!v&u>kiPt,\~s,E!vi2, ~21!

and the signs are the same as for^Pt(s,E)v,Pt(s,E)v&. Notice also that due to the definitions
given in the Appendix,Pt,\(s,E) are periodic functions ofs with periodT.

ConsiderU\
A(s,s0 ;E) associated toPt,\(s,E), as given by Proposition A.5. In particular, it

satisfies the intertwining property:

Pt,\~s,E!5U\
A~s,s0 ;E!Pt,\~s0,E!U\

A~s,s0 ;E!21. ~22!

In spite of the fact that the operatorsU\
A(s,s0 ;E) are not unitary~they areJ unitary!, the inter-

twining property~22! allows us to control their norms. We remark first that from~21! it follows
that there existc1.0,c2,` depending only uponk, such that

c1ivi2< (
t56

u^Pt,\~s,E!v,Pt,\~s,E!v&u<c2ivi2. ~23!
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Using this relation and theJ unitarity of the evolution, we can obtain an upper bound for the
adiabatic evolution. In fact, for anyuPH,

iU\
A~s,s0 ;E!ui2<

1

c1
(

t56
u^Pt,\~s,E!U\

A~s,s0 ;E!u,Pt,\~s,E!U\
A~s,s0 ;E!u&u

5
1

c1
(

t56
u^Pt,\~s0 ,E!v,Pt,\~s0 ,E!v&u<

c2
c1

iui2, ~24!

so that we get the following estimation:

iU\
A~s,s0 ;E!i<~c2 /c1!

1/2, ~25!

where the constantc2/c1 does not depend ons ands0, but only ond. A similar argument works
for the inverseU\

A(s,s0 ;E)
21 so that the evolution$U\

A(s,s0 ;E)%sPR is stable for any given
EPSd ~with d.0!.

~6! We want to estimate the difference between the two evolutions:

$U\
A~s,s0 ;E!%sPR and $U\~s,s0 ;E!%sPR .

Let us denote byH\
A(s,E) the generator of the adiabatic evolution and let

B\~s,E!:5HE~s!2H\
A~s,E! ~26!

be the difference of the two generators. We consider the following factorization@~A17! in the
Appendix#:

U\~s,s0 ;E!5U\
A~s,s0 ;E!V\~s,s0 ;E!. ~27!

Using the results proved in Ref. 4 and reviewed in the Appendix, for eachsP[0,T] one can find
two constantsk(s),` andk2(s).0, so that if we denote

d\~s!:5k~s!exp„2k2~s!\21/a
…, ~28!

we have the estimation

iB\~s,E!i<d\~s!, ;sPR. ~29!

By integration we obtain the following inequality:

iV\~s,s0 ;E!21i<
1

\ E
s0

s

iU\
A~u,s0 ;E!iiU\

A~u,s0 ;E!21iiB\~u,E!idu1
1

\ E
s0

s

iU\
A~u,s0 ;E!i

3iU\
A~u,s0 ;E!21iiB\~u,E!iiV\~u,s0 ;E!21idu. ~30!

At this point we may use the following form of the Gronwall Lemma.
Lemma 2:Let s0PR be fixed andg,hPL`

„@s0,`!… be some positive functions withg non-
decreasing on@s0,`!. If fPL`([s0 ,`)) satisfies

0< f ~ t !<g~ t !1E
s0

t

h~s! f ~s!ds

for almost alltP[s0 ,`), then
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f ~ t !<g~ t !expS E
s0

t

h~s!dsD .
We obtain the following estimation:

iV\~s,s0 ;E!21i<
c

\ S E
s0

s

d\~u!duD expS c\ E
s0

s

d\~u!duD . ~31!

~7! Due to the periodicity ofV(s), we can study the stability of the evolution
$U\(s,s0 ;E)%sPR by looking only at the discrete evolution generated by the monodromy matrix:

M\~E!:5U\~T,0;E!. ~32!

Let us also define the adiabatic monodromy matrix:

M\
A~E!:5U\

A~T,0;E! ~33!

and the factorization@similar to ~27!#

M\~E!5M\
A~E!W\~E!, W\~E!:5V\~T,0;E!, ~34!

so that

iM\~E!2M\
A~E!i<

c

\ S E
0

T

d\~u!duD expS c\ E
0

T

d\~u!duD . ~35!

Due to the properties ofk(s) andk2(s) given in Ref. 4 and due to the fact that the interval@0,T#
is compact, there exist two positive constantsc1,` andc2.0 such that

E
0

T

d\~u!du<c1 exp~2c2\
21/a!. ~36!

In conclusion,

iM\~E!2M\
A~E!i<

c

\
exp~2c2\

21/a!. ~37!

Moreover, the adiabatic evolution being stable@step~5!#, it follows that it exists a finite constant
c, such that

i„M\
A~E!…ni<c, ;nPN. ~38!

Let us now explicitly compute the eigenvalues of the adiabatic monodromy matrix. We choose a
basis$vt(E)%t56 in C2, such thatvt(E)PRPt~0,E! and

u^vt~E!,vt~E!&u51, for t56.

We define the smooth~C`!, periodicC2-valued functions:

vt~s;E!:5U\~s,0;E!vt~E!, ~39!

and we remark that they verify the relations

u^vt~s;E!,vt~s;E!&u51, ^v1~s;E!,v2~s;E!&50, ~40!
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vt~s;E!PRPt~s,E!, ;sPR. ~41!

For sufficiently small\, we define the twoC2-valued functions:

wt,\~s;E!:5u^vt~s;E!,Pt,\~s,E!vt~s;E!&u21/2Pt,\~s,E!vt~s;E!, ~42!

that are periodic ins, and for fixeds andE take values inRPt,\(s,E). Taking into account that
U\
A is an intertwining family for the set of one-dimensional projections$Pt,\(s,E)%sPR and

making use of the differential equation satisfied by$U\
A(s,0;E)%sPR, we can see that

U\
A~s,0;E!wt,\~s;E!5expS 2 i E

0

s

ft~u,\,E!duDwt,\~s;E!, ~43!

where we have introduced the following functions:

ft~u,\,E!:56
1

\
^wt,\~u;E!,H\

A~u,E!wt,\~u;E!&7 i Kwt,\~u;E!,
]

]u
wt,\~u;E!L . ~44!

These functions are real because of the evident identity:

]

]u
^wt,\~u;E!,wt,\~u;E!&50,

and they are the functions appearing in part A of our theorem of Sec. I. The periodicity with
respect to s implies the following form for the adiabatic monodromy matrix:

M\
A~E!5exp„2 iFn

1~E!…P1,\~0,E!1exp„2 iF\
2~E!…P2,\~0,E!, ~45!

F\
t ~E!:5E

0

T

ft~u,\,E!du. ~46!

ThusM\
A(E) has the eigenvaluesmt,\

A (E)[exp„2iF\
t (E)… and is evidently stable.

Let us remark here that due to the exponential estimation for the difference

B\~u,E!:5HE~u!2H\
A~u,E!

in deriving the asymptotic expansion forft(u,\,E), one can replaceH\
A(u,E) byHE(u). Now the

asymptotic expansion forft(u,\,E) easily follows from that of the projectionsPt,\(s,E) ~theo-
rem A.3 in the Appendix!, and one can see that the leading term is\21lt(u,E).

~8! As remarked in the first step of our proofEPsD~\! if and only if Eq. ~4! has a uniformly
bounded solution onR; thus, in order thatEPK,Sd to belong torD~\!, it is necessary that the
discrete evolution generated byM\(E) should not be stable. The results of step~7! imply that the
evolution generated byM\

A(E) is stable for anyEPSd . Moreover, for small\, M\(E) is very
close toM\

A(E) in the matrix norm. Observing that bothM\(E) andM\
A(E) are J unitary, we

make use of the following result:12

Lemma 3: Let M be a J-unitary matrix onC2 ~with J unitary and self-adjoint!, then its
eigenvalues are symmetric with respect to the unit circle inC.

Let $mt,\(E)%t56 be the two eigenvalues ofM\(E). We know that the eigenvalues ofM\
A(E)

belong to the unit circle and let us suppose that

um1,\
A ~E!2m2,\

A ~E!u5e0.0. ~47!

Then for\ small enough, we have
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umt,\
A ~E!2mt,\~E!u<iM\

A~E!2M\~E!i<
c

\
exp~2c2\

21/a!,
e0
4
. ~48!

Using now Lemma 3, we conclude that the eigenvalues$mt,\(E)%t56 must also belong to the unit
circle, the evolution generated byM\(E) thus being stable. In conclusion, if~47! is true and\ is
sufficiently small,EPsD~\!. Thus, in the limit\→0, the necessary condition forE to belong to
rD~\! is

m1,\
A ~E!5m2,\

A ~E!. ~49!

Taking into account~45! and ~46!, condition~49! is precisely the condition

I ~\,E!52pn,

defining the setE~K;\! in the statement of part A of our theorem of Sec. I.
~9! In order to obtain the upper bound for the gap’s width, we observe that for a small, fixed

value of\, we have

umt,\
A ~E!2mt,\~E!u<

c

\
exp~2c2\

21/a!, ~50!

so that if

um1,\
A ~E!2m2,\

A ~E!u>2
c

\
exp~2c2\

21/a!, ~51!

we conclude that the eigenvalues$mt,\(E)%t56 have to belong to the unit circle, so thatEPsD~\!.
Hence, an upper bound for the gap’s width can be derived from the condition

uexp„2 iF\
1~E!…2exp„2 iF\

2~E!…u<2
c

\
exp~2c2\

21/a!, ~52!

or equivalently

UsinH E
0

T

„f1~u,\,E!2f2~u,\,E!…duJ U< c

\
exp~2c2\

21/a!. ~53!

As we explain in the Appendix, for fixed\, the functionsft(u,\,E) are differentiable with
respect toE, their asymptotic series are differentiable term by term, and the derivatives of these
series provide asymptotic expansions for the derivatives offt(u,\,E). The leading terms of these
asymptotic expansions are\21lt(u,E) that has a nonzero derivative with respect toE, as one can
easily see from the definition oflt(u,E) in formula ~7!. The elementary inequalityusinxu<uxu,
;xPR, together with relation~53! imply the following upper bound for the gap’s width:

uE2Ẽu<c3 exp~2c2\
21/a!, ẼPE~K !, ~54!

for \ small enough, as claimed in part A of our theorem in Sect. I.
~10! Concerning the second part of the theorem~the high-energy asymptotic expansion!, we

shall briefly comment on the changes one has to make in the above proof in order to get the
desired conclusion. One has to fix\51 so that Eq.~5! becomes

i ] f ~s!52 ims2f ~s!1s1V~s! f ~s!2Es1f ~s!. ~55!
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By dividing with E, consideringE large and denotinge:5E21, we get the evolution equation:

i e ] f ~s!52 i ems2f ~s!1es1V~s! f ~s!2s1f ~s![He~s! f ~s!. ~56!

In Ref. 4 it is observed that the general procedure elaborated for adiabatic expansions also works
in the case when the generator$H(s)%sPR depends on the small parametere, as long as the
generator$He(s)%sPR , and all the derivatives of its resolvent are uniformly bounded fore in a
neighborhood of zero. The Hermitian nondefinite form^•,•& on C2 remains the same and one
obtains two functionsf̃6(s;e) given by a formula similar to~44!. Then the same type of ‘‘quan-
tization rule’’ is obtained and also similar asymptotic expansions.

Remark:We consider the scalar caseV1(s)5V2(s)5V3(s)50 and compute the first three
terms of the asymptotic expansions forft(u,\,E) appearing in part A of the main theorem, and
for the valuesEn appearing in part B of the same theorem. Let us begin withft(u,\,E) and make
use of the vector functions defined in step~7!. We have

Pt,\~s,E!5Pt~s,E!1\Et,1~s,E!1\2Et,2~s,E!1R, ~57!

with iRi<c\3 andc independent ofs, \, andE, but depending on the compact setK,Sd . We
can easily see that

Pt~s,E!Et,1~s,E!Pt~s,E!50, ~58!

Pt~s,E!Et,2~s,E!Pt~s,E!52Pt~s,E!@Et,1~s,E!#2Pt~s,E!. ~59!

Using these relations and the explicit formula forEt,1(s,E) @see~A6!#, we obtain

E1,1~s,E!5
i

l12l2
$^]v1 ,v2&uv1&^v2u2^v2 ,]v1&uv2&^v1u%, ~60!

1

\
^w6,\~u;E!,H\

A~u,E!w6,\~u;E!&56l6~u,E!
1

\
1\

u^]v6~u,E!,v7&u2

l1~u,E!2l2~u,E!
, ~61!

2 i Kwt,\~u;E!,
]

]u
wt,\~u;E!L 52 i K vt~u;E!,

]

]u
vt~u;E!L 12\

u^]v6~u,E!,v7&u2

l1~u,E!2l2~u,E!
.

~62!

In conclusion, we get

f6~u,\,E!5l6~u,E!
1

\
7 i K vt~u;E!,

]

]u
vt~u;E!L 63\

u^]v6~u,E!,v7&u2

l1~u,E!2l2~u,E!
1r ~\2!.

~63!

With the leading term in the expansion being of order\21, it is evident that the difference of two
successive solutionsEn andEn11 is of order\. Now let us consider the scalar case and explicitly
compute the first terms of the expansion. In this case

l6~u,E!56A„V0~u!2E…22m2, ~64!

v6~u;E!5A1

2 S ~„V0~u!2E…22m2!1/4

„V0~u!2E1m…1/2

6
„V0~u!2E1m…1/2

~„V0~u!2E…22m2!1/4
D . ~65!
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For the equation~56! by similar procedures, one obtains

l̃6~u,E!56A„eV0~u!21…22e2m2, ~66!

ṽ6~u;E!5A1

2 S ~„eV0~u!21…22e2m2!1/4

„eV0~u!211em…1/2

6
„eV0~u!211em…1/2

~„eV0~u!21…22e2m2!1/4
D . ~67!

Introducing the relations~64!, ~65! into ~63!, we obtain the results given in remark 5 of Sec. I.
Proceeding similarly with~66!, ~67! and solving forE up to ordern21, we obtain the terms
Fk(s,E) for k50,1,2.

APPENDIX A:

We gather here the main definitions and results from4 that we have used in the proof of our
main theorem of Sec. I. Suppose we are given a Hilbert spaceh with a sesquilinear Hermitian
form ^•,•& on it, defined by a Hermitian involutionJ onh. Let us consider a family ofJ-Hermitian
operators$H(s)%sPR and the corresponding evolution equation:

i e
]

]s
Ue~s,s0!5H~s!Ue~s,s0!, ~A1!

with a parametereP@0,1!. We are interested in the behavior of the solutionUe(s,s0) whene→0.
Our procedure consists in considering ‘‘quasi-invariant’’ subspaces ofH(s) for e small and to
define a ‘‘reduced evolution’’ on these subspaces, that can be easily integrated. We denote

Rz~s!:5„H~s!2z…21. ~A2!

Ha Hypothesis on H(s): For sP(a,b),R, we consider a family ofJ-Hermitian operators
$H(s)%sP(a,b) satisfying the following.

~1.! For all sP(a,b), H(s) has an isolated part of the spectrums0(s) such that

s~s!5s0~s!øs1~s!, d„s0~s!,s1~s!…:5d~s!>d.0,

diam„s0~s!…:5D~s!<D,`.

~2.! Let sP(a,b) and letG(s) be a contour enclosings0(s) in its interior and being at a
distance d(s)/2 from s0(s). We suppose there exists a neighborhoodU of s, such that
G(s),r(H(u)) for uPU and there existsa>1 such that

sup
zPG~s!

U ]k

]sk
Rz~s!U<b~s!c~s!k~k! !a

for kPN, with 0<c(s), b(s),`.
We define the projection

P0~s!:5
1

2p i EG~s!
Rz~s!dz ~A3!

and build up some quasi-invariant associated subspaces and a corresponding reduced evolution.
We denote
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Q0~s!:512P0~s!. ~A4!

Proposition A.1:Suppose that we are given a family$H(s)%sP(a,b) of J-Hermitian operators
onh, verifying the hypothesisHa , and letP0 be the projection given by~A3!. Then the operators
$Ej (s)% jPN defined by

E0~s!:5P0~s!, ~A5!

Ej~s!:5 (
m51

j21

Em~s!Ej2m~s!22P0~s! (
m51

j21

Em~s!Ej2m~s!P0~s!1
1

2p E
G~s!

Rz~s!

3$Q0~s!]Ej21~s!P0~s!2P0~s!]Ej21~s!Q0~s!%Rz~s!dz ~A6!

are the unique solutions of the system of recurrent equations:

Ej~s!5 (
m50

j

Em~s!Ej2m~s!, ~A7!

i ]Ej21~s!5@H~s!,Ej~s!#, ~A8!

and satisfy the estimations

iEj~s!i<g~s! j~ j ! !a, ~A9!

where 0<g(s),` andg(s) depends only onc(s) and on the length of the contourG(s).
We introduce the notation

Ne~s!:5@„eg~s!…21/a#21, ~A10!

where we have denoted by [x] the entire part ofx and we define

Te~s!:5 (
j50

Ne~s!

e jEj~s!. ~A11!

Proposition A.2:Suppose that we are given a family$H(s)%sP(a,b) of J-Hermitian operators
on h, verifying the hypothesisHa, and letTe(s) be defined by~A11! and the family$Ej (s)% jPN

as given in Proposition A.1. Then we have that~i! for any sP(a,b), lime→0iTe(s)2P0(s)i50;
~ii ! there exist two positive constantsc1 andc2, such that

iTe~s!22Te~s!i<c1b~s!exp~2c2„eg~s!…21/a!.

Due to estimation~ii ! of the above proposition, a procedure developed in Ref. 4 allows us to
define the following projection:

Pe~s!:5
1

2p i EG~s!
„Te~s!2z…21 dz, ~A12!

and itsJ-orthogonal projection:Qe(s):512Pe(s).
Theorem A.3:Suppose that we are given a family$H(s)%sP(a,b) of J-Hermitian operators on

h, verifying the hypothesisHa , then the following occurs.
~i! We have the asymptotic seriesPe(s);(m50

` e jEj (s);
~ii ! For anysP(a,b) there exist two positive constantsk1(s),` andk2(s).0, depending on

c(s) and the length ofG(s), such that
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i i e ]Pe~s!2@H~s!,Pe~s!#i<b~s!k1~s!exp„2k2~s!e21/a
….

Thus, we have obtained the quasi-invariant subspaces associated to the family$P0(s)%sP(a,b) .
Let us remark that the entire construction has been done pointwise, so that no integral overs is
needed. We want to construct now an intertwining evolution for the family$Pe(s)%sP(a,b) , which,
in addition, should have aJ-Hermitian generator close toH(s). As in Ref. 4 let us define

He
A~s!:5H~s!1„122Pe~s!…$ i e ]Pe~s!2@H~s!,Pe~s!#%

5Pe~s!H~s!Pe~s!1Qe~s!H~s!Qe~s!1„122Pe~s!…„i e ]Pe~s!…, ~A13!

Be~s!:5H~s!2He
A~s! ~A14!

and letUe
A(s,s0) andAe(s,s0) be the solutions of the following evolution equations:

i e ]Ue
A~s,s0!5He

A~s!Ue
A~s,s0!, Ue

A~s0 ,s0!51, ~A15!

i ]Ae~s,s0!5„122Pe~s!…„i e ]Pe~s!…Ae~s,s0!,
~A16!

Ae~s0,s0!51.

Proposition A.4:The solution of the evolution equation~A16!, which is called ‘‘the parallel
transport’’ associated to the family$Pe(s)%sP(a,b) , is given byJ-unitary operators and satisfies the
relations

Pe~s!5Ae~s,s0!Pe~s0!Ae~s,s0!
21,

Pe~s!„]Ae~s,s0!…Pe~s0!50.

Proposition A.5:The solution of the evolution equation~A15! is given byJ-unitary operators,
is an intertwining evolution for the family$Pe(s)%sP(a,b) , i.e.

Pe~s!5Ue
A~s,s0!Pe~s0!Ue

A~s,s0!
21,

and we have the estimation

iBe~s!i<b~s!k1~s!exp„2k2~s!e21/a
…,

with the same constants as in Theorem A.3.
If we define the factorization

Ue~s,s0!5Ue
A~s,s0!Ve~s,s0!, ~A17!

one obtains forVe the following evolution equation:

i e ]Ve~s,s0!5$Ue
A~s,s0!

21Be~s!Ue
A~s,s0!%Ve~s,s0!,

~A18!
Ve~s0 ,s0!51.

Propositions A.4 and A.5 imply that we can factorizeUe
A(s,s0) as the following product:

Ue
A~s,s0!5Ae~s,s0!Ue

r ~s,s0!, ~A19!

where {Ue
r (s,s0)} sP(a,b) defines the ‘‘reduced evolution’’ onPe(s0)h and satisfies the equation
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@Ue
r ~s,s0!,Pe~s0!#50. ~A20!

WhenPe(s0) is of rank one, this evolution can be very easily integrated, andUe
r (s,s0) is given by

an operator of multiplication with a functionFe(s,s0).
Let us also remark that ifH(s) depends on a parameterE, taking values in some compact set

and if one has uniform bounds on theE derivatives of all thes derivatives of the resolvent ofH(s)
then all the procedures summarized in Theorem A.3 also work for theE derivatives of the
projectionsP0(s;E). Thus, the asymptotic expansion forPe(s;E) can be differentiated term by
term, and one obtains an asymptotic expansion for theE derivative ofPe(s;E).
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de Mathématiques Applique´s, No. 215/1990.

7M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, ‘‘The inverse scattering transform- Fourier analysis for
nonlinear problems,’’ Stud. Appl. Math.53, 249–315~1974!.

8V. Zacharov and A. Shabat, ‘‘A scheme for integrating nonlinear equations of mathematical physics by the method of the
inverse scattering problem,’’ Funct. Anal. Appl.8, 226–235~1974!.

9M. Reed and B. Simon,Methods of Modern Mathematical Physics~Academic, New York, 1978!, Vol. 14
10M. I. Weinstein and J. B. Keller, ‘‘Asymptotic behavior of stability regions for Hill’s equation,’’ SIAM J. Appl. Math.
47, 941 ~1987!.

11A. Mohamed, B. Parisse, and A. Outassourt, ‘‘Asymptotique de la largeur de la premie`re bande de l’ope´rateur de Dirac
avec potentiel pe´riodique,’’ preprint, 1991.

12M. G. Krein, ‘‘Foundation of the theory ofl-zones of stability of a canonical system of linear differential equations with
periodic coefficients,’’ Am. Math. Soc. Transl.120, 1–70~1983!.

13M. G. Krein, ‘‘Introduction to the geometry of indefiniteJ-spaces and to the theory of operators in these spaces,’’ Am.
Math. Soc. Transl.93, 103–178~1970!.
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The group SU~1,1! is a deformation of the Poincare´ group. This relationship is
studied both at the classical level~coadjoint orbits! and at the quantum level~uni-
tary representations!. The contraction of the Lie algebras is written in such a way
that the limit of coadjoint orbits, and hence of the classical mechanics, appears
clearly. At the quantum level the representations are written on holomorphic func-
tions Hilbert spaces and the contraction is realized by restricting these functions. It
is shown that this restriction is a continuous operator. Moreover, using suitable
coherent states, it is proved that the contraction extends to the representation of the
whole enveloping algebras of the groups, hence it allows us to define the contrac-
tion of the quantum mechanics observables. ©1996 American Institute of Phys-
ics. @S0022-2488~96!00106-5#

I. INTRODUCTION

It is well-known that the Lie algebra su~1,1! is a deformation of both the Lie algebra of the
111 Poincare´ groupP1,1 and the Lie algebra of the harmonic oscillator. In fact, writing

@X0 ,X1#5mc2k2X2 ,@X2 ,X0#5X1 /m,@X2 ,X1#5X0 /mc2,

for su~1,1!, one can see that the limitk→0 gives the Poincare´ Lie algebra and the limit
k→0,c→`,kc5v gives the harmonic oscillator Lie algebra.1 The contraction toward the har-
monic oscillator has been studied in Ref. 2, we now study the contraction toward Poincare´ group.
Note that this contraction has another interpretation: The group SU~1,1! can be viewed as the
relativity group of the anti-de Sitter space–time,3 and the contraction is the zero curvature limit of
a classical or quantum mechanics on a curved space–time. Both interpretations yield the same
mathematical treatment that we now develop. This contraction has been studied by Refs. 4, 5 and
6, we shall follow the latter which constructs the contraction ‘‘a` la Dooley’’7 and obtains a
deformationPk :P1,1→SU~1,1!. If Bk is the Hilbert space of the representationU of SU~1,1! and
H the Hilbert space of the representationV of P1,1, one can define a precontraction map
i k :Bk→H. The contraction is then realized formally by applyingi k and, after that, by taking the
limit k→0. More precisely the essential result obtained in Ref. 6 is

limk→0i i kUPk~g!i k
21c2VgciH50, ~1!

where c belongs to a dense family inH. The question of the continuity of thei k was not
answered, we now give a positive answer. Moreover this construction was not satisfactory because
the formula ~1! is proved forc independent ofk. But the states of a relativistic harmonic
oscillator are elements ofBk and naturally depend onk, hence it would be more natural to replace
~1! by

limk→0i i kUPk~g!fk2Vgi kfkiH50. ~2!

a!Electronic mail: renaud@ccr.jussieu.fr
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This formula cannot be true for anyfk P Bk , and we have to look for the states inBk which
contract, it means the states for which limk→0i kfk exists in some sense. Moreover the mathemati-
cal elements that are physically relevant are the observables and their mean values, that is the
reason why we define the contraction of the representation of the Lie algebra and even of the
representation of the enveloping algebra. However there is some difficulty in defining the limit of
operators that do not live on the same space. We shall overcome this difficulty by using coherent
states. The states on which the mean values of the observables of SU~1,1! are calculated are
usually the eigenvectors of the Hamiltonian, writtenun& or the Berezin coherent states8 written
uz&. They both form quantum frames:9

Id5(
n

un&^nu and Id5E
D

uz&^zudm,

where the last integral is taken on the unit disk of the complex plane which carries the represen-
tation of SU~1,1!, with the invariant measure. Unfortunately these states do not contract in the
sense defined above. This is not surprising because the mapi k is the restriction of the states to the
vertical axis of the disk whereas the statesun& have a circular symmetry and the statesuz& are
concentrated on the pointz, and the latter contracts in a weak sense only forz with real part equal
to zero. The representation of SU~1,1! is square-integrable, hence for anyck P Bk , theUgck form
a frame ofBk . The problem is to chooseck in a convenient way. The above remark oni k
suggests thatck must be concentrated as near to the vertical axis ofD as possible. Moreover the
property for a state of minimizing the uncertainty relations is equivalent to being the eigenvector
for some element of the representation of the complexified Lie algebra. This property should be
preserved by the contraction and we shall see that this is the case as well. Hence we shall look for
coherent states, minimizing the uncertainty relation, and whose shape10 is as near to the vertical
axis as possible. Such a state exists, and using the square integrability of the representation it
allows us to construct a quantum frame that we shall use to define the contraction of quantum
observables.We shall prove that fora in the SU~1,1! enveloping algebra the operator U(a)
contracts to V(C(a)) where C(a) is the contraction ofa.

Dooley has suggested the use of the scheme of geometric quantization to study the
contraction,7 however the usual definition of the contractions is written with a rather arbitrary
identification of the Lie algebras. This identification induces an identification of the dual spaces
for which there is no convergence of the orbits. We develop below a new way to define contrac-
tions for which this disadvantage disappears: the coadjoint orbits do converge. With this definition
the process of contraction becomes very clear at the classical mechanics level: Indeedthe coad-
joint orbits are interpreted as phase spaces and the phase space of the first system tends to the
phase space of the second system as the parameter tends to0.

II. THE GROUPS AND THEIR REPRESENTATIONS

The contraction of groups, or more precisely of Lie algebras, has been introduced by Inonu¨
and Wigner,11 and has been studied, for instance, in Refs. 12 and 7. We shall use a definition
which is a little bit different:

Definition 2.1: Letg15(V1 ,@ ,#1) andg25(V2 ,@ ,#2) be two Lie algebras. We say thatg2 is a
contraction ofg1 when there exists a familyFk ,k P R1* of invertible linear maps from V2 to
V1 such that

limk→0Fk
21@Fkx,Fky#15@x,y#2 , ;x,yPg2 .

One also says thatg1 is a deformation ofg2 , the link between contractions and deformations
is discussed in Ref. 13. In the papers previously cited, the spacesV1 andV2 are identified as vector
spaces in a somehow arbitrary way, but the mapFk furnishes another identification between these
spaces, and we shall see that this is more natural. In fact, we choose a basisf i of V2 , and note
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ci j
k the corresponding structure constants. Let bef i

k5Fk( f i) and letci j
k (k) be the corresponding

structure constants ing1 . From @ f i
k , f j

k#15ci j
k (k) f k

k and from the above definition we get

ci j
k 5 limk→0ci j

k ~k!. ~3!

We can identify the spacesg1 andg2 by means of the mapFk , if this space is of finite dimension,
the equality~3! implies that the endomorphism adf

i
k tends to adf i whenk→0, in the sense of the

finite dimensional vector spaces natural topology. The identification of the Lie algebras allows an
identification of the groupsG1 andG2 , at least in the vicinity of the identity, by means of the
exponential map. The continuity of this map implies that the adjoint and coadjoint representations
of G1 converge toward the corresponding representations ofG2 . Hence we have also the conver-
gence of coadjoint orbits:The contraction of the relativity groups implies the convergence of the
whole classical mechanics of the first system toward the classical mechanics of the second system.
This was not the case in the usual definition of the contraction.

Here are some useful results on SU~1,1! and on the Poincare´ groupP1,1. The group SU~1,1!
is the following set of matrices:

g5S a b

b̄ ā D , uau22ubu251. ~4!

The Lie algebra is three dimensional, here is a basis of this space:

e05
1

2 S i 0

0 2 i D , e152
1

2 S 0 1

1 0D , e25
1

2 S 0 2 i

i 0 D .
The Poincare´ group is the following set of matrices:

~a,u!5S coshu sinhu a0

sinhu coshu a1

0 0 1
D .

The Lie algebra basis associated with this parameterization is written:

f i5
d

dai
~a,u!~a,u!5Id ,i50,1 and f 25

d

du
~a,u!~a,u!5Id .

We shall see now that the group SU~1,1! is a deformation of the Poincare´ group, in fact we
define:

Fk : p~1,1! → su~1,1!,

f i ° kei , i50,1

f 2 ° e2 ,

and one can see that

limk→0Fk
21@Fk f i ,Fk f j #5@ f i , f j #.

This allows us to write the map which realizes the deformation

Pk : P1,1 → SU~1,1!

~a,u!5ea
0f01a1f1eu f2 ° ek~a0e01a1e1!eue2.

~5!
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The SU~1,1! coadjoint orbitMk that we consider is defined by the equation

x0
22x1

22k2x2
251, x0.0,

written in the dual basisf i
k* . This orbit is interpreted as the phase space of the system,6 and using

the above identification, it converges toM0

x0
22x1

251, x0.0,

whenk→0. The manifoldM0 is a coadjoint orbit of the Poincare´ group and is interpreted as the
phase space for a relativistic free particle on the two dimensional flat space–time. Then, following
the argumentation of Ref. 6, one remarks that the curveC defined by

x0
22x1

251, x250,

is a submanifold of all theMk , hence we shall write the quantum representation of the Poincare´
group on a space of functions onC. This can be realized by means of a geometric quantization.
Moreover the SU~1,1! representation corresponding toMk by geometric quantization can be more
easily written on the unit disk of the plane, which is diffeomorphic to the orbits by means of a
stereographic projection. By this projection, the curveC projects onto the imaginary axis of the
disk and the precontraction will be realized by the restriction to this axis. More precisely, the
SU~1,1! representations involved here are those of the discrete series. The Hilbert space is defined
as follows:

Bk5$ f ; fPL2~D,dPk!; f holomorphic onD%,

where D5$zPC;uzu,1% and dPk(z,z̄)5(2k2121)(12zz̄)2k2122dzdz̄/p with 1/2,k21

P N/2. The group representation is given by

Ugf ~z!5~2b̄z1a!22k21
f S āz2b

2b̄z1a D ,
whereg is as in~4!. Note that this representation is defined onD, which can be interpreted as the
phase space, and the basisei of the Lie algebra can be used to define the three classical observ-
ables~see Ref. 2 for more details!:

k05
11zz̄

12zz̄
, k15 i

z2 z̄

12zz̄
, k25

z1 z̄

12zz̄
, ~6!

which are the classical version of the three quantum observables

Ki f5 i
d

da
~Ueaei f !a50 .

We consider now the Poincare´ group, the representation is defined on
L2(#21,1@ ;2dx/(12x2))5H by

V~a,u! f ~x!5expS 2 i
11x2

12x2
a02 i

2x

12x2
a1D f S xcosh~u/2!1sinh~u/2!

cosh~u/2!1xsinh~u/2! D .
This representation is equivalent to the usual Wigner one by the change of variable
x5p/(p011). The observables corresponding to the basisf i are given by
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P05
11x2

12x2
, P15

2x

12x2
, P25 i

12x2

2

d

dx
. ~7!

Moreover the mapFk allows us to define the contraction for the enveloping algebra in the
following way. ForE a vector space letTE be the tensor algebra ofE, and for any algebraA, let

A@@k##5 % n>0~knA!

be the set of formal power series with coefficients inA. This is an associative graded algebra. The
mapTFk :Tp(1,1)→Tsu(1,1) can be extended by linearity in

TkFk :Tp~1,1!@@k##→Tsu~1,1!@@k##,

which is injective and nonsurjective because of the definition ofFk . Let Ek be the image of
TkFk , this is the sub-algebra generated by thef i

k . One can see easily that we obtain the following
commutative diagram:

where Up(1,1) andUsu(1,1) are the enveloping algebras,p1 the natural projection,p2 the
restriction ofp1 andp3 the projection composed with the operationk50. In fact one verifies
easily that any element in the kernel ofp2 is also in the kernel ofp3(TkFk)

21, so there exists a
linear applicationC which makes the diagramm commutative,C is the contraction map for the
enveloping algebras.

Then one definesKi
k5 i (d/da)(Uea f i

k)a50 . The representationsU andV yield differential
representations of the spaces in the previous diagram. We write againU andV for these differ-
ential representations. For anya in p1(Ek), the operatorU(a) is of the formP(K0

k ,K1
k ,K2

k ,k),
where P is a polynomial. We shall see that this observable contracts in some sense toward
P(P0 ,P1 ,P2,0)5V(C(a)).

III. PRECONTRACTION

The precontraction is the following transformation. ForfPBk let

i k~ f !~x!5~12x2!k21
f ~ ix !.

Then we have the following result.
Theorem 3.1:The map ik is a continuous injection fromBk to H.
Proof: The mapi k is clearly injective, thanks to the analyticity of the elements ofBk . Let

f (z)5(n>0anz
n be inBk , and let be

I5i f iBk

2 5 (
n>0

uanu2
G~2k21!G~n11!

G~2k211n!
:5 (

n>0
bn , ~8!

and

J5i i k~ f !iH
2 52E

21

1

u f ~ ix !u2~12x2!2k2121dx.
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By a symmetry argument it will be enough to consider

J8:5E
0

1

u f ~ ix !u2~12x2!2k2121dx.

Then

J85 limr→1,r<1E
0

r

(
n,m

anāmi
n1m~21!mxn1m~12x2!2k2121dx

<
1

2(n,m uanuuamuBS n1m11

2
,2k21D

5
1

2(p>0
BS p11

2
,2k21D (

n50

p

uanuuan2pu

<
1

2(p>0
BS p11

2
,2k21D (

n50

p

uanu2

5
1

2(n>0
uanu2(

k>1
BS n1k

2
,2k21D .

Using the expression~8! and the identityB(x,y)5G(x)G(y)/G(x1y), we obtain

J8<
1

2(n>0
bn

G~2k211n!

G~n11!G~2k21!(k>1

G~~n1k!/2!G~2k21!

G~2k211~n1k!/2!

5
1

2(n>0
bn

G~2k211n!

G~n11! (
p>n11

1

Pk50
2k2121S p21kD

<
1

2(n>0
bn

G~2k211n!

G~n11!
E
n11

` dl

~~l21!/2!2k21

<
~2k21!! 22k2121

2k2121
I .

This proves the theorem.
Remarks:
1. Let Ck5 i k(Bk). One can see easily thati k is injective and nonsurjective, moreover for

k8,k we haveBk8.Bk , henceCk8.Ck moreoverC1 contains the functionsP(x)(12x2) where
P is a polynomial which are dense inH. This proves thatCk is dense inH for anyk.

Hence we have the following commutative diagram:
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The arrows represent continuous injections. In the contraction, a family of statesck covers the
whole discrete series, but this will be written inH in which all the spacesBk are injected.

2. Fork51 we obtain
Corollary 3.2: Let f be a holomorphic function onD which is square integrable for the

Lebesgue measure onD, then f is square integrable on any diameter of the disk, equipped with
the measure(12r 2)dr.

3. Let beU5$ fPH; such thatf can be analytically extended onD% thenøkCk Þ U, this can
be seen by considering the functionf (z)5e1/(12z).

The contraction of states is now defined in the following way:
Definition 3.3: A family of statesck P Bk contracts toc P H iff i k(ck) tends in some (possibly

weak) sense toc.

IV. COHERENT STATES

In Ref. 2 we used the Berezin coherent states to study the contraction of SU~1,1! to the
harmonic oscillator group. But these states cannot be used in the present contraction. In fact
i k(uz&) has generally no limit whenk→0 except whenz5 ia for aPR. In this case we have
A(pk)21i k(u ia&)→da in a weak sense. This can be verified easily, letf P C0`(#21,1@), then we
have

~A~pk!21i k~ u ia&!,f)H5
Ak21

Ap
E

21

1 S ~12x2!~12a2!

~12ax!2 D k21

f~x!
dx

12x2

5
Ak21

Ap
E

21

1 S 12
~x2a!2

~12ax!2D
k21

f~x!
dx

12x2
.

A straightforward calculation, using the dominated convergence theorem, proves that this expres-
sion tends tof(a).

Turning to the coherent states, it is well-known that they have several definitions, which are
not equivalent except for the Weyl group. One of them is to minimize the uncertainty relations for
the group generators. In the case of SU~1,1!, we can extract from the commutators the following
uncertainty relation:

~DK1!~DK2!

^K0&
>

k

2
, ~9!

where (DKi)
25^cuKi

2uc&2^cuKi uc&2 and^K0&5^cuK0uc&. One can see by an explicit calcula-
tion that the Berezin coherent statesuz& do not minimize this relation~i.e., they do not realize the
equality in ~9!! except whenz5 z̄. The Barut–Girardello coherent states14 are defined as eigen-
vectors of the annihilator, they do minimize the relation but do not contract correctly. Following
Nieto and Simmons,10 we now look for states minimizing the uncertainty relations with a given
‘‘shape.’’ Suppose that a normalized stateuca& verifies

~AK21 iK 1!uca&5auca&, where APR1 and aPC, ~10!

then we have clearlya5A^K2&1 i ^K1& and calculating the square of the norm of~10!, we obtain
A2(DK2)

21(DK1)
25Ak^K0&, and combined with~9! this givesADK25DK1 , that is to say:

uca& has a given shape which does not depend ona. Moreover we have

~DK1!~DK2!

^K0&
5

k

2
.
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The resolution of the equation~10! gives

for A.1

ca~z!5CaS z1 iAA11

A21D
2k211 ia~k21/AA221!S z2 iAA11

A21D
2k212 ia~k21/AA221!

, ~11!

whereCa is a constant of normalization,
for A51

ca~z!5Cae
k21az,

which are the Barut–Girardello coherent states,14

for 0,A,1

ca~z!5CaS z1A11A

12AD 2k211a~k21/AA221!S z2A11A

12AD 2k212a~k21/AA221!

.

Let us remark that the casesA50 andA5` give rise to solutions which are not square integrable.
However, in view of the definition of the contraction, these states will have a good behavior during
the contraction, only if they are concentrated in the vicinity of the vertical axis. This means that
the classical observablek2 ~see~6!! must vanish in the limitk→0. At the quantum level this means
thatDK2→0. Then it is natural to putA5k21, and we define the state:

ck~z!5S z21 11k

12k D 2k21

,

obtained from~11! with A5k21 anda50. The property of square integrability of the represen-
tation of SU~1,1! ~Ref. 15! allows us to construct a quantum frame, i.e., a resolution of the identity
in the following way. Letck,g5Ugck , we obtain

Id5E
SU~1,1!

uck,g&^ck,gudm~g!,

wheredm is the Haar measure on SU~1,1! conveniently normalized. The crucial point is the good
behavior of these coherent states during the contraction.

V. CONVERGENCE RESULTS

We first need two lemmas:
Lemma 5.1: Let be aPR, a.0, n0PN, n.0, bPR and A a non negative function defined for

k.0 such that0, limk→0A(k),`, and P a polynomial. Then for any xP]2 1,1@ and for k
small enough,

P~x!S 11
kA~k!

12x2 D 2ak211b1O~k! 1

~12x2!n0
<B~a,b,n0!, ~12!

whereB does not depend onx nor onk.
Proof: Even if it means changinga, it is sufficient to consider

S 11
kA~k!

12x2 D 2ak21
1

~12x2!n0
.

3175Jacques Renaud: Contraction of SU(1,1) and coherent states

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Putu51/(12x2)>1, we have to prove that the function

fk~u!5n0 log u2
a

k
log~11kA~k!u!,

is bounded uniformly ink, for small enoughk. This is easily obtained by calculating the deriva-
tive of fk , and proving thatfk has a maximum~depending onk), with a finite limit when
k→0.

Definition 5.2: LetA be the set of functions on# 21,1@ which have the shape of the left hand
side of (12).

Lemma 5.3: Let fk be inH. Suppose that the family fk verify:
d limk→0f k5 f almost everywhere on#21,1@,
d f k(x)/(12x2) is bounded on#21,1@, uniformly ink,

then fk→ f in the sense of the norm topology onH.
Proof: From the second hypothesis, one can deduce thatu f k(x)u<M whereM is a constant,

hence we haveu f k(x)u2/(12x2)<M2. As a consequence:

u f k~x!2 f ~x!u2

~12x2!
<

u f k~x!u2

~12x2!
12

u f k~x!uu f ~x!u
~12x2!

1
u f ~x!u2

~12x2!
<4M2.

Moreoveru f k(x)2 f (x)u2/(12x2)→0 a.e. and by the dominated convergence theorem we obtain
that

E
21

1 u f k~x!2 f ~x!u2

~12x2!
dx→0.

Let

c̃k5 i kck and c̃k,g5 i kck,Pk~g! for gPP1,1.

One verifies easily that for anyx: limk→0c̃k(x)5e22/(12x2)5:c(x). Rewritten with the variable
p on L2(R,dp/p0) this state becomesc(p)5Ce2p0, called Gaussian probe in Ref. 9. This state
stands out because, putting light velocity back and getting it to infinity, it becomes the ground state
of the harmonic oscillator. We shall prove now that all theck,g5Ug(ck) contract in the sense of
the norm. For this purpose, let us consider (a,u) fixed in P1,1, then we have

Pk~a,u!5S a b

b̄ ā D .
The coefficients can be calculated, using~5! and we obtain

a5a~k!5coshS u

2D1
ik

2 S a0coshS u

2D2a1sinhS u

2D D1o~k!,

b5b~k!5 i sinhS u

2D1
k

2 S a0sinhS u

2D2a1coshS u

2D D1o~k!. ~13!

Hence:
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c̃k,~a,u!~x!5S 11

2kS xsinhS u

2D1coshS u

2D D
2

1 ik f ~a,u,x!1P~a,u,x!o~k!

12x2
D 2k21

,

whereP is uniformly bounded with respect tox, that is to sayuP(a,u,x)u<M (a,u), and f is
some function. One can easily verify that

limk→0i kUPk~g!ck~x!5Vgc~x!5:cg~x! for anyx and for anyg in P1,1,

moreover,

uc̃k,~a,u!~x!u<S 11
2k~xsinh~u/2!1cosh~u/2!!22uP~a,u,x!o~k!u

12x2 D 2k21

<S 11
2ke2uuu2M ~a,u!o~k!

12x2 D 2k21

.

Then, using the first lemma we haveuc̃k,(au)(x)u/(12x2) uniformly bounded inx andk. Thanks
to the second lemma we obtain:

Proposition 5.4:For a fixed (a,u), limk→0i kUPk(a,u)
ck5V(a,u)c in the sense of the norm

topology onH.
Note that this result generalizes~1! looking like ~2!. Now we are ready to state our definition

of the contraction. LetAk be an observable onBk , i.e., an essentially self adjoint operator whose
domain contains theck,g . Let

Ãk5 i kA
ki k

21 .

Here is the main definition.
Definition 5.5: Let Ak be an observable onBk , we say that Ak contracts to an observable

A onH iff

limk→0^c̃k,g8uÃ
kuc̃k,g&5^cg8uAucg&;g,g8PP1,1.

The scalar product is the scalar product ofH.
We can now state the main result:
Theorem 5.6:For any a in p1(Ek) and for any g,g8 in P1,1 we have

limk→0^c̃k,g8uŨ~a!uc̃k,g&5^cg8uV~C~a!!ucg&.

That is to say: Any polynomial expression in the Ki
k contracts to the corresponding expression in

the Pi .

Before proving this theorem, we need some intermediate results. The precontraction of the group
generators gives the following results.

K̃0
k5

11x2

12x2
1kx

d

dx
,

K̃1
k5

2x

12x2
1k

11x2

2

d

dx
,
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K̃2
k5 i

x221

2

d

dx
.

Formally these formulas converge to~7!, but we can obtain more. One can see easily thatA ~cf.
definition 5.2! containsc̃k and moreover for anyf kPA which tends in norm tof for k→0, one
hasK̃ i

k f k P A and

K̃ i
k f k→

H
Pi f .

As a consequence we have the following result:
Proposition 5.7: Let be fkPA and P a polynomial, then P(K̃0

k ,K̃1
k ,K̃2

k) f k tends in the sense
of theH-norm to P(P0 ,P1 ,P2) f where f is the limit of fk .

Remark:A consequence of this proposition is thatc minimizes the uncertainty relations:

~DP1!~DP2!

^P0&
>
1

2
.

In fact we have inH,

~P21 iP1!c5 limk→0~K̃2
k1 iK̃ 1

k!c̃k5 limk→0i k~K2
k1 iK 1

k!ck50.

Hence the property of minimizing the uncertainty relation is preserved by the contraction.
Now we consider the group action onA, for any f kPA we obtain

Ũgf k~x!5Z~x! f kS 2 i
ā ix2b

2 i b̄x1a D ,
where

Z~x!5~a21b2!2k21S 12x2

122iFx2Ex2D
k21

,

with

E5
ā21b̄2

a21b2 and F5
b̄a1āb

a21b2 .

One can see easily that for anyx, ŨPk(a,u)
f k(x) tends toV(a,u) f (x), moreover one can show~Ref.

6! that Z is bounded by a constant which depends only on (a,u). In view to obtaining the
L2-convergence, we have to control the second term, more precisely let

Y5
1

S 12S 2 i S ā ix2b

2 i b̄x1a D D 2D n0 S 11
kA~k!

12S 2 i S ā ix2b

2 i b̄x1a D D 2D
2ak211b1O~k!

.

Remark that, using~13! we obtain

S 2 i S ā ix2b

2 i b̄x1a D D 25B1 ikC,

whereuBu,1 and fora0, a1,u fixed,C is a bounded function ofx andk: uCu<M . Then
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uYu5S 11
~12B!k2111

~~12B!k21!21C2D 2k21/2 k2n0

~~~12B!k21!21C2!n0/2

<S 11
~12B!k2111

~~12B!k21!21C2D 2k21/2

k2n0S ~12B!k2111

~~12B!k21!21C2D n0/2.
And we can complete the demonstration as in the Lemma 5.1, verifying thatuYu is bounded by a
constant which depends only on (a,u). Hence we have shown that

Proposition 5.8:;(a,u)PP1,1 and; f kPA, ŨPk(a,u)
f k tends in the sense of theH-norm to

V(a,u) f where f is theH-limit of f k .
Turning to the demonstration of the Theorem 5.6, we remark that

P~K̃0
k ,K̃1

k ,K̃2
k!c̃k,g5ŨgŨg

21P~K̃0
k ,K̃1

k ,K̃2
k!Ũgc̃k5ŨgP~ ãdgK0

k , ãdgK1
k , ãdgK2

k!c̃k .

We complete the demonstration, using the convergence of the structure constants and the above
propositions.

VI. CONCLUSION

It was already known that SU~1,1! contracts to the Poincare´ group. But in this paper we have
proved that the classical and quantum mechanics described by this group contracts to the corre-
sponding mechanics associated to the Poincare´ group. This can be interpreted as the limit at null
curvature of the anti-de Sitterian mechanics or as the limit of a relativistic harmonic oscillator to
a free relativistic particle. We emphasize that this limit is not only for the representation but also
for all the quantum observables. However this contraction is somehow singular, it is obtained by
a restriction to a set of measure zero. Then it is not surprising that the frameck,g becomes at the
limit a dense family which is no more a family of coherent states: it contains too many vectors. In
fact cPD(P0

1/2) and one can deduce9 that if M5P1,1/eRf0 and if s is a Borelian section
M→P1,1, then the set ofV(s(z))c wherezPM is a frame ofH.
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Quantum mechanics of charged particles in random
electromagnetic fields

A. Truman and H. Z. Zhao
Department of Mathematics, University of Wales Swansea, Singleton Park,
Swansea SA2 8PP, United Kingdom
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In this paper we consider the\→0 asymptotics for the solutions to stochastic
Schrödinger equations for quantum mechanical particles in random electromagnetic
fields inRn. We obtain semi-classical expansions for their solutions up to any order
in L2(Rn) a.s. by using a stochastic Hamilton Jacobi equation and a stochastic
continuity equation. We conclude that as\→0 the stochastic quantum mechanics
with random electromagnetic fields tends to stochastic classical mechanics.
© 1996 American Institute of Physics.@S0022-2488~96!04306-X#

I. INTRODUCTION

In this paper we consider the\→0 asymptotics of the solution to the following stochastic
Schrödinger equation inRn

i

\
dHc t1dc t50, ~1.1!

where the Hamiltonian for random electromagnetic fields is given by the following Stratonovich
type differential

dH5S 12 $2\2D12i\b•¹1 i\~¹•b!1b2%1VDdt
1
1

2(r51

m1

@2i\Ar
•¹1 i\~¹•Ar !12~b•Ar !#+dwt

1r1(
r51

m2

Kr+dwt
2r ~1.2!

andwt
(k)5(wt

k1 ,wt
k2 ,•,wt

kmk) (k51,2) ismk-dimensional Brownian motion withwt
ki independent

Wiener processes on probability space (V,F ,P), b,Ar (r51,2,•••,m1) areC
2 vector fields in

Rn and V,Kr (r51,2,•••,m2) are C
2 functions. Here we denote the inner product inRn by

2•2 or sometimeŝ2,2&, the corresponding Euclidean metric beingu2u5A2,25A^2,2&.
This random operatordH can be considered as the stochastic generalization of the Schro¨dinger
operators in electromagnetic fields considered by many people, such as Simon,1 Cycon et al.,2

Elworthy, Truman and Watling,3 and Cartier and DeWitt-Morette,4 to name but a few. Heuristi-
cally we have to consider random Schro¨dinger operators like

1

2 S i\¹1b1(
r51

m1

Ar+
dwt

1r

dt D 21V1(
r51

m2

Kr+
dwt

2r

dt
,

which leads to~1.2! asdwt
(1) + dwt

(1)50 for Stratonovich type differentials. The random electro-
magnetic field inR3 is given by¹3(b1( r51

m1 Ar + dwt
1r /dt)5curl b1( r51

m1 curlAr + dwt
1r /dt and

¹k(bl1( r51
m1 Alr + dwt

1r /dt)2¹ l(bk1( r51
m1 Akr + dwt

1r /dt) in the general casewith the electric field

given by2¹(V1( r51
m2 Kr + dwt

2r /dt). The sort of noise we consider is white noise in time dis-
tributed locally in different directions. Since it is known that before an earthquake there are
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random fluctuations in the Earth’s local electromagnetic field, equation~1.1! is a useful model for
earthquake predictions. Clearly there are also potential defence applications.

Inspired by Maslov’s quasi-classical asymptotics of quantum mechanics~Maslov5!, Truman,6

Elworthy and Truman7,8 developed the path-space Hamilton Jacobi theory in order to treat deter-
ministic heat equations~or Schrödinger equations! to get quasi-classical expansions for their
solutions. Elworthy and Truman7 considered the Schro¨dinger equation

i

\
Hc t

\1
]

]t
c t

\50 ~1.3!

with H52 1
2\

2D1V5 1
2( i\¹)21V and initial conditionc0

\(x)5T0(x)exp$iS0(x)/\% and proved if
T0 P C0

`(Rn) andS0 P C`(Rn) then as\→0

c t
\~2 !exp$2 iS~2,t !/\%→T0~F t

212 !f
1
2~2,t ! ~1.4!

in L2(Rn) where F t :R
n→Rn is defined by the following second order classical mechanical

equation

F̈t52¹V~F t!,F0~x!5x,Ḟt~x!5¹S0~x!, ~1.5!

and under a no-caustics condition,F t
21 is the inverse ofF t and

S~x,t !5
1

2E0
t

uḞs~F t
21~x!!u2ds1S0~F t

21~x!!2E
0

t

V~Fs~F t
21~x!!!ds

andf(x,t)5udet(]/]x) F t
21(x)u. Elworthy, Truman and Watling@3# generalized the above result

to Schrödinger equations in the presence of electromagnetic fields. The Hamilton Jacobi theory
has been used successfully in the study of the Feynman–Kac integral in curved space in obtaining
small time and small\ asymptotics for solutions of diffusion heat equations and Schro¨dinger
equations as well as the classical mechanical limit of the quantum partition function~Elworthy,
Ndumu and Truman9!. These techniques have been applied by Elworthy10,11 to linear heat equa-
tions, by Elworthy, Truman and Zhao12 to nonlinear generalized KPP equations in which we have
proved that the travelling wave front is given by a Hamilton Jacobi function, and to many other
problems. Truman and Zhao13–15and Kolokoltsov16 independently developed stochastic Hamilton
Jacobi theory to include the stochastic heat equations such as the Zakai equation of nonlinear
filtering, and stochastic Schro¨dinger equations arising in quantum filtering~Belavkin17! and the
stochastic evolution equation in Hudson and Parthasarathy18 and random wave processes in Daw-
son and Papanicolaou.19

The challenging question is to develop the stochastic Hamilton Jacobi theory to treat equa-
tions such as~1.1! with dH defined by~1.2! in random electromagnetic fields. This question also
arises in study of stochastic heat equations with random vector drifts. In this paper we tackle this
problem. In section II we consider the stochastic Hamiltonian system and solve the Hamilton
Jacobi equations under a no-caustic condition~Theorem 2.2!

dSt~x!1
1

2
u¹St~x!2b~x,t !u2dt2(

r51

m1

^Ar~x,t !,¹St~x!2b~x,t !&+dwt
1r1V~x,t !dt

1(
r51

m2

Kr~x,t !dwt
2r50. ~1.6!

and stochastic continuity equation~Lemma 2.3!
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df~x,t !1div H f~x,t !F ~¹S~x,t !2b~x,t !!dt2(
r51

m1

Ar~x,t !+dwt
1r G J 50. ~1.7!

These give the desired cancellations of ordersi\21 and (i\)0 when we consider the stochastic
Schrödinger equation~1.1! in section III. In fact we obtain the semi-classical expansions for the
solution to equation~1.1! up to any order inL2(Rn) a.s. The corresponding question for the
deterministic equation was considered by Elworthy, Truman and Watling.3 Nevertheless the proof
we give in this paper is simpler and more straightforward than that in the previous paper. As a
simple consequence of above we conclude that in the limit as\→0 the probability of the quantum
mechanical charged particle in random electromagnetic fields being in the setA at time t equals
the probability of the quantum mechanical particle being in the setF t

21A in time 0, i.e.
lim\→0P̃

\(t,A)5 P̃(0,F t
21A) whereF t is the classical stochastic Hamiltonian flow in configura-

tion space,P̃ being the quantum mechanical probability,A any Borel set inRn. In this sense
stochastic quantum mechanics associated with the stochastic Schro¨dinger equation converges to
the stochastic classical mechanics of the corresponding stochastic Hamiltonian system as\→0.
Furthermore, our results give the asymptotic expansions ofP̃\(t,A).

In section IV we prove a result that the random mapFs :R
n→Rn is almost surely a diffeo-

morphism for 0<s<T(v) and suchT(v).0 exists almost surely i.e. for some positive time the
no caustic condition is satisfied.

We can immediately apply the stochastic Hamilton Jacobi theory to stochastic heat equations
and Burgers’ equations with random drifts. For these results see Truman and Zhao.20 For the
Schrödinger equations, the no caustic condition avoids the complications of Maslov indices. When
caustics do occur we expect the original analysis of Maslov could be generalized to this stochastic
setting but we have not investigated this in any detail.

II. THE STOCHASTIC HAMILTON JACOBI EQUATIONS

In this section we consider the stochastic Hamilton Jacobi equation and the stochastic conti-
nuity equation. These are two basic equations in stochastic Hamilton Jacobi theory. Indeed in the
next section we will give the semi-classical expansions for the solution of stochastic Schro¨dinger
equation~1.1! by applying the stochastic Hamilton Jacobi theory where the stochastic Hamilton
Jacobi equation and the stochastic continuity equation give the right cancellations as required.

For given C2 vector fields b,Ar (r51,2,•••,m1) in Rn and C2 functions V,Kr

(r51,2,•••,m2), S0 and mk dimensional Brownian motionws
(k)5(ws

k1 ,ws
k2 ,•••,ws

kmk)
(k51,2) on the probability space (V,F ,P), consider the following stochastic Hamiltonian sys-
tem of Stratonovich type written in phase space{

dFs
k5vs

kds2(
r51

m1

Akr~Fs ,s!+dws
1r ,

dvs
k52¹kV~Fs ,s!ds2(

r51

m2

¹kKr~Fs ,s!dws
2r2

]

]s
bk~Fs ,s!ds

1~¹kbl~Fs ,s!2¹ lbk~Fs ,s!!S vsl ds2(
r51

m1

Alr ~Fs ,s!+dws
1r D

1vs
l (
r51

m1

¹kAlr ~Fs ,s!+dws
1r ,

k51,2,•••,n

~2.1!
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with F0(x)5x,v0(x)5¹S0(x)2b(x,0). Here we use usual summation convention over Latin
indices.

Let S̃:@0,1`)3Rn3V→R be defined by the following non-anticipating Itoˆ’s stochastic in-
tegral

S̃t~y!5
1

2E0
t

uvs~y!u2ds1S0~y!2E
0

t

V~Fs~y!,s!ds2(
r51

m2 E
0

t

Kr~Fs~y!,s!dws
2r

1E
0

t

^b~Fs~y!,s!,dFs~y!&. ~2.2!

Lemma 2.1:For any t>0 and a.e.v P V,

~¹yF t~y!!* @v t~y!1b~F t~y!,t !#5¹yS̃t~y! ~2.3!

and

dS̃t~y!5
1

2
uv t~y!u2dt2V~F t~y!,t !dt2(

r51

m2

Kr~F t~y!,t !dwt
2r1^b~F t~y!,t !,dF t~y!&.

~2.4!

Here by2* we denote the transpose of2.
Proof: Differentiating S̃t(y) with respect toyj ( j51,2,•••,n) we obtain

¹yj
S̃t~y!5E

0

t

~¹yj
vs~y!!* vs~y!ds1¹yj

S0~y!2E
0

t

~¹yj
Fs~y!!*¹V~Fs~y!,s!ds

2(
r51

m2 E
0

t

~¹yj
Fs~y!!*¹Kr~Fs~y!,s!dws

2r1E
0

t

bl~Fs~y!,s!d¹yj
Fs

l ~y!

1E
0

t

¹kbl~Fs~y!,s!¹yj
Fs

k~y!dFs
l ~y!, ~2.5!

by using the summation convention. The first term in~2.5! can be calculated by using equation
~2.1! and the integration by parts formula

E
0

t

vs
k~y!¹yj

vs
k~y!ds5E

0

t

vs
k~y!Fd¹yj

Fs
k~y!1(

r51

m1

¹ lAkr~Fs ,s!¹yj
Fs

l ~y!+dws
1r G

5v t
k~y!¹yj

F t
k~y!2v0

k~y!¹yj
F0

k~y!2E
0

t

¹yj
Fs

k~y!dvs
k~y!

1(
r51

m1 E
0

t

vs
k~y!¹ lAkr~Fs ,s!¹yj

Fs
l ~y!+dws

1r

5v t
k~y!¹yj

F t
k~y!2v0

k~y!d j
k2E

0

t

¹yj
Fs

k~y!dvs
k

1(
r51

m1 E
0

t

vs
l ~y!¹kAlr ~Fs ,s!¹yj

Fs
k~y!+dws

1r ,
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by commuting the positions ofk and l in the last term. It turns out from the cancellations due to
equation~2.1! that ~2.5! is

¹yj
S̃t~y!5~¹yj

F t~y!!* v t~y!1bj~y,0!2E
0

t

¹yj
Fs

k~y!Fvsl ~y!~¹kbl~Fs ,s!2¹ lbk~Fs ,s!!ds

2
]

]s
bk~Fs ,s!dsG2E

0

t

¹yj
Fs

k~y!(
r51

m1

Alr ~Fs ,s!~¹ lbk~Fs ,s!2¹kbl~Fs ,s!!+dws
1r

1E
0

t

bk~Fs~y!,s!d¹yj
Fs

k~y!1E
0

t

¹kbl~Fs~y!,s!¹yj
Fs

k~y!dFs
l ~y!. ~2.6!

By the integration by parts formula again we have

E
0

t

bk~Fs~y!,s!d¹yj
Fs

k~y!5bk~F t~y!,t !¹yj
F t

k~y!2bk~y,0!dk
j 2E

0

t

¹yj
Fs

k~y!

3S ¹ lbk~Fs~y!,s!dFs
l 1

]

]s
bk~Fs ,s!dsD . ~2.7!

Cancellations in~2.6! and ~2.7! using equation~2.1! again finally lead to

¹yj
S̃t~y!5¹yj

F t
k~y!~~v t

k~y!1bk~F t~y!,t !!!,

which is ~2.3! as required. We can prove~2.4! by direct differentiation easily. j

We assume ano-caustic condition: there existsT(v).0 a.s. such that for 0<s<T(v),
Fs(v):R

n→Rn is a diffeomorphism for a.e.v P V. In section IV we will prove this is true for
V,Kr P C0

`(Rn) andb,Ar P C0
`(Rn,Rn). It is noteworthy here that the diffeomorphism property for

the Hamiltonian system in configuration space is different from that in phase space. Actually in
phase space, equation~2.1! is a multidimensional first order stochastic differential equation in
which case the diffeomorphism property is covered by stochastic flow theory in Kunita21 and
Elworthy.10 Unfortunately the diffeomorphism of (Fs ,vs):R

2n→R2n does not imply the diffeo-
morphism ofFs :R

n→Rn in configuration space.
The following is the main result of this section. It gives the solution of the stochastic Hamilton

Jacobi equation with random vector potentials under the no caustic condition.
Theorem 2.2:With no caustic assumption for0<s<T(v) we define St(v):R

n→R1 for a.e.
v P V and0<t<T(v) by

St~x!5S̃t~F t
21~x!!. ~2.8!

Then for a.e.v P V, 0<t<T(v) and any xP Rn

¹St~x!5v t~F t
21~x!!1b~x,t !, ~2.9!

and St(x) satisfies the following stochastic Hamilton Jacobi equation:

dSt~x!1
1

2
u¹St~x!2b~x,t !u2dt2(

r51

m1

^Ar~x,t !,¹St~x!2b~x,t !&+dwt
1r1V~x,t !dt

1(
r51

m2

Kr~x,t !dwt
2r50. ~2.10!
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Proof: DifferentiatingSt(x) with respect toxk for k P $1,2,•••,n% and using~2.3!

¹xk
St~x!5¹ j S̃t~F t

21~x!!¹xk
F t

21~x! j

5¹ jF t
l~F t

21~x!!~v t
l~F t

21~x!!1bl~x,t !!¹xk
F t

21~x! j

5¹xk
F t

l~F t
21~x!!~v t

l~F t
21~x!!1bl~x,t !!

5dk
l ~v t

l~F t
21~x!!1bl~x,t !!5v t

k~F t
21~x!!1bk~x,t !,

gives ~2.9!. It will be used often in the following form that

¹xSt~x!2b~x,t !5v t~F t
21~x!!. ~2.11!

DifferentiatingSt(x) with respect tot and using~2.3!, ~2.4! and ~2.11! we deduce that

dSt~x!5dS̃t~F t
21~x!!1¹ j S̃t~F t

21~x!!dF t
21~x! j

5
1

2
uv t~F t

21~x!!u2dt1^b~x,t !,dF t~F t
21~x!!&2V~x,t !dt2(

r51

m2

Kr~x,t !dwt
2r

1¹ jF t
l~F t

21~x!!~v t
l~F t

21~x!!1bl~x,t !!dF t
21~x! j

5
1

2
u¹S~x,t !2b~x,t !u2dt2V~x,t !dt2(

r51

m2

Kr~x,t !dwt
2r2dF t

l~F t
21~x!!v t

l~F t
21~x!!.

~2.12!

This is from differentiating the identityF t
l(F t

21(x))5xl with respect to t to obtain
dF t

l(F t
21(x))1¹ jF t

l(F t
21(x))dF t

21(x) j50. But from the Hamiltonian system~2.1! and the
identity ~2.11! the last term in~2.12! is

2^v t~F t
21~x!!,dF t~F t

21~x!!&52K v t~F t
21~x!!,v t~F t

21~x!!dt2(
r51

m1

Ar~x,t !+dwt
1r L

52u¹S~x,t !2b~x,t !u2dt

1(
r51

m1

^¹S~x,t !2b~x,t !,Ar~x,t !&+dwt
1r .

By replacing this formula in~2.12!, we obtain the stochastic Hamilton Jacobi equation~2.10! as
required. j

Lemma 2.3: Assume thatF t satisfies the no caustic condition for0<t<T(v) for a.e.v
P V. Let S(x,t) be defined as above and definef(x,t)5udet@]F t

21(x)/]x#u.0. Then for
0<t<T(v) for a.e.v P V and any xP Rn, f(x,t) satisfies the following stochastic continuity
equation:

df~x,t !1div H f~x,t !F ~¹S~x,t !2b~x,t !!dt2(
r51

m1

Ar~x,t !+dwt
1r G J 50. ~2.13!

Proof:We make repeated use of the rule for differentiating determinantsuAu with respect to
an external parameteru:
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duuAu5 (
a,b51

n
]uAu
]aab

duaab5 (
a,b51

n

Aa,bduaab , ~2.14!

whereuAu5(b51
n aabAab , Aab being a cofactor ofaab in uAu. As we consider the Stratonovich

type equation,~2.14! is still valid. Writing

f5 (
b51

n ]~F t
21~x!!a

]xb Xb
a ,

gives

df~x,t !5 (
a,b51

n

d
]~F t

21~x!!a

]xb Xb
a5 (

a,b51

n ]d~F t
21~x!!a

]xb Xb
a . ~2.15!

Now we consider the equationF t
a(F t

21(x))5xa and differentiate it with respect tot to give

¹bF t
a~F t

21~x!!dF t
21~x!b1dF t

a~F t
21~x!!50. ~2.16!

But differentiating it with respect toxa8 gives

¹bF t
a~F t

21~x!!
]F t

21~x!b

]xa8
5da8

a .

Hence we obtain from above

@¹bF t
a~F t

21~x!!#ab
215F ]F t

21~x!b

]x0
a G

ba

and so we deduce that

]~F t
21~x!!b8

]xa
¹bF t

a~F t
21~x!!5db

b8 ,

giving in ~2.16!

d~F t
21~x!!b852

]~F t
21~x!!b8

]xa dF t
a~F t

21~x!!. ~2.17!

Now it turns out from~2.15! that

df~x,t !5 (
a,b51

n
]

]xb @Xb
adF t

21~x!a#2 (
a,b51

n ]Xb
a

]xbdF t
21~x!a .

The second term on the right hand side is zero as we now demonstrate. We differentiate the
identity

db
kf5 (

a51

n

Xb
a

]F t
21~x!a

]xk
, b,k51,2,•••,n,

partially with respect toxb and then sum overb to deduce that
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]

]xk
f5 (

b51

n
]

]xb ~db
kf!5 (

a,b51

n

Xb
a

]2F t
21~x!a

]xb]xk
1 (

a,b51

n ]Xb
a

]xb

]F t
21~x!a

]xk
5 (

a,b51

n

Xb
a

]2F t
21~x!a

]xb]xk
.

Therefore for anyk51,2,•••,n,

(
a,b51

n ]Xb
a

]xb

]F t
21~x!a

]xk
50.

Multiplying above bydF t
k(F t

21(x)) and summing overk we have

2 (
a,b51

n ]Xb
a

]xbdF t
21~x!a50,

by using~2.17!. It turns out from~2.17! again that

df~x,t !5 (
a,b51

n
]

]xb @Xb
adF t

21~x!a#52 (
a,b,k51

n
]

]xb S ]~F t
21~x!!a

]xk
dF t

k~F t
21~x!!Xb

aD .
This gives by using equation~1.1! again and~2.11!

df~x,t !52 (
b,k51

n
]

]xb $db
kf~x,t !dF t

k~F t
21~x!!%

52 (
k51

n
]

]xk
$f~x,t !dF t

k~F t
21~x!!%

52 (
k51

n
]

]xk H f~x,t !Fvk~F t
21~x!!dt2(

r51

m1

Akr~x,t !+dwt
1r G J

52div H f~x,t !F ~¹S~x,t !2b~x,t !!dt2(
r51

m1

Ar~x,t !+dwt
1r G J .

Finally we arrive at the result

df~x,t !1div H f~x,t !F ~¹S~x,t !2b~x,t !!dt2(
r51

m1

Ar~x,t !+dwt
1r G J 50,

as required. j

III. STOCHASTIC SCHRÖDINGER EQUATIONS, PASSAGE FROM QUANTUM
MECHANICS IN RANDOM ELECTROMAGNETIC FIELDS TO STOCHASTIC CLASSICAL
MECHANICS

In this section we consider the Schro¨dinger equation~1.1! with dH defined by~1.2!. This
corresponds to situations when quantum particles are subject to random magnetic fields
(¹kbl2¹ lbk)dt1( r51

m1 (¹kAlr2¹ lAkr) + dwt
1r and random electric fields2¹Vdt2( r51

m2 ¹Kr

+ dwt
2r . Hereb,Ar (r51,2,•••,m1) andV,K

r (r51,2,•••,m2) andwt
(1) ,wt

(2) are the same as in
section I. The sort of noise in our model is white noise in time distributed locally about different
points in different directions ifAr P C0

`(R13Rn,Rn) andKr P C0
`(R13Rn). It is this case that

physicists are interested in. It could also be a useful model in defence applications.
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The following lemma is based on the stochastic Hamilton Jacobi equation and stochastic
continuity equations.

Lemma 3.1:Assume b,Ar (r51,2,•••,m1) and S0 ,V,K
r (r51,2,•••,m2) and wt

(1) ,wt
(2) as

above and the stochastic classical flowF t defined by (2.1) satisfies the no caustic condition for
0<t<T(v). For any f P C`(R13Rn) and for0<t<T(v) defineu t for a.e.v P V by

u t~x!5exp$ iS~x,t !/\%f1/2~x,t ! f t@F t
21~x!#, ~3.1!

where S(x,t) andf(x,t) are defined as above, thenuuu tuuL2(Rn)5uu f tuuL2(Rn) almost surely and for
0<t<T(v) and a.e.v P V,

du t~x!5F12f21~x,t !df~x,t !1 i\21dS~x,t !1 f t
21@F t

21~x!#d ft@F t
21~x!#Gu t~x!

2exp$ iS~x,t !/\%f1/2~x,t !¹xf t@F t
21~x!#•S ~¹xS~x,t !2b~x,t !!dt

2(
r51

m1

Ar~x,t !+dwt
1r D . ~3.2!

Howeveru t P D(dH) (the domain of the operator dH), and

idH

\
u t~2 !1du t~2 !52

1

2
i\exp$ iS~2,t !/\%D~f1/2~2,t ! f t~F t

212 !!dt

1exp$ iS~2,t !/\%f1/2~2,t !d ft~F t
212 !, ~3.3!

where the quantum mechanical Hamiltonian in white noise electromagnetic fields is given by

dH5S 12 $2\2D12i\b•¹1 i\~¹•b!1b2%1VDdt1 1

2(r51

m1

@2i\Ar
•¹1 i\~¹•Ar !

12~b•Ar !#+dwt
1r1(

r51

m2

Kr+dwt
2r ~3.4!

terms such as b•¹,¹•b,b2(5b•b) and Ar•¹,¹•Ar ,b•Ar being multiplication operators.
In particular for f t[T0 P C`(Rn) being independent of t, u t(x) is an approximate solution of

stochastic Schro¨dinger equation in the sense that almost surely

idH

\
u t~2 !1du t~2 !52

1

2
i\exp$ iS~2,t !/\%D~f1/2~2,t !T0~F t

212 !!dt,

with initial condition u0(x)5exp$iS0(x)/\%T0(x), for 0<t<T(v).
Proof: The claim uuu tuuL2(Rn)5uu f tuuL2(Rn) follows from changing variables in integral

*Rnuu t(x)u2dx from x→x05F t
21(x) and the definition off. To get formula~3.2!, firstly

du t~x!5F12f21~x,t !df~x,t !1 i\21dS~x,t !1 f t
21@F t

21~x!#d ft@F t
21~x!#Gu t~x!

1exp$ iS~x,t !/\%f1/2~x,t !Df t@F t
21~x!#•dF t

21~x!.
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We obtain~3.2! by applying formula~2.17! for dF t
21(x) proved in section II, equations~2.1! and

~2.9!.
For ~3.3!, we use the following operator identity:

Dxexp$ iS~x,t !/\%f1/2~x,t !25exp$ iS~x,t !/\%Dx~f1/2~x,t !2 !1 i\21exp$ iS~x,t !/\%f1/2~x,t !

3@f21~x,t !¹xS~x,t !•¹xf~x,t !1DxS~x,t !1 i\21u¹xS~x,t !u2

12¹xS~x,t !•¹x#2, ~3.5!

which is easy to prove and gives a rigorous identity when each side is applied to a suitable smooth
function such asf t(F t

21(x)). From above, using

dH5~ 1
2$2\2D12i\b•¹1 i\~¹•b!1b2%1V!dt1 1

2(
r51

m1

@2i\Ar
•¹1 i\~¹•Ar !

12~b•Ar !#+dwt
1r1(

r51

m2

Kr+dwt
2r ,

we obtain

idH

\
u t~x!1du t~x!52

1

2
i\exp$ iS~x,t !/\%D~f1/2~x,t ! f t@F t

21~x!# !dt

1
1

2
exp$ iS~x,t !/\%f1/2@f21~x,t !¹xS~x,t !•¹xf~x,t !1DxS~x,t !

1 i\21u¹xS~x,t !u212¹xS~x,t !•¹x# f t@F t
21~x!#dt2~b•¹!

3$exp$ iS~x,t !/\%f1/2~x,t ! f t@F t
21~x!#%dt1 i\21H i\2 div b~x,t !1V

1
b2

2
~x,t !J exp$ iS~x,t !/\%f1/2~x,t ! f t@F t

21~x!#dt2(
r51

m1

~Ar
•¹!

3$exp$ iS~x,t !/\%f1/2~x,t ! f t@F t
21~x!#%+dwt

1r1 i\21H (
r51

m1 S i\2 div Ar~x,t !

1~b~x,t !•Ar~x,t !!D +dwt
1r

1(
r51

m2

Kr~x,t !+dwt
2rJ exp$ iS~x,t !/\%f1/2~x,t ! f t@F t

21~x!#

1F12f21~x,t !df~x,t !1 i\21dS~x,t !1 f t
21@F t

21~x!#d ft@F t
21~x!#G

3exp$ iS~x,t !/\%f1/2~x,t ! f t@F t
21~x!#2exp$ iS~x,t !/\%f1/2¹xf t@F t

21~x!#

•S ~¹S~x,t !2b~x,t !!dt2(
r51

m1

Ar~x,t !+dwt
1r D ~3.6!

all differentiations¹ being with respect tox. Now we have

3189A. Truman and H. Z. Zhao: Quantum particles in random electromagnetic fields

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



~b~x,t !•¹!$exp$ iS~x,t !/\%f1/2~x,t ! f t@F t
21~x!#%dt

5exp$ iS~x,t !/\%f1/2~x,t !~b~x,t !•¹ f t@F t
21~x!# !dt1~b~x,t !•¹!

3$exp$ iS~x,t !/\%f1/2%~x,t ! f t@F t
21~x!#dt

and

~b•¹!$exp$ iS/\%f1/2%dt5F i\21~b•¹S!1
1

2
f21~b•¹f!Gexp$ iS/\%f1/2dt,

as well as

~Ar~x,t !•¹!$exp$ iS~x,t !/\%f1/2~x,t ! f t@F t
21~x!#%+dwt

1r

5exp$ iS~x,t !/\%f1/2~x,t !~Ar~x,t !•¹ f t@F t
21~x!# !+dwt

1r1~Ar~x,t !•¹!

3$exp$ iS~x,t !/\%f1/2%~x,t ! f t@F t
21~x!#+dwt

1r

and

~Ar
•¹!$exp$ iS/\%f1/2%+dwt

1r5F i\21~Ar
•¹S!1

1

2
f21~Ar

•¹f!Gexp$ iS/\%f1/2+dwt
1r .

Now we consider potentially difficult term in (i\21) in ~3.6!. This is easily computed to be

S 12u¹Su22b•¹S1V1
b2

2 Ddt2(
r51

m1

Ar
•~¹S2b!+dwt

1r1(
r51

m1

Kr+dwt
2r1dS

5S 12u¹S2bu21VDdt2(
r51

m1

Ar
•~¹S2b!+dwt

1r1(
r51

m2

Kr+dwt
1r1dS50 ~3.7!

from the stochastic Hamilton Jacobi equation.
Apart from the desired first term in~3.6!, the remaining terms in (i\)0 are

1

2
exp$ iS/\%f1/2f t~F t

21~x!!Ff21S ~¹S2b!dt2(
r51

m1

Ar+dwt
1r D •¹f1S ~DS2div b!dt

2(
r51

m1

div Ar+dwt
1r D 1f21df12 f t

21~F t
21~x!!d ft~F t

21~x!!G
5exp$ iS/\%f1/2d ft~F t

21~x!!, ~3.8!

sincef satisfies stochastic continuity equation~2.13!. Hence we have proved~3.3!. The rest of the
lemma follows immediately. j

In Lemma 3.1 we allowf to be a function of space and timet. The time dependence off
gives us an opportunity to push the approximate solution in the sense of Lemma 3.1 further, i.e.,
up to any order. The proof works by choosing the rightf t associated with each order and applying
~3.3! in Lemma 3.1 such that we have the right cancellations in the summation. We have the
following lemma.

Lemma 3.2: Assume all the conditions in Lemma 3.1 and the same dH. For any T0
P C`(Rn) being independent of t, define
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T0~2,t !5T0@2#, ~3.9!

and for j51,2,•••,m for certain integer m>0, a.e.v P V and0<t<T(v),

Tj~y,t !5E
0

t

~f2 1/2~2,s!D~f1/2~2,s!Tj21~Fs
212,s!!!Fs~y!ds, ~3.10!

and

u t
~m!~x!5exp$ iS~x,t !/\%f1/2~x,t !(

j50

m
1

2 j
Tj~F t

21~x!,t !~ i\! j . ~3.11!

Thenu t
(m) P D(dH) andu t

(m) is an approximate solution of the stochastic Schro¨dinger equation in
the sense that

idH

\
u t

~m!~2 !1du t
~m!~2 !52

1

2m11 ~ i\!m11exp$ iS~2,t !/\%D~f1/2~2,t !Tm~F t
212,t !!dt,

~3.12!

with initial conditionu0(x)5exp$iS0(x)/\%T0(x) for a.e.v P V and0<t<T(v).
Proof:Writing

gj~x,t !5
1

2 j
exp$ iS~x,t !/\%f1/2~x,t !Tj~F t

21~x!,t !

and applying formula~3.3! in Lemma 3.1 togj (x,t) where f t(2)5(1/2j ) Tj (2,t), we obtain

i

\
dHg0~x,t !1dg0~x,t !52

1

2
i\exp$ iS~x,t !/\%D~f1/2~x,t !T0~F t

21~x!,t !!dt,

and for j51,2,•••,m

i

\
dHgj~x,t !1dgj~x,t !52

1

2 j11 i\exp$ iS~x,t !/\%D~f1/2~x,t !Tj~F t
21~x!,t !!dt

1
1

2 j
exp$ iS~x,t !/\%D~f1/2~x,t !Tj21~F t

21~x!,t !!dt.

Therefore it follows obviously that

i

\
dHS (

j50

m

gj~x,t !~ i\! j D 1dS (
j50

m

gj~x,t !~ i\! j D
52 i\(

j50

m
1

2 j11 exp$ iS~x,t !/\%D~f1/2~x,t !Tj~F t
21~x!,t !!~ i\! jdt

1(
j51

m
1

2 j
exp$ iS~x,t !/\%D~f1/2~x,t !Tj21~F t

21~x!,t !!~ i\! jdt

52(
j50

m
1

2 j11 exp$ iS~x,t !/\%D~f1/2~x,t !Tj~F t
21~x!,t !!~ i\! j11dt
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1(
j51

m
1

2 j
exp$ iS~x,t !/\%D~f1/2~x,t !Tj21~F t

21~x!,t !!~ i\! jdt

52
1

2m11 ~ i\!m11exp$ iS~x,t !/\%D~f1/2~x,t !Tm~F t
21~x!,t !!dt.

Therefore we have~3.12! asu t
(m)(x)5( j50

m gj (x,t)( i\)
j . j

Lemma 3.2 does not give us the approximate solution properly. In the following theorem we
are going to pass the approximation in Lemma 3.2 to an approximation inL2(Rn) a.s.

Theorem 3.3: Assume there exists a unique solution ofc\(x,t)5exp$2i*0
t dH/\%c0

\(x) in
L2(Rn,dn), where

dH5~ 1
2$2\2D12i\b•¹1 i\~¹•b!1b2%1V!dt

1 1
2(
r51

m1

@2i\Ar
•¹1 i\~¹•Ar !12~b•Ar !#+dwt

1r1(
r51

m2

Kr+dwt
2r ,

with At
r(r 5 1,2, • • • ,m1),b P C0

`(Rn,Rn) for any t>0, and c0
\(x)5exp$iS0(x)/\%T0(x), T0

P C0
`(Rn), S0 ,T0 being independent of\. Assume the stochastic flowFs :R

n→Rn defined by
(2.1) satisfies the no caustic condition for0<s<T(v) for a.e. v P V. Then for each t
P @0,T(v)), as\→0

exp$2 iS~x,t !/\%c\~x,t !→f1/2~x,t !T0~F t
21~x!! ~3.13!

in L2(Rn) uniformly in t almost surely, if D(f1/2(2,t)T0(F t
21(2))PL2(Rn) and

*0
t uuD(f1/2(2,s)T0(Fs

21(2))uuL2(Rn)ds,` almost surely. Here S(x,t) is defined by (2.2) and
(2.8) and F t

21(x) is the inverse of the stochastic flowF t :R
n→Rn and

f(x,t)5udet(]F t
21(x)/]x) u.

Furthermore, define

T0~2,t !5T0@2#,

and for j51,2,•••,m for certain integer m>0 and0<t<T(v)

Tj~2,t !5E
0

t

~f21/2~2,s!D~f1/2~2,s!Tj21~Fs
212,s!!!F~y!ds.

Then for a.e.v P V and0<t<T(v),

c t
\~x!5exp$ iS~x,t !/\%Ff1/2~x,t !(

j50

m
1

2 j
Tj~F t

21~x!,t !~ i\! j1Rm~x,t !~ i\!m11G , ~3.14!

and

uuRm~2,t !uuL2~Rn!<
1

2m11E
0

t

uuD~f1/2~2,s!Tm~Fs
212,s!!uuL2~Rn!ds, ~3.15!

if D(f1/2(2,s)Tm(Fs
21(2),s))PL2(Rn) for 0<s<t and

*0
t uuD(f1/2(2,s)Tm(Fs

21(2),s))uuL2(Rn)ds,` almost surely.
Proof: For the semi-classical expansion~3.14! and estimate~3.15! first note
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idH

\
~u t

~m!2c t!1d~u t
~m!2c t!52

1

2m11 ~ i\!m11exp$ iS~2,t !/\%D~f1/2~2,t !Tm~F t
212,t !!dt,

from Lemma 3.2. Therefore by the definition ofL2(Rn) norm

d~u t
~m!2c t ,u t

~m!2c t!L2~Rn!5dS E
Rn

~u t
~m!2c t!~ ū t

~m!2c̄ t!dxD
5E

Rn
~~d~u t

~m!2c t!!~ ū t
~m!2c̄ t!1~u t

~m!2c t!d~ ū t
~m!2c̄ t!!dx

5E
Rn

i

\
2~ ū t

~m!2c̄ t!dH~u t
~m!2c t!1~u t

~m!2c t!dH~ ū t
~m!2c̄ t!)

2
1

2m11 ~ i\!m11E
Rn
exp$ iS~x,t !/\%D~f1/2~x,t !Tm~F t

21~x!,t !!

3~ ū t
~m!2c̄ t!dxdt2

1

2m11 ~2 i\!m11E
Rn
exp$2 iS~x,t !/\%

3D~f1/2~x,t !Tm~F t
21~x!,t !!~u t

~m!2c t!dxdt.

Here by ū,c̄ we denote the complex conjugate of functionsu andc and bydH we denote the
complex conjugate of operatordH. But

E
Rn

~2~ ū t
~m!2c̄ t!dH~u t

~m!2c t!1~u t
~m!2c t!dH~ ū t

~m!2c̄ t!!

5E
Rn

1

2
$\2~~ ū t

~m!2c̄ t!D~u t
~m!2c t!2~u t

~m!2c t!D~ū t
~m!2c̄ t!!%dxdt

1E
Rn
i\S bdt1(

r51

m1

Ar+dwt
1r D ~2~ ū t

~m!2c̄ t!¹~u t
~m!2c t!2~u t

~m!2c t!¹~ū t
~m!2c̄ t!!dx

1E
Rn
i\S div bdt1(

r51

m1

div Ar+dwt
1r D ~2~u t

~m!2c t!~ ū t
~m!2c̄ t!!dx

5
1

2
\2E

Rn
div ~~ ū t

~m!2c̄ t!¹~u t
~m!2c t!2~u t

~m!2c t!¹~ū t
~m!2c̄ t!!dxdt

2 i\E
Rn
div S S bdt1(

j51

m1

Ar+dwt
1r D ~~u t

~m!2c t!~ ū t
~m!2c̄ t!!D dx50,

by the Divergence Theorem.
Now by the Cauchy–Schwarz inequality we have
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d~u t
~m!2c t ,u t

~m!2c t!L2~Rn!52
1

2mERnD~f1/2~x,t !Tm~F t
21~x!,t !!Re$~ i\!m11exp$ iS~x,t !/\%

3~ ū t
~m!2c̄ t!%dxdt

<
1

2m
uuD~f1/2~2,t !Tm~F t

21~x!,t !!uuL2~Rn!

3uuRe$~ i\!m11exp$ iS~x,t !/\%~ ū t
~m!2c̄ t!%uuL2~Rn!dt

<
1

2m
\m11uuu t

~m!2c tuuL2~Rn!

3uuD~f1/2~x,t !Tm~F t
21~x!,t !!uuL2~Rn!dt.

Therefore solving the ordinary differential equation we have

uuu t
~m!2c tuuL2~Rn!<

1

2m11\m11E
0

t

uuD~f1/2~2,s!Tm~Fs
21~2 !,s!!uuL2~Rn!ds.

Note the unitary property of the operator exp$2iS(x,t)/\%, therefore

uuexp$2 iS~x,t !/\%~u t
~m!2c t!uuL2~Rn!<

1

2m11\m11E
0

t

uuD~f1/2~2,s!Tm~Fs
21~2 !,s!!uuL2~Rn!ds.

This leads to the semi-classical expansion~3.14! and estimate~3.15!. Claim ~3.13! is only a
special case of the result proved above. j

Now let A be any measurable subset of the configuration spaceRn and P̃\(A,t) be the
quantum probability that the quantum mechanical particle is inA at time t. Rewrite ~3.14! in
Theorem 3.3 to give

c t
\~x!5exp$ iS~x,t !/\%Ff1/2~x,t !S (

j50

r1 ~21! j

22 j
T2 j~F t

21~x!,t !\2 j

1 i(
j50

r2 ~21! j

22 j11 T2 j11~F t
21~x!,t !\2 j11D 1Rm~x,t !~ i\!m11G . ~3.16!

Here the integersr 1 and r 2 are defined by:r 15max$r:2r<m% and r 25max$r:2r11<m%.
According to Born’s probabilistic interpretation:

P̃\~A,t !5E
A
uc\~x,t !u2dx.

We now have an asymptotic expansion ofP̃\(A,t) as follows:

P̃\~A,t !5(
j50

m

P2 j\
2 j1E

A
uRm~x,t !u2dx\2~m11!. ~3.17!

Here*AuRm(x,t)u2dx is bounded andP2 j ( j50,1,•••) are given below:

P0~A,t !5E
F t

21A
T0
2~y,t !dy,
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P2~A,t !5E
F t

21A
S 122T12~y,t !2

1

2
T0~y,t !T2~y,t ! Ddy,

P4~A,t !5E
F t

21A
S 124T22~y,t !1

1

23
T0~y,t !T4~y,t !2

1

23
T1~y,t !T3~y,t ! Ddy.

In the limit as\→0 we have

lim
\→0

P̃\~A,t !5P05E
F t

21A
uc0~y!u2dy5 P̃~F t

21A,0!,

F t being the classical Hamiltonian flow associated with the stochastic system~2.1!. Hence, in the
limit as \→0, the quantum mechanical system in the configuration spaceRn, as determined by

idH

\
c t1dc t50

in random electromagnetic fields can quantum mechanically arrive at only these points which are
accessible to the corresponding stochastic classical system. In this sense, stochastic quantum
mechanics tends to stochastic classical mechanics onRn as \ tends to zero. This is a simple
consequence of the result in this paper.

Moreover,\2T1 is the integral along the classical sample path of the Bohm’s first quantum
potential~see Holland22!. This quantity has the dimensions of action i.e. the dimensions of\. The
first term in \2P2 is the ratio of (\2T1)

2 to \2. By the same token,\4T2T0 will have the
dimensions of (action)2 i.e. yet again of\2, and the ratio of this quantity to\2 is what appears in
\2P2 . We therefore see that the correction to the quantum probability for finding the particle in
A at the timet are significant only when these ratios are nonnegligible.

WhenA5 Rn, we can proveP2(R
n,t) 5 P4(R

n,t) 5 ••• 5 P2m(R
n,t) 5 0 by using the defini-

tion of P2 j andTj . Therefore we haveP̄\(Rn,t) 5 P0(R
n,t) 5 P̄\(Rn,0). This shows that the

semiclassical expansion gives a normalized solution of stochastic Schro¨dinger equations. Detailed
proofs of this and related results will be published in the future.

It is also interesting to note that in a classical inaccessible regionA, P0(A,t) 5 0. Therefore
T0(2) 5 0 almost everywhere inF t

21A. It turns out that14\
2*F

t
21T1

2(y,t)dy gives us~if the

higher order terms are negligible! the probability of finding a quantum mechanical particle in the
classical inaccessible regionA.

The results in this paper also give the quantization of the stochastic Hamiltonian mechanics
studied in Albeverio,23 Albeverio, Hilbert and Zehnder,24 and by McKean,25 Markus and
Weerasinghe.26

IV. NO CAUSTIC CONDITION

We end this paper by discussing the no-caustic condition. As we have pointed out in section
II, the diffeomorphism property of the~stochastic! Hamiltonian system in configuration space is
different from that for first order~stochastic! differential equations. The latter equations have been
discussed by many people, in particular by Kunita21 and Elworthy10 for stochastic differential
equations. The Lipschitz condition guarantees the stochastic flow property up to explosion time for
first order stochastic differential equations. Unfortunately this is not true for the~stochastic!
Hamiltonian system in configuration space. The simplest example is the harmonic oscillator stud-
ied in Elworthy, Truman and Zhao:12 F̈s52Fs ,F0(x)5x,Ḟ0(x)5x. The solution is given by
Fs(x)5xcoss1xsins. At s5 3

4p, Fs(x)50, for anyx P R1. That is to sayF (3/4)p is not a diffeo-
morphism and the caustic time iss5 3

4p. Therefore a diffeomorphism theorem for~stochastic!
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Hamiltonian system in configuration space is needed as clearly caustics are a common feature. In
fact we have showed in Truman and Zhao15 that it is caustics which lead to the random shock
waves for inviscid stochastic Burgers’ equations. Here we include a simple theorem guaranteeing
the absence of caustics.

Theorem 4.1:Assume At
r ,bt , (]/]t) bt P C0

`(Rn,Rn), Vt ,Kt
r ,S0 P C0

`(Rn). Then there exists
T(v).0 a.s. such thatF t(v):R

n→Rn defined by (2.1), is a diffeomorphism for0<s<T(v) for
a.e.v P V.

Proof: Integrating second equation of~2.1! we have

v t
k5¹kS0~x!2bk~x,0!1Zt

k1E
0

t

~¹kbl~Fs ,s!2¹ lbk~Fs ,s!!vs
l ds

1E
0

t

(
r51

m1

¹kAlr ~Fs ,s!vs
l +dws

1r ,

where

Zt
k52E

0

tS ¹kV~Fs ,s!ds2(
r51

m2

¹kKr~Fs ,s!dws
2r2

]

]s
bk~Fs ,s!dsD 2E

0

t

~¹kbl~Fs ,s!

2¹ lbk~Fs ,s!!(
r51

m1

Alr ~Fs ,s!+dws
1r .

For anyT*.0, Zt
k (k51,2,•••,n) is bounded almost surely for any 0<t<T* . Thereforev t

k

(k51,2,•••,n) is bounded almost surely for any 0<t<T* . Differentiating~2.1! with respect to
space variablex, we know (¹ jFs

k ,¹ jvs
k) satisfies stochastic ordinary differential linear equations

with ¹ jF0
k(x)5d j

k ,¹ jv0
k(x)5¹ j (¹

kS0(x)2bk(x,0)). Therefore for 0<t<T* , (¹ jFs
k ,¹ jvs

k) are
bounded almost surely. Therefore there existsT(v).0 a.s. such that for 0<t<T(v) the matrix
normuu*0

t ¹vsds2( r51
m1 *0

t (¹Fs)*¹Ar(Fs ,s) + dws
1r uu,1 a.s. But

¹Fs5I1E
0

t

¹vsds2(
r51

m1 E
0

t

~¹Fs!*¹Ar~Fs ,s!+dws
1r .

By the similar argument to the one in Elworthy and Truman7 we know for 0<t<T(v), F t(v) is
nonsingular a.s. The diffeomorphism follows from the global inverse theorem.~See Ref. 7 for
example!. j
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Conditional symmetry and spectrum of the
one-dimensional Schro ¨dinger equation

R. Z. Zhdanova)
Arnold-Sommerfeld Institute for Mathematical Physics,
Leibnitzstrasse 10, 38678 Clausthal-Zellerfeld, Germany

~Received 13 December 1995; accepted for publication 8 January 1996!

We develop an algebraic approach to studying the spectral properties of the sta-
tionary Schro¨dinger equation in one dimension based on its high-order conditional
symmetries. This approach makes it possible to obtain in explicit form representa-
tions of the Schro¨dinger operator byn3n matrices for anynPN and, thus, to
reduce a spectral problem to a purely algebraic one of finding eigenvalues of
constantn3n matrices. The connection to so-called quasiexactly solvable models
is discussed. It is established, in particular, that the case, when conditional symme-
tries reduce to high-order Lie symmetries, corresponds to exactly solvable Schro¨-
dinger equations. A symmetry classification of Schro¨dinger equation admitting
nontrivial high-order Lie symmetries is carried out, which yields a hierarchy of
exactly solvable Schro¨dinger equations. Exact solutions of these are constructed in
explicit form. Possible applications of the technique developed to multidimensional
linear and one-dimensional nonlinear Schro¨dinger equations are briefly discussed.
© 1996 American Institute of Physics.@S0022-2488~96!01807-5#

I. INTRODUCTION

Basic motivation for introducing conditional symmetries~the term ‘‘conditional symmetry’’
was suggested for the first time by Fushchych1–3!, was a necessity to find a symmetry background
of a quickly growing variety of exact solutions of nonlinear partial differential equations that could
not be obtained within the framework of the classical Lie approach. An intensive search of such
solutions was begun independently and almost simultaneously by Fushchych with collaborators
~see, Refs. 4,5 and references therein!, Clarkson and Kruskal~‘‘the direct reduction method’’6!,
Olver and Rosenau~‘‘nonclassical reduction’’7! and Winternitz and Levi.8 A number of examples
of nonlinear partial differential equations in two, three, and even four dimensions having non-
trivial conditional symmetries is growing rapidly. In particular, it has been established by Fush-
chych, Zhdanov, and Revenko9–13 that such fundamental equations of the modern quantum field
theory as the four-dimensional nonlinear d’Alembert, Dirac, Levi–Leblond, Maxwell, and Yang-
Mills equations possessinfinite conditional symmetries, while their Lie symmetries are finite only.

On the other hand, much less attention is devoted to the study of conditional symmetries of
linear differential equations~though the first example of conditional symmetry has been obtained
by Bluman and Cole for the one-dimensional linear heat equation14!. In view of the role played by
conditional symmetries in the theory of nonlinear differential equations, one can expect that
application of these to linear equations will also be rich in results. In the present paper we establish
the rather unexpected~at least for the author! fact that conditional symmetries can be effectively
applied to study spectral properties of the stationary Schro¨dinger equation,

cxx5„e1V~x!…c. ~1!

In particular, we will prove that it is conditional symmetry that is responsible for a phenom-

a!On leave from the Institute of Mathematics of the Academy of Sciences of Ukraine, Tereshchenkivska Str.3, 252004
Kiev, Ukraine. Electronic mail: asrz@pt.tu-clausthal.de
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enon of so-called ‘‘quasiexact solvability’’ of some specific class of equations~1!.15–17And what
is more, the case when conditional symmetries are equivalent to Lie symmetries will be shown to
yield exactly solvable Schro¨dinger equations.

All principal approaches to a construction of~quasi!exactly solvable models~apart from the
specific ways of an implementation of these! are based on a possibility to construct a basisu1(x),
u2(x),...,un(x) of some invariant spaceV n of the Schro¨dinger operatorS5]x

22V(x). This
means that there should exist constantn3n matrix iLjki such that the following conditions are
fulfilled:

Suj~x![„]x
22V~x!…uj~x!5 (

k51

n

L jkuk~x!, j51,2,...,n. ~2!

Given such functionsuj (x), a procedure for calculating the spectrum of the Schro¨dinger
operator ~or, more precisely, a part of the spectrum! is completely algebraic. Let
aj5(a1

j ,a2
j ,...,an

j ), j51,...,m,m<n be a complete system of eigenvectors of then3n matrix
L5iL jki j ,k51

n andl1,...,lm be their eigenvalues, namely

(
j51

n

L jkaj
l5l lak

l , l51,2,...,m. ~3!

Then, the function

ck~x!5(
j51

n

aj
kuj~x! ~4!

is easily seen to satisfy the equation~1! with e5lk under arbitraryk51,2,...,m.
Saying it another way, after being restricted to a linear spaceV n with basis functions

u1(x),u2(x),...,un(x) the Schro¨dinger operator becomes a matrix operator. Thus, a reduction of a
differential operator to a matrix operator takes place. But such a procedure is quite a common
routine in the theory of Lie symmetries of differential equations. Indeed, if we restrict a partial
differential equation havingN independent variables to a subset of its solutions invariant under a
one-parameter subgroup of the Lie group admitted by the equation in question, then it is reduced
to a partial differential equation withN21 independent variables. Such a procedure is called
symmetry reduction of differential equations~for more details, see, e.g., Refs. 4, 18, and 19!.
Taking N51 ~the case of an ordinary differential equation! we obtain as a reduced equation a
differential equation withN50, i.e. an algebraic equation!

One of the main aims of the present paper is to show that the idea of symmetry reduction,
when formulated in an appropriate way, can be applied effectively to an algebraization of the
problem of describing spectrum of the Schro¨dinger operator.

As mentioned above classical Lie symmetries of partial differential equation do not give all
possible reductions. More general symmetries responsible for a possibility of reducing the order of
differential equations are conditional symmetries. Roughly speaking, the necessary and sufficient
condition providing a possibility to reduce a number of variables in a given partial differential
equation is a requirement of conditional invariance~Ref. 20!. It will be established that a similar
situation takes place for the Schro¨dinger equation~1!. Symmetries providing reducibility of dif-
ferential equation~1! to a system of algebraic equations of the form~2! are exactly the high-order
conditional symmetries introduced independently by Zhdanov and Fushchych21,22 and Fokas and
Liu23 ~also see Refs. 24–26!.

It should be emphasized that considerations of the present paper are purelyalgebraic. The
method of conditional symmetries making it possible to study spectral properties of the Schro¨-
dinger operatorS gives no information about analytical properties of the corresponding eigenfunc-
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tions. In each specific case such properties of the eigenfunctions obtained as square integrability,
asymptotic behavior, singularities, etc. should be studied independently~see, e.g., Ref. 27!. The
reason is that this method~and group-theoretical, symmetry methods in general! exploits algebraic
properties of the solution set of Eq.~1! ~or its part! as a whole and, roughly speaking, is indepen-
dent of analytical properties of specific solutions.

II. CONDITIONAL SYMMETRY OF THE SCHRÖDINGER EQUATION

Consider thenth-order differential operator,

Q5(
j50

n

qj~x!]x
j , ~5!

where]x
051, ]x

j115(d/dx)]x
j , and functionsqj (x) are supposed to be independent ofe.

Following Refs. 28 and 29 we say that Eq.~1! is conditionally invariant with respect to the
operatorQ if the following operator identity holds:

@Q,]x
22„e1V~x!…#5RQ1P„]x

22~e1V~x!…. ~6!

Here [Q1 ,Q2][Q1Q22Q2Q1 , R, P are some first- andnth-order differential operators,
correspondingly. The above operator equality should be understood in the following way: the
differential operators on the left- and right-hand sides give the same result when acting on arbi-
trary ~n12!-times continuously differentiable functionf (x).

ProvidedR vanishes, condition~6! is nothing else but a criterion for Eq.~1! to be invariant
with respect to the operatorQ. In such a case, the operatorQ is a generalized~high-order! Lie
symmetry operator. But given a conditionRÞ0, the operatorQ corresponds to high-order condi-
tional symmetry of the Schro¨dinger equation~1!.

It is easy to see that if an equation is conditionally invariant with respect to the operatorQ,
then it is conditionally invariant with respect to the operatorq(x)Q with an arbitrary sufficiently
smooth functionq(x). Consequently, without loss of generality we can suppose that in~5!
qn(x)51 and consider differential operators of the form

Q5]x
n1 (

j50

n21

qj~x!]x
j . ~7!

As the coefficients of the operatorQ do not depend one, equality ~6! is only possible if
R5r (x) andP50 with some sufficiently smooth functionr (x). Consequently, the condition~6! is
rewritten to become

@Q,]x
22V~x!#5r ~x!Q. ~8!

We call the Schro¨dinger operatorreducible if there exist linearly independent functions
u1(x),...,un(x) and constantsLjk such that the conditions~2! are fulfilled. Let us note that this
terminology is justified both from the point of view of the classical representation theory and of
the symmetry analysis of differential equations. Indeed, conditions~2! mean that the representa-
tion space of the operatorS contains an invariant subspace and, consequently, the representation
is reducible. On the other hand, conditions~2! ensure the reduction of the differential equation~1!
to a system of algebraic equations. We will prove an assertion that shows that this is not a simple
coincidence but a fundamental fact having a natural symmetry interpretation.

Theorem 1:The Schro¨dinger operator S5]x
22V(x) is reducible if and only if there exists an

nth-order differential operator Q of the form (5) such that Eq. (1) is conditionally invariant with
respect to Q.
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Proof: The necessity.Let the operatorS5]x
22V(x) be reducible. Then, the conditions~2!

hold. As functionsuj (x) are linearly independent, they form a fundamental system of solutions of
somenth-order linear ordinary differential equation.30

We recall that the fundamental system of solutions of an ordinary differential equation is a
maximal set of its particular solutions such that any smooth solution can be represented as a linear
combination of these. Provided the order of the ordinary differential equation in question is equal
to n, anyn linearly independent solutions of it form a fundamental system. Furthermore, having
a fundamental system of solutions we can reconstruct the corresponding ordinary differential
equation within a multiplication by a functionr (x). Consequently, if we fix the coefficient of the
nth-order derivative to be equal to 1, then this equation is unique.

Thus, there exists thenth-order differential equation,

u~n!~x!1 (
j50

n21

q̃ j~x!u~ j !~x!50, ~9!

such that the functionsuj (x) form a fundamental system of its solutions.
We will prove that Eq.~1! is conditionally invariant with respect to the operator

Q̃5]x
n1 (

j50

n21

q̃ j~x!]x
j .

By force of relations~2! the following equalities hold:

@Q̃,]x
22V~x!#uj~x!5Q̃$„]x

22V~x!…uj~x!%2„]x
22V~x!…$Q̃uj~x!%5Q̃H (

k51

n

L jkuk~x!J 50,

for any j51,2,...,n.
Thus, the functionsuj (x) satisfy an ordinary differential equation,

@Q̃,]x
22„e1V~x!…#u~x!50, ~10!

whose order is easily established to be equal ton. Consequently, its fundamental system of
solutions consists ofn functions. Hence, we conclude that the functionsuj (x) form a fundamental
system of solutions of~10!. As an ordinary differential equation is determined by its fundamental
system uniquely within a multiplication by a functionr (x), the relation holds,

@Q̃,]x
22„e1V~x!…#5r ~x!Q̃,

which is the same as what was to be proved.
The sufficiency.Let the Schro¨dinger equation~1! be conditionally invariant with respect to the

operator~7!, which means that the condition~8! is fulfilled. Consider an equation,

Qu~x![S ]x
n1 (

j50

n21

qj~x!]x
j D u~x!50, ~11!

as an ordinary differential equation for a functionu(x). Clearly, its general solution is represented
in the form

u~x!5(
j51

n

Cjuj~x!, ~12!
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whereCj are arbitrary constants andu1(x),...,un(x) is a fundamental system of solutions of
nth-order ordinary differential equation~11!.

From the condition~8! it follows that the Schro¨dinger operatorS5]x
22V(x) is a symmetry

operator for the equation~11!, i.e., it transforms each solution of Eq.~11! into another solution of
the same equation. Consequently, for anyj51,2,...,n the functionũ j (x)5„]x

22V(x)…uj (x) sat-
isfy ~11!. But by definition the fundamental system of solutions ofnth-order ordinary differential
equation forms a maximal set of its linearly independent solutions, which means that any solution
can be represented as a linear combination of functionsuj (x). Thus, there exist such constantsLjk

that functionsuj (x) satisfy relations~2!, whence it follows that the corresponding Schro¨dinger
equation is reducible. The theorem is proved.

Note that the proof of theorem is, in fact, independent of the specific form of the Schro¨dinger
operatorS5]x

22V(x). It is straightforward to generalize Theorem 1 to the case of an arbitrary
Nth-order differential operator,

S̃5(
j50

N

f j~x!]x
j . ~13!

We give the corresponding assertion without proof.
Theorem 2: The operator S̃in (13) is reducible if and only if there exists nth-order differ-

ential operator Q of the form (5) such that equation S˜c(x)50 is conditionally invariant with
respect to Q.

To illustrate the above statement we consider two examples.
Example 1:Consider the harmonic oscillator Schro¨dinger equation,

cxx5~e1x2!c. ~14!

As a direct check shows thenth-order differential operator,

Q5~]x2x!n, ~15!

satisfies the following commutation relation:

@Q,]x
22~e1x2!#52nQ

~the easiest way to prove the above formula is to use the mathematical induction method!.
Consequently, Eq.~14! is conditionally invariant with respect to the operatorQ and we can

apply Theorem 1. Integrating equationQc(x)50 yields a basis of the invariant spaceV n of the
Schrödinger operator]x

22x2,

e2x2/2, xe2x2/2, x2e2x2/2,...,xn21e2x2/2.

It is readily seen that the above functions satisfy relations~2! with V(x)5x2. Calculating
eigenvalues~lj ! and eigenvectors (aW j ) of the corresponding matrixiLjki, we obtain exact solu-
tions of the Schro¨dinger equation~14! with e5l1,...,lm in the form ~4!.

Example 2:Let us generalize the previous example as follows. We are looking for the Schro¨-
dinger equations~1! conditionally invariant with respect to thenth-order operator, which can be
represented as a power of the first-order differential operator, i.e.

Q5„a~x!]x1b~x!…n11. ~16!

By an appropriate transformation of the dependent and independent variables,
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z5F~x!, w~z!5expS 2E G~x!dxDc~x!,

we can transform the operatorQ as follows:

Q̃5]z
n11.

After rewriting the initial Schro¨dinger equation in the new variablesz,w(z) we get

f ~z!wzz1g~z!wz1„h~z!2e…w50,

where

f ~z!5„F8~x!…2, g~z!5F9~x!12F8~x!G~x!,

h~z!52V~x!1G8~x!1G2~x!.

Commutation relations~8! now read as

@]z
n11, f ~z!]z

21g~z!]z1h~z!2e#5r ~z!]z
n11. ~17!

Computing the commutator on the left-hand side~which is a simple exercise in differential
calculus! and equating coefficients of the linearly independent operators]z

j we conclude that the
equation~17! is consistent if and only if the functionsf ,g,h are polynomials inz of the following
form:

h~z!5A02n„B21~n21!C3…z1C4~n21!nz2,

g~z!5B01B1z1B2z
212C4~12n!z3,

f ~z!5C01C1z1C2z
21C3z

31C4z
4,

whereA0 ,B0 ,B1 ,...,C4 are arbitrary constants.
Returning back to the initial variablesx,u(x) we get the necessary and sufficient conditions

for the Schro¨dinger equation~1! to be conditionally invariant with respect to an operator belonging
to the class~16!,

2V1G81G25A02n„B21~n21!C3…F1C4~n21!nF2,

F912F8G5B01B1F1B2F
212C4~12n!F3,

~F8!25C01C1F1C2F
21C3F

31C4F
4,

whence we derive the form of the potentialV(x),

V~x!5
v01v1v1v2v

21v3v
31v4v

4

16~C01C1v1C2v
21C3v

31C4v
4!
, ~18!

v054B0
2216A0C018B1C028B0C113C1

228C0C2 ,

v158B0B1116B2C0~n11!216A0C1216B0C214C1C2116B2C0n18C0C3~2n
222n23!,
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v254B1
218B0B218B2C1~2n11!216A0C228B1C214C2

2224B0C312C1C3~8n
228n23!

216C0C4n~n12!,

v358B1B2216A0C3216B1C3216B0C4~n11!116B2C2n216B0C4n28C1C4~2n
212n21!

14C2C3~4n
224n11!,

v454B2
218B2C3~2n21!216A0C428B1C4~2n11!1C3

2~16n2216n13!18C2C4~122n2!,

and of the functionG(x),

G~x!5
2B02C112~B12C2!v1~2B223C3!v

224C4nv3

4AC01C1v1C2v
21C3v

31C4v
4

.

In the above formulas,v(x) is an elliptic function determined by the quadrature

Ev~x! dt

AC01C1t1C2t
21C3t

31C4t
4

5x.

Furthermore, exact solutions of the Schro¨dinger equation with the potential~18! read as

c~x!5expS E G~x!dxD (
j50

n

ajv~x! j ,

wherea5(a0 ,a1 ,...,an) is an eigenvector of some (n11)3(n11) constant matrix whose en-
tries are linear combinations of the parametersA0 ,B0 ,B1,...,C4 ~we omit the corresponding
formulas!.

Thus, we arrived at the nine-parameter family of quasiexactly solvable Schro¨dinger equations
obtained by Turbiner and Shifman within the framework of their Lie algebraic approach15,16 and
by Ushveridze by means of a more general analytic approach. A detailed account of properties of
the Schro¨dinger equation with potentials~18! can be found in the monograph.17 We restrict
ourselves to noting that if we choose in the above formulasB25C35C450, then the potential
V(x) does not depend onn ~the order of the operatorQ! and, consequently, the corresponding
Schrödinger equation is exactly solvable. Thus, the well-known six-parameter family of exactly
solvable Schro¨dinger equations is obtained. In particular, choosingC15C25C35C450, C051
yields the harmonic oscillator Schro¨dinger equation~14!.

Now let us pass from particular examples to the general case in order to examine which
constraints are imposed on the coefficients of the operator~7! by the requirement of conditional
invariance~8!. In order to compute the commutator on the left-hand side of~8! we use the
following identity:

@]x
k , f ~x!#5 (

j50

k21

Ck
j f ~k2 j !~x!]x

j , kPN, ~19!

whereCk
j 5k! „j !(k2 j )! …21 are binomial coefficients, which is established by the mathematical

induction method with the help of the evident identity,

@]x
k11, f ~x!#[]x@]x

k , f ~x!#1 f 8~x!]x
k .

Taking into account formula~19! we rewrite relation~8! as follows:

3204 R. Z. Zhdanov: Conditional symmetry of the Schrödinger equation

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



2 (
j50

n21

Cn
j V~n2 j !]x

j 2 (
i51

n21

(
j50

i21

qiCi
jV~ i2 j !]x

j 2 (
j50

n21

~2qj8]x1qj9!]x
j

5r ~x!S ]x
n1 (

j50

n21

qj]x
j D .

Comparing the coefficients of]x
n on the left- and right-hand sides of the above equation we

conclude thatr (x) 5 22qn218 . Comparing the coefficients of the linearly independent operators
]x ,]x

2 ,...,]x
n21, we arrive at the following system of nonlinear ordinary differential equations for

the functionsq0(x),q1(x),...,qn21(x),V(x):

2qj218 1qj91Cn
j V~n2 j !1 (

i5 j11

n21

qiCi
jV~ i2 j !22qn218 qj50, ~20!

where j50,1,...,n21 and by conventionq215
def
0, qn5

def
1.

Thus, we haven equations forn11 functions, which means that the system~20! is underde-
termined. As an immediate consequence of this fact we conclude thatanySchrödinger equation
~1! is reducible. Indeed, fixing in an arbitrary way a functionV5V(x) yields a second-order
system ofn ordinary differential equations forn functionsq0(x),q1(x),...,qn21(x). Each solution
of such a system gives rise to an operatorQ satisfying by construction condition~8!. Conse-
quently, the conditions of Theorem 1 can be fulfilled with any choice of the potentialV(x).

Let us demonstrate how the results obtained can be used to study the spectral properties of the
Schrödinger equation. Remarkably, to this end we do not need an explicit form of solution of the
system of nonlinear ordinary differential equations~20!. It suffices to know initial values of the
functionsqj (x) and of their first derivativesqj8(x) at some pointx5x0PR. We denote these as
follows:

qj~x0!5Aj11 , qj8~x0!5Bj11 , j50,1,...,n21. ~21!

All the information about spectral properties of the Schro¨dinger operator restricted to an
invariant spaceV n with basis elementsu1(x),u2(x),...,un(x) is contained in the matrixiLjki,
which determines a transformation law~2! for the functionsuj (x) with respect to the action of the
Schrödinger operatorS.

LetQ be a differential operator of the ordern satisfying condition~8! with some choice of the
functionV(x). Then, by force of Theorem 1, an invariant spaceV n of the corresponding Schro¨-
dinger operatorS is spanned by the fundamental system of solutions of thenth-order ordinary
differential equation,

u~n!~x!1 (
j50

n21

qj~x!u~ j !~x!50. ~22!

We denote this system as$u1(x),u2(x),...,un(x)%. As anyn linearly independent solutions of
Eq. ~22! form a fundamental system of solutions, there is a freedom in the choice of the functions
uj (x). We fix these by imposing initial conditions.

Let iL jki be a constant nonsingularn3n matrix. Consider the followingn Cauchy problems:
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uk
~n!~x!1 (

j50

n21

qj~x!uk
~ j !~x!50, k51,...,n,

~23!
uk

~ j21!~x0!5Lk j , k, j51,...,n.

It is well known from the general theory of linear differential equations that the above system
has a unique solution, and what is more, this solution yields a fundamental system of solutions of
Eq. ~22!.

Differentiating relations~2! n21 times with respect tox and excluding thenth and the
~n11!th derivatives of the functionsuj (x) with the help of Eqs.~23! we arrive at the following
relations:

(
k51

n

L jkuk
~ i !5uj

~ i12!2 (
k50

i

Ci
kV~ i2k!uj

~k! ,

(
k51

n

L jkuk
~n22!52 (

k50

n21

qkuj
~k!2 (

k50

n22

Cn22
k V~n2k22!uj

~k! , ~24!

(
k51

n

L jkuk
~n21!5 (

k50

n21

~qn21qk2qk82qk212Cn21
k V~n2k21!!uj

~k! ,

where j51,...,n, i50,...,n23 and as aboveq215
def
0.

Choosingx5x0 in ~24! yields

(
k51

n

L jkLki5 (
k51

n

L jkRki , j ,i51,...,n,

where

Rki5dki122Ci21
k21V~ i2k!~x0!, i51,...,n22,

Rkn2152Ak2Cn22
k21V~n2k21!~x0!, ~25!

Rkn5AnAk2Bk2Ak212Cn21
k21V~n2k!~x0!.

In formulas~25!, the indexk runs from 1 ton, Ak , Bk are constants defined by~21!, anddk j
is the Kronecker symbol.

Rewriting the formulas obtained in the matrix form, we haveLL5LR, whereL, L, R are
constantn3n matrices with entriesL jk ,L jk ,Rjk , respectively. Hence, we derive the explicit form
of the matrixL,

L5LRL21. ~26!

Thus we have proved the following assertion.
Theorem 3: Let L be an arbitrary invertible n3n matrix, and A1 ,...,An ,B1 ,...,Bn be arbi-

trary constants. Then, for any choice of the function V(x) there exist n functions u1(x),...,un(x)
such that the relations (2) hold, Ljk being the entries of the n3n matrix given by formulas (25),
(26).

The above theorem has as a consequence the following important assertion that describes a
finite part of the spectrum of the Scho¨dinger operatorS.
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Theorem 4: Let l1,...,lm be distinct eigenvalues of the matrixiRjki determined by formulas
(25). Then, for any choice of parameters Aj ,Bj there exist linearly independent functions
c1(x),...,cm(x) satisfying the Schro¨dinger equation (1) withe5l1, e5l2,..., e5lm correspond-
ingly.

The proof follows from Theorem 2 if one takes into account that the matrixL is similar to
R and, consequently, has the same eigenvaluesl1, l2,...,lm . The explicit form of the functions
c1(x),...,cm(x) is given by the formula~4!, whereaj5(a1

j ,a2
j ,...,an

j ), j51,...,m are eigenvec-
tors of the matrixL corresponding to the eigenvaluesl1, l2,...,lm .

Thus, using the conditional symmetry approach we were able not only to calculate the spec-
trum of the Schro¨dinger operatorS5]x

22V(x) but also to construct in an explicit form a 2n-
parameter family of matrix representations ofS.

As is seen from formulas~25!, ~26!, there is a large freedom in choice of the matrixL. First,
it depends on 2n arbitrary constantsAj ,Bj , which fix a fundamental system of solutions of
ordinary differential equation~22!. Consequently, choosing specific constantsAj ,Bj means fixing
a representation spaceV n . Second, it contains an arbitrary constantn3n matrix L. The appear-
ance of the matrixL in the definition ofL reflects a freedom in choosing a basis of the represen-
tation spaceV n . Indeed, if u1(x),...,un(x) is a basis of the spaceV n , then the functions
Sk51
n L jkuk(x) also form a basis with an arbitrary invertible constantn3n matrix iL jki . That is

why choosing a specific matrixL results in fixing a basis of the representation space
u1(x,...,un(x). This freedom can be used, in particular, to obtain an orthogonal basis forV n ~to
this end one should apply the standard Gram–Schmidt orthogonalization procedure!.

But representations of the Schro¨dinger operator in these bases are equivalent, which is readily
seen from the formula~26!.

Thus, it is established thatanySchrödinger equation hasn-dimensional invariant spacesV n

with arbitrarynPN. Furthermore, we have constructed the 2n-parameter family of matrix repre-
sentations of the corresponding Schro¨dinger operator in these spaces@the formulas~25!, ~26!#. But
to obtain an explicit form of the basis ofV n we still have

•to integrate system of nonlinear ordinary differential equations~20!, and
•to construct the general solution of thenth-order ordinary differential equation~22!.
We will demonstrate that using a simple trick we may avoid the necessity to integrate Eq.

~22!. The said trick is based on the fact that we need not all solutions of~22!, but only those that
simultaneously satisfy the initial Schro¨dinger equation~1!. This means that we have to solve the
following overdetermined system of two ordinary differential equations:

cxx5„e1V~x!…c, c~n!~x!1 (
j50

n21

qj~x!c~ j !~x!50. ~27!

Using the first equation and its differential consequences up to the ordern22 we can exclude
from the second equation all the derivatives of the functionc of the orderj.1 and rewrite system
~27! in the following equivalent form:

cxx5„e1V~x!…c, S (
i50

N

ai~x!e i]x1(
i50

N

bi~x!e i Dc50, ~28!

whereN5[n/2],ai(x),bi(x) are linear combinations of the functionsqj (x) with coefficients de-
pending onV(x) and its derivatives~and, consequently, independent ofe!, and, furthermore,
aN51 if n52N11 andaN50,bN51 if n52N.

The compatibility condition for the above system reads as

S ( i50
N bi~x!e i

( i50
N ai~x!e i D

x

2S ( i50
N bi~x!e i

( i50
N ai~x!e i D

2

1V~x!1e50. ~29!
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As functionsai , bi are independent ofe, coefficients of the powers ofe should be independent
of x. This requirement yields the following.

~1! 2N11 ordinary differential equations,

(
i1 j5k

~bi8aj2biaj82bibj1Vaiaj !1 (
i1 j5k21

aiaj5Ck , ~30!

wherek50,1,...,2N, for 2N12 functionsa0 ,...,aN21,b0 ,...,bN ,V, providedn52N11; or
~2! 2N ordinary differential equations of the form~30!, with k taking the values 0,1,...,2N21

for 2N11 functionsa0 ,...,aN21,b0 ,...,bN21,V, providedn52N.
In ~30!, Cj are arbitrary constants.
Provided conditions~30! are fulfilled, the compatibility condition~29! reduces to an algebraic

equation,
~1! undern52N11,

e2N111(
j50

2N

Cje
j50; ~31!

~2! undern52N,

e2N1 (
j50

2N21

Cje
j50; ~32!

and the general solution of system~28! is given by the quadrature

c~x!5expH 2E S ( i50
N bi~x!e i

( i50
N ai~x!e i D dxJ . ~33!

It should be noted that Eqs.~31!, ~32! are nothing else but characteristic equations for the
matrix R defined by ~25!. Their solutions l1,...,lm are eigenvalues andc1(x)
5c(x)ue5l1

,...,cm(x)5c(x)ue5lm
are eigenfunctions of the corresponding Schro¨dinger operator

S5]x
22V(x).

III. SYMMETRY AND EXACT SOLVABILITY

To the best of our knowledge, the first paper, where a systematic study of high-order Lie
symmetries of the Schro¨dinger equations with nonvanishing potentials has been undertaken, is the
one by Nikitin, Onufriychuk, and Fushchych.31 In particular, for several one-dimensional exactly
solvable models third-order symmetry operators were constructed. Furthermore, it was conjectured
that exact integrability of the Schro¨dinger equation~1! is intimately connected with its symmetry
properties. This conjecture has been confirmed in Ref. 24, where a number of exactly solvable
potentials were obtained by means of third-order symmetries of~1! and, furthermore, a method for
integrating the corresponding Schro¨dinger equations was suggested. Using a technique developed
in the previous section we will demonstrate how to derive exact integrability of Eq.~1! from its
symmetry properties in the class of arbitrary order symmetry operators.

Thenth-order operatorQ of the form~5! is a symmetry operator of Eq.~1! if the condition~2!
is satisfied withr (x)50. As coefficients ofQ are independent ofe, equality~2! is only possible
whenP[0. Computing the commutator on the left-hand side of~2! with r50, P50, and equating
to zero the coefficients of]x

n11 and ]x
n, we conclude thatqn(x)5const,qn21(x)5const. Conse-

quently, anynth-order symmetry operator admitted by the Schro¨dinger equation~1! can be rep-
resented in the form~5! with qn5C5constÞ0, qn215C05const.
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First, following Ref. 24 we will consider in more detail the third-order symmetry operators
admitted by the Schro¨dinger equation~1!. These are the lowest-order symmetry operators not
equivalent to usual first-order Lie symmetries. The general form of a third-order symmetry opera-
tor is as follows~we chooseC51!:

Q5]x
31C0]x

21q1~x!]x1q0~x!, ~34!

whereq0(x),q1(x) are sufficiently smooth functions to be determined from the invariance condi-
tion ~2! with n53, r5P50. A short computation yields the following expressions for the coef-
ficients of the operatorQ:

q0~x!5C22C0V~x!2 3
4 V8~x!, q1~x!5C12

3
2 V~x!,

whereV(x) is an arbitrary solution of the third-order nonlinear ordinary differential equation,

24C1V816VV82V~3!50. ~35!

Integrating twice the above equation we arrive at the first-order ordinary differential equation
integrable in elliptic functions,

C412C3V~x!14C1V~x!222V~x!31V8~x!250. ~36!

It was established in Ref. 24 that particular cases of almost all exactly solvable potentials that
can be expressed in elementary functions, such as the trigonometric and hyperbolic Po¨schel–
Teller, Eckart, Kratzer potentials, potential well of finite and infinite depth, are obtained as solu-
tions of the equation~36!.

This fact implies an existence of an intimate connection between high-order Lie symmetries
and exact solvability of the Schro¨dinger equations. In what follows we will show that this is not
simply a conjecture but a fundamental fact, making it possible to classify exactly solvable models
and to construct their exact solutions in an explicit form~see, also Refs. 24 and 25!.

It is straightforward to check that ifQ is a Lie symmetry of the Schro¨dinger equation~1!, then
Q̃5Q1P„]x

22V(x)2e…, whereP is an arbitrary differential operator, is also its Lie symmetry.
Furthermore, systems of ordinary differential equations,

„]x
22V~x!2e…c~x!50, Qc~x!50,

and

„]x
22V~x!2e…c~x!50, Q̃c~x!50,

are equivalent in a sense that they have the same solutions. Making use of these facts we can
reduce thenth-order symmetry operatorQ to a first-order symmetry operator, the coefficients of
which areNth-order polynomials ine ~we will preserve the same designationQ for the reduced
operator!,

Q5a~x,e!]x1b~x,e![S (
j50

N

aj~x!e j D ]x1(
j50

N

bj~x!e j . ~37!

From the invariance condition for the reduced operator,

@]x
22V~x!2e,a~x,e!]x1b~x,e!#5R~x,e!„]x

22V~x!2e…,

we get a system of determining equations for the coefficients ofQ,
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a9~x,e!12b8~x,e!50,

b9~x,e!1a~x,e!V8~x!12a8~x,e!„V~x!1e…50,

where primes denote differentiation with respect tox.
Splitting the above equations by powers ofe with subsequent integrating yields

bj~x!52
1

2
aj8~x!1Bj , aN~x!5AN ,

~38!

aj21~x!5
1

4
aj9~x!2V~x!aj~x!1

1

2 E V8~x!aj~x!dx1Aj21 .

In ~38!, A21,Aj ,Bj are arbitrary constants,j50,1,...,N, a21(x)5
def
0.

Thus, the problem of describingnth-order symmetry operators of the Schro¨dinger equation is
reduced to solving the recurrent relations,

aj21~x!5
1

4
aj9~x!2V~x!aj~x!1

1

2 E V8~x!aj~x!dx1Aj21 , ~39!

with aN(x)5AN5const,a21(x)5
def
0, j5N,N21,...,0.

The firstN relations (j5N,N21,...,1) are solved by subsequent integrations yielding the
expressions for the functionsa0(x),...,aN21(x) via the functionV(x) and its derivatives. Substi-
tuting these results into the last equation~j50! we arrive at the 2Nth-order nonlinear ordinary
differential equation for the functionV(x). It will be shown that any solution of this equation
gives rise to an exactly solvable Schro¨dinger equation~1!.

To reveal the structure of the equation in question we introduce the new functions
U0(x),U1(x),..., by the following recurrence relation:

Uj~x!5XUj21~x![~ 1
4]x

22V~x!1 1
2]x

21V8~x!!Uj21 , j50,1,..., ~40!

where]x
21 denotes integration with respect tox andU21(x)5

def
1.

Formally, a definition of functionsUj (x) contains a quadrature but integrating relations~40!
successively we can get rid of it for anyj51,2,3,... . Below, we adduce expressions of the
functionsUj (x) for j50,1,2,3,

U0~x!52
1

2
V~x!, U1~x!5

1

23
„3V~x!22V9~x!…,

U2~x!5
1

25
„210V~x!315V8~x!2110V~x!V9~x!2V~4!~x!…,

U3~x!5
1

27
„35V~x!4270V~x!V8~x!2270V~x!2V9~x!121V9~x!2128V8~x!V~3!~x!

114V~x!V~4!~x!2V~6!~x!….

Now we can solve the firstN relations of~39! in terms of the functionsUj (x),

aN2 j~x!5 (
k50

j21

AN2kU j2k21~x!1AN2 j , j51,...,N. ~41!
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Inserting the above expressions into the last equation of~39!, we get

A211 (
k50

N

AN2kUN2k~x!50 ~42!

@when deriving the above equation we take into account that by conventiona21(x)50#.
Equation~42! is the necessary and sufficient condition for the Schro¨dinger equation~1! to be

invariant with respect to the first-order operator~37!, whose coefficients are polynomials ine of
the orderN. But it is easy to see that given a condition~42!, Eq.~1! admits an operator of the form
~37!, whose coefficients are polynomials ine of an arbitrary orderN8.N.

Indeed, the invariance conditions for the operator,

Q5S (
j50

N8

aj~x!e j D ]x1(
j50

N8

bj~x!e j ,

have the form~38! with N5N8. Coefficientsaj (x) with j5N8,N821,...,N82N are given by
formulas ~41!, where one should replaceN by N8, and the remaining coefficients by force of
relation ~42! read as

aj~x!5 (
k50

N21

ÃjkUk~x!1Aj , j50,1,...,N82N21,

whereA0 ,...,AN82N21 are arbitrary constants,Ãjk are constants expressed viaAN82N,...,AN8.
Substituting these results into the last~j50! equation from~41! yields

A211A0U0~x!1 (
k50

N21

Ã0kUk11~x!50,

whence we conclude that, providedA215A050, Ã0k50, k50,1,...,N21, the invariance condi-
tions are satisfied.

Thus, if Eq.~42! is fulfilled with someNPN, then the corresponding Schro¨dinger equation
admits arbitrary-order Lie symmetries and, consequently, is exactly solvable.

A general solution of the Schro¨dinger equation invariant under the operatorQ is given by
~33!. Substituting formula~33! into Eq. ~1!, whereV(x) is an arbitrary solution of~42!, results in
a ~2N11!th-order algebraic equation fore. Its solutionse5l1,...,e5lm are eigenvalues of the
Schrödinger operator. Corresponding eigenfunctions are obtained if we inserte5l1,...,e5lm into
~33!.

Summing up, we conclude that any solutionV(x) of ~42! gives rise to an exactly solvable
Schrödinger equation. In what follows it will be established that the more strong assertion holds.
Namely, ifV(x) is a solution of~42! with someN, then the corresponding Schro¨dinger equation
may have anarbitrary spectrum.

Theorem 5: Let V5V(x) be a solution of ordinary differential equation (42) with some fixed
NPN. Then, the Schro¨dinger equation (1) is exactly solvable and, moreover, the Schro¨dinger
operator S5]x

22V(x) may have an arbitrarily prescribed spectrum.
Proof:We will give the principal steps of the proof, omitting technical details. As the poten-

tial V(x) satisfies Eq.~42!, the corresponding Schro¨dinger equation admits a Lie symmetry of the
form ~37!. Excluding from~37! the parametere we recover symmetry operatorQ of the order
n52N11 that commutes with the Schro¨dinger operatorS. Next, we construct an operator
Q15Q1 f (e), where f ~e! is an arbitrary smooth function. Evidently,Q1 commutes withS and,
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consequently, is a symmetry operator of the Schro¨dinger equation. This means that conditions of
Theorem 1 are fulfilled and a fundamental system of solutions of the ordinary differential equa-
tion,

Q1u~x!50

forms a basis of the invariant spaceV n of the corresponding Schro¨dinger operatorS. Represen-
tation ofS in the spaceVn is given by the formulas~25!, ~26!, whereA15a1 f (e) and parameters
a,A2 ,...,An ,B1 ,...,BN are independent off ~e!. Eigenvalues of the operatorS are solutions of the
characteristic equation for the matrixR having the entries~25!, i.e. of the equation

detiRjk2ed jki50.

It is not difficult to become convinced of that the above equation can be represented in the
form

p0~e!1p1~e! f ~e!1p2~e! f ~e!250,

wherep0 ,p1 ,p2 are polynomials ine of the order not higher thann.
Consequently, zeros of the function

F~e!5p0~e!1p1~e! f ~e!1p2~e! f ~e!2

are eigenvalues of the Schro¨dinger operator.
As f ~e! is arbitrary, the functionF~e! may have an arbitrarily prescribed set of zeros and, thus,

a spectrum of the initial Schro¨dinger equation~1! may be arbitrary.
As an illustration, we will consider the simplest case when there exists suchN1 that

UN1
(x) 5 0. In such a case, the coefficients of the symmetry operator~37! with N5kN1 , kPN are

easily shown to be

a~x,e!5S (
j521

N121

Uj~x!eN12 j21D S (
j50

k

Aje
j D ,

b~x,e!52
1

2 S (
j521

N121

Uj8~x!eN12 j21D S (
j50

k

Aje
j D 1S (

j50

N

Bje
j D ,

whereA0 ,...,Ak ,B0 ,...,BN are arbitrary constants.
Inserting this result into~41! and integrating we come to the following Ansatz for the function

c~x!:

c~x!5S (
j521

N121

Uj~x!eN12 j21D 1/2 expH 2 f ~e!E dx

( j521
N121Uj~x!eN12 j21 J , ~43!

where f (e)5(( j50
N Bje

j )(( j50
k Aje

j )21.
Substitution of the expression~43! into the initial equation after some manipulations gives the

following algebraic equation:

e2N1111 (
j50

N121

I je
j2 f ~e!250, ~44!

whereI j are integrals of the ordinary differential equationUN1
(x) 5 0 and, consequently, are

constant on the set of its solutions.
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Thus, for an arbitraryN1PN any solutionV5V(x) of the ordinary differential equation
UN1

(x) 5 0 gives rise to an exactly solvable Schro¨dinger equation. Eigenvalues of the Schro¨dinger
operatorS are the roots of the algebraic equation~44! and the eigenfunctions are of the form~43!,
wheree is an arbitrary solution of~44!.

It is instructive to consider in more detail the above formulas for the caseN5N151. With
this choice ofN the formula~43! reads as

c~x!5„2e2V~x!…1/2 expH 22 f ~e!S E dx

2e2V~x! D J , ~45!

where f (e)5(A1e1A0)(B1e1B0)
21 and the functionV(x) is a solution of the ordinary differ-

ential equationU1(x)50, i.e.

23V~x!21V9~x!50. ~46!

Inserting the Ansatz~45! into ~1! yields the following equality:

28e31I 018 f ~e!250, ~47!

where

I 05V~x!32 1
2 V8~x!2

is the first integral of Eq.~46!. Note that an alternative derivation of the formulas~45!–~47! has
been obtained in Ref. 25.

Now let us make an important remark. It is readily seen from formulas~45!–~47! that the
function f ~e! is not obliged to be a ratio of two first-order polynomials. It may be arbitrary. And
what is more, eigenvalues of the Schro¨dinger operator are the zeros of the function
F~e!528e31I 018 f ~e!2. Choosing an arbitrary functionf ~e! in a proper way we can get the
functionF~e! having arbitrary prescribed set of zeros. This means that the Schro¨dinger equation
~1! with V(x) satisfying~47! may have an arbitrary spectrum.

For example, if we choosef 5 Ae32I 0/8, then the function~45! is a solution of the Schro¨-
dinger equation under arbitrarye ~the case of a continuous spectrum!. Next, if we choosef
5 Ae32I 0/81( j50

N Aje
j , then a finite discrete spectrum is obtained~eigenvalues are roots of the

Nth-order polynomial!. At last, choosingf 5 Ae32I 0/81sin e yields an infinite discrete spectrum
~eigenvalues are zeros of the sine!.

Similar results are obtained forN5N152,

c~x!5„8e224eV~x!13V~x!22V9~x!…1/2 expH 28 f ~e!S E dx

8e224eV~x!13V~x!22V9~x! D J ,
where f ~e! is an arbitrary function,V(x) is a solution of the ordinary differential equation,

10V~x!325V8~x!2210V~x!V9~x!1V~4!~x!50, ~48!

ande is a solution of the equation,

2128e522eI 11I 01128f ~e!250.

HereI 0, I 1 are integrals of Eq.~48! of the form

I 055V~x!4210V~x!V8~x!22V9~x!212V8~x!V~3!~x!,
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I 152
I 0V~x!

2
1
19V~x!5

2
2

I 0
2

8V8~x!2
2
5I 0V~x!4

4V8~x!2
2
25V~x!8

8V8~x!2
1
5V~x!2V8~x!2

2
210V~x!3V9~x!

2V8~x!2V9~x!1
5V~x!V9~x!2

2
1
I 0V9~x!2

4V8~x!2
1
5V~x!4V9~x!2

4V8~x!2
2

V9~x!4

8V8~x!2
.

Generically, ifV(x) is a solution of the 2Nth-order ordinary differential equationUN(x)50,
then the corresponding Schro¨dinger operatorSmay have an arbitrary spectrum. Eigenvalues ofS
are obtained by solving the algebraic equation~44! and its eigenfunctions by substituting the
corresponding values fore into ~43!.

We will finish this section with one more puzzling property of the exactly integrable models
obtained. Let us denote the total derivatives of the functionsUj (x) with respect tox asWj (x) and
consider an infinite set of evolution equations for a functionu5u(t,x),

]u~ t,x!

]t
5F j@u~ t,x!#, j.1, ~49!

where the functionsF j are obtained fromWj (x) by formal replacement ofV(x) with u(t,x). Now
we see that equations obtained in this way form the famous integrable KdV hierarchy. Taking, for
example,j52 yields the KdV equation,

]u~ t,x!

]t
5

1

23 S 6u~ t,x!
]u~ t,x!

]x
2

]3u~ t,x!

]x3 D .
Furthermore, differentiating the relations~40! we obtain the recurrence relations determining

Wj (x),

Wj11~x!5YWj~x![~ 1
4 ]x

22V~x!2 1
2 V8~x!]x

21!Wj~x!, j50,1,...,

with W0(x)50. The operatorY above is nothing else but the well-known recurrence operator for
the KdV hierarchy.32

Next, if we formally replaceV(x) by u(t,x) in Uj (x) determined by the recurrence relations
~40!, then the densities of motion constants of the KdV equation are obtained,X being the
recursion operator connecting these densities.

Equations of the form~42! are known in the literature as the stationary Lax–Novikov equa-
tions. Equations of the stationary KdV hierarchy are particular cases of Eqs.~42! with
A15•••5AN2150. We have proved that any solutionV5V(x) of the stationary Lax–Novikov
hierarchy ~42! yields an exactly solvable Schro¨dinger equation. The correspondence between
solutions of stationary KdV hierarchy and exactly solvable Schro¨dinger equations with reflection-
less potentials is known~see, e.g., the paper33 and references therein!. Moreover, it has been
established that the Schro¨dinger operators with so chosen potentials may have an arbitrarily
prescribed spectrum. But the fact that solutions of the stationary Lax–Novikov hierarchy~42!
have the same property seems to be new.

IV. CONCLUSION

In view of numerous excellent papers and monographs~see, e.g., Ref. 17 and the literature
cited therein! devoted to developing algebraic methods for the investigation of spectral properties
of Eq. ~1!, it is, of course, not enough to say that the problem of describing part of the spectrum
of the Schro¨dinger equation is equivalent to computing its conditional symmetries in order to
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justify a necessity of introducing a new complicated structure. Our principal motivation for look-
ing for a symmetry interpretation of the results obtained in this field is that it may open a
possibility

• to study the spectrum of two- and three-dimensional Schro¨dinger equations;
• to investigate ‘‘spectral properties’’ of nonlinear Schro¨dinger equations; and
• to study spectral properties of matrix differential operators~say, of the Dirac operator!, by

purely algebraic means.
For instance, there are strong evidences that a necessary condition for a three-dimensional

Schrödinger equation to be exactly solvable is an invariance with respect to a three-dimensional
Lie algebra of high-order symmetry operators. We can guess that one of the necessary conditions
of ‘‘quasiexact solvability’’ of the three-dimensional Schro¨dinger equations is a nontrivial condi-
tional symmetry admitted. The simplest possibility to move in this direction is to combine the
technique developed in the present paper with the method of separation of variables.34 In our
paper35 we have classified potentialsV(x1 ,x2) such that the corresponding two-dimensional
Schrödinger equation,

ic t1cx1x1
1cx2x2

5V~x1 ,x2!c

can be separated into three ordinary differential equations. One of these is a first-order equation
and can always be integrated by quadratures. Two other are exactly of the form~1! and can be
solved within the framework of the approach described in Secs. II and III.

Furthermore, the method of conditional symmetries is applicable not only to linear partial
differential equations but also to nonlinear ones.21,22 Let, for example, the one-dimensional non-
linear Schro¨dinger equation,

cxx5„e1V~x!1F~c,c* ,cx ,cx* !…c ~50!

be conditionally invariant with respect to annth-order Lie–Ba¨cklund operator,

Q5h~x,c,c8,...,c~n!!]c1••• ,

in the sense of Ref. 22. Then, using a technique similar to that developed in Sec. II we can
construct an Ansatz for a functionc(x), which gives a solution of~50!, provided the energy
parametere satisfy some algebraic equationG~e!50. Solutions of this equation can be interpreted
as eigenvalues of the nonlinear Schro¨dinger operator]x

22V2F.
An interesting example is a family of nonlinear Schro¨dinger equations suggested by Doebner

and Goldin.36 Taking the polar decomposition,

c~ t,x!5er ~ t,x!1 is~ t,x!, ~51!

and fixing the gaugen1521, n250 ~this is always possible37!, we can represent the Doebner–
Goldin model in the following way:

r t1sxx12r xsx50,
~52!

st12m2r xx1m1sxx14~m21m5!r x
212~m11m4!r xsx1m3sx

21m0V~x!50,

wherem0,...,m5 are model parameters.
If we impose on the solutions of~52! an additional conditionsx50 ~which picks out a subset

of stationary solutions!, then the system obtained is consistent if and only if the conditions,

3215R. Z. Zhdanov: Conditional symmetry of the Schrödinger equation

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



r5r ~x!, s52et, e5constPR, ~53!

are fulfilled.
With this choice of functionsr ands, system~52! reduces to a single equation,

2e12m2r 914~m21m5!~r 8!21m0V~x!50, ~54!

which is either linear~m21m550! or can be linearized by the substitution

w~x!5expH m2

2~m21m5!
r ~x!J , ~55!

to become

w95S e

4~m21m5!
2

m0

4~m21m5!
V~x! Dw. ~56!

As established in Sec. II, any equation of the form~56! possesses a nontrivial high-order
conditional symmetry. Since the nonlinear equation~54! is equivalent to~56!, it possesses high-
order conditional symmetry as well. Thus, the initial Doebner–Goldin equation has a subset of
solutions with nontrivial conditional symmetry, which can be effectively applied to construct finite
or even infinite~if the conditional symmetry can be reduced to a high-order Lie symmetry! set of
its exact solutions.

We hope that the reasonings above are convincing enough to motivate a further study of
high-order conditional symmetries of linear and nonlinear Schro¨dinger equations in one, two, and
three dimensions. It may be also very interesting to study classical and conditional symmetries of
the stationary Dirac equation in the presence of nonvanishing electromagnetic field and to apply
these to derive a spectrum of the Dirac operator. These problems are under investigation now and
will be a topic of our future publications.
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The recovery of the coefficientH(x) in the one-dimensional generalized Schro¨-
dinger equationd2c/dx21k2H(x)2c5Q(x)c, whereH(x) is a positive, piece-
wise continuous function with positive limitsH6 asx→6`, is studied. The large-k
asymptotics of the wave functions and the scattering coefficients are analyzed. A
factorization formula is given expressing the total scattering matrix as a product of
simpler scattering matrices. Using this factorization an algorithm is presented to
obtain the discontinuities inH(x) andH8(x)/H(x) in terms of the large-k asymp-
totics of the reflection coefficient. When there are no bound states, it is shown that
H(x) is recovered from an appropriate set of scattering data by using the solution
of a singular integral equation, and the unique solvability of this integral equation
is established. An equivalent Marchenko integral equation is derived and is shown
to be uniquely solvable; the unique recovery ofH(x) from the solution of this
Marchenko equation is presented. Some explicit examples are given, illustrating the
recovery ofH(x) from the solution of the singular integral equation and from that
of the Marchenko equation. ©1996 American Institute of Physics.@S0022-
2488~96!02606-0#

I. INTRODUCTION

Consider the one-dimensional generalized Schro¨dinger equation,

c9~k,x!1k2H~x!2c~k,x!5Q~x!c~k,x!, xPR, ~1.1!

which describes the propagation of waves in a one-dimensional nonhomogeneous, nonabsorptive
medium, wherek2 is energy, 1/H(x) is the wave speed, andQ(x) is the restoring force density.
The discontinuities ofH(x) correspond to abrupt changes in the properties of the medium in
which the wave propagates. The prime denotes the derivative with respect to the spatial coordi-
nate, and the coefficientsH(x) andQ(x) are assumed to satisfy the following conditions:
~H1! H(x) is strictly positive and piecewise continuous with jump discontinuities atxn for

n51,...,N, such thatx1,•••,xN .
~H2! H(x)→H6 asx→6`, whereH6 are positive constants.
~H3! H2H6PL1~R6!, whereR25~2`,0! andR15~0,1`!.
~H4! H8 is absolutely continuous on (xn ,xn11) and 2H9H23(H8)2PL1

1(xn ,xn11), for
n50,...,N, wherex052` and xN1151`, and Lb

1(I ) denotes the space of measurable
functions f (x) on I , such that* I dx (11uxu)bu f (x)u,1`.

~H5! Q(x) is real valued and belongs toL1
1~R!.

The scattering solutions of~1.1! are those behaving likeeikH6x or e2 ikH6x as x→6`, and

0022-2488/96/37(7)/3218/28/$10.00
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such solutions occur whenk2.0. Among the scattering solutions are the Jost solution from the left
f l(k,x) and the Jost solution from the rightf r(k,x) satisfying the boundary conditions

f l~k,x!5H eikH1x1o~1!, x→1`,
1

Tl~k!
eikH2x1

L~k!

Tl~k!
e2 ikH2x1o~1!, x→2`,

f r~k,x!5H 1

Tr~k!
e2 ikH1x1

R~k!

Tr~k!
eikH1x1o~1!, x→1`,

e2 ikH2x1o~1!, x→2`,

whereTl(k) andTr(k) are the transmission coefficients from the left and from the right, respec-
tively, andL(k) andR(k) are the reflection coefficients from the left and from the right, respec-
tively. For each fixedxPR, the Jost solutions have continuous extensions to the upper half
complex planeC1, and they are analytic there.1 The reduced transmission coefficientt(k), the
reduced reflection coefficientsr(k) from the right andl (k) from the left, respectively, are defined
as

t~k!5AH1

H2
Tl~k!eikA5AH2

H1
Tr~k!eikA, ~1.2!

r~k!5R~k!e2ikA1, l ~k!5L~k!e2ikA2, ~1.3!

where

A656E
0

6`

ds@H62H~s!#, A5A11A2 . ~1.4!

If t~0!Þ0, which is called the exceptional case, the Jost solutionsf l(0,x) and f r(0,x) are
linearly dependent. Ift~0!50, which is called the generic case,f l(0,x) and f r(0,x) are linearly
independent, and in this caset(k) vanishes linearly ask→0. Usually these two cases need to be
analyzed separately, and the small-k analysis of the scattering problem in the exceptional case
requires tedious estimates. However, the fact2 that an exceptional case can always be decomposed
into two generic cases is expected to simplify the analysis of the scattering problem in the
exceptional case.

In general,~1.1! may have bound states, i.e. nontrivial solutions belonging toL2„R,H(x)2dx….
Since the treatment of bound states requires many separate arguments, we do not consider them in
this paper. Bound states were already studied in Ref. 1 and further results may appear in the future.
Thus, we assume that~1.1! does not have any bound states. The number of bound states for~1.1!
is equal3 to the number of bound states for the Schro¨dinger equation,

F9~k,x!1k2F~k,x!5Q~x!F~k,x!, xPR, ~1.5!

and hence our assumption can be restated by saying thatQ(x) does not have any bound states.
The inverse scattering problem in which we are interested consists of the recovery ofH(x) in

~1.1! from an appropriate set of scattering data. The analysis of the scattering problem in a
discontinuous medium is the first step to analyze the inverse scattering problem, and we mention
the relevant work4–7 of Sabatier and his collaborators on the scattering in a discontinuous medium
in one and three dimensions governed by$a(x)22

“–@a(x)2“#1k22V(x)%f(k,x)50. In Ref. 4
Sabatier estimated the large-k asymptotics of the scattering data and also briefly discussed the
inverse scattering problem in such a medium. Various authors have studied inverse scattering
problems for differential equations with discontinuous coefficients, as exemplified by Krueger’s
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work8–10and the bibliography of Ref. 1. Of more direct concern to us is the work by Sabatier4 and
Grinberg.11,12Grinberg, in the special~but still important! caseQ(x)50, developed a method to
recoverH(x) using the solution of a singular integral equation; in this special case there are no
bound states, the exceptional case occurs, and the norm of the associated singular integral operator
is strictly less than unity so that the integral equation has a unique solution that can be obtained
through iteration. The general case with nontrivialQ(x) and with bound states was analyzed by a
similar method in Ref. 1, andH(x) was recovered from the solution of a singular integral equation
under the assumptionQPL11a

1 ~R! for someaP~0,1#. In Ref. 13 the scattering data leading to a
unique solution of the inverse problem were specified.

In this paper, when there are no bound states, we develop a method to obtainH(x) from the
scattering data consisting ofQ(x), r(k), andH1 . As already known,

13H1 must be omitted from
the scattering data in the generic case, but in the exceptional case it needs to be specified in the
scattering data in order to obtainH(x) uniquely; this is also true in the method presented here.
Note also that, in the scattering data, one can usel ~k! instead ofr(k) and one can also useH2

instead ofH1 . The method given here and the method of Ref. 1 have some similarities and
differences. The method used here holds wheneverQPL1

1~R!, whereas in Ref. 1, for technical
reasons, we neededQPL11a

1 ~R! for someaP~0,1#. In both methods a singular integral equation
is formulated and from its solutionH(x) is recovered; however, in the present paper we exploit
the large-k behavior of the reduced scattering coefficients, thus avoiding complications encoun-
tered in Ref. 1 ask→0. A crucial result here is Proposition 2.1, which strengthens the result of
Theorem 2.4 in Ref. 1. From the solution atk50 of the singular integral equation one findsH(x)
as thex-derivative of the solutiony(x) of a separable differential equation under the initial
conditiony~0!50. Furthermore, when the reduced reflection coefficientr(k) is an almost periodic
function, the singular integral equation of the present paper becomes trivial, and so does the
computation ofH(x); in Ref. 1, even this relatively simple case required extensive calculations.

WhenH(x) andH8(x) have no discontinuities, the large-k asymptotics of the reduced scat-
tering coefficients defined in~1.2!–~1.3! are known to be of the formt(k)215O(1/k), r(k)
5O(1/k), andl (k)5O(1/k). It is also known that each discontinuity ofH(x) contributes to the
almost periodic part of theO~1! terms in these asymptotics. We refer the reader to Refs. 1, 4,
11–13 for details. In this paper we show that the discontinuities inH8(x)/H(x) are responsible for
some of theO(1/k) terms in these asymptotics; in fact, we develop an algorithm to recover the
jumps inH8(x)/H(x) from the large-k asymptotics of a reduced reflection coefficient.

This paper is organized as follows. In Sec. II we study the large-k asymptotics of the reduced
scattering coefficients. In Sec. III we study the large-k asymptotics of certain wave functions
defined in ~3.1!–~3.2!. In Sec. IV we present a factorization formula expressing the reduced
scattering matrix as a matrix product of scattering matrices corresponding to potentials supported
on a finite interval or on a half-line and those corresponding to discontinuities inH(x) and
H8(x)/H(x). In Sec. V we present an algorithm to recover the discontinuities inH(x) and
H8(x)/H(x) from the large-k asymptotics of the scattering data, thus generalizing the work of
Ref. 13 regarding the discontinuities inH(x). The results in Secs. II and III are used in Sec. VI in
order to convert a key Riemann-Hilbert problem into a pair of uncoupled singular integral equa-
tions; in this section we also establish the unique solvability of these integral equations and show
how to recoverH(x) from the solution of either singular integral equation. In Sec. VII we show
that each singular integral equation can be converted into a Marchenko integral equation that is
uniquely solvable, and we describe the recovery ofH(x) from the solution of a Marchenko
equation. Hence, the inverse problem is solved by recoveringH(x) either by the method of Sec.
VI or by that of Sec. VII. In Section VIII we present some examples illustrating the recovery of
H(x) using the solution of a singular integral equation and using the solution of a Marchenko
equation; we also illustrate the algorithm of recovery of the discontinuities inH8(x)/H(x).

3220 Aktosun, Klaus, and van der Mee: Inverse problem with discontinuous wave speed

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



II. SCATTERING COEFFICIENTS

In this section we analyze the large-k asymptotics of the reduced scattering coefficients de-
fined in ~1.2!–~1.3!. Under the Liouville transformation

y5y~x!5E
0

x

ds H~s!, c~k,x!5
1

AH~x!
f~k,y!, ~2.1!

the generalized Schro¨dinger equation~1.1! is transformed into

d2f~k,y!

dy2
1k2f~k,y!5V~y!f~k,y!, ~2.2!

where

V„y~x!…5
H9~x!

2H~x!3
2
3

4

H8~x!2

H~x!4
1

Q~x!

H~x!2
. ~2.3!

SinceH(x) is assumed to have jump discontinuities atxj for j51,...,N, the quantityV(y) is
undefined atyj5y(xj ). However,V(y) is well defined in each of the intervals (yj ,yj11) for
j50,...,N; thus, the Liouville transformation can be used on each interval (xj ,xj11) although it
cannot be used onR. SinceH(x) is strictly positive with positive limits asx→6`, it follows that
y05y(x0)52` andyN115y(xN11)51`. The constantsqj , defined by

qj5
H~xj20!

H~xj10!
, ~2.4!

correspond to the relative jumps in the wave speed at the interfacesxj , andyj correspond to the
times required for the wave to propagate from the fixed locationx50 to the interfacesxj for
j51,...,N.

Let Vj , j11(y) be the potential defined by

Vj , j11~y!5 HV~y!, yP~yj ,yj11!,
0, elsewhere, ~2.5!

whereV(y) is the quantity in~2.3!. From ~H4! it follows thatVj , j11PL1
1~R! for j50,...,N. Let

Yl ; j , j11(k,y) andYr ; j , j11(k,y) denote the Faddeev functions1 from the left and from the right,
respectively, associated with the potentialVj , j11(y). We have1

Yl ; j , j11~k,y!5H 1

t j , j11~k!
@11 l j , j11~k!e22iky#, y<yj , j51,...,N, kPC1,

1

t0,1~k!
@11 l 0,1~k!e22iky#1o~1!, y→2`, j50, kPR,

~2.6!

Yr ; j , j11~k,y!5H 1

t j , j11~k!
@11r j , j11~k!e2iky#, y>yj11 , j50,...,N21, kPC1,

1

tN,N11~k!
@11r N,N11~k!e2iky#1o~1!, y→1`, j5N, kPR,

~2.7!

where t j , j11(k), r j , j11(k), and l j , j11(k) denote the transmission coefficient and the reflection
coefficients from the right and from the left, respectively, for the potentialVj , j11(y). Since
Vj , j11PL1

1~R!, it follows that for each fixedyPR we have
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Yl ; j , j11~k,y!511O~1/k!, Yl ; j , j118 ~k,y!5o~1!, k→` in C1, ~2.8!

Yr ; j , j11~k,y!511O~1/k!, Yr ; j , j118 ~k,y!5o~1!, k→` in C1. ~2.9!

Using ~2.1! it can be shown that the functions defined by

h j , j11~k,x!5
1

AH~x!
eikyYl ; j , j11~k,y!, j j , j11~k,x!5

1

AH~x!
e2 ikyYr ; j , j11~k,y!,

~2.10!

are solutions of~1.1!. Let us introduce the matrices

G j , j11~k,x!5Fh j , j11~k,x! j j , j11~k,x!

h j , j118 ~k,x! j j , j118 ~k,x!
G , j50,...,N, ~2.11!

G ~k!5 )
n51

N

Gn21,n~k,xn20!21Gn,n11~k,xn10!. ~2.12!

It was shown in Ref. 1 that

1

t~k!
5

1

t0,1~k!
@1 0#G ~k!F10G5 1

tN,N11~k!
@0 1#G ~k!21F01G , ~2.13!

l ~k!

t~k!
5F l 0,1~k!

t0,1~k!
1GG ~k!F10G , ~2.14!

r~k!

t~k!
5F1 r N,N11~k!

tN,N11~k! GG ~k!21F01G . ~2.15!

Moreover,

detGn,n11~k,x!52
2ik

tn,n11~k!
, detG ~k!5

t0,1~k!

tN,N11~k!
.

Let

an5
1

2 S Aqn1
1

Aqn
D , bn5

1

2 S Aqn2
1

Aqn
D , ~2.16!

E~k,xn!5F an bne
22ikyn

bne
2ikyn an

G , ~2.17!

with qn as in ~2.4!; let us also definea(k) andb(k) by

F a~k! b~k!

b~2k! a~2k!
G5 )

n51

N

E~k,xn!. ~2.18!

Let APW ~almost periodic functions with Wiener norm! stand for the algebra of all complex-
valued functionsf (k) onR that are of the formf (k) 5 ( j52`

` f je
ikl j , wheref jPC andljPR for
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all j and(j u f j u,1`. It is already known1 that the functionsa(k), b(k), 1/a(k), andb(k)/a(k)
belong to APW. In the next proposition we obtain the large-k asymptotics of the reduced scattering
coefficientst(k), r(k), andl ~k!.

Proposition 2.1:Under assumptions~H1!–~H5! we have

t~k!5
1

a~k!
1OS 1kD , k→` in C1, ~2.19!

r~k!52
b~k!

a~k!
1OS 1kD , k→6`, ~2.20!

l ~k!5
b~2k!

a~k!
1OS 1kD , k→6`, ~2.21!

wherea(k) andb(k) are the quantities defined in~2.18!.
Proof: Using ~2.8!–~2.10! we obtain

Gn,n11~k,xn1120!21Gn11,n12~k,xn1110!

5F an11„11O~1/k!… bn11e
22ikyn11

„11O~1/k!…

bn11e
2ikyn11

„11O~1/k!… an11„11O~1/k!…
G , k→` in C1,

~2.22!

wherean andbn are the constants defined in~2.16!. Furthermore, using~2.13!–~2.15! and the
fact14 that

t j , j11~k!511O~1/k!, k→` in C1,

r j , j11~k!5O~1/k!, l j , j11~k!5O~1/k!, k→6`,

we obtain~2.19!–~2.21!. j

Proposition 2.1 is an improvement over Theorem 2.4 in Ref. 13, where the error terms in
~2.19!–~2.21! were only shown to beo~1!. We refer the reader to Refs. 1 and 13 for various other
properties of the reduced scattering coefficients.

III. ESTIMATES ON WAVE FUNCTIONS

In this section we analyze the large-k behavior of the scattering solutions of~2.2!. As in
~5.1!–~5.2! of Ref. 1, let us define the Faddeev functionsZl(k,y) andZr(k,y), from the left and
from the right, respectively, associated with~2.2!:

Zl~k,y!5AH~x!

H1
e2 iky2 ikA1 f l~k,x!, ~3.1!

Zr~k,y!5AH~x!

H2
eiky2 ikA2 f r~k,x!, ~3.2!

wherey is the quantity defined in~2.1! andA6 are the constants in~1.4!. Note thateikyZl(k,y)
ande2 ikyZr(k,y) are the Jost solutions from the left and from the right, respectively, of~2.2!. In
this section we analyze the large-k asymptotics ofZl(k,y) andZr(k,y).
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The next proposition shows that, for each fixedyPR\$y1 ,...,yN%, the Faddeev functions can
be written as the sum of an almost periodic function and a continuous function, the latter vanishing
ask→` in C1.

Proposition 3.1:For each fixedyPR\$y1 ,...,yN%, we have

Zl~k,y!5Jl~k,y!1O~1/k!, Zr~k,y!5Jr~k,y!1O~1/k!, k→` in C1, ~3.3!

where

Jl~k,y!5@1 e22iky#S )
n5 j11

N

E~k,xn!D F10G , yP~yj ,yj11!, j50,...,N21, ~3.4!

Jl~k,y!51, yP~yN ,1`!, ~3.5!

Jr~k,y!51, yP~2`,y1!, ~3.6!

Jr~k,y!5@e2iky 21#S )
n5 j

1

E~k,xn!D F 0
21G , yP~yj ,yj11!, j51,...,N, ~3.7!

with E(k,xn) defined in~2.17!. The product notation in~3.7! means thatn decreases fromj to 1.
Proof:WhenyP(yN ,1`), from ~3.13!, ~3.15!, ~3.21! of Ref. 1 and~2.10! and~3.1!, we have

Zl~k,y!5Yl ;N,N11~k,y!, yP~yN ,1`!, ~3.8!

and henceZl(k,y)511O(1/k) as k→` in C1. Thus, we have~3.3! with Jl(k,y) as in ~3.5!.
Similarly, from ~3.13!, ~3.15!, ~3.22! of Ref. 1 and~2.10! and ~3.2!, we get

Zr~k,y!5Yr ;0,1~k,y!, yP~2`,y1!, ~3.9!

and henceZr(k,y)511O(1/k) ask→` in C1. Thus, we have~3.3! with Jr(k,y) as in ~3.6!.
WhenyP(yj ,yj11) with 0< j<N21, from ~3.25! of Ref. 1 and~3.1!, we see that

Zl~k,y!5@1 0#AH~x!e2 ikyG j , j11~k,x!

3S )
n5 j

N21

Gn,n11~k,xn1120!21Gn11,n12~k,xn1110!D F10G , ~3.10!

whereG j , j11(k,x) is the matrix defined in~2.11!. From ~2.8!–~2.10! we have

@1 0#AH~x!e2 ikyG j , j11~k,x!5@11O~1/k! e22iky
„11O~1/k!…#. ~3.11!

Hence, using~2.22! and ~3.11! in ~3.10!, we obtain

Zl~k,y!5Jl~k,y!@11O~1/k!#, k→` in C1, ~3.12!

with Jl(k,y) as in ~3.4!. Similarly, whenyP(yj ,yj11) with 1< j<N, from ~3.26! of Ref. 1 and
~3.2!, we see that

Zr~k,y!5@1 0#AH~x!eikyG j , j11~k,x!S )
n5 j

1

Gn,n11~k,xn10!21Gn11,n12~k,xn20!D F01G .
~3.13!

From ~2.8!–~2.10! we have
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@1 0#AH~x!eikyG j , j11~k,x!5@e2iky„11O~1/k!… 11O~1/k!#. ~3.14!

Using ~2.22! and ~3.14! in ~3.13!, we obtain

Zr~k,y!5Jr~k,y!@11O~1/k!#, k→` in C1, ~3.15!

with Jr(k,y) as in ~3.7!. Note that for each fixedyPR\$y1 ,...,yN% the functionsJl(k,y) and
Jr(k,y) are uniformly bounded inC1, and hence we see that~3.12! and ~3.15! imply ~3.3!. j

Recall that the Hardy spacesH6
p ~R! are defined as the spaces of all functionsf (k) that are

analytic inkPC6 and satisfy supe.0*2`
` dk u f (k6 i e)up,1`.

Theorem 3.2: For each fixed yPR\$y1 ,...,yN%, the functions Zl(k,y)2Jl(k,y) and
Zr(k,y)2Jr(k,y) belong to the Hardy spaceH1

2 ~R!.
Proof: It is proved in Theorem 2.1 of Ref. 1 that, for each fixedxPR\$x1 ,...,xN%, f l(k,x) and

f r(k,x) are continuous functions ofk in C1 and analytic inC1; therefore, for each fixed
yPR\$y1 ,...,yN%, the Faddeev functionsZl(k,y) andZr(k,y) are continuous inC1 and analytic
in C1. From~3.4!–~3.7! we see thatJl(k,y) andJr(k,y) are continuous inC

1 and analytic inC1.
Hence, by Proposition 3.1 we can conclude thatZl(k,y)2Jl(k,y) andZr(k,y)2Jr(k,y) belong to
the Hardy spaceH1

2 ~R!. j

Note that we can also conclude the analyticity inC1 and continuity inC1 of Zl(k,y) and
Zr(k,y) from ~3.10! and~3.13!, respectively, because the matrices there have these properties. At
first the inverse matrices in~3.10! and ~3.13! seem to have a~1/k! singularity atk50 in the
exceptional case; however, if anyVn,n11(y) are exceptional potentials, we can divide each of
those intervals (yn ,yn11) into two subintervals such that the fragments on the two subintervals are
generic;2 hence, even in the exceptional case, from~3.10! and ~3.13!, we can conclude that
Zl(k,y) andZr(k,y) are analytic inC1 and continuous inC1.

Note that the matrix productE(k,xj11)•••E(k,xN) in ~3.4! can be explicitly evaluated in
analogy to~2.28! of Ref. 13. Let us write

)
n5 j11

N

E~k,xn!5F Aj~k! Bj~k!

Bj~2k! Aj~2k!
G ,

whereAj (k) andBj (k) will be explicitly evaluated. Thus, we can write~3.4!–~3.5! as

Jl~k,y!5@Aj~k!1e22ikyBj~2k!#, yP~yj ,yj11!, ~3.16!

with AN(k)51 andBN(k)50. Using induction, we can show thatAj (k) ande
22ikyBj (2k) both

are exponential polynomials having at most 2N2 j terms. All the coefficients in the exponential
polynomials are real constants and all the exponentials are bounded by 1 in absolute value in
C1. For future reference, we listAj (k) andBj (k) for j5N21, N22, N23.
If j5N21,

AN21~k!5aN , e2ikyNBN21~k!5bN .

If j5N22,

AN22~k!5aN21aN1bN21bNe
2ik~yN2yN21!,

e2ikyNBN22~k!5aN21bN1bN21aNe
2ik~yN2yN21!.

If j5N23,
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AN23~k!5aN22aN21aN1bN22bN21aNe
2ik~yN212yN22!

1aN22bN21bNe
2ik~yN2yN21!1bN22aN21bNe

2ik~yN2yN22!,

e2ikyNBN23~k!5aN22aN21bN1bN22bN21bNe
2ik~yN212yN22!

1aN22bN21aNe
2ik~yN2yN21!1bN22aN21aNe

2ik~yN2yN22!.

We see that, forj<N21, the terme2ikyNBj (k) is obtained fromAj (k) by interchangingbN with
aN .

In a similar manner, using

E~k,xj !
21•••E~k,x1!

215@E~k,x1!•••E~k,xj !#
21,

we can explicitly evaluate the matrix productE(k,x1)•••E(k,xj ) appearing in~3.7! in analogy to
~2.28! of Ref. 13. Let us write

)
n51

j

E~k,xn!5F Cj~k! Dj~k!

Dj~2k! Cj~2k!
G ,

whereCj (k) andDj (k) will be explicitly evaluated. Thus, we can write~3.6!–~3.7! as

Jr~k,y!5@Cj~k!2e2ikyD j~2k!#, yP~yj ,yj11!, ~3.17!

with C0(k)51 andD0(k)50. Using induction, we can show thatCj (k) ande
2ikyD j (2k) both are

exponential polynomials having at most 2j terms. All the coefficients in the exponential polyno-
mials are real constants and all the exponentials are bounded by 1 in absolute value inC1. For
future reference, we listCj (k) andDj (k) for j51, 2, 3.
If j51,

C1~k!5a1 , e2iky1D1~k!5b1 .

If j52,

C2~k!5a1a21b1b2e
2ik~y22y1!, e2iky2D2~k!5a1b21b1a2e

2ik~y22y1!.

If j53,

C3~k!5a1a2a31b1b2a3e
2ik~y22y1!1a1b2b3e

2ik~y32y2!1b1a2b3e
2ik~y32y1!,

e2iky3D3~k!5a1a2b31b1b2b3e
2ik~y22y1!1a1b2a3e

2ik~y32y2!1b1a2a3e
2ik~y32y1!.

We see that, forj>1, the terme2ikyjD j (k) is obtained fromCj (k) by interchangingbj with aj .

IV. FACTORIZATION

In this section we generalize the factorization formula of Ref. 15 and show that the reduced
scattering matrix corresponding to~1.1! can be expressed in terms of the scattering matrices
corresponding to the potentialsVj , j11(y) defined in~2.5! and certain matrices associated with the
discontinuities ofH(x) andH8(x)/H(x). Using the scattering coefficients introduced in~2.6!–
~2.7!, let us define
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L j , j11~k!5F 1

t j , j11~k!
2
r j , j11~k!

t j , j11~k!

l j , j11~k!

t j , j11~k!

1

t j , j11~2k!

G , j50,1,...,N, ~4.1!

L~k!5F 1

t~k!
2

r~k!

t~k!

l ~k!

t~k!

1

t~2k!

G , ~4.2!

F j~k!5F a j1
n j

2ik S b j1
n j

2ik De22ikyj

S b j2
n j

2ik De2ikyj a j2
n j

2ik

G , j51,...,N, ~4.3!

whereaj andbj are the constants defined in~2.16! and

n j5
1

2AH~xj20!H~xj10!
FH8~xj20!

H~xj20!
2
H8~xj10!

H~xj10! G . ~4.4!

Note that nj50 if and only if H8(x)/H(x) is continuous atxj . Following Sabatier’s
terminology4–7 we can refer toF j (k) as a ‘‘hard scatterer’’ andL j , j11(k) as a ‘‘soft scatterer.’’
The following theorem shows how the matrices defined in~4.1!–~4.3! are related to one another.

Theorem 4.1:We have

L5L0,1F1L1,2F2L2,3•••FNLN,N11 , ~4.5!

whereL, Lj , j11, andF j are the matrices defined in~4.2!, ~4.1!, and~4.3!, respectively.
Proof: Note that we haveL j , j115GjD j , where we have defined

Gj5F 1

t j , j11~k!
0

l j , j11~k!

t j , j11~k!
1
G , Dj5F1 2r j , j11~k!

0 t j , j11~k!
G .

Using the displayed equation in Ref. 1 following~14.4!, we can relateL(k) andG (k) defined in
~2.12! asL5G0GDN . Inserting the identity matricesGjGj

21 andDjD j
21 in the appropriate places

in ~2.12!, we obtain

L5G0D0)
n51

N

@Dn21
21 Gn21,n~k,xn20!21Gn,n11~k,xn10!Gn

21#@GnDn#. ~4.6!

Using ~2.11!, it can be checked that

Dn21
21 Gn21,n~k,xn20!21Gn,n11~k,xn10!Gn

215Fn , ~4.7!

whereFn are the matrices defined in~4.3!. Thus, using~4.7! in ~4.6!, we get~4.5!. j

It is already known13 that the functionH(x) given by
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H~x!5
hj , j11

f l~0,x!2
, xP~xj ,xj11!, j50,...,N,

hN,N115H1 ; hj21,j5qjhj , j11 , j50,...,N,

corresponds to the scattering dataQ(x), r(k)52b(k)/a(k), and t(k)51/a(k); as seen from
Proposition 2.1, the scattering coefficients in this case coincide with their asymptotic expressions
as k→6`. In this case, the matrix factorization given in~4.5! reduces to the factorization in
~2.18!. This is because in this casenj given in ~4.4! vanishes, and hence the matrixF j (k) defined
in ~4.3! becomes equal toE(k,xj ) defined in~2.17!; in fact,F j (k)5E(k,xj ) if and only if nj50.
Furthermore, in this caseVj , j11(y)50 and henceL j , j11(k)5I ; in fact,L j , j11(k)5I if and only
if Vj , j11(y)50. In this case, we also haveZl(k,y)5Jl(k,y) andZr(k,y)5Jr(k,y).

Now let us ask the following question. If we chooseVj , j11(y)50 for j50,1,...,N, but still
allow njÞ0, what is the correspondingH(x)? From the factorization formula~4.5!, by letting
L j , j11(k)5I , we can explicitly evaluate the corresponding scattering matrix. In this case, the
correspondingH(x) is given by

AH~x!5
1

aj f l~0,x!1bj f r~0,x!
, xP~xj ,xj11!, j50,...,N, ~4.8!

aN5
1

AH1

, bN50, ~4.9!

andaj ,bj for j50,1,...,N21, will be determined recursively by using the jumps inH(x) and
H8(x)/H(x) according to~2.4! and ~4.4!, respectively. Using~4.8! in ~2.4!, we obtain

aj f l~0,xj !1bj f r~0,xj !

aj21f l~0,xj !1bj21f r~0,xj !
5Aqj , j51,...,N. ~4.10!

From ~4.8! we have

H8~x!

H~x!
522

aj f l8~0,x!1bj f r8~0,x!

aj f l~0,x!1bj f r~0,x!
, ~4.11!

and hence from~4.4! we get

aj21f l8~0,xj !1bj21f r8~0,xj !

aj21f l~0,xj !1bj21f r~0,xj !
2
aj f l8~0,xj !1bj f r8~0,xj !

aj f l~0,xj !1bj f r~0,xj !
52n jAH~xj20!H~xj10!, j51,...,N.

~4.12!

Solving the linear system~4.10! and ~4.12! with unknownsaj21 andbj21 in terms ofaj andbj
and known quantities, and using~4.9!, we obtain

aj215
aj

Aqj
1

n j f r~0,xj !AH~xj10!

@ f l~0,x!; f r~0,x!#
, j51,...,N; aN5

1

AH1

, ~4.13!

bj215
bj

Aqj
2

n j f l~0,xj !AH~xj10!

@ f l~0,x!; f r~0,x!#
, j51,...,N; bN50, ~4.14!

where@ f l(0,x); f r(0,x)# 5 f l(0,x) f r8(0,x) 2 f l8(0,x) f r(0,x) is the Wronskian, which is a constant
completely determined byQ(x) alone. We can also obtain the Jost solutions for~1.1! explicitly. In
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this case, sinceVj , j11(y)50, we haveYl ; j , j11(k,y)51 andYr ; j , j11(k,y)51; thus, the matrix
Gj , j11(k,x) defined in~2.11! is determined by using~2.10!. Hence, using~3.8! and ~3.10! the
Faddeev functionZl(k,y) is determined, and using~3.9! and~3.13! the Faddeev functionZr(k,y)
is determined. Then we obtainf l(k,x) and f r(k,x) as in ~3.1!–~3.2!.

Note that in the above procedure, in caseQ(x) is an exceptional potential, i.e., iff l(0,x) and
f r(0,x) are linearly dependent, in~4.8!–~4.14! we need to replacef r(0,x) by a zero-energy
solution of ~1.5! linearly independent off l(0,x), such asc(x)5 f l(0,x)*0

x dy/ f l(0,y)
2; with this

choice ofc(x), we have [f l(0,x);c(x)]51. In the exceptional case, it turns out that although
different choices forc(x) lead to different coefficientsaj andbj , the resultingH(x) is indepen-
dent of the choice ofc(x). Also note that, ifN51, it is necessary that the generic case occurs;
however, forN>2 the exceptional case may occur.

V. AN ALGORITHM TO RECOVER JUMPS IN H8(x )/H(x )

In Ref. 13 we described an algorithm to recoverN, yj , andqj associated with the disconti-
nuities ofH(x) in terms of the leading asymptotic behavior of the scattering data ask→6`. In
this section we will analyze theO(1/k) terms in the scattering data and will describe an algorithm
to recover the constantsnj associated with the discontinuities ofH8(x)/H(x) from the almost
periodic part of theO(1/k) terms in the scattering data. The algorithm of Ref. 13 must be applied
first to recoverN, yj , and qj before the algorithm to recovernj is used. In order to use the
algorithm, one also needs to know the value ofwN,N11, where we have defined

wj , j115E
yj

yj11
dz Vj , j11~z!,

with Vj , j11(y) being the quantity defined in~2.5!. The constantwN,N11 can be obtained from a
reduced reflection coefficient in various ways without solving the entire inverse problem. For
example, as we will see in Sec. VII, we havewN,N1152hl(01,yN), wherehl(t,y) is the solution
of the Marchenko equation~7.7! that is uniquely solvable; hence the solution of~7.7! at the fixed
point yN gives uswN,N11.

SinceVj , j11PL1
1~R!, the scattering coefficients associated withVj , j11(y) satisfy

14

1

t j , j11~k!
511

wj , j11

2ik
1oS 1kD , k→6`,

r j , j11~k!

t j , j11~k!
5oS 1kD , l j , j11~k!

t j , j11~k!
5oS 1kD , k→6`,

and hence from~4.1! we have

L j , j11~k!5I1
wj , j11

2ik
J1oS 1kD , k→6`,

where we have definedJ5diag~1,21!. Let us write~4.3! in the form

F j5Ej1
n j

2ik
U j ,

whereEj is the matrixE(k,xj ) defined in~2.17! and

Uj5F 1 e22ikyj

2e2ikyj 21 G .
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Thus, ask→6`, from ~4.5! we obtainL5E1E2•••EN1O(1/k) and

2ik@L2E1E2•••EN#5w0,1JE1E2•••EN1w1,2E1JE2•••EN1•••1wN,N11E1E2•••ENJ

1n1U1E2•••EN1n2E1U2E3•••EN1•••1nNE1E2•••EN21UN1o~1!.

~5.1!

Thus, from~2.18! and ~4.2! we see that~5.1! allows us to express

2ikF 1

t~k!
2a~k!G5D~k!1o~1!, k→6`, ~5.2!

22ikFr~k!

t~k!
1b~k!G5V~k!1o~1!, k→6`, ~5.3!

where D(k) and V(k) are linear combinations ofw0,1,...,wN,N11 and n1 ,...,nN with almost
periodic polynomials as coefficients.

Let us now explain how to computenN . WhenN51 we have

D~k!5~w0,11w1,2!a11n1[D1 , ~5.4!

e2iky1V~k!5~w0,12w1,2!b11n1[V1 . ~5.5!

Multiplying ~5.4! by b1 and ~5.5! by a1, and subtracting the resulting equations, we obtain

n15
1

a12b1
@2w1,2a1b11a1V12b1D1#. ~5.6!

WhenN52, we have

D~k!5D11e2ik~y22y1!D2 , ~5.7!

e2iky2V~k!5V11e2ik~y22y1!V2 , ~5.8!

where we have defined

D15~w0,11w1,21w2,3!a1a21n1a21n2a1 , ~5.9!

V15~w0,11w1,22w2,3!a1b21n1b21n2a1 , ~5.10!

D25~w0,12w1,21w2,3!b1b21n1b22n2b1 ,

V25~w0,12w1,22w2,3!b1a21n1a22n2b1 .

Multiplying ~5.9! by b2 and ~5.10! by a2 and subtracting the resulting equations, we obtain

a1~b22a2!n2522w2,3a1a2b21b2D12a2V1 ,

and hence

n25
1

a22b2
F2w2,3a2b21

a2V12b2D1

a1
G .
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As can be seen from~5.4!, ~5.5!, ~5.7!, and ~5.8!, and in general be proved by induction, the
quantitye2ikyNV(k) is obtained fromD(k) by interchangingbN with aN and by changing the sign
of wN,N11. It can also be shown thatD(k) and e2ikyNV(k) both are exponential polynomials
having at most 2N21 nonzero terms. To computenN for arbitraryN, we letD1 andV1 denote the
constant terms in the almost periodic polynomialsD(k) ande2ikyNV(k), respectively. From~5.1!
we have

D15S (
j50

N

wj , j111(
j51

N
n j

a j
D )
n51

N

an ,

V15S 22wN,N11bN1bN(
j50

N

wj , j111bN(
j51

N21
n j

a j
1nND )

n51

N21

an .

Using

bND12aNV152wN,N11bN)
j51

N

a j1nN~bN2aN! )
j51

N21

a j ,

we get

nN5
1

aN2bN
F2wN,N11aNbN1

aNV12bND1

P j51
N21a j

G .
After obtainingnN , we can recovernN21 as follows. The solution of the Marchenko equation

in the interval ~yN ,1`! yields VN,N11(y) by ~7.9!; thus also we have the matrixLN,N11(k)
defined in~4.1! because it is determined by the scattering matrix of the potentialVN,N11(y). Note
that from the unitarity of the scattering matrix corresponding to the potentialVj , j11(y), we have
detL j , j11(k)51. Using ~2.16! it can be shown that detF j (k)51. Thus, we can easily form the
matrixLLN,N11

21 FN
21 and recovernN21 from this matrix, as we have recoverednN from the matrix

L. Note that the reduced reflection coefficient from the right associated with the matrix
LLN,N11

21 FN
21 is given by

r@N21#~k!52

@1 0#LLN,N11
21 FN

21F01G
@1 0#LLN,N11

21 FN
21F10G . ~5.11!

OncenN21 is obtained, we recursively get the remainingnN22,...,n1.

VI. A SINGULAR INTEGRAL EQUATION

In this section, when there are no bound states, we formulate the singular integral equation
~6.7! whose kernel and nonhomogeneous term are determined by the reduced reflection coefficient
r(k). We also show that~6.7! is uniquely solvable and its solution leads to the recovery ofH(x).
In a similar manner, we formulate the singular integral equation~6.10! in terms ofl ~k! and prove
its unique solvability and show that its solution also leads to the recovery ofH(x).

For each fixedyPR\$y1 ,...,yN%, from ~5.11! of Ref. 1, we have

FZl~2k,y!

Zr~2k,y!G5F t~k! 2r~k!e2iky

2l ~k!e22iky t~k!
GFZr~k,y!

Zl~k,y! G , kPR. ~6.1!
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Using ~2.19!–~2.21! and ~3.3!, we obtain

F Jl~2k,y!

Jr~2k,y!G5F 1

a~k!

b~k!

a~k!
e2iky

2
b~2k!

a~k!
e22iky

1

a~k!

G FJr~k,y!

Jl~k,y! G , kPR. ~6.2!

Subtracting~6.2! from ~6.1!, we get

Zl~2k,y!2Jl~2k,y!5Ft~k!2
1

a~k!GZr~k,y!1
1

a~k!
@Zr~k,y!2Jr~k,y!#

2r~k!e2iky@Zl~k,y!2Jl~k,y!#2Fr~k!1
b~k!

a~k!Ge2ikyJl~k,y!, ~6.3!

Zr~2k,y!2Jr~2k,y!5Ft~k!2
1

a~k!GZl~k,y!1
1

a~k!
@Zl~k,y!2Jl~k,y!#

2l ~k!e22iky@Zr~k,y!2Jr~k,y!#2F l ~k!2
b~2k!

a~k! Ge22ikyJr~k,y!.

~6.4!

Let us analyze~6.3!. Using Propositions 2.1 and 3.1 and Theorem 3.2, for each fixedy, in the
absence of bound states, of the four terms on the right-hand side, we see that the first two belong
to the Hardy spaceH1

2 ~R! and the last two belong toL2~R!; the term on the left-hand side belongs
to H2

2 ~R!. Let P6 denote the orthogonal projection operators fromL2~R! ontoH6
2 ~R!, i.e.

~P6 f !~k!5
61

2p i E2`

` ds

s2k7 i0
f ~s!.

Let us define

Xl~k,y!5Zl~2k,y!2Jl~2k,y!, Xr~k,y!5Zr~2k,y!2Jr~2k,y!. ~6.5!

Applying the projectionP2 on both sides of~6.3!, we obtain

Xl~•,y!1P2„re
2i ~• !yJXl~•,y!…52P2S Fr1

b

aGe2i ~• !yJl~•,y! D , ~6.6!

where~J f !(k)5 f (2k). Note that~6.6! is a singular integral equation and can be written as

Xl~k,y!1~O lXl !~k,y!5Pl~k,y!, kPR, ~6.7!

where we have defined

~O lX!~k!5
1

2p i E2`

` ds

s1k2 i0
r~2s!e22isyX~s!, kPR, ~6.8!

Pl~k,y!5
1

2p i E2`

` ds

s2k1 i0 Fr~s!1
b~s!

a~s!Ge2isyJl~s,y!. ~6.9!
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Notice that the integral operatorO l defined in~6.8! is the same as the operator defined in~5.23! of
Ref. 1. Comparing~5.21! of Ref. 1 and~6.7!, we see that the kernels in these two integral
equations differ by a minus sign. We also recall that the solution of the singular integral equation
of Ref. 1 is given byXl(k,y) 5 @Zl(2k,y) 2 Zl(0,y)#/@kAH(x)#, whereZl(k,y) is the quantity
defined in~3.1!, whereas the solution of the integral equation of this paper is given by~6.5!. The
factor 1/k in the expression forXl(k,y) used in Ref. 1 was introduced to ensure thatXl(k,y)
belongs to an appropriate Hardy space, namely toH2

p ~R! if p,1/~12a!. However, this factor,
while providing the desired behavior ask→`, introduced some complications atk50. With the
present definition~6.5! it is easy to show thatXl(k,y) is continuous ask→0 in C1 and
Xl(k,y)5O(1/k) as k→` in C1, without imposing any stronger condition onQ(x) than
QPL1

1~R!.
In a similar manner, in the absence of bound states, from~6.4! we obtain

Xr~•,y!1P2„l e
22i ~• !yJXr~•,y!…52P2S F l 2

Jb

a Ge22i ~• !yJr~•,y! D ,
which is equivalent to

Xr~k,y!1~O rXr !~k,y!5Pr~k,y!, kPR, ~6.10!

where we have defined

~O rX!~k!5
1

2p i E2`

` ds

s1k2 i0
l ~2s!e2isyX~s!, kPR,

Pr~k,y!5
1

2p i E2`

` ds

s2k1 i0 F l ~s!2
b~2s!

a~s! Ge22isyJr~s,y!. ~6.11!

The solvability of~6.7! and ~6.10! is analyzed in the next theorem.
Theorem 6.1:The singular integral equation~6.7! has a unique solutionXlPH2

2 ~R! for every
nonhomogeneous term belonging toH2

2 ~R!, and the solution can be obtained through iteration.
Similarly, ~6.10! has a unique solutionXrPH2

2 ~R! for every nonhomogeneous term belonging to
H2
2 ~R! and the solution can be obtained through iteration.
Proof: The operatorO l defined in~6.8! is a strict contraction onH2

2 ~R!, which is proved in
Theorem 7.1 of Ref. 1. Hence,~6.7! is uniquely solvable and its solution can be obtained through
iteration. The proof for~6.10! is given in the same manner. j

Next we will recoverH(x) from an appropriate set of scattering data. We will consider the
generic and exceptional cases separately because the scattering data in these two cases are not the
same.

Let us first consider the generic case; in this case an appropriate set of scattering data consists
of $r(k),Q(x)%. We proceed as follows. Using the method of Ref. 16, fromr(k) we getb(k) and
a(k); then from these we getN, $y1 ,...,yN%, and $q1 ,...,qN% by using the method of Ref. 13.
Hence, we haveaj andbj for j51,...,N. SinceQ(x) is known, we also know the zero-energy Jost
solutions of~1.5!; these Jost solutions are identical to the zero-energy Jost solutions of~1.1!. For
example, we can getf l(0,x) by using~5.25! of Ref. 1. Next we obtainJl(k,y) using ~3.4! and
~3.5!. Note thatJl(k,y) is uniquely constructed fromr(k) because we already haveyj , aj , andbj

for j51,...,N. From ~3.1! and the fact thatH(x)5dy/dx, we have

dy

Zl~0,y!2
5H1

dx

f l~0,x!2
. ~6.12!
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UsingJl(k,y) andr(k) in ~6.7!, we obtainXl(k,y) uniquely. Then using~6.5!, we write~6.12! in
the form

dy

@Xl~0,y!1Jl~0,y!#2
5H1

dx

f l~0,x!2
. ~6.13!

We getH1 from ~6.13! as

H15
*2`
0 dy/@Xl~0,y!1Jl~0,y!#2

*2`
0 dx/ f l~0,x!2

. ~6.14!

Note that both integrals in~6.14! converge because17 in the generic case,f l(0,x)
2 grows likex2 as

x→2` andZl(0,y)
2 grows likey2 asy→2`. Next, using a generalization of the method given in

Theorem 5.1 of Ref. 13, we obtainx1 ,...,xN . This is done as follows. IfN51 andy150, then
x150. If N51 andy1Þ0, then we can proceed as in the caseN>2. If N>2, then at leastN21 of
the pointsy1 ,...,yN must be nonzero. If at least one of these is positive, we can pick the smallest
of them, sayyp . Thenxp is uniquely determined by

E
0

yp dy

@Xl~0,y!1Jl~0,y!#2
5H1E

0

xp dx

f l~0,x!2
, ~6.15!

and we recursively determinexp11,...,xN using

E
yp

yp11 dy

@Xl~0,y!1Jl~0,y!#2
5H1E

xp

xp11 dx

f l~0,x!2
.

Similarly, we can determinexp21,xp22,...,x1 . If all yj are nonpositive, then we pick the one with
the smallest absolute value that is nonzero~eitheryN or yN21! and find the correspondingxj by
using the appropriate integral of the form~6.15!. Having found eachxj corresponding toyj , we
obtain y(x) by solving the first-order separable ordinary differential equation~6.13! with the
initial condition y(xi)5yi . Havingy(x) in each interval (xj ,xj11), we getH(x)5dy/dx.

Now let us consider the exceptional case. In this case, we cannot use~6.14! to obtainH1 . In
fact, for the unique recovery ofH(x) we need to includeH1 in the scattering data; otherwise, we
get a one-parameter family ofH(x) corresponding to the set$r(k),Q(x)%. Thus, in the excep-
tional case, we recoverH(x) from the scattering data$r(k),H1 ,Q(x)% by the method outlined in
the generic case.

Note that one can also recoverH(x) from the solution of the singular integral equation~6.10!
using the scattering data$l (k),Q(x)% in the generic case and using$l (k),Q(x),H1% in the
exceptional case. One then needs to solve the analog of~6.12! given by

dy

Zr~0,y!2
5H2

dx

f r~0,x!2
, ~6.16!

with the condition y(0)50. Note that from~6.5! we haveZr(0,y)5Xr(0,y)1Jr(0,y), and
f r(0,x) is the zero-energy Jost solution from the right of~1.5! corresponding toQ(x). The poten-
tial Q(x) uniquely determines14,18–20 f r(0,x), for example, by

f r~0,x!511E
2`

x

dz ~x2z!Q~z! f r~0,z!. ~6.17!

Once we obtainy as a function ofx from ~6.16!, we recoverH(x) as
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H~x!5H2

Zr~0,y!2

f r~0,x!2
. ~6.18!

Note that, in the exceptional case,H2 can be expressed in terms ofH1 by using~5.29! of Ref. 1,
namely,

H25H1

12r~0!

11r~0! S 11R@0#~0!

T@0#~0!
D 2, ~6.19!

whereR[0] (k) andT[0] (k) are the reflection coefficient from the right and the transmission coef-
ficient, respectively, associated with~1.5!. Hence, in the exceptional case, one can useH2 in the
scattering data instead ofH1 because of~6.19!. Note also that in the exceptional casef l(0,x) and
f r(0,x) are linearly dependent, and we have17

f r~0,x!5
11R@0#~0!

T@0#~0!
f l~0,x!. ~6.20!

Let f l
[0] (k,x) and f r

[0] (k,x) denote the Jost solutions of~1.5! from the left and from the right,
respectively. In the generic case we have

f r
@0#~k,x!5@ f l

@0#~k,x!; f r
@0#~k,x!# f l

@0#~k,x!E
2`

x dz

f l
@0#~k,z!2

, ~6.21!

where the Wronskian [f l
[0] (k,x); f r

[0] (k,x)] is equal to22ik/T[0] (k). Hence, in the generic case
from ~6.21!, after using the fact thatf l

[0] (0,x)5 f l(0,x) and f r
[0] (0,x)5 f r(0,x), we have

f r~0,x!5F lim
k→0

22ik

T@0#~k!G f l~0,x!E
2`

x dz

f l~0,z!2
.

VII. MARCHENKO INTEGRAL EQUATION

In this section we show that the singular integral equation~6.7!, with the use of the Fourier
transform, can be transformed into the integral equation~7.7! generalizing the Marchenko integral
equation14,18–20for the one-dimensional Schro¨dinger equation. We establish the unique solvability
of ~7.7! and describe how its solution leads to the recovery ofH(x).

Using ~2.20! and the continuity ofr(k) andb(k)/a(k), we see thatr1(b/a)PLp~R! for any
pP~1,1`#. We may then write

r~k!52
b~k!

a~k!
1E

2`

`

dz eikz%~z!, ~7.1!

where%PLq~R! for qP@2,1`!. The symmetry relationF(2k) 5 F(k) for kPR valid for r, a, and
b, implies that% is real valued. Sinceb/a belongs to APW, we haveb(k)/a(k) 5 2(sgse

ikbs

wherebs are different real numbers andgs are real constants satisfying(sugsu,1`; thus we can
write ~7.1! in the form

r~k!5(
s

gse
ikbs1E

2`

`

dz eikz%~z!. ~7.2!

Let us write~7.2! in the concise form
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r~k!5E
2`

`

dm~ t ! eikt, ~7.3!

for a suitable real measurem that is the sum of a discrete measure~with weightsgs at the points
bs! and an absolutely continuous measure~with a Radon-Nikodym derivative%!. LetF denote the
Fourier transform defined by

~F g!~ t !5
1

2p E
2`

`

dk eiktg~k!. ~7.4!

SinceXl(•,y) and Pl(•,y) appearing in~6.7! belong toH2
2 ~R!, their Fourier transforms are

supported on the positive half-line; hence, we have

Xl~k,y!5E
0

`

dt e2 ikthl~ t,y!, Pl~k,y!5E
0

`

dt e2 ikthl0~ t,y!, ~7.5!

wherehl ,hl0PLq~R1! for anyqP@2,1`!. Furthermore, as seen from~3.16!, Jl(k,y) consists of a
finite sum of exponential terms; hence we haveJl(k,y) 5 (svs(y)e

ikzs(y), where, in each interval
(yj ,yj11),vs(y) is a constant andzs(y) is either a constant or an affine function ofy. Thus, from
~6.9! we obtain

hl0~ t,y!52(
s

vs~y!%„2t22y2zs~y!…, t>0.

Now let us take the Fourier transform of both sides of~6.7!. We have

hl~•,y!1~F O lF
21hl !~•,y!5hl0~•,y!. ~7.6!

Using ~7.2! or ~7.3! we can write~7.6! as the Marchenko-like integral equation

hl~ t,y!1E
2`

2~ t12y!

dm~z! hl~2z2t22y,y!5hl0~ t,y!, t>0,

or equivalently

hl~ t,y!1 (
$s:bs,2t22y%

gshl~2t22y2bs ,y!1E
0

`

ds %~2s2t22y! hl~s,y!5hl0~ t,y!, t>0.

~7.7!

We will call ~7.7! a Marchenko equation. Note that whenN50, i.e. whenV(y) given in ~2.3! is
well defined for allyPR, the integral equation~7.7! reduces to

hl~ t,y!1E
0

`

ds %~2s2t22y! hl~s,y!52%~2t22y!, t>0, ~7.8!

which is the Marchenko equation14,18–20for the ordinary Schro¨dinger equation. In a similar man-
ner we can also obtain a Marchenko integral equation associated with the reflection coefficient
l ~k!, but we will not list it here. The next theorem shows that~7.7! is uniquely solvable.

Theorem 7.1: Equation~7.7! has a unique solution inL2~R1! for every nonhomogeneous
term belonging toL2~R1!, and the solution can be obtained through iteration.

Proof: The operatorO l in ~7.6! is a strict contraction onH2
2 ~R!, as indicated in the proof of

Theorem 6.1. ConsideringL2~R1! andH2
2 ~R! as subspaces ofL2~R!, we see thatA2pF , where

3236 Aktosun, Klaus, and van der Mee: Inverse problem with discontinuous wave speed

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



F is the Fourier transformation defined in~7.4!, is a unitary operator onL2~R! mappingH2
2 ~R!

ontoL2~R1!. Thus, the operatorF O lF
21 acting fromL2~R1! into L2~R1! is a strict contraction.

Hence,~7.7! is uniquely solvable and its solution can be obtained through iteration. j

Let us now discuss the recovery ofH(x) from the solution of the Marchenko equation~7.7!.
Oncehl(t,y) is obtained from~7.7!, we can getXl(k,y) from ~7.5! and recoverH(x) by repeating
the procedure described in Sec. VI.

Let us also describe another way to recoverH(x). This is done in conjunction with the
algorithm described in Sec. V, whereN,yj ,qj , are recovered first; recall that these are the param-
eters associated with the ‘‘hard scatterers.’’ Next we recover the quantities associated with the
‘‘soft scatterers,’’ namely we obtainVj , j11(y). This is done recursively as follows. First we solve
~7.7! only for y.yN and gethl(t,y) in the interval~yN ,1`!. Because of~3.8! we obtain21

VN,N11~y!522
dhl~01,y!

dy
, yN,y,1`, ~7.9!

Zl~0,y!511E
y

`

dz ~z2y!VN,N11~z! Zl~0,z!, yN,y,1`. ~7.10!

Then, as described in Sec. V, we form the new reduced reflection coefficientr [N21](k) defined in
~5.11! and obtainVN21,N(y) from the solution of the Marchenko equation corresponding to
r [N21](k) by using the analog of~7.9!. Continuing in this manner, we then recoverVj , j11(y) for
j50,1,...,N. Then we obtainZl(0,y) for yPR\$y1 ,...,yN% as follows. From~3.1! we have

Zl~k,yj20!5Aqj Zl~k,yj10!,

Zl8~k,yj20!5
Zl8~k,yj10!

Aqj
22ikS b j2

n j

2ik DZl~k,yj10!,

as well asZl(k,1`)51 andZl8(k, 1 `) 5 0. Hence,Zl(0,y) andZl8(0,y) satisfy the following
internal boundary conditions:

Zl~0,yj20!5Aqj Zl~0,yj10!, ~7.11!

Zl8~0,yj20!5
Zl8~0,yj10!

Aqj
1n j Zl~0,yj20!. ~7.12!

Thus, in each interval (yj ,yj11), we can uniquely obtainZl(0,y) from Vj , j11(y) by using

Zl~0,y!5~y2yj11!Zl8~0,yj1120!1Zl~0,yj1120!1E
y

yj11
dz ~z2y!V~z! Zl~0,z!.

~7.13!

Thus, using~7.10!, ~7.11!–~7.13! we obtainZl(0,y) for yPR\$y1 ,...,yN%. Once we haveZl(0,y),
we can recoverH(x) by using the procedure outlined starting with~6.12!.

Note that although we assume that there are no bound states associated with~1.1!, some of the
Vj , j11(y) may have bound states. In terms of the factorization formula~4.5!, this happens when
the hard scatterersF j (k) in ~4.5! overcome the bound states from the soft scatterersL j , j11(k),
resulting in no bound states for~1.1!; in other words, the poles oft j , j11(k) in C

1 are canceled by
the terms inF j (k), resulting in no poles inC1 for t(k). The recovery ofVj , j11(y), even in the
presence of bound states, is well understood;22 since eachVj , j11(y) has support contained in a
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half-line, the reflection coefficientr j , j11(k) uniquely determinesVj , j11(y) without needing the
bound state energies and the bound state norming constants; in fact, both the bound state energies
and the norming constants are uniquely determined byr j , j11(k) alone.

We can also obtainH(x) by modifying the procedures described earlier. For example, using
the reduced reflection coefficient from the leftl ~k!, the analog of~7.7! associated withl ~k! can
be used to obtainVj , j11(y) starting with the interval (y0 ,y1) and moving to the interval (y1 ,y2)
and continuing in this manner. One can also solve the Marchenko equations associated withl ~k!
andr(k), respectively, simultaneously starting with the intervals (y0 ,y1) and (yN ,yN11), respec-
tively, and moving to the intervals (y1 ,y2) and (yN21,yN), respectively, and continuing in this
manner until allVj , j11(y) are obtained. Then, using~7.11!–~7.13! one getsZl(0,y) or Zr(0,y),
from whichH(x) is obtained using~6.12! or ~6.16!.

VIII. EXAMPLES

In this section we illustrate the methods described in Secs. V–VII through explicitly solved
examples. In Examples 8.1–8.3 we illustrate the recovery ofH(x) using the solution of the
Marchenko integral equation~7.7!. In Example 8.4 we illustrate the method of Sec. V to recover
the discontinuities inH8(x)/H(x). In Example 8.5 we illustrate the alternative procedure de-
scribed in Sec. VII using~5.11!. Finally, In Example 8.6 we illustrate the recovery ofH(x) in
terms of the solutions of the singular integral equations~6.7! and ~6.10!.

Example 8.1:Let us demonstrate the Marchenko method of Sec. VII. As our scattering data,
for a givenQ(x) with no bound states and a givenH1 , let us use

r~k!5e
k1 ia

k1 ig
, ~8.1!

wheree, a, andg are real constants satisfying21,e,1, g.0, andg2.a2e2. It is straightforward
but tedious to show that fory<0 the denominator in~8.11! and ~8.12! is nonzero if and only if
~a1b!eÞ0. Thus, in this example, we assume~a1b!eÞ0 and postpone the case~a1b!e50 to
Example 8.2. Using the method of Ref. 16 we constructt(k) by solving the Wiener-Hopf factor-
ization problemt(k)t(2k)512ur(k)u2 for kPR, and we obtain

t~k!5A12e2
k1 ib

k1 ig
, ~8.2!

where we have defined the positive constant

b5Ag22a2e2

12e2
. ~8.3!

It can be verified thatut(k)u21ur(k)u251 and thatt(k) has no poles or zeros inC1. Since
t~0!Þ0, we are in the exceptional case. Using the method of Ref. 13, we obtain

N51, q15
12e

11e
, y150, a~k!5

1

A12e2
, b~k!52

e

A12e2
. ~8.4!

From ~3.16! we get

Jl~k,y!5H 12ee22iky

A12e2
, y,0,

1, y.0.

~8.5!
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Thus, from~6.9! we obtain

Pl~k,y!5H i e

k1 ig
~a2g!A12e2 @e2gy2e2iky#, y,0,

0, y.0.
~8.6!

Using ~8.6! in ~7.5! we have

hl0~ t,y!5H 2
e~a2g!

A12e2
eg~ t12y!, t.0, t12y,0,

0, t.0, t12y.0.

From ~8.1! we see that we can write~7.2! as

r~k!5e1E
2`

`

dt eikt%~ t !,

with

%~ t !5 H0, t,0
e~a2g!e2gt, t.0, ~8.7!

and hence%(t) is supported only ont>0. The Marchenko equation~7.7! has the following form:

hl~ t,y!50, t.0, t12y.0, ~8.8!

hl~ t,y!1ehl~2t22y,y!1e~a2g!eg~ t12y!E
0

2~ t12y!

ds egshl~s,y!52
e~a2g!

A12e2
eg~ t12y!,

t.0, t12y,0. ~8.9!

Notice that from~8.8! we obtainXl(k,y)50 for y.0, and hence using~8.1! and~8.5!, from ~6.13!
we conclude that

H~x!5
H1

f l~0,x!2
, y5H1E

0

x dz

f l~0,z!2
, x.0, ~8.10!

where f l(0,x) is the zero-energy Jost solution from the left associated withQ(x). We can solve
~8.9! exactly and obtain

hl~ t,y!5
~b22g2!ebt1e~g2b!~a1b!e2b~ t12y!

A12e2@~a1b!ee22by1b2g#
, t.0, t12y,0, ~8.11!

whereb is the constant in~8.3! and the denominator does not vanish. Using~8.11! in ~7.5!, for
y , 0, we get

Xl~k,y!5
~b1 ik !~b22g2!@e2y~ ik2b!21#1~b2 ik !e~g2b!~a1b!e22by@12e2y~b1 ik !#

~k21b2!A12e2@~a1b!ee22by1b2g#
.

~8.12!
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Hence, using~8.5! and ~8.12!, we find

Zl~0,y!5Ag2ea

g1ea

e~a1b!e22by1g2b

e~a1b!e22by2y1b
, y,0. ~8.13!

Using ~8.13! in ~6.12!, we obtain

g1ea

g2ea Fy1
2~g2b!/b

e~a1b!1g2b
2

2~g2b!/b

e~a1b!e22by1g2b G5H1E
0

x dz

f l~0,z!2
, y,0, ~8.14!

H~x!5
H1

f l~0,x!2
g2ea

g1ea Fe~a1b!e22by1g2b

e~a1b!e22by2g1b G2, y,0, ~8.15!

wherey in ~8.15! is obtained in terms ofx from ~8.14!.
Example 8.2:In this example we consider the same scattering data as in Example 8.1 but with

the additional condition~a1b!e50, whereb is the constant in~8.3!. If e50 thenr(k)50 and
t(k)51, and the Marchenko equation~7.7! gives ushl(t,y)50 for t.0 andyPR; thus, there are
no discontinuities inH(x) or H8(x)/H(x), and we have

H~x!5
H1

f l~0,x!2
, xPR.

If b52a but eÞ0, theng5b; in this case we have

r~k!5e
k2 ig

k1 ig
, t~k!5A12e2.

In this case, forx.0, ~8.10! is still valid. Whenx,0, we proceed as follows. In the Marchenko
equation~8.9!, puttinga52g, we obtain

hl~ t,y!1ehl~2t22y,y!22geeg~ t12y!E
0

2~ t12y!

ds egshl~s,y!5
2eg

A12e2
eg~ t12y!,

t.0, t12y,0. ~8.16!

The solution of~8.16! is given by

hl~ t,y!5
2eg

A12e2
eg~ t12y!

11ee2gy , t.0, t12y,0. ~8.17!

Using ~6.5!, ~7.5!, ~8.5!, ~8.8!, and~8.17!, we obtain

Zl~0,y!5A11e

12e

12ee2gy

11ee2gy , y,0. ~8.18!

Using ~8.18! in ~6.12!, we obtain

12e

11e Fy1
2/g

12ee2gy2
2/g

12eG5H1E
0

x dz

f l~0,z!2
, x,0, ~8.19!
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H~x!5
H1

f l~0,x!2
11e

12e S 12ee2gy

11ee2gyD 2, y,0, ~8.20!

wherey in ~8.20! is obtained in terms ofx from ~8.19!.
Example 8.3:In this example, we consider the scattering data of Example 8.1 withg25a2e2.

Wheng56ae, we haveb50, and hencer(k)5(ek6 ig)/(k1 ig). Sincer~0!511 is not allowed
~cf. Theorem 4.2 of Ref. 1!, we cannot haveg51ae. Thus, the inverse scattering problem to be
solved corresponds to the scattering data

r~k!5
ek2 ig

k1 ig
, Q~x!,

when there are no bound states. We havet(k) 5 A12e2k/(k 1 ig), and hence this corresponds to
the generic case; thusH1 cannot be specified arbitrarily in the scattering data, and it is determined
as in ~6.14!. In this case,~8.8! still holds. Puttinga52g/e in ~8.9!, we obtain

hl~ t,y!1ehl~2t22y,y!2g~11e!eg~ t12y!E
0

2~ t12y!

ds egshl~s,y!5
g~11e!

A12e2
eg~ t12y!,

t.0, t12y,0. ~8.21!

The solution of~8.21! is given by

hl~ t,y!5
g

A12e2
, t.0, t12y,0. ~8.22!

Using ~7.5!, ~8.5!, ~8.8!, and~8.22!, we obtain

Zl~0,y!5
12e22gy

A12e2
, y,0. ~8.23!

Using ~8.23! in ~6.12!, we have

~11e!y

12e22gy
5H1E

0

x dz

f l~0,z!2
, x,0. ~8.24!

Letting x,y→2` in ~8.24!, as in~6.14!, we get

H15
11e

2g*2`
0 dz/ f l~0,z!2

. ~8.25!

Thus, from~8.24! and ~8.25! we find

y5
12e

2g

*0
x dz/ f l~0,z!2

*2`
x dz/ f l~0,z!2

, x,0,

H~x!5
12e

2g f l~0,x!2
*2`
0 dz/ f l~0,z!2

@*2`
x dz/ f l~0,z!2#2

, x,0. ~8.26!
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Alternatively, by using~6.21! we can write~8.26! as

H~x!5
~12e!@ f l

@0#~0,x!; f r
@0#~0,x!#2

2g

*2`
0 dz/ f l~0,z!2

f r~0,x!2
, x,0.

This expression agrees with that obtained in~6.51! of Example 6.2 in Ref. 1, but the method used
here is simpler.

Example 8.4:In this example we describe how to obtainnj defined in~4.4! related to discon-
tinuities in H8(x)/H(x) using the method outlined in Sec. V. Let us use the scattering data of
Example 8.1, and hencer(k) is given by ~8.1! and t(k) is given by ~8.2!. We proceed as in
Example 8.1 until~8.7!; we then set up the Marchenko equation only fory.0, which, by~8.8!,
yieldshl(t,y)50. At this point we can conclude thatV1,2(y)50 and hencew1,250. Using~5.2!–
~5.5!, we obtain

D15
2~b2g!

A12e2
, V15

2e~a2b!

A12e2
.

Thus, from~5.6! we get

n15
2e~a2g!

~11e!A12e2
. ~8.27!

Hence,H8(x)/H(x) is continuous atx50 if and only if e~a2g!50, i.e. if and only ifr(k) in ~8.1!
is a constant.

Example 8.5:In this example we illustrate the iterative method outlined in Sec. VII to recover
H(x), based on the matrix factorization in~4.5!. Let us again use the scattering data of Example
8.1. We proceed as in Example 8.4 and getH(x) given in~8.10! for x.0,V1,2(y)50, andn1 given
in ~8.27!. Thus, we haveL1,25I and

F1~k!5
1

A12e2 F 11
e~a2g!

ik~11e!
2e1

e~a2g!

ik~11e!

2e2
e~a2g!

ik~11e!
12

e~a2g!

ik~11e!

G ,
whereL j , j11(k) andF j (k) are the matrices defined in~4.1! and ~4.3!, respectively. From~4.1!
and ~4.5! we obtainL0,1(k). Note that, in this case,r@0#(k) defined in~5.11! and r 0,1(k) corre-
sponding toV0,1(y) coincide. We have

r 0,1~k!5
2k1k2

~k2k1!~k2k2!
, t0,1~k!5

k~k1 ib!

~k2k1!~k2k2!
, ~8.28!

wherek1 andk2 are the constants defined as

k652
i

2

g1ea

11e
@16A11E#, E5

4e~g2a!

~12e!~g1ea!
. ~8.29!

Next, we will solve the Marchenko equation~7.7! for y,0 with the input of~8.28! and~8.29!. In
fact, since there are no discontinuities associated with the reflection coefficient in~8.28!, the
Marchenko equation~7.7! reduces to~7.8!. Note that the sign ofE in ~8.29! is the same as the sign
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of e~g2a!. There are three cases to consider, namelyE50,E,0, andE.0. WhenE50, i.e. when
e50 or a5g, we haver 0,1(k)50, and hencehl(t,y)50. ThusV0,1(y)50, because in analogy to
~7.9! we have

V0,1~y!522
dhl~01,y!

dy
, 2`,y,0. ~8.30!

ThusYl ;0,1(k,y)51, and soH(x) is given by~8.10! for all xPR. Next, we consider the caseE,0.
In this case bothk1 andk2 lie in C2, and hence using~8.28! in ~7.1! we obtain

%~ t !5H 0, t,0,
ik1k2

k12k2
@e2 ik1t2e2 ik2t#, t.0.

~8.31!

The solution of the Marchenko equation~7.8! with the integral kernel in~8.31! is given by

hl~ t,y!5H 0, t.22y,
k1k2

b

~b1g!@ebt2e22by#1e~b2a!@12e2b~ t12y!#

e~b2a!1~b1g!e22by , t,22y,

whereb is the constant in~8.3!. Again, using~8.30!, we obtain

V0,1~y!5H 0, y.0,

2
8b2e~b2a!~b1g!e22by

@e~b2a!1~b1g!e22by#2
, y,0.

~8.32!

Corresponding toV0,1(y) in ~8.32!, we have the zero-energy Jost solution from the right given by

Yr ;0,1~0,y!5
2e~b2a!1~b1g!e22by

e~b2a!1~b1g!e22by , y,0. ~8.33!

Using ~3.9! we see that fory,0, Zr(0,y) is given by~8.33!. Using ~6.16!–~6.18! and ~8.33! we
obtain

y2
2e~b2a!/b

e~b2a!1b1g
1

2e~b2a!/b

e~b2a!1~b1g!e22by 5H2E
0

x dz

f r~0,z!2
, x,0, ~8.34!

H~x!5
H2

f r~0,x!2 F2e~b2a!1~b1g!e22by

e~b2a!1~b1g!e22by G2, x,0, ~8.35!

wherey in ~8.35! is obtained in terms ofx from ~8.34!, andf r(0,x) is the zero-energy Jost solution
from the right associated withQ(x). Using~6.19! and~6.20!, one can show that~8.34! and~8.35!
are identical to~8.14! and ~8.15!, respectively. Finally, let us briefly consider the case where the
constantE defined in~8.29! is positive. In this case,k1 is in C2 andk2 is in C1. Thus,V0,1(y)
has one bound state. However, sinceV0,1(y) is supported on a half-line, its bound state norming
constant cannot be chosen arbitrarily and is determined byr 0,1(k) alone.

22 Routine computations21

lead us again toH(x) as given in~8.14!.
Example 8.6:In this example, we demonstrate the recovery ofH(x) by the method outlined

in Sec. VI, namely by solving the singular integral equations~6.7! or ~6.10!. As our scattering
data, let us use the same scattering data as in Example 8.1, with the same restrictions on the
parameterse, a, andg. First, using the method of Ref. 13 we get the quantities given in~8.4!.
Wheny.0, we will solve~6.7!; for this, using~3.16!, we getJl(k,y)51 and from~6.9! we have
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Pl(k,y)50. Thus, the solution of~6.7! for y.0 is given byXl(k,y)50; hence from~6.13! we
obtainH(x) for x.0 as given in~8.10!. Now let us consider the situation wheny,0; in this case,
it is easier to obtainl ~k! and solve~6.10!. Using the method of Ref. 16 we constructt(k) given
in ~8.2! and usingl ~k!52r~2k!t~k!/t~2k!, we get

l ~k!52e
k2 ia

k1 ig

k1 ib

k2 ib
. ~8.36!

Using ~8.36! in ~6.11!, we obtain

Pr~k,y!5
2i eb

k2 ib

b2a

b1g
e2by, y,0. ~8.37!

SinceXr(k,y) is analytic inC
2, a contour integration along the boundary ofC2 converts~6.10!

into the algebraic equation,

Xr~k,y!2
2i eb

k2 ib

b2a

b1g
e2byXr~2 ib,y!5Pr~k,y!, y,0.

Using ~8.37! and the analyticity requirement onXr(k,y) to evaluateXr(2 ib,y), we get

Xr~k,y!5
2i eb

k2 ib

b2a

b1g

~b1g!e2by

b1g1e~b2a!e2by , y,0. ~8.38!

From ~3.17! we haveJr(k,y)51 for y,0. Thus, using~6.5! and ~8.38!, we get

Zr~0,y!5
~b1g!e22by2e~b2a!

~b1g!e22by1e~b2a!
, y,0.

Thus using~6.16! and ~6.18!–~6.20!, we obtainH(x) given in ~8.15!.
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Generalization of the Bremmer coupling series
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An operator formalism is developed to expand the acoustic wave field in a multi-
dimensionally smoothly varying medium, generated by a source localized in space
and time, into a sum of constituents each of which can be interpreted as a wave that
has traveled up and down with respect to a direction of preference a definite num-
ber of times. This expansion is a generalization of the Bremmer coupling series.
The condition of smoothness of the medium relates to the width of the signature of
the source in the configuration. Both the existence and the convergence~in the
weak sense! of the expansion are discussed. The operator calculus involved leads to
a natural generalization of the concept of slowness surface to multi-dimensionally
smoothly varying media. The operator associated with the corresponding general-
ized vertical slowness induces the full one-way wave operator in the type of media
under consideration. In addition, a wavefield decomposition operator as well as an
interaction operator that couples the decomposed constituents, are derived.
© 1996 American Institute of Physics.@S0022-2488~96!01407-7#

I. INTRODUCTION

In recent years, there has been an increasing interest in the use of one-way ‘‘parabolic’’
approximations to the wave operator in the application of seismic modeling and migration-
inversion techniques,1–3 and in the application of long-range waveguiding problems in ocean
acoustics4–6 and integrated optics.7,8 The parabolic approximation arises in the decomposition~or
‘‘splitting’’ ! of the acoustic wave field into constituents that travel ‘‘up’’ and ‘‘down’’ with
respect to a given direction of preference, such that the two constituents satisfy coupled partial
differential equations of a specific type. In this paper, we shall discuss the mathematical theory
underlying this decomposition technique. The theory builds on the work of Seeley,9,10

Hörmander,11 and Duistermaat and Guilleman,12 and is based on the calculus of pseudo-
differential operators. The use of such operators, in particular in the field of underwater acoustics
where it yields the factorization of the Helmholtz operator, has been noticed by Fishman and
McCoy,13–17Fishman,18,19 Fishman and Wales,20 McCoy and Frazer,21 and Weston.22 The inter-
action of up- and downgoing constituents has been discussed by McCoy, Fishman, and Frazer.23

Within the parabolic approximations, Corones24 has put the interaction in the context of the
Bremmer series.

The direction of preference, which is assigned to the ‘‘vertical’’ direction, arises from the
medium’s variations. In its exact form, the decomposition procedure transforms the scattering
problem inn dimensions into a continuous family of~n21!-dimensional problems, such that the
remaining scattering phenomenon can be solved with the aid of a Neumann series in the relative
vertical changes in the medium parameters. This series is a generalization to multi-dimensionally
varying media of the Bremmer coupling series that has been used in one-dimensional scattering
problems~for an example, see Ref. 25!.

a!Present address: Center for Wave Phenomena, Colorado School of Mines, Golden, Colorado 80401–1887.
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The decomposition introduced applies to media which vary smoothly on the scale of the
irradiating pulse, and generalizes the standard decomposition to media that are no longer transla-
tionally invariant in the ‘‘horizontal’’ directions. Owing to this generalization, more refined math-
ematical tools are required, such as the calculus of pseudo-differential operators. The up/down
decomposition does not allow any further decomposition into horizontal, right/left, directions.
Media, in which discontinuities in their physical properties occur, should be smoothed on the scale
of the irradiating pulse with the aid of equivalent medium averaging prior to the decomposition.
With regard to media with discontinuities, we mention the alternative, quasi-decomposition into
up- and downgoing waves in the neighborhood of a ‘‘rough’’ interface separating two homoge-
neous half-spaces with the aid of the modified Rayleigh hypothesis.26,27

The key applications of the Bremmer series are~i! an efficient way of numerically solving a
direct scattering problem,~ii ! identification of multiple scattered wave constituents, and~iii ! for-
mulations of various inverse scattering procedures. Fast numerical schemes require sparse matrix
representations of the kernel associated with the relevant integral or pseudo-differential part of the
one-way wave operator in space domain. The properties of the kernel, however, are such that
generic bases in which its representation becomes sparse do not exist. Parabolic-type approxima-
tions of the kernel’s symbol, on the other hand, lead to possible sparsifications. The validity of
such approximations has been discussed in previous papers.2,3 They typically capture the precriti-
cal angle phenomena in the wave propagation. Beyond this regime, matrix representations for the
exact cokernel, acting in horizontal slowness space, have to be considered. A list of references to
the development and applications of parabolic theories can be found in Ref. 2. Approximations of
a different nature and with a different range of validity result from the method of phase screens.28

Other numerical procedures are based on constructing a spectral representation of the pseudo-
differential part of the one-way wave operator and relate to normal-mode summation.

The solution of the direct scattering problem in the form of a Bremmer series allows one to
identify or predict multiple scattered constituents in the configuration. Applying this process to
physical measurements, however, requires some knowledge about the medium in which the ex-
periment has been carried out. In fact, the Bremmer series yields an expansion of the acoustic
wavefield in terms of the spatial derivatives of the medium properties, as opposed to an expansion
in the medium’s contrast with respect to a given embedding through a contrast-source integral
representation. The leading term in the former expansion is a high-frequency~Rytov-like! approxi-
mation to the wavefield; in the latter expansion, the leading term is the~distorted! Born approxi-
mation in the embedding. It is noted that, once the former procedure has led to a construction of
the Green’s function in the embedding, the latter procedure can be applied to the contrast~possibly
with discontinuities!.

The Bremmer coupling series essentially recomposes the solutions of the system of coupled
one-way wave equations into a two-way solution. As such, it connects the one-way wave formu-
lation of scattering to the Dirichlet-to-Neumann map formulation~see also Refs. 29 and 30!, and
also yields a solution of the associated invariant imbedding equations. We note that the decom-
position of the direct scattering problem is an integral part of the layer stripping approach to the
inverse scattering problem~see, for example, Ref. 31 for the one-dimensional formulation and
Ref. 32, for a multi-dimensional formulation!. In fact, the Bremmer series representation allows
one to link the asymptotic single-scattering approach~see, for example, Ref. 33 and 34! with the
mentioned multiple-scattering approach.

The Bremmer coupling series becomes a powerful tool in those configurations in which the
complexity of the medium is such that ray-theoretic approaches become intractable or the approxi-
mation by homogeneous horizontal layers breaks down.

The remainder of this paper is organized as follows. In Sec. II, the principle of directional
decomposition is explained. In Sec. III, the decomposition problem is related to the solution of an
elliptic problem in one dimension less than the original scattering problem. In Sec. IV, the original
system of two-way wave equations is transformed into a system of coupled one-way wave equa-
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tions. The one-way wave equations define a generalization of the concept of slowness surface,
which is discussed in Sec. V. In Sec. VI, the fundamental properties of the Green’s functions of
the one-way equations are derived. These functions are used in Sec. VII to transform the system
of one-way integro-differential equations into a system of integral equations, which is then solved
in terms of a Neumann series expansion. Finally, presented in Sec. VIII is a series expansion for
the generalized slowness surface that yields an explicit solution of the elliptic problem posed in
Sec. III. Section IX concludes the paper.

We note that our analysis differs slightly from the standard mathematical treatment of factor-
izing differential operators, since in our case the~n21!-dimensional~‘‘horizontal’’ ! space is not
assumed to be compact. However, with regard to the numerical implementation of the theory,
periodic boundary conditions may be imposed in the horizontal directions. The causal acoustic
waves are well defined onT n213R, whereT n21 denotes the~n21!-dimensional torus, for a
finite time window.

II. DIRECTIONAL DECOMPOSITION OF THE ACOUSTIC SCATTERING PROCESS

In each subdomain of the configuration where the acoustic properties vary continuously with
position, the acoustic wavefield satisfies the hyperbolic system of partial differential equations

]kp1r] ivk5 f k , ~II.1!

k] tp1] rv r5q, ~II.2!

wherep5acoustic pressure~Pa!, v r5particle velocity~m/s!, r5volume density of mass~kg/m3!,
k5compressibility~Pa21!, q5volume source density of injection rate~s21!, f k5volume source
density of force~N/m3!, and$x1 ,x2 ,x3% are the right-handed, orthogonal, Cartesian coordinates,t
is the time, and the subscript notation and the summation convention for Cartesian tensors are
employed. We assume that the coefficientsr and k are smooth, i.e., infinitely differentiable
functions of position, and time independent. Furthermore, we assume that these functions are
constant outside a sphere of finite radius. This provision enables us to formulate the acoustic wave
propagation, when necessary, as a scattering problem in a homogeneous embedding. The smooth-
ness entails that the singularities of the wavefield~in particular the ones on the wavefront! arise
from the ones in the signatures of the source distributions. Further, causality of the wave motion
is enforced. This implies that if the sources that generate the wavefield are switched on at the
instantt50, the wavefield quantities satisfy the initial conditions

p~xm ,t !50 for t,0 and all xm , ~II.3!

v r~xm ,t !50 for t,0 and all xm . ~II.4!

Due to the time invariance of the medium, the causality of the wave motion can also be taken into
account by carrying out a one-sided Laplace transformation with respect to time and requiring that
the transform-domain wave quantities are bounded functions of position in all space when the time
Laplace-transform parameters, which is in general complex, lies in the right half Re$s%.0 of the
complexs plane. The limiting case of sinusoidal oscillations of angular frequencyvPR is covered
by considering the limiting cases→ iv, in which i is the imaginary unit, the limit being taken via
Re$s%.0. In view of Lerch’s theorem,35 however, it is sufficient to consider values with Im$s%50
ands>s0.0; s0 will be specified at several stages in the analysis.

To show the notation, we give the expression for the acoustic pressure,

p̂~xm ,s!5E
t50

`

exp~2st!p~xm ,t !dt. ~II.5!
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Under this transformation, assuming zero initial conditions, we have]t→s. The transformed
system of first-order equations follows from Eqs.~II.1! and ~II.2! as

]kp̂1sr v̂k5 f̂ k , ~II.6!

sk p̂1] r v̂ r5q̂. ~II.7!

The change of the wavefield in space along a direction of preference can now be expressed in
terms of the changes of the wavefield in the plane perpendicular to it. The direction of preference
is taken along thex3 axis ~or ‘‘vertical’’ axis! and the remaining~‘‘horizontal’’ ! coordinates are
denoted byxm , m51,2. The procedure requires a separate handling of the horizontal components
of the particle velocity. From Eqs.~II.6! and ~II.7! we obtain

v̂k52r21s21~]kp̂2 f̂ k!, ~II.8!

leaving, upon substitution, the matrix differential equation

~]3d I ,J1sÂI ,J!F̂J5N̂I , I ,JP$1,2%, ~II.9!

in which the elements of the acoustic field matrix are given by@in Eq. ~II.7! r5n,3#

F̂15 p̂, ~II.10!

F̂25 v̂3 , ~II.11!

the elements of the acoustic system’s operator matrix are given by

Â1,15Â2,250, ~II.12!

Â1,25r, ~II.13!

Â2,152s21]n~r21s21]n !1k, ~II.14!

and the elements of the notional source matrix by

N̂15 f̂ 3 , ~II.15!

N̂252s21]n~r21 f̂ n!1q̂. ~II.16!

It is observed that the right-hand side of Eq.~II.8! andÂI ,J contain spatial derivatives with respect
to the horizontal coordinates only. Further, it is noted thatÂ1,2 is a multiplicative operator,
whereasÂ2,1 is a partial differential operator. Equation~II.9! is sometimes called thetwo-way
wave equation~Ref. 36!.

To be able to solve the scattering process along the vertical direction separately from the
scattering process in the~family of! planes perpendicular to it, we decouple the two operators on
the left-hand side of Eq.~II.9!. This procedure will possibly lead to an additional source term on
the right-hand side that accounts for the coupling. To achieve this, we shall construct an appro-
priate linear operatorL̂ I ,J with

F̂ I5L̂ I ,JŴJ ~II.17!

that, with the aid of the commutation relation
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~]3L̂ I ,J!5@]3 ,L̂ I ,J# ~II.18!

~@.,.# denotes the commutator!, transforms Eq.~II.9! into

L̂ I ,J~]3dJ,M1sL̂J,M !ŴM52~]3L̂ I ,J!ŴJ1N̂I , ~II.19!

so as to makeL̂J,M, satisfying

ÂI ,JL̂J,M5L̂ I ,JL̂J,M , ~II.20!

a diagonal matrix of operators. We denoteL̂ I ,J as the composition operator andŴM as the wave
matrix. The elements of the wave matrix represent the local weights of the down- and upgoing
constituents~see also Fig. 1!. The expression in parentheses on the left-hand side of Eq.~II.19!
represents the two so-calledone-waywave operators~Ref. 36!. The first term on the right-hand
side of Eq.~II.19! is representative for the scattering due to variations of the medium properties in
the vertical direction. The scattering due to variations of the medium properties in the horizontal
directions is contained inL̂J,M and, implicitly, in L̂ I ,J .

To investigate whether solutions (L̂ I ,J ,L̂J,M! of Eq. ~II.20! exist, we introduce the column
matrix, or generalized eigenvector, operatorsL̂ I

(6) according to

L̂ I
~1 !5L̂ I ,1 , ~II.21!

L̂ I
~2 !5L̂ I ,2 . ~II.22!

Upon writing the diagonal elements ofL̂J,M as

L̂1,15Ĝ~1 !, ~II.23!

L̂2,25Ĝ~2 !, ~II.24!

Eq. ~II.20! decomposes into the two systems of equations

ÂI ,JL̂J
~1 !5L̂ I

~1 !Ĝ~1 !, ~II.25!

ÂI ,JL̂J
~2 !5L̂ I

~2 !Ĝ~2 !. ~II.26!

FIG. 1. Directional decomposition.
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By analogy with the case where the medium is translationally invariant in the horizontal direc-
tions, we shall denoteĜ~6! as thevertical slownessoperators. Notice that the operatorsL̂1

~6!

compose the acoustic pressure and that the operatorsL̂2
~6! compose the vertical particle velocity,

whereas the elements ofŴM may be physically ‘‘nonobservable.’’
Through mutual elimination, the equations forL̂1

~6! and L̂2
~6! can be decoupled as follows:

Â1,2Â2,1L̂1
~6 !5L̂1

~6 !Ĝ~6 !Ĝ~6 !, ~II.27!

Â2,1Â1,2L̂2
~6 !5L̂2

~6 !Ĝ~6 !Ĝ~6 !. ~II.28!

The partial differential operators on the left-hand sides, which are given by

Â2,1Â1,252s21]n~r21s21]n~r !…1kr, ~II.29!

Â1,2Â2,152rs21]n~r21s21]n !1rk, ~II.30!

are strongly elliptic in the horizontal planeR2 for each value of the vertical coordinatex3PR and
all frequenciess under consideration; they differ from one another in case the volume density of
mass does vary in the horizontal directions. To ensure that nontrivial solutions of Eqs.~II.27! and
~II.28! exist, one equation must imply the other. To construct a formal solution, an Ansatz is
introduced in the form of a commutation relation for one of the componentsL̂J

(6) that restricts the
freedom in the choice for the other component. Three choices will be considered.

A. Acoustic-pressure normalization analog

Our first Ansatz assumes thatL̂2
~6! can be chosen such that

@ L̂2
~6 ! ,Â2,1Â1,2#50. ~II.31!

In view of Eq. ~II.28!, the Ĝ~6! must then satisfy

Â2,1Â1,22Ĝ~6 !Ĝ~6 !50. ~II.32!

The commutation relation forL̂1
~6! follows as [Â1,2

21L̂1
(6) ,Â2,1Â1,2#50 and a possible solution of

Eqs.~II.25! and ~II.26! is

L̂2
~6 !5Ĝ~6 !, L̂1

~6 !5Â1,2. ~II.33!

Since L̂2
~6! as given by Eq.~II.33! satisfies Eq.~II.31!, the Ansatz is justified. In view of the

up/down symmetry, the solutions of Eq.~II.32! are written as

Ĝ~1 !52Ĝ~2 !5Ĝ5Â1/2, ~II.34!

where Â[Â2,1Â1,2. Thus, the composition operator becomes

L̂5S Â1,2 Â1,2

Ĝ 2Ĝ
D . ~II.35!

In terms of the inverse vertical slowness operator,Ĝ215Â21/2, the decomposition operator then
follows as

L̂215
1

2 S Â1,2
21 Ĝ21

Â1,2
21 2Ĝ21D . ~II.36!

3251Maarten V. de Hoop: Generalized Bremmer coupling series

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



In this normalization, the elements of the wave matrix correspond with pressures up to the action
of Â1,2; pressures are typically measured with hydrophones.

B. Vertical-particle-velocity normalization analog

A second Ansatz assumes thatL̂1
~6! can be chosen such that

@ L̂1
~6 ! ,Â1,2Â2,1#50. ~II.37!

Then,Ĝ~6! must satisfy@cf. Eq. ~II.27!#

Â1,2Â2,12Ĝ~6 !Ĝ~6 !50, ~II.38!

and a possible solution of Eqs.~II.25! and ~II.26! is

L̂1
~6 !5Ĝ~6 !, L̂2

~6 !5Â2,1, ~II.39!

which satisfies the second Ansatz. The solutions of Eq.~II.38! are written as

Ĝ~1 !52Ĝ~2 !5Ĝ5Â1/2, ~II.40!

where Â[Â1,2Â2,1. Thus, the composition operator is given by

L̂5S Ĝ 2Ĝ

Â2,1 Â2,1
D . ~II.41!

Now, the decomposition operator becomes

L̂215
1

2 S Ĝ21 Â21Â1,2

2Ĝ21 Â21Â1,2
D . ~II.42!

In this normalization,Â2,1 acting on the elements of the wave matrix results in vertical particle
velocities; particle velocities are typically measured with geophones.

C. Vertical-acoustic-power-flux normalization analog

It will appear to be advantageous to consider a third Ansatz, viz., the one arising from the
acoustic-power-flux normalization. For this, the commutation relation

@Â1,2
21/2L̂1

~6 ! , Â1,2
1/2Â2,1Â1,2

1/2#50 ~II.43!

is imposed onL̂1
~6! . Then the vertical slowness operators must satisfy the equation

Â1,2
1/2Â2,1Â1,2

1/22Ĝ~6 !Ĝ~6 !50. ~II.44!

Note that the operator Aˆ ,

Â[Â1,2
1/2Â2,1Â1,2

1/252r1/2s21]n„r
21s21]n~r1/2 !…1kr, ~II.45!

is self-adjoint with respect to the standard realL2 inner product in~almost all of! L2. A possible
solution of Eqs.~II.25! and ~II.26! is now given by

L̂1
~6 !5~Â1,2/2!1/2~ Ĝ~1 !!21/2, L̂2

~6 !56~2Â1,2!
21/2~ Ĝ~1 !!1/2. ~II.46!

The solutions of Eq.~II.44! are written as
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Ĝ~1 !52Ĝ~2 !5Ĝ5Â1/2. ~II.47!

Thus, the composition operator is given by

L̂5
1

&

S Â1,2
1/2Ĝ21/2 Â1,2

1/2Ĝ21/2

Â1,2
21/2Ĝ1/2 2Â1,2

21/2Ĝ1/2D . ~II.48!

This composition operatorL̂: (L2)2→(L2)2 is normalized in the sense that@cf. Eq. ~II.46!#

L̂TJL̂5S I 0

0 2I D , ~II.49!

with

J5S 0 I

I 0D . ~II.50!

This normalization establishes the connection with asymptotic ray theory in the vicinity of the
wavefronts.

Using Eq.~II.48!, we can map the pressure to the vertical particle velocity, viz.,

F̂25Ŷ~1 !F̂1 if Ŵ250, ~II.51!

F̂25Ŷ~2 !F̂1 if Ŵ150, ~II.52!

where

6Ŷ~6 !5Ŷ5Â1,2
21/2ĜÂ1,2

21/2 ~II.53!

has the interpretation ofadmittanceoperator. The latter operator discriminates the decomposed
constituents. Note thatF̂1

TF̂2 represents the vertical component of the Poynting vector.
The decomposition operator becomes

L̂215
1

&

S Ĝ1/2Â1,2
21/2 Ĝ21/2Â1,2

1/2

Ĝ1/2Â1,2
21/2 2Ĝ21/2Â1,2

1/2D . ~II.54!

It is observed that all the operators involved can be directly constructed from Aˆ 21/4, viz.,
Ĝ21/25Â21/4, Ĝ1/25Â~Â21/4!3, andĜ5Â~Â21/4!2. All these powers of Aˆ are self-adjoint in~almost
all of! L2 as well as positive definite, since it has been assumed that Im$s%50 and Re$s%.0.

Apparently a whole class of composition operatorsL̂ I ,J , all leading to different representa-
tions of the scattering process in the horizontal space, exists. The final results for the acoustic
pressure and the vertical particle velocity, however, will not depend on a particular choice: in
terms of observables the decomposition yields

F̂ I
~1 !5L̂ I

~1 !~ L̂21!1,JF̂J , ~II.55!

F̂ I
~2 !5L̂ I

~2 !~ L̂21!2,JF̂J . ~II.56!

For practical applications, one adjusts the normalization to the sensors being used; it is quite
common that only one of the two relevant field components is being measured.

At this point, it is emphasized thatĜ~6! are still unknown. It is noted that the key property we
have used so far is that the diagonal of the system’s operator matrixÂ vanishes. For the evaluation
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of Ĝ~6!, and L̂J
(6), we need to introduce~fractional! powers of an elliptic partial differential

operator inR2 for each value ofx3PR @cf. Eq. ~II.32!, ~II.38!, or ~II.44!#. How this can be done
will be discussed in Sec. III. In this respect it is noted that only a proper definition of a negative
~fractional! power is needed, since positive fractional powers are constructed from the negative
ones through the application of the operator itself an appropriate number of times. For the time
being, the vertical coordinate will play the role of parameter, which will be indicated by writing
R35R23R. In this framework, the wavefield is viewed as a map ofx3 with values in a function
space onR2.

III. THE DIMENSIONALLY REDUCED SCATTERING PROBLEM

In this section we will consider the acoustic-pressure normalization analog. All the other
normalizations lead to similar results. Thus, consider the partial differential operator Aˆ5Â2,1Â1,2
on R2 @cf. Eq. ~II.29!# which iselliptic with a parameteryet to be specified. The dependence on
x3 will be suppressed in this section.

In the following analysis it is assumed that the field matrixF̂ I and the wave matrixŴM are
contained in proper spaces, which, in view of the smoothness of the medium, is controlled by the
source distributions@cf. Eqs.~II.6! and~II.7!#. The elliptic operator is clearly well-defined on the
spaceC0

` of smooth functions with compact support inR2. It can be extended as a bounded
operatorÂ: Hr→Hr22 for any realr ~Ref. 37, Theorem 8.9!. Here,Hr is a reserved symbol for
the Sobolev spaces.@Whenever we writeHr , we meanHr~R2!; otherwise, the underlying space
will be specified.# The norm onHr will be denoted asi.ir , and the norm of an operator
Hr→Hr 8 asi .i r ,r 8 . The norms are implicitly scaled with the time Laplace-transform parameters;
we postpone the discussion of this aspect to Sec. V. In particular, whenr50, we have an operator
Â: L2→H22, which is bounded. On the other hand, note that Aˆ : L2→L2 is unbounded in general.

First, we shall discuss the existence and integral representations of powers of Aˆ . To this end,
we need to analyze the properties of itsresolvent. The construction of the resolvent is, essentially,
the solution to the reduced scattering problem and will be dealt with in Sec. VIII.

A. Properties of the resolvent

Let l be a complex variable. The resolventR̂l of Â is defined as

R̂l5~Â2lI !21: Hr→Hr1 l , 0< l<2. ~III.1!

It exists for l¹s~Â!, which defines the spectrums~Â! of Â. We refer to this spectrum as the
horizontal spectrum. Whenever confusion would arise, the resolvent will be denoted asR̂l

~A! rather
than R̂l to explicitly show its relation to the operator Aˆ .

First, to analyze the spectrum of Aˆ , we consider the caser5 l50. We haveÂ: L2→L2. In
accordance with the structure of our horizontal partial differential operators, we introduce a family
of inner products onL2 with respect toû5û(xm ,s) and v̂5 v̂(xm ,s) as

^û,v̂&0p5E
xmPR

û* v̂rpdx1dx2 , ~III.2!

where* denotes complex conjugate~note that fors real all the quantities are, however, real! and
correspondingL2-norms as

i ûi0p
2 5^û,û&0p ~III.3!

with 21<p<1. For the acoustic-pressure normalization analog we takep51. ~For the vertical-
particle-velocity normalization analog we takep521 and for the vertical-acoustic-power-flux
normalization analog we takep50. Whenp50 the subscript will be omitted.! Using
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E
xmPR

@2s21]n„r
21s21]n~rû!…#* v̂rdx1dx2

52E
xmPR

r21[2s21]n~rû!] * ~s* !21]n~r v̂ !dx1dx2

5E
xmPR

û* @2~s* !21]n„r
21~s* !21]n~r v̂ !…# rdx1dx2 , ~III.4!

it is found that Âis self-adjoint inL2, i.e.,

^Âû,v̂&015^û,Âv̂&01. ~III.5!

In the derivation of Eq.~III.4! it was used that the sum of contributions from the boundaries in the
horizontal plane at infinity vanishes. In fact, the proof is obvious onC0

` ; subsequently, use thatC0
`

is dense inL2. Note that the self-adjointness@cf. Eq. ~III.5!# in combination with the unbounded-
ness is not in contradiction with the Hellinger–Toeplitz theorem,38 since it only holds for func-
tions that satisfy boundary conditions associated with causal solutions to the spectral-domain
acoustic equations.

From Eq.~III.4! it also follows that~here, we need the condition Im$s%50!

^Âû,û&015E
xmPR

r21us21]n~rû!u2 dx1dx21E
xmPR

kruûu2 rdx1dx2 , ~III.6!

so that

^Âû,û&01>^c22&^û,û&01, ~III.7!

in which

^c22&5 inf
xmPR

$kr%.0. ~III.8!

This shows that Aˆ is positive and semi-bounded from below ini .i01. Again, these properties
trivially hold, e.g., onC0

` . Since by Cauchy–Schwarz’ inequality

i~Â2lI !ûi01i ûi01>u^~Â2lI !û,û&01u, ~III.9!

while @cf. Eq. ~III.7!#

u^Âû,û&012l* ^û,û&01u>@~^c22&2Re$l%!21~ Im$l%!2#1/2^û,û&015u^c22&2lu^û,û&01
~III.10!

if Re$l%<^c22&, we obtain

i~Â2lI !ûi01i ûi01>u^c22&2lui ûi01
2 . ~III.11!

Hence, whenl¹s~Â! and Re$l%<^c22&, we arrive at the estimate

iR̂li01,01<u^c22&2lu21 ~III.12!

for the operator norm of the resolvent as an operatorL2→L2. Whenl is large enough, this implies
that there exists a constantC0,0 such that
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iR̂li01,01<C0,0/ulu. ~III.13!

Now, let the inner product onHr using Parseval’s formula be defined through

^.,.& r p5^~ Ĝ0!
r .,~ Ĝ0!

r .&0p with Ĝ05@2s22]s]s1^c22&#1/2.

Thus, the inner product and the corresponding norm contain the parameters. The estimate for the
norm ofR̂l can be generalized following Ref. 9, Theorem 1, Corollary 1, and is given in Sec. VIII:

iR̂li r ,r1 l<Cr ,l /ulu12 l /2, 0< l<2, ~III.14!

when l is large enough and lies in the sectorL5L0øLsp of the complex plane, whereL0 is
defined asp/2,uarg~l!u<p andLsp is defined as 0,uarg~l!u<p/2.

From Eq.~III.7! ~r50! it also follows that the spectrum must be real and positive and bounded
from below, i.e., whenlPs~Â!,

l>^c22&; ~III.15!

the ‘‘smoothness’’ of the possible eigenfunctions is estimated in their appropriate Sobolev space
Hr . The property that the spectrum is semibounded from below extends to Aˆ as an unbounded
operatorHr→Hr also for rÞ0 ~see also Ref. 37, Theorem 13.31!. We have to ensure that the
spectrum is strictly positive inHr for rÞ0. Since the multiplication operator, arising from the
multiplicative part, sayf̂, of the elliptic operator Aˆ satisfies (Ĝ0!

rf̂~Ĝ0!
2r 5f̂2[ f̂, (Ĝ0!

r#~Ĝ0!
2r

while [f̂ ,Ĝ0#5O~s21! ass→ `, it is found that̂ f̂û,û& r p> 0 if the medium is sufficiently smooth
or s is large enough andf̂>0. Anyway, the spectrum can be controlled by imposing constraints on
the compressibility or on the topology of the underlying horizontal space. In general, the spectrum
will consist of absolute continuous~branch cut!, pure point and possibly singular continuous
contributions. By requiring thatk→ ` asuxmu→ `, or by applying periodic boundary conditions in
the horizontal directions, the operator Aˆ becomes compact, and its spectrum becomes discrete.

It is observed that the estimate in Eq.~III.14! and the properties ofÂ hold at each depth level
x3, provided that̂c

22& is a positive and bounded function ofx3. How to obtain, via a parametrix,
the resolvent, which is a two-dimensional problem, will be discussed at the end of this paper.

Given the resolventR̂l for l¹ s~Â!, we then construct general powers of the differential
operator Â, following a standard procedure from functional analysis. This will be discussed in the
next subsections.

B. Negative fractional powers of the elliptic operator

Let the powerlz of a complex variablel with zPR be defined as

lz5uluz exp@ iz arg~l!#, ~III.16!

with arg~l!P~2p,p!. With this definition, the branch cut oflz is along the negative real axis. Let
B be a contour of integration in thel plane around the branch cut, counter-clockwise oriented,
staying away a small but finite distance from the origin~the branch point!, not intersecting the
spectrums~Â!, and going to infinity in the sectorL0. Then, forzPR,0, the Dunford integral

Âz5
1

2p i ElPB

lzR̂l dl ~III.17!
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converges in the operator normi•i r ,r22z onH
r ~the proof relies on the symbol calculus of Secs.

V and VIII for the parametrix of Aˆ2lI for lPL0 large, in combination with the knowledge about
the spectrums~Â! near the origin!. The integral satisfies the composition equation

ÂzÂw5Âz1w ~III.18!

for z, wPR,0. To show this, consider another contourB8 around the branch cut such thatB is in
betweenB8 and the branch cut. The integral in Eq.~III.17! remains the same when the contourB

is deformed intoB8 ~see Fig. 2!, since the contributions from the arcs connectingB andB8 at
infinity vanish. UsingB8 to evaluate Aˆ z andB to evaluate Aˆ w , we get

ÂzÂw52
1

4p2 E
lPB8

E
mPB

R̂lR̂mlzmw dldm52
1

4p2 E
lPB8

E
mPB

lzmw

l2m
~R̂l2R̂m!dldm,

~III.19!

in view of the Hilbert identity. Since for the first term we have owing to the theorem of residues

E
lPB8

F E
mPB

mw

l2m
dmGlzR̂l dl52p i E

lPB8
lw1zR̂l dl ~III.20!

and, upon changing the order of integration, for the second term

E
mPB

F E
lPB8

lz

l2m
dlGmwR̂m dm50, ~III.21!

in view of Cauchy’s theorem, Eq.~III.19! reduces to

FIG. 2. Contours for the Dunford integral~Seeley’s rays of minimal growth!.
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ÂzÂw5
1

2p i ElPB8
lz1wR̂l dl, ~III.22!

from which Eq.~III.18! is found.

C. The inverse operator

In the casez521, Eq. ~III.17! implies

Â215
1

2p i ElPS

l21R̂l dl, ~III.23!

whereS encircles the origin counter-clockwise~note that the contributions from the branch cut
cancel!. The spectrum of Aˆ lies outsideS in thel plane. The change of variablesm5l21 leads to

Â215
1

2p i EmPS 8
mR̂m21m22 dm, ~III.24!

where S 8 denotes the contour in them plane corresponding toS in the l plane, but also
encircling the origin counter-clockwise. Notice that the spectrum of Aˆ lies insideS 8 in the m
plane, henceR̂m21 is well defined onS 8. Since

R̂m215mÂ21~mI2Â21!21, ~III.25!

certainly whenmPS 8, substitution in Eq.~III.24! yields

Â215
1

2p i
Â21E

mPS 8
m21~ I2m21Â21!21 dm. ~III.26!

Since the operator Aˆ 21 must be bounded,~I2m21Â21!21 can be expanded in the Neumann series

(I2m21Â21!215(n50
` m2nÂ2n. In view of Cauchy’s theorem, only the termn50 in Eq. ~III.26!

contributes, from which it follows that

Â215Â21 ~III.27!

~see, e.g., Ref. 39, III Theorem 6.15!. Equations~III.18! and ~III.27! show that the operators Aˆ z
behave like ordinary powers for negative values ofz.

D. Non-negative fractional powers of the elliptic operator

With the aid of Eq.~III.17! a non-negative fractional power of Aˆ can be readily introduced
through

Âz5ÂkÂz2k , ~III.28!

wherek is an integer such thatk.z. The resulting operators behave, again, like ordinary powers,
i.e.,

ÂzÂw5Âz1w ~III.29!

~note that Âand its resolvent commute!.
In view of Eqs.~III.17!, and~III.28! and~III.14!, which are based on the results of Sec. VIII,

it follows that Âz: Hr→Hr22z is bounded for generalr and for allzPR.
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E. The Schrö dinger problem

If Â is compactand self-adjoint, its eigenfunctionsc and spectrum can be used to evaluate its
negative fractional powers, viz., upon choosing the contourB in the Dunford integral equation
~III.17! in Lsp arounds~Â!. Then, applying the theorem of residues leads to

Âzc@N#5
1

2p i ElPB

lzR̂lc@N# dl5
1

2p i
c@N#E

lPB

lz~l@N#2l!21 dl5l@N#
z c@N# .

~III.30!

Expanding the components of the wave matrix into the eigenfunctions of Aˆ leads to a diagonal
representation of Aˆ z , viz.,

Âzû5(
@N#

l@N#
z û@N#c@N# with û5(

@N#
û@N#c@N# . ~III.31!

Finding the horizontal spectrum and eigenfunctions, Aˆ c 5lc, is a Schro¨dinger problem in two
dimensions; note that this spectrum may vary withx3. The Dunford integral around the spectrum
links the current methodology to the theory of waveguides in two dimensions, sinces2Â corre-
sponds with a dimensionally reduced wave equation.

F. Vertical derivatives of powers of the elliptic operator

Consider, again, Eq.~II.19!. We are now in a position to show that~]3L̂ I ,J! exists. As before,
it is sufficient to prove that the expression for~]3Âz! converges in operator norm whenz,0. To
this end, we consider the integral

1

2p i ElPB

lz]3R̂l dl,

in which

]3R̂l52R̂l~]3Â!R̂l , ~III.32!

where]3 in ~]3Â! acts on the coefficients of Aˆ only. In fact, ~]3Â!: Hr→Hr is a multiplication
operator. Note that this operator is bounded, since the derivatives of the medium parameters are
assumed to be continuous. Further,]3R̂l vanishes in those regions where the medium properties
are independent ofx3. The norm of]3R̂l satisfies the estimate@cf. Eq. ~III.14!#

i]3R̂li r ,r1 l1m<iR̂li r1 l ,r1 l1mi~]3Â!i r1 l ,r1 l iR̂li r ,r1 l<Cr ,l ,m /ulu22~ l1m!/2 ~III.33!

for 0<l , m<2, andlPL0 large. It then also follows that~]3Âz!: H
r→Hr22(z21) exists and is

bounded for Re$z%,0 ~the proof relies on the symbol expansions to be discussed in Sec. VIII!.
Now, use the relation

~]3Â
z!5~]3Â

kÂz2k!5 (
q50

k

Âq~]3Â!Âk2qÂz2k1Âk~]3Âz2k!

to extend the result fromz,0 to z>0.
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IV. THE SYSTEM OF ONE-WAY WAVE EQUATIONS IN THE
TIME-LAPLACE-TRANSFORM DOMAIN

Next, we complete the directional decomposition procedure. Using any of the decomposition
schemes, Eq.~II.19! transforms into

~]3d I ,M1sL̂I ,M !ŴM52~ L̂21! I ,M~]3L̂M ,K!ŴK1~ L̂21! I ,MN̂M , ~IV.1!

which can be interpreted as a coupled system of one-way wave equations. The coupling between
the components ofŴM is apparent in the first sourcelike term on the right-hand side. In particular,
we shall further investigate the decomposition operator associated with the vertical-power-flux
normalization and given by Eq.~II.48!. For this normalization, the coupling operator becomes

2L̂21~]3L̂ !5S T̂ R̂

R̂ T̂
D , ~IV.2!

in which

T̂52 1
4Ĝ

21/2@Ĝ, Â1,2
21~]3Â1,2!#Ĝ

21/22 1
2@Ĝ1/2, ~]3Ĝ

21/2!#, ~IV.3!

where we have used the property thatĜ1/2~]3Ĝ
21/2!52~]3Ĝ

1/2!Ĝ21/2, is the transmissionoperator
that consists of commutators only, and

R̂52 1
4Ĝ

21/2
„@Ĝ, Â1,2

21~]3Â1,2!#12Â1,2
21~]3Â1,2!Ĝ22~]3Ĝ!…Ĝ21/2

52 1
4Ĝ

21/2$Ĝ,Â1,2
21~]3Â1,2!%Ĝ

21/22 1
2$Ĝ

1/2,~]3Ĝ
21/2!%, ~IV.4!

where $.,.% denotes the anticommutator, is thereflectionoperator. In the limit of a horizontally
homogeneous medium~or ass→ `!, the physical interpretation of Eq.~IV.1! simplifies since then
L̂21(]3L̂) becomes purely off-diagonal. In this case, therefore only counter-propagating constitu-
ents interact. This property reveals the consistency of the decomposition method with asymptotic
ray theory.

The reflection and transmission operators are bounded and vanish, due to our initial assump-
tion of a homogeneous, isotropic embedding, outside a closed interval along thex3-direction. To
show the boundedness, note that the multiplication operator,

Â1,2
21~]3Â1,2!: Hs→Hs with Â1,2

21~]3Â1,2!PC0
` , ~IV.5!

is bounded for allHs. Further, Ĝ1/2~]3Ĝ
21/2!52~]3Ĝ

1/2!Ĝ21/2: Hr→Hr1 l with 0<l<2 are
bounded. Thus, the norms of the reflection and transmission operators inR2 can be estimated as

iT̂i r ,r<Cr ,1
T @ iĜ21/2i r21/2,r iÂ1,2

21~]3Â1,2!i r21/2,r21/2iĜ1/2i r ,r21/2

1iĜ1/2i r11/2,r iÂ1,2
21~]3Â1,2!i r11/2,r11/2iĜ21/2i r ,r11/2#1Cr ,2

T i@Ĝ1/2,~]3Ĝ
21/2!#i r ,r

~IV.6!

and

iR̂i r ,r<Cr ,1
R @ iĜ21/2i r21/2,r iÂ1,2

21~]3Â1,2!i r21/2,r21/2iĜ1/2i r ,r21/2

1iĜ1/2i r11/2,r iÂ1,2
21~]3Â1,2!i r11/2,r11/2iĜ21/2i r ,r11/2#1Cr ,2

R i$Ĝ1/2,~]3Ĝ
21/2!%i r ,r

~IV.7!

uniformly in s>s0.0.
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So far we have replaced Eq.~II.9! by Eqs.~IV.1! and ~II.17!. Equation~IV.1! shows that at
this stage the vertical derivative operator needs further analysis. To illustrate how the source
distributions control the space to which the wave matrix belongs, suppose thatf̂ kPHr and
q̂PHr21. ThenN̂1PHr andN̂2PHr21 @cf. Eqs.~II.15! and~II.16!#. In accordance with the matrix
operator in Eq.~II.9!, F̂1PHr11 and F̂2PHr . Further, we haveÂ1,2: Hr (11)→Hr (11), whereas
Â2,1: Hr11→Hr21 @cf. Eqs.~II.12!–~II.14!#. In view of Eq.~II.48! we then arrive atŴMPHr11/2.
In practice, we setr521

2.

A. Factorization of the ‘‘Helmholtz’’ operator

If we constrain our configuration to a vertically homogeneous~thin! slab, the directional
decomposition implies a factorization of the Laplace-domain analog of the second-order wave
equation. Using Eq.~II.40!, we find that

~]31sĜ~1 !!~]31sĜ~2 !!5]3
22s2Â. ~IV.8!

Indeed, the pressure satisfies the equation@cf. Eq. ~II.9!#

~]3
22s2Â1,2Â2,1!F̂15]3N̂12Â1,2 sN̂2 . ~IV.9!

However, it is emphasized that the factorization does not hold in this form for vertically hetero-
geneous media.

V. THE GENERALIZED VERTICAL SLOWNESS

For the proofs of the basic results in Sec. III, for the evaluation of the resolventR̂l
~A! and hence

of Ĝ and L̂ I ,J , as well as in preparation of the evaluation~and the associated numerical imple-
mentation with respect to a Fourier basis! of the Green’s functions belonging to the left-hand side
of Eq. ~IV.1!, the calculus of pseudo-differential operators is employed. An overview of the
pseudo-differential-operator calculus can be found in several textbooks.11,40–42

It is obvious that Aˆ : Hr→Hr22 can be interpreted as a pseudo-differential operator of order
2. The existence of the resolvent, via a parametrix, as a pseudo-differential operator has been
shown by Seeley,9 Section 6. As a consequence of this, the vertical slowness operator
Ĝ5Â1/2: Hr→Hr21 can be represented by a pseudo-differential operator of order 1.

A. General considerations

First, we present some rules for a general pseudo-differential operatorĜ: Hr→Hr2d of order
d; later on, we will focus our attention on the particular case of the vertical slowness operator for
which d51.

The Fourier transformation in the horizontal plane is defined as

ũ~am ,x3 ,s!5E
xmPR

û~xm ,s!exp~ isamxm!dx1dx2 . ~V.1!

Here,iam are identified as the horizontal slownesses. Now, the Sobolev norm~with parameters!
on Hr is written as~in view of Plancherel’s theorem!

i ûi r
25S s

2p D 2E
amPR

†uũ~am ,x3 ,s!u @~^c22&1asas!1/2# r‡2da1da2 . ~V.2!

In the space domain,ial corresponds to thehorizontal slownessoperator

Dl52
1

s
]l . ~V.3!
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Note thatDl and the multiplication byxk do not commute, since

@xk , Dl#5
1

s
dk,l . ~V.4!

However, in the limits→` the commutator vanishes. By letting the operatorĜ act on a Fourier
component exp~2isamxm! we introduce its left symbolĝ(xk ,al),

Ĝ~xk ,Dl!exp~2 isamxm!5ĝ~xk ,al!exp~2 isamxm!. ~V.5!

For a general test functionû this implies

„Ĝ~xk ,Dl!û…~xm!5E
xn8PR

Ĉ ~xm ,xn8!û~xn8!dx18dx28 , ~V.6!

in which, with the use of Eq.~V.1!,

Ĉ ~xm ,xn8!5S s

2p D 2E
anPR

ĝ~xm ,an!exp@ isan~xn82xn!#da1da2 . ~V.7!

Here,Ĉ is called the Schwartz kernel of the pseudo-differential operatorĜ. The left symbol and
the Schwartz kernel are related through the Fourier transformation@cf. Eq. ~V.7!#

ĝ~xm ,al!5E
xn8PR

Ĉ ~xm ,xn8!exp@ is~xl2xl8 !al#dx18dx28 . ~V.8!

In the horizontal space Fourier-transform domain Eq.~V.6! becomes

~ Ĝũ!~am!5S s

2p D 2E
an8PR

g̃~am2am8 ,an8!ũ~an8!da18da28 , ~V.9!

whereG̃ is defined as

~ Ĝũ!~am!5E
xnPR

exp~ isamxm!Ĝ~xk ,Dl!û~xn!dx1dx2 ~V.10!

and g̃ as

g̃~am ,an8!5E
xnPR

exp~ isamxm!ĝ~xm ,an8!dx1dx2 . ~V.11!

Equation~V.9! explicitly shows the interaction between the different Fourier components~see also
Refs. 43–45!. The quantityg̃ is denoted as thecokernel42 of Ĝ. Its representation is useful for
numerical computations.

The notation in Eq.~V.6! is justified by the fact that ifĝ would be a polynomial inal , as is
the case whenĜ is a partial differential operator, thenĜ would be obtained fromĝ by replacing
ial byDl put to the right of the coefficients. Still, we omit the dependencies ofĝ andû on x3 and
s for the time being. The integral in Eq.~V.6! converges with Eq.~V.7! even whenĝ becomes
large, as long asĝ oscillates more slowly than the exponential. The Schwartz kernel@cf. Eq.~V.7!#
is a so-called oscillatory integral. To guarantee that the right-hand side of Eq.~V.7! exists as a
distribution, the symbolĝ must lie in a spaceSd~R23R2!, d being a real number, which means
that for allm1 ,m2 ,n1 ,n2 there exists a constantCm1 ,m2 ,n1 ,n2

such that~Ref. 11, Definition 18.1.1!
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u~]a1

m1]a2

m2]x1
n1]x2

n2ĝ !~xk ,al!u<Cm1 ,m2 ,n1 ,n2
@~^c22&1asas!1/2#d2m12m2 ~V.12!

for all xkPR, alPR. The constantCm1 ,m2 ,n1 ,n2
may depend ons but is O~1! as s→ `. The

numberd is called the order of the spaceSd. We writeS2` 5 ùdPRS
d. Under the condition Eq.

~V.12! it follows that Ĉ is a distribution of order<k with k.d12 ~Ref. 46, Theorem 7.8.2 and
Appendix A!, while Ĝ: Hr→Hr2d is continuous~Ref. 11, Theorem 18.1.13! andd is the so-called
order of the operator; the corresponding operator norm associated with the Sobolev norm with
parameter isO~1! ass→ ` if the symbol isO~1!. Then the kernel is smooth outside the diagonal
in R23R2. The space of pseudo-differential operators of which the left symbols are inSd is
denoted by OpSd. It is observed that OpS2` is the space of operators the Schwartz kernels of
which are inC`~R23R2!. The expansions of symbols to be considered later on will all be
modS2`.

B. The equation for the slowness surface

The left symbolâ5â(xm ,an) of the normalized elliptic differential operator given in Eq.
~II.45!,

Â52r1/2s21]n„r
21s21]n~r1/2 !…1kr

52s22]n]n1kr1 3
4r

22s22~]nr!22 1
2r

21s22~]n]nr!, ~V.13!

using Eq.~V.5!, is obtained as

â5anan1kr1 3
4r

22s22~]nr!22 1
2r

21s22~]n]nr!. ~V.14!

The latter expression is real valued, while termsO(s21) do not occur. The symbol lies inS2 ~note
that the third- and higher-order derivatives with respect toan vanish and that the volume density
of mass and the compressibility together with their derivatives are bounded functions of position
in space!. The corresponding Schwartz kernel is given by

Â~xm ,xm8 !52s22]n]nd~xm2xm8 !

1@kr1 1
2r

21s22$ 3
2r

21~]nr!22~]n]nr!%#~xm!d~xm2xm8 !, ~V.15!

with as its supportxm 5 xm8 , i.e., the diagonal inR
23R2.

To transform the operator equation~II.44! into an equation for the corresponding left symbols,
we consider the composition of two pseudo-differential operators. Representing the operators as in
Eqs. ~V.6! and ~V.7!, the composition rule for the respective left symbols is found~see the
Appendix!. Application of this rule yields the definition of the generalized slowness surface as the
solutionsĝ~6!PS1 of @cf. Eq. ~V.14!#

2S s

2p D 2E
xn8PR

E
an8PR

ĝ~xm ,al8 !exp@ is~xs2xs8 !~as2as8 !#ĝ~xl8 ,an!da18da28dx18dx28

1anan1kr1 3
4r

22s22~]nr!22 1
2r

21s22~]n]nr!50. ~V.16!

The branches areĝ (6)(xk ,al) such that

Re$ĝ~1 !~xm ,an!%>0 and Re$ĝ~2 !~xm ,an!%<0.

Due to the isotropy~up/down symmetry! of the medium we haveĝ (1)52ĝ (2). Further, note that
as s→ ` the composition of symbols tends to an ordinary multiplication. The solution of the
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associated equation for the slowness surface yields the principal vertical slowness, which coin-
cides pointwise with the vertical gradient of travel time along a characteristic.

So far, we had to assume that the medium properties~i.e., the coefficients in the elliptic
operator! were smooth. This condition can be somewhat relaxed. Media, in which discontinuities
in their physical properties occur, should be smoothed on the scale of the irradiating pulse width
with the aid of equivalent medium averaging. To allow singularities in the medium and the volume
source densities to coexist, however, requires a novel analysis of pseudo-differential operators.47

Further, our analysis in the horizontal plane builds on the one on the torus; thus, we have chosen
to use left symbols rather than Weyl symbols~Ref. 11, Sections 18.4 and 18.5! in this paper.

VI. THE GREEN’S FUNCTIONS OF THE ONE-WAY WAVE OPERATORS

We now subject the left-hand side of Eq.~IV.1! to a further investigation. In it, we recognize
the operators

]31sĜ~6 !: L„R6 ,Hr~R2!…→L„R6 ,Hr21~R2!…, ~VI.1!

whereL„R6 ,H
r~R2!…, denotes a Banach space of mapsR6→Hr~R2!. The operators in Eq.~VI.1!

are the full one-way wave operators. A technical complication arises because the operators in Eq.
~VI.1! cannot be identified as pseudo-differential operatorsHr~R23R!→ Hr21~R23R! ~see also
Ref. 41!.

To arrive at the coupled system of integral equations that is equivalent to Eq.~IV.1! and that
can be solved in terms of a Neumann expansion, we have to invert the operator occurring on the
left-hand side. The one-sided elementary kernelsĜ (6)(xm ,x3 ;xn8 ,x38) associated with the opera-
tors

Ĝ~6 !5~]31sĜ~6 !!21: L„R6 ,Hr~R2!…→L„R6 ,Hr~R2!…

in three-dimensional space are the so-called Green’s functions. They satisfy the equations

]3Ĝ
~6 !1sĜ~6 !Ĝ ~6 !5d~xn2xn8!d~x32x38!, ~VI.2!

together with the condition of causality.
We will consider the case Gˆ5Ĝ~1!, Ĝ =Ĝ ~1!, andĜ5Ĝ~1! in detail. The operator Gˆ acts on a

test functionû as

~Ĝû!~xm ,x3!5E
zPR

E
xn8PR

Ĝ ~xm ,x3 ;xn8 ,z!û~xn8 ,z!dx18dx28dz. ~VI.3!

Let us define the initial-value problem of determining the functionÛ(xm ,x3 ;z) satisfying

~]31sĜ!Û50 for x3>z, Û~xm ,z;z!5û~xm ,z!. ~VI.4!

Then it is observed that

~Ĝû!~xm ,x3!5E
z52`

x3
Û~xm ,x3 ;z!dz. ~VI.5!

A. Properties of the inverse one-way wave operator

Now, to estimate in a proper norm the operator Gˆ , let

Ĝ5L̂1Ê, ~VI.6!

where
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L̂5@2s22]s]s1cL
22#1/2 ~VI.7!

is an elliptic operator independent ofx3 ~which can be identified as the vertical slowness operator
of order 1 in a homogeneous medium with slownesscL

21! and where

Ê5Ĝ2L̂ ~VI.8!

is a pseudo-differential operator of order<0. Note that@cf. Eq. ~V.1! and below#

i L̂ûi r>cL
21i ûi r ~VI.9!

uniformly in s ~andx3!. In this framework, our initial-value problem is written as

~]31sL̂!Û52sÊÛ for x3>x38 , Û~xm ,x38 ;x38!5û~xm ,x38!. ~VI.10!

Thus, the causal or one-sided propagatorÛ satisfies@cf. Eq. ~VI.10!#

Û~x3 ;x38!5exp@2s~x32x38!L̂#Û~x38 ;x38!2sE
z5x38

x3
exp@2s~x32z!L̂# Ê~z!Û~z;x38!dz.

~VI.11!

Taking Sobolev norms on both sides yields on account of Eq.~VI.9!

iÛ~x3 ;x38!i r<exp@2s~x32x38!cL
21#iÛ~x38 ;x38!i r

1sE
z5x38

x3
exp@2s~x32z!cL

21#iÊ~z!i r ,r iÛ~z;x38!i r dz. ~VI.12!

Now, let

w~x3!5exp~sx3cL
21!iÛ~x3 ;x38!i r , ~VI.13!

then Eq.~VI.12! leads to

w~x3!<w~x38!1shE
z5x38

x3
w~z!dz, ~VI.14!

where~note that Eˆ must be bounded!

h~cL
21!5 sup

x3PR
iÊ~x3!i r ,r . ~VI.15!

~In view of the structure ofĜ note thath depends ons but that an estimate can be given uniformly
in s for values away from zero!. Application of Gronwall’s theorem~Ref. 48, p. 37! to Eq.~VI.14!
yields

w~x3!<w~x38!exp@sh ~x32x38!#, ~VI.16!

for x3 > x38 , so that upon using Eq.~VI.13! we have

iÛ~x3 ;x38!i r<iÛ~x38 ;x38!i r exp@2s~x32x38!~cL
212h!# ~VI.17!
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for x3 > x38 . To find a useful estimate for the norm of Gˆ , cL
21 must be chosen such that

cL
21.h(cL

21) uniformly in s for s>s0. Let ê denote the left symbol of Eˆ . An expansion for this
symbol follows from Eq.~V.16! and the results of Sec. VIII:

ê5~anan1c22!1/22~asas1cL
22!1/21C~0!, ~VI.18!

wherec225kr, andC~0! is in Sd, d<0 independent ofcL . Let

m5 sup
xmPR3

uc212cL
21u. ~VI.19!

In a realistic medium, we can arrange the parameters such that there exists an estimatem<m0
with m0 independent ofcL . We have

u~anan1c22!1/22~asas1cL
22!1/2u<m.

SinceC~0! is continuous, we find the estimate

uê~xm ,al!u<m1c~0!. ~VI.20!

Further, we obtain

]am
ê5am

~asas1cL
22!1/22~anan1c22!1/2

~anan1c22!1/2~asas1cL
22!1/2

1C~21!, C~21!5]am
C~0!. ~VI.21!

SinceC(21)PSd, d<21, we find the estimate

u]am
ê~xm ,al!u<~m1c~21!!~^c22&1asas!21/2 ~VI.22!

with c~21! independent ofcL . This way, we can continue to analyze estimates like Eq.~V.12! for
ê up to any order of differentiation. Letc0 denote the supremum of allc(d) s; the calculus of
symbols~and the proof of continuity of pseudo-differential operators11! then implies the estimate

sup
x3PR

iÊ~x3!i r ,r<bm1C0 , C05bc0 , b.1, ~VI.23!

whereC0 is independent ofcL . Now, choosecL so that

cL
21.bm1C0>h~cL

21!5 sup
x3PR

iÊ~x3!i r ,r . ~VI.24!

To be able to find acL
21, C0 must satisfy the inequalities@cf. Eq. ~VI.24!#

0,2C0,2~b21! sup
xmPR3

c211~b11! inf
xmPR3

c21,

from which it follows thatb.1 must be chosen in accordance with the conditions

1<
supxmPR3c

21

infxmPR3c
21,

b11

b21
.
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Let b1 satisfy the conditions, and letb5b11b2; thenb m<b1m1b2m0, andb m0 can be ab-
sorbed inC0 to recover an estimate of the type Eq.~VI.24!. @In a horizontally homogeneous
medium we findm(cL

21) 5 supx3PRuc21 2 cL
21u, hencecL

21 must be chosen in accordance with

cL
21.b(11b)21supx3PRc

21.#
Now, take Sobolev norms on both sides of Eq.~VI.5!:

i~Ĝû!~x3!i r<E
z52`

x3
iÛ~x3 ;z!i r dz

<E
z52`

x3
exp@2s~x32z!~cL

212h!# iÛ~z;z!i r dz

5E
z52`

x3
exp@2s~x32z!~cL

212h!# i û~z!i r dz. ~VI.25!

Apparently, a useful norm onL„R6 , H
r~R2!… for the wavefield in three-dimensional space is

given by

i•i r ;35 sup
x3PR

i•i r . ~VI.26!

Then, from Eq.~VI.25! it follows that

iĜi r ;3,r ;3<
1

s~cL
212h!

, s>s0 . ~VI.27!

This estimate has been made explicit forr50 @cf. below Eq.~VI.17!#. Similar steps can be carried
out upon replacing~1! by ~2!.

B. Path integral representations

With the vertical slowness symbols following from the resolvent, which represents the scat-
tering process in the horizontal directions, we can construct the Green’s functionsĜ ~6! using a
Hamiltonian path integral representation.49–51

First, it is observed that the vertical slowness operators at different levels ofx3 do not
necessarily commute with one another due to the heterogeneity of the medium. Thus we arrive at
a ‘‘time’’-ordered product integral representation~see, e.g., Ref. 50! of the one-sided propagators
@cf. Eq. ~VI.4!# associated with the one-way wave equations, where ‘‘time’’ refers to the vertical
coordinatex3,

Û ~6 !~ .,x3;x38!56H~7@x382x3# !H )
z5x38

x3

exp@2sĜ~6 !~ .,z!dz#J û~ .,x38!. ~VI.28!

In this expression, the operator ordering is initiated by exp@2sĜ(.,x38)dz# acting on û(.,x38)
followed by applying exp@2sĜ~.,z!dz# to the result, successively for increasingz.

If the medium in the interval@x38 , x3# were weakly varying in the vertical direction, the
Trotter product formula can be applied to the product integral in Eq.~VI.28!. This results in the
Hamiltonian path integral representations for the Green’s functions,

Ĝ ~6 !~xn ,x3 ;xm8 ,x38!56H~7@x382x3# !E
P
D~xn9 ,an9!
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3expF2sE
z5x38

x3
dz$ ias9 ~dzxs9 !1ĝ~6 !~xm9 ,z,an9 ,s!%G , ~VI.29!

P being a set of paths„xm9 (z),an9(z)… in ~horizontal! phase space satisfying

xn9~z5x38!5xn8 , xn9~z5x3!5xn . ~VI.30!

Omitting the Heaviside function in the expression for theĜ ~6! yields the kernelĝ~6! of the
so-calledphase shift operator~Ref. 52!. A perturbative approximation of the latter operator based
on the split-step Fourier transform is discussed in Ref. 53. In Eq.~VI.29! we have restricted
ourselves to causal solutions, since the conditions Re$ĝ~1!%>0 and Re$ĝ~2!%<0 imply that Ĝ ~6!

remain bounded asux3u→ `.
The path integral in Eq.~VI.29! is to be interpreted as the lattice multiple integral

Ĝ ~6 !~xn ,x3 ;xm8 ,x38!

56H~7@x382x3# ! lim
N→`

E )
i51

N S s

2p D 2d2an
~ i ! )

j51

N21

d2xn
~ j !

3expF2s(
k51

N

$ ias
~k!~xs

~k!2xs
~k21!!1ĝ~6 !~xm

~k! ,zk2
1
2N

21Dx3 ,an
~k! ,s!N21Dx3%G

~VI.31!

with

xn
~0!5xn8 , xn

~N!5xn , ~VI.32!

and

Dx35x32x38 . ~VI.33!

Note that the function

t~xn ,xn8!5 (
k51

N

$ ias
~k!~xs

~k!2xs
~k21!!1ĝ~6 !~xm

~k! ,zk2
1
2N

21Dx3 ,an
~k! ,s!N21Dx3%

can be associated with travel time along a path. All the integrations are taken over the interval
~2`,`!, N21Dx3 is the step size inz, and (xm

( j ) ,an
( j )) are the coordinates of a path at the discrete

valueszj of z as j51,...,N. If Dx3 is sufficiently small, the path integral reduces to

Ĝ ~6 !~xm ,x3 ;xn8 ,x38!.6H~7@x382x3# !E S s

2p D 2 da19da29

3exp@2s$ ias9 ~xs2xs8 !1ĝ~6 !~xm ,x32
1
2Dx3 ,an9 ,s!Dx3%#.

~VI.34!

In the analysisĝ ~6! may be interpreted as~nonstandard square-root! Hamiltonians.
If the medium varies strongly in the vertical direction, the interval@x38 , x3# is divided up into

thinner slabs, and the product integral is used to arrive at a composition of one-sided propagators
through these slabs, for which the lattice multiple integrals are then substituted. The resulting
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multiple integral is similar to the one in Eq.~VI.31!. It is conjectured that the stationary-phase
approximation of the path integral in Eq.~VI.29! leads to the leading term of the asymptotic ray
expansion54,55 including the KMAH index,55 in the presence of caustics.

The expression in Eq.~VI.34! serves as the basis for numerical computations based on Fourier
transformations. Rather than using this thin-slab propagator, quasi-Monte Carlo methods can be
applied to numerically calculate the propagator over larger vertical distances. Also techniques
from the theory of symplectic integrators~Ref. 56! may prove to be useful in the propagation over
long distances.

C. The Schwartz kernel

The one-sided Green’s function is directly related to the Schwartz kernel associated with the
vertical slowness operator. Since@cf. Eqs.~VI.3! and ~VI.29!#

]3~Ĝû!~xm ,x3!2û~xm ,x3!5E
z52`

x3 E
xn8PR

]3Ĝ ~xm ,x3 ;xn8 ,z!û~xn8 ,z!dx18dx28dz,

~VI.35!

while @cf. Eq. ~VI.5!#

]3~Ĝû!~xm ,x3!2û~xm ,x3!5E
z52`

x3
]3Û~xm ,x3 ;z!dz

for all x3, we have@cf. Eq. ~VI.4!#

2sĜ~ .,.;x3!Û~ .,x3 ;z!5E
xn8PR

]3Ĝ ~ .,x3 ;xn8 ,z!û~xn8 ,z!dx18dx28 . ~VI.36!

Upon taking the limitz↑x3, we thus obtain

2s„Ĝ~ .,.;x3!û…~xm ,x3!5E
xn8PR

lim
z↑x3

]3Ĝ ~xm ,x3 ;xn8 ,z!û~xn8 ,z!dx18dx28 ~VI.37!

so that

Ĉ ~xm ,xn8 ;x3!5 lim
z↑x3

2
1

s
]3Ĝ ~xm ,x3 ;xn8 ,z!. ~VI.38!

This expression implies that, in the special case of a homogeneous medium, the Schwartz kernel
reduces to the vertical particle velocity~F̂2! response due to a vertical point-force source@ f̂ 3
5 d(xm 2 xm8 )d(x3 2 x38)# at zero vertical offset.

VII. THE BREMMER COUPLING SERIES

The resolventsR̂l
~A! fully describe the scattering in the level surfaces ofx3. From these

resolvents the left vertical slowness symbols have been derived, which in their turn are used in
constructing the Green’s functions introduced in Sec. VI. Employing the Green’s functions of the
one-way operators, we are now able to formulate the scattering process along the vertical direction
in terms of a coupled system of integral equations.

To simplify the notation, we set

X̂15~ L̂21!1,MN̂M , X̂25~ L̂21!2,MN̂M . ~VII.1!
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Using Eq.~VII.1!, we rewrite Eq.~IV.1! as @cf. Eqs.~IV.3! and ~IV.4!#

]3Ŵ11sĜ~1 !Ŵ15X̂11T̂Ŵ11R̂Ŵ2 , ~VII.2!

]3Ŵ21sĜ~2 !Ŵ25X̂21R̂Ŵ11T̂Ŵ2 . ~VII.3!

To derive an integral representation forŴ1,2, we introduce theadjoint Green’s functionsĜ a
~6!

satisfying

]3Ĝ a
~6 !2s@Ĝ~6 !#TĜ a

~6 !5d~xn2xn8!d~x32x38!, with @Ĝ~6 !#T5Ĝ~6 ! ~VII.4!

sinceĜ~6! is self-adjoint inL2. Note that

Ĝ a
~6 !~xn8 ,z;xm ,x3!52Ĝ ~6 !~xm ,x3 ;xn8 ,z!. ~VII.5!

In fact, in view of the up/down symmetry of the medium, we also have

Ĝ a
~6 !~xn8 ,z;xm ,x3!5Ĝ ~7 !~xn8 ,z;xm ,x3!. ~VII.6!

@Equations~VII.5! and ~VII.6! constitute reciprocity relations.# Combining Eq.~VII.4! for the
adjoint Green’s functions with~VII.2! and ~VII.3!, it is found that

]3^Ĝ a
~1 ! ,Ŵ1&05^Ĝ a

~1 ! ,X̂11T̂Ŵ11R̂Ŵ2&01Ŵ1~xn8 ,x38!d~x32x38!, ~VII.7!

]3^Ĝ a
~2 ! ,Ŵ2&05^Ĝ a

~2 ! ,X̂21R̂Ŵ11T̂Ŵ2&01Ŵ2~xn8 ,x38!d~x32x38!. ~VII.8!

Now, we have

^Ĝ a
~1 !~ .,x3 ;xm8 ,x38!,Ŵ1~ .,x3!&050 ~VII.9!

as x3→ ` since Ĝ a
(1)50 whenx3 . x38 while in view of the assumption that in some upper

half-space the fluid is homogeneous,Ŵ150 as x3→ 2` on the basis of causality. A similar
reasoning leads to

^Ĝ a
~2 !~ .,x3 ;xm8 ,x38!,Ŵ2~ .,x3!&050 ~VII.10!

as x3→6`. Integration of Eqs.~VII.7! and ~VII.8! over all x3 then yields a coupled system of
integral equations which can be written in operator form as@cf. Eq. ~VII.5!#

~d I ,J2K̂I ,J!ŴJ5ŴI
0, ~VII.11!

in which

S Ŵ1
0

Ŵ2
0D 5S Ĝ~1 ! 0

0 Ĝ~2 !D S X̂1

X̂2
D , ~VII.12!

i.e.,

Ŵ1
0~xm ,x3!5E

z52`

x3 E
xn8PR

Ĝ ~1 !~xm ,x3 ;xn8 ,z!X̂1~xn8 ,z!dx18dx28dz, ~VII.13!

Ŵ2
0~xm ,x3!5E

z5x3

` E
xn8PR

Ĝ ~2 !~xm ,x3 ;xn8 ,z!X̂2~xn8 ,z!dx18dx28dz ~VII.14!
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denote the directly transmitted waves, and

K̂5S Ĝ~1 ! 0

0 Ĝ~2 !D S T̂ R̂

R̂ T̂
D ~VII.15!

~note that the second matrix operator acts in the horizontal directions only, whereas the first matrix
operator acts in the full space!, i.e.,

~K̂1,1Ŵ1!~xm ,x3!5E
z52`

x3 E
xn8PR

Ĝ ~1 !~xm ,x3 ;xn8 ,z!~ T̂Ŵ1!~xn8 ,z!dx18dx28dz, ~VII.16!

~K̂1,2Ŵ2!~xm ,x3!5E
z52`

x3 E
xn8PR

Ĝ ~1 !~xm ,x3 ;xn8 ,z!~R̂Ŵ2!~xn8 ,z!dx18dx28dz, ~VII.17!

~K̂2,1Ŵ1!~xm ,x3!5E
z5x3

` E
xn8PR

Ĝ ~2 !~xm ,x3 ;xn8 ,z!~R̂Ŵ1!~xn8 ,z!dx18dx28dz, ~VII.18!

~K̂2,2Ŵ2!~xm ,x3!5E
z5x3

` E
xn8PR

Ĝ ~2 !~xm ,x3 ;xn8 ,z!~ T̂Ŵ2!~xn8 ,z!dx18dx28dz ~VII.19!

are representative for the multiple scattering formalism. Now, consider the operators Kˆ
I ,J :

L„R6 , H
0~R2!…→L„R6 , H

0~R2!…. In the space of wave matrices we introduce the norm@cf. Eq.
~VI.26!#

iŴi5S (
J51

2

iŴJi0;3
2 D 1/2. ~VII.20!

Hence,iK̂i2 < ( I ,J51
2 iK̂I ,Ji0;3,0;3

2 . Using the norm estimates of the preceding sections, it is found
that iK̂i5O(s21) ass→ `, which implies that the norm of Kˆ is less than 1 whens>s0, for s0
sufficiently large. In that case a convergent Neumann expansion of Eq.~VII.11! yields its solution.

Thus, the solution of Eq.~VII.11!,

Ŵ5R̂~K!Ŵ0, ~VII.21!

is found in the form of a sum of generalized-ray-like constituents, the Bremmer series,57 upon
employing the Neumann expansion for the resolvent of Kˆ :

R̂~K!5~ I2K̂!215 (
n50

`

K̂n. ~VII.22!

To emphasize that we have found the solution of the direct scattering problem as a summation
over multiple scattered constituents, we write

Ŵ5 (
n50

`

Ŵ~n! with Ŵ~n!5K̂Ŵ~n21!. ~VII.23!

Figure 3 illustrates the decomposition procedure and the interrelation between the different resol-
vents. The analog of the series in a horizontally shift invariant medium can be found, e.g., in Refs.
58 and 59.
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Upon substituting in Kˆ the path integral representations for the Green’s functions of Sec. VI,
the recursion formula~VII.23! leads to path integral representations for all the constituents in the
coupling series. Upon substituting for the transmission/reflection operators their Schwartz kernel
representations, Eq.~VII.23! essentially composes path integrals at any level where interaction
takes place. In particular, one finds a path integral representation for the leading order backscat-
tered field,Ŵ~1!.

Finally, Eq.~II.17! must be employed to compose the acoustic field matrix per constituent@cf.
Eq. ~VII.21!#, i.e., to obtain the observables. The uniqueness of the time-domain counterpart of
this result fors>s0 is guaranteed by Lerch’s theorem~see Ref. 35!. Note that the convergence of
the series is guaranteed essentially in the time domain; the convergence criterium in the frequency
or complex Laplace domain as described by Wing,60 and earlier by Atkinson,61 is different from
ours. From the final representation of the acoustic field matrix, the associated representation for
the Dirichlet-to-Neumann map can be obtained.29

VIII. ANALYSIS OF THE SYMBOLS

The scattering process in horizontal space is governed by a composition equation for the
~unknown! resolvent of a~known! elliptic operator. Here, we shall discuss an asymptotic expan-
sion for the left symbol of the resolvent belonging to Aˆ introduced in Sec. III as the slowness
vector becomes large to find the solution of the composition equation~V.16! as well as the other
powers needed to transform Eq.~II.9! into Eq. ~IV.1!. Using the first few terms of the asymptotic
expansion, a Neumann series is derived for the resolvent. The latter expansion is the counterpart
in horizontal space of the Neumann expansion introduced in Sec. VII.

A natural decomposition of the left symbol of the partial differential operator Aˆ is @cf. Eq.
~V.14!#

â5â~`!1â~22!, ~VIII.1 !

FIG. 3. The decomposition of the scattering process~the solid rays refer to one term in the series!.
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the first term beingO~1! and the second term beingO(s22) ass→ `. We have

â~`!5anan1 č22c`
22,

~VIII.2 !
â~22!5 3

4r
22s22~]nr!22 1

2r
21s22~]n]nr!,

where

č215~c/c`!21 ~VIII.3 !

and

c225kr, ~VIII.4 !

in which c`
21 is an appropriate parameter, introduced to enforce the correct asymptotic behavior.

The differential equation for the symbolr̂ l of the resolvent follows from the equation
~Â2lI !R̂l5I as @cf. Eq. ~VIII.2 !#

~ is21]xs
1as!2r̂ l1~c221â~22!2l! r̂ l2150. ~VIII.5 !

This equation must be solved forr̂ lPS22. The left symbols of the negative real powers then
follow from @cf. Eq. ~III.17!#

âz5
1

2p i EBlzr̂ l dl. ~VIII.6 !

The symbols of the positive real powers are obtained using the composition equation for left
symbols repeatedly~see the Appendix!.

A. The parametrix: asymptotic analysis

To carry out the asymptotic analysis, the symbol of the operator Aˆ2lI with parameter is
written as

âl5âl,21âl,0 , ~VIII.7 !

where

âl,25â~`!2l, âl,05â~22!. ~VIII.8 !

The correct behavior of the symbol of the resolvent asl and c`
21 become large is achieved by

thinking of l andc`
22 as the squares of the Fourier domain counterparts of two new independent

variables. Actually, it is natural to treat the slowness of the medium as if it were a component of
the slowness vector. This way, the term2l and the one linear inc`

22 are absorbed in the principal
part of the symbol. It is noticed thatâl,2 is homogeneous of degree 2 in~am ,l

1/2,c`
21!, i.e.,

ât2l,2~xm ,tan ,tc`
21!5t2âl,2~xm ,an ,c`

21! ~VIII.9 !

for t.0 such thatt2lPL, while âl,0 is homogeneous of degree 0 in the same sense. Further, it
follows that âl,2Þ0 for lPL and ~asas!1/21ulu1/21uc`

21uÞ0, whereL is, again, the sector in the
complexl plane defined by 0,uarg~l!u<p. Hence, the operator associated withâl is ‘‘elliptic
with parametersl andc`

21 ,’’ whereas the symbol itself is inSL
2 ~R23R2,R!. The extension of this

concept to anisotropic elastic media has been given by de Hoop and de Hoop.62 In the following
it is crucial to restrictl to the sectorL in the complex plane.
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Consider theparametrix B̂l , which is an approximation to the resolventR̂l in the following
sense. Let the symbol of the resolvent, too, be expanded in a sum of symbolsb̂l,222 j which are
homogeneous of degree222j in ~am ,l

1/2,c`
21!; then this sum defines the parametrix, which

resembles the resolvent up to an integral operator in OpS2` with an infinitely differentiable
kernel~Ref. 63, p. 20!. The successive terms in the series have increasingly smooth kernels. This
way, a parametrix is constructed with the correct behavior asulu→ ` or c`

21→ ` ~the latter
corresponds tos→ `!. Thus, the symbol of the parametrix is written as

b̂l5(
j50

`

b̂l,222 j . ~VIII.10!

The termsb̂l,222 j , j50,1,..., are determined as follows. Substitute the expansion Eq.~VIII.10!
into Eq. ~VIII.5 ! and collect terms of equal degrees. Then we arrive at

âl,2b̂l,2251,

âl,2b̂l,2312is21am]xm
b̂l,2250, ~VIII.11!

âl,2b̂l,222 j12is21am]xm
b̂l,212 j1@ âl,02s22]xm

]xm
#b̂l,2 j50, j52,3,... .

It can be shown that the solutions must satisfy~following Ref. 9!

u~]a1

m1]a2

m2]x1
n1]x2

n2b̂l,222 j !~xk ,am!u<s2 jCm1 ,m2 ,n1 ,n2
@~^c22&1anan1c`

221ulu!1/2#22

3@~^c22&1asas!1/2#2 j2m12m2. ~VIII.12!

For the asymptotic sum as following from Eq.~VIII.11!, we have the estimate

b̂l2 (
j50

K21

b̂l,222 j5O~ uau222K! as uau→ ` ~VIII.13!

for K51,2,3,... . LetB̂l,222 j be the operator that corresponds to the symbolb̂l,222 j , and let

B̂l
~K !5 (

j50

K21

B̂l,222 j . ~VIII.14!

From Eq.~VIII.12!, using that forl50,1,2 we have

@~^c22&1anan1c`
221ulu!1/2#22<ulu211 l /2 @~^c22&1anan1c`

22!1/2#2 l , ~VIII.15!

we obtain the estimate forB̂l
(K):

iB̂l
~K !i r ,r1 l<Cr ,l ,K9 /ulu12 l /2 ~VIII.16!

with l50,1,2 andlPL. With B̂l
(K) there is associated the truncated expansion of Aˆ , viz., Â(K)

5 ( j 850
K21 Â22 j 8 ~set â25â(`), â05â(22), â j 850 otherwise!. In general, if K>2 we have

Â2Â(K)POp S0, so that the latter difference is bounded and continuous as an operatorHr→Hr ;
the same holds for Aˆ2Â(K): Hr→Hr1K22. Using this and Eq.~VIII.16!, it follows that forK>2

i~Â2lI !B̂l
~K !2~Â~K !2lI !B̂l

~K !i r ,r1 l1K22<Cr ,l ,K8 /ulu12 l /2. ~VIII.17!
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Using Eqs.~A15!, ~VIII.11!, and ~VIII.12!, after some manipulations as in Refs. 9 and 10, we
arrive at

i I2~Â2lI !B̂l
~K !i r ,r1 l1K22<Cr ,l ,K /ulu12 l /2 ~VIII.18!

with l50,1,2 andlPL, whereasCr ,l ,K5O(s2K) ass→ `. Hence, forK52, setting

Ĉl5I2~Â2lI !B̂l
~2! , ~VIII.19!

we get for sufficiently largel @cf. Eq. ~VIII.18!#

iĈli r ,r<
1
2. ~VIII.20!

Thus, the resolvent follows as the convergent Neumann series

R̂l5B̂l
~2!S (

n50

`

Ĉl
nD for lPL large. ~VIII.21!

Now, using that

(
n50

`

iĈl
ni r1 l ,r1 l<2, ~VIII.22!

in combination with Eq.~VIII.16!, finally leads to the estimate in Eq.~III.14!. Following Ref. 9
~Theorem 2!, through the explicit evaluation of the symbols@cf. Eq. ~VIII.6 !# it can be shown that
the integral in Eq.~III.17! defines a pseudo-differential operator of order 2z.

Solving the system of equations~VIII.11! yields

b̂l,225âl,2
21, ~VIII.23!

b̂l,2352am~ is21]xm
âl,2! âl,2

23, ~VIII.24!

while

b̂l,2452âl,0 âl,2
222s22~]xm

]xm
âl,2! âl,2

231@2s22~]xm
âl,2!~]xm

âl,2!

14ams
21ans

21~]xm
]xn

âl,2!# âl,2
24212~ams

21]xm
âl,2!

3~ans
21]xn

âl,2! âl,2
25 ~VIII.25!

and so on.
It is observed that the Neumann series for the vertical scattering gives rise to a decomposition

into constituents that have traveled up and down a definite number of times, while the Neumann
series in Eq.~VIII.21! clearly does not separate the wavefield into constituents that travel from
right to left or vice versa.

B. The vertical slowness

From a physical point of view, it is interesting to compare the contributions to the generalized
slowness surface from the successive terms of the parametrix. For this, the integration overl has
to be carried out and the original elliptic operator has to be applied to the result. Using Eqs.
~VIII.6 !, ~VIII.23!, and~VIII.24!, we have
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â21/2~xm ,an!5~c221asas!21/2 @11 3
4~c

221anan!22iams
21~]xm

c22!1•••#.

With this the left symbol for the vertical slowness becomes

ĝ~xm ,an!5~ is21]xs
1as!2â21/21~c221â~22!!â21/2

5~c221asas!1/2 @11~c221anan!21â~22!1 1
2~c

221anan!22

3$2 1
2iams

21~]xm
c22!1s22~]xm

]xm
c22!%1•••#. ~VIII.26!

Note that this expansion is valid for real-valuedam; it is, however, nonuniform. In the complex
radial horizontal slowness plane, a set of branch points, where the argument of the square root
vanishes, has been introduced. Near the branch points the polyhomogeneous expansion does not
behave properly, and a uniform expansion must be found. It is an open issue whether a parallel
analytic continuation of the symbols into the complex radial horizontal slowness and complex
Laplace planes exists and would be stable. However, in the angular frequency~v! domain with
s5 iv andan52ian

~v! , vPR andan
~v!PR, a uniform expansion has been found by Fishman and

Gautesen.30

Spectral theory~Sec. III! can also be employed to construct a convergent expansion forâz ,

âz~xm ,an!5(
@N#

l@N#
z

N@N#
c@N#~xm!E

xn8PR
c@N#~xn8!exp@ is~xs2xs8 !as#dx18dx28 ~VIII.27!

if

E
xmPR

c@N#~xm!c@M #~xm!dx1dx25N@N#d@N#,@M # . ~VIII.28!

Upon takingz52 1
2 and composing the result withâ, the vertical slowness symbol is found, as

before. The latter construction implies an explicit regularization of the vertical slowness operator.
Numerical algorithms associated with a construction of this kind can be found in the literature on
the Mode Expansion Method64 ~see also Ref. 65!.

IX. DISCUSSION OF THE RESULTS

In this paper, we have generalized the Bremmer coupling series to configurations with multi-
dimensionally varying media with properties that are up/down symmetric. The setup of the series
required the introduction of the directional wavefield decomposition into, the one-way wave
equations for, and the interaction of up/down constituents. The decomposition into ‘‘up’’ and
‘‘down’’ no longer permits a separation into ‘‘left’’ and ‘‘right.’’ The convergence of the series in
space–time has been proved.

The solution of the direct scattering problem in smoothly varying media has been given in
terms of two nested series expansions. Both expansions represent resolvents, one associated with
the coupling of counter-propagating constituents, and the other associated with the evaluation of
the generalized slowness surface and the~de!composition operators. For practical purposes, one
hopes that just a few terms of both series suffice to describe the scattering phenomenon under
investigation; particular numerical advantage is achieved when only a few frequencies are of
physical importance. Smoothness of the medium is understood relative to the pulse width associ-
ated with the irradiating source.

The derivation of the generalized Bremmer coupling series implies two basically alternative
numerical approaches: a spectral approach based upon the eigenfunctions of the elliptic operator,
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and a phase space approach making direct use of the left symbols. The spectral approach is
rigorous, but not as efficient as the phase space approach. The most straightforward way to
develop a propagation algorithm of the first kind is based on a matrix representation of the elliptic
operator on the torus in terms of a basis of pyramid-type functions~rather than a basis of eigen-
functions!; this leads to a finite difference approximation of the partial differential operator. The
matrix is then diagonalized with the aid of the Lanczos method66 in which only the relevant
eigenpairs are calculated and propagated. The remaining calculations make use of the diagonal
form thus obtained.

The phase space approach lends itself for various different approximations to enhance its
computational efficiency. Among those are the~rational! parabolic approximations and the phase-
screen reduction of the vertical slowness symbol. The phase-screen approximation is only valid in
relatively weakly heterogeneous media. In the rational approximation method, special care has to
be taken to keep the associated, approximate vertical slowness operator self-adjoint; inherently,
the distinction between the principal part of and the higher-order contributions to the vertical
slowness symbol becomes obscure~see Ref. 67!. The uniform expansion of Fishman and
Gautesen30 lends itself to a competing algorithm, and includes critical scattering-angle phenom-
ena, unlike the rational approximation approach. We note that the generalized Bremmer coupling
series as presented in this paper lends itself to understanding the limits of approximate one-way
wave theories.

Several approaches exist for the transformation back to the time domain. A numerical inverse
Laplace transform can be used under the assumption that we restrict our scattered field to a finite
time window. It is emphasized that causility in this approach throughout the calculations is pre-
served. For a review of various algorithms we refer the reader to Ref. 68; pioneering work was
carried out by Papoulis.69 As a candidate, we mention the Stehfest algorithm.
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APPENDIX: THE CALCULUS OF PSEUDO-DIFFERENTIAL OPERATORS

1. The composition equation

In this subsection we consider the composition of two pseudo-differential operators,
B̂35B̂1B̂2, say. Representing the operators as in Eqs.~V.6! and ~V.7!,

„B̂~xk ,Dl!û…~xm!5E
xn8PR

B̂~xm ,xn8!û~xn8!dx18dx28 , ~A1!

in which

B̂~xm ,xn8!5S s

2p D 2E
anPR

b̂~xm ,an!exp@ isan~xn82xn!#da1da2 , ~A2!

a composition rule for the corresponding left symbols,b̂1, b̂2, andb̂3, is found. To begin with,
the Schwartz kernels must satisfy the composition rule
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B̂3~xm ,xn8!5E
xn9PR

B̂1~xm ,xn9!B̂2~xn9 ,xn8!dx19dx29 . ~A3!

Hence,

S s

2p D 2E
anPR

b̂3~xm ,an!exp@ isas~xs82xs!#da1da25E
xn9PR

B̂1~xm ,xn9!B̂2~xn9 ,xn8!dx19dx29 .

~A4!

Substituting in Eq.~A4! un5xn andun 5 2(xn8 2 xn), we arrive at

S s

2p D 2E
anPR

b̂3~um ,an!exp~2 isasvs!da1da25E
xn9PR

B̂1~um ,xn9!B2~xn9 ,un2vn!dx19dx29 .

~A5!

By inverse Fourier transformation it now follows that

b̂3~um ,an!5E
vnPR

E
xn9PR

B̂1~um ,xn9!B̂2~xn9 ,un2vn!exp~ isasvs!dx19dx29dv1dv2 . ~A6!

Substituting Eq.~A2! twice yields

b̂3~um ,an!5S s

2p D 4E
xn9PR

E
an8PR

E
an9PR

E
vnPR

b̂1~um ,an8!b̂2~xn9 ,an9!

3exp@ is$~as2as9 !vs1~us2xs9 !~as92as8 !%#

3dv1dv2da19da29da18da28dx19dx29 . ~A7!

Upon performing four of the integrations, we arrive at (um5xm)

b̂3~xk ,al!5S s

2p D 2E
xn9PR

E
an8PR

b̂1~xm ,an8!b̂2~xn9 ,an!

3exp@ is~xs2xs9 !~as2as8 !#da18da28dx19dx29 . ~A8!

This equation can also be written as a differential equation. To this end, we introduce the four-
dimensional Fourier transformation in phase space

b5 ~jm ,hn!5S s

2p D 2E
xmPR

E
anPR

b̂~xm ,an!exp@ is~jk xk1hlal!#da1da2dx1dx2 ~A9!

and its inverse

b̂~xm ,an!5S s

2p D 2E
jmPR

E
hnPR

b5 ~jm ,hn!exp@2 is~jk xk1hlal!#dh1dh2dj1dj2 .

~A10!

Using Eq.~A10!, we have

S s

2p D 2E
xkPR

E
alPR

b̂~xk ,al!exp~ isxsas!da1da2dx1dx2
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5S s

2p D 4E
alPR

E
xkPR

E
jkPR

E
hlPR

b5 ~jk ,hl!exp@2 is~jsxs1hsas

2xsas)]dh1dh2dj1dj2dx1dx2da1da2

5S s

2p D 2E
jkPR

E
hlPR

b5 ~jk ,hl!exp~2 isjshs!dh1dh2dj1dj2

5expF is ]as
]xsG b̂~xk ,al!u~xk ,al!5~0,0! . ~A11!

Using this equality in Eq.~A8!, it is found that

b̂3~xk ,al!5expF is ]a
s8
]x

s8 G b̂1~xk ,an8!b̂2~xm8 ,al!U
~xk8 ,al8 !5~xk ,al!

. ~A12!

The interpretation of the exponential operator follows upon analyzing

B̂3~xk ,al ,xm8 ,an8!5expF is ]a
s8
]x

s8 G b̂1~xk ,an8!b̂2~xm8 ,al! ~A13!

introducing

r̂M~xk ,al ,xm8 ,an8!5B̂3~xk ,al ,xm8 ,an8!2 (
m50

M21
1

m! S isD
m

~]a
s8
]x

s8
!mb̂1~xk ,an8!b̂2~xm8 ,al!.

~A14!

Note thatb̂3(xk ,al)5B̂3(xk ,al ,xk ,al). Suppose thatb̂1 lies in a spaceS
s1 and thatb̂2 lies in

a spaceSs2. Then the following estimate holds~see the proof of Theorem 18.1.8 in Ref. 11!

u~]a1

m1]a2

m2]x1
n1]x2

n2]
a
18

m18]
a
28

m28]
x
18

n18]
x
28

n28r̂M !~xk ,al ,xm8 ,an8!u

<CM ,m1 ,m2 ,n1 ,n2 ,m18 ,m28 ,n18 ,n28
@~11ar8ar8!1/2#s12M2m182m28

3@~11asas!1/2#s22m12m2, ~A15!

which implies thatr̂M(xm ,an ,xm ,an) P Ss11s22M.

2. Continuity

We will review the proof of continuity of a pseudo-differential operator Bˆ : Hr→Hr2d, given
that its symbolb̂ is contained inSd. Let Ĝ be the pseudo-differential operator of order 1,

Ĝ05@2Ds Ds1^c22&#1/2, ~A16!

which, by Fourier analysis, is trivially continuous as an operatorHr→Hr21. Then also

Ĝ0
d : Hr→Hr2d continuous fordPR. ~A17!

Now, let ûPHr . Thenû05Ĝo
r û P L2; using the parametrixĜo

2r of Ĝo
r , we can write
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û5Ĝ0
2r û01 v̂0 with û0PL2 and v̂0PC`.

The contribution fromv̂0 is trivially dealt with. We obtain

Ĝ0
r2dB̂û5Ĝ0

r2dB̂Ĝ0
2r û0 . ~A18!

Hence, continuity of Bˆ is proved, if

B̂0[Ĝ0
r2dB̂Ĝ0

2r : L2→L2 continuous. ~A19!

From the calculus of symbols, discussed in the preceding subsection, we find that the symbolb̂0
of the latter operator is contained inS0.

Step 1:b̂PS2n21. Let m51,...,n, andb̂PS2n21. Then

uB̂~xm ,xn8!u<S s

2p D 2E
anPR

ub̂~xm ,an!u2da1•••dan<C.

Note that

~xm2xm8 ! lmB̂~xm ,xn8! corresponding withi lm]am

lm b̂~xm ,an!

must be bounded as well, hence

~11@~xm2xm8 !2#1/2!n11 uB̂~xm ,xn8!u<C.

Schur’s lemma states that ifB̂(xm ,xn8) is continuous and

sup
xn8
E
xmPR

uB̂~xm ,xn8!udx1•••dxn<C and sup
xm

E
xn8PR

uB̂~xm ,xn8!udx18•••dxn8<C, ~A20!

that then B̂:L2→L2 is bounded with norm<C. ~This is a consequence of Cauchy–Schwarz
inequality.! Conditions~A20! are satisfied forb̂PS2n21.

Step 2: b̂PSm, m<21. Let b̂PSm, m<21. Let b̂*PSm be the symbol of the adjoint
operator B̂T. Set Ĉ[B̂TB̂. Then

iB̂ûi2<iĈûi i ûi .

Hence, if Ĉis continuous, then Bˆ must be continuous. Let the symbol of Cˆ be contained inS2m.
By induction, we find continuity for

m<2
n11

2
, m<2

1

2

n11

2
, ..., m<21.

Step 3:b̂PS0. Let b̂PS0. Then there is an estimate

M.2 supub̂~xm ,an!u2.

Set

d̂~xm ,an![@M2ub̂~xm ,an!u2#1/2PS0.

Since
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M2ub̂~xm ,an!u2>M /2,

the symbold̂ is well defined. Using the calculus of the previous subsection, form the operator
D̂TD̂; then

D̂TD̂5M2B̂TB̂1Ê, êPS21.

From this operator equality, we obtain

iB̂ûi2<i ûi2M1^Êû,û&.

In the previous step we have shown that Eˆ must be continuous~êPS21!; hence B̂must be
continuous.
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Complicated and unphysical families of modified transition probabilities for the
434 diffuse tomographic problem are presented. Grassmann–Plu¨cker identities and
Laplace expansions of determinants are used to simplify the initial transition prob-
abilities. Besides restoring self-consistency to the system, enforcing range condi-
tions eliminates one-half of the parameters. ©1996 American Institute of Physics.
@S0022-2488~96!01705-5#

I. INTRODUCTION

Applications in medical imaging motivated efforts to invert two-and three-dimensional ver-
sions of the Redheffer* -product.1–7One possible application is monitoring the brains of neonates,
which are unable to withstand repeated x-ray irradiation. Brain hemorrhage is the leading cause of
death among premature infants. The goal is to detect cranial bleeds without overexposing the
infant to harmful radiation.

Range conditions were studied in Refs. 8 and 9 for very general two- and three-dimensional
systems. Because of these range conditions the inverse problem is underdetermined. In Ref. 10 a
recursive algorithm was sketched for recovering ap-parameter family of solutions to the inverse
problem in the plane where the difference between the amount of independent data and number of
unknowns isp. The purpose of this paper is to fill in the details.

The first section of this paper includes an introduction to the forward problem and a descrip-
tion of its range conditions. Each recursive level of the inversion scheme presented in Ref. 10
consists of two parts. The first part divides a system into four subsystems and computes families
of data sets for the subsystems from the original data set. Unfortunately, this process introduces
too many parameters. The superfluous parameters must be eliminated from the subsystems’ data
sets. This is done in Secs. II and III for the first level of the recursive scheme by enforcing range
conditions upon the subsystems’ data sets. Sections I C and I D give insight into the difficulty of
enforcing the various range conditions. Because of the combinatorial nature of the problem,
several different matrix identities are helpful. Grassmann–Plu¨cker identities are used to derive
some of them in Sec. II A. The solutions presented in Sec. I D are presented modulo the matrix
identities in Sec. II B. These solutions are functions of the data and 64 parameters. That the range
conditions which are simplest to enforce imply that eight of the parameters are identically zero is
shown in Sec. III A. The rest of the relatively easily enforceable conditions are studied in Secs.
III B 1 and III B 2. The remaining conditions are more difficult to enforce~Sec. III C!. Additional
matrix identities are required to reduce these remaining conditions to palatable form~Secs. III C 2
and 3!. In Section III C 4 it is shown that these identities form a complete set. Sections III B 2 and
III C 4 are quite technical and may be omitted without losing sight of the main objective—
recursive subdivision of a diffuse tomographic system.

A. Description of the model

Consider ann3n array of pixels in the plane. On each outer face there are two devices. One
device shoots photons across the outside edge into the neighboring pixel; the other device detects
photons as they leave the system. For each of the 4n outside edges 4n pieces of data are collected.
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These data are stored as a 4n34n transition matrix,Q. Within the system, photons travel either
horizontally or vertically. Label the horizontal and vertical axesx1 andx2, respectively. A photon
traveling parallel to thexi axis in the positive direction moves with velocityxi

1. Photons traveling
in the opposite direction travel with velocityxi

2. They do not interact and may be absorbed within
a pixel. Photons move according to a Markov process.11 The probabilities with which a photon
moves to a neighboring pixel depend upon its previous, as well as present, location. In this
two-step formulation the state space consists of locations. The state space may be redefined so that
photons move according to a one-step Markov process. In the new state space a single state
consists of the photon’s location and direction of travel.

There are three different types of these Markov states: incoming, outgoing, and hidden. The
probabilities with which photons move from one state to another are referred to as transition
probabilities. For each pixelO and incident direction the sum of the absorption probability and the
four possible transition probabilities must be identically one. The absorption probability is there-
fore neglected in the rest of this paper. Each pixel corresponds to 16 transition probabilities. For
example, a photon which travels with velocityxi

1 into pixelO and travels straight through pixel
O does so with some probability, denoted byxi

1Oxi
1. The same photon travels toO’s neighbor in

the xj
1 direction with probabilityxi

1Oxj
1. These probabilities are the nonzero entries of the

Markov transition matrixM . M is sparse and may be written as a block matrix with nontrivial
subblocksPio, Pih, Pho, and Phh. Pio, for example, contains the probabilities with which
photons in incoming states move directly to outgoing states.Pih contains the probabilities with
which photons in incoming states move to hidden states.Pho andPhh are the transition matrices
for photons starting in hidden states traveling to outgoing and hidden states, respectively.Pio and
Phh are always square matrices.

B. Forward problem

The forward map takes 16n2 transition probabilities to the 4n34n data matrixQ. The domain
of the forward map lies in the unit cube inR16n2 and is defined by

~xi
6Ox1

11xi
6Ox1

2!1~xi
6Ox2

11xi
6Ox2

2!<1, 651,2,i51,2,

for each pixelO. Furthermore, none of these transition probabilities may be zero. HereQi
j repre-

sents the probability that a photon which enters the system at sourcei exits the system at detector
j . Q provides no time-of-flight information. BecauseQ is a transition matrix, acceptable solutions
lie in the unit cube inR16n2 and satisfy

0< (
l51

4n

Qi
l<1, i51,2,...,4n.

The forward map is given by the following matrix expression:

Q5Pio1Pih(
n50

`

Phhn Pho5Pio1Pih~ I2Phh!21Pho ~1!

C. Range conditions

Range conditions appear as rank-deficient submatrices ofQ. Each of these rank-deficient
submatrices represents travel from one ‘‘side’’ of the system to the other ‘‘side.’’ Letb be a~not
necessarily straight! barrier of #b hidden states separating the ‘‘sides.’’ The Markovian nature of
the system can be used to show that the corresponding submatrix is generically of rank #b.8 For
the purposes of this paper it is only necessary to consider straight barriers.
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Notation:LetQr
c denote the submatrix ofQ taken from rowsr and columnsc. LetdQr

c denote
the determinant of this submatrix. Furthermore, leta2b denotea,a11,...,b, wherea,bPN.

For example, the data matrix for a 232 system has many rank-deficient submatrices. See Fig.
1. The 434 submatrix representing travel from left to right,Q124

528, is generically rank two, as is
Q528
124. Similarly, the submatricesQ326

1,2,7,8andQ1,2,7,8
326 are generically of rank two as well.

FIG. 1. Incoming, hidden, and outgoing states are labeled withis, hs, andos, respectively.

FIG. 2. A 434 system. The incoming and outgoing states are labeled; all unlabeled states are hidden states. There are 16
incoming and 16 outgoing states, but 48 hidden states.
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D. Modified transition matrices in terms of A

Although the final goal is to recover the microscopic transition probabilities for each pixel
from boundary value data, the purpose of this section is more modest. A 32-parameter family of
data sets for the subsystems shown in Fig. 3 are computed from the original data. Once the data
sets for each of the subsystems are found, the 232 subsystems can be tackled in parallel.

The sparse block structures ofPio, Pho, Pih, andPhh were used in Ref. 10 to solve for
nonzero blocks ofPhh, Pio, andPih in terms ofA[Pho21. This result is used here and requires
the following.

Notation: [M :N] denotes the concatenation of matricesM andN ~whereM andN have the
same number of rows!. Furthermore, letr a2b denote any choice of one half of the natural numbers
betweena andb inclusive. ~b2a is always odd.! Finally, definer l[r 128, r b[r 5212, r r[r 9216,
andr t[r 124,13216, representing choices of rows from the left, bottom, right, and top of the system,
respectively.

The following solutions will be used later to eliminate some of theAi
js:

Phh124
5,6 5Pho124

124~Qr r
124!21Qr r

528A528
5,6 , ~2!

Phh124
15,165Pho124

124~Qrb
124!21Qrb

13216A13216
15,16 , ~3!

Pih124
5,6 5@Q124

5282~Q124
1242Pio124

124!~Qr r
124!21Qr r

528#A528
5,6 , ~4!

Pih124
15,165@Q124

132162~Q124
1242Pio124

124!~Qrb
124!21Qrb

13216#A13216
15,16 , ~5!

where

FIG. 3. Decomposition of a 434 system into four 232 subsystems. The thick lines separate the subsystems. The ‘‘modi-
fied’’ 434 system disregards individual pixels. Only the subsystems are relevant at the first level of this recursive
procedure.
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Pio124
1245Q124

1242@Q124
13216~Qrb

13216!21Qrb
124A124

1,2 :Q124
528~Qrb

528!21Qr r
124A124

3,4 #Pho124
124. ~6!

Solutions for blocks within the same transition matrix have a common structure. Hidden–outgoing
and hidden–hidden transitions can be expressed in terms ofQ andA much more simply than
incoming–outgoing and incoming–hidden transitions.

II. SIMPLIFYING THE SOLUTIONS

Although the above solutions are relatively compact, the solutions forPio andPih can be
simplified. The Grassmann–Plu¨cker identites found in classical algebraic geometry are used to
derive matrix identities in the next section. The results are used to simplify the solutions forPio
andPih in Sec. II B.

A. Matrix truisms

Since the inverse problem involves linear systems, it is not surprising that Grassmannians and
the Grassmann–Plu¨cker embedding come into play. The identities which embed Grassmannians

G(k,n) in P(k
n)21 are derived below. A cursory explanation of the embedding can be found in

Refs. 12 and 13. For a more thorough exposition see Refs. 14 and 15. LetL be any rectangular
matrix with k rows andn columns wherek,n21 andL5(a) i j . Let I5( i 1 ,i 2 ,i 3 ,...,i (k21))
index ~k21! distinct columns ofL. Let J5( j 1 , j 2 , j 3 ,...,j (k11)) index ~k11! distinct columns of
L. Then,

(
l51

k11

p~ i1 ,i2 ,...,i k21 , j l!p~ j 1 , j 2 ,...,j l21 , j l11 ,...,j k11!50. ~7!

Equation~7! defines the Grassmann relations. Leta,b,g,h,kPNk. For any matrixQ, basic
matrix properties imply

~Qa
g !21Qa

h5S dQa
g1 ,g2 ,...,g i21 ,h j ,g i11 ,...,gn

dQa
g D

i , j

, ~8!

Qk
g~Qa

g !21Qa
h5Qk

h2S 1

dQa
g D ~dQk i ,a

h j ,g! i , j . ~9!

The identity~8! combines with Grassmann-Plu¨cker relations to imply

~dQk i ,a
gk ,b! i ,k~Qa

g !21Qa
h5~dQk i ,a

gk ,b! i ,kS dQa
g1 ,g2 ,...,gk21 ,h j ,gk11 ,...,gn

dQa
g D

k, j

5
21

dQa
g (
k51

n

~21!k~dQk i ,a
gk ,bdQa

h j ,g1 ,g2 ,...,gk21 ,gk11 ,...,gn! i , j

5S dQk i ,a
h j ,b2

dQa
b

dQa
g dQk i ,a

h j ,gD
i , j

. ~10!

These matrix identities can be used to simplify~4!–~6!. Finally, note that

I5A124
124Pho124

1245A124
1,2 Pho1,2

1241A124
3,4 Pho3,4

124

becausePho is block diagonal andA5Pho21. This argument applies to other blocks on the
diagonal.
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B. Matrix solutions revisited

The solution forPio124
124 can be simplified using~9! as follows:

Pio124
1245Q124

1242F S Qi
j2

dQi ,r5
j ,13216

dQr5
13216 D

i , j

A124
1,2 :S Qi

j2
dQi ,r9

j ,528

dQr9
528 D

i , j

A124
3,4 GPho124

124

5Q124
1242@Q124

124A124
1,2 :Q124

124A124
3,4 #Pho124

124

1F S dQi ,r5
j ,13216

dQr5
13216 D

i , j

A124
1,2 :S dQi ,r9

j ,528

dQr9
528 D

i , j

A124
3,4 GPho124

124

5F S dQi ,r5
j ,13216

dQr5
13216 D

i , j

A124
1,2 :S dQi ,r9

j ,528

dQr9
528 D

i , j

A124
3,4 GPho124

124

5S dQi ,r5
j ,13216

dQr5
13216 D

i , j

A124
1,2 Pho1,2

1241S dQi ,r9
j ,528

dQr9
528 D

i , j

A124
3,4 Pho3,4

124

5S dQi ,r5
j ,13216

dQr5
132162

dQi ,r9
j ,528

dQr9
528 D

i , j

A124
1,2 Pho1,2

1241S dQi ,r9
j ,528

dQr9
528 D

i , j

.

Define the 434 matrices

m5S dQi ,r5
j ,13216

dQr5
132162

dQi ,r9
j ,528

dQr9
528 D

i , j

,

M5m A124
1,2 Pho1,2

124.

Then the nonzero entries ofPio can be expressed~fairly! compactly, albeit nonuniquely:

Pio124
1245M1S dQi ,r9

j ,528

dQr9
528 D

i , j

. ~11!

Simpler solutions forPio can be used to expressPih more succinctly. For instance, substi-
tuting the matrix identity~8! as well as~11! and

S dQi112,528
j112,9212

dQ528
9212 D

i , j

~Q528
13216!21Q528

1245S dQi112,528
j ,9212

dQ528
9212 2

dQi112,528
j ,13216

dQ528
13216 D

i , j

, ~12!

S dQi112,r5
j112,124

dQr5
124 D

i , j

~Qrb
13216!21Qrb

1245S dQi112,rb
j ,124

dQrb
124 2

dQi112,rb
j ,13216

dQrb
13216 D

i , j

[2S dQi112,rb
j ,13216

dQrb
13216 D

i , j

~13!

into equations~4! and ~5! yields

Pih124
5,6 5M ~Qr r

124!21Qr r
528A528

5,6 , ~14!
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Pih124
15,165F S dQi ,9212

j112,528

dQ9212
528 D

i , j

1M ~Q9212
124 !21Q9212

13216GA13216
15,16 . ~15!

In ~12! and ~15! the choice of rows is dictated by the matrix identity~10!. Similar computa-
tions give simple expressions for each block ofPio andPih in terms ofQ and the 64 nonzero
entries ofA.

III. REMOVING A i
js

In this section range conditions are used to derive 32 independent conditions upon theAi
js.

The entries ofPho, Phh, Pio, andPih are ~almost! the data for each of the 232 subsystems.
They do not obey the range conditions mentioned in Sec. I C, however. Range conditions for the
232 subsystems are zero-valued 333 minors of the subsystems’ data sets. Enforcing these con-
ditions yields polynomials in theAi

js. These polynomials factor into products of several terms; the
relevant term is always linear. Although there are many such conditions, only 32 of them are
independent. Only half, therefore, of the parameters may be eliminated by virtue of range condi-
tions upon the 232 subsystems.

Each of the four subsystems has an 838 data matrix. The data matrix for the 1,1 subsystem is
shown below:

Q1153
Pio2

2 Pio2
3 Pio2

4 Pih2
5 Pih2

6 Pih2
15 Pih2

16 Pio2
1

Pio3
2 Pio3

3 Pio3
4 Pih3

5 Pih3
6 Pih3

15 Pih3
16 Pio3

1

Pio4
2 Pio4

3 Pio4
4 Pih4

5 Pih4
6 Pih4

15 Pih4
16 Pio4

1

Pho4
2 Pho4

3 Pho4
4 Phh4

5 Phh4
6 Phh4

15 Phh4
16 Pho4

1

Pho3
2 Pho3

3 Pho3
4 Phh3

5 Phh3
6 Phh3

15 Phh3
16 Pho3

1

Pho2
2 Pho2

3 Pho2
4 Phh2

5 Phh2
6 Phh2

15 Phh2
16 Pho2

1

Pho1
2 Pho1

3 Pho1
4 Phh1

5 Phh1
6 Phh1

15 Phh1
16 Pho1

1

Pio1
2 Pio1

3 Pio1
4 Pih1

5 Pih1
6 Pih1

15 Pih1
16 Pio1

1

4 .
Q11 has four rank-deficient submatrices. They are 434 submatrices of rank two~or less!.

Two constraints are required to force a generic vector inR4 to lie in a given two-dimensional
subspace. Four conditions are required, therefore, to force a generic 434 matrix to be of rank two.
These conditions will be studied in order of increasing complexity.~Clearly, the conditions which
involve variables fromPih are bound to be horrendous, so the are not considered until much
later.! Eight of the conditions are identities of the formAi

j50. The rest reduce~at a generic point!
to four term linear equations. Right–left, left–right, top–bottom, and bottom–top rank deficient
submatrices are labeled asQi j rl , Qi j lr , Qi j tb , andQi j bt , wherei , j51,2. One such rank defi-
cient submatrix whose entries are relatively simple expressions inA andQ is

Q11rl5FQ1151 Q115
2 Q115

3 Q115
4

Q116
1 Q116

2 Q116
3 Q116

4

Q117
1 Q117

2 Q117
3 Q117

4

Q118
1 Q118

2 Q118
3 Q118

4

G5F Pho32 Pho3
3 Pho3

4 Phh3
5

Pho2
2 Pho2

3 Pho2
4 Phh2

5

Pho1
2 Pho1

3 Pho1
4 Phh1

5

Pio1
2 Pio1

3 Pio1
4 Pih1

5

G .
Other relatively simple rank-deficient submatrices are the ‘‘hidden–outgoing’’ submatrices:

Q11bt , Q12bt , Q12lr , Q21tb , Q21rl , Q22lr , andQ22tb . The preponderance of their entries
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represent hidden–outgoing transitions. Entries of ‘‘incoming–hidden’’ submatrices are predomi-
nantly incoming–hidden transitions. There are eight ‘‘incoming–hidden’’ submatrices:Q11tb ,
Q11lr , Q21lr , Q21bt , Q22bt , Q22rl , Q12rl , andQ12tb .

A. Identities

SinceQ11rl is rank two, the determinant of any 333 minor is identically zero. Recall thatA
is a 16316 block matrix, with 434 blocks on the diagonal. The upper left block ofA is the inverse
of the upper left block ofPho, and so

2A4
15UPho12 Pho1

3 Pho1
4

Pho2
2 Pho2

3 Pho2
4

Pho3
2 Pho3

3 Pho3
4
U YdPho124

1245UQ1151 Q115
2 Q115

3

Q116
1 Q116

2 Q116
3

Q117
1 Q117

2 Q117
3
U YdPho124

12450.

The same reasoning applies toQ11bt and shows thatA1
450. This argument also applies to the

rank-deficient submatricesQ21rl , Q21tb , Q12lr , Q22tb , andQ22lr and yields the following
identities:

A1
450, A4

150, A5
850, A8

550, A9
1250, A12

9 50, A13
1650, A16

1350. ~16!

B. ‘‘Easy’’ conditions

The rest of the equations used to removed parameters are linear in theAi
js. The simplest result

from forcing the other 333 minors of ‘‘hidden–outgoing’’ submatrices to be zero. In this section
eight more conditions are derived by considering the 333 minors of ‘‘hidden–outgoing’’ subma-
trices whose entries are only hidden–outgoing and hidden–hidden transitions. Then it is shown
that all other conditions upon the ‘‘hidden–outgoing’’ submatrices are redundant.

1. Hidden –outgoing and hidden –hidden conditions

Consider the 334 submatrix ofQ11rl :

FQ1151 Q115
2 Q115

3 Q115
4

Q116
1 Q116

2 Q116
3 Q116

4

Q117
1 Q117

2 Q117
3 Q117

4
G5F Pho32 Pho3

3 Pho3
4 Phh3

5

Pho2
2 Pho2

3 Pho2
4 Phh2

5

Pho1
2 Pho1

3 Pho1
4 Phh1

5
G .

SincePhh123
5 5 Pho123

124(Qr r
124)21Qr r

528A528
5 , it helps to define

v5~Qr r
124!21Qr r

528A528
5 .

Then every 333 minor of

F Pho12 Pho1
3 Pho1

4

Pho2
2 Pho2

3 Pho2
4 Pho123

124v

Pho3
2 Pho3

3 Pho3
4

G
must be identically zero. Let$a,b,g%5$2,3,4%. Then

UPho1a Pho1
b

Pho2
a Pho2

b Pho123
124v

Pho3
a Pho3

b
U5UPho1a Pho1

b Pho1
1

Pho2
a Pho2

b Pho2
1

Pho3
a Pho3

b Pho3
1
Uv11UPho1a Pho1

b Pho1
g

Pho2
a Pho2

b Pho2
g

Pho3
a Pho3

b Pho3
g
Uvg
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56A4
gv1 /dA124

12416A4
1vg /dA124

124

56A4
gv1 /dA124

124,

sinceA4
1[0. Furthermore,A4

g is generally nonzero, forcingv150. The matrix identity~8! says that
the first row of (Qr r

124)21Qr r
528 equals (dQr r

j14,2,3,4/dQr r
124) j51,2,3,4which implies

05(
j55

8

dQr r
j ,2,3,4Aj

5[(
j55

7

dQr r
j ,2,3,4Aj

5, ~17!

where the last equivalence holds by virtue of the fact thatA8
5[0. The same reasoning applied to

the other ‘‘hidden–outgoing’’ submatrices results in

05(
j51

3

dQrb
j ,14,15,16Aj

15(
j52

4

dQr r
j ,5,6,7Aj

45(
j56

8

dQr t
j ,9,10,11Aj

85(
j59

11

dQr t
j ,6,7,8Aj

95 (
j510

12

dQr l
j ,13,14,15Aj

12

5 (
j513

15

dQr l
j ,10,11,12Asj

135 (
j514

16

dQrb
j ,1,2,3Aj

16. ~18!

2. Redundant hidden –outgoing conditions

In the previous section, a 334 submatrix of the 434Q11rl was forced to be of rank two. This
would not generally suffice to show that rankQ11rl52. In this section, however, it is shown that
conditions~17! and ~18! do in fact force rankQ11rl52. We start by checking that modulo~17!
and ~18! the first three columns ofQ11rl are rank two. As mentioned in the Introduction, the
reader may prefer to skip ahead to Sec. III C.

FQ1151 Q115
2 Q115

3

Q116
1 Q116

2 Q116
3

Q117
1 Q117

2 Q117
3

Q118
1 Q118

2 Q118
3

G5F Pho32 Pho3
3 Pho3

4

Pho2
2 Pho2

3 Pho2
4

Pho1
2 Pho1

3 Pho1
4

Pio1
2 Pio1

3 Pio1
4

G5F S 1

1

1
D Pho123

224

m1A124
1,2 Pho1,2

1241w
G ,

where

w5S dQi ,r r
j ,528

dQr r
528 D

j52,3,4

and m15S dQ1,rb
j ,13216

dQrb
132162

dQ1,r r
j ,528

dQr r
528 D

j ,1,2,3,4

. ~19!

Then for 1<a,b<3,
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05UPhoa
2 Phoa

3 Phoa
4

Phob
2 Phob

3 Phob
4

Pio1
2 Pio1

3 Pio1
4
U

5UF ea

eb

m1@A124
1,2 :0#

GPho123
224U1UFea

eb
GPho123

224

w
U

5U ea

eb

m1@A124
1,2 :0#

UuPho123
224u1UPhoa,b

224

w U5w2dPhoa,b
3,4 2w3dPhoa,b

2,4 1w4dPhoa,b
2,3 . ~20!

The last line follows from the fact thatuPho123
224u[0. Since A[Pho21, for $a,b,c,d%

5$1,2,3,4% and$a,b,g%5$1,2,3%, dPhoa,b
a,b 521a1b1a1bdAc,d

g,4/dA124
124. Substituting this,~16!, and

~19! into ~20! implies

05UPhoa,b
224

w U5A1
g~A2

4dQ1,r r
2,5281A3

4dQ1,r r
3,5281A4

4dQ1,r r
4,528!. ~21!

GenerallyA1
gÞ0. The second term of~21! is really equivalent to the second equation in~18!.

Consider the Jacobian of both equations:

FdQ1,r r
2,528 dQ1,r r

3,528 dQ1,r r
4,528

dQr r
2,527 dQr r

3,527 dQr r
4,527G . ~22!

Let j ,kP$2,3,4%. Grassman relations imply

dQ1,r r
j ,528dQr r

k,5272dQ1,r r
k,528dQr r

j ,5275dQr r
528dQ1,r r

j ,k,52750. ~23!

The last equality follows because of range conditions. For anyj ,kP$2,3,4%, Q1,r r
j ,k,527 repre-

sents travel across the barrier separating incoming states@1,8–16# from outgoing states@2–7#.
This matrix is generally of rank four, sodQ1,r r

j ,k,527 [ 0. Because of~23! the Jacobian~22! is rank

one.
The only 333 minors ofQ11rl which have not yet been shown to be zero by virtue of~17!

and ~18! are those which are functions in incoming–hidden transitions. For example,

UPho23 Pho2
4 Phh2

5

Pho1
3 Pho1

4 Phh1
5

Pio1
3 Pio1

4 Pih1
5
U ~24!

is an example of such a minor. Before showing that~24! is trivally zero we defineU andu as
follows:

U[~Qr r
124!21Qr r

528A528
5 5

1

dQr r
124 F dQr r

2,3,4,5 dQr r
2,3,4,6 dQr r

2,3,4,7

2dQr r
1,3,4,5 2dQr r

1,3,4,6 2dQr r
1,3,4,7

dQr r
1,2,4,5 dQr r

1,2,4,6 dQr r
1,2,4,7

2dQr r
1,2,3,5 2dQr r

1,2,3,6 2dQr r
1,2,3,7

GA527
5 5

1

dQr r
124 F0uG ,
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where the first entry in the last equality is due to~17!. Recall~19!,

Phh122
5 5Pho122

124~Qr r
124!21Qr r

528A528
5 5S 1

dQr r
124D Pho122

224u,

Pih1
55M1~Qr r

124!21Qr r
528A528

5 5S 1

dQr r
124Dm1A124

1,2 Pho1,2
224u, ~25!

Pio1
3,45M1

3,41w3,45m1A124
1,2 Pho1,2

3,41w3,4.

Furthermore,uw
Pho1,2

224

u 5 0 because of the fact that~21! is equivalent to~18!. Plugging this into
~24! yields a 333 minor which is trivially zero because

U Pho1,2
3,4 : Pho1,2

224u

m1A124
1,2 Pho1,2

3,41w3,4 : m1A124
1,2 Pho1,2

224u
U

5U Pho1,2
3,4 : Pho1,2

224u

m1A124
1,2 Pho1,2

3,4 : m1A124
1,2 Pho1,2

224u
U1UPho1,23,4 : Pho1,2

224u

w3,4 : 0
U

5US 1 0

0 1

m1A124
1,2

D Pho1,2224S 0 0 u1
1 0 u2
0 1 u3

D U1U S Pho1,2224

w D S 0 0 u1
1 0 u2
0 1 u3

D U50.

The last line follows because of Eq.~21! and the fact that the determinant of a 332 matrix
with a 233 matrix is zero. Therefore, forcing~24! to be zero yields no additional conditions upon
the Ai

js. Analogous computations hold for the rest of the range conditions uponQ11rl , Q11bt ,
Q12bt , Q12lr , Q21tb , Q21rl , Q22lr , andQ22tb . All of these conditions are equivalent to the
identities~16!–~18!, so only 16 of the possible 32 conditions are independent. In the next section,
more conditions are found amongst the modified data forQ11tb , Q11lr , Q21lr , Q21bt , Q22bt ,
Q22rl , Q12rl , andQ12tb .

C. ‘‘Hard’’ conditions

Consider now the rank-deficient ‘‘incoming–hidden’’ submatrix

Q11tb5F Pih15 Pih1
6 Pih1

15 Pio1
4

Pih2
5 Pih2

6 Pih2
15 Pio2

4

Pih3
5 Pih3

6 Pih3
15 Pih3

4

Phh1
5 Phh1

6 Phh1
15 Pho1

4

G . ~26!

In Sec. III C 1 range conditions uponQ11tb are derived. These conditions are simplified in Sec.
III C 3. Finally, all other conditions upon the ‘‘incoming–hidden’’ submatrices are shown to be
redundant in Sec. III C 4.

1. Derive ‘‘hard’’ conditions

In order to start with as few incoming–hidden transitions as possible, let 1<a,b<3 and
consider the minor of~26! taken from rowsa,b,4 and columns 1,2,4:
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U Ma,b~Qr r
124!21Qr r

528A528
5,6

: Ma,be41S dQi ,r r
428

dQr r
528D

i , j

Pho1
124~Qr r

124!21Qr r
528A528

5,6
: Pho1

4
U . ~27!

Now define the 234 and 334 derivates andm andN:

ma,b[S dQa,rb
j ,13216

dQrb
13216 2

dQa,r r
j ,528

dQr r
528

dQb,rb
j ,13216

dQrb
13216 2

dQb,r r
j ,528

dQr r
528

D
j

, for jP$1,2,3,4%, ~28!

N[Fma,b A124
1,2

1 0
GPho1,2124, ~29!

and note thatN is rank two. Substituting~28! and~29! into ~27! yields the following form for the
333 determinants:

UN~Qr r
124!21Qr r

528A528
5,6 :Ne41

1

dQr r
528 S dQa,r r

428

dQb,r r
428

0
D U

5U N@~Qr r
124!21Qr r

528A528
5,6 :e4#U1

1

dQr r
528 UN~Qr r

124!21Qr r
528A528

5,6 :

dQa,r r
428

dQb,r r
428

0
U

5
1

dQr r
528 UFma,b A124

1,2

1 : 0 GPho1,2124~Qr r
124!21Qr r

528A528
5,6 :

dQa,r r
428

dQb,r r
428

0
U

5
1

dQr r
528 Uma,b A124

1,2 A
dQa,r r

428

dQb,r r
428

1 0 A 0
UUPho1,2124~Qr r

124!21Qr r
528A528

5,6 0
0

0 0 1U
5CUma,bA124

2 :
dQa,r r

428

dQb,r r
428U5C(

j51

4 U S dQa,rb
j ,13216

dQrb
132162

dQa,r r
j ,528

dQr r
528 D dQa,r r

428

S dQb,rb
j ,13216

dQrb
132162

dQb,r r
j ,528

dQr r
528 D dQb,r r

428UAj
2

5(
j51

4 S 1

dQrb
13216 ~dQa,rb

j ,13216dQb,r r
4282dQb,rb

j ,13216dQa,r r
428!2

1

dQr r
528 ~dQa,r r

j ,528dQb,r r
428

2dQb,r r
j ,528dQa,r r

428!DAj
2
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5
C

dQrb
13216 (

j51

4

~dQa,rb
j ,13216dQb,r r

4282dQb,rb
j ,13216dQa,r r

4282dQrb
13216dQa,b,r r

j ,428 !Aj
2, ~30!

whereC [u Pho1,2
124(Qr r

124)21Qr r
528A528

5,6 u/dQr r
528. The last equality holds because Grassman re-

lations imply

dQa,r r
j ,528dQb,r r

4282dQb,r r
j ,528dQa,r r

4285dQa,b,r r
j ,428 dQr r

528. ~31!

If CÞ0, then forcing~27! to be zero gives three conditions upon theAj
2s, since there are three

ways to choosea,b in ~30!. The same argument applied to other ‘‘incoming–outgoing’’ subma-
trices yields similar conditions. These conditions are simplified in Sec. III C 3. However, first we
must verify the following.

Claim: CÞ0.
Proof:Defineh [Pih(I2Phh)21 . ThenQr r

124 5 h r r
124Pho124

124 andQr r
528 5 h r r

528Pho528
528.

SinceA[Pho21,

C[uPho1,2
124~Qr r

124!21Qr r
528A528

5,6 u/dQr r
528

5
1

dQr r
528 U S 1 0 0 0

0 1 0 0D ~h r r
124!21h r r

528S 1 0

0 1

0 0

0 0

DU ~32!

52U dh r r
225 dh r r

2,3,4,6

dh r r
1,3,4,5 dh r r

1,3,4,6U Y~dQr r
528~dh r r

124!2! ~33!

5dh r r
326/~dQr r

528dh r r
124!. ~34!

Equation~32! follows from the definitions ofQr r
124, Qr r

528, andA in terms ofh andPho.

Equation~8! implies~33!, which combined with Grassmann relations yields~34!. Since there is no
barrier of less than four states separating incoming states 9, 10, 11, and 12 from hidden states 1,
2, 3, and 4,dh r r

326 Þ 0 in the generic case. h

2. More matrix identities

In the following section condition~30! is simplified using many matrix identities. First note
that Grassmann relations imply

UdQ14,15,528
i ,9213 dQ14,15,528

j ,9213

dQ14,16,528
i ,9213 dQ14,16,528

j ,9213 U5dQ14,528
9213 dQ14216,528

i , j ,9213 ~35!

and dQ14216,528
i , j ,9213 dQ15,16,528

k,9213 2dQ14216,528
i ,k,9213 dQ15,16,528

j ,9213 1dQ14216,528
j ,k,9213 dQ15,16,528

i ,9213 50. There-
fore,

UdQ14,15,528
i ,9213 dQ14,15,528

j ,9213 dQ14,15,528
k,9213

dQ14,16,528
i ,9213 dQ14,16,528

j ,9213 dQ14,16,528
k,9213

dQ15,16,528
i ,9213 dQ15,16,528

j ,9213 dQ15,16,528
k,9213

U
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5dQ14,528
9213 ~dQ14216,528

i , j ,9213 dQ15,16,528
k,9213 2dQ14216,528

i ,k,9213 dQ15,16,528
j ,9213 1dQ14216,528

j ,k,9213 dQ15,16,528
i ,9213 !

[0. ~36!

BecauseQ128
9216 is generically of rank four,

Q528
132165Q528

9212~Q124
9212!21Q124

13216. ~37!

This means that foraP$1,2,3,4%

dQa,528
n,132165U Qa

n A Qa
13216

Q528
n A Q528

13216U5U Qa
n A Qa

13216

Q528
n A Q528

9212~Q124
9212!21Q124

13216U
5U Qa

n A ea

Q528
n A Q528

9212~Q124
9212!21UU1 Q124

13216U
5U Qa

n A Qa
9212

Q528
n A Q528

9212UU1 ~Q124
9212!21UU1 Q124

13216U
5dQa,528

n,9212
dQ124

13216

dQ124
9212 . ~38!

Similarly,

dQa,b,13216
n,428 5dQa,b,13216

n,4,9212
dQ124

528

dQ124
9212 and dQa,13216

n,528 5dQa,13216
n,9212

dQ124
528

dQ124
9212. ~39!

Finally, Grassmann relations and range conditions combine with the above identities in the
following:

(
sPS3

sgns

2
dQ14216,528

s1 ,s2,9213dQa,528
s3,13216

5
dQ124

13216

dQ124
9212 (

sPS3

sgns

2
dQ14216,528

s1 ,s2,9213dQa,528
s3,9212

~40!

5
dQ124

13216

dQ124
9212 ~6dQa,528

9213 dQ14216,528
s1 ,s2 ,s3,9212

1dQ528
9212dQa,14216,528

s1 ,s2 ,s3,9213
! ~41!

5
dQ124

13216

dQ124
9212 dQ528

9212dQa,14216,528
s1 ,s2 ,s3,9213

~42!

5dQ528
13216dQa,14216,528

s1 ,s2 ,s3,9213. ~43!

Equation~41! follows from ~40! by Grassmann relations;~42! follows from ~41! because consis-
tency conditions forcedQa,528

9213 [0. Finally, ~37! forces~43!.
In the next section the following notation will also be used.
Notation:Define the matrixC with columnscj and rowscj , i.e.,

C5@c1 c2 c3 c4#5Fc1c2G .
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3. Simplification of ‘‘hard’’ conditions

This section consists of a single
Claim: The conditions in~30! are equivalent to

05 (
n51

4

dQg,d,528
n,9213 An

2 for g,dP$14,15,16%. ~44!

Furthermore, Eqs.~30! and ~44! constitute only two independent conditions upon theAi
2s.

Proof: Due to ~36!, only two independent conditions upon theAn
2s are given by~44!. For

convenience, consider~30! wherer b5528 andr r513216. To finish the proof of this claim it is
necessary to show that fora,bP$1,2,3%, the matrixC

cj5S dQa,528
j ,13216dQb,13216

428 2dQb,528
j ,13216dQa,13216

428 2dQ528
13216dQa,b,13216

j ,428

dQ14,15,528
j ,9213

dQ14,16,528
j ,9213

D
j

~45!

is also of rank two. Equations~35!, ~43!, and~39! are combined to show that fori , j ,kP$1,2,3,4%
uci cj cku50, forcingC to be rank two:

uci cj cku
dQ14,528

9213 5~~dQa,528
i ,13216dQb,13216

428 2dQb,528
i ,13216dQa,13216

428 2dQ528
13216dQa,b,13216

i ,428 !dQ14216,528
j ,k,9213

2~dQa,528
j ,13216dQb,13216

428 2dQb,528
j ,13216dQa,13216

428 2dQ528
13216dQa,b,13216

j ,428 !dQ14216,528
i ,k,9213

1~dQa,528
k,13216dQb,13216

428 2dQb,528
k,13216dQa,13216

428 2dQ528
13216dQa,b,13216

k,428 !dQ14216,528
i , j ,9213 !

5 (
sPS3~ i , j ,k!

sgns

2
dQ14216,528

s1 ,s2,9213
~~dQa,528

s3,13216dQb,13216
428 2dQb,528

s3,13216dQa,13216
428 !

2dQ528
13216dQa,b,13216

s3,428
! ~46!

5dQ528
13216S dQa,14216,528

i , j ,k,9213 dQb,13216
428 2dQb,14216,528

i , j ,k,9213 dQa,13216
428

2 (
sPS3~ i , j ,k!

sgns

2
dQ14216,528

s1 ,s2,9213dQa,b,13216
s3,428 D ~47!

5
dQ528

13216dQ124
528

dQ124
9212 S dQa,14216,528

i , j ,k,9213 dQb,13216
4,9212 2dQb,14216,528

i , j ,k,9213 dQa,13216
4,9212

2 (
sPS3~ i , j ,k!

sgns

2
dQ14216,528

s1 ,s2,9213dQa,b,13216
s3,4,9212 D ~48!

5
dQ528

13216dQ124
528

dQ124
9212 ~6dQa,b,13216

4,9213 dQ14216,528
i , j ,k,9212 6dQa,b,14216

4,9212 dQ13216,528
i , j ,k,9213 !

~49!

50. ~50!
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Equation~47! follows from ~46! and ~43!. Equation~48! follows from ~47!, ~38!, and ~39!.
Equation~49! is the result of another Grassmann relation. The last equation,~50!, holds because
consistency conditions forcedQa,b,13216

4,9212 505dQa,b,13216
4,9213 . h

Similar calculations hold forQ11lr , Q21lr , Q21bt , Q22bt , Q22rl , Q12rl , andQ12tb , yield-
ing 16 independent conditions upon theAi

js:

05 (
n51

4

dQa,b,528
n,9213 An

2 for a,bP$14,15,16%, ~51!

05 (
n51

4

dQa,b,13216
n,8212 An

3 for a,bP$5,6,7%, ~52!

05 (
n55

8

dQa,b,9212
n,1,13216An

6 for a,bP$2,3,4%, ~53!

05 (
n55

8

dQa,b,124
n,1226 An

7 for a,bP$9,10,11%, ~54!

05 (
n59

12

dQa,b,13216
n,125 An

10 for a,bP$6,7,8%, ~55!

05 (
n59

12

dQa,b,528
n,124,16An

11 for a,bP$13,14,15%, ~56!

05 (
n513

16

dQa,b,124
n,529 An

14 for a,bP$10,11,12%, ~57!

05 (
n513

16

dQa,b,9212
n,428 An

15 for a,bP$1,2,3%. ~58!

4. Redundant ‘‘hard’’ conditions

In the previous section two equations were derived which force the first, second, and fourth
columns ofQ11tb to be rank two. In this section conditions forcing the first three columns of
Q11tb to be rank two are shown to be equivalent to conditions~51!–~58!.

The reader is reminded that this section is quite technical and is included for the sake of
completeness. Much of the notation of the previous section is retained. Here, however,r b andr r
are fixed so thatr b[9212[r r . For the sake of notation, define the 234 matricesL andD:

L j[S dQa,r r
j112,528

dQb,r r
j112,528D and D[ma,b . ~59!

The minor taken from rowsa, b, 4 and first three columns ofQ11tb can be written as follows:

U Piha
5 Piha

6 Piha
15

Pihb
5 Pihb

6 Pihb
15

Phh1
5 Phh1

6 Phh1
15
U
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5UN~Q9212
124 !21Q9212

528 A528
5,6 AXN~Q9212

124 !21Q9212
132161

1

dQ9212
528 S L0 D CA13216

15 U
5uN~Q9212

124 !21@Q9212
528 A528

5,6 AQ9212
13216A13216

15 #u1
1

dQ9212
528

3UN~Q9212
124 !21Q9212

528 A528
5,6 AS L0 DA13216

15 U
5CUDA124

1,2

1 0
AS L0 D

j

A13216
15 U, since N is rank two

5CuDA124
2 ALA13216

15 u. ~60!

At first blush this appears to be quadratic inAi
js. Equation~30! can be used to factor theAi

js
out of ~60!. Now define the matricesF andG whose columns are

f j[S dQ14,15,528
j ,9213

dQ14,16,528
j ,9213 D , gj[S dQ1,2,9212

j112,428

dQ1,3,9212
j112,428D .

Then ~51! and ~58! imply

05FS A1
2

A2
2

A3
2

A4
2
D and 05GS A13

15

A14
15

A15
15

A16
15
D

or

S A1
2

A2
2

A3
2

A4
2
D 5S 2@ f 1 f 2#21@ f 3 f 4#

I D SA3
2

A4
2D and S A13

15

A14
15

A15
15

A16
15
D 5S 2@g1 g2#21@g3 g4#

I D SA15
15

A16
15D .

~61!

Plugging~59! and ~61! into ~60! takes the previously found ‘‘hard’’ conditions into account
and yields

CUDS 2@ f 1 f 2#21@ f 3 f 4#
I D SA3

2

A4
2D :L S 2@g1 g2#21@g3 g4#

I D SA15
15

A16
15D U. ~62!

Showing that~62! is zero requires several steps:

~1! Show thatD( I
2@ f 1 f 2#21@ f 3 f 4#) andL ( I

2@g1 g2#21@g3 g4#) are both rank one.

~2! Compute column vectorsc,c̄, such thatD( I
2@ f 1 f 2#21@ f 3 f 4#) 5 crT andL ( I

2@g1 g2#21@g3 g4#)
5 c̄r̄T for some column vectorsr , andr̄ .

~3! Check that 0[uc:c̄u.

Step One:The following identity for any 234 matrixF is helpful:

@ f 1 f 2#21@ f 3 f 4#5
1

uf 1 f 2u F2uf 2 f 3u uf 2 f 4u

uf 1 f 3u 2uf 1 f 4uG .
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Therefore,

uf 1 f 2uud1d2uU2[ f 1 f 2u21[ f 3 f 4u1[d1 d2u21[d3 d4uU

5uf 1 f 2uud1 d2uU1S Uf 2 f 3

f 1 f 2U2Ud2 d3

d1 d2U D 2S Uf 2 f 4

f 1 f 2U2Ud2 d4

d1 d2U D
2S Uf 1 f 3

f 1 f 2U2Ud1 d3

d1 d2U D 1S Uf 1 f 4

f 1 f 2U2Ud1 d4

d1 d2U DU ~63!

5
1

uf 1 f 2uud1 d2u
„~ uf 2 f 3uud1 d2u2uf 1 f 2uud2 d3u!~ uf 1 f 4uud1 d2u

2uf 1 f 2uud1 d4u!2~ uf 1 f 3uud1 d2u2uf 1 f 2uud1 d3u!~ uf 2 f 4uud1 d2u

2uf 1 f 2uud2 d4u!…

5
1

uf 1 f 2uud1 d2u
„ud1 d2u2~ uf 1 f 4uuf 2 f 3u

2uf 1 f 3uuf2 f 4u!1uf 1 f 2u2~ ud1 d4uud2 d3u2ud1 d3uud2 d4u!

1ud1 d2uuf 1 f 2u~2ud1 d4uuf 2 f 3u2uf 1 f 4uud2 d3u1uf 1 f 3uud2 d4u

1ud1 d3uuf 2 f 4u!… ~64!

5
1

uf 1 f 2uud1 d2u
„2ud1 d2u2uf 1 f 2uuf 3 f 4u2uf 1 f 2u2ud1 d2uud3 d4u

1ud1 d2uuf 1 f 2u~2ud1 d4uuf 2 f 3u2uf 1 f 4uud2 d3u1uf 1 f 3uud2 d4u

1ud1 d3uuf 2 f 4u!… ~65!

52~ ud1 d2uuf 3 f 4u2ud1 d3uuf 2 f 4u1ud1 d4uuf 2 f 3u1ud2 d3uuf 1 f 4u

2ud2 d4uuf 1 f 3u1ud3 d4uuf 1 f 2u! ~66!

52UDFU ~67!

52Ud1d2
F
U5

1

dQ528
13216dQa,13216

428 U d1
2dQ528

13216dQa,13216
428 d2

F
U

5
1

dQ528
13216dQa,13216

428 U d1
dQ528

13216~dQb,13216
428 d12dQa,13216

428 d2!
F

U
5

1

dQ528
13216dQa,13216

428 Ud1CU50 ~68!

so

U2@ f 1 f 2#21@ f 3 f 4#1@d1 d2#21@d3 d4#U50
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Line ~65! follows from ~64! by virtue of Grassmann relations;~66! is simply the Laplace
expansion of~67!.16 In equation~68!, C is the same rank two matrix defined in~45!, souC

d1u is rank
deficient. Now,

UDS 2@ f 1 f 2#21@ f 3 f 4#
I DU

5u2@d1 d2#@ f 1 f 2#21@ f 3 f 4#1@d3 d4#u

5u@d1 d2#~2@ f 1 f 2#21@ f 3 f 4#1@d1 d2#21@d3 d4# !u

5u@d1 d2#uU~2@ f 1 f 2#21@ f 3 f 4#1@d1 d2#21@d3 d4# !U50

so

DS 2@ f 1 f 2#21@ f 3 f 4#
I D

is rank one. A similar method works to show that

L S 2@g1 g2#21@g3 g4#
I D

is also rank one. Recall~31! and the definition ofla :

la5~dQa,9212
13,528 dQa,9212

14,528 dQa,9212
15,528 dQa,9212

16,528 !.

Furthermore, define

la,b5~dQa,b,9212
13,428 dQa,b,9212

14,428 dQa,b,9212
15,428 dQa,b,9212

16,428 !

and notice that

dQb,9212
428 la2dQa,9212

428 lb5dQ9212
528 lab .

The argument used to go from~63! to ~67! and the fact that

L5S lalb D and G5S l1,2l1,3
D

lead to the following:

UL S 2@g1 g2#21@g3 g4#
I DU5u@ l1 l2#uu~2@g1 g2#21@g3 g4#1@ l1 l2#21@ l3 l4# !u5u@ l1 l2#uULGU

5u@ l1 l2#uU lalbl1,2
l1,3

U5u@ l1 l2#uU la
lb

dQ2,9212
428 l12dQ1,9212

428 l2
dQ3,9212

428 l12dQ1,9212
438 l2

U

3301S. K. Patch: Diffuse tomograpy modulo Grassmann and Laplace

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



5u@ l1 l2#uU S ea

eb

dQ2,9212
428 2dQ1,9212

428 0

dQ3,9212
428 0 2dQ1,9212

428

D S l1l2l3DU50,

since the product of a 433 with a 334 matrix is a 434 rank-deficient matrix.
Step Two:Brute force suffices to find the column vectorc where

crT5DS 2@ f 1 f 2#21@ f 3 f 4#
I D

52@d1 d2#@ f 1 f 2#21@ f 3 f 4#1@d3 d4#

52
1

uf 1 f 2u @d1 d2#F2uf 2 f 3u 2uf 2 f 4u

uf 1 f 3u uf 1 f 4u G1@d3 d4#

52
1

uf 1 f 2u @2uf 2 f 3ud11uf 1 f 3ud2:2uf 2 f 4ud11uf 1 f 4ud2#1@d3:d4#

5
1

uf 1f 2u @~ uf 2 f 3ud12uf 1 f 3ud21uf 1 f 2ud3!:~ uf 2 f 4ud12uf 1 f 4ud21uf 1 f 2ud4!#

therefore setc[@uf 2 f 3ud12uf 1 f 3ud21uf 1 f 2ud3#. A similar calculation holds to show

L S 2@g1 g2#21@g3 g4#
I D5 c̄ r̄T for c̄5@ ug2 g3u l12ug1 g3u l21ug1 g2u l3#.

Step Three:In order to show that~60! is trivially zero a few more identities are needed.
BecauseQ9216

128 is generically of rank four,Q9212
528 5Q9212

124 (Q13216
124 )21Q13216

528 anddQa,9212
428 can

be expressed as a product of minors

dQa,9212
428 5U Qa

4 A Qa
528

Q9212
4 A Q9212

528 U5U Qa
4 A Qa

528

Q9212
4 A Q9212

124 ~Q13216
124 !21Q13216

528 U
5U1

Q9212
124 UUQa

4 A Qa
528

e4 A ~Q13216
124 !21Q13216

528 U
5U1

Q9212
124 UU1 ~Q13216

124 !21UU Qa
4 A Qa

528

Q13216
4 A Q13216

528 U
5dQa,13216

428
dQ9212

124

dQ13216
124 . ~69!

The Grassmann relation

(
sPS3

sgns

2
dQ123,9212

s1 ,s2,428dQa,9212
s3,528

5dQ123,9212
s1 ,s2 ,s3,528dQa,9212

428 ,

as well as Grassmann relations for the minors

uf j f ku5dQ14,528
9213 dQ14216,528

j ,k,9213 ,
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ugj gku5dQ1,9212
428 dQ123,9212

j112,k112,428,

can be used to writec̄ fairly simply:

c̄5 (
sPS3

sgns

2
ugs1 gs2u ls3

5dQ1,9212
428 (

sPS3~13,14,15!

sgns

2
dQ123,9212

s1 ,s2,428S dQa,9212
s3,528

dQb,9212
s3,528D

5dQ1,9212
428 dQ123,9212

13,14,15,528S dQa,9212
428

dQb,9212
428 D 5k̃ S dQa,13216

428

dQb,13216
428 D .

The last line follows from Eq.~69! for somek̄PR. Computingc is more complicated. First
note that Eqs.~38! and ~39! can be used to rewrite

di[S dQa,528
i ,13216

dQ528
132162

dQa,13216
i ,528

dQ13216
528

dQb,528
i ,13216

dQ528
132162

dQb,13216
i ,528

dQ13216
528

D 5S dQa,528
i ,9212

dQ528
92122

dQa,13216
i ,9212

dQ13216
9212

dQb,528
i ,9212

dQ528
92122

dQb,13216
i ,9212

dQ13216
9212

D 5da
i 2db

i ,

where

da
i [

1

dQ528
9212 S dQa,528

i ,9212

dQb,528
i ,9212D and db

i [
1

dQ13216
9212 S dQa,13216

i ,9212

dQb,13216
i ,9212 D .

A combination of Grassmann relations and range conditions are required now

(
sPS3

sgns

2
dQ14216,528

s1 ,s2,9213dQa,528
s3,9212

56dQ14216,528
s1 ,s2 ,s3,9212dQa,528

9213 1dQa,14216,528
s1 ,s2 ,s3,9213dQ528

9212

5dQa,14216,528
s1 ,s2 ,s3,9213dQ528

9212,

since consistency conditions forcedQa,528
9213 [0. Another identity is useful:

(
sPS3

sgns

2
dQ14216,528

s1 ,s2,9213dQa,13216
s3,9212

5dQ13216
9212 dQa,14216,528

123,9213 1dQa,13216
9213 dQ14216,528

123,9212

2dQa,14216
9212 dQ13216,528

123,9213 .

Therefore,

(
sPS3

sgns

2
uf s1f s2uda

s35
dQ14,528

9213

dQ528
9212 (

sPS3

sgns

2
dQ14216,528

s1 ,s2,9213S dQa,528
s3,9212

dQb,528
s3,9212D

5dQ14,528
9213 S dQa,14216,528

123,9213

dQb,14216,528
123,9213 D ~70!

and
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(
sPS3

sgns

2
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Notice that thanks to range conditions
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which permits~71! to be written more simply. For somek,k̂PR,
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The last line follows from~39!. Equations~70! and ~72! imply
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The Grassmann relation
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The last equality follows from range conditions. Sincea,bP$1,2,3%, rankQa,b,14216
428,13 <4. Therefore,

rankQa,b,13216
428,13 <5, forcingdQa,b,13216

428,13 50. Finally, steps 1–3 imply
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5XrT•SA3
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A4
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A16
15D C* uc: c̄u

50.

Similar calculations hold to show that other minors of this ilk are trivially zero and force no
additional conditions upon theAi

js.

IV. CONCLUSION

Enforcing range conditions upon the solution of the ‘‘modified problem,’’ which subdivides a
434 system in to four subsystems, was done analytically in Sec. III. That it might prove compu-
tationally infeasible to eliminate excess parameters for larger systems has been one of the author’s
greatest fears for diffuse tomography. Some of the tricks used here carry over to larger systems.
Others, however, do not. For example, the derivation of the condition~30! does not go through.
The author’s goal is to implement a recursive scheme which generates data forn/23n/2 sub-
systems from ann3n system’s data set. In order to implement such a scheme a complete and
computationally reasonable set of conditions analogous to~16!–~18! and ~51!–~58! is required.
Hopefully, they will be as succinct and linear as their counterparts for the 434 problem.
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Mathématiques pour l’Industrie et la Physique, UMR CNRS 9974, UFR MIG, Universite´
Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex, France

~Received 27 November 1995; accepted for publication 8 January 1996!

This paper shows that various models of electron transport in semiconductors that
have been previously proposed in the literature can be connected one with each
other by the diffusion approximation methodology. We first investigate the diffu-
sion limit of the semiconductor Boltzmann equation towards the so-called ‘‘spheri-
cal harmonic expansion model,’’ under the assumption of dominant elastic scatter-
ing. Then, this model is again connected, either to the energy-transport model or to
a ‘‘periodic spherical harmonic expansion model’’ through a diffusion approxima-
tion, respectively making electron–electron or phonon scattering large. We provide
the mathematical background which makes the Hilbert expansions associated with
these various diffusion limits rigorous. ©1996 American Institute of Physics.
@S0022-2488~96!01306-0#

I. INTRODUCTION

This paper is concerned first with a mathematical derivation of the spherical harmonic expan-
sion model of semiconductors from the Boltzmann equation and, second, with the connections of
this model to other previously derived macroscopic models~energy-transport, drift-diffusion, and
periodic spherical harmonic expansion models!. Indeed, the search for macroscopic models which
provide reliable but not too computationally expensive descriptions of hot electron transport in
semiconductors is an important issue for industry. This paper intends to clarify the relations
between the various models of semi-classical electron-transport that are now available.

In this paper, the hierarchy between the various models is outlined, together with the macro-
scopic limit which links two successive steps of the hierarchy. Each macroscopic limit is associ-
ated with a particular choice of space and time scales which makes a specific collision mechanism
dominant. Figure 1 provides an overview of this hierarchy. Each of the considered models appears
in a box together with its abbreviation and the physical unknown it is concerned with. An arrow
between two boxes indicates a macroscopic limit which connects the corresponding models. Solid
lines indicate which macroscopic limits will be detailed in this paper. Dashed arrows have already
been dealt with in previous papers and will not be considered. Along the arrow is mentioned the
dominant scattering mechanism which is used in the corresponding macroscopic limit.

The drift–diffusion limit ~arrow 1! has first been investigated in Ref. 1 and successively by
many authors.2–5 The mathematical theory has been given in Refs. 6 and 7 in the framework of
model collision operators for which the scattering matrix is assumed to be smooth. This direct
arrow from the Boltzmann equation~BE! to the drift-diffusion model~DD! is well understood and
will not be investigated here.

More recently, a new model based on the diffusion approximation of the Boltzmann equation
subject to dominant scattering by optical phonons of constant energy has been proposed,8–10

~arrow 2!. This new model will further be referred to as the ‘‘periodic spherical harmonic expan-
sion model’’ ~PSHE! because of its analogy with the~unperiodic! spherical harmonic expansion
model~SHE!. Mathematically rigorous approximation theorems are given in Refs. 8 and 9; part of
the analysis relies on properties of the optical phonon collision operator which were proved in
Refs. 11–13. This arrow 2 will not be further investigated here.

The energy-transport model~ET! consists of a system of diffusion equations for the electron
density and temperature. This extended drift-diffusion model can also be viewed as a hydrody-
namic model in which the inertia terms in the momentum transport equation are neglected14–16

0022-2488/96/37(7)/3306/28/$10.00
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~for the hydrodynamic model of semiconductors we refer the reader in particular to Refs. 17–19!.
The ET model first appeared in Refs. 20 and 21 and then has been widely used for numerical
computations,14,15,22,23mostly with phenomenological transport coefficients. Its derivation from
the Boltzmann equation may be found in Refs. 24 and 25. The dominant scatterings needed for
this model to be valid are shown in Ref. 16 to be electron–electron and elastic collisions~arrow 3!.
Mathematically rigorous convergence results for this limit are in progress.26 Again, this limit will
not be further investigated in the present paper.

There are several drawbacks to the approaches of Ref. 10~for the PSHE model! and of Ref.
16 ~for the ET model!. In neither case is the assumption on the dominant scattering realistic for hot
electron transport. Indeed, the basic assumption of Ref. 10 is that the~constant! optical phonon
energy is of order 1. However, at room temperature and for hot electrons this energy should rather
be considered as small and both the impurity and phonon scatterings viewed~at leading order! as
elastic. Also, in Ref. 16, the electron–electron collision operator is assumed of the same order of
magnitude as the elastic operator, which is questionable. Therefore, in the present paper, we
investigate the diffusion approximation of the Boltzmann equation subject to dominant elastic
scattering, which yields the SHE model~arrow 4!.

FIG. 1. The hierarchy of models.
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This question has first been investigated in Ref. 27. Another drawback of Refs. 10 and 16 is
that the diffusion constants coming from these theories are not explicit. We shall see that both the
PSHE model and the ET model can be obtained through relaxation limits of the SHE model
~arrows 5 and 6! and that these limits yield more explicit expressions of the diffusion coefficients
~even analytic in the most simple situations!.

The SHE model first appeared in studies by Stratton.20,21,28,29Then, it was introduced as a
numerical method in Refs. 30–37. The first derivation of this model from a diffusion approxima-
tion of the Boltzmann equation appears in Ref. 27 and we shall follow their approach. However,
the analysis of Ref. 27 is restricted to isotropic scattering while that of Ref. 30 is restricted to
spherically symmetric band diagrams. We shall derive the model in a general setting and show that
it reduces to that of Refs. 27 and 30 under suitable assumptions. This more general approach
applies particularly to III–V materials, for instance, for which the phonon collisions are highly
anisotropic and the band diagrams not spherically symmetric. We shall also provide the necessary
mathematical framework to make these analyses more rigorous. However, the proof of the con-
vergence of the diffusion approximation will be deferred to future work.

The relaxation limits of the SHE model towards the PSHE model~arrow 5! and towards the
ET model ~arrow 6! will also be considered in detail. In Ref. 38, arrow 6 is investigated via a
moment expansion method but needs phenomenological closure relations. In our ET model, the
diffusion coefficients are the same as in Ref. 20. At variance, the investigation of arrow 5 is new
and is proved directly via a coercivity estimate~contrary to Refs. 9 and 10 where the resolution
of a recursion system is needed!.

To be complete, the relaxation limits of both the PSHE model and the ET model towards the
drift-diffusion ~DD! model ~arrows 7 and 8! will be outlined. Arrow 7 is treated by considering
both acoustical phonon and electron–electron scattering. At variance, Ref. 10 treats such a limit by
considering a second polar optical phonon scattering with an irrational phonon energy with respect
to the first optical phonon energy. Finally the direct limit of the SHE model to the DD model
~arrow 9! is not considered but would be rather straightforward. Note that the three limits~arrows
7–9! yield the same diffusion coefficient in the DD model and that its expression is different from
what the direct limit from the Boltzmann equation~arrow 1! would give.

The paper is organized as follows: Sec. II is devoted to a presentation of the Boltzmann
equation and of the appropriate scaling. Section III is concerned with the diffusion limit of the
Boltzmann equation to the SHE model~arrow 4!. In Sec. IV we deal with the relaxation limit of
the SHE model to the ET model~arrow 6! and outline the relaxation limit of the latter to the DD
model~arrow 8!. In Sec. V, we perform a similar program going from the SHE model to the PSHE
model and then to the DD model, via a sequence of relaxation limits~arrows 5 and 7!.

II. THE BOLTZMANN EQUATION

The starting point is the Boltzmann equation for the electrons in the conduction band of the
semiconductor. Letf (x,k,t) be the distribution function depending on the positionxPR3, the
wave vectorkPB, and the timet>0. The Brillouin zoneB is the elementary cell of the dual
latticeL* and is identified with the torusR3/L* . Any function ofk will thus be considered asL*
periodic.

The Boltzmann equation is written25

] f

]t
1
1

\
“k«~k!•“xf1

q

\
“xV~x,t !•“kf5Qld~ f !1Qe~ f !, ~II.1!

where«:kPB°«(k)PR is the given energy band diagram,V:(x,t)PR33@0,̀ !°R is the elec-
trostatic potential,q is the elementary charge,\ is the reduced Planck constant,Qld( f ) is the
collision operator for lattice-defect collisions, andQe( f ) is the collision operator for electron–
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electron collisions. The coupling ofV to f through Poisson’s equation need not be considered in
the subsequent analysis. Therefore,V(x,t) will be treated as a given function.

The main three classes of lattice-defects are impurities, acoustical phonons, and optical
phonons:39

Qld~ f !5Qimp~ f !1Qac~ f !1Qop~ f !, ~II.2!

Because of the elastic character of impurity scattering, Pauli’s exclusion terms in the gain and loss
terms cancel and we obtain

Qimp~ f !~k!5E
B
F imp~x,k,k8!d~«82«!~ f 82 f !dk8, ~II.3!

where «5«(k), «85«(k8), f5 f (k), f 85 f (k8), d is the delta measure, and
Fimp(x,k,k8)5Fimp(x,k8,k) is the impurity scattering matrix element. For optical phonons, we
have

Qop~ f !~k!5E
B
Fop~x,k,k8!$@~Nop11!d~«2«81«op!1Nopd~«2«82«op!# f 8~12 f !

2@~Nop11!d~«82«1«op!1Nopd~«82«2«op!] f ~12 f 8!%dk8, ~II.4!

whereFop(x,k,k8)5Fop (x,k8,k) is the matrix element,«op is the constant optical phonon energy,
andNop is optical phonon occupation number:

Nop5~e«op /kBTL21!21

with kB the Boltzmann constant andTL the lattice temperature. The acoustical phonon collision
operator is given by a similar expression~II.4! with the indices ‘‘op’’ replaced by ‘‘ac.’’ The only
major difference between acoustical and optical scattering is that the acoustical phonon energy
«ac5«ac (k2k8) is a nonconstant function ofk2k8.

The electron–electron collision operator is given by16,39

Qe~ f !~k!5E
B3

Fe~k,k1 ,k8,k18!d~«81«182«2«1!dp~k81k182k2k1!

3@ f 8 f 18~12 f !~12 f 1!2 f f 1~12 f 8!~12 f 18!#dk1dk8dk18 , ~II.5!

where

dp~k81k182k2k1!5 (
geL*

d~k81k182k2k11g!. ~II.6!

In ~II.6!, the terms withgÞ0 account for umklapp processes and are necessary to preserve the
periodic structure ink. Note that since the integral definingQe is taken onB3, then only a finite
number of terms of the sum in~II.6! need to be taken into account. The matrix elementFe is such
thatFe(k,k1 ,k8,k18) 5 Fe(k1 ,k,k8,k18) 5 Fe(k8,k18 ,k,k1). In all these operators, the normalizing
factors 1/4p3 coming from the momentum density of states have been transferred to thefs and
will be ignored in the remainder of the paper.

The Boltzmann equation~II.1! is scaled by introducing typical density and kinetic energy
scales for electrons:n0 is the typical density injected in the structure~which can be larger than the
doping density if high injection effects are present! and«0 is the typical kinetic energy that the
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electrons can gain in the structure~«0'qVA if VA is the applied bias!. Let nowk0 be the typical
norm of wave vectorsk satisfying«(k)5«0 . The dimensionless parameter

h5
4p3n0
k0
3

is the natural distribution function scale and measures the level of degeneracy of the electron gas.
The velocity scale is given byv05«0/\k0 and the space scalex0 is linked to the time scalet0
throughx05v0t0 . Finally the potential scaleV0 is connected to«0 by qV05«0 ~i.e.,V0'VA!.

Dimensionless parameters measuring the relative strength of the collision operatorsnimp , nop,
nac, ne , are given by

n imp5
fimp,0k0

3

«0
t0 , ne5

fe,04p3n0k0
3

«0
t0 ,

whereFimp,0 andFe,0 are ‘‘typical values’’ ofFimp andFe , andnop andnac are given by similar
expressions asnimp associated with ‘‘typical values’’Fop,0 andFac,0. HereFimp,0 is used to scale
the matrix elementFimp in dimensionless form and similarly with the other scattering mecha-
nisms.

Finally, let also«ac,0be the order of magnitude of the acoustical phonon energy and introduce
the dimensionless parameters

a25
«op
«0

, b25
«ac,0
«0

, g25
kBTL
«0

,

a2 ~resp.b2! measures the typical energy gain or loss during an optical~resp. acoustical! phonon
collision, whileg2 quantifies how ‘‘hot’’ is the electron gas~g2!1 implies hot electron effects!.

After scaling with the above units, the equations are written

] f

]t
1“k«~k!•“xf1“xV•“kf5n impQimp~ f !1nacQac

b ~ f !1nopQop
a ~ f !1neQe~ f ! ~II.7!

with Qimp given by~II.3! applied with the dimensionless quantities. HereQop
a ( f ) is obtained from

~II.4! in the same manner, and by replacing«op by a2, (12 f ) by (12h f ), and (12 f 8) by
(12h f 8). To obtainQac

b ( f ) from ~II.4!, it is enough to replaceFop by the dimensionless form of
Fac, Nop by Nac, «op by b2 «ac, and (12 f ) by (12h f ). This latter substitution is sufficient to
yield the dimensionless form ofQe( f ).

The equations are posed on a dilated Brillouin zoneB/k0 . We recall that

Nop5~ea2/g221!21, Nac5~eb2«ac/g
2
21!21.

We shall analyze the behavior of~II.7! at various time, length, and energy scales. First, we are
interested in a high energy scale~i.e., for large applied biases! at which the relative energy gain or
loss of electron energy during a phonon collision is very small. Therefore, we let, following Refs.
27 and 16,

a2!1, b2!1. ~II.8!

Together with~II.8!, we suppose that

a2

g2 '
b2

g2 50~1!, ~II.9!
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which means that at the high energy scale, the acoustical phonon energy«ac,0, the optical phonon
energy«op,0, and the lattice thermal energykBTL are all considered of the same order of magni-
tude, and very small compared with the electron energy«0. Of course, one knows that, physically,
«ac,0,KBTL,«op,0,

39 but the differences in the magnitudes of these energies are only detectable on
longer time scales. This point will be clarified in Secs. IV and V.

By expandingQop
a ( f ) andQac

b ( f ) in powers ofa2 andb2 and using~II.8!, we can write the
global lattice-defect collision operator according to~see also Refs. 27 and 16!:

Qld~ f !5~n imp1nac1nop!Q0~ f !1b2nacQac,1
b ~ f !1a2nopQop,1

a ~ f !,

whereQ0( f ) is an elastic collision operator given by

Q0~ f !5E F0~x,k,k8!d~«82«!~ f 82 f !dk8,

~II.10!
F05F imp1~2Nop11!Fop1~2Nac11!Fac,

andQac,1
b ~resp.Qop,1

a ! is of order 1 whenb ~resp.a! tends to zero. We now choose the time scale
to be such that~nimp1nac1nop!51. From~II.9!, we leta25b2 and we assume that

ne50~a2!, i.e.,ne5a2n̄e , n̄e50~1!. ~II.11!

We define

Q1
a5nacQac,1

a ~ f !1nopQop,1
a ~ f !1 n̄eQe~ f !50~1! as a→0. ~II.12!

The final form of the scaled Boltzmann equation~II.7! is thus

] f

]t
1“k«~k!•“xf1“xV~x,t !•“kf5Q0~ f !1a2Q1

a~ f !, ~II.13!

whereQ0( f ) is the elastic operator~II.10! andQ1
a( f ) is given by~II.12!. The ordering between the

collision operators is the same as in Ref. 27. In Ref. 16 electron–electron collisions are considered
of order 1, instead ofa2, and are brought into the leading order collision operator. A precise
discussion of the magnitude ofQe( f ) compared withQ0 is given in Refs. 28 and 29. It is shown
that for large densitiesQ0 andQe are of the same order of magnitude while at low densitiesQe is
smaller thanQ0 . The ordering displayed by~II.13! is then characteristic of a rather small density
case.

III. FIRST MACROSCOPIC SCALE: THE ‘‘SPHERICAL’’ HARMONIC EXPANSION
MODEL

A. Scaling

We are interested in the diffusion scaling for Eq.~II.13!. Following Ref. 27 or 16, we let

x85ax, t85a2t.

This leads to the following scaled version of~II.13!:

] f a

]t
1
1

a
~“k«•“xf

a1“xV•“kf
a!5

1

a2 Q0~ f
a!1Q1

a~ f a!. ~III.1!

Inserting the Hilbert expansion off a,

3311N. Ben Abdallah and P. Degond: Hierarchy of models for semiconductors

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



f a5 f 01a f 11a2f 21••• ,

in ~III.1!, we find

Q0~ f 0!50, ~III.2!

Q0~ f 1!5“k«•“xf 01“xV•“kf 0 , ~III.3!

Q0~ f 2!5
] f 0
]t

1“k«•“xf 11“xV•“kf 12Q1
a~ f 0!. ~III.4!

To solve these equations, we need to investigate the operatorQ0 .

B. Properties of Q0

We first recall the coarea formula:40 for any C1 function «:B→R, and any test function
cPC0(B) @whereC0(B) denotes the set of continuous functions onB#, we have

E
B
c~k!dk5E

2`

1`S E
«21~e!

c~k!
dSe~k!

u“«~k!u D de, ~III.5!

wheredSe(k) denotes the Euclidean surface element on the manifold«21(e). We shall denote
dNe(k)5dSe(k)/u“«(k)u and ~III.5! will be formally written

E
B
c~k!dk5E

2`

1`S E
«
c~k!dN«~k! D d«. ~III.6!

We letN(e) be the density of states of energye:

N~e!5E
«21~e!

dNe~k!. ~III.7!

By duality, we have for anycPC0(B)

E
B
c~k!d„«~k!2«…dk5E

«
c~k!dN«~k!. ~III.8!

We now recall that

Q0~ f !5E
B
f0~x,k,k8!d~«82«!~ f 82 f !dk8,

and we note that

Q0„c~«! f …5c~«!Q0~ f !, ;c5c~«!, ; f . ~III.9!

We introduce

L f5Q0S f

N„«~k!…D5
1

N„«~k!…
Q0~ f !, ~III.10!

and we denote byLN
2 the weighted space
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LN
25H f ~k!,E

B
f 2~k!N„«~k!…dk,1`J .

We assume thatN„«(k)…Þ0 for k a.e. inB so thatLN
2 is a separable Hilbert space with the scalar

product and norm

^ f ,g&N5E
B
f ~k!g~k!N„«~k!…dk, i f iN

25^ f , f &N .

Proposition III.1:Assume'C1 , C2.0, C1<f0<C2 . Then

~i! 2L is a self-adjoint bounded non-negative operator onLN
2 ,

~ii ! Ker L5$ fPLN
2 s.t.'gPL2~R!, f (k)5g„«(k)…/N„«(k)…%,

~iii ! ~Ker L)'5$ fPLN
2 , s.t.*« f (k)dN«(k)50, a.e.«%,

~iv! 'm.0, ^2L f , f &N>mi f2PfiN
2 , wherePf is the orthogonal projection on kerL,

~v! Pf(k)51/N(«)*« f dN«(k) and;c~«!, P(c(«) f )5c(«)Pf ,
~vi! R(L)5~Ker L!'.

Here KerL andR(L) stand for the kernel and the range of the operatorL.
Proof: ~i! is easy using the boundedness ofF0 and the formula

E F0~ f !gdk5^L f ,g&52
1

2 E E
B3B

F0~x,k,k8!d~«82«!~ f 82 f !~g82g!dk dk8.

~III.11!

~ii ! and ~iii ! are obvious by the coarea formula. To prove~iv!, we just have to prove that

^2L f , f &N>mi f iN
2 , ; fP~Ker L !'.

We have, with~III.11!,

^2L f , f &N5
1

2 E E
B3B

F0~x,k,k8!d~«82«!u f 82 f u2 dk dk8

>CE
2`

1`E
«~k8!5«

E
«~k!5«

@ u f ~k!u2

1u f ~k8!u222 f ~k! f ~k8!#•dN«~k!dN«~k8!d«.

However, sincefP~Ker L!',

E
«~k8!5«

E
«~k!5«

f ~k8! f ~k!dN«~k!dN«~k8!50

and therefore

^2L f , f &N>CE
0

1`E
«~k8!5«

E
«~k!5«

„f ~k!21 f ~k8!2…dN«~k!dN«~k8!d«>2Ci f iN
2 .

~v! is just a computation and~vi! is a direct consequence of~iv!. j
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C. Resolution of the Hilbert expansion (3.2)–(3.4)

By Eq. ~III.2! and proposition III.1~ii !, there exists a functionF(x,«,t) such that

f 0~x,k,t !5F„x,«~k!,t…. ~III.12!

Then, Eq.~III.3! is equivalently written

L f 15
1

N„«~k!…
“k«~k!F“xF1“xV

]F

]« G . ~III.13!

Since“xF1“xV]F/]« only depends onk through«(k), it is clear that the right-hand side of
~III.13! belongs to~Ker L)'5R(L). Therefore, Eq.~III.13! is solvable inf 1 . Moreover, we have
the following obvious lemma, using~III.9!.

Lemma III.2:Let l(x,k) be the unique solution in~Ker L!' of

2L~l!5
1

N„«~k!…
“k«. ~III.14!

Then the unique solution in~Ker L!' of Eq. ~III.13! is given by

f 152l~x,k!•S“xF1“xV
]F

]« D . ~III.15!

Remark III.3:l depends onx throughL becauseF0 may depend onx. ~In particular, the
impurity scattering matrix element depends on the doping density!. Herel is a vector-valued
function and Eq.~III.14! must be understood componentwise. Adding an element of kerL to f 1
would not modify the subsequent analysis. j

Then, Eq.~III.4! can be written

L f 25
1

N~«! F]F]t 1“k«•“xf 11“xV•“kf 12Q1
a~F !G . ~III.16!

By Proposition III.1~vi! and ~iii !, the solvability condition for~III.16! is written

E
«
F]F]t 1“k«•“xf 11“xV•“kf 12Q1

a~F !GdN«~k!50, a.e. «. ~III.17!

Setting

Sa~F !5E
«
Q1

a~F !dN«~k!, ~III.18!

J~x,«,t !5E
«
“k« f 1~x,k,t !dN«~k!, ~III.19!

we find the following.
Theorem III.4: Let f 0 and f 1 be given by~III.12! and ~III.15!. Then, the solutionf 2 of Eq.

~III.4! exists if and only ifF (x,«,t) satisfies

N~«!
]F

]t
1“x•J1“xV•

]J

]«
2Sa~F !50, ~III.20!
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J~x,«,t !52D~x,«!S“xF1“xV
]F

]« D , ~III.21!

where

D~x,«!5E
«
¹k« ^ l~x,k!dN«~k!. ~III.22!

Proof: Equations~III.21! and ~III.22! just come from~III.19! and ~III.15!. The first, second,
and fourth terms of~III.20! obviously come from the corresponding terms in~III.17!. For the third
term, we proceed as in Ref. 10. We write, for anyc5c~«!,

E
B
“kf 1c~«!dk52E

B
f 1“kc~«!dk

52E
B
f 1“k«c8~«!dk

52E
R
c8~«!S E

«
f 1“k«dN«~k! D d«

52E
R
c8~«!J~«!d«

5E
R
c~«!J8~«!d«.

It follows that

E
«
“kf 1dN«~k!5

]J

]«
.

j

Remark III.5:System~III.20! and~III.21! is in the form of Ref. 27 except for the expression
of the diffusion matrix~see below!. By the change of unknowns

F~x,«,t !5G„x,«2V~x,t !,t…, J~x,«,t !5I „x,«2V~x,t !,t…,

system~III.20! and ~III.21! is equivalent with

N„u1V~x,t !…S ]G

]t
2

]V

]t

]G

]u D1“x•I5Sa~G!, ~III.23!

I ~x,t,u!52D„x,u1V~x,t !…“xG, ~III.24!

whereu stands for the new variable«2V(x,t). System~III.23! and~III.24! is in the form of Ref.
30, except again for the expression of the diffusion matrix~see below!. System~III.23! and~III.24!
is a system of diffusion equations coupled by the transport termN ]V/]t ]G/]u and by the
collision operatorSa. In reference to Ref. 30, it will be called the ‘‘spherical’’ harmonic expansion
model, the quotes indicating that, for arbitrary band diagrams, the expansion in no more ‘‘spheri-
cal’’ but rather on constant energy shells. j
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D. Properties of the diffusion matrix

Proposition III.6: D(x,«) is a symmetric non-negative 333 matrix. Moreover,'C.0 such
that

D~x,«!>
C

N~«!
E

«
“k« ^“k« dN«~k!. ~III.25!

Remark III.7:The right-hand side of~III.25! is a symmetric non-negative 333 matrix which
is degenerate at the critical points of«. Estimate~III.25! is sharp as will further be shown by
examples. j

Proof: Let c(«)PC0~R!. By definition ~III.22! we have

E
R
Di j ~«!c~«!d«5E

R
S E

«
]ki«l j dN«~k! Dc~«!d«.

Then, by using the coarea formula and definition~III.14! of l, we have

E
R
Di j ~«!c~«!d«52E

B
L„l iN~«!…l jc~«!dk.

Now, using the self-adjointness ofL and property~III.9!,

E
R
Di j ~«!c~«!d«52E l iN~«!L„l jc~«!…dk

52E l ic~«!L„l jN~«!…dk

5E l ic~«!]kj« dk

5E
R
c~«!S E

«
l i]kj«dN«~k! D d«

5E
R
c~«!Dji ~«!d«,

which proves thatDi j («)5Dji («).
Now, we choosecPC0~R!, c>0, and we letj5~j1,j2,j3!PR3. Using Einstein’s summation

convention, we have

E
R
c~«!Di j ~«!j ij j d«5E

R
c~«!S E

«
]ki«j il jj j dN«~k! D d«

52E
B
L~l ij iAc~«!!~l jj jAc~«!!N~«!dk.

Sincel ij iAc(«) P (Ker L)', we have, by Proposition 3.1~iv!,

E
R
c~«!Di j ~«!j ij j d«>mil ij iAc~«!iN

2 . ~III.26!
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By the continuity ofL, we deduce

il ij iAc~«!iN
2>CiL~l ij i !Ac~«!iN

2

>Ci~1/N!¹W k«•jAc~«!iN
2

>CE
R

c~«!

N~«! S E
«
|¹W k«•j|2dN«~k! D d«. ~III.27!

Inserting~III.26! in ~III.27! leads to

E
R
c~«!„Di j ~«!j ij j…d«>C8E

R
c~«!S 1

N~«!
E

«
~“k« ^“k«!dN«~k! D

i j

j ij j d«

for all cPC0~R!, c>0, which implies~III.25!. j

We now investigate simplifying assumptions which enable us to give more explicit expres-
sions ofD(x,«). First, we assume thatF0(x,k,k8)5F0„x,«(k)… @we recall thatF0 needs only to
be defined on the set«(k8)5«(k)#. ThenQ0( f ) is equivalently written in the form of a relaxation
operator:

Q0~ f !52
1

t~x,«!
~ f2Pf ! ~III.28!

with t(x,«)5„F0(x,«)N(«)…
21 andP is the projection defined in Proposition 3.1~v!. Then, the

solution of ~III.10! can be written

l~x,k!5t~x,«!¹k« ~III.29!

and can be referred to as the ‘‘mean free path of particles of wave vectork.’’ Therefore, we have

D~x,«!5t~x,«!E
«
¹W k« ^ ¹̂k« dN«~k!. ~III.30!

This is the case explicitly treated in Ref. 27 and our results coincide. This case proves that
estimate~III.25! is sharp, because it becomes an equality in the case of Ref. 27.

Another simplification is to consider a spherically symmetric band diagram~and therefore
B5R3!, together withF0 being such thatF0(x,k,k8)5F0„x,«,(k/uku)•(k8/uk8u)…. In this case,
the elastic collision operator is rotationally invariant. A relaxation time can be defined by~with S2

being the unit sphere ofR3!

1

t~x,«!
5

1

4p S E
S2

F0~x,«,v!~12vz!dv DN~«!,

~III.31!

N~«!54p (
«~ uku!5«

uku2

u«8~ uku!u

@we assume that for any«PR, the set$uku,«(uku)5«% is discrete.# Then a straightforward com-
putation leads to

l~x,k!5t~x,«!«8~ uku!k/uku. ~III.32!

D~x,«!5
4p

3
t~x,«!S (

«~ uku!5«
u«8~ uku!u uku2D Id ~III.33!
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where Id is the identity matrix ofR3. This expression can be further simplified if one assumes that
« is a strictly monotone~e.g., increasing! function of uku. In such a case, the«(uku) relation can be
inverted, and, following Ref. 30, we can define a functiong such that

uku25g~«!.

All the functions ofuku may be expressed as functions of«, and we have

«8~«!52
Ag~«!

g8~«!
, N~«!52pAg~«!g8~«!, ~III.34!

l~x,k!5L~x,«!k/uku, L~x,«!5t~x,«!«8~«!, ~III.35!

and

D~x,«!5S 8p

3
t~x,«!

g~«!3/2

g8~«! D Id5
1

3
„N~«!L~x,«!«8~«!…Id. ~III.36!

This is the case considered in Ref. 30 and our results coincide. Even more specifically, let us
assume thatF05F0(x) is independent ofk, k8, which is true for acoustical and nonpolar optical
phonons.~Indeed, these are the main sources of scattering inSi at room temperature, since the
impurity scattering can be neglected.! Let us also assume a parabolic band structureg(«)52m

*
«

with m
*
being the effective mass. Then, by~III.36!,

D~x,«!5
2«

3F0~x!m*
Id. ~III.37!

IV. SECOND MACROSCOPIC SCALE DRIVEN BY ELECTRON–ELECTRON
COLLISIONS: THE ENERGY-TRANSPORT MODEL

A. Scaling

The starting point is now the ‘‘spherical’’ harmonic expansion model~III.20! and ~III.21!.
Going back to~II.12!, the collision termSa( f ) is written

Sa~F !5
nac
a2 Sac

a ~F !1
nop
a2 Sop

a ~F !1 n̄eSe~F !, ~IV.1!

where we have@because the elastic partsQac
0 andQop

0 vanish onF(«)#

Sac
a ~F !~«!5E

«
Qac

a ~F !dN«~k!, Sop
a ~F !~«!5E

«
Qop

a ~F !dN«~k!, ~IV.2!

Se~F !~«!5E
«
Qe~F !dN«~k!. ~IV.3!

We now assume that both phonon collision operatorsnac/a
2Sac

a (F) andnop/a
2Sop

a (F) are of the
same order of magnitude, and we choose the time unit such thatnac/a

2.nop/a
2.1. We also

assume that the electron–electron collision operatorn̄eSe(F) is dominant and we letn̄e51/b,
b!1. This amounts to assuming that, for a distribution function which is constant on the energy
surfaces, the energy loss due to phonon collision occurs on a longer scale than the thermalization
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by electron–electron collisions. This hypothesis is certainly correct for hot-electron distribution
functionsF with a substantial high-energy tail. On the contrary, for ‘‘cooler’’Fs, this hypothesis
is more doubtful and we shall investigate this case in Sec. V.

Therefore, the evolution of a hot-electron energy distributionFb(x,«,t) is ruled by the fol-
lowing equations:

N~«!
]Fb

]t
1“x•J

b1“xV•
]Jb

]«
5
1

b
Se~F

b!1S1~F
b!, ~IV.4!

Jb~x,«,t !52D~x,«!S“xF
b1“xV•

]Fb

]« D , ~IV.5!

with Se(F
b) given by~IV.3! andS1(F

b)5Sac(F
b)1Sop(F

b) andSac, Sop given by~IV.2!. We are
interested in the limitb→0. Again, we use a Hilbert expansion

Fb5F01bF11•••, Jb5J01bJ11••• .

Identifying equal powers ofb, we obtain

Se~F0!50, ~IV.6!

N~«!
]F0

]t
1“x•J01“xV

]J0
]«

2S1~F0!5DF0
Se~F1!. ~IV.7!

HereDF0
Se(F1) denotes the derivative ofSe at F0 applied toF1 . To solve~IV.6! and~IV.7!, we

first investigate the properties ofSe and DF0
Se(F1). We note that the scaling~IV.4! of the

‘‘spherical’’ harmonic expansion model is of hydrodynamic type and not of diffusion type. The
reason is that the transport part~left-hand side of the equation! is already a diffusion model.

B. Properties of Se and DF0
Se

For this section, we shall mainly rely on section 4 of Ref. 16. We have
Proposition IV.1:~i! Entropy inequality:

E
R
Se~F !lnS F

12hF Dd«<0.

~i! *RSe(F) («
1)d«50

~ii ! Se(F)50⇔'m«R, T.0 such that

F5F m,T~«!5
1

h1e~«2m!/T . ~IV.8!

Proof: The proof is immediate from Ref. 16 by noting that,;F(«), G(«),

E
R
Se~F !G~«!d«5E

B
Qe~F„«~k!…!G„«~k!…dk

52
1

4 E
B4

Fed«dk~G81G182G2G1!

3„F8F18~12hF !~12hF1!2FF1~12hF8!~12hF18!…d4k,
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whered«stands ford(«8 1 «18 2 « 2 «1), dk fordp(k8 1 k18 2 k2 k1), andd
4k5 dk dk1 dk8 dk18 .

We now define

SF ~ f !5N~«!21DF Se~ f ! ~IV.9!

and the Hilbert space

HF 5H f ~«!, E
R
|f ~«!|2

N~«!

F ~12hF !
d«,1`J ,

provided with the obvious scalar product^,&F and normu•uF . We have the following.
Proposition IV.2:~i! 2SF is a bounded non-negative self-adjoint operator onHF .

~ii ! kerSF 5Span„F ~12hF !, F ~12hF !«….
~iii ! ^ 2 SF ( f ), f &F > mu f 2 Pf uF

2 , whereP is the orthogonal projection on KerSF for ^,&F .
~iv! R~SF !5~KerSF !'5$fPHF ,* f («

1)N(«)d«50%.

Proof: Again, the proof is immediate from Ref. 16. Indeed, we have

^2SF ~ f !,g&F 52E
R
SF ~ f !~«!g~«!

N~«!d«

F ~12hF !
.

However, differentiating~IV.3! with respect toF yields

N~«!SF ~ f !~«!5E
«
DFQe~ f !~k!dN«~k!.

Therefore

^2SF ~ f !,g&F 52E
B
DFQe~ f !~k!g„«~k!…

dk

F „«~k!…~12hF „«~k!…!
. ~IV.10!

LetHF be the Hilbert space

HF 5H w~k!,E
B
|w~k!|2

dk

F „«~k!…~12hF „«~k!…!
,1`J ,

provided with the obvious scalar product!,@F and normi•iF . In Ref. 16, the operator

2LF 52DFQe2Q0 , ~IV.11!

whereQ0 is given by~II.10!, is proved to be a bounded non-negative self-adjoint operator onHF

for !,@F . However, sincef only depends on«, we haveQ0( f )50, so that~IV.10! can be written

^2SF ~ f !,g&F 52!LF f ,g~«!@F .

Therefore,2SF inherits of all the properties of2LF . Proposition 4.2 follows from corollary 4.6,
lemma 4.7, and proposition 4.8 of Ref. 16. j

C. Resolution of the Hilbert expansion (4.6) and (4.7)

The solution of~IV.6! is obviously from proposition IV.1~iii !:

F0~x,«,t !5F m~x,t !,T~x,t !~«!. ~IV.12!
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Then,J0 is given by~IV.5! with b50, which yields

J0~x,«,t !52D~x,«!F ~12hF !H S“xS m

T D2
“xV

T D2«“S 1TD J . ~IV.13!

The search of a solution for~IV.7! leads to the following theorem.
Theorem IV.3: Let F0 be given by~IV.12!. Then, the solution of Eq.~IV.7! exists if and only

if m(x,t) andT(x,t) satisfy the following set of diffusion equations:

]

]t
n~m,T!2“•FD11S“xS m

T D2
“xV

T D1D12

“xT

T2 G50, ~IV.14!

]

]t
nE~m,T!2“•FD21S“xS m

T D2
“xV

T D1D22

“xT

T2 G
1“xV•FD11S“xS m

T D2
“xV

T D1D12

“xT

T2 G
5W~m,T,TL!, ~IV.15!

where

S n~m,T!

nE~m,T! D5E
R
F m,T~«!S 1« DN~«!d«, ~IV.16!

D i j5D i j ~x,m,T!5E
R
D~x,«!F ~12hF !x ix j d«, i , j51,2, ~IV.17!

with x1~«!51, x2~«!5«, and

W~m,T,TL!5E
R
S1~F m,T!« d«. ~IV.18!

We recall thatTL is the lattice temperature.
Proof: From Proposition IV.2~iv!, the condition for Eq.~4.7! to be solvable inF1 is

E FN~«!
]F0

]t
1“xJ01“xV

]J0
]«

2S1~F0!G S 1« Dd«50.

With the expression~IV.13! of J0 , this immediately yields~IV.14! and ~IV.15!. j

Remark IV.4:System~IV.14! and~IV.15! belongs to the class of energy-transport models. In
Ref. 16, a similar model is directly derived from a diffusion approximation of the Boltzmann
equation~II.13! in which the leading order collision operator isQ0( f )1Qe( f ). In that case, the
diffusion matrix Di j is given by a different~and more complicated! expression than~IV.16!,
namely,

D i j5E
B
~x i¹k«! ^ cj dk, ~IV.19!

whereci is the unique solution in~kerLF!' of

LF ci52~x i¹k«!F ~12hF !
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andLF is the operator given by~IV.11!. The expression~IV.17! is probably better because the
electron–electron collisions in semiconductors are usually not as strong as the phonon collisions
~in their elastic approximation!. Therefore the relaxation towards a Fermi–Dirac distribution func-
tion is a multiscale phenomenon as described in the present paper rather than a single-scale
process as implied by the analysis of Ref. 16. In Ref. 16, the connection between energy-transport
models and hydrodynamic models is thoroughly investigated. We shall not develop this point
here. j

D. Properties of the diffusion matrix D and the energy relaxation term W(m,T,TL)

From Ref. 16, Lemma 4.11, we immediately deduce the following lemma, which proves that
W is a relaxation term of the electron temperatureT to the lattice temperatureTL :

Lemma IV.5: W(m,T,TL)•(T2TL)<0.
Now, we letD be the block 636 matrix

D5SD11 D12

D21 D22
D 5D~x,m,T!.

We have the following.
Proposition IV.6:

~i! ; i , jP$1,2% D i j
T5D i j .

~ii ! D125D21.
~iii ! Assume that the six functions]k1«, ]k2«, ]k3«, «]k1«, «]k2«, «]k3« are linearly indepen-

dent. Then the matrixD(x,m,T) is symmetric positive definite for anymP~2`,1`!,
T.0.

Proof: ~i! follows from the symmetry ofD(x,«) and ~ii ! from the fact thatx1x25x2x1. For
~iii !, let j1, j2 be two vectors ofR3 such thatuj1u

21uj2u
251, j i5(j ip)p51,2,3. We have, using

Einstein’s summation convention,

~D i j j i ,j j !5E
R
D~x,«!F ~12hF !x ij ix jj j d«5E

R
Dpq~x,«!F ~12hF !x ij ipx jj jq d«.

Then, by Proposition III.6, we have

~D i j j i ,j j !>
C

N~«!
E
R
S E

«
~x i]kp«!j ip~x j]kq«!j jq dN«~k! D •F ~12hF !d«

>
C

N~«!
E
B
US “k«

«“k« D •S j1
j2D U2F ~12hF !dk. ~IV.20!

The minimal value of the right-hand side of~IV.20! for ~j1,j2!PR6, uj1u
21uj2u

251 cannot be zero,
otherwise it would be zero for a particular choice of~j1,j2!, which would lead to a contradiction.

j

Remark IV.7:The assumptions on« which appear in Proposition IV.6 are of geometric nature.
They appear in the same form in the energy-transport model directly deduced from the Boltzmann
equation derived in Ref. 16. j

The diffusion matrixD can be explicitly computed under the simplifying assumption of the
last paragraph of Sec. III D: ifF0 is independent ofk, k8 and in the case of a parabolic band
structure„g~«!52m

*
«… and of a nondegenerate statistics@i.e., F ~12hF !→exp„2(«2m)/T…

whenh→0#, the diffusion matrixD(x,m,T) is given from~IV.17! and ~III.37! by
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D~x,m,T!5
2T2em/T

3F0~x!m*
S Id 2T Id

2T Id 6T2 IdD .
Remark IV.8:~i! We have (1/T)D11

21D122
5
2 Id521

2 IdÞ0, which implies that nonvanishing
cross effects such as a friction force of thermal origin~Soret effect! or a heat flux of friction origin
~Peltier effect! should be expected in the hydrodynamic model of semiconductor~see Ref. 16,
sections 5 and 6!.

~ii ! The heat conductivityk and the electrical conductivitys are given by16,25

k5
1

T2
~D222D21D11

21
D12!, s5

1

T
D11.

So that the Landau coefficientL5k/sT52. In particular,L is constant which is the expression
of the Wiedemann–Franz law. j

E. The third macroscopic scale: The drift-diffusion model

If we look at an even longer time scale, the energy losses due to phonon collisions become
important and we tend to an asymptotic regime where the electron and lattice temperatures are
equal. To investigate this regime, time and space must be rescaled, and system~4.13! and ~4.14!
is put in the form:

]

]t
n~md,Td!1“•I d50, ~IV.21!

]

]t
nE~md,Td!1“•IW

d 2“xV•I
d5

1

d
W~md,Td,TL!, ~IV.22!

whered!1 is a small parameter, and the currentI d and the energy currentI w
d are given by the

constitutive relations

I d52FD11S ¹xS md

Td D2
¹xV

Td D1D12

¹xT
d

~Td!2G , ~IV.23!

IW
d 52FD21S ¹xS md

Td D2
¹xV

Td D1D22

¹xT
d

~Td!2G . ~IV.24!

We are now interested in the behavior of~IV.21! and ~IV.22! when d→0. Again, a Hilbert
expansion can be used:

md5m01dm11•••, Td5T01dT11•••, I d5I 01dI 11••• . ~IV.25!

The orderd21 andd0 equations are thus written

W~m0 ,T0 ,TL!50, ~IV.26!

]

]t
n~m0 ,T0!1“•I 050, ~IV.27!

and I 0 is given by~IV.23! with md, Td replaced bym0, T0 . Then, using Lemma 4.11 of Ref. 16,
we easily obtain the following.
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Theorem IV.9: The solutionm0, T0 of system~IV.26! and~IV.27! is T05TL andm0 given by
the conventional drift-diffusion model:

]

]t
n~m0 ,TL!1“•I 050, ~IV.28!

I 052FD11~x,m0 ,TL!S ¹xS m0

TL
D2

¹xV

TL
D1D12~x,m0 ,TL!

“xTL
~TL!2G . ~IV.29!

Remark IV.10:In particular, whenTL is independent ofx, one recovers the more usual form

I 052D11~x,m0 ,TL!
“x~m02V!

TL
, ~IV.30!

with D11(x,m0 ,TL) given by formula~IV.17!. j

V. SECOND MACROSCOPIC SCALE DRIVEN BY OPTICAL PHONON COLLISIONS: THE
‘‘PERIODIZED SPHERICAL’’ HARMONIC EXPANSION MODEL

A. Scaling

We return to the ‘‘spherical’’ harmonic expansion model~3.20! and~3.21! and we investigate
what happens when the optical phonon collision operator is supposed to be dominant instead of
the electron–electron one as in Sec. IV. We recall that this is more likely to happen when the
typical energy of the electron is of the order of the phonon energy~i.e., a few 1022–1021 eV!.
Therefore, this assumes that the energy distribution function has no ‘‘high energy tail.’’

Going back to the notations of Sec. IV A, we assumenac/a
2. n̄e.0(1) while nop/a

251/b,
b!1. In this case, the evolution of the energy distribution functionFb(x,«,t) is governed by

N~«!
]Fb

]t
1“x•J

b1“xV•
]Jb

]«
5
1

b
Sop~F

b!1S1~F
b!, ~V.1!

Jb~x,«,t !52D~x,«!S“xF
b1“xV

]Fb

]« D , ~V.2!

with Sop(F
b) given by ~IV.2! and S1(F

b)5Sac(F
b)1Se(F

b) and Sac(F
b), Se(F

b) given by
~IV.2! and ~IV.3!, respectively. We are again interested in the limitb→0 and again we use a
Hilbert expansion:

Fb5F01bF11•••, Jb5J01bJ11••• .

Identifying equal powers ofb yields

Sop~F0!50, ~V.3!

N~«!
]F0

]t
1“x•J01“xV•

]J0
]«

2S1~F0!5DF0
Sop~F1!, ~V.4!

whereDF0
Sop(F1) denotes the derivative ofSop atF0 applied toF1 . As usual, we first investigate

the properties ofSop andDF0
Sop.
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B. Properties of Sop and DF0
Sop

A straightforward computation gives~see also Ref. 10!

Sop~F !5N~«!E
R
A~x,«,«8!s~«,«8!„a2«F8~12hF !2a2«8F~12hF8!…N~«8!d«8, ~V.5!

wherea5exp(1/TL),

s~«,«8!5a«d~«82«11!1a«8d~«82«21!5s~«8,«!, ~V.6!

A~x,«,«8!5
1

N~«!N~«8!
E

«
E

«8
F̃op~x,k,k8!dN«~k!dN«8~k8!,

~V.7!
5A~x,«8,«!

andF̃op5Fop/(a21). In ~V.5!, we have rescaled the energies so that the optical phonon energy is
equal to 1. The form~V.5! is similar to ~II.4!. Following Ref. 13 or 10, we have the following.

Proposition V.1:~i! Entropy inequality: Letx be a nondecreasing function onR1 and let
H(«) be defined byF(12hF)215Ha2«. Then

E
R
Sop~F !x~H !d«52

1

2 E
R
A~x,«,«8!s~«,«8!~12hF !~12hF8!a2«2«8~H2H8!

3„x~H !2x~H8!…N~«!N~«8!d«d«8<0.

~ii ! We write a.e.„N(«)d«… for ‘‘almost everywhere with respect to the measureN(«)d«.’’
For any functionq(«), which is a.e.„N(«)d«… one-periodic in«, we have:

E
R
Sop~F !q~«!d«50.

~iii ! Sop(F)50⇔'m(«), a.e.„N(«)d«… one-periodic function of« such that

F~«!5F m~«!,TL
~«!5:F „«,m~«!…,

whereF m,T(«) is the Fermi–Dirac distribution~IV.8!.
We now introduce the linearized operator aboutF „«,m~«!…:

LF ~ f !5
1

N~«!
DF Sop~ f !. ~V.8!

Following Ref. 10, we write

LF ~ f !5E
R
A~x,«,«8!s~«,«8!sF ~«,«8!S f 8

G 8
2

f

G
DN~«8!d«8, ~V.9!

whereG5F ~12hF ! and

sF ~«,«8!5sF ~«8,«!5a2m~«!F F 8, ~V.10!

where~V.10! is meaningful only for«85«61 and on Supp„N(«)N(«8)… ~we denote by Supp the
support of a function!. Let us now assume that
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SuppN~«!5@0, b# and $N50%5]2`,0]ø@b,1`@ ~V.11!

and introduce the Hilbert space

KG5H F~«! s.t. F50 a.e. on $N50%, E
R
uF~«!u2

N~«!d«

G ~«!
,1`J , ~V.12!

provided with the obvious inner product~,!G and normu•uG . We have the following.
Proposition V.2:~i! 2LF is a bounded non-negative self-adjoint operator onKG .
~ii ! Ker LF 5$p(«)G ~«!PKG , p(«) one-periodic%.
~iii ! ( 2 LF f , f )G > mu f 2 Pf uG

2 , whereP is the orthogonal projection on KerLF for ~,!G .

~iv!

Pf~«!5
(iPZN~«1 i ! f ~«1 i !

( iPZN~«1 i !G ~«1 i !
G ~«!.

~v!

R~LF !5~Ker LF !'5H fPKG s.t. (
iPZ

f ~«1 i !N~«1 i !50J .
Proof: By a straightforward computation, we have

2E LF f ~«!g~«!
N~«!d«

G ~«!
5~2LF f ,g!G

5
1

2 E
R
E
R
A~x,«,«8!s~«,«8!sF ~«,«8!

3S f 8
G 8

2
f

G
D S g8

G 8
2

g

G
DN~«!N~«8!d«d«8 ~V.13!

which shows~i!. ~ii ! follows directly from ~V.13!: p(«) is first an a.e. (N(«)d«) one-periodic
function but can be extended into a one-periodic function onR by the definition ofKG ~V.12!. For
~iv!, it is enough to prove that

~Ker LF !'5H fPKG ,(
iPZ

f ~«1 i !N~«1 i !50J . ~V.14!

Indeed, forfP~Ker LF !' and anyp(«) G ~«!PKer LF , p(«) being one-periodic, we have

05E
R
f ~«!„p~«!G ~«!…

N~«!d~«!

G ~«!
5E

0

1S (
iPZ

f ~«1 i !N~«1 i ! D p~«!d«,

which gives~V.14!. ~v! directly follows from ~iii ! and ~V.14!. There remains to prove~iii !. For
that, we notice that

~2LF f , f !G5E
R
A~«,«11!F ~«!F ~«11!a«2m~«!11U f ~«11!

G ~«11!
2

f ~«!

G ~«!
U2N~«!N~«11!d«.

~V.15!

Hence
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~2LF f , f !G>CE
R
U f ~«11!

G ~«11!
2

f ~«!

G ~«!
U2N~«!N~«11!d«.

Let n5Int(b)11, whereb is defined by~V.11! and Int (b) is the integer part of the real
numberb. Then

~2LF f , f !G>C(
i50

n21 E
0

1U f ~«1 i11!

G ~«1 i11!
2

f ~«1 i !

G ~«1 i !U
2

N~«1 i !N~«1 i11!d«. ~V.16!

Now let f be in ~Ker LF !'. Using the formula

f ~«1k!

G ~«1k!
2

f ~«1 l !

G ~«1 l !
55 (

j5 l

k21
f ~«1 j11!

G ~«1 j11!
2

f ~«1 j !

G ~«1 j !
, k. l ,

2(
j5k

l21
f ~«1 j11!

G ~«1 j11!
2

f ~«1 j !

G ~«1 j !
, k, l ,

which we multiply byNG («1 l ) and sum over all ‘‘l ’’s, we find

h~«! f ~«1k!5 (
l52`

k21

N~«1 l !G ~«1 l !S (
j5 l

k21
f ~«1 j11!

G ~«1 j11!
2

f ~«1 j !

G ~«1 j !D
2 (

l5k11

1`

N~«1 l !G ~«1 l !S (
j5k

l21
f ~«1 j11!

G ~«1 j11!
2

f ~«1 j !

G ~«1 j !D
where

h~«!5(
iPZ

N~«1 i !G ~«1 i !.

Inverting the indicesl and j in the above formula and taking the squares, we find

h2~«!u f ~«1k!u2<2U (
j52`

k21 S f ~«1 j11!

G ~«1 j11!
2

f ~«1 j !

G ~«1 j !D (
l52`

j

NG ~«1 l !U2

12U(
j5k

1` S f ~«1 j11!

G ~«1 j11!
2

f ~«1 j !

G ~«1 j !D S (
l5 j11

1`

NG ~«1 l !DU2.
Now let «P@0 1# and let us estimate

(
kPZ

u f ~«1k!u2N~«1k!5 (
k50

n21

u f ~«1k!u2N~«1k!.

Using the fact thath(«)>C.0 and that the sums are over a finite number of indices, we deduce
from the Cauchy–Schwartz inequality that

(
k50

n21

N~«1k!u f ~«1k!u2<C(
k50

n21

N~«1k!(
j50

k21 U f ~«1 j11!

G ~«1 j11!
2

f ~«1 j !

G ~«1 j !U
2U(
l50

j

NG ~«1 l !U2

1C(
k50

n21

N~«1k! (
j5k

n22 U f ~«1 j11!

G ~«1 j11!
2

f ~«1 j !

G ~«1 j !U
2U (
l5 j11

n21

NG ~«1 l !U2.
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Now grouping the terms

U f ~«1 j11!

G ~«1 j11!
2

f ~«1 j !

G ~«1 j !U
2

corresponding to the same indexj and taking a special care of terms withj50 and j5n22, we
have

(
k50

N21

N~«1k!u f ~«1k!u2<CN~«!U f ~«11!

G ~«11!
2

f ~«!

G ~«!
U2

1CN~«1n21!U f ~«1n21!

G ~«1n21!
2

f ~«1n22!

G ~«1n22!
U2

1C(
i51

n23 U f ~«1 i11!

G ~«1 i11!
2

f ~«1 i !

G ~«1 i !U
2

.

To get the above estimate, we used extensively the propertyN<C.
Using now the fact thatN(«)>C on [1, n22] @see~V.11!#, we finally obtain

;«P@0,1#, (
k
N~«1k!u f ~«1k!u2<C(

k
N~«1k!N~«1k11!U f

G
~«1k11!2

f

G
~«1k!U2.

~V.17!

We then deduce from~V.16! that

; fPKer LF
' , ~2LG f • f !G>C(

k
E
0

1

N~«1k!u f ~«1k!u2 d«>CE
R
N~«!U f ~«!

G ~«!
U2 d«.

This ends the proof. j

C. Resolution of the Hilbert Expansion (5.3) and (5.4)

From Proposition V.1~iii !, Eq. ~V.3! implies that there existsm(x,«,t), a.e.,„N(«)d«… one-
periodic in«, such that

F0~x,«,t !5F „«,m~x,«,t !…•a.e.„N~«!d«…. ~V.18!

Then,J0(x,«,t) is given by~V.2! with b50, which yields

J0~x,«,t !52D~x,«!F ~12hF !H S ¹xS m

TL
D2

¹xV

TL
1

¹xV

TL

]m

]« D2«¹S 1TLD J . ~V.19!

The resolution of~V.4! leads to the following.
Theorem V.3: Let F0 be given by~V.18!. The solution of Eq.~V.4! exists if and only if

m(x,«,t) satisfies the following system~with periodic boundary conditions on«P@0,1#!:

]

]t
n„«,m~x,«,t !…1“x• j1“xV•

] j

]«
5T1~m!, ~V.20!

j ~x,«,t !52FD1~x,«,m~x,«,t !!H“xS m

TL
D 2

“xV

TL
1
“xV

TL

]m

]« J 1D2„x,«,m~x,«,t !…
¹TL
TL
2 G ,
~V.21!
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where for«P@0, 1#, mPR, we set

n~«,m!5(
iPZ

N~«1 i !F ~«1 i ,m!, ~V.22!

D1~x,«,m!5(
iPZ

D~x,«1 i !F ~«1 i ,m!„11hF ~«1 i ,m!…,

~V.23!

D2~x,«,m!5(
iPZ

D~x,«1 i !~«1 i !F ~«1 i ,m!„11hF ~«1 i ,m!…,

and for a one-periodic functionm~«!,

T1~m!~«!5(
iPZ

S1~F „«,m~«!…!~«1 i !. ~V.24!

Proof: From Proposition V.2~v!, the condition for Eq.~V.4! to be solvable inF1 is

(
iPZ

HN~«1 i !
]

]t
F „«1 i ,m~x,«,t !…1“x•J0~x,«1 i ,t !1“xV•

]J0
]«

~x,«1 i ,t !J
5(

iPZ
S1~F „•,m~x,•,t !…!~«1 i !,

which obviously yields~V.20! and ~V.21!. j

In ~V.21!, only D1 acts as a diffusion coefficient. From proposition III.6, we have the follow-
ing.

Proposition V.4:D1(x,«,m) is a symmetric non-negative 333 matrix. Moreover,'C.0
such that

D1~x,«,m!>C(
iPZ

1

N~«1 i ! S E
«1 i

~“k« ^“k«!dN«1 i~k! DF ~«1 i ,m!~12hF ~«1 i ,m!!.

~V.25!

In particular, ifQ0 is given by a relaxation time operator~III.28!, the following expression ofD1
follows from ~III.30!:

D1~x,«,m!5(
iPZ

t~x,«1 i !S E
«1 i

~¹k« ^ ¹k«!dN«1 i~k! DF ~«1 i ,m!„12hF ~«1 i ,m!….

~V.26!

When F05F0(x) is independent ofk, k8, for a parabolic band structureuku252m
*

« and a
nondegenerate statisticsF ~12hF !→exp2„(«2m)/TL…, we find from~III.37!

D1~x,«,m!5
2

3F0~x!m*
(
iPN

~«1 i !expS 2
~«1 i !2m

TL
D

5
2

3F0~x!m*

«1e21/TL~12«!

~11e21/TL!2
expS 2

«2m

TL
D . ~V.27!
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D. The third macroscopic scale: The drift–diffusion model

Looking at a longer time scale, the effect of both acoustical phonon collisions and electron–
electron collisions will be to relax the periodic functionm(x,«,t) to a constant. We expect the
conventional drift-diffusion model to be valid in this regime. After rescaling, system~V.20! and
~V.21! is written

]

]t
n„«,md~x,«,t !…1“x• j

d1“xV•
] j d

]«
5
1

d
T1~md!, ~V.28!

j d~x,«,t !52FD1„x,«,m
d~x,«,t !…S“xS md

TL
D 2

“xV

TL
1
“xV

TL

]md

]« D 1D2„x,«,m
d~x,«,t !…

“TL
TL
2 G ,

~V.29!

whereT1(m
d)5Te(m

d)1Tac~m
d! and

Te~m!~«!5(
iPZ

Se~F „«,m~«!…!~«1 i !,

Tac~m!~«!5(
iPZ

Sac~F „«,m~«!…!~«1 i !,

andSe andSac are given by~IV.2! and ~IV.3!.
For any one-periodic functionc~«!, we have, by straightforward computation,

E
0

1

Te~m!~«!c~«!d«52
1

4 E
B4

Fed«dkp~12hF !a2~«1«1!~c81c182c2c1!

3~a„m~«8!1m~«18!…2a„m~«!1m~«1!…!d4k, ~V.30!

with the notations of the proof of Proposition IV.1,

a5e1/TL, p~12hF !5~12hF !~12hF 1!~12hF 8!~12hF 18!,

and

E
0

1

Tac~m!~«!c~«!d«52
1

2 E
B2

Fac~x,k,k8!

a«ac~k2k8!21
sac~«,«8!~12hF !~12hF 8!

3a2~«1«8!~c82c!~am~«8!2am~«!!dk dk8, ~V.31!

with Fac and«ac defined in Sec. II and

sac~«,«8!5a«d„«82«1«ac~k2k8!…1a«8d„«82«2«ac~k2k8!…5sac~«8,«!.

We deduce the following.
Proposition V.5:

~i! Entropy inequality:

E
0

1

Te~m!~«!m~«!d«<0, E
0

1

Tac~m!~«!m~«!d«<0.

~ii ! *0
1Te(m)(«)d«50, *0

1Tac(m)(«)d«50.
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~iii ! Te(m)1Tac~m!50⇒m is constant.
Proof: Only the point~iii ! needs to be commented on. By~i! this implies thatTe(m)50 and

thus thatm~«! is an affine function~by the proof of proposition 4.4 of Ref. 16!. However, it also
needs to be one-periodic in«, which implies thatm~«! is constant. j

Let nowmPR be a constant and defineT 15T ac1T e . With T ac5DmTac, T e5DmTe are the
derivatives ofTac andTe about the constant functionm. By differentiating relations~V.30! and
~V.31!, we obtain for anyn, cPL2(0,1)

E
0

1

~T en!~«!c~«!d«52
1

4 E
B4

Fed«dacp~12hF !a2~«1«1!a2m ln a~c81c182c2c1!

3~n81n12n2n1!d
4k ~V.32!

and

E
0

1

~T acn!~«!c~«!d«52
1

2 E
B2

F̃acsac~12hF !~12hF 8!a2~«1«8!am ln a~c82c!

3~n82n!dk dk8. ~V.33!

The following proposition is a direct consequence of~V.32! and ~V.33!:
Proposition V.6:

~i! T 1 is a bounded non-negative self-adjoint operator onL2(0,1).
~ii ! Ker T 1 is spanned by the constant functions on@0, 1#.
~iii ! 2 (T 1n,n)L2(0,1)> Cun 2 ^n&u2, wherê n& is theL2 mean value.
~iv! R~T 1!5~Ker T 1!

'5$nPL(0,1)2/^n&50%.

Proof: The only nonimmediate point is~iii ! and it directly follows from Proposition IV.2
~iii !. j

The Hilbert expansion ofmd yields

md5m01dm11•••, j d5 j 01d j 11••• ,

and by identifying equal powers ofd, we obtain

T1~m0!50, ~V.34!

]

]t
n„«,m0~x,«,t !…1“x• j 01“xV•

] j 0
]«

5Dm0
T1~m1!. ~V.35!

By Proposition V.5~iii !, ~V.34! implies thatm05m0(x,t) is independent of«. Then by~V.29!, we
deduce

j 0~x,«,t !52FD1„x,«,m0~x,t !…S ¹xS m0

TL
D 2

¹xV

TL
D 1D2~x,«,m0~x,t !!

¹TL
TL
2 G . ~V.36!

Proposition V.6 gives the condition for Eq.~V.35! to be solvable inm1 and yields the follow-
ing.

Theorem V.7: Let m0(x,t) be independent of«. There exists a solutionm1 of Eq. ~V.35! if
and only ifm0 satisfies the system

]

]t
n~m0 ,TL!1“x•I 050, ~V.37!
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I 052FD11~x,m0 ,TL!S“xS m0

TL
D 2

“xV

TL
D 1D12~x,m0 ,TL!

“TL
TL
2 G , ~V.38!

wheren(m,T) is defined by~IV.16! and the coefficientsD1 j (x,m,T) are given by~IV.17!.
Proof: By Proposition V.6~iv!, there exists a solutionm1 of ~V.35! if and only if

E
0

1S ]

]t
n~«,m0!~x,t ! D1“x• j 01“xV•

]J0
]«

d«50.

There remains to combine the integration on@0, 1# with the summation overiPZ in formulas
~V.22! and ~V.24! to recover the formulae~IV.16! and ~IV.17! and to obtain the result. j

Remark V.8: Starting from the ‘‘spherical’’ harmonic expansion model, it is equivalent to
recover the usual drift-diffusion model, either via the energy-transport model or via the ‘‘peri-
odized spherical’’ harmonic expansion model: the expression of the diffusion coefficients is the
same~compare Theorem V.7 with Theorem IV.9!. j
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The one-dimensional antiferromagnetic spin-1
2 Ising model is investigated using the

formalism of Maximally/Minimally Even sets. The salient features of Maximally/
Minimally Even set theory are introduced. Energy and spin content vectors are
defined to facilitate the use of interval spectra used in Maximally/Minimally Even
set theory. It is shown that Maximally Even sets of up- and down-spins minimize
the configurational energy per spin and that Minimally Even sets maximize con-
figurational energy per spin. An exponentially decreasing antiferromagnetic pair-
wise interaction of arbitrary range is used as an example interaction. The asymp-
totic (N→`) configurational energy per spin and the energy per spin calculated for
seven-near neighbors are compared. ©1996 American Institute of Physics.
@S0022-2488~96!00107-7#

I. INTRODUCTION

The simplest description of the pairwise interaction of spins on a lattice is given by the Ising
model which yields the following for the configurational energy of a lattice of spin-1

2 ‘‘particles:’’

H524 (
i , j50
iÞ j

N21

J ~ u i2 j u!sizsjz ,

whereN is the total number of lattice sites, and the sum is taken over all pairs of lattice sites. The
functionJ (u i2 j u) is the pairwise interaction energy, the absolute value of which decreases with
distance. Thesz are thez-components of the spins which may take on the values of61

2. ~For a
discussion of lattice gas models, see the excellent reference by Simon.1!

In a one-dimensional system, it is convenient to invoke periodic boundary conditions which
requires thats0z5sNz . Therefore, a one-dimensional spin-

1
2 lattice can be thought of as a cycle of

lattice sites, some of which are occupied by up-spins~11
2! and others by down-spins~21

2!. A
simplification may be made by definingsp52spz . Then, the configurational energy may be
written as

H52 (
i , j50
iÞ j

N21

J ~ u i2 j u!s is j ,

where thes take on the values of61. By considering antiferromagnetic pairwise interactions only
~i.e.,J (u i2 j u),0!, a further simplification results, and the configurational energy is given by
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Hanti5 (
i , j50
iÞ j

N21

J~ u i2 j u!s is j ,

whereJ(u i2 j u)5uJ (u i2 j u) u.
For a given down-spin density~ratio of the number of down-spin sites to the total number of

sites!, the average configurational energy~energy per site! depends on the distribution of the up-
and down-spin sites. Since there is a large number of sites, for a given down-spin density, there are
many possible values for the average configurational energy. We will focus on the average energy
extremes of this cyclic one-dimensional system by exploiting the formalism of Maximally Even
and Minimally Even sets as described by Clough and Douthett2 and Block and Douthett.3

Curiously, many of the tools employed in this paper have been developed in the music theory
literature. Content vectors are routinely used in the analysis of twentieth-century music as well as
in compositional design, and Lewin4 was the first to explore the properties of these vectors in
microtonal systems~systems that have other than 12 divisions to the octave!. Block and Douthett3

developed weighting vectors to be used in conjunction with content vectors to find pitch-class sets
~collections of tones! whose members have particular pairwise intervallic relationships. In doing
so, they developed a measure that compares the evenness between any two pitch-class sets of the
same size. Clough and Myerson5,6 developed interval spectra to explore combinatorial properties
of diatonic scales~e.g., the white keys on the piano! and to extend these properties into microtonal
systems. Clough and Douthett2 expanded on this work and developed the theory of Maximally
Even Sets. These sets, along with their iterations, model scale and chord structures in both the
usual musical system~12 divisions to the octave! and microtonal systems.

II. ENERGY, CONTENT, AND SPIN CONTENT VECTORS

The method discussed in this section and the next in which the dot product of an energy vector
and a content vector is used to determine the configurational energy of a particular lattice con-
figuration is based on related work done by Block and Douthett.3 To apply their method to the
problem at hand, letN be the number of sites in the lattice,N2 be the number of these sites
occupied by down-spins, andN1 be the number occupied by up-spins. Assuming periodic bound-
ary conditions, for each pair of sites, there are twoclockwise distances~with respect to the number
of sites that separate them! associated with this pair~Fig. 1!. If the consecutive sites in the lattice
are represented by the consecutive integers 0 throughN21, the two distances associated with site
0 and sitek arek andN2k. Now assumeJ is a strictly convex function on the interval~0,̀ !.
@Later the discussion will be restricted to pairwise interactions for which(k51

` J(k) converges.#
Then the absolute value of the energy contributed by a pair of sites at a distancek is

JN~k!5J~k!1J~N2k!.

FIG. 1. Clockwise distances between pairs of lattice sites.
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Thus, if E2 is the sum of theJN-functions over all down-spin pairs,E1 is the sum of the
JN-functions over all the up-spin pairs, andE0 is the sum over all the pairs with opposite orien-
tations, the total energy of the lattice is

E5E11E22E0 .

It is convenient to construct vectors that allow computation of this energy via dot products.
The first vector, theenergy vector, is defined as follows:

W5„JN~1!,JN~2!,...,JN~ bN/2c !….

To construct the content vectors, consider the following example:
SupposeN57 andN253. ~Hence,N154.! Consider the distribution in Fig. 2~b! on the

complete labeled graphK7 . Then the set of down-spins isS25$0,2,3% and the set of up-spins is
S15$1,4,5,6%. Now consider the complete labeled subgraphsK2 @Fig. 2~a!# andK1 @Fig. 2~c!#.
The edges of these graphs are weighted as follows: Suppose an edgee has incident vertices whose
labels area andb. Then the weight of this edge is

w~e!5min$ua2bu,72ua2bu%.

The content vectorsof these graphs are three-tuples that have as theirkth entries the number of
edges that have weightk. Then the content vectors forK2 , K7 , and K1 are V25(1,1,1),
V75(7,7,7), andV15(2,2,2), respectively.

It is possible to computeV1 without its graph. Lewin4 has shown

V12V25~n,n,n!,

wheren5N12N25N22N2 . In this case,n5722•351. Thus,

V15~1,1,1!1V25~2,2,2!.

This characterization will be useful when these results are generalized.
Now, consider the complement ofK2øK1 ,

K2,15~K2øK1!c

whose graph is illustrated in Fig. 2~d!. This graph is a complete bipartite, and the edges in this
graph are precisely those that are incident to one up-spin site and one down-spin site. By defini-
tion, the edge sets ofK2 , K1 , andK2,1 partition the edge set ofK7 . The content vectorV0 of
K2,1 is computed as follows:

V75V21V11V0 , V05V72V22V15~4,4,4!.

Note that this corresponds to the calculation by inspection ofK2,1 in Fig. 2~d!. Finally thespin
content vectoris defined as

V5V11V22V05~1,1,1!.

The above example may be extended to the general case. The lattice may be modelled with
the complete labeled graphKN whose labels range from 0 throughN21. Then the edge weight of
an edgee whose incident vertices have labelsa andb is

w~e!5min$ua2bu,N2ua2bu%.
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The notation (•••n•••) indicatesabN/2c-tuple in which every entry isn. For convenience, assume
N is odd. Then the content vector forKN is VN5(•••N•••). @Note that ifN is even, the last entry
of this vector must be divided by 2. It is left to the reader to verify that the assumption thatN is
even will produce the same results asN→`.#

Now let S2 andS1 be the sets of labels of down-spins and up-spins, respectively. Then the
complete labeled subgraphsK2 andK1 on these sets and their corresponding content vectorsV2

andV1 are constructed in the same way as those in the above example. Because of symmetry, it
can be assumed without loss of generality thatN2,N/2. Furthermore, sinceN2,N1 , it can be
shown thatV12V25(•••N22N2•••).4 Thus,

V15~•••N22N2••• !1V2 . ~1!

Define the graphK2,15(K2øK1)
c to be the complete bipartite graph with partitionsS2 and

S1 , and let its content vector beV0 . Then, sinceVN5(•••N•••), and the edge sets ofK2 , K1 ,
andK2,1 partition the edge set ofKN , ~1! implies

V21V11V05~•••N••• !, V052~•••N2••• !22V2 . ~2!

Then, by~1! and ~2!,

V5V11V22V054V21~•••N24N2••• !.

FIG. 2. Graphs and content vectors.
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This means that the spin content vector of any configuration can be completely determined by the
set of down-spin labels. The total energy can be found by taking the dot product of the spin
content vector and the energy vector:

E5E11E22E05V1•W1V2•W2V0•W5~V11V22V0!•W5V•W.

In the previous example,V25(1,1,1). Thus,

V54~1,1,1!1~•••724~3!••• !52~1,1,1!.

So the total energy of the lattice is

E5V•W52~1,1,1!•„J7~1!,J7~2!,J7~3!…52J7~1!2J7~2!2J7~3!.

III. MAXIMALLY AND MINIMALLY EVEN DISTRIBUTIONS

Consider the configurations in Fig. 3. The total energy for the configuration in Fig. 3~a! is
E525J7(1)13J7(2)2J7(3) and in Fig. 3~b!, E53J7(1)2J7(2)25J7(3). For agiven convex
interactionJ, the configuration in Fig. 3~a! will yield the least energy and in Fig. 3~b!, the greatest.
If J is strictly convex, the only other configurations yielding these energy extremes are rotations of
the above. We now turn our attention to the unique properties of the classes of these configura-
tions.

The interval spectrum of near-neighbor down-spins (up-spins)is defined to be the set of
distinct clockwise distances between each pair of consecutive down-spins~up-spins!. This set is
denoted bŷ 1&2~^1&1!. Thus, for the sets in Fig. 2,^1&25$1,2,4% and ^1&15$1,2,3%; in Fig. 3~a!,
^1&25$2,3% and ^1&15$1,2%; and in Fig. 3~b!, ^1&25$1,5% and ^1&15$1,4%. This concept may be
extended to sets of clockwise distances between pairs of next-neighbor down-spins~up-spins!
@pairs that have precisely one down-spin~up-spin! site between them#. Then for the sets in Fig. 2,
^2&25$3,5,6% and ^2&15$2,3,4,5%; in Fig. 3~a!, ^2&25$4,5% and ^2&15$3,4%; and in Fig. 3~b!,
^2&25$2,6% and ^2&15$2,5%. In general, thespectrum ofk, written ^k&6 , is the set of distinct
clockwise distances between pairs of down-spins~up-spins! that have preciselyk21 down-spins
~up-spins! between them. A pair of down-spins~up-spins! is associated withk if the pair has the
above property. These spectra are defined for 1<k<N621, and they were originally defined by
Clough and Myerson.5,6 If the clockwise distances of all the pairs of sites of like spins associated
with k are added together, their sum isNk ~Clough and Myerson5,6 and Hubbard7!. For example,
in Fig. 3~a! where^2&15$3,4%, there are two intervals of length 3 and two of length 4 associated
with k52. This corresponds to the equality 2•312•457•2. Similarly, for ^3&15$5,6%, there are

FIG. 3. ME and me distributions.
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three intervals of length 5 and one of length 6 associated withk53, and 3•511•657•3. In
general, iflP^k&6 andr k,l is the number of down-spin~up-spin! pairs associated withk that have
a clockwise distance ofl , then

(
lP^k&6

r k,l l5Nk.

Hubbard7 observed that, for a given down-spin density, the minimum average energy occurs when
each spectrum consists of one or two consecutive integers. Clough and Douthett2 showed that, for
such configurations,

^k&65H b NkN6
c,d NkN6

eJ ,
where 1<k<N621. In addition, they generated the classes of all configurations that have this
property with theirmaximally even (ME) algorithm:2

Let i be a fixed integer such that 0< i<N21, and assign down-spins~up-spins! to sites
b(Nk1 i )/N6c wherek50, 1,...,N621. Assign up-spins~down-spins! to the remaining sites.
Then each down- and up-spin spectrum consists of one or two consecutive integers. Con-
versely, if each down-spin~up-spin! spectrum consists of one or two consecutive integers,
then there exists ani , 0< i<N21, such that the down-spins~up-spins! occupy the sites
b(Nk1 i )/N6c, k50, 1,...,N621, and the up-spins~down-spins! occupy the rest.

@A slightly more restrictive form of this algorithm is discussed by Clough and Myerson5,6 and
Bak.8# A set of down-spins~up-spins! in which each spectrum consists of one or two consecutive
integers is called aME set. Clough and Douthett2 showed that, for a givenN andN6 , ME sets are
equivalent under rotation and that the complement of a ME set is also a ME set. WhenS2 andS1

are ME sets, then the configuration is aME configuration.
Minimally Even (me) Setswere first suggested by Block and Douthett.3 A configuration is a

me configurationwhen all the sites with like spin are clustered together, and the sets of down-
spins and up-spins are calledme setsas illustrated in Fig. 3~b!. It is clear that the complement of
a me set is me, and whenS6 is a me set then

^k&65$k,N2N61k%

for all k, 1<k<N621. Moreover, for any configuration, ME, me, or otherwise, iflP^k&6 , then

k< l<N2N61k.

Note that the energy contributed to the lattice by the down-spins~up-spins! may be computed in
the following way:

~1! For eachk and eachlP^k&6 , determiner k,l .
~2! For eachlP^k&6 , computer k,lJ( l ).
~3! For eachk, sum the products in~2! over lP^k&6 .
~4! Sum the results in~3! over k, 1<k<N621.

Thus,

E65(
k

(
lP^k&6

r k,lJ~ l !.
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This double sum is smallest when the setS6 is a ME set and largest when it is a me set, and, for
any strictly convex functionJ, the total energyE is minimum if and only if the configuration is
ME and maximum precisely when the configuration is me~see Appendix A!.

IV. SPIN CONTENT VECTORS AND AVERAGE ENERGY FOR ME CONFIGURATIONS

It should be noted that ifJ is convex but not strictly convex, for a givenN andN2 , ME and
me configurations still minimize and maximize total energy, respectively, but they may not have
these properties uniquely. In what follows, we assume only thatJ is a convex function, although
we will focus on ME and me configurations since much is known about their structures.

Let r be the down-spin density~i.e., r5N2/N! and $x% be the fractional part ofx. It is not
difficult to show that ifr50, the configurational energy per spin is(k51

N J(k). Otherwise, for an
equivalent problem. Clough and Douthett2 have shown that, for a ME set and fixed integerk,
1<k<N221, there areNr(12$k/r%) down-spin pairs associated withk that have lengthbk/r c
andNr$k/r% down-spin pairs associated withk that have lengthbk/r c11. AssumingN2,N/2
andN is odd, the content vector for a ME set is

V25~n1
2 ,n2

2 ,...,n~N21!/2
2 !

where

n j
25H Nr~12$k/r%!, if j5 bk/r c,

Nr$k/r%, if j5 bk/r c11,

0, otherwise.

SinceV54V21(•••N24N2•••), the ME spin content vector is

VME5~n1 ,n2 ,...,n~N21!/2!,

where

n j5H N~124r$k/r%!, if j5 bk/r c,
N~114r$k/r%24r!, if j5 bk/r c11,

N~124r!, otherwise.

Then the minimum configurational energy for a givenN andN2 is Emin5VME•W; whence, the
minimum average energy for a given down-spin density is

UN
min~r!5

VME•W

N
54r (

k51

bNr/2c
@~12$k/r%!JN~ bk/r c !1$k/r%JN~ dk/r e !#1~124r!(

k51

N

J~k!.

Now assume~in addition to the convexity ofJ! that (k51
` J(k) converges, and defineUmin as

follows:

Umin~r!5H ( j51
` J~ j !, if r50,

(k50
` f k~r!, otherwise,

~3!

where

f k~r!5H ~124r!( j51
` J~ j !, if k50,

4r@~12$k/r%!J~ bk/r c !1$k/r%J~ dk/r e !#, otherwise.
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ThenUN
min→Umin uniformly on @0, 12#, U

min is uniformly continuous on@0, 12#, and, for eachrP@0,
1
2#, the series definingUmin~r! is absolutely convergent~Appendix B!. Since this series is abso-
lutely convergent, rearranging the terms in the series will not effect the sum. Let

Umin~r!5a1~r!J~1!1a2~r!J~2!1a3~r!J~3!•••

be a rearrangement of~3! with partial sums

un
min~r!5a1~r!J~1!1a2~r!J~2!1a3~r!J~3!•••1an~r!J~n!.

Then, for eachn, the coefficients ofun
min are functions ofr and can be determined by~3!. For

example, suppose the antiferromagnetic pairwise interaction is given by

J ~k!52J0e
2ak

wherea andJ0 are positive constants. ThenJ(k)5J0e
2ak, and the seventh partial sum is

u7
min~r!5a1~r!J~1!1a2~r!J~2!1•••1a7~r!J~7!, ~4!

where the coefficients are given below:

a1 a2 a3 a4 a5 a6 a7

0<r< 1
8 124r 124r 124r 124r 124r 124r 124r

1
8,r< 1

7 124r 124r 124r 124r 124r 124r 28r23

1
7,r< 1

6 124r 124r 124r 124r 124r 24r23 5228r

1
6,r< 1

5 124r 124r 124r 124r 20r23 5224r 124r

1
5,r< 1

4 124r 124r 124r 16r23 5220r 124r 124r

1
4,r< 2

7 124r 124r 12r23 5216r 124r 124r 28r27

2
7,r< 1

3 124r 124r 12r23 5216r 124r 24r27 9228r

1
3,r< 3

8 124r 8r23 5212r 124r 20r27 9224r 124r

3
8,r< 2

5 124r 8r23 5212r 124r 20r27 9224r 124r

2
5,r< 3

7 124r 8r23 5212r 16r27 9220r 124r 28r211

3
7<r< 1

2 124r 8r23 5212r 16r27 9220r 24r211 13228r

.

Note thatu7
min is a continuous function made up of line segments whose end points are members

of the Farey seriesF8—the set of fractions between 0 and 1 inclusive whose denominators do not
exceed 8.@In general, the endpoints of the line segments that make upun

min are points in the set [0,
1
2]ùFn11.# Shown in Fig. 4 is a plot of the minimum normalized energy per spin,u7

min~r!/J0 ,
versus the down-spin density,r, for a value ofa50.01. @A discussion of the significance of the
value ofa will be given in reference to Figs. 5–8 when the truncated series~4! is compared to the
exact values for the minimum normalized energy per spin, which is derived below.# As inferred in
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the list of coefficients above, the slope of each line segment in Fig. 4 depends on a particular
subinterval of the interval@0, 12#.

‘‘Exact’’ values can be computed for rationalr. Let r5p/q, wherep andq are integers. Then
$k/r%5$qk/p%, and for j[k~modp!, $q j /p%5$qk/p%. Whence, the coefficients,ak(r), cycle.
Next, ~3! is broken up to reflect this cycling:

UminS pqD5S q24p

q D (
k51

`

J~k!1
4p

q (
j51

p

(
k51

` F S 12H q jp J D JS q~k21!1 b q jp c D
1H q jp J JS q~k21!1 d q jp e D G . ~5!

Using ~5!, it is now possible to calculate the exact minimum average energy for a given rational
r. For example, ifJ(k)5J0e

2ak as above, then, forr52/7, the exact minimum normalized energy
per spin is

Umin~ 2
7!

J0
52

e2a

7~12e2a!
1
4e23a14e24a18e27a

7~12e27a!
.

To compare the normalized energy per spin at the endpoints of the line segments in~4! to that
calculated using~5!, it is necessary to calculate the exact minimum normalized averages forrP[0,
1
2]ùF8 . Fora50.01, Fig. 5 compares the minimum normalized energy per spin versus down-spin
density for the truncated seriesu7

min~r!/J0 to the exact values as calculated from~5! for corre-
spondingp/qP[0,12]ùF8 . The truncated series corresponds to approximating the minimum en-
ergy by accounting for interaction energies of the seven nearest neighbors only. As shown, for the
relatively small value ofa50.01, the seven near-neighbor approximation differs significantly from
the exact result. The value ofa reflects the range of the pairwise interaction. For small values of
a the interaction is relatively long ranged. Therefore, more neighbors must be included to ad-
equately approximate the average configurational energy. Fora50.01 it is clear that more than
seven neighbors are required.

FIG. 4. Normalized configurational energy per spin verses down-spin density for a ME distribution of Ising spins with
a50.01; seven nearest-neighbor interactions are included.
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In Fig. 6, the minimum normalized energy per spin versus down-spin density is shown for a
value ofa50.1. Again, the seven neighbor approximation is used for comparison to the exact
values. The value ofa50.1 corresponds to a shorter range interaction than that shown in Fig. 5.
As expected, the approximate results are closer to the exact results. Figures 7 and 8 show similar
results for larger values ofa. In Fig. 7,a50.5, and in Fig. 8, the minimum normalized configu-
rational energy per site is shown for a value ofa51.0. Clearly, as the range of the interaction

FIG. 5. Normalized configurational energy per spin verses down-spin density for a ME distribution of Ising spins with
a50.01; exact calculations~all neighbors included in the limit asN→`! compared to seven nearest-neighbor calculation.

FIG. 6. Normalized configurational energy per spin verses down-spin density for a ME distribution of Ising spins with
a50.10; exact calculations~all neighbors included in the limit asN→`! compared to seven nearest-neighbor calculation.
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becomes shorter, the truncated series approximation gets better. For large enough values ofa, only
near-neighbor interactions are relevant, and the minimum energy per spin is simply a linear
function of the down-spin density:

Umin~r!'u1
min~r!5J0e

2a~124r!.

FIG. 7. Normalized configurational energy per spin verses down-spin density for a ME distribution of Ising spins with
a50.50; exact calculations~all neighbors included in the limit asN→`! compared to seven nearest-neighbor calculation.

FIG. 8. Normalized configurational energy per spin verses down-spin density for a ME distribution of ising spins with
a51.00; exact calculations~all neighbors included in the limit asN→`! compared to seven nearest-neighbor calculation.
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The specific relative error between the approximate value of the minimum energy per spin and
the exact value may be used as the criterion for determining the number of pairwise neighbors
needed to adequately describe the average configurational energy of the system.

V. SPIN CONTENT VECTORS AND AVERAGE ENERGY FOR me CONFIGURATIONS

Since the construction of me configurations is less complicated than that of ME configura-
tions, a somewhat less formal approach will be taken in this section~as compared with Sec. IV and
Appendix B!.

For a me set withN2>1 and oddN>5, it is easy to see that the content vector is

V25~n1
2 ,n2

2 ,...,n~N21!/2
2 !,

where

nk
25HN22k, if 1<k<N2 ,

0, otherwise.

Thus, the me spin content vector is

Vme5~n1 ,n2 ,...,n~N21!/2!,

where

nk5HN24k, if 1<k<N2 ,

N24N2 , otherwise.

It follows that, for a me configuration and givenN andN2 , the maximum configuration energy is

Emax5Vme•W5N(
k51

N

J~k!24(
k51

N2

kJN~k!24N2 (
k5N211

N2N221

J~k!.

Then the maximum average energy for a given down-spin density is

UN
max~r!5

Vme•W

N
5 (

k51

N

J~k!2
4

N (
k51

Nr

kJN~k!24r (
k5Nr11

N2Nr21

J~k!. ~6!

A rather unexpected result turns up when the lattice has a me configuration; in the limit of
large N, the configurational energy per spin is independent of the down-spin density,r. Let
Umax~r!5(k51

` J(k). ThenUN
max→Umax uniformly since, asN→`, the first sum in~6! converges

to (k51
` J(k) and the other two sums converge to 0. These convergences are clearly true for the

first and second sums. To see that the third sum in~6! converges to 0, assumerP~0, 12#, and fix
e.0. Now letd5e/4(k51

` J(k), and chooseN0 large enough so that(k5 bdNc
` J(k) , e/2 whenever

N>N0 . Then, if r,d,

4r (
k5Nr11

N2Nr21

J~k!,4d(
k51

`

J~k!5e.

On the other hand, ifr>d, then

4r (
k5Nr11

N2Nr21

J~k!<2 (
k5 bdNc

`

J~k!,e
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wheneverN>N0 . Thus, the last sum in~6! converges to 0 independent ofr, implying that
UN
max→Umax uniformly on the interval~0, 12#. Moreover, ifr50, then me and ME configurations

are identical~all spins are up!, implying Umax~0!5Umin~0!. Whence, by~3!, Umax~0!5(k51
` J(k).

It follows that

Umax~r!5 (
k51

`

J~k!,

for all rP@0, 12#. Thus, in the limit of largeN, the maximum average energy depends only on the
clustering of the down-spins and up-spins in the configuration and not on the down-spin density.

VI. SUMMARY

An analysis of the antiferromagnetic spin-1
2 Ising model with periodic boundary conditions has

been carried out using the formalism of Maximally/Minimally Even sets first introduced by
Clough and Douthett2 and Block and Douthett3 in the Music Theory literature.

Applying elementary graph theory~decomposition of complete graphs!, the configurational
energy of a system has been calculated by the dot product of a so-called energy vector and a spin
content vector. Casting the configurational energy in this form is convenient for keeping track of
the contribution to the configurational energy from each set of neighbor pairs separately. This
formulation allowed us to use the theory of maximally/minimally even sets to calculate the inter-
val spectra which is equivalent to the spin content vector.

It is shown that, for the antiferromagnetic case and fixedN andN2 , Maximally Even sets of
up- and down-spins minimize the configurational energy for a given down-spin density while
Minimally Even sets maximize the configurational energy~Appendix A!. Furthermore, the con-
figurational energy per site is calculated in the limit of largeN ~Appendix B! to yield the ‘‘exact’’
~asymptotic! expression.

In order to investigate the range on the configurational energy per site, a simple form of
pairwise antiferromagnetic interaction is assumed that decreases exponentially with the distance.
As expected, it is shown that the shorter the range of the interaction the fewer the number of
neighbors needed to adequately describe the system. Our formulation allows the number of neigh-
bor pairs necessary to approximate the configurational energy per site to be calculated to any
desired precision.

Finally, it is shown that, for Minimally Even sets of up- and down-spins, the average con-
figurational energy depends only on the clustering of like spins and not on the down-spin density
in the limit of largeN.

APPENDIX A: CONFIGURATIONS ASSOCIATED WITH ENERGY EXTREMES

Before developing the theorems and corollaries, it will be useful to summarize important
properties discussed in Sec. III that are needed for our proofs. The first properties deal with
interval spectra.

P1. For eachk, if lP^k&6 , thenk< l<N2N61k.
P2. For eachk, ( lP^k&6

r k,l l 5 Nk.
Properties P3–P6 involve definitions and properties of ME and me sets.

P3. The setS6 is a ME set if and only if̂ k&65$ bNk/N6c,dNk/N6e% for all k, 1<k<N621.
P4. The setS6 is a me set if and only if̂k&65$k,N2N61k% for all k, 1<k<N621.
P5. The complement of a ME set is ME.
P6. The complement of a me set is me.

The last property needed~discussed at the end of Sec. III! expresses the energy contributed by the
set of down-spins~up-spins! in terms of the interval spectra and the pairwise interaction.

P7.E6 5 (k( lP^k&6
r k,lJ( l ).
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A corollary about convexity is needed to prove the assertions made in Sec. III about minimum
and maximum energies. Before stating the ‘‘Convex Corollary,’’ it is necessary to state a well-
known theorem9 ~without proof! to which the Convex Corollary belongs.

Theorem 1: Let J be a~strictly! convex function on the interval (a,b), and suppose thatx1 ,
x2 , y1 , y2P(a,b) such thatx1(,)<x2,y2 andx1,y1(,)<y2 . Then

J~y1!2J~x1!

y12x1
~, !<

J~y2!2J~x2!

y22x2
.

Corollary 1 (convex!: Let J be a~strictly! convex function on the interval~0,̀ !, and assume
0,h,p<q. Then

J~p!1J~q!~, !<J~p2h!1J~q1h!.

Proof: If p, q, andh are as defined above, thenp2h,p,q,q1hP(0,̀ ), p2h,q,q1h, and
p2h,p,q1h. Thus, by the Theorem 1,

J~p!2J~p2h!

p2~p2h!
~, !<

J~q1h!2J~q!

~q1h!2q
.

It follows that

J~p!1J~q!~, !<J~p2h!1J~q1h!. j

This result will be needed to prove the ‘‘Stick Theorem,’’ which, in turn, will allow us to
show that the energy of the set of down-spins~up-spins! is minimum precisely whenS6 is a ME
set and maximum whenS6 is a me set. Finally, the ‘‘Energy Theorem,’’ which will show that the
total energyE of a lattice is minimized or maximized precisely when the lattice configuration is
ME or me respectively, will be proved.

To prove the ‘‘Stick Theorem,’’ it is necessary to make the following construction.
AssumeJ is a strictly convex function, and letm andn be integers with 2<m<n. Consider

the sequence of sets

T j~n,m!5~T1 ,T2 ,T3 ,...,Tm21!,

where each setTk , 1<k<m21, consists ofm sticks with integer lengths. Ift is a stick, thelength
of the stick will be denoted byl 1(t). In addition, for eachk, the setTk has the following
properties:

~1! for eachtPTk , k< l 1(t)<n2m1k;
~2! ( tPTk

l 1(t)5 nk.

Thespectrum̂ k& of the setTk is the set of all distinct lengths of the sticks inTk , ak5min ^k&, and
bk5max^k&. DefinesJ(Tk) as follows:

sJ~Tk!5 (
tPTk

J„l 1~ t !….

Finally, define the sumCJ(n,m) as follows:

CJ~n,m!5(
k

sJ~Tk!.
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Theorem 2 „stick…: Let J be a strictly convex function on the interval~0,̀ !, and suppose
TJ(n,m) is defined as above.

~1! The sumCJ(n,m) is minimum if and only if

^k&5H b nkm c,d nkm e J
for all k, 1<k<m21.

~2! The sumCJ(n,m) is maximum if and only if

^k&5$k,n2m1k%

for all k, 1<k<m21.
Proof: ~1! For a givenk, we say the set of sticksTk can bereducedif there exists a setTk*

such thatsJ(Tk* ) , sJ(Tk).
Now consider the family of sets of sticks

T k5$Tkubk2ak>2%.

Then for eachTkPT k , there are stickst1 , t2PTk such thatl 1(t2)2 l 1(t1)>2. Replace these sticks
with stickst1* andt2* whose lengths arel 1(t1* ) 5 l 1(t1) 1 1 andl 1(t2* ) 5 l 1(t2) 2 1.Call the newset
of sticksTk* . Thus,Tk* is a set ofm sticks and( tPT

k*
l 1(t) 5 nk. Moreover, from the Convex

Corollary,

J„l 1~ t1* !…1J„l 1~ t2* !…,J„l 1~ t1!…1J„l 1~ t2!….

It follows thatsJ(Tk* ) , sJ(Tk). Hence, ifTkPT k , thenTk can be reduced by replacing sticks as
described above.

SinceT k contains a finite number of sets, there exists a setTk
min P T k such that

sJ~Tk
min!5min$sJ~Tk!uTkPT k%.

However, sinceTk
min P T k , Tk

min can also be reduced by replacing sticks. Call this new set of sticks
Tk** . Then, forTk** , bk2ak<1. Thus, the spectrum ofTk** must contain either one or two
consecutive integers. Since this is true for eachk, CJ(n,m) is smallest precisely when

^k&5H bnkm c,d nkm eJ
for all k, 1<k<m21.

~2! For a givenk we say the set of sticksTk can beincreasedif there exists a setTk* such that
sJ(Tk* ).sJ(Tk).

Note that ifm2k sticks have lengthk andk sticks have lengthn2m1k, then there is a total
of m sticks, and the sum of the lengths of these sticks isnk. Let Tk** be the set of these sticks.

Since, for eachTk , the sum of the lengths of the sticks inTk is the constantnk, there are fewer
thanm2k sticks with lengthk in Tk if and only if there are fewer thank sticks with length
n2m1k. It follows that if t1PTk and k, l 1(t1),n2m1k, then there existst2PTk such that
t2Þt1 andk, l 1(t2),n2m1k.

Now consider the family of sets of sticks

T k5$Tku'tPTk∋:k, l 1~ t !,n2m1k%.
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It follows that if TkPT k , then there existst1 , t2PTk such that t1Þt2 and k, l 1(t1)
< l 1(t2),n2m1k. Let t1* andt2* be sticks such thatl 1(t1* ) 5 l 1(t1) 2 1 andl 1(t2* ) 5 l 1(t2) 1 1.
Then by the Convex Corollary

J„l 1~ t1* !…1J„l 1~ t2* !….J„l 1~ t1!…1J„l 1~ t2!….

Replacet1 and t2 with t1* and t2* , and call the new set of sticksTk* . Thus,sJ(Tk* ) . sJ(Tk).
Hence, ifTkPT k , thenTk can be increased by replacing sticks as described above.

SinceT k contains a finite number of sets, there exists a setTk
max P T k such that

sJ~Tk
max!5max$sJ~Tk!uTkPT k%.

However, sinceTk
maxP T k , Tk

max can also be increased by replacing sticks. It follows that the new
set must have sticks whose lengths are eitherk or n2m1k. Thus, this new set isTk** . Since this
is true for eachk, CJ(n,m) is maximum precisely when

^k&5$k,n2m1k%

for all k, 1<k<m21. j

Corollary 2: For a fixedN andN6 ,

~1! E6 is minimum if and only ifS6 is a ME set.
~2! E6 is maximum if and only ifS6 is a me set.
~3! Proof: For each lengthlP^k&, let r k,l be the number of sticks inTk that have lengthl .

Then

sJ~Tk!5 (
lPTk

J„l 1~ t !…5 (
lP^k&

r k,lJ~ l !.

It follows that

CJ~n,m!5(
k

sJ~Tk!5(
k

(
lP^k&

r k,lJ~ l !.

Replacen with N, m with N6 , and^k& with ^k&6 . Then by properties P1, P2, and P7,

E65CJ~N,N6!.

The corollary follows immediately from the Stick Theorem and from properties P3 and P4.j

Theorem 3 „energy…: For a fixedN ~N odd! andN6 ,

~1! E is minimum if and only if the lattice configuration is ME.
~2! E is maximum if and only if the lattice configuration is me.

Proof: Recall thatV21V11V05VN5(•••N•••). Thus,

V05VN2~V21V1!5~•••N••• !2~V21V1!.

However, then

E05V0•W5VN•W2~V2•W1V1•W!51N(
k51

N

J~k!2~E21E1!.
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The first term in the last expression on the right is a constant, and by Corollary 2 and property P5
~P6!, the sumE21E1 is minimized~maximized! if and only if the lattice configuration is ME
~me!. It follows thatE0 is maximized~minimized!. However, then the total energy

E5E11E22E0

is minimized~maximized!. j

We have assumed thatJ is strictly convex to illustrate the uniqueness of ME and me con-
figurations. If it is only assumed thatJ is convex, then the configurational energy extremes still
occur when the configurations are ME and me. However, these configurations no longer neces-
sarily uniquely define these extreme states, and configurations other than ME and me may have the
same average configurational energies.

APPENDIX B: THE CONVERGENCES AND CONTINUITY OF Umin

AssumeJ is a convex function on the interval~0,̀ ! such that(k51
` J(k) converges. From

these restrictions, it is easy to see thatJ(k) is a decreasing positive function, and, hence,
(k51

` J(k) is absolutely convergent. Now assumeN is an odd positive integer, and letrP~0, 1/2#.
For notational convenience, setpr5 bNr/2c andp15(N21)/2. Note thatpr depends onN andr
while p1 depends only onN. Moreover, if 1<k<pr , then bk/r c and dk/r e are both less thanN;
whence,J(N2 bk/r c) andJ(N2 dk/r e) are defined.

Now let JN(k)5J(k)1J(N2k) where 1<k<N21. Let rP@0, 1/2#, and defineUN
min as

follows:

UN
min~r!5 (

k50

pr

f N,k~r!,

where

f N,k~r!5H ~124r!(
j51

N

J~ j !, if k50,

4r@~12$k/r%!JN~ bk/r c !1$k/r%JN~ dk/r e !#, otherwise.

Next defineUmin as follows:

Umin~r!55 (
j51

`

J~ j !, if r50,

(
k50

`

f k~r!, otherwise,

where

f k~r!5H ~124r!(
j51

`

J~ j !, if k50

4r@~12$k/r%!J~ bk/r c !1$k/r%J~ dk/r e !#, otherwise.

We will show thatUN
min→Umin uniformly on the interval@0, 1/2#, thatUmin is uniformly continu-

ous on@0, 1/2#, and that the series definingUmin~r! is absolutely convergent for everyrP@0, 1/2#.
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Before beginning the theorems and proofs relevant to this paper, it is necessary to state a
couple of well-known preliminary theorems. Although these theorems can be found in many
analysis texts, we refer the reader to Rudin.10

Theorem 4:Supposef n→ f uniformly on a setE in a metric space, and letx be a limit point
of E. Then

lim
t→x

lim
n→`

f n~ t !5 lim
n→`

lim
t→x

f n~ t !.

Theorem 5:Suppose$ f n% is a sequence of continuous functions andf n→ f uniformly on a set
E in a metric space. Thenf is continuous onE.

Theorem 6: For each positive integerN, the functionUN
min(r) is continuous on the interval

@0, 1/2#.
Proof:We consider continuity atr50 first. Letd052/N. Then,UN

min(r) 5 fN,0(r) whenr,d0.
Now choosee.0, and letd15e/4(k51

N J(k). Now let d5min$d0,d1%, and chooser such that
0<r,d. Then

uUN
min~r!2UN

min~0!u54r(
k51

N

J~k!,e.

Thus,UN
min is continuous atr50.

Now assumerP~0, 1/2#. If it is shown thatf N,k is continuous on~0, 1/2# for all k, 0<k<pr ,
then their sum is continuous.

It is clear that f N,k , 1<k<pr , is continuous on~0, 1/2# except possibly whenk/r is an
integer.@If k/r is not an integer, thenf N,k(r) is a linear function on some small neighborhood of
r.# Fix k, and supposer0P~0, 1/2# and k/r0 is an integer, sayk05k/r0 . Let d05r0

2/(k2r0
2).

Then f N,k(r0)54r0JN(k0). Furthermore, forr0,r,r01d0, bk/r c5k/r0215k021, and for
r02d0,r,r0, bk/r c5k/r05k0 . Choosee.0, and let

d15
e

4uk0JN~k021!2~k021!JN~k0!u

and

d25
e

4u~k011!JN~k0!2k0JN~k011!u
,

where it is assumed that the denominators ofd1 andd2 are not 0. Now letd5min$d0,d1,d2%, and
chooser so thatur2r0u,d. There are two cases.

Case 1:Supposer0,r,r01d. Noting that$k/r%5k/r2 bk/r c,

u f N,k~r!2 f N,k~r0!u54u@r~k021!2k1r#JN~k021!2@r~k021!2k#JN~k0!2r0JN~k0!u

54ur2r0uuk0JN~k021!2~k021!JN~k0!u.

If the right side of the equation is 0~i.e., if the denominator ofd1 is 0!, then f N,k(r)5 f N,k(r0);
otherwise,u f N,k(r)2 f N,k(r0)u,e. In either case, limr→r

0
1 f N,k(r) 5 f N,k(r0).

Case 2:Supposer02d,r,r0. Then

u f N,k~r!2 f N,k~r0!u54u@rk02k1r#JN~k0!2@rk02k#JN~k011!2r0JN~k0!u

54ur2r0uu~k011!JN~k0!2k0JN~k011!u.
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Similar to case 1, if the right side of the equality is 0~i.e., if the denominator ofd2 is 0!, then
f N,k(r)5 f N,k(r0); otherwise,u f N,k(r)2 f N,k(r0)u,e. Thus, limr→r

0
2 f N,k(r) 5 f N,k(r0). It fol-

lows that, for eachk, f N,k is continuous on the interval@0,
1
2#. Whence,UN

min is continuous on@0,
1
2#. @In fact,UN

min is uniformly continuous since the function is defined on a closed and bounded
interval.# j

Theorem 7: The sequenceUN
min→Umin uniformly on the interval@0, 12#. Moreover,U

min is
uniformly continuous on@0, 12#.

Proof: For rP~0, 12#, we have

uUmin~r!2UN
min~r!u<U(

k50

pr

„f k~r!2 f N,k~r!…U1U (
k5pr11

`

f k~r!U. ~B1!

For the first sum in~B1!,

U(
k50

pr

„f k~r!2 f N,k~r!…U5U~124r! (
k5N11

`

J~k!24r(
k51

pr F S 12H kr J D JSN2 bkr c D
1H kr J JSN2 d kr e D GU

< (
k5N11

`

J~k!14(
k51

pr

JSN212
k

r D .
Clearly, the first sum on the right side of the above goes to 0 asN→`. To show the second sum
does as well, note that ifk5pr , thenk<Nr/2, and, hence,k/r<N/2. It follows that

4(
k51

pr

J~N212k/r!<4prJ~N212N/2!<2NrJ~~N22!/2!<NJ~~N22!/2!→0

asN→`.
For the second sum in~B1!,

U (
k5pr11

`

f k~r!U54r (
k5pr11

` F S 12H kr J D JS b kr c D1H kr J JS d kr e D G<4 (
k5pr11

`

JS kr21D .
To show the right side of the above inequality goes to 0 asN→`, note that, for any non-negative
integerm,

p1221m,
N11

2
221m5

~Nr/2!2~3r/2!1mr

r
,

bNr/2c112~3r/2!1mr

r
,
pr111m

r
21.

Thus, sinceJ is a decreasing function,

JS pr111m

r
21D<J~p1221m!.

Finally, for any non-negative integerM>p122,

4 (
k5pr11

M

JS kr21D<4 (
k5p122

M

J~k!<4 (
k5p122

`

J~k!,
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4 (
k5pr11

`

JS kr21D<4 (
k5p122

`

J~k!.

Since the right side of the above inequality goes to zero asN→` ~independent ofr!, the left side
does as well. It follows thatUN

min→Umin uniformly on ~0, 12#. Moreover, since 0 is in the domain of
UN
min , it is convenient to defineUmin~0! as follows:

Umin~0!5 lim
r→0

Umin~r!5 lim
N→`

UN
min~0!5 (

k51

`

J~k!

~Theorem 4!. SinceUN
min is continuous on@0, 12# for everyN, U

min is continuous on@0, 12# ~Theorem
5!, and sinceUmin is defined on a closed and bounded interval,Umin is uniformly continuous on
@0, 12#. j

Theorem 8: For eachrP@0, 12#, the series definingUmin~r! is absolutely convergent.
Proof: SincerP@0, 12# and(k51

` J(k),`,

(
k50

`

u f k~r!u<u124ru(
k51

`

J~k!1 (
k51

`

u f k~r!u<(
k51

`

J~k!12(
k51

`

J~k!,`,

Whence,Umin~r! is absolutely convergent for everyrP@0, 12#. j
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Description of the grand canonical Gibbs ensemble for classical continuous systems
in terms of the nonlocally perturbed infinite-divisible generalized random fields is
presented. The equivalence of the traditional description with the ones presented
here on the level of DLR equations is established. The antiferromagnetism for the
purely repulsive interactions has been observed. Finally, the usefulness of our de-
scription for an analysis of the high-temperature cluster expansion has been dem-
onstrated. ©1996 American Institute of Physics.@S0022-2488~96!02106-8#

I. INTRODUCTION

Our everyday experience shows that several matter transformations like crystallization,
liquid–vapour, etc. transformation are the most natural phenomena of the phase transition type.
Their physical picture can be perfectly well understood on the basis of the molecular theory of
matter.1,2 Therefore it is reasonable to expect that the corresponding mathematical description of
such basic phenomena should be encompassed by the highly developed apparatus of the modern
statistical mechanics. But this is not true: the rigorous microscopic description of the most natural
phase transitions that take place in nature does not exist.

The conceptual background for the statistical mechanics description of the real matter in the
microworld is highly developed on a more or less sophisticated level of abstraction.3–5 However,
only the ~noninteresting from the point of view of physics! high-temperature/low-density regime
of couplings seems to be well understood3–6 from the point of view of basic principles of classical
statistical mechanics. It seems that one of the main reasons for the lack of progress in developing
the rigorous methods enabling us to penetrate the low-temperature/high-density properties of
realistic models of matter is the description of the corresponding Gibbs ensembles in terms of
variables that are not well suited for that purpose. The discrete spin system models are much more
appropriate3,7,8 and powerful progress has been achieved in the last decades. The only class of
continuous systems whose low-temperature properties are rather well known are the so-called
Widom–Rowlison type of models.9–11 However, from the point of view of the general theory
these models are rather exceptional and exotic and moreover the methods developed for the
analysis of the corresponding low-temperature phase diagrams do not extend to the more typical
systems. The functional integral representation~the sine-Gordon representation! of the system
interacting through the two-body potential of positive-definite type has been originated by
Siegert12 and significantly extended and explored in Refs. 13 and 14. In particular, the functional
integral representation of the corresponding Gibbs ensembles in terms of the perturbed gently
Gaussian measures opened the opportunity to apply the powerful methods of the constructive
quantum field theory15 to the analysis of low-temperature properties of such systems. This class of
models contains extremely interesting, from the point of view of physics, systems like the regu-
larized Coulomb gases, where some phase transitions~Debye screening, for example! take place,
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and indeed the methods of the constructive quantum field theory were successfully applied16–21to
the analysis of these effects. Additionally, some further results pertaining the phase diagrams in
the full range of the parameters have also been obtained.22–25

The above listed two classes of models for macroscopic real matter show how important a role
might be played by the choice of the proper mathematical description of a given system, and this
is our main motivation for writing this paper. We propose to introduce generalized random fields
of the Poisson type and their nonlocal perturbations as an alternative to the existing description3,4

of continuous systems. A large class of models for continuous systems is selected for which the
description in terms of the Poisson functional integrals applies well. It is our hope that the
introduced formalism will stimulate further progress on the basically open problem of low-
temperature properties of continuous systems.

It is worth stressing that the Poisson functional integrals have been used in various contexts in
the mathematical physics several times. For example, they were used in Refs. 26 and 27 while
searching for the alternative to the conventional perturbation expansions around the Gaussian
point in the quantum field theory. Recently the functional Poisson integrals have been used for the
constructions of some four-dimensional 4-D quantum field-like structures28,29~also see Ref. 30 for
a systematic approach to such constructions!. Finally, they were used to describe quantum semi-
relativistic statistical mechanics.31 The systematic introduction of Poisson functional integral rep-
resentations in quantum statistical mechanics of continuous systems as announced in Ref. 32 is
now under preparation.33

Section II is devoted to the demonstration that the traditional description of the grand canoni-
cal Gibbs ensembles describing continuous systems of particles and the introduced here Poisson
functional integral description are equivalent on the level of the corresponding DLR equations.

In Sec. III the lattice approximation is introduced and its convergence to the continuum is
demonstrated. As a result we detect that for continuous systems of particles interacting through
repulsive interaction antiferromagnetism holds.

In Sec. IV we shall demonstrate how the use of Poisson functional integrals simplifies the
construction of the corresponding high-temperature cluster expansion. In particular a slight exten-
sion of the result of Ref. 34 is obtained.

II. POISSON INTEGRALS DESCRIPTION OF THE GRAND CANONICAL GIBBS
ENSEMBLE

The material in this section is divided into three parts for better understanding. In the first part
we collect some relevant data for the purposes of the present work properties of generalized
random fields of the Poisson type. Some additional material concerning Poisson noise
calculus35–38 is included in the Appendix. In the second part of this section we recall the standard
description of the grand canonical Gibbs ensemble for continuous systems of particles and then we
express the finite volume quantities of the grand canonical Gibbs ensemble through the Poisson
functional integrals. Finally, in the third part we shall demonstrate the equivalence of the standard
description with the one introduced here in the thermodynamical limit.

A. Generalized random fields of Poisson type

Let D8(Rd) be the~real part of! the space of Schwartz distributions and letD(Rd) be the
corresponding nuclear test function space. The Borels-algebra of sets inD8(Rd) will be denoted
byB„D8(Rd)…. A generalized random field will be identified with the corresponding probabilistic,
Borel, cylindric measure on the standard measure space„D8(Rd)…,B„D8(Rd)…. A given general-
ized random fieldm is completely determined by its characteristic functional~Minlos theorem39!,

Fm~ f !5E
D8~Rd!

dm~w!ei ^w, f &, ~II.1!
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where fPD(Rd) and ^w,f & is the dualization betweenD8(Rd) andD(Rd). A given generalized
random fieldm is called an infinite divisible random field iff for anyf , gPD(Rd) with the disjoint
supports we have

E dm~w!ei ^w, f &ei ^w,g&5E dm~w!ei ^w, f &E dm~w!ei ^w,g&. ~II.2!

There exists a so-called Levy–Kchintchine formula,39 which gives the complete description of the
whole class of infinitely divisible random fields in terms of their characteristic functionals, which
must be of the form

E
D8~Rd!

dm~w!ei ^w, f &5eC~ f !,

where

C~ f !5E
Rd
dxS E

ulu.0
ds~l!~eil f ~x!2a~l!„11 il f ~x!…!1a01 ia1f ~x!2a2

„f ~x!…2

2! D ,
~II.3!

for some positive constanta2, anya1PRd, a0PR arbitrary, and the measureds~l! must fulfill
certain regularity properties together with a functiona ~see Ref. 39 for details!.

In particular, ifl is a sufficiently regular measure onR1, then the functional

G~ f ![expH zE dxE dl~a!@eia f ~x!21#J , ~II.4!

belongs to the class described by~II.3! for anyz.0. The corresponding generalized random field
is called a Poisson random field with the intensity measurez dl, and the corresponding measure
will be denoted asdPz,l. For further use we shall collect here some basic properties of the Poisson
generalized random fields.

1. Integration by parts formula

If *a dl~a!,`, then

E
D8~Rd!

^q, f &F~q!dPz,l~q!5zE dl~a!aE
L
dx f~x!E F„q1ad~2x!…dPz,l~dq!. ~II.5!

2. Moments of P z,l

Under a suitable assumption made ondl the fieldPz,l has moments of arbitrary order, and
they are given by

E
D8~Rd!

dPz,l~q!)
i51

N

^q, f i&5 (
1< l<N

*
(

m1v11•••1mlv l5N
m1,•••,ml

zv11•••1v l

3 (
permut

f̂ i
1
~1! ,...,i

m1

~1!••• f̂ i
1
~r l ! ,...,i

ml

~r l !••• f̂ j
1
~1! ,...,j

ml

~ l !••• f̂ j
l

~r l ! ,...,j
ml

~r l ! ,

~II.6!

wherei 1
(1) ,...,j ml

(r l ) P $1,2,...,N%,
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f̂ i1 ,...,i im
[E dx)

k51

m

f i k~x!E dl~a!am ~II.7!

and

N*5@ 1
2 ~8N11!1/221#, ~II.8!

where [x] denotes the integer part ofx.

3. Support property of dP z,l

Any Poisson field is supported on the set

J`5(
i51

`

a id~x2xi !,

where xlÞxj for lÞ j and the collection$x1 ,...,xn ,...% forms a locally finite configuration,
aiPsuppdl are chosen arbitrary, i.e.Pz,l~J`!51.

4. Normal ordering of the Poisson fields (see Refs. 35 –38)

For a givenqPJ` we shall write

a~q!5~a1 ,...,an ,...!, if q5(
i51

`

a id~x2xi !,

x~q!5~x1 ,...,xn ,...!, if q5(
i51

`

a id~x2xi !,

a2~q!5(
l51

`

a l
2, if q5(

i51

`

a id~x2xi ! and (
l51

`

a l
2,`.

For anyqPJ` such thatq5( ia id(x2xi) and allxiPL, whereLPRd is some bounded set,
we define

:q~x!q~y!:5q~x!q~y!2d~x2y!a~q!q~y!, ~II.9!

:qVq:5E :q~x!V~x2y!q~y!:dxdy5E q~x!V~x2y!q~y!dxdy2a~q!V~0!q~x!,

~II.10!

if V is a locally integrable kernel and such thatV~0!,`. If VPL loc
1 (Rd) butV~0!5`, then we can

define

:qVq:5 lim
e↓0

:qVeq:, ~II.11!

where the sequence of continuous kernelsVe→V locally in L1(R
d) ase↓0. See Refs. 35–38.
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Also for q as above, we define

:q~x1!q~x2!q~x3!:5q~x1!q~x2!q~x3!2d~x12x2!q~x1 ,â
2!q~x3 ,a!

2d~x12x3!q~x1 ,a
2!q~x2 ,a!12d~x12x2!d~x12x3!q~x1 ,a

3!,

~II.12!

where for givenq(x)[q(x,a)5( i51a id(x2xi) localized in the bounded regionL,Rd:

q~x,â2!5(
i51

n

a i
2q~x2xi !; ~II.13!

q~x,ap!5(
i51

n

a i
pq~x2xi !; ~II.14!

and similarly to~II.10! we can define define the random element:qVqq: for a suitably chosen
kernelV on R3d.

5. Conditional expectation values

ForL,Rd bounded we denote thedPz,l-completeds-algebraS~L! generated by the random
elements $^q, f &, qPJ` , fPD~L!%. Then we introduce the decomposition: forqPJ` :
q5( i51

` a id(x2xi) define

qL5
d f

(
j

a jd~x2xj !:xjPL

and

qLc5(
j

a jd~x2xj !:xjPLc.

The following formulas for the conditional expectation values are valid:

EPl,z$FuS~Lc!%~q!5E F~hL ,qLc!dPuS~L!
z,l ~hL!, ~II.15!

from which it follows rather easily thatdPL
z,l[dPuS(L)

z,l is again`-divisible generalized random
field onD8~L! with the characteristic functional@for fPD~L!#,

E ei ^w, f &dPL
z,l5ez*L*~eia f ~x!21!dx dl~a! ~II.16!

and the set

JL5H (
i51

n,`

a id~x2xi !;xiPL,a iPsuppdlJ
is the carrier set fordPL

z,l, i.e. PL
z,l~JL!51.
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B. Finite volume grand canonical Gibbs ensembles

Let S be a Borel subset ofR1 ~in most of the applications we have in mindS is a discrete
subset!, which will be called the spaces of charges, and we shall assume that some ‘‘a priori’’
given regular measurel is defined onS such thatl~S!,` andl has moments of all orders.

In the sets (Rd3S)3k, k51,2,...,̀ the following equivalence relation is introduced: we will
say thatv5„(x1 ,a1),...,(xk ,ak)… andv8 5 „(x18 ,a18),...,(xk8 ,ak8)… are equivalent iff they differ
only by permutations of pairs (xi ,a i)PRd3S composing them. Taking anyL,Rd and
vP(Rd3S)3k, we shall denote byvL the element of (L 3 S)3uvLu obtained fromv by removing
those (xi ,a i) for which xi¹L. The subset of~Rd3S!`/` composing of thosev for which the
following holds:for any boundedL,Rd, vL belongs to some~L3S!3k/` for some finite kwill be
called the set of locally finite configurations of the system and will be denoted byClf~R

d3S!. For
a givenL,Rd we shall denote byC~L3S![$v85vL for someqPClf~R

d3S!%.
Then we have

Clf~R
d3S!>Clf~L3S!3Clf„~R

d\L!3S…,

for anyL,Rd and alsoC(L3S)5øn.0Cn(L3S) andClf (R
d3S)5øn>0Cn(R

d3S), where
Cn(L3S)5$vLu#vL5n%, where #vL[number of elements composingvL . The setCn~L3S!
can be identified with~L3S!3n/`, therefore it is possible to transport the corresponding topo-
logical and measurable structures from~L3S!r /` into the setCn~L3S! and then intoC~L3S!
also. It is a result of Ref. 40 that the corresponding topological and measurable structures coincide
onC~L3S!. The correspondings-algebras will be denoted byS~L! and byS(Rd) for Clf~R

d3S!.
On the setsDL

n defined by

DL
n[$vPCL~L3S!u#~v!5n,v5vD%,

we can define a map,

P0,L
z,l ~DL

n ![
zn

n!
r~D!nS E

S
l~da! D n ~II.17!

and then by standard construction we can extend this to a measure thes-algebra generated by the
setsDL

n @coinciding withS~L! for anyL, includingRd also#. The corresponding measures will be
called finite volume~if L is bounded! grand canonical free, Gibbs ensembles and will be denoted
by P̃L

l,z and their corresponding normalized versions byPL
l,z and the infinite volume g.c. Gibbs

free ensemble forL5Rd with the notationP̃`
l,z, respectivelyP`

l,z, wherez.0 stands for the
chemical activity.

Let us define the map:

jL :C~L3S!{v5„~x1 ,v1!,...,~xn ,an!…→ jL~v![( i51
n a id~x2xi !PD8~L!. ~II.18!

It follows easily thatjL is ~weakly! ~S~L!;b„D8~L!…! measurable and therefore the measurePL
l,z

can be transported on the space~„D8~L!…,b„D8~L!…! by this map. Then for any bounded and
measurableF onD8~L! we have

E
D8~L!

d~ jL+PL
z,l!~q!F~q!5E

C~L3S!
dPL

z,l~v̂ !~F+ jL!~v!. ~II.19!

TakingF(q)[e^q, f & for fPD~L! we obtain

E
D8~L!

d~ jL+PL
z,l!~q!ei ^q, f &5expH zE dl~a!E dx~eia f ~x!21!J ~II.20!
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by an easyC~L3S!-calculation, in which we recognize a characteristic functional of Poisson g.r.f.
dPL

z,l onD8~L!.
Any measurable functionEL:V̂~L!→~2`,`# will be called interaction. We shall require that

EL is thermodynamically stable, i.e., there existsB.0 such that for any v̂PV̂~L!:
EL(v̂)>2uv̂uB uniformly in L. Having in mind the decompositionV̂(L)5øn>0

` Vn(L) we can
define a sequence of potentialsV 5(Ṽ1 ,Ṽ2 ,...),which determinesE

~L!. To avoid the complicated
notation, the following assumption onV will be made throughout this paper.

~H1! Ṽ 5(Ṽ2 ,Ṽ3,0,...),i.e. we shall consider only two and three body forces,~H2! Ṽ2 ,Ṽ3 are
of the following form:

Ṽ2~ x̂,ŷ!5Ṽ2„~x,a!,~y,b!…5abV2~x,y!,

Ṽ2„~x,a!,~y,b!,~z,g!…5abgV3~x,y,z!.

The energy function is then given by

EV
L :C~L3S!{v̂5~ x̂1 ,...,x̂n!→EVL ~v̂!

5 (
1< i, j<n

a ia jV2~xi ,xj !1 (
1< i, j,k<n

a ia jakV3~xi ,xj ,xk! ~II.21!

The finite volume partition functionZL
l (z,b) is given by

ZL
l ~z,b!5E

C~L!
dPL,0

z,l ~v̂ !exp~2bEV
L ~v̂!, ~II.22!

and the~unconditioned! grand canonical Gibbs ensemble by the measure

dPL
z,l~v̂ ![„ZL

l ~z,b!…21 exp$2bEV
L ~v̂!%dPL,0

z,l ~v̂ !. ~II.23!

This measure is uniquely determined by the so-called correlation functionsrL . For our purposes,
however, the more suitable objects are so-called reduced correlation functionsr̂L , given by

r̂L~v̂n!5expbEV
L ~v̂n!rL~v̂n!5zn (

m>0

`
zm

m! EL
dŷu1

m
exp$2bEV

l ~ ŷ1
n!%exp$2bEV

L ~ ŷ1
nux̂1

n!%

ZL~z,b!
,

~II.24!

where

x̂1
n5~ x̂1 ,...,x̂n!5„~x1 ,a1!,...,~xn ,an!…, ~II.25!

E
L
dx̂1

n[E
L

)
i51

n

dxi dl~a i !; ~II.26!

EV
L ~ ŷ1

mux̂1
n!5EV

L ~ x̂1
nVŷ1

m!2EV
L ~ x̂1

n!2EV
L ~ ŷ1

m!. ~II.27!

For a moment we shall assume that the potentialsV2 andV3 are bounded functions onR2d and
R3d, respectively.

Let us consider first the caseV3[0.
Proposition II.1: Let us assume that V˜2 is stable, then the following formulas hold:
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ZL
l ~z,b!5E

D8~L!
dPL

z,l~q!e2~b/2!:V2
L

~q,q!: ~II.28!

(1) where

:V2
L~q,q!:[E

L
dx dy:q~x!V2~x,y!q~y!:. ~II.29!

(2) The reduced, grand canonical correlation functions are given by

r̂L~ x̂1
n!5znE

D8~Rd!
dmL

z,l~q!)
i51

n

e2bV2~q!~xi !, ~II.30!

where

e2bV2~q!~x!5e2b*dy V2~x2y!q~y!;

and

dmL
z,l~q!5

expS 2
b

2
*L :q~x!V~x2y!q~y!:dx dyD

ZL
l ~z,b!

dPL,0
z,l . ~II.31!

(a) Proof: It follows by an easy„C(L3S),PL,0
z,l
… calculation using the transport formula

~II.20!.
Similarly we obtain the following.
Proposition II.2: Let(Ṽ2 ,Ṽ3) be stable and such that

sup
x

V3~x,x,x!,`, sup
x,y

V3~x,x,y!,`, V2~0!,`.

Then the following formulas are valid:

ZL
l ~z,b!5E

D8~L!
dPL

z,l~q!e2b:EL
n

~q,q,q!:, ~II.32!

(1) where

:EL
n ~q!:5

1

2
:V2~q,q!:1

1

3!
:V3~q,q,q!:.

(2) The corresponding reduced correlation functions are given by

rL
n ~ x̂1

n!5znE
D8~L!

dmL~q!)
i51

n

e2bV2~q!~xi ! )
1< i, j<n

e2bV3
1
~q!~xi ,xj !)

i51

n

e2bV3
2
~q!~xi !, ~II.33!

where
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V3
1~q!~xi ,xj !5E

L
dy q~y!V3~xi ,xj ,y!;

V3
2~q!~x!5E

L
dyE

L
dy8:q~x!q~y!:V3~x,y,y8!; ~II.34!

dmL~q!5„ZL
l ~z,b!…21e2b:EL

n :~q! dPL
z,l .

(b) Proof:Again by passing to„C(L3S),PL,0
z,l
… variables and the use of the normal product

definition, as described in Sec. II A4.
Now let ~xe!e.0 be a positive mollifier onR1

d , i.e. xe(x)PC0
`(Rd); xe>0; supxe,B~0,e!;

ixei151 and v2lime↓0 de(x)5d ~in the weak sense!. Taking VPL loc
1 (Rd) we see that

xe*V[VeeC`(Rd), and moreover, lime↓0 V
e5V locally in theL1(Rd) sense.

Proposition II.3: LetV 5~0,V2,0,...! be such that V2PL loc
1 (Rd) is stable and translationally

invariant.
(1) Then for any regularizing sequencexe as above the following limit:

ĜL~ f !5 lim
e↓0

ĜL
e ~ f !5E

D8~L!
dPL

z,l~q!e2b/2V2
e
~q,q!L :ei ~q, f ! ~II.35!

exists and defines continuous and positively defined functional onD~L!.
(2) For any ~xe!e.0, any p>1 the limit

lim
e↓0

e2:b/2V2
e
~q,q!L :[e2:b/2V2~q,q!L : ~II.36!

exist in the Lp„D8~L!,dPL
z,l
… sense.

(3) For any ~xe!,C0
`(Rd) as above, the limits

r̂L
n ~ x̂1

n!5 lim
e↓0

*D8~L!dPL
z,l~q!P i51

n exp~2b( i51
n ~q*Ve!~xi !!exp$2b/2:VL

e ~q,q!:%

ĜL
e ~0!

,

~II.37!

exists pointwise on~L3S!3n/`.
Remark:The same convergence results hold for many body interactions, provided they are not

too singular.
As a simple corrolary, we obtain the following.
Corollary II.4: Let V2PL loc

1 (Rd) be stable and translationally invariant potential. Then there
exists a probabilistic, Borel cylindric measure dmL

(z,l) onD8~L!, such that

E
D8~L!

ei ^q, f &dmL
~z,l!~q!5

ĜL~ f !

ĜL~0!
[GL~ f !. ~II.38!

The measures dmL
(z,l) are locally absolutely continuous with respect to dPL

z,l and the correspond-
ing Radon–Nikodym derivatives are given by

dmL
~z,l!~q!

dPL
z,l~q!

5expH 2
b

2
:VL~q,q!:J . ~II.39!

(c) Proof: By the „C(L3S);dPL,0
z,l
… calculations, we have
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ĜL
e ~ f !5E

D8~L!
dPL

z,l~q!ei ^q, f & expH 2
b

2
:VL

e ~q,q!:J
5e2zl~S!uLu (

n>0

`
zn

n! E d~ x̂!1
n)
i51

n

@eia i f ~xi !21#e2bEV2
e~ x̂1

n
!, ~II.40!

where

EV
2
e~x1

n!5
1

2 (
1< i, j<n

a ia jV2
e~xi2xj !. ~II.41!

From the assumed stability ofEV
2
e follows the uniform~in e! estimate

uĜL
e ~ f !u<expH zE

L
d~ x̂!uei f ~x!uebBJ e2zul~S!uuLu, ~II.42!

which means that the series~II.40! is uniformly convergent ine. Thenth term of ~II.40! can be
estimated by the following inequality:

U E
L
d~ x̂!1

nS )
i51

n

ea i f ~xi !e2bEn2
e
~ x̂1
n
!2)

i51

n

ea i f ~xi !e2bEn2
e8~ x̂1

n
!DU

<E
0

1

ds senbB (
1< i, j<n

E
L
d~ x̂!1

na ia j uV2
e~xi2xj !2V2

e8~xi2xj !u. ~II.43!

Therefore, assumingV2PL loc
1 (Rd), we conclude that thenth term in~II.40! is convergent ine to

the corresponding expression withe50.
Therefore lime↓0 ĜL

e ( f )5GL( f ) exists and is given by~II.35!. From the estimate~II.42! the
continuity ofGL( f ) onD8~L! follows easily.

Again, byC~L3S! calculations:

E
D8~L!

ue2b/2:n2L
e

~q,q!:2e2b/2:n2L
8 ~q,q!:u2 dPL

z,l~q!

5e2zul~S!uuLu (
n>0

`
zn

n! ELn
d~ x̂1

n!~e22bEn2
e~ x̂1

n
!1e22bEn2

e8~ x̂1
n
!22e2bEn2

e~ x̂1
n
!e2bEn2

e8~ x̂1
n
!!

<e2zul~S!uuLu2(
n>0

`
zn

n!
e2bBnbE

Ln
d~ x̂!1

nuEn
2
e~ x̂1

n!2En
2
e~ x̂1

n!u. ~II.44!

Thenth term of the last line is convergent to zero ase↓0, providedV2PL loc
1 (Rd). Moreover, the

whole series appearing in the middle of~II.44! is uniformly convergent ine as it follows from the
stability of V2

e .
As an immediate application of our formulas we propose the following.

Corollary II.5: Let us assume that V2 is superstable, i.e.EV2
is superstable on Clf~R

d3S!, that
V2PL loc

1 , and thatEV2
is lower regular on Clf~R

d3S! in the sense of Ruelle.44 Then the family of
measures(dmL

(z,l))L indexed by boundedL,Rd is precompact (in the topology of convergence of
all finite-dimensional projections) in the space of measures on~D8(Rd),B„D8(Rd)…!.

(d) Proof: For anyzPC, z5t1 is and usingC~L3S! calculations, we obtain
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E
D8~L!

ez^q, f & dmL
~z,l!~q!5 (

n>0

zn

n! EL
d~ x̂!1

n@ez f ~xi !21#rL
n ~ x̂1

n!. ~II.45!

From Ruelle’s work41 we conclude that there exists a constantC independent ofz andL, such that

ess sup
~ x̂1
n
!

urL
n ~ x̂1

n!u<Cn, ~II.46!

from which follows that

U E
D8~L!

ez^g, f & dmL
~z,l!~q!U<expHCuzui f i1E

0

1

ezsi f i` dsJ . ~II.47!

h

C. Infinite-volume grand canonical Gibbs measures

Let J`,D8(Rd) be the Borel subset consisting of thoseq that are of the form
q(x)5( i51

n d(x2xi), wherexiÞxj for iÞ j and such that for any boundedL,Rd, the cardinality
of the set of thosexi that belong toL is finite. The corresponding cardinality will be denoted by
#~qL!. The smaller subsetJ`

T,J` of so-called tempered configurationsqPD8(Rd) is defined by
requiring that there exists a constanta5a(q) such that for anyhr5$xPRdudist(r ,x)<1%, we have
#(qhr

) < a log1 r for a sufficiently larger .
Taking a stable potentialV we then define the following probabilistic kernels:

PPL
~L8!~2u2 !~z,b,V !D8~L!3JL8\L→@0,1#, ~II.48!

by

PPL
~L8!~dqLuhL8\L!~z,b,V !5„ZL

~L8!~hL8\L!…21 exp$2bEV ~qL!%

3exp$2bEV
c ~qLuhL8\L!%dPL

z ~qL!, ~II.49!

whereL,L8 are bounded subsets ofRd,

EV ~qLuhL8\L!5EV ~qLøhL8\L!2EV ~qL!2EV~hL8\L!, ~II.50!

ZL
~L8!~hL8\L!5E

D8~Rd!
dPL

z ~qL!exp$2bEV ~qL!%exp$2bEV ~qLuhL8\L!%. ~II.51!

Let us define the followings-algebras:

S̃~L![s$~q, f !u fPC0
`~L!;qPJL%,

being subalgebras of the Borels-algebra inD8(Rd). For a givenV we defineJ`~V ! as a Borel
subset ofJ` consisting of thoseh for which
(i)

lim
L̃↑Lc

ZL
L̃~hL̃![ZL~hLc!,

exists for any countably generated filterL̃ tending toLc and is filter independent and

3364 R. Gielerak and A. L. Rebenko: Poisson integrals

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



(ii)

lim
L̃↑Lc

EV ~qLuhL̃![EV ~qLuhLc!,

exists for anyqLPJL and any filter (L̃) as above, and the limit is filter independent.
Definition II.1 (after Dobrushin42): Any probabilistic Borel cylindric measurem on ~D8(Rd),

b„D8(Rd)…!, such that
(G0)

m„J`~V !…51;

(G1) for any boundedL,Rd, any bounded andS~L!-measurable function F,

E
D8~Pd!

dm~h!PPL~FuhLc!~z,b,V !5E
D8~Rd!

dm~q!F~q!, ~II.52!

(LR)

wherePPL~2u2!~z,b,V ! is defined as the (weak) limit ofPL
(L̃)( 2 u 2 )(z,b,V ),will be called the

functional, grand canonical Gibbs ensemble for a system~V ,l,z,b!. The set of all functional
grand canonical Gibbs ensembles will be denoted byPG ~z,b!. The set of thosemPPG ~z,b! that
are supported on the tempered configurations will be denoted byPG T~z,b! and will be called the
set of tempered grand canonical Gibbs ensembles for~V ,l,z,b!.

There exists a corresponding notion of the grand canonical Gibbs ensembles in the language
of the space~Clf (R

d!, b„Clf (R
d)!… ~see. e.g., Refs. 5, 6!. The corresponding set of grand canonical

~tempered! Gibbs ensembles for~z,V ,l,b! will be denoted byG (T)~z,b!.
We extend the representation of the grand canonical Gibbs ensemble by functional integrals to

the infinite volume limit situation by the following result.
Theorem II.6: There exists a bijectionT ` between the set

PG ~z,b! andG ~z,b!. The bijection
T ` when restricted to the Martin–Dynkin boundary ofPG ~z,b! is still bijection between
]PG ~z,b! and ]G ~z,b!. ~The existence of the Martin–Dynkin boundary and the corresponding
integral decomposition follows from the general abstract arguments of Fo¨lmer.52!

(e) Proof:Let

p` :Cf l~R
d!{ x̃→p`~ x̃!5(

i51

`

a id~x2xi !PD8~Rd!. ~II.53!

It is easy to note that the mapp` is ~weakly! measurable, and moreover,p`„Cf l~V !…5J`~V !.
Therefore any Borel measurem̃ concentrated on the setCf l~V ! can be transported onto the Borel
measurem5p`+m on b„D8(Rd)…, such thatm„J`~V !…51.

Assuming thatm̃PG ~z,b!, it follows by an easy calculation that for anyỹPCf l~V !,

ZL~ ỹLc!5E
C~L!

dPL,0
z,l ~ x̃!e2bEV ~ x̃ !e2bEV ~ x̃ u ỹLc!

5E
D8~Rd!

dPL
z ~qL!exp@2bEV ~qL!#exp@2bEV ~qup`~ ỹLc!#, ~II.54!

and for anyuLu,`, ỹPClf~V !:

p`+PL~dx̃u ỹLc!~z,b,V !5PP„p`~dx̃L!up`~ ỹLc!…. ~II.55!

Therefore, if we assume thatm̃ fulfills the DLR equation on
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~Clf~R
d!;b„Clf~R

d!…!,

then the transportedm5p`+m̃ fulfills the corresponding DLR equation on~D8(Rd), b„D8(Rd)…!,
and vice versa. Thus, we have proved thatp`+„G ~z,b!…5PG ~z,b!.

If now m̃P]G ~z,b!, then the corresponding ‘‘s-algebra at infinity’’S`
m̃ 5 ùL,RdSm̃(L

c) must
be m̃-trivial ~see, e.g., Refs. 3, 5, 8!, and this is also sufficient form̃P]G ~z,b!.

From the formula

Em̃$FuŜ~Lc!%~ ỹLC!5Ep`+m̃$F+p`uS~Lc!%~p`~ ỹLc!, ~II.56!

where

Ŝ~Lc![
d f

s$ ỹLc%,b„Clf~R
d!…, ~II.57!

it follows thatp`u]G (z,b) is still injective and is surjective onPG ~z,b!. h

Before closing this section let us remark that in the case of positive-definite two body poten-
tial V2, such thatV2~0!,` another interesting functional integral representation, that we call
mixed Poisson-sine-Gordon representation exists. LetdmV2

denote the centered Gaussian measure
onD8(Rd) with the covarianceV2. Then the following formulas are valid:

ZL
l ~z,b!5E

D8~L! ^D8~Rd!
dPL

z,l~q! ^dmV~w!eiAb^w,q&e~b/2!V~0!„#~q!… ~II.58!

and

rL
~n!
„~ x̂!1

n
…5znE

D8~L! ^D8~Rd!
dmL

~z,b,l!~w,q!)
i51

n

:eiAb^w,q~xi !&:, ~II.59!

where

dmL
~z,b,l!~w,q!5

:eiAb^w,q&:dmV~w! ^dPL
z,l~q!

ZL
l ~z,b!

, ~II.60!

:eiAb^w,q~xi !&:5expS b

2
V~0!~#q! Dexp„iAb^f,q~xi !&…, q~xi !5q~ .2xi !. ~II.61!

Whether the mixed Poisson-sine-Gordon representation might be useful remains to be inves-
tigated.~The picture arising is similar to those described in Ref. 43.!

III. CYLINDRICAL APPROXIMATIONS

For simplicity we takeS5$1% andl$1%51 in this section.
Let pz denote the one-dimensional Poisson distribution on the real lineR1, with the intensity

parameterz.0, i.e.

pz~dx!5e2z(
n>0

zn

n!
d~x2n!.

Then the characteristic functionalgz of pz is given by
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gz~a!5E eiaxpz~dx!5ez~e
ia21!. ~III.1!

Let ~xe!e.0 be a positive mollifier onR
d, such that suppxe5B~0,e!. Definingqe5(q* xe)(x) and

computing

Ge~ f ![E
D8~Rd!

ei ^qe , f & dPL
z ~q!5expS zE ~ei f e~x!21!dxD , ~III.2!

we see that

Ge
z~a![ lim

f→dx

Ge~ f !5E ei ^qe ,dx& dPL
z ~q!5exp zuB~0,e!uexp zS E eiaxe~y! dyD . ~III.3!

Let (Bi) be any measurable partitioning ofB~0,e!. Then we can approximateGe
z by

Ge
z[)

i51

n

gzuBi u
„axe~yi !…, ~III.4!

where yiPBi . Thus, if (Bia
) in any family of measurable partitioning ofB~0,e! such that

max$diamBia
%→0 asm→`, then for any choice ofyia P Bia

we have the equality

Ge
z5 lim

m
g im

uPzuBim
~0,e!u„axe~yim!…. ~III.5!

The measurepe
z(dx) on R1, defined by

Ge
~z!~a!5E eiaxpz

e~dx!, ~III.6!

will play the role of a single spin distribution in our cylindrical approximation to the measure
dmL , given by ~II.34!. It is easy to see thatpe

z is concentrated on the real half-line
R15$xPRux>0% and is given by a limit of an infinite divisible distribution,

PzuBl ~0,e!uS dx

xe~yi !
D . ~III.7!

For a given smallr.0, let Zr
d denote the lattice of sizer in Rd, i.e. Zr

d5$(xz ,...,xd)uxi
5nir;niPZ% and we denote for a givenLPRd; Lr[LùZr . Taking r.2e and using the inde-
pendence properties of the fieldPL

z (dq), we can write down the following formula:

E
D8~Rd!

dPL
z ~dq!expH 2

b

2 (
n,n8PLr

r2dqe~n!V~n2n8!qe~n8!J
3expH b

2 (
n,n8PLr

r2dde~n2n8!qe~n!V~n2n8!J
5E

RuLru
^

nPLr

dpz
e~sn!expH 2

b

2 (
n,n8PLr

r2dsnV~n2n8!sn8J
3expH b

2 (
nPLr

snhL
r ~n!rdJ , ~III.8!

3367R. Gielerak and A. L. Rebenko: Poisson integrals

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



where hL
r (n)[(n8PLr

de(n2n8)V(n2n8)rd.
Lemma III.1: Let VPL1(R

d) be stable and let V~0!,`. Then for any z.0, b.0, uLu,` the
following holds:

lim
~e,r!→~0,0!

e.0

E
D8~Rd!

dPL
z ~q!expH 2

b

2 (
n,n8PLr

r2dqe~n!V~n2n8!qe~n8!J
3expH 2

b

2 (
n,n8PLr

r2dde~n2n8!V~n2n8!qe~n!J
5E

D8~Rd!
dPL

z ~q!expH 2
b

2 E
L
dxE

L
dy:q~x!q~y!:V~x2y!J . ~III.9!

(f) Proof: For the proof we proceed to theC~L!-integration picture,

E
D8~Rd!

dP̃L
z ~q!expH 2

b

2 (
n,n8PLr

r2dqe~n!V~n2n8!qe~n8!J
3expH b

2 (
n,n8PLr

r2dqe~n!de~n2n8!V~n2n8!J
5 (

n>0

zn

n! EL
d~x!1

n expH 2
b

2 (
n,n8PLr

r2dS (
i , j51

n

de~n2xi !V~n2n8!de~n82xj !D J
3expH b

2 (
n,n8

r2d(
i51

n

de~n2n8!de~xi2n!V~n2n8!J . ~III.10!

Noting that

lim
~e,r!→~0,0!

e.0

H (
n,n8PLr

r2d (
i , j51

n

de~n2xi !V~n2n8!de~n82xj !J 5 (
i , j51

n

V~xi ,xj ! ~III.11!

and

lim
~e,r!→~0,0!

H (
n,n8PLr

r2d(
i51

n

de~n2xi !de~n2n8!V~n2n8!J 5nV~0!. ~III.12!

Moreover, it is due to the stability ofV that one can find easily a uniform@in ~r,e!, e.0# bound
on thenth term of the form

u~nth term of rhs of ~ III.10!!u<
zn

n!
ebCnuLun, ~III.13!

for some constantC. This justifies the interchange of lim(e,r)→(0,0)
e.0

with the sum(n>0. h

If V~0!5`, then we regularizeV; then we apply the above proof forVe and then we apply the
proposition II.3.

Similar cylindrical approximations can be written for the~reduced! correlation functionals
~II.24! also. Forr.2e the following formulas are valid:

3368 R. Gielerak and A. L. Rebenko: Poisson integrals

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



r̂L
~r,e!~x1 ,...,xn!5E

RuLru
^

nPLr

dpz,L
e ~SLr

!)
i51

n

expH 2b (
niPLr

rdV~xi2ni !S~n!J
5E

RuLru
dpz,Lr

e ~SLr
! )
nPLr

expH 2bS (
i51

n

rdV~xi2n!DS~n!J , ~III.14!

where

dpz,Lr

e ~SLr
!5expH 2

b

2 (
n,n8PLr

r2dS~n!V~n2n8!S~n8!J ,
expH b

2 (
nPLr

rdS~n!hL
r ~n!J 1

ZLr

e ~z,b!
^

nPLr

pz
e~dSn!, ~III.15!

ZLr

e ~z,b!5E
RuLru

dPz,Lr

e ~SLr
! ~III.16!

and

SLr
5~Sn!nPLr

.

Lemma III.2: Let VPL1(R
d) be a stable potential. Then for any z.0, b.0 we have

lim
~e,r!→~0,0!

e.0

r̂L
~e,r!~x1 ,...,xn!5 r̂L~x1 ,...,xn!,

pointwise onL3n.
In the regionr.2e, the cylindric approximation to the Poisson integrals, introduced above

gives the approximation of continuous systems by lattice spin systems, with unbounded spins,
taking the values in the support of the measurepz

e(dx). The interaction in between spin variables
is given byr2dV(n2n8), and the counterterm has a meaning of an external magnetic fieldhd(n).
TakingV to be positive, we realize that then our spin system is of an antiferromagnetic type.

IV. HIGH-TEMPERATURE CLUSTER EXPANSION

The construction of the high-temperature cluster expansion for the measuredmL
(z,l) will be

presented in this section. The cluster expansion of the Brydges–Federbush type~initiated in Ref.
44 and developed in Refs. 45, 46! is that which we would like to obtain. Demonstration of how the
use of Poisson integral representations considerably simplifies the corresponding constructions is
our main objective. We hope that the essential simplifications that appear in our construction can
be very useful to analyze the corresponding low-temperature expansions17–19 constructed for an
analysis of the Debye screening in the~regularized! Coulomb systems.17–21,47 Previously the
corresponding high-temperature expansion has been described and analyzed by one of authors34

for positive-definite two body potentialsV2, such thatV2~0!,`. Here we extend this construction
and the convergence result for much larger class of two body interactions.

Notation in this section is very close to Refs. 45 and 34~see also Ref. 47!; therefore we refer
to those papers if some confusions arise.

The reduced-correlation functions are objects for which the cluster expansion is supplied and
the convergence will be demonstrated.

Let us fill up the spaceRd with a set of disjoint lattice cubes of unit size. All the subsets ofRd

that will appear are assumed to be unions of unit cubes. For a fixedX05$x1 ,...,xm%,Rdm we
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defineX1(X0)[Y1 to be the minimal union of lattice cubes coveringX0. Let Y2, Y3 ,...,YnL
,

wherenL[uL\Y1u11 will be disjoint unit cubes for whichøq< j<nL
Yj 5 L, for a given bounded

L,Rd.
Although the setV1 is fixed, but the cubes (Yj ) j52,...,nL

being the variables of the correspond-
ing series will change their positions. Let us define a new sequence (Xi) by the following recur-
rence:

Xn5YnøXn21 ; XnL
5L; Xn

c5L\Xn . ~IV.1!

To simplify the notations we use the following abbreviations:

V0~X!5V0~X;q!5(
j51

n

a jE
X
V2~xj2y!q~y!dy, ~IV.2!

V~X8,X9!5V~X8,X9,q!5E
X
dxE

X9
dy q~x!V~x2y!q~y!. ~IV.3!

Here we should stress that forX8,X9 such thatX8ùX950”, we have

:V~X8,X9!:5V~X8,X9!. ~IV.4!

Then we obtain forr̂L( x̂)m
1 ,

rL~ x̂m
1 !5ZL

l ~z,b!21E dPL
z,l~q!e2bV0~L!21/2:V~L,L!:. ~IV.5!

To construct the cluster expansion let us introduce the following sequences:

V0„Xn ;~S!n21…5 (
a< j<m

S1•••Sj21V0~Yj !; ~IV.6!

V1„Xn ;~S!n21…5
1

2 (
a< j<m

V~Yi ,Yj !1 (
i< i, j<n

Si•••Sj21V~Yi ,Yj !. ~IV.7!

The interpolation parameters 0<Si<1, i51,...,n21 specify the intensity of interactions between
the particles lying inX2I andXi

c5L\Xi . Equation~IV.7! corresponds to the sequence of co-
variances of sine-Gordon measure in Ref. 18. In our case it appears, after factorization of
e2b/2:V(L,L): in ~IV.5! at every step of expansion as a result of repeated application of the
Newton–Leibnitz formula~see Refs. 18, 47 for details!. Then taking into account~II.2! we obtain
the cluster expansion in the form

r̂L~ x̂1
m!5 (

1<n<nL
(

Y2 ,...,Yn,L
bn~Xn! fL~Xn!, ~IV.8!

where

bn~Xn!5~2b!n21E
0

1

d~S!1
nE PL

z,l~q! )
q< j<n

(
k51

j21

sk•••sj22Vkj~q!

3exp~2bV0„Xn ;~s!n21…2b:V„Xn ;~s!1
n21

…: !, ~IV.9!

with
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V1,j~q!5V0~Yj !1V~Y1 ,Yj !,
~IV.10!

Vi j ~g!5V~Yi ,Yj !, if i,1.

Finally, the product of sums in~IV.9! leads to the tree-graph representation~see Refs. 45–47 for
details!:

bn~Xn!5~2b!n(
h

E
0

1

d~s!1
n21f h„~s!1

n22
…E dPL

z,l~q! )
2< j<n

Vh~ j !, j~q!

3exp$2bV0„Xn ,~s!1
n21

…2b:V~Xn ;~s!1
n21!:%. ~IV.11!

Now we are ready to formulate the main result of this section.
Theorem IV.1: Let the interaction potential be stable (on~Rd3S!32) and satisfy the follow-

ing integrability conditions:

V[max
Y8

(
Y,Rd

ṼY8,Y,`;

~IV.12!

ṼY8,Y[max
xPY8

AE
Y
dyuV2~x2y!u2,`,

where Y, Y8, are unit cubes from our lattice. Then there exists a constant C5C(b,z) independent
of L, such that for sufficiently large1/b that satisfies the condition

64CbV,1, ~IV.13!

the infinite-volume limitr̂`„(x1)
m
… of r̂L„(x1)

m
… exists and can be represented by the series (IV.8)

with L5Rd, nL5`, and

f ~Xn!5 lim
L↑Rd

fL~Xn!, instead of fL~Xn!.

(g) Proof: We shall start with an estimation ofbn(X). For this we apply the Schwartz
inequality to the integrals in~IV. 11! with respect todPL

z,l:

ubn~Xn!u<bn21(
h

E
0

1

d~s!1
n21f h„~s!1

n21
…S E dPL

z,l~q! )
q< j<n

Vh~ j !, j
2 ~q! D 1/2

3S E dPL
z,l~q!exp@24bV0~Xn ,sn21!# D 1/4

3S E dPL
z,l~q!exp@24b:V„Xn ,~s!1

n21
…:# D 1/4. ~IV.14!

To estimate the last factor we define~following Brydges and Federbuch45!
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W0
X05V„Xn ,~s!1n21…us15•••5sn2151 ;

Wi
Xn5~12si !Wi21

Xn ,Xi1siWi21
Xn ;

i51,2,...,n22;

Wn21
Xn 5V„Xn ;~s!1

n21
…;

Wi21
Xn ,Xi5Wi21

Xi 1W0
XnXi. ~IV.15!

Then in terms ofq fields the stability condition forV(Xn ,Xn) is

:V~Xn ,Xn!:5:W0
Xn:>2b#~q!Xn ~IV.16!

@where #(q)Xn is the number ofx1 ,...,xn composing(a id(x2xi), which are located in the set
Xn#. It is clear from~IV.17! and induction procedure that~IV.15! is true forWi21

Xn ,Xi for every

i51,2,...,n21. Noting that the induction step in~IV.15! for the construction ofWi
Xn satisfies the

inequality ~IV.16! for all i , as it is a convex sum of terms that do so. So, we have

:V~Xn ;~s!1
n21!:>2b#~q!Xn . ~IV.17!

Therefore we have

E dPL
z,l~q!e24b:V„Xn~s!1

n21
…:<E dPL

z,l~q!e4bB~#q!Xn

5e2zuXnuul~s!u(
k>0

zk

k! S E
(
dl~a!E

Xn

dxD k
5ez~4bB21!uX1uL~(!. ~IV.18!

The integral in the middle bracket of~IV.14! can be estimated in the same way as in Ref. 46. This
gives

E dPL
z,l~q!e24bV0„Xn ,~s!1

n21
…<ezmemBc~4b!;

~IV.19!

c~4b!5sup
a8
E
R

d

ue24baa8V~x!21udx dl~a!.

Using Lemma 1 of Ref. 34 and the Battle–Federbush estimate,48 we finally obtain

ubn~Xn!u<~64bz!n max
h

)
q< j<n

ṼYn~ j ! ,Yj
. ~IV.20!

Now the proof of the theorem follows from the estimate:

u fL~Xn!u<ecn, ~IV.21!

which is the consequence of the well-known method of the Kirkwood–Salsburg type of equation
for the functionfL(Xn) on the subsets ofL.44 Collecting all together, we get the convergence of
the cluster expansion~IV.8! in the region 64CbV,1, with
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C5ez~e
4bB21!l~(!1 c̄ . ~IV.22!

h

Similar cluster expansions can be supplied and analyzed also for many body interactions.
However, already on the the level of three body interactions it appears that for typicalV3,
although individual terms of the cluster expansion converge, however, the whole expansion di-
verges in the limitL↑R3, being in some cases Borel summable.48
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In the framework of Nelson’s stochastic mechanics@E. Nelson,Dynamical Theo-
ries of Brownian Motion~Princeton University, Princeton, 1967!; F. Guerra, Phys.
Rep.77, 263~1981!; E. Nelson,Quantum Fluctuations~Princeton University, Prin-
ceton, 1985!# we seek to develop the particle counterpart of the hydrodynamic
results of M. Pavon@J. Math. Phys.36, 6774 ~1995!; Phys. Lett. A209, 143
~1995!#. In particular, afirst formof Hamilton’s principle is established. We show
that this variational principle leads to the correct equations of motion for the clas-
sical particle, the Brownian particle in thermodynamical equilibrium, and the quan-
tum particle. In the latter case, the critical processq satisfies a stochastic Newton
law. We then introduce the momentum processp, and show that the pair (q,p)
satisfies canonical-like equations. ©1996 American Institute of Physics.
@S0022-2488~96!03507-4#

I. INTRODUCTION

In a recent paper,1 we established the stochastic mechanics counterpart of the second~hydro-
dynamic! form of Hamilton’s principle. The resulting variational picture is much richer and of a
different nature with respect to the one previously considered in the literature. This paper deals
with the first~particle! form of Hamilton’s principle. Our principle may be viewed as a strength-
ening of Ref. 2~pp. 73–75! which in turn was a modification of Yasue’s original work.3 Further
related work may be found in Ref. 4~Chap. 5!. We adopt kinematical variables and stochastic
derivatives different from Refs. 3 and 2. The critical stochastic process is not Markovian, but
becomes Markovian if we adjoin certain mean-forward and mean-backward velocities. This pic-
ture is consistent with the classical mechanical picture.

For the purpose of later reference and comparison, we outline below one of the main results
of Ref. 1. Assume that the motion of a nonrelativistic, spinless particle can be described by a
stochastic processq5$q(t);t0<t<t1%, taking the values inR

3 and having a stochastic differential
of the form

dq~ t !5b~ t !dt1S \

mD 1/2dw1 , ~1!

where theforward drift b(t) is a measurable function of$q(t);t0<t<t%, w1 is aWiener process
with increments independent at each time of the past ofq satisfyingE$dw1dw1

T %5I 3dt. If the
diffusion has finite kinetic energy

EH E
t0

t1
b~ t !•b~ t !dtJ ,`,

then we also have the reverse-time representation5

a!Electronic mail: pavon@ladseb.pd.cnr.it
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dq~ t !5g~ t !dt1S \

mD 1/2dw2 , ~2!

whereg, called thebackward drift, depends at each time only on the future of the processq and
w2 is another Wiener process whose increments are, at each time, independent of the future of the
processq and satisfyE$dw2dw2

T %5I 3dt. When\ tends to zero, bothb andg tend to the classical
velocity. Hence, thecurrent velocityv(t):5 1

2[b(t)1g(t)] corresponds to the classical velocity,
and theosmotic velocity u(t):5 1

2[b(t)2g(t)] tends to zero in the semiclassical limit. In order to
develop the Lagrangian and Hamiltonian formalism in stochastic mechanics in a way that natu-
rally extends the classical case we are then naturally led1,6 to introduce thecomplex-valuedve-
locity ~quantum velocity! vq(t):5v(t)2 iu(t) that simultaneously capturesv(t) andu(t). From
Eqs.~1! and ~2! we get

dq~ t !5v~ t !dt1
1

2 S \

mD 1/2@dw11dw2#, ~3!

05u~ t !dt1
1

2 S \

mD 1/2@dw12dw2#. ~4!

Multiplying the second equation by2i , and then adding it to the first, we finally get

dq~ t !5@v~ t !2 iu~ t !#dt1dw, ~5!

where

dw5
1

2 S \

mD 1/2@~12 i !dw11~11 i !dw2#.

For the properties of thequantum noise dwsee Ref. 1~Sec. VII!. The differential~5! of q,
differently from Eqs.~1! and ~2!, enjoys thetime reversal invarianceproperty, see Ref. 6.

Consider the situation where the particle is subject to an external conservative force deriving
from the sufficiently regular potentialV(x). Let L(x,y):5 1

2my•y2V(x) be the Lagrangian de-
fined onR33C3, and letV denote the family of finite-energy,C3-valued stochastic processes on
[ t0 ,t1]. For f0 a complex-valued function onR3 such thatc0(x):5exp i /\w0(x) hasL

2 norm 1,
consider the variational problem

extremizevqPV EH E
t0

t1
L~x~ t !,vq~ t !!dt1w0~x~ t0!!J ~6!

subject to the constraint that the finite-energy, possibly non-Markovian diffusionx has quantum
velocity vq and a prescribed probability densityr1 at time t1. We then have the following result
~Ref. 1, Sec. VIII!.

Theorem 1: Suppose that the solution$c(x,t),tP[ t0 ,t1] % of the Schro¨dinger equation

]c

]t
5

i\

2m
Dc2

i

\
V~x!c, ~7!

with initial conditionc(x,t0)5c0(x) never vanishes and satisfies
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EH E
t0

t1
u¹ log c~x~ t !,t !u2dtJ ,`

for each finite-energy diffusion x on[ t0 ,t1]. In Problem (6), letr1(x)5uc(x,t1)u
2. Then, there

exists a stochastic process$x* (t);t0<t<t1%, called the Nelson process, solving together with its
quantum drift1/m¹\/ i log c(x* (t),t) Problem (6).

It is worthwhile to observe that the Markov property of the extremal process is aresultof the
variational principle. Also notice that the probability densityr(x,t) of q(t) satisfies Born’s rela-
tion r(x,t)5uc(x,t)u2. The existence of the Nelson process corresponding to a given solution
c(x,t) of the Schro¨dinger equation is, in the general case wherec(x,t) can vanish, a challenging
question that has generated considerable interest, see, e.g., Refs. 7, 4~Chap IV!, and 8, and
references therein. The existence of the Nelson probability measure is established in Ref. 1 under
the present assumptions by means of the Girsanov transformation theory, cf., e.g., Ref. 9~Chap 6!.
The quantum Hamilton principle just recalled was also shown in Ref. 1 to be a consequence of two
other variational principles of the min–max type. The first one, called thesaddle-point action
principle, contains as special cases both the Guerra–Morato variational principle10 and Schro¨-
dinger original variational derivation of the time-independent equation, see, e.g., Ref. 11~p. 118!.
The second, called thesaddle-point entropy production principle, concerns the production of
configurational entropy. The Nelson process appears then as asaddle-point equilibrium solution
for both stochastic differential games.

In this paper, we develop thefirst (particle) formof Hamilton’s principle in stochastic me-
chanics. We then show that this variational principle can be applied to a variety of conservative
systems such as the classical particle, the Brownian particle in thermodynamical equilibrium, and
the quantum particle by simply changing the family of trial motions.

The paper is outlined as follows. In Sec. II we collect some basic facts about the kinematics
of stochastic processes. In Sec. III, we develop a stochastic calculus of variations. The correspond-
ing Hamilton’s principle is then applied in Sec. IV to various conservative systems. In Sec. V, we
develop some basic elements of the Hamilton–Jacobi theory in stochastic mechanics.

II. BACKGROUND ON THE KINEMATICS OF STOCHASTIC PROCESSES

Let ~V,E ,P! be a complete probability space, and letA:5~At!, tP[ t0 ,t1], be a nondecreas-
ing family of sub s-algebras ofE . Let x:5$x(t);tP[ t0 ,t1] % be anRn-valued, second-order,
A-adapted stochastic process, namely the components ofx(t) areAt-measurable for allt in
[ t0 ,t1]. Suppose thatx is a.s. and mean-square continuous. We say thatx is mean-forward
differentiablewith respect to the filtrationA if the limit

~D1
Ax!~ t !5 lim

h↘0
EH x~ t1h!2x~ t !

h UAtJ
exists fortP[ t0 ,t1), and forms a continuous curve inLn

2~V,E ,P!. In this case, it may be shown
along the lines of Ref. 12~Sec. 11! that x is a continuous semimartingale of the form

x~ t !5x~ t0!1E
t0

t

~D1
Ax!~s!ds1m1

A~ t !, ~8!

where the integral is a Riemann integral inLn
2~V,E ,P! ~Ref. 13 p. 10!, andm1

A is a square-
integrable, continuousAt-martingale withm1

A(t0) 5 0 a.s.~for the definitions, see, e.g., Ref. 14,
p. 78!. Similarly, if B:5~B t!, tP[ t0 ,t1], is a nonincreasing family of subs-algebras ofE to
which x is adapted, we say thatx is mean-backward differentiablewith respect toB if the limit
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~D2
Bx!~ t !5 lim

h↘0
EH x~ t !2x~ t2h!

h UB tJ
exists for tP(t0 ,t1], and forms a continuous curve inLn

2~V,E ,P!. In that case,x admits the
backward semimartingale representation

x~ t !5x~ t1!1E
t1

t

~D2
Bx!~s!ds2m2

B~ t !, ~9!

wherem2
B is a reverse-time, square-integrable, continuous,B t-martingale withm2

B(t1) 5 0 a.s.
Notice thatD1

Ax andD2
Bx depend crucially on the filtrationsA andB. Obviously, forx to be

mean-square differentiable,At must containF t :5s$x(s);t0<s<t% and B t must contain
G t :5s$x(s);t<s<t1%. If x is mean-forward and mean-backward differentiable with respect to
F :5~F t! and G :5~G t!, respectively, we callb(t): 5 (D1

F x)(t) the forward drift of x and
g(t): 5 (D2

G x)(t) thebackward driftof x. Of course, for mean-square differentiable processes, we
haveb(t)5g(t)5 ẋ(t).

For stochastic processes that are simultaneously mean-forward and mean-backward differen-
tiable with respect to the filtrationsA andB, we can introduce two more stochastic derivatives
~using the notation introduced in Ref. 15! by

~DA,Bx!~ t !:5
~D1

Ax!~ t !1~D2
Bx!~ t !

2
,

~dDA,Bx!~ t !:5
~D1

Ax!~ t !2~D2
Bx!~ t !

2
.

In particular, v(t):5(DF ,Gx)(t)5(b(t)1g(t))/2 and u(t):5(dDF ,Gx)(t)5(b(t)2g(t))/2
are thecurrent drift and theosmotic driftof x, respectively. Representations~8! and~9! now give

x~ t !2x~s!5E
s

t

~DA,Bx!~s!ds1
1

2
@m1

A~ t !2m1
A~s!1m2B~ t !2m2

B~s!#, ~10!

05E
s

t

~dDA,Bx!~s!ds1
1

2
@m1

A~ t !2m1
A~s!2m2B~ t !1m2

B~s!#. ~11!

Multiplying Eq. ~11! by 2i , and then adding it to Eq.~10!, we finally get a generalization of Eq.
~5!,

x~ t !2x~s!5E
s

t

~~D2 idD !A,Bx!~s!ds1mA,B~ t !2mA,B~s!, ~12!

where

mA,B~ t !:5 1
2@~12 i !m1

A~ t !1~11 i !m2
B~ t !#.

As for the diffusion processes of Sec. I, we callvq(t):5((D2 idD)F ,Gx)(t) thequantum driftof
x anddmF ,G (t) thequantum noise.

Remark 1: Notice that when((D2 idD)A,Bx)5 f (x(t),t), x is a Markov process. Indeed, it
admits a forward differential given by

dx5@Rf ~x~ t !,t !2Ff ~x~ t !,t !#dt1dm1
A ,
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whereR andF denote real and imaginary part, respectively.
We now state Nelson’s product rule.
Lemma 1: Let x,y:[ t0 ,t1]→Ln

2~V,E ,P! be twoa.s.and mean-square continuous stochastic
processes. Suppose that x and y are simultaneously mean-forward and mean-backward differen-
tiable with respect to the filtrationsA andB, respectively. Suppose, moreover, that the processes
D1
Ax, D2

Bx, D1
Ay, and D2

By have continuous paths. Then

E$x~ t1!•y~ t1!2x~ t0!•y~ t0!%5EH E
t0

t1
@~D1

Ax!~ t !•y~ t !1x~ t !•~D2
By!~ t !#dtJ . ~13!

Exchanging the roles ofx andy in Eq. ~13!, adding and subtracting, we get two more formulas
corresponding to Eqs.~10! and ~11!.

Corollary 1: Let x and y be as in the previous lemma. Then

E$x~ t1!•y~ t1!2x~ t0!•y~ t0!%5EH E
t0

t1
@~DA,Bx!~ t !•y~ t !1x~ t !•~DA,By!~ t !#dtJ , ~14!

05EH E
t0

t1
@~dDA,Bx!~ t !•y~ t !1x~ t !•~dDA,By!~ t !#dtJ . ~15!

Multiplying Eq. ~15! by2i , and then adding it to the first, we finally get a fundamental integration
by parts formula related to representation~12!.

Corollary 2: Let x and y be as in the above lemma. Then

E$x~ t1!•y~ t1!2x~ t0!•y~ t0!%

5EH E
t0

t1
@~~D2 idD !A,Bx!~ t !•y~ t !1x~ t !•~~D1 idD !A,By!(t !]dtJ . ~16!

So far we have dealt withRn-valued stochastic processes. A moment’s thought, however, reveals
that everything we have done holds true if the processes areCn-valued.

We now consider the case where the processx is ann-dimensional, finite-energy Markovian
diffusion with constant diffusion coefficients2I n . We denote byb1(x(t),t) andb2(x(t),t) its
forward and backward drifts, respectively. Moreover, let

v~x~ t !,t !5
b1~x~ t !,t !1b2~x~ t !,t !

2

and

u~x~ t !,t !5
b1~x~ t !,t !2b2~x~ t !,t !

2

denote the current and osmotic drifts. We then have Nelson’s relation

u~x,t !5
s2

2
¹ log r~x,t !, ~17!

where r(x,t) is the sufficiently smooth probability density ofx(t) @set u(x,t) equal to zero
wheneverr(x,t)50#. Moreover, the Fokker–Planck equation governing the evolution ofr

]r

]t
1¹•~b1r!5

s2

2
Dr,
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may be rewritten as acontinuity equationof fluid dynamics

]r

]t
1¹•~vr!50. ~18!

As before, letF t :5s$x(s);t0<s<t% andG t :5s$x(s);t<s<t1%. Also let f (x,t):Rn3[ t0 ,t1]
→R be a function with compact support of classC2,1. From the two changes of variables formulas
~Ito’s rules! corresponding to the forward and backward representations for the increments ofx
@Eqs.~1! and ~2!# we get~Ref. 12, p. 104!

~D1
F f ~x~ t !,t !!5F S ]

]t
1b1•¹1

s2

2
D D f G~x~ t !,t !, ~19!

~D2
G f ~x~ t !,t !!5F S ]

]t
1b2•¹2

s2

2
D D f G~x~ t !,t !. ~20!

The semisum and the semidifference of Eqs.~19! and ~20! give

~DF ,G f ~x~ t !,t !!5F ]

]t
1v~ t !•¹ G f ~x~ t !,t !, ~21!

~dDF ,G f ~x~ t !,t !!5Fu~ t !•¹1
s2

2
DG f ~x~ t !,t !. ~22!

We can now establish a rather interesting formula.
Lemma 2: Let x(t) be a finite-energy Markovian diffusion whose never vanishing probability

densityr is of class C2,1. Then

@D1
F ~D1

F x!#~ t !2@D2
G ~D2

G x!#~ t !52$@DF ,G ~dDF ,Gx!#~ t !1@dDF ,G ~DF ,Gx!#~ t !%50, a.s.
~23!

for all tP[ t0 ,t1].
Proof: From Eq.~18!, we get

] log r

]t
52¹•v2v•¹ log r.

Using Eq.~17!, we get

]u

]t
52

s2

2
Dv2u•¹v2v•¹u. ~24!

In view of Eqs.~21! and ~22!, Eq. ~24! can now be written as

~DF ,Gu!~ t !1~dDF ,Gv !~ t !5@DF ,G ~dDF ,Gx!#~ t !1@dDF ,G ~DF ,Gx!#~ t !50, ~25!

which is Eq.~23!. h

Equation~24! was derived by Nelson in his early work@Ref. 12, Eq.~5! on p. 106#. Curiously,
nobody seems to have noticed the straightforward reformulation of Eq.~24! given by Eqs.~25!
and~23!. The corresponding hydrodynamical equation~Madelung equation! occurs in the context
of the saddle-point entropy production principle, cf. Ref. 1, Sec. V.
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III. STOCHASTIC CALCULUS OF VARIATIONS

Let X (x0 ,x1) denote the family of Rn-valued, mean-square continuous processes
x5$x(t);tP[ t0 ,t1] % such thatx(t0)5x0 a.s.,x(t1)5x1 a.s., and satisfying the following two
properties.

~i! x is mean-forward and mean-backward differentiable with respect to its past and future
filtrationsF 5~F t! andG5~G t!, respectively; we denote byX(t) the augmented process

X~ t !5S x~ t !
b~ t !
g~ t !

D .
~ii ! The processX is a simultaneously mean-forward and mean-backward differentiable with

respect to the filtrations F5~Ft! and G5~Gt!, where Ft :5s$X(s);t0<s<t% and
Gt :5s$X(s);t<s<t1%.

Obviously,F t#Ft andG t#Gt . In order to avoid any confusion, we stress the fact that, in
general, (D1

F x)(t) Þ (D1
F x)(t) 5 b(t) and (D2

Gx)(t) Þ (D2
G x)(t) 5 g(t). Consequently, (DF,Gx)

3(t) Þ v(t) and (dDF,Gx)(t) Þ u(t). Also notice thatX (x0 ,x1) contains as a proper subset the
family of finite-energy,Markoviandiffusions with the prescribed end-point marginals.

For eachxPX (x0 ,x1), we define the family ofvariations y of x to be the setY (x) of
Rn-valued, mean-square continuous processesy5$y(t);tP[ t0 ,t1] % satisfying the two properties:
~i! y(t0)5y(t1)50 a.s.;~ii ! y is simultaneously mean-forward and mean-backward differentiable
with respect to the filtrationsF andG, respectively.

Remark 2: Let f:Rn3@t0,t1#→Rn, having compact support inRn3(t0 ,t1), be of class C2,1.
Then, y(t):5 f (x(t),t) belongs toY (x). These are precisely the variations considered by Nelson
in Ref. 3.

Let L:Rn3Cn3Cn3[ t0 ,t1]→Cn be a sufficiently regular function. Namely,L(x,z1 ,z2 ,t) is
continuously differentiable with respect tox and t, entirely as a function ofz1 and entirely as a
function of z2. DefineI :X (x0 ,x1)→C by

I ~x!5EH E
t0

t1
L~x~ t !,~~D2 idD !F,Gx!~ t !,~~D1 idD !F,Gx!~ t !,t !dtJ .

Notice that in this action integral appear the conditional derivatives relative to the pair of filtra-
tions ~F,G! rather than with respect to~F ,G !. Also notice that our choice of kinematical variables
differs from those previously considered in the literature@Refs. 3, 2~pp. 73–75!, and 4~Chap. 5!.
Let domI denote the subset ofx in X (x0 ,x1) such thatI (x),`.

Definition 1: The process xPdomI is critical for I if for all processes yPY (x) we have

I ~x1y!2I ~x!5o~ iyi !,

where

iyi2:5EH E
t0

t1
@y~ t !•y~ t !1~DF,Gy!~ t !•~DF,Gy!~ t !1~dDF,Gy!~ t !•~dDF,Gy!~ t !#dtJ .

We are now ready for the fundamental theorem of stochastic calculus of variations.
Theorem 2: The stochastic process xPdomI is critical for I if and only if it satisfies the

Euler–Lagrange equations
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F ~D1 idD !F,G
]L

]z1
1~D2 idD !F,G

]L

]z2
2

]L

]xG50 a.s. ~26!

for almost all tP[ t0 ,t1].
Proof: Let xPdomI be critical for I , and let yPY (x) be a variation ofx. By Taylor’s

formula

I ~x1y!2I ~x!5o~ iyi !1EH E
t0

t1F ]L

]x
•y1

]L

]z1
•~~D2 idD !F,Gy!1

]L

]z2
•~~D1 idD !F,Gy!GdtJ .

Applying Eq. ~16!, and taking into account the fact thaty vanishes at the end points, we get

I ~x1y!2I ~x!5o~ iyi !1EH E
t0

t1F ]L

]x
2~D1 idD !F,GS ]L

]z1
D 2~D2 idD !F,GS ]L

]z2
D G•ydtJ .

~27!

Since the expectation in Eq.~27! must vanish for allyPY (x), it follows that both the real and the
imaginary parts of

F]L]x2~D1 idD !F,GS ]L

]z1
D2~D2 idD !F,GS ]L

]z2
D G

must vanish. Conversely, if Eq.~26! holds,x is critical because of Eq.~27!. h

Corollary 3: Let L(x,z1 ,z2 ,t):5
1
2mz1•z22V(x), where V is of class C1. Then xPdomI is

critical for I if and only if the stochastic Newton law

m@~~DF,GDF,G2dDF,GdDF,G!x!~ t !#52¹V~x~ t !! a.s. ~28!

for all tP[ t0 ,t1].
Proof: Notice that in this case

]L

]z1
~x~ t !,~~D2 idD !F,Gx!~ t !,~~D1 idD !F,Gx!~ t !,t !5

m

2
~~D1 idD !F,Gx!~ t !,

]L

]z2
~x~ t !,~~D2 idD !F,Gx!~ t !,~~D1 idD !F,Gx!~ t !,t !5

m

2
~~D2 idD !F,Gx!~ t !.

From Eq.~26!, we get thatx is critical for I if and only if

m

2
@~~D1 idD !F,G~D1 idD !F,G1~D2 idD !F,G~D2 idD !F,G!x!] ~ t !52¹V~x~ t !!, a.s.

~29!

and Eq.~28! follows. h

Remark 3: Notice that Eqs. (28) and (29) can also be written in the form

m

2
@~~D1

FD2
G1D2

GD1
F !x!~ t !#52¹V~x~ t !!. ~30!

The comparison between the left-hand sides of Eqs. (29) and (30) gives the long sought probabi-
listic meaning for the Nelson stochastic acceleration, cf. Ref. 2, Problem 6, p. 133. Nelson’s
acceleration may also be viewed as the real part of((D 2 idD)F,G(D 2 idD)F,G)x) which occurs
in the global Newton’s law (40) below.
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IV. HAMILTON’S PRINCIPLE

We now require that the conservative motion of a particle of massm be critical for the action
I introduced in Sec. III.

A. Classical particle

Consider a classical particle subject to an external conservative force induced by the potential
functionV. As trajectories we take deterministic,C2 functions. Hence,F t5Ft5G t5Gt5$V,B%,
namely the trivial s field. In particular, x0 and x1 are two points in R3. Moreover,
~DF,Gx!(t)5 ẋ(t), ~dDF,Gx!(t)50, and~DF,Gẋ!(t)5 ẍ(t). Thus, Corollary 2 gives thatx is critical
for I if and only if Newton’s law

mẍ~ t !52¹V~x~ t !! ~31!

is satisfied for alltP[ t0 ,t1].

B. Classical particle with uncertain end points

Suppose we have a classical~C2 trajectories! particle with uncertain initial and terminal
positions. This uncertainty is described through initial and final probability densitiesr0 and r1,
respectively. Letx0 and x1 be distributed according tor0 and r1, respectively. Then, for all
admissible motionsx we haveF t5Ft5s~x0! andG t5Gt5s~x1!. As before,D

F,Gx(t)5 ẋ(t), and
dDF,Gx(t)50. Thus, by Corollary 2, the stochastic processx satisfyingx(t0)5x0 a.s.,x(t1)5x1
a.s. withC2 paths is critical forI if and only if Eq. ~31! holds for all times with probability one.

C. Brownian particle

Consider a Brownian particle in thermodynamical equilibrium. We assume that its motion
may be described by a stochastic processx with differentiable sample paths and that forms a
diffusion with constant diffusion coefficient together with its derivativeẋ. Hence, we have
ẋ(t)5b(t)5g(t)5DF,Gx, and dDF,Gx50. Moreover, Ft5s$x(s),ẋ(s);t0<s<t% and
Gt5s$x(s),ẋ(s);t<s<t1%. By Corollary 2,x is critical for I if and only if

m~DF,Gẋ!~ t !52¹V~x~ t !! a.s. ~32!

for all tP[ t0 ,t1]. It follows, in particular, that the critical processx is such that (x,ẋ) is Markov-
ian ~see Remark 1!.

Theorem 3: The stochastic process x in the above described class is critical for I if and only
if the forward drift of ẋis given by

~DFẋ!~ t !52l ẋ~ t !2
1

m
¹V~x~ t !!, a.s., ~33!

wherel5s2m/(2kT) ands2 is the diffusion coefficient of x˙ .
Proof: By the Gibbsian postulate, the equilibrium distribution is the Maxwell–Boltzmann

distribution

r~x.ẋ!5c expH 2 1
2 mẋ• ẋ2V~x!

kT
J . ~34!

Moreover, since
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S x~ t !
ẋ~ t ! D

is Markovian, Nelson’s relation~17! between the forward and the backward drift ofẋ yields

~DF,Gẋ!~ t !5~D1
F ẋ!~ t !2

s2

2
¹ ẋ log r~x~ t !,ẋ~ t !!. ~35!

Equations~34! and ~35! now give

~DF,Gẋ!~ t !5~D1
F ẋ!~ t !1s2

m

2kT
ẋ~ t !. ~36!

If x is critical, then Eqs.~32! and~36! give Eq.~33!. Conversely, if the processx has forward drift
of ẋ given by Eq.~33!, and has the invariant density~34!, then it satisfies the Newton law~32!, see
Refs. 1~p. 102! and 16. h

Remark 4: It follows, in particular, that the Markovianess of(x,ẋ), the form of the forward
drift of ẋ in the Ornstein–Uhlenbeck model of physical Brownian motion (Ref. 12, Chaps. 9 and
10), and its relation to the diffusion coefficient~Einstein’s fluctuation–dissipation relation! are
consequences of the Gibbsian postulate and of the Newton law (34). Conversely, given that the
forward drift of ẋ lies in a certain class, necessary and sufficient conditions can be given for the
particle to obey the Maxwell–Boltzmann distribution in equilibrium, see Ref. 17, Sec. III.

D. Quantum particle

Consider a nonrelativistic, spinless quantum mechanical particle moving in a force field. As
class of motions we take the subclass ofX (x0 ,x1) of the finite-energy diffusions with constant
diffusion coefficients25\/m. In this case, the action is given by

I ~x!5E
t0

t1F12 m~~D2 idD !F,Gx!~ t !•~~D1 idD !F,Gx!~ t !2V~x~ t !!Gdt. ~37!

Thenx satisfies Hamilton’s principle if and only if it satisfies the stochastic Newton law~28! or,
equivalently, Eq.~29! which may be rewritten as follows

mR@~~D2 idD !F,G~D2 idD !F,G!x!] ~ t !52¹V~x~ t !!, a.s. ~38!

Next we postulate

@~DF,GdDF,G1dDF,GDF,G!x#~ t ![0. ~39!

Putting together Eqs.~39! with ~38!, we get

m@~~D2 idD !F,G~D2 idD !F,G!x!] ~ t !52¹V~x~ t !!, a.s. ~40!

Assumption~39! simply means that the acceleration in the left-hand side of Eq.~40! must be real.
Also notice that Eq.~39! is precisely Eq.~23! for the position processx. Finally notice that the
extremizing processx is such that the augmented process

S x~ t !
~~D2 idD !F,Gx!~ t ! D ~41!

is Markovian. To see this, recall Remark 1 and observe that
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S ~D2 idD !F,GS x~ t !
~~D2 idD !F,Gx! D D ~ t !5S ~~D2 idD !F,Gx!~ t !

2
1

m
¹V~x~ t !! D .

The processx by itself, however, is in generalnon Markovian.
We are now ready to introduce themomentum processcorresponding to such a process by

p~ t !:5
]L

]z2
~x~ t !,~~D2 idD !F,Gx!~ t !,~~D1 idD !F,Gx!~ t !,t !5m~~D2 idD !F,Gx!~ t !,

p̄~ t !:5
]L

]z1
~x~ t !,~~D2 idD !F,Gx!~ t !,~~D1 idD !F,Gx!~ t !,t !5m~~D1 idD !F,Gx!~ t !.

Then Eq.~40! reads

~~D2 idD !F,Gp!~ t !52¹V~x~ t !!,a.s. ~42!

or equivalently

~~D1 idD !F,Gp̄!~ t !52¹V~x~ t !!,a.s. ~43!

Let H(x,y):5(1/2m)y•y1V(x) be theHamiltonian functiondefined onR33C3, and writeq(t)
instead ofx(t) for the position of the quantum particle. We then get thecanonical-like equations

~~D2 idD !F,Gq!~ t !5¹y~q~ t !,p~ t !!, ~44!

~~D2 idD !F,Gp!~ t !52¹x~q~ t !,p~ t !!, ~45!

or equivalently

~~D1 idD !F,Gq!~ t !5¹yH~q~ t !,p̄~ t !!, ~46!

~~D1 idD !F,Gp̄!~ t !52¹xH~q~ t !,p̄~ t !!. ~47!

The closest in spirit previous attempt to define the momentum process within stochastic mechanics
is Ref. 18. See Ref. 2, pp. 95–98 and Ref. 4, pp. 117–119# for further work and discussion on this
topic.

We close the section with a comment. In Ref. 19~p. 110!, Bohm and Hiley write concerning
Nelson’s stochastic acceleration: ‘‘If it could be made clear that this definition is physically or
kinematically plausible then Nelson’s approach would evidently have an important advantage.’’
As observed in Remark 3, the Nelson acceleration may be viewed as the real part of the second-
order stochastic derivative~(D2 idD)F,G(D2 idD)F,G!x! which occurs in Eq.~40!.

In Sec. V, we show that indeed the Nelson process associated with a particular solution of the
Schrödinger equation satisfies the global Newton’s law~40!. Hence, we feel that the results of this
paper, together with Refs. 12, 15, 2, 1, 6, clearly demonstrate the physical and kinematical
plausibility of Nelson’s acceleration.

V. ELEMENTS OF HAMILTON–JACOBI THEORY

Following Ref. 6, we now develop the basic elements of a Hamilton–Jacobi theory of sto-
chastic mechanics~see Ref. 15, Sec. 1 for a beautiful account of the classical theory!. Suppose
$c(x,t);t0<t<t1% is a never vanishing solution of theSchrödinger equation
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]c

]t
5

i\

2m
¹c2

i

\
V~x!c.

ThenSq(x,t):5\/ i log c~x,t! satisfies

]Sq
]t

1
1

2m
¹Sq•¹Sq1V~x!2

i\

2m
DSq50. ~48!

This is theHamilton–Jacobi equationof stochastic mechanics. Indeed, we can now rephrase
Theorem 1 as follows. Suppose$Sq(x,t);t0<t<t1% solves Eq.~48! with the initial condition
Sq(x,t0)5f0(x), and satisfies

EH E
t0

t1
u¹Sq~x~ t !,t !u2dtJ ,`

for all finite-energy diffusionsx on [t0 ,t1]. Let r1(x)5uexp~i/\!Sq~x,t1!u
2. Then, there is a sto-

chastic process$q(t);t0<t<t1%, called the Nelson process, solving together with its quantum drift
(1/m)¹Sq(q(t),t) Problem~6!. Corresponding to such anSq , we define themomentum fieldby
p(x,t)5¹Sq(x,t), and the momentum process byp(t):5p(q(t),t)5¹Sq(q(t),t). In Ref. 6 it
was shown that the processp(t) has the same first and second moments as the quantum momen-
tum operator. It was also shown that the uncertainty relations admit a simple stochastic interpre-
tation in terms of the pair (q(t),p(t)).

Theorem 4: The pair (q(t),p(t)) satisfies the stochastic Hamilton equations (44) and (45).
Proof: Let us first notice that (D1

F q)(t) 5 (D1
F q)(t) 5 b1(q(t),t). Indeed, sinceq(t) is Mar-

kovian, so is

X~ t !5S q~ t !
b1~q~ t !,t !
b2~q~ t !,t !

D .
We then have

~D1
F q!~ t !5 lim

h↘0
EH q~ t1h!2q~ t !

h UFtJ
5 lim

h↘0
EH q~ t1h!2q~ t !

h US q~ t !
b1~q~ t !,t !
b2~q~ t !,t !

D J
5 lim

h↘0
EH q~ t1h!2q~ t !

h Uq~ t !J
5~D1

F q!~ t !5b1~q~ t !,t !.

Similarly, we get (D2
Gq)(t)5(D2

Cq)(t)5b2(q(t),t). Hence, (DF,Gq)(t)5(DF ,Gq)(t)
5v(q(t),t) and (dDF,Gq)(t)5(dDF ,Gq)(t)5u(q(t),t). We then have ((D2 idD)F,G!q)(t)
5 ((D2 idD)F ,G !q)(t) 5 v(q(t),t) 2 iu(q(t),t)5 vq(q(t),t)5 (1/m)¹Sq(q(t),t)5 ¹yH(q(t),
p(q(t),t))5¹yH(q(t),p(t)). To prove Eq.~45!, recall from Ref. 1, Sec. VII that iff(x,t) is a
complex-valued function with sufficiently regular real and imaginary parts, then

d@f~q~ t !,t !#5F ]

]t
1vq~q~ t !,t !•¹2

i\

2m
D Gf~q~ t !,t !dt1¹f~q~ t !,t !•dw, ~49!

wheredw5dq2vq(q(t),t)dt is the quantum noise corresponding toq. Applying Eq. ~49! to
p(q(t),t)5¹Sq(q(t),t), we get
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d@p~q~ t !,t !#5F ]

]t
1vq~q~ t !,t !•¹2

i\

2m
¹ G¹Sq~q~ t !,t !dt1D~q~ t !,t !dw, ~50!

where the 333 matrixD hasi j th entrydi j (q(t),t)5(]2/]xi]xj )Sq(q(t),t). Replacingvq(q(t),t)
in Eq. ~50! with (1/m)¹Sq(q(t),t), and then employing Eq.~48!, we get

d@p~q~ t !,t !#52¹V~q~ t !!dt1D~q~ t !,t !dw. ~51!

Hence, the quantum drift ofp(t) is 2¹V(q(t)) and Eq.~45! holds. h

By the same procedure, we can handle more general~sufficiently regular! Hamiltonian func-
tionsH(x,y,t) if Sq(x,t) now satisfies

]Sq
]t

1H~x,¹Sq ,t !2
i\

2m
DSq50,

and if we can construct a Markov processq with quantum drift

vq~q~ t !,y!5¹yH~q~ t !,¹Sq~q~ t !,t !,t !,

and prescribed initial condition.
We now isolate a crucial step in the proof of Theorem 4. In view of Eq.~49!, define the

quantum acceleration fieldby the substantial derivative

aq~x,t !:5F ]

]t
1vq~x,t !•¹2

i\

2m
D Gvq~x,t !, ~52!

wherevq(x,t)5(1/m)¹Sq(x,t). Using Eq.~48! in Eq. ~52!, we finally get

aq~x,t !52
1

m
¹V~x!. ~53!

Equation~53! is the local form counterpart of Eq.~40!.
Remark 5: Let$c(x,t);t0<t<t1% be a never vanishing solution of the Schro¨dinger equation

satisfying Carlen’s finite-energy condition (Ref. 7). Then the corresponding Nelson process satis-
fies Eq. (40) with end points distributed according tor0(x)5uc(x,t0)u

2 and r1(x)5uc(x,t1)u
2.

VI. DISCUSSION

In this paper, we have developed a particle form of Hamilton’s principle. We have then
applied the principle to various conservative systems only changing the class of admissible mo-
tions. In the case of a quantum particle, we have seen that the critical processx satisfies the
stochastic Newton law~40!. This process is not Markovian, but the corresponding augmented
process~41! is Markovian.

In Ref. 1, see also the outline in Sec. I, we have developed the second, hydrodynamic version
of Hamilton’s principle in the context of stochastic mechanics. The critical processq is there
Markovian. Indeed, it is the Nelson process. Introducing the momentum field, and then the mo-
mentum processp as in Sec. V, we have obtained a pair of stochastic processes satisfying the
stochastic Hamilton equations~44! and ~45!.

If we agree that in a deterministic context Markovian means ‘‘satisfies a first-order differential
equation,’’ we see that the similarity with classical mechanics is striking. Much remains to be
done, however, to develop a satisfactory Lagrangian and Hamiltonian formalism in stochastic
mechanics even in the simplest case considered in this paper.
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We present a geometric framework for non-holonomic Lagrangian systems in terms
of distributions on the configuration manifold. If the constrained system is regular,
an almost product structure on the phase space of velocities is constructed such that
the constrained dynamics is obtained by projecting the free dynamics. If the con-
strained system is singular, we develop a constraint algorithm which is very similar
to that developed by Dirac and Bergmann, and later globalized by Gotay and
Nester. Special attention to the case of constrained systems given by connections is
paid. In particular, we extend the results of Koiller for Cˇ aplygin systems. An
application to the so-called non-holonomic geometry is given. ©1996 American
Institute of Physics.@S0022-2488~96!02407-3#

I. INTRODUCTION

A non-holonomic Lagrangian system consists of a regular LagrangianL(qA,q̇A) defined on
the phase space of velocitiesTQ of a configuration manifoldQ with local coordinates
(qA),1<A<n5 dimQ, subjected to constraints defined bym local functionsf i(q

A,q̇A). That
means that the only allowable velocities are those verifying thatf i50. We only consider the case
of linear constraints, say those of the formf i(q

A,q̇A)5(m i)A(q)q̇
A. By applying a suitable

Hamilton’s principle, we arrive to the constrained Euler–Lagrange equations,

d

dt S ]L

]q̇A
D 2

]L

]qA
52l i~m i !A ,

wherel i , 1< i<m, are some Lagrange multipliers to be determined~see, for instance, Valcovici,1

Pars,2 Neimark and Fufaev,3 Vershik and Faddeev,4 Saletan and Cromer,5 Rumiantsev,6

Pironneau,7 Vershik and Gershkovich,8 Massa and Pagani9,10!. In some of them, a more general
type of constraints was discussed. We notice that Hamilton’s principle in the non-holonomic
framework is not a variational principle. We remit to the excellent book by Rosenberg11 for a
detailed discussion on that subject.

In the last years, there is an increasing interest in non-holonomic mechanics, and other ap-
proaches from a geometrical point of view have appeared: Weber,12 Pitanga,13,14Marle,15 Massa
and Pagani,9,10 Bates and S´niatycki,16 Giachetta,17 Koiller,18 Cariñena and Ran˜ada,19 Rañada,20

Dazord,21 Cariñena and Ran˜ada,22 Sarlet, Cantrijn and Saunders,23,24 Sarlet,25,26 de León and M.
de Diego.27–31

Our approach is a globalization of the one by Carin˜ena and Ran˜ada.19 In order to globalize
their picture, we will consider a distributionD of codimensionm defined onQ. The constraints

a!Electronic mail: mdeleon@pinar1.csic.es
b!Electronic mail: ceedd05@cc.csic.es

0022-2488/96/37(7)/3389/26/$10.00
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imply that the motion is only allowable for some values of velocities, those belonging to the
distributionD. The constrained motion equations can be written out by modifying the motion
equations for the associated free Lagrangian system as follows:

~ i XvL2dEL!P~Dv!0, XPDc, ~1!

along the points ofD, wherevL is the symplectic Poincare´–Cartan two-form,EL is the energy
associated withL, andDv andDc are the lifts ofD to TQ. Notice that we do not need to invoke
Lagrange multipliers. This approach is the dual version~i.e., in terms of distributions! of the one
by Cartan using exterior systems.

Under some regularity hypothesis we construct an almost product structure (P ,Q ) on TQ
along the linear submanifoldD such that the dynamics are obtained by projecting the Euler-
Lagrange vector fieldjL which solves the motion equations of the free problem,

i jLvL5dEL .

That is, the solutions of the constrained dynamics are just the solutions of the second order
differential equationj5P (jL) ~Section II!.

If the constrained system is not regular, we develop in Section III a constraint algorithm which
is remarkably similar to that developed by Dirac and Bergmann for singular Lagrangian
systems.32–34We obtain the local and global aspects of the constraint algorithm. By the way, we
introduce the notion of first and second class constraints in this framework.

In Section IV we consider a very important kind of constrained systems, those called gener-
alized Čaplygin systems. A generalized Cˇ aplygin system consists of a Lagrangian function
L:TQ→R and a connectionG in a fibrationr:Q→M such thatL is invariant by the horizontal lift
operation. The particular case whenr:Q→M is a principal bundle with structure groupG, L is
G-invariant andG is a principal connection, i.e., the horizontal subspaces areG-invariant, was
considered by Koiller.18 We extend the results by Koiller, and prove that there exists a well-
defined Lagrangian functionL* :TM→R, such that the generalized Cˇ aplygin system (L,G) is
equivalent to a non-conservative system onTM with Lagrangian functionL* and external force
a. Here,a is an one-form onTM related with the curvature of the connectionG. Roughly
speaking, the curvature is just the force of constraint. Several examples are studied.

Finally, in Section V, we apply our procedure to give a new insight to an old problem in the
so-called non-holonomic geometry. LetQ be a Riemannian manifold with Riemannian metricg
and Levi-Civita connection¹ and suppose that a distributionD on Q is given. The goal is to
obtain a new linear connection¹* onQ such that the geodesics of¹* are the extremals of the
variational problem subjected to these linear constraints~see Synge,35 Vranceanu,36 Neimark and
Fufaev3 and the references therein!. We define a connectionG* alongD by using our procedure
and the relations between non-homogeneous connections and second order differential equations
on TQ obtained by Grifone.37 If the constraints are holonomic,G* induces a linear connection in
the vector bundleD→Q.

II. NON-HOLONOMIC LAGRANGIAN SYSTEMS

Let L:TQ→R be a Lagrangian function defined on the phase space of velocitiesTQ of a
n-dimensional configuration manifoldQ. Denote by (qA,vA) the fibered coordinates onTQ.
~Sometimes we will use the notationvA5q̇A.)

The motion equations forL can be derived by a variational procedure. In fact, the extremals
of the action,

E L~qA,q̇A!dt,
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whereq̇A5dqA/dt are just the solutions of the Euler–Lagrange equations,

d

dt S ]L

]vAD2
]L

]qA
50, vA5

dqA

dt
. ~2!

Alternatively, there exists a symplectic formulation. Indeed, letvL52daL be the Poincare´-
Cartan 2-form, whereaL5J* (dL). Here,J is the canonical almost tangent structure onTQ. That
is, J is a tensor field of type~1,1! on TQ such thatJ250 and rankJ5n; J is locally defined by

J5
]

]vA
^dqA.

The energy associated withL is defined byEL5CL2L, whereC5vA(]/]vA) is the Liouville
vector field onTQ. That is,C is the infinitesimal generator of the dilations along the fibers.

The global motion equation for the free problem is~see Ref. 38!

i XvL5dEL . ~3!

We say that the LagrangianL is regular if the Hessian matrix (]2L/]vA]vB) is non-singular.
In such a case, the formvL is symplectic and, thus,~3! has a unique solutionjL ~the Euler–
Lagrange vector field! which is a second order differential equation~SODE for short!. Further, the
solutions ofjL coincide with the solutions of the Euler–Lagrange equations. More precisely, the
projections ontoQ of the integral curves ofjL are the extremals forL.

Now, we suppose that a family of linear constraints is given. In the local picture,L is
subjected to constraints defined bym local functions of the formf i(q

A,vA)5(m i)A(q)v
A. That

means that the only allowable velocities are those verifying thatf i50.
The purpose of this paper is to give a global picture of Lagrangian systems subjected to linear

constraints.
Definition II.1: A non-holonomic Lagrangian system is given by the following data:

(i) A regular Lagrangian L:TQ→R;
(ii) An (n2m)-dimensional distribution D on the n-dimensional configuration manifold Q.
The constraints are said to be holonomic if D is involutive.

This means that the only allowable velocities are the tangent vectors belonging toD, i.e., the
motion is constrained to the submanifoldD. Notice thatD can be viewed as a vector subbundle
of tQ :TQ→Q, and, so,D is a submanifold ofTQ.

Define two distributionsDc andDv on TQ as follows. Suppose that$m i ;1< i<m% is a local
basis of 1-forms of the annihilatorD0 of D. ThenDc andDv are, respectively, defined by

~Dc!05^m i
v ,m i

c&, ~Dv!05^m i
v&, ~4!

wherem i
v ~resp.,m i

c) denotes the vertical~resp., complete! lift of the 1-formm i to TQ ~see Refs.
38,39!.

If $m̄ i% is another local basis ofD we have

m̄ i5L i
jm j ,

where (L i
j ) is a regular matrix defined on the overlapping of the two local neighborhoods. Since

m̄ i
c5~L i

j !cm j
v1~L i

j !vm j
c , m̄ i

v5~L i
j !vm j

v , ~5!

we deduce thatDc and Dv are well-defined. Heref v ~resp., f c) denotes the vertical~resp.,
complete! lift of a function f onQ to TQ ~see Refs. 39, 38!.
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Since the allowable velocities have to belong toD, we deduce that the motion equations for
the constrained mechanical systems would be

~ i XvL2dEL!P~Dv!0, XPDc, ~6!

along the points ofD.
In fact, suppose thatm i5(m i)Adq

A. Hence we have

m i
v5~m i !Adq

A,

m i
c5~m i !A

cdqA1~m i !Adv
A,

m̂ i5~m i !Av
A,

wherem̂ i is the function onTQ defined bym̂ i(q
A,vA)5m i„v

A(]/]qA)….
Notice that there are many solutions of the first equation in~6!, sincevL is symplectic.

Moreover, every solution of~6! is a SODE. In fact, letm i be a local basis ofD. Then,~6! can be
locally written as follows:

i XvL2dEL5l im i
v , m i

v~X!50, mi
c~X!50, ~7!

for some Lagrange multipliersl i to be determined. If we applyi J to the first equation in~7!, we
have

i Ji XvL2 i J~dEL!50,

which implies i JXvL5 i CvL and, then,JX5C. Here, i J denotes the derivation of typei * in the
sense of Fro¨licher–Nijenhuis associated withJ, that is,i J is completely defined by the formulas
i Jf50 and i J(d f)5J* (d f) for any function f on TQ.38 Therefore, we deduce that the local
expression ofX is

X5vA
]

]qA
1XA

]

]vA
.

Thus, the solutions ofX satisfy the following constrained Euler–Lagrange equations:

d

dt S ]L

]vAD2
]L

]qA
52l i~m i !A , vA5

dqA

dt
.

By the way, notice thatm i
v(X)5m̂ i andm i

c(X)5X(m̂ i). Then the second set of equations in
~7! defines the submanifoldD, and the third one means thatX has to be tangent toD. Given the
symplectic formvL we have the associated musical isomorphisms,

[L :T~TQ!→T* ~TQ!

and

#:T* ~TQ!→T~TQ!,

where for anyX P T(TQ), [L(X)5 i XvL , and for anya P T* (TQ), #a5Xa is the unique tan-
gent vector toTQ such thatbL(Xa)5a. From (Dv)0 and by using the isomorphism #, we obtain
a distributionS on TQ. A vectorv P TxTQ belongs toSx if i vvL(x) P (Dv)x

0 . It is clear that
dimS5m.

Let Zi be the local vector field defined by
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i ZivL5m i
v , 1< i<m.

A direct computation shows that

Zi52WAB~m i !B
]

]vA
,

where (WAB) is the inverse matrix of the Hessian matrix (WAB5]2L/]vA]vB). Therefore,Zi is
vertical.

We have thatS is locally generated by the vector fields$Zi , 1< i<m%.
Definition II.2: The constrained system will be called regular if

TxDùSx50, f or any xPD.

The meaning of the regularity of the constrained system will become clear in a while. Notice
that the regularity of the constrained system is closely related with the nature of the Lagrangian
function.

Suppose that the constrained system is regular. Since for anyxPD, we have dimSx5m, and
dimTxD52n2m, we obtain that

TxTQ5TxD%Sx , ;xPD.

Thus, each tangent vectorvPTxTQ splits in a unique way asv5v11v2 , wherev1PTxD and
v2PSx . Then, we can construct two complementary projectorsP and Q as follows: P (v)
5v1 , andQ (v)5v2 . In fact, (P ,Q ) is a well-defined almost product structure onTQ along the
points ofD.

Take now the codistribution̂dEL& % (Dv)0. By using the isomorphism #, we obtain a distri-
butionSL on TQ locally generated by$jL ,Z1 ,•••,Zm%. That is,

SL5#~^dEL& % ~Dv!0!.

Then, dim(TxDù(SL)x)51,;x P D. Moreover, there exists a unique generatorj of the distribu-
tion TDùSL along the points ofD such that (Jj5C) /D .

The vector fieldj P X (D) is the solution of the Lagrangian system subjected to constraints
given by a distributionD. This vector fieldj is preciselyP(jL/D), the projection of the Euler-
Lagrange vector field of the free Lagrangian system. In fact, along the points ofD, we have

iP ~jL!vL2dEL5 i jL2Q~jL!vL2dEL

52 iQ~jL!vLP~Dv!0.

Moreover, we deduce thatP (jL)(x)PTxD or, equivalently,P (jL)PDc.
In order to perform an explicit computation of the vector fieldj, we proceed as follows. Take

a local basis$m i ,1< i<m% of D and defineC i j5Zi(m̂ j ). We deduce that

C i j52WAB~m i !A~m j !B . ~8!

Proposition II.3: The constrained system is regulariff the matrices(C i j ) are non-singular on
D.

Proof: Suppose that the constrained system is regular. Take an arbitrary linear combination of
columns ofC at some pointxPD such that
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(
i51

m

l iZi~x!~m̂ j !50.

Thus,(l iZi(x)PTxD which implies that(l iZi(x)50 and hencel15l25•••lm50.
Conversely, supposeC ia non-singular and takeXPSxùTxD. Thus, X5(l iZi(x) and

X(m̂ j )50, ; j , 1< j<m which implies that (l iZi(m̂ j )50. Therefore we deduce that
l15•••5lm50 andX50.

j

Thus, ifD is regular, we obtain an explicit expression for the projectorQ :

Q5C i j Zj ^dm̂ i ,

where (C i j ) denotes the inverse matrix of (C i j ).
Then, we get

j5P ~jL!5jL2C i j jL~m̂ i !Zj .

Proposition II.4: If the Hessian matrix

S ]2L

]vA]vBD ,
is positive or negative definite at each point xPD, then the constrained system is regular.

Proof: The result follows from~8! ~see also Carin˜ena and Ran˜ada19!.
j

Remark II.5:Proposition II.4 clarifies the usual assumption on the positive or negative char-
acter of the Hessian matrix ofL. It is nothing but that a sufficient condition to ensure the
regularity of the constrained system. Of course, if the LagrangianL is natural, that is,
L5T2V, whereT is the kinetic energy of a Riemannian metricg on Q andV is a potential
energy, then the constrained system would be regular.

Remark II.6:From the regularity of the matricesC , we deduce that (P ,Q ) may be extended
~in many ways! to an open neighborhood ofD. Consequently,P (jL) may also be extended to an
open neighborhood ofD ~see Ref. 27 for more details!.

By using the almost product structure (P ,Q ) and the musical isomorphisms, we can construct
the following linear mappingQ̄x :Tx* (TQ)→Tx* (TQ):

Q̄x~ax!5[L~Qx~#~ax!!!, ;axPTx* ~TQ!, xPD.

SinceQ̄x
25 id and ImQ̄x5(Dv)x

o , we obtain the following splitting:

Tx* ~TQ!5~Dv!x
o

% S̄x , ;xPD,

where S̄x5ImP̄ x , P̄ x5 id2Q̄x being the complementary projector. In fact,P̄ and Q̄ may be
interpreted as tensor fields of type~1,1! on TQ defined alongD.

Notice thatS̄ is the annihilator of the distribution alongD locally generated by the vector
fields $Xm̂ i

,1< i<m%, whereXm̂ i
is the Hamiltonian vector field of the functionm̂ i with respect to

the symplectic formvL .
The following result tells us that one could add the constraint forces to the energy to obtain a

global force acting on the system.
Theorem II.7: The solution of the constrained dynamics is the unique vector fieldj on D

such that
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~ i XvL5P̄ ~dEL!! /D .

Proof: By the construction ofQ̄ we have that

Q̄~dEL!5 iQ~jL!vL .

On the other hand,j5P (jL) is the solution of the constrained dynamics. Thus, we deduce that

iP ~jL!vL5 i jLvL2 iQ~jL!vL5dEL2Q̄~dEL!5P̄ ~dEL!.

SincevL is symplectic, we conclude that the solution of the equation

~ i XvL5P̄ ~dEL!! /D

is unique.
j

A direct computation shows that the local expression ofQ̄ is

Q̄52C i j Xm̂ i
^ m j

v .

Therefore, we obtain that

P̄ ~dEL!5dEL2C i j jL~m̂ i !m j
v .

The following lemmas will be used in Section IV.
Lemma II.8: Given a regular constrained system with Lagrangian function L and linear

constraints D, the vector fieldj solving the constrained dynamics satisfies

LjaL5dL2LQ~jL!aL ,

whereLj denotes the Lie derivative with respect toj.
Proof: It follows sincej5P (jL)5jL2Q (jL) andLjL

aL5dL. j

Lemma II.9: Under the same hypothesis as in Lemma II.8, we have

LQ~jL!aLP~Dv!0.

Proof: SinceQ (jL)5( j51
m L jZj , with L j5C i j jL(m̂ i), we deduce that

LQ~jL!aL5L(
j51

m

L j Zj
aL

5 i(
j51

m

L j Zj
daL1d~ i(

j51

m

L j Zj
aL!

52 i(
j51

m

L j Zj
vL52(

j51

m

L jm j
v ,

since the vector fieldsZj are vertical andaL is semibasic.
j
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III. THE SINGULAR CASE

In this section we shall describe what happens if the given constrained system is not regular,
or, in other words,TxDùSx50, for some pointsx in D. Notice that this fact is equivalent to the
non-regularity of the local matrices (C i j ).

For any pointxPD, we have the obvious inclusion

TxDùSx,TxDù~SL!x .

In the regular case, this inclusion is strict, and the jump of dimension is just 1. This jump allows
us to obtain the dynamics by taking a basisj of (TDùSL) /D normalized in order to get
Jj5C. The above remarks illuminate the way to proceed in the singular case.

Define a submanifoldD2 of TQ as follows:

D25$xPD/TxDùSx'TxDù~SL!x%.

This implies that for any pointxPD2 , there exists some tangent vector

X5jL~x!1l iZi~x!PTxDù~SL!x ,

such thatX¹Sx . Thus,X is a solution of the constrained equation, but, in general, it is not
necessarily tangent toD2 .

Therefore, we define a new submanifoldD3 of D2 as follows:

D35$xPD2 /TxD2ùSx'TxD2ù~SL!x%.

Proceeding further, we obtain a sequence of constraint submanifolds,

•••→Dk→•••→D2→D15D.

D5D1 will be called the primary constraint submanifold,D2 the secondary constraint submani-
fold and so on.

As in the Gotay and Nester algorithm for singular Lagrangian systems33,34we also have three
possibilities
~i! There exists an integerk>1 such thatDk5B. This means that the equations~6! are not
consistent.
~ii ! There exists an integerk>1 such thatDk5B but dimDk50. In this case, there are no
dynamics.Dk consists in isolated points and the solution of the constrained dynamics isX50.
~iii ! There exists an integerk>1 such thatDk115Dk and dimDk.0. In this case the algorithm
stabilizes at the final constraint submanifoldDf5Dk . So, there exists at least a vector fieldj on
Df satisfying the SODE condition ((Jj5C) /Df

) and such that

i jvL2dELP~Dv!0.

Assume that the algorithm ends at some final constraint submanifoldDf . Thus, we have

TxD fùSx'TxD fù~SL!x , ;xPDf .

We will suppose that the distributionTDfùS alongD has constant dimension, sayr , that is,

dim~TxD fùSx!5r , for all xPDf .

Lemma III.1: We have thatjL(x)PTxD f1Sx for any xPDf .
Proof: SinceTxD fùSx'TxD fù(SL)x for any xPDf , we deduce that there exists a tangent

vectorXPTxD fù(SL)x such thatX¹TxD fùSx . Thus,X5jL(x)1l iZi(x) which implies that
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jL(x)5X2l iZiPTxD f1Sx .
j

In order to determine the dynamics, we splitSx as a direct sum of two subspaces, say

Sx5Šx% ~TxD fùSx!. ~9!

Obviously, there are many choices for a complementary subspace ofTxD fùSx into Sx . From ~9!
we deduce thatŠxùTxD f50, and we can then splitTx(TQ) as follows:

Tx~TQ!5Šx%TxD f %Mx , xPDf ,

whereMx is a suitable complementary subspace. Take the corresponding three complementary
projectors:

Qx :Tx~TQ!→Šx ,

~P 1!x :Tx~TQ!→TxD f ,

~P 2!x :Tx~TQ!→Mx .

Consider the projector (P )x5(P 1)x1(P 2)x . Hence, we have~along the points ofDf)

iP x~jL~x!!vL~x!2~dEL!x5 i jL~x!2Qx~jL~x!!vL~x!2 i jL~x!vL~x!

52 iQx~jL~x!!vL~x!P~Dv!x
0 .

Moreover, for anyxPDf , we deduce that

P x~jL~x!!5~P 1!x~jL~x!!PTxD f ,

sincejL(x)PTxD f1Sx by Lemma III.1.
A differentiable choice of both distributionsŠ andM allows us to construct an almost product

structure (P 1 ,P 2 ,Q ) @or (P ,Q ), whereP5P 11P 2] alongDf such thatP (jL/Df
) is a solution

of the constrained dynamics. Notice that a general solution is of the form

P ~jL/Df
!1TDfùS.

We have chosen complementary distributionsŠandM in order to obtain the dynamics. Notice
that it is possible to realize both decompositions, sayS5Š % (TxD fùS) andT(TQ)5Š % TDf

% M . In fact, take a local basis$m i% of D
0 and denote byf I the constraint functions which define

Df , where 1<I<2n2dimDf . Notice that f I5m̂ I , for 1<I<m. We have assumed that
TDfùS has constant rankr . Thus, the matrix (C iJ)5(Zi(f̂J)) has also constant rankm2r .
Indeed, take a local basisY1 , . . . ,Yr of TDfùS such thatYa5Aa

i Zi . SinceYa is tangent to
Df , we get

Aa
i Zi~fJ!50, for all J.

But this implies that rankC5m2r . The converse is proved by reversing the argument.
Assume that the submatrixC 85(C I 8J8), (1<I 8,J8<m2r ) is regular. In that case, we define

a projectorQ by putting

Q5C I 8J8ZJ8^df I 8,
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where (C I 8J8) is the inverse matrix of (C I 8J8). Notice thatŠ5^ZI 8&. If we put P5 id2Q we
obtain an almost product structure (P ,Q ) alongDf . The decompositionP5P 11P 2 is obtained
by choosing a complementaryM of Š % TDf . This choice corresponds to the ambiguity in the
determination of the other Lagrange multipliers. Indeed, if we computeP (jL) we obtain

P ~jL!5jL2C I 8J8jL~f I 8!ZJ8,

and a general solution is of the form

P ~jL!1Y,

whereYPTDfùS. So, the only Lagrange multipliers determined are just the components of the
ZJ8’s.

Remark III.2:A solution of ~6! has the general formX5jL1l iZi , whereZi are the sym-
plectic gradients of the 1-formsm i

v . The tangency condition may now be written as

jL~m̂ j !1l iZi~m̂ j !50, 1< j<m, ~10!

or, equivalently,

jL~m̂ j !1l iC i j50, 1< j<m. ~11!

If the matrixC i j is regular, the system of equations~11! have a solution which is obtained by the
well-known Crame rule, or, in a more sophisticated way, by constructing the local almost product
structure (P ,Q ).

If the constrained system is singular, Equation~10! can be analyzed as in the Dirac-Bergmann
algorithm.32 In fact,

jL~m̂ j !1l iC i j50, 1< j<m,

is a system ofm equations withm unknowns, the Lagrange multipliers. The system is consistent
if the ranks of the matrices (C i j ) and (C i j ;2jL(m̂ j )) coincide.~Of course, they are equal if the
constrained system is regular.! Therefore, we select the points where the ranks coincide. Denote
by D̄2 the collection of all these points. At the points inD̄2 there are solutions, but they are not
necessarily tangent toD̄2 . By the way, new constraints may appear. In fact, notice that, if the
matrix (C i j ) has rank, sayr , then the matrix (C i j ;2jL(m̂ j )) has rank greater or equal tor .
Suppose thatM is a submatrix of (C i j ) of rank r . The determinants of the submatrices of
(C i j ;2jL(m̂ j )) obtained fromM by adding elements of the columnjL(m̂ j ) are the new possible
constraints. These secondary constraintsfa have to be added to the motion equations which
become

jL~m̂ j !1l iZi~m̂ j !50,

jL~fa!1l iZi~fa!50.
~12!

The procedure is now repeated, and we obtain a sequence of submanifolds

•••→D̄k→•••→D̄2→D,

which are just the same that the ones previously obtained. More precisely,D̄k is the intersection of
Dk with the tangent bundle of the open neighborhood where the local basism i is defined.

Remark III.3:We started with linear constraints, or, in the present terminology, the primary
constraints are linear. However, the secondary constraints are not necessarily linear.
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If we denote by$,%L the Poisson bracket onTQ defined from the symplectic formvL , we
have$ f ,EL%L5jL( f ), for any functionf on TQ. Thus,~10! can be written as follows:

$m̂ j ,EL%L1l iZi~m̂ j !50, 1< j<m.

As in the Dirac–Bergmann approach,32 we can distinguish two different classes of constraints. A
constraintf will be called first class if$ f ,C%L;0, that is,$ f ,C%L vanishes on the final constraint
submanifoldDf . Otherwise, f will be called a second class constraint. We deduce that the
Hamiltonian vector fields corresponding to first class constraints are tangent toDf , and the
Hamiltonian vector fields corresponding to second class constraints are transversal toDf .

Example III.4:Consider the following Lagrangian functionL defined onTR3 by

L5
1

2
~~v1!21~v2!22~v3!21~q1!2!,

subjected to linear constraints given by a distributionD on R3 whose annihilator is

D05^dq11dq3&.

Here (q1,q2,q3) denote the standard coordinates onR3, and (q1,q2,q3,v1,v2,v3) the induced
ones onTR3. Thus, the submanifoldD,TR3 consists in those points inTR3 such that
v11v350.

The distributionS is generated by the vector field

Z52
]

]v1
1

]

]v3
.

We have

SxùTxD5Sx ,

for any xPD. Therefore, the constrained system is singular.
Applying the constraint algorithm, we get

D25$xPD/TxDùSx'TxDù~SL!x%,

so that

D25$~qA,vA!PTR3/v11v350, q150%.

We proceed further, and obtain

D35$xPD/TxD2ùSx'TxD2ù~SL!x%,

5$~qA,vA!PTR3/v350, q150, v150%.

Now, since

TxD3ùSx'TxD3ù~SL!x ,

for any xPD3 , we deduce thatD3 is the final constraint submanifold.
The dynamics is given by the vector field (jL1lZ) /D3

, for any functionl on D3 .
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IV. CONSTRAINTS DEFINED BY CONNECTIONS. GENERALIZED Č APLYGIN SYSTEMS

One of the most appealing instances of non-holonomic Lagrangian systems are those given by
the existence of a connection.

Suppose thatQ is a fibered manifold over a manifoldM , say, r:Q→M is a surjective
submersion. Assume that a connectionG in r:Q→M is given, such that the allowable motions of
a Lagrangian functionL:TQ→R have to be horizontal curves with respect to that connection. In
other words, the allowable velocities are horizontal tangent vectors. Thus,D is just the horizontal
distributionH such that

TQ5H%Vr.

Let us recall thatG may be considered as a tensor field of type (1,1) onQ such thatG25 id and
the eigenspaces corresponding to the eigenvalue21 are just the vertical subspaces. Take fibered
coordinates (qA)5(qa,qi), 1<a<n2m, 1< i<m, n5 dimQ. The horizontal distribution is lo-
cally spanned by the local vector fields

Ha5S ]

]qaD
H

5
]

]qa
2Ga

i ~qA!
]

]qi
,

whereYH stands for the horizontal lift toQ of a vector fieldY onM , andGa
i 5Ga

i (qb,qj ) are the
Christoffel components ofG. Thus, we obtain a local basis of vector fields onQ,

HHa ,Vi5
]

]qi J .
Its dual basis of 1-forms is

$ha5dqa,h i5Ga
i dqa1dqi%.

We deduce thatH0 is locally spanned by the 1-forms$h i%.
Define the curvature ofG as the tensor field of type~1,2! onQ given by

R5
1

2
@h,h#,

whereh5~1/2!( id1G) is the horizontal projector associated withG, and@h,h# is its Nijenhuis
tensor~see Ref. 38!. Thus,

R~h~u1!,h~u2!!5v~@h~u1!,h~u2!# !,

R~h~u1!,v~u2!!50,

R~v~u1!,v~u2!!50,

for anyu1 ,u2PTxQ, wherev5 id2h is the complementary vertical projector. Since

hS ]

]qaD5
]

]qa
2Ga

i ]

]qi
,

hS ]

]qi D50,

we obtain
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RS ]

]qa
,

]

]qbD5Rab
i ]

]qi
,

where

Rab
i 5

]Ga
i

]qb
2

]Gb
i

]qa
1Ga

j
]Gb

i

]qj
2Gb

j
]Ga

i

]qj
.

We say thatG is flat if the curvatureR identically vanishes. In this case, the constrained system is
holonomic.

Notice that this kind of non-holonomic constrained systems is very special, since the local
constraints are of the form

v i52Ga
i ~qA!va,

that is, some velocities are explicitly written in terms of the others.
We will consider a very special kind of such constrained systems, those called generalized

Čaplygin systems.
Definition IV.1: A generalized Cˇ aplygin system consists of a Lagrangian function

L:TQ→R and a connectionG in a fibration r:Q→M such that

L~~YH!q!5L~~YH! q̃!,

for any YPTyM , where q,q̃PQ are such thatr(q)5r(q̃)5y.
Remark IV.2:Notice that the Cˇ aplygin systems considered by Koiller18 are particular cases. In

fact, in that case,r:Q→M is a principal bundle with structure groupG, L is G-invariant, and
G is a principal connection, i.e., the horizontal subspaces areG-invariant. The 1-formsh i are just
the components of the connection form. If the groupG is Abelian, then the last condition implies
that the Christoffel components do not depend on the fiber coordinates. So, we recover the
classical setting of Cˇ aplygin systems18.

From the definition, one easily see that there exists a well-defined Lagrangian function
L* :TM→R, by setting

L* ~Y!5L~~YH!q!,

for anyYPTyM , whereq is an arbitrary point in the fiber overy. In local coordinates we have

L* ~qa,va!5L~qa,qi ,va,2Ga
i va!.

SinceL* does not depend onqi we deduce that

]L

]qi
5

]L

]v j
]Ga

j

]qi
va. ~13!

The constrained Euler–Lagrange equations forL are the following:

d

dt S ]L

]vaD2
]L

]qa
52(

i
l iGa

i ,

d

dt S ]L

]v i D2
]L

]qi
52l i ,

va5
dqa

dt
, v i5

dqi

dt
.
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After some calculations, and using~13!, we obtain that

d

dt S ]L*

]va D 2
]L*

]qa
5

]L

]v i
vbS ]Gb

i

]qa
2

]Ga
i

]qb
1Gb

j
]Ga

i

]qj
2Ga

j
]Gb

i

]qj D ,
whereva5dqa/dt.

As we have proved in Section II, the intrinsic motion equations are

~ i XvL2dEL!P~Hv!0,

XPHc,
~14!

alongH.
If we assume that the constrained system is regular~for instance, if the LagrangianL is

natural! then there exists an almost product structure (P ,Q ) on TQ alongH such that the vector
field j5P (jL) gives the constrained dynamics. Let us recall thatj is a vector field defined on
H, that is,jP X(H).

Define a 1-formaL,G on TM as follows:

~aL,G!u~U !52~aL!x~X̃!,

for anyUPTu(TM), for anyuPTyM , whereX̃PTx(TQ) is a tangent vector which projects onto
the tangent vectorR((uH)q ,(TtM(U))q

H)PTqQ, r(q)5y, andxPD with tQ(x)5q. @Notice that
there is a unique pointxPD such thattQ(x)5q andTr(x)5u.] In local coordinates, we get

aL,G5F ]L

]v i
vbRab

i Gdqa.
It should be remarked thataL,G is not abona fide1-form onTM, but it is a 1-form along the
mappingTr /H :H→TM. For the sake of simplicity, we will assume thataL,G is well-defined on
TM, which is the case in most of the examples.

Now, consider the non-conservative Lagrangian system with Lagrangian functionL and ex-
ternal forceaL,G . The intrinsic motion equation is

i YvL*5dEL*1aL,G , ~15!

on TM. We will study its solutions. Notice that the corresponding Euler–Lagrange equations are

d

dt S ]L*

]va D2
]L*

]qa
52

]L

]v i
vbRab

i ,

va5
dqa

dt
.

~16!

Theorem IV.3: (1) The generalized Cˇ aplygin system(L,G) is regular iff L* is regular;
(2) In this case, the vector fieldj is projectable onto TM, and its projection Y is just the

solution of (15).
Dynamical proof:We first show how the result can be derived by using a pure dynamical

argument. As we have shown, if (qa(t),qi(t)) is a solution of the constrained motion equations
~14! then it is a horizontal curve, and its projection is a solution of the non-conservative equations
~16!. Conversely, if (qa(t)) is a solution of~16!, then its horizontal lift toQ is a solution of~14!.
Now, assume that the generalized Cˇ aplygin system (L,G) is regular so that there exists one and
only one solution with a fixed initial data inTM. Take an initial data inTM. Its horizontal lift
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gives an initial data inTQ for which there exists one and only one solution of~14!. Its projection
will be a solution of~15! for the given initial data, and, furthermore, it will be the unique solution
with that data. The converse is proved by a similar argument.

The same procedure proves thatj is projectable, and its projectionY is just a solution of~15!.
In fact, the solutions ofj project onto the solutions ofY, and, conversely, the horizontal lifts of
the solutions ofY are just the solutions ofj.

Next, we exhibit an alternative proof based on the geometrical ingredients of the theory. First
of all, we will prove the following lemma.

Lemma IV.4: LetG be an arbitrary connection in a fibrationr:Q→M with horizontal pro-
jector h. If m1 andm2 are two 1-forms and X is a horizontal vector field on Q such that

LXm15m2 ,

then we have

LX~h*m1!5h*m22a,

whereh* is the transpose operator ofh, anda is the 1-form on Q defined by

a~Y!52m1~R~X,Y!2h~@X,vY# !!,

R being the curvature ofG.
Proof: Assume thatLXm15m2 andX is a horizontal vector field. LetY be an arbitrary vector

field onQ. We have

~LX~h*m1!!~Y!5LX~h*m1!~Y!2~h*m1!~@X,Y# !

5X~m1~hY!!2m1~h~@X,Y# !

5m2~hY!1m1~@X,hY# !2m1~h@X,Y# !

5h*m2~Y!1m1~R~X,Y!2h~@X,vY# !!.

j

Geometrical proof of the theorem:First of all, we will prove that the generalized Cˇ aplygin
system (L,G) is regular ifL* is regular. In fact, denote by

W5~WAB!5SWab Waj

Wib Wi j D
the inverse matrix of the Hessian matrix (]2L/]vA]vB). We have

C i j52WabGa
i Gb

j 2WjaGa
i 2WibGb

j 2Wij ,

or, equivalently,

C52~g,I m3m!W~g,I m3m! t,

whereg is a matrixm3(n2m) with entriesg ia5Ga
i , 1< i<m, 1<a<n2m, and the superin-

dex t means that we are taking the transpose matrix.
On the other hand, the entries of the Hessian matrixM of L* are

]2L*

]va]vb
5

]2L

]va]vb
2Ga

i ]2L

]v i]vb
2Gb

j ]2L

]v j]va
1Ga

i Gb
j ]2L

]v i]v j
,
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or, equivalently,

M5~ I ~n2m!3~n2m! ,2g t!W21~ I ~n2m!3~n2m! ,2g t! t.

If we putA5(g,I m3m) andB5(I (n2m)3(n2m) ,2g t), it is no hard to show that eitherC or
M are regular, then the square matrices

S A

BW21D and SWAt

B t D
are also regular.

The result follows taking into account that

S A

BW21D •SWAt

B t D 5SAWAt 0

0 BW21B tD .
Therefore, we have proved the first part of the theorem.

Next, we will prove the second part.
Given a connectionG in the fibrationr:Q→M we define a connectionḠ in the fibration

Tr:TQ→TM along the submanifoldH as follows. The horizontal distributionH̄ of Ḡ is locally
spanned by the vector fields

S ]

]qaD
H̄

5
]

]qa
2Ga

i ]

]qi
2vbS ]Gb

i

]qa
2Ga

j
]Gb

i

]qj D ]

]v i
,

S ]

]vaD
H̄

5
]

]va
2Ga

i ]

]v i
.

Along H, we obtain a local basis of vector fields onTQ,

H S ]

]qa
D H̄,S ]

]va
D H̄, ]

]qi
,

]

]v i J .
Its dual basis of 1-forms is

$dqa,dva,h i
v ,dĥ i%.

Thus, the set$h i
v ,dĥ i% is the annihilator ofH̄. A simple computation shows thatH̄ is globally

defined alongH.
If h̄ is the horizontal projector associated withḠ we haveh̄* (dqa)5dqa, h̄* (dva)5dva,

h̄* (h i
v)50 andh̄* (dĥ i)50.
Consider the pull-backs of the 1-formsaL* anddL* to TQ by means ofTr. Along H we

deduce that

h̄* ~aL!5~Tr!*aL* ,

h̄* ~dL!5~Tr!* dL* .

From Lemma II.8 we have

LjaL5dL2LQ~jL!aL , ~17!
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and from Lemma IV.4, we get

Lj~ h̄*aL!5h̄* ~dL!2h̄* ~LQ~jL!aL!2ā, ~18!

whereā is the 1-form onTQ alongH defined by

ā ~Z!52aL~R̄~j,Z!2h̄~@j,v̄~Z!# !!,

R̄ being the curvature ofḠ. Since aL is semibasic andḠ is a connection in the fibration
Tr:TQ→TM ~alongH), we deduce thataL(h̄(@j,v̄(Z)#)50, and hence we get

ā ~Z!52aL~R̄~j,Z!!.

In local coordinates we obtain

ā5
]L

]v i
vbS ]Ga

i

]qb
2

]Gb
i

]qa
2Gb

j
]Ga

i

]qj
1Ga

j
]Gb

i

]qj Ddqa.
Therefore, we deduce thatā is projectable, and its projection is just the 1-formaL,G on TM.

From Lemma II.9 we have

h̄* ~LQ~jL!aL!50,

and therefore~18! becomes

Lj~Tr!*aL*5~Tr!* ~dL* !2ā.

Let Y be a vector field onTM which is a solution of the equation

LYaL*5dL*2aL,G .

Then every vector fieldỸ on TQ which projects ontoY verifies

L Ỹ~Tr!*aL*5~Tr!* ~dL* !2ā. ~19!

In particular, the horizontal liftYH̄ with respect toḠ verifies ~19!. Sincej also verifies~19! and

jPH̄, we deduce thatYH̄5j.
j

Thus, we have the following.
Corollary IV.5: The generalized Cˇ aplygin system(L,G) is equivalent to a non-conservative

system on TM with Lagrangian function L* and external forceaL,G .
Remark IV.6:The above procedure is a sort of reduction, but not in the sense of Marsden and

Weinstein.40 In fact, we could consider the general case of a constrained Lagrangian system
subjected to linear constraints given by a distributionD onQ, and such thatL andD are invariant
by the action of a Lie groupG. This is just the case of Cˇ aplygin systems as were considered by
Koiller.

Remark IV.7:The distributionHc satisfies the following relation:

T~TQ!5Hc
%V~Tr!,

along the points ofH. Thus,Hc defines a connectionGc in the fibrationTr:TQ→TM along the
submanifoldH, which could be considered as the tangent lift of the original connectionG in the
fibration r:Q→M . We have proved that the vector fieldj is horizontal with respect toḠ. A
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similar device proves thatj is also horizontal with respect toGc, and moreoverj5YHc
. The

relationship between both connectionsḠ andGc is the following: they coincide if and onlyG is
flat, or, in other words, the constrained system is holonomic.

Remark IV.8:Assume that the constrained system is not regular. From Theorem IV.3 we
deduce thatL* is a singular Lagrangian function. Thus, Equation~15! has no, in general, solution.
However, we can develop a constraint algorithm as follows. PutK15TM and defineK2 be the
submanifold of points inTM for which there exists at least a solution of~15!. On K2 there is a
solution, but it is not necessarily tangent toK2 . So, we consider the submanifoldK3 consisting in
those points inK2 where a tangent solution toK2 exists.

Proceeding further we obtain a sequence of constraint submanifolds,

•••→Kk→•••→K2→K15TM.

On the other hand, there exists a sequence of constraint submanifolds,

•••→Hk→•••→H2→H15H,

obtained by applying the constraint algorithm developed in Section III. It is almost obvious that
both algorithms are related by the projection mappingTr:TQ→TM, that is, we have

Tr~Hr !5Mr , r>1.

Example IV.9 (The sleigh of Cˇ aplygin and Carathe´odory):
Consider a sleigh, that is, a body having three points of contact with a plane where two of

them slide freely but the thirdA is subjected to a force which does not allow transversal velocity.
The configuration manifold isQ5R23S1 with coordinates (x,y,f), where (x,y) are the coordi-
nates of the center of massC of the sleigh, andf is the angle between thex-axis and the line
AC ~see Ref. 18!. If we denote bya the distance fromA to C, by J the moment of inertia and by
m51 the mass of the sleigh, the Lagrangian function is given by

L5
1

2
~ ẋ21 ẏ2!1

1

2
Jḟ2,

Observe thatL is a natural Lagrangian obtained from the Riemannian metric

g5
1

2
~dx21dy21Jdf2!,

on R23S1.
Consider the fibration

r:R23S1→R2,

defined by

r~x,y,f!5~x,y!.

Define a connectionG in r by
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GS ]

]xD5
]

]x
22

sinf

a

]

]f
,

GS ]

]yD5
]

]y
12

cosf

a

]

]f
,

GS ]

]f D52
]

]f
.

The curvatureR of G is

R5
1

a2
]

]f
^ ~dx`dy!.

The horizontal distribution ofG is generated by

K ]

]x
2
sinf

a

]

]f
,

]

]y
1
cosf

a

]

]f L ,
and the annihilator ofH is generated by the 1-form

h5df2
cosf

a
dy1

sinf

a
dx.

In fact, h is the connection 1-form ofG. Therefore, the linear constraints are

ḟ2
cosf

a
ẏ1

sinf

a
ẋ50.

Notice thatr is a principalS1-bundle. However,G is no a principal connection, since the hori-
zontal subspaces are notS1-invariant. Thus, (L,G) is not a generalized Cˇ aplygin system. How-
ever, we can apply the general procedure developed in Section II.

SinceL is natural, the constrained system is regular, and then there exists a well-defined
solution of the constrained dynamics along the submanifoldH of TQ.

The distributionS is generated by the vector field

Z52
1

J

]

]ḟ
1
cosf

a

]

] ẏ
2
sinf

a

]

] ẋ
,

along the points ofH.
The almost product structure (P ,Q ) is given by

Q52
Ja2

a21J S 2
1

J

]

]ḟ
1
cosf

a

]

] ẏ
2
sinf

a

]

] ẋ
D

^ S S sinfa ẏ1
cosf

a
ẋD df1

sinf

a
dẋ2

cosf

a
dẏ1dḟ D ,

P5 id2Q .

3407M. de León and D. M. de Diego: Non-holonomic Lagrangian systems

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Thus, the only vector fieldj such thatjxP(SL)xùTxH andJx(jx)5Cx , for anyxPH, is given
by

j5P ~jL!5 ẋ
]

]x
1 ẏ

]

]y
1ḟ

]

]f
2

J

a21J
sinf~sinf ẏ1cosf ẋ!

]

] ẋ

1
J

a21J
cosf~sinf ẏ1cosf ẋ!

]

] ẏ
2

a

a21J
~sinf ẏ1cosf ẋ!

]

]ḟ
,

along the points ofH.
Example IV.10 (The ‘‘two-wheeled carriage’’):
The configuration space of the ‘‘two-wheeled carriage’’ isQ5R23S13T2, with coordinates

(x,y,f,F1 ,F2) ~see Refs. 18,3!.
Let 2r be the lateral length,a the radius of the wheels,C0 the center of mass, situated at

distancel from a point (x,y). If we denote bym0 the mass of the body without wheels,k0 the
radius of gyration about the vertical through (x,y), m1 the mass of a wheel,C the axial moments
of inertia andA its moment of inertia about a diameter, then the Lagrangian function is given by

L5
1

2
m~ ẋ21 ẏ2!1m0l ḟ~ ẏcosf2 ẋsinf!1

1

2
Jḟ21

1

2
C~Ḟ1

21Ḟ2
2!,

wherem5m012m1 andJ5m0k0
212m1r

212A.
Consider now the fibration

r:R23S13T2→T2,

defined byr(x,y,f,F1 ,F2)5(F1 ,F2).
Define a connectionG in r by

GS ]

]F1
D5

]

]F1
2acosf

]

]x
2asinf

]

]y
2
a

r

]

]f
,

GS ]

]F2
D5

]

]F2
2acosf

]

]x
2asinf

]

]y
1
a

r

]

]f
,

GS ]

]xD52
]

]x
, GS ]

]yD52
]

]y
, GS ]

]f D52
]

]f
.

The horizontal distributionH of G is generated by

K ]

]F1
2
a

2
cosf

]

]x
2
a

2
sinf

]

]y
2

a

2r

]

]f
,

]

]F2
2
a

2
cosf

]

]x
2
a

2
sinf

]

]y
1

a

2r

]

]f L .
Thus, the annihilator ofH is generated by the 1-forms

hx5dx1
acosf

2
dF11

acosf

2
dF2 ,

hy5dy1
asinf

2
dF11

asinf

2
dF2 ,
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hf5df1
a

2r
dF12

a

2r
dF2 .

The linear constraints are then

ẋ52
acosf

2
Ḟ12

acosf

2
Ḟ2 ,

ẏ52
asinf

2
Ḟ12

asinf

2
Ḟ2 ,

ḟ52
a

2r
Ḟ11

a

2r
Ḟ2 .

The curvature of the connection is given by the vector 2-form,

R5
a2

2r S 2sinf
]

]x
1cosf

]

]yD ^ ~dF1`dF2!.

The fibrationr:R23S13T2→T2 is a principalR23S1-bundle, andG is a principal connec-
tion with connection 1-form

h5~hx ,hy ,hf!,

taking values into the Lie algebra ofR23S1. Notice thatR23S1 may be identified with the group
of Euclidean motions of the plane~see Koiller18!.

Thus, the system (L,G) is a generalized Caplygin system. By applying the general theory
developed in this section, we obtain a Lagrangian functionL* :T2→R as follows:

L* ~F1 ,F2 ,Ḟ1 ,Ḟ2!5
1

8
ma2~Ḟ1

21Ḟ2
2!1

Ja2

8r 2
~Ḟ22Ḟ1!

21
1

2
C~Ḟ1

21Ḟ2
2!.

From Corollary IV.5, we know that the constrained system (L,D) is equivalent to the non-
conservative system given byL* and the external force

aL,G5
m0la

3

4r 2
~Ḟ22Ḟ1!Ḟ2dF12

m0la
3

4r 2
~Ḟ22Ḟ1!Ḟ1dF2 .

From a tedious but straightforward computation we have that the solutionY of the equation

i YvL*5dEL*1aL,G ,

is the vector field,

Y5Ḟ1

]

]F1
1Ḟ2

]

]F2
1K1~Ḟ12Ḟ2!~K2Ḟ22Ja2Ḟ1!

]

]Ḟ1

1K1~Ḟ22Ḟ1!~K2Ḟ12Ja2Ḟ2!
]

]Ḟ2

,

where K15m0la
3/(m2a4r 418ma2r 4C12ma4r 2J116r 4C218JCa2r 2) and K25ma2r 2

14Cr21Ja2.
We obtain the solution onTQ by taking the horizontal lift of the vector fieldY by the

connectionḠ.
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V. AN APPLICATION: EQUATIONS OF CONSTRAINED GEODESICS

LetQ be a Riemannian manifold with Riemannian metricg and Levi-Civita connection¹ and
suppose that a distributionD onQ is given. A very old problem in the literature is to obtain a new
linear connection¹* on Q such that the geodesics of¹* are the extremals of the variational
problem subjected to these linear constraints~see Synge,35 Vranceanu,36 Neimark and Fufaev3 and
the references therein.! We shall apply our method to give a new look at Synge’s paper.

The Lagrangian function is

L~qA,vA!5
1

2
gABv

AvB,

that is,L is the kinetic energy ofg. Take an orthonormal local basis$m i% of D. SinceEL5L, we
obtain

jL5vA
]

]qA
2GAB

C vAvB
]

]vC
,

whereGAB
C are the Christoffel components of¹. In fact, jL is the geodesic spray.

A direct computation shows that

Zi52gAB~m i !B
]

]vA
,

m̂ i5~m i !Av
A,

C i j5Zi~m̂ j !52gAB~m i !A~m j !B52d i j .

Therefore, the constrained system is regular.
From Proposition II.4 there exists a unique almost product structure (P ,Q ) such that

P x(X)PTxD andQx(X)PSx , whereXPTxTQ. We have

P ~jL!5vA
]

]qA
2vAvBS GAB

C 1
]~m i !B

]qA
gCR~m i !R2GAB

E ~m i !Eg
CR~m i !RD ]

]vC

5vA
]

]qA
2vAvBS GAB

C 1S ]~m i !B
]qA

2GAB
E ~m i !EDgCR~m i !RD ]

]vC

5vA
]

]qA
2vAvB~GAB

C 1~m i !A;B~m i !
C!

]

]vC
,

where

~m i !A;B5
]~m i !A

]qB
2GAB

E ~m i !E

denote the components of the covariant derivative ofm i , and (m i)
C5gCR(m i)R .

SinceP (jL) is a SODE and tangent toD, we know that for each tangent vectorzPD there
is a curves onQ which is a solution ofP (jL) with that initial data, i.e.,s(0)5x, ṡ(0)5z and
ṡ is an integral curve ofP (jL). In fact, the solutions ofP (jL) are just the solutions of the
following system of differential equations:
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d2qC

dt2
1~G* !AB

C dqA

dt

dqB

dt
50, ~20!

where

~G* !AB
C 5GAB

C 1~m i !A;B~m i !
C.

Notice that~20! are just the differential equations obtained by Synge in Ref. 35. Of course,~20!
have no solutions for arbitrary initial data, since only the velocities inD are allowable.

Notice that (G* )BC
A are not the Christoffel components of a linear connection¹* onQ. They

define a more general geometric object, an spray defined on a submanifoldD of TQ. Indeed, let
us recall that there exists a one-to-one correspondence between sprays onTQ and linear connec-
tions onQ ~see Ref. 38!. In fact, if j is an spray, thenG52LjJ is a linear connection onQ, and,
conversely, ifG is a linear connection onQ, then its associated SODE is an spray.

The vector fieldP (jL) can be extended to a vector field defined on some open neighborhood
of D in TQ. Of course, there are many extensions ofP (jL). Choose an arbitrary extension and
define

G*52LP~jL!J.

So, G* is a tensor field of type (1,1) defined on some open neighborhood ofD, and its local
expression is as follows:

G* S ]

]qAD5
]

]qA
22~G* !AB

C vB
]

]vC
,

G* S ]

]vAD52
]

]vA
.

A direct computation shows that (G* )25 id, and the vector eigenspace corresponding to the
eigenvalue21 at a point ofD is just the vertical subspace at that point. Moreover, given another
extension ofP (jL), we obtain that the new tensor fieldG* coincides with the former onD.

Thus,G* defines a connection on some open neighborhood ofD and all these connections
coincide onD.

We define the horizontal and vertical projectors ofG* in the usual way:

h*5
1

2
~ id1G* !, v*5

1

2
~ id2G* !.

Their local expressions are the following ones:

h* S ]

]qAD5
]

]qA
2~G* !BA

C vB
]

]vC
,

h* S ]

]vAD50,

v* S ]

]qAD5~G* !BA
C vB

]

]vC
,

v* S ]

]vAD5
]

]vA
.
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Using the standard procedures for connections onTQ ~see Refs. 37,38!, we define a covariant
derivative as follows. LetX be a vector field onQ andY be a vector field which is tangent to
D. In other words,X is a section oftQ :TQ→Q andY a section oftQ/D :D→Q. Define

~¹X*Y!~x!5fY~x!~v* ~dY~x!~X~x!!!, ;xPQ,

wherefY(x) is the linear isomorphism,

fY~x! :VY~x!tQ→TxQ

from the vertical subspace atY(x) ontoTxQ.
If X5XA(]/]qA) andY5YA(]/]qA), we deduce that

¹X*Y5XAF]YC

]qA
1~G* !AB

C YBG ]

]qC
.

We look for a condition which ensures that¹X*YPD. We have

m i~¹X*Y!5~m i !Ddq
DF SXA

]YC

]qA
1XA~G* !AB

C YBD G
5XAF ~m i !C

]YC

]qA
1~m i !C~G* !AB

C YBG .
Since

~G* !BC
A 5GAB

C 1~m i !A;B~m i !
C,

we deduce that

~m i !C~G* !AB
C 5~m i !CGAB

C 1~m i !C
]~mJ!A

]qB
~m j !

C2~m i !
CGAB

E ~m i !E~m j !
C

5
]~m i !A

]qB
.

Thus, we obtain that

m i~¹X*Y!5XAF ~m i !B
]YB

]qA
1

]~m i !A
]qB

YBG . ~21!

But YPD, and therefore we get

05m i~Y!5~m i !BY
B.

By deriving this last formula, we have

~m i !B
]YB

]qA
1

]~m i !B
]qA

YB50. ~22!

From ~21! and ~22! we deduce the following result.
Proposition V.1:¹* defines a connection in the vector bundletQ :D→Q if and only if D is

involutive.
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As a consequence, if the system is holonomic,¹* is a derivation in the vector bundle
D→Q. In the general case, we only get that

¹* :X~Q!3Sec~D !→X~Q!

behaves as a derivation.
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15C. M. Marle, ‘‘Sur la géometrie des syste`mes me´caniques a` liaisions actives,’’ C. R. Acad. Sci. Paris311, 839–845

~1990!.
16L. Bates and J. S´niatycki, ‘‘Nonholonomic reduction,’’ Rep. Math. Phys.32, 99–115~1992!.
17G. Giachetta, ‘‘Jet methods in nonholonomic mechanics,’’ J. Math. Phys.33, 1652–1665~1992!.
18J. Koiller, ‘‘Reduction of some classical non-holonomic systems with symmetry,’’ Arch. Rat. Mech. Anal.118, 113–148

~1992!.
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On the asymptotic integrability of a higher-order evolution
equation describing internal waves in a deep fluid
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A higher-order nonlocal evolution equation describing internal waves in a deep
fluid is shown to be asymptotically integrable only if the coefficients of the higher-
order terms satisfy certain constraints. In this case, the nonlocal equation can be
transformed to the integrable Benjamin–Ono equation. The asymptotic integrability
of the reductions of the higher-order evolution equation to a complex Burgers
equation, to an envelope-wave equation, and to a finite-dimensional dynamical
system is also considered. ©1996 American Institute of Physics.
@S0022-2488~96!03206-9#

I. INTRODUCTION

The evolution of small amplitude waves of certain nonlinear dispersive systems can be studied
asymptotically using the so-called multiscale expansion method~see, e.g., Ref. 1!. This method
yields a basic evolution equation which is formally valid at the leading asymptotic order, as well
as a sequence of evolution equations at higher asymptotic orders. It turns out that for many
important physical systems the basic evolution equation is anintegrableequation~see Ref. 2 for
a discussion of this remarkable fact!. Each integrable evolution equation is a member of a hier-
archy of infinitely many integrable equations. It is interesting that the evolution equation valid at
the next asymptotic order, differs from the next member of the associated integrable hierarchy,
only in the value of the numerical coefficients of the nonlinear terms. For example, idealized
unidirectional water waves of small amplitude and large wave length satisfy3 the equation

h t1hxxx16hhx1e~a1hxxxxx1a2hhxxx1a3hxhxx1a4h
2hx!1O~e2!50, ~1.1!

wherea1,...,a4 are certain numbers. Ase→0, this equation becomes the Korteweg–deVries~KdV!
equation, which is an integrable equation. Furthermore, ifa2510a1, a3520a1, a4530a1, then the
O~e! term of Eq. ~1.1! becomes the right-hand side of the next member of the hierarchy of
integrable equations associated with the KdV equation.

If the basic evolution equation is integrable, we say that the underlying physical system is
asymptotically integrabletoO~e!. It turns out that in certain cases it is possible to formally extend
the asymptotic integrability of the system toO~e2!. For example, in the case of water waves
Kodama found4 an explicit transformation which maps Eq.~1.1! to the integrable equation ob-
tained by Eq.~1.1! when a2510a1, a3520a1, and a4530a1. A generalization of Kodama’s
transformation which actually maps Eq.~1.1! to KdV equation itself, and an extension of this
result to the case of water waves without the unidirectionalization assumption, are given in Ref. 5.
It is also shown in Ref. 5 that the concept of the mastersymmetries~see Ref. 6 and references
therein! provides an algorithmic approach to finding the transformations which map the physical
equations to the integrable ones. Similar results are valid for the case that the basic evolution
equation is the nonlinear Schro¨dinger ~NLS! equation.

In this paper we study the asymptotic integrability of the systems whose basic equation is the
Benjamin–Ono~BO! equation, i.e., we study the equation

0022-2488/96/37(7)/3415/7/$10.00
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ut52uux1Huxx1e@auxxx1b1~uHux!x1b2uHuxx1b3H~uux!x1gu2ux#1O~e2!, ~1.2!

wheree is the small parameter of the multiscale expansion,H is the Hilbert transform,

~Hf !~x!5
1

pE2`

`

Á
f ~j!

j2x
dj, ~1.3!

and*” denotes the principal value integral.
Equation~1.2! occurs in the modeling of long internal waves in a deep continuously stratified

fluid, and was recently derived in Ref. 7. In this caseu denotes the horizontal velocity of the fluid
and the coefficientsa,...,g can be expressed through the parameters of the fluid stratification. The
particular case that the stratification profile can be approximated by a two-layer model with
densityr1 in the upper~shallow! layer andr2 in the lower~deep! layer, was studied in Ref. 8 and
is described by Eq.~1.2! with

a5
27

4 S 4d2

9
21D , b156, b25

3

2
, b35

27

2
, g523, ~1.4!

whered5r1/r2,1.
The structure of our paper is as follows. In Sec. II we present two main results for Eq.~1.2!.

~a! We show that if the coefficients satisfy the numerical constraints

3a1b11b21b350, ~1.5!

and

b11b32g50, ~1.6!

then Eq.~1.2! is asymptotically integrable toO~e2! ~see Propositions 2.1 and 2.2!.
~b! We study the pole-decomposition solution of Eq.~1.2! and establish that if Eqs.~1.5! and

~1.6! are satisfied, then the system describing these solutions is asymptotically integrable toO~e2!
~see Proposition 2.3!. This implies that in this case the algebraic solitary waves interact without a
phase shift toO~e2!.

Unfortunately, in the physically important case that the coefficients of Eq.~1.2! are given by
Eq. ~1.4!, the constraints~1.5! and~1.6! are not satisfied. This is consistent with the fact that in this
case the interaction of the algebraic solitary waves exhibits phase shifts toO~e2!.9

Although we have only shown that the validity of Eqs.~1.5! and~1.6! is a sufficient condition
for asymptotic integrability, we conjecture that it is also a necessary condition. This conjecture is
supported by the following arguments. There exists an exact reduction from Eq.~1.2! to a complex
perturbed Burgers equation. In this case, if the coefficients of Eq.~1.2! satisfy a single constraint,
denoted here byn50, then the perturbed Burgers equation can be mapped to the integrable
Burgers equation. Furthermore, it was shown in Ref. 7 that there exists an asymptotic limit from
Eq. ~1.2! to a certain modulation equation for envelope waves. This equation contains a free
parameter, denoted byx and is an integrable equation ifx50.10 It is remarkable that the equations
n50 and x50 are equivalent to Eqs.~1.5! and ~1.6!. The reductions related to Eq.~1.2! are
discussed in Sec. III.

II. MAIN RESULTS

Proposition 2.1:Let v(x,t) satisfy the BO equation,

v t52vvx1Hvxx . ~2.1!
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Let u(x,t) be defined by

u5v1
e

2
~l1v

21l2Hvx1l3x@2vvx1Hvxx# !. ~2.2!

Then,u solves Eq.~1.2! where the coefficients of Eq.~1.2! satisfy the constraints given by Eqs.
~1.5! and ~1.6!. Actually, these coefficients can be parametrized byl1, l2, l3 through the equa-
tions

a5l3 , b152l2 , b25l12l3 , b352l11l222l3 , g52l122l3 . ~2.3!

Proof: This result can be verified by a direct calculation. However, we choose to derive a
more general result which contains the above as a particular case.

LetH(v) denote the ring consisting of smooth functions ofv(x,t), of its x derivatives, of the
action ofH on these functions, and of the multiplication byx on these functions. Letv solve the
equation,

v t5K~v !1eK̃~v !, ~2.4!

whereK,K̃PH. Defineu by the transformation,

u5v1et̃~v !, ~2.5!

wheret̃PH. Then by direct substitution it follows thatu solves the equation,

ut5K~u!1e~K̃~u!1@ t̃~u!,K~u!#L!1O~e2!. ~2.6!

Here [A,B] L denotes the Lie bracket ofA,BPH, defined by

@A~u!,B~u!#L5A8@B#~u!2B8@A#~u!, ~2.7!

and where prime denotes Frechet differentiation, i.e.,

A8@B#~u!5
]

]e
A@u1eB~u!#U

e50

. ~2.8!

In the particular case whenK̃50, t̃ is given by theO~e! terms of Eq.~2.2!, andK is the
right-hand side of the BO equation, i.e.,

K~v !52vvx1Hvxx , ~2.9!

then Eq.~2.6! becomes Eq.~1.2! with its parameters given by Eq.~2.3!. Eliminating thel’s from
~2.3! we obtain Eqs.~1.5! and ~1.6!.

Proposition 2.2:Let v satisfy the integrable equation

v t5K~v !1eaK1~v !, ~2.10!

whereK(v) is given by Eq.~2.9!, andK1(v) is defined by

K1~v !5@vxx2
3
2~vHvx1Hvvx!2v3#x . ~2.11!

Defineu by

u5v1
e

2
~m1v

21m2Hvx!. ~2.12!
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Then,u solves Eq.~1.2!, where the coefficients satisfy the constraints given by Eqs.~1.5! and
~1.6!. Actually, these coefficients can be parametrized by

b152 3
2a2m2 , b25m1 , b352 3

2a2m11m2 , g523a2m1 . ~2.13!

Proof: This result is a particular case of the more general result presented in the proof of
Proposition 2.1.

Remark 2.1:~a! Equation~2.10! is integrable becauseK1 is the first commuting flow of the
BO equation, i.e.,

@K,K1#L50. ~2.14!

~b! Let t(u)PH be defined by

t5u21 3
2Hux1x@2uux1Huxx#. ~2.15!

This function is themastersymmetryof the BO equation.6 It has the defining property that

K1~u!5 1
2 @t,K#L . ~2.16!

The terms ofK1(u) differ from theO~e! terms of Eq.~1.2! only in their numerical coefficients.
Thus, in order to find the form of the transformationt̃(u) in ~2.5! it is natural to replace the
numerical coefficients oft(u) by arbitrary constants; in this wayt(u) becomes theO~e! term of
Eq. ~2.2!.

~c! If the coefficients of Eq.~1.2! are defined by Eq.~1.4!, the constraints~1.5! and~1.6! are
not satisfied. However, even in this case, Eq.~2.2! defines a three parameter group of infinitesimal
transformations which maps Eq.~1.2! to itself. Using this group of transformations it is possible to
show that the equations for the velocity amplitude, and for the fluid interface displacement,
derived in Refs. 7 and 8 respectively, are equivalent.

Proposition 2.3:Let aj (t) and Xj (t) be complex valued scalar functions oft, aj* (t) and
Xj* (t) denote their complex conjugation,j51,...,N, and assume that ImXj,0. Equation~1.2!
admits the pole-decomposition solution

u5(
j51

N F ia j~ t !

x2Xj~ t !
2

ia j* ~ t !

x2Xj* ~ t !G , ~2.17!

if and only if: ~a! The coefficients of Eq.~1.2! satisfy Eqs.~1.5! and ~1.6!;
~b! aj is given by

aj512
eb2

2
Ẋj1O~e2!; ~2.18!

~c! Xj satisfy the perturbed Calogero–Moser dynamical system,

Ẍj58(
k

8
1

~Xj2Xk!
3 112ea(

k
8

Ẋj1Ẋk

~Xj2Xk!
3 1O~e2!, ~2.19!

where Ẋj5dXj /dt, Ẍj5d2Xj /dt
2, and the sign(k8 denotes summation overk from 1 toN ex-

cluding j .
Proof: Substituting the pole expansion~2.17! into ~1.2! one finds a fourth-order polynomial in

terms of (x2Xj )
2n. Equating the coefficients of the terms withn54 andn51 to zero it follows

that
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6a13b112b213b32g50, ~2.20!

and

@b11b21b32g#Ẍj28b2(
k

8
1

~Xj2Xk!
3 50. ~2.21!

The O~1! term of Eq. ~1.2! is the BO equation, thus to the leading order
Ẍj 5 8(k8(Xj 2 Xk)

23.11 Substituting this expression into Eq.~2.21!, we find that Eqs.~2.20! and
~2.21! yield ~1.5! and~1.6!. Using these two equations, the coefficient of the term (x2Xj )

2n with
n53 implies Eq.~2.18!, while that withn52 implies

iẊ j52(
k

8
1

Xj2Xk
22(

k

1

Xj2Xk*
1 i eF23aS (

k
(
l

9
1

~Xj2Xk!~Xj2Xl !

22(
k

8 (
l

1

~Xj2Xk!~Xj2Xl* !
1(

k
(
l

1

~Xj2Xk* !~Xj2Xl* ! D
1~b32b123b2!(

k

1

~Xj2Xk* !2G1O~e2!; ~2.22!

the sign(k( l9 denotes summation over allk andl from 1 toN which are not equal toj and to each
other. Equations~2.22! are different from those derived by Case11 from the integrable equation
~2.10! where the lastO~e! term in Eq. ~2.22! is absent. However, differentiating~2.22! with
respect tot and using the pole-decomposition technique discussed in Ref. 12, it can be shown that
this term cancels out toO~e2!, and Eq.~2.22! reduces to~2.19!.

Remark 2.2:~a! Let Yj , j51,...,N, satisfy the integrable Calogero–Moser dynamical system,

Ÿj58(
k

8
1

~Yj2Yk!
3 . ~2.23!

DefineXj by

Xj5Yj1
ea

2
YjẎj . ~2.24!

Then,Xj satisfy Eq.~2.19! to O~e2!. We note that the transformation~2.24! also follows from
Proposition 2.1. Indeed, sincev satisfies the BO equation~2.1!, it admits the pole decomposition,

v5(
j51

N F i

x2Yj~ t !
2

i

x2Yj* ~ t !G . ~2.25!

Substituting this expansion and the corresponding one foru @see~2.17!# into ~2.2! with l15a1b2,
l252b1, andl35a we find that Eq.~2.2! reduces to~2.24!.

~b! The pole decomposition of Eq.~1.2! yields an integrable dynamical systems if the coef-
ficients satisfy the constraints given by Eq.~1.5! and ~1.6!. This provides further evidence that
these constraints are necessary and sufficient conditions for the asymptotic integrability of Eq.
~1.2!. Furthermore, explicit soliton and periodic wave solutions of this equation can be found in
the integrable case by means of the pole-decomposition representation~2.17! ~see Ref. 11!.

3419Fokas, Grimshaw, and Pelinovsky: On asymptotic integrability

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



III. RELATED REDUCTIONS

In this section we discuss the integrability of certain equations related to Eq.~1.2!.
Reduction 3.1:Let u be analytic in the upper half plane of the complex extension ofx. Then

Hu5 iu, and Eq.~1.2! reduces to the complex perturbed Burgers equation

ut52uux1 iuxx1e@auxxx1 i ~b11b3!ux
21 i ~b11b21b3!uuxx1gu2ux#1O~e2!. ~3.1!

It can be shown that ifv satisfies the complex Burgers equation

v t52vvx1 ivxx , ~3.2!

and if u is defined by

u5v1
e

2
~n1v

21n2vx]
21v1n3x@2vvx1 ivxx# !, ~3.3!

thenu satisfies Eq.~3.1!, where the coefficients of Eq.~3.1! satisfy the single constraint

n53a13b11b213b322g50. ~3.4!

We note that the constraint~3.4! does not coincide with either Eq.~1.5! or ~1.6!. Moreover,
Eq. ~3.3! contains a nonlocal term, which is absent in Eq.~2.2!. However, if the coefficients of Eq.
~1.2! satisfy Eqs.~1.5! and ~1.6!, then bothn250 andn50 are valid.

Reduction 3.2:Let u be expanded in the asymptotic form

u5Ae@C~X,T!exp@ i ~x2t !#1c.c.#1O~e!, X5e~x22t !, T5e2t, ~3.5!

where c.c. denotes complex conjugation. Then, it can be shown7 that the functionC(X,T) satisfies
the equation

iCT1CXX1C@ i1H#~ uCu2!X1xuCu2C50, ~3.6!

where

x53a12b11b212b32g. ~3.7!

It was shown in Ref. 10 that ifx50 then Eq.~3.6! is integrable.@If one applies the ansatz~3.5!
to the BO equation instead of Eq.~1.2!, one finds Eq.~3.6! with x50.# We note that if Eqs.~1.5!
and ~1.6! are valid, thenx50. Furthermore, Eqs.~3.4! and ~3.7! are equivalent to Eqs.~1.5! and
~1.6!.

Reduction 3.3:Let the functionu be represented asymptotically ast→6` by

u5u0~u1
6 ;a1!1u0~u2

6 ;a2!1O~e!, u j
65aj~x1v j t1eXj

6!, j51,2, ~3.8!

whereu0(u j
6 ;aj ) is the profile of the BO~algebraic! soliton solution. The parametersaj , v j , and

Xj
6 describe the amplitude, the velocity, and the phase shift of thej soliton, respectively. Assume

that a1,a2 , which impliesv1,v2 . Then, the velocities of the individual BO solitons are ex-
pressed through their amplitudes by the equations

v j5aj2
eaj

2

4
~6a17b116b215b325g!1O~e2!. ~3.9!

Furthermore, the total phase shifts of the BO soliton interactions,DXj5Xj
12Xj

2, are given by
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DX152
p

~a11a2!
2 @~3a1b11b21b3!~2a1

214a1a222a2
2!

1~b11b22g!~3a1
216a1a22a2

2!#, ~3.10!

DX252
p

~a11a2!
2 @~3a1b11b21b3!~22a1

214a1a212a2
2!

1~b11b22g!~2a1
216a1a213a2

2!#. ~3.11!

When the coefficients of Eq.~1.2! are given by Eqs.~1.4!, the total phase shifts~3.10! and
~3.11! reduce to those found by Matsuno.9 Here we have generalized his result to show that the
total phase shifts exactly vanish only if the coefficients in~1.2! satisfy Eqs.~1.5! and ~1.6!. This
is consistent with the fact that in this case, the interaction of the BO~algebraic! solitons is
described by the integrable Calogero–Moser system~2.23! which does not produce any phase
shifts of the algebraic soliton interactions.
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The behavior of solitons in integrable theories is strongly constrained by the inte-
grability of the theory; i.e., by the existence of an infinite number of conserved
quantities that these theories are known to possess. One usually expects the scat-
tering of solitons in such theories to be rather simple, i.e., trivial. By contrast, in
this paper we generate new soliton solutions for the planar integrable chiral model
whose scattering properties are highly nontrivial; more precisely, in head-on colli-
sions ofN indistinguishable solitons the scattering angle~of the emerging struc-
tures relative to the incoming ones! is p/N. We also generate soliton–antisoliton
solutions with elastic scattering; in particular, a head-on collision of a soliton and
an antisoliton resulting in 90° scattering. ©1996 American Institute of Physics.
@S0022-2488~96!02007-5#

I. INTRODUCTION

In this paper we study certain exact soliton solutions of an integrable system. Before any
detailed discussion, and to avoid confusion later on, it is worthwhile clearing up a small point of
terminology: the wordsolitonswas introduced by mathematicians to describe lumps of energy that
were stable to perturbations and did not change either velocity or shape when colliding with each
other. However, in recent literature all sorts of localized energy configurations have been called
solitons. We shall go along this looser definition. By a soliton we shall mean a lump of energy that
moves but we shall not imply stability of the shape or the velocity or a simple behavior in
collision.

An interesting problem is to look at the scattering properties of two or more solitons colliding.
In some known systems with nontrivial topology, the collision of two solitons is inelastic~some
radiation is emitted! and nontrivial~a head-on collision results in 90° scattering!; all this has been
observed analytically1,2 and numerically.3–6 One can construct explicit time-dependent solutions
only in very special, so-called integrable models. Usually in these models extended objects inter-
act trivially, in the sense that they pass through each other with no lasting change in velocity or
shape~i.e., they behave as genuine solitons!. Some examples in~211! dimensions are the
Kadomtsev–Petviashvili equation7 and the integrable chiral model.8 The last system is the subject
of this paper and will be described below. Until now, nontrivial scattering of solitons occurs
mostly in nonintegrable systems, which is far from simple. The question that arises is whether this
type of scattering can occur in integrable models too. There are some limited examples of inte-
grable systems where soliton dynamics can be nontrivial. In~111! dimensions there are many
models that possess nontrivial soliton-like solutions~cf. Ref. 9!; like the boomeron solutions,10

which are solitons with time-dependent velocities. In~211! dimensions there are the dromion
solutions11 of the Davey–Stewartson equation, which decay exponentially in both spatial coordi-
nates and interact in a nontrivial manner;12 and the soliton solutions13 of the Kadomtsev–
Petviashvili equations, whose scattering properties are highly nontrivial.

In the present work we are going to construct families of soliton solutions for the integrable
~211!-dimensional chiral model and observe the occurrence of different types of behavior. This
happens since the solitons in this system have internal degrees of freedom that determine their
orientation in space; do not affect the initial energy density; and are important in understanding the

0022-2488/96/37(7)/3422/20/$10.00
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evolution as a whole. Therefore, they can interact either trivially or nontrivially, depending on the
orientation of these internal parameters and on the values of the impact parameter defined as the
distance of closest of approach between their centers in the absence of interaction. Namely, if two
initial soliton-like structures are sent toward each other at zero impact parameter, then, as most
numerical simulations have shown, the outgoing structures emerge at 90°.

To proceed further let us specify the system. The modified SU~2! chiral model studied by
Ward8 is given by the field equation

]m~J21Jm!2 1
2Vaeamn@J21Jm ,J

21Jn#50. ~1!

HereJ takes values in the SU~2! group and is thought of as a 232 unitary matrix of functions of
the space–time coordinates onR211: xm5(x0,x1,x2)5(t,x,y) with detJ51. Greek letters are
space–time indices, taking values 0, 1, 2,]m denotes partial differentiation with respect toxm,
while gapsJm[]mJ. The quantityeamn is the alternating tensor of three indices withe01251.
Finally, Va is a unit vector in space–time. The conformal properties ofVa determine whether the
symmetry group is SO~2! or SO~1,1! ~depending on whetherVa is time-like or space-like!.

Ward8 choosesVa to have the componentsVa5~0,1,0!, the space-like case, so that~1! is a
chiral equation with torsion term and has the same conserved energy-momentum vector as the
chiral field equation. In fact, the corresponding energy density is

E52 1
2 tr @~J21Jt!

21~J21Jx!
21~J21Jy!

2#. ~2!

Here tr denotes the matrix trace. It should be emphasized thatE is a positive-defined functional of
J, and hence a conserved energy exists that is the integral of the energy density over the space-like
plane x05const. The boundary conditions are chosen so that the field configuration has finite
energy. Consequently, we require thatJ be everywhere smooth and that

J5J01J1~u!r211O~r22!, ~3!

at spatial infinity, withx1 iy5reiu. HereJ0 is a constant matrix, andJ1 depends only onu ~no
time dependence!.

The ensuing system whenVa is i times a time-like vector instead of space-like has been
studied in Ref. 14. Equation~1! admits solitons, localized in two dimensions, with trivial scatter-
ing, i.e., each soliton suffers no change in velocity and no phase shift upon scattering.8,14 It is the
purpose of this paper to construct new soliton solutions for~1!, and investigate their scattering
behavior. Such solutions are localized along the direction of motion; they are not, however, of
constant size: their height, which corresponds to the maximum of the energy densityE , is time
dependent.

The rest of the paper is arranged as follows. In the next section we shall briefly discuss the
integrability properties of~1!, and write down a family of multisoliton solutions as configurations
that are the limiting cases of the ones already obtained using the standard method ofRiemann
problem with zeros.8 In Sec. III we construct two families of multisoliton solutions with nontrivial
scattering; in particular, for the first one we prove that in all head-on collisions theN moving
structures undergop/N scattering. In Sec. IV we construct a mixture of soliton–antisoliton solu-
tions, and in Sec. V we discuss their dynamics and scattering properties. We finish the paper with
a short section containing our conclusions.

II. CONSTRUCTION OF SOLITON SOLUTIONS

The integrable nature of Eq.~1! means that there is a variety of methods for constructing exact
solutions. Together withRiemann problem with zero,8 both twistor techniques15 and a fullinverse
scattering formalism16 have been applied to the model. In this section we indicate a general
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method for constructing soliton solutions of the integrable chiral model~1!. The technique is a
variation of that Ref. 8, 17, following a pioneering idea of Zakharov and his collaborators.18

The nonlinear equation~1! is integrable in a sense that it may be written as the compatibility
condition for the following linear system:

Lc[~l]x2]u!c5Ac,
~4!

Mc[~l]v2]x!c5Bc.

HerelPC, (u,v,x) are coordinates onR211 with u5(t1y)/2, v5(t2y)/2, A andB are 232
anti-Hermitian trace-free matrices depending only on (u,v,x), andc(l,u,v,x) is an unimodular
232 matrix function satisfying the reality condition

c~l,u,v,x!c~l̄,u,v,x!†5I , ~5!

where the overbar denotes the complex conjugate,† denotes the complex conjugate transpose
matrix, andI is the 232 identity matrix. The system~4! is overdetermined, and in order for a
solutionc to exist,A andB have to satisfy the integrability conditions, which are

Bx5Av , Ax2Bu2@A, B#50. ~6!

If we put J(u,v,x)5c(l50,u,v,x)21, where c is a solution of the system~4!, we get by
comparing~4! and ~6! that

A5J21Jv , B5J21Jx . ~7!

Therefore, the integrability condition for~4! implies that there exists a fieldJ that satisfies the
equation of motion~1!; and moreover, the reality condition onc ensures thatJ is unitary.

Using the standard method ofRiemann problem with zeros, in order to construct the multi-
soliton solution, one may assume that the functionc has simple poles inl, or in other words, must
possess the form

c~l!5I1 (
k51

n
Mk

l2mk
, ~8!

whereMk are 232 matrices independent of the complex parameterl, n is the number of solitons,
and the complex parametermk determines the velocity of thekth soliton. The components of the
matrix Mk are given in terms of a rational functionf k of the complex variable,
vk5x1mku1mk

21v. @Roughly speaking,f k(vk) describes the shape of thekth soliton.# In fact,
the matrixMk ~cf. Ref. 8! has the form

Mk52(
l51

n

~G21!klm̄a
l mb

k , ~9!

with G21 the inverse of

Gkl5 (
a51

2

~m̄k2m l !
21m̄a

kma
l . ~10!

Herema
k are holomorphic functions ofvk , given byma

k5(m1
k ,m2

k)5(1, f k). These solitons pass
each other without any change of direction or phase shift. Infinite energy extended wave
solutions19 may be constructed by takingf k to be an exponential function ofvk . Such extended
wave solutions suffer a phase shift upon scattering, although again there is no change in velocity.
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All this assumes that the parametersmk are distinct, and alsom̄kÞm l for all k, l . In this paper
examples are given of two generalizations of these constructions: one involving higher-order poles
in mk and the other wherem̄kÞm l .

Let us look at an example in which the functionc has a a double pole inl, and no other poles.
So we takec to have the form

c5I1 (
k51

2
Rk

~l2m!k
, ~11!

whereRk are 232 matrices independent ofl. ~This hypothesis can be generalized by taking the
functionc to have a pole of ordern in l.!

It has been proved17 that c given by ~11! satisfies the reality condition~5! if and only if it
factorizes as

c~l!5S I2 ~m̄2m!

~l2m!

q1
†

^q1
iq1i2 D S I2 ~m̄2m!

~l2m!

q2
†

^q2
iq2i2 D , ~12!

whereqk are two-dimensional row vectors andiqki2 5 qk • qk
† .

The qk have to satisfy a condition, which amounts to saying the matricesA5(Lc)c21 and
B5(Mc)c21 are independent ofl. One way of obtainingqk with this property is as a limit of the
simple-pole case~8! with n52. The idea is to take a limitmk→m. In order to end up with a smooth
solutionc for all (u,v,x), it is necessary thatf 2(v2)2 f 1(v1)→0 in this limit.

In our case, with n52, we put m15m1e, m25m2e, and write f 1(v1)5 f (v1),
f 2(v2)5 f (v2), with f being a rational function of one variable. In the limite→0, c has the form
~12!, with

q15~11u f u2!~1, f !1w~m̄2m!~ f̄ ,21!,
~13!

q25~1, f !.

Here f is a rational function ofv5x1mu1m21v, w5(u2m22v) f 8~v!, while f 8~v! denotes the
derivative of f ~v! with respect to its argument. As a result, we have a solutionJ5c~l50!21

depending on the complex parameterm and on the arbitrary functionf . In fact, it has the form of
the following product:

J5S I1 ~m̄2m!

m

q2
†

^q2
iq2i2 D S I1 ~m̄2m!

m

q1
†

^q1
iq1i2 D , ~14!

with qk given by~13!. Notice thatJ takes values inSU~2!; is smooth everywhere onR211 ~mainly
because the two vectorsq1 andq2 are nowhere zero!; it satisfies the boundary condition~3!; and
the equation of motion~1!.

To start with, and in order to illustrate the above family of soliton solutions, let us examine
two simple cases, by giving specific values to the parametersm and f ~v!. ~The complex parameter
m determines the velocity of the ‘‘center-of-mass’’ of the system.!

• Let us takem5i ~which corresponds to the ‘‘center-of-mass’’ of the system being stationary!
and f ~v!5v, thusv5z andw5t, wherez5x1 iy ; r 25zz̄. Therefore the row vectors~13! become

q15~11r 2!~1, z!22i t ~ z̄,21!,
~15!

q25~1, z!.
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In this time-dependent solution, fort negative, a ring structure with reducing radius is ob-
tained, which deforms to a single peak att50 and thereafter expands again to a ring. Figure 1
presents few pictures of the corresponding energy density at some representative values of time.
Ring structures occur in the soliton scattering of many nonintegrable planar systems3,5 and are an
approximation of two solitons.

This picture can be confirmed by looking at the energy density of the solution, which is

FIG. 1. The energy densityE ~16! at increasing times.
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E516
r 412r 214t2~2r 211!11

~r 412r 214t211!2
. ~16!

Notice that the energy density is time reversible and rotationally symmetric~see below!. For large
~positive! t, the height of the ring~maximum ofE! is proportional to 1/t, while its radius is
proportional toAt.

• Accordingly, let us takem5i and f ~v!5v2. Thus, the row vectors~13! are

q15~11r 4!~1, z2!24i tz~ z̄ 2,21!,
~17!

q25~1, z2!.

Here, for negativet, a single peak occurs with an additional ring, which changes to a ring structure
at t50 and reverts back to the original form, for positivet ~see Fig. 2!. However, these rings are
not radiation since they travel with speed less than that of light. In fact, for large~positive! t, their
velocity is approximately proportional tot22/3. ~Note that we have set the velocity of the light,c,
equal to the unity, so that in all our calculations we can use dimensionless quantities.!

This leads to an energy density, which is

E564
r 10118t2r 812r 614t2r 41r 212t2

~r 812r 4116t2r 211!2
. ~18!

Again,E has the same symmetries as in~16!. For large~positive! t, the height of the soliton
peak is proportional tot2 and its radius is proportional to 1/t; while the soliton ring spread out,
becoming broader and broader, with height proportional tot22/3 and radius proportional tot1/3.

Finally, a general concluding remark should be made. Although~1! is not rotationally sym-
metric in thexy plane; whenf (z)5zp the field J ~13,14! is invariant under the transformation
z→eifz, since

J → J85S eifp/2 0

0 e2 ifp/2D J S e2 ifp/2 0

0 eifp/2D . ~19!

This transformation does not affect the equation of motion~1! due to the chiral symmetryJ→kJt,
wherek andt are constantSU~2! matrices. The main features of this time-dependent solution may
be inferred as follows. Ifr is large, the fieldJ is close to its asymptotic valueJ0, as long as
2t f 8/u f u2→0. But as 2tu f 8u/u f u2'1, J departs from its asymptotic valueJ0 and a ring structure
emerges with radius proportional to (2tp)1/(p11).

III. SOLITON–SOLITON SCATTERING

We now move on to the more interesting question of scattering processes. In fact, we will use
the method of Sec. II to construct solutions of~1! representing scattering solitons. We will see
that, in all head-on collisions ofN moving solitons the scattering angle isp/N. Moreover, when
theN solitons are very close together, and in particular, when they are on top of each other, theN
lumps that represent them merge together to form a ring-like structure. Then, instead of moving
toward the center, they emerge from the ring in a direction that bisects the angle formed by the
incoming ones. As we have already mentioned this nontrivial scattering is not usual in an inte-
grable theory, but is exceptional.

The scattering solutions arise if we take a solution of the simple-pole case~8! with n52, put
m15m1e, m25m2e, and take the limite→0. The constraintf 2(v2)2 f 1~v1!→0 ase→0 has to be
imposed, in order for the resulting solutionc to be smooth for all (u,v,x). So let us write
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f 1(v1)5 f (v1)1eh(v1), f 2(v2)5 f (v2)2eh(v2), wheref andh are both rational functions of
one variable~the examples of the previous section hadh50!. Once againJ is given by~14!, with
the two-vectorsqk given by

q15~11u f u2!~1, f !1q~m̄2m!~ f̄ ,21!,
~20!

q25~1, f !,

FIG. 2. The energy densityE ~18! at various times.
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whereq5w1h~v!. So this solution belongs to a large family, since one may takef andh to be
any rational meromorphic functions ofv. Note thatJ is smooth onR211 and satisfies its boundary
condition, irrespective of the choice off andh.

It may seem strange that one can take the limit of a family of soliton solutions with trivial
scattering, and obtain a new one with nontrivial scattering. Thus, it is interesting to study how the
solitons are affected by varyinge. To do so, let us take a solution of the simple-pole case~8! with
n52, putm15i1e, m25i2e, while taking f k5vk ; and study how the configuration of the two
initial well-separated solitons changes ase→0 at a fixed time~t5215!. Figure 3 shows that as

FIG. 3. Energy density at various values ofe for a system of two solitons~t5215!.
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e→0 the solitons disperse, shift, and interact with each other. In other words, their internal degrees
of freedom as well as the impact parameter change in this limit, making the process highly
nontrivial.

As an example, let us present two typical cases.
• Let us takem5i , f ~v!5v, and h~v!5v3, thus q5t1z3. For r large, J is equal to its

asymptotic valueJ0, as long asq/z
3511t/z3'1, but asz approaches any of the three cube roots

of 2t, thenq→0, whileJ departs fromJ0, and three localized solitons emerge. Fort negative, the
three solitons are approximately at the points„~2t!1/3,0…, „2~2t!1/3,6)~2t!1/3…; while for t
positive, the solitons are at~2t1/3,0!, (t1/3,6)t1/3).

More information can be deduced from the energy density, which is

E516@2r 8116r 6119r 412r 2~118xy2t !14t2~112r 2!1118xy4t28x5t

216tx~x22y2!#/@4r 61r 412r 214t21118tx~x223y2!#2. ~21!

The densityE is symmetric under the interchanget°2t, x°2x, andy°2y. For small~nega-
tive! t, the solitons form an intermediate state having the shape of a ring with three maxima on the
direction of the incoming solitons that deforms to a circularly symmetric ring att50 and then
energy seems to flow around, until three other maxima are formed in the transverse direction, for
small ~positive! t.

Figure 4 shows clearly the intermediate states with three maxima. The three new maxima then
give rise to three new solitons emerging at 60° to the original direction of motion. During the
intermediate phase solitons lose their identity.

Finally, something has to be said about their size. For large~positive! t, their height is
proportional tot24/3, their radius is proportional tot1/3, while their speed is proportional tot22/3:
therefore, they spread out and slow down.

• Accordingly, let us takem5i while we choosef ~v!5v2 andh~v!5v3. HereJ departs from
its asymptotic valueJ0 whenz approaches the values6A22t or zero@sinceq5z(2t1z2)→0#;
and~again! three localized solitons emerge. In this case though, ift is negative, all three of them
are on thex axis atx ' 6A22t and at the origin; while ift is positive, they are on they axis at
y ' 6A2t and at the origin. So the picture consists of three solitons: a static one at the origin, with
the other two accelerating toward the origin, scattering at right angles and then decelerating as
they separate.

This can be observed from the energy density, which is

E532@r 1212r 2~r 81r 611!136t2r 814r 619r 418t2r 414t2

112t~x102y10!14t~x22y2!~312x2y216x4y4!

14t~x62y6!~9x2y222!2y10#/@r 814r 612r 4116tr 2~ t1x22y2!11#2. ~22!

Here E is symmetric under the interchanget°2t, x
y; therefore the collision is time
symmetric, with the only effect the 90° scattering~no phase shift; no radiation!. For large~posi-
tive! t, the height of the static soliton is proportional tot2 and its radius is proportional to 1/t;
while the moving solitons expand with height proportional tot22/3 and radius proportional tot1/3.

In Fig. 5 we present some pictures of the total energy densities of three solitons during a
typical nontrivial evolution.

In principle one should be able to visualize the emerging soliton structures whenf (v)5vp

andh(v)5vq, i.e., are rational of degreep, qPN, respectively. In fact, forq.p the configura-
tion consists of~p21! static solitons at the ‘‘center-of-mass’’ of the system~if more than one, a
ring structure is formed! accompanied byN5q2p11 solitons accelerating toward the ones in the
middle, scattering at an angle ofp/N, and then decelerating as they separate. This follows from the
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fact that the fieldJ departs from its asymptotic valueJ0 whenq5v (p21)(p(u2m22v)1vN)→0,
which is true when eitherv(p21)50 orvN1p(u2m22v)50; and this is approximately where the
solitons are located.

We conclude this section by investigating the corresponding case wherec~l! has a triple pole
~and no others!. Therefore, it is taken to have the form

c~l!5I1 (
k51

3
R2

~l2m!k
. ~23!

FIG. 4. Energy density at increasing times for a system of three solitons with 60° angle scattering.
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As we have already mentioned, the reality condition~5! is satisfied if and only ifc factorizes into
three simple factors of the following type:

c~l!5 i S I2 ~m̄2m!

~l2m!

q1
†

^q1
iq1i2 D S I2 ~m̄2m!

~l2m!

q2
†

^q2
iq2i2 D S I2 ~m̄2m!

~l2m!

q3
†

^q3
iq3i2 D , ~24!

FIG. 5. Energy density at various times for the scattering of three solitons, with one being static at the origin.
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for some two-vectorsqk . The requirement that the matricesA5(Lc)c21 and B5(Mc)c21

should be independent ofl imposes differential equations onqk ; which are three nonlinear
equations, and it seems difficult to find their general solution.

One way of proceeding is to take a solution for the simple-pole case~8! with n53, put
m15i1e, m25i , m35i2e, and take the limite→0. In order to obtain a smooth solutionc for all
(u,v,x), it is necessary thatf 1(v1)2 f 2(v2)→0, f 1(v1)2 f 3(v3)→0, f 2(v2)2 f 3(v3)→0 as
e→0. So let us write f 1(v1)5 f (v1)1eh(v1)1e2g(v1), f 2(v2)5 f (v2), f 3(v3)
5 f (v3)2eh(v3)1e2g(v3), wheref , h, andg are rational functions of one variable. On taking
the limit, we obtain ac of the form~24!, smooth onR211 and such that the matricesA andB are
independent ofl.

Consequently,J5c~0!21 is a smooth solution of~1! of the form

J5 i S I2 2q3
†

^q3
iq3i2 D S I2 2q2

†
^q2

iq2i2 D S I2 2q1
†

^q1
iq1i2 D , ~25!

with qk being in terms off (z), h(z), andg(z) by

q15~11u f u2!2~1, f !24i ~b1 id !~11u f u2!~ f̄ ,21!24b2~ f̄ 2,2 f̄22i b̄ !28idb̄~1, f !,

q25~11u f u2!~1, f !22ib~ f̄ ,21!, ~26!

q35~1, f !,

where b5t f 8(z)1h(z) and d5t2f 9(z)/21 i (t2y) f 8(z)/21th8(z)1g(z). Note that the two-
vectorsq2 , q3 here correspond to the ones given by~20! for m5i , respectively.

Let us examine a sample example of this solution, since we may takef , h, andg to be any
rational meromorphic function ofz.

• Let us takef (z)50, h(z)5z andg(z)5z2; thusb5z andd5t1z2. This solution consists
of two solitons coming in along they axis merging to form a peak at the origin and then two new
solitons emerging along thex axis. Figure 6 illustrates what happens neart50.

The energy density of the system is

E532
80r 4132~r 21t2!1256t2r 2264t~x22y2!1128tyr228y13

@32r 4112r 2216yr2116t2116ty132t~x22y2!11#2
, ~27!

which has a reflection symmetry around thex axis. For large~positive! t, E is peaked at two points
on they axis, namelyy ' 6At. Moreover, the height of the corresponding solitons is proportional
to 1/t, and their radius is proportional toAt; which means that they axis asymmetry vanishes at
t→`.

IV. CONSTRUCTION OF SOLITON–ANTISOLITON SOLUTIONS

In this section we construct a large family of solutions, which, as we will argue later, can be
though of as representing soliton–antisoliton field configurations. Roughly speaking, solitons cor-
respond tof being a function of the variablez, and antisolitons correspond to a function ofz̄.

One way to generate a soliton–antisoliton solution of~1!, is to assume thatc~l! has the form

c~l!5I1
n1^m1

~l2 i !
1
n2^m2

~l1 i !
. ~28!

Herenk, mk for k51, 2 are complex-valued two-vector functions of (t,z,z̄) ~not depending onl!.
The idea is to find then1

1 ,...,m1
1,..., such that the reality condition~5! holds, and such that the

matricesA5(Lc)c21 andB5(Mc)c21 are independent ofl. One way of proceeding is to take
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the solution~8! with n52, put m15i1e, m252i2e, and take the limite→0. In order for the
resultingc to be smooth onR211, it is necessary to takef 15 f ~v1!, f 2521/f̄ (v2)2eh(v2),
wheref andh are rational functions of one variable. On taking the limite→0, we then obtain ac
as in ~28! with mk5(m1

k ,m2
k) being holomorphic functions ofz ~or z̄!, through the relations

m15(1, f ), m25(2 f̄ ,1), while

n15
2i ~11u f u2!

~11u f u2!21uwu2
m̄11

2w̄

~11u f u2!21uwu2
m̄2,

FIG. 6. Energy density at increasing times whenc~l! has a triple pole~and no others!.
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n252
2w

~11u f u2!21uwu2
m̄12

2i ~11u f u2!
~11u f u2!21uwu2

m̄2, ~29!

with

w[h̄ f 212t f 8. ~30!

So we generate a solutionJ5c~l50!21, which depends on the two arbitrary rational functions
f5 f (z) andh5h( z̄). This solution has the form

J5
1

~11u f u2!21uwu2 F uwu212i ~ f w̄1 f̄ w!2~11u f u2!2 22i ~w2 f 2w̄!

22i ~w̄2 f̄ 2w! uwu222i ~ f w̄1 f̄ w!2~11u f u2!2G ,
~31!

with w given by~30!. In general, by takingf (z)5zp andh( z̄)5 z̄ q, wherep is a positive integer
and q is a non-negative integer; the energy, obtained by integrating~2!, is E5(2p1q)8p.
Roughly speaking, the solution looks like (2p1q) lumps at arbitrary positions in thexy plane;
which as we are going to see are a combination of solitons and antisolitons.

A topological charge may be defined for the fieldJ ~31! by exploiting the connection of it
with theO~3! s-model. The unmodified chiral model@i.e., ~1! with Va5~0,0,0!# is equivalent to
theO~4! s-model20 through the relation

J5If01 is–f, ~32!

wheres are the usual Pauli matrices and~f0,f!5~f0,f1,f2,f3! is a four vector of real fields that
are constrained to lie onS3, i.e.,f0

21f–f51. The only static finite energy solutions of theO~4!
s- model correspond to the embedding of theO~3! s model.21 Therefore the only static solutions
of ~1! are theO~3! embeddings that we shall describe. This is because for the one-soliton solution
~static or Lorentz boosted in they axis! the term in~1! proportional toVa is zero, so the system
behaves like theO~4! model, for which theO~3! embedding is totally geodesic.@However, for
time-dependent configurations, the term proportional toVa is nonzero and will affect the evolution
of the field, which will in general not lie in anO~3! subspace ofO~4!.#

To proceed further, let us mention the topological aspects of theO~3! andO~4! s-models. In
studying soliton-like solutions, we require that the field configuration has finite energy. This
implies that the field must take the same value at all points of spatial infinity, so that space is
compactified fromR2 to S2. At fixed time, the field is a map fromS2 into the target space. Now
for theO~3! model, the field is a mapf: S2→S2, and due to the homotopy relation

p2~S
2!5Z, ~33!

such maps are classified by an integer winding numberN , which is a conserved topological
charge. An expression for this charge is given by

N 5~8p!21E e i jf–~] if`] jf! d2x, ~34!

wherei51, 2 with xi5(x,y).
Although, for theO~4! model @the same argument is valid for~1! due to the topological

aspects of the theory#, the field at fixed time is a map~f0,f!: S2→S3 and the corresponding
homotopy relation is

p2~S
3!50, ~35!
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so there is no winding number. However, for soliton solutions that correspond to some initial
embedding ofO~3! space intoO~4!, there is a useful topological quantity, as we are going to see.

Consider theO~4! configuration, which at some time corresponds to anO~3! embedding,
which we choose to bef050 for definiteness. At this time the field is restricted to anS2 equator
of the possibleS3 target space. Suppose that the field never maps to the antipodal points
$A1,A2%5$f051, f0521% at any time, so the target space isS0

35S32$A1,A2%. Now
S0
3'S23R, and thus we have the homotopy relation

p2~S0
3!5p2~S

23R!5p2~S
2! % p2~R!5Z, ~36!

and therefore a topological winding number exists. An expression for this winding number is easy
to give, since it is the winding number of the map after projection onto the chosenS2 equator, i.e.,

N 85~8p!21E e i jf8–~] if8`] jf8! d2x, ~37!

wheref85f/ufu. If the field does map to the antipodal points$A1,A2% at some time the winding
number is ill defined at this time, and if considered as a function of timeN 8 will be integer valued
but may suffer discontinuous jumps as the field moves through the antipodal points. In the fol-
lowing examples, before comparing the solutionJ given by ~31! with theO~3! embedding it is
convenient to perform the transformationJ→MJ with

M5~& !21F 1 1

21 1G , ~38!

so that the evolution of the field remains close to theO~3! embedding.

V. SOLITON–ANTISOLITON SCATTERING

Usually in the nonintegrable models, there is an attractive force between solitons of opposite
topological charge. In fact, if the solitons and antisolitons are well separated, then they attract each
other and eventually annihilate into a wave of pure radiation, which spreads with the velocity of
light.3,4 However, the interaction forces between solitons and antisolitons do depend on their
configuration; in particular, they depend on the relative orientation between them in the internal
space. Therefore, the cross section for the soliton–antisoliton elastic scattering is nonzero.~In the
real world, the proton–antiproton elastic scattering is seen in a reasonable fraction of cases.! This
is the first example for which there has been constructed an explicit~since the system is integrable!
solution of elastic soliton–antisoliton scattering in either integrable or nonintegrable model. As a
result, it provides a major link between soliton dynamics in integrable and nonintegrable systems.

The evolution is initially similar to the numerical results obtained through the connection of
the integrable chiral model~1! with theO~3! s-model.20 In particular, a soliton and an antisoliton
are moving along thex axis toward each other at an accelerating rate until they merge at the origin
and form a peak. Note that a peak is formed rather than a ring since the energy is mainly kinetic
when a soliton and an antisoliton merge. However, rather than the peak dissipating in a wave of
radiation it now reforms into two new structures that undergo 90° scattering. In general, in all
head-on collisions ofN moving soliton and antisoliton objects, the scattering angle isp/N degrees
relative to the initial direction of motion.

Next we looked at two cases corresponding to the mixtures of solitons and antisolitons.@The
configurations given by~31! whenh( z̄)50 are equivalent to the ones obtained from„13…, „14…
when f (z)5zp.#
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• First, let us takef (z)5z and h( z̄)51. Roughly speaking, ifr is large,J is close to its
asymptotic valueJ0, as long asw/z

25112t/z2'1; but asz approaches6A22t thenw→0, and
J departs from its asymptotic value: this is where the two structures are located. More precisely,
for negativet, the two objects are on thex axis, approximately atx ' 6A22t; while for positive
t, they are on they axis, approximately aty ' 6A2t. Figure 7 illustrates what happens neart50.

The picture is consistent with the properties of the energy density of the solution, which is

FIG. 7. Energy density at increasing times showing a 90° scattering between a soliton and an antisoliton.
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E516
2r 414r 214t2~112r 2!24t~x22y2!11

@2r 412r 214t~x22y2!14t211#2
. ~39!

Note the symmetry ofE under the interchanget°2t, x
y; the time symmetry of the density
confirms the lack of radiation. The corresponding localized structures are not, however, of con-
stant size: for large~positive! t, their height is proportional to 1/t, while their radius is proportional
to At.

The projected topological chargeN 8 is zero throughout the scattering process; while the
projected topological densityq8, i.e.,

N 85E q8 dx dy, ~40!

has an almost identical distribution~up to a scale! to that of the energy density@see Fig. 8~a!#.
Therefore, the configuration represents a soliton and an antisoliton that are clearly visible as
distinct structures having, respectively,11 and21 units of topological charge concentrated in a
singe lump.

Equation~1! is not Lorentz invariant and indeed is not even radially symmetric due to the
presence of the vectorVa , which picks out a particular direction in space, and therefore one may
expect to find different scattering behavior for more general solutions; e.g., when the soliton and
the antisoliton are moving along thex axis rather that they axis. However, this is not true since
~1! is a reduction of the self-dual Yang–Mills equation inR212, which does have an SO~1,2!
symmetry. Therefore, the SO~2! symmetry of the Yang–Mills system means that any given solu-
tion J, can, in principle, be converted to gauge fields by performing a coordinate rotation~together
with a gauge transformation! and then recover the correspondingJ8 that will describe the same
solution asJ, but with a rotated coordinate system. Indeed, this is what happens by taking

f ~z!5e~2if!z, h~ z̄!51, ~41!

wheref is an angle in thexy-plane. This picture presents a rotated version through any anglef
in the xy plane of the original one~i.e., Fig. 7!.

• Finally, let us takef (z)5z, andh( z̄)5 z̄. The corresponding configuration consists of one
soliton and two antisolitons@see Fig. 8~b!#.

It is interesting to look at the time dependence of various energies in each process. The total
energy, of course, is constant and it is the spatial integral of the following energy density:

E58@r 818r 6111r 414r 228x5t116ty2~x31t !18t2148xy2t12216x2t~x2t !124xty4#/

@r 61r 412r 214t214tx3212xy2t11#2. ~42!

Obviously, the energy densityE is symmetric under the interchanget°2t, x°2x, andy°2y,
only. Again all three structures come together, forming a bell-like structure, and then emerge at an
angle of 60° with respect to the original direction. However, by looking at the maximum ofE we
observe that, for large~positive! t, the height of the localized structures is proportional tot24/3,
while their radius is proportional tot1/3; thus they spread out as they move apart.

Figure 9 shows the results of a head-on collision of the one-soliton two-antisoliton system.
Let us conclude with the observation that, by takingf (z)5zp andh( z̄)5 z̄ q, J departs from

its asymptotic valueJ0 whenw5zp21(2tp1zN)→0 withN5p1q11, which is true when either
z(p21)50 or 2tp1zN50: this is approximately where the lumps are located. Therefore,J repre-
sents a family of a soliton–antisoliton solution, which consists of~p21! static soliton-like objects
at the origin, withN others accelerating toward them, scattering at an angle ofp/N, and then
decelerating as they separate.
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FIG. 8. Topological charge density at increasing times for~a! soliton–antisoliton scattering and~b! one-soliton two-
antisoliton scattering.
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VI. CONCLUSION

The infinite number of conservation laws associated with a given integrable system place
severe constraints upon possible soliton dynamics. The construction of exact analytic multisoliton
solutions with trivial scattering properties is a result of such integrability properties. In this paper
new soliton and soliton–antisoliton solutions have been obtained for the planar integrable chiral
model ~1!. These structures travel with nonconstant velocity; their size is nonconstant; and they

FIG. 9. Energy density of a system consisting of a soliton and two antisolitons at various times.
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interact nontrivially. Such results might be useful for connecting integrable and nonintegrable
systems, which possess soliton solutions. In addition, they indicate the likely occurrence of new
phenomena in higher-dimensional soliton theory that are not present in~111! dimensions.

It seems likely that there are many more interesting solutions still to be found; an open
question being what is the general form of the functionc when it has a higher-order pole inl. One
could, for example, investigate the casen53 for c~l! with a single and a double pole; and
determine the scattering properties of the emerging structures, in terms of their initial velocity and
of the values of the impact parameter. Finally, it would be of great interest to deduce the general
form of the functionc~l! for the soliton–antisoliton case~28! with the only constraint to satisfy
the reality condition~5! and the requirement that the matricesA5(Lc)c21 andB5(Mc)c21 be
independent ofl.
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When the variational method is applied to nonlinear evolution equations for deter-
mining solitary wave dynamics, it is possible for the method to predict the pulse to
be unstable when in fact it is stable. We determine the necessary conditions for this
to occur as well as give sufficient conditions for avoiding such false instabilities.
We also discuss the general problem of applying the method to a general evolution
equation. ©1996 American Institute of Physics.@S0022-2488~96!03406-8#

I. INTRODUCTION

In this work we determine the necessary conditions under which the Rayleigh–Ritz variational
method could give rise to false instabilities when applied to the study of the dynamics of solitary
waves propagating in one spatial dimension. We also give sufficient conditions in order to avoid
such false instabilities.

The variational method was probably first used to study the dynamics of a solitary wave in
Ref. 1. First we will briefly describe the essence of this method. Suppose one is given an evolu-
tional partial differential equation~PDE!

uW t1NW @uW #50, ~1.1!

whereuW (x,t)5(u1(x,t),...,un(x,t))
T, NW is a nonlinear operator containing derivatives with re-

spect to the space coordinate,x, andt is the evolutional coordinate. In most cases, one is unable
to obtain an exact solution of~1.1!, other than the trivial solution, analytically. Then one can
employ the variational method to obtain an approximate analytical solution to the equation of
interest. Here we will only be concerned with the solitary wave, or pulse solutions,uW 0(x,t), such
that uuW 0(x,t)u depends only on the single variableu5(x2Vt), with V being constant, and
uW 0~uuu→`!→0 ~the center of the pulse is atu50!. To apply the variational method, one first takes
a trial function, also called an ansatz, which is not necessarily a solution of~1.1! but still has the
main characteristics of a pulse. Namely, it is usually bell-shaped~for example, a Gaussian!, where
its parameters can be put into correspondence with the pulse’s amplitude, width, phase, etc. These
parameters, called the ‘‘variational parameters,’’ are allowed to change with the time. Then one
inserts the ansatz into the Lagrangian density corresponding to Eq.~1.1! and integrates it overx.
The resulting function is a reduced Lagrangian, which depends explicitly on the variational pa-
rameters and possibly on the time. Finally, one uses the reduced Lagrangian to derive the Euler–
Lagrange equations for the variational parameters. Thus, the study of the dynamics of the solitary
pulse of the original PDE is reduced to solving a finite number ofordinary differential equations
~ODE! and/or algebraic equations.

It is clear that the variational method is merely an optimization procedure: It allows one to
determine the ‘‘optimal’’ parameters of a pulse, with the ansatz for the pulse’s shape being
prescribed by the researcher. The limitations of the variational method do not clearly follow from
the initial assumption, as is the case with ‘‘rigorous’’ methods, such as perturbation methods.

a!Electronic mail address: kaup@sun.mcs.clarkson.edu
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Thus, it is the purpose of this paper to expose possible ‘‘dangers’’ which can arise in applications
of the variational method as well as to show how these ‘‘dangers’’ can be avoided.

After Ref. 1, where the variational method was applied to the analysis of the dynamics of the
soliton of the nonlinear Schro¨dinger equation~NLS!, this method has been used in many other
works ~see, for example, Ref. 2 and references therein!. It has been mostly applied to the NLS-
type equations~or systems of coupled equations!; its results were usually checked against a
numerical solution or a solution obtained by other means, and the variational method has been
found to work reasonably well. However in Ref. 3, Malomed and Tasgal reported that they had
applied the variational method to the equations of the Massive Thirring Model~MTM ! @see Eqs.
~3.1! in Sec. III# and discovered that in a certain sector of the parameter space, the method failed
to give reasonable results for any, even small, times. Namely, they took an ansatz which was a
sum of the exact one-soliton solution of the MTMplussome small variation localized around the
soliton, with this variation being of a rather general form. For some range of the soliton’s param-
eters they found that certain components of this variation grew exponentially in time. Thus, the
variational method indicated that the MTM soliton was unstable. However, since the MTM is
integrable by the method of the inverse scattering transform~IST! in 111 dimensions~with the
ground stateu5v[0 being stable!, this is known to be untrue. In fact, our own numerical
integration of Eqs.~3.1! with different near-soliton initial conditions revealed no instability. For
this reason, the instability obtained in Ref. 3 can be called a ‘‘false instability.’’

It is of interest to understand how and why such false instabilities of a solitary wave can arise
with the variational method. It is also important to determine the conditions which one needs to
impose on the ansatz in order to avoid the false instability, if such occurs. Thus, let us now give
a definition of stability or instability of a solitary wave, which we will use in this paper.

When one linearizes~1.1! about an exact solution,uW 0(x,t), there results a linear PDE of the
form:

v¢t1Lv¢50, ~1.2!

wherev¢ 5 (du1 ,du1* ,...,dun ,dun* )
T, and the linear operatorL 5 (dNW @uW #/duW )uuW 5uW0

. One needs to

include the complex conjugates,duj* , in v¢, because, in general,NW [uW ] may depend onuW * . Letting
thenv¢(x,t)5v¢(x)e2 ilt, one obtains from~1.2! an equation defining the eigenmode corresponding
to the eigenvaluel. These eigenmodes fall into two general classes. First, for reall, there is a
continuous spectrum, where far from the solitary wave, the modes become plane waves,eik(l)x.
Second, there is also the discrete spectrum consisting of several localized~square integrable!
modes, which exist, usually, forl50, and may also exist for some complexl. The former discrete
spectrum modes are the so-called ‘‘neutral’’ modes, and they correspond to the shift of the solitary
wave’s parameters. If in the spectrum of~1.2! there is a localized mode with Iml.0, we will call
both this mode and the solitary wave unstable; otherwise, they will be called stable.

Let us now state the assumptions that we make in our analysis. First, we consider a force-free
motion of a solitary wave, thus all the nontrivial dynamics is due to the difference of the pulse’s
initial profile from the exact solution. Second, throughout the paper we assume that the form of the
exact solution is known and consider onlysmall ~in L2-norm! ‘‘perturbations’’ about it. Thus,
expansion of such ‘‘perturbations’’ over the set of eigenmodes of~1.2! becomes relevant. In the
concluding section we discuss how our analysis can be generalized if the above two assumptions
are relaxed.

A general form of the ansatz representing a solution close to the exact solutionuW 0(x,t) is

uW close~x,t !5uW 0~x,t;a1~ t !,...,an~ t !!, ~1.3!

where one obtainsuW 0(x,t) upon setting all the variational parametersa j (t) to zero. Without loss
of generality, thea ’s may be taken to be real. By assumption, thea’s are to be small, and then we
have
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uW close~x,t !2uW 0~x,t !'(
j51

n

a j~ t !
]uW

]a j
U

~a1 ,...an!50

[(
j51

n

a j~ t !uW , j~x!. ~1.4!

Thus we will take the ansatz in the form:

uW var~x,t !5(
j51

n

a j~ t !uW , j~x!. ~1.5!

The quantitiesuW , j (x) will be referred to as variations. Since theaj ’s are small, then the resulting
Euler–Lagrange equations will be linear ODEs, with the coefficients being fixed by the choice of
the variations. If this system has complex normal frequencies, it means that, according to the
variational method, the solitary wave solution in question is unstable. Suppose one can prove by
some means, other than the variational method, that the spectrum of the corresponding equation
~1.2! does not contain eigenvalues with Iml.0. Then we pose the following questions:~1! what
is the mechanism by which the variational method can introduce a false instability for a given
evolution equation? and~2! if a false instability can occur in a given problem, then how can one
choose the ansatz in order to avoid the false instability?

We show that there are two mechanisms~one or the other is necessary, but neither is suffi-
cient! by which a variational ansatz could introduce a false instability. First, any variation,uW , j (x),
will always be some linear combination of the discrete and/or continuous modes of~1.2!. Then,
~1.5! requires that every mode contained in a given variation execute a common motion with the
others, bound in the same variation. Consequently, we find that one mechanism by which an
ansatz could introduce afalse instability is for the variations to couple discrete modes to continu-
ous modes. An example of this will be given later. Fortunately, this type of a false instability is
easy to avoid or eliminate, as we shall see later.

The second mechanism for generating a false instability requires that a certain inner product
of the continuous spectrum eigenfunctions be sign indefinite. In this case, there are two ‘‘spaces’’
of ~the continuous spectrum! eigenfunctions, distinguished by the sign of that inner product. Thus,
a false instability can occur via the second mechanism if a variation in the ansatz mixes the
eigenfunctions from the two ‘‘spaces.’’ We remark here that the importance of having certain
functionals positive definite, when studying stability of solitary wave solutions, was emphasized in
a number of works.4–6 However, in those works, no connection was established with the varia-
tional method in the form being discussed in this paper.

The rest of the paper is organized as follows. In Sec. II, we consider the case of the NLS. Here
we show that if a variation couples discrete and continuous modes, then a false instability can
occur via the first mechanism. However, in the case of the NLS it was shown~Ref. 7! that all the
discrete spectrum modes are neutral modes, i.e., they correspond to the shifts of each of the
soliton’s independent parameters. Then we prove that, by allowing each and every of the soliton’s
parameters to vary independently of the others, one decouples the continuous and discrete spec-
trum modes, thereby eliminating the possibility for a false instability to occur via the first mecha-
nism. This fact also explains why a false instability has never been found for the NLS-type
equations, although the explicit decomposition of the discrete and continuous spectra was never
done in the previous studies. Finally in this section we sketch a procedure by which one can
construct a variational ansatz that does not contain the neutral modes. This procedure allows one
to reduce the number of variational parameters in the ansatz by, naturally, exactly the number of
the neutral modes.

In Sec. III, we analyze the MTM equations. Here we have an example where the continuous
modes form two ‘‘spaces.’’ Therefore, a false instability for the MTM could arise via the second
mechanism. This is the source of the result which Malomed and Tasgal found in Ref. 3. Conse-
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quently, a simple method for avoiding false instabilities in this case would be to separate the
eigenmodes belonging to the different ‘‘spaces’’ into different variations of the ansatz.

One should note that we have considered in this paper only equations integrable by the IST.
This fact enabled us to completely determine the spectra of the corresponding linearized equations.
In particular, we knew beforehand that there were no unstable modes. We address the general
case, i.e., when the latter may be present, in the concluding section.

In Sec. IV, we show that there is a method to avoid false instabilities which could arise via the
second mechanism,without being forced to separate the two ‘‘spaces’’ of the eigenfunctions.
However, for nonlinear evolutional equations, the application of this simple method is tantamount
to having the exact solution before one begins to construct a variational solution. Also in Sec. IV,
we obtain a formula which elucidates the meaning of the results produced by the variational
method for a particular choice of the ansatz.

In the concluding section we discuss how one can apply our approach when the exact solitary
wave solution is not known, as well as what information one can glean if completeness of the
corresponding set of eigenfunctions is not established. In the latter case we show that the varia-
tional method can be used to detect atrue instability of the solitary wave. We also mention the
generalization of our analysis when a solitary wave is driven by an external force.

II. THE NLS CASE

First, we consider the NLS in the following form:

iut1uxx12uuuu250. ~2.1!

Its exact one-soliton solution is well known:

u0~x,tuV!5A sechu expH iV2A u1 i SA21
V2

4 D t1 iw0J ,
~2.2!

u5A~x2Vt2x0!,

where the parametersA,V,x0 ,w0 are constants. One can always eliminateV by the Galilean
transformation, so we will takeV50 in what follows and denoteu0(x,t)[u0(x,tu0). We still will
need expression~2.2! with VÞ0 later on in this section.

A variational ansatz which is usually taken to study small oscillations of the exact soliton of
the NLS is the following:

uvar~x,t !5eu0~x,t !@dh~ t !1 idw~ t !1dA~ t !u tanhu1 idc~ t !u2#, ~2.3a!

wheree!1; compare~2.3a! with ~1.5!. Here,dh(t) is the variational parameter for the soliton’s
amplitude,dw(t)—the variational parameter for its overall phase,dA(t)—the variational param-
eter for the width, anddc(t) is the variational parameter for the chirp. The variations correspond-
ing to these parameters are:

du~dh!51•u0 , du~dA!5u tanhu•u0 ,
~2.3b!

du~dw!5 i •u0 , du~dc!5 iu2•u0 .

Two other parameters, the coefficient of the linear phase~frequency shift! and the soliton’s center
coordinate are not included in~2.3! because the equations for them decouple from those for
dh,dw,dA,dc. At the end of this section we will show how, basing on our method, one can
construct an ansatz with onlytwo parameters, which, however, provides more correct description
of the soliton oscillations.
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The Lagrangian density for Eq.~2.1! is

L[LNLS5
i

2
~ut* u2u* ut!2uuxu21uuu4. ~2.4!

With the aim in mind to study the dynamics of small variations on the background of soliton~2.2!,
we substitute in~2.4! u5u01du(x,t), with uduu!uu0u. Then in the main order indu we obtain:

L2[L2
NLS5 1

2 v¢
†s3~ i ] t1A2L !v¢, ~2.5!

where

v¢[S v1v2D 5S du e2 iA2t

du* eiA
2t D , ~2.6a!

L[LNLS5s3~]u
221!12 sech2 u ~2s31 is2!. ~2.6b!

If u(x,t)5u01du is a solution of~2.1!, then the vectorv¢ satisfies the equation

~ i ] t1A2L !v¢50, ~2.7!

which is the linearization of~2.1! on the background of the soliton. Therefore we seek a solution
of ~2.7! as an expansion over the set of the eigenfunctions of the following eigenvalue problem:

Lv¢5lv¢, ~2.8!

with L given by ~2.6b!. The solution to this problem was given in Ref. 7 and is as follows. The
basis in the class of functions which are sufficiently smooth and decay sufficiently rapidly at
infinity ~i.e., in the Schwartz class! is formed by the continuous spectrum of the operatorL:

c1~k!5F S 12
2ike2u

~k1 i !2 coshu D S 01D1
1

~k1 i !2 cosh2 u S 11D Geiku,

c2~k!5F S 11
2ike2u

~k2 i !2 coshu D S 10D1
1

~k2 i !2 cosh2 u S 11D Ge2 iku,

for real k, ~2.9a!

such that

Lc15~k211!c1 , Lc252~k211!c2 ; ~2.9b!

and also the discrete spectrum ofL:

f15S 1
21D sechu, f25S 11D sechu tanhu, ~2.10a!

where

Lf15Lf250, ~2.10b!

and
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f1
D5S 11D ~u tanhu21!sechu, f2

D5S 1
21D u sechu, ~2.11a!

with

Lf j
D522f j , j51,2. ~2.11b!

An arbitrary two-component vectorw¢ ~u!5~w1,w2!
T from L2~2`,`! can be expanded over this

basis as follows:7

w¢ ~u!5E
2`

`

dk~g1~k!c1~k,u!1g2~k!c2~k,u!!1 (
j51,2

~b jf j1g jf j
D!, ~2.12!

wheregj (k),b j ,g j , j51,2, are the scalar expansion coefficients. We note thatf1,2
D , as it is seen

from ~2.11b!, are not eigenfunctions of the operatorL. They are the so-called associate, or de-
rivative states~see Ref. 7!, and are required for completeness because the operatorL is not
self-adjoint.

The fact that one was able to find the explicit form of the eigenfunctions of~2.8!, as well as
to prove the completeness of the corresponding set, has its origin in that the NLS is integrable by
the IST. In general, for the operatorL corresponding to an arbitrary nonlinear evolution equation,
one is not able to find the eigenfunctions explicitly. However, in what follows it will be clear that
for our purpose the only essential information, furnished by the IST, is that the set of eigenfunc-
tions ofL ~including the associate states! forms a basis in the appropriate space of functions. The
rest of the required information can be extracted from the asymptotics~for uuu→`! of L. The latter
does not depend on the integrability of the evolution equation under study and therefore can be
found for an equation of a rather general form, with the only possible information missing being
the completeness of the corresponding set of eigenfunctions. In Sec. V we will discuss how one
can proceed with our approach if one does not know whether the set of eigenfunctions is complete
or not.

Thus, we will come back to Eq.~2.8! and proceed as though if we did not know the explicit
form of the eigenfunctions. The purpose of doing this is to demonstrate how our procedure can be
applied to evolution equations, for which an exact form of the eigenfunctions is not available. To
this end, let us first notice that the operatorL has the following symmetry:

s1Ls152L52L* . ~2.13!

Let us emphasize that this symmetry exists since, from the definition ofv¢, it follows that

v¢5s1v¢* . ~2.14!

Consequently, ifc is a solution of~2.8! with the eigenvaluel, then

c2~k!5s1c1~k!* ~2.15!

is another solution with the eigenvalue2l. ~SinceL is real valued, we could have as well used
c25s1c1; we used~2.15! instead because it will be a convenient form later.! From the asymptot-
ics of L, one finds the asymptotic form of the eigenfunctions, say, atu→2`:

u→2` c1→S 01Deiku, c2→S 10De2 iku. ~2.16!

Also from the asymptotics, one finds the eigenvalues corresponding to realk:
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l[lc1
5k211, lc2

52~k211!, ~2.17!

which is consistent with~2.9!. The asymptotics ofc1,2 at the other end,u→1`, can be obtained
from the asymptotics ofL only in the following general form:

u→1` c1→a~k!S 01Deiku1b~k!S 01De2 iku, ~2.18!

with some coefficientsa(k), b(k). @Note that the first component ofc1 must be zero in order that
the first equation of~2.9b! be satisfied.# We address the general case~2.18! in Appendix A. Below
in this section we will make use of the well-known fact that the soliton~2.2! is a reflectionless
potential in the corresponding scattering problem in the IST. Then it follows that in~2.18! ua(k)u
51, ub(k)u50. This is of course consistent with the explicit form~2.9! of c(k), with
a(k)5[(k2 i )/(k1 i )] 2. Using this will significantly simplify the calculations. The result found in
Appendix A is qualitatively the same as that of this section.

As for the discrete spectrum, this can be easily found explicitly. Let us denoteū(0)
5 u0(x,t)e

2 iA2t. Then, by differentiating the equation forū0, one observes that

f1[S 2 i
]

]w0
ū0 , c.c.D T, f2[S ]

]x0
ū0 , c.c.D T ~2.19a!

satisfy ~2.10b!, and

f1
D[S ]

]A
ū0 , c.c.D T, f2

D[S 2 i
]

]V
ū~x,tuV!UV50 , c.c.D T ~2.19b!

satisfy~2.11b!. We remark that in the last expression in~2.19b! one should set]Vu[0. Thus, the
discrete spectrum modes correspond to the shift of the soliton’s parameters.

Inserting~2.12! into ~1.5!, one has

v¢var5(
j51

n

a j~ t !H E
2`

`

dk@g1 j~k!c1~k,u!1g2 j~k!c2~k,u!#1 (
m51,2

~bmjf j1gmjf j
D!J .

~2.20!

From ~2.14!, ~2.15!, and~2.20!, one finds

g2 j~k!5g1 j* ~k!, j51,...n;

Re~b1 j !5Re~g2 j !505Im~b2 j !5Im~g1 j !. ~2.21!

To calculate the reduced Lagrangian

^L2&[E
2`

`

dx L2 ,

we need certain inner products between the eigenfunctions ofL. These can be obtained in a
standard manner from the Wronskian relation. Namely, from the equation

fA~l8,u!L5l8fA~l8,u!,

which is adjoint to~2.8!, Eq. ~2.8! itself, and~2.6b! one finds
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]uW~fA~l8,u!,f~l,u!![]u~]ufA~l8,u!s3f~l,u!2fA~l8,u!s3]uf~l,u!!

5~l82l!fA~l8,u!f~l,u!, ~2.22!

wheref~l,u! is a solution of~2.8!. From the explicit form ofL it follows that one can choose

fA~l,u!5f†~l,u!s3 . ~2.23!

Then from ~2.22!–~2.23!, ~2.16!–~2.17!, and ~2.10!–~2.11!, one obtains that the only nonzero
inner products between the eigenfunctions ofL are the following ones:

^c1
†~k8!us3uc1~k!&52^c2

†~k8!us3uc2~k!&522pd~k2k8!, ~2.24a!

^f1
†us3uf1

D&52^f2
†us3uf2

D&522, ~2.24b!

where

^c1
†~k8!us3uc1~k!&5E

2`

`

du c1
†~k8,u!s3c1~k,u!,

etc. Using~2.5!, ~2.20!, ~2.24!, and~2.21!, one finds

^L2&5 (
j ,l51

n

$ ia l ȧ j~^g1j ug1l&2^g1l ug1 j&!2a la jA
2~^g1 j ulug1l&1^g1l ulug1 j&!

1 ia l ȧ j~b1lg1 j2b1 jg1l1b2lg2 j2b2 jg2l !12a la jA
2~g1lg1 j1g2lg2 j !%, ~2.25!

where now

^ f uh&5pE
2`

`

dk f* ~k!h~k!, ^ f umuh&5pE
2`

`

dk f* ~k!m~k!h~k!.

From ~2.25! one sees that the variations in the ansatz can be chosen so that to decouple the
discrete and continuous modes of the operatorL in the reduced Lagrangian. This is analogous to
the well-known fact that the evolutions of the discrete and continuous scattering data in the
framework of the IST are decoupled in the first-order perturbation theory. If the decomposition of
the two parts of the spectrum is achieved in~2.25!, then the reduced Lagrangian splits into two
parts, with one corresponding to the continuous spectrum and the other, to the discrete spectrum.
The latter part@which has allg1 j (k)50, j51,...n# yields trivial evolution of its parameters: All
the time derivatives are either zero or constant in time. Indeed, this second part of the reduced
Lagrangian is due to the variations composed entirely from the neutral modes, which correspond
to the shift of the soliton’s parameters, see~2.19!. But it is obvious that in the absence of a driving
force, which is the case we consider, one can ‘‘zero out’’ the trivial dynamics of the soliton’s
parameters by re-adjusting the parameters of the background solutionu0(x,t). In other words, by
properly choosing the background solutionu0(x,t), one can setbmj5gmj50, j51,...n, m51,2.

Considering then only the continuous spectrum part in~2.25! and lettinga j (t)5ā je
ivt,

j51,...N, with ā j ’s being independent oft, we arrive at the following set of Euler–Lagrange
equations:

(
j51

n

ā j$2v~^g1 j ug1l&2^g1l ug1 j&!1A2~^g1 j ulug1l&1^g1l ulug1 j&!%50, ~2.26!

for l51,...n. In a matrix form, this reads as follows:
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~M1vN!aW 50, ~2.27!

whereaW 5(ā1 ,...ān)
T andM andN are Hermitian matrices~see below!. It is known ~see, e.g.,

Ref. 8 and Secs. 10.5 and 10.8 of Ref. 9! that if eitherM or N is sign definite, then all thev’s are
real valued. If neitherM or N is sign definite, then one cannot determine whetherv’s are real or
complex valued. In our case,N is clearly not sign definite since it is Hermitian and anti-
symmetric. However, the matrixM with the entries

M jl5~^g1 j ulug1l&1^g1l ulug1 j&! ~2.28!

is the Gram matrix~see, e.g., Sec. 9.5 of Ref. 9! and thus is positive definite, provided that all the
functionsg1 j (k), j51,...n are linearly independent~cf. Ref. 10!. The standard proof of this fact
goes as follows. Forn arbitrary complex numbersci , define x¢5(c1g11(k),...cng1n(k))

T, y¢
5 (c1* g11(k),...cn* g1n(k))

T, c¢ 5 (c1 ,...cn)
T, and then consider

c¢†Mc¢5(
l j

clcj* ~^g1 j ulug1l&1^g1l ulug1 j&!5I(
j51

n

xjAlI 21I(
j51

n

yjAlI 2, ~2.29!

which is positive ifg1 j (k), j51,...n are linearly independent. HenceM is positive definite. Thus,
we have proved that if the ansatz for the NLS does not contain components of the discrete
spectrum~or decouples them from the continuous spectrum!, then a false instability can never
occur.

We will shortly present an example showing how one can construct an ansatz not containing
the discrete spectrum. But at this moment, let us note that one can effectively achieve the decom-
position by simply allowingeachof the soliton parameters to vary, even if the variations in the
ansatz mix the components of the discrete and continuous spectra. Let us consider a variational
ansatz of the form

v¢var5@r.h.s. of ~2.20!#1n1~ t !if1~u!1n2~ t !f2~u!1m1~ t !f1
D~u!1m2~ t !if2

D~u!,
~2.30!

wheren1,2 andm1,2 are real@see~2.21!#. Thus, we have allowed each of the soliton parameters to
vary independently of each other and of the continuous modes. Note that variations corresponding
to variational parametersaj ’s still may contain the components of the discrete spectrum. Then the
reduced Lagrangian can be shown, after some straightforward algebra, to be of the form:

^L2&2@r.h.s. of ~2.25! with all bmj5gmj50#

52A2~m11^aug1&!212A2~ im21^aug2&!212ṅ1~m11^aug1&!

22i ṅ2~ im21^aug2&!22i ^ȧub1&~m11^aug1&!22i ^ȧub2&~ im21^aug2&!.

~2.31!

In Eq. ~2.31! and Eq.~2.32! below we use the bracket notations as follows:

^aug1&[(
j51

n

a j~ t !g1 j ,

etc. From~2.31! one sees thatn1,2 are cyclic coordinates, so the corresponding momenta are
constants of the motion, and then

ṁ11^ȧug1&50, i ṁ21^ȧug2&50. ~2.32!
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Then the first two terms on the r.h.s. of~2.31! are constants while the others are total time
derivatives. Thus the reduced Lagrangian~2.31!, calculated for the ansatz~2.30!, is equivalent to
one calculated without the contribution from the discrete spectrum.

It is clear that mixing components of the discrete and continuous spectra, without allowing the
soliton parameters to vary independently, is only anecessarycondition for the ansatz to produce
a false instability. A false instability can be expected to occur if the coupling between the discrete
and continuous spectra in the ansatz is, in a certain sense, strong enough. Below we present an
example of such an ansatz:

u~x,t !5u0•@dh~ t !1dw~ t !u1 idw~ t !#. ~2.33!

The corresponding Euler–Lagrange equations fordh(t),dw(t) reveal oscillations with
v252~28/928p2/27!A4,0, which are therefore unstable.

To conclude this section, we will demonstrate how one can construct an ansatz which does not
contain the neutral modes. Let us take ansatz~2.3a! as a starting point. By calculating the inner
products, defined by formulae~2.24!, of its variations~2.3b! with the discrete spectrum~2.10!,
~2.11! and inspecting them, one finds that the following combinations:

v¢~dh!2v¢~dA![W15~122u tanhu!sechu S 11D ,
~2.34!

v¢~dw!1
12

p2 v¢~dc![W25 i S 11
12

p2 u2D sechu S 1
21D ,

are orthogonal~with weight functions3! to the discrete spectrum. Thus, the ansatz

u~x,t !5u0•Fa1~ t !~122u tanhu!1 ia2~ t !S 11
12

p2 u2D G ~2.35!

does not contain the neutral modes. This ansatz has only two variational parameters instead of four
in ansatz~2.3a!. Still, using~2.35! one can match any initial condition allowed by ansatz~2.3a!, if
one adjusts the background soliton’s parameters properly. To see this, it is enough to notice that

v¢~dh!52W122f1
D , v¢~dw!5 if1 ,

~2.36!

v¢~dA!52W12f1
D , v¢~dc!5

p2

12
~W22 if1!.

Finally, we note that the results produced by~2.3a! and ~2.36! are equivalent, which is in agree-
ment with the result proven above for the ansatz of the form~2.30!; herem15~dA2dh!, n15dw,
m25n250.

In summary, in this section we have shown that in order to guarantee that the ansatz will not
give a false instability for the NLS, it is sufficient to require that the discrete and continuous
spectrum modes be decoupled in the ansatz.

III. THE MTM CASE

The considerations in this section are very similar to those in the previous one, so we present
here only the most necessary details. We consider the equations of the MTM in the laboratory
coordinates:

i ~ux1ut!1v1uvu2u50, i~2vx1vt!1u1uuu2v50. ~3.1!
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Its one-soliton solution is given by11:

u0~x,tuV!5S 11V

12VD 1/4 sinQ sechS u sinQ2
iQ

2 D •exp$2 i tA12V2 cosQ1 iVu cosQ1 iw0%,

~3.2!

v0~x,tuV!52S 12V

11VD 1/4 sinQ sechS u sinQ1
iQ

2 D
•exp$2 i tA12V2 cosQ1 iVu cosQ1 iw0%,

whereu 5 (x 2 x0 2 Vt)/A12V2, x0,w0 are arbitrary constants, and the constantsQ andV satisfy:
0,Q,p, 21,V,1. Equations~3.1! are Lorentz-invariant, so one can consider only the solution
with V50, which we will denote asu0(x,t), v0(x,t).

The Lagrangian density for Eqs.~3.1! is

L[LMTM5
i

2
@~u* ut1u* ux1v* v t2v* vx!2c.c.#1~u* v1v* u!1uuu2uvu2. ~3.3!

We substitute into~3.3! u5u01du, v5v01dv with uduu!uu0u, udvu!uv0u, and find

L2[L2
MTM5

1

2
w¢ †S s3 0

0 s3
D ~ i ] t1L !w¢ , ~3.4a!

where

w¢ 5S du eit cosQ

du* e2 i t cosQ

dv eit cosQ

dv* e2 i t cosQ
D . ~3.4b!

In ~3.4a!,

L[LMTM5 i S I 2 0

0 2I 2
D ]

]u

1S cosQ1uu0u2 0 11ū0v̄0* ū0v̄0

0 2~cosQ1uu0u2! 2ū0* v̄0* 2~11ū0* v̄0!

11ū0* v̄0 ū0v̄0 cosQ1uu0u2 0

2ū0* v̄0* 2~11ū0v̄0* ! 0 2~cosQ1uu0u2!
D ,

~3.5!

whereū05u exp~i t cosQ!, v̄05v exp~i t cosQ!. If the pair (u0 ,v0) is a solution of~3.1!, then the
vectorw¢ satisfies the equation:

~ i ] t1L !w¢ 50, ~3.6!

which is the linearization of~3.1! on the background of the soliton~3.2!. Then we have to consider
the eigenvalue problem

Lw¢ 5lw¢ , ~3.7!
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with L given by~3.5!. Its solution was found by the present authors in Ref. 12. Here, however, we
will proceed by using the asymptotic form ofL and the corresponding eigenfunctions, with the
reason being the same as in Sec. II. The only result from Ref. 12 which we will use here will be
the completeness of a certain set of the eigenfunctions of~3.7!. In Appendix B we present the
explicit form of these eigenfunctions, found in Ref. 12.

Equation~3.7! has four linearly independent solutions with the following asymptotics, say, at
u→2`:

u→2` c1→S 1
0

r ~k!

0
D eiku, c2→S 0

1
0

r ~k!

D e2 iku,

~3.8!

c3→S 1
0

2r ~2k!

0
D eiku, c4→S 0

1
0

2r ~2k!

D e2 iku,

for real k, where

r ~k!5k1Ak211. ~3.9!

Also from the asymptotic form ofL, one finds that

Lc15l~k!c1 , Lc252l~k!c2 , Lc35m~k!c3 , Lc452m~k!c4 , ~3.10a!

with

l~k!5cosQ1Ak211, m~k!5cosQ2Ak211. ~3.10b!

In complete analogy with~2.13!–~2.15!, one obtains

S s1 0

0 s1
D LS s1 0

0 s1
D 52L* , ~3.11!

c2~k,u!5S s1 0

0 s1
Dc1* ~k,u!, c4~k,u!5S s1 0

0 s1
Dc3* ~k,u!. ~3.12!

Notice that no involution can be established betweenc1 andc3.
Considering the asymptotics allows one only to obtain the general form of the eigenfunctions

at u→1` @cf. ~2.18!#. Here, as in the case of the NLS, we will make use of the fact that soliton
~3.2! is the reflectionless potential in the corresponding scattering problem. This allows one to
state that

for u→1` c1→a~k!S 1
0

r ~k!

0
D eiku, c3→ã~k!S 1

0
2r ~2k!

0
D eiku, ~3.13!

with ua(k)u5uã(k)u51 for realk, and the asymptotics ofc2, c4 at u→1` are then found from
~3.12!.
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In Sec. II it was explained how the neutral modes ofL can be found. So here we will only
state that these modes, together with the set$c i(k)% i51,...,4 for all realk, form a basis in the space
of four-component vector functions with entries from the Schwartz class; see Appendix B for
details. Now, as was also discussed in Sec. II, the contributions from the continuous and discrete
spectra ofL can be decoupled in the averaged Lagrangian, with it being possible to effectively
‘‘zero out’’ the contribution of the discrete spectrum. Thus, below we will only consider the
variations which do not contain the discrete spectrum components. Then, similarly to~2.20!, any
ansatz with smooth entries can be represented as follows:

w¢ ~u!5(
j51

n

a jE
2`

`

dk(
m51

4

gmj~k!cm~k,u!. ~3.14!

From ~3.14! and ~3.12! one obtains an analog of~2.21!:

g2 j~k!5g1 j* ~k!, g4 j~k!5g3 j* ~k!, j51,...n. ~3.15!

However, there is no relation betweeng1 j (k) andg3 j (k) because, as mentioned earlier, no invo-
lution exists betweenc1 andc3.

Using the same technique as for the NLS, we obtain the following inner products~defined in
the x space!:

^c1
†~k8!uS s3 0

0 s3
D uc1~k!&54pAk211~Ak2111k!d~k2k8!,

^c2
†~k8!uS s3 0

0 s3
D uc2~k!&524pAk211~Ak2111k!d~k2k8!,

~3.16!

^c3
†~k8!uS s3 0

0 s3
D uc3~k!&54pAk211~Ak2112k!d~k2k8!,

^c4
†~k8!uS s3 0

0 s3
D uc4~k!&524pAk211~Ak2112k!d~k2k8!.

Let us note that the eigenfunctions$c i(k)% i51,...,4 can be divided into two ‘‘spaces,’’
S15$c1(k),c2(k)% andS

25$c3(k),c4(k)%, depending on the sign of the following inner prod-
uct:

^c†~k8!uS s3 0

0 s3
D Luc~k!&; ~3.17!

~we consider thed function to be positive!. Also notice that in the case of Eq.~2.1!, there is only
one ‘‘space.’’

Inserting ~3.14! into ~3.4a! and using~3.10!, ~3.15!, and ~3.16!, one obtains the reduced
Lagrangian for Eqs.~3.1!:

^L2&5(
j l

$ ia l ȧ j~^hl uhj&2^hj uhl&1^h̃l uh̃ j&2^h̃ j uh̃l&!

1a la j~^hj uluhl&1^hl uluhj&1^h̃l umuh̃ j&1^h̃ j umuh̃l&!%, ~3.18!

where
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hj5g1 j~k!A2~k2111kAk211!,

h̃ j5g3 j~k!A2~k2112kAk211!.

The corresponding Euler–Lagrange equations forā j5a je
2 ivt, j51,...n, have the following

matrix form @compare with~2.27!#:

~~M12M2!1v~N11N2!!aW 50, ~3.19!

where

~M1! l j5^hj uluhl&1^hl uluhj&, ~M2! l j5^hj uumuuh̃l&1^h̃l uumuuh̃ j&,

~N1! l j52~^hl uhj&2^hj uhl&!, ~N2! l j52~^h̃l uh̃ j&2^h̃ j uh̃l&!.

In the expression for (M2) l j we wroteumu in order to stress thatm(k) is always negative, while
l(k) is always positive. The matrixN5N11N2 is, as for the NLS, not sign definite.M1 andM2
separately are positive definite, butM5M12M2 is not sign definite since the entries ofM1 are
not related to those ofM2 @see the note~3.15!#. Therefore, the normal frequenciesv in ~3.19!
could be real or complex. One can show that, becauseN is Hermitian and anti-symmetric, the
corresponding characteristic polynomial contains only even powers ofv. So, if there is a normal
frequencyv with Im v.0, then there necessarily is another normal frequency~2v! with Im
~2v!,0. Thus the variational method could~incorrectly! predict that the soliton solution of the
MTM equations is unstable. Thus, we conclude that if the ansatz for Eqs.~3.1! ‘‘mixes’’ the
components corresponding to the two setsS1 andS2, then it may produce a false instability.

Let us remark that the ansatz used in Ref. 3did contain components of the discrete spectrum,
so the instability found there could be due to that reason. However, we performed the calculations
with a similar ansatz from which the discrete spectrum was excluded, and we still found an
instability setting in forQ'1 @see~3.2!#, which is close to the result of Ref. 3. Therefore we
conclude that the instability found in Ref. 3 can be attributed to ‘‘mixing of the spaces’’S1 and
S2.

One would like to have some methods for choosing the variational ansatz so as to avoid such
false instabilities. One simple way which would guarantee that the frequenciesv produced by the
variational method would always be real would be to choose the ansatz in such a form so as to
have:hj (k)•h̃ j (k)50, j51,...n. Then all variations would be expandable over either the setS1 or
S2, but not the whole setS5$c1(k),c2(k),c3(k),c4(k)%. In this case, Eq.~3.19! would decom-
pose into two equations:

~M61vN6!aW 650, ~3.20!

whereM656M1,2, N
65N1,2. Then one would be able to guarantee that the correspondingv’s

would be real valued, and thus false instabilities will not occur.
Let us then observe that when the soliton parameterQ!1, and the variations are expanded

mainly over the eigenmodes withuku!1, it is possible to construct variations whichalmostentirely
consist of the eigenfunctions from only one of the spaces. First, notice that these two limits,Q!1
and uku!1, are compatible in the following sense: a soliton withQ!1 has a large width, and the
corresponding variations, whose scale is usually taken to be of the same order of magnitude as that
of the soliton, are expandable mostly over the eigenmodes withuku!1. Next, from~3.4b! one has:
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du5E
2`

`

dk~g1~k!c1
~1!~k,u!1g3~k!c3

~1!~k,u!!,

dv5E
2`

`

dk~g1~k!c1
~3!~k,u!1g3~k!c3

~3!~k,u!!,

wherec1,3
( j ) is the j th entry ofc1,3~k,u!. But from ~3.5! and~3.8! one can see that forQ!1, uku!1,

the ratiosc1
(3)(k,u)/c1

(1)(k,u) andc3
(3)(k,u)/c3

(1)(k,u) are approximately11 and21, respec-
tively. Then, taking the variations in the ansatz to be either symmetric~du5dv, g3(k)'0! or
anti-symmetric~du52dv, g1(k)'0!, one can, in the considered limit, attain approximate decou-
pling of S1 andS2 and thus avoid false instabilities more easily than by simply using an arbitrary
guess. This conclusion is in excellent agreement with the results of Ref. 3.

In summary, in this section we have considered the MTM equation and have concluded that
the false instability, found in Ref. 3, is due to the coupling of eigenfunctions from two different
‘‘spaces’’ in the ansatz.

IV. A CASE WHEN ANSATZ HAS ONLY TWO VARIATIONAL PARAMETERS

The purpose of this section is twofold. First, taking the ansatz in a simple form, we provide a
justification to the intuitive idea that the variational method gives, in a sense, an averaged descrip-
tion of the pulse’s dynamics. Second, for the same simple form of the ansatz, we introduce a
method which allows one to avoid false instabilities, arising due to the second mechanism,without
separation of the two ‘‘spaces’’ of the eigenfunctions.

For definiteness, let us restrict our consideration to Eqs.~3.1!. Similar results can be obtained
for any other evolution equation. Let the ansatz contain only two variations:

w¢ var5a~ t !w¢ a~u!1b~ t !w¢ b~u!

[a~ t !E
2`

`

(
j51

4

gja~k!c j~k,u!dk1b~ t !E
2`

`

(
j51

4

gjb~k!c j~k,u!dk, ~4.1!

wherea(t), b(t) are the~real! variational parameters. As before, we exclude the discrete spec-
trum. We will denote the eigenvaluesl(k)[l1(k) andm(k)[l3(k). Then from~3.15! and~3.18!
one obtains the Euler–Lagrange equations for ansatz~4.1!. Using them, we arrive, after some
involved algebra, at the following expression for the frequencyv:

2v2F E
2`

`

dk (
j51,3

n j~k!~gja* ~k!gjb~k!2gja~k!gjb* ~k!!G2
5E E

2`

`

dk dk8 (
$ j ,m%5$1,3%

l j~k!lm~k8!n j~k!nm~k8!

3~ ugja* ~k!gmb~k8!2gma~k8!gjb* ~k!u21ugja~k!gmb~k8!2gma~k8!gjb~k!u2!, ~4.2!

wheren j (k) 5 (k2 1 1 1 ( 2 1)( j21)/2kAk211), j51,3. The l.h.s. of~4.2! is always non-negative
since the integrand is purely imaginary. Sincel1(k).0 andl3(k),0, the expansion coefficients
gja(k), gjb(k) can be chosen so that to make the r.h.s. of~4.2! negative. That would yieldv2,0,
which implies a false instability. Thus we see that it isalwayspossible to construct an ansatz
which would introduce a false instability when the linearized evolution equation has two
‘‘spaces’’ of the eigenfunctions.

Let us now choosegjb(k)5 ig ja(k) ~j51,3! for all k in the expansion. Then the second term
in the r.h.s. of~4.2! vanishes, and~4.2! becomes
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v2F E
2`

`

(
j51,3

dk n j~k!ugja~k!u2G25F E
2`

`

(
j51,3

dk l j~k!n j~k!ugja~k!u2G2. ~4.3!

This implies that~i! v2>0, i.e. the ansatz withgjb(k)5 ig ja(k) will never produce a false insta-
bility, even though the two ‘‘spaces’’S1 andS2 are not separated; and~ii ! the frequency given by
the variational method is simply a weighed average ofl(k).

Now let us note thataway from the center of the soliton,

c j~k,u!5ŝ3c j~k,u!, ~4.4!

whereŝ35diag~s3,s3! @see~3.8!#. Equation~4.4!, together with the assumptiongjb(k)5 ig ja(k),
implies that

w¢ b5 i ŝ3w¢ a . ~4.5!

However, near the center of the soliton, Eq.~4.4! and, consequently, Eq.~4.5! do not hold. This is
the key reason why it is not straightforward to use the above method to construct an ansatz which
would guarantee absence of false instabilities. Namely, when one is designing an ansatz, one
knows theu dependence of the variations but not the expansion coefficientsg(k). Obviously, if
one knowsc~k,u!, then having an expansion coefficient is equivalent to having the explicit form
of the corresponding variation. The question of whether this simple method could be applied
without using the eigenfunctions remains open.

V. CONCLUSION AND GENERAL DISCUSSION

The main result of this paper has been to present the necessary conditions for the variational
method to give rise to false instabilities, and also to give sufficient conditions in order to avoid
such false instabilities.

For a false instability to occur, it is necessary~but not sufficient! that the variational ansatz
satisfy at least one of the following two conditions:

~1! At least one of the variations contains both neutral and continuous spectrum modes. This is the
first mechanism via which false instabilities can occur; it was discussed in Sec. II.

~2! There are two different ‘‘spaces’’ of the continuous spectrum eigenfunctions, and at least one
of the variations contains eigenfunctions from both spaces. This is the second mechanism,
which was discussed in Sec. III.

Note that if a background solution of the evolution equation is a reflectionless potential for the
continuous spectrum eigenfunctions, as it was in all the examples considered here, then the
existence of the two ‘‘spaces’’ is manifested by sign indefiniteness of the ‘‘natural’’ inner product
~3.17!. We emphasize that this condition is not equivalent to the condition of sign definiteness of
the continuous spectrum of the Hermitian operatorŝ3L, whereŝ35diag~s3,s3,...!, becausec(k)
in ~3.17! are eigenfunctions of the non-Hermitian operatorL. In a more general case of a nonin-
tegrable equation, the existence of the two ‘‘spaces’’ is equivalent to nonsign definiteness of the
matrix M introduced in Sec. II; see Appendix A for technical details of how one can determine
whetherM is or is not sign definite.

Consequently, in order to guarantee that false instabilities will never occur, it is sufficient~but
not necessary! to impose on the ansatz the following restrictions:

~1! Either no variation in the ansatz contains the neutral modes, or each and every one of the
solitary wave’sindependentparameters is allowed to vary.

~2! If there are two different spaces of the eigenfunctions in the continuous spectrum, then each
variation contains components from only one of the two spaces.
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In a particular case when the ansatz contains only two real variational parameters,a(t) andb(t),
we proved in Sec. IV that the second necessary condition above can be replaced by the following
requirement on the corresponding expansion coefficients:gb(k)5 iga(k). Even though the varia-
tions in this case may contain eigenfunctions from the two different ‘‘spaces,’’ the ansatz so
constructed will never produce a false instability.

Let us now address the application of these results to a general~and usually nonintegrable!
nonlinear evolution equation. It is obvious that these results are only strictly true for small varia-
tions about a solitary wave. However, if variations are not so small that nonlinear effects can be
ignored, then one certainly should insure that the corresponding linear limit is free of false
instabilities. With this said, for the rest of the discussion, we shall only consider the case where the
variations are small.

First we consider the case when the exact solitary wave solution of this evolution equation is
known. One starts by constructing, by either of the methods presented in Sec. II, an ansatz which
either does not contain the neutral modes or, which is effectively the same, includes variations
corresponding to each and every solitary wave’s parameter. The neutral modes are found by
varying the independent solitary wave’s parameters. Note that there can also exist additional
discrete spectrum modes, different from the neutral ones; as it is known, not only their form, but
also their very presence in the spectrum, can be determined analytically only in exceptional cases
~see, for example, Ref. 13!. Such modes may or may not make the solitary wave unstable,
depending on their time evolution in the linearized evolution equation.

Next, one follows the outline of Sec. II and determines whether the corresponding matrixM
is sign definite~see Appendix A for technical details!. If it is not, then the ansatz can produce a
false instability, unless one can separateS1 andS2 ~see, for example, the discussion at the end of
Sec. III!. If a false instability can arise via the second mechanism, then the results of the varia-
tional method might be questionable, and in this case one cannot say anything about the existence
of any unstable modes in the discrete spectrum.

Now, suppose that the matrixM can be shown to be sign definite or to separate into two
sign-definite matrices, as in~3.20!. Let us then discuss the possibility of detecting, by means of the
variational method, an unstable mode in the discrete spectrum. In the case considered, the varia-
tional method can either produce or not, an instability. If the former is the case, then one can claim
that the linearized operator has an unstable eigenmode in the discrete spectrum, because it would
be the only manner in which an instability can arise in this case. Then it follows that the solitary
wave is truly linearly unstable. Thus, the variational method provides an analytical means of
detecting the existence of an unstable mode in the spectrum of a linearized evolution equation.
However, the opposite statement, namely: ‘‘if under the above specified conditions an instability
does not arise, then the solitary wave is linearly stable,’’ is not true. The trivial counterexample
here is that of the ansatz which simply does not contain the unstable mode. But even if we exclude
this trivial possibility, then calculations analogous to those presented in Appendix A did not give
us any affirmative answer. So it would be interesting to compare the results of the variational
method, applied to the problem of linear stability of a solitary wave, with those obtained by other
methods.

Now, suppose that the exact solution of the evolution equation in question is not available.
Then one may take an ansatz~usually a Gaussian! and determine the stationary points of the
corresponding Euler–Lagrange equations, written for the ansatz’ parameters. This yields a profile
approximating the exact solitary wave. This profile will have the analogues of the soliton param-
eters, and then one can obtain the ‘‘approximate neutral modes’’ by an analog of formula~2.19!.
The rest is then similar to the consideration in the above paragraphs.

If the equation has a perturbation such that a Lagrangian density of the perturbed equation still
exists, then the variational ansatz must contain both the continuous and discrete spectra, but the
two should not be coupled in the same variation.
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APPENDIX A: THE CASE OF NLS-TYPE EQUATION WITH ARBITRARY NONLINEARITY

Here we present the details of the proof that for a general one-component NLS-type equation,
i.e., the equation with the same linear but different nonlinear part, a false instability does not
occur. We assume that the ansatz does not contain components of the discrete spectrum.

From ~2.22! it follows that]uW(c1(k),c1(k))50. Then using asymptotics~2.16!, ~2.18! and
comparing the values ofW(c1(k),c1(k)) at u→2` andu→1`, one finds

ua~k!u2511ub~k!u2. ~A1!

Denoting byf1(k) a solution of~2.8! with the asymptotics

u→1` f1~k!→S 01Deiku,

one finds from~2.18!:

c1~k!5a~k!f1~k!1b~k!f1~2k!. ~A2!

We assume the corresponding operatorL to be real, which is so if the nonlinearity in the evolution
equation is of the formuV(uuu2). Then

c1* ~2k!5c1~k!, f1* ~2k!5f1~k!. ~A3!

and from~A2! and ~A3! one obtains:

a* ~2k!5a~k!, b* ~2k!5b~k!. ~A4!

Using ~A1! and ~A4! one obtains a generalization of~2.24a!:

^c1
†~k8!us3uc1~k!&522p~ ua~k!u2d~k2k8!1a~k!b~k!d~k1k8!!, ~A5a!

^c2
†~k8!us3uc2~k!&52p~ ua~k!u2d~k2k8!1a* ~k!b* ~k!d~k1k8!!. ~A5b!

Then from~A4! and ~A5! it is straightforward to obtain a generalization of~2.27!. Namely, the
matricesM , N now have the entries:

Njl5^gj uuau2ugl&1^gj~2k!uabugl&2c.c.; ~A6a!

M jl5^gj uluau2ugl&1^gj~2k!ulabugl&1c.c. ~A6b!

In ~A6! we have omitted the subindex ‘‘1’’ ofg1 j , and we also omit the argument of functions if
it is k. As before,N is Hermitian with TrN50, so in order to guarantee thatv2>0, one needs to
prove that M is positive definite. Similar to~2.29!, denote x¢ 5 Al(c1g1 ,...cngn)

T,y¢
5 Al(c1* g1 ,...cn* gn)

T,c¢ 5 (c1 ,...cn)
T, and then considerc¢†Mc¢. Taking into account the identity
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^gj~2k!ulabugl&5^gj~k!ula* b* ugl~2k!&

and ~A1! and ~A4! one obtains that

c¢†Mc¢5~x¢ part!1~y¢ part!, ~A7!

where

~x¢ part!5
1

2 F I(
j51

n

xj~k!ua~k!u I 21I(
j51

n

xj~k!ub~k!u I 21I(
j51

n

xj~k!I 2

1(
j ,l

^xj* ~2k!ua~k!b~k!uxl~k!&1(
j ,l

^xj* ~k!ua* ~k!b* ~k!uxl~2k!&G
5
1

2 F I(
j51

n

~xj~2k!a~2k!1xj~k!b~k!!I 21I(
j51

n

xj~k!I 2G.0.

Similarly, they¢ part in ~A7! is positive, thusM is positive definite.

APPENDIX B: COMPLETENESS OF THE SET OF SOLUTIONS OF EQ. (3.7)

Below we present the explicit expressions of the eigenfunctions of Eq.~3.7!, which form a
complete set in the Schwartz class. Let us first introduce the notations. Let
f (j,u)5( f 1(j,u), f 2(j,u))

T be an arbitrary vector function with the entriesf 1, f 2 bounded for
any realu and for Imj250, and the pairu[u(x,t), v[v(x,t) be a solution of~3.1!. Denote

Y~ f ~j,u!![~Y1 ,Y2 ,Y3 ,Y4!
T, ~B1a!

where

Y15
1

j
f 2
21u f1f 2 , Y25

1

j
f 1
22u* f 1f 2 ,

~B1b!
Y352j f 2

22v f 1f 2 , Y452j f 1
21v* f 1f 2 .

Let now f ~j,u! be a Jost solution of thex-operator in the Lax pair corresponding to Eq.~3.1! ~Refs.
11 and 12!. Then in Ref. 12 a result was proven which, in terms relevant to this paper, is the
following. The functionY defined in~B1! is a solution of Eq.~3.7! with l~j!5cosQ21

2~j
21j22!.

Moreover, a certain set of these functions is complete. In particular, when the pair (u,v) is the
exact one-soliton solution~3.2!, then the two linearly independent Jost solutions with oscillatory
asymptotics atuuu→` are

x~j,u!5S 01De2 iA~u!2 i /2 k~j!u2
sinQe2~ i /2!k~j!u

j22j1*
2

•S j sechS u sinQ1
iQ

2 D • exp~2 iB2 iQ1 iA~u!!

i sechS u sinQ2
iQ

2 D • exp~u sinQ2 iA~u!2 iQ/2!
D , ~B2a!

and
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x̄ ~j,u!5S 0 1

21 0D x* ~j* ,u!, ~B2b!

whereQ was defined in Sec. III,

A~u!5arctanS tanSQ2 D tanh~u sinQ! D1
Q

2
,

j15expS i2 QD , B52t cosQ, k~j!5
1

2
~j22j22!.

The two Jost solutions vanishing atuuu→` are

x1~u![x~j1 ,u!5
1

2 S i sechS u sinQ1
iQ

2 D • exp~2 iB1 iA~u!1~u sinQ2 iQ !/2!

sechS u sinQ2
iQ

2 D • exp~2 iA~u!2~u sinQ2 iQ !/2!
D ,

~B3a!

and

x̄ 1~u![x̄~j1* ,u!. ~B3b!

Then any four-component vectorw¢ with the entries from the Schwartz class can be expanded as
follows:

w¢ ~u!5E
0

`

dj@c1~j!Y~x~ i j,u!!1c2~j!Y~ x̄~ i j,u!!1c3~j!Y~x~j,u!!1c4~j!Y~ x̄~j,u!!#

1d1Y~x1~u!!1d2Y~ x̄1~u!!1d3
]

]j
Y~x~j,u!!U

j1

1d4
]

]j
Y~ x̄~j,u!!U

j1

. ~B4!

Finally, from ~B1! and ~B2! and ~3.8! one observes that

Y~x~ i j,u!!52
i

j
c1~k~j!,u!, Y~ x̄~ i j,u!!52

i

j
c2~k~j!,u!,

Y~x~j,u!!5
1

j
c3~2k~j!,u!, Y~ x̄~j,u!!5

1

j
c4~2k~j!,u!, ~B5!

with in ~B5! j.0. Notice that~B5! is in accordance with~3.13!. Thus formula~3.14! is justified.
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We study a new quite general family of dynamicalr -matrices for an auxiliary loop
algebraL„su(2)… related to restricted flows for equations of the KdV type. This
underlyingr -matrix structure allows us to reconstruct Lax representations and to
find variables of separation for a wide set of the integrable natural Hamiltonian
systems. ©1996 American Institute of Physics.@S0022-2488~96!01906-8#

I. INTRODUCTION

The main aim of this paper is to study ther -matrix formulation for mechanical systems
embedded as restricted flows into KdV type equations and to investigate its connection with Lax
representations and with the method of separation of variables. Lax representations are essential
for solving these mechanical systems either by linearization on the Jacobian of determinant curve
of the Lax matrix or by determining variables of separation through the functional Bethe ansatz.1,2

Restricted flows are easiest understood as stationary flows of soliton hierarchies with sources.3

Many well known integrable mechanical systems, such as Henon-Heiles, Garnier, Neumann~and
many others! can be embedded into the KdV and other soliton hierarchies as restricted flows.4

The main advantage of such embedding is that important structure elements for restricted
flows, such as Lax representation, bi-Hamiltonian formulation, Newton parametrization5 can be
systematically derived from the underlying soliton hierarchies. But it is not the case, as yet, for the
r -matrix formulation of these mechanical systems. There is no direct way of transporting the well
known r -matrix formulation for soliton hierarchies6 to their stationary and restricted flows. The
underlyingr -matrix structure for finite-dimensional systems appears to be more complicated than
for integrable PDE’s. A new type of, so called, dynamicalr -matrices depending both on the
spectral parameter and on dynamical variables has to be considered. The first example of such an
r -matrix has been found for the Calogero–Moser system7 and then for the parabolic and elliptic
separable potentials.8,9,10

It appears that the parabolic and ellipticr -matrices belong to a quite general family of dy-
namicalr -matrices which we introduce in this paper through a convenient ansatz which general-
izes our r -matrix from Refs. 9 and 10. We study the general algebraic properties of these
r -matrices and derive Lax representations through proper specializations. These specializations are
guided by the known integrable cases of natural Hamiltonian systems related to restricted flows for
equations of the KdV type.3,9 Further we use these Lax representations for finding variables of
separation and explain how starting with variables of separation these Lax representations can be
reconstructed by using the Sklyanin approach.1,2

a!On leave of absence from St. Petersburg’s Branch of the Steklov Mathematical Institute of Russian Academy of Sciences,
191 011, St. Petersburg, Russia.
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The paper is organized as follows.
In section II we consider additive algebraic deformations of linearr -matrix algebras on an

auxiliary loop algebrag5L„su~2!…. Kernels of theser -matrices have either rational, trigonometric
and elliptic dependence on the spectral parameter.6,11,12 We consider deformations
L(l)5L0(l)1F(l)PL„su~2!… of a certain Lax matrixL0(l)PL„su(2)…, which satisfies the
standardr -matrix brackets. These deformed Lax matrices obey a dynamicalrs-matrix algebra.
From dynamical point of view the deformed Lax matrices correspond to systems with additively
shifted integrals of motion,

I k
new5I k

old1 f k .

Further, for r -matrices of theXXX andXXZ type we consider projection of deformations
F(l) on finite-dimensional Poisson~adR* -invariant! subspacesLM ,N„su~2!…. Their Lax matrices
LMN(l) obey thers-matrix brackets as well. At the end of section II we construct Lax pairs from
the rs-matrix algebra and prove that these Lax pairs are related to stationary flows for equations
of the KdV type.

In section III we express matrix elements of the matricesL0(l) andLMN(l), defined on a
direct sum of loop algebras%L„su~2!…, through canonically conjugated variables of separation
and prove that these matrices obey thers-matrix brackets. Such matrices describe a geodesic
motion and a potential motion on a Riemannian manifold with complex diagonal meromorphic
Riemannian metrices of a special type. Corresponding potentials are the finite gap potentials on
these manifolds. The problem of quantization is discussed briefly.

In section IV we consider finite-dimensional integrable systems of natural type and investigate
three types of canonical transformations of variables prescribed by the linearr -matrix structure.
Two of these are pure coordinate transformations to generalized elliptic coordinates and to Jacobi
coordinates, while the third one provides an example of a momentum dependent change of vari-
ables. We exemplify our approach with a quartic potential of two degrees of freedom.

In the concluding remarks we discuss shortly an application of our constructions to other
nonlinear integrable PDE’s such as the AKNS and the sine-Gordon hierarchies.

II. DEFORMATIONS OF LINEAR r -MATRIX ALGEBRA

We shall use basic algebraic constructions in ther -matrix scheme for loop algebras in accor-
dance with Refs. 12 and 13.

In this paper we consider the loop algebraL~a! under Lie algebraa5su~2! only and shall use
tensor form ofr -brackets which is more common in the inverse scattering method.6,11,14We also
fix the representation of the algebra su~2! and shall work in the matrix notation, although the
underlying constructions are independent of particular matrix representation. In the following we
shall consider spin one half representations of su~2! or shall use the direct sum of these represen-
tations. This means that we restrict ourselves to two-dimensional auxiliary space in which su~2!
matrices act.

There are two important Lie–Poisson brackets~R-brackets!12,13 which can be considered as
linear classical limit of the fundamental commutator relations in the quantum inverse scattering
method.15,11 They are ther -bracket,

$L
1

~l!,L
2

~m!%5@r ~l,m!,L
1

~l!1L
2

~m!#, ~II.1!

and thers-bracket,

$L
1

~l!,L
2

~m!%5@r ~l,m!,L
1

~l!1L
2

~m!#1@s~l,m!,L
1

~l!2L
2

~m!#, ~II.2!
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which is related to the reflection equations.15,10Here we use the standard notationsL
1

(l) 5 L(l)

^ I , L
2

(m) 5 I ^ L(m). The brackets~II.1!–~II.2! are Lie–Poisson brackets, if the matricesr (l,m)
ands(l,m) satisfy the modified classical Yang–Baxter equations.12,13

For a traceless 232 matrixL0(l) ~which we shall call Lax matrix!,

L0~l!5 (
k51

3

sk~l!•sk , ~II.3!

which obeys the linearr -matrix algebra~II.1! the r -matrix is an antisymmetric function of one
argumentr (l,m)[r (l2m) and r (l)52r (2l). Namely, put

r ~l!5 (
k51

3

wk~l!•sk^ sk . ~II.4!

Thesk are Pauli matrices and coefficientswk(l) are functions of spectral parameter only. They
are determined by construction of theR-matrix on loop algebraL~a!12,13 or by the requirement
that ther -matrix obeys classical Yang–Baxter equations.6,11,14 In the quantum inverse scattering
methodr -matrices with rational, trigonometric and elliptic dependence on the spectral parameter
are calledr -matrices ofXXX, XXZ andXYZ types, respectively.6,11,14

It follows from the algebra~II.1! that the determinantd0(l)[detL0(l) can be taken as a
generating function of commuting integrals of motionI k since

$d0~l!,d0~m!%50, d0~l!5(
k
I kl

k, l,mPC implies $I k ,I j%50. ~II.5!

A similar property is valid for thers-algebra~II.2! too.
Here we consider deformationsL(l)PL~a!* of the Lax matrix L0(l)PL~a!* with

a5su(2). Themain stimulus for considering such deformations has been inspired by the study of
Lax representation andr -matrix formulation for restricted flows of the KdV and coupled KdV
hierarchies,3,9 which describe many physically interesting integrable natural Hamiltonian systems
such as Neumann, Garnier, Henon-Heiles systems and an infinite family of integrable polynomial
potentials.16

Now we find a new natural generalization of this result where the deformed matrixL(l)
belongs the same phase space. The additive deformation ofL0(l) has the form

L~l!5 (
k51

3 S sk~l!1ak~l!•
f ~l!

2b̃~l!
D •sk5L0~l!1F~l!, ~II.6!

where

b̃~l!5(
i51

3

a i~l!si~l!, ~II.7!

and

a1
2~l!1a2

2~l!1a3
2~l!50. ~II.8!

Here functionsa j (l) and the arbitrary functionf (l) are complex-valued functions of the spectral
parameterl only. The condition~II.8! guarantees that determinant ofL(l) has the additive
property
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d~l!5d0~l!1 f ~l!,

which means that integrals of the motiond(l)5( I kl
k of the deformed integrable systems differ

by some constants,

I k
new5I k

old1 f k , f kPC.

The requirement that the deformed Lax matrixL(l) satisfy thers-bracket~II.2! with the same
r -matrix r (l2m) yields four algebraic equations for the unknown functionsak(l), k51,2,3 and
a certain functiong(l,m).

Theorem 1: The deformed Lax matrix (II.6)–(II.8) satisfies the linear rs-algebra (II.2), if

wj~l,m!a j~m!a i~l!2wi~l,m!a i~m!a j~l!5g~l,m!•ak~l!, ~II.9!

where( j ,i ,k) are cyclic permutations of indices(1,2,3) and the scale function g(l,m) depends
only on the spectral parametersl andm. The corresponding matrix s(l,m) is given by

s~l,m!5 (
i , j51

3

a i j ~l,m!s i ^ s j , ~II.10!

with

a i j ~l,m!5wi~l,m!•g~l,m!•
a i~m!a j~m! f ~m!

b̃2~m!
2wj~l,m!•g~m,l!•

a i~l!a j~l! f ~l!

b̃2~l!
.

~II.11!

Proof: The proof is a direct but lengthy computation.
Notice that the functionf (l) is quite arbitrary here. A compact form of the equation~II.9!

follows from the ideas of Sklyanin in Ref. 1:
Lemma 1: The condition (II.9) of Theorem 1 for the coefficientsak(l) is equivalent to the

equation

$b̃~l!,b̃~m!%5g~l,m!•b̃~l!2g~m,l!•b̃~m!. ~II.12!

Proof: This lemma is proved by direct substitution of the equality~II.9! into the equation
~II.12! and vice versa.

Let us present some of the best known6,11,14r -matrices and the related solutions forak(l) and
g(l,m). The r -matrix of theXXX andXXZ types are

w15w2[w~l!5
h

w~l!
and w3~l!5

hw8~l!

w~l!
,

with

w~l!5l in the XXX case, ~II.13!

and

w~l!5sinhl in the XXZ case; ~II.14!

hereh is constant andw8~l! denotes the derivative with respect tol.
An interesting particular class of solutions to equations~II.8!–~II.9! is distinguished by the

conditions
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a350, a1
21a2

250. ~II.15!

They represent two points on the circle in complex plane with the phase difference equal top/2,
for instancea151, a25 i . For these solutions the functiong(l,m) is equal to zero„g(l,m)50….
A different example of solutions forr -matrix of XXZ type is

a15coshl, a25 i sinhl, a35 i .

Usually one uses the following rational parametrization for anr -matrix of theXXZ type:

w1~u2v !5w2~u2v !5h
2uv
u22v2

, w3~u2v !5h
u21v2

u22v2
,

~II.16!

w~u!5u2
1

u
, with u5el, v5em,

as, for example, in the description of the sine-Gordon equation.6

An elliptic r -matrix of theXYZ type has

w1~l!5h
Q118

Q10

Q10~l,k!

Q11~l,k!
, w2~l!5h

Q118

Q00

Q00~l,k!

Q11~l,k!
,

~II.17!

w3~l!5h
Q118

Q01

Q01~l,k!

Q11~l,k!
,

with

a1521; a25
i

k

dn~l,k!

cn~l,k!
, a35

k8

k

1

cn~l,k!
.

Herek andk8 denote modulus of the Jacobi elliptic functions andQ i j (l,k) are the elliptic theta
function in the notation of Ref. 15. We have to emphasize that the functionsb̃(l) ~II.7! with the
coefficientsak(l) ~II.17! and the functiong(l,m) were introduced in Ref. 1 for the quadratic
r -matrix algebra as a solution of the equation~II.12!. The functiong(l,m) is independent from
the second parameterm function and it is equal to

g~l,m!5h
Q118

Q10

Q10~l2K,k!

Q11~l2K,k!
.

This solution has a natural relation with a similar transformation of the Lax matrixL0(l) intro-
duced in Ref. 15.

It is well known thatr -brackets~II.1! are the Lie–Poisson brackets if ther -matrix obeys the
classical Yang–Baxter equations.6,12,13The Yang–Baxter equation is an equation on matrices in
the spaceC2

^C2
^C2. We use the familiar tensor notationsL j for the matrix acting as matrixL in

the j ’s factor of the product and trivially acting in the remaining factors, for example
L15L^ I ^ I . In similar way a matrixr i j is acting trivially in the thirdk’s factor and it works as
a matrix r in the product of the otheri j ’s factors. The classical Yang–Baxter equation for pure
numericalr -matrices has the form

@d12
6 ~l,m!,d13

6 ~l,n!#1@d12
6 ~l,m!,d23

6 ~m,n!#1@d32
6 ~n,m!,d13

6 ~l,n!#50. ~II.18!
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Following7,8 we introduce dynamical Yang–Baxter equations for this new family of a dynamical
rs-matrix. Let us consider matricesd6[r6s corresponding to a particular class of solutionsak

~II.15!.
Theorem 2:For the rs-algebra (II.2) with matrices (II.4)–(II.11), the following equations are

valid:

@d12
6 ~l,m!,d13

6 ~l,n!#1@d12
6 ~l,m!,d23

6 ~m,n!#1@d32
6 ~n,m!,d13

6 ~l,n!#1@L2~m!,d13
6 ~l,n!#

2@L3~n!,d12
6 ~l,m!#1@X~l,m,n!,L2~m!2L3~n!#50. ~II.19!

The matrix X(l,m,n) is

X~l,m,n!5b~l,m,n!•s2 ^ s2 ^ s2 ,
~II.20!

b~l,m,n!5
f ~l!b23~l!•~m2n!1 f ~m!b23~m!•~n2l!1 f ~n!b23~n!•~l2m!

~l2m!~m2n!~n2l!
.

The other two equations are obtained from (II.19) by cyclic permutation.
Proof: This Theorem also can be proved by a straightforward computation.
TensorX(l,m,n) is a completely symmetric tensor with respect to any permutations of

auxiliary spaces. For the quite arbitrary solutionsak to the equations~II.8!–~II.9! we can introduce
an asymmetric tensorX( i , j ,k)(l,m,n). Then dynamical Yang–Baxter equations take the general
form introduced in Ref. 7.

Now we consider the special deformations of theXXX and XXZ cases using the list of
formulas collected in Refs. 8, 9, 10 and on meaning its in generalrs-matrix approach to loop
algebras.

Our purpose is to apply thers-matrix formulation for description of natural Hamiltonian
systems in order to solve them through separation of variables. For separating variables we shall
apply the functional Bethe ansatz.1,2 Using similar transformations of the Lax matrixL0(l) and
corresponding renormalization of the Baker–Akhiezer vector-function we can restrict ourselves to
a particular class of deformations obtained by certain projections of the matrix,

L~l!5S a b

f ~l!b211c 2aD ~l!5L0~l!1S 0 0

f ~l!b21 0D . ~II.21!

Also, we shall require that entries ofL0(l) be the absolutely convergent Laurent series in the
XXX case or the absolutely convergent Fourier series in theXXZ case,

a~l!5(
k
akl

k or a~l!5(
k
ak exp~k•l! ~II.22!

for XXX andXXZ cases, respectively, and similarly forb(l) andc(l).
It is well known12 that the standardR-bracket onL~a!* associated with a generalR-brackets

has a large collection of finite-dimensional Poisson~adR* -invariant! subspaces,

LM ,N5 % j52M
N a* l j , provided M>0; N>21. ~II.23!

In other words the subspacesLM ,0 andL1,N are invariant under the coadjoint action of the
subalgebrasg1 andg2 .

12.
Let us introduce the following projection operators [•]MN on these Poisson subspaces:
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@z#MN5F (
k52`

1`

zkl
kG

MN

[ (
k52M

N

zkl
k,

~II.24!

@z#MN5F (
k52`

1`

zk exp~k•l!G
MN

[ (
k52M

N

zk exp~k•l!,

for the Laurent and for the Fourier series.
We shall define a new additive deformation ofL0(l) as

LMN~l!5L0~l!1FMN~b,l![S a b

GMN~b,l!1c 2aD ~l!, ~II.25!

whereGMN(b,l) is a function of the spectral parameterl and of the entryb(l). It reads as

GMN~b,l!5@ f ~l!•b21~l!#MN , ~II.26!

f ~l!5 (
k52`

`

f kl
k, or f ~l!5 (

k52`

`

f k exp~kl!. ~II.27!

The essential feature of this deformation is, in comparison with~II.6!, that the determinant of
the modified matrixLMN(l) is different fromd0(l)1 f (l),

d~l!5d0~l!1b•GMNÞd0~l!1 f ~l!,

and therefore integrals of motionI k
new of the deformed system are functionally different from the

undeformed integralsI k
old, and yet theLMN(l) matrix belongs to a certainrs-algebra.

Theorem 3: The matrix LMN(l) (II.25) satisfies the linear rs-matrix algebra (II.2), with the
matrix sMN(l,m) given by

s~l,m!5aMN~l,m!s2 ^ s2 , s25S 0 0

1 0D .
The functionaMN(l,m) is defined by

aMN~l,m!52w~l2m!~@ f ~l!b22~l!#MN2@ f ~m!b22~m!#MN!, ~II.28!

where w(l)[w1(l)5w2(l).
Proof: The proof is a straightforward calculation.
The Theorem 3 has a transparent meaning in the framework of the generalr -matrix approach

to loop algebras. The Theorem 3 asserts that the matrixs(l,m) can be restricted to subspaces
LM ,N ~II.23! and subspacesLM ,N is a common Poisson subspace for thers-brackets~II.2! with
matrix sMN5[s(l,m)]MN . Since the deformations~II.3! are directly connected with the KdV
equation,9 matricesd65r6sMN obey dynamical Yang–Baxter equations, which are obtained by
restriction of the equation~II.19!–~II.20! to the corresponding subspaceLMN . For certain matri-
cesLMN(l) andsMN this proposition has been proved in Ref. 8.

In order to describe Lax representations for integrable Hamiltonian systems related to matrices
L0(l) andLMN(l) we introduce matrices12,13

d12~l,m!5r ~l,m!1s~l,m!, and d21~l,m!5r ~l,m!2s~l,m!.

In terms of these matrices the Lie–Poissonrs-brackets read as
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$L
1

~l!,L
2

~m!%5@d12~l,m!,L
1

~l!#1@d21~l,m!,L
2

~m!#. ~II.29!

For constructing Lax representations we shall make use of the following lemma.6

Lemma 2: If matrix L(l) obeys the Lie–Poisson algebra (II.29) then the spectral invariants,

Hn~l!5tr~Ln!, n51,2,...;, ~II.30!

are integrals of motion in involution$Hn ,Hm%50 and the Lax equation are given by

L̇~m!5$Hn~l!,L~m!%5@Mn~l,m!,L~m!#, ~II.31!

with

Mn~l,m!5n tr1„L
1
n21~l!d21~l,m!…, n51,2..., ~II.32!

where tr1 means a trace in the first auxiliary space and a dot over L means a derivative with
respect to time corresponding to the Hamiltonian Hn(l). In two dimensional auxiliary space
d(l)[detL(l)52 1

2„tr(L
2)52 1

2H2(l)….
In order to get a HamiltonianH, which does not depend on the spectral parameter, one needs

a linear functional~a projection! Fl which selects, for example~in theXXX case!, a coefficient at
certain power ofl,

H5 1
2 Fl@H2~l!#5Fl@d~l!#. ~II.33!

For instance, it can be defined as a residue of orderm at l0,

Fl@z#5Resl0
m z~l!5

1

~m21!!

dm21

dlm21 „~l2l0!
mz~l!…U

l5l0

. ~II.34!

Then the Lax representation for the Lax matrices@~II.3! or ~II.21!# with the Hamiltonian~II.33!
has the form

L̇~m!5$H,L~m!%5$ 1
2 Fl@ tr1L

1
2~l!#,L~m!%5@M ~m!,L~m!#,

~II.35!

M ~m!5Fl@ tr1„L
1

~l!•d21~l,m!…#5Fl@M ~l,m!#.

In particular, for the initial Lax matrixL0 ~II.3! one getss50; d21(l,m)5r (l2m) and then

L̇0~m!5@M0~m!,L0~m!# and M0~m!5FlF2(
k51

3

sk~l!•wk~l2m!•skG . ~II.36!

In this paper we start with the requirement that

M05s1[S 0 1

0 0D ~II.37!
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and chooseL0(l) andFl appropriately. It is a rather strong restriction for the matricesL0 ~II.3!
and for the corresponding Hamiltonians. This requirement comes from the study ofrs-
representations for natural Hamiltonian systems related to stationary flows for equations of KdV
type.9,10

As an immediate consequence of the Lax representation~II.35! with the matrixM0 ~II.37! we
can rewrite the Lax matrixL0 in the form

L0~m!5S 2
bx
2

b

2
bxx
2

bx
2

D , bx5$H0 ,b%, ~II.38!

whereH0 is a Hamiltonian corresponding toL0 . Since the determinant ofL0(l) is a generating
function of integrals of motion, we see that it obeys the equation

2$H0 ,d0~l!%52d0,x~l!5]x
3
•b5bxxx50. ~II.39!

Now for a fixed triad (L0 ,M0 ,Fl) we introduce a modified matrixL(l) ~II.21!. In this case
the matrixM (m) is constructed according to~II.35! with d21(l,m)5r2s and with the use of the
same projectorFl . It reads as

M ~m!5S 0 1

2u~m! 0D , u~m!5 f ~m!b22~m!, ~II.40!

due to the linearity ofFl ,

Fl@w1•~2 f ~l!b21~l!1c~l!1„f ~l!b22~l!2 f ~m!b22~m!!•b~l…!#

52 f ~m!b22~m!52u~m!. ~II.41!

Then from the Lax representation~II.35! it follows that the deformed matrixL(l) has to be equal
to

L~l!5S 2
bx
2

b

2b~l!u~l!2
bxx
2

bx
2

D , bx5$H,b%, ~II.42!

where the HamiltonianH5Fl[d(l)] is obtained by applying the old projectorFl to the modified
determinant. The determinantd(l) of the modified matrixL(l) obeys the equation

2dx~l!5S 14 ]x
31u]x1

1

2
uxD •b5B1@u#•b50. ~II.43!

HereB1[u] is the Hamiltonian pencil operator for the coupled KdV equation.4,3

For the deformed@according to~II.25!# matrixLMN(l) the Lax equation is constructed analo-
gously ~II.40!–~II.42! and ~II.43!. One has to replaceu(m)5 f (m)b22(m) with the potential
uMN(m)5[ f (m)b22(m)]MN .

Equation ~II.43! shows that our deformation is connected to the stationary problems for
equations of the KdV type. The Hamiltonian and some properties of motion for the finite-
dimensional integrable systems connected with stationary flows of the KdV equations were con-
sidered in Refs. 17, 18. Lax representations, bi-Hamiltonian structures, Newton representations
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and some other properties for these systems were introducing in Refs. 4, 5 through the method of
the restricted flows for nonlinear equations. Some particular systems were studied in ther -matrix
approach.8,9,10 In the next section we tie these different methods to the Lie algebraic method of
constructing matricesL(l) on the loop algebras.

In the next section we shall assume that the Lax matrixM0 has the form

M05S v0 u0

0 2v0
D . ~II.44!

It introduces certain technical complications without influence on the conceptual structure.

III. CONSTRUCTION OF LAX MATRICES L(l) FOR SEPARABLE SYSTEMS

The main problem for a given integrable Hamiltonian system with a complete set of function-
ally independent and commuting integrals of motionH1 ,...,Hn is to determine its solutions. The
construction in the Liouville theorem has a local character and there is no general way to describe
solutions globally unless some additional information about the system is known, such as a
complete, spectral parameter dependent Lax representation or variables of separation.

For the Lax matricesL0(l) satisfyingr -matrix algebra with ther -matrix of theXXX, XXZ
andXYZ types the problem of determining variables of separation has been essentially solved by
Sklyanin.2

Proposition 1 (Sklyanin1,2): Take the poles of the properly normalized Baker–Akhiezer func-
tion and the corresponding eigenvalues of the Lax matrix and you obtain the separation of
variables. It turns out that in the case of the GL(N)-invariant r-matrix the normalization of the
Baker–Akhiezer function corresponding to any constant numeric vector produces separation of
variables.

In our caseN52 and coordinatesuk , vk , k51,...,n defined as

b~l5uk!50, vk5a~l5uk!, ~III.1!

are canonically conjugate variables of separation and corresponding separation equations are

vk
252d~uk!, ~III.2!

whered(l)[detL(l).
A general construction of matricesL0(l) with multiple poles on a direct sum of loop algebras

%L„su(2)… has been presented in detail in Ref. 12. The Lax matrix is assumed in the form

L0~l!5 (
a51

3

(
j

N

sj
awa~l2n j !sa , ~III.3!

wheresa are Pauli matrices,wa(l) are coefficients of the correspondingr -matrix andn j are
simple poles of the fixed divisorD5$n1 ,...,nN%. Residuessj

a are the standard linear coordinates
on su(2)* with Lie-Poisson brackets,

$sj
a ,sk

b%5d jkeabg•sj
g .

The corresponding phase space is the direct sum ofN copiessu(2)* . These matrices describe
systems ofN interacting Euler tops. The case of higher order of poles can be treated as a
degeneration of~III.3!. It describes different tops12 as well. For all these system we can apply a
procedure of separation of variables.

In contrast to Ref. 12, we provide a solution of the converse problem of how to construct Lax
matricesL(l) satisfying thers-matrix algebra for an integrable system given in terms of variables
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of separation. We express firstL(l) in terms of variables of separation (uk ,vk), k51,...,n and
then we shall use the canonical transformations naturally determining from ther -matrix structure
to the ‘‘physical’’ variables (xk ,pk), k51,...,n.

Let us take the meromorphic matrix-functionL0(l) and consider the coefficients
w1(l)5w2(l) of the r -matrices~II.13!–~II.14! with one distinguished point at infinity~it is zero
by both arguments and their residues at infinity are equal to21!. Let us choose the linear
functionalFl as the higher residue fixed orderK at infinity,

Fl@z#52Res̀Kz~l!. ~III.4!

Then ~II.35! and ~II.44! gives

2Res̀KF b~l!

w~l2m!G5u0 , 2Res̀KF c~l!

w~l2m!G50, ~III.5!

2Res̀KFa~l!w8~l2m!

w~l2m! G5v0 . ~III.6!

In particularu051, v050 for the matrixM0 ~II.37!. In theXXX case it means that entriesb(l)
anda(l) have the highest inl terms in powerK11 equal tou0 andv0 , respectively. The entry
c(l) has the highest term of orderK only. Note that the conditions for the entrya(l) andc(l)
~III.5!–~III.6! in the Lax pair (L0 ,M0) ~II.37! follow from the first condition~III.5! for entryb(l)
and from the definitionsa(l)52bx/252]xb/2 andc(l)52bxx/2, since the derivative]x com-
mutes with the functionalFl .

Just as in Ref. 12 we can fix one divisorD consisting of poles in the matrix-functionL0(l)
and a second divisorU consisting of zeroes of the entryb(l). Let them have the form

D5$~ej ,mj ! j51,...,m̃;%, U5$~uk ,nk!k51,...,ñ;%,
~III.7!

ukÞ`, and ejÞuk ,; j ,k,

whereD, U,CP15Cø$`% for the XXX model andD, U,CP1/2pZ for the XXZ model. We
consider the simple zeroesuk , nk[1; k51,...,n, only. This restriction is related to ther -matrix
structure. The poles atej can be multiple poles and their ordersmj are fixed. In the formulae
below each pole is counted according to its multiplicity and we do not use special indices when it
is clear from a context.

Now we introduce the following ansatz for the entryb(l):

b~l!5u0•
Pk51

n w~l2uk!

P j51
m w~l2ej !

,

w~l![w21~l!5l in the XXX case, ~III.8!

w~l!5sinhl in the XXZ case,

whereu0 is either a constant or a dynamical variable. The functionw~l! depends from the type of
the r -matrix and the functionalFl ~III.4! is residue withK51 for n,m andK5n2m11 for
n>m.

The entrya(l) hasm poles at pointsej of the divisorD and its values atn pointsuk are given
„a(l5uk)5vk… ~III.1!. The asymptotic behavior at infinity is fixed by Lax representation~III.5!.
By a Lagrange interpolation formula the entrya(l) can be represented as
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a~l!5b~l!•S v01(
i51

n

v i•w3~l2ui !•gii D ,
where

gii5F ]b

]lU
l5ui

G21

5Resuib
21~l!5

P j51
m w~ui2ej !

PkÞ i
n w~ui2uk!

. ~III.9!

Thew3(l)5w8(l)/w(l) is the coefficient in the definition of the correspondingr -matrix. Vari-
ablesu0 , v0 are connected to the Lax matrixM0 ~II.44!.

Further, from the Lax representation~II.38! for the initial matrixL0(l), we can construct the
entrya(l). It reads as

a~l!52
bx
2

5
b~l!

2
•S 2

u̇0
u0

1(
i51

n

u̇i•w3~l2ui !D , ~III.10!

where

u̇k[uk,x5]xuk , and w3~l!5
w8~l!

w~l!
. ~III.11!

We set now, for simplicity,u051 andv050 as in the Lax matrix~II.37!. Definition of entryc(l)
follows from ~II.38! as well,

c~l!52
bxx
2

52
a2~l!

b~l!
1
b~l!

2
•(
i51

n S üiw3~l2ui !2u̇i
2 ]w3~l2ui !

]ui
D , ~III.12!

whereüi and u̇i are defined below.
From comparison of two forms of the entrya(l) ~III.9! and ~III.10! we can introduce the

following Hamiltonian:

H05(
i51

n

v i
2
•gii5(

i51

n

v i
2
•F ]b~l!

]l U
l5ui

G21

, ~III.13!

using the Hamilton–Jacobi equations.
The remaining symbols in the entryc(l) are defined as

u̇i[
]H0

]v i
52•v i•gii ,

üi52(
j51

m

v i
2
•gii

2
•

w8~ui2ej !

w~ui2ej !
12(

k51

n

@~vk1v i !
2gii gkk2v i

2~gkk2gii !gii #w~ui2uk!w8~ui2uk!,

wherew(l)5w1
21(l)5l or w~l!5sinh~l!. Then a direct calculation shows that the Hamiltonian

~III.13! is equal to the Hamiltonian~II.33! H05Fl[d0(l)].
The matrixL0(l) with entries~III.8!–~III.9! and~III.12! obeys ther -matrix structure~II.1! as

we can check it directly using the additive theorems forw~l!.
So, we have constructed the initial matrixL0(l) in terms of variables of separation. From the

initial matricesL0(l) we can construct modified matricesLMN(l) ~II.25!. These matrices de-
scribe integrable Hamiltonian system with the HamiltonianH5Fl[d(l)] and a complete set of
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the integrals of motion can be obtained from determinants of these matrices as well. The deter-
minantd(l) is a meromorphic function with the divisors of poles determined by divisors of the
entries ofL0(l) or of LMN(l). Therefore the rational algebraic functionsd(l) can be written as
a quotient of two products or it can be decomposed into a simple fraction according to the
Mittag-Leffler theorem,

d~l!5
Pd
N~l!

Qd
m~l!

5
Pk51

N w~l2hk!

P j51
m w~l2ej !

5Pd
N2m~l!1(

j ,i
H ji •w

2 i~l2ej !

5 )
k51

N2m

w~l2Hk!1(
j ,i

H ji •w
2 i~l2ej !, ~III.14!

whereN5n for the initial matrixL0(l). Both decompositions provide us with sets of integrals of
motion.

So, zeroeshk of the functionPd
N(l) can be chosen as a first set of integrals of motion in

involution for the Hamiltonian systems related to the Lax matricesL0(l) andLMN(l). ZeroesHk

of the functionPd
N2m(l) and the residuesHji at pointsej constitute a second set of the integrals

of motion in involution. Integrals of motionI k
new of the deformed system are functionally different

from the undeformed integralsI k
old and it reads as

I k
new5I k

old1Vk
MN~u1 ,...,un!,

whereVk
MN(u1 ,...,un) are functions on coordinates only. The proof of involutivity ofI k

new is
based on the equality~II.5! and completeness and functional independence of these integrals
follow from completeness and functional independence ofI k

old, which have been proved by Mish-
chenko and Fomenko~see the review12!.

We summarize these considerations as the following.
Proposition 2: The Lax matrix L0(l) (III.8), (III.9), (III.12) describes geodesic motions on the

Riemannian manifold with the complex diagonal meromorphic Riemannian metrics,

gk j5dk
j
•F ]b~l!

]l U
l5ui

G21

•5dk
j
•

P j51
m w~ui2ej !

PkÞ i
n w~ui2uk!

, ~III.15!

defined on moduli of n-dimensional Jacobi varieties in terms of complex elliptic (root) coordinates
uk . The Hamiltonian system (III.13),

H05(
i

n

v i
2gii ,

has a complete system of first integralsvk and it defines a Lagrangian submanifold of the phase
spaceC2n which has the form of symmetric product„(G3...3G)/sn… of n copies of Riemannian
surfaces,18

G:vk
252d~l!ul5uk

52FPd~l!

Qd~l!G
l5uk

. ~III.16!

A modified Lax matrix LMN(l) (II.25) describes potential motion on the same Riemannian mani-
fold with a Hamiltonian of a natural type,

H5H01VMN~u1 ,u2 ...,un ; f2M , f2M11 ,...,f N!, ~III.17!
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f j are coefficients of the function f(l)5( f kl
k or of f(l)5( f ke

kl. These matrices obey the
rs-matrix structure (II.2) with the sMN-matrix given by the Theorem 3.

For these systems we can define a Riemann matrix of periods of holomorphic differentials and
by using the Abel–Jacobi map we can find the action-angle variables. The potentialsVMN are the
finite gap potentials on these manifolds.17,18For details about geodesic and potential motion with
metric ~III.15! in theXXX case see Refs. 17,18.

Thus we have constructed initial matricesL0 and modified matricesLMN ~II.21!–~II.25! which
correspond to a geodesic motion and a potential motion on Riemannian manifolds with metric
~III.15!, respectively. For theXXX case the initial matrixL0(l) ~III.8!, ~III.9!, ~III.12! was
considered in Ref. 19 and the HamiltonianH0 ~III.13! describes free motion on Riemannian
spaces of constant curvature.

The above results describe motions on a Jacobi variety„(G3...3G)/sn… which is a symmet-
ric product of uniform Riemannian surfaces,

G:vk
252d~l!ul5uk

. ~III.18!

This scheme can be generalized to the case of the more general Jacobi variety„(G13G2 ...3Gn)…
with different Riemannian surfaces,

Gk
~ j ! :vk

~ j !252d~ j !~l!ul5uk
, k51,...,nj , j51,...,n, ~III.19!

wherek and j are two numbers indexing curves. Motion on such manifolds can be described with
the use of the block matrices,

L~l!5 % j
nL ~ j !~l,v1

~ j ! ,u1
~ j ! ;...;vnj

~ j ! ,unj
~ j !!, ~III.20!

acting in the auxiliary space,

Vaux5 % jVaux
~ j ! . ~III.21!

Here j denotes numbers of blocks andk denotes the number of degrees of freedom related to each
block. Each block,

L ~ j !~l,v1
~ j ! ,u1

~ j ! ;...;vnj
~ j ! ,unj

~ j !!,

is a matrix of typeL0(l) or LMN(l) ~II.21!, respectively. These manifolds have been investigated
in Ref. 20 and such block matrices were considered in Ref. 10.

In theXYZcase parametrization of the entryb(l) is more complicated. For instance, it has to
comply with the equality~II.12!,

$b̃~l!,b̃~m!%5g~l,m!•b̃~l!2g~m,l!•b̃~m!.

In order to bypass this difficulty we can use two-dimensional lattice averaging6 for the construct-
ing matricesL0(l) from the corresponding matrices of the rational model.

IV. CANONICAL TRANSFORMATIONS OF VARIABLES

We can represent meromorphic matrix-functionsL(l) by means of generators of various Lie
groups, which one can consider as the various phase spaces for the integrable systems. This leads
to links among different integrable systems: the Neumann problem, Gaudin magnets and Euler
tops.12,19 In this paper we shall consider finite-dimensional integrable systems of the natural type
and shall investigate three types of canonical transformations of variables prescribed by a linear
r -matrix structure~II.1!, ~II.2!.
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A. Generalized elliptic coordinates

If the limit orders of polesmj at the pointsej are fixed, then the Poisson brackets at different
poles are independent and the corresponding orbits are a direct product of orbits of algebrasu(2).
This factorization is independent of the pointsej .

12 By the Mittag–Leffler theorem we can de-
compose rational functionsb(l) ~III.8! anda(l) ~III.9! into partial fractions,

b~l!5Pb
n2m~l!1(

j ,i
bj i •w

2 i~l2ej !5 )
k51

n2m

w~bk2l!1(
j ,i

bj i •w
2 i~l2ej !,

~IV.1!

a~l!5Pa
n2m21~l!1(

j ,i
aj i •w

2 i~l2ej !5 )
k51

n2m21

w~ak2l!1(
j i

aj i •w
2 i~l2ej !,

where bk and ak are zeroes of the polynomialsPb
n2m(l) and Pa

n2m21(l), respectively. The
residuesbji andaji at the pointsej are linear coordinates on the algebrasu(2)* ~III.3!. We use
the later two representations for generators of this algebra in terms of canonical variables,

bj5xj
2, aj5xjpj , cj5pj

2, ~IV.2!

bj52xjXj , aj5xjpj1XjPj , cj52pjPj . ~IV.3!

We omit here the double indexesj i which are necessary for higher order poles and we used
notationcj for residues of entryc(l). Variablesxj , pj and Xj , Pj are canonically conjugate
coordinates and momenta. Generalized elliptic coordinates correspond to the first representation
~IV.2! and in our scheme they are a simple consequence of the Mittag–Leffler theorem for
meromorphic functions.

The other (n2m) variables can be chosen as zeroes of the polynomialPb
n2m(l5xk) and as

the values of functionPa
n2m21(l) at these zeroesxk ,

Pb
n2m~l5xk!50, pk5Pa

n2m21~l5xk!. ~IV.4!

Variables xk , k5m11,...,n are calculated from the coefficients of the polynomial
Pb
n2m2(l)5( Bkl

k. For instance, in theXXX case with simple poles these coefficients are equal
to

Bk5
1

~k21!!

dk21

dlk21 b~l!U
l50

1~21!k(
j51

m xj
2

ej
k11 , ~IV.5!

then the conjugate~to thexk! momentapk , k5m11,...,n are

pk5a~l!ul5xk
2(

j51

m
xjpj
xk2ej

. ~IV.6!

Lemma 3: Variables xj ,pj j51,...,m and xk ,pk k5m11,...,n are a system of canonically
conjugate variables.

Proof: The Mittag–Leffler theorem defines a unique, invertible map between oldn pairs of
variables (uk ,vk), k51,...,n and the newn pairs of variables (xk ,pk), k51,...,n. The proof of
canonical conjugation of these variables is based on ther -matrix structure. The technique devel-
oped by Sklyanin~see Ref. 1! has to be employed.
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In the case of higher order poles we have an additional freedom in representing residues
through canonical variables. There are two approaches to this problem. The first one is connected
with standard degenerations of simple divisors, for exampleej→ej11 or ej→`. This approach is
developed in Refs. 9,21. Our approach is different.

We shall show how the variables (qj ,pj ) are connected to Newton type variables for station-
ary flows of KdV type equations introduced in Ref. 5. We shall consider theXXX case but
generalization for theXXZ case is transparent. Ther -matrix algebra is associative; a linear
combination of any two matricesL1 andL2 satisfying~II.1! satisfies~II.1! too. Let us consider the
polynomial part ofL0(l) corresponding to poles at infinity. The determinants ofL0(l) andL(l)
from ~II.39!–~II.43! are

d0~l!5
b•bxx
2

2
bx
2

4
, d~l!5

b•bxx
2

2
bx
2

4
1b2•uMN~l!. ~IV.7!

They are integrated forms of the KdV recursion relations.5

A simple substitution for the entries of matrixL0(l),

b~l!5B2, a~l!52bx/252BBx ,
~IV.8!

c~l!52bxx/252Bx
22BBxx ,

turns determinants~IV.7! into the form

d0~l!5B3Bxx , d~l!5B3Bxx1B4F f ~l!

B4 G
MN

, ~IV.9!

if we use an explicit formula for the potentialuMN(l). These equations have the form of Newton
equations forB,

Bxx5d0~l!B23, Bxx5d~l!B232BF f ~l!

B4 G
MN

. ~IV.10!

If we assume thatB5( j50
N qN2 jl

j is a polynomial then its coefficientsqj obey the Newton
equation of motion~IV.10! with d(l)5( I kl

k, whereI k are integrals of motion. It becomes clear
in terms of variablesqj that deformation of integrals of motionI k affects only the potential
~q-dependent! part. The kinetic~momentum dependent! part of I k remains unchanged.

Coefficients of all entriesa(l), b(l) andc(l) are easily expressed in terms of coefficients of
B. Let us fix the highest order ofl in entry asK, then

b~l!5(
j50

K

bjl
j , a~l!5(

j50

K

ajl
j , c~l!5(

j50

K

cjl
j , ~IV.11!

with

bK51, aK50, cK50, ~IV.12!

due to the definition ofM0 andFl . Let

B~l!5(
j50

K

qK2 jl
j , with q051,
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where the setB we consider as a formal set. After substitution of these definitions into~IV.8! we
obtain

bj5 (
i50

K2 j

qiqK2 j2 i , aj52 (
i50

K2 j

qi ,xqK2 j2 i ,

~IV.13!

cj52 (
i50

K2 j

qi ,xqK2 j2 i ,x2 (
i50

K2 j

qi ,xxqK2 j2 i ,

whereqx is derivate with respect tox, and we used the Newton formulae for a product of sets.
From q051 and the definitions~IV.13! the restrictions~IV.12! for the higher coefficients of
entries of matrixL0 follow automatically. Canonically conjugate~to the coordinatesqj ! momenta
pj can be derived from ther -matrix algebra~II.1! and from the definitions~IV.11!–~IV.13!,

pj5qK112 j ,x , $pj ,qk%5d jk .

As an example, we present first polynomials,

K51, b~l!5l12q1 , 2a~l!5p1 ,

K52, b~l!5l212lx11~2x21x1
2!, 2a~l!5lp21~p11p2x1!, ~IV.14!

K53, b~l!5l312l2x11l~2x21x1
2!12~x31x1x2!,

2a~l!5l2p31l~p21p3x1!1~p11p2x11p3x2!.

All integrals of motion can be expressed in terms of new variables directly from the equations
~IV.9! by taking residues. Notice that the kinetic part of the HamiltonianH5Fl[d(l)] has the
nondiagonal form

T5 (
j51

K11

pjpK2 j . ~IV.15!

Definition of the variables of separation is not changed by deforming the Lax matrixL0(l)
~II.21!. For instance, the free motion HamiltonianH5T ~IV.15! and the corresponding Hamil-
tonian with potential termsH5T1VMN separate in the same coordinate systems.

A. Jacobi coordinates

Let us take a simplest matrixL0
(k)(l) with the entryb(l) of ~III.8! which has only one zero,

L0
~k!~l,vk ,uk!5S 2vk w~l2uk!

0 vk
D . ~IV.16!

It obeys the linearr -matrix algebra~II.1! with the r -matrix ~II.13! or ~II.14!. Let

L0~l!5 % k
nL0

~k!~l,vk ,uk!, ~IV.17!

which means that we associate to our system a matrixL, which has blocks structure, and each
block L0

(k) obeys ther -algebra with the samer -matrix.
A modified matrixL(l) ~II.21! is equal to
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L~l!5 % k
nLMN

~k! ~l,vk ,uk!, ~IV.18!

where blocksLMN
(k) (l,vk ,uk) are

LMN
~k! ~l,vk ,uk!5S 2vk w~l2uk!

F f ~l!

w~l2uk!
G
MN

vk D . ~IV.19!

These matrices are deformations of the initial matricesL0(l,vk ,uk) ~IV.16! and each blockLMN
(k)

obeys thers-algebra with a commonr -matrix but different~since they depend onuk! matrices
sMN
(k) constructed according to~II.28!.

The matrixL0 ~IV.16! and the modified matrixLMN ~IV.19! have an internal structure,21

L0~l,vk ,uk!5S 2vk w~l2uk!

0 vk
D 5S 2(a j pj

~k! w~l2(a j
21qj

~k!!

0 (a j pj
~k! D ,

~IV.20!

LMN~l,vk ,uk!5S 2(a j pj
~k! w~l2(a j

21qj
~k!!

F f ~l!

w~l2(a j
21qj

~k!!G
MN

(a j pj
~k! D ,

if variablesvk anduk are considered as linear combinations of certain canonical variablespj
(k),

qj
(k) j51,...,K. If we consider a system with ann degree of freedom and require that the Hamil-
tonian has a natural canonical form with the kinetic energy form,

T~n!5 (
k51

n

vk
25( qj

2;

then the internal structure of~IV.20! leads to the Jacobi transformations for an-degrees of free-
dom systems. It is then a pure coordinate change of variables. As before free motion equations
corresponding to the undeformed matrix and motion with potential corresponding to the modified
matrix separate in the same system of coordinates.

B. Momentum dependent change of variables

Let us consider functionsBj (l) andAj (l), which are algebraic functions of entries of the
matrix L(l) and which satisfy suitable Poisson brackets, for example

$Aj~l!,Ak~m!%5$Bj~l!,Bk~m!%50,

$Aj~l!,Bk~m!%5d jk•g~l,m!•„Bj~l!2Bk~m!….

We shall require that zeroes of the functionsBj (l) and values of functionsAj (l) at these zeroes
define a new system of coordinates. Because functionsBj (l) andAj (l) are meromorphic func-
tions it will also be interesting to consider the corresponding residues. The first example of the
such transformations associated to Henon-Heiles system has been considered in Ref. 10.

Now we present new transformation related to the two particles quartic potential.22 In the
same way as for the Jacobi transformations we consider the block matricesL(l) ~IV.18! with the
two simplest blocks~IV.19!.10

Lemma 4: The map(u1 ,u2 ,v1 ,v2)→(x,p,px ,py) given by
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x25a
d1~l!2d2~l!

b1
2~l!2b2

2~l!
U

l50

; aPR, px5
a1~l!b1~l!2a2~l!b2~l!

b1
2~l!2b2

2~l!
U

l50

•x;

~IV.21!

y25b„b1
2~l!1b2

2~l!…l502
abpx

2

2x2
1
x2

2
, bPR;

pyy5
1

4b
„a1~l!b1~l!1a2~l!b2~l!…l501ab

px
x S 11

px
2

x2D 1pxx;

where ak(l) and bk(l) are the entries of matrices LMN(l,vk ,uk); k51,2 ~IV.19! and dk(l) are
the corresponding determinants, is a canonical transformation.Proof is based on the undeformed
r -matrix algebra and on the following relation:

$dk~l!,dj~m!%50,

which is given by thers-algebra~II.2! with sMN
(k) -matrices~II.28!.

We emphasize that it is a non-pure coordinate change of variables and that a free motion on
the manifold and a potential motion on it separate in different systems of coordinates.

V. CONCLUSIONS

We have developed here thers-matrix scheme for natural finite-dimensional integrable sys-
tems connected to the KdV and the coupled KdV hierarchies. But it applies to other hierarchies of
integrable nonlinear evolution equations as well. For the hierarchy of the KdV type equations the
Lax matrixM0 ~II.37! is independent of the spectral parameter. The corresponding matrices for
the AKNS hierarchy and for the SG hierarchy have one pole at infinity or two poles at infinity and
at zero correspondingly.6 For applying our scheme in these cases one has to redefine the projector
Fl :

Flm5w~m!•Resl5`
K 1Resl5`

K21, w~m!5m or w~m!5m1
1

m
. ~V.1!

These two choices of the functionw~m! correspond to the AKNS and to the SG hierarchy if we use
the second rational parametrization for ther -matrix ofXXZ type ~II.16! for the SG equation. The
Hamiltonians in terms of the root variablesuk of finite-dimensional systems connected with
stationary flows for this hierarchies were introduced in Refs. 17, 18.

In order to apply our approach to restricted flows of the AKNS hierarchy of equations23 we
have to fix the form of the matrixM0 as

M0~m!5S m w

u 2m D ,
and to choose the projectorFlm in the form ~V.1!.

In the next step one has to consider the undeformed matrixL0(l) corresponding to this choice
of M0 andFlm and prove that it obeys ther -matrix algebra. Let the matrixL0(l) have the form

L0~l!5L0
`~l!1L0

D~l!,

where we splitL0(l) into the polynomial~pole at infinity! part and theD-divisor part correspond-
ing to finite poles. One finds the following sequence ofL0

` matrices yielding the prescribedM0
andFlm and satisfying ther -matrix algebra~II.1!:
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L0
`~l!5S 1 0

0 21D ,
L0

`~l!5S l q1

p1 2l
D , $p1 ,q1%51,

L0
`~l!5S l22

q1q2
2

lq122p2

lq222p1 2l21
q1q2
2

D , $p2 ,q2%51.

The analog of the parametrization related to the Newton representation~IV.14!5 for the recurrent
construction of these matrices is not known as yet. In this case the Hamiltonians are equal to
H5Flm[d(l)], but they do not depend on the spectral parameterm since the corresponding
residues are equal to zero.

The matrixM0 is more symmetric by its entries in this case and respective integrable systems
are of the non-natural type23 one can use various solutions of the equations~II.15! for the defor-
mation coefficientsa j . Systems with such deformations will be investigated in detail in the
forthcoming publications.

Finally, we remark that thers-matrix scheme presented in this paper applies to the discrete
time analogs of soliton hierarchies. It yields anrs-matrix description of integrable symplectic
maps.
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Lie superalgebraic methods are used to establish a connection between the huge Lie
superalgebraJ of super-~pseudo-! differential operators and various super KP-
hierarchies. We show in particular thatJ splits into 5523211 graded algebras
expected to correspond to five classes of super-KP-hierarchies generalizing the
well-known Manin–Radul and Figueroa–Mas–Ramos supersymmetric
KP-hierarchies. ©1996 American Institute of Physics.@S0022-2488~96!02506-6#

I. INTRODUCTION

Recently, there has been much interest in studying two-dimensional integrable models.1,2

Known as the generalized KdV-hierarchies, these models are incorporated into a much larger
integrable system, namely the KP-hierarchy.3 This is defined as a set of multitime evolution
equations, which read in the Lax form as

]L

]t r
5@L1

r ,L#, r51,2,3,... , ~1!

whereL is a pseudo-differential operator given by

L5]1(
i>1

Ui~z!]12 i , ]5
]

]z
. ~2!

There are various remarkable properties of the KP-hierarchy. The most essential ones are its
bi-Hamiltonian structures1,4 and the fact that it admits a Lax formulation.1,5 Several extensions of
the standard KP-hierarchy, Eqs.~1!, ~2!, are possible. The more known ones, given by the super-
symmetric extensions of the hierarchy, Eqs.~1!, ~2!, are based on the Manin–Radul odd pseudo-
superdifferential operator,6

L5D1(
i>0

U ~ i11!/2~ ẑ!D2 i , ~3!

and the Figueroa O’Farrill–Mas–Ramos even pseudo-superdifferential operator,7

L5D21(
i>0

U ~ i12!/2~ ẑ!D2 i , ~4!

with D5]u1u].
In this Letter we propose a consistently algebraic formulation of the extended KP-integrable

systems. We will present a systematic description of the Lie superalgebraJ of supersymmetric

a!Mailing address: Section de Physique des Hautes Energies, LMPHE, Faculte´ des Sciences, Ibn Batouta, B.P. 1014-Rabat
Morocco.
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pseudo-differential operators and we will show, in particular, that it splits into 65332 Lie
superalgebras. To establish a connection with the supersymmetric extensions of the KP-hierarchy,
Eqs.~1!, ~2!, we will define 5523211 graded spaces of pseudo-superdifferential operators con-
taining as a particular element the Figueroa–Mas–Ramos, Eq.~4!, and the Manin–Radul, Eq.~3!,
superdifferential Lax operators, and we will conclude by expecting that these five graded spaces
correspond to five classes of supersymmetric KP-hierarchies.

II. THE ALGEBRA J OF SUPER-PSEUDO-DIFFERENTIAL OPERATORS

A. The ring R of analytic superfields

Let us first consider the ring of analytic superfieldsUk/2( ẑ), kPZ, which depend on~1u1!
superspace coordinatesẑ5(z,u). In this supercommutativeZ2-graded ringR, one can define an
odd superderivativeD5]u1u], theN51 supercovariant derivative that obeys theN51 supersym-
metric algebraD25] with u250 and]u5*du. Following the analysis developed in Ref. 8, the ring
R can be decomposed as

R5 %

kPZ
Rk/2

~0,0! , ~5!

whereRk/2
(0,0) is the set of superfieldsUk/2( ẑ) labeled by half-integer conformal spink/2, KPZ.

The upper indices~0,0!, carried byR and that we shall drop whenever no confusion can arise, are
special values of general indices (p,q) to be introduced later on. One can also define the following
product:

^Uk/2 ,Ul /2&5dk1 l ,1E dẑ
Uk

2
~ ẑ!U ~12k!/2~ ẑ!, ~6!

showing that the one-dimensional subspacesRk/2 andR(12k)/2 are dual to each other. Using
dimensional arguments, it is not difficult to see that the product^•,•&, Eq. ~6!, carries a conformal
spinD52 1

2. Later on, we shall introduce a combined scalar product^^•,•&& built out of Eq.~6! and
the pairing product~,! of conformal spinD51/2, so that we getD@^^,&&#50.

Since the conformal spin product, Eq.~6!, gets induced here, we have thatR5H1%H2 ,
whereH1 andH2 are two dual semi-infinite tensor subspaces characterized, respectively, by
positive and negative conformal spin as shown here below,

H15 %

k.0
Rk/2 , H25 %

k.0
R~12k!/2 . ~7!

We learn, in particular, that the spaceR0 of vanishing conformal spin superfieldsU0( ẑ), is the
dual of the spaceR1/2 generated by the superfieldU1/2( ẑ) of conformal spin 1/2. We remark, also,
that the conformal spin product, Eq.~6!, agrees with theZ2-grading,

R5R0̄%R1̄ , ~8a!

with

R 0̄5H1 0̄%H2 0̄ , R1̄5H1 1̄%H2 1̄ , ~8b!

whereH6,0 andH6,1 are subspaces related to each other by the duality conjugation,

@H6#0*5@H7# 1̄ . ~8c!
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B. The superspace Jm/2
(p ,q ) and super Lax operators

Consider the superspaceJm/2
(p,q) labeled by three quantum numbersm/2, p, andq defining,

respectively, the conformal spin, the lowest, and the highest degrees. Typical elements of this
superspace are given by

Lm/2
~p,q!@u#5(

i5p

q

U ~m2 i !/2~ ẑ!Di , p,q,mPZ, ~9!

whereU (m2 i )/2/( ẑ) are an analytic superfield of conformal spin (m2 i )/2•Jm/2
(p,q) behaves then as

a ~11q2p!-dimensional superspace generated byLm/2
(p,q) and whose superspace decomposition is

given by the linear sum

Jm/2
~p,q!5 %

i5p

q

Jm/2
~ i ,i ! , ~10a!

with

Jm/2
~ i ,i !5R~m2 i !/2%Di , ~10b!

whereRk/25Jk/2
(0,0) is the ring of analytic superfieldsUk/2( ẑ) introduced previously. For any

elementLm/2
(p,q) of the superspaceJm/2

(p,q), one can introduce the conformal spinD, the degrees~deg!,
and the gradingu•u, properties, which are summarized in the following table:

D deg u•u

Ui /2 D
j i1 j

2
~ j , j ! ~ i1 j !mod 2

Jm/2
~p,q! m

2
~p,q! m~mod 2!

~11!

An elementLm/2
(p,q) is called a super Lax operator, if it is homogeneous under theZ2-grading,

uxu5 H0, for x even,
1, for x odd, ~12!

and have the following form at orderm,mPN,

Lm/2
~0,m!5Dm1(

i51

m

Ui /2~ ẑ!Dm2 i . ~13!

The homogeneity condition simply states that theZ2-grading of the analytic superfieldUi /2( ẑ)
is defined as

uUi /2~ ẑ!u5 i ~mod 2!. ~14!

Settingm52n, p51, andq52n into Eq. ~9!, one recovers the Inami Kanno super Lax operator
of 2nth order,9 associated to the affine Lie superalgebraA(n21un21)~1!, namely

Ln
~1,2n!@u#5D2n1 (

i51

n21

@Ui~ ẑ!D2~n2 i !1U ~2i11!/2~ ẑ!D2~n2 i !21#. ~15!

The space of supersymmetric Lax operators, Eq.~13!, is given by the coset space
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M~m21!5Jm/2
~0,m!/Jm/2

~m21/m21! , ~16!

which exhibits a dimensionm21.
To define a Lie algebraic structure on the superspaceJm/2

(p,q), one needs to introduce a Lie
bracket defined for two arbitrary operatorsX andY as

@X,Y#5XY2~2 ! uXu•uYuYX. ~17!

It follows then thatJm/2
(p,q) defines a Lie superalgebra, provided that

m50 and p<q<1. ~18!

The multiplication of operators inJm/2
(p,q) is given by the generalized Leibnitz rule,6

Dif~ ẑ!5 (
k50

` F i
i2kG~2 ! ufu~ i2k!f~k!~ ẑ!Di2k, ~19!

wheref (k)5Dkf and [i2k
i ], iPZ, is the superbinomial coefficient given by

F ikG5H 0, for k. i or ~ i ,k![~0,1! mod 2,

S @ i /2#

@k/2# D otherwise. ~20!

The symbol [x] stands for the integer part ofxP~1/2!Z and (j
i ) is the usual binomial coefficient.

C. The huge Lie superalgebra J

A larger set of supersymmetric pseudo-differential operators thanJm/2
(p,q) is give by the

infinite-dimensional vector spaceJ(p,q) of superdifferential operators with given degrees
(p,q),p,qPZ, but indefinite conformal spins,

J~p,q!5 %

mPZ
Jm/2

~p,q! . ~21!

The setJ(p,q) exhibits a Lie superalgebra structure wth respect to the bracket, Eq.~17!, provided
that

p<q<1. ~22!

Using the conformal spin product, Eq.~6!, it follows thatJ(p,q) decomposes as

J~p,q!5L1
~p,q!

% L2
~p,q! , ~23a!

with

L1
~p,q!5 %

k.0
Jk/2

~p,q! , L2
~p,q!5 %

k.0
J~12k!/2

~p,q! . ~23b!

Setting (p,q)5~0,0!, Eqs.~21! and ~23! reduce, respectively, to Eqs.~5! and ~7! with J~0,0!5R
andL6

~0,0!5H6 .
A huge Lie superalgebra is obtained by summing from Eq.~21! over all the allowed values of

the degrees (p,q). It is defined by

J5 %

p<q
J~p,q!, ~24a!
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or equivalently

J5 %

pPZF %

nPN
J~p,p1n!G . ~24b!

Remark that the infinite-dimensional superspaceJ is closed under the Lie bracket, Eq.~17!,
without any constraint. Remark also that combining the conformal spin and the degrees quantum
numbers, one can write

J5 %

pPZ
%

nPN
%

mPZ
Jm/2

~p,q! . ~25!

Let us now considerL (p,q) andP(r ,s), two super-~pseudo-! differential operators with fixed degrees
but indefinite conformal spin. The degree pairing product~•,•! associated toL (p,q) andP(r ,s) is
defined as

~L ~p,q!,P~r ,s!!5dp1s11,0dq1r11,0d res~L ~p,q!
•P~r ,s!!, ~26!

where~d res! is the super-residue operation given by

d resDi5d i11,0. ~27!

Using Eqs.~25! and~26!, one can easily check thatD@~•,•!#5 1
2. Combining the conformal spin and

the degree pairing products Eqs.~6! and~26!, one defines the following combined scalar product:

^^Lm/2
~p,q! ,Pm/2

~r ,s!&&5dp1s11,0dq1r11,0dn1m,0E dẑ d res@Lm/2
~p,q!+Pn/2

~r ,s!#, ~28!

so thatD@^^•,&&#50.
The combined scalar product we have defined in Eq.~28! plays an important role in the

construction of the supersymmetric Gelfand–Dickey~SGD! Poisson bracket; see Ref. 10.
As shown in the bosonic case,8 we note that the superspacesJ(p,q) andJ(2q21,2p21) are dual

to each other, with respect to the degree pairing product, Eq.~26!. It is then straightforward to see
that the Lie superalgebraJ decomposes as

J5J1
% J2, ~29a!

with

J15 %

p>0
%

nPN
J~p,p1n!, J25 %

p>0
%

nPN
J~2p2n21,2p21!, ~29b!

or equivalently, by using the combined scalar product, Eq.~28!,

J15 %

p>0
%

nPN
%

mPZ
Jm/2

~p,p1n! , J25 %

p>0
%

nPN
%

mPZ
Jm/2

~2p2n21,2p21! . ~29c!

Next, we introduce the graded algebrasSi j
k and their dual (S i j

k )*5S2 i , j
2k , with respect to Eq.

~28!, where the indicesk56, i50, 6, and j50̄,1̄~mod 2! refer, respectively, to the degrees, the
conformal spin, and the grading quantum numbers. As an example,S

1 0̄

1
is the bosonic Lie algebra

of superdifferential operators of positive definite spins and degrees andS
2 0̄

2
, its dual, the Lie

algebra of super pseudo-differential operators of negative definite spins and degrees.S
1 0̄

1
is just
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the Lie algebra of Lorentz scalar differential operators containing the Lie algebra of vector fields
on the circle, namely, diff~S1! and its dual isS

2 0̄

2
. The graded Lie algebrasSi j

k are related to the
superalgebrasJ6, Eqs.~29!, as

J1
%

i50,6
%

j50̄,1̄

S i , j
1 , J2

%

i50,6
%

j50̄,1̄

S2 i , j
2 . ~30!

A remarkable property of the infinite-dimensional Lie superalgebraJ is that it splits into a linear
sum of 65332 graded subalgebras given by

J5 %

i50,6
~Si %Si* !, ~31!

where the graded Lie subalgebraSi and its dualSi* split for a fixed conformal spin indexi into

Si5S
i , 0̄

1
% S

i , 1̄

1
, Si*5S

2 i , 0̄

2
% S

2 i , 1̄

2
, ~32a!

or equivalently,

S25S
2, 0̄

1
% S

2, 1̄

1
S05S

0,0̄

1
, S15S

1, 0̄

1
% S

1, 1̄

1
, ~32b!

and

S1* 5S
2, 0̄

2
% S

2, 1̄

2
, S0*5S

0,0̄

2
, S2* 5S

1, 0̄

2
% S

1, 1̄

2
. ~32c!

III. THE HUGE LIE SUPERALGEBRA J AND SUPER-KP-HIERARCHIES

Motivated by the well-known idea that the Lie~super! algebra methods allow for a unifying
treatment of nonlinear integrable systems, we try in this section to find a relation between the Lie
superalgebraJ of supersymmetric~pseudo-! differential operators discussed previously and the
various ~super-! KP integrable hierarchies. We first briefly review what is known about KP-
hierarchy. The latter can be thought of as a dynamical system defined on a space whose functions
Uj (z) are elements of the ringRj of analytic fields of conformal spinjPZ. It is also defined as
the universal family of isospectral deformations of the pseudo-differential operator,3

L5]1(
i>1

Ui~z!]12 i . ~33!

The evolution ofL is given by a commuting family of flows] i5]/]t, in terms of which we
have

] iL15@~Li !1 ,L#52@~Li !2 ,L#. ~34!

The subscript1~resp.,2! means taking the purely differential~resp., pseudo-differential! part of
Li andt5$t i% an infinite system of time variables. The flows, Eq.~34!, are bi-Hamiltonians in the
sense that there exist two Poisson bracket structures$.,%1,2 such that we can rewrite Eq.~34! as

] iL5$Hi ,L%25$Hi11 ,L%1 . ~35!

Here the Hamiltonians for the KP-hierarchy areHr51/r*resLr , with res]2151.
There are two usual supersymmetric extensions of the standard KP-hierarchy, Eqs.~33!,~34!.

The first one is given by the Manin–Radul supersymmetric KP-hierarchy associated to the odd
super Lax operator,6
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L5D1(
i>0

U ~ i11!/2~ ẑ!D2 i . ~36!

The second one is given by the supersymmetric KP-hierarchy associated to the even super Lax
operator,7

L5D21(
i>0

U ~ i12!/2~ ẑ!D2 i . ~37!

The interesting consequence of the choice ofL, Eq. ~37!, is that under a suitable choice of
reduction, it reduces to the Inami–Kanno super Lax operator describing the generalizedN52
super KdV-hierarchy.9

Using the 65332 decomposition of the Lie superalgebraJ, Eqs.~31!,~32!, one suspects that
there exist 5523211 classes of supersymmetric KP-hierarchies. The origin of these hierarchies
can be traced to the fundamental fact that there exist precisely five graded algebras,

~a! g15~S1 %S2* ! 0̄5S
1 0̄

1
% S

1 0̄

2
,

~b! g25~S1 %S2* ! 1̄5S
1 1̄

1
% S

1 1̄

2
,

~c! g5~S0%S0* ! 0̄5S
0 0̄

1
% S

0 0̄

2
, ~38!

~d! g2*5~S2 %S1* !15S21
2

% S21
1 ,

~e! g1*5~S2 %S1* ! 0̄5S
0̄

2
% S

2 0̄

1
,

whereg1 5 S
1 0̄

1
% S

1 0̄

2
, Eq.~38a!, is the Lie algebra containing as a particular element, the even

super Lax operator, Eq.~37!, of the Figueroa–Mas–Ramos super KP-hierarchy.g2 5 S
1 1̄

1

% S
1 1̄

2
is the graded space generated by elements like the odd super Lax operator, Eq.~36!,

corresponding to the Manin–Radul super KP-hierarchy. The graded spacesg2* andg1* are just the
dual ofg2 andg1 with respect to the combined scalar product, Eq.~28!. Note also that the self-dual
Lie algebrag 5 S

0 0̄

1
% S

0 0̄

2
, Eq. ~38c!, containing the superdifferential operators of vanishing

conformal spin type,

L5U21/2~ ẑ!D1(
i>0

Ui /2~ ẑ!D2 i , ~39!

necessitate in itself a particular interest, as it can lead to a new class of super KP-hierarchy. A
more explicit description of these five super KP-hierarchies will be considered in a future paper.

IV. CONCLUSION

Using the huge Lie superalgebraJ of pseudo-superdifferential operators that splits into
65332 Lie superalgebras, Eqs.~31!,~32!, we have defined 5523211 graded algebras, Eqs.~38!.
These graded algebras are expected to correspond to five classes of super KP-hierarchies gener-
alizing the usual Manin–Radul and Figueroa–Mas–Ramos supersymmetric KP-hierarchies. We
expect moreover that these 5523211 super KP-hierarchies will provide a unified framework that
exhibits the underlying structure of 2d quantum supergravity.
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The prolongation structure of Zhiber–Mikhailov–Shabat~ZMS! equation is studied
by using Wahlquist–Estabrook’s method. The Lax pair for ZMS and Riccati equa-
tions for pseudopotentials are formulated respectively from linear and nonlinear
realizations of the prolongation structure. Based on nonlinear realization of the
prolongation structure, an auto-Ba¨cklund transformation of ZMS equation is ob-
tained. © 1996 American Institute of Physics.@S0022-2488~96!03007-1#

I. INTRODUCTION

The off-conformally integrable models in two-dimensional space-time have some common
features. They have spectrum-dependent Lax pairs, an infinite number of conserved currents and
the underlying nonlinear symmetries, and can be solved by means of inverse scattering method.
Thea2

(2) Toda model, i.e. Zhiber–Mikhailov–Shabat~ZMS! model, is of such a fascinating class
of integrable two-dimensional field theories. It is the third and last relativistic single scalar Toda
model ~the others are Liouville and sine-Gordon models!,1,2 and has significant applications in
physical context. To our knowledge, the equation of motion of ZMS model~ZMS equation!
governs the propagation of resonant ultra-short plane wave optical pulses in certaindegenerate
media.3 The integrability of ZMS model has been confirmed for a long time. The soliton solutions
of the ZMS equation by means of inverse scattering method were given in Ref. 4. TheS-matrix
approach to the quantum version of the model was seriously investigated by Izergin and Korepin5

in terms of the quantum inverse scattering method, and by Smirnov6 and Efthimiou7 in the
framework of perturbative conformal field theory. Recently, we have studied the infinitesimal
dressing transformations and Lie–Poisson structure hidden in ZMS model.8 Nevertheless, there
would not seem to be a good knowledge of the finite nonlinear symmetries~such as the dressing
group symmetry and Ba¨cklund transformation! of the model. In order to fill in the gap, we study
the prolongation structure of ZMS equation in the spirit of Wahlquist–Estabrook’s~WE’s! pro-
longation approach9,10 in the present paper. Owing to the so-called prolongation structure, we
discover an auto-Ba¨cklund transformation of ZMS equation, which turns out to be a set of Riccati-
type differential equations of the so-called pseudopotentials.

II. PROLONGATION STRUCTURE OF ZMS EQUATION

WE’s prolongation structure is a very useful medium for searching Ba¨cklund transformation
of nonlinear differential equations. To obtain the prolongation structure of ZMS equation:

a!Mailing address.
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]1]2f22~ef2e22f!50, ~2.1!

we define the following two-forms on a four-dimensional manifold with coordinates associated
with Eq. ~2.1!,

H a15df`dx12pfdx
2`dx1,

a25dpf`dx212~ef2e22f!dx2`dx1.
~2.2!

These two-forms constitute a closed ideal and would become null on the solution manifold
(f(x1,x2),pf(x

1,x2),x1,x2). They are the Pfaff forms of ZMS equation. For the above Pfaff
forms we will assume that prolongation forms can be given by some one-forms
Va(a51,2,3, . . . , N),

Va52dqa1Fa~f,pf ,q!dx21Ga~f,pf ,q!dx1, ~2.3!

whereN is an outstanding integer,qa are the so-called pseudopotentials, andFa andGa are
functionals of fieldspf , f andqa.

The concept of pseudopotential plays a crucial role in the discussions of Ba¨cklund transfor-
mations and Lax pairs in WE’s prolongation method. As a matter of fact, the expected Ba¨cklund
transformation and the first-order differential equations satisfied by Lax pair of ZMS Eq.~2.1! will
be formulated as the differential equations for suitably defined pseudopotentialsqa. The integra-
bility of pseudopotentialsqa requires that the ideal generated by the form sets$aa% and $Va% is
closed, i.e.,

dVa5hb
a`Vb1 f a,ia i , ~2.4!

where hb
a and f a,i are some one-forms and zero-forms respectively. When~2.4! is explicitly

written out by using~2.2! and ~2.3!, it splits up into a set of partial differential equations:

]fF
a50, ]pf

Ga50,

~2.5!
Fb]bG

a2Gb]bF
a1pf]fG

a22~ef2e22f!]pf
Fa50,

where the derivative]/]qa is abbreviated to]a . Analyzing these equations we find,

Fa5X0
a1X1

apf , Ga52Y0
aef12Y1

ae22f. ~2.6!

In the ansatz~2.6! Xi
a andYi

a ( i50,1) are assumed to be functions ofqa only.
For the convenience of the later discussions we now introduce some vector fields~Lie deriva-

tives! Xi andYi in N-dimensional space of pseudopotentials (q-space!,

Xi5Xi
a]a , Yi5Yi

a]a . ~2.7!

It is then a direct consequence of~2.5!–~2.7! that,

@X0 ,Y0#5X1 , @X0 ,Y1#52X1 , @X1 ,Y0#52Y0 , @X1 ,Y1#52Y1 . ~2.8!

Because of the absence of@X0 ,X1# and@Y0 ,Y1#, the set of Lie brackets given by~2.8! does not
form a closed linear algebra. It is obviously impossible that one may close the algebra by setting
the unknown commutators to be linear combinations of the given generators such that the results
are consistent with the Jacobi identities. This is a big difference between the prolongation structure
of ZMS equation and those of sine-Gordon equation, Ernst equation and chiral model.10,11How-
ever, the algebra can be closed by assigning new generators to the unknown commutators and
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repeating the process of working through the Jacobi identities. After a tedious but straightforward
computation, we see that the enlarged algebra becomes an infinite-dimensional algebraa2

(2) ~with-
out center!, which coincides with a well-known fact that ZMS model is the Toda field theory over
the twisted Kac–Moody algebraa2

(2) .1,2 Let $Hi
(m) ,E6a

(m)% be the Cartan–Weyl basis ofa2
(2) ,

which obeys the following commutation relations:

@Hi
~m! ,E6b

~n! #56d i1db1E61
~m1n!72d i1db2E62

~m1n!7d i1db3E63
~m1n!

63d i2db1E73
~m1n!73d i2db3E71

~m1n! ,

@E6a
~m! ,E6b

~n! #57da1db2E63
~m1n!6da1db3H2

~m1n! , ~2.9!

@Ea
~m! ,E2b

~n! #5~da1db12da2db22da3db3!H1
~m1n!2da3db2E1

~m1n!2da2db3E21
~m1n!

12da3db1E2
~m1n!12da1db3E22

~m1n! ,

where (m,n50,61,62,63, . . . ;i51, 2;a,b51, 2, 3). Then we have the following identifica-
tions,

X05E1
~21!1E2

~0! , X15H1
~0! , Y05E21

~1! , Y15E22
~0! . ~2.10!

Now we study the linear realizations of the vector fieldsXi andYi in an infinite-dimensional
q-space which has coordinate variables$qj

(m) ; j51, 2, 3;m50,61,62,63, . . .%. Following
Omote,10 we introduce some auxiliary vector fields$Ai j

(m)%:

Ai j
~m!5 (

n52`

1`

qi
~m1n!

]

]qj
~n! . ~2.11!

They can be shown to satisfy commutator relations

@Ai j
~m! ,Akl

~n!#5d jkAil
~m1n!2d i l Ak j

~m1n! . ~2.12!

This fact implies that the set of vector fields$Ai j
(m)% provide an operator version of graded matrices

$ei j
(m)5ei j ^ lm% (l is a gradation parameter!. Therefore, the Cartan–Weyl basis ofa2

(2) under
consideration has the following linear realization8 in a triplicated infinite-dimensionalq-space:

5
H1

~m!5A11
~m!2A33

~m! ,

H2
~m!5A11

~m!22A22
~m!1A33

~m! ,

E2
~m!5A31

~m! ,

E22
~m!5A13

~m! ,
5
E1

~m!5A12
~m!2A23

~m! ,

E21
~m!5A21

~m!2A32
~m! ,

E3
~m!5A32

~m!1A21
~m! ,

E23
~m!5A12

~m!1A23
~m! .

Explicitly,
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X05 (
n52`

1` Fq1~n21!
]

]q2
~n! 2q2

~n21!
]

]q3
~n! 1q3

~n!
]

]q1
~n!G ,

X15 (
n52`

1` Fq1~n!
]

]q1
~n! 2q3

~n!
]

]q3
~n!G ,

Y05 (
n52`

1` Fq2~n11!
]

]q1
~n! 2q3

~n11!
]

]q2
~n!G ,

Y15 (
n52`

1` Fq1~n!
]

]q3
~n!G ,

~2.13!

i.e., the components ofFa and Ga are assigned to the following linear representations in a
triplicated infinite-dimensionalq-space :

F1
~n!5q3

~n!1q1
~n!pf , F2

~n!5q1
~n21! , F3

~n!52q2
~n21!2q3

~n!pf ,

G1
~n!52q2

~n11!ef, G2
~n!522q3

~n11!ef, G3
~n!52q1

~n!e22f.
~2.14!

Relying on the one-form~2.3!, we see that the pseudopotentials introduced in~2.14! satisfy
equations

]2F q1~n!

q2
~n!

q3
~n!
G5F ]2f 0 1

0 0 0

0 21 2]2f
GF q1

~n!

q2
~n21!

q3
~n!

G1F 0 0 0

1 0 0

0 0 0
GF q1~n21!

q2
~n!

q3
~n!

G ,
]1F q1~n!

q2
~n!

q3
~n!
G5F 0 2ef 0

0 0 22ef

2e22f 0 0
GF q1

~n!

q2
~n11!

q3
~n11!

G , ~2.15!

on the solution surface (f(x1,x2),pf(x
1,x2),x1,x2) of ZMS Eq. ~2.1!. Let us define a

parameter-dependent potentialC(l) by

C~l![F c1~l!

c2~l!

c3~l!
G5 (

n52`

1`

lnF q1~n!

q2
~n!

q3
~n!
G . ~2.16!

Then we get from~2.15! the partial differential equations forC(l): ]6C5A6C, where

H A15
2

l
efE112e22fE2 ,

A25]2fH11lE211E22 .

~2.17!

SuchA6 do just constitute a Lax pair representation of ZMS Eq.~2.1!, which gives Eq.~2.1! as
the zero-curvature equation@]12A1 ,]22A2#50, the consistency condition of the equations for
C. In ~2.17!, H1 , E61 and E62 are some 333 matrices defined as
H15e112e33, E15e122e23, E25e31, E215e212e32 andE225e13 respectively. These ma-
trices are among the independent generators ofSL(3,R) group.8

Another aspect of the prolongation structure is the nonlinear realizations of the vector fields
Xi andYi ( i50, 1) in a finite-dimensionalq-space. In Refs. 10 and 11, the authors cited some
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instances in illustration of the fact that the linear realizations of the vector fields are relevant to
Lax representation while the nonlinear realizations of these fields associate themselves with the
Bäcklund transformation of the considered nonlinear differential equation. We will show that this
conclusion is also true for ZMS Eq.~2.1!.

It is worthwhile to indicate that there does not exist an unpenetrable barrier between the linear
realizations and the nonlinear realizations of the vector fields. In fact, there is a standard method
to get the nonlinear realizations of the vector fields from their linear realizations, in which the Lax
pair plays the crucial role.12 Let us apply the method to ZMS model. Defining
q15c1 /c2 ,q252c3 /c2 as new pseudopotentials, we see from Lax pair~2.17! and auxiliary
linear equations that these pseudopotentials13 satisfy a set of Riccati-type equations:

]1q15
2

l
~12q1q2!e

f, ]1q2522q1e
22f2

2

l
q2
2ef,

]2q152~q21lq1
2!1q1pf , ]2q25l~12q1q2!2q2pf ,

~2.18!

wherepf5]2f. On the other hand, it follows from~2.3! and ~2.6! that

]1q152Y0
1ef12Y1

1e22f, ]1q252Y0
2ef12Y1

2e22f,

]2q15X0
11X1

1pf , ]2q25X0
21X1

2pf ,
~2.19!

in two-dimensionalq-space. Therefore, the vector fields acquire the following nonlinear realiza-
tions:

5
X052~q21lq1

2!]11l~12q1q2!]2 ,

X15q1]12q2]2 ,

Y05
1

l
~12q1q2!]12

1

l
q2
2]2 ,

Y152q1]2 .

~2.20!

Simultaneously, the prolongated algebraa2
(2) is nonlinearly realized as,

5
H1

~m!5l2m~q1]12q2]2!,

H2
~m!53l2m~q1]11q2]2!,

E2
~m!52l2mq2]1 ,

E22
~m!52l2mq1]2 ,

5
E1

~m!52l2m@q1
2]12~12q1q2!]2#,

E21
~m!5l2m@~12q1q2!]12q2

2]2#,

E3
~m!5l2m@~11q1q2!]11q2

2]2#,

E23
~m!52l2m@q1

2]11~11q1q2!]2#.

~2.21!

In ~2.20! and~2.21!, l is an arbitrary spectral parameter andm takes integer value. Notably, the
vector fields~2.20! are not among a finite-dimensional subalgebra ofa2

(2) unlessl equals toone.
This is another important difference in the prolongation structure of ZMS equation from those of
sine-Gordon equation, Ernst equation and chiral model.10

III. THE BÄCKLUND TRANSFORMATION OF ZMS EQUATION

The aim of this section is to search the auto-Ba¨cklund transformation of ZMS Eq.~2.1! on the
basis of the prolongation structure. We assume that the new ZMS field variablesf̃ and p̃ are
functions of the oldf , pf and the pseudopotentialsqa. The new formsa i( i51, 2) which are
gotten from the old ones by replacingf and pf with f̃(f,pf ,q

a) and p̃(f,pf ,q
a) should

vanish modulo the olda i and the prolongation one-formsVa; i.e., there should exist some
zero-formsgi j and one-formsn i

a such that
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ã i~f̃,p̃f!5gi ja j~f,pf!1n i
a`Va. ~3.1!

This is the condition for the existence of Ba¨cklund transformations. In terms of~2.2! and~2.3!, the
condition can be recast as

]pf
f̃50, ]fp̃f50, p̃f5pf~]f1X1!f̃1X0f̃ ~3.2!

and

ef̃2e22f̃5~ef2e22f!]pf
p̃1~efY01e22fY1!p̃f . ~3.3!

The special expressions of Eqs.~3.2! lead to the following ansatz solutions for the new ZMS field
variablesf̃ and p̃f

H f̃5cf1 f ~qa!,
p̃f5pf@c1X1f ~q

a!#1X0f ~q
a!,

~3.4!

wherec is an outstanding constant. Substituting~3.4! into ~3.3! we get,

X1f ~q
a!5c1 , ~3.5!

and

ecfef ~q
a!2e22cfe22 f ~qa!5ef@c1c11Y0X0f ~q

a!#2e22f@c1c12Y1X0f ~q
a!#. ~3.6!

wherec1 is another constant.
We now apply the nonlinear expressions~2.20! of the vector fieldsXi andYi ( i50, 1) in the

two-dimensionalq-space to Eqs.~3.4!–~3.6!. In this case,~3.5! becomes a first-order quasi-linear
differential equation whose general solution reads:

f ~q1 ,q2!5c1 lnq11v~q1q2!, ~3.7!

wherev(q1q2) is an arbitrary differentiable function of its variableq1q2 . Generally speaking, Eq.
~3.5! would have another particular solution beyond~3.7!. But we quit finding such a particular
solution here. One of the reason is that there is no systematic method for searching it. What is
more, even if we happened to find out a particular solution for Eq.~3.5!, it would be excessive to
expect this solution satisfying Eq.~3.6! further. If the Bäcklund transformation of ZMS equation
exists, it is bound to connect with the general solution~3.7!.

To determine the functionv(q1q2) in ~3.7! and then resolve completely the Ba¨cklund trans-
formation for ZMS Eq.~2.1!, Eq. ~3.6! must be taken into account. After a simple and straight-
forward calculation we find,

c51, c150, v~q1q2!5 ln~2q1q221!. ~3.8!

Namely, the auto-Ba¨cklund transformation of ZMS Eq.~2.1! is as follows:

f̃5f1 ln~2q1q221!, ~3.9!

where the auxiliary pseudopotentials are determined by Riccati equations

]1q15
2

l
~12q1q2!e

f, ]1q2522q1e
22f2

2

l
q2
2ef,

]2q152~q21lq1
2!1q1]2f, ]2q25l~12q1q2!2q2]2f,

~3.10!
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for a givenf. One can easily justify thatf̃ is a solution of ZMS Eq.~2.1! oncef fulfills Eq. ~2.1!
and vice versa. The problem of Ba¨cklund transformation of ZMS equation was ever discussed in
Refs. 14 and 15. The Ba¨cklund transformation obtained by Sharipov and Yamilov14 is a set of
second order differential equations, which is very cumbersome for solving single soliton
solutions15 and is difficult to turn to our Ba¨cklund transformation~3.9!–~3.10!.

IV. DISCUSSIONS

In the previous sections we have studied the prolongation structure of Zhiber–Mikhailov–
Shabat equation. The prolongation structure yields an incomplete set of commutators of vector
fields in the pseudopotential space. Following Omote10 and Ablowitzet al.,12 we have found out
the linear and nonlinear differential realizations of the vector fields respectively. It is shown that
the linear realizations of the vector fields give the linear auxiliary equations~Lax pair! of ZMS
equation, while their nonlinear realizations are connected with the Ba¨cklund transformation of the
equation. Nevertheless, the application of this Ba¨cklund transformation to constructing new ana-
lytical solutions of ZMS equation from some old ones, e.g., constructing the single-soliton solu-
tion from vacuum solution, remains an open problem. It is easy to see that ZMS Eq.~2.1! has an
analytical solution governed by the first-order equations]6f5m6A2(2ef1e22f23) (m is an
arbitrary constant!. But we have not driven out these equations from the Ba¨cklund transformation
laws yet. Another even more interesting problem is perhaps to study the dressing group symmetry
in ZMS model by virtue of prolongation structure. By some naive perception we conjecture that
the finite dressing transformations of ZMS equation may be exposed through a slightly different
nonlinear realization of the prolongation structure. The dressing procedure is a useful method for
solving single soliton solution. The detail for such problems are now in preparation.
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rived and compared with isometries and Ricci collineations for corresponding
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I. INTRODUCTION

Over the past few years there has been much interest in the classification of solutions of the
Einstein field equations in terms of their isometries. These isometries are given by Killing vectors
~KVs!, along which the Lie derivative of the metric tensor is zero, admitted by the space–time.
Each independent KV gives rise to a conservation law for the spacetime. The classification by
Petrov1,2 was incomplete in that it did not provide a list of metrics for a given set of isometries,
though a complete list of isometries was available. In an extensive study of spherically symmetric
spacetimes, Takeno3 used the curvature invariants of such space–times to classify them according
to their isometries and these invariants. Following a different approach Qadiret al.4 obtained a
classification of such space–times by their isometries and provided a complete list of distinct
space–time metrics. It appears that Takeno missed some metrics~for example, nonstatic spacetime
like the Einstein universe but with the role oft andr inter changed, so that the isometry group is
SO~1,3!XR instead of SO~4!XR!.

Though the classification of space–times in terms of their isometries is important, Katzin,
Davies, and Lavine5,6 argue that the symmetries of the matter field would be given by Ricci
collineations~RCs!, along which the Lie derivative of the Ricci tensor is zero. A complete clas-
sification of spherically symmetric, static metrics in terms of RCs has been obtained7,8 and is being
extended to the nonstatic cases.9

Katzin et al. also argue that the symmetries of the Riemann tensor, called curvature collinea-
tions ~CCs!, would also provide insights into general relativity. Though they give a theorem on
connection between RCs and CCs, no explicit attempt to classifying spacetimes according to their
CCs has been given. Keeping this point in mind and the complexity of the system of CC equa-
tions, we consider some specific spacetimes to obtain their CCs using some special methods. It is
hoped that this would enable one to extend these methods to obtain a classifications of general
space–times according to their CCs.

In the next section we give the set of coupled quadratic CC equations and their form for
spherically symmetric static space–times. In the third section we solve this set of equations for
various specific cases. A summary and conclusion is given in the last section.

II. CC EQUATIONS

A CC, j, satisfies the equation

L
j

R50, ~1!

whereR is the Riemann Christoffel curvature tensor. In a torsion free space, in a coordinate basis,
this equation reduces to the set of partial differential equations~PDEs!

Ra
bcd, fj

f1Ra
f cdj

f
,b1Ra

b fdj
f
,c1Ra

bc fj
f
,d2 f f bcdj

a
, f50. ~2!
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In a given 4-dimensional space–time there are actually 256 coupled PDEs to be solved for four
unknown functions of four variables. However, for spherically symmetric static space–times in
which at the most only six independent components~3R0

i0i , wherei51,...,3, 2R1
a1a, wherea51,

2, and 1R2
323! of the Riemann tensor can survive, the system of CC equations reduces to 22 sets

of coupled CC equations consisting of54 PDEs to be solved only. These coupled CC equations
~without requiring summation over repeated indices! are given by

Ri
1i1j

1
,01Ra

0a0j
0
,150, ~ i ,a!5~0,1!,~2,2!,~3,3!, ~3!

Ri
2i2j

2
,01Ra

0a0j
0
,250, ~ i ,a!5~0,2!,~1,1!,~3,3!, ~4!

Ri
3i3j

3
,01Ra

0a0j
0
,350, ~ i ,a!5~0,3!,~1,1!,~2,2!, ~5!

Ri
1i1,fj

f12Ri
1i1j

1
,150, i50,2,3 and f51 or 2, ~6!

Ri
1i1j

1
,21Ra

2a2j
2
,150, ~ i ,a!5~0,0!,~2,1!,~3,3!, ~7!

Ri
1i1j

1
,31Ra

3a3j
3
,150, ~ i ,a!5~0,0!,~3,1!,~2,2!, ~8!

Ri
2i2j

2
,31Ra

3a3j
3
,250, ~ i ,a!5~0,0!,~1,1!,~3,2!, ~9!

Ri
2i2,fj

f12Ri
2i2j

2
,250, i50,1,3 and f51 or 2, ~10!

Ri
3i3,fj

f12Ri
3i3j

3
,350, i50,1,2 and f51 or 2, ~11!

Ri
0i0,fj

f12Ri
0i0j

0
,050, i51,2,3 and f51 or 2, ~12!

~R0
i0i2Ra

ia i !j
0
,a50, ~ i ,a!5~1,3!,~2,3!,~1,2!,~3,2!,~2,1!,~3,1!, ~13!

~R0
i0i2Ra

ia i !j
a
,050, ~ i ,a!5~1,3!,~2,3!,~1,2!,~3,2!,~2,1!,~3,1!, ~14!

~Ra
ia i2Rb

ib i !j
a
,b50, ~ i ,a,b!5~0,1,2!,~3,1,2!,~0,1,3!,~2,1,3!, ~15!

~Ra
ia i2Rb

ib i !j
b
,a50, ~ i ,a,b!5~0,1,2!,~3,1,2!,~0,3,2!,~1,3,2!, ~16!

~Ra
ia i2Rb

ib i !j
b
,a50, ~ i ,a,b!5~0,1,3!,~2,1,3!,~0,2,3!,~1,2,3!. ~17!

III. SOLUTION OF THE CC EQUATIONS

We solve the CC equations for Minkowski, De Sitter~anti-De Sitter!, Einstein~anti-Einstein!,
Schwarzschild, and Reissner–Nordstrom metrics along with three Bertotti–Robinson-like
metrics.10 However, since the problem of solving CC equations is trivial in Minkowski space–
time, we do not solve this case explicitly and only give results. The CC equations in the De Sitter
and anti-De Sitter metrics reduce to the Killing equations. We therefore only quote results without
giving details for these two cases. We present the complete procedure for solving the CC equa-
tions for the Einstein metric. As the same methods apply for the anti-Einstein, Schwarzschild,
Reissner–Nordstrom, and Bertotti–Robinson-like metrics, we again only quote the results for
them.

For the Einstein metric

ds25dt22
dr2

12r 2/R22r 2~dq21sin2 q df2!, ~18!
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the nonzero Riemann tensor components are given by

R1
2125r 2/R2, R1

3135
r 2

R2 sin
2 q5R2

323. ~19!

With these values in the CC equations, some of the equations@Eqs: ~3!–~5!, ~8!, and~15!–~17!#
are identically satisfied, while Eqs.~13! and ~14!, respectively, yield

j0,a50 ~a51,2,3!,
ja

,050 ~a51,2,3!. J ~20!

Now using Eqs.~20!, Eqs.~6!–~11!, respectively, yield

r j11R2~12r 2/R2!j1,150, ~21!

j1,21r 2~12r 2/R2!j2,150, ~22!

j1,31r 2~12r 2/R2!sin2 qj3,150, ~23!

j2,31sin2 qj3,250, ~24!

j11r j2,250, ~25!

j11r cot qj21r j3,350. ~26!

To solve this system of PDEs we first consider Eq.~21!, writing it in the form

j1,1/j15
r /R2

~12r 2/R2!
. ~27!

In view of Eq. ~20!, Eq. ~27! yields

j15A12r 2/R2A~q,f!, ~28!

whereA~q,f! is a function of integration. Now differentiating Eq.~28! with respect toq com-
paring with Eq.~22! and solving while using Eq.~20!, gives

j25
A12r 2/R2

r
Aq~q,f!1B~q,f!, ~29!

whereB~q,f! is some function of integration. Now using Eqs.~28! and ~29!, Eq. ~25! yields

A12r 2/R2

r
~Aqq~q,f!1A~q,f!!1Bq~q,f!50, ~30!

which is satisfied only when

Bq~q,f!505Aqq~q,f!1A~q,f!. ~31!

These equations can be easily solved to give

A5A1~f!cosq1A2~f!sin q,
B5B1~f!, J , ~32!
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whereA1~f!, A2~f! andB1~f! are again functions of integration. Now using Eqs.~28!, ~29!, and
~32!, Eq. ~23! give

j35
A12r 2/R2

r sin2 q
~A1f~f!cosq1A2f~f!sin q!1D~q,f!, ~33!

whereD~q,f! is some function of integration. At this stage we substitute these values ofj1, j2,
andj3 into Eq. ~24!. It turns out that this is satisfied only when

A1f505Dq~q,f!1
1

sin2 q
B1f~f!. ~34!

This equation can be easily solved to obtain,

A15a1

D~q,f!5cot qB1f~f!1E~f!,J ~35!

wherea1 is a constant andE~f! some integration function. Inserting Eqs.~35! into Eq. ~26! and
requiring consistency give

A2ff~f!1A2~f!50,
B1ff~f!1B1~f!505Ef~f!.J ~36!

These equations can again be easily solved to give

A25a2 cosf1a3 sin f,
B15a4 cosf1a5 sin f,
E5a6 ,

J ~37!

wherea2 to a6 are integration constants. Inserting Eqs.~32! and ~34!–~37!, the CCs become

j15A12r 2/R2~a1 cosq1~a2 cosf1a3 sin f!sin q#,

j25
A12r 2/R2

r
~2a1 sin q1~a2 cosf1a3 sin f!cosq#1~a4 cosf1a5 sin f!,

j35
A12r 2/R2

r sin q
@2a2 sin f1a3 cosf#1cot q@~2a4 sin f1a5 cosf!#1a6 ,

j05j0~ t !.

6
~38!

Notice that these are six CCs for the spatial components ofj and the temporal component of,j,
is an arbitrary function oft only. Similarly for the anti-Einstein metric ‘‘R2’’ is replaced by
‘‘ 2R2’’ in the metric. It is easily verified that the number of CCs in the anti-Einstein metric turn
out to be the same as the number of CCs in the Einstein metric with the only difference thatR2 in
Eqs.~38! is replaced by2R2.

For the Schwarzschild metric

ds25S 12
2m

r Ddt22S 12
2m

r D 21

dr22r 2 dV2

the surviving Riemann Christoffel curvature tensor components are
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R0
1015

2m

r 3S 12
2m

r D , R0
20252

m

r
5R1

212,

R0
30352

m

r
sin2 q5R1

313, R2
32352

2m

r
sin2 q.

The CCs in this case turn out to be the same as four KVs for this metric,

ja5$a0,0,~a1 cosf1a2 sin f!,2cot q~a1 sin f2a2 cosf!1a3%. ~39!

In the Reissner–Nordstrom spacetime

ds25S 12
2m

r
1
4pQ2

r 2 D2S 12
2m

r
1
4pQ2

r 2 D 21

dr22r 2 dV2,

the nonzero Riemann tensor components are given by

R0
1015

~2Mr212pQ2!

r 2~r 222Mr14pQ2!
, R0

20252
~2Mr24pQ2!

r 2
,5R1

212,

R0
30352

~2Mr24pQ2!

r 2
sin2 q5R1

313, R2
3235S 2Mr24pQ2

r 2 D sin2 q.

The CCs in this case are again same as four KVs of Schwarzschild metric given by Eq.~39!.
The De Sitter and anti-De Sitter space–times, respectively, have their metrics given by

ds25S 17
r 2

R2Ddt22S 17
r 2

R2D 21

dr22r 2 dV2.

In this case the surviving Riemann Christoffel curvature tensor component are given by

R0
1015

1/R2

17r 2/R2 , R0
2025

r 2

R2 5R1
212,

R0
3035

r 2

R2 sin
2 q52R1

3135R2
323.

If we write the CC equations for the above metrics, it is seen that the CC equations become same
as Killing equations, hence in both cases the CCs are same as ten KVs there.3

There exists three Bertotti–Robinson-like metrics in the literature. In the first case the metric
is given by

ds1
25~B1r !2 dt22dr22a2 dV2.

Here, only one Riemann tensor component given by

R2
3235sin2 q

survives and CCs in this case become
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j05 f ~ t,r !, j15g~ t,r !,

j25~C1 cosf1C2 sin f!, j35cot q~2C1 sin f1C2 cosf!1C3 .

In the other two Bertotti–Robinson-like metrics given by

dsII
25cos2~c1Aar !dt22dr22a2 dV2,

dsIII
2 5cosh2~C1Aar !dt22dr22a2 dV2

onlyR0
101andR

2
323survive. Here,R

0
101
II

5 2R0
101

III
5 a ~constant!, whereas,R2

323II
5 R2

323III
. The

CCs in both cases again turn out to be same as six KVs of these metrics.3

IV. CONCLUSION

In the hope of understanding how the information about the symmetries implicit in the ge-
ometry, and relevant for the matter–energy field~through the Einstein equations!, is distributed
between the metric tensor, the Ricci tensor, and the Riemann tensor, we have explicitly computed
the CCs for some specific spherically symmetric static metrics. We discuss our results in the light
of Table I for KVs, RCs, and CCs of the corresponding space–times.

While the isometries must always be definite, collineations can be unlimited. This is due to the
fact that the metric tensor is nondegenerate while the Ricci tensor and Riemann tensor need not be
nondegenerate. Where degeneracy arises there are arbitrary many collineations possible. In par-
ticular, if the relevant tensor is zero all vectors are collineations. Since there is a unique space–
time that is Riemann flat~the Minkowski space–time! every vector is a CC. Any vacuum space–
time is Ricci flat and hence has all vectors as RCs. In the same way there is a greater freedom of
RCs than of CCs in the Einstein and anti-Einstein spaces. For the former there is one arbitrary
function of four variables~i.e., a4! while for the latter it depends on only one variable~i.e., a1!.
Similarly, for the flat Bertotti–Robinson-like metric there are two arbitrary functions. For RCs we
have~a4!2 while for CCs we have~a2!1. The most striking case is for the Schwarzschild metric
where the CCs are identical with the KVs butevery vectoris an RC. Clearly, the CCs are closer
to the more restricted KVs than are the RCs.

It would be important to develop general methods of classifying space–times with some
minimal symmetry group in terms of their CCs and seeing how this general classification com-
pares with KVs and RCs. The easiest for this purpose is the class of all spherically symmetric
static space–times~of which only the generic case remains to be dealt with!. Then one could hope
to extend the discussion by dropping the requirement of staticity, going over to cylindrical or plane
symmetry, and then reducing the minimal symmetry group further. Finally, it would be necessary
to compare the results with other classification schemes, such as Petrov classification.

TABLE I. Comparison of KVs, RCs, and CCs for some specific spherically symmetric static metrics.

KVs RCs CCs

Minkowski 10 Arbitrary Arbitrary
De Sitter/anti 10 10 10
Einstein/anti 7 61j0 ~arbt! ~xa! 61j0 ~arbt! (t)
Bertotti–RobinsonI 6 31j0 ~xa! & j1 ~xa!, 31j0 (t,r ), j1 (t,r )
Bertotti–RobinsonII 6 6 6
Bertotti–RobinsonIII 6 6 6
Schwarzschild 4 Arbitrary 4
Reissner–Nordstrom 4 4 4
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We study the real, massive Klein–Gordon field on aC` globally-hyperbolic back-
ground space–time with compact Cauchy hypersurfaces. In particular, the param-
etrization of this system as initiated by Dirac and Kucharˇ is put on a rigorous basis.
The discussion is focussed on the structure of the set of spacelike embeddings of
the Cauchy manifold into the space–time, and on the associatede-tensor density
bundles and their tangent and cotangent bundles. The dynamics of the field is
expressed as a set of automorphisms of the space of initial data in which each pair
of embeddings defines one such automorphism. Using these results, the extended
phase space of the system is shown to be a weak-symplectic manifold, and the
Kuchař constraint is shown to define a smooth constraint submanifold which is
foliated smoothly by the constraint orbits. The pull-back of the symplectic form to
the constraint surface is a presymplectic form which is singular on the tangent
spaces to the constraint orbits. Thus, the geometric structure of this infinite-
dimensional system is analogous to that of a finite-dimensional, first-class param-
etrized system, and hence many of the results for the latter can be transferred to the
infinite-dimensional case without difficulty. ©1996 American Institute of Phys-
ics. @S0022-2488~96!02807-1#

I. INTRODUCTION

The long history of studies of quantum field theory in a background space–time peaked
sharply in the seventies~for reviews from that era, see Refs. 1 and 2! following Hawking’s
discovery of the quantum radiation produced by a black hole.3 In those days, the main aim was to
find a direct quantization of the true physical degrees of freedom of the system. However, much
earlier, Dirac had reformulated this system in a parametrized form so that it could be used as a
model for general relativity proper.4 The idea is to treat embeddings of Cauchy hypersurfaces in
the space–time as additional degrees of freedom of the system. Together with their conjugate
momenta and the Cauchy data of the scalar field on the embeddings, they define an extended phase
space. To retrieve the original dynamics one has to impose constraints. This procedure was studied
in some detail in Refs. 5, 6 and 7; a shorter exposition can be found in Ref. 8. The resulting system
can be classified as a ‘‘first-class parametrized system.’’

A method of quantizing first-class parametrized systems was initiated by Dirac; in particular,
he studied a system of massive particles in Minkowski space–time.9 A generalization of this
method to anyfinite-dimensional first-class parametrized system was given by Ha´jı́ček10 using a
combination of Dirac’s ideas with the group quantization method of Isham11 and the algebraic
quantization method of Ashtekar.12 In what follows, this generalization will be referred to as the
‘‘perennial formalism.’’

a!Electronic mail: hajicek@butp.unibe.ch
b!Electronic mail: c.isham@ic.ac.uk
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If one is interested in extending the perennial formalism to infinite-dimensional systems, the
scalar field on a fixed space–time offers itself naturally as a well-understood and much-discussed
model. However, the perennial formalism is based on a geometrical form of Hamiltonian dynam-
ics, whereas the existing formulations of the parametrized scalar field are non-geometrical. The
main purpose of the present article is to recast the classical theory of a parametrized scalar field in
a fixed background into the geometrical, Hamiltonian form for infinite-dimensional systems de-
veloped by Marsden and collaborators~see Ref. 13!. The ensuing results are of interest in them-
selves and are also used in the accompanying article14 dealing with the application of the perennial
formalism to the quantum theory of a field propagating on a curved background.

Marsden’s techniques have been applied to a variety of systems, including general relativity
itself.15 In all these examples, the extended phase space is an~open! subset of a linear space, and
hence the tangent space at any point in the phase space can be naturally identified with this linear
space. The resulting significant simplifications have been thoroughly exploited in the literature~for
example, see Ref. 15!. However, in our case, the space of embeddings is a genuine manifold, not
just a subspace of a linear space. Of course, the rough idea of how the theory is to be applied in
general to such cases is well-known,13 but—as we shall see—the specific system of interest to us
possesses some crucial additional structure that is very helpful in the detailed analysis.

The plan of the article is as follows. In section II, the theory of the Cauchy problem of a
hyperbolic, partial differential equation~as reviewed, for example, in Ref. 15! is applied to the
dynamics of a massive scalar field in a globally hyperbolic space–time. The Cauchy hypersurfaces
are assumed to be compact, but it seems likely that—if desired—the proofs~which are relegated
to the Appendix! could be adapted to deal with asymptotically flat Cauchy hypersurfaces. The set
of all Cauchy data is given the structure of a topological vector spaceGf , and an automorphism
of this space is associated with each oriented pair of embeddings of the Cauchy manifold in the
space–time, thereby producing a rather generalized concept of ‘‘time evolution.’’

In section III, we extend the phase space fromGf to Gf3T*E , whereE is the space of
embeddings introduced by Kucharˇ in Ref. 5. This way of parametrizing the system was discussed
in detail by Isham and Kucharˇ.7 The structure of thee-tensor density bundles overE is described,
and their tangent and cotangent bundles are studied; this is where we lay the foundation for the
subsequent mathematical developments. Our approach to the resulting infinite-dimensional Hamil-
tonian system is based on the geometrical ideas of Chernov, Fischer, and Marsden.13,15 The
constructions of the phase space manifold, the symplectic structure, and the Poisson brackets are
all described explicitly.

In section IV, we show that~i! the constraint set is a submanifold of the phase space;~ii ! the
constraint orbits are submanifolds of the constraint surface; and~iii ! the vector space defined by
the right hand side of the evolution equation coincides with the tangent space of a constraint orbit.
For the model we study, the proofs~which are adapted from Ref. 15! are straightforward. The
resulting structure is analogous to a high degree to that of a finite-dimensional first-class param-
etrized system, and hence the application of the perennial formalism is relatively unproblematic.

II. FIELD DYNAMICS

We are interested in the theory of a relativistic field propagating on a fixed background
space–timeM. The associated dynamical equation defines an evolution map between Cauchy
data along two arbitrary Cauchy hypersurfaces. We shall need various properties of these maps
that can be derived from results concerning the Cauchy problem for linear hyperbolic systems as
described—for example—in Refs. 15 and 16.

The following properties of the space–time (M,g) will be assumed:
~1! The space–timeM is equipped with aC` differential structure. In particular, this means

that diffeomorphisms do not mix the different Sobolev structures that will be placed on various
function spaces associated withS andM.
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~2! The Lorentzian metricg is such that the pair (M,g) is globally hyperbolic. Thus the
four-manifoldM is necessarily diffeomorphic toS3R where the three-manifoldS is a model for
any Cauchy hypersurface inM.

~3! The three-manifoldS is compact. This assumption is made for the sake of simplicity, but
we expect that similar results can be obtained for asymptotically flat space–times using
analogous—but more laborious—methods; see Ref. 15!.

The relativistic wave equation of interest is the Klein–Gordon equation for a real scalar field:

udetgu21/2]m~ udetgu1/2gmn]nf!1m2f50 ~1!

where the real, non-negative constantm is the mass parameter.
A central role in the theory is played byCr11 (r.2) embeddingsX:S→M that are space-

like with respect tog. We shall refer to any suchX simply as an ‘‘embedding,’’ and denote by
Embg(S,M) the space of all such~see Refs. 5 and 7!. Each embeddingX determines a positive-
definiteCr-metricg onS as the pull-backX* g of g by X; i.e., in local coordinates on bothS and
M,

gab~x!:5gmn„X~x!…Xm,a~x!Xn,b~x!. ~2!

The mapX also determines a future-oriented, unit normal vectorn„X(x)… at each point of the
hypersurfaceX(S) in M.

Any embeddingX P Embg(S,M) defines a ‘‘Cauchy datum’’ forf along the hypersurface
X(S). This is a pair (w,p) of fields on S, where the scalarw and the density~of weight
w51) p are defined by

w~x!:5f„X~x!…, ~3!

p~x!:5~detg!1/2~x!nm
„X~x!…]mf„X~x!…, ~4!

for all x P S, and whereg is defined in Eq.~2!.
We shall need certain Sobolev spaces of tensor-density fields onS ~for more details see Ref.

16!. The first step is to introduce a fixed, auxiliaryCr Riemannian metricf kl on S. Let
I ,J,K, . . . denote multiple indices, and letuI u be the number of simple indices withinI . Let
f IJ be the abbreviation for the tensor product ofuI u5uJu copies of the covariant tensorsf i j ,
and—similarly—f IJ denotes the appropriate tensor product of contravariant fieldsf i j . If TI

J is a
Cr tensor-density field onS of type (uI u,uJu,w) (w is the weight!, TI uK

J will denote the tensor-
density field obtained fromTI

J by a uKu-fold covariant derivative~covariant with respect to the
auxiliary metric f ). Then the Sobolev space scalar product (T,S) f

s between two tensor-density
fieldsTI

J andSI
J is defined by

~T,S! f
s :5 (

uM u5uNu50

s E
S
d3x~detf !1/22wf IK f MNf JLTI uM

J SKuN
L ~5!

wheres<r . We denote the corresponding Sobolev space byH uI uuJuw
s (S), or simplyHw

s (S) if no
confusion can result. Note that the topology of these spaces is independent of the auxiliary metric
f provided thatS is compact~which we are assuming!.

Using this notation, we can introduce the spaceGf
s of Cauchy data:

Gf
s :5H0

s~S!3H1
s21~S! ~6!
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with w P H0
s(S) andp P H1

s21(S). The dynamics of the fieldf as determined by Eq.~1! defines
maps between the spaces of Cauchy data corresponding to different embeddings. The relevant
facts about these maps~which are more or less well-known; see Ref. 15! are listed in Appendix 1,
and culminate in the following theorem:

Theorem: Let X1 and X2 be two arbitraryCr11 embeddings withr>4. Then each pair
(w1 ,p1) P Gf

s ~with 2<s<r22) defines a unique solutionf of the field equation~1! such that
~1! the Cauchy datum associated with the embeddingX1 is the given pair (w1 ,p1);
~2! the embeddingX2 gives a well-defined Cauchy datum (w2 ,p2) that belongs toGf

s

~3! the maprX1X2:Gf
s→Gf

s thus defined is an automorphism of the Sobolev spaceGf
s .

Note that we obtain a maximal classical solution in the sense that the embeddingX2 can be chosen
to mapS so that it passes through any given point ofM.

The theorem above implies that a differentiable solution is obtained ifs is sufficiently large.

Indeed, the famous Sobolev lemma asserts thatHw
s (S),Cw

s8(S) if s.s81 1
2 dim S. For example,

f will be C2 if s54. The indexs can be taken as large as one wishes ifr is sufficiently large. In
particular, forr5`, one can take the intersectionGf

` of the Hilbert spacesGf
s , s54,5, . . . , to

give the space of all pairs ofC`-functions and densities that is equipped with the structure of a
countably Hilbert nuclear space~see Ref. 17!.

III. THE EXTENDED PHASE SPACE

The theory of a scalar field on a curved background was rewritten in the form of a param-
etrized system in Refs. 7 and 18. In this section, we shall reformulate a part of this work so that
it becomes compatible with the mathematical formalism of Fischer and Marsden.15 First however,
the studies in Refs. 5 and 7 of the differential geometry of the space of embeddingsE must be
extended to include certain bundles overE .

The construction of a smooth differential structure on a space of continuous maps between
two finite-dimensional manifolds was described as early as 1958 by Eells,19 but we shall use the
method developed more recently in Ref. 20. Recall that, in a pair of local charts

~U,h! of S and ~V̄,h̄! of M ~7!

@where X(U)ùV̄ Þ B], a given embeddingX:S→M can be represented by the function

h̄ +X+h21:h(U)→R4. We say thatX belongs to the spaceHs(S,M) if these local representatives
are in the Sobolev spaceHs

„h(U),R4
… for all such pairs of local charts. This notion can be shown

to be atlas-independent fors.3/2 @which means thatX is continuous since, according to the
Sobolev lemma,X P Cr(N ,M) if s.r1dim(N )/2].

In what follows, a major role is played by the tangent and cotangent bundles to the infinite-
dimensional manifold of embeddings. In the differential geometry of a finite-dimensional manifold
N , a tangent vectort at a pointp P N can be defined in several different ways. One algebraic
approach is to viewt as a derivation atp of the ringC`(N ) of smooth functions onN : i.e.,
t:C`(N )→R is a linear map with the property that iff ,g P C`(N ), then
t( f g)5 f (p)t(g)1g(p)t( f ). A more geometrical approach is to definet as an equivalence class
of local curvess:(2e,e)→N where~i! e.0 ~and can bes-dependent!; ~ii ! s(0)5p; and~iii !
two local curvess1 ands2 are regarded as being equivalent if their tangent vectors atp P N are
equal as computed in a local coordinate system aroundp ~the equivalence classes are independent
of choice of coordinate system!.

In the finite-dimensional case, these two definitions can be shown to be equivalent. However,
the situation in infinite dimensions is quite different since complicated functional-analytical prob-
lems need to be resolved before the algebraic definition can even be posed. Fortunately, the
geometrical definition of a tangent vector as an equivalence class of curves still works well and,
when applied to the case of interest, leads naturally to the definition of the tangent space
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TXH
s(S,M) to Hs(S,M) at the embeddingX as the set of mapsV:S→TM with the property

that the imageV(x) of a point x P S is a tangent vector onM at the pointX(x); i.e., V(x)
P TX(x)M; more formally,V satisfies the relationX5x+V, wherex:TM→M is the bundle
projection of the tangent bundleTM of M.

This defining property ofV P TXH
s(S,M) can be expressed in another way that will be

useful later. Namely, we recall that ifr:E→M is the projection map of any fibre bundleE over
a manifoldM, and if f :N →M is a map from another manifoldN intoM, then the pull-back
bundle f *E overN is defined as

f *E:5$~x,e!PN 3Eu f ~x!5r~e!%, ~8!

and a cross-section of this bundle is given by any mapc:N →E such thatr„c(x)…5 f (x). It
follows therefore that a vectorV P TXH

s(S,M) can be regarded as a cross-section of the bundle
X* (TM).

Note that the vector spaceTXH
s(S,M) can be given anHs-structure so that the function

spaceHs(S,M) becomes a Banach manifold modelled on the Banach spaceTXH
s(S,M) ~for

example, via an exponential map inM). We shall assume from now on that this has been done,
and we shall consider only embeddings that lie inHs(S,M), and~with the values of the Sobolev
class understood! denote the set of all such byE ; i.e., E :5Embg(S,M)ùHs(S,M). It can be
shown thatE is an open subset ofHs(S,M), and henceE is a Banach manifold with the same
tangent spaces and analogous manifold structure as that ofHs(S,M) itself.

The above definition of a tangent vector leads immediately to the definition of the tangent
bundleTE of E . More generally, ifS

RTM is the tensor bundle of type (R,S) overM (R times
contravariant andS times covariant!, we obtain an ‘‘e-tensor bundle’’S

RTE overE by defining an
e-tensor at the pointX P E to be a mapc:S→S

RTM such thatc(x) P S
RTX(x)M; i.e.,X5x+c,

where x now denotes the bundle projection ofS
RTM. Equivalently,c can be regarded as a

cross-section of the bundleX* (S
RTM) overS.

We shall need an even more generale-tensor of the type defined in Ref. 5 which transforms
as a tensor density of type (r ,s,w) with respect to a coordinate change inS aroundx, and as a
tensor of type (R,S) with respect to a coordinate change inM around the pointX(x) P M. The
precise definition of such ane-tensor is that it is a cross-sectionc of the bundle

s
r ,wTS ^X* (S

RTM) overS, wheres
r ,wTS is the bundle of tensors overS that arer times contra-

variant,s times covariant, and of tensor-density weightw. It follows that, for allx P S, we have
c(x) P s

r ,wTxS ^ S
RTX(x)M, and hence c(x) can be represented by its components

c l1 . . . l sn1 . . . nS

k1 . . . krm1 . . .mR(x) onS defined with respect to an appropriate pair of coordinate charts onS and

M.
There is another way of representinge-tensors which is particularly useful for discussing

tangent vectors to the collection of alle-tensors of a certain type. Namely, recall that ifV and
W are any pair of finite-dimensional vector spaces, then there is a canonical isomorphism of
V* ^W with the spaceL(V,W) of linear maps fromV to W in which the linear mapL l ^w

associated withl ^w P V* ^W is defined byL l ^w(v):5^l ,v&w for all v P V. In particular, we
note thats

r ,wTxS is the algebraic dual ofr
s,2wTxS, and hence it follows that ifc is ane-tensor with

c(x) P s
r ,wTxS ^ S

RTX(x)M, then we can identify c(x) as a linear map
c(x): r

s,2wTxS→S
RTX(x)M. This can be summarized rather neatly by defining ane-tensor to be a

vector bundle mapc from r
s,2wTS to S

RTM, i.e., the following diagram is commutative

r
s,2wTS →

c

S
RTM

↓r ↓x

S →
X

M
~9!
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wherer andx are the projection maps in the indicated tensor bundles overS andM, respec-
tively. Thus ift P r

s,2wTxS, we havec(t) P S
RTX(x)M.

We shall denote the bundle of suche-tensors byS,s
R,r ,wTE . The linear spaceS,s

R,r ,wTXE can be
given a Sobolev structure with an arbitrary Sobolev class~not necessarily the same as that of
E). An easy, ‘‘covariant’’ method for doing so can be obtained by using an auxiliary Riemannian
metric onM in addition to that onS. This enables covariant derivatives ofe-tensors to be defined
~see Ref. 5!. However, a ‘‘coordinate dependent’’ method is even easier to define, and is more
general in the sense that it can also be used for objects of higher rank, like the elements of
T(X,P)(T*E) ~see below!. This is based on pairs of charts Eq.~7!, which will associate a map of
h„X21(X(U)ùV̄…),R3 into Rm with anye-tensor. One can then define a Sobolev scalar product
by patching together the integrands within each seth„X21(X(U)ùV̄…) with the aid of a partition
of unity corresponding to a covering ofS by these sets. This scalar product depends on the system
of charts chosen, but the topology does not and is equivalent to that obtained using the covariant
method.

It is clear that the usual tensor operations, such as linear combination, tensor product, and
contraction at a pointx P S or X(x) P M, define corresponding operations on thee-tensors~for
details see Ref. 5!. The result is ane-tensor whose Sobolev class coincides with the lowest class
involved in the operation.

There is one more operation of importance that we shall call ‘‘pairing.’’ Letj P S,s
R,r ,wTXE and

h P R,r
S,s,12wTXE . The pairinĝ j,h& is defined by

^j,h&:5E
S
d3xj~x!•h~x! ~10!

wherej(x)•h(x) denotes the contractions atx andX(x) such that all indices ofj are contracted
with those ofh in the order in which they appear. Thenj(x)•h(x) is a scalar density onS, and
hence^j,h& is a coordinate independent real number.

A particularly important example of a bundle ofe-tensors is the tangent bundle
TE :50,0

1,0,0TE whose pointsj are pairs (X,V) whereX P E , andV is aTM-valued function on
S with V(x) P TX(x)M; equivalently,V is a cross-section ofX* (TM). Even more important for
our purposes is the cotangent bundleT*E . To define cotangent vectors we have to identify
TX*E with a particular topological vector space of real-valued, linear functions onTXE . The
appropriate choice for our purposes is the space1,0

0,0,1TXE of Sobolev classs8, the linear operation
being the pairing~the class parameters8 must satisfy the conditions8<s, wheres is the class
parameter ofE , but can otherwise be arbitrary!. Thus,P P TX*E :51,0

0,0,1TXE is a cross-section of
the bundleD1S ^X* (T*M) where, in general,DwS is shorthand for the real-line bundle

0
0,wTS of scalar densities onS of weightw. ThusP(x) P Dx

1S ^TX(x)* M; equivalently,P is a
bundle map fromD21S to T*M that ‘‘covers’’ X in the sense thatP(t) P TX(x)* M for all t
PDx

21S.
With respect to a local coordinate chartym, m50,1,2,3, onM, the pair (X,P) P T*E is

represented by local functions (Xm,Pn) on S, whereXm is defined by

Xm~x!:5ym
„X~x!…, ~11!

and where the four scalar-density functionsPn , n50,1,2,3, onS are defined by the expansion

P~x!5Pn~x!dynuX~x! ~12!

using the differentialsdyn associated with the local coordinate systemyn onM ~as usual, sum-
mation over repeated indices is understood! and using a local coordinate system onS to locally
trivialize the line bundleD21S. In terms of these local functions, the pairing operation is
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^~X,P!,~X,V!&5E
S
d3xPm~x!Vm~x! ~13!

where the functionsVm on S are defined by the equation

V~x!5Vm~x!S ]

]ymD
X~x!

. ~14!

Thee-tensor bundles can be given a manifold structure based on that ofE . A point in such a
bundleS,s

R,r ,wTE is represented by a pair (X,c) whereX P E , andc P S,s
R,r ,wTXE is a cross-section

of the bundles
r ,wTS ^X* (S

RTM) or—better for our purposes—the pair (X,c) fits into the com-
mutative diagram Eq.~9!. A tangent vector is defined as an equivalence classes of curves
t°(Xt ,c t), and it is clear from this geometrically that a tangent vector at (X,c) consists of a pair
of objects (V,W) where ~i! V P TXE ~i.e., V(x) P TX(x)M); ~ii ! W is a bundle map from

r
s,2wTS to T(S

RTM) such that, for allt P r
s,2wTxS, we haveW(t) P Tc(t)(S

RTM); and ~iii !
x* „W(t)…5V(x) where x* :T(S

RTM)→TM is induced from the bundle projector
x:S

RTM→M in Eq. ~9!. Note thatV andW both take their values in vector spaces, and hence the
collection of all such pairs (V,W) can be given an appropriate Sobolev structure to become
Banach spaces. By this means, the bundle ofe-tensors overE becomes a Banach manifold.

Now, in general, ifE is any vector bundle overM, the tangent spaceTpE splits into a direct
sumEp(p) % Tp(p)M whereEp(p) denotes the fiber ofE over the pointp(p) P M. However, in
the absence of any connection onE there is no natural way of performing such a split. Note that
in our case, whereE5S

RTM, this ~non-canonical! split means that the vectorW(t) P Tc(t)

(S
RTM) ~with t P r

s,2wTxS) can be written as a sum of an element ofS
RTX(x)M ~the analogue of

Ep(p)) and an element@in fact, V(x)] of TX(x)M. This means that, using a local coordinate
system onM, the vectorW(t) can be written as a collection of numbers associated with the point
X(x) P M, namely the componentsVm(x) of the vectorV(x), and the components of the space–
time object inS

RTX(x)M, which we shall write asWn1 . . . nS

m1 . . .mR(t).

A particularly simple example is the tangent bundleT(T*E). The bundleT*E consists of
pairs (X,P) where X P E , and whereP is a bundle mapP:D21S→T*M that covers
X:S→M, i.e.,P(t) P TX(x)* M for all t P Dx

21S. Then, according to the discussion above, a
tangent vector toT*E at the point (X,P) consists of a pair (V,W) whereV P TXE and where
W:D21S→T(T*M) satisfiesW(t) P TP(t)(T*M) with p* „W(t)…5V(x) for all t P Dx

21S,
wherep:T*M→M is the bundle projection.

The problem occasioned by the non-canonical split can be seen by looking at the situation
using a local coordinate system. The element (X,P) P T*E is represented by the local functions
(Xm,Pn) on S, and a transformation of coordinates inM from ym to y8aleads to new functions
(X8a,Pb8 ) satisfying

X8a~x!5y8a~X~x!!, ~15!

Pb8 ~x!5Jb8
n

~X~x!!Pn~x!, ~16!

where Jb8
n denotes the matrix]ym/]y8b. As emphasized earlier, a tangent vector in infinite-

dimensional differential geometry is defined as an equivalence class of curves and, with respect to
the pair of charts Eq. ~7!, a curve in T*E is represented by functions
(t,x)°„Xm(x,t),Pn(x,t)…. Hence the tangent vector to this curve is represented by the functions
Ẋm and Ṗn on S where
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Ẋm~x!:5
]Xm~x,t !

]t U
t50

, Ṗn~x!:5
]Pn~x,t !

]t U
t50

. ~17!

Note thatPm(x,t) are components with respect to coordinates at the pointX(x,t) of M while
Pm(x,t1dt) are those at another pointX(x,t1dt) of M.

Differentiating formula Eq.~15! along the curve with respect tot, we obtain

Ẋ8a~x!:5
]X8a~x,t !

]t
U
t50

5
]y8a~X~x,t !!

]t
U
t50

5
]y8a

]ym ~X~x!!
]ym~X~x,t !!

]t U
t50

5Jm
a8~X~x!!Ẋm~x!, ~18!

which shows that, as expected, the derivativesẊm(x) transform onM in a tensorial way. On the
other hand, the analogous calculations for Eq.~16! yield

Ṗb8 ~x!5Jb8m
n

„X~x!…Ẋm~x!Pn~x!1Jb8
n
„X~x!…Ṗn~x! ~19!

whereJb8m
n denotes the derivative of the matrixJb8

n with respect to the original coordinatesym.
This shows that the four quantitiesṖb8 (x) cannot be regarded as the components of any tensorial
object onM. In general, a tangent vector to (X,P) P T*E can be represented by the functions
(Vm,Wn) on S which transform under a change of coordinates onM as

S V8a~x!

Wb8 ~x!
D 5S Jm

a8~X~x!! 0

Jb8m
r

~X~x!!Pr~x! Jb8
n

~X~x!!
D S Vm~x!

Wn~x!D . ~20!

We shall often need to work with the cotangent vectors fromT* (T*E). Let us describe their
most important properties. As discussed above, a vector inT(X,P)(T*E) is a pair (V,W) where
V P TXE , andW:D21S→T(T*M) is such thatp* „W(t)…5V(x) P TX(x)M for all t P Dx

21S,
where p:T*M→M is the bundle projection. By definition, the kernel of the map
p* :T(T

*M)→TM is the set of vertical vectors inT(T*M), and at eachk P T*M there is a
natural isomorphismi of Vk(T*M) ~the vertical tangent vectors atk) with Tp(k)* M. In fact, at
eachk P T*M, the mapp* fits into the short exact sequence

0→Tp~k!
* M→i Tk~T*M!→

p
*Tp~k!M→0. ~21!

The dual of this sequence is the short exact sequence

0→Tp~k!
* M→

p
*
†

Tk* ~T*M→
i†

Tp~k!
** M→0 ~22!

where a † superscript denotes the adjoint of the linear map to which it is attached. Note that, since
M is finite-dimensional, the third term in Eq.~22! ~i.e.,Tp(k)** M) is ~non-canonically! isomorphic
to Tp(k)M.

Using the ideas above, it is natural to define an element ofT(X,P)* (T*E) as a pair (A,B) where
B:S→T**M.TM, and where the bundle mapA:D21S→T* (T*M) satisfies A(t)
P TP(t)* (T*M) with i†(A(t))5B(x) for all t P Dx

21S. In local coordinates onM, an element
(A,B) P T(X,P)* (T*E) can be represented by a set of local functions (Am ,B

n) on S ~eachAm is
actually a scalar density onS; Bn are genuine scalar functions!. The pairing of such an object with
a vector (V,W) in T(X,P)(T*E) is defined by
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^~A,B!,~V,W!&:5E
S
d3x~Am~x!Vm~x!1Bm~x!Wm~x!!. ~23!

The condition that the result be independent of coordinates onM determines the transformation
of (Am(x),B

n(x)) to be

S Aa8 ~x!

B8b~x!
D 5S Ja8

m
2Ja8n

r
„X~x!…Pr~x!

0 Jn
b8
„X~x!…

D S Am~x!

Bn~x! D . ~24!

ThusVm(x) andBm(x) represent tensorial objects onM, butWm(x) andAm(x) do not.
A key observation is the following. If the transformation law Eq.~20! is compared with Eq.

~24!, it is clear that the quantity (Gm,2Fm) formed from the ‘‘components’’ of a covector on
T*E transforms as a tangent vector onT*E . Thus we have a mapJE :T* (T*E)→T(T*E)
defined in local coordinates on the component functions by

JE~Aa ,B
n!5~Bm,2Aa!. ~25!

We can choose the Sobolev classes so that the classes of the functionsVa, Xa andBa coincide,
and so do those ofPb , Wb andAb . ThenJE is a Sobolev space isomorphism.

More abstractly, we recall that ifQ is any finite-dimensional manifold there is a canonical
isomorphismj :Tp* (T*Q)→Tp(T*Q) defined on any cotangent vectorl at the pointp in T*Q by

v~ j ~ l !,v !5^l ,v&p for all vPTp~T*Q! ~26!

wherev is the canonical two-form on the cotangent bundleT*Q. In the context of the embedding
space, if (A,B) P T(X,P)* (T*E), thenA(t) P TP(t)* (T*M), and hence we can use the isomorphism
j :TP(t)* (T*M)→TP(t)(T*M) to define a mapJ:T(X,P)* (T*E)→T(X,P)(TE) by requiring that
J(A,B)(t):5 j (A(t)). This is the coordinate-free definition of the object given in Eq.~25!.

The phase spaceGf of the scalar fieldf was introduced in section II. We note now that
Gf can be considered as the cotangent bundleT*Q , whereQ is the spaceH0

` of all C`-scalar
fields onS. As Q is a linear space, there is a natural identification between the spacesT*Q and
Q3Tw*Q for anyw P Q . Also,Tw*Q5H1

` is itself a linear space, and so there is an identification
between the spacesT(w,p)(T*Q ) andT*Q.H0

`3H1
` . Similarly, T(w,p)* (T*Q ).H1

`3H0
` . More

precisely, if (j,h) P T(w,p)(T*Q ) and (f ,h) P H1
`3H0

` , then the pairing (f ,h):T(w,p)
(T*Q )→R is defined by

^~ f ,h!,~j,h!&:5E
S
d3x~ f j1hh!. ~27!

The extended phase spaceG of the parametrized scalar field of Ref. 7 is defined as
G:5Gf3T*E . HenceG.T* (Q3E), so that the extended phase space is again a cotangent
bundle. In the context of the full spaceG, a tangent vector fromT(w,p,X,P)G can be specified by
its ‘‘components’’ (F,P,V,W), where (V,W) P T(X,P)(T*E) and (F,P) P T(w,p)(T*Q ). Simi-
larly, a cotangent vector fromT(w,p,X,P)* G can be specified by (Aw ,Ap ,A,B), where (A,B)
P T(X,P)* (T*E) and (Aw ,Ap) P T* (T*Q ). The natural pairing is

^~Aw ,Ap ,A,B!,~F,P,V,W!&:5E
S
d3x~AwF1ApP1AmV

m1BmWm!. ~28!

There is an isomorphismJ:T(w,p,X,P)* G→T(w,p,X,P)G ~if the Sobolev classes are chosen to
match each other! given by
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J~Aw ,Ap ,AX ,AP!:5~Ap ,2Aw ,AP ,2AX!. ~29!

Using this isomorphism, a symplectic structureV on G can be defined as follows. Letv1 and
v2 be two vectors inT(w,p,X,P)G. Then

V~v1 ,v2!:52^J21v1 ,v2& ~30!

or, in ‘‘component’’ form,

V„~F1 ,P1 ,V1 ,W1!,~F2 ,P2 ,V2 ,W2!…5E
S
d3x~P1F22F1P21W1mV2

m2V1
mW2m!. ~31!

It follows at once that~i! V(v1 ,v2)52V(v2 ,v1); ~ii ! V is weakly non-degenerate~see Ref. 13!;
and ~iii ! V is not only closed but also exact.

As V is only a weak symplectic form, not every differentiable function onG will have a
Hamiltonian vector field. The class of functions that do can be characterized as follows. If
F:G→R, we say thatF has a gradient if the following two conditions are satisfied:

~1! the Fréchet derivative, DFu(w,p,X,P) :T(w,p,X,P)G→R is a bounded linear map;
~2! there exists gradF P T(w,p,X,P)* G such that ^gradF,v&5DFu(w,p,X,P)(v) for all v

P T(w,p,X,P)G. The ‘‘components’’ of this gradient will be denoted by the collection of functions
(gradwF,gradpF,(gradXF)m ,(gradPF)

n).
Condition~2! means that DF must be regular~no distributions are accepted!!, and hence we have
to work with smeared objects. This will not lead to any real loss of generality. The quantity
gradF is calculated from DF as usual by integration by parts~if F contains derivatives!.

For a differentiable function with a gradient, we can define an associated ‘‘Hamiltonian vector
field.’’ Specifically, if F is such a function, thenjF P T(w,p,X,P)G is defined by the relation

^gradF,v&5V~v,jF! for all vPT~w,p,X,P!G. ~32!

Hence, because of Eq.~30!, we see that ^gradF,v&5^J21jF ,v& for all v, and so
jF5J(gradF).

Finally, the Poisson bracket of a pair of differentiable functionsF and G is defined as
$F,G%:52V(jF ,jG), and we see immediately that

$F,G%5^gradF,jG&. ~33!

This Poisson bracket is antisymmetric and, sinceV is closed, it satisfies the Jacobi identity.

IV. THE CONSTRAINT MANIFOLD

The parametrized scalar field theory possesses a set of constraintsHm50 on the Cauchy data
(w,p,X,P). These constraints are contained in the map

C:G→T*E , ~34!

~w,p,X,P!°~X,H~w,p,X,P!! ~35!

whereH(w,p,X,P) P TX*E , i.e., H(w,p,X,P)(x) P TX(x)* (M) for all x P S, so that
H(w,p,X,P)(x)5H(w,p,X,P)m(x)dy

muX(x) in a coordinate systemym on M. The specific
form of the constraintsHm(x) is given in Ref. 7 as

Hm5Pm1Hm
f , ~36!

Hm
f52H'

fnm1Hk
fXm

k , ~37!
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where nm(x) is the unit normal space–time vector atX(x)PM, and where Xm
k (x):

5gmn(x)g
kl
„X(x)…X, l

n(x). The componentsHm
f(w,p,X) can be projected normal, and tangential,

to the hypersurfaceX(S) to give

H'
f5 1

2~detg!1/2S p2

detg
1gklwkw l1m2w2D , ~38!

Hk
f5pw,k . ~39!

The goal of this section is to explore the pre-symplectic structure of the manifoldG̃ of
solutions to these constraints, i.e.,G̃:5$(w,p,X,P) P GuC(w,p,X,P)5(X,0)%. In particular, we
have the following theorem.

Theorem 2: Let the Sobolev class of all spaces involved bè. Then, G̃ is a
C`-submanifold ofG in a neighborhood of any of its points. This constraint manifoldG̃ is given
by G̃5C̃(Gf3E), whereC̃:Gf3E→G is defined byC̃(w,p,X):5(w,p,X,2Hf(w,p,X)).

Proof: The proof is similar to that in Ref. 15, but requires less sophisticated functional
analysis because our constraints are available in an explicit form; in particular—unlike the case in
Ref. 15—we do not need to use the Fredholm alternative theorem.

We start by assuming thatT*G is C`, and postulate that the Sobolev class ofP and
W is s21, where s is the class of X, F and V. Consider the map
DCu(w,p,X,P) :T(w,p,X,P)G→TH(w,p,X,P)(T*E). To use the implicit function theorem, this map
must be a surjection with a splitting kernel~see, e.g., Ref. 21!. However, DCu(w,p,X,P) is trivially
surjective. Moreover, its kernel inTC̃(X,w,p)G is given by DC̃u(w,p,X)(T(w,p,X)(Gf3E)). We shall
now show that DCu(w,p,X) is injective with a splitting image.

The map DC̃u(w,p,X) :T(w,p,X)(Gf3E)→TC̃(w,p,X)G between the Sobolev spacesT(w,p,X)
(Gf3E).Gf

s 3H0
s andTC̃(w,p,X)G.Gf

s 3H0
s3H1

s21 has a derivative given by

DC̃u~w,p,X!~F,P,V!5~F,P,V,2DHfu~w,p,X!~F,P,V!!, ~40!

where

DHfu~w,p,X!~F,P,V!5DwH
fu~w,p,X!~F!1DpH

fu~w,p,X!~P!1DXH
fu~w,p,X!~V!. ~41!

Using the results of Ref. 7 and Eqs.~37!–~39!, we find after some calculation that

DwHm
fu~w,p,X!~F!5~detg!1/2~Lm

k F ik2nmm
2wF!, ~42!

DpHm
fu~w,p,X!~P!5Lm

'P, ~43!

DXHm
fu~w,p,X!~V!5

1

2
~detg!1/2Kmn

k Vik
n 1Hk

fGmn
k Vn, ~44!

where

Lm
k 52gklw i lnm1

p

~detg!1/2
Xm
k , ~45!

Lm
'52

p

~detg!1/2
nm1w ikXm

k , ~46!

3515P. Hájı́ček and C. J. Isham: Symplectic geometry of parametrized scalar field

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Kmn
m 5S p2

detg
2gklw ikw i l2m2w2DnmXn

m1S p2

detg
1gklw ikw i l1m2w2D

3Xm
mnn12 w ikw i lg

kmnmXn
k22

p

~detg!1/2
w ik~gkmnmnn1Xn

kXm
m!, ~47!

and ‘‘i ’’ denotes the bi-covariant derivative, for exampleYki l
m 5Yk,l

m 1Grs
m Yk

rXl
s2gkl

mYm
m , where

Grs
m is the Christoffel symbol of the metricgmn on M , andgkl

m is the Christoffel symbol of the
pull-back of g to S by X. By inspection, these formulas imply the crucial result that the map
DHfu(w,p,X) :H0

s3Gf
s→H1

s21 is continuous and bounded~recall thatw, p andX areC`). Hence,
for all (F,P,V) P Gf

s 3H0
s , the map DC̃u(w,p,X) is continuous and bounded, and—by inspection—

injective. It follows from the closed graph theorem that the image DC̃u(w,p,X)(Gf
s 3H0

s) is there-
fore closed inGf

s 3H0
s3H1

s21 . However, a closed subspace of a Hilbert space splits, which
proves the theorem. QED

By abuse of language, we will often callGf3E the ‘‘constraint manifold.’’
For each fixed value ofx andm, the quantityHm(x) can be viewed as a function on the phase

space, but it has no gradient; in particular, the Poisson bracket of a pair of such functions is not
well-defined. Constraint functions with gradients can be constructed by ‘‘smearing.’’ Specifically,
if N P TXE @i.e.,N(x) P TX(x)M], thenHN is defined as

HN :5E
S
d3xNm~x!Hm~x!. ~48!

It is clear that the equationsHN50 for all N P TXE are equivalent toHm(x)50 for all m,x. In
particular, letU be aC` vectorfield onM. Then each embeddingX determines an element,
x°Um

„X(x)…(]/]ym)X(x) , of TXE . This is the type of smearing used in Ref. 7.
Let us calculate the gradient ofHN . Starting from Eq.~37!, using Eqs.~42!, ~43! and ~44!,

and integrating by parts, we obtain

gradwHN5~detg!1/2@2~NmLm
k ! ik2m2wnmN

m#, ~49!

gradpHN5Lm
'Nm, ~50!

~gradXHN!n5Nin
m
Hm2 1

2~detg!1/2~NmKmn
k ! ik2PkGmn

k Nm, ~51!

~gradPHN!n5Nn, ~52!

whereLm
' ,Lm

k andKmn
k are given by Eqs.~45!, ~46! and~47!. In Ref. 7, the following theorem was

shown:
Theorem 3: Let M andN be twoC` vector fields onM. Then

$HM ,HN%52H@M ,N# , ~53!

where@M ,N# is the Lie bracket of the fieldsMm andNm.
Substituting the expressions Eqs.~49!–~52! for the gradients into the Poisson brackets~53! we

obtain an identity that plays an important role in some proofs:

1

2 E
S
d3x~detg!1/2@~MmKmn

k ! ikN
n2~NmKmn

k ! ikM
n#

5E
S
d3x~gradwHMgradpHN2gradpHMgradwHN!. ~54!
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The following theorem was essentially shown in Ref. 7:
Theorem 4: Let f satisfy the Klein–Gordon equation~1! on M. Then for each curve

l°Xl with the tangent vector fieldN onE , the initial data (wl ,pl) for f onXl(S) satisfy the
evolution equation

~ ẇ,ṗ,Ẋ,Ṗ!5J~gradHN!. ~55!

The equation forṖ is a consequence of the first three equations and the constraintsHN50 for
all NPTXE .

Conversely, if a curvel°(wl ,pl ,Xl) onGf3E satisfies the evolution equations~55!, then
it defines a unique solutionf of the Klein–Gordon equation.

Thus the Hamiltonian vector fieldsJ(gradHN) of the functionsHN are tangential toG̃, and
hence the system is first class, according to the definition given in Ref. 10.

A simple consequence of theorem 4 is that the pull-back of the vector field~55! to Gf3E is
given by

ẇ5gradpHN , ~56!

ṗ52gradwHN , ~57!

Ẋ5N. ~58!

Let us denote the space of longitudinal vectors at (w,p,X) P Gf3E by J (w,p,X) , i.e.,

J~w,p,X! :5$~F,P,V!PT~w,p,X!G̃uF5gradpHN ,P52gradwHN ,V5NPTXE%. ~59!

The map (gradpHN ,2gradwHN):TXE→T(w,p)Gf is continuous and hence, by the closed graph
theorem,J (w,p,X) is a closedsubspace ofT(w,p,X)G̃.

Another consequence of theorem 4 is that the Fre´chet derivative of the maprXX8 with respect
to X8 is given by

DX8rXX8u~w,p!~V!5~gradpHV~w8,p8,X8!,2gradwHV~w8,p8,X8!!, ~60!

where (w8,p8):5rXX8(w,p).
We shall need the pull-back of the symplectic form to the constraint manifold. This is given

by the following theorem.
Theorem 5: The pull-backṼ of the formV is given by the formula

Ṽ„~F1 ,P1 ,V1!,~F2 ,P2 ,V2!…

5E
S
d3x@~P11gradwHV1

!~F22gradpHV2
!

2~P21gradwHV2
!~F12gradpHV1

!#. ~61!

Proof: The pull-back by the mapC̃ of the formV is given by

Ṽ„~F1 ,P1 ,V1!,~F2 ,P2 ,V2!…:5V„DC̃~F1 ,P1 ,V1!,DC̃~F2 ,P2 ,V2!…. ~62!

Substituting into this equation the expressions for DC̃ from Eqs.~40! and~41!, and using Eq.~54!,
one easily arrives at Eq.~61!. QED

Thus,Ṽ is degenerate, and the degeneracy subspace at the point (w,p,X) P G̃ coincides with
J (w,p,X) .
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The last important notion involving the constraint submanifold is that of a ‘‘c-orbit,’’ defined
to be the set of points inG̃ that correspond to just one maximal classical solution~see Ref. 10!. Let
g̃ (w,p,X) be the mapg̃ (w,p,X) :E→Gf3E defined by

g̃ ~w,p,X!~X8!:5„rXX8~w,p!,X8…. ~63!

Then thec-orbit g (w,p,X) through the point (w,p,X) P Gf3E is defined as

g~w,p,X! :5g̃~w,p,X!~E ! ~64!

i.e.,g (w,p,X) is the collection of all embeddings, and Cauchy data on such, induced by the unique
solution to the field equations whose Cauchy data onX(S) is (w,p).

We shall show that thec-orbits are smooth submanifolds ofG̃ and that their tangent spaces
coincide withJ (w,p,X) ; the proof is analogous to that of theorem 2.

The tangent space to g at g̃ (w,p,X)(X8) is the image of the map
Dg̃ (w,p,X)uX8:TX8E→T(w8,p8,X8)(Gf3E), where (w8,p8):5rXX8(w,p). Using Eq.~60! we ob-
tain, for allV P TX8E ,

Dg̃~w,p,X!uX8~V!5~DrXX8~w,p!uX8~V!,V!

5~gradp8HV~w8,p8,X8!,2gradw8HV~w8,p8,X8!,V!. ~65!

Hence, Dg̃ (w,p,X)uX8
is injective, and a comparison of Eq.~65! with Eqs. ~56!–~58! shows that

Dg̃ (w,p,X)uX8(TX8E)5J (w,p,X) . As J is a closed subspace of a Hilbert space, it splits, and the
claims above are proved.

V. CONCLUSIONS

We have shown that, with proper functional-analytical care, the geometrical structure of an
infinite-dimensional parametrized system can be developed in a way that is analogous to that of a
finite-dimensional system. In particular, for the model considered, the extended phase space is a
~weak-!symplectic infinite-dimensional manifold, the constraint set is a submanifold of the phase
space, and thec-orbits are submanifolds of the constraint set. The criteria for a constrained system
to be first class are of the same form as those of a finite-dimensional system. Many constructions
available for a finite-dimensional system can now be performed in the infinite-dimensional case.
The only difference is that the symplectic form is only weakly non-degenerate. However, physi-
cists usually work with a restricted class of functions so that the Poisson brackets are still well-
defined.

We anticipate that our main results are broadly generalizable. For example, an extension to the
case where the Cauchy hypersurfaces are asymptotically flat is likely to be relatively straightfor-
ward. We hope that our results will be useful for a number of purposes. In particular, our main
goal was to apply the perennial formalism to the scalar field system; this is be done in the
accompanying article.
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APPENDIX: CAUCHY PROBLEM

We collect together some well-known results about the Cauchy problem of linear hyperbolic
systems and then use them to sketch a proof of the theorem 1 in section II.
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First, we state some lemmas about the space–time (M,g).
Lemma 1:Let X andX8 be two embeddings inE such thatX8(S),I1

„X(S)…. Then, given
T.0 ande.0, there is a one-dimensional family$Xt%, t P (2e,T1e), of embeddings such that:

~a! X05X, XT(s)5X8(S);
~b! if (U,h) is a chart ofS @h(U),R3#, then „ø tP(2e,T1e)Xt(U),@Xt„h

21(x)…#21
… is a

Cr11 chart inM, whereXt(h
21(x)) is considered as a map

Xt„~h
21~x!…:~2e,T1e!3h~U !→M; ~A1!

~c! the componentsgab(t,x) of the metric in any such chart satisfy the equations

g00~ t,x!,0 ~A2!

in (2e,T1e)3h(U) ~the t-curves are everywhere timelike!, and

g00~0,x! 5 g00~T,x! 5 21,

g0i~0,x! 5 g0i~T,x! 5 0,
~A3!

for all xP h(U).
The proof is simple. Observe thatg00 is negative andgkl is positive-definite everywhere in

(2e,T1e)3h(U); this is because anyXt(U) hypersurface is a part of a Cauchy hypersurface,
and hence spacelike. Then the condition thatgkl is also positive-definite everywhere is equivalent
to Eq.~A2!. Hence, for anyt P @0,T# andx P h(U), we have

ug00u.c1 , ~A4!

gkljkj l.c2e
kljkj l , ~A5!

wherec1 and c2 are positive constants,ekl is a positive-definiteC` metric onS, andjk is an
arbitrary covector field onS.

The proof of the following lemma can be found in Ref. 16:
Lemma 2:If S1 andS2 are two Cauchy hypersurfaces in (M,g), then there is a Cauchy

hypersurfaceS3 such that

S3,@ I1~S1!ùI2~S2!#. ~A6!

Thus,S1ùS35S2ùS35B.
Next, consider the Klein–Gordon equation~1! for the fieldf, and the associated Cauchy

problem. In the chart described in lemma I, Eq.~1! has the form

2g00
]2f

]t2
5gkl

]2f

]xk]xl
12g0k

]2f

]t]xk
1udetgu21/2]m~ udetgu1/2g0m!

]f

]t

1udetgu21/2]m~ udetgu1/2gkm!
]f

]xk
1m2f. ~A7!

An initial datum forf at the timet is the pair of scalar fields (w t ,ẇ t) on S given by

w t~x!5f~ t,x!, ~A8!

ẇ t~x!5
]f

]t
, ~A9!
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wherew t(x) coincides with the Cauchy datum forXt(S) as defined by Eq.~4!. For t50 and
t5T, we have also

~detg!1/2ẇ0~x!5p0~x!, ~A10!

~detg!1/2ẇT~x!5pT~x!, ~A11!

where p0(x) and pT(x) are the pieces of Cauchy data defined by Eq.~3! for X0(S) and
XT(S).

Consider the coefficient functions of Eq.~A7!. They define tensor fields onS. Indeed,

a00~ t,x!52g00~ t,x!, ~A12!

a0~ t,x!5udetgu21/2]m~ udetgu1/2g0m!u t,x , ~A13!

a~ t,x!5m2, ~A14!

are scalar fields onS for eacht, whereas

a0k~ t,x!5g0k~ t,x!, ~A15!

ak~ t,x!5udetgu21/2]m~ udetgu1/2gkm!u t,x , ~A16!

are contravariant vector fields for eacht, and

akl~ t,x!5gkl~ t,x! ~A17!

is a contravariant tensor of second rank onS for eacht.
TheCr11-differentiability of X implies the following properties of these tensor fields:

aabPLip„@0,T#;H0
r21~S!…,L`

„@0,T#;H0
r ~S!…,

aaPLip„@0,T#;H0
r22~S!…,L`

„@0,T#;H0
r21~S!…,

aPLip„@0,T#;H0
`~S!…5L`

„@0,T#;H0
r ~S!….

~A18!

Moreover, according to Eqs.~A4! and~A5!, we havea00(t,x)>c1 for all t P @0,T# andx P S, and

akl~ t,x!jk~x!j l~x!>c28e
kl~x!jk~x!j l~x!, ~A19!

for all t P @0,T# andx P S. The relations above enable us to use ‘‘localized’’ forms of the theo-
rems 4.15 and 4.13 in Ref. 15, and to apply them to construct unique local evolution systems
Ft,s which can be ‘‘patched together.’’ By this means we are able to prove the following lemma
~for further details see Ref. 15!:

Lemma 3:Let the assumptions of Lemma 1 be satisfied, and letr>4. Then, each initial datum
„w0(x),ẇ0(x)… P H0

s11(S)3H0
s(S) onX0(S), where 1<s<r21, defines a unique solutionf to

the equation~1! in U whose initial datum„wT(X),ẇT(x)… onXT(S) belongs to the Sobolev space
„wT(X),ẇT(x)… P H0

s11(S)3H0
s(S). Furthermore, the mapsU(0,T):H0

s11(S)3H0
s(S)

→H0
s11(S)3H0

s(S) are automorphisms of Banach spaces.
Note that it is a trivial matter to pass from the initial data (w,ẇ) to the Cauchy data (w,p):

since (detg)1/2 is C` and bounded below by zero inU, the definitionp(x):5(detg)1/2ẇ(x)
describes an isomorphism between the Banach spacesH0

s(S) andH1
s(S) for any s<r .

Finally, given any pair of arbitrary embeddingsX1 andX2 , we can use lemma 2 to find an
‘‘intermediate’’ embeddingX3 . To be able to apply lemma 1 to the pairs$X1 ,X3% and
$X3 ,X2%, we must find two embeddingsX38 and X39 such that the correspondingt-curves are
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timelike, and withX38(S)5X39(S)5X3(S). Then, we can use lemma 3 and the diffeomorphism
invariance ofB to prove the theorem 1. QED
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The perennial formalism is applied to the real, massive Klein–Gordon field on a
globally-hyperbolic background space–time with compact Cauchy hypersurfaces.
The parametrized form of this system is taken over from the accompanying paper.
Two different algebrasS canandS loc of elementary perennials are constructed. The
elements ofS can correspond to the usual creation and annihilation operators for
particle modes of the quantum field theory, whereas those ofS loc are the smeared
fields. Both are shown to have the structure of a Heisenberg algebra, and the
corresponding Heisenberg groups are described. Time evolution is constructed us-
ing transversal surfaces and time shifts in the phase space. Important roles are
played by the transversal surfaces associated with embeddings of the Cauchy hy-
persurface in the space–time, and by the time shifts that are generated by space–
time isometries. The automorphisms of the algebras generated by this particular
type of time shift are calculated explicitly. The construction of the quantum theory
using the perennial formalism is shown to be equivalent to the Segal quantization
of a Weyl system if the time shift automorphisms of the algebraS can are used. In
this way, the absence of any timelike Killing vector field in the background space–
time leads naturally to the ‘‘problem of time’’ for quantum field theory on a back-
ground space–time. Within the perennial formalism, this problem is formally iden-
tical to the problem of time for any parametrized system, including general
relativity itself. Two existing strategies—the ‘‘scattering’’ approach, and the ‘‘al-
gebraic’’ approach—for dealing with this problem in quantum field theory on a
background space–time are translated into the language of the perennial formalism
in the hope that this may give some insight into how the general problem can be
solved. The non-unitary time evolution typical of the Hawking effect is shown to be
due to global properties of the corresponding phase space: specifically, the time
shifts map a global transversal surface to a non-global one. Thus, the existence of
this effect is closely related to the global time problem. ©1996 American Insti-
tute of Physics.@S0022-2488~96!02707-7#

I. INTRODUCTION

In the canonical approach to quantum gravity, much emphasis is placed on three particular
issues: the conceptual problems that arise in the interpretation of the theory, especially the prob-
lem of time; the role of the space–time diffeomorphism group; and the construction of non-
perturbative quantization methods~for reviews, see Refs. 1–3!. The Dirac method of imposing
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operator constraints on the allowed state vectors~which, in the case of gravity, leads to the
Wheeler-DeWitt equation! has become particularly popular because of its manifest relation to the
idea of invariance under the action of space–time diffeomorphisms.

However, diffeomorphism invariance can also be secured by adopting a method in which only
‘‘gauge-invariant’’ objects are quantized; Dirac himself laid the foundations4 for a powerful ap-
proach of this sort. A generalization of the Dirac method to include all finite-dimensional, first-
class parametrized systems was presented by Ha´jı́ček.5 The resulting theory, which combines the
group-theoretic6 and algebraic7 methods of quantization with that of Dirac, is called the ‘‘peren-
nial formalism,’’ following the terminology introduced by Kucharˇ in his analysis8 of the problem
of observables in canonical quantum gravity. The key idea of this method is to find an algebra of
phase-space functions whose Poisson brackets with all the first-class constraints vanish; such
functions are therefore constant on the phase-space orbits of the~function! group generated by the
constraints. Furthermore, this algebra is required to be large enough to generate all gauge-invariant
functions in an appropriate sense. Quantization of the system then consists in finding irreducible
self-adjoint representations of this algebra of ‘‘physical observables’’ or, essentially equivalently,
finding irreducible, unitary representations of the associated ‘‘canonical’’ group.

In the present article we develop the perennial formalism in the context of a field system,
namely a linear, massive scalar field propagating on a fixed, globally-hyperbolic space–time with
compact Cauchy hypersurfaces.

Various motivations lie behind such a study. To begin with, infinite-dimensional systems are
qualitatively different from finite-dimensional ones, and it is an important—and mathematically
non-trivial—challenge to see how the perennial formalism can be extended to this case. We shall
show how the scalar field theory can be rewritten in such a way as to become a simple example of
a system with perennials. However, quantum field theory in a fixed background has been much
studied in the past using standard methods, and hence it provides a useful model for exploring the
perennial formalism for an infinite-dimensional system. As we shall see, new problemsdoappear,
the most important of which concerns the choice of the operator representation for the group/
algebra generated by the perennials.

In the standard approach to quantum field theory on a background space–time, the normal
way of addressing the problem of operator representation makes extensive use of the classical time
evolution of the system. Thus the time evolution and associated Hamiltonian are considerably
more important for infinite-dimensional systems than they are in the finite-dimensional case.
Specifically, if there is no timelike isometry group, then the physical representation for the quan-
tum system is not determined and—at the same time—the time evolution and Hamiltonian of the
classical system are not well-defined~by the perennial formalism!. Such a lack of a Hamiltonian
was identified in Ref. 5 as the general form taken by the problem of time within the perennial
formalism. However, studies of quantum field theory on a background space–time have produced
several possible strategies for dealing with this problem, and one can hope that some of these ideas
may be applicable to other situations, especially if a common language—in our case, that of the
perennial formalism—has been developed.

The perennial formalism enables us to reformulate the dynamics of a scalar field in a back-
ground space–time in terms of properties of the system’s phase space. In this reformulation, an
important role is played by the idea of atransversal surface, defined in general for a system with
a gauge group as a submanifold in the phase space that cuts orbits of the gauge group transver-
sally; thedomainof a transversal surface is the set of points in the constraint submanifold that can
be joined to the transversal surface by the orbits of the constraints; see Ref. 5. Global problems
may arise: for example, there may not exist any global transversal surface~i.e., one whose domain
is the whole constraint surface!; or there might be a symmetry transformation that maps a global
transversal surface onto a transversal surface that is not global. Indeed, we shall show that the
latter situation arises in the particular case of a space–time with a black hole. This leads to an
information loss in which the quantum evolution associated with the symmetry sends pure states
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to mixed states~the Hawking effect!. A situation with somewhat similar features can occur if a
system has no global transversal surfaces~the so-called ‘‘global’’ time problem!; in particular, an
analogous non-unitarity is exhibited by the quantum time evolution. Toy models exhibiting such
behavior were studied in Refs. 9 and 10. Thus, the ideas developed in the present article may be
of use in finding a physical interpretation in general situations in which the global time problem
arises.

Another motivation for our present work is that our understanding of quantum field theory on
a fixed background might itself profit from the use of the language of perennials. For example, the
symmetries and transversal surfaces that have been employed in the past in studies of such
quantum field theories are of a very special nature: namely, transformations of phase space that are
generated in a particular way by space–time transformations, and surfaces associated with space–
time hypersurfaces. The perennial formalism permits more general types of symmetry and trans-
versal surface, and suggests how these can be found. The question then is if these symmetries can
be utilized in the quantum theory, and—if not—why not.

The plan of the paper is as follows. In section II, we summarize the results of the companion
work11 where the dynamics and the symplectic geometry of the parametrized scalar field was cast
into the standard form of a first-class parametrized system so that the perennial formalism can be
applied. In section III, two different kinds of perennials are constructed and each of them is shown
to form an algebra of elementary perennials, both of which are versions of the infinite Heisenberg
algebra. We show that each isometry of the background space–time defines a map of the phase
space that is a symmetry. We calculate the action of these symmetries on the elementary peren-
nials and find that they define automorphisms of the algebras. Then we show how the theory of
time evolution as described in Ref. 5 can be applied to the present case.

In the final section we show how the group and algebraic quantization that is performed as the
next step reduces to the familiar problem of finding a physically appropriate representation of the
Weyl group. We briefly summarize the relevant results of the theory of Weyl systems in connec-
tion with quantum field theory on a background space–time, and we show that our quantization
method leads to a quantum theory that is equivalent to the usual one. Finally, we discuss the
problem of time in a quantum field theory in a fixed background. We study a ‘‘scattering ap-
proach’’ to quantization that makes use of an isolated symmetry that is defined on only a small
subset of the phase space. In the context of the perennial formalism, such a generalized symmetry
is sufficient to define a time evolution. We show that the resulting quantum evolution is non-
unitary if the symmetry does not preserve the domains of the transversal surfaces involved in the
construction, and we apply the results to the Hawking effect. We also briefly describe the ‘‘alge-
braic approach’’ to quantization in which the states are defined as functionals on the algebras of
perennials.

II. STRUCTURE OF THE EXTENDED PHASE SPACE

In this section, we shall summarize the results of the companion work11 so that the present
paper becomes self-contained. For more details, one should consult.11

We work with a curved background space–time (M,g) and assume that it isC` and globally
hyperbolic; the Cauchy surfaceS is assumed to be compact. The real scalar fieldf satisfies the
Klein–Gordon equation

udetgu21/2]m~ udetgu1/2gmn]nf!1m2f50. ~1!

Consider aC` embeddingX:S→M that is spacelike with respect to the metricg. Let E
denote the space of all such embeddings. Each embeddingX determines a positive-definite metric
gX onS and a unit normal vector fieldnX toX(S) inM. The embeddingX also defines a Cauchy
datum for the fieldf along the hypersurfaceX(S). This is a pair (w,p) of fields onS, where the
scalarw and the density~of weightw51) p are defined by
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w~x!:5f„X~x!…, ~2!

p~x!:5~detg!1/2@X~x!#nm
„X~x!…]mf„X~x!…. ~3!

The space of allC` Cauchy data will be denoted byGf—a linear space that can be equipped with
a Sobolev structure~for details, see Ref. 11!. The dynamical equation~1! defines a mapping
between Cauchy data corresponding to different embeddings. Specifically, letX andX8 be two
arbitrary spacelike embeddings and let (w,p) P Gf . Then there is a unique solutionf of Eq. ~1!
whose Cauchy datum atX(S) is (w,p), and this induces a well-defined Cauchy datum
(w8,p8) on X8(S). Thus we get a map (w,p)→(w8,p8), which we denote byrXX8. One can
show thatrXX8 is an automorphism of the Sobolev spaceGf .

The spaceGf is the phase space of the~non-constrained! scalar fieldf on the curved back-
ground (M,g). If we extend this space by adding all spacelike embeddingsX and their conjugate
momentaP, and if we impose suitable constraints, we obtain a constrained system that is dynami-
cally equivalent to the original one. The points of the resulting extended phase spaceG are
collections of fields,x°„w(x),p(x),X(x),P(x)… onS. These fields can be characterized by their
transformation properties with respect to a pair of local charts

~U,h! of S and ~V̄,h̄! ofM ~4!

~whereX(U)ùV̄ Þ 0” ). In particular,Pm(x) is a covector with respect to the transformation of
(V̄,h̄) onM and a quadruple of scalar densities with respect to the transformation of (U,h) on
S. Quantities of this type were called ‘‘e-tensor densities’’ by Kucharˇ.12

The phase spaceG can be given a structure of an infinite-dimensional differentiable manifold
with tangent and cotangent vectors described as follows. Consider a curvel→(wl ,pl ,Xl ,Pl)
whose tangent vector components (F,P,V,W)[(ẇl ,ṗl ,Ẋl ,Ṗl) can be calculated by differen-
tiating with respect tol the coordinate representatives associated with the pair of charts~4!. The
fieldsF(x), P(x), V(x) andW(x) are again characterized by their transformation properties: the
first three aree-tensors, but the fourth transforms in a more complicated way~see Ref. 11!. The
spaceT(w,p,X,P)G of all such vectors can be given theC` structure of a Fre´chet space. A cotangent
vector at a point (w,p,X,P) of G will be a quadruple (Aw ,Ap ,A,B) of fields onS such that the
pairing

^~Aw ,Ap ,A,B!,~F,P,V,W!&:5E
S
d3x~AwF1ApP1AmV

m1BmWm! ~5!

with vectors fromT(w,p,X,P)G gives a coordinate independent number. This requirement deter-
mines the transformation properties of the fields (Aw ,Ap ,A,B).

One can show that (Ap ,2Aw ,B,2A) transforms as a tangent vector. Thus, there is a map
J:T(w,p,X,P)* G→T(w,p,X,P)G given byJ(Aw ,Ap ,AX ,AP):5(Ap ,2Aw ,AP ,2AX). TheC

` struc-
ture of the spaceT(w,p,X,P)* G can be chosen in such a way thatJ is an isomorphism. Using this
isomorphism, a symplectic structureV on G can be defined as follows. Ifv1 and v2 are two
vectors inT(w,p,X,P)G then

V~v1 ,v2!:52^J21v1 ,v2&. ~6!

It follows at once that~i! V(v1 ,v2)52V(v2 ,v1); ~ii ! V is weakly non-degenerate~see Ref. 13!;
and ~iii ! V is not only closed but also exact.

As V is only a weak symplectic form, not every differentiable function onG will have an
associated Hamiltonian vector field. The class of functions that do can be characterized as follows.
If F:G→R, we say thatF has agradient if the following two conditions are satisfied:

~1! the Fréchet derivative, DFu(w,p,X,P) :T(w,p,X,P)G→R is a bounded linear map;
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~2! there exists gradF P T(w,p,X,P)* G such that ^gradF,v&5DFu(w,p,X,P)(v) for all v
PT(w,p,X,P)G.

The quantity gradF is calculated from DF as usual by integration by parts~if F contains
derivatives!. The ‘‘components’’ of this gradient will be denoted by the collection of functions
„gradwF,gradpF,(gradXF)m ,(gradPF)

n
….

For a differentiable function with a gradient, we can define the associated ‘‘Hamiltonian
vector field.’’ Specifically, ifF is such a function, thenjF P T(w,p,X,P)G is defined by the relation
^gradF,v&5V(v,jF),for all v P T(w,p,X,P)G. Hence, because of Eq.~6!, we see that
^gradF,v&5^J21jF ,v& for all v, and sojF5J(gradF). Finally, the Poisson bracket of a pair of
differentiable functionsF andG is defined as$F,G%:52V(jF ,jG), and we see immediately that

$F,G%5^gradF,jG&. ~7!

This Poisson bracket is antisymmetric and, sinceV is closed, it satisfies the Jacobi identity.
The constraints that must be imposed on the extended phase spaceG are

Hm5Pm1Hm
f , ~8!

Hm
f52H'

fnm1Hk
fXm

k , ~9!

whereH'
f5 1

2(detg)
1/2@(p2/detg)1gklw,kw, l1m2w2#, andHk

f5pw,k . One can show that the
constraint setG̃ defined byHm50 is a smooth submanifold in a neighborhood of any of its points.
Moreover, G̃5C̃(Gf3E), where C̃:Gf3E→G is defined by C̃(w,p,X):5„w,p,X,
2Hf(w,p,X)…. We shall often refer toG̃ asGf3E .

If we smearHm to getHN :5*Sd
3xNm(x)Hm(x), whereN P TXE @i.e.,N(x) P TX(x)M],

we obtain a differentiable function with a gradient. Such a function defines a Hamiltonian vector
field, and one can proceed in complete analogy with the theory of finite-dimensional systems. For
example, letf satisfy the Klein–Gordon equation~1! onM. Then for each curvel°Xl with the
tangent vector fieldN on E , the initial data (wl ,pl) for f on Xl(S) satisfy the evolution
equation

~ ẇ,ṗ,Ẋ,Ṗ!5J~gradHN!. ~10!

Thus the Hamiltonian vector fieldsJ(gradHN) of the functionsHN are tangential toG̃, and the
system is first class according to the definition given in Ref. 5. The pull-back of the vector field
~10! to Gf3E is given by

ẇ5gradpHN , ~11!

ṗ52gradwHN , ~12!

Ẋ5N. ~13!

Let us denote the space of longitudinal vectors at (w,p,X) P Gf3E by J (w,p,X) , i.e.,

J~w,p,X! :5$~F,P,V!PT~w,p,X!G̃uF5gradpHN ,P52gradwHN ,V5NPTXE%. ~14!

The spaceJ (w,p,X) is a closed subspace ofT(w,p,X)G̃. Moreover, there is a submanifold ofG̃
whose tangent space coincides withJ (w,p,X) at each point of the submanifold. Let us denote the
maximal submanifold of this kind passing through a point (w,p,X) P G̃ by g (w,p,X) . This subset
g (w,p,X) is called a ‘‘c-orbit through (w,p,X),’’ in complete analogy with the situation for a
finite-dimensional system.

Finally, the pull-backṼ of the formV to G̃ is given by the formula

3526 P. Hájı́c̆ek and C. J. Isham: Perennials and the group-theoretical quantization

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Ṽ„~F1 ,P1 ,V1!,~F2 ,P2 ,V2!…

5E
S
d3x@~P11gradwHV1

!~F22gradpHV2
!

2~P21gradwHV2
!~F12gradpHV1

!#. ~15!

Clearly, Ṽ is a presymplectic form andJ (w,p,X) is its singular subspace.

III. PERENNIALS, SYMMETRIES AND TIME EVOLUTION

In section II we showed that the geometrical structure of the phase space, constraint submani-
fold and thec-orbits of our infinite-dimensional system are all analogous to those of the corre-
sponding objects in a finite-dimensional system as studied, for example, in Ref. 5. The application
of the perennial formalism is now straightforward.

A crucial role in the perennial formalism is played by quantities that are reparametrization and
gauge invariant. In particular, aperennialis defined as a functiono:G→R that is constant along
the c-orbits; or, equivalently,

$o,HN%u G̃50, for allN. ~16!

In most physical applications of a field theory, one deals with a restricted class of functions on
the phase space—the so-called ‘‘local functionals.’’ Each local functional has the form
*Sd

3xF(x), where the value ofF(x) atx P S is a polynomial function of values of the fields and
their x-derivatives taken at the same point. It is easy to show that~i! all local functionals possess
gradients;~ii ! the Poisson bracket of two local functionals is again a local functional, so that
multiple Poisson brackets are well-defined; and~iii ! they satisfy the Jacobi identity. Since the
smeared constraintHN is itself a local functional it follows that the set of all local functionals that
are perennials forms a Poisson algebraP lf .

Let us now construct a particular class of local functional perennials for the case of scalar field
theory on a background space–time. The idea is to associate a perennialof with each maximal
solutionf of the classical field equations. Specifically, let (j,h,X,P) be an arbitrary point ofG
and let (w,p) be the Cauchy datum off at X. Thenof is defined by

of~j,h,X,P!:5E
S
d3x~wh2jp!. ~17!

The main task is to show thatof is constant alongc-orbits.
Let g (j,h,X) be ac-orbit and letc be the associated maximal classical solution, i.e., (j,h) is

the Cauchy datum ofc on X(S). Let (j8,h8,X8,P8) P g (j,h,X) be an arbitrary point on the
c-orbit. Then

of~j8,h8,X8,P8!5E
S
d3x~w8h82j8p8!, ~18!

where (w8,p8) and (j8,h8) are the Cauchy data off andc respectively atX8. Using Eqs.~2!
and ~3!, we can rewrite this as

of~j8,h8,X8,P8!5E
S
d3x~detg8!1/2n8m~fc ,m2cf ,m!X8~S! , ~19!
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whereg8 is the induced metric onX8(S), andn8m is the unit normal vector toX8(S). However,
the integral on the right hand side is just the familiar ‘‘Klein–Gordon inner product’’ (f,c)KG of
the two solutionsf and c, and this is well-known to be independent of the Cauchy surface
X8(S). Henceof is constant, as claimed.

The perennialof has the following properties.
~1! Suppose thatof is constant along the whole of the constraint setG̃. Thenf must have the

same Klein–Gordon product with any other solution, which is only possible iff50.
~2! Let f andc be two maximal solutions with corresponding perennialsof andoc . Then

the definition~17! implies immediately that

of1oc5of1c , ~20!

rof5orf for all rPR, ~21!

where the linearity of the field equation~1! guarantees that the solutionsf1c andrf are again
maximal.

~3! The Poisson bracket ofof andoc can be obtained from Eq.~7!. To calculate it we need
the gradients, and using Eqs.~11! and ~12! we obtain

^gradofu~j,h,X,P! ,~F,P,V,W!&

5E
S
d3x@wP2pF1jgradwHVu~w,p,X,P!1hgradpHVu~w,p,X,P!#. ~22!

Thus,

gradwofu~j,h,X,P!52p,

gradpofu~j,h,X,P!5w,

gradPofu~j,h,X,P!50,

where (w,p) is the Cauchy datum off at X. It follows that

J~gradof!5~w,p,0,A!, ~23!

whereAm are functions ofj, h, X, P andf. Then

$of ,oc%~j,h,X,P!5E
S
d3x~detg!1/2nm~fc ,m2cf ,m!X~S!5~f,c!KG , ~24!

whereg andnm are the induced metric and unit normal vector atX(S). Thus the Poisson bracket
is independent of (j,h,X,P) and is hence a constant real function on the phase spaceG.

~4! Let f andc be two different maximal solutions representing two different orbitsgf and
gc . Then there is a third solution,x, such that (x,f2c)KG Þ 0, and henceox has different values
at gf andgc .

Let S f denote the set of perennials of the formof wheref runs over the set of allC`

solutions to the field equations. Then, because of the second property above,S f is a linear space.
Let R>R denote the set of the constant real functions onG, and consider the linear space
S can:5S f % R. This spaceS can is closed with respect to Poisson bracket operations because of
the third property above. Moreover,S can,P lf . ThusS can is a Lie subalgebra ofP lf . According
to the fourth property above, it separates thec-orbits in G̃. It follows thatS can can play the role
of an ‘‘algebra of elementary perennials’’ for our system—the basic ingredient in the ‘‘algebraic
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method of quantization’’ in which the quantum theory is associated with a self-adjoint represen-
tation ofS can on a Hilbert space~see Ref. 5!. The relations~20!, ~21! and~24! imply thatS can is
an infinite-dimensional Heisenberg algebra. Specifically, as a linear space it is a direct sum of
R and the spaceS f that is equipped with the~weakly! non-degenerate skew-symmetric form
(•,•)KG ; the Lie bracket is then defined by

@~f1 ,r 1!,~f2 ,r 2!#:5„0,~f1 ,f2!KG…. ~25!

The corresponding Lie group is the so-called ‘‘Heisenberg group’’G candefined onS f3R by the
group law

~f1 ,r 1!•~f2 ,r 2!:5S f11f2 ,r 11r 21
1

2
~f1 ,f2!KGD. ~26!

The action ofG can on G can be deduced from the action of its generatorsof given by Eq.
~17!: namely, the point (j,h,X,P) maps to (j1w,h1p,X,P8), where (w,p) is the initial datum
of f at X(S) and P8 is a function ofj,h,X,P, andf such that (j1w,h1p,X,P8) P G̃ if
(j,h,X,P) P G̃. The action is not faithful since the subgroup (0,R) acts trivially, and hence the
groupG can is a central extension of a group of symmetries onG ~see Ref. 6!. ThusG can satisfies
all the conditions for a so-called ‘‘first-class canonical group’’ whose irreducible, unitary repre-
sentations can be associated with a quantization of the system.6

There is an alternative choice for the algebra of elementary perennials in which the perennials
are associated with ‘‘smeared fields;’’ as such, they form the basis for a different~but ultimately
equivalent! quantization of the scalar field. The construction goes as follows. LetD(M) be the
space ofC` test functions with compact support on the space–timeM, let f P D(M) and
(w,p,X,P) P G. Then there is a unique maximal classical solutionf with the Cauchy datum
(w,p) at X(S), and we define the perennialk f :G→R by the equation

k f~w,p,X,P!:5E
M

d4yudetgu1/2f f . ~27!

Note thatk f does not depend onP, and it is a perennial because the same classical solution leads
to the same value ofk f . Let us list some important properties of this type of perennial.

~1! Clearly,k f can be constant alongG̃ only if f50, and thenk f50.
~2! Let f and f 8 be two elements ofD(M) with corresponding perennialsk f andk f 8. Then

the definition~27! implies immediately that

k f1k f 85k f1 f 8,

rk f5k r f for all rPR.

~3! We can find an explicit expression fork f if we use the Cauchy propagatorG(x,y) for Eq.
~1! @G(x,y) is sometimes known as the ‘‘Pauli–Jordan function’’#. The existence and uniqueness
of such a propagator for space–times of the type with which we are dealing was shown by
Choquet-Bruhat.14 The basic properties of the Cauchy propagator~for example, see Ref. 15! are~i!
G(x,y)52Gr(x,y)1Ga(x,y), whereGr and Ga are respectively the retarded and advanced
propagators;~ii ! G(x,y) is real and skew-symmetric inx and y; and ~iii ! G(x,y) satisfies the
identity

f~x!5„G~x,• !,f~• !…KG , ~28!

wheref(x) is anyC` solution to Eq.~1!. From Eq.~28!, it follows immediately that
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„G~x,• !,G~•,y!…KG5G~x,y!. ~29!

If the Klein–Gordon product on the right hand side of Eq.~28! is written out alongS, we obtain
an expression for the solutionf at any pointy P M in terms of its Cauchy data atX(S).
Substituting forf(y) in Eq. ~27! from Eq. ~28! then gives the desired formula:

k f52E
S
d3x~detg!1/2nm

]G~ f ,y!

]ym uX~x!w~x!1E
S
d3xG„f ,X~x!…p~x!, ~30!

where

G~ f ,x!:5E
M

d4yudetgu1/2f ~y!G~y,x!. ~31!

Thus,k f belongs to the class of local functionals.
~4! We have the relation$k f ,k f 8%52G( f , f 8), whose derivation is simple: read off the

gradient ofk f from the formula~30!, insert it in Eq.~7!, and use the identity~29!.
The smeared perennials generate a Lie algebra, which we denote byS loc . Properties~2! and

~4! above imply thatS loc is a Heisenberg algebra onD(M)3R with the skew-symmetric form
2G( f , f 8). The corresponding Heisenberg groupG loc can be used as a first-class canonical group
for the system.

The next important step is to consider the role played by symmetries, where—in complete
analogy with the finite-dimensional case~see Ref. 5!—a symmetry is defined as a symplectic
diffeomorphism ofG that preserves the constraint surfaceG̃. In particular, it can be shown that
each symmetry mapsc-orbits ontoc-orbits.

We shall describe a particular class of symmetries that play an important role in the study of
quantum field theory on a curved space–time. Any isometryq:M→M defines a mapu:G→G as
follows. Let (w,p,X,P) P G be arbitrary and setX8:5q+X. Sinceq is an isometry, the embed-
ding X8 is spacelike, and hence a Cauchy surface forM. The fieldsw, p andP aree-tensor
densities atX P E , and so can be considered asM-tensors at points inX(S) @note thatw(x) and
p(x) are scalars, andP(x) is a covector#. Set (w8,p8,P8):5(q*21w,q*21p,q*21P), where
q* is the usual pull-back of differential forms onM. Finally, define
u(w,p,X,P):5(w8,p8,X8,P8).

A simple way of showing thatu is a symmetry is to use theq-shifted chart. Each pair of local
charts of the type (U,h),(V̄,h̄) in Eq. ~4! can be ‘‘shifted’’ byq to become the chart (U,h) on
S and the chart„q(V̄),h̄+q21

… onM. The functions that represent (w8,p8,X8,P8) in the shifted
charts coincide numerically with those that represent (w,p,X,P) in the original charts. Moreover,
the metricgmn8 in q(V̄) coincides withgmn in q(V̄). Thus, if (w,p,X,P) satisfies the constraints,
then (w8,p8,X8,P8) will also do so. Furthermore, any curvel°(wl ,pl ,Xl ,Pl) onG defines a
curvel°u(wl ,pl ,Xl ,Pl) that has the same form in the respective coordinate systems. Thus
the tangent vectors of these two curves must have the same components. It follows thatu is
differentiable and—moreover—symplectic since the values of the symplectic form at
(w,p,X,P) and at (w8,p8,X8,P8) must coincide numerically in the respective coordinate sys-
tems. Henceu is a symmetry.

Let us list some of the important properties ofu.
~1! The restrictionũ:Gf3E→Gf3E of u to G̃, is given by

ũ ~w,p,X!5~w,p,q+X!. ~32!

This follows immediately from the idea of a shifted chart and the fact thatw andp are scalar
fields. Thus we obtain the same Cauchy datum at the shifted Cauchy surface.
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~2! Let f be a global solution of the field equation, with a Cauchy datum in the Sobolev space
Gf . Thenf+q21 is again such a solution sinceq is an isometry. Iff has the Cauchy datum
(w,p) atX, thenf+q21 has the datum (w,p) atq+X. It follows that the maprXX8 defined earlier
satisfiesru+Xu+X8(w,p)5rXX8(w,p).

~3! The definition ofu implies immediately that it mapsc-orbits ontoc-orbits. In particular,
if gf is an orbit corresponding to a maximal solutionf, thenu(gf)5gf+q21.

~4! Let of be a perennial inS can. The u-shifted perennialsq(of) was defined in Ref. 5 as
sq(of):5of+u21. Then we have the relation

sq~of!5of+q21. ~33!

Indeed,of„u
21(j,h,X,P)…5of(j,h,X8,P8)5*Sd

3x(w8h2p8j) where (w8,p8) is the Cauchy
datum off at X85q21+X. However, (w8,p8) is also the Cauchy datum off+q21 at X. Thus,
of„u

21(j,h,X,P)…5of+q21(j,h,X,P), and this is equivalent to Eq.~33!. A straightforward cal-
culation gives theu-shift for S loc assq(k f)5k f +q21.

The relation in Eq.~33! implies thatsq is an automorphism of the algebraS cansince the map
f°f+q21 is a linear transformation of solutions that preserves the Klein–Gordon product, and
the constant functions onG are left invariant bysq . Similarly, sq is an automorphism of the
algebraS loc because the mapf→ f +q is linear and preserves the quadratic formG(•,•). In fact,
sq induces a transformation of perennials fromS can that is directly related to the Bogoliubov
transformations that arise in the study of quantum field theory on a curved background. Indeed, if
we choose a complex orthonormal basis$fm ,fm* % for the space of solutions~for example, see
Ref. 15!, then the coefficients$am ,am* % of the expansion of any solutionf in terms of this basis
have the form of our perennials: namelyam5(fm* ,f)KG . The transformationsq of perennials
thus defines new coefficientsam , and the expansion of these in terms of the old ones is what is
normally called a ‘‘Bogoliubov transformation.’’

Let us observe that the perennial formalism allows a more general type of symmetry that is
not necessarily associated with transformations of space–time. For example, the groupG can is a
group of such symmetries. This raises the interesting question of whether other symmetries that
are not associated with space–time transformations can be found, and—if so—if they can be
helpful in the study of quantum field theory on a curved background.

Finally, let us construct the time evolution of the system. In the finite-dimensional case, such
a construction is based on a transversal surfaceG0 and a one-dimensional symmetry group
$h(t)% that movesG0 ~see Ref. 5!. A transversal surfaceG0 is defined to be a smooth submanifold
of G̃ that ~i! intersects eachc-orbit g in at most one pointp5G0ùg; and~ii ! has the property that
each such intersection is transversal, i.e.,TpG0ùTpg5$0%, where 0 is the zero vector. A trans-
versal surface is said to be ‘‘global’’ if it intersects eachc-orbit. All these definitions can be
extended without change to the infinite-dimensional case.

Similarly, the projections of perennials and of symmetries can be defined as for finite-
dimensional systems. Thus, leti 0 :G0→G be the submanifold injection, and letp0 :G̃→G0 be the
projection that is defined byp0(p):5gpùG0 , wheregp is thec-orbit through the pointp P G̃. If
o is a perennial, then its projectiono0 :G0→R is defined by

o0 :5 i 0* o5o+ i 05ouG0. ~34!

If c:G→G is a symmetry, thena0(c):G0→G0 is defined by

a0~c!:5p0+cuG0. ~35!

One can easily show thati 0* is a Poisson algebra isomorphism, and thata0(c) is a symmetry of
G0 .

3531P. Hájı́c̆ek and C. J. Isham: Perennials and the group-theoretical quantization

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



We shall use a special type of transversal surface that is associated with embeddings as
follows. For any spacelike embeddingX:S→M, define the subsetGX,G̃ by

GX :5$~w,p,X!PG̃u~w,p!PGf%. ~36!

In the following steps we shall show thatGX is a transversal surface.
~1! The subsetGX can be considered as the image of the mapi X :Gf→G defined by

i X(w,p):5(w,p,X,P) whereP is given by Eq.~9!. Note that Di Xu(w,p) is given by

Di Xu~w,p!~F,P,V,W!5~F,P,0,W!PTC̃~w,p,X!G̃, ~37!

and hence the linear map Di Xu(w,p) is injective and splits as

TC̃~w,p,X!G̃5$~F,P,0,W!u~F,P!PT~w,p!Gf ,W52DHf~F,P,0!%

3$~0,0,V,W!uVPH0
s ,W52DHf~0,0,V!%. ~38!

Hence,GX is a smooth submanifold ofG.
~2! Any tangent vector toGX at (w,p,X) P Gf3E has the form (F,P,0), where (F,P)

P T(w,p)Gf.Gf . The tangent space tog (w,p,X) at (w,p,X) is the spaceJ (w,p,X) given by Eq.
~14!, and the only vector (F,P,V) in J (w,p,X) with V50 is the zero vector. Thus the condition
for transversality is satisfied.

~3! Any c-orbit gf intersectsGX , and the point of intersection is (w,p,X), where (w,p) is the
~unique! Cauchy datum off at X. ThusGX is a global transversal surface.

Note that the injectioni X givesGX the structure of a linear~Fréchet! space. Hence we can
identify T(w,p)GX with GX itself.

The pull-backVX of Ṽ by i Xu G̃ can easily be calculated from Eq.~15! as

VX„~F1 ,P1!,~F2 ,P2!…5E
S
d3x~F2P12F1P2!. ~39!

This is a constant, weakly nondegenerate form onT(w,p)Gf3T(w,p)Gf that can be identified with
the following one onGf3Gf :

VX„~w1 ,p1!,~w2 ,p2!…5E
S
d3x~p1w22w1p2!. ~40!

This form can be used to equipGf with the structure of a linear, weak-symplectic space.
Note that the perennial formalism allows for more general transversal surfaces that are not

necessarily associated with surfaces in space–time. An intriguing—and open—question is if an
explicit example of such a surface can be found and, if so, if it can be used to construct a quantum
field theory on a generic space–time with no timelike Killing vectors~see later!.

Let us suppose next that there is a one-dimensional group of isometriesq(t) in the space–
timeM such that, for allt, q(t)„X(S)… Þ X(S) andq(t) is generated by an everywhere timelike
Killing vector in M. The corresponding one-dimensional group$u(t)% of symmetries ofG,
together with the transversal surfaceGX , form a basis for the construction of an ‘‘auxiliary rest
frame’’ with ‘‘time levels’’ given by G t :5u(t)GX and ‘‘rest trajectories’’ given byu-orbits
$u(t)p%, p P G0 . Any c-orbit g defines a curve,t°hg(t):5G tùg, and the motion with respect
to the auxiliary rest frame can be defined in a complete analogy to the finite-dimensional case by
comparing the curvehg(t) with the rest trajectoriesu(t)p. ‘‘The same measurement at different
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times’’ can again be defined as the set of time-shifted perennialso→ot :5sq(t)o, and the con-
struction of the classical Schroedinger or Heisenberg pictures by means of the projection toG0 is
straightforward~for details see Ref. 5!.

However, note that the procedure described here differs in one respect from that described in
Ref. 5. Namely, the symmetry group$u(t)% we have chosen to generate the time evolution isnot
a subgroup of the first-class canonical groupG can or G loc . Thus, the construction of the quantum
mechanical time evolution as given in Ref. 5 has to be generalized. This will be done in the next
section.

IV. QUANTUM THEORY

In this section, the construction of the quantum theory described in Ref. 5 for finite-
dimensional systems will be extended to the scalar field on a fixed background. The construction
uses a representation of the first-class canonical groupG by unitary operatorsR(g), g P G , on a
Hilbert spaceK . The generators ofG—the elements of the Lie algebraS—are represented by
self-adjoint operators onK . Then the automorphismsq(t) of the algebraS defines an automor-
phism ŝq(t) of the corresponding operator algebra by the commutative diagram:

S
sq~ t !

→ S

↓R ↓R

R~S !
ŝq~ t !

→ R~S !. ~41!

We arrive at a unitary evolution if we can implement the automorphismŝq(t) by a unitary map
U(t):K→K ; that is, ŝq(t)(Ô)5U21(t)ÔU(t).

The classical constructions in the previous sections—in particular, the choice of the algebras
of elementary perennials—were performed in such a way that the rules of the algebraic or group-
theoretical approaches to quantization as described above lead directly to well-known approaches
to the quantization of a scalar field on a fixed space–time background. In particular,S can leads to
the Segal theory~for example, see Refs. 16 and 17!.

Let us concentrate onS can. As was explained in the previous section,S can is an infinite-
dimensional version of the Heisenberg algebra, and it determines an abstract infinite-dimensional
Heisenberg groupG can ~in fact, a ‘‘nuclear group,’’ see Ref. 18! that is a central extension of the
corresponding symmetry group of the phase spaceG and which acts transitively on thec-orbits.
The groupG can, together with a unitary representation~which must satisfy certain additional
conditions in order to guarantee the existence of ‘‘quantum observables;’’ see Ref. 16! is called a
‘‘Weyl system’’ in the literature. If we apply the theory of Weyl systems to the present case, we
can draw the following conclusions:

~1! The group-theoretical approach to the quantization of an infinite-dimensional system dif-
fers significantly from the finite-dimensional case in the following respects. As a rule, a finite-
dimensional Lie group has only relatively few representations—indeed, the Heisenberg group of
n dimensions has just one~up to unitary equivalence! for anyn. Many finite-dimensional canoni-
cal groups arise naturally as semi-direct products in which the ‘‘non-Abelian’’ factor is suffi-
ciently large that there are only a few inequivalent orbits in the dual of the abelian factor~see Ref.
6!. However, an infinite-dimensional Heisenberg group has a huge number of non-equivalent
representations. Many of these have no obvious physical application, while others have a meaning
in relation to external parameters. For example, in quantum field theory at a finite temperature
each value of the temperature is associated with a particular representation~and non-zero tem-
perature representations are not even irreducible!.
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~2! The most difficult part of the construction of a linear quantum field theory is therefore the
choice of a ‘‘physical’’ representation. In the Segal theory, the key object on which such a choice
is based is the time evolution automorphismsq(t) of the Heisenberg algebraS can. For example, a
cyclic state~generating the representation by a Gel’fand–Neumark–Segal construction! might be
selected using the Kubo–Martin–Schwinger condition withŝq(t) . Another approach based on
sq(t) is described in Ref. 17.

Thus a new problem arises here, analogous perhaps to the ‘‘Hilbert space problem’’ of Ku-
chař’s classification3 of different aspects of the problem of time in canonical quantum gravity. In
fact, quantum field theory in a curved background has a time problem of its own: most interesting
background space–times do not possess a one-dimensional group of timelike isometriesq(t) ~i.e.,
there is no time-like Killing vector!, so thatsq(t) is not available. However, several methods have
been developed for~at least, partly! bypassing this problem and thereby enabling a number of
interesting questions to be addressed. These methods are not as mathematically rigorous as those
based on a timelike Killing vector but, nevertheless, they may give some hints about the problem
of time in the full theory of canonical quantum gravity. We shall consider two different strategies
that we shall call the ‘‘scattering approach’’ and the ‘‘algebraic approach’’ to quantization. Let us
describe how they can be applied in the context of the perennial formalism.

A. Scattering approach

The scattering approach to quantization is based on an isolated symmetry whose domain is a
small subset of the phase spaceG. Let us consider first an~idealized! example in which (M,g) is
a space–time that satisfies the conditions of section II and which contains open subsetsU8 and
U9 with the following properties:

~1! Both U8 andU9 are locally stationary: i.e., there are local flowsq8(t,X) andq9(t,X)
generated by timelike Killing generators that are defined everywhere onU8 andU9 respectively.

~2! Both U8 andU9 contain Cauchy hypersurfaces: i.e., there are spacelike embeddingsX8
andX9 such thatX8(S),U8 andX9(S),U9.

~3! There is an isometryq:U8→U9 such thatX95q+X8.
Finally, let S can denote the algebra of elementary perennials as discussed in section III.

The local flowsq8 and q9 may not induce global symmetries ofG, but they will define
perennialsh8 andh9 in some neighborhood ofGX8 andGX9 that correspond to the generators of
q8 andq9 respectively. These perennials can be used to construct representations (R8,K 8) and
(R9,K 9) of S can such that2h8 and2h9 are represented by positive, self-adjoint operatorsĤ8
and Ĥ9 ~see, e.g. Ref. 19!. Following the procedure described in Ref. 9, one could now try to
implement the maprX8X9:GX8→GX9, which is a symplectic diffeomorphism~see section II!, by a
unitary mapU(r):K 8→K 9. This would leave us with only one Hilbert space~a ‘‘pasting’’ of
K 8 andK 9).

However, the literature on the quantum theory of a scalar field has proceeded in a different
direction than can be related to the Heisenberg picture in the perennial formalism, as described in
Ref. 5. The first observation is that the discrete isometryq induces a symmetryu that is defined
in some neighborhood ofGX8 in G; in turn, u determines a well-defined automorphism
sq : S can→S can of the space of perennials. Indeed, for this it is sufficient thatu maps a globally
transversal surfaceGX8 onto another suchGX9. The u-shifted perennials are then completely
determined by their values onGX9, and these are given by theu-maps of the restrictions of the
original perennials toGX8. Note thatu is not a symmetry in the sense of Ref. 5~it is not globally
defined!; we shall refer to such a map as a ‘‘time shift.’’

The next step is to define the mapŝq8 :R8(S can)→R8(S can) by the obvious analogue of the
commutative diagram~41!, and then to see whether or not it can be implemented by a unitary map
U(q):K 8→K 8. If the Cauchy hypersurface is compact, this is always possible.20 Thus one can
again work with just a single Hilbert space. The interpretation of the various mathematical objects
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is then thatR8(S can) contains the Heisenberg observables at the ‘‘time’’GX8; R8„sq(S can)…
contains those at the ‘‘time’’GX9; the elements ofK 8 are the Heisenberg states; andU(q) is the
unitary scattering matrix.

If U(q) doesnot exist, a Heisenberg-picture dynamics can still be used to calculate the
expectation values of time-shifted operators that are well-defined in certain states. For example, in
this way one can calculate the number of particles within a given finite energy range and a finite
volume that are created from the vacuum ofK 8 in the region betweenX8(S) andX9(S), even
though thetotal number of created particles diverges.

Note that the scattering approach will work even if there is only the ‘‘rudiments’’ of a
symmetry, but it will give only information on what comes ‘‘out’’ if we let something go ‘‘in’’;
what happens ‘‘inside’’ remains quite undetermined.

B. The Hawking effect

An example of the scattering approach is the calculation of the Hawking effect.19 In this
section, we shall reformulate this calculation in terms of the perennial formalism. Our motivation
is not to present a new and conceptually better derivation of the effect but rather to use this model
of the scalar field on a black-hole background to suggest a possible meaning of a time shift that
does not preserve the domains of transversal surfaces.

In a general system, a transversal surfaceGX will not be global~i.e., it will not cut all the
c-orbits transversally!, and the time shift that is available will not preserve the domains of these
surfaces@the domainD(G1) of a transversal surfaceG1 is the subset ofG̃ such that thec-orbit
through any point ofD(G1) intersectsG1 ; see Ref. 5#.

For example, the toy models studied in Refs. 9 and 10 do not possess global transversal
surfaces, but there are some that are almost global in the sense that the closure of the domain
contains the whole constraint surfaceG̃. The results of Ref. 9 suggest that there is no difference
between global and almost global surfaces as far as the quantum theory is considered. In Ref. 10,
two almost global surfacesG1 and G2 were chosen, each with two components,G1

6 and G2
6

respectively, giving a total of four, closed transversal surfaces. There is a discrete symmetryu that
mapsG1

1 ontoG2
1 , butD(G1

1) Þ D(G2
1). The Hilbert spacesK 1 andK 2 corresponding to the

transversal surfacesG1
1 andG2

1 were constructed, and a unitary mapU(q):K 1→K 2 of these
Hilbert spaces was found that corresponds to the classical mapu. However, the pasting map
r:G1

1→G2
1 is defined~by thec-orbits; see Ref. 9! only between some proper subsets ofG1

1 and
G2

1 ; the corresponding mapU(r) is defined only on a proper subspaceK 12,K 1 , and
K 215U(r)K 12 is a proper subset ofK 2 . Although the mapU(r):K 12→K 21 itself is unitary,
the corresponding time evolution operatorU(r)+U21(q):K 1→K 1 is defined only on the sub-
spaceK 12 and so it is not a unitary operator onK 1 . This leads to a time evolution that can
change the norms of states, the only physical interpretation of which is that the system can be
‘‘lost’’ or ‘‘found’’ during the time evolution—this can in fact happen already in the classical
theory of this~bizarre! system.

A similar situation can arise in the context of quantum field theory on a curved background.
Suppose first that there is a Cauchy surfaceS that consists of two componentsS1 andS2 , so that
S5S1øS2 . Then bothS1 andS2 are closed surfaces inM, and the spaceGf of Cauchy data
on S splits into the direct sum ofGf1 andGf2 , where

Gf i5$~w,p!PGfusupp~w,p!,S i%, ~42!

i51,2. BothGf1 andGf2 are Fréchet spaces, andGf5Gf1^ Gf2 . For a given spacelike embed-
ding X:S1øS2→M, a pair of transversal surfacesGXi , i51,2, can be defined by

GXi :5$~w,p,X!PG̃usupp~w,p!,S i%. ~43!
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The proof thatGXi is transversal is analogous to that forGX in section III, with the relation Eq.
~38! being replaced by

TC̃~w,p,X!G̃5$~F,P,0,W!u~F,P!PGf1 ,W52DHf~F,P,0!%

3$~F,P,0,W!u~F,P!PGf2 ,W52DHf~F,P,0!%

3$~0,0,V,W!uVPTXE ,W52DHf~0,0,V!%. ~44!

Of course, the surfaceGX1 is not even almost globally-transversal: we have the relation
GX5GX13GX2 , and onlyGX is a global transversal surface.

The Poisson algebraP of perennials contains idealsP 1 andP 2 of perennials associated with
the transversal surfacesGX1 andGX2 , where

P i :5$oPP usuppo,D~GXi!%. ~45!

These idealsP 1 and P 2 generateP . Similarly, the Lie algebra of elementary perennialsS
contains two idealsS 1 andS 2 defined by analogous equations, andS 5S 1 % S 2 is a Lie algebra
decomposition. Indeed, each functiono P S has a restrictionoX to GX , and there are unique
oX1 P S 1 andoX2 P S 2 such thatoX5oX11oX2 . Observe thatoXi vanishes atGXi , so that we
have$oX1 ,oX2%50 as desired.

Suppose that the physical representations of the algebrasS , S 1 andS 2 on Hilbert spaces
K , K 1 andK 2 respectively have the propertyK5K 1^ sK 2 , where^ s denotes the symme-
trized tensor product. Letua& be an arbitrary element ofK . Then it is well-known that there is a
density operatorâ1 in K 1 such that

^auô1ua&5tr~ â1ô1!, for all ô1PL~K 1! ~46!

~for example, see Ref. 19!. Suppose finally that there is an isometryq:X8(S)→X(S1), where
X8(S) is a Cauchy hypersurface andX(S1) is defined as above. The corresponding time shift
u:GX8→GX1 maps a global transversal surface onto a non-global one. Let us definesq by

sqouGX15o+u21,

sqouGX250 for all oPS .

We see immediately thatsq(S )5S 1 .
Now we can apply the Heisenberg picture method as described in subsection IV A. The

elements ofK are considered as Heisenberg states, and the algebraR(S ) contains the Heisenberg
observables at the ‘‘time’’GX8 andR(S 1) contains those at the ‘‘time’’GX1 . The result is that the
time-evolution operatorŝq maps the algebraR(S ) onto its own proper subalgebraR(S 1) so that
the representationR of S 1 is not irreducible, and a Heisenberg stateua& that is pure with respect
to the algebraR(S ) is a mixed stateâ1 with respect to the time shifted algebraR(S 1).

An example in whichq maps a global transversal surface onto a non-global one is the
Hawking radiation produced by the spherically-symmetric, asymptotically flat space–time associ-
ated with a collapsing star~see Ref. 19! ~actually, it is a limiting case of the procedure above;
moreover, the assumption must be made that the theory in Ref. 11 can be generalized to an
asymptotically-flat spacetime!. In this example, the scalar field is chosen to have a vanishing
mass-parameterm, and hence the dynamics is determined completely by the conformal structure
of the space–time (M,g). The past and future null infinitiesI 1 andI 2 are null hypersurfaces
in the conformal completion,M̄, ofM. The hypersurfacesI 2 andI 1øH are Cauchy hyper-
surfaces for a zero rest mass field, whereH is the event horizon inM ~see Ref. 21!. They can be
considered as limits of time-like Cauchy hypersurfaces. BothH andI 1 are closed hypersurfaces
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in M̄. Note thatS andX6 can be chosen such thatX2(S)5I 2 andX1(S)5I 1. The maps
q, q1 and q2 which were ~effectively! used in Ref. 19 can be described by means of the
Eddington-Finkelstein coordinates (u,r ,a,b) and (v,r ,a,b) in some neighborhoods ofI 2 and
I 1 as follows: q2 is defined by (v,`,a,b)→(v1t,`,a,b), q1 by
(u,`,a,b)→(u1t,`,a,b), and q by u(v,a,b)5v, r5`, dr→2dr, a(v,a,b)5a, and
b(v,a,b)5b ~in-coming modes are mapped into out-going ones!. This time shiftq is not
uniquely determined becauseu and v are defined up to an additive constant, but most of the
physically interesting results do not depend on the choice made. In this situation, the consider-
ations above are applicable, and the result is again a non-unitary evolution that sends pure states
into mixed states. This time, the normalization of states is preserved: some information is lost, but
the system itself is not.

C. Algebraic approach

Hilbert spaces play a less direct role in this approach in which the basic objects are elements
of some algebra of local observables on which states are defined as linear functionals. One can
reformulate the algebraic approach in terms of the perennial formalism using the algebra of the
smeared fields,S loc . We shall not go into detail here, but just sketch the main ideas.

The local observables are polynomials in the smeared field operators

k̂ f , k̂ f k̂h , . . . , ~47!

as well as the regularized stress-energy tensor componentsT̂mn(p) at arbitrary pointsp of the
space–timeM. The stress-energy tensor has an immediate physical interpretation whereas the
smeared field operators play only an auxiliary role.

The states are defined as certain linear functionals on the above algebra, with the value of such
a states on an operatorô having the physical meaning of the expected value. Attention is
restricted to so-called ‘‘quasifree Hadamard states,’’ whose value on any polynomial of the
smeared fields is determined by its value on the following second-order polynomial

Gs~ f ,h!5s~k̂ f k̂h1k̂hk̂ f !. ~48!

The bilinear formGs( f ,h) has a kernelGs(y1 ,y2), so that

Gs~ f ,h!5E
M

d4y1 d
4y2Gs~y1 ,y2! f ~y1!h~y2!, ~49!

which satisfies the field equation in each argumenty1 andy2 . This leads to the crucial observation
that the state can be ‘‘calculated’’ by solving the wave equation. For a Hadamard state, the
short-distance behavior ofGs(y1 ,y2) asy1→y2 is such that the expected value in the states of
the stress-energy tensor is well-defined and can be calculated fromGs(y1 ,y2).

The quasifree Hadamard states do not form a Hilbert space: neither a scalar product—nor a
linear combination—of a pair of them is well-defined. However, to obtain a physical interpretation
of such a state it is only necessary to calculate the expected value of the stress-energy tensor, and
this is feasible. For more details see Ref. 22.

V. CONCLUSIONS

We have found an intriguing result: canonical quantization of a system can lead to a non-
unitary time evolution. The result has been derived by a careful analysis of global properties of the
physical phase space: an aspect that has been rather neglected heretofore. However, more work is
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necessary to understand the relations between the global properties and the time evolution in some
generality. Also, the physical interpretation of the time evolution in parametrized systems needs to
be developed further.

In the course of our calculations we have seen that the central commandment of the perennial
formalism—to work only with perennials—is in reality not too restrictive since almost everything
can be viewed as a perennial. In particular, the usual particle variables of the quantum field
theory—for example, creation and annihilation operators—can be considered as perennials
(S can), as can the more local, smeared fields inS loc .

However, these and other insights gained in our article have only a relative value in so far as
their derivation exploited two special features of our model—the linearity of the field equations,
and the existence of a background space–time. A question left for future research is if these
structures can be replaced with something that will work in more complicated cases.
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8K. V. Kuchař, ‘‘Canonical quantum gravity,’’ inGeneral Relativity and Gravitation 1992, edited by R. J. Gleiser, C. N.
Kozameh, and O. M. Moreschi~IOP, Bristol, 1993!, pp. 119–150.
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11P. Hájı́ček and C. J. Isham, ‘‘The symplectic geometry of a parametrized scalar field on a curved background,’’ Imperial
College Report No. IMPERIAL/TP/94-95/1, gr-qc/9510028~1995!.
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Separation of the massless field equations for arbitrary
spin in the Robertson–Walker space–time
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The massless spin 2 free-field equation is studied in the Robertson–Walker space–
time via the Newman–Penrose formalism and separated by using a
Chandrasekhar–Teukolski method. The resulting temporal and angular equations
are explicitly integrated. The radial equations are solved in the flat universe case.
The closed universe case shows, in principle, the existence of a discrete spectrum
of the energy of the massless particles. In the general case of spin greater than 2 the
massless field equations are shown to be separable by induction. The separated
equations admit the same recurrence structure and analog interpretation properties
of the spin 2 and less than 2 cases. ©1996 American Institute of Physics.
@S0022-2488~96!00307-6#

I. INTRODUCTION

After the pioneer paper by Newman and Penrose1 the spinor formalism represents the natural
tool to formulate in general relativity the~massless and massive! field equations. In this context
the massless free-field equation for a field of spins5 1

2(n11) can be written2

“AA8fA1A2•••An
A 50, fAA1A2 ...An

5f~AA1A2 ...An! . ~1!

The equations~1! are consistent in a curved space–time forn50 ~Weyl’s equation! and n51
~homogeneous Maxwell equations!.2 For n.1, they are consistent only if the space–time is con-
formally flat2–5 ~Inconsistencies arise already in Minkowski space–time fors.1 in the case of
electromagnetic interaction6!. To overcome these difficulties in arbitrary curved space–time, al-
ternative formulations have been proposed in terms of symmetrized field equations stronger than
Eq. ~1!.7–9

In the case of conformally flat space–time the equation~1! can be solved in a general way for
arbitrary spin.2

In this paper we propose an alternative general solution in the case of the~conformally flat!
Robertson–Walker geometry.2 The solution is obtained by separating Eq.~1! for arbitrary spin.
The proof of the result is done by induction overn in the context of the Newman–Penrose
formalism.

We first completely solve the cases52 by a separation method already applied to thes5 1
2 and

s51 cases10,11and that is similar to the Chandrasekhar–Teukolski method employed to solve the
Dirac equation in the Kerr metric.12 The time and angular equations relative to this case are
integrated in the flat, closed, and open universe. The radial equations, which are explicitly inte-
grated in case of flat space–time, imply a restriction on the minimum possible eigenvalue of the
angular equations. In the case of a closed universe, the structures of the radial equations suggest
that the energy of the massless particles takes purely discrete values, a compatibility problem,
however, being open.

The induction is then completed by taking into account the recursive separated structure of the
angular and radial equations of the cases52. A central role in the proof is played by the special
structure that the spin coefficients take in the null tetrad frame that has been employed to perform
the calculations.

0022-2488/96/37(7)/3539/9/$10.00
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II. THE MASSLESS SPIN 2 EQUATIONS

We now develop the field equation~1! by the Newman–Penrose formalism in the case of a
spin 2 field. Since the field is represented by a symmetric spinor, its independent components can
be characterized by setting

fh[fAA1A2A3
⇔A1A11A21A35h, h50,1,2,3,4. ~2!

With this simplified notation we now develop the content of Eq.~1! by applying the Newman–
Penrose formalism.1 By using the expressions of the covariant spinorial derivatives in terms of the
generalized Dirac matrices,“AX8 5 sAX8

a
“a , by expressing the covariant derivatives by means of

the tabulated spin coefficients2,12 and with the usual identificationD[]008, d[]018, d![]108,
D[]118 relative to the directional derivatives, we get from Eq.~1!

~D22e24r!f12~d*1p24a!f013kf250, ~3.1!

~D23r!f22~d*12p22a!f112kf31lf050, ~3.2!

~D22e22r!f32~d*13p!f21kf412lf150, ~3.3!

~D14e2r!f42~d*14p12a!f313lf250, ~3.4!

~D1m24g!f02~d24t22b!f123sf250, ~3.5!

~D12m22g!f12~d23t!f222sf32nf050, ~3.6!

~D13m!f22~d12b22t!f322nf12sf450, ~3.7!

~D14m12g!f32~d14b2t!f413nf250, ~3.8!

that are the massless spin 2 equations. It is a standard result that these equations are formally
identical with the Bianchi identities in vacuum.13 We have written down eight equations because
for any one of the equations~3.2!, ~3.3!, ~3.6!, and~3.7! we obtain also, by the above procedure,
two replicas of them.

III. SPIN 2 IN THE ROBERTSON–WALKER GEOMETRY

The object is now to separate Eqs.~3! in the Robertson–Walker space–time whose metric is
given by

ds25dt22R2~ t !F dr2

12ar2
1r 2~du21sin2 u dw2!G , a50,61. ~4!

In connection with the Newman–Penrose formalism we choose the null tetrad frame
$ l i ,ni ,mi ,m! i%, whose associated directional derivatives are given by

D[ l i] i5~] t1R21A12ar2] r !/&,

D[ni] i5~] t2R21A12ar2] r !/&,
~5!

d[mi] i5~]u1 i cscu]f!/~&rR!,

d*[m* i] i5~]u2 i cscu]f!/~&rR!,
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to which there correspond the nonzero spin coefficients10

r52~rṘ1A12ar2!/~&rR!,

m5~rṘ2A12ar2!/~&rR!,
~6!

b52a5cot u/~2&rR!,

e52g5Ṙ/~2&R!.

Owing to the symmetry of the metric, thew dependence in Eqs.~3! can be separated, by the
substitutionfh→fh exp(imw), m50,61,62,63,... . By using the above results and by setting

fh~r ,u,w,t !5exp~ imw!fh~r ,t !Sh~u!, h50,1,2,3,4, m50,61,62,..., ~7!

in Eqs.~3!, thew dependence factors out and theu dependence can be separated to obtain

rR&

f0
~D22e24r!f15

1

S1
L2

2S05l0 , ~8.1!

rR&

f1
~D23r!f25

1

S2
L1

2S15l1 , ~8.2!

rR&

f2
~D12e22r!f35

1

S3
L0

2S25l2 , ~8.3!

rR&

f3
~D14e2r!f45

1

S4
L21

2 S35l3 , ~8.4!

rR&

f1
~D1m24g!f05

1

S0
L21

1 S15l4 , ~8.5!

rR&

f2
~D12m22g!f15

1

S1
L0

1S25l5 , ~8.6!

rR&

f3
~D13m!f25

1

S2
L1

1S35l6 , ~8.7!

rR&

f4
~D14m12g!f35

1

S3
L2

1S45l7 , ~8.8!

li , i50,1,...,7, being the corresponding separation constants and where use has been made of the
definition

Ln
65]u7m cscu1n cot u. ~9!

By further setting

fh~r ,t !5ch~r !T~ t !, h50,1,2,3,4, ~10!

also ther ,t dependence can be separated in Eqs.~8! to obtain
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ik5A12ar2
c18

c1
1
4

r
A12ar22

l0

r

c0

c1
, ~11.1!

ik5A12ar2
c28

c2
1
3

r
A12ar22

l1

r

c1

c2
, ~11.2!

ik5A12ar2
c38

c3
1
2

r
A12ar22

l2

r

c2

c3
, ~11.3!

ik5A12ar2
c48

c4
1
1

r
A12ar22

l3

r

c3

c4
, ~11.4!

ik52A12ar2
c08

c0
2
1

r
A12ar22

l4

r

c1

c0
, ~11.5!

ik52A12ar2
c18

c1
2
2

r
A12ar22

l5

r

c2

c1
, ~11.6!

ik52A12ar2
c28

c2
2
3

r
A12ar22

l6

r

c3

c2
, ~11.7!

ik52A12ar2
c38

c3
2
4

r
A12ar22

l7

r

c4

c3
, ~11.8!

ik52R
Ṫ

T
23Ṙ, ~11.9!

whereik is the separation constant,k being assumed to be a real number as a consequence of the
physical interpretation that will be given later on.

The time dependence can be obtained by integrating Eq.~11.9! to obtain

T~ t !5T~0!
R3~0!

R3~ t !
expF2 ikE

0

t dt8

R~ t8!G . ~12!

The result clearly depends on the assumed cosmological background.

IV. THE ANGULAR EQUATIONS

From the first-order angular equations~8! one derives 14 second-order equations: 8 of them
are in only one of the functionsS0 ,S1 ,S2 ,S3 ,S4 , 2 of them are in the pairS0 ,S2 , 2 are in the pair
S1 ,S3 , and 2 are in the pairS2 ,S4 . However, by taking into account the identities

L2
2L21

1 5L0
1L1

212, ~13.1!

L1
2L0

15L1
1L0

2 , ~13.2!

L2
1L21

2 5L0
2L1

112, ~13.3!

and by assuming the separation constants satisfy the relations
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l0l45l1l512, ~14.1!

l1l55l2l6 , ~14.2!

l2l65l3l722, ~14.3!

one is left with only five independent equations

L21
1 L2

2S05l0l4S0 , ~15.1!

L2
2L21

1 S15l0l4S1 , ~15.2!

L1
2L0

1S25~l0l422!S2 , ~15.3!

L2
1L21

2 S35l0l4S3 , ~15.4!

L21
2 L2

1S45l0l4S4 . ~15.5!

The remaining equations are automatically satisfied by the solutions of Eqs.~15!. For what con-
cerns Eqs.~15! we are looking for solutions that are regular inu50 andu5p. Since Eqs.~15.4!
and~15.5! can be obtained, respectively, from Eqs.~15.2! and~15.1! by the substitutionm→2m,
we can reduce ourselves to the study of Eqs.~15.1!–~15.3!. By setting

l0l452l2 ~16!

and by taking into account Eq.~13.2!, one can check that the equations~15.3! and~15.2! coincide
directly with two of the angular equations of the spin 1 case, once the substitutionl212→l2 is
performed.11 Therefore, the solutions of Eq.~15.3! are

S1~u!5~12j2! umu/2Pl1
m~j!, j5cosu, ~17!

corresponding tol2125l 1( l 111) with l 15umu,umu11,umu12,... .
The solutions of Eq.~15.2!, expressed in terms of the Jacobi polynomials14 for m>1,m<21,

m50, respectively, are

S1~u!5~12cosu!~m21!/2~11cosu!~m11!/2Pl12m
~m11,m21!~cosu!, ~18.1!

S1~u!5~11cosu!~ umu21!/2~12cosu!~ umu11!/2Pl12umu
~ umu21,umu11!~cosu!, ~18.2!

S1~u!5sin uPl112
~1,1! ~cosu!, ~18.3!

corresponding tol2125l 1( l 111) in every case withl 15umu,umu11,umu12,..., for umu>1 and
l 151,2,3,..., form50.

The solutions of Eq.~15.1! require some elaboration. By using the definition~9! and then by
settingj5cosu it becomes

S091
2j

j221
S081

~l212!~12j2!2m22424mj

~12j2!2
S050. ~19!

If now m>2, by setting

S05~12j!~m12!/2~11j!~m22!/2f ~j!, j5cosu, ~20!
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in ~20! and thenj52x21 in the resulting equation, one finds forf the equation

x~12x! f 91@m2122x~m11!# f 82@m~m11!2~l212!# f50, ~21!

whose acceptable solutions, in terms of the Jacobi polynomials, are

S0~u!5~12j!~m12!/2~11j!~m22!/2Pl02m
~m22,m12!~j !, m>2,

~22.1!
l2125 l 0~ l 011!, l 05m,m11,m12,... .

The casem<22 can be obtained from the casem>2 by the substitutionj→2j, m→2m, so that

S0~u!5~11j!~ umu12!/2~12j!~ umu22!/2Pl02umu
~ umu12,umu22!~j !, m<22,

~22.2!
l2125 l 0~ l 011!, l 05umu,umu11,umu12,... .

By a similar procedure we have form51,21,0, respectively,

S0~u!5~12j!3/2~11j!1/2Pl022
~1,3! ~j !, ~22.3!

S0~u!5~11j!3/2~12j!1/2Pl022
~3,1! ~j !, ~22.4!

S0~u!5~12j!2Pl022
~2,2! ~j !, j5cosu, ~22.5!

all corresponding tol2125l 0( l 011) with l 052,3,4,... .
By comparing all the results of the angular equations one finds that the common eigenvalue

have the forml2125l ( l11) with l52,3,4,... .

V. THE RADIAL EQUATIONS

To simplify the study of the radial equations we introduce the operators

Ab5A12ar2
d

dr
1
b

r
A12ar22 ik, k,bPR. ~23!

They satisfy, among others, the identities

A2rA3
!5A2

!rA3 , ~24.1!

rA3rA2
!5rA1

!rA412. ~24.2!

Accordingly, the radial equations~11! can be compactly written

rA4c15l0c0 , rA1
!c052l4c1 , ~25.1!

rA3c25l1c1 , rA2
!c152l5c2 , ~25.2!

rA2c35l2c2 , rA3
!c252l6c3 , ~25.3!

rA1
!c45l3c3 , rA4

!c352l7c4 . ~25.4!
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Also here one obtains 14 second-order equations for the radial functionsch , h50,1,2,3,4, that can
be shown to be compatible by using the assumptions~14! and the identities~24!. By this procedure
one is left with the following five independent equations:

rA4rA1
!c05l2c0 , ~26.1!

rA1
!rA4c15l2c1 , ~26.2!

rA2rA3
!c25~l212!c2 , ~26.3!

rA1rA4
!c35l2c3 , ~26.4!

rA4
!rA1c45l2c4 . ~26.5!

The solutions of these equations must satisfy also the condition

ch~0!50, h50,1,2,3,4, ~27!

as a consequence of the very structure of the radial equations. The number of equations to solve
is reduced by remarking that ifc0 andc1 satisfy Eqs.~26.1! and ~26.2!, thenc0

! andc1
! satisfy

Eqs.~26.5! and ~26.4!, respectively.
By using the definitions~23!, Eqs.~26.1!, ~26.2!, ~26.3! become, respectively,

r ~12ar2!c091~627ar2!c081F r ~k225a!1
42l2

4
14ikA12ar2Gc050, ~28.1!

r ~12ar2!c191~627ar2!c181F r ~k228a!1
42l2

r
12ikA12ar2Gc150, ~28.2!

r ~12ar2!c291~627ar2!c281F r ~k229a!1
42l2

r Gc250, a50,61. ~28.3!

Near r50 the acceptable solutions of the Fuchs class equations~28! have the behavior

cd~r !5r ~A4l21925!/2f d~r ,k
2!, d50,1,2, ~29!

f d being a regular function inr50. Therefore, as a consequence of~27!, the eigenvalues of the
angular equations arel2125l ( l11) with now l>3.

We are able to solve Eqs.~28! only in the flat universe case. By inserting

cd~r !5r ~A4l21925!/2eikrZd~r !, d50,1,2, ~30!

in Eqs. ~28! with a50 and then by settingj522ikr , one finds forZd the confluent hypergeo-
metric equation14

jZd91~11A4l2192j!Zd82 1
2@A4l21915~12d!#Zd50, ~31!

whose solutionZd 5 f( 12A4l219 1 5
2(1 2 d);1 1 A4l219;r ), d50,1,2, corresponds to the

acceptablecd satisfying Eq.~27!.
Finally we remark that as a consequence of Eq.~11! ~li andk being independent constants!,

we have also the constraints to be imposed to the wave functions

ch~1!50, h50,1,2,3,4. ~32!
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Thereforef d(1,k
2)50 for d50,1,2, and hence there is the possible existence of a discrete spec-

trum of values ofk2 that is common to the three cases. It is an open problem whether this is indeed
possible and what are such values.

VI. GENERALIZATION TO ARBITRARY SPIN

We now show that the results of the previous sections relative tos52 can be extended to hold
for arbitrary spins.2. By generalizing the procedure of Sec. II the general equation~1! can be
developed to give

]AA8fA1A2•••An
A 1fA1A2•••An

X GAA8X
A

2fXA2•••An
A GAA8A1

X
2fA1•••XAn

A GAA8An21

X
2fA1•••An21X

A GAA8An
X

50.

~33!

Let now the indexesA1A2•••An21 be taken fixed, denote byfh the obvious generalization of
Eq. ~2!, and leth be so chosen thath5A11A21•••1An21.

SupposeAn50. Then the equation~33! contains in principlefh ,fh11,fh21 @corresponding
to the order~n21!# plus four terms originating from

2fA1•••An21X
A GAA80

X , ~34!

which are of the formfhG1A80
0,fh11G0A80

0,fh11G1A80
1,fh12G0A80

1.
However,G0A80

150 because it corresponds to the spin coefficients2 k ands that are zero in our
scheme@see Eq.~6!#. Therefore the term~34! introduces no new function with respect to the case
n21. Sincefh21 is not present in the casen53 @see Eqs.~3!, wherek5l5p5t5s5n50#, by
induction it is not present even in the equation~33! which therefore contains onlyfh ,fh11.
Moreover one can check that the surviving terms originating from~34! are such thatr,m,e,D,D are
associated to one of the functionsfh ,fh11 while a,b,d,d! to the other.

Suppose nowAn51. By the same argument of the caseAn50 the term~34! add terms
containing onlyfh11,fh12 to those relative to the order~n21! that are nowfh ,fh11,fh12. By
induction, the termfh is not present because it is not present in the casen53 @see again Eq.~3!#.
Also here the association of the spin coefficients with the directional derivatives is the same of the
caseAn50.

By induction, the equations~33! have therefore the recursive structure of Eqs.~3!, each
equation containing only two functions.

The equations~33! are therefore not only separable, but, by applying by induction the proce-
dure of the previous sections, they are such that the corresponding angular, radial, and time
equations can be written down as the natural generalization of Eqs.~8! and ~11!.

The recursive structure of the equations resulting from~33! holds also to the casess51
2 and

s51 that have been previously studied.10,11

VII. CONCLUDING REMARKS

In the previous sections the constantsl2 and k have been introduced by the separation
procedure.

The constantl2 is directly connected, fors52, to the eigenvalues of the angular equations
@see~18! and~22!#. After the generalization of Sec. VI, the same interpretation holds for the other
values of the spin.

In connection with the result~12! we interpretk2 as the energy of the~massless! particles,
even if the radial equations do not have the explicit form of a Schro¨dinger-like eigenvalue problem
as it directly happens fors51

2 ~Ref. 10! and for the Dirac equation in the Kerr geometry.12 The
given interpretation can be extended to the arbitrary spin case because the time equation that
generalizes Eq.~11.9! implies a solution with always the same exponential factor of Eq.~12!.
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According to this interpretation, the closed universe case implies discrete levels for the energy
of the particle. The determination of the energy levels is in general difficult, the difficulty increas-
ing with increasing spin because there are problems of mathematical compatibility already evident
for s52 as remarked in Sec. V. The simple case relative tos51

2 has been studied and gives energy
levels whose values are, however, very far from the present experimental sensitivity.10

Since also the~massive! Dirac equation shows the existence of discrete energy levels,15 such
a property seems to be a characteristic feature of the closed universe case of the standard cosmol-
ogy.
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A quantum analog of the Z algebra
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We define a natural quantum analog for theZ algebra, and which we refer to as the
Zq algebra, by modding out the Heisenberg algebra from the quantum affine alge-

bra Uq„sl(2)̂… with levelk. We discuss the representation theory of thisZq algebra.
In particular, we exhibit its reduction to a group algebra, and to a tensor product of
a group algebra with a quantum Clifford algebra whenk51, andk52, and thus we

recover the explicit constructions of Uq„sl(2)̂…-standard modules as achieved by
Frenkel–Jing and Bernard, respectively. Moreover, for arbitrary nonzero levelk,
we show that the explicit basis for the simplestZ-generalized Verma module as
constructed by Lepowsky and Primc is also a basis for its corresponding
Zq-module, i.e., it is invariant under theq-deformation for genericq. We expect

thisZq algebra@associated with Uq„sl(2)̂… at levelk# to play the role of a dynami-
cal symmetry in the off-criticalZk statistical models. ©1996 American Institute
of Physics.@S0022-2488~96!01506-X#

I. INTRODUCTION

One of the major recent developments in the field of integrable models has been the realiza-
tion by the Kyoto school1,2 of the important role played by non-Abelian and dynamical symme-
tries in the resolution of integrable systems. Prior to this and besides conformal field theory, the
main approach in the analysis of integrable models has been based on Abelian symmetries to-
gether with the Betheansatz. However, this approach, despite its success of being more systematic
in handling the spectra of most integrable systems, has its limitations as far as concrete compu-
tations of physical quantities are concerned such as form factors and correlation functions. The
reason is that the latter quantities are based on scalar products of the eigenvectors of the Hamil-
tonians or transfer matrices of the systems; however, the eigenspaces in the physically interesting
thermodynamic limit are infinite-dimensional, and hence it is not easy to define their structures,
and much less the scalar products on them. However, since some non-Abelian infinite-dimensional
algebras have well-defined scalar products on their infinite-dimensional modules, then if we suc-
ceed in establishing that the Hamiltonian or the transfer matrix of an integrable system commutes
with one of these algebras, we automatically know not only its eigenspaces, which are the modules
of this algebra, but also the scalar product on them. We might even describe the local operators
and the creation and annihilation operators of the eigenvectors in terms of some operators related
to this algebra, such as the intertwiners of its modules, and hence we might be able to compute
exactly the form factors and correlation functions. In fact, this is precisely the program that has
been behind the enormous success in the resolution of conformal field theories, and more recently
in the resolution of theXXZ quantum spin chain model~which is equivalent to the six-vertex
classical model! in the antiferromagnetic regime by the Kyoto school. We should, however,
mention Ref. 3 where another approach to the calculation of correlation functions is developed.

It is then an interesting program to build as many infinite-dimensional algebras as possible,
hoping that one of them turns out to be a non-Abelian or a dynamical symmetry of an integrable
model, and vice versa. The main point of this paper is precisely to define a new infinite-
dimensional algebra, which, as explained in the next paragraph, should be the dynamical symme-
try of the off-criticalZk models.

0022-2488/96/37(7)/3548/20/$10.00
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It is known that the sl(2)̂ affine Lie algebra is a dynamical symmetry in conformal field theory
~the continuum critical limit of theXXX model!4 and a non-Abelian symmetry of the antiferro-

magnetic~off-critical! XXX model.2 Moreover, its deformation, the Uq„sl(2)̂… algebra, is also a
non-Abelian symmetry of the antiferromagnetic~off critical! XXZmodel. It is also known that the
critical Zk models, such as the Ising model~k52! and the Potts model~k53!, have as a dynamical
symmetry the parafermionic algebra,5 which is ironically related to theZ algebra.6 The latter

algebra, in turn, is obtained from the quotient of the sl(2)̂ algebra with levelk by its Heisenberg
subalgebra.

From all the above known results, it is therefore natural to consider a similar construction for

a quantum analogue of theZ algebra, denoted byZq , from the Uq„sl(2)̂… algebra, and to expect
it to play the same role of a dynamical symmetry for the off-criticalZk models. In fact, such a
program is already and implicitly implemented in the simplest case of the off-critical Ising model
~k52!, where theZq algebra~to be precise, the corresponding quantum parafermionic algebra!
reduces simply to a quantum Clifford algebra.7

This paper is organized as follows: in Sec. II, we recall basic definitions about the

Uq„sl(2)̂… quantum affine algebra, using the formal variable approach. In Sec. III, we gradually

introduce theZq algebra by modding out the Heisenberg subalgebra from Uq„sl(2)̂… with level k.
We derive two defining relations, called ‘‘the quantum generalized commutation relations,’’ for

this algebra, as well as the relations between its elements and those of Uq„sl(2)̂…. In Sec. IV, we
discuss the reduction ofZq in the simpler casesk51 andk52 to a group algebraC@Q#, with Q
being the root lattice of the sl~2! Lie algebra,8 and to a tensor product ofC[Q] with a quantum
deformation of a Clifford algebra,9 respectively. In Sec. V, we provide one of the main new results
of this paper: an explicit construction of the basis of the simplestZq modules, and hence

Uq„sl(2)̂… modules, for arbitrary nonzero levelk. These are the so-called generalized Verma
modules.10,11We show that the spanning vectors of the basis of a generalized Verma module, as
constructed in the ‘‘classical’’Z algebra case in Refs. 11 and 12, do still form a basis for a
Zq-generalized Verma module. In Sec. VI, we give more quantum generalized commutation
relations satisfied by polynomials ofZq elements and discuss their potential applications. Finally,
Sec. VII is devoted to our conclusions.

II. THE Uq(sl(2)̂ ) QUANTUM AFFINE ALGEBRA

The Uq„sl(2)̂… affine algebra is a unital associative algebra with elements$e6a i
, ki

6, q6d;
i50,1% and defining relations in the homogeneous gradation13,14

@ki , kj #50, kiki
215ki

21ki51,

q2dqd5qdq2d51,

qdkiq
2d5ki , qde6a i

q2d5q6d i0e6a i
,

~1!
kie6a j

ki
215q6~a i ,a j !e6a j

,

@ea i
, e2a j

#5d i j
ki2ki

21

q2q21 ,

~e6a i
!3e6a j

2@3#~e6a i
!2e6a j

e6a i
1@3#e6a i

e6a j
~e6a i

!22e6a j
~e6a i

!350,
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where [x]5(qx2q2x)/(q2q21), q5et/2 is a complex number called a deformation parameter,

and $a i ,i50,1% is the set of positive simple roots of sl(2)̂ affine Lie algebra with the invariant
symmetric bilinear form (a i ,a j )5ai , j ~see Sec. IV!. Hereai ,i52 andai ,12 i522, i50,1 are the

elements of the sl(2)̂ affine Cartan matrix. Note that the special elementg5k0k1 is in the center

of Uq„sl(2)̂… and acts asqk on its highest weight representations, withk referred to as the level.

We also refer to the above elements generating Uq„sl(2)̂… as the Chevalley generators.
The Chevalley generators are associated with the simple roots only. One would like to de-

scribe the commutation relations of all the elements associated with the infinite-dimensional set of
roots $6a1nd;nPZ%ø$nd;nPZ\0%%, with a5a1 and d5a01a1, and where the Serre relation
@i.e., the last relation in~1!# becomes redundant. Drinfeld succeeded in finding such a set of
generators, which we refer to as the Drinfeld generators.15 This set is$xu

6, am , K
61, q6d, g61/2;

nPZ, mPZ*5Z\0%% with defining relations

g1/2g21/25g21/2g1/251, @g61/2, y#50, ;yPUq„sl~2!̂…, ~2!

KK215K21K51, ~3!

Kan
K215an , ~4!

Kxn
6K215q62xn

6 , ~5!

qdq2d5q2dqd51, Kq6dK215q6d, ~6!

qdxn
6q2d5qnxn

6 , ~7!

qdanq
2d5qnan , ~8!

@an , am#5
~q2n2q22n!~gn2g2n!

nt2
dn1m,0 , ~9!

@an , xm
6#56

g7unu/2~q2n2q22n!

nt
xn1m

6 , ~10!

@xn
1 , xm

2#5
g~n2m!/2Cn1m2g~m2n!/2Fn1m

q2q21 , ~11!

xn11
6 xm

62q62xm
6xn11

6 5q62xn
6xm11

6 2xm11
6 xn

6 , ~12!

whereCn andFn are given by the mode expansions of the fieldsC(z) andF(z), which are
themselves defined by

C~z!5 (
n>0

Cnz
2n5K expH t(

n.0
anz

2nJ ,
~13!

F~z!5 (
n<0

Fnz
2n5K21 expH 2t(

n,0
anz

2nJ .
Herez is a formal variable and

K5C05F0
21[qa0, ~14!
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where we mean identification by the symbol[.

The isomorphismr between Uq„sl(2)̂… with the Chevalley generators and Uq„sl(2)̂… with the
Drinfeld generators is given explicitly by

r:k0→gK21, r:k1→K,
~15!

r:e6a1
→x0

6 , r:ea0
→x1

2K21, r:e2a0
→Kx21

1 .

For later purposes we will use the formal variable approach16 ~instead of the usual operator
product expansion method! to reexpress the algebra as a quantum current algebra with elements
$C(z),F(z),x6(z),g61/2,q6d%, where8

x6~z!5 (
nPZ

xn
6z2n, ~16!

and with defining relations

g1/2g21/25g21/2g1/251, @g61/2, y#50, ;yPUq„sl~2!̂…, ~17!

@C~z!, C~w!#50, ~18!

@F~z!, F~w!#50, ~19!

C~z!F~w!5g~wz21g!g~wz21g21!21F~w!C~z!, ~20!

C~z!xe~w!5g~wz21g2e/2!2exe~w!C~z!, ~21!

F~z!xe~w!5g~zw21g2e/2!exe~w!F~z!, ~22!

@xe~z!, x2e~w!#5e
d~zw21g2e!C~wge/2!2d~zw21ge!F~zge/2!

q2q21 , ~23!

~z2wq2e!xe~z!xe~w!5~zq2e2w!xe~w!xe~z!, ~24!

qdxe~z!5xe~zq21!qd, ~25!

qdC~z!5C~zq21!qd, ~26!

qdF~z!5F~zq-1!qd. ~27!

Heree561 andg(z) is meant to be the following formal power series inz:

g~z!5 (
nPZ1

cnz
n, ~28!

where the coefficientscn , nPZ1 are determined from the Taylor expansion of the function

f ~j!5
q2j21

j2q2
5 (

nPZ1

cnz
n ~29!

at j50.8 In the above relations we have also introduced thed-functiond(z) which is defined as the
formal Laurent series
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d~z!5 (
nPZ

zn, ~30!

and which plays a key role in the formal calculus approach~see Ref. 16 for its properties!.
The three relations~25!, ~26! and~27! translate the fact thatxn

6, Cn , andFn are homogeneous
of the same degreen.

III. THE Zq ALGEBRA

It is well known that the Heisenberg subalgebra of sl(2)̂ plays a crucial role in the construc-
tion of vertex operators and highest weight representations. One would like to extend this role to
the quantum case. Note that in the sequel, the unit element andq6d are meant to be in all the
~sub!algebras defined below, so we will not consider them unless stated otherwise. Let Uq(ĥ) be
the quantum analog of the enveloping Heisenberg algebra, referred to asq-Heisenberg algebra. It

is a subalgebra of Uq„sl(2)̂… generated by$an , g61/2, nPZ* % with relations

@an , g61/2#50, g1/2g21/25g21/2g1/251, ~31!

@an , am#5dn1m,0

~q2n2q22n!~gn2g2n!

2nt2
. ~32!

Let Uq(ĥ
1) and Uq(ĥ

21) denote the commutative subalgebras of Uq(ĥ) generated by$an , g61/2;
n.0% and$an , n,0%, respectively. By the Poincare´–Birkhoff–Witt theorem for, Uq(ĥ), we have

Uq~ ĥ!5Uq~ ĥ
1!Uq~ ĥ

2!, ~33!

and, consequently, the following inducedĥ-module,

I ~qk!5Uq~ ĥ! ^Uq~ ĥ1!C@qk#, ~34!

is irreducible~for kÞ0 which is understood in the sequel! and isomorphic to Uq(ĥ
2) and hence to

the symmetric algebra S~ĥ2!.8 In this formula, C[qk] denotes the field of complex numbers
considered as the one-dimensional Uq(ĥ

1)-module and on whichg acts as multiplication byqk,
andan , n.0 acts trivially. This means that S~ĥ2! is a canonical Uq(ĥ)-module on whichg acts
as multiplication byqk,an ~n,0! acts as a creation~multiplication! operator, andan ~n.0! acts as
an ~derivation! annihilation operator satisfying the relation~32!. The latter actions are given by

g61:x→q6kx,

an :x→anx, n,0, an :x→@an , x#, n.0, ~35!

wherex is any element inS(ĥ2). Moreover, the action ofq6d on S(ĥ2) is defined by

q6d:x→q6dxq7d. ~36!

The action ofa0 and hence the action ofC0 5 qa0 ~andF0! onS(ĥ
2) will be defined later.

Now we would like to show that the highest weight modules of the whole quantum affine

algebra Uq„sl(2)̂… must be constructed as tensor products of the formS(ĥ2)^W. HereW are
certain vector spaces to be defined later and which are trivial as Uq(ĥ)-module.La raison d’être
of W stems from the fact thatS(ĥ2) is only a Uq(ĥ)-module and in general cannot be upgraded

to a Uq„sl(2)̂…-module, which is especially true here since we are considering Uq„sl(2)̂… in the
homogeneous gradation. Therefore, we have to ‘‘correct’’S(ĥ2) by tensoring it with additional
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new spaces which do not overlap with it, so that the resulting tensor product remains as a
Uq(ĥ)-module. Of course, this correction will be performed by considering a minimum number of
extra spaces.

It is well known in the case of affine algebras that these constructions can be achieved by
means of vertex operators. The most famous vertex construction of the quantum affine algebras is
the Frenkel–Jing one, which is, however, valid only for the simply laced algebras and with the
central elementg acting asq ~i.e.,k51! on their highest weight modules.8 In this case, which will

be recovered explicitly later for Uq„sl(2)̂… when we setk51 in our general construction, it turns
out thatW is identified with a group algebra associated with the weight lattice of the Lie algebra
corresponding to the quantum affine algebra in question. Ifk52, W is identified with a tensor
product of a group algebra and an exterior~Clifford! algebra. Such a construction has been
achieved in the case of Uq„so~2n11!… with level 1 by Bernard.9 For k.2 it was shown in Ref. 17
that one needs to introduce, besides the group algebra, a certain quantum parafermionic algebra
~though the representation theory was not discussed there!.

Although we are concerned with Uq„sl(2)̂… for k.1, the form of the vertex operators used by
Frenkel and Jing fork51 led us to introduce the following vertex operators:

Se
6~z!5expH 6et(

n.0

a6n

qnk2q2nk q
2enk/2z7nJ , e56, ~37!

which are viewed as formal Laurent series inz with coefficients acting onS(ĥ2). Using~32! and
the usual formal rule

eAeB5eBeAe@A,B# if †A, @A, B#‡5†B, @A, B#‡50, ~38!

for some operatorsA andB, we find

Se
1~z!Se8

2
~w!5

~qk222~e1e8!k/2wz21;q2k!`
ee8

~qk122~e1e8!k/2wz21;q2k!`
ee8

Se8
2

~w!Se
1~z!,

~39!
Se

6~z!Se8
6

~w!5Se8
6

~w!Se
6~z!,

where as usual (x;y)` means

~x;y!`5 )
n50

`

~12xyn!. ~40!

Each factor (12vz21qx)21 in ~39! is understood as the formal power seriesSn>0w
nz2nqxn.

Moreover, using~32! and the formal rule

@A, eB#5@A, B#eB, if †B, @A, B#‡50, ~41!

for some operatorsA andB, we obtain

@an , Se
1~z!#50, @a2n Se

1~z!#52
eq2enk/2z2n~q2n2q22n!

nt
Se

1~z!,

~42!

@a2n ,Se
2~z!#50, @an ,Se

2~z!#52
eq2enk/2zn~q2n2q22n!

nt
Se

2~z!,

3553A. H. Bougourzi and L. Vinet: A quantum analog of the Z algebra

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



wheren.0 and e56. For future purposes let us note here that one can easily show that the
commutation relations~21! and ~22! are equivalent to

@an ,x
e~z!#5

eq2eunuk/2zn~q2n2q22n!

nt
xe~z!, e56; nPZ\$0%. ~43!

Let us now define the main new objects of this paper, which we refer to as the ‘‘Zq operators
Zn

e ,’’ as the Laurent modes in

Ze~z!5 (
nPZ

Zn
ez2n, ~44!

where

Ze~z!5Se
2~z!xe~z!Se

1~z!. ~45!

These operatorsZn
e are the quantum analogs of the~classical,q51! Z operators that have been

extensively studied in the literature~see, for example, Ref. 12!. By abuse of terminology, we refer
also to the ‘‘currentsZe(z)’’ as Zq operators, but strictly speaking they are the generating
functions of the latter operators. Let us denote byZq the algebra generated by$C0,F0,Zn

e ;nPZ%.
The defining relations of this algebra, which we refer to as ‘‘the quantum generalized commuta-
tion relations,’’ will be given shortly below.

The spaceW on which this algebra acts nontrivially is the necessary space to be tensored with

S(ĥ2) such thatS(ĥ2)^W is a Uq„sl(2)̂…-module. ThereforeW will be defined if we know all the

properties of theZq operators, that is, their relations with Uq„sl(2)̂… itself and their algebra.
By definition, the relation betweenZq operators is given through their generating functions

by ~45!. Next, it can easily be checked that the relations~42! and ~43! imply that they commute
with the quantum Heisenberg algebra Uq(ĥ), i.e.,

@an , Z
e~z!#50, nPZ\$0%, @g61/2,Ze~z!#50, e56. ~46!

This is a very important result, which is, in fact, the main motivation behind the particular choice
for the forms ofSe8

e (z) as given by~37!. This is because the symmetric algebraS(ĥ2) realizes
already the quantum Heisenberg subalgebra Uq(ĥ) and since theZq operators commute with
Uq(ĥ), we can define then the actions of U(ĥ) andZq as follows onS(ĥ

2)^W:

x:u^v→xu^v, y:u^v→u^ yv, ~47!

wherexPUq(ĥ), yPZq , uPS(ĥ2), and vPW. From the Laurent expansion inzw21 of both
sides of~21! and ~22!, we obtain the relation

C0x
e~w!5q2exe~w!C0 , ~48!

which, because of~5!, amounts to

C0Z
e~w!5q2eZe~w!C0 . ~49!

Combining this relation with~46! and

C~z!5C0Se
1~zq23ek/2!S2e

1 ~zq3ek/2!,
~50!

F~z!5F0Se
2~zq3ek/2!S2e

2 ~zq23ek/2!, e56,
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we arrive finally at

CnZ
e~w!5q2eZe~w!Cn , n>0,

~51!
FnZ

e~w!5q22eZe~w!Fn , n<0.

In the sequel, however, we will only consider the relations~46! and ~49! but not ~51! since the
latter is an immediate consequence of the former and~50!.

Clearly, the action of the generating functionsxe(z) on S(ĥ2)^W^C[z, z21] decomposes
then as

xe~z!5S2e
2 ~zq2ek!S2e

1 ~zqek! ^Ze~z!, e56, ~52!

where we have used

~Se
6~z!!215S2

6~zq6ek!, e56, ~53!

and ~42! to expressxe(z) in terms ofZe(z). We now define the actions ofq6d and g61 on
S(ĥ2)^W as

q6d:u^v→q6du^q6dv, g61:u^v→q6ku^v, ~54!

whereuPS(ĥ2) andvPW. The relation betweenZe(z) andq6d, which reads as

qdZe~z!5Ze~zq21!qd, ~55!

can easily be derived from~25! and

qdSe8
e

~z!5Se8
e

~zq21!qd, ~56!

which, in turn, can be obtained from~38!. Relation~55! means that theZq algebra is graded@it

inherits the gradation of Uq„sl(2)̂…# and that theZq operatorsZn
e are homogeneous of degreen.

Let us now turn to the derivation of the defining relations@besides~14! and ~49!# of theZq

algebra, that is, the quantum generalized commutation relations. They simply follow from the
substitution ofxe(z) as given by~52! in ~23! and ~24!. We find

~qk12wz21;q2k!`

~qk22wz21;q2k!`
Ze~z!Z~2euw!2

~qk12zw21;q2k!`

~qk22zw21;q2k!`
Z2e~w!Ze~z!

5
e

q2q21 „C0d~zw21q2ek!2F0d~zw21qek!…

5
1

q2q21 „q
ea0d~zw21q2k!2q2ea0d~zw21qk!…, ~57!

~z2q2ew!
~qk222kewz21;q2k!`

~qk122kewz21;q2k!`
Ze~z!Ze~w!

5~q2ez2w!
~qk222kezw21;q2k!`

~qk122kezw21;q2k!`
Ze~w!Ze~z!. ~58!

In summary, in addition to the latter quantum generalized commutation relations, theZq fields

Ze(z) must satisfy the following relations with the elements of Uq„sl(2)̂… when they act on theW
part of the tensor productS(ĥ2)^W:
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@an , Z
e~z!#50, nPZ\$0%, ~59!

C0Z
e~z!5q2eZe~z!C0 , ~60!

xe~z!5S2e
2 ~zq2ek!S2e

1 ~zqek! ^Ze~z!, ~61!

qdZe~z!5Ze~zq21!qd, ~62!

@g6,Ze~z!#50. ~63!

All these relations will be useful in the explicit construction of the spaceW from the operators
Zn

e . This is illustrated in Sec. IV.

IV. EXPLICIT CONSTRUCTIONS OF SOME Uq(sl(2)̂ )-STANDARD MODULES

Let us briefly recall the definition of some Uq„sl(2)̂…-modules.
2,11,18 For this, we still need

some notions from sl(2)̂ affine algebra, which is generated by$ei , f i ,hi ,d; i50,1%. We define on
its Cartan subalgebraĥ5Ch01Ch11Cd an invariant symmetric bilinear form~ , ! by

~hi ,hi !52, ~hi ,h12 i !522, ~hi ,d!5d i ,0 , ~d,d!50, i50,1. ~64!

Let ĥ*5CL01CL11Cd5Ca01Ca11CL0 be the dual space toh with

^L i ,hj&5d i , j , ^d,d&51, ^L i ,d&50, ^d,hi&50, ~65!

where

^ , &:ĥ* ^ ĥ→C ~66!

is the natural pairing, the vectorsLi are the fundamental weights,ai are the positive roots, and
d5a01a1 is the null root. One can induce a symmetric bilinear form~ , ! on ĥ* by

~L i ,L j !5 1
2d i ,1d j ,1 , ~L i ,d!51, ~d,d!50, ~a i ,a i !52,

~67!
~a i ,a12 i !52, ~a i ,L0!5d i ,0 , ~L0 ,L0!50, i , j50,1.

The weightslPĥ* such that

l5n0L01n1L1 , n0 ,n1PN\$0%, ~68!

are called regular dominant integral weights, andn01n15k is the level that we have introduced
previously.

As defined in Sec. II the algebra Uq„sl(2)̂… is generated by$ei , f i , K
61, g61, q6d, i50,1%. Let

V be a Uq„sl(2)̂…-module andmPĥ, the subspaceVm,V defined by

Vm5$vPV/K61v5q6^m,h1&v, g61v5q6kv, q6dv5q6^m,d&v%, ~69!

is called am-weight space, and anyvPVm is referred to as am-weight vector. The moduleV

becomes a weight module if it is the direct sum of its weight spaces. A Uq„sl(2)̂… highest weight
vectorvl in V is al-weight vector which satisfies the additional condition

eivl50, i50,1. ~70!
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The spaceV is called a Uq„sl(2)̂… highest weight module if it generated from al highest weight
vectorvl . In this case,vl is unique~up to a multiplication by a scalar!, and hence we labelV by

the weightl as V~l!. The Uq„sl(2)̂…-moduleV~l! is called standard if it is generated from a
highest weight vectorvl with a dominant integral weightl and such that

f i
^l,hi &11vl50, i50,1, ~71!

in which case it is irreducible.
Let us now address the explicit constructions of the standard modules in the casesk51 and

k52. As explained previously, we should address only the explicit constructions of the spaceW in
terms of theZq operators since theS(ĥ

2) part is already constructed in terms of polynomials of
an . Consequently, in the sequel we will mainly concentrate on theW part of the

Uq„sl(2)̂…-modules.
Case I: k51.8 In this case, the relations~58!–~63! satisfied by theZq operatorsZe(z)

simplify significantly and reduce to the following relations:

Ze~z!Z2e~w!

~12q21wz21!~12qwz21!
2

Z2e~w!Ze~z!

~12q21zw21!~12qzw21!

5
e

q2q21 „C0d~zw21q2e!2F0d~zw21qe!…

5
1

q2q21 „q
ea~0!d~zw21q21!2q2ea~0!d~zw21q!…, ~72!

w2Ze~z!Ze~w!5z2Ze~w!Ze~z!, ~73!

@an , Z
e~z!#50, nPZ\$0%, ~74!

C0Z
e~z!5q2eZe~z!C0 , ~75!

F0Z
e~z!5q22eZe~z!F0 , ~76!

xe~z!5S2e
2 ~zq2ek!S2e

1 ~zqek! ^Ze~z!, ~77!

qdZe~z!5Ze~zq21!qd, ~78!

@g6, Ze~z!#50. ~79!

It can easily be checked that these equations are solved by

Ze~z!5eeazea01~1/2!~a,a!5eeazea011, e56, ~80!

wherea is the sl~2! positive simple root andeaPC[P]. Here P5Qø(Q1a/2) andQ are the
sl~2! weight and root lattices, whileC[P] andC[Q] are the corresponding Abelian group algebras,
respectively. The elementsza0 andqd act onC[P] as

za0eb5z~a,b!ebza0, qdeb5ebqdq2b02~b,b!/2, bPP. ~81!

As a conclusion,xe(z) acts onS(ĥ2)^C[P] asS2e
2 (zq2e)S2e

1 (zqe) ^ eeazea011 and is single
valued. Moreover, the subspacesS(ĥ2)^C[Q] and S(ĥ2)^ea/2C[Q], whose direct sum is
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S(ĥ2)^C[P], are invariant and irreducible. They are, in fact, isomorphic to the standard~basic!
modulesV~L0! andV~L1! with highest weight vectors realized as 1^1 and 1̂ ea/2, respectively.

Case II: k52.9 In this case, the relations~58!–~63! satisfied by theZq operators reduce to

Ze~z!Z2e~w!

12wz21 2
Z2e~w!Ze~z!

12zw21 5
e

q2q21 „C0d~zw21q22e!2F0d~zw21q2e!…

5
1

q2q21 „q
ea0d~zw21q22!2q2ea0d~zw21q2!…, ~82!

~z2wq2e!~12wz21q22e!Ze~z!Ze~w!5~zq2e2w!~12zw21q22e!Ze~w!Ze~z!, ~83!

@an , Z
e~z!#50, nPZ\$0%, ~84!

C0Z
e~z!5q2eZe~z!C0 , ~85!

F0Z
e~z!5q22eZe~z!F0 , ~86!

xe~z!5S2e
2 ~zq22e!S2e

1 ~zq2e! ^Ze~z!, ~87!

qdZe~z!5Ze~zq21!qd, ~88!

@g6, Ze~z!#50. ~89!

Let the operatorza0 act onC[P] andC[Q] as in the casek51 andqd act as

qdeb5ebqdq2b0/22~b,b!/4, bPP. ~90!

The above equations are then satisfied by

Ze~z!5eeazea0/21~1/4!~a,a!c~z!5eeazea0/211/2c~z!, e56, ~91!

where

$c~z!,c~w!%5d~zw21q22!1d~zw21q2!,

if za0/2PEnd~ea/2C@Q# ^C@z, z21# !, ~92!

$c~z!,c~w!%5~zw21!1/2„q21d~zw21q22!1qd~zw21q2!…,

if za0/2PEnd~C@Q# ! ^C@z, z21#. ~93!

Relation~92! means that the fermion fieldc(z) has the Laurent expansion

c~z!5 (
nPZ

cnz
2n. ~94!

Substituting this expansion back in~92! and comparing the coefficients of powers ofzw21, we
obtain the following anticommutation relations for the modescn :

$cn ,cm%5~q2n1q22n!dn1m,0 , if za0/2PEnd~ea/2C@Q# ^C@z, z21# !. ~95!

This is the usual Rammond~R! sector for the modescn , nPZ. Similarly ~93! enforces the
following expansion:
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c~z!5 (
rPZ11/2

c rz
2r . ~96!

As in the~R! sector, relation~93! leads to the following anticommutation relations for the modes
cn :

$c r ,cs%5~q2r1q22r !d r1s,0 , if za0/2PEnd~C@Q# ^C@z, z21# !. ~97!

This is the familiar Neuveu–Schwarz~NS! sector for the modescr . The Clifford algebra with the
anticommutation relations~95! and ~97! first appeared in the work of Bernard on the explicit
construction of Uq„so~2n11!…-standard modules with levelk51.9 Then, it was used in Refs. 18
and 19 for the calculation of theN-point correlation functions for the spin-1 XXZ model.

Let TR~TNS!, Teven
R ~Teven

NS !, Todd
R ~Todd

NS! be the Fock space spanned by the modes$cn , n,0% ~$cr ,
r,0%!, a subspace ofTR~TNS! spanned by an even number of modescn(c r), and a subspace of
TR~TNS! spanned by an odd number of modescn(c r), respectively. Note that in the~R! sector the
zero modec0 acts trivially onT

R, and so to make its action nontrivial we extend the Fock space
TR by C2, with basis$v15~0

1!, v25~1
0!% such thatcn(nÞ0) andc0 act ascn^1 and 1̂ ~1

0
0
1! on

TR^C2, respectively. Putting all the pieces together, we conclude thatxe(z) acts as

xe~z!5S2e
2 ~zq22e!S2e

1 ~zq2e! ^ c~z! ^eeazea0/211/2 ~98!

on the spaceS(ĥ2)^~TR^C2!^ea/2C[Q] in the ~R! sector, and on the spaceS(ĥ2)^~TNS!^C[Q]
in the~NS! sector. Moreover, the Uq„sl(2)̂…-standard modulesV~2L0!, V~2L1!, andV~L01L1! are
isomorphic to the following subspaces of the latter spaces

V~2L0!;S~ ĥ2! ^Teven
NS

^C@2Q# %S~ ĥ2! ^Todd
NS

^eaC@2Q#,

V~2L1!;S~ ĥ2! ^Teven
NS

^eaC@2Q# %S~ ĥ2! ^Todd
NS

^C@2Q#, ~99!

V~L01L1!;S~ ĥ2! ^ ~Teven
R

^v1 %Todd
R

^v2! ^ea/2C@2Q# %S~ ĥ2! ^ ~Todd
R

^v1 %Teven
R

^v2!

^e3a/2C@2Q#,

and their respective highest weight vectors are given by

v2L0
51^1^1,

v2L1
51^1^ea, ~100!

vL01L1
51^1^v1 ^ea/2.

V. CONSTRUCTION OF A Uq(sl(2)̂ )-GENERALIZED MODULE

Let Uq„sl~2!… be a subalgebra of Uq„sl(2)̂… generated by$e1 , f 1 ,K
61% and letM5Cv0 be the

trivial one-dimensional Uq„sl~2!… weight module. We also introduce Uq„sl(2)̂…>0, Uq„sl(2)̂….0,

and Uq„sl(2)̂…,0 as three subalgebras Uq„sl(2)̂… generated by all elements with non-negative,
positive, and negative degrees with respect toqd, respectively. We equipM with a

Uq„sl(2)̂…>0-module structure by

q6dv05q6av0 , aPC,
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g61v05q6kv0 , ~101!

xv050, ;xPUq„sl~2!̂….0 .

Here a is scalar, which can be set to 0 without loss of generality. FromM , we induce the

following Uq„sl(2)̂…-module:

G~M !5Uq„sl~2!̂…^Uq„sl~2!̂…>0
M , ~102!

which is called a generalized Verma module.10,11 In fact, sinceM is a one-dimensional

Uq„sl~2!…-module,G(M ) is the simplest example of a Uq„sl(2)̂…-generalized Verma module.
Slightly more complicated examples of generalized Verma modules can be constructed from
higher-dimensionalM modules. We define the moduleW(M ) through the following isomorphism

of Uq„sl(2)̂…-modules:

G~M !.Uq„sl~2!̂…,0^ CM.S~ ĥ2! ^ CW~M !. ~103!

Both modulesG(M ) andW(M ) areqd weight modules with weight space decompositions:

G~M !5 % n<0G~M !n ,

W~M !5 % n<0W~M !n . ~104!

From the work of Lusztig,20 we know that for genericq the dimensions of weight spaces of

Uq„sl(2)̂…-modules are the same as those of the weight spaces of the sl(2)̂ -modules. The charac-

tersx„G(M )… andx„W(M )… of G(M ) andW(M ) have been computed in the sl(2)̂ case in Refs.
6 and 11 and are given by

x„G~M !…5 (
n>0

dim„G~M !n…p
n5

1

Pn.0~12pn!3
,

~105!

x„W~M !…5 (
n>0

dim„W~M !n…p
n5

1

Pn.0~12pn!2
,

wherepPC* is a formal variable. The second character will allow us to prove the linear indepen-
dence of a particular set of vectors constructed from theZq operatorsZn

e and which spanW(M ).
This means that the latter set of vectors is a basis forW(M ).

Here, we will not untwist theZq algebra into a tensor product of a group algebra and a new
algebra, which is parafermionic in nature and has been partially described in Ref. 17. We will
rather construct theW(M ) module in terms of theZq operators themselves. This will be sufficient

to find an explicit realization of the Uq„sl(2)̂…-generalized Verma moduleG(M )5S(ĥ2)^W(M )
since theS(ĥ2) is already constructed in terms of symmetric polynomials ofan . To this end, we
first define

Z~e,e8uz,w!5 f ~e,e8uwz21!Ze~z!Ze8~w!, ~106!

f ~e,e8uz!5
~q2~e1e8!k/21k22z;q2k!`

ee8

~q2~e1e8!k/21k12z;q2k!`
ee8

. ~107!
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Next, following some ideas in Ref. 6 in the case of sl(2)̂ algebra, and which have been well
summarized in Ref. 21 in the case of the elliptic algebra, we introduce the following formal
Laurent and power series:

Z~e,e8uz,w!5 (
n1 ,n2PZ

Z~e,e8un1 ,n2!z2n1w2n2, ~108!

Ze~z!5 (
nPZ

Zn
ez2n, ~109!

f ~e,e8uz!5
1

(n>0ãn
e,e8zn

5 (
n>0

an
e,e8zn. ~110!

Relation~107! and ~110! imply that

a0
e,e85ã0

e,e851,

(n>0ãn
e,e8am2n

e,e8 5dm,0 , m>0, ~111!

an
e,e85ãn

e,e850, n,0.

Substituting the above expansions back in~106!, and comparing the coefficients of the powers of
wz21, we obtain

Zn1
e
Zn2

e85 (
n>0

ãn
e,e8Z~e,e8un12n,n21n!, ~112!

Z~e,e8un1 ,n2!5 (
n>0

an
e,e8Zn12n

e
Zn21n

e8 . ~113!

Furthermore, substituting the latter expansions in the quantum generalized relations~57! and~58!
and using~113!, we arrive at

Z~e,2eun1 ,n2!5Z~2e,eun2 ,n1!1Y~eun1!dn11n2,0
, ~114!

Z~e,eun1 ,n2!5q2eZ~e,eun121,n211!1q2eZ~e,eun2 ,n1!2Z~e,eun211,n121!,
~115!

respectively, and where

Y~eun!5
1

q2q21 ~qkn1ea02q2kn2ea0!. ~116!

Relations~114! and ~115! are useful in the normal ordering of products ofZq operators by

moving any operatorZn1
e with n1.n2 to the right ofZn2

e8 , and the operatorZn
1 to the right of

Zn
2. To see this, let us examine the normal ordering ofZn1

e
Zn2

e8 in the following three nontrivial

cases:
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A. n 1>n2 , e52e8

Using ~112! and ~114!, we obtain

Zn1
e
Zn2

2e5 (
n>0

ãn
e,2e

Z~e,2eun12n,n21n!5 (
0<n<~n12n22x!/2

ãn
e,2e

Z~2e,eun21n,n12n!

1 (
0<~n12n22x!/2,n

ãn
e,2e

Z~e,2eun12n,n21n!

1 (
0<n<~n12n22x!/2

ãn
e,2eY~eun1!dn11n2,0

, ~117!

wherex is equal to 0 or 1 depending on whethern12n2 is even or odd, respectively. It is therefore
clear from the latter relation and~113! that the productZn1

e
Zn2

2e with n1.n2 can be normal

ordered.

B. n 15n2 , e52e851

Like the previous case, we have

Zn1
1
Zn1

2 5 (
h>0

ãn
1,2

Z~1,2un12n,n11n!,

5Z~2,1un1 ,n1!1Y~1u0!dn1,0

1 (
n.0

ãn
1,2

Z~2e,eun12n,n11n!. ~118!

The same argument as in case A holds, and hence the productZn1
1
Zn1

2 can be normal ordered as

well.

C. n1>n2 , e5e8

This case is less straightforward. First,~112! implies that

Zn1
e
Zn2

e 5 (
n>0

ãn
e,e
Z~e,eun12n,n21n!, ~119!

which according to~113! means that the productZn1
e
Zn2

e can be normal ordered if we can normal

order also any operatorZ(e,eun1 ,n2) with n1.n2 by writing it as a linear combination of
operatorsZ(e,eum1 ,m2) with m1<m2 . Relation~115! allows indeed this second type of normal
ordering. The reason is that repeated use of this relation leads to

Z~e,eun112p,n1!5q2eZ~e,eun1 ,n112p!1q2~p21!e~q2e21!Z~e,eun11p,n11p!

1 (
n51

p21

q2~n21!e~q4e21!Z~e,eun11n,n112p2n!, p.0,

~120!

Z~e,eun112p11,n1!5q2eZ~e,eun1 ,n112p11!1 (
n51

p

q2~n21!e~q4e21!

3Z~e,eun11n,n112p112n!, p.0,
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where all the operatorsZ(e,eum1 ,m2) on the right-hand sides of the above equations have
m1<m2 . Consequently, the productZn1

e
Zn2

e with n1.n2 can also be normal ordered.

Sincexe(z) acts asS2e
2 (zq22e)S2e

1 (zq2e)^Ze(z) on S(ĥ2)^W(M )^C[z, z21], it is clear
thatW(M ) is spanned by the vectors in the set

$Zn1

e1•••Zns

esv0 , e i56, ni,0, i51,...,s; s.0%. ~121!

The conditionni,0 guarantees that the above vectors have negative degrees as they should

~otherwise they are null! since S(h2)^W(M ) is a graded Uq„sl(2)̂…-highest weight module.
Because of the normal ordering of theZn

e operators discussed above, the above spanning set for
W(G) can be reduced further to the smaller set

H5$Zn1

e1•••Zns

esv0 , e i56, ni<ni11 ; e i<e i11 if ni5ni11 , i51,...,s; s.0%,

~122!

where the order2,1 is meant. It can easily be seen that the setH is a basis forW(M ) since its
character coincides with the one ofW(G) as given by~105!. Therefore, we have an explicit

construction of the Uq„sl(2)̂)-generalized Verma moduleG(M ) with nonzero levelk.

VI. RELATIONS IN THE Zq ENVELOPING ALGEBRA

In this section, we extend the quantum generalized commutation relations~57! and ~58! to
relations satisfied by arbitrary polynomials ofZe(z). For this purpose let us consider the follow-
ing operators:

Z~e1 ,...,esuz1 ,...,zs!5Se1
2 ~z1!•••Ses

2~zs!x
e1~z1!•••x

es~zs!Se1
1 ~z1!•••Ses

1~zs!, s.0,

~123!

which are a generalization of~45!. They are expressed in terms of the operatorsZe(z) introduced
in ~45! as

Z~e1 ,...,esuz1 ,...,zs!5 )
1< i, j<s

~q2~e i1e j !k/21k22zjzi
21;q2k!`

e ie j

~q2~e i1e j !k/21k12zjzi
21q2k!`

e ie j
Ze1~z1!Z

e1~z2!•••Z
es~zs!

~124!

5 )
2< i<s

~q2~e11e i !k/21k22ziz1
21;q2k!`

e1es

~q2~e11e i !k/21k12ziz1
21;q2k!`

e1e i
Ze1~z1!Z~e2 ,...esuz2 ,...,zs!.

~125!

The above relations can easily be derived from

Se
1~z1!x

e8~z2!5
~q2~e1e8!k/21k12z2z1

21;q2k!`
ee8

~q2~e1e8!k/21k22z2z1
21;q2k!`

ee8
xe8~z2!Se

1~z1!, ~126!

Se
2~z1!x

e8~z2!5
~q2~e1e8!k/21k22z1z2

21;q2k!`
ee8

~q2~e1e8!k/21k12z1z2
21;q2k!`

ee8
xe8~z2!Se

2~z1!. ~127!

Relations~46! and~124! imply that the operatorsZ(e1 ,...,esuz1 ,...,zs) commute also with Uq(ĥ).
Let us now derive the first type of the quantum generalized commutation relations in theZq

enveloping algebra, which is valid only ife r52e r11:
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Z~e1 ,...,e r ,e r11 ,...,esuz1 ,...,zr ,zr11 ,...,zs!2Z~e1 ,...,e r11 ,e r ,...,esuz1 ,...,zr11 ,zr ,...,zs!

5Se1
2 ~z1!•••Ses

2~zs!x
e1~z1!•••x

er21~zr21!

3@xer~zr !,x
er11~zr11!#x

er12~zr12!•••x
es~zs!Se1

1 ~z1!•••Ses
1~zs!

5
e r

q2q21 Se1
2 ~z1!•••Ses

2~zs!x
e1~z1!•••x

er21~zr21!„C~zr11q
erk/2!d~zrzr11

21 q2erk!

2F~zrq
erk/2!d~zrzr11

21 qerk!…xer12~zr12!•••x
es~zs!Se1

1 ~z1!•••Ses
1~zs!

5
e r

q2q21 Z~e1 ,...ê r ,e r11
ˆ •••esuz1 ,...,ẑr ,zr11

ˆ ,...,zs!

1H C0d~zrzr11
21 q2erk!q2( i.r11e i )

i.r11
S 12q222~e i1er !k/2zizr11

21

12q22~e i1er !k/2zizr11
21 21D e i

2F0d~zrzr11
21 qerk!q22( i.r11e i)

i,r
S 12q222~e i1er !k/2zr11zi

2121

q22~e i1er !k/2zr11zi
2121 D e iJ ,

e r5e r11 , ~128!

where we have used~48!, ~50!, ~53!, and~127!. Above, we have also introduced the notation

Z~e1 ,...,ê r ,e r11
ˆ ,...,esuz1 ,...,ẑr ,zr11

ˆ ,...,zs!5S2xS1, ~129!

with

S65Se1
6 ~z1!•••Ser21

6 ~zr21!Ser12

6 ~zr12!•••Ses
6~zs!,

~130!
x5xe1~z1!•••x

er21~zr21!x
er12~zr12!•••x

es~zs!,

and where the hat onê means that the symbole is omitted.
Using the formal power series

S 12a

12bD
e

5~12a~11e!/2b~12e!/2! (
n>0

an~12e!/2bn~11e!/2,

~131!

)
i51

s

~12ziz
21qai !5 (

j 1 ,...,j i50,1
~21!( i51

s j iq( i51
s aiz1

j 1•••zs
j sz2( i51

s j i,

we can expand the products in~128! as

)
i.r11

S 12q222~e i1er !k/2zizr11
21

12q22~e i1er !k/2zizr11
21 21D

e i

5 (
j r12 ,...,j s50,1

(
mr12> j r12 ,...,ms> j s

~21!( i.r11 j iq( i.r11mi „2e i2~e i1er !k/2…24e i j i

3zr11
2( i.r11mizr12

mr12•••zs
ms, ~132!
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and

)
i,r

S 12q222~e i1er !k/2zr11zi
2121

q22~e i1er !k/2zr11zi
2121 D e i

5 (
j 1 ,...,j r2150,1

(
m1> j 1 ,...,mr21> j r21

~21!( i,r j iq( i,rmi „2e i2~e i1er !k/2…24e i j iz1
2m1•••

3zr21
2mr21zr11

( i,rmi. ~133!

Substituting these expansions in~128! and taking into account the formal Laurent expansions

.Z~e1 ,...,esuz1 ,...,zs!5 (
n1 ,...,nsPZ

Z~e1 ,...,esun1 ,...,ns!z1
2n1•••zs

2ns,

~134!

Z~e1 ,...ê r ,e r11
ˆ ,...,esuz1 ,...,ẑr ,zr11

ˆ ,...zs!

5 (
n1 ,...,nr21 ,nr12 ,...,nsPZ

Z~e1 ,...,ê r ,e r11
ˆ ,...,esun1 ,...,n̂r ,nr11

ˆ ,...,ns!

3z1
2n1•••zr21

2nr21zr12
2nr12•••zs

2ns,

we obtain the first quantum generalized commutation relation satisfied by the Laurent modes:

Z~e1 ,...,e r ,e r11 ,...,esun1 ,...,nr ,nr11 ,...,ns!

2Z~e1 ,...,e r11 ,e r ,...,esun1 ,...,nr11 ,nr ,...,ns!

5
e r

q2q21 S (
j r12 ,...,j s50,1

(
mr12> j r12 ,...,ms> j s

dnr1nr11 ,( i.r11mi
~21!( i.r11 j i

3qnrerk1( i.r11mi „2e i2~e i1er !k/2…12e i ~122 j i D
3Z~e1 ,...,ê r ,e r11

ˆ ,...,esun1 ,...,nr21 ,n̂r ,nr11
ˆ ,nr121mr12 ,...,ns1ms!C0

2 (
j 1 ,...,j r2150,1

(
m1> j 1 ,...,mr21> j r21

dnr1nr11 ,2( i,rmi

3~21!( i,r j iq2nrerk22( i.r11e i1( i,rmi „2e i2~e i1er !k/2…24e i j iZ~e1 ,...,ê r ,e r11
ˆ ,...,esun1

1m1 ,...,nr211mr21 ,n̂r ,nr11
ˆ ,nr12 ,...,ns!F0 , e r52e r11 . ~135!

We remark that in the above formula the following relations are meant:

dnr1nr11 ,( i.r11mi
5dnr1nr11,0

, if r51,

~136!

dnr1nr11 ,2( i,rmi
5dnr1nr11,0

, if r5s21.

The second type of quantum generalized commutation relations in theZq enveloping algebra is
derived in the casee r5e r11 as follows:
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~zr2zr11q
2er !Z~e1 ,...,e r ,e r11 ,...,esuz1 ,...,zr ,zr11 ,...,zs!

2~zrq
2er2zr11!Z~e1 ,...,e r11 ,e r ,...,esuz1 ,...,zr11 ,zr ,...,zs!

5Se1
2 ~z1!•••Ses

2~zs!Xe1
~z1!•••Xer21

~zr21!„~zr2zr11q
2er !Xer

~zr !Xer11
~zr11!

2~zrq
2er2zr11!Xer11

~zr11!Xer
~zr !…Xer12

~zr12!•••Xes
~zs!Se1

1 ~z1!•••Se1
1 ~zs!

50, e r5e r11 . ~137!

Substituting the Laurent expansion~134! in this relation we obtain this second quantum general-
ized commutation relation satisfied by the Laurent modes

Z~e1 ,...,e r ,e r11 ,...,esun1 ,...,nr21,11nr ,nr11 ,...,ns!

2q2erZ~e1 ,...,e r11 ,e r ,...,esun1 ,...,nr21 ,nr11,11nr ,...,ns!

5q2erZ~e1 ,...,e r ,e r11 ,...,esun1 ,...,nr21 ,nr ,11nr11 ,...,ns!

2Z~e1 ,...,e r11 ,e r ,...,esun1 ,...,nr21,11nr11 ,nr ,...,ns!, if e r5e r11 .

~138!

Although the first quantum generalized commutation relation looks completely different from
its classical analog due to the appearance of various sums over the indicesj i andmi instead of a
single sum over a single index in the classical case,12 we have checked that in the limitq→1 this
quantum generalized commutation relation does indeed reduce to its classical analog, which in our
notation reads simply as follows:

Z~e1 ,...,e r ,e r11 ,...,esun1 ,...,nr ,nr11 ,...,ns!

2Z~e1 ,...,e r11 ,e r ,...,esun1 ,...,nr11 ,nr ,...,ns!

5~nrk12e r~e r121•••1es!1e rh!

3Z~e1 ,...,ê r ,e r11
ˆ ,...,esun1 ,...,nr21 ,n̂r ,nr11

ˆ ,nr12 ,...,ns!,

if nr1nr1150, e r52e r11 ,

52e r (
i.r11

e iZ~e1 ,...,ê r ,e r11
ˆ ,esun1 ,...,nr21 ,n̂r ,nr11

ˆ ,nr12 ,...,ni1nr1nr11 ,...,ns!,

if nr1nr11.0, e r52e r11 ,

522e r(
i,r

e iZ~e1 ,...,ê r ,e r11
ˆ ,...,esun1 ,...,ni1nr1nr11 ,...,nr21 ,n̂r ,nr11

ˆ ,nr12 ,...,ns!,

if nr1nr11,0, e r52e r11 . ~139!

The classical analog of the second quantum generalized commutation relation is simpler and is
given by

Z~e1 ,...,e r ,e r11 ,...,esun1 ,...,nr ,nr11 ,...,ns!

2Z~e1 ,...,e r11 ,e r ,...,esun1 ,...,nr11 ,nr ,...,ns!50, if e r5e r11 . ~140!

In the caseq51, the above formulas were used in Refs. 11 and 12 to construct bases for Verma
modules and standard modules. We think that their explicit dependence onq might allow for the
crystallization of these modules~i.e.,q→0!, and also for their treatment whenq is a root of unity.
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Moreover, since from the physical point of view, one is rather interested in the computation of
traces and matrix elements of the intertwiners between the standard modules, a concrete realiza-
tion of these modules in terms of theZq might be very useful for this purpose. Although it is not
yet known how to achieve this program even whenq51, we think that the above formulas are a
starting point in this direction, especially whenq50 where one expects some simplifications
compared toq51.

VII. CONCLUSIONS

In this paper, we have introduced a natural quantum analog of theZq algebra with arbitrary
level k. In the special casesk51 andk52, ourZq algebra simplifies considerably and reduces to
the well-known results. Moreover, as a new example of aZq module, that is, withk.2, we
provide an explicit construction of the basis for a generalized Verma module. One would like to
diagonalize the off-criticalZk statistical models by the elements of the quantum parafermionic
algebra, which is obtained from the quotient of theZq algebra by its subalgebraC[Q], in the same
way that the off-critical Ising model has been diagonalized by the quantum Clifford algebra~i.e.,
the special casek52 of the quantum parafermionic algebra!.7
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Two parameter deformation of Grassmann matrix group
and supergroup
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The two parameter quantum deformations of 232 Grassmann matrices, Gr~2!, and
supermatrices, Gr~1u1!, are presented. Gr~2! whose matrix elements are all Grass-
mannian variables is called the superdual of the general linear group GL~2!, and
Gr~1u1! whose diagonal matrix elements are Grassmannian variables is called the
superdual of the supergroup GL~1u1! whose nondiagonal elements are Grassman-
nian. Noncentral dual superdeterminant for Grassmann supermatrices belonging to
Grp,q~1u1! is constructed. As with the 232 quantum matrices, the relations satisfied
by the matrix elements of the Grassmann matrices and supermatrices are expressed
in terms of anR̂ matrix. The properties of thenth power of a Grassmann super-
matrix are given as an Appendix. ©1996 American Institute of Physics.
@S0022-2488~96!03706-1#

I. INTRODUCTION

Quantum groups are a generalization of the concept of groups. More precisely, a quantum
group is a deformation of a group that, for particular values of the deformation parameter, coin-
cides with the group. The theory and applications of quantum groups have attracted a lot of
attention among mathematicians and physicists. The main physical motivation for quantum groups
is that when nonlinear physical systems which are classically completely integrable are quantized,
the classical symmetry group should be replaced by the corresponding quantum group.1 On the
other hand, most of the difficulties involving the divergences of quantum field theories which lie
at the heart of all interactions require supersymmetry and thus the introduction of supergroups.2

The algebraic structure underlying quantum groups extends the theory of the supergroups.3–8 In
Ref. 9, theq analog, Grq~1u1!, of the dual supermatrices Gr~1u1! is presented. Grq~1u1! is the
superdual of the quantum group GLq~1u1! and the properties of the quantum dual supermatrices
are discussed. In this paper we present a two parameter deformation, Grp,q~2! and Grp,q~1u1!, of
the Grassmann matrices and supermatrices, respectively and give anR̂matrix for this deformation.

We will say that Grassmann matrices are the dual matrices in GL~2! and Grassmann super-
matrices are the dual supermatrices in GL~1u1!. To study the two parameter extension of the
Grassmann matrices and supermatrices, we follow the approach of Manin3 in Sec. II. In the
following section we get anR̂ matrix which gives the relations between the matrix elements of a
dual matrix in GL~1u1!. The properties of thenth power of a dual supermatrix which are more
compact than the single deformation parameter case are given in Appendix.

II. THE QUANTUM GRASSMANN MATRIX GROUP Gr p,q(2)

Before discussing the two parameter deformation of the dual matrices in the general linear
group GL~2!, we give some notations and useful formulas.

A. Notations

Consider 232 matrices with Grassmannian entries. We will say that such matrices form the
Grassmann matrix group and denote it by Gr~2!. Explicitly, a Grassmannian 232 matrix Â is of
the form

0022-2488/96/37(7)/3568/8/$10.00
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Â5S a b

g d D , ~2.1!

where all entries are Grassmannian.
Since the matrix elements ofÂ are all Grassmannian, for the conventional tensor products

Â15Â^ I and Â25I ^ Â, ~2.2!

one can write~no-grading!

~Â1!
i j
kl5Âi

kd
j
l , ~2.3a!

~Â2!
i j
kl5d i kÂ

j
l ~2.3b!

whered denotes the Kronecker delta.

B. Two parameter deformation of Gr(2)

The one parameter deformation of Grassmann matrices was given by Corriganet al.4 In this
section, we will give a two parameter deformation of Grassmann matrices, i.e., of Gr~2!. Let
Rp@2u0# be a quantum vector space which is two dimensional. The coordinates of a vector
V5(x,y)TPRp@2u0# satisfy the bilinear product relation

xy2pyx50. ~2.4!

We consider a dual quantum vector spaceRq@0u2#, the generators of which are Grassmannian. The
coordinates of a~dual! vector V̂5(j,h)TPRq@0u2# satisfy the relations

j2505h2, hj1qjh50 ~2.5!

as introduced in Ref. 3.
Now we want to define a two parameter deformation of the algebra of functions on the

Grassmann matrix group Gr~2! as an associative algebra with unit, generated by the generatorsa,
b, g, andd. For this, we consider linear transformationsÂ with the following properties:

Â:Rp@2u0#→Rq@0u2#, ~2.6a!

Â:Rq@0u2#→Rp@2u0#. ~2.6b!

We assume that the matrix elements ofÂ commute with the coordinates ofRp@2u0# and anti-
commute with the coordinates ofRq@0u2#. Then the endomorphisms in~2.6! impose the following
(p,q)-anti-commutation relations among the matrix elements ofÂ:

ab1p21ba50, ag1q21ga50,

gd1p21dg50, bd1q21db50,
~2.7!

ad1da50, a25b25g25d250,

bg1pq21gb5~p2q21!da,

wherep andq are nonzero complex numbers andpq61Þ0.
Since the entries ofÂ are all Grassmannian, a proper inverse cannot exist. However, the left

and right inverses ofÂ can be constructed. Let
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DL5bg1q21da, ~2.8a!

DR5gb2p21ad. ~2.8b!

Then at least the formally, the left and right inverses ofÂ become

ÂL
215S q21d b

2pq21g 2pa D , ~2.9!

ÂR
215S 2qd b

2qp21g p21d D . ~2.10!

Indeed, it is easy to show that

ÂL
21Â5DLI , ~2.11a!

ÂÂR
215DRI , ~2.11b!

where I is the 232 unit matrix. In this case,DL may be considered as a left quantum~dual!
determinant andDR as a right quantum~dual! determinant. Note that, one can write

DLÂR
215ÂL

21DR ~2.12!

using ~2.8!–~2.10! and associativity of the algebra~2.7!.
The algebra~2.7! is associative under multiplication and the relations in~2.7! may be also

expressed in a tensor product form

R̂~1!Â1Â252Â2Â1R̂~1!, ~2.13!

where

R̂~x!5~p1q21!(
i
ei i ^ei i12x(

iÞ j
~pq21! i21ei i ^ej j1~p2q21!S (

i. j
2(

i, j
Dei j ^ej i .

~2.14!

Here the elements of the matrixekl are

~ekl !
i
j5d i kd

j
l . ~2.15!

The explicit form ofR̂(x) is

R̂~x!5S p1q21 0 0 0

0 2x q212p 0

0 p2q21 2xpq21 0

0 0 0 p1q21

D . ~2.16!

In terms of the matrix elements Eq.~2.13! is of the form

R̂i j
klÂ

k
mÂ

l
n52Âj

l Â
i
kR̂

kl
mn . ~2.17!

Finally, we note that the algebra~2.7! and theR̂ matrix in ~2.16! with p5q andx521 was
given in Ref. 4~Sec. III!.
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III. TWO PARAMETER DEFORMATION OF THE GRASSMANN MATRIX SUPERGROUP

In this section, we consider 232 supermatrices whose diagonal elements are Grassmannian.
We remark that the supergroup GL~1u1! whose nondiagonal elements are Grassmannian is (p,q)
deformed in Refs. 7 and 8. We will say that such supermatrices form the Grassmann supermatrix
group and denote it by Gr~1u1!. Explicitly, a Grassmann 232 supermatrixÂ is of the form

Â5S a b

c d D ~3.1!

with two odd ~greek letters! and two even~latin letters! matrix elements. Even matrix elements
commute with everything and odd matrix elements anti-commute among themselves.

We begin with Manin’s approach.3 To do this, we consider the endomorphisms of a two-
dimensional quantum superplane and its dual, denoted byRp@1u1# andRq* @1u1#, respectively.

U5S xj DPRp@1u1#⇔xj2pjx50, j250, ~3.2!

and its dual

Û5S h
y DPRq* @1u1#⇔h250, hy2q21yh50. ~3.3!

Suppose that the matrix elements ofÂ ~anti-!commute with the coordinates ofRp@1u1# and
Rq* @1u1#. Then, the endomorphisms

Â: Rp@1u1#→Rq* @1u1#, ~3.4a!

Â: Rq* @1u1#→Rp@1u1# ~3.4b!

impose the following bilinear product relations among the generators ofÂ:

ab5p21ba, ac5q21ca, ~3.5a!

db5p21bd, dc5q21cd, ~3.5b!

ad1da50, a2505d2, ~3.5c!

bc5pq21cb1~p2q21!da ~3.5d!

wherep andq are nonzero complex numbers andpq61Þ0. These relations may be considered as
a two parameter deformation of a Grassmann superalgebra on four elements (a,b,c,d) wherea
andd are Grassmannian elements. This deformed algebra denoted by Grp,q~1u1!. For p5q, one
obtains the one parameter deformation of the generators ofÂ that was given in Ref. 9.

The inverse ofÂ can be found as in Ref. 9 and it is of the form

Â215S 2c21db21 c211c21db21ac21

b211b21ac21db21 2b21ac21 D ~3.6!

provided thatb andc are invertible. It is easy to verify that this is the proper right and left inverse
of Â, i.e.,

ÂÂ215I5Â21Â.
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Let

Â215S a8 b8

c8 d8
D .

Then, the matrix elements ofÂ21 satisfy the following relations

a8b85pb8a8, a8c85qc8a8,

d8b85pb8d8, d8c85qc8d8,
~3.7!

a8d81d8a850, a82505d82,

b8c85qp21c8b81~q2p21!d8a8.

Therefore, the matrix elements ofÂ21 satisfy the (p21,q21)-commutation relations while the
matrix elements ofÂ satisfy the (p,q)-commutation relations.

The quantum~dual! superdeterminant ofÂ is defined as

sD̂p,q~Â!5D̂5c21b2c21ac21d5pq21~bc212ac21dc21!, ~3.8!

which for p5q is the same assD̂q~Â! in Ref. 9. The factorpq21 in ~3.8! appeared because of the
relation ~3.5d!. Note that the second equality in~3.8! is obtained by using the relation

bc215qp21c21b2~q2p21!c21dac21, ~3.9!

which in turn is obtained from Eq.~3.5d!.
In generalD̂, the quantum~dual! superdeterminant ofÂ, is not central but obeys the follow-

ing commutation relations

D̂a5pq21aD̂, D̂d5pq21dD̂,
~3.10!

D̂b5pq21bD̂, D̂c5pq21cD̂.

It is interesting that the quantum~dual! superdeterminantD̂ is not central while the quantum
superdeterminant of a matrix GLp,q~1u1! is 7. However, it becomes central forp5q as noted down
in Ref. 9.

Before passing to the next section, we remark that the interesting point in the construction of
~3.6! is the fact that the dual superdeterminantD̂ is not necessarily central.

IV. THE R̂ MATRIX

In this section, we give anR̂ matrix to obtain the relations~3.5!. The algebra~3.5! is asso-
ciative under multiplication and the relation~3.5! may be expressed in terms of a gradedR̂-matrix
condition, as with the quantum supermatrix. To this end, we use the tensoring convention

~Â1!
i j
kl5~Â^ I ! i j kl5~21!k~ j1 l !Âi

kd
j
l5Âi

kd
j
l , ~4.1a!

~Â2!
i j
kl5~ I ^Â! i j kl5~21! i ~ j1 l !Â j

ld
i
k . ~4.1b!

The explicit form ofÂ1 andÂ2 is
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Â15S a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d

D , ~4.2a!

Â25S 2a 2b 0 0

2c 2d 0 0

0 0 2a b

0 0 c 2d

D . ~4.2b!

Then the associative algebra~3.5! is equivalent to equation

R̂~21!Â1Â252Â2Â1R̂~21!, ~4.3!

where

R̂~21!5S p1q21 0 0 0

0 22 q212p 0

0 p2q21 22pq21 0

0 0 0 p1q21

D . ~4.4!

This R̂~21! matrix obtained from~2.14! with x521. Here a 434 matrix in the form~4.2a! is
labeled in the following way

M5S M11
11 M11

12 M11
21 M11

22

M12
11 M12

12 M12
21 M12

22

M21
11 M21

12 M21
21 M21

22

M22
11 M22

12 M22
21 M22

22

D ~4.5!

similar to Ref. 6.
We have given the (p,q)-commutation relations which satisfied by the matrix elements of a

Grassmannian matrix and a Grassmannian supermatrix, i.e., we made a two parameter deformation
of the Grassmann matrix group Gr~2! and the supermatrix group Gr~1u1!. We obtained the Grass-
mannian quantum superdeterminant of a Grassmannian quantum supermatrix (p,q)-deformed
case. However, it reduces to the case discussed in Ref. 9 forp5q. We have given anR̂ matrix
which by use of a tensor product gives the (p,q)-commutation relations between the matrix
elements of a Grassmannian supermatrix.
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APPENDIX: THE PROPERTIES OF THE n th POWER OF GRASSMANN
SUPERMATRICES

Here we will discuss the properties of thenth power of a Grassmann supermatrix. First we
note that the product of two Grassmann supermatrices is not a Grassmann supermatrix, i.e., the
matrix elements of a productM5M̂ M̂ 8 do not satisfy~3.5!. However,M̂ M̂ 8PGLp,q~1u1! if M̂ and
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M̂ 8 are two Grassmann supermatrices and (b,c) ~~a,d!! pairwise commute~anti-commute! with
(b8,c8) ~~a8,d8!!. So, we must consider the matrix elements ofM̂n with respect to even and odd
values ofn. Let the~2n21!th power ofM̂PGrp,q~1u1! be

M̂2n215S A2n21 B2n21

C2n21 D2n21
D , n>1. ~A1!

After some algebra, one obtains

A2n215$^n&pqa1p^n21&pqd%~bc!n21,

B2n215$bc1p^n21&p2q2ad%~bc!n22b,

C2n215$cb1q^n21&p2q2da%~cb!n22c,

D2n215$^n&pqd1q^n21&pqa%~cb!n21, ~A2!

where

^N&pq5
12pNqN

12pq
. ~A3!

Now it is easy to show the following relations are satisfied:

A2n21B2n215p2~2n21!B2n21A2n21 ,

A2n21C2n215p2~2n21!C2n21A2n21 ,

D2n21B2n215q2~2n21!B2n21D2n21 ,

D2n21C2n215q2~2n21!C2n21D2n21 ,

A2n21D2n211D2n21A2n2150,

A2n21
2 505D2n21

2 ,

B2n21C2n215p2n21q2~2n21!C2n21B2n211~p2n212q2~2n21!!A2n21D2n21 . ~A4!

Thus, M̂2n21 is a Grassmann supermatrix with deformation parametersp2n21 and q2n21, i.e.,
M̂2n21PGrp2n21,q2n21(1u1).

Similarly, if we write the matrixM̂2n, the ~2n!th power ofM̂PGrp,q~1u1!, as

M̂2n5S A2n B2n

C2n D2n
D , n>1 ~A5!

where

A2n5H bc1p
12pq

11pq
^n&pq^n21&pqadJ ~bc!n21,

B2n5^n&pq$a1pd%~bc!n21b,

C2n5^n&pq$d1qa%~cb!n21c,
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D2n5H cb1q
12pq

11pq
^n&pq^n21&pqdaJ ~cb!n21, ~A6!

then the elements ofM̂2n obey the following relations

A2nB2n5q2nB2nA2n , A2nC2n5p2nC2nA2n ,

D2nB2n5q2nB2nD2n , D2nC2n5p2nC2nD2n ,

B2nC2n1pnq2nC2nB2n50,

B2n
2 505C2n

2 ,

A2nD2n2D2nA2n5~p2n2q22n!C2nB2n. ~A7!

Thus the matrixM̂2n is a supermatrix in the form of

T5S a b

g d D ~A8!

with the deformation parametersp2n andq2n. Such supermatricesT form the supergroup GL~1u1!
whose deformation was given in Refs. 7 and 8. Thenth power of such a supermatrix and the
relations between the matrix elements ofTn can be found in Ref. 10~Sec. 3!.
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Algebraic proof of the symmetric space theorem
C. Daboul
Mathematisches Seminar der Universita¨t Hamburg, Bundesstr.55,
D-20146 Hamburg, Germany

~Received 11 October 1995; accepted for publication 28 November 1995!

I give a relatively elementary proof of the symmetric space theorem, due to God-
dard, Nahm and Olive@Phys. Lett. B160, 111–116~1985!#. Unlike their original
proof, which involves the quark-model construction, I only use elementary alge-
braic techniques. ©1996 American Institute of Physics.
@S0022-2488~96!00206-X#

I. INTRODUCTION

In 1985 Goddard, Nahm and Olive1 proved an interesting theorem, which has been called the
symmetric space theorem. It relates the vanishing of certain coset Virasoro algebras to the exist-
ence of symmetric spaces. This has further interesting mathematical consequences in representa-
tion theory of affine Kac–Moody algebras, since the vanishing of the coset Virasoro algebra is the
condition for finite reducibility of representations of affine algebras restricted to certain affine
subalgebras.

The original proof by the above authors involved the use of physical concepts, such as quarks.
The purpose of the present paper is to state and prove the symmetric space theorem, by using
purely algebraic concepts. In particular, I shall carry out the proof following an idea used by Witt,2

thereby using only elementary algebraic transformations.
In section II I introduce relevant definitions and notations. In section III I first prove three

auxiliary lemmas and two corollaries, then state and prove the theorem.

II. DEFINITIONS AND NOTATIONS

A. Affine algebras

Theaffine Kac–Moody algebra, affine algebra for short,

L̃~g!5~C@ t,t21# ^ Cg! %CK , ~1!

associated to an underlying simple Lie algebrag is defined by the following commutation rela-
tions:

@ tm^x,tn^ y#5tm1n
^ @x,y#1mdm,2n~xuy!K , ~2!

whereK spans the center ofL̃~g! and is called the central term, and~.u.! is the normalized
invariant formon g. The term invariant means that

~@x,y#uz!5~xu@y,z# !, ;x,y,zPg. ~3!

It is well known ~see for example Ref. 3!, that two invariant symmetric bilinear forms on a simple
Lie algebra differ only by a scalar factor. The normalized invariant form, which will be used
henceforth, is defined such that the highest root has length&.

The affine algebra for an underlying Abelian algebrag can be defined similarly, by~1! and
~2!. However, for Abeliang any nondegenerate symmetric form~.u.! is invariant. In contrast to the
case of a simple algebra, such a form cannot be further determined by algebraic constraints
derived from the Lie algebra structure. In this article Abelian algebras will almost always appear

0022-2488/96/37(7)/3576/11/$10.00
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as subalgebras of the simple algebraso(n). Therefore, there will be a natural choice of~.u.!,
namely the restriction of the normalized invariant form ofso(n) to g. In the definitions, where an
Abelian algebra is not given as a subalgebra ofso(n), ~.u.! may be any fixed nondegenerate
symmetric form.

When the central elementK of the affine algebraL̃~g! acts as a scalark id in a representa-
tion, thenk is called thelevel of this representation.

For a reductive Lie algebra,

u5u0% u1% ...% uS , ~4!

with centeru0 and simple idealsu1,...,uS , the affine algebraL̃~u! is the direct sum of the affine
algebras associated to the idealsu0,...,uS :

L̃~u!5 %
s50

S

L̃~us!5 %
s50

S

„~C@ t,t21# ^ us! %CK s…. ~5!

The affine algebra associated to a finite-dimensional reductive Lie algebrau is thus a
S-dimensional central extension of theloop algebraC[ t,t21] ^u associated tou. ~In the case of an
underlying semi-simple Lie algebra the affine algebra is indeed the universal central extension of
the loop algebra.! The loop algebra can be identified with the Lie algebra of polynomial maps of
S1 into u.

B. The Virasoro algebra and the Sugawara construction

TheVirasoro algebra,

Vir5 %
nPZ

Cdn%Cc,

is defined by the following commutation relations:

@c,dn#50,
~6!

@dm ,dn#5~m2n!dm1n1dm,2n

m32m

12
c, ;m,nPZ.

Let g be a simple Lie algebra. Let$ui% and $ui% be dual bases ofg. The quadratic Casimir
operator is the following element of the universal enveloping algebraU~g! of g:

V5 (
i51

dim g

uiu
i . ~7!

V commutes with any element ofg, therefore, by the Schur lemma it acts as a scalar, denoted by
vr , on any irreducible representationr of g. Given a representation of the affine algebraL̃~g! of
level kÞ21/2vad , wherevad denotes the scalar value of the quadratic Casimir operator in the
adjoint representation, one can construct a representation of Vir by using the followingSugawara
operators~cf. Ref. 4!, where the notationx(n)[tn^x is used:
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L0 :5
1

~2k1vad!
S (

i
uiu

i12(
n51

`

(
i
ui

~2n!ui ~n!D ,
~8!

Ln :5
1

~2k1vad!
(
mPZ

(
i
ui

~2m!ui ~m1n!, ;nPZ\$0%.

The operatorsLn obey the commutation relations~6!, where the central element of the Virasoro
algebra takes the scalar value

c5
2k dim g

2k1vad
. ~9!

For an underlying abelian algebra the same equations hold withvad50. In this case~9! yields
c5dim g. The Sugawara operatorsLm and the elementsx(n) of the affine algebra obey the fol-
lowing commutation relations:

@Lm ,x
~n!#52nx~m1n!, ;m,nPZ,xPg. ~10!

For a reductive Lie algebra as in~4!, the Sugawara operators corresponding toL̃~u! in a repre-
sentation of levelsks Þ 21/2vads

, are given by

Ln
u :5(

s50

S

Ln
us,

whereLn
us is the Sugawara operator for the individual idealus . TheLn

us provide a representation of
the Virasoro algebra with central value

cu5(
s50

S
2ks dim us

2ks1vads

. ~11!

Again, theLn
u satisfy a commutation relation similar to~10!, wherexPu.

C. The coset construction

Let U be a compact Lie subgroup of the orthogonal groupSO(n). Then the complexified Lie
algebra ofU is a reductive algebrau as in ~4!, which is a subalgebra of the orthogonal algebra
so(n).

The inclusion ofu in so(n) gives rise to a homomorphism of the associated affine algebras:

L̃~u!5 %
s50

S

„~C@ t,t21# ^ us! %CK s…→L̃„so~n!…5„C@ t,t21# ^so~n!…%CK . ~12!

The obvious inclusion homomorphism of the loop algebras is lifted consistently to a homomor-
phism of the affine algebras in~12! by letting

K s° j sK , for s50,...,S, ~13!

where for the simple idealsus , s>1, the factorj s is theDynkin index,which is defined as the ratio
of the normalized invariant form (.u.)so(n) on so(n) ~restricted tous! and the normalized invariant
form (.u.)s on us , i.e.

~xuy!so~n!5 j s~xuy!s , ;x,yPus . ~14!
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For s50 we choose~.u.!0 to be the restriction of (.u.)so(n) to u0. Then, by lettingj 051, equation
~14! holds also fors50.

In this situation the Sugawara construction can be applied to bothso(n) and u to obtain
Sugawara operatorsLn

so(n) andLn
u which are different in general and form representations of Vir.

We can calculate their central values by using~9! and ~11!. We get

cso~n!5
kso~n!n~n21!

2kso~n!12n24
~15!

and

cu5(
s50

S
2kso~n! j sdim us

2kso~n! j s1vads

, ~16!

respectively. In~15! I substituted dim„so(n)…5n(n21)/2 and

vadso~n!
52n24. ~17!

@The expression~17! can be computed, for example, by using the relationvad52ȟ, whereȟ is the
dual Coxeter number.A table of dual Coxeter numbers can be found in Ref. 4.# In ~16! I used
ks5 j skso(n) , which follows from~13!.

By ~10! we have

@Ll
so~n! ,x~m!#52mx~m1 l !, ; l ,mPZ, xPso~n!. ~18!

@Ll
u ,x~m!#52mx~m1 l !, ; l ,mPZ, xPu. ~19!

Therefore, the difference operators,

Kl :5Ll
so~n!2Ll

u ,

commute with eachx(m)PL̃~u! individually,

@Kl ,x
~m!#50, ; l ,mPZ, xPu, ~20!

and consequently, by~8!, with the corresponding Sugawara operator,

@Kl ,Lm
u #50, ; l ,mPZ. ~21!

It follows that

@Kl ,Km#5@Ll
so~n! ,Lm

so~n!#2@Ll
u ,Lm

u #, ; l ,mPZ. ~22!

We deduce that theKm , like theLm
so(n) and theLm

u , define a representation of Vir, whose central
charge is equal to the difference of the Sugawara values,

cK5cso~n!2cu5
kso~n!n~n21!

2kso~n!12n24
2(

s50

S
2kso~n! j s dim us

2kso~n! j s1vads

. ~23!

The above construction of representations of the Virasoro algebra is called thecoset construction.
It was introduced by Goddard and Olive in Ref. 5. It can be applied similarly for any simple~or
even reductive! Lie algebrag instead ofso(n) and a reductive subalgebrau#g, but in this article
I shall only consider the caseg5so(n).
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An important property of all the above constructions is that they preserve the unitarity of the
involved representations, i.e., a unitary representation of the affine algebraL̃„so(n)…, induces a
unitary representation of its subalgebraL̃~u!. Then by the Sugawara construction applied to the
unitary representations ofL̃~u! andL̃„so(n)… we get two different unitary representations of Vir.
Finally, the resulting coset representation of Vir is again unitary.

The Virasoro algebra has no nontrivial unitary representations with zero central charge, so that
the coset Virasoro algebra vanishes iffcK50. Furthermore, as was first shown in Ref. 5, the
representation ofL̃~u! induced by a unitary highest weight representation ofL̃„so(n)… is finitely
reducible, if and only if the coset Virasoro algebra vanishes.

It can be shown thatcK50 is only possible for level 1 representations ofL̃„so(n)… ~see, e.g.,
Ref. 6!. In this case~23! reduces to

cK5
n

2
2(

s50

S
2 j s dim us

2 j s1vads

, for kso~n!51. ~24!

D. Indices of representations

The indexkr of a representationr of a simple Lie algebra is defined as the ratio between the
trace form of the representation and the normalized invariant form on the algebra, i.e.,

Tr„r~x!r~y!…5kr~xuy!. ~25!

For a simple Lie algebrag or an Abelian subalgebra of a simple Lie algebra in an
n-dimensional representationr of g, on which the Casimir operator is a scalar multiple of the
identity, r~V!5vridn one gets by using~7! and ~25!:

kr dim g5vrn. ~26!

In particular, if r is the adjoint representation of a simple Lie algebra, then~26! yields for its
index,

kad5vad . ~27!

This equation also holds~trivially ! for an Abelian Lie algebra, since in this casekad5vad50.
It can be shown that the index of the natural representation ofso(n) @i.e., the representation

of so(n) by antisymmetricn3n-matrices# is 2 ~see, e.g., Ref. 6!. Let u be a reductive subalgebra
of so(n) as in subsection II C. Then the indexkrs

of the representationrs of the idealus obtained
by restricting the natural representation ofso(n) to us is determined by

Tr„rs~x!rs~y!…52~xuy!so~n!52 j s~xuy!s , ;x,yPus ,

i.e.

krs
52 j s . ~28!

Note that with our choice of~.u.!0 the definition of the index makes sense also for the Abelian
subalgebrau0 in the representationr0 and we getk052.

E. Infinitesimal symmetric spaces

Let g be a semi-simple Lie algebra and lets be aninvolutionof g, i.e. an automorphism ofg
of order 2:s25id. Let

g5g0% g1
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be the decomposition ofg into eigenspaces ofs,

g05$xPgus~x!5x%, g15$xPgus~x!52x%,

theng/g0>g1 is called aninfinitesimal symmetric space.
Under the above conditions the following relations hold:

@g0 ,g0##g0 , @g0 ,g1##g1 , @g1 ,g1##g0 . ~29!

This means that the Lie algebrag is Z/2Z-graded. On the other hand, given aZ/2Z-gradation ong
@i.e., a decompositiong5g0%g1 such that~29! holds#, then an involutions of g is defined by
lettings(x)5x for all xPg0 ands(x)52x for all xPg1. Thus the infinitesimal symmetric spaces
can equivalently be defined by~29!.

Since the Killing form is invariant under automorphisms, we have

Tr„ad~x!ad~y!…5Tr~ad„s~x!…ad„s~y!…!52Tr„ad~x!ad~y!…, ;xPg0 ,yPg1 . ~30!

Thus g0 and g1 are orthogonal with respect to the Killing form ong and the restriction of the
Killing form to g0, respectively, tog1 is nondegenerate.

The list of all symmetric spaces is due to Cartan. A derivation based on Kac’s classification of
finite order automorphisms of semisimple Lie algebras can be found in Ref. 7; cf. also Ref. 1.

F. The underlying real representation of an orthogonal representation

A complex representation of a compact Lie groupU is calledorthogonal if there exists a
nondegenerate symmetric bilinear form~.u.! on the representation spacep, such that

~g~x!ug~y!!5~xuy!, ;gPU,x,yPp, ~31!

i.e. the form isinvariant underU. By choosing an orthonormal base ofp with respect to~.u.! we
get a matrix representation ofU by orthogonal matrices. IfU is connected and the orthogonal
representation is faithful, this gives an embedding ofU in SO(n).

On the Lie algebra level the invariance property is the following:

„u~x!uy…52„xuu~y!…, ;uPu, x,yPp, ~32!

for example~3! is equivalent to this equation in the special case of the adjoint representation.
Since the Killing form is invariant under the adjoint action and since it is nondegenerate for a
semisimple Lie algebra, the adjoint representation of a semisimple Lie algebrag is an orthogonal
representation.

In the case of aZ/2Z-graded Lie algebra, the representation ofg0 on g1 is an orthogonal
representation, the restriction of the Killing form tog1 being an invariant form.

It is well known „see, e.g., Ref. 8, Prop.~6.4!#…, that every complex orthogonal representation
of a compact Lie groupU is the complexification of a real representation ofU. This means that
there exists a real subspacep

R of p, invariant under the group action@U~pR!#p
R#, such that

p5pR% ipR

as a real vector space,~i.e., each element ofpPp can be uniquely decomposed asp5x1 iy with
x,yPp

R! and such that

u~x1 iy !5u~x!1 iu~y!, ;uPU, x,yPpR.
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Althoughp
R is in general not uniquely determined as a real subspace ofp, its isomorphic type as

a realU-module is uniquely determined by the isomorphic type of the complexU-modulep, since
p is isomorphic topR%p

R as a realU-module.

III. THE SYMMETRIC SPACE THEOREM

The following assumptions and notations shall be valid for the whole section: LetU be a
compact Lie group and let the reductive Lie algebrau5u0%u1%...%uS with centeru0 and simple
idealsu1,...,uS be the complexification of the Lie algebra ofU. Let $u

i% i51,...,dimu be a base foru
consisting of anti-Hermitian elements, which is the union of bases$ui% iPI s

for the idealsus such
that (ui uuj )52d i j for i , jPI s . ~This is possible since on the real subalgebra of anti-Hermitian
elements the normalized invariant form is negative definite.! For iP$1,...,dimu% let s( i ) denote the
index of the ideal, which contains the elementui , uiPus( i ) , such that 0<s( i )<S.

Before stating the theorem I shall prove three lemmas, which will be needed for its proof, but
can also be useful by themselves.

Lemma 1: The following equation holds in the universal enveloping algebraU~u! and thus in
any representation ofu:

2(
iPI s

uiujui522Vsu
j1ds~ j !,svads

uj , for 0<s<S, 1< j<dim u, ~33!

whereVs denotes the quadratic Casimir operator of the idealus .
Proof: The quadratic Casimir operator ofus can be written as

Vs52 (
iPI s

~ui !2.

Applying adu(Vs) to u
j givesvads

uj , if ujPus and 0 otherwise, since [u
i ,uj ]50 for s( i )Þs( j ).

Therefore,

adu~Vs!u
j5ds~ j !svads

uj52 (
iPI s

ad~ui !2~uj !

52 (
iPI s

†ui@ui ,uj #‡

52 (
iPI s

„ui~uiuj2ujui !2~uiuj2ujui !ui…

52 (
iPI s

„~ui !2uj2uiujui2uiujui1uj~ui !2…

52Vsu
j12(

iPI s
uiujui ,

where we used thatVs commutes withu
j . h

Applying ~33! again touj and summing overj , we immediately get the following corollary.
Corollary 1: The sum of the elements(uiuj )2 lies in the center ofU(u) and is given in terms

of the quadratic Casimir operators as follows:

2(
iPI s

(
jPI t

~uiuj !25~2V t2dstvads
!Vs , for 0<s,t<S. ~34!
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By taking the trace of equation~34! we immediately get the following corollary, which will be
used in the proof of the next lemma.

Corollary 2: In any n-dimensional matrix representation ofu, such that the operators ui are
represented by matrices Mi and such that the quadratic Casimir operatorVs of the idealus acts
as a scalarvsidn for s50,...,S, the following identity holds:

2(
iPI s

(
jPI t

Tr„~MiM j !2…5~2v t2dstvads
!vsn, for 0<s,t<S. ~35!

The following further assumptions and notations shall again be valid in the sequel.
Let p be a faithfuln-dimensional orthogonal complex representation of the compact groupU.

This defines an embedding ofU into SO(n) and we shall thus viewU as a subgroup ofSO(n).
Let $pa%a51,...,n be an orthonormal base ofp

R. Let the application of the operatorsui on the basis
pa be described by the real antisymmetric matricesMi , as follows:

ui~pa!5 (
g51

n

Mga
i pg . ~36!

Furthermore letys denote the index of the representation ofus on u%p.
To evaluateys we note that~a! the index of a direct sum of representations is the sum of the

indices of the direct summands and~b! the index of the adjoint action ofus on u is vads
, because

of ~27!, and since the adjoint action ofus on the sum of theut with tÞs is trivial. Denoting the
index of the representation of the idealus on p by ks ~instead ofkrs

!, we get

ys5vads
1ks5vads

12 j s . ~37!

It follows that ys.0 for s50,...,S.
We assume that the underlying real representationp

R of p is irreducible. This holds, for
example, if p is itself irreducible, butp can also decompose asp>q%q* , where q is some
irreducible complex representation, such thatq>” q* . @The theorem also holds whenpR is reducible,
and it can be derived from the irreducible case~see, e.g., Ref. 6!.#

It can be shown that under the assumption thatp
R is irreducible as aU-module, the Casimir

operatorsVs act as real positive scalars onp, althoughp is not irreducible as a module overus ,

r~Vs!5vsidn , with vs.0. ~38!

Therefore,~26! and ~35! hold in this situation.
Lemma 2: Let V be a level one representation space of the affine algebraL̃„so(n)…. Let cu

denote the central element of the Virasoro algebra constructed fromL̃~u! by the Sugawara
construction on V and let cK denote the central element of the coset Virasoro algebra on V.
Furthermore, let

Jabgd :5(
s50

S
1

ys
(
iPI s

~Mgb
i M da

i 1Mba
i M dg

i 1Mag
i M db

i !, ~39!

where M is defined in (36), then the following identity holds:

(
abgd

~Jabgd!25
6

n
cucK . ~40!

Proof: First let us bringcK andcu in the form that is most adequate to the following calcu-
lations. Substituting~28! in ~24! we get
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cK5
n

2
2(

s50

S
ks dim us

ks1vads

5
~26!~37! n

2
2(

s50

S
nvs

ys
. ~41!

For cu alone we have

cu5(
s50

S
nvs

ys
.0. ~42!

The sums

Jabgd
i :5Mgb

i M da
i 1Mba

i M dg
i 1Mag

i M db
i , ~43!

are invariant under cyclic permutation of the indicesa,b,g: Jabgd
i 5Jgabd

i 5Jbgad
i , so that

1

3 (
a,b,g,d

Jabgd
i Jabgd

i 5 (
a,b,g,d

Jabgd
i Mgb

j M da
j

5 (
a,b,g,d

~Mgb
i M da

i 1Mba
i M dg

i 1Mag
i M db

i !Mgb
j M da

j

5„Tr~MiM j !…222Tr„~MiM j !2…

5d i jks~ i !
2 22Tr„~MiM j !2…, ~44!

whereks is the index of the representation ofus on p. For the third equality I used the antisym-
metry of the matricesMi . Using ~44! we get

1

3 (
a,b,g,d

~Jabgd!25
1

3 (
s,t50

S
1

ysyt
(

iPI s , jPI t
(

a,b,g,d
Jabgd
i Jabgd

j

5
~44!

(
s50

S ks
2 dim us

ys
2 2 (

s,t50

S
2

ysyt
(

iPI s , jPI t
Tr„~MiM j !2…

5
~26!~35!

(
s50

S S ksvsn

ys
2 2(

t50

S ~2v t2dstvads
!vsn

ysyt
D

5
~37!

(
s50

S
vsn

ys
S ks1vads

ys
2(

t50

S
2v t

yt
D

5S (
s50

S
vsn

ys
D S 12(

t50

S
2v t

yt
D

5
~41!

cu•

2cK
n

. h

The following lemma was shown in Ref. 1.
Lemma 3: Suppose thatg[u%p forms aZ/2Z-graded algebra, as in (29) withg05u and

g15p, which is related to the given orthogonalu-module-structure onu%p as follows.
• The Killing form of g coincides onp3p with the given orthogonal inner product, i.e.,

Tr„adg(pa)adg(pb)…5da,b , ;1<a,b<n.
• The restriction of the adjoint representation ofg to u coincides with the givenu-module

structure ofu%p, i.e.,
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@ui ,uj1pa#g5@ui ,uj #u1ui~pa!5@ui ,uj #u1(
g

Mga
i pg , ;1< i , j<dim u, 1<a<n,

~45!

where@.,.#g and @.,.#u denote the Lie products ong andu, respectively.
Then the Lie product onp is given by

@pa ,pb#g5 (
i51

dim u
1

ys~ i !
Mab

i ui . ~46!

Proof: The invariance~3! of the Killing form means that

Tr„ad~ui !ad~@pa ,pb#!…5Tr„ad~@ui ,pa#!ad~pb!…. ~47!

Since@g1,g1##g0 by assumption, we must have@pa ,pb# 5 ( j51
dim u

Xab
j uj , where theXab

j are some

constants, such thatXab
j 52Xba

j . These constants can be determined by equating the l.h.s. of~47!,

(
j51

dim u

Xab
j Tr„ad~ui !ad~uj !…5 (

j51

dim u

2Xab
j ys~ i !d i j52Xab

i ys~ i ! ,

with the r.h.s. of~47!,

Tr„ad~@ui ,pa#!ad~pb!…5 (
g51

n

Mga
i Tr„ad~pg!ad~pb!…5 (

g51

n

Mga
i dgb5Mba

i .

It follows that

Xab
i 52

1

ys~ i !
Mba

i 5
1

ys~ i !
Mab

i . h

Symmetric Space Theorem„Goddard, Nahm, Olive…: Let U be a compact Lie group with
a faithful n-dimensional orthogonal representation onp. Consider the Lie algebrau of U as a
subalgebra of so(n) with the inclusion ofu in so(n) induced by the representation onp. Let cK
denote the central element of the coset Virasoro algebra on a level one representation space of
L̃(so(n)).

ThencK vanishes if and only ifg[u%p carries the structure of aZ/2Z-graded Lie algebra with
g05u andg15p, which is related to the given orthogonalu-module-structure onu%p as in Lemma
3.

Proof: The conditions of the theorem, in view of Lemma 3, leave no freedom in defining the
Lie product @.,.#g , if it exists: This is because these conditions already uniquely determine a
bilinear antisymmetric product ong5u%p, as follows:

@ui ,uj #g5@ui ,uj #u ,

@ui ,pa#g5 (
g51

n

Mga
i pg52@pa ,u

i #g ,

@pa ,pb#g5 (
i51

dim u
1

ys~ i !
Mab

i ui
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~cf. Lemma 3!. Therefore, the proof of the theorem boils down to showing, thatcK vanishes if and
only if this bilinear antisymmetric product ong obeys the Jacobi identity.

It can easily be shown from the assumptions that the Jacobi identity holds for any three
elements, if at least one of them lies inu. Therefore,g is a Lie algebra iff the Jacobi identity holds
on its p part, i.e., iff

05†pa ,@pb ,pg#‡1†pg ,@pa ,pb#‡1†pb ,@pg ,pa#‡5 (
d51

n

Jabgdpd , ;a,b,g, ~48!

where we used the equation

†pa ,@pb ,pg#‡5 (
d51

n S (
i51

dim u Mgb
i M da

i

ys~ i !
D pd ,

which follows from Lemma 3.
Thus, the Jacobi identity~48! is equivalent to the condition

Jabgd50, ;a,b,g,d. ~49!

But since theMi are real, theJabgd are also real. Therefore, each individualJabgd vanishes
if and only if the sum of the squares (Jabgd)

2 on the l.h.s. of~40! vanishes. But since by Lemma
2 this sum is equal to (6/n)cucK andcu is always positive, it follows that~49! is equivalent to the
vanishing ofcK :

cK50, iff Jabgd50, ;a,b,g,d. ~50!
h

The equivalence~50! was shown in Ref. 5 using the quark model construction. This result and the
observation that~49! is equivalent to a Jacobi identity led to the symmetric space theorem.1
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The main result in this paper is the character formula for arbitrary irreducible
highest weight modules ofW algebras. The key ingredient is the functor provided
by quantum Hamiltonian reduction, which constructs theW algebras from affine
Kac–Moody~KM ! algebras and in a similar fashionW modules from KM mod-
ules. Assuming certain properties of this functor, theW characters are subse-
quently derived from the Kazhdan–Lusztig conjecture for KM algebras. The result
can be formulated in terms of a double coset of the Weyl group of the KM algebra:
the Hasse diagrams give the embedding diagrams of the Verma modules and the
Kazhdan–Lusztig polynomials give the multiplicities in the characters. ©1996
American Institute of Physics.@S0022-2488~96!00607-X#

I. INTRODUCTION

TheW algebras were introduced more than a decade ago as~higher spin! extensions of the
Virasoro algebra in the context of two-dimensional conformal field theory.1 Analogous to the
Virasoro algebra, one expects that the representation theory ofW algebras plays a crucial role in
applications such as in conformal field theories withW symmetry, and in theories where theW
symmetry is gauged~W strings andW gravity! ~see Refs. 2 and 3 for reviews!. For these
applications, the relevant representations are highest weight modules. A basic goal is therefore to
describe the irreducible modules, and more specifically to compute their characters.

There exists a general approach to find the irreducible characters from the characters of Verma
modules. Any Verma moduleM (x) can be decomposed into irreducible highest weight modules
L(y) ~local composition series!. This gives rise to character formulas of the form

chM ~x!5(
y
mxy ch L~y!, ~1!

wherem is a matrix whose entriesmxy count the number of times thatL(y) appears in the
decomposition ofM (x). Doing this for allM (x) such thatm can be inverted gives

ch L~x!5(
y
mxy

21 chM ~y!. ~2!

The characters of Verma modules are in general easy to compute, hence the computation of the
characters of the irreducible modules boils down to determining the multiplicitiesmxy .

This general program has been applied successfully to the Virasoro algebra.4 The key ingre-
dient there is that every submodule of a Verma module is a sum of Verma modules. Since there
is at most one embedding between Verma modules, this implies that the multiplicitiesmxy are 0 or
1, and the irreducible characters follow directly from the embedding pattern of the Verma mod-
ules. These embedding patterns are completely classified, and, consequently for the Virasoro
algebra, the characters ofall irreducible highest weight modules are known.

0022-2488/96/37(7)/3587/24/$10.00
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For W algebras the submodule structure of Verma modules is much more complicated: in
general submodules are not sums of Verma modules. Therefore the embedding patterns of the
Verma modules do not determine the irreducible characters. This is directly related to the occur-
rence of multiplicitiesmxy.1.

There are, of course, also other approaches. For instance, for theW N minimal models, the
irreducible character chL(x) ~for x inside the Kac table! has been determined directly, using
free-field methods.5 In terms of the multiplicities this amounts to having computed a single row of
m21. It does not appear to be possible to apply these methods to compute the other rows, which
is necessary to determine the characters of all irreducible highest weight modules~i.e., also forx
outside or on the boundary of the Kac table!. In a way, the results of Ref. 5 forW N algebras
amount to having theW analog of the Weyl–Kac character formula for affine Kac–Moody~KM !
algebras.

For affine KM algebras the characters are known beyond the Weyl–Kac character formula.
For k1h~Þ0 the program described above has been fully completed. The result can be summa-
rized as follows:

~i! The weightsy appearing in the decomposition~1! are determined by a subgroup of the
affine Weyl group, and the associated Bruhat ordering@the Kac–Kazhdan~KK !
condition6#.

~ii ! The multiplicitiesmxy are given in terms of the Kazhdan–Lusztig polynomials associated
to the affine Weyl group@the Kazhdan–Lusztig~KL ! conjecture7,8#.

The main ingredient in the proof of~i! is the Jantzen filtration, whereas~ii ! has been proven
using the intersection cohomology of Schubert varieties~only for integral weights; for other
weights it is still a conjecture!. Neither of these concepts seems to have been worked out forW

algebras.
It is now interesting to note thatW algebras and KM algebras are intimately related. In

particular, a large class ofW algebras can be obtained from affine KM algebras by~quantum!
Hamiltonian reduction, where one imposes certain constraints on the KM generators~see Ref. 9
for a review!. In this way aW algebra can be constructed for every embedding of sl2 into the
simple Lie algebra underlying the affine KM algebra.10 The quantum construction naturally allows
for a Becchi–Rouet–Stora–Tyutin~BRST! formulation, in which theW algebra arises as the
BRST cohomology of a complex involving the KM algebra.11–13Of course, given an sl2 embed-
ding, one can also compute the cohomology of a KM module. By construction, the result will be
a module of the correspondingW algebra. Thus, one obtains in a natural way a functor from KM
modules toW modules. The action of this ‘‘reduction functor’’ is, in general, hard to compute. In
Ref. 12, the action on~resolutions of! admissible KM modules was computed for principal sl2

embeddings, assuming certain properties of the reduction functor. This way the characters of the
WN minimal models are recovered.

The main new idea in this paper is to apply the reduction functor to ‘‘arbitrary’’ KM modules,
to find the analogs of the general results~i! and ~ii ! for W algebras. The result is a natural
generalization of the KL conjecture toW algebras associated to arbitrary sl2 embeddings. We
show how this ‘‘KL conjecture forW algebras’’ can be derived from the KL conjecture for KM
algebras, assuming similar properties as in Ref. 12 of the reduction functor. These assumptions are
motivated by the results14 for finite W algebras. The upshot is thatall irreducible characters for
suchW algebras are thereby determined. We verified the conjecture for a nontrivial set ofW 3
modules.

The setup of this paper is as follows. In Sec. II, we review the representation theory and KL
conjectures of affine KM algebras, including a discussion of the translation functor that serves as
a helpful analogy with the reduction functor. Then in Sec. III, after some remarks on the repre-
sentation theory of generalW algebras, we present the main result of this paper in Sec. III C, the
KL conjecture forW algebras. We also give an idea of how it can be derived using the reduction
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functor. Several applications of the conjecture are discussed in Sec. IV. Properties of Coxeter
groups and their KL polynomials are given in the Appendix.

II. THE KAZHDAN–LUSZTIG CONJECTURES FOR AFFINE KAC–MOODY ALGEBRAS

We first present a collection of results concerning affine KM algebras and their highest weight
modules, leading to the KL conjectures. Virtually everything stated here can be found somewhere
in the mathematical literature on the subject, or can be concluded directly from it. We have
avoided a rigorous presentation, but instead focussed on the line of thought, and made clear what
is well established and what is conjectured. For background and explanations on KM algebras and
the structure of the highest weight modules we refer to Refs. 15 and 16, and for Weyl groups and
KL polynomials to Ref. 17.

A. Composition series and character formulas

Let g be an affine KM algebra, and fix a triangular decompositiong5n1 %h%n2 in positive
root generators, Cartan subalgebra~CSA!, and negative root generators. A singular vectorvl is an
eigenvector of the generators of the Cartan subalgebrah with weightlPh* , and is annihilated by
the positive root generators. A highest weight module is a module that is generated from a singular
vector, the highest weight vector, by the action of the negative root generators. There are two
important examples of highest weight modules. The first is the Verma moduleM ~l!, which is
uniquely defined by the property that it is generated freely fromvl . The second is the quotient of
M ~l! by its maximal proper submodule, which gives the unique irreducible highest weight module
L~l!.

Highest weight modules themselves are special examples of modules in the so-called category
O .8,18 In general this category consists of modulesV which have a weight space decomposition

V5 % m<lVm , ~3!

where thems satisfym<l for l in some finite subset ofh* ~recall thatm<l iff l2m is on the
positive root latticeQ1 of g! and dimVm,`. The categoryO contains highest weight modules,
tensor products, submodules, quotients, etc.

For every moduleV in O , one can define a~formal! character chV,

ch V5(
m

dim Vme
m, ~4!

where the formal exponentials satisfyelem5el1m ande051. The character of the Verma module
M ~l! is given by

chM ~l!5el (
gPQ1

P~g!e2g5el )
aPD1

~12e2a!2dim ga, ~5!

wherega is the root space of roota, D1 is the set of positive roots, andP~g! is the~generalized!
Kostant partition function. One of the central problems of representation theory is to find the
characters of the irreducible highest weight modulesL~l!. The strategy is to relate these to the
explicit characters of Verma modules~5!. This is possible due to the following general structure
theorem, which also illustrates thatO is natural in the context of highest weight modules@in
particular, theL~l!s are the only irreducibles inO #. Every moduleV in the categoryO has a local
composition series at any weightl of V. A local composition series forV at l is a sequence of
submodules ofV, V5V0.V1.•••.Vn21.Vn50, such that eitherVi /Vi11>L(m) for some
m>l, or (Vi /Vi11)m50 for all m>l. One denotes by@V:L~m!# the number of times thatL~m!
appears in the local composition series ofV at l. It is called the multiplicity ofL~m! in V. It is
independent of the particular sequence of submodules one chooses. We stress that@V:L~m!# does
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not count the number of singular vectors at weightm in V: the statement thatVi /Vi11>L(m) only
requires that there is a vectorvm which is singular in the quotientVi /Vi11 but not necessarily
singular in Vi , let aloneV. A vector that is singular in a quotient of submodules is called
primitive, and the corresponding weight is called a primitive weight. Obviously, a singular vector
is also primitive, but it is important to realize that there are also other types of primitive vectors.
We also stress that the multiplicities [M :L] can be larger than 1, contrary to what was initially
thought based on the known trivial multiplicities of the simple Lie algebrasḡ 5 sl2,sl3 and the
affine KM algebrag5sl2.

At the level of characters, the local composition series implies that~4! is given by a sum over
the irreducible characters: chV5(m[V:L(m)]ch L~m!, where the sum runs over the weights ofV
~of course, only the primitive weights give a nonvanishing contribution!. This applies in particular
to Verma modules, leading to

chM ~l!5 (
m<l

@M ~l!:L~m!#ch L~m!. ~6!

Note that the composition series starts with [M (l):L(l)]51, since dimM ~l!l51. Ordering the
set of weightsm<l asl5m0, m1, m2,..., such thatj> i wheneverm j<m i , one has the following
set of equations:

chM ~m i !5 (
m j<m i

@M ~m i !:L~m j !#ch L~m j !.

The matrix [M (m i):L(m j )], called the Jantzen matrix~for l!, is upper triangular with ones on the
main diagonal. Therefore, it can be inverted. Denoting the inverse matrix elements by
„L(m i):M (m j )… ~which are possibly negative integers!, one finds

ch L~m i !5 (
m j<m i

„L~m i !:M ~m j !…chM ~m j !.

In conclusion, from~6! one finds the character formula

ch L~l!5 (
m<l

„L~l!:M ~m!…chM ~m!. ~7!

Here chM ~m! is given through~5!. Computing chL~l! boils down to computing the numbers
„L(l):M (m)… for all m<l or, equivalently, the Jantzen matrix [M (m i):L(m j )] for l.

B. The Kac–Kazhdan conditions

The first step in determining the multiplicities [M (l):L(m)] is to find all pairsl,m such that
[M (l):L(m)]Þ0. The general solution to this problem has been given by Kac and Kazhdan,6

using the generalized Casimir ofg and the Jantzen filtration of Verma modules.15 For the purposes
of this paper it is sufficient to consider only weightsl with ^l1r,d&5k1h~Þ0. In that case the
result of Ref. 6 can be rephrased in terms of properties of the affine Weyl group.19

The affine Weyl groupW is a Coxeter group, generated by the simple reflectionssi where
si(l)5l2^l,a i

~&a i are the reflections in the simple rootsai of g. Arbitrary elementswPW
correspond to expressionsw 5 si1si2•••si k. The minimal number of simple reflections needed to
generatew is called the lengthl ~w! of w. An expression of minimal length is called reduced. If
w,w8PW are two reduced expressions, then we denotew,w8 if the reduced expression forw can
be obtained by dropping simple reflections from a reduced expression forw8. The resulting
relationw<w8 is a partial ordering ofW, called the Bruhat ordering.
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An important ingredient in what follows is the subgroupWl,W: it is the group generated by
reflectionsr â with âPDl,1

re 5$aPD1
reu^l1r,a~&PZ%. Clearly, only ifl is integral,Wl5W ~re-

call that rPh* satisfies^r,a i
~&51!, otherwiseWl will be a proper subgroup ofW ~which for

affineWmay be isomorphic toW!. It can be shown thatWl is again a Weyl group; it is generated
by simple reflectionsŝi 5 r â i

~simple inWl! whereâ i are the simple roots of the rootsystemDl,1
re .

The length function onWl is denotedl l(w). Obviously, the relation betweenl andWl is
many-to-one; for instance,Wl5Wl1m for arbitrary integral weightm. In fact, up to isomor-
phisms, there is only a finite number ofWl .

20

The groupsWl organize the nonvanishing multiplicities in the following way: the primitive
weights ofM ~l! are on the shifted Weyl orbitWl .l, where

w.l[w~l1r!2r, ~8!

and vice versa. Only the lower weights~with respect to Bruhat ordering! on the orbit are primitive
weights ofM ~l!. In the remainder of this section we describe this in more detail.

First considerk1h~.0. Then every orbitWm .m has precisely one maximal elementl, the
dominant weight, such thatw.l<l for all wPWm . Using~8! it is easy to see that such a dominant
weightl is characterized by

^l1r,â i
~&>0. ~9!

Clearly, there is a one-to-one correspondence between dominant weightsl and orbitsWl .l. There
may not be a one-to-one correspondence between elements ofWl and the weights on the orbit
Wl .l. This happens precisely if there is a subgroupWl

0 of Wl which leavesl invariant. HereWl
0

is a finite parabolic subgroup ofWl , generated by the simple reflectionsr â i
with â i satisfying

^l1r,â i
~&50. A dominant weight is called regular ifWl

0 is trivial, and it is called singular
otherwise. Thus, weights on the orbitWl .l of a dominant weight are in one-to-one correspon-
dence with elements of the coset

Wl /Wl
0, ~10!

i.e., any weightm can be written uniquely asm5w.l with l dominant andwPWl/Wl
0. This coset

will be crucial in what follows: in particularthe multiplicities depend onl only through the coset
Wl/Wl

0!
DenoteMw5M (w.l) andLw5L(w.l). Then the Kac–Kazhdan condition fork1h~.0 can

be described as follows:

@Mw :Lw8#Þ0 iff w<w8 with w,w8PWl /Wl
0. ~11!

Here, the ordering on the cosetWl/Wl
0 is induced from the Bruhat ordering onWl :

w<w8 with w,w8PWl /Wl
0 iff wI <wI 8 with wI ,wI 8PWl . ~12!

@HerewI is the minimal coset representative ofw in the coset, defined throughl (wI s).l (wI ) for
all sPWl

0 . Of course we could also have chosen the maximal representativesw̄ which have
l (w̄s),l (w̄) for all sPWl

0.#
For the character formulas~6! and~7! the Kac–Kazhdan result implies the following. First of

all, the sum over the weight space in~6! reduces to a sum overw8PWl/Wl
0:

chMw5 (
w8>w

@Mw :Lw8#ch Lw8 . ~13!

Second, using transitivity of the Bruhat order this can be inverted
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ch Lw5 (
w8>w

~Lw :Mw8!chMw8 . ~14!

Unlike the sum in~13! not all terms in this sum have to be nonvanishing.
For weights withk1h~,0, the result can be rephrased analogously. We note that weights

with k1h~,0 are the image of weights withk1h~.0 under the shifted inversion

s.l52l22r. ~15!

Clearly,Ws.l5Wl , sos is also a one-to-one map between the orbits on either side~orbits always
belong to one side only asW leavesk1h~ invariant!. Sinces reverses the order of weights, every
orbit now will have a minimal weight, called antidominant, which is of the forms.l with l
dominant. In terms of these antidominant weights one has the analog of~11! describing the full
KK condition for k1h~,0:

@Mw :Lw8#Þ0 iff w>w8 with w,w8PWl /Wl
0. ~16!

Thus one finds the same character formulas~13! and ~14!, but with the sum overw8<w.

C. Embeddings of Verma modules

In the previous section we have discussed the role of the cosetsWl/Wl
0 in finding the primi-

tive weights of a Verma moduleM ~l!. In this section we discuss how the same cosets also
describe the embeddings between Verma modules.

This is based on the property of KM Verma modules that at every primitive weight there is at
least one singular vector.6 Since a singular vectorvm in a Verma moduleM ~l! gives rise to a
homomorphismM (m)�M (l) ~embedding! between Verma modules, this statement implies that
there is a homomorphism iff the multiplicity [M (l):L(m)] is nonvanishing. Hence

Mw8�Mw iff w<w8 with w,w8PWl /Wl
0. ~17!

In other words: the diagram representing the embeddings of the Verma modules is given by the
Hasse diagram of the cosetWl/Wl

0: the vertices of this diagram are the elements of the coset and
the links between the vertices connect the adjacent elements~two coset elementsx,y are called
adjacent if there is no third coset elementz such thatx,z,y!. Since one can classify the Hasse
diagrams, this gives a classification of embedding diagrams.

In fact, if k1h~Þ0, the relation between embeddings and the Hasse diagram is even stronger,
because in that case there is at most one singular vector at every primitive weight. This implies
that the homomorphismM (m)�M (l) is unique, or

dim Hom„M ~m!,M ~l!…<1. ~18!

This can be argued as follows. If there is a sequenceM (m1)�M (m2)�M (m3) of homomor-
phisms, the embedding property implies that

dim Hom„M ~m1!,M ~m3!…>dim Hom„M ~m2!,M ~m3!…. ~19!

For k1h~,0, any Verma module contains always a lowest primitive weight~the antidominant
weight!. At this weight, there is precisely one singular vector~because any two embedded Verma
modules necessarily overlap!. This immediately implies~18!.

Fork1h~.0, there is no lowest primitive weight. In that case~18! follows from the result for
k1h~,0 through the ‘‘reflection principle’’ of semi-infinite homology,21

Hom„M ~m!,M ~l!….Hom„M ~s.l!,M ~s•m!…. ~20!
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D. Jantzen’s translation functor

In this section we discuss how the multiplicities forarbitrary dominant weights follow from
the multiplicities forregular dominant weights. The idea is to use Jantzen’s translation functor8,15

to map modules with regular weights~trivial Wl
0! to modules with singular weights~nontrivial

Wl
0!. The reason for highlighting this ingredient here is the striking similarity between this deri-

vation and the derivation ofW multiplicities from KM multiplicities using the reduction functor
in Sec. III B.

Let l8 be a singular dominant weight, and letl be a regular dominant weight such thatl2l8
is an integral weight. Clearly,Wl5Wl8, butWl

0 is trivial whereasWl8
0 is not. The tensorproduct

with the irreducible module associated withl82l gives rise to an exact functor8,15,22 ~the trans-
lation functor! that maps

M ~w.l!°
t
M ~w.l8!. ~21!

To obtain the action of the translation functor on irreducible modules, observe that for Verma
modulesM (w8.l)�M (w.l) with w,w8 in the same coset, the functor maps the quotient
M (w.l)/M (w8.l) @which containsL(w.l8)# to zero, so it immediately follows that

L~w.l!°
t
L~w.l8!d w̄,w . ~22!

~Here w̄ is the maximal representative ofw in the cosetWl /Wl8
0 .! The maps~21! and ~22!

determine the multiplicities for singular weights from the multiplicities of the regular weights:

@M ~w.l8!:L~w8.l8!#5@M ~w̄.l!:L~w̄8.l!#. ~23!

Another useful application of the translation functor is the computation of the character of the
irreducible moduleLe for regular dominant weightsl ~without having to determine the full
Jantzen matrix!. For such weights namely, the sum in~14! runs over all the elements ofWl .
Applying ~21! and ~22! to it for a translation chosen such thatWl8

0 contains just one reflection
gives that the coefficients are given by«w 5 ( 2 1)ll(w),22 hence

ch Le5 (
wPWl

«w chMw . ~24!

This is the generalization of the Weyl–Kac formula16 to arbitrary regular dominant weights. The
same trick cannot be applied to obtain arbitrary characters~i.e., chLw or for l singular!. It is this
particular character formula~for admissiblel! that forms the starting point of Ref. 12 for gener-
alization toW algebras.

E. The KL conjectures

Now we are ready to describe the final step, i.e., to give the Kahdan–Lusztig formula for the
multiplicities. In Ref. 7, Kazhdan and Lusztig defined for an arbitrary Coxeter groupW a set of
polynomialsPx,y(q), labelled by pairs of elementsx,y in W, and depending on a single variable
q. For details and properties about the definition of these polynomials, see the Appendix. Impor-
tant for us is that they can be computed explicitly from a recursion relation@see~A18!#

Px,ys5q12cPxs,y1qcPx,y2q (
x<z,y
zs,z

Px,zP” z,y . ~25!
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The simple reflections is chosen such thaty,ys, such that the polynomialsPx,y are expressed in
terms of polynomialsPx8,y8 with l (y8), l (y).

Similarly, one defines a set of inverse polynomialsQx,y(q) through

(
x<z<w

Px,z~q!Qz,y~q!ezey5dx,y , ~26!

which can also be computed directly from a recursion relation@see~A18!#

Qx,ys5cQxs,y1~2q!cQx,y1cq (
x,z<y
zs.z

Q” x,zQz,y . ~27!

Analogously, one may also associate KL polynomialsPI ,QI to a cosetW/WI for WI a parabolic
subgroup ofW. If WI is finite, these are related to the KL polynomials onW as follows:

Px,y
I 5Px̄ , ȳ , Qx,y

I 5QxI ,yI . ~28!

HerezI and z̄ are the minimal and maximal representatives ofz in the coset [z]. In general, the
polynomialsPI and QI are not each other’s inverse. The inverse polynomials ofPI , QI are
denotedQ̃I , P̃I ; they are defined through

(
x<z<y

Q̃x,z
I Pz,y

I 5 (
x<z<y

Qx,z
I P̃z,y

I 5dx,y . ~29!

They can also be expressed in terms of the polynomials onW:

P̃x,y
I 5 (

zP@x#
Pz,yIezeyI , Q̃x,y

I 5 (
zP@y#

Qx̄ ,ze x̄ez . ~30!

The KL conjectures relate the multiplicities in the character formulas to the value of these poly-
nomials atq51. Letl be a dominant weight with cosetWl/Wl

0, Pw,w8 be the KL polynomials for
Wl , and Qw,w8 be the associated inverse KL polynomials. Then the multiplicities are given
by7,8,15,23

k1h~.0: @Mw :Lw8#5Pw,w8
I

~1!, ~Lw :Mw8!5Q̃w,w8
I

~1!

k1h~,0: @Mw :Lw8#5Qw8,w
I

~1!, ~Lw :Mw8!5 P̃w8,w
I

~1!
, ~31!

~the superscriptI refers to the subgroupWl
0!. These conjectures have been proven for integral

weights, in Ref. 24 fork1h~.0, and Ref. 25 fork1h~,0. It is inconceivable that the conjec-
tures fork1h~.0 are related to the conjecture fork1h~,0 through the semi-infinite cohomol-
ogy of affine KM algebras.

The conjectures naturally fit in a circle of ideas generally referred to as Kazhdan–Lusztig
theory. This theory interrelates many different problems, such as the classification of primitive
ideals in enveloping algebras, the computation of the multiplicities in composition series, and the
intersection cohomology of Schubert varieties~see Ref. 26 for an overview!. It applies in particu-
lar to simple Lie algebras, affine KM algebras, and quantum groups. In Sec. III we show that it
also applies toW algebras.

III. THE KL CONJECTURES FOR W ALGEBRAS

Compared to the situation for affine Kac–Moody algebras, relatively little is known about the
representation theory ofW algebras. The fact that a classification of such algebras is still lacking
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makes it harder to give a general approach to this problem. We claim, however, that for the class
of W algebras obtained through Hamiltonian reduction of affine KM algebras, the analog of most
results described in Sec. II exists. In particular, we formulate the KL conjecture for suchW

algebras.

A. Some generalities on W algebras and modules

Let us first consider a generalW algebra, generated by the modes of a finite set of quasipri-
mary fields~for a precise definition see Ref. 2!. TheW algebra will have a CSAh, i.e., a maximal
Abelian subalgebra of the zero modes. Unlike for KM algebras, the adjoint action ofh on the
generators of theW algebra is, in general, not diagonalizable~e.g., the zero-modeW0 of the spin
three field ofW 3!; therefore the ‘‘triangular’’ decomposition ofW 5W 1%h%W 2 , in positive
root generators, Cartan subalgebra, and negative root generators is given with respect to a subal-
gebrah8,h:

W 5 % a8W 2a8%h% a8W a8 , ~32!

wherea8 runs over the set of positive rootsD18 . By assumptionW 2a8>W a8 as vector spaces,
paired by an involutive maps :W 2a8→W a8.

The setup of representation theory is similar to that of affine KM algebras, in the following
sense. A singular vectorva is an eigenvector of the generators ofh with weightaPh* , andva is
annihilated by all positive root generators. A highest weight moduleV is generated fromva by the
action of the negative root generators. Similarly, one introduces a categoryO , which consists of
modulesV which have a weight space decomposition into a direct sum of weight spaces of the
subalgebrah8,

V5 % b8<a8Vb8 , ~33!

where the sum is over weightsb8 satisfyingb8<a8 for a8 in some finite subset ofh8* , and
dimVb8,` ~note thatb8<a8iff a82b8 is on the positive root latticeQ18 of h8!.

The categoryO again contains Verma modulesM (a), irreducible quotientsL(a), submod-
ules, etc.~but no tensor products as, in general, the tensor product of twoW modules is not aW
module!.

For every moduleV in O one can define a~formal! character chV,

ch V5(
b8

dim Vb8e
b8. ~34!

The Verma moduleM (a) has character formula

chM ~a!5ea8 (
b8PQ18

P~b8!e2b85ea8 )
b8PD18

~12e2b8!2dim W b8, ~35!

whereP(b8) is some generalized Kostant partition function.
The finite dimensionality of the weight spacesVb8 implies that the action of the generators of

the CSAh outsideh8 is reasonably well behaved: every weight spaceVb8 can be decomposed into
a finite number of Jordan blocksUb ,

Vb85 % bUb . ~36!

This implies that one can make local composition series inO , where the irreducible quotients are
again the highest weight modulesL(b), occurring with multiplicities [V:L(b)]. This leads to
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character formulas chV5(b[V:L(b)]ch L(b), where of courseb can only appear in the sum ifb8
is a weight ofV. This applies in particular to a Verma moduleM (a), leading to

chM ~a!5 (
b8<a8

@M ~a!:L~b!#ch L~b!, ~37!

where clearly [M (a):L(a)]51. Once again, this character formula can be inverted, such that the
characters of irreducible modules can be expressed in characters of Verma modules

ch L~a!5 (
b8<a8

„L~a!:M ~b!…chM ~b!. ~38!

To conclude: also forW algebras, the general strategy to find character formulas is to compute the
multiplicities [M (a):L(b)]. This is what we will do in the next section.

B. W modules from sl 2 reductions

A large class ofW algebras can be obtained through a procedure of~quantum! Hamiltonian
reduction of affine KM algebras.9 A particularly nice set of reductions are those related to sl2
embeddings.10 For every sl2 embedding into the simple Lie algebra underlying the untwisted affine
KM algebra, one can define a BRST complex such that the associated cohomology is nonvanish-
ing only in the zeroth term. This cohomology is aW algebra.11–13

Similarly, on the level of the representation theory, the cohomology of a complex associated
to a KM module gives aW module. This defines a functor from the category of KM modules to
the category ofW modules. We assume the following properties of this reduction functor:12,14~1!
the cohomology of the BRST complex associated to the KM module is nonvanishing only in the
zeroth term,~2! KM Verma modulesM ~l! are mapped toW Verma modulesM „a~l!…, and~3! a
local composition series of a KM Verma module is mapped to a local composition series of the
correspondingW Verma module.

From these assumptions it immediately follows that, when acting on KM irreducible modules,
the reduction functor maps

L~l!→L„a~l!… or L~l!→0. ~39!

If one knows whichL~l! have vanishing or nonvanishing cohomology, then the multiplicities of
W Verma modules are determined. The main result of this paper is an explicit formula for these
multiplicities, in terms of KL polynomials associated to a double coset which is completely fixed
by the reduction data. Note that the reduction only gives rise to aW algebra fork1h~Þ0, i.e.,
precisely those weights for which the KM multiplicities are given by the KL conjecture. This
implies that one has the complete KL conjecture for this class ofW algebras, so that the charac-
ters of all irreducible highest weightW modules are known.

Let us explain how this should work. Associated to the particular sl2-reduction is a regular
subalgebragr of the finite-dimensional simple Lie algebraḡ underlying the affine Kac–Moody
algebrag.14 The sl2 subalgebra is principally embedded intogr . This embedding determines a set
of constraints which can be chosen in such a way that they involve only positive roots. This is
necessary to get nonvanishing cohomology from KM Verma modules. In explicit examples it is
possible to verify that this cohomology is given by a Verma module of the correspondingW

algebra.12,14We assume that this holds in general. From the results of Ref. 14 we expect that the
parametrizationa~l! of theW weight is invariant under the shifted action of the Weyl groupWr

of gr ~which is a finite parabolic subgroup ofW!. More precisely,

a~w.l!5a~l! iff wPWr , ~40!
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so there is a one-to-one correspondence between theW weights and the invariants of the Weyl
groupWr . Using this parametrization we will from now on denote Verma modules and irreducible
modules for theW algebra byMr~l! andLr~l! with l a weight ofg. Up toWr invariance, the
labelling byg weights fixes theW weights uniquely.

Let l be a dominant weight. From the existence of the composition series it follows that the
set of primitive weights in aW Verma moduleMr~l! is contained in the orbit of the double coset

Wl
r \Wl /Wl

0, ~41!

whereWl
r 5WrùWl . From the embedding property~17! of KM Verma modules it now follows

that for each weight on this orbit there is an embedding ofW Verma modules, thus there is a
one-to-one correspondence between primitive weights and weights on the orbit of the double coset
~41!.

It is instructive to note the analogy with the translation functor discussed in Sec. II D: the
translation functor maps regular KM Verma modulesM ~l! to arbitrary KM Verma modules
M ~l8!, such that the relevant cosetsWl are mapped toWl8 /Wl8

0 . Similarly, the reduction functor
maps arbitrary KM Verma modulesM ~l! to arbitraryW Verma modulesMr~l!, such that the
relevant cosetsWl/Wl

0 are mapped toWl
r \Wl/Wl

0. Indeed, the derivation of theW multiplicities
from KM multiplicities from this point on goes completely analogous to the derivation in Sec.
II D.

The irreducibleW moduleLr~m! may arise only as the cohomology of the KM modules
L(w.m) with wPWr . Obviously, the cohomology of the associated KM Verma modulesM (w.m)
are identical. Therefore, the cohomology ofL~m! must vanish when there is awPWm

r such that
M (w.m),M (m) with w.mÞm. On everyWm

r orbit of m, only the lowest weight contributes
therefore.

It follows that the reduction functor maps

Mw→Mw
r , Lw→Lw

r dw,w̄ , ~42!

where againMw
r 5Mr(w.l), Lw

r 5Lr(w.l), and w̄ is the maximal representative ofw in the
double coset~41!.

Thus we observe that again the way to associate KL polynomials with the double coset~41!
is to take maximal representatives.

To summarize, consider theW algebra associated with the regular subalgebragr . Let l be a
dominant weight, and letw,w8PWl

r \Wl/Wl
0. Denote the double coset ofw by [w], the minimal

representatives bywI and the maximal representative byw̄, and define the following polynomials:

Pw,w8
IJ

5Pw̄,w̄8 , Qw,w8
IJ

5QwI ,wI 8 .

~43!

P̃w,w8
IJ

5 (
xP@w#

Px,wI 8exewI 8 , Q̃w,w8
IJ

5 (
xP@w8#

Qw̄,xe w̄ex .

Conjecture 1 (KL conjecture forW algebras):The multiplicities in Verma modules are given
by the KL polynomials associated with the double coset~41!:

k1h~.0: @Mw
r :Lw8

r
#5Pw,w8

IJ
~1!, ~Lw

r :Mw8
r

!5Q̃w,w8
IJ

~1!,

~44!
k1h~,0: @Mw

r :Lw8
r

#5Qw8,w
IJ

~1!, ~Lw
r :Mw8

r
!5 P̃w8,w

IJ
~1!.

Hence the character formula for irreducibleW modules is given by
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k1h~.0: chLw
r 5 (

w8>w

Q̃w,w8
IJ

~1!chMw8
r ,

~45!

k1h~,0: chLw
r 5 (

w8<w

P̃w8,w
IJ

~1!chMw8
r .

Conjecture 2:The embedding diagram of Verma modules corresponds to the Hasse diagram of the
double coset~41!:

k1h~.0: Mw8
r
�Mw

r

k1h~,0: Mw
r
�Mw8

r J iff w<w8 with w,w8PWl
r \Wl /Wl

0. ~46!

Moreover, we expect that also forW algebras there is just one singular vector at any given
weight. The KL conjecture supports this as follows. Fork1h~,0, there is an antidominant
weight, so here the proof is identical to the case discussed in Sec. II C. Barring a reflection
principle forW algebras, a general proof fork1h~.0 is lacking. However, in the examples we
studied, the polynomials appear to have the property that at arbitrary lengthl (w) one can always
find aw such that polynomialPe,w51. This provides an upperbound for the number of singular
vectors at that weight and, consequently, also at every primitive weightw8.l for anyw8<w @see
~19!#. So we expect that also forW algebras, dim Hom„Mr~l!, Mr~m!…<1.

IV. EXAMPLES AND APPLICATIONS

In this section we discuss some examples that on the one hand provide evidence for the
validity of the conjectures and, on the other, are an illustration of their effectiveness for actual
computations. In particular, the~explicit! calculation ofW characters for irreducible highest
weight modules is now reduced to combinatorics on the Weyl group ofg. For simplicity we
restrict tog5slN . If l5S i50

l l iL i is a dominant weight~whereLi are the fundamental weights of
slN , ^L i ,a j

~& 5 d i j !, then the levelk 5 S i50
l l i , P1

k is the set of dominant integral weights of level
k, andP11

k are the regular weights inP1
k . The finite partl̄Ph̄* is l̄ 5 S i51

l l iL i and finally
h~5N.

A. Comparison with known results

The first check is provided by the Virasoro algebra, which is the quantum Hamiltonian
reduction of the affine KM algebrag5sl2. In that case, it is a straightforward exercise to show that
the conjectures agree with the results of Feigin and Fuchs:~1! the embedding diagrams are
classified by the double cosets of the reflection subgroups of the affine Weyl groupâ1 ~see Table
I! and 2 the multiplicities in the characters are given by the corresponding KL polynomials:
Px,y5Qx,y51 for all x<y.

TABLE I. Classification of embedding patterns of the Virasoro algebra.

Feigin–Fuchs coset

I trivial

II6 a1
II 0 a1/a1

III6 â1
III6

0 â1/a1
III6

00 a1\â1/a1
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TABLE II. Classification ofW 3 modules withWl isomorphic toâ2.

Wl
r Wl

0 t L1 L2 c h w Table

a2 a2 1 ~1,0,0! ~0,0,0! 2 0 0 V

a2 a28 1 ~0,1,0! ~0,0,0! 2
1
3

2
27 VI

a2 a1 2 ~1,1,0! ~0,0,0! 210 2
1
3

1
27 VII

a2 a18 2 ~0,1,1! ~0,0,0! 210 0 0 VIII
a2 ••• 3 ~1,1,1! ~0,0,0! 230 21 0 IX

a1 a1 3/2 ~2,1,0! ~0,1,0! 22 2
1
9 2

1
81 X

a1 a18 3/2 ~2,0,1! ~0,1,0! 22
2
9

10
81 XI

a1 ••• 3/2 ~1,1,1! ~0,1,0! 22 0 0 XII
••• ••• 4/3 ~2,1,1! ~0,1,1! 0 0 0 XIII

TABLE III. The KL polynomialsPx,y for the Weyl groupâ2 of the affine KM algebrag5sl3, up to l (y)515. To findPx,y

for arbitrary pairsx,y @with l (y)<15# use that~1! Px,y50 unlessx<y, ~2! Px,y 5 Px21,y21, ~3! Px,y5Pt(x),t(y) with t an
automorphism of the Dynkin diagram,~4! Px,y 5 Px8,y for x<x8 andPx8,y~1! maximal,~5! if ~1!–~4! do not apply, then
Px,y51. So, given a pairx,y with x<y, one first fixesi , j ,k and an order~i.e., reading from left-to-right or from
right-to-left! such thaty is in the table. Second, one searches for anx8 ~in the fixed order! in the table such thatx<x8 and
Px8,y~1! is maximal; thenPx,y 5 Px8,y. If either of the two steps fail, thenPx,y51.
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A second check is provided by theW N minimal models, which are the quantum Hamiltonian
reduction of the affine KM algebrag5slN with respect to the principal sl2 embedding. Consider
the dominant weightsl with Wl isomorphic toW,22

l1r5w~L12tL2!, ~47!

TABLE IV. Inverse KL polynomialsQx,y for the Weyl groupâ2 of the affine KM algebrag5sl3, up to l (x)514. To find
Qx,y for arbitrary pairsx,y @with l (x)<14# use the rules of TABLE III withx,y interchanged and the ordering reversed.
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wheret5p/p8~p,p8 relative prime integers!, L1PP11
p , L2 P P11

p821, andw is an arbitrary ele-
ment of the Weyl groupW̄ of ḡ. The simple roots ofDl,1

re are given byâ i5w(a i)1L i
2d. Let

ŝi 5 r â i
.Then

~1! Wl is generated by the simple reflectionsŝi ,
~2! Wl

0 is generated by theŝi for which Li
150,

~3! Wl
r is generated by theŝi for which Li

250 andai is a simple root ofgr .

TheW N minimal models arise from dominant weights~47! which have trivialWl
0 andWl

r ,

henceL12rPP11
p2N andL2 2 r̄ P P11

p82N . The multiplicitiesQe,w for these regular dominant
weights are easily read off from the recursion relation~27! for x5e, since in that caseQe,ys5Qe,y
for all sy.y, so it follows thatQe,w51. This reproduces the character formulas of Refs. 5 and 12
for the W N minimal models. Similarly, admissible modules for arbitraryW algebras can be
obtained. As should be clear from above, the only difference will be in the domain ofL2.

New test cases for weightsl with Wl>W arise when one considers nontrivial subgroupsWl
0

and/orWl
r and nondominant highest weights. In the next section we will do this for the case of the

W 3 algebra.

B. Classification of W 3 modules

The Zamolodchikov algebraW 3 ~Ref. 1! is the quantum Hamiltonian reduction of the affine
KM algebra sl3 with respect to the principal sl2 subalgebra.

27 TheW3 weights are (h,w,c), the
eigenvalues of the zero modesL0W0 , andc, respectively. The parametrization of theW 3 weights
in terms of the sl3 weightl that follows from the BRST construction is

TABLE V. Multiplicities Px,y
IJ ~1! and Hasse diagram for the coseta2\â2/a2 .

TABLE VI. Multiplicities Px,y
IJ ~1! and Hasse diagram for the coseta2\â2 /a28 .
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h5
1

2t
ul̄1 r̄u21

c22

24
, w5

1

27t~ t21!
~ l̄1 r̄,L1!~ l̄1 r̄,L2!~ l̄1 r̄,L12L2!, ~48!

with c550224t224/t for t5k13. The character of aW 3 Verma module is given by
chMr(l)5qhh(q)2 @note that if t51, the parametrization~48! is singular, in that case one
replacesw→(t21)w#.

Up to isomorphism, there are two nontrivial parabolic subgroups of the affine Weyl groupâ2
of sl3, namelya1.Z2 anda2.D3 . This gives rise to nine inequivalent double cosets@we elimi-
nated the invariance of theW 3 weights under (t,l̄!→~1/t,2l̄/t!, which interchangesWl

0 andWl
r #

~see Table II!. For each of these double cosets, we computed the multiplicitiesPw,w8
IJ (1) ~for the

first 15 elements! from the KL polynomialsPw,w8(q) of sl3. Together with the KL polynomials
Qw,w8(q) these are given in Tables III and IV.28 Together with the associated Hasse diagrams,
they are given in Tables V–XIII.

To check if the polynomials and Hasse diagrams correspond with multiplicities and embed-
ding diagrams ofW Verma modules, we subsequently calculated~parts of! the irreducible char-
acters and embedding patterns directly on the Verma module.

This goes as follows. Starting from a highest weight vectorva ~eigenvector ofL0,W0, c with
eigenvaluesh,w,c, and annihilated by theLn , Wn for n.0! a basisM (a)h1N of the Verma

TABLE VII. Multiplicities Px,y
IJ ~1! and Hasse diagram for the coseta2\â2/a1 .

TABLE VIII. Multiplicities Px,y
IJ ~1! and Hasse diagram for the coseta28\â2 /a1.
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module at depthN is constructed. The rank of the innerproduct matrix~Shapovalov form! at depth
N gives the dimension of the irreducible character at depthN, and the eigenvectors ofW0 in the
kernel ofL1, L2, andW1 gives the singular vectors.

In practice, even at modest depth these calculations require much computer time: with the
Mathematica routines we had available, the singular vectors could generically be determined up to
depth 9, and the characters up to depth 6. To appreciate the effectiveness of the KL conjecture:
applying Table III to the vacuum module forc50 the characters are already determined beyond
depth 200, where the Verma module has of the order of 1020 states. To verify the predictions of the
conjectures, we selected a dominant weight with every coset such that the singular vectors in the
associated Verma module occur at the lowest possible levels~see Table II!. For every coset we
computed the characters of the first 15 submodules, and reconstructed the embedding patterns. We
found complete agreement with the KL conjecture.

C. Closed character formulas

The practical upshot of the KL conjectures is that characters ofW algebras can be computed
using only the combinatorics of double cosets of affine Weyl groups. In general, however, the
word problem posed by the recursion relation~27! is too complicated to solve in closed form.
Only in certain special cases, one does get a closed expression for character formulas, as in the
case of the Virasoro algebra~Qx,y51 for x<y! and theW N minimal models~Qe,y51!. We end
this section by discussing two more examples where a closed formula can be obtained: cosets of
type W̄\W and of typeW̄\W/W̄.

TABLE IX. Multiplicities Px,y
IJ ~1! and Hasse diagram for the coseta2\â2 .

TABLE X. Multiplicities Px,y
IJ ~1! and Hasse diagram for the coseta1\â2/a1 .
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1. The coset W̄ \W

Consider a coset of the formW̄\W, with W the affine Weyl group andW̄ the corresponding
finite Weyl group. These cosets correspond to modules on the boundary of the Kac table~type III0

of the Virasoro!, where the characters are given by finite sums over Verma characters.
For theW 3 algebraW5â2 and W̄5a2 . The KL polynomialsPx,y

IJ and Hasse diagram of
a2\â2 are given in Table IX. In that case it can be shown that there are two different character
formulas, depending only on the length ofwI ~the minimal representative ofw in the coset!. If the
length l (wI ) is odd, there are precisely two adjacent elements ofwI of length l (wI )11, of the form
wI . j andwI .k ~where j andk are distinct simple reflections!. Let a2 denote thea2 generated byj
andk. Then the character reads

ch L~w.l!5 (
xPa2

ex chM ~w.x.l!. ~49!

If the lengthl (wI ) is even, there are at most three adjacent elements ofwI of length l (wI )11, and
there is precisely one of the formwI .i ~for i a simple reflection!. Then we find

ch L~w.l!5 (
xPa2

ex„chM ~w.i .x.i .l!2chM ~w.i .x.l!…, ~50!

where again thea2 is generated byj ,k ~i , j ,k are distinct simple reflections!.

TABLE XI. Multiplicities Px,y
IJ ~1! and Hasse diagram for the coseta1\â2 /a18 .

TABLE XII. Multiplicities Px,y
IJ ~1! and Hasse diagram for the coseta1\â2 .
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It appears that these two formulas are related to the generic decomposition patterns of Weyl
modules, studied in Ref. 29. Similarly, there is 1 formula in the case ofA1, 4 different formulas
for B2, and 12 forG2.

These character formulas apply in particular to the~p,1! topological minimal models. The
admissible weights~47! in that case are integral, henceWl

r 5W̄. The regular integral weights

~l1r,a i
~!Þ0 modp ~51!

are on the orbit of the cosetW̄\W, with dominant weightslPP11
p . ForW 3 therefore, provided

p>3, ~49! and ~50! give the character formulas for all the regular weights. We observe that~51!
is exactly the condition for the physical states in~p,1! topological minimal matter coupled to
W-gravity.30 An interesting open question is whether the nontrivial multiplicities indicate the
presence of extra physical states.

The character formulas~49! and~50! apply in other cases as well, for instance~i! for regular
integral weights on the boundary of the (p,p8) Kac table,~ii ! for weights withWl

05W̄ andWl
r

trivial ~interchanging left and right multiplication!, and~iii ! for the otherg5sl3 relatedW alge-
bras~W3

~2! and sl3 itself!.

2. The coset W\W/W

Consider a coset of the formW̄\W/W̄, with W an affine Weyl group andW̄ a subgroup
isomorphic to the finite Weyl groupW̄. These cosets correspond to modules in a corner of the Kac
table~type III00 of the Virasoro!, where again the characters are given by finite sums over Verma
characters, but in addition they are now grouped inḡ multiplets. Specifically, the multiplicities
Px,y
IJ ~1! are related to the dimension of weight spaces in finite-dimensional modules of the simple

Lie algebraḡ.31 The correspondence is as follows. First consider the case where the embedding of
the left and right subgroups is the same and given byW̄ ~depending ong there may be more ways
to embedW̄ in W!. SinceW5W̄•Q̄ ~semidirect product! and in Q̄ there is a unique dominant
elementa on eachW̄ orbit, it follows that there is a one-to-one correspondence between coset
elementswPW̄\W/W̄ and dominant rootsāwPP1ùQ̄. More generally, if the embeddings are
chosen differently, this correspondence is between coset elementswPW̄\W/W̄8 and dominant
weightsl̄PP1ùQ̄1Li , whereLi is the fundamental weight that determines the embedding:W̄8 is
generated by the set of simple reflectionssj for jÞ i . Then the result of Ref. 31 states that

Pw,w8
IJ

~1!5dim L~ l̄w8! l̄w
, ~52!

whereL(l̄) m̄ is the weight space of weightm̄ in the ~finite dimensional! irreducibleḡ module of
highest weightl̄.

TABLE XIII. Multiplicities Px,y
IJ ~1! and Hasse diagram forâ2.
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This result applies in particular to theW N algebras withc5rank(ḡ), i.e., with k1h~51.
From ~47! it follows that the dominant weight is determined by a level 1 weight, i.e.,l1r5Li .
HereWl

r 5W̄ andWl
05W̄8. Using the correspondence described above, to every primitive weight

m5w.l one associates the dominant weightl̄w5m̄1r̄. Then the sumw8>w can be rewritten as
follows:

chMr~m!5 (
m8>m

dim L~m̄81 r̄ !m̄1 r̄ ch Lr~m8!. ~53!

Inverting this@using the basis transformation from Verma modulesM (m̄) to singletsem̄# gives

ch Lr~m!5 (
xPW̄

ex chM
r
„m1r2x~r!…. ~54!

This character formula was first proposed in Ref. 32, where it was obtained as a limit of the
characters of theW N minimal models.

5 The inverse formula~53! was obtained forW 3 in Ref. 33,
using an explicit construction of the singular vectors in the Fock space and comparison of the
characters for each side. Again, this character formula applies more generally, in particular to the
weights in a corner of the (p,p8) Kac table@in that case one replacesr→pr everywhere on the
rhs of ~54!#.

V. CONCLUDING REMARKS

In this paper we have formulated the KL conjecture forW algebras associated with arbitrary
sl2 reductions. The result can be described in terms of a double cosetWl

r \Wl/Wl
0: the Hasse

diagram gives the embedding diagram of the Verma modules, and the KL polynomials give the
multiplicities in the characters.

The conjectures also apply to finiteW algebras, which are the Hamiltonian reduction of
simple Lie algebrasḡ.13 In that case one simply takesW to be the Weyl groupW̄ of ḡ. The
character formulas for this class of algebras are given in Ref. 14~for regular integral weights only!
and the results agree completely.

We remark that the conjecture is also a useful tool to analyze the structure of the Verma
modules in more detail. This is particularly important if one attempts to construct a resolution of
the irreducible modules by Verma modules. The physical motivation for doing so is the applica-
tion toW gravity/strings: it is much simpler to compute the~string! BRST cohomology on Verma
modules than on irreducible modules. The problem is that it is not always possible to find a
resolution by Verma modules. For instance, for theW 3 string at c52 it is found by explicit
construction33 that there is no resolution by Verma modules, but instead one is forced to introduce
generalized Verma modules. This is directly linked to the existence of primitive vectors that are
pseudo-singular rather than singular~they are not an eigenvector ofW0!. For such an analysis it is
convenient to have the data presented by the KL conjecture. This way, for instance, one can easily
show that the character~50! of the~p,1! topological minimal models forW 3 cannot be reproduced
by a resolution by~generalized! Verma modules. This is due to the occurrence of subsingular
vectors.14 It would be very interesting to know what type of modules are needed to build such a
resolution, since these modules are going to carry the cohomology of the topologicalW 3 string.
Work on this is in progress.

APPENDIX

1. KL Polynomials on Coxeter groups

In this Appendix, we summarize the definition and some of the properties of KL polynomials
Px,y for a Coxeter groupW, ~for details see Refs. 7 and 17!. The starting point is the Hecke
algebraH with generatorsTy ~one for eachyPW! and defining relations
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TxTy5Txy if l ~xy!5 l ~x!1 l ~y!, ~A1!

~Ts11!~Ts2q!50 if sPS, ~A2!

whereS is the set of simple reflections that generateW. The elementsTy are invertible inH, and
one can write

Ty21
21

5(
x<y

exeyRx,y~q!q2 l ~y!Tx , ~A3!

whereey5(21)l (y), andRx,y(q) is a polynomial inq of degreel (y)2 l (x) for x<y, uniquely
defined by~A3!. The mapi defined by

i~q!5q21, i~Ty!5Ty21
21 ~A4!

is an automorphism ofH. The KL polynomials are associated with the invariants ofi. For any
pairx<y inW, there is a uniquely defined polynomialPx,y of degree<„l (y)2 l (x)21…/2 if x,y,
andPx,x51, such that

Cy5(
x<y

exeyq
l ~y!/22 l ~x!Px,y~q

21!Tx ~A5!

satisfies

i~Cy!5Cy for all yPW. ~A6!

Equivalently, theP-polynomials satisfy

ql ~y!2 l ~x!Px,y~q
21!5 (

x<z<y
Rx,zPz,y~q! for all x<y. ~A7!

From this, one can extract a recursion relation~expressing the polynomialsPx,y in terms of the
polynomialsPx8,y8 with y8,y!. Namely, forys.y one has7

Px,ys5q12cPxs,y1qcPx,y2q (
x<z,y
zs,z

Px,zP” z,y . ~A8!

Herec51 if xs,x and 0 otherwise, andP” z,y is the term inPz,y of ~maximal! degree12„l (y)2 l (z)
21…. The initial values of the recursion relation arePx,e(q)5dx,e . This implies in particular that
Px,y(q)50 unlessx<y. From ~A8! it also follows thatPx,y~0!51 if x<y. In the case of crystal-
lographic Coxeter groups@which includes~affine! Weyl groups#, the coefficients ofPx,y give the
dimensions of stalks of cohomology sheaves of the intersection cohomology complexes associated
to Schubert varieties.34 This implies, in particular, that these coefficients are non-negative integers.

Similarly, if ys,y it can be shown thatCyTs52Cy , which implies that

Px,y5Pxs,y for x<y and ys,y. ~A9!

For finite Coxeter groups~where there is a unique longest elementw0! it easily follows that

Px,w0
51. ~A10!
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2. Inverse KL polynomials on Coxeter groups

The KL polynomialsPy,w form an upper triangular matrix with ones on the main diagonal,
which naturally can be inverted. Thus, one can define for eachx<y in W a polynomialQx,y such
that

(
x<z<y

exezPx,zQz,y5dx,y for all x<y. ~A11!

It is clear thatQx,x(q)51 and thatQx,y(q) has degree<„l (y)2 l (x)21…/2 for x,y, and
Q” x,y5P” x,y . It also follows that

ql ~y!2 l ~x!Qx,y~q
21!5 (

x<z<y
Qx,zRz,y~q! for all x<y. ~A12!

TheQ-polynomials are also associated to invariants ofi. Define elementsSx , Dx of H* by

^Sx ,i~Ty!&5^Dx ,Cy&5dx,y21, ~A13!

and let^i(u),h&5i„^u,i(h)&…. It follows that i(Dx)5Dx and

Dx5(
x>y

ql ~x!/22 l ~y!Qx,ySy , ~A14!

with Qx,y the inverse polynomials~A11!. From the rightH-action on H* given by
^u•h,h8&5^u,hh8& one can conclude thatDx•Ts5qDx if xs.x. This implies

Qx,ys5Qx,y for x<y and xs.x. ~A15!

From this it easily follows that

Qe,y51 for all yPW. ~A16!

The analog of~A8! for theQ-polynomials is~for xs,x!

Qxs,y5q12cQx,ys1qcQx,y2q (
x,z<y
zs.y

Q” x,zQz,y , ~A17!

with c51 for ys.y and c50 for ys,y. In this form ~A17! cannot be used to solve for the
Q-polynomials~at least not in the case of infinite Coxeter groups!. But, combining~A17! and
~A15! for ys.y, one obtains a useful relation~expressingQz,w in terms ofQz8,w8 with w8,w!

Qx,ys5cQxs,y1~2q!cQx,y1cq (
x,z<y
zs.z

Q” x,zQz,y , ~A18!

with c51 for xs,x andc50 for xs.x. In the case of~affine! Weyl groups the coefficients of
Qx,y are again non-negative integers.

In the case of a finite Coxeter group, the KL polynomialsP are related to the inverse poly-
nomialsQ through

Qx,y5Pw0y,w0x
. ~A19!

On the other hand, if the group is not finite,P andQ do not appear to be related in any such way.
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3. KL polynomials on cosets

Similar as for ordinary Coxeter groupsW, one can also construct KL polynomials on cosets
W/WI ~or WI \W!, whereWI is a parabolic subgroup ofW.35 In particular, one finds that again
there are recursion relations for the associated polynomialsPx,y

I andQx,y
I . If the subgroupWI is

finite ~which is sufficient for our purposes!, the polynomialsPI , QI and their inversesQ̃I , P̃I ,
defined through

(
x<z<y

Q̃x,z
I Pz,y

I 5 (
x<z<y

Qx,z
I P̃z,y

I 5dx,y , ~A20!

can be expressed in terms of the KL polynomials ofW:

Px,y
I 5Px̄ , ȳ , Qx,y

I 5QxI ,yI ,
~A21!

P̃x,y
I 5 (

zP@x#
Pz,yI

ezeyI , Q̃x,y
I 5 (

zP@y#
Qx̄ ,ze x̄ez .

HerezI is the minimal andz̄ is the maximal representative of the coset [z] of z. ~Note that this
notation is slightly different from the notation used in Ref. 14.!

However, the cosets that play a role in this paper are two-sided cosetsWI \W/WJ , with respect
to parabolic subgroupsWI andWJ . There does not appear to be an abstract setup for double-sided
cosets. In particular, the partial ordering on these cosets is more complicated than in the case of
one-sided cosets~for example, the length of adjacent elements may differ by more than 1!. So
instead of defining KL polynomials through a recursion relation, we take~A21! as our starting
point, i.e., we define

Pw,w8
IJ

5Pw̄,w̄8 , Qw,w8
IJ

5QwI ,wI 8 ,

~A22!

P̃w,w8
IJ

5 (
xP@w#

Px,wI 8exewI 8 , Q̃w,w8
IJ

5 (
xP@w8#

Qw̄,xe w̄ex ,

where the polynomialsP̃IJ, Q̃IJ are again the inverse polynomials

(
x<z<y

Q̃x,z
IJ Pz,y

IJ 5 (
x<z<y

Qx,z
IJ P̃z,y

IJ 5dx,y . ~A23!
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A noncommutative Hopf structure on C `[SL(2,C)]
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We introduce a ‘‘classical’’ Fre´chet Hopf algebraA containing the quantum de-
formation of the enveloping Lorentz algebra of Ogievestky and Wesset al. ~as a
dense Hopf subalgebra!. We also show thatA is isomorphic to a quasitriangular
twisted topological tensor product Hopf algebra. By duality, we recover on the
topological dual space ofA, the non-commutative algebra structure introduced by
Podles and Woronowicz. Finally, this non-commutative product can be extended to
C `

„SL(2,C)… which then becomes a topological Hopf algebra for its natural Fre´-
chet topology. ©1996 American Institute of Physics.@S0022-2488~96!02306-7#

I. INTRODUCTION

Quantum group theory1 and the star-product approach to quantum mechanics2 have a common
basis: non-commutative deformations of a commutative algebra. This was made mathematically
explicit in the results of Refs. 3–5: for example, every F.R.T. quantum group6 ~corresponding to
a semi-simple real Lie groupG) is realized as a subalgebra ofC `(G) endowed with a non-
commutative product which is a deformation of the usual product of functions. Thus, the idea that
the symmetry properties in Quantum Theory are described by a ‘‘quantum group’’ is very attrac-
tive: some of the failures of the constructive quantum field theory could be explained by the
introduction of a ‘‘quantum Poincare´ group.’’

A first step in such a program is the construction of a well-defined quantum Lorentz group
~and its dual version!. Taking into account the physical aim, this quantum Lorentz group must
contain a Hopf subalgebraSUt(2)(q5et). Consequently, the Drinfeld–Jimbo deformation1,7 of
the enveloping algebra of the Lorentz Lie algebra is not appropriate.

A few years ago, Podles and Woronowiz,8 Carow-Watamuraet al.,9 respectively, have intro-
duced a quantum Lorentz group while a quantum Lorentz enveloping algebra was defined by
Ogievestkyet al.10 Let us give a brief overview of each of these models.

• The P. W. model is the topological Hopf algebra of the continuous functions on the Lorentz
quantum group. The latter is constructed by generators and relations from the fundamental
representation of the Woronowicz modelSUt(2) and its Pontryagin dual.

• The C. W. model is obtained from two copies ofSLt(2) in its fundamental representation
and a cross relation between the generators of each of them. It is the F.R.T. view.6

• The O. S. W. Z. model is a subalgebra ofUt„sl(2)…^Ut„sl(2)…(q5et) which carries an
ad-hoc coproduct.

This raises several problems.
1. First, it is not proved that these models are some deformations~for the usual notion11! of the

corresponding classical model. We only can assert that the quantum relations give the classical
relations forq→1. Thus we cannot directly use the results of Drinfeld on quantum deformations
nor those of Refs. 3 and 4.

a!Electronic mail: cmartin@satie.u-bourgogne.fr

0022-2488/96/37(7)/3611/19/$10.00
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2. What relations do there exist between these three models: ‘‘isomorphism,’’ ‘‘duality’’~the
meaning of these words remaining to be precised!?

3. What is the structure of the O. S. W. Z. model~resp., C. W. model! with respect to the
tensor product Hopf algebraUt„sl(2)…^Ut„sl(2)… @resp.,SLt(2)^SLt(2)]?

Part of the answers to these questions was more or less given in Ref. 12, Majid asserts that the
C. W. model is a double cross product of two copies ofSLt(2); in Ref. 13, the authors obtain the
Hopf structure of the O. S. W. Z. model, starting from the algebraic Hopf structure of the P. W.
model. Let us remark that all these models are defined by generators and relations.

In this paper, we do not only answer the previous questions but we also realize the above
mentioned model either as a classical topological algebra, or, as its topological dual vector space,
endowed with various topological Hopf algebra structures. We are reminded that these classical
topological models for ‘‘quantum groups’’ have been introduced in Refs. 3 and 4 and that one of
its features is to define theq-deformed structure together with the classical structure on the same
classical topological vector space.

To be more precise, we start with the O. S. W. Z. Hopf algebra,10 or, more exactly, the Hopf
algebraUtL generated by the basis of Schirrmacher and relations14 ~which is larger than the
initial O. S. W. Z. model!. We introduce a Fre´chet topological algebraA by ‘‘classical’’ methods
and its topological dual spaceH(G) whereG is SL(2,C)3SL(2,C) ~the classical algebra of
coefficient functions onG for the holomorphic finite-dimensional representations! but we must
take into account Problem 1. These topological models provide us the following results.

~i! The algebraA can be endowed with various topological Hopf structures so that the Hopf
algebraUtL and the tensor product Hopf algebraUt„sl(2)…^Ut„sl(2)… ~including the classical
casest50) are dense Hopf subalgebras ofA.

~ii ! Denote byD t ~resp.,d t) the coproduct ofUtL @resp.,Ut„sl(2)…] and by A1 ~resp.,
A2) the topological model of (Ut„sl(2)…,d t) @resp., (Ut„sl(2)…,d t

op)# introduced in Ref. 3. We

construct an elementW of A2^̂A1 such that (A,D t) is the twisting of the topological tensor

product Hopf algebraA1^̂A2 by W. Thus (A,D t) is isomorphic to a quasitriangular Hopf alge-

bra: we give a quasitriangular R-matrix inA^̂A.
~iii ! By duality, the coproductD t induces ontoH(G) the non-commutative structure~noted

! t) of the algebra introduced by Podles and Woronowicz.8 The product! t is given in term of the
usual product of functions.

~iv! Dualizing the results of Point~ii !, the Hopf algebra„H(G),! t… is isomorphic to the
double cross product of two copies ofSLt(2) with the same cross relations as defined in Ref. 12.
We obtain the C. W. model.9

~v! The introduction of the real structure of Ref. 10 onUtL (tPR) is tantamount to consid-
ering the topological Hopf subalgebra„H(G0),! t… of „H(G),! t…, whereG0 is a real Lie subgroup
of G conjugate to the subgroup$(T,tT̄21),TPSL(2,C)%. We then prove from Ref. 5,C `(G0)
with its natural Fre´chet topology can be endowed with a topological Hopf algebra structure which
is the extension of the Hopf structure defined by! t onH(G0).

In particular, Points~i!, ~iii ! and ~iv! answer Question 2 while Points~ii ! and ~iv! solve
Question 3. Moreover, a unique topological classical model„A,H(G)… carries allq-deformed
structures introduced by the previously mentioned authors. Finally, Point~v! completes the total
parallelism between quantum group theory and the star-product approach to quantum mechanics.
The paper is organized as follows.

In Section II we introduce some definitions and notations for the various Hopf algebras
needed here and we recall some of their properties. Section III is devoted to the construction~up
to equivalence! of all the finite-dimensional representations of the Hopf algebraUtL: this clas-
sification is needed for the proof of Point~i!. In Section IV, we construct the topological algebra
A and we prove the results claimed in Points~i! and ~ii !. Section V deals with duality: The
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topological dual spaceH(G) ofA is introduced and the various properties of Points~iii !, ~iv! and
~v! are obtained.

II. Ut (sl(2,C)) AND Ut(so(4)): DEFINITIONS AND NOTATIONS

II.1. Let L be the complex Lie algebra ofso~3,1! or so~4!. L can be written as the direct
sum of Lie algebrasg1%g2 where the Lie algebra (gi!i41,2 is isomorphic tosl~2!. A basis ofgi is
$Yi ,Fi ,Gi% with the relations.

@Yi ,Fi #5Fi , @Yi ,Gi #52Gi , @Fi ,Gi #52Yi , i51,2. ~1!

LetUL5Ug1^Ug2 be the enveloping algebra ofL. Its center is generated by the two elements:

Qi5FiGi2Yi1Yi
25GiFi1Yi1Yi

2, i51,2. ~2!

II.2. According to Refs. 10 and 14, we denote byUtL orUtsl~2,C) the complex associative
algebra (q5et,qPC) generated by$L1 ,L2 ,l ,l21,K1 ,K2 ,k,k̃% and the relations (l5q2q21):

L1l5qlL1, L2l5q21lL2, @L1 ,L2#5q21l21~ l222 l 2!, ~3!

kK15qK1k, k̃K15q21K1k̃, kK25qK2k, k̃K25q21K2k̃,

K1K25K2K1, kk̃5 k̃k2ql3K1K2, kk̃1q2l2K1K251,
~4!

kL15q21L1k1q21l l21K2, kL25q21L2k1q21l lK 1,

k̃L15qL1k̃2lK2l , k̃L25qL2k̃2lK1l
21,

kl5 lk, k̃l5 l k̃,

K1L15L1K12q21l21~ l21k̃2 lk !, K1L25L2K1,

K2L15L1K2, K2L25L2K21q21l~kl212 l k̃ !,

K1l5q21lK 1, K2l5qlK2.

~5!

SetC5 1
2 ( l1 l21) S5l21( l2 l21) C85 1

2 (k1 k̃) S85l21(k2 k̃ ).
Then$L1 ,L2 ,C,S,K1 ,K2 ,C8,S8% is a system of generators ofUtL with relations@deduced

from ~3!, ~4!, ~5!# well defined for anyq in C. To simplify notations , we write here the elements
of this last basis ofUtL without subscriptt.

If $L1,0 ,L2,0 ,C0 ,S0 ,K1,0,K2,0,C08 ,S08% denotes the basis ofU0L, set

H352S0C0, H15C0L1,0, H25C0L2,0,

F35 iC08S08, F152iK 2,0C082 iL1,0C0, F2522iK 1,0C081 iL2,0C0,
~6!

and

2Y15H32 iF 3, 2F15H12 iF1, 2G15H22 iF2,

2Y252~H31 iF 3!, 2G25H11 iF1, 2F25H21 iF2,
~7!

Then $Y1 ,F1 ,G1 ,Y2 ,F2 ,G2 ,C0 ,C08% is a system of generators ofU0L where the six first ele-
ments generate the classical enveloping algebraUL as defined in paragraph II.1.,C0 andC08
commute with all the other ones and verifyC0

25C80
251. Then

U0L5UL^
C@X,Y#

^X221,Y221&
.
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UtL has the two following central elements:

Q185qK2L21l22~q21kl211qk̃l !,

Q285qK1L11l22~q21kl1qk̃l21!.
~8!

Remark II.2.1: The generatorsH3 ,H1 ,H2 ~resp.,F3 ,F1 ,F2) defined by formulas~6! are
the rotation generators~resp., boost generators! of L in the notations of Naimark~Ref. 15, p. 87,
Sec. 2!.

MoreoverUtL has a Hopf algebra structure defined by Refs. 10 and 14:

• coproductD t,

D t~ l !5 l ^ l , D t~L1!5L1 ^ l211 l ^L1 , D t~L2!5L2 ^ l211 l ^L2,

D t~k!5k^k2ql2K1^K2, D t~ k̃!5 k̃^ k̃2ql2K2^K1,

D t~K1!5K1^ k̃1k^K1, D t~K2!5K2^k1 k̃^K2 ;

~9!

• counit « t,

« t~ l !5« t~ l
21!5« t~k!5« t~ k̃!51,

« t~L1!5« t~L2!5« t~K1!5« t~K2!50;
~10!

• antipodeJt,

Jt~ l !5 l21, Jt~ l
21!5 l , Jt~L1!52qL1, Jt~L2!52q21L2,

Jt~k!5 k̃, Jt~ k̃!5k, Jt~K1!52q21K1, Jt~K2!52qK2 .
~11!

Introduce the algebra isomorphismw of UtL intoUtL as follows:

w~ l !5 l21, w~k!5k, w~ k̃!5 k̃, w~K1!52qK2, w~L1!52q21L2 ; ~12!

and

w+w5 id.

Thus, we have

D t+w5~w ^ w!+tD t , ~w+Jt!
251, « t+w5« t ,

wheret is the flip automorphism ofUtL^UtL defined byt(x^ y)5y^x.
Remark II.2.2: Theq-Lorentz Hopf algebra as introduced in Ref. 10 can be seen as a Hopf

subalgebra of the Hopf algebraUtL. Actually, if $t3 ,T1 ,T2 ,t1 ,s2 ,S1 ,T2% is a basis of Ref.
10, we have

t35 l 4, t3
215~ l21!4, T15q21L1l , T25q2L2l ,

t15kl21, s25 k̃l , S152qK1l , T25K2l
21.

II.3. We remark thatUtL is not the usual quantum deformation ofUL as defined by Jimbo7

from the Cartan matrix ofL. The Jimbo quantum deformation of the algebraUL is the Hopf
algebraUt„sl(2)…^Ut„sl(2)… considered as the tensor product of two Hopf algebras. If
mt ,d t ,et , j t are, respectively, the product, coproduct, counit, and antipode ofUt„sl(2)…, then the
productmt8, coproductD t8, counit« t8 and antipodeJt8 onUt„sl(2)…^Ut„sl(2)… are
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D t85~ I ^ t ^ I !+~d t^ d t!,

mt85~mt^mt!+~ I ^ t ^ I !,

« t85et^et,

Jt85 j t^ j t .

~13!

A system of generators ofUt„sl(2)…^Ut„sl(2)… is $K18 ,K18
21 ,F18 ,G18 ,K28 ,K28

21 ,F28 ,G28% with the
relations fori51,2:

Ki8Fi85qFi8Ki8, Ki8Gi85q21Gi8Ki8,

@Fi8 ,Gi8#5l21~Ki8
22Ki8

22!,

D t8~Fi8!5Fi8^Ki81Ki8
21

^Fi8, D t8~Gi8!5Gi8^Ki81Ki8
21

^Gi8,

D t8~Ki8!5Ki8^Ki8 .

~14!

We also introduce the Hopf algebraUt„sl(2)…^Ut„sl(2)…
op whereUt„sl(2)…

op is the algebra
Ut„sl(2)… with the opposite Hopf structure (d t

op , et , j t
21). We set

D t95~ I ^ t ^ I !+~d t^ d t
op!, Jt95 j t^ j t

21 .

As Ut„sl(2)… is a quasi-triangular Hopf algebra, the Hopf algebraUt„sl(2)…^Ut„sl(2)… @resp.,
Ut„sl(2)…^Ut„sl(2)…

op] also is quasi-triangular. Its universalR-matrixR8 ~resp.,R9) is given
by

R85~1^ t ^1!~R^R!, R95~1^ t ^1!~R^ tR!;

whereR is the universalR-matrix ofUt„sl(2)….
II.4 Let us introduce the following elements ofUt„sl(2)…^Ut„sl(2)…:

l5K18
21K28, l215K18K28

21,

k5K18K28, k̃5K18
21K28

212ql2F18F28,

K15K18F28, K25K28F18,

L15F18K28
211q21K18

21G28, L25K18
21F281q21G18K28

21.

Then, these elements verify Formulas~3!, ~4! and ~5! so that the algebraUtL is a strict
subalgebra ofUt„sl(2)…^Ut„sl(2)…. In Section IV, we shall see thatUtL, Ut„sl(2)…
^Ut„sl(2)… and the algebra introduced in Remark II.2.2 can be identified with dense subalgebras
of the same topological algebra.

III. FINITE DIMENSIONAL REPRESENTATIONS OF UtL(qnÞ1,;nPN)

III.1. Let (m0 ,p0) be an element ofN/23N/2 and letVm0 ,p0
be a (2m011)(2p011)

dimensional vector-space with a basis$ f m,p, ;m50,1,...,2m0 ;p50,1,...,2p0%. Let us introduce
the operators defined onVm0 ,p0

by the formulas
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l f m,p5«1q
m02p02m1pf m,p,

k fm,p5«2q
2~m01p0!1m1pf m,p,

k̃ f m,p5«2
21qp01m02p2mfm,p2«2ql2@2m02m#@2p02p# f m11,p11,

L1 f m,p5«1~q
m02m21@p# f m,p211qp02p@2m02m# f m11,p!,

L2 f m,p5«1~q
p02p21@m# f m21,p1qm02m@2p02p# f m,p11!,

K1f m,p5«2q
2m01m@2p02p# f m,p11,

K2f m,p5«2q
2p01p@2m02m# f m11,p,

~15!

where

«1
25«2

2561, @n#5
qn2q2n

q2q21 , ;nPN .

Thus these operators onVm0 ,p0
verify the relations~3!, ~4!, ~5! of UtL. Denote byrm0 ,p0 ,«1 ,«2

the representation ofUtL defined by Formulas~15! in the vector-spaceVm0 ,p0
.

Remark III.1.1: The representationsrm0 ,p0 ,«1 ,«2 with «1
25«2

2521 have no limit for
q→1.

III.2. Using ~8! we have

rm0 ,p0 ,«1 ,«2~Q18!5«1«2
21S @m0#@m011#1

q1q21

l2 D ,
rm0 ,p0 ,«1 ,«2~Q28!5«1«2S @p0#@p011#1

q1q21

l2 D . ~16!

Theorem III.2.1:
1. Every finite dimensional irreducible representationr of the complex algebraUtL in the

vector-space V is equivalent to the representationrm0 ,p0 ,«1 ,«2 in the (2m011)(2p011) finite
dimensional spaceVm0 ,p0

,(m0 ,p0) P N/23N/2 ,«1
25«2

2561.

2. Two representationsrm0 ,p0 ,«1 ,«2 and rm08 ,p08 ,«18 ,«28 of UtL are equivalent if and only if
m05m08 ,p05p08 ,«15«18 ,«25«28 .

We must prove the two following Lemmas.
Lemma A: There exists in V an eigenvectorv of l and k with respective eigenvaluesa and

b. For such a vector,ab necessarily is different of zero.
Proof: The relationskl5 lk and l l 2151, the finite dimension ofV imply the existence ofv

with a non zero. Suppose, for a contradiction,b equal to zero. We then prove
kk̃nv5(12q2n) k̃n21v.

As qn is different of 1 for anyn, we obtain a contradiction with the finite dimension ofV.
Lemma B: We can choosev0 as in Lemma A such that there exist two integers m1 and p1

with the propertŷK2
mK1

pv0 ,mP $0,1,•••m1%,p P $0,1,•••p1%‰ is a basis of V.
Proof: ~a! Let v be as in Lemma A. ThusK2

mK1
pv„(m,p)PN2

… is zero or an eigenvector ofl,
k, lk21

, lk with respective eigenvaluesaqp2m,bqp1m,ba21q2m,baq2p andab non-zero.
We have the relations

l ~kl21L22K1!5q~kl21L22K1!l ,

k~kl21L22K1!5q21~kl21L12K1!k,
~17!
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l ~klL12K2!5q21~klL12K2!l ,

k~klL12K2!5q21~klL12K2!k.
~18!

We define a subset ofZ2 as follows:

P5$~m,p!PZ2/'vm,pPV with lvm,p5aqp2mvm,p ,kvm,p5bqp1mvm,p%.

P contains (0,0) and is finite. Set

m05 inf$mPZ/'pPZ with ~m,p!PP%, p05 inf$pPZ with ~m0 ,p!PP%.

We denote byv0 a common eigenvector ofl andk with the respective eigenvalues,

a05aqp02m0 and b05bqp01m0.

Thus Formulas~17! and ~18! imply

~kl21L22K1!v050 and ~klL12K2!v050 . ~19!

Consider the subspaceW of V generated by$K2
mK1

pv0 ,(m,p)PN with K2
mK1

pv0 Þ 0%.
~b! We want to prove thatW is V. The stability ofW by l ,l21,k,K1 ,K2 is evident. Using

k̃ k512l2K1K2 and Lemma A, we deduce the stability ofW by k̃. UsingQ18 andQ28 ~8! which
are represented by scalar operators onV, we deduce the stability ofW by K2L2 andK1L1 . The
equality l k̃(kl21L2v0)5L2v02l2K1(K2L2v0) together with~19! gives

L2v0PW.

A similar argument allows to conclude thatL1v0 is in W. The stability ofW by L1 and L2

results from relations~5!. The irreducibility of the representation ofUtL in V permits to assert
thatW is equal toV.

~c! Now we claim that

$~m,p!PN2 with K2
mK1

pv0Þ0%5$0,1,•••m1%3$0,1,•••p1%,

where

m15sup$mPN with K2
mv0Þ0%, p15sup$pPN with K1

pv0Þ0%.

Evidently, K2
mK1

pv050 if m.m1 or p.p1 . Now pick out an integerm(m<m1) and suppose

there exists an integerp8(1<p8<p1) such thatK2
mK1

p8v0 is zero andK2
mK1

p821v0 is non-zero.
From ~17! we have

~kl21L22K1!
mK2

mK1
p821v05mK1

p821v0 , mÞ0.

Applying K1 we obtainK1
p8v050, in contradiction with the definition ofp1 . Hence

;~m,p!P$0,1•••m1%3$0,1•••p1%, K1
mK2

pv0Þ0.

Lemma 2 is proved.
Proof of the theorem:Lemma 2 gives a basis ofV and the action ofl ,l21,K1 ,K2 ,k,k̃ on the

elements of this basis, in a function of the two non-zero parametersa0 ,b0 . From~19! we deduce
easilyL2v0 andL1v0 . The relations betweenL2( resp., L1) andK1 ,L2( resp., L1) andK2

give by induction the action ofL2 andL1 on the basis and the conditions
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a0b0
215«qm1, «251~ resp., a0b05«8qp1, «8251!

or

a05«1q
~m12p1!/2, b05«2q

~2p12m1!/2, «1«25«8, «1«2
215«.

Set for (m,p) in $0,1,•••m1%3$0,1,•••p1%:

f m,p5«2
2p2mampK2

mK1
pv0 ,

amp5
q~p1m1m1p!/22mp

@m1#•••@m12m11#@p#•••@p12p11#
.

Then the action ofl ,k,k̃,K1 ,K2 ,L1 ,L2 on the basis$ f m,p% is given by formulas~15! where we
have 2m05m1 and 2p05p1 .
Part ~b! of the theorem results from formulas~16! and from the spectrum ofl and k in the
representationrm0 ,p0 ,«1 ,«2 ~together withqn Þ 1,;nPN).

We can introduce inUtL the following central elements:

Q1~«1 ,«2!5Q182«1«2
21l22~q1q21!,

with «1
25«2

2561.

Q2~«1 ,«2!5Q282«1«2l
22~q1q21!,

Theorem III.2.2: Every finite dimensional representation ofUtL is completely reducible.
The proof is the same as for Theorem 1, Sec. IV, in Ref. 16

Corollary III.2.3: We have the following equivalences between representations ofUtL:

~a!rm0 ,0,«1 ,«2^ r0,p0 ,«18 ,«28+D t5rm0 ,p0 ,«1«18 ,«2«28,

~b!r0,p0 ,«18 ,«28^ rm0 ,0,«1 ,«2+D t.rm0 ,p0 ,«1«18 ,«2«28,

~c!rm0 ,0,«1 ,«2^ r0,p0 ,«18 ,«28+tD t.rm0 ,p0 ,«1«18 ,«2«28,

~d!r0,p0 ,«18 ,«28^ rm0 ,0,«1 ,«2+tD t.rm0 ,p0 ,«1«18 ,«2«28,

~e!rm,p,«1 ,«2+w.rp,m,«1
21 ,«2.

Proof: For each case (a) to (d), it is easy to prove the irreducibility of the tensor product of
the two considered representations ofUtL. Theorem III.2.1, together with the spectrum of the
representants ofQ1 , Q2 , l andk, gives the results. A direct calculation proves the equivalence of

rm,0,«1 ,«2 + w andr0,m,«1
21 ,«2. Then (e) is deduced from (a) and the propertyD t + w5(w ^ w)

+(tD t).
Corollary III.2.4: We have

~a! rm0 ,p0 ,«1 ,«2^ rm08 ,p08 ,«18 ,«28+D t.

%

i5um02m08u, . . . ,m01m08 .

j5up02p08u, . . . ,p01p08 ;
r i , j ,«1«18 ,«2«28

~b! rm0 ,p0 ,«1 ,«2^ rm08 ,p08 ,«18«28+tD t.

!

i5um02m08u, . . . ,m01m08 .

j5up02p08u, . . . ,p01p08.
r i , j ,«1«18 ,«2«28
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IV. A COMMON MODEL FOR THE HOPF ALGEBRA UtL and Ut (sl(2))^Ut (sl(2))
(q nÞ1,;nPN)

In this Section we construct a classical topological algebraA using the finite dimensional
representations of the Lorentz Lie algebra. Then, the algebrasUtL andUt„sl(2)…^Ut„sl(2)…
can be densely realized inA ~Paragraph IV.1!. Moreover, in Paragraph IV.2, the Hopf structures
of UtL andUt„sl(2)…^Ut„sl(2)… are extended onto the topological algebraA which then
carries various topological Hopf structures. In particular Theorem IV.2.1 proves, the first Hopf
structure onA is the twisting of the second one and consequently, it is quasi-triangular. Explicit

formulas are given for the twisting element and the quasi-triangularR-matrix in A^̂A. As
UtL is not a Drinfeld-Jimbo deformation, we need to prove Corollary IV.2.2 whose the result is
basic for Paragraph V.3.

IV.1 The topological algebra A

We use the results of Refs. 3 and 4. Consequently this common model is constructed from the
set of finite dimensional irreducible representations ofUL5Ug1^Ug2 ~paragraph II.1.!. If
(rn ,Vn) denotes the irreducible representation ofsl~2! of dimension 2n11, n in N/2 , each finite
dimensional irreducible ofUL is equivalent to (rn^ rp ,Vn^Vp),(n,p) in N/23N/2 . To sim-
plify, we denote

rn,p5rn^ rp, Vn,p5Vn^Vp .

We introduce the Fre´chet algebraA defined as follows:
~i! A5) (n,p)P N/23N/2L(Vn^Vp)5) (n,p)P N/23N/2L(Vn)^L(Vp). A is endowed with the

product topology.
~ii ! If a5(an,p) andb5(bn,p) are two elements ofA, thena.b5(an,pbn,p).

~iii ! Then,A is the projective tensor productA1^̂A2 whereAi( i51,2) is defined as in Ref. 3
~i.e.,A15)nP N/2L(Vn,0), @resp.,A25)pP N/2L(V0,p)] endowed with the product topology and
the evident algebra structure!.

Similarly to Ref. 3, we have the following properties:
i. UL can be identified with a subalgebra ofA via the injective morphism:
uPUL→(rn,p(u))(n,p)P N/23N/2PA

ii. UL5A ~Jacobson density theorem!.
iii. rn,p :UL→L(Vn,p) is continuous and can be extended to a representation ofA, which

we shall still denotern,p .
Now, let us introduce the following elements inA:

L15~L1,n,p!, with L1,n,p5n1Vn^ 1Vp,

L25~L2,n,p!, with L2,n,p51Vn^p1vp,

C15~C1,n,p!, with C1,n,p5~21!2n1Vn^ 1Vp,

C25~C2,n,p!, with C2,n,p5~21!2p1Vn^ 1Vp.

~20!

Let us give the classical representationrn0 ,p0 of UL on a standard basis$ f n,p ,n50, . . . ,2n0 ,
p50, . . . ,2p0% of Vn0 ,p0

:

Y1f n,p5~2n01n! f n,p, Y2f n,p5~2p01p! f n,p,

F1f n,p5~2n02n! f n11,p, F2f n,p5~2p02p! f n,p11,

G1f n,p5n fn21,p, G2f n,p5p fn,p21.

~21!
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Taking into account the identification ofUL as a subalgebra ofA, the following elements are
well defined in the algebraA:

l5C1C2q
~Y22Y1!, l215C1C2q

~Y12Y2!,

k5C2q
~Y21Y1!, k̃5C2S q2~Y11Y2!2l2q

@Y12L121#@Y22L221#

~Y12L121!~Y22L221!
F1F2D ,

K15C2q
Y1

@Y22L221#

~Y22L221!
F2, K25C2q

Y2
@Y12L121#

~Y12L121!
F1,

L25C1C2S q2Y221
@Y11L111#

~Y11L111!
G11q2Y1

@Y22L221#

~Y22L221!
F2D ,

L15C1C2S q2Y121
@Y21L211#

~Y21L211!
G21q2Y2

@Y12L121#

~Y12L121!
F1D ,

~22!

K185C1q
Y1, K18

215C1q
2Y1,

F185C1

@Y12L121#

~Y12L121!
F1,

G185C1

@Y11L111#

~Y11L111!
G1,

~23a!

K285C2q
Y2, K28

215C2q
2Y2,

F285C2

@Y22L221#

~Y22L221!
F2,

G285C2

@Y21L211#

~Y21L211!
G2 .

~23b!

Denote byAt ~resp.,At8 ,A1,t ,A2,t) the subalgebra ofA generated by the elements ofA defined
by Formulas~22! @resp.,~23a!, ~23b!#. Then,At8 is the tensor product of algebrasA1,t^A2,t . From
Ref. 3, A1,t ~resp., A2,t) is a dense subalgebra ofA1 ~resp., A2), which is isomorphic to
Ut„sl(2)….

We have

l5K18
21K28, l215K18K28

21,

k5C1K18K28, k̃5C1~K18
21K28

212ql2F18F28!,

K15C1K18F28, K25C1K28F18,

L15F18K28
211q21K18

21G28, L25K18
21F281q21G18K28

21 .

~24!

Then we can claim the following.
Theorem IV.1.1: At ~resp.,At8) is a subalgebra ofA isomorphic toUtL @resp.,

Ut„sl(2)…^Ut„sl(2)…]. Moreover we haveĀt5A ~resp.,Āt85A).
Proof: Let X be one of the elements ofAt defined by Formulas~22!. Then, we have

X5„rn,p(X)… andrn,p(X)5rn,p,(21)2(n1p),(21)2p(X) wherern,p,(21)2(n1p),(21)2p(X) is defined by
Formulas~15!. Then the applicationXPAt→XPUtL defines a morphism ofAt intoUtL. The
injectivity of this morphism is deduced from the property that the set of representations of
UtL,$rn,p,(21)2n12p,(21)2p,(n,p)P N/23N/2 % is a complete set of representations ofUtL.
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From now on,UtL can be identified withAt and, consequently,r
n,p,(21)2n12p,(21)2p with

rn,p on At . The density ofAt in A is given by the Jacobson density theorem applied to the
A-module V5( (n,p)P(N/2)2Vn,p and to the semi-simple representationr of At ,r
5( (n,p)P(N/2)2rn,p .

The proof forAt8 is evident. We just have to remark that any finite-dimensional irreducible
representation is equivalent torn^ rp and to use the results of Ref. 3 forAi ,t( i51,2).

Remark IV.1.2: ~a! Part~e! of Corollary III.2.3, together with the density ofAt inA imply
that the morphismw defined onAt @Formulas~12!# has a unique continuous extension onA. We
have

w~C1!5C1, w~C2!5C2,

w~K18!5C1C2K28, w~F18!52q21C1C2F28, w~G18!52qC1C2G82 .
~25!

~b! The initial q-Lorentz algebra introduced in Ref. 10~see Remark II.2.2! is a subalgebra of
A which also is dense inA.

IV.2 Various topological Hopf structures on A

For that, we need to introduceA^̂A, the completion ofA^A for the projective topology.
Then

A^̂A5 )
~n,p!

~n8,p8!
P~N/2!2

L~Vnp! ^L~Vn8p8!

Take into account Theorem IV.1.1, its consequences and Corollaries IV.2.3 and IV.2.4 and let us
apply the methods of Refs. 3 and 4 to extend the Hopf structure (D t ,« t ,Jt) @resp., (D t8,« t8,Jt8) or
(D t9,« t8,Jt9)# of At ~resp.,At8) toA. To be self contained we shall recall how this is done.

• The counit« t ~resp.,« t8) of At ~resp.,A8t) ~equal tor0,0) obviously extends toA. The
antipodeJt ~resp.,Jt8 or Jt9) of (At , D t) @resp., (A8t , D8t) or (A8t , D t9)# has a continuous
extension toA given by ~for Jt)

;aPA, „Jt~a!…n,p5
tr̂np~a!, ;~n,p!P N/23N/2 ,

wherer̂np(a)5
trnp + Jt(a) is the contragradient representation ofrn,p ofA.

• The extension ofD t ~resp.,D8t or D9t) ofAt ~resp.,A8t) toA results from the existence

of an elementP (t) @resp.,P 8(t) or P 9(t)] of A^̂A such that

D t5P ~ t !D0P ~ t !21,D8t5P 8~ t !D0P 8~ t !21,D9t5P 9~ t !D0P 9~ t !21. ~26!

The existence ofP 8(t) @resp.,P 9(t)] ~the Drinfeld twist! is proved in Ref. 17. In particular,
denote byP( i )(t) the element of (U„sl(2)…^U„sl(2)…)†@t#‡ ~Ref. 17! in the modelAi( i51,2) of
Ref. 3 such that

d t5P~ i !~ t !d0P
~ i !~ t !21 .

Then we have

P 8~ t !5P~1!~ t !1,3P
~2!~ t !2,4, P 9~ t !5P~1!~ t !1,3P

~2!~ t !4,2 . ~27!

3621C. Martin and M. Zouagui: A noncommutative Hopf structure on C `@SL(2,C)#

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Using Refs. 3 and 4, Theorem IV.1.1, Corollaries III.2.3 and III.2.4,P (t) can be constructed
as follows:

~rn,p^ rn8,p8!+D t5 (
i5un2n8u

n1n8

(
j5up2p8u

p1p8

r i , j .

and

Vn,p^Vn8,p85 (
i5un2n8u

n1n8

(
j5up2p8u

p1p8

Vi , j~ t ! .

ThenP (n,p),(n8,p8)(t) is defined as the element ofL(Vnp^Vn8p8) which sends the basis of
Vi j (0) @Formulas~21!# onto the basis ofVi , j (t) @Formulas~15!#. We have

~rn,p^ rn8,p8!+D t5~D t!~n,p!,~n8,p8!5P ~n,p!,~n8,p8!~ t !D0„P ~n,p!,~n8,p8!~ t !…
21 .

Thus, Formulas~26! can be extended toA and provide an extension ofD t , ~resp.,D8t , D9t), still

denoted by the same symbol. These extensions are continuous morphisms ofA intoA^̂A.
Now, in order to prove that the Hopf structure (A, D t , « t , Jt) is a twisting of (A, D t9 ,

« t , Jt9), let us introduce the following elementW of A2^̂A1:

W5e22t~Y2^Y1!(
iPN

l i

@ i #!
qi ~3i11!/2F28

iK28
i
^F18

iK18
i . ~28!

Using Formulas~24!, we remark that

Wp,n5r0,p^ rn,0~W!5r0,p^ rn,0~R21! , ~29!

whereR5R12 is the universalR-matrix of the Hopf subalgebraUt„sl(2)… ofUt(L) generated by
$L1 ,L2 ,l ,l21%. Recall thatR is given by18

R5e2t~Y12Y2^Y12Y2!(
iPN

l i

@ i #!
qi ~3i11!/2L1

i l2 i
^L2

i l i .

Formulas~29! implies the existence ofW21. We have

~W21!p,n5~Wp,n!
215r0,p^ rn,0~R21

21!5r0,p^ rn,0@~Jt
21

^ id !R21#5r0,p^ rn,0@~ id^Jt!R21#.

Theorem IV.2.1:
1. The Hopf algebra(A, D t , « t , Jt) is the twisting18 of the Hopf algebra(A, D t9 , « t8 ,

Jt9) by the element W235(1^W^1) ofA^̂A [W defined by Formula (28)].
2. The Hopf algebra(A, D t , « t , Jt) has an R-matrixR given by

R5W41R31
~1!21R42

~2!W23
21, ~30!

where R( i ) is the universal R-matrix of Ai ~i51,2! given in Ref. 18

Sketch of the proof:Part 1 of the Theorem will be proved after having verified

D t5W23D t9W23
21,

Jt5W21
21~ j t^ j t

21!W21,
~31!
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For that, we need to prove the following.
Lemma A:

1. rn,0^ r0,p+D t5rn,0^ r0,p+D t95rnp, ;~n,p!P N/23N/2,

2. rn,0^ rn8,0+D t5rn,0^ rn8,0+D t9, ;~n,n8!P N/23N/2,

3. r0,p^ r0,p8+D t5r0,p^ r0,p8+D t9, ;~p,p8!P N/23N/2.

This lemma is easily obtained from Corollary III.2.3~a! , Formulas~15! and ~24!.

Call tnp the linear map ofVn^Vp into Vp^Vn which exchangesVn andVp .
Lemma B:

1. r0,p^ rn,0+D t95tnprnptnp
21, ;~p,n!P N/23N/2,

2. r0,p^ rn,0+D t5Wp,n~r0,p^ rn,0+D t9!Wp,n
21, ;~p,n!P N/23N/2 .

Proof: Theorem IV.1.1 and its consequences, together with Corollary III.2.3~resp., the defi-
nition of D t9) imply the equivalence of the representationr0,p^ rn,0 + D t ~resp.,r0,p^ rn,0 + D t9) of
A with the representationrn,p ofA. Now Lemma B~2! follows from a direct calculation on the
basis of the dense subalgebraUtL of A and from the continuity ofD t andD t9 onA.

Now we want to prove the first identity of~31!.
Lemma A ~1! and Lemma B, with the coassociativity ofD, imply

rn,p^ rn8,p8+D t5~1^Wp,n8tn8,p^1!@~rn,0^ rn8,0^ r0,p^ r0,p8!+~D t^ D t!+D t#

3~1^ tn8,p
21Wp,n8

21
^1!.

Using Corollary III.2.4~b! and Lemma A, we can replaceD t by D9t in the right hand side of the
previous equality. The first Formula of~31! now follows from Lemma B~1!. We similarly prove
the second identity of~31!.

The previous result implies the existence of aR-matrixR for the Hopf algebra (A,D t ,« t ,
Jt) which verifies Formulas~30!: here A1 is endowed with the quasitriangular structure
(tR(1))21.

Theorem~IV.2.1!, Formulas~27! and ~28! together with the results of Ref. 17 {P( i )(t) be-
longs to (U„sl(2)…^U„sl(2)…)†@ t#‡} allow us to deduce

Corollary IV.2.2: Let P (t) be the element ofA^̂A given by

P ~ t !5W23P 9~ t !5W23P13
~1!~ t !P42

~2!~ t !.

ThenP (t) belongs to@UL^UL#†@ t#‡ [UL defined in (1.1)] and verifies

D~ t !5P ~ t !D0P ~ t !21.
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Now we consider the Hopf algebra (A1 ,d t ,et , j t) and introduce the twisted topological tensor

product Hopf algebraA1^̂tR(1)A1 which is the twisting18 of the topological tensor product Hopf

algebraA1^̂A1 by (tR
(1))23. MoreoverA1^̂tR(1)A1 has a quasitriangular structure given by Ref.

19:

R15~tR~1!!41~tR~1!!13
21R24

~1!~tR~1!!23
21

5R14
~1!~R~1!!31

21R24
~1!~R~1!!32

21 .

Call s the isomorphism of the Hopf algebra (A1 ,d t) onto the Hopf algebra (A2 ,d t
op) given by

X1PA1→s~X1!5~Sprp,0~X1!Sp
21!pP N/2

Sp5S 0 . . . . . . 0 q22p

A .• . 0

A .• . A

0 q21 A

1 0 . . . . . . 0

D .

SetS 51^s.
Then, from Theorem IV.2.1, we can easily deduce the following.
Corollary IV.2.3: S 21 realizes an isomorphism of the Hopf algebra(A,D t ,« t ,Jt) onto the

quasitriangular twisted tensor product Hopf algebra A1^̂tR(1)A1 . Then (A,D t ,« t ,Jt) has a
quasitriangular structure given by(S ^S )(R1) which is equal to the R-matrixR [Formula
(30)].

Remark IV.2.4: The Hopf algebra (A,D t ,« t ,Jt) has another quasitriangularR-matrix R̄
given by

R̄5W41~R31
~1!!21~R24

~2!!21W23
21.

IV.3 * -structures on ( A,Dt )

In Refs. 10 and 14, the authors introduce a conjugate-linear mapF on the Hopf algebra
UtL ~orAt) as follows :

F~ l !5 l , F~k!5 k̃, F~ k̃!5k, F~K1!5K2, F~L1!5L2,

F+F5 id.

After having chosenq real ~equivalent tot real!, F becomes an anti-involution of the algebra
At , which also is a morphism of the coalgebra structure. Then fort real, Formulas~11! and~12!
permit us to prove that

F5w̄+JtuAt
, ~32!

wherew̄ is the conjugate map ofw.
Taking into account Remark IV.1.2~a! and the results of Section III. 2,F has a unique continuous
extension onA ~for t real!, which is given by the preceding Formula. Thus, fort real, (A,D t ,
« t ,Jt ,w) is a *-Hopf algebra.
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V. DUAL FORMALISM AND REAL STRUCTURES

In this section, we first construct the topological dual vector space ofA, H(G) (G as defined
in V.1! which coincides with the algebra of the coefficient functions onG ~for the holomorphic
finite-dimensional representations ofG). In Sec. V.1 we also give the non-commutative Hopf
algebra structure on„H(G),! t… dual to the Hopf structure onA defined byUtL: we obtain the
non-commutative algebra structure of Podles-Woronowicz in term of the classical product of
functions. Now, we introduce a *-structure on (H(G),! t) which is equivalent to consider the
Hopf subalgebra„H(G0),! t… „whereG0 is a real Lie subgroup ofG isomorphic toSL(2,C)… ~Sec.
V.2!. Then, the main result of this Section is to extend the Hopf structure of„H(G0),! t… to
C `(G0) „which containsH(G0)…, endowed with its usual Fre´chet topology. Such a result is
proved in Ref. 5 for any real semi-simple Lie groupG8 and any deformation of the commutative
algebraH(G8) which is inherited from a deformation of the coalgebra structure on the enveloping
algebra of the Lie algebra ofG8. In our case, the product! t on H(G0) is inherited from the

coproductD t on A with values inA^̂A andA^̂A strictly containing (UL^UL)†@ t#‡.
Fortunately, the FormulaD t5P (t)D0P (t)

21 and Corollary IV.2.2. which asserts thatP (t) be-
longs to (UL^UL)†@ t#‡, permits us to apply the result of Ref. 5 and to conclude~Sec. V.3!.

V.1 Dual Hopf algebra of ( A,D t )

Set

G5SL~2,C!3SL~2,C!.

This group is imbedded inA by the following identification:

x5~T,T̃!PG→
i
a5~an,p!~n,p!P~N/2!2PA,

where

an,p5rn~T! ^ rp~ T̃!5rn,p~x!.

i is an injective morphism. Using the same argument as for the density ofUL in A ~Jacobson
density Theorem!, we get

spani ~G!5A.

Let us consider the topological dual spaceA! of A. A! can be identified withH(G)5
% (n,p)P(N/2)2L(Vn,p) ~endowed by the inductive topology! as follows :

a5~an,p!PA, b5 (
finite

bnpPH, ^bua&5 (
finite

T r~bnpanp! .

Then the density of G inA allows us to considerH(G) as an algebra of functions onG .
Using Corollary III.2.4,H(G) is exactly the algebra of functions onG generated by the

coefficient functions, i.e.

H~G!5C@a,b,c,d,a8,b8,c8,d8#/^ad2bc5a8d82b8c851&,

where the elementx of G is given by

x5~T,T̃!, with T5S a b

c dD 5r1/2,0~x!, T̃5S ã 2b̃

2 c̃ d̃ D 5r0,1/2~x!.
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By duality, the results of Section IV give various topological Hopf structures onH. The coprod-
uct is always the mappingh(x)→h(x.y) if h is inH(G). ButH(G) is endowed with different
associative, non-commutative products. Denote by! t ~resp.,! t8,! t9) the product onH(G) in-
duced by the coproductD t ~resp.,D t8, D t9) of A. Theorem IV.2.1 and Corollary IV.2.2 together
with Formulas~26! and~27! allow us to express the products! t ,! t8,! t9 onH(G) in term of the
classical product of functions.
Set ( .̂ .) + D t5.^ t . and (.̂ .) + tD t5.^ t

op .
We obtain

~a! T^

t
T5P1/2 , 1/2

~1! ~ t !T^ 0T~P1/2 , 1/2
~1! ~ t !!21,

~b! T^

t

opT5R1/2 , 1/2
~1! ~ t !T^ tT~R1/2 , 1/2

~1! ~ t !!21,

~c! T̃^

t
T̃5tP1/2 , 1/2

~2! ~ t !T̃^ 0T̃~tP1/2 , 1/2
~2! ~ t !!21,

~d! T̃^

t

opT̃5tR1/2 , 1/2
~2! ~ t !T̃^ tT̃~tR1/2 , 1/2

~2! ~ t !!21;

~33!

~a! T^

t
T̃5T^ 0T̃,

~b! T̃^

t
T5R̂~1/2,0!,~0,1/2!T^ tT̃~R̂~1/2,0!,~0,1/2!!

21,
~34!

or explicitly,

a!25a2, b!25b2, c!25c2, d!25d2,

ã !25ã 2, b̃!25b̃ 2, c̃ !25 c̃ 2, d̃!25d̃ 2,

b! ta5qa! tb5q
1
2ab, b̃! tã5q21ã! tb̃5q

21
2 ãb̃,

c! ta5qa! tc52q
1
2~q1q21!21ac, c̃! tã5q21ã! tc̃52q2

1
2~q1q21!21ãc̃,

d! tb5qb! td52q
1
2~q1q21!21bd, d̃! tb̃5q21b̃! td̃52q

21
2 ~q1q21!21b̃d̃, ~338!

d! tc5qc! td52q
1
2cd, d̃! tc̃5q21c̃! td̃52q

21
2 c̃d̃,

c! tb5b! tc52~q1q21!21bc, c̃! tb̃5b̃! tc̃52~q1q21!21b̃c̃,

a! td5ad2~q2q21!~q1q21!21bc, ã! td̃5ad1~q2q21!~q1q21!21b̃c̃,

d! ta5ad1~q2q21!~q1q21!21bc, d̃! tã5ad2~q2q21!~q1q21!21b̃c̃,

a! tã5ã! ta1ql c̃! tc5aã, a! td̃5d̃! ta5ad̃,

b! tb̃5b̃! tb2ql~ ã! ta2d! td̃!5bb̃, b! tc̃5 c̃! tb5bc̃,

c! tc̃5 c̃! tc5cc̃, c! tb̃5b̃! tc5cb̃,
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d! td̃5d̃! td2ql c̃! tc5dd̃, d! tã5ã! td5dã,

c! tã5q21ã! tc5ãc, a! tc̃5q21c̃! ta5 c̃a,

c! td̃5qd̃! tc5d̃c, d! tc̃5qc̃! td5 c̃d, ~348!

b! td̃5q21d̃! tb2l c̃! ta5bd̃, d! tb̃5q21b̃! td2lã! tc5db̃,

a! tb̃5qb̃! ta1q2ld̃! tc5ab̃, b! tã5qã! tb1q2l c̃! td5bã.

Remark V.1.1 :We recognize in Formulas (338) and (348) the relations obtained by Podles
and Woronowicz.8

Set

H5C@a,b,c,d#/^ad2bc51&; H̃5C@ ã,b̃,c̃,d̃#/^ãd̃2b̃c̃51& .

From Theorem IV.2.1, the product! t9 ~resp.,! t8) coı̈ncides with the product! t ~resp.,! t) on H
and with the product! t ~resp.,!2t) on H̃.
The dual translation of Theorem IV.2.1 and Corollary IV.2.3 is the following one.

Proposition V.1.2:
(a) H andH̃ are two Hopf subalgebras of„H(G),! t8… @which is isomorphic toSLt(2,C)] and

„H(G),! t8… is H^ H̃ as the tensor product of Hopf algebras.
(b) H ~resp., H̃) is a Hopf subalgebra of„H(G),! t… isomorphic to SLt(2) @resp.,

SL2t(2)‡. Moreover„H(G),! t… is isomorphic to the double cross product of two Hopf algebras
SLt(2) as defined by Majid in Ref. 12.

Proof: Part ~a! and the first affirmation of Part~b! summarize the above claimed properties.
Using Corollary IV.2.3 and the injection ofG in A, Formula~34b! is equivalent byS to

R̂~1/2 ,0!,~1/2 ,0!T^ ts
21~ T̃!5s21~ T̃! ^ tTR̂~1/2 ,0!,~1/2 ,0! . ~35!

We recognize the Formula which is used for the definition of theq-Lorentz group in Ref. 12.
Taking into account the results of Refs. 9 and 12, the Hopf algebratS 21@H(G)# is the double
cross product of two Hopf algebras isomorphic toSLt(2) ~orH,! t): Formula~35! gives the action
of each of these algebras on the other one.

V.2 Real structure on ( H,! t ) (for q real)

The anti-involutionF of the algebrasA @Formula~32!# defines by duality an anti-involution
F* of the algebra„H(G),! t…:

F*5 t~F+Jt
21!5 tw̄ .

We have

w̄ ~x!5S S ā̃ q21 b̄̃

q c̄̃ d̄̃
D ,S ā 2qb̄

2q21c̄ d̄ D D .
A real structure onH is defined by

F*5Jt ⇔ T̃5G tT̄21G21, ~36!
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where

G5S 1 0

0 21D .
SetG05$(T,G tT̄21G21),TPSL(2,C)%.
G0 is a subgroup ofSL(2,C)3SL(2,C), isomorphic to the real Lie groupSL(2,C). Then the real
form given by Formula~36! of the *-Hopf algebra„H(G),! t ,F* … isH(G0). We remark that
$(T,GTG21),T P SU(2)% is a subgroup ofG0 isomorphic toSU(2). ThusH(SU(2)… @or
SUt(2)] is aHopf subalgebra ofH(G0).

V.3 !-product on C`(G0)

Let us introduceC`(G0) with its usual Fre´chet topology and its dual spaceA(G0) ~the space
of compactly supported distributions onG0) with the strong dual topology. ThusC`(G0) and
A(G0) are topological Hopf algebras with dual Hopf structures. Moreover,C`(G0) @resp.,
A(G0)] containsH(G0) ~resp.,UL) as Hopf subalgebra andA(G0) is a subalgebra ofA. Now,
as noticed at the beginning of Section V, the results of Corollary IV.2.2 allows us to apply
Theorem IV.3 of Ref. 5. The latter one with Remark V.1.1 allows to assert the following.

Proposition V.3.1: There exists a topological Hopf deformation ofC `(G0) @resp.,A(G0)]
which extends the topological Hopf deformation@H(G0),! t# [resp., which is a restriction of the
topological Hopf deformation(A,D t)]. Moreover, this product! t induces onH(G0) the non-
commutative algebra structure introduced by Podles and Woronowicz.8

To conclude, in this paper we show that the topological Hopf algebras„C `(G0),! t… and
„A(G0),D t… are the good topological models for~respectively! SLt(2,C) andUtL in our approach
to quantum group theory, which is based on deformation quantization.
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Inclusion of gauge bosons in the tensor formulation
of the Dirac theory

Frank Reifler and Randall Morris
Martin Marietta Corporation, GES, Bldg. 137-227, Moorestown, New Jersey 08057

~Received 27 April 1995; accepted for publication 8 March 1996!

A recent article characterized all classical tensor systems which admit Fermi quan-
tization as those having unitary Lie–Poisson brackets. Examples include Euler’s
tensor equation for a rigid body and Dirac’s bispinor equation in tensor form. It was
further shown that the tensor form of Dirac’s bispinor Lagrangian can be derived
from a tetrad formulation of a Kaluza–Klein model, which unifies the Dirac and
Einstein Lagrangians. Thus, fermions, like bosons, are represented as gauge fields
in the tensor formulation of the Dirac theory. In this article boson gauge fields are
added to the unified Dirac–Einstein Lagrangian by defining the gauge group of the
Kaluza–Klein model to be a semi-direct product. It is shown that the semi-direct
product structure uniquely prescribes the usual ‘‘minimal coupling’’ between
bosons and fermions. ©1996 American Institute of Physics.
@S0022-2488~96!00807-9#

I. INTRODUCTION

Ever since Dirac introduced his celebrated bispinor equation in 1928, there has been continued
interest in its tensor formulation. Recently, Takahashi and Zhelnorovich investigated the tensor
form of the Dirac Lagrangian.1 Following this work, we showed that the tensor Dirac Lagrangian
is equal to a constrained Yang–Mills Lagrangian in the limit of an infinitely large coupling
constant.2 We also showed that the tensor form of Dirac’s partial differential bispinor equation is
a classical Hamiltonian system with~noncanonical! unitary Lie–Poisson brackets.3 Such Lie–
Poisson brackets occur classically for systems with gauge symmetry such as Euler’s equation for
a rigid body.4 Fermi quantization was derived for both the Dirac and Euler tensor equations by
representing the classical Lie–Poisson brackets as commutators of Heisenberg operators.3

A belief that a 360° rotation alters the state of a fermion particle has for a long time supported
the view in quantum field theory that fermions can be represented only by bispinor fields, and not
by tensor fields. However, recent studies of particle localization show that 360° rotation of bis-
pinor fields, whose energy spectrum is bounded from below, produces no observable effects.2,5,6

Moreover, experiments designed to observe the rotation properties of bispinors, in fact, described
the rotation properties of constrained tensor fields.3

More recently we showed that the tensor form of the Dirac Lagrangian and its constraint could
be derived from a tetrad formulation of a Kaluza–Klein model which unifies the Dirac and
Einstein Lagrangians. In this tetrad formulation, both the fermion field and the gravitational field
arise from a tetrad of vector fieldsvK , whereK50,1,2,3, and a complex scalar fieldr. We showed
that the isometric modes of the tetrad propagate as fermions, whereas the self-adjoint modes
propagate as gravitons.7

Introducing a tetrad to describe both fermion and gravitational fields addresses an important
problem posed by current theories of fermion–graviton interaction. To define bispinor fields on a
space–time, reference tetrad fields~or equivalent soldering forms! must be defined.8,9 The implied
dynamics of these reference fields have been, at best, partially modelled. We found that such tetrad
fields themselves, used as dynamical variables, give rise to both fermions and gravitons.

In this article we introduce gauge bosons into the Kaluza–Klein model based on the con-
strained Yang–Mills formulation of the Dirac theory. In this formulation fermions are represented

0022-2488/96/37(7)/3630/11/$10.00
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as constrained gauge potentials and bosons are represented as unconstrained gauge potentials. As
discussed below, the two sets of gauge potentials are associated with a semi-direct product gauge
group which precisely produces the usual coupling between bosons and fermions.

In the constrained Yang–Mills formulation of the Dirac theory, bispinor fields are mapped to
SL~2,R!3U~1! gauge potentialsFa

K and a complex scalar fieldr which satisfy the orthogonal
constraint3,7

Fa
KFKb5uru2gab , ~1.1!

wheregab is the Minkowski space–time metric. The gauge indexK50,1,2,3 is contracted using a
metric with Minkowski signature which will be denotedhJK @note that the gauge group SL~2,R!
3U~1! is a four-dimensional Lie group for whichhJK is an invariant metric#. The covariant
derivative in the Yang–Mills formulation of the Dirac theory can be expanded symmetrically to
include electromagnetic and chiral interactions by the addition of four SL~2,R!3U~1! uncon-
strained boson gauge potentialsVa

K which act on the four constrained fermion SL~2,R!3U~1!
gauge potentials. This gives the gauge potentialsVa

K andFa
K a hierarchical structure, whereby one

set of gauge potentials acts on the second set, and not vice versa. This is precisely the hierarchical
structure of gauge potentials associated with a gauge group which is a semi-direct product. Thus
we show that the set of gauge potentials$Fa

K ,Va
K% are associated with the semi-direct product

gauge groupG5Gw3G, whereG5SL~2,R!3U~1! andw denotes the adjoint action ofG on G
~see Sec. II!. That is, in the tensor formulation the usual coupling between bosons and fermions
results from the semi-direct product structure of the gauge groupG.

As shown in Sec. II, the four boson gauge potentialsVa
K are also defined in the bispinor

theory. The electromagnetic gauge potentialVa
0 and the chiral gauge potentialVa

3 correspond to a
maximal compact subgroup U~1!3U~1! of SL~2,R!3U~1!. The gauge potentialsVa

1 andVa
2 cor-

respond to noncompact one-parameter subgroups of SL~2,R!3U~1! which, acting onFa
K or bis-

pinor fieldsC, mix positive and negative energy states. Thus only the compact gauge potentials
Va
0 andVa

3 appear to be physical. Hence, as in the bispinor theory, we setVa
1 andVa

2 to zero by
restricting the boson gauge group to a maximal compact subgroup of SL~2,R!3U~1!.

The derivations presented in Sec. II suggest that the tensor formulation of the Dirac theory
extends to more than one fermion flavor, and hence to further applications in particle physics. In
Sec. II we show that the Dirac–Yang–Mills Lagrangian for the gauge group SL~2,R!3U~1!
extends to the larger gauge group SL~2,C!3U~1!, which contains the electroweak gauge group
SU~2!3U~1! as a maximal compact subgroup. Application of the extended Lagrangian to elec-
troweak theory is presently being considered.

In this paper we introduce two new notions which have application to Kaluza–Klein theories.
First, we consider Kaluza–Klein theories for which the gauge group is a semi-direct product,
which, as previously discussed, allows us to define boson gauge potentials which act on the
fermion gauge potentials.

Second in the Kaluza–Klein formulation of the tensor Dirac theory, the fermion field, boson
field, and the gravitational field are described by a scalar fieldr and a tetrad of vector fieldsvK on
a smooth manifoldM5X3G, whereX is a space–time andG5Gw3G is the semi-direct product
gauge group defined previously. The tetradvK together with a~fixed! basis of right-invariant
vector fields onG defines a metric, denoted as^,&, and hence a volume form, denoted asdv, and
also a curvature two-form, denoted asR~,! on M ~see Sec. III!. The unified action,S, for the
gravitational, boson, and fermion fields is given by

S5E L dv, ~1.2!

where the unified Lagrangian,L, is ~see Sec. III!
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L5
g

16pk0
R@v#1vK~r1m!vK~r1m!2

1

2
g2uru4, ~1.3!

wherek0 is Newton’s gravitational constant,g is a coupling constant, andm is the fermion mass.
In formula ~1.3!, we employ the sum of sectional curvatures restricted to the subspace spanned by
the tetradvK :

R@v#5 (
J50

3

(
K50

3

^R~vJ ,vK!vJ,vK&. ~1.4!

This both avoids unphysical terms such as the cosmic constant arising from the scalar curvature of
G, and removes previously assumed restrictions on the gauge group, such as a bi-invariant
metric.10 Furthermore, by formulating the Kaluza–Klein Lagrangian~1.3! with the tetradvK , the
constraint~1.1! is eliminated.

In Sec. II we include boson gauge fields in the derivation of the tensor form of the Dirac
bispinor equation. Then in Sec. III we derive a Kaluza–Klein model based on the tensor Dirac
theory. We express the usual equations for the gravitational fieldgab , the electromagnetic and
chiral fieldsVa

K, and the Dirac bispinor fieldC in terms of new variables~vK ,r!, and thereby unify
these fields within a simple conceptual framework at a classical level.

II. TENSOR FORM OF THE DIRAC BISPINOR LAGRANGIAN INCLUDING BOSON
GAUGE POTENTIALS

In this section we include boson gauge potentials in the derivation of the tensor form of the
Dirac bispinor Lagrangian. We will show that the tensor form of the Dirac Lagrangian unifies
boson and fermion fields as gauge potentials belonging to a semi-direct product gauge group. We
will further show that the semi-direct product structure of the gauge potentials produces the usual
minimal coupling between boson and fermion fields. As in previous work,3,7 the derivation ex-
ploits the SL~2,R!3U~1! gauge symmetry of Dirac’s bispinor Lagrangian.

Consider the SL~2,R!3U~1! gauge transformations, acting on the bispinor fieldC, with the
infinitesimal generatorstK for K50,1,2,3 defined by

t0C52 iC, t1C5 iCC,
~2.1!

t2C5CC, t3C5 ig5C,

whereCC denotes the charge conjugate ofC andg5 is the fifth Dirac matrix.
6 Note that the action

of SL~2,R!3U~1! onC is real linear, whereas usually only complex linear gauge transformations
of bispinors are considered. The infinitesimal gauge generatorst0, t1, andt2 generate SL~2,R! and
t3 generates U~1!.

The SL~2,R!3U~1! gauge transformations generated bytK commute with Lorentz
transformations.6 From formula~2.1! the commutation relations of the gauge generatorstK are
given by

@t0 , t1#52t2 , @t0 , t2#522t1 , @t1 , t2#522t0 , ~2.2!

andt3 commutes with all thetK . Formula~2.2! can be written more compactly as

@tJ , tK#52 f JK
L tL , ~2.3!

which defines the Lie algebra structure constantsf JK
L for the gauge group SL~2,R!3U~1!.
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From formula~2.2! the Minkowski metrichJK , with diagonal elements$1,21,21,21% and
zeros off the diagonal, is an invariant metric11 for the gauge group SL~2,R!3U~1!. Gauge indices
J,K,L50,1,2,3 will be raised and lowered using the Minkowski metrichJK . As in formula~2.3!,
repeated gauge indices are to be summed.

We define the Yang–Mills covariant derivativeD̂a acting on bispinor fields as follows:

D̂a5]a1qVa
KtK , ~2.4!

wherea50,1,2,3 is a Lorentz index,]a denote partial derivatives with respect to space–time
coordinates,q is a Yang–Mills coupling constant, andVa

K are boson gauge potentials associated
with the gauge generatorstK . Associated with the gauge potentialsVa

K is the Yang–Mills curva-
ture tensorVab

K defined by the formula

@D̂a ,D̂b#5qVab
K tK . ~2.5!

From formulas~2.3! and ~2.4! we obtain the explicit expression

Vab
L 5]aVb

L2]bVa
L12q fJK

L Va
JVb

K . ~2.6!

Dirac’s bispinor Lagrangian,LD , is given by

LD5Re@ i C̄gaD̂aC2m0s#2 1
4VK

abVab
K , ~2.7!

wheres is the complex scalar field defined by

Re@s#5C̄C, Im@s#5 i C̄g5C, ~2.8!

whereC̄ is the dual conjugate of the bispinor fieldC, thega are Dirac matrices,6 andm0 denotes
the fermion mass. Lorentz indicesa, b50,1,2,3 are raised and lowered using the~Minkowski!
space–time metric, which we will denote asgab . Repeated Lorentz indices are to be summed.

Apart from the mass term, the Dirac Lagrangian~2.7! is invariant under the SL~2,R!3U~1!
gauge transformations~2.1!. From formula~2.8!, s is invariant under SL~2,R! gauge transforma-
tions, and transforms as a complex scalar under the U~1! gauge transformations generated byt3.
To make the Lagrangian~2.7! invariant forall SL~2,R!3U~1! gauge transformations, it suffices
thatm0 transform likes̄ ~the complex conjugate ofs!. Sincem0 appears in the Lagrangian~2.7!
without derivatives, the assumption thatm0 transforms likes̄ under U~1! gauge transformations
has no effect on the Dirac equation.

Expanding the covariant derivativeD̂a in the Dirac Lagrangian~2.7!, we obtain the following
interaction term coupling the boson and fermion fields:

LI5qVa
K j K

a , ~2.9!

where the fermion Noether currentsj K
a are defined by

j K
a5Re@ i C̄gatKC#. ~2.10!

The Noether currents~2.10! satisfy an orthogonal constraint known as a Fierz identity given by1,3

j a
K j Kb5usu2gab , ~2.11!

where, as previously stated,gab is the ~Minkowski! space–time metric.
We then map a set of SL~2,R!3U~1! gauge potentialsFa

K and a complex scalar fieldr into
( j a

K ,s) by setting
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j a
K54uru2Fa

K , s54uru2r̄. ~2.12!

Note that by formulas~2.8!, ~2.10!, and ~2.12!, the fieldsFa
K transform as SL~2,R!3U~1! gauge

potentials; whereasr is invariant under SL~2,R! gauge transformations, and transforms as a
complex scalar under the U~1! gauge transformations generated byt3. For the fields~Fa

K,r!, the
Fierz identity~2.11! becomes the orthogonal constraint:

Fa
KFKb5uru2gab . ~2.13!

Note that the space–time metricgab has the same signature as the metrichJK . The tetrad model
presented in Sec. III will explicate both the constraint~2.13! and the equality of the metric
signatures.

Now, consider (Fa
K ,Va

K) as gauge potentials for the gauge groupG whose infinitesimal gen-
erators (SK ,TK) satisfy the following semi-direct product commutation relations:12

@SJ , SK#5 f JK
L SL , @TJ , SK#5 f JK

L SL , @TJ , TK#5 f JK
L TL , ~2.14!

where f JK
L are the previously defined SL~2,R!3U~1! structure constants.

We define the Yang–Mills covariant derivative for the semi-direct product gauge groupG by

Da5]a1gFa
KSK12qVa

KTK , ~2.15!

where we setTK5 1
2tK @compare formulas~2.3! and~2.14!#, g is a Yang–Mills coupling constant,

andq is the previously defined coupling constant in formula~2.4!. Note that the covariant deriva-
tive ~2.15! can also be written as

Da5D̂a1gFa
KSK , ~2.16!

where we denote

D̂a5]a12qVa
KTK , ~2.17!

which often simplifies derivations. Formula~2.17! agrees with~2.4! sinceTK5 1
2tK . No confusion

results from using the same symbol,D̂a , for the covariant derivative~2.17! acting on bispinor or
tensor fields. Associated with the semi-direct product gauge potentials (Fa

K ,Va
K) is the Yang–

Mills curvature tensor (Fab
K ,Vab

K ) defined by the formula

@Da , Db#5gFab
K SK12qVab

K TK . ~2.18!

From formulas~2.14! and ~2.15! we obtain the explicit expression

Fab
L 5D̂aFb

L2D̂bFa
L1g fJK

L Fa
JFb

K , ~2.19!

where we denote

D̂aFb
L5]aFb

L12q fJK
L Va

JFb
K , ~2.20!

whereasVab
K is given as in formula~2.6!.

Furthermore, we define the metric on the gauge groupG to be the block matrix

h5~hab!5FhJK 0

0 2ghJK
G , ~2.21!

3634 F. Reifler and R. Morris: Gauge bosons in the tensor dirac theory

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



whose components we denote ashab . Let Fa
a andFab

a denote the components of (Fa
K ,Va

K) and
(Fab

K ,Vab
K ), respectively. Furthermore, let the gauge indicesa,b be raised and lowered using the

metric hab . Then, with the orthogonal constraint~2.13!, Dirac’s equation is obtained from the
following Yang–Mills Lagrangian,Lg , in the limit of an infinitely large Yang–Mills coupling
constantg:

Lg5
1
4Fa

abFab
a 1Da~r1m!Da~r1m!2 1

2g
2uru4, ~2.22!

wherem05
1
2mg is the fermion mass, and, from formula~2.16!,

Da~r1m!5D̂a~r1m!1 igFa
3~r1m!, ~2.23!

where from formula~2.17!

D̂a~r1m!5]ar12iqVa
3~r1m!. ~2.24!

Recall thats andm0, and hencer andm, transform as complex scalars under the U~1! gauge
transformations generated byS3 andT3. @Note: The part of the Lagrangian~2.22! for the scalar
field r is not unique. An alternative Lagrangian from which Dirac’s bispinor Lagrangian can also
be obtained was previously presented.2,3 However, the Lagrangian~2.22! has unique additional
properties discussed in Ref. 7.#

Note that the boson gauge potentialsVa
K occur in the Yang–Mills LagrangianLg via the

minimal substitution ofD̂a5]a12qVa
KTK for ]a @see formulas~2.17!, ~2.19!, ~2.20!, ~2.23!, and

~2.24!#. This ‘‘minimal coupling’’ was shown by formulas~2.15! and ~2.18! to be uniquely
prescribed by the semi-direct product commutation relations~2.14!. In the following theorem we
derive the Dirac bispinor LagrangianLD from the Yang–Mills LagrangianLg , and thereby obtain
the usual minimal coupling between boson gauge potentialsVa

K and bispinor fieldsC.
Theorem 1: Dirac’s bispinor Lagrangian~2.7! equals

LD5Lim
g→`

g21Lg . ~2.25!

Proof: The derivation is greatly simplified by embedding theFa
K andVa

K into SL~2,C!3U~1!
gauge potentialsAa

K andWa
K as follows:

Aa
052Fa

3, Wa
052Va

3, Aa
152 iF a

2, Wa
152 iVa

2,
~2.26!

Aa
25 iF a

1, Wa
25 iVa

1, Aa
352Fa

0, Wa
352Va

0,

where now Aa
0 and Wa

0 are the U~1! gauge potentials, andAa5(Aa
1 ,Aa

2 ,Aa
3) and

Wa5(Wa
1 ,Wa

2 ,Wa
3) are complex SL~2,C! gauge potentials.3 Substituting ~2.26! into formula

~2.22!, Lg becomes

Lg52 1
4 Re@Aa

abAab
a #1Da~r1m!Da~r1m!2 1

2g
2uru4, ~2.27!

whereAab
a 5(Aab

K ,Wab
K ) and

Aab
0 5D̂aAb

02D̂bAa
0,

Wab
0 5]aWb

02]bWa
0,

Aab5D̂aAb2D̂bAa2gAa3Ab , ~2.28!
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Wab5]aWb2]bWa22qWa3Wb ,

Da~r1m!5D̂a~r1m!1 igAa
0~r1m!,

where

D̂aAb
05]aAb

0,

D̂aAb5]aAb22qWa3Ab , ~2.29!

D̂a~r1m!5]ar12iqWa
0~r1m!.

The indexa in formula ~2.27! is contracted using the SL~2,C!3U~1! invariant metrichab defined
just as in formula~2.21!.

Furthermore, the orthogonal constraint~2.13! becomes

Aa
KAKb52uru2gab . ~2.30!

With this constraint, a straightforward derivation using formulas~2.27! and ~2.28! shows that
formula ~2.25! becomes

Lim
g→`

g21Lg52Re@~D̂aAb!•Aa3Ab12i r̄Aa
0D̂ar14m0uru2r̄ #2 1

4VK
abVab

K . ~2.31!

Apart from the term2 1
4VK

abVab
K and the minimal substitution ofD̂a for the partial derivatives,]a ,

formula ~2.31! is precisely the tensor form of the free Dirac bispinor Lagrangian.1,3 By expanding
D̂a in formula ~2.31!, and using formulas~2.12!, ~2.26!, ~2.29!, and ~2.30!, we obtain the inter-
action term~2.9!. Q.E.D.

Note that the embedding~2.26! is derived from embedding the gauge group SL~2,R!3U~1! as
a subgroup of the gauge group SL~2,C!3U~1!. Thus, the SL~2,C! gauge potentialsAa andWa are
restricted to an SL~2,R! subset of gauge potentials, which by formula~2.26! satisfy

Re@Aa
1 #5Re@Aa

2 #5Im@Aa
3 #50,

Re@Wa
1 #5Re@Wa

2 #5Im@Wa
3 #50. ~2.32!

The Euler–Lagrange equation for the Lagrangian~2.27! with the constraint~2.30!, expressed
using Lagrange multipliers, commutes with the restriction~2.32!. Hence, theAa andWa can be
used to denote either SL~2,C! or the subset of SL~2,R! gauge potentials. By regarding SL~2,R! as
embedded in the complex analytic group SL~2,C!, we are able to use familiar vector operations to
express the Lie algebra structure constants, as, for example, the vector cross product in formulas
~2.28! and ~2.29!, and the vector triple product in formula~2.31!. The vector operations greatly
simplify derivations.

Also, note from formula~2.1! that Va
0 is the electromagnetic gauge potential andVa

3 is the
chiral gauge potential associated with the infinitesimal generatorst052i and t35ig5, respec-
tively. Heret0 andt3 generate a maximal compact U~1!3U~1! subgroup of SL~2,R!3U~1!. The
noncompact generatorst1 andt2 by formula~2.1! mix positive and negative energy states. Thus,
the associated boson gauge potentialsVa

1 andVa
2 are unphysical, and hence must vanish for both

the bispinor and tensor theories. Thus, the gauge groupG5Gw3K, whereG5SL~2,R!3U~1! and
K5U~1!3U~1!, and wherew denotes the adjoint representation12 of K onG. This case is handled
similarly to the case whereG5Gw3G, which we considered previously, and is equivalent to
settingVa

1 andVa
2 equal to zero in formulas~2.4! and ~2.17!.
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III. UNIFICATION OF GRAVITONS, FERMIONS, AND BOSONS IN A TETRAD MODEL

In this section we add boson gauge potentials to the tetrad formulation of the Kaluza–Klein
model, which previously contained only gravitational and fermion fields.7 For simplicity, we will
associate the boson gauge potentialsVa

K with the same gauge groupG5SL~2,R!3U~1! as for the
fermion gauge potentialsFa

K. However, this will not prevent us from restrictingVa
K to a compact

subgroup ofG, as discussed at the end of Sec. II.
Let X be a four-dimensional space–time, and letdxa, with a50,1,2,3, denote local coordinate

one-forms on an open chartU,X. The gravitational field, which here we denote asg̃ on X, is
expressed locally onU by

g̃5gab dxa
^dxb. ~3.1!

The fermion and boson fields onX we denote as~FK,r! andVK, whereFK andVK with K50,1,2,3
are tetrads of one-forms, expressed locally onU by

FK5Fa
K dxa, VK5Va

K dxa, ~3.2!

andr is a complex scalar field. In this section we unify the gravitational fieldg̃, the fermion field
~FK,r! and the boson fieldVK by deriving the Einstein and Dirac–Yang–Mills Lagrangians from
a tetrad formulation of a Kaluza–Klein model. The constraint~2.13! of the fermion field~FK,r!
will be shown to be a consequence of the tetrad model.

On the semi-direct product gauge groupG5Gw3G ~see Sec. II! we fix two tetrads of right-
invariant vector fieldscK and dK with commutation relations given by@compare with formula
~2.14!#:

@cJ , cK#5l f JK
L cL , @dJ , cK#5l̂f JK

L cL , @dJ , dK#5l̂f JK
L dL , ~3.3!

where f JK
L are the previously defined SL~2,R!3U~1! structure constants,l and l̂ are real scale

factors given by

l5g/«, l̂52q/«, ~3.4!

whereg andq are the previously defined Yang–Mills coupling constants, and

«5A16pk0

3g
, ~3.5!

wherek0 is Newton’s gravitation constant. SinceG is an eight-dimensional Lie group, the right-
invariant vector fields$cK ,dK% span the Lie algebra ofG. From formula~3.3!, the vector fields
$cK ,dK% are orthogonal with respect to the right-invariant metrich defined by

h5hJK~pJ
^ pK2gsJ

^ sK!, ~3.6!

where$pK,sK% are right-invariant one-forms onG dual to$cK ,dK% andhJK has diagonal elements
$1,21,21,21% and zeros off the diagonal.@Note that all Lie groups have right-invariant metrics,
but only a restricted class of Lie groups have invariant~i.e., bi-invariant! metrics.11 Note also that
the metrics in this paper, such as the bi-invariant metrichJK on SL~2,R!3U~1! which has a
Minkowski signature, are not positive definite.#

On the space–timeX, we assume the existence of a global nonsingular tetrad of smooth vector
fields eK . Let uK denote the tetrad of one forms onX dual to the vector fieldseK . Thus, on the
Kaluza–Klein manifoldM5X3G, we can define the following tetrad of vector fields:

vK5~eK ,«urucK ,«vK
J dJ!, ~3.7!
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where nowr is a complex scalar field onM , vK
J are coefficients associated with the boson field

@see formula~3.17!#, and« is the previously defined constant~3.5!. We define the metricg onM
with respect to the basis$vK ,cK ,dK% to be

g5FhJK 0

0 hab
G , ~3.8!

wherehab denote the components of the metrich defined in formula~3.6!. We also denote the
metricg as^,&. Thus, with respect to the metric^,&, the tetradvK is orthonormal, and orthogonal to
G.

The manifoldM5X3G has a natural right action ofG. For vK to be right-invariant, it is
necessary and sufficient thateK , uru, andvK

J depend only on the space–time coordinatesxPX.
Also, r is a complex U~1! scalar field. Specifically, in a local coordinate system (xa,yK,zK) onM ,
r has the form

r5ei ~ly1l̂z!r̃~x!, ~3.9!

wherey5y3 andz5z3 are the normal coordinates for the U~1! subgroups ofG generated byc3
andd3 @see formula~3.3!#.

Our goal in this section is to derive the Einstein and Dirac–Yang–Mills Lagrangians from the
following Lagrangian for the fields~vK ,r!:

L5
g

16pk0
R@v#1vK~r1m!vK~r1m!2

1

2
g2uru4, ~3.10!

where the massm is defined onM by

m5
2m0

g
ei ~ly1l̂z!, ~3.11!

and R[v], at each point ofM , is the sum of sectional curvatures over the four-dimensional
subspace spanned by the orthonormal tetradvK , defined by

R@v#5 (
J50

3

(
K50

3

^R~vJ ,vK!vJ,vK&, ~3.12!

whereR~ , ! is the curvature two-form11 associated with the semi-Riemannian metric^ , &. We
express the action for the fields~vK ,r! by

S5E L dv, ~3.13!

wheredv is the volume form onM associated with the metriĉ, &.
We now show that the Lagrangian~3.10! equals the Hilbert–Einstein Lagrangian for the

gravitational field plus the Dirac–Yang–Mills Lagrangian~2.22!. The constraint~2.13! of the
fermion gauge potentials will be shown to be a consequence of the tetradvK . Using a simplified
notation, we can writevK in formula ~3.7! as

vK5eK1«urucK1«vK
J dJ , ~3.14!

whereeK5(eK,0,0), cK5(0,cK,0), anddK5(0,0,dK) on M , and similar notation for the dual
one-formsuK, pK, andsK induced onM .
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From formula ~3.14!, the basis of one-forms onM dual to the basis of vector fields
$vK ,cK ,dK% is given by$uK,vK,mK%, where

vK5pK2«uruuK, mK5sK2«vJ
KuJ, ~3.15!

and the metric~3.8! is expressed by

g5hJKuJ^ uK1habv
a

^ vb, ~3.16!

whereva5(vK,mK).
Let us define with respect to the basis$]/]xa,cK ,dK% the following fields on U3G:

gab5hJKua
Jub

K , Fa
K5uruua

K , Va
K5vJ

Kua
J . ~3.17!

By definition of uK and using formulas~3.15! and ~3.17!:

uK5ua
K dxa, vK5pK2«Fa

K dxa, mK5sK2«Va
K dxa. ~3.18!

Moreover, writingpa5(pK,sK) andFa
a5(Fa

K ,Va
K), formula ~3.18! can be expressed more sim-

ply by

uK5ua
K dxa, va5pa2«Fa

a dxa. ~3.19!

On substituting formulas~3.17! and ~3.19! into ~3.16!, the metricg becomes

g5Fgab1«2habFa
aFb

b 2«Fa
ahab

2«habFb
b hab

G . ~3.20!

Thus, g is precisely the Kaluza–Klein metric10 for the gravitational fieldgab and the gauge
potentialsFa

a5(Fa
K ,Va

K). Also, by formula~3.17!,

hJKFa
JFb

K5uru2gab , ~3.21!

which is precisely the constraint~2.13!. Furthermore, by formula~3.17!, the gravitational metric
gab has the same~Minkowski! signature as the invariant metrichJK on SL~2,R!3U~1!.

A straightforward derivation using the Kaluza–Klein metricg in formula~3.20! shows that7,10

R@v#5R̃1 3
4«

2Fa
abFab

a , ~3.22!

whereR̃ denotes the scalar curvature ofX, andFab
a 5(Fab

K ,Vab
K ) is defined as in formulas~2.6!

and ~2.19!. We can now prove the following theorem:
Theorem 2: The total LagrangianL given in formula ~3.10! equals the Hilbert–Einstein

Lagrangian for the gravitational field plus the Dirac–Yang–Mills LagrangianLg given in formula
~2.22!, and similarly for the action~3.13!.

Proof: The theorem follows by substituting formula~3.22! into ~3.10!, and by noting from
formula~3.8! that the volume formdv onM depends only on the one-formsuK. By expressing the
gravitational fieldgab , the fermion field~Fa

K,r!, and the boson fieldVa
K in terms of the new

variablesua
K, r, andVa

K as in formula~3.17!, the constraint~2.13! is eliminated. Q.E.D.
~Note that the gravitational fieldgab and a bispinor fieldC, which together have 1018518

real components, are equivalent toua
K andr, which also have 1612518 real components.7!

The following observations can be made about the proof of Theorem 2. First, the unphysical
cosmic constant, which is the scalar curvature of the gauge groupG occurring in the Lagrangian
of the usual Kaluza–Klein model, does not occur in the Lagrangian~3.10! because in formula
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~3.12! we restrictedR[v] to the tetradvK . Second, for the same reason, Theorem 2 does not
require that the right-invariant metrich given in formula~3.6! be bi-invariant,11 which, in the
usual Kaluza–Klein model, places restrictions on the gauge group.10
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Random perturbations of iterated maps
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Ottawa, Ontario K1S 5B6, Canada
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Random perturbations of Markov processes on systems of contractive maps are
considered. The existence of a unique invariant measure for the randomly perturbed
process is proved under a very weak assumption on perturbations. In particular, the
proof holds for the full class of translationally invariant perturbations. ©1996
American Institute of Physics.@S0022-2488~96!00907-3#

The Markov operatorM:P (X)→P (X) defined by a set$wi :X→X% of N Lipschitz maps in
given by1

~Mn!~A!5(
i51

N

pin~wi
21A!, for A measurable, ~1!

whereP (X) denotes the set of normalized Borel measures on a compact spaceX, eachwi has
Lipschitz constantsi,1, and eachpi is non-negative and( i51

N pi51. The operatorM formalizes
the iteration dynamics onX given by choosing ani at random with probabilitypi and then
applyingwi . The dynamics onP (X) is deterministic with a unique invariant measure. Next, we
consider random perturbations of the dynamics just defined. When anywi is applied to a pointx
in X, in the presence of noise, the result is not necessarilywi(x). Instead, it only makes sense to
give the probabilityN „Auwi(x)… for x to land inA,X by the perturbed action ofwi , for each set
A which belongs to the familyB(X) of Borel measurable sets. In the noiseless limitN „•uwi(x)…
is a Dirac delta distribution located atwi(x). Therefore a random perturbation is a mapN :B(X)
3X→@0, 1#. The effect of noise on measures is given by a mapS :P (X)→P (X), whereS n is the
measure onto which a given measuren is taken by the perturbation, independent of the Markovian
processM. In terms of the pertubationN , S is given by

S n~A!5E N ~Au• !dn.

The functionN ~Au•! is measurable for eachAPB(X). This condition is satisfied for the most
commonly studied noises.

Under noise, the evolution is governed by theperturbed Markov operatorR5~S +M!. In
terms of the perturbationN , the perturbed Markov operatorR is

Rn~A!5E N ~Au• !d@Mn#, ~2!

with operatorM is defined in Eq.~1!. Using in Eq.~2! the defining set of Lipschitz maps,$wi%,
the perturbed operator is written as

0022-2488/96/37(7)/3641/3/$10.00
3641J. Math. Phys. 37 (7), July 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Rn~A!5E (
i51

N

piN ~Au• !+widn. ~3!

The perturbed Markov operatorR has a unique invariant measure if it is contractive in a suitable
metric. We considerHutchinsonmetric. Given any two measuresm, nPP (X), their distance
h~m,n! in the Hutchinson metric is given by min$u* f dm2* f dnu: fPF %, whereF is the set of
real-valued functions onX with Lipschitz constant not bigger than one. Under a very weak
assumption onN , the following claim states that the perturbed operatorR is contractive in the
Hutchinson metric.

Lemma 1:Let a perturbation mapN satisfy the inequality

U E f dN ~•ux!2E f dN ~•uy!U<d~x,y!

for eachx, yPX and fPF . Then the perturbed Markov operatorR is contractive in the Hutch-
inson metric for any Markov operatorM.

Proof: Let m,nPP (X). From the form ofR in Eq. ~3! and the definition of the Hutchinson
metric, we have

h~Rm,Rn!5 sup
fPF

H U(
i51

N

piS E Fi dm2E Fi dn D UJ <(
i51

N

pi sup
gPF

H U E Fi dm2E Fi dnUJ
5s(

i51

N

pi sup
gPF

H U E 1

s
Fi dm2E 1

s
Fi dnUJ ,

whereFi :X→R is defined byFi(x)5*gdN ~•uwi(x)!, and s5max$si%. By hypothesis, for all
gPF and all i , we have

U1s E gdN „•uwi~x!…2
1

s E gdN „•uwi~y!…U< 1

s
d~wi~x!,wi~y!!<

1

s
sd~x,y!,

from which (1/s)FiPF for all i and eachgPF . Therefore it follows that

h~Rm,Rn!<s(
i51

N

pih~m,n!5sh~m,n!.

The most frequent kind of physical random perturbation is the homogeneous, ortranslationally
invariant, noise. LetX be a compact subspace of a vector space@Hutchinson’s function is a metric
on P (X) only if X is compact#. A homogeneous perturbationN satisfies the conditionN (Aux)
5N „A1(y2x)uy… for eachx,yPX and each measurableA. Our claim is that the hypothesis of
Lemma 1 holds for such a noise. Let$Ai% be a partition of suppN ~•ux!, and letxiPAi . The
integral of any continuous function, and in particular of anyfPF with respect to the measure
N ~•ux!, can be approximated with an arbitrary degree of precision as(iN (Ai ux) f (xi) by making
the diameter of the setsAi sufficiently small. The same is true for the integral off with respect to
the measureN ~•uy!, this time using the setsBi5Ai1(y2x) and the pointsyi5xi1(y2x), and
therefore the difference of the integrals off with respect toN(•ux) andN(•uy) is arbitrarily close
to u(iN (Ai ux) f (xi)2( iN (Bi uy) f (yi) u. SinceN (Ai ux)5N (Bi uy) for eachi , this number is not
bigger than(iN (Ai ux)u f (yi)2 f (xi)u, and this cannot be bigger thand(x,y)5uy2xu since
(iN (Ai ux)51 and eachu f (yi)2 f (xi)u is not bigger thanuyi2xi u5uy2xu sincefPF . Therefore
we have proved the following.
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Theorem 1: Let a Markov operatorM be subjected to a translationally invariant random
perturbation. Then the perturbed operatorR is a contractive operator with a unique measurem
which satisfiesRm5m.

We remark that Theorem 1 is a very general result. The underlying spaceX is an arbitrary
compact subset of a vector space; the mappingswi are arbitrary contractive functions and the
noise associated to each point is also arbitrary, provided that it is translationally invariant and that
N ~Au•! is measurable for eachAPB(X). For instance, this measurability condition holds whenX
is contained inRn andN ~•ux! defines a distribution function. In a related result, Garcia-Pelayo
and Schieve2 proved the existence of a unique invariant measure of a dynamical system subjected
to external noise. Their treatment is restricted toRn, the noise they study corresponds to a normal
distribution centered inx for N ~•ux!, and they only consider mappingswi which are contractive
affine transformations onX.

ACKNOWLEDGMENTS

One of the authors~G.S.A.! is a CONACYT fellow at Carleton University. This work was
partially supported by CONACYT under Contract No. 485100-5-2109 E.

1M. Barnsley,Fractals Everywhere~Academic, New York, 1988!.
2R. Garcia-Pelayo and W. C. Schieve, ‘‘Noisy fractals,’’ J. Math. Phys.33, 570 ~1992!.

3643G. Salazar-Anaya and J. Urı́as: Random perturbations of iterated maps

J. Math. Phys., Vol. 37, No. 7, July 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Comments on Hamiltonian structures for the
n -dimensional Lotka–Volterra equations
[J. Math. Phys. 36, 3520–3534 (1995)]
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In a recent paper, Plank presents results on first integrals for the Lotka–Volterra
system~LVS! and their use as possible Hamiltonians. Since he was not acquainted
with already published results, we feel that an embedding of his results in those of
previous papers can clarify some of his statements. We concentrate our comments
on the results presented in his paragraphs III and IV. ©1996 American Institute
of Physics.@S0022-2488~96!02207-4#

„A… 2d LVS. The idea of associating a Hamiltonian to a 2d ODE system was first introduced
by Nutku2 for the particular Lotka–Volterra system~LVS! studied by Volterra corresponding to
the equations1,1 ~the two numbers refer respectively to the reference of the paper and the formula
number! whena115a2250. A generalization was provided by Cairo´ and Feix3 who showed that,
if a system possess a first integral~invariant! I not depending explicitly on time, thenI can be
considered as Hamiltonian through a time rescaling. It must be pointed out that the relation given
in theorem 3.1~p. 3523! in order to allow the system to have a Hamiltonian structure is just the
relationR1250 given in Ref. 4 to obtain invariant III~note thata andb are inverted in Refs. 1
and 4.

„B… First integrals for n-dimensional LVS. Plank mentioned four types of first integral on
the top of p. 3525.~i! concerns then-dimensional Volterra case~for aii50!, ~ii ! and ~iii ! are,
respectively, invariant III and II of Cairo´ and Feix and~iv! is claimed to be new. In fact~iv! is a
limiting case of invariant III. To fix ideas we look at the conditions of existence for Plank’s first
integral ~iv! in the casen53. These conditions are given at the bottom of p. 3531. The first one
is b150 for B0Þ0 ~below we consider the caseB050!. Let us take thenB051. Then from~iv!
B25a12/b2 andB35a13/b3 . Moreover, takingi5k52 andi5k53 in condition~iii ! we obtain,
respectively,a125a22 and a135a33. Using this result and taking for instancei52, k53, we
obtain a22(a232a33)/b21a33(a322a22)/b350, which is exactly our relation4,26 R2350. On the
other handb150 together witha125a22 impliesR1250 andb150 anda135a33 impliesR1350.
Consequently the conditions of existence of the first integral~iv! of Plank are a special case of
those for invariant III of Cairo´ and Feix. Note thatB050 implies allbi equal and we recover the
invariant II conditions. One can easily prove that, indeed, invariant III takes the form given by the
first integral~iv! of Plank. Moreover the conditions~i! to ~iv! given at the bottom of p. 3527 are
our conditions to obtain invariant III. In fact condition~iv! is automatically fulfilled ifn is even.
If n is odd, this condition is not necessary and actually the first integral is time-dependent through
a factorest. Another point which needs further explanation is the expression ofK(x) and the
conditions to be fulfilled given at the top of p. 3530. Conditions~i! are our conditions4,17 and
Plank’s relation~ii ! is identical to our relations.4,19Condition~iv! is automatically satisfied ifn is
odd and, ifn is even, we do not need this condition if we introduce a factorest in the first integral.
However, in that case we need a rescaling~see Ref. 5! both of thexi and t of the formxi5ebtx̄i
and dt̄5ebtdt, whereb[bi . So in all cases we can obtain a time-independent first integral

a!Electronic mail: lcairo@univ-orleans.fr, marcfeix@univ-orleans.fr.
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without condition~iv!. On the other hand Plank’s condition~iii ! is misleading. We haven(n21)/2
equations andn unknowns. Since the system is homogeneous, we needn(n21)/22n115(n
21)(n22)/2 relations between theai j . These relations appear in our paper.4,15 where an expla-
nation of this number of constraints is provided. The extension of the Hamiltonian formalism to
systems of dimension greater than two possessing first integrals was also considered in Refs. 6–9.
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8L. Cairó, M. R. Feix, D. D. Hua, and S. Bouquet, ‘‘Hamiltonian method and invariant search for 2D quadratic systems,’’
J. Phys. A26, 4371–4386~1993b!.

9D. D. Hua, L. Cairo´, and M. R. Feix, ‘‘Time-independent invariants for the quadratic system,’’ J. Phys. A26, 7097–7114
~1993c!.
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Erratum: Solution of the one-dimensional N-body
problems with quadratic and/or inversely quadratic pair
potentials [J. Math. Phys. 12, 419–436 (1971)]

F. Calogero
Dipartimento di Fisica,a) Universitádi Roma ‘‘La Sapienza,’’ 00185 Roma, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy

~Received 19 March 1996; accepted for publication 21 March 1996!

@S0022-2488~96!00407-7#

In the right-hand side of Eq.~4.5! ckq should be replaced byckqp
2(1/2)(N23). Since the

quantitiesckq are defined throughout up to an arbitrary multiplicative constantc, it might appear
that this change is irrelevant. This is not the case, because in the argument that follows Eq.~4.5!
the fact thatckq does not depend onp ~in particular, on the sign ofp! plays an essential role. Note
that,after this replacement, ckq is indeed independent ofp, as it is clearly implied~for dimensional
reasons! by ~4.8!, or rather by the identification of the right-hand-sides of~4.8! ~of course with
ckq replaced byckqp

2(1/2)(N23)) and~4.10!, an identification which constitutes the defining prop-
erty of the quantitiesckq. The rest of the proof following Eq.~4.5! proceeds then as given, with
these consequential changes: In the right-hand-sides of~4.14!, ~4.10!, and ~4.8!, A should be

replaced by A8[A2 1
2(N23)5 1

2N(N21)(a1 1
2); likewise ckq should be replaced by

ckqp
2(1/2)(N23) in the right-hand-sides of~4.5! and~4.8! ~as already mentioned!, as well as~4.9!

and ~4.18! ~in this latter equation, one might then also wish to replace the newly inserted factor
p2(1/2)(N23) with ( p̄)2(1/2)(N23), as well as the first factor in the right-hand-side,e2 ipA, with
e2 ipA8; since p̄52p , see~4.19!, these latter changes are merely notational ones; but they are
appropriate for the argument which is subsequently made!.

Note that these adjustments do not affect the main conclusion, see Eq.~4.23!. Moreover, they
entail that the overall ‘‘phase shift’’h[2 iA852 1

2N(N21)ip(a1 1
2) can now be naturally

interpreted as resulting from the addition of1
2N(N 2 1) equal phase shifts due to as many two-

body collisions~the ‘‘factorization,’’ or ‘‘solitonic,’’ property!.

a!On leave while serving as Secretary General, Pugwash Conferences on Science and World Affairs, Geneva, London,
Rome.
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Surface-embeddability approach to the dynamics 
of the inhomogeneous Heisenberg spin chain 

Radha Balakrishnan and Partha Guhaa) 
The Institute of Mathematical Sciences, Madras 600 113, India 

(Received 18 August 1995; accepted for publication 25 March 1996) 

The surface-embeddability approach of Lund and Regge is applied to the classical, 
inhomogeneous Heisenberg spin chain to study the class of inhomogeneity func- 
tions f for which the spin evolution equation and its gauge-equivalent generalized 
nonlinear Schrodinger equation (GNLSE) are exactly solvable. Writing the spin 
vector S(x,r) as J,r and identifying r(x,t) with a position vector generating a 
surface, we show that the kinematic equation satisfied by r implies certain con- 
straints on the admissible geometries of this surface. These constraints, together 
with the Gauss-Mainardi-Codazzi equations, enable us to express the coefficient 
of the second fundamental form as well as f in terms of the metric coefficients G 
and its derivatives, for arbitrary time-independent G. Explicit solutions for the 
GNLSE can also be found in terms of the same quantities. Of the admissible 
surfaces generated by r, a special class that emerges naturally is that of surfaces of 
revolution: Explicit solutions for r and S are found and discussed for this class of 
surfaces. 0 1996 American Institute of Physics. [SOO22-2488(96)01307-21 

I. INTRODUCTION 

Over a decade ago, one of us proposed’ a model Hamiltonian for the inhomogeneous Heisen- 
berg spin chain and showed that the spin evolution equation in the continuum description is given 
by the nonlinear equation 

S,=(fSXS,),, s2=1, (1.1) 

where S denotes the spin vector, f is the site-dependent exchange interaction between spins, and 
the subscripts denote partial derivatives. Further, by using the moving space curve formalism,2 it 
was shown’ that Eq. (1.1) is gauge equivalent to a generalized nonlinear Schrijdinger equation 
(GNLSE) of the form 

iq,+(fq),,+2q flq12+ ( /~J-x1q12 dx} =O, 
where 

q=:exp 
x 

r dx 
--oc 

(1.2b) 

with the curvature K and the torsion r of the curve being given by 

K2=(Sx)2; T=s.(s,xs,,)/K2. (1.2c) 

Equations (1.1) and (1.2a) have applications in fluid dynamics as well, where they appear in the 
study of the motion of an inhomogeneous vortex filament in an incompressible inviscid fluid.3 The 

%esent address: Max Planck Institut fi.ir Mathematics, Gottfried Claren Str. 26, 53225 Bonn, Germany 
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dynamics of the model and its higher dimensional analogs have attracted further attention in recent 
years.4l5 For the homogeneous chain (corresponding to f=const), Eq. (1.2a) reduce8 to the well- 
known completely integrable nonlinear Schrijdinger equation7 solvable by the (isospectral) inverse 
scattering transform (IST) method.* When f is a linear function of x, Eq. (1.2a) yields a slightly 
modified version of an integrable equation studied by Calogero and Degasperis,’ and the IST in 
this case has been discussed by Lakshmanan and Bullough.” Here, the spectral parameter is a 
function of time. These are the only two classes of f(x) for which the conventional IST method is 
directly applicable, and the corresponding GNLSEs are expected to pass the conventional integra- 
bility tests. All otherf(x) fall into a separate class, in the sense that the spectral parameter now 
becomes a function of both space and time.’ Some years ago, Burtsev et al.” showed that if a 
nonlinear evolution equation has an associated spectral parameter with a certain prescribed func- 
tional form for its space-time dependence, it is possible to develop a conventional IST scheme to 
obtain strict soliton solutions. We note that the spin evolution of a chain with linear inhomogeneity 
belongs to this class. For certain other inhomogeneities, we have shown that if the space-time 
dependence of the spectral parameter has a separable product form, it becomes possible to use an 
approach’ based on the Ablowitz-Kaup-Newell-Segur* formalism to analyze Eq. (1.2a) in terms 
of a transformed spatial variable to obtain localized solutions. However, more general questions 
such as integrability, strict solitons, etc., could not be addressed in this approach. Another point to 
be noted is that while knowing a solution S of Eq. (1.1) enables one to find the solution q of Eq. 
(1.2a) in a straightforward fashion by using Eqs. (1.2b) and (1.2c), the inverse procedure, i.e., the 
construction of S from q, is computationally not so easy. On the other hand, if q satisfies a 
completely integrable equation, the soliton-surfaces approach pioneered by Sym12 can be adopted 
to construct S, using the solution to the associated isospectral Lax pair system. This has been 
carried out for the homogeneous chain (the case f=const).13 It is also possible to find soliton 
solutions for S by solving Eq. (1.1) directly, using the IST method,t4 for the homogeneous chain. 

Recently, in a very interesting paper, Ciesliriski, Sym, and Wesselius5 have used some ideas 
from Sym’s surface approach12 to find exact solutions of Eq. (1.1) for several other inhomogeneity 
functions by a somewhat different route: Representing S as the spatial derivative of a vector r, i.e., 
setting 

S=r,, (1.3) 

it is seen that the kinematic equation 

r,=ftr,X1;,), rZ= 1, (1.4) 

for a vector r implies Eq. (1.1). 
Assuming the surface generated by the position vector r(x,t) to be equipped with a metric of 

the geodesic form, they showed5 that the Gauss-Mainardi-Codazzi (GMC) equations’” for this 
surface can be cast in the same form as Eq. (1.2a), upon making appropriate identifications 
between q and f on the one hand and the coefficients of the first and second fundamental forms 
(i.e., the metric and the extrinsic curvature respectively) on the other. By specializing to surfaces 
of revolution, they demonstrated that the equations for the geodesics on the surface can be inte- 
grated explicitly for certain cases, and gave an algorithm for obtaining both f and the correspond- 
ing solution S. Choosing the simplest geodesic coordinates on a surface of revolution (“parallels” 
and “meridians”), the solutions called “spins-on-meridians” could be found for a wide variety of 
time-independent, bounded, positive functionsf(x), i.e., inhomogeneous ferromagnetic couplings. 
However, for more general geodesic coordinates on surfaces of revolutions, the solutions turned 
out to correspond to time-dependent functions f(x,t) which were either unbounded or negative in 
all typical examples. Both these characteristics are unphysical, and for the latter (f<O), an anti- 
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ferromagnetic coupling is implied, causing the nearest-neighbor spin vectors to be almost antipar- 
allel for low energies, and therefore the continuum equation (1.1) is itself quite inappropriate to 
describe low-energy dynamics. 

In view of what has been said above, we confine ourselves to the ferromagnetic case f>O in 
this paper. Our geometric formulation differs form that of Ciesliriski et aL5 in the sense that 
although we also identify r(x,t) with a position vector that generates a surface, we do not compare 
the GMC equations to Eq. (I .2a), nor do we use the general equations of geodesics. We adopt the 
strategy suggested by Lund and Regge16 in a different context, and regard the kinematic equation 
( 1.4) as a constraint on the surface generated. Such a constraint is expected to permit only certain 
special geometries for the surface.16 Indeed, for the model under investigation, the surface metric 
is shown to be necessarily of the geodesic form and, further, certain coefficients of the two 
fundamental forms get related through the function f. Using these results in the GMC equations, 
and restricting our discussion to the case of time-independent metrics, it becomes possible to 
“integrate” them. This enables us to find the expressions for L, M, and N (the coefficients of the 
second,fundamental form) as well as the corresponding function f in terms of the metric coeffi- 
cient G, its x derivatives, and two (arbitrary) integration constants. It is then demonstrated that the 
solution q of Eq. (I .2a) can also be written in terms of the above-mentioned quantities, by simply 
reexpressing the moving curve parameters K and 7 [appearing in Eq. (1.2b) and defined in Eq. 
(1.2c)] in terms of surface coefficients by using the Gauss-Weingaraten (GW) equations’” for the 
surface. Thus we see that given an arbitrary metric coefficient, the explicit solution for q along 
with the corresponding f can be written down. This solution q is a complex function in general, 
and is interesting in its own right since it contains information’ on the energy and momentum 
densities along the chain. Furthermore, on inspecting the expressions for L, M, and N obtained 
from the GMC equations, it is readily seen that they correspond to those of surfaces of 
revolution,‘” when one of the two integration constants referred to above vanishes. Also, G”* 
plays the role of the generator of revolution, and the explicit solution of r(x,r) can be written 
down in this limiting case. In this limit, our expression forf(x) reduces to the result obtained” in 
the geodesic approach, for the spins-on-meridian solutions. The corresponding solutions for 4 are 
necessarily real. For certain common surfaces of revolution like the torus and the catenoid, the 
solution S of Eq. (1 .l) can be expressed solely as a functional off that appears in the equation, 
essentially because the surface metric can be written down as a functional of the function f for 
these surfaces. Some illustrative examples are discussed at the end. 

II. THE MODEL 

We begin by briefly describing the physical system under consideration and outline the deri- 
vation of Eq. (1.1). 

The inhomogeneous, isotropic Heisenberg spin chain is described by the following 
Hamiltonian:’ 

(2.1) 

Here fi denotes a site-dependent nearest-neighbor interaction and Sj is the classical spin 
vector at site i; (Si)*=S2=const. A classical treatment for spins is justified from experimental 
resultsi for spins s?=i. Hereafter, Sy is normalized to unity for convenience. For the conventional 
Heisenberg Hamiltonian, the exchange interaction which couples nearest-neighbor spins is a con- 
stant (say, fe) everywhere along the chain. However, it is possible to fabricate systems in which 
(a) the distance between neighboring atoms varies along the chain so that the overlap of identical 
electronic wavefunctions (which is a measure of the exchange coupling f ) varies as well, or (b) 
the atoms may be equally spaced, but the wavefunction may be made to change from site to site 
by the deliberate introduction of impurities or organic complexes in a controlled mariner,,,, without 
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causing lattice distortions. The spin evolution equation for the system is found using 
(dSildt)={H,Si}, where {,} denotes the Poisson bracket, and the Cartesian spin-components SF 
satisfy the angular momentum algebra {SF ,Sf} = Sij~,s$T. Using Eq. (2.1) for the Hamiltonian, 
.we obtain’ 

dSi 
,,=fi(SixSi+,)+f,-*(SixSi-,). (2.2) 

A continuum version of Eq. (2.2) is suitable when Si and fi vary slowly over one lattice 
separation a. This would be a good description at low temperature for a ferromagnetic coupling, 
f>O. Hence we write SpS(x,t), fi+f(x) and use Taylor expansions for S(x+a,t) and f(x 
- a,t) to order a2 to obtain 

S,=f(SXS,,)+f,(SXS,), (2.3) 

on resealing the time variable by a factor a*. The two terms on the right-hand side can be 
combined easily to yield the spin evolution equation (1.1). 

III. KINEMATIC RESTRICTIONS ON THE SURFACE GEOMETRY 

Our starting point is the kinematic equation for r(x,t) given Eq. (1.4), which (as already 
stated) implies Eq. (l.l), when r,=S. Let us identify r(x,t) with a position vector generating a 
smooth surface in E3, with local coordinates x and t. Let the metric, i.e., the first fundamental 
form of this surface, be given by I5 

I=dr*=E dx2+2F dxdt+G dt*, (3.1) 

where by definition E=2, F=r,.r, and G=$. However, S*=r:= 1 in the model and from Eq. 
(1.4) it is readily verified that r;t-,=0. Therefore, E = 1 and F=O, and the metric (3.1) is neces- 
sarily constrained to be of the geodesic form given below: 

Z=dx*+G(x,t)dt*. (3.2) 

The unit normal n to the surface is given by 

(3.3) 

As usual, the extrinsic curvature (second fundamental form) is defined as 

II= -dr.dn=L dx2+2M dxdt+N dt*, (3.4) 

where 

L=r,, .n, M=r,,.n, and N= rf, .n. (3.5) 

As is well known in surface theory, the Gauss-Weingarten (GW) equations for surface can be 
written in terms of L,M,N and the usual Christoffel symbols Ffj.15 For the metric given in Eq. 
(3.2), the latter reduce to 

r:1=r:1=r:2=o; 

r;,= $G,IG, r;,= -in,, and ri2= +G,IG. 
(3.6) 

Using these, the GW equations read 
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r xx= Lb (3.7a) 

rX,= i(G,/G)r,+ Mn, (3.7b) 

rrt= - iG,r,+ i(G,/G)r,+ Nn, (3.7c) 

n,= -Lr,-(MIG)r,, (3.7d) 

nr= -Mr,-(NIG)r,. (3.7e) 

Further, for this surface it is easy to show that 

(r,xr,,)=L(r,Xn)=(LIG”*)r,, (3.8) 

where we have used Eq. (3.3) in Eq. (3.7a), along with F=O. Comparing this with the given 
equation (1.4), we get the constraint 

f=-G’“IL, (3.9) 

for L 20. In other words, given f, Eq. (I .4) can have a solution only if the coefficients G and L are 
related through f as in Eq. (3.9). 

For coordinates with E= 1 and F=O, the compatibility conditions (rX,)l=(rXf)X and 
(rtt)x=(rxr)r yield the following Gauss-Mainardi-Codazzi (GMC)15 equations: 

-(LN-M*)ic=(r:,),-(r:,),+rt,r:,-r:,r:,+rrT,r:,-r:,r",,, (3.10a) 

(3.10b) 

(3.1Oc) 

On using the expressions for f’fj given in Eq. (3.6), and the following definition ,for the 
Gaussian curvature K. 

K=(LN-M*)/G, (3.11) 

Eqs. (3.10) reduce to 

-K=(G,/2G),+(G,/2G)*, (3.12a) 

L,-M,=M(G,I2G), (3.12b) 

M,-N,=-L(Gx/2)+M(G,12G)-N(GJ2G). (3.12~) 

Now, the fundamental theorem of surfaces’5 states that if we can identify functions G, L, M 
and N which satisfy the Gauss equation [Eq. (3.12a)] and the Mainardi-Codazzi equations [Eqs. 
(3.12b) and (3.12c)], then there exists a ‘surface r(x,t). In other words, an exact solution of Eq. 
(I .4) exists, provided, of course, if the additional constraint f = - G”2/L is satisfied. [Further, the 
knowledge of these functions G, L, M, and N will also immediately enable us to find explicit 
solutions 4 of Eq. (1.2a), as will be demonstrated in Sec. V.] 

Before concluding this section, we note that Eq. (3.12a) can be written in the more convenient 
form 

( G”2)xx= -KG”. (3.13) 
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IV. EXPRESSIONS FOR L, M, AND N SATISFYING GMC EQUATIONS AND THE 
CORRESPONDING FORMULA FOR f 

The task ahead of us is to determine the coefficients L, M, and N of the second fundamental 
form which satisfy the GMC equations (3.12) in a manner consistent with the given evolution. The 
most convenient starting point is the Gauss equation (3.13). It involves only x derivatives, sug- 
gesting the simplest nontrivial choice G(x,r)=G(x). Further, if f=f(x), then L,=O, since 
L= - G”2/f from Eq. (3.9). Thus Eq. (3.12b) yields M,= -MG,RG, which (for a given G) has 
the solution 

M=C,G-‘12, (4.1) 

where C, is an arbitrary constant, taken to be independent of time. Hence M,=O on using G,=O, 
and Eq. (3.12~) becomes 

N, - NGJ2G = L G,/2 = - G 1’2G,/2 f, 

where Eq. (3.9) has been used to express L in terms of G and f. 
This has a solution 

(4.2) 

N=G112( C,-1 $dx}, (4.3) 

where C, is a (time-independent) integration constant. However, we also have an expression for N 
arising from the definition of K given in Eq. (3.1 l), giving 

N=(KG+M2)lL= -f(KG+M2)lG”2, (4.4) 

where we have used Eq. (3.9). Substituting for M from Eq. (4.1) yields 

N= -fG”2(K+C,G-2). (4.5) 

Equating the expressions for N given in Eqs. (4.3) and (4.5) for consistency, we obtain 

(4.6) 

Interestingly, this equation can be solved for f in terms of G”2 as follows: Differentiating both 
sides of Eq. (4.6) gives 

G,=2f[f(K+C,G-2)],. (4.7) 

Multiplying both sides of Eq. (4.7) by (K+ C,,GW2) and integrating with respect to x, we obtain 

A,+ G,(K+C,G-2)dx=f2(K+C,G-2)2, 
I 

where A, is an arbitrary constant of integration. Equation (4.8) is solved for f to give 

I 
IL? 

f=k(K+C,>G-2)-’ (K+C,G-2)G, dx+A, , 

(4.8) 

where, from Eq. (3.13), K= -(G”2),,IG”2. Another curious fact that emerges is that the integra- 
tion in Eq. (4.9) can be carried out exactly, to give f as a function of G”2: To show this, define 
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G112= 4. (4.10) 

This yields G= $2, G,= 24+*, and K= - +,,/+. Substituting these in Eq. (4.9) and evaluating 
the integral we get the expression for the inhomogeneity function to be 

f="4 
(2A,-&C,qb-2)1’2 

co4-3-4xx * 
(4.11) 

On using this expression for f in Eqs. (3.9), (4.1), and (4.5) and setting G=42, we obtain the 
corresponding expressions for L, M, and N as 

-4 4,-c,4-3 
L= f= (2~,- 4;-co4-2)112~ (4.12) 

M=C,4-I, (4.13) 

N=f(&,-C,4-3)=-qb(2A,-&-C,4-2)1n. (4.14) 

These clearly satisfy the GMC equations since they have been obtained by essentially inte- 
grating the equations. The point to be noted is that the quantities L,M,N as well as f depend on 
4 and its derivatives. Thus given an arbitrary function 4 [with the provision that 
(2A, - 4: - C,4-2) >O] we can use Eqs. (4.1 l)-(4.14) to find the quantities explicitly. Combin- 
ing this result with the fundamental theorem of surfaces discussed at the end of Sec. III, we 
conclude that for inhomogeneity functions f determined from Eq. (4.11) in this fashion, exact 
solutions r(.v,r) of Eq. (1.4) exist. In addition, the solution 4 of Eq. (1.2a) corresponding to such 
functions can be explicitly found as will be shown in Sec. V. Explicit solutions of r can also be 
found for a special subclass off. It can be verified that Eqs. (4.1 l)-(4.14) represent a special case 
(corresponding to a time-independent metric) of the formulas (29) in Ref. 5. 

V. EXACT DYNAMICAL SOLUTIONS AND THEIR ASSOCIATED GEOMETRY 

In this section, we show that the solution q for the GNLSE [Eq. (1.2a)] can be expressed in 
terms of the surface coefficients and can therefore be explicitly found for a given metric. Explicit 
solutions for r and S are written down in the case G= G(x), M=O corresponding to “spins on 
meridians” (Ref. 5). 

A. Solutions for the GNLSE 

As mentioned in the Introduction, the solution q of Eq. (1.2a) can be expressed in terms of the 
curvature K and torsion 7, the parameters of a (moving) curve as 4 = :K exp( is?. r 7 dx), where K 

and 7 are defined in Eq. (1.2~). Using these definitions together with the GW equations (3.7), we 
obtain 

K=(Sx.Sx)“2=(rxx.rx,)=L; 

7 can also be expressed in terms of the surface coefficients as follows: 

7=S.(S,XS,,)/K2=rx.(rxxXrx,,,)lL2. 

However, from Eqs. (3.7a) and (3.7d), 

r xxx=L,n+Ln,=L,n-L2rx-(LMIG)r,, 

giving 

(5.1) 

(5.2) 
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(rx,Xrx,,)=L3(rxXn)f(L2M/G)(r,Xn), 

On using the definition of n given in Eq. (3.3), we obtain 

(r,,xr,,,)= -(L2/G”2)(Lr,-MrX). (5.3) 

Using EZq. (5.3) in (5.2) yields 

r=MIG’12. (5.4) 

Substituting Eqs. (5.1) and (5.4) in Eq. (1.2b) gives the following solution for q in terms of L, M, 
and G: 

(5.5) 

In Sec. IV we have shown that L and M are given by Eqs. (4.12) and (4.13), for G = G(x). 
Substituting for them in Eq. (5.5) and setting G-"2=4-' leads to 

4,x- G4-3 
‘=’ (2A,-&-C,4-2)“2 exp iC,s4-2 dx’ (5.6) 

Note that the torsion r=Co4-:! for this system. Summarizing, we have the following result: 
For any arbitrary 4 [such that (2Ao-4~-CC,4-2)>0], the inhomogeneity function f can be found 
from Eq. (4.1 l), and for that f, the corresponding solution q of Eq. (1.2a) is given in Eq. (5.6). 

We parenthetically remark that Eq. (5.5) agrees with the result obtained by Sym and 
Wesselius.4 However, their procedure involved showing essentially that when Eq. (5.5) is substi- 
tuted into the GNLSE (1.2a) and real and ;maginary terms are equated, GMC equations are 
obtained, on setting f = G/L. We also note from Eq. (5.5) that while surfaces with M=O pick out 
purely real solutions of (1.2a), those with MfO correspond to complex solutions q. 

The solution for q is physically interesting, since it has been shown’ that the energy and 
momentum densities along the chain have the form E(x,t)=2f/q12 and P(x,t)=4f2)q12 (arg 
4)x. From Eqs. (4.1) and (5.5), we obtain the relation E(x,t)=(2 fG)-*P(x,t) 
=(2 f$*)-‘P(x,t), where the general expression for f is given in Eq. (4.11). An interesting 
observation is that if the product CfG) is a constant, then the total (integrated) energy 
E’=JE(x,t)dx is proportional to the total momentum .P=JP(x,t)dx, leading to the linear dis- 
persion relation T--T. This is reminiscent of the dispersion relation for the basic excitations in 
other physical systems such as photons, linearized antiferromagnetic magnons in a homogeneous 
chain, etc. Unfortunately, the solutions for 4 obtained by setting f-4-2 in Eq. (4.11) are not 
expressible in terms of elementary functions, even if C,=O. Nevertheless, the observation that 
f(x) may be “tuned” to control the energy-momentum dispersion relation is of significance. 

B. Solutions for r 

In Sec. IV expressions for L, M, N, and f were obtained in terms of 4=G’” and two arbitrary 
constants C’, and A,. Let us consider the two possible classes of surfaces corresponding to M=O 
and MfO one by one: 

(i) M=O: From Eq. (4.13), we see that C, must vanish when M vanishes. 
Using this, Eqs. (4.12) and (4.14) yield L and N respectively as 

L=4,1(2Ao-4y” and N= - +@A,- 43’“. (5.7) 
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It is easily verified that these extrinsic curvature coefficients correspond to the following 
srirjiuce of revolution: 

r= (5.8) 

Thus 4 plays the role of the generator of a surface of revolution. Further, since rz=S2= 1, 
Eq. (5.8) leads to 2A,= 1. By computing r,, from Eq. (5.8), we find 
L’=(r,, .rx’,,)=2A~,q5$J(2Ao- &), which agrees with the expression for L given in (5.7), 
on setting 2A,= 1. (The expression for N can be verified similarly). 

Using this value of A, in Eq. (4.11) and setting C,=O, we get 

f= 2 c#J( 1 - 4,‘) “2/&. (5.9) 

Note that this expression for f was also obtained by Cieslinski et al.’ essentially by 
integrating the equations for geodesics on a surface of revolution. [See Eq. (37) of Ref. 51. 
Thus we see that their result for spins on meridians corresponds to the limit M = C,= 0 of 
the expression for f given in Eq. (4.1 l), which we derived as the inhomogeneity function 
supporting an exact dynamical solution for a time-independent metric. From Eq. (5.6), 
q = 3&J< 2A, - 4:) ‘I*. 

(ii) M #O: This corresponds to C,#O [see Eq. (4.13)]. The construction of r corresponding to 
Eqs. (4.12)-(4.14) with C,fO is nontrivial and is an open problem. The solution of q for 
C,fO can be found from Eq. (5.6). 

C. Solutions of S and illustrative examples 

Returning to Eq. (5.9), many examples of &x) and the corresponding function f(x) have 
been presented in Table I of Ref. 5 for which r and S can be found. In what follows, we study the 
problem from a different angle and present a discussion in terms of the Gaussian curvature K. 
Equation (3.13) for K can be written as 

K= - ~,,lc$. (5.10) 

Using this in Eq. (5.9) we obtain 

Kf = ( 1 - &““. (5.11) 

Substituting Eq. (5.11) in the expression for r given in Eq. (5.8) with 2A,= 1 and computing 
r,, yields 

S=r,=(( 1 - &)“‘,#J, cos t,$, sin t)=(Kf,( 1 -K2f2)” cos t,( 1- K2f2)“2 sin t). 
(5.12) 

Hence S is given as a functional of the product Kf. 
Illustrative Examples: It is instructive to consider well-known surfaces of revolution as pos- 

sible examples for finding r(x,t), keeping in mind the requirement that the corresponding inho- 
mogeneity function should be positive definite (i.e., ferromagnetic) and bounded everywhere on 
the chain. Note that surfaces with K=O [leading to &=O-see Eq. (5.10)] must be excluded 
since f becomes unbounded. We give below three examples where the solution S of Eq. (1.1) can 
be written solely as a functional off. 

(i) Torus: r=(sin x,(R+cos x)cos r,(R+cosx)sin t) gives ~=(R+cos x), f =+=Gn2, 
K=( 1 -R4-‘)=( 1 -Rf-‘). Hence, using this K in Eq. (5.12), 
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S=r,=((f-R),[l -(f-Z?)2]1/2 cos r,[l -(f-R)2]1’2 sin t). 

(ii) Sphere of radius A-‘: r=h-‘(sin Xx,cos Xx cos t,cos Xx sin t) gives +=cos Ax, f = 4= Gin, 
K=l. Note that f=cos Xx can be arranged to remain positive for --LO~x~LO, La being the 
length of the chain, by choosing X= 7r/2 Lo. Thus 

S=(f,(l-f2)1’2 cos t,(l-f2)ln sin 1). 

(iii) Cufenoid: r=(sinh-’ x,(1 +.x~)“~ cos t,( 1+x2)‘” sin t) gives $=(l +x~)“~, f = 43= G3”, 
K= - 4-4= -f -413. Since Ix} < Lo, f is bounded. Hence 

S=( -f-1’3,( 1 -f-U3)2 cos t,( 1 -fdu3)* sin I). 

Note that for these simple surfaces, S involves only f and no derivatives off. This feature is 
obviously not true in general. As is clear from Eq. (5.12), if we choose the surface metric G= 42 
to be a functional off (and its derivatives), S can also be expressed in terms of those quantities. 
This can be easily verified for the simple surfaces given above where 4 is a functional off. On 
the other hand, for example, consider a surface with the generator +=a exp(-x2), where 
a=const. On using Eq. (5.9), we obtain f=+[1-4x2exp(-2x2)]1/2/2(1-2x2)=+-[1 
-4(ln mu-ln 4)$~~/2]‘~/2(1 -In d-ln 42) cf can remain positive by an appropriate choice of the 
length scale). Equation (5.10) yields K=2( 1 -2x2)=2(1-ln 2-m Q). Note that it is not pos- 
sible to invert the expression for f to write 4 as a simple functional off, as was possible for the 
torus, etc. Therefore, for this example S cannot be written in terms off, but only in terms of 4, 
since Kf=[l-4(ln cr-ln 4)42/d]1/2 [see Eq. (5.9)]. 

It is interesting to investigate whether the completely integrable homogeneous chain with 
f=fa=const (see the Introduction) has a class of special solutions of the surface of revolution 
class as well. A short calculation shows that, for this case, Eq. (5.9) can be solved to give special 
solutions for 4 which are elliptic functions. On the other hand, for the other integrable example * 
f(x) = ax + b, a and b being constants, Eq. (5.9) is a nonlinear ODE with x-dependent coefficients 
and its solution is nontrivial and the question remains open at present. However, it is pertinent to 
add that using the geodesic approach with cylindrical surfaces, 5 it is possible to obtain solutions 
for r for time-dependent functions f (x,t) = a( t)x + b(t). However, as already mentioned there,5 its 
physical interpretation as a model for a ferromagnet would present difficulties. 

VI. CONCLUDING REMARKS 

In this paper, we have used a surface-embeddability approach pioneered by Lund and Regge 
to analyze the nonlinear dynamics of an inhomogeneous ferromagnetic chain to find exact solu- 
tions of the spin evolution equation. Our approach is distinct from the existing one’ which consists 
of calculating geodesics on surfaces of revolution. However, the surface considered in both the 
approaches is the same, viz, that generated by the position vector r(x,r) where r, is the spin 
vector. We have given the formalism for surfaces with arbitrary time-independent metrics G(x). 
Our emphasis has been on the determination of inhomogeneities f(x) for which exact solutions of 
the dynamical system exist. In addition, the corresponding solutions for the GNLSE [Eq. (1.2a)] 
can be found explicitly for these inhomogeneities. Surfaces of revolution with simplest geodesic 
coordinates (“parallels” and “meridians”) emerge as a subclass for which the corresponding 
solution for r can also be written down explicitly. 

Extension of our procedure to include space-time-dependent metrics G(x,t) and thereby 
enlarge the class of functions f(x) amenable to exact solution in a consistent fashion would be of 
interest. However, since G,fO and L= - G”2/f, we have L,fO in this case. As a result, all the 
terms appearing in the GMC equations [Eqs. (3.12)] get retained, and the analysis for the deter- 
mination off becomes quite involved. 
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We calculate the Casimir energy of a two segment loop of string with one normal
boundary point and one twisted boundary point. The energy is renormalized rela-
tive to the twisted uniform loop. The use of the twisted loop in simplifying un-
twisted loop calculations is discussed. © 1996 American Institute of Physics.
[S0022-2488(96)01908-1]

1. INTRODUCTION

Oscillating loops of cosmic strings have been suggested as a possible seed for galaxy forma-
tion in the early universe.' In these models, matter condenses about the oscillating string loops
which radiate into the surrounding matter as they decay. String loops have been reviewed by
Vilenkin2 who discusses their radial oscillations and gives examples of the kinds of density
fluctuations that could be seeded by decaying loops of various structures. In early models loops
were created in a symmetry breaking phase transition2 but more recently, Basu, Guth, and
Vilenkin3 have discussed spontaneous nucleation processes that create loops and other defects
during the early universe inflationary period and the effects of these more persistent defects on
galaxy seeding. A theory relating quantum fluctuations to the evolution of loops and other defects
has been developed by Garriga and Vilenkin4 and Basu and Vilenkin.5

Several kinds of radiation can be associated with an oscillating string, such as electromag-
netic, gravitational or goldstone-boson emission. The importance of the latter type of radiation in
galaxy formation models has been emphasized by Davis6 and Vilenkin and Vachasspati.7 Oscil-
lations associated with strings have also been discussed by Rosenzweig and Srivastava 8 who
consider the bulk vibrations associated with the Higgs field surrounding a string and point out that
this contribution to the radiation emission might be dominant in string decay processes. They also
point out an interesting aspect of twisted strings and string loops; one of the models discussed in
this paper is a straight string threading a string loop and it is found that the interaction energy is
absent when the configuration is twisted. Other complex loop arrangements are also possible.

One possibility for a more complex loop is a loop with segments. Davis,6 for example,
mentions that when formed a vortex loop could be made of many segments coming from previ-
ously casually disconnected regions so that oscillating segmented string loops could be consid-
ered. Pagels,9 in a calculation of loop correlation functions, assumed that the initial loop in a loop
decay process was segmented. There has also been considerable interest in the Casimir or zero
point energy of oscillation segmented loops.10-13 This particular aspect of loop behavior is inter-
esting and important, given the possible importance of oscillating loops in galaxy formation
processes and the role of fluctuations in the evolution of loop dynamics.' 4 The segmented loop is
also a relatively simple system on which to perform Casimir calculations and thus provides a
useful testing ground for various renormalization methods. It may also be applicable to the
vacuum states of two dimensional field theories.' 0 The models so far discussed in the literature
have had two building blocks, X/i (i = 1,2) segments, each of a different density and tension but
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with the same wave speed v = c. The segments are joined altematingly at points x - to create
segmented loops. The boundary condition is

'D I (XN) = 42 (XW) (1

with a similar tension relation for the derivatives. N is the number of segments. In the literature,
the energies for the segmented string have been renormalized by the energy of the uniform string
joined to itself, a system with one boundary point. The boundary conditions at this point for the
uniform string are analogous to (1).

In this paper, we will consider a string loop in which one of the boundary points, x1, is
twisted, where the fields obey the boundary conditions

D I (X 1) =-'D2 (x1 ), (D1(xW)= ( 2(X1) N)o1. (2)

The tension relations for the derivatives at the boundary points are similar. For the uniform loop
with one boundary point only, we are obviously creating a M6bius loop.

Twisted fields have been discussed generally by Isham.' 5 In Minkowski space, DeWitt16 has
considered the Casimir energy of both twisted and untwisted scalar fields with a periodicity along
the z-axis. Using cylindrical polar coordinates in Minkowski space, Ford' 7 has treated the Casimir
energy of a twisted string. Both DeWitt and Ford found the twisted scalar field to have a positive
energy compared to a negative energy for the untwisted string. The twisted loop is an interesting
problem because one can compare the energy to that of the untwisted loop to discover if it is
energetically more favorable for a straight string to join in a simple or a twisted topology, because
the differing loop topologies make Casimir energy comparisons quite valuable and because the
twisted loop may offer a way of simplifying the untwisted string with a large number of segments.

The Casimir energy for the twisted uniform loop is calculated in the next section. A compari-
son is made to the untwisted uniform string. Twisted strings with two segments are discussed in
the third part of the paper. The energies in these sections are renormalized using the Euler-
MacLaurin sum formula and a cut off function. In the fourth section we compare this method to
regularizing using point splitting and the generalized zeta function. It is potentially instructive to
calculate the result by all three methods. There are many regularization methods, each with its
advantages and problems. A comparison insures that a problem specific to one method has not
influenced the result of the calculation. There are situations, usually involving a boundary, where
the three methods do not agree and a study of the divergence behavior causing the disagreement
can be insightful' 8 A comparison between the two segment twisted string and the four segment
untwisted loop is discussed in the last section.

11. UNIFORM LOOPS

A. Twisted loop-anti periodic boundary condition

Let the field on the loop be described by both clockwise and counterclockwise moving waves,

(I)(X) = (eiwx + 77e -'wx. (3)

The boundary conditions are

Un((x)an4t(xl+lL), @f'(x)=-un'(xi+L). (4)

Using (3) and (4), the allowed frequencies are

cosfooL)=- 1 co= L' 2 n 2)(5
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The energy associated with the zero point twisted string oscillations is found from the a-0 limit
of the sum with cutoff function

1 27T (-27ra(n+ 2
E(=2X L V n+ 2exp PL (6)

Evaluating the sum using the Euler-McLaurin sum formula and taking the limit one finds

L IT
a 12L

This could be compared to the energy for the untwisted uniform string given by Brevik and
Nielsen, 10

L IT
Eu -+ +O(a2 ). (8)

The first term in both Eqs. (7) and (8) can be identified as the energy of the string with no
boundary.19 Subtracting off the energy of the unbounded string one finds the renormalized ener-
gies,

ir 7T
E,,,= 12L a Eur-6L* (9)

One sees that, relative to the unbounded string, the untwisted string represents the lower energy
state. This is similar to the results of DeWitt' 6 and Ford.17

B. Another boundary condition for the uniform string

More complex twists can be constructed using the boundary conditions

ID(x)= =k(x+L)exp[ N ]'

(10)

F '(x) = 4c'(x + L)exp 7N ]

where N is the number of circuits needed to complete the field. N= I is the uniform untwisted
string, N=2 is the uniform twisted string treated in the previous section.

Applying the boundary conditions one finds that the allowed frequencies are given by

cos coL+ 1, (11)

'°= L On+ N-). (12)

The associated Casimir energy calculated with the sum formula and a cut off is

L 22 r (1I (1

' 7 2 =or L 1f2 2N TN (3
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For integer N this is always greater than the untwisted string energy E. given in (9). For O<N< 1
the twisted uniform string energy can be less than that of the untwisted string.

Ill. THE TWO SEGMENT TWISTED STRING

A. Allowed frequencies

The two segment string has two scalar fields, one moving on each of the two kinds of string,

t~(x) =le'wx + 271 e -izx

-iwx ~~~~~~~(14)
(D2(X) = (2e"' + 772e-x

We will take the twisted boundary point to be x=O(L) and the normal boundary point to be
x = LI, where we allow for the possibility that the segments are of different lengths.

The boundary conditions on the fields gives

O(L):6Ieo+77Ie-°=62 eiwL+ y7 2 ei-L

Lt:61eiwLl+r7e iwL= 2 eiL1+y 2 eiwL. (15)

The derivative conditions are

O(L):R(te 0- 7ide )= 2 eiwL-2 2 e -iwL

Lt :R(tieiwL1tile iwL)= 2 eiiwLI iiwL (16)

where R = TI /T 2, the ratio of the tensions in the two segments. Brevik and Nielsen 10 use x for this
ratio.

From the coefficient determinent we can find the dispersion relation giving the allowed fre-
quencies,

(1 -R)2 cos(co(L-2L 1))-(I +R)2 cos(coL)-4R=0, (17a)

which can be written as

(I-R)2 cos(co(s- I)LI)-(l +R)2 cos(w(s+I)LI)-4R=O. (17b)

Another equivalent but useful form is

sin(s)LI)sin(coLI)= (I-R)2 cos2( (s2+ !)WLl (18)

where s = L2 1LI, the ratio of the lengths of the two possible segments and L= LI + L 2 .

B. Some special cases

1. R=1 (equal tensions)

This is the same as the uniform twisted string treated in the second part of the paper.

2. R=O (T 2=- or T,=O)

From the dispersion relation (18) we find

(O=rn I n2 7 7 (19)
<tn=L 7 t=L (9
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This is the same result as for the R=0 untwisted string and has an identical Casimir energy.10

Since we started with a twisted string, this is an interesting result but may be understood by
realizing that the infinite T2, implies infinite density since the wave speed is unity so that the
second string blocks passage of the wave in the first string segment, effectively turning the
boundary points of passage into points of reflection. The fact that the R=0 point is the same in
both the twisted and untwisted loops may also identify this point as a common or double point
between the two different loop topological phases. The zero tension limit has been discussed by
Lindstrom.2 0

C. General energies and frequencies-odd s

1. The Casimir energy

The dispersion relation can be written as a polynomial in sin(v+±)(coLj). There will be ((s
+1)/2) double branches, i.e., solutions to the equation for sin2 (coL1 ). Each root is an allowed
frequency. Each double branch has roots rT,8r . There are ((s + 1)/2) values of A. For each Af the
frequency spectrum is

coL | Id + n+), 0 o /3 4 (20)

There is no degeneracy to consider.
Using the Euler MacLaurin Sum formula with a cut off as in the uniform string case, the

Casimir energy for a single /3 is

E(S) L,-_ - ( T + (l[/I) 2
)+T (21)

Summing over the ((s + 1)/2) double branches we have

L W(s+ 1) (s+) 2 2 7r(s+ 1)2

4L 12L (22)

Once s is chosen, /3 can be determined from the dispersion relation (17) or (18) and numerical
values for the energies found.

The energy in Eq. (22) is not yet renormalized. The prescription that we shall use is analogous
to that used by Brevik and Nielsen for the untwisted string loop:

Er=E (renormalized)=E-E (uniform twisted loop). (23)

Using this prescription and Eq. (22) we find the energy as

7T(S2+ 2s) 7r(s + I) (s+ 1)/2
E Ts2s 4L)E (/62+(l_'Gi)2). (24)

We will now consider some special cases.

2. s=1 (L 1 =L2 )

From the dispersion relation (18) we find one double branch for s= 1,

sin (OL I ) = -1+ -1(25)
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TABLE I. Some energies for the twisted string loop renormalized to the unform twisted loop.

R E,(s= 1) Er(s=2) E,(s=3)

0 ~IT r r 7T

4L 3.69L 3.27L

I-Ir -7T -7T

2 85.5L 77.32L 66.52L
0 0 0

The inverse sine of the square root of this equation for a given R is the single value of /8 for this
case. From Eq. (23) the renormalized energy is

IT II~Tr\
(26)

Some values are tabulated in Table 1.

3. s=3 (L2 =3L1 )

Using Eq. (19) again we find for the allowed frequencies,

sin4 (coL1 )- 3sin2 (coL 1)(R+ -)(R+3) R
sin (o9L ) - 4(1+R) 2 +(l±R)2O. (27)

There will be two values for /3 for each R. Some of the renormalized energies for s=3 are
tabulated in Table 1.

D. Casimir energies-even s

For even s we will use both Eqs. (17) and (18). We will first show that cos(OL 1)=-1,
oL} = 7r, is a root for any even s.

From Eq. (18) we have

I4R 
sin(sur)sin(ir) () (1 +cos(7r(s+ 1))),

(1l -R)/
(28)

I+cos(7r(s+ 1))=0.

So, for all even s, the polynomial has a degenerate root at (oLI ='.
The equation for the allowed frequencies is

(I -R)2 cos(coL (s- 1))-(I +R)2cos(coLI(s+ 1))-4x=0,

with I +cos(coL 1) a factor. We will work out the s =2 case.
The allowed frequencies for s =2 are given in by

Cos (oLt)-cos(coLj)+T R--R)=0 and cos(&oL 1 )=-1. (29)

Some values of the energy are tabulated in Table I.
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IV. OTHER RENORMALIZATION METHODS

In the first part of the paper, the Casimir energies have been evaluated by considering the
energy as a sum over possible modes of vibrations and using a limit of the Euler-MacLaurin sum
formula with a cut-off function. There are several other regularization methods that could be
applied to this problem.

A. Covariant point-splitting method-uniform twisted string

The result presented in Eq. (7) for the uniform twisted string can also be derived by the
point-splitting method. This method is not only covariant but also cut-off independent.2 1-23 To use
this method the metric is assumed to be

ds2 = dt2 - (Ro)'dO2, (30)

where Ro is a constant and 04[0,27T]. This method, as in the previous one, begins with the possible
modes of vibration. The wave equation in this metric is

DADAF(t,t1) = 0, (31)

where DA is the covariant derivative operator for the metric (30).
As before the general solution is

q).(t,0)'=Ae-iWW cosmic), 4D,(t,¢k)=Be-iWnf sinner), (32)

where A ,B are constants and Wm = m/R 0 , Con = n/RO. Now the time dependence is explicit and we
use 0 instead of x. Applying the antiperiodic boundary condition,

(D (t, 0) = - (D (t, 0 + 2 7T), (33)

we obtain the eigenfunctions and eigenfrequencies, respectively, as

(t= exp(-icot)cos( (2
77T(2n+1I) ~

(34)
2n+ I

W)n 2R n 0 =0,1,2,3,--

and

1 _ s (2m+ 1)
(D. t,¢) __ -2+1 e sing 2 0Vir(2n±+1) 2 /

(35)
2m+ 1

cum= 'R m = 0,1,2,...

The allowed frequencies are the same as in Eq. (5) with L = 2 qRo. Rather than going directly to
the energy as in the mode sum method, the modes are used to construct the Hadamard Green's
function G(l)(x,x') which is written aS23

G )(X,' = I In [cos(A t12RO) cost(8' (36)

J. Math. Phys., Vol. 37, No. 8, August 1996

3668

                                                                                                                                    



Bayin, Krisch, and Ozean: The Casimir energy of the twisted string loop

where At=t-t', and 8=(0- 0')/2. To renormalize this Green's function we express it as an
image sum and write it as24,25

I 1 I1 1 At t
- ('(xx' = 3 In ! 2 2 +- InCosl- + cos( 3)I

2 47r k(2n7T+ )t-(/At42R I 47 [ 2R o(

4 rn2 7 - lIn 2] (37)

It is clear that the n=O term corresponds to the infinite unbounded string result and hence the
Casimir renormalization relative to the infinite string could be accomplished by dropping this
term.21 This is analogous to the energy renormalization of Eq. (9). Expressing the expectation
value of the stress energy tensor as

(Tgv)r= 2 Lim(DD,,-2 g,,D'Dx)G( )(xx') (38)
x -'x

Using the covariant derivatives,

Lim - DODo,G("(x,x ) = n_32 3 2
X,2 16irT 0 n=, n32irR

(39)

Lim - D IDO,G")(x,x')= 3
2 r T3 ~3w

we obtain

T0O) r 2, (T"g), -TOO)r (40)

The point splitting method will produce a density rather than an energy. Using this density the
energy is

IT

Er=1 (41)12Li

Equation (41) agrees with the results obtained with the sum formula and cut off, Eq. (9).

B. Regularization with the Zeta function

Another method that has been used to obtain the renormalized zero-point energies is Zeta
function renormalization. 2 4-2 7 The use of Zeta function methods is interesting because the twisted
string is such a simple example of the procedures. The history of Zeta function regularization
applied to string loops has been reviewed by Elizalde. 2 7 The Zeta function method begins with a
sum over an operator spectrum. We will use the Hurwitz Zeta function,2 6

;(s*,a)= (42)
m=0 (m+a)s*(

with Re(s*)>l, O<as1. We use s* rather than s to avoid confusion with the string length
parameter.
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One of the possible integral representations is

I C dt t(s*-1)e-at

(s *,a) =F(s*) Jo 1-e te (43)

with Re(s*)> 1 and Re(a) >0. Transforming into a contour integral26 we get

e- Irs * (-s*) dz z(S*- I )e -az

;(s*,a) = 27ri T 1-e-z (44)

This provides the analytic continuation of C(s*,a) over the plane: It is regular everywhere except
for a simple pole at s *=I with residue 1. In the special case where s* is an negative integer
S*=_m, m =0,1,2..., we have

'a) ()m+l ' (45)

where Bm(a) is the Bernoulli polynomial. The Zeta function method, just as in the mode sum
method, starts with an expression for the energy as the sum over possible modes. The energy is
given by Eq. (6) with a=0, eliminating the cut off. That sum is clearly of the form (43) with
s*=- 1. The Zeta function of interest is

-Ia)= 2 6 (46)

The Zeta function procedure regularizes the energy by assigning an analytically continued Zeta
function to the energy sum.23'27 It will be necessary to explicitly renormalize to the uniform
twisted string energy at the end of the calculation. We now reconsider some of the cases consid-
ered in Sec. II using Zeta function regularization.

1. The uniform twisted string

From Eq. (5) we have co,=(21T/L)(n+ 1/2), n=0,1,2,....
The Casimir energy is

1 27r 1 1I 2,7T 7T

2 n-o L l+21 L ,2) 12L' (7

where the factor 2 takes into account that the modes are degenerate. The simplicity of this
procedure, compared to the more lengthly calculations associated with the mode sum/cut-off and
point splitting methods is startling. Its very simplicity is, however, sometimes considered a draw-
back since the analytic continuation which removes the divergences somewhat hides the diver-
gence behavior which could be of interest.

2. R=O

The R=0 case implies T 1-0 or T2+.20
From Eq. (19) we get the allowed modes just as in the mode sum/cut-off method,
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(in =U n = 0,1,2,... (48)

L2'

The zero frequency mode is not of interest. The Casimir energy is

1 a) n-ri n 7r
E+2= 2 + L (49)

2 L1 L2

Regularizing by the Riemann-Zeta function method we get

E 1 ±2 =(2L + 2L)2(L 1,1)= 24 - Li L2)

Using s=L21L1 as before we can rewrite this equation as

- 7r II\
E 4L (s+ - +2). (51)

Renormalizing to the twisted string, using Eq. (23),

Er =24L s++4). (52)

This second renormalization must be included explicitly and is not performed by the Zeta func-
tion.

3. s an odd integer

Again, in agreement with the mode sum calculation we have from Eq. (20) the frequency
spectrum

7r(,B+n),
coL 7r +n){ uI~lr(1-/3+n),

with 0-flS1/2, n=0,1,2,....
Just as in Eqs. (21) and (22) for the mode sum/cut-off method the Casimir energy for general

,8i can be written as

(s+ 0)/2

EI+2=- E ;-~j+( ~-S) (53)2L, i= 

Using the special form for the Zeta function given in Eq. (46) we have

____________ T( i l+ S) (s +1)/2

E 2 12L 4L E ( p)(54)

or renormalizing to the uniform twisted string we have

Er=E1+2-E (Uniform twisted string),
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-r~2 ±) '(+)(s+ 1)/2

Er(x +2s) 7r( I + S) (55)
E,-12L 4L =

V. RELATING THE TWISTED AND UNTWISTED STRING WITH S=1

One of the effects of once twisting the string with two segments is to compel the field to cross
four string segments before returning to its initial condition. A uniform string with four segments
also has this effect and the question arises of how the two cases are related.

A. The uniform string

First compare the uniform twisted string to the uniform untwisted string. Generalize the
frequency conditions to allow the twisted and untwisted loops to have different radii. L, will be the
circumference of one loop of the twisted string and LU will be the circumference of one loop of the
untwisted string.

The frequency conditions are

twisted string: cos(oL,)=) -1,

(56)
untwisted string: cos(oL)= 1.

To make the strings similar one could clearly require that the path length traveled by a wave on
each type of loop be the same,

2L,=L,. (57)

Substituting into the frequency conditions one finds

twisted string: cos( 2 ) -1, (58)

untwisted string: cos( 2-y = ±)1. (59)

The untwisted string contains the twisted string and the additional frequency o0L"I2=2ir,4Wr,....

For the uniform loops, there is no calculational advantage to treating one loop topology over the
other but for higher numbers of segments, there is possibly a reduction in the dimensionality of the
problem that needs to be solved for some of the parameter range. The next most complicated cases
to compare are the two segment twisted string to the four segment untwisted string.

B. The two segment twisted string, the four segment untwisted string, s=1

The frequency conditions for the two segment twisted loop follows from Eq. (17b),

| coLu~ R R2-6R+ I

cost) = R 2 -6 , (60)

where we have made the same arguments about circumference and lengths as for the uniform
string. The frequency condition for the four segment untwisted string was given in Ref. 13, Eq.
(17).

(3+R )2 ()- 1o+ (I-R)2 coLu (61 )
- R 2 310 3R 2R :2-T Cos 2)~ - -~--~ cos(cwLu) =0. (61)
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The roots of this equation are

/scoLuX R 2 -6R+ I
2 (1+R)2 and +1. (62)

Comparing (34) and (37) to (32) and (33) we see the same pattern. The untwisted string of 4
segments contains the twisted string plus a root of + 1. Whether or not this pattern is more general
is under investigation.

VI. CONCLUSIONS

We have calculated the energy of a uniform twisted loop of string and compared it to the
uniform untwisted loop. We find that the untwisted loop has the lower energy for a pure antipe-
riodic boundary condition. More complex boundary conditions could reverse this.

The energy of a twisted two segmented loop was also calculated and, just as for the untwisted
string, a non zero negative Casimir energy is observed. We found that the twisted and untwisted
phases of the loop share a common point of their energy spectrum at zero tension. The double
point in the energy spectrum of the twisted and untwisted loops may be important in loop dynam-
ics. The loop tensions are part of the loop stress energy content and related to the behavior of the
space time through the field equations. A process in which the loop tensions change with varia-
tions in the metric could create conditions for the loop phase transition to occur as either a one
time transfer or as an oscillation between phases. A study of the behavior of the loop tension as a
function of curvature is clearly an important question. It would be especially pertinent in the
context of the types of radiation emitted by an oscillating loop and the question of loop stability.
If loop stability is affected by the possibility of a phase transition or phase oscillation, this could
have an effect on the galactic seeding process.2 '8"4

A calculation involving loop tension and the curvature of the embedding cosmology opens up
the possibility of a much more varied loop stress-energy structure. Cosmic string interiors with
heat flow and vorticity, 2 8 and torsion2 9 and spin density 30 have all been discussed in the literature.
This larger array of possible stress-energy contents with both untwisted and twisted loop analogs
might provide a richer loop thermodynamics with associated phases, such as spin-up/spin-down.3 1

Casimir energy calculation on these more elaborate loops would be interesting. The existence of
two accessible loop phases has suggested that more detailed calculations involving curvature
would be valuable.
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We formulate the q-Coulomb problem in configuration space with the aid of ladder 
operators for the radial wave function. The highest angular momentum state corre- 
sponding to the principal quantum number n is found to be the monomial rR-’ 
multiplied by a q-exponential. The states of lower angular momentum are 
q-associated Laguerre polynomials multiplied by the same q-exponential. The state 
functions all lie in the complex plane and may be interpreted in the standard way. 
The energy levels are again given by a Balmer formula with n replaced by the basic 
II. 0 1996 American Institute of Physics. [SOO22-2488(96)03408-l] 

1. INTRODUCTION 

The q-Coulombic problem has been the subject of several studies which differ in the way the 
Coulombic symmetry is lifted.‘*2 The basic 0, X 0s symmetry of this problem may be described 
in terms of the two vector integrals of the motion, L, the angular momentum integral coming from 
the spherical symmetry and A, the Lenz vector owing its existence to the k/r potential. The 
problem separates in spherical coordinates into an angular equation determining the eigenvalues of 
L’ and L, and a radial equation parametrically dependent on (L*)’ and determining the eigenval- 
ues of the Hamiltonian H and (A*), for which one finds 

(A2)‘=m2h2+2mE((L2)‘+h2)), 

where m is the mass. Here we discuss the q-derived problem by replacing the angular and the 
radial equations by their q-analogs. 

II. THE ANGULAR AND RADIAL EQUATIONS (q=l) 

The Hamiltonian for any spherically symmetric potential is 

Hz& [ip:r+$)+V(r), 

where 

(r,p,)=ih.. 

The problem separates into an angular equation 

“‘e-mail: acadavid@galileo.csun.edu 
h’e-mail finkelstein@physics.ucla.edu 

0022-2488/96/37(8)/3675/9/$10.00 
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(2.2) 
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~2~l,(w6)=w+ l)~*@&%~) (2.3) 

and a radial equation 

[ & (: pfr) + ‘(‘:l)‘* + V(r)]R(r)=ER(r). (2.4) 

The solutions of (2.3) are spherical harmonics; and, if V(r) is the Coulomb potential, the solutions 
of (2.4) are the associated Laguerre functions. 

In dimensionless form the radial equation is 

l(z+ 1) 
X2 

R= -AR. (2.5) 

Set 

p=xR (2.6) 

2 l(l+ 1) 
p”+--p- x2 p=-xp. 

The eigenvalue, A, as determined from the asymptotic form of this equation, is 

(2.7) 

We shall discuss the radial equation with the aid of the Infeld ladder method.3V4 This proce- 
dure sometimes permits the factorization of the Sturm-Liouville operator into the product of a 
raising and a lowering operator. 

Equation (2.7) may be so factored in either of the following ways: 

where 

I 1 d 
H,?=,- i”dx. 

It follows that 

(2.8a) 

(2.8b) 

(2.9) 

(2.10a) 

(2. lob) 
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By comparing (2.8a) with (2.10b) and (2.8b) with (2.10a) we see that, up to a normalization, 

H,,,P:=P:+, (2.11a) 

and 

+h h 
H, PI=PI-~. (2.1 lb) 

Hence H/Q, and H: are raising and lowering operators respectively. There is a highest state given 
by p; where r= I,, and 

H,+,&=O (2.12a) 

or 

i 

T-+1 1 d -- -- - 
x Ti- 1 dx 

p;= 0. 

The solution of (2.12) is 

p)=x i+le-x/(i+l’ 

When p) is substituted in (2.8b) we find 

(2.12b) 

(2.13) 

in agreement with (2.7), . 

x=-L 
(I+ 1)2’ 

(2.14) 

The energy levels are usually expressed in terms of a principal quantum number n: 

1 xc- 
7, 

(2.15) 

where 

n=T+ 1. 

Then the radial wave function with maximum 1 and principal quantum number n is 

p;=x”e -xln 

(2.16) 

(2.17) 

or 

R+n-le-Xh. (2.18) 

To find states belonging to the same n but with lower values of 1 one may apply the lowering 
operator H,?. For example we find the three top states (nonrenormalized): 

l=r: P5,Xi+1,-xh 
I 
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n 1 
Py-l- 

i n--x i+l e-~~n 

l(l+ 1) 1 ’ 
l=i-2: 

2(2i--1) i 2 

(i-i)(i+$ +(i-q(i+i)2 
xi+i e-+~n 1 ’ 

(2.19) 

where the quantum numbers of the top state are (n,fi. Expressed in terms of associated Laguerre 
polynomials, one has 

n - 2x 
Pj--X i+lL;;;t n e-~h, 

i i 

n i 21-i 2x 
Pi-l-X L*i - eextn, 

i i n 

- 
n 2x 

P i-zwx i-iL:fI: n e-~tn, 

( i 

where 

n-A-1 

L;!+-y(x)=-((n+l)!y c 
( -)XxA 

x=f) X!(n-l- 1 -x)!(21+ l-I-A)!. 

III. THE DEFORMATION 

A. The angular equation 

Replace (2.3) by 

(2.20) 

(2.2 1) 

(3.1) 

where Li is the quadratic Casimir of SU,(2) and (1) is the basic number: 

(3.2) 

Here we have substituted the quadratic Casimir of SU,(2) for the quadratic Casimir of SU(2) and 
therefore replaced l(l+ 1) by (Z)(Z+ 1). The eigensolutions of this equation, @fm,, the q-spherical 
harmonics, have been obtained by Rideau and Wintemitz.’ 

B. The radial equation 

We take over (2.2) as a q-commutator: 

(wr)q=ih, 

where the conjugate momentum p,. becomes the difference operator 

(3.3) 

(3.4) 

and 
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(3.5) 

We shall abbreviate 07 as D,.. 
There are various possibilities for defining the q-radial problem. Here we shall adopt the 

q-modified raising and lowering Eq. (2.ll)jn dimensionless form, as follows: 

qY+l)P:l)=P;l+I)’ 

H&P;,)= p;i- 1) ’ 

where we have replaced 1 by (l), dldx by D, , and therefore H,’ by 

H;)=(l)_~+D 
x (1) - x’ 

We define the energy by 

D,2P A=- - 
i i p 03 

(3.7) 

(3.9) 

as the natural extension of (2.7). 
We take the view that (3.6)-(3.9) describe the full content of the q-radial problem, since (3.6), 

(3.7), and (3.9) imply (2.5) and (2.7), in the limit q = 1. 
Since these modified equations do not lead to an acceptable Hamiltonian, the energy is fixed 

not by the eigenvalues of the Hamiltonian, but by the asymptotic form of the wave function via 
(3.9), or equivalently by poles of the corresponding amplitude in momentum space. 

The highest state (1, is now given by 

or 

(i+i) i 
-- --D, 

X (i+i) 

The asymptotic form of this equation is 

1 
DJ);i)'-(i+lj P:ij* 

Also 

1 A 
(Dx)2P:i)+ (1+1)2 P(i) * 

By (3.9) and the preceding equation we have 

+-- 
(It- I)” 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14a) 
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or the energy is 

E(n,l)=-&; n=i+i. (3.14b) 

The asymptotic form of pain is a solution of (3.12). We see that (3.12) is satisfied by 

(3.15) 

where Cq is the q-exponential 

qu,=c & 

Let the complete solution of (3.10) be 

P~i)=f(x)zq 
X 

i i 
-m . 

By the q-Leibniz rule 

D^PZ”)=fh+&( -~))+(DJW);f,i -6). 
Then (3.10) becomes 

-- - f(x)= - &(qx)fDJ(x) 
or 

[ 
(4-l)(n)- v + l]f(x)=[ 1- V]f(qx). 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

If one sets q = 1, (3.20) is simply an identity. To discuss this difference equation first convert it to 
a differential equation by differentiating with respect to q and then setting q = 1. One finds 

(~>lf(x)=Kf’(x). (3.21) 

Therefore 

f(x) =x(n)f (3.22) 

=P* (3.23) 

By (3.17) and (3.23) one would have for the highest state, 

p;lr)=X”~~ 
X 

i i 

-- (n) . (3.24) 
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Equation (3.24) has the correct q = 1 limit but does not satisfy the difference equation (3.20) from 
which it was derived. Therefore let us return to the difference equation and rewrite it in the 
following form: 

m=r”i l~-p~ax)f(qx~; a= J$, (3.25) 

(3.26) 

where 

l+ax 
R(x)= 

1 faq-"x' 

By N - 1 iterations 

N-l 

f(x)=q-“Nsg Rw4f(qNx) 

(3.27) 

(3.28) 

and 

.fe,=lj wx)~~mq-“Nf(qN4. (3.29) 

Since IqlCl, q -nN~m. Therefore f(qNx) must vanish in this limit as is also indicated by (3.24). 
Then (3.28) suggests the ansatz 

f(x) =x”+(x) (3.30) 

so that by (3.29) 

where 

Here 

is the displaced factorial. Set 

Then 

m m 

I-I w4=rI 
1 + axqS 

0 0 1 +axq-"+S 

(-4q)m 

= ( -aqenxlq),' 

(xlq)m= lj (1 -x8) 

rp(O)= 1. 

(3.31) 

(3.32a) 

(3.32b) 

(3.33) 

(3.34) 
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f(x) =xn 
(-4l)~ 

t -aq-“4qL 

and 

or 

But6 

and 

py,,w =xn t-a4q)m 
t-w”-dq)m 5 -h ( i 

R, r(x) =xn- ’ 
t -4qL 

(-W”&)m 

~-4d~=, 4 (1ax, = 
eq 

( 
l *‘=zq& -(l-q) (n> 

(-aq-nxlq),= 1 -n . 

rYq 
i -1 

- qln; 

Therefore 

R,~(x)=x~-l~q ( -1 - q(; . 
The remaining states are given by (3.7). For example, the three top states are 

ICI: pnrxT+‘~q 22 
( i (n> ’ 

l=i-1: pt-,- ( Pi-,r;,;l))Kq( -g. 

i=i-2: pte2- 
1 

[(i-l)+(t)-jP*- d- 
[ 

+A+-- - 
(i-i) -l 

(I-l) (I) (i)(i+l)+(:+l) 

1 
+@(i+l) (z-i) '(z+i) i 

1 
-+Ljxi+‘)8q( -q. 

1 xi 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

These are “q-Laguerre polynomials” which approach the usual Laguerre polynomials in the limit 
q=l. 

The energy levels are given by (3.14). The Coulomb degeneracy is therefore not lifted in this 
version of the deformation. 
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IV. REMARKS 

As already noted, the “q-deformation” is not a unique procedure. Reference 1 makes explicit 
use of the full 0(4)=0(3)X0(3) undeformed symmetry since the integral equation of that 
paper lies in the SU(2) group space which is carried into itself by the left and right motions 
(parameter groups) described by O(3) X O(3). Reference 2 is based on the q-deformation of 
O(3). Since the quantum groups corresponding to SU(2) and O(3) are different, Refs. 1 and 2 
describe different deformations. Furthermore, since both solutions lie in their respective algebras, 
they require a rule for their physical interpretation. In Ref. 7 such a rule is provided in terms of the 
Hilbert space defined by the algebra itself. 

The totally different procedure followed here is based on rules such as the replacement of the 
radial commutator by the radial q-commutator, and further described in Sec. III of this paper. 
These rules are similar in spirit but formally weaker than the imposition of a quantum group. On 
the other hand, the wave functions here obtained have the clear advantage of lying in the complex 
plane as well as being simply related to the q = 1 solutions from which they are derived. There is 
therefore no problem of physical interpretation such as we encounter in the other deformations of 
the Coulomb problem. 

It is still possible to make canonical transformations including transformations which ex- 
change the roles of x and p and transform probability amplitudes between configuration and 
momentum space. For example, the amplitude in r-space that we have obtained here may be 
q-Fourier transformed to momentum space, since the momentum operator is a q-derivative.7 

There are in addition quite different canonical transformations, namely 

(;A = Tq( p”,) Tq~SUqt2>, 
(p”,) =Tq-,(;j T,-dUq-i(2), 

which preserve the q-commutator 

In previous work7 we have restricted canonical transformations to either SU,(2) or SlJ,- I( 2). 
Then one can posit that one set of conjugate observables lies in a q- or q-l-algebra while the other 
does not. If the state function turns out to lie in a q-algebra, the only invariant that could naturally 
be associated with a numerical probability of that state would be the Woronowicz integral over the 
algebra. 

’ F. L. Chan and R. J. Finkelstein, J. Math. Phys. 35, 3273 (1994). 
‘J. Feigenbaum and P. G. 0. Freund, hep-th 9507116. 
‘L. Infeld, Phys. Rev. 59, 737 (1941). 
‘E. Schroedinger, Proc. R. Irish Acad. A 46, 9 (1940). 
“G. Rideau and P. Wintemitz, J. Math. Phys. 34, 6030 (1993). 
“R. Finkelstein and E. Marcus, J. Math. Phys. 36, 6 (1995). 
7R. Finkelstein, UCLA/95/TEP/38. 
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A generating function for cabled Wilson loops in three-dimensional BF theories is 
defined, and a careful study of its behavior for vanishing cosmological constant is 
performed. This allows an exhaustive description of the unframed knot invariants 
coming from the pure BF theory based on SU(2), and, in particular, it proves a 
conjecture relating them to the Alexander-Conway polynomial. 0 1996 Ameri- 
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1. INTRODUCTION 

In Ref. 1, a relation was conjectured between the Alexander-Conway polynomial and the 
v.e.v. (vacuum expectation value) of a newly proposed observable for the TQFT (topological 
quantumjeld theory) known as BF theory2 (or as “pure” BF theory, to distinguish it from its 
generalization “with a cosmological term”). The main purpose of this paper is to clarify that 
conjecture and to prove it in the case of SU(2), although in a slightly different form. To do so, 
however, we also perform a careful study of BF theories, both pure and with a cosmological term, 
introducing new observables that describe cabled Wilson loops. 

The BF theories are interesting from both the mathematical and the physical points of view: 
They are TQFTs that, in principle, can be defined in any dimension (see Ref. 3 and references 
therein). They describe quantum gravity in three dimensions4 and could be useful for the study of 
four-dimensional quantum gravity in the approach of Ref. 5. Moreover, they are related to Yang- 
Mills theories in the weak-coupling limit, where they could be used to describe a “topological 
phase’ ‘6 (see also Ref. 7 for a related approach). Finally, hitherto only in the Abelian case, they 
have been used to study many-body systems.8 

On the other side, the interest for the Alexander-Conway polynomial comes from the fact that 
it has always played a different role than the other knot invariants, being the only one that, 
hitherto, has been described by the methods of the traditional algebraic topology; yet it lacked a 
TQFT description (and Ref. 1 was an attempt to fill this gap). 

Indeed, the Chern-Simons theory describes the knot invariants related to the q-deformation of 
a classical group G in terms of v.e.v.s of Wilson loops (i.e., traces of G-holonomies along the 
knots);’ yet the q= 1 case, i.e., the Alexander-Conway polynomial, does not correspond to any 
acceptable value of the Chem-Simons coupling constant k. 

In the case of SU(2), an important improvement was given by the Melvin-Morton 
conjecturer0 (proved in Ref. 1 l), which states that the inverse of the Alexander-Conway polyno- 
mial appears in the 4 - 1 expansion of the colored Jones function. Rozansky12 was then able to 
prove the same result in the framework of the Chern-Simons’theory; more precisely, he showed 
that the inverse of the Alexander-Conway polynomial is recovered by a saddle-point computation 
in the limit k-w. 

In Ref. 3, an equivalence between the v.e.v.s of the Chern-Simons theory and of the BF 
theory with cosmological constant K= l/( 2k) was shown. The k--+w limit (i.e., the 4 = 1 case) is 
then simply described by removing the cosmological term, thus obtaining the pure BF theory. 

In this paper we show that the trace in the fundamental representation of the pure-BF-theory 
observable (31), first introduced in Ref. 1, is related to the ~-0 limit of a newly proposed 
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observable, (22), for the BF theory with a cosmological term. In the framework of the Chern- 
Simons theory, this observable corresponds to the “exponential” of a holonomy; so its trace is the 
generating function for cabled Wilson loops, and the v.e.v. of this trace is the generating function 
for cabled knot invariants (as suggested by the results of Ref. 13). 

Since the colored Jones functions are related to the cabled knot invariants, we are able to 
connect the y - 1 expansion of the former to the pure-BF-theory knot invariant. By the Melvin- 
Morton conjecture, we conclude that the latter is related to the Alexander-Conway polynomial, 
the precise relation being (49). Our proof, however, can also go the other way; i.e., should one 
directly prove a relation between the pure BF theory and the Alexander-Conway polynomial, then 
we would have a further proof of the Melvin-Morton conjecture. 

Our results are not limited to the trace in the fundamental representation of a particular 
observable for pure BF theory. In fact, we are able to prove that, in the standard framing, this 
observable is the most general one can consider (see Theorem 1 and Corollary 1). Moreover, we 
show how to compute the higher-representation knot invariants [see (34) and (35)], and also 
evaluate the limit as the dimension of the representation goes to infinity [see (37) and (40)]. Thus, 
we have a complete description of the unframed knot invariants coming from the pure BF theory 
based on SU(2) (see Theorem 2). The case of links has not been considered yet. 

The paper is organized as follows: In Sec. II, we describe the colored Jones functions and 
introduce their generating function. In Sec. III, we recall the property of the BF theory with a 
cosmological term and define a generating function for cabled Wilson loops. In Sec. IV, we 
discuss the pure BF theory and prove Theorem 1 and Corollary 1. In Sec. V, we consider the limit 
for vanishing cosmological constant and prove Theorem 2. We conclude our work in Sec. VI, 
comparing our present results with those obtained perturbatively in Ref. 1. For the sake of clarity, 
we have put all the cumbersome computations into some appendices, to which we shall refer in the 
text. 

II. THE COLORED JONES FUNCTION 

The colored Jones function, J,(C;h), is defined in Ref. 10 as the invariant of the knot C 
obtained using the irreducible SU(2),-module (q = eh) of dimension d. The main properties of its 
expansion as a rational power series (here and in the following, the notation of Ref. 11 is used), 

Ji(c:ii)c,n$o ?.Oh”‘=dj~~o bjm(C)(d- l)jh”, (1) 

were stated in Ref. 10: 
(i) The functions &(C;d) are odd in d. This means that (the analytic continuation of) 

Jd( C;h) itself is odd: 

J-J C;h) = -Jd( WI). (2) 

[This of course implies that the coefficients bj, in (1) are not completely independent.] 
(ii) These functions are actually polynomials of degree not exceeding 2m + 1. 
(iii) In the hypothesis that the standard framing for C is chosen, the degree of zti cannot 

exceed 2m - 1. 
In the same hypothesis of standard framing, two conjectures were also stated in Ref. 10: 

(i) The degree of &n cannot actually exceed m+ 1, or in other words, b.. in (1) is an upper 
triangular matrix, 

bj,(C)=O, if j>m. (3) 

(ii) The diagonal elements of b.. are related to the Alexander-Conway polynomial; viz., if one 
defines the Melvin-Morton function as 
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JJ(C;fi)=mio b,,(C)fim= 
J,(W) 

lim ~ 
d--,h-O,dh=ii d 

[the limit existing because of (3)], then 

2 
hJJ(Ch)= Acc;zl 7 Z=eh12-e-fin, 

(4) 

where A( C;z) is the Alexander-Conway polynomial with the normalization A(O;z)= 1, where 0 
is the unknot, and skein relation 

A(C+ ;z)-A(C- ;z)=zA(Co;z). 

These two conjectures have been given a functional-integral proof by Rozansky.12 In particu- 
lar he proved that the Melvin-Morton function, (4), is related to the large-k limit of the Chern- 
Simons theory, so it can be computed in saddle-point approximation. 

Eventually, Bar-Natan and Garoufalidis” gave a mathematical proof of (3) and (5) on the 
level of weight systems. 

A. The generating function for colored Jones functions 

In the following sections, the generating function 

(6) 

with x EC, will be needed; so it is useful to anticipate here some of its properties. These are better 
clarified if one introduces fldefined by 

f(C;x,h)=xexj@;x,h). 

In fact, the expansion of Fas a rational power series, 

(7) 

shares the same properties as the expansion (1) of Jd( C;h) (viz., see Appendix B). One can prove 
that 

b.. upper triangular@K .upper triangular. (9) 

Thus, (3) implies that E. is actually an upper triangular matrix, 

Fjm(C)=O, if j>WZ, (10) 

and that Fhas a well-defined limit for 1x1 +m, h-+0, and xh=h kept fixed. In Appendix B, it is 
shown that 

lim f(C;x,h) = JJ( C;h), 
Ixl+m,h--tO.rh=fi 

(11) 

and that, in general, for any n>O, 
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,,,_m,~~oJh;,ix -$C;i,h)=( h $I’JJ(c;“h 
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(12) 

III. THE BF THEORY WITH A COSMOLOGICAL TERM 

From the field-theoretical point of view, the colored Jones function is defined as the knot 
invariant obtained from the v.e.v. of a suitable observable, the Wilson loop, in the Chern-Simons 
theory’ (actually, the general case of a compact simple Lie group is discussed there). 

For the aims of this paper, however, it is more convenient to consider the formulation given 
in terms of the BF theory with a cosmological term, which is equivalent3.t4 to the previous one. 

We will consider here only the case of a single knot C imbedded in S3 and study its invariants 
associated to the group SU(2); viz., we consider the SU(2)-principal bundle P-+S3, and define the 
action 

%h)= k 

K2 
BAF-I- 3 BABAB 

where F is the curvature two-form of the connection A, B is a form in R’(S3,ad P), and the 
parameter K is called the cosmological constant (this name comes from the quantum-gravity 
interpretation of ( 13)4). 

Then, given a knot C and a base point x0 E C, we consider the observable 

(14) 

where K is the same cosmological constant as in (13), Ho&(A + KB;C) denotes the holonomy of 
the connection A + KB along the knot C with base point x0, and the ~j are functionals of A and B 
obtained by Taylor expanding the previous holonomy. 

Notice that the holonomy of a connection A along a curve C, open or closed, can be written 
as 

Hol(A;C)= P exp 

where P denotes path ordering. Thus, by (14) and (15), the r; turn out to be3,14 iterated Chen 
integrals of the form 

Yn(C,xo): = 
P 

~-~~~HoI,~(A;C), 
cxo)n (16) 

where the iterated integral Stw t * * * 02*. * o, of n one-forms {Oi}i= I,,,,,n is given by the formula 
s a<x,<...<xn<bw(xI) A w2(x2) A . * * A w,(x,). The su(2)-valued one-form h is defined as 

(17) 

with the holonomies computed along the portions of the knot C going from the base point x0 to the 
running points X. 

The observable r in (14) is invariant under a gauge transformation of the connection A - KB, 
while, under the gauge transformation 
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A+/&+g(A+KB)g-‘fgdg-‘, (18) 

one has 

rtC,X,;K)~g(xo)rtC,Xo;K)gtXo)-l. (19) 

Thus, taking the trace of I? gives a gauge invariant observable that is, moreover, independent of 
x0. The knot invariant given by the v.e.v. of this observable, wrt the (normalized) Gibbs weight 
exp[iSn,(lc)], can be recognized by exploiting the relation with the Chem-Simons theory,” viz., 

(20) 

where Tr, is the trace in the irreducible representation of spin s. In this framework, (2) is an 
immediate consequence of (A8). 

Notice, eventually, that the observable I can be decomposed into its even (r,) and odd (Krl) 

paw 

(21) 

and that both of them are good observables for the BF theory with a cosmological termI 

A. The BF-theory generating function 

The behavior (19) of the observable l? under a gauge transformation of the connection A + KB 
shows that all of the traces of powers of I are gauge invariant; so we can consider the knot 
invariants given by their v.e.v.s, or as will be clear in Sec. V, their generating function, 

= n 

W’;+h)=n~o ~Tr,,2rtC,xo;K)“)aF.x=(Tr,,2 exP[xr(C,xo;K)])BF,K, 

h=brrilc, (22) 

with x 4. We consider only the fundamental representation here, for the discussion in Appendix 
A shows that considering any other representation does not give further content of information. 
Notice that the rightmost term in (22) is only formal since no addition is defined in the group. 
However, this notation usefully reminds us that E has the formal properties of an exponential. 
Notice that, since I’ is a holonomy, one has 

where by nC we denote the nth cabling of the knot C; thus, E( C;x,h) is the generating function 
for cabled knot irwariants. In the framework of the Chem-Simons theory, r is replaced by the 
holonomy of the connection A; thus, E can also be seen as the v.e.v. of the generating function for 
cabled Wilson loops. 

By using the formulas in Appendix A, one can show that there is a simple relation with the 
generating function for colored Jones functions defined in (6). Actually by (A6), one can express 
Tri121Y in terms of the traces of r in the representations of spin n/2 and n/2- 1. By (20), it then 
follows that 

E(C;~,h)=~$o ; [J,+I(C;h)-J,-,(C;h)], 

where, according to (A8), J, = 1, J,=O, J- ,= - 1. 
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By (6) and (24), and also noting that E( C;O,h) =2 and JJ( C;O,h) = J1( C;h) = 1, one obtains 

E(C;x,h)= 1 +&f(C;x,h)- /;ds$f(C;&h). 

IV. THE PURE BF THEORY 

The BF theory has the nice property that its limit for vanishing cosmological constant (cor- 
responding to the k+w limit in the Chern-Simons theory) is still represented by a TQFT known 
as pure BF theory, 2*15 whose action reads 

1 
SBF= G (26) 

It is immediately seen that SnF is invariant under gauge transformations 

A+gAg-‘+gdg-‘, B+gBg-‘, (27) 

as well as under B-transformations 

A-tA, B+B+d,@ (28) 

Here g is a map from S3 to the group, while Cc, is a form in R”(S3,ad P). The action (26) is 
invariant under (28) owing to the Bianchi identity. 

The good observables for the pure BF theory are of course obtained by r,( C,xo ; K) and 
r,(c,xo7 . K), defined in (21), in the limit K+O, and are simply given by yo( C,xo) and n( C,xo) in 
(16); viz., 

(29) 

YltcJo) = P x E (CJ,) 
H~l;~B(n)Hol;. 

Under (27) and (28), they transform as 

ritC,xo)--tg(xo)YitC~xo)gtxo)-‘~ i=O,l, (30) 

provided we fix +(x0)=0, which can always be done.’ 
Thus, we are led to consider the v.e.v.s of Trd ‘y. and Tr, yt . They, however, are rather trivial, 

for they correspond, respectively, to Jd( C;O) = d and (d/dh)Jd( C;O) =O. 
From a field-theoretical point of view, the reason of this triviality is the following: In pertur- 

bative BF theory (on S3), nonvanishing v.e.v.s contain a number nA of fields A not exceeding the 
number nB of fields B.’ Therefore, after expanding the holonomies in (29) in powers of A, one 
sees that only the zeroth-order term Tqd _ i j,2 Z=d (where I is the group identity) survives in the 
v.e.v. of Tr(d-1j12yO; while, in the v.e.v. of Tr(,-,),,yi, only the first-order term does [the zeroth- 
order term vanishing because it is the trace of an element of su(2)]. However, the latter v.e.v. (of 
the form ($CA$CB)BF,O) gives the self-linking number of the knot C that, by the hypothesis of 
standard framing, is zero. (If one uses a more general framing, the self-linking number is the only 
information one gets from these v.e.v.s.) 

This is the reason why in Ref. 1 one looked for composite observables that contain a higher 
number nB of fields B, and are invariant under (27) and (28). In particular, the generating function 
of the v.e.v.s of Tr,,- ,j/2( yi)” was taken into account, 
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wd(c:A):=nio s (Tr(,-l)nY1(C1XO)n)BF,O=(Tr(d-,),2exp[Xy,(C,XO)I)BF,O, (31) 

with X E C. Again, as in (22), the rightmost term is only formal. 
In Sec. V, we shall need (3 1) to study the limit K-O in (22), to which (31) is apparently 

related. However, there is a second, perhaps more natural, generating function to be considered, 
viz., 

(32) 

where 

P(C,xo): = Yl(C,XO ). ~&zxo)-‘= !I iESU(2). (33) 
CJO 

Notice that the exponential in (32) is not formal, but it actually represents the exponential map 
from the algebra to the group. 

The generating function w is particularly useful because it allows us to understand the mean- 
ing of the knot invariants related to higher-dimensional representations; indeed, by using (A7), one 
can easily prove that 

k 

(34) 

k 

%k+,(c;A)= 1 +[zl f’,(c;2h). (35) 

Then, a formal resummation of the geometric sums appearing in (34) and (35) gives 

Trln 
exp[td+ l)WC,qJl- 1 

exp[2Xp( C,xo)] - 1 
if d is even, 

!#&A)= BF,O 
(36) 

TrlR 
exp[(d+ l>MC,xo)l- 1 

exp[ 2X/?( C,xo)] - 1 
+ 1 if d is odd. 

BF.0 

These formulas show that the limit 

rn(C;p):= lim 
% tC;A) 

d+m.A-O,dX=/.t d 

is well defined, and that 

(37) 

exp[d(C,x0)1- 1 

2N3(CJo) BF.0 
=io 2cnilj! (Tr112[~UP(C,XO)ln)BF,0. 

(38) 

Thus, by (32) and (38), we obtain 

w,(C;A)=Z; [Ai%(C;A)], (39) 

or equivalently, 
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wT@( C;p) = ; j-;‘2dx ti,( C;2x). 

Notice that (34) and (35) are actually discretizations of the Riemann integral in (40) with x= LA. 
A more rigorous proof of the above results can be obtained by expanding w2 in powers of A 

and using (34) and (35) to get the corresponding expansion of ti;, . Then one can use the asymp- 
totic formula 

k-+m k n+1 

I=1 -37 

to get the rightmost term in (38). 
So far we have considered two different generating functions, viz., (31) and (32): in general, 

however, there are even more choices. Indeed, because of (30), a product of powers of y. and yI 
(in any order) is still an observable whose trace is invariant under (27) and (28). 

To get rid of this arbitrariness in the definition of the generating function, we need the 
following. 

Theorem 1: In pure BF theory, the knot invariant obtained by the v.e.v. of the trace of a 
function of ‘yu( C,xo) and yt( C,xo) is equal to the knot invariant obtained by replacing yoyo( C,xo) 
with the identity of the group, provided the standard framing is chosen. 

In Ref. 14, a proof of the theorem based on an explicit study of the Feynman integrals 
appearing in the evaluations of the v.e.v.s was given. Here, however, we give a simpler argument, 
based on the formal properties of the pure BF theory. 

First of all we recall that, in the explicit evaluation of the v.e.v.s in BF theory, the choice of 
framing is done by evaluating all the holonomies in (29) on a companion knot C’ obtained by C 
in terms of a “small,” nonvanishing normal displacement.* Notice that the self-linking number of 
C is then, by definition, the linking number of C and C’. 

The proof of the theorem, then, essentially relies on the fact that, if this linking number 
vanishes (standard framing), one can deform C’ in y. in such a way that it can be completely 
unlinked from C and, as such, shrunk to a point; so its holonomy, ‘yo, becomes the identity. 

This is possible since a knot C’ appearing in ‘y. (not necessarily a framing for C) “does not 
see itself.” In fact, a small deformation of the knot C’ at a certain point x amounts to introducing 
curvature terms in x (remember that y. is a holonomy). However, in pure BF theory, the curvature 
vanishes everywhere but on the knot C, along which yt is evaluated. (We refer to Ref. 1 for the 
proof that, in an observable, A acts as a source for d,B, while B acts as a source for the curvature 
F.) Therefore, C’ can be deformed freely as far as this deformation does not intersect C; self- 
intersections of C’ are allowed, however. 

When such a self-intersection occurs, one can split C’ into two closed curves C; and C; ; 
correspondingly, the holonomy yo(C’) can be written as ‘yo( Cl) + yo( CJ), 

To prove the theorem, one just has to repeat this procedure until C’ is replaced by a collection 
of circles C; , all of which surround one single strand of C. Then one moves the C;s along C, and 
cuts and splices them together again to form a circle C”. 

Since all these deformations do not affect the linking between C and C’, the linking number 
of C and C” is the same as the linking number of C and C’. If this linking number vanishes 
(standard framing), then the circle C” and the knot C are unlinked, and C” can be shrunk to a 
point. This concludes the proof of Theorem 1. 

As a consequence of Theorem 1, we have the following. 
Corollary I: Wd(C;A) is the most general v.e.v. one can consider in pure BF theory if the 

standard framing is chosen. 
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Moreover, we can freely switch from Wd in (31) and @d in (32). Thus, by (34) and (35), the 
higher-representation knot invariants Wd can be related to the fundamental-representation knot 
invariant W2; besides, the limit 

WW(C;p):= lim 
W,tC;A) 

d-+m,A-+O,dA=p d ’ (41) 

is well defined and, by (39), 

d 
W,(C;A)=2x [AWW(C;X)]. (42) 

We conclude this section with an important remark. Pure BF theory is known to be exact in 
saddle-point approximation16 as far as the partition function is concerned. This result is a simple 
consequence of the fact that one can arbitrarily change the “Planck constant” in front of the 
action by simply resealing the field B. Since the partition function (or the v.e.v. of an observable 
not containing B) is not affected by this resealing, one can send the Planck constant to zero. 

This, of course, cannot be done when one computes the v.e.v. of an observable containing B, 
as in (31) or (32). In this case one sees that the parameter A actually plays the role of the Planck 
constant, and, of course, Wd is not independent of A. 

Notice, however, that WW corresponds to the limit A-+0, so it should be possible to compute 
it by using the saddle-point approximation. Then, by (42), it is possible to recover W,and hence, 
by (34) and (35), all the Wd’s-from WW. 

Thus, even if pure BF theory with B-dependent observables is not exact in saddle-point 
approximation, the saddle-point approximation turns out to be all that one needs. 

V. TURNING OFF THE COSMOLOGICAL CONSTANT 

In this section we want to show that, in the limit of vanishing cosmological constant, the 
BF-theory generating function (22) is related to both the pure-BF-theory generating function (31) 
and the Melvin-Morton function (4). 

To establish the former relation, we first observe that, in order for the significant observable ‘yi 
to survive in the limit K-+O, we have to send 1x1 +m at the same time with the prescription that 
XK=A be finite. If we work with the standard framing, by Theorem 1 the observable y. can be 
replaced by the identity of the group; so (22) diverges as eX; thus, we are led to consider 

E(C;x,h):=e-‘E(C;x,h). 

By using the exponential representation of (22), we can write 

(43) 

and get 

lim ,!?(C;x,h)= W2(C;A), fi=4niA. (44) 
Ixl-+QP-+Osh=fi 

In Appendix C, we give a more careful proof of (44). 
Notice that the limit in (9) holds irrespectively of how x is sent to infinity in the complex 

plane. Therefore, if one sees E_as a meromorphic function of x and fL, this implies that the regular 
part in x of E vanishes. Thus, E, now rewritten in terms of x and h, does not contain more powers 
of x than of h. In other words, if E is expanded as a rational power series, 
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E(C;x,h)= 5 qmt C)x’hm, (45) 
l,m=O 

then E.. is an upper triangular matrix, 

Ej,(C)=O, if j>m. (46) 

The relation between the BF-theory generating function and the Melvin-Morton function is 
obtained by exploiting (25) (see Appendix D for details). We arrive to the following conclusions: 

and 

E.. uppper triangular-b.. upper triangular, (47) 

Gl(C)=2(1 +nP,,tC), (48) 

where E.. and b.. are defined, respectively, in (45) and (1). Notice that (47) and (46) give a new 
proof of (3). 

Since E is related to W, and to JJ in the same limit K--+O, we deduce that a relation exists 
between Wz and JJ. Actually, by (l), (44), (45), and (48), we obtain 

WZ(C;A)=2& [fiJJ(C;h)], h=4rriA. (49) 

In order to recognize the knot invariant given by W2, we can now resort to (5) and obtain 

z21c!d z 
W2(C;A)=2 l+ 2 1 01 dzm’ z=2i sin(2%-A), (50) 

and, in particular, 

z=2i sin(2rA), (51) 

where 0 is the unknot and we have chosen the normalization A(O;z)= 1 (cfr. Sec. II). Thus, the 
normalized knot invariant 

(%(A): = ;$;.i, (52) 

defined in Ref. 1, satisfies 

(C),(A)= $ &y z=2i sin(2rA). (53) 
, 

In conclusion, we have shown that W2 is related to the first derivative of the inverse of the 
Alexander-Conway polynomial. By (34) and (35), Wd is given by a finite sum of W2s, evaluated 
at different As. Concerning the limit d-+a, we see that (42) and (49), together with the property 
WW(C;O)=JJ(C;O)= 1, imply 

or, because of (5), 

WW(C;A)=JJ(C;h), fi=47~iA, (54) 

J. Math. Phys., Vol. 37, No. 8, August 1996 
                                                                                                                                    



3694 Albert0 S. Cattaneo: Cabled Wilson loops in BF theories 

Z 
4riAWW(C;A)= A(c;z), z=2i sin(2aA). (55) 

The above results, together with Corollary 1, prove the following. 
Theorem 2: The set of the unframed knot invariants that can be obtained from the SU(2)-BF 

theory coincides with the set of the coefficients of (the inverse of) the Alexander-Conway poly- 
nomial. 

In Ref. 1, the authors conjectured a relation between the Alexander-Conway polynomials and 
the pure BF theory based on second-order calculations in the perturbative expansion. Theorem 2 
supersedes this conjecture and provides the correct relation. 

VI. THE PERTURBATIVE EXPANSION OF W, 

In this section we want to compare the results we have proved in Sec. V with those obtained 
in Ref. 1 in the framework of “perturbative” BF theory. 

By “perturbative” evaluation of (31), one means an expansion of Wd(C;A) (or of its gener- 
alization Wti,K(C;A), where G is a compact group and R a representation) in powers of A, 

IO 

W,,R~C;U=~~~ w,tG,R;C)An, (56) 

where the knot invariants w,(G,R;C) (actually, they are Vassiliev invariantst7) are computed in 
terms of Feynman integrals. 

The first property of the expansion (56) shown in Ref. 1 is that, owing to a symmetry of the 
corresponding Feynman integrals, odd-order terms vanish, 

wznfl(G,R;C)=O. (57) 

Thus, W is an even function: 

WG,R(C;-A)=WG,R(C;A). (58) 

In the case G =SU(2), by using (50), (34), and (35), we see that (58) is in accordance with the fact 
that the Alexander-Conway polynomial A( C;z)-for a single knot C-is an even function of z. 

A further computation done in Ref. 1, for the case G =SU(N), showed that, up to the second 
order, (56) reads 

W,,,(C;A)=dim R[ 1+(4~rA)~c~(R)c,p(C)-tO(X~)]. (59) 

where 

(9 dim R and c2(R> are, respectively, the dimension and the quadratic Casimir of the repre- 
sentation R; 

(ii) c, = N is the quadratic Casimir of the adjoint representation; and 
(iii) p(C) is the knot invariant studied in Refs. 18 and 19 in the framework of the Chem- 

Simons theory. 

In Refs. 18 and 19, p(C) was proved to be related to the second coefficient of the Alexander- 
Conway polynomial; viz., if one writes 

A(C;Z,=~~~ a,(C)z”, ao(C)=l, al(C)=0 i3N 

(where only a finite number of coefficients are nonvanishing), then 
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P(a=2a2(C)+P(O). (61) 

Moreover, a direct computation”? shows that 

p(O)=-& 

Thus, one can write (59) as 

(62) 

WdJC;X)=dim R 1 +(4rrX)22c2(R)c, a2(C)- 24 i-0(x ) . ( ‘) ‘1 (63) 

If we now expand (50) as 

z=4rriX+O(X2), 

we get a complete agreement with (63) in the case where G=SU(2) and the fundamental repre- 
sentation, R2, is chosen; for, in this case, c,=2 and c2(R2)=$ 

We can also compare the second-order expansion of (34) and (35) with (63) in the case where 
G=SU(2) and R, is the irreducible representation of dimension d. This is done by noticing that 
one can compute the sums appearing in (34) and (35) as 

/$, (21- 1)2=f k(4#+ l), [$* 12,; k(kf 1)(2k-t 1). 

Thus, one achieves complete agreement with (63) since 

c2(R2k) = 
(2k- 1)(2k+ 1) 

4 ’ (64) 

~2(R2k+~)=k(k+ 1). (65) 

By using (34) and (35), it is possible to see that-in agreement with the perturbative result of 
Ref. l-the coefficients w, in (56) are given by the product of a function depending only on the . 
representation and a function depending only on the knot, viz., 

wzn(SU(2)& ;C)=&2n(4dC). 

If we normalize g2n(2)=$, then, by (34) and (35), we get an explicit formula for the gs: 

g2,(2k+ l)= - 2k: 1 [i W2”. 

(66) 

(67) 

(6% 

By (64) and (65), we can also express the gs in terms of the quadratic Casimirs: 
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go= i, g2 = 4C2C” I 

g4= TS~ES(C~C~>~-CCZC~I~ gg=~12(C2C,)3-6~~~~+~2~~], (69) 

. . . 

In general, the highest power of c2 in gzn is n. 
In Ref. 1, it was conjectured that the only group factor to appear in g,, was (c~c,)“. From this 

conjecture, together with some field-theoretical arguments, it was concluded that, for some t, 

;;‘$‘:; =[AtC;z)-Jf, zylqiijFJ+o(A3). 
> ’ 

By (69), we see that the conjecture is wrong; by (49), we see that so is the conclusion (70). 
It is, however, interesting to show that, if we retain only the terms (c~c,)~ in (69), then the 

corresporiding knot invariant is actually the (- 1)-power of the Alexander-Conway polynomial. 
More precisely, we define the “truncated” coefficients 

d;bf) = [~2Ubk,I”~2n (71) 

as the coefficients obtained by neglecting lower powers of c2(Rd) in (69), and the “truncated” 
knot invariant as 

wy(C;A): =go dg&)(d)u2,(C)A2”. (72) 

Since c,=2 and c2(RJ-d214 as d +m, the truncated coefficients g;:)(d) are the leading terms of 
the true coefficients g2,(d); thus, by (41) and (71), 

m Y2n 
wwtc;A)=n~o 2” u2,(c)~2”. (73) 

By comparing (73) with (72), we eventually get 

W&“‘(C;A)=dWW(C;&f&j&; (74) 

thus, by (55), we see that 

wy+ C-X) 1 
WF)(O;A) = m’ 

z=2i sin(2rrdwA). (75) 

Thus, if the truncated knot invariants are used, (70) holds.’ 

VII. CONCLUSIONS 

In this paper we have discussed the unframed knot invariants coming from BF theories. Even 
if most of our results hold only for SU(2), we point out that Theorem 1 and Corollary 1, as well 
as the computation in Appendix C (with a slight abuse of notation), hold in general. 

It would be interesting to generalize some of the other results to different groups and to 
consider links as well. However, the present case, i.e., knot observables in the theory based on 
SU(2), seems to be interesting enough to deserve further investigation. 
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Indeed, as we have noticed at the end of Sec. IV, it turns out that a saddle-point computation 
is enough to completely describe the pure BF theory. We defer to a forthcoming paper the related 
functional-integral computation. 

Notice that this property of pure BF theory sets it at the boundary between TQFTs of Witten’s 
and Schwarz’s type: The former are twisted supersymmetric gauge theories (see, e.g., Ref. 20), 
whose main property-an effect of the twisted supersymmetry-is their independence of both the 
metric and the coupling constant, which makes them topological as well as exact in saddle-point 
approximation. The latter are topological gauge theories, as the Chem-Simons or the BF theo- 
ries, whose dependence on the coupling constant is unavoidable. The pure BF theory formally 
belongs to the latter type, but, as the theories of the former type, is completely determined by its 
weak-coupling limit. 

Moreover, as we have proved in Sec. V, the pure BF theory corresponds to the first diagonal 
in the (h,d) expansion of the colored Jones function. A description of the upper diagonals is still 
missing (see Ref. 21 for a first attempt); so it is natural to look for generalizations of the pure BF 
theory, i.e., for further variations of the Chem-Simons theory, that could correspond to these 
upper diagonals and, possibly, give them a better understanding (see Ref. 13 for a different 
approach). We are investigating along these lines. 
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APPENDIX A: SOME USEFUL IDENTITIES FOR THE CHARACTERS OF SU(2) 

In this section we recall some properties of the group SU(2) that are necessary for this paper. 
In particular, we are interested in an identity relating Trn2 gn to the traces of g in other represen- 
tations, or, in other words, we want to give Tru2 g” an expression in primitive characters, 

co 

Trw+“= kzo hakXkR(g), 

where 

x,(g): =Tr,g, 2s E Z. L42) 

Owing to the Peter-Weil Theorem, this can be done since Tr,,, g” depends only on the conjugacy 
class of g and belongs to L2(SU(2),C). By a conjugacy transformation, one can always write g as 

g = heiaR3ht, 643) 

where R3 is the (Hermitean) generator of the Cartan subalgebra. Noticing that the spectrum of R3 
in the representation of spin 1 is given by { - 21, - 2( I - 1)) . . . ,2( 1 - 1) ,2Z}, one obtains 

Trl,2gn=eina+e-ina, L44) 

and 

Tri g=e 2ila+e2i(l-l)a+. . . +e-2ila= 2 e2imu 

m=-1 
(A5) 
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where the last sum is meant to be over integers or half-integers according to the fact that 1 is 
integer or half-integer. By (A4) and (A5), it immediately follows that, for n32, 

Trln g”= Tr,/zg -R/2- ~g, n E z. 646) 

By induction one can also prove that 

I 

s+ 112 

c ‘%2g2’- ’ if s is half-integer, 
I=1 

Tr, g= 
1+ 5 TriD g2’ if s is integer. 

l-1 

Moreover, by (A7) and by the fact that 

Tru2 exp( ia+R) = 2 cos a, 

with a E W3 and R:= (R ‘, R2, R3) the Pauli matrices, one also obtains 

sin( da) 
Tr, exp( ia.R) = ~ sin(u) ’ 

647) 

(‘48) 

where d = 2s + 1 is the dimension of the representation of spin s. 
Since, for a given g, Tr,,,g is a map defined on the positive integers, its analytic continuation 

over the whole complex plane is uniquely defined and is actually given by (A8). 

APPENDIX 8: PROPERTIES OF THE GENERATING FUNCTION FOR COLORED JONES 
FUNCTIONS 

In this section we explore the properties of the generating function for colored Jones functions 
defined in (6). By (l), we can write 

f(C;~,h)=~~~ ;d 5 j m=O b,m(C)(d- 1 Yhm=xj iEo Bj(x)bjm(C)hmt . . 031) 

where 

/3j(x)=jo ; dj= .z 
(ddjla;logx 2 $=( $j 

exp( em). 032) 
a=lOgX 

By repeatedly applying Leibniz’s rule, we obtain 

Bj(x)=e”Pj(x)=e”[xi+O(xi-‘)I, 

where Pj(x) is a polynomial of degree j starting with ~j, viz., 

Pj(X) = ;i: X’Clj , 
I=0 

Cjj= 1. 

(B3) 

@4) 

Notice that (B4) implies that c.. is an upper triangular matrix: 

C,(C)=O, if l>j. WI 

The coefficients clj can easily be computed if we consider the following generating function, 
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m $ 
Qw): =,go yj- q4, 

which, by (B2), can be written as 

B(p,x)=exp e(a+PJln=logX=eX exp[x(eP- l)]. 

Thus, by (B3), we obtain 

Oc pj 
p(P~x):=J~o j? Pj(X)‘ngo s (eP- I)“, 

while, by (B4), we have 

P(w)= 5 ,“: 
n,j=O 

XnC,j 7. 

3699 

w-3 

037) 

W-9 

039) 

By comparing the two different expansions of P in powers of p given by (B8) and (B9), we obtain 
eventually 

cn,-(-l)n n n 
n! co I=0 

l (- I)'P, @lo) 

where, by convention, O”= 1. 
We want now to compute the coefficients g. defined in (8). By (7), (Bl), and (B3), we can 

write 

so by (81, 

6312) 

Since the matrices 6-.. and b.. are related by the matrix c.. that, by (B5), is upper triangular, we 
conclude that (9) holds. Moreover, if one knows that either K. or b.. is upper triangular-and by 
(3) we know that this is true for the latter-then one has 

&wnW)=bm,K). 
This implies that, in the limit considered in (ll), we can write 

0313) 

SO by (4), (11) holds. In order to prove (12), we only have to notice that the operator (xd/&)“, 
when applied to xi simply produces a factor j”; so 

m”b,,(C)hm+O 
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By comparison with the effect of the operator (fidld?i)” on (4), we obtain (12). 

APPENDIX C: FROM E TO W, AS /c+O 

In this section we want to clarify the limit in (44). By (43), (22), and (14), we have 

where h =4ti~. 

In Refs. 3 and 14, it is shown that, in an observable, the field B represents a source for 
F+ K~BAB, while the field A is a source only for dAB. Since a variation in the framing (i.e., the 
companion knot along which we integrate the field A) is still given by inserting a curvature term, 
we can repeat the steps of the proof of Theorem 1 and show that,. if the standard framing is chosen, 
To can be replaced by I+ 0(/3), where I is the group identity. As a consequence, (Cl) now reads 

By using Newton’s binomial formula, one can easily prove that (C2) can also be written as 

or, setting X = x K, 

tw 

(C3) 

Now, sending K+O, with X fixed, gives (44). 

APPENDIX D: FROM E TO JJ AS h-+0 

In this section we consider the relation between the BF-theory generating function E and the 
Melvin-Morton function as the expansion parameter h is sent to zero. 

The starting point is relation (25), which, by (7), can be rewritten in terms of5 Actually, the 
second term on the rhs of (25) is easily seen to be 

6’J(C;x,h)=eX(x+ l)~(C;x,h)+e”xdf~C;x,h), (Dl) 

while the computation of the last term requires more work. First of all, it is useful to introduce the 
following notation: 

I,Cgl(x) = l:dE &“~(5), CD21 

where g is a generic analytic function and g (n) its nth derivative. By integrating by parts, one can 
prove the recursion rule 

which implies that 

tD3) 
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I,[slC~~=~xniio (- lYdn)b~-n~o (- l)“d”)(O). 

Now we set 

(where C and h are supposed to be fixed), and note that, accordingly, 

(D4) 

(D5) 

Then we use (D4) to compute the last term in (25) as 

l)fl(C;x,h)-xd&C;x,h)+R(C;x,h)]+c(C;h), (D7) 

where 

R(C;L,II)=~~~ (- l)“[nd:-‘~(C;x,h)+xd~~(C;x,h)] m 

and 

72 

c(C;h)=nzo (- l)“(n+ l)E$(C;O,h). (D9) 

Therefore, by (43), (25), (Dl), and (D7), we obtain 

~(C;.r,h)=2[~(C;x,h)+xdf~CC;x,h)]+R(C;x,h)+e-*[l-c(C;h)]. tDl0) 

We defer to the end of this section the proof that c(C;h) = 1, cf. (D23); as a consequence of this 
fact, (DlO) actually reads 

E(C;x,h)=2[f+Z;x,h)+xd&C;x,h)]+R(C;x,h). tDll> 

Now we want to reexpress (Dll) as a relation between the coefficients of the power series 
expansions of i? and f? Indeed, by (8), the terms in square brackets in (Dl 1) can be written as 

ji, t 1 + ~)hntC)x’hm, 

while 

R(C;x,h)= i 5 (-1)” y 
n=2 l.m=O h+,- l,,ntC)x’hm. 

Therefore, by (45), we get eventually 

0312) 

(D13) 

with 
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(n-i-l)! 
nlj=2(l-z)~lj+n$2 C-1)” 7 sl+n- 1.j (D14) 

(S.. being the Kronecker delta). Since 7.. is an upper triangular matrix, by (D13) we have that 

E.. upper triangular-g. upper triangular. (DW 

Finally, by (9), we conclude that (47) holds. Moreover, (D14) and (B13) imply (48). 
We conclude this section by showing that the function c( C;h), defined in (D9), is a constant 

equal to one. 
We start by considering the expansion of c in powers of h. By (8), we obtain 

where, by (B12), 

m 
Djznzo (- l)“(n+ l)!c,j. b 0317) 

Notice that, by (BS), (D17) is actually a finite sum. By (BlO), we can also write 

Dj=~ i (n+l) ; (-l)‘Z’. 
n=O I=0 0 

Let us consider now the generating function 

(DW 

(D19) 

By (D18), it follows that 

D(P)=~~~ (n+ l)l$o [;I(- l)‘ePi=nio (n+ l)(l -&‘)n=e-zp. @2(-V 

By comparing the expansion of D in powers of p in (D19) with the expansion of e-2p, we 
conclude that 

Dj=(-2)‘. W’l) 

Thus, (D 16) reads 

where the last identity follows from (1). However, by (2), we have 

J-1(C;h)=-J,(C;h)=-1. 

(D22) 

Therefore. we conclude that 

c(C;h)= 1. @W 
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From the time-independent current .?(F,,k) in the quantum self-dual Yang-Mills 
(SDYM) theory, we construct new group-valued quantum fields fi(Y,k) and - 
o-‘(Kk) which satisfy a set of exchange algebras such that fields of 
.T(Ek) - o((y,k)dy$- ‘(Y,k) satisfy the original time-independent current alge- 
bra. For the correlation functions of the products of the G($k) and 6-‘ ( Y,k) 
fields defined in the invariant state constructed through the current ?(y,k) we can 
derive the Knizhnik-Zamolodchikov (KZ) equations with an additional spatial de- 
pendence on k. From the o((y7k) and G-‘(y,k) fields we construct the quantum- 
group generators, local, global and semi-local, and their algebraic relations. For the 
correlation functions of the products of the V and 0-l fields defined in the invari- 
ant state constructed through the semi-local quantum-group generators we obtain 
the quantum-group difference equations. We give the explicit solution to the two 
point function. 0 1996 American Institute of Physics. [SOO22-2488(96)03207-O] 

I. INTRODUCTION 

One of the pressing problems in particle physics is to formulate four-dimensional (4-D) 
quantum field theory nonperturbatively and to find nonperturbative quantum-field-theoretical so- 
lutions to the Yang-Mills equations for strong interactions, as well as to quantum gravity. The 
path we have taken in this pursuit of nonperturbative results has been through the integrable- 
system method. The main important framework the integrable-system provides is the possibility of 
formulating the field theory in terms of group-valued local fields. This is a nontrivial starting point 
for 4-D gauge theory with nonvanishing curvatures. In this formulation the self-dual Yang-Mills 
(SDYM) theory is the simplest, yet important prototype to work out.’ 

In Ref. 2 we succeeded in formulating the quantum SDYM field theory in terms of the 
group-valued local quantum field x We obtained the interaction Hamiltonian of the 7 fields, 
derived the exchange algebras that the Ffields satisfy, showed that the the Ffields are bimodule 
quantum fields and the R matrix of the exchange algebras satisfies the Yang-Baxter relations so 
that the products of the 7 fields satisfy associativity and we developed operator-product and 
normal-ordering procedure for the products of fields. From the F fields, we constructed local 
currents and their algebras. We found that the one-spatial-dimension integrated currents and cur- 
rent algebras are actually time-independent, i.e. they commute with the interaction Hamiltonian. 
This is a striking new feature in this 4-D quantum field theory. In this paper we develop fully the 
implications of these time-independent currents. (Throughout the paper we use letters with a tilde 
to denote quantum operator fields.) 

From the time-independent current ?(y7k), we construct new group-valued quantum fields 
E((y,k) and fi- ‘(y7k) that satisfy a set of exchange algebras such that fields of 
r(F,c)- fi(y,k)dy*-‘(y,k) satisfy the original time-independent current algebra. For the cor- 
relation functions of the products of the G(y,k) and 6-‘(y,k) fields defined in the invariant state 
constructed through the current y(y,k) we can derive the Knizhnik-Zamolodchikov (KZ) 
equations” with an additional spatial dependence on k. We can obtain the n-point correlation 
functions of the 6((y,k) and 6-‘(y,k) fields; they are expressible in terms of the correlation 
functions of the quantum WZNW theory in two-dimensions (2-D) with coefficients being un- 
known functions of one of the additional spatial coordinates in 4-D. 

From the G((yTk) and @‘(y,k) fields we can also construct the quantum-group generators, 

3704 
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local, global and semi-local, and their algebraic relations. For the correlation functions of the 
products of the 6 and 6-l fields defined in the invariant state constructed through the semi-local 
quantum-group generators, using the method given by Frenkel and Reshetikhin4 we obtain the 
quantum-group difference equations. We give the explicit solution to the two point function. 

With these results, we have exposed probably as much as possible the quantum integrability 
part of this 4-D interactive theory. As expected, the 4-D interactive theory is not, and should not 
be, as fully integrable as integrable systems in 2-D (for example, solutions to the KZ equation 
have unknown functions). However it is to important to find out the quantum-field-theoretical 
integrability properties of the theories which have many classical integrability properties. This 
work on the quantum SDYM has now prepared us to investigate fuller 4-D field theories. 

il. THE QUANTUM SDYM SYSTEM: HAMILTONIAN, EXCHANGE ALGEBRAS, 
CRITICAL EXPONENTS, OPERATOR-PRODUCT EXPANSION, NORMAL ORDERING 
ANDCURRENTALGEBRA 

First we briefly review the quantum self-dual Yang-Mills system as formulated in our pre- 
vious paper.2 It is characterized by a quantum field Hamiltonian, 

lTi”t=-a WW dpa 

x[(a,-JI--‘)(a,~)-(a,J’-*>(a~~)](JI-*)} , I 
where, in the case of s1(2), y=F(y,y,k,k) is a 2X2 matrix with noncommuting operator-valued 
entries depending on the 4-D coordinates y, y7 k, k; and y is the time. (Here we present the theory 
with z and rcoordinates discretized: z=ka, Z=ka, and as21lN is the lattice size.) 

The quantum J fields satisfy the following exchange algebras: 

J7(y,4T1,kl,~)~I(~,Y2,k2,k2)=1~,~~~~t~,YZrk2,k2)~(~,~rkl,~)Rr,,l(q,~l-Y2), (24 

where 

and 

~(j5-j7~)= t 1, for FtsyZ; (24 

l (Ft-F2)=0, for Fr=y2; (24 

q=e -[ih’(2aa2)16~,t~“~,k;, where (Y is the coefficient in front of the SDYM interaction Hamil- 
tonian, E$. (1); At = - l/2 and Ao=3/2 are the conformal dimensions; and the 9’i)j4,2’s are the q-ed 
projection matrices projecting the two spin l/2 states into jt2=0 or 1, satisfying 9’T,z9,‘, 

12 
= ‘Pi4,2Sj,$;2. In the more explicit expressions, 

9’!1zC,=diag{ l,d(y ,‘tj,l), @f) 
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where d= l/(q + q.- ‘). The q-ed singlet projection matrix is related to the triplet one by .?~,2=0 
= 1 -PJg,*= t . The matrix P,,,, interchanges matrix in space I to II and visa versa, e.g., 
P,,,I~I(~,Y, ,k, ,k,:)~~,(y,y:!,k2,k2)=~,(y,~, .kl ,k,)~(y,%,k2&)PI,,,, and its explicit repre- 
sentation is P,,,[ = l/2 + 1/2C~=,o7a~, = ?j,2=1 - 9j,12=0;herethe.P;,2’saretheun-q-edordinary 
projection matrices, i.e., Eq. (2b) with q= 1. Using another fact l,,, = Yj,,=t + P’j,2=a, we can 
easily prove that at 4T; = y2, exchange algebra Eq. (1) gives 

where jt2=0,1. Equation (2~) impliesPj,2&& ,k, ,~l)&(y,~l ,k, ,Fl).Fy12 = 0, for j,, # ji2. 

This and the later development of the quantum-group generators rely crucially on this interpreta- 
tion of the R matrix at the coincidence point, Eq. (2~). We denote R,,,,(q,F, - jQ = R,,,,(q, + >, 
for F,-Y,>O and Rl,ll(q,~-Y2)=Rl,ll(q,-), for Y,-Fi<O. Note that [RI,ll(q,+)l-l 
=Ru,,(q, - 1 and [R,,,dq, - )I -l=Rrr.r(q,+). 

The expression for E (Ft -&), Eq. (2a), indicates that the product &(y7)F11(y2) has singu- 
larity at Fl -y2=0, with the specific critical exponents given by 

(3) 

This also defines the normal-order products to be those in the curly brackets; their Taylor expan- 
sions give the operator-product expansions. 

We then defined the 7-l field by the following fixed-y-time equation 

~(y,y,k,k)?‘(y,~,k,ij= l=?(y,y7k,@T(y,y,k,k). (4) 

From Eqs. (4) and (2a), one can easily show that the J’-’ field satisfies the following fixed-y-time 
exchange algebras: 

-- 
~lb,K,kl ,kl)Jrr(y,yZ,k2,k2)=JII(y,Y2,k2,k2)R;r:l(q,~-y2)~‘(y,~ ,kl ,6), (54 

and 
-- 

The construction of this 7’ field is crucial for us to develop of the full content of the theory in 
terms of the group-valued fields. 

From lint and the exchange algebra Eq. (2a), we can calculate the equation of motion, 

From fields 7 and J’- * , we constructed the m current, 

(6) 

where K = ?‘ri/h(q),,=9,;,=& = -2rraa2fh. We then showed that the following equations can be 
easily derived from the exchange algebras, Eqs. (2a), (5a), and (5b): 
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where M [ ,,‘P,*,,- l/2= 1/2~~=,a+-~[. 
Equation (7) is the current algebra of the current s Equation (8) indicates that the left side 

of F forms the fundamental representation of the current ~7 Eq. (9) indicates that the right side 
of J’-’ forms the.fundamental representation of the current F These are fixed time relations. Since 
the current rvaries with time y, i.e., [xfi] #O. 

As pointed out in Ref. 2 the k-summed (one-spatial-dimension-integrated) current 

.?(y,+C~jy7k,k,, (10) 

is constant in time y. It can be proven by directly calculating and showing [F, ~i”J=O, or easily 
seen from integrating in z the equation of motion, Eq. (5~). That is why we do not put y depen- 
dence in .?I( y,;;k) . The algebras become 

+K’M,,1127Ti~‘(~,-Y2)Sklk2, (11) 

which can be easily obtained from Eqs. (7), (8) and (9) by k-summation and the identification 
K’ = KN= K2l/a. Note that Ck,&,k2= 1. Taking the trace of Eq. (11) onto a;l and a!, one can 
easily obtain the current algebra in terms of the Lie-components of the current 
[.I+(Y,),.P(fi)] = iE”b’,~(~~)27riS(~l - yZ)S,,kz + (K’/2)tFb27riS’(j$ - K)&,Fz. The 
corresponding continuum equations can also be easily obtained. 

III. KZ EQUATIONS FOR THE COFiRELATlON_FUN_CTlONS OF T_HE PRODUCTS OF 
THE NEW GROUP-VALUED LOCAL FIELDS U(y,k) and U-‘(y,k) 

Next we can construct new time-independent group-valued local fields fi(Ek) and G-‘(Y,k) 
such that 

.~~(y,,~,)=K’~,d~,~~*(~,,~,), (14) 

and the 0 and @-’ fields satisfy the following exchange algebras: 

~,(,(y,,k,)~~,(y2,k;!)=UI1(Y2,k2)~~(~,~)Rl,ll(q’,~-Y2), (15) 

~;;,‘@2&)~h-1 ,k,)= %-I ,~)R,,,,(q’,~,-Y2)~~*(Y2,k2), (16) 

~+I ,k,)~~‘(Y2,kz)=Rr,rr(q’,~,-Y2)~~*(Y2rk2)~~*(~, ~61, (17) 
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where q' = e [-ihl(2a21a)16t,k; = (ql/N)k,,k, and K' = dln(q')k;=k;. These exchange algebras 
guarantee the current algebra of .% Eq. (1 I), and also gives the following algebra: 

From 2 riS(& -jT2) = l/(7, - u2- ie) - l/(7, -y2 + ig), the commutator equations, Eqs. (7) to 
(9), can be written out in the commonly used operator-product-expansion forms. 

Let us make the decomposition [{I 

-w, &-,,=~cy,,k,>--mT, ,k,), 

with p satisfying the following algebras: 

(20) 

1 
- (~,-Y2+ig)Z K’MI,II’~~~~I (22) 

(23) 

so that Eqs. (1 I), (18), and (19) are guaranteed. 
Because of the singularities in the products of fields, we must prescribe the normal-ordering 

procedure and make consistency checks. The goal is to express cd$=:.%:, where c is a 
constant to be determined by the normal-order procedure and consistency. Following the proce- 
dure used in Ref. 4, we define the vacuum state IO) to be 

.?(Ek)IO)=O and (OIp’(y7k)=O. (24) 

After checking the consistency with all the above algebras, we find c=(K’+~) and obtain 

Then following the standard procedure, we obtain the KZ equation for the c fields, 

(26) 

Notice that taking away the kdependence, we recover the KZ equation of the quantum WZNW 
theory, Ref. 3. 

The solutions of this SDYM KZ equation are expressible in terms of those of the WZNW KZ 
equation, (O~gr(~l)*~~gN(~)~O), multiplied by unknown functions in k. For example, 
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(ol&(j-l ,~)~,,(~)‘2,k2)10)=c2(~)(01~(~)~I(y2)1°)(~’+2) k,k2 s- - 

-- 
+ Cdk, ,k2)(Ol~ty,)l0)(,~+2,(Ol~,(y,>lO),,~+2)(1- &,,)v 

(27) 

1 to 4 
-- 

x ( 1 - ~k;kk)4&~Frn~~-t j+kz#, C4l,jk/rn(kj ,kl)(OI~(rj)(~~)(yk)IO)(,‘+2) 
1 to 4 --- 

x(OI~(~)SM(~)IO)~~~+~~~~,~~~~~~~(~-~~~~~)+~~~~~~ C42jklrn(kj *kkTkl) 

X(1 -Gjkl)~&,,U - Rql,C - ~~j~k)+C43(k,rk:!,k3,k4)(01~t~)10)(,r+2) 

x ( 1 - a,-, ,cJ 1 - G&>( 1 - ~~&)( 1 - G-&J. (29 

These are the nonperturbative y-time independent solutions of the correlation functions of the 
quantum CDYM theory. As expected, the 4-D theory has more freedom which is manifested in 
these unknown functions. 

IV. QUANTUM-GROUP CURRENT .?(y,i) AND P-GLOBAL QUANTUM-GROUP 
GENERATORS 6(i) 

Similar to the construction of the current %T, Eq. (14), it is natural to construct the other 
current, 

~(,,~)~K’~-*(y7k)dy~((y,), (30) 

which we shall call the quantum-group current, since it has the quantum-group index on both 
sides. 

We can work out the algebraic relations among its matrix elements and with the fields g and 
@-I, like Eqs. (11) to (13) for the 2 All of them have nice quantum-group interpretations. 
However, we find that 3 is not as useful a quantity as the current 3 in that it can not be used to 
develop its vacuum states and the corresponding differential equations as the current 7 was used 
to develop the KZ equations. On the other hand we find that the following group-valued quantities, 
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6((k) and e’(y,k), are the appropriate quantum-group generators for further development of the 
theory. 

The y-global quantum-group generator 6( k, is derived from the quantum-group current ? of 
Eq. (30) by a path ordered integration, 

m G((k)=i; exp 
i, 

dy3-‘dy%(y,k) = 6-‘(y= -yk)G((y= +w,F). 
i --m (31) 

Then, from the exchange algebras of the fields @ and I?-‘, Eqs. (15) to (17), we can derive the 
algebraic relations among the matrix elements of &(k) and with the fields 6 and G-t, 

{R,u(4’,+)~I(~)R,,,,(q’,+)}~~I(kz)=~~,(k,){R,,,,(4’,+)~~(k,)R,,,,(q’,+)}, (32) 

~~(k,)UII(YZlk2)=UII(YZ,k2){RII,I(q’,+)~~(k7)RI,rI(q’,+)}, (33) 

u,‘(y,rk2)GII(~)={Rrr,I(q’,+)~*(~)Rr,rI(4’,+)}~~~1(y2,k2), (34) 

where R&q ‘, +) is the R-matrix with E(FI - y2) = + 1 and the curley brackets are to guide the 
eyes to the proper grouping of matrices and operators. These three equations are the algebraic 
relations parallel to those of Eqs. (1 l), (18) and (19). Associativity of all these fields are true 
because the R matrix satisfies the Yang-Baxter relations. 

The basic elements of the quantum-group generators {<(I?); i=3 and +} are related to the 
components of the components of the matrix 6((k) by 

5((k)= ( 
1 0 

Ii p3w 

0 
i! 1 (cp-qp--(k) (l-&-+(k) 1 0 qe3c% 0 1 1 ’ (35) 

where the Z..(k) and q-‘3G) satisfy local quantum-groups algebras, which generalize those given 
in Ref. 5. 

I. THE j%EMbLOCAL QUANTUM-GROUP GENERATOR &“(&k) 

Changing the integration range in Eq. (31) to a semi-local region we obtain the Fsemilocal 
quantum-group generator GA(y,k) quantum group generator: 

GA(Y,F)=F exp djn?(~,~~d&y,k) =U-t(y-~,k)G(y+~,k). (36) 

we can easily show that CA satisfies the foliowing algebras: 

We next split the semi-local generator into the annihilation and creation parts following a 
procedure similar to that used in Ref. 4, 

~~(“cy,k>~[G~+(y,k]-lGA-(yk) I ‘9 (40) , 
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and G”‘(y,,k, satisfies the following exchange algebras: 

RI,,, (q’,Y1-~-A)G~~(~,~)G~~c(Y2rk2)=G~ttY2,k2)Glh~‘(~,~~)Rl,ll(q’,~-Y2-A), 
(41) 

Rw(q’,.F -EW;+G ,~)G~-(y,,k2)=GPI-(yz,k2)G~+(~ ,k,)R,,,,(q’,j-rFdA), 
(42) 

b(E ,~)G~‘(Y:!tk2)=G~~e(~,kZ)~~(4’1 ,~)R,,,,(q’,~,-y2tA), 

such that Eqs. (37) to (39) are true. 
Notice that 

(43) 

T fi~+t~A,Fj,~~(y,Ej =o, 1 (44 
which manifests what we call the k-local sl”(n)@ uuAq[sl(n)] symmetry of the theory. For 
A+=, Eq. (44) becomes [F(y,k),&(k)] =0, manifesting the k-local SF) 8 Uq[sl(n)] symmetry 
of the theory. For A+O, Eq. (44) becomes [g(c),.@(F,k>] =0, manifesting the k-local sl(n) 
@ U,“[ d(n)] symmetry of the theory. 

VI. QUANTUM-GROUP DIFFERENCE EQUATION OF THE CORRELATION FUNCTIONS 
DEFINED IN THE IO&VACUUM 

Using ECq. (40), let us rewrite Eq. (36) as 

~(~+~,k)=~('(y-~,~)~~(4';k)=~((y-~,k)[~~+(y,~)]-~~~-(4~;~). (45) 

Now we want to move (GAf(sk))-’ to the left of fi(F- A,k), since we shall consider the 
vacuum expectation values of the fi fields by the vacuum IO& defined by 

GA-(y,~lO,)=lO,) and (O,]GA+(~,@=(O,]. (46) 

To achieve that feat we use Eq. (43), many matrix relations and finally reach 

~(~+b,k)=(((~~+(y,k))-‘)~Y~~(y-A.,k))~~~-(y,~, (47) 

where the superscript T means matrix transposition, but the order of the operator stay the same; 
Y~(q’-l-q’-‘)l(q’2+q’-2)Xdiag(q’,q’-*), which results from 

Y,=(Tr),,(P,,,,(((R,,,,(q’,O))TI)-’)Tlc), (48) 

where the superscripts TI and T,, indicate transposition of matrices in the tensor spaces I and II, 
respectively. 

Using Eqs. (32) and (33), we obtain the difference equation for correlation function, 

(O,l~,CF, ,k7).,.~~(y,+2A,k,)...u,(qTn,k,)104) 

=(O,l~,,(~,k,)...~~(Y7,kr)...~~(4;-,,k,)IOq)R~,~-l(q’,~-~-,)... 

XR,,,(qf,~-4’l)Y~R,,,(q’,~-y,+2A)...R,,,+,(q’,~-~+,+2A). (49) 

For the special case of “ +2A” being at Fa , Eq. (49) simplifies to the following cyclic 
relation: 
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For the two point function, Eq. (49) becomes 

Multiplying Eq. (51) from the right by .Pq(z=, and using the fact (O,I~$JO,).?,9,~+ 

= (O,I&%lOq), h’ h w 1c can be shown using the definition of IO,) given by Eq. (46), whereby Eq. 
(5 1) becomes 

t-1 

where the last factor on the right is from .P3,~_oR,,,,(~l-yz)Y,,~g(,=a=~y,~=~q~-Ao~~~-Yz) 

X(bla) with b/a = (q’+q’-’ )/(q’2+q’-2)=([2]qr)2/[4]qr and the fact that.Bq,i+ multiply- 
ing the vacuum expectation value becomes unit. 

Its solution can be easily found and written in the following form: 

~~,lGt4’; +uh&,k2)loq) 

= Sk; &4,,ck;)exp{ - [F)ln( ::<lYT) 

+[ (F)+2i B( -~-~)]1n(q’~)]+(1-6r~~4)A~~~,k2), (53) 

where A,, and A 1 are arbitrary functions; &x)=0,4,1 for x<OJ=O$>O, respectively. This ex- 
pression for the solution is continuous in the 4’1 --F2 >O region. For expressing the solution in a 
function that is continuous the Fl - yZ< 0 region, we replace Zr=, -+Zz=c in the square bracket 
of the above equations. 

ACKNOWLEDGMENT 

This work is supported in part by the U.S. Department of Energy (DOE). 

‘For an overall review of this approach and how group-valued local fields can be formulated for the classical full 
supersymmetric Yang-Mills theory and the classical supergravity theories in extended superspace, see L.-L. Chau, 
“Geometrical integrability and equations of motion in physics: A unifying view, ” in Integrable Systems, edited by X. C. 
Song, Nankai Lectures on Mathematical Physics (World Scientific, Singapore, 1987); and L.-L. Chau, Chinese J. Phys. 
32, 535 (1994). 

*L.-L. Chau and I. Yamanaka, Phys. Rev. Lett. 70, 1916 (1993). 
3V. G. Knizhnik and A. B. Zamolodchikov, Nucl. Phys. B 247, 83 (1984). 
41. B. Frenkel and N. Yu. Reshetikhin, Commun. Math. Phys. 146, 1 (1992). 
‘L. D. Faddeev, “Lectures on quantum inverse scattering method,” in the same volume as given in Ref. 1; P. Kulish and 

N. Reshetikhin, Z. Nauch. Semin. LOMI 101, 101 (1981) (in Russian); for a recent review, see L. Faddeev, N. Resh- 
etikhin, and L. Takhtajan, in Algebraic Analysis, edited by M. Kashiwara and T. Kawai (Academic, New York, 1988); 
M. Jimbo, Commun. Math. Phys. 102, 537 (1986); Lett. Math. Phys. 10, 63 (1985); V. Drinfeld, Akad. Nauk SSSR 283, 
1060 (1985): Proceedings of the International Congress of Mathemaricians, Berkeley, 1986 (American Mathematical 
Society, Providence, RI, 1986), p. 798. 

J. Math. Phys., Vol. 37, No. 8, August 1996 
                                                                                                                                    



Batalin-Vilkovisky formalism and integration theory 
on manifolds 

0. M. Khudaverdiana) 
Department of Theoretical Physics, Yerevan State University, 
A. Manoukian St., 375049 Yerevan, Armenia,b) 
and Department of Theoretical Physics, Geneva University, 1211 Geneva 4, Switzerland 

A. Nersessianc) 
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 
Dubna, Moscow Region 141980, Russia 

(Received 11 July 1995; accepted for publication 8 November 1995) 

The correspondence between the BV formalism and integration theory on super- 
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I. INTRODUCTION 

In their outstanding works,’ Batalin and Vilkovisky proposed the most general method for 
quantizing arbitrary gauge field theories. 

During the years it becomes clear that this scheme is very powerful for resolving ghost 
problems, and moreover it contains a rich geometrical structure. In the pape? Witten proposed a 
program for the construction of String Field Theory in the framework of the Batalin-Vilkovisky 
formalism (BV formalism) and noted the necessity of its geometrical investigation. The BV 
formalism indeed uses the geometry of the superspace provided with odd symplectic structure and 
the volume form. The properties of this geometry and its connection to the BV formalism was 
investigated, for example, in Refs. 3-6. Particularly in Ref. 5, Schwarz gives the detailed geo- 
metrical analysis of the BV formalism in terms of this geometry. 

However, some specific aspects of the BV formalism are not completely clarified, such as the 
geometrical meaning of the initial conditions of the master action; the choice of the gauge fermion 
and the geometrical reasons for the extending the initial space of fields with ghosts and antighost 
fields. 

In this work we try to analyze some of these questions. For this purpose we study the analogy 
between the BV scheme and the corresponding constructions in differential geometry. 

From the geometrical point of view to the gauge symmetries correspond the vector fields on 
the space of the classical fields that preserve the action. The partition function, when gauge 
conditions are fixed, is the integral of a nonlocal density constructed by means of these vector 
fields over the surface mat is defined by gauge conditions. This surface is embedded in the space 
of the classical fields. 

The gauge independence means that this density have to be closed. To make this density local 
in the BV formalism one have to rise the density and the gauge fixing surface on the extended 
space: to the gauge fixing surface corresponds the Lagrangian manifold embedded in the phase 
space of the “fields” and “antifields” (“fields”=classical fields, ghosts), to the closed density 
corresponds the volume form on this manifold (the exponent of the BV master action), which 
obeys the BV master equation.‘,576 

In the second section we briefly recall the basic formulas of the BV formalism and in the 

a’Electronic mail: khudian@vxl.yerphi.am, khudianBsc2a.unige.ch 
“Permanent address. 
“Electronic mail: nersesC3thsunl.jinr.dubna.w 
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3714 0. M. Khudaverdian and A. Nersessian: BV formalism and integration theory 

following’ give the covariant explicit formula for the volume element on the Lagrangian manifold 
when it is given by arbitrary functions of the fields and antifields. This formula is related to the 
multilevel field-antifield formalism with the most general Lagrangian hypergauges.’ 

In the third section we briefly recall the basic constructions of the geometry of the superspace 
provided with an odd symplectic structure and volume form.“3536 It is this geometry on which the 
BV formalism is based, and which development on the other hand was highly inspired by this 
formalism. In particular, we shortly describe the properties of the A operator arising in this 
geometry and the connection between the BV formalism and the A-operator nilpotency condition. 

In the fourth section we consider the densities*-” (the general covariant objects that can be 
integrated over supersurfaces in the superspace). Following Refs. 9 and 11 we consider a special 
class of densities-pseudodifferential forms on which the exterior derivative can be defined cor- 
rectly. Using Baranov-Schwarz (BS) transformations’ we rise these forms to integration objects 
on the enlarged space and formulate the condition of closure of these forms in terms of the A 
operator. 

In the fifth section, using BS transformations we study the relations between gauge symme- 
tries in field theory and the closed pseudodifferential forms corresponding to the integrand for the 
partition function of the theory. We study the relations between the closure conditions and the BV 
master equation. 

II. BV FORMALISM 

In this section we recall the basic constructions of BV formalism:’ the integral for the partition 
function and we rewrite this integral in the case where the Lagrangian manifold is given in a 
covariant way. 

Let S( 4) be the action of theory with gauge symmetries {R$( 4)): 

(2.1) 

We use de Witt condensed notations (index A runs over all the indices and the spatial coordinates 
of the fields 4). Let 5 be the space of the fields QA and antifields @*A, where 
@A=(c$A,Cb,u b , . . .) is the space of fields +A enlarged with the ghosts, Lagrangian multipliers for 
the constraints, etc., and @*A has the parity opposite to QA, 

P(*‘*A) =daA) -+ I. 

In the space E one can define the symplectic structure by the odd Poisson bracket: 

(2.2) 

SF SG 
{F,G}= - - 

6F SG 
s@A sa*A + SQ, s (if F is even), 

and the A, operator, 

S2F 
AoF= sQ 

*A 6@A’ 

The master action .I7 then can be uniquely defined by the equation 

and the initial conditions: 

b A s”(@A,@*A)=S(+)+C &,+,A+*‘* , 

0.3) 

(2.4 

(2Sa) 

(2Sb) 
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0. M. Khudaverdian and A. Nersessian: BV formalism and integration theory 3715 

where dots means terms containing ghosts and antifields of higher degrees. 
If 

where .FA are the equations of motion [.& = 6S( c$)/J~~], then 

.Z/(~A,~,A)=S(~)+CbR~~*A+~t~bCaCbC,*+~~Ca~bE~~~*C~*~+“’ . 

To the gauge conditions 

(2.k) 

fb=O, (2.6) 

corresponds the so-called “gauge fermion:” 

(2.7) 

which defines the Lagrangian surface A in 8‘ by the equations 

F,(*,@,)=O, (2.8) 

where 

(2.9) 

(the surface embedded in the symplectic space is Lagrangian if it has half the dimension of space 
and the two-form defining the symplectic structure is equal to zero on it). The partition function 2 
is given by the integral of the master-action exponent over this Lagrangian surface A: 

Z= 
I 

e.“(@P,3@**)S @*A- ~ CJQ* CJ@ 
i 

W(Q) 
i 

(2.10) 

(for details see Ref. 1). 
The main statement of the BV formalism is that this integral does not depend on the choice of 

the Lagrangian surface A. 
Before going into the geometrical analysis of the formula (2.10), we first rewrite it in a more 

covariant way if the functions FA that define A by the equation (2.8) are arbitrary. 
It is easy to see that the surface A defined by (2.8) is Lagrangian iff 

{FA ~FB)IF,=o=O- (2.11) 

Let us consider the integral: 

I e”(@A”p*A) dm wS(F)m* gQ, (2.12) 

where GA are arbitrary functions and z has a parity reversed to A. 
One can show that if the functions F, define the Lagrangian manifold A (2.8), then this 

integral does not depend on the choice of the functions GA, and it does not depend on the choice 
of the functions F, defining A. On the other hand, in the case where the functions F, have the 
form (2.9) and the functions GA are equal to QA, it evidently coincides with the BV integral (2. IO) 
(for details see Ref. 12). 
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3716 0. M. Khudaverdian and A. Nersessian: BV formalism and integration theory 

Ill. THE SURVEY OF BV FORMALISM GEOMETRY 

The formulas (2.5)-(2.12) of the previous section have the following geometrical meaning 
(for details see Refs. 3,5,6 and also Ref. 13). In the superspace ECn.“) with the coordinates 
zA=(x’ ,...,Xn,e* , . . . , e”), where xi are even, 8’ odd coordinates one can consider the structure 
defined by the pair (du ,{ ,}), where du is the volume form and {,} the odd nondegenerated Poisson 
bracket corresponding to the odd symplectic structure. To the structure (dv,{,}) on E’“.“) corre- 
sponds the following geometrical constructions that constitutes the essence of BV formalism 
geometry. 

We define a second-order differential operator on E (so-called A operator), 

1 %D dv 
Ad$ = i divdv Df= z -&-, (3.1) 

where Dr is the Hamiltonian vector field corresponding to the function f. This operator is typical 
for the odd symplectic geometry.3 

Because of the Darboux theorem we can always choose (at least locally) coordinates 
zA= (xl ,...,Xn,el ,.. ., 8”) (so-called Darboux coordinates) in which the symplectic structure and 
corresponding Poisson bracket take canonical expression: 

If the volume form dv =p(z)dnx d”6’ in Darboux coordinates, then 

bf= 

(3.2) 

where p(A) is the parity of the coordinate zA. 
We say that the pair (dv ,{,}) is canonical in the Darboux coordinates 

zA= (xl ,...,Xn,el ,.. ., t9”) if dv = 1 .d”x d”8. Then the A operator takes the canonical expression: 

(3.4) 

If two A operators, A,, and Adr, correspond to two structures with the different volume 
forms du and drand the same symplectic structure, then it is easy to see using (3.3) that 

A&‘-=&$+ kh3 A,f}, (3.5) 

and 

A~6=A~Uf+{X-1RAdvh1/2,f}, 

where diT= Xdu. 
For a given structure (dv ,{,}) the following statements are equivalent: 
(i) the operator Adv is nilpotent, 

A;,=O; (3.7i) 

(ii) the function p(z) defining the volume form du in Darboux coordinates obeys the equation 

Ao&=O; (3.7ii) 
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(iii) there exist Darboux coordinates in which the pair (du,{,}) is canonical. 
The (iii)=+(i) is evident, the (i)M(ii) immediately follows from (3.6). The (i)*(iii) needs a 

more detailed analysis. 
Remark: The structures (dv,{,}) for which these properties are obeyed are called SP 

structures.5 One of us (O.M.K.) wants to note that in Ref. 3 where was first introduced the A 
operator related to the structure (dv,{,}) for an arbitrary volume form in superspace, the false 
statement was made that every (dv,{,}) structure is the SP structure. 

The pair (du ,{ ,}) generates the invariant volume form du A on arbitrary Lagrangian manifolds 
A in E-“the square root of the volume form dv” in the following way:’ 

dvA(e, ,...,eJ= du(el,...,e,,fl,..., f,), 

where {ei} are the vectors tangent to A and {f;} are arbitrary vectors, such that 

(3.8) 

W(ei ,fj)= sij 

(~1 is a two-form, which defines the symplectic structure). 
In these terms the BV formalism has the following geometrical meaning: We consider in the 

superspace C of the fields and antifields the pair (&I,{,}), where the volume form is defined by 
the master action: 

p= e2.“/, (3.9) 

and {,} is defined by (2.3). Then using (i), (ii), (‘“) 111 , an comparing formulas (3.7) with formulas d 
(2.3)-(2.5), we see that the master equation is nothing but the condition of nilpotency of the 
corresponding A operator. The partition function is nothing but the integral of the invariant 
volume form (3.8) on the Lagrangian surface h,5 and Eq. (2.12) is the covariant expression for this 
volume form. 

In the next section we will try to understand these statements from the point of view of 
integration theory on surfaces. 

IV. INTEGRATION OVER SURFACES 

In this section we present the basic objects of integration theory on supermanifolds: densities 
and dual densities.‘-” We consider the special class of densities on which the exterior differential 
can be defined correctly-pseudodifferential forms.*-” Then we describe the Baranov-Schwarz 
(BS) representation of the pseudodifferential forms via the function on the superspace associated 
to the tangent bundle of initial space.’ Considering the dual construction we show that the closure 
of the pseudodifferential form in the BS representation is formulated in terms of the A operator. 

A. Densities 

Let n be an arbitrary supersurface in the superspace E with coordinates za, given by a 
parametrization za= z”( 5”). The function L(z”,dz”ldl”) on E is called a density (covariant den- 
sity), if it satisfies the condition” 

(4.1) 

where Ber is the superdeterminant of the matrix. 
Then the following integral does not depend on the choice of the parametrization of the 

surface a: 
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@n(L)= li 
w 5) L z”(5), ag” d5, i 

and correctly defines the functional on the surface fi corresponding to the density L. 
In the bosonic case where there are not odd variables, one can see that if a density L is a linear 

function of the &“(~)l~~“, then to L corresponds a differential form. The covtiant density is 
closed if it satisfies identically the condition 

%l+sdL)=@,n(L), (4.3) 

for an arbitrary variation of an arbitrary surface R (up to boundary terms). 
It is easy to see that 

~n+s~(L)-cPn(L>=~~(z)SZa, (4.4) 

where 

,g--a(z)= -$-(- l)p(a)p(s) -g$ 
,s 

are the left part of the Euler-Lagrange equations of the functional Q(L) . 

6. How to define exterior derivative operator on the densities? 

If d is the exterior derivative, then 

@n+sn(L)-@a(L)=Q,&dL) (Stokes theorem). (4.6) 

Equation (4.6) put strong restrictions on the class of densities on which the operator d is 
correctly defined.” Comparing (4.4), (4.5), and (4.6), we see that d is correctly defined if .Fa(z) 
in (4.5) do not contain the second derivatives of 5 (for details see Ref. 11): 

d2L = - (- 1 )p(s)p(r)+(p(s)+p(r))p(b) d2L 

azps az,t a~;, a$ 
(4.7) 

In this case dL defined by (4.6) does not depend on the second derivatives and 

d2=0. (4.8) 

The densities, which obey the conditions (4.7) are called pseudodifferential forms. 
In the bosonic case from (4.7) follows that the density is a linear function of the variables 

&“( l)lag”, i.e. the exterior derivation can be defined only on the densities that correspond to the 
differential forms. In the supercase in general from (4.7) linearity conditions do not follow-the 
differential forms in the superspace are not in general integration objects over supersurfaces. It is 
the pseudodifferential forms that take their place as integration objects obeying Stokes 
theorem*-“). 

To obtain the pseudodifferential forms, Baranov and Schwarz in Ref. 9 suggested the follow- 
ing procedure, which seems very natural in the spirit of a ghost technique: 

Let STE be the superspace associated to the tangent bundle TE of the superspace E and 
(z’,z*‘) its (local) coordinates. The coordinates Zig transform from map to map like dz”, and 
their parity is reversed: p(z*“)=p(?)+ 1. Then to an arbitrary function W(Z~,Z*~) on STE 
corresponds the density: 
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Lw=L(z+$j=l w(z?$ u’)du, 

where Y” has the reversed parity: 

P(~s)=P(ss)+ 1. (4.10) 

It is easy to see using (4.10) that (4.9) obeys Eqs. (4.1) and (4.7) so that Eq. (4.9) indeed defines 
a density that is a pseudodifferential form. We say that the function W is the BS representation of 
the pseudodifferential form L, . 

A simple calculation shows that in the BS representation the exterior differentiation operator 
has the following expression: 

&( - l)P(ajz*a -f-, (d(Lw)=Law). 

C. Dual densities 

Consider now the dual constructions. 
Let E be the superspace, and the volume form du = p(z)dz is defined on it. 
Let fi be an arbitrary supersurface in the superspace E with coordinates za, given not by the 

parametrization z ‘= z”( 5”) but by the equations 

f"(z)=O. (4.12) 

The function E= &za,dfQldza) is called a D density (dual density) if it is satisfied to the condi- 
tion 

af”o #j =qzO,F)Ber vt. az” 

Then the following integral does not depend on the choice of the equations (4.12) that define 
the surface CI: 

an(E) = j- i( za,T) s(f”(z))dv, 

and correctly defines the functional on the surface CR corresponding to the D density E 
The D density z corresponds to the density L(L -+L) if for the arbitrary surface !&I the 

functionals (4.2) and (4.14) coincide (for details see Ref. 10). 
[For example, the integrand in (2.12) is a D density that corresponds to the d_ensity (3.8).] 
The D density is closed, if it satisfies the condition (4.3) (where we replace L-L). 
One can obtain the dual densities corresponding to pseudodifferential forms (such densities 

are called pseudointegral forms) by the procedure dual to the Baranov-Schwarz one. 
Let ST*E be the superspace associated to the cotangent bundle T”E of the superspace E and 

(z”,z,*) its (local) coordinates. The coordinates z,* transform from map to map like dldza, and 
their parity is reversed: p(zd) = p(z”) + 1. Then to an arbitrary function W(z”,z,*) on ST*E 
corresponds the D density-pseudointegral form: 

~w=qza,sLJ = 1 w(zGgI ..)dzJ, (4.15a) 

where V” have the reversed parity like in (4.10): 
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The functional (4.14) can be expressed in terms of the function W in the following way: 

CD&)= p(z)W(z,z*)G z, --g v, G(f”)dz dz* dv. ( * af"' ) (4.15b) 

A straightforward calculation shows that the operator of exterior differentiation 2 in the BS 
representation of the pseudointegral forms has the following expression: 

a2 ~2&f--+- 
a aza az;. (4.16) 

(If r= Ew+ L then 2 = &+,+dL.) 
Comparing the equations (4.16) and (3.3), we see that on the superspace ST*E it is natural to 

consider the structure (d6 ,{ ,}) ( see Sec. III), where {,} is the canonical odd symplectic structure 
on ST”E generated by the relations 

{za,zb}={z*a ,zb*}=O, {Za,Z;}=( - l)P’“‘6;:, (4.17) 

and the volume form 

dr?=p2(z’...zn)dz’...dzR dzT...dz,*. (4.18) 

[One can note that (4.18) is in the accordance with (3.8). The space E with volume form 
du=p dz’... dz” is evidently the Lagrangian surface in ST*E with volume form (4.18)]. 

Comparing (4.16) and (3.3), we see that to the operator of the exterior differentiation corre- 
sponds the A operator: 

2. 

d= Ad3 

and the condition of closure of the dual density cw in the BS representation is 

(4.19a) 

A,;W=O, (4.19b) 

where du^ is defined by (4.18) and Ad6 by (3.3). This operator in this case is nilpotent because it 
corresponds to exterior differentiation operator. [Independently from (4.16) and (4.8), it follows 
from (4.18) and (3.7ii) or from (4.18) and (3.7iii) because d6 “depends” on the half of the 
variables of the superspace ST*E.] 

V. THE CLOSED DENSITIES AND THE BV FORMALISM GEOMETRY 

In this section we consider two examples of the previous constructions, comparing them with 
the constructions of Sets. II, III, IV. We check connections between the gauge symmetries of the 
theory, the densities that are integrand in the partition function after eliminating gauge degrees of 
freedom, and volume forms obeying the BV master equation. 

(z’ 
Example I: Let Ra(z)(dldz”) be an even vector field on the superspace E with coordinates 

,...,z”) and with volume form du=p(z)dz’*** dz”. To this vector field corresponds the D 
density 

r=Ra(za) -$. (5.1) 
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One can define the functional on the surfaces of codimension (1.0) corresponding to the 
density (5.1): 

r~&) = /- i-( za,$$) S(ftz))du = j- R=(z) % %ftz)Mu 9 

where f = 0 is the equation that defines the surface R (f is an even function). This functional is 
nothing but the well-known formula for the flux of the vector field through the surface a. It is 
evident that the density r in (5.1) is a pseudointegral form. To this density corresponds the 
function (4.15), 

W= ( - l)P(a)Ra(z)z* a ’ 

on ST*E (c=Ew). The condition of closure of the density (5.1) is the Gauss formula: 

(5.3) 

4 PW 
divdv R=!-(-l)‘T=O. 

In BS representation it is [(4.18), (4.19)] 

A,;W=O [dv^=p2(z)dz’..*dz”). (5.5) 

We can consider this example as a toy example of field theory. 
Let a space E be the space of fields configurations (za-+(pa) Let R’(z)(dldz’) be the 

“gauge” symmetry of the action S(z) [compare with (2.1)]: 

and this symmetry preserves the canonical volume form: 

( _ 1 pj !!!!I = 0. 
aif (5.7) 

If we put 

p=eS, (5.8) 

then we see that the functional (5.2) corresponding to the density (5.1) constructed via the “gauge 
symmetry” R is the partition function of the theory with the action S after eliminating the 
“gauge” degrees of freedom corresponding to the symmetry R. From (5.6)-(5.8) follow (5.4), 
(5.5): hence (5.1) is closed and (5.2) is “gauge” independent. Now we consider the more realistic 
example. 

Example 2: Let 

a 
R,=Ra,td -jp I 

(a= l,...,m) 

be the collection of the vector fields on the superspace E, with coordinates (z’, . . . ,zn) and with 
volume form 

du=p(z)dz’*..dz”. (5.10) 

To (5.9) corresponds D density, 
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z=Ber(Rz(z) $) 

[the condition (4.13) is evidently satisfied]. One can consider the functional: 

Q,(E)= 1 Ber(RY(z) g) G(f*)dv, 

(5.11) 

(5.12) 

where R is the surface defined by the equations 

f”=O. 

[In the usual (not super)case, (5.12) can be considered as the flux of the polyvectorial field 
R,A*.*AR,,, through the surface a.1 

One can see that Fin (5.11) is the pseudointegral form Ew, where W BS representation of this 
density can be defined by the following formal relation: 

WE 

I 

eCaR;(ZjZ,* dc (5.13) 

where we introduce additional variables (ghosts) ca [p(c”) =p( va)]. [(5.13) is correct if all the 
symmetries R, are even.] 

Let the equations (5.6), (5.7) be satisfied for all R,these vector fields being the gauge 
symmetries of the theory with the action S. Again as in Example 1 we consider as volume form 
the exponent of the action (5.8). Is the density (5.11) closed in this case? 

It is easy to see that 

(5.14) 

To check the relation with the BV formalism, we consider instead superspace E the superspace Ee 
enlarged with the additional coordinates ca. [The coordinates of Ee are zA = (z”,c”) .] The volume 
forms du on E (5.10) and d6 on ST*E [see (4.18)] and the symplectic structure (4.17) are 
naturally prolongated on E’ and ST*Ee. 

Using (4.15a), (4.15b), and (5.13), we rewrite (5.12) as the integral over the space T*SEe: 

aQ&)= I eSeCaR~(z)zZ dc 8( zf- $$ va) S(f”)dz dz” dV 

= eSwe(zAyz~) 6 S(f”)dz dz” dv, 

(5.15) 

(5.16) 

where 

We(zA,zz) =eCaR~(z)z~, (5.17) 

is the BS representation of the pseudointegral form in ST*Ee. Using (4.19), we can check its 
closure. 

[(5.15), (5.16) is the partition function of the theory obtained after performing the Fadeev- 
Popov trick.] 

Let 
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AdL;We = Adv^eCaR~(Z)Z~ = 0, (5.18) 

be satisfied. The condition (5.18) means that not only the function W on ST*E corresponds to the 
closed density on E [i.e., the partition function (5.15) is gauge invariant], but the function W’ on 
ST*E’ corresponds to the closed density on E’ as well. In this case, from (3.6) and (3.7), it 
follows that the A operator corresponding to the volume form, 

d;=( W’)2.d6, (5.19) 

is nilpotent, as well as the A operator corresponding to the volume form (5.8). Now from (3.7) 
follows that the master action .‘Yrelated with dGin the same way as S is related with du in (5.8): 

L=S+caRiz,*, (E=e-‘), (5.20) 

obeys the master equation. So in the case where (5.18) holds, starting from gauge symmetries we 
constructed the closed density (5.12), (5.13), interpreting the volume form as the exponent of the 
action. The corresponding functional (5.12) is the partition function. Localizing this density in the 
space enlarged with the ghosts we came to the volume form (exponent of the master action) that 
obeys the master action. 

In the general case the density (5.11) is not closed and the partition function (5.12), (5.16) is 
not gauge invariant. 

Even in the case where the algebra of the symmetries is closed, 

t&=const and E[,“,“]=O, (5.21) 

the application of the A operator (4.19) to (5.17) and (5.13) give us 

Ad;W’= Ad;e caR:(r)z: (5.22) 

and 

A,; W= A,; e~a’R;(z)z,* dc = caR:(z)z: & (5.23) 

In particular, it is easy to see from (5.22) that if the algebra of the symmetries is Abelian we 
come to (5.18). 

If, for example, the symmetries are even and they form the closed unimodular algebra 
(Ek”,bl = 0, r$=const and Eat&= 0), then the right-hand side of (5.23) is vanishing, so the 
function W corresponds to closed density in E (i.e., the partition function is gauge invariant). But 
the function W’ in (5.22) does not correspond to closed density in Ee. To close it in this case, one 
has to consider in the space ST*Ee the function 

which corresponds to a closed density in E’. So the corresponding volume form and the master 
action. 

j/‘=~+c~R~z*+~t~ cacBc* 
Lla 2 aP Y' 

obey the master equation [compare with (2.5b)]. 
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In the general case the density (5.1 l), (5.13) plays the role of initial conditions for construct- 
ing the closed density in enlarged space-i.e., the volume form (the exponent of the master action) 
obeying (3.7) (for details see Ref. 12). 
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The Becchi-Rouet-Stora-Tyutin (BRST) quantization of a gauge theory in non- 
commutative geometry is carried out in the “matrix derivative” approach. BRST/ 
anti-BRST transformation rules are obtained by applying the horizontality condi- 
tion, in the superconnection formalism. A BRST/anti-BRST invariant quantum 
action is then constructed, using an adaptation of the method devised by Baulieu 
and Thierry-Mieg for the Yang-Mills case. The resulting quantum action turns out 
to be the same as that of a gauge theory in the ‘t Hooft gauge with spontaneously 
broken symmetry. Our result shows that only the even part of the supergroup acts 
as a gauge symmetry, while the odd part effectively provides a global symmetry. 
We treat the general formalism first, then work out the SU(Z/l) and SU(2/2) cases 
explicitly. 0 1996 American Institute of Physics. [SOO22-2488(96)02907-61 

1. INTRODUCTION 

The Higgs mechanism makes it possible to give masses to gauge bosons, while preserving the 
gauge symmetry. In this construction, some of the original scalar particle fields “mutate” into the 
longitudinal components of the (now massive) gauge bosons. This fact may reflect the existence of 
an underlying structure, in which the gauge bosons and the original scalar particles belong to the 
same multiplet of a larger group. It is, therefore, natural to search for such a larger symmetry 
group and a suitable multiplet. As a matter of fact, this idea was implemented many years ago, 
using the supergroup SU(2/1);’ it was also shown that this use of a supergroup could be extended 
to a large class of spontaneously broken symmetries.2 More recently, the idea has further math- 
ematically evolved within the superconnection construct.3-6 

Another recent advance in mathematical physics has consisted7 in Connes’ noncommutative 
geometv. In this formalism, the Dirac K cycle on a star algebra acting on a Hilbert space, plays 
an important role, with possible applications to particle physics. Connes and Lot? then showed in 
particular that the standard model could be obtained in noncommutative geometry, as a gauge 
theory with a built-in spontaneous symmetry breakdown mechanism. The base space is the prod- 
uct of space-time by a set of two points (L, R), i.e., two disconnected ML@M,. The gauge group 
is in both SU(2)XU(l), with different fiber representations. The scalar connection arises when 
parallel transport involves moving between the two manifolds (together with a matrix derivative) 
acting on the combined Hilbert spaces in the associated fiber. The Connes-Lott work has been 
further extended to GUT (grand unified theories),’ to gravity,” and to supersymmetric theories.” 

Soon after the work of Connes and Lott, Coquereaux and other workers’2*‘3 showed that the 
Connes-Lott approach is equivalent to a theory based on the superconnection concept,5,‘4 redis- 
covering SU(2/1) in the process. The above joint embedding of the SU(2)XU(l) representation 
matrices for the lepton or quark L@ R combined Hilbert spaces precisely reproduces the SU(2/1) 
matrices. In the Coquereaux et a/.‘~ formulation, a Z2 graded space of matrix-valued forms is 

a’Al~~ on leave from the Center for Particle Physics, University of Texas, Austin, Texas 78712. 

0022-2488/96/37(8)/3725/l 4/$10.00 
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constructed, with a generalized derivative; O-form and l-form fields together represent a super- 
connection. The generalized derivative consists of the usual Cartan exterior differential operator, 
raising the form degree by one unit and thus also changing its Grassmann grading (which we 
denote as “w grading,” i.e., d has odd w grading) plus a graded discrete operator consisting in a 
(graded) commutator with a constant matrix and satisfying certain algebraic conditions (including 
odd grading in a supergroup’s generating superalgebra, “g-odd” in our nomenclature). This 
graded commutator, (or supercommutator) with a constant matrix is the matrix derivative.13 We 
shall denote the Coquereaux et al. approach as the matrix derivative approach. 

The equivalence between the Connes-Lott and Coquereaux et al. approaches has been 
stressed by Scheck and collaborators.‘5 In both approaches, the O-form scalar field is interpreted 
geometrically as an object interconnecting a two-sheeted world, whereas the l-form field plays the 
usual role of a gauge field. The end product is equivalent to an extension of the internal super- 
symmetry method in its superconnection formulation, completing, as we shall see, its geometric 
generation of a spontaneous symmetry breakdown mode for a local gauge symmetry. 

We have recently quantized the SU(2/1) electroweak theory in the superconnection 
formalism.16 In the present paper we treat the quantization of the noncommutative geometry 
version of this “supergauge theory,” by adjoining the matrix derivative approach to the super- 
connection formulation. Actually, this formulation goes beyond the internal supersymmetry 
method in one aspect, namely the emergence of the negative squared muss term for the scalar 
(Higgs) field from the geometry; in our previous treatment, most terms in the spontaneous sym- 
metry breakdown Lagrangian emerged geometrically, namely (aside from the usual Yang-Mills 
term) the “free” Higgs field Lagrangian plus its interaction with the gauge bosons-and the 
quartic Higgs field potential; the exception, which had to be put in “by hand” (and thus also broke 
the symmetry explicitly) was this negative squared mass term, which is now provided by the 
matrix derivative. 

We obtain the Becchi-Rouet-Stora-Tyutin (BRST)/anti-BRST transformation rules of the 
theory, applying our horizontality condition, extending Thierry-Mieg’s ansatz.6”7”8 We construct 
the quantum action by adapting the BaulietDhierry-Mieg method” for the Yang-Mills theory. 

There are two important features deriving from our result. The first is the fact that we obtain 
the most appropriate gauge condition for a spontaneously broken gauge theory with scalar field, 
the ‘t Hooft gauge,20*21 simply by adapting the method of Ref. 19, which would give the Landau 
gauge for the unbroken Yang-Mills theory, to the noncommutative geometry framework. The 
other relates to the physical content of a gauge theory in the noncommutative setting. Our quan- 
tization reveals that only the even part of the supergroup indeed acts as a gauge symmetry; the odd 
part simply produces a global symmetry. The resulting BRST transformation rules for the fields 
are thus the same as those of the spontaneously broken gauge theory with a Higgs mechanism, 
except that the scalar field transformation rule is changed by the addition of a constant shift (a 
vacuum shift), due to the action of the matrix derivative, thereby implementing geometrically the 
triggering of the spontaneous breakdown. Other fields are not affected by the appearance of the 
matrix derivative. 

In Sec. II, we study the BRST quantization in the matrix derivative approach for the general 
case. In Sec. III, we treat the SU(2/1) gauge theory, effectively an algebraically constrained 
standard model SU(2)XU(l) gauge theory of the electroweak interaction. In Sec. IV, we consider 
an SU(2/2) gauge theory, which reduces to the spontaneously broken symmetry of an SU(2) 
XSU(2) u model. Section V contains a discussion and conclusions. 

II. BRST/ANTCBRST SYMMETRY AND QUANTUM ACTION 

In the matrix derivative approach of a noncommutative geometrical gauge theory, the O-form 
scalar field and l-form gauge field together form a superconnection, with w-odd forms in the 
g-even part and w-even forms in the g-odd part of the supergroup. We write the superconnection 
3as 
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2T=cv+Y&=( “0” o”,) +( Lqo ;1) (1) 

The overall Z2 grading is given by the sum of the supermatrix grading (Z, “g” grading) and the 
differential form grading (Z, “w” grading). The total grading of the superconnection is therefore 
odd, in this Z2 graded space.16 Multiphcation in this superspace is given by5*‘* 

(2) 

where W, W’ are differential forms of fixed Grassmannian Z2 w gradings 1 WI, 1 W’ I, and h, h ’ are 
supermatrices of fixed Z, g grading 1 h 1, 1 h ’ I. With this convention, we obtain the product rule for 
any two elements in our total Z2 graded space, assuming A, B, C, D to be matrix-valued differ- 
ential forms, which have fixed Z, w gradings of 0 or 1, depending on whether they are even or odd 
forms, respectively,5”2 

(“c ;).(;I ;:)=i AAA’+(-l)I%AC’ (-l)‘*‘AAB’tBAD’). 

CAA’+(-l)mlD//C (-l)kAB’+D//D’ 

(3) 

Once the superconnection is given, the supercurvature F, is defined in the usual manner, with 
the generalized derivative d, , consisting of the .usual l-form differential operator d and the matrix 
derhvati\,e d, : I2713 

d,=d+d,, 

d= where d= l@dx” &. 

The matrix derivative is given by 

dM=i[ 7, 1%) where v= 

Here 5 and 2 are constant matrices of zero forms, satisfying 

(4) 

(5) 

(6) 

. (7) 

so that the matrix derivative satisfies the nilpotency condition, dk=O. Note that the total grading 
of the matrix derivative d, is odd. Thus the matrix derivative is a supercommutator, i.e., it acts as 
a commutator for objects of even total grading and as an anticommutator for objects of odd total 
grading, where by “total,” we mean the product of the gradings of “g” and “w.” 

We now write the classical action of the gauge theory in noncommutative geometry as 

..%I=- i Trc..Ft, 
I (9) 

where * denotes taking the Hermitian conjugate for supermatrices and taking the Hodge dual for 
differential forms. In order to find the BRST/anti-BRST transformation rules, we use the so-called 
horizontality condition,3*‘7-‘9 which is another description of the Maurer-Cartan equation: 
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where .pt is the supercurvature, defined in the extended space of the doubled fiber bundle,16 

.Pt = i&T-+ 3.7. (11) 

“Doubling” implies the extension of the base manifold through doubling the fiber, from (33 to 
{5j 8 {3j, so that we have a gauge fiber coordinate y and its dual j?‘,17-19 In this extended space, 
the generalized derivative and superconnection are given by 

&=d,+s+F, (12) 

T-=9-+ SF+ i? (13) 

Here, s and s are l-form differential operators acting, respectively, on the coordinates of the fiber 
and of its dual: 

d 
where s= l@dyN 7, 

dY 
(14) 

d 
where S= 18 dy* - . 

3Y 

C and C are obtained from 7 by replacing dxp by dyN and dy*, and represent the ghost and 
antighost fields, respectively: 

@ 
CON dyN 

0 C,,“dyN)=~‘oo 1,)’ 

p= 
FoM d,* 0 

0 GM dy* 

(15) 

After applying the horizontality condition we obtain the BRST/anti-BRST transformation 
rules: 

(dy)‘:s.Y-= -d,F-F E’- 5.x 

(dy)‘:sT= -t?. EF, 

- - 
(d$*:sT= -L?‘. F?, 

(dy)‘(dj+@‘+s~+ F??. f?‘+ F. t?=O. 

By introducing an auxiliary field % such that 

s%tF, i.e., (“2 Yj=( “,” ;,j, 

we can fix the remaining BRST/anti-BRST transformation rules, 

(16) 

(17) 
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ST= - g- g. g- jgT Isj 

sE=O, (18) 

One can easily check the nilpotency property of the BRST/anti-BRST transformations, s*=?=O, 
for the above transformation rules (16), (17), and (18). 

Decomposing yinto Ze.+&d as in (I), we can write the even and odd parts of the first two 
equations in (16) separately as follows, by noting that d, s, ands are even matrices, whose entries 
are one-form differential operators. 

Even part : sTev= -dFI-.Y-&. F- F.Ye,, 

FY& = - de- ;Te,. i?- ‘??-. Y& , 
(19) 

odd part : SF&= -dME’-Yod. F-- F5’.Yti, 

Trod = - dM i?- Y&. f?- i@. &, . 

Note that the even parts are the usual BRST/anti-BRST transformation rules of a one-form gauge 
field,” while the odd parts are those of a matter field, plus the additional terms caused by the 
matrix derivative. These additional terms represent a translation of the scalar field and correspond 
to the vacuum shift in the usual Higgs mechanism. The difference, however, is that this is a 
built-in property of a gauge theory in the noncommutative geometry setting, in contradistinction to 
the conventional Higgs construction. The system’s “ordinary” gauge symmetry is thereby broken 
explicitly through that geometrical setting. 

Adapting the Baulieu/Thierry-Mieg method for a BRST/anti-BRST invariant quantum action, 
which yields the Landau gauge for the usual Yang-Mills theory,” we write the quantum action as 

where LY is a parameter. Using the transformation rules (16), (17), (18), and (lo), we obtain 

(21) 

and 

(23) 

Thus, the quantum action .FQ can be written as 

One can check that this quantum action is BRST/anti-BRST invariant. 
In the above quantum action (24), the terms with the auxiliary field Fare the gauge fixing 

terms and give rise to the ‘t Hooft gauge condition*‘**’ as we shall see in the next two sections. 
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The first term is the classical action, and the remaining terms constitute the kinetic and interaction 
terms of the ghost fields. In the following two sections we calculate the quantum action (24) for 
the SU(2/1) and SU(2/2) cases explicitly. 

Ill. BRST QUANTIZATION OF THE SU(2/1) CASE 

The generators of SU(2/1) are the same as those of SU(3), namely, the conventional A matri- 
ces, except for t8, which is given by 

-1 0 0 

(25) 

in order to satisfy S Tr(ti) =O. We write the SU(2/1) superconnection as 

T=iriJ; (i= 1,2,...,8) 

=Y&+.Fod= i (26) 

where we identified the gauge and Higgs fields W, , B, @, and Qt with the components W, = J, 
(a=1,2,3), B=J,, a= l/fl(~~‘~:;) and at= l/fi(~:$). 

We now introduce the ghost, antighost, and auxiliary fields, in the doubled-fiber bundle space, 

1 
?-&,- - c8 0 

d3 

2 
0 - - c8 

d3 

g=i (a= 1,2,3). 

(27) 

In order to derive the BRST/anti-BRST transformation rules, we apply Eqs. (16)-(19) of the 
previous section. In calculating the SU(2/1) case, we encounter the following difficulty. With the 
3X3 matrix representation, it is not possible to choose a constant matrix v= (g ,$) for the matrix 
derivative, satisfying the condition (8), cl= Srx 1, which is essential for the nilpotency of the 
matrix derivative. In order to resolve this difficulty, we first extend all 3 X 3 matrix representations 
of fields into 4X4 matrices, simply by adjoining a fourth row and a fourth column, with all 
components vanishing. We then choose the 77 matrix in this extended 4X4 matrix representation 
space, in which it does satisfy the nilpotency condition. This 4X4 77 matrix, enables us to perform 
all calculations involving the 0 matrix, such as evaluating the supercurvature, etc. After this is 
done, we project back onto the 3X3 matrix representation space, simply discarding the fourth row 
and column. Note that this construction reflects the fact that the true fundamental representation of 
SU(2/1) is four dimensional,3 reflecting the homomorphism with OSp(2/2) and fitting the internal 
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quantum numbers for quarks, i.e. (u,Iu, ,d,ldR) where the order follows descending weak hy- 
percharges (4/1,1/-2) [ in units of (l/3)]. However, for integer charges, the upper state trivializes 
and disconnects (e.g., the +), and we are left with the three-dimensional representation. As a 
matter of fact, the procedure we use here also corresponds to the projective module method of 
Connes and Lott.* We thus perform the actual calculation with 

k: real, 

and obtain the following BRST/anti-BRST transformation rules, 

FAAII = - dFIr - AllFI, - FIrAIr , 

sA,= -dcl, FAA,= - dFl, 

sa+=(@++[+) 
1 

Cl1-t yf P++5+)c,, 

-- -- 
scu= - CIICII , s cII= - CIICII, 

I sc,=5-F[=Q, 

sF,I= b,I, SC,,= -brc,F,,-c,,c,,, 

sb,,=Q, $%I,= -E&II+~II~,,, 

SF,= -ZI=bI, sbI=sCbI=Q, 

where 

AII= ir,W,, AI= iB, cII= ir,c, , c,= its, 

FII= i7,C,, F[=i&, bII=ir,b, (a= 1,2,3), b,=ib*, (29) 

Note that the transformation rules of Q and @,’ correspond to those of the Higgs fields with a 
shifted vacuum. For the supercurvature we obtain 
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F,-; F,-2(cp@++@D++@~+) 

K= 

-i,(,@+( i@.;+iB)f) 

-ifl( D@‘-.$[ik.i+$B)) --$F,-2(@+@+,$+@+@+&) 

where 

Fw= 3 Fw,, dx~//dx’=d(i@.;)+(i$‘.~)(i$‘.;), 

Fg= i FBpY dx’Adx”=d(iB), 

(31) 

D@=(D@),dx*=dO+( i@.f+iB)@, 

D@+=(D@+) dx@=d@+-@ /* +( iG.;+iB). 

We use d4x=dxoAdx1Adx2/!dx3, ~0 123= 1, and adopt the convention of Ref. 22 for the dual of 
a differential form in n dimensions, required for (24), 

*(dx’lAdxi’A...Adxi~)=~ Eiii2”‘iPipr,...i~dxiP+I~...rjdxi~, (32) 

satisfying **up= ( - l)P(n-P)~p for a p-form wP . 
Selecting the metric g,,- -( - 1,+ 1,-i- l,+ 1), the first term in (24), the classical action, is given 

by 

X( Do+ji~.~+~Bjg)~-2((~t+~t)(o+Z)-5’02 

D@‘-ik(fiW-,$Z)), 

(33) 

where W~=l/fl(W~iiWf), Z*=-(fi/2)W~+(1/2)Bp, Ap=(1/2)W~+(fi/2)Bp. 

In order to see the physical spectrum of the theory, we now write the above expression in the 
unitary gauge, which is given by cP=((,,&,) with real x. 
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.2$‘=; F wa,ZFa+ ; FB~vF$~ 

x -; (g,y2+2\/2kx)2. (34) 

The coupling constant g is introduced by scaling the superconnection as 5-+g3? In this unitary 
gauge we see that only one scalar field remains as a physical (and massive) Higgs field x, whereas 
the other three scalars have been “mutated,” now providing the longitudinal components of W, 
and Z. The masses of the massive particles are M,=2di?k, M,=fik, M,= (21/2/d)k, and we 
see the relations M$lM~=3f4=cos2 13,) M,= 2Mw. We shall return to the latter ratio M,IM w in 
Sec. V, when discussing possible quantum corrections. 

We now write the quantum Lagrangian of (24) as 

L3Q=,s~+s~+5?2, (35) 

where Xc is the classical Lagrangian, 3t stands for the ghost terms, and z2 for the gauge fixing 
terms. After some calculations, we obtain %t, 

1 
LZ, =z tr 

[ . 
d,FII D*cIIf 2 dyTI d”cIi- (( r,i~+D++i+( cII+;cI) 

+( *+( F,,+$FI)( cII+$I)w+c#7 

where DpcII= d@c,,+ [A$ ,c,,]. 
For 5C2, we obtain 

X2=; [(b1)2+(b2)2+(bz)2+(bA)2]+; b,(d,W+‘?kq$,) 
I 1 

+b2(dpW;-dk&)+bZ( d,Zp- $ kq5,) +h,(dpAr)]}, 

(36) 

(37) 

where bz= -(d/2)b3+( 1/2)b8, b, = ( l/2) b, + (v&2) b8 . After integrating out the auxiliary 
fields b , , b2, b, , and b, , g2 becomes 

(d,W1;L-~k&)2+(dpW~-~kc,&)2+ 

(38) 

This expression clearly shows that we obtain the gauge-fixed quantum Lagrangian of the ‘t Hooft 
gauge,20’2’ as we claimed in the previous section: 

d,WI;“-Mwcj+4=0, 

d,W;-MW&=Q, 
(39) 
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d,Zp - MZcp2 = 0, 

dpAp=O. 

IV. BRST quantization of SU(2/2) case 

We now calculate the SU(2/2) case. The generators of SU(2/2) are the same as those of SU(4), 
except for tg and t15, which are replaced by 

-1 0 0 0 

0 0 00 

1 01 0 00 10 0 -1 0 0 0 0 0 0 3 1 (40) 

to conforming with the supertracelessness of the SU(2/2) generators. The superconnection for the 
SU(U2) case can be written as 

7=itiJi (i= 1,2,...,15)= (41) 

with one-forms in the even part and zero-forms in the odd part, given as 

AL=iTaALa, AR=ir,ARa, B=iIY, Q=Iq50+i~,qb,, (42) 

where T, (a = 1,2,3) are Pauli matrices and I is 2X2 identity matrix, A,, ,ARu , Y are real, whereas 
+o,+a are complex, the fields being assigned to the components of J’s according to 

Ata=J, (a= L&3), A,,=Jn, AR~=JMY 

1 
J‘$= - - (J,+fiJ,,), 

d? 
Y= - ; (fi/zJ~-J,~), 

A, and A, are thus the SU(2) gauge fields, B is the U(1) gauge field, and @ is the complex scalar 
field (with its four components). 

We now introduce the ghost and antighost fields, 

(43) 
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where cL = iracta , cR = i racKa (a = 1,2,3), cI= ilc,, , with real cLa , cRa , and cl,. and similarly for 
2. {cL ,CL} and {cR ,FR} are the ghost and antighost fields for the SU(2) gauge fields A, and A,, 
respectively, and {c, ,F!} are those of the U( 1) gauge field B. 

The BRST/anti-BRST transformation rules are obtained from (16)-( 19). Choosing 

where 

we get 

sAL= -dcL-ALcL-cLAL, 

FAL= -dFL-ALCL-FLAL, 

sA,= -dcR-ARcR-cRAR, 

FAR= -dCR-ARCR-FRAR, 

sB= -dc,, ST = - dEl, 

s@=(@+[)CR-CL(@+(), 

n=(Q++)FR-FL(Q+$.), 

s~+=(@++~+)CL-CR(@++~+), 

s3+=(@++~+)F~+&D++~+), 

- -- 
scL= -cLcL, s CL= - CLCL, 

-- 
SCR= -CRCR, SC,= - CRCR, 

sc1= sc1= 0, 

sFL=bL, scL= - bL- cL-EL-FLcL , 

Sc,=bR, ~c~=-b,q-c~?R-~,qCR, 

sbL=O, s5bL= -FL+bL+bLCL, 

sb,=O, SIR= -zRbRfbRFRk, 

ST;= -E,=b,, sbI= sFb[= 0. 

We have introduced the auxiliary fields 

w 

(45) 
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with b,= iTabLa, b,= irabRa (a = 1,2,3), and b,= ilb,, , where b,, , b,, , and bl, are real. For the 
supercurvature, we obtain 

: 

FL+ +F,-(w+@D’+@5’) -i(D@+ALE-5AR) 

-i(DQt-~‘A,+A&‘) FR+; F,-(@+@+++@+@+[) 
I . 

7 (46) 

where F,=dA,+A,A,, F,=dAR+ARAR, F,=dB, D@=d@+A,@-@A,, 
D@+=d@+-@+A,+A,@+. 

The classical Lagrangian, the first term in (24), is given byz3 

e&=t$‘F +p,,FII;Y_(_ $ F-,,F!?‘i- Q F,,,F;” 

- ; (D@++2kA-),(D@-2kA-)/“- 4 (@+@+k(@+Q,t))2], (47) 

where A* are, respectively, the vector and axial vector gauge fields, as defined by 
A.=(1/2)(+AL+AR)=ir,A-t,, and FII,“=YA: -d’A:+[AI*, ,A:]+[AI” ,A:], F!f=dl”A! 
- J”Atf + [A: ,A !?I+ [A? ,A:]. The above expression tells us that the three axial vector gauge 
fields A-, have acquired the mass 2k, whereas the three vector gauge fields A,, and the U(1) 
gauge field Y remain massless. 

For the quantum Lagrangian SQ, we again write, as in (39, 

sQ=23~+~~+~2. 

The ghost part St is given by 

SE;;,=+ tr[(d,F~ DpcL+dCLCR DpcR+dpLCL d’Cl)-2k2(~L-CR)(CL-CR) 

+k({(c,-~R)cR-CL(~~-~R)}~++{cR(~~-~R)-(~L-~R)CL}~)], 

where Dp~L=dpcL+[Af,cL], DC”~R=dp~R+[A$,~R]. 
The gauge fixing part Z2 is given by 

(48) 

y;=a 
I( 

(LA2+@+cJ2+ $ @A2 
i 

+; b-,(d~A~,-2k~o,)+b+,(~,A~,)+; bl,(d,Yp) 
i ii 

, (49) 

where b, = (l/2)( 2 b,+ bR) = iTab+, , cp=( l/2)(@-@+)=r,cp, . Integrating out the auxiliary 
fields b, , ST2 becomes 

S2= -; (d,A’“_-2kp)2+(d,A:)2+; (c?,Y’L)~ . 
i I 

This expression again displays the quantum Lagrangian in the ‘t Hooft gauge: 

(50) 
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d,A!f,-M,/p,=O, 

d,Ay,=O, (51) 

d,Yl”= 0, 

where M, _ = 2kisused.Ifwewrite@aas(a+i~.;)+i(~+~.;) withreala,?;,v,;fields,then 
cp in JZ2 can be identified with 7;. This is consistent with the fact that the G fields are gauged away 
and mutate into the longitudinal components of the axial vector fields A- in the unitary gauge. 
This is also related to the fact that the SU(2/2) case corresponds to the gauged SU(2)XSU(2) (T 
mode1.23. 

V. CONCLUSION 

In the matrix derivative approach, derived from noncommutative geometrical gauge theory 
and adjoined to internal supersymmetry, in its superconnection version, the vector gauge fields and 
the scalar fields are combined together, constituting the superconnection. The two sets of fields are 
thus related as a supermultiplet from the very beginning. This provides for an elegant geometrical 
realization of the Higgs mechanism. The entire Lagrangian is geometrical, even including the 
negative mass term for the scalar field, needed to trigger the spontaneous symmetry breakdown for 
the (g-even) gauge subgroup. That symmetry-breaking quadratic term for the scalar field is pro- 
vided by the matrix derivative, beyond the unification achieved by the supergroup by itself. 
Summarizing, the unification is complete, within the limitations set by the broken symmetry actual 
content. We return to these limitations in our last paragraph. 

Another advantage of the formalism touches upon the quantum action, namely in the gauge in 
which it appears, as a result of the construction. This turns out to be the ‘t Hooft gauge, most 
convenient for a spontaneously broken symmetry with Higgs field and suitable for 
renormalization.20*21 We obtained this action just by adapting the BaulieuD’hierry-Mieg method,” 
which would yield the Landau gauge for the unbroken Yang-Mills theory, to the matrix derivative 
approach. 

For the calculation of the fl + F, term in the classical and some of the other parts of the 
quantum Lagrangian we have used the definition of (32) for the dual form. This definition gives 
the kinetic terms of both the vector and scalar fields automatically in their canonical form, also 
providing the relation M, = 2 M w. Note that this is a classical relationship. Including a quantum 
correction might modify this result.24 This mass ratio is also due to the fact that we have only one 
overall supergauge coupling constant g for the superconnection Tin Sec. III, due to universality. 
Without the assumption of universality for the supergroup we would have independent couplings 
for fields corresponding to forms of different degrees-in our case the even and odd parts of the 
superconnection, i.e., two independent couplings. One might then obtain a different mass ratio for 
the Higgs and gauge bosons.25 

Last, we note that only the even part of the supergroup is gauged in the sense of relativistic 
quantum field theory-even though the entire supergroup is used as a structure group for the 
theory and provides the geometrical framework for the quantization procedure, including the ‘t 
Hooft gauge. As a result, there is no guarantee of nonrenormalization of the theory’s couplings 
beyond those of the g-even gauge subgroup. 
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We develop the formulation of the path integrals via the coherent states based on 
general starting vectors. In this paper we treat the case of the ordinary canonical 
(Heisenberg-Weyl) coherent state. We find that an additional term appears in the 
action in the path integral expression. Geometric phases associated with the path 
integrals, including the possibilities of the experimental detection, are also dis- 
cussed. 0 1996 American Institute of Physics. [SOO22-2488(96)02908-81 

I. INTRODUCTION 

The Feynman path integral, which is the space-time approach to quantum mechanics, provides 
us with the bird’s-eye view by which we are able to grasp the evolution of the quantum systems 
globally.‘,’ Its mathematical grace and intuitive appeal have tempted quite a few to generalize the 
formalism to more wider cases,2’3 such as phase space forms,475 fermion systems,5’6 spin systems7** 
and fields (both Bose fields5,9 and Fermi ones5*6 ). 

Now let us concentrate our attention to the case of the phase space path integral, for this is not 
only the simplest, but also serves as a prototype in understanding the generalizations to other 
systems. There are two ways to obtain that path integral: in one we sum over all the histories on 
the phase space,4 whereas the other performs the path integration via the states that are specified 
by the points on complex planes. The latter approach was pioneered by Klauder in the early 
sixties.” About that time Glauber considered the same quantum states in the context of quantum 
optics and called them “coherent states,“” whose origin dates back even to the middle of the 
twenties.” 

Klauder tried to generalize such states and reached the concept of “continuous 
representations”‘2 which gives the states that construct the paths on some manifolds. These states 
are called “coherent states (CS)” in a broad sense of the word. (In what follows the word “CS” 
is used as a plural as well as a singular.) It is by such coherent state path integrals (path integrals 
via CS) that the above generalizations in Refs. 3-9 are made. We can understand that the phase 
space manifolds on which the paths are defined are extended to the generalized ones with curva- 
tures or even to the non-complex ones in the coherent state path integrals for other systems. 

Especially the CS that Perelomov defined by the unitary irreducible representations of arbi- 
trary Lie groups bring us a concrete and clear method to construct CS13 and to carry out their path 
integrati0n.s In this case the CS is determined by a point on the manifold of the coset space 
G/H that is related to the corresponding Lie group G and its certain isotropy subgroup H. 3,‘3 

As stated at the beginning, the method of path integrals is suitable for considering the prob- 
lems in which the global structure of the quantum systems is important. The problem of geometric 
phasesi is one of these, though it was first discussed in the formulation i la Schriidinger. In fact 
the celebrated Berry phaseI turned out to be understood more deeply in the light of such 
formulation’6 and the extension to the general caseI was also studied from the viewpoint of CS 
path integralsI 

In the present paper, following the development of the path integrals mentioned above, we try 
to let it take another step forward; we aim to generalize the method of coherent state path integrals 
by extending the canonical CS and apply it to the problems of geometric phases. The CS are 

“Electronic mail: matumoto@i.h.kyoto-u.ac.jp WWW: http://www.i.h.kyoto-u.ac.jp/-matumoto/ 

0022-2488/96/37(8)/3739/14/$10.00 
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defined following the way of Perelomov. What is different from the conventional treatment is the 
choice of the starting vector; we take the generic one. Next we study various aspects of the CS: 
overcompleteness relation, the overlap of two coherent states, typical matrix elements and uncer- 
tainty relation. These are done in Sec. II. In Sec. III the path integration is performed via the CS 
obtained in Sec. II. We then proceed, in Sec. IV, to consider the problems of the geometric phases 
associated with the CS including some applications. Discussions on future problems are given in 
Sec. V. In the appendices we treat some deeper arguments about the matrix elements, the CS in 
the light of eigenvectors and alternative derivations of the action, 

II. COHERENT STATES WITH GENERAL STARTING VECTORS 

This section provides us with all the equipment for Sec. III. We revisit the canonical CS 6 la 
Perelomov’3 as well as its properties in a somewhat different manner from what has been given. 

A. Construction of the coherent states 

The canonical or Heisenberg-Weyl CS are constructed from the Lie algebra satisfying the 
following relation: 

[cg,fj=ih 1, [G,l]=[b,l]=O. (1) 
By transforming the basis of the algebra to 

i=(2h)-9~+i$), 6+=(2h)p(@ijq, (2) 

Eq. (1) can be put into a different form, 

[ii,Gf]=l, [ci,l]=[~+,l]=O. (3) 

We define the canonical coherent state associated with the Lie algebra (1) or (3) by operating a 
unitary operator, 

fi(a)=eni+-a*h ( (Y: a complex parameter), (4) 

on a starting vector 1 tie). The vector is a fixed vector in the Hilbert space which, in the present 
case, is identical with the Fock space for Bosons.‘3 In the conventional choice, it is taken as 
(0): the ground state of the boson number operator. According to the general theory of the C&l3 
however, we have much wider possibility in choosing a starting vector; and in fact it permits any 
fixed vector in the Fock space, which is represented uniquely as 

I m,=ngo C”M with j. lc,12= 1, (5) 

in terms of a set of vectors {In)}. Here ITZ) is the eigenstate of the number operator fullfilling 
Z+Gln) =nln> and the {c,} denotes the coefficients of complex numbers. Therefore our CS I a) 
takes the form of 

14=~~~~llli,,)=n~o c,lw), with Ia,n)=eaci+-a*b In). (6) 

Perelomov has already discussed the above point and given some formulae. But it seems that there 
have been no concrete arguments on the general starting vector formulation of the CS, especially 
on the path integration, including its relation to the recent development of the geometric phases. 
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Some comments may serve for our understanding of Eq. (6). A general element of the Lie 
algebra (3) is given by sl+ i( cu*i - ai ‘), where s is a real number. And thus its corresponding 
Lie group is constructed by T(s, a) = e i(sl+i(a*rE-aif))= eiSfi( a), which is called the Heisenberg- 
Weyl group W, . Since the operators T(s,cr) act in the Fock space and form an irreducible unitary 
representation of WI, the CS for W, is obtained by applying the operators T(s,a) on I&). Then 
we find that the CS is determined by one complex number cy as Eq. (6), although an element g of 
WI is specified by one real as well as one complex parameters: g = (s, a). This happens because 
the isotropy subgroup of I&) is H= {h}, with h = (s,O), which makes no difference to CS besides 
changing its phase factor. So we see that the CS is determined by a point on a complex plane of 
the cr-variable which is nothing but the coset space WI IH. *” “” ^ . 

Now, with the aid of the well-known disentangling formula: eA+B=eAeBe- (1’2)[A,B1, which 
holds for any two operators satisfying [~,[~,~]]=[~,[~,~]]=0,‘9 Eq. (6) can be put into 

~CY)~e-(l”)1”1~e”i+e-cr*a~~~)~ecln)l~1~e-~*rEearE+~~~)~ 

Our CS is, of course, represented by a linear combination of the vectors {Im)} as 

(7) 

with 

+g J$ 
i i 

112 

m=nfl . 
cYm-n Lfy”‘( 1 a12)lm) . 

1 

Here L;“(x) is the Laguerre polynomial defined as 

e’x-’ 
q)@) E - 

dk 
-x kl dnkte x k+‘)$j jkk+;) 7, 

@b) 

(9) 

and we have used the expression for the matrix elements D,,(a) =(mlfi( a)ln) which has been 
known in quantum electrodynamics.20 When ILY) represents the state of the photon, the absolute 
square of (m I a) = XF=oc,D,,( LY) yields the probability of finding m photons in the state I a), as 
in the case of usual CS.2’ The form of Eqs. (8) is valuable for later arguments. The state Icy) may 
be named “extended coherent state,” yet we will call it just “our CS” or “the CS” in this paper, 
for it has been already included in the theory of CS.32’3 

B. Resolution of unity 

The most important property that the CS enjoy is the “overcompleteness relation” or “reso- 
lution of unity” which plays a central role in performing the path integration. The relation is so 
closely related to the irreducibility of the representation of groups that it actually follows from the 
latter as a natural result.“*13 But here we take a more concrete method, which is a naturtl gener- 
alization of one used for the usual CS, to obtain this relation. It is expressed as 
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where d2a=d(Re a) d(Im a). 
ProoJL: From Eqs. (8), 

(4 =;io j. ~p&w(4. (11) 

Then, by using the polar coordinate LY= reie in Eqs. (8) and (1 l), we obtain 

(- l)(n-m)+(K-69 r(n-m)+(iT-+ pyq r2)@“7( r2) 

(- l)n-m ,(n-m)-(Z-3 ~$f-m)(~2)~?-3(~2) 

r(m-n)-(K-n7 ~Cm-n)(,2)~(5-3(,2) 
n ?I8 

r(m-nf+(E-iQ LLm-n)(r2)LF-“7(r2) 

Hereafter we call the integral that includes the i-th term in the big parentheses the i-th 
integral. Let us consider the first integral. After integrating out the O-variable, we are left with 

rio i c,cz [go i. (s) *‘2~m)(ml /:ds e-s sn-m Lt--~(~)Lg-m)(s)] am-n,m-;, 
. . 

(13) 

where s=r2. By the use of the orthogonality relation of the Laguerre polynomials, 

I mdu e-UuqLi’l)(u)Li?)(u)= 
0 (14) 

which is valid for Re 17 > - 1, the first integral yields 

rioi ..,;( gojo (S)‘“$ . . . 
&-n,~-ii &,ii ImXml) = mnio lcn12( mIo ImHml ) . 

(15) 
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Other integrals can be calculated just in the same manner. The fourth one gives 
~q=&,12(~;=n+l Im)(m I). For the second and the third ones we can find that the condition 
in - n = K- nl comming from e-integration does not satisfy the summation restrictions on m and 
K. Thus these integrals vanish. So finally the result gives 

J l~)d244=~E lcn12[ i lm)(-1) =rio lc,12 13~ 1, n=O m=O (16) 

which completes the proof. cl 

C. Overlap of two coherent states 

The overlap of two coherent state 14)=X~,c,rI(~,n’) and I~)=X,“c,l/?,n) is one of those 
important quantities which we employ for various calculations in the CS. It can be derived, with 
the help of Eqs. (6) and (8) together with the disentangling formula, as 

km= E 5 n=O n’=o cnc,*, (n’lb)+(a)LQ)ln) 

=ew2~~a*8-@*~~ 5 &, o,,,(pAa) 
n=O n’=o (17) 

where 

=e - (1/2)(1n1’+1P1’-2n*P) G( a,a*,P,$*;{cn}), 

Gtwa*$,P*;{c,))= 5 
n=O 

+ r, 

II2 

Cn*! (p-ap Lpqlp-ay12) (18) 
n’=n+ 1 

Especially putting co=1 and cn=O (n#O) yields G(Q,LY*,/~,/~*;{c,})= 1, which, since 
Lo(x)= I for any x, brings us back to the conventional result of the overlap. Moreover, with 
L,, (0) = 1, it is easy to see that any state I a) is normalized to unity, as conforms to our construc- 
tion of the CS. 

D. Typical matrix elements and uncertainty relation 

Our next task is to calculate typical matrix elements that we encounter in later sections. For 
that purpose we find it useful to employ the following identities: 

6+(a)(a^)“L5(cu)=(&+cu)’ (2: positive integer) (19) 

and 

b+(a)(~+Ci)b(a)=~+Li-(a~fC-a*Ci)+Ia~2. (20) 

straightforward application of the formula 
. .I9 From these relations one can easily obtain the 

J. Math. Phys., Vol. 37, No. 8, August 1996 
                                                                                                                                    



3744 Masao Matsumoto: Natural extension of coherent state path integrals 

(cxI(~)qa)=a~+ Lie j, ,,,:( .!, r) (2) “2-n? 
with n>n’ 

(214 

@lb) 
with n>n’ 

and 

(22) 

Putting co= 1 and c,=O(n#O) in Eqs. (21)-(22) yields the conventional results. 
We next describe the uncertanity relation that our CS fullfills. We show the case of 

I Go) = In) here, which is sufficient for us to see what the situation looks like. Then ( CX) = I cu,n). 
From Eqs. (2) and (21), we obtain 

aqap=;(2n+l). (23) 

Thus the fluctuation is enhanced through the factor n, just like in the case of a harmonic oscillator 
eigenfunction. It is obvious that the usual choice of I Golo> = IO) gives the minimum uncertanity.‘” It 
can be readily seen that AqAp= O(N) holds for more generic cases, where N= max n. 

III. COHERENT STATE PATH INTEGRALS 

In this section we will give the explicit path integral expression of the transition amplitude by 
means of the CS discussed in Sec. II. We invoke a well-known prescription for the coherent state 
path integrals5’9322 and especially follow Ref. 22. What we need is the propagator 
K(cuf,fj; Cyi ,ti) which S~ZUIS from 1 pi) at f= ti, evolves under the effect of the Hamiltonian 
i?(ci+,i;t) which is assumed to be a suitably-ordered function of L?’ and 6, and ends up with 
I ffff> at t=tj: 

K(olf,tj;‘Yi’ti)~((Yf,tjI(Yi,ti)=(~jlT expC- (ilh)J~~dtfi(t)lI~i); (24) 

where T denotes the time-ordered product. By dividing the time interval into infinite numbers of 
an infinitesimal one E and the successive use of the completeness relation (lo), we obtain 

'..(c"j~tjl~j-l,tj-l)"'(cr~,rlla,,ri), (25) 

where E= [ ( l/N + 1 )]( tf- ti) and tj= ti+je. So we only have to consider a propagator during an 
infinitesimal time interval, which gives 
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-~EH(ruj,~~,rrj-l,~~-l;r,-l) 

I  

= exp 
[ 

- ~l~j12- ~ln,l12 +oJ~j-l+~((aj,~~,~j-l,~~-l ;{cJ) 

-~EH(ruj,~~,aj-l,nJ_l;r,-l) 9 1 (26) 

in which we have employed Eqs. (17)-(18). Here 

H(a”,a”*,a’,&‘*;t)= (d’Ik(u+,u;t)la’) 
(cY”l a’) (27) 

and 

n1’2((a~-c+l) C,C,*_l-(~j---j-l)C,*C,-l). (28) 

As can be seen from Appendix A, H is a function not only of (a’)* and LY’ , but also of czn and 
(a’) * . Care should be taken that in Eq. (26), only the terms with n - n ’ = 0, + 1 in G contribute 
to the infinitesimal propagator within the first order of E. From (25) and (26), 

K(LYf’tf;~i,ti)= lim ._l;)“, d2a,***[ d2aN 

X exp 

-~EH(ruj,a;*.a,-l,a:_1 ;tj-1) 
)I 

. (2% 

The exponent in Eq. (29) becomes 
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F: [ _ $q( ajd:-l) + $,J @-Y-~-l) + gtaj*aT 9Cfjc19($-l ;{CJ) 

-~H(u~,cI~ ,cY~-I,cYJ!YYI ;tj-1) c 
I 

1 (as ++O), (30) 

with 

A( &,&*;(c,})= -2 lim 
G(ajvaT ,aj-1 ,a;-, ;{cn}) 

=2c n’n(hc,*c,-*-~*c,c,X_,). 
e-m E n=l 

(31) 

Then we finally find 

K(q,,‘f;“i,ti)= I 28[a(r)] eYQS[@(‘)l, (32) 

where 

dt h((n*ci-~*a)+A(ci,&*;{cn}))-Zf(c-r*,a,t) ( ; (33) 

and we symbolized 

d2Lyj. (34) 

The result (33) is different from the usual one associated with the starting vector 1 J,!Q) = IO) in that 
it includes the A-term depending on the starting vector I @c>. However, even if the A-term van- 
ishes, which occurs for example no neighboring {c,} exists for any c, , we have to be careful that 
the content of the action is different generally due to the 1 &)-dependence of H( a*, a,t) through 
the first term of Eq. (22). 

What information does the semi-classical limit of our CS path integral give? In the situation 
where li-+O, the principal contribution in (32) comes from the path that satisfies SS=O, which 
requires the Euler-Lagrange equation for L( a,&,cu*,&*;t). Then we obtain 

dH dH i&&z - 
dcr* ’ 

-iTic%*= z, (35) 

which is nothing but the canonical equation as in the conventional Heisenberg-Weyl CS. We see 
that since the A-term is expressed as a total derivative, it does not alter the Euler-Lagrange 
equation. The meaning of ar, however, is quite different from the usual one. In our case o 
indicates the displacement from rhe stare I&,). Moreover Eq. (35) depends upon ) &IO> through 
H via Eqs. (21)-(22) as mentioned earlier. 

The extension of the present framework of path integral to the field theoretic case is straight- 
forward; thus we omit it from the present paper. It can be performed in a manner described in 
Refs. 3 and 9. We merely have to be careful of the definition of the field CS: we have to use the 
direct product state, each of which is represented by Eq. (6). 
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IV. GEOMETRIC PHASES 

A. Theory 

Consider a cyclic change of our CS, whose initial and final states are expressed la(O)) and 
1 a(T)), respectively, under the effect of a Hamiltonian I? during the time interval T. In the light 
of the formalism developed in Sec. III, the state vector accumulates the phase Q(C) which 
amounts to’* 

where 

and 

@(C)=(40)\4T))=exp id, tiTcyclic WC)-A(C)) v 

paths c I 

T(C)= JoT(alih-&)dt= JoT;(a*ci-&*a)dt 

(38) 

We note that the effect of the A-term disappears in the case of the cyclic change of the CS as far 
as no restrictions are imposed on the region of the a-plane and hence it is simply-connected. We 
obtain from Eq. (37), 

l-(C)= ~c(ali~V;la).dct= ~pL (39) 

where &( cu,a*). Equation (39) shows that r(C) depends only on the curve C on the 
a-plane, which is the same for the original geometric phases by Berry; I5 the equation also tells us 
that I’(C) is invariant under the canonical transformations. 

In the present paper we are dealing with the canonical CS, however, r(C) can be defined for 
any coherent states.” It is readily seen that we can define a line integral like T(C) as long as the 
state we consider evolves as CS. What makes the CS develop as CS is the controlling the 
parameters by some successive continuous measurements. Although no mention of CS was made, 
such a point was described in a slightly different context.23 In Ref. 18 the path is so chosen that it 
satisfies the variation principle in relation to the semiclassical approximation that plays a vital role 
in evaluating path integrals; and some developments of the CS geometric phasesz4 including the 
application in this direction has been done.25-27 Yet a such restriction is not inevitable. Especially 
when the Hamiltonain is at most bilinear in the generators of the Lie algebras in the canonical CS 
case and linear in SU(2)CS or SU( 1,l)CS cases, however, the CS evolves as CS under the effect 
of the Hamiltonian and the resulting geometric phase agrees with one obtained by the variational 
path. Although it may look special at first sight, the above case covers the systems which are 
valuable in physics. And we will also take the case for example in the following discussion, for we 
want to compare the result with one obtained recently27 and investigate the effect of our CS. We 
will see the result that is a direct extension of Ref. 27. 

B. Simple application 

Now we will give a more realistic argument by taking the following system as an example in 
which we choose a harmonic oscillator driven by an external force. The Hamiltonian is given by 
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l?= @“+ Wo2cj2)+F(t)& (40) 

which can be written by means of boson creation and annihilation operators as 

Ei=hwo~+(;+f(t)~++f*(t)a”. (41) 

We assume that the system is described by the CS 1 cr,n). Th en, f rom Eq. (29), the propagator for 
the Hamiltonian of Eq. (41) gives 

K(~~,~~f;cri,ti)= lim N*m(f)NJd2al...paN 

Xexp C  
[ : I :  ( -~/OTj12-~[~j-l[zC( I-~ECdO)Uj+OYj-l-~EfjU~ 

+ it? fi*_lCYj-1 

)I 

9 

where we have applied Eqs. (A3) to two nearest states with the time interval e. Equation (42) is 
the same as that for the usual CS under the same Hamiltonian (41). As mentioned earlier the direct 
evaluation of the Gaussian integral shows that the transition amplitude of the path obeying the 
variational condition is equal to the propagator.lV2 Therefore it is enough to consider the varia- 
tional path in this case. 

The type of Hamiltonian in Eqs. (40) or (41) appears in the problems of detecting gravitational 
radiation2* and quantum optics.21*29 Here we shall take up the second one for example and discuss 
the possibility of finding the effect of the geometric phase. Consider a single mode electric field 
inside a cavity driven externally by a coherent driving field. If we neglect the cavity damping, we 
have the Hamiltonian: 

fi=hwoc;f+ih(ci+E(t)e-‘“‘-~E*(r)e’~’). (43) 

The first term denotes the cavity mode Hamiltonian, where w. means the fundamental cavity 
resonance and the second term gives the Hamiltonian for the coherent driving field respectively. 
E(t) is the driving field amplitude, while w is the driving frequency. If the cavity contains the 
medium with unharmonicity the term having (Z+)2a^2 is added to the Hamiltonian,29 but we 
neglect such an unharmonic effect hereafter. We also assume E(t) = Ei, with E: a positive real 
constant for brevity’s sake. 

It may be time for us to point out the role of the variable LY in relation to quantum optics. We 
see, from Eqs. (21) that the matrix elements of ci and ci+ between our CS 1 a,n) are identical with 
those for the usual CS. Consequently a is proportional to the complex amplitude of the classical 
electromagnetic field obtained as the solution of Maxwell equation, which can be shown in the 
same manner as that for the usual CS.21 

Now we proceed to evaluate T(C). With the aid of Eqs. (21)-(22), 

for the Hamiltonian Eq. (43). The variation equation, Eq. (35), reads as 

dr+io,-,ct= iEe-‘“‘, 

w 

(45) 

which, in the polar coordinate a = re”, becomes 
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f= E sin( 8-t wt), r( b+ wo) = E cos( 8+ at). 

These equations give a special cyclic solution with a period T= 27rlw: 

r=ro, e= - wt, 

where the relation 

(46). 

(47) 

E 
ro=- (48) COO--0 

holds. Equation (48) specifies the surface in the (E,w,oo) space on which the phase r has the 
same value. 25-27 In the above argument, since we consider the cyclic path with the period T, we 
need not bother with the asymmetry of the solution of the variation equations in the general case.7 
The geometric phase r is evaluated from Eq. (37) as 

r(C)=2dir~. 

On the other hand, from Eq. (38), the dynamical phase is calculated as 

(49) 

2rrh 
A(C)= -(oo(ri+n)-2Ero). 

w 

We next turn to the detection of the phase I’(C) in experiments. The strategy invokes the 
inteference phenomena of two beams as in the previous cases.25-27 We use the light beam pre- 
pared in the state In) which is to be split into two parts. We assume that one part is suffered under 
the driving field E in Eq. (43), but the other is not and that these two parts are designed to come 
into reunion after a time interval of T. From Eq. (48) and Eq. (50), the vanishing ofA occurs 
when 

(51) 

The inteference pattern that gives the maximum intensity yields 

2+2cos( ;I-(C)) =2+2cos[ 2r( 2E2-no6+;;-)]. (52) 

Then n-dependence of F(C) is as follows: the larger II, the smaller the magnitude of the phase 
F(C), which causes the change of the interference pattern even for the same Hamiltonian. Putting 
n = 0 recovers the result obtained by the usual CS. Thus the present result is a natural extension of 
one obtained before.27 

V. DISCUSSION 

We have tried to extend the realm of CS and their path integrals with success at least math- 
ematically in the present paper. We also see that the formalism gives a new insight into the 
topological problems in quantum physics. Future problems are as follows. 

First, the CS will play an important role in the problems where the quantum mechanical 
motions are closely related to the general n-th eigenstate of the harmonic oscillator; for example 
the problem of an electron moving under a strong magnetic field, which is related to the lowest 
Landau level and once treated by the CS method,30 can be easily extended to the case of any field 
strength that is related to the general Landau level. 
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. Second, the extension of the present path integral formalism to wider CS classes may be quite 
intriguing from the viewpoint of mathematical physics. Some works toward the direction will be 
treated in subsequent papers. 
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APPENDIX A: MATRIX ELEMENTS AND THE GENERATING FUNCTION 

This appendix is designed for the reference of the matrix elements in Sec. IV B. Here we 
demonstrate the simple case of 1 a) = 1 a,n), which is sufficient for Sec. IV B; more general cases 
are obtained just in the same manner. 

Consider the following function: 

where we used the definition of D,, , i.e. Eqs. (8), and the multiplication of b. Clearly, 
X(,LL,~*) is the generating function13 for the matrix elements: 

(~,~l(~+,“(;~~l~,~)=( -jg( - -&)vxhP*~lp;o. 642) 

For example, 

Oz 

-zl (- I)( ~)r”~~‘~~~‘). (A3) 

APPENDIX B: COHERENT STATES AS EIGENVECTORS 

The original definition of the canonical CS 1 a) is the state which is the eigenstate of the boson 
annihilation operator 6 with an eigenvalue a: 6 1 a) = al a). A question arises: are our CS the 
eigenstates of any operators? If so, what are they? For simplicity let us consider the case of 
‘flo>=b>. W e h ave two different answers to the problem. 
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The first approach starts by operating L?(a) on the relation &+Gjn)=njn). By Eq. (20), we 
obtain 

(C;++~*)(Li-~)I~,IZ)=nla,n), (Bl) 
which clearly gives us one of the possible answers. 

We can look the problem from another point of view. From the defnition of the CS, 

rs( cY)2+1 5,‘((Y)((Y,n)=O, 

which, together with Eq. (19), gives 

03% 

(&a)n+llcY,n)=O. (B3) 

Therefore our CS is the generalized eigenvector belonging to the generalized eigenspace which is 
well-known in the theory of linear algebra for the nilpotent groups.31 It is obvious that taking 
rr = 0 brings us back to the relations that the usual CS fullfill both in Eq. (Bl) and in Eq. (B3). 

Moreover one can see that the latter argument holds also for the case of a general starting 
vector ( &); we only have to replace n with N, where N= max IZ. 

APPENDIX C: ALTERNATIVE DERIVATIONS OF THE ACTION 

There are alternative derivations that lead us to Eq. (32). In (26) we can write 

(ajYjlCZj-l)zeXP [ -(Ctjl~lCTj)C] (as E-0). (Cl) 

With the aid of (Cl), one can easily obtain the same expression as Eq. (32) for the propagator 
except that the action is replaced by 5, where 

(C2) 

But substituting Eq. (7) into the first term in the parentheses in Eq. (C2) gives 

where the use was made of Eqs. (21). The result reveals that $=S, which completes the proof. 
The formula of Eq. (C2) is not restricted to the canonical CS, but works well also for the general 
CS, though the derivation is somewhat formal as we have seen here. 

We may also calculate the term (al(~/~t)lcu) with the aid of Eq. (17): 

c4fl4=c~l$lP)~ =(a-$+B*+)(alPLp? CZ=,Q 
(C4) 

which again results in Eq. (C3), hence in Eq. (33). 
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The Seiberg-Witten equations, when dimensionally reduced to R2, naturally yield 
the Liouville equation, whose solutions are parametrized by an arbitrary analytic 
function g(z). The magnetic flux Cp is the integral of a singular Kaehler form 
involving g(z); for an appropriate choice of g(z), N coaxial or separated vortex 
configurations with @=2~rNle are obtained when the integral is regularized. The 
regularized connection in the R’ case coincides with the kink solution of y.~~ theory. 
0 1996 American Znstitute of Physics. [SOO22-2488(96)01607-61 

The Seiberg-Witten equations’ do not admit nonsingular solutions unless the curvature of the 
four-dimensional base manifold M happens to be negative over some regions of M. In particular, 
if M=R4, the Weitzenbock formula implies that the modulus squared of the spinor field 1/1 must 
either vanish everywhere, or exhibit singularities instead of local maxima.’ There is also a global 
restriction on flat-space Seiberg-Witten solutions: Integrating the Weitzenbock formula, Witten’ 
showed that all nontrivial flat solutions, including dimensionally reduced ones based on R3, R2, or 
R’, are all necessarily non-L2. 

Such singular, non-L2 solutions, while probably not useful for Donaldson theory, may never- 
theless be of physical interest. For example, Freund recently recognized that a singular U(1) 
magnetic monopole field and an accompanying spinor, found earlier by Giirsey in a different 
setting, solve the R3-reduced Seiberg-Witten equations.3 The monopole being the characteristic 
topological object in R3, one may inquire whether there are R2 and R’ Seiberg-Witten solutions 
corresponding to vortices and kinks, respectively. The chief purpose of the present note is to show 
that such solutions indeed exist. A novel aspect of the RR (ns2) case is that the three coupled 
Seiberg-Witten equations (we should properly count F= dA as one of the three) can be reduced 
to a single nonlinear one. This happens to be the Liouville equation,4 which has recently been 
related to N =2 supersymmetric Seiberg-Witten theory in another context.5 

We follow the conventions of Akbulut6 in the choice of the Dirac y-matrices 

Y’=i :I ;), ?=iiT3 y, 
(1) 

i 
0 -ia2 

i i 

0 
Y3’ o , r”= 

- iul 

-iu2 -icrl i 0 ’ 

and the self-dual Zij 

x12=; ur’,r21+w,Y41)= ‘; ; , (’ i 

“Permanent address: Physics Department, Bogaziei University, 80815 Bebek-Istanbul, Turkey. 
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p,,=; {[+,r4]+[&Y3]}= 

Taking a spinor @=(a,b,O,O), a connection iA,, and its curvature iF,,=i(d,A.- d,,AJ, where 
p,u= 1,2,3,4, the first of the Seiberg-Witten pair is nothing but the Dirac equation 

yC”( d,+ iA,) JI= 0. 

In the notation of Ref. 6, the second Seiberg-Witten equation becomes 

(3) 

where 

ut+[ “a’2z’2) (,b,:;a,2) j 
and 

p(iFi)= f (F,,+~p,)~Z,,=~ FpLY~pY. 

(4) 

(5) 

(6) 

The vortex solutions in R2 follow from the Ansatz 

A,= (A I ,Az,W), (7) 

G*=(a,b,O,O), (8) 

where all quantities are assumed to depend only on x I and x2. Putting (7) and (8) in (4), one finds 
two possibilities: either (a#O, b=O) or (a=O, b#O). Choosing the first, (4) reduces to 

while (3) yields 

-F,,= -B3=lu/2, (9) 

We now set 

(-d,+iC~~)a=(iA,+A~)a. (10) 

u=a exp(w,+iw,), (11) 

where (Y is a constant with the dimensions of inverse length as required by (4). This unusual 
dimension for the spinor field of course comes from the vacuum expectation value of the Higgs 
field in the twisted supersymmetric Yang-Mills theory underlying the Seiberg-Witten approach.7 
Dividing both sides of (10) by a, applying (-a, -id,), and separating real and imaginary parts, we 
find 

(d~+c#)w,=-B3=a2 exp(2w,) (12) 
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and 

(d:+d2,)~~=-(d~~~+d~~~). (13) 

In (12), we have also used (9). It is convenient to introduce the dimensionless coordinates x: = oxI 
and y = LYX~ with a>0 and to define ~$3 =x + ( - )iy . The equation (12) then becomes 

4d$,-o,=exp(2o,). 

This is, of course, the well-known Liouville equation. Using (10) and (11) we obtain 

(14) 

A I = a)( dp,- d,o,) (15) 

and 

AZ= - cr(a,w,+ dp,), 

which show that (13) is automatically satisfied. Equation (14) has the solution 

(16) 

1 
wx=- In 

4(dgldz)(djgdzl 
2 t1-&T~2 ’ (17) 

due to Liouville? At this point, g(z) is an arbitrary analytic function. Comparing (17) with (1 l), 
we see that 

which naturally suggests 

& G WY= +arg -&= Targ z. 

Note that this also makes wr harmonic and enforces V.A=O via (13). We finally take 

dgldz 
a=2a (l-gg)’ 

leading to 

B 
3 
= _ 4~21&ldz12 

(l-d2 . 

The U(1) curvature is thus seen to be the Kaehler two-form 

F= f F12dxIAdx = 
-2i dgildg 

2 & F,,dzAdT= - 
e tl-sd2’ 

09) 

(20) 

(21) 

(22) 

where we have brought out the coupling constant e which was hidden in A, all along. We can also 
combine (15) and (16) into the one-form 

(23) 
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A number of remarks are in order: 
(i) The singularity dictated by the Weitzenbock formula manifests itself in (20)-(23). The 

solutions are singular in the z plane along a curve defined by gg= 1. One can easily trace the 
minus in (1 -gg’) to the relative plus sign between the two sides of the Liouville equation (14); 
introducing a relative minus sign in (14) changes all the (1 -ggT factors to (1 +ggT without 
affecting anything else. 

(ii) Remarkably, (14) and (22) also arise in a twice dimensionally reduced Ansatz leading to 
vortexlike solutions of the self-dual Yang-Mills equations8 Since the R4 self-dual Yang-Mills 
(SDYM) system is conjectured to generate all integrable systems through various dimensional 
reductions, the appearance of (14) in both the SDYM and the Seiberg-Witten contexts may be 
regarded as an additional clue for similar integrability properties of the latter. Furthermore, putting 
e”‘* = u in the Liouville equation (14) and performing a further dimensional reduction by demand- 
ing u = u( IzI = r) results in the differential equation for the third Painleve transcendent with y= 1, 
CY=P=~=O, in the notation of Ince.’ Thus the Seiberg-Witten equations also exhibit a Painleve 
property, considered an indication of integrability. lo 

(iii) In the SDYM case, passing from the (-l- + + +) R4 to the twistor-based (+ + - -) R272 
supplies the change in the relative sign in (14) converting the singular (1 -ggT-’ factor into 
(1 +&?a-‘; the same obviously holds in our problem as well. 

(iv) The curvature form (22) remains unchanged under g--t l/g, just as it would under a gauge 
transformation. Indeed, this inversion of g precisely gives rise to the U(1) gauge transformations 

LT a-a’=-a 
g 

(24) 

and 

8 
eA-teA’=eA+id In g (25) 

on the spinor field and the connection, respectively. 
We now wish to restrict the choice of g(z) by physical considerations. In Freund’s case, SF 

gives the quantized magnetic charge; it would be natural to expect that SF=@ is a quantized 
magnetic flux in R2 for an appropriate g(z). This requires that we somehow “regularize” the 
singular integrand (22); happily, different approaches to making sense out of SF give the same 
result, as we shall see. Let us start by considering the R292 version of (22), which becomes the area 
of the Riemann sphere stereographically expressed onto the g plane: 

(26) 

Note the overall sign change due to the change in the rhs of (14). 
Trying g = z ’ for an axisymmetric solution centered at the origin, we find 

47rv 4TV m dw ~ITV 
cP=7 

I 

cc (2vP-1) 

0 (l+r2Y2 
dr= - 

e I 1 q-=e* (27) 

where we have put w = 1 + r2’. We note that the gauge transformation (24) results in 

The single valuedness of a’ at 0=27~ allows the v values 
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v=;,1,+ )... . (29) 

We need not consider v+ - v as this only amounts to the gauge transformation g--t l/g mentioned 
earlier. Of the values in (29), it is the v= i that corresponds to 2nYe, i.e., the Nielsen-Olesen” unit 
of flux. Thus g = zu2 represents the basic single-vertex solution, while g = z”‘~ corresponds to a 
single vortex with n units of flux. It is now easy to verify that 

(30) 

describes n vortices centered at the locations ak=(akn + iaky). To do this, we first switch to the 
compactified version of (23), which becomes 

@g g47 ~-~ 
tlfgi3 tl+gFJ 

Next we use the g(z) of (30) in 

(32) 

where dR’ is a clockwise circle whose radius goes to infinity. Since lg(+ Iz~‘~~ 91 on dR2, we 
obtain 

@=-& P 1 nd”-n!r I 2n7T 
=- 

812 Z z e * 
(33) 

The similarity of expression (30) to Weierstrassian functions suggests we might consider a doubly 
periodic solution on a two-dimensional lattice, with one vortex per unit lattice cell. Let us take w1 
and w2 as the two basic lattice vectors, subject to the usual restriction Im(~lw,)fO. For a pair of 
integers (n i ,n,), w=nlol +n,w, is a point in the lattice. We can now choose for g(z) the square 
root of the Weierstrassian quasi-periodic function a(z), i.e., 

(34) 

The exponential factor is needed to ensure the convergence of the product. 
Another method for defining the integral of the singular expression (22) is as follows. If we 

attempt to calculate Cp starting from (22), we obtain 

4rrv 
cp=-- 

e 
) 47rv = dw 

d,-=-- 
e I-- 

w=r2’- 1, 
-1 w 

29 

instead of (27). Adopting Speer’s analytic regularization,‘2 we define 

~t-lP)=/;l $=[ /;lw”dw]kzW2=-l. 

(35) 

This is equivalent to writing I( - l,m) = I( - ~,~)-I(-~,- 1) and throwing away the infi- 
nite “constant” I(--~,~). Thus we get the same answer as in the compactified R2P2 formulation. 

Now let us return to Eq. (8) and ask what happens if we take a=O, b#O. It is easy to check 
that one still ends up with the Liouville equation (14); the changes consist of B,+ - B3 and 
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(dad?) 
b=2ff (l-gd’ (37) 

Thus while it is not possible to change the direction of the magnetic field by g+ l/g, antivortices 
can be obtained by (a(g),O)+(O,b(a), B,-t - B,. 

Finally, let us briefly examine the n = 1 case. A possible Ansatz is 

and 

A,=~W,O,A~~I)) (38) 

~T=(u(xl),b(x,),O,O). (39) 

The Seiberg-Witten equation (6) demands either $r= (a,u,O,O) or @r= (a, - u,O,O). Taking 
a = LY exp( w,+ io,,) as before, these two cases yield 

d,(w,+iw,)=tA4, (40) 

respectively. Thus in order for A4 be real, I+ can at most be a constant, which we may take to be 
zero. Then, using (3) we obtain 

d:mx= a2 exp(2w,). (41) 

Calling axI =x again, (41) is seen to be a y-independent version of the Liouville equation (12). 
While (41) may be integrated directly by elementary methods, it is simpler to read off the solution 
from (17) by picking a g(z) such that the variable y disappears in w, . This happens only for 
g(z) =exp K(Z +x,-J, K and x0 being constant real numbers [an imaginary constant added to x0 
cancels out along with the iy in (17)]. We may as well set x0=0, which gives 

1 4K2e2Kx 
ux=z ln ( 1 -e2KX)~. 

This results in 

(42) 

(43) 

A4= ?CYK coth KX, (4.4 

and 

(45) 

The expected singularity appears at x=0 in (42)-(45). In contrast, the nonsingular version ob- 
tained by xt+ix, has (l+e2KX)-2 in (42); in addition, cash KX and sinh KX in (43)-(45) are now 
switched. Thus A, changes into +a~ tanh KX, which is the well-known kink (antikink) solution of 
(p” theory. 

In conclusion, we see that the dimensionally reduced Seiberg-Witten equations in R” (n 
=1,2,3) yield a singular version of topological solitons characteristic of each n, the n=3 case 
being represented by Freund’s monopole solution. The accompanying spinors are, of course, the 
new feature associated with these familiar solitons. The n=2 case indicates connections between 
integrable systems and the Seiberg-Witten equations. Finally, it should be interesting to look for 
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solutions of the Seiberg-Witten equations reduced to a two-dimensional manifold admitting nega- 
tive local values for the scalar curvature and see how this affects the singularities. 
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Transformation bracket relating 2D harmonic oscillator product states with differ- 
ent sets of Jacobian coordinates is derived for systems composed of an arbitrary 
number of particles with arbitrary masses. The numerical diagonalization of the 
Hamiltonian of a three-electron quantum dot is given as an example to illustrate its 
applications. 0 1996 American Institute of Physics. [SOO22-2488(96)00606-81 

I. INTRODUCTION 

In recent years, mesoscopic physics is a rapidly developing field of research. Due to the 
advances of microfabrication technology in semiconductors, it is now possible to confine the 2D 
layer of electrons gas into dots of nanometer size,ls2 where the motion of electrons in all the three 
dimensions are quantized. Experimentally, the number of electrons trapped in each dot ranges 
from one to several hundred and can be controlled very effectively by adjusting the gate voltages 
applied. Therefore quantum dots should be treated as disk-like atomic systems. 

So far, quantum dots have been experimentally investigated by capacitance-voltage 
spectroscopy,” vertical tunneling,4 in-plane transporC5 as well as far-infrared spectroscopy in 
quantum dot arrays.6 The accumulated data did not vary as smoothly as those predicted by 
Hartree-type calculations, but showed rich structures. Understanding of the data requires that the 
electron-electron interaction be treated exactly. The confinement potential is, of course, shape- 
dependent. To most of the quantum dots, harmonic oscillator potential is a good approximation.7 
The Slater determinants composed of single harmonic oscillator functions can thus be used as 
basis functions to diagonalize the Hamiltonian. The drawback of this formalism is that the trivial 
c.m. motion has been included. To separate the cm. motion from the relative, a set of the c.m. and 
relative coordinates should be introduced to describe the system. However, the (anti-) symmetri- 
zation of harmonic basis with relative coordinates as variables is automatic in the case of two 
electrons’ but a nontrivial matter for systems with N>2. In Ref. 9, Hawlyrak has proposed a 
scheme to construct the antisymmetric basis functions using Schwinger’s coupled Boson repre- 
sentation. 

In this paper we presented the transformation bracket relating product states of harmonic 
oscillator functions with different sets of Jacobian coordinates. This bracket can have many ap- 
plications: first of all, since any particle permutation just transforms one set of Jacobi coordinates 
into another, properly symmetrized harmonic basis functions in coordinate space can be con- 
structed with the bracket; second, the matrix elements of any pair of particle-particle interaction 
can be reduced to one single integral; finally, since the Jacobian coordinates are indispensable for 
describing the rearmngement scattering process, the bracket also plays a powerful tool for solving 
the problem of single electron tunneling through quantum dot on the exact quantum mechanical 
basis. lo 

The following section is devoted to deriving the transformation bracket for 2D harmonic 
oscillators. In the third section, we present an example to show how the transformation bracket can 
be applied to solve the quantum dot problems. 
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II. TRANSFORMATION BRACKET FOR 2D HARMONIC OSCILLATORS 

Consider a system of N particles with coordinates ri , and masses mi, moving independently 
in a 2D harmonic oscillator potential well with the frequency o, the Hamiltonian reads 

Hclil j$Vzi+ kmiW’l+ . ( I i 
A set of Jacobian coordinates for the system mean the components of a set of (N- 1) independent 
values {sj} such that each vector represents the displacement of the c.m. of one subset of the N 
particles from the c.m. of another subset and such that no two such vectors connect with the same 
c.m. Associated with each Jacobian coordinate vector Q ,,~j will be the reduced mass of the pair 
of particle clusters the c.m. of which are joined by ~j. Then the following relation is fulfilled 

H=H,.,+H,, (2) 

where 

-fi2 -v2 -I- ~Mo2R2 Hem= 2M R 2 3 

(3) 

where M is the total mass, M = Cy= *mi. R is the c.m. coordinate of the system, H,, describes the 
c.m. motion, H, describes the relative motion which we are mainly interested in. From Eqs. 
(2)-(4), we know that the cm. motion is separable from the relative motion. This feature retains 
when particle-particle interactions are turned on. The c.m. motion is a harmonic oscillator and the 
relative motion is (N- 1) harmonic oscillators with the same frequency. Let us define a vector 
creator v by 

whose components qx and 77~ create quanta in the x,y oscillators, respectively. Then the Hamil- 
tonian of an oscillator h and the angular momentum operator L, in this representation are 

(6) 

L,=-ifiqXv+, (7) 

where lf is the Hermitian conjugation of r;l. A 2D harmonic oscillator function with eigenenergy 
(2n + Irnl + 1 )hm and angular momentum mh can, in the 9 representation, be written as 

bm)=N,,(w vY( ~x+i~mvy)lmllO)~ @I 

where IO) denotes the normalized ground state, N,, is the normalization constant, S,n is the sign 
of m given by 

J 1 
Nnm= 22n+lml(~m~+~)!.~!’ (9) 
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+. 

i ’ 

if m>O, 
&= - if mC0. 

Thus for the relative motion of the N-particle system, we have 

N-l 

(10) 

(11) 

and the corresponding eigenenergy ELKI and angular momentum L,t,, are given by 

N-l 

(12) 

(13) 

where [K] denotes a Set of 2(N- 1) qUantUm numbers (nl,n2,...,n,-,;rnl,rnz,...,rn,-,). 
Making use of the factorization 

1.r7=t71x-i77y)t7j)z+iq~), (14) 

we can rewrite Eq. (11) into 

N-l 

IQ=,Q, {Nnjmj(~jx- Tjy)“;(Tjx+iVjp)‘)IO) 05) 

which will be more convenient for our following purpose, where 

nj, if mj>O, 
EJ= nj+ Imjl, 1 

c,= nj+ Imjl> 

i 

if mj>O, 
if mjGO, J nj, if mjCO. (16) 

For N>2 there are more than one set of Jacobian coordinates that can be assigned to the system. 
The different possible sets of Jacobian coordinates are related to each other by linear transforma- 
tions 

N-l 

ms;“)=,z, Undo.@” (i= 1,2 ,..., N- l), (17) 

where all the u#? form an orthogonal matrix. Thus the Jacobian coordinates and the reduced 
masses and the creation-operators appearing in the above equations should be identified by super- 
scripts a,&.., y, etc. Since such superscripts are absent from the terms on rhs of Eq. (1) and since 
they are superfluous to the c.m. quantities, Eqs. (2)-(4) imply that the following relation holds for 
any two sets of Jacobian coordinates for a given N( > 2)-particle system 

(18) 

Therefore an eigenstate in one set of Jacobian coordinates can be expanded by eigenstates of 
another set of Jacobian coordinates belonging to the same eigenvalues EtKl and LztKl 
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IF+“‘= 2 B;&(N,c@)IK’)(~), 09) 
[K’l 

where B[i!](N,a/?) is the transformation bracket we are looking for. 
With the definition of vector creator in Eq. (5), it can be easily verified that the creators 

associated with different sets of Jacobian coordinates are subjected to the following transforrna- 
tions 

N-l 

#‘= Jz* .pp . (20) 

Substituting Eq. (20) into Eq. (15) and expanding it in terms of the eigenstates in the ,B set, we 
obtain 

,..., &4;4,n”2 ,..., G-1) 

N-l 

_ q(,P)]"'j[ ,!P)+ i ~!P']'l}lO), 
JY JX JY 

where A@ is defined by 

1‘@(6-+2 ,..., i&-,;zl,z2 ,..., zN-,)= ‘,‘Z...‘N-, s,s*...sj%J-, r,r*...lN-, 
(22) 

Summations in Eq. (22) are subjected to the conditions XEI’ri = zI, czllsi = gz ,..., 
Cy=-I’fi=iZN-I, and (r,s ,..., t) refers to (N- 1) different sets of variables. 

Comparing Eq. (21) with Eqs. (15) and (19), we obtain the transformation bracket we are 
looking for 

A”‘(z& ,..., kl;n’;,< ,..., cN4) 

The relations between n j, mj and Zj , gj of Eq. (15) hold also for nj , ml and q ,$i. 
In computing B[,,] “I (N, cup), it is helpful to take notice of the following properties 

BI~~](N,ap)=Bf~;‘tN,pru), (24) 

1= c dKl, 
[k’] ‘K I 

(N,cQ)~[;;~(N$~) (25) 

which can be derived directly from its definition. 
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(1 
(a) (b) 

FIG. 1. Jacobian coordinates for three-body systems. 

III. APPLICATIONS 

Consider the motion of three electrons in a quantum dot with parabolic confinement 
V( ri) = 1/2m * a&-f, where m * is the effective mass of electron. The three sets of Jacobian coor- 
dinates that can be assigned to the system are shown in Fig. 1. The linear transformation coeffi- 
cients defined in Eq. (17) obviously fulfill, in this case, the following relations 

&.G(JBY=*Y.ff 
IJ ‘J ‘J (26) 

with 

1 VT3 -- -- 

(@)= ; ; . r i -- 
-T 2 

A. The Hamlltonlan matrix elements between two harmonic states 

The Hamiltonian describing the relative motion of three electrons can be written as 

Hrcf$Vi=j+ $ v>$zl+~j u(rij) 
2 

with 

1 e2 
U(rij)= gm*o$s+ - 

4TErij ’ 

(27) 

(28) 

where the term proportional to rij arises from the confinement. A noteworthy point is that there 
exists a minimum in u located at rij=ro~(3e2/4=~m*o~)“3. 

The Hamiltonian matrix elements HcKl,LK,l is then written as 

where 

(30) 

(31) 
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Ha= u’““,s, m42,n;&2.m;, n,,n, .” I (32) 

Hb= c c B~,K~,,(?,a~)0$4 3,np) d$,sm; ,q&;,q&; ,,;I> (33) 
[K”] [K”‘] 

[Kl Cm;‘) 
H,= c c Bt:jl(3,ay)B,,,l(3.ay)U~;,~TS,;,,, I,, 8 I, 111 s II (34) 

[K”] [K”‘] n2s”2 m2Jn!J* 

u$= h?l(Q45>~,~,(i3~5~ I 
The integrations in Eq. (35) can be carried out analytically. 

(35) 

B. Antisymmetrication of the basis functions 

When dealing with the identical particle systems, the basis functions should have the permu- 
tation symmetry as is required. In the case of three-fern-non system with total spin S= 3/2, the 
antisymmetrized function (p,(123) constructed from 2D harmonic states is of the following form 

+[~,,,,(~y')~n2,2(~))1} 

=[zl ${s,,l,~~~l+o~~~l(3,pa~+~~~!1~3,m~~~~,;,;~~~~~~~~~~~~~l~ (36) 

In the case of fermion system with S= l/2 

~j(123)=Q,<123)X~/2+Q,(123)X:/2, (37) 

where 

Q,( 123)= ~(2P,+2p,2-P,,-P2,-P,2,-P,,2)[~,,,,(~u’)~~~~2(~‘)1 
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S=3/2 
0.40 ( , , , , , 

0.39 - 

0.38 - -- 

0.37 - - 
E(meV) - - o . 36 

- 

0.35 - .- 

0.34 - -.. 

--- 

- 
-- 

.- : 
: 

.L.i 

--- 
= -- 

-- 
.- ., ; 

- 

-- - = -- 1 -- 

..; 

-4 a 
0.33 ’ 
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L 

E(meV) 

0 2 4 6 8 10 

FIG. 2. Energy spectra of three electrons in a harmonic well with q=O.Ol meV and without a magnetic field. The other 
parameters are taken appropriate for C&As. The dotted lines are to guide the eyes to detect the magic numbers. 

In the above equations, t(i) is a spin state of the ith fermion, xi is the spin-part wave function 
with the total spin S, and with the spins of particles 1 and 2 coupled to s; QO and Q, are the spatial 
parts, P, denotes the permutation operator. A set of antisymmetrized functions (~j(123)) so 
obtained are, in general, linearly relevant, from which a set of orthonormalized basis functions can 
be constructed through the well known Schmidt procedure. 

Before going to the details of the numerical results, let us discuss the implications of anti- 
symmetrization on the geometric configurations. The minimum of total potential energy 
U= Z;>,u( rij> is associated with an equilateral triangle (ET) with sidelength ‘ii= r. . The system 
should favor this configuration in order to minimize the averaged total potential energy. However, 
the antisymmetrization imposes restrictions on this pursuance. Let @‘r. be the spatial wave function 
with angular moment L and spin S = 3/2. Since in the ET configuration a cyclic permutation of the 
three particles is equivalent to a rotation of 3rrl2, we have 

Thus we have 
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a 

b 

PIG. 3. Wave function distribution of the lowest state with (a) magic angular momentum: (b) non-magic angular momen- 
tum. The two dots on the front edge are positions of particles 1 and 2 with a separation ra. 

In other words, the most favorite ET component of the configurations will be completely prohib- 
ited in the L# 3k (k=integer) states and this must lead to particularly high interacting energy. 
Similar arguments can be applied to the S= l/2 states. In contrast with S=3/2, the ET-prohibition 
will occur in the L = 3 k states when S = l/2. 

In Fig. 2, we presented the quantum spectra of three interacting electrons in a harmonic 
potential with a very small w. (=O.O 1 meV) to emphasize the interaction. From the figure, one can 
see that the lowest state of a magic number of angular momentum (without ET-prohibition) is 
much lower than that of the adjacent non-magic numbers. In Fig. 3, we presented the wave 
function distributions of a magic-number state and a non-magic-number state for a comparison. In 
a magic-number state, the ET configuration is strongly pursued in order to minimize the potential 
energy while in the non-magic-number state the ET configuration is a node of the wave function 
demonstrating the ET-prohibition. The appearance of such a node increases both the kinetic and 
potential energies. 

Experimentally, a vertical external magnetic field is applied. With the symmetric gauge, the 
Hamiltonian remains the same as Eq. (28) except for a replacement of oo+ dw with the 
cyclotron frequency w, = eBlm*, and the additional Zeeman terms (w,L/2+g*pgBSz). The Zee- 
man terms make states with larger L be even lower than states with smaller L when the magnetic 
field increases. From Fig. 2, it is easy to understand why the ground states occur only at the magic 
numbers of angular momentum. 

Finally, we would like to emphasize that the appearance of magic numbers of angular mo- 
mentum is completely due to the restrictions of geometric symmetry and permutational symmetry 
and has nothing to do with the details of the dynamic symmetries. With nonparabolic confinement, 
the cm. motion is inseparable from the relative. For three electrons, the most favorite configura- 
tion continues to be the ET with its c.m. sitting on the minimum of the confinement and the magic 
numbers are of the same as discussed above. 
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We study the existence of condensate solutions for the Chern-Simons-Higgs model 
with the choice of a potential field where both the symmetric and asymmetric vacua 
occur as ground states [see Hong, Kim, and Pat, Phys. Rev. Lett. 64, 2230 (1990) 
and Jackiw and Weinberg, ibid. 64, 2234 (1990)]. We show that if the Chem- 
Simons coupling parameter k is above a critical value, no such solutions can exist, 
while for k>O below this critical value there exist at least two condensate solutions 
carrying the same quantized energy, as well as electric and magnetic charge. This 
multiplicity result accounts for the two vacua states present in the model. In fact, as 
k-+0+ it is shown that the two solutions found “bifurcate” from the asymmetric 
and symmetric vacuum states respectively. 0 1996 American Institute of Physics. 
[SOO22-2488(96)03208-21 

I. INTRODUCTION 

In recent years much attention has been devoted to the anyon model (see Refs. 1 and 2) and 
to the corresponding condensate (or multivortex) solutions which are believed relevant in several 
aspect of theoretical physics as, for instance, in high-temperature superconductivity. See Refs. 
3-7. 

Mathematically, the anyon model is a classical field theory defined on the (2f I)-Minkowski 
space, whose Lagrangean is characterized by the coupling of the scalar field, the Yang-Mills (or 
Maxwell) field and the Chem-Simons gauge field. It is the Chem-Simons term responsible for the 
presence of electrically and magnetically charged multivortices, known as anyons. 

However in its full setting, the Euler-Lagrange equations relative to the anyon model take a 
complicated form, and so far a rigorous mathematical treatment of condensate solutions has been 
possible only for the reduced Abelian Chem-Simons-Higgs model where the Yang-Mills field is 
neglected. Such a reduction is justifiable at large distances and low energies where the Chem- 
Simons-Higgs term dominates the higher derivative Yang-Mills (or Maxwell) term. 

For a special choice of the Higgs potential, where both symmetric and asymmetric vacua 
occur as ground states, Hong-Kim-Pat* and Jachiw-Weinberger’ have observed that, in a full 
space settings, stationary vortex solutions for the Chem-Simons-Higgs model satisfy a set of 
Bogomolny-type selfdual equations similar to those obtained for the “classical” vortex theory, 
see Refs. lo-12 

Thus, topological solutions carrying quantized electric and magnetic charge were obtained in 
Refs. 13 and 14, while non-topological solutions carrying fractal values of the charges were 
established in Refs. 15 and 16. 

The same self-dual equations remain valid also under appropriate ‘t Hooft periodic boundary 
conditions, and were studied by Caffarelli and Yang in Ref. 17. They showed that, periodic 
multivortices (with assigned set of zeros for the Higgs scalar) exist, if and only if, the Chem- 
Simons coupling parameter is not too large with respect to the size of the periodic cell. 

In this note, we complete the work of Caffarelli-Yang, and obtain that, to any assigned set of 
zeros for the Higgs scalar, there correspond (at least) two distinct solutions with the same quan- 
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tized energy as well as electric and magnetic charge. This feature is in contrast with the classical 
vortex theory (see Refs. 10, 11, and 12) where a solution to the self-dual equation is completely 
characterized by the set of zeros of its Higgs scalar. However, for the Chem-Simons-Higgs 
model such a multiplicity property should not be surprising since it accounts for each of the 
vacuum state present in the potential field. In fact, we show that the solutions found can be 
“ordered” according to their superconducting properties; and, as the Chem-Simons coupling 
parameter tends to zero, the most superconducting solution tends (in a suitable norm) to the 
asymmetric vacuum while the other solution converges to the symmetric vacuum. 

We refer to Theorem 2.1 and 2.2 of the following section for the precise statements. 

II. THE CHERN-SIMONS-HIGGS MODEL, CORRESPONDING EQUATIONS AND 
STATEMENT OF THE MAIN RESULTS 

In this section we introduce the appropriate ‘t Hooft periodic boundary conditions (see Ref. 
18) and derive the analytical set up for the study of periodic multivortices in the Chem-Simons- 
Higgs model. 

For this purpose, we follow” and show that the selfdual equations of Refs. 8 and 9 remain 
valid in the periodic situations. 

The convention of summing repeated upper and lower indices will be observed throughout. 
We consider the (2+1)-Minkowski space R2*’ with metric tensor given by diag (l,- l,- 1) 

which we use to raise or lower indices. 
According to the Abelian Higgs theory (see Ref. lo), the gauge field A defines a connection 

over the principle bundle R2+‘X U( 1): 

A=-iA,dxv, A,=A,(~)ER, x=(x,,,xL,xz), 77=0,1,2; 

with corresponding covariant derivative D, = d - iA. 
The curvature of A defines the Yang-Mills (or Maxwell) potential FA , and it is given by 

F, = q F,,pdxaAdxP 

with Fap= c?&~-c?~A~, @=0,1,2. 
Thus, if 4=&(:x) is the complex valued Higgs scalar (a section over the associated bundle 

R2*’ X C) and we write 

D,$=D,+dxv with D,c$=d,+-iA,$ 7=0,1,2, 

the Chem-Simons-Higgs Lagrangean action density is defined by 

where V= V(l+l) is the (U(l)-invariant) Higgs potential, k>O is the Chern-Simons coupling 
parameter and the Levi-Civita tensor PPY,a,fl,~=O, 1,2; is fixed by P”= 1. 

The Euler-Lagrange equations corresponding to JZ are given by 

i k&yFap= j”=i( +D”qS- &Da+) 

D,(D”c$)= - $ 9 (2.1) 

where j”=(pj) is the conserved matter current density. 
We seek a static configuration of (2.1) subject to appropriate boundary condition to be speci- 

fied according to the gauge invariance of ;%: 
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For this purpose, we follow Ref. 17 and, as in Refs. 8 and 9, we obtain a reduction of (2.1) to 
a more convenient set of Bogomolny-type selfdual equation by the choice of the Higgs potential: 

(2.2) 

In fact, in the time independent situation, the w=O component of (2.1) yields to the relation: 

kF,,,=p= -2A,,lq51* (2.3) 

from which we derive the following form for the corresponding static energy density: 

k* F;, 1 
~(A,~)=lo,~12+1~291*+,~+i;z b#~~~Wb$~~)*. 

To specify the appropriate periodic boundary conditions, we recall the gauge invariance of LZ 
under the transformation: 

qS+e““+, A,+d,w, a=0,1,2, 

with o=w(x) a smooth function. In the stationary situation, the function o depends only on 
(x1 ,x2) so that the gauge invariance is expressed by the transformation: 

@ --+eiw+, A,+A,, Aj--‘Aj+djo; j= 1,2. 

Let fi be a basic cell in R2 generated by the two independent vectors a’ and a2, Namely, 

i2={x=(xl ,x2) ER2:x=Sla’+s2a2, O<Sj< 1 j= 1,2} 

with boundary, 

where 

. 
I’j={xE R*:X=S#O<sj< l}, j= 1,2. 

In view of the given gauge invariance we require the following ‘t Hooft boundary condition’* to 
be satisfied by a solution (4, A) of (2.1) in R: ei5k(x+a’)~(x+ak)=e’5k(x)~(n) 

Ao(x+a”)=Ao(x) 
(Aj+dj5k)(x+ak)=(Aj+dj5k)(x) j= 1,2, 
vx E  r * u r*P, k= I,2 

(2.4) 

where 5, and 6 are smooth functions defined in a neighborhood of I’*U{a’+r*} and T’U{a*+r’} 
respectively. 

To simplify notation, set &(s~ ,s,) = &(s1a*+s2a2) with OCsk<l, k= 1,2. Since C# is a single 
valued complex function, its phase change around R can only be a multiple of 27r and from (2.4) 
we are lead to the condition: 
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with N a suitable integer. 
As a consequence, we obtain that both, the magnetic flux @  and the electric charge Q are 

quantized on the domain cell R. In fact, from (2.4) and (2.5) it follows: 

Cp = Ajdx’= 2 rrN, (2.6) 

while (2.3) gives 

Q= np=k@=2rkN. 
I 

Thus, in analogy to the classical vortex theory (see Ref. 10) the integer N (known as the vortex 
number or flux) defines a homotopical invariant quantity as it counts the zeros of 4 (according to 
their multiplicity) inside the periodic cell R. 

At this point, following Ref. 17, we rewrite the energy density as follows: 

with E~,~= -E~,~, j,k=l, 2, and &*=l. 
Since, by the boundary condition (2.4), we have: $n~j~j~,~D,q5=0, we obtain the following 

form for the energy functional: 

Thus, the minimizer of E over the homotopically invariant constraint: 

I n 
F1,*=2rrN 

will have to satisfy the self-dual equation: 

Dlq5+iD2qb=0 

F1,2+; 1412(hd2- l)=O 
kF,,2+2Ao/qb12=0 

. 

(2.7) 

together with the boundary conditions (2.4) and (2.5). 
By direct inspection, it is easy to check that, for V given by (2.2), every solution (A, 4) for 

(2.7), satisfies the full set of second order equations (2.1). 
Equations (2.7), were first derived by Refs. 8 and 9 to hold in all of R*, provided (41 satisfies 

some appropriate decay assumptions. Periodic boundary conditions were treated by 
Caffarelli-YangI (see also Ref. 4) and here we have essentially reported their arguments. 

Concerning (2.7)k subject to the boundary conditions (2.4)-(2.5) we will establish an exist- 
ence and multiplicity result whenever the zeros of 4 are prescribed together with their multiplicity. 
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In Theorem 2.1 we complete the existence result of Caffarelli-Yang, I7 and use it to motivate 
the more interesting Theorem 2.2, where we obtain a multiplicity result. 

Roughly speaking, Theorems 2.1 and 2.2 assert that from the limiting value k =0 and each of 
the vacuum state [+I= 1 and I+/=0 it “bifurcates” a solution to (2.7), k>O, subject to the bound- 
ary conditions (2.4) and with a prescribed set of zeros for the Higgs scalar. 

By taking complex conjugate of 4 and A if necessary, we can always assume that N>O in 
(2.5) and obtain the following: 

Theorem 2.1 (Existence): Let p , , . . . ,p,,, be given points in R and n t , . . . ,n, positive integers 
such that C$, nj = N. There exists a critical value k, E (O,( l/2) Jm) of the coupling param- 
eter such that, Eq. (2.7)k subject to the boundary condition (1.4)-( 1.5) admits a solution (A, 4) for 
which p 1 ,. . .,p,,, are the zeros for 4 with multiplicity n i ,.. .,n, , if and only if O< ks k, . 

Furthermore, when O<kGk, then problem (2.7)k admits a solution (Ak, +J which, in addi- 
tion to the zero set property fixed above also satisfies: 

(i) The energy, magnetic flux and electric change of (Ak , dk) are respectively given by, 

E=2nN, @=2rrN, Q=2rkN. (2.8) 

(ii) The solution (Ak,4J is the most superconducting (or “maximal”) in the sense that the 
magnitude 14kl takes the largest possible values among all solutions to (2.7)k with the same 
zero set. 

(iii) The map k--+1 +,lO<k<k, is strictly monotone increasing; 
l$k,l<l in a; 
l&,1+1 as k-+0+ pointwise, a.e. in R and in W ’3s(fl), l<q<2. 
Fit; = d,Aik’ - d2A:k’-t2nZ,iN=, pj S in the sense of measure as k-O+, where each Dirac 
distribution S,,, is repeated according to the corresponding multiplicity nj , j = 1,. . . ,m. 

Theorem 2.2 (Multiplicity): Let p 1 ,.. .,pm E iI, n 1 ,. . . , n,E N CJ?inj=N and k, be as 
given in Theorem 2.1. 

If O<k<k,. , then (beside the maximal solution (Ak , $k)) Eq. (2.7)k admits a second solution 
(xk, Fk) satisfying (2.4)-(2.5) and for which p , ,. . . ,p,,, are the zeros of 6k with multiplicity 
I1 , , . . . ,n,, respectively. 

The formulas (2.8) hold respectively for the energy, magnetic flux and electric charge relative 
to (xk, qk) and 1 &kkl< I +kl in f% , ,. . . ,p,}. Furthermore, if N= 1 then, for every integer q30 we 
have 

II6kkllCq(fl, HO as k--+0+. 

We believe that the last statement in Theorem 2.2 should hold without the restriction N= 1. 
However, as well shall see in Sec. III, the condition N= 1 is essential for our method to work and 
a completely different approach is needed in order to treat the case N> 1. 

Theorems 2.1 and 2.2 will be proved with the help of a further reduction of Eqs. (2.7)k to a 
semilinear elliptic problem. This is in the spirit of the work of Taubes (cf. Refs. 12, 11, and 10) on 
N-vortex solutions in R* relative to the Ginzburg-Landau equations in superconductivity. In this 
situation, an analogous set of selfdual equations were first derived by Bogomolny” for the special 
value of the parameter which distinguishes between type I and II superconductors. In view of 
Bogomolny’s equations, Taubes observed that the Higgs scalar can admit only a discrete set of 
zeros with integer multiplicity. Furthermore, once that such zeros (and relative multiplicity) are 
prescribed, the N-vortex problem reduces (in a fixed gauge) to the single unknown u=ln([$~[*), 
which, according to the self-dual equations, will have to satisfy a semilinear elliptic equation in R* 
together with appropriate decay conditions. 
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In Ref. 14, Wang showed that an analogous approach is possible for the self-dual equations 
(2.7)k and obtained. a topological N-vortex solution in R* for each prescribed set of zeros of the 
Higgs scalar. Similarly, in the periodic situation, Caffarelli-Yang’7 obtained a condensate solu- 
tions by reducing the problem to the search of a solution for a semilinear elliptic equation on the 
two-dimensional torus. 

We will use the same approach and exploit the variational structure of the reduced elliptic 
problem (on the 2-torus), to obtain two solutions which define, respectively, a local minimum and 
a mountain-pass critical point for the associated action functional. In case N= 1, by means of this 
variational characterization of the solutions, we will be able to study their behavior as k+O+. We 
will see that, while (as expected) the local minimum converges, in a suitable norm, to a solution 
of a singular elliptic equation (involving some Dirac’s measures), the mountain-pass solution 
yields, at the limit, to a solution of a (more surprising) mean field-type equation, whose interest 
has emerged already in other contests. We are referring to Eq. (3) of Sec. III, and just mention that 
the corresponding Dirichlet problem (3)* is amply discussed in Refs. 20-22 in connection with 
the study of the statistical mechanics of point vortices as a possible approach to the understanding 
of 2D turbulence. 

We now proceed to derive our semilinear elliptic problem. To this purpose, as in Refs. 11 and 
12 we observe that the first of the equations in (2.7)k may be rewritten as: 

2TqS-iA+=O (2.9) 

where, i=A,+iA2 and ~=~(d,+id,). 
Hence, up to a nonvanishing multiple factor, #I is holomorphic and therefore it admits a finite 

number of zeros in R with integer multiplicity. 
Furthermore, solving for i in (1.9) we have 

6= -2ialn 4. (2.10) 

Denote by Z( 4) = {p i ,. ..,p,,,}CR the zeros of 4 each repeated according to their multiplicity. 
Setting z =x1 + ix2 and u(z) =lnl+(z)l*, we can assume that 4 takes the form: 

4(z) =exp t U(Z) + i ,$l.WtZePj) , 
i 1 

(2.11) 

where the somewhat arbitrary choice on the imaginary part of 4 merely reflects the gauge invari- 
ance of the equations. 

In view of (2. lo), from (2.11) we may recover the At and A2 components of the connection A 
by the formulas: 

Al= -Re(2idIn 4) (2.12) 

AZ= -Im(2idln r$), 

Contrary to what might seem, a straightforward calculation shows that Aj , j = 1, 2 defines a C” 
function on a. 

Consequently, the curvature component F i,*= d,A, - d,A i may be computed and by the last 
of the equations in (2.7), we also recover the LY=O component of A which is given by 

A,,= - q= - k, (dlA2-d2A1). 2141 2141 (2.13) 

Thus, problem (2.7), is reduced to the search of a periodic function u such that, 
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u(2)=nk ln lz-Pk12 as z’pk (2.14) 

(Irk is the multiplicity of pk), and 

Au= $ eU(eU- 1) in n\Z($), (2.15) 

where (2.15) iS just a restatement Of the second equation in (2.7)k, Since away from the zeros Of 
4, the function u is smooth and by means of (2.12) we derive: F,,,= - ~Au in flLZ(+). 

Putting together (2.14) and (2.15) we are reduced to finding a solution u on the (flat) 2-torus 
for the equation: 

N 

Au= $ e”(eu- 1)+4$, Spj (2.16) 

with S, the Dirac distribution concentrated at the point p. 
This task will be taken up in the following section. 

Existence of solutions for (2.16) 

We identify the doubly periodic cell R with the two-dimensional torus, R=R21ZXZ and let 
p , , . . . ,y,?,, be fixed points in a, repeated according to their multiplicity. Denote by u. the unique 
solution for: 

4rrN N 

Auo= - - 
IflI 

+4rrx Spj on R 
j=l 

I 

, 

n 
uo=o 

(2.17) 

(see Ref. 23). As well known, uo~CZ(‘R\(p , , . . . ,pN}) and if nj is the multiplicity Of Pj then u. 
behaves like: ln(lx - pJ2”j) as .Y-IPj. In particular, u. E W ’vq(R)V 1 <q< 2. If u is a solution to 
(2.16), then setting h=4/k2 and u = uo+ u we have that u is smooth and it satisfies 

4TN Au=~~uO+u(~uO+u- I)+ - 
If4 . 

u E  H’(R) 
(2.18)h 

Conversely, every solution u of (2.18) = h 4/kz gives rise t0 the solution u = u. -I- u Of (2.16). 
Thus, our effort, in this section, will be on searching for solutions (2.18), . 
To this purpose, we observe that (2.18), admits a variational formulation in H’(a). To see 

this, let us fix our notation so that, II &, denotes the norm in LP(R)p2 1, and 
Ilull=(llVull:+tlull~)‘n d e fi nes the norm for the Sobolev space H’(R). 

The Moser-Trudinger inequality (cf. Ref. 24): 

t1e>O there exists a constant C(e)>O: 

I n 
r’.GC(s)exp(( ~+CillV~ll:)v,.~‘(n,, I,u=O (2.19) 

and the fact that .&‘O E L”(n), imply that the functional: 
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z~tu>=; Ilvull;+; Jn(euo+u- 1)2+ g j), u Elf’(R), (2.20) 

is well defined, and Z,E C’(H’(R)). 
Furthermore, every critical point of I, in H’(a) defines a (weak) solution to (2.18)h. By 

means of variational methods we shall establish the following: 
Theorem 2.3: There exists a value A,> 16rrNIIal such that, 

6) if DA, then (2. 18)h admits, at least, two solutions u l,k and u2,x satisfying: 
u~,~<u~,~< -u. a.e. in fi2; 

(ii) if X=X, then (2.18)A admits a solution u* satisfying: u,<u2,A,VA>A,; 
(iii) if A<A, then (2.18), admits no solutions. 

In order to obtain Theorem 2.3 recall the following result due to Caffarelli-Yang. 
Theorem 2.4 (Caffarelli-Yang”): There exists a critical value A,2 167rNIIal such that for 

every A>A, problem (2.18)A admits a maxima1 solution ux with uo+ux<O in a. While for A<A, 
problem (2.18), admits no solutions. 

Remark 2.1: It follows from Ref. 17 (or (3.6) below) that if (2.18), admits a solution then 
necessarily A>16rrNIIRI. 

Remark 2.2: Although it is not explicitly mentioned in Ref. 17, it is clear that the maximal 
solutions uA are ordered with respect to A. Namely, if A> v>A, then uh>u 7l in R. TO see this, 
notice that u 17 is a strict subsolution for (2. 18)h, A> 7. In fact, 

4rN 47rN 
Au,= ~~“O+u~(euO+“~- l)+ -A~LQ+LJ,,(~~o+~~- I)+( ~-A)e”O+uv(euO+u~- l)+ - 

PI If4 
47rN 

>~e”Ofv~(euO+uV- I)+ - 
PI 

a.e.infi;infact,uo-l-u,<Oinfiandtberefore(~- A)e”O+un(euOf”~- 1) >Oinfi\(pi,...,pN}. 
Thus, by the sub-supersolutions method and the maximality of Us it must result that neces- 

sarily, u rl< ux in R. 
This monotonicity property allows us to obtain a solution for (2.18)h at A=A, as given by 

u*(x)= inf VA(X), XER. (2.2 1) 
OX, 

Lemma 2.1: The function u.+ as given in (2.21) belongs to H’(a) and it defines a solution for 
(2.18),,,=, in particular A,> 167rNllfil. 

Proof: By definition, ux--+u * p ointwise a.e. in R. We shall prove that, in fact, ux+u * 
strongly in H’(R), and this will suffice to obtain the desired conclusion. To this purpose, we show 
that if X,--+X,, then after passing to a subsequence if necessary, we have IIu A, - u.+ll--+O as n--too. 
Set u, = uA and write: u, 
follows that: 

= u; + c, with Jnu: = 0 and cn= l/lKIIJnu,. Since u,< -u. in Sz it 

cn< - p+ I nuo=o. (2.22) 

Furthermore, from Eq. (2.18)A = A,, we also denve 
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for a suitable constant c>O. In other words, 

hence, passing to a subsequence if necessary, we have that uA-u!+ weakly in H’(n), strongly in 
L”(a), Vpal and pointwise almost everywhere in R. By the compactness of the map: 

a E R (see Ref. 23) 

we may also conclude that, 

On the other hand, by means of the Eq. (2.18)x,x,, we also have 

and consequently, 

(2.23) 

,c,= /neuO+u:i: J( jaeuO+uA)2- y Jae2(u,+uA) 

n 

2 e2h)+4 
I n 

87rN 
=- 

42 

I 
e”Ofvi?: 

R 
J[ J~euo+~;)2~ y j-ae2(a,tv:) 

47rN 1 4rrN 1 
>- 

A, Jneuo+uA - - Xc Jneuo+vk 
as n++m; (by (2.23)). 

Thus c, is also bounded from below and (by passing to a subsequence if necessary) we can 
assume c,+co as n-+=x 

In other words, u,- u k + co weakly in H’(a), strongly in Lp(i2)p> 1, and pointwise a.e. in 
R. So necessarily, 

u*=u:,+c0EH’(~). 

Furthermore, as u, , u * < - u. in Sz, it results: 
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euo+“n-fyo+~* 
o< <l in R 

vn-v* 

and consequently 

/I 
(euo+“n-euo+~* 

lcp’ 
s 0. I i n eUo+~~I~Y*DIU*)lvn-v*IlYI+Jn-v*l1211~l12+o 

as n++a, VqoEH1(f2). (2.24) 

Hence, Joe *o+~“(p,Jneuo+“* cp and similarly, ~~e2(uo’v~)~~~~e2’uofU*‘50 as n-++m, 
Vpdz’(R). 

In other words, v* satisfies (2.18),=ic and by taking (p=vn-v* in (2.24) we also conclude: 

~2h,llv,-v*II~+0(1)~0, as n++m. 

Hence v,-+v* strongly in H’(a). 
Finally, it follows from Ref. 6 or (3.6) below that if (2. 18)x admits a solution then necessarily 

X>167rN/IRI and consequently X,> 167rNIjfll. 
In virtue of lemma 2.1, we are able to identify a solution for (2.18), variationally as follows. 
Lemma 2.2: For every DA,, problem (2.1), admits a solution which defines a local minimum 

for I, in H’(a). 
Proof It is clear that the solution v* of (2.1),,,c (as given by lemma 2.1) defines a strict 

subsolution for (2.1), for every A>&. 
Set 

A={vEH~(~):vZ-v, a.e. in a}. 

From the definition of the functional I,, (see (2.3)) we easily see that I, is weakly lower semi- 
continuous in H’(R) and it is bounded from below and coercive on A. 

Thus, I, achieves its infimum in A, and we denote it by wA. 
Namely, 

Zk(wi)=inf Zk, w*EA. 
A 

Since, for every X>X, , v * is a strict subsolution for (2. 18)h, we may conclude that wA is a critical 
point for I, in H’(R) (hence a solution for (2.18),). Although this is a well known fact, for 
completeness we have included a proof in the Appendix. Furthermore, by the maximum principle, 
we may also conclude that wh>u* on the compact 2-torus R. 

This says that c+ is a local minimum for I, with respect to the C’(a)-topology. We prove in 
fact that wA is a local minimum also in H’(Q)-topology. 

To this purpose, we follow an argument of Brezis-Nirenberg25 and argue by contradiction. 
Thus we suppose that, Vn EN 

inf zh<z*(wd. (2.25) 
1 

IIu--whll~; 

As above, we see that the infimum of (2.25) is achieved at a point v, E H’(Q) which satisfies: 
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(1) -A~,+XeU~fU~(eu~fV~-l)+4~Nl~~~=~n(-A(v,-w~)+v,-~~); 
(2) ‘,vn-w~“~ l/n. 

Clearly, v,*GO and, by the Sobolev embedding, [Iv,- w&+0 as n--++m. 
Consequently, 

-A(v.-wX)= - 
I%’ 

1+1771 (V,-WA)- j-+-q (e2(uO+v~)-e2(uO+wX))+ &  (e”O+un 
n n n 

-e”O+wA):=fn in a. 

f,e L”(a) VP> 1 and IJ~,II,~cIIv.-w~~~~c/ n, with C=C(p,X) a suitable constant indepen- 
dent of n. 

So, by elliptic estimates and the Sobolev embedding Theorem, for p>2 we derive that 
v~-w~EC~~“(~I), O<a<l and”v, - wJci(o)+O as n-++=~. But this is impossible, since wA is 
a local minimum for I, in the C*(a) topology while ZX(v,)=infilu_whl~~I,n Z,<Zx(wx). 

From now on, we assume that the maximal solution uA (cf. Ref. 17) is the local minimum as 
defined by lemma 2.2 (if not, we would have already found our second solution); hence it satisfies: 

3p~>o:z,(v*)~z,tv) ~v:IIv-v~ll~Po. (2.26) 

In order to find a second critical point, we observe that I, admits a “mountain-pass” structure (cf. 
Ref. 26). In fact, for c>O we have 

<A( 1 -epc) 
I 

e”O’“h-2rNc~-w as c-++w. (2.27) 
n 

In order to apply the minimax principle suitable to this situation we start by verifying a compact- 
ness property for I, as stated by the Palais-Smale (P.S.) condition. 

Lemma 2.3: Every sequence {v,}CH’(R) satisfying: 

(1) Zh(v,)-+cy as n-++w 
(2) IIZ~(vn)ll-+O as n--++w 

admits a convergent subsequence. 
Proofi We have 

k IIVuJ$+ i I,(eUO+Yn-1)2+ g /fiv,=a+o(l) as ~--SW (2.28) 

4rrN 
l)q+ - PI +J~ll~ % -+O (2.29) 

as n++m, (PEZZ’(R). 
By taking q= 1 in (2.29) we ,obtain 
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0(1)=X e”OfUn(euO+un-1)+4~N=A I I (&‘O+‘n-- 1)2+A 
n n I cl 

e”O+“~-Al~l+4~N 

>A 
I 

eUO+‘n-Alsll+4rrN. 
n 

Consequently, 

I euof~“q2’- y+o(l), as n--++m 
R 

and 

I 4rrN 
(e”~+u~-l)2~~~~--f0(1) as n--++m, 

n 

which yields 

I n 
e2(uO+vn)<2 Ifi’- ( y)+o(l) 

as n--++m. 
In particular, setting cn= l/IfiIJnv,, from (2.28) and (2.31) we derive 

IIbsl; 
a+ ; (4rN-A’fl’)+o( 1)s 2 +4rrNc,~a+o( 1) 

(2.30) 

(2.3 1) 

(2.32) 

(2.33) 

as n++w. 
Decompose v, = u:, + c,, Jnu,: = 0. By (2.29) with cp = u; we have 

/~Vv~~~~+A~~e2(UO~Y~)v~-A~~eu~~u~v~~~~//~~~~. 

Consequently, by (2.32) and the fact that c, is bounded above (see (2.33)) it follows: 

IiVv%+A/ae 2(uOfCn)(e2u~- l)vA<-A 
I n 

e2(uOfc&~+ enllv~ll+ A ( /ae2(uO+vJ) LRIIvJ12 

SCllvJl as n++w, (2.34) 

for a suitable constant C>O. 
Notice that, (e2’L - 1)~’ n 2 0 a.e. in a, and therefore, from (2.17) we derive 

IIv~II=sc, Vn EN. (2.35) 

In turn, (2.35) together with (2.33) gives that I c,I is also uniformly bounded, and consequently, we 
have 

IIv.II~C VneN 

for a suitable constant C>O. 
Therefore, after passing to a subsequence (which we still denote by v,J, we may assume that, 
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v,-v weakly in N’(R), strongly in LP(R)p31 

and pointwise a.e. in a. 
In particular, c,-+(ll]0])Jov =c; and passing to the limit in (2.29) we obtain that v is a 

critical point for Ix as it satisfies 

I Vv .Vq+A s 
2rrN 

eU~+U(eUO+U- l)cp+ - n n v-4 I .‘p=o VqDEzfyn). (2.36) 

Hence, by choosing (p=vn-v in (2.29) and (2.36), we conclude 

CCllv,-vll~+o( l), as n-++m, 

for p >2 and C’>O a suitable constant independent of n . Therefore, ]I V( u A - u ’ ) II + 0 and in turn, 
]]v,-v]]~C(]]V(v~-v’)~~2+1c,-cI)-t0 as n++m. 

We are now ready to conclude. 
The proof of Theorem 2.3: In view of lemma 2.1 and 2.2 and Caffarelli-Yang’s resultI we 

have that, problem (2.18), admits a solution if and only if X2X,> 167rNllfil 
Furthermore, for ABA,, such a solution defines a local minimum for I,, and, as already 

observed, it can be taken to coincide with the maximal solution vh for (2.18), (established by 
Caffarelli-Yang in Ref. 17). Therefore, (2.9) and (2.10) hold. In case vA is not a strict local 
minimum for I, then 

VO<P<Po, inf Z,=Z*(ud=q, 
ll~-~xII=P 

and, by an application of Ekeland’s lemma (see Ref. 26, Corollary 1.6) we find a local minimum 
v,,,~H’(fi) such that [Iv,-vJ=p, and Z,(v,)=q, Vpe (0,~~). Thus, in this situation, we obtain 
a one-parameter family of solutions for (2.18)A. 

In case vA is a strict local minimum for I, (by the arguments of next section, we believe that 
this is always the case for A-++m) then there would exist pr E (0,~~) such that 

inf Zh>Zh(VJ = “A (2.37) 
lb--uAII’P, 

and in view of (2.27): 

~A(vx-co>~~~(vd- 1 <ZA(VX) 

for some co>p,>O sufficiently large. 
Let .~={y:[O,l]+H’(R) continuous y(O)=u;,, y(l)=vA-co’) and set 

LY= inf sup Z,(y(t)). 
ye.Ptc[O.1] 

By (2.37) it results a>Zh(vA)>max{Z,( y(O)),Z,(y(l))} Vy~y. So by lemma 2.3, we see that I, 
satisfies all the hypothesis of the mountain-pass theorem of Ambrosetti-Rabinowitz2’ and we 
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conclude that EY defines a critical value for I,. Since ~>Z,(V~), the corresponding critical point u 
yields to a second solution for (2.18), . Clearly by the maximality of v ,, , it follows that u < u x in 
fi and the proof its completed. 

III. ASYMPTOTIC BEHAVIOR FOR THE SOLUTIONS OF (2.18)E, AS X--t+m 

In this section, we would like to characterize the different nature of the solutions found in 
theorem 2.3, according to their behavior as A--++m. 

In order to justify why a solution to (2.18)x should admit a limit as A-++w, we start with the 
following a priori estimates. 

Lemma 3.1: For every 9 E (1,2) there exists a constant C= C(q)>0 (independent of A and N) 
such that every solution v for (2.18), satisfies: 

“V(~o+~)~~~~C(4~N+“V~o”,) (3.1) 

Proof Let p=q/(q- 1)>2. Since USE W ’*q(fi), the extremal problem: 

sup 
iI 

V(v+uo)~Vq,qoE w’“(sz),“q”~l>P= 1 
n 1 I 

Cp’O (3.2) 
0 

achieves its supremum at some cpo E W ’,“(n), Jncpo=O, II cpoll w1.p = 1. 
Take as test function cp in (3.2) the (normalized) unique solution for the problem: 

f -Acp=div(~V(v+~o)~~-2V(v+~o)) in fI 

Since IV(v+uo)l q-2V(v+u0)ELqR)p >2, by the Calderon-Zygmund inequality, we have 

lIbllp~41w +uo)ll;-’ 

with suitable constant c>O. Therefore, 

GA 
I n euofu( 1 - euo+‘)SoO+ IIV~OllqllV~Ollp 

~IIqoll,A ~neuo+u( 1 -e”ofu)+ CllVuallq ; 

where we have used the fact that every solution of (2.18), satisfies uo+ v (0 on a, and therefore 
1 - e’O+’ > 0 ona. 

On the other hand, asp>2 by Sobolev embedding, we have that II~sllp s cII(p0llw1.p = c, while 
integrating (2.18), we have: 

A 
s 

e”o+“( 1 -eUOf*)=4nN. (3.2’) 
n 

At this point, (3.1) follows immediately. 
We begin by analyzing the behavior of the maximal solution VA as A-++m. Roughly speaking 

we show that VA “bifurcates from infinity” from the singular solution uo. 
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More precisely we have the following. 
Proposition 3. I: Let Us be the maximal solution for (2.18),X>& . We have: 

(i) Us-+--ua as h++=~ in W ’+r(LR)l<q<2 and pointwise a.e. in Sz; 
(ii) jpo+“x( 1 - @O+UA)+4n-CN ,= , aPj as X--++m, in the sense of measure. 

Proof: Recall that Us is strictly monotone increasing in X, 

u,<ux<-u. a.e. in Sz, VX>A,; (3.3) 

and 

I n 
euo+%( 1 -e~o+ux)= !y. (3.4) 

Set U= SU~~,~~U~(X),X ~a. We have that, u,<tT~ -u,, a.e. in R and uk+5pointwise a.e. in 0, 
as X--++w. 

By monotone (or dominated) convergence and (3.4) it follows that, as X-++w, 

I n 
eUO+y 1 -euo+uA)~j-/o+Y(l -euo+q=o 

and thus necessarily, V= -u. a.e. in 1R. 
Letfh = Xe’O+“A( 1 - e ‘O+‘A) > 0. In view of (3.4) we have llfhll t =4rN, therefore given any 

sequence X,-++m, there exists a measure 7 on R such that (after passing to a subsequence if 
necessary) we have 

x eUOfV n n( 1 - eUO+” n)- 77 

in the sense of measure. Set u, = ux,, and let (PE C”(n) then: 

I ~neuO+vn(euO+“n- l)q+ 
n g ]a~= j-~Aw= Jpb - Jpob 

N 
=- 4mj~l V(Pj)+ K  

I 
.(P' 

Consequently, 7 = 4 rrEy= t SPj. 
Since this holds for any sequence h,-++m, we conclude, as X-++m that, 

Ae”OfuA( 1 -e”OiY*)-+4cr,$, apj; 

in the sense of measure, and (ii) is established. 
Next, fix qE(1,2) and let p=ql(q-1)>2. For X,-++m, and un=uA,, let (P~EW’*~(~~R), 

Jo~,~=0 and ~~~,~~w~,r = 1 such that, 

I nV(u,+uo)-V~n=sUp 
IJ 

nv(u,+u,)*v~, ll~=oll(PllwI.P=l . i I 
As in lemma 3.1 it results, 
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c-lllv(u,+uo)ll*~ ~v(u,+~obb, I (3.5) 

for a suitable constant c>O (independent of n). 
On the other hand, as p>2, we find a subsequence of {cp,} (which we still call (p,) and 

qo~ W'*~(fl), J~cJJ~=O such that, (pn-4~~ weakly in W1qp(Cl) and uniformly in a. 
As a consequence we obtain: 

= 
I 

A e”O+” 
n n 

n l-eUo+Un)(~n-~o) ( 

4rrN -- 
I W I a 

(qn-pO)+ 
f 

nA.e’O+“n(l-e’o+u~).0-4~~~~ cPO(Pj)+"(l) 

I 

N 

s~TN]/~Y,- cpo~~,-l- 
cl 

Aneuofvn( 1 -e““+un)90-47’r,~, cPO(Pj)+O(l) 

.-to as n-++m. 

Since this holds for every sequence Xn-++m, we conclude that, 

IIV(uo+ux)llq+O as A--++a. 

On the other hand, by dominated convergence, we also have that uA+-u. in Lq(n) and we 
derive the desired conclusion: Iluo+ukllW~.+-+O, as A++=J. 

We will exhibit a different behavior for the “mountain-pass” solution as A-++m and N= 1. 
For this purpose we start by observing that every solution u = u ’ + c, Jnu ’ =O for (2. is),, 

AaX, satisfies: 

e2’ 
I 

e2(u~+u’)-ec 
I 

e”Ofu’+ 
4~rN 
-=o, 

n n A 

hence necessarily, 

(which reaffirms the condition A,> 16~N/lC@ and 

eC= 
JneUO+u’ + d( Jneuo+u’)2- ( 1 6rrNIX)~oe2fUofV’) 

2Sne 2(uo+u’) 

We show that, when u = u,, is the maximal solution for (2.1), and A++m, then, 

the strict inequality must hold in (3.6); 
the “plus” sign must be chosen in (3.7). 

(3.6) 

(3.7) 
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In fact, the monotonicity of the map: A--+u A guaranties that, WA= du AldA is well defined for 
almost every A>A, . Furthermore w,>O a.e. in n and, 

Since, uo+ uA<O in a, this implies that Ii is (strictly) positive definite for a.e. A>A, . Hence, 
after a limiting process, we may conclude: 

(I~(u&%+=0 b~~‘WR). (3.8) 

Notice that (3.8) is obviously satisfied by the solution to (2.18), corresponding to the local 
minimum (see lemma 2.2) and therefore it should not be surprising since it is expected that the 
local minimum and maximal solution is one and the same. 

Take ~“1 in the above inequality (3.8) to derive: 

A I ~e”O+v~(~e”O+u~- 1)SO. 

On the other hand, by (3.7) we have: 

~ A J( /ae~o+vA)2 (3.9) 16rN /ae2(Uo+~d= A ~~e"O+u,(2euO+vA- l)ao. 

Now suppose that there exists a sequence A,-++00 such that 

( /ae~o+u~)2=~ Jae2(u”+‘:), VnEN 

where u, = uA ” = u; + c,, $0~; = 0. By (3.9) and Proposition 3.1 this yields the following con- 
tradiction. 

0~ 
I 

(2e2(uO+Vn)-~UO+U”)Hl~l as n-++a. 
cl 

In conclusion, there exists A,>0 such that, VA>A, (3.6) with u = UA holds with a strict inequality 
and, in view of (3.9) the “plus” sign must be taken in (3.7). 

Remark 3.1: Notice that conditions (i) and (ii) essentially characterize those solutions to 
(2.18)A which correspond to local minima for IA. 

SettinguA = w; + cAwithJowL = O,wehave, 

ecA= 
fneuo+w;+ J(Jne”O+“L)2- (16?rNlA)~n,2(UO+w~)> Sneuo+wi( as A--t+m ’ 

2Sfke 2(uiJ+4) 2(q+4 , 
2Se 

and we conclude that c=cx defines a (strict) local minimum for the function 

~)(c)=Z~(w;+c), c E R. 

Since UA is also a local minimum for I, with respect to all the other directions u ’ E H’(a), this 
suggests the definitions: 
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c,(w)=ln 
Jneuo+wk \l(Jne”o+w)2-( 16aN/A)~oe2(UO+W) 

3-e 2(uo+w) 

VW EJ&, and alternatively characterize the local minimum for I, by the extremal problem: 

inf min ZA(w+c)= inf 
WE. + cat-(w) WC.t’ (,[ 

n f pw12+; (euo+w+c+bv)- L)“] +47ic+(w)] 

(3.10) 

provided that the infimum in (3.10) is finite. 
This point of view was adopted by Caffarelli-Yang in Ref. 17 where they show that, for N= 1 

and A sufficiently large; (3.10) achieves its infimum at a solution of (2.1), . 
On the other hand, this approach also suggests to recast the “mountain pass” solution found 

above via an analogous minimax procedure which, as we shall see, turns out to be useful when 
studying the asymptotic behavior of such a solution for A -++~a. To insure the boundedness from 
below of the appropriate minimization problem, as in Ref. 17, we shall treat the case N= 1 (i.e. the 
vortices are periodically placed). 

Proposition 3.2: Let N= 1. There exists X02X, such that VA>A,, the value 

PA= inf max ZA(w+c)= inf 
WE. 4 &C+(W) WE.?! 

; pw12+; (euo+w+c-(“)- 1)2]+4Wc-(w)] 

defines a critical value for I,, in H’(R). 
Denoting with t&=wk+cx~H1(S1)J ow,=O, the corresponding critical point we have 

(1) C~H---CO as A--++m; 
(2) there exists a constant C>O (independent of A) such that 

/jwAll~C, VA>Ao. 

Furthermore every sequence A,++m admits a subsequence (still denoted by A,) such that, for 
w, = w,,,, we have: 

w,Hwo strongly in Z-Z’(a), 

and w. satisfies: 

(3) 

Problem (3) is interesting in itself, and we will comment on it at the end of this section. 
Proof: A direct calculation shows that, 

h(w):= max ZA(w+c)= i IlVwll~+ S n(eUO+w+c-(w)- 1)2+47rc-(w); 
s 

WE&.  
cc+(w) 
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As in Ref. 17, by means of Moser-Trudinger inequality (2.2) we show that @ A  is bounded from 
below in .-%. 

In fact, as N = 1, then from the definition of c-(w), w EJ~ follows that, 

1673. ,c-(w)= - 1 
2A JQeuO+w+ J(Jaeuo+w)2- (1 6rrlA)~ne2(*ofW) 

from which we immediately derive the estimates: 

4lT 1 87r 1 - 
A s~e”o+w 

<ec-(w)s - 
A S~e”O+w’ 

and consequently, 

Furthermore, the first of the inequalities in (3.11) yields: 

c-(w)>ln4rr-In A-ln , 

and, by Moser-Trudinger’s inequality, for every 00 and for every q > 1, we have 

(3.11) 

(3.12) 

(3.13) 

with l/p + l/q = 1 and C(E) a suitable positive constant depending on E>O. 
Consequently, 

+*(w)r( g- $--4rqe)[/Vw//:+i InI--47~ In A-C, 

with a suitable C,>O (independent of A). 
Therefore, for q> 1 sufficiently close to 1 and ~-0 sufficiently small we may conclude that 

the lower semicontinuous functional I+$ is bounded from below and coercive on .#. 
Hence $A achieves its infimum on .A and our next goal is to show that, as A-++w, such 

infimum lies on the interior of ~5. 
To this purpose, let A,>0 sufficiently large so that 

( /fleuo)2- 7 /fle2uO>0, VAaAe. (3.14) 

In other words, w =0 belongs to the interior of ~8, VA>A,. 
Set 

r~k= inf IlV4l& 

,v 

WE&:( /aeuO+w)2=~ I,e2~uo+w’]. (3.15) 

+m if d,& is empty 

Claim: 
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rk++m as A--++w. (3.16) 

To establish (3.16) we argue by contradiction and suppose that there exists A,,--++m, and c 
>O:OSr,, Sc,VnEN. 

For ALA,, we have &,& non-empty and the infimum in (3.15) is achieved at some 
w, E H’(~):Snw,=Oand(Sne”O+wn)2 = ( 16~/A,)J~e2(uO+wn). 

Since IIVw,lli<cVn EN, after passing to a subsequence if necessary, we can assume that 
w,+wo E H*(a) weakly in H’(R) and Snea(u~+w~)~S~en(u~fWO) with a= 1,2. But this yields to 
a contradiction, since 

()= ( JneuO+wn)2- F ~~e2(uO+wn)~~~~uO+w0 

as n-++m, and (3.16) is proved. 
Suppose that CM is not empty and let w EC%&, that is 

( ,,euo+w)2=~ Jne2bo+“). 

In view of (3.17) we have 

c-(w)=ln 8rr-ln A-ln f e”Ofw R ’ 
e2(uo+w+c-(w))= l, f 4m 

2 a 
euo+w+c-(w)= _ 

A ’ 

(3.17) 

(3.18) 

uo+w+ 5 [RI--4a In A-4~ In 8r-4r In 

= i \lVwll~+ k I!Jl-4rr In A-6rr-4r In 8rr-4rr In 

By means of (3.13) with q=4/3 and 00 sufficiently small, we may conclude that, 

Q,,,(w)>: IIVwl[i+k jCIl--47r In A-c, VWEcb# 

with c>O a suitable constant independent of A. 
In other words, this proves that, if dJ4 is non-empty, then: 

inf&,a $ rk+ i lil\-4~ in A-c 
d. d 

(3.19) 

for a suitable c>O (independent of A). 
On the other hand, if X3X0, then by (3.14) we have that w =0 belongs to-the interior of ,&. 

Setting co = c- (w =0), and recalling, 
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J 
47r 

seco= J-do- 
(Jneuo)2- ( 16dX)Jne2‘Q 

XJfleUO 2J”pQ 

we derive 

x 
s- - ecO 

2 -4~ In X 

S 2 Ql--47i- In A-47r In xI 

Thus, as h++w then rX-++a and by (3.19) we conclude 

inf&,GT aI--4~ In X-47r+47r In xI 
8lr 

i i - <infi+& 
.d S&O d. 4 

Therefore, for 00 sufficiently large, there exists w~E,A such that, 

( Jneuo+W A j2- T Jae2(uO+wA)>0 

(3.20) 

(3.21) 

and 

Iji~(wd =inf*k . 
.4 

Set Fk = w,,, + c -( IV,), we show that it defines a critical point for I, and satisfies the required 
property (1) and (2). 

To this purpose observe that from (3.21) follows that necessarily c-( wk) < c+( w,), and 
therefore the property that: 

IA( max Zk(~h+~) 
C~C+(q,) 

suffices to guarantee, 

d (z;(Q,q= I>= - ~h(W*+CL=c~(wh)=O~ dc (3.22) 

On the other hand, if (~eZ-Z’(fi) and Joq=O, then in view of (3.21) we can take t>O sufficiently 
small and have that upA+ tcpE,.d. Set w,= wA+tcp and let, 

c-(t)=ln 
$fie"Ofw~- J(Jne u~+“t)2-( 1(j~/X)Jne2(uO+wr) 

2/e 2tuo+ WJ 

Clearly, c-(t)-+c-(wA> as r+O+; and, 
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0s; [z,(w,+C~(t))-z*(W *+C-(h))l~f [Z*(w,+c-(t))-Zh(wx+c-(t))] 
=(Z~(wX+c-(t)),(~)+o( l)+(Z~(&),~) as t+O+. 

Replacing cp by -cp, we conclude (Z;(Q,(p)=O Vq~H’(fi), Joqo=O. 
This, together with (3.22), readily implies that Yk is a critical point for I,, hence a solution for 

(2.18), . 
Set ch=c-(We), from (3.11) it follows, 

877. 1 8Tr &A< - 
A Jne”O+wA s m ’ 

(3.23) 

where we have used Jensen’s inequality to obtain that .foe’O+“h a I fi I. 
From (3.23) it follows immediately that c k+-” as X-++C=J, and (1) is established. 
Finally, to establish (2) recall that: 

drr=Siie'A 
I 

e"ofwx<8~ 
n 

(see (3.11)). Thus, 

l II 
A  

“5 Vwil/:-67r+y Ia[-47r In X+4a ln4rr-4rr In 

SO by (3.13) with q =4/3 and 00 sufficiently small we may conclude: 

k IlV~~ll~+ 5 Iill--4~ In x-C,~Z~(~~)~Zh(~-(0))=~h(O)~+ 5 IRI-47r In X+C2 

with Ct and C2 suitable positive constant independent of h. 
Consequently, 

with C>O independent of X and (ii) is proved. 
Next, let X,-++w, and set w,= wk . In view of (3.24), we find a subsequence (which we still 

denote by up,) and w~EZZ’(~~), s ow,=?l such that, w,-+wo weakly in H’(a) and, 

I e4uo+wn)+ I ea(uo+wo) as n++m, a= 12 
n n 

Consequently, letting c, = c- (w,) we have 

87.1 47i- 
XneCn= 

Jfle”O+wn+ J(Jne uofwtt)2- ( 16~/A,)Jne2(hlf”‘n) H Sne”o+“o 

as n--++m; and 
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- 
I 

oVwe.V’p= lim 
I 

Vw,.Vq= lim h,e’n (ecneuO+wn- l)e”O+wnq+ t.T- 
n--fco R ?I-++- 1 J n I4 2 J 1 

4rr =- JneUOfWO i n 
e”OfwOq+ g 

I 
nq 

So, w. is a solution for (3). 
Finally, to show that w,--t w. strongly in H’(R) notice that, 

= XneCn 
I 

(e”O+wn-euO+w O)( w, - wo) - Xne2’n 
n (J 

e2(uO+wn)( w, - wo) 
n 1 

( 

4rr 
+ X,e’n- 

11 J~e”O+wO fi eUO+WO(w,-wo)~O, as n-++w. 

Remark 3.2: In particular, Proposition 3.2 asserts that the limit point set r of {wX}CCm(~) in the 
weak topology of H’(a) defines the limit point set of {wx} also in the strong topology of H’(R). 
Since l? is given by solution to (3), we have that rCC”(R) and in fact, it defines the limit point 
set for {Map} in any other relevant topology. 

Corollary 3.1: Let zYk=w,+cA Sow,=0 be the solution for (2.18), as given by Proposition 
3.2. For every integer k > 1 there exists a constant C = C(k) >O independent of X such that, 

hllc~~ c. (3.25) 

Furthermore rCC”(n) the limit point set of {wh} in the weak topology of H’(a) coincides with 
the limit point set of {wA} in C?(a) topology. 

Proofi Recall that wh E H’(R) satisfies: 

u - AwA= Ae’Ae 0 +wA ( l-e”O+wA+ch)- &:=f, on Q 

I w,=o n 

and 

(see (3.23)). 
Therefore, the Moser-Trudinger inequality (2.2) together with (2) of Proposition 3.2 implies 

that, for every p> 1 there exists a constant C= C,>O such that 

Ile”O+“‘AllpGC \dX. 

Consequently, JlfXllp~C1, ‘dh, and by elliptic Lp estimates and the Sobolev embedding, we may 
conclude that, 

IhIIcl.a55 c2 
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with CZE (0,l) and C,>O a suitable constant independent of X. 
Since eUO E C”(T) we can iterate this procedure and by means of Schauder’s estimates con- 

clude that (3.25) holds with a suitable constant independent of X. 
Finally, if X,*+m and w, = wAn-wO~r weakly in H’(Q), then as in the proof of Prop- 

osition 3.2, we see that, -A(w,-wo)=h, with llh,&,~~ as n-++m and p>l. Consequently, 
IIw~-wOII~I.~HO as n--t+a and LY ~(0,l). Thus, a bootstrap argument yields II~,,-w~ll~e,~-+O 
as n++a and kEIV. 

Final remarks 
In particular. Proposition 3.2 yields the existence of a solution for problem (3). More gener- 

ally, for the problem: 

(3)7l 

with ~,~~(0,8rr), this can be derived directly by minimizing the functional: 

F(w)= k IlVwll~- 77 ln( /oeUO+wj 

over the space 

E={ wsHl(i2):~~w=o]. 
On the other hand, for 77>87r it is not clear whether or not problem (3), is solvable. Notice for 

instance that, the analogous problem, subject to Dirichlet boundary condition, 

1 
-Aw=gl 

Snew on fi 

w=o on dfi 
(3); 

is known to admit no solutions when 0 is a ball and ~>8rr, see Ref. 28. 
This suggest that our restriction to the case N= 1 might be more serious than a mere technical 

limitation of our method, and the case N>l might require a different approach all together. 
Furthermore we believe that when 7~(0,8~) the solution for (3), is unique and wx*wo as 

X*+m (in any of the relevant norms) with w. the (unique!) solution to (3)r1=4T. So far however, 
uniqueness of (3),, ~E(O,~T) remains an open problem supported by the fact that it has been 
established by Su~r.rki~~ for the analogous problem (3): when ?/E (0,8rr) and fKR2 is simply 
connected. 

In concluding let us mention that problem (3) $ , has attracted much attention in view of its 
connection with the study of the statistical mechanics of point vortices in the mean field limit. In 
this contest, (3); is commonly referred to, as the mean field equation and it has been discussed, 
for instance, in Refs. 20-22. 

The proof of Theorems 2.1 and 2.2 
At this point, Theorems 2.1 and 2.2 are easy consequence of Theorem 2.3, Propositions 3.1 

and 3.2. In fact, by Theorem 2.3 the first part of Theorem 2.1 follows easily by taking k, 
= 2IJj;T< ;,/m. 
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Furthermore, for O<kGk,, let uk = uA=4/k2 be the maximal solution for (2.1)A=4,k2, then 
(Akr4& as defined by (2.11), (2.12), and (2.13) with u=uo+uk defines a solution for (2.7), 
satisfying (2.8). Since 

we have that, & vanishes exactly at pt ,...,pm with multiplicity n t , . . ..n. reSpeCtiVdy, l&l 
satisfies the “maximality” property (ii), and the monotonicity property (iii)-a. of Theorem 2.1. In 
addition, since uk< - u. in R, the estimate (iii)& also follows. Finally, by Proposition 3.1 we get 
that [q&+1 as k-+0+ pointwise a.e. in a and, by the monotone (or dominated) convergence 
theorem, in Lp(i2)Vp21. On the other hand, for l<q<2, IIVl~klllq~~IV(UO+Uk)llqjO as 
k-+0+, and we may conclude: 1114kl - 1 II w~.q+O as k--+0 and l<q<2. Finally, in virtue of (ii) of 
Proposition 3.1 and the second equation in (2.7),, we also derive the property (iii&d. of Theorem 

2.1. 
Similarly the first part of Theorem 2.2 f6llows by taking (xk, 6,) as defined in (2.1 l), (2.12) 

and (2.13) With u = u. f u r,x=@ and u l,A as given by Theorem 2.3. While for N = 1, we may take 
u = u. + &,=4/k2 for k>O small and rj, as given by Proposition 3.2. In this situation, 

I+ 1 
-k * 

=e”Ofwkfc - k- UeWk+Ck 

with u=euo smooth, wk = w,,=& and ck = cX=&-+ - 00 as k--+0+. Thus, by Corollary 3.1 we 
conclude that, for every integer q>O there exists a positive constant C= C(q) independent of k 
such that, 

II~kllCq d Ce’k-+O as k-+0+. 

We conclude by mentioning that other interesting self-dual Chern-Simons theories are discussed 
in Ref. 29. 
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APPENDIX 

In this appendix we would like to show that, the following property: 

I 4rrN 

cl 
Vu*.V~+~e”O+u*(euO+u*- 1)qo-t m  q<O 

Vcp~Z-Z*(fk), cpZ=O a.e. in Sz 

implies that, if u. E A = { u E H’( n):u 3vh a.e. in a} satisfies: 

Zx(uo)=inf Ix 
A 

then u. defines a critical point for Ix in Z-Z’(a). 
To this purpose, let q~H’(fi), t>O and define: 

If u + and u _ denotes the positive and negative part of u respectively, then we may write, 

U,=UO+t~+fW,, witi w,=(uo+tcp-u,)-20 a.e. in R. 
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We have 

0s; ux(u,)-z~(U()))=; (IIV(vo+t~+w,)ll~-IIVuoll~)+; /J(euo+Q+r~+- 1)2 

--(euo+uo- 1)2}+ g( f-z+: fc) 
= & Ip(tcp+wr)ll;+ s,, vOo.v(:q+wr) 

+X 
f 

po+vo 
t 0. 

(e”o+uo- l)tp 

+; fJ(euo+ur- 1)2-(euo+uo- ~)2-2euo+~o(e~o+~0- l)tcp} 

+$( I,+: f?). 

Consequently, 

J 
Vvo.Vq+X 

f 
4rN 

n cl 
eUO+UO(eUO+UO- l)cp+ - 

PI 2 f 
2 - ; Ilvrpll;- I,vq7. VW,- & llvw,ll;- f j-po.vw,- ; I,{(e”o+u’- 1 J2 

471-N 1 
-(eUO+uO- l)2-2euO+uO(euO+uO- l)tq}- - - 

PI * f W t n 

=0(t)+ i t f ~~v(-lq-vo+u*).vw,- !. f t n vv**vw, 
x 

+- f e”Oimu* 
47rN 1 

t n 
(eQ+‘*- l)w,- m  t f R~,- $ IlVw,ll~-- & ~~{(eU~+Yo+‘~+w~- 1)’ 

-(eUO+UO- l)2-2eUO+UO(eUO+UO- l)(trp+w,)$ 
x n[ f, e”O+u* (e”O+u*- l)-e”O+vO(euO+uO- l)]w, 

I 
N  0 n 

e~o+Vo+s~t’P+w,~(~euo+uo+~~~~+w,~~ l)(tcp+H,,)2 &  
i 

+I (e f t n 
2(~O+U*L-em)+U09W f 

where the last inequality follows by (Al), the fact that uoz=u * a.e. in R and 
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f n V(-tcp-vo+v*)Vw,=IjVwt~g 
Since, 

Itcp+w,l+gl tE[O,ll 

we estimate 

1 If e2(ug+U0+s("p+w,))(t~+~f)2~t2 e2(uO+UO+'lrpl)(p2=0(t2). 

0 n f n 

3795 

642) 

Set, 

hence Ifi,\R,I*O as f-+0+. Using (A2) we conclude 

f 
V~o.Vq+A 

cl f 47rN 
e”O+uO(euO+uo- 1)qo-t - 

R IfA 2 f 
Z-O(t)+ 1. f f n,\n, (e 2(uo+u*)-e2(uo+~0))(U*_UO-t(P) 

2-x 
f (e 2(uO+U*)-e2(uO+UO))(+~(~)~~ as t-+0+. 

WRO 

In other words, we have obtained (I:( uo), cp) 2 OV+T E H’(a). Replacing cp with -cp we obtain 
the reverse inequality and the desired conclusion. 
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Basing on a differential algebra over the simplest two-point K cycle and graded Lie 
algebras of homomorphisms of finite projective modules, we derive the classical 
action of the standard model. This construction uses both the general framework of 
noncommutative geometry developed by Connes and ideas of the Mainz-Marseille 
approach to model building. We get a prediction of the Weinberg angle and con- 
straints between the fermion masses and the masses of the W and Higgs bosons on 
tree level, which differ from the relations obtained by Kastler and Schiicker for the 
quatemionic K cycle. 0 1996 American Institute of Physics. 
[SOO22-2488(96)03707-31 

1. INTRODUCTION 

This paper is the continuation of two earlier papers (Refs. 1, 2) by Matthes, Rudolph, and 
Wulkenhaar. In the first of them we presented an analysis of the structure of the differential 
algebra A*, , canonically associated to the K cycle (&,h,D) over the simplest two-point algebra 
. d=C”(X)@(C@C). In the second one we constructed for a given finite projective right ,.& 
module with Hermitian structure ?Y the graded Lie algebra x = Horn, ,( E, x @ ./A *, ,) with natu- 
ral derivation. We showed that a certain graded Lie subalgebra .ZO of .% provides a rigorous 
mathematical link between Connes’ theory and the Mainz-Marseille model building scheme. 

The K cycle mentioned above together with a finite projective module Z=e,R* was used by 
Connes in Refs. 3 and 4 and by Connes and Lott in Ref. 5 to derive the &lam-Weinberg model 
in a unified form. Within this scheme the above K cycle cannot be used to obtain the full standard 
model. That is why Connes and Lott proposed a K cycle over the algebra C:(X) @ (C @ II) ; see 
Refs. 5, 3 and 6. A detailed exposition of these ideas was presented by Kastler in Refs. 7 and 8; 
see Ref. 9 for an earlier version, and by Kastler and Schiicker in Ref. 10. One obtains a prediction 
of the Weinberg angle and certain tree-level constraints between the masses of the fermions and 
the masses of the W,Z, and Higgs bosons (Refs. 10, ll), which we review at the end of this 
Introduction. 

Another way of obtaining the standard model by noncommutative geometry is the Mainz- 
Marseille model (Refs. 12-14), which uses the graded Lie algebra A*(X)@spl(2,1) of matrix- 
valued differential forms; also see Ref. 15. We have shown in Ref. 2 that the assumptions of this 
approach are natural within Cannes’ framework. For the present paper the construction of the 
fermionic sector of the standard model given in Ref. 13 is of particular interest. This construction 
makes use of the theory of representations of the graded Lie algebra sp1(2,1) in a finite- 
dimensional vector space. l5 

Our strategy is the following: In Sec. II we give a review of some results obtained in Refs. 1 
and 2. In Sec. III we construct an isomorphism i of graded Lie algebras from x0, which we 
constructed in Ref. 2 within Connes’ theory onto its image, for which the fermionic sector in Ref. 
13 serves as a guiding line. Next, in Sec. IV, we give an embedding of a subspace of i(xa) into 
the algebra of bounded operators on the Hilbert space of fermions. This allows us to construct the 
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fermionic action (Sec. V), the electroweak sector of the bosonic action of the standard model (Sec. 
VI), and the chromodynamics sector (Sec. VII). After a Wick rotation to Minkowski space and a 
reparametrization this action coincides with the classical action of the standard model, where some 
free parameters of the standard model are fixed; see Sec. VIII. 

Thus, our construction rests-as the construction of Connes, Lott, and Kastler-upon a K 
cycle. However, we take a K cycle over the algebra I d=C”(X)@(C@C), while the above authors 
start with a K cycle over the much bigger algebras C”,(X) @I (C @ W) and C;(X) @ (C @ M$). To 
compensate this difference we use two finite projective .f% modules as an additional input: one 
module for the electroweak sector and the other one for the chromodynamics sector. In the 
construction of Connes, Lott, and Kastler the module is identical with the algebra df their K cycle, 
so that in their version the calculus of finite projective modules is not necessary. In both versions 
the differential of the differential algebras associated to the K cycles are composed of the classical 
exterior differential and a matrix differential, which in both versions contains fermionic mass 
parameters. In the construction of Connes, Lott, and Kastler the just mentioned differential algebra 
is of primary importance for the physical model. In our version the differential algebra plays only 
an auxiliary role, namely for building the graded Lie algebra .x0. Moreover, the Hilbert space of 
our K cycle is also auxiliary: we have to add our physical Hilbert space by hand. 

As it was shown in Ref. 2 one can derive from .;Y, the graded Lie algebra A*(X)@ssp1(2,1), 
which is the starting point for the construction of the standard model in the Mainz-Marseille 
approach. The essential difference between .x0 and h*(X)@ssp1(2,1) is that .x0 carries the 
fermionic mass parameters of the differential algebra associated to the K cycle. It is these fermi- 
onic mass parameters that relate the masses of the fermions to the masses of the W,Z, and Higgs 
bosons in the model of Connes, Lott, and Kastler, as well as in our model. Since the fermionic 
mass parameters are absent in R*(X)@spl(2,1), there is no relation between fermion masses and 
boson masses in the Mainz-Marseille model. 

Both in our model and in the Mainz-Marseille approach one needs certain representations of 
the graded Lie algebras ,x0, respectively, A*(X)@spl(2,1), which are generalizations of classical 
sp/(2,1) representations.‘5 The representations of A*(X)@sspZ(2,1) generalize reducible indecom- 
posable representations of sp1(2,1), which give the possibility to describe mixing between fermion 
generations.13 For our model we take generalizations of the simplest irreducible representations of 
sp1(2,1), because the fermion generations are intrinsically contained in ,x0. With these represen- 
tations there enters a big number of additional parameters due to not canonically determined free 
normalization constants of sl(2,C)@gl(l,sC)-subrepresentations of spZ(2,l). In the Mainz- 
Marseille construction these parameters are fitted to the fermion masses and the Kobayashi- 
Maskawa matrix. In our model there is a subtle interplay between these normalization parameters 
and the intrinsic fermionic mass parameters of the differential calculus. In the final Lagrangian 
there occur only such combinations of these parameters that for the simplest scalar product there 
is effectively only one additional free parameter in our model compared with the simplest version 
of the model of Connes, Lott, and Kastler. 

From our formulation of the standard model we get tree-level predictions for the Weinberg 
angle Bw and the ratios mwlm,, mHlmW, and g3/g2. Here, m,, mH , and mw are the masses of the 
top quark, the Higgs boson, and the W boson and g3 ,gZ the coupling constants of the strong and 
weak interactions, respectively. We list our predictions (Model III, with the parameters x>O and 
6,, 4, 4, ad) in Table I and compare them with corresponding tree-level predictions of the 
following noncommutative geometrical formulations of the standard model: 

Model I: The construction based on a K cycle over the algebras C;(X) @ (C @ W) and 
C;(X) 8 (C @ M&) as presented by Kastler and Schiicker in Ref. 10. The parameters are R>- 1, 
a,p>o. 

Model II: The Mainz-Marseille model as presented in Refs. 13 and 14, predictions for the 
adjoint representation of spZ(2,1), and a general scalar product. The parameters are r. ,r, ,r,>O. 
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TABLE I. Comparison of tree-level predictions for general scalar products. 

Model I Model II Model III 

3799 

2 
R +4>3 . . . 6+2x 3 

4-( 1 -x sin2 6, cos* I.?~)% 

2 8+2R 
11+3R- ->7 + 

8(x + 3)( 5 cos’ 6’+3x cos2 19~ sin4 6,)cos4 13~ 

J-l 3(4-( 1 -x sin2 6r)cos* a*)* 

sin’ 8t2R 2 
8,+ 

1 133+x 9 
15+3R+ 5n+2P 3 4 T=%+3x% 

g3 2 

i i 
- 

g2 

RS4 
2cY . . . 

In Model I there is enough freedom to reproduce the experimental values for mwlmi, sin2 0,. and 
g3/g2. Then inH is uniquely determined. Also in Model III it is possible to reproduce the experi- 
mental values for mwlmi , g3/g2, and sin2 Or+,= 0.25. However, then there is only an upper limit 
for inH in our model; see Sec. VIII. In Model II there is no relation between fermion and boson 
masses and between g3 and g,. Moreover, this model does not give a prediction for mH. However, 
in contrast to the other two models one obtains an experimentally well-confirmed relation between 
the Cabibbo angle and the quark masses; Ref. 16. 

For the simplest scalar products given by R =O, ~=2, p= i in Model I, ra = r t = r2 in Model 
II and x= 1 in Model III one gets 

TABLE II. Comparison of tree-level predictions for simplest scalar products. 

Model I Model II Model III 

JJli/JJlw 2 1.41...1.63 
in Hiin Lv 3.14 1.41 0...2.43 
sin2 0, 0.414 0.25 0.375 
g3fg2 1 1 

Now, inH is fixed in Model II. In Model Ill there is still only an upper limit for mH, and the 
relation between m, and mw does not fit the experimental value as well as the corresponding 
relation in Model I does. 

II. REVIEW OF EARLIER RESULTS 

In this section we give a review of some results, which were obtained in Refs. 1 and 2 and that 
we need for what follows. For technical reasons let for the moment X be a compact four- 
dimensional Riemannian spin manifold. We denote by L2(X,S) the Hilbert space of square inte- 
grable sections of the spinor bundle over X, by F a finite-dimensional Hilbert space, by C the 
Clifford bundle of the cotangent space over X, and by Ck the set of those sections of C whose 
values at each point x E X belong to the subspace spanned by products of less than or equal k 
elements of T,*X of the same parity. The simplest two-point K cycle (..ic,/z,D) consists of the 
algebra. Y’=C”(X)@(C@C) acting on the Hilbert space h=L2(X,S)@(F@F) and a generalized 
Dirac operator D=(DC’~id,,,)~(~~.~). H ere, 
grading operator on L2(X,S). Moreover, . /i%= (’ 

DC’ is the classical Dirac operator and 9 the 
M M* o ), where M is an endomorphism of F. 
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Now we are going to specify the parameters. We take F and M as 

where ml and m4 are real diagonal 3X3 matrices with non-negative entries. In principle, we could 
take for m, and m4 arbitrary complex 3X3 matrices, which can be written as U, 8u2, with U, ,u2 
unitary and 6 diagonal and positive. However, the unitary matrices U, ,u2 can be absorbed by 
unitary transformations of the physical fields. 

One shows that the algebra ~(a*) obtained from an involutive representation T of the uni- 
versa1 differential algebra a* over .A has the structure 

7f(R”)= ii 7r(fLk), 
k=O 

n-(nk)= 

; ck-2rBw’. 
1 7 

; ck-fr- 1 J@w; 

r=O r=O 

; ck-2r-l 5 Y@ m’ 
3; ; Ck-2’~cM’ 4 

r=O r=O 

, 

where 

M;:=(MM*)‘, M; : = M(M*M)‘, M; : =M*(MM*)‘, M; 

(2) 

=(M*M)‘. (3) 

In particular, we can identify .,4 with ~(a’). We denote by (m + 1) the number of linear indepen- 
dent elements (MM *)‘. In our case M and M * commute with each other and generically we have 
m=6. We define L”: =CRICn-2, L*: = EXI~=~L~, and put Ln={O} for n<O. There is a graded 
algebra A*&, associated with ?r(fl*) defined as follows: 

ii*,,:= ; Iv,, hk.+=~kA7T(fik):= 
,rr(flk)lrr(flke2), for k>2, 

k=O 

with multiplication 

- Ak, 4~ A”, t3 (Xk,X”)--tXkh”: = (+k+,,( 27) E A”.;“, (5) 

where 8 E ~(a~), 5” E rr( an), such that (T,J 8) = Xk, ck( 7) =p. One can show that elements 
XkEAk,f have the form 

m 
cp’@W’; ; c a;+ y5c3cM; 

i-=0 r=O 
hk= 

5 

) ff;EL”. 

cY~-*rc3cM~ 
r=O 

(6) 

Let &k denote the isomorphism of Lk onto Ak(X), where Ak(X) is the space of complex-valued 
k forms on X. We define the following operations: 
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da’: = &vhk(ak), d*: = y5 dy5, (7) 

for CY’EL~, Xk~ Ak 4, where prk+t denotes the projection from A!:',+' $ hfil onto A!:::‘. One 
shows that 

2: =D-i[ y5@&,.]g 03) 

is a graded differential on A*.,, and one can write down explicit multiplication and differential 
rules for elements of A*. d ; see Ref. 1. 

In Ref. 2 we considered finite projective right J3 modules with Hermitian structure ?!?=e~@‘, 
2 - where e E End. J@, fulfilling e = e - e * Let .3@: =Hom d(kT,~~ ?mk.,,J be the set of homomor- . 

phisms of the right ~8 module ?F to the right ~3 module ?YcZJ.&~~~. Elements ek ES@ can be 
identified with p Xp matrices of elements of Ak.&, fulfilling eeke = Qk: 

, pfj~Ak,*, i,j=l,..., p. (9) 

The space .,%=@~~‘=,.S@ is an algebra with multiplication given by the tensor product of the 
multiplication in A*~ 7f and multiplication of p X p matrices. On 3% we have a canonical derivation 
Zgiven by 

Be=e&e)e, qE.23, 00) 

where 2 means the componentwise action on matrix elements belonging to A*Ld. With respect to 
the graded commutator, 

.B is a graded Lie algebra with graded derivation 535 
We define on A*. 4, see (6), a linear map TA : A*. ,+L * by 

m 

t=O 
c~;-~‘c?oM; ; 2 CY;-~~-$%‘M; 

t=o 
TA 

5 t=O 
a;-*‘-‘y&M; ; 5 

t=o 
CY~-*‘@M; :)I 

: Gtgo (cy- p>, (12) 

which can be interpreted as a generalized trace. We have proved in Ref. 2 that there exists a 
graded Lie subalgebra 3?Fo of 3 defined by 

So= i &o, &= ekeHjil Wei)= 
I I k=O 

(13) 

[in the notation of (9)]. Moreover, .@ is a graded derivation on Zo. 
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Any connection V on g has the form 

V=e>+p, p=-p* EZ’. (14) 

The situation found in physics suggests to consider special connections, namely such that p~2:. 
This implies that the gauge group is restricted to 

F%={uEAut,A(E), uu*=u*u=e, u du*E.%$}, (1% 

see Ref. 2, where du * means the action of the differential d on the L* component of u * E ?J. 
Gauge transformations of the connection V are given by u Vu*. 

III. AN ISOMORPHISM OF GRADED LIE ALGEBRAS 

Here we fix the module Z by taking p =2 and for the projector e = (g’ [ ,), where I, d 
= (AeidF y@idp) E .A is the identity of .% and e’= (AeidF z) E.& Then from (6), (9), (12), (13) 
and the discussion in Ref. 2 we get that elements ek E.%$ have the form 

/ f (up+ cp’)c3M; 0 LYk-2’c3M; “;-2r-‘yS@M;\ 

* ek=5 r=O 

0 0 0 0 

cky2'@M; 0 f (a;-2r-a:-27aM; a:-2r-ly5B’M; 
(16) 

\ c~-~~-~y%‘M; 0 &-2r- 1 $@‘Mj 

where CY; E L”, f ==O,+,-,3,4,5,6,7. Due to (1) and (3) we have M: E M,C@M,C, which means 
ekE L*c3M,C@M,C@M,C. In (16) we considered ek as a 4X4 matrix with 
L* 8 MsC@M,C-valued entries. Of course, ek can also be treated as a 2X2 matrix with 
L*@MM,C@M,C-valued entries. With regard to this view, Qk has the form 

ef 0 
ek= o er, I i 1 

3 ( a;-2’+ ap)cN; 0 ff- k-2rw cY-2r-1ywI; 
0 0 0 0 

' r=O 

: 

cYkJ2'@ 1; 0 + (&2r-&2’)@q &2+5@4 

"~-*+%q 0 "~-2~-13/5@lj a;-2'c31$ 

(17) 
g ( CU;-2’+ a;-2’)c3q; 0 a- k-2r@d 

k-2r- 1 
ff4 9%; 

0 0 0 0 

“~-2r@q; 0 f (a;-2r-ay27mq; ayly5gq; 7 

k-2r- 1 “6 Y%?; 0 k-2r- 1 
a7 Yw &%?Jq; 

where 

l);=(mlml*)r, Ii=--ml(ml*mJ’, I;= -ml*(mlmF)‘, li=(m;Em,)r, 

4; = tmp,*Y, q;= -mq(mq*mq)r, q;= -mq*(mqmq*)r, qi=(m:mq)r. 
(18) 
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We introduce an isomorphism i of graded Lie algebras, which generalizes certain representations 
Refs. 15, 13 of the graded Lie algebra spl(2,l) to the graded Lie algebra .AYo: 

i 

L 

ideF)= 5 

2 

r=O 

(“0 k-2+cY;-2r)@l; CYyk-2’@1; ffp-1y$ El; 

ak;2’c3 1; \i + ( Qp2’- a;-2’)c3dI; cY:-2r-1y%3 El; , (20) 

\ apr-lys@E-ll; a;-2’-1Y5@)-ll; a;-2’c31i; . I 

i,tei)= i 
r=O 

I 

(19) 

(3 a3 k-2r- I 6 a;-2’) 
a;-2’-lr” ,&2r-lY5 

8’4; 
c2-%3q; 

w4 4; @ 4 4iXY 

(- f p- ; ($2’) - ,p1y5 k-2r- 1 

cYk;%3q; 
ff5 r’ 

@3ql; w4 4; @ 4 4iXY 

k-2r-1 
-a5 r’ 

k-2r- I 
ff4 r’ 

wek q; @P& 4; 

- $ &2r 
0 

@cd 
0 

k-2r-1 5 
&6 Y 

@(xrY4 4; 

k-2r 
0 i a0 

@x-‘q:x 

(21) 

The isomorphism i fulfills i([ek,e”],) =i(ek)i( 4”) - ( -)k”i($‘)i(~k), for ek E&~ and 
c” E.%~, where the multiplication i(ek)i( p) is the natural combination of the multiplication A in 
L* and matrix multiplication. 

In the above formulas E and /3 are invertible diagonal 3X3 matrices, which, therefore, com- 
mute with IIE/, ml*, m , rn: . For the invertible 3X3 matrices y and x we have to demand 
(x y)- ‘m.,*m,x y = x-‘m,*m,,y, which is achieved by taking ,~yx-’ diagonal. The matrix x need 
not be unitary. In principle, we could in an analogous way introduce matrices such as x in the third 
row and column in (20) and (21), too. However, this can be reabsorbed by unitary transformations 
of the physical fields. Thus, the freedom in the choice of the isomorphism i, modulo unitary 
transformations, introduced a lot of additional free parameters in (20) and (21). But, we shall see 
at the end of Sec. V that all these parameters are (not uniquely) fixed by the physical model. The 
genuine free parameters are the six eigenvalues of M; see (1). 

The motivation to consider just the isomorphism (20), (21) comes from our paper,2 where we 
constructed a partial homomorphism of .x0 onto A*(X)@spl(2,1), and the paper,13 where similar 
looking representations of spZ(2,l) were used to write down a fermionic Lagrangian for the 
standard model. 

IV. BOUNDED OPERATORS ON THE HILBERT SPACE OF FERMIONS 

Here we are going to associate to each i(pk) Ei(%$, k=0,1,2, a bounded operator on the 
Hilbert space, 
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First, because of Lo= Co and L1 = C1 we can regard elements of i(Mo) and i(.%$) in a natural way 
as bounded operators on H, see (20) and (21), where the matrices 1: and q: act on the last C3 
components. Next, we associate to the local basis [f]A[fl in L2 the operator c([y]A[yY): 
=-~‘+~EB(L~(X,S)), for lS,uu<fi4. By linear extension we obtain a vector space isomorphism 
c of L2 onto its image. The isomorphism c induces the vector space isomorphism ~i(3E$) 
+Gi(.%~), ZG(.X$CB(H): 

0 
Fi( e2): = 

tc@idC3dNde3) 

0 {tc~idc3~~3)(iqte~)))~13x3 
(23) 

for Q2 E .9?$ Next, we define a vector subspace y2CB(H) as 

(i(e’,)ai(~J+i(~~)-i(Q~)), e~,F~~.B& finite sum}. (24) 

where . denotes the multiplication in B(H), and put 

.P=T4(&o)+P. (25) 

One easily convinces oneself that another characterization of this space is 

P=%i(.%$@i(&$@A, 

A = {i( diag( ai,O, - c~i,O) @  idF) i(diag( Z i,O, - Z i,O) @ J  idF) + i( diag( &,O, at,2a$ 

@ idF) i(diag(Z~,0,Z~,2Z$@idF), ,~,Z~,~$,Z~EC~}. (26) 

Let p2 be the projection of 72=ZG(B&i(2@@A onto its first component Gi(X$. Then we 
have 

~-‘~p2(i(e’).i(~>+i(e’).i(~,1))=i([e1,~l,), 

which is in some sense an analogy to (5). 
On B(H) there is a natural scalar product given by the Dixmier trace Tr,: 

(b&j B(HJ=Tr,(b*flD]-4), b,gEB(H), 

(27) 

(2% 

where D is the generalized Dirac operator of the K cycle and * denotes the involution in B(H) . In 
the case considered here the Dixmier trace can be expressed by a combination of the usual trace 
over the matrix structure, including the trace ,in the Clifford algebra and integration over the 
manifold X: 

where ug is the canonical volume form on X and the factor 1/32rr2 is taken from Ref. 6. By 
restriction of the scalar product (28) to F2CB(H) we get a natural scalar product on r2. How- 
ever, since elements of Y* are diagonal with respect to the splitting H= H,@ H, in (22), we can 
take as a scalar product ( , ),T~ on Y2 a convex linear combination of the partial traces in B( H,) 
and B(H,), in the same way as in Ref. 11: 

- 
(bh).e= (zbJ&) , Z= (30) 
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for b,&e.Y2 and O<x<~. 
The direct sum decomposition .T2=~i(.3?&Bker p2 is not an orthogonal decomposition with 

respect to ( , ),~z. Let s2 be the orthogonal projection from .T2 onto the orthogonal complement 
of the subspace ker p2 (after a completion with respect to the scalar product). Then we define the 
canonical embedding e:X@( H) by 

e(e2)=s2G4(e2), e2E3@. (31) 

In the same way as in Ref. 1 one can show that e(e*) is given by.(20) and (21) if we replace 

+(a;), f=O,t-,-,3, (32) 

tr l2 
l$+T$=l$S 13x3, 3 45-%: s 

-2 =q2- WC2 --j- lL3x3, s= 1,4. (33) 

Thus, the operators on H associated to i(ek) Ei(.%$), k =O, 1,2, are i(ek) themselves for k =O,l and 
e(ek) for k=2. Of course, this construction can be extended to i(.TZ$), k>2, but we do not need 
this for model building. 

V. THE FERMIONIC ACTION 

The connection form p is a skew-adjoint element of .%?A; see. (14). Therefore, we have 

(fA3+ iA”)@idF 0 A-@idF -i@‘y%M 

0 0 0 0 
P= A+@id, 0 (- ~A3+~Ao)@idF -iQ2y5@M ’ 

-is;’ y5@M* 0 -iG2y5@M* A’@iid, 

(34) 

where A’= -(A’)*, A3= -(A”)*, A+= -(A-)*E L1, and Q1,Q2~Lo. Applying the isomor- 
phism i and abbreviating 1=13X3, we get from (18), (20), and (21), 

($A3+ +A’)@1 A-81 iQ1 y5C3 crnl 

ih) = A+@1 (- iA3+ iA”)@P i@2y5@eml , (35) 

i&’ y5@tzE-‘m,* iiij2y5@e-‘m~ A0@I 

’ ($A3- iA’)@ A-81 
i&* y5 i@’ y5 

@&Pm, @&m,xY 

A+@1 (- +A% &@,)@I -iG1ys 
iQ2 y5 

@&Pm4 
i&J = 

@ 4 m,xY 

- iQ2yS i@lyS 
. (36) 

@&P-lrn: @&/3-‘rn,* 
- $A’@1 0 

i&l J is2 y5 

\ @ 4 (x7)-‘m% 
0 ;A’@1 

The connection V can be extended to an operator V:&8, dh -t&8, dh, 
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p=e( ~C9.,&@12x2)e, 
(37) 

for 5~8, qkh; see Ref. 5. We  have used ~?a= -i[D,a] for a E,&‘, see Ref. 1, and L”=C” for 
n =0, 1. We  have ,u ES&, hence we can apply the isomorphism i, and we find 

0 

G-d = i 0  

0 0 

0 
0 - y5@ c-‘rnl* 

-Y5@em i , 
0  

(38) 

0 0 -y5@ 5Pm, 

J; 

0 0 0 1 
i,(kJ= 

-?@ f m ,xY 
, /5@ &/I-‘m,* 

0 - y5@ 

i” 0 0 

5 (xr)-‘m ,* 0 0 

The situation found in nature demands to use a pseudo-Riemannian manifold X, instead of the 
Riemannian manifold X. We  are interested in the case that X, is the Minkowski space. We  
convert the results obtained so far for the Euclidian manifold X by a W ick rotation to Minkowski 
space. If we denote by L’(X, ,S) the space of square integrable sections of the spinor bundle over 
X, then instead of H, see (22), we have to take the space 

H‘+f={L*(X,,S)~c3cBc3}a3{L*(XIU,S)@(e~~~~)@c3}. (39) 

On H, we have the invariant product 

(yr,ll;)HM: = uM’P*yo+, ‘I!,& HY, (40) 

where Us is the canonical volume form on X,,, . Due to (37) the natural fermionic action is 

SF= $ (Yr,(Dc’+ i( p+ ipiu))*)HM+H.c., WEH.VCi (41) 

where pM is the connection form p rotated to Minkowski space and H.c. denotes the Hermitian 
conjugate of the preceding term. We  take 

~=w~,~JT, ~~=(vL,et,edTt *q=(~L,dL,~R,dR)T, 
where e L, VL ?eR E L2(XM ,s)@c3 and uL ,d, ,uR ,d, E L2(X,S)c3C3c3C3, with 

(r’@ id)fL= -fL, (?@.i4fR=fR, f=e,u,u,d. 

(42) 

(43) 

We  obtain, denoting the W ick rotated fields Ao3++-*3 and @ Is2 by the same symbols, 

SF= J XY 
UM(~~+z;+L4q+~;)~ (44) 
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DC’+i(iA3+ )A’) iA- 

iAf D”+i(- iA3+ =$A’) 

e,*{yO(@;$*+l)@~(e*-e -l)rnFl( 1:) +H.c.], 

Dc’+i(fA3- iA’) iA- 

iAf DC’+i( - f Ax- i ~0) 
+u~{y”(DC’- 5 iAO)@J.@l}uR+d,*{yo(Dc’+ f iA0)691,@1}dR, 

-(dg{y”(m’;6*+ l)@l,@ i 4 (xy)*-(xv)-‘m:](lE)+H.c.}, 

where l,=l,,s is the identity acting on the colour space of the quarks; see Sec. VII. Comparing 
this with the classical fermionic action,” we read off the mass matrices of the fermions, 

m,=$(E*-e-l)rnT, mu=+ &(P*+P-‘)m,*, &= t 4 ((x79*-(XClb,* . 
(45) 

where e’(e,p,r)r, u=(u,c,I)~, d=(d,s,b)‘. The matrices m,,m, are diagonal. We can assume 
that their diagonal matrix elements are positive, otherwise this is achieved by unitary transforma- 
tions eR*u,eR, R u ++uuuR with diagonal unitary matrices u, ,uU . However, the matrix rn: is-in 
general-an arbitrary nondiagonal 3X3 matrix. There exist unitary matrices U, ,u*, so that rni 
= u t m&z for a diagonal matrix md with positive diagonal matrix elements. The matrix u r can be 
absorbed by means of a unitary transformation dR*u IdR . But the matrix uz cannot be absorbed 
by a unitary transformation (z,“)++(tf’ z, )(UL), because this would make the matrix m, nondiago- dL 

nal. All we can do are transformations (~~)+~r “,,)(f,“), uR*aluR and d,HtT2dR by diagonal 
unitary matrices 8, ,&, so that m, remains invariant and u;++ STuz S2 = : V. The matrix V is the 
famous Kobayashi-Maskawa matrix, which for an appropriate choice of 8, ,S, can be brought into 
the standard form parametrized by three rotation angles and one phase. Thus, we can rewrite Z; 
and Zi as 

Xi= - e,*{y”(5’;&*+ l)@m,} 
I 

(1;) +H.c.], 

%=- i 
uf{yO(@.‘+ l;-@‘)@mm.@lB,} (1;) +H.c.] 

d,*{y0(&‘;s2-t l)@mdV@lB,} (;;) +H.c.). 

Now we count the free parameters on which the physical masses in our model depend. We can 
regard (45) as equations for computing the fermion masses and the Kobayashi-Maskawa matrix 
for given 3X3 matrices P,y,C,x,m, ,m,. But if we take the point of view that the fermion masses 
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and the Kobayashi-Maskawa matrix (13 parameters) are given by experiment, and if we keep the 
diagonal positive matrices ml and mq as additional free parameters, then (45), with rni = mdV, are 
equations to determine p,y,e,x. This gives a system of quadratic equations for the matrix elements 
of ,Q,y,e,x. We take any of the (possibly complex) solutions of this system to fix the matrices 
p,y,e,x. Then, there remain only the six free parameters in the diagonal of m, and m, . 

We remark that the presented construction of the fermionic action of the standard model 
yields immediately the correct hypercharges of the fermions-namely the coefficients in front of 
- 3” in (35) and (36). This is possible because we use the isomorphism i of graded Lie algebras, 
which allows embeddings into the space of bounded operators on the fermionic Hilbert space 
different from the fundamental embedding. For matrix algebras there exist-besides the trivial 
representation-only the fundamental representation and, hence, only the fundamental embedding. 
Therefore, in the derivation of the standard model elaborated on by Kastler,’ one must additionally 
consider the chromodynamics algebra and impose a generalized Poincare. duality condition (Refs. 
3, 7) in order to obtain the correct hypercharges. 

VI. THE BOSONIC ACTION 

We recall* that the curvature 8 of the connection V is given by 

0=5++ &,P}~+ 80=Dp-i[p,pl,+ k~l,+ 00, (47) 

where 

(48) 

The problem is that 19,t+.X~, so that it is not possible to apply the isomorphism i. We propose to 
replace here the isomorphism i by a linear mapping i’ defined as follows. Looking at (16) we see 
that t9, is given by putting u~=u$= 1 and all other c$‘**= 0, and then projecting away the last row 
and-column. Thus, to the elem_ent go E .Xi given by CX~= CX~= 1 we apply the isomorphism i, giving 
ir( 8e,;) =diag( 1 i ,O,l$ and i4( &J =diag( $q t , - $q i , - $qi, $qi); see (20) and (21). Now we apply 
a reasonable projection: 

(49) 

The choice i;( &,) is plausible, but I have no deeper explanation for ii( &J, except that we need 
this below. Werecall that Z: = fi = rn,rnT ~1 rn![* andq: = qi = mqm,* ~1 m,1*.Then,using(35), 
(36), and (38), the transported curvature is given by (fE{I,q}) 

(50) 

idO,)= 

’ (4 d(A3+Ao)+A-AA+) (dA-+A3AA-)sl 

-@‘(S2+ l)+# 
i(d@‘+ 4 (A3-A’)@’ 

‘2391-(1@‘12- 1)81rn~12 +A-(a2+ l))$@eq 

(dA++A+AA”)@1 ( d(A’-A3)+A+AA-) i(- f (A3+AO)(@+ 1) 
-(a2+ l)z+@lmlp @l-(1@+ 1(2- 1)81mf +d@‘+A’@‘)~@em, 

i(d@ - ; $‘(A)-Ao) i(i (@+ l)(A3+Ao) dA”81-(p’12 

, -(&*+ l)A+)$@e-‘m: +d&2-&‘A-)$@e-‘m: +p2+ 1p- l@lmf I 
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(d(iA3- +A’) 
(dA-+A3/bt-)ol z(‘~L-$;) 

i(d@+ 

+A-I-U+)@1 
+() p2+1/2- ) 

-@‘(;i;2+ 1) X;A3+Ao))y’ 
) (A3-A’)@‘+ 
+A-(Q2+l))j, 

- WL12~@lm,12 
@ lm,12 @&Pm, @ 3m,xr J; 

(dA++A+AA3) 
(d(- )A3- iA’) -i(d@ i(dQ2+AC@’ 

81 
+A+I-U-)@l -(b2+1)A+ - b (A3+Ao) 

-(92+1)@c%~m,~2 
-(f p2+112+ f - 4 (fl(~~-~o))yS x(@2+lw 

- ) I@‘~2@~mq~2 @&Pmp @J)m,xy 

-i(da2+A+@’ 

- &A~+AO) 
x(@2+lw 
@dB-‘mt 

i(d@’ - $ dAO81 
+A-(@‘+l) 

+$ (A3-A’)@‘)? 
+ f WI2 0 

@&P-‘m: 
+~aJ2+1~2-2) 

@lm,l’ 

i(d8’ i(ds2--&‘A- 
-(&2+ l)A+ 

4 dA%l 
+ $(w+l) 

- )&*(A~-A~))~ X(A3+Ao))$ ’ 
- i WI2 

@ 4 (xr)-‘m: 
+la++lp-l)’ 

@ J f (x79-‘m$ @x-‘lm,12x 

Now we take the embedding e of 6’ into B(H), which means to perform the replacements (32) and 
(33) in the above matrices, see Sec. IV. We introduce the abbreviations lrn12 = mm*, 
~m~4:=(mm*)2,and~m~-2:=(mm ) * - ’ for a 3 X 3 matrix m . Thus, we get the Euclidean bosonic 
action-for an appropriate choice of the’constants-as 

Sg= 3txTi,g; Tr,{(ze( e))*d @I= I xug MzM @I*4 e)> 

= 
I xu,w2+5%+~o)~ 

S2=-4 PK6"A tr(F&,)+6x,F;& , 
i 

9x+11 

2g2 I 

FC(lJ= 
( 

4 drpA3,l +$&I $A Fj +A;iL$ 

4/LA;+A;pG, - i a,,A;,-A;,A;, 1 
, FLY= +A vlv 

sl= l 3(x+3)g; s"vGp%~1+@,P2+ w"(@2+ 1)) 

xtr(x(l~l2+l~l~2)lm1l2+~~lPl2+~lPI~2+Ix~I2+Ix~I~2~l~,l2~~ 

J. Math. Phys., Vol. 37, No. 8, August 1996 
                                                                                                                                    



3810 FL Wulkenhaar: Standard model, noncommutative geometry 

so= 2 3(x+3)g; (l@12+l~2+ 112- II2 +v+; lmg14 + (x+;)g2 
i 1 

tr 
2 ( 

f xlic~~4+16iq14 , 
i 

(51) 

with X,,Y,,=X,Y,-X,Y,. We have used &CC 1) =4, trc(~‘.yV’)=48v’V’ and 
trc(yP. yp. yK. $)=4(SYKSPh- SC”“@‘) for ,%# v,K#X, where trc denotes the trace in the 
space of sections of the Clifford bundle C. We remark that the part So of the Lagrangian would 
vanish if there was only one generation of fermions, because in this case a formula corresponding 
to (33) would give zero for El and Kq. But manifestly there are three fermionic generations in 
nature. Next, we perform some reparametrizations. We put 

3x+9 A;=- ~ Al--- 9x+ 11 

This gives (I.T.=interaction terms, C.C.=cosmological constant) 

1 

i 

3 

z2=- p@ 
4 c F;.%+F;JFa,,, 

a=1 I 
9 

L??l=i 8”” 
2 

C (a,~j)(a,~j)+m2,(WZWt+ W~W”,)+m$Z,Z, 
j=l 

So= fr mf,(Re $J,)~+I.T.+C.C., 

(52) 

(53) 

(54) 

(55) 

where 

3 

Z=COS e,w3-sin e,wO, 

P= sin eww3+c0s e,wO, 

3 3+x 
sin2 ew=- - 

4 5+3x’ (56) 

mw= ~{x(lel2+lel~2)lm~l2+(2l~l2+2l~l~2+lxul2+lxrl~2~lm,l2), (57) 

m,=mwlCOS ew, 
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-q/m. mH=3mw (58) 

We can transform this action to Minkowski space by a Wick rotation of the physical fields, 
replacing Buy++-gPv and introducing a global minus sign in the action. Then this action coincides 
with the electroweak sector of the classical bosonic action of the standard model,17 where the 
Weinberg angle 8, and the masses m w of the W boson and mH of the Higgs boson are fixed; see 
(56), (57), and (58). Inserting the reparameterizations (52) into (44), we get precisely the elec- 
troweak sector of the fermionicaction of the standard modelI According to Ref. 2, the gauge 
group associated to the module Z? discussed in the beginning of Sec. III is isomorphic to 
Cg(X,) @ ( SU(2) X U( 1 )), where Cg(X,) denotes the algebra of real smooth functions on the 
Minkowski space. The action is by construction invariant under gauge transformations. 

VII. THE CHROMODYNAMICS SECTOR 

The chromodynamics sector can be obtained from the module ??c=ec~3, with 
e,=diag(e’,e’,e’). The analysis of this case2 shows that 

AS&= ii Lk-2r@SZ(3,C)@l?4M;, (59) 
i=O 

after omitting the rows and columns consisting of zeros only. Thus, elements ek EL%!& are of the 
form ek= C;EoGk-2r@M;, where Gk-2r E Lk-2r @s/(3$). We split tie,, into its l;- and ~1 part, 
we take the trivial representation i,,,(&)=O of the Z[ part, and the fundamental representation 
(tensorized with 14x4) of the 4; part: 

m 

i,,,(e:)=rzo diag(Gk-2’,Gk-2’,Gk-2r,Gk-2r)@ql’. (60) 

Obviously, elements i,( Qk) are bounded operators on H for k =O,l. In analogy to the procedure in 
Sec. IV we construct the space eCB(H), which turns out to be 

(60 

where T= is defined in analogy to (23) and where we extended icl,sc naturally to 
C”@gl(3,C)@id,. 

From (59) we find for the chromodynamics connection form e,= G@id,, 
G= -G*~L’@‘su(3). After rotating to Minkowski space (G-G,) we obtain the following 
contribution to the fermionic action: 

X3=@; ;d; ;u; ;d; )[Y’[‘[ ii i;M ;;j@f$ (62) 

The curvature 0, of the chromodynamics connection V, is given by 

These equations follow from the discussion in Ref. 2. We put in local bases 
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G= ; g3G;y%A,, (64) 

where h, , a = l,..., 8, are the Gell-Mann matrices, fulfilling [ Xb ,X,1 = cif= ,L?ifi,X, , fi, EW, and 
tr( x,xb) = 2 ??,b . Denoting by e,( 0,) the embedding of 0, into B(H), we obtain for the Euclidian 
bosonic action of the chromodynamics sector 

(65) 
8 

8 

F:,,,=~[,G;,-g3 c P GbG;, b,c=l bc ’ 
(g3 /g#= (3 +x)/4. 

(66) 

Rotation to Minkowski space (G-G,, Buy+-gl*‘, ug+vy , and global minus sign) transforms 
the first term in SC into the bosonic action of chromodynamics,‘7 the second term in SC contrib- 
utes to the “cosmological constant.” The relation (66) between the coupling constants g3 and g2 
of the strong and weak interactions, respectively, should not be taken too seriously, because it can 
easily be changed by a different normalization of the chromodynamics action. But if we take 
everywhere the simplest scalar product given by x = 1 then we get g3 = g2 from this model (just as 
in Refs. 11 and 10 for the simplest scalar product). According to Ref. 2, the gauge group associ- 
ated to the module ZY= is isomorphic to CF(X,) @I SU(3). 

VIII. REMARKS ON MASS RELATIONS 

In this section we are going to discuss the mass relations (57) and (58). This will be done only 
for tr(lml/2)~tr(lm,12), b ecause lepton masses are small compared with the quark masses of the 
same generation so that the case tr(lml12)~tr(Imqj2) is more natural than the case 
~h12)Wlm,12); see (45). Hence, we put 

tr( lmrj2) =sin* 19~ tr( lmq12). 

From the second equation of (45) we obtain tr(~m,~2)~$r(~m,~2), so that we put 

tr(lm,12)=~cos2 8~2 tr(lm,j2)=$m~ cos2 42. 

Here and in the sequel we neglect the other fermion masses against the mass m, of the top quark. 
Then we get for (57), 

me J(2/(3 +a +4f hl*+ i lm~12)+(lm,12+ ImA*- A lm,12)I 
=d(2/(3+x)) (1-+(1-x sin2 01)cos2 82)m,<&m,. (67) 

For m EM~C we have tr(~~4)=tr{(~m~2-~(tr(~m~2))1)2}~~(tr(~m12>)2: see (33). Therefore, we 
Put 
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tr( lfiJ4) = f cos2 S,(tr( lm,12))2= grnf cos2 19~ cos4 I&, 

tr( lKJ4) = 3 cos2 6,(tr( lm,12))2 = $mf cos2 tY4 cos4 19~ sin4 6,. 

Now we find for (58), 

20 cos2 7Y.i3 + 12x cos2 ~9~ sin4 6i 
mN= 

12-3( 1 --x sin2 6,)cos2 19, m, cos2 6,<2m,. (68) 

The experimental values mw= 80 GeV and m, = 174 GeV can be reproduced in the case 
.r sin2 6,el by x=6.5...9.6, depending on I%~‘; see (67). Then, by choosing fi2 and $, we can 
adjust mH to any value smaller than P Fm,=259 GeV; see (68). Moreover, we find for the 
Weinberg angle sin2 8,=0.27...0.29, see (56), and for the ratio of the coupling constants of the 
strong and weak interactions (g,/g2)2=2.3...3.9; see (66). In the case x sin2 19,%4 we can repro- 
duce the m &rn, ratio for sin2 6- 1 and cos2 IY~- 1. By choosing 13~ we can adjust mH to any value 
smaller than 2m,=346 GeV. Moreover, in this case we have sin2 0,=0.25 and g3%g2. Hence, we 
have enough freedom to bring the tree-level predictions (67), (68), (56), and (66) of our model into 
agreement with experimental data. However, these “predictions” have only a heuristic value, 
because they do not survive the classical quantization procedure. But there seems to be only a 
weak scale dependence.18 

The simplest scalar product is given by x = 1. In this case we get 

m w= f( 1 - a cos2 6i cos2 6,)m,, J +m,<mw< &h,, 

20cos2 6,+12cos2 19, sin4 6, 
mu= 

12-3 cos2 I?, cos2 82 
m, cos2 fi2< & m,, 

sin2 Bw= g, g3=g2. (69) 

These mass relations differ from the relations ml= 2mw and mH= 3.14m, obtained by Kastler and 
Schiicker in Refs. 11 and 10 for the quaternionic K cycle, together with the simplest scalar 
product. While the mwlm, ratio is approximately stable, we get for the mH/m, ratio only an upper 
limit. Thus, we see that in comparison to the simplest model by Connes, Lott, and Kastler we get 
within our simplest model effectively one additional parameter determining the mHlm, ratio. 

This means that although we introduced plenty of free parameters during the construction, 
these parameters occur in the final Lagrangians in the case of the simplest scalar product only in 
such combinations that we end up with nine parameters for the fermion masses, four parameters of 
the Kobayashi-Maskawa matrix, one undetermined coupling constant, and one additional param- 
eter, which determines the ratio between the masses of the Higgs boson and the top quark. For this 
last parameter we have only an upper limit. Therefore, our model is less predictive than the model 
by Connes, Lott, and Kastler. 

To summarize, the purpose of this paper was to present a different construction of the classical 
action of the standard model, which uses the simplest possible (nonclassical) algebra and puts the 
complexity into the module. In noncommutative geometry a K cycle replaces the notion of a 
manifold and a finite projective module over the algebra of this K cycle the notion of a vector 
bundle over this manifold. Therefore, our approach (a K cycle together with two associated 
modules-one for the electroweak sector and the other one for the chromodynamics sector) cor- 
responds to a classical manifold with two associated fiber bundles over that manifold-a principal 
fiber bundle with structure group SU(2) X U( 1) for the electroweak sector and a principal fiber 
bundle with structure group SU(3) for the chromodynamics sector. 
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The concepts of von Neumann lattices and tight frames are used for defining dis- 
crete quantum mechanical transforms in the phase plane. These transforms are 
obtained by finite shifts la and mb in the coordinate x and momentum p, respec- 
tively, of the Weyl-Heisenberg group, and they are called the discrete Weyl- 
Heisenberg transforms ~la,m b). Here a b = h/N with h the Planck constant, 1 and 
m integers, and N a positive integer. A construction is carried out of flla,mb) for 
a genera1 Weyl-Heisenberg set by using the kq-representation, in which a useful 
formula is established for the frame operator. The construction is illustrated on an 
example of the ground state of a harmonic oscillator. It is shown that any physical 
quantity can be described by the discrete Weyl-Heisenberg transform. Connections 
are established between $fZa,mb), the Bargmann representation, and the Husimi 
distribution function. 0 1996 American Institute of Physics. 
[SOO22-2488(96)0 1708-21 

In the early 1930s von Neumann’ introduced a complete set of coherent states on a lattice in 
the phase plane with a unit cell of area h, the Planck constant. These states, in addition to forming 
a complete set, have also the attractive property of being well localized both in coordinate x and 
momentum p around each point la,mb on the lattice where a and b are constants with ab = h, and 
l ,m=O.+l,+2 ,..., on the lattice. In 1946 Gabor* defined a similar set of states in the plane of time 
t and frequency v with a unit cell of area 1. It has the same localization property for t and v as the 
von Neumann set has with respect to x and p. This is, in principle, the same set of states which can 
therefore be called the von-Neumann-Gabor set. 

The completeness of the von-Neumann-Gabor set (VNG set) was proven only in the 
197Os.“-” It has, however, turned out3*5 that the VNG set is over-complete by exactly one state: It 
remains complete if one state is removed, but ceases to be complete when more than one state is 
removed. This is a very unusual peculiarity which is characteristic to the VNG sets. It turns out 
that because of this peculiarity, expansions in such sets do not have good convergence properties.6 
In recent years an important contribution was made by Daubechies, Grossmann, and Meyer7 who 
introduced the concept of frames for discrete sets in phase plane with abc h. These latter sets are 
called the Weyl-Heisenberg sets (WH set), while the name VNG set is reserved here for the case 
when ab = h. It was shown in Ref. 7 that expansions in frames have good convergence properties 
and, as a consequence of this, frames have recently acquired much interest in signal processing.8 
The interest in the WH states stems from the fact that they carry simultaneous information about 
the coordinate and momentum (or time and frequency). As is well known one cannot construct in 
quantum mechanics wavefunctions &(x,p) that depend on both the coordinate x and the momen- 
tum p, because this would be in violation of the uncertainty principle. In view of this restriction on 
the wavefunction, the approach of phase space distributions depending on x and p has developed 
in quantum mechanics, the most famous among them being the Wigner function.’ These distribu- 
tions are quadratic in the wavefunction and they carry some information on the simultaneous 
probability density for x and p. It should also, in principle, be possible to construct wavefunctions 
that depend on partial information about both x and p. An example of such a possibility is the 
kq-representation” in which the information about x is carried by the quasicoordinate 4 and the 
information about p by the quasimomentum hk. Here q and k in the wavefunction C(k,q) vary in 
a unit cell of the VNG lattice with area 271; and they tell us where inside this cell x and plfi are, 

0022-2488/96/37(8)/3815/9/$10.00 
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but do not say anything about the number of cell (Z,m). An alternative possibility would result if 
the wavefunction depended on 1 and m, @(l,m), telling us in which unit cell x and p are, but 
saying nothing about their location inside the cell. Such a wavefunction t,Lfl,m) should then be in 
some sense a Fourier transform of the kq-wave function C(k,q). To our knowledge no such 
wavefunction fll,m) has as yet been constructed, and one can even wonder whether such a 
wavefunction exists. 

In this paper we use the concept of frames in signal processing7 in order to construct what we 
call the discrete Weyl-Heisenberg transform fiMla,mb). The points (Za,mb) are on the WH- 
lattice with l,m=0,+1,+2 ,... . It is shown that for some special sets this discrete representation is 
closely related to a discrete subset of the Senitsky-Glauber coherent states” Ia). In constructing 
$f Mla,mb) much use will be made of the elegant and powerful notion of tight frames.7 The latter 
are defined in the following way. One first defines a frame: the WH-set is a frame if the frame 
operator F, 

(1) . 

is bounded by two positive constants A and B, ASFGB; A and B are called the frame bounds. 
Here Igl,) is a state of the set assigned to the cell (Za,mb) of the lattice and in what follows it will 
be assumed that ab= h/N with N= 1,2,... . One obtains a tight frame when the frame operator F in 
Eq. (I) is a multiple of the unit operator: 

F= 2 ktm)(glml =AI. (2) 

Here A is a positive constant. An explicit construction is presented in this paper for WH tight 
frames with A = 1: 

(3) 

Frames that satisfy this equation are called tight frames with bound 1. In quantum mechanics an 
equation of the type of Eq. (3) is usually obtained for an orthonormal basis. In Eq. (3), however, 
the states (g!,) are not orthogonal, and as is known for them to satisfy Eq. (3), they cannot be 
normalized to one.’ A full quantum mechanical framework is derived in this paper for these WH 
sets Ig[,) by using Eq. (3). This includes expressions for any operators, for their expectation 
values, etc. In other words, we construct in this paper what we call the discrete Weyl-Heisenberg 
transform ~&Za,mb). It should be pointed out that originally the VNG set was built on coherent 
states.“” This was later extended to cover any state in the Hilbert space and, correspondingly, it 
was called the Weyl-Heisenberg set.” In this paper a definition is presented of a quantum 
mechanical transform for a general WH tight frame and as a particular example the set of coherent 
states is considered. 

Given a state 18) in HiIbert space, a Weyl-Heisenberg discrete set is defined in the following 
way. One uses the destruction a and creation a+ operators and the constants CY and LY*, 
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1 x2 
a=- x+i-p , a+=- 

xv2 i i 

1 x2 
h xv7 i i 

x-i-p , 
ii 

1 x2 1 x2 
ff=- .F+i-F, 

xv2 ( 1 ti 
cy*= - 

xv2 i i 
X-i -jT , 

n 

(4) 

for defining the shift operator, 

D(n)=exp(aa+-a*a), (5) 

and correspondingly the WH set, 

Ig~a,mb)=~Ca(la,mb)llg). (6) 

The following notations are used in Eqs. (4)-(6): A, X, and pare arbitrary constants, 

cu(la,mb)= & (7) 

while the constants a and b satisfy the relation 

h 
ab= - 

N’ 
N= 1,2,3 ,..., (8) 

where l,m=O,t1,+2 ,... . When N= 1, the set in Eq. (6) is the VNG set. It was proven in Ref. 7 
that the set in Eq. (6) is a frame for N82. It is also knownt3 that if ]gla,mb) is a frame [see Bqs. 
(1) and (@I, then 

$2 I&a,mb) (9) 

is a tight frame with bound 1, where F is the frame operator [see Eq. (l)]. We are now going to 
present an explicit construction of the tight frame as given in Eq. (9) by using the 
kq-representation,” The wavefunctions &(x) and C(k,q) in the x and in the kq-representations, 
respectively, are related in the following way: 

112c exp(iknd)@(q-nd), 
)I e(x)= ( &)lQ/;;dC’d’(x,k)dk, (10) 

where d is an arbitrary constant. The basic operators x and p in this representation are” 

d d 
x=1 dk . -+q, p= -ifi -. 

dq 
(11) 

The kq-wave function Ccd)(k,q) satisfies the following boundary conditions: 

exp(-ikd)Ccd)(k,q+d)=C(? (12) 

In signal processing C(k,q) is called the Zak transform.14 Bearing in mind the boundary condition 
(12) it will be convenient to write the shift operator D[cr(Za,mb)] as a product of two shift 
operators by splitting a(Za,mb) in the following way: 
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a(la,mb)=cu (13) 

where the LYS are defined in Eq. (7), and where the integers are as follows 

l=l,L-tl,, m=m,Mtm2, LM=N, d= La. (14) 

Here Z,,mt=0,+1,+2 ,..., Z,=O,l,... L- 1, and m2=0,1 ,... M- 1. 
The frame operator F [Eq. (l)] in the kq-representation for the Weyl-Heisenberg set is7,15 

(k,czlFhf)=l, ,z;i22 exp -iZl(k-k’)d+iml(q-q’) 2 
I 

X[D[ yi l2 g,rn, 2 iij]g”,(k,p)l*D[ a( 12 g,m2 2 fij]g’d’(k’,qr) 

where we used the Poisson summation formula for distributions:‘6 

7 exp(iidk)=FF S(k-$lj. (16) 

What Eq. (15) actually means is that in the kq-representation the frame operator F(k,q) is just the 
multiplication operator’3”7 

(17) 

when the wkf set Igh,mb) is a frame, one can use Eqs. (9) and (17) for constructing a tight 
frame. This can be done in the following way. According to Eq. (9) we define a new window 
function 

dd)(k 9) 4(d’(kd = F’n(k;q) . 

We then have 

&)mdW 
~l,dl,b(klq)=D[~(la,mb)l~(d)(k,q)= Finck qI , t 

(18) 

where F(k,q) is given by Fq. (17). For the case N=2 and when gcd)(k,q) is the ground state of 
a harmonic oscillator, this construction was explicitly carried out by Daubechies, Jaffard, and 
Journe. l8 

Having defined a WH tight frame ]c&~~) we use it for a convenient decomposition of the unit 
operator I: 
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(20) 

From here any state I$) can be expanded in the following way: 

I$)=% Gh&hfwAa,mb). (21) 

Equations (20) and (21) look very much the same as in the case when 1411a,mb) is an orthonormal 
basis. However, the WH set I&la,mb ) is highly overcomplete (for Na2) and not orthogonal. As a 
consequence of the overcompleteness the expansion in the set 141a,mb) can be carried out with 
many other collections of coefficients elm : 

149 = z 4 hw?tb)* (22) 

There is, however, a very special feature that the expansion coefficients (c$~~,,J+) in Eq. (21) 
possess. From the identity resolution [Eq. (20)] it follows that 

(23) 

The special feature of (411a,mb]@) is th at among all the collections of cl,,, in Eq. (22) for a given I@), 
the (cJ+~,~~]& lead to a “minimal solution” 8~15 

1,m l,m 

The equality sign is reached only when elm = ( +[a,mbJ $)I. 
Based on this special feature of the expansion coefficients (&J&I in Eq. (21) we define the 

quantum mechanical discrete Weyl-Heisenberg transform t$4)(la,mb) for the function 4 [see Eq. 
(18)] in the following way: 

ICl(~)(la,mb)~(~la,mbllCI)I. (25) 

Here ti4’( Ea,mb) contains partial information about x (via la) and partial information about p 
(via mb) with the pair (la,mb) specifying the cell in the phase plane around which C& is 
localized [Eq. (19)]. What is very satisfying about this definition of t,k4)(la,mb) is that for a 
normalized state, ($j$)= 1, 

(26) 

can be interpreted as giving the probability to find x and p in the cell (I,m) in phase plane. This 
is so because from Eqs. (23) and (25) it follows that 

z P(Za,mb)=z I+(Za,mb)12ti 1 (27) 

as is required from a probability distribution. 
It is to be pointed out that despite satisfying the probability requirement in Eq. (27), the 

discrete Weyl-Heisenberg transform &Za,mb) cannot be given the interpretation of a wavefunc- 
tion in quantum mechanics. The main reason for this is that la and mb are not eigenvalues of 
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some commuting physical observables. The situation is very much like that with coherent states 
lo), when (cr]$) gives some probability information of the distribution of x and p in the state I$), 
but it can nevertheless not be interpreted as a wavefunction. 

Before showing how the transform $fZa,mb) can be used for representing operators and 
expectation values, let us first work out an example. As an important illustration of cC(Za,mb) we 
give in what follows an explicit construction of it for the case when ]g) is the ground state of a 
Harmonic oscillator: 

C+d=( &j1’4 fw( -&j. 

In the kq-representation this function is6 [see Eq. (10) above] 

gbd’tkd = 2 ( d 

(28) 

(29) 

where S3 is the Jacobi Theta function” 

e3(zl 7) = 2 e2izn+irrm2e (30) 
n 

For constructing the tight WH frame [Eq. (19)] we have to find the frame operator F(k,q) [Eq. 
(17)]. For this purpose one can use the known formulas from VNG lattices” for any kq-function 
dd’(W: 

2ddd)tW12= Fn (- 1 Y(q md,h(h,d)nk)eXP (31) 

By using this formula, the summation on Z2 ,m2 in Eq. (17) gives the following result for the frame 
operator F(k,q): 

( 27r 
F(h) =Nzn t - 1 )m”N(gm~d,nM(2~~d)hlg)exp i -j- qmL- ikdnM , 

i 
(32) 

where N= LM [Eq. (14)]. This is a useful expression for the frame operator’F(k,q) in the 
kq-representation for any gcd’(k,q). For the ground state of the harmonic oscillator [Eqs. (28) and 
(29)], the operator F(k,q) becomes2’ 

Fo(k,q)=Nx (-l)mnN 
m,n 

exp( -~[(nM)z+(~)2(mL)‘]]exp(i~qmL-ikdnM). 

(33) 

This is a very simple formula which becomes even simpler for the symmetric case of 

We then have 

(34) 

F~N’(k,q)=N~ (- l)mnN N= 1 i 2a 
exp - 2 (m2tn2) exp i 7 qmS-ikdnS (35) 

m,n 
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Thus, for N=4, Fb4’(k,q) becomes [see Eq. (30)] 

(36) 

The frame operators in Eqs. (35) and (36) are very smooth functions of the k and q variables and 
they have the very good feature that their bounds [see Eq. (l)] A and B are close to one another. 
Thus, already for N=4 [Eq. (36)] one can check by using numerical values for 83-functions’9 that 

B-A 
A = 3.970, B = 4.030, B+A = 0.0074. (37) 

This ratio goes rapidly down for N>4. One can therefore assume to a good approximation that the 
frame operator FbN’(k,q) =N for N24. It follows that for the symmetric case [Eq. (34)] the tight 
frame ( &d))r,,,b(k,q) for the ground state of a harmonic oscillator differs from the frame 
(gbd’)r,,,b(k,q) only by the constant factor S(N=S2), 

(+&d’)l,,,dkq>= ; M&a,m&w)~ (38) 

where a and b are defined in Eqs. (7) and (8). Also in this approximation the frame operator 
FhN’=N gives the number of the WH set states in a unit cell of the VNG lattice. For the ground 
state of the harmonic oscillator, we actually return to the original von Neumann coherent states”” 
and correspondingly we can use the notation [see Eq. (38)] 

t did’) r,,,btk,q)~ f (kql4la,mb)), (39) 

where la(Za,mb)) is a coherent state” with cr(Za,mb)) given in Eq. (7). What should, however, 
be pointed out is that the WH set Icu(Za,mb)) is a frame, while (&d))la,mb is, to a “good 
approximation,” a tight frame. 

Having the result in Eq. (39), it is easy to write down the discrete Weyl-Heisenberg transform 
JI’RO’(Za mb) for any state I+). The superscript go indicates that the ground state of the harmonic 
oscillate; was used [see Eq. (28)] for constructing the Weyl-Heisenberg set. We have 

1 
J/(go)(Za,mb)= s (a(Za,mb)lti). (40) 

As is well know the bracket on the right-hand side of Eq. (40) can be written as follows: 

(cu(Za,mb)l@=exp(- i Ia(Za,mb)12)~[cu*(Za,mb)l, (41) 

where ccl((r*) for continuous (Y is an analytic function of cy* and it is known as the Bargmann 
representation 21 f 0 I$ . ) Thus for the nth harmonic oscillator state I&J, Eq. (40) becomes 

t@)(Za,mb)= $ exp - i ln(Za,mb)12) a*n(zb), 

The probability distribution for this state will correspondingly be [see Eq. (26)] 

(42) 
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P~o’(lo,mb)=l~~O)(~a,mb)j~~~exp(-ja(za,mb)~2) 
la(Za,mb)12” 

n. I 

(43) 

where Eqs. (7), (8), and (34) were used. This is a simple function which can be interpreted as 
giving the probability of finding x and p in the cell la,mb(ab= h/N) in the state I@J. 

Equation (40) gives an approximate relation between the discrete Weyl-Heisenberg transform 
&la,mb) and the Bargmann representation (a(la,mb)l$) of the state I$). 

In the case of coherent states, the continuous transform ((U/G) [Eq. (41)] was used by Husimi22 
to define a phase space distribution function P,(x,p) which carries his name and which is 
connected to the Wigner function in the following way:22 

where go is given in Eq. (28) and where the Wigner function for any $(x) is9 

W,p) = y& j exp(-~p~jc*(x-f~)li/(x+~i)dr. 

Following the definition in Eq. (44), one can consider P(la,mb) in Eq. (26) as being an extension 
of the Husimi distribution to any WH tight frame with the window function of 4. In the particular 
case when C$ corresponds to the ground state of a harmonic oscillator [Eq. (39)], the discrete 
Husimi distribution becomes [see Eqs. (40) and (44)] . 

P(RO’(la,mb)= L N I(4~a,mb)l$)12=~ 1 Wgo(la-x’,mb-p’)W+(x’,p’)dx’dp’. 

(46) 

When I+) is the nth harmonic oscillator state I&), the discrete Husimi distribution is given by Eq. 
(43). This completes the description of the illustrative example for the Weyl-Heisenberg tight 
frame built on the ground state of a harmonic oscillator. In summing up this example it should be 
pointed out that the discrete Weyl-Heisenberg transform $ (go)(Za,mb) can be easily used in view 
of its relation to the coherent state amplitude (a( la ,m b) I #) as given by Eq. (40). 

We now show how the WH transform &Za,mb) can be used in Jhe general framework of 
quantum mechanics. For thisAwe show how to repr:sent any operator 0 by using this transform. 
Given a matrix element ( fljl 0 I *j) of the operator 0 between the states I r&) and I *) one can use 
the unit operator decomposition formula [Eq. (20)] to find 

(tiil”l@j)=,m~,, (~i/l~la,mb)(~lo,mbl~l~l’a,~~~)(~l’~,~’~l~j) . 9 , 

(47) 

When i=j, this formula gives the expectation value of 6 in the state I@J expressed via the 
discrete Weyl-Heisenberg transform J/$4)(la,mb) and the matrix elements ( 41a,mb161 qSl~a,m’b). 
In the case when the WH tight frame is built on the ground state of the harmonic oscillator, one 
can use Eq. (39) and (40) in order to simplify the general expression in Eq. (47). We see therefore 
that any quantity in quantum mechanics is expressible via the discrete WH transform $fla,mb). 
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In conclusion, in this paper a quantum mechanical transform is defined, called the discrete 
Weyl-Heisenberg transform, which carries simultaneous information of the coordinate and mo- 
mentum in a given state I$). This information is extracted by forming a scalar product of I$) with 
a discrete Weyl-Heisenberg set I+lla,mb ) in the phase plane, where la and mb give the coordinate 
x and the momentum p, respectively (I and m being integers). When I&mb) is chosen to be a 
tight frame with bound 1, the t,h( Za,mb) = ( c#+a,mb 1 rj) is then the discrete Weyl-Heisenberg trans- 
form. The &(la,mb) is reminiscent of the Bargmann representation in quantum mechanics22 and 
the windowed Fourier transform in signal processing. 23 In the latter case the simultaneous infor- 
mation is about time and frequency. 
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In this paper a numerical method is developed to solve a one-dimensional inverse 
scattering problem associated with a pair of two coupled partial differential equa- 
tions. These equations are for the Green functions that can be used for the optimi- 
zation of electromagnetic energy within selected regions of a medium in which the 
propagation is taking place. The method is based upon constructing the Nth degree 
interpolation polynomial to approximate the Green functions and the phase velocity 
function using Legendre-Gauss-Lobatto collocation points. An example is given 
to demonstrate the accuracy of the developed method. 0 1996 American Institute 
of Physics. [SOO22-2488(96)01907-X] 

I. INTRODUCTION 

Decomposition of the total electromagnetic field which is propagating through an inhomoge- 
neous medium into two components traveling in opposite directions is referred to as wave splitting 
technique. This technique along with the invariant technique is applied to the solution of inverse 
problems. Wave splitting and invariant imbedding techniques are presented in Refs. 1-4. Two 
related methods of the Green functions based upon wave splitting are introduced in Refs. 5 and 6. 
In general, they are formulated in the form of an inverse problem and described by a set of linear 
coupled partial differential equations. This problem is also addressed in Refs. 7 and 8. It,has been 
shown in Ref. 9 that the wave-splitting Green function approach to the one-dimensional electro- 
magnetic inverse problem is a well-posed inverse problem. 

In Ref. 5 an electromagnetic plane wave impinging normally on a one-dimensional dissipative 
medium is characterized by spatially varying permittivity and conductivity profiles. Furthermore, 
a technique that maximizes the electromagnetic energy within a specified region of the medium is 
introduced. This is accomplished through the application of the Green functions technique. This 
technique is distinctively different by contrast from the invariant imbedding’method. It yields the 
fields inside the inhomogeneous medium where the boundary values of the Green functions are the 
scattering kernels for the physical scattering geometry. This connection provides an alternative 
and efficient approach to obtain the scattering kernels. It is utilized in Refs. 10 and 11 to produce 
such kernels and the Green functions for an oblique incidence on a plasma and a point source 
excitation of a half-space, respectively. The Green functions are used to represent a time-averaged 
electromagnetic energy in regions within a medium by a weakly continuous functional for the 
purpose of optimization of the electromagnetic energy as suggested in Ref. 12. A higher dimen- 
sion of this Green functions technique is suggested in Ref. 6 for the application to the treatment of 
cancer cells in the human body without the destruction of the surrounding healthy tissue. A time 
domain inverse scattering problem is regarded in Ref. 6 for axially symmetric electromagnetic 
fields in a stratified slab. The axial symmetry of the field is promoted through a Hankel transform 
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which results in a one-dimensional wave equation to which wave splitting is applied. The inverse 
scattering problem is formulated in the form of a pair of two coupled partial differential equations 
in which the Green functions are present where they are functions of time and displacement. In 
this paper the one-dimensional inverse problem for the case of nonconductive and dielectric 
stratified medium is considered. We are solving this inverse problem and generating the Green 
functions and the phase velocity from the knowledge of the reflection kernels. Our approach is 
based on a spectral collocation method (pseudospectral method13) in which we construct the Nth 
degree interpolating polynomials to approximate the Green functions and the phase velocity of the 
medium. These polynomials are defined through the use of Legendre-Gauss-Lobatto points as 
collocation points and Lagrange polynomials as trial functions. 

The paper is organized as follows: In Sec. II we describe the basic formulation of the pseu- 
dospectral Legendre method required for our subsequent development. Section III is devoted to 
the formulation of the inverse scattering problem. In Sec. IV, the proposed method is used to 
approximate the Green functions and the phase velocity function. In Sec. V, we report our nu- 
merical finding and demonstrate the efficiency and the accuracy of the proposed numerical 
scheme. 

II. PSEUDOSPECTRAL LEGENDRE METHOD 

Let LN( r), - 1 <t s 1 denote the Legendre polynomial of order N, then the Legendre-Gauss- 
Lobatto nodes are defined in Ref. 13 by 

to= - 1, thr= 1, t, are the zeros of L’N(t), 

lSm=GN- 1, (1) 

where LrN(t) denotes the first derivative of L&t). No explicit formula of the nodes in Eq. (1) is 
known, however, they can be computed numerically. Define the polynomial approximation of 
F(t) by 

where 

&l(t)= l 
(t2- l)Lh 

N(N+ l)LN(th) ’ (t--t/J ’ h=“‘17*“‘N’ 

are Lagrange polynomials of order h, with the property 

(2) 

(3) 

(4) 

therefore FN( tJ = bh . For the accuracy of pseudospectral Legendre approximation and error at the 
collocation points refer to Ref. 13. 

Ill. PROBLEM FORMULATION 

The inverse scattering problem is formulated in Ref. 6 as a pair of two coupled partial 
differential equations as 
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-+(bc-c,Ic)-(A+@* -c,/2c+B* 
+ 

-cc,f2c+B* +(~c+c,/c)+(A-B)* 
(5) 

fr(h+~,/~)+(A-B)* -c,/2c+B* (322 

-cc,12c+ B* +(bc-c,Ic)-(A+@* II I * G12 * (6) 

z represents depth in the medium, t represents time, Gij( ij = 1,2) are the Green functions and the 
asterisk represents a convolution in time. The convolution in time of two functions r(z,t) and 
s(z,t) is 

I 
f r(z,f)*s(zJ) = r(z,x)s(z,t-xl&. 

0 

c is the phase velocity of the electromagnetic field in the medium and the function b(z) is related 
to the conductivity of the medium, o(z), through the equation 

b(z)=dz)po, (7) 

where h is the permeability in vacuum. Since we are considering the nonconductive case, the 
function b(z) is zero. It is given in Ref. 6 that 

A(z,t)=(a,lc) JI(uI~) y-7 
[ 

,-b,t 

1 

D(z,t)=c2e-blt cos(a,t), 

C(z,t)=(c2/al)sin(uIt)e-b~r. 

(8) 

00) 

(11) 

J,(x) is the Bessel function of the first kind of order one and K is the Hankel transform parameter 

B(z,t)=(c,/2c)1~~C(z,t)+$~~[D(~,f)-b,C(~,~)]. (9) 

This medium is inhomogeneous, of a known thickness and bounded with two known homoge- 
neous media. The parameters b, ,a, ,ct ,u+(O,z),u-(z,L) are functions of the electromagnetic 
properties of the medium, they are given in Ref. 6. For the case considered in this paper b 1 = c, =O 
and 

Ul=CK, (12) 

a-(z,L)= dm. , (14) 

L is the thickness of the medium. Thus the region 0s~ S L is inhomogeneous and the regions z <O 
and z> L are homogeneous. Initial and boundary conditions on the Green functions are 

G,,(z,O)=-$a-(z,L)c,, (15) 

G2Jz,0) = $u+(O,z)c, t ' (16) 
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G,,(W)=O, (17) 

G2,(L,t)=0, t>O, (18) 

G,,(L,t)=O, t>O, (19) 

G12(0,t)=0, t>O. (20) 

IV. APPLICATION OF LEGENDRE-GAUSS-LOBATTO METHOD TO APPROXIMATE 
THE GREEN-FUNCTIONS AND THE PHASE VELOCITY FUNCTION 

In order to apply Legendre-Gauss-Lobatto nodes and solve the inverse scattering problem 
we introduce the following transformations: 

z=;(l+a), (21) 

(22) 

The values of LY and p are in the interval [- l,l]. T is the duration of the reflection scattering 
kernels R’ (O,L,t). These two kernels are related to the phase velocity and the Green functions as6 

(23) 

G~~(OJ)=R+(O,-L~), (24) 

R-(z,L,+;= - ~qz=L’ (25) 

G12(L,t)=R-(O,L,t). (26) 

In general, the inputs to this method are the reflection kernels R’( O,L,t) and no information on 
the transmission kernels T’(z,L,t) is required. However, for the case considered in this paper the 
input is R+(O,L,r). Define the approximation of the function A(z,t) as 

(27) 

where the u’s are the coefficients and the functions pi are given in Eq. (3). Similar definitions for 
the function B(z,r) and the Green functions G,,(z,t), G,,(z,r), G,,(z,t), and G,,(z,t) are for- 
mulated with the coefficients b, -y, 0, 6, and v, respectively. The phase velocity function, c(z), is 
assumed continuously differentiable within the medium. We define its approximation as 

(28) 

The differentiations of GN ii(@) with respect to a and p are 

N N 

GLI~(~,P),=~~~ lzo rij+‘i(a>4ji(P>v (29) 

J. Math. Phys., Vol. 37, No. 8, August 1996 

                                                                                                                                    



3828 F. Ahmad and M. Razzaghi: Green-functions and phase velocity 

G,,*ta,P)~El$o ,io Yij+ita)+‘jtP). (30) 

Equations similar to Eqs. (29) and (30) can be generated for the other Green functions. Consid- 
ering the nonconductive case and applying the approximations of the functions A, B, c, G,, , G2, 
and the corresponding derivatives of the last two functions to the coupled partial differential 
equations in Eq. (5) we get 

,go u,Ci(o)4j(PI+l$o Ii0 bij4ita)@i(P) 

1 ciJ,oAiqb’i(a) N N 

+ 2 ~~=Ohi~i(cu) i=lJ j=O 
.C C Yij4i(a)+j(P) 

lie ,.. ~ri$i(o)hof~~o ,go bij+ita)+i(P) *lie ,io Yij@itaY)+jtP) 

and 

1 CN h .@.(a) N N 
XISo ,io bij4it~)4itP)-~ ii- /i,(’ ) 

t-0 I I a .,zo ,zo njdi(a)4jtP) 

+i SI bij4ita)ditP)*S 2 Yij4ital4jtP) i=O j=O i=O j=O 

At the Legendre-Gauss-Lobatto nodes “=a;, and ,B=& Eqs. (31) and (32) reduce to 

(31) 

(32) 
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J 2 *{unm 1 ZzOAi+‘i( a,) =- +bml+ y An . Ytwn 
xi unjqio Y~qf~~~jt")gqtu)du-~tl+~~) 

j=O 

1 ~~aAi~‘i( aa) 
Xi bnjqio '?'nq/~,dj(")@q(")du-~ 

j=O A 
n 

XS b,iqio 8,q/~14jt~)9q(u)da, 
j=O 

and 

i ,io eitn4’i(an) 

= & .jo e,j+‘j(pm)+ 4 .b,,-; zEoAf’i(an) . ynm+; (1 f&) n 
1 zEaAi+‘i( a,) 

XE b,iqio ‘Ynq~~id~(~)~,od~‘~ 
j=O A 

n 
N N 

XC unj 
j=O = I q=o en, ’ +jt")d,tu)du-~ tl+Pm) 

-1 

X2 b,iqio &,/~14j(u)4q(u)~~, 
j=O 

(34) 

where 

K 
uhg=T 

y (I+&) 

bhg=t l$o Ai$‘i(ah) * sin AUK 5 t 1 +P,) . 1 
Applying Eqs. (16)-(18) and (23)-(25) along with 

4R’(- l,l,- l)=~~o Ai~‘i(- 1) 

(36) 

(37) 

(35) 

to Eqs. (33) and (34) a set of algebraic equations is generated. In this case the inverse scattering 
problem is solved where the number of the unknown coefficients Aij, Bij , and rij is equal to that 
of the algebraic equations which is 2 N2 + N + 1. The coupled partial differential equations given in 
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TABLE I. Approximate and exact values of the phase velocity function. 

Approximate 
(no noise) 

C9(cu”) 

Approximate 
(with noise) 

c9(a,) 
Exact 
CC%) 

- 1 .OOo 000 282.094 72 282.10122 282.094 79 
-0.919 534 276.559 67 277.435 01 276.559 60 
-0.738 774 265.288 24 264.377 63 265.288 2 1 
-0.477 925 251.535 41 251.533 12 25 1.535 44 
-0.165 290 238.362 25 238.36106 238.362 20 

0.165 290 227.704 25 227.703 83 227.704 26 
0.477 925 220.236 72 220.235 88 220.236 76 
0.738 774 215.709 06 215.689 63 215.709 04 
0.919 534 213.403 41 213.325 87 213.403 45 
1.000 000 212.585 93 212.422 63 212.585 91 

Eq. (6) are discretized in the same fashion, however, this time the components of the phase 
velocity at the collocation points are already known from the solution of Eq. (5). Consequently, 
the direct problem is solved and the remaining coefficients 5ij and ~ij are generated. As a result 
the Green functions along with components of the phase velocity function are available at the 
collocation points. 

V. AN ILLUSTRATIVE EXAMPLE 

We selected an inhomogeneous medium of a known permittivity profile. The medium was of 
thickness L =O. 1 m and conductivity o(z) =O, where z represents depth in the medium. Then we 
assumed that a known one sided, down-going electromagnetic wave was incident on the medium 
from the top. The reflected electromagnetic data at the interface z =0 was assumed to be of a finite 
period of time T=O.l s. Using a specific value of the Hankel transform parameter K=O. 1 m-l and 
the pseudospectral Legendre approach, we solved the direct problem which is in the form of 
partial differential equations in Ref. 6 for the reflection kernel R +( 0,O. 1,t;O. 1). This reflection 
kernel was used as an input to the method presented in this paper to solve the inverse problem. 
Values of the Green functions and the phase velocity function at the collocation points with N=9 
were generated. Approximate and exact values of the phase velocity at the collocation points are 
listed in Table I. To illustrate how the method reconstructs the phase velocity profile with noisy 
data, Gaussian noise with STD=O.O5 was added to the reflection kernel R+(O,O.l,t;O. I). This 
corresponds to a signal to noise ratio of 5.4 as suggested in Ref. 14. The Green functions G,i(z,t) 
and G,,(z,t) that corresponds to the data with no noise are given in Figs. 1 and 2, respectively. 
Using the same value of the Hankel transform parameter K=O. 1 m-‘, we applied the pseudospec- 

FIG. 1. The Green function G,,(z,r). 
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FIG. 2. The Green function G,,(z,t). 

tral Legendre approach and solved the partial differential equations given in Ref. 6 for the trans- 
mission kernels T’(z,L,t; K) and then solved the set of equations of the Green functions which 
are also given in Ref. 6. These equations are relations between the Green functions, reflection 
kernels and the transmission kernels. The values of the Green functions generated by the method 
of this paper and those generated through the method of Ref. 6 were in close agreement. As a 
demonstration, the values of the function G9,1(a,P) generated through both methods at the collo- 
cation points ,B= - 1 and p=O. 165 28 are given in Table II. These collocation points correspond to 
t =0 s and t=0.058 26 s, respectively. The CPU execution time in this example was 2 s on a 
Sun-Spare Station II. 

VI. CONCLUSION 

An alternative scheme for solving a one-dimensional inverse problem for inhomogeneous 
nonconductive media is proposed in this paper. The method is based upon constructing the Nth 
degree interpolation polynomial to approximate the Green functions and the phase velocity func- 
tion using Legendre-Gauss-Lobatto collocation points. The input to the scheme is the reflection 
kernel. From this input data, the scheme generates values of the Green functions and the phase 
velocity function at the collocation points through the solution of a set of algebraic equations. The 
rapid rate of convergence of pseudospectral Legendre approximations, see Ref. 13, and the Kro- 
necker property that is presented in Eq. (4) makes the scheme very attractive. 

TABLE II. Values of the Green function GT,(cu,P) at /b?= - 1 and p=O. 165 28. 

a;, @,(a, .- 1) G:,(a, ,- 1) G:,(a,,.16528) G:,(cx,..16528) 
OSFzC9 This method Method of Ref. 6 This method Method of Ref. 6 

- 1.000 000 0.000 00 0.000 00 0.000 00 0.000 00 
-0.919 534 - 19.988 80 - 19.988 66 -0.006 65 -0.006 61 
-0.738 774 -59.629 04 -59.629 13 -0.019 32 -0.019 37 
-0.477 925 - 106.252 42 - 106.252 25 -0.033 2 1 -0.033 23 
-0.165 290 - 150.036 06 - 150.036 24 -0.045 07 -0.045 02 

0.165 290 - 186.690 01 - 186.690 21 -0.054 07 -0.054 04 
0.477 925 -215.513 49 -215.513 61 -0.060 72 -0.060 73 
0.738 774 -236.990 88 -236.990 67 -0.065 62 -0.065 65 
0.919 534 -251.10006 -251.100 I1 -0.068 91 -0.068 93 
1.000 000 -257.238 20 -257.238 3 1 -0.070 38 -0.070 36 
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We present a manifestly conformally invariant formulation of Maxwell equations 
on asymptotically flat space-times. It is shown how to construct regular self-dual 
and antiself-dual fields from suitable radiation data, and the general solution as a 
sum of fields with both types of duality. The basic variable in this formalism is a 
scalar field F defined as the phase of the parallel propagator (associated with the 
Maxwell potential) from interior points to future null infinity along null geodesics. 
Field equations equivalent to the source free Maxwell’s equations are derived for 
F. A perturbative solution based on Huygens’ principle is proposed. Exact solu- 
tions are found for H-spaces. The use of these results on gravitational lensing is 
discussed. 0 1996 American Institute of Physics, [SOO22-2488(96)00507-51 

I. INTRODUCTION 

The global behavior of electromagnetic radiation on curved space-times is used in astrophys- 
ics to study several interesting phenomena. In gravitational lensing one studies the global behavior 
of null geodesics in a gravitational field produced by sources with compact support. Several 
authors have also used parallel propagation of vectors on null geodesics to study the behavior of 
polarized light. Recently, a non-local formalism for general relativity (GR) was presented’.2 where 
the fundamental variable contains all the information of the null geodesics of the given space- 
time, thus providing a useful tool to study electromagnetic radiation in the geometrical optics 
limit. 

It has also been emphasized that when the wavelength of the radiation is of the same order of 
magnitude of the gravitational radius of an intervening compact object, diffraction effects have to 
be taken into account. That is, in this case one needs wave optics on a curved background. 
However, it is difficult to find global solutions of Maxwell’s equations on a general space-time 
since a Green function for this problem is generally not available. In practice, one either tries to 
find a Green function perturbatively, or assumes a flat background except on a small region of 
interest, or considers space-times with high degrees of symmetry. 

We present here a new formulation of Maxwell theory where the basic variable, 

(I.11 

a line integral of the Maxwell potential along a specific path 7, is a non-local object and where 
regularity of this variable is equivalent to regularity of the Maxwell field on a global scale. We 
derive field equations for this variable whose regular solutions automatically yield global solutions 
of the Maxwell’s equations. Even the perturbed solutions of these non-local equations are, by 
construction, regular fields on a global scale. The formalism has another interesting feature, 
namely, the background geometry enters the field equations only through its conformal 
structure.12 Thus, this non-local formulation of Maxwell theory is manifestly conformally invari- 
ant. It is also well adapted to discuss different global problems concerning electromagnetic radia- 

*‘Current address: Department of Physics, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0354. 
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tion. In the geometrical optics limit one recovers the description of the null geodesics via the 
non-local formulation of GR. In the full theory the formalism defines in a precise way Huygens or 
non-Huygens propagation of electromagnetic radiation on a curved background. 

Before presenting technical details we briefly review some results already obtained using the 
basic variable in our formalism. In recent years this variable has received considerable attention 
not only for Maxwell Theory, but also for Yang-Mills Theory and General Relativity.3-6 In 1975 
Wu and Yang7 suggested that the parallel propagator of a Maxwell potential A, along a path y, 

exp( -i/?,dxo) =exp(-iF), (1.2) 

was better suited than the Maxwell field or potential to describe electromagnetism. [Note that our 
variable F is the phase of the propagator introduced in (1.2).] 

In 1980 Sparlings9 obtained the field equations for the phase of the parallel propagator 
associated with a self-dual’ Maxwell field along null geodesics in Minkowski space. A brief 
description of his method follows. 

Denoting by x points in the space-time, (~(,l,r) points in the future null boundary ?, the 
Sparling equation has the simple form 

W= -A&,5,5), 0.3) 

where F, the phase of the parallel propagator (1.2), is the line integral of the Maxwell potential 
along a null geodesic that begins at a point x and ends at null infinity intersecting the generator 
(&c) of p; the “eth operator” 6 is essentially ~?/a& and A,, the “restricted” free data at J’+, is 
obtained by evaluating the data A( u,f;, r) at the intersection of the future light cone of x with ?, 
the “light cone cut”. In a general, asymptotically flat (in future null directions) space-time, the 
light cone cuts are 2-surfaces embedded in .p, described parametrically as 

u=z(x,La. (I.41 

In Minkowski space-time the Z function has a simple form in standard Lorentz coordinates x0, 

z(x,La=x”u5,5)? 0.5) 

where I,( 5, c) spans the sphere of null covectors at n. Its explicit form in Minkowski coordinates 
is given in Appendix B. 

Using the Green function of the eth operator one obtains the regular solution of (1.3) which, 
after a reconstruction procedure, yields the general solution of the self-dual Maxwell equations in 
Minkowski space. 

Notice that in a similar way [starting from the complex conjugate of (1.3)] one obtains the 
field equations for the antiself-dual case. Furthermore, adding both solutions yields a general real 
Maxwell field satisfying the source free equations. Thus (1.3), a single equation for a scalar field, 
is equivalent to the full set of Maxwell equations on Minkowski space. 

Is it possible to generalize the Sparling equation to curved space-times? Since one knows 
that, due to the linearity of the theory, self-dual data must produce a self-dual field, in principle it 
is possible to find a suitable generalization of Sparling’s formalism for a “self-dual” parallel 
propagator on a curved space-time. 

In this paper we present this generalization. We introduce the phase of the parallel propagator 
for a self-dual field associated with a special set of open curves, i.e., null geodesics that start at an 
interior point of the space-time and end at p. We obtain the field equation for this propagator 
equivalent to the self-dual Maxwell’s equations on curved space-times. This is a single equation 
on a complex non-local function where the free data enters as a source term. 
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The cut function Z (1.4) that describes the light cone cuts of 5’+ plays a fundamental role in 
our approach. As shown in Refs. 1 and 2, all the information about the conformal geometry of 
space-time is encoded in Z. Since Maxwell’s equations are conformally invariant, the function Z 
contains precisely the needed information of the background space-time geometry. As a result we 
obtain a manifestly conformally invariant formulation of regular Maxwell’s fields on space-times 
which are asymptotically flat at future null infinity. 

In section II we review the geometrical meaning of Z, show its relationship to the underlying 
conformal metric and obtain some results that are used in the derivation of the field equation for 
our variable. In section III, we present the non-local variable F and give its kinematical relation 
with the Maxwell field. We derive field equations for F equivalent to the self-dual and antiself- 
dual Maxwell’s equations and show how to recover a general Maxwell field from knowledge of F. 
A perturbative method for solving the field equation is presented and then used to show the 
non-Huygens nature of Maxwell fields propagating on curved space-times. A variation of this 
method to study fields on space-times which are small deviations from Minkowski space is 
suggested. In section IV the formalism is applied to obtain exact solutions in H spaces. The zeroth 
and first order solution to the field equation on small deviations from Minkowski space are also 
calculated. Section V contains a summary of the results and a brief discussion on the use of this 
formalism to approach the problems of scattering and gravitational lensing. In Appendix A we 
derive the equation for F in the general case (i.e., complex Maxwell fields without a definite 
duality), show the equivalence with the self-dual formulation and show how to recover the field 
strength and potential from F. Appendix B contains some review material on differential equa- 
tions involving the eth operator and their Green functions, necessary for the article to be self- 
contained. Appendices C and D contain auxiliary calculations. 

II. GEOMETRICAL PRELIMINARIES 

A. The notion of duality 

On the space-time (M,gab) a volume form eabcd is chosen satisfying the normalization 
condition 

EabcdPbCd’ - 4!, ml> 

where, as usual, indices are raised using the inverse of the metric. Up to a sign (i.e., a choice of 
orientation), (11.1) singles out a unique volume form, which, together with the inverse of the 
metric, is used to construct the dual operator, a conformally invariant linear operator acting on 
2-forms as 

W &-)*w&,’ ’ E 2 nbcdif-%dfWef. (11.2) 

From (II. 1) and (11.2) it follows that **w&= - w,, , and so the possible eigenvalues of the 
dual operator are +i. A 2-form is called self-dual (SD) [antiself-dual (ASD)] if it is an eigenvector 
corresponding to the eigenvalue i[ - i]. Under the inner product gacgbdWabQcd SD and ASD 
2-forms are orthogonal to each other. It is important to note that every 2-form can be written as a 
sum of eigenvectors of the dual operator: 

(11.3) 

wnf[ w;b] is commonly referred to as “the SD [ASD] part of W&.” This decomposition allows 
a compact form for (source free) Maxwell’s equations, explicitly exhibiting their conformal in- 
variance, 

draF;ccl = 0, df,F,, = 0. (11.4) 
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For real fields, the second equation is the complex conjugate of the first one, and Maxwell’s 
equations reduce to a first order equation on a complex potential Ab+, 

3 E,bCdd[&id;= z+,A;~, (11.5) 

instead of the usual second order equation on a real potential. It is clear from (II.4) and (11.3) that 
SD [ASD] closed 2-forms satisfy Maxwell’s source free equations, and also that any solution of 
these equations is the sum of a SD closed 2-form and an ASD one. It follows that the problem of 
solving Maxwell’s equations on (M,gJ amounts to finding SD and ASD closed 2-forms satis- 
fying appropriate “initial conditions”. The first step is to construct the dual operator (11.2), which, 
being conformally invariant, can be readily obtained from the Z function, as it is shown in the 
following subsection. 

B. A non-local description of space-time 

The theory of light cone cuts of null infinity L* offers a completely different approach to 
general relativity. Instead of using a local field, the metric gab, to describe the geometry of the 
space-time, one introduces a non-local function that plays an equally important role, as it contains 
all the information of the conformal structure of space-time. In particular, it yields the null 
geodesics. A brief description of the kinematical features of this theory follows. The dynamics as 
well as other properties of this non-local variable are not presented here (in our formulation of 
Maxwell theory the background geometry is assumed fixed) but they can be found in (Refs. 1 and 
2) and references therein. 

Assume the space-time (M,gab) is asymptotically flat at future null infinity, p. The inter- 
section of the future null cone from .C’ E h4 with .? is a 2-surface called a light cone cut of null 
infinity. Introducing on p Bondi coordinates (u, 5, c) this cut can be locally described as 

u=Z(x=,&E). (11.6) 

Assuming the smooth function Z is given, we introduce the following scalars: 

u=Z(x*,~,~) w=6i, cZ=bZ, r=i36Z, W.7) 

where the a (eth) and 6 (eth-bar) operators, defined in (Bl) and (B2), are essentially partial 
derivatives with respect to 5 and 2 respectively. For each (&~ES’ the scalars (II.7) define a 
coordinate system. An alternative notation found in the literature is 

(u,w,G,r)=(e”,e+,e-,el)=ei, 

with its gradient and dual vector basis denoted by Of,, and q, respectively. In past references, 
however, the following associated vector basis has been used: 

ia=e;l, $fa=-ea_,, $a=-@+, +=g, 

and we will keep the above convention in this work. 

(11.8) 

The coordinates (11.7) have an interesting geometrical interpretation: the points xa satisfying 
u = Z(xa, 5, r) =const. form the past light cone of (u,[, c) at Y+, w and G determine the direction 
angle of a geodesic on that cone and r uniquely locates a point on that geodesic.“.” It follows that 
any null geodesic is characterized by the parameters (u, o, G, 5, c), and that the tangent at x to the 

affinely parametrized geodesic [u = Z(X, 5, c), w=BZ(x,&& E = aZ(x,~,~);~,~] is the null vector 

z”tX,~,~~gabz.,tX,~,~. (11.9) 
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By letting (&c) range over the sphere, this vector ranges over the -future- cone of null directions 
at s’. Thus, the function Z determines the conformal structure of the space-time. As done in Ref. 
1, we exploit the fact that Z depends smoothly on (c,c) to obtain the components 
gij(x,[,c)=gubOfaqb of the metric in the coordinate systems (11.7). The starting point is the fact 
that (11.9) is null, which immediately implies that 

(II. 10) 

Note that this result is true for any value of (c,F). Thus, B and 6 of (11.10) are also equal to zero. 
However, explicitly taking 6 and 6 of (11.10) plus the fact that the metric does not depends on (&a 
yields 

8~=2gab(x)eP,BePb=2g0+=o, 6goo=2go-=o. (II. 11) 

Thus, we have obtained three (trivial) components of the conformal metric. As the above 
equations suggest, the metric components in this coordinate system are obtained by taking a 
sufficient number of 6 and 6 derivatives of (11.10). 

Taking 66 of (11.10) we obtain 

Taking d2 of (11.10) we get 

g -+=- 01 
g . (II. 12) 

g + +- + gabz,,h,b = 0, 

where 12~6~2. Assuming A is expressed in the 8’ coordinates as A( 8’,5,5) one has A*b=h,iefb. 
Using the previous results we immediately obtain 

g f + = -go’A,, . (II. 13) 

We can continue this procedure until all the components (up to a choice of go’) are obtained 
‘. It is worth mentioning that knowledge of A determines all the non-trivial gii( 8’,5,5). The final 
form of the metric is given by 00 0 1 

(11.14) 

where the h” depend explicitly on A ‘. (In the derivation of our field equations, however, they 
will not be needed since we are only looking for the projection of the metric on the null surfaces 
Z=const). 

Thus, in this approach the function Z serves a dual purpose: e2Z=A determines the conformal 
metric and (11.7) are natural coordinates that allow simple expressions for many relevant tensor 
fields, as the metric itself. In the particular case A=0 we obtain conformal Minkowski space and, 
for each (&c), (11.7) becomes a null coordinate system (Appendix B). In general, 6’ is a null 
coordinate, and simple expressions for both the null cone congruence from a point X’ and the 
geodesic deviation vectors of this congruence are obtained using the 8’ coordinates. Since these 
results will be used in following sections, we present them now. The detailed calculations can be 
found in Appendix C. 
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If we denote by J/(X: ,l,cr) the parametric form of the null cone with apex at a point 
X: E M, r = aaZ(x”, 5, c) - a&Z(x&l, c) [refer to (C. l)-(C.3)], then a null geodesic on this cone is 
characterized by a iixed value of (J,l) ( a g enerator of ?). Neighboring rays around this fixed null 
geodesic, corresponding to different values of 5, are described by the geodesic deviation vector 
Mu=&“. As shown in Appendix C [see (C.6)], M” can be written as 

M”=(1+55) 
Jx”tx0,5,5,r) 

a 
=(r-r~)~a+(A-Ao)fia-B(r-ro)~a, (II. 15) 

where the subindex 0 means that the corresponding scalar is evaluated at the apex x0. 
Finally, we present the explicit form of the dual of the light cone 2-surface element itakfb] in 

our basis since this result is later used in the derivation of the field equations. We start by noting 
from (11.9), (11.14) and (11.8) that 

ffbg,b=g 
'tja+golA,r,++gol~~~ 

(II. 16) 

The determinant of (11.14) yields the volume form 

duAdwAd&dr, p = 1 - A,,x,, , 

which, together with (11.8), (11.2) and (11.16), gives 

,. . *&$fb]= &-jlj2 .,,,,,,=~ [i~&b,+~,r&d&,,~- 

(11.17) 

(II. 18) 

(11.15) and (11.18) yield 

*i[&fb] = - i[&db] + 2j?$,&fb] + 2&&b]], (II. 19) 

where 

f= ~[(r-r~)h-(l+h)(~-~o)A,r], 

(11.20) 
g= 3 [(1+h)(r-r0)~,,-(2+h)(~-~o)l, 

and h = ll~p - 1. Alternatively, using (11.3), 
n - ,. ,. c 

&z”b; = - LfL[aMb] +gL[aMb]l* (II.2 1) 

Note that in the A-0 limit itaM,] is ASD. Thusf and g represent the departure of iraMbl from 
being an ASD 2-form. 

Ill. A NON-LOCAL VARIABLE FOR MAXWELL FIELDS 

A. Definitions and kinematical relations 

Let A, be a Maxwell potential whose projection to T+ has vanishing contraction with vectors 
tangent to the generators, Fab = 2V,,Ab1 be its field strength. We define our basic variable F as 
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F(x,.QJ= - j-),ZUds= - Ila,iadr. (III. 1) 

where the integral is taken along the null geodesic I,( l,c) that connects the point x with the 
generator (&a of p, s is an affine length and the second equality follows directly from (11.16). 
F is a non-local function on the space of null directions of space-time with a simple geometrical 
meaning: G=eiF gives the parallel transport along I,( 5, c) between x and the point at which 
/,({,r) intersects ?. As A, is a regular potential with a smooth extension to p, the integrand 
of (111.1) behaves as sm2 when s-+m, thus giving a finite F. Conversely, if F is assumed to be 
regular, then the integrand “peels” appropriately. 

We consider now the problem of obtaining A, from a given regular F, i.e., inverting (111.1). 
This will be particularly important when we impose field equations on F since the potential A, 
will then be a derived object. It follows from (111.1) and (11.9) that F satisfies 

Z,,(v”F-A”(x))=O. (111.2) 

Taking a sufficient number of B and 8 derivatives of (111.2) we obtain the components of A”(x) in 
the @ basis: 

Z,,(Ab-VbF)=O, 

(111.3) 
&Z,/,(Ab-vbF)=ZVbvb&F ? 

6@,(Ab- VbF) =&Z7,Vb6F+ t%bVb&F+Z,bVba&F, 

from where 

~a=va~+(8a_e~~+e;2e,~)v~~F+(ea+e~~+e~e.~)v~d~+e~e~~v~ir~F. 

Note that (111.4) naturally induces a gauge transformation giving a new potential, 

(111.4) 

A;=&- v,F. 

Consider now the 2-surface A,( 5, c) swept by I,( 5, r) as 5 moves in [&l+d{] with f- fixed, 
denote by aA,( 5, c) its closed boundary constructed from two neighboring null geodesics I,( 5, a 
and I,( [+ dL,c), closed at Z” by the connecting vector MadlIP. Using the phase of the 
holonomy operator, 

..X= I dA,( is?) 
A,dx”= 

I Ax( is?) 
Fobdxadxb, (111.5) 

one can find a useful relationship between F, the field strength F,, and the free Maxwell data at 
.7+. 

We recall that source free Maxwell fields are uniquely determined by the data -- 
(A(~,5,l),A(~,l,5>) on the “initial value” surface ? 12. These functions are defined by the 
following equations: 

A(u,~,~)=limA.M”, ~(u,~,~)=limA,@, (111.6) 
.r+ .7+ 
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where the limit is taken along I,( 5, r;>, x is any point satisfying Z(x, J,c) = u, and Ma and M”, 
given in (C.6) and c.c., are geodesic deviation vectors of the future null cone of x (see Appendix 
C). A and x are, respectively, associated to the SD and ASD parts of the field by the following 
equations (obtained from Ref. 13): 

limF,Mafib = t& litiibMaMb = - i?A. (111.7) 
.7+ .7+ 

Thus, A=0 [A =0] for SD [ASD] fields. For real fields, x is the complex conjugate of A, the two 
degrees of freedom of the radiation fields are contained in a single complex function. 

Defining the differential holonomy as 

I 
0: 

Wx,5,5)= F,,iaMbdr, 
x 

(111.8) 

i.e. %=Hdl/P, it follows directly from (111.5) and (111.6) that 

BF(x,~,~+AR(x,~,~==H(x,~,~, (111.9) 

where the complex scalar AR(x,<,r) is the restriction of the free data A(u,f,5> at .Y+ to the cut 
u=Z(x,l,5>, i.e., 

AR(x,&tj=A(u=Z,&a. (III. 10) 

In an analogous way, using the holonomy phase 3 around the loop JiX( 5, c) [ A,( 4’,z) being 
the 2-surface swept by I,( 5, r) as r moves in [c r+ dc] with 5 fixed] and defining 

(III. 11) 

one obtains 

~F(x,~,~+AR(x,~,~=H(x,~,~, 
with A,(x,<,r) the restriction of x(u,l,c) to the cut 

&(x,L~=A(u=Z,5,~ 

(III. 12) 

(III. 13) 

(we will omit the subindex R from now on). 
Equations (111.8) and (111.9) give i3F as a functional of the field strength Fab and the free data 

A(u,c,c). One can invert (IILS), using (111.9), to obtain F,, in terms of bF and C.C. This is done 
in Appendix A. The desired relationship is 

&F,b(x)~“~b= (6F;~;$‘F)*r 1 =&[F] and C.C. 
,r .r .r 

(III. 14) 

Note that Fob does not depend on (J,c), whereas iahb does. Thus, evaluating (III. 14) for 
different values of ([,c) yields different components of Fab(x). Alternatively, we can take a 
sufficient number of d and b derivatives of (111.14) [as was done in (111.3)] to obtain the compo- 
nents of Fab in the Bfa basis. 
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B. The field equations for F 

We now want to find the equation satisfied by F when the field strength Fab is a (closed) SD 
2-form. The fact that F,, is closed was already used in the definition of F and in eq. (111.9) as an 
application of the Stokes theorem. 

A SD field satisfies 

Fnb=Fa+b. (111.15) 

Thus, integrating (III. 15) on A,( 5, c) yields 

F,+(i[“Mbl)dr= Fab(,$,Mbl)+dr, (III. 16) 

where the last equality follows from the vanishing contraction between SD and ASD 2-forms. 
Inserting (11.21) in (111.16) and using (111.9) and (111.14) yields the following integro-differential 
equation for F in the SD case (the + sign is used to indicate that the associated field is SD), 

bF++A+ 
I 

My(f6$F+]+g6[F+])dr=0. (III.17) 
x 

Equation (111.17) is the desired generalization of the Sparling equations9 to curved space- 
times. 

A similar calculation yields the equation for F in the ASD case, 

C3F- -!-A-t 
I 

m(f&[F-]+&‘[F-])dr=O. (III. 18) 
+ 

A few remarks follow. 
1. The kernel of the eth operator-acting on spin weight 0 functions- is the set of constant 

functions on the sphere (Appendix B). It then follows from (111.17) and (111.14) that the solutions 
of eq. (111.17) have the ambiguity of an arbitrary additive function h(x). The origin of this term 
can be traced back to the definition of F.14 If we integrate (111.17) using the Green function 
Ge,tt( [, El’ ,r ) for d given in (B.8) (subindices indicate the spin weight for each variable), we 
obtain the following compact form for (111.17): 

F-RF]& (III. 19) 

where 

Fs-- I s2Go,-~‘(5,~5’,~)A,(x,5’.5f)ds’ (111.20) 

and 

ttI.]--fs,G~,-l,(i,i;T’,f’) f (f&]+&[.])dr’ 

In (111.21), the line integral is along Z,(l’,p), and extends from x to p. By omitting the term 
h(x) on the r.h.s. of (111.19) we have selected the’ particular solution (i.e., chosen the gauge14) 
satisfying the condition JszF(x,l,5)dS=0. This follows from the fact that 
JszG~,lt(~,~[‘,~)dS = 0.15 Analogous comments to this and the following remarks apply to the 
ASD case. 
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2. We know that there is a one to one correspondence between the free data A( u,l, c) and the 
solution of the source free Maxwell’s equations. Therefore it is appropriate to ask if the regular 
solutions to (III. 19 j uniquely correspond to a given A ( U, 5, F) . Although this issue is very involved 
due to the non-local nature of the equation, inJhose cases where a norm 11.11 can be defined on the 
linear space V of admissible functions F(x, 5, l), such that the linear operator LG is continuous and 
has a norm less than 1 (meaning supv I~~F]II/IIFII <I), th e uniqueness of the solution of (111.19) 
is easily proved. In this case the operator Z- .Y is known to be invertible, with its inverse given by 
the -convergent- power series, 

[I-sq-‘=Z+~+.!P+~+... . (111.22) 

The definition of (\‘,I[. 11) is a technically involved problem we defer for future work. Note however 
that, as Y=O when h=O, any natural norm will satisfy the condition j].?+~ 1 when A=0 [this limit 
corresponds to a small deviation from -conformal- Minkowski space (Appendix B)]. 

From now on, we will assume that the linear operator .Y is such that (111.19) has a unique 
solution. 

3. Although we have only proved that SD Maxwell’s equations imply (III. 19), the converse is 
also true. The equivalence of both sets of equations follows from the uniqueness of the solution of 
(III. 19). A is the data for a unique SD Maxwell field F,, . If B, is the potential satisfying the 
conditions in Ref. 14 and 

ls2[ /;B,Zlds]dS=O, 

then (III. 1) constructed from B, is a solution of (III. 19) (remark 1). Now, F constructed in this 
way is the only solution of (111.19). It follows from remark 1 that, when applied to a solution of 
(111.17), (111.4) yields a potential A,(x) =B,(x) + V,h(x) for the SD field Fob(x). 

4. The equation satisfied by F in the general case is derived in Appendix A. It is shown that 
we can first solve for the SD and ASD parts and then add them up, i.e., if 

F=F’+F-, (III.23) 

where F+ and F- are solutions of (III. 17) and (111.18), respectively, then F yields -via (111.4) or 
(III. 14)- a regular solution of the full source free-Maxwell’s equations with “initial data” (A,x) 
on the characteristic surface p. 

5. The function Z plays two distinct roles in the field equations (111.17), (111.18). It determines 
the restriction of the free data A(z) to the cut u = Z and it also enters the integral term via (11.20) 
and (111.14). 

Two different perturbative methods to solve (111.17) may be suggested based on the informa- 
tion we have about Z: 

(a) If the conformal geometry of the space-time is fully known (Z is given) we can construct 
the linear operator (111.21), and then apply (111.22) to solve (111.19), 

F=[l-.~YJ-‘.~=[1+.Y+Ttn+W3+...].~ (111.24) 

Note that if F, is the sum of the first n terms in (111.24) then 

F= lim F,, F,+l=SfF,]+.~, (111.25) 
n-em 

an iterative process that could have been suggested directly from (111.19). 
(b) If the space-time is a small deviation from -conformal- Minkowski space, then A=0 

(Appendix B) and we can expand F around A=O. The expansion is obtained by rearranging 
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(111.24) guided by the observation that f only contains terms A” with n 22, g contains terms with 
n Z 1 (11.20) and 5 contains terms n 2 1 (III.2 1). Slightly modifying (111.25) by keeping track of 
the different powers of A we generate an iterative method to solve (III. 17) in nearly Minkowskian 
backgrounds. The first two terms are explicitly calculated in part B of the following section. 

6. The leading order term .9-(x,5,5) in the expansion series (111.24) represents the Huygens’ 
part of the field, i.e., the contribution of A, (the restriction of the data A to the light cone cut of 
x). It is clear that the other terms are non-Huygens. As an example, to calculate FYat x we need 
to know .j7 in the future cone of x [this follows from (111.21) and (111.14)]. From (111.20), the 
restriction of the data to the whole region of .3’+ enclosed by the light cone cut of x is needed, not 
only its value at the cut. A similar reasoning shows that to calculate all the other terms in (111.24) 
we only need the data in this region, as expected from general principles (the field at x can not 
affect its value out of the cut on p). This shows that, on a general background, Maxwell fields 
do not obey the Huygens’ principle. In the perturbation scheme (111.24) one assumes that the 
background geometry is such that the Huygens’ part is dominant. The (finite) perturbation series 
will therefore be a good approximation to the solution whenever the support of the Green function 
for Maxwell’s equations lies mainly on the characteristic surfaces. 

IV. APPLICATIONS 

A. Propagation of Maxwell fields on self-dual space-times 

It is well known that SD and ASD Maxwell fields have zero stress-energy tensor and thus are 
solutions of the Einstein-Maxwell equations on a vacuum space-time. If the vacuum space-time 
is self-dual these solutions represent the (classical) interaction of photons with non-linear 
gravitatons.16 Before proceeding further with our formalism, we present a brief review of the 
geometry of asymptotically flat self-dual space-times, the so called H-spaces. For a detailed 
account the reader is referred to Ref. 16. 

Given an arbitrary null hypersurface whose intersection with 3+ is described by the “cut” 
u = Z( 5, c), the condition for it to have asymptotically vanishing shear is that it satisfies the so 
called “good cut equation”:16 

~2Z=%G,l,B, (IV. 1) 

where gB(u,l,5> is the asymptotic shear associated with the Bondi cut u =constant. Note that 
(IV. 1) is a non-linear second order p.d.e for a function Z on the sphere. Since a, is complex and 
Z real, in general eq. (IV.1) has no real solutions. 

However, if we allow Z to be complex and if a,(u,l,c) can be extended to a holomorphic 
function of three independent complex variables (u, 5, c), one can show that the good cut equation 
(IV.]) has a four-parameter family of (complex) solutions Z(x,&, a. The space of solutions 
{Z(X,{,~>,X E C”} is called H-space and can be given the structure of a complex manifold. One 
can also show that the function Z induces a holomorphic metric gab on H that satisfies the vacuum 
equations and has a self-dual Weyl tensor.16 

Since a, represents (from the standard formulation of GR) outgoing gravitational waves, one 
has available a natural linear structure of superposition of incoming waves that yields a non-linear 
superposition of self-dual metrics [eq. (IV.l) is intrinsically non-linear]. Moreover, despite all the 
non-linearity of the theory, the scattering of self-dual gravitational waves is trivial. The solutions 
of (IV.1) are usually called “non-linear gravitons.” Although self-dual solutions of Einstein’s 
equations seem to be a mathematical device with no physical interest, they play a key role in the 
canonical approach to quantum gravity.5 

To obtain the general solution of Maxwell’s equations on H-spaces we will assume the Z 
function, which is obtained by solving (IV. l), is given and repeat the steps leading to (11.14). 
However, in this case the conformal factor is chosen as g O1 = 1.16 From this condition and the fact 
that V,n = (daldu)Z,= oBZa [see (IV. l)], we can readily write down the metric components gii, 
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gijwla= 1 

00 0 1 

0 0 -1 0 
0 -1 -x 

,r 
gl- 1 ’ 

1 0 g’- g” 

(IV.2) 

with 

g’-- $fJ;i*, g”=-2++- g”&. (IV.3) 

We also observe from (11.20) and (IV.l) that, for H-spaces, 

f=F=g=O, g= ; [(r-ro)~,,-2(X-&-J)], (IV.4) 

i.e., in H-spaces the SD part of iLaMb vanishes. Therefore, for self-dual space-times (111.17) 
adopts the simple form 

bF= -A(Z(x,~fiL?i. (IV.5) 

The solution of eq. (IV.5) is 

F(x,l,~= - (IV.6) , 

Note from (IV.5) that two terms on the r.h.s. of (III.4) vanish. The remaining term is simplified by 
the explicit form of the metric, eq. (IV.2), giving 

(IV.7) 

Introducing the normalized null tetrad {Z,- &‘,,,wfl}, where 

2Ta=Vau, As*= V&J, “2&= v&Ii+ + (6K*,)V,u- f &v,o, 
(IV.8) 

Na= V,u + V,r+ (9 a2X,,- + X,,&)V,u - $ (Zlh,,)V,o, 

and performing the natural gauge transformation A,--+A, -V,F, we can rewrite (IV.7) in a more 
convenient form. The details are given in Appendix D. The final result is 

A,(x) = & I ,ds~(z(x,5,~.S,~-m,(x,~,~, (IV.9) 

FadX) = & I S2dS[A~~=~b]+~Vln~b,], (IV. 10) 

where A=(tNc?u)A. 
To check that Fab satisfies the field equations, we only have to prove that it is a SD field. 

Since s[a2b] is, by construction, SD (IV.8), we should only show that V[,“abl is SD, that is, it 
has vanishing contraction with any ASD 2-form. In particular, if we introduce the ASD 2-form 
basis, 

s[aJb] 7 -qaiYb] + J+aJBbl* 
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we should check that 

where 
-- 

v,, .&b]=.d&,](AA,,). 

The first equality is immediate, whereas the second and third follow from the following 
relationships in H-space,17 

h,;= - + ax,, , x,,= f &i, ) 

- - 
n,,= + x,,- $ ++,- ; BbA,,+ f &62&- h (Sh,,)2. 

(IV.1 1) 

The solution to the ASD field equation (III. 18) can be obtained following a similar approach to the 
one outlined above. In this case, however, the equations are more involved since the integral term 
in (111.18) is not trivial. (Note that the ASD fields are not just the complex conjugate of SD fields, 
as the underlying manifold is complex in this case.) There is an alternative approach based on the 
observation from (IV.8) that for each (l,c) E S2, the 2-form, 

is closed and ASD and thus, it is a particular solution of Maxwell equations. 
If we multiply (IV.12) with any complex scalar function of (u, 5, r) and then integrate on the 

sphere we should obtain the general ASD field. Taking eqs. (IV.9) and (IV.10) as a reference, we 
make the following ansatz for the general solution of the ASD field equations: 

A,(x) = & I s~dsA(z(x,i.~,~,~~~~(x,~,~, (IV. 13) 

It only remains to check that x in (IV.13) is in fact the asymptotic value of the Maxwell connec- 
tion, as had previously been defined. This is done in Appendix D. 

As pointed out in Appendix B, the function (B.5) Z’“‘(x,~,~) with x E C4 is the general 
regular solution of the good cut equation (IV.l) when a,=O. This function describes the light 
cone cuts of complex Minkowski space-time. Complex Minkowski space-time is therefore a 
particular case of H space where (IV.10) and (IV.14) reduce to D’Adamard l8 solutions of Max- 
well equations. Thus, (IV.10) and (IV.14) are the generalizations of D’Adamard formula to H 
spaces. 

B. Small deviations from Minkowski space 

When discussing the propagation of light on vacuum space-times, it is often a good approxi- 
mation to consider the background geometry as a small deviation from Minkowski space. In those 
cases we can replace F by the first terms in the expansion F= C,,F(“) in powers of A, as 
Minkowski space is characterized by the equation A=O. We will apply method b of remark 5 in 
section III to calculate the first two terms of this perturbative solution. This method is based on the 
facts that g in (111.24) contains no @(A’) term and that Z is a linear functional of A, 
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z=z(O)+ I sZGo,-2,hdS’~Z’o’+Z”). (IV. 15) 

In (IV.15) G0,-2t is the Green function (B.9) for e2 and Z(O) the general solution of the equation 
@Z=O, given in inertial coordinates in (B.5). 
Order 0 

At C(A’), Z=Z(‘) (IV. 15), f=g = 0 (11.20) and (III. 17) reduces to the Sparling equation (1.3), 
as expected. The solution is given by the first term in (III.24), with .iTcalculated using Z”). We 
can readily write down the field strength from (IV.10) and (B.7). This is just the D’Adamard 
formula, 

(IV. 16) 

Order 1 
As pointed out above, .Y in (111.24) contains no order zero term. Therefore, the first order 

expansion of F agrees with that of (I+ .Y)J? From (11.20) we obtain the first order approximations 
forf andg, 

f=O, g= 4 [(r-r,)h,,-2(R-A,)]. (IV.17) 

Thus, the linear expansion of F is 

F’O’+F”‘=- A(Z’O’,~‘,~)+A(Z’O),~‘,~)Z”‘+ /~g$“)dr’]d,Sr, 

(IV. 18) 

with p= F$,‘l”&’ and g in (IV. 17). 
Although in principle the Z function is assumed to be given, the background geometry is 

usually described in terms of the metric and its associated tensors. In those cases, the process of 
obtaining Z or A is involved (one must solve the geodesic deviation). However, it can be 
shown2 that in the linear gravity approximation 

A=aB(Z”),l,a- ~x(r’-r)Yo(Z(o’,bZ(o),dZ(o),r~,~,~)drr. 
r 

(IV. 19) 

If the space-time is a small deviation from Minkowski space and if the Weyl tensor, rather than 
Z or A, is given, one can then use (IV.19) in (IV.15) and (IV.18) to obtain the linear gravity 
approximations of Z and F. 

V. SUMMARY AND CONCLUSIONS 

We have presented a manifestly conformally invariant formulation of Maxwell theory on 
asymptotically hat space-times. The field equations for our basic variable, the phase of the 
parallel propagator associated with self-dual (or antiself-dual) Maxwell fields, contain the free data 
A ( U, 5, c) (or x) at Jf as a source term and the solution of those equations is the generalization 
of D’Adamard’s formula to curved space-times. A method to reconstruct the Maxwell field was 
given. In particular, adding a solution of (111.17) and its complex conjugate yields a real field that 
satisfies the source free Maxwell’s equations. Since the free data has a well defined physical 
interpretation, namely, it represents incoming radiation, the solutions to the field equations repre- 
sent the scattering of light due to the background curvature. 
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Exact solutions of the field equations were obtained when the background geometry was 
self-dual. A Huygens perturbation series was presented. The terms in the series can be given a 
physical interpretation. The zeroth order term represents a Huygens propagation on curved spaces. 
The first and higher order term yield the tails of the electromagnetic wave produced by the 
scattering of the field in the non-trivial geometry. 

Since this formalism is specially adapted to discuss the evolution of electromagnetic radiation 
on a curved space-time we now address a few questions that can be answered without involved 
calculations or too many technical details. 

We start with a question that was partially answered in Ref. 19; do SD or ASD Maxwell fields 
have trivial scattering in self-dual space-times? Since for H spaces oB is the same at 5’+ and 2 -, 
it follows from (IV.1) that cuts Z at .? or at Y7- are the same. Inserting this condition in (IV.10) 
and (IV.14) implies that the free data A at .2’+ or .Y7- are also the same. Thus, we conclude that 
electromagnetic radiation does not interact with self-dual gravitational waves. 

A question that arises in the context of gravitational lensing is: does the curvature of space- 
time rotate the polarization vector of an electromagnetic wave? The difficulty with this question is 
that one should assign a meaning to the word “rotate” since it implies a comparison of vectors at 
different locations. An analogous, question is: can the curvature of space-time change the helicity 
on an electromagnetic wave? 

To answer this question we first discuss the notion of helicity in our formalism. In Minkowski 
space one can show that self-dual Maxwell fields yield positive and negative helicity states via the 
positive or negative frequency decomposition of the free data A(u,l,5) at .p.20 Since asymptoti- 
cally flat space-times share the same null boundary with Minkowski space, it is possible to define 
the notion of asymptotic helicity for the electromagnetic radiation. The Fourier transform of the 
data, A( o,l,r), defines, for positive or negative frequencies w, the corresponding asymptotic 
helicity states for the incoming radiation. The scattering of Maxwell fields is then studied by 
giving the initial data A,/ - at J-, solving the field equations in an entirely analogous way to 
what was done in section III, and then projecting the field to .p as in (111.7) to obtain A,/+. By 
analyzing the frequency content of A ,/+ we can determine whether or not helicity has been 
conserved. Our equations clearly suggest that helicity is not conserved. 

The problem of scattering and its applications to gravitational lensing is currently being 
studied. A thorough discussion using this formalism will be presented in a following work. 
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APPENDIX A: THE FIELD EQUATION FOR THE F FUNCTION 

We derive here an equation for F equivalent to the full set of source free Maxwell’s equations. 
T_o do this consider the 3-volume V limited by (i) AX( t, a, (ii) A,( 5, c+ d5), (iii) rX( 5, B, (iv) 
A,(5+d5,5) and (v) the cap on ?; the corresponding surface elements being 
~[“Mb’(x,~,~)(d~drlP), etc.” If the source free Maxwell’s equations, 

d,*,F,,, = 0, 

are integrated in V we obtain (the i factor is put for later convenience) 

0 = 
I 

i3 ! d~Fb,,dx”dxbdxC= 
I 

i*Fb,dxbdxC. 
V dV 
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The surface term is the sum of five integrals. As an example we calculate the surface integral over 
regions (i) and (ii): 

where 

C= i*F,bi’aMbldr= 

Analogously 

I _ dldc 
i*F,b= - 6c 

(iii)+(k) p2- 

(A3) 

(A4) 

Using (11.19), (A3) takes the following form: 

C=H+2 &+g$)dr 
I 

(A5) 

From (Al), (A2) and (A4) we get 

6C+bC+(i*F,bMafib),7+=0. 

Using (A5), (111.7), (111.9) and (III.12), we can rewrite (A6) as 

(‘46) 

6&+6~+6A+$ m(f$+F$)dr+b b(T$+g$)dr=O. 
I I 

(A7) 
‘0 ‘0 

Note that for SD [ASD] fields (A7) reduces to (111.17) [(III. 18)]. 
We now show how to recover the Maxwell field Fab from F(x,l,c). Using eq. (C6) we can 

rewrite (111.3) as 

Kd,~= J; Fab(r’)~atr’,~,~[tr’-r)~btr’,~,5)+(Atr’1~,~ 

-h(r,5,~)~'(r',5,51drr. (‘48) 

The integral is along Z,(t;,c), parametrized as in Appendix C, i.e., a point x’ in the geodesic is 
given by x’=x’(u,o,Z,r’;c,5). From (A8) 

LT,H= H,,= - I~~(r~,i,Bdr’-A,~l~~(r~,~,~dr~. 
r r 

Using this equation and its complex conjugate one can algebraically solve for 
J:$(r’,<,5)dr’. Taking one more radial derivative yields 

+ tW,,-A,,@‘),, 
1 -A,& 

=&[F] and cc., 
.r 

(A9) 

i.e., eq. (111.14). 

J. Math. Phys., Vol. 37, No. 8, August 1996 

                                                                                                                                    



G. Dotti and C. N. Kozameh: Self-dual Maxwell fields on curved space-times 3849 

Putting together (A7) and (A9) we obtain the following integro-differential equation for F: 

m(f&[F]+$b[F])dr +6 A+ 1 1 1 =O. (AlO) 
(AlO) is our version of the source free Maxwell equations on curved spaces. It is not hard to see 
from (AlO) that F is linear in the data (A,&, from where it follows that we can first solve for the 
SD part of the field (by setting x=0), and then add the solution for the ASD part (A =O), as in 
(111.23). 

APPENDIX B: GREEN FUNCTIONS FOR THE ETH OPERATOR 

The action of the eth operator on a spin weight s function f, is given byI 

gs+,=~fsEpl-s d  
ag  (PSfs), P=1+5C @I) 

Similarly, the action of the eth-bar operator is 

therefore the commutator is 

664b)f,=2sf,. (B3) 

From (Bl), it foliows that the only regular solution of the equation afo=O is a constant. As the 
linear operator @[.I (111.14) acting on an S2 constant gives zero, the solution F to the field 
equation (III. 17) has the indeterminacy of an additive function of the space-time coordinates f(x). 
As explained in remark 2 of Section III and in Ref. 14 this is a gauge term. Also from (Bl), the 
general (regular) solution Z (O) of the “good cut equation” (IV.l) with crB=O, 

A = &-(‘3) = 0 (B4) 

is found to be a linear combination of 1, c/P, DP and <aP.‘6 The choice of parametrization of 
the solution space gives a coordinate system for this H space (section IV). In particular, by 
choosing 

Z(O)(x 5 C) =xaz (5 ig , ? a 9 9 (B5) 

Md= ~(-l-itT+i,itf-i),-l+iT), 
it is easily shown that this H space is (complex) Minkowski space-time (equivalently, Z(O) gives 
the family of space-times conformal to Minkowski space), and that x are inertial coordinates. This 
is proven by first obtaining the metric tensor (IV.2) and then transforming to the x coordinates 
using (11.7) and (B5). The result is gab- -diag(- l,l,l,l,). Furthermore, the null tetrad (IV.8) is 
covariantly constant. In the X’ coordinates, 

where the usual notation for this tetrad in Minkowski space was introduced. 
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In a guide to construct Green functions for arbitrary combinations of 6 and 6 in terms of 
contractions of the tetrad (B7) is given. In particular, it is easy to verify from the information 
given there that 

Go -1,(5 Fl, r,- J- KGba-‘~~) 
9, 7, 

47f a,m(5’,~~ 
038) 

is the Green function for the 6 operator acting on spin-weight 0 functions. This function is used in 
the definition of .v in the solution of the field equation (111.17) 

Similarly, the Green function of e2 acting on spin-weight zero functions is 

- - 1 (I-E’)2 
Go,-245L;l’,5,)- G l.l, . 039) 

This is used in (IV.15) to obtain Z(‘). 

APPENDIX C: GEODESIC DEVIATION VECTOR 

Inverting (11.7) with ({,c) fixed we get 

Xa=Xa(U,W,E,r;~,~). 0) 

If x E IXO(S,c), the null geodesic with end points at x0 and the (&a generator of ?, then 

4x;l,5)=&d,5), 4~,5,5)=~(xo;5,5), ~b,L-,~=~~o;5,~, ca 

as can be easily seen from (11.9), (II.lO), (II.1 1) and the fact that Z”(x,J,r) is tangent to the 
geodesic at X. Thus, for x E CXO, the future null cone of x0, it follows from (Cl) and (C2) that 

Xa=X=(U=Z(Xo;~,~), w=BZ(xo,&~), c.ir=bZ(x,;&& r+BhZ(x,,&5);&g (C3) 

In (C3), r- has been redefined in order to obtain a coordinate system (r, 5, c) for CJO. The geodesic 
deviation vector IW”~&~ can be obtained from (C3) using (Bl) and (B2), 

-iia[r(x~,~,~)+~cF]++ia&fx~,~,~)+P $. (C4) 

The last term in (C4) is the partial derivative of (Cl) with respect to 5. To calculate this derivative, 
we note from (11.7), (Bl) and (B2) that, if x and (l,[) moves in such a way that u,o,~%,r remain 
fixed, then 

0=*u=sx”v&+~ 0, 0=&0=sx”v&+;[A-~~], 

O=GJ=*x”VahJ+~[r+&], O=Gr=S*“V,r+F at-. 

Using (B3) and the fact that V,u,V,r,V,o,V,6Jis the dual of the basis $,ia,-A?,-k’ we get 
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P $xa=P ~=-i”br+~“[*-5;]+t’[r+i;-l-o~. tw 

From (C4) and (CS) we obtain the following formula for the geodesic deviation vector: 

APPENDIX D: 

In this Appendix we complete the steps that lead to Eq. (IV.10) and we prove that in the ASD 
solution (IV.14), x is the data at p as had previously been defined. 

Since the r.h.s of (IV.7) does not depend on (J,c) one can perform an integration on the sphere 
without changing the result. Thus, 

A&)=2-&’ Is2[(vbBF)z,,az,,]ds+v~ & ,-2F(&[,i)dS. (Dl) 

The last integral on the right vanishes if the -c.c. of-the solution (111.24) of (111.17) is chosen (see 
remark 1 in Section III). If not, it merely reduces to an unimportant gauge term that we will omit. 
Using (IV6) we can rewrite the above expression as 

&(x)=-2& 
- -- 

d~d~‘ZI,tx,~,~)~Zb]tX,~,~)~Go,-1’ 

x t5,5;5’,~)Atz’,5’,5)z’b, W 

where A(u,5,5)‘(alau)A(u,5,~). (B3) and &Z,,aZ,l)=O [which follows from (IV.l)] yield 

6~(z,,~z,,) = b&z,,&,,) - 2(&6zb]) = - 2z@z,], 

which allows us to rewrite the dS integral in (D2) as 

- 2 
I - $2 

(6G)z,,dz,,dS= 
I 

,tac,_,~)ab(z,,szb,)dS 

= ,t~Go,-,~)62tz,,~z,,)d~ 
I 

= 6’2(z;,sz;,), (D3) 

where we have used the fact that Go,-tp is the Green function of the a operator. Inserting this 
result in (D2) gives 

A,(x) = & I s2ds’A(z~,5’,F)z’bzr’2(z;,a’z~l). 
Using (IV.2) the contraction can be calculated giving (IV.9). 

We now show that the free data in (IV.13) is the asymptotic value of the connection at Y+. 
From (III. 18), the (restricted) free data is given by the following limit, taken along lXO( 5, a: 

L(x~,~,~= - lim &(x,1,5). CD51 
x-+.7+ 
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If (1II.l) is calculated using (IV.13) then 

@,5,+3= & 1,2dS’1,ix ~S,dr’~(Z’(x~),5’,~)Zb(x’)bZ;(*‘), 
, > 

036) 

where again the natural coordinates of section II are used and 

x’=x’(u,w,G,r’;~,~), u=Z(x;l,c), w=bZ(x;~,~), G=bZ(x;J,~). (D7) 

Let us change coordinates and view a point x’ in 1,. {,a as the intersection of 1,(5,5) with the 
past cone of (u,l’,p) at .P [’ i.e., (u,l’,p) is the point at which Z,r(l’,r) intersects P]. 
Keeping (S,r) fixed, u parametrizes I,( 5, a, thus 

and 

dui(u,&p)b 
zb(x’)a’z;(x’) 1 ZC(x’)Zf(x’) ’ 

03) 

tD9) 

where 6’ is calculated without taking into account the (l’,r) dependence of x’ in (D7). Note 
that22 

6 
Zb(x’)ZZ~(x’) 

z=(x’)z;(x’) = 1 3(x’) ~2Cb(x’)~~,(x’)~~l(x’)+~Ji,r) cmx’)~tx’))2 @lo) 
Being 5!$&%~1 ASD and %‘ta &bl SD, their contraction is zero, so it is clear that in the x+.? 
limit (DlO) will be zero in the 525’ case, and a O/O indeterminacy if [=l’. Note that, if the H 
space is asymptotically flat, then limY+K,,(x,l,5> = 0, the limit taken along 1,(5,5>. To study the 
5-L’ case, we express Zf as a second order Taylor expansion of Z, around C&c). To do this, we 
obtain from (B. 1) and (B.2) the relationship between bZ, ,6Z, ,&Z, $2, ,h2ZC and the first and 
second partial derivatives of Z, , and then use (IV.l) and (IV.2). The result is 

zcz:= (~-g)(~--p)+; (pr)%, lP2+@({-g)3) 
1 1 

(g--l’)(~-5”)++ f (C-F)“K,, l[PP’]+@(5-l’)3) 1 
=z*z’ ( ‘ypq2 - A,,+ ml- 5’)3h (Dll) 

where the notation of Appendix B has been used. In the x--+.@- limit, K,,--+O. From (Dll) and 
om, 

I = - & 66’ ln(Z.Z’)=S-,,,(5,5;[‘,?). 0312) 

From (D9) and (D12), 
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(Dl3) 

and so x in (IV.13) is the (restricted) free data, as we wanted to show. 
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The invariant imbedding technique, via the solution of a Riccati-type equation, is 
modified to calculate the wave fields inside and scattered from a strongly (laterally 
and vertically) heterogenous, anisotropic inclusion, which may be large but remains 
compact. The factorization underlying this approach is carried out with respect to 
direction of average power flow rather than the more conventional factorization 
with respect to local direction of propagation. The solution of the operator Riccati 
equation is related to the Dirichlet-to-Neumann map. The formulation is robust in 
the sense that it can handle a rather extreme range of modal wave speeds, and 
allows continuous as well as discontinuous medium variations on different (wave) 
length scales. It also, inherently, takes care of critical-angle phenomena. The algo- 
rithm, based on the invariant imbedding approach, yields the internal fields for a 
full survey of sources and receivers simultaneously. The wave field solution in the 
inclusion is coupled to the external field via a boundary element approach. 
0 1996 American Institute of Physics. [SOO22-2488(96)02607-21 

I. INTRODUCTION 
In this article, we discuss a generalization of the invariant imbedding approach’-4 to calculate 

the transmitted and backscattered wave fields from a strongly (laterally and vertically) heteroge- 
neous, anisotropic inclusion. The inclusion, typically the size of a couple of wavelengths, defines 
a compact domain in which the system of coordinates is allowed to be curvilinear to accommodate 
for sharp as well as anomalous boundary conditions on hypersurfaces and interfaces in the con- 
figuration. 

A directional decomposition of the wave field underlies the method of invariant imbedding. In 
the approach proposed in this article, the directional decomposition is carried out with respect to 
the direction of power flow averaged over a level hypersurface and a period in time, and as such,, 
differs from the one carried out with respect to the local propagation direction (Westo”n5*6). The 
separation into “up” and “down” no longer permits a separation into “left” and “righ$‘, here+’ 
up/down is defined with respect to the local vertical direction, the direction of preference,,pormal 
to the hypersurfaces. 

As in the standard invariant imbedding approach, we arrive at a Riccati-type equation, but 
here the standard “slab” has been deformed into a compact manifold. Our Riccati equation is an 
operator equation rather than an ordinary differential equation. Its solution has the interpretation of 
admittance operator, and bears close resemblance with the established Dirichlet-to-Neumann map 
in boundary value problems.7-9 The internal field in the inclusion is decomposed into two families 
of “one-way” fundamental solutions. 

The Dirichlet-to-Neumann map has been used in the analysis of several physical phenomena. 
These phenomena dominantly comprised elliptic equations, such as in electric conductivity and 
static elasticity. The Dirichlet-to-Neumann map appears to be particularly useful in inverse prob- 
lems. Amongst the extensive literature on this subject is the work of Lee and Uhlmann7 who 

%esent address: Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401. 
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derived a reconstruction procedure for anisotropic conductivities by boundary measurements; 
Nakamura and Uhlmann’ established uniqueness for the inverse boundary value problems in static 
elasticity. Our aim is to employ the Dirichlet-to-Neumann map in hyperbolic, wave scattering 
problems. The feasibility of this has been established by Weston6 and Fishman,1o and earlier by 
Burridge” in crack propagation and wave diffraction, and has been further exploited in earthquake 
seismology.12~13 The idea of introducing an operator that accounts for the most complicated part of 
the scattering process is much in the spirit of the T-matrix approach, be it that our approach 
decomposes the wave field rather than the medium into two constituents (see, e.g., Varadan and 
Varadan14). 

The multidimensional invariant imbedding approach proposed in this article has certain ad- 
vantages for the simulation of waves in complex media, since 

(1) the medium can contain sharp and strong discontinuities over potentially many, closely 
spaced, curved interfaces, 

(2) the medium can have a wide range of modal wave speeds, 
(3) the medium can be generally anisotropic, 
(4) it handles critical-angle phenomena and diffraction without any precaution. 

The aim of the approach is to reach a generic accuracy similar to the one of the layer-matrix 
approach for the computation of the wave field in stratified media (see Kennett’5’16). Further, 
invariant imbedding formulations are of theoretical importance to the method of stochastic aver- 
aging of wave fields propagating through media with strong small-scale (subwave length) fluc- 
tuations. Established proofs of pulse stabilization in the transmitted and backscattered fields in 
stratified media of such type rely on the structure and properties of the Riccati equation.t7 

The article is organized as follows. In Sec. II, the hyperbolic system on a compact manifold is 
introduced; Sec. III contains the associated representation theorems. In Sec. IV, the directional 
decomposition and the subsequent invariant imbedding formulation of the scattering problem to 
evaluate the internal field are discussed. To this end, an admittance operator is introduced. The 
existence of the continuation proposed depends on an up/down decomposition of the wave field 
representation with respect to direction of average power flow. The admittance satisfies a pseudo- 
differential operator Riccati equation. In Sec. V, the boundary-element method is employed to 
couple the solution inside the compact domain to the outside world, to evaluate the backscattered 
and transmitted fields. This hybrid approach is followed since the embedding (the outside world) 
is typically homogeneous or stratified and thus the embedding’s wave field solution can be evalu- 
ated with simple methods. In Sec. VI, periodic boundary conditions in the directions transverse to 
the direction of preference are applied; the numerical aspects of solving the Riccattione-way 
system of equations making use of pseudospectral techniques are discussed. To this end, the 
operator Riccati equation is transformed into an equation for the co-kernel of the admittance 
operator. Finally, the stability of the continuation is discussed. 

II. THE BASIC EQUATIONS 

In this section the symmetric hyperbolic system on a compact manifold is introduced. The 
system applies to wave motion in anisotropic fluid, and elastic and poroelastic media. The observ- 

II able quantities will be represented by a general 2pX 1 field matrix F, which is built from the 
components of vectors, u say, and tensors, (T say. We will apply the summation convention. 

A. Fourier transformation and time averaging 

Let t denote time and w denote angular frequency. The one-sided Fourier transformation is 
employed to make use of the causality imposed on the wave motion. To show the notation, 
consider the contravariant vector ui for which 

72(x mrW)= f ui(x, ,t)exp( -iwt)dt. ‘(II. 1) 
tcR,O 
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uyx, ,t)= & I u’(x m ,w)exp(iwt)do. 
waR-i0 

(11.2) 

A “steady state” constituent is then represented by 

Re{u’(x,,o)exp(iot)}. 

Let (T; be a mixed covariant/contravariant tensor, then 

Re{viexp(iwt)}Re{cTikexp(iwf)}=$?aik +Ui~i~]+~UicrikeXp(2iwf)+via7:keXp(-2ior)]. 
(11.3) 

Taking the time average (.*.)z over a period, T=2dw, of the latter expression then amounts to 

-(Re{u’exp(i~.~)}Re{c+i~exp(iot)))r=-iRe{v”ai”}, (11.4) 

which upon identifying ui with the (contravariant) particle velocity and ~ik with the (covariant/ 
contravariant) stress corresponds to the k component of the time-averaged (contravariant) elasto- 
dynamic Poynting vector. [In this framework, the strain tensor cij becomes mixed contravariant/ 
covariant.] 

6. Coordinate transformations and forms, and direction of preference 

Let xi denote global Cartesian coordinates in three-dimensional space. We employ curvilinear 
coordinates 8 on a manifold, standardly taken as contravariant, according to the transformation 

xj +5j, (11.5) 

with 

xY=tvf v= 1,2 and x3=Y5,,53). (11.6) 

These coordinates parametrize curved hypersurfaces according to t3=const. The function f is 
assumed to be single-valued and continuous; t3(x, ,x2 ,x3) is obtained via the implicit function 
theorem. Implicitly, a direction of preference has been introduced, viz., locally along the t3-axis. 

The spatial derivatives and forms transform as 

d,,=UIG’a, ) dxi=Ujidtj, I (11.7) 

employing the summation convention, in which the transformation matrices, 

dXj 
uij=z9 

-1 d5j 
‘ij =z’ 

are given by 
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i 

9 u--l= 

10 ( ae,f i -af 
63 

0 1 ( d&f i -z 
53 

00 ( j+ 1 53 

(11.8) 

We have det(u) = ( at3f), and assume that the Jacobian is regular. This condition can be somewhat 
relaxed, which will be discussed below. In curved space 

v= 1,2 (11.9) 

are referred to as the local horizontal slowness operators. 
The metric tensor gii, associated with the coordinate transformation introduced above, is 

given by 

thus 

gij = UikUjl skl 9 gij=g,<l=u~lu;l@l; 

and 

gij= 

if (a#+ (a# 
( at302 

The invariant volume form is then given by 

dxldx2dx3= I/- d&de2dt3. 

with 

det(g)=(dt3f)2. 

1 0 
dt,f -- 
%3f 

(II. 10) 

(II. 11) 

(11.12) 

To identify the local vertical direction, we employ the vector ni , normal to the surface t3=const, 
given by 

ni= &j&l= (ac3f)u;’ 
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or [from the gradient of (x3-f)] 

with 

n y= - a*,f, n3=l 

From Eqs. (11.8) and (11.13) it follows that Eq. (11.7) can be written explicitly in the form 

(II. 13) 

1 
(II. 14) 

A surface element dA(t), locally normal to ni and in a level surface of .$, follows from the 
transformation 

njSj3 
- dA(~)=d&d~2=dxIdx2, Ml 

hence 

d-4(5) = llnlld51d52. (II. 1.5) 

A stretched normal component of a tensor is typically given by oin= oiknk, the superscript n is 
reserved for this particular contraction. A factor llnll is th us absorbed in the normal vector and 
tensor components. 

C. Transformation of field quantities 
We will follow a covariant formulation of elasticity; see Fung.” For scalar quantities we 

apply the standard transformation rule 

P’tLn,~)=Ptxm7~). (II. 16) 

For contravariant and covariant vectors u, and mixed co- and contravariant tensors a, the trans- 
formations yield 

U’i(6m,~>=UikUk(Xm ru), ui(X,,W)=UiklU’k(~rn,W), 

u’y~m,W)=U~iluk(X,,W), ui(x, yW)=UkiU’k(tm ,w), 

(+‘ij( 5, ,O)= LJikUlj’gk’(X, ,O), q’(x rnro)=Uik'UU(T.'k'(Srn,w), 

where uk=vk, ufi=urkgki and crrij= otkjgk;. [The physical tensor components are given by 
U”Jg,,and U’i Jgf;, o’{dm (no sums).] Note that u” = Uknk = &ut3. The covariant de- 
rivative Dj of a covariant vector follows as 

DjU’i=a~.U’i-rfjU’k, I d,jui=u,;lui,lD,v’,; 

the covariant derivative Dj of a contravariant vector follows as 

Dju ri=ag,UIi+rjku’k, axju’=u;llU,iDp’P; 

the covariant derivative of a mixed co- and contravariant tensor follows as 

(II. 17) 

(11.18) 

D k(Tlii=aQ(+lii+rjk,(T'il-rfka'i, a,/r,j= u,‘ui,‘uqjD&,? (II. 19) 
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In our notation the Christoffel symbols are given by 

The physical equations of motion and the constitutive relations are obtained from their Cartesian 
form by replacing the vectors and tensors appropriately, and replacing the partial derivatives by 
their covariant counterparts. 

If we want to allow kinks in the level surfaces, however, we should not differentiate factors 
dg,f with respect to 5, any further. Then, we deviate from the covariant transformation rule, viz., 
by applying a straightforward change of coordinates, 

u”(~m,o)=ui(x,,w), 
(11.20) 

diq~mrW)=qqX,,O), 

avoiding the introduction of the Christoffel symbols in the equations. 

D. The hyperbolic system 

We consider a generic symmetric hyperbolic system reduced to the form 

d53F+ioA(DV,dg,f)F=N. (II.2 1) 

Here, F denotes the field matrix of physically observable quantities [e.g., F=( -p’,u ‘n)T for fluid, 
F=((~‘~‘,u’j)r for solid, and F=((+‘i”,-p,u’j,w’n)T for poroelastic media where p denotes 
pressure and w infiltration velocity], A is a matrix of partial differential operators elliptic with 
parameters (yet to be determined) in (&,t2)-space, and N is the matrix of notional sources. The 
dimension of F is 2p and can be smaller or greater than the dimension of the underlying manifold, 
3 in our case. Using this, we introduce a generic partitioning of field quantities 

F= 

such that the number of components of F, and F, are equal to p. 
With respect to any partitioning, the system’s matrix A satisfies the symplectic property 

ATJ= -J-A, (11.22) 

where a superscript T denotes the adjoint with respect to the real inner product in [L~(R~)]~P, and 

but also set K= 

for the later analysis. Apart from the horizontal slowness operators, the system’s matrix will 
contain the medium parameters, the normal n through tensor contractions, and the Jacobian 
det(u). An example is derived in App. A. 

We are now in the position to formulate our scattering problem. We consider a compact 
inclusion in an infinite imbedding. The inclusion is irradiated by a point source located in the 
imbedding; the scattered field is observed in the embedding as well. The field inside the inclusion 
will be analyzed with an invariant imbedding approach. 
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III. REPRESENTATION THEOREMi 

For the later analysis, we need the representation theorems for the solution of the hyperbolic 
system. We summarize these theorems in our coordinate system. 

A. Reciprocity 

Consider two physical states (NO, F) and (Nb, Fb) in the same medium that both satisfy the 
system of equations (11.21), i.e., 

d53Fa*b+ ioAIY,b=Na*b. 

Consider the interaction quantity (note that a factor llnll has been absorbed in q*b) 

I c-pea tF”)Tt5,,53)JFbt5,,53)d51d52, 

in which the integral splits into real inner products in [L2(R2)lp. In the previous section, with 
respect to the full inner product, we have defined the adjoint of A. Employ Eq. (11.21) to obtain 

= -zw 
d SpER WTTt&i &)PTJ+ JAlFb(5,&MW52 

+ I &=a [tN”)T(~1Lo53)JFb(5~~53)+(~)T(5~,~3)JNbt~ll,53)ld~,dS2, 

which, given the symmetries (11.22), reduces to a reciprocity relation of the time-convolution type, 

1 
53 I I 53=5; CPER [(N”)T(~CL,~3)~b(~~,,53)+(Fo)T(S~,53)JNb(~C(,~3)ld5,d52d53 

= I SpER tF”)T(S,,S:)JFb(E,,5:)d~~d~2-~* R(F”)T(5,,~)JFb(~~,5~)d51d52. 
PE 

(III. I) 

*Repeating the steps above for the interaction quantity 

where the overbar denotes complex conjugation, yields 

= -zw 
‘I 5 R(F")T(5,,53)[-~K+KAlFb(Spr53)d51d52 

PE 
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and a reciprocity relation of the time-correlation type follows as 

BE R[o7(5,,53)KFh(58,5j)+~(~8,Sj)~~(Sp,53)ld51d52d53 

=io 
II- 

*‘$, 5 
3 3 PE R(F”)T(5,,S~)[~K-KAlFb(~p,~3)d~id~~d~3 

+ I- SpER tF”)Tt~CL,~:)KFbt5c,,5:)d51d52- I, FE R(F”)‘(~,,~)KFb(~,,~)d51dS,. 
(111.2) 

In nondissipative media, we have 
- 
ATK-KA=O. 

6. The dissipative part of the complex energy balance 
To derive the dissipative part of the complex energy balance associated with the hyperbolic 

system, set b =a in Eq. (111.2); omit the state’s superscript. Set T= .+, then 

This equation is completely real-valued. From its left-hand side we obtain the time-averaged 
normal component of the Poynting vector [cf. Eq. (11.4)] 

4(S,)r= -F+KF= - 2 Re{FlF2}. (111.4) 

The time-averaged volumetric rate of energy input by external forces is given by 

4(C,,,)r=-[NtKF+FtKN]= -2 Re{N+KF}. (111.5) 

The remaining term is interpreted as the dissipation potential, 

4(D)r=-itiFt[AtK-KA]F=2ti Im{FtAtKF}. (111.6) 

For passive systems the operator io[KA-AtK] is positive. Note that the full complex energy 
balance follows upon considering the quantity 

I 5 aF:(5,,53)F2t5,‘~3)d~~~~~ PE 
and following the derivation of the reciprocity relation of the time-correlation type. 

C. Representation theorem 
Finally, we employ the reciprocity relation of the time-convolution type to derive a particular 

representation theorem, which will be of use for the field inside the inclusion. Define a Green’s 
tensor G’( 5,) 5s ; [I, &) through its notional sources, 
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i 

0 
N’= wEp-t~)m3-~;) * i 

Substituting this Green‘s tensor into Eq. (111.1) for state b yields the representation 

F;tW=-~~~~,,/~ RNT(5p,53)JG’(5p,53)d~~~S2d~3 
3 3 FE 

(111.7) 

if t; E (ti,ti). For the time being, we leave the boundary conditions for G’ free. If the system is 
dissipative, or the heterogenous domain is not compact (is extended to infinity through thin slabs 
centered on the level surface x3=0), nonradiating boundary conditions of the “rigid” (Gila,=O) 
or “normal-traction free” 
representations.” 

(G{ lar,=O) types can be applied to arrive at Rayleigh-type integral 

IV. INVARIANT IMBEDDING FORMULATION 

In this section, we analyze the internal fields of the scattering problem. The configuration 
consists of a heterogeneous, compact domain Lr, in which we have curvilinear coordinates ($ ,&). 
imbedded in a homogeneous medium. Outside g the curvilinear coordinates transfer into the 
Cartesian coordinates (xP , x3). The level surfaces &=&,& bounding the heterogeneous domain, 
and the ones in between, are smoothly connected to the level surface x,=0 outside this domain. 
Let the level surface &=& represent the upper boundary dfl of the heterogeneous domain, and 
let the level surface &=& represent the lower boundary dfl; XZ=a@ UZT. Inside k’ we 
assume that there are no sources, i.e., N=O. 

A. Normalization 

Given the partitioned wave field, we introduce a scaling matrix (multiplication) Y, to be 
applied to the state vector F, for two purposes: 

(1) to balance the values of F, and F,; 
(2) to ensure that A becomes an elliptic operator with parameters which has a proper poly- 

homogeneous expansion of its symbol (de Hoop and de Hoop*‘); this expansion, as well as 
the one for the resolvent of A, consists of increasingly smooth operators. We will not 
explicitly employ it in the further analysis. 

The second issue is a condition necessary to ensure that the Dirichlet-to-Neumann map can be 
represented as a pseudo-differential operator. Thus, set 

(IV. 1) 

Then 

with 

r&F + wA’F’ = - XF’ + N’ (IV.2) 

A’=YoAY;‘, X=Yo(d3Y,‘), N’=Y,N. (IV.3) 
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The parameters, v. say, are introduced in the operator A’ upon replacing ( Yo) ji by ( vo)i( Y,) ij (no 
sums). The symplectic matrix in this normalization becomes 

so that 

(A’)TJ’= -J’A’. (IV.4) 

We will omit the primes in the further analysis. 

B. Wave field decomposition 

At any level surface in the inclusion, we seek a directional decomposition 

F,=F:+F,, (IV.5) 

F,=Fl -l-F, such that Ff = Y’FF , (IV.6) 

and that the decomposed constituents satisfy Eq. (11.21) individually 

a3F:$.iO(A1,,+AI,2Y’)F:=0, (IV.7) 

d3F;fiO(A,,,+A1,2Y-)F;=0 in a:. (IV.8) 

Here, Y+ and Y- have the interpretation of admittance operators and are yet to be constructed; 
they will appear to be pseudodifferential operators of order 1. The admittance operator on a level 
surface defines a 2-form according to 

F+“F;I,3=,,,,, d&d&v 

which can be identified as the Dirichlet-to-Neumann map.7 In the context of the “parameters,” 
note that the transformation 

Y’=(Y’)‘Yo 

takes care of the normalization. It is important to note that F, and Y are both continuous even at 
level surfaces across which the coefficients of the hyperbolic system jump by finite amounts. 

We will now discuss the condition for such a wave field decomposition to exist. Apply the 
operator Y- to both sides of Eq. (IV.5) and subtract the resulting equation from Eq. (IV.6). Then 
we obtain 

F2-Y-F,=(Y+-Y-)F:. (IV.9) 

Likewise, applying the operator Y+ to both sides of Eq. (IV.5) and subtracting Eq. (IV.6) from the 
resulting equation, leads to 

Y+F,-Fz=(Y+-Y-)F;. (IV. IO) 

If (Y” -Y-) would be invertible, Eqs. (IV.9) and (IV.10) would imply 

F:=(Y+-Y-)-‘(F2-Y-F1), (IV.1 1) 
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F;=(Y+-Y-)-'(Y+F1-F2). (IV.12) 

A sufficient condition for the inverse of (Y”-Y-) to exist is 

(Y+ - Y-) + (Y+ - Y-)+ is negative or positive 

implying that the spectrum of the operator (Y’-Y-) is bounded away from zero. This condition 
can be separated into two, physical, sufficient conditions, viz. the ones 

Y- + ( Y+ )+ is a negative 
Y- f ( P )+ is a positive I 

operator in each level surface. (IV.13) 

This means that the Hermitean parts of the operators Y’ must be positive/negative. In’the time- 
Laplace domain (see the next subsection), these conditions entail that the Hermitean parts are 
elliptic. We will loosely refer to them as ellipticity conditions, even in the frequency (w) domain. 

Let us continue with the latter existence conditions. They have the following interpretation. 
The power flow in the local +&-direction averaged over any level surface and a period [cf. Eq. 
(111.4)] is proportional to 

- I SpER 
F+KFd[,d&=-2 ItpER Re-#F2)dSldti= - [tpEnF~(Y+ fiWldtY52, 

for the + and - solutions. Hence, the sign of (Y+Y+) determines the direction of average power 
flow: for the k-sign in the ?&-direction. The ellipticity condition implies that there must be 
transport of energy through the domain under consideration. A somewhat paradoxal case arises if 
the wave constituent is (locally) propagating in one section of a level surface but (locally) eva- 
nescent in another section of the same level surface. However, since the sense of propagation is 
defined globally in each level surface, localized departures from the sense of propagation are 
possible. A more extreme possibility is the one where energy flow in one section of the level 
surface is opposite in direction to the overall flow. We find that the existence conditions enforce 
the directional decomposition. 

In summary, the existence of our wave field decomposition depends on the existence of 
admittance operators with globally elliptic Hermitean parts, the signs of which are associated with 
the direction of average power flow. The energy balance provides the tool to reduce the conditions 
of global ellipticity to similar conditions on the bounding level surfaces ~99 of the heterogeneous, 
compact domain .!% 

Upon integrating the dissipative part of the complex energy balance over a volume Q’t$ ,*;I 
that is bounded by two arbitrary level surfaces {&=@j} and {&= &‘} (&> tf;), we obtain 

I, P” R~snh153=5+5~52= I, PE R(snM53=5$5~52+ pJ-* 
3 3 /A= RmdE1~S2~5,~ 

having excluded the presence of external sources in the volume. For the sign of the component of 
the averaged Poynting vector normal to the level surface at &=& to be positive, it is necessary 
that the sign of the latter component be positive at &=a. This observation holds if the 
+.&direction coincides with the direction of average power flow. Thus, imposing the condition of 
ellipticity with the negative sign at .&=.$ on Yf guarantees its global proper behavior; similarly, 
for Y- imposing the condition of ellipticity with the positive sign at &;=& guarantees that for 
&;3& the -&direction coincides with the direction of average power flow. The existence con- 
ditions obtain the form of constraints on the initial conditions and in fact correspond with radiation 
conditions. 
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C. The admittance operator 

The admittance operator is a pseudodifferential operator of order 1. (For an overview of such 
operators, see H6rmander.21) In terms of an integral representation with Schwartz kernel jX, we 
have 

Given the plane-wave representation of the field quantities 

~,b,&)= VE RFI(E,,53)exp(iocu,S.)dS,d52, (IV.15) 

we can relate the Schwartz kernel of the admittance operator to its left symbol, viz., 

which means that, schematically, 

Yexp(-iwaU5,)=y(5~L)QIY;53)exp(-iwav5,). 

In the horizontal Fourier domain, Eq. (IV.14) becomes 

(IV. 17) 

mb@=( ~)2~~,.,“(a~-a:.~~;~~)~l(~~,~~)d~~d~~, (IV.18) 
Y 

where the co-kernel F is given by 

(IV.19) 

Co-kernels compose according to 

Note that the locally vertical power flow averaged over a period in time and integrated over a level 
surface can be expressed in the co-kernel according to 

- ;Re 
I I ~ ER ~,ERF:((rlL,~3)~(LYp-(Y;.LYy. ’ *&)F (a: ,5ddajdc&qda2, -1 

I* ” 

which can be written as a complex inner product. For the numerical representation a pseudospec- 
tral approach will be followed based on the horizontal Fourier and co-kernel representations. 

The time-Laplace (s-) domain formulation follows from the analysis above upon’ substituting 
s= iw and at= - ia,; then is&$,,= ioa,,tv. 

D. The operator Riccati equation 

Finally, we will derive the equation that Y’ must satisfy. To ensure that the decomposed 
constituents satisfy Eqs. (IV.7) and (IV.8), we will substitute Eq. (IV. 11) into Eq. (IV.7). Note that 
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J,[(Y'-Y-)-'I=-(Yf-Y-)-'[&(Y+-Y-)](Yf-Y-)-l. 

Upon differentiating Eq. (IV.1 l), we obtain 

d3F:=-(Y+-Y-)-‘{[d3(Y+-Y-)]F:-d3F,+(d,Y-)F,+Y-d3F1}. (IV.2 1) 

Substitute Eq. (11.21) into Eq. (IV.21) to arrive at 

J3F~=-(Y+-Y-)-1{[dg(Y+-Y)]F~+i~(A2,1FI+A2,2F2) 

+&Y-)F,+LJY-(A,,,F,+A~,~F~)}. (IV.22) 

At this point, substitute Eqs. (IV.5)-(IV.6) into Eq. (IV.22) and collect terms with F: and F, . We 
obtain 

(A,,,+A1,2Yf)F:+[a3Y--iWY-(Al,l+A1,2r)+iW(A2,1+A2.2Y-)]F;}. 

Thus, if Y’ satisfy the pseudodifferential operator equation 

dsY-iwY(Ai,l+A1,2Y)+iW(A2,1+A2,2Y)=0, (IV.23) 

Eq. (IV.7) is satisfied. A similar reasoning holds for F,. Equation (IV.23) can be written in the 
form of a nonlinear Riccati equation 

&Y-iw(Y -Z)A (IV.24) 

Supplemented by the linear one-way equation for F, , 

&FL + id Al.1 + A&PI = 0, (IV.25) 

the solution yields the + and - constituents, provided that the existence conditions at the bound- 
ary are satisfied. (In view of the symmetry properties of A, YT satisfies the same equation as Y.) 
The system of equations involves observable that are, in principle, continuous across surfaces with 
sharp discontinuities. It requires a solution via an evolution operator acting in the flow direction of 
the one-way equation coupled to a solution via an evolution operator of the Riccati equation acting 
in the opposite direction. 

The system (IV.23)-(IV.25) reduces significantly if the underlying medium is locally up/ 
down symmetric. Then the partitioning, in the covariant formulation, can be carried out in such a 
way that Al,l=A2,2= 0. Equation (IV.25) reduces to the conventional one-way wave equation, 

dsFt + itiA1,2YFI = 0, 

while Eq. (IV.23) reduces to the form 

; d,Y+ YA,,2Y- A2,, = 0, 

which is associated with the composition equation for the vertical slowness operators r identified 
as I”=A,,2Y’; see de Hoo~.~~ The vertical slowness operators are the generalized eigenvalues of 
the system matrix operator A; we denote their left symbols as y’. 
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E. Fundamental solutions 
To solve the system of equations (IV.23)-(IV.25) inside the heterogeneous, compact domain, 

we will follow a fundamental solutions approach (see, e.g., Krueger and Ochs).23 In the process of 
constructing fundamental solutions, we will enforce the decomposition’s existence conditions at 
the boundaries. The fundamental solutions are derived from the Green’s tensors of the one-way 
equations, associated with point sources on one of the bounding level surfaces. The solution 
(Y+,GT) yields downward directed energy flow (Y must be solved upward and G, is solved 
downward) and the solution (Y-,G;) yields upward directed energy flow (Y must be solved 
downward and G, is solved upward). Here, G: = G:( 5, ,53 ;Eb ,&) and G; 
=G;(5,,53;5:,5:>.~~~ 

d3G~+iw(Al,l+A1,2Y+)G:=0 for ,$,~($&5:], 

G:t5,,5~;5:,5~)=Zst5,-51) and Y+1*3=g=Y1; 
(IV.26) 

d3G;+iu(Al,l+A1,2Y-)G~=0 for &E[~~,~~), 

G;(5,,5:;E:,E:)=Z6(5,-51) and Y-/e3=$=Y(‘. 
(IV.27) 

To generate the fundamental solutions, we assume “appropriate” initial conditions Ye for Y- at 
the upper boundary and Y’ for Y+ at the lower boundary. Note that there is no unique choice of 
appropriate initial conditions, and hence a whole family of decompositions exists. However, the 
natural choice are the “radiation” conditions for the admittance symbols 

Y1t5,,a,)=(ta1,2)-1Y+)t5/L,LY”), Y0(5,,~,)=(tal,2)-1Y-)t~~,~~), (IV.28) 

where F are the down/up local (principal) vertical slowness symbols in the embedding at the 
boundary CC of L?. This choice guarantees that the ellipticity conditions are satisfied, provided 
that the embedding is (slightly) dissipative; then purely evanescent modes do not occur. 

However, in practice, simpler choices can be used, for example the vertically traveling com- 
ponents, 

Y1(5~L)")=Y1(S~L)~((a1,2)-*Y+)(5CL'O)' 

Y0t5,.a,)=Ytt5~L)~(tal,2)-1Y-)t5/1,0). 

The implied initial values for Gt are essentially nonlocal in view of the definite power flow 
directions of the fundamental solutions: 

and 

G;(5,,53;5:,5:)=,~(5~L,5:;53) at 53=& 

The internal field, i.e., the field inside the heterogeneous, compact inclusion, is finally written as 

F’;“‘=F:+F,, 
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FIG. 1. The inclusion configuration. 

W$.A3)= 
I 

5:.RG;t~~.13;5:,5:)cu-(5:)d~Id5;, (IV.29) 

in which CY+ and cy- are p-dimensional vectors in the bounding level surfaces. They equal the 
boundary values of the down- and upgoing constituents, viz., 

The respective 2-components of the two constituents on the boundary follow upon applying the 
Dirichlet-to-Neumann map with Schwartz kernel p( 5, ,[I ;&$) to F:(<,,.$) to construct 
F:(.& ,&) and applying the Dirichlet-to-Neumann map with Schwartz kernel K( 5,) 6: ;t:) to 
F, (5,) [i) to construct F; ([L, t:). The entire construction is illustrated in Fig. 1. An alternative 
way of deriving a representation of the type Eq. (IV.29) is given in App. B. 

The vectors LY+ and LY- are determined by the values of the l-component of the total field on 
the boundary &Z+UCSJS. The solvability of the resulting system of boundary integral equations 
determines whether the radiation conditions earlier employed are actually justified. To set up the 
latter system, one has to evaluate Gf for all values of 8; E a~‘@. 

V. BACKSCATTERED AND TRANSMITTED FIELDS 

In this section, the internal field solution is coupled to the external field solution to accomplish 
a representation for the backscattered (x3<O) and transmitted (x3>O) fields. To this end, the 
boundary-element method in accordance with Kupradze’s Ansatz approach24’25 is applied. First, 
we introduce the Green’s tensor H in the imbedding, satisfying 

aX3H+iwA(D,)H=NH for Xj E ( R3\@) U c?B, W.1) 

with (unit body force) notional source 

Nff” m5,-5:M53-5;) 

i 0 1. 
(V.2) 
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The medium of the embedding is assumed to be simple, i.e., typically homogeneous or planarly 
layered. Then a decomposition into “up” and “down” propagating constituents is readily carried 
out. Thus set 

H=H++H-, 

H+=O if xs<O or &<t:, 

H-=0 if xs>O or .$s>$. W.3) 

The superscript + refers to the causal solution traveling in the positive x3-direction and the 
superscript - refers to the causal solution traveling in the negative x3-direction. Further, H, 
denotes the “traction” Green’s tensor due to a unit “body force,” and H2 denotes the “particle 
velocity” Green’s tensor due to a unit “body force.” 

Let 6Yz denote the upper hemisphere at infinity in R3, and let cYX denote the lower hemi- 
sphere at infinity. The section of the plane {x3=0} interconnecting &I?? with &Ym is denoted as 8% 
Let the domains P’ be the ones bounded by c@* = EC@ UaU& . 

A. The boundary-element method 

Write the external field in the form 

FC.t= Fi”C+ FSC, W.4) 

where Fine denotes the irradiating or incident field which is typically excited by a source in the 
embedding, and Fsc denotes the scattered field; the scattered field satisfies the source-free hyper- 
bolic system. The secondary sources associated with Fsc and the incident field in our scattering 
problem will be specified at the boundary Z3of the compact domain, i.e., at t3;=& and & as well 
as at C% in the plane {x3=0} outside the domain. Then the external field is matched with the 
internal field on the boundary. 

Any physical solution can be represented as a Kirchhoff boundary integral with kernel HF 
outside the heterogeneous domain, 

FT=FS’,++Fy.-, 

where, according to Kupradze’s Ansatz approach, p’ and p- represent surface densities of force 
(dipoles). To remove the singularities arising from the kernels H:, the densities are shifted 
infinitesimally away from the bounding level surfaces; see Fig. 2. The representation for F$’ 
follows upon applying the reciprocity theorem of the time-convolution type in the volume 7fi; see 
Fig. 2. The 2-components of the scattered field follow from the constitutive part of the hyperbolic 
equations as24 
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I” source 
0 A 

I-r / 
I ,e ,a+ 

::~~~~~~~~~~~~~-~~::-i.~ 

a- p;/ / 

FIG. 2. The integral boundaries, limiting procedure. 

We have four unknown vector quantities and hence we need a system of four equations to solve 
the scattering problem. Expanding both components of the internal and external fields on the 
boundary, d@ and di%, yields the system of equations 

CY++ I fl,sG;(.;~1,5:)a-t5~)~~~~~~ 
53=$ 

while 

I &R C$( ~;.$;,&~+tt;)~@~; +&-- 
53=-E: 

&=$ 

c3=5: 
RH:t.;~~,~:,a+(~:,d~;d5: II, 

cU++yO ‘53=$ I *:~RG;(.:51,5:)a-t~~)~~~~~~ 

r I- = $- + Fp+ 
I J t:~RH;t.;~:,~)~-t5:)d&;d5; II 5,=5;’ 

W.7) 

(V.8) 

W.9) 
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Y' G:(.;51,5~)~+(5:)d~Id5~ -t3=c;+Y- CY- 
I I 5x=5: 

aH:t.;~l,~:,P+t~~)d~~d~~ ; 
53=5: 

(V. 10) 

in addition, on aE we get the boundary condition 

o= I 5, RH~(-;s:,~:,P+(~~,d~~d~~+ s 5, I1H;(.:5:,5~)8-(5:)d5;d5;. (V.11) 
“E VE 

For all practical purposes, these boundary conditions are solved in the least-squares sense, in the 
horizontal Fourier domain. Note that the (constrained) freedom in the choice of Yc and Y’ is 
explicit as well as implicitly present in G; and G:. 

VI. NUMERICAL ISSUES 

The system of equations (IV.23)-(IV.25) can be solved along the lines of a pseudospectral/ 
finite-difference scheme. In this section the most important details of such an approach will be 
discussed. 

Double periodic boundary conditions are applied in the t-domain, along the level surfaces of 
&. This is preferably done on a hexagonal grid rather than our orthogonal one. The period in the 
&-direction is denoted as E,. Further, periodic boundary conditions are applied in t. A standard 
fast Fourier transform (FFT) representation is employed to obtain the wave field representation in 
time-frequency domain. A Fourier series is employed to represent the wave field as a function of 
the curvilinear transverse coordinates. The relevant sampling intervals in time and space are 
denoted as At, At, and A&=h. 

A. The periodic case, and discretization in the transverse directions 

Consider the (&,, 6s) coordinate system. To reduce the stretch of the transient wave with the 
medium’s wave speed along the horizontal or transverse directions, we apply a horizontal distance 
to travel-time transformation 

51 
51+Q-1: T1(51)+ ;= 

I 5=-g,/* 
V,1:ttM (VI. 1) 

where 

V,~tt)= m.in min min Vt5,52,53) 
{ ,f2 ,&} modes directions 

(VI.2) 

with V denoting the modal phase velocity, being dependent on direction of propagation, and 

I 
El/2 

T,= 
c$=-a,/2 

C,:tW. (VI.3) 

Then, 71(-Z:1/2)=-T1/2 and 7,@,/2)=T1/2. We have 

Jg,= vJI:tw,,. (V1.4) 

A similar transformation is carried out for &. 
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Consider the solution on the region [-8,/2, Z:,/~]X[-&/2, &/2] in a level surface of Q 
coordinated by {~,,[~}. Let us focus on the &-coordinate. We introduce the Fourier series basis 
functions 

~~,(7,)=exp[-(2~ilT,)k17,1, (VI.5) 

which define the wave number w; = kl(27rlT,) [compare with WLY, in Eq. (IV.l5)]. Then, for a 
general quantity f, we have 

(VI.6) 

which is an integral over the one-dimensional torus .p, if 

(VI.7) 

Note that theFk, are implicitly functions of (7-2,&), and satisfy C~,=-,l~k,(2( 1 + lk,l*)’ < 03 when 
f is restricted to the Sobolev space H’(p). Note that the pseudo-differential operators, like the 
admittance operator, are continuous between appropriate Sobolev spaces. 

Upon discretizing the integral in Eq. (VI.6), and truncating the summation in Eq. (VI.7), we 
arrive at the transform pair 

1 N,/2-1 

&,-- N,AT, ,,=zN ,2f(~,A+h,(Z,A~,)A?, I 

(Iv,-,)12 

f(l,AT,)-- c 
k,=-(M,-1)/2 

~,~@,A~,) 

(VI.8) 

(VI.9) 

with 

N,Ar,=T,, hence Ati;A~,=g. (VI. 10) 

Note that for M,=N,+ 1 we obtain the well-known discrete Fourier transform (DFT) pair. How- 
ever, here the values of N, and M, are left uncoupled, but assuming that N, is even and M, is odd. 
Due to the discretization Eq. (VI.8) of the integral in Eq. (VI.6), the field becomes also periodic in 
the k ,-domain with period N, and associated Nyquist horizontal wave number w; +, = rrlh 7,. In 
general, the horizontal wave number content (band width) of the wave field sol&on will be much 
less than this Nyquist value, which allows us to use M ,-G N, . 

The co-kernel z of the matrix operator A is of the form 

~~,-r,,l,=(~~,,AICII,); (VI. 11) 

for an element of the system’s matrix of partial differential operators, we typically get 

(VI. 12) 
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Observe that upon imposing the periodic boundary conditions, the operators involved in the 
scattering problem will become compact. 

Equations (IV.23)~(IV.25) are thus obtained in the discrete horizontal wave number domain; 
in fact, they have the form of a system of ordinary differential equations. 

6. Discretization in the normal direction 

For the discretization of the evolution equations we employ the fourth-order Runge-Kutta 
scheme. [We could have proposed any locally stable finite difference scheme.] We write Eqs. 
(IV.23)-(IV.25) in the generic co-kernel form 

$y+iwF(53,y)=O, (VI. 13) 

where we have suppressed the &, and o dependence of F. The explicit fourth-order Runge-Kutta 
scheme is given by 

Y(53+~)=Y(~3)+iYo+~Yl+~Y2+~Y3+w)~ (VI. 14) 

where 

YO= -iwW53,~(63)), (VI.15) 

~1=-1whF(53+~h,~(53)+~~0), (VI. 16) 

~2=-i0hF(~g+~h,y(~3)+~~y1), (VI.17) 

y3=-iwhF(53,y(~3)+y2). (VI.18) 

To make this scheme quasi stable, the stepsize h is adapted in accordance with an eigenvalue 
analysis of (~?,,F)(5~,y(6)) over each range {53,53+h} as it arises in the linearization of Eq. 
(VI.13). 

To be more specific, consider a range { ts, 5; + h}, say. Equation (IV.25) for Ftis linear, hence 

(~,F)(~~,Y(~~))~D~AA,,,+A,,,Y; D,=D153=g. (VI. 19) 

The linearization of Eq. (IV.23) follows from substituting 

Y= Y,+E with Y,= qfa=~; 

omitting terms O(E2) and using the symmetry properties of A then leads to the equation 

d3E-io {ED,+D~E}=(d,Y),, (VI.20) 

where 

hence 

(~,F>(~~,Y(~~))Y-‘-{ED+D~LT). (VI.2 1) 

From the latter equation, in view of the equivalence in spectral properties of D and D*, it follows 
that the stability bound on h from the linearized Riccati equation for the admittance operator must 
be half the bound on h from the field equation based on Eq. (VI.19). However, since the equation 
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for the admittance operator must be solved prior to the one for the relevant field quantities, the 
Runge-Kutta scheme requires the sampling in e3 of the admittance to be twice as dense as the one 
of the field anyway. [The material properties, in turn, have to be sampled four times as densely as 
the field.] 

We will analyze the upper bound for h following from the field equation in more detail. 
Within the interval { 65, ,$S + h}, we assume the operator A to be slowly varying. Then, within this 
interval, we have [cf. Eq. (VI.19)] 

D=D,+A,.,E. (VI.22) 

Using Eq. (VI.22), the norm of D can be estimated as 

IIDII~ IIDcII + ll-%,~% (VI.23) 

The second norm on the right-hand side of Eq. (VI.23) can be estimated as 

lk2Ell~h II Wll,, with II W%e max 11 Wll 
{$ .5;+hl 

in which 

11 J3Dhnax- Il(~3D)cll=IIAl,z(~3E)cll-llA1,2(d3Y)cll 

using Eq. (VI.20); here, S, denotes the two-point difference operator. Substituting this result in Eq. 
(VI.23), we obtain 

IlDll G llDcll+ hll W&ax . (VI.24) 

Now, suppose we have the estimate 

hw IIDII~t9 (VI.25) 

for some value of 19. Then the explicit Runge-Kutta scheme Eq. (VI.14) implies an upper bound 
6 for the amplication factor with 

By choosing 0 appropriately, the amplification can be reduced to any desired level. To arrive at an 
explicit bound, use Eq. (VI.24) in Eq. (VI.25) 

hw (IIDcll+hll~3Dll,,)~e 

to guarantee Eq. (VI.25). Upon analyzing the left-hand side of the latter inequality quadratic in 
hw, it is found that 

For practical purposes, we introduce a more conservative upper bound through 

lb’cll 2 1 +4w- 011 WI1 max~llDcll + 2 dw- ’ ~~~~3Dhm.w 

which yields the approximation of Eq. (VI.26) 
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8 
has 

llDcll + do- 1~114J%,,,* 
(VI.27) 

Naturally, our sampling rate must be dependent on the frequency. The norms of the operators 
occurring in Eq. (VI.27) follow from (estimates of) the maximum eigenvalues of their respective 
co-kernel matrix representations. 

A summary of the necessary steps in the numerical scheme is given in Appendix C. 

VII. DISCUSSION 

We have considered the Dirichlet-to-Neumann map or admittance operator at the boundary of 
a large inclusion, and analyzed the equations governing the continuation of this operator away 
from the boundary. Such a continuation required a directional decomposition of the (internal) 
wave field, viz., with respect to power flow averaged over a period in time and a level hypersur- 
face in space, and the introduction of pseudodifferential operators. The continuation, essentially, 
followed from an invariant imbedding approach extended to higher dimensions. In the double 
periodic case, the latter approach reduced the continuation problem to solving a large system of 
ordinary differential equations; an explicit construction, based on the latter system, has been 
derived and its stability properties have been analyzed. 

We envisage as a key application the analysis and computation of time-domain transient wave 
phenomena. This implied that we did not have to consider general frequencies, but only the ones 
relevant to carry out a proper inverse Fourier transform back to the time domain. In this respect, 
special care had to be taken to avoid possible resonances in the configuration. 

The continuation of the admittance operator leads, in case the medium exhibits a local direc- 
tion of preference, to an accurate method for the numerical simulation of waves. It suffers from 
only few limitations as far as the coefficients of the original hyperbolic system are concerned. 
Apart from conditions on proper sampling, it was assumed that the coefficients can only jump 
across hypersurfaces. Such surfaces, or interfaces, then determined the coordinates on the mani- 
fold as well as the local (normal) direction of preference. With those restrictions, general sym- 
metric hyperbolic systems can be solved this way; the occurrence of anisotropy does not require 
special care. 

The framework of continuation of the admittance operator has been designed to fill the gap 
between long wavelength and short wavelength theories, i.e., that scale where multiple scattering 
and mode interactions are the dominant phenomena of interest. In a scattering configuration as a 
whole, different scales may enter the direct problem; then the theory should only be applied 
locally. Since the admittance operator defines the Dirichlet-to-Neumann map, the framework 
discussed in this article opens the way for developing an inverse scattering theory from local 
boundary measurements. 
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APPENDIX A: AN EXAMPLE-THE ANISOTROPIC FLUID 

1. Covariant formulation 

In the case of an anisotropic fluid, the hyperbolic system is given by 

D/C k= -i~~-‘p with D,~~=(dg~+r$)u~, (Al) 
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-Di,=iwpij~.~’ with Dip= do. 

We extract the locally normal component of the particle velocity, 

V”=?ljVj, 

so that 

v~=VZ+v” b i with Vi=( S’j-~)Vj. 

Indeed, V”=O. From Eq. (A2) we find that 

-(~-~)j~D~p=ii~vj. 

Set 

~:‘jz(p-l)ij, Cizni(p-l)ije 

Contracting Eq. (A5) with nj yields 

-CkDp=iWo”, 

hence 

-C”D,p-C3D3p=iovn. 

On the other hand, contracting Eq. (A5) with (sij- ninjjlnlje2) yields 

hence, upon substituiing Eq. (AS), 

iw( Vk+vn&)= (-~kY+Zk3(C3)-1Cu)Dyp+i~(C3)-1Zk3vn. 

. 

64’3 

(A3) 

(A4) 

(A5) 

w3 

(A7) 

Now, substituting Eq. (A4) into Eq. (Al) yields 

D3(V3+vn&)+DP( V’-‘+v”&)=-ioK-‘p. 

In the covariant formulation, it follows that n must coincide with the unit vector in the 
t3-direction. This implies that u”=u3, V3=0, and xj=c3j. Eliminating VP with the aid of Eq. 
(A7) then amounts to 

D [(233)-1Cp3~3]+D3 P 
v3=Dp [--94v+~~3(~33)-1~3v] (‘48) 

Hence, combining Eqs. (A6) and (A8) implies the covariant system’s matrix operator 
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-(233)-l 

; +,. --K-~ . 1 _; D,[C’*3(233)-1.1 

(A9) 

the Christoffel symbols appear in D, = dg, + I’jP. To arrive at the reduced system of the type 
(11.21), we have to add 

to A, : A=A,+Ar . Note that monoclynic symmetry implies that X3”=CP3=O; then A, becomes 
a purely off-diagonal matrix operator. 

2. Quasiscalar formulation 

Consider Eq. (A2), but now in a Cartesian frame. Substituting Eq. (11.14) then leads to 

-(p-‘)jk 1 p=iOVj, 

- 

Contract Eq. (A12) with ni and set 

Xijs(Pel)ij* IS(nv’ni(P-l)ivr IZin’(P-‘)ijnj, Cnn’ni(p-‘)ijnj 

then 

-L.a,y- - 2 dc3p=iwn. 

(Al 1) 

6412) 

(A13) 

COlltraCt Eq. (A12) with (ski-nknillnll-2) to get 

iw( Vkfvn &) =(-Ckv+Ckn~Cn;rl~Cnv)dSg+iW‘C~~~knv,. (A14) 

In the quasiscalar formulation, n is given by Eq. (II. 13). Substituting Eqs. (II. 14) and (A4) into Eq. 
(Al) now leads to (n3-1) 

- QM- AT3 I de p--&tdpJ]( Vp+vn&)=-iWKplP. 
Substituting Eq. (A13) into the latter equation yields 
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&a*p- (a*p,,lcx;C,n~n) + $,%I 

=bh&p-(~,3~,)l (-~,v+&&‘%w) t&P -hk&-‘P. 1 
Using Eq. (II.13), we find that 

Then, combining Eqs. (A13) and (A15), the system’s matrix operator follows as 

A=- 

with 

6415) 

6417) 

(A18) 

Note that, in general, the system’s matrix is dense, even in the isotropic medium case; then we 
have 

while 

APPENDIX B: EVOLUTION OF THE ADMllTANCE OPERATOR IN TERMS OF A 
GREEN’S TENSOR 
1. Representation theorem 

The starting point of this appendix is a representation theorem for F, that follows from Eq. 
(III. 1) upon substituting the Green’s tensor G”( t,&, ti, $) with notional sources 

N”= l 
z6(5,-5p(53-5;) 

0 1. 

Substituting this Green’s tensor into Eq. (111.1) for state a yields the representation 

(Bl) 
if 6; E (.$, .$i). We will impose specific boundary conditions for the Green’s tensor, viz., of the 
“normal-traction free” type, 

G;‘l dL,= 0. 

J. Math. Phys., Vol. 37, No. 8, August 1996 

                                                                                                                                    



A. J. Haines and M. V. de Hoop: Invariant imbedding analysis 3879 

This boundary condition is nonradiating, implying that in the case of a nondissipative compact 
domain Y the Green’s tensor exists at the configuration’s resonance frequencies only. By opening 
up the compact domain in R3 towards infinity along thin slabs centered on x3=0, the configuration 
deforms into an open resonator; then G” exists away from the resonance frequencies. 

One of the reciprocity relations for such a Green’s tensor follows as 

(G:‘)T(~,,53;~1.~;)=G~~(S:,53;5,,53)- 

Using this relation and the nonradiating boundary condition in Eq. (Bl) yields 

F,(t:d;)= - 1” 1 *,=p 5 
3 3 /A= R(G’~)T(5,,53;51.~;)JN(~/1.~3)dgld~2d~3 

- 
s 5 

PE 
$‘(S:.E; ;5,,5:)F1(5,,~:)d51d5, 

+ 
PE RG?(t;& ;5,,5~>F1(5,,~:)d5,d5,. WI 

2. The evolution equations 

Assume that N=O in SC~#,~I]; then the volume integral on the right-hand side of Eq. (B2) 
vanishes and 

F:(t:,t;)= - LLE $kt; ;5,,5:)F,(5,,5:)d51d52, 

033) 

for S-4 E (& 6:). Apply representation (B3) in & = et and in $ = 6:. Set 

Then 

@5) 
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Let the admittance operator be known at level surface es=&, i.e., 

Wd:)=Y%td:), 036) 

where Y’ = Yj*,=*; as in the main text. Substituting Eq. (B6) into Eq. (B5) and solving the 
resulting operator equation yields the (forward) evolution equation for F’ , 

F,t~,5:)=-tY’-g~1)-1g~oF,t~,~), (B7) 

and the (backward) evolution equation for Y 

+go,o-g;‘(y’-g;‘)-‘g;o 

upon identifying F2(.&)=pF’(.,&. 

W-4 

The existence of (Y’-g:‘)-’ needs to be further investigated. As in the main text, we will use 
a power flow argument. First, supplement representation (B3) with the l-components 

(B9) 

F%t;&)= I,,., G:‘(.$t; ;5,,~)F,(5,~5~)d51d52. 

Note that F’ and F2 independently satisfy the homogeneous hyperbolic system in ir’\XZ, with 
boundary values 

Fk&=O, J&&>=F,t-&), 03 10) 

F;td:)=W,t:), @&)=O. (Bll) 

From the fact that F:(.,&)=O it follows that the solution F’ does not allow any energy transport 
across the bounding level surface &=&. Then the physics constrains the averaged locally vertical 
component of the Poynting vector according to 

O>- 
I SpER f Re{(Ff)+F:}t5,,5:)d51d52= - i I6 

WE 
R(F~)tlg:l+(g:l)‘lF:(~,,S:)dSldS,. 

@12) 

Thus the Hermitian part of gi’ is a negative or vanishing operator. 
From the fact that q(.,&)=O it follows that the solution I? does not allow any energy 

transport across the bounding level surface &;=&. Then the physics constrains the averaged 
locally vertical component of the Poynting vector according to 

Thus the Hermitian part of g!jc is a positive or vanishing operator. 
In conclusion, Y’ is positive and g” is negative or vanishing, which guarantees the existence 

of (Y’-g;‘)-1. 
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APPENDIX C: THE NUMERICAL SCHEME 

For all frequencies calculate the fundamental solutions in inclusion: apply the radiation 
boundary conditions (IV.28), solve the Riccati equation for positive and negative directions 
(IV.23), reverse the order of both Riccati equation solutions, apply the point source boundary 
conditions (IV.26) and (IV.27), solve the one-way equation for negative and positive directions 
(IV.25) and save the fundamental solutions in the transverse wave number domain. 

Calculate the boundary mapping: compose the wave number constituents of the fundamental 
solutions to give the fundamental solutions in the space domain (VI.7), combine the fundamental 
solutions with BEM for scattered fields in the embedding (IV.29), match the boundary conditions 
to calculate the kernel “matrices” mapping the incident field to the boundary source distribution 
and the weights of the fundamental solutions (IV.7)-(IV.lO), and save these matrices. 

Given the incident field: for all receivers in the inclusion obtain the weights of the fundamen- 
tal solutions, for all receivers in the embedding obtain the boundary source distribution. 

Evaluate the scattered field according to Eqs. (IV.29) and (V.6), which ends the frequency 
loop. 

Multiply the total field with the source signature spectrum and inverse Fourier transform the 
result (11.2). 
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We examine some of the subtleties inherent in formulating a theory of spinors on a
manifold with a smooth degenerate metric. We concentrate on the case where the
metric is singular on a hypersurface that partitions the manifold into Lorentzian
and Euclidean domains. We introduce the notion of a complex spinor fibration
to make precise the meaning of continuity of a spinor field and give an express-
ion for the components of a local spinor connection that is valid in the absence
of a frame of local orthonormal vectors. These considerations enable one to
construct a Dirac equation for the discussion of the behavior of spinors in the
vicinity of the metric degeneracy. We conclude that the theory contains more
freedom than the spacetime Dirac theory and we discuss some of the implications
of this for the continuity of conserved currents. © 1996 American Institute of
Physics. [S0022-2488(96)01707-0]

1. INTRODUCTION

The interest in the influence of topology on physics is an old one. In recent times there has
also been considerable debate on the influence of the geometrical structure of spacetime that may
accompany a change in its overall topology. This has been partly motivated by the implications of
the semi-classical theory of quantum gravity and partly by the interest in field theories on back-
ground spacetimes with interesting topologies. Further motivation arises from string theories in
which string interactions arise from the topology of world sheets. In all these approaches funda-
mental assumptions about the signature of the spacetime metric are required. Such assumptions
dictate the detailed behavior of both the causal structure of the theory and the selection rules for
topology change. In the context of classical theory there are powerful constraints on the nature of
such changes on manifolds with a global Lorentzian signature and a spinor structure.' To escape
such constraints a number of authors have contemplated geometries in which the metric is allowed
to become degenerate, particularly on hypersurfaces that partition the manifold into Lorentzian
and Euclidean regions. Despite the obvious implications for causality there have been serious
attempts to follow the consequences for physics associated with signature changing metrics. De-
spite the absence of a rigorous theory of second quantized fields on such a background, in Ref. 2
it was suggested that a quantized scalar field could exhibit spontaneous particle production even in
the absence of gravitational curvature. This result relied on certain natural linear boundary con-
ditions that were imposed on the scalar field at the hypersurface of signature change. Since there
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is no continuous orthonormal coframe in the presence of metric degeneracy and the field equations
are themselves dependent on the metric one must rely on a prescribed differential structure in
order to define the necessary limits of the gradients of the scalar field in the vicinity of the metric
degeneracy. In practice this means one can always rely on a local coordinate coframe to effect
one's calculations. Furthermore the differentiability class of all tensor fields is defined with respect
to the differentiability of their components in an arbitrary coordinate (co-)frame independent of
any metric structure.

Since matter in flat Lorentzian spacetime is also described in terms of various representations
of the Lorentzian SPIN group it is natural to try and extend these considerations to the behavior of
spinor fields on manifolds with a degenerate metric. In particular one may wish to formulate a
dynamical theory of spinor fields and deduce from their field equations a class of natural boundary
conditions at the hypersurface of signature change. However a number of interesting problems
then arise that have no counterpart in the theory of tensor fields. The most obvious is that the
dimensionality of the real irreducible SPIN representations is signature dependent so that it be-
comes meaningless to try and match spinor fields belonging to representations with different
dimensions. If one persists with the search for matching conditions one must in general consider
complex representations.

In a smooth local basis of spinor fields one can define the differentiability class of the
components of a spinor field. Such a basis is a basis for a module carrying representations of the
SPIN group, which is a double cover of the SO(p,q) group associated with the signature of the
underlying metric on the manifold. Clearly this procedure will fail at the hypersurface where the
signature changes, since the SPIN groups differ across the hypersurface. In order to define con-
tinuous spinor fields on a neighborhood crossing the hypersurface, alternatives to the traditional
reliance on lifting orthonormal frames to spinor frames must be pursued. Of necessity one must
expect some arbitrariness in defining the notion of a continuous spinor field in the presence of
signature change.

It is natural to subject local spinor fields to the appropriate Dirac equation in regions where the
metric is non-degenerate. In such regions the conventional Dirac operator can be defined in terms
of a spinor covariant derivative that is designed to satisfy the natural Leibniz rules on products of
tensors and spinors. In this manner it can be made compatible with the natural linear connection
on tensors. A unique Levi-Civita tensor covariant derivative is determined completely by the
metric tensor. When this metric is non-degenerate one can exploit the existence of local orthonor-
mal frames to uniquely fix the spinor connection that determines the spinor covariant derivative. It
is important to stress that it is only the existence of a class of orthonormal frames that is necessary
to effect this determination, since it provides a reference frame for normalization. The SPIN
connection so defined is then compatible with a SPIN invariant inner product on spinors. If one
attempts to define a spinor connection in the absence of a class of orthonormal frames then one
must recognize the inherent arbitrariness that cannot be removed by normalization. Since we are
interested in subjecting our spinor fields to the appropriate Dirac equation in regions where the
metric is regular we must accommodate this freedom in the spinor connection if we wish to
discuss the matching of spinor solutions at the hypersurface of degeneracy.

Little attention has been devoted to the formulation of spinor fields on spaces with degenerate
metrics. Romano3 recognized that the choice of spinor equation was not straightforward. His
analysis was restricted to the case of a discontinuous change of signature, whereas in this article
we restrict ourselves instead to the case of continuous degenerate metrics. It is our purpose to
examine the essential arbitrariness inherent in a formulation of spinor theory on manifolds with
such metrics.

In section II we offer a definition of complex spinors in terms of a spinorfibration over a
manifold. Although our construction relies on the representation theory of Clifford algebras, we
have translated our arguments into the traditional language of y matrices. The essential novelty is
that these are matrix representations of a set of coordinate vector fields that constitute a frame in
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the vicinity of the metric degeneracy. The representation structure is explicitly presented in terms
of degenerate metrics in two and four dimensions.

Having defined the notion of spinor continuity in terms of a spinor fibration, we turn to the
notion of the spinor covariant derivative in section III. We show how this can be determined to be
both compatible with a SPIN invariant inner product and to commute with the complex structure
("charge conjugation"). In section IV we write down and solve the two dimensional Dirac
equation written in terms of this spin connection, making explicit the dependence of the singular-
ity structure of these solutions on both the spin metric and the metric on the underlying manifold.
We conclude with a brief discussion of the U( l) currents associated with these solutions and offer
some speculations on alternative approaches.

I. SPINORS

In n = 2m dimensions we consider the manifold M = R2, with metric

g=h(t)dt(Ddt+kij(;)dx1 ® dxi (1)

in a chart (t,x) = (x8), i = 1, . . , n- 1, where j is assumed to be positive definite. h is a smooth
function which may have zeroes (at most countably many that are nowhere dense). However, we
require that h changes sign at zeroes of h. None of the crucial steps of the development below rely
on the topological triviality of this particular manifold. Although the discussion applies to complex
spinors on any even dimensional manifold with signature change, we will pay particular attention
to the cases n = 4 and n = 2.

Kossowski and Kriele have shown4 under fairly general conditions that, at any zero of h
where h # 0, one can switch to coordinates (t',x') in a neighborhood of the zero such that
h(t)dt2 =t'dt'2 . However, the precise nature of the signature change is not of importance within
the scope of this article.

To define Dirac spinors on a manifold M of constant signature one usually 5 considers local
irreducible representations y of the complex Clifford algebra bundle

n'I(M)= UPeM5~(TPMgp), (2)

i.e, y is a fiber preserving homomorphism,

r I(U)C(M)-M k(C)X U, (3)

where ir: 97(M)--M is the bundle projection, U is an open subset of M, and Mk(C) is the set of
complex k)X k matrices (k = 2 ). We will assume for now that y is at least continuous. If the
representation y is also faithful, which is the case for even dimension of M, then Y is just a local
trivialization of KT(M). In particular, for vector fields X and Y, y satisfies

{y(X),y(Y)}= 2 g(X,Y)1. (4)

With respect to a local coordinate chart y is given by its components

y'. : = 1At).. (5)

(Note that we use bold-faced y for the representation map, and light-faced symbols for particular
images under a representation. Both kinds of symbols may appear in a single expression, in which
case a map defined by pointwise multiplication is described as in [y,,y](a)=y,,[X(a)], a
E WE(M).) With this definition we obtain the familiar relationship

I yus yv} = 2 gu ,, - (6)
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The Dirac spinor bundle S(M) is a vector bundle carrying such a representation y, i.e., there is a
chart for S(M) such that the Clifford action of r.l(M) on S(M) is given by multiplication of the
y-matrices with column spinors. If r,((M) transforms under a product of tensor representations of
the orthogonal group and the Clifford action is covariant under this transformation, then S(M)
transforms under a spin representation of the orthogonal group.

Except for regions that contain zeroes of h it is straightforward to generalize these ideas to our
signature changing spacetime M. The crucial question is how to link the spinor bundles across
hypersurfaces of signature change. In the following exposition we will use the fact that the
Clifford bundles are linked and lift this link to the spinor bundles. Specifically we will consider an
algebra fibration which coincides with the Clifford bundles where the metric is non-degenerate
and representations of this fibration which are continuous across a hypersurface of signature
change. A detailed study of such representations suggests certain additional conditions which are
sufficient to ensure the invariance of the resulting structure under appropriate changes of repre-
sentations and/or coordinates. Since the group of transition functions is different for different
signature we will adopt the term "fibration" for ",(M) and S(M) instead of "bundle," but we
will still refer to this object as the "Clifford" and "spinor" fibration, although we use these
expressions in a non-traditional context.

The following example will illustrate some of the key issues we have to face.

A. An example in two dimensions

In n = 2 dimensions we consider M = R2 with coordinates (t,x) and metric

g=h(t)dt~dt+dxidx, (7)

i.e., g= 1. Then the following y-matrices:

Yx= (I 0-1 )''t= ( h(2t) O)' (8)

define a continuous representation y on all of M which is faithful and irreducible for h(t) # 0.
Note that y, is necessarily degenerate at zeroes of h, where the matrix algebra generated by these
matrices actually reduces to upper-triangular matrices. Therefore, this representation is neither
faithful nor irreducible at metric degeneracies. This behavior is generic because of an incompat-
ibility of representations of degenerate and non-degenerate Clifford algebras: Since the Clifford
algebra is no longer semi-simple for h=0, the dimension of an irreducible representation is
smaller by a factor of two. The irreducible representation of the degenerate algebra is in fact just
an irreducible representation of its non-degenerate "spatial" part, i.e., the part corresponding to
the "spatial" yv. For the representation to remain faithful it would have to double its dimension
in order to accommodate the whole nilpotent ideal generated by the degenerate direction. (Note
that half of the algebra, namely the ideal generated by ,, is nilpotent of order 2 at the degen-
eracy.)

B. The general case

For a precise description of the behavior of a representation around a metric degeneracy we
examine the behavior of (d,,,)fp as p approaches a hypersurface H={t=to}, where h(to)=0.

Observation 1: If a continuous local representation y satisfies Eq. (4) on an open set
UCM intersecting H and is faithful and irreducible on U\H, then y is a faithful representation
of the "spatial subalgebra" K'ISP(M) generated by {d}il. n-I on all of U. Furthermore,
K$PP(M) contains central orthogonal idempotents P_ which effect a Pierce decomposition of
St((M) and a corresponding decomposition of y. Given a particularform of '(P,), this decom-
position is reflected in a block structure of the matrix representation.
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From the previous example we infer that ,(a,)Ip becomes degenerate as p--H. For the other
coordinate vector fields this is not the case, since radio) 2 = 1 everywhere in U. This corresponds to
the fact that the algebra generated by {di}=1 , n-, which we call the "spatial subalgebra'
'KPSP(M) remains non-degenerate on H, whence y restricted to 'iIPP(M) remains a faithful
representation. Therefore, this spatial subalgebra does not "notice" the metric degeneracy and
will provide the link that constrains the behavior of y, as we pass through H. 'j[sP(M) contains
central orthogonal idempotents,

P_ I 1z), (9)

where z is the normalized dual of the volume element of H, whence z2= , P2=P-, and
P±P+=0. For example, z= d for the metric given by Eq. (7), whereas z=idet _11 2d1 A d2
A d3 in four dimensions with metric given by Eq. (1). The idempotents or projectors P, split
.K[sP(M) into a direct sum of simple components,

'&fsP(M)= KYf(M)E 'fv L(M), (10)

where

_'r (m):=P '."(M)P (11)

Therefore y induces inequivalent representations

y+ :=y+YY (12)

of KL[P(M), where

Y+ :=P) (13)

So we get the following Pierce decomposition with respect to the idempotents P.:

KA[M) (P + + P _) i-(M)(P+ + P-)

=P + '[(M) P + E P + rfr(M) P - a) P - K(M) P + e3 P - K(M) P

= ,X±(M)EP+ K[(M)P-EP- K(M)P+e) KL(M), (14)

which translates into representations

Y=Y+ YY+ + + 7- +Y- ++Y- Y-=Y+ +Y+ Y-+ - 7Y+ + Y (15)

Since SY-P(M) commutes with P, and

'f[(M)= K7PP(M)e YfFP(M)a,= Sf'sP(M)Ea~dYsP(M), (16)

the cross terms in Eq. (14) come from a,:

P+ K•Y(M)P' = P+fKtsP(M)a,)P. = ' = a,'4r(M). (17)

[Note that Pda,= dP- and P+ Y_,[P(M)P+ =0.] This can also be seen from the decomposition of

Vt:

Yt= Y+ yy- + Y- YtY+ * (18)

If y+, takes the form

J. Math. Phys., Vol. 37, No. 8, August 1996

3886

                                                                                                                                    



Schray et al.: The construction of spinor fields on manifolds

to~ ol 0,Y-= to 1X' (19)

in terms of 2 m- lX 2 m- l unit and zero matrices, which can always be achieved by an equivalence
transformation pointwise on U (even on H), then the Pierce decomposition is reflected in a block
structure of the matrix representation -( K[(M)). In particular, the induced representations y.
only have one non-zero block, namely in the upper left (lower right) corner. Denoting the non-zero
blocks of the corresponding matrices by overlined symbols, for example,

+ (<r+ (M)) = (K0 +(M)) 0)' (20)

we have the following block structure of y(67(M)):

,(t[(M))= ( 4(7 M)) Y yy, -( ?L (M))

v_ i'±Y(,[+(M)) y_(2L(M))

( y+ ( T[+(M)) y+(rVf+(M))yvyv

-(,<L (M)) y Y+ Y}(rL(M))

[To arrive at this equation apply y to Eq. (14) using Eqs. (12), (17), (19) and inserting projectors
P_ when appropriate.] This block structure helps us to understand what happens to a representa-
tion when we cross H. The blocks on the diagonal make up the spatial subalgebra and do not
contain y, . Therefore, these blocks remain non-degenerate throughout U. The off-diagonal blocks
show that yt intertwines y+ and y-.

Observation 2: The inequivalent faithful representations ry± of <1[SP(M) have equivalent

restrictions y! to the even subalgebra K+ (M) C K'lP (M). Furthermore, the restrictions Yt are
intertwined by y,, which implies that for any p e H, one of the off-diagonal blocks of y,|p in the
previously discussed block structure vanishes and the other either vanishes or is regular. (The
diagonal blocks are trivially zero.)

Even though the representations y± vanish on one of the simple components,
y±(K1f;(M))=O, they are equivalent when restricted to the even part rf[(M) of Y-sP(M),
which is a simple algebra isomorphic to Kfi(M). Applying yiyt=-y yi twice, we have
yi y) y, = + y, yi yj, which implies that the restrictions yti of y± to rf+ (M) are intertwined by

- t't+ (22)

In the block structure (21) the non-zero blocks Yii(2K'[+(M)) induce irreducible representations
At r(U) f 5[+(M)-Mk,2(C) X U. Since an intertwiner of two irreducible representations is
determined up to a scale, with the intertwiner being non-singular unless the scale is zero, we see
from the non-zero blocks associated with Eq. (22) that the two blocks of
y,=y+yy-+y-yty+ are determined by Eq. (22) up to a scale. Since (y~yy+)
X( y; y, y) = h(t) y±, in fact, only a relative scale remains undetermined. Therefore at least one
entire block of y, has to vanish for h(t)-*0, so that we are left with a block triangular or block
diagonal matrix algebra on H.

Even though we may not be able to achieve this block structure on all of U at the same time,
this argument still shows that y, is determined up to a relative scale between y+yy- and
y- y,y+ and that y(,[Y(M)) is isomorphic to a block triangular or block diagonal matrix algebra
at each point of H.
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Observation 3: Two continuous local representations Y(r), r= 1, 2, satisfying Eq. (4) on an
open set UCM intersecting H and faithful irreducible on U\H, are equivalent if and only if the
block structures of Ytr)(dt) H agree. Furthermore, the intertwiner is guaranteed to be continuous
across H if one block of y(r)(dt) stays regular.

Given two overlapping local representations, we can use the same decomposition to show that
it is a necessary condition that yt has the same behavior on H for both representations if they are
related by a non-singular intertwiner. Conversely, if the behavior of y, is different for two local
representations, the intertwiner necessarily becomes singular on H. Not only the agreement in
block structure but its particular form on H is of importance. If both blocks of yt vanish, i.e.,
yt vanishes entirely for both overlapping local representations, their intertwiner may be discon-
tinuous. If on the other hand only one block of yt vanishes then the intertwiner inherits the
smoothness properties of the local representations, in particular it is at least continuous. In this
case the non-zero block of yt serves as a link across H and no additional requirement of continuity
of the intertwiner is needed to ensure that the gluing together of local representations is well-
defined. Of course, the transition functions can be restricted to lie in the appropriate spin groups
away from H, which requires the transition functions on H to continuously connect both spin
groups.

C. Criteria for a spinor fibration
It can be shown that if y is assumed to be not only C' away from H (this is required in order

to define a spin connection as we will see in section IIIC) but also to have bounded partial
derivatives on any bounded set, then exactly one of y-+ Yty vanishes on all of H and the other
one does not. Therefore, a simple smoothness assumption gains the desired control over the block
structure. Since the minor technical difference between requiring bounded partial derivatives on
bounded sets and C', namely that the partial derivatives have limits on H, does not affect the
continuity structure of the spinor fibration in question, we will use the more intuitive condition of
continuous differentiability. Allowing the partial derivatives of y to be locally unbounded relin-
quishes any control over the block structure, e.g., in the two dimensional example:

( /0 Ih(t)l" 2 +X 2

|1 0 ( th(t)[|h(t)l 1/2+x2]-1 0 /, for x>0.
YX )0 '= ( 0 Ih(t)I"2\ (23)

Ih(t)Jh(t)-1" 2 0 ) for x60.

Piecing it's like this one together we can get any behavior of yt on H we (do not) like.
These observations lead us to a set of criteria for local representations which ensure that they

are related by C' equivalence transformations:
(i) y is C' satisfying Eq. (4).
(ii) y is faithful irreducible for h (t) = 0.
(iii) y- y,0 for h(t)-*0.

[Of course, the y-matrices given by Eq. (8) satisfy these criteria.] Condition (iii) singles out one
class of representations with a certain behavior for h(t)-+O. Equally well, one could require

(iii') y+Vt~y 0 for h(t)-O,

or even a mixture of both, fixing the behavior of the representation for each hypersurface of metric
degeneracy separately. In this paper we focus on the issues arising from just one zero of h. In this
case (iii') is obtained from (iii) under a spatial inversion.

D. A possible generalization
We can relax the assumption of a metric of the form Eq. (1) if we assume the existence of a

local frame of non-zero vector fields {X,}J on any open set intersecting a hypersurface H of
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signature change, such that Xi E T(H) satisfies g(X ,Xj) IH= Sjj and g(XO,X,)IH=O and con-
struct IKX,,) instead of yd,). The spatial subalgebra ,fPP(M) of Ki(M) generated by {Xi}
coincides with the appropriate extension of F [(H) =UpEH(TPHH*gP), which is really the
only intrinsic structure in the vicinity of H. It is essential that the pullback metric H*gP be
non-degenerate. It is then straightforward to retrace the steps we followed above and come to the
same conclusions. Of course, the existence of a global fibration S(M) will depend on the topology
of M and possibly on the topology of hypersurfaces of metric degeneracy.

III. THE SPINOR COVARIANT DERIVATIVE
Having defined a spinor fibration S(M) we have a notion of continuity of a spinor field.

Namely, a spinor field is continuous if its component sections are continuous with respect to a
bundle chart. In other words, given a set of y-matrices satisfying appropriate conditions, a con-
tinuous spinor field is given by a column of continuous functions on which these y-matrices act.

In order to write down a Dirac equation on M, we need a notion of covariant differentiation
of a spinor field. However, given a linear connection on M, the spinor connection is not uniquely
determined unless it is also required to be compatible with both a choice of spinor metric and a
notion of charge conjugation. Furthermore, the traditional construction of a spinor connection
relies on the existence of a non-degenerate metric. In the following we discuss these separate
aspects in regions where the metric is manifestly non-degenerate. In section IV the interrelation
between these different aspects will be examined in the vicinity of a hypersurface of signature
change.

Authors of other literature on this subject usually work in orthonormal frames (see for ex-
ample Ref. 6) with the notable exception of an early review7 which also contains references to
most of the original work and notes the scaling freedom in the spinor metric discussed below.
A. The spinor metric

In order to discuss the Dirac equation below we introduce the notion of a spinor metric. In
particular, we adopt a Hermitian symmetric spin invariant bilinear form on Dirac spinors,

S(M)XS(M)-a(M)'

Ace =_ ('P, Ad ) = T'Yt C (24)

where &(M) denotes the space of functions on M and C is chosen to satisfy

C= Ct. (25)

CY "= - AtC, (26)

on M. The familiar Dirac adjoint is then given by

P= lC. (27)

For our example, Eq. (8),

cl=(o i)' (28)

satisfies Eqs. (25) and (26). However, the spinor metric C is only determined up to a real scalar at
each point of the manifold. Therefore Cf=fC, could equally well be chosen as a spinor metric,
where f=f* e (M). Usually the spinor metric is required to be smooth and non-degenerate,
which restricts f to be smooth and non-zero. This is one of the reasons why the choice of spinor
metric does not usually appear in the standard discussion of the Dirac equation. The scaling
function f is normalized to make the equation simple, i.e., C is chosen to be constant for constant
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y-matrices. (Note that the y-matrices cannot be constant across a hypersurface of signature
change.) The behavior of f where the spacetime metric is degenerate must be postulated sepa-
rately, and it can not a priori be ruled out that f may be zero or singular there.

B. Charge conjugation

Charge conjugation can be defined as a map,

S(M)+S(M)'

BLOtC: =B*P*, (29)

where B satisfies

Byr y* B, (30)

B*B=+1=31. (31)

These conditions determine B up to a phase which may vary over M. The sign in the second
condition depends on the signature. /8= + I if there exists a real representation 3= - 1 otherwise.
Defining the index v of a metric to be the (signed) difference of the number of positive and
negative eigenvalues of the metric, we note that

= + 1, for v0, 2 mod 8, (32)
-1, for v=4, 6 mod 8.

Therefore, /3 changes sign and B is necessarily discontinuous if the signature changes from
(-+ + +), i.e., P=2, to (+ ++ +), i.e., v=4, in four dimensions, while for the change of
signature (- + ) - ( + + ) in two dimensions /3= 1 in both regions. Since /3 also determines the
periodicity of the charge conjugation operation, namely

('PIC)c/=T (33)

continuity of a spinor is only compatible with continuity of its charge conjugate if / is the same
in Euclidean and Lorentzian regions. [This observation warrants an investigation of alternative
spinor metrics and notions of charge conjugation for the opposite metrics, i.e., signature changing
from (+ - - -) to ( - - -), in four dimensions. The reader is invited to pursue these technical
aspects which lie outside the main thrust of this article. Note that the standard definitions for
opposite Lorentzian metrics differ by signs in Eqs. (26) and (30). For completeness, one may also
consider the inclusion of spinors with Grassmann-valued components or even non-standard ver-
sions of Eqs. (26) and (30).]

For our 2 dimensional example, we may take

B = eie1, (34)

where 0= O* E @(M).

C. The spinor connection

Given a spinor metric the spinor covariant derivative S with respect to a vectorfield d is
given by

SU =aS. + , (35)

where the spinor connection Iy has to be determined such that the axioms for a spinor covariant
derivative are satisfied:

J. Math. Phys., Vol. 37, No. 8, August 1996

3890

                                                                                                                                    



Schray et at.: The construction of spinor fields on manifolds

Savvy rP) = (Visa>) yrT +avy,(S,1P), (36)

d,>(t, ) = (San, E) + (t,5U, ), (37)

Select) = ( sync. (38)

V Aa"':=a ;,: =d,1aP+r^,,PaP denotes the components of the covariant derivative of the vector
field given by a', where Fp,,,> are the spacetime connection coefficients, i.e., for the Levi-Civita
connection F rPv= 2 (d1'gVp+dvgup-dPg1Lv) These axioms ensure compatibility of covariant
differentiation of tensors and spinors, Eq. (36), and compatibility of the spinor covariant derivative
with the spinor metric and charge conjugation, Eqs. (37) and (38). Using the defining properties,
Eqs. (35), (25), (26), (30), and (31), in Eqs. (36)-(38) we get the following conditions:

dPfYP- r'P ,*YP= I "/l ]= YP1'-'5"YP' (39)

C- I dlC=Y+ C-1tC, (40)

B -'dB=2-B-,*B. (41)

In order to give an explicit expression for 'Fp. we expand it in a basis of the Clifford algebra:

E a opUi ', (42)
I

where the sum is taken over the set of ordered indices {(il. . .ip): l il< <icon,
0-psn-1}, with n=dim M, where also y(l. ip)= Yi ... yi'P and yO=1 are understood.
(Note that the superscript is the empty set 0 not 0 in the last equation.) In particular { i} is a basis
for the Clifford algebra in the representation y.

We first solve for the components of I A using Eq. (39):

[a>.11+ ,J o-,.]+ 22 L'a, IYVY'+2 ,ro- iy (43)

111odd Sleven

where III denotes the length of the multi index. Thus all but the scalar part of 1A, is determined:

1
Irl=2 N+lt4YtrYy(dp.yV-Flvyp)] (no sum over v), (44)

where for given I one may choose any v such that for III even v E I while for III odd v E l. (I'
denotes indices in reversed order, N=2 '2 .) For example, to calculate .(0O1.2,3) in four dimen-
sions we may take any v E {0, 1,2,3}, the result is guaranteed to be the same.

We solve for the scalar part of 1. using Eqs. (40) and (41):

Ord, =FN+tr(C'idp,,C+B l AB B). (45)

Thus Y. A is completely determined. Eq. (45) is derived from the general conditions arising from
Eqs. (40) and (41):

Re o-p.I=2 N+ltr(ylrC cd,,C) (I'| even), (46)
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Im aptj' =FT7vS tr( y,,B - /ILa, B ). (47)

Again these expressions are guaranteed to be real and compatible with Eq. (44). In some instances

it may actually be more convenient to use these latter relationships to solve for various compo-

nents of ES .
Applying Eqs. (44) and (45) to Eqs. (8), (25), (26), (30), and (31), we obtain for the spinor

connection for our 2 dimensional example,

I I
X=-f- daf+-idXO,

1 2

d'f+ -iday+ +-h-1 dhyx. (48)
2 2 4

In the case of a local orthonormal frame {Xj with constant y-matrices and constant matrices
C and B, the familiar solution for la is purely a bivector

la = -(abc Yb y, (49)

where t)abc=g(Xb ,VxX,) are the connection coefficients. (Note that the metric compatibility of

the connection implies W0ab, = - acb .)

IV. THE MASSLESS DIRAC EQUATION IN TWO DIMENSIONS

With the definition (35) of the spinor covariant derivative the massless Dirac equation in
arbitrary dimensions takes the form

St =_ y"SAP = 0. (50)

In two dimensions for the spinor connection (48) we obtain a family of equations depending on the
two real functions f and d:

[ d( + 2f'df+ id,09+y4th-1drhyvxjT=0. (51)

A. Solution for the massless Dirac equation in two dimensions

We solve this equation for regions where it is regular. It is easy to check that Eq. (51) is
equivalent to

y u[(f- 112e - 112i1D-l)d3 (f l12e 112i0D ) ]' = 0, (52)

where the matrix D must satisfy

dD= D Ih a,,h xy (53)

dD = 0. (54)

Thus, up to an unimportant constant factor,
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1 J~~~~~(hV'14 O \
D= -[!h~l4(1+yx)+±hj -" 4 (1-yx)]( 0 (55)

with

D1=- I y[hI - 114( 1 + yX,) + IhI 114( 1- Yx)]= 1/4) (56)

The plane wave ansatz,

, f112e- 112ioD- ) AOe-i(k~r-k~x), (57)

where T=f IJh(t)dt, leads to

( - h Ihk,+ -yxk)D_'0fo=0. (58)

For non-trivial solutions we need

det(- y'Shk,+ yrxkx)= -kx-h-'Ihlkrf0 (59)

which gives the dispersion relation

± kx, for h<O,

T | +ik, for h>O (60)

and corresponding solutions for tfO,

for h<O, k,=-kx, (61)

~/o =-i for h>O. k =+ikx. (62)

Thus the general solutions for regions where h # 0 andf t 0 are

~L (+)O [(ak e ( i_) aI e ikx( ) )e-ikr

qrE = (f 11e (12iD - ) a k e (_i)+aCk e ( like + ( bd kek( ik ) derrick ( i)) eikr] (h>O), (63)

+ (d~eikx( ')+d__eikx( .)) e-kj (h >0), (64)

where ak, b:, ck, and d ± are arbitrary complex constants. (We omit the zero frequency
solution.)
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B. Asymptotic behavior and continuity of solutions

Assuming the Fourier sums above are convergent then the singularity structure of these
solutions in the vicinity of the degeneracy is determined by 7f- "12 D- 1:

TLE 0 (f- 1/21 h | -1t/4 (65
LIE (f 1/21hl 1(65)

In particular, solutions are bounded iff=O(1h 1-/2). Thus one cannot have both bounded solu-
tions and a bounded spinor metric at the degeneracy hypersurface. One possible choice is
f= jh| - /2, in which case a continuous match of a Lorentzian and Euclidean solution would imply

a +b+ =c+ +d , a7+b =c +d-, (66)

where r(to) = 0 is assumed. With this choice, requiring continuity does not induce a bijective map
between Lorentzian and Euclidean solutions.

V. CURRENTS

There are two important currents that are locally conserved for solutions to the massless Dirac
equation above. In regular domains the current

jiL8[1, ] m( A, year) (67)

is conserved for solutions I,:

= (SA, , _) + (T,S ,(Yl=)) + r,,p(T, YE

= _ ( YS/lSAT, =) + ( T, yAS, A), (68)

using [SI,y]=- rFpyP and (T,yE')=-(y'1T,S) which follow from the definitions and
properties of the spinor covariant derivative and spinor metric (see section III). For a massless
theory the axial vector current is also conserved,

ji[T, ] =Re(P,3 Y=)7 (69)

where 3= hlYY,since

VA(T,3YA=) = ( Y'SAT,3= ) + (T,3YuS2,,.t) (70)

Note that V3 = 0, since the connection is metric compatible and 3 is the metric dual of the metric
volume element.

Given

V=(f 1/ 2e-1/2'0 D )D , =(fl/ 2e-(u/2)'OD -)4, (71)

which are defined piecewise on the non-degenerate parts of M, where they satisfy the massless
Dirac equation, we obtain for the components of the Dirac current,

candor coPo h Re nent of the al]=Re u (72)

and for the components of the axial current
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A'[ ]=-lhll ~ 0)( iAtZ I 0 - sgn h (

The continuity of these currents depends on the assumptions made for the continuity of the
spinor components. From our discussion above it is clear that this requires some assumptions
about the behavior of the spinor metric in the vicinity of the signature change.

However some purely signature dependent effects can be seen by considering the coordinate
independent contractions,

9M~ijMDIAI'ylA=t7]DIAI'plAt] °(l ), (74)

which stay bounded near the hypersurface of signature change but contain terms which depend on
sgn h. [Note that V Of( 1)=6.] Thus the currents do not exhibit any divergences which depend
on the choice of spinor metric or on h, although they can be seen to be discontinuous in general
for any linear prescription relating spinor data across the hypersurface of signature change.

VI. CONCLUSION

We have drawn attention to some of the subtleties involved in discussing spinor fields in the
presence of a smooth metric degeneracy. By insisting on interpolating smoothly (Cl) between the
representations on either side of the degeneracy, we have been able to derive a number of inter-
esting results. In particular, we have introduced the notion of a spinor fibration and used this to
give a natural interpolation between the notions of a spinor on the two sides of the degeneracy.
This enables one to discuss the concept of continuity of a spinor field in this context. Despite the
absence of a continuous field of local orthonormal frames we have shown how a local massless
Dirac equation can be constructed, albeit in terms of a class of spinor metrics equivalent up to
local scalings and a phase freedom associated with charge conjugation. We have shown that the
singularity structure of the solutions at metric degeneracies depends on the choice of spinor
metric. An important conclusion of our work is that it is impossible to have both a continuous
spinor metric and continuous solutions to the Dirac equation. Researchers studying spinor fields on
manifolds with smooth degenerate metrics will be forced to make a choice. Furthermore, our
formalism allows one to determine explicitly how various assumptions regarding the continuity of
the spinor components affect the continuity of the Dirac current.

A dynamic theory of spinors on a degenerate background geometry may require a dynamical
prescription to remove the freedom inherent in the construction of the spinor connection. One way
to implement this idea would be to promote the scaling degree of freedom in the spinor metric to
an independent scalar field and include this in the dynamical theory. A less radical suggestion
might be to relinquish completely the irreducible spinor representations for matter by embedding
a multiplet of spinor fields into a single Kahler field. The natural dynamics of such a multi-
component tensor field depends only on the metric structure of the manifold which is no longer
required to sustain a spinor structure.

Relinquishing the assumption of a smooth interpolation of representations on either side of the
metric degeneracy. may lead to an alternative construction of a spinor fibration. However, it is
unlikely to circumvent the discontinuity of the currents which was found to be purely an algebraic
effect of the signature change.
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For a nonequilibrium system characterized by its state space, by a dynamics defined 
by a transfer matrix and by a reference equilibrium dynamics given by a detailed- 
balance transfer matrix, we define various nonequilibrium concepts: relative en- 
tropy, dissipation during the relaxation to the stationary state, path entropy, cost for 
maintaining the system in a nonequilibrium state, fluctuation-dissipation theory, 
and finally a tree integral formula for the stationary state. 0 I996 American 
Znstitute of Physics. [SOO22-2488(96)02808-31 

1. INTRODUCTION 

For systems that are not in equilibrium, much of the general power of thermodynamics and 
statistical mechanics is lost. For chemical reactions, for fluids, for dynamic critical phenomena, or 
metastable states, and for many, many natural, social, and economic systems, specific methods 
have been developed to deal with time-dependent collective phenomena (see among many pos- 
sible references le9). Th e a sence b of overriding laws, such as the entropy-related variational 
principles of equilibrium statistical mechanics, has long been lamented, although there have been 
many attempts, for example to define generalizations of thermodynamic functions (see Refs. 1, 2, 
6, and lo-12 for recent definitions). In the present paper we use a dynamical framework broad 
enough to cover most of the phenomena of interest and find that there are general statements that 
can be made. Of course, there is a kind of complementarity principle. The vast range of nonequi- 
librium phenomena in open systems precludes certain kinds of specific predictions and forces on 
us a level of abstraction that may limit usefulness. 

The framework is the master equation. A state space and transition probabilities between 
states are given. This will not describe situations where quantum interference is important, but is 
nevertheless rather comprehensive-even finite memory effects can be included by enlarging the 
state space. In its various forms, for example, the Fokker-Planck equation, the master equation 
has already been used in many contexts., Our goal will be to seek general versions of the broadest 
kind of equilibrium information, things analogous to entropy inequalities, fluctuation-dissipation 
theorems, and the characterization of the steady state, when there is one. 

Label the states x, y E X and the transition probabilities R,, , defined as the (conditional) 
probability that the state of the system at time t+ At is x, given that it was y at time t. For most 
of the present paper, we take X and At finite. The stochastic matrix R is not assumed to satisfy 
detailed balance (for any vector) and indeed it is this feature that is of greatest interest. To avoid 
irrelevant mathematical complications, R is assumed to be irreducible. 

For some of our results it would be easy to take continuum limits. Indeed in previous works 
(Refs. 13-15) we used the master equation approach advocated here to define a metastable state 
and in Ref. 16 to establish “self-organized criticality” (see Refs. 17 and 18) in a model system. 
These results were based on showing the disappearance of an energy gap, clearly going beyond the 
finite state context. Similarly, in Ref. 19 various critical properties in directed percolation derive 

, 
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from the spectrum and eigenfunctions of the matrix R, in particular, its infinite.size limit. 
Within this framework there emerges the important general concept of current. By this we 

mean the flow of probability that can exist, even in the stationary state: JxY= R&- RyXj7X, 
where Rp=j?. Currents, in particular current loops, which do not exist at equilibrium, are essential 
to anything one would consider complex as a dynamical system (see, e.g., Ref. 20 for different 
perspectives and Ref. 21 for other opinions). One must be careful here to distinguish currents in X 
from currents in an underlying physical coordinate space. For example, in this terminology, heat 
conduction with detailed balance is not complex, even though it is not in equilibrium. We shall 
discuss these matters in another publication. 

The present paper is intended as an exposition of our general framework. In developing this 
framework we have had a number of examples in mind and in future publications we intend to 
exhibit these applications. However, because the present exposition is already rather lengthy, we 
will give only minimal indications of these examples. It is also clear that the wealth of potential 
applications will require tweaking of our framework. For example, directed percolation on finite 
systems generally has a trivial (absorbing) stationary state. By minor modification of the dynamics 
the interesting behavior of such systems can be studied with the present techniques (see, for 
example Ref. 22). However, in the present paper we do not focus-on those issues. 

Summary of results. A natural construct is the relative entropy S(plq) = - Z,p, log(p,lq,) of 
two distributions. For equilibrium theory this is already important [e.g., if q is the Gibbs state, 
S(plq) is essentially a thermodynamic potential] and it is also used extensively in information 
theory. It is easy to show (and well known) that 

Much of this work focuses on the invariant state of R, which is called E Thus p= RF The 
analog of the entropy increase in equilibrium’systems is the fact that S(plpT can only increase as 
R is successively applied to p. In fact, we have a stronger statement: If 6 is small and 
pdx)=Fb)exp(&#)h then S(PS~~ - - 8(&),7/2. This allows bounds on the rate of approach 
to stationarity (i.e., p->. Let ‘R be the transpose of R and (‘R)* be its adjoint with respect to the 
inner product using pas a weight. Let ‘pi be the eigenvector of ‘R(‘R) * with maximum eigenvalue 
h,, , different from 1, then 

This is a statement about dissipation and fluctuations, although in a moment we shall get to the 
usual form. In this context we are also able to get results on “excess work,” a concept that has 
been used in the chemical literature.” 

One question of great interest is, what does it “cost” to keep the system out of equilibrium? 
The matrix R can describe a system with temperature gradients, with sunlight, with wind, with 
currency exchange rate shifts. How can one associate a general cost? Given the broad nature of 
our goals, we preferred not to model the reservoirs that maintain R’s imbalances. Rather, we 
assume that R is to be compared with a fiducial W, which is a transition matrix with an equilib- 
rium state and detailed balance [W,,p,,(y) = W,,p,,(x)]. For example, if R describes Rayleigh- 
Benard flow, then W could represent a world uniformly at the temperature of the upper (or the 
colder) plate. The cost should then be what it takes to heat the lower plate. The choice of W is 
made by the observer and is partly conventional, depending on what the observer or designer 
intends to do with the R matrix. For example, in a Camot cycle completed by a necessarily 
out-of-equilibrium engine, depending on whether the cycle is used to move a car or function as a 
refrigerator, W would be the thermal state at low or high temperature, respectively. However, 
within our general framework one is not committed to such a detailed point of view. 

By considering a path entropy, we find it appropriate to define 
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AtY(R,F,W)=-x R,,F(y)log 
X,Y 

to be the dissipation per time step required to maintain the state p, against a tendency to relax to 
equilibrium. The following remarkable inequality emerges: 

This inequality is proved for Fnear equilibrium. It means that if we start with a certain stationary 
state and switch off the reservoirs defining R, so that Fstarts to relax to the equilibrium peq by the 
W evolution, the dissipation per unit time is always less than four times the cost to maintain F, as 
defined by the path entropy. 

To state a nonequilibrium fluctuation-dissipation theorem in a form similar to its usual equi- 
librium formulation, it is necessary to climb down from the grand generality adopted until this 
point. A distinction must be drawn between fast and slow variables-the motion of one dissipates 
while the others fluctuate. In the context of our master equation model we achieve this result. In 
fact, what we get is stronger than what is known in the equilibrium case. In particular, we have 
independent expressions for fluctuation and dissipation and the comparison of these expressions 
gives the fluctuation-dissipation statement, while traditional derivations do not give separate ex- 
pressions for fluctuation and dissipation. Note that the state around which this generalized fluc- 
tuation dissipation theorem holds is nor equilibrium but is the stationary state g More precisely, 
let A be a slow variable of the system that is chosen to be a left eigenvector of the transfer matrix 
R whose eigenvalue is close to 1, and let pn be a perturbation of the stationary state, such that 
(A(0)),a (average of A at time 0 in the state p,) is given, then the dissipation is 

(A(At)-A(0))-(A(O)),U(A- 11, 

while the fluctuation is 

((AtAr)-A(O)))-(A- W&42),a)+W). 

The elimination of X- 1 then provides the analog of the fluctuation-dissipation relation in a 
nonequilibrium stationary state. 

Finally, we state a generalization of the Onsager reciprocity relations for a general nonequi- 
librium system. The Onsager coefficients Lkj are not, in general, symmetric, but they are sym- 
metric in the case of detailed balance dynamics. 

In general, most of our statements (with the exception of the statements of Sets. II A and 
II B), hold for states near the stationary state, or for stationary states near an equilibrium state of 
reference (and an R matrix near a detailed balance matrix W). In our general framework, it is 
difficult to estimate how “near” one must be so that our statements remain valid. In particular, we 
do not discuss criticality (although everything we say is valid in this context too). Finally, we 
present a general expression for the stationary state of any stochastic matrix R. This is potentially 
important: for equilibrium theory, merely writing down the Gibbs state, exp( -pH), is a major step 
toward calculating various quantities. Our expression for the state is in terms of a sum over 
spanning trees built out of R and is reminiscent of a path integral formula; actually it is a 
“tree-integral formula.” At the computational level this may turn out to be difficult to work with. 
(An Ising model with 5 spins has a 32X32 transition matrix. The number of spanning trees on 32 
objects is about 1045.) However, for formal manipulations it should be useful; for example, it 
could lead to an abstract definition of nonequilibrium phase transition. 
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II. DISSIPATION DURING THE RELAXATION TO THE STATIONARY STATE 

In the following, X denotes a discrete space with points x,y,... . We start by recalling elemen- 
tary facts about probability distributions and their entropy on X. 

A. Relative entropy of two probability distributions 

Let p and 4 be two probability distributions on X. The relative entropy is defined to be 

P(X) 
s(Plq)= -x2& Pb)log 4(x)’ 

By convention, 0 log O=O. It follows that 

s(Plq)so. 

The proof is immediate. We have 

(2.1) 

S(plq)= -c P(X)& ps=-x p(rJL(g), 

where L(,$)=[log 5. But L’(a=l+log 5 and L”~)=(l/~>O, so L is convex. As a consequence, 
L(C,q(x)a(x))KZq(x)L(a(x)), provided C,q(x) = 1. So 

S(plq)S-L 
i 

p(x) 
c q(x) q(x) =-L(l)=O. 
x i 

Remark: If pis an equilibrium distribution of the form F(x) =exp(-PE,)/R, the quantity S is 
(up to ,a sign) the corresponding thermodynamic potential. Specifically, S( qlp) = p[ p- FJ , 
where F = - T log F (the usual free energy) and F, = ( E)g - T( -Zq log q). 

B. increase of the relative entropy 

The result below, Eq. (2.2), is derived as in Ref. 23 but adapted to our notation. 
We consider two distributions po,qo and a Markov chain on X, with transition matrix R,, 

Wxy=Ly is the probability that starting from y, one has a transition y--+x in unit time step). We 
call pl, q, the probability distributions at time 1, 

~dx)=c R,,Po(Y), q,(x)=2 R,,qo(y). 

Then 

~(Pol~o)~~(Pllql). (2.2) 

Proof Consider the states of the Markov chain at times 0 and 1, namely {x0 ,x1}. If the initial 
probability distribution is po, the joint law of {x0,x1} is P(xo,xl) = Rxlx$,-,(xg), and if the initial 
probability distribution is qo, the joint law of {xo,xl} is Q(no,xi) = R,l,OqO(xo). Then 

WOJl) 
S(PIQ)=- c P(xo,xl)log Q(xo x1) = -& R,,gpo(xo)log’~‘S(polqa). 

“0 4, , 

Now, we compute S( PI&) in a different way. We can write P and Q by conditioning the past x0 
knowing the future x1 in the following way: 
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where p t(x,) [resp., q,(x,)] are the distribution probabilities of x,, the initial distribution of x0 
being p&d [rev., q&0)1, and where rxlxo is the distribution probability of x0, knowing that the 
position at time 1 of the chain is xt [given the fact that the distribution of x t is p t(x,)], and, in the 
same manner, sxlxo is the distribution probability of x0 knowing that at time 1 the position of the 
chain is x t [given the fact that the distribution of x t is q 1 (x 1)]. 

Then the same computation proves that 

where 

S(r,,,*ls,,,*)=-C rXIXo log hso. 
X0 sxl"O 

So we have 

Remark: For j7=exp( -PE,)IZ, this shows that F, = CE,q(x) - TS( q/ 1) can only decrease. 
(This F, is the same as defined in our remark at the end of the previous section.) 

C. Computation near the stationary state 

Although EIq. (2.2) is known in the information theory context, the matter we now discuss 
appears more relevant to physical and chemical systems as such. To the extent that similar or 
weaker results are known, they arise in the statistical mechanics literature. As we proceed, we 
shall give references wherever appropriate. In any case the results we now derive are not contained 
in Ref. 23. We shall see that they are completely general and do not refer to any special feature of 
the physical or chemical systems we consider. 

As above, our system is described by a state space X and its evolution can be represented by 
a stochastic matrix R,, (which is the probability of a transition y-+x in a unit time step At). We 
assume that R has a unique stationary state F(x) satisfying 

iW=c R,,ZYL 
Y 

Remark: Note that by virtue of (2.2), for any q, 

WqbPS(qlp3. 

We consider a neighboring state ps(x), where S is a small parameter, namely 

where 

(2.3) 

(2.4) 

cp(x,S)=6q1(x)+S2p2(x)+-* . 

Then, for small S, it follows that 
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where ((p:)p is the mean square average of cpl in the state E 

(2.5) 

Proof We start from the definition 

Pa(X) 
s(Pm=c Ps(X)l%T jqq-’ 

Then 

Now we have Epb{x) = 1. Therefore %3p,-(x)/XT=0 and Zd2ps(x)ld8=0. It follows that 

dP&) 2 
scPm--;~ j--&j 7 * 

i il 6=0 

But 

dP&) 
- 6~o=Pa(~MX). 3s 

D. Variation of entropy near the stationary state 

We again consider a state ps(x) near the stationary state, and for simplicity we drop the S 
index. We note that 

p(x) =Fb)exp(~nb) + a2432(x) +. - *I. 

We consider at time step At (one time step) the evolution of p, namely 

p(-dt) = 2 R,,P(Y ). 
Y 

We know by Eq. (2.2) of Sec. II B that 

~(~bl~~(p(~,A~)Ifi, 

but here we shall find the difference between these two entropies. We can write 

p(x,At)=F(x)exp(S+,(x)+ S2$2(x)+...). 

Now 
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~x)exp(g~l(x)+621C12(x)+...)=C R,y~y)exp(~~l(y)+S2~2(y)+~~~). 
Y 

Comparing the terms of order S, we find 

c R,,~~Y)P~Y)~ 
Y 

or in vector notation, 

Then, in our context, we have 

(2.6) 

(2.6’) 

Wt~&)lFl-St~lp3--; 1 ---=R dias~~~l)2)~(ts~~)2)~]. (2.7) diag p 

We shall study a lower bound for this quantity. To do this, we maximize the quantity 

1 
max (i 2 

-R dhP4ol , diag p i) i 

subject to the conditions (&;=l 
Xgb(x) = 1, so that Zeta =O.] 

and (~t);=O. [The last condition is a consequence of 

To find this maximum, we introduce a Lagrange multiplier p for the constraint (rp:);= 1 and 
we assume that 50, has been found. Then, for any variation cpt + it, we must have 

2 Wx)[&R diagFvl)x( &R dkzFe1) --PE fi~(x)~~(x)=O. x x 

Rearranging, the factor of E*(X) must vanish identically, so that 

‘R diag 
1 

0 
= R(diagFln=,wcp. 
P 

(2.8) 

Denote M=‘R (so MXY= Ryx). We notice that the adjoint M* of M for the scalar product, 

(uIw)p=C Ftxbtx>*wtx>, (2.9) 

is just 

and so Eq. (2.8) can be rewritten as 

MM*R=wl f 

(2.10) 

(2.11) 
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MM* is self-adjoint with respect to the scalar product ( 1 )p. Moreover, all its eigenvalues 
are obviously positive. Call N= MM *. We show that all eigenvalues of N are less than 1. Let cp 
be eigenvector of eigenvalue ,u, 

maxlNdy)lsC Rx, & R,,~z)Icp(z)l~maxlcp(z)l 
YCX z 

2 R,,zl) 
z 

but because of Eq. (2.1 l), Nq=p.cp. We see that if cp+O, @l. 
Obviously the matrix N=MM* has the eigenvalue I with trivial eigenvector (1) because 

z R,, & R$(z>= 1, for all y. 

Now in the variational problem above, we considered an eigenvector cpi that is orthogonal to the 
trivial eigenvector (1) (because we imposed (cpi),-=O). So, we have proved that 

S(p(.,Ar)lp3-S(plp3~~(S250:),-(1--Ccmax), (2.12) 

where hax is the maximal eigenvalue of MM* corresponding to an eigenvector cp, orthogonal to 
the trivial eigenvector { 1). 

It remains to prove that hax<l. Suppose that u(x) is an eigenvector of eigenvalue 1 but 
different from the trivial eigenvector (1); thus V(X) is orthogonal to { 1) for the scalar product 
( I ),-, 

We have 

u(x)=c R 
1 

- Ry$u(z). 
YJ yx ZY) 

But F(x)#O for all x, so that at least one v(x) must be negative. As a consequence, we obtain 
from the preceding inequality a strict inequality, 

or finally 

maxlu(x)l<maxlu(z)l, 
XEX ZEX 

which is a contradiction 
Remark I: All this assumes that F(X) f0 for all x because we need to define ~/F(X) for all X. 

This is the case if R is irreducible. If R is reducible, one can sometimes introduce small matrix 
elements to make it irreducible while preserving its essential features, as in Ref. 22. 

Remark 2: This “universal” inequality, 
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is a kind of fluctuation dissipation inequahy for nearby states, p, because the left side is the 
dissipation (in one time step) and the right side involves a fluctuation (8&) of the relative free 
energy of p with respect to j7 (and a factor that is 1 -c(max). 

Remark 3: If R satisfies detailed balance, then 

M*=‘R 

and 

In general, we see that the relevant operator is MM” and not M2= (‘R)2. 

E. The notion of excess work 

The notion of excess work has been introduced by Ross, Hunt, and Hunt” and’we can give a 
meaning to it in our abstract setting. 

We start from a stationary state j?(x) (and as usual the stochastic matrix, R). We can do two 
things. 

(i) We force a variation of the state j7 (by an external process) so that we have a displaced 
state P(X), 

The relative cost in entropy for doing this is 

s(PlFI- - f c&.4~~~ 

as we know from Eq. (2.5). 
(ii) We start from a certain state q, 

4(x) =FCx)exp(Stl/l(x) f S2$2(x) + e-m), 

and let it evolve in one time step At in such a way that the variation of free energy is exactly 
&(x) (up to 8), so that we want 

This implies 

FMcp,b)+W)l=~ R,,FCYMY). 
Y 

The variation of entropy is then easily seen to be 

S(q(.,At)lp3-S(q(.)lp^)=-; ((cp~),-+Wh),-)~ 

(2.13) 

, 

with $i fixed by Eq. (2.13), or 
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[I-diag(i)R diagd$,--q,, 

Alternatively, 

diagZcpr+cpr)=R(diag~&=-R(diagfi I-drag p R dragp [ . (l) . j-k 

The excess work W,,, is given by (see Ref. 10) 

w,,,=S(q(.,Ar)lp^)-S(q(.)I~+S(plp^) 

= -s’C pl(~)cp~(~)(cp~(~)+ccl,(x)) x 

= 8°C F(x)@,(x) 
x 

‘R diag $R diag p+, 

= s2[(~llM~~)-(~,lMM*~~)l, 

where M = ‘R, M* =diag( llpTR(diag ~3, and the scalar product has the weight F as usual. One 
can rewrite this as 

wexc=a2[ ( @IiF Gl) -(@,IMM*,I)] (2.14) 

Notice that if R satisfies detailed balance, we have seen that 

M”=M=‘R, 

and so, because ‘R -- ( ‘R)220, because ‘R has eigenvalue less than or equal to 1, we have 

which is exactly Ross’ result in our abstract context. 
Remark: Ross et al. derive this result for the stochastic matrix corresponding to a master 

equation of a linear chemical system, in which case it is known that the master equation satisfies 
detailed balance. This is not the case for nonlinear chemical reactions. But we still have an 
expression for the excess work, in general. 

Remark: For a stochastic matrix S that ,is self-adjoint with respect to a scalar product, it is 
clear that 
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Moreover, to prove that the excess work is positive, we would have to prove that 
M + M* - 2MM* is a positive matrix self-adjoint with respect to the scalar product ( I )p. 

III. PATH ENTROPIES AND DISSIPATION TO MAINTAIN THE STATIONARY STATE 

To maintain a system in a nonequilibrium state against an equilibrated environment, it is 
necessary to dissipate energy. We introduce measures for the rate of dissipation of free energy. 

A. Absolute path entropy 

(a) Measure on a space of paths. Let X be our usual state space. A path up to time T( T= n At) 
is a sequence r={xo ,x1 ,.. .,xr} of points in X. A path is then a sequence of transformations. For 
example, a Carnot cycle or a biochemical cycle will be realized by closed paths. 

If p is an initial distribution, we define a probability measure pCL(RVP)($ on the space of paths 
by the formula 

dRTp)( r> = RxTXr.m ,R+ ,xTm2* * *Rx,x$txo). (3.1) 

(b) We define an absolute entropy as 

a(Tkp)= - c jdRq y)log /P*P)( y) 
y=path up to T 

T-l 

As usual, we define recursively 

(Rk~)(x)=C R,,(Rk-‘p)(y>. 
Y 

Then 

? 
dR*P)t ybg Rx,+lxn= c Rxrrr-; * *Rx,+,x, 1% Rxn+,x,(R”~k) 

=,,z,,,, Rx,+,x, 1% Rx~+,x,(~“P)(~~). 

But 

CR 
X,+1 

xn+,,,(R”~)(x,) = 1. 

Because L.( 6) = 5 log 6 is convex, we have 
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c R *?I+ I Jn .n+,x,tR”p)(410g Q+,x, 
(R”~)txn) 1 g c Rxn+,,,W~k,) ) O ( XII 

= 2 tR”+‘~)(~,+,)los(R”+‘p)(x,,l) 
Xn+l 

=--S(R”+‘p) (absolute entropy of R”+‘p). 

Finally, 

T 

~TIRJ~+~ UO). 

In particular, if p =F, 

a(TIR,ac(T+ l)Stfi. 

B. Relative entropy on paths 

The preceding concept involved the transition matrix R alone and, as such, did not measure 
the cost of the process R itself. Now, to quantify the extra dissipation needed to maintain a 
nonequilibrium state in a larger environment, we represent the action of this environment on our 
system by a stochastic matrix W satisfying the detailed balance. Namely, under the influence of W, 
the system X relaxes to an equilibrium state peq and we assume that for all x,y, 

W&q(x) = KyPeq(Y 1. 

On the path space of X, we can consider the measure pCRSp), as well as the measures p(w,qf, 
( W,P,) P . 

The extra dissipation needed to maintain the R-dynamics in the larger equilibrium environ- 
ment where action on the system is given by W is represented by the relative path entropy: 

This can be rewritten using our basic quantity, S(plq), the relative entropy of Eq. (2.1), 

R R 
Y(Z-f(R,p),( W,q))=S(plq)- c 

y=path to T 
p(R*P)( y)log W’Pr-‘“*;‘xo . 

XflT-,“’ xlxO 

Analysis of 97 In the preceding equation, the second term is 

T-l R 5+ 15 
#dRyP)( y)log w. 

Xi?+ I+fl 

(3.2) 

Now consider 
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R 

Tp 
(Rq y)log 

X”+ ,+n 
-=x zxn W~)(x,)Rx,,,x, 1s + w 

Xn+lXn n ’ X”+ lXn 

R R 

=c tR”~)(xn) c %,+,xn w 
xn+lx” Z!L!Slog~. (3.3) 

XII X,+1 Xrz+ IX, %I+ IX” 

Using the convexity of tlog 6, this is 

R 
c Kn+,x, j$+ 

R 
c wXn+lX, j$+ , 

XfI+i %I+ lXll x,+1 x”+lx” 

and so, this is positive or zero because Cx,+,R, 
n+1-% 

= 1. Let us define 

A,flRq,W)= -c R,,q(y)log +. 
X,Y X.Y 

(3.4) 

Then, from Eq. (3.3), 

T-l 

~(TItR,p),tW,q))=S(plq)+ tzo A,-VRR’p,W), (3.5) 

and we have proved above that 

A,Y(R,q,W)GO. (3.6) 

In particular, 

3TI(RpMW,q))- (3.7) 

Note that this is also decreasing with T, i.e., each increment A,.Y’(R,R’p, W)SO. 
A Particular case: Take p =F, the stationary state, so that R’F=j? for all t. Then 

S(Tl(R,p3,(W,q))=S(dq)+T A,S(R,j?‘,W). In this case, the fundamental quantity, 

A,Y(R,j?,W)=-2 R,,F(y)log 2 
XY XY 

(3.8) 

is the rate of dissipation per unit time step to maintain the stationary state jY(in the R-dynamics) 
against the W dynamics. 

We introduce 

Rx, = WxyefxY. (3.9) 

Then 

WTG3V=-~ K,FWf,,. (3.10) 
XY 

Remark: If fXy = cpX-- ‘py then it is immediate that A,S( R,F, W) =O. But in this case we would have 
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so that e%E(y) would be the equilibrium state peq of W. But also ZxRxy= 1, so that 
ErWxye-(Px = e -%. This implies that {e-+‘x} would be the left eigenvector of eigenvalue 1 of W 
and (in the absence of degeneracy) this would be a constant. Then pwould just be the equilibrium 
peq and R=W. 

C. The minimal rate of dissipation of a given state 

In this section, we start with a given E (in a detailed balance dynamics W) and we want to 
build an R-dynamics for which p is stationary but that minimizes the dissipation of energy with 
respect to an underlying detailed balance dynamics W. The rate of dissipation is A,.Y( R,F, W). 
We define, as in Eq. (3.9), 

R,, = Wxye f 7 w 

and we want to minimize 

IA1.5V,ZW)I = c Wxyefx@b)fxy 1 
XY 

subject to the conditions 
(i) C, W,,dw = 1, for ally; 
(ii) R preserves the stationary state F’, or ZyWxyefxrj?(y) = F(X) for all X. We examine the 

effect of a variation 8fxy on IA,.Y(R,F, W)l, 

(3.11) 

The variations of the two constraints are 

6 C WY, exp(f,J - 1 = C Wyx exp(fyx) Vyx , (3.12) 
Y Y 

6 i C WY, ew(fyx)Fb) = C Wyx exptfy,)Zx> afyx. 
Y i X 

As usual, we introduce two Lagrange multipliers, A, for the constraints (3.12) and CL, for the 
constraints (3.13), and write 

O=~AIJTR,EW)I+C A,S c Wyx exp(f,,)-1 
X Y 

+ C ~~6 C Wyx exp(fy,)Fb)-Fty) 
Y X 

After rearrangement, this gives 

O=C sfyx ev(fy.,)WyxCfi~(x)tl +fyx)+h+~yFC~)I. 
YX 

If W,,=O, we have no condition. But, if WY,+0 we obtain 

fyx=- 3 --LLy- 1, 
P(X) 
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and then A, and py are determined using the two constraints: 

1=x W,,exp 
xx 

( 1 -- exp(-py- 11, 
Y 8x1 

E(Y) = C Wyx exp 
x ( i 

-&j ew(~~y-llfix). ’ 

Then, we see that R,,=O when WY,=0 (this is our ansatz anyway), and 

R,,= Wyx exp(p,- ox>, (3.14) 

when W,,#O, so that we can always use Eq. (3.14). Using (3.14), we can compute the rate of 
dissipation 

kV’VGWl=~ Wyx exp(fyx)fyx~x). 

But 

C Wy,emo~j7(x) =e-PyF(y), C Wyxepy= e”xx, 
x Y 

so that finally the minimal rate of dissipation is 

(3.15) 

D. Analysis near equilibrium 

In this section, we consider an equilibrium state peq with its detailed balance dynamics given 
by the matrix W. We further consider a nonequilibrium state F, which is close to peq, whose 
dynamics are given by a (non-detailed-balance) stochastic matrix R, close to W. We fix the 
notation as follows: 

(3.16) 

RXY= W,, expCf(x,y,S))= W,, exp( SfL.‘+ S’f!$‘+ *e*). 

1. Identities satisfied by fl’) and q, 

(3.17) 

We differentiate the relation EyRyx= 1 with respect to 6 at S=O. This gives 

-q WY&‘= 0. (3.18) 

Similarly, the relation ~(x)=Z,R,,~(y) is differentiated with respect to Sat S=O. This implies 

P&)d4=c Wxyfyt’Pq(Y)+Iz WxydY)Peq(Y)~ 
Y Y 

(3.19) 
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or using detailed balance, 

KyP,(Y) = WyxPeqbL 

m=~ w,xr’,?+c, W,,%(Y). (3.20) 
Y 

2. Variation of the entropy near the equilibrium state 

Suppose that we start from the stationary state j?(z) and let it evolve spontaneously using the 
detailed balance dynamics W. We can compute in one time step At, the variation of relative 
entropy as in Sec. II D, except now P;p, and R+ W. We obtain 

& 

2 

W diag peqe 1) 1 . 
=l 

p-4 

But for detailed balance we have (( Udiag peq)W diag P~)~~=( l/p,,(x)) W,,p,,(y) = Wyx . Thus 

S(~.,At)lp,)-S~.).lp,)=; [((~?),,,-((‘w~l)~),~9]. (3.21) 

3. Rate of dissipation 

We now compute the rate of dissipation jA,flR,$,W)l. In Sec. III C, we obtained 

IAPTR,F,W)I=~ exp~f(x,y,s))~y)f(x,y,S), 
XY 

which is evidently 0 for S=O because f(x,y,O) =O. We expand this quantity in powers of 6 up to 
second order. We write 

~x)=P,q(x)+6Pl(x)+o(62). 

(We will not need the second order term in j?.) 

IA,.F(R,~Qv)~=~ wxy 
i 

i+sfi:)+a2:,‘+~(fl~~)‘] 

x{P,q(Y)+ ~Pl(Y)ws,:‘+ ~2fzyl+w3). 

The first-order term in S is 

7 Peq(Y )T Wxy.fg. 

But this is 0 because of relation (3.15) above, 

T Kysx:i= 0. 

So we compute the second-order terms in 8; these are 
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c W,,P,,(Y)(f’,z,‘+(f(,:.))2)+~ WxygPdY). 
+.Y X.Y 

But expanding Z,R,, = 1 up to second order gives 

2 W ff*)=O [relation (3.18) above], “Y XY x 

c WXY(.@ ) x + ; (j-g)” =o. 

There remains only a single term, so that 

kb-WZJVI= $ ; Kyp,qWtf(,;))2. (3.22) 

4. Minimal rate of dissipation 

Starting from this last equation let us compute the minimal rate of dissipation, given j7and W. 
We thus have to minimize IA,.Y(R,F, W)l with respect to j$) under the conditions (3.18) and 
(3.20). 

Introducing Lagrange multipliers X,, ly for (3.18) and (3.20), we see that 

c WxyPeq(Y)f(,;) (sf,:‘)+~ a Wyx sfj.l’+E id Wyx &$=O. 
X.Y x Y x Y 

This implies that 

Wx,Pe,(Y)fg)+ wxyxy+ cLxwyx=o* 

Using detailed balance, Wyx = W,,p,(y)/p,,(x), we see that either 

(1) Wxy=O, or 

(2) p+L l!lL(J 
P,(Y) + Pe,b) ’ 

which is exactly what we obtained above in a more general setting, namely 

Let us assume that j$’ has this form and determine (T and p using the constraints (3.18) and (3.20) 
above. This gives the following. 

(1) For the constraint (3.18), Z,W,,fi~‘=O, 

a(x)=C p(y)W,, or f~=p’W. 
Y 

(3.23) 

(2) For the constraint (3.20), or(x) = Z,W,J$‘+ ZyW,,,~l(y), 
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cpdx)=~ Wyx(PWdY))fC wy,cpltY) 
Y 

=Pw-~ atYw,x+C wy,cp*tY) 
Y 

=@tz-‘Ww’W))~+~ Wy,dY). 

This can be solved as 

(p*(Z-‘W)=p(Z+‘W)(Z-‘W) 

or 

cp1 =p(Z+‘W). (3.24) 

Now we can compute the minimal rate of dissipation (to maintain pagainst the thermal detailed 
balance dynamics given by W), 

kWV.,;Wl=$ z Wxy~qC~)lfi;))2=$; WxyP,q(Y)(p(4-(+(Y))2. 

Let us expand, using (3.23), cr=p’W, 

c Wxy(Y)(P(x)-c+(Y))2 
X.Y 

=F WxyP,(Y)Pwx~~ Pq(Y)Pb)dY)+~ WxyPe,(Y)4Y)2. 

We consider the three terms above, 

; W,yP,(Y)Pb)2=c P,b)Pb)2-2c WxyP,(Y)Pb)dY) x X.Y 

= -22 (P’W)yP,(Y)(P’W), 7 
Y 

c WxyP,(Y)dY)2=C Peq(Y)a(Y)2=C P,(Y)((P’W)y), 
X.Y Y Y 

so that 

IbWGW)I= f (~~~ll;,-ii~‘W~l;~)~ 

5. Comparison of the rate of dissipation and the variation of S 

We come back to relation (3.21), namely 

S(~.,At)lp,,)-S(p^lp,)=; ~II~~ll~~-II~~f~ll~~l~ 

(3.25) 

(3.26) 
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We see that this is similar to the relation (3.25) for the minimal rate of dissipation in the R- 
dynamics, except for the fact that ql=p(Z+ ‘W). [See the relation (3.24).] 

We know that Ep,(x) pi(x) =0 so that ‘pl can be expanded in terms of the left eigenvectors 
of W with eigenvalues different from 1. Because of the (3.24), the same expansion is possible for 
p, and we therefore write 

where @’ are the left eigenvectors of W of eigenvalue less than 1. 
Moreover, { @LL’} form an orthonormal basis for the equilibrium scalar product pq (because 

‘W is self&joint for this scalar product due to detailed balance). It follows that 

st~.,At)lp,)-S(~.)Ip,)= f 2 lc,121(1 +x,)12t1-Ix~I) II 
and 

IAI~R,~W)I = ; F Ic,12( I - lx;l). 

Because O~]k,l~l, we see that we always have 

(3.27) 

The interpretation of this inequality is clear. If we start with the stationary state pand switch off 
the R dynamics (so that pI starts to evolve by the detailed balance dynamics toward p,,), the 
dissipation is less than four times the cost to maintain p using the dynamics in the larger envi- 
ronment (acting with W) on the system. 

IV. FLUCTUATION AND DISSIPATION FOR SLOW VARIABLES 

A. The macroscopic entropy 

7. Fast and slow variables 
Usually, a system with state space X is characterized by a small number of “slow” variables 

and by other “fast” variables. Such variables can be distinguished in terms of the eigenvalues of 
the master equation, i.e., in our case, in terms of the eigenvalues of the stochastic matrix R. 
Essentially, the slow variables are functions f on X, such that their set of values {fx} (x E X) can 
be decomposed on left eigenvectors of the matrix R associated with eigenvalues of R very close 
to 1 (but not equal to 1). 

In this section, we shall assume that the system is characterized by only one slow variable 
A,(x EX) taking values a,~‘,... . We shall denote by u the other coordinates, so that a point x in 
X is identified with a couple (a,~), with a=A(x). 

2. Reduced description 
At this point, it is customary to describe the system by the variable A alone. This is the 

reduced or macroscopic description, which is a coarse grained description of the full description 
by ( LZ, u) . We also must change the time scale, because in the time scale At (of the R dynamics), 
A does not evolve in an appreciable manner. So the relevant time scale becomes much longer, and 
the general idea is that, relative to this longer time scale, A varies but u readjusts itself instanta- 
neously to its relative stationary distribution. This is the idea of all macroscopic descriptions (see 
Refs. 1, 6, and 7, among many references). 
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In our context, we can make this precise in the following way. We start as usual from a 
stationary state F(X) and we define a reduced (or macroscopic) state p by 

F(x) = {xex& )= x (1 l Fb(x)= c zv>. u (4.1) 

Following customary practice, we define a function T,(a) by the formula 

F(a)=exp(-Z(a)) (4.2) 

(see, for example, Ref. 1, in the context of an equilibrium situation, and Refs. 2, 6, 10, and 24 for 
generalizations to nonequilibrium situations). Here C(a) is a Lyapunov function for the reduced 
evolution of the A variable, as we shall see below. 

In the case of equilibrium, C(a) is the Einstein entropy. We shall assume now that the 
average of A in the stationary state is 0. 

(A)& A(x)jYi(x) =O. (4.3) 

3. Relation to the relative entropy 

Let us assume that we have prepared the system in the state jTi(~(x> (the stationary state for the 
R-dynamics), but that we observe in a particular sample of the system a certain fluctuation of A, 
so that A takes a value a #O. Then, the probability distribution of the fast variables u, given the 
fact one observes the fluctuation a of A, is the conditional stationary probability distribution 

Zw) 
F=(u)= - 

F(u) ’ 

and the quasistationary state is thus a state qa , 

q&)=i?,(u)S(A(x)-a). (4.5) 

It follows immediately that the relative entropy of qa with respect to F, namely S(q,lfi [see Eq. 
(l.l)], is in fact, -C(u), 

S(dfi= -C(a), (4.6) 

where X(u) is defined as in Eq. (4.2). We calculate this as follows. 

;?,(u> 
s(q,(fi=-c Ea(u)S(A(x)-u)log-=- log -l -=-C(u). 

a Ftw) P(a) 

This explains why Z(u) could be taken as a Lyapunov function for the evolution of a. If we wait 
an appropriate time, a would vary by a small quantity &, while the fast u variables would recover 
their conditional stationary distribution. Our earlier assumption on time scales is precisely the 
assumption that such an appropriate time exists. Then the state qa would become qa+&* by the R 
evolution, the variables u keeping their conditional stationary distribution. Under this circum- 
stance, 

since qa+6a=Rqa [cf. Eq. (2.4)]. This implies 

J. Math. Phys., Vol. 37, No. 8, August 1996 

                                                                                                                                    



B. Gaveau and L. S. Schulman: Nonequilibrium statistical mechanics 3917 

Iqu+ Su)Gqu). 

B. Fluctuation dissipation, in general 

The usual near-equilibrium fluctuation dissipation theory is a formal consequence of the fact 
that a certain state peq is a stationary state of the W evolution: Writing the stationarity of the 
equilibrium state explicitly leads to an identity that can then be reinterpreted as a physical relation 
between fluctuation and dissipation (see Refs. 1, 6, 12, and 25 among many references). In the 
language of the previous section, if we are in a stationary state, and if we observe an actual 
fluctuation of A equal to a [this fluctuation has a probability p(u)], then the dissipation induced 
by the reduction to 0 of this fluctuation is related in a natural way to this fluctuation (in a linear 
way), the proportionality coefficient being some given “transport” characteristic of the system 
(see Ref. 23). 

We will show that it is possible to derive the fluctuation-dissipation theory in our context 
using the formalism of Sec. IV A. Moreover, our demonstration is not limited to near-equilibrium 
situations (and gives, in fact, a correction to it, as well as a finite-size effect correction). 

There are various ways to derive fluctuation-dissipation theorems, each of which provides, in 
general, extra information, in particular about the transport or relaxation coefficients. Here we 
shall relate the “transport” coefficient to the eigenvalues of R. In our abstract context, we shall 
choose an analog of linear response theory (as presented, for example, in Ref. 25). We produce 
the fluctuation of the macroscopic variable A using an external force that modifies the stationary 
state F 

C. Linear response theory: General computation 

The general situation is as in Sec. IV A: we distinguish a variable A(x) (x EX) and other 
variables u, so that x = (a, u) , where a = A(x). Moreover, we have the stationary state F(x) with 
respect to the R dynamics as usual. We finally assume that A has average 0 in the stationary state 
[Es. (4.3)1. 

1. The displaced state 

We define, in analogy with the analysis of Sec. II B, a displaced state, 

p,(x) = $ F(x)exp(crA(x) + e++), 
a 

(4.7) 

where CY is a small parameter and the ellipses represents higher-order terms in Q. Then Q can be 
viewed as a “conjugate field,” aA being an extra energy (this field is imposed by an external 
source or observer on which the system does not react). 

We have, because (by assumption) (A( . )),- = 0, 

Z,=c F(x)exp(crA(x)+...)= 1+ g (A(x)*)~+-.- , 
x 

so that one can suppress Z, as being higher order in LY, and write simply 

Now, we have 

so that for small LY, 

P,(x)=F(x)exp(aA(x)+..*). 

(A),~=(A)~+(Y(A*)~+... , 

(4.8) 
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and (A*),_ appears as usual to be the susceptibility for A. 

(4.9) 

2. Variation of the mean value 

We start at time t=O from the state p,(x) given by (4.1). In one time step, the state becomes 

P&Jt)=C R,,P,(Y)=C R,,fiy)exp(~A(y)), 
Y Y 

and at time At. 

bWWpa= c Nx)p,(x&). x 
Expanding 

@(W,,=~ A(x)R,,Ft~)fa~ A(xR,ZY>A(Y>+-* . 
X.Y 1.Y 

The first term is 0 because this is ZJ(x)j?(x). Finally, we have, modulo terms of order 2, 

@W-A(0))pa=a~ A(x)(R,,-G,,)A(y)~ty). (4.10) 

We can also eliminate LY using ECq. (4.9) and get 

(4.11) 

3. Second moment 

We now want to compute ((A(At) -A(0))2),a 

(a) Computation of (A(At)*),,. This is, modulo terms in c?, 

(A(At)*),,=C A(x)*R,,~y)exp(aA(y))=(A*),_+(yC Ab)2R,yFC~M(~). (4.12) 
XSY +.Y 

(b) Computution of (A*),,. Again up to order c?, 

(A(~)~),~=(A~)~+c~(A~)~. 

(c) Computation of (A(At)A(0)),e 

=z Nx)R~~A(Y)F~Y)+$ A~R,A(Y)*FCY>. . ’ 

(4.13) 

(4.14) 
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(d) Compuhon of ((A(At)-A(0))2),a From Eqs. (4.12)-(4.14) we obtain, after rearrange- 
ment, 

((A@thW))2),a= -‘g A(x)(R,,- 4y)A(y)S~)+a~ P(x>~~Y>(R,,F~Y) 

-R,,pc(x>)-~~)A(x)A(y)*(R,-~,,)l. (4.15) 

We see that this term is again of order A.t because R,, - S,, is of order At and because we can 
rewrite 

&,AY) -R,&) = (Rx, - 4,)Ft~) - tR,,- ~,,)fix). 

D. The case of a left eigenvector of R 

We shall now take for A a slow variable of the system, i.e., a variable that decays in one of the 
slowest possible modes. One way to do this is to choose for A a left eigenvector of the transfer 
matrix,R with eigenvalue A near 1 (but not exactly 1). (In fact, for our purposes the essential point 
is that the eigenvalue associated with A satisfy l>X%>lh’l for all other eigenvalues h’. The 
closeness of X to 1 is not used significantly.) 

7. First moment 

We assume for all y E X, that 

hA, = 2 A,R,, . 
x 

From Eq. (4.11) we obtain to first order in a, 

@(At) -A(WPL2= (A((%,,@ - 1). (4.16) 

2. Second moment 

We obtain from Eq. (4.15), 

((A(A~)-A(0))*),~=(~-1)[-2(A2),--~(A3),-l+~~ A(x>~A(Y)(R,,~Y>-R,,~x)). 

(4.17) . 

3. The case of detailed balance 

When R satisfies detailed balance, the second term on the right-hand side of Eq. (4.17) above 
vanishes identically and 

((A(At)-A(0))2),a=(1-X)[-2(A2)p+cx(A3)F]. (4.18) 

Moreover, in this case, we can compute the rate of dissipation in one unit time step At starting 
from the state pa and using the R dynamics. This is 

(4.19) 

We saw the same result in Sec. II. To see the correspondence, take c+c~=A and notice that 
M=M* = ‘R, so that the ,u eigenvalue of MM* corresponding to ql=A is p=A2. 
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4. Fluctuation dissipation 

We return to the general (non-detailed-balance) case. If A is decaying slowly, X= 1, and 

S(p,(.,At)lp3-S(p,l~-(A2),_(1 --Xl. (4.20) 

Moreover, let us compare Eqs. (4.16) and (4.17) and let us assume that a(A3);=0. Then elimi- 
nating X- 1 from both equations, we obtain 

tNAtkNO)),e 
(A(w,a . (4.2 1) 

This relation is, in our context, the analog of the standard fluctuation-dissipation theorem. 
Example: The prototype of fluctuation-dissipation theory is obtained for a Langevin particle 

(of mass m = 1) with the equation of motion 

dx=v dt, dv= -fv dt+dB(t), 

where dB(t) is the white noise force, 

(dB(t)dB(s))=2DS(t-s). 

In the sense of our development, the “fast variables” are the sources of the noise. The variables 
x and v are “macroscopic” and “slow.” The Fokker Planck equation is 

This corresponds to a reduced operator (projected onto the slow variables) description of Z-R for 
the discrete time case. The space X consists of the configuration space (x,v) of the Langevin 
particle as well as the degrees of freedom that give rise to the white noise (that the Fokker-Planck 
equation absorbs into the diffusion coefficient). Take for A the function v. Then 

d2 
D jg-fv a+~ ; 

dV 
V=-fv, 

and v is an eigenfunction of L* with eigenvalue -f (but not necessarily of the full operator that 
includes the sources of the noise). Now let us consider, instead of a state p@, a state &v - vc). 
Then 

Whb~~-uo~=j- (v-vcMAt,vbo)dv. 
But 

d ;;_m, aht (V(At)-uc)S(v-uo)=b (v-uoW,h%h&u I 
= L,m(v-uo)S(u-u,)du 

I 

= -fvo. 

In the same way, 
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j;yo dAt a((v(At)-v(0))2)6(u-uo)=l L,*(u-vo)26(v-vo)dvo=2D. 

Then our statement of the fluctuation-dissipation theorem [Eq. (4.21)] becomes 

d 
lim - ((v(Ar)-~(O))~)s(v-v~) 

At-0 aAt 

=2(~~),~ 
(dldAt)tv(At)-vo)s(u-v,) 

)I w&ruo) ’ 

or 

2D=2k,Tf, 

which is the usual Einstein relation for m = 1. So the relation (4.2 1) is the generalization of the 
standard fluctuation-dissipation theory in our context. 

Remark: For initial conditions far from the stationary state, dissipation may be dominated by 
the friction coefficients, “f ,” irrespective of the fluctuations. As such, this way of calculating heat 
production, etc., will not involve the fluctuations. However, the validity of these mean field 
calculations (and use off to derive heat production) does not contradict the fluctuation-dissipation 
theorem because it is a far from stationary-state situation. 

5. The general case 

In fact, Eqs. (4.16) and (4.17), even in the detailed balance case, are more precise than the 
fluctuation-dissipation theorem, because the fluctuation-dissipation theorem (in its usual state- 
ment) is the relation (4.21), relating these two quantities. In our case, we have separately derived 
each of the moments {A (At) - A( O))P, (the dissipation) and ((A (At) - A( 0))2),, (the fluctua- 
tion) separately, and related them to the spectrum of the transfer matrix. 

Equation (4.16) [for (A (At) -A ( O))P,] is straightforward. 
Equation (4.17) [for ((A(At)-A(0))),a)] contains a correction r of cubic order in A and first 

order in CY, 

Notice, also, that if we are away from criticality, both I? and (A3)p would be close to 0. 

E. Summary 

In a sense, the stand&d fluctuation-dissipation theorem is a tautology; namely, the assertion 
that the stationary state is a solution of the stationary equation (see Ref. 12). In our situation, we 
say more because we compute separately the fluctuation and the dissipation in terms of the 
spectrum of the transfer matrix and then deduce the relation between the fluctuation and dissipa- 
tion by eliminating the eigenvalue of the transfer matrix. Still, at our level of abstraction, all these 
identities can only be tautological. (The physics enters in judging the suitability of the stochastic 
description and the time scale separation.) 

We now summarize our results concerning the fluctuation-dissipation theorem. Let A be a 
slow variable of the system, so AR= XR for a A close to 1; it follows that (A)p = 0. Let 

P,(X) =fix(x)exp(aA(x) + O(a2)), (4.22) 
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be a neighboring state of the stationary state j?‘, so that 

(A)P,= a(A2),_+ O(a2). 

Then we have the two relations [see Eqs. (4.16) and (4.17)]: 
dissipation, 

tAtAt)-AtO))pa=tA)p~t~- 1); 

JZuctuation, 

((A-A(o))~),~= -2(x- ~)(A~),_+O(QA~). 

We thus obtain 
jluctuation dissipation: 

((A(At)-A(0))2)p,= 2 (A(Ar)-A(0)),Q. 
PO 

(4.23) 

(4.24) 

(4.25) 

(4.26) . 

In this form we have a statement relating changes in a variable as it returns to the steady state 
(“dissipation”) to its spontaneous fluctuations in that steady state. The term “dissipation,” sug- 
gesting energy flow, may not apply in all applications of this theorem. There will nonetheless be 
inequalities relating this “dissipation” to changes in the relative entropy that we have defined. 

Another (inequivalent) statement is that if 

then 

s01t~,At)l~-Stpl~~M~2~~),-(1-~max)t (4.27) 

where &ax is the maximal (non-l) eigenvalue of the matrix ‘R( l/j?) R diag (p3 [see Eqs. (1.1 l)- 
(1.12)]. 

F. Generalization to the case of n slow variables 

1. Entropy 
Let us now assume that one can find n slow variables A 1 ,...,A, for the R dynamics. Take these 

such that 

(Aj)~=O, for all j. 

For given values at ,...,a,, , we define 

Ftal ,...,a,)= c 
{xoXIAi(+)=ai for all j} 

fix), 

and we define a function 

C(a , ,..., a,)= -log F(Ul)..., a,). 

As before (Sec. IV A), we have 

Wal ,...,a,)= -stq,lp3, 

J. Math. Phys., Vol. 37, No. 8, August 1996 

                                                                                                                                    



B. Gaveau and L. S. Schulman: Nonequilibrium statistical mechanics 3923 

4nb) = ~~ 9 S(Ai(x)-Uj), 

and C will be a Lyapunov function for the evolution of ~~,...,a,. 

2. General linear response theory 

We generalize the results of Sets. IV C and IV D. Call CX=(LY~ ,...,q,), where Lyj is a conjugate 
variable for Aj and define as in Sec. IV C, 

PAX)= ~FCx)exp 
n 

(Y 
zzl ~iAi+O(~‘) 

It is immediate that 

One also proves 

(A,(Ar)ai(o))pm=,IIl ajC Ai(X)(Rxy- a.ry)FCY)Aj(Y) + o(a2) 
X3Y 

and 

3. Choice of A, as eigenvectors 

We now choose the Ai to be left eigenvectors of R, 

C Ai(x)Rxy=XiAi(Y). 

Then, modulo O(d), 

and modulo 0( aA3) terms, 
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We can eliminate the eigenvalues Xi - 1 and obtain modulo 0( aA 3, terms, 

((A,(Ar)-Ai(O))(Aj(Ar)-Aj(O))),~ 

(AAAr)-Ai(0))pa (Aj(Ar)-Aj(0))p, 

(4(0)),a + 

which is the fluctuation-dissipation statement in our general context. 
Remark: If (R,fi satisfies detailed balance, Fvanishes nowhere and A is a left eigenvector of 

R with eigenvalue X, then j?(x)A(x) is a right eigenvector of R with eigenvalue A. When applied 
to the above equations and use is made of the orthogonality of the left and right eigenvectors of R, 
this implies a diagonal susceptibility matrix. In effect this says that choosing left eigenvectors of 
R as the slow variables chooses the macroscopic variables to be in a form diagonalizing the 
susceptibility. 

G. Onsager reciprocity relations for nonequilibrium states 

We consider a stationary state j7 for a stochastic matrix R, and we consider the observables 
A, ,...,A,, with 

(Al)p= 0. 

As usual, we define ~~=jYexp(Ccr,A~+***), and it follows that 

(A~)F= C (AiAj)Faj (4.28) 
j 

(up to powers of a2). We have seen that the relative entropy is 

G&Q = - & (4-Q; ‘(A,),~@,)pa~ 

so that the corresponding forces F, are given by 

(4.29) 

F 
k 

~ _ WJm 
d(A k)pol 

=T 6%A&1h)p,=%. 

Moreover, the current (in one time step At) for A, is given by 

Jk~(Ak(Ar)-Ak(O)),~=~ ajC Ak(x)(R,y-S,y)~Y)Aj(Y). 
j XY 

We can then write 

Jk=C Lkj(Yj’c LkjFj, 
i j 

where 

Lkj'c Ak(X)(R,1.-S,l.)~((y)Aj(y). 
+Y 
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In general, the matrix L, is not symmetric. However, when (R,p?) satisfies detailed balance, 
R,&(y) = R,,F(x), one can immediately see that Lkj’ Ljk . Thus, an absence of detailed balance 
in R is manifested at the macroscopic level. 

V. A PATH SUMMATION FORMULA FOR THE STATIONARY STATE 

A. Expresslon of the stationary state in term of determinants 

We consider a general N X N matrix A. Let us suppose that X0 is a nondegenerate eigenvalue 
of A and consider the right eigenvector u and the left eigenvector u of A of eigenvalue A,, so that 

Au=X,,u, vA=X,,u. 

We normalize u,u so that 

(5.1) 

Moreover, call M(X)ij the minor of the element (i,j) in the matrix M-A and C(X) the charac- 
teristic polynomial of A. Then one has the following identity: 

(5.2) 

This identity is derived in Appendix A, but can also be found in Ref. 26. 
We apply this formula to a stochastic matrix R and to its eigenvalue 1, which we assume 

nondegenerate. The right eigenvector is the stationary state Fj and the left eigenvector is ui= 1 for 
all i. The normalization condition of Eq. (5.1) is the normalization of the stationary state. Then Eq. 
(5.2) reduces to 

(5.3) 

In particular, it is convenient to set i=j and arrive at 

_ Mii(l) 

Pi=dc( 1)ldX . 

Using the normalization condition, we deduce the following identity: 

dC(l) v 
r=Fl Mii(l) 

(this is a kind of partition function formula) and 

Mii( l) 

pi=ZIN_ lMjj( 1) ’ 

(5.4) 

(5.5) 

B. Tree summation formula for the stationary state 

We shall now state and derive a “tree integral” formula for the stationary state from Eq. (5.5). 
This result has been independently discovered on several occasions (including by us); we will 
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include our derivation, since the result is not known in the physics literature and is of interest for 
our statistical mechanics application. See Refs. 27-29, which may also be consulted for some of 
our tree-theory terminology. 

We consider a stochastic matrix R of size N. Consider also the set of states {l,.. .,N} and 
among these points, we mark one point, say j,, which we call the root. We can define a spanning 
tree of root j, as an oriented tree of root j, (the orientation going from the leaves to the root), such 
that any state 1 G k C N is a vertex of the tree. 

We call Tj such a tree. Now, any edge (k,l) of TJ such that (k,l) is oriented from k to 1 is 
labeled by R,, . The weight of the tree Tj is defined by 

We have the following result: 
The minor Mij of - 1 ‘Rjj in -I + R vor an N X N stochastic matrix R) is given by 

Mjj=(-l)N-i~ W(Tj), 
I 

(5.6) 

(5.7) 

where the sum is taken over ull spanning trees T/ with root j, as defined above. We shall prove 
this result in Sec. V D, but we can immediately make a number of comments: (i) Apart from the 
overall (- l)‘- ‘, M, is given by a sum of positive terms. (ii) Mjj is homogeneous of degree N- 1 
with respect to the {Rkl} (for k f I). (iii) In a given term, W( Tj), for a fixed Tj , a given R,, does 
not appear twice. Moreover, one cannot have within a particular W(Tj) a product of the type 
RikRlk t but one Can have terms like RkiRkt. Finally, one cannot have closed loops like 
Ri,i,Ri i . 

Thi Lroofs of these statements are a direct consequence of the definition of a tree and of the 
weight W associated with it. 

(i) Is obvious. 
(ii) Is a consequence of the fact that a spanning tree for a set of N points has N- 1 edges. 
(iii) It is obvious that a given R,, appears at most once in a W( Tj). Moreover, since W( Tj) is 

constructed by taking the product of the R,, , starting from the leaves and following the edges up 
to the root j, it is clear that one cannot have a term R,,R,, (this would mean that the vertex k has 
two fathers in the tree), but one can have RaiR,,, (when i and 1 are sons of the same father n). 

Finally, we see that Eq. (5.5) has a natural meaning when we use the calculation of Mjj given 
in Eq. (5.7). The stationary probability of the state j is obtained by summing over all oriented 
paths leading from various points of the state space to the point j, quantities that are, for each path, 
the product of the elements R,, that one encounters along the oriented path. Moreover, these paths 
may have several irreducible components leading to j, and they contain no loop. This is why such 
an oriented reducible path leading to j, is, in fact, a tree with root j. 

C. The case of detailed balance 

Detailed balance means that for all i,j, 

(5.8) 

In particular, this implies that for any closed cycle c = (xi ,x2 ,x3,. . . ,xk ,x,> we have 
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Rx,xkRxkXk-;-Rx2x, 
Z.Z 

R x&x2x3- * * R 1, 
XtixI 

or with obvious notation, 

3927 

(5.9) 

where C-’ denotes the reverse cycle. On the other hand, we have proved above 

6 Mii 
z= Mjj> 

in the general case. 
Let us now assume that Eq. (5.9) holds for any closed cycle and prove that detailed balance 

holds. To fix everything, take i= 1, j=2 and consider a tree of the type T,. In this tree, there is a 
certain (unique) oriented path y(T,) leading from 2 to 1, and this path has a certain length, Ir(7’,)/. 
Then 

WT,)= & R W(T,Iy(T,)), [ I 
where W(T,I y(T,)) is the product of all the elements of R along the edges of T, that are not on 
fiT,)- 

Now, the edges of T, that are not on AT,) form a collection of N- 1 - 1 y(T,)I edges 
[because W( T,) has N- 1 edges, as we have seen]. These edges form a disjoint union of oriented 
trees with roots on the path tiT,) and with their other vertices outside y(T,) (this union of disjoint 
trees is a “forest”). 

Conversely, given a directed path y leading from 2 to 1, and a forest F of trees having their 
roots in y and their other vertices outside y and with a total number of edges N- 1 --Id, the union 
of y and F is a spanning oriented tree with root 1. This means that one can write 

M11= 
rimoFitoI(?R)@(y)~ 

where @p(y) is defined to be 

WY)=? W(F), (5.11) 

where the sum is taken over all the oriented forests F having N - I- 1 rf edges, their roots on ‘y, and 
their other vertices outside y, and W(F) is the product of the R on all edges of F. In the same way, 

M22= c 
y’ leading from 1 to 2 

(5.12) 

Now, for any path from 2 to 1, ‘y, one can find the inverse path y-’ from 1 to 2 so that Eq. (5.12) 
can be rewritten, 

M22= c 
y leading from 2 to I 
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But it is clear that 

and moreover, because of Eq. (5.9), 

n$ R12 -=- 
l-I+R R,,’ 

so that 

R12 
Mll=Ma -3 

R21 

from which we deduce Eq. (5.8). 

D. Proof of Eq. (5.7) 

We shall prove something slightly more general. In the following, Latin indices run from 1 to 
N and Greek indices run from 1 to p. We consider b,i and Uij (i #j) to be positive numbers. (For 
emphasis, numerical values taken by Greek indices are underlined. We make this distinction 
because at a later stage we will need to deal with switches between one sort of index and the 
other.) 

We define the following determinant: 

DN(b,a)=de t 

P N 

- C bal-C ail 
a=1 i=2 

a12 
. .1 

ulN 

a21 u2N 

i#2 

uN2 
. . . _ 2 baN-C uitt 

a=1 i+N 

It is obvious that if all bs are zero, this determinant is zero because the sum of all lines is zero. 
Moreover, DN(b,u) is a homogeneous function of degree N of the bs and the us. We now 

consider the set {I,...,p}U{l ,...,N}, and for each (Y we consider an oriented tree T, with root (Y and 
with other vertices in jl,...,N}. To any oriented edge (k,l) or (n, cu) of T,, we associate the late1 
ufk or b,, . We define 

(5.14) 

We call a spanning forest a union of disjoint trees {Ta) for c~=i,...,p as before, such that all 
other vertices 1SiGN belong to a tree T, of the forest (and then to a unique one), 

WF)=F=$ l WT,), 
a 

(5.15) 
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with the convention that, if T, contains no edge, W( T,) = 1. In particular, a spanning forest has N 
edges. 

The main result of this section is that 

D,(bd)=(- l’“? W(F), (5.16) 

where the sum is taken on all spanning forests, as defined before. The proof of this statement is by 
induction on N. 

First, for N=2 we have 

bal --a21 P P 
D,(b,u)=det - b&a+ c ba,alzf 2 basz 7 a=! lx=! 

a21 a=! 
which obviously has the structure of Eq. (5.16). 

We now assume that the statement is true for all determinants of size less than N, and we 
consider DN as defined by Eq. (5.13). It is clear that D, is symmetric by permutation of the Latin 
indices. As we have seen, it is a polynomial in the baj of degree <N without a constant term 
[because DN(O,U) =O]. Moreover, it is clear that in a given monomial, one cannot have products 
b,jbgj, uikajk, because they correspond to terms in the same CO~UIIXI of D,(b,u). 

By symmetry, we can consider only the terms containing bll as a factor. Such a term is 
obviously 

-b,,de, 

But the determinant multiplying -bl, is a determinant of the type DN- , (b’,u’), where now the 

P N 

-g, ba2-c& ui2 u23 
. . . 

Q32 ba3-czl Ui3 **. 
i+3 

u2N 

a3N 

new greek indices vary in the new set: 

U,...,P,Pf l)={l,...9p,l} 
(i.e., p + 1 is the old latin index I), and the set {I ,..., N} has been replaced by (2 ,..., N} and with the 
identifications 

b’ p+l,icul,it 2SisN, 
- 

(q!j=a.. ,J, 2sifjSN. 
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But now, DN- I(b ’ ,a ‘) is a sum over all spanning forests F’ (with N- 1 edges) of the weight of 
these forests. Each forest F’ is a union of trees {T&} with roots in {i,,..,p,l} and with other vertices 
in {2,...,N} and 

WF’)= me1 WtTiJ WT;). L I 
It may happen that some trees have no edge. Then we rewrite 

b!,W(r”)=(b!,W(r;)W~T~))~~2 W(T&). 

But this is exactly 

bi,WF’)=fil WTA 
with 

T,= T&, for ff=&...,p, 

T,=T;WUWJT;h 
(5.17) 

where ((1 l)UT,) denotes a tree having as the root the point 1 and obtained by taking the edge (11) 
from 1 to 1 and attaching to it the tree Ti of root 1 (if it has some edge). Then 

where 

b!,W(F’)= W(F), 

Conversely, any spanning forest F that contains the oriented edge, (1 i), is obviously a union of 
disjoint trees T!, . . . , Tp with T! given as in Eq. (5.17), namely 

T1=T;U(UIW-;), 

with Ti having its root in 1 and vertices in {2,..., N} and T{ having its root in 1 and its vertices in 
{2,...,N}. 

Thus, in DN( b ,u) the terms containing b 11 are of the type (- l)NZZ i 1 E F W( F) . This proves Eq. 
(5.16). 

Proof of Eq. (5.7) for M, : Eq. (5.7) is a particular case of Eq. (5.16). In this case, p= 1 =j, 
the N-2 indices Z#j correspond to the Latin indices, and the Greek index (Y can take only the 
value j. Finally b,l=Ujl and for l,kfj, alk=Rik. 

In this case a spanning forest for {1}U{l,...,N-2) having its root at j and other indices at 
points k # j is exactly a spanning tree with root at j. 
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APPENDIX: MATRIX FORMULAS 

In this appendix, we derive the formulas of Sec. V A. We consider a matrix A and an 
eigenvalue Ai of A. Call X, ,..., Ap the other distinct eigenvalues. Then the matrix A can be decom- 
posed in the Jordan normal form and we call E*j the subspace associated with the eigenvalue kj 
in this decomposition. We call P*j the projector on E,, defined by 

P*jIEA =I, I 

PXjl)& =O, j# 1. 
I 

Take a contour rj in the complex plane surrounding Xi once, but no A, for I #j. Then 

Pi,= & 
s 

(z-A)-’ dz. 
yi 

(Al) 

642) 

Formula (A2) is obvious: take a vector u in the space E+ for I # j. Then (z-A) - ‘u is holomor- 
phic in a neighborhood of ~j and 

I (z-A)% dz=O, 
yj 

Now, if u is in the space Exj, we can write on Ekj, 

AIEh,=(diag Xj)+T, 
I 

where T is an upper triangular matrix. Then 

(z-A)-‘lq,=diag(z-Xj)-‘+T’, 
I 

where T’ is another upper triangular matrix (depending holomorphically on z in a neighborhood of 
Aj). Then 

1 
- j- (z-A)-‘u dz=u, 
2i7r rj 

so that the Cauchy integral on the right-hand side of (A2) is given exactly by (Al). In particular, 
since (z - A),’ = ( - l)“+‘[Mr~(z)lC(z>], we have, from (A2), 

(Pxj)ni=(-l)n+’ Residuehi s . 
i i 

If Ai is a simple eigenvalue, then E,j is generated by the right eigenvector u and the projector is 
simply given by 

mjh= +JI 3 

with the normalization condition of Eq. (5.1). 
In the case of a stochastic matrix R, if we take, say M,, , it is easy to see that 

M,,=(- l)‘+‘MI, directly (write down M,, explicitly, then replace row number I by the sum of 
all rows of Ml 1 and use the stochastic property Cr= iRln = 1). In general, 
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M,,=( - l)“+94r,I 

But because det(l-R)=O, we have 

~ (s,j-Rlj)(-l)j~Mlj=O, l=l,...,N, 
j=l 

which implies that the vector with components M,, is an eigenvector of eigenvalue 1 of R. 
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We discuss several aspects of second quantized scattering operators i for fermions 
in external time-dependent fields. We derive our results on a general, abstract level 
having in mind as a main application potentials of the Yang-Mills type and in 
various dimensions. We present a new and powerful method for proving the exist- 
ence of L? which is also applicable to other situations like external gravitational 
fields. We also give two complementary derivations of the change of phase of the 
scattering matrix under generalized gauge trans[ormations which can be used 
whenever our method of proving the existence of S applies. The first is based on a 
causality argument, i.e., S (including phase) is determined from a time evolution, 
and the second exploits the geometry of certain infinite-dimensional group exten- 
sions associated with the second quantization of one-particle operators. As a special 
case we obtain a Hamiltonian derivation of the axial fermion-Yang-Mills anomaly 
and the Schwinger terms related to it via the descent equations, which is on the 
same footing and traces them back to a common root. 0 1996 American Institute 
of Physics. [SOO22-2488(96)03 107-61 

I. INTRODUCTION 

The main difficulty when quantizing fermions in higher than two space-time dimensions in 
background (gauge) fields is that the interaction term generically is too large to allow a naive 
application of the standard methods of canonical quantization. More precisely, if E is the sign of 
the “free” Hamiltonian, then only those one-particle operators A are well-defined in the free Fock 
space which satisfy the condition that [E,A] is of Hilbert-Schmidt type. For example, the minimal 
gauge interaction operator does not satisfy this condition when the space-time dimension is higher 
than 2. The same holds for gauge transformation operators which makes the implementation of 
these operators somewhat tricky.’ 

The one-particle time evolution operator can be constructed for example by the Dyson expan- 
sion provided that the potential is smooth and appropriate boundary conditions are satisfied. 
However, the time evolution cannot be quantized because of the remarks above. The asymptotic 
scattering operator S is better behaving. One can show that it satisfies the Hilbert-Schmidt con- 
dition. The existing proofs are rather involved.2*3 In this article we give a conceptually simpler 
proof using the methods introduced earlier for the construction of the quantum gauge transforma- 
tions and computation of commutator anomalies.’ The method is based on the observation that the 
interaction Hamiltonians can be conjugated by unitary operators such that the resulting equivalent 
Hamiltonians satisfy the Hilbert-Schmidt condition with respect to fixed free Hamiltonian. More- 
over, we give an effective method for an actual construction of such unitary conjugations, as a 
function of (time-dependent) background fields. This method is very general and does not use the 
specific properties of gauge interactions. In general, it applies to any bounded interactions such 
that its commutator with the absolute value of the free Hamiltonian does not have worse fall-off 
properties in the momentum space than the original operator. Gravitational background fields can 
be also treated using a somewhat modified form of the conjugation (Appendix A). 

In sections III and IV we discuss the determination of the phase of the quantum scattering 
operator. It is shown that the phase is uniquely determined by causality (section III), or, altema- 
tively, by the geometric structure of the central extension of the group of one-particle (renormal- 
ized) time evolution operators (section IV). Our treatment relies heavily on the theory of infinite- 

0 1996 American Institute of Physics 3933 
                                                                                                                                    



3934 E. Langmann and J. Mickelsson: Scattering matrix in external field problems 

dimensional linear groups. Some of the basic aspects of the theory of these groups in quantum 
field theory are recalled on the way; for further reading we recommend Refs. 4 and 5. 

II. EXISTENCE OF QUANTUM SCATTERING OPERATORS 

Consider a family of Hamiltonians of the form HA(t) = Da +A( t) acting in a one-particle 
Hilbert space H where t-A(t) is smooth and compactly supported (t,t’ E W here and in the 
following). We assume that Da is a self-adjoint operator and the A(t) are bounded self-adjoint 
operators [so that the D,+A(t) are all self-adjoint for all t (Ref. 6)]. We study the time evolution 
equation 

ia,v,(t,t’)=H,(t)Lr,(t,t’), u,(t,t)= 1. (2.1) 

Writing VA(t,t’) = e”@)U,(t,t’)e -i”DO we obtain an equivalent equation 

iarv‘J(t,t’)=h,(t)v,(t,t’), V‘4(r,t)= 1 (2.2) 

where hA(t) = eifDOA(t)e- itDO Since h,,,(t) is bounded, this equation has a solution for all finite . 
times given by the Dyson expansion 

vAw~=n~o V,(t,t’), V”(lJ’)‘l, v,,, (r$)= -iJ,: dsh,(s)V,(s,t’) (2.3) 

[it is easy to see that this series converges absolutely in the operator norm ](~]] if one assumes 
J&t\(A(t)((<m; see Appendix B 11. 

Let E=D~/]D~]. (This is well-defined even if zero is in the spectrum of Do if we set x/lx] = 1 
and - 1 for x20 and x<O, respectively, and use the spectral theorem of self-adjoint operators.6) 

The spectral decomposition H = H+ @ H- corresponding to the splitting of the spectrum of D, 
to positive and negative parts fixes an irreducible representation of the canonical anticommutation 
relations (CAR), uniquely defined up to unitary equivalence, in a Fock space Jrwith a vacuum IO) 
which is annihilated by the elements a * (u -) and a (u +) , u + E H, , of the CAR algebra 

a*(u)a(u’)+u(u’)u*(u)=(u,u’), (2.4) 

and all the other anticommutators are equal to zero. Let {e,}, E z be an orthonormal basis in H such 
that {e,Jn20 span ff+ and {en}n<O span H-. Set un=u(en) and u,*=u*(e,). Fix the usual 
normal ordering for the products of creation and annihilation operators by : ~,*a,, : = - ~,a,* if 
n = m < 0 and all the other products remain unchanged. 

It is known that a bounded one-particle operator X= (X,,) can be canonically quantized as 

C(X)= 2 x,, :u,*u, : (2.5) 

iff [e,X] is of Hilbert-Schmidt type.7,4 This quantization is such that [dI(X),u*(u)]=u*(Xu) 
for all u E H, and preserves the commutation relations of the Lie algebra of linear operators on H 
except for a complex valued cocycle (“Schwinger term”); see section III. Similarly, a unitary 
operator V on H can be second quantized to an operator I(U) obeying 
r(U)a*(u)r(U)-‘=a*(Uu) if and only if [E,U] is of Hilbert-Schmidt type.8*9 

If we have a time evolution with Hilbert-Schmidt [e,A(t)] for all t, then it is easy to see that 
[e,VA(t,t’)] is always of Hilbert-Schmidt type ( if one assumes JRdtlj[E,A(t)]l12<m where ]].]I2 is 
the Hilbert-Schmidt norm; see Appendix B l), and this trivially implies that the scattering operator 
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S,4= lim lim VA(tf,ti) (2.6) 
‘7” ii--m 

can be second quantized [note that due to our compactness assumption, S, = V,( T, - T) for some 
T0-j. 

In many interesting situations [ E,A (r)] is not of Hilbert-Schmidt type, and [E, V,( t, t ‘)] is not 
of Hilbert-Schmidt type either, and the canonical quantum operator I’(V,( t,t ‘)) does therefore not 
exist. Nevertheless the scattering operator can be still second quantized in many such cases. We 
will give proof below of a general, abstract result for this. As a motivation for our abstract setting, 
we first discuss a special case. We shall use some basic facts about pseudodifferential operators 
(PSDO):” see Appendix C for notation. 

We assume that space-time is M”X R where M” is a n-dimensional compact manifold with 
spin structure and H = L2( Mn) @ V where V is a vector space carrying the spin and color indices 
of the fermions. The following discussion applies also to noncompact situations like M = R” but 
then one has to assume suitable fall-off properties of the interaction as ~-+a. For example, in the 
case of a gauge interaction the requirement that the vector potential and all its derivatives fall off 
faster than 1x1 -nn as ]xl+w would be sufficient. Moreover, we assume that the free hamiltonian 
Do is a self-adjoint PSDO of order 2 1. 

We denote as B, the ideal of Hilbert-Schmidt operators in the algebra of bounded operators on 
H. In case Do has no mass gap in the spectrum around zero we interpret Dil as Do( 0; + h) - ’ for 
some X>O, and similarly for jDol-‘. We use this simplified notation since the precise value of A 
is irrelevant (the essential regularizations concern the ultraviolet and A is a harmless infrared 
regulator-if not evident to the reader, this will become clear in the following). Thus D{’ is 
always a bounded self-adjoint operator (its operator norm is s l/fi). 

Denote as 0-, the PSDO’s of order c-k on a compact manifold M or in R” with the 
asymptotic conditions discussed above, especially 0, are bounded PSDO’s. We assume that Do is 
a Dirac operator. We state the basic properties of these bounded PSDO’s which we shall need in 
the proof of the main theorem (see Appendix C): 

(9 00 is an algebra of bounded operators 

(ii) a~O~=s[~D~~,a]~0~ 

(iii) Elfp<m: jDoj-Pa E B2 Vu E Oo. 
(2.7) 

Since this is all we need in our proof, our result below applies to the set of all bounded operators 
Oh”’ with the properties (2.7): we regard Oip’ as the abstract generalization of the PSDO’s Oo. It 
can be defined as follows: O&j is the algebra of all bounded operators a such that 
q,,~=[lDob~,-~~l (qo,=a> is bounded and (DoI -Puc,j is of Hilbert-Schmidt type for all 
n = 1,2.... . 

We shall show that S, can be quantized whenever A E 08’. The idea is to construct a 
time-dependent family of operators T(A) = T,(A) for a regularization on the one particle level,’ 
i.e., consider the modified time evolution T,(A) U,( t,t ‘) T,,(A) - * which can be second quantized 
even if UA(t,t’) cannot. It is easy to see that the latter is generated by the Hamiltonian HA(t) 
=T,(A)HA(t)T,(A)-‘-i[d,T,(A)]T,(A)-’=Do+A’(t)where 

A’(t)=i[d,T,(A)]T,(A)-‘-[D,,T,(A)]T,(A)-’+T,(A)A(t)T,(A)-’. (2.8) 

Our strategy thus is to choose T(A) in such a way that A’ is better behaved than the original 
interaction A, i.e., that [ E,A’] E B2. It is important to note that a conjugation T,(A), which 
becomes the identity as It] --@J, does not alter the scattering matrix, SA I = S, . 
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All differentiations of operators etc., in the following are meant with respect to the operator 
norm. 

Dejnition 2.9: Let Do be a self-adjoint operator and Obp’ as above. We call an interaction A 
regular (with respect to Do) if A(t) and the derivatives (a,)kA(t), k= l,...,p, are in Ob”’ for all 
t E W and some p<m. We denote the set of all such interactions (for fixed p) as .dp. 

Theorem 2.10: For all p <m and interactions A(t) ~-4~) there is a family of unitary operators 
T,(A) differentiable in t and such that the transformed time evolution VAr(t,t’), A’ Eq. (2.8), can 
be second quantized, [ e,VA~(t,t’)] E B2 for all t,t’ E R. Moreover T(A) can be chosen local in 
time, i.e., T,(A)= 1 if A(t)=0 and (a,)kA(t)=O fork= l,...,p. 

Corollary 2.1 I: For all regular interactions A(t) compactly supported in t, the scattering 
operator SA exists and can be second quantized, [ E,S~] E B2. 

Proof of theorem: In this proof we write O. short for Oh”‘, and we define 

O+={u E Oo~~Do(% E O,}. 

Note that if UEO-~ then (D~[~‘-‘u(D~~‘EO~ for all integers I and k’=O,l,....,k. Below we 
consider maps A : R- 0,) t-A(t) such that [E,A] maps W to 0 _ k. We say that such a map is C’ 
if it is times differentiable with all derivatives $A and &E,A] continuous maps R-0, and 
lR--+ 0 -k, respectively for 2 = 1,2,. . . ,r. 

We first prove the following key lemma providing the recipe for constructing T(A). 
Lemma 2.12: Let A:W+O, such that [e,A]:W+OVk be C’ with r>l. Then A’(t), defined by 

(2.8), with the unitary operator 

T,(A) = eacr), a(r)=-; (lDol-l[E,A(t)l+[E,A(t)llDoI-l), (2.13) 

defines a map A’:R-+O, such that [E,A’] maps W into O-k-l and is C’-‘. 
Proofoflemmu: We writeA’ = A;(t) + A;(t) where 

A;=A+[D,,cu] 

are the leading terms in an expansion in powers of ID,I, and 

A;= -iT(A)-‘d,(T(A)- l)+T(A)-‘[Do,T(A)-cu- 11+2-(A)-‘[A,T(A)- I] 

is the rest. In the following we refer to maps a : W+O-k also as a E 0-,, etc. 
We first consider A;. We observe that 

T(A)-l=aTl=Tlcu, T(A)-1-a=a2T2=T2~* 

where the operators a = T(A) - ‘, T,,* and a,(T,) all are bounded, and all these latter operators u 
are such that ub,bu E OeI, whenever b E OVI for all l=O,l,.... (intuitively this is quite obvious; 
the precise argument is somewhat technical and therefore deferred to Appendix B 2). Moreover, 
by assumption (Y and a,(a) are in O-k-l, and (2.7) and the definition of Oek imply that cvDo and 
Doa are in 0-, , . alsoforAEOO,Aa and aA arein 0-,-,. Weconclude thatA; is inO-k-l. 
By definition this implies Ai E O. and[ E,Ai] E Oek- 1. 

A i E O. follows from a~ Oek- 1 as discussed above. The nontrivial part left to show is that 
[ E,A ;] E Owk-, . This can be seen by the following calculation, 
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where we used [E,A]=-E[E,A]E and ED~‘=D,~‘E=ID,~‘I. Thus 

which is in 0 -k-1 by definition. 
We gave the details of this calculation using DO’ for simplicity. If we replace DO’ by 

Do( 0; + X) - ’ a similar calculation leads to the same conclusion, 

This proves our lemma. 
We can apply this method successively: Starting from some interaction A,= A such that 

[ E,A] E O. we get a new interaction A1 =A ’ using the conjugation T(A), with [ g,A ,] E 0 _, . We 
can then insert A1 as an argument to T( . ) and obtain a unitary operator T(A ,) . This defines again 
a new interaction A2 = A ; such that [ e,A2] E O-2. Continuing this way we obtain, after p steps, a 
unitary operator pp’(A) = T(A,-,)...T(Ao) such that the time evolution for the operator 
~Ip)(A)U(t,l’)irj~‘(A)-’ is determined by an interaction A, such that [e,Ap(t)] E O-, for all 1. 
For sufficiently big p the new interaction satisfies the Hilbert-Schmidt condition, and thus the 
corresponding scattering operator can be second quantized. Since tip)(A) by construction is equal 
to the identity for times t where A(t) and all its t-derivatives vanish, the latter scattering operator 
is equal to SA . This implies Theorem 2.10. 

Remark 1: As a particular case, our result gives the existence of the scattering operators for 
Dirac (or Weyl) fermions in external Yang-Mills fields, on a compact space manifold M” or on R” 
with sufficient fall-off properties for the vector potential as Ix]+M. Here our discussion above 
implies p >n/2, but for n odd one can show that actually p = (n - 1)/2 is already sufficient, 
provided that A(t) is (n + 1)/2 differentiable in t (e.g., for n = 1 no regularization is necessary). The 
latter follows from the following fact: if A : R-+Oo with [ e,A] : W-+Omk is C’, then 
[e,V(t,t’)] GO-~-, for all t,t’. 

To see this, consider B(t) = [e, h( t)] = [ e, eiDOrA (t) e-‘nOt] and observe that 

with A(t)=dA(r)ldr, i.e. 

B(r)- - ; 2 D,‘B(t) 
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where - means “equal up to terms which obviously are in Odk- 1.” [Note that at this point we 
require that A(r) is Cl.1 Inserting this in 

following from Eq. (2.3), we obtain by induction (i.e., assuming [ E,V,<,]--0: we use partial 
integration and (2.3)), 

[e,v,,,(t.t’)]--; D,‘B(s)V,(s,t’) ~oo’B(s)h(s)v,_,(s,r’)-0 

(sinceB~O-k,V,,~OO,andD~‘a-Ofora~O-k). 
Remark 2: We stress the Hilbert-Schmidt property of the scattering operator since only this is 

of primary interest for quantum field theory. However, our argument above shows that usually 
[E,S,J is much better behaved: e.g., in the fermion-Yang-Mills case it is in all Schatten classes B, 
for q>O. (This follows from O-kCBc,+lj,k in the case of PSDO and the possibility of choosing 
number p of regularization above arbitrarily large.) 

Remark 3: Going through the proof above one can check that Theorem 2.10 can be slightly 
generalized: one can include in O0 
IDd-pa(,) 

@) all bounded operators a such that acnj is bounded and 
EBB for n= 1,2,..., p (but not necessarily n>p). 

III. PHASE OF QUANTUM SCAlTERlNG OPERATOR: CAUSAL APPROACH 

In the previous section we have shown that the one-particle scattering operator S satisfies the 
Filbert-Schmidt condition for [EJ] and therefore it can benpromoted to a unitary operator 
S= T(S) in the Fock space .iT However, by this the operator S is uniquely defined only up to a 
phase. In this section we show that the regularization for the time evolution operators in the 
previous section fixes the phase in a natural causal manner. 

We denote the group of unitary operators V on H with Hilbert-Schmidt [E,V] as V,. All 
V E V, can be second quantized, and the second quantization r( U) = l?( V- ’ ) -’ of V E VI is 
unique up to a phase [ =element in U(l)] which implies that for some local (near the unit element 
in V,, e.g.) choice of of phases 

r(u)r(v)=x(u,v)r(uv) vv,vEv,, (3.1) 

where x : UI X V,+ V( 1) is only defined locally (a derivation of an explicit, locally valid formula 
of x is ‘given in Ref. 11: in the second quantization setting see also Ref. 12). The latter is a 
nontrivial local 2-cocycle providing a central extension fi, of V, by U(1). Similarly the (com- 
plexification of the) Lie algebra u , of V 1 contains all bounded operators X on H with Hilbert- 
Schmidt [6,X] and its second quantization u 1 3 X -+dT(X) = dl?(X*)* gives a representation of a 
central extension 1;, = II, CK of u , , 

[dr(X),d~(Y)l=d~,([X,Yl)+c,(X,Y), 
with a Lie algebra 2-cocyle13 

(3.2) 

cL(X,Y)= f Tr E[E,X][E,Y] (3.3) 

which is the infinitesimal version of the Lie group 2-cocycle x above (Tr is the Hilbert space trace 
throughout the paper). It is possible to choose phases such that 
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r(eix)=eidrcX) VX=X* close to OEU, (3.4) 

[the existence of the eidrCX) as a unitary operator follows from Stone’s theorem6 since dI’(X) is 
self-adjoint4]. This equation actually is true for all X E u r , but it fixes the phase of r(V) for only 
V E VI sufficiently close to the identity where local bijectivity of the exponential mapping is 
guaranteed. We will assume this phase convention in the following. Then (3.2) implies 

r(e-i~sXe-i~tYei~sX)=e~s~tc~(X,Y)r(e-i~sX)r(e-i~tY)r(ei~~X)+~~S2,~t2) (3.5) 

for all X, Y E u r and sufficiently small Ss, St E R [to see this, use (3.4) and expand both sides of 
this equation in powers of Ss and St]. 

We now consider a time evolution VA(t,t’)= V(t,t’) defined in eq. (2.2) with hA=h: R+ur 
smooth and compactly supported. We first consider the simple case where h(t) E u t so that 
V( t,t ’ ) E V, for all t,t ’ E W. As shown in the last section, many interesting cases can be brought 
to this simplest situation using the conjugation by a family of operators T(A) (we will discuss this 
in more detail further below). 

We first note the essential group property of the time evolution. 

V(t,t’)V(t’,t”)=V(t,t”) vt,t’,t”EW, (3.6) 

which follows from (2.2): it is this what we mean by causality. Somewhat parallel to our discus- 
sion, the use of the causality condition in the renormalization of a quantum field theory has been 
stressed by Scharf and his coworkers.14 

To construct the second quantization of the scattering operator S=S, (2.6) including the 
phase, we first second quantize the time evolution. The naive guess T(V(t,t’)) for this is not right 
since this is not a time evolution: it does not obey an equation similar to (3.6) due to the 
Schwinger term x in (3,l) which gives nontrivial contributions in general. One can, however, 
define V(t,t’) =lim,v,,V(‘v’(t,t’) with 

(t-t’)v 
+yt,t~)=Na~31 rw(t,~t,-,n~ b=t’+ 7 (3.7) 

where II ,+v21F(t,,t,-1) is the ordered product F(tN,t,+,-I)F(tN-l,tN-2)...F(t2,tl) for any 
operator valued function F on WXR. This is a time evolution by construction, and with (3.1) 

G(t,ty= 77(f,t’)r(v(t,ty, (3.8a) 

where 17 is a phase valued function on RXR which can be explicitly computed in terms of x [for 
Y(t,f ‘) in some neighborhood of the identity].12 This allows us to calculate the scattering operator 
S= V( T, - T) including phase as follows [here and in the following we assume that T is big 
enough so that h(t) vanishes for 1 t I> T/2, say]: choose some partition te = - T< t I < . . . < t, = T of 
the time interval [ - T, T] such that all V( ti ,ti- t ) are in the neighborhood of the identity for which 
7l(t,t’) is defined. Then 

(3.8b) 

can be shown to be independent of which particular partition is chosen. 
Remark 1: We note our formulas (3.8a) and (3.8b) still do not fix the phase of j completely 

since the function dt,t ‘) is unique only up to 

v(t,f’),erp( --iIt:diE(g) q(t,t’> (3.9) 
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with E a smooth real-valued function on W. This is due to the ambiguity of the second quantization 
map u1 3 X-+dr(X) which can be changed by smooth, linear functions b:u ,*C with 
b(X*)=b(X)*. A shift dT(X)+dT(X)+b(X) changes (3.3) by a trivial 2-cocycle, 
cL(X,Y)-+cL(X,Y:)-b([X,Y]), and this implies (3.9) with E(t)=b(h(t)). 

Remark 2: Since h(t) E u1 for all t, the second quantized Hamiltonian i(t) = dl?(h( t)) (in the 
interaction picture) always exists, and it should be the generator of the second quantized time 
evolution c(t, t’). Moreover, the ambiguity (3.9) of the phase of e(t, t’) corresponds to a shift 
i( t)+k( t) + E( t) which physically amounts to a change of the zero-point energy. It would be 
difficult to construct ?(t,t ‘) directly from i(t) since the latter is unbounded which makes the 
existence of a Dyson series nontrivial. This technical problem is avoided in our approach above. 

In the following we are interested in the change of the second quantized time evolution 
operator under transformations 

v(t,t’)~(g~V)(t,t’)=g(t)V(t,t’)g(t’)-1, (3.10) 

where g: R-V,, where g(t) is assumed to be sufficiently smooth and such that g(t) = 1 for 
ItI > T/2. We will derive an explicit formula for the gauge anomaly of the time evolution, 

(3.11) 

which is a phase factor according to our discussion above [since the r.h.s. is the second quanti- 
zation of g(t)-‘(g+V)(t,-T)V(-T,t) equal to the identity]. In particular, X(g)=:X(T,g) is the 
change of the quantum scattering operator S under the transformation g. 

We first consider only infinitesimal gauge transformations g(t) =eTissxcr) for &-to. We 
calculate X(t,g) as lim,v,,X’N) where 

idN)=r(g(t)yi .z,, r(g(t,)v(t,,t,-l)g(t,-l)-l) ,c$IN rw48 
1 H Ii - I 

with t,=-T+(t+T)vlN. Now (3.1) implies 

ryg(t+ st)v(t+ St,t)g(t)-l)=X(t+~t,t) (g)r(g(t+ st))r(v(t+ at,t))r(g(t))-l 
for some phase factors h(‘+8tP’), 
rk(tY-,x* 

and we explicitly see that the various factors r(g(t,)) and 
cancel each other leaving only phase factors. Using V( tf St,t)=e-i”h(‘), 

g(t+ St)=e-i”X(r) and (3.5), we get X(‘+GtJ)(g) = esSGtcL(X(r)*h(t)) (- means “equal up to irrel- 
evant higher order terms in 6s and &“). Thus XCN) is just the exponent of a Riemann sum, and in 
the limit N-too. 

We now consider the case of finite gauge transformations g(t) and introduce a homotopy 
g,(t), 0~~s 1, smoothly deforming it to the identity 

gl(t)=g(t) and go(t)=1 Vt, g,(t)=1 for ltl>T/2. (3.12) 

To be specific, we first restrict ourselves to gauge transformations g(t) = e-ix(r) with X(t) E u , for 
all t, and g,(t)=g(t)=e -isX(r). We define V,(t,t’)=(g,~V)(t,t’) and 

A,,,! = r(g,tt))-‘~~tt,-T)~~ft,,(-T,t)r(g,,tt)) 
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so that A(g) =A,,,. We observe that these phases have the group property Xs,srXs,,s,, = X,,,,, for all 
O~s,s’,s”~l; thus we can evaluate A(g) as lim,,,X, where 

A,= n Asp,.Sp-p +=$ 
M>p> 1 

Now As + 6s.s is the change of phase of ?J T, - T) under an infinitesimal gauge transformation 
g,+~,(t)g,(t)-’ = e-issxJr) and thus equal to exp[6sS’_TdtCL(Xs(ij,hs(Tj)] with 

h,(t)=i{d,V,(t)}V,(t)-‘, X,(t)=i{~,V,(t)}V,(t)-‘, V,(t)=g,(t)V(t,-T) (3.13) 

[we used g,?( - T) = l)]. Again A, becomes the exponential of a Riemann sum, and in the limit 
M-+= we obtain 

Theorem 3.14: 

Note that this result was derived for the special homotopy g,(t) = e-isx(t), but our derivation 
can be immediately generalized to arbitrary gauge transformations g(t) and homotopies g,(t) 
(sufficiently smooth in s and t) obeying (3.12). For t>T, A(t,g)=A(g) (3.14) is then actually 
independent of the homotopy chosen [this follows from its definition (3.11) which does not 
depend on the homotopy]. For intermediate times -T< t< T this is not true. The reason is that 
then the phase of the implementors l?(g(t)) in (3.11) depends on the homotopy: our derivation 
above implies that this phase has to be chosen such that 

Q(t))=;y’ J,, msptf)gSpJt)-‘), s&j, 
and this coincides with our phase convention (3.4) only for homotopies sHgS(t) = ewisxct’. 

Remark 3: Our derivation of (3.14) above was given for one-parameter groups in V, for 
simplicity, but the result immediately generalizes to CL, which is the group of all (not only 
unitary) invertible operators V on H with Hilbert-Schmidt [e,V]: Eq. (3.14) remains true for 
h(t)cu, not self-adjoint and g(t)EGL,. The technical problem for proving this more general 
result by the method above is that l -istdr(X) is unbounded if dlY(X) is not self-adjoint; thus one 
has to be careful with the domains of operators (the latter could, however, be handled by methods 
described in Ref. 15). Our alternative derivation of (3.14) in the next section is for GL, and 
bypasses such domain questions. 

We consider now time evolutions generated by Hamiltonians HA(t) = D,+A( t) with 
A(t) E. 15 [cf. definition (2.9)] and generalized gauge transformations 

A(t)--tg.A(t)=i(dtg(t))g(t)-‘-[Do,g(t)lg(t)-’+g(t)A(t)g(t)-’ (3.15) 

so that V,.,4(t,t’)=g(t)VA(t,t’)g(t’)~1. We denote the group of all g(t) which leave ..& invari- 
ant as :6/. Note that :S; contains all g(t) sufficiently smooth in t (i.e., Cpf ‘), which are unitary 
operators in O. for all t. We also introduce the Lie algebra Liey of 5. In the following, all A are 
in . -il, all g,g ‘,g” in 5’ and all X, Y,Z ELieP, except when stated otherwise. As before, we 
assume all these functions are trivial for I tl>T/2. 

By Theorem 2.10, there exist appropriate regularization operators T(A) and T(g +A) such that 
A’ and (g .A)‘, defined in (2.8), all lead to time evolutions which can be second quantized, i.e., 
they are always in u,. This also implies that the operators T,(g . A)g( t) T,(A) -’ 
=V,.,(t,-T)V,(-T,t) all are in V,, and thus 
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T,(g;A)=r(g;(r)), g;(t)=ei’DOT,(g.A)g(t)T,(A)-‘e-i’D” (3.16) 

always exist. These unitary operators have the natural interpretation as implementors of the gen- 
eralized gauge transformations g at fixed time t. They are local in time, i.e., only depend on g, A 
and t-derivatives thereof, at time t. We observe that they obey the relations 

r(g’;g.A)r(g;A)=x(g’,g;A)r(g’g;A), 

where we have dropped the common time argument t, with 

(3.17b) 

defined locally [this follows from (3.1)]. Note that (3.17a) and associativity of the operator product 
imply the 2-cocycle relation 

x(g”,g’g;A)x(g’,g;A)=x(g”,g’;g.A)x(g”g’,g;A). 
Our construction above can now be used to calculate 

(3.18) 

(3.19) 

which we define as the change of the quantum time evolution V,, under the generalized gauge 
transformation g. We immediately get the formula 

(3.20a) 

with 

V.(t)=eirD”T,(g,.A)g,(r)UA(t,-T)eiTDo s (3.20b) 

and g,(t) E F a homotopy interpolating between 1 and g(t). Similarly as discussed above after 
Theorem 3.11, for t> T (but in general not for intermediate times -T< t< T) this formula is 
independent of the homotopy s-g,(t) chosen. 

We observe that these phases are connected with the Schwinger terms in (3.17b) via the 
relation 

h(r,g’;g.A)X(r,g;A)x,(g’,g;A)=h(t,g’g;A). (3.2 1) 

This follows from a simple calculation using the definition (3.19) and (g’g) .A = g’ . (g .A), 

r,(g’;s.A)X(t,g’;g.A)T,(g;A)h(t,g;A) 

=G(t,-T)G(-T,r)Gk- T)C( -T,t)=T,(g’g;A)X(r,g’g;A), 

and inserting (3.17a). According to our derivation, this equation is valid only locally [i.e., g(t) and 
g’(t) close to identity]. 

Especially for f = T, X(g;A)=:X(T,g:A) is equal to the change of the quantum scattering 
matrix ,$A under the transformation g, and Eq. (3.21) reduces to the 1-cocycle relation, 
X(g’;g.A)X(g;A)=X(g’g;A) [since x(l,l;O)= 11. The physical* meaning of X(g;A) is as fol- 
lows. We recall that the log of the vacuum expectation value of S, is equal to the Minkowskian 
action of the fermions in the time dependent external field A, thus log X(g ;A) is the change of the 
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latter by the generalized time dependent gauge transformation g(t) . Especially for infinitesimal 
transformations g(r)= l-i&X(t)+... it gives the generalized gauge anomaly 
Anom(X;A)=dlds log X(e-‘SX;A)~,,o. We obtain 

I T 
Anom(X;A) = dtG’(X(t),A(t)), E’(X(r),A(r))=c,(XL(r),h,,(t)), (3.22) 

-T 

where hA,(t) = eirDoA’(t)e-“Do withA’ given in Eq. (2.8), and 

(3.23) 

is in u , for all A s-4 and X sLieF, we introduced the Lie derivative acting on functionals f on ,& 
as 

s.&(A)=i $f(emisx.4) . 
s=o 

Similarly, the infinitesimal version of (3.17a) and (3.17b) is’ 

[G(X;A),G(Y;A)]=G([X,Y];A)+S(X,Y;A) . (3.24a) 

where G(X;A) = Zx + dl?(XL) are implementors of infinitesimal gauge transformations and 

S,(X,Y;A)=c,(XL(r),Yi(r)), (3.24b) 

a Schwinger term satisfying the 2-cocycle relation ZxS( Y,Z;A) + S(X, [ Y,Z];A) +cycl.=O [the 
latter is the infinitesimal version of (3.18) and also follows from the Jacobi identity]. 

Especially, if we consider the Yang-Mills case and infinitesimal chiral gauge transformations, 
Anom(X;A) is just the axial gauge anomaly and S(X,Y;A) the Schwinger term appearing in the 
commutators of the chiral Gauss’ law generators G(X;A). We thus have obtained a Hamiltonian 
derivation of these two different manifestations of the gauge anomaly in a Hamiltonian framework 
which traces them back to a common root, i.e., the 2-cocycle cL in (3.2). 

It is interesting to consider also the infinitesimal version of Eq. (3.21) which can be written as 

Sd+d,S=O (3.25) 

where 

( Swl)(X,Y;A) =S’xwl( Y;A) - 5!?p1(X;A) - o’([X; Y];A) 

is defined on functions 0’ on Lie FX,&. To interpret this equation, we recall that the above 
mentioned fermion-Yang-Mills anomalies are connected by descent equations: I6 the axial anomaly 
on a n + 1 (even)-dimensional space-time manifold M”+ ’ is the integral of a (n + I)-(de Rham) 
form oA+~(X;A) over M”+‘; it depends on one infinitesimal gauge transformations X and the 
Yang-Mills field A. The corresponding Schwinger term is on 2-dimensional space M” and an 
integral of a n-form wL(X, Y;A) over M” depending on two infinitesimal gauge transformations X, 
Y, and A. Embedding Mn in M” + ‘, the descent equations are sot ,. i + dwi =0 where S is defined 
as above and d is the usual exterior differentiation of de Rham forms. Setting M”+ ’ = M” X R and 
8’=JwnW;+, and S=SM,,wi, one exactly obtains our Eq. (3.25). We thus have obtained an 
explicit field theory derivation of this descent equation for all odd dimensions n the Hamiltonian 
framework. We stress, however, that our equation (3.25) is not restricted to the Yang-Mills case 
but in fact is more general. 
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Remark 4: As just mentioned, fermion-Yang-Mills anomalies are local de Rham forms, 
whereas our formulas (3.22) for the axial anomaly and (3.24b) for the Schwinger term are not 
explicitly local in space. In the Yang-Mills case one can prove, however, that they cohomologous 
to local de Rham forms. General arguments and mathematical techniques for showing this by 
explicit calculations have been given recently.“‘7*‘8 Nevertheless it would be interesting to explic- 
itly do this latter calculation for all dimensions. In this article we will only sketch the simplest case 
n = 1 (end of next section). 

In the next section we will give a different, more geometric approach to the phase of the 
scattering operator where the path independence of the anomaly becomes evident. Another im- 
portant benefit in the geometric approach is that we can easily compute the cohomology class of 
the anomaly without going to the details of the renormalization T(A). 

IV. THE QUANTUM PHASE AND PARALLEL TRANSPORT 

Let 6 be a central extension of a Lie group G by Cx . The Lie algebra i of 6 is a vector space 
direct sum g@C. Let rr be the projection on the second summand and let O=g:‘dg be the left 
Maurer-Cartan one-form. We can then define a complex valued one-form $ on G by $= rr( 8). 
This is a connection form in the principal Cx bundle G-+G. Its. curvature is a left invariant 
two-form on G given by w(X, Y) =c(X, Y), where left invariant vector fields X,Y on G are 
identified as elements of the Lie algebra and c is the 2-cocycle on g defining the central extension 

Recall that GL, is the group of invertible linear transformations g: H-+ H such that [E, g] is of 
Hilbert-Schmidt type and U, its unitary subgroup. Let us apply the above remarks to G = U, , and 
to the Lie algebra cocycle cL (3.3) arising when promoting the one-particle operators to operators 
(2.5) in the fermionic Fock space, as discussed in the last section. 

The central extension i% l is a nontrivial Cx bundle over the base GL ‘.” The elements of the 
group (t, (containing the unitary subgroup fil) can be thought of equivalence classes of pairs 
(g,q), where gEGL, and q:H++H+ is an invertible operator such that a-q is a trace-class 
operator, 

g=I ;. 
i i 

(4.2) 

We have assumed that ind a =O. If this is not the case, the subspace H, must be either enlarged 
or made smaller by a suitable finite-dimensional subspace in order to achieve ind a =O. The 
equivalence relation is determined by (g,q) - (g’,q’) if g=g’ and det(q’q-‘)= 1. Thus the fiber of 
the extension is C” and it is parameterized by (the nonexisting) determinant of q. 

The product is defined simply (g,q)(g’,q’) = (gg’,qq’). Near the unit element in G we can 
define a local section g++(g,a) .‘I Denoting 

-l- CY P 
g-y s i i c 

we can write the connection form as 

4=Tr[(g-‘dg)a-q-‘dq]=T(ada+pdc-q-’dq]. 

The curvature of this connection at g= 1 is 

(4.3) 

(4.4) w= -Tr(dpdy) 
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and is easily checked to agree with cL in (3.3). 
We compute the parallel transport determined by the connection in the range of the local 

section. Let g(r) be a path in GLl , -TSST, with g(-T)=l. The lift (g(r),q(r)) is parallel if 

o=~~(~),q(~))(dg,dq)=Tr[~(~)~‘(~)+P(~)c’(~)-q(~)-‘q’(~)l. 
Thus the parallel transport, relative to the trivialization g H(g,a), along the path g(r) in the base 
is accompanied with the multiplication by the complex number 

( J 

T 
exp - Tr[{a(r)-u(r)-*}u’(r)+,L?(r)c’(r)]dr 

-T 
(4.5) 

in the fiber C. 
Formally, 

Tr q-‘q’=Tr[aa’4/3c’] 

and so 

J T 
det q(T)=exp Tr [a(r)u’(r)+,B(r)c’(r)]dr 

-T 

and also 

J T 
det a(T)=exp Tr a(t)-‘a’(r)dt. 

-T 

Individually, the traces in these two expressions do not converge, but put together the trace 
converges and gives 

det[o(T)q(T)-‘]=exp{ JTTTr [(a-a-‘)a’+pc’]dr]. 

Note that the exponent diverges outside of the domain of the local section, reflecting the fact that 
det a(T) =0 outside of the domain. 

We can now apply the above results to the ‘ ‘renormalized’ ’ one-particle time evolution op- 
erators g(r)=V,r(r)=ei’DOT1(A)UA(r,-T)e iTDO. For all times r, these are elements of the group 
U, . On the other hand, in the Fock representation of a’ these correspond to elements c(t) in 
the central extension U, . The phase of the quantum time evolution operator is then uniquely given 
by the parallel transport described above. 

The Minkowskian e:fective action is by definition the vacuum expectation value of the quan- 
tum scattering operator S, . The vacuum is invariant under the free time evolution exp(irDo) and 
taking into account the assumption that the interaction has essentially compact support in time, we 
can write 

ZtA)=(OItVA,(T),qtT))IO). (4.7) 

The vacuum expectation value is given by a simple formula,“*‘9 

(Ol(g,q)10)=det(uq-‘) (4.8) 

and therefore the parallel transport (4.5) (with respect to the given local trivialization) is equal the 
effective action Z(A). 
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The above formalism can be applied for computing the gauge anomaly in the space-time 
formalism starting from the commutator anomaly (3.3). Let g(t) E P be a time-dependent gauge 
transformation such that at t = 5 T it is equal to the identity. The change in the phase of the 
effective action is now 

where y is the closed loop in U, obtained by first following backwards in time from T to -T the 
time evolution U, t (t) , following then the gauge transformed time evolution operators g(t) U, 1 (t) 
back from -T to T. The parallel transport around a closed loop can be written as an integral of the 
curvature w over a surface S enclosed by the loop y. By construction, the gauge anomaly X 
satisfies the I-cocycle condition X(gg’;A)=X(g;g’.A)X(g’;A). 

Joining g(t) to the identity by a homotopy g,(t), OssCl, and writing V,(t)=g,(t)U,r(t) we 
get 

log X(g;A)= 
I 

dtdsc,(d,VV-‘,d,VV-‘)=a 
I 

dtdsTr E[E,~,,VV-‘][E,~,VV-‘1. (4.9) 
s 

This result agrees with (3.14). For infinitesimal gauge transformations g,(t) = 1 - isX( t) + *** we 
get axial anomaly (3.22) as discussed in the last section. 

Let us complete the calculation for 1 + 1 space-time dimensions in the case of chiral fermions 
in external Yang-Mills field. Now the chiral Hamiltonian on the circle S’ acting on one- 
component spinors is H(t) = - idldx -A + , where A + = A, + A t (0 and 1 are space-time indices). 
We now use that for n = 1 one can choose T,(A) = 1 independent of A (see our remark 1 at the end 
of section II). Thus, applying (3.22) derived either from (3.20) or (4.9), we get 

Anom(X;A) = f 
s 

f 
T 

dtTr E[c,A+][E,X(t)]= & 

Here we have used the general formula 

$ Tre[e,X][e,Y]= i TrcX[e,Y]= & 
I 

s,d~ tr Xd,Y (4.10) 

valid for smooth multiplication operators X,Y on the unit circle; here we introduced the notation 
Trc(a) E iTr(a + EU E) (conditional trace) which will be useful below. Up to a coboundary (=a 
gauge variation of the local functional x Str A +A t) this form of the anomaly is equal to the 
standard form of the two-dimensional chiral anomaly 

Anom(X;A)= & slxRtr AdX. 
s 

(4.11) 

We finally note that this same equation also allows to calculate the Schwinger term (3.24b). 

S(X,Y;A)= & s,tr XdY 
I 

(4.12) 

which actually is independent of A. This is the Kac-Moody cocycle and also the Schwinger term 
related to the axial anomaly (4.11) via the descent equations, as discussed at the end of the last 
section. 
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The cohomology class of the anomaly in dimensions n+1>2 

The group GL, consists of all bounded invertible operators (4.2) in H= H+@ H- such that 
the off-diagonal blocks b,c are in the Schatten ideal BQ. For any p 2 1 the group G L, contracts 
to the subgroup GL, .20 On the other hand, in GL, one can produce cohomologically equivalent 
cocycles cP -cL such that cP extends from GLI to GL, . These are relevant for understanding the 
gauge group action in space-time dimension n + 1>2. The static gauge transformations are ele- 
ments of GL, forp>n/2. For example, when n=3 the gauge group .‘%,=Map (M”,G)CGL2 and 
one has2’ 

@CY;f)= $ Tr~[~,flf-‘C[~,Xl,[~,Y]l, (4.13) 

where c2(X,Y;f) is the value of a two-form on GL, at a point f to the directions of the left 
invariant vector fields (=Lie algebra elements) X,Y. This formula has been generalized for arbi- 
trary p? 

In order to fix the cohomology class of the 1-cocycle X(g;A) it is sufficient to look how X 
winds around the circle when a family f(t,s) of time-dependent gauge transformations wraps 
around a closed surface S (parameterized by s,t) in the group y’ of static gauge transformations. 
This follows from the fact that the cohomology class of any two-form is determined by giving its 
integral over all closed 2-cycles. The winding number is given by the integral of the curvature cL 
around the surface S in GL, defined by the family of gauge transformed renormalized evolution 
operators. 

For any fixed potential A and a homotopy f( t,s) of time-dependent gauge transformations we 
have a map S=[-T,T]X[O,l]+GL, given by (t,s)Hf(t,.s)U(t), where U(t) is the nonrenor- 
malized time evolution operator determined by A. The renormalization T(A) does not change the 
homology class of the surface S in GL, C GL, since T(A) is defined over a contractible parameter 
space. It follows that the integral over a closed surface S of the curvature on GLI is given by the 
integral of cP of the nonrenormalized operators f(t,s) U(t). Furthermore, the surface 
(t,s)*f(t,s)U(t) contracts to (t,s)wf(t,s). This follows from the fact that each component of 
U, is simply connected and so (t,s)H U(t) is contractible. Therefore, the final result for the 
anomaly around a closed surface is 

Lcp= llrd'ld 
dsc,(i(dtf )f-‘,i(atf )f-‘). 

In the case M = S’ (p = 1) this gives 

(4.14) 

’ / dtds Trc(aJ’ )f-‘[c,(af If-‘]= - & fsxs,dtdsdx tr(4.f )f-‘a,((af If-‘) -- 
2 s 

where we have used (4.10) in the first step and aJ-’ = -f- ‘J,Cf>f- * in the second step (the 
factor l/6=1/3! is from antisymmetrization in the variables t,s,x which amounts to partial inte- 
grations). 

In dimension n = 3 (p =2) a similar calculation gives 
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-i sdtdsTrc[e.flf-‘[[E.(~~ M-‘l,[4~f If-‘II I 

d3xeijk tr( aif )f-‘[ (a,( 6’J )f-‘)>(a,( af )f- ‘)I 

tr(f-‘df )5 (4.16) 

where di = dldx, , eijk is the antisymmetric tensor with E’~~= 1, and in the second step we again 
antisymmetrize in the variables t,~,~t ,x 2,~3 which gives the combinatorial factor 1/10=3!2!/5!. 
In the first step we used the three-dimensional analog of Eq. (4.10),z4 

Tr~(X~[~I~llC~,X21[~,X31)= - $ fR3u XodXldX2dX3. (4.17) 

Similar results can be derived for all p>O using the results from Refs. 24 and 23. We note that 

s fcr,s)~p agrees with the integral of the two form over S in a gauge orbit obtained by the descent 
equations.16 For example, in three space dimensions (p=2) this form is 

i 
!%ii? R3 s 

tr A[dX,dY] (4.18) 

which is the commutator anomaly in three space dimensions25*26 [by a similar calculation as above 
it is easy to see that replacing A, X, and Y by i(df)f-‘, i(a,f)f-‘, and i(aj-)f-’ and integrating 
over S2 also leads to Eq. (4.16)]. We finally note that these results can be understood on a more 
fundamental level using a generalization of the descent equations to noncommutative geometry2” 
and the fact that the conditional trace Tr, is indeed a generalization of integration of de Rham 
forms (which is the natural interpretation of Eqs. (4.10) and (4.17)‘7*24). 

V. CONCLUSIONS 

In section II we gave a new proof for the existence of the second quantized fermionic scat- 
tering operator in external Yang-Mills fields. The proof is valid also in a more abstract setting of 
generalized gauge interactions in the spirit of Connes’s noncommutative geometry. In section III 
we derived a formula for the phase of the scattering operator and its gauge variation from the 
concept of causality by using the local 2-cocycle on the group GL, . In section IV we gave an 
alternative geometric derivation using a connection on the global group extension m, . A con- 
structive interpretation for the descent equations was given in the Hamiltonian framework, linking 
the anomaly of the Minkowskian effective action to the Schwinger terms. This is complementary 
to the standard approach which starts from the euclidean functional determinant. 
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APPENDIX A: THE CASE OF AN EXTERNAL MEiRlC 

Let g = (gij(X. t)) be a time-dependent metric tensor in R”. We assume that space and time has 
been foliated by a choice of the time coordinate such that the space coordinates x, , . . .,x,, 
are orthogonal with respect to the time t, i.e., goi=gio=O for lsisn. The Weyl equation is 
written as 
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bmW= ?hkj(i~j+rj)G=gd’/z@ (AlI 

where hkj(x) are the components of an oriented orthonormal basis in (W”,g). 

hkjf~mj=gkm * 642) 

The matrices Tj, are the components of the spin connection (defined by the Levi-Civita connec- 
tion of g), taking values in the Lie algebra of the spin group Spin (n). 

We assume that the deviation of the metric g from the euclidean metric has only compact 
support in space and time. Furthermore, g(x,t) is assumed to be smooth. If the dimension 
n = 2N+ 1 then the fs are 2NX 2N complex matrices with the property 

Yi?j+ riy’=2Sij. 643) 

The Lie algebra of Spin(n) is spanned by the commutators [ri, yj]. If n =3 the y-matrices are just 
the 2X2 Pauli matrices which are also the generators of the spin group Spin(3)=SU(2). 

The principal symbol of the Dirac Hamiltonian is ‘)/(hkjPj . The complete symbol is the sum 
of the principal symbol and of a symbol of order zero in the momenta. 

Because for any given pair q ,p of nonzero vectors there is a rotation R such that q = Rp, there 
exists an element B(p,x) ~Spin(n) such that 

(A4) 

Here the product is a matrix product, no momentum space differentiation is involved, and the scale 
factor X is the ratio of the euclidean lengths of the vectors p= ykpk and q= phkjpj . Both X and 
B are homogeneous functions of order zero in momenta. 

At the first sight it appears that it is not possible to construct B as a continuous function of the 
h field, the apparent obstruction being the hairy ball theorem: For a given direction q one can 
always choose a rotation R, such that R,.p=q, but R, is not a continuous function of q when n 
is odd and at least equal to 3. However, here we can profit from the information encoded in the 
matrix h. . 

The set of all orthogonal transformations which takes p to q = h +p (up to a scale) form a fiber 
P,,, in a principal bundle P with base X= GL + (n, W) X S”- ’ , consisting of the pairs (h ,pIIp I), and 
the fiber is isomorphic with SO(n - 1); the ‘+’ refers to matrices with positive determinant. The 
base contracts to X’=SO(n)XS”-’ (by the Cartan decomposition). On the other hand, over X’ 
the bundle P is trivial, the trivialization being given by (h,p)-h. Thus P is trivial. We choose a 
trivialization (h,p)-R(h,p). We choose B(h,p) E Spin(n) which projects down to R E SO(n). 
There is a Z, ambiguity in the choice which does not bother us since the transformation law for the 
Dirac operator is quadratic in B. 

If we compute the left-hand side in (A4) with the complete star product instead of the matrix 
product, we generate symbols of order less than or equal to zero. Thus we have proven the 
following lemma: 

Lemma. There is a function B(h) of the basis h taking values in the group of invertible 
PSDO’s of order zero such that B* ~hkjpjB differs from X(x,p)-’ ppk by an operator of order 
zero. 

The unitarily equivalent Hamiltonian B ’ = B*D,B has then the property that [E, B* D,B] is a 
PSDO of order zero. One can now apply the recursive method in section 2 to obtain the renor- 
malization operator T= T(A) where now A = B’ -Do and Do= ykpk . [The crucial step is the first 
application of Lemma 2.12: even though A E O1 (i.e., [DoI-‘A E 0,) is unbounded, (Y Eq. (2.13) 
is 0-r and thus A ’ Eq. (2.8) is in Oe (bounded). We also note that in this argument one never 
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considers the (ill defined) time evolution (Dyson series) Eq. (2.3) with the unbounded potential 
A(?) but only the regularized one with a bounded potential.] This method applies as well to the 
case of combined background gauge and gravitational interactions. 

APPENDIX B: ESTIMATES 

(1) We consider here the Dyson series (2.3) solving the time evolution equation (2.2) with 
hA(t) = ei’DoA(t)e-irD 0. If A(t) is bounded for all r, one can easily prove by induction that 

IlVnkf)ll~; ( /t$A(r)ji)n 
which shows that (2.3) converges in the operator norm ]].j] for all t,t’ E R. 

Similarly, if [CA(~)] is of Hilbert-Schmidt type for all t, then the Hilbert-Schmidt norm of V, 
can be estimated as 

showing that [~,V(t,r’)] is also of Hilbert-Schmidt type. 
(2) Here we prove the following result which was used in the proof of Lemma 2.12 in the 

main text (for notation see there): Let 

f(x)=eex, x-‘(e”- l), xe2( ex- 1 -x) 

(X ER). Then for all cu=cr(t) E Oc with a’=daldt E O,, the operators 

a=f(cf), $fW 

all exist and 

qn~=[hbq,-~J, ao=a 
for n =0,1,2,... all are bounded. Especially a b and bu are in OeI for all b E 0 -I, 1 =O, l,... . 

Proof: The functions f (x) above all are analytic and have Taylor series with infinite radius of 
convergence, 

thus 

and this argument can be easily extended to upper bound all Ilf(a)cn,ll by polynomials 
in7 ‘CvCn)(]]Cyll) (v-th derivative) and I]CY rGm6,,l]. An efficient way to obtain these bounds is to use 
the generating functional for these repeated commutators, 

,i~lDOlae-~~IDOl= 
5 (isY - "(n) 9 I n=~ n. 

i.e. 
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Ilf( 1 
d” 

ff (a) - Ei4Dolf ( a) e-i4D01 
d( is)” s=o 

d” -f(e4~ol~e-wol) 
d( is)” 

Similarly, 

and 

ll~(~,~‘)(,,jI= & ~(e~~I~0I~e-~~I~0I,eislool,re-islDgl) 
/I I/ s=o 

which also is always finite by our assumption LY, a’ E O. . 
If all repeated commutators a(,) of a with IDo1 are bounded and b E O-l, then ab,ba E O-l 

follows from the definition of 0-, and the ideal property of B,. 

APPENDIX C: PSEUDODIFFERTIAL OPERATORS (PSDO’s) 

To fix our notation we summarize here the basic definitions and facts about PSDO’s.” A 
PSDO A on the Hilbert space L”(M”) $ V, with Mn a smooth manifold and V a finite-dimensional 
vector space,’ is given locally by its symbol a(x,p) = a(A)(x,p) which is a smooth matrix- 
[gl( V, V)-] valued function of the local coordinates x E UCR” and momenta p E IV.” The action 
of A on a section I+!I with support in U is given as 

1 
(AcCl)(x)= t2T)n~~ 1 4-w)$(p)e-‘P’Xdp7 

where 4 is the Fourier transform of the function qklJ-+ V, 

,. 1 
(cI(P)’ (2T)“f2 “/- e’“‘p+(x)dx. G9 

We shall consider the restricted class of PSDO’s which admit an asymptotic expansion of the 
symbol as 

u(x,p)-ak(x,p)fak-l(x,p)fak-z(x,~)+”’ , 

where k is an integer and each a. is a homogeneous matrix-valued function of the momenta, of 
orderj, with Iujl-lpli as de =I pi --+ ~0. The order of such a PSDO is ord a = k. 

The asymptotic expansion for the product of two PSDO’s is given by the formula 

(C3) 
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where the sum is over all sets of nonnegative integers m = (m , , . . . ,172,)) I m I = m 1 + * * * + m, , a; 
= (dldx~)m~~~~(dld~,)m~,etc.,andm!=m~!~~~m,!. 

The order of a*b is equal to the sum of ord a +ord b since the leading term in a *b is just the 
matrix product ab of the symbols. 

The symbol of a massless Dirac operator D, in an external vector potential A is fl(pk+Ak) 
where yi ri+ Yjri - gij are the Dirac gamma matrices and g = (gij) is the metric tensor. The 
symbol for the square 0: is p2+ lower order terms in p and therefore the symbol of I D,I is 
IpI +lower order terms. From this follows, using (C3), that the symbol of [ ID,I,B] is 
Ipk/lpld/dXkb(X,p) +terms of order ord B for any PSDO B with symbol b. In particular, the order 
of [I D,I,B] is at most equal to the order of B. 

On a compact manifold of dimension n a PSDO is of the trace class if its order is strictly less 
than -n and it is of Hilbert-Schmidt type if the order is <-n/2. In R” one has to assume in 
addition that the symbol is either compactly supported in x or at least the asymptotic behavior of 
the symbol and its derivatives at Ixl+m is as IxIek, where k>n in case of trace class operators 
and k>n/2 for Hilbert-Schmidt operators. In W” the trace (when it exists) of a PSDO is simply 
given as 

1 
Tr A= (27r)” I 

tr u(x,p)dpdx. (C4) , 
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In this paper we show that a quasi-exactly solvable (normalizable or periodic) 
one-dimensional Hamiltonian satisfying very mild conditions defines a family of 
weakly orthogonal polynomials which obey a three-term recursion relation. In par- 
ticular, we prove that (normalizable) exactly solvable one-dimensional systems are 
characterized by the fact that their associated polynomials satisfy a two-term recur- 
sion relation. We study the properties of the family of weakly orthogonal polyno- 
mials defined by an arbitrary one-dimensional quasi-exactly solvable Hamiltonian, 
showing in particular that its associated Stieltjes measure is supported on a finite 
set. From this we deduce that the corresponding moment problem is determined, 
and that the kth moment grows like the kth power of a constant as k tends to 
infinity. We also show that the moments satisfy a constant coefficient linear differ- 
ence equation, and that this property actually characterizes weakly orthogonal poly- 
nomial systems. 0 1996 American Institute ofPhysics. [SOO22-2488(96)03 108-81 

I. INTRODUCTION 

In a recent paper,’ Bender and Dunne introduced a remarkable family of orthogonal polyno- 
mials associated to the one-dimensional Hamiltonian 

H= +*+ (4s- 1)(4s-3) 
x 4x2 

-(4s+4J-2)x2+x6, (1) 

where J is a positive integer and s is a real parameter. If r,4E(x) denotes an eigenfunction of H 
with energy E, the polynomials P,(E) in question are proportional to the coefficients in the 
expansion of .c’~‘~x 1’2-2s t+bE(x) in powers of x2, namely 

+Ecx,=,-~4i4*2~-1/2~ CL-$ r:lE2)s) [fJ)*. 
k=O 

These polynomials are easily shown to satisfy a three-term recursion relation, from which it 
follows2 that they are orthogonal with respect to a certain Stieltjes measure do(E) (o being a 
function of bounded variation): 

I f’k(E)pt(E)dw(E)=O, k#l. (2) 

The form of the coefficients of the recursion relation satisfied by the polynomial system 
{P,(E)}&=, implies that this system has several remarkable properties. First of all, the norm of the 
polynomials Pk with k>J vanishes. Thus the polynomials Pk form what is called a weakly 
orthogonal polynomial system.’ To be precise, we shall use from now on the term orthogonal 
polynomial system for a family of orthogonal polynomials {Pk(E)}TEO with deg Pk= k for all k, 
and such that the norm of Pk does not vanish for any k. 

Second, each Pk with k>J factors into the product of P, and another polynomial, i.e., 

3954 
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PJ+~=~J&, m==O, 

where Q, has degree m. Finally, the J simple real zeros of PJ are eigenvalues of H whose 
corresponding eigenfunctions, being the product of the factor 

. dx)=e -x~I~~ZS- 112 

times a polynomial in x2, are square integrable. The existence of these exactly computable eigen- 
functions and eigenvalues of H had been deduced before3’4 from the fact that H is quasi-exactly 
solvable, meaning that it is an element of the enveloping algebra of a certain realization of sl(2,W) 
in terms of first-order differential operators acting on a finite-dimensional subspace of the space of 
C” functions (see the next section for more details). The above results strongly suggest5 that there 
is a connection between quasi-exactly solvable Hamiltonians and certain families of weakly or- 
thogonal polynomials. In this paper, we show in detail that this is indeed the case for all one- 
dimensional quasi-exactly solvable Hamiltonians, both normalizable and periodic, satisfying very 
general conditions. 

The paper is organized as follows. Using the results on quasi-exact solvability reviewed in 
Sec. II, we explain in Sec. III how to construct the weakly orthogonal polynomial system associ- 
ated to each of the normal forms of a one-dimensional quasi-exactly solvable Hamiltonian listed in 
Refs. 4 and 6. Like the polynomial system introduced in Ref. 1, this system always satisfies a 
three-term recursion relation, whose coefficients we explicitly compute. This allows us to prove 
that one-dimensional (normalizable) exactly solvable Hamiltonians are characterized by the fact 
that their associated polynomials satisfy a two-term recursion relation. In Sec. IV we show that the 
polynomials associated to an arbitrary one-dimensional quasi-exactly solvable Hamiltonian enjoy 
properties completely akin to those listed above for the Hamiltonian (1). We also study in this 
section the properties of the moment functional defined by the family of weakly orthogonal 
polynomials of a quasi-exactly solvable Hamiltonian, giving a rigorous proof of the fact that its 
associated Stieltjes measure is supported on a finite set,5 so that the integral (2) reduces to a finite 
sum. From this we deduce that the associated (Hamburger or Stieltjes) moment problem is deter- 
mined, and that the kth moment behaves like the kth power of a constant for large k, illustrating 
this statement with an explicit example for the Hamiltonian (1). We also show that the moments 
satisfy a constant coefficient linear difference equation, a property which in fact characterizes 
weakly orthogonal polynomial systems. The paper ends (Sec. V) with a brief review of these 
results, stressing the role played by weak orthogonality-as opposed to true orthogonality-in 
their derivation. 

II. QUASI-EXACTLY SOLVABLE POTENTIALS 

For the reader’s convenience, we present in this section a summary of the major results in the 
theory of quasi-exactly solvable systems that we shall need in the sequel. A one-dimensional 
Schriidinger operator (or Hamiltonian) H = - dt + V(x) is quasi-exactly solvable if there exists a 
finite-dimensional Lie algebra of first-order differential operators 

such that 

(i) g leaves invariant a finite-dimensional module of smooth functions ‘%CC”(R), i.e., X.JPE’JI 
for all f E ‘3 and all X E g. In other words, g admits a finite-dimensional representation in 
terms of smooth functions. 

(ii) H is in the universal enveloping algebra of g, i.e., H can be expressed as a polynomial in 
the generators T, , 1 Gus r, of IJ. 
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A Lie algebra of first-order differential operators satisfying (i) is called quasi-exactly solvable. 
A Hamiltonian H satisfying condition (ii) above for an arbitrary (not necessarily quasi-exactly 
solvable) Lie algebra g is said to be Lie algebraic. 

If H is quasi-exactly solvable, it follows that the restriction of H to Tl is a finite-dimensional 
linear operator %-&I, and therefore the eigenfunctions of H lying in !YI and their corresponding 
eigenvalues can be exactly computed by purely algebraic methods (diagonalizing a square matrix 
of order dim 9I). We shall refer to these eigenfunctions of H lying in % as its algebraic eigen- 
functions (although, of course, they need not be algebraic functions in the technical sense of the 
word). The functions in !YI need not a priori satisfy any boundary conditions (like square- 
integrability, periodicity, vanishing at the end points, etc.) coming from the physics of the prob- 
lem, whose mathematical purpose is to guarantee that H is a self-adjoint operator. If they do, then 
the restriction of H to % is self-adjoint, and therefore H has exactly dim !Jl linearly independent 
algebraic eigenfunctions, whose corresponding dim fl real eigenvalues (counting multiplicities) 
are exactly (i.e., algebraically) computable. We shall say in this case that the quasi-exactly solv- 
able potential H (or the potential V) is fully algebraic. See Refs. 4 and 6 for an in-depth discussion 
of fully algebraic potentials under the boundary condition of square integrability on R. 

It can be shown (cf. Ref. 7) that a quasi-exactly solvable Schrodinger operator H can be 
expressed as a polynomial of degree at most two in the generators T,, l<aCr, of g. Moreover, 
a well known theorem3’8*7 asserts that every quasi-exactly solvable Lie algebra of first-order 
differential operators g is related by a (local) change of variable 

z=l(x) (3) 

and a gauge transformation with gauge factor p(z) >O to (a subalgebra of) one of the Lie algebras 
gn=h”@R, where h”=Span{J’T ,J~,J~}=sI(2,W), 

J”_=d,, J;=zd,- 5, J:=z2a,--nz, (4) 

and n is a nonnegative integer. In other words, every element X(x) ~0 is of the form 

X(x)=,dz).J(z). & _ , J(z) E g”, 
z-Lx+) 

for some fixed n. This implies that the gauge Hamiltonian 

H,,,(z)=& .H(x)*LL(z) x=<-‘(z) 
is also a polynomial of degree at most two in the generators Jz, i.e., (dropping the explicit n 
dependence in the generators J”,) 

- Hgauge- n b -c CabJaJb + . 
F caJa+c*, (6) 

for some real constants c* , c, , and c,b= cba (the minus sign is for later convenience). The 
spectral problems of H and Hgauge are related in an obvious way: indeed, from (5) it follows that 
if x(z) is an eigenfunction of Hgauge with eigenvalue E then 

Icl(x)=/&)x(z)Iz=~(x) (7) 
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will be an eigenfunction of H with the same eigenvalue (not taking into account the boundary 
conditions). Since the Lie algebra g” admits as invariant module the space YE of real polynomials 
of degree at most n in z, if H is fully algebraic then H sauge has n + 1 linearly independent algebraic 
eigenfunctions lying in .Yn. Hence H has n + 1 linearly independent algebraic eigenfunctions of 
the form (7) with XE.#,, a polynomial of degree at most n. 

From (4) and (6) it follows4 that the gauge Hamiltonian is of the form 

- Hgauge n(n- 1) ii'-; Q'(z)+,, (8) 

where P. Q, and R are polynomials of degrees 4, 2, and 0, respectively, given by 

p(+c++z4+2c+()z3+C~Z2+2C~-Z+c-- 9 (9) 

Q(z)=c+z~+c,,z+c-, (10) 

R= 
n(nf2) 
~ coo+c*. 

12 (11) 

Note that, due to the Casimir relation 

1 n 
J;- 2 (J+J-+J-J+)= z (n+2), 

we have set, without loss of generality, c+-=O. There are also explicit formulas for the change of 
variables (3) and gauge factor ,u(z) needed to put the differential operator (8) in Schrodinger form, 
cf. Ref. 4. Indeed, assuming that P(z)>0 on an interval I then for z E I we have 

I 
2 & x=<-‘(z)= - 

Jpo’ p(z)= P(z)+ enpj I’&&] (12) 

and 

V(x)= -R+ 
-n(n+2)(PP”- $ P’2)-3(n+ l)(QP’-2PQ’)+3Q2 

12P 9 (13) 
z=i(x) 

where the primes denote derivatives with respect to z. 
The canonical form (8) of the quasi-exactly solvable Hamiltonian H is not unique, since there 

is a residual symmetry group preserving the Lie algebra h”, given by the adjoint action on h” of 
the Lie group of transformations generated by gn=h’@R. More precisely, the elements of gn are 
the infinitesimal generators of the standard GL(2,R) action on the space .Yn, given by 

p(z)E~~Hlj(~‘)=(YM,+S)np is). (; +WZ,R). (14) 

We shall denote, as is customary, by p,, this (irreducible) multiplier representation of GL(2,R) on 
.Y’,:, . Note that the action (14) is just the composition of the projective transformation 

aw+p 
Z=ywfs 
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and the gauge transformation with gauge factor p(w) = (v + ~3)“. The adjoint action of GL(2,R) 
on h” induced by (14) is given by 

A straightforward calculation4 shows that the generators of h” transform under the representation 
,02,-t-where Pn,i= P,, @det’, det:A Hdet A being the standard determinantal representation- 
independently of n. As a consequence of all this, the transformed differential operator 

is still of the form (8), with P, Q, and R replaced by appropriate polynomials fi, Q, and k of 
respective degrees 4, 2, and 0. It can be shown, cf. Ref. 4, that R = R and 

P(w)= *2 - (yw+s)4 p aw+p 
( 1 yw+s ’ &w)= A ~ tyw+@2 Q aw+P 

( 1 yw+s ’ (17) 

with 

A=det 

Hence the polynomials P, Q, and R determining the differential operator Hgauge transform under 
the representations P~,-~, p2,-,, and p,, of GL(2,R). Furthermore, the algebraic eigenfunctions of 
H gauge clearly transform under the representation pn , . indeed, if x(z) is an eigenfunction of Hgauge 
with eigenvalue E then it follows from (16) that 

aw+p i(w)=(yw+cq”.x ~ ( i v+6 
is an eigenfunction of I? sauge with the same eigenvalue. 

In Refs. 6 and 4, the form invariance of the differential operator Hgauge under the GL(2,W) 
action (16) described above was exploited to place Hgauge in canonical form. Indeed, it can be 
shown that there are ten inequivalent real normal forms for a (nonzero) fourth-degree polynomial 
P (Ref. 9) transforming under the representation p4,-2 of GL(2,W), each of which leads to a 
canonical form for Hgauge . Of these ten canonical forms, five correspond to normalizable Hamil- 
tonians, whose algebraic eigenfunctions are square integrable (provided the coefficients c,b and c, 
satisfy certain inequalities), and the remaining are associated to Hamiltonians with periodic po- 
tentials. The five normal forms associated to normalizable Hamiltonians, which are characterized 
by the fact that P has at least one multiple root on the real projective line RP, are given by 

1. v(z2f l), 

2. u(z2- l), 

3. uz2, (19) 

4. z, 

5. 1, 
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where v>O is a real parameter. For example, the quasi-exactly solvable potential discussed in Ref. 
1 corresponds to the fourth normalizable canonical form P(z) = z. The remaining normal forms, 
corresponding to periodic potentials, are 

6. v(l--‘)(I-K2Z2), 

7. V(l-Z2)(l-K2(1-Z’)), 

8. V(l+Z2)(1+(l-K2)Z2), 

9. u( 1 +z2)2, 

10. V( 1 -z2), 

(20) 

where Y>O, O<K< 1. 

Ill. THE RECURSION RELATION 

Let H= -a,“+ V(x) be a quasi-exactly solvable Hamiltonian. From the previous section, we 
know that there is a change of variable (3) and gauge factor ,u(z)>O such that 
H(x) = cc(z) .Hgauge(z). [ l/~(z)l~~=~~~~~ witi ffgauge g iven by (6) (and c+-=O). Furthermore, if 
H is fully algebraic then it has n 4 1 algebraic eigenfunctions of the form (7), with x(z) E.?, an 
eigenfunction of Hgauge . Let xE(z) be an eigenfunction of Hgauge with eigenvalue E (not neces- 
sarily a polynomial in z). Writing 

co 

xdz) =kz,o Pk(E)Xk(Z), (21) 

k 

Xk(Z)= $3 k>O, 

and taking into account that 

J-*Xk=Xk-1, J+.Xk=(k-n)tk+ l)Xk+l, (22) 

cf. (4), we easily find that the coefficients P,(E) satisfy the following five-term recursion relation: 

-c--Pk+2=[(2k-n+ l)co-+c-]Pk+l +[E+c*+CO(k-~)+CW[k-5jz]Pi+k(kl-n) 

X[(2k-n-l)c+o+c+]Pk-I+k(k-l)(k-l-n)(k-2-n)c++Pk-2, k>o. 

(23) 

If c-- #O, the general solution of the recursion relation (23) depends on the two arbitrary 
functions Po( E) and P,(E). This simply reflects the fact that when c -_ #O the leading coefficient 
P(z) of ffgau8e does not vanish at z =0 [cf. (9)]; thus, the differential equation (H,,,,,-E),Y~=O 
has a regular point at the origin, and therefore it admits two linearly independent solutions (21) 
analytic at 0. If PO(E) and P,(E) are chosen to be polynomials in E, then (23) implies that all the 
coefficients Pk( E) are polynomials in E. However, the general recursion relation (23) suffers from 
two major drawbacks. In the first place, even if we choose P,(E) and P,(E) as polynomials of 
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degree 0 and 1 in E, respectively, (23) is incompatible with the desirable property that P,(E) be 
of degree k in E for all k, unless c--=0. Second, even in this case (23) will be in general a 
four-term recursion relation, implying that the polynomials P,(E) may not be orthogonal with 
respect to any (nonzero) Stieltjes measure dw(E). Indeed, it is well known,“” that a necessary 
and sufficient condition for a family of polynomials { Pk}r= o (with deg P, = k) to form an orthogo- 
nal polynomial system is that P,(E) satisfies a three-term recursion relation of the form 

Pk=(AkE+Bk)Pk-,+CkPk-2, ka 1, (24) 

where the coefficients A,, B, , C, are independent of E, A,#O, C,=O, and C,fO for k> 1. If the 
coefficient Ck in (24) vanishes for some positive integer k, then this recursion relation only defines 
a weakly orthogonal polynomial system.” It is one of the main goals of this paper to show that 
both difficulties described above can always be overcome, provided (roughly speaking) that we 
expand the eigenfunction xE with respect to an appropriate variable. This will be achieved by 
using the nonuniqueness of Hgauge , due to the GL(2) symmetry described in the previous section, 
to place Hgauge in a suitable canonical form. 

From the form of the recursion relation (23), it follows that both difficulties described above 
disappear if 

C--=c++ =o. 

Indeed, if (25) holds then (23) reduces to the three-term recursion relation 

(25) 

-[(2k-n- l)co-+c-]Pk= E+c,+co k-y-1 +cm [ [ n ) [k-;-l)2]P~-~+(k-l) 

X(k-2-n)[(2k-n-3)c+o+C,1Pk-2, kal, (26) 

which uniquely determines all the functions Pk(E) in terms of P,(E) provided that, for all 
positive integer values of k, the coefficient of the left-hand side of (26) does not vanish. If P,(E) 
is taken as a constant, for instance if PO(E) = 1, then (26) implies that P,(E) is a polynomial of 
degree k in E for all k>O. 

Let us see now that we can alwtys arrange for (25) to be satisfied, by using the action (17) to 
transform P(z) into a normal form P(w) for which (25) holds. Indeed, (25) simply states that the 
polynomial P(z) vanishes at z =0 and z = “, when z is allowed to vary over the complex projec- 
tive line CP. Note that we need z to belong to the complex projective line at this stage so that P 
is guaranteed to have a root, which is essential for the argument that follows. Consequently, the 
GL(2,R) action described in the previous section will be replaced in what follows by a GL(2,C) 
action. 

We can assume, first of all, that P(z) is one of the normal forms listed in Eqs. (19) and (20). 
We must distinguish three cases, characterized by the position of the roots of P in the complex 
projective line. Indeed, either P has two different roots z I f z2 in CP, or it has four coincident 
roots. In the first case, either one of the roots is at infinity, or both roots are finite. 

A. Case 1: P has two different roots z1 # z2=33 

This case occurs when P is one of the first four normalizable canonical forms (19), or the fifth 
periodicAcanonical form (20). In this case, the translation w = z-z 1 transforms P(z) into a poly- 
nomial P(w) vanishing at zero and infinity. In the original z coordinate, by (18) this amounts to 
replacing (21) by 

x~(l)=~ii~ P,(E) T. (27) 
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In other words, we expand X&Z) as a power series around the point z =zt , which is a singular 
point of the linear differential equation (Hgauge -E)xE=O (if z1 is a simple root of P, z 1 is actually 
a regular singular point, whose indicial equation is easily seen to have 0 as a root). By (7), in the 
“physical” coordinate x (27) becomes 

(28) 

6. Case 2: P has two different finite roots z, # z, 

This is the case when P is one of the first four periodic normal forms (20).AThe projective 
transformation w = (z - z i)/(z - z2) will again transform P(z) into a polynomial P(w) vanishing 
at w=O, m. Going back to the original z coordinate, by (18) we just have to replace (21) by 

apart from an inessential overall factor. In terms of the physical coordinate X, (29) can be written 
as 

~~o=a(i(x))(i(x)-Z2~~k~o ji- p/c(E) ;;;;I:: k. i i (30) 

C. Case 3: P has a quadruple root 

This corresponds to the fifth normalizable canonical form, P= 1, which has a quadruple root 
at infinity. Note that P = 1 implies that the physical coordinate x can be taken as the canonical 
coordinate Z. By (9), we have 

c++=c+o=coo=c&=o, c--= 1. 

Performing an additional translation, if necessary, we can also take without loss of generality 
c _ = Q(0) =0 (notice that P is constant, and therefore does not change under translations). Thus 
Eq. (23) reduces in this case to 

-Pk+2=[E+C,+Co(k-~)]Pk+k(kln)c,P,,. ks0. (31) 

Since P= 1 is the fifth normalizable case of Refs. 4 and 6, c+ must vanish if we want H to be 
normalizable, i.e., the algebraic eigenfunctions of H to be square integrable. Therefore, in this 
case (31) reduces to 

-P,,,=[ .+,,+,,( k- ;)]&, k30, 

which is equivalent to two two-term recursion relations for the even and odd coefficients P:= P,j 
and Pi’ = P2j+ 1, namely 

-p;+4 E+C*+CO( 2j+E- ;)]P:, jao; e=O,l. 

Note that in this case the potential is V(x) = 1/4c$~~ - c* (with c,<O), cf. Ref. 4. 
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To complete the discussion of cases 1 and 2, we still have to deal with an important technical 
issue; namely, we must find under what conditions the coefficient of Pk in (26) never vanishes for 
positive integer values of k. Let P and Q be the transforms of P and Q under the projective 
transformation Z-W defined in the foregoing discussion of cases 1 and 2; note that, by construc- 
tion, P(w) vanishes at M’=O, ~0. The coefficient of interest can be expressed as 

(2k-n- l)?o-+;-, k= 1, (33) 

where 

to-=$‘(O), 2-=&O). 

From (17) it easily follows that 

t-=@‘(zl), :-=Q(zl), 

for case 1 (u~=z-z,), and 

n P’(z,) ~ Q(z,, 
co-=2(z,-z2), c-=- z*-z2’ 

for case 2 (w= (Z-Z i)/(z- ~2)). We shall now distinguish three subcases: 

(34) 

(35) 

1. Case i. z, is a simple real root of P 

This case occurs when P is one of the canonical forms 2, 4, 6, 7, or 10. Note that in this case 
the mapping ZH+V is real, and so are the coefficients ?o-, 2-. From (12) and (34)-(35) it is 
immediate to deduce the asymptotic formulas 

112 x - lz-211 , p(z) - IZ-Z*11/4(c-I%-q 
z-z, z-z, 

where we have dropped unessential constant multiplicative factors from the right-hand side, and 
have taken for convenience z i as the lower limit of the integral giving x in terms of z. We saw in 
the previous section that when H is fully algebraic it has n+ 1 linearly independent algebraic 
eigenfunctions of the form (7), where XE.?,, . It follows that the polynomial factor x(z) cannot 
vanish at the origin for all the algebraic eigenfunctions of H. Hence there is at least one algebraic 
eigenfunction of H whose asymptotic behavior at x=0 is given by 

l/2(;- I>,- -n) w--,14 . 

If all the algebraic eigenfunctions of H are regular at x=0, then we must have 

Since (33) can be written as 

it follows from (36) that the coefficient (33) cannot vanish in this case. 

(36) 
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2. Case ii. zl is a simple complex roof of P 

In this case P is either the first or the eighth canonical form. Since zt is not real, the mapping 
z++w is not real either, and the above asymptotic argument is not valid (the eigenfunctions of H 
need not be regular outside the real axis). For the first canonical form (19), we can take w = z - i 
and therefore 

A 

Co-=iv, i-=c--c++ic() 

from (34). Hence the coefficient (33) does not vanish in this case provided that the following 
conditions are satisfied: 

1 
c-Zc, or z nfl-T #1,2,... . 

i i 
(37) 

It is easily checked that the choice w = z + i leads exactly to the same conditions. For the eighth 
canonical form, we can take w = (z - i)/( z + i), and therefore, from (35), 

1 
i+ =- VK’, 

2 
L=?+i (c+-c-). 

Hence in this case the conditions for the coefficient (33) not to vanish are 

c-fc, or k(n+l--$)#1,2 ,... 

It is straightforward to check that the choice w = (z + i)/(z - i) yields the same conditions, while 
the other natural choice w = ( dmz 7 i)l( &?& + i) only has the effect of replacing the first 
condition(38)byc+#(l-K*)c-. 

3. Case iii. 2, is a multiple root of P 

This case takes place when P is either the third or the ninth canonical form, and in both cases 
(33) reduces to 2-. For the third canonical form (19), if c,#O then we take w =z, and therefore 
2 - = c _ #O. If c _ =0, then c + #O if all the algebraic eigenfunctions of H are square integrable (see 
Ref. 4). Hence, taking w= l/z, we get i(w)= VW* and a= -(c++ccw), so that Z,-=0 and 
c- = -c+ #O. Hence the coefficient (33) cannot vanish in this case. Finally, if P is the ninth 
canonical form (20) then w=(z-i)l(z+i) and 

t-=:+; (c+-c-). 

Hence (33) will not vanish if 

c+#c- or cu#O. 

Note that when (39) does not hold V reduces to a constant potential: 

(39) 

2 

v=~-&z+2)-c*. 

In.summary, the previous analysis shows that the critical coefficient (33) cannot vanish for 
any positive integer k provided that V is fully algebraic, that all its algebraic eigenfunctions are 
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regular [or square integrable, for the third normalizable canonical form (19)], and that conditions 
(37), (38), and (39) are satisfied when P is one of the normal forms 1, 8, or 9, respectively. If (33) 
does not vanish, defining new polynomials P, by 

(-l)k & 
if Cc-#O; 

P,= (40) 

the recursion relation (26) can be written in the more standard form 

Pk+,=[ E+c,+F,( k- 5) +i,i k- ;)*]&k(k-.-.l@+o(2k-rz- 1)+;+1 

x[;o-(2k-n- l)+;--jfik-.t, ka0. (41) 

We have thus proved the main theorem in this section. 
Theorem 1: Let V be a fully algebraic one-dimensional quasi-exactly solvable potential 

whose algebraic eigenfunctions are all regular [or norrnalizable, if V corresponds to the third or 
fifth canonical forms in (19)]. Assume, furthermore, that conditions (37), (38), or (39) are satisfied, 
if V is obtained from the first, eighth, or ninth canonical forms (19)-(20), respectively. Then V 
defines a family of weakly orthogonal polynomials {Pk}kpEO satisfying a three-term recursion 
relation (41) [or (32), if V corresponds to the fifth canonical form]. The polynomials P, are 
defined by (40) and (28), if V is associated to one of the canonical forms l-4 or 10, or by (40) and 
(30), if V corresponds to one of the normal forms 6-9. Finally, the potential V associated to the 
fifth canonical form defines two families of weakly orthogonal polynomials P9=P,j and 
Pi’= P2j+ 1 through (28). 

We shall say that a quasi-exactly solvable potential V is exactly solvable if it is independent 
of the “spin” parameter n. This implies that V has n algebraic eigenvalues and eigenfunctions for 
arbitrary n EN, so that we can algebraically compute an infinite number of eigenvalues of V 
(leaving aside the boundary conditions). All exactly solvable normalizable one-dimensional po- 
tentials have been classified; see Ref. 4 for a complete list. The quintessential example of exactly 
solvable one-dimensional potential is the harmonic oscillator potential, which corresponds to the 
fifth canonical form (19). We have seen in the previous section that in this case there are two 
families of orthogonal polynomials [the odd and even coefficients in (28)], each of which satisfies 
a two-term recursion relation (32). We shall now show that, as conjectured in Ref. 1, the latter 
property actually characterizes exactly solvable normalizable potentials: 

Theorem 2: The weakly orthogonal polynomial system associated to an exactly solvable 
normalizable potential satisfies a two-term recursion relation. 

Proof: The proof is a simple case-by-case analysis using the classification of exactly solvable 
normalizable potentials given in Ref. 4. Indeed: for the first normalizable canonical form 
P(z)=$z*+ 1) we have w=z?i, and therefore P(w)=P(wti)= vw(wZ2i), so that c!+~=O. 
Since Q(w)=Q(wti), we also have ~+=@‘(0)/2=Q”(+i)/2=c+. But the exactly solvable 
potentials associated to this normal form are characterized by the vanishing of c+ , Ref. 4, so that 
n c+ = ?+o= 0, and (41) is a two-term recursion relation. Similarly, for the second normalizable 
canonical form, P(z) = v( z* - 1) and, for instance, w = z T 1. Proceeding as before we obtain that 

* ,+ c+~=O and c”+=c+. Since exactly solvable potentials are again those satisfying the condition 
c+=O, (41) reduces to a two-term recursion relation. 

The third normalizable canonical form has P(z) = vz*, and therefore c+~= co- = 0. The ex- 
actly solvable potentials are characterized by the vanishing of the coefficients c+ or c- , but not 
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both simultaneously. In the former case we can take w = z, while in the latter w is proportional to 
l/z [see the foregoing discussion on the vanishing of the critical coefficient (33)]. In either case, 
the coefficient of P,-, in (41) vanishes identically. 

The fourth normalizable canonical form is given by P(z) = z, so that w = z and ~5 + o = c + o = 0, 
and its exactly solvable potentials are defined by the vanishing of the coefficient c+ = c^+ = 0, so 
that (41) is two term. Finally, for the fifth normalizable canonical form P(z) = 1 all normalizable 
potentials are automatically exactly solvable (they are translates of the harmonic oscillator), and 
we have already seen that its associated orthogonal polynomials satisfy the two-term recursion 
relations (32). Q.E.D. 

IV. THE ORTHOGONAL POLYNOMIALS 

We shall study in this section the properties of the family of weakly orthogonal polynomials 
associated to a quasi-exactly solvable one-dimensional Hamiltonian in the manner described in the 
previous section. Since, as we shall see, these properties can be established directly from the 
recursion relation (41) or (32), these polynomials have basically the same properties as those 
studied by Bender and Dunne in Ref. 1. 

We have seen in the previous section that the polynomials p(E) defined by a quasi-exactly 
solvable one-dimensional Hamiltonian satisfy a three-term recursion relation of the form 

li~+,=(E-b,)~,-ak~k-,, k>O, (42) 

with ao=O and 

antI= 0. (43) 

For the fifth canonical form, the polynomials ( - l)kPi and ( - l)kPL also satisfy a recursion 
relation of the form (42), with a,=0 for all k>O. Note that the coefficients ak,bk in (42) are 
guaranteed to be real only for the canonical forms 2-7 and 10 (for which P has a real root). As 
remarked in the previous section, the vanishing of ak for a positive integer value of k means that 
the polynomials kk are only weakly orthogonal. In particular, many classical results, based on the 
fact that a,>0 (or sometimes a+O) for kal cannot be applied in our case. 

By Favard’s theorem, Ref. 2, there is a moment functional, that is a linear functional s acting 
in the space C[E] of (complex) univariate polynomials, such that the polynomials bk are orthogo- 
nal under %: 

,. I* 
%p,p,j = Yk&, k,l E N. (4.4) 

The functional % is unique if we impose the normalization condition Z(i,)=%(l)= 1. It is also 
known (Boas’s theorem*) that there is a (not necessarily unique) function of bounded variation o 
such that 

S(P)= Irn ~(E)dwtE) 
--cc 

(45) 

for an arbitrary polyno+al p. The coefficient yk=s(@), which the!efore plays the role of the 
square of the norm of Pk , can be computed by multiplying (42) by Pk- , and taking -!Z of both 
sides, obtaining 

o=yk-akyk-l, kal. 

Taking into account that ro=Z( l)= 1 we get 
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k 

Yk=rl[ aj, kal. 
j=l 

(46) 

In particular, from this formula follows one of the key properties of the weakly orthogonal 
polynomial system associated to a one-dimensional quasi-exactly solvable Hamiltonian. Namely, 
from (43) we have 

yk’o, kan + 1, 

so that all the polynomials @k with k*n -t 1 have zero norm. From this formula it also follows that 
the “squared norms” yk will be positive for ken if and only if ak>O for 1 s ken. It can be 
shown by a straightforward computation that this is always the case when P is one of canonical 
forms 2-4 in (19), assuming that all the eigenfunctions of H are square integrable and that H is 
not exactly solvable. Note also that when H is normalizable [canonical forms l-5 inJ19)] and 
exactly solvable then ak=O for all kS0. Hence the square norms of all the polynomials Pk vanish, 
from which it easily follows from (42) that %= @c--b,). 

Other important properties of the polynomials Pk concern their ze;os. Classically,* it can be 
shown that if ak>O for all k EN then the zeros of the polynomials Pk satisfying a three-term 
recursion relation (42) are real and simple. In our case the condition a,>0 for all k E N can never 
hold on account of (43). However, if H is fully algebraic it can still be proved that all the zeros of 
I; nfl are real and simple. Indeed, by hypothesis H is self-adjoint on the space 9l of functions of 
the form (7), with x&?” . Hence H has n + 1 linearly independent algebraic eigenfunctions lying 
in ‘31, whose corresponding eigenvalues are real (by self-adjointness) and distinct (H being a 
one-dimensional Sturm-Liouville operator). Let us denote by E,< E, < . . . <E, these n + 1 real 
eigenvalues of H on 9l, and by e/(x) = GE,(x) the eigenfunction corresponding to the eigenvalue 
E, . Then (7) and either (28) or (3q) imply that Pk(EI) =O, or equivalently gk(El) =0, for kan + 1 
and 0 G f G n . In particular, since P, + , is of degree n + 1 and all the eigenvalues E, are different, 
it follows that 

i..+,(E)=l~o (E--E/), 

where we have used (42) and the fact that Fo= 1. In other words, k,, + 1 has n + 1 simple real zeros 
at the n + 1 algebraic eigenvalues of H. Furthermore, from the fact that fik vanishes at E, for 
k> n + 1 we conclude that there exist manic polynomials Qk of degree k such that 

b 
1 

ktntl=QkPnt1,. k>O. (48) 

This is the so called factorization property of the polynomial system { Fk}ka N, cf. Ref. 1. Note 
that the vanishing of Pk(E1) for all kan f 1 is consistent with the recursion relation on account of 
(43). In fact, when ak is positive for k>l and bk is real for k20, (47) follows directly from the 
recursion relation by Lemma 3, without using the fact that the polynomials Pk are asso$ated to a 
fully algebraic quasi-exactly solvable one-dimensional Hamiltonian. The vanishing of Pk(E& for 
k> n + 1 is then an immediate consequence of P, + 1 (E,) =O, the recursion relation (42) and (43). 

From the previous equation and (42) it follows that the polynomials Qk also satisfy a three- 
term recursion, namely 

Qk+,=(E-bk+nt,)Qk-ak+n+,Qk-,, kzO> 

and are therefore orthogonal with respect to an appropriate moment functional ZQ (in general 
different from 55). 

It was heuristically argued in Ref. 5 that 
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“=,$I0 uja(E-Ej) (49) 

on C[E], where the coefficients Wj are defined by 

go &(-VW,= 40, k=O 1 ) ,..., n. (50) 

Equivalently, the discrete Stieltjes measure d&(E) defined by the function 

O(E)=,zo Wje(E-Ej), (51) 

where B(t) is Heaviside’s step function, satisfies (45). Note that the linear system (50) uniquely 
defines the n+ 1 constants Wj, since by (27) or (29) its coefficient matrix is the matrix of the 
change of basis {c,(z-zl)klk!}f=O or {c,(z-zl)k(z-z2)n-klk!}~!0 to {,yEI};=,, in c@pn, ck 
being the coefficient of @k in (40). It is not difficult to show rigorously that (44) is satisfied. 
Indeed, by the uniqueness of LZ this is equivalent to showing that if Ji90=C~=o~jG(E - E,) then 

and that 

~(,(@l)=o, kfl, . (52) 

L?Y&))=~~( l)= 1, 

since J&i) and Z&) must coincide if (52) holds due to the recursion relation (42) and (46). 
From the definition of wj we deduce that the last equation, together with (52) for k=O and 
I=1 ,...,n, are satisfied. Suppose now that (52) holds for k=O,l,...,K (Ksn-1) and k<lSn. 
Multiplying (42) by P, and taking so of both sides we obtain 

if K-I- 1 <l<n, by the induction hypothesis. But, using again (42), 

l 
~~(E~KI;1)=~~(~K.E~l)=~~(l;K~l+l)+bl~~(i)Ki)[)+al~~(~Ki)[-l)=O, 

by the induction hypothesis (since I>K+ 1 implies I- 1 >K). Hence (52) is true for O~k,l~n. 
Finally, (52) is trivially true when k or 1 are greater than n by the factorization property (48) and 
(47). 

We shall next show that all the coefficients wj are positive if bk is real for all OSkGn and 
a,>0 for liken. [S everal instances of this result were checked numerically in Ref. 5 for the 
orthogonal polynomials associated to the Hamiltonian (l).] The proof is based on the following 
simple lemma: 

Lemma 3: If a,>0 fork= 1,2,...,n and b, is real for k=O,l , . . . ,n then g is positive-definite 
on .YZ”2,. In other words, if p E.T’~,, is a real polynomial of degree at most 2n, p#O and p(E)20 
for all E E R then 5?(p) >O. 

Proof A polynomial p ~3,~ which is non-negative for all real values of E must be of the 
form q2 + r’, wheI;e q,r ~9~ are real polynomials. Write q = c;=sqkPk ; then all the coefficients 
qk are real, since Pk is ? real polynomial for Ocksn by the hypotheses. Using the orthogonality 
of the polynomials Pk we obtain ~(q2)=~~=,&yk. Similarly, if r=C;=apkPk then 
x(r)=C;=&yk, and z(p)=Z;=O(qi+ri)yk. Since yk>O for k=O,l,...,n by (46) and the 
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hypothesis on the coefficients ak , it follows that %(p)>O, and x(p) =0 if and only if qk=rk=O 
for k=O , , . . . ,n, that is if and only if p =O. 1 Q.E.D. 

Proposition 4: If ak>O for k= 1,2,.. .,n and b, is real for k= O,l,. ..,n then wk>O for all 
k=O,l,...n. 

Proof Apply the previous lemma to the polynomials IIO<j+k<n(E-Ej)2 ET.,, for 
k=O,l,...n. Q.E.D. 

Note that the hypotheses of the previous proposition are satisfied when P is one of the 
canonical forms 2, 3, or 4, provided that all the eigenfunctions of H are square-integrable and that 
H is not exactly solvable. In particular, it is satisfied by the Hamiltonian (1). 

The (Hamburger) moment problem for the moment functional (49) associated to the weakly 
orthogonal polynomials defined by a quasi-exactly solvable one-dimensional Hamiltonian consists 
in determining whether there is a distribution function (i.e., a nondecreasing function of bounded 
variation) o such that % can be represented by (45) for an arbitrary polynomial p. We have 
already shown that this problem has a solution (51), since (51) is clearly nondecreasing and of 
bounded variation. We shall next show that this solution is unique (up to an additive constant), so 
that the moment problem associated to the weakly orthogonal polynomial system {Fk}ke y is 
always determined.12 Essentially, this is due to the fact that the spectrum 

of the distribution function (51) is the finite set {E,}~=o.13 According to a well known result in the 
classical theory of orthogonal polynomials,2 a distribution function w defines a positive-definite 
functional on C[E] through integration with respect to the Stieltjes measure do(E) if and only if 
me spectrum of o is infinite. Since % is not positive-definite (LT(kz+ i) = yn+ i =O), any solution 
w of (45) must have a finite spectrum, and will thus be of the form 

ii 
w(E)= c &8(x+&)+C 

k=O 

for some constant C, up to an immaterial redefinition of w in a(w). If I is a compact interval 
containing o-(D)Uc(o), then 

Since I is compact, a well known theorem (cf. Ref. 2) shows that & and w differ by a constant at 
all points in which both & and o are continuous. But this easily implies that E,= Ek and wk= Gk 
for k=O 1 , ,. . .,n =Z, whence o=O+ C, as stated. Note that the same argument shows that the 
moment problem in any interval containing [Eo,E,] is determined; in particular, the (Stieltjes) 
moment problem in [E,,m) is also determined. In this respect, the weakly orthogonal polynomials 
associated to a quasi-exactly solvable one-dimensional Hamiltonian behave in exactly the same 
way as the classical orthogonal polynomials, whose moment problem is also determined.2 

The moments of the moment functional T are by definition the numbers 

/sLk= %(Ek)= x Ek dh(E)=,io o,E:, kEN. (53) -cc 

If the hypotheses of Proposition 4 hold, all the moments are real. From (53) we see that the 
module of the kth moment & does not grow factorially as k tends to infinity, as argued in Ref. 1, 
but instead it diverges like the kth power of a constant.i4 

We shall next show that if the coefficient ak satisfies the condition 
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akf& lskcn, (54) 

which guarantees that the polynomials pk have nonzero norm for ken, then the momenfs ,!,&k with 
k 3 n + 1 satisfy a constant coeflcient difference equation of order n + 1. To this end, recall first of 
all that the bilinear form (p,q) =S(pq) defined by 3 in C[E], when restricted to the subspace 
C@9[, is represented in the basis {Ek} ocks[ by the S)TUnetIiC matrix (/Li+j)Oci,jslr whose 
determinant we shall denote by Ar . On the other hand, the matrix of the bilinear form (. , .) in the 
basis {Pk}aGkSl is clearly diag(l,y,,..., yl); therefore, by (46) and the hypothesis on the coeffi- 
cients ak , we conclude that A,#0 and 

Ak=o, k>n+ 1. (55) 

In particular, since A,#0 but An+ i =0, the last column of A,,+ i must be a linear combination of 
the remaining columns, so that 

?2+1 

pk= ,g, cipk-i 9 n+ 1 CkG2(n+ l), (56) 

for some (in general complex) constants c i , . . . ,c, + t . An easy induction argument using (55) then 
shows that the above relation is actually valid with the same constant coefficients Ci for all 
kap + 1, as claimed. Innfact, it is not hard to see that ci in (56) is minus the coefficient of En+ lwi 
in P,,,. Indeed, write P,, 1 = En+’ -p,, , with 

ll+1 
pa’ 2 cEn+‘-i, 

i=l 

and let Qk=Ek-q,-,, so that q-i=0 and degq,-,Sk-1 for kal. From (48) it follows that 
n n 

Pk=Ek-Ek-n-iPn-qk-n-2Pn+l, k>n+ 1, 

which by (44) implies that 

n+1 

~k=~(Ek)=~(Ek-“-‘pn)= c </hk-i 9 n+ 1 SkS2(n+ 1). 
i=l 

Comparing with (56) and taking into account the linear independence of the columns of An we 
immediately obtain that <= Ci for i= 1,2,. . . ,n + 1, as stated. 

Note that the fact that the moments satisfy a constant coefficient recursion relation (56) (with 
k>n+l) actually characterizes weakly orthogonal polynomial systems. Indeed, (56) simply ex- 
presses the fact that the (n +2)th column of A, for 12 n + 1 is a linear combination of the first n + 1 
columns. Hence (56) implies (55), and since An+l = n;,‘:yj this means that yk=O for some 
kGn+l, so that ak=O for some kSn+l by (46). 

Consider, for example, the Hamiltonian (1) studied in Ref. 1, which corresponds to the fourth 
canonical form with 

n=J- 1, c+= - 16, co=c.+=O, c-=2s+$(n-1). 

The coefficients of the corresponding recursion relation (42) are easily found to be 

(57) 

bk=O, ak= 16k(J-k)(k+h- l), k30. (58) 

Since we can take s21/2 without loss of generality, we see that ak>O for 1 =G ksn, so that (54) is 
satisfied. Furthermore, since 6, vanishes for all kS0 the polynomials Pk have parity (- l)k, and 
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therefore all the odd moments vanish (the corresponding moment functional is said to be symmet- 
ric). For J=3 (that is, n=2), according to the foregoing observations we know that the moments 
satisfy a third-order recursion relation of the form (56), whose coefficients are minus the coeffi- 
cients of E2, E, and 1 in i3. From (42) (with jo= 1) we obtain 

b,=E, j2=E2-64~, fi3(E)=E3-32(4s+ l)E, (59) 

so that c i = c3 = O--as expected, since the moment functional is symmetric-and c2 = 32(4s + 1). 
Therefore the even moments satisfy the first-order recursion relation 

~2j’32(4S+ l)~LL2j-2, j22, (60) 

and since pZ = y, = a, = 64s, from (60) we obtain 

,uuzj=32je1(4s+ l)j-‘-64s, jZ=l. (61) 

Thus, in this case ~j has a pure power growth. The same result can be obtained using (53). 
Indeed, from (59) we have 

Eo=-X=-~m, E,=O, E2=X, 

and therefore 

S 2s+1 
w)=4s+ 1 7 Wl=4s+ l 9 02’Wo 

from (50) and (59). Thus 

,%=& [t-i)k+Xkl~ 
which yields hj+, =0 for j>O and (61). 

V. CONCLUSIONS 

We have shown in this paper how every quasi-exactly solvable one-dimensional Hamiltonian 
satisfying conditions (37)-(39) defines a weakly orthogonal~polynomial system {Pk)r=o through 
the three-term recursion relation (41) (with initial condition PO= 1). It is important, in this context, 
to emphasize the weak orthogonality of the polynomials pk, i.e., the fact that the norm of pk may 
vanish-and in fact does vanish for k 3 n + 1, n being the “spin” parameter present in the Hamil- 
tonian. A,s explained in Sec. IV, this is an inevitable consequence of the vanishing of the coefti- 
cient of P,-, in the recursion relation (41) for k=n+ 1, which is made possible by the fact that 
the parameter n is a non-negative integer. The latter fact, however, is an intrinsic property of 
one-dimensional quasi-exactly solvable (as opposed to merely Lie-algebraic) Hamiltonians; in- 
deed, it is a key factor in the explanation of the partial integrability of a quasi-exactly solvable 
Hamiltonian outlined in Sec. II. To better illustrate this point, consider the Hamiltonian (l), which 
is Lie-algebraic for all real values of the parameter J. Indeed, H can be written in the form 
(5)-(6),with&)-x2/4,p(z) = e-4Z2zS-1’4,~++=~+O=~00=~+-=~--=0,~O~=1/2,andthe 
remaining coefficients given by (57), where now n is to be regarded as an arbitrary real parameter. 
When n is not a non-negative integer, the generators (4) do not leave invariant any finite- 
dimensional polynomial module Z’,, , so that H is in general nonintegrable-there is no special 
reason for H to have algebraically computable eigenfunctions of the form (7), with x a polyno- 
mial. However, even when n is not a non-negative integer, the Lie-algebraic nature of H and 
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conditions (25) imply that the polynomials ik defined by (7), (21), and (40) still satisfy a three- 
term recursion relation (42), with the coefficients given by (58). In other words, what makes H 
quasi-exactly solvable is not merely the fact that its associated polynomials satisfy a three-term 
recursion relation (42) (which implies their orthogonality with respect to some Stieltjes measure), 
but the fact that the coefficient ak in this recmsion relation vanishes for some positive integer 

value of k, so that the associated polynomials Pk can only be weakly orthogonal. 
As we saw in Sec. IV, the Stieltjes measure with respect to which the polynomials Ijk 

associated to a quasi-exactly solvable Hamiltonian H are orthogonal is supported in the set of 
algebraic eigenvalues of H, which is a finite set. For this reason, the polynomials Pk are discrete 
polynomials. Although the classical (Hermite, Legendre, Laguerre, Tchebycheff, etc.) polynomials 
of Mathematical Physics are orthogonal with respect to a continuous measure, discrete (Charlier, 
Hahn, Krawtchouk, Meixner, Tchebycheff, etc.) polynomials have also been studied in the math- 
ematical literature of orthogonal polynomials, cf. Ref. 2. Note that a discrete polynomial system is 
truly-as opposed to weakly-orthogonal if and only if the supporting set of its Stieltjes measure 
is infinite. Some of the discrete polynomials cited above, like the Hahn, Krawtchouk, or discrete 
Tchebycheff polynomials, are in fact weakly orthogonal. In general, weakly orthogonal polyno- 
mials arise naturally, for instance, in the theory of approximate polynomial curve fitting.15 More 
recently,16 the study of second-order finite difference eigenvalue equations with infinitely many 
polynomial solutions has led to an interesting connection between a nonstandard finite- 
dimensional representation of .s I(2) and certain families of weakly orthogonal discrete polynomials 
(Hahn polynomials and analytically continued Hahn polynomials). 

Let us stress, in closing, that the present paper deals only with one-dimensional quasi-exactly 
solvable Hamiltonians. It is an interesting open problem to generalize these results to quasi-exactly 
solvable multi-dimensional systems, a possibility already considered in Ref. 5, where a heuristic 
(but inconclusive, in our opinion) argument was advanced suggesting that all quasi-exactly solv- 
able systems give rise to weakly orthogonal polynomials. In the two-dimensional case, at least, the 
classification of quasi-exactly solvable Lie algebras of first-order differential operators in two 
variables presented in Refs. 7 and 17 could be used as a starting point for an analysis along the 
present lines. 
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I. INTRODUCTION 

It has been known for several years that the non-linear a-model, in a two dimensional space- 
time, has a non-local conservation law’ that can be cast as a non-local symmetry transformation.2’3 
This is usually shown to be true on the basis of the existence of a “Lax pair,” a pair of linear 
differential equations depending on a spectral parameter, whose compatibility condition is exactly 
the field equation of the model. Exact integrability of the system follows, via the inverse scattering 
procedure.4 

An infinite set of non-local conserved charges can be directly obtained from this Lax system, 
as in Ref. 1, or as in Ref. 2. In the former reference the authors prove that, with a careful selection 
of the boundary conditions, the variable of the Lax pair is time independent for spatial coordinate 
X’ = + ~0, given initial conditions at X’ = - m. Thus a Taylor expansion in the spectral parameter 
gives a series of non-local conserved charges. In the latter paper, the authors apply the transfor- 
mation to the global (left, for instance) conserved current. This gives them a spectral parameter 
dependent conserved current, which upon Taylor expansion generates an infinite set of non-local 
currents, all of them conserved. 

Although very well known and studied, in general and applied to this particular model, the 
Lax pair has a somewhat obscure physical origin. Also, there is no systematic way to find it in a 
given system. We hope to contribute a small step to solve these problems. We show here a way to 
get the Lax equation for the two dimensional u-model, which somewhat clarifies its physical 
meaning. This way of proceeding also enables the study of a possible generalization to more 
dimensions. 

We should stress here that a higher dimensional version of the non-local symmetry of this 
model is sensible. Actually the (4D Euclidean) self-dual gauge theory has this kind of symmetry 
transformation,5 which is also related to several (2 + 1) dimensional integrable systems.6 More- 
over, this symmetry and its associated Lax pair is also present in (at least) a subspace of the 
solution’s manifold of a large class of models based on vacuum general relativity.‘** 

Aside from its own interest, the non-local symmetry of this system is relevant in the Gribov 
problem. We must only realize that (classically) the vacuum sector of the Yang-Mills theory is 
exactly the n dimensional a-model if we choose the Lorentz (d. A = 0) gauge. So the existence of 
a continuous 1 -parameter family of solutions of the non-linear a-model tells us of a continuum of 
vacua in the non-Abelian gauge theories in the Lorentz gauge. 

II. CONSTRUCTING THE LAX PAIR 

Only. to fix our notation, we enumerate first some standard results about this model. We write 
for the action 

“Electronic mail: arie1kIkab.cnea.edu.a 
“Also supported by CONICET. Electronic mail: trincher@cab.cnea.edu.ar 
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S= ddxT$a,(g-‘)dpg], 
I 

where g is a (G) group valued field over Minkowsky space-time Md. We will consider here only 
a principal chiral field (group valued field), the symmetric space case will be addressed in Ap- 
pendix B. This action has two global symmetries, 

g(x)++&!(x)7 

g(x)Hg(x)R, with L,R E G and independent of x E Md, 

that tell us of the conservation of the (Noether) currents, 

L,=gd,g-’ and R,=g-‘d,g, 

which are related by R,= -g-‘L,g. 
The equations of motion of this model can be written as9 

q g+(d,gd~g-‘)gkO, 
or as 

(1) 

d* LAO, (2) 

in terms of the left current, or equivalently d. R h 0 in terms of the right one. These currents 
obviously satisfy a “zero-curvature” condition, 

(3) 
F,,(R)=d,R,,-d&+[R,,Rv]=O. 

With this notation, the linear (when left-multiplied by U) equations, 

U- ‘d/J= ;[(I -cosh(X))L,-sinh(h)EpJL], (4) 

are called the Lax pair. A is the spectral parameter and E is the Levi-Civita tensor. The group 
valued field U should here be taken as the variable, for each given L. It is straightforward to verify 
that the compatibility condition [d, ,a,] U= 0 is satisfied for pure gauge L’s with zero divergence. 
In this case a formal solution to Eq. (4) is given by 

U(x) = U,Pexp 
I i[(l -cosh(X))L,-sinh(X)ei,&L]dxp, 

where P is the path ordering operator (ordering from left to right), along a path from a fixed point 
to x. A completely analogous Lax pair can be constructed with the right current, 

B&lund transformations are at this point usually introduced. 
We can in a sense reverse this argument, starting from a transformation g-g with 

g’(x)= u(x)&)v-‘(x), (6) 
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where V and V are some group valued fields. This is a pretty general form, but looking at the 
action we realize we can make it a-priori invariant asking for (6) to fulfill 

a,g’=d,(vgV-‘)=vh,,avgV-1. (7) 

Here A is an undetermined Lorentz transformation,‘0 AGVhpa= c. This obviously makes the 
action invariant, but what is not so trivial to fulfill is the consistency of condition (7), that is V and 
V such that this equation holds may not exist. Indeed in the (1-t 1) dimensional case this condi- 
tion is only solvable over the field equation solutions. Equation (7) can also be written as 

v-‘d,V-gv-b,vg-‘=L,-A,,L”, 

and implies for L the transformation law 

L;= VA,,LvV-? (9) 

We see that me Lax pairs (4) and (5) satisfy Eq. (8) in the (If 1) dimensional case, because in this 
case any Lorentz transformation can be written as A,,=cosh(X)rl,,+sinh(X)~,,, ~7 being the 
Minkowski metric. Anyway, Eq. (6) and Eq. (8) enable a testable path to generalization to higher 
dimensions. 

We can obtain the Lax pair doing a series of infinitesimal transformations, with 

&v= v~,V+~~,,, Iquk+L 

where wP,, is an antisymmetric tensor. For just one transformation, we have 

v=l+U+@(W;“), v=l+u+~w;,), 

V-‘d,iJ=dp, v-‘d,V-ad,u, 00) 

where we have taken V and V so as to preserve boundary conditions for g. That is, for the identity 
transformation we should have g ’ = g so V( copy= 0) = V( up,,= 0) = 1. 

Therefore we have 

L;=g’a,[g’-‘]=(l+u)g(l-u)d,[(l+v)g-’(l-u)] 

=L,-d,u+[u,L.]+gd,ug-1. 

But Eq. (8) gives 

d/J4=gdpvg-1-O~LYL”, 

up to first order in o, so we get 

LI=L,+[u,L,]+o,~L”+~02). 

Calculating now the divergence of Eq. (13), 

d.L’~[d,u,L~]+d~(O~~LY) 

(11) 

(12) 

(13) 

= d,u + $,,Lv,L , 
[ I 

(14) 

where constancy of oPy was assumed and Eq. (3) was employed. If we impose d. L’ to be zero 
[weakly, for all L verifying Eq. (2) and Eq. (3)], it is enough to take 
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1 
d,uf p&LV=cYLp. (15) 

But for this equation to be consistent it should verify the condition” 

[dp'dYIU=O, (16) 

that is 

1 
--cap,,dJ~- fw,,d,Lofff(d,L,-d~,)=O. 
2 (17) 

If we now restrict ourselves to work in 1 + 1 dimensions we can write wP,,= yeP,, . So we 
obtain from Eq. (17) 

a(d,L,-d,L,)=O, (18) 

because for p # v it is E,,~~L*- E~$,,L~= - eP,,d. LSO. We can then choose a= 0, so 

d,u = - ; YEpJV, (19) 

up to order y. Renaming y as yo, we can now iterate this procedure (obviously we must check 
consistency) doing a transformation of parameter yI to obtain g(a), L$, starting from g(t), 
LrIp etc. This can be summarized as shown below: 

ro -u(o) YI ‘U(I) 
g,L - g(l) Al, - t?(2) 42) - . . . 

Up to this point we have 

1 
d,U(O)’ - 5 Yo+qo, 7 (204 

and uCoJ can be found from d,u~o,=g~o,~~uco,[g~o,]-‘- yoepJ~oj, We want to show first that 
this procedure can be iterated as many times as we want, and then we will show that this iteration 
leads us to a non-infinitesimal transformation, giving the usual Lax pair. 

We started from a Leo, configuration with zero divergence and curvature and, because of 
integrability of Eq. (20a), L, ,) given by Eq. (20b) is well defined. To restart the process L, ,) 
should also have zero divergence and curvature. But, by construction L,,, has zero curvature up to 
leading order in yo, as it has been defined as L$ ,=gtl,dpg,i, neglecting higher order terms. 
L (r) has also zero divergence, as uCoj was chosen for this purpose. Taking into account the 
discussion in Appendix A a well defined procedure for integrating the analog of Eq. (20a) for the 
second iteration can be given. 

With exactly the same reasoning we see that for any n 

1 
d&n)= - 2 Y&vqn) 9 

%I+,,= q, + [U(n) &I + Yn&L&, 7 

(214 

@lb) 
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provide us with 

(I) a well defined Lrn+ 1j, because [d,,d,,]u(,)= k yn~cLvd.Lc,J 

(II) a zero divergence LL + 1J, up to order ‘yn _ i 

(III) a zero curvature L$ + i) , up to order yn . 

This can also be verified inductively. This way it is easier to see that 

-F~~tL(“+l;)=F,,(L(,,)- Y&pJ*L(n)+b(n) &bwI 

+ [terms with ynuCn), yz, u;~,, all are @( yi)] 

=@tr:,...J$. 

We now want to find LG, and g(,, explicitly in terms of Lp=L$,, and g=gCoj. Following Eq. 
(6) and Eq. (lo), g(,, is given by 

&n+l)=U fu(n)k(n)U --U(n)) 

=(I +qn,H1 fU(,-1)) . . . (1 +qo))g(o)tl -u(o)) . . . (1 --U(n)). 

What we need is V= (Limit of) (1 + z+)) . . . (1 + uCoj), or considering the Lax pair we want to 
find, the equation satisfied by V: U-‘d,V= (something). For n=O we have 

U,‘+vo= (1 -qo))dpt 1+ U(O)) 
1 

=a,u(o,+~Y;>= - ~Yo+[o) * 

Writing nl=oUi for aa.. . a,, and ~~=,ai for a,. . . aa we get for an arbitrary TZ 

n 0 

V,‘d,V,‘~o (l-~(iJ)~pJlI (lfU(i)) 
*=Il 

n j-l 

= 

+ j=O i=O 
~r-u(i)~apu(j)i=fII (l+u(i)>+@YZ> ..*9 J Y?] f 

Here products ( 1 - uCij)( 1-t uCi,), coming from the terms in U-t and d,V respectively, cancel to 
first order in the parameter. If we now rewrite Eq. (21b) as 

(22) 

up to higher order terms, and we use Eq. (21a), we get 
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U,ldpVn=,$o -iYjEpvj 
1 

j-2 0 

Go (l-u(,,)(17~‘~j_,+Yj-1EYlyi-~)L~I:)i=~-2 (l+u(i)) 
I 

In this last equation factors ( 1 - U(j- t)) and ( 1 + Uy- i,) cancel at each side of the L,,- 1 ) . It is 
now easy to see that after employing Eq. (22) (j - 1) times more we obtain 

U,‘c3pVnz~ -~YjEpY(T7’j 
j=O I vj-,+Yj-*E”‘v,-,) ...(~Y'yo+YOE"'~o)L;b9~ 

Expanding the sums and products, the final expression for this is 

(i,‘d’V,=-l 2 c Y’T YYY+... 
i 

je~J:o,-;( 5 YY+ . . . jLh> 

where all sums are with indices ranging from 0 to n, all indices are different within the sums and 
each term is included only once, i.e., (Z, yy) means (C~,,oX~Z,i, yi,yi,), etc. 

If we now fix all parameters yi to be equal, and define them as Xl(n + I), we obtain 

C’ Y=z Yicxv 

T YYY= Fh3+ l +j, 
etc., 

whenever the order of the term is much lower than n. Therefore we get, in the large n limit, a 
Taylor series. Obviously this series adds up to 

v-‘dPU= ;[(I - cosh(X))L~-sinh(A)@VLJ, (23) 

that is what we had in Eq. (4) 

III. DISCUSSION AND CONCLUSIONS 

We have obtained the Lax pair for the non-linear a-model in a mainly constructive way. It can 
now be given a physical significance, because it is the compatibility condition for the existence of 
a family of (non-linear/non-local) weak symmetry transformations for me model. The spectral 
parameter of such a family appears here as the parameter of a Lorentz transformation involved in 
the invariance of the action under the symmetry transformation. Built this way, it seems more 
realistic to think about its possible generalization to higher dimensions. Anyway, it is not an easy 
thing: for a (2 + 1 )-dimensional space-time the construction breaks down at Eq. (18) because the 
first two terms of Eq. (17) do not cancel anymore, so (Y can not be chosen as zero to make Eq. (16) 
hold. One can try to restrict the symmetry to only a subset of the solutions’ space, considering for 
instance only those fields g that are axially symmetric. Since we want to iterate the transformation 
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4 

X1 

L 

- 
c X 

L 
X0 

D 

FIG. 1. Setup for integration of Eq. (21a). 

in such a way that the new solution also has axial symmetry, the problem is that for physical 
consistency the wPy tensor of parameters should also be axially symmetric. This means that the 
(Cartesian) components wP,, are position dependent. Therefore, if we want a non-trivial transfor- 
mation, the second part of Eq. (14) must be modified with the addition of a term Ly#‘o~,,. 
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APPENDIX A: PATH INDEPENDENCE 

Note that being [d, ,a,]~ ,, 
“small” path dependency in U( 

-0 + fl$) (i.e., not exactly zero in general) we still have a 
)- fnj. How can we deal with it? 

We aim at obtaining a (“true”) function g’(x), starting from g(x), making N steps of 
parameters y. , . . . , yN- 1, and finally taking the limit N--+m, with ,(for all i) Nyi= A, a non- 
infinitesimal quantity. However, before the limit procedure, the N-times iterated “function” 
gcN)(x) may be defined only on a bounded domain DN of M2. We can choose, for instance, a 
square region Ix@/<L, with L2- l/max(yJ. So for x E D, we can find uci,(x) from Eq. (21a) 
integrating over a path C, consisting of a fixed piece from - 00 to some point on the boundary of 
DN, and an arbitrary piece inside DN to x (as shown in Fig. 1). Therefore, integrating over two 
different paths we get two different u’s, with 

IAU(i~l-l[do,dl]U~i~Il Area between paths1 

GIYiIla’~(i)lL2G*Y?-2~ 
J 

and we obtain a “fixed” error for gcNj(x) whenever x is inside DN, with a given A=Nyi . 

APPENDIX B: SYMMETRIC SPACE CASE 

Keeping the same action as in Section II but allowing the field g to v”y only on a symmetric 
space we get what is called a symmetric space sigma model. 

A symmetric spaceI is a homogeneous group GIH together with an involution i in G 
( i2 = 1 ), where G is a connected Lie group and H is a closed subgroup of G consisting of (at least 
the unit component of) the set of fixed points of i. This involution selects in a natural way a 
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subalgebra lj and a subspace m of the Lie algebra g of G. These are the eigenspaces corresponding 
to eigenvalues + 1 of the involution induced by i on the algebra g. Moreover, lj is exactly the Lie 
algebra of H, and together with m they span g. It is easy to see that 

[m,mlcb, 

and, lj being an algebra, [h,h]C b. Let us call rr the projector from g onto h, having kernel m. 
This projector can be extended naturally to one acting over the whole tangent space of G, as 

We must also require this space to be a Riemannian symmetric space, i.e., the group Ad,(H) of 
adjoint transformations on g should be compact, for in this case we have an H-invariant scalar 
product (. , .) needed for defining the action. 

This symmetric space model is equivalent2 to a (G) group valued a-model but with a modi- 
fied action, 

S= ddx(D,g,D’g), 
I 

where normal derivatives are replaced by covariant ones with a g dependent connection A,. 
Explicitly, we must take 

D,g=~,g-gdg-‘Q) 

=(I-?T)d,g. 

We have now a left G-global and a right H-gauge symmetries. Currents are L,= - D,gg- ’ and 
R,=g-‘D,g, which are related by R,= -g-‘L,g as before. L is conserved (d.LGO) and R is 
covariantly conserved. Using that [m,m]C h, one can check that these currents have zero curva- 
ture, 

Here f= 2, and it is kept explicitly to show the difference with the already treated f= 1 case. 
In this case we can generalize the Lax pair construction retaining Eq. (6), but replacing normal 

by covariant derivatives in Eq. (7): 

D,g’=D,(UgV-‘)= UAJYgV-’ 

(remember D,g ’ means employing g ’ also in the corresponding connection). This implies that 
Eq. (9) and its infinitesimal expression, Eq. (12), are unchanged. Eq. (8) should now be replaced 
by 

V(h,,,Rv-R,)V-‘=-n-(VR,V-‘) 

+(1-r)[VA,V-‘-d,VV-‘+Vg-‘U-‘d,UgV-’1, 

which reduces to (8) in the H= 1 case. This can be decomposed in two more useful equations, 
projecting over h and m with rr and ( 1 - T), respectively. Doing so, we get 
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VA,,R”V-’ = ( vertical), (244 

A,-V-‘d,V+g-‘U-‘a,Ug+(R,-h,~“)=V-’( horizontal)V. Wb) 

Instead of Eq. (14) we get 

[ 
f d.L’= d/p+ y,Jv,L’ ) 1 

with a constant wP,,. From now on we only have to take into account the coefficient f. This 
results in changing the l/2 factor by f/2 in Eq. (19) and all subsequent formulas. As it should, in 
the symmetric space case the Lax pair for U loses the 112 factor, 
U-‘d,U= (1 - cosh(X))L 

I” 
- sinh(X)e and the one for V becomes zero, or a purely horizontal 

contribution (( 1 - n-)( V- JV) = 0) that corresponds anyway to a gauge transformation. This can 
be seen from F,q. (i4a) because being 7~( RJ = 0 (vertical), V must be generated by a horizontal 
element of g. 
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Discretizations of the Bogoyavlensky lattices are introduced, belonging to the same 
hierarchies as the continuous-time systems. The construction exemplifies the gen- 
eral scheme for integrable discretization of systems on Lie algebras with r-matrix 
Poisson brackets. An initial value problem for the difference equations is solved in 
terms of a factorization problem in a group. Interpolating Hamiltonian flows are 
found. 0 1996 American Institute of Physics. [SOO22-2488(96)00908-51 

1. INTRODUCTION 

The subject of integrable symplectic maps has received, in recent years, considerable atten- 
tion. Given an integrable system of ordinary differential equations with such attributes as Lax pair, 
r-matrix, and so on, one would like to construct its difference approximation, desirably also with 
a (discrete-time analog of) Lax pair, r-matrix, etc. Recent years brought us several successful 
examples of such a construction.‘-” 

Recently, stimulated by the results of Refs. 6 and 7, there was formulated a general recipe for 
producing discretizations sharing the Lax matrix with the continuous-time system, so that the 
discrete-time system belongs to the same integrable hierarchy as the underlying continuous-time 
one.“-” 

In the present paper we want to describe a new application of this scheme, to a class of 
integrable systems known as Bogoyavlensky lattices” (although some special cases were discov- 
ered earlier in Refs. 12 and 13). An r-matrix interpretation of these systems was given in Ref. 14. 
Some of the discrete time equations studied in the present paper appeared previously in the 
literature,15 as certain reductions of the discrete KP equation in the bilinear form. They were 
derived also in Ref. 16 from an ad hoc ansatz for the Lax pair. Our approach is quite different and 
enables us to get these equations systematically, and, moreover, provides automatically the Hamil- 
tonian formulation along with the interpolating Hamiltonian flows, as well as the solution in terms 
of matrix factorizations. 

II. CONTINUOUS-TIME BOGOYAVLENSKY LATTICES 

The Bogoyavlensky lattices were introduced in Ref. 11 as three families of integrable lattice 
systems depending on integer parameter m > 1 (m > 1 for the third one): 

cik=ak 
( 

5 mak,, 
j=l 

ak+j- c -.) 
j=I 

tik= ak 

cik=ak 

(2.1) 

(2.2) 

(2.3) 

“Electronic mail address:suris@mathematik,uni-bremen.de 
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We shall call these systems lattice 1, lattice 2, and lattice 3, respectively. 
The lattices 1 and 2 serve as generalizations of the famous Volterra lattice, 

(2.4) 

which is m = 1 special case of both the systems (2.1) and (2.2). Certain generalizations of the 
Volterra lattice, including also lattice 1, were introduced independently (and earlier) by Narita;” 
some special case of the lattice 1 was found also by Itoh.13 

The lattice 3 after the change of variables apai’ and t+-+ - t turns into 

cik=a: 
i 

ii ak+j-nl ak-j) v 
j=1 

(2.5) 

which serves as a generalization of the so-called modified Volterra lattice, the m = 1 particular case 
of (2.5): 

tik=a:(ak+I-ak-l 1. (2.6) 

All these systems may be considered on an infinite lattice (all the subscripts belong to Z), and 
admit also periodic finite-dimensional reductions (all the subscripts belong to Z/N& where N is 
the number of particles). The lattices 1 and 2 admit also finite-dimensional versions with boundary 
conditions of the open-end type: 

for system (2.1): ak=O for kG0, k>N-m+l; 

for system (2.2): ak=o for kS0, k>N. 

Bogoyavlensky has found also the Lax representations for these systems of the form 

f=[T, B], (2.7) 

where for the system (2.1) 

(2.8) 

B(U,k)=~ (ak+ak-l+“‘+ak-m )&,k+im+‘C Ek+m+l,k, 

for the system (2.2) 

(2.9) 

T(a,X) =k-‘c %Ek,k+ 1 -I- irnx Ek+m,k 7 (2. IO) 

(2.11) 

and for the system (2.3) 

(2.12) 
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B(a,X)=X”x ak’~k;l,...ak;l,-,Ek+~,k, (2.13) 

Here for the infinite lattices all the subscripts belong to Z, for the periodic case all the 
subscripts belong to Z/N& and for the open-end case all the subscripts belong to l,...,N. Moreover, 
in the infinite-dimensional and open-end cases the dependence on the spectral parameter A be- 
comes inessential and may be suppressed by setting A= 1. Below we consider only finite lattices. 

All the Bogoyavlensky lattices are Hamiltonian systems. More precisely, each system (2.1), 
(2.2), and (2.3) is Hamiltonian with respect to a certain quadratic Poisson bracket 

{ak ,aj}='rrkjakaj, 

with a skew-symmetric matrix (7Tkj). The corresponding Hamiltonians are 

(2.14) 

1 
H(a)= trn+ 1) UtT m+‘) =c ok for the systems (2.1), 

1 
MT m+‘) =c akak+l”‘ak+m-l for the Systems (2.2), 

for the system (2.3). 

The Poisson brackets (2.14), i.e., the matrices (?rkj), in the context of infinite systems were 
found for the lattice 1 in the original papers by Bogoyavlensky,” and for the lattices 2 and 3 in 
Ref. 17. For the finite lattices, where some subtleties come out, this was done systematically in 
Ref. 14. 

III. DISCRETE TIME BOGOYAVLENSKY LAlTlCES 

We present now equations of motion of some difference equations which can be considered as 
analogs and approximations to the Bogoyavlensky lattices for the case of the discrete time. The 
“Proposition k” (k= 1,2,3) deals with the “discrete time Bogoyavlensky lattice k.” We use tilde 
to denote the time shift, so that, for example, &= b k( l+ h)) if u k= u k( t) . 

Proposition I: The system of difference equations 

fk,el ( 1 +h&-j)=ukJi (1 +huk+j) (3.1) 

admits a Lax representation 

F= L-‘TL 

with the matrices 

(3.2) 

(3.3) 

where 
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ak=ukfi (l+hUk-j), @k=fi (I+h!Jk-j). 
j=l j=O 

Proposition 2: The system of difference equations 

(3.5) 

admits a Lax representation 

with the matrices 

T(v,A)=A-‘x a$k,k+,+AmC Ek+m,ky (3.6) 

(3.7) U(v,A)=Z+hA-“‘-lx YkEk,k+,,,+l, 

where 

a,=u*( l+hfi, Uk-j), ykEfio uk+j. 

Proposition 3: The system of difference equations 

(3.8) 

& l+hn U k-j -uk m --‘)- (l+hfio uiij) 
j=O 

(3.9) 

admits a Lax representation 

y=L-‘TL 

with the Lax matrices 

(3.10) 

(3.11) L(u,A)=l+hAm~ ff/$k+m,k, 

where 

(3.12) 

Remark 1: Upon change of variables uk++Vk * and h++ - h the system (3.9) turns into 

G( l-he0 G-j)-‘=Uk( lmhfio .k+j)-‘. (3.13) 
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which may be considered as a discrete time analog and approximation to (2.5). 
Remark 2: The equation (3.1) was found in Ref. 15 as a certain reduction of the discrete KP 

equation in the bilinear form. The equations (3.1) and (3.5) for m = 1 coincide, as they should 
(Voltema lattice). The Lax representation for this case with the matrices (3.6) and (3.7) was also 
given in Ref. 15, but without any hint on how it was obtained. After the present paper was 
submitted for publication, I became aware of Ref. 16, where equations (3.1), (3.5), and (3.9) are 
derived from an ad hoc ansatz for the Lax pair. (I thank V. Papageorgiou and F. W. Nijhoff for 
sending me their paper prior to publication.) However, our point of view and results concerning 
these equations are very different from those of Ref. 16. 

In the above formulation the Propositions l-3 may be easily checked by a direct computation, 
but their origin remains hidden. In the following sections we shall give a way to derive them 
systematically, which, as a by-product, will unvail an underlying invariant Poisson structure of 
these discrete systems, as well as a role of the auxiliary matrices L, U. This, in turn, will enable us 
to solve the initial value problems for our systems in terms of matrix factorizations and to find 
interpolating Hamiltonian flows. Our construction is just a particular case of a general one, appli- 
cable, in principle, to every system admitting an r-matrix interpretation. The key observation is 
that the Lax matrices (3.2), (3.6), and (3.10) of the discrete time systems formally coincide with 
the corresponding Lax matrices (2.8), (2.10), and (2.12) of the continuous time ones. 

IV. ALGEBRAIC STRUCTURE OF BOGOYAVLENSKY LATTICES 

In Ref. 14 we gave an r-matrix interpretation of the Bogoyavlensky lattices as simplest 
representatives of integrable hierarchies on associative algebras. The main results of Ref. 14 may 
be summarized as follows. 

(1) For the open-end case (applies only to the lattices 1 and 2) we set g=gl(N). To this 
algebra there corresponds a group G=GL(N). As a linear space, g may be represented as a direct 
sum of two subspaces, which serve also as subalgebras: g=g+@g- . Here g, (g-) is a space of all 
lower triangular (resp. strictly upper triangular) N by N matrices. The corresponding subgroups: 
G, (G-) is a group of all nondegenerate lower triangular N by N matrices (resp. upper triangular 
N by N matrices with unities on the diagonal). 

(2) For the periodic case (of all lattices 1, 2, and 3) g is a certain twisted loop algebra over 
gl( N), namely the algebra of formal semi-infinite Laurent series T(A) over gl(N), satisfying 
fiT(A’=T(oA), where Q=diag(l,o,...,o”-’ ) and w=exp(27rilN). The corresponding 
group is the twisted loop group G consisting of GL(N)-valued functions T(A) of the complex 
parameter A, regular in CP’{O,~} and satisfying RT(A)Q-‘= T( OX). Again, as a linear space 
g=g+@%- 9 where for the lattices 1 and 2, g, (g-) is a subspace and subalgebra consisting of 
T(A) containing only non-negative (resp. only negative) powers of A, and the case of the lattice 3 
differs in that, to which subalgebra do diagonal matrices belong: g, contains only positive, and g- 
only nonpositive powers of A. For the lattices 1 and 2 the corresponding subgroups G, and G- 
consist of T(A) regular in the neighborhood of A=0 (resp. regular in the neighborhood of A=00 
and taking the value I in A=m). For the lattice 3 G, is formed by T(A) regular in the neighbor- 
hood of A=0 with T(0) =I, and G- is formed by T(A) regular in the neighborhood of X=00. 

We shall need a notion of the gradient Vcp(T) Eg of a function cp:g+&, defined in the 
open-end case by the relation 

tr(Vq(T)X)=; cp(T+eX) VXEg; 
&=O 

in the periodic case “tr” should be replaced by “tro”, the free term in the Laurent series for the 
trace. 
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’ For both the open-end and periodic cases every T E g admits a unique decomposition T= Z(T) 
+ u( T), where Z(T) E g, and u(T) ~g- . Analogously, for both cases every T EG from some 
neighborhood of the group unity admits a unique factorization T= L%(T) ‘i?L( T), where Z(T) E G+ 
and r%(T) EG-. 

There hold the following statements. 
(a) For each system (2. l), (2.2), and (2.3) there exists a quadratic r-matrix Poisson bracket on 

g whose Dirac reduction to the corresponding set of matrices Y={T(a,A)} from (2.8), (2.10), or 
(2.12), respectively, is given by (2.14). 

(b) Let cp:g+& be an invariant function, so that dq( T) = TV&T) =Vcp(T)T is covariant 
under conjugation. Then the Hamiltonian flow on g with the Hamiltonian function (p(Tp)lp (here 
and below p = m + 1 for the lattices 1 and 2, and p = m for the lattice 3) is tangent to 9 and has 
the Lax form 

f=[T, l(dc+$Tp))]=-[T, U(dq(TP))]. (4.1) 

This flow admits the following solution in terms of the factorization problem 

e’dP(TP(o))=L3(t)2Z(t), Z(t)EG+, FZ(t)EG- 

(this problem has solutions at least for sufficiently small t): 

T(t)=.Z’(t)T(O)Z(t)=~%(t)T(O)?%-’(t). 

(c) Let f:wG be a conjugation covariant function on g. Then the difference equation 

~=~*(~(TP))T~~(T~))=~~~(TP))T~-*(~(TP)) (4.2) 

defines a Poisson map g-g which leaves 3 invariant, the restriction of this map on .F being 
Poisson with respect to the reduced bracket (2.14). This difference equation admits the following 
solution in terms of the factorization problem 

fn(Tp(0))= S(nh)?J(nh), iZ(nh) E G+ , %(nh) E G- 

[this problem has solutions for a given n at least if f(T(0)) is sufficiently close to the group unity 
I]: 

(d) The solutions of the difference equation (4.2) are interpolated by the flow (4.1) with the 
Hamiltonian function cp(Tp)lp, where q(T) is defined by 

dq(T)=h-’ log(f(T)). (4.3) 

The statements (a) and (b) explain the Lax equation (2.7) with the matrices (2.8)-(2.13); as 
for the system (2.1) we have B(a,A)=Z(T”+’ (a,A)), for the system (2.2) we have 
B(a,A)= -u(Tm+‘(a,A)), and for the system (2.3) we have B(a,A)=Z(T-m(a,A)). 

V. A DISCRETIZATION OF THE BOGOYAVLENSKY LAlTlCE 1 

We get a correct perspective for the interpretation of the system (3.1) [as well as the systems 
(3.5) and (3.9)] if we take an “inverse” view-point. We consider the first equation in (3.4) as an 
implicit definition of the functions v k= u k(a), rather then the expressions of ak through Uj. In the 
open-end case the sequence of uk’s can be computed even explicitly, term by term, starting with 
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uk=ak/(l+h~~~:aj) for lGkGm+l. In parhh, for m=l, one has uk=ak/(l+hukel), 
which implies a nice representation in form of a finite continued fraction: 

ak 
uk= (5.1) 

l+l+ 
b-1 

. . 

ha2 +- 
l+ha, 

In the periodic case the existence of the functions v k= uk(a), at least for h small enough, 
follows from the implicit functions theorem. Again, for m = 1 we get an expression in the form of 
an infinite N-periodic continued fraction of the type (5.1). 

The second equation in (3.4) may be rewritten as a recurrent relation for ,6k=Pk(a). In fact, 
We have pk-hak=17,“,l(1+hVk-j), SO that ak/(Pk-hak)=Vk, and finally 

(5.2) 

conversely, the last formula implies (3.4), if one sets uk=ak/(Pk- ha,). 

The formula (5.2) may alSO serve for a successive computation of &s in the open-end case, 
and in the periodic case it uniquely defines a set of Pk- hak , 1 G k<N, via the implicit functions 
theorem. In both cases it is easy to see that 

pk=lfh,$o ak-j+o(h2). I 

Theorem 1: The quantities ,6k defined by (5.2) serve as coefficients of the matrix 

L=~(Z+hT”‘+‘)=~ /f?kEk,k+him+‘~ Ek+,,,+,,k, 
k k 

(5.4) 

The discrete time Lax equation 

~=L-~TL=~~~(Z+hTm+~)T~(Z+hTm+~). 

with the Lax matrix (2.8) generates the following map on !?{a}, equivalent to (3.1): 

(5.5) 

(5.6) 

This map is Poisson with respect to the Poisson bracket (2.14) corresponding to the lattice 1, and 
is interpolated by the flow with the Hamiltonian function 

& tr @tT”+‘), where @(t)=h-’ log(l+hv) $. (5.7) 

Proof: The last two statements follow from the results formulated in the previous section, 
provided the first two statements are proved. Suppose for a moment that the E-factor of 

, If hT”+’ has the form (5.4). Then the evolution equation (5.5), i.e., Li?= TL, is equivalent to 
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Pkak=akPk+mt hak+Pkfm+l=hak+m+l+Pk+m. (5.8) 

This in turn is equivalent to a combination of an evolution equation (5.6) with the condition of 
compatibility of two equations in (5.8): 

/&-ha,=PX (hc+m+,-hak+m+,). P k+m 

The last equation is equivalent to the fact that 

i (Pk+j-hak+j) 
j=O 

m-l = const, 

(5.9) 

(5.10) 

n Pk+j 
j=O 

i.e., does not depend on k. We shall prove that the actual value of this constant is equal to 1, which 
is just equivalent to (5.2). 

The inspection of the structure of the matrix Tm+’ for T from (2.8) convinces us that the 
%-factor of I+ hTmfl has in fact the form (5.4), while the %-factor has the form 

U=~~(l+hTm+l)=l+h,~~ X-jcm+‘)q d!jEk,k+j(m+ 1) * 

The quantities Pk, #’ are completely defined by the set of recurrent relations following from the 
definitions: 

(5.11) 

Pk#‘+hy~~~l,=coef. by i-i(m+l’Ek,k+j(m+,) in T”‘+‘, lsjsm- 1; 

pt?fimr=ii ak+jm, 
j=O 

Now we are in a position to prove that the constant in (5.10) is equal to 1. 
Indeed, in the open-end case it is enough to compute from (5.11) the first m f 1 values of pk, 

MITlelY pk=l+hC)=laj, 1 ckSrn+ 1, which implies ~~~:‘(pj-haj>/ITj”,1pj= 1. 
In the periodic case we have found only a combinatoric proof based on tedious computations. 

For the sake of simplicity and in order to avoid complicated notations we present the correspond- 
ing argument only in the simplest cases m=1,2. 

In the case m = 1 the defining recurrent relations take the form 

Excluding +k’) from these relations, we obtain 

r&c--hak 
1 =~k+2-h’Jk,2-hak,~ 7. 

k 

Replacing the fraction on the right-hand side through its expression following from (5.9) for m = 1, 
we obtain 
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,P k+2-hak+2)(Pk+1-hak+1) 

P 
9 

k+l 

which proves the theorem in the case m= 1. 
For m=2, the defining recurrent relations take the form 

Pky~“fhY~3=akak+2fakak+l +ak: lak+ 1) Pkyi2)=akak+2ak+4. 

Excluding from these relations #, we obtain 

1 =Pkf3-hakf3-h(ak+z+ak+i) 
n&-hak 
-+h’a 

Pk 

k+lak-, &-3-h-3 
PkPk-3 ’ 

According to (5.9) for m=2, this is equivalent to 

l=Pk+3-hak+3-h(ak+z+ak+,) 
P k+3-h‘Jk+s +h2a &3-hak+3 

Pk+2 kflak-l Pk+Z,@k-l 

= (Pk+i-h“k+3)(&+2-hak-t2) 
-h‘h+, 

(P k+3-hak+3)(Pk-l-hak-1) 

P k+2 Pk+2Pk-l ’ 

Using in the last term once more (5.9) for m=2, we obtain 

k+3-hak+3)(&+2-hak+2)(Pk+1-hak+,) 

Pk+ZPk+ 1 
f 

which proves the theorem for m =2. The pattern of the proof for a general m may be seen from 
these two particular cases. 

VI. A DISCRETIZATION OF THE BOGOYAVLENSKY LATTICE 2 

For the lattice 2 we again consider the first equation in (3.8) as a definition of the functions 
uk= uk(a). In the open-end case we can compute these functions successively, starting with 
Uk=ak(lfh~‘jk=:nj=lal)/(l+hCSL:Ili=,al) for l~k~m+ 1. In the periodic case the implicit 
functions theorem has to be invoked. In particular, for the case m = 1 we obtain the same continued 
fractions expressions as in the previous section. 

The second equation in (3.8) may be represented as a recurrent relation for yk= yk(a). Indeed, 
We have ak-hyk-m=uk, SO that 

ak-hyk-,,,= 
ak 

1 +h f; (ak-j-hyk-,-j) 
(6.1) 

j=l 

Conversely, the last formula implies (3X), if one sets Uk=ak-h yk-,,, . 
In the open-end case the formula (6.1) serves as a basis for successive computation of yks, and 

in the periodic case it uniquely defines, by the implicit function theorem, the quantities 
ak+m - h yk , 1 G k6 N. In both cases there holds the following asymptotic relation: 

Yk=ii 
j=O 

ak+j(l + O(h)). (6.2) 
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Theorem 2: The quantities yk defined by (6.1) serve as coefficients of the matrix 

U=i?~(Z+hTm+i)=Z+hh-(m+i)~ Y~E~,~+,,,+~, 
k 

(6.3) 

The discrete time Lax equation 

(6.4) 

with the Lax matrix (2.10) generates the following map on @{a}, equivalent to (3.5): 

iik= 
ak-hYk-m 

ak+m+l -hYk+i ak+m+l. (6.5) 

This map is Poisson with respect to the Poisson bracket (2.14) corresponding to the lattice 2, and 
is interpolated by the flow with the Hamiltonian function (5.7). 

Proof Again, it suffices to prove the first two statements. Assuming for a moment that the 
&-factor of the the matrix If hT* + ’ for T from (2.10) has the form (6.3), we see that the 
evolution equation (6.4) i.e., ??J= UT, is equivalent to 

akYk+l=Ykak+m+19 ;k+hYy,-,=ak+hYk. (6.6) 

This in turn is equivalent to a combination of an evolution equation (6.5) with the condition of 
compatibility of two equations in (6.6): 

ak-hYk-m- 
Yk 

-- (a k+m+i-h’h+i). 
Yk+l 

(6.7) 

The last equation is equivalent to the fact that 

(6.8) 

i.e., does not depend on k. We shall prove that the actual value of this constant is equal to 1, which 
is equivalent to (6.1). 

This time the inspection convinces us that the a-factor of the matrix I+ hTm+ ’ for T from 
(2.10) must indeed have the form (6.3), while the z-factor must have the form 

m 

L=.z(Z+hTm+‘)=z fl~“)Ek,k+h,~l Ai(m+l)T P!/Ek+jcm+lJ,k, 
k 

where @km’ = 1, and other quantities yk ,pf;i’ are completely defined by the recurrent relations 
following from the definitions: 

P~j’+hPI;‘-+)-lyk-m-l=coef. by Xj(m+l)Ek+i~m+I~,k in Tm”, lsjsrn-1. 

(6.9) 

(6.10) 
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To prove that the constant in (6.8) is equal to 1, in the open-end case it is enough to compute 
from (6.9) and (6.10) the first mfl values of yk, namely yk=II~~Oak+jl(l+h~~~l~al+j), 
lck<m+ 1, which implies II,m,fil(aj+m-hyj)lym+l= 1. 

In the periodic case we shall again give the proof only for m = 1,2, leaving the tedious 
calculations for the general case to the reader. For m = 1 the defining recurrences (6.9) and (6.10) 
take the form 

Excluding from these relations flko’, we obtain 

1= z (ak+i-hYk)-h(ak-i-hYk-2). 

Replacing the last term on the right-hand side through its expression following from (6.7) for 
m=l, we obtain 

l= (akii-hYk)(ak-hYk-1) 
Yk 

, 

which proves the theorem for m = 1. 
In the case m=2 the recurrent relations (6.9) and (6.10) take the form 

(0) pk yk=akctk+lak+2v /?~“)fh2,@!3yk-3= 1 fh(ak-2ak-l+ak-lak’akak+l)j 

Excluding p’kj) from these relations, we obtain 

l= akak+l 
- (ak+2-hYk)-h(ak-2+ak)(ak-,-hYk-3)+h2Yk-3(ak-4-hYk-6). 

Yk 

Using on the right-hand side repeatedly (6.7) for m =2, we can rewrite it as i .’ 

l= akak+ 1 
Yk (ak+2-hyk)- h(ak-2;;k)Yk-i (ak+z-hyk)+ h2yk;;yk-i (ak+2-hyk) 

ak hYk-i =- 
Yk 

(ak+2-hYk)(ak+i-hYk-i)- Yk (ak+z-hYk)(ak-2-hYk-4). 

Using in the last term once more (6.7) for m=2, we obtain 

1 
1 = rk (akf2 -hYk)(ak+i-hYk-i)(ak-hYk-z), 

which finishes the proof for m =2. 

VII. A DISCRETIZATION OF THE BOGOYAVLENSKY LATTICE 3 

For the lattice 3 we again define the functions v kc uk(a) by means of the first equation in 
(3.12), which is justified by the implicit function theorem (as opposed to the lattices 1,2, this time 
an open-end reduction is not admissible, so that only the periodic case needs to be considered). In 
particular, for m = 1 we have uk= ok- h/u k-l, which leads to the expression in terms of an infinite 
N-periodic continued fraction: 
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h 

h -. - 
h 

ak-N+l- - 
uk 

The second equation in (3.8) implies ak- hakMm= vk, and hence 

m-l 

ffk= n 
1 

j=O ak+j-hQk+j-m 
(7.1) 

Conversely, the last formula implies (3.12), if one defines vk=ak-hctkvm. 
The formula (7.1) defines, by the implicit function theorem, the set of quantities ak,lc kcN, 

satisfying 

m-l 

ak=,uo a,;‘j(l + O(h)). 

Theorem 3: The quantities ak defined by (7.1) serve as coefficients of the matrix 

’ L=S(Z+hT-*)=Z+hh*F ffkEk+m,k. 

The discrete time Lax equation 
)I 

F=L-‘TL=S-‘(ZfhT-“)TSF(Z+hT-*) 

with the Lax matrix (2.12) generates the following map on RN(a), equivalent to (3.9): 

‘ik= 
ak- hffk-* 

akim-hLYk ak+m’ 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

This map is Poisson with respect to the Poisson bracket (2.14) corresponding to the lattice 3, and 
is interpolated by the flow with the Hamiltonian function 

-; tr @(T-*), where (P(c)=h-’ 
I 

o’ log(l+hv) 1. 

Proof: Again, it suffices to prove the first two statements. Assuming for a moment that the 
S-factor of the matrix If hT-* for T from (2.12) has the form (7.3), we see that the evolution 
equation (7.4), i.e., LF= TL, is equivalent to 

akak= ak+mffk+ 1, &+hClk-m=ak+hCYk+,. (7.6) 

This in turn is equivalent to a combination of an evolution equation (7.5) with the condition of 
compatibility of two equations in (7.6): 

ak-hLYk-*= 
ak+l 
- k+m-hffk)* 

ak 
(a (7.7) 

The last equation is equivalent to the fact that 
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m-l 

ak,go (ak+j- hak+k-,,,)=COnSt, (7.8) 

i.e., does not depend on k. We shall prove that the actual value of this constant is equal to 1, which 
is equivalent to (7.1). 

To compute the %-factor of the matrix I + hT-” for T from (2.12), we notice, first, that 
T-‘=CD-‘, where 

c=ic a;kk+l,k, D=I-Wm~ ak;l,,,Ek,k+,,,. 
k 

Further, notice that the Z-factor of any matrix is not changed under the right multiplication by the 
factor from G- . We multiply the matrix I+ hT -“=Z+(CD-‘)” from the right by (DC-‘)“C”. 
To see that this matrix belongs to G - , notice that it is equal to DD, . . e D,,- , , where 
D .= C-jDCj=I+ A-“Zd’j’E 

J k k,k+,,, EG- . For the further reference we give here an explicit for- 
mula 

j-l j 
&‘)=I1 

I=0 
ak+ lco ak;lm+l. 

So we obtain 

and an inspection of this formula convinces us that this factor must indeed be of the form (7.3), 
while 

Here the quantities (Yk ,/?y) are completely defined by the recurrent relations following from the 
definitions: 

m-l 

akflio)= n ak;‘j, 

j=O 
(7.9) 

/?~“‘+h&-,,@,= 1, (7.10) 

/3jj’+ha,- ,Bft+‘)- -coef. by X-jmEk.k+jm in DD, **.D,-,, 1SjCnz. (In the last equation for 
j=m one mmst se? flkm+r)=O, which leads to pimc”’ = ~~!01a~,rm2+[.) 

Again, we shall prove that the constant in (7.8) is equal to 1, only for the two simplest cases 
m = 1,2, leaving the calculations for the general case to the reader. 

For m = 1 the defining recurrences (7.9) and (7.10) read 

CO)- -1 
(YkPk -‘k 9 p~“)+hak-,p~t),= 1, ,&‘)=a-* k+l. 

Excluding from these relations PLO’ ,/3:“, we obtain 
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-1 

%=I-ha;‘ak-, or :=a,-ha,_,, 

which proves the theorem for m = 1. 
In the case m=2 the recurrent relations (7.9) and (7.10) take the form 

akPk 
(OLa;la-’ k+l /?p’+ hCYk-&!!,= 1, 

P:“+hLYk-2P~~2=ak;f2+aka~~2akS13, /?i2) = ak;rt4ai:5. 

Excluding p(kj) from these relations, we obtain 

-1 -1 
ak ak+l -1 -1 

ak 
=l-h~~~-~(a,‘+ak-2a~ ak+I-hak-4ak1a,;‘l)T 

or 

1 

Using in the last term on the right-hand side (7.7) for m =2, we can rewrite the last expression as 

1 
CYk=ak+,(ak-hak-2)-hLue-I(ak-haf-2)=(ak+l-hcuk-,)(ak-ha,_z). 

This finishes the proof for m =2. Again, we hope that the pattern of the general proof is clear from 
these two simple cases. It would be highly desirable to find a less computational proof for the 
periodic case of all three lattices. 

VIII. CONCLUSION 

A new application of a general scheme for producing integrable discretizations for integrable 
Hamiltonian flows is described in the present paper. Advantages of this approach are rather 
obvious: it is, in principle, applicable in a standardized way to every system admitting an r-matrix 
formulation, at least with a constant r-matrix satisfying the modified Yang-Baxter equation. We 
shall demonstrate elsewhere that the discrete time systems from Refs. 6 and 7 with dynamical 
r-matrices may be also included into this framework. We hope also to report on numerous further 
applications of this approach in the future. 

The drawback of this scheme is also obvious to any expert in this field. Namely, some of the 
most beautiful discretizations do not live on the same r-matrix orbits as their continuous time 
counterparts, ‘.3-5 and there seems to exist no way of a priori identifying the correct orbit for nice 
discretizations. However, we hope that continuing to collect examples will someday bring some 
light to this intriguing problem. 
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The gravitational ionization of a Keplerian binary system via normally incident 
periodic gravitational radiation of definite helicity is discussed. The periodic orbits 
of the planar tidal equation are investigated on the basis of degenerate continuation 
theory. The relevance of the Kolmogorov-Arnold-Moser theory to the question of 
gravitational ionization is elucidated, and it is conjectured that the process of ion- 
ization is closely related to the Arnold diffusion of the perturbed system. 0 I996 
American Institute of Physics. [SOO22-2488(96)02208-61 

I. INTRODUCTION 

In a recent paper,’ we considered the long-term nonlinear perturbations of Keplerian orbits by 
incident gravitational waves of wavelengths much larger than the size of the system. In particular, 
we studied the periodic orbits of the perturbed system using the methods developed in Ref. 2. The 
existence of periodic orbits indicates the possibility of balance in the exchange of energy between 
the binary and the external radiation field. Thus gravitational ionization does not occur for such 
orbits. The issue of gravitational ionization is interesting as it involves the transport of energy by 
gravitational radiation and is analogous to the corresponding phenomenon that is well known in 
the electromagnetic context. 

The theoretical investigation of the interaction of a binary system with the gravitational 
radiation field reveals subtle phenomena that are further studied in this paper. In particular, the 
absorption of gravitational radiation energy by the binary is not unidirectional in general. That is, 
the orbital energy of a binary immersed in a gravitational radiation field does not in general 
increase monotonically with time. On the other hand, the emission of gravitational radiation by the 
binary is expected to be accompanied by the monotonic decrease-of the orbital energy of the 
system. In absorption, however, the incident wave can deposit energy into the orbit during one 
time interval and remove energy from the orbit during another time interval. A periodic orbit 
would result-even when the emission of the radiation by the binary is ignored-if after a certain 
time the net flow of energy between the incident wave and the binary is zero. 

Let us imagine, for the sake of simplicity, that gravitational radiation is incident on a New- 
tonian binary system consisting of a massive body of mass Mu at the origin of inertial coordinates 
and a particle of test mass mo 4 MO that revolves around it in the (x,y)-plane. The dynamical 
equation in this case is of the general form3a4 

d’x’ kx’ 
-g+-+e%&)d=O, 

r3 

where k = Go( MO + mo), E, 0 < E + 1, is the perturbation parameter and EZRA is the tidal matrix 
associated with the incident gravitational waves. Here 33 is symmetric and traceless, and is related 
to the gravitational perturbation of the Minkowski space-time by 
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3&j(t)= - f f&,0), 

r 

where gpv= vpv+ expv. Here we employ the transverse-traceless gauge for gravitational radia- 
tion, i.e. xoP ~0, xii is traceless and djxij=O; moreover, xij is a solution of the wave equation 
0 Xii = 0. Thus the gravitational radiation field can be expressed as a Fourier sum of monochro- 
matic waves of frequency R * and wave vector K, , c 1 K, I= fi *, 

Xij(f,X)= Re? i;j(K,)exp(iK,.x-ifi.t), 
* 

where iij is symmetric, traceless and &,Kj* = 0. The summation in (3) extends over all waves with 
27rclR, much larger than the average orbital radius. Equation (1) contains only the essential 
physics of the interaction of long-wavelength gravitational radiation with a Newtonian binary 
system; in fact, relativistic (i.e., post-Keplerian) effects in the binary are totally neglected. In 
particular, the emission of gravitational waves is ignored. The motivation for our treatment as well 
as its limitations is presented in detail in our recent work.’ 

The incident wave exchanges energy and angular momentum with the binary orbit but not 
linear momentum in the quadrupole approximation under consideration here.’ This is in exact 
analogy with the electromagnetic problem of the interaction of an electromagnetic wave with an 
atom in the dipole approximation. 

A simple linear perturbation treatment of (1) has revealed the possibility of the existence of 
resonances at a, = m w, m = 1,2,3, . . . , where w is the Keplerian frequency of the unperturbed 
elliptical orbit. Moreover, in this analysis secular terms appear that lead to the breakdown of the 
linear theory over time.4 Thus linear perturbation theory is inappropriate for the investigation of 
periodic orbits of the perturbed system, since a periodic orbit is expected to persist forever beyond 
a certain point in lime. 

In the first treatment of the nonlinear case,’ we considered a single monochromatic plane 
wave of frequency fl, that was normally incident on a Keplerian orbit of frequency o. We found 
that in the generic case, certain orbits satisfying the resonance condition fI*=rno, 
m= 1,2,3 ,,.. , could be continued to periodic orbits of the nonlinear system. The existence of 
periodic solutions of (1) demonstrates that ionization does not always occur; in fact, in a periodic 
orbit the energy exchange with the radiation field must be steady without any net flow. In addition, 
we found that for incident circularly polarized radiation of definite helicity the rotation of the 
inertial coordinates by frequency RJ2 rendered the dynamical equations autonomous. The invari- 
ance of this autonomous system under time translation implies the existence of an energy integral 
in the rotating frame. In this case, the Kolmogorov-Arnold-Moser (KAM) theory implies that for 
sufficiently small E ionization can never occur in this system regardless of the magnitude of 
fi, lo. To understand intuitively how this could come about, it should be pointed out that a binary 
system can gain or lose energy as it interacts with an incident gravitational wave. The situation in 
absorption is in contrast to the emission of gravitational waves by a binary. In the latter situation, 
the binary is expected to lose energy monotonically; in fact, this is consistent with the observed 
rate of inward spiraling of the Hu!se-Taylor binary pulsar.s,6 It follows that the reciprocity be- 
tween emission and absorption of gravitational waves does not hold in general. This notion of 
reciprocity is valid in some other situations, however. For instance, a Keplerian ellipse of fre- 
quency w emits gravitational radiation of frequency m o, m = 1,2,3, . . . , which corresponds to 
the resonance condition for absorption. 

Let us now consider a general periodic gravitational wave of period 27r/fi. that is normally 
incident on the binary system. The existence of certain periodic solutions of the perturbed system 
may be expected on general grounds. It would therefore be more interesting to investigate the 
interaction of circularly polarized gravitational radiation with the binary system and to determine 
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the stability of the resulting autonomous system under periodic perturbations. That is, a periodic 
wave may be expressed as a Fourier sum of components with frequencies nR, , 12 = 1,2,3,. . . . For 
a single component of definite helicity, the transformation to the corresponding rotating frame 
would essentially remove the dependence of this perturbation upon time and for E below a certain 
limit the orbit would remain forever bounded even though there is a steady flow of incident 
gravitational radiation energy in the inertial frame. However, the time-dependence of the other 
Fourier components would not disappear in the rotating frame, and we would like to study the 
influence of these components on the ionization of the system. Though we develop methods that 
are applicable to a general periodic perturbation, we restrict our attention to a tractable problem for 
the sake of simplicity. 

In this paper, we consider a superposition of several harmonics in the perturbing function; 
clearly, the response of the system is not a superposition of the individual responses as a conse- 
quence of the intrinsic nonlinearity of the problem under consideration here. Specifically, we 
showed in Ref. 1 that for a normally incident circularly polarized monochromatic plane wave the 
motion is restricted to the (x,y)-plane and that a transformation to the uniformly rotating coordi- 
nate system in this plane with half the wave’s frequency would result in an autonomous system for 
the equation of motion to which the KAM theory can be applied. It follows from the KAM theory 
that for sufficiently small E the motion is confined and ionization does not occur. We wish to 
explore the sensitivity of this interesting result to the particular form of the incident wave. There- 
fore, we consider here a principal right circularly polarized wave of frequency &=2R that is 
slightly modified by the presence of similar components of frequencies R and 3R as follows: 

Xll(t,O)= cos 2,Rt+2&(cu-/3)cos Rt+ $(a+p)cos 3ckt], 

(4) 
Xi*(t,O)= sin2flt+2a(cu-p)sin Rt+ $(cr+p)sin3Rt], 

x13=X23=x33= 0. The other components of x follow from the fact that x is a symmetric traceless 
matrix. Here 8, 0 < 6 4 1, is a new perturbation parameter that determines the relative strength of 
the extra secondary components compared to the primary Fourier component of the normally 
incident radiation. Moreover, Q and p are constant amplitudes of the order of unity, and the other 
numerical coefficients have been introduced for the sake of simplicity. 

The plan of this paper is as follows: In Section II, we present the basic equations for a 
Hamiltonian description of the perturbed orbit in terms of Delaunay variables. Sections III-V are 
devoted to a development of degenerate continuation theory that is necessary for the identification 
of periodic orbits of the nonlinear problem via the methods and ideas that are originally due to 
Poincare. The existence of periodic orbits, described in Section V, demonstrates that a state of 
equilibrium can be established between the wave and the binary such that ionization does not 
occur; in fact, the net flow of energy vanishes in this case. To apply the KAM theory to our 
problem, it is best to transform (1) to a uniformly rotating frame as in Section VI. It follows from 
the description of the nonlinear system in this reference frame that Arnold diffusion is expected 
for GO, even for sufficiently small E. Numerical experiments described in Section VII tend to 
corroborate the conjecture that gravitational ionization is tantamount to Arnold diffusion in this 
system. For background material, this paper relies heavily on our previous detailed treatment of 
the nonlinear problem for the case where the incident wave is essentially a simple monochromatic 
Fourier component;’ however, we have attempted to present sufficient detail here in order to 
render the present paper essentially self-contained. 

II. HAMILTONIAN DESCRIPTION IN DELAUNAY ELEMENTS 

Using (I), (2) and (4), we can write the associated Hamiltonian for this system as the sum of 
the Kepler Hamiltonian and the quadrupole perturbation given by ~~~~~ x’xj. The motion is taken 
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to be in the (x,y)-plane, since the radiation is transverse and normally incident on the orbital 
plane; therefore, polar coordinates are convenient. Defining 4(t) and $(t) as 

4w=n* 
1 

cos2~nt+ $a-&OS f2t+(a+p)cos 3Qt] , 
I 

$(r)=fi* 
I 

sin 2flnt+ :[(a-p)sin CI2t+(a+/?)sin 3Rt] , 
I 

the Hamiltonian in polar coordinates may be written as 

2 

25= + p;+ 9 - r+ er2[&r)cos 28+ $(r)sin 281. 
i i 

(5) 

To express the Hamiltonian in a form particularly suitable for the analysis of orbital dynamics, 
we transform to the Delaunay elements (L,G,/,g). To this end, consider the bounded motion of 
the test particle according to the Hamiltonian (6). At each instant of time, the particle can be 
described as belonging to an osculating Keplerian ellipse; that is, the perturbed motion passes 
through an infinite sequence of osculating ellipses in the course of time. Each such ellipse is 
described by the unperturbed Hamiltonian 

2 H=; p;+ps -;, i 1 r2 

where we consider only bounded motions with E = H(p, ,ps ,r, 19) CO. Let us now consider the 
canonical transformation from (pr,po,r,B) to variables intrinsic to the ellipse. Thus we define 
action variables 

and G:=pe, 

which correspond to an osculating Keplerian ellipse with semimajor axis a, a = L*/k, and eccen- 
tricity e, 

such that 0 Se < 1. The equation of this ellipse is given by 

I-2 
r=a( 1 -e cos <), Or r=al+ecosv”’ 

where li is the eccentric anomaly and u^ is the true anomaly. The new canonical angle variables 
d and g are then given by 

6=&e sin tS, g= e-v”. 

In the following, we exclude e = 0 and focus attention instead on noncircular elliptical orbits. The 
resulting Hamiltonian of the perturbed system in Delaunay variables is 
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where, in polar coordinates, lF=r* cos 20 and Y=r2sin 20. In Delaunay elements, 
F(L,G,&,gfand Y(L,G,/,g) are given by 

tqL,G,f,g)=? * * 
m 

2a e cos 2g+a*x (A.(e)cos 2g cos v/--B.(e)sin2g sin v/), 
v=l 

Y(L,G,G,g)=5 * * . 
co 

2a e sm2g+n2Vzr (A.(e)sin2g cos v/+B,(e)cos2g sin v!), 

where 

A,(e)= -&(2ve(l-e*)JL(ve)-(2-e*)J,(ve)), 

B,(e)=-& Jg(eJI(ve)-~(l-e2)JY(ve)). 

(8) 

(9) 

Here J, is the Bessel function of order V, and a prime indicates the derivative of the function with 
respect to its argument. The dynamical equations are derived in the usual way from the Hamil- 
tonian (7). Moreover, these equations are given in Delaunay elements by 

JSqLG,f,g) 
4(t)+ a/ 

4(t) + 
-lLG,d,g) 

f% 

2= d-VLGJ’,g) 
w f#J(t)+ dL 

(10) 

,kj=E WLG,F,g) dflL,G,F,g) 
dG +ct)+ JG 

where o is the Keplerian frequency of the binary given by o2 = k/a 3. 

Ill. BIFURCATION FUNCTION 

To establish the continuation (persistence) of periodic orbits of the Kepler problem to the 
system (lo), we employ a method proposed in Ref. 2 and used in Ref. 1; we only state the main 
ideas here and the reader is referred to these references for details. 

System (10) has the abstract form 

zi=F(u)feh(u,t), (11) 

where u is a coordinate on a manifold M that consists of a cross product of Euclidean spaces and 
tori, and the function h is periodic with period 29~10 in its second argument. We consider 
solutions rHU( t, 5, E) of (11) with initial condition u(O,t, E) = 5, 6 E M, and define the mth order 
Poincare map by 9 “( 5, E) = 4 2 ~rn/Ci, 5, E). Fixed points of this mth order Poincard map cor- 
respond to periodic solutions of (11). Consider the unperturbed periodic solutions of (11) with 
E=O. These correspond to fixed points of the unperturbed mth order Poincare map defined by 
p”( 5) “9’ “( [,O). Let us now suppose that there is a submanifold &CM that consists of fixed 
points of pm, and 5 E 5% If there is a continuous curve E I+ K(E) in M such that K(O) = 5 and 
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.p “[K(E), E]= K(E), i.e. for each fixed value of E, K(E) is a fixed point of the mth order Poincare 
map, then the unperturbed periodic orbit is continuable. The continuation is established by the 
method of Lyapunov-Schmidt reduction to the Implicit Function Theorem and requires that every 
vector in T,M that is tangent to the submanifold Z be in the kernel of the infinitesimal displace- 
ment Y( 5) = Dpm( 5) -I. This is equivalent to the requirement that for each 5 E Z, the dimension 
of the kernel of the infinitesimal displacement at 5 be equal to the dimension of the manifold 
AC. The manifold -Z is called normally nondegenerate if it satisfies this condition. 

Let Z be a normally nondegenerate submanifold of M with dimension 4; then, the range of 
the infinitesimal displacement at each point of E has codimension 4. For each 5 E 3, there is a 
vector complement .?( 5) to the range of the infinitesimal displacement of dimension 4. We 
denote the projection of T5M to .‘?( 5) by s”( 5). 

Let 5 E 5 and consider the curve in the manifold M defined by E w.8’ “( 5, E); it passes 
through 5 at E=O and its tangent vector at E=O is in TgM. This tangent vector can be identified 
with the partial derivative 3’ T( l,O). The bifurcation function .W is defined to be the map from 
45 to the complement .?” of the range of the infinitesimal displacement, 

so that in local coordinates 35’ :!lV+R 4. We define 5 E 55 to be a simple zero of the bifurcation 
function if 3’( 5) = 0 and the derivative D.A’( 5) is invertible. The following continuation theorem 
is proved in Ref. 2. 

Theorem: III. 1: Let E denote a normally nondegeneratefied point submanifold of M for the 
system (I I). If 5 E 33 is a simple zero of the corresponding bifurcation finction, then the unper- 
turbed periodic orbit of (I I) with initial point 5 is continuable. 

To apply Theorem III. 1 to the perturbed Kepler problem, we must compute the partial deriva- 
tive .7 f( c,O) of the corresponding Poincare map. For the system (lo), the manifold M is the four 
dimensional Delaunay coordinate space and the Poincare map is defined as the strobe with period 
27rmlR where fi is the frequency of the perturbation. The partial derivative is obtained from the 
solution t-W(t) of the second variational initial value problem 

ti=DF(u(t,&O))W+h(u(t,&O),t), W(O)=O. 

In fact, we have U’(t) = u .( t, c,O) and 

We use Theorem III.1 to establish the existence of periodic orbits for the system (10). Of 
course, this will establish the existence of periodic orbits for our model system (l), which de- 
scribes the perturbation of a Keplerian binary system by a multi-frequency periodic gravitational 
wave. We begin by identifying the normally nondegenerate fixed point submanifold of M men- 
tioned in Theorem III. 1. Recall that the frequency of the unperturbed periodic Keplerian orbit is 
w= k2/L3. The three-dimensional manifold 

where m and n are relatively prime positive integers, is a normally nondegenerate submanifold of 
M (cf. Ref. 1). Furthermore, the range of the infinitesimal displacement is complemented by the 
span of the vectors 
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The bifurcation function associated with (10) is the projection of the partial derivative 
.F~(L,G,G,g,O) on the manifold .S?? onto the complement of the range of the infinitesimal 
displacement. To determine the bifurcation function, we solve the variational initial value problem 

i,= - $L,G,/+ot,g)&t)- $(L,G,i+or,g)#(t), 

&= - ;;(L,G,f+wt,g)&t)- f$L,G,P+wl,g)+(t), 

L”,= - $,+ ;(L,G,/+ot,g)$(t)+ ;;(L,G,b+wt,g)$(t), 

with zero initial values; then, the solution evaluated at t = m( 2 r/a) is projected to the comple- 
ment of the range of the infinitesimal displacement. It follows from a detailed analysis that one can 
set the initial value of time equal to zero, as we have done, with no loss in generality. The 
bifurcation function is thus given by 

.B(G,G,g)=(BL(G,t”,g 

where 

and 

BL(G,/,g): = - $, BG( G,f,g): = - $, WG,b,g 1 
r3.Y 

:=dG’ 

[T(L,G,/+wt,g)+(t)+Y/(L,G,d+wt,g)@(t)]dt. 

(12) 

To evaluate 3, we use the resonance relation nil = m w to change the variable of integration from 
t to 6= fit/m + F/n, then observe that the integrand of 5’ is periodic with period 2 rr and substi- 
tute the Fourier series expansions for r and 5? After performing these steps, we obtain the 
following expression for Y in case n = 1: 

3=ama2f2 
I 

U2,(e)cos(2g+2mF)+ ~[(n-p)rr,(e)cos(2g+mr) 

+(a+p)U3,(e>cos(2g+3m~)l , 
I (13) 

where 
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If n = 2 and m is odd, then 

while for n = 3, if m is prime relative to 3, then 

3= ~rrma*fiS(a+~)lJ,(e)cos(2g+m~). 

It turns out that .7= 0 for n > 3, as expected. 
We show in Ref. 1 that the bifurcation function does not have a simple zero for an incident 

monochromatic gravitational wave of definite helicity. The role of the secondary components of 
the wave is to resolve this issue for the bifurcation problem under consideration here. This is 
indeed the case for n = 1 as demonstrated in the next section. However, for n = 2 and n = 3 simple 
zeros do not exist, and the consideration of these cases would require the calculation of the 
solutions of higher order variational initial value problems. On the other hand, higher order 
perfurbing functions of order E*, etc., are neglected in the formulation of equation (l), which is the 
starting point of our analysis. It follows from this remark that the treatment of the cases n = 2 and 
n = 3 is beyond the scope of this work. Thus, we assume n = 1 in the remainder of this section. 

Substituting (13) into (12), we obtain the following explicit form for the bifurcation function 
(n= 1): 

BL(G,d”,g)=2rm2a2R 
! 

U2,(e)sin(2g+2m/)+ $[(a-/?)U,,,(e)sin(2g+m/) 

+3(a+p)U3,(e)sin(2g+3m/)] , 
I 

Bg(G,/,g)=--rrna’fl U;,(e)cos(2g+2m/)+ :[(a-/?)UL(e)cos(2g+mC) 

+(ct+/?)U;,(e)cos(2g+3mb)] (14) 

where in the expression for Bg we have used the fact that the eccentricity e and the Delaunay 
element G are related by G = + L Jg. We therefore make a change of variable from G to e 
and observe that the zeros and their multiplicities for the bifurcation function .W are identical to 
those of the function 

where * 

FL(e,G,g)=U2m(e)sin(2g+2m/)+ 84 [(a-/3)Um(e)sin(2g+mt’) 
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+3(a+p)U3,(e)sin(2g+3mE>], 

FG(e,k,g)=U2,(e)sin(2g+2m/)+ $(a-p)U,(e)sin(2g+m/) 

+(a+p)U3,(e)sin(2g+3mF)], (1% 

To apply Theorem 111.1, we must determine the simple zeros of the bifurcation function (14) 
or, equivalently, (15). We will show that simple zeros exist by a perturbation argument which is 
presented in the next section. 

IV. ZEROS OF A DEGENERATE BIFURCATION FUNCTION 

The bifurcation function (15) has the following abstract form: 

A(,w3=~tp)+bt~)=O, ,-R3, 

where the functions A: R3 X R-R3 and 7, p:R3-R3 are given in components by 

(16) 

u=( %), w=( %/), 

and where the first two components of r are equal. In fact, we define ?= r1 = r2. 
Remark IV.l: The fact that the bifurcation function has the abstract form (16) is not acci- 

dental, Every normally incident gravitational plane wave whose Fourier representation has as its 
dominant term a purely circularly polarized wave will result in a bifurcation function of the form 
(16) at resonance. 

We will determine the zero set for A in case .Z is sufficiently small. 
Lemma IV.2: Suppose A is defined by (16). If 71 E W3 is such that r( 7) = 0 while the vectors 

grada 7) and gradr3( 7) are linearly independent, then there is a curve s-r(s) in R3 such that 
r(O)= r,r, r’(O) # 0, and A(lY(s),O)=O. Zfsuch a curve exists and s=O is a simple zero of the 
real-valuedfunction s++q2(r(s))-(P1(r(s)), then there is a curve 2 *Y(Z) in R3 such that 
Y (0) = ?,I and A( Y (2)) .?) = 0. Moreover, for each sufJiciently small z#O, the point Y (2) E R3 is a 
simple zero of the function ,u++A(p, Z). 

Proof The linearly independent vectors grad ?( 7) and grad r3( 7) span a plane Q in W3. 
Let S denote one of the two possible rotation operators in space that preserves Q and rotates each 
vector in Q through 7r/2 radians. We note that S grad ?( 17) and S grad r3( 7) are linearly inde- 
pendent vectors in Q. Also, we let u denote a vector in space such that the set 
{S grad ?( v),S grad r3( v),v} is linearly independent. This requirement is satisfied, for instance, 
if we choose u to be equal to the cross product of S grad?( 7) and S gradrs( 7). 

The function w:R3++W3 defined by 

is invertible. We use it to define 0: R3+R2 given by 
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It follows that @( 0) = 0. Moreover, the derivative of the transformation 

(p, ,p*)-(~(W(p1,/40)~73(w(Pl J-49) 

at (p, ,pZ) = (0,O) is given by the matrix 

grad ?( 7) . S grad r3( 17) 0 
0 grad r3( 8) . S grad ?( 7) (17) 

that represents the partial derivative of 0 with respect to its first two arguments at the origin. 
Using the linear independence of grad i( v) and grad r3( v), it is easy to see that the 

diagonal elements of the matrix (17) are both nonzero. Thus, by the Implicit Function Theorem, 
there is a unique curve SH(+( s) in the (p t ,&-plane such that a(0) = (0,O) and 
O(c+(s),s)=O. The curve r(s):=w(c~(s),s) is such that r(O)= p and h(l?(~),O)=o. Moreover, 

a’(O) 
T’(O)=Dw(O) 1 

i i 

Since Dw( 0) is invertible and the vector (a’( 0)) 1) # 0, we have that r’(0) # 0. This proves the 
first assertion of the theorem. 

Under the assumption that s=O is a simple zero of the function S*(P2(r(s))- cpt(T(s)), we 
will use the Lyapunov-Schmidt reduction procedure to show that the corresponding point 
v= r( 0) in W3 is continuable as a zero of A. As l?‘(O) # 0, the image 3? of r is locally a one 
dimensional submanifold of W3. Moreover, Z? is normally nondegenerate in the sense that at each 
point i E & sufficiently close to 17, the kernel i of DT(,?) is exactly the one dimensional tangent 
space of 2. In fact, since this tangent space is clearly in k, it suffices to show that k is one 
dimensional. The derivative of r is expressed in the standard vector notation by 

Dr(z^)= 

Since the vectors grad ?(i) and grad r3(i) are linearly independent at i= 7, they will, by 
continuity, remain linearly independent in an open neighborhood of 7. Thus, their span is two 
dimensional at each point of this neighborhood. In particular, for 2 in this neighborhood, it is clear 
(by matrix multiplication) that grad ?(z”) and grad r3(i) are not both in l?. This proves that i? is 
one dimensional. It follows from the same Lyapunov-Schmidt reduction procedure that is used to 
prove Theorem 111.1 (see Ref. 2) that if II(i) denotes a projection to the complement .?’ of the 
range of D r(i), then simple zeros of the map from & to R given by $-+II( ;)A &!,O) are 
continuable. Thus, if 7 is such a simple zero, there is a curve Z HY ( 2) such that Y (0) = 77 and 
A( Y ( Z), 2) = 0 as required in the lemma. 

To construct such a projection into .;’ it can be shown that, in fact, the range of DT(.~) is 
spanned by the transpositions of the vectors ( 1,l ,O) and (O,O, 1). To see this, it is sufficient to note 
that D r(z”)S grad F(i) is the transpose of a scalar multiple of (O,O, 1) while D r(?)S grad ~-s(i) is 
a scalar multiple of the transpose of ( 1,l ,O) . The transpose of the vector (0,l ,O) clearly spans a 
complement to the range that we will denote by 9. Thus, if (pt ,p2 ,ps) E R3, the projection II is 
easily computed and is given by I1( pi ,p2 ,p3) = p2 - pl. Note that II does not depend on the base 
point; E 2. 
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Using the projection II and the definition of A, the Lyapunov-Schmidt reduced function 
?~I’I(Zn)hi(Z1,0) is given by .?H~~(,?)-(P~(Z^) for i E A:. Thus, if, in the coordinates of A;, 
s=O is a simple zero of s++cp#(s))-qt(r(s)), then p=T(O) is a continuable zero of A given 
by a curve Y, as required in the statement of the lemma. 

It remains to show that Y(Z), for sufficiently small Z+O, is in fact a simple zero of the 
function ~HA( ,u, 2). To this end, it suffices to show that the matrix DA (Y (Z), 2) does not have 
a zero eigenvalue. But, under the hypotheses of the lemma, the matrix DA( v,O) has a one 
dimensional kernel, namely the tangent space of G?5. This means that DA( v,O) has exactly one 
zero eigenvalue. By the continuity of eigenvalues of matrices, there is a smooth family of eigen- 
values X( 2) such that X(0) = 0 and a corresponding smooth family of eigenvectors V( 2) such that 
V(0) is a nonzero vector tangent to Z? with 

DA(Y(2),2)V(Z)=h(Z)V(Z). 

It suffices to show that if Z is positive and sufficiently small, then X( 2) Z 0. By continuity, the 
remaining two eigenvalues of the matrix will be nonzero as well. The desired result follows as 
soon as we show that the derivative X ’ (0) #O. For this we have 

where D denotes differentiation with respect to the space variable p E W3. After projection by 
II into the complement of the range of DA( v,O), 

We claim that IID2A(~,0)(Y’(0),V(O))=0. Once this claim is proved, the fact that 
h ‘( 0) #O would follow provided IIDA ;( v,O) V( 0) #O. The key point to note is that the projection 
operator, II, is independent of the base point, i.e. the range of the projection operator is spanned 
by a constant basis vector independent of the base point. Thus since A ;( I’( s) ,O) = cp( r( s)), we 
have 

Since & is one dimensional, r’(0) is just a scalar multiple of V(0) and therefore if 
II DC& v)r ’ (0) # 0, then II DA& v,O) V(0) # 0. By the definition of the components of cp and of 
the projection II, we have 

Thus, if s=O is a simple zero of s~cp2(r(s))-qo,(r(s)), then 

as required. 
To verify the claim, note that since II projects to the complement of the range of DA( v,O) 

and since II does not depend on the base point on & we have 17 DA (r( 8) ,O)Y ’ ( 8) = 0 for the 
real variable 13 in the common domain of r and Y. This implies that 
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where c?V(O) = I”(0). Since c”#O, the lemma is proved. 

V. PERIODIC ORBITS 

We now use L,emma IV.2 to prove that some of the zeros of the bifurcation function (15) are 
simple. We note that once this result is established, it will follow from Theorem III.1 that the 
corresponding bounded orbits of the Keplerian two-body system are continuable under perturba- 
tion by periodic gravitational waves. 

If 6=0, then the zeros of (15) are the union of the following one dimensional sets: 

5:={(e,/,g):2g+2mK=O, U&(e)=O}, 

GTE;= (e,f,g):2g+2mb=;, 
i 

Uh(e)=O , 
I 

ST= (e,d”,g):2g+2mR= y, 
i 

Uzm(e)=O . 
I 

(18) 

We will show that the zeros in the sets SF and -Sz continue to simple zeros of the bifurcation 
function for sufficiently small 6fO. To conform with Lemma IV.2, we use (15) to identify the 
components of A as they appear in the lemma as follows: 

qt(e,F,g)= :[(a-P)Um(e)sin(2g+mb) 

+3(a+p)U3,(e)sin(2g+3mG)], 

cpz(e,/,g)= $[(a-/3)U,(e)sin(2g+md’) 

+(a+/?)U3,(e)sin(2g+3mt’)], 

Also, we note that S in (15) plays the role of 2 in the lemma. 
There are four cases to consider corresponding to the zero sets (18) of the unperturbed 

bifurcation function (14). We will consider the zero&set 3: for illustrative purposes, as the 
computational procedure is identical in all four cases. The set XT is just a line in W3, so here the 
curve r in the lemma can be taken to be a parametrization of this line starting at an appropriate 
point. By a direct calculation, the function ‘p2- cpI on ZE: is given by 

t[(cu-P)u,(e)+(a+P)U3m(e)lsin g. 
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The zeros of this function along 53: are clearly simple provided the coefficient of sin g does not 
vanish at the value of the eccentricity determined by membership in ,555:. The main result of this 
section is the following theorem. 

Theorem V.l: Consider the system (10) and suppose that (L,G,/,g) is on an unperturbed 
(m:n) resonant periodic solution with n= 1, that is, L3=mk2/fl. If(e,/,g) is in %T or &l, 
respectively, (e,f,g) is in Zl or 95; , where e is the eccentricity of the corresponding Keplerian 
ellipse ( e2 = 1 - G2/L2) and if 

respectively, 

then the Keplerian ellipse continues to a periodic orbit under the perturbation. 
It remains to show that the sets {SF}, i= 1,2, are not empty. This fact will follow as soon as 

we show that both of the functions U2,, and Ul, have zeros on the interval O<e< 1. 
Recall that U,,(e) =A,,(e) +B,,(e) and note that both A2,,, and B2,,, have removable sin- 

gularities at e = 0. Moreover, both have Taylor series at e = 0 with leading terms given by 

m2m-2 

2(2m- 1)(2m)!e2(m-‘). 

In particular, if m = 1, then lim,,c+ U2( e) = 2 and for m > 1, the limit is zero, but U,,(e) > 0 for 
sufficiently small eccentricity. Also, lim,,t- Uzm= - J2,(2m)lm2. By a standard property of 
the Bessel functions, J,( v)>O; hence, U2,( 1) CO. This proves UZm has at least one zero on the 
interval O< e< 1. Numerical calculations suggest that this zero is unique. 

A simple argument can be given to prove the existence of a zero in the case m = 1 for the 
function U;,, . In this case, the series expansion of Vi at e = 0 is - 10e + 0(e2). Thus, 
U;(e)<0 for a small but positive eccentricity. The limit as e+ 1 - is the same as 

By standard properties of the Bessel functions, J2(0) = 0 and J2>0 on the interval (0, jb,i), 
where j;,, is the first zero of Ji . Hence, Ji>O on (0, j;,,). But, we also have 2<jl,, . Thus, 
J;(2)>0 and U~(e)--+~ as e-+1-. This proves that U;(e) has at least one zero on the interval 
0 < e < 1; moreover, numerical computations suggest that this zero is unique. 

For ma2, we will outline a proof that shows the function Ui, has at least two zeros on the 
interval O<e< 1. An asymptotic analysis shows that the function Ul, is positive near the end 
points of the interval. The proof is completed by showing that Ui, has a negative value within the 
interval. To this end, note that the function Ui, has the form 

U;,(e)= n(m,e)J2,(2me)+ dm,e)J;,,,(2me), 

where yt and yz are computed using (9). Moreover, by standard properties of the Bessel func- 
tions, both of the functions e++Jzm(2me) and e++J;,(2me) are positive for O<e<l. Let us 
define e^: = (1 - 1/(4m2)) 1’2, and observe that 0 < e^ < 1. A simple computation shows that 
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Hence, we have U;,(d) <O, as desired. Numerical computations suggest that the function U;,,, 
has exactly two zeros on the interval O<e< 1. 

It follows from these results that the resonant interaction of the incident multi-frequency 
gravitational wave of definite helicity with a Keplerian binary can result in orbits that are periodic 
with period 2~10, where fl=mo, m= 1,2,3 ,... . It is conceivable that other periodic orbits may 
exist; however, our method can identify only those periodic orbits that are continuations of reso- 
nant Keplerian orbits of the unperturbed system. 

VI. ROTATING FRAME 

In a manner similar to that used by Hill in his treatment of the lunar theory,7-9 we can view 
the dynamical system described by (6) in Cartesian coordinates rotating at half the principal 
frequency of the incident gravitational wave (a,= 2R). These coordinates-that we again rep- 
resent by (x,y)-rotate with frequency $, = fi with respect to inertial coordinates; therefore, the 
equations of motion in these coordinates are given by 

d2x 4 kx 
;i;Z-""-+Px+-g +2di2[(1+Lh cos flt)x+(iS/? sin Qt)y]=O, 

d2y 
(19) 

;i;r+2n3Py+ ky 7+2&12[(8psinRt)x-(1+6a cosRt)y]=O. 

Let X: =X - Qy and Y: =4; + fix be the canonical momenta conjugate to x and y, respectively. 
Then (19) is equivalent to a Hamiltonian system with Hamiltonian 

+&‘[(l+Sa cos Clt)(x2-y2)+2(afi sin Clt)xy]. (20) 

By identifying the momenta in polar rotating coordinates as pr= (xX+yY)lr and pe=xY-yX, 
(20) in polar coordinates is given by 

2 

3ER=k pF+ ‘9 - k--Rp,+ eC12r2[cos 28 
i i 

+ 6(a cos 28 cos Rt+p sin 28 sin fit)], (21) 

which in the corresponding Delaunay elements becomes 

k2 
~~=-~-S1G+~il~{~(L,G,t,g)+Q~5F(L,G,~,g)cos nt 

+PP7(L,G,C,g)sin fit]}. (22) 

The Hamiltonian system given by (22) has periodic orbits with period 27r/a, where fl=mo, 
m= 1,2,... ; this assertion can be demonstrated using results that have already been obtained in 
this paper. In fact, using the resonance assumption, periodic orbits exist in the inertial frame with 
period 27r/R as shown in Section V. An orbit in the inertial frame, t++(x,(t),yl(t)), is repre- 
sented in the rotating frame by 

xR(t)=x,(t)cos Rt+y,(t)sin fit, 

yR(t)= -x[(t)sin Cit+y,(t)cos fit. 
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It follows from these relations that if x,(t) and y[(t) are periodic with period 27r/fi, then so are 
xR( t) and yR(r). Therefore, the orbits that are periodic in the inertial frame with period 27rlin are 
observed to be periodic with period 27r/fi in the rotating frame. It is also possible to arrive at this 
conclusion by direct application of the methods developed in the previous sections. 

To understand the physical structure of Hamiltonian (22), imagine right circularly polarized 
gravitational radiation of frequency 2R that is normally incident on the orbital plane. It follows 
from our previous work,’ as well as equation (19), that in a reference frame rotating with fre- 
quency R the wave stands still. That is, observers at rest in the rotating frame do not perceive the 
variability associated with a wave so that in the absence of secondaries (S=O) the dynamical 
system (19) is autonomous. That an observer-by merely rotating about the propagation axis of 
the circularly polarized wave-could make the wave stand completely still would be a remarkable 
physical effect and deserves further discussion. 

It is a fundamental consequence of Lorentz invariance that all basic radiation fields travel with 
speed c with respect to all inertial observers. This may be illustrated by an example: Let an 
inertial observer move with speed u. along the propagation axis of a monochromatic plane gravi- 
tational wave of frequency a,. The frequency and the wave vector of the radiation as perceived 
by the moving observer are smaller than those measured by static inertial observers by a common 
Doppler factor of 

c--u0 1f2 
i i c+uo . 

Mathematically, as uo-+c this ratio goes to zero and hence the frequency and wave vector of the 
radiation vanish so that the wave might appear to stand still. This limit is not physically allowed, 
however. No observer can move at the speed of light, although-theoretically-one can get 
arbitrarily close. Therefore, the wave can never stand still for an inertial observer. It has been 
shown” that according to the standard Einstein theory this is not the case for accelerated observ- 
ers, i.e. an accelerated observer can indeed stand still with respect to a gravitational wave. The 
autonomous nature of the system (19) for S= 0 provides an interesting illustration of this fact. 
That is, consider an observer at the center of a system of coordinates rotating with frequency 
R. The observer does not move, but the fact that it refers its observations to the axes that rotate 
with frequency Q with respect to the inertial axes makes it a noninertial observer. Radiation of 
frequency fi, is incident in the inertial frame along the axis of rotation. According to the nonin- 
ertial observer, the frequency of the gravitational wave is sZ:= iR,? 2a, where the upper sign 
refers to right circularly polarized (RCP) gravitational radiation and the lower sign refers to left 
circularly polarized (LCP) gravitational radiation. The first (second) case has helicity +2 ( - 2)) so 
that fi: = fi, - h. ClL, where h is the helicity of the gravitational radiation field; this is an example 
of the general phenomenon of helicity-rotation coupling. Now if 0 = in, for RCP gravitational 
waves or Q = - $ * for LCP gravitational waves, we find that 0: vanishes according to the 
noninertial observer (as well as any other observer at rest in the rotating frame anywhere along the 
z-axis) and the radiation field stands still. It has been shown in Ref. 1 that for a monochromatic 
gravitational wave with definite helicity and sufficiently small amplitude this observation concern- 
ing a rotating observer leads to the conclusion that a Keplerian system in the presence of this 
radiation can never ionize. In principle, this absence of ionization could be considered an observ- 
able consequence of the physical possibility that a gravitational wave could stand completely still. 

Let us now consider the possibility of ionization of the binary system as a function of the 
parameter 6. The transformation to the rotating frame leaves the orbital radius unchanged; there- 
fore, the ionization problem can be discussed equally well in the rotating frame. In fact, the 
problem becomes simpler since the principal component of the incident radiation field loses its 
time-dependence as in (22). Thus if 6=0, the KAM theorem implies that for sufficiently small 
E the perturbed trajectory is bounded since it is trapped between two dimensional invariant tori in 
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FIG. 1. Orbital radius versus time plots for the dynamical system given by Hamiltonian (6) with initial conditions 
(pr,ps,~,O) equal to (O.S,l,l,O) and parameter values e=O.OOl, S=O, a=2.5, /3=2, k=l and, from (a) to (c). R=2, 
n=9&s, n= 1. 

the three dimensional energy surfaces. When SfO, however, the two secondary components in the 
inertial frame both reduce to a perturbation of frequency Q in the rotating frame; that is, the three 
Fourier components of the radiation field in the inertial frame are RCP waves with frequencies 
R,=fi,2fl and 3R, while the tidal matrix in the rotating frame has frequencies given by 
fi:=fi,- 2fi, i.e. - R,O and R for the three components, respectively. The perturbation of 
frequency R in the rotating frame is expected to lead to Arnold diffusion”,‘2 and hence ionization 
of the system. However, it has not been possible thus far to prove ionization for the system (22); 
therefore, we resort to numerical work in the following section. 

VII. NUMERICAL EXPERIMENTS 

In this section we illustrate-by means of numerical experiments-the conjecture that gravi- 
tational ionization and Arnold diffusion are closely related. The interpretation of the numerical 
results is simplified if we take the viewpoint of inertial observers and consider the perturbed 
motion given by Hamiltonian (6). 

We have performed several numerical experiments to test the diffusion and ionization prop- 
erties of the dynamical system that is represented by the Hamiltonian (6). The physical meaning of 
these numerical experiments is essentially the same as in our previous paper (cf. Figure 2 in Ref. 
1): Let us choose two scales for the measurement of time and length that are arbitrary except that 
they are connected here by our choice of k= 1. In these otherwise unspecified units, we have 
chosen an unperturbed ellipse of semimajor axis a = 4/3 and eccentricity e= l/2 such that 
g = - ~12 and the Keplerian frequency is w= 3 61% The ellipse is perturbed by the presence of 
periodic gravitational radiation and the orbital radius of the osculating ellipse is then plotted versus 
time in these units in Figures l-4. These figures represent the results of our numerical experi- 
ments in which we have set the parameters of the external perturbation as follows: 

e=O.OOl, cY= 2.5, P=Z 

and have changed S in the range 0 G SS 1 and fl in the range 1 s Qc2. In each run, we set the 
initial conditions to be 
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FIG. 2. Orbital radius versus time plots for the dynamical system given by the Hamiltonian (6) with initial conditions 
(p,,pe,r,O) equal to (0.5.1.1.0) and parameter values ~=0.001, 6=0.5, cu=2.5, /?=2, k=l and, from (a) to (c). 
R=2, n=9&8, CJ=l. 

which correspond to the unperturbed ellipse described above. After integration over each time 
interval corresponding to one cycle of the perturbation, i.e. 27rlR, the corresponding elapsed time 
t and orbital radius are plotted. Clearly, for each value of t (abscissa) there is only one value of 
orbital radius r (ordinate); however, this is not discernible in some of the figures due to the way 
in which the plots have been prepared. The KAM theorem is illustrated in Figure 1, where the 
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FIG. 3. Orbital radius versus time plots for the dynamical system given by the Hamiltonian (6) with initial conditions 
(p,,ps,r,8) equal to (0.5.1.1.0) and parameter values .z=O.OOl, S= 1, cr=2.5, p=2, k= 1 and, from (a) to (c), 0,=2, 
fl=9&8, iI= 1. 
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FIG. 4. Orbital radius versus time plots for the dynamical system given by the Hamiltonian (6) with initial conditions 
(pr,pH,r,B) equal to (0.5,1,1,0) and parameter values ~=0.001, 6=0.5, a=2.5, p=2, k= 1, 0=2. This is an extended 
form of the plot presented in panel (a) of Figure 3. 

value of r appears to oscillate between = a ( 1 - e) = 2/3 and = a ( 1 + e) = 2, thus indicating the 
complete absence of ionization. The possibility of ionization of the system is illustrated in Figures 
2 and 3 for 00, where the initial ellipse is near resonance in the first panel, on resonance in the 
middle panel and off resonance in the last panel. More precisely, the middle panel in either Figure 
2 or Figure 3 corresponds to an exact third order resonance since R/w=3, while the first panel 
illustrates the response of the ellipse to the external perturbation near resonance 0/o-3.08; the 
last panel is off resonance with No- 1.54. Additional calculations extending the integration time 
for the system depicted in the first panel of Figure 3 have been performed. These results suggest 
that a bursting behavior occurs in which the near resonance condition shown at the right end of 
this panel is followed by chaotic motion similar to that shown in the middle of this panel that in 
turn is followed by a period of near resonance. This recurrence of chaotic and near resonance 
‘behavior appears to continue for the extended interval of time studied as illustrated in Figure 4. 
Thus, this behavior is consistent with a type of chaotic behavior, called intermittent chaos, that has 
been studied for dissipative systems.‘* If the behavior suggested by these simulations is indeed 
present in the Hamiltonian system (6), then our result would be an example of Hamiltonian 
intermittency. 

Imagine, for the sake of concreteness, a binary system consisting of an artificial satellite in an 
eccentric orbit about the Earth. Let the scales of length and time be R0 and To, respectively; then, 
Ri= kTi. Thus, if we take Re= lo9 cm for the problem under consideration, it turns out that 
TO= 1.6X 10” s. The gravitational wave in our numerical experiments would then have a fre- 
quency of the order of fi2- 10e3 rad s-‘, corresponding approximately to 1.5X 10e4 Hz as well 
as to a wavelength of 2 X lOi cm, and an amplitude of the order of E= 10e3. Gravitational waves 
have not yet been directly observed; however, in a realistic situation the amplitude of the wave 
would be expected to be of the order of lo-*‘. 

Our numerical experiments are consistent with the expected behavior for a 2;-degree of 
freedom Hamiltonian system. In fact, by introducing a fictitious action variable (cf. Sec. 6 in Ref. 
l), our system is equivalent to an autonomous Hamiltonian system with three degrees of freedom. 
Each orbit of this new system is constrained to an energy manifold. However, whereas the two 
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dimensional KAM tori (if they exist for our choice of parameter values) separate each three 
dimensional energy manifold for the corresponding two-degree of freedom Hamiltonian system 
that we obtain with S=O, the three dimensional KAM tori, that may exist for the three-degree of 
freedom Hamiltonian system that we obtain with SfO, do not separate space within the five 
dimensional energy manifolds. Of course, for sufficiently small choices of S, there are orbits of 
the three-degree of freedom Hamiltonian system that remain bounded for all time; for example, 
the periodic orbits of Section V and the orbits confined to KAM tori. While the totality of bounded 
orbits in an energy manifold may be a set of positive measure, we expect that every open set of the 
five dimensional energy manifold contains an initial condition for a trajectory that will diffuse 
throughout the energy manifold. In fact, we expect this behavior for all 6>0. On the other hand, 
as S decreases toward zero, the time required to leave the vicinity of a KAM torus is expected to 
grow at an exponential rate. Figures l-4 illustrate dynamical behavior that is characteristic of 
Arnold diffusion.‘* 

APPENDIX: LATERALLY INCIDENT RADIATION 

The purpose of this appendix is to point out that the main results of this paper still hold for a 
more general incident gravitational wave than that considered in (4). 

In the general case of incident gravitational radiation on a binary system, the motion of the 
system away from the initial orbital plane (i.e., along the z-direction) also needs to be taken into 
account. It is necessary to mention here that initial conditions are generally ignored in our theo- 
retical approach, which relies on the properties of the perturbed system once transients have died 
away and a “steady state’ ’ situation has been established. In this paper, we have limited our 
considerations to normally incident waves; in fact, the transversality of gravitational radiation 
makes it possible to set z=O for normally incident waves. We wish to note here that essentially 
the same results can be obtained for a more general incident radiation field. 

Consider, for instance, the superposition of a left circularly polarized (LCP) wave of fre- 
quency R traveling along the z-axis with a linearly polarized wave of frequency a traveling along 
the x-axis. Specifically, let xij be of the form 

( 

cos i-It -sin iIt 0 

x(t,O>= -sin fir 3~0s fit 0 9 
1 

(23) 
0 0 -4cos nt 

up to a constant factor. It follows from (2) that the corresponding 5?T is of the form 

x= g.n*x(t,o), (24) 

so that the equation of motion (1) along the z-direction is given by 

d2z kz 
-$+ -72&zcos nt=o. (25) 

This equation is satisfied by z = 0, which is consistent with the fact that the orbit is always in the 
(x,p)-plane. Therefore, to the incident radiation field in (4) one could add radiation fields of the 
type given by (23). Moreover, upon transformation to the rotating frame, 

i 

cos nt sin fit 
~‘=R--~~R= $2 sin Sit 3~0s iIt 

0 0 
(26) 

where 
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-sin fit 0 

cos at 0 (27) 
0 1 

is the rotation matrix used in Section VII. It is remarkable that the tidal matrix X’ in the rotating 
frame has the same frequency Sz as in the inertial frame; in fact, X’ can be obtained from 35 
simply by letting 0 + - a. 
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For any given nonzero real number, CX, and any curve from some open interval, 
I, into the space . &, of Riemannian metrics on a compact manifold M, a metric, 
F, on the manifold ZXM can be constructed in a natural way; the metric is Rie- 
mannian for CY positive and Lorentzian for Q negative. The aim of this paper is to 
show that g is an Einstein metric, with constant X, if and only if the curve of 
metrics is a solution of a certain Lagrangian on S & defined in terms of the Dewitt 
metric on . AT, the total scalar curvature functional and the values a and h. This 
result was obtained by Dewitt [Phys. Rev. 160, 1113 (1967)], for the case where 
the dimension of M is three, cz is negative and X = 0, in the context of a formulation 
of Einstein equations of evolution as a dynamical system. Dewitt metric is a 
member of a one parameter family of pseudometrics on . &; it is shown here that, 
no other such a metric can be used to describe the relationship of the (n + 1) 
geometry of ZXM with the dynamics on A, so a characterization of the Dewitt 
metric is obtained. 0 1996 American Institute of Physics. [SOO22- 
2488(96)01207-81 

1. INTRODUCTION 

Let (N,a be a four-dimensional Lorentz manifold and let M be three-dimensional spacelike 
submanifold of N such that gdefines on M a one parameter family of Riemannian metrics, g, . It 
is known that Einstein field equations in N, that is those describing the vanishing of the Ricci 
tensor of g, can be written as time evolution equations for the curve t--+g$ in the manifold. & of 
all Riemannian metrics on M. In Ref. 1, these equations are described as geodesic equations in 
. A+?%, considered with a metric, which is now usually known as the Dewitt metric, and modified by 
a term due to the gravitational potential. More precisely, one of the results in Ref. 1, stated as in 
Ref. 2, reads as follows: 

Theorem 1.1: Let M be a compact, 3 -dimensional manifold and let g, , t E I= ( - B,E), be u 
curve in the manifold of metrics ,,&. Let (N,gT be the Lorentz 4-manifold, where N = I X M and 
g is defined in such a way that in an adapted coordinate system, 

for each i,j= 1,2,3. Then, g is Ricci j?at if and only if the curve g, satisfies the second order 
differential equation, 

g%glg-lgl - 1 
~K’dk’- ~dx’),&-2Po(d- i&g z 

together with the constraints 6,(g’-tr(g-‘g’)g)=O and .%(g,g’): = gg’,g’),-2fig)=O. 
Here, p&r>, tig) and sgv represent the traceless part of the Ricci tensor, the scalar curvature 
and the divergence operator of the metric g and, (,)g - is the pointwise product that gives, by 
integration over M, the Dewitt metric Gg . 

“Electronic mail: gilo@uv.es 
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The second order equation is equivalent to the curve being a solution of the Lagrangian 
L(g)=fG,(g,g)+2S(g) and can be written as g”=T-(g,g’)+2grad-S(g), where S is the 
total scalar curvature functional and r- represents the Riemannian spray. 

The purpose of this article is to give some generalizations of Theorem 1.1; namely we will 
prove that the assumption on the dimension of the manifold M is not necessary and also, that the 
conclusion is independent of the metric gbeing Lorentzian. On the contrary, we will show that the 
Dewitt metric is the only metric, among those of a natural one parameter family of pseudometrics 
on . ~8, for which Einstein equations can be written in terms of its spray, gradients and diver- 
gences. 

A Ricci flat metric is, in particular, an Einstein metric. Our last result is a generalization of 
Theorem 1.1 to this situation. We give the proof of the above mentioned results in Section IV. 

Section II is concerned with the manifold of Riemannian metrics on a compact manifold and 
with the total scalar curvature functional, also known as gravitational potential. Although this 
material is fairly standard, we have included here a survey in order to establish the notation and to 
write the known results in the form in which they are going to be used in the sequel. 

In Section III, we describe a one parameter family of weak pseudometrics, G”, on the mani- 
fold c 4; the usual L2 metric and the Dewitt metric are among them. We use some results of Ref. 
3 to obtain the explicit formulae for the Riemannian spray, gradients and divergences correspond- 
ing to each G’. 

II. PRELIMINARIES 

Several topologies can be defined on sets of differentiable maps between manifolds, by using 
the adequate jet space; in this paper we will consider the P-compact topology. With this topol- 
ogy, the space of smooth sections of a vector bundle over a manifold is a locally convex topo- 
logical vector space; more precisely, it is a Frechet space. Thus, it is possible to define manifolds 
modeled on these spaces of sections; the spaces themselves are manifolds with a single chart. 

Many geometric structures on a manifold are defined to be one, or several, tensor fields 
satisfying certain conditions; so, each class of structures determines a subset of some space of 
tensor fields and, frequently, these subsets admit a structure of manifold modeled on spaces of 
sections. 

Let M be a finite-dimensional, smooth manifold and for each nonnegative integers (r,s), let 
T”(T(,,,,(M)) be the space of r-times contravariant, s-times covariant, tensor fields on M. The 
C”-compact topology on it can be described in terms of a Riemannian metric on M, in a manner 
completely analogous to that used to define the same topology, on the space of smooth functions 
from an open domain of Euclidean space. It is only necessary to change the Euclidean norm, by 
the norm determined by the metric, and ordinary partial derivatives, by covariant derivatives with 
respect to its Levi-Civita connection. A detailed description can be seen in Ref. 4. 

With exactly the same procedure, any other topology, of those usually defined on spaces of 
functions of Euclidean domains, can be extended to spaces of tensor fields. Among them, we can 
find the topologies associated either to Lebesgue or to Sobolev norms, which are obtained by 
integration of different powers of the norms of the tensor field or of its covariant derivatives. 
Nevertheless, if the manifold is not compact, the topology so defined depends upon the metric 
used for the definition and this fact has also a negative influence on the Cr-compact topology; in 
fact, only for a compact manifold, spaces of sections, endowed with the C”-compact topology, are 
inverse limits of Hilbert spaces. 

In what follows, we will assume that M is a compact manifold without boundary. 
Let us denote by S2(M) the subspace of the symmetric elements of T”(T,,,,,(M)); it is easy 

to see that it is closed in the C”-compact topology and therefore it is a Frechet space. Under the 
compactness assumption, the subset LXCS2(M), of positive definite elements, is open and then, 
it admits a Frichet manifold structure modeled on S2( M). . /% is the manifolds of the metrics and 
it is a convex cone. 
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The diffeomorphism group of the manifold M, denoted by 9, is also a Frechet manifold; its 
model is the space of vector fields on . fi. 3’ acts on each space of covariant tensor fields by 
pull-back. 

For given 50 E 5, the map cp:(M,cp*g)-(M,g) is, by definition, an isometry and so, any map 
of geometrical meaning, from . & to a tensor field space, should be invariant by the action of 
2. Examples of such maps, that we will use here, are the following. 

The Riemann curvature R:. J?~+T”(T,~,,,(M)); it is given by 
R(g)(X,Y,Z,W)=g(R,(X,Y,Z),W) where R,(X,Y,Z)= -ViVS,Z+V$ViZ+Vfx rlZ. 

- The Ricci tensor p:-fi+S2(M); it is defined by p(g)(X,Y)=trAi,, where A’& represents 
the ( l,l)-tensor field given by A&(Z) =R,(X,Z, Y). 

- The scalar curvature 7:. &+C”(M) given by r(g)=tr(g-‘p). 
- The volume form vol:, &+ A”( M), if c & is oriented. 
The scalar curvature is a particular case of what is called a natural Lagrangian; that is, a map 

L:. &-C’“(M) which is ~invariant and that only depends on some k-th order jet of the metric. 
Dejnition 2.1: A dtrerentiable map F:..#+R is said to be a Riemannian functional if and 

onlyifF(q*g)=F(g)forall(cp,g) E gX,&. 
The condition on F defined above is equivalent to the map being constant on the g-orbits. 
Dejnition 2.2: Let F:. IJ--+W be a Riemannian functional; for a given g E . & let us denote by 

T,F:T,. /%--+R the tangent map to F at g. A metric, g, is a critical point of F if and only if 
Ker( TsF) =T, 4. 

Definition 2.3: Let L:.&-+C”(M) be a, g-invariant, smooth map. The Riemannian func- 
tional associated to L is deJTned as FL(g) = sML(g)vol(g) where vol(g) represents the volume 
element of g (a density on M unless M is oriented), In particular, F, is the total scalar curvature 
and will be denoted by S; if L is given by L(g) = 1, then F, is the volume functional. 

The computations necessary to obtain the differential of maps related with the curvature 
operator have been done usually in local coordinates, and they are well known from a long time 
ago; in particular, those concerning total scalar curvature go back to Hilbert5. A good review of 
the known results is included in the corresponding chapter of Besse.” 

The next statement contains several known results concerning the differential of the scalar 
curvature map. They are written in the form in which we are going to use them later. 

Proposition 2.4 
(l)(T,vol)(h) =$r(g-‘h)vol(g), 
(2) U,F,)(h) =.f.d(TgWO + i@4gkO),hW> 
(3) (TRd(h)= -(p(g),h),+Ag(tr(g-*h))+ Sgsgh, 
(4) (T,S)(h)=S,(-p(g)+~~(g)g,h),vol(g), 

where 6s is the divergence operator of the metric g, given by SsT= - tr(g-‘VgT), and Ag is the 
Laplace operator, AaT= -tr(g-1(VR)2T). Here, (,)s re p resents the usual pointwise product of 
tensor fields given by the metric which, for 2-covariant symmetric tensor fields, has the form 
(k,h)g=tr(g-lkg-‘h). 

The L2 inner product on S2(M), obtained by integration of the usual pointwise product, gives 
rise to a Riemannian metric, G, on ,& by the formula 

G,(h,k)= M(h,kj,vol(g). 
I 

G is a symmetric, g-invariant, bilinear form but it is a weak metric; in fact, the map, from 
T,. & into its dual, induced by G, is only injective and the topology, in Ts-&, defined by the 
G,-norm is not the one obtained from the differentiable structure considered in . &. 

Definition 2.5: Let F:. X-R be a Riemannian functional. If there is a map 
gradF:.~~S”(M)suchthatG,(gradF(g),h)=(T,F)(h),foreachg E ,&andeachh E Ts.&, 
this map is said to be the G-gradient of F. 
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If F is such that its G-gradient exits then, a metric g is a critical point of F if and only if 
gradF(g) = 0. 

From (4) of Proposition 2.4, the total scalar curvature admits a G-gradient, namely 
grads(g) = - p(g) -t $-(g)g . For a manifold, of dimension n # 2, a metric is a critical point of 
S if and only if it is Ricci flat. 

The next property, usually known as conservation laws, follows directly from the fact that, 
due to the *invariance of a Riemannian functional, its G-gradient must be, at each metric g, 
G,-orthogonal to the orbit. The tangent space, at g, to the g-orbit is the image of the elliptic 
differential operator 6; : A l(M) ---f S2(M) given by Sz( o) = symm( Vo); its formal G,-adjoint is 
the divergence operator of g and then, the elements of S2(M) which are G,-orthogonal to the orbit 
are just those of Ker8, . 

Proposition 2.6: Let grad F be the G-gradient of a Riemannian functional F; then, for each 
g E ,&5 the tensor$eld gradF(g) has vanishing g-divergence. 

ill. THE ONE PARAMETER FAMILY OF PSEUDOMETRICS, G= ON. k 

Each metric, g, determines an algebraic decomposition of the tangent space Ts. &=S2(M) as 
follows: Ts%&= V,(g) @ I V,(g) where, V,(g)={h E T,A;tr(g-‘h)=O} and V,(g)=C”(M)g; 
for an element h E S2(M) we will represent by ho its traceless part, that is 
ho=h-(l/n) tr(g-‘h)g. 

For each c E W, c#O, a pointwise product is defined by the expression 
(k,h)i=tr(g-‘kag--‘ha)+ctr(g-‘k)tr(g-’h). We recover the usual pointwise product for 
c= l/n. By integration of the corresponding pointwise product, a weak pseudometric, G’, is 
defined on L A’; for c> 0 it is in fact a metric. 

In Ref. 7, Killing vector fields with respect to these pseudometrics have been studied. In Ref. 
3 the pseudometrics GC are extended to the space 99, of nondegenerate 2-times covariant tensor 
fields, and their Levi-Civita connection, geodesics, exponential mapping and curvature are calcu- 
lated. 

Proposition 3.1: Let t-g(t) be a smooth curve in c #. It is a geodesic of the manifold 
(. &,GC) ifand on1.y if 

1 g”=g’g-‘g’- z trfg-‘g’)g’+ &tdg-‘g.g-‘g’)g+ ~tr(g-‘d)2& 

Therefore, the geodesic spray of GC is given by 

l?‘(g,h)=hg-‘h- ;tr(g-lh)h+ &(h,h);g. 

Here g’, g”, represent (dldt)g and (d2/dt2)g. 
Proof: In Ref. 3 (Theorem 3.2) it is shown that the submanifold . AT’ of A’ is geodesically 

closed and then the geodesic equation is just the one appearing in 2.3 of Ref. 3. For the second 
assertion we have only to use the fact that lY(g,h) is the geodesic spray if and only if the geodesic 
equation is g”=lY(g,g’), and the definition of (,)z. n 

Lemma 3.2: Let F:,X-+W be a Riemannian functional. Then, F admits Gc-gradient if and 
only I’ it admits G-gradient and both vectorjelds are related by 

gradCF(g)=gradF(g)- Gtr(g-‘gradF(g))g. 

Proof: By definition of the gradient, 
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Now, it is easy to see (Lemma 1.4 in Ref. 3) that the last member is equal to Gi(gradF(g) 
- [(cn - l)/cn2](g-‘gradF(g))g,h) from where the expression holds. a 

In the particular cases of the volume and total scalar curvature functionals, combining the 
above Lemma and formulae in Proposition 2.4 we obtain the following 

Lemma 3.3: 
(1) grad’V(g)=(1/2cn)g. 
(2) gradcS(g)=-po(g)+[(n-2)/2cn217(g)g. 
For the G’-gradient of a Riemannian functional, the same arguments used in 2.6 allow us to 

conclude that if 8s represents the formal G’-adjoint of the operator 8: then, for every Riemannian 
functional F, we have <(grad’F(g))=O. 

It is easy to see that the operator ?$ is given by 6C,(h) = 8g( ho) - cd(tr(g - ‘h)); in fact, using 
Lemma 1.4 of Ref. 3, we have 

G;($b),h)=G, 
cn-1 

S,*(o),h+ --n-tr(g-‘h)g 
cn-1 

h-t --tr(g-‘h)g , 
g 

forall o E h’(M). Therefore 5(h)= S,(ha+ctr(g-‘h)g)= Sg(hO)-cd(tr(g-‘h)) and we have 
shown the following 

Proposition 3.4: Let gradcF be the G’-gradient of a Riemannian functional F; then, for each 
g E . z% the tensorfield (grad”F(g))a+ctr(g-‘(gradCF(g)))g has vanishing g-divergence. 

Apart from the case c = l/n, the other distinguished member of the family of pseudometrics is 
the one corresponding to c = (1 - n)ln; we will denote it by G-. It is known as the Dewitt metric 
because it has been defined in Ref. 1, for the particular case n = 3 and c = - 213; for this case, the 
expression of the geodesic spray can be found there. 

IV. RELATIONSHIP WITH THE (n+l) GEOMETRY 

In this section we study some generalizations of Theorem 1.1; let us start with a technical 
Lemma. 

Lemma4.1:Letg,,t E I=(-~,~),beacurveinthemanifold.~,ofmetricsonM,andlet 
a be a real number, different from 0. On the manifold N= IX M, let us consider the pseudometric, 
c, defined in such a way that, in an adapted coordinate system, is given by 

gijo,P)=k,)ij(P); LFO; &I=% 

for each i,j = 1, . . . ,n . Then, Christoffel symbols of g are given by 

The components of the Ricci tensor are 

-1 1 
PoO(ttp)= --prkLLg:‘)+ ~~k~‘g~s~‘~~). 
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where, for simplicity, we have represented by (r’) f, , pij, 8, , the Christoffel symbols, the Ricci 
tensor and the divergence of g, , respectively. 

Proof Christoffel symbols are obtained by straightforward computation. Now, the compo- 
nents of Ricci tensor are given by 

PALI= c=. GBC 3 5 

with 

Gc= mJ,~~C)aA)E= -s,(Ff,)+s,(F;/J-D~o F;DF;,+D$o r;&F;A) 
whereA,B,C,E E {O,l,. . . ,n};seeRef. 8,~. 87. 

The values of ~j and &a are obtained directly from the expressions above. It is easy to see 
that R1) =0 and then 100 

n 

P,ockz, @o/c. 

Therefore 

+ & &(&-'g:):(P)-~ (g<-lg:):(V:,(P)+T (g,‘g:)f(V[t,(P) . 
1 I 

In order to finish the proof, we only need to show that for each metric g and each h 
E S2(W, 

ak(g-‘h)f-F (g-lh)$f/+F (g-‘h)fK‘:, 

In fact 

c 4k-‘h);= t: 
k k.1 

gk’dk(hli) -,z j gk’ddg/j)gi’hri t 
. . 1 

and 

1 
~ (g-‘h)fTk =- C g”h,igk’al(gjk). 

ki 2k.l.r.j 

By adding the right-hand terms of both equalities we obtain 

g gk’dk(hii)-kTr &?k’r,‘khri, 
1 1 
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and the result follows from the definition of the divergence. n 
Proposition 4.2: Let g’, g, be as described in the previous Lemma. The first and second 

variations of the curve of metrics and the Ricci tensor of rare related by 
(1) Eo’ - kqs’L 

(2) poo=cutr(g-‘js) - cu4(g’ 9 g’ ); + 
n-lfcn 

dn ws-‘s’>2, 

n-2+2cn 
(3) g”=-2@+ cn2 (~tr(g-‘~-p100)g+rC(g,g’)-2agradcS(g) 

n-lfcn n-2+2cn - 
2cn2 k’dg- 2 

Proof First equality is just the corresponding equality in Lemma 4.1, written in terms of the 
gradient operator associated to the Dewitt metric. For the second one we take the trace of g” and 
then, we use the definition of (,)i . 

Finally, the last equality can be obtained as follows: using Proposition 3.1, Lemma 3.3 and 
Lemma 4.1, it is easy to see that 

1 
g”=-2ap+TC(g,g’)-2agradcS(g)+ Q!7-- ~.!A”‘); 

To obtain the result we only need to change CVY~ by its value obtained from (2). n 
Proposition 4.3: Let M be a compact, n-dimensional manifold and let g, , t E I= ( - E,E), be 

a cume in the mantfold of metrics -6%. Let (N,gT be the pseudoRiemannian (n + 1 )-manifold, 
where N = I X M and g is defined in such a way that in an adapted chart, 

&j(t,P>=(gt)ij(P); &'"; &OEaa, 

for each i,j= 1,. . . ,n. Then z is Ricci flat if and only if the curve satisfies the second order 
d$ierential equation g”= T-(g,g ‘) - 2 agrad-S(g) together with the constraints Sig’ = 0 and 
.A?(g,g’):=~g’,g’),+2m-(g)=O. 

Pro08 Let us assume first that 5 is Ricci flat. By (1) of 4.2, Sig’=O and if we take 
c = [ ( 1 - n)ln] in (2), we also have the second constraint. The differential equation that the curve 
should satisfy comes from (3). The converse follows also immediately from the Proposition 
above. n 

Proposition 4.4: The Dewitt metric is the only metric, among those belonging to the one 
parameter family G”, for which the above result holds. In fact if g, , t E I= ( - E,E), is a curve, in 
the manifold of metrics of a compact manifold, such that g is Ricci flat and g, satisfies 

(1) g”=TC(g,g’)-2agradcS(g) and 
(2) ~g’,g’);+2~T(g)=o, 

for some c # (1 - n)ln, then, g,=go, for all t, and go is Ricciflat. 
Proof: Under the assumptions, equalities (2) and (3) of Proposition 4.2 become, respectively, 

tr(g-‘g’)=O and (g’,g’)~-[(n-2+2cn)/2]tr(g-1g’)2=0; so, tr(g-l(g’)og-l(g’)o)=O 
from where g ’ should vanish and the curve of metrics is constant to the initial value go. Now, 
from (l), the metric go is a critical point of S and then it should be Ricci flat, provided the 
dimension of M is not 2. For a 2-dimensional manifold, a critical point of S has only po=O and 
we have to use also (2) in order to conclude. n 

Proposition 4.5: Let g, and g be as described in Proposition 4.3. Then, the metric g is 
Einstein with constant X (i.e., p= Aa tf and only if the curve satisfies the second order differential 
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equation g”= l?-(g,g’) - 2cugrad-Si(g) together with the constraints kTig’=O and 
Zh(g,g’): = gg’,g’),+2ar”(g)=O, where 7h(g)= T--X(n- 1) and Sk(g)=JMti(g)vol(g). 

Proof: Let us assume first that p= Xg By (1) of Proposition 4.2, Sig’ =O. If we take c 
= ( 1 - n)ln in (2), we have 

Xcu=Xan - ‘zT- i(g’,g I);, 

and so the second constraint. Now, equality (3) of Proposition 4.2 gives 

g”=-aXg+I’-(g’,g’)-2agrad-S(g); 

the result follows from (1) of Lemma 3.3. 
For the converse, equalities above imply that the components of the Ricci tensor of gsatisfy 

the following: 

&‘=atr(g-‘a-Xa(n- I) 

and 

As a consequence, F=Xg n 
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By using Lyapounov’s direct method we examine the conditions under which 
stable solutions to the field equations for the scale function of the external space 
may be derived in the context of a five-dimensional quadratic theory of gravity. We 
show that the time evolution of the distance, in a diagram t-R, between our 
solution to the field equations and a neighbouring one is determined, in the linear 
approximation, in terms of a second-order linear differential equation. Asking for 
bounded solutions of this equation we arrive at a stability criterion for the external 
scale function solutions, indicating that there exist three types of cosmological 
evolution of the visible universe which are linearly stable at all times. These are (i) 
the Milne model, (ii) the spatially flat Friedmann radiation solution, and (iii) the De 
Sitter inflationary solution. 0 1996 American Institute of Physics. 
[SOO22-2488(96)00708-61 

I. INTRODUCTION 

The idea that the space-time may have more than four dimensions has been extensively 
studied, as an attractive way to unify all gauge interactions with gravity, in a supergravity 
scenario’-3 and in superstring tbeories.4 In a realistic higher-dimensional theory the extra dimen- 
sions are assumed to form, at present, a compact manifold (internal space) of very small size 
compared to that of the visible universe (external space),5-8 leading to the problem of 
compactijcation.’ It has been suggested that compactification of the extra space may be achieved 
in a natural way by adding a square curvature term, WPVKxWPLyKA, in the action for the gravitational 
field.‘,” 

Gravitational Lagrangians containing quadratic terms of the curvature tensor have been stud- 
ied classically in the search of inflationary solutions”*‘2 and solutions free from cosmological 
singularities.13-17 However, they attracted the interest of cosmologists only after it became clear 
that when gravity is extracted by the low energy approximation of superstrings, an additional 
R )LVKA RPVKA term arises in the gravitational action.18”9 

The introduction of a quadratic combination into the gravitational action leads to differential 
equations of the fourth order with respect to the metric.20,21 There is one particular combination of 
the quadratic curvature terms22’23 which, in connection to the linear Einstein-Hilbert (EH) term, 
yields second-order differential equations. We refer to it as the Gauss-Bonnett (GB) combination, 
since in four dimensions it satisfies the relation 

s 
- 1 (W2-4W,,WC”V+RcrYKXRCLYK~)\j_g d4X=O &,v 

corresponding to the GB theorem.24 Equation (1.1) implies that the addition of the GB combina- 
tion to the EH Largangian will not affect the four-dimensional field equations. Therefore, the 
resulting theory differs from general relativity (GR) only if the space-time has more than four 
dimensions and, probably, yields a natural generalization of GR in higher-dimensional space- 
times. 

0022-2488/96/37(8 /4025/9/$10.00 
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In the present paper we examine the conditions under which stable solutions to the field 
equations for the scale function of the external space may be obtained, in the context of a 
five-dimensional GB cosmology. We use Lyapounov’s method25 to determine the stability condi- 
tions in terms of an isochronous correspondence26 between the curve Ro(t), obtained from our 
solution to the field equations, and another one, R(t), corresponding to a neighboring set of initial 
conditions. The distance between these two curves, x(t), at each time, is given by 

x(t)=Wt)-R,(t). (1.2) 

In Sec. II we derive the explicit form of the field equations for a quadratic theory in five dimen- 
sions. In Sec. III we consider the case of a pressureless internal space. Then the field equations 
decouple and the solution for the external scale function (representing the evolution of the ordi- 
nary universe) can be found independently of the corresponding internal one. We express the 
cosmological field equation for R(t) in terms of x(t) and show that, in the linear approximation, 
its evolution is determined by a second-order linear differential equation with time-dependent 
coefficients. In this case, we examine the conditions under which the origin x=0 is stable. By Eq. 
(1.2), the stability properties of Ro(t) are the same as those of the zero solution.27 On general 
grounds concerning the stability of linear systems25-27 the solution x=0 is stable, provided that 
every solution of the linear equation for x(t) is bounded. Accordingly we arrive at a criterion 
which guarantees the boundness of the solutions x(t) and, therefore, the stability of the zero 
solution ,y=O as well. Some cosmological implications of these results are finally discussed in Sec. 
IV. 

II. THE FIELD EQUATIONS 

In a recent pape?’ we have considered a five-dimensional model with a homogeneous and 
isotropic, three-dimensional external space and a bounded one-dimensional internal space. The 
space-time metric is of the form 

+r2(df32+sin2 8 d42) +S2(t)(dx5)2, 1 
where h= l=c, R(t) and S(t) are the cosmic scale functions of the external and the internal 
spaces, respectively, and k = - 1, 0, + 1 is the curvature parameter of the external space. This 
model may be obtained through Hamilton’s principle, where the gravitational part of the action is 
of the form 

I,,= - j5 

In Eq. (2.2) Greek indices refer to the five-dimensional space-time, ~=8n-G, (Y is a dimensionless 
constant and L5=2wR5 is a normalization constant,29 corresponding to the physical size of the 
internal space, once it can be considered static.20 As far as the matter content is concerned, we 
have considered an anisotropic perfect fluid sourck, having an energy-momentum tensor of the 
form T,,=diag(e, -p3, -p3, -p3, -p5), where p3 and p5 are the pressures of the fluid for the 
external and the internal space, respectively, and e is the total mass energy density. The corre- 
sponding field equations, in connection to the conservation law TPv;,=O, are decomposed into 
three independent equations28 involving R(t), S(t), e, p3, and p5 : 

(2.3a) 
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de k 3 
dt+3~p3+~p5+ 

(2.3b) 

(2.3~) 

where an overdot denotes derivative with respect to time, 77=.16~Ga is a constant of dimensions 
T’, and G,= CL, is the five-dimensional gravitational constant.30 The system of Eqs. (2.3), 
together with the two equations of state for the matter content (one for each subspace3’), determine 
completely the evolution of the five-dimensional cosmological model. Its solution will give us the 
unknown scale functions of the two subspaces, R(t) and S(t), as well as the time evolution of the 
matter-energy density, e(t). It corresponds to a Cauchy problem which has solution only if R #O 
and S+O, Vt. Cauchy’s criterions2 implies that, for a given set of initial conditions, the solution is 
unique, provided 

1+477W#o, Vt, (2.4) 

where LV stands for the combination2s 

(2.5) 

In Eq. (2.5) R, is the lowest bound of R(t) for which we obtain physically acceptable solutions 
within the context of the quadratic theory under consideration.28 Then, combination of Eqs. (2.4) 
and (2.5) indicates that R(t)> R, , Vt. For a monotonicaly increasing function R(t), we have 
R(t)>R,, when t>r,n(t,>O). 

As in Ref. 28, we consider models of an already compactified internal space.28S31*33 Compac- 
tification is a topological process of quantum origin, leading to the separation of the extra dimen- 
sions from the ordinary ones.3o Therefore, we study only the process of contraction of the internal 
space, which may be understood by the classical equations of motion. Clearly, the contraction of 
the internal space presupposes the separation of the extra dimensions from the ordinary ones and 
starts immediately after compactification. 

III. CONDITIONS ON THE STABILITY OF THE EXTERNAL SPACE SOLUTIONS 

When the equations of state for the matter content in the two subspaces are determined, Eq. 
(2.3~) may be readily solved to give e(t) in terms of R(t) and S(t). Then, in order to determine 
the evolution of the five-dimensional model, one has to solve the self-consistent system of coupled 
Eqs. (2.3a) and (2.3b). As equation of state in the internal space, we choose ps=O. It corresponds 
to an internal matter content in the form of dust, indicating the absence of motion along the extra 
dimension. This equation of state may represent successfully the later stages of the cosmological 
evolution in a five-dimensional theory of gravity, where the physical size of the internal space is 
very small.33-35 

Now, the field equations (2.3a) and (2.3b) decoupZe. Each of them corresponds to a differen- 
tial equation of only one scale function. Indeed, in this case Eq. (23b) has the first integral28 

R4[ (;I’+ $]+z,R*[ ( gj2+ $]2=const. (3.1) 

Its solution will give the explicit time dependence of R(t). Accordingly, Eq. (2.3a) becomes a 
differential equation of S(t) with time-dependent coefficients, resulting in this form through the 
solution of Eq. (3.1).32 Therefore, we end up with a problem involving the description of two 
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subspaces, where the evolution of each space obeys an ordinary differential field equation of time 
only. In this sense, the expansion of the visible universe, through Eq. (2.3b), does not depend on 
the evolution of the internal space. This result has a clear physical meaning:28 The two subspaces 
are completely disjoint. This is not unexpected, since we have considered a cosmological model 
after the compactification process, which implies the separation of the extra dimensions from the 
ordinary ones. The external space will evolve according to Eq. (2.3b) independently on the time 
behavior of the internal one. 

In this case, we examine the stability of the solutions of the self-consistent equation (2.3b) by 
using Lyapounov’s direct method.25 The solutions represent the time evolution of the visible 
universe and we would like to know under which conditions a stable solution at all times may be 
obtained, within the context of the quadratic theory under consideration. The question that arises 
now is, which solutions are considered stable at all times. 

Let us denote by R,(t) the solution to Eq. (2.3b), whose stability is under consideration, and 
by R(t) any other solution of it. Equation (2.3b), with the aid of Eq. (2.5), may be expressed in the 
form 

ii=-& 1T& 
[ 1 9 (3.2) 

where we have set z= (R,lR).4 Clearly, by virtue of Eqs. (2.4) and (2.5), z< 1Vt. The distance, 
at each time, between the two corresponding curves R(t) and Ro(t) in a diagram t-R is given by 
Eq. (1.2). We write Eq. (3.2) in terms of x(f) and study its evolution in time. In this case, x(t) 
actually represents a perturbation of the original solution, Ro( t). We will examine the evolution of 
a small x(t), since the question of stability is whether such small disturbances grow or not.25-27 

We consider the linear stability of the resulting equation around the origin x=0, which 
corresponds to R(t)=Ro(t),tlt.25~27 If the zero solution x=0 is linearly stable, so is the 
evolution of the external space, since R(t) remains near R,(t) at all times.25,27,36 This is true 
only for smooth functions of time, i.e., functions for which IR(t)l <m,Vt. Equation (3.2), in linear 
terms of x, may be written in the form3’ 

1 

I 

l-3zo 
i=-,,x l+(l-zo)3”, 1 (3.3) 

where z. = (RJR,) .4 Since Ro( t) is assumed known, Eq. (3.3) is a linear second-order differential 
equation for x(r), with time-dependent coefficients. It is more convenient to write the ,function in 
the square brackets on the rhs of Eq. (3.3) in terms of a hypergeometric series, thus obtaining38’39 

1 
ji=--X[1+2F,(t,4;-4;zo)], 

477 (3.4) 

This is a choice to be justified by the subsequent analysis. We consider the case where 77 is 
positive (v>O) and we substitute t=at, where u2=(2q))-t. Then Eq. (3.4) can be cast into the 
form 

d2 
~x(5)+[l-~(5)1x(s)=o, 

where 

E(5)=~lt2F1(~,~;-4;20)]. (3.6) 
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According to a general theorem on the stability property of linear systems,25-27 the zero 
solution of Eq. (3.5) is stable for 52 tin provided that every solution of this equation is bounded.27 
The constant value i&= atin corresponds to the initial time, which, for every monotonically 
expanding solution Ro(t), satisfies the condition28 ti,>t,. 

By Eq. (1.2), the stability properties of RO(r) are the same as those of the zero solution of Eq. 
(3.5). Therefore, in order to determine the conditions under which a particular solution Ro(t) is 
linearly stable at all times tatin, we have to investigate under which conditions Eq. (3.5) pos- 
sesses bounded solutions inside the interval [&, ,m). Solutions of Eq. (3.5) exist36P40 and can be put 
in the formal form36 

(3.7) 

To guarantee the boundness of x(c) we have to determine only the conditions under which h(d is 
finite, since the first term on the rhs of Eq. (3.7) is bounded for every &&, . Thus, the problem of 
determining the stability conditions of the external space solutions has now been reduced to the 
determination of the conditions under which the function h(a is bounded. To derive the functional 
form of h(& we combine Eqs. (3.5) and (3.7), obtaining 

(3.8) 

where a prime denotes differentiation’with respect to .t. Now, to solve this inhomogeneous dif- 
ferential equation for h(& we apply the method of variation of purumeters.36~38 The result may be 
written as an integral equation of Volterra’s type4t 

h(t)=& I: (1-e 2i’~-*‘)~(~)[1+h(J’)]d& 
Z” 

(3.9) 

Conversely, it can be verified by differentiation that any twice-differentiable solution of Eq. (3.9) 
satisfies Eq. (3.8). The general solution of Eq. (3.9) may be obtained in the form of a uniformly 
convergent series.36 Accordingly, we define a sequence h,(,f) (s=O,1,2,...), with ho(Q=O and 

h,(t) = ; (3.10) 

where, in particular, 

(3.11) 

(3.12) 

h,(t)=; I’ 5. (l- e2i(5-*))s( l)d[. 
,” 

Since 11-e 2i(5-*)1<2 we obtain jh,(f)[QP(~), where 

‘J”(t)= I,’ l401d5 
*” 

and the equality in Eq. (3.12) occurs when c=&. Then, by induction we find that the relation 

Ih,(5)-h,-i(Ol~~ (3.13) 

holds, for all s. Now, as long as *(a is bounded, the series 
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(3.14) 

satisfies the Weierstrass criterion and converges absolutely and uniformly.36*39 Then, by summa- 
tion of Eq. (3.14) and use of Eqs. (3.10) and (3.1 l), we verify that h(t) satisfies the integral 
equation (3.9). 

Therefore, Eq. (3.9) [and hence Fq. (3.8) also] admits bounded solutions, h(t), such that 

lh(~)l~e‘v’*)- 1 (3.15) 

as results with the aid of Eq. (3.13). In this case, from Eq. (3.7) we obtain 

(3.16) 

Equation (3.16) indicates that a bounded function ,y(Q exists for every e&,, if the integral q(t) 
converges in the corresponding time interval. Then, the origin x=0 is stable. The result guarantees 
the linear stability of the external space solutions, R,(t). To determine their stability properties at 
all times t 3 tin , we need to investigate the conditions under which ‘l!(l) converges as &m: 

*=, 
I 

*; 145)ld5<m. 
rn 

(3.17) 

According to the preceding analysis, Eq. (3.17) provides a criterion for the linear stability of 
the cosmological solutions RO( t) at all times, once the equation for the perturbation x(t) is written 
in the form (3.5). The question that arises now is, under which conditions this criterion may be 
applied in our case, where Eq. (3.17) has the form 

*=; /&d5(;, ;;-;;z,-,)id[. 

Having the minus sign on the rhs of Eq. (3.18), we obtain 

‘P=; j-;“[ l-26( ;, a;- ;;zo)]df 

(3.18) 

(3.19) 

since the integrant in Eq. (3.19) is positive.38S42 We normalize Ro(t) as RN(t) = R,(t)lR, to 
obtain zo= l/R:(l), where RN([) simply measures Ro(Q in units of R,. Now, we expand the 
hypergeometric series involved, in terms of RN(c), to obtain 

*=&i, (-a) G I;: &d5. (3.20) 

We will examine the stability of the monotonically increasing solutions for the external space, in 
connection to the cosmological observations at the present epoch. For this kind of cosmological 
evolution we have tin > 5, within the context of the quadratic theory under consideration.28 In 
particular, we consider two different types of evolution. 

(i) Power law solutions of the form 

(3.21) 
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Cosmological models of this form have been widely obtained in the context of the GB cosmology, 
either as exact solutions or as approximate ones.‘6,20V28,33 Inserting Eq. (3.21) into (3.20), for X 
#$, we obtain 

qk-2 5 (4n-1) ryn++> 5, 4nX-1 m 

(1 I fin=* (4nX-1) T(n+l) 7 . 
tin 

(3.22) 

As long as A>;, the rhs of Eq. (3.22) is finite and positive. Indeed, in this case, Eq. (3.22) results 
in the infinite series form 

qk”; (4n-1) un+3) t$, 4nh-1 

i i fin=1 (4nh-1) l-yn+ 1) lg ’ 
(3.23) 

which, since ~~~~~~~ converges absolutely. Therefore, the external space solutions of the form 
(3.21) with X>i satisfy the stability criterion (3.17) and, hence, they may be characterized as 
linearly stable at all times. 

Some models of the form (3.21) have been obtained as solutions of Eq. (2.3b) for the external 
space, in the context of the five-dimensional GB cosmology under consideration.** These are (a) 
the Milne model (h= 1) in the zeroth-order approximation, for k = - 1 and (b) the Friedmann 
radiation model (A=;) in the first-order approximation for k=O. Both models have been obtained 
also as solutions in the EH cosmology. The fact that they result as solutions of the quadratic 
theory, as well, is very important, since, in this way, their linear stability is guaranteed through the 
criterion (3.17). 

(ii) Exponential solutions of the form 

R&)-ea’5 (a>O). (3.24) 

The models are linearly stable at all times, even after relaxing the condition .$,>.&. Indeed, for 
every 5>0, integration of Eq. (3.20) gives 

*=~.Z~ 4n 
m (4n-1) w-1-3) e-4an5, 

r(n+l) rn9 (3.25) 

which, since a, 5in>O, converges absolutely. These models are obtained as solutions of the 
quadratic theory under consideration in the zeroth-order approximation,*’ for k =O. The result that 
they are linearly stable is in complete agreement with the fact that the De Sitter universe is an 
“attractor” of the GB cosmology.1’.12,30,43-46 

IV. DISCUSSION AND CONCLUSIONS 

In the present paper we have examined under which conditions a stable solution for the 
external space (representing the evolution of the visible universe) may be obtained, in the context 
of a five-dimensional GB cosmology. We have considered ps=O in connection to cosmological 
models of an already compactified internal space; that is, we have studied only the process of 
contraction of the internal space, which may be understood by the classical equations of motion 
and starts immediately after compactification. In this case, the two subspaces are completely 
disjoint and the field equations decouple. 

Since the two subspaces are disjoint, we have used Lyapounov’s direct method25-27 to find a 
criterion which guarantees the linear stability of the external space solutions. Investigation of the 
stability properties of the external space is very important, since it could lead to the determination 
of preferable solutions for the visible universe. 
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According to the theory of cosmological perturbations,47 instabilities in the energy density 
may arise due to quantum phenomena at the Planck energy scale. These instabilities could affect 
the set of the initial conditions of a classical space-time, which emerges out of the Planck epoch, 
modifying its time evolution. In this case, we would like to know if the perturbed behavior of the 
visible universe differs from the unperturbed one by an acceptably small amount. If there exists a 
particular solution for which this is true, then every other physically acceptable solution, which 
may arise due to changes in the set of the initial conditions, will remain close to this particular one 
at all times. The changes in the initial conditions, it does not matter how, may be arbitrary and 
hence a stable model acts as an “attractor.” Now, if some special solution is the attractor for a 
wide range of initial conditions, such a solution is naturally realized asymptotically.33 

Therefore, we have perturbed our original solution Ro( t) by a small amount x(t) and we have 
examined whether this perturbation grows in time or not. In linear terms, its time evolution is 
determined by the second-order linear differential equation (3.3). Now, if the zero solution, x=0, 
of this equation is stable, then every solution R(t) remains “near” Ro( t). at all times. The solution 
x=0 is stable, provided that every solution of Eq. (3.3) is bounded. It has been verified that the 
boundness of the solutions, at all times, is guaranteed by the convergence of the integral (3.17) as 
t++m. Accordingly, Eq. (3.17) may be considered as a criterion which determines under which 
conditions stable solutions for the external space are possible or not. 

Under some restrictions on the free parameters involved, this criterion is satisfied by three 
types of cosmological evolution obtained in the context of the quadratic theory under consider- 
ation: (i) the Milne universe, (ii) the Friedmann radiation model with k=O, and (iii) the inflation- 
ary De Sitter solution. Each of these models may arise as a natural candidate to describe the 
evolution of the visible space. Indeed, it has been found numerically that the De Sitter solution 
corresponds to an attractor of the GB cosmology, 43,46 while a similar result seems to hold also for 
the spatially flat Friedmann radiation solution.48 

It is probable that, if one of these models determines the evolution of the ordinary space in a 
quadratic theory with v>O, every unpredictable instability47 will affect only the dynamics of the 
one-dimensional internal space, leaving the external one unaltered. Consequently, to consider a 
quadratic higher-dimensional theory of gravity may be of great use in the theoretical establishment 
of the stability properties for the visible space and its observational characteristics, at least as 
regards some particular solutions. 
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We consider a cylindrically symmetric metric separable in space and time variables 
having Kasnerian time dependence in the Kaluza-Klein space-time. We obtain 
perfect fluid models that admit the dimensional reduction yielding the usual four- 
dimensional space-time as the universe expands. The models are inhomogeneous 
and they have the Kasnerian vacuum solution as their matter-free limit. The five- 
dimensional Kasnerian vacuum solution goes over on dimensional reduction to the 
radiation Friedman-Robertson-Walker flat model. 0 1996 American Institute of 
Physics. [SOO22-2488(96)00707-41 

I. INTRODUCTION 

The consideration of cosmological models in higher dimensions has recently attracted the 
attention of many workers. The main motivation for this has been the early universe physics and 
cosmology. The extra dimensions are supposed to be relevant only at the scale of Planck length 
and as the universe expands the extra dimensions contract, leaving behind the observable four- 
dimensional (4-d) space-time. The work was initiated in this direction in the late 1980~.‘~* To 
begin with, 5-d Kasnerian vacuum solutions were obtained* in which the extra fifth dimension 
shrank as the universe expanded. 

In the early stages of evolution, it is expected that the universe will be inhomogeneous to 
allow for generic initial conditions and formation of large scale structures in the universe. This is 
why inhomogeneous solutions of Einstein equations have been considered by several authors.3-‘0 
Amongst them there exists a very interesting family of nonsingular cosmological models satisfy- 
ing the strong energy condition p+3p>O with physically acceptable equations of state p=3p and 
P=P* 839 Inhomogeneous cosmological models have also been considered in the 5-d Kaluza-Klein 
space-time.“-r5 Very recently, Banerjee et a1.15 obtained the 5-d nonsingular solutions for stiff 
fluid and vacuum obtained by Dadhich et aL9 

In this paper we wish to study the 5-d cylindrically symmetric cosmological models that have 
the Kasnerian time dependence16 which reduce to the usual 4-d universe as the expansion pro- 
ceeds. The time dependence in the metric will be given by powers of the cosmic time t and space 
dependence by powers of (1 +r*). In the nonsingular metric,8’9 the space dependence is given by 
cash r, which is equivalent to (l+r’). We shall thus obtain the 5-d Davidson-type3 inhomoge- 
neous cylindrical models. 

In Sec. II we list the Ricci tensor for the general cylindrically symmetric metric and set up the 
field equations. The exact solutions of the equations with the above prescription for the metric are 
discussed in Sets. III and IV, followed by discussion. 

II. THE METRIC AND THE FIELD EQUATIONS 

We consider the five-dimensional cylindrically symmetric space-time given by the line ele- 
ment 
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ds2=D2dt2-A2dr2-B2dZ2-C2dq2-E2d@, (2.1) 

where A, B, C, D, and E are functions of the radial coordinate r and the time t. Here $ is the extra 
dimension. 

Introducing the pentad 

e’=Adr, e2=Bdz, e3=Cdq, e4=Ed$, e5=Ddt, (2.2) 

we can express the metric (2.1) in the form 

* d.92=(e5)2-(e1)2-(e2)2-(e3)2-(B1)2=gc,,,eaeb. (2.3) 

Here and in what follows the bracketed indices denote pentad components. The surviving Rcabj for 
the metric (2.1) are listed below for ready reference: 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

R,55,=g- A l [~+~+~+~-~(~+~+~+l)ji[%~(~+~+~-~~~~) 

Here and in what follows an overhead dash and a dot indicate differentiation with respect to r and 
t, respectively. Here + is taken in the form of a Kaluza-Klein (KK) parameter such that 
OSI,K~~R,, where R, is the radius of KK circle. 

We assume that the space-time is filled with a perfect fluid distribution described by 

Tik=(P+p)UiUk-pgik, UiUi’l, (2.10) 

where p, p, and J stand for the energy density, the pressure, and the unit timelike flow vector, 
respectively. 

The Einstein field equations are 

Rik- ~RiRgi,= - 8 rrTik ) (2.11) 

and hence we write 
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R (abJ= -8rr[(p+P)U(,)U(b)-~tP-p)g~nb,l. 

We use comoving coordinates. Therefore we have 

q,)=uuvlo,l). 

In view of (2.13), the field equations (2.12) give rise to the following relations: 

R (15) = 09 

R(,,t=R(22)=R(33)=R(44)¶ 

8v= -~R~55~+4422J~ 

~5v=+Wb+%5~1~ 

III. PERFECT FLUID MODELS 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

As stated in the Introduction, we write for A, B, C, D, and E: 

A=tcr(l+r2)‘, B=tP(1+r2)b, C=rt7(1+r2)‘, D=(l+r2)d, E=t8(l+r2)‘, 
(3.1) 

where a, b, c, d, e, CY, /3, y, and 6 are real constants. Time dependence in the function D is not 
included because such a dependence can always be removed by redefining the time coordinate. 

Let us first consider the equation (2.14). Using (3.1) and (2.14) we obtain 

ff=y 

and 

,B(b-d)+ S(e-d)-a(b+e+d)=O. 

The equation Ro2, = R,,, of (2.15) implies 

b=e 

and 

2ff+p+s=1. 

On the other hand, R(,,,= RcI1, of (2.15) leads to 

a=3c+d 

and 

b+c+d+2c2+4cd+4bc+2bd=0. 

Lastly, the remaining equation Rc22j = Rc33j of (2.15) leads to one more restriction, 

(b-c)[2(b-c)- l]=O. 

In view of (3.1), (2.16) and (2.17) determine p and p as 
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(3.9) 

and 

(3.10) 

where A and D are given by (3.1). 
The equation (3.8) gives rise to two separate cases: case (i): b=c and case (ii): b=c+$ We 

now discuss them separately. 
Case (i): b = c. In this case the constants a, c, d, e, and LY can be expressed in terms of b. 

Using (3.2)-(3.7) we have 

b(l+12b) 2b( 1+3b) (lf4b) 
a= 1+6b , c=b, d=-.(1+6b) , e=b, a=~=~(~+~~), (3.11) 

and 

(1+4b) 
p+s+(1.,,)=1. 

The density p and the pressure p for this case are given by 

24b( 1+5b) 
16np=~Il-t2n2+P’+62)}- (l+fjb)&+# 

and 

(3.12) 

(3.13) 

(3.14) 

where 

D=(l+r2)- 2b(1+36)/(1+66) , AEt(1+4b)/2(l+5b) ~~+r2)b(l+12b)/(1+6b)~ (3.15) 

The physical requirements ~20 and ~20 are satisfied if 

1 
- 6<bs0, 2a2+/?2+ s2c 1. (3.16) 

Here p and p are decreasing functions of r and t and they tend to zero as r and/or t tend to infinity. 
The geometry of the five-dimensional cylindrical universe is described by the line element 

ds2,( 1 _tr2)-4b(1+3b)l(1+6b)dt2-( 1 +r 2 2b(1+126)/(1+66+(1+46)/(1+5b)dr2 ) 

-( 1 +r2)2b[t2Pdz2+r2t(‘+4b)l(l+5b)d~2+t2Sd~], (3.17) 

where p and 6 are related by (3.12). 
Case (ii): b=c+$ For this case we have 

20b-24b2-3 1 
a= 2t1-6b) , c=by, d= 

2b(3b- 1) 
(’ -4b) (3.18) (I-fjb) ’ e=b7 Y=a=2(l-5b)’ 
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(I-4b) 
p+s+(1-56)=1, 

24b( l-56) 
16~p=~{1-(2a2+P2+~2)}-(1-6b)A2(l+r2). 

and 

where 

D=( 1 +r2)2b(3b-1)/(1-6b), A=(1 +r2)(20b-24b2-3)/2(1-6b)t(l-4b)/2(1-5b) 

The physical requirements pa0 and pa0 give rise t? the inequalities 

Osb<&, 2a2+P2+S2s 1. 

The metric is given by 

&2=(1 +r2)4b(3b-lll(l-6b)dt2-( 1 +r ) 2 (206-246*-3)1(1-6b)t(1-4b)/(1-5b)dr2 

r2 

( 1 + r2) 
t(l-4b)/(1-56)&,2+t28d@ , 1 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

where p and S are related by (3.19). 
Note that one of the Kasnerian constraints a+/?+ y+ S= 1 is always satisfied in both the cases 

considered above. We, however, have two-parameter arbitrariness in choosing b and one of p and 
S. This is quite interesting. For dimensional reduction 8~0, which can always be so chosen. That 
is, all the models described by (3.1) will always permit the dimensional reduction. 

IV. PARTICULAR CASES 

Both the cases admit stiff fluid model for b=O. Then both the metrics (3.17) and (3.24) reduce 
to the same metric given by 

with 

ds2=dt2-tdr2-te2’dz2-r2tdcp2-t2’dtf (4.1) 

16rrp= 16~~= $ (l-4S2)ao for ia?T2. (4.2) 

The equality will give the Kasnerian vacuum solution. Here 8 can be negative to permit the 
dimensional reduction. 

It may be noted that the parameter b is the measure of inhomogeneity; whenever it vanishes 
then the model becomes homogeneous. Hence stiff fluid condition forces homogeneity. 

Let us now consider the equation of state p=kp, k>l, for the perfect fluid. 
First of all we must, in addition to cu+/3+ y+ S= 1, have 

n2+p2+ y2+ s2= 1. (4.3) 
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This means we have the exact Kasnerian time evolution. Equations (3.13) and (3.14) of the case 
(i) of Sec. III imply 

b=+, (4.4) 

where k> 1. For the radiation universe k =3 and we shall have 

e=&,=-$, a=+, d=;, a=~=$, p=O, a=-), 

where values of ,B and Scan be interchanged. The density is given by 

167rp= ;( 1 +~~)-~~t-~‘~, (4.5) 

which remains always positive and decreases with r and t. Since one of p and S is always 
negative, the dimensional reduction is permitted. 

In the case (ii) of Sec. III, the same considerations lead to l>k>O and hence it is not 
physically admissible. 

V. DISCUSSION 

It can be easily verified that Rikvivk= - ( 16~/3)(p+ 2~) GO, and hence the strong energy 
condition is always satisfied in our models. The expansion of the universe is e=(tD) -I, which 
will tend to zero as t-+m. All the models admit the dimensional reduction as either 6 or p is 
always negative. Note that our models are inhomogeneous. 

The matter-free limit of the models, except the radiation model, yields the Kasnerian vacuum 
solution2 given by 

ds2=dt2-t(dr2+r2dq2+dz2)- f d@, 

which under dimensional reduction for large t reduces to the 4-d metric 

ds2=dt2-t(dr2+r2dq2+dz2). 

This is the Friedman-Robertson-Walker (FRW) flat radiation universe with p=3p, 

~TP=$ 

(5.1) 

(5.2) 

(5.3) 

This is quite interesting that the 5-d vacuum solution goes over to the FRW radiation universe. It 
has been argued that 5-d vacuum solutions can on dimensional reduction represent matter field in 
four dimensions.17 

It may also be noted that the stiff fluid condition requires b=O, which makes the model 
homogeneous. Hence the,parameter b can be regarded as the measure of inhomogeneity. 

There is one interesting static particular case of the general metric (2.1) which is the analog of 
the 4-d Levi-Civita vacuum solution. In here we have d 

A=B=P, C=r’, D=rd, E=re, (5.4) 

where the constants a,c,d,e are constrained by 

c+d+e=l, c2+d2+e2= 1+2a. (5.5) 
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The 5-d vacuum metric is given by 

(5.6) 

where d and e are arbitrary constants. It will reduce to the Levi-Civita vacuum solution when 
Jr=constant and e =O. It can serve as the exterior vacuum solution for 5-d cylindrically symmetric 
static distributions. 
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A key aspect of a recent proposal for a generalized loop representation of quantum 
Yang-Mills theory and gravity is considered. Such a representation of the quantum 
theory has been expected to arise via consideration of a particular algebra of ob- 
servables - given by the traces of the holonomies of generalized loops. We notice, 
however, a technical subtlety, which prevents us from reaching the conclusion that 
the generalized holonomies are covariant with respect to small gauge transforma- 
tions. Further analysis is given which shows that they are not covariant with respect 
to small gauge transformations; their traces are nqt observables of the gauge theory. 
This result indicates what may be a serious complication to the use of generalized 
loops in physics, but does not affect the ordinary loop representation. 0 1996 
American Institute of Physics. [SOO22-2488(96)03607-91 

1. INTRODUCTION 

There has recently been a variety of attempts to formulate gauge theories in terms of loops.“* 
One of the key technical developments which suggests such a formulation of gauge theory is 
Giles’ result” that, for SU(N) theories, the information contained in the Wilson loops (i.e., the 
traces of all holonomies around closed curves) is sufficient for the reconstruction of the connection 
up to local gauge transformations. That is, the Wilson loops contain all of the gauge-invariant 
information about the connection. Since the Wilson loops separate points of the space of connec- 
tions modulo gauge transformations, there is a sense in which any gauge-invariant function on the 
relevant space of connections (and hence any configuration observable of the gauge theory) may 
be expressed in terms of the Wilson loops. The (over-)completeness of these observables suggests 
that they be taken as the basic configuration observables in the quantization scheme. 

This idea, along with Ashtekar’s connection-dynamic formulation4 of general relativity, pro- 
vides the foundation of the Ashtekar-Rovelli-Smolin approach to quantum gravity. The duality 
between connections and loops’ suggests the possibility of representing states by functions of 
loops. The idea of the loop representation was first introduced to gravity by Rovelli and Smolin,6 
and has resulted in a formalism with several attractive features. Most notable are the relationship 
between diffeomorphism invariance and knot theory, the combinatorial aspect of the formalism, 
and a sense in which discreteness emerges. For details of this approach to quantum gravity see 
Refs. 7 and 8. 

Despite the merits of the loop-representation, subtle alternatives are also being explored. The 
problem of regularization of the Wilson loop operators suggests that one introduce a thickening, or 
framing, of the loops. A novel suggestion is presented by recent results of Di Bartolo, Gambini, 
and Griego.93’o The space of loops based at a fixed point forms a group,” but not a Lie group. In 
an attempt to “coordinatize” the group of based loops, the authors of Ref. 9 came upon a 
generalization of the notion of a loop. The result is an infinite-dimensional Lie group, which 
contains the group of (based) loops as a subgroup. The elements of this extended loop group’* are 
(sequences of) distributional quantities, ordinary loops being the “most distributional” elements. 
There are also elements, however, which are “less distributional” than loops, objects that we may 

“‘Electronic mail: troy@phys.psu.edu 
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think of as “smoothened loops.” With regularization issues in mind, the existence of the smooth- 
ened loops is of obvious interest. An anticipated benefit of the use of generalized loops is the 
ability to apply familiar functional methods to the study of the (generalized) loop representation. 
Further, we will see that the extended loop group has the global structure of a vector space. Hence, 
integration on the generalized loop space is a fairly straight-forward matter. Integration techniques 
may supply a form of the inner-product which is inherent to the loop space. 

For these reasons, one is motivated to examine the role of generalized loops in gauge theory. 
Recall that the idea of the loop representation is based on the Wilson loops. Since, as we will see, 
the generalized loops are defined via inspection of the functional form of the holonomies of 
ordinary loops, the holonomy formally extends to the extended loop group. It is through this 
extension of the holonomy that one can imagine the construction of a generalized loop represen- 
tation. For such a formulation of quantum Yang-Mills theory or gravity to make sense, the 
generalized holonomies must be gauge-covariant with respect to (small) gauge transformations. At 
the very least, the traced holonomies should be gauge-invariant. The main result presented here is 
the fact that the generalized holonomies are not covariant with respect to small gauge transfor- 
mations. Despite the beauty of the extended loop group, its use in gauge theory may therefore be 
limited. 

In Sec. II, we review the construction of the extended loop group and discuss some useful 
properties of its elements. In Sec. III we focus on the generalized holonomies, with particular 
attention given to their transformation properties. Consideration of the Abelian case will suggest 
simple examples of non-covariance of the generalized S U( 2) holonomies. Two such examples are 
presented in Sec. IV. Finally, in Sec. V, we conclude with generalizations of the results and 
remarks concerning their relevance in physics. 

II. GENERALIZED LOOPS 

The purpose of this section is to recall the basic ideas regarding generalized loops (for details, 
see the original work’). After introducing the group of loops on an arbitrary connected manifold, 
consideration of the holonomies will suggest a generalization of the notion of loops. The set of 
these generalized loops-the extended loop group-forms an infinite-dimensional Lie group. 

Fix a point p on an arbitrary connected manifold ..& and consider the space ?$ of closed 
curves based at p. Elements of rP are piecewise-smooth maps C:Z-+,& such that 
C(0) =p= C( l), where I is the unit interval. Now, our main motivation for considering the space 
%” is that the trace of the holonomy of a physical gauge field around any closed curve is 
gauge-invariant, i.e., an observable of the classical field theory. Since we are primarily concerned 
with the observables, we are not interested in the space rP itself, but in a space of equivalence 
classes of elements of rP. For example, two closed curves which differ merely by reparametri- 
zation yield the same holonomies for an arbitrary smooth connection over ~ &. Gambini and 
Trias” provide an appropriate identification of elements of cP : Two closed curves C,C’ E KEare 
deemed equivalent if C 0 c’ is contractible within itself to the trivial curve L(S) =p, where C’ is 
the reversed path CT’(s) = C’( 1 -s). With this equivalence relation on rP, it is easy to see that 
two closed curves which are equivalent give the same holonomies for any smooth connection over 
,&. Denote by Z$, the space obtained by dividing rP by this equivalence relation. The obvious 
composition of paths induces a group operation on the set ?ZP, which we will call the group of 
loops based at p. 

Next, consider a connection A on a principal bundle P(,, &, G), where G is a compact,. 
connected Lie group. For the sake of simplicity, we shall assume that P is trivial and view 
connections as Lie algebra-valued one-forms on . &?. [Below, we will restrict attention to the case 
G= SU(2), for which every bundle is trivial.] To an element y E ZP we may associate the 
holonomy, U,[ ~1, around any path C in the equivalence class defining y. Expressed in terms of 
the fundamental representations of the gauge group G and its Lie algebra, the holonomy takes the 
form of the path-ordered exponential, which may be written explicitly as 
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UA [ ?d= Pexp fcA=io j --I X;““%I, . . . ,xn)Aa,(xl)...A,,(x”), (1) 

where 

xy-“(X1, . . . ,x,): = ~cdy~‘I,:dy~2. . . J~ldyw~X, ,rl). . * &% JJA (2) 

and the zeroth term in Eq. (1) is taken to be the identity. In Eq. (2) the index ak is “attached” to 
the point xk, and for each n, XT’ “a”(~l, . . . , x,) is an n-point distributional vector density of 
weight one in each argument xk . As suggested by the subscript on the X’s, these n-point distri- 
butions are independent of the particular path C chosen from the equivalence class determined by 
y E ZP. It will be convenient to employ the notation 

XCLI”‘PLn :=fl”‘% 
Y Y (x1, . . . t&A (3) 

where the index & now represents the pair (ak ,xk), and contraction of greek indices represents 
both contraction of the latin index and the integration over .&. 

Thus, to every element y E SP is associated a string, 

X,:=(1, XT’, . . . , X;“‘+n,. . .), 

of multi-vector densities. As is observed in Ref. 9, if y, r,r E 5$, , the multi-densities corresponding 
to their product may be expressed as 

xPL]“‘cLkx~k+I”‘h 

’ (4) 

with the convention that 

X’*’ “‘PO: = 1. 

These strings of multi-densities satisfy two useful identities. Denote by X the string corre- 
sponding to an arbitrary loop in SP. The first identity reflects the ordering of points on the image 
of the loop; 

(5) 

where the left side is obtained by summing over all permutations of the L”i which preserve the 
relative ordering of the first k indices and also the relative ordering of remaining II-~. For 
example, 

Next, since taking the divergence of a vector density requires no additional structure (e.g., a metric 
or derivative operator) on ,,K, it is natural to ask whether the divergence of an entry of X satisfies 
any useful property. The answer is in the affirmative; 
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where the caret over the PU, is intended to indicate its absence, and the mixed notation on the left 
side should be transparent. By definition, x0 and x,+ r are taken to be the base point, p. Thus the 
divergence of the rank-n entry of X is directly related to the rank-(n-l) entry. 

The basic idea of Di Bartolo, Gambini, and Griego’ is to consider the space of all objects 
satisfying these relations. 
(EO E”I 

To be precise, let 8 be the space of all sequences 

density 
. . 7 EW”‘ILn, . . . ), where E” is a real number and EC”1 ’ ’ ‘I*n is a distributional vector- 

h’ each index. Z becomes an associative algebra when equipped with the product moti- 
vated by Eq. (4); given E I , E2 E LY, we define 

(,I?, XE2)~I”‘ht: = 5 E,.‘I”‘/LkE/Lk+l”‘/*, 

k=O ’ 
2 , (7) 

where Epl”’ CL? = E” E R. The extended loop group (based at p E -8%‘) is defined to consist of 
those elements of 8 which satisfy the algebraic relation (5) and the differential relation (6) and for 
which the rank-zero entry is unity. This set, denoted by J&, is closed under the product defined 
above and every element is seen to have an inverse with respect to the identity element, 
I:=(l,O,O.. .). ;& is then a group which contains 2$, as a subgroup. 

Next, 2&-p is an infinite-dimensional Lie group in the following sense. For any element X 
E xp, the logarithm 

m (-)m+l 
In(X):= C m=l --(x-z)m 

is a well-defined element of 8 (with vanishing rank-zero entry) which satisfies the differential 
relation given by Eq. (6) and the homogeneous algebraic relation 

Let FP consist of all elements of 8 which satisfy these two conditions and with vanishing 
rank-zero entry. One can show that if F E YP then exp(F):=ZF=‘=,(l/k!) Fk is a well-defined 
element of XP . Further, for any element X E J$ the logarithm F = In X is the unique element of 
FP for which X=exp(F). YP is closed under the Lie bracket given by the commutator with 
respect to the associative product (7), defined on P, this is the Lie bracket relevant to the group 
operation on sP. Thus, FP is simply the Lie algebra corresponding to Z;, . Note also that xP 
has the global structure of an infinite-dimensional vector space since there is a one-one correspon- 
dence between its elements and elements of its Lie algebra. In particular, we may unambiguously 
take the real power of any element in .& ; X’: = exp(t In X). 

One may then think of ZP as a “completion” of the group 2ZP . Any generalized loop X 
E 5’ defines the one-parameter subgroup of ..gP, consisting of all real powers of X. Since 
genenc elements of -X, are not easily described in terms of the geometry of the underlying 
manifold *&Y, it is most instructive to think of X’ in the group-theoretic sense. 

Given a G-connection, one may consider the formal expression for the holonomy around an 
arbitrary extended loop, 

u~[X]:=~~~ XC”‘-A,; . -A,,. (9) 

There is no claim that the extended holonomies take values in the gauge group, or even that they 
converge. However, in Ref. 9 it is formally shown that U,[Xi XX,] = U,[Xi]UA[X2], where the 
right side is given by matrix multiplication in the fundamental representation. At least at the 
formal level, the holonomy extends to a homomorphism on JYP . It is worth noticing one particular 
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situation in which the extended holonomies converge to elements of the gauge group. Suppose that 
A is an Abelian connection; i.e., [A(x),A(y)]=O. Then, using the algebraic relation (5), it is a 
simple matter to show that for any X E 3-p , 

So the extended holonomy corresponding to any Abelian connection is just given by the expo- 
nential of XPA, . (Th is result depends only on the fact that the restriction of A to the support of 
X is Abelian.) If, for example, the support of A is also of compact closure, the holonomy is 
convergent and group-valued on all of .KP. This result will be used extensively in what follows. 

III. THE GENERALIZED HOLONOMIES 

The construction of the extended loop group is elegant and of considerable interest from a 
purely mathematical point of view. However, the intention extends to physics as well. The idea is 
simply to generalize the formalism used in the ordinary loop representations of gauge theories, i.e., 
to consider the traces of the extended holonomies as observables for Yang-Mills theory and, 
perhaps more importantly, general relativity. In particular, an extended loop representation for 
quantum general relativity may be an especially useful setting for consideration of an inverse loop 
transform and the framing problem of knot invariants.‘0*‘3 

With the intended application of the generalized loops in mind, it is natural to examine the 
behavior of the extended holonomies under gauge transformations. One often distinguishes be- 
tween two types of gauge freedom. The gauge which is generated by the (first-class) constraints is 
physical gauge freedom, while that which is not is symmetry. The physical gauge freedom then 
corresponds to that generated by the infinitesimal gauge transformations. Thus, in order for the 
traces of the extended holonomies to give observables, it is necessary that they be invariant under 
small gauge transformations. This issue was considered in Ref. 9, but as is usual in pioneering 
work, a detailed analysis was sacrificed for the sake of progress in other directions. 

Such an analysis is the purpose of this section. We will find that there is a technical subtlety 
which prevents us from accepting the naive conclusion that the extended holonomies are (for- 
mally) gauge covariant with respect to infinitesimal gauge transformations. In order to gain some 
insight about the transformations properties of the holonomies, we will then consider the Abelian 
case. In all that follows, we will restrict attention to the manifold . 8%=W3. 

Recall that an infinitesimal gauge transformation is given by a map A:. &?‘+ZG, where 
ZG is the Lie algebra of G. To first order in A, the gauge-transformed connection is given by 

Set 

A”=A+dh+[A,h]. 

~j;)[X]:=XW%A~,. . .A,, , 

as in Eq. (lo), so mat 

uA~xl=n~o @'RI. 

Using the differential relation (6) satisfied by the generalized loops, one may obtain the holonomy 
corresponding to the gauge-transformed connection; 

u~~[x]=uk"'[x]+[uk"-"[Xl h(p)]+S~~~*,[X1-~~T;i:)[X], > (11) 
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where 

One is tempted to conclude from Eq. (11) that, since the ftn’ cancel upon summation of the 
series for the transformed holonomy, all extended holonomies are formally gauge-covariant. How- 
ever, let us proceed more carefully. Consider the partial sum, 

nio ~$!~W=n~o @t’[Xl+ ngo @?[xl~W -[UaN’[Xl,A(~)l+fl,Ni*)[Xl. 
[ I 

(13) 

If we suppose that U,[X] converges, then UaN’[X]-+O as N--+m and the extended holonomy is 
covariant under infinitesimal gauge-transformations only if 

fi~!n,[X]-O, as N+M. (14) 

Thus, gauge-covariance of the extended holonomies does not follow trivially from Eq. (11). 
We are now faced with the problem of whether the notion of holonomy generalizes to the 

extended loop group. Although, by inspection of Eq. (12), the Abelian case is trivial, an example 
will lead the way to an understanding of the non-Abelian case. Therefore, let us consider 
G = U( 1). Let y be the loop determined by the curve 

This loop determines an element X, E xP , where the base point has been fixed as p = ( 1 ,O,O) . We 
will focus on the generalized holonomies of an arbitrary real power, X\, of this particular loop. 

The generic U( l)-connection is of the form 

A(x) = - iw(x), 

where o is a real one-form on S &. To compute the holonomy of A around Xb, we need only 
know the rank-l entry of X’y , 

(Xb)P= tx; ) 

and that, with respect to the cylindrical coordinates z,r, 8, 

a /J 
X~=~G’(r,l)G’(z.O) 2 . 

! 1 

By Eq. (lo), the holonomy is then given by 

UA[X\]=exp(tXpA,) =exp( -it f rcoi, (15) 

where r is the unit circle in the x-y plane (the image of C). The holonomy of the gauge- 
transformed connection Ag = A+ g - ‘dg is 

U~[X’,l=U,4[X~].exp( -2ritw,[g]), ’ (16) 

where 
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w,[g]:= & . ?I pgE.7. 

Note that the pull-back of g to r is a map from the circle into U( 1) and that w J g] is simply 
the winding number of this map, i.e., the number of times g wraps U( 1) around r. Suppose g is 
a small gauge transformation. Then, by definition, there exists a homotopy gA (a smooth one- 
parameter family of gauge transformations, h E [O,l]) connecting g = gl to the trivial map 
go= 1. By pulling the homotopy back to r, one then obtains a one-parameter family of maps from 
the circle into U( 1). Since the winding number is integral, it must be the same for each gh . 
Hence, wdg] = w&t] = w,[go] = 0. We then see that the holonomy (15) is covariant with re- 
spect to small gauge transformations. Note that this was not a general proof of covariance of the 
U( 1 )-holonomies (the general proof is much simpler than what we have done above!). The above 
reasoning applies only to the arbitrary real power of the particular loop y. The utility of our result, 
however, lies not in the conclusion, but in the methodology. The above ansatz, when applied to the 
case G  = SU( 2), will suggest simple examples which show that the non-Abelian holonomies are 
lzof covariant with respect to small gauge. 

IV. NON-COVARIANCE OF THE GENERALIZED HOLONOMIES 

We can study the non-Abelian case, by “embedding” the above result into S U( 2). The idea 
in mind is to replace U( 1) by an Abelian subgroup of SU(2). After making this idea more 
precise, natural examples of non-covariance will be presented. The first is, perhaps, the most 
natural; it involves the holonomy of the real power of an ordinary loop. For the second example, 
we will consider the holonomies of generalized loops which are “least distributional,” in a sense 
to be explained below. 

Let us consider an arbitrary Abelian subgroup of SU( 2). This subgroup is generated by an 
element, T, of the Lie algebra, ZSU( 2). We may assume, without loss of generality, that T is 
normalized as 

tr(T2)=-2, 

so that, for example, 

exp[rT]=exp[(r+2rrrz)T], ‘d FEZ, rER. (18) 

Now suppose A is an SU(2)-connection which is proportional to T; i.e., 

A= UT, (19) 

for some one-form o. Suppose further that g :R 3+SU(2) is an SU(2) gauge transformation 
whose restriction to r is contained in the U( I)-subgroup generated by T. We can now mimic the 
discussion leading to Eq. (16) by making the replacement - i++T. We obtain 

U,dX~l= U,[X’,].exp(2~tu,[glT), (20) 

where u,. is defined as 

u ,[g]T: = &- 

. The meaning of u y is analogous to that of w y, it is simply the number of times g winds the 
U( 1 )-subgroup generated by T around the circle r . Of course, u y is only defined for such an 
Abelian gauge transformation. 
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For integral t, Xk corresponds to an ordinary loop and the holonomy is covariant under all 
gauge transformations. But for the above holonomy to transform covariantly for all real t, 
u ,[g] must be trivial. Recall that in Sec. III it was the non-simple connectivity of U( 1) that 
prevented us from finding small gauge transformations with non-trivial winding number around 
r. SU(2) is, of course, simply connected; hence, one may wonder whether there exist small 
gauge transformations with non-trivial u y. In fact, there do exist such gauge transformations. The 
task at hand is to produce an explicit expression for a small gauge transformation whose restriction 
to I? lies is an Abelian subgroup of S U( 2)) and which winds r non-trivially around this Abelian 
subgroup. Since the exponential factor in Eq. (21) is independent of the connection, we will then 
have shown that the generalized holonomies are not gauge covariant. 

To this end, let us first focus on a convenient description of the manifold structure of 
SU(2). The Lie algebra, %SU( 2), of SU( 2) is a real, three-dimensional vector space with a 
natural (Killing-Cartan) inner-product, which, in the fundamental representation, takes the formI 

(T1,T2):=-2 tr(T,T,). (22) 

Fix a basis {~-i ,r2,~3} for the Lie algebra, which is ortho-normal with respect to this inner- 
product. For any element L E ZSU( 2), exp L may be uniquely written as I5 

exp(L)=aol+2[a1~1+a2~2+U3~3], (23) 

where u~+u:+u~+u~= 1. While uo, . . . ,a3 may be written in terms of L, we will not find their 
explicit form useful. Having chosen a basis {+ri ,72 ,T~} for the Lie algebra, we then obtain an 
isomorphism of SU( 2) with the unit 3-sphere in W4. Of course, the identity 1 is represented by the 
point ( l,O,O,O>. We will abuse notation and write exp(L) = (a0 ,a i ,a2 ,u3) =uidi , where the ui are 
those appearing in Eq. (23), and e’i form the obvious ortho-normal basis of W4. The algebra 
%SU(2) may be viewed as the tangent space to SU(2) at the identity, and with the Lie algebra 
element, L=L1T,,+L2T.+L3T3, we may identify the vector (0,L’,L2,L3) E W4. The 
U( I)-subgroup generated by L is now simply represented by the great circle (through 1) whose 
tangent at the identity is proportional to L. For example, exp(cuT,) = (cos(d2),sin(cu/2) ,O,O). 

We may now view a gauge transformation as a smooth map g:R3-+W4 whose image is 
contained in the unit 3-sphere. Choose the basis {pi , r2, TV} so that the (arbitrary) algebra element 
considered above is given by T= 2 71 and let us look for a small gauge transformation g for which 
g( cos &sin 0,O) = exp( BT) = (cos @sin 6,0,0). We will then have u y[g] = 1, and our goal will 
have been accomplished. 

At this point, a brief digression will be quite instructive. Let us display a particular homotopy 
connecting the curve h( 19) = exp( f3T) to the trivial curve L( 19) = 1. This can be done geometrically, 
as follows. Consider the intersection of SU(2) (the 3-sphere in R4) and the hyperplane P3= {i 
E W41u3=O}. This is a 2-sphere in W4, which we will denote as S. Let P2(a) be the 2-plane in 
P3 consisting of points of the form iu+; such that ;.n’( (Y) =O, where 
i(a) =k, cos a+& sin LY. The intersection of S with P2( a) is a circle of radius r(a) = sin CZ, 
which may be parameterized as 

i I 

l-(l-cos @sin2 a 

sin 6 sin ff 
km= (1- (24) cos @sin ff cos (Y ’ 

0 

for 0 E [0,27r]. As LY varies from 0 to 7r, these circles “foliate” the sphere S. Notice, in particu- 
lar, that ha( 0) = 1 and h rrl2( 8) = (cos &sin e,O,O) = exp( UT). Therefore, h (x provides the desired 
homotopy (see Fig. 1). This homotopy will play a very important role in the examples that follow. 
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. 

FIG. 1. A convenient homotopy connecting the trivial curve to the curve winding once around the U( I)-subgroup 
generated by T. For each OGCYG 7r/2, the image of h, is a circle on the 2-sphere S, as shown for various values of the 
parameter LI. As a decreases from 42 to 0, h, shrinks to a point (the identity element). 

A. Example 1 

We can now suggest the form of a gauge transformation g:R3-+SU(2) which is demonstra- 
bly small, whose restriction to the unit circle in the x-y plane lies in the Abelian subgroup 
generated by T, and which winds this subgroup non-trivially around the unit circle. In order to 
satisfy generic boundary conditions at infinity, we will also demand that g be trivial outside of a 
compact region. 

The desired gauge transformation may be obtained from a smooth assignment of the angle 
a! to each pair of cylindrical coordinates r,z; i.e., we try 

g(r cos f?,r sin e,z):=h,(,,,,(e), (25) 

such that a( 1,O) = 42. Any such gauge transformation is obviously small since the one- 
parameter family of gauge transformations, 

gh(r cos e,r sin e,z):=h,,(,,)(e), X ~[0,1] (26) 

provides a homotopy connecting g to the trivial map. 
It remains only to produce the assignment a( r,z). This may be accomplished by use of the 

smearing function, 

CT&(x): = (27) 

(+A is symmetric about x= 0, at which it attains its maximum value o&(O) = 1. Most important, 
(+A is an infinitely differentiable function, the support of which is compact. Putting 
cu(r,z):= (7r/2) a,&z)aln(r- 1), we obtain 

dr ~0s f4r sin e,Z):=h,/2a,,2(Z)a,,2(‘-1)te) 

I 

= 

Cl- 

\ 

l-(1-cos @sin2 ~~~,2tzh1,2(r- 1) 1 \ 
sin e sin fvLi2(z)m1,2(r- 1) 1 

cos tu1j2(z)u1,2(r- 1) 1 
0 

(28) 
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Note that g is infnitely differentiable and is trivial outside a compact region. Further, since 
~yt,z( r= 1,z = 0) = n/2, its restriction to the circle r is given by g(cos &sin t9,O) = exp( BT), as 
desired. 

The purpose of this sub-section was the construction of this gauge-transformation. For any 
connection of the form written in Eq. (19), the holonomy “around” Xb is non-covariant, accord- 
ing to Eq. (20). For example, choose 

A(r cos 6,r sin e,z):=Aa,,~(z)a,,~(r- l)Tdf?, A E R (29) 

(which also vanishes outside of a compact region), We then have 

UJX’,]=exp[2nArT], (30) 

and 

(3 1) 

This completes the first example. 

B. Example 2 

The above example involved what may be, from the Lie algebraic point of view, the most 
notable element of the extended loop group - the real power of an ordinary loop. The extended 
loop group also contains elements which seem radically different than ordinary loops, but which 
may be quite useful. These elements are, in a sense, “less distributional” than the ordinary loops. 
The differential relation (6) does not allow the existence of smooth extended loops, i.e., those for 
which all entries are smooth; they must be genuinely distributional. However, it is a trivial 
application of the results of Ref. 9 to show that given an arbitrary multi-vector density YPr”‘Pm 
which is divergence-free in each index and satisfies the homageneous algebraic relation (8), there 
exists an element X E xP such that XPl”‘Pk=O, V k<m and XP*l”‘Pm= YPr”‘Pm. In particular, 
we may choose Y I’ “‘i+, to be smooth. The set of all extended loops whose first non-vanishing r 
entry is smooth is a sub-Lie group of 2;. One might think of these elements as “smoothened 
loops.” 

As was mentioned in the Introduction, the existence of the smoothened loops is a nice feature 
of &, . If X is as described above, then due to Eq. (6), X pi ‘Pa must be a genuine distribution for 
each n>m . Therefore, the hope of obtaining a gauge-invariant smearing of the connection by 
smooth functions is not borne out. Nonetheless, one might hope” that some light may be shed on 
the problem of regularization of the Wilson loop variables. Could it be that, by some mathematical 
miracle, the holonomies of smoothened loops do not suffer from the problem of non-covariance 
illustrated above? By “smearing out” the previous example, we will see that the answer to this 
question is, unfortunately, negative. 

Recall that for Abelian connections, it is only the rank-one entry of X on which the holonomy 
U,[X] depends. Choose an element X E -;b for which 

xp= -$ p(Tl,2(z)cQ2(r- 1). ( i 
Xfl is a smooth vector density of compact support, which may be viewed as a smoothened version 
of the Xr considered above. Let A be as in the definition (29). A short calculation yields the 
holonomy 

U,[X]=exp(XJ‘A,)=exp(2rA e6T). (33) 
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In the spirit of the previous example, we construct a gauge transformation gwhich commutes 
with A. The restriction of a to the support of A must then take values in the Abelian subgroup 
generated by T. The idea is simply to replace the smearing function (T in Eq. (28). The function 

2 x 
tA(x): = D 

I 
dx’fT*(x’) _ co (34) 

is a smoothened step function. It vanishes for all x- < - A and is unity for all x2 A. Of course, 
fA is infinitely differentiable everywhere. Define 

sA(x): = 
1 

th(x+3A) : x60, 

l-ta(X-3A) : X20. 
(35) 

This function is non-vanishing only for lx/<4A and is constant on the interval 1x1 c2A., on which 
it assumes the value 1. Using ~r,~ in place of vu2 in Eq. (28), one obtains the desired gauge 
transformation; put 

& cos BJ sin 64: = k,~2s1,4(z)s,,4(r- 1)( 6) 

I-(1-cos @sin* 
I 
;sdzh(r- 1) 1 

sin 8 sin ~s,,~(z)s,,~(~- 1) 
I I 

sin 
[ 
~s~,~(z)s~,~(~-- 1) (1 --OS 

I 
e)c0s 

1 
~s~,~(z)s~,~(T- 1) 1 

0 

(36) 

On the support of Xp, g takes a very simple form; for IzI G i and I r- 1 I c f, 
F( r cos e,r sin &z)=(cos &sin &O,O) = exp( 8T). One may then obtain 

I 
3 

X’g’(d&,=yT. 

Finally, 

U&X]= V,[X].exp 

The extended “holonomies” of the smoothened loops are not covariant with respect to small 
gauge transformations. 

V. GENERALIZATIONS AND CONCLUSIONS 

The extended loop group is a well-defined mathematical object. It is an infinite-dimensional 
group which encompasses the group of’based loops on an arbitrary connected manifold, ,&. (Note 
that we have used the term “Lie group” fairly loosely. For the sake of rigor, it should be shown 
that <xP admits a manifold structure with respect to which the group operations are continuous.) 
For applications to physics, however, one would also like to extend the concept of holonomy. In 
fact, the construction of the extended loop group was based on the functional form of the ho- 
lonomy of ordinary loops. There is then the obvious candidate for a generalized holonomy. We 
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have found, however, that for the case .#--R3 this generalized holonomy is not covariant with 
respect to small gauge transformations. Its trace does not provide gauge-invariant functionals on 
the space of connections for an SU(2) gauge theory on Minkowski space, for example. 

In fact, the result is of a very general validity. Since any simple Lie group contains an 
SU(2) subgroup, it extends to the non-Abelian case with such gauge groups - those which are 
typically relevant in physics. The result also applies to the case of gravity in terms of the Ashtekar 
variables. Further, although we restricted our attention to . X5= W3, all of the mappings used in the 
first example are of compact support. We may then extend the result to an arbitrary manifold. 
(Note, however, that since the topology of R3 was used in a critical way in defining the smooth- 
ened loop group, the second example does not extend to manifolds of arbitrary topology; i.e., it is 
not clear that one can even define the smoothened loop group for the arbitrary case.) 

From our point of view, the potential power of the extended loop group involves the use of the 
traced holonomies as a large class of observables for gauge theories. Our results then suggest a 
re-evaluation of the extended loop group as an arena for quantum gravity and Yang-Mills theory. 

There are three alternatives worth consideration. First, the following question arises: What 
characterizes those generalized loops for which the holonomies are covariant? Perhaps consider- 
ation of this queslion would shed some light on the appropriate extension of the loop representa- 
tion. Note however, that by Example 1, one will not have the continuous structure of a Lie group 
at one’s disposal. Thus, techniques involving functional differentiation are not likely to be 
straight-forward in such a formulation. A second alternative, suggested by Di Bartolo, et al., is to 
design a different extension of the holonomy which is covariant.‘6 Alternatively, since observables 
of the theory are our primary concern, it may be most productive to focus on an extension of the 
concept of the Wilson loops. It may be the case, for example, that such an extension exists which 
does not manifest itself as the trace of a holonomy. Last, if some generalization of the ordinary 
loop representation is needed, it may turn out that the appropriate generalization is altogether 
different than that suggested by the existence of the extended loop group. 
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Expressions for the complete metric and vector potential perturbations of solutions 
of the Einstein-Maxwell equations with a null background electromagnetic field in 
terms of two complex scalar potentials are derived using Wald’s method of adjoint 
operators. The perturbations of the Bell-Szekeres solution, in the regions prior to 
the collision of the plane-fronted waves, are obtained by this approach. We find that 
there exist nontrivial u-independent perturbations (where a, defines the direction of 
propagation of the colliding wave) which, when the electromagnetic perturbation 
vanishes, are exact solutions of the Einstein-Maxwell equations. 0 1996 Ameri- 
can Znsrirute of Physics. [SOO22-2488(96)00207- 11 

1. INTRODUCTION 

In the study of the perturbations of solutions of the Einstein equations by massless fields it is 
convenient to have expressions for the complete perturbations in terms of some few potentials, 
since this reduces the number of differential equations to solve and automatically gives the correct 
relative normalization for all the components of the perturbation. In the case of the algebraically 
special solutions of the Einstein vacuum field equations, the perturbations by massless fields of 
spin f (neutrinos), 1 (electromagnetic field), f (gravitinos), and 2 (gravitational perturbations) can 
be expressed in terms of a single scalar potential which obeys a second-order linear partial 
differential equation.‘-* 

When there is a background electromagnetic field, the electromagnetic perturbations are 
coupled to the gravitational perturbations. If the background electromagnetic field is non-null 
(algebraically general) and one of its principal null directions is geodetic and shearfree, the metric 
and vector potential perturbations can be expressed in terms of four scalar potentials that satisfy a 
system of four first-order partial differential equations.9-‘2 While if the background electromag- 
netic field is null (algebraically special), the electromagnetic and gravitational perturbations can be 
expressed in terms of two scalar potentials that obey a system of two second-order partial differ- 
ential equations.13 

There are two systematic procedures to obtain the expressions of the perturbations in terms of 
potentials. One of them is based on the use of coordinates adapted to the totally null foliation of 
the space-times considered.5~6s~‘0~“‘13~14 A second procedure, which is more elementary and in- 
volves shorter derivations, is Wald’s method of adjoint operators, which is applicable when one 
can obtain decoupled equations from the perturbation equations.3*4*7*9*12 

The aim of this paper is to give a derivation of the expressions for the complete perturbations 
of the solutions of the Einstein-Maxwell equations with a null background electromagnetic field 
in terms of two complex scalar potentials using Wald’s method and the Newman-Penrose nota- 
tion. The final expressions are equivalent to those obtained in Ref. 13, making use of the complex 
extension of the space-time and the spinor formalism. The usefulness of the formulas derived here 
is illustrated by considering the coupled perturbations of the Bell-Szekeres solution, which rep- 
resents the collision of two plane electromagnetic waves, in the regions that contain the approach- 
ing waves (the electromagnetic field in the interaction region subsequent to the collision is alge- 
braically general). These perturbations have been studied previously by Chandrasekhar and 
Xanthopoulos,‘5 who solved directly the perturbation equations written in the Newman-Penrose 
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notation. Our results differ from those of Ref. 15 in several aspects and we point out the origin of 
the discrepancies. 

In Sec. II we obtain a decoupled system of two equations from the perturbation equations of 
a solution of the Binstein-Maxwell equations with a null background electromagnetic field which 
leads, making use of Wald’s method, to the expressions for the complete metric and vector 
potential perturbations in terms of scalar potentials. In Sec. III, we find the perturbations of the 
Bell-Szekeres solution in those regions where the background electromagnetic field is null. Even 
though there is no proof that all perturbations of the solutions under consideration can be gener- 
ated by the two scalar potentials employed here (see, however, Ref. 9), it has been shown,536,‘6 by 
direct integration, that the general solution of the massless field equations of spin i, 1, and ; in an 
algebraically special space-time that admits a geodetic and shearfree null congruence can be 
expressed in terms of a single complex scalar potential that satisfies a second-order partial differ- 
ential equation; hence, in the present case one expects that all the gravitational and electromag- 
netic perturbations can be expressed in terms of two complex potentials obeying a system of two 
second-order equations. 

II. DECOUPLED EQUATIONS AND SCALAR POTENTIALS 

Wald’s method allows us to express the solution of a system of linear partial differential 
equations in terms of potentials. If fPu,,, is an m-index tensor field that obeys a system of linear 
partial differential equations of the form 

M.fpv...H,,...=o~ (1) 
where E is a linear differential operator that takes m-index tensor fields into n-index tensor fields, 
and if, by combining the equations in (1) and their derivatives, one is able to obtain a decoupled 
equation of the form 

&(x)=0, (2) 

where CC is a linear differential operator that maps scalar fields into scalar fields and x is a function 
made out (linearly) of JCCL,,,. and its derivatives, then there exists a linear operator .7 such that 
x=.W,,...) and 

C.T= .Y%, (3) 

for some linear operator .Y which takes n-index tensor fields into scalar fields. By defining the 
adjoint, 2, of %’ as that linear partial differential operator taking n-index tensor fields into 
m-index tensor fields such that 

gp”.~~[~((f,,...)l,,... - [ ~(gP”...)]~‘“...f,....= V,s”, 

where sp is some vector field, and similarly for the other operators, from Eq. 

fl:p=flpf. 

(4) 

(3) it follows that 

(5) 

Therefore, if fi is a scalar function satisfying @($)=O, Eq.(5) implies that tPV,,,=[~~(~))IPV,,, 
satisfies the system of equations fl(t,,,,)=O. Thus, if % is self-adjoint, e=25 (as in the case of 
the source-free Maxwell equations for the vector potential and of the linearized Einstein vacuum 
field equations),3 .@( +) 
satisfies f?( @)=O. 

is a solution of the original system, provided that the scalar potential + 

The linearized Einstein-Maxwell equations for the metric perturbations, hpv, and the vector 
potential perturbations, 6, , can be expressed in the form 
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[ ZG ::I[ :hb:j)]=o, (6) 

where EG, EGE, iYEG, and iYE are linear operators, and, when the background electromagnetic 
field is null, there exists a decoupled set of equations that follows from Eq. (6) which can also be 
written in matrix form [see Eqs. (21) below]. If the adjoint of an operator of the form Jm” . . . .I& ii 1. Jt3,l . . . J-t& 
where the . Lii are linear differential operators, is given by’* 

[;T; 1;; =;;:]+=[;Ty 1;; J, (7) 

then, by multiplying one of the rows of Eq. (6) by an appropriate factor, the operator appearing in 
Eq. (6) is self-adjoint’ and the conclusions of the preceding paragraph apply with x and $ being 
columns with several components. The adjoint operators can be readily obtained making use of 
Eq. (7), the properties (zFQ~‘)~=.,%‘+,~~, (,R+.%)+=.,&+L??, and 

D+=-D-rC+p+p, A+=-A+ y+F-p-,K, 

a+=-s-p+z+r-ii=, z+=-~+a-p-,+, 
(8) 

We shall consider a solution of the Einstein-Maxwell equations with a null background 
electromagnetic field and a possibly nonzero cosmological constant. Taking the tetrad vector lP 
along the (double) principal null direction of the background electromagnetic field, we have 
~,,=O=cp, and from the Maxwell equations it follows that ~=0=a (Mariot-Robinson theorem). 
Then, from the Goldberg-Sachs theorem one finds that qc=O=zV,. Denoting with a superscript B 
the first-order perturbed values of the corresponding quantities, from the Maxwell equations one 
obtains 

(9) 

(A-2y+LL)~~-((s-22)~~--~~=2~~llj~, (10) 

where we have included a source for the electromagnetic perturbations, jP, in order to find an 
operator identity of the form (3) (cf. also Refs. 3, 7, 9, and 12). 

Applying (S- /3- a- 2 r+ ??) to Eq. (9) and (D-E + E- 2p - 3 to Eq. (10) and subtracting, 
the terms with & cancel by virtue of the identity17 

[D+(p- l).s+.F+qp-p7(6+pp+qT)=[S+(p- l)f3-Z+qT+iFj(D+pe+qp), (11) 

where p and q are arbitrary constants, which is a consequence of K=(T=ql=O. Making use of the 
Maxwell equations 

and of the Ricci identity 
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(D-~E+~-~-~IL+(&~~-~+T+~)K~=~~, 

one finds that 

where 

Similarly, from the Bianchi identities one obtains 

(16) 

(17) 

where we have included a source for the gravitational perturbations, T,, (in addition to the 
contribution coming from the electromagnetic perturbations), which will allow us to identify the 
operator .‘Y, and we have made use of the Einstein field equations. Applying ( a-- 3 /3- ST- 4 T+ %) 
to Eq. (16) and (D - 3 E + E-4p - fi to Eq. (17), subtracting and using Eqs. (1 l)-( 13) and the 
Bianchi identities (D-3p)qz=O=(S-3$P\Ir,, it follows that 

XmPmVTP,,-  Xl~lVT,,]+(S-3P-iu=4~+~ 

X[t’D-2~--2~ll*mYTP,- (S-2p- 2Z+ f)lWT,v]}, (18) 

where 

Thus, setting j#=O: T,, =0 in Eqs. (14) and (18), we find that the perturbation equations imply 
that (p:: and W0 satisfy the equations 

&( cp;, - l/Y&= 0, 
(20) 

On the other hand, Eqs. (14) and (18) can be expressed in the form 
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c?G 2~(D-3~+--4p)(D-2~) ‘I’; 

-92 c-9 E I[ 1 40: 

which is an equation of the form (3), where the 2X2 matrix on the left-hand side corresponds to 
the operator F, 

and the column on the right-hand side is, essentially, 

Making use of Eqs. (7), (B), and (12) one readily finds that 

@A -(P2 

2q2(D+3c-E-p)(D+4&+3p) E 1 /g ’ 

where 

and that the adjoints of the operators acting on T,, and j, on the right-hand side of Eq. (21) are 
(excluding the constant factor 4~) 

) [~P(S+2P+~)-mP(D+2i?+p)]. (23) 

Hence, if the scalar potentials, eG, r+& , satisfy the equation &[ $z] = 0 i.e., 

then the metric and vector potential perturbations are obtained by applying the operators (23) on 
the two-component column formed by Go and &. In order to find the correct relative normaliza- 
tion one can use the fact that the perturbations Q: and 9; generated by I& and +E must satisfy 
Eqs. (20) [see Eqs. (27) and (29) below]. Thus, we find for the real perturbations 
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(26) 

Then, the components of the perturbed electromagnetic field are given by 

B %=;(D+~---p)(D+2~+p)r&, 

B 
- 

(P~=~(S+~+~-~)(S+~~+~)-~(D+~E+~)]~~+~~(D-E+~E-~(D+~~+~~~~, 
(27) 

where we have made use of Eq. (24). The components of the perturbed Weyl spinor can be 
obtained from Eq. (25), making use of the formula 

*icDE= $VR’tAVS’ChDEjR,y . (28) 

In this manner. we find that 

III. PERTURBATIONS OF THE BELL-SZEKERES SOLUTION 

As shown in Ref. 15, the metric in each of the regions prior to the collision of the plane- 
fronted waves in the Bell-Szekeres solution can be specified by the null tetrad 
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D=-‘a 
v2 ld’ 

A=--+2)l”d,, 

(30) 

s=; (1 -u2)-*~(~xl-i~x2), s=~(l-u2)-‘n(~~,+id,*), 

where II,LI,X~,X~ are real coordinates. The only nonvanishing spin-coefficient is given by 

,u=A ln( 1 -u2)1’2, (31) 

the only nonvanishing component of the curvature is 

*22= f, 

and the electromagnetic field is given by 

(32) 

cp0’0’~0,, p2=$. (33) 

Hence, the results of the preceding section can be applied to this solution with the null tetrad (30). 
Since U, x1, and x2 are ignorable coordinates, we seek solutions of Eqs. (24) of the form 

~E=f(U)ei(k,x’+k*x2+k3u), ~G=g(U)ei(k’x’+k2x2+k3u), (34) 

where k,, k2, and k, are constants. Substituting Eqs. (30), (31), (33), and (34) into Eqs. (24) one 
obtains the linear ordinary differential equations 

; 
ik3 -&(l-v2)1’2g]+$&$=f, 

2 2 
ik3 $ [(l-v2)1’2f]+~f=k;g. 

It can be easily verified that, if k,#O, the most general solution of Eqs. (35) is given by” 

f=(C,v(l-u2)-1/2+C2)exp u(l-u2)-lD, 
I, 

g=ik;1(-C2v(1-v2)-1’2+Cl)exp 
tk’t+k;) 

k3 
u( 1 -uy’2 , 1 

where Cl and C, are arbitrary constants (the case where k, vanishes will be treated below). 

From Eqs. (27)-(31), (33), and (34) one obtains 

(35) 

(36) 

B (k2+ikl)2 B 
92=- k;(l-u*) ‘PO -I 2 ,k,g(u)e i(k,x1+kp2tk3U) 
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yrgB= - ~k~g(U)ei(k,x’+k2x2+k3u), q=i (k,+ik,) - 

k3dm 
qy, 

p, _ Gb+%)* wB 
2 k;(l-v2) 

0, q=-i 
(k,+W3 wB 

k;( 1 -u2)3’2 ” 

(37) 

wB= h+W4 B 
4 k;( l-v2)2 

W, _ ~k-k:g(u)ei(k,X’+k2x2+k3u), 

where in the last equality we have made use of the fact that, in the present case, the terms - 
containing $o in Eq. (29) reduce to 

- 
@‘*tS (38) 

as a consequence of Eqs. (24). 
The expressions for & and Wf given in Eqs. (37) (which are the only ones that contain 

ei(krx’+k~n2+k3u) and its complex conjugate) do not agree with the corresponding expressions 
obtained by Chandrasekhar and Xanthopoulos.‘5 The error in Ref. 15 comes from the assumption 
that all the perturbed quantities have a dependence on x1, x2, and u of the form 

ei(kl.x’+kp2+k3u) (39) 

even though some of the equations considered in that paper contain the perturbations of the 
electromagnetic field and of the conformal curvature and their complex conjugates [see, e.g., Eqs. 
(164) and (167) of Ref. 15-j. 

It may be noticed that, in the approach followed here, the simultaneous presence of a factor 
(39) and its complex conjugate in some of the perturbed quantities arises naturally as a conse- 
quence of considering real metric and vector potential perturbations, despite the fact that the 
potentials & and J,& have a dependence on the ignorable coordinates of the form (39). [As 
pointed out in Ref. 18, the presence of the factor (39) and its complex conjugate in qf and qf 
means that there is a change in the polarization of the perturbations produced by their scattering 
from the background solution.] As noted in Ref. 15, the perturbations (37) diverge at u = 1. 

Now we shall consider the u-independent perturbations (which correspond to the case k3=0). 
It is convenient to use in place of the real coordinates x1 and x2, the complex variable 

X’+iX2 zs- 
VT (40) 

and its complex conjugate. Then, S= ( 1 - u *) - 1’2dZ and 3 = ( 1 - u 2, - rRd,_. 
Assuming that the potentials +o and & do not depend on u from Eqs. (24) it follows that 

*E= -2(1 -v2)d,F(u,z), (41) 

where F( v,z) and G(v,z) are arbitrary functions and the factors (1 -u2) are introduced for 
convenience. {In these expressions for +o and & we have excluded terms of the form 
(1-u2)2[z~(u,~+~(u,~l and - 2(1 - ~~)d$(u,T),respectively, whichyieldtrivialpertur- 
bations [see Eqs. (25) and (26)].} The metric and vector potential perturbations generated by (41) 
are 
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b,= - -[~~F(u,z) + $F(u,z)]~, . 

with Z&t?= -42( 1 -u2)-ln du . And, according to Eqs. (27)-(29), the only nonvanishing com- 
ponents of the perturbed electromagnetic field and of the perturbed Weyl spinor are 

- 
cpf=-d;F(u,z), e= -$F(u,z)-d;G(u,z). (43) 

Thus, contrary to the claim made in Ref. 15, there exist nontrivial u-independent perturbations 
which, moreover, need not diverge at u = 1. Furthermore, if dzF=O (i.e., when the electromagnetic 
perturbations vanish), the metric perturbation (42) is not only a solution of the linearized Einstein- 
Maxwell equations, but it also corresponds to an exact solution of the Einstein-Maxwell equa- 
tions. This result is analogous to Xanthopoulos theorem,” except that in the present case the 
background solution possesses an electromagnetic field (see also Ref. 20). 

IV. CONCLUDING REMARKS 

One of the advantages of finding the perturbations in terms of potentials is that one only has 
to find a consistent solution of the differential equations for the potentials, since the metric and 
vector potential perturbations are obtained by differentiating the potentials. It may be noticed, for 
instance, that in the study of the perturbations of the solution (31)-(33) presented in Ref. 15, after 
imposing some gauge conditions, at least 27 equations had to be considered. 

Since we have found that there exist well-behaved perturbations in the region of the Bell- 
Szekeres solution that contain the approaching waves, it is interesting to find out whether these 
perturbations can be matched continuously with perturbations in the interaction region of the 
colliding waves (cf. Ref. 15). 

Note added in proof: The term @cACRfsfhDEjR s I , is missing in the right-hand side of Eq. (28), 
which only contributes to Pg and cancels the second term in the right-hand side of the last 
equality in Eqs. (37). 
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The main aim of this paper is the study of (nonhomogeneous) three-dimensional 
Riemannian manifolds with constant principal Ricci curvatures pL=p2#p3. An er- 
ror in a recent paper by McManus is pointed out and corrected, and it is shown that 
the techniques introduced by McManus provide a very simple method to obtain the 
complete local classification of these manifolds, which was first given by Kowalski. 
0 1996 American Institute of Physics. [SOO22-2488(96)02008-71 

1. INTRODUCTION 

A (pseudo-)Riemannian manifold (M,g) is said to be curvature homogeneous’ if, for every 
pair of points p,q EM, there exists a linear isometry cp:T,M-+T,M, such that, for all 
X,Y,ZE TpM, 

where R denotes the Riemann curvature tensor of (M,g). It is easily seen that any (locally) 
homogeneous manifold is automatically curvature homogeneous, and in Ref. 1. Singer states the 
problem of constructing examples of nonhomogeneous curvature homogeneous spaces. This prob- 
lem was studied extensively in both the Riemannian and Lorentzian case (see, e.g., Refs. 2-lo), 
leading to the construction of a large number of explicit examples. For more information on the 
subject of curvature homogeneity and for a survey of known results, we refer to Refs. 1 I- 14. 

It is well known that the Riemann curvature tensor of a three-dimensional Riemannian mani- 
fold (M,g) is completely determined by its Ricci tensor and, as a consequence, a three- 
dimensional Riemannian manifold is curvature homogeneous if and only if it has constant prin- 
cipal Ricci curvatures, i.e., its Ricci tensor has constant eigenvalues. If all principal Ricci 
curvatures are equal (and constant), the manifold (M ,g) is of constant curvature and hence locally 
homogeneous. In a number of recent papers (Refs. 5, 6, 15, and 16), the authors studied the 
problem of three-dimensional Riemannian manifolds with constant principal Ricci curvatures 
p1=~#p3. In Refs. 5 and 6, explicit examples of nonhomogeneous curvature homogeneous 
spaces with principal Ricci curvatures 

were obtained by generalizing a construction of Sekigawa,2 and it was later shown in Ref. 15 (see 
also Ref. 13) that these are the only examples of such manifolds. In Ref. 16, Kowalski gives a 
complete (local) classification of all three-dimensional Riemannian manifolds with constant prin- 
cipal Ricci curvatures p1=p2fp3(#O). He proves that, for any choice of constants O#a#fl, there 
exists a family of nonhomogeneous curvature homogeneous Riemannian manifolds (depending on 
two functions of one variable) whose associated principal Ricci curvatures are given by 

“Current address: University of Aberdeen, Department of Mathematical Sciences, Edward Wright Building, Dunbar Street, 
Aberdeen AB24 3QY, United Kingdom. Electronic mail: peterb@maths.abdn.ac.uk 
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(1) 

and he constructs some explicit examples of such metrics. However, we remark that the techniques 
used in this paper are quite complicated, (e.g., the introduction of asymptotic foliations), and the 
computations involved in the proofs are of a rather complex nature. 

In their study of space-times admitting shear-free, irrotational, geodesic time-like congru- 
ences, Coley and McManus (Refs. 17 and 18) were led to consider three-dimensional Riemannian 
manifolds with constant principal Ricci curvatures satisfying (1). Further, in Refs. 19 and 20, Bona 
and Co11 studied the isometry groups of three-dimensional Riemannian metrics using the eigen- 
values and eigenvectors of their Ricci tensor. In particular, they made a study of three-dimensional 
Riemannian manifolds satisfying (1) and admitting a three-dimensional or four-dimensional isom- 
etry group, which acts transitively. Motivated by these results, McManus2t addresses, indepen- 
dently of the work of Kowalski, the problem of completely classifying these manifolds in the 
homogeneous and nonhomogeneous cases. Unfortunately, one of the main results (Theorem 2) 
stated in Ref. 21 (as well as Theorem 2 in Ref. 18) claims that a three-dimensional Riemannian 
manifold with constant principal Ricci curvatures pl=p2#p3 is nonhomogeneous if and only if the 
simple principal Ricci curvature is zero and the shear of its principal Ricci direction is nonzero, 
leading to an obvious contradiction with the results of Ref. 16. 

The first aim of this paper is to point out and correct the error made in Ref. 21. We will show 
that the techniques introduced by McManus can be applied to prove the (local) existence of a 
family of nonhomogeneous three-dimensional Riemannian manifolds with constant principal Ricci 
curvatures given by (1). We will then determine which of the metrics obtained in this way are 
isometric, thereby giving an alternative proof of the classification result from Ref. 16. It will turn 
out that the computations needed in this approach are much simpler than those used by 
Kowalski,16 leading to a considerable simplification of the classification result, although up to this 
moment we were unable to find new examples of such spaces. 

The paper is organized as follows. In Sec. II, we derive the differential equations that have to 
be satisfied by a Riemannian manifold with constant principal Ricci curvatures given by (1). We 
remark that many of the equations in this section have already been obtained in Refs. 19-21, but 
are collected here for easy reference. In Sec. III, we then investigate which of these manifolds are 
locally homogeneous. In Sec. IV we study the differential equations of Sec. II in more detail. 
Correcting the mistake in Ref. 21, we prove the (local) existence of nonhomogeneous Riemannian 
manifolds whose principal Ricci curvatures satisfy (1) for arbitrary constants LY and /?. Finally, in 
Sec. V we investigate the problem of determining which of these manifolds are isometric, thereby 
obtaining a new (and simpler) proof of the classification result in Ref. 16. 

We end this section by remarking that the techniques used in the present paper can be adapted 
easily to the case where M is a three-dimensional Lorentzian manifold, leading to a similar 
classification of Lorentzian manifolds with constant principal Ricci curvatures given by (1). 
Again, this problem was studied before by McManus,22 but, unfortunately, a similar mistake was 
made in this paper. In a forthcoming publication,23 we will correct this error (as well as another 
one appearing in Ref. 22), and we will prove a classification result similar to the one given in the 
present paper. 

II. THE BASIC DIFFERENTIAL EQUATIONS 

We start this section by fixing some notations. In what follows, we denote by (M,g) a 
(smooth) three-dimensional Riemannian manifold and by V the Levi Civita connection associated 
to g. Further, we define the Riemann curvature tensor R of (M,g) as the (1,3)-tensor field, 

RxyZ= VLx,rlZ- V,V,Z+ V,V,Z, (2) 
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for all vector fields X, Y,Z EX( M). The Ricci curvature tensor p is defined (at the point p E M) as 
the trace 

PWJ’)(P)=~, dRmiLE,)(d, (3) 

where X, Y E TPM and {E, ,E, ,Es} is an orthonormal basis for TPM, and the trace 

7(p)==?, P(Ei ,Ei)(P), 

is called the scalar curvature of (M,g) at p. 
Let SEX(M) be a vector field of unit length, denote by q the metric dual of 5, i.e., the 

one-form given, for all X E X( M), by 

and by h = g - 08 77 the projection tensor associated to 5. Then it is well known that there exists 
a unique decomposition 

g(Vx5,Y)=u(X,Y)+w(X,Y)+~eh(X,Y)+g(V55,Y)g(S,X), (4) 

where u is a trace-free, symmetric (0,2)-tensor field and w is an antisymmetric (0,2)-tensor field, 
such that, for all X GE(M), 

o(x,~)=u(x,~)=o. 

The function 

is said to be the expansion of 5, and the (0,2)-tensor field u (resp., W) is called the shear tensor 
(resp., twist tensor) of 5. 

Now, let us suppose that (M,g) is a three-dimensional Riemannian manifold whose constant 
principal Ricci curvatures are given by (1). Then, locally, we can construct an orthonormal frame 
field {E, ,E,,E,} consisting of principal Ricci directions, i.e., such that 

P(EI,E~)=P(Ez,E~)=P~ P(E~,E~)=Q, p(Ei,Ej)=O, if i+j. 

Twice contracting the second Bianchi identity, 

(5) 

we obtain the so-called three-dimensional second Bianchi identity, 

EA7)-2C VE,P(E,,E~)=O, iE{l,W), 
j=l 

and taking into account that 7=2p+~y is constant along M, (6) is equivalent to 

(6) 

(7) 
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for all i E { 1,2,3}. Using the fact that a#& (7) yields that 

g(b,E,,Eh=O, g(V&,Ed=O, 

i.e., the simple principal Ricci direction E, is geodesic and expansion-free.‘9-21 
At each point p E M, the linear operator F(p): TPM--+ TPM associated to the shear tensor of 

E, is self-adjoint and trace-free, and CE, = 0. Hence, diagonalizing the operator 5 at all points 
p EM, we obtain a (local) orthonormal frame field {El ,E,,E,}, consisting of principal Ricci 
directions [as in (S)] and such that the shear tensor of E, takes the form 

u(E,,El)=-u(E,,E2)=u, u(El,Ez)=O, u(E3,Ei)=O, ie{1,2,3}. (9) 

It follows from (4), (8), and (9) that, with respect to this local orthonormal frame field, the 
components of the Levi Civita connection of (M,g) are given by 

VEIE, = - e2E2- aE,, VEZE, = B,E,+ WE,, VE& = k&, 

VE,E2= e2E, - WE,, VE2E2= - tIlEI f uEJ , VE3E2= - kE, , 00) 

VE,E3=uEl+aE2. VE2E3=-~El-uE2, VE3E3=0, 

where we have denoted by o= w(E, ,E2) the only nonvanishing component of the twist tensor of 
ES, and by I!& = g(VE,E1 ,E2) and S2 = g(VE,E2,EI) the expansions of E, and E2. A straight- 
forward computation using (2), (3), and (10) [or, alternatively, expressing the fact that, for all 
X, Y E X( M), p(X, Y) = - [V, , s] Y -tr V YoVX, where S denotes the divergence operator] then 
yields that 

(10 

From (11) and the fact that p(E, ,E2) =O, it follows immediately that 

ku=O. (12) 

Let us suppose that k # 0 at a point p E M. Then there exists an open neighborhood U around p 
such that k#O on U, and (12) implies that a=0 on U. Consequently, the frame field {E, ,E2,E3} 
is only determined up to a rotation of the vectors E, and E, , i.e., we can replace it by a new frame 
field, 

E; = sin qEl + cos cpE2, E;=-cos cpE,+sin cpE2, Ej=Es. 

In this new frame field, we have 
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VE;E;=-(E,(q)-k)E;=k’E;, 

and choosing the function cp E C”(M) to be a solution of the differential equation 

we see that k’ = 0. As a consequence, we can always specify the (local) orthonormal frame held 
{E, ,E,,E,} in such a way that k=O. 

Expressing (5) using (1 l), we then obtain the equations 

2(w2-c+=cY, (13) 

E3( 0) = E3( u) = 0, (14) 

(16) 

E,(u)+E,(o)+26J,u=O, (17) 

El(w)+E2(u)+20,u=0, (18) 

E,(e,)+E2(e2)+ e:+ e;+p=o. (19) 

It is easily seen from (10) that the Lie brackets of the orthonormal vectors E, ,E2 ,E3 are given 
by 

[E,,E,]= e2E,- B,E,-2wE3, (20) 

[E,rEd=uEl+~E2, (21) 

[E,,E,]=-WE,--uE2. (22) 

Conversely, the Koszul formula,24 

for all X,Y,ZeX(M), immediately shows that (20)-(22) imply (10). 
Summarizing, we obtain the following. 
Theorem 1: A three-dimensional Riemannian manifold (M,g) has constant principal Ricci 

curvatures given by (1) if and only if, in the neighborhood of each point p EM, there exists an 
orthonormal frame field {E, ,E,,E,} and functions w, a, et, and t9,, such that (13)-(22) hold. 

Remark I: It is easily seen that, replacing E, by -E, and E3 by -E3 if necessary, we can 
always choose the orthonormal frame field {Et ,E,,E,} in such a way that a~-0 and ~30. 

III. CURVATURE INVARIANTS AND HOMOGENEITY 

As we have already mentioned in Sec. I, one of the main topics in the study of curvature 
homogeneous manifolds is the investigation of the existence of nonhomogeneous curvature ho- 
mogeneous manifolds. It is therefore important to have a simple criterion to decide if a given 
curvature homogeneous manifold is locally homogeneous or not, and the aim of this section is to 
prove such a criterion for the case of three-dimensional Riemannian manifolds with constant 
principal Ricci curvatures p1=p2#p3. To this purpose, let us assume that (M,g) is such a mani- 
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fold, and that the orthonormal frame field {Et ,E, ,E3} and the functions u, w, et, and 0, are 
constructed as in Sec. II, i.e., they satisfy Eqs. (13)-(22). We are then able to prove the following. 

Theorem 2: The curvature homogeneous Riemannian manifold (M,g) determined by (13)- 
(22) is (locally) homogeneous if and only if u and u are constant along M. Moreover, all locally 
homogeneous manifolds corresponding to given constants u,w,a=2(o*-c?) and p are locally 
isometric. 

Proof: It was shown in Ref. 25 that a three-dimensional Riemannian manifold (M,g) with 
constant principal Ricci curvatures, 

is locally homogeneous if and only if llVp11* = Xz,j,k=t(VE,P(Ej ,Ek))* is constant along M, and 
that the constants C.Y, p, and jlVpll* g ive complete isometry Invariants for (the universal covering 
manifold of) this manifold. From (5) and (10) we can easily compute that 

which, together with (13), implies the required result. 
. 

n 

IV. NONHOMOGENEOUS SOLUTIONS 

We have shown in Theorem 1 that the necessary and sufficient condition for a three- 
dimensional Riemannian manifold to have constant principal Ricci curvatures as in (1) is the 
existence of a (local) orthonormal frame field {E, ,E, ,E3} and functions a, w, 8i, and 0, satis- 
fying (13)-(22). Moreover, we have seen in Sec. III that such a manifold is nonhomogeneous if 
and only if u (and hence w) is nonconstant along M. The aim of this section is to investigate the 
(local) existence of such nonhomogeneous manifolds. In Ref. 21, McManus claims that, if a#O, 
the only solutions of the differential equations (13)-(22) are given by 8, = e,=p=O, yielding that 
w is constant along M and implying that no nonhomogeneous solutions exist. We will show that, 
if a#O, the complete solution of ‘the system of differential equations (13)-(22) is determined by 
(the solutions of’) a system of two (partial) differential equations of second order, and we will 
prove the existence of solutions to these differential equations (for any choice of a#0 and fl), 
thereby pointing out and correcting the mistake made in Ref. 21. In the case where (Y=O, we will 
determine the complete solution of the system of differential equations (13)-(22). It should be 
pointed out that a number of the expressions in this section were already obtained by McManus in 
Ref. 21, but are inserted here for easy reference. 

We remark that, as M is supposed to be a nonhomogeneous manifold, the functions u and o 
are nonconstant and hence u and w are nonzero almost everywhere on M. For the sake of 
simplicity we will therefore, in what follows, restrict our attention to the generic points in M, i.e., 
the points p such that o and u are nonzero at p (and hence in a neighborhood U of p). 

We start our computation by choosing a coordinate system (x,y’,z’) on a (possibly smaller) 
neighborhood U in M such that, for all points p E U, 

-$P) =E~(P>, 

and we write 

a a a a a a 
E,=a a,+b 3-l-c z7 E2=d z+e ay,+f -g. (23) 

With respect to such a coordinate system, (14) implies that 
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au aw -=-co, 
ax ax 

while (15) and (16) take the form 

a4 
-g=ae,-we,, de2 

~=W4-ae2, 

and (21) and (22) yield that 

(24) 

(25) 

da db ac 
dx= -c+a-od, -=---b-we, ax &=-uc-wj-, 

(26) 
ad de 
z=ua+ad, -=mb+ae, 

af 
ax ~=wc+uf. 

Differentiating (25) with respect to x and using (13), (24), and (25), we see that 
. 

a2e1 
p=-f 8,. 

Hence, the solution of the differential equations (25) depends on the sign of a, and in what follows 
we will therefore consider the cases cu>O, a<O, and cw=O separately. 

Case I: a<O. 
In this case, putting X = da, (25) yields 

h-u 
AeAx+ 

X+U e2=-- 
0 w BeeAx, 

(27) 

while (26) implies that 

(28) 
d= - X+a alekx+ X-a a2e-X~, 

0 w 

h+U X-a 
e= - w b,exx+ w b2emhx, 

h+U f=- - cle xx+ h-a -;\.X 
0 

- c2e . 
w 

Now, let us suppose that (x,y,z) is a new coordinate system on U, such that 

Y=%“,z’), z=G(~‘,~‘). 
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With respect to this new coordinate system, the frame field {E, ,E, ,E3} can be written in the form 

and using (28) it is then easily seen that the functions F and G can be chosen in such a way that 

bhtz)=c,(y,z)=o, b,(y,z)c2(y,z)+o. 

Using (27) and (28) in (17), we find that 

A= Xb’ 
2u(u-A) dy’ (29) 

and (18) is an immediate consequence of (29). A straightforward computation using (27), (28), 
and (29) then shows that (20) is equivalent to 

-2X2a2b,+hc2bl 
2~-h au abl 

~(04) az --2xc2 --jy=O, 

-2X2alc2-Xc2b1 
2~+k au 

-+2Abl %=O, 
u(u+~) ay ay 

(30) 

(31) 

bl 
aa2 FL+--- c2al abl a2bl ac2 w2 
xwc2 az bl az --+T=o. 

c2 ay 
(32) 

Finally, solving a, and a2 from (31) and (30) and substituting in (32) and (19), we obtain two 
partial differential equations of second order in u and cp = b 1 c2 : 

cp & (ln( “(“,;““i) +2(u2-X2)=0, 

cp a2u 
-2x2 - -+2Qqo 

2u2--x2 aa a0- 
u ay az --/3(u2-X2)=0. u2(u2-x2) dy a2. 

A straightforward application of the Cauchy-Kowalewski theorem yields that, at least in the 
analytic case, there exists a family of solutions for Eqs. (13)-(22), depending on four functions of 
one variable (the initial conditions for the functions cp and a), and one function of two variables 
(as q=blc2). 

Case II: cu>O. 
The computations in this case are very similar to those of Case I, although they turn out to be 

more complicated. We start by putting X = m. Then (15) and (16) yield that 

~l=A(~,z)cos Xx+B(y,z)sin xx, 
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uA-AB AA+uB 
e2= cos xx+ sin Ax, 0 w 

while (21) and (22) imply that 

a=al(y,z)cos Ax+a2(y,z)sin AX, 

b=bl(y,z)cos Ax+b2(y,z)k Ax, 

(33) 
d=-- ual+Aa2 

cos Ax+ 
Au,-aa2 

w 
sin Ax, 

0 

ub,+Xb2 Ab,--ub2 e=- cos Ax+ w 
sin Ax, 

w 

uci+Ac2 
f=- w cos Ax+ 

Xc,-uc2 
sin Ax. 

0 

As in the previous case, we can choose a new coordinate system, 

x, y= F(y’,z’), z= G(y’,z’), 

such that 

and Eq. (17) now yields that 

A(YJ)= & b,a g-bp $+c2A g , 

B(YJJ)= y& 
au a0- am 

c2u x-c2w Z-W - 
ay 

3 

(34) 

(35) 

while (18) is again an immediate consequence of (34) and (35). 
As before, substituting these expressions in (20) yields that 

-blc2 
acud --Abf $+2alblAwu+2wuc2 2~0, az 

blc2 
ah-4 
--Xc; g+2a2c2Awu-2wub, $=O. 

ay 

These equations can be solved for a, and a2, and from (19) and (20) we obtain two partial 
differential equations of second order in u and b, (depending on a free parameter c,), which are 
of a rather complicated nature and will therefore be omitted. An argument similar to that in Case 
I then shows that, at least in the analytic case, there exists a family of solutions that depends on 
four functions of one variable (the initial conditions for the functions u and b,) and one function 
of two variables (namely c2). 
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Case III: a=O. 
In this case, our choice of the vector fields E, and E, (see Remark 1) implies that u= o. From 

(17), (18), and the fact that u#O, we then obtain that 

e1 = e2= 8, 

and denoting by {E; ,E; ,E;} the new frame field (again consisting of principal Ricci directions) 
given by 

Jz Jz - 
E;=y- (El-E2), E;=~ (E,+E~), E;=E3, 

Eqs. (13)-(22) can be written as 

E;(u) + Jie0-= 0, 

[E; ,E;] = &TIE; - 2uE;, 

[E; ,E;]=2uE;, 

[E;,E;]=O. 

From (41) we see that we can choose a coordinate system (x,y,z), such that 

a a a 
E;=a a,+b dy+c -g, E;=$ E&. 

With respect to such a coordinate system, (36) implies that 

au de -=-= 
ax ax 0, 

while we obtain from (37) and (38) that 

fi g+2e2+p=o, 

$j+ Jzeu=o, 

and (39) and (40) take the form 

da ab 
dx- -0, z=-2u, $0, 

$=-JZ@a+2u, $=-&Bb, ~=-fiSC. 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(4.4 

(45) 
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(1) p>O. In this case, the complete solution of (43) is given by 

e= J  4 td- fiY +fl(z)). 

Substituting this expression in (44), we then obtain that 

f2Cz) 

u= cod- SBY+fltz))' 

and it follows from (45) that 

2f2(z)y +f3(z) -2f2(zb+f4(z) 

a= COS(-fiY+flk))’ 
b= 

fs(z) 

cod- @Y +f 1(z)) ’ c= cod- fiY+flw’ 
(46) 

completing the integration of (13)-(22). 
(2) /3<0. The complete solution of (43) is now given by 

e= d- - ; QNJ-gY +f 1(z)). 

Again substituting this expression in (44), we then obtain that 

f2Cz) 

(+= cosh(J-py+f,(z))’ 

and it follows from (45) that 

2fPCz)Y ff3k) 
b= 

-~f2(zb+f4(d 

‘= cosh(J-Py+fl(z))’ 
f5W 

cosh(~Y+fdz))’ ‘= cosh(&iiy+f,(z))’ 
(47) 

which concludes the integration of (13)-(22) in this case. 

V. ISOMETRIC NONHOMOGENEOUS SOLUTIONS 

In the previous section we have determined, for each choice of two constants c&P, a family 
of nonhomogeneous Riemannian metrics whose principal Ricci curvatures are given by (1). This 
family of metrics depends (at least in the analytic case) on four functions of one variable and one 
function of two variables (if HO) or on five functions of one variable (if a=O). In this section, we 
will investigate which of these metrics are locally isometric, thereby giving a new proof of the 
main results of Ref. 16. 

Let (M,g) and (M’,g’) be (nonhomogeneous) three-dimensional Riemannian manifolds with 
constant principal Ricci curvatures a#& and let {El ,E2 ,E3} (resp., {E; ,E; ,E;}) be the (local) 
frame field along M (resp., M’) consisting of principal Ricci directions constructed as in Sec. II. 
Then we have the following. 

Theorem 3: The differentiable mapping F: M--+M’ is a (local) isometry if and only if 

F&I=& F,E,=eE;, F,E3=E;, 

or 

F,E1=eE;, F,E,=eE;, F,E3=-E;, E=I!z~. (48) 
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Proof First, if F is a local isometry of (M,g) and (M ’ ,g ‘), then it preserves (up to the sign) 
the simple principal Ricci direction E, . As F also preserves the Levi Civita connection, it then 
preserves the shear tensor of E3 and hence its eigendirections El and E2, and (48) follows from 
our choice of sign for u and w. 

Conversely, if F satisfies (48), it maps a local orthonormal frame field along M into a local 
orthonormal frame field along M’ , proving that F is a local isometry. n 

Now, let us first assume that (Y<O and that the frame field {E, ,E,,E,} is determined by (23) 
and (28). Then it is easily seen that the differentiable mapping F: M-M’, given by 

x’=x’(x,y,z), y’=y’(x,y,z), z’=z’(x,y,z), 

satisfies (48) if and only if 

x’=+x+f,(y,z), y’=f2(y), z’=f3(z), 

or 

x’= “x+fl(Y,z), y’=f2(z), z’=fdy). 

Using a similar (but more complicated) argument in the case 0-0, we conclude that, in the case 
cu#O, there is a family of isometries depending on two functions of one variable and one function 
of two variables. 

In the case where cr=O, let us assume that the frame field is given by (42) and (46) [or (47)]. 
An argument similar to the one above then shows that the differentiable mapping F:M-+M’ 
satisfies (48) if and only if 

x’=x+f,(z), y’=y+f,(z), z’=fdz) 

(or a similar form for the other cases), and we conclude that, in this case, the family of isometries 
depends on three functions of one variable. 

Comparing the family of solutions of the Eqs. (13)-(22) discovered in Sec. IV with the 
number of isometries for these metrics found in Sec. V, we obtain the following result from Ref. 
16. 

Theorem 4: Let cu#tp be constants. Then there exists a family of local nonhomogeneous 
Riemannian metrics, which are not (locally) isometric and whose constant principal Ricci curva- 
tures satisfy (l), and this family depends on two arbitrary functions of one variable. 

Remark 2: In the case o=O, we know that the Riemannian metric g is completely determined 
by the orthonormal frame field {E, ,E, , E3} given by (42) and (46) [or (47)]. Applying a suitable 
local isometry F of the form 

x’=x+F1(z), y’=y+F2(z), z’=F3(z), 

we can map the frame field {E i , E, , E3} into the frame field 

a a a 
E;=a’ dx’+b’ ,+c’ -zg, 

ay 
E;=$ 

where 

a’= Y ‘(P2Cz’) 

COS(-~Y’+~Ol(z’))’ 

b’= -x’so2(z’) 

cos(- &+501(z’)) 
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resp., 

Y’cpzk’) 

“= cosh(J-Py’+qt(z’))’ 

b’= -x’dz’) 

cosh(J-py’+~dz’)) 

c’= +dz’) 
cosh(~y’+ cpdz’))’ 

showing that all these metrics are locally isometric to the Riemannian metrics of the form 

g=w;+w;+o:, 

with 

q = (~~l(z’)cos( - fiy ‘I+ k(z’)sin( - fiy ‘))dz’, 

resp., 

o+=dy’+x’dz’, q=dx’-y’dz’, 

which are exactly the metrics constructed in Ref. 6, the functions CL, and h being the two 
functions of one variable given by Theorem 4. 
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It is proposed that a power series may be summed (analytically continued outside 
its radius of convergence) by converting it to a continued exponential, which is a 
structure of the form a0 exp(atz exp(a2zexp (usz exp(a4z . . . )))). The continued- 
exponential coefficients {ui} for a given function f(z) are determined by equating 
the Taylor coefficients of the continued exponential with those off(z) . (The coef- 
ficients {Ui} have a combinatoric interpretation; the nth Taylor coefficient enumer- 
ates all n + 1 -vertex tree graphs whose vertex amplitudes are {a;}.) Continued 
exponentials have remarkable convergence properties. When a power series has a 
nonzero radius of convergence, the corresponding continued exponential often con- 
verges in a heart-shaped region a, whose cusp is determined by the nearest zero or 
singularity of the function being approximated. The convergence region fi contains 
and is much larger than the circle of convergence of the power series. Outside 
a, the complex plane is divided up into an elaborate patchwork of regions in which 
the continued exponential may either diverge or else approach an N-cycle, 
N=2,3,4,. . . . 0 1996 American Institute of Physics. 
[SOO22-2488(96)02107-X] 

I. INTRODUCTION 

A variety of mathematical techniques have been invented to accelerate the rate of convergence 
of a slowly convergent series and to assign a finite value to the sum of a divergent series. Such 
techniques are generally referred to as summation methods.’ Summation methods are extremely 
useful to theoretical and mathematical physicists. The most powerful analytic tool for solving hard 
problems in theoretical physics is perturbation theory. However, perturbation series are notori- 
ously badly behaved; they are either slowly convergent or, very often, they are divergent. Sum- 
mation methods are crucial because they provide a way to recover useful physical information 
from perturbative calculations. 

Consider a perturbation series in the form of a power series 

(1.1) 

Here z is called the perturbation parameter and {c”} are the perturbation coefficients. One tech- 
nique commonly used to improve the rate of convergence of such a series and/or to assign a 
meaningful sum to the series is called Padd summation.’ To sum a formal power series using Pade 
summation one converts the series to a continued fraction. Continued-fraction coefficients are 
obtained by expanding the continued fraction as a power series, which is then identified term by 
term with the formal power series to be summed. A truncated continued fraction is a rational 
function; the rational functions obtained by successive truncation are called Padd approximants. 
Even if the perturbation series diverges, the Padd approximants often form a rapidly convergent 
sequence whose limiting value is physically meaningful.3 

I41 03/i 7/$10.00 
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Recall that when a power series converges, its region of convergence is a disc in the complex 
plane. Generally, a summation method enlarges this region of convergence. For example, when 
one converts a power series representing a Stieltjes function [such as log(l+z)] to a continued 
fraction, the sequence of Pad6 approximants converges in a cut plane that contains the disc. 

In this paper we propose a new method for summing power series. The idea is to convert the 
series to a continued exponential, an infinite tower of exponentials of the form 

a0 exp(alz exp(a2z exp(u3z exp(a4z . . . )))). (1.74 

This continued exponential is said to converge for a particular value of z if the sequence 
Eo=uo, E,=uo exp(atz), E2=uo exp(u,z exp(a2z)), . . . converges.4 We will see that continued 
exponentials often converge in a larger region than their associated Taylor series. When a contin- 
ued exponential does not converge, the sequence {E,} may either grow out of bounds or it may 
approach a limit cycle. This limit cycle may be of finite length or it may even be infinite. [Later 
in this section we generalize the form of the continued exponential in Eq. (1.2) by replacing the 
structure u,z by a,$‘,. For example, to expand cos z as a continued exponential we take b, = 2 for 
all n> 1.1 

Having defined a continued exponential, we next consider some elementary operations that 
may be performed. For example, multiplying a continued exponential by a constant, or raising a 
continued exponential to a power are trivial. Unfortunately, most arithmetical operations, such as 
adding or multiplying two continued exponentials, are impossible. 

It is straightforward to expand a continued exponential of the form uoealzea*’ ” as a Taylor 
series. The first n terms of this Taylor series are obtained by truncating the continued exponential 
after the first n coefficients, expanding the finite tower as a Taylor series, and then retaining the 
first n terms of this Taylor series. The z” term (n >O) of the Taylor series has 2”-’ contributions 
oftheformuoa{‘...a~withjt+... +jk=n, where ji>O for all i. Explicitly, the Taylor series 
is 

(1.3) 

To convert the power series in Eq. (1.1) to the continued exponential in Eq. (1.2) we expand 
the continued exponential as a Taylor series and set this series equal to the original power series. 
This gives an infinite sequence of equations that relate the Taylor coefficients {Ci} to the 
continued-exponential coefficients {ai}: 

cl=ala0, 

c2=uoalu2+ iaoa:, 

(1.4) 

and so on. These equations may be solved sequentially for the continued exponential coefficients: 
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ao=cg, 

24&c3- 12c$c;- 12coc;c2+~c; 
u3= 

2‘k&c2- 12~0~; 
, 

(1.5) 

and so on. 
There is an eficient computational procedure for converting a formal power series to a con- 

tinued exponential. This iterative procedure relies on taking logarithms and uses the first N terms 
of the power series as input. At each step we identify the leading term in the power series as the 
next term in the continued exponential. Then we normalize the power series by dividing by the 
first term and take its logarithm according to the formula 

log( 1 fx)=x- +X2+ +X3- . . . . 

The result of this process is a continued exponential of a more general form: 
uOLbOpo,zbk@~ih2~ ” . In this representation the monomial aoz ‘0 is the leading term of the power 
series. Note that the first N coefficients of the generalized continued exponential can be calculated 
(using MAPLE, Mathematics, or MACSYMA) in 0(N4) time.5 

There is only one example for which both the continued exponential coefficients and the 
Taylor series coefficients are known in closed form: 

eze 
& 

=-go (n+;!)n-l Zn. (1.6) 

For this example one can verify that a, = 1 and c, = (n + 1) n- ‘ln ! satisfy Eqs. (1.4) and (1.5) and 
that the right side of Eq. (1.6) has the form in Eq. (1.3). The Taylor series on the right side of Eq. 
(1.6) converges in a disc of radius l/e about the origin. However, as we will see, the continued 
exponential converges in a larger region whose shape is similar to that of a cardioid. The boundary 
of this heart-shaped region is given by the parametric equations r= e-‘OS’ and 8= t - sin t, where 
0s W27T. 

If the continued exponential coefficients a, approach a constant, then the region of conver- 
gence is the heart-shaped region above, scaled by an appropriate factor. For example, when the 
Taylor series for l/( 1 - z) about z=O is converted to a continued exponential, the resulting 
coefficients satisfy lim,,, an= l/e. In this case, the region of convergence is a cardioid with the 
cusp at z = 1. This cardioid is larger than the region of convergence of the Taylor series, which is 
the unit disk. 

In general, the boundary of the region of convergence of a continued exponential is deter- 
mined by the zeros and the singularities of the function being represented. For example, the 
continued exponential representations for the functions 1 -z and l/( 1 - z) have the same region of 
convergence; in the former case the function has a zero at z= 1 and in the latter case the function 
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has a pole at z = 1. In either case the cusp of the cardioid is located at z = 1. The function cos z 
vanishes at z= + n/2. The continued exponential representation of this function converges in a 
double cardioid with cusps at z = + n/2. The function l/coslfz converges in the same double 
cardioid. 

The most remarkable aspects of continued exponentials become apparent when they do not 
converge. Outside this region of convergence the continued exponential sequence E,, , E, , 
E2, . . . may either grow out of bounds (like the partial sums of a Taylor series outside the disc of 
convergence) or it may converge to a cycle of length N, N= 2, 3,4, . . . , or even an infinite limit 
cycle. (By an infinite limit cycle we mean an infinite bounded sequence that does not approach a 
finite limit cycle.) The boundary of the region in which the sequence {E,} is unbounded appears 
fractal. 

In comparison, the convergence properties of Taylor series are much simpler. A Taylor series 
converges (geometrically) inside its circle of convergence and diverges outside the circle of 
convergence. The only portion of the complex plane where a Taylor series may exhibit interesting 
convergence behavior, such as the nonuniform convergence typical of Fourier series, is on the 
circle of convergence. However, the circle of convergence is a one-dimensional object, a set of 
measure zero in the complex plane. Continued exponentials are thus much more elaborate than 
Taylor series. 

This paper is organized as follows. In Sec. II we show that continued exponentials have a 
combinatoric interpretation; the coefficient of zn in the Taylor series of a,,earzeuZz represents the 
sum of the amplitudes of tree graphs having n + 1 vertices. In Sec. III we present a detailed 
discussion of the continued exponential Eq. (1.6), whose coefficients are all unity. We compare the 
convergence of this continued exponential with that of the continued fraction and Taylor series 
representations of this function. Section IV considers the continued exponential expansions of the 
polynomial I- z, the trigonometric functions sin z and cos z, an Airy function, and the Stieltjes 
function whose formal power series is Zta( - 1 >‘n !z”. Section V examines the continued expo- 
nential expansions of quadratic polynomials. Some concluding remarks are given in Sec. VI. 

II. CONTINUED EXPONENTIALS AND TREE GRAPHS 

Continued exponentials have a strong connection with combinatorics.6 When a continued 
exponential is expanded as a Taylor series as in Eq. (1.3) the coefficient of zn in this series counts 
all rooted tree graphs having n + 1 vertices. 

A tree graph is a graph having no closed loops. A rooted tree graph begins at a particular 
vertex called the root, with which we associate the weight aO. Every other vertex is connected by 
a unique path to the root. If the length of this path is k we assign the weight ak to the vertex: 
vertices connected to the root by one edge are weighted a t , and so on. Each tree graph is assigned 
a symmetry number, which is defined as the reciprocal of the size of the automorphism group of 
the graph. The coefficient 

42 .j3 .jk 
JlJZ . ..Jk-. jk 
j,!j,! . . .j,! 

Qu; . . . Uk (2.1) 

is the sum of the symmetry numbers of all rooted tree graphs having ji vertices at a distance i 

from the root. 
Because Eq. (2.1) is the summand in Eq. (1.3) continued exponentials enumerate tree graphs. 

The z” term enumerates uZZ rooted tree graphs with n-t 1 vertices, accounting for symmetry. To 
illustrate this graph counting, consider the z5 term of the continued exponential aaealzeaZz : 
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FIG. 1. Graphical representation of Eq. (2.2). Shown are all rooted tree graphs with six vertices ai. Each vertex, indicated 
by a circle, lies at a distance i from the root, which is indicated by a double nested circle. The number adjacent to each 
graph is the symmetry number of that graph. 

uou,u~u3u4u5+ ~uou*u$23a~+u&u&4+uou&3u4+ul)&u3u4+ $u0u’u2u; 

+uou&~+ &20&u~+ &zou~u~u3 +2uou;u;u3+ $uou13u$z3+ &p~u;+ $z,u:u; 

+ &zou;u;+ +juou~u2+ &ju,u:. (2.2) 

This expression, which is the next in the sequence of coefficients given in Eq. (1.4), is a sum of 
terms of the form aou{’ . . . uk jk withj,+ . . . +j,= 5, j,>O. This term enumerates, according to 
symmetry number, all six-vertex rooted tree graphs with vertices Uj at a distance j from the root 
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FIG. 2. The boundary (dashed line) of the region of convergence of the continued exponential whose coefficients are 
a,= 1. The shape of the boundary resembles that of a cardioid with a cusp located at (I/e,O). We refer to this heart-shaped 
region as CJ. The boundary of R is given in implicit parametric form in Eq. (3.2). The solid line is the circle of 
convergence of the Taylor series representation of the same function. 

of the tree (see Fig. 1). For example, the term ~uou~u~ enumerates tree graphs with a root, three 

vertices at a distance 1 from the root, and 2 vertices at a distance 2 from the root. Up to isomor- 
phism, there are two such graph trees. The first has 4 automorphisms, so its symmetry number is 
l/4. The second tree has two automorphisms, so its symmetry number is l/2. The sum of the 
symmetry numbers is l/4+ l/2=3/4, the coefficient in the continued exponential expansion. 

One can give another combinatoric interpretation of Eq. (1.3) as a composition theorem for 
the enumeration of certain subsets of symmetric semigroups and the corresponding sets of labeled 
functional digraphs.7 

III. ILLUSTRATIVE EXAMPLE 

Consider the differential equation initial-value problem 

(3.1) 

The unique solution to this equation can be written in implicit form as y = ezY. The solution to this 
functional equation that is analytic at z=O has the Taylor series ‘CrEo(n+ l)“-‘z”ln!. The 
functional equation is also satisfied by the continued exponential ezeLeL- in its region of conver- 
gence. For those values of z for which both the Taylor series and the continued exponential 
converge, they are equal. This equality is expressed formally by Eq. (1.6). 
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TABLE I. Comparison of convergence rates for the continued exponen’tial, the continued fraction (Pad;), and the Taylor 
series for the function f(z), whose Taylor series is given in (3.1). Here we take z = - 0.2, which lies inside the radius of 
convergence of the Taylor series. In the first column, the integer n represents the order of the approximation. Observe that 
while all three approximation schemes converge, the absolute errors (in parentheses) are significantly smaller for the 
continued fraction and the continued exponential. The exact value is f( - 0.2) = 0.84457986749555 . . . . 

Order n Continued Exponential 

0 1.0 (0.16) 
1 0.8187307530780 (0.026) 
2 0.8489575018686 (0.0044) 
3 0.8438407387346 (0.00074) 
4 0.8447047273782 (0.00013) 
5 0.84455877693024 (0.000021) 
6 0.8445834300364 (3.6X IO+) 
7 0.8445792657257 (6.0x 10-7) 
8 0.8445799691441 (1.0~ 10-7) 
9 0.8445798503255 (1.7X lo-*) 

10 0.8445798703959 (2.9X 10-9) 
11 0.8445798670056 (4.9X 10-l’) 
12 0.8445798675783 (8.3~ IO-“) 
z 0.84457986749555 

Continued Fraction 

1.0 (0.16) 
0.83333333333333 (0.011) 

0.84615384615385 (0.0016) 
0.84444444444444 (0.06014) 

0.84459732901659 (0.000018) 
0.84457826304384 (1.6X 10-j) 
0.84458006597567 (2.0X 10-7) 
0.84457984859380 (1.9X 10-8) 
0.84457986977521 (2.3X 10-9) 
0.84457986727347 (2.2X 10-l’) 
0.84457986752187 (2.6X lo-“) 
0.84457986749294 (2.6X 10-l’) 
0.84457986749585 (3.1X 10-13) 

0.84457986749555 

Taylor Series 

1.0 (0.16) 
0.8 (0.045) 

0.86 (0.015) 
0.83866667 (0.0059) 

0.847 (0.0024) 
0.84354400 (0.0010) 

0.84503796 (0.00046) 
0.84437219 (0.00021) 

0.84467587 (0.000096) 
0.84453478 (0.000045) 
0.84460132 (0.000022) 
0.84456955 (0.000010) 

0.84458488 (5.0X lo+) 
0.84457986749555 

The Taylor series on the right side of Eq. (1.6) converges in a disc of radius l/e about the 
origin. The convergence of the continued exponential is more complicated and has been investi- 
gated by Creutz and Stemheimer,8-‘o Baker and Rippon,‘1-17 and others.‘8-2’ This continued 
exponential converges in a much larger region that contains the circle of convergence of the 
Taylor series. The boundary of the region of convergence of the continued exponential is similar 
in shape to that of a cardioid with a cusp located at (lle,O) (see Fig. 2). We will refer to this 
heart-shaped region as a. The boundary of fl is given in implicit parametric form by 

-cm t r=e , 

(3.2) 
8=t-sin t (OG K2Q-r). 

To derive Eq. (3.2) we argue as follows. In the complex plane, the continued exponential 
ezeCCT converges when the sequence 1, e’, eZeL, . . . converges. If it exists, the limit y. will be 
an attractive fixed point of the equation y = eyz. Let z = we-“‘. Then the fixed point y. is e”‘. The 
multiplier of this fixed point (which determines whether it is attractive or repulsive) is w. Thus, 
the fixed point is attractive if and only if 1 WI < 1. The region of convergence fi is given by 
we-H’ where [WI < 1 and the boundary of 0 is given by Iwj = 1, which is equivalent to Eq. (3.2). 
The above argument shows that the rate of convergence at a point inside the cardioid is exponen- 
tial. 

It is instructive to compare numerically the convergence rates of the Taylor series and con- 
tinued exponential in Eq. (1.6) and the continued fraction (Padi sequence) generated by the Taylor 
series. Tables I, II, and III list the first 12 terms in the continued exponential and continued 
fraction sequences and the first 12 partial sums of the Taylor series for three values of z: 
z = - 0.2, z = $ i, and z = - 1 S. The point z = - 0.2 lies inside the radius ‘of convergence of the 
Taylor series. Observe that at this point the continued fraction and continued exponential converge 
far more rapidly than the Taylor series. The other two points lie inside the convergence region 
R but outside the radius of convergence of the Taylor series. For these two points the Padi 
converges more rapidly than the continued exponential but both the Pad& and continued exponen- 
tial provide a means of summing the Taylor series outside of its radius of convergence. 
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TABLE II. Same as in Table I, except that here we take z  = 0.5i, which lies outside the radius of convergence of the Taylor 
series. The continued exponential and continued fraction converge but the Taylor series diverges as n, the order of the 
approximation, increases. The exact value is f(O.Si) =0.7852571487+0.32519929591’. 

Order n Continued Exponential Continued Fraction Taylor Series 

0 

2 

4 
5 
6 
7 
8 
9 

10 
11 
12 
m  

1 
0.87758256+0.47942554 i 
0.71231190+0.33429136 i 
0.79298003+0.29500483 i 
0.79592152+0.33322204 i 
0.7803753 1+0.328063 17 i 
0.78492383+0.32281899 i 
0.78624653+0.32545553 i 
0.78499560+0.32554601 i 
0.78516355+0.32504025 i 
0.78533482+0.32518840 i 
0.78524880+0.32523156 i 
0.78524584+0.32519077 i 
0.78525715+0.32519930 i 

1.0 1.0 
0.8+0.4 i 1.0+0.5 i 

0.76+0.32 i O&25+0.5 i 
0.7895196507+0.3213973799 i 0.625+0.167 i 
0.7857646430+0.3269503294 i 0.951+0.167 i 
0.7848536055+0.3250627960 i 0.951+0.504 i 
0.7853504057+0.3251072592 i 0.586+0.504 i 
0.7852630595+0.3252303705 i 0.586+0.098 i 
0.7852480399+0.3251965763 i 1.049+0.098 i 
0.7852589388+0.3251977857 i 1.049+0.636 i 
0.7852572953-kO.3251999736 i 0.415+0.636 i 
0.7852569857+0.3251992357 i 0.415-0.121 i 
0.7852571861+0.3251992630 i 1.328-0.121 i 
0.7852571487+0.3251992959 i cc 

Outside the convergence region a, the continued exponential sequence E. , E, , E2, . . . 
behaves in a remarkable fashion. This sequence may either diverge (like the partial sums of a 
Taylor series outside the circle of convergence) or may it converge to a cycle of length N, 
N=2,3,4, . . . . For example, the continued exponential ezezeZ. converges to a two-cycle when 
z=-9. The first few terms in the seauence are 1. e-9=0.0001234, e-9e-9=0.99889, 
e-9’-9’-9=0.0001246, . . . . 

Cycles of every integer length can be found outside the region of convergence. In Fig. 3 we 
display the regions in the complex-z plane for which the continued exponential sequence con- 
verges to an N-cycle. The boundary of the region in which the sequence {E,} is unbounded 
appears fractal. 

Baker and Rippon have made other observations. The regions of convergence to a cycle are 
actually strips in the complex plane which extend infinitely far in the positive real direction. The 

TABLE III. Same as in Table I, except that here we take z= - 1.5, which lies outside the radius of convergence of the 
Taylor series. The continued exponential and continued fraction converge but the Taylor series diverges as n, the order of 
the approximation, increases. 

Order n Continued Exponential 

0 1.0 (0.516) 
1 0.2231302 (0.261) 
2 0.7155561 (0.232) 
3 0.3418668 (0.142) 
4 0.5988165 (0.115) 
5 0.4072921 (0.0766) 
6 0.5428414 (0.0589) 
7 0.4429661 (0.0409) 
8 0.5145569 (0.0306) 

9 0.4621641 (0.0217) 
10 0.4999506 (0.0160) 
11 0.4724016 (0.0115) 
12 0.4923318 (0.00842) 
co 0.4839074 (exact) 

Continued Fraction 

1.0 (0.516) 
0.4000000 (0.0839) 
0.5384615 (0.0546) 
0.4705882 (0.0133) 

0.4911081 (0.00720) 
0.4818707 (0.00204) 
0.4849169 (0.00101) 

0.4836004 (0.000307) 
0.4840524 (0.000145) 

0.4838615 (0.0000459) 
0.4839286 (O.OC00212) 

O.4839OO6(O.673X1O-5) 
0.4839106(0.322X 10-5) 

0.4839074 (exact) 

Taylor Series 

1.0 (0.516) 
-0.5 (0.984) 
2.875 (2.39) 
-6.125 (6.61) 

20.24219 (19.8) 
-61.77031 (62.2) 
204.1217 (204) 
-684.5640 (685) 
2355.671(2355) 

-8238.2897 (8239) 
29231.71 (29231) 

-104939.9 (104940) 
380499.5 (380499) 

cc 
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FIG. 3. Regions in the upper complex-z plane for which the continued exponential, whose coefficients are all 1, converges 
to an N-cycle. The regions in the lower-half plane are mirror images of those in the upper-half plane. Cycles of every 
integer length can be found outside the cardioid-shaped region of convergence n (purple). The boundary of the region 
(black) in which the sequence {E,} is unbounded appears fractal. Note that each region [except for Cl and the region of 
two-cycle (red)] is actually an infinitely long strip that becomes infinitely thin as it extends to Re(z) = m. Each strip is 
artificially truncated by a crescent. The regions of three-cycles are magenta, four-cycles are green, five-cycles are yellow, 
six-cycles are blue, seven- through thirteen-cycles are various shades of pink. 
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FIG. 4. Region of convergence (dashed line) of the continued exponential for the function l/( 1 -z). The singularity at 
z= 1 determines the location of the cusp. The solid line is the circle of convergence of the Taylor series for l/( 1 -z). 

ordering of these strips is well defined, and has interesting properties. For example, between every 
pair of adjacent n-strips is an infinite number of (n + 1 )-strips for n > 2. Also, Baker and Rippon 
conjecture that the regions of convergence to a cycle are dense in the complex plane. 

IV. ADDITIONAL EXAMPLES 

In this section we consider a number of additional examples of continued exponentials. 

A. The function 1/( l-z) 

Since the first finitely many coefficients Ui do not affect the convergence of a continued 
exponential, it is reasonable to suppose that if the coefficients ai of the continued exponential 

a,zea2zea3z 
a0e approach a constant, then the region of convergence is the cardioid fi scaled by an 
appropriate factor. An elementary example of a function for which the continued exponential 
coefficients approach a constant is l/( 1 - z) , whose Taylor series is Z$‘. This Taylor series 
converges in a disc of radius 1. Its continued exponential coefficients are uo= 1, at = 1, a2 = 1, 

a3= &, a4= i%? 
12917 us = 33840, a6= m, and so on. The coefficients ui approach the limit 

UezO.36788 monotonically.’ We have confirmed empirically that the region of convergence is 
en (that is, the region fi dilated by the factor e) (see Fig. 4). The cusp now lies at (1,O). This 
region is much larger than the region of convergence of the Taylor series. Note that the singularity 
at z= 1 determines the location of the cusp of the cardioid. 
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F3G. 5. Region of convergence (dashed line) of the continued exponential representing the function z/sin z. Note that the 
region of convergence resembles a double cardioid. The cusps lie at t V, the nearest poles of the function. The solid line 
is the circle of convergence of the Taylor series for z/sin z. 

B. The function z/(sin z) 

Consider the function z/(sin z). Its Taylor series has a radius of convergence of rr. By 
iteratively taking the logarithm of this Taylor series we find that its continued exponential is 

.2,.~:‘d . 
a@- where uo= 1, ai= i, a2= $3, a3= 25, 1219 

a4= i9738, 
2300350279 

a 5 = 598G9503600 7 and 

lim,,, an= llrr2e = (0.037274). The sequence of continued exponential coefficients is monotone 
decreasing beginning with u3. As in the previous example, the continued exponential converges 
when z2/rr2e is inside the cardioid R, or equivalently, when z is in the double cardioid 
dm shown in Fig. 5. This cardioid has cusps at z = + 7~, the location of the singularities of the 
function z/( sin z). The continued exponential converges in a much larger region than the Taylor 
series. 

The continued exponential representation for the function sin z may be derived from that of 
c sm z: -I * 

sin z= ~ze~~~Z2C?a*z2ea3z2~’ . 

Note that only the first two terms of this continued exponential differ from that of z/(sin z). The 
region of convergence of the continued exponential for the function sin z is the same double 
cardioid as that for the function z/(sin z). However, the Taylor series for the function sin z has an 
infinite radius of convergence. For the function sin z it is the zeros at z = 2 rr that determine the 
cusps of the cardioid. 
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Similarly, the continued exponentials for the functions cos z and lkos z are identical except 
for the sign of at . Both continued exponentials have the same region of convergence, a double 
cardioid with cusps at z = t i 7~. These continued exponentials have the form 

and 

1 1 -= -e-a,z 2 ~ e 2 z2e13L*. 
cos z a() , 

where ao=l, ai= - f, a,=;, ax= g, ad= $j$, a5= 7462435 48.554352 9 and so on. This sequence is 

monotone decreasing beginning with a3 and it converges to the value 4/rr2e. Again, it is the zeros 
and/or singularities that determine the region of convergence of the continued exponential. 

C. Continued exponential representation of an Airy function 

The solution to the initial-value problem 

Y”(z)=zY(z), y(O)= 1, y’(O)=09 

can be expressed in terms of Airy functions Ai and Bi(x): 

y(z)= r[Bi’(O)Ai(z)-Ai’(O)Bi(z)]. 

This function has the Taylor series form 

m 3”r(n + l/3) 
Y(z)= c n=o (3n)!l?( l/3) z3n* 

If we convert this Taylor series to a continued exponential we obtain 

where us= 1, al= i, u2= - fr, a3=- &j, a4=- &, a5=- $;&, - and so on. 
To determine the region of convergence of the continued exponential we first observe that the 

continued exponential is a function of z3. Thus, we expect the region of convergence to be a triple 
cardioid having three cusps. We find the location of the cusps by calculating that 
limn--tman= - 0.046939; thus, the region of convergence consists of all z satisfying 

- 0.046939~~ E il. 

This region of convergence is shown in Fig. 6. The cusps occur at the three zeros of y(z) that are 
nearest to the origin. The locations of these zeros are given by the formula 

113 
o= - 1.986350, 

where o is a cube root of 1. 
This example clearly demonstrates how the continued exponential accelerates the convergence 

of the Taylor series. Even though the radius of convergence of the Taylor series is infinite, the 
continued exponential converges faster than the Taylor series so long as z lies well inside the triple 
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FIG. 6. Region of convergence of the continued exponential representing the Airy function y(z) discussed in Sec. IV C. 
This triple cardioid has cusps at - 1.98635q where u is a cube root of 1. The cusps are located at the zeros of y(z) that 
are nearest to the origin. 

cardioid. For example, at z = 1 a ten-term partial sum of Taylor series differs from the exact 
answer by a relative error of order 10M6 while a tenth-order continued exponential (constructed 
from the first ten terms in the Taylor series) has a relative error of order 10-14. For a 15term 
Taylor series, the relative error drops to IO-” while that for a continued exponential drops to 
1o-2’. 

D. Continued exponential representation of a Stieltjes function 

Consider the Stieltjes function 

f(z)= J)f&. (4.1) 

The power series representation for this well known function is 

m 
f(z)-C (- Iyn!Zn(lZI--‘O, a-g z<r). 

0 

This power series is divergent (it has a zero radius of convergence) but it is asymptotic to the 
function f(z) as z-+0 in the z plane cut along the negative real axis. 

It is well known that the Pad6 sequence for this function converges for all z in the cut plane. 
What happens if we attempt to sum this series using a continued exponential? Converting Eq. (4.1) 
to a continued exponential gives 
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FIG. 7. Continued exponential approximants for the Stieltjes function f(z) (solid line) discussed in Sec. IV D. When z is 
positive the continued exponential sequence (dashed lines) oscillates above and below f(z) and converges to a cycle of 
length 2. For small values of z, this cycle is close to the exact value of f(z). However, the continued exponential does nor 
converge to f(z). 

f(Z)=aoe~,Zea~~eY3L , 

where uo= 1, al= - 1, a2= - i, a3= - g, u4= - !$$, and so on. This continued exponential is 
different from those examined previously because the continued exponential coefficients grow 
with n rather than approaching a limit. In fact, a,- Cn as n--+m, where C= -0.632. 

When z is positive the continued exponential sequence approaches a cycle of length 2 (see 
Fig. 7). For small values of z, this cycle is close to the exact value off(z) and oscillates above and 
below f(z). However, the continued exponential does not converge to f(z) and thus for this 
function it is not as useful as the Pad& sequence. We do not know if it is possible to recover the 
exact value of f(z) from the elements of the two-cycle; a calculational procedure, if one exists, 
would be more elaborate than an ordinary average or a geometric mean. 

V. APPEARANCE OF CHAOTIC STRUCTURES 

We have seen in Sec. IV that the cusp of the cardioid-shaped region of convergence of a 
continued exponential is located at the nearest zero or singularity of the function being repre- 
sented. (We have also examined functions of the form f(z”), whose nearest zeros are arranged 
symmetrically around the origin at angles 2 r/n, where n is an integer. The convergence regions 
of such functions have n cusps.) In this section we briefly examine the extremely difficult problem 
of what happens when there is not just one but two nearest zeros (or singularities), which are not 
symmetrically arranged about the origin. An elementary function having this property is a qua- 
dratic polynomial of the form (z-b + i)(z - b - i), where b>O. 
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FIG. 8. A plot of the function sgn[f(b)][2 + loglf(b)l], OSbS4.2, where f(b) is defined in Eq. (5.1). Observe that on the 
real line there are intervals wheref(b) appears meromorphic; that is, f(b) is continuous except for simple poles. (One such 
interval is 2.9sb63.5.) These intervals are dispersed chaotically on the real line. Between pairs of intervals the function 
f(b) appears noisy; however, on a finer scale we see that this noise is actually resolved into smaller subintervals where 
f(b) is again meromorphic (see Fig. 9). 

From our numerical studies (to order 100) of the function (z - b + i)( z - b - i) it appears that 
the terms of the continued exponential representation often approach a constant, whose value 
depends on the parameter b. The continued exponential coefficients sometimes approach a limit 
monotonically, and sometimes sinusoidally. It is difficult to study this convergence because it 
tends to be very slow; we also find instances where the coefficients appear to converge slowly but 
then diverge. 

Assuming that the coefficients a, of the continued exponential converge for some values of b, 
the limit. 

f(b)= lima,, 
n-+03 

(5.1) 

when it exists, is a function of the parameter b. The limiting function f(b) depends chaotically 
upon b. We find that on the real line there are intervals where f(b) is meromorphic; that is, 
f(b) is continuous on the interval except for simple poles. These intervals are dispersed chaoti- 
cally on the real line (see Figs. 8 and 9). 

For each interval, the number of the coefficient following the last sign change is constant and 
will be called the convergence parameter of the interval. There may be several intervals with the 
same convergence parameter. We find that the length of an interval is roughly inversely related to 
the convergence parameter. 

VI. CONCLUSIONS 

We conclude this paper with several brief observations. First, it is clear from the examples we 
have presented that continued exponentials are a powerful and broadly applicable method for 
accelerating the convergence of a Taylor series inside its circle of convergence. Second, continued 
exponentials provide a means of analytically continuing a Taylor series to a much larger region 
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FIG. 9. Same as in Fig. 8 except that the domain is restricted to 0.215~b~0.228. 

than its circle of convergence so long as the function is zero free inside and near its circle of 
convergence. However, we do not yet know how to use continued exponentials to sum power 
series having a zero radius of convergence. 

As we can see from the examples considered in this paper, the region of convergence of a 
continued exponential is determined by the zeros as well as by the singularities of the function 
being represented. This is true because a continued exponential approximates both a function and 
its reciprocal simultaneously. The function being approximated is zero-free in the region of con- 
vergence (except possibly for a zero at the origin). This observation may have some application in 
the study of complex variables; while it is often easy to locate the singularities of an analytic 
function it may be difficult to find the zeros. For example, finding the locations of the zeros of the 
Riemann zeta function is a well known, unsolved problem. Excluding the zeros away from 
Re(z) = 1 would be major progress in understanding the distribution of primes. 

Finally, we remark that the theory of continued exponentials is intimately tied to the theory of 
chaos because it deals with iterated functions. We see chaotic structures emerge when we look at 
the cyclical convergence properties of a continued exponential outside the cardioid of convergence 
(see Fig. 3). Furthermore, we see chaotic behavior in such functions as (z-b + i)(z - b - i) (Sec. 
V). The connection between chaos and continued exponentials deserves further study. 
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A finite-dimensional Lie algebra is called (symmetric) self-dual, if it possesses an 
invariant nondegenerate (symmetric) bilinear form. Symmetric self-dual Lie alge- 
bras have been studied by Medina and Revoy, who have proven a very useful 
theorem about their structure. In this paper we prove a refinement of their theorem 
that has wide applicability in conformal field theory, where symmetric self-dual Lie 
algebras start to play an important role due to the fact that they are precisely the Lie 
algebras that admit a Sugawara construction. We also prove a few corollaries that 
are important in conformal field theory. 0 1996 American Institute of Physics. 
[SOO22-2488(96)03307-5-j 

I. INTRODUCTION AND MOTIVATION 

For most physical applications, reductive Lie algebras are the most natural Lie algebras to 
consider. This is because they are the Lie algebras of the compact Lie groups, which have played 
a privileged role in physical theories. Reductive Lie algebras are completely classified, since they 
are direct products of Abelian and semisimple Lie algebras, and essentially everything is known 
about them and their representations, at least the finite-dimensional ones. However by any rea- 
sonable measure, reductive Lie algebras are rare; and comparatively little is known about their 
nonreductive counterparts. The Levi-Malcev theorem reduces the classification problem for gen- 
eral Lie algebras to that of semidirect products (i.e., split extensions) of semisimple and solvable 
Lie algebras; but already classifying solvable Lie algebras seems to be as hard as classifying Lie 
algebras in general: by brute force one can classify all Lie algebras of dimension ~5, and restrict- 
ing oneself to solvable Lie algebras does not get one any further (although all nilpotent six- 
dimensional Lie algebras are known). Therefore in order to probe the space of Lie algebras one 
could hope to benefit by restricting oneself to a class of Lie algebras including the reductive Lie 
algebras but that are still special enough to allow for a classification. One property shared by all 
reductive Lie algebras is the existence of an invariant metric; that is, an invariant nondegenerate 
symmetric bilinear form, We will call Lie algebras possessing an invariant metric symmetric 
self-dual Lie algebras, and they compromise a nontrivial generalization of reductive Lie algebras. 
Although no classification exists to this date, there exists a structure theorem’ that tells us in 
principle how to construct Lie algebras with an invariant metric starting from the reductive Lie 
algebras. In fact, reductive Lie algebras can be obtained from simple Lie algebras and the one- 
dimensional Lie algebra by the operation of direct sum. What Medina and Revoy found Ref. 1 is 
that all Lie algebras with an invariant metric can be obtained from the same ingredients provided 
that we introduce a new operation-the double extension-which generalizes the semidirect prod- 
uct in a nontrivial way. 

The importance of symmetric self-dual Lie algebras in conformal field theory (and via CFT in 
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string theory) has to do with the following curious fact.2*3 symmetric self-dual Lie algebras are 
precisely the Lie algebras for which a Sugawara construction exists. This fact may not appear so 
surprising if one assumes that the relation between the Sugawara construction and the WZW 
model persists in the nonreductive case: a WZW model needs for its definition a Lie group 
possessing a bi-invariant metric and this condition translates, at the level of the Lie algebra, into 
the statement that its Lie algebra should possess an invariant metric. Interestingly enough, the 
relation between the WZW model and the Sugawara construction does persist in the nonreductive 
case,4 but the proof of this statement is not immediate and happens to necessitate detailed 
knowledge of the structure of symmetric self-dual Lie algebras, and, in particular, some refine- 
ments of the structure theorem in Ref. 1. The purpose of this paper is to collect those results on the 
structure of symmetric self-dual Lie algebras that were used in Ref. 4. Of necessity, those results 
are of a less physical nature than their applications, and we felt it inappropriate to include them 
together; hence the present paper. 

This paper is organized as follows. In Sec. II we assemble some basic properties of symmetric 
self-dual Lie algebras and some properties of their ideals, which will be needed when we review 
the structure theorem of Medina and Revoy in Sec. III. In Sec. IV we define the double extension 
of a symmetric self-dual Lie algebra by a second Lie algebra and we work out some explicit 
formulas that we will need later. In Sec. V we discuss some examples of nonreductive self-dual 
Lie algebras. In Sets. VI and VII we prove some useful refinements and corollaries of the structure 
theorem. In Sec. VIII we comment briefly on the applications of this formalism to conformal field 
theory and string theory; and finally, in Sec. IV we mention some possible extensions and open 
problems. The paper also includes an appendix of a result on splittings of exact sequences involv- 
ing Lie algebras. This result is used by Medina and Revoy, but we have not found a reference for 
it anywhere and we were forced to rederive it ourselves. We include it here for completeness. 

II. BASIC PROPERTIES OF SYMMETRIC SELF-DUAL LIE ALGEBRAS 

In this section we set up the notation and we introduce the necessary concepts about symmet- 
ric self-dual Lie algebras that we will need in the sequel. 

Dejinition 2. I: Let F denote the class of pairs (e,( -, -)), where g is a finite-dimensional Lie 
algebra and (-,-> is a nondegenerate ad-invariant symmetric bilinear form on g. We shall call 
such a bilinear form simply an invariant metric, and we shall (tentatively) call an element of & a 
symmetric self-dual Lie algebra. 

Remark 2.2: We should hasten to add that the nomenclature is by no means standard. French 
authors call these Lie algebras “orthogonal,” whereas others call them “self-dual.” The name 
“self-dual” presumably comes from the fact that the adjoint representation is equivalent to the 
coadjoint representation. But clearly for this to be the case, all that one requires is a nondegenerate 
invariant bilinear form on 8, but not one that need be symmetric. After consulting with G. 
Zuckerman, who seems to have inspired “self-dual” in Ref. 5, we have chosen the compromise 
“symmetric self-dual,” since it causes no confusion with the Lie algebras of the orthogonal Lie 
groups and does not preempt the term self-dual for their more general cousins. Nevertheless, since 
only symmetric self-dual Lie algebras will play a role in this paper, we will use the term “self- 
dual” from now on to mean “symmetric self-dual” unless otherwise stated. 

Let us first mention some minor matters of notation. If a Lie algebra JJ should decompose as 
a direct sum of subspaces A and B we will write g=A @ B. If moreover, the subspaces are ideals, 
so that the decomposition is one of Lie algebras, then we will write g=A X B. It will prove 
convenient to introduce some nomenclature for particular subspaces of a self-dual Lie algebra 
depending on how the metric behaves on them. 

Dejinition 2.3: Let (e,( -,-)) be a self-dual Lie algebra. For any subspace VCg, let 
V’={w E~I(w,u)=O for all u E V}. Notice that the operation V+ V’- is involutive, so that 
(V’)’ = V. We say that 
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V is isotropic*VC V’, 

V is coisotropic% VI V’, 

V is hgrangian@ V = V’, 

V is degenerate- Vn V’ # 0, 

V is nondegenerate- Vfl V’ = 0. 

Let (g,( -, -)) be a self-dual Lie algebra. We define the centralizer Ze( V) of a subspace VCg 
as all those elements in the Lie algebra that commute with all elements of the subspace; that is 
Ze( V)={w ~gl[ w,v] =0 for all u E V}. For a self-dual Lie algebra, centralizers and ideals are 
intimately linked, as the following lemma suggests. 

Lemma 2.4: ZCg is an ideal if and only if Z’CZ,(I). 
Proof This follows immediately by the invariance of the metric. Indeed, ([g,Z],Z-L)=(g,[Z,Z’]), 

from where it follows that [g,Z]CZ” = Z if and only if [Z,Z’]=O. 
The center of a self-dual Lie algebra can be also characterized very easily. In fact, the 

following occurs. 
Lemma 2.5: Let [g,g] denote the first derived ideal and Z(g) be the center. Then [g,g]‘=Z(g). 
Proof x~Z(g)~[x,yl=O, Vy*([x,yl,z)=O,Vy,z~(x,[y,zl)=OVy,z~x~~g,g~~. 
First of all, notice that if ZCg is an ideal, so is I’. Recall that an ideal ZCg is minimal if it 

does not properly contain another nontrivial ideal JCg. In other words, if ZCg is a minimal ideal 
and if JCg is another ideal with JCZ, then either .Z=O or J= 1. Below we list some properties of 
minimal ideals that we shall need in the proof of the structure theorem or its refinements. 

Proposition 2.6: Let (g,(-,-)) be self-dual, and let ZCg be a minimal ideal. Then (1) If Z is 
nondegenerate, then it is a factor, and hence simple or one dimensional; (2) if Z is degenerate, then 
it is isotropic and Abelian; and (3) I’ is a maximal ideal. 

Proof: Let Z E g be any ideal. Then so are Z’ and Zfl Z’ CZ, since the intersection of two ideals 
is an ideal. Since Z is minimal, ZnZ’ is either 0 or I. 

(1) Let us take the first possibility: ZflZ’=O. Definition 2.3 tells us that Z is nondegenerate. 
Since both Z and ZJ- are ideals, [Z,Z’]CZ and [Z,Z-L]CZ.L; hence [Z,Z-L]CZnZ-L=O. This means that 
[Z,Z’]=O and g=ZxZ’. Since Z is a factor, any ideal of Z is automatically an ideal of g. But by 
minimality, Z cannot have any proper ideals, hence Z is either simple or one-dimensional. 

(2) The other possibility is that ZflZ’=Z, which means that Z is degenerate. In fact, Definition 
2.3 tells us that ICI’ is isotropic. And by Lemma 2.4, Zs Z’Z,(Z), whence it is Abelian. 

(3) Finally, suppose that there exists a proper ideal .Z such that Z’ E.Z. Taking I, we find 
J’ s I” = I, which violates minimality. Hence ZL is maximal. q 

III. THE STRUCTURE THEOREM OF MEDINA AND REVOY 

The class g of self-dual Lie algebras is closed under the operation of an orthogonal direct 
product; indeed, if (gi ,( -,-)i) and (gz,( -,-)J are two self-dual Lie algebras, so is 
(gtXg2,(-,-)1@(-,-)2). We call a self-dual Lie algebra (g,(-,-)) indecomposable if it cannot 
be written as such a direct product; and decomposable if it can. The following preliminary result 
on the structure of self-dual Lie algebras follows immediately from Proposition 2.6. 

Corollary 3.1: Let (g,(-,-)) be an indecomposable Lie algebra. Then exactly one of the 
following cases hold: (1) g is simple (2); g is one-dimensional; or (3) g is not simple, dim g> 1, 
and every proper idal of g is degenerate. 0 
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It is clear that every self-dual Lie algebra is a product of objects of the types described above. 
Objects of types (1) and (2) are well known: they correspond to the direct product of a semisimple 
Lie algebra and an Abelian Lie algebra; that is, they are reductive. The class of objects of type (3) 
is more exotic. The following is the smallest such Lie algebra. 

Example 3.2: Let g be the four-dimensional Lie algebra with basis {h,e, ,g} and Lie brackets 

[h,e,]=ke, and [e+ ,e-]=g. 

This Lie algebra is solvable but not nilpotent. For any scalars a#0 and fi, the bilinear form 

(e + ,e-)=a, (h,h)=P, and (h,g)=w 

is invariant and nondegenerate. Hence it is a nonreductive self-dual Lie algebra. As shown in Ref. 
6 the WZW model associated with this Lie algebra is an exact string background describing a 
gravitational wave. More nonreductive examples will be given in Sec. V. 

In this section we will see that indecomposable self-dual Lie algebras of type (3) are easy to 
characterize. We shall do so in steps. 

Let (P,( -,-)) E ?? be indecomposable with 0 not simple and with dim D> 1. We fix a proper 
minimal ideal ZCD. By Corollary 3.1, it is degenerate and by Proposition 2.6 (2) it is isotropic and 
Abelian. By Lemma 2.4, Z is a central ideal of I’; whence g=Z’/Z is a Lie algebra. Moreover, 
since Z=ZJ-*, g inherits an invariant metric (-,-), . In other words, we have proven the following 
lemma. 

Lemma 3.3: We have an exact sequence 

1 
o+z-iz -+g-+o, (3.4) 

with (g,( -,-),) an object in c. 
It may seem overkill to use the language of exact sequences, but it turns out that it will be very 

useful and it will save us some time in the end. For the reader not familiar with this language, we 
simply recall that a sequence is exact whenever the kernel of any arrow is the image of the 
preceding one. In particular, the exactness of the above sequence simply says that ICI’ is a Lie 
subalgebra (and an ideal since it is the kernel of a homomorphism) and that gzZ’-/I as Lie 
algebras. Moreover, since we are quotienting I’ by its I, the resulting quotient inherits a nonde- 
generate metric. 

Before continuing, let us make the following notational remark. Below we will find it neces- 
sary to distinguish the Lie bracket and the inner product of the same pair of vectors when thought 
of as elements of different Lie algebraic structures on the same vector space. We will assume that 
when nothing is specified, the Lie bracket and the metric correspond to those in 0. 

Continuing with the argument, by Proposition 2.6 (3), Z’ is a maximal ideal of D; whence 
lj =0/Z’ is a Lie algebra without proper ideals; that is, either fj is simple or one dimensional. It now 
follows that we can actually identify f~ with a subalgebra of a. The proof of this lemma is much 
more technical than the proof of the structure theorem, and so we leave it to the Appendix. It is 
worth pointing out, however, that it is precisely this lemma that prevents the straightforward 
extension of the structure theorem to self-dual Lie superalgebras. 

Lemma 3.5: The exact sequence 

O+ZL+b+fJ+O, (3.6) 

splits whenever h is simple or one dimensional; that is, for such h, a=hD<Z’. 
In particular, D=lj@Z’, whence V=lj@Zct~ is a nondegenerate subspace of 0. This implies 

that as vector spaces D=V@ V’, and I’= l@@Z. The map Z’-+g in (3.4) defines a vector space 
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isomorphism g=V’. With some abuse of notation we will identify g with l@CO. In general, 
though, V’ will fail to be a subalgebra. But all that happens is that it acquires a central extension. 
In fact, if x,y, E V’, then 

C-WI = [x,y],+ p(x,y), 
for some 2-cocycle P:A*g--+Z, where, since ZCZ’ is central, it becomes a trivial g module. The 
cohomology class of this cocycle is the one defining the central extension (3.4). 

Definition 3.7: Let g be a self-dual Lie algebra. A linear map D:g--+g is an antisymmetric 
derivation if D preserves both the Lie bracket and the invariant metric; that is, if 

~t[~,yl)=[~x,yl+[x,~~l and (Dx,Y)= -(OY). 

Lemma 3.8: h acts on g via antisymmetric derivations. 
Proof We can define an action of lj on g as follows. Take x ~g and lift it to V’Ca. If h E Ij, 

then we can define h -x = [h ,x1. A priori, this bracket is in Z* = V’ @ 1. But we show that it is in 
fact in VI. Indeed, let h’~h and compute (h’,[h,x])=([h’,h],x). Since [h’,h] E~CV, the rhs is 
zero for all h ‘. Therefore [/2,x] E hl. But nondegenary of V implies that Zflh’=O, whence 
[ h,x] E V’. Since the bracket and metric of g are induced from those of a, and h ED acts via 
(inner) antisymmetric derivations, it also acts on g as antisymmetric derivations. 

The action of lj on g is intimately linked to the cocycle p characterizing the central extension 
(3.4). In fact, let h E~J and x,y ~g. Lifting x and y back to V’Ca we compute 
(h~x,y),=([h,x],y)=(h,[x,y])=(h,[x,y],+~(x,y)). But since h is orthogonal to V’, we find 
that 

@%Y),=oMx~Y)). (3.9) 
Lemma 3.10: As Ij modules, Zsh”. 

Proof Let h E h and x E I. Since Z is an ideal, [h,x] E I, whence it is an IJ module. Because 
V= h@Z is nondegenerate and Z is isotropic, we can identify Z with h* as vector spaces: the 
isomorphism given by Z~X-+(X,-) restricted to h. Now notice that for all h ’ E h, 
([h,x],h’)= -(x,[h,h’]), whence Z=h* as fj modules. cl 

In summary, we have proven the following structure theorem. 
Theorem 3.11: (Medina-Revoy’) Let@,(-,-)) b e an indecomposable object in r such that 

a is not simple nor one dimensional. Then D is isomorphic to the Lie algebra with underlying 
vector space g@h@h*, where (1) g is the Lie algebra defined (3.4) and which inherits an invariant 
metric (--,--)a by restricting (-,--); (2) h is the Lie algebra defined by (3.6), which is either one 
dimensional or simple; (3) Ij acts on g via antisymmetric derivations: (h,x)+h .x for h E $ and 
x~g; and (4) the Lie brackets are given for x,x’~g, h,h’~lj and ~,(Y’E~J* by 

[(x,h,cu),(x’,h’,a’)]=([x,~‘]~+h.x’-h’~x,[h,h’]~,P(x,x’)+ad~.a’-ad~.a), 
(3.12) 

where ,&A*g--‘h* is given by (3.9). cl 

IV. DOUBLE EXTENSIONS 

In this section we review the definition of a double extension, formalizing the results in the 
previous section on the structure of nonreductive indecomposable self-dual Lie algebras. 

Dejinition 4.1: Given (g,(-,-)8) E F and h a Lie Algebra acting on g via antisymmetric 
derivations, the Lie algebra a defined on the vector space as g@h@h* by (3.12) and (3.9) is called 
the double extension of g by h and we denote it by D(g,b). 
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Remark 4.2: Notice that the notation D(gJj) is ambiguous on two counts. First of all, the data 
is not just g but (g,(-,-)s); and also not just tj but h together with the action of h on g via 
antisymmetric derivations. Nevertheless, for the purposes of this paper, any ambiguity that might 
arise will be resolved contextually. 

Provided that g be self-dual, the double extension of g by h always carries an invariant metric. 
Indeed, if ( -,-)r, is any invariant bilinear form on h, we define 

((x,h,Ly),(x’,h’,a’))=( x,x’),+(h,h’)f)+ a(h’)+ d(h), (4.3) 

for all x,x’ Eg,h,h’ E tj, and (~,a’ E lj*. A routine calculation shows that this metric is invariant, 
whence (g,( -, -)) is a self-dual Lie algebra. 

Remark 4.4: It is worth pointing out that if the action of h on g is trivial, then the double 
extension is decomposable and isomorphic to gX(hK h*). In particular, if g=O, then the double 
extension is ($Kh*), which is the classical double of h given the trivial bialgebra structure.’ 

It will be convenient later on to work with the explicit expression for the Lie brackets and for 
the invariant metric of a double extension. Hence we will now work out these expressions in a 
basis. We let (g,(-,-)a) be a self-dual Lie algebra. Let the invariant metric have components 
~ej relative to a fixed basis {Gi}. Also relative to this basis, we will let the Lie bracket in g be 
given by [Gi ,Gi]s=fijkGk. We consider also a Lie bracket h, with basis {HJ, acting on g via 
antisymmetric derivations, 

and with Lie brackets given by [Ha, Hde=c$Yy. Its dual h* has a canonical dual basis given by 
WI. 

The double extension g=D(g,b) will be then defined on the vector space g@h @ fj* by the 
following Lie brackets: 

Wdfgl=f&, W,,HPl= -f&H', 

where fij,=fk,is2~j. The above explicit expression makes manifest the fact mentioned in Remark 
4.2 that D(g,b) does not depend on g and h only through their Lie algebra structures, as the 
notation would suggest, but also on the action of h and g and on the metric of g. 

The invariant metric on D(g,b) is given by 

where (h,& is an arbitrary (possibly degenerate) invariant bilinear from in h. We also record for 
future use the Killing form of the above double extension K’. This form will of course be degen- 
erate, having the form 
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Gj HP HP 

where KB is the Killing form of g and where 

,& =fkijfj,k and K&=fj,ispj+2K$ 

V. SOME NONREDUCTIVE EXAMPLES 

Before going on to the main results of this paper, refining and extending the results described 
in the previous sections, let us pause to exhibit some examples of nonreductive indecomposable 
self-dual Lie algebras. 

In Example 3.2 we saw the simplest such algebra: a four-dimensional solvable (but not 
nilpotent) Lie algebra. Over the complex numbers, it is the only such example in four dimensions. 
Viewed as a double extension, the algebra in Example 3.2 can be understood as D(b,a), where a 
is the one-dimensional Lie algebra and b is a two-dimensional Abelian Lie algebra. Because b is 
Abelian, all metrics are invariant, and over the complex numbers all metrics are equivalent, 
meaning that they can be transformed into one another by an automorphism of 6. Over the reals, 
however, the signature of the metric is an invariant and we have two classes of metrics: the 
Euclidean and the Lorentzian. 

We let a2 denote the real self-dual Abelian Lie algebra with basis {e t ,e,} and with Euclidean 
metric (ei ,ej) = Sij . Similarly, let al,l denote the Lorentzian real form of the complex Lie algebra 
6. It has basis {e i ,e2} and Lorentzian metric (et ,ei) = - ( e2 ,e2) = 1. Since these Lie algebras are 
Abelian, any endomorphism is a derivation. The choice of metric dictates which are antisymmet- 
ric. For a2 the Lie algebra of antisymmetric derivations is SO(~), whereas for ai,t it is so(l,l). 
They are one-dimensional Abelian Lie algebras. We can now form the double extensions D(a2, 
42)h and Wal,l, so (1,l)). These Lie algebras are self-dual, indecomposable, and nonreductive: 
in fact, they are solvable and not nilpotent. They are different real forms of the complex Lie 
algebra discussed in Example 3.2. 

This interpretation allows us to generalize this example as followsb’3. Let EP,4 be the (p + q)- 
dimensional pseudo-Euclidean space with signature (p,q), and let a,,, denote the resulting self- 
dual Abelian Lie algebra. The Lie algebra of antisymmetric derivations is isomorphic to so(p,q). 
We can form the double extension D(aP,4, so(p,q)). This Lie algebra is self-dual, indecompos- 
able, and nonreductive. It is not necessary to extend by the full Lie algebra of antisymmetric 
derivations to obtain an indecomposable double extension. Given a subalgebra bCso(p,q) which 
acts effectively on I&, we can form D(a,,, , h). 

Other examples are known. In Ref. 9 some examples were obtained by Wigner contractions of 
semisimple Lie algebras, and this was further generalized in Ref. 3. Let g be a semisimple Lie 
algebra and h a subalgebra reductive in g and such that there exists an h-invariant metric in g 
relative to that g splits as g= h@h’. This is true, for example, if g is the Lie algebra of a compact 
Lie group and fj the Lie algebra of a (compact) Lie subgroup as in Ref. 9, or if both g and h are 
semisimple, among other cases. The models of Ref. 9 will be obtained as Wigner contractions of 
gX h. Let e=h’ denote the orthogonal complement of h in g relative to any h-invariant metric. Let 
us define subspaces ~J.,C~X~J by h,={(h,?h) ~t)Xb}. Choose bases {Hh’)} and {Ha)} for the 
two copies of $, respectively, and {Ki} for e. Then {H’= HL’)+ HL2)} are bases for hlr, and the 
nonzero brackets of g X h are in this basis given by 

[Ki,Kj]=f~jKR+ iflj(Hz+H,), [Hz &I =fC,& , 

(5.1) 
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[H,’ ,Ki]=fiiKj 9 [H,f ~HbI=fCabH~ t 

where the f’s are the structure constants of g in the chosen basis. To recover the structure of a 
double extension [compare with (3.12)], we would like that [ Ki ,K,] would not to close into Hz, 
and that [Hi ,Hb] and [Hi ,Ki] would vanish. The way out is to perform a contraction. To this 
effect, we define the following resealed generators: H,f ( E) = E”*HJ , and Ki( E) = eAKi. Rewrit- 
ing (5.1) in terms of the resealed generators, we notice that we can get rid of the unwanted terms 
in the limit e-+0 provided that we choose A+ =0 and A... =2A>O. Let us then choose these scaling 
dimensions, take the limit e-+0, and introduce generators Xi= Ki( O), H, = H,f (0), and 
Ha= igabH;(0), where gab is the inverse of the lj-invariant metric on b. With this notation and 
using the invariance of the metric, we find that the algebra becomes precisely (3.12), but with 
ffj=Oe 

Notice that if we take g to be any one of the de Sitter algebras for a space-time of signature 
(p,q)--that is, g=sa(p+ 1,q) or g=so(p,q+ I)--- and fj=so(p,q), then we recover precisely 
the examples described above. 

All these examples share one property in common: they are double extensions B(a,b), where 
a is Abelian. Only one example is known of an indecomposable nonreductive self-dual Lie algebra 
that is the double extension of a non-Abelian Lie algebra. We refer the reader Ref. 10 for the 
details. 

VI. SOME USEFUL REFINEMENTS 

In this section we prove some refinements of Theorem 3.11 that have proven instrumental in 
the applications to Conformal Field Theory. We start by listing some conditions on g under which 
any double extension D(g,lj) will fail to be indecomposable. 

Remark 4.4 tells us that a double extension need not be indecomposable even if b is taken to 
be simple or one dimensional; and one such example is when b acts on g via inner derivations, as 
we now see. 

Proposition 6. I: If b acts on (g,( -, -)) E g via inner derivations, then D(g,b)=gX(bKfi*). 
Proof: Let q:b+g be the homomorphism defining the action of t, on g. In other words, for 

hsfj and xEg, h.x=[cp(h),x],. Let q’:Q--+g* be the map sending h+-+(q(h),-),, and let 
(pp:g+* denote its transpose. Notice that because the metric of g is 9 invariant, these maps are 
actually intertwiners of the action of b; in particular, for h E b and x ~g, we have that 

~~~cp”~~~l=cp”~~4o~~~~xl,~. 

We can now define the following vector space automorphism q of g@t)@t)*: 

(6.2) 

We claim that 1I’ is a Lie algebra isomorphism D(g, b) 5 g X (BK t)*). Indeed, for x,y E g, 
U~~x,~l~~~~~~,yl,+p(x,~~~=~x,yl,-rp~~[x,yl,)+p(x,y). But from (3.9) we have that 
&,y>=cp’([x,yl,), whence *([x,y]>= [U(x),?I’(y>]. Second, we have that, on the one hand, 
for hub, ~~~~,~l~=y’~~cp~~~,~l81)=~~~~~,~l~-~~~~~~~~~~l~~ ami [Wh),‘W)l= [h 
+~(h),x-~““(x)l=[~(h),~]g-[h,~ (x)], on the other. But both of these expressions agree by 
virtue of (6.2). Similarly, ~([h,h’l)=[h,h’l+cp([h,h’]) agrees with [*(h>,U(h’)] 
=[h+~(h),h’+go(h’)]=[h,h’]+[~(h),~(h’)] for all h’~b, since p is a homomorphism of 
Lie algebras. The rest of the brackets are verified in a similar fashion. 0 

Remark 6.3: The invariant metric in (~JK~J*) is now given by 
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In other words, (-,-)h receives a correction coming from the pull-back by p to lj of the invariant 
metric in g; that is, (-,-&+‘p*(-,-). 

In particular, if all the antisymmetric derivations of g are inner, then g factors out of the 
double extension. This idea can be pursued further, but first a definition. Recall a (real) Lie algebra 
g is peeect if [g,g]=g or, equivalently, if H’(g;R)=O. By analogy let us define the following. 

Definition 6.4: We say that a (real) Lie algebra p is plupelfect whenever H’(p$) 
= H2(p;R) =O. Notice that semisimple Lie algebras are pluperfect. 

Theorem 6.5: The Lie algebra g in Theorem 3.11 cannot have a pluperfect factor. 
Proof: We will prove that if g has a pluperfect factor, then its double extension is decompos- 

able, in contradiction to the hypothesis of Theorem 3.11. Thus let (g,( -,-)s) be an object in %’ 
such that g=pXa with p pluperfect and a arbitrary without pluperfect factors. 

(1) p and a are orthogonal. 
p is, in particular, perfect, which together with the invariance of the metric implies that 

(p,a>=([p,pl,a>=(p,[p,al)=O. 
(2) Let Der, stand for the antisymmetric derivations. Then Der,-g=pXDer,-a. 
Let d E Der+g be an antisymmetric derivation. If x Eg we write d(x) = d,(x) + d,(x), where 

di(x)~p and dz(x)Ea. Let SJ’EP. Since d is a derivation, we have [d(s),s’] 
+ [s,d(s’)] =d([s,s’]). Breaking it up into its components, we find that [d,(s),s’] + [s,d,(s’)] 
=d2([s,s’]) and that d2( [s,s’]) =O. The former equation says that dl ~Der p, whereas the latter 
says that d2 annihilates [p,p]=p. If a E a we have [s,d(a)] + [d(s),a] =O. Breaking it up into 
components we find [s,dl(a)]=O, which says the dl(a) is central in p. But since [p,p]=p, 
Lemma 2.5 says that the center is trivial, whence dl(u) must vanish. If a ’ E a, then 
[d(a),a’l+ [a,d(a’)l =d([v’l), which breaks up as [d,(a),a’l+ [wUa’)l 
= d2( [ u,u ‘I). This means that d2 EDer a. Finally, the antisymmetry condition says that 
d2EDer,a, whereas from H2(p;R)=0 it follows that all antisymmetric derivations of p are inner: 
every antisymmetric derivation D E Der,-p defines, a 2-cocycle by y(s,s’) = (d(s) J’), which is a 
coboundary y(s,s’)= - ~([s,s’]) for some ?/EP *. But this means that there exists S”EP such 
that - ~([s,s’])=(s”,[s,s’])=([ s”,s],s’), whence d(s)= [s”,s] is inner. Conversely, all inner 
derivations are antisymmetric, so that d, Eadp. 

In particular, since lj acts g via inner derivations, there exists a Lie algebra (hence h module) 
morphism cp:b+p such that for h EI~ and s EP, h. s= [ &h),s], . Then the proof of Proposition 6.1 
implies, mutatis mutundis, that p factors out of the double extension. 

In other words, the vector space automorphism * of p@aCDb@b*: 

defines a Lie algebra isomorphism D( p X a, b) 5 p X D( a, h). Furthermore, me invariant metric in 
D(a,h) is now given by 

This concludes the proof of Theorem 6.5. cl 
As a corollary of Theorem 3.11 and Theorem 6.5 we have the following characterization of 

the class K. 
Corollary 6.6: The class K breaks up as csX %$,, , where E” is the subclass of semisimple Lie 

algebras and KN is the smallest class of real finite-dimensional Lie algebras containing the one- 
dimensional Lie algebra and closed under the operations of direct product and double extension by 
a simple or one-dimensional algebra. In particular, all objects in KN are nonsemisimple. More- 
over, the subclass csC YN of solvable Lie algebras is the class generated by the one dimensional 
Lie algebra under the operations of direct product and double extension by the one-dimensional 
Lie algebra. 0 
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VII. DEFORMING THE INVARIANT METRIC 

Let (D,ti) be a self-dual Lie algebra. We would like to ask whether one can deform the metric 
n while retaining nondegeneracy. Rather than analyze this problem in its full generality, we will 
limit ourselves to the case of interest in Conformal Field Theory. Namely, we will deform fi by a 
scalar multiple of the Killing form K. Such shifts are the typical effect of quantum renormalization. 
Let t be a scalar (a real or complex number) and let g, denote the bilinear form g,= 0 - TV. Fix f 
once and for all and define D’ to be the radical of g, ; that is, D’={v EDlgf(u,W)=O\dwED}. Notice 
that D’CD is an ideal, since the bilinear form g, is invariant. In particular, 3’ is a Lie algebra. We 
will prove the following result. 

Theorem 7.1: If @,a) is an indecomposable self-dual Lie algebra, then a’=0 unless 0 is 
simple and A=tK, in which case g,=O and $=b. 

Proof Since @,,a) is indecomposable, then by Theorem 3.11 it is either simple, one dimen- 
sional, or a double extension D(e,lj), where h is simple or one dimensional. The theorem is clear 
for the first two cases, as we now show. If a is one dimensional, then K=O and $=O; and 
similarly if 9 is simple, then b’, being an ideal, must be either 0 or P; the latter case corresponding 
to the case g,=O, or equivalently fi=t~. Therefore all we have left to tackle is the case where 
D=D(g,h) is a double extension. The theorem will follow if we can prove that a’=0 in this case. 

We proceed by induction on the dimension of the Lie algebra. Suppose that the theorem is 
true for all indecomposable self-dual Lie algebras of dimension <N-the case N= 1 being trivi- 
ally satisfied-and let 0 =D(g,h) be an indecomposable double extension of dimension N+ 1. 
[Actually we have not shown that there is no indecomposable self-dual Lie algebra in every 
dimension. So if there is no indecomposable D=D(QJ) in dimenson N+ 1 then take one of the 
smallest dimension >N.] The theorem follows if we can prove that $=O. We now have the 
following lemma, whose proof we give below. 

Lemma 7.2: Let b=D(a,h) be a double extension, with IJ and b arbitrary. Then there is a Lie 
algebra isomorphism: 

dl=D(g,F))l=gl. 
El 

Using Lemma 7.2, we have that $-=g’. In general, g need not be indecomposable, so write it 
as g=glX**.XgK, where each Bi is indecomposable. Clearly, glGdX**:Xd. Since 
dim gi<dim D for each i, we can apply the induction hypothesis to deduce that gf will only be 
nonzero when Bi is simple. But if JJ would have a simple factor, Theorem 6.5 would imply that a 
is decomposable, violating the hypothesis. Therefore &=O and we can extend the induction 
hypothesis. 0 

Corollary 7.3: Let @,a) be any self-dual Lie algebra. Then (1) 3’ is semisimple; (2) 2, 
decomposes into an orthogonal direct sum D=Tr’XDi, where a’ is semisimple, and &=O. 

Proo$ (1) is an immediate corollary. Since 9’ is a semisimple ideal, it is a factor; hence (2). 
Finally we prove the lemma. 0 
croof (of Lemma 7.2): In the explicit basis introduced in Sec. IV, we let 

u = U’Gj + u aH,+ u J-P belong to D’ and let us see what this implies. The bilinear form defining 
L is n2, - tKzb, whose matrix is given by 

Gi 

H, 

H” 

Gj HP HP 

“c- tK; -tK$ 

-tKP,. h,p-tKP,B 

0 s”, 

Therefore, u ED’ implies that 
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(~~.-~K!.)vj-~K$,# 
1’ 1’ 

tf&- t&) -tKP,.vi+(h,p-tKP,p)vP+Ua 

rla 

This in turn yields the equations u”=O, u, = tK%vj, and 

(n!.-tK?.)uj=o, ‘J ‘I 

whence U’Gj belongs to 0’. Conversely, any viGj E $ extends to a vector UjGj + tViKPgiHa, 
which by the above computation belongs to 9’. In summary, we have a vector space isomorphism 
s:$--tb’, defined by s(U’Gj) = vjG,! where Gj = Gj + tKLjH”. We will not show that this is also 
an isomorphism of Lie algebras. Computing the brackets in D, we obtain 

[s(Gi),s(Gj)],=[GI ,GJ]P=fkjGk+fij,Ha=fG~+(fija-t~jK~,r)Ha. (7.4) 

Now notice that fij, = c’ngn, thatftjKia = fljKza ; SO that We lEWl?te (7.4) aS 

[G! ,GIl,=~jG;+~j(gf)auH~. 

Using that gp is an invariant bilinear form, we arrive at 

[GI ,GJIb=~jG~-~~(g~)ajH". 

Finally, we notice that ~*(e~),j = fiak(gF)kj and that the restriction of g: to g coincides with 
g,“, so that we end up with 

[G! Gj],=f’.GL-f. k(gP)jkHa, I 7 ‘J ‘11 

which shows explicitly that if uiGi and wiGj are in 8” then 

so that s is a homomorphism. cl 

VIII. APPLICATIONS IN CONFORMAL FIELD THEORY 

To conclude we would like to mention very briefly some of the applications of self-dual Lie 
algebras, and, in particular, of the results in this paper in conformal field theory. We will be brief 
and will limit ourselves mostly to directing the attention of the reader to the relevant literature. 

Any conformally invariant two-dimensional (T model (of the right central charge) is a possible 
(bosonic) string background. Any such (+ model is classically conformally invariant, but demand- 
ing that this persists upon quantitation imposes equations on the metric that need to be satisfied. 
Therefore in the process of satisfying these equations, the classical form of the metric gets “renor- 
malized” and it is seldom the case that one can write down a nontrivial metric that exactly solves 
the equations-that is, an exact string background. In Ref. 6 Nappi and Witten constructed one 
such exact string background out of a WZW model with target space a four-dimensional solvable 
Lie group. The nonperturbative proof of the conformal invariance of the theory made use of a 
Sugawara construction built out of a nondegenerate metric on the Lie algebra. This fact prompted 
Mohammedi to investigate the existence of a Sugawara construction on a given Lie algebra 8. 
The conclusion of his analysis (see also Ref. 3) is that a Sugawara construction exists if and only 
if ~YJ is self-dual. Self-dual Sugawara constructions have appeared also in the work of Lians on 
finitely generated simple vertex operator algebras. 
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In Ref. 3 we analyzed the Sugawara constructions arising out of self-dual Lie algebras, with 
the motivation of answering the following question. All examples of nonsemisimple Sugawara 
constructions known at the time shared the property that the central charge was equal to the 
dimension of the Lie algebra. Was this inevitable or could one construct CFTs with nonintegral 
values of the central charge? The answer turns out to be negative-a fact we established in Ref. 
3. More precisely, we used Corollary 6.6 (derived from a weaker version of Theorem 6.5) to 
deduce that the Sugawara central charge associated with any self-dual Lie algebra in the class rN 
is integral and equal to the dimension of the Lie algebra. Hence any other value for the central 
charge has its origins in a Sugawara construction in the class %s. A detailed analysis of the 
self-dual Lie algebras in low dimension has been made by Kehagias, who classified the WZW 
models in (target) dimension ~5 and, in addition, all those six dimensional ones with nilpotent 
target group.” These limits are dictated by the present classification of arbitrary Lie algebras. 
More recently, we have studied the coset constructions arising out of self-dual Lie algebras4 as 
well as settled some issues concerning the relation between the WZW model and the Sugawara 
construction, for which Theorem 7.1 proved instrumental. In Ref. 4 the reader may also find more 
references on nonreductive Sugawara constructions and (gauged) WZW models, 

We conclude this brief survey of applications with a word on supersymmetry. It was proven 
Ref. 2 that the condition for the existence of an N= 1 supersymmetric Sugawara construction on 
the N= 1 affine Lie algebra &= i is also that g be self-dual. This opens possibility of studying for 
which self-dual Lie algebras g, does the N= 1 Sugawara construction &= i admit an N=2 exten- 
sion. The conditions were found in Ref. 12 and reinterpreted in Ref. 13 in order to classify all 
those solvable six dimensional-that is, those with central charge c=9-self-dual Lie algebras 
admitting an N=2 construction. The conditions under which a pair of self-dual Lie algebras ([),g) 
admits an N= 1 and an N=2 coset construction have found Ref. 14, which can be thought of as a 
continuation of Ref. 4 and where further use is made of the results described in this paper. 

We have seen that the results of Medina and Revoy, suitably refined and augmented, have a 
wide applicability in Conformal Field Theory. Certainly there still remains a lot to be learned from 
self-dual Lie algebras and, if we compare them with semisimple Lie algebras, very little is known 
about them indeed. At this stage a complete classification is hard to envision, but some more 
modest results would be welcome; for instance, the classification of all six-dimensional self-dual 
Lie algebras. An interesting open problem is the extension of these results to self-dual Lie supe- 
ralgebras. As shown in Ref. 15 and in Ref. 4, self-dual Lie superalgebras also lead to Sugawara 
constructions. Motivated by this fact, one would like to have a structure theorem for such Lie 
superalgebras. If we study closely the results outlined in this paper, one sees that one can substi- 
tute Lie algebra for Lie superalgebra in many of the results and the statements and proofs still hold 
mutatis mutandis. (Statements like Corollary 6.6 would, of course, have to be modified, since not 
all simple Lie superalgebras are self-dual.) The only exception is Lemma 3.5, for which we have 
not been able to find a proof nor a counterexample. The notion of a double extension still works 
and allows one to construct self-dual Lie superalgebras, but without a superanalog of Lemma 3.5, 
nothing guarantees that this is the way to obtain them all. 

Notice that although the results described in this paper hold for symmetric self-dual Lie 
algebras, one could have used an antisymmetric form for much of the discussion in this paper and 
many of the results would have remained unchanged. However, had we dropped any symmetry 
requirements whatsoever, the results would need severe modification. The determination of a 
structure theorem for these more general self-dual Lie algebras is an open problem-one we find 
intriguing and to which we may return elsewhere. 
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APPENDIX A: SPLIT EXTENSIONS OF SOME LIE ALGEBRAS 

We now prove Lemma 3.5. More precisely we prove the following result, which implies 
Lemma 3.5. 

Proposition A.1: If c is simple or one dimensional, every Lie algebra extension, 

O+a-+b--+c-+O, (AlI 

splits. 
Remark A.3: Before we proceed to the proof we mention that if a were Abelian the result 

would follow immediately as a consequence of the second Whitehead lemma: H’(c;a)=O. Simi- 
larly, if a were solvable one could proceed by induction on the derived length of a. If, on the other 
hand, a were semisimple, then b would decompose as a direct product aXc. However, we are 
interested in general a. This result should be standard but we have not found it in the literature. 

Proof (of Proposition A. I): Let 0 ---f + t a +I+0 be a Levi decomposition for a with t the 
radical and I semisimple. Since r is a characteristic ideal of a and a is an ideal of 6, c is an ideal 
of 6. Let g=b/t. Since Ca is a subalgebra we have a map [+g induced by the composition of 
a-+b+g. It is clear that this map is one to one and the image of [ in g is an ideal. Define then 
b=g/I. Since I is semisimple, the sequence 0 +[-+g-+b-+O splits, and we can identify fj with an 
ideal of g, so that g = g X [. Indeed, notice that I=a/r and that g= b/r, and this implies that 9 sg/[ 
=(b/r)/(a/r)=b/a=c, whence g=IXc. 

The key observation is that the obstruction is now a linear map ,&A*c-+a=‘t@I. 
(1) Case: c simple 
If c is simple, g is semisimple, which imp,lies that r is the radial of 6. The splitting of (Al) 

then follows from the Levi-Malcev theorem. 
(2) Case: c one dimensional 
The splitting of (Al) is equivalent to the splitting of 

O-r-b+[Xc--+O. 642) 
Since r is solvable, we will prove this by induction on its derived length. If r is Abelian, then the 
split follows as a result of the fact that 

H2(IXc,t)= i H’(t;W)@H*-i(C;t)=O. 
i=O 

We take as our induction hypothesis that the above sequence splits for every solvable algebra of 
derived length <n. We let t have derived length n and consider the exact sequence 

O-+r/[r,r]-+b/[r,r]+IX c+O. 

It splits by the induction hypothesis since t/[t,T] is Abelian and has derived length zero. Let 
s:IXc+b/[r,r] denote the splitting map and let s(KXc)=p/[r,r], where the subalgebra pCb is the 
preimage of [Xr. Now, the exact sequence, 

O+[r,r]+p-tp/[r,r]-0, 

splits by the induction hypothesis since the derived length of [r,t] is n - 1. Let Z: IX c+p denote the 
splitting map. Then the composition soz:IXc--+pfCr,r]-+pCb is the desired splitting of (A2). Cl 
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We present an algebraic interpretation of the continuous q-Jacobi polynomials. 
They are shown to realize a basis for a representation space of a q deformation of 
the four-dimensional Euclidean algebra e(4). A q analog of the expansion of an 
exponential in Jacobi polynomials is naturally obtained from this model. 0 1996 
American Institute of Physics. [SOO22-2488(96)03407-X] 

I. INTRODUCTION 

Most special functions of mathematical physics admit q analogs, namely deformations involv- 
ing a parameter q. These q-special functions,“* which share many common properties with their 
undeformed counterparts, have become a subject of very intense research since quantum groups 
and algebras were introduced. Most remarkably, just as Lie algebras provide a unifying framework 
for discussing special functions, quantum algebras furnish an equivalent setting for studying 
q-special functions. Indeed, q-orthogonal polynomials and q-special functions arise as basis vec- 
tors of quantum algebra representations or as matrix elements of q exponentials of generators in 
such representations (e.g. Refs. 3-12). Moreover, the algebraic interpretation leads naturally to 
generating relations, orthogonality properties, and additional formulas for these functions. 

Most of the q polynomials encountered in these investigations were orthogonal with respect to 
a discrete measure. Still, many q polynomials are known to be orthogonal with respect to con- 
tinuous measures,‘** and it is natural to look for their algebraic interpretation. These polynomials 
are all encompassed as special cases of the four-parameter family of Askey-Wilson polynomials 
p,cv,hc,d,lq). It might thus seem more economical, at first sight, to obtain directly the alge- 
braic interpretation of the Askey-Wilson polynomials and to extract therefrom the interpretation 
of the various polynomials as special cases. This, however, would be an extremely arduous 
undertaking, since the complexity of the quantum algebra associated with a family of q polyno- 
mials increases rapidly with their number of parameters. It is therefore more advisable to start 
from the bottom of the Askey-Wilson hierarchy, and to consider systematically cases of increas- 
ing complexity. Thus, after an initial studyi dealing with Roger’s continuous q-Hem&e and 
continuous q-ultraspherical polynomials, which involve zero and one parameter, respectively, we 
tackled the one-parameter class of continuous big q-Hermite polynomials,i4 and showed how the 
q-oscillator algebra can be used to obtain relations between q-Herr&e, big q-Hermite, Wall, and 
q-Laguerre polynomials.t5 

We pursue this approach here by showing that a q deformation of the four-dimensional 
Euclidean algebra e(4) provides an algebraic interpretation of the two-parameter family of 
q-Jacobi polynomials P, (nSP)(xlq). The latter are defined in Sec. II, where certain preliminary 
results are also presented, while the realization of a q deformation of e(4) is given in Sec. III. As 
illustration of the usefulness of the algebraic approach, we derive in Sec. IV a q analog16 of the 
formula for the expansion of an exponential in Jacobi polynomials: 

(1) 

0022-2488/96/37(8 
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irx- -e-ir 

jio (t-r;::;; ( 

n+/3+1 
e W-)“lFl 2n+a+p+2 

I i 
2ir Pjpv8)(x), 

n 

-l<x<l. (1.1) 

We have not been able to find in the literature an algebraic derivation of (1.1). It will be briefly 
discussed in the Appendix; it essentially amounts to the q+l- limit of the construction given’in 
the body of the paper. 

II. DEFINITIONS AND PRELIMINARY RESULTS 

We shall use standard notation for the q-shifted factorials (a;q), , 

Gw?~r=k~o u-wk>, Iql<l, 

(a1 ,a2 ~....“k;q),=(ul;q),(~2;q),“‘(~k;q),, 

as well as for the q-hypergeometric series ,c$, , 

,ds(ul,u2 ,..., a,;bl ,..., b,;q,z) 

(2. la) 

(2.lb) 

(2. lc) 

(2.2) 

Defining the Askey-Wilson polynomials,1V2V’7 

p,(x;u,b,c,dlq)=(ub,uc,u~;4)~u-~x4~3 
-n,ubcdqR-l,ueie,ue-ie 

ub,uc,ud (2.3) 

with 

x=cos 6, (2.4) 

we can express the continuous q-Jacobi polynomials P, (ppB)(xlq) in the following manner:‘,* 

n(2n+ 1)/4 

ew?)= c4 
9 

-q(a+8+4~~,_q(~+B+*~~ 
;4)n 

XP,(w? (*a+ 1V4,q(*a+3V4, +P+ 014, +*8+W41q) (2.5) 

This definition corresponds to the original normalization of Ref. 17. One also finds in the 
literature q-Jacobi polynomials P, (@)(~;q) with a different normalization, introduced in Ref. 18. 
These two types of q-Jacobi polynomials are connected by the quadratic transformation 

Pjp*P’(x;q) = (-4 n+~+1;4)n q-“” 
(-4;4)n 

Py)(xlq*). (2.6) 
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It is well known that the following two q analogs of the exponential function:’ 

m 1 
eq(z)=nzo &j- zn=- 3 n (z;q)rn’ 

m 4 n(n- I)/2 

E,(z)=~~~ (4.4) z”=(-w?)m, 
9 n 

(2.7) 

are eigenfunctions of the q-derivative operators 0: and D;, respectively, which are defined by 

D$ (l-~c’). (2.8) 
Z 

The operator’T, is the q-shift operator, the powers of which act as follows on any function of z: 

T,qf(z>=f(qaz), a E W. (2.9) 

The q-derivative operators Dl, however, are not the appropriate ones for the study of the 
continuous q-orthogonal polynomials. Rather, one uses the divided difference operator’7*19 

7= ,-:el (T;12-T;li2), (2.10) 

the eigenfunctions of which are a third q analog of the exponential function2’ 

2 

ab(x:a,b)=n~o g (,q(‘-“)‘2e’e;q),(aq(‘-“)/2e-‘8;q),b”. (2.11) 
7 n 

One has, indeed, 

r~q(x;a,b)=abq-“4~q(x;a,b). (2.12) 

In the following, we shall need not only the action of the divided difference operator r on the q 
exponential K&x; - i,~), but also that of the operators, 

?=q-‘” 
1 1 

icq= z-z-l 
-- z T;“+zT,-‘” , 

(2.13) 

(2.14) 

7 2, and Fi,,. The operators (2.13) and (2.14) are those to which the ladder operators 6 and p 
of Ref. 19 reduce when the four parameters in the Askey-Wilson polynomials vanish. We can 
express the action of these operators on ZYq(x; - i,r) in the following manner: 

Fq*EFJx;-i,r)=i s :[( l+$-)T;l-l]Zq(x;-i,r), (2.15a) 

(2.15b) 
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(2.1%) 

and 

t-r2q;q2)m &,qgq:,<x; - i,r) = ( -r2q2,q21, T:“gq(x; -i,r). (2.15d) 

The first two of these equations are most readily proved by expanding Z’*(x; - i,r) on a basis of 
continuous q-Hermite polynomials H,(~lq),‘~ 

(-r2;qz)~~q(x:i,r)=~~o & (ir)kHk(xlq), 
, 

(2.16) 

and exploiting the known action of c and ,iTq on the latter,14 

qwxld= -4 -(k+1)‘2fh+ltX14>, ~qqHk(Xlq)=q-kl;?Hk(Xlq). (2.17) 

The last two equations are then a consequence of the following properties of the q exponentials: 

(2.18) 

(2.19) 

Ill. A MODEL FOR q-DEFORMED e(4) 

We will now construct a model for a q deformation of the Lie algebra e(4), involving 
operators acting on functions of the three variables x = (z + z- ‘)/2, S, and f. The generators of the 
q-deformed algebra will involve four operators that are, essentially, the ladder operators intro- 
duced in Ref. 19, namely the divided difference operator T, already defined in (2.10), as well as 

-l/2 1 
$7*= 4 

z-z-f [ 
2 (1 -q- 1’4,T;nTt-1n)( 1 -q”4zT;“Tt- ‘“)( 1 + q- 1’4,T;“T,“2) 

- l/4 
X( 1 +qL’4zT;/2T;‘2)T;/2-z2 I- 5 T;lnT;1/2 1 ‘; T;i277- l/2 

l/4 

1 + 4 T,‘“Tj” i T;ln 1 , 
Z 

and 

1+ !..-. T/+,j” ,;I0 . 
Z i 1 

(3.1) 

(3.2) 

(3.3) 
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Let us now define the following ten generators: 

1 
&=1-q sr, 

1 1 
L-= * 

1-qy ’ 

Lo=l-q -&l-T;), 

4 l/2 
- 112 J+=1-q tpT, 7 

1 1 
J-c-- 

l-q t 
/h*T;1’2, 

K=T,, 

p+=s’“t”2 

- l/2 

P-=~(1+q-1’4zT;“T;n) 

4139 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

(3.4f) 

Wg) 

(3.4h) 

slD 1 l/4 

Q+=q-1’4;rmz-z-l l+cT1”T;i2 T,-ln-(1+q’14zT,‘“Tfn)T,‘” Tf”, 
z s i 1 (3.4i) 

- l/4 l/4 l/4 
1 112 - 5 T~l2T~ll2 1 - 4 1 + 4 . 

z 
T’~‘J’, 

s z 
T’/zT:” i 

s 
TL1n 1 (3.4j) 

To these we will add the operator 

H=T,, (3.5) 

which proves more convenient to use, occasionally, than Lo. 
The ten operators we have just introduced can be shown to realize the q-algebra characterized 

by the following commutation relations: 

K-K-’ 
qL+L--L-L,=Lo, CJ+ *J-l= q~/2-4-~/2, 

1+q q”LoL,-q”L,Lo= kq L,, KJc=q”J& 

Lop,-qP&o=P+ t KP+=q’“P+K, 

[L, ,P+l=O, q114J+P+=P+J+, 
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qP+L--L-P+=Q-, P+J--q”4J-P+=Q+, 
P-Lo-qL,P- = P- ) KP- =q-‘“P-K, 
qL+P--P-L,=q-“4Q+, J,P--q-“4P-J+=Q-K, 
[L- ,P-]=O, q3’4P-J-=J-P-, 

LoQ+-qQ+Lo=Q+ 7 KQ+=q-li2Q+K, 

CL rQ+l=R Q.J+-q1’4J,Q+=.P+, 
L-Q+-qQ+L-=q”4P-, J-Q+=q’“Q+J-, 

Q-Lo-&oQ-=Q-, KQ-=q’12Q-K, 

Q-L+-qL+Q-=P+, q”4J+Q-=Q-J+, 

[L- ,Q-I=% J-Q--q-1’4Q-J-=P-, 

(3.6) 

[P+ ,Q-]=q-3’4( 1 -q)( 1 -q112)J+HKiR, 

[Q, ,p-]=q-7’4( 1 -q)(l -qln)J-HK3”, 

Q-P--q-3’4P-Q-=q-1(l -q)( 1 -qLn)L-K’“, 

=( 1 -q)( 1 -q1/2)(q-‘L-L+-qL+L-)K’R, 

Moreover, the operators of the set {L, Jo} commute with those of the set {J, ,K}. As will be 
shown in the Appendix, this q-deformed algebra reduces, in the q-+1- limit, to the Lie algebra 
e(4) of the Euclidean group in four dimensions E(4). Thus, the ten operators (3.6) provide a model 
for a q deformation of the latter. Interestingly enough, the two sets {Lt ,Lo} and {Jc ,K} realize 
two different q deformations of the two s1(2) subalgebras of e(4). 

The module associated with our model has the basis vectors 

The action of the ten operators (3.6) on the latter can be shown to be the following: 

L+FjP& - 4 -n+d2+3/4( 1 -qn+o+‘3+1) 

(I-q)(l+q (a+P+I)n)( 1 +q(a+B+2Y2) 
Fr_:‘$+I) 

’ (3.8a) 

L-da@)= - 1 1 -qn+l 
n 4 

a/2+ l/4 1-pt1+4 b+B-w)( 1 fq b+8)~)F~+;l./-), (3.8b) 
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L,F’d = 
1 -qa+B 

n 
$a./?) 

l-q n ’ (3.8~) 

J+FjP&’ 
-(a+/¶-2)/4 

l-4 
(1 eqn+a)Ff-l.~+l), (3.8d) 

J-F(n.&q 
-n-(a+@)/4 

n 1-q 
(1 -q”+~)Fjp+‘.8-1), 

KF(“.B)=q(B-a)“F(a,P) n n 9 

(3.8e) 

(3.8f) 

p&k 1 
(1 +q(a+P+1Y2)( 1 -q(2”+a+P+w2) 

X[(l-4 
?t+‘T+p+l 

1 n 
F(%fi+‘)+q(“+p+1)/2( 1 wq”+a)Ft$f+‘)], Wg) 

p_+GP)=q-(“+P)~4 
1 +q(a+Pm 1 

n q I2 1 (1-q(2”+n+B+lv2) 
L1 + 

x[~P(~-~~+I)FIP;~-~)+~(~+B+~)/~(~-~”+P)F~’B-~)], (3.8h) 

4 
-(a+p)/4 

Q+Fp& - (l+q(a+p+I)n)(1-q(2"+~+B+')~) 

xwv -4 ,t+a+fi+l)F(a+l.fl)-q n -fl+(U+fl+l)R( 1 -q"+p)FIpt,lvP)], 

1+q ca+w 
Q-F'"'& 1 

n a + /4 
qn 1 (1 -q(2n+~+/3+m) 

~[(1-~"+')F~+~'.~)-~"+(a+~+1)~(1-~~+~)F~-*.~)]. 

(3.8i) 

WN 

IV. THE q-ANALOG OF THE EXPANSION OF A PLANE WAVE IN TERMS OF JACOBI 
POLYNOMIALS 

In order to illustrate how some of the previous results may be applied to the theory of 
q-special functions, we will now derive algebraically a q analog of the expansion (1.1) of a plane 
wave in terms of Jacobi polynomials. As a starting point, we will let Eq(x; -i,r) act on the 
function Fpp’(x,s,t) and expand the result on the complete basis (3.7): 

m 
~%‘~(x;-i,r)F~~)(x,s,t)=~~~ Wr’p)(r)Fp’p)(x,s,t). (4.1) 

This expansion involves no summation over CY and p, because the left-hand side is an eigenfunc- 
tion of Lo and K, which both commute with the q exponential. Therefore, the right-hand side also 
must be an eigenstate of these operators, with the same eigenvalues. We will extract from (4.1) the 
expansion we are looking for by exploiting the properties of the model we have built for 
q-deformed e (4) in the previous section. Acting successively with L,, L-, and P+ on both 
members of (4.1) will yield enough conditions on the coefficients Wrvp’ to make their complete 
determination possible. 

The action of the operator L + on the left-hand side of (4.1) follows directly from its definition 
(3.4a), the definition (3.7) of F$,‘@) and Eq. (2.12), 
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irq -l/4 m 
=- -c 

w’a+ LB+ *)F(“+ *,p+ 1) , 
l-q n=rJ n n (4.2) 

while its action on the right-hand side is an immediate consequence of (3.8a), 

L + 5 -n+a/2+3/4( 1 -qn+a+p+l) 

n=O 

Comparing (4.2) and (4.3), we obtain a first condition on the coefficients 

q-+Ip_:w+ 1) . 

(4.3) 

@o). It 9 

-n+aR+l( 1 -qn+a+p+l) 

w~1~~+1)o=-~(~~q(~+S+l)n)(l+q(.+BC2)n) tin”,B’( r). (4.4) 

The action of L- on the left-hand side of (4.1) is a less straightforward operation, since one 
must first know the result of acting with 7* on kYq(x; -i;r)F3p’. This can be determined by 
expressing iF in terms of the operators defined in (2.10), (2.13), and (2.14), 

T*F!a’@)=[~+q-3’4( 1 +q1R)(qan-qS/2)~~+q-‘“[q~+qB-q(a+B-1)/2( 1 fq’“)21T 

+q-3/4( 1 +q1/2)q(a+B)lz(qa’2-qS/2)~~,q-q~+P-l~,;q]F~.P). (4.5) 

Using the relations (2.12) and (2.15), one then obtains 

7*gq(‘q(x; - i,r)FpTp)= T,*( a,p)gq(x; - i,r)Fp,p) , (4.6) 

where T,*( n,P) is an operator acting on the variable r instead of x: 

x(qaD-qP’2) t-r2q;q2L 
t-r2q2;q2j, T:“+i q qUfSM1[(l +r2q)T,- I] (4.7) 

Steps analogous to those leading to (4.2) and (4.3) finally yield, for the action of L- on both 
members of (4.1), 

(1+q(a+8-*)R)(1+q(a+P)/2) m =- 
4 n/2+ 114 nlXo (1 -4”+1)W~~p’tr) 

which entails the following conditions on the coefficients Wr@): 

(4.8) 
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T*(n p)w6”-‘4+*) 
r 7 (r)=O, (4.9a) 

(l-q”+‘) 
7,*(LT,P)W~+~1,B-1)(r)= - qa/2+1,4 (1 +q(n+P-1)‘2)( 1 +q(a+P)lz)~~~.B)(r), 

nS0. (4.9b) 

Using (4.4), one can express Wr@) in terms of the WF+<lSB- ‘), so that (4.9) can be rewritten as 

~~(~+l,~+1)W~‘P)(r)=~q-“+1’4(l-q”ia+~+1)(l-q”)~~~~~)(r). (4.10) ’ 

Notice that this condition includes (4.9a), since the right-hand side vanishes for n =O. In terms of 
the variable y = ir, it becomes 

([( 1-~)T~‘-l]-y(i+q-‘“)(4En_qBn) ‘:;;;;‘- ,;1/2 

(Y247z2)m .ey(l +q*“)q(~+P+1)/2(qnn-qfi’2) (y2q2.q2) T:” 
, m 

+4 n+P+l[( 1 -y2q)TY- I] w(,“@‘(y)=O. 
I 

(4.11) 

This q-difference equation determines the function W, (“*P)(y) up to a multiplicative constant. The 
first problem one meets when trying to solve it comes from the two terms involving ratios of 
infinite q-shifted factorials (which, incidentally, happen to disappear in the special case cr=p, 
where the continuous q-Jacobi polynomials reduce to continuous q-ultraspherical polynomials). 
Hopefully, one can eliminate these unwieldy ratios by assuming that Wpp)(y) itself contains a 
similar ratio such that i’? is reconstituted up to a simple multiplicative factor when acted upon by 
the operators involved in the various terms of the equation. Then, the common ratio of infinite 
q-shifted factorials can be factored out. Assuming that Wrva’(y) is of the form 

(oykq”;cP)cz 
wy’(Y)=cy) (py”qx.qp) WAY>, 

9 m 
(4.12) 

where CfiB’ is a constant, one checks easily that this condition is realized only if the parameters 
of the ratio take the values o=+l, ~=-a, k=fc=m=p= 1, Z=1/2, and X=0. Indeed, 

(Y2bm2)m T-‘” (~Yq’“;q)m =(1-aq-l/2y) bJ--Yd”;q)m 

(Y2X2)m y (-~Yz?)w t-uy;q)m ’ 

(Y24~q2)co 

(Y2q2;q2)m TY 

(~YPXL (~YPxdm 
(-cry;q), =(l+cy) (-cry;q), ’ 

(4.13a) 

(4.13b) 

and the simpler operators TY and Til act in an analogous fashion. 
Equation (4.11) can be further simplified by making the substitution q 1’2--+q, to eliminate 

fractional powers of Ty , and, finally, by writing w,(y) =y”&(y), so that 
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wjpqy)=c~.P) ‘(y;;)’ y”$,(y). 
9 P 

It then reduces to 

with the notation 

n+a+i a=q , b=q . n+j3+1 

Amazingly enough, this equation can be factorized in the following manner: 

(4.14) 

(4.15) 

(4.16) 

[ab(l+ay)T,-(a-b)y+q+ab+q(l-aq-‘y)T,-’1 

~[ab(l+~y)Ty-(a-b)y-q-ab+q(l-aq-ly)T,-’]~,(y)=O. 
(4.17) 

For (+= 1, one recognizes in the second factor of (4.17), the equation 

[(l-bT,)(l+aTJ-(I-abT,)D;]+(y)=O, (4.18) 

when multiplied from the left by -y T; ‘. Thus, in order to find a solution of (4.17) in that case, 
it is enough to solve the much simpler equation (4.18). Solutions of the latter are known:21 the 
regular one is the basic hypergeometric series 2q51(b, -a;ab;q,y). Therefore, up to a multiplica- 
tive constant, the solution of Eq. (4.11) is 

GJ-Ydnx& 
WY’(Y)= cjPvB’ (- uy.q) yn2+1 

( 
q 

(n+p+l)/2,_q(“+a+1)/2 

q(2n+a+/3+2)/2r P2GY 9 
I i 

(4.19) 
, m 

for (+= 1. When (+= - 1, one falls back on the previous case by doing y--f - y and a *b in (4.17). 
Using Heines’s q analog of Euler’s transformation formula,’ one easily shows that performing 
these substitutions in (4.19) yields no new solution. 

All that remains to be done, now, is to determine the multiplicative constants C,(“p). A 
two-term recurrence relation for these quantities can be obtained by acting on both members of 
(4.1) with the operator P, . 
coefficients Wnca@, 

Proceeding in the usual manner, one obtains a condition on the 
which, once expressed in terms of the C,(“@ through (4.19), reads 

Cf’p+1)2~l((qb)1’2,-a1’2;(qab)1’2;q”2,y) 

1 1-q n+a+p+1 

=1+q cn+p+ 1)/2 1 -d2n+a+p+1)‘2 
C~P)2~,(b1n,-ai’2;(ab)1’2;q’“,y) 

+q 
(a+p+l)R(l-qn+a+l) 

1-q 
(2n+a+p+3)/2 C!2f)y24iW)1/2,- (qa)ln;q(ab)l~;q’“,y) . 

I 

(4.20) 

Now, it is a simple matter to prove the following three-term recurrence relation: 
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2~l(bq,-a;abq;q,y)=2~~(b,-a;ab;q,y)+ 
b( 1 -a2) 

cl -ab)(l -abq) y2~l(bq,-aq;abq2;q,y). 

(4.2 1) 

When used on the left-hand side of (4.20), the latter leads to a relation between two linearly 
independent functions 2+1, which yields the following two conditions on the multiplicative coef- 
ficients C,‘“.“: 

1-q 
n+a+/3+1 

p$+l)= C(ff’P) 
n (1 +q(n+p+1v2)(1 -q(2”+n+L?+lv2) n ’ 

4 
nI2 

C(n’B+‘)= q 
a/2 

1 -d2”+a+p+2)‘2 n 1+q 
(a+p+ I)/2 Clp;f’ . 

Eliminating C, (@+t) from these equations, one obtains a two-term recurrence relation, 

cry = 
q(“-“)“( 1 -q”+a+B+‘) 

&a 
(1-q(2n+n+P+1)/2)(1_q(2”+a+p+2)/2) n ’ 

(4.22a) 

(4.22b) 

(4.23) 

which is easily solved by iteration and determines Cn(@) up to a multiplicative function of (Y and 
p, Cg(“? 

cCaqP)= q( +p+* /2 n 
n(n-2a-l)14(qa+P-l-1;q), c’“.p’ 

(q a ) ,q(a+p+2)n;q), a * 
(4.24) 

It turns out that Co(+?) is a constant independent of (Y and p. Indeed, for n =0 Eq. (4.22a) becomes 

c(a.B+ 1) = @A . 
0 (4.25) 

Besides, using Eq. (4.19), we can rewrite (4.4) in the following manner: 

($Y$)=( l+4i”.:8,‘;~~(~~~9:“p;z)ii) ccx+l,p+l)~ 

4 
(4.26) 

Equating the right-hand sides of (4.23) and (4.26), and setting n =0, we obtain 

c(“+l’P+lLc$*P) 
0 (4.27) 

The fact that C,‘n*B) is a constant follows immediately from (4.25) and (4.27). Its value can be 
determined to be Co’“*P)= 1 by setting r=O in (4.1) and (4.19). 

Finally, setting s= t= 1 in (4.1), we obtain the expansion of the q exponential in terms of 
continuous q-Jacobi polynomials, 

(4.28a) 

with 
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(4.28b) 

This q analog of the expansion (1.1) was first obtained in Ref. 16. We have derived it here in a 
purely algebraic manner. 

In the special case CY=/~, the continuous q-Jacobi polynomials Pnca*fl)(xlq) reduce to con- 
tinuous q-ultraspherical polynomials C,(x;qmlq),2 

a+ lLq) p~qxlq)=q”(2a+‘Y4 (f2a+l);q; 
c,(xsl a+yq). 

n 
(4.29) 

Setting a=/3 in Eqs. (4.28), defining I= crf l/2, and using (4.29) as well as the relation’ 

241 

q(“+~+ln)/2,,_q(“+l+ln)/2 r-(n+l) 

4 
n+1+1/2 (ir.qif2) Jf?,2!1(2w), (4.30) 

, 02 

one obtains readily the q analog of the Fourier-Gegenbauer expansion,13.20 

r-l 
~&;-4r)= (-r2;q2), (9;4)1-in~o i”q”2’4(1-qn+‘)J~~~(2r;q)C.(x;q~lq), (4.31) 

as a special case of the expansion (4.28). 
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APPENDIX: THE q-+1 - LIMIT 

Before considering the q-+ I- limit of the model given in Sec. III, let us first recall the 
structure of the Lie algebra of Euclidean transformations in a four-dimensional space. The six 
rotation operators mij and the four translation operators pi have the following commutation rela- 
tions: 

[mij ,md= djkmil- ajlmik- aikmjlf S&tljk, 

Cmij rPkl= djkPi- sik,Pj, 

(Al) 

642) 

[Pi 7Pjl=O* 643) 

In order to investigate the structure of this algebra, it proves useful to define the following linear 
combinations of the six mij’s: 

[1=5 (m32fm4A 
i i 

‘2’2 (mi3+m42L ‘37 tm2i+m43L 

j,=i tm32-m4i), 
i 

j2=5 (mi3-m42), j3=; (m2i-m43). 

644) 
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As a consequence of (A3), they obey the commutation relations 

C~*r~/*l=qLvLt LhJ,l=~ApJvt c~,kJ=o~ (A5) 

where Greek indices take values from 1 to 3 only. This makes explicit that the SO(~) subalgebra 
of e(4) is isomorphic to SO(~) Cl3 SO(~). 

Finally, introducing the further definitions 

1,=El+i12, lo=213 

jt=j,+ij,, j0=2j3, 

pk=p2~@3, q+=plkip4, 

646) 

we can write the Lie algebra of Euclidean transformations in a four-dimensional space in the 
following manner: 

[I+ ,l-1=10, [j+ ,j-l=jo, 

[lo,l,]= f21%, [jo,j.]= +2j,, 

[12,P31=~q-c, [j.,pT]=fq3, 
(A7) 

Cl+ ,qtl=O, Cjt ,q?l=O, 

IIlk 4J= Tp,, 5, ,q4= +p?. 
Moreover, the four translation operators {p + ,p _ ,q + ,q -} all commute with each other. 

Now, defining the operator Jo through 

K= qJO/2, 648) 

one sees readily that the q-deformed algebra (3.6) reduces to the Lie algebra we have just written, 
when q--+1-, with 

lim L2=lt, 
q-+1- 

(A9) 

and so on. Explicitly, the operators defined in (3.4), (A8) and (A9) then become 

10=2s -$ 

s d 
I+=---, 

2 dx 

jo=2t &, 

(AlO) 
l-=5 (1-x2) 

[ 
;-2xs ;+2t -$, 

1 1 1 j-=7 (x+1) -$+S $+t $ , 1 
p+=PP, p-=2s-‘“(x+ l)t+ 9 
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q+= -S1Ry-112, qe=2s-“2(x- l)P, 

while the basis vectors are now expressed2 in terms of classical Jacobi polynomials, 

fjpl*P)(x,s,t) = lim fTlp’B)(x,s,t) =~(~+p)~p~,8)(x)t(P-~)~. 
q-+1- . 

In this realization, the action of the generators on the basis vectors is the following: 

(Al 1) 

1 +fy) = - 
n+a~~+1 f(nnfil,p+l), j+fjp’Bf=(,+a)~-“B+l), 

4 +j-y) = - 2n+a:p+l [(n+a+p+l)Snnfl,p)-(n+P)S,olfil’P)l, 

p -fy) = 2n+a4+p+ 1 [(n+ l)fjp+“i-1’+(n+p)S,“,8-1)l, 
6412) 

q J-y) = 2n+a4+P+l [(n+l)~~‘,P)-(,+,)~-l,P)l, 

as can be seen by taking the limit q-+1- in (3.8), or by applying directly the operators (AlO) to 
the basis functions f(na,P)(~,~,t). 

The algebraic derivation of the expansion of an exponential in terms of Jacobi polynomials, 
Eq. (1. l), is also the q-l- limit of the derivation given in Sec. IV for the q analog of this 
expansion. Writing 

irx (a$)- e fo -g 
w~‘B)(,)sRr,B)(x,s,t), (A13) 

one determines the coefficients w, (a,P)(~) by acting on (A12) with the generators l+ , 1_ , and p+ . 
This yields, respectively, the following three relations: 

w,-1 
(a+LP+l$.)= _; n+y+ l wjp.B’(r), (A14) 

l (ir( l+~)+~~+B)i~+p-o]w~~1,8-1)(r)=Z(n+l~~~.~~~~~, (A15) 

and 

wIpI.P+ qr) = n+a+p+ 1 
wpq r) + 

n+cr+1 
2n+cr+/3+1 2n+cu+/?+3 wf;f’( r). (‘416) 

The first two relations give 
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(ir( l+$)+(a+P+z)i ~+8-a}w~8’(r)=~n(n+a+p+l)~~,~)(~), (A17) 

which is easily seen to have the solution 

,IP,B)(,)=.jlrr,p),-ir(2ir)nlFI 2n~+a~p1+2 2ir . 
( I i 

Proceeding as in the previous section, one finds that, as a consequence of (A16), the multiplicative 
constant is 

,(a,/?)= (a+P+ l)n 
n (a+P+lL 
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Some trigonometric identities. II 
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Some trigonometric sums arising in the perturbative study of integrable chiral Z, 
quantum chains are directly evaluated. 0 1996 American Institute of Physics. 
[SOO22-2488(96)01006-71 

I. INTRODUCTION AND RESULTS 

In the study of chiral Potts model’ and of the integrable chiral Z,, quantum chains,2 the high- 
and low-temperature expansions of the free energy serve as generating functions for some classes 
of trigonometric sums. In a previous pape$ we gave a method of evaluating directly trigonometric 
sums of the form 

n-1 sin2( rjpln) 
Tk(p)=Jgl sin2k+2( rj/n) ’ (1.1) 

n-1 n-1 2(1-gj~)+2(1-o[P)--(l--o(j-l)~) 
Wp)=C c 9 0.2) 

j=l I=1 (sin( Tjln)sin( mlln))2k 

n-l 

V,(P) = XL sin2 (~)L~$+j~C~,[sin($)sin[~)sin(~)sin[”’j~m))]-k, 

(1.3) 

n-l 

’ W,(P) = Xl sin ‘( q)l:$+j m:$+l [ sin( G)sin( q)sin( 7i(z~m))sin[~)]-*, 

(1.4) 

where n,k,p are all integers and the dependence on n is implicit in the definitions (l.l)-(1.4); we 
have set 

w=exp(2rriln). (1.5) 

For this we needed the classical properties of polynomials and rational functions (the Appen- 
dix summarizes the results). This time we give a method of evaluating sums of the form 

n-l 

I(kp)= c 
j, ,...,j,=l 

Jr#jr+ I 

sin t (j,- 1 - jk)sin 7 
( . iI-” 

, (1.6) 

or alternately sums 

fik,p)= -(2i)(k+1)pZ(k,p), (1.7) 
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“Electronic mail addresses: mehta@amoco.saclay.cea.fr and mni@mri.emet.in 
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which may eventually be written as 

4151 

,j,. . . 
1 

(,jk- I - ok 0.8) 

Changing the summation indices j, to n-j,, one sees that Z(k,p) =0 if (k + 1)p is odd; 
I(k,p) [or Z(k,p)] will be expressed as a combination of sums of powers of a certain function 

W,p): 

kfl 

%&P)=~~~ (-V+' 2 G;*Gr, 
I, ,...,i,;p2 

l,+...+f,=k+l 

n-l 

G=i Jsc vuP)l[. 

Here F(j,p) is a polynomial in j and n of degree p: 

with 

n-l 

tt= c (d-1)-l, 
q=l 

a polynomial in n. The tl can be calculated successively from the recurrence equation 

t[=Cltl-l--C2tl-2+ ~~*+(-l)~C~-ltl+(-l)~+lzC~, 

with 

1 
cj=(- l)i - 

n-l 

( i j+l j ’ 

II. i&p) AS A COMBINATION OF TRACES OF POWERS OF AN nx n MATRIX 

Let US define the nXn matrix Mij, i,j=O,l,..., n- 1, as 

~~~~ o@/2(oi- LIJ')-pJp& 
u(i-.i)P~2 

(W 
i-j- 1)p9 if i#j, 

Mii=O. 

This matrix is symmetric or antisymmetric according to whether p is even or odd. Then 

n-l 

I(k,P)= C 
j, ,...,jk= 1 

Moj,Mj,j,* * *Mjk- ,jkMjko * 

j,#j,+ 1 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(2.1) 

(2.2) 

(2.3) 

To put the index 0 on the same level as the other indices 1,2,...,n - 1, we write Eq. (2.3) as 
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I(k,p)=[M(z-P)M(z-P)M~~~M(z-P)M]oo, (2.4) 

where Z is the n X n unit matrix and the projector P is the n X n matrix all of whose elements are 
zero except the (1,l) element which is 1: 

- 1 0 **. 0’ - 1 0 *** 0’ 

0 1 *** 0 0 0 **- 0 
I= ) P= (2.5) . . . . . . . . . . . . 

0 0 ... 1 0 0 --- OI 

Thus 

kfl 

flk,p)=rzl (-1)“lp (M’i)@ ), Zr+***+z,=k+l, 
.-Jr 

(2.6) 

where (Ml), has the same structure as F(k,Z) except that the summation over the intermediate 
indices now runs from 0 to n - 1. As Mij and hence (Mk)ii depend only on i-j mod n, 

(M')~'(M')jj* j= I,2 ,..., n- 1. (2.7) 

Then we rewrite Eq. (2.6) as 

kfl 

Setting 

one has, for example, 

etc. 

G,=f tr M ’, 

glq)=G~r 

I(Zp)=Gj, 

i(3,p)=G,+-G;, 

q4,p)=G5-2G3G2, 

1(5,p)=G6-2G4G2-G;+G;, 

III. DIAGONALIZATION OF M 

. . . +z,=k+ 1. (2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Fortunately, the matrix M may be easily diagonalized with the obviously unitary matrix B: 

B,=L &+p@, 
6 

i,j=O,l ,...,n- 1. (3.1) 

We have 
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(B’MB),=l ni1 o-l(i+p/2) 
&“)Pl2 

n l,m=O (OP- 1)P 
W4j+pW( 1 - al,), 

Setting 1 -M = q as a new summation index, one has 

(@MB),= ‘g 
n-l 

Wdi-l) 
c 

w-i9 

n m=~ q=l tog- 1)~ =4jF(j,P), 

(3.2) 

(3.3) 

where the quantities 

n-l 

W~P,=q~l ,w~YI,p9 

It-1 &j+p) 

=Fl (l-wq)p, j=O,l,...,n-.l, (3.4) 

are the eigenvalues of M. To get the second form in Eq. (3.4) one changes, for example, the 
summation index q to II - 4. Note that 

F(j,p) = (- 1 lPF(n -p-j,p). (3.5) 

IV. CALCULATION OF THE EIGENVALUES 

To compute F(j,p), we use partial fractions 

(4.1) 

where A(X) is a polynomial of degree j and a I , . . . , up are constants. Clearing the denominators, 
one has 

and a simple limiting procedure gives 

j+p al= p-l , ( 1 1=1,2 Y..., P, 

We shall also need 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The summation over the index 4 of the polynomial part of (4.1) is easily performed using a trick 
similar to that in Ref. 3: setting A(x) = C~=oXsxs, we have 
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n-l 

z, A(wq)=S$o A,:: -“=Sio X,(- l+nS,,o)=nA(O)-A(1). 

As to the remaining polar part, it is rewritten as C~=rurt’ with 

n-1 

Therefore. 

F(j,p)=(-l)P nA(O)-A(l)+i ultl s 
l=I I 

(4.6) 

(4.7) 

(4.8) 

The A(O), A(l), and al are given by Eqs. (4.5), (4.4), and (4.3). The lI are the power sums of the 
roots of the algebraic equation 

(y+ l)“-y”=O (4.9) 

and can be computed readily (see Ref. 3). In particular, the tl can be determined successively from 
the recurrence equation 

tl=Cltl-l -c2t,-2fC$[-3- “‘+(-l)~c~-ltl+(- l)‘+‘zc/ (4.10) 

with the elementary symmetric functions 

Thus 

tl=-$(n--I), 

t2=-&(n-l)(n-5), 

t3=$(n-l)(n-3), , 

t4=&(n- l)(n3+n2- 109n+251), 

t,=--&(n- 1)(n3+n2-49n+95), 

etc. We finally have 

i tr M I’=: ‘iI [G,p)lkt 
J. 

F(j,p)=(-l)n[n(j~P;‘)-(jidp)+~ (ip+_q)ti], 

and ti are given by Eqs. (4.10) and (4.11). For example, 

F(j,l)=j-$(n-I), 

(4.12) 

(4.13) 

(4.14) < 
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F(j,2)= - i 
n-2 2 1 [( i j- 2 --12tn2+2) , 1 

n-3 3 1 
F(j,3)= i j- 2 

i i 

n-3 
-Z;l(n2+3) j-T, 

i 1 

(4.15) 

(4.16) 

F(j,4)=-& - & (7n4+40n2+88), (4.17) 

etc. Here F(j,p) is a polynomial in j - $(n -p) having the same parity as p, a simple conse- 
quence of the symmetry equation (3.5), and from the above expressions (4.14)-(4.17) it seems 
that the coefficients are even functions of n. 
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APPENDIX: SUMMARY OF TRIGONOMETRIC SUMS 

Summary of the trigonometric sums (l.l)-(1.4): 

r,o=P2Tk-41$l b-z)Tk-l(z), 

To(P)=P(n-P), 

TkE Tk( 1) are determined separately 

(see Ref. 3). 

u,(p)=(- l)k-122kTk-l(p)Tk+24k-2T~&‘), 

v,tP)=4klio t-l>’ ; 
0 

Tzk-r-I(P), 

‘-l sin2( mjpln) 
wk(P)= -4klz, sin2k(rj/n) 

Thus T,(p) can be successively evaluated knowing Tk and then u,(p), vk(p), W,(p) can be 
evaluated successively. 
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In this very short paper we shall construct a continuous wavelet analysis based on 
dilations translations and rotations on the sphere. It is the analog of the construction 
proposed by Murenzi [in his thesis, 19901, on R2. At small scale we shall recover 
the Euclidian structure of the sphere. At large scale we obtain that the wavelet 
transform decays rapidly because the sphere is compact. 0 1996 American Insti- 
tute of Physics. [SOO22-2488(96)01408-91 

I. INTRODUCTION 
Recently the construction of wavelets on the sphere has attracted attention in particular in 

view of applications to geophysical situations.’ Some recent constructions of decompositions of 
unity on the sphere are Refs. 2-5. The first construction is based on group representations in the 
tangent bundle of the sphere. The second construction is mainly based on the Poisson or Heat 
semi-group. It also focuses on rotation invariant wavelets. The third construction is more of 
Weyl-Heisenberg type. The fourth construction is based on the CaIderbn reproducing formula. 
The construction we propose in this paper is different in that it constructs a family of wavelets in 
a more ad hoc way. At small scale we shall see that the sphere is flat and asymptotically our 
wavelet analysis tends to the usual wavelet analysis of functions on R2 based on dilations and 
rotations. A discretized version of continuous wavelet analysis on the sphere can, e.g., be found in 
Refs. 6 
and 7. 

II. THE ROTATION GROUP 

We now want to decompose the Hilbert space L2(S2> =L2(S2,dfi) of square integrable 
functions over the unit sphere S2; that is, S2 is the subset of all points x in three-dimensional 
Euclidean space with [xl= 1. Here dR is the surface measure of the sphere. We sometimes use 
spherical coordinates (6,+), where 0 are the latitudes and 4 the longitudes. Thus 8=0 corresponds 
to the north pole, that we occasionally denote by N. The south pole S corresponds to ~=QT. We 
denote by SO(n) the group of rotations of n-dimensional space. Then the two-sphere may be 
identified with the homogeneous space SO(3)/SO(2). We therefore have natural left action X*.$.X 
of 5~ SO(3) on x E S2. It is given by the rotations of the sphere. We thus have an obvious unitary 
representations of SO(3) in L2(S2) by means of 

w(~b)b)=~(x~5-‘)~ V5)U(5’)=W&‘). 
A. Spherical harmonics 

t 

As is well known, the representation U is reducible. It splits into irreducible components 

L2( S2) = 69 WI . 

Each W, is 2lf l-dimensional. Consider the spherical harmonics Y;, with 1= l,l,..., n = -1, - 1 
+1 ,...,Z. The collection {YTI Im(SZ} is an or&o-normal basis of W1. Thus they are an ortho- 
normal basis of L2(S2)GC. The complete collection {Yy} is an ortho-normal basis of L2(S2). 

‘)E-mail address: hols@cpt.univ-mrs.fr 
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In terms of the Y;l the representation U of SO(3) reads 

where the D”‘,” are the Wiegner functions. For n=O we explicitly have 

E=x+*D~‘~(~)= Y;(x). 0) 

That means D”*“(n depends only on the coset &SO(2) which can identify with a point in S2. 
It is natural to introduce the Fourier coefficients of s E L2(S2) via 

Then Plancherel’s formula takes on the following form: 

I s2dfl(x)Wx)r(x)=l~o ,& s^(Lm)F(Lm). 
m 

Ill. MURENZI WAVELETS ON THE SPHERE 

We now present the construction of directional wavelets over the sphere. The problem is that 
there is no “good” dilation operator on the sphere. This is intuitively clear, since, e.g., dilations 
along a geodesic around the north pole would create more and more singular functions at the south 
pole. We therefore will introduce the different scales in a more or less ad hoc way. 

Let g, EL~(S~,~O) be a family of functions indexed by a parameter a>O. We usually 
suppose that a --+g, is Bochner integrable, but for all practical purposes one might suppose-at-least 
continuity (a-g,) E C”(R+ ,L2(S2)). 

We then define a wavelet transform of s E L2(S2,dfi) with respect to this family of functions 
as the following set of scalar products: 

We sometimes also write 9V~g~ls and if no confusion is possible we simple write tiTgs. It is a 
function over the parameter half-space 

W=SO(3)XW+. 

Since the group SO(3) is compact, it is unimodular and hence it has an essentially unique invariant 
measure denoted by dX,. We normalize it such that 

I dx=4,rr2, 
SO(3) 

which is possible since SO(3) is compact. 
The formal wavelet synthesis with respect to a family h, E L2(S2,dO) reads now 

&{h,}, T](x)= Jorn $ Iso(3,dz(S)T(E,a)(U(E)h.)(x) 

Again we simply write -&ih,jr or simply J&?~s if no confusion is possible. 
Dejinition III.1: We say a family of functions g, E Cm(S2) is admissible if the following three 

conditions are met. 
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Condition I (energy conservation): There is a finite constant cg , O<lc,l <a, such that for all 
s E L2(S2) with Jszs = 0 we have 

I dZ( S)Ada 
H a I-~k,l, sl(S,~)12=c,~~2dn(i)l~(~)12. 

Condition 2 (large scale decay): For all a>O, there is a finite constant c, such that for a > 1 
we have 

Condition 3 (Euclidian limit): There is a function g E L2(W2) such that the following limit 
holds pointwise almost everywhere: 

lim a2g,(@-‘(ax))=g(x), 
a+0 

where @:S2\{0,0-1}+R2 is the stereographic projection of the sphere with the south pole re- 
moved onto the open two-dimensional plane. 

Some comments are in order. Condition 1 says that the wavelet transform is a partial isometry. 
Condition 2 and 3 allow us to interpret a as a scale parameter: condition 2 says that there are now 
features at large scale. This is natural since the functions on the sphere live on a compact space. 
This also is similar to what can be observed on the circle (e.g., Ref. 8). Condition 3 finally tells us 
that at small scales, the earth is flat; that is, asymptotically a behaves like a dilation parameter as 
a-+0. Clearly one might be interested in stronger convergence properties depending on the appli- 

’ cation. The reason why we still want to have at least at small scale a dilation-like behavior is 
simply the fact that local regularity analysis (e.g., pointwise Holder continuity) is based on dila- 
tions being incorporated into wavelet analysis (e.g., Refs. 9 and 10). 

In analogy with the case of wavelet analysis over W2 we also consider admissible pairs. 
Dejnition 111.2: We say that {g,} and {ha} are an admissible analysis reconstruction pair if 

they satisfy Condition 2 and Condition 3 and if, in addition, Condition 1 is replaced by the 
following. 

Condition 4 (boundedness of wavelet transform): There is a constant cg such that 

Condition 5 (boundedness of wavelet synthesis): There is a constant ch such that 

I pi 
dZ(yda p(&a)p. 

Condition 6 (inversion formula): 

. &{h,}W{g,}= J. 

We always have that -&lg,l is the adjoint of %‘&,) as can be formally seen by exchanging the 
integrals 

We now want to give sufficient conditions on g, that ensure that {g,} is admissible. 
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Theorem 111.1: Condition 1 (energy conservation) holds iff z(Z,m) = ( Ylflga)LzcSz,dnj sat- 
isfies 

with some cg independent of 1. 
Proof The proof is essentially the same as for standard wavelet analysis if we restrict our- 

selves to the invariant subspaces W, . The general case follows by decomposition into irreducible 
components. 

We come to the details. For fixed r E L2(S2,dfi) consider the operator 

B[r]:s++ 
I dW5)(W5)rb)Ut)r- 

SO(3) 

It is a bounded operator from L2(S2,dfi) into itself. In addition, since dC is invariant under the 
group translations, it is easy to verify that 

NrlVS)=WSW[rl 

for all 5. Thus we have have Schur’s lemma, applied to each irreducible subspace WI, 

where the II, are the projectors on the invariant spaces W1, and c,(l) are some constants. To 
compute the constants we note that the Wiegner functions D;“,“” are known to satisfy at 

897 
-8 8 81 
211+1 1,.i2 m1m2 m, ,m;, 

We may take s = Yp and hence 

897 
c,(Z) = - 

2z+ 1 Im Cl F 
13Lm)12. 

Now we have 

llw-{s,~Sll~*(sZ,dn)= I om g w[sal~). 

Therefore, we have by the previous result 

Therefore conservation of energy holds for all s iff 

I m da 
- cg,y> = cg, 

0 a 

independent of 1, which is precisely the statement of the theorem. 
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Corollary III. I: Condition 4 (boundedness of transform) holds iff there is a constant c<m 
such that cJZ)Cc. Condition 5 holds iff c,( Z)Sc. Finally Condition 6 holds iff 

gaOG(Z,m)= 1. 

Proof The first statement is obvious. For the second we note that the wavelet synthesis is the 
adjoint of the wavelet analysis. Hence it has the same norm. For the last statement it is enough to 
consider the operator 

B:SH 
I S0(3) 

dC(S)(U(S)g,ls)Ut5)h, 

and to integrate over a as before. 0 
Corollary 111.2: If g, and h, are an admissible analysis-reconstruction pair, then we have the 

following identity valid for s, rEL2(S2,dfl) and Js=Jr=O: 

Proofi Indeed, we may write 

q 
Condition 2, the large scale decay, is easy to meet. 
Theorem 111.2: Condition 2 (large scale decay) holds iff 

i. ,& Ii2Lm)12~Wa-“), a-+m. 

Proof Use Parsevals equation on the sphere. 0 
As usual, the image is characterized by a reproducing kernel equation 
Theorem 111.3: Let g, ,h,EL2(S2,dS1) be an analysis-reconstruction pair. Then T 

E immag S?Tlg,l if and only if 

T(b)= H f 
dC(p)Ada’ 

a’ ~,,h(5.p-‘,a,a’)T(p,a’), 

where 

II gn,ha(5,a,a’)=~~{,a}h,1(5,a). 

For arbitrary T the right-hand side defines a projector onto immag “@TV,, . In the case g = h, this 
projector is orthogonal. 

Proof: This is a standard argument for partial isometries. We may suppose cg,h = 1. Consider 
II=Wg&h. We have 

Thus II is a projector. Its range lies obviously in immag wg and, since T=Wgs implies 
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the other inclusion holds as well. In the case g = h, the operator is self-adjoint. The reproducing 
formula above follows now by exchanging the integrals in 

= I H 
dr(p~~da’ T(P,ar)(U(~)g,(x)lU(P)ha’(X))t2(s2.dn). 

But now 

(U(~)g,tx)lU(p)h,(x))=(U(p-‘S)g,(x)lh,~(x))=~~h,~(p-1~,a), 

and the theorem is proved. cl 

IV. THE EUCLIDEAN LIMIT 

The Euclidean limit is the most interesting constraint. Here we proceed as follows. Let S,(R2) 
be the subspace of the class of Schwartz of functions g for which all moments vanish (cYEN’): 

I R2d2x x”g(x)=Owj(k)=O(k”) (k-to). 

We choose this context for convenience only. As the proofs will show, larger function spaces are 
possible. We now want to find an admissible family g, E S0(R2) that satisfies the Eucledian limit 
in the sense that we have pointwise 

lim a2g,(ae,4)=g(fJ,4). 
Cl-0 

On the left-hand side we have local spherical coordinates, whereas on the right-hand side we have 
polar coordinates. That is we have written g as g = g( r, 4) with r>O and +E[O, 277). Note that for 
the case of pointwise convergence, any local coordinate system will produce equivalent results 
provided it agrees in first order at the north pole with the coordinate system given through 
stereographic projection. However, if one wants to consider topologies involving estimates of 
derivatives, the order of contact must be higher than first order. For the sake of simplicity we will 
only work out the case of pointwise convergence. 

FIG. 1. The modulus and the phase at scale a=4. 
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FIG. 2. The modulus and the phase at scale a=2. 

We now come to the construction. Take the two-dimensional Fourier transform of g and write 
it in polar coordinates, i=g(k,@). Decompose for each k into a Fourier series 

i!(kv)= & nTz ?(k,n)einp, I 
2?r ?(r,n) = dcp i(k,cp)e-‘“q. 

0 

We first shah prove that the Euclidean limit holds for the following family of functions: 

ga=c F I=0 Im Sl aLdy;l, gaU,m)= vwuz,m). 
Later we modify this family slightly to make it admissible. 

That the Euclidean limit holds can be observed numerically by looking at Figs. l-5, where the 
scale of the Morlet wavelet changes from a =2 to a = $. The thick outermost circle corresponds to 
the south pole. The inner circle is the equator. The center of the picture is the north pole. In all 
figures we have fixed the rotation around the north pole to 2~13. 

We come to the details. As we did before let us also write g in polar coordinates, g = g( r, +), 
r>O, e5~[0,2~), and let us introduce the Fourier coefficients with respect to 4: 

I 

27r 
r(r,n>= d4 i(r,+)e-“‘+. 

0 

FIG. 3. The modulus and the phase at scale a = 1. 
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FIG. 4. The modulus and the phase at scale a = 1. 

Lemma ZV.l: The following relation holds, 

%ktn) = r dr y(r,n)J,(kr). 

where J, is the nth-order Bessel function. 
Proof: The Fourier transform of g reads in spherical coordinates k>O, +~[0,27r), 

g(r,q)e-‘k’ CoS(‘k-Vcp) 

=& zz e’“$/mr dr/‘Idp y(r,n)e-i(k’CoS(‘p)+“‘p) 
0 0 

=&z:, f: r dr y( r,n)J,( kr)ein4. 

Upon identifying the terms of both expressions, the expansion coefficients y and 9 are related as 
stated in the lemma. 

Now the following limit is known to hold uniformly for BEI, compact (see, e.g., Ref. 11): 

FIG. 5. The modulus and the phase at scale a = a. 
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lim d T Y;“( 6/Z, r$) =J,( B)eime. 
l-+m 

We now propose to look at the limit u-+0 in 

Note that 

F Im Cl 
, y&.p. 

Therefore, by Schwarz’s inequality, discarding a term smaller than u2e, we may suppose that g 
such that g is supported by a corona c t =z 1 kl G c2. Now as a gets small, the Z that contribute to the 
sum get large since al stays in [c t , c,]. We thus can use the above asymptotic for Y;” without 
changing the limit, and we obtain 

OD 
ulzo JZ, (uz)~(uz.m)J,(uze)e’m~. 

As u-+0, the sum over 1 may be replaced by a Riemann integral and we obtain as limit 
(aZ-+r,a-+dr) 

sz ff r dr~(r,m)J,(rO)eim4. 

By the Fourier inversion formula (Lemma 1V.l) this equals g(B,& in polar coordinates. 

V. AN ADMISSIBLE FAMILY 

We now modify the family slightly to make it admissible. Consider again a function 
g E So(B2). Then let as before 

d$ j(k,q5)emim4 

Now set 

with 

i%(k,m) = 9(&m> 
an2 

21+ I I OD da’ c Iq(a’,m)12 
0 a’ Imlb;l 

Theorem V.l: The {g,} is an admissible family. 
Proof Clearly Conditions 1 and 2 are satisfied. To show that the Euclidian limit holds we note 

that by Parsevals equation we have for Z--)w 
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Note that the integral on the right-hand side is the admissibility condition of Murenzi.’ It therefore 
follows that 

as it should. 
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A method to construct differential calculi on quantized universal enveloping alge- 
bras is discussed. These differential calculi are obtained by quantizing calculi on 
“classical” enveloping algebras provided with appropriate co-Poisson structures. 
The procedure is demonstrated by applying it to the standard quantizations of the 
Heisenberg algebra and the algebra gl(2). 0 1996 American Institute of Physics. 
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I. INTRODUCTION 

Noncommutative differential geometry, currently a field of active research, deals with differ- 
ential calculus on algebras which are generally noncommutative. There are a few basic principles 
to construct such a noncommutative theory. One can replace the commutative function algebra on 
a space by some noncommutative algebra and try to generalize the basic concepts of the traditional 
case to this more abstract situation. Then there is the approach, already standard in algebraic 
geometry, to encode the structure of the underlying space into the function algebra defined on the 
space, which in turn is deformed. This is the approach customary in quantum group theory. These 
ideas led Connes (see, e.g., Ref. 1) and his collaborators to create “noncommutative geometry.” 
Here, the commutative function algebra is replaced by some noncommutative C*-algebra. 

In quantum group theory it was Woronowicz,* who first developed the theory of differential 
calculus on quantum groups, giving a very interesting example of noncommutative differential 
geometry. This rather abstract theory has been reformulated in more concrete terms by Wess and 
Zumino.3 A substantial number of very interesting papers, proposing other approaches, elucidating 
various aspects, studying concrete examples or dealing with applications have been written since. 
See, e.g., Refs. 4-7. 

In this paper we discuss a method to construct a differential calculus on a quantized universal 
enveloping algebra U,(g) of a Lie algebra 8. We follow the idea of Faddeev and his school’ that 
all objects of a quantized theory should appear naturally as a result of quantization of appropriate 
Poisson structures. Accordingly, our starting point should be a differential calculus on U(g). These 
differential calculi are provided and studied in Ref. 9. Moreover, they turn out to be Hopf algebras 
and actually such a differential calculus turns out to be the universal enveloping algebra of a color 
Lie superalgebra, see Ref. 10. Consequently, our starting point is this enveloping algebra U(L) 
equipped with an appropriate co-Poisson bracket 8. Its restriction to L, notation 8, , defines a color 
Lie bisuperalgebra structure which may be obtained by extending the cocommutator 8, of g. 

The procedure is illustrated by two examples. We apply it to the standard quantizations of the 
enveloping algebra of the Heisenberg algebra and the algebra g/(2). 

Matrix quantum groups can be embedded as Hopf algebra in a quantization of the enveloping 
algebra of the dual Lie algebra, see’ Ref. 11. This indicates that our construction can be used to 
obtain differential calculi on quantum groups. Work on this is in progress; we will report on this 
in the near future. 

4166 J. Math. 
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II. THE QUANTIZATION METHOD 

Let g be a finite dimensional Lie algebra over the field of complex numbers C. We present a 
procedure to construct differential calculi on quantized universal enveloping algebras of g by 
quantizing differential calculi on the classical universal enveloping algebra U(g). This method 
connects the following two concepts related to U(g): quantization and differential calculus. In the 
classical limit the inter-relation between these concepts is expressed by a compatibility condition 
between the cocommutator that determines the Lie bialgebra structure on g and the differential d. 
In order to explain the origin of this compatibility condition we shortly recall some notions related 
to differential calculi and quantization. 

A quantization of the Lie algebra g is a Hopf algebra deformation U,,(g) of U(g). Usually, 
U,(g) is called a quantized universal enveloping algebra. The map 6 defined by 

S(x) = A,(x) - AIp(x) 
h 

mod h &U(g)-U(g)@U(g) (2.1) 

is a co-Poisson bracket on U(g). In this formula Ah represents the comultiplication of Uh(g) and 
Ai” the opposite comultiplication given by Aip = (T 0 A,, , where o is the ordinary flip operator on 
the tensor product. The restriction of 6 to g, which will be denoted by 8, , defines a Lie bialgebra 
(g,a,). This means that 8s :gHg@g is a 1-cocycle and 8: :g*++g* 8 g* is a Lie bracket on g*. The 
Lie bialgebra (g,S,) is called the classical limit of the quantization U,(g) and 8s is called the 
cocommutator. For more details on this we refer to Ref. 12. 

A differential Hopf algebra (see, e.g., Ref. 13) is an N-graded Hopf algebra fi=Z,“=O~p 
equipped with a differential d. This operator d is a graded derivation of degree fl with the 
property d*=O. Furthermore it satisfies (d@ id+ ~@d)oA = Aod and pd=O, where A denotes the 
comultiplication and E the counit of Sz. The linear map ~:%+a has degree zero and satisfies 
T(U) = ( - l)Pa for all a E op. A differential calculus on U(g) is a differential Hopf algebra R 
with the additional properties fi’=U(g) and s1 is generated by fi’Ud(fi’). 

In Ref. 10 we showed that a differential calculus on U(g) of Poincare-Birkhoff-Witt-type can 
be described as the universal enveloping algebra of a color Lie superalgebra L which is a natural 
extension of the Lie algebra g. For the sake of clarity, we recall the definition of color Lie 
superalgebra (see Ref. 14). Let G be an abelian semigroup and cy a 2-cocycle on G with values in 
C*. An (cu)-color Lie superalgebra is a G-graded algebra L with product [,] satisfying 

[x,y]= - a(p,q)[y,x] and ~(p,r)[[n,yl,zl+ a(q,p)[[y,zl,xl+ 4r,q)[[z,xl,~l=O 

for all x E LP,y E Lq,z EL’. As in the case of ordinary Lie algebras, one can define the universal 
enveloping algebra of a color Lie superalgebra and a corresponding Hopf algebraic structure on it. 
The structure of the above mentioned color Lie superalgebra L, which represents the differential 
calculus on U(g), is as follows. L is the N-graded algebra L= cBpE~LP, where 
LO=g=(x’,x* ,..., xy, L’=(2,i2 ,..,?‘), and Lp=O for all ~22. The corresponding 2-cocycle cz 
is given by 

a:NxN-+C* 4p,q) = (- 1 Jpq. 

The Lie bracket of L is such that its restriction to Lo is simply the Lie bracket of g and the linear 
map d:LwL given by d(xi)=ii and d(2i) =0 for all 1 < icn =dim(g) is a graded derivation of 
degree + 1 on L. So the bracket of L is of the following form: 

[Xi ,Xj]=CfjXk; [Xi ,~j]=akj;k; [ii ,ij]=O. 
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We use the notation ii to emphasize the fact that these elements have been formally introduced to 
represent the differentials of the elements xi. The differential d on sZ=U(L) is defined as the 
unique graded derivation extending the operator d on L. 

We come to the introduction of a differential calculus on U,,(g). According to the foregoing, 
a differential calculus on Uh(~) is a differential Hopf algebra CXh, with differential denoted by d, , 
which is generated by fi:U dh(R$, where fli = U,(g). On the other hand, as analog to the 
quantization procedure, it is natural that, by putting h equal to zero, Q, reduces to U(L), where L 
is a color Lie superalgebra extension of g of the form described above, and d, reduces to the 
differential d of U(L). This implies that (a, ,dh) is a differential Hopf algebra deformation of 
(U(L),d). We demand this deformation to be homogeneous of degree zero such that the 
N-grading of U(L) induces the N-grading on Uh(L). In particular fi, = Uh(L) is a Hopf algebra 
deformation of U(L), or in other words a quantization of the color Lie superalgebra L. The 
classical limit of this quantization is a color Lie bisuperalgebra (L, &) extending the Lie bialgebra 
(g,S,), which is the classical limit of Uh(g). This gives rise to the following commutative diagram: 

Uhb) --+ U/I(L) 
I I 

k9 &) -+ (L&) 
The vertical arrows denote the classical limit and the horizontal ones denote the canonical em- 
beddings of (N-graded) Hopf algebras and color Lie bisuperalgebras. 

We denote the comultiplication of Uh(L) by Ai,. From the definition of a differential Hopf 
algebra we know that Ahodh = (dh)eoAh with (dh)@ = d,@ id + r@dh . The co-Poisson bracket 
S :U(L)* U(L) @ U(L) is defined as in the classical case described in formula (2.1), with the 
exception that, in the definition of Ai” the operator CT denotes the graded flip operator, which is 
defined by 

a(x@y)=( - l)pqy@x for all x E 17~(L)~,y E Uh(L)q. 

One can easily verify that d, has the property (+O(dh)@ = (dJ@Oc. From this it follows that 

Ah-Aip A,,-AiP 
- Odh=(d,,)@o h 

h 

and for h equal to zero this reduces to 

so the differential operator should commute with the co-Poisson bracket 6 on U(L). The restric- 
tion to L yields the following condition for the cocommutator 8, : 

(2.2) 

To understand the meaning of this condition, let us assume we have a color Lie superalgebra 
L equipped with an operator d representing a differential calculus on U(g). Any Lie bialgebra 
@,a,) gives rise to a unique extension 6, :L*L@ L satisfying condition (2.2). We call the differ- 
ential calculus on U(g) and the Lie bialgebra (g,Q compatible if and only if (L, SL) is a color Lie 
bisuperalgebra. From the preceding reasoning we learn that this is a necessary condition in order 
to obtain a differential calculus on Uh(g) starting from the differential calculus on U(g) given by 
L. The examples we have studied so far seem to indicate that the condition is also sufficient. 

Thus from the discussion above we can subtract the following procedure to construct a 
differential calculus on a quantized universal enveloping algebra. 
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(1) Construct a differential calculus on U(g). 
(2) Compute a Lie bialgebra (g,S,) which is compatible with the constructed differential calculus. 
(3) Quantize (&a,), i.e., construct a quantized universal enveloping algebra U,(g) with classical 

limit (g,S,). 
(4) Quantize (L,S,) where 6, is the unique extension of 8, given by formula (2.2). 

Note that in the last step one can fruitfully use that Uh(L) is an extension of Uh(g) and that the 
differential dh should respect the defining relations of U,(L) . We will illustrate this in more detail 
in the examples. 

Finally, we mention that there is a nice algebraic interpretation for the compatibility condition 
(2.2). The linear operator d on L is a graded derivation, this means that 

d([x,y])=[d(x),y)l+(- l)P[x,d(y)] for x~L~,yeL, 

or equivalently [,>da=df,], h w ere [,I denotes the Lie bracket of L. Analogously, the linear 
operator d * is a graded derivation on L * with Lie bracket St if it satisfies 82 0 (d *) 8 = d * 0 62 . 
But this is equivalent to Eq. (2.2). So we can express the compatibility condition appropriately by 
saying that d should be a color Lie bisuperalgebra derivation on (L, 8,). 

III. THE HEISENBERG ALGEBRA 

As first example, we will consider the Heisenberg algebra H. A basis of H is given by {p ,q ,c} 
and the Lie product is given by 

[p,ql=c; [p,c]=O; [q,cl=O. 

A. The differential calculus on U(H) 

In Ref. 9 we constructed all differential calculi sZ=E~=O@’ of Poincare-Birkhoff-Witt-type 
on H. Here, R’=U(H) and @ denotes the space of p-forms; in particular fl’=d(fl”). As we 
described in Sec. II, fl is isomorphic to U(L), where L is a color Lie superalgebra such that 
Lo = H and L’ = A. In particular, the differential calculus is completely determined by the map 
p:H-gZ(&, which is in fact the commutator in L of elements from Lo and L,. (L, is a repre- 
sentation of Lo using the commutator). As basis of fi we will use G,{,;}, where d(x) denotes the 
element i. It turns out that the simplest and most elegant solution is described by 

P(P)(4) = [p,Gl= it P(d(P)=cq,d=-~c 

and all others equal to zero. 
Summarizing we start with the quotient of the free N-graded associative algebra on the 

alphabet {p,q,c,@,$,2}, where (p,q,c} are homogeneous of degree 0 and {1;,;,;} are homoge- 
neous of degree 1, divided by the ideal I which is generated by the following homogeneous 
relations: 

pq-qp=c; pc-cp=o; qc-cq=o 

cfi=jk; clj=cjc; ci=& 

jq= -(@; fic^= -@; g=-;(i 

fi@=O; &=O; ;;c(). 
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The differential d is the unique graded derivation of degree + 1 satisfying d(p)=j, d(q)=i, 
d(c)=; and d(fi)=O, d(i)=O, d(;)=O. 

B. The compatible cocommutator on H 

Next we have to construct a Lie bialgebra structure on H, which is compatible with d. This is 
a matter of straight computation, which we performed using computer algebra. There is a unique 
solution, given by 

6(c)=O; S(p)=pAc; S(q)=qAc; 

and consequently the continuation to a= d(H), which is prescribed by S(i) = (d@ id 
+ T @  d)o S(X), yields 

S(c^)=O; &?)=~Ac+pK; $~)=~Ac+q/v. 

Note that the restriction of S to H is a cocommutator of coboundary type with corresponding 
R-matrix 

R=pAq. 

One can easily verify that S itself is not of coboundary type. 

(3.1) 

C. Quantization of (H,S) 

In order to quantize the situation above, we note that the R-matrix (3.1) is the standard one. 
This suggests that we can take for Uh(H) the standard quantization 

Ah(p)=p@eehc+l@p; Ah(q)=q@l+e-hc@q; Ah(c)=c@l+l@c 

and the only relation in U,(H) that differs from the relations in U(H) is 

sinh( hc) 
[p141= sinh(h)’ 

The unit and counit are unchanged. The antipode is rather easy to compute, from Ref. 12 we know 
that it exists. For example to calculate S,(p), we consider 

O=phO(Sh@id)OAh(p)=Sh(p)ehc+p. 

Hence we find 

Sh(p) = -peThc 

and similarly 

Sh(q)= -qehc; Sh(c)= -c. 

Although U,(H) is clearly not cocommutative, one can easily verify that the antipode still satisfies 
S;= Id. 

D. Quantization of (L,6) 

From here on we will use 2 to denote the element dh(x). Due to AhOdh= (dh)@oAh, we have 
A,(?)=?@ 1+ l@c* and 
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It remains to determine the new relations in ah ; since Ah(c) and Ah(Z) are unchanged it is natural 
to require that only the relations [p,;], [I;,q], and [c,i] will change. 

So, let us assume that [p,G] =(~t and [@,q] =cQ,. From [p,q] =[sinh(hc)]/[sinh(h)] it follows 
that 

cosh( hc) 
~~‘~~=CP,~I’[~,qI=dh([P,qI)=‘~ sinh(h) 1 (3.2) 

Further we have 

so. 

Ah(~,)=~l@ehc-hhe-hC@ 
sinh( hc) 
sinh( h) 

+e-hCC3al. 

In the same way we find for cy2 

A&I’2)=cTf&?hc+ 
sinh( hc) 
sinh( h) 

@hc^e-hcte-hc@ff2. 

Equations (3.2), (3.3), and (3.4) suggest to take 

Xiehc+ pieehC 
Lyi= 

sinh( h) 
h;; (i= 1,2). 

Substitution yields a unique solution 

e-he ehc n ,. 
CP,qI=‘c 2 sinh(h) ’ 

,. I) 
[P,qI=‘c 2 sinh(h). 

(3.3) 

(3.4) 

(3.5) 

This also dictates the relation between b and { by differentiation of Eq. (3.5) 

Finally, from Sh”dh=dhoSh it follows that the extension of the antipode is given by 

&(fi)=-($-hpi)ePhC; &(4)=-(++h$;)ehc; sh(;)=-2. 

It still satisfies 5: = Id. In order to compute the action of Sh on an arbitrary element of ah, one 
can use linearity and the antialgebra-morphism property 

L!?,(ab)=(-l)‘SS,(b)s,(a); (aEflR’,bE.nS). 

E. Summary of results for H 

For clearness’ sake, we summarize the results of this section in the following theorem. 
Theorem 1: The standard quantization of the Heisenberg algebra H, given by 
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sinh(hc) 
b741= sinh( b,cl=O; [q,cl=O 

and 

admits a differential calculus d, . If we denote dh(x) by .? for all elements x in H, then ? is 
primitive and 

The commutation between functions and forms is described by 

and [x,j] =0 for all other choices of elements x and y from {p,q,c}. Finally, the commutation of 
forms is determined by the relation ij = -ji for all x,y E H. 

Finally, we remark that by an obvious and small modification the same result is obtained for 
the general 2n+l-dimensional Heisenberg algebra with basis {Pi,qi,C}l~i~n and Lie product 
given by 

[Pi ,qj]= +; [pi ,C]=O; [qi ,c]=o; [Pi ,Pjlzo; [Si ,Sj]=O. 

IV. THE ALGEBRA g/(2) 

The next example that we consider is g/(2). We will denote 

E+=E,,; E-=E,,; H+=E,,; H-=&. 

Hence in the enveloping algebra U(g1(2)), we have the following relations: 

[H+ ,H-]=O; [H, ,E+]= kE+ ; [H-,E,]=TE,; [E+,E-]=H+-H-. 

A. The differential calculus on U(g/(2)) 

On U(gf(2)) we can construct differential calculi of Poincare-Birkhoff-Witt type; as said in 
the previous sections, these calculi are completely determined by an appropriate representation 
p:g1(2)+gc2. For gl(n) there is a natural solution, namely, 

where xy denotes the product of x and y as n X n matrices. We will use this p in the sequel. Hence 
we can determine the differential calculus a. Apart from the relations above, it satisfies the 
following relations (~?=d(x); x E gZ(2)): 

[He ,k]=& ; [H, ,&]=O; [H, &,I=& ; [H, ,&]=O 
[E, ,k]=O; [E, ,&]=l;r, ; [E, ,fi,]=O; [Et ,ri,]=k,. 
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Note the similar roles that H, and H- play; hence the basis chosen (instead of H, - H- and 
H+ + H-) is very natural. One can note that the representatio? p is the dire!t su,m of two 
24mensional gl(2)-representations V, and V,, where V1=(E+ ,H-) and V2=(E- ,H+). 

B. The compatible cocommutator on g/(2) 

Again compatible Lie bialgebra structures can be computed. There is a unique solution if we 
demand the solution to be homogeneous of degree zero with respect to the natural grading on 
g1(2) defined by IH,j=O, jE,I=kl. This solution is given by 

S(H,)=O; 6(E+) = E+AH- ; 6(E-) =H+AE- 

which extends to L as 

S(ii,)=O; S&)=&AH-+E,/k; S(i-)=Ei+AE-+H+Ai-. 

As in the case of the Heisenberg algebra, aitself is not of coboundary type. Its restriction to gl(2) 
is coboundary, the corresponding R-matrix is given by R = &E,AE- + H+AH-). 

C. Quantization of (g/(2),6) 

The way of quantizing is similar as in the case of the Heisenberg algebra. Again bIH,)=O 
suggests to take 

Similarly &E+) = E+AH- and S(E-) =H+AE- suggest 

L\h(E:)=E+@ehH-+l@E+; hh(E-)=E-@l+ehH+@E-. 

From this it follows that the antipode is given by 

Sh(H,)= -H, ; sh(E+)= -E+emhH-; sh(E-)= -eehH+E-. 

The commutation relation between E, and E- has to be changed, all others in gl(2) remain the 
same 

ehf-f+ _ ehH- 
CE+ ,‘-I= 2sinh(h) . 

D. Quantlzation of (LJ) 

Extending Ah to z) is straightforward, the only complication is that [Ht ,h,] = fi, . Due 
to this, we have 

dh(ehH’)=iii,ehH’(eh-1). 

So we find 

Ah(k)=&@l+l@& 
and 

A/,(ii,>=&h? hH-+E+@l?-ehH-(eh- l)+ 1@1!?+; 

Ah(s-)=i?-@l+Ei+ehH+(eh-l)@E-+l@k-. 
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Now we have to adjust the relations between g1(2) and g1( 2)) so that Ah becomes an algebra- 
morphism. One can check by direct calculation that we can take all commutators involving either 
HZ or fi, unchanged. We will require that [;,j] =0 remains unchanged for all x,y E g1(2). Hence 
our problem is to adjust the co*fnmutators [E+ ,&,I and [F, ,,$,I. 

Let us first consider [E+ ,E+]. For this we consider [E, ,E+] =O, so that i+,@+ =O. Apply- 
ing Ah, we find 

U~+Md~+) = ~~~=(-E+it++eh~+E+)c&e2hH-(eh-1)=0. 

Here, we used that ehH-fi- = fi-ehH- h 
,. 

e , since [H- ,fi-] =H- . So this forces 

E+.&-eh&E,=O. 

Similarly we find 

E-k--ehi-E-=0. 

One must check that these relations are compatible with Ah, i.e., that Ah(E+i?+ -ehi?+E+) =O. 
This is indeed the case. 

Finally, it remains to obtain [E+ ,ii]. A tedious calculation shows that we can choose 

[E, ,&]= 2 t& filehH+. 

Finally, the antipode is not difficult to calculate. In fact we have S,(fi,)= -&, and 

s&t+)= -(i++E+k(e-h- I))c?-~~-; 

s,&)= -fZ-hH+,k-I;T+(,-h- I)e-hH+E- 

as follows from the formula Shod,= dhOSh . We remark that the square of the antipode on 
uh(gl(2)) is given by 

S;(H,)=H, ; S;(E+)=ehH-E+e-hH-=e-hE+ S;(E-)=e-hH+E-ehH+=ehE- 

and again due to the commutation of Sh and d, also 

SpL)=B,; S#+)=eThi,. 

Concluding we can say that we completed the quantization. The choice of Ah was quite 
natural, and led to deforming the commutation relations involving only E, and k, . 

E. Summary of results for g/(2) 

For clearness’ sake, we summarize the results of this section in the following theorem. 
Theorem 2: The quantization of the algebra gZ(2), given by 

ehH+ - ,hH- 
[H, ,H-]=O; [H, ,Ec]= ZE, ; [H- ,E,]=iE,; [E, ,E-]= 2 sinh(h) 

and 

bh(H,)=H,@l+l@HH,; 

J. Math. Phys., Vol. 37, No. 8, August 1996 

                                                                                                                                    



van den Hijligenberg, Martini, and Post: Quantization of differential calculi 4775 

Ah(E+)=E+@ehH-+l@E+; Ah(E-)=E-@l+ehH+@E- 

with corresponding antipode given by 

s,(H,)= -Ht ; S,(E+)= -E,eehH-; Sh(E-)= -eYhH+E- 

admits a dlrerential calculus d, . If we denote dh(x) by i for all elements x in g1(2), then l?% is 
+ primitive and 

Ah(i+)=s+@ehH- +E+@Z?-ehH-(eh- 1)+ 182, ; 

Ah(i-)=k@ 1 +fi+ehH+(eh- l)@E-+ 1 BE- ; 

Sh(k+)=-(k++E+fi-(e-h-l))e-hH-, Sh(k?-)=-e-hH+k--Ei+(e-h-l)e-hH+E-. 

The commutation between functions and forms is described by 

[Hz ,k,]=k,. ; [H, ,&]=O; [H, ,ri,]=Ei, ; [He ,&]=O, 

Etkc-ehk,E,=O; [E, ,k7]= 
eh-1 

2 sinh( h) 
EitehHz; [E, ,Ei,]=O; [E, &]=&. 

Finally, the commutation of forms is determined by the relation ij= -y^i for all x,y egl(2). 

ACKNOWLEDGMENT 

N.vdH. was supported by NW0 Grant No. 61 I-307-100. 

‘A. Connes, Publ. Math. I.H.E.S. 62, 257 (1986). 
2S. L. Woronowicz, Commun. Math. Phys. 122, 125 (1989). 
‘J. Wess and B. Zumino, Nucl. Phys. 188, 303 (1990). 
4B. JurEo, Lett. Math. Phys 22, 177 (1991). 
5V. Lychagin (preprint Sophus Lie center Moscow, hep-m/9406097, Moscow, 1994). 
6M. Dubois-Violette, C. R. Acad. Sci. 307, 403 (1988). 
‘Y. Martin, “Notes on quantum groups and quantum de Rham complexes,” report g.-60 (Max-PLanck-Institut fiir 

Mathematix, Bonn, 1991). 
*L. Faddeev, N. Reshetikhin, and L. Takhtajan, in Algebraic Analysis, Vol. 1, edited by M. Kashiwara and T. Kawai 

(Academic, New York, 1988). p. 129. 
‘R. Martini, Cl. F. Post, and P. H. M. Kersten, Differential Calculi on Universal Enveloping Algebras of Lie Algebras, 

memorandum 1261 (University of Twente, Enschede, 1995). 
‘ON. Hijligenberg and R. Martini, J. Math. Phys. 37, 524 (1996). 
“C Fronsdal and A. Galindo, Len. Math. Phys 27, 59 (1993). 
tzV’ Chari and A. Pressley, Quantum Groups (Cambridge University, Cambridge, 1994), pp. 170-213. 
t3G: Maltsiniotis, C. R. Acad. Sci. Paris, S&r I. 311, 831 (1990). 
14Yu. A. Bahturin, A. A. Mikhalev, V. M. Petrogradsky, and M. V. Zaicev, Infinite Dimensional Lie Superalgebras (de 

Gruyter, Berlin, 1992). pp. 13-22. 

J. Math. Phys., Vol. 37, No. 8, August 1996 
                                                                                                                                    



On the Lie superalgebra embedding C( n+ 1 )I B(O,n) 
and dimension formulas 

J. Van der Jeugta) 
Department of Applied Mathematics and Computer Science, Umiversity of Ghent, 
Krijgslaan 28I-S9, B9000 Gent, Belgium 

(Received 7 November 1995; accepted for publication 30 April 1996) 

It is shown that the orthosymplectic Lie superalgebras osp (m/2n) have a nonregu- 
lar subalgebra osp( 1/2n). This implies that paraboson operators can be realized as 
elements of osp(m/2n). The embedding osp(2/2n)>osp( 1/2n), or, in a different 
notation, C( n + 1) > B( O,n), is studied in more detail. In particular, branching rules 
are determined for all typical and atypical irreducible representations of osp(2/2n) 
with respect to the subalgebra osp(U2n). Finally, dimension and superdimension 
formulas are given for the Lie superalgebras under consideration. 0 1996 Ameri- 
can Institute of Physics. [30022-2488(96)01108-51 

I. INTRODUCTION 

Lie superalgebras and their irreducible representations (simple modules) have been the subject 
of much attention in both the mathematical’-4 and the physics5-9 literature. However, even for the 
simplest family of basic classical Lie superalgebras, namely sl(mln), a number of open problems 
remain with respect to understanding all finite-dimensional simple modules. The main reason is 
the existence of so-called atypical modules,2’3 besides the typical modules which are well under- 
stood. For singly atypical modules (for which the highest weight A is atypical with respect to only 
one single odd root) of sl(mln), a character formula has been constructed” and also the dimen- 
sions can be obtained.” For the remaining atypical modules, a number of conjectures have been 
formulated.*2-‘4 

The Lie superalgebras considered in this paper are the orthosymplectic superalgebras 
osp(m/2n), and in particular those with m= 1 and m=2. For osp(lRn), or B(O,n) in Kac’s 
notation, all representations are typical and thus a character formula is known for all of its 
finite-dimensional simple modules. An interesting feature of osp(l/2n) is its relation with the 
so-called paraboson algebra, established by Palev.15 We shall use this relation here in order to 
identify a nonregular osp(l/2n) subalgebra in osp(m/2n). The Lie superalgebra osp(2/2n), or 
C(n + 1) in Kac’s notation, does have both typical and atypical representations. However, the 
atypical modules are only singly atypical, and thus the techniques of Ref. 12 could be used to 
construct their charactersi Thus, also here a character formula is available for all finite- 
dimensional simple modules. 

Little work has been done on branching rules for Lie superalgebras. The reason is quite 
obvious: all simple Lie superalgebras except for B(O,n) have finite-dimensional indecomposable 
representations. Thus for a subalgebra pair of Lie superalgebras G t 1 G2, the decomposition of a 
simple G, module with respect to G2 is, in general, not completely reducible. The branching 
considered in this paper, C( n + 1) >B(O,n), does not have this disadvantage. Moreover, since the 
characters of all simple modules (both typical and atypical) of C(n + 1) are known, we can give 
a complete set of branching rules (Proposition 2). In particular, the branching rules shed some 
further light on the structure of atypical representations of C( n + 1). 

The structure of the paper is as follows. In Sec. II we give the main definitions for osp(m/2n). 

“‘Senior Research Associate N.F.W.O. (National Fund for Scientific Research of Belgium). E-mail address: 
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In Sec. III we consider the nonregular embedding osp(m/2n)>osp(l/2n), and as a byproduct \ 
gives a realization of n paraboson operators in osp( m/2n). In Sec. IV, the representation theory of 
osp( 2/2n) = C( n + 1) is recalled, and this is used in Sec. V to find the decomposition of simple . 
osp(2/2n) modules with respect to its subalgebra osp(U2n). Examples are given, and can be 
checked by counting ‘dimensions and superdimensions. In a final section, (super)dimension for- 
mulas are given for sp(2n), osp(l/2n), and osp(2/2n). Some of these formulas are not new, but 
were never given in the partition notation for the highest weight. The dimension formula for 
atypical representations of osp(2/2n), however, is new; an alternative expression for this formula 
is constructed in the Appendix. 

II. THE LIE SUPERALGEBRAS osp(m/2n) 

The general linear Lie superalgebra G =gl( m/n) with m ,n EN is defined2*4 by 

where MpXq is the space of all p X q complex matrices. The even subspace gl(mln) 0 has B =O 
and C=O; the odd subspace gl(mln) 1 has A=0 and D=O. The Lie superalgebra bracket is 
determined by 

[a,b]=ab-(- l)+%u, 
-- 

VUEG, and VbeG, (cu,P~{O,l}). (2) 

One defines the supertruce str(x) of x= ($ i) as2s4 str(x) =tr(A) -tr(D), where tr is the ordinary 
trace. The special linear Lie superulgebru sl(mln) is 

sl(mln)={x~gl(mln)~str(x)=0}. (3) 

Using the definition of supertranspose of x = (“, E), 

XT, (4) 

with A’ the ordinary transpose of A, the orthosymplectic subalgebra osp( m/2n) of sl(m/2n) is 
defined2’4 as 

osp(m/2n)=[x=(z E) tsl(m12n)lx?+(-l).Ix,=O, Vx,Esl(m/2n), (a=U,i~].(5j 

where 

J= (6) 

and I, is the qXq identity matrix. In the notation of Kac,2 B(m,n)=osp(2m+ 1/2n), D(m,n) 
=osp(2m/2n) for m # 1 and C(n + 1) =osp(2/2n). 
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, III. THE NONREGULAR EMBEDDING osp(m/2n)3osp(l/2n) 

In this section the embedding osp(m/2n)>osp(l/2n) (m> I) will be established. This is a 
nonregular embedding, in the sense that the root vectors of osp(l/2n) are not root vectors of 
osp(m/2n) (see Ref. 2, or the following section, for the set of roots). 

Let Ei,j Egl(m/2n) denote the matrix with entry 1 at position (i,j) and 0 elsewhere. The 
following matrices are odd elements of osp(m/2n): 

b:= 

b;= (8) 

Proposition I: The elements bjf satisfy the following relation: 

[[b~,b:],b,e]=2B6j,kSB,-,b~+2BS,,k6,.-~b: (i,j,k=1,2,...,n;5,77,e=~). (9) 

Note that in (9) the inner bracket stands for an anticommutator, and the outer bracket for a 
commutator. Relation (9) is the defining equation for paraboson operators.15’17’*8 Thus the propo- 
sition claims that a set of n paraboson operators have a realization in osp(m/2n). 

The proof of (9) is by straiglitforward computation: for (&~,@)=(+,+,+) or (-,-,-) the 
calculation is trivial; due to symmetry of the anticommutator the remaining cases to be checked 
are (+,+,-I, (+,--,+I, (+,-,-3, and (-,-,+I. 

Next, a theorem of Palev” is used: the Lie superalgebra generated by 2n odd elements bi 
satisfying the relations (9) is osp( 1/2n). Therefore it follows that osp(m/2n) contains osp(U2n) as 
a (nonregular) subalgebra (algebra-subalgebra in the sense of Lie superalgebras). 

IV. THE LIE SUPERALGEBRA C(n+l)=osp(2/2n) AND ITS REPRESENTATIONS 

In this section, G = C(n + 1) =osp(2/2n). The Lie superalgebra G has a Cartan subalgebra H 
spanned by the diagonal matrices in (5) with m =2. The dual space H* is described in the basis of 
forms 6 and s/ (j= l,..., n), where E:x+A,,~ and Sj :X ~ Djj for x = ($i>. Denote by A the set of 
all roots of G, by A, the set of even ‘roots, and by A, the set of odd roots. We have2’16 

(11) 

A=A.,uA,. (12) 

A set of simple roots {cQ,‘Y, ,...,cq,} of A may be chosen as follows? c~o=E-??, , 
aj = Sj - Sj+ , ( 1 Gj S n - 1) , and (Y, = 2 6, . This choice corresponds to the 
basis.” 3 

“distinguished 
The even and odd positive roots of G are then given by 

A.,‘={sj-Sk(j<k),Sj+Sk}, A:={ekSk}. (13) 

The nondegenerate bilinear form (I) on H* is determined by16 

(EIE)=l, (616j)=O, and (8jI8k)=-8jka (14) 

An element AEH* with A=xoE+ci”=,Ajsj can be written as A=(x,;x,,...,&,) in terms of its 
components in the e&basis, or in terms of its Dynkin labels A= [ a0 ;a, , . . .,a,,], 
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where 

ao=Xo+h,, ak=Xk-&+t (lcksn-1), and a,,=X,. (15) 

A weight AEH* is integral dominant if all aiEN for i=l,...,n. This implies that Xi>&>*** . 
Thus in terms of its components, an integral dominant weight is characterized by a complex 
number X0 and a partition X=(X,,...,&) consisting of at most n parts. 

Kac3 showed that every integral dominant weight A uniquely determines a simple finite- 
dimensional highest weight module V(A), and vice versa that every simple finite-dimensional 
G-module is uniquely characterized by its integral dominant highest weight A. In order to describe 
the structure of such a simple module V(A) by means of its character, we need to introduce a few 
more objects. The WeyZ group W of G is defined to be the Weyl group of Go, so in this case it 
is just the Weyl group of the symplectic Lie algebra sp(2n). As usual, E(W) denotes the signature 
of OE W. Further on, we denote p=po-pt with 

PO=; c a, PI=; c P, 
CWAg+ PEA: 

(16) 

or explicitly, po=X;=I(n+ 1 -k)ak and pl=ne. 
Kac3 distinguished between typical and atypical modules: V(A) and A are said to be typical if 

and only if (A+&)#0 for all PEA:. Otherwise, V(A) and A are said to be atypical. Explicitly, 
an integral dominant weight A=@,$) is typical if 

ho#nk(ikfnf 1-k) (k= 1,2 ,..., n). (17) 

For a typical module V(A), Kac proved the following character formula:3 

ch V(A)=L,‘wzw E(W)W e A+pO,F+ (1 +eeB) 
l 1 

(18) 

whereLo = nosA+(ea” - e -““)‘and ex(h E H*) is theformal exponential. 
For atypical iodules of C(n + I), the characters were determined in Ref. 16, where two 

alternative expressions were given. The one we shall use here is 

ch V(A)=&‘~~~ E(W)W eA+po n 

i 
PEA: 

w+m+o 

(19) 

These character formulas contain all the information on the weight structure of the simple mod- 
ules. Hence, to determine the decomposition of a G module with respect to a subalgebra of G, the 
character is in principle all that is needed. 

V. THE BRANCHING C(n+1)=osp(2/2n)>osp(l/2n)=B(O,n) 

The embedding osp(2/2n)>osp(1/2n) was described in Sec. III. The two Lie superalgebras 
have almost the same even subalgebra: osp( 2/2n) 0 = C @ sp( 2n) and osp( 1/2n) 0 = sp(2n). They 
have the same Weyl group W, namely the Weyl group of sp(2n). And the weight space of 
osp(l/2n) can be identified with the subspace of H* spanned by the &i only. Thus for an 
osp(212n) module V(A) reduced to osp( 1/2n), the osp( U2n) weights are determined by projecting 
the osp(2/2n) weights on this subspace, i.e., by putting the e-component equal to 0. Since all 
finite-dimensional modules of osp( 1/2n) are completely reducible [cf. Kac;3 note that osp( 1/2n) is 
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the only simple Lie superalgebra with this property], one simply has to decompose the character 
of this osp( 1/2n) module into simple osp( 1/2n) characters in order to obtain the decomposition of 
V(A) into simple osp(U2n) modules. 

A simple osp(U2n) module V= V(,u) is uniquely characterized by its highest weight 
/-LcE~=l~jSj=(/L1 ,..., ,uJ, which is integral dominant, i.e., ,X forms a partition. All V(p) are 
typical, with their character given by 

ch V(/L)=&“~?~ E(W)W ep+poJfiI (I +e-3) (20) 

herein, Lo, W, and ,oo are the same as in (18). The procedure to determine the decomposition of a 
simple osp(2/2n) module V(A) into simple osp(U2n) modules V(p) is thus as follows: consider 
the character ch V(A), substitute herein e=O, and rewrite the result as a sum of characters ch V(p) 
of the type (20). This procedure can formally be executed for both typical and atypical represen- 
tations of osp(2/2n). Without going into the details of the computation, we give the main result in 
Proposition 2. Before formulating this result, recall that a partition A=(A,,A,,...) is conveniently 
represented” by its Young diagram F’ consisting of left-adjusted rows of boxes of length Xi. A 
diagram F” obtained from F* by adding or removing certain boxes is called standard if it still 
corresponds to a partition, i.e., if (rl>a23*** . For example, let 

. (21) 

Adding one box in the second row yields a standard diagram; adding one box in the third row 
yields a nonstandard diagram. 

Proposition 2: Let A=(Au;A)=(Ae;At,A 2 ,...,A,) E H* be integral dominant and V(A) the 
simple osp(2/2n) module with highest weight A. Then the set of ,XS determining the decomposi- 
tion of V(A) into simple osp(U2n) modules V(p) is found as follows. 

(a) If A is typical construct all standard diagrams F’ obtained from F” by adding either no or 
else one box into each row of F’. 

(b) If A is atypical with respect to e--6;, , i.e., A,= -A,+ k - 1, then construct all standard 
diagrams FCL obtained from F” by adding no box in row k and by adding either no or else 
one box into each row different from k. 

(c) If A is atypiCal with respect to E+ 6, , i.e., X0= Ak- k+ 2n + 1, then construct all standard 
diagrams FIL obtained from F’ by adding one box in row k and by adding either no or else 
one box into each row different from k. 

The proposition makes the distinction between typical and atypical modules very clear. To 
illustrate this, consider osp(2/6)>osp(1/6) for V(A) with A=(A,;3,2,2). For Ace{-3,- 1,0,6,7,9}, 
V(A) is typical and the decomposition is given by . 

tAo;3,2,2)‘(3,2,2)$(4,2,2)$(3,3,2)$(4,3,2)$(3,3,3)$(4,3,3), 
24192 = 1386 + 4095 + 2310 + 9009 + 1386 + 6006, 

0 = 54 - 135 - 70 + 231 + 30 - 110. 

If X0= - 1, A is atypical with respect to E- $ and in this case the decomposition is 

(- 1;3,2,2)--t(3,2,2)$(4,2,2), 
548 1 = 1386 + 4095, 

81 = -54 + 135. 
(22) 
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If Ao.=6, A is atypical with respect to E+S~ and then the decomposition is given by 

(6;3,2,2)~(3,3,3)~(4,3,3), 
7392 = 1386 + 6006, (23) 

80 = -30 + 110. 

Below the representation labels are given the dimensions (dim V = dim Vg + dim Vi) and 
so-called superdimensions (sdim V = dim V; - dim Vi). Some but not all of these dimensions 
can be found in the tables of Thierry-Mieg.20 In Sec. VI, we shall list the known dimension 
formulas for osp(mRn) (m=0,1,2) and give some new expressions. 

VI. DIMENSION FORMULAS 

Below we summarize the dimension and superdimension formulas for the simple modules of 
the Lie superalgebras treated in this paper, in an obvious notation. First we recall the dimension 
formula of the simple module with highest weight A = Cy= t Ai Si for the Lie algebra sp(2n), taken 
from Ref. 21. Next are given the superdimension and dimension formula for osp( 1/2n); these can 
be deduced from Ref. 3 (up to some printing errors). From the same reference follow the dimen- 
sion and superdimension of typical representations of osp(2/2n) [here, the highest weight of the 
module is A=(A,;A), but A0 does not appear in the dimension formulas]: 

’ Ai+n+l-i 
dimspdA)=fl rI 

(Ai-Aj+j-i)(Ai+Aj+2n+2-i-j). (24) 

i=l n+l-i ISi<jSn (j-i)(2n+2-i-j) ’ 

sdi%,,( 1dA) = , <Ejsn 
(Xi-Aj+j-i)(Ai+Aj+2n+ 1 -i-j). 

(j-i)(2n+ 1-i-j) ’ 

n A,+n-ifi 
dinbsp(ldV = PI n-if; 

sdimosp( 1/d A 1; 

(25) 

(26) 

(27) 

dim !&Y~~)(Ao;A)=~~~ dim,,,,,,(A). (2% 

What remains to be determined are formulas for the dimensions and superdimensions of 
aiypical irreducible representations of osp(2/2n). For the superdimension, a formula can be de- 
rived from equation (6.21) of Ref. 16: 

sdimosp(m) atyp~c~~k(Ao;A)=dim,pc2,-2,(At+ 1,X2+ l,...,Ak-t+ l,Ak+t,Ak+2,...,An). (29) 

Again, the notation should be obvious: sdim$$‘$?2n) (A, ;A) stands for the superdimension of a 
simple module with highest weight A=(A,;A) atypical with respect to a positive odd root /3. The 
dimension formula for an atypical osp(2/2n) module is more difficult to obtain. In fact, contrary to 

the dimension formulas given so far, it is not completely but only partially factorizable into 
monomials in the Xi. A technique to obtain a dimension formula from a character formula of the 
type (19) was given by Kac and Wakimoto.22 Following this technique leads in the present case to 
the following formulas: 
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i#k i,j#k 

2n-1 j 

(~ke~,)l~, (xk-~-xi)(xk-~+xi)t 

ifk 

(30) 

where xi=Xi+n+ 1 -i; 

22n-1 n 
dim~r~&~(AO;A) = 1 n. i jJ (n-~~~~+j~!)Jj XilJ.sn (xi-xi)(xi+xi) 

i#k i,j+k 

(xk-~)c~l (xk-~-xi)(xk-~+xi)v 

i#k 

(3 1) 

where xi=Xi+n+ l-i(i#k) andxk=Ak+n-k. 
For example, consider osp(2/6) and representations that are atypical with respect to e+Sj; 

then (30) yields 

-6A:As-6A;As- 12X,X;-8X,X$+ 12X:+5X: 

+48X,X2+ 15X;-36X1X3-24X2X3-4X; 

+30X, +60X2-66X,+3.5). (32) 

Using this formula, the dimension in (23) can be calculated. Note in (32) that the polynomial 
obtained from the sum over j and 1 part in (30), with the proper arguments, gives rise to one more 
factor, namely (2X,+3)=(2x,+ 1). All other examples we have worked through confirm this extra 
factor. This comes as no surprise. Indeed, the branching rule for an atypical representation (of type 
E+ Sk, for example) determined in the previous section implies that all osp( 1/2n) components of 
this representation have (xk+$ as a factor for their dimensions, thus also the total osp(2/2n) 
dimension should have this factor. This means that the polynomial part (i.e., sum over j and I) in 
(30) or (31) can be rewritten in another form, giving this extra factor explicitly. Identifying this . . polynomial In (30) as P,- 1(x, ;x, ,x2 ,..., xk- l,xk+ 1 ,..., xn), it is of the type 

2N+1 j 
p,(z;z, ,..., zN)= ,zo lzo c-l) 

and the presently obtained branching rule implies that this polynomial has a factor (2zt 1). After 
various combinatorial manipulations, the details of which are presented in the Appendix, we 
arrived indeed at the following expression: 
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(34) 

Herein, e, is the rth elementary symmetric function” in the variables z2 -z: ,...,z2-z& and an 
expression for the coefficient aPyp,,, is given by 

2p+l j m 

~P.m= ,zo Ix0 go 2-j-Y-lY+b & (;)(;I; jaP(a+b+2)P(2afbf2). (35) 

In the last formula, 0’ should be interpreted as 1. 

APPENDIX: PROOF OF (34) 

First, we prove two short lemmas. 
karma 1: Let f(z) and g(z) be real polynomials in z with g(z-i)+g(z+t)=f(z). If 

f(-2)=-f(z), thenalsog(-z)=-g(z). 
proofi Putting z=O, and using f(0) =O, yields g( - l/2) = -g( l/2). Assume now g( - k/2) 

= - g (k/2) for k an odd positive integer. Then, 

g(;)+g(;+l)=f(+( -y+-g( -sj-g( --S-l), 
thus also g ( - k/2 - 1) = - g (k/2 + 1) . By induction g ( - k/2) = - g (k/2) for all odd positive inte- 
gers k. Since g(z) is a polynomial, this can only happen when g( -z) = -g(z). 

The second lemma follows from numerical analysis results, and uses the translation operator 
Ef(z)=f(z+ 1) and the forward difference operator Af(z)=f(z+ 1)-f(z); thus A=E-1. 

Lemma 2: Let f(z) be a polynomial in z of degree n. Then 

i. (- l)k( L)f(z+k)=O for j>n. 

Proof: The sum can be written as 

i. (- I)“( jk) .fCz+k)=k~o ‘(-Ok (~iEkF(z)=(l-E)‘f(z)=(-A)j~(z), 
and this iS zero, since it is a classical result that Ajf(z) =0 forf(z) a polynomial with degree n <j. 

Consider now (33); using 

and 

with e, the rth elementary symmetric function, we see that 

N 
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with 

P,(z)=c c (-1Y 
j 1 0 

; 2-qz-l)z”(l-2z)“. 

By Lemma 2, the sum over j runs from 0 to 2n + 1; the sum over 1 is restricted by the binomial 
coefficient. Next, we use 

(z-1)1”(1-2z)“=C 
0 

‘i’l 2”~‘(-2z)i(z-Z) 
i 

1 = -- 4 ‘i’I 2n-i(-2Z)i+*- 

2i 
4 ;1 2n+l-i(-2Z)i 

i 

1 = -- xl n 2i i- 1 
1 1 2n+l-i(-2Z)i-C 

i 0 
‘i’I 2nf 1-i( _ zz)i 

=-;T c’““-i(-zi)‘[ [ifl)+2(;)] 

so 

Pn(z)=zx[ (- 1) 7 . 
~+*(f)2-j-*[ (:)+(n~‘)]12^1*-i(-2z)~. (Al) 

In order to see that pn(z) has 22. + 1 as a divisor, and to rewrite the quotient in an appropriate form, 
we shall express all quantities in terms of the functions w,(z), where we(z) = 1 and 

m 

wm(z~=q~l (-22-q). 

Using the following formula from combinatorial analysis, 

xr=~ (--lYmk 

mk m! 

on (-2z)‘=X,.(i)(-2z- l)‘, yields 

(-2d’=c (I)3 ‘-;;-’ (;jk’w,(z)=s ‘-;;-” ( ;j(k+l)iw,(z) r 

Putting this back in (Al) gives 

2n+l 

&l(z)= x0 Pn,mwm(z), 

with 
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(-- 1) ‘+m+k+* j m _._ 
=,Tk m! , . 

( 1)( k)2 J ‘7 (( :)+( “f1)]Z2”+“(k+l)’ 

C-1) 

This gives a proper form for the coefficients of p,(z) in terms of W,(Z). It remains to be 
shown that the coefficient of we(z) vanishes, or ,f3,,o=0 for all n, where 

P..o=S w+*(;) 2-j-lzyz+ 1)“(2z+ 1). 

Consider 

since this is a triangular system of the Pn-k,O in terms of the t, , all pj.0 are zero if we prove that 
all t, are zero for n=0,1,2 ,... . For I,, there comes the expression 

tn=C 
k.j.1 0 ; q-k( - I)‘+’ 0 5 2-j-1(z2+z)~-k(2z+i)=~ (-I)‘+’ { 2-j-1(2z+1)2n+1. 

(‘1 

Consider 

T,(z)=2 2-j-q (-l)‘+’ ; 
0 

(22+2z+ 1)2”+‘; 
i 

then t,=T,(O), and withf(z)=(2z+1)2”+1 we have (using the notation of Lemma 2) 

T&)=C 2-y (- l)[+’ ; 
0 

f(z+l) 
i 

=-C 2-j-l(-l)jAif(z) 
j 
1 -- 

= 2j Et 1 
-$ 'f(z) 

=-- 
:. i&f(z) 
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Hence T,(z) is the polynomial solution of T,( z + 1) + m(z) = - (2~ + 1 )2n+1. Replacing herein z 
byz-U2leadsto T,,(~+1/2)+T,(z-1/2)=-(2~)“‘“~; using Lemma 1 implies that T,(z) is an 
odd function of z, thus t,=i",,(O)=O. Combining all results now leads to (34) and (35). 
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A summary of the properties of the Wigner-Clebsch-Gordan coefficients and iso- 
scalar factors for the group SU3 in the SU2@Ul decomposition is presented. The 
outer degeneracy problem is discussed in detail with a proof of a conjecture 
(Braunschweig’s) which has been the basis of previous work on the SU3 coupling 
coefficients. Recursion relations obeyed by the SU3 isoscalar factors are produced, 
along with an algorithm which allows numerical determination of the factors from 
the recursion relations. The algorithm ‘produces isoscalar factors which ‘share all the 
symmetry properties under permutation of states and conjugation which are famil- 
iar from the SU2 case. The full set of symmetry properties for the NJ3 Wigner- 
Clebsch-Gordan coefficients and isoscalar factors are displayed. 0 1996 Ameri- 
can Inshte of Physics. [SOO22-2488(96)01208-X] 

I. INTRODUCTION 

The group SU3 continues to be useful in modeling symmetries observed in particle and 
nuclear physics. In the late 1950s application was found in classification of “elementary” had- 
rons, and in the description of rotational states of nonspherical nuclei. Its utility persists as the 
color symmetry of quantum chromodynamics, various models for collective nuclear motion, and 
elsewhere. 

The Wigner-Clebsch-Gordan coefficients (WCG) are of particular interest. These can be 
defined as the expansion coefficients of a composite state of good SU3 quantum numbers in terms 
of direct products of two individual SU3 classified states, paralleling Wigner’s original use of SU2 
in the treatment of quantum angular momentum. The WCG can also be developed as the matrix 
elements of a set of tensor operators which have distinctive properties under the transformations of 
SU3. These two viewpoints on the WCG are formally identical, and their algebraic connection is 
expressed by the Wigner-Eckart Theorem. The SU3 case presents a complication that is absent in 
the SU2 recoupling problem-that of the outer degeneracy. The complete determination of WCGs 
in SU3 requires a criterion outside the SU3 group to completely classify composite states, and thus 
to fully define numerical values for the WCG. In this process, the two perspectives on the WCG 
mentioned above suggest quite different mechanisms. 

Biedenham and co-workers,1-3 adopting the operator point of view, have developed a set of 
canonical SU3-labeled unit tensor operators, whose matrix elements become the “canonical 
WCGs.” The canonical operators acquire SU3 labels by virtue of their behavior under the trans- 
formations of the group. As well, each produces a unique set of shifts, i.e., its action when 
operating on a state from a particular irreducible representations (irrep) produces states from a 
unique second irrep; and in cases of nontrivial outer degeneracy there is a distinct operator for 
each degeneracy index. The uniqueness of the operators, and thus their designation as canonical, 
comes from their null space properties. The characteristic null space of an operator is the union of 
all irreps which identically yield zero under the action of the operator. In the case of a tensor 
operator of degeneracy one, the null space is uniquely determined by the group properties of the 
operator and the state operated upon: for higher degeneracy the operators for distinct degeneracy 
labels are chosen to have a null space each larger than the previous and completely containing it. 

Adopting the alternative viewpoint-the WCGs as coupling coefficients which give the am- 
plitude for the joining of two SU3 states to a composite state of good SU3 quantum numbers- 
coefficients which exhibit symmetry under interchange of the two states being coupled are sug- 
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4188 H. T. Williams: SU3 isoscalar factors 

gested (a symmetry missing from the canonical coefficients).4 The WCGs for those couplings 
which have degeneracy 1 possess this symmetry, and indeed all the symmetries under permutation 
of irreps of the familiar SU2 Clebsch-Gordan coefficients. It has been proven that such permu- 
tation symmetric WCGs for the SU3 case with degeneracy > 1 exist5-7 and examples of such SU3 
WCGs have been developed.8’9 

In the sections which follow, new results pertaining to the SU3 WCGs are presented which 
simplify evaluation of the WCGs, and which are independent of the particular scheme adopted for 
outer degeneracy resolution. In particular, a collection of recursion relations are defined for the 
isoscalar factors. An algorithm is presented which utilizes these recursion relations to generate a 
set of WCGs demonstrating all the Racah symmetries familiar from SU2. This algorithm has been 
used in a successful C language implementation. 

II. DEFINITIONS AND NOTATION 

A linear vector space which carries an irrep of SU3 is fully specified by two integers (p,q), 
henceforth referred to as the irrep labels. The dimension of the space is 

d=(p+ l)(q+ l)(p+q+2)/2. (1) 

A complete set of d orthogonal vectors within the irrep can be labeled by three further integers 
(k,l,m), the subspace labels, which satisfy the betweenness conditions 

p+q>kzq>l>O; k>m21. (2) 

A fully specified member of the orthonormal spanning set for the irrep is denoted by the ket 

The WCGs are the coefficients (C) of the expansion of a composite SU3 state ket in terms of 
products of SU3 kets, 

(3) 

where Fis shorthand for the pair (p,q) and K for the set (k,l,m); the sum extends over subspace 
labels of ~~ and K~, and n=O,l,... labels the outer degeneracy. The Wigner-Eckart Theorem 
relates the WCGs to matrix elements of operators 7’i,q;k,l,m, which transform like tensors under 
the operations of SU3: 

the reduced matrix element, is a complex number which depends only upon the three sets of irrep 
labels. (The unit tensor operators of the Biedenharn scheme are so named since each has a reduced 
matrix element of one.) 
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The ket labeling scheme described above represents the decomposition SU3XU2@Ul. The 
labels (k,l,m) are the quantum numbers of the SU2 subgroul5, and are related to the isospin (I) 
and its z. component (I,) by 

k-j 
I=- 

2 ’ 

k+Z 
Z,=m- ~ 2 ’ (6) 

and the Ul subgroup with the hypercharge (Y) given by 

Y=k+Z+(p+2q). (7) 

The WCG of Eq. (3) will vanish unless the subspace labels obey the relations 

z,+z,az, 

II,-z,Ia 

IIz+12z=Iz 9 (9) 

Y,t-Y,=Y. (10) 

This decomposition allows factoring of an SU2 Clebsch-Gordan coefficient from the SU3 WCG 
as follows: 

[91] [;2] [F-j 11 12 z 

%,] [K21 [K]=cz~, I2z 1, 
FYp,q,k,l;p, ,ql ,k, 91, ;p2,q2&,12), (11) 

where the factor F, which is independent of the m subspace labels, is called the isoscalar factor 
(ISF). In subsequent usage, when their values are obvious from the context, the p and q values 
will be suppressed in the notation for the ISF. 

A particular set of subspace labels, k=m=p fq, E=O, will play an important role in the 
present consideration. This set, referred to as the state of highest weight (SHW) for a particular 
irrep, will be referred to by the replacement.(k =p + q, E =0, m =p + q)+SHW and likewise in the 
isoscalar factor by (p,q,k=p+q, Z=O)-+(p,q,SHW). 

Ill. OUTER DEGENERACY 

The Clebsch-Gordan series for SU3, 

(PI ~qi)@(P2*q2)=I$ Vi(PlT411, (1% 

indicates the number of distinct times (vi) the irrep (pi ,q;) appears in the outer product of irreps 
(pl ,q,) and (p2,q2). The circumstance of vi>1 is a feature of SU3 referred to as outer degen- 
eracy, and the coefficients vi will be referred to herein as the degeneracy of the coupling 
(PI $?*)@.(P242)4P! 7ql). 

The value of the degeneracy is a function of the six irrep labels and can be deduced from the 
betweenness conditions of Eq. (2) for each irrep, and the requirements of the SU2 and Ul sub- 
groups, given in Eqs. (8)-(10). These latter requirements follow from the corresponding Clebsch- 
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Gordan series for SU2 (triangularity of three Euclidian vectors in two dimensions) and for Ul 
(scalar addition). Various ways of evaluating the degeneracy appear in the literature.‘Ot” An 
equivalent expression for the degeneracy consistent with present notation is 

v=max($+ 1 -max(y,a),O), 
(13) 

~‘=min~1+~,~2+~,q+c+,q~+y,q~+y,p+y,2(a+y),p~+4~-y-~,p~+q2-~-~) 

where y=(p1+p2-p)/3, and o-=(q1+q2-q)/3. 
This expression can be used to prove Braunschweig’s conjecture which has been used by 

several authors12-‘” in work related to determination of WCGs for SU3. The conjecture suggests 
that the number of nonvanishing values of the WCG, 

rp11 $21 [?l 

% -W [~21 CSHW’ 
(14) 

is no less than the degeneracy of the irrep coupling. The value for the subspace label m2 is fixed 
by Eq. (9) and Z2 is dependent upon k, through Eq. (10) 

b+b=p2+q2- yfu, (15) 
so counting the number of nonvanishing WCGs of this type can be accomplished by determining 
the range of k, values. Upper and lower limits on k, come from the triangularity expressions of 
ELq. (8) combined with Eq. (15), producing 

k2ap2+q2-2y-c, k2a y+2u, (16) 

k,cp+q+ y+2u. 

The betweenness relations for state 2 give further limits on k2(p2+q2>k2>q2) and on 
Z,(q,>l,Z=O), which when combined with Eq. (1.5) produce 

kz==u- ~4~2, k2ca- y+p2+q2. (17) 

The limits on k, are thus 

which implies that the total number of k2 values producing nonvanishing WCGs in this case is 
given by 

l+min( y+2a,u+2 y,p2+42-u-2 y,p2+42- y-2v,q2,q2 

+ y-tT,p~+q~,p+q,p+q-q2+y+2~,p+q-P2+2Y+~)~ (19) 

A term-by-term comparison of this expression with that for the degeneracy [Eq. (13)] reveals that 
the number of k, values producing nonvanishing WCGs of the form of Eq. (14) is greater than or 
equal to the degeneracy. This inequality is sufficient for the uses of the previously cited references, 
and has been important in the development of the algorithm presented later in this paper. 
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IV. RECURSION RELATIONS 

An efficient scheme for evaluation of the SU3 ISF independent of the method chosen for 
resolution of outer degeneracy involves use of recursion relations for these quantities, which can 
be derived using the group generators.” Explicit expressions for the generators depend upon a 
choice of signs of the matrix elements of the generators between elements of the fundamental 
three-dimensional representation: those given below follow the phase convention of de S~art.‘~ 
The actions of these generators on the orthonormal kets previously defined are 

f+Ip,q;k,Z,m)=J(k-m)(m-Z+ l)lp,q;k,Z,m+ l), 

f-\p,q;k,Z,m)=J(k-mf l)(m-Z)lp,q;k,Z,m- l), 

~+(p,q;kJ,m)= 
(k+2)(m-Zf l)(k;q+ l)(p+q-k) 

(k-Z+l)(k-Z+2) Ip,q;k+ l,l,m+ 1) 

+ 
(Z+ l)(k-m)(q-Z)(p+q-Z+ 1) 

(k-Z)(k-Z+ 1) b,s;k,l+ l,m+ I>, 

?-Ip,q;W,m)= 
(k+ l)(m-Z)(k-q)(p+q-k+ 1) 

(k-Z)(k-Z+ 1) Ip,q;k- l,l,m- 1) 

Ip,q;k,E- l,m- I), 

fi+lp,q;k,l,m)= (k+2)(k-m+ l)(k-q+ l)(p+q-k) 

(k-Z+ l)(k-Z+2) Ip,q;k+ LLm) 

_ tm-~>tZ+1)(4-Z)(p+4-Z+ 1) 
(k-Z)(k-Z+ 1) Ip,q;k,l+ l,m), 

fi-b,q;k,l,m)= (k+ l)(k-m)(k-q)(p+q-k+ 1) 
(k-Z)(k-Z+ 1) Ip,q;k- l,Z,m) 

Z(m-Z+ l)(q-Z+ l)(p+q-Z+2) - 
(k-Z+ l)(k-Zf2) Ip,q;k,l- Lm). 

Three diagonal operators indicate the values of the subspace labels for a ket: 

?lp,q;k,Z,m)= Y\p,q;k,Z,m), 

(20) 

(21) 

(22) 

(2% 

(24) 

(25) 

(26) 

(27) 

(28) 

making use of the definitions of Eqs. (6) and (7). The operators ?+ and ?- move up and down in 
the variable I,, and thus have no effect on the ISF. The remaining four nondiagonal (ladder) 
operators form the basis of the derivation of the recursion relations. 

Consider a composite state of highest weight: 
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l~SHw)=~ c ‘1;; ;f;; &$ Il?,;K,)ls?2;K2). (29) 

The action of c+ on this ket must vanish since each of the two staies it ;produ:es have m =p + q 
+ 1, which violates betweenness. Linearity of the generators (e.g., V, = VI + + V,,) implies from 
Eq. (29) that 

+I-i/71;K,)~z+I~+2)). (30) 

Use of the defining equation for Q+ [Eq. (22)] changes this expression into a summed four-term 
expression which must vanish. The orthogonality of any two SU3 kets with different subspace 
labels allows this sum to be transformed into a four-term recursion relation for the WCG: 

ml-ll)(kl-ql)(Pl+ql-kl+l) 
(k,-l,)(k,-l,+l) 

c41 rG21 [?I 

xc[kl-l,~~,mI-ll [k2,h,,m21 [SHWI 

(k2+ l)(b-qdtp2+q2-b+ l)(m-b+ 1) 

(k,-Mb-b+ 1) 
n 

I 

xc[k,~,]ml] [k2- l:z:,- l] [:g, 

+ 
Z,(q,-1,-C l)(ki--ml+ l)(pi+qi-Zt+2) 

(k,-Z,+l)(k,-Z1+2) 

[& 1 621 [?I 

XC[kl,[l-l,mt-l] [k2,12,m21 [SHWI 

+ 
12(k2-m2+ l)(q2-12+ l)(p2+42-l2+2) 

(k2-Z2+ l)(k,-1,+2) 
n 

xC[kl~,]ml] [k2,Z2?$!z2- l] $I%]- (31) 

This should be valid for any set of projection quantum numbers, thus for k t = m i which allows the 
replacement of the WCG in this expression by products of ISF and simple SU2 Clebsch-Gordan 
coefficients whose values can be expressed analytically.17 The result of this replacement is a 
four-term recursion relation among the ISFs for coupling to a state of highest weight: 

O=a,F”(SHW:kt- 1,Z,;k2,Z2)+a2F”(SHW:k,,Zl;k2- l,Z,)-a3Fn(SHW:kl,Zl- l;k,,Z,) 

+a4F”(SHW:kl,ZI;k~,Z2- l), 
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where 

4193 

(k,+ l)(k,-q,)(p,+q,-k,+ 1)(p+q+2Z,+2Z2+3)(p+q+2~,-212+ 1) 
al= 

1lWlf 1) 

(k2+ l)(k,-qz)(p2+q2-k2+l)(p+q+2~,+2Z,+3)(p+q-2~,+2~2+ 1) 
a2= 

12w,+ 1) 
9 

(32) 
Z,(q,-1,+1)(p,+q,-1*+2)(-p-q+21,+21~+1)(p+q-2~1+2~2+1) 

a3= 
(=I+ 1w1+ 1) 

z2(q2-12+1)(p2+q2-z2+2)(-p-q+211+~~2+~)(P+4+~~1-~~2+~) 
a4= 

t=,+ l)(zz+ 1) 

Similarly, 

since the two kets produced by this operation both violate betweenness. By an analogous set of 
steps one derives a second, distinct recursion relation: 

+b4FR(SHW:k,,Z,;k2,Z2+ l), 

where 

(k2+2)(k2-q2+1)(p2+q2-k2)(-p-q+2~,+2~,+l)(P+4+2z,-2z~+ l) 

w2+ l)(~2f 1) 

(34) 
(I,+ l)(q,-z,)(p,+q,-z,+ l)(P+q+2~,+2~2+3)(P+4+2~1-2~2+ 1) 

11c21,+ 1) 
3 

(12+ l)(q2-12)(p2+q2-Z2+ 1)(p+q+~z,+~z2+3~~P+q-~~1+~~2+ 1) 

12t=,+ 1) 

One can “step down” from the ISFs for the coupled state of highest weight to ISFs for any 
other k, 1 v6alues by, use of two relations derived in an analogous fashion from the actions Of the 
operators V- and U+ , respectively: 

F”(k,Z:k,,Z,;k2,Z2)=a(c,F”(k+1,Z-l:kl,Z,;k2,Z2)+c2F”(k,Z-l:kl,Z,-l;k2,Z2) 

-c~F”(k,Z-1:k~,Z~;k2-1,Z2)+c4F”(k,Z-1:k~,Z~;k2,Z2-l), (35) 

k-Z+2 
Ly= 

J2Z(q-z+ l)(pfq-1+2) ’ 
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(k+2)(k-q+l)(p+q-k)(Z,+Z,-I)(--I,+I,+I+l) 
c,= (I+ 1)2(z1+z2+z+2)(z,-z2+I+ 1) ’ 

(k2+1)(k2-q2)(P2+q2-k2+1)(I1+~2-I) 
c3= z,(212+ l)(Z,-z,+z+ 1) ’ 

12(q2-z2+ 1)(P2+42-12+2)(-~1+~2+~+ 1) 
c4= (2z,+ l)(Z,f l)(z,+z,+z+2) ; 

and 
. 

F”(k,O:kl,Zl;k2,Z2)=~(dlFn(k+1,0:k,+l,Zl;k2,Z2)+d2F”(k+l,O:k,,Z,;kz+1,Z2) 

+d,FYk+ l,O:k, ,I, ;k,,I,+ l)), (36) 

where 

k,+2)(k,-q,+l)(p,+q,-k,)(2z,+l) 

(z,+1)(1,+1,+1+2)(1,-z,+z+ 1) ’ 

(k,+2)(k,-q2+ l)tP2+q2-kz)(-z,+z2+z+ 1) 

(212+ l)(Z,f 1)(1*+1,+1+2) ’ 

(12f l)(q,-~,)(P2+42-~2+ 1)U,f~,-I) 

1,(21,-t l)(Z,-z2+z+ 1) * 

The second of these two expressions is not the most such general relation which can be derived, 
but when used in combination with the-first, it is sufficient to determine the value of any ISF for 
the given irrep coupling, once the values of the ISFs for k,Z=SHW are known. 

V. DETERMINING THE ISOSCALAR FACTORS 

To move from the recursion relations to determination of the ISF, a sign convention and a 
resolution scheme for outer degeneracy must be chosen. For a given coupling, 

(Pi ~~1)@(P2r42)-+(P&?), 

the degeneracy is determined by Eq. (13). For cases of degeneracy v= 1, the choice of sign of one 
of the nonvanishing ISFs for (k,Z) =SHW is sufficient to determine all the others. In practice, one 
such ISF is set equal to 1; Eqs. (32) and (34) are used to generate all others from this one; and all 
are multiplied by a common factor to enforce the normalization condition 

k, ,I32 [2 (F(SHW:k, J, ;k,,ld)2= 1. (37) 
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Even in such simple cases, the particular ISF to initialize must be chosen as one which allows 
use of the recursion relations (32) and (34) to determine neighboring values, and a recursive path 
from the starting point to arbitrary ISFs must be deduced. 

When the (k,Z)=SHW ISFs are all known, Eq. (36) can be used to deduce all k<p+q, I=0 
ISFs, and from them Eq. (35) implies all I>0 cases. 

The most delicate problem is the determination of an algorithm which uniquely determines all 
ISFs in cases of outer degeneracy two or higher. Such an algorithm has been developed and 
implemented in C language codes for evaluation of arbitrary ISFs as floating point values, and as 
exact precision square roots of a ratio of integers. ” The ISFs produced by this algorithm share all 
the symmetries under irrep exchange and conjugation with the familiar SU2 Clebsch-Gordan 
coefficients. 

The logic of the algorithm can be made clearer through a change of variables. Of the four 
integers, k, ,I, , k2, 1, , used heretofore as parameters of the isoscalar factor for a coupling to a state 
of highest weight, only three are independent. The hypercharge conservation relation (10) implies 

Use of the definition 

s=k,-11+k2-Z2 

allows the ISFs to be expressed as F”(SHW:s,k, ,Zt). The degeneracy index n =O,l,...,v- 1 is 
necessary for couplings with degeneracy +l. The algorithm works as follows: 

6) Make the following assignments for 0=3t<v, O=+z’<~; 
F”(SHW:s,,-2n’,klmin,Zlmin)=Sn,nr, where Sis the Kroneker delta. 

(ii) Using these assignments, the recursion relations (32) and (34) are adequate to determine all 
ISFs (with k,Z=SHW) for s,,~szs,,-2(77-l). 

(iii) The ISFs (with k,Z=SHW) for remaining values of s can be determined without further 
assignments, evaluating each set of values for fixed s before moving to lower s. To move 
to a lower s value, the recursion relation reduces to only three terms either at k1 = k l max, 
Zl=Zlmin; or at kl=klmin, Zl=Zlmax. This allows determination of one ISF for the new s 
value, which then allows the evaluation of all others at this s value using the full four-term 
recursion relation. This stepdown procedure fails in a small subset of cases, whereupon one 
must take advantage of permutation symmetry (discussed below) to move to the lower 
value of s. 

(iv) The F’(SHW:s,k, ,k2) values, once normalized, are proper isoscalar factors. A linear com- 
bination of the F’s and the F’s, made orthogonal to F” and normalized, become proper 
F’(SHW:s,k, ,k2) values. Likewise, using the Gram-Schmidt orthogonalization procedure, 
each set of F” with higher n is constructed from those with lower ns. 

(v) Remaining ISFs for values of k,Z#SHW can be determined in a straightforward way using 
the remaining recursion relations, (35) and (36). 

In this description, s,, is the maximum value of s for which a nonvanishing ISF occurs for 
a coupling of fixed p, q, p,, q,, p2, q2 values: klti, lIti, klmax, Zlmax are the minimum 
and maximum values of the k , and 1, variables for a particular value of s. 

VI. SYMMETRIES OF THE ISOSCALAR FACTOR 

The symmetries of the SU2 Clebsch-Gordan coefficient under permutation of irreps (ji ,mi) 
and under conjugation (j,m--+j, -m), known as the Racah symmetries, are well known and 
frequently utilized to simplify tabulations of coefficients and recoupling calculations. For SU3 
couplings of degeneracy one, a complete set of Racah symmetries can be demonstrated. The 
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algorithm described in Sec. V extends these symmetries to couplings of arbitrary degeneracy, in 
contrast to some other degeneracy resolution schemes. Once the symmetries of the SU3 WCG are 
known, one can use the symmetry relations for the SU2 Clebsch-Gordan coefficients to deduce 
symmetry properties of the SU3 isoscalar factors. 

Derivation of the symmetry relations for the SU3 WCG is straightforward, albeit tedious. If 
one applies the V, operator [Eq. (22)] to both sides of the defining expression for the WCG [Eq. 
(3)], the result is a linear expression involving six WCGs of various indices and corresponding 
coefficients which sum to zero. Under each of the transformations 

(1) (~1 ,ql;kl JI ,ml)*(P2,q2;k2,Z2,m2), referred to as (14); 
(2) (p*,ql;k,,Z,,m,)j(q,p;p+q-Z,p+q-k,p+q-m) and (p,q;k,Z,m)~(ql,pl;pl+ql 

-Zl,pl+ql-kl,pl+ql-ml), referred to as (l-5); and 
(3) (p,q;k,Z,m)--+(q,p;p+q-Z,p+q-k,p+q-m) and similarly for the states pl,q, and 

p2 ,q2, referred to as conjugation, 

the coefficients in the six term expression of WCGs transform among one another in pairs, easily 
exhibiting the fact that the transfotmed WCGs (within a sign which depends on the k,Z,m indices) 
obey the same six term recursion relations as the original WCGs. 

The symmetry transformations can also involve a sign change which depends upon the p and 
q variables. This is fully dependent upon another sign convention which must be chosen in order 
to fully specify the WCGs and ISFs. Convenient choices are 

c jl j2 j 

ml=jl m2=-j2 >O, 

the familiar Condon and Shortley phase convention,” and 

with the s value of the F chosen to be positive given as s--n. To derive the p,q dependence of 
the phase under one of the symmetry transformations, begin with a SU3 WCG which is positive 
under this convention; apply the transformation; and determine the sign of the transformed WCG 
relative to that which is positive by convention among the transformed coefficients, using the 
recursion relations derived earlier. This sign, which will depend upon the six p,q values only, 
becomes part of the symmetry relation. 

The absolute magnitude of the ratio of a WCG to its permuted version results from the 
normalization condition 

2 

c =” KI ‘K2 
(38) 

It is straightforward to show that two of the transformations-(l-2) and conjugation-produce 
no change in normalization and thus require no constant term; and the third-( 1 ts 33)-requires a 
constant equal to the square root of the ratio of the dimension of the irreps Pi and 9. 

When one considers couplings which have degeneracy greater than one, each set of distinct 
WCG’s (labeled by the index n) has a unique element chosen as positive by convention. As a 
result, there is an additional phase contribution of (- 1)” in each of the transformations considered 
here. 

The resulting symmetry relations are as follows: 
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n 
[27$-j [.b ] [9, +::1] :zi ~~=(-l)Y+~+m~(~,u)+nc~K21 LK:l ,Kl (39) 

for the (I-2) transformation; 

(40) 

for the (1~ 33 transformation (where .? represents the ordered pair q,p and Zrepresents p + q - 1, 
p+q-k, pfq-m); and 

[2y [g2] [T, [$J [.s2] [9, 
yK,] LK2] LK]=(- l)~+g+tin(y~~)+nCIK_il [E2] [jq (41) 

for the conjugation transformation. 
bJo additional information is given by repeating this procedure with the ladder operators c- 

and U, since they are related to the two operators already considered by Hermitian conjunction: 
similar treatment using ?+ and ?- generate the symmetry relations for the SU2 Clebsch-Gordan 
coefficients. 

Corresponding symmetry relations for the isoscalar factors follow from the above combined 
with the symmetry relations for the SU2 Clebsch-Gordan coefficients in the Condon and Shortley 
phase conventions. They are 

F’(,P,K:,Y, ,K~ ;p2,K2)=( - l)~+uT+max(~*o)+“fzlf’2-‘Fn(~,~:~~,~2;~~ ,K,) 

for the (l-2) transformation [here K represents the pair (k, Z)]; 

(42) 

xFn(L?i ,i?l :33792,K2) (43) 

for the (l+-+ 3 transformation; and 

for the conjunction transformation. 
The choice of a resolution procedure which yields symmetries such as these produces con- 

siderable simplifications in calculations of physical states, reduces the complexity of definitions of 
6-j and 9-j type recoupling coefficients, and significantly shortens databases and printed tables 
of WCGs and ISFs. 
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Errata: Fluctuations of a spherical gravitational impulsive 
wave [J. Math. Phys. 34, 690-699 (1993)] and 
Fluctuations of a rotating impulsive wave 
[J. Math. Phys. 35, 3043-3050 (1994)] 

Y. Enginer and M. ljortapu 
Physics Department, TUBITAK Marmara Research Center, Research Insritute for Basic 
Sciences, Gebze, Turkey and Physics Department, Faculty of Sciences and Letters, 
ITU 80626 Maslak, Istanbul, Turkey 

N. 6zdemir 
Physics Department, Faculty of Sciences and Letters, ITiJ 80626 Maslak, Istanbul, Turkey 

(Received 18 March 1996; accepted for publication 18 March 1996) 

[SOO22-2488(96)02508-X] 

There are two main common errors in these papers. 
1. The Greens function, used in Eq. (25) of the paper published in J. Math. Phys. 34,690-699 

(1993) has to be multiplied by u/u ’ when applied to the inhomogenous term. The same expression 
is also used in the article, J. Math. Phys. 35, 3043-3050 (1994). This modifies Eq. (28) of the first 
article as 

and Eq. (26) of the second article as 

2 k,-k2x 
f,=- 

Y 
zu x2+y2 

+iR tar-’ ;. 

The following expressions change accordingly. 
The final expression which does not appear explicitly in these references reads 

G;)= - 1 1 0(u)u-e(u’)u’ 6 
32rr (u-u’)(u-u’) (u-u’) I[ z log(x2+y”)-2C tar-’ y/x 1 8(u)u’-8(u’)u (u-u’) [S log(x2+y”)-4e tar-’ y/x] 

[ 

6 
+(e(u)+e(u’)) 4 log(x2+y2)-26 tan-‘y/x . 1 

Here the terms proportional to S give the result in the first paper and those proportional to E give 
the result in the second paper. We could not find the finite part of these expressions as u goes to 
u’ and u goes to u’. 

2. The symmetrization of the final expression in the above mentioned articles is not correct. 
As seen in this expression upon proper symmetrization the Hadamard form for the Greens function 
is obtained, contrary to the claims made in these two articles. 
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Canonical commutation relations, the Weierstrass Zeta
function, and infinite dimensional Hilbert space
representations of the quantum group Uq(sl2)

Asao Araia)
Department of Mathematics, Hokkaido University, Sapporo 060, Japan

~Received 13 November 1995; accepted for publication 25 April 1996!

A two-dimensional quantum system of a charged particle interacting with a vector
potential determined by the Weierstrass Zeta function is considered. The position
and the physical momentum operators give a representation of the canonical com-
mutation relations with two degrees of freedom. If the charge of the particle is not
an integer~the case corresponding to theAharonov–Bohm effect!, then the repre-
sentation is inequivalent to the Schro¨dinger representation. It is shown that the
inequivalent representation induces infinite-dimensional Hilbert space representa-
tions of the quantum groupUq~sl2!. Some properties of these representations of
Uq~sl2! are investigated. ©1996 American Institute of Physics.
@S0022-2488~96!00108-9#

I. INTRODUCTION

In a previous paper,1 we considered a quantum system of a charged particle moving in the
Euclidean planeR2 under the influence of a perpendicular magnetic field, which may be strongly
singular at some fixed pointsa1,...,aN in R2. If the magnetic field is concentrated on the discrete
set $an%n51

N in the sense of distribution, then the position and the physical momentum operators
give a representation of the canonical commutation relations~CCRs! ~Heisenberg relations! with
two degrees of freedom.

Here we recall some technical terms in the representation theory of CCR. A set
$H,D ,$Qj ,Pj% j51

d % consisting of a Hilbert spaceH, a dense subspaceD of H, and self-adjoint
operatorsQj , Pj , ( j51,...,d) is called a representation of the CCR withd degrees of freedom if
D,ùj ,k51

d [D(QjQk)ùD(QjPk)ùD(PkQj )ùD(PjPk)] @D(T) denotes the domain of operator
T# and the CCR,

@Qj ,Qk#50, @Pj ,Pk#50, @Qj ,Pk#5 id jk , j ,k51,...,d,

hold onD , where [S,T]:5ST2TS. Following Putnam,2 we say that a set$Qj ,Pj% j51
d of self-

adjoint operators on a Hilbert space is aSchrödinger d systemif it is unitarily equivalent to a direct
sum of the Schro¨dinger representation of the CCR withd degrees of freedom. A representation
$H,D ,$Qj ,Pj% j51

d % of CCR is calledequivalent~resp.,inequivalent! if $Qj ,Pj% j51
d is ~resp., not!

a Schro¨dingerd system.
In Ref. 1 the following facts were shown:~i! the representation of CCR mentioned above is

equivalent if and only if the magnetic flux is locally quantized~i.e., the magnetic flux at each point
an (n51,...,N) is an integer multiple of 2p/a, wherea is the charge of the particle!; ~ii ! the
inequivalent representation appearing in the case where the magnetic flux is not locally quantized
may be regarded as a mathematical form of theAharonov–Bohm effect.3 A geometric construction
of a representation of CCR that is unitarily equivalent to the one given in Ref. 1 was considered
by Kurose and Nakazato,4 and more detailed properties of the representation were discussed.

a!Electronic mail: irai@math.hokudai.ac.jp
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To investigate differences between the equivalent and the inequivalent representations of CCR
in Ref. 1, an analysis has been made on Dirac–Weyl operators defined in terms of the physical
momentum operator.5 Moreover, the framework and results in Ref. 1 were extended to the case of
a non-Abelian gauge theory.6,7

Recently Wiegmann and Zabrodin8 considered a quantum system of a particle on a two-
dimensional square lattice in a magnetic field and showed that magnetic translations on the lattice
are related to finite-dimensional representations of the quantum groupUq~sl2!. Inspired by their
work, we investigate in this paper if there is any connection between the quantum system consid-
ered in Ref. 1 and representations ofUq~sl2!. We shall show that, for a vector potential determined
by the Weierstrass Zeta function, special elements of the unitary groups generated by the compo-
nents of the physical momentum operator induce representations ofUq~sl2! on the Hilbert space
L2~R2!. This establishes a connection of a classical special function toUq~sl2!. A particular feature
of the representations ofUq~sl2! given in this paper is that they have no finite-dimensional irre-
ducible components.

The present paper is organized as follows. In Sec. II we consider a quantum system of a
charged particle inR2 under the influence of a perpendicular magnetic field that may be singular
at points in aninfinite lattice @see~2.1!#. This is an extension of the framework of Ref. 1 to the
case where the number of possible singular points of the magnetic field is infinite. Fundamental
results in Ref. 1 continue to hold in the present case too with no significant modifications. As in
the case of Ref. 1, the position operator and the physical momentum operatorP5(P1 ,P2) of the
particle give a representation of the CCR with two degrees of freedom if the magnetic field is
concentrated on the infinite lattice. Spectral properties of the unitary operators generated byP1
andP2 are analyzed. Also, we show that, under some conditions for the vector potential of the
magnetic field,P1 andP2 have permutation-reflection symmetries.

In Secs. III–V, we consider the special case where the vector potentialA5A1 dx1A2 dy ~a
1-form! of the magnetic field is given by the Weierstrass Zeta functionz in such a way that
z5A21 iA1 @see~3.2!–~3.4!#. We first show in Sec. III that, if the charge of the particle is not an
integer, then special elements of the unitary groups generated byP1 andP2 give representations
of the quantum plane. Unitary equivalences of these representations are discussed. As is shown in
Ref. 8, a representation of the quantum plane with some additional properties induces represen-
tations ofUq~sl2!. Applying this idea, we construct in Secs. IV and V representations ofUq~sl2! on
L2~R2! and investigate some properties of them.

II. A CHARGED PARTICLE IN A MAGNETIC FIELD WITH POSSIBLE SINGULARITIES
ON AN INFINITE LATTICE

A. Representation of CCR

We consider a quantum system of a charged particle with chargeaPR\$0% moving in the
planeR25$r5(x,y)ux,yPR% under the influence of a perpendicular magnetic fieldB that may be
singular at points in the infinite lattice,

Zv1 ,v2

2 :5$Vm,n5~v1m,v2n!um,nPZ%, ~2.1!

wherev j , j51,2, are positive constants andZ is the set of integers. A vector potential of the
magnetic fieldB is given by acontinuously differentiablereal 1-formA5A1 dx1A2 dy on the
nonsimply connected domain

M5R2\Zv1 ,v2

2 , ~2.2!

such that

B5DxA22DyA1 , ~2.3!
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in the distribution sense, whereDx andDy are the generalized partial differential operators in the
variablesx andy, respectively. We say thatA is flat onM if B50 onM , i.e.,B is concentrated
on Zv1 ,v2

2 ~in the sense of distribution!.

Throughout this paper we use a physical unit system such that\ ~the Planck constant divided
by 2p!5c ~the light velocity!51. Let (Q1 ,Q2) be the position operator of the particle, i.e.,Q1 and
Q2 are the maximal multiplication operators byx and y acting in the Hilbert space
L2~M !>L2~R2!, respectively. The physical~kinetic! momentum operatorP5(P1 ,P2) of the par-
ticle is defined by the operators

Pj5pj2aAj , j51,2, ~2.4!

acting inL2~R2!, where (p1 ,p2) is the momentum operator of the free particle:

p152 iD x , p252 iD y . ~2.5!

We denote byC0
m~M ! (m50,1,2,...) thespace ofm times continuously differentiable func-

tions onM with bounded support inM . In the same way as in Ref. 1, we can prove the following
fact.

Lemma 2.1:
~i! Each Pj is essentially self-adjoint on C0

1(M ). (We denote the closure of Pj by the same
symbol.)

~ii ! Suppose that A is flat onM . Then$L2(R2), C0
2(M ), $Qj ,Pj%j51

2 % is a representation of the
CCR with two degrees of freedom.

The analysis of the representation$L2~R2!, C0
2~M !, $Qj ,Pj% j51

2 % in Lemma 2.1 can be done in
quite the same way as in the case whereZv1 ,v2

2 is replaced by a finite discrete set inR2 ~see Refs.

1, 4, and 6!. Hence, as for that, we describe only results needed later. Let

S15R\$mv1%mPZ , S25R\$nv2%nPZ .

For (x,y)PR3S2, we can define

U1~x,y!5expS 2 iaE
0

x

A1~x8,y!dx8D . ~2.6!

ThenU1 defines a unique unitary operator as a multiplication operator onL2~R2!. Similarly, the
function

U2~x,y!5expS 2 iaE
0

y

A2~x,y8!dy8D , ~x,y!PS13R, ~2.7!

defines a unique unitary operator as a multiplication operator onL2~R2!. We then haveoperator
equalities,

Pj5Uj
21pjU j , j51,2. ~2.8!

It follows from these relations that, for alltPR, cPL2~R!, and for almost everywhere~a.e.!
(x,y),

~eitP1c!~x,y!5expS 2 iaE
x

x1t

A1~x8,y!dx8Dc~x1t,y!, ~2.9!
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~eitP2c!~x,y!5expS 2 iaE
y

y1t

A2~x,y8!dy8Dc~x,y1t !. ~2.10!

Let C6(x,y;s,t) ~x,y,s,tPR! be hook-shaped paths from (x,y) to (x1s,y1t) given by

C2~x,y;s,t !5$~x1us,y!u0<u<1%ø$~x1s,y1ut !u0<u<1%,

C1~x,y;s,t !5$~x,y1ut !u0<u<1%ø$~x1us,y1t !u0<u<1%,

and set

C~x,y;s,t !5C1~x,y;s,t !21+C2~x,y;s,t !, ~2.11!

the rectangular path: (x,y)→(x1s,y)→(x1s,y1t)→(x,y1t)→(x,y). For s,tPR, we set

S1
~s!5R\$v1m,v1m2sumPZ%, S2

~ t !5R\$v2n,v2n2tunPZ%, ~2.12!

and define

M s,t5S1
~s!3S2

~ t ! , s,tPR. ~2.13!

For eachs,tPR, we can define a functionFs,t
A onM s,t by

Fs,t
A ~x,y!5E

C~x,y;s,t !
A, ~x,y!PM s,t , ~2.14!

which physically means the magnetic flux passing through the interior domain of the closed curve
C(x,y;s,t). SinceR2\M s,t is a null set with respect to the two-dimensional Lebesgue measure, one
can regardFs,t

A as a real-valued function onR2, which is a.e. finite. HenceFs,t
A defines a unique

self-adjoint multiplication operator onL2~R2!. We denote this operator by the same symbol. The
following theorem gives commutation relations for the one parameter unitary groups generated by
Qj andPj , j51,2.

Theorem 2.2. ~cf. Theorem 2.1 in Ref. 1!: For all s,tPR,

eisQjeitPk5e2 istd jkeitPkeisQj , ~2.15!

eisP1eitP25e2 iaFs,t
A
eitP2eisP1. ~2.16!

Following Ref. 1, we say thatthe magnetic flux is locally quantized if, for all s,tPR, Fs,t
A is a

2pZ/a-valued function onM s,t.
Theorem 2.2 implies the following characterization of the representation$Qj ,Pj% j51

2 of CCR
in the case whereA is flat @Lemma 2.1~ii !#.

Theorem 2.3: Suppose that A is flat onM . Then the representation$Qj ,Pj%j51
2 of CCR is

equivalent if and only if the magnetic flux is locally quantized.
Remark:~i! In the case where the magnetic flux is not locally quantized, formula~2.16! may

be regarded as a mathematical form of theAharonov–Bohm effect.9 Thus the inequivalent repre-
sentation of$Qj ,Pj% j51

2 corresponds to the Aharonov–Bohm effect.
~ii ! In operator theory, two self-adjoint operators,S andT, on a Hilbert space are said to be

strongly commutingif their spectral measures commute. It is well known thatS andT are strongly
commuting if and only ifeiaSeibT5eibTeiaS for all a,bPR ~Theorem VIII.13 in Ref. 10!. It
follows from this fact and~2.16! that P1 and P2 are strongly commuting if and only if the
magnetic flux is locally quantized.
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Let v0.0 be a number such that, for all (m,n),(m8,n8)PZ2 with (m,n)Þ(m8,n8),
$r uur 2 Vm,nu , v0%ù$r uur 2 Vm8,n8u , v0% 5 0”. The following fact iseasilyproven.

Lemma 2.4: Suppose that A is flat. Let 0,d,v0. Then

gm,n~A!:5E
ur2Vm,nu5d

A ~2.17!

is independent ofd, where the orientation of the integral on the right-hand side (rhs) is taken to
be anticlockwise. Moreover, for all s,tPR,

Fs,t
A ~x,y!5e~s!e~ t ! (

Vm,nPD~x,y;s,t !
gm,n~A!, ~x,y!PM s,t ,

where D(x,y;s,t) is the interior domain of C(x,y;s,t) ande(t) is the sign function:e(t)51 for t>0;
e(t)521 for t,0.

Theorem 2.3 and Lemma 2.4 imply the following fact.
Theorem 2.5:Suppose that A is flat. Then the representation$Qj ,Pj%j51

2 of CCR is equivalent
if and only ifgm,n(A)P2pZ/a for all m,nPZ.

B. Spectral properties

For later use, we investigate spectral properties of some unitary operators. For a densely
defined closed linear operatorT on a Hilbert space, we denote bys(T) @resp.,sp(T)# the spec-
trum ~resp., point spectrum! of T. We set

T5$zPCuuzu51%. ~2.18!

Lemma 2.6:
~i! s(Pj)5R, sp(Pj)50”, j51,2.
~ii ! For all tPR\$0% and j51,2, s(eitPj) 5 T, sp(e

itPj)50”.
Proof: ~i! By ~2.8!, we haves(Pj )5s(pj )5R, sp(Pj )5sp(pj )50” . ~ii ! This follows from

part ~i! and the spectral mapping theorem. j

Lemma 2.7: For all s,tPR\$0%,

sp~e
isP1eitP2!50”, sp~e

itP2eisP1!50”. ~2.19!

Proof: It follows from ~2.9! and ~2.10! that, for alls,tPR,

eisP1eitP25expS 2 iaE
C2~x,y;s,t !

AD eisp1eitp2, ~2.20!

eitP2eisP15expS 2 iaE
C1~x,y;s,t !

AD eitp2eisp1. ~2.21!

Since eisP1eitP2 is unitary, we havesp(e
isP1eitP2),T. Suppose that there exists a vector

cPL2~R2! and a constantlPT such thateisP1eitP2c 5 lc. Then, by ~2.20!, we have
exp(e2ia*C2(x,y;s,t)

A)c(x1 s,y1 t)5 lc(x,y) a.e. (x,y). Henceuc(x,y)u5uc(x1s,y1t)u a.e. (x,y),
which, together with the factcPL2~R2!, impliesc50. Thus the first formula of~2.19! follows.
Similarly, using~2.21!, we can prove the second one of~2.19!. j

Proposition 2.8: Consider the case where the magnetic flux is locally quantized. Then, for all
t,sPR\$0%,

s~eisP1eitP2!5s~eitP1eisP2!5T.
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Proof: Under the present assumption,P1 and P2 strongly commute@see Remark~ii ! after
Theorem 2.3#. Hence, by the two variable functional calculus, we see thatsP11tP2 is essentially
self-adjoint andeisP1eitP2 5 eitP2eisP1 5 ei (sP11tP2), wheresP11tP2 is the closure ofsP11tP2 .
By the two variable functional calculus and Lemma 2.6~i!, we haves(sP11tP2) 5 R. Thus, by
the spectral mapping theorem, we obtain the desired result. j

Remark: We have been unable to identifys(eisP1eitP2) ands(eitP2eisP1) in the case where
the magnetic field is not locally quantized. It would be interesting to see if there appears any
difference from the case where the magnetic field is locally quantized. In the case of Dirac–Weyl
operators defined in terms ofP1 andP2 , such differences exist; see Ref. 5. We leave this problem
as an open problem.

C. Permutation-reflection symmetry of the physical momentum operator

Let Rj :L
2~R2!→L2~R2!, j51,2, be the unitary operators defined by

~R1c!~x,y!5c~2y,x!, ~R2c!~x,y!5c~y,2x!, cPL2~R2!. ~2.22!

Then it is easy to see that

R1R25R2R15I , ~2.23!

R1p1R1
2152p2 , R1p2R1

215p1 , ~2.24!

R2p1R2
215p2 , R2p2R2

2152p1 . ~2.25!

As usual, we denote byz5x1 iy the point in the complex planeC corresponding to
r5(x,y)PR2. We set

Ã~z!5A2~x,y!1 iA1~x,y!. ~2.26!

Proposition 2.9:
~i! Suppose that

Ã~ iz!52 iÃ~z!. ~2.27!

Then

R1P1R1
2152P2 , R1P2R1

215P1 . ~2.28!

~ii ! Suppose that

Ã~ iz!5 iÃ~2z!. ~2.29!

Then

R2P1R2
215P2 , R2P2R2

2152P1 . ~2.30!

Proof: ~i! Condition ~2.27! is equivalent to that

A2~2y,x!5A1~x,y!, A1~2y,x!52A2~x,y!.

Hence, for allcPC0
1~M !,

R1P1R1
21c52P2c, R1P2R1

21c5P1c. ~2.31!
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SinceR1 leavesC0
1~M ! invariant bijectively andPj , j51,2, are essentially self-adjoint onC0

1~M !
@Lemma 2.1~i!#, the vector equations in~2.31! extend to operator equalities~2.28!.

~ii ! Similar to part~i!. j

In Sec. III, we shall consider the case of a vector potential satisfying~2.27! and ~2.29!.

D. Small coupling limit

Finally we consider the small coupling limita→0 of Pj .
Lemma 2.10: For all tPR and j51,2,

s-lim
a→0

eitP j5eitp j , ~2.32!

wheres-lim denotes strong limit.
Proof: For all cPC0

1~M !, we havePjc→pjc ~a→0!. Note thatC0
1~M ! is a common core of

Pj andpj . Hence, by general convergence theorems@Theorem VIII.25~a! and Theorem VIII.21
in Ref. 10#, we obtain~2.32!. j

III. A VECTOR POTENTIAL GIVEN BY THE WEIERSTRASS ZETA FUNCTION AND
REPRESENTATIONS OF THE QUANTUM PLANE

We now specialize the vector potentialA. We set

Vm,n5mv11 inv2 , m,nPZ. ~3.1!

Let z(z) ~zPC! be the Weierstrass Zeta function with poles atz5Vm,n ,m,nPZ:

z~z!5
1

z
1 (

~m,n!PZ2\$~0,0!%
S 1

z2Vm,n
1

1

Vm,n
1

z

Vm,n
2 D . ~3.2!

In what follows, we assume that the vector potentialA is given byA5A1 dx1A2 dy with

A1~r !5Im z~z!, A2~r !5Re z~z!, ~3.3!

so that

z~z!5A2~r !1 iA1~r !. ~3.4!

Then, by the Cauchy–Riemann equation,A is flat onM .
In the present case, the constantgm,n(A) defined by~2.17! is computed as

gm,n~A!52p, ~3.5!

independently of (m,n)PZ2. Hencethe magnetic flux is locally quantized if and only ifa is an
integer. Thus the local quantization of the magnetic flux is equivalent to the ‘‘charge quantiza-
tion.’’ The representation$Qj ,Pj%j51

2 of CCR in the present case is an inequivalent representation
if and only ifa is not an integer.

Let

qa5e2p ia. ~3.6!

Lemma 3.1: For all m,nPZ,

einv2P2eimv1P15qa
nmeimv1P1einv2P2. ~3.7!
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Proof: For all (x,y) P Mv1 ,v2
, D(x,y;v1 ,v2) contains only one point in the latticeZv1 ,v2

2 .

Hence, by Lemma 2.4 and~3.5!,Fv1 ,v2

A 5 2p, a.e., which, together with~2.16!, implies~3.7! with

m5n51. Using this relation repeatedly, we obtain~3.7! with m,nPNø$0%, whose adjoint gives
~3.7! with m,n,0. Noting thateitP j ~tPR! is invertible with (eitP j)21 5 e2 i tP j , we obtain~3.7!
with m>0,n,0 orm<0,n.0. j

Relation~3.7! naturally leads us to thequantum plane,11 which is defined to be the algebra
generated by two elementsX,Y subject to the relation

qXY5YX,

with q a parameter.12 We denote the quantum plane byCq
2.

For an algebraU, a set (p,V) of a complex vector spaceV and an algebraic homomorphism
p :u→End(V) is called a representation ofU.

We denote byB„L2~R2!… the* algebra of bounded linear operators onL
2~R2!. The following

theorem immediately follows from Lemma 3.1.
Theorem 3.2:The following correspondencepa :$X,Y%→B„L2~R2!… defines a representation

of Cqa

2 on L2(R2):

pa~X!5eiv1P1, pa~Y!5eiv2P2. ~3.8!

It should be noted that, in the representation„pa ,L
2~R2!…, pa(X) and pa(Y) are unitary

operators. Also,qaÞ1 if and only if a¹Z.
We have

lim
a→0

qa51, ~3.9!

which means that the small coupling limita→0 corresponds to the ‘‘classical limit’’ of deforma-
tion by the parameterqa .

The representation„pa ,L
2~R2!… has a nontrivial classical limit.

Proposition 3.3:

s-lim
a→0

pa~X!5eiv1p1ÞI , s-lim
a→0

pa~Y!5eiv2p2ÞI ,

where I denotes the identity operator on L2(R2).
Proof: This follows from Lemma 2.10. j

For a subalgebraM of B„L2~R2!…, we denote byM8 the commutant ofM:

M85$TPB„L2~R2!…uTS5ST,SPM%. ~3.10!

Let Ea be the algebra generated by$eiv1P1,eiv2P2%:

Ea5pa~Cq
2a!.

Lemma 3.4: e62piQ1 /v1, e62piQ2 /v2PEa8 .
Proof: This follows from ~2.15!. j

By Lemma 3.1, we have

qae
2 iv2P2eiv1P15eiv1P1e2 iv2P2, qae

iv2P2e2 iv1P15e2 iv1P1eiv2P2, ~3.11!

qae
2 iv1P1e2 iv2P25e2 iv2P2e2 iv1P1. ~3.12!
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Hence, each of$e2 iv2P2,eiv1P1%, $eiv2P2,e2 iv1P1%, and$e2v1P1,e2 iv2P2% gives a representation
of Cqa

2 . We denote these representations by„pa
( j ) ,L2~R2!…, j51,2,3, respectively.

Proposition 3.5: Suppose that

v15v2 . ~3.13!

Then, each representation„pa
(j) ,L2(R2)… is unitarily equivalent to„pa ,L

2(R2)….
Proof: It is easy to check that, if~3.13! is satisfied, then~2.27! and ~2.29! hold with Ã(z)

replaced byz(z). Hence we have~2.28! and ~2.30!, which imply that, for alltPR,

R1e
itP1R1

215e2 i tP2, R1e
itP2R1

215eitP1, R2e
itP1R2

215eitP2, R2e
itP2R2

215eitP1.
~3.14!

These relations give a unitary equivalence between„pa ,L
2~R2!… and „pa

( j ) ,L2~R2!… ( j51,2).
Moreover,~3.14! implies that

R1
2eitP1R1

225e2 i tP1, R2
2eitP2R2

225e2 i tP2.

It is easy to see thatR1
25R2

2. Thus, the unitary equivalence between„pa ,L
2~R2!… and

„pa
(3) ,L2~R2!… follows. j

Remark: ~i! In the casev1Þv2, we have been unable to clarify whether„pa ,L
2~R2!…,

„pa
( j ) ,L2~R2!…, j51,2,3, are unitarily equivalent to each other or not.

~ii ! Relation~2.15! implies that

qae
2p iaQj /v jeiv j Pj5eiv j Pje2p iaQj /v j , j51,2.

Hence, for eachj51,2 $e2p iaQj /v j ,eiv j Pj% gives a representation ofCqa

2 . It is a problem to clarify

whether these representations and the representations„pa ,L
2~R2!…, „pa

( j ) ,L2~R2!…, j51,2,3, are
unitarily equivalent to each other or not.

In this paper we concentrate our attention on the representation„pa ,L
2~R2!…. The methods

developed in what follows apply also to the other representations of the quantum plane.
~iii ! Consider the case wherea is a rational number:a5p/r with pPZ and rPZ\$0%. Then

qa
r 51. It follows from ~3.7! that, for allm, nPZ with mn5r , eimv1P1 andeinv2P2 commute. But,
if a is irrational, theneimv1P1 andeinv2P2 do not commute for allm, nPZ\$0%.

IV. REPRESENTATION OF Uq(sl2) (I)

For a complex numberqPC\$0,1,21%, the quantum groupUq~sl2! is defined to be the algebra
generated by four elementsE, F, K, K21 subject to the following relations:13

KK215K21K51,

KEK215q2E, KFK215q22F,

@E,F#5
K2K21

q2q21 .

The Casimir elementC of Uq~sl2! is defined by

C5
qK221q21K21

~q2q21!2
1FE. ~4.1!

Given a representation (p,V) of the quantum planeCq
2 such thatp(X) andp(Y) are bijec-

tive, we can construct a representation ofUq~sl2!.
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Lemma 4.1~cf. Ref. 8!: Let (p,V) be as above and a,b,a8,b8PC be constants satisfying

abq5a8b8q2152
1

~q2q21!2
. ~4.2!

Then the following correspondenceP:$E,F,K,K21%→End(V) defines a representation of Uq(sl2):

P~E!5p~X!„ap~X!1a8p~X!21
…p~Y!21,

P~F !5p~Y!„bp~X!1b8p~X!21
…p~X!21,

P~K !5p~X!2, P~K21!5p~X!22.

In this representation, we have

P~C!5a8b1ab82
2

~q2q21!2
. ~4.3!

Proof: Direct computations. j

Remark:By ~4.2!, we can writeP(C) as

P~C!5~a81aq!~b1b8q21!.

In the rest of the paper, we assume that Aj , j51,2, are given by (3.3) and

a¹
Z

2
. ~4.4!

Henceqa
2Þ1.

Let aa , aa8 , ba , ba8 be constants satisfying

aabaqa5aa8ba8qa
2152

1

~qa2qa
21!2

5
1

4 sin2 2pa
. ~4.5!

By Lemma 4.1 and Theorem 3.2, we have the following theorem.
Theorem 4.2: The following correspondencePa :$E,F,K,K

21%→B„L2(R2)… defines a repre-
sentation of Uqa

(sl2) on L
2(R2):

Pa~E!5eiv1P1~aae
iv1P11aa8e

2 iv1P1!e2 iv2P2,

Pa~F !5eiv2P2~bae
iv1P11ba8e

2 iv1P1!e2 iv1P1,

Pa~K !5e2iv1P1, Pa~K21!5e22iv1P1.

We investigate basic properties of the representation„Pa ,L
2~R2!….

Theorem 4.3: The representation„Pa ,L
2~R2!… has no weight vectors. In particular, there

exists no nonzero finite-dimensional subspace W such that (Pa ,W) gives a representation of
Uqa

(sl2).
Proof: A weight vector of weightlPC in the representation„Pa ,L

2~R2!… is a nonzero vector
c satisfying Pa(K)c5qa

lc. Hencec is an eigenvector ofe2iv1P1. But, by Lemma 2.6~ii !,
e2iv1P1 has no eigenvectors. The last assertion in Theorem 4.3 follows from the well-known fact
that any nonzero finite-dimensionalUq~sl2!-module contains a highest weight vector~Proposition
VI.3.3 in Ref. 11!. j
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Let

Ua5Pa„Uqa
~sl2!…. ~4.6!

Theorem 4.4:Suppose that aa8 5 b̄a , ba8 5 āa (z̄denotes the complex conjugate of the complex
number z). Then

~i! Ua is a * subalgebra ofB„L2(R2)….
~ii ! The representation„Pa ,L

2(R2)… is completely reducible.
Proof: ~i! In the present assumption, we have

Pa~E!*5Pa~F !,

whereT* denotes the adjoint of operatorT. It is obvious thatPa(K)*5Pa(K
21). Hence it

follows thatUa is self-adjoint~i.e., TPUa⇒T*PUa!. Thus part~i! follows.
~ii ! As in Lemma 3.4, we have

$e62p iQ j /v j% j51
2 ,Ua8 , ~4.7!

which implies thatUa8 Þ CI . As proven in part~i!, Ua is self-adjoint. HenceUa is not irreducible
~Proposition 2.3.8 in Ref. 14!. LetW be any closed subspace ofL2~R2!, which is invariant under
the action ofUa . SinceUa is self-adjoint, it follows thatW

' @the orthogonal complement ofW in
L2~R2!# is also invariant under the action ofUa . Thus„Pa ,L

2~R2!… is completely reducible.j
For a subsetM of B„L2~R2!…, we denote byM̄ the closure ofM with respect to the operator

norm.
We denote byFa the algebra generated bye62iv1P1, e6 iv2P2, which is a* subalgebra of

B„L2~R2!…, so thatFa is aC* subalgebra.
Theorem 4.5:Suppose thatuaau Þu aa8 u, ubau Þu ba8 u. Then
~i!

Fa5Ua. ~4.8!

~ii ! Ua is completely reducible.
Proof: ~i! For simplicity, we seta5aa , a8 5 aa8 , b5ba , b8 5 ba8 . We have

Pa~E!5Se2 iv2P2, Pa~F !5eiv2P2T, ~4.9!

with

S5ae2iv1P11a8, T5b1b8e22iv1P1.

Hence it follows thatUa,Fa , implying

Ua,Fa. ~4.10!

To prove the converse inclusion relation, we expresse6 iv2P2 in terms ofPa(E), Pa(F),
Pa(K), andPa(K

21). We first consider the caseuau/ua8u,1. We can write

S5aPa~K !1a85a8S 11
a

a8
Pa~K ! D .

We haveiaPa(K)/a8i5uau/ua8u,1, whereiLi with operatorLPB„L2~R2!… denotes the opera-
tor norm ofL. Hence,S is bijective with
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S215
1

a8 (
n50

`

~21!nS aa8D
n

Pa~K !n

in the operator norm topology. Therefore we obtain

e2 iv2P25S21Pa~E!PUa.

In the caseuau/ua8u.1, we write

S5aPa~K !S 11
a8

a
Pa~K21! D .

Then, in the same way as in the preceding case, we can show thatS is bijective with

S215a21(
n50

`

~21!nS a8

a D nPa~K21!n11,

in the operator norm topology. Hencee2 iv2P2 P Ua. Similarly, the second relation in~4.9! implies
thateiv2P2 P Ua. Thus,Fa,Ua, which, together with~4.10!, gives~4.8!.

~ii ! Relation~4.7! implies that

$e62p iQ j /v j% j51
2 ,Ua8 .

By the preceding result,Ua is self-adjoint~in fact, aC* subalgebra!. Thus, by the same reasoning
as in the proof of Theorem 4.4~ii !, we obtain the desired result. j

Remark:In the caseaa 5 6aa8 , S is injective, but not surjective@Lemma 2.6~ii !#. HenceS
21

is unbounded. The same applies toT in the caseba 5 6ba8 .
For (m,n)PZ2, we define a functionFm,n(x,y) by

Fm,n~x,y!5H expS 2 iaE
C2~x,y;2mv1 ,nv2!

AD ; ~x,y!PMv1 ,v2
,

0; ~x,y!¹Mv1 ,v2
.

~4.11!

For cPL2~R2!, we set

cm,n~x,y!5c~x12mv1 ,y1nv2!, ~m,n!PZ2. ~4.12!

Corollary 4.6: Suppose thatuaau Þu aa8 u, ubau Þu ba8 u. LetW be any irreducible closed subspace
of the representation„Pa ,L

2(R2)…. Then each nonzero vectorcPW is cyclic and W is generated
by vectors of the form Fm,ncm,n, (m,n)PZ2.

Proof: The first half is due to a general fact~Proposition 2.3.8 in Ref. 14!. By Theorem 4.5~i!,
W is generated by vectors of the form

fm,n5e2imv1P1einv2P2c, ~m,n!PZ2.

Using ~2.20!, we see thatfm,n5Fm,ncm,n . j

Corollary 4.6 clarifies the structure of any irreducible closed subspaceW of the representation
„Pa ,L

2~R2!… in the caseuaau Þu aa8 u, ubau Þu ba8 u. By Theorem 4.3, dimW5`.
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V. REPRESENTATION OF Uq(sl2) (II)

In this section, we construct representations ofUq~sl2! that are different from the one given in
Sec. IV.

Lemma 5.1~cf. Ref. 8!: Suppose that qPC\$0,1,21%. Let (p,V) be a representation ofCq2
2 [i.e.,

q2p(X)p(Y)5p(Y)p(X)] with the following properties.
~i! p(X) andp(Y) are bijective on V.
~ii ! There exists a bijection ZPEnd(V) such that Z25p(Y)21p(X).
Let c6 andd6 be constants satisfying

c6d656
1

~q2q21!2
. ~5.1!

Then the following correspondencesP6 :$E,F,K,K
21%→End (V) define representations of Uq(sl2):

P6~E!5c6Z„p~X!211p~Y!21
…,

P6~F !5d6„p~X!1p~Y!…Z21,

P6~K !56q21p~Y!21p~X!,

P6~K21!56qp~X!21p~Y!.

In these representations, we have

P6~C!56
~11q2!p~Y!21p~X!1~11q22!p~X!21p~Y!

~q2q21!2
. ~5.2!

Proof: Direct computations. j

To apply Lemma 5.1 with the representation„pa ,L
2~R2!… of Cqa

2 given in Theorem 3.2, we

need the following lemma.
Lemma 5.2: Let U be a unitary operator on a Hilbert spaceH. Then there exists a unitary

operator T onH such that

T25U. ~5.3!

Proof: By the spectral theorem for unitary operators, there exists a unique resolution of
identity F(u) such thatF(0)50, F(2p)5I , and U5*0

2peiu dF(u). Let T5*0
2peiu/2 dF(u).

Then, by the functional calculus,T is unitary and~5.3! holds. j

The operatore2 iv2P2eiv1P1 is unitary onL2~R2!. Hence, by Lemma 5.2, there exists a unitary
operatorZa on L2~R2! satisfying

Za
25e2 iv2P2eiv1P1. ~5.4!

Let

qa
1/2:5eipa. ~5.5!

Applying Lemma 5.1 withp(X) 5 eiv1P1, p(Y) 5 eiv2P2, we obtain the following theorem.
Theorem 5.3:Let c6(a) and d6(a) be constants satisfying

c6~a!d6~a!56
1

~qa
1/22qa

21/2!2
57

1

4 sin2 pa
. ~5.6!
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Then the following correspondencesPa
6 :$E,F,K,K21%→B„L2(R2)… define representations of

Uq~sl2! with q5qa
1/2:

Pa
6~E!5c6~a!Za~e2 iv1P11e2 iv2P2!,

Pa
6~F !5d6~a!~eiv1P11eiv2P2!Za

21,

Pa
6~K !56qa

21/2e2 iv2P2eiv1P1,

Pa
6~K21!56qa

1/2e2 iv1P1eiv2P2.

In these representations, we have

Pa
6~C!56

~11qa!e2 iv2P2eiv1P11~11qa
21!e2 iv1P1eiv2P2

~qa
1/22qa

21/2!2
. ~5.7!

By Lemma 2.7, we obtain the following theorem.
Theorem 5.4:The representations„Pa

6 ,L2(R2)… have no weight vectors. In particular, there
exist no nonzero finite-dimensional subspaces W6 , such that (Pa

6 ,W6) give representations of
Uq

a
1/2(sl2).

Let

Ua
65Pa

6
„Uq

a
1/2~sl2!…. ~5.8!

Theorem 5.5:Let c6(a) 5 d6(a). Then
~i! Ua

6 are * subalgebras ofB„L2(R2)….
~ii ! ~Pa

6 ,L2(R2)! are completely reducible.
Proof: Under the assumption,Ua

6 are self-adjoint, since we have

Pa
6~E!*5Pa

6~F !, Pa
6~K !*5Pa

6~K21!.

Note that, ifTPB„L2~R2!… commutes withe2 iv2P2eiv1P1, thenT commutes withZa . In particu-

lar, Za commutes withe
2p iQ j /v j , j51,2. Hence$e2p iQ j /v j% j51

2 ,Ua
68 . Thus, by the same reason-

ing as in the proof of Theorem 4.4, we obtain the desired result. j

Note thatq2a
1/25qa . Hence„P2a

6 ,L2~R2!… are representations ofUq~sl2! with q5qa . It is
natural to ask if these representations are equivalent to the representation„Pa ,L

2~R2)… constructed
in the preceding section.

Theorem 5.6:The representations„P2a
6 ,L2(R2)… are not equivalent to„Pa ,L

2(R2)….
Proof: By ~5.7!, ~2.20!, and~2.21!, we have, for allcPL2~R2!,

„P2a
6 ~C!c…~x,y!56

11qa
2

~qa2qa
21!2

expS 22iaE
C1~x,y;v1 ,2v2!

ADc~x1v1 ,y2v2!

6
11qa

22

~qa2qa
21!2

expS 22iaE
C2~x,y;2v1 ,v2!

ADc~x2v1 ,y1v2!, a.e.

From this expression, it is seen thatP2a
6 (C) are not scalar multiples of the identity.@For example,

consider a functioncPL2~R2!, cÞ0, with support inS5(0,v1)3(0,v2). Then the support of
P2a

6 (C)c is outside ofS.# On the other hand, by~4.3!, Pa(C) is a scalar multiple of the identity.
Thus, the desired result follows. j
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We can prove a more detailed fact on the inequivalence between„P2a
6 ,L2~R2!… and

„Pa ,L
2~R2!…. For this purpose, we prepare a lemma. Let

ha
6~l!56

~11qa!l1~11qa
21!l̄

~qa
1/22qa

21/2!2
, lPC. ~5.9!

Note thatha
6 are real valued.

Lemma 5.7:
~i!

s„Pa
6~C!…5$ha

6~l!ulPs~e2 iv2P2eiv1P1!%. ~5.10!

In particular,

s„Pa
6~C!…,@2Ra ,Ra#, ~5.11!

where

Ra5
2u11qau

uqa
1/22qa

21/2u2
5

ucospau
sin2 pa

. ~5.12!

~ii !

sp„Pa
6~C!…50”. ~5.13!

Proof: ~i! We first note that

Ua :5e2 iv2P2eiv1P1

is unitary andUa
21 5 e2 iv1P1eiv2P2. We have

Pa
6~C!56

~11qa!Ua1~11qa
21!Ua

21

~qa
1/22qa

21/2!2
.

Relation~5.10! follows from this expression and the spectral mapping theorem for unitary opera-
tors. It is easy to see that there exists a constantdaP@0,2p! such that

ha
6~eiu!56Ra cos~u1da!, uPR. ~5.14!

Hence~5.11! follows.
~ii ! Suppose thatsp„Pa

1(C)…Þ and lPsp„Pa
1(C)…. Then, by~5.11!, 2Ra<l<Ra and

there exists a nonzero vectorcPL2~R2! such thatPa
1(C)c5lc. Let E be the spectral measure

of Ua :

Ua5E
0

2p

eiu dE~u!.

Then we have

05iPa
1~C!c2lci25E

0

2p

uha
1~eiu!2lu2diE~u!ci2,
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which implies that the support of the measureiE(•)ci2 is included in the set
$uP[0,2p] uha

1(eiu)5l%. By ~5.14!, the equationha
1(eiu)5l has at most two solutions:

u jP[0,2p), j51,2. This implies that one ofE($u j%)c ( j51,2) is not zero and an eigenvector of
Ua with eigenvalueeiu j . But this contradicts Lemma 2.7. Thussp„Pa

1(C)… must be empty.
Similarly, we can provesp„Pa

2(C)…50”. j

Theorem 5.8:Let (Pa ,W) be any irreducible component of„Pa ,L
2(R2)… „W,L2(R2)…. Then

(Pa ,W) is not equivalent to any irreducible component of„P2a
6 ,L2(R2)….

Proof: By Lemma 5.7~ii !, P2a
6 (C) are not scalar multiples of the identity in any irreducible

components of„P2a
1 ,L2~R2!…. Thus, the desired result follows. j

Remark:It is an open problem to clarify whether„Pa
1 ,L2~R2!… is equivalent to„Pa

2 ,L2~R2!…
or not.
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The problem of the existence of the thermodynamical limit of the algebraic dynam-
ics for a class of spin systems is considered in the framework of a generalized
algebraic approach in terms of a special class of quasi* -algebras, called
CQ* -algebras. Physical applications to~almost! mean-field models and to bubble
models are discussed. ©1996 American Institute of Physics.
@S0022-2488~96!03008-3#

I. INTRODUCTION

When working with spin systems it is not difficult to build up simple models for which the
algebraic approach developed by Haag and Kastler1 fails. In this approach, the observable algebra
U of the system is taken to be a quasilocalC* -algebra. But already for reasonably simple inter-
actions, e.g., for mean-field models, the thermodynamical limit of the local Heisenberg dynamics
does not converge in the usual spinC* -algebraUS . One possible way to overcome this difficulty
consists in weakening the Haag–Kastler axioms by assuming that the observable algebra of the
system is a more general structure than aC* -algebra. In Refs. 2, and 3, Lassner proposed to define
on the algebraU0 generated by all the local algebrasUV a different topology~that he called
physical!, constructedad hocto allow the thermodynamical limit of the local Heisenberg dynam-
ics to live in the completion ofU0 with respect to this topology.

In Ref. 4 we introduced a particular class of quasi* -algebras, calledCQ* -algebras, with the
scope of providing an intermediate structure between a general quasi* -algebra and aC* -algebra,
which still allows a solution of the problems mentioned above. ACQ* -algebra can be thought,
roughly speaking, as the completion of aC* -algebra with respect to a certain weaker norm.

In Ref. 4 we proved that, at least for certain representations ofU0, the thermodynamical limit
can be found for the so-calledalmostmean-field models5,6 in theCQ* -algebra of operators, where
the representations take their values.

In this paper we consider the same problem from a more general point of view~i.e., without
specifying, as far as it is possible, the local Hamiltonian!, and we investigate on the properties that
a spin model should satisfy in order that the existence of the thermodynamical limit of the local
dynamics can be obtained in theCQ* -algebras framework~or at least in a quasi* -algebra, which
is obtained as the projective limit ofCQ* -algebras!.

In Sec. II we construct the spinCQ* -algebra and study the derivationd arising as the limit of
the local derivationsdV , for finite V, wheredV(A)5[HV ,A], APU. The integration of the deri-
vation d is then discussed both in the purely algebraic setup and, under representations, making
use of the so-calledeffective Hamiltonians.

In Sec. III, we exhibit examples of spin models satisfying the assumptions of Sec. II. In
particular, we rediscuss in this different framework the almost mean-field models studied in Refs.

a!Electronic-mail: Bagarello@ipamat.math.unipa.it
b!Electronic-mail: Trapani@ist.fisica.unipa.it
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5 and 6 and some other models~bubble models! that are obtained by unitary transformations of the
previous ones and have nevertheless a physical meaning on their own.

The basic definitions and properties of quasi* -algebras and ofCQ* -algebras are collected in
the Appendix.

II. SPIN LATTICE SYSTEMS

LetV be a finite region of ad-dimensional lattice anduVu the number of points inV. The local
C* -algebraUV is generated by the Pauli operators,sp5(sp

1 ,sp
2 ,sp

3) and by the unit 232 matrix
I p at every pointpPV. Thesp’s are copies of the Pauli matrices,

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .
UV is isomorphic to theC* -algebra of all 2uVu32uVu matrices on the 2uVu-dimensional complex
Hilbert spaceHV5 ^ pPVCp

2, whereCp
2 is the two-dimensional complex Hilbert space atp. If

V,V8 andAVPUV , thenAV→AV85AV^ (^ pPV8\VI p) defines the natural imbedding ofUV into
UV8.

Let n5(n1,n2,n3) be a unit vector inR3, and put

~s•n!5n1s11n2s21n3s3.

Then, denoting asSp(s•n) the spectrum ofs•n, we have

Sp~s•n!5$1,21%.

Let un& be a unit eigenvector associated with 1. Let$n%5$n1 ,n2 ,...% be an infinite sequence of
unit vectors inR3 andu$n%&5 ^ punp& the corresponding unit vector in the infinite tensor product,
H`5^pCp

2. We put

U05ø
V

UV

and

D $n%
0 5U0u$n%&,

and we denote the closure ofD $n%
0 in H` by H$n% . As we saw above, to any sequence$n% of

three-vectors it corresponds a stateu$n%& of the system. Such a state defines a realizationp$n%~U0!
in the Hilbert spaceH$n% . This representation is faithful, since the norm completionUS of U0 is
a simpleC* -algebra. To define it one starts with constructing a special basis forH$n% . This is
obtained from thegroundstateu$n%& by flipping a finite number of spins.

Let (n,n(1),n(2)) be an orthonormal basis ofR3. We put

n65 1
2~n

~1!6 in ~2!!

and

um,n&5~s•n2!mun& ~m50,1!.

Then we have

~s•n!um,n&5~21!mum,n& ~m50,1!.
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Thus the set$u$m%,$n%&5 ^ pump ,np&; mp50,1,(pmp,`% forms an orthonormal basis inH$n% .
7

In this space we define the unbounded self-adjoint operatorM by

M u$m%,$n%&5S (
p
mpD u$m%,$n%&.

M counts the number of the flipped spins inu$m%,$n%& with respect to the ground stateu$n%&. Of
courseM depends on$n%, but we will not explicitly indicate this fact whenever no confusion
arises.

Next we consider the natural representationp$n% of U0 into some class of operators in the
Hilbert spaceH$n% . The representationp$n% is defined on the basis vectors$u$m%,$n%&% by

p$n%~sp
i !u$m%,$n%&5sp

i ump ,np& ^ S )
p8Þp

^ ump8 ,np8& D ~ i51,2,3!.

This definition is then extended in an obvious way to the whole spaceH$n% . It turns out thatp$n%
is aboundedrepresentation ofU0 intoH$n% .

But in view of the definition of a new topology onU0, different from that induced by its
C* -norm, it is quite unconvenient to considerp$n% as a bounded representation ofU0 intoH$n% .
For this reason, we will consider more appropriate domains where the representationp$n% lives.

First we can put

D $n%5ù
k
D~Mk!.

Then very simple estimates show thatp$n%(A) leavesD $n% invariant, for anyAPU0.
2 It turns out

thatp$n% :U0→L†~D $n%!.
With this choice one can follow the approach developed in Refs. 2, 5, and 6 and define a

physical topologyonU0 as the weakest locally convex topology, such that eachp$n% is continuous
from U0 into L

†~D $n%!, this latter endowed with the so-called quasiuniform topologyt$n% .
2

There is, however, a different and, in our opinion, simpler possible choice.
As seen above, the operatorM is a number operator. Therefore, the operatoreM is a densely

defined self-adjoint operator. LetD denote its domain. ThenD can be made into a Hilbert space,
denoted asHM , in a canonical way. The norm inHM is given by

i f iM5ieM f i , fPHM .

Taking the conjugate dualHM̄ of HM , with respect to the scalar product ofH$n% , we get the
triplet of Hilbert spaces,

HM,H$n%,HM̄ .

Now we can consider theCQ* -algebra„B(HM ,HM̄),* ,B(HM),[… of bounded operators act-
ing in the triplet~see the Appendix!.

The norm ofB(HM ,HM̄) can be written in terms of the norm inB~H$n%! by

iXiM ,M̄5ie2MXe2Mi , XPB~HM ,HM̄ !.

Similarly, the norm inB~HM! becomes

iXiM5ieMXe2Mi , XPB~HM !.
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Also in this case it is not difficult to prove thatp$n%(A) mapsHM into itself, for eachAPU0. Then
if we look atp$n%(A) as a bounded operator inHM , we get, taking into account the fact thatp$n%
can be viewed as the restriction toU0 of a * -representation of the simpleC* -algebraUS ,

ip$n%~A!iM5iAi , ;APU0 ,

where the norm on the right-hand side is theC* -norm ofU0.
On the other hand, theCQ* -norm,

ip$n%~A!iM ,M̄5ie2Mp$n%~A!e2Mi ,

is, in general, different fromiAi .
Of course, to each$n% it corresponds aCQ* -algebra of the kind discussed above. This

algebraic setup could also be taken as a reasonable framework, where discussing problems like the
existence of the thermodynamical limit of the local Heisenberg dynamics. The results would,
however, depend on$n% and hence on the representationp$n% . This has been done, for instance, in
Ref. 5, for the so-calledalmost-mean-fieldmodels. Nevertheless, in that case the dependence on
the representation is not crucial at all, provided that the states$n% are chosen in a suitable family
of relevantstates. We will come back to this point in the next section.

For general models, however, this dependence on the representation cannot be easily elimi-
nated. For this reason it might be convenient to define a topology that takes into account the whole
classF of states under consideration. This topology, which we callweak physical topologyand
denote bytF is defined by the family of seminorms~we will explicitly write the dependence ofM
on $n%!:

APU0→ie2M $n%p$n%~A!e2M $n%i , $n%PF .

Of course,tF is the weakest locally convex topology, such that eachp$n% is continuous fromU0
into „B(HM ,HM̄),* ,B(HM),[…. The completion ofU0@tF # will be denoted withU. The new
seminorms above will take the place of the seminormsiAi f ,k5max$iMkA f(M )i ,i f (M )AMki%
introduced in Refs. 5 and 6 to deal with the thermodynamical limit, wheref runs in a suitable set
of functions. We prefer to use the topologytF because it is directly linked to the family of
CQ* -algebras shown above~it is indeed the projective limit of the norms of that family!, and it
still allows a complete discussion of the questions arose. The following proposition is now obvi-
ous.

Lemma II.1: LetU denote the completion ofU0@tF #. Then~U@tF #,U0! is a topological quasi
* -algebra.

A. The thermodynamical limit

The possibility of defining a topologytF for a specific model relies on the particular form of
the Hamiltonian and, of course, on the possibility of choosing a familyF of relevantstates.

To begin with, letHV be the finite volume Hamiltonian of the system and put

dV~A!5 i @HV ,A#, APU0

and

dV
k ~A!5 i @HV ,A#k , APU0 ,

where [HV ,A] 15[HV ,A] and [HV ,A] k5†HV ,[HV ,A] k21‡.
Proposition II.2: Let the finite volume Hamiltonian HV of the system be a polynomial

pV(SV
i ,s k

j ) in the variables SV
i with SV

i PU0, i51,2,...,N and a continuous function of thes k
j ’s.
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Assume that~i! ;APU0, [HV ,A] depends on V only through the SV
i ’s; ~ii ! limuVu→`(SV

i )n exists in
U@tF #, ;nPN, i51,2,...,N.
Then, for each APU0 and for any kPN the limits

lim
uVu→`

dV
k ~A!

exist in U@tF #. Setting d(A)5tF 2limuVu→` dV(A), APU0, then d has the properties~a!
d(A)*5d(A)* , ;APU0; ~b! d(AB)5d(A)B1Ad(B), ;A,BPU0.

Proof: By induction onk, one can show that, as well as fork51, dV
k (A) is a polynomial inSWV

and does not depend explicitly onV. Therefore, by~ii !

tF 2 lim
uVu→`

dV
k ~A![d~k!~A!

exist inU, for eachAPU0 and for anykPN. ~The notationd(k) is used to stress the fact that the
powers ofd are not well defined, in general.!

Of course, by thetF continuity of the involution and by the separate continuity of the
multiplication one has, for anyA,BPU0,

d~A* !5tF 2 lim
uVu→`

dV~A* !5tF 2 lim
uVu→`

sV~A!*5d~A!*

and

d~AB!5tF 2 lim
uVu→`

dV~AB!5tF 2 lim
uVu→`

„dV~A!B1AdV~B!…5d~A!B1Ad~B!.

h

Example II.3:The assumption~i! of the above proposition seems to be very strong. In spite of
this appearance, it is fulfilled by several interesting models such as the~almost! mean-field spin
models considered Refs. 5 and 6. For the Heisenberg model, for instance, the local Hamiltonian
has the form

HV5
J

uVug (
p,qPV

(
i51

3

sp
i sq

i , ~2.1!

with 1
2,g<1, and the operatorsSV

i are defined as

SV
i 5

1

uVug (
pPV

sp
i , i51,2,3.

In this case one can show that, ifAPUV8, then all the repeated commutators [HV ,A] k depend on
the meansSV

i and on operators belonging toUV8.
Analogous conclusions are obtained even for non-mean-field models like, for instance, the one

defined by the following Hamiltonian:

HV5 (
p,qPV

(
i51

3

Jp,q~sp
i 2s̄ i !~sq

i 2s̄ i !, ~2.2!

wheres̄ i is the i th component of a fixed three vector~times the unit matrix!.8 Here the relevant
V-dependent variables are

4223F. Bagarello and C. Trapani: Spin systems and quasi* -algebras

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



SV
i ~q!5 (

pPV
Jp,q~sp

i 2s̄ i !, i51,2,3; p51,2,...,uVu.

Remark II.4:The linear mapd defined in Proposition II.2 may be regarded as a*-derivation
of U0 defined on the domain

D~d!5$APU0 :d~A!PU0%, ~2.3!

which is, as is readily checked, a*-subalgebra ofU0. This is, however, an unnecessary limitation.
As we have seen in Proposition II.2,d is, indeed, everywhere defined inU0 @and of course the
products in~b! make sense in the quasi* -algebraU!. So, it would be natural to consider it as a
*-derivation of the quasi* -algebra~U,U0! in the sense of Ref. 9. This is, however, not always
possible since, in general,d is not continuous fromU0@tF # into U@tF #.

The derivationsdV and d describe, at an infinitesimal level, respectively, the finite and the
infinite volume dynamics of the system. What is, in general, expected is that they are generators
of one-parameter groups of automorphisms of the completion ofU0 in a suitably chosen topology.
This is certainly true fordV , uVu,`, since

aV
t ~A!5eiHVtAe2 iHVt, APU0 ,

is well defined, becauseHVPUV ~and so doeseiHVt!. The local dynamicsa V
t can be extended to

the whole spin C* -algebra US and, as a function oft, is a one-parameter group of
* -automorphisms ofUS . SincedV is bounded inU0, we also get

aV
t ~A!5 (

k50

`
~ i t !k

k!
dV
k ~A!, APU0 ,

and we know thatdV
k (A) is tF convergent to what we calledd (k)(A). The problem of finding the

limit for uVu→` of aV
t (A) is then solved if we can control in a reasonable way the behavior of

ip$n%„dV
k (A)…iM ,M̄ when uVu grows to infinity.

Many models allow, indeed, some useful estimate of the norm ofdV
k (A). This is true, for

instance, for all mean-field models whose Hamiltonian is a polynomial of the three components of
the mean spin.10

Lemma II.5: Assume that the local Hamiltonian HV of a spin model can be written in the form

HV5uVup~SV
1,SV

2,SV
3 !,

where p is a polynomial and

SV
i 5

1

uVu (
pPV

sp
i , i51,2,3.

Then there exist two constants C1, C2.0 such that

ip$n%„dV
k ~A!…iM ,M̄<

C1

q
max~2,iAi !C2

kuV8uk~k21!!, ;APUV8 .

The constantC1 depends only on$n%, C2 depends only on the degree and on the form of the
polynomialp, andq>1 is the degree of the polynomialp.

Proof: In Ref. 10 it has been proved that, under the same assumptions, there existsC2.0 such
that
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idV
k ~A!i<

1

q
max~2,iAi !C2

kuV8uk~k21!!, ;APUV8 .

The statement then follows from the fact thatip$n%(X)iM ,M̄ <i p$n%(I )iM ,M̄iXi , for eachXPU0
and choosingC1 5i p$n%(I )iM ,M̄ . h

Proposition II.6: In the hypotheses of Lemma II.5, for each APU0 there exists a positive
number rA such that the local dynamics

aV
t ~A!5eiHVtAe2 iHVt

converges in the topologytF , whenuVu→`, to a limit that we denote bya t(A), for any t with
utu,r A .

Proof: If APU0, thenAPUV8 for someV8. Making use of Lemma II.5 we get

I (
k50

`
~ i t !k

k!
p$n%„dV

k ~A!…I
M ,M̄

<(
k50

` utuk

k

C1

q
max~2,iAi !C2

kuV8uk.

The series on the right-hand side has a radius of convergencer A51/C2uV8u. h

It is worth noticing that the path followed in Ref. 5 depends strictly on the form ofHV since
those results were mostly obtained by direct estimates. In the perspective we are following now,
i.e., trying to obtain results for certain classes of interactions rather than for a specific one, it is not
useful therefore to follow that approach. A more general strategy, for mean spin models, based on
abstract results on differential equations can be found in Ref. 11.

Another possible approach to the problem of the existence of the thermodynamical limit
makes use of the possibility of defining aneffective Hamiltonian.

We will indicate with the same symbol the representationp$n% and its continuous extension to
U ~this extension exists by the definition itself of the topology!.

Definition II.7: We say that the model admits an effective Hamiltonian if for each$n%PF
there exists a self-adjoint operator Heff

$n% in H$n% with the property

p$n%„d~A!…5 i @Heff
$n% ,p$n%~A!#, ;APU0 .

This equation is understood in the following weak sense:

^p$n%„d~A!…f,c&5 i $^p$n%~A!f,Heff
$n%c&2^Heff

$n%f,p$n%~A* !c&%,

;f,cPD~Heff
$n%!, ;APU0 .

Remark II.8:This definition says, in practice, that the derivation onp$n%~U0!,

d$n%„p$n%~A!…5p$n%„d~A!…

is spatial and the implementing operator is self-adjoint. As is known, both these conditions require
quite strong assumptions to be fulfilled.

For instance, if the statesu$n%& with $n%PF satisfy the condition

^$n%up$n%„d~A!…u$n%&50, ;APU0 , ~2.4!

then, as is known~Ref. 12, Sec. 3.2.2!, the effective HamiltoniansHeff
$n% exist as self-adjoint

operators inH$n% .
Equation~2.4! is fulfilled, for instance, by the almost mean-field Ising model,5 for a suitable

choice of the familyF of states. This will be discussed in the next section.
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If the model admits an effective Hamiltonian, then one can consider the subsetD of D~d!
consisting of all thegeneralized analytic elementsof d, i.e.,APD iff

eiHeff
$n%tp$n%~A!e2 iHeff

$n%t5 (
k50

`
~ i t !k

k!
p$n%„d

~k!~A!…,

where the series on the right-hand side is understood to converge with respect toi iM $n% ,M̄ $n%
.

Proposition II.9: LetF 0,F be a set of states such that for each$n%PF 0, M $n% and Heff
$n%

commute strongly (i.e., their spectral families commute). Then, for each APD , the series
(k50

` [( i t )k/k!] „d (k)(A)… converges, with respect to the topologytF 0
, to an element ofU that we

call a t(A). Moreover,at can be extended to the closureD̄ of D in U@tF 0
#.

If D̄5U, thenat is a one-parameter group of automorphisms ofU.
Proof: For APD , we get

I (
k50

`
tk

k!
~d~k!

„p$n%~A!…!I
M $n% ,M̄ $n%

5I e2M $n%S (
k50

`
tk

k!
p$n%„d

~k!~A!…D e2M $n%I
5ie2M $n%eiHeff

$n%tp$n%~A!e2 iHeff
$n%te2M $n%i5ip$n%~A!iM $n% ,M̄ $n%

.

~2.5!

Thus, the series

(
k50

`
~ i t !k

k!
„d~k!~A!…

is tF 0
convergent and we definea t(A) as its limit. Equation~2.5! also implies the continuity of

at . Thenat can be extended toD̄ . If D̄5U, the group property can be easily derived, under
representation, forAPU0, making use of the effective Hamiltonian and then by pullback of the
faithful representationp$n% . For an arbitrary element ofD̄ , the statement follows by continuous
extension. h

Remark II.10: As noticed above, there could be some difference between
d (k)(A)5tF 2limV→` dV

k (A) anddk(A), since the latter might not be well defined for an arbitrary
APU0. However, even whend

k(A) is well defined, for anyk ~think of the case of an everywhere
definedd!, there is no reason ford (k)(A) anddk(A) to coincide, since, in general, the convergence
of dV

k (A) is not uniform inV.
Even the algebraic dynamicsat is not, in general, thetF limit of a V

t in spite of the fact that
d(A)5tF 2limV→` dV(A).

If the derivationd$n% is continuous, some information can be obtained without making refer-
ence to the effective Hamiltonians.

Proposition II.11: Assume that for each$n%PF there exists C$n%.0, such that

ip$n%„d~A!…iM ,M̄<C$n%ip$n%~A!iM ,M̄ , ;APD , ~2.6!

whereD is a dense* -subalgebra o fU. Then~i! d has a unique extension toU; ~ii ! for each
APD , the series(k50

` [( i t )k/k!] „d(k)(A)… converges, with respect to the topologytF , to an
element ofU that we calla t(A); ~iii ! $a t% tPR is a one-parameter group of automorphisms ofU.

Proof: ~i! The inequality~2.6! implies thetF continuity of d onD . So there exists a unique
continuous extension~which we denote with the same symbol! of d to U for which ~2.6! still
holds.

~ii ! From ~2.6! it follows also, by an induction argument, that
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ip$n%„d
~k!~A!…iM ,M̄<C$n%

k ip$n%~A!iM ,M̄ , ;APU,

and so

I (
k50

`
~ i t !k

k!
p$n%„d

k~A!…I
M ,M̄

<(
k50

` utuk

k!
C$n%
k ip$n%~A!iM ,M̄ ,;APU.

The series on the left-hand side converges therefore inU to an element that we calla t(A).
~iii ! follows from a simple standard calculation. h

We will now give another existence theorem for the dynamics in representation whose as-
sumptions, indeed very strong, are satisfied by many models.

Proposition II.12: Let Heff be such that for all XPU0 there exist two positive constants, LX,$n% ,
MX such that

i@Heff,p$n%~X!#kiM $n% ,M̄ $n%
<MX

kLX,$n% ,

for all kPN. Therefore the series(k50
` [( i t )k/k!]p$n%~„d

(k)(X)…! converges, with respect to the
norm i iM $n% ,M̄ $n%

, to eiHefftp$n%(X)e
2iHefft, for each $n%PF . Therefore the series

(k50
` [( i t )k/k!] „d(k)(X)… converges inU@tF # to an element that we calla t(X).
The proof is straightforward so that we will omit it. It is more interesting here to provide some

examples satisfying the above hypotheses.
We consider first the almost mean-field Ising model. The effective Hamiltonian is given by

Heff
I 5 2Jhn3(p@p$n%(sp

3) 2 np
3#. LetAk [ sp1

i1 •••spk

i k be an element of the basis ofU0. By a direct

estimate we deduce that

i@Heff ,p$n%~Ak!# l iM $n% ,M̄ $n%
<C$n%~4Jk! l .

This inequality can be extended to a general element ofU0 simply using the linearity. Analogous
estimates also hold for the almost mean-field Heisenberg model, for the van der Waals spin
model,13 and also for the~long-range! Ising model described by~2.2!.

III. PHYSICAL APPLICATIONS

This section is devoted to discussing some explicit physical spin models that fit well in the
framework discussed above. In particular, we will consider once more the almost mean-field spin
models discussed in Refs. 5 and 6. After that we will also introduce more spin models, unitarily
equivalent to these ones, which describes different physical situations.

A. (Almost) mean-field spin models

As before, the basic mathematical ingredient for the study of this model is the spin* -algebra
U0. Its norm completion,US , is not, as is known, rich enough for a comprehensive discussion of
the thermodynamical limit of the algebraic dynamics.

The finite volume Hamiltonian that describes the Ising model is

HV
I5

1

uVug (
i , jPV

s i
3s j

3, ~3.1!

while for the Heisenberg model

HV
H5

1

uVug (
i , jPV

(
a51

3

s i
as j

a . ~3.2!
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For g51 these are typical mean-field models, extensively discussed in the literature.7,2,11The
caseg,1 has been considered in Refs. 5 and 6.

The local Heisenberg equations of motion for both models are given by

d

dt
aV
t ~sp

i !5 i @HV ,aV
t ~sp

i !#, i51,2,3, ~3.3!

whose solution can be easily computed as in Refs. 5 and 6.
As is known, the thermodynamical limit ofaV

t (A), APU0 does not belong toUS .
All the approaches suggested in the previous section, make reference to a familyF of

relevant states. For these models we choose

F 5H $n%5$n1 ,n2 ,n3 ,...%: lim
uVu,`

1

uVug (
pPV

np5hn, uhu<1J ,
wheren is a fixed unit vector inR3, which, for Ising models, has to be chosen, as well as thenp’s
for largep, of the form~0,061!. In the first approach, which is closer to that developed in Refs.
5 and 6, we will make use of theweak physical topologytF defined in the previous section.

Of course, our aim is to make use of Proposition II.2. For this reason we need to find local
observablesSV

i fulfilling the conditions given there. This role will be played by the ‘‘almost’’
mean spin operators. They do indeed converge, together with their powers, in the weak physical
topology. This can be easily shown with analogous techniques as the ones used in Refs. 5 and 6.
We prove in detail the convergence of

SV
3[

1

uVug (
pPV

sp
3, ~3.4!

for the ‘‘almost’’ Ising model in thetF topology. Using the same notations as in the cited papers,
and in particular by means of the spectral decompositionM5(n50

` mPm , neglecting then depen-
dence in this formula, we have

ip$n%~SV
3 !2hn3iM $n% ,M̄ $n%

5 (
l ,k50

`

e2 le2kiPl~p$n%~SV
3 !2hn3!Pki ,

and this last contribution can be estimated as in Ref. 5. We get, indeed,

ip$n%~SV
3 !2hn3iM $n% ,M̄ $n%

<U 1

uVug (
pPV

np
32hn3U(

l
e22l1

2

uVug (
l
e22l11→0.

Moreover, even the powers converge in this topology, as is easily seen.
As far as the convergence of the algebraic dynamicsa V

t is concerned, it is also possible, and
perhaps more convenient, to make use of the effective HamiltonianHeff . Both for the Ising and
the Heisenberg models these effective Hamiltonian do really exist and allow us to treat both
models in the same way. Indeed, at least for the Ising model, each state in the familyF satisfies
Eq. ~2.4!. For instance, ifA5sp

i then dV(A)5SV
3(c1sp

11c2sp
2) plus terms going to zero when

uVu→`, where c1 and c2 are complex numbers. If now$n%PF it follows that for largep
limV→`^$n%uSV

3(c1sp
11c2sp

2)u$n%&50. These effective Hamiltonians are given, for Ising and the
Heisenberg models, respectively, by the two self-adjoint operators inH$n% :

Heff
I 52Jhn3(

p
@p$n%~sp

3!2np
3#
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and

Heff
H52Jh(

p
@p$n%~sp!•n2ep#.

Here n, np , andh are the quantities entering in the definition of the familyF , while ep is a
sequence consisting of elements equal either to 1 or to21, such that

lim
uVu→`

1

uVug (
pPV

ep5h.

These sequences can be used to define a subsetF 0 of F just by considering, for a fixed
three-vectorn, the sequence$np% wherenp5epn. The states inF 0 are such thatHeff

H commutes
with M $n% ; see Ref. 6. These effective Hamiltonians both satisfy the following condition:

@Heff ,p$n%~A!#5p$n%~ lim
uVu→`

@HV ,A# !,

for all APU0. As in Ref. 6 we can therefore prove that the following equality holds true:

eiHefftp$n%~A!e2 iHefft5 (
k50

`
~ i t !k

k!
p$n%„d

~k!~A!…,

where the convergence of the series is intended in the usual matrix norm, which also implies
convergence in thetF topology. Furthermore, in the Ising model and in the Heisenberg model, if
we restrict toF 0, it is certainly possible to define the algebraic dynamics as the following infinite
sum:

a t~A!5 (
k50

`
tk

k!
„d~k!~A!…,

since one can prove that the series again converges with respect to thetF or tF 0
topology,

respectively. Obviously we haveat(A)PU for all APU0.
As mentioned in Sec. II, for each$n%PF the problem of the existence of the thermodynami-

cal limit of a V
t can be considered in eachCQ* -algebra„B(HM ,HM̄),* ,B(HM),[…. This can

be useful when the familyF of states is so poor as to consist of only one state.
This is not the case of the~almost! mean-field models, since for them the familyF is quite

rich. Nevertheless, it still makes sense to consider for these models thisCQ* -algebraic approach.
From the first part of this section we know, in fact, that the almost ergodic meansSV

i converge
in the topology tF , so that they converge with respect to each normi•••iM $n% ,M̄ $n%

5i e2M $n%•••e2M $n%i for any choice of the sequence$n% in the setF , and the same obviously
holds true, even for the finite volume dynamicsa V

t . Therefore, in each of theseCQ* -algebras the
thermodynamical limit ofa V

t is well defined, even if it is necessarily representation dependent.
This is not a major problem in the models we are considering since something nice happens here:
as far as the sequence$n% is chosen inF , or in F 0 for the Heisenberg model,aV

t (A) converges
always to the same element, modulop$n%(I ). For instance, in the Ising model,p$n%(SV

3) converges
to 2Jthn3p$n%(I ) in any normi iM $n% ,M̄ $n%

, whereh andn3 are fixed by the definition ofF . A
consequence of this fact is the convergence ofp$n%„aV

t (A)… for eachAPU0.
Of course, this procedure strongly relies on the specific models we are considering, since there

is no reasona priori to be sure that the limit of a certaina V
t does not depend on the way in which

this limit is performed!
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B. Spin models with bubbles

In this section we discuss some more models with a direct physical meaning that are unitarily
equivalent to those discussed above and whose thermodynamical behavior can easily be deter-
mined. We will see that the models below still give rise to finite volume algebraic dynamics
converging whenuVu→`.

We start with proving a firstequivalenceresult, which relates different Hamiltonians. Let us
consider a certain finite lattice regionV, which we may suppose to be contained in any volumeV
for uVu.uVu.

Let us now define the finite volume Hamiltonian,

HV
tr5

1

uVug (
p,qPV

TpTq , ~3.5!

whereTp5(g•s)p
We have the following.
Proposition III.1: Let HV

tr be as in (3.5) and suppose that, ;p¹V,Tp5sp
3. A unitary operator

U of the form

U5expH i(
p
mp•spJ ,

such that HV
tr5 UH V

IU* exists if and only if each vectorgp has a norm equal to unity. In this case
one finds explicitly

mp5H S p&gp
1

4A11gp
3
,

p&gp
2

4A11gp
3
,

p&gp
3

4A11gp
3D , ;pPV,

0, otherwise.

~3.6!

Proof:We prove first the necessity. If such aU exists it must necessarily transformsp
3 into Tp , so

that Tp5Usp
3U* , ;pPV. Indicating with i iV the vector norm and withi i theC* norm, and

using some easy properties of thes matrices, we must have simultaneously
iTpi5i(g•s)p ,i5igpiV and iTpi5iUsp

3U* i5isp
3i51.

Vice versa, let us suppose thatigpi51. We want to show that it is possible to choose an
operatorU as above that maps one Hamiltonian into the other. The proof is straightforward. We
have to solve the following system~in which we have omitted the lattice site index!:

5
2
sin~2m!

m
m212m3m1S sin~m!

m D 25g1 ,

sin~2m!

m
m112m3m2S sin~m!

~m! D 25g2 ,

cos~2m!12m3
2S sin~m!

m D 25g3.

~3.7!

wherem25m1
21m2

21m3
2. It is now very easy to verify that the solution~3.6! satisfies, in the

hypothesisigpiV51, the above system and corresponds tom5p/2. h

The models described byHV
tr can all be thought of asbubblemodels. They describe, in fact,

a situation in which inside a certain bubble of finite size,V, the spin variables are not necessarily
in the z direction, while outside this region all the spins are polarized alongz. From the
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literature,11,5,6 it is reasonable to expect that the algebraic dynamics of this bubble model still
converges. This should essentially follow from the fact that the familyF is closed under local
transformations.

Here we will adopt a different approach, which allows us to conclude directly that the ther-
modynamical limit exists. Let us define

ã V
t ~A![eiHV

trtAe2 iHV
trt,

whereAPU0. We now verify that, for eachAPU0, ã V8 (A) is a Cauchy net in the topologytF .
This depends on the fact thataV8 (A) is, in turn, atF -Cauchy net. We have, indeed,

ip$n%„ã V
t ~A!2ã V8

t
~A!…iM $n% ,M̄ $n%

5ip$n%~U„aV
t ~Ã!2aV8

t
~Ã!…U* !iM $n% ,M̄ $n%

<ip$n%„aV
t ~Ã!2aV8

t
~Ã!…iM $n% ,M̄ $n%

→0,

whereÃ[U*AU. Here we took into account the inequality

ip$n%~XY!iM $n% ,M̄ $n%
<ip$n%~X!iM $n% ,M̄ $n%

iYi , ;X,YPU0 ,

and we made use of the fact thateiHV
trtAe2 iHV

trt 5 UeiHVtÃe2 iHVtU* . Convergence to zero of the
above limit when bothV andV8 diverge is ensured by the existence of the dynamicsat on the
wholeU0.

Of course, the group property ofat is also shared byã t , like the other properties discussed for
the original model.

A similar conclusion can also be stated for the Heisenberg model. Even in this case it is
possible to consider bubble models related to this and to study the thermodynamical limit of the
algebraic dynamics.

Proposition III.2: Let HV
tr be

HV
tr5

1

uVug (
p,qPV

(
i51

3

Tp
i Tq

i ,

and suppose that;p¹V,Tp
i 5sp

i . A unitary operator U of the form

U5expH i(
p
mp•spJ ,

such that HV
tr 5 UHV

HU* exists only if the vectorsgp
i form, for any pPV, a set of right-handed

versors.
The proof is very simple and will be omitted here. It is more useful to notice that we can only

prove a necessary condition for the transformation between the two Hamiltonians to be possible.
Nevertheless, it is reasonable to expect that the above condition is also sufficient for the existence
of the operatorU. Its geometrical interpretation is clear: we start with an orthonormal system of
normalized vectors and we obtain another analogous system of vectors.Vice versa, to get an
orthonormal system of normalized vectors we expect that the starting point should be a triplet of
similar versors.

Then, in conclusion, also these bubble models, as well as any other unitarily equivalent model,
can be setted in the framework discussed in Sec. II.
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APPENDIX A: AN OVERVIEW OF MATHEMATICAL DEFINITIONS

In this appendix we collect some basic facts on partial* -algebras, quasi* -algebras, and
CQ* -algebras, which are needed for a better understanding of the paper. For more details we refer
to Refs. 14, 15, 16, 2, 3, and 4 and to Refs. 17 and 18 for reviews.

A partial * -algebra is a vector spaceU with involution A→A* @i.e., (A1lB)*5A*1l̄B* ;
A5A** # and a subsetG,U3U, such that~i! (A,B)PG implies (B* ,A* )PG; ~ii ! (A,B) and
(A,C)PG imply (A,B1lC)PG; and~iii ! if (A,B)PG, then there exists an elementABPU, and
for this multiplication the distributive property holds in the following sense: if (A,B)PG and
(A,C)PG then

AB1AC5A~B1C!.

Furthermore (AB)*5B*A* .
The product is not required to be associative.
The partial* -algebraU is said to have a unit if there exists an elementI ~necessarily unique!

such thatI *5I , (I ,A)PG, IA5AI5A, ;APU.
If (A,B)PG then we say thatA is a left multiplier ofB @and writeAPL(B)# or B is a right

multiplier of A [BPR(A)]. For S ,U we putLS 5 ùAPS L(A); the setRS is defined in an
analogous way. The setMS 5LS ùRS is called the set of universal multipliers ofS .

Following Lassner,2,3 we call quasi* -algebras a special family of partial* -algebras: namely,
those for which the setMU of universal multipliers is a*-algebra.

Let U be a linear space andU0 a * -algebra contained inU. We say thatU is a quasi* -algebra
with distinguished*-algebraU0 ~or, simply, overU0! if ~i! the right and left multiplications of an
element ofU and an element ofU0 are always defined and linear; and~ii ! an involution* ~which
extends the involution ofU0! is defined inU with the property (AB)*5B*A* whenever the
multiplication is defined.

A quasi * -algebra~U,U0! is said to have a unitI if there exists an elementIPU0 such that
AI5IA5A, ;APU.

A quasi* -algebra~U,U0! is said to be a topological quasi* -algebra if inU is defined a locally
convex topologyj such that~a! the involution is continuous and the multiplications are separately
continuous; and~b! U0 is dense inU@j#.

In Ref. 4 we considered a special class of quasi* -algebras, calledCQ* -algebras, which arise
as completions ofC* -algebras.

Definition 1: A rigged quasi* -algebra U is a partial * -algebra for which there exist two
vector subspacesU[ andU] , such that~i! ~U[!*5U] ; ~ii !

G$~A,B!PU3U:APU] or BPU[%;

and ~iii ! both U[ and U] are algebras with respect to the partial multiplication
(A,B)PG→ABPU defined inU.

The multiplication (A,B)PG→ABPU is supposed to be~weakly! semiassociative;i.e.
(AB)C5A(BC);APU and;B,CPU[ .

Definition 2: A rigged quasi* -algebra $U,* ,U[ ,[% is called a CQ* -algebra if (i) U is a
Banach space under the norm andiA* i5iAi , ;APU; (ii) U[ is a C* -algebra with respect to the
normi i[ and to the involution[; (iii) U] carries the normi i] , defined byiAi][iA* i[ (thus the
involution * is an isometric anti-isomorphism ofU[ onto U]! and A]*5A* [, ;APU] ; (iv)
iBi[5supiAi<1iABi ; and (v)U05U[ùU] is i i[ dense inU[ andU[ is i i dense inU.

A very interesting example ofCQ* -algebras is provided by the families of bounded operators
acting in a triplet of Hilbert spaces.

LetH be a Hilbert space with scalar product^•,•& andl~•,•! a positive sesquilinear closed
form defined on a dense domainDl,H. ThenDl becomes a Hilbert space, that we denote by
Hl , with respect to the scalar product
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^ f ,g&l5^ f ,g&1l~ f ,g!.

LetH l̄ be the Hilbert space of conjugate linear forms onHl .
In this way one gets the triplet of Hilbert spaces,

Hl,H,H l̄ .

Let B(Hl ,H l̄) be the Banach space of bounded operators fromHl into H l̄ and let us
denote withiAil l̄ the natural norm ofA P B(Hl ,H l̄).

The involution in B(Hl ,H l̄), is defined in the following way: to each elementA
P B(Hl ,H l̄), we associate the linear mapA* fromHl intoH l̄ , defined by the equation

^A* f ,g&5^Ag, f &, ; f ,gPHl .

ThenonehasA* P B(Hl ,H l̄) andiA* il l̄ 5i Ail l̄ ,;AP B(Hl ,H l̄).
Let B~Hl! denotes theC* -algebra of bounded operators onHl @the usual involution of

B~Hl! will be denoted here as[# andB(H l̄) theC* -algebra of bounded operators onH l̄ @the
natural involution ofB(H l̄) is denoted as]#. Then, bothB~Hl! andB(H l̄) are contained in
B(Hl ,H l̄) andAPB~Hl! if, and only if,A* P B(H l̄). Moreover,B

[*5B* ],;BPB~Hl!.
With the algebraic operations defined in the natural way„B(Hl ,H l̄),* ,B(Hl),[… is a

rigged quasi* -algebra. The distinguished*-algebra ofB(Hl ,H l̄) is

B1~Hl!5$APB~Hl ,H l̄ !:A,A*PB~Hl!%.

Moreover,„B(Hl ,H l̄),* ,B(Hl),[… is aCQ* -algebra ifB(Hl ,H l̄) andB~Hl! carry their
natural norms. In fact,B1~Hl! is dense inB(Hl ,H l̄), and the other requirements of the
definition ofCQ* -algebra are also fulfilled. For the details see Ref. 4, Example 3.3.

The CQ* -algebras considered in Secs. I and II of this paper are all of this kind. They are
obtained when the forml is taken as the form associated to the closed operatoreM.

The general structure ofCQ* -algebras simplifies for the so-called properCQ* -algebras.
Definition 3: A CQ* -algebra $U,* ,RU,[% is called proper if RU5LU and if

A[5A],;APRU.
In Ref. 4 it is proved that from the above definition it follows that~i! iAi]5iAi[ ,;APRU;

~ii ! all the AbelianCQ* -algebras~i.e.,RU5LU andAB5BA,;APU,BPRU! are proper.
As said before,CQ* -algebras arise naturally as completions ofC* -algebras with respect to a

weaker norm. Indeed the following is true.
Proposition 4: LetC be a C* -algebra with normi i1 and involution* . Let i i be another norm

on C , weaker thani i1 and such that~i! iAi5iA* i ,;APC ; ~ii ! iABi<iAiiBi1 ,;A,BPC .
Then the completionĈ of C , with its natural norm, is a proper CQ* -algebra overC , with *5[.

A more detailed study ofCQ* -algebras has been undertaken in Ref. 19.
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The space of analytical test functionsj, rapidly decreasing on the real axis~i.e.,
Schwartz test functions of the typeS on the real axis!, is used to construct the
rigged Hilbert space~RHS! ~j,H,j8!. Gamow states~GS! can be defined in RHS
starting from Dirac’s formula. It is shown that the expectation value of a self-
adjoint operator acting on a GS is real. We have computed exactly the probability
of finding a system in a GS and found that it is finite. The validity of recently
proposed approximations to calculate the expectation value of self-adjoint operators
in a GS is discussed. ©1996 American Institute of Physics.
@S0022-2488~96!00209-5#

I. INTRODUCTION

The proper treatment of the continuum and the inclusion of decaying states belonging to it in
the definition of Green’s functions of physical interest is a long-standing problem in various fields
of physics. The mathematical consequences of the inclusion of the continuum in the scattering of
particles by a central potential have been explored by Gamow long ago.1 A modern review of the
scattering theory can be found in Ref. 2 where the basic elements of the involved radial differen-
tial equations are presented in great detail. The use of these states, as it has been shown by
Gamow,1 is of central importance in building the physical interpretation of thea-decay mode of
heavy atomic nuclei.3 The so-called Gamow resonant states@for simplicity Gamow states~GS!#
fulfill purely outgoing boundary conditions with an exponential behavior at infinity.2 Several
methods have been proposed since the publication of Gamow’s work,4 particularly in connection
with the normalizability of Green’s functions in the presence of GS and in the treatment of
completeness relations.5 The mathematical equivalence between some of these methods has been
discussed recently and the correspondence between Bergreen’s and Mittag-Lefler’s representations
has been explored at length.6 Presently a rich literature is available regarding the application of
these concepts to nuclear reactions and to nuclear structure problems.7

The amount of information about mathematical properties of representations which include
GS is also very rich. The use of decaying states of complex energy in the framework of the
Hamiltonian formalism, and the use of deformed contours to compute survival amplitudes, has
been reported in Ref. 8 by Sudarshan and co-workers. The formulation of quantum mechanics in
the rigged Hilbert space~RHS! has been also studied by Bohm.9 In Ref. 10 it is shown that
idealized resonances are described, within the RHS, by generalized eigenvectors of a self-adjoint
Hamiltonian with complex eigenvalues and a Breit–Wigner energy distribution. Similar argu-
ments have been advanced by Gadella.11,12,13Among the difficulties posed by the use of GS one
can mention the appearance of the exponential catastrophe and the need to include nonphysical
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b!Fellow of the CONICET, Argentina.
c!Fellow of the J. S. Guggenheim Foundation.
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states of negative energy in the definition of GS by an integral on the real axis.14 A nonrigorous
cure for the exponential catastrophe would be the use of some regularization techniques, such as
the one proposed by Zel’dovich.15 However, and with reference to explicit numerical applications,
the use of these techniques does not guarantee the stability of the results since the onset of the
exponential dominance of the GS can manifest itself at physical scales.5 Among the recent refer-
ences on GS we shall mention the work of T. Berggren,16 where the possibility of defining
expectation values of operators in a resonant state is considered. In the present work we shall
focus our attention on the mathematical aspects of representations which include Gamow states.
At variance with the usually adopted approach, i.e., by using the class of functions known as
Hardy class functions,11–13we shall use tempered ultradistributions.17,–20The space of analytical
functionals j8 ~tempered ultradistributions! is the minimal space whose Fourier antitransform
accomodates real exponential functions as distributions. In the first part of this work the definition
of the space of analytical test functionsj is given and the corresponding RHS is constructed. Then
Dirac’s formulation of quantum mechanics in RHS is shown, the structure of GS is given explic-
itly, and the norm of GS in RHS is calculated. The contribution of GS toP(E), the probability
distribution of a system at energyE, is obtained and the relation with the Breit–Wigner weighted
energy distribution is studied. Next, some examples of GS as analytical functionals are given.
Finally, a comparison with Berggren’s results on expectation values with resonant states is pre-
sented.

II. THE RIGGED HILBERT SPACE ( j,H,j8)

Let us consider the spacej of entire analytical test functionsf̂(z) rapidly decreasing on the
real axis, i.e.,f̂(z)uy505f(x) is a test function of the Schwartz spaceS ~see Refs. 17–21!.

The structure of a countable normed space ofj is given by the family of norms

if̂in5 sup
uzu5n

uf̂~z!u, nPN . ~1!

These norms are compatible since

if̂in,if̂in11 . ~2!

In j we define the scalar product

^ĉ,f̂&5E
2`

1`

dE ĉ̄~E!f̂~E! ~3!

and the norm

if̂i25^f̂,f̂&. ~4!

The spacej is completed by using the norm of Eq.~4!; the resulting space is the Hilbert space
H of square-integrable functions~j,H!.

If j8 are linear continuous functionals~distributions! over j, we have~Refs. 17–21!

j,H,j8. ~5!

Herej is a nuclear space~see Ref. 22! and~j,H,j8! is a RHS or a Guelfand’s triplet~GT!. In
this RHS a linear and symmetric operatorA acting onj, which admits a self-adjoint prolongation

Ā acting on H, has a complete set of eigen-functionals onj8 with real generalized
eigenvalues.23,24Let us introduce the GT~j̃,H,j̃8! which is related to the GT given in Eq.~5! by
the Fourier transform
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f~ t !5F 21$f̂~E!%5
1

2p E
2`

1`

eiEtf̂~E!dE. ~6!

If ĉ(E)Pj8, we definec(t) by

^c~ t !,f~ t !&5
1

2p
^ĉ~E!,f̂~E!&. ~7!

Consequently, one has

c~ t !5F 21$ĉ~E!% ~8!

with

f~ t !P j̃, c~ t !P j̃8. ~9!

The Schwartz spaceS 8 ~of tempered distributions! is included inj8 and in j̃ 8~S 8,j8!.
The distributions ofS 8 fulfill Dirac’s formula17

S~x!5E
2`

1`

d~x2y!S~y!dy. ~10!

The extension toj8 of Dirac’s formula is given by17

ĉc~z!5
1

2p i E2`

1` 1

E2z
ĉ~E!dE, ~11!

where

ĉ~E!5ĉc~E1 i0!2ĉc~E2 i0!. ~12!

Related to the RHS~j̃,H,j̃8! @and ~j,H,j8!#, it exists the abstract GT (ja ,Ha ,ja8). This
relation is established with the help of the operatorx̂, representing inHa the position operatorx
of H. The operatorx̂ has a complete set of eigenfunctions inja8 . We use for them Dirac’s
notation ux&. To each abstract ketuf&Pja it corresponds a function̂xuf&5f(x)P j̃. In other
words, to each functionf(x)P j̃, it corresponds an abstract ketuf&Pja , such that̂ xuf&5f(x).
This procedure establishes the above-mentioned relation betweenj̃ andja . When the spacej̃ is
completed we obtain the Hilbert spaceH, while the correspondence just established leads to the
complete abstract spaceHa(.ja). Finally, any linear continuous functionalc in j̃8 is made to
correspond to that abstract ket,uc& P ja8 , such that

c~f!5^cuf& ~13!

for all fPj̃.
These relations represent Dirac’s formalism of quantum mechanics in a RHS. For more details

see the works cited in Ref. 25.
The principal difference between the triplets defined above and those considered in Ref. 11 are

due to the fact that our spacej is formed by ‘‘ultra analytic’’ test functions; i.e., anyfPj is
entire-analytic and rapidly decreasing on the real axis. The dual spacej8 is formed by ‘‘ultradis-
tributions’’ ~see Refs. 17–20!. The spacej̃8 is the minimal space that contains real exponentials.
It also allows the representation of any ultradistribution by a pair of analytic functions that can be
determined by Eqs.~11! and ~12!.
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Let us now introduce a self-adjoint operatorHPH, such that

HuE&5EuE&, E0,E,E1 . ~14!

We shall consider all theĉPj8 with support~in the sense of Ref. 17! in the interval (E0 ,E1).
This means thatĉ can be determined from the discontinuityc(E) of the pair of analytic functions
on the real axis. Furthermore,c(E)50 if E¹(E0 ,E1).

Following Eq.~11! one can write

ĉ~EG!5
1

2p i EE0
E1 1

E2EG
ĉ~E!dE ~15!

and

„ĉ~EG!…*5
1

2p i EE0
E1 1

EG*2E
„ĉ~E!…* dE ~16!

with

EG5ED1 iG, G.0.

In Dirac’s notation,ĉ(E)5^Euc&. Thus

ĉ~EG!5
1

2p i EE0
E1 1

E2EG
^Euc&dE, ~17!

„ĉ~EG!…*5
1

2p i EE0
E1 1

EG*2E
^cuE&dE. ~18!

We can also write Eq.~17! as

ĉ~EG!5
1

2p i EE0
E1 1

E2EG
^EudEuc&.

We now define

^EGu5
1

2p i EE0
E1 1

E2EG
^EudE ~19!

and

uEG* &5
1

2p i EE0
E1 1

EG*2E
uE&dE. ~20!

In consequence,

ĉ~EG!5^EGuc&, ~21!

„ĉ~EG!…*5^cuEG* &. ~22!

The stateuEG* & is by definition a Gamow state. Note that ifĉ(E) is the discontinuity ofĉc(z)
on the real axis, thenEnĉ(E) is the discontinuity ofznĉ(z) also on the real axis.
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Then we have@cf. Eq. ~20!#

EG*
nuEG* &5

1

2p i EE0
E1 1

EG*2E
EnuE&dE,

i.e.,

HnuEG* &5
1

2p i EE0
E1 1

EG*2E
HnuE&dE ~23!

5EG*
nuEG* &, ~24!

and uEG* & is an eigenstate ofH.
The statesuEG* & are normalizable and the norm is given by

^EGuEG* &5
1

4p2G FarctanSE12ED

G D2arctanSE02ED

G D G . ~25!

With this normalization, and for theE1→` andE0→2`, the normalized GS can be cast in
the more familiar form of Ref. 14.

In consequence, the diagonal matrix element ofH between GS is given by the expression

^EGuHuEG* &5ED1
G

2

lnF ~E12ED!21G2

~E02ED!21G2G
FarctanSE12ED

G D2arctanSE02ED

G D G . ~26!

With this result it is readily seen that the imaginary part of the diagonal matrix element
satisfies

Im^EGuHuEG* &50, ~27!

and that for the limitsE0→2` andE1→1` one has

^EGuHuEG* &5ED . ~28!

The time evolution of a GS is given by

^cue2 iHt uEG* &5e2 iEG* t
„ĉ~EG!…* ~29!

as a consequence of Eqs.~11! and ~23!.
The probability distribution associated to a GS is given by

P~E!5u^EuEG* &u25
G

~E2ED!21G2
•

1

FarctanSE12ED

G D2arctanSE02ED

G D G . ~30!

In the limit E1→1`, E0→2`, the above equation yields

P~E!5
G/p

~E2ED!21G2
, ~31!
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which is the Breit–Wigner form proposed by Ref. 16.
Let us introduce the self-adjoint operatorA, which is acting onHa ,

A5E
2`

1`

ul&ldsa~l!^lu, ~32!

wheresa~l! is given by

sa~l!5H (
n52`

1`

Q~l2ln!, l,l0

l, l0,l,l1 ,

~33!

and whereQ is a Heaviside step function. The expectation value ofA between GS

^EGuAuEG* &5E
2`

1`

^EGul&ldsa~l!^luEG* & ~34!

is real sincêEGul& 5 (^luEG* &)* . So far, the results which we have presented are based on the use
of the theory of tempered ultradistributions. In order to illustrate them we shall discuss some
simple examples.

For the first case we have adopted the plane waves

^Eux&5
e2 iEx

A2p
.

From Eq.~11! one obtains

^EGux&5A2G sgn@ Im~EG!#e2 iEGx ~35!

for the wavefunction of a GS.26

The second example is given by the function

^Eux&5@Q~E2E0!2Q~E2E1!#
e2 iEx

A2p
,

and for this case Eq.~11! yields

^EGux&5
C

2p i
@ ln~EG2E1!2 ln~EG2E0!#e

2 iEGx, ~36!

whereC is a constant.26

As it can be seen from these examples, the GS can be obtained as tempered ultradistributions.

III. BERGGREN APPROXIMATION

In the following we shall discuss the validity of the approximation proposed by Berggren16 to
calculate the expectation value of an operator in a resonant state. Following Berggren’s notation,
let us introduce the stateuk,k̂,l & and the continuum wavefunction̂xuk,k̂,l &5fk

(1)~r !.
Then, since the energyE is given by

E~k!5
k2

2m
, ~37!
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the GS can be defined by

uEG* &5
AG

iAp/2
E
0

1` uE~k!,k̂,l &
EG*2E

dE. ~38!

One can write

uk,k̂,l &5Ak

m
uE~k!,k̂,l & ~39!

and, consequently,

uEG* &5
AG

iAp/2
E
0

1`Ak

m

uk,k̂,l &
EG*2E~k!

dk, ~40!

^EGuAuEG* &5
2G

p (
l ,l 8

E
0

1`

dkE
0

1`

dk8
Akk8
m

^k8,k̂8,l 8uAuk,k̂,l &
„E~k8!2EG…„E~k!2EG* …

~41!

@see Eq.~2! of Ref. 16#. We are now in a position to compare the result provided by the present
method, about the expectation value of an operator in a resonant GS, and Berggren’s conjecture,
namely,

^A&5Rê EG* uAuEG* &, ~42!

where

^EG* uAuEG* &5
2G

p (
l ,l 8

E
0

1`

dkE
0

1`

dk8
Akk8
m

^k8,k̂8,l 8uAuk,k̂,l &
„E~k8!2EG* …„E~k!2EG* …

. ~43!

The relation between Eqs.~40! and ~42! can be expressed as

^A&5^EGuAuEG* &5Rê EG* uAuEG* &2
2iG2

p (
l ,l 8

E
0

1`

dkE
0

1`

dk8
Akk8
m

@E~k!2E~k8!#

3
^k8,k̂8,l 8uAuk,k̂,l &

uE~k8!2EGu2uE~k!2EGu2

1
4G3

p (
l ,l 8

E
0

1`

dkE
0

1`

dk8
Akk8
m

^k8,k̂8,l 8uAuk,k̂,l &

uE~k8!2EGu2uE~k!2EGu2
. ~44!

It means that the result obtained by Berggren16 is valid at leading order inG. At this order one
obtains, from the above equation,

^A&5^EGuAuEG* &5Rê EG* uAuEG* &. ~45!

The contributions of higher-order terms, for any value ofG, is given by Eq.~43!. From this
equation it is seen that the expectation value of the operatorA in a GS differs from the estimate
Rê EG* uAuEG* & and that it shows a power-law dependence uponG.
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IV. CONCLUSIONS

In this work we have presented a mathematical representation of GS based on the theory of
tempered ultradistributions. The use of them has been shown to be useful, particularly in discuss-
ing the normalization of GS. The connection with Berggren’s approximation, concerning the
expectation value of an operator on a resonant state, has been established. We have shown that
Berggren’s expansion is valid at leading order in the imaginary part of the energyEG . A general
expression for this expectation value has been introduced which is not restricted by any prior
assumption about the order of magnitude of the imaginary part ofEG as compared with the value
of the real part of it. These results show that the space of ultradistributions together with the RHS
discussed seems to be an appropriate framework for the description of GS and its main properties.
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Solvable quantum version of an integrable Hamiltonian
system
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Solvable quantum versions of the classical dynamical system characterized by the
HamiltonianH5( j ,k51

n pjpk@l1m cos(qj2qk)# are presented. The eigenvalues of
the quantum Hamiltonians are exhibited, as well as the corresponding eigenfunc-
tions. © 1996 American Institute of Physics.@S0022-2488~96!04009-1#

I. INTRODUCTION

It has been recently pointed out that the dynamical system characterized by the Hamiltonian

H5 (
j ,k51

n

pjpk exp~2uqj2qku! ~1.1!

is completely integrable.1,2 Motivated by this remarkable discovery, one of us investigated the
integrability of analogous systems and found that the Hamiltonian

H5 (
j ,k51

n

pjpk@l1m cos~qj2qk!# ~1.2!

is integrable.3 Subsequently, it was shown that the more general Hamiltonian

H5 (
j ,k51

n

pjpk@l1m cos~qj2qk!1m8 sinuqj2qku# ~1.3!

of which H ~1.1! andH ~1.2! are special cases, is also integrable.4

Not only is the system characterized by the Hamiltonian~1.2! completely integrable, it also
turns out that the corresponding equations of motioncan be solved explicitly in terms of elemen-
tary functions. This result led to the suggestion that there might existsolvable quantum versionsof
this model.3 In the present paper this conjecture is validated.

Below, in Sec. II, three quantum versions ofH ~1.2! are introduced. For the special casen52,
the eigenvalues and eigenfunctions of these three quantum Hamiltonians are displayed in Sec. III.
For the third of these quantum versions, the solution to the eigenvalue problem is exhibited for
arbitrary n in Sec. IV; for the second, in Sec. V. In both these cases, the solutions live in the
Hilbert space characterized by periodic boundary conditions~of period 2p!, with the additional
restriction thatall momenta be non-negative; as explained below, this latter restriction is a rather
natural requirement in the former case~third model!, less so in the latter~second model!. The
proofs of these results are given in Sec. VI. In Sec. VII we conclude the paper by briefly listing
some open problems.

Let us end this introduction by mentioning that the analogous classical dynamical system
characterized by the Hamiltonian

a!On leave while serving as Secretary General, Pugwash Conferences on Science and World Affairs, Geneva, London,
Rome.
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H5ln(
j51

n

pj1m (
j ,k51

n

~pjpk!
1/2 cos~qj2qk! ~1.4!

is also explicitly solvable in terms of elementary functions,5 and that also for this system there
exists a solvable quantum version.6

II. QUANTUM HAMILTONIANS

The quantization is generally achieved via the standard representation

pj5
\

i

]

]qj
, ~2.1!

which entails the commutation rule

@qj ,pk#5 i\d jk . ~2.2!

Hereafter we generally set\51, except when we deem appropriate to display explicitly the
dependence on\.

A natural quantum version of the Hamiltonian~1.2! is given by

H ~1!5lP21m (
j ,k51

@a cos~qj2qk! pjpk1b pjpk cos~qj2qk!1~12a2b! pj cos~qj2qk! pk#,

~2.3!

wherea andb denote two arbitrary constants. Here, and always below

P5(
j51

n

pj . ~2.4!

It is clear that the quantum HamiltonianH ~1!, see Eq.~2.3!, is Hermitian ifl,m,a,b are real and
a5b.

Two other quantizations of the classical HamiltonianH ~1.2! read as follows:

H ~2!5lP21mA1A ~2.5a!

with

A5(
j51

n

aj , A15(
j51

n

aj
1 , ~2.6a!

aj5exp~2 iq j !pj , aj
15pj exp~ iq j !, ~2.6b!

and

H ~3!5lP21 1
4mB

1B ~2.7a!

with

B5(
j51

n

bj
2, B15(

j51

n

~bj
1!2, ~2.8a!
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bj5exp~2 iq j /2!~2pj !
1/2, bj

15~2pj !
1/2 exp~ iq j /2!. ~2.8b!

Clearly, bothH ~2! andH ~3! are Hermitian~providedl and m are real!, becauseA1 is the
Hermitian conjugate ofA and B1 is the Hermitian conjugate ofB. In terms of the original
operatorsqj ,pj the latter two Hamiltonians read as follows:

H ~2!5lP21m (
j ,k51

n

pj exp@ i ~qj2qk!#pk ~2.5b!

5lP21m (
j ,k51

n

pj cos~qj2qk!pk1m
\

2 (
j ,k51,jÞk

n

cos~qj2qk!~pj1pk!,

~2.5c!

and

H ~3!5lP21m(
j51

n

pj~pj2\/2!1m (
j ,k51,jÞk

n

exp@ i ~qj2qk!#@~pj1\!~pj1\/2!pk~pk2\/2!#1/2.

~2.7b!

To obtain the formula forH ~3! we used the formal operator identity

~pj1a!1/2 exp~ ibqk!5exp~ ibqk!~pj1a1b\d jk!
1/2. ~2.9!

It is obvious from the above expressions that the HamiltoniansH (r ), r51,2,3, reduce to the
classical Hamiltonian~1.2! when \50 and qj ,pj are treated as ordinary variables instead of
~noncommuting! operators.

The rest of this paper is devoted to the investigation of the eigenvalue~or Schrödinger!
equations,

H ~r !C~r !~q!5E~r !C~r !~q!, r51,2,3, ~2.10!

for these 3 quantum Hamiltonians.

III. SOLUTIONS IN THE TWO-BODY CASE ( n52)

In this section we exhibit the eigenvaluesE(r ) and the eigenfunctionsC(r )~q! of the quantum
Hamiltonians of the preceding Section, see Eq.~2.10!, in the special case of two particles~n52!.
The verification of these results is left as an exercise for the diligent reader~in the cases ofH ~3!

andH ~2! see also below!

E~1!5lk21m@k212am22b~m11!2m~m11!# ~3.1a!

C~1!5exp@ ik~q11q2!/2# sinm@~q12q2!/2# F~a1 ,a2 ,c;sin2@~q12q2!/2# !, ~3.1b!

a65~11m2a1b6@k224b1~12a1b!2#1/2!/2, ~3.1c!

c5a11a211/25m2a1b13/2. ~3.1d!

E~2!5lk21m@k21k2m~m11!#, ~3.2a!

C~2!5exp@ ik~q11q2!/2# sinm@~q12q2!/2# F~a,b,c;sin2@~q12q2!/2# !, ~3.2b!
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a511~m1k!/2, b5~m2k!/2, c5a1b11/25m13/2. ~3.2c!

E~3!5lk21m~k22m2!, ~3.3a!

C~3!5exp~ ikq2! f ~q12q2!, ~3.3b!

f ~q!5(
l50

k

cl exp~ i lq !, ~3.3c!

cl5$~2l !! @2~k2 l !#! %1/2 (
l 850

min~k2m,l !

~21! l2 l 8S k2m
l 8 D S 2m

2~ l2 l 8! D . ~3.3d!

In the above formulasm andk are the two quantum numbers that identify the eigenvalues and
the eigenfunctions. The significance ofk is revealed by the formula@see Eq.~2.4!#

PC~r !~q!5kC~r !~q!, r51,2,3. ~3.5!

In Eqs.~3.1b! and~32.b!, F~2,2,2;2! denotes the Gauss hypergeometric function;7 note that
in both cases the hypergeometric function belongs to the special class for which there holds a
quadratic transformation@see Eq.~2.11.2! of Ref. 7#. The functionsC~1!~q! andC~2!~q! satisfy the
eigenvalue equation~2.10! for anyvalue ofm andk. However, the restriction that~the real part of!
m be non-negativeis required to avoid that these wave functions diverge atq15q2 , and the
requirement thatm andk be integerswith m1k evenis necessary and sufficient to guarantee that
these wave functions are periodic inq1 and q2 with period 2p. Under these conditions the
quantitiesa,b in ~3.2c! are alsointegers; if either of them innot positivethen the hypergeometric
function in the r.h.s. of Eq.~3.2b! becomes apolynomial. Likewise, the constantsa6 , see Eq.
~3.1c!, becomeintegersif a5~s21!2 andb5s2 with s integer; thena65s1(m6k)/2.

For the eigenvalue problem~2.10! with r53, see Eq.~3.3!, we have assumed that the quantum
numbersk andm are non-negative integerswith m<k. As a consequence, the eigenfunction
C~3!~q!, see Eqs.~3.3b!–~3.3d! is periodic with period 2p in q1 ,q2 , and it moreover containsonly
non-negative powersof exp~iq1! and exp~iq2!. The significance of this restriction is discussed in
the next section.

IV. EIGENVALUES AND EIGENFUNCTIONS OF H(3)

When investigating the eigenvalues and eigenfunctions of the quantum HamiltonianH ~3!, see
Eq. ~2.7!, we restrict consideration to the Hilbert space spanned by the basis

exp~ im–q![expS i(
j51

n

mjqj D , m[~m1 ,...,mn!PNn ~4.1!

~i.e., withm1 ,...,mn beingnon-negative integers!, endowed with the standard inner product for
square integrable functions with period 2p ~^ f ,g&5*0

2p•••*0
2pf * ~q!g~q!dq1•••dqn!. Requiring that

all componentsmj of m be integerscorresponds to imposingperiodicboundary conditions~with
period 2p, for all the variablesqj !; the restriction that they benon-negativeis to avoid any
difficulty with the definition of the pseudo-differential operatorspj

1/2 @see Eq.~2.8b!#, whose
action on the basis~4.1! is specified by the formula@see Eq.~2.1!#

pj
1/2exp~ im–q!5mj

1/2exp~ im–q!. ~4.2!

The restriction to this ‘‘non-negative momenta’’ subspace isself-consistent, because acting with
H ~3!, see Eq.~2.7!, on any function that is representable as a superposition of these basis elements

4246 F. Calogero and J. F. van Diejen: Quantum integrable Hamiltonian system

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



yields a function that is again representable as a superposition of these basis elements; indeed, this
is clearly a property inherited from the operatorsbj ,bj

1 @see Eqs.~2.8! and ~4.2!#.
Let us now turn to a description of the eigenvalues and eigenfunctions ofH ~3! in the above

mentioned Hilbert space. The proofs of the following results are given in Sec. VI.
The solution of the eigenvalue equation~2.10! for r53 andarbitrary particle numbern>2 is

given by the eigenvalues

E~3!5lk21m@k21~ n
221!k2m~m1 n

221!#, ~4.3!

and by the eigenfunctions

C~3!~q!5 (
l1 ,...,l n50,l11...1 lm5k

n

c~m,l!S )
j51

n

~2l j !! D 1/2 expS i(
j51

n

l jqj D , ~4.4a!

where the coefficientsc~m,l! are defined by the expansion formula

S (
j51

n

xj
2D k2m

H2m~x!5 (
l1 ,...,l n50,l11...1 l n5k

k

c~m,l!)
j51

n

xj
2l j . ~4.4b!

Just as in the treatment ofH ~3! given in Sec. III~for n52!, the numbersk andm arenon-negative
integerswith m<k; they are the quantum numbers labeling the eigenvaluesE~3!, see Eq.~4.3!.
One again has@see Eq.~3.5!#

PC~3!~q!5kC~3!~q!. ~4.5!

The functionH2m~x! in the defining relation~4.4b! for the coefficientsc~m,l! denotes aharmonic
polynomial of degree 2m, i.e., an even homogeneous polynomial of degree 2m in the variables
x1 ,...,xn satisfying the~n-dimensional! Laplace equation

DH2m~x!50. ~4.6!

For a givenm ~andn>3! there exist (4m1n22)!(2m1n23)!/[(n22)!(2m)!] such indepen-
dentharmonic polynomials@see Eq.~11.2.2! of Ref. 7#; this is, therefore, also the multiplicity of
the eigenvalueE~3!, see Eq.~4.3!, in the generic case~l andm incommensurate!; note that the
multiplicity does not depend onk. Rather explicit formulas for these polynomials~in terms of
Gegenbauer polynomials! can be found in Eq.~11.2.21! of Ref. 7.

V. EIGENVALUES AND EIGENFUNCTIONS OF H(2)

In this section we exhibit the eigenvalues and eigenfunctions of the HamiltonianH ~2!, see Eq.
~2.5!, again in the Hilbert space spanned by the basis~4.1!. The restriction tointegervalues of the
quantum numbersmj corresponds again to the imposition ofperiodic boundary conditions~of
period 2p, for all the variablesqj !; the additional restriction that they all benon-negative~namely,
the restriction to work in the space with onlynon-negative momenta!, althoughself-consistent~as
in the previous case!, has no cogent justification~contrary to the previous case!.

The proofs of the following results are given in Sec. VI.
The eigenvaluesE~2! of H ~2!, see Eq.~2.10!, are given by the formula

E~2!5lk21m@k21~n21!k2m~m1n21!#, ~5.1!

with k andm non-negative integersandm<k; note the analogy, and yet the difference, ofE~2!,
see Eq.~5.1!, with E~3!, see Eq.~4.3!.

The corresponding eigenfunctions ofC~2!, see Eq.~2.10!, are again also eigenfunctions ofP,
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PC~2!5kC~2!, ~5.2!

so that the quantum numberk has the same significance as in the preceeding sections@see Eqs.
~3.5! and ~4.5!#; and they are given by the explicit formulas

C~2!~q!5~A1!k2mF~q!, ~5.3!

F~q!5F (
j51

n

g j exp~ iq j !Gm, ~5.4a!

with A1 defined by Eqs.~2.6! and~2.1!, and where then constantsgj are arbitrary except for the
single restriction

(
j51

n

g j50. ~5.4b!

For n52 the simultaneous validity of Eq.~3.2b!, and of Eq.~5.3! with Eq. ~5.4!, entails the
following intriguing ~possibly new!?! representation of~even! Gegenbauer polynomials:8

C2p
m11~cosx!5~2 !p222p@~2p!! #21~sin x!2m exp@2 i ~m12p!y#•H S ]

]y
1

]

]xDexp@ i ~x1y!#

1S ]

]y
2

]

]xDexp@ i ~y2x!#J 2p• exp~ imy!~sin x!m, ~5.5a!

C2p
m11~cosx!5@~2p!! #21~sin x!2m

•H F ~m12p11!cosx1~sin x!
]

]xG
3F ~m12p!cosx1~sin x!

]

]xG
•F ~m12p21!cosx1~sin x!

]

]xG •••F ~m13!cosx1~sin x!
]

]xG
•F ~m12!cosx1~sin x!

]

]xG%~sin x!m, ~5.5b!

with m andp non-negative integers. The formula~5.5a! has been obtained by settingk2m52p,
q15y1x, q25y2x, and using the second of Eqs.~10.9.21! of Ref. 8. The formula~5.5b! is easily
obtained from~5.5a! using the~operator! identity

S ]

]y
1

]

]xDexp@ i ~x1y!#1S ]

]y
2

]

]xDexp@ i ~y2x!#52F ]

]y
cosx1 i

]

]x
sin xGexp~ iy !.

~5.6!

The normalization constant for these equations has been determined by setting cosx5z in Eq.
~5.5b! and then evaluating the dominant term~asz diverges!.

Of course an equivalent representation to Eqs.~5.4! reads

F~q!5H (
j51,jÞk

n

g j@exp~ iq j !2exp~ iqk!#J m, ~5.7!
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with k arbitrary, 1<k<n, and now with then21 arbitrary constantsgj , j51,...,n, jÞk, unre-
stricted. By expanding the right-hand-side in powers of the constantsgj , one obtains
N(n,m)5(m

n1m22)[(n1m22)!/[(n22)!m!] different functions, as coefficients of different
powers of then21 constantsgj ; all these functions yield, via Eq.~5.3!, different eigenfunctions,
all of which satisfy both eigenvalue equations,~5.2!, and ~2.10! with r52 and with Eq.~5.1!.
HenceN(n,m) gives the multiplicity~or at least, a lower bound to the multiplicity! of the eigen-
value ~5.1! ~in the generic case withl andm incommensurate!.

VI. PROOFS

To derive the results of Sec. IV one first observes that the operatorsbj
1 andbj , see Eq.~2.8b!,

satisfy the commutation rules

@bj , bj
1#5d jk . ~6.1!

Hence another representation for these operators, also consistent with these commutation relations,
is given by

bj
15xj , bj5

]

]xj
. ~6.2!

In the latter representation the Hamiltonian~2.7a! reads

H ~3!5 1
4~lN1mr 2D!, ~6.3a!

with

N5(
j51

n

xj
]

]xj
, r 25(

j51

n

xj
2, D5(

j51

n
]2

]xj
2 . ~6.3b!

Now let H2m~x! be aharmonicpolynomial of degree 2m and define

f~x!5r 2~k2m!H2m~x!, ~6.4!

so thatf~x! is a homogeneouspolynomialin thexj ’s of degree 2k ~here the assumptionk2m>0
plays an essential role!. Then it is clear from the representation~6.3a! that

H ~3!f~x!5E~3!f~x!, ~6.5!

with E~3! given by Eq.~4.3!.
It remains to transform back to the variablesqj , j51,...,n. To this end one observes that in

both representations the ground state wave function is a constant@constant functions are annihi-
lated by both representations ofbj , see Eqs.~2.8b! and ~6.2!#. By comparing the action of the
creation operatorsbj

1 on the ground state in both representations one arrives at the transformation
rule

xj
2l→@~2l !! #1/2 exp~ i lq j !. ~6.6!

Hence, to obtain the eigenfunctionC~3!~q! one must first expandf~x!, see Eq.~6.4!, in powers of
the variablesxj , and then perform the substitution~6.6!. This yields Eq.~4.4!.

Let us now proceed to prove the results of Sec. V.
It is easily seen that the following formulas are implied by the definitions~2.6! with Eqs.~2.1!,

~2.2!, ~2.4!:
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@aj ,ak
1#5d jk~112pj !, ~6.7!

@P,Am#52mAm, m50,1,2,..., ~6.8a!

@P,~A1!m#5m~A1!m, m50,1,2,.., ~6.8b!

@A,~A1!m#5~A1!m21m~m1n2112P!, m50,1,2,.., ~6.9a!

@A1A,~A1!m#5~A1!mm~m1n2112P!, m50,1,2,..., ~6.9b!

@P,A1A#50. ~6.10!

Using the explicit definition~5.4! of F~q! it is easy to show that this function satisfies the two
equations

PF~q!5mF~q!, ~6.11!

AF~q!50. ~6.12!

Hence, using Eqs.~6.8b! and ~6.9b!, it is easy to show thatC~2!, see Eq.~5.3!, satisfies Eq.
~5.2! as well as Eq.~2.10! with Eq. ~5.1!.

VII. OUTLOOK

We conclude by briefly mentioning some open problems associated with these quantum ver-
sions of the Hamiltonian~1.2! ~for a list of open problems extant in the classical context see Ref.
4!.

For the two-body case~n52!, the results of Sec. III provide the complete solution of the
quantum problem for the 3 HamiltoniansH (r ), r51,2,3, introduced in Sec. II, in the guise of rather
explicit solutions of the relevant Schro¨dinger equations. This opens the possibility to investigate
other prescriptions for quantization~for instance, different boundary conditions! than those de-
tailed above; a task that we consider sufficiently easy, forn52, not to warrant any additional
elaboration here. The question of exploring more fully other quantizations in the many-body case
~n.2! is on the other hand an interesting open problem; and also open and interesting is the
problem to solve, in some appropriate Hilbert space, the eigenvalue equation~2.10! with r51 ~for
n.2!, as well as the problem to solve Eq.~2.10! with r52 ~for n.2! in the larger Hilbert space
characterized by the basis~4.1! without the restriction that the integersmj benon-negative~note
that, in then52 case, the eigenfunctions are then given by Eq.~3.2b! with a nonpolynomial
hypergeometric function!.

Let us end by mentioning that the question of the existence of asolvablequantum version of
the more general Hamiltonian~1.3! constitutes an interesting, and probably difficult, open prob-
lem.
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A kind of high-temperature superconductivity related lattice model is investigated
within the framework of supergroup coherent state path-integral representation.
Symmetry properties are analyzed and the Hamiltonians are written in the symmet-
ric form explicitly in terms of generators of the supergroupU(N/M ). By a standard
approach, general supergroup coherent states are constructed. Holstein–Primakoff
realizations of the supergroupU(N/M ) on the coset spaceU(N/M )/[U(1)^U(N
21/M )] are obtained. Vacuum persistence amplitudes are expressed in terms of
parameters on the coset spaceU(2/M )/[U(1)^U(1/M )]. Symmetry-breaking
terms in the Hamiltonian are taken into account separately. The Lagrangians of
these models are quadratic in Grassmann variables. Thus fermionic fields can be
integrated out. The nonlinears model is arrived at as effective continuum field
theory describing the low-energy excitations of the supersymmetric lattice models.
© 1996 American Institute of Physics.@S0022-2488~96!02108-1#

I. INTRODUCTION

It is well known that the Bardeen, Cooper, and Schrieffer~BCS! theory1 gives viable mecha-
nisms for superconductivity in metals and superfluidity of liquid He3. This theory has also suc-
cessfully explained a variety of related phenomena in diverse areas of physics. However, the
discovery of copper-oxide superconductivity2,3 with critical temperature as high as 120 K raised
doubts about it. Due to the nature of the phonon-mediated electron–electron interaction in BCS
theory, there are upper bounds on the critical temperatures much lower than those achieved with
the copper oxides. The lack of a significant isotope effect with substitution of the oxygen sites
seems to rule out the possibility that the phonon Debye frequency is the characteristic energy scale
entering in the fundamental equations of the high-temperature superconductivity. Because the
superconductiviting phase occurs near a metal-insulator transition, an antiferromagnetic as well as
a structural instability, the phase diagram of highTc superconductivity materials is rich. There is
a growing suspicion that a different mechanism may be responsible for the highTc superconduc-
tivity. Anderson4,5 suggested that the novel quantum spin fluctuations in the CuO2 planes may be
responsible for the superconductivity. Interesting magnetic properties revealed by neutron-
scattering experiments provide further support for this idea. It was conjectured that such fluctua-
tions might destroy the antiferromagnetic long-range order in the ground state, giving rise to a new
state of the spin system, a quantum spin-liquid state. The superconductivity in these materials was
then conjectured to arise from the behavior of a novel quantum fluid created out of a highly
correlated set of electronic degrees of freedom.

Anderson argued that the appropriate model for the highTc superconductivity is the two-
dimensional single-band Hubbard model6 in the strong on-site Coulomb repulsion limit,

HHubb.52t(̂
jk&

(
s561

~cjs
† cks1cks

† cjs!1U(
j
cj1
† cj1cj ,21

† cj ,21 , ~1!

a!Electronic mail: changz@ictp.trieste.it
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4252 J. Math. Phys. 37 (9), September 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



wheret is the hopping matrix elements andU is the on-site Coulomb interaction. In this model the
fermion creation operators create electrons at the outerdx22y2 orbital of the Cu atoms, which is
hybridized in an antibonding symmetry with thePx andPy orbitals of the two oxygen atoms in the
CuO2 cell.

Standard strong-coupling perturbation treatment of the single-band Hubbard Hamiltonian pro-
duces the effectivet2J model7,8 with the superexchange couplingJ54t2/U,

Ht2J52t(̂
jk&

(
s561

~cjs
† cks1cks

† cjs!1J(̂
jk&

~Sj
†Sk1Sk

†Sj12Sj
3Sk

3!. ~2!

The t2J Hamiltonian is an interesting model on its own. This model can be obtained in the
strong-coupling limit from a more realistic model that takes into account the more detailed orbital
structure of the CuO2 cell, even when the holes created by doping sit primarily on the oxygen
sites.9

At half-filling, apart from a constant, thet2J Hamiltonian is equivalent to the spin-1
2 antifer-

romagnetic Heisenberg model on a square lattice,

HHeisen.5J(̂
jk&

~Sj
†Sk1Sk

†Sj12Sj
3Sk

3!. ~3!

The spin model has been studied for many years.10,11 Since the 1950s, the importance of field
theory to condensed matter physics, and vice versa, has been recognized based on the pioneer
works of Landau and Feynman. Conformal field theory describes effectively critical phenomena.
The renormalization group, which is developed initially by field theorists, has become the main
tool for the interpretations of experimental data, the conceptual framework, and the computational
algorithm in condensed matter physics. Haldane first used theSU(2) group coherent state path-
integral representation12 to map the spin operators to unit 3-vectors on the large spin limit,

Sj→swj , wj–wj51, ~4!

and the system becomes classical. On the other hand, in the long-wavelength limit the system
approaches a continuum field theory appropriate for the study of low-energy excitations. When
both approximations are used in conjunction the system is described by a nonlinears model,

L5
1

2g
]mw–]mw, ~5!

with the constraintw–w51.
Semiclassically we assume spontaneous symmetry breaking13 and write

w5S w1 ,w2 ,A12(
i51

2

w iw i D 8~w1 ,w2,1!. ~6!

Then we have

L5
1

2g (
i51

2

2 ]mw i ]mw i5
1

2g
]mf ]mf†, ~7!

where we have used the notationsf5w11 iw2 , f†5w12 iw2 .
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It is widely believed that the quantum nonlinears model provides an accurate description of
the long-wavelength, low-energy properties of the spin system, even in the small spin regime.
Affleck and Randjbar-Daemi, Salam, and Strathdee~RSS! have generalized the approach to
SU(N) and general Lie group cases.14,15

By defining the so-called spin-hole coherent states,

uV,j&s5uV&su0&1uV&s21/2j f
†u0&, ~8!

Auerbach and Larson16 used the coherent state representation to deal with thet2J model. By a
Hartree–Fock approximation, a model that is quadratic in the Grassmann variables is arrived. The
effective Lagrangian of thet2J model is of the form

Lt2J
eff 5(

j
~2s2r j !A~V j !–V̇j2HJ~V!2b21T logF11Tt expS 2E

0

b

dt„Hf~V j !2m…D G .
~9!

However, nos-type field theory was obtained explicitly. They argued that although the expansion
around the Ne´el state is formally controlled by the large spin sizes, at low doping the success of
this approximation for thes5 1

2 antiferromagnetism can be relied on.
The spin–spin interactions are essential to the highTc superconductivity related lattice mod-

els. As Haldane has shown in the absence of doping the spin–spin interactions can be presented by
the 211-dimensional nonlinears model. It is natural to hope that, at least in the low doping case,
the spin–spin interactions, in general, should be described by as-type field theory.

It is well known that the novel feature of supersymmetry is that it operates between bosons
and fermions, the odd generators of the supergroup corresponding to transformations between
bosons and fermions. Thus supersymmetry provides a unified description of mixed systems of
bosons and fermions. Supersymmetry is introduced originally for applications in high-energy
physics and becomes more and more popular in other fields of physics.

In this paper, we begin with discussing the symmetry properties of these models and rewrite
the Hamiltonians in a supersymmetric form. Here the supergroupU(N/M )17–19 plays a funda-
mental role. The Hamiltonians are written in terms of the generators ofU(N/M ). For conve-
nience, we introduce the Schwinger boson~slave fermion! representation.20,21This representation
is widely used by condensed matter physicists in dealing with doping problems of highTc super-
conductivity. The total particle number of bosons and fermions is used to label representations of
U(N/M ). The elements ofU(N/M ) are identified as transformations among states that have the
same total particle number. To arrive at a path-integral representation of the supersymmetric
models, we construct supergroup coherent states18,22 from unitary irreducible representations of
the supergroup. The supergroup coherent states have a natural topological coset space structure
U(N/M )/[U(1)^U(N21/M )]. Parametrization of the coset space is presented explicitly. A
complex projective representation ofU(N/M )/[U(1)^U(N21/M )] is introduced. We show that
two important properties of ordinary group coherent states are maintained by the supergroup
coherent states, i.e., they are, in general, nonorthogonal but are normalized to unity. According to
Schurr’s lemma, we also give the resolution of identity of the supergroup coherent states. This is
crucial for obtaining a path-integral representation. Following the method of RSS,15 we express
the vacuum persistence amplitudes of the supersymmetric systems in terms of parameters on the
coset spaceU(2/M )/[U(1)^U(1/M )] through the Holstein–Primakoff realizations.23 To agree
with the Néel character~at least short range! of the highTc superconductivity materials, we give
two kinds of parametrizations of the coset space on bipartite lattices. After taking account of the
symmetry-breaking terms of the Hamiltonians, we get a Lagrangian that describes sensibly the
spin fluctuations of the highTc superconductivity materials. It should be noticed that the Lagrang-
ian is quadratic in Grassmann variables. Thus we can integrate out the fermionic fields and get an
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effective Lagrangian that only involves bosonic fields. This is just the familiar nonlinears model.
This result proves the predictions of the weak-coupling mean-field theory in the Fermion coherent
state path-integral representation.

This paper is organized as follows. In Sec. II, we show symmetry properties of the highTc
superconductivity related lattice models. Section III is devoted to discussing the Schwinger boson
representations of the supergroup. Supergroup coherent states are constructed in Sec. IV. We give
the supergroup coherent state path-integral representations of these models in Sec. V. Concluding
remarks are given in Sec. VI.

II. HIGH Tc SUPERCONDUCTIVITY RELATED SUPERSYMMETRIC LATTICE MODELS

The existence of antiferromagnetism in the absence of doping is an evidence for strong
electron correlations for the highTc materials. The extended Hubbard model24–26 is one of the
simplest models for describing the electron correlations on a two-dimensional lattice, which in-
cludes nearest-neighbor interactions such as density–density and spin–spin coupling and addi-
tional interactions such as a bond charge term and a pair hopping term. The Hamiltonian of the
model is given by

HHubb.52t(̂
jk&

(
s561

~cjs
† cks1cks

† cjs!2
t

2 (̂
jk&

~nj21!~nk21!1t(̂
jk&

~cj1
† cj ,21ck,21

† ck1

1cj ,21
† cj1ck1

† ck,21!1t(̂
jk&

(
s561

~cjs
† cks1cks

† cjs!~nj ,2s1nk,2s!

2t(̂
jk&

~cj1
† cj ,21

† ck,21ck11ck1
† ck,21

† cj21cj1!24t(
j

S nj12 1

2D S nj ,212
1

2D
1U(

j
cj1
† cj1cj ,21

† cj ,21 , ~10!

where the operatorcjs (cjs
† ) @ j51,2,...,L ~total number of lattice sites!# describe electrons on the

lattice and satisfy the anticommutation relation,

$cjs ,cks8%50, $cjs ,cks8
† %5d jkdss8 , $cjs

† ,cks8
† %50. ~11!

Here we have used the notationsnjs 5 cjs
† cjs andnj5(s561njs , (^ jk& implies the sum over the

nearest neighbors, in which the pairs (j ,k) and (k, j ) have to be counted once each so that the sum
can be always considered as symmetric under interchangingj↔k.

The Hilbert space of the extended Hubbard model is spanned by the states of the form

ua1& ^ ua2& ^ ••• ^ uaj& ^ ••• ^ uaL&, ~12!

whereuaj& P $u1 j& 5 cj1
† u0& j , u2 j& 5 cj ,21

† u0& j , u3 j&5u0& j , u4 j& 5 cj1
† cj ,21

† u0& j%. Hereu0& j is de-
fined ascjsu0& j50 and the vacuumu0&5 ^ u0& j satisfiescjsu0&50.

The system hasSU~2! spin symmetry. The spin operatorSj is defined by

Sj5
1

2 (
s,s8561

cjs
† tss8cjs8 , ~13!

wheret are the three Pauli matrices,

t15S 0 1

1 0D , t25S 0 2 i

i 0 D , t35S 1 0

0 21D . ~14!
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Another symmetry of the system is the so-calledh pairing27,28 generated by

h j5cj1cj ,21 , h j
†5cj ,21

† cj1
† , h j

352 1
2~nj21!. ~15!

Together with the spinSU~2! symmetry, this gives anSO~4! symmetry.
In terms of the operators of spin andh spin, the extended Hubbard Hamiltonian is of the form

HHub.52t(̂
jk&

(
s561

~cjs
† cks1cks

† cjs!2
t

2 (̂
jk&

~nj21!~nk21!1t(̂
jk&

~Sj
†Sk1Sk

†Sj12Sj
3Sk

3!

1t(̂
jk&

(
s561

~cjs
† cks1cks

† cjs!~nj ,2s1nk,2s!2t(̂
jk&

~h j
†hk1hk

†h j12h j
3hk

3!

24t(
j

S nj12 1

2D S nj ,212
1

2D1U(
j
cj1
† cj1cj ,21

† cj ,21 . ~16!

The above Hamiltonian can be divided formally into two parts, the supersymmetric partHHub.
0 and

the symmetry-breaking partHHub.
int ,

HHub.
0 52t(̂

jk&
(

s561
~cjs

† cks1cks
† cjs!2

t

2 (̂
jk&

~nj21!~nk21!1t(̂
jk&

~Sj
†Sk1Sk

†Sj12Sj
3Sk

3!

1t(̂
jk&

(
s561

~cjs
† cks1cks

† cjs!~nj ,2s1nk,2s!2t(̂
jk&

~h j
†hk1hk

†h j12h j
3hk

3!

24t(
j

S nj12 1

2D S nj ,212
1

2D ,
~17!

HHub.
int 5U(

j
cj1
† cj1cj ,21

† cj ,21 .

As we know there are four states at each lattice site, two of them are fermionic and the others are
bosonic. The termsHjk

0 (t51) act as a minus graded permutation29 of the electron states at sides
j andk. By ‘‘graded’’ we mean that there is an extra minus sign if the two states that are permuted
are both single electron states. For example,

Hjk
0 cj1

† u0&52ck1
† u0&,

~18!
Hjk
0 cj1

† ck,21
† u0&5cj ,21

† ck1
† u0&.

Thus the symmetric partHHub.
0 can be written as an invariant form in terms of generators of the

supergroupU(2/2),

HHub.
0 52t(̂

jk&
(

a,b51

16

Str~XaXb!XaXb. ~19!

The supergroupU(2/2) here is the group of the unitary rotations of the four allowed states,uaj&
(a51,...,4), into one another.

It is easy to show that the off-diagonal matrix element (jÞk)
^Fmucj ,21

† cj1
† ck1ck,21uFm&/^FmuFm& is constant for long distances u j2ku. Here

uFm&5(h†)mu0&. Indeed we have
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^Fmucj ,21
† cj1

† ck1ck,21uFm&

^FmuFm&
5
m~L2m!

L~L21!
. ~20!

This fact established the properties of off-diagonal-long-range-order~ODLRO! for the stateuFm&.
In the thermodynamic limit we have ODLRO as soon asm/L→D becomes finite. The ODLRO is
characteristic for superconductivity.30

If the double occupied sites are kinetically forbidden, the restricted Hilbert space of the system
now consists of configurations made of empty sites~holes! and up and down spins~uaj&, a51,2,
3!. The kinetic term will allow for charge motion since empty sites will be able to move. These
holes carry electric charge but they have no spin. The effective Hamiltonian now has the form of
the t-J model,

Ht2J52t(̂
jk&

(
s561

~cjs
† cks1cks

† cjs!1J(̂
jk&

SSj†Sk1Sk
†Sj12Sj

3Sk
32

njnk
4 D . ~21!

Notice thatHt2J acts on the Hilbert space, where no double occupancy of sites are allowed.
Also, the t2J Hamiltonian can be divided into a symmetric partHt2J

0 and a symmetry-
breaking partHt2J

int ,31–33

Ht2J
0 52t(̂

jk&
(

s561
~cjs

† cks1cks
† cjs!12t(̂

jk&
SSj†Sk1Sk

†Sj12Sj
3Sk

32
njnk
4 D ,

~22!

Ht2J
int 5~J22t !(̂

jk&
SSj†Sk1Sk

†Sj12Sj
3Sk

32
njnk
4 D .

Ht2J
0 is ofU(2/1) supersymmetric invariance. It generates the unitary rotations among the allowed

states of thet2J model,uaj& ~a51, 2, 3!. And the termsHjk
0 act as a minus graded permutations

of these states.
At the half-filled case of the extended Hubbard model, only the spin up and down statesuaj&

~a51, 2! are allowed and no fermionic states are left. The permutation group in this case becomes
as the Lie groupU(2). And thesymmetric Hamiltonian reduces to the usual spin-1

2 quantum
Heisenberg Hamiltonian,

HHeisen.5J(̂
jk&

~Sj
†Sk1Sk

†Sj12Sj
3Sk

3!. ~23!

Generally speaking, fromn statesua& (a51,2,...,n), which satisfy

^aub&5dab, ~24!

one can constructn3n independent real operatorsXab,

Xab5ua&^bu, a,b51,2,...,n. ~25!

With the local statesuaj& that satisfy the relation

^aj ubk&5d jkd
ab, ~26!

we can define the local operatorsXj
ab5uaj&^bj u.

With the local Hubbard operatorsXj
ab the extended Hubbard Hamiltonian can be cast into the

following form:
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HHub.52t(̂
jk&

(
a,c51

4

Xj
acXk

ca~21!F~a!•F~c!1U(
j
Xj
44, ~27!

whereF is the graded number,

F~x!5H 1, for x51,2,

0, for x53,4.

The t2J and Heisenberg Hamiltonians in terms of the local Hubbard operators are

Ht2J52t(̂
jk&

(
a,c51

3

Xj
acXk

ca~21!F~a!•F~c!1~J22t !(̂
jk&

(
a,c51

2

Xj
acXk

ca ; ~28!

HHeisen.5J(̂
jk&

(
a,c51

2

Xj
acXk

ca . ~29!

We clearly see that the extended Hubbard model, thet-J model, and Heisenberg model can be
described in a unified manner. The Hamiltonians of these models can be written into a supersym-
metric form explicitly in terms of the generators of the supergroupU(2/M ). In the following, we
investigate the supergroup coherent state path-integral presentations of theU(2/M ) models.

It should be noticed that, so far, the discussion has been entirely about thes5 1
2 case. Before

going ahead further, we would like to generalize to highs. Let us imagine that the band electrons
have an orbital degeneracy labeled by an indexa51,2,...,N , whereN is the number of degen-
erate bands. The total band spin at a given sitej is now given by Sj
51

2(s,s8561(a51
N cjs,a

† tss8cjs8,a . This system still has the globalSU(2) invariant of spin rota-
tions. At the half-filling case, the local spin gets to be as large as possible. The equivalent
Heisenberg model has a total spin quantum numbers at each site equal tos5N /2. The limit
N →` is the same as the semiclassical limits→`.34

III. SCHWINGER BOSONS (SLAVE FERMIONS) REPRESENTATIONS

Arovas and Auerbach21 introduced two commuting Schwinger bosonsbi (bi†) ( i51,2) to
describe states of spin. The operatorbi (bi†) obeys the commutation relation

@bi ,bj†#5d i j , ~30!

and satisfies the constraint

(
i51

2

bi†bi51. ~31!

The bilinear forms of the Schwinger bosons yield the spin operators

S5
1

2
~b1†,b2†!t S b1b2D . ~32!

Furthermore, a slave fermionf ( f †)16 and the two Schwinger bosons can be used to represent the
allowed states of the projected Hilbert space of thet2J model. The slave fermion obeys the
anticommutation relation

$ f †, f %51, ~33!
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and satisfies the constraints

(
i51

2

bi†bi1 f †f51. ~34!

The t2J model is faithfully represented by

Ht2J5t(̂
jk&

f j
†f kF jk2J(

^ jkl &
~d j l2 f l

†f j !Alk
†
Alk~12 f k

†f k!, ~35!

where

A jk5bj
1†bk

2†2bj
2†bk

1† , F jk5bk
1†bj

1†2bk
2†bj

2† .

Here ^ jkl & are triads of nearest neighbors.
In the general case, to denote the allowed states of the high-temperature superconductivity

related lattice models, one can introduce a set of Schwinger bosons and slave fermions at each site,
bi (bi†) ( i51,2,...,N) and f a ( f a†) (a51,2,...,M ), which satisfy the following commutation
~anticommutation! relations:

@bi ,bj†#5d i j , i , j51,2,...,N,

$ f a, f b†%5dab, a,b51,2,...,M , ~36!

@bi , f a#505@bi , f †a#, $ f a, f b%505@bi ,bj #.

For the sake of compactness, we denote the boson and fermion operators generically asjA (j†A),

jA~jA†!, A51,2,...,N1M ,

j i[bi , i51,2,...,N, ~37!

jN1a[ f a, a51,2,...,M ,

and write symbolically

@jA,jB†%5dAB, ~38!

where the product@,% is to be understood as an anticommutator between any two fermionic
components and as a commutator otherwise.

It is well known that the bosonic bilinearsbibj† and the fermionic bilinearsf a f b† generate the
Lie algebrasu(N) andu(M ) under commutation, respectively. The Bose–Fermi bilinearsbi f a†

and f abi† close into the setbibj† and f a f b† under anticommutation,

$ f a†bi ,bj†f b%5 f a†f bd i j1bj†bidab,
~39!

$ f a†bi , f b†bj%505$bi†f a,bj†f a%.

Thus, considering the boson-fermion bilinears as the odd generators and bosonic bilinears and
fermionic bilinears as the even generators, one finds that the operatorsjA†jB form the superalge-
brau(N/M ).17,18

Indeed, we have

XAB5jA†jB,
~40!@XAC,XBD%5XADdBC6XBCdAD.
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ThusXAB generates the supergroupU(N/M ).
The Fock space of the system is of the form

u0&5vacuum,

bi†u0&, f a†u0&512particle states,

bi1†bi2†u0&, bi†f a†u0&, f a1†f a2†u0&522particle states, ~41!

A

bi1†bi2†•••bik†f a1†f a2†••• f aL2k†u0&5L2particle states.

Generally, theL-particle states may containk bosons andL2k fermions, where 1<k<L.
It is easy to see that the total particle number operator,

Nbf5(
i
bi†bi1(

a
f a†f a5(

A
jA†jA, ~42!

has the fixed eigenvalueL for theL-particle states of any value ofk, 1<k<L. It should be used
to label the Fock space of the supersymmetric systems.

Supposing that the systems we are interested in are ofN -fold orbital degeneracy, we would
focus on theN -particle states of the Fock space. TheN -particle states may be written in terms
of the operatorjA†,

jA1†jA2†•••jAN †u0&. ~43!

If we analyze theN -particle state as a tensor in the boson and fermion indices, we find it is
symmetric in bosonic indices (i 1 ,i 2 ,...,i k) and antisymmetric in the fermionic indices
(a1 ,a2 ,...,aN 2k). Thus, in terms of Young tableau, we may represent it as

~44!

It indicates a direct product of a symmetric representation ofU(N) and an antisymmetric repre-
sentation ofU(M ). Thus, in terms ofU(N)^U(M ) representations, theN -particle state are the
direct sum,

~45!
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We will indicate the supertensor by a super Young tableau,

~46!

Thus, theU(N/M ) supertableau, if decomposed into itsU(N)^U(M ) parts, is seen to be Eq.
~45!.

Therefore, theN -particle state may be understood as a collection of irreducible representa-
tions of theU(N)^U(M ) subgroup.Xi j (Xab) kills a boson~fermion! and creates another boson
~fermion! andXa i (Xia) kills a boson~fermion! and creates a fermion~boson!. Thus,

~47!
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so that theXa i (Xia) acts as a ladder operator hopping to the right~left! in Eq. ~45!. If we apply
all the operatorsXAB taken to any power on theN -particle state, we remain within the set of
N -particle states. This shows that the super-tableau~46! represents an irreducible set of states
under all transformations of supergroupU(N/M ).

IV. SUPERGROUP COHERENT STATES

Consider an arbitrary quantum mechanical lattice model, whose Hamiltonian is expressed in
terms of generators of a supergroupG, Xj

lPg,

H5H~Xj
l !. ~48!

We are now interested only in the case of the Hamiltonian involving linear and quadratic
terms ofXj

l ,

H5(
j ,k

(
l ,m

clm
jk Xj

l Xk
m1(

j
(
l
cj
l Xj

l . ~49!

The superalgebrag spanned by the operatorsXj
l is closed under commutation~anticommutation!,

@Xj
k ,Xj

l %5(
k
cm
klXj

m , ~50!

wherecm
kl are the structure constants ofg.

The group-theoretic approach to coherent states involves the use of unitary group
representations.35–37We know that the standard supergroup elements connected to the identity are
obtained by exponentiating superalgebra elements. There is thus one-to-one correspondence be-
tween such elements of the supergroup and points in the flat superspaceRML

m,n,38–40which is the
Cartesian product ofm copies ofRBL0 with n copies ofRBL1. A Grassmann algebraRBL is an
associative algebra generated by identity 1 and byL elementsba (a51,2,...,L) obeying the
anticommutation relations$ba ,bb%50. The algebra is spanned by the identity and all independent
nonvanishing products ofba . There are 2

L linear independent basis elements. The subset of basis
elements consisting of identity and all even products of the generators spans the even partRBL0 of
RBL ; the remaining basis elements span the odd partRBL1.

The set of left translations on a supergroup forms a supermoduleW. This is the direct product
of RBL with a superalgebra. We denote the superalgebra generators41 by X1, X2,...,Xm; Xm11,
Xm12,...,Xm1n. To obtain a unitary representationT(g), we must work with the super-Hermitian
basis of the superalgebra by choosing the generators so thatXj†5Xj for j51,2,...,m and
Xj†52Xj otherwise. Thus, the operator

T~g!5expS (
j51

N21M2

iA jXj1 (
j51

2NM

iu jXm1 j D ,
Xj†5Xj , for j51,2,...,N21M2,

~51!
Xj†52Xj , for j5N21M211, N21M212,...,~N1M !2,

AjPRBL0 , u jPRBL1 ,

defines an unitary representation of the supergroupU(N/M ).
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To go to the super-Hermitian basis we must choose Hermitian combinations of the even
generators and anti-Hermitian combinations of the odd ones. For the even generators we thus
choose

Xk5H Xi j1Xji ,
i ~Xi j2Xji !,
Xab1Xba,
i ~Xab2Xba!,

k51,2,...,N21M2. ~52!

And for the odd generators we choose the following anti-Hermitian operators:

Xk5 HXa i2Xia,
i ~Xa i1Xia!, k5N21M211,...,~N21M2!. ~53!

For the Hamiltonian~49!, the Hilbert spaceVL is a direct sum of unitary irreducible representa-
tionsG j of the supergroupG at each site of the lattice. In principle, we can choose an arbitrary
state uF0&5uL& within each unitary irreducible representationG j

L, which can be normalized to
unity ^F0uF0&51. Acting by unitary representationG j

L on the reference stateL, we get the super-
group coherent states.

It should be noticed that there is a subgroup ofU(N/M ) that consists of all the group elements
h that leaves the reference state invariant up to a phase factor, called the maximum-stability
subgroupH, i.e.,

huL&5uL&eic~h!, hPH. ~54!

Every elementg of the supergroupU(N/M ) can be uniquely decomposed into a product of
two elements, one inH and the other in the quotientU(N/M )/H,

g5Vh, gPU~N/M !, hPH, VPU~N/M !/H, ~55!

so that we have

guL&5VhuL&5VuL&eic~h!. ~56!

uSC&[VuL& is the supergroup coherent states. This definition of supergroup coherent states
guarantees that there is a one-to-one correspondence with the coset spaceU(N/M )/H, so that the
coordinates of the supergroup coherent states,ziPRBL0(m51,2,...,p), zaPRBL1 @a51,2,...,q;
and p1q5dimU(N/M )/H#, may be chosen in any convenient parametrize representatives,
T(V), from the cosetsU(N/M )/H.

It is easy to see that

Xab
1

AN !
~b1†!N u0&50,

Xi j
1

AN !
~b1†!N u0&50, for jÞ1,

~57!

Xia
1

AN !
~b1†!N u0&50,

Xa i
1

AN !
~b1†!N u0&50, for iÞ1.
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These operators span a subalgebrau(1)^u(N21/M ) of u(N/M ). The corresponding supergroup
U(1)^U(N21/M ) is just the stability subgroup ofU(N/M ), which leaves the state (1/AN !)
3(b1†)N u0& invariant.

Choosing (1/AN !)(b1†)N u0& as the reference stateuL& in the representation denoted by the
super Young tableau~46!, we obtain the supergroup coherent states by acting

V5expS (
j51

N

h jX1 j1 (
a51

M

haX1a2(
j51

N

h j†Xj12 (
a51

M

ha†X1aD , ~58!

on the chosen reference state (1/AN !)(b1†)N u0&,

uSC&5VuL&5expS (
j51

N

h jX1 j1 (
a51

M

haX1a2(
j51

N

h j†Xj12 (
a51

M

ha†X1aD 1

AN !
~b1†!N u0&,

~59!

whereh jPCBL0, haPCBL1, andCBL0, CBL1 denotes the even and odd part of a complex
Grassmann algebra withL elements, respectively.

These supergroup coherent states have a natural topological coset spaceU(N/M )/
[U(1)^U(N21/M )].

The fundamental representation of the superalgebrau(N/M ) is generated by the (N1M )-
dimensional matrices,

~XAB!mn5dm
Adn

B . ~60!

Thus, we have

V5expS (
j51

N

h jX1 j1 (
a51

M

haX1a2(
j51

N

h j†Xj12 (
a51

M

ha†X1aD 5expS s h

2h† s
D , ~61!

whereh is an (N1M21)-component rank vector with the first (N21) elements ordinary com-
plex numbers while the lastM elements complex Grassmann numbers. Therefore, in the funda-
mental representation, the finite transformationV is of the form

~V!C
D~z!5S A12zz† z

2z† A12z†z
D , ~62!

wherez 5 h(sinAh†h/Ah†h), is also an (N1M21)-component rank vector with the same grad
with h. This is a supersymmetric generalization of the bosonic case discussed in Ref. 15.

If we explicitly introduce a complex projective representationt of U(N/M )/[U(1)^U(N
21/M )],

t5
z

A12z†z
, ~63!

any group transformationg acting on the coset spaceU(N/M )/[U(1)^U(N21/M )] must be a
holomorphic transformation,

t85gt5
At1B

Ct1D
, ~64!

where
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g5S A B

C DD PU~N1M !,

A(D) is a 131 „(N1M21)3(N1M21)… complex matrix,B(C) is a 13(N1M21) „(N1M
21)31… matrix.

Just as the ordinary group coherent states, two important algebraic properties are maintained
by the supergroup coherent states. From the definition of the supergroup coherent states, we have

^SC~z!uSC~z8!&5^LuV21~z!V~z8!uL&5^LuV~z9!uL&eicÞ0, ~65!

and

^SC~z!uSC~z!&5^LuV21~z!V~z!uL&5^LuL&51. ~66!

Thus the supergroup coherent states are generally nonorthogonal but normalized to unity.
Define the operatorO as

O5E uSC~z!&dm~V~z!!^SC~z!u, ~67!

we obtain that

gO5E guSC~z!&dm~V~z!!^SC~z!ug21g5E uSC~z8!&eif8~h!dm„V~z8!…e2 if8~h!^SC~z8!ug

5Og, gPU~N/M !, ~68!

where dm(V) is the supergroup-invariant measure ofU(N/M ) possessing the property
dm„V(z)…5dm„V(z8)….

Therefore, according to Schurr’s lemma, the operatorO must be proportional to the identity
operator. Hence, with an appropriately normalized measuredm, we can get

E uSC~z!&dm~V~z!!^SC~z!u51. ~69!

The supergroup coherent states can be expanded in a complete orthonormal basisul&,

uSC~z!&5(
l

ul&^luSC~z!&, ~70!

and it is possible to project the orthonormal basis vectors from the supergroup coherent states by
making use of Eq.~69!,

ul&5E dm„V~z!…uSC~z!&^SC~z!ul&. ~71!

The supergroup coherent states therefore constitute an overcomplete basis.

V. PATH-INTEGRAL REPRESENTATIONS

Typically we are interested in studying both zero-temperature and finite-temperature proper-
ties of a system. At finite temperature, the equilibrium properties are determined by the partition
function
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Z5Tr e2H/kBT. ~72!

At zero temperature we are interested in the vacuum persistence amplitudes,

Z5Tr T̂ expS 2
i

\ E
2`

`

H dt D , ~73!

whereT̂ is the time order operator.
In this section, we generalize the method of RSS15 to supersymmetric systems and give the

supergroup coherent state path-integral representation of the highTc superconductivity related
lattice models. For a supersymmetric system with the supergroup theoretic HamiltonianH, the
standard path integral is derived as follows. We first split up the time intervalt into Nt segments
of infinitesimal lengthDt such thatNt•Dt5t. For infinitesimal intervalsDt→0, we can write

Z5Tr T̂ expS 2
i

\ (
j51

Nt

H~t j !Dt D 5Tr T̂)
j51

Nt

expS 2
i

\
H~t j !Dt D . ~74!

Then we insert the resolution of identity~69! at each intermediate timet j . We get

Z5 lim
Dt→0

E KSC~zf !Ue2 iH Dt/\USCS zf2 dz

dt
Dt D L dmS VS zf2 dz

dt
Dt D D

3 KSCS zf2 dz

dt
Dt D Ue2 iH Dt/\USCS zf2 dz

dt
2 Dt D L dmS VS zf2 dz

dt
2 Dt D D

3 KSCS zf2 dz

dt
2 Dt D U•••USCS zi1 dz

dt
Dt D L dmS VS zi1 dz

dt
Dt D D

3 KSCS zi1 dz

dt
Dt D Ue2 iH Dt/\USC~zi !L

5E D@dm„V~t!…#expS i\ E
2`

`

L dt D , ~75!

whereD@dm„V~t!…‡ is the functional measure of the path integral andL is the Lagrangian of the
system.

The overlap between neighboring coherent states is

^SC~z1dz!uSC~z!&5^LuV21~z1dz!V~z!uL&512 1
2 N ~z dz†2dz z†!. ~76!

Hence, the Lagrangian of the system takes the form

L52
\

2i
N ~z ]tz

†2]tz z†!2H~z,z†!. ~77!

The canonical momenta of the system are

p i5
]L

] żi
5

\

i
N zi†. ~78!

Canonical quantization gives the commutation rules,
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@zi ,zj%50, @zi ,zj†%5
1

N
d i j , @zi†,zj†%50. ~79!

To construct the generators out of these operators it is helpful to consider first their coherent
state expectation values,

^SC~z!uXABuSC~z!&5^LuV21~z!XABV~z!uL&5„V21~z!…AC^LuXCDuL&„V~z!…DB

5N „V21~z!YV~z!…AB, ~80!

where

Y5SN s

s s
D .

With the matricesV(z) given by Eq.~62! one obtains

^SC~z!uXABuSC~z!&5S N ~12zz†! N A12zz†z

N z†A12zz† N z†z
D . ~81!

The classical expressions on the rhs of the above equation suggest the following operator
realization:

X11~z!5N S 12 (
k51

N1M21

zk†zkD ,
X1~ j11!~z!5N A12 (

k51

N1M21

zk†zkzj , j51,2,...,N1M21,

~82!

X~ i11!1~z!5N zi†A12 (
k51

N1M21

zk†zk, i51,2,...,N1M21,

X~ i11!~ j11!~z!5N zi†zj .

It is easy to verify, using the commutation rules~79!, that these operators satisfy the superalgebra
u(N/M ).

From now on we discuss the high-temperature superconductivity related lattice models and so
that we restrict ourselves at the case ofN52. We expect that the high-temperature superconduc-
tivity materials, at least the short-range order, should have Ne´el character, it is natural to consider
the staggered and uniform components of thez field, i.e., on sublatticeA we use the abovez
parametrization and on sublatticeB we use another set of parametrization. Making use of a
parameter transformation of the supergroup coherent states.

z1→2z1A12 (
i51

11M

zi†zi , z1†→2A12 (
i51

11M

zi†ziz1†,

~83!

zi→
z1†

Az1†z1
zi , i52,3,...,11M ,

zi†→zi†
z1†

Az1†z1
, i52,3,...,11M ,
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we get the other set of expectations ofXj
ac,

^SC~z8!uXacuSC~z8!&

5S N z1†z1 2N A12 (
i51

11M

zi†ziz1 N z1†z8

2N z1†A12 (
i51

11M

zi†zi N S 12 (
i51

11M

zi†zi D 2N A12 (
i51

11M

zi†ziz8

N z8†z1 2N z8†A12 (
i51

11M

zi†zi N z8†z8

D ,

~84!

where we have used the notationz85(z2,z3,...,z11M).
This set of expectations arise another Holstein–Primakoff realization of the superalgebra

u(2/M ),

X11~z!5N z1†z1, X12~z!52N A12 (
k51

11M

zk†zkz1,

X1~ j11!5N z1†zj , j52,3,...,11M ,

X21~z!52N z1†A12 (
k51

11M

zk†zk,

X225N S 12 (
k51

11M

zk†zkD , X2~ j11!52N A12 (
k51

11M

zk†zkzj , ~85!

X~ i11!15N zi†z1, i52,3,...,11M ,

X~ i11!252N zi†A12 (
k51

11M

zk†zk,

X~ i11!~ j11!~z!5N zi†zj .

Let H0 be the Hamiltonian for the system withU(2/M ) symmetry on a two-dimensional
lattice,

H052t(̂
jk&

(
a,c51

21M

Xj
acXk

ca~21!F~a!•F~c!, ~86!

where

F~x!5H 1, x51,2,

0, x53,4,...,21M .

Then we have
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H0~z!5^SC~z!uHuSC~z!&

52t(̂
jk&

(
a,c51

21M

^Xj
ac&^Xk

ca&~21!F~a!•F~c!

5
t

2 (̂
jk&

(
a,c51

2

~^Xj
ac&1^Xk

ac&!~^Xj
ca&1^Xk

ca&!2t(
j

(
a,c51

2

^Xj
ac&^Xj

ca&

1
t

2 (̂
jk&

(
a51

2

(
c53

21M

~^Xj
ac&1^Xk

ac&!~^Xj
ca&2^Xk

ca&!

1
t

2 (̂
jk&

(
a53

21M

(
c51

2

~^Xj
ac&1^Xk

ac&!~^Xj
ca&2^Xk

ca&!

1
t

2 (̂
jk&

(
a,c53

21M

~^Xj
ac&2^Xk

ac&!~^Xj
ca&2^Xk

ca&!2t(
j

(
a,c53

21M

^Xj
ac&^Xj

ca&. ~87!

We will not consider here frustrated systems. Thus, and for the sake of simplicity, we will
consider the case ofU(2/M ) models on bipartite lattices. We split the staggeredzj

1 field into a
slowly very piecef( j ), the order parameter field, and a small rapidly varying part,j( j ),

zj
15f~ j !1a0j~ j !, for sublatticeA,

~88!
zj
15f~ j !2a0j~ j !, for sublatticeB,

wherea0 denotes the lattice spacing.
We work with the constraint that requires that

(
a,c51

21M

^Xac~z!&^Xca~z!&~21!F~a!•F~c!5 (
a,c51

21M

^Xac~f!&^Xca~f!&~21!F~a!•F~c!. ~89!

By making use of the largeN approximation, we obtain

H0~f,j;z8!5
tN 2

2 E dx dyS ]mf ]mf†14jj†14 (
k52

11M

zk†zkD , ~90!

where]mf ]mf†[]xf ]xf
†1]yf ]yf

†.
We know that the Lagrangian of theU(2/M ) model is

L0~z!52
i\

2
N (

j
H ~21!S~ j !~zj

1 ]tzj
1†2]tzj

1 zj
1†!1 (

i52

11M

~zj
i ]tzj

i†2]tzj
i zj

i†!J 2H0~z!,

~91!

where

S~ j !5H 0, for sublatticeA,

1, for sublatticeB.

To complete the discussion of the continuum limit, it is necessary to consider the kinetic term,
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2
i\

2
N (

j
H ~21!S~ j !~zj

1 ]tzj
1†2]tzj

1 zj
1†!1 (

i52

11M

~zj
i ]tzj

i†2]tzj
i zj

i†!J .
Substituting Eq.~88!, we obtain, after discarding a total derivative,

2
i\

2
N (

j
~21!S~ j !~zj

1 ]tzj
1†2]tzj

1 zj
1†!8

2 i\N

a0
E dx dy~j ]tf

†2]tf j†!. ~92!

Thus, the Lagrangian becomes as

L0~f,j;zi !52
i\N

a0
E dx dy~j ]tf

†2]tf j†!2
i\N

2a0
2 E dx dy(

i52

11M

~]tz
i zi†1]tz

i† zi !

2
tN 2

2 E dx dyS ]mf ]mf†14jj†14 (
i52

11M

zi†zi D . ~93!

The auxiliary fieldsj can be eliminated by solving the Euler–Lagrange equationdL/dj50,

2tN 2j†52
i\N

a0
]tf

†, 2tN 2j5
i\N

a0
]tf. ~94!

Therefore, we obtain

L0~f,zi !8E dx dyS \2

2ta0
2 ]tf ]tf

†2
tN 2

2
]mf ]mf†D

2E dx dy(
i52

11M S i\N2a02 ~]tz
i zi†1]tz

i† zi !12tN 2zi†zi D .
~95!

To deal with the realistic models related to high-temperature superconductivity, we must consider
the interactive Hamiltonian. The whole Lagrangian of the two-dimensional~2-D! extended Hub-
bard model is

LHub.~f,zi !8E dx dyS \2

2ta0
2 ]tf ]tf

†2
tN 2

2
]mf ]mf†D

2E dx dy(
i52

3 S i\N2a02 ~]tz
i zi†1]tz

i† zi !12tN 2zi†zi D 2
U

a0
2 E dx dy z3†z3.

~96!

The Lagrangian of thet2J model on the two-dimensional lattice is

Lt2J~f,zi !8E dx dyS \2

2Ja0
2 ]tf ]tf

†2
JN 2

2
]mf ]mf†D

2E dx dyS i\N2a02 ~]tz
2 z2†1]tz

2† z2!12tN 2z2†z2D .
~97!

And the Lagrangian of the 2-D Heisenberg model is simply

LHeisen.~f,zi !8E dx dyS \2

2Ja0
2 ]tf ]tf

†2
JN 2

2
]mf ]mf†D . ~98!
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Making use of the property of Grassmann integrals,

E Dzi† Dzi expS 2E zi†Mzi D5DetM , zi ,zi†PCBL1 , ~99!

we can integrate out the fermionic fields and obtain an effective Lagrangian that involves only a
bosonic part,

LHub.
eff ~f!5E dx dyS \2

2ta0
2 ]tf ]tf

†2
tN 2

2
]mf ]mf†D

2 i lnSDetS i\Na02 ]t12tN 2DDetS i\Na02 ]t12tN 21
U

a0
2D D ; ~100!

Lt2J
eff ~f!5E dx dyS \2

2Ja0
]tf ]tf

†2
JN 2

2
]mf ]mf†D 2 i ln DetS i\Na02 ]t12tN 2D .

~101!

Therefore, up to a constant, the low-energy excitations of the extended Hubbard model,t2J
model and Heisenberg model is described, in a unified manner, by the nonlinears model. In other
words, the nonlinears model gives a sensible description of the spin fluctuations of the highTc
superconductivity materials. This agrees with the predictions of the weak-coupling mean-field
theory.

VI. CONCLUDING REMARKS

In this paper, we have shown that the supergroupU(N/M ) plays an important role in a kind
of high-temperature superconductivity related lattice model. To arrive at a continuum field theory
description of these models, we constructed supergroup coherent states by a standard approach. A
nonlinears model was obtained as an effective field theory of low-energy excitations of spin–spin
interactions of highTc superconductivity materials in the supergroup coherent state path-integral
representation. This result is within our expectations, the spin–spin interactions can be described
by the nonlinears model in the absence of doping and doping do not violate the Ne´el ground
state, at least in the low doping case. This also proves the prediction of weak-coupling mean-field
theory in fermion coherent state path-integral representation. In the fermion coherent state path-
integral representation,34,42,43the Lagrangian of the Hubbard model is of the form

L5
i

\ (̂
jk&

(
s561

F js
† ]tFks12t(̂

jk&
(

s561
F js

† Fks1
U

6 (
j

~F js
† tss8F js8!

2. ~102!

The associated path-integral contains quartic terms, the interaction, and hence we do not know
how to complete the partition function. Introducing a vector real boson fieldf and using the
Hubbard–Stratonovich transformation,44,45

E df expS 2
i

\ S 12 f21lfF†tF D D5const3expS i

2\
l2~F†tF!2D , ~103!

one can get an equivalent Lagrangian of the Hubbard model,

L85
i

\ (̂
jk&

(
s561

F js
† ]tFks12t(̂

jk&
(

s561
F js

† Fks2AU

3 (
j

fjF js
† tss8F js82

1

2 (
j

fj
2.

~104!
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Thef fields represent the collective modes associated with spin fluctuations. The effective La-
grangian is given by

Leff~f!52
1

2 (
j

f22 i ln DetS i\ ]t2M ~f! D , ~105!

whereM ~f! is a functional matrix of thef fields. On the mean-field-theory approximation, the
effective Lagrangian shows the relevant nonlinear effects. The properties of the effective Lagrang-
ian suggests that the nonlinears model,

Leff5
r

2
~]tf•]tf2vs

2 ]mf•]mf!1••• , ~106!

describes the slow spin fluctuations. In this paper we have proved the assumption but not used any
approximation, except large spin and long wavelength.
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Two scalar particles undergoing mutual interaction are considered in a prescribed
curved space–time. Both masses are finite~recoil is not neglected!. For a descrip-
tion of this system we propose a pair of coupled Klein–Gordon equations; they
involve two-body-sector extensions of the Laplace–Beltrami operator, plus a term
that takes mutual interaction into account. Besides the problem of compatibility, we
discuss several requirements that seem more or less necessary from a physical point
of view. Particular attention is devoted to the preservation of space–time symme-
tries ~isometric invariance!. Composition of curvature with mutual interaction is a
nonlinear problem, but it can be explicitly solved in a toy model of static orthogo-
nal space–time. Moreover, we check that isometric invariance and other physical
requirements are satisfied in this example. ©1996 American Institute of Physics.
@S0022-2488~96!02708-9#

I. INTRODUCTION

The perturbation of energy levels of an atom in curved space–time is of considerable theo-
retical interest. Several years ago, Parker pointed out the possibility to consider a hydrogen atom
as a probe of space–time curvature.1 We would like to add that,in principle, also the elementary
quark model of composite hadrons should be somehow affected by the presence of an extremely
strong gravitational field.

Of course, curvature effects on theinternal structure of composite systems are of very small
magnitude and cannot be directly observed in accessible regions of space–time. For an atomic
system, a significant effect would require a radius of curvature of the order of 1023 cm ~a molecule
should be more sensitive!.

Nevertheless, regions of such large curvature might exist in the neighborhood of small black
holes left over from the early stage of the universe. And one must bear in mind that observations
of more and more remote regions of space provides us with information about the early universe,
a laboratory of large curvature.

All these reasons have motivated an abundant flow of papers about quantum mechanics of
atoms in curved space–time.1–3 Most authors have systematically neglected the recoil of the
nucleus. It was the merit of Fischbach, Freeman, and Cheng3 to point out that taking recoil into
account may, in weak gravitational fields, introduce a correction of the same magnitude as the
gravitational perturbations~and this remark is more drastically relevant for positronium!. They
realized that a fully relativistic treatment of two-body dynamics in the presence of gravity is a
difficult problem, and they undertook to solve it along the lines of the Bakamjian–Thomas
formalism.4 In this context they devoted special attention to the problem of separating relative
variables from the center-of-mass coordinates, a delicate question previously considered by Kra-
jcik and Foldy.5

However, the modern developments of relativistic particle dynamics6–9 allow for a more
sophisticated and more efficient framework. In our opinion it has now become natural and rea-
sonable to look after amanifestly covariantdescription of mutually interacting particles moving in
a prescribed Riemannian space–time.

Insofar as pair creation can be neglected~and taking recoil into account does not change the
conditions under which this approximation is valid, so one is referred to the literature quoted

0022-2488/96/37(9)/4274/18/$10.00
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above in order to discuss this point! any arbitrary, but fixed, number of particles could be, in
principle, considered. But in practice, we are in a position to undertake the study oftwo-body
quantum mechanics because the progresses obtained up to now in flat space–time have essentially
concerned the two-body sector.

Our approach to the quantum mechanics of composite systems was obtained by quantizing
‘‘predictive relativistic mechanics.’’6 It agrees with the possibility of considering relativistic par-
ticle dynamics as a constraint theory7 ~papers in this field are currently referred to in the literature
as constraint relativistic mechanics!. This standpoint implies eliminating the field that underlies
the mutual interaction, thusonly the particle degrees of freedomare explicitly considered, and
eventually coupled to gravity.

The basic equations for two interacting scalar particles are a pair of Klein–Gordon equations
coupled by appropriate terms that carry the mutual interaction and must ensure compatibility.6

This term can be either phenomenological or motivated by consideration of quantum field theory.
In this latter case, the contact between coupled Klein–Gordon equations and the standard methods
of quantum electrodynamics in the two-body sector has been firmly established, see Todorov for
the quasipotential approach9 and Sazdjian10 for the relationship to Bethe–Salpeter equation~BS
equation!. In fact, the coupled equations of relativistic quantum mechanics present several advan-
tages over the BS equation.

Turning now to the situation where gravity is present as an external field, we observe that, in
spite of promising advances, quantum theory is not yet developed in curved space–time as far as
to produce a tractable version of the BS equation, taking curvature effects into account. Thus, a
formulation of two-body dynamics in curved space–time using a pair of wave equations would be
very convenient.

In principle, generalizing quantum mechanics to a Lorentzian manifoldM4 is straightforward
if the d’Alembert symbol is replaced by the Laplace Beltrami operator~for simplicity we consider
minimal coupling!. So let us write

2HaC5ma
2C, a51,2, ~1.1!

where the particle masses arem1 ,m2 . The wave functionC depends on eight arguments, namely
the coordinates of a coupleq1 ,q2 taken inM43M4 . It is always possible to writeHa5Ka1Va ,
whereK1 ,K2 , respectively, refer to particles 1 and 2, namely

Ka52 1
2 g~a!ab

“aa“ab , ~1.2!

whereasV1 ,V2 are considered as describing the mutual interaction. In view of our knowledge of
the flat-space–time theory,6 we expect to have in most cases of interest the unipotential simplifi-
cationV15V25V.

To avoid unnecessary complications we assume that space–timeM4 has the trivial topology.
It is clear that Eqs.~1.1! must be mutually compatible. By natural generalization of the flat-space–
time theory, we require a strongcompatibility condition, namely

@H1 ,H2#50. ~1.3!

At this stage it is already a practical problem to determine in closed form which interaction term
can be added to the Laplace–Beltrami operators without violating condition~1.3!. This problem
was solved years ago6 for an isolated system in Minkowski space~the word isolated refers to the
absence of an external field!. Even if one remains in flat space–time, the presence of external
fields is a difficulty, becauserelativistic interactions cannot be linearly composed. In the flat case
however, some results have been obtained, for external potentials with special symmetries.11–14
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In the present case we consider a system that is submitted to no external force but gravity.
Physically, this situation is analogous to the flat case in the presence of an external potential. But
we have a lot of extra complications due to the geometric nature of General Relativity.

Our main goal is to construct closed-form examples of a pair of wave equations, mutually
consistent in the presence of a curvature field. But we shall also discuss the general features of
such equations, with special care for a set of reasonable requirements one should impose to them.
Among these conditions isometric invariance plays the role of a generalization of the Poincare´
invariance usually required in the flat case.

We first recollect, in Sec. II, several well-known results about the manifestly covariant for-
mulation of two-body dynamics in flat space–time. In this framework, and in order to make
possible a contact with the work of Fishbachet al., we propose a relativistic covariant version of
the concept of center of mass, and we outline its connection with the separation of canonical
variables we are currently using.

In Sec. III we address the general problem of two mutually interacting particles imbedded in
a curved space–time. An axiomatic discussion~focusing on invariance properties! provides a set
of necessary conditions restricting the possible choice ofH1 andH2. Then it will be interesting to
exhibit an example satisfying all~or part of! these minimal requirements. Keeping this goal in
mind, a preliminary work is in order. That is why in Sec. IV we recall some standard facts about
the motion of a test particlealonein a curved space–time with possible isometries. In addition, we
systematically introduce a flat background metric and put special emphasis on the role of isome-
tries.

We return to the two-body case in Sec. V. Finally, a specific form of the metric tensor will be
assumed. The particular symmetry enjoyed by this metric singles out a natural flat background
where standard methods ofspecial relativistic quantum mechanics in external fieldscan be finally
applied. Moreover, this metric is invariant under time translation in a strong sense, which allows
for solving ~in closed form! the compatibility problem. We ultimately discuss whether the out-
come of this procedure satisfies the conditions we have previously demanded. Section VI will be
devoted to concluding remarks.

Notation: Particle labelsa,b51,2. Space–time manifoldM4. Partial differentiation with re-
spect to coordinates are noted as]m5]/]qm, ]am5]/]qa

m. The use ofq1 ,q2 is not a typographic
fancy; we mean to recall that in the classical limit~\→0! the arguments of the wave function
should, in principle, reduce to the canonical coordinates of a covariant Hamiltonian formulation
and cannot coincide with the physical coordinates~sayx1 ,x2! in the large ~that is unconstrained!
phase space, where the standard Poisson brackets are implemented.6

Greek labels are omitted whenever no confusion is possible. When we consider a flat back-
ground metricḡmn , its reciprocal tensor isḡab. The determinants areg and ḡ, respectively. Of
course, Cartesian coordinates refer toḡmn .

Scalar products indicated by a dot always refer to the flat metric. For instancep25p•p stands
for ḡmnpmpn . Indices will be rised~lowered! with help of the flat metric only.paa is the operator
with components2i ]/]qa

a in the Cartesian coordinates.
Angular momentum in flat space–time ismab5qapb2qbpa.
Dependence on the coordinates and/or momenta of particlea is indicated as ing(a)5g(qa),

etc.
In Cartesian coordinates, we separate canonical variables in two groups as follows:

za5q1
a2q2

a , y5 1
2~p12p2!, ~1.4!

P5p11p2 , Q5 1
2~q1

a1q2
a!, ~1.5!

hence the commutators
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@za,yb#5@Qa,Pb#5 idb
a . ~1.6!

The total angular momentum is defined as

M5q1`p11q2`p25Q`P1z`y,

which allows for checking thatP andM actually generate the Lie algebra of the Poincare´ group.
Projection orthogonal toP is performed with help of the tensorPn

m5d n
m2PmPn/P

2. As in
Ref. 12, we define

Z5z2P22~z•P!2. ~1.7!

The superscript~0!, like for instance inV~0!, refers to the isolated system~no curvature involved!.
Throughout this paper,symmetric operators will be referred to as Hermitian. Isometry always

refers to the Riemannian metric, never to the metric of Hilbert space.
Definition: A flat metric ḡ is said to beisometrically admissiblewith respect tog if any

isometry ofg is an isometry ofḡ.

II. TWO-BODY DYNAMICS IN FLAT SPACE–TIME

In order to avoid misunderstandings, the reader who is not familiar with constraint relativistic
mechanics is cautioned that the field that carries mutual interaction does not explicitly appear in
the system of coupled equations~1.1!.

For the moment, let us postpone the question of coupling this picture to the curvature field,
and consider the dynamics of an isolated two-body system in flat space–time.

One may think of two scalar particles of the same nature~like, e.g., pions undergoing elec-
tromagnetic interactions!. Both constituent particles correspond to the same matter field. This field
is considered in the two-body sector and interacts with some mediating field~like photon, gluon,
etc.!, which carries mutual interaction between the particles. Standard methods of quantum field
theory allow for elimination of the mediating field. For instance, the quasipotential approach gives
rise to a differential equation complemented with an extra equation, which handles the problem of
relative time. Alternatively, one may use the integrodifferential Bethe–Salpeter equation~BS!,
which is characterized by its kernel. Of course, any term in the Lagrangian that couples the matter
field with the mediating field will result in a contribution to the quasipotential equation, or equiva-
lently a contribution to the BS kernel. So the analytic form of this kernel reflects the interaction
between the matter field and the mediating field. Under reasonably general assumptions, it has
been proved that the BS equation can be transformed into a pair of coupleddifferentialequations
of the form ~1.1! ~naturally approximations may be made, some diagrams may be considered as
dominant, etc.; the reader is referred to Sazdjian11 for details!. In practice, any potential of the
form V(0)5 f (Z,P2,y•P) or simply f (Z,P2) is general enough to accommodate most relevant
examples of interaction between scalar constituents.

We insist that our approach is self-contained within the two-body sector. Like in the BS
equation, our wave function is a~c-number! scalar depending on two points of space–time. But in
the absence of a mediating field, it would reduce to a superposition of products of~classical,
complex! Klein–Gordon fields.

Wave equations are of the form~1.1!. The coupleq1 ,q2 has Cartesian coordinatesq1
a ,q2

b in
M43M4 .

The multiplicative operatorsq1 ,q2 are canonically conjugate to the operatorsp152 i ]/]q1 ,
p252 i ]/]q2 . The Lie algebra of the Poincare´ group has the generatorsP5p11p2 ,
M5q1`p11q2`p2 . Notice that these formulas are valid, irrespective of the mutual interaction
exerted between the particles.Pa is interpreted as total momentum, since its components generate
space–time translations. It is remarkable that if we defineza5q1

a2q2
a, this operator is invariant

under translation. It is therefore natural to regardz as a relative quantity and to complete the
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commuting setPa,zb by eight more variables in order to obtain a new set of 16 canonical
variables. After this, we end up with two separate kinds of variables. In fact, the interpretation of
z can be justified by a precise analysis in terms of thephysical coordinates of the particles,
provided one gets back to the level ofclassical ~relativistic! mechanics, where the concept of
world line still makes sense. For this purpose let us sketch the classical Hamiltonian formulation
underlaying our description of two-particle systems by coupled wave equations. We follow the
line of a two-time formalism, which considers the proper times as independent parameters. Phase
space is a 16-dimensional symplectic space withcanonicalcoordinates satisfying the standard
Poisson bracket relations$qa

a ,pbb%5dabdb
a, etc. In terms of these canonical coordinates, the

motion is governed by Hamiltonian equations of the form.

]A

]ta
5$A,Ha%, ~2.1!

whereH1 ,H2 are the Hamiltonian generators andt1,t2 are proportional to the proper times~these
Hamiltonians, identified as half-squared masses, should not be confused with the Dirac Hamil-
tonianHD , which arises in the constraints approach and is numerically zero!. They are mutually
in involution, which ensures that equations of the form~2.1! are consistent. In fact,H1 ,H2
generate a two-parameter Abelian group. The orbits of this group are eventually identified as the
Cartesian productsG13G2, whereG1 ~resp.,G2! is the lift in phase space of the world line of
particle 1~resp., particle 2!. A complication associated with the famous No-Interaction Theorem15

is that, in general, Poincare´ invariance implies that the physical positionsx1
a ,x2

b cannot be canoni-
cal. They coincide with the canonical coordinatesonlyon a certain submanifold~S!. @This point is
sometimes hidden in the constraints formulation, because this alternative approach deals with a
submanifold of~S!.# The Poisson bracket$x1

a ,x2
b% differs from the metric tensorhab ~its precise

value is model dependent!. Throughout the whole phase space,x1 ,x2 may be complicated func-
tions of the canonical variables. Specifying the manifold~S! is actually a boundary condition that
achieves the definition of the system we consider. In a large class of models one assumes that the
equation of~S! is simplyP•z50. It is clear that every point of~S! also satisfies

P•~x12x2!50. ~2.2!

ProvidedP is time-like, this equation expresses that in the frame whereP50 ~rest frame of
the system! one hasx1

05x2
0. Therefore~S! is called the equal-time surface; the points located on

it have equal-time coordinates in the system rest frame. Finally, the connection betweenz and the
physical relative coordinates is as follows:In restriction to ~S! and in the rest frame, z050 and
z5q12q25x12x2.

We pursue the task of forming a new set of canonical coordinates by completion ofP,z with
conjugate quantities. Limiting ourselves to a linear transformation~from individual coordinates to
the new set! we can define

Q5lq11~12l!q2 , y5~12l!p12lp2 , ~2.3!

and we can check$Qa,Pb%5$za,yb%5db
a, $Qa,Qb%5$ya,yb%50. For any choice of the positive

constantl,1, we obtain two separate sets of canonical variables. With an obvious abuse of
language, a popular terminology refers toQ,P andz,y, respectively, as center-of-mass variables
and relative variables. For computational simplicity we takel5 1

2. Still, some explanation is
necessary in order to somehow relateQ with the physical center of mass. Here we hit the delicate
question of defining this concept in a covariant framework,5,16,17but we shall not discuss here the
various definitions of relativistic center of mass. We simply propose to consider the quantities
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J5
M•P

P2 1
P•Q

P2 P, ~2.4!

as the space–time coordinates of the center of mass. This definition may be justified as follows:
~i! It is manifestly covariant.
~ii ! Owing to the constancy ofM andP, the quantitiesJa are the coordinates of a point that

moves on a straight line whent1,t2 run from2` to 1`, and this line is parallel toP.
~iii ! For the configurations taken on the equal-time surface,J reduces to

JS
a5

P•p1
P2 x1

a1
P•p2
P2 x2

a ~2.5!

@hint P2/26y•P5P•p1 ~resp.P•p2!#. Therefore, in the rest frame~defined byPa! the spatial
component ofJS coincides with definition~c! of Pryce

16 ~average of the coordinates weighted by
the energies!.

~iv! One easily computes$(M•P/P2)a,Pb%5Pab and $T,Pb%5Pb/P2, whence we derive
equations of motion in single-particle form,

$Ja,Pb%5hab, H Ja,
P2

2 J 5Pa, Pa5const. ~2.6!

However, the components ofJ have nonvanishing Poisson brackets among themselves and cannot
be taken as canonical coordinates. This is reminiscent of definition~c! in Pryce,16 and agrees with
a remark made by Llosa.17

In the rest frame and at equal times, the spatial piece ofJ finally reduces to the object that
is called ‘‘center of energy’’ by Feshmanet al.,3 and agrees with the definition of Lightman and
Lee,18 in the classical limit. Finally, it is easy to see howJ differs fromQ, if we notice thatJ can
be equivalently written as

J5Q1S y•PP2 D z1S z•PP2 D y. ~2.7!

The second term on the right-hand side expresses thatJ involves a weighted average: this term
vanishes in the case of equal masses~thenP•p15P•p2!. The last term on the right-hand side
vanishes at equal times.

Ja has four components, but the contractionJ•P is identical withQ•P and is trivially related
to the proper time of the center of mass.

Still, we must remember that this picture is limited to isolated systems. In the presence of
external fields, we naturally retain the interpretation thatP is the total momentum, but it is not
constant anymore. Moreover, the use of the surfaceP•z50 for a boundary condition in this case
is probably questionable, and no reasonable modification of it, adapted to the external field, is
known for the moment. As a result, the relationship betweenza andx1

a2x2
a is not anymore well

defined when external coupling is turned on.
Also, it remains an open problem as to know how Eq.~2.6! are modified and whether they

keep a single-particle form, in the presence of curvature. A similar question was earlier discussed
in Refs. 3 and 18, but substantial differences existing between their formulation and ours make it
difficult to transpose their conclusions.

Nevertheless, the variablesQ, P, z, y introduced by~1.4!, ~1.5! remain canonical whatsoever
and they split anyway into two separate groups. In the presence of an external field, like, for
instance, gravity, their labeling as ‘‘center-of-mass variables’’ and ‘‘relative variables’’ is a mani-
fest abuse of language, and should be avoided in a rigorous terminology.

Still, they provide a powerful tool in order to organize tractable calculations~see Ref. 12!.
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III. GENERAL FRAMEWORK

We now turn to the case where curvature is present~no other external force is being consid-
ered!.

A. Compatibility

The wave equations have the form~1.1!. We naturally require the strong condition~1.3!,
which ensures compatibility. Assuming thatV15V25V, condition~1.3! reduces to

@K12K2 ,V#50. ~3.1!

B. Hermiticity

In order to have a consistent mathematical setting, the squared-mass operators on the left-hand
side of~1.1! ~and eventually the generators of transformations induced by space–time symmetries,
if any! must be considered as acting in some well-defined Hilbert space; this remains true even if
the wave function cannot actually belong to this Hilbert space.

Therefore we shall naturally assume thatH1 ,H2 are operators in

L2~R8!5L2~R8,Aug~1!uAug~2!ud4q1 d4q2!.

Here the following observation is in order. In the absence of mutual interaction we can write~1.1!
in the form of independent Klein–Gordon equations,

2KaC5ma
2C, ~3.2!

where 2Ka is the Laplace Beltrami operator in terms of the coordinates of particlea. It is well
known19 that this operator is Hermitian when considered as acting inLa

2 5 L2(R4,Aug(a)ud4qa),
thusK1 andK2, extended as operators acting inL

2~R8!5L1
2

^L2
2 are both Hermitian. Despite the

fact that the four-fold integrals definingL1
2 and L2

2 have no direct physical interpretation, this
property of hermiticity is very fortunate from a formal point of view. Already in special relativity,
it has been demonstrated that off-shell Hilbert spaces of the formL2~R4! or L2~R8! provide the
most convenient framework for handling Feynmann’s propagators in a manifestly covariant way
@for instance, 1/(p21U2m26 i e), whereU is an external potential, naturally makes sense as the
resolvent of an operator inL2~R4,d4q!, and similar observations can be made when interparticle
interaction is considered20#. We extend this philosophy to curved space–time and require hermi-
ticity as well in the presence of mutual interactions.

In other words, we demand thatH1 ,H2 are Hermitian operators in the Hilbert spaceL2~R8!.
At a deeper level of accuracy one would raise the question of self-adjointness, in connection

with the possibility of developing a manifestly covariant scattering theory in terms of scalar
evolution parameters. Indeed, there are two possibilities in relativistic dynamics.

~For simplicity of the present argument, let us provisionally consider the case of a single
particle.! The most popular point of view consists in using the time coordinate as an indicator of
evolution ~sayq0 in some coordinate system!; then the Klein–Gordon equation is interpreted as
the relativistic generalization of the time-depending Schro¨dinger equation.

Another approach, in the spirit of Schwinger’s ‘‘proper time method’’21 assigns this role to a
scalar parameter, which coincides with proper time~or a suitable generalization of it! in the
classical limit\→0; now the Klein–Gordon equation is a mass-shell reduction of the Stu¨ckelberg
equation,22 and the D’Alembert operator is trivially proportional to the generator of the motion. In
this case, self-adjointness of the D’Alembert operator with respect to thefour-spacescalar product
~involving integration overd4q! would be a precious information in order to set up a complete
quantum theory.
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Although we have a preference for the latter point of view~which has been extended to
many-body systems20,23!, we shall not discuss further the evolutive aspects of the wave equations.

Returning to the problem of two-body quantum mechanics in curved space–time, we shall be
contented, in this first attempt, with the property of hermiticity~symmetry! and leave the question
of self-adjointness for future investigations~notice that even in the one-body case, self-adjointness
in the four-space scalar product has received so far very little attention, if any!.

C. Coupling separability

The above conditions are not yet sufficient from a physical point of view. Indeed, one expects
to find thecorrect limits when either the curvature or the mutual interaction is absent.

When the curvature identically vanishes, one should recover an isolated system of particles
interacting in Minkowski space–time.

When the mutual interaction is zero, the wave equations should describe independent par-
ticles, each one being free in curved space–time~in other words, submitted only to the curvature
field associated with the metric!.

These situations will be referred to as theno-field limit and theindependent-particles limit,
respectively.

As simple as it might seem, the formulation of correct limits is problematic in curved space–
time. First of all,the notion of an isolated system is generally ambiguous. Strictly speaking, the
absence of curvature does not correspond to a well-specified Minkowski space.

But, in practice, there are cases where this difficulty can be bypassed.
~i! One may consider a particular solution of the Einstein equations. This solution necessarily

depends on the Newton constant, and we obtain a flat metric if we replace this constant by zero.
~ii ! Particular symmetries may select a flat metric in a natural way~asymptotically flat space–

times, plane waves, etc.!. Another example:ds25dt22ds2, whereds2 enjoys spherical symme-
try ~but not more!.

Besides this problem about the unicity of a flat background, additional care is needed because
the most natural flat background and the Riemannian metric do not define the same Hilbert space.
Indeed, the quotientḡ/g of scalar densities is a scalar, and, in general, it is not a constant~the case
of a plane wave, in the weak field approximation and TT gauge, is an exception!. One might be
tempted to consider only flat metrics satisfyingḡ/g5const. as eligible for a flat background. But
generally, this procedure does not respect the symmetries of the pseudo-Riemannian metricgmn .
Indeed, it may happen that none of the background metrics selected in this manner is isometrically
admissible.

Fortunately, the technical complication of having distinct Hilbert spaces will be easily handled
by a change of wave function that amounts to reformulating the wave equations in terms of a new
wave functionC̃, an ~improper! element of

L̄ 2~R8!5L2~R8,Aḡ~1!ḡ~2!d4q1 d
4q2!,

and in terms of modified operators that are Hermitian~symmetric! in this new Hilbert space. This
approach can be considered as a change of representation, performed with the help of a unitary
transformation fromL2 to L̄ 2. This method allows for application of flat-space techniques: Car-
tesian coordinates, etc.

D. Isometric invariance

It may happen that space–time admits some isometries. If we first consider the motion of a
single test particle, each isometry of space–time is associated with a conserved quantity: its
generator.

A natural generalization of flat-space theory consists in requiring that the generators of these
isometries must be constants of the two-body motion, even in the presence of a mutual interaction.
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Whereas anisolated systemin Minkowski space is characterized by Poincare´ symmetry~Poincare´
invariance from the active point of view!, it is natural to require that an isolated system in curved
space–time be at least invariant under the infinitesimal unitary transformations associated with
space–time isometries. This should hold true as well for two-body as for one-body systems, and
also when the constituent particles undergo mutual interaction. For this aim it is not sufficient that
the interaction term be Poincare´ invariant in its no-field limit, sayV~0!. Indeed, this term is
modified by the presence of curvature~namelyVÞV~0!! in order to keep compatibility satisfied.

The question of whether this condition is sufficient goes beyond the scope of this paper~when
space–time has no isometry at all, this condition becomes empty; is it still possible to define
isolated systems?!.

Remark:When we perform a change of wave function, some unitary transformation of the
whole picture is necessary. This transformation mapsL2~R8! either onto itself or onto a different
Hilbert space, and obviously keeps the compatibility conditions satisfied. When identifying the
no-field and independent-particle limits, one must take this change of representation into account.
For instance, after transformation~4.5! below, the independent-particle limit is characterized by
the half-squared-mass operatorsK̃1 ,K̃2 , which are Hermitian inL̄ 2~R8!. We first recall a few
results of Riemannian geometry~see the Appendix!.

If j generates infinitesimal isometries ofg, then, in the standard notation of differential
geometry the Lie derivative operator satisfiesLjD5DLj . When f is a 0-form, that is a scalar
function, we simply haveLj f 5 ja ]a f . Moreover,j

a]a is skew symmetric with respect to
the scalar product that definesL 2~R4!.

Isometries are implemented as quantum operators in the following way. With any vector field
ja leavinggmn invariant, we associate the operatorX52 i jm]m acting inL2~R4,d4q!. It is clear
thatX is Hermitian.

In the two-body sector ones deal withL2~R8!5L1^L2 . The isometric vectorja induces the
operators

J152 i ja~1!]1a , J252 i ja~2!]2a , ~3.3!

respectively acting inL1 ,L2 . ThenJ1 ,J2 are extended toL
2~R8! asJ1^1 and 1̂ J2, respectively.

Considered as operators inL2~R8!, they are theindividual isometries~for instance, in the limit of
free motion in flat space–time, linear and angular momenta of each particle are trivial examples of
individual isometries!. Finally, thetotal isometryinduced byjm is J5J11J2 .

IV. THE ONE-BODY PROBLEM

In the Klein–Gordon equation 2Kc5m2c, the D’Alembert symbol is replaced by the
Laplace–Beltrami operator. In other words,

22Kc5
1

Augu
]m~Augugmn ]nc!.

K transforms as a scalar and is Hermitian19 in the spaceL2(R4,Augud4q). Moreover, if the
contravariant vector fieldjm(q) is the infinitesimal generator of a one-parameter group of trans-
formations leavingg invariant, then aclassicalconstant of geodesic motion is the functionjmpm ,
a scalar on the cotangent bundleT* (M4) endowed with coordinatesq

a,pb and with the standard
Poisson brackets.

Its quantum counterpart is the differential operatorX52 i jm]m .
But the partial differentiation operator]m present in the above expression ofKc is neither a

vector nor Hermitian in the sense of Hilbert spaceL2.
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Nevertheless, if we now introduce any flat metricḡmn , then the operator defined aspm52 i ]m

in the Cartesian coordinates associated withḡ does transform as a vector and is Hermitian in the
spaceL̄2(R4) 5 L2(R4,Auḡud4q) endowed with the scalar product

^x,v&5E x*vAuḡ ud4q. ~4.1!

Moreover, we haveX5j•p.
Using Cartesian coordinates makes it trivial to check that we can write

2K5
1

Augu
pmAugugmnpn . ~4.2!

This situation suggests a change of wave function, say

c̃5Gc,

where the ‘‘bimetric’’ scalarG is

G5ug/ḡ u1/4, ~4.3!

that is to say,Augu 5 G2Auḡu. The Klein–Gordon equation can now be written as

2K̃c̃5m2c̃, ~4.4!

where, for all operatorA,

Ã5GAG21. ~4.5!

In this formulaG is understood as a multiplicative operator acting on functionsf (q). Notice that
K̃ is Hermitian in L̄ 2, we say flat Hermitian. Equation~4.3! is a unitary transformation from
L2(R4,Augud4q) to L̄ 2~R4!. The multiplicative operatorG ~and, more generally, any function ofq!
is Hermitian in bothL̄ 2~R4! andL2~R4!.

Applying rule ~4.5! to Eq. ~4.1!, we immediately find

2K̃5G21pmGgmnGpnG21, ~4.6!

which is manifestly flat Hermitian. We define aneffectiveexternal potentialF by setting

K̃5 1
2p

21F. ~4.7!

From its very definition,F is flat Hermitian. So finally, bothK̃ andF are Hermitian inL̄2.
Notice that we could writeF down in closed form, by elementary commutator algebra,

starting from~4.6! and splitting the contravariant metric tensor asgmn5ḡmn1hmn. Of course, the
contravariant components ofḡ reduce toh mn5diag~1,21,21,21! in Cartesian coordinates.

Let us now consider the behavior of infinitesimal isometries.
If j generates infinitesimal isometries ofgmn , it follows that ja]a commutes withK @both

being considered as operators inL2~R4!#. After introduction of an auxiliary flat metricḡ, we can
write X52 i ja]a5j•p and [j•p,K]50, wherej•p andK are Hermitian inL2~R4!.
Henceforth we assume thatḡ is isometrically admissible.

Proposition 1: Assume thatj is an isometry of both gandḡ. Then transformation (4.5) leaves
X5j•p unchanged, so X˜5X. In other words, in the Poincare´ Lie algebra associated with the flat
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metric, any element that leaves alsog invariant is unchanged by transformation~4.5!. Moreover,
K̃ as well as K commutes with X, and X is Hermitian in both L2 and L̄2.

Proof: j being isometry ofg and ḡ implies that the Lie derivative of the bimetric scalar
vanishes, sayja ]aG50, thus the multiplicative operatorG satisfies@j•p,G#50. We have seen that
ja]a commutes with the Laplace Beltrami operatorD. After transformation~4.5! we get
[ K̃,j•p]50. We have already proved thatj•p is Hermitian inL2. But according to our assump-
tion, there exist,in Cartesian coordinates, a constant vectorCa and a skew-symmetric tensorCab,
such that

X5japa5Capa1Cabmab . ~4.8!

In this form, it is manifest thatj•p is Hermitian also in the sense ofL̄ 2.
Corollary 2: If Ljg5Lj ḡ then [ j•p,F]50. This is now obvious from Eq.~4.7! and shows

the importance of havingḡ isometrically admissible.
Example:We now consider a line element of the simple form,

ds25d~q0!22R2~r !dq2, ~4.9!

wheredq2 is a shorthand notation ford i j dq
i dqj and r is Aq 2. This metric defines a particular

case of static orthogonal space–time. We assume thatR is everywhere finite and differentiable as
many times as necessary. Space sections are supposed to be isotropic butnot homogeneous. They
have a unique center of spherical symmetry; thus the form~4.9! of the metric is unique up to a
change,

q8k5Lqk, R85L21R,

but we fix the space coordinates by requiring thatR~q50!51.
Our assumptions imply that

R2Þ
const

~11 1
4kr

2!2
.

This restriction excludes the particular case of an Einstein static space–time.
A preferred background metric is, of course,ds̄25d(q0)22dq2.
Notice that the metricsgmn and ḡmn coincide on the lineqk50, world line of the center of

spherical symmetry.
Both metrics are invariant under time translation and space rotations, andgmn has no further

symmetry. Each generator of these isometries~considered as a Hermitian operator inL2! com-
mutes withK.

Alternatively, when the state of the particle is represented byc̃ and its motion described by
Eq. ~4.4!, the infinitesimal rotations and the time translation keep being represented by the same
operatorsmi j ,p0 . BecauseG in ~4.5! is rotational invariant, and does not depend on time, these
operators are not affected by~4.5! and are Hermitian in both Hilbert spacesL2~R4! and L̄ 2~R4!.

According to this particular form ofg and ḡ, p0 andmi j are unchanged by~4.5!. In other
words, p̃05p0 andm̃i j5mi j .

It is clear thatds̄2 definesḡmn as an isometrically admissible background metric. In the
present example, Eq.~4.8! is satisfied withCa5~1,0,0,0! andCab reduces toCjk.

Now our claim is that, owing to the assumptions made on the line element~4.9!, both [F,p0]
and [F,q0] vanish. According to the terminology introduced in a previous work,12 we formulate
this statement as follows.

Proposition 3: Owing to the form (4.9) of the metric gmn , the effective potential F defined by
(4.7) is strongly invariant by time translation.
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Proof: Commutation withp0 is straightforward. IndeedG only depends onq, thus@G,p0#50;
for a similar reason [gmn,p0]50, and obviouslypm commutes withp0.

According to~4.7!, in order to prove that also [F,q0] vanishes it will be sufficient to prove
that [2K̃,q0] coincides with [p2,q0].

We observe that

@p2,q0#522ip0 .

Using ~4.6! we easily compute

@2K̃,q0#52 ig0nGpnG212 iG21pmGgm0.

But g0 j is zero, thus onlyg00 survives. We are left with

2@K̃,q0#52 iGp0G
212 iG21p0G,

where@G,p0# vanishes, thus finally 2[K̃,p0]522ip0 , which completes the proof of our statement.
Loosely speaking,F depends only onq andp; we say that it is purely transverse.
Proposition 4: Owing to the form (4.9) of the metric, the effective potential F is (simply)

invariant by space rotations.
Proof: From Proposition 1 we know thatK and K̃ commute withX, in particular, when

X5Ci jmi j . Obviously,p
2 is invariant under space rotations. Finally, a glance at~4.7! ensures

rotation invariance ofF.

V. THE TWO-BODY PROBLEM

Assuming the unipotential simplification, we write

Ha5Ka1V. ~5.1!

Our problem reduces to the determination ofV by solving~3.1!. Insofar as we consider gravity as
an external field applied to the system, a natural approach consists in determiningV by its no-field
limit, say V~0!. Indeed, in the absence of gravity, the most general form ofV~0! allowing for
compatibility and Poincare´ invariance is well known.6 As mentioned in Sec. II, a potential of the
form V(0)5 f (Z,P2,y•P) is general enough for our purpose.

Some care is needed, however, because, in general, for an arbitrarily specified metricgmn , the
no-field limit has no intrinsic meaning.

Anyway, this point of view requires introduction of an auxiliary flat metricḡmn , and leads to
the following developments.

DefineGa5ug(a)/ḡ(a)u1/4 andG1G25G12.
SinceL2(R8,Ag1g2d4q1 ,d4q2) 5 L2(R4,Aug(1)ud4q1) ^ L2(R4,Aug(2)ud4q2), there is no confu-
sion if nowÃ denotes the productG12AG12

21 for all A acting inL2~R8!. Indeed, whenA is a product
A1A2 of operators acting inL2~1! andL2~2!, respectively, we can check thatÃ5Ã1Ã2 .

The lack of Poincare´ symmetry is partially redeemed by considering the operators induced in
L̄ 2(R8) by the isometries ofg. Let the contravariant vector fieldj generate a one-parameter group
of isometries of space–time. In Sec. III D we have introduced the operatorsJ1 ,J2 , respectively,
acting inL2~R4Aug(1)u, d4q1! and inL

2~R4Aug(2)u, d4q2!. Their extension toL
2~R8! is straight-

forward.
In the presence of an auxiliary flat metric we can writeJ15j(1)•p1 , J25j(2)•p2 . Provided

the auxiliary metricḡ is isometrically admissible, we apply Proposition 1 and obtain

J15C•p11Cmnm1mn , ~5.2!

4285Philippe Droz-Vincent: Two-body wave equations in curved space–time

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



J25C•p21Cmnm2mn , ~5.3!

for some constant vectorCa and tensorCmn.
Now consider thetotal isometryinduced byj, say J5J11J2 . Proposition 1 implies that

J̃ a5Ja , henceJ̃5J.
From the properties of the motion in the absence of mutual interaction, or equivalently from

Proposition 1 extended by the tensor product, we obtain

@Ka ,Jb#5@K̃a ,Jb#50, a,b51,2. ~5.4!

It is clear that

J5C•P1CabMab . ~5.5!

Existence of nonvanishing coefficientsCa,Cmn ensures that some elements of the Poincare´ alge-
bra survive as symmetries of the motion in the presence of curvature.

Axiom ~D! of Sec. III ~isometric invariance! can be precisely understood as follows: For all
isometry-generating vector fieldj, the corresponding operator of total isometryJ must be a
constant of the two-body motion.

Later on, we shall apply the above formula in order to check that this condition is actually
satisfied by two-body motion in the particular space–time~4.9!.

Let us now turn to the problem of compatibility. Condition~3.1! is transformed into

@K̃12K̃2 ,Ṽ#50. ~5.6!

In view of ~4.7! we define effective external potentialsFa5F(qa ,pa) by the formulas

K̃a5
1
2pa

21Fa . ~5.7!

It is clear thatK̃a andFb are Hermitian inL̄ 2~R8!.
Example:In general, the decomposition~5.7! would have no intrinsic significance~assuming

that we rely on General Relativity as the true theory of gravity!. But we shall now specialize to the
particular case of the line element~4.9!. The assumptions made about the functionR2(r ) ensure
without ambiguity a preferred flat background.

For the metric~4.9! we have seen thatC has components~1,0,0,0! and C reduces to its
space-by-space components. Any isometry ofgmn satisfies

J5C0P01Ci jM i j . ~5.8!

Extension of Propositions 3 and 4 to the two-body sector is straightforward and implies that the
effective potentialsF1 ,F2 are strongly invariant under time translations, and simply invariant by
space rotations.

As a result, compatibility can now be solved by a flat-space technique, using the Bijtebier
ansatz.11 Closed form expressions will be written at the price of a change of representation. The
external-field representationis formally given by

A85eiBAe2 iB, ;A, ~5.9!

whereB5TL and

T5yT•PT1F12F2 , ~5.10!
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L5Laz
a, La5

PL
a

PL
2 . ~5.11!

In order to keep contact with a generalized formulation of this method we use our notation of Ref.
12. The space of four-vectors is decomposed along longitudinal and transverse directions. Each
four-vector has a unique transverse~resp., longitudinal! part. SubscriptsT and L refer to this
splitting.

But here, like in Ref. 11, the longitudinal part has only the time component. Longitudinal
canonical variables commute with the transverse ones,F1 ,F2 depend only on transverse variables
and [T,L]50.

The wave equations will be now written as

2H̃a8C̃85ma
2C̃8, ~5.12!

whereH̃a8 5 K̃a8 1 Ṽ8. In order to avoid cumbersome notation we systematically writeK̃8 for (K̃)8,
etc. One must keep in mind that

C̃85eiBGC, H̃a85eiBGHaG
21e2 iB, ~5.13!

and so on.
In the present notation,~5.7! can be identified as~2.7! of Ref. 12, whereKa andGa have been

replaced byK̃a andFa , respectively. Along this lineK̃ a8 can be explicitly computed; see Eqs.
~3.36! of Ref. 12, or Eqs.~2.24! and ~2.25! of Ref. 14. One finds

K̃a85K̃a2T~L•y6 1
2!1 1

2T
2L•L, ~5.14!

with 11 ~resp.,21! for a51 ~resp.,a52!. Hence, using the identityp1
21p2

25 1
2P

212y2, we get

K̃181K̃285
P2

4
1y21F11F222T~L•y!1T2L•L, ~5.15!

K̃182K̃285yL•PL . ~5.16!

In fact,B was tailored in order to obtain~5.16!. Now define

m5 1
2~m1

21m2
2!, n5 1

2~m1
22m2

2!,

and replace the wave equations by their sum and difference. We get

~H̃181H̃28!C̃85mC̃8, ~5.17!

~H̃182H̃28!C̃85nC̃8. ~5.18!

According to the assumptions made about the metric, there is a unique ‘‘laboratory frame.’’
Transverse and longitudinal decomposition simply refers to space and time splitting, thusB takes
on the form given by Bijtebier in Ref. 11. In other words,

L•L5
1

P0
2 , L•y5

y0
P0

, yL•PL5y0•P0, ~5.19!

T52y–P1F12F2 , L5
z0

P0 . ~5.20!
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These expressions are inserted into~5.15! and ~5.16!, and one makes the ansatz

Ṽ85 f ~ Ẑ,P2,y0P0!, ~5.21!

Ẑ52z2P22~z–P!2. ~5.22!

We finally obtain

H̃181H̃285
P2

4
1y21F11F222T

y0
P0

1
T2

P0
2 1 f ~ Ẑ,P2,y0P0!, ~5.23!

whereas the difference of squared mass operators is simply

H̃182H̃285y0P0 . ~5.24!

In these formulasT is simplyF12F22y–P andF1 ,F2 are given by~5.7!.
At this stage,invariance under time translation and space rotations is manifest, which dem-

onstrates, according to (5.8), that axiom D of Sec. III is actually satisfied.
SinceP0 andy0P0 are constants of the motion, the wave equations~5.17! and~5.18! undergo

a reduction. The dependence on the ‘‘relative time’’ is factorized out by diagonalization of these
quantities. IfE is eigenvalue ofP0, we write

C̃8~z,Q!5exp i SEQ01
n

E
z0DF~z,Q!. ~5.25!

We are left with six degrees of freedom.
Remark:The line followed from Eq.~5.10! to Eqs.~5.15! and ~5.24! was the most natural

from a heuristic or pedagogic point of view. Let us, however, stress that the possibility of explic-
itly computing operators of the formeiBAe2B without question about the self-adjointness ofB is
essentially founded on the fact that a multiple commutator,

@B@n#,A#5@B†B•••@B,A#•••#‡],

vanishes for some finite integern. Beside the case of squared-mass operators, a trivial example is
given byP0 andMi j . Obviously,P08 andMi j8 exist and simplyP08 5 P0,Mi j8 5 Mi j . It stems from
~5.8! that J8 exists andJ85J. But we have previously seen thatJ̃5J, thus finally J̃85J. So the
Lie algebra generated by the isometries ofgmn is kept unchanged under transformations
A→Ã→Ã8.

In our present knowledge, there is no evidence thatB is essentially self-adjoint on some dense
domain inL̄ 2~R8!. This difficulty is not specific of a curvature field. We have already pointed it
out, in the case where the external field is electromagnetic. In the present state of the art, we
cannot discard the possibility thatA8 may not exist or may be ambiguously defined,when A is an
operator other than those we explicitly consider here.

For instance, can we actually transform the generator of a Lorentz rotation mixing space and
time? Fortunately we are not concerned with such an operator because it does not leave the metric
~4.9! invariant and therefore is not a symmetry of our system.

All we need is to represent the pieces of Poincare´ algebra that survive the application of a
curvature field.And, in fact, the Lie algebra generated byH1 ,H2 and the total isometries ofgmn

is respected by the transformation~5.9!.
Notice thatP̃05P0 and ifM5(q`p)11(q`p)2 thenM̃ i j5Mi j .
In view of these considerations, a rigorous exposition should start with~5.17! and~5.18! from

the outset,H̃18 andH̃28 being given by~5.23! and~5.24!. Then checking thatH̃18 andH̃28 commute
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to each other is a mere exercise. In this approach we postulate the wave equation in the form
~5.12!. The squared mass operators are explicitly given by application of~5.23! and ~5.24!.

For the sake of the principles formulated in Sec. III, we may observe that it is always possible
to construct a representation in terms of operators acting inL2, making the change of wave
function Ĉ5G21C̃8 and the operator transformationĤa 5 G21H̃a8G, which mapsL̄ 2 back onto
L2. ~Beware that@G, B# does not vanish.H does not coincide withĤ.! But only the external-field
representation is tractable.

A. No-field limit

In the absence of curvature,B does not vanish, but it reduces to

b5~yT•PT!L52y–P
z0

P0 ,

which has been proved to be essentially self-adjoint in some dense domain ofL̄ 2.14 Thus, all
operators of the formeibAe2 ib are well defined and the no-field limit of the external-field repre-
sentation is unitarily equivalent to the customary representation describing two interacting par-
ticles in flat space–time.

However, the no-field limits ofH̃18 ,H̃28 , sayH̃18
(0) ,H̃28

(0) do not show up the familiar form one
usually encounters for a two-body system isolated in Minkowski space. In particular, their Poin-
caré invariance arises ‘‘in disguise,’’ owing to the fact that the generators of~flat! space–time
displacements are not represented in the conventional fashion.

But one may easily revert to the primitive representation by the transformation

Ha
~0!5G21e2 ibH̃a8

~0!eibG.

This peculiarity is not characteristic of gravity. It already occurs when one turns off an external
field in special relativity.11,14

B. Independent-particle limit

The case of two independent particles moving in curved space–time without mutual interac-
tion is more tricky.

The wave equations of the external-field representation are given in terms ofK̃18 ,K̃28 .
But there is no rigorous evidence that these operators be unitarily equivalent toK̃1 ,K̃2 .

However, the important structure here is the Lie algebra generated byK1 ,K2 and theindividual
isometriesof the form J152 i ja]1a, J252 i ja]2a. We wish to stress that in~5.9! the trans-
formed version of all the individual isometries is well-defined. In fact,J1 ,J2 commute withG12
and withB, thus they keep their form unchanged under the transformations generated by these
operators.

Finally, the commutation relations amongK̃1 , K̃2 , P
0, Mi j are not altered when going over

to K̃18 , K̃28 , P
0, Mi j .

VI. CONCLUSION

The equations of motion proposed here fully take into account the two-body structure of the
system. Hence, some questions raised by Fishbachet al. are answered. The way we separate
canonical variables in two sets was mainly motivated by computational simplicity. Insofar as the
contact with noncovariant theories can be made explicit, our choice turns out to be more in the
spirit of a ‘‘center of energy’’ according to Ref. 3 rather than of a center of mass in the sense of
Krajcik and Foldy. More precisely, our canonical variableQ is simply related withJ through Eq.
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~2.7!. Then the spatial part ofJ can be identified with the ‘‘center of energy’’ evoked by Fischer
et al.,3 following Ref. 18. After this reduction is made, the contact with the definition of Ref. 5 can
be obtained like in Ref. 3.

In principle, our equations of motion could permit us to formulate as well the scattering of a
bound stateby the gravitational field~with some reservations about the intrinsic meaning of this
concept, we may return to this question in future work! as the 111 scattering of two particlesin
the presence ofcurvature. They also should allow for investigating changes in the spectrum of
bound states.

Unfortunately it is generally not possible to write these equations in closed form; exact
solutions of the compatibility condition are exceptional, they require a special symmetry of the
metric tensor. But this complication is by no means a characteristic peculiarity of the gravitational
field; it arises as well in special relativity when we consider two bodies interacting in an external
field, as soon as recoil effects are taken into account. When the metric has the suitable symmetry,
formulas~5.23! and~5.24! permit writing Eqs.~5.17! and~5.18! explicitly by a method that is, to
a large extent, independent of the form of the mutual interaction.

In the absence of curvature, an essential structure was the Lie algebra spanned by the squared-
mass operators and the generators of the Poincare´ group. Here analogously, the algebra spanned
by H1 ,H2 and the total isometries~if any! play a similar role.

In addition to compatibility, a list of physically reasonable conditions has been discussed. In
order to implement these requirements in a tractable model, we have considered a special case of
static orthogonal space–time. In this example, the existence of a preferred flat background allows
for regarding the curvature field as an external field in Minkowski space–time. In a representation
using Hilbert spaceL̄2, we have applied standard methods of relativistic quantum mechanics of
particles, and explicitly solved the compatibility problem in a way that respects the symmetries of
the Riemannian metric. Relative time was finally eliminated.

In this model, Axioms A, B, and D are strictly satisfied. Axiom C is rigorously satisfied
insofar as the no-field limit is concerned, and~at least! formally satisfied in the case of the
independent-particle limit.

Of course, the example given in Sec. V is not very useful for practical applications because no
reasonable stress-energy tensor is expected to support a line element of the form~4.9! through
Einstein equations. For this reason we prefer to speak of acurvature field rather than of a
gravitational field.

Nevertheless, one must realize that no other solution of the compatibility condition~1.3! is
available in closed form at the present time, except in the trivial case of Minkowski space. The
present example is at least nontrivial, as it has a nonzero curvature. Our model, being defined in
closed form, ensures that the general framework developed in Sec. III is not empty. Moreover it is
an illustration of the role of isometries.

If one wishes to consider realistic space–times, it is possible to seek for solutions in the form
of series expansions.

In this paper, for simplicity, we have considered scalar particles only. The general framework
can be set forth also for fermions, providedK1 ,K2 are replaced by Dirac operators and the
right-hand side of~1.1! become linear in the masses. But adapting to fermions the method dis-
played in Sec. V requires further work.

APPENDIX: PROPERTIES OF ISOMETRIES

In standard notations of differential geometry, the four-dimensional Laplace–Beltrami opera-
tor is

D5dd1dd.

Claim: If j is an isometry andf a differential form, thenLj D f5DLj f .
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For ap form, the general proof rests on the identitiesd5*
21d* and*L5~21!pL* . When f

is a function, that is a 0 form, we simply have

2Kf5D f5d d f .

Claim: If j is an isometry, thenja]a is skew Hermitian inL2~R4!.
Proof:

E
V

~ja ]af* !cAugud4q5E
V

,a]a~jaf*c!Augud4q2E
V

~ja ]ac!f*Augud4q

2E
V

~,aja!f*cAugud4q.

The first term gets transformed into the flux ofjaf*c across the three-dimensional surface]V. In
the limit whereV extends to infinityin all space–time directions, thenf andc vanish on]V ~they
are supposed to be squared integrable!, therefore this first term yields no contribution. The last
term also vanishes since,•j is obviously zero. We are left with

E ~j•]f* !cAugud4q52E f* ~j•]c!Augud4q;

in other words,ja]a is skew symmetric inL2.
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Squeezing Bogoliubov transformations on the infinite
mode CCR-algebra
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A detailed analysis of and a general decomposition theorem for in general un-
bounded symplectic transformations on an arbitrary complex pre-Hilbert space
~one–boson test function space! are given. The structure of strongly continuous
symplectic groups on such spaces is determined. The connection between quadratic
Hamiltonians, Bogoliubov transformations, and symplectic transformations is dis-
cussed in the Fock representation, and their relevance for squeezing operations in
quantum optics is pointed out. The results for this rather general class of transfor-
mations are proved in a self-contained fashion. ©1996 American Institute of
Physics.@S0022-2488~96!01308-4#

I. INTRODUCTION

In recent developments in quantum optics the squeezed states of light have acquired a broad
interest since by noise reduction they promise to increase the accuracy of certain measurement
devices and to improve the transmission rate in optical communication techniques.

In the theoretical descriptions of squeezing processes the Hamiltonians most frequently are
approximated by quadratic expressions

Hq5
1

2 (
n51

N

~znan* an*1znanan! ~1.1!

of the light field~interaction picture!, where theznPC arise from a classical~macroscopic! pump-
ing field, and thean* [ a* (en) are the creation@resp. thean[a(en) the annihilation# operators of
the orthonormalized modes$e1 ,...,eN%. HereN commonly is assumed to be finite.1 In the litera-
ture the Hamiltonian~1.1! usually is referred to as the degenerate case of squeezing. However, in
the smeared field formalism2 the nondegenerate squeezing Hamiltonians may be transformed into
the form~1.1! by superposing the idler and the signal modes.3,4 There are also some investigations
on infinite ~resp. continuous! mode squeezing.5 Calculating the time evolution associated with
~1.1! leads to a one-parameter group of Bogoliubov transformations on the algebra of observables.

A rigorous smeared boson field theory is based on an arbitrary one-boson testfunction space
E, which is a complex pre-Hilbert space with norm completionH. The choice ofE determines
the specific boson system and the modes taken into account. For bosons with the spins, E is a
subspace ofL2~L!^C2s11. For photons the quantization procedure in the Coulomb gauge leads to
a test function spaceE consisting of divergence-free~i.e.,“–f50!, square-integrable functionsf :
L→C3 on the quantization volumeL#R3 in position space. The algebra of observables is the
C* -Weyl algebraW (E) overE generated by the unitary Weyl operatorsW( f ), fPE ~sometimes
called displacement operators!, which in regular representations are given in terms of the smeared
creation and annihilation operators,W( f )5exp$i221/2

„a* ( f )1a( f )…%, and which satisfy the
Weyl form of the canonical commutation relations~CCR!, cf. the beginning of Sec. III.

The Bogoliubov transformationsa on W (E) ~as, e.g., those generated by the quadratic
Hamiltonians from above! are in one-to-one correspondence with the symplectic transformations
T on E ~i.e., T acts real-linearly and bijectively onE and leaves the imaginary part of the scalar
product^.u.& invariant!, such thata„W( f )…5W(T f ) ; fPE, in which case we writea5aT .

0022-2488/96/37(9)/4292/18/$10.00
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Symplectic and Bogoliubov transformations belong to the basic structure of a boson quantum
field theory. From the beginning of the operator-algebraic Weyl theory they have been studied
with respect to different points of view. In the theoretical developments of squeezing for modern
measurement and communication devices they are of a special importance~see above!. Both for
the structural investigations and for practical applications the use of unbounded symplectic trans-
formations on an incomplete pre-Hilbert spaceE is unavoidable~as will be substantiated by future
work!.

Here, we present a new approach using the~unique! decompositions of real-linear operators
into their complex-linear and complex-antilinear parts. The fixed complex structure inherent in the
complex-linearity of the test function spaceE allows a systematic study of the general structure of
symplectic transformations, especially of symplectic one-parameter groups with their generators
and unitary implementations~here in Fock space!. Beside new results we also collect and gener-
alize some older ones, which are scattered in an incoherent fashion over a series of articles. Here
we present a self-contained exposition, where all statements are proved by means of a direct and
complete argumentation and are illustrated by several examples.

In Sec. II we first give a detailed analysis of the algebraic relations for the~complex! linear
part and the antilinear~conjugate linear! part of a symplecticT. Then we verify that every
symplecticT on E uniquely is decomposable into a unitaryU, a self-adjoint positiveS, and an
antilinear involutionJ ~as operators onH!, so that

T5U cosh~S!1UJ sinh~S!. ~1.2!

This formula may be considered as the polar decomposition of the real-linear, symplecticT. It
generalizes the special finite-dimensional examples, which gave rise to the developments of the
squeezing theory.1 If E is a proper dense subspace ofH, thenT ~or equivalentlyS! may be
unbounded. ForE5H, however,T always has to be bounded~cf. Lemma 2.9!. In Sec. II B we
completely characterize strongly continuous symplectic one-parameter groups$TtutPR% on H
with the growth propertyuuTtuu<exp$butu%;tPR for someb>0, as those which have a generator
with bounded antilinear part.

The decomposition formula~1.2! is a useful tool for calculating squeezing properties~e.g., the
variances! of Bogoliubov transformed~i.e., squeezed! states. This application is deferred to papers
to follow.6

Section III is devoted to unitary implementations of the Bogoliubov transformationsaT with
respect to the Fock representation ofW (E). This investigation is inspired by Ref. 7 where,
however, functional techniques are used exclusively. In Sec. III A we first give a slight generali-
zation of Shale’s result:8 aT is unitarily implementable in Fock space, if and only if the antilinear
part ofT is of Hilbert–Schmidt class, which especially yieldsT to be bounded. Then we calculate
the transition probability of Glauber vectors with squeezed Glauber vectors@Lemma 3.4 and Eq.
~A1!#, a result which resembles a functional formula in Ref. 7. It is found for the one mode case
also in some quantum optical articles.1 Section III B deals with the connection between general
quadratic Hamiltonians in Fock space and one-parameter groups of symplectic transformations on
H. Let H:5Hq1HC , whereHq is from ~1.1! with N5`, andHC denotes the free evolution
Hamiltonian on Fock space uniquely associated with the self-adjoint linear one-boson Hamiltonian
C on the complex one-boson Hilbert spaceH. Then with the self-adjoint antilinear
D5(n51

` zn^.uen&en onH, we show the groupTt :5exp$t i (C2D)%, tPR, to consist of bounded
symplectic transformationsTt onH, which on the second quantized level are implemented by
exp$ i tH %, i.e.,

exp$ i tH %W~ f !exp$2 i tH %5aTt
~W~ f !!5W~Tt f ! ; fPH ;tPR. ~1.3!
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HereC may be unbounded. However, the condition that the Fock vacuum vector is contained in
the domain of definition of the self-adjointH on Fock space is equivalent toD being an antilinear
Hilbert–Schmidt operator onH, i.e.,(n51

` uznu
2,`, which also yields the Hilbert–Schmidt prop-

erty of the antilinear parts of the symplectic transformationsTt .
Especially forC50, and henceHC50, one obtains the formula~cf. Corollary 3.10!

Tt5exp$2 i tD %5cosh~ tS!1J sinh~ tS!5 (
n51

` Fcosh~ tuznu!^enu.&en2 i
zn

uznu
sinh~ tuznu!^.uen&enG

with S5(n51
` uznu^enu.&en andJen52 i (zn/uznu)en;nPN. Then Eq.~1.3! expressed in terms of

annihilation and creation operators in Fock space gives for everynPN and tPR

exp$ i tH q%a~en!exp$2 i tH q%5cosh~ tuznu!a~en!2 i
zn

uznu
sinh~ tuznu!a* ~en!.

If (n51
` uznu

25`, thenHq has no meaning as an operator on Fock space.4

As indicated above, there occur on the one-particle level complex-linear, complex-antilinear,
and real-linear operators. If not stated otherwise, we always mean with the expressions ‘‘opera-
tor’’ and ‘‘linear operator’’ complex-linear mappings. On the level of the second quantization
~C* -algebraic level, and operators on Fock space!, however, we are concerned with complex-
linear operators, only.

II. SYMPLECTIC TRANSFORMATIONS

Let E be an arbitrary complex pre-Hilbert space with~right-linear! scalar product̂ .u.& and
norm-completionH. The imaginary part of the scalar product is a nondegenerate symplectic form
on E.

Definition 2.1 (Symplectic Transformation): A mapping T: E→E is called a symplectic trans-
formation on E, if it is real-linear, surjective [that is, T(E)5E# and fulfills

Im^T f uTg&5Im^ f ug& ; f ,gPE. ~2.1!

The set of all symplectic transformation on E we denote byT (E).
Relation ~2.1! implies the injectivity ofT, and thus each symplectic transformationT acts

bijective onE. The inverse mappingT21: E→E is a symplectic transformation onE, too. Hence
T (E) forms a group. We have, e.g.,UPT (E) for each unitaryU onH with U(E)5E, which
gives a subgroup ofT (E).

A. The general form of a symplectic transformation

SinceE andH are complex-linear vector spaces each real-linear operatorT: E→H decom-
poses uniquely into its~complex-! linear partTl and its ~complex-! antilinear partTa , that is,
T5Tl1Ta with

Tl :5
1
2~T2 iTi ! and Ta :5

1
2~T1 iTi !. ~2.2!

In the following we considerTl andTa for a symplecticTPT (E) as ~not necessarily bounded!
operators on the Hilbert spaceH with the dense domain of definitionE and range contained inE.

Let us refer some common notations~cf. Ref. 9, Section VIII.1!, which are used throughout
the paper. The orthogonal complement of a subsetK#H is denoted byK', its closure byK̄. The
~complex-! linear hullLH(K) of K,H consists of all finite linear combinations of elements ofK.
A linear ~resp. antilinear! operatorB onH is a linear~resp. antilinear! mapping from its domain
D(B), a complex-linear subspace ofH, intoH. B is called densely defined, ifD(B) is dense in
H. The adjointB* of a densely defined linear~resp. antilinear! operatorB onH is given by
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D~B* !:5$gPHu fPD~B!°^guBf& is i.i-continuous%

and by settinĝ B* gu f &:5^guBf& for linear B, and ^ f uB* g&:5^guBf& for antilinearB, respec-
tively. In generalB* is a closed linear~resp. antilinear! operator onH, but not necessarily densely
defined. ker(B) is the kernel and ran(B) the range ofB. For closableB we write B̄ for its closure.
BuK denotes the restriction ofB to the subspaceK#D(B). K is a core for the closedB, if BuK
5 B. B leaves K invariant, if K#D(B) and B(K)#K. B is called positive,B>0, if
^ f uBf&>0; fPD(B). We writeA#B, if D(A)#D(B) andA 5 BuD(A) . A densely definedB is
called symmetric ifB#B* , essentially self-adjoint ifB̄5B* , and self-adjoint ifB5B* . For
closed densely definedB one has that 0<B*B is self-adjoint and linear, and one putsuBu:
5 AB*B. For the closed linear~resp. antilinear! B one has the~unique! polar decomposition
B5VuBu where V is the unique linear~resp. antilinear! partial isometry with initial space
„ker(B)…' 5 ran(uBu) and final spaceran(B). For bounded linear~resp. antilinear! operatorsA on
H we always assumeD(A)5H, which givesD~A* !5H and iAi5iA* i .

Theorem 2.2:Let T: E→H be a real-linear operator. We have the following equivalences:
~i! TPT (E) ~especially, T(E)5E!.
~ii ! T, Tl , and Ta fulfill the following relations:

~a! T(E)5E @implying Tl(E)#E, andTa(E)#E#, E#D(Tl* ), E#D(Ta* ) ~implying the
closability of Tl and Ta!,

~b!Tl*Ta5 Ta*Tl andTl*Tl 2 Ta*Ta5 1E .
~iii ! T, Tl , and Ta fulfill the following relations:

~a! T(E)5E,
~b! ^Tl f uTag&5^TlguTaf & and ^Tl f uTlg&2^TaguTaf &5^ f ug&; f ,gPE.

~iv! Tl and Ta fulfill the following relations:
~a! E#D(Tl* ), E#D(Ta* ), and,Tl ,Ta ,Tl* ,Ta* leave E invariant,
~b!Tl*Ta5Ta*Tl ,Tl*Tl 2Ta*Ta5 1E ,
~c!TlTa* uE5 TaTl* uE and TlTl* uE2 TaTa* uE5 1E .

Moreover, if T is a symplectic transformation on E, then

Tl*$ 1
2~T

212 iT21i !, Ta*$2 1
2~T

211 iT21i !, ~2.3!

and, for the symplectic transformation T21: E→E, it holds

T215Tl* uE2Ta* uE , ~T21! l5Tl* uE , ~T21!a52Ta* uE . ~2.4!

Proof: ~i!⇒~ii !: Observing^ f uTg&5Im( i ^ f uTg&)1 i Im^ f uTg& one uses~2.1! to calculate

^ f u~T2 iTi !g&5^~T212 iT21i ! f ug&, ^ f u~T1 iTi !g&52^gu~T211 iT21i ! f &,

which leads to~2.3! and ~2.4!, and also shows~ii !~a!. Now ~2.1! implies

Now observe thatE is a complex-linear vector space, and we may replacef by i f . ~ii !⇒~iii !:
~iii !~b! is another formulation of~ii !~b!. ~iii !⇒~i!: ~iii !~b! yields ~2.1!. ~i!⇒~iv! is obtained by
applying~i!⇔~ii ! toT andT21 from ~2.4!. ~iv!⇒~ii !: Let T̃: 5 Tl* uE 2 Ta* uE . With ~iv!~c! one easily
checksTT̃51E , which proves~ii !~a!. j

Corollary 2.3: Let TPT (E). It holds iuTl u f i 5i Tl f i >i f i; f P D(uTl u) 5 D(Tl), and
ran(uT̄l u)5H. IfH is separable, or, if Tl is bounded, thenran(T̄l) 5 ran(Tl) 5 H, i.e.,uT̄l u

21 and
(T̄l)

21 are bounded with domainH.
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Proof:From Theorem 2.2~iv! follows iuTl u f i 5i Tl f i >i f i; f P D(uTl u) 5 D(Tl) andiTl* f i
>i f i; f P E. SinceuTl u is self-adjoint we haveH 5 ker(uTl u)' 5 ran(uTl u) ~e.g., Ref. 10, Propo-
sition X.1.13!. Since alsouTl u21 is closed andiuTl u21gi <i gi , we actually have ran(uTl u) 5 H.
The same argument forTl yieldsran(Tl) 5 ran(Tl) 5 :K to be closed. AssumeK to be a proper
subspace ofH. Then there is anfPE with f¹K . Choose an ONB~orthonormal base! O of the
linear hull LH$ran(Tl), f %#E, the existence of which is ensured by the separability ofH ~e.g.,
Ref. 11, Section 3.3!. Then there exists anePO with ePEùK'. ButK' 5 ker(Tl* ), and thus
1 5i ei <i Tl* ei 5 0, a contradiction. The proof for boundedTl is obvious. j

Corollary 2.4: SupposeH separable, and let TPT (E). Then E is a core for Tl* , Ta* ,
Tl*Tl , Ta*Ta, TlTl* , andTaTa* .

Proof: ReplacingTa by 2Ta from Theorem 2.2~iv! follows that T̂:5Tl2TaPT (E) with
T̂215Tl* uE1Ta* uEP T (E).HenceS:5T̂21TPT (E).ButSl 5Tl*Tl 1Ta*Ta5 2Tl*Tl 2 1E issym-
metric with ran(Sl) 5 H by Corollary 2.3. HenceSl is self-adjoint by Ref. 11, Theorem 5.19, and
so isTl*Tle 5 1

2(Sl 1 1). But Tl*Tl#Tl*Tl , and thusTl*Tl 5 Tl*Tl ~e.g., Ref. 11, Theorem 5.31!,
which provesE to be a core forTl*Tl . Because of ran(Tl)#E andD(Tl* )$E this yieldsTl*Tl
5 Tl* uE Tl . But Tl* uE#Tl* givesTl 5 Tl** #Tl* uE* , and henceTl*Tl 5 Tl* uE Tl* uE* , which with
Ref. 11, Theorem 5.40, leads toTl 5 Tl* uE* , respectivelyTl* 5 Tl* uE. Now useTl*Tl 5 Ta*Ta
1 1E , and the same argumentation forT21PT (E). j

Theorem 2.5„Decomposition…: Let TPT (E). SupposeH separable or Tl ~or equivalently
Ta! bounded. Then onH there exist a positive self-adjoint operator S, a unitary U, and an
antilinear involution J~that is, J5J*5J21!, so that

~a! E is a subspace of the domains of Ucosh(S), UJ sinh(S), cosh(S)U* , J sinh(S)U* , and
these operators leave Einvariant.

~b! J commutes with S in the sense of Jf(S)5f̄(S)J for every Borel measurable function
f:@0,̀ @→C ~heref̄ is the complex-conjugate function). Especially, J„ker(S)…5ker(S) and
J„ker(S)'…5ker(S)'.

~c! Tl5U cosh(S)uE and Ta5UJ sinh(S)uE .
~d! E is a core forcosh(S), sinh(S), cosh(S)2, and sinh(S)2.
~e! Let Ũ be a unitary, S̃a self-adjoint operator withD~exp$6S̃%!$E, and J̃ an antilinear

involution onH, such that T5Ũ cosh(S̃)uE1ŨJ̃ sinh(S̃)uE .We have Ũ5U, uS̃u5S,J̃ com-
mutes with S̃,J̃ f52J f for fP P̃~#2`,0@!H, andJ̃g5Jg for gP P̃~#0,̀ @!H, where P̃is the
projection-valued measure associated with S˜. Especially, if S̃>0, then S̃5S and

J̃g5Jg;gPker(S)'.

Proof: Tl*Tl2Ta*Ta51E implies iTl f i25iTaf i21i f i2; fPD1 :5D(Tl)5D(Ta). For the
proof we drop the bar for the closures. We getD~uTl u

2!5D~uTau
2! and uTl u

25uTau
211, which

gives

exp$ i t uTl u2%5exp$ i t %exp$ i t uTau2% ;tPR, ~2.5!

and the closed subspaceK :5ker(uTau)5$ fPD1uuTl u f5 f %. Thus, exp$ i t uTl u
2%~K !5K;tPR,

andK is a reducing subspace foruTl u
2 and foruTl u ~cf. Ref. 11, Theorem 7.39!. SinceE is a core

for Tl* andTa* ~Corollary 2.4!, the same argumentation holds forT21 5 Tl* uE 2 Ta* uE with D1* :
5D(Tl* )5D(Ta* ) andK * :5 ker(uTa* u).

Since cosh is bijective from@0,̀ @ onto @1,̀ @ we may defineS>0 by uTl u5:cosh(S), and thus
uTau5sinh(S). Obviously,K5ker(S).

Let Tl5UuTl u be the polar decomposition, for whichU is a unitary because of Corollary 2.3.
FromTl*5uTl uU* it follows U* (D1* ) 5 D1. From uTl* uU 5 UuTl u we obtainuTl* uUf 5 UuTl u f
5 Uf; f P K , and henceU~K !5K * .
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Let Ta5VuTau be the polar decomposition with the antilinear partial isometryV from
ran(uTau) 5 K' ontoran(Ta) 5 K *'. We continueV to an antiunitary onH: let I be an arbitrary
antilinear involution onK and defineVf :5UI f for fPK .

With uTl* u2 5 UuTl u2U* anduTa* u2 5 VuTau2V* and~2.5!we calculate

U exp$ i t uTl u2%U*5exp$ i t uTl* u2%5exp$ i t %exp$ i t uTa* u2%5exp$ i t %V exp$2 i t uTau2%V*

5V exp$2 i t %exp$2 i t uTau2%V*5V exp$2 i t uTl u2%V* ;tPR,

implying V*U exp$ i t uTl u
2%5exp$2 i t uTl u

2%V*U. With Fourier transformation and standard argu-
ments one now easily checks~b! for J:5V*U.

HereK' is a reducing subspace foruTl u, henceuTauuTl uexp$ 2 2tuTl u%uK' for t.0 is a
bounded, injective, self-adjoint operator onK' with range dense inK'. BecauseJ commutes
with uTl u, for all f ,gPK' one easily calculates with Theorem 2.2~iii !

^ f uJ* uTauuTl uexp$22tuTl u%g&

5^Tl exp$2tuTl u% f uTa exp$2tuTl u%g&

5^Tl exp$2tuTl u%guTa exp$2tuTl u% f &

5^ f uJuTauuTl uexp$22tuTl u%g&,

which yieldsJ5J* onK'. J5I onK is obvious, and thusJ5J* on the whole ofH.
We prove ~e!: From the uniqueness of the decomposition~2.2! it follows

Tl uE5Ũ cosh(S̃)uE5U cosh(S)uE , which impliesD(cosh(S̃)uE)5D15D„cosh(S)…. SinceŨ is uni-

tary and ran(Tl)5H, we have ran(cosh(S̃)uE) 5 H, which by Ref. 11, Theorem 5.19 implies the

self-adjointness ofcosh(S̃)uE and finallycosh(S̃)uE 5 cosh(S̃). The uniqueness of the polar decom-
position now yields Ũ5U and cosh(S̃)5cosh(S), which gives uS̃u5S @since cosh(x)
5cosh(uxu);xPR#. The spectral calculus andU*Ta5 J̃ sinh(S̃)5J sinh(S) proves the rest.

~a! is a consequence of Theorem 2.2~iv!. ~d! follows from Corollary 2.4. j

For TPT (E) part ~e! of the above theorem gives the uniqueness of the decomposition
T5U cosh(S)uE1UJ sinh(S)uE with positive self-adjointS>0. SinceJ commutes withS, only its
action on ker(S)' is of interest, i.e.,J is arbitrarily changeable on ker(S). We also give the
converse statement, which is very helpful for explicit constructions of symplectic transformations
T, which may be performed as in Example 2.7 below.

Corollary 2.6: Let be U a unitary, S a self-adjoint operator (not necessarily positive), and J
an antilinear involution onH, so that ~a! and ~b! of Theorem 2.5 are fulfilled. Then
U cosh(S)uE1UJ sinh(S)uE is an element ofT (E).

Proof: T so defined being symplectic onE is a consequence of Theorem 2.2~iv!. j

Example 2.7:Let mPN andnPNø$0,̀ %. Assume E:5C c
n~Rm!, the complex-valued, n-times

continuously differentiable functions onRm with compact support. We chooseH5L2~Rm! with
respect to the Lebesgue measuredmx as the completion of E. Define S to be the operator of
multiplication with the arbitrary but n-times continuously differentiable function s: Rm→R, and J
to be the complex conjugation, J f5 f̄ , fPH. The unitary U onH we construct by(Uf )(x)
:5exp$ iu(x)% f (Rx2a), xPRm, fPH, with some real-valued, n-times continuously differentiable
functionu, the rotation RPSO(m), and aPRm.

The operators U, J, cosh(S), and sinh(S) leave E invariant, and consequently by the above
corollary U cosh(S)uE1UJ sinh(S)uE5:TPT (E). Moreover, ker(S)5L2„N(S)… where
N(S):5$xPRmus(x)50%.

Sometimes we considerH as a real Hilbert space with scalar product~.u.!:5Rê .u.&, which we
denote byH r . The adjoint of the real-linear operatorA on H r is denoted byA1,
( f uAg)5(A1 f ug) for all fPD(A) andgPD~A1!. The absolute value of the closed real-linearA
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on Hr is denoted byuAur : 5 AA1A. Similarly to the complex case, for a closed real-linear
operatorA on a real Hilbert space one has the~unique! polar decompositionA5VuAur , where the
~unique! partial isometry is real-linear with initial spaceran(uAur) and final spaceran(A) ~cf., e.g.,
Ref. 11!.

Corollary 2.8: Let TPT (E). Then T is a closable real-linear operator on the real Hilbert
spaceH r . And the decomposition T5U~cosh(S)uE1J sinh(S)uE! according Theorem 2.5 with
the unitary U, the positive S5S* , and the antilinear involution JonH gives the polar decom-
position of the closure T̄5UuT̄ur , uT̄ur5cosh(S)1J sinh(S).

Proof:Obviously,T1$Tl* 1 Ta* is densely defined and henceT is closable. Now observe that
cosh(S)1J sinh(S) is a positive real-linear operator onH r . j

B. Strongly continuous symplectic groups

We give here the case of boundedTPT (E) a special treatment. IfiT fi<ci f i; fPE for
somec.0, theni6 iTi f i<ci f i , thusTl andTa are bounded. Conversely,Tl to be bounded is
equivalent forTa to be bounded, which impliesT to be bounded. In this caseT is continuously
extendable to an element ofT ~H!.

Lemma 2.9: Let TPT ~H!. Then T, Tl and Ta are bounded.
Proof:Theorem2.2givesD(Tl) 5D(Ta) 5D(Tl* ) 5D(Ta* ) 5H. Theboundednessnow fol-

lows from the closed graph theorem~e.g., Ref. 11, Theorem 5.7!. j

LetC5C* be a self-adjoint linear~possibly unbounded! operator onH. Thenut :5exp$ i tC%,
tPR, defines a strongly continuous one-parameter groupu of isometries on the real Hilbert space
Hr . We perturbu with the antilinear self-adjoint boundedD5D* onH. The perturbed~strongly
continuous! group onHr is denoted by exp$t( iC1D)% with generatoriC1D and may be cal-
culated by a perturbation expansion~cf. Ref. 12, Section 3.1!. The linear part of exp$t( iC1D)% is
given by summing over the even powers in the expansion series, and the antilinear part by
summing over the odd ones.

Theorem 2.10:The following statements are valid:

~a! Let C5C* be a linear operator onH, and let D5D* be an antilinear bounded operator on
H. Then Tt :5exp$t( iC1D)%PT ~H! with iTti<exp$iDiutu% for all tPR.

~b! Let $TtutPR%,T ~H! be a strongly continuous group with growthiTti<exp$butu%;tPR for
someb>0. Then there exists a unique linear C5C* and a unique antilinear bounded
D5D* onH with Tt5exp$t( iC1D)%;tPR.

Proof: ~a!: D5D* implies Im̂ f uDg&5Im^2Df ug&; f ,gPH. Calculating with the perturba-
tion series ~e.g., Ref. 12, Theorem 3.1.33! gives Im̂ T2t f ug&5Im^ f uTtg&; f ,gPH. But
T2t5Tt

21, thusTtPT ~H!. ~b!: From ~2.4! follows (T2t) l 1 (T2t)a 5 T2t 5 Tt
21 5 (Tt) l*

2 (Tt)a* , which gives (T2t) l 5 (Tt) l* and (T2t)a 5 2(Tt)a* . Let now all be as in Lemma A1 for
our groupTt on the real Hilbert spaceHr . For the adjoint groupTt

1 we haveTt
1 5 (Tt) l*

1 (Tt)a* 5 (T2t) l 2 (T2t)a 5 2 iT2ti , that is, exp$tG
1%52 i exp$2tG% i;tPR, which gives

fPD~G1!, if and only if i fPD(G). Hence,D(G)5D~G1! impliesD(G) to be a complex dense
subspace ofH, and, consequently,G15 iGi . Comparing with~2.2! givesL5Gl to be~complex!
linear andD$Ga to be antilinear. PutC:52 iL. From L52L1 and D5D1 now follows
C5C* , andD5D* , the adjoints with respect to the complex scalar product^.u.&. j

Theorem 2.10 completely characterizes the strongly continuous symplectic goups
$TtutPR%,T ~H! with growth iTti<exp$butu%;tPR for someb>0. In general, a strongly con-
tinuous symplectic goup$VtutPR%,T ~H! has the growth propertyiVti<c exp$butu%;tPR for
someb>0 andc>1 ~Ref. 12, Proposition 3.1.3!. If there does not exist ab>0 so thatc may be
chosen asc51, then by Theorem 2.10 the antilinear part, if it exists as a densely defined~closed!
operator, of the generator of the group$VtutPR% cannot be bounded.

Example 2.11. LetH be a separable complex Hilbert space with fixedONB $ekukPN%, and
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C,S,R positive, self-adjoint linear operators onH with Cek5ckek , Sek5skek , Rek5r kek where
ck.0, sk>0, and rk.0;kPN. S and R are supposed to be bounded. Finally let J be the anti-
linear involution onH satisfying Jek5ek;kPN. Obviously, C, S, R, and J mutually commute.

By Theorem 2.10 the exponentials Tt :5exp$ i t (C2JS)%, tPR, define a strongly continuous
one-parameter group of symplectic transformations TtPT ~H!. Another symplectic group of this
kind is introduced by Tˆ t :5TTtT

21, where T:5exp$JR%5cosh(R)1J sinh(R)PT ~H!.
It holds T̂t5exp$ i t (Ĉ2JŜ)%;tPR with the self-adjoint linear operators onH

Ĉ:52„sinh~R!2C1cosh~R!sinh~R!S…1C,
~2.6!

Ŝ:52„sinh~R!2S1cosh~R!sinh~R!C…1S,

which also have the ek , kPN, as eigenvectors.
From ~2.6! it is seen that, for unbounded C, it may happen that Sˆ is unbounded, too. Hence

the antilinear part2iJŜ of the generator is unbounded~e.g., if R>1, then Ŝ>C!, which by
Theorem 2.10 implies the growth estimateiT̂ti<c exp$butu%;tPR with some c.1 and b>0.
Also, it is not possible to find ab.0 such that c may be chosen as c51. Especially, because of
iTi5iT21i5exp$iRi% and Theorem 2.10~a!, we find the growth property
iT̂ti<exp$2iRi%exp$iSiutu%;tPR.
A continuation of this example is found at the end of Sec. III. The following lemma is used in the
sequel.

Lemma 2.12: Let D5D* be an antilinear bounded operator onH. Then there exists an
antilinear involution JonH so that D5JuDu and J commutes with D anduDu. Moreover, J is
uniquely determined onker(D)'.

Proof: The self-adjointness ofD yields ker(uDu)5ker(D)5ker~D* !. Hence the initial space
and final space is ker(D)' for the antilinear partial isometryV occuring in the polar decomposition
D5VuDu. The self-adjointness ofD also yieldsV to commute withuDu andD, andV5V* . Hence
V is an antilinear involution on ker(D)', which we extend to an antilinear involutionJ onH.

Example 2.13: Let D and J be as in Lemma 2.12. Then Tt5exp$tD%PT ~H! with
(Tt) l5cosh(tuDu) and (Tt)a5J sinh(tuDu);tPR.

III. UNITARY IMPLEMENTATIONS ON FOCK SPACE

The one-boson test function spaceE is a complex pre-Hilbert space with norm-completionH.
TheC* -algebra of the boson system is the Weyl algebraW (E) overE.W (E) is generated by the
unitary Weyl operatorsW( f ), fPE, satisfying~Ref. 12, Theorem 5.2.8!

W~ f !W~g!5expH 2
i

2
Im^ f ug&JW~ f1g!, W~ f !*5W~2 f !; f ,gPE. ~3.1!

S [S „W (E)… denotes the state space ofW (E). A statevPS is calledregular, if for eachfPE
the map tPR°^v;W(t f )& is continuous@^v;M & denotes the expectation value ofv with
MPW (E)#. In the GNS representation~Pv ,Hv ,Vv! ~e.g., Ref. 12, Subsection 2.3.3! of the
regularvPS the self-adjoint field operators are given byFv( f ):52 i ~d/dt!Pv„W(t f )…ut50,
fPE. The functionalfPE°Fv( f ) is real-linear and the field operators satisfy the CCR on
suitable dense domains, [Fv( f ), Fv(g)]# i Im^ f ug&1, ;f ,gPE. The CCR for the smeared an-
nihilation and creation operators, av( f ):5221/2

„Fv( f )1 iFv( i f )… and av* ( f ):
5 221/2

„Fv( f )2 iFv( i f )…, respectively, write as@av( f ), av(g)#5@av* ( f ), av* (g)#50, and
@av( f ), av* (g)##^ f ug&1, where theav* ( f ) and av( f ), fPE, are densely defined and closed.
Furthermore,av( f )* 5 av* ( f ), the mapfPE°av( f ) is antilinear, andf P E°av* ( f ) is linear
~e.g., Ref. 12, Lemma 5.2.12!.

The Fock vacuum statevFPS is given by its characteristic function
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^vF ;W~ f !&5exp$2 1
4i f i2% ; fPE. ~3.2!

Its GNS representation~PF ,F1~H!,VF! is identical to the usual Fock representationPF on the
symmetric Fock spaceF1~H!5%n50

` P1~^nH!, whereP1 is the symmetrization operator and
^nH the n-fold tensor product ofH with itself, and with the vacuum vector
VF5~1,0,0,...!PF1~H! as cyclic vector.P1~^nH! is called then-particle subspace ofF1~H!.
The Fock field, creation, annihilation, and Weyl operators are denoted byFF( f ), aF* ( f ), aF( f ),
andWF( f ), fPH@PF„W( f )…5WF( f ) for fPE#, respectively. We remark thataF(g)VF50
;gPH,andaF* (g)P1( f 1 ^ ••• ^ f n)5 An11P1(g ^ f 1 ^ ••• ^ f n);g, f jPH,;nPNø$0% ~e.g.,
Ref. 12, Subsection 5.2.1; Ref. 9, Section X.7!.

For eachTPT (E) there is a~unique!* -automorphismaT on the Weyl algebraW (E) with
aT„W( f )…5W(T f ); fPE, theBogoliubov transformationassociated withT. The dual transfor-
mationnT , ^nT(v);M &5^v;aT(M )&, vPS , MPW (E), is an affine bijection onS . Obviously,
(nT)

21 5 nT21, and, the statevPS is regular, if and only ifnT~v! is so. Especially,nT~vF! is
regular.

A. Bogoliubov transformations in the Fock representation

Here we turn our interest to those cases for which the Bogoliubov transformationaT is
unitarily implementable in Fock space. For finite-dimensionalE5H @for eachTPT (E)# this is a
consequence of the Stone–von Neumann uniqueness theorem~e.g., Ref. 12, Corollary 5.2.15!,
which implies the irreducible GNS representation@PF+aT ,F1~H!,VF# of the pure statenT~vF! to
be unitarily equivalent to the Fock representation„PF ,F1~H!…. For separableE5H the problem
is solved in Ref. 8~cf. also Refs. 7 and 13, Section 9!, which is equivalent to the result of Ref. 14.
The formulation of Shale’s theorem presented here makes no use of the separability ofH and
allows alsoE to be a proper, dense, complex subspace ofH ~cf. Lemma 2.9!. It is derived in a
way different from Refs. 8 and 14. We refer some common notions~e.g., Ref. 9, Section VI.6!: A
bounded linear~resp. antilinear! operatorD on H is called Hilbert–Schmidt, if its Hilbert–
Schmidt normiDiHS : 5 ((ePO iDei2)1/2 is finite, herei.iHS does not depend on the specific
ONBO chosen forH; D is called to be of trace class, iftr[ uDu],`, wheretr@.# denotes the usual
trace onH.

Theorem 3.1:Let TPT (E). We have the following equivalences:

~i! nT~vF! is normal with respect to the Fock representation„PF ,F1~H!…;
~ii ! aT is unitarily implementable with respect to the Fock representation„PF ,F1~H!…, that is,

there exists a unitary UT on F1~H! withPF„aT(M )… 5 UTPF(M )UT*;M P W (E);
~iii ! uTau is Hilbert–Schmidt onH, which is equivalent foruTl u 2 1 to be of trace class;
~iv! uT̄ur21 is a real-linear Hilbert–Schmidt operator on the real Hilbert spaceHr (see Cor-

ollary 2.8), which is equivalent for T1T21 to be Hilbert–Schmidt (cf. Refs. 8 and 13).

If some of these assertions (and hence all) are valid, then UT of (ii) is unique up to a phase.
Moreover, UTVF5eiqVF for someqP@0, 2p@, if and only if Ta50.

Proof: ~i!⇒~ii !: nT~vF! is pure. Hence, sincenT~vF! is PF-normal and by the irreducibility of
PF ~Ref. 12, Proposition 5.2.4!, there exists a normalizedhTPF1~H! so that„PF ,F1~H!,hT… is
a GNS representation ofnT~vF!. On the other side,„PF+aT ,F1~H!,VF… is a GNS representation of
nT~vF!, too, which has to be unitarily equivalent to„PF ,F1~H!,hT….

~ii !⇒~iii !: First, f P E°^UT*VFuWF( f )UT*VF& 5 exp$ 2 1
4iT fi2% is continuous@e.g., Ref. 12,

Proposition 5.2.4~4!#, from which it follows thatT is bounded. We extend the boundedTl andTa
to all ofH without changing the notation. FromFF(T f ) 5 UTFF( f )UT* follows UTaF( f )UT*
5 aF(Tl f ) 1 aF* (Taf ). Let UTVF5%n50

` jn with jnPP1~^nH!, especially,j05a0VF , i.e.,
a05^VFuUTVF&. Then„aF(Tl f ) 1 aF* (Taf )…UTVF5 UTaF( f )VF5 0; fPE.WithCorollary 2.3
we obtain the recursive system of equations:aF(g)jn11 5 2aF* (Ta(Tl)

21g)jn21 for all gPH
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and eachn>0. Especially forn50 it follows j150, and thus,j2k1150 ;kPN. UTVFÞ0 implies
a0Þ0. Forn51 we haveaF(g)j252a0Ta(Tl)

21g, which with j25P1j2 yields

&^g^huj2&5^aF* ~g!huj2&5^huaF~g!j2&52a0^huTa~Tl !21g&. ~3.3!

With an ONB$ej u jPI % of H we finally obtain

`.
ij2i2

ua0u2
5 (

i , jPI
u^ei ^ej ua0

21j2&u25
1

2 (
i , jPI

u^ej uTa~Tl !21ei&u25
1

2
iuTauuTl u21iHS

2 ,

where we used the decompositionTl5UuTl u and Ta5UJuTau with uTl u5cosh(S) and
uTau5sinh(S) from Theorem 2.5. SinceuTl u is bounded, the assertion follows from the fact that the
Hilbert–Schmidt class is a two-sided*-ideal in the bounded operators onH.

uTl u>1 and ~uTl u21!~uTl u11!5uTl u
2215uTau

2 imply 0<uTl u21<uTau
2. Hence uTl u21 is of

trace class, if and only ifuTau
2 is so~the trace class is a two-sided*-ideal in the bounded operators

onH!.
~iii !⇒~i!: The field, creation, and annihilation operators associated with the GNS representa-

tion „PF+aT , F1~H!, VF… of nT~vF! we denote byFT( f ), aT* ( f ), and aT( f ), respectively.
Obviously,FT( f )5FF(T f ) andaT( f ) 5 aF(Tl f ) 1 aF* (Taf ); f P E. SinceuTau is Hilbert–
Schmidt and commutes withJ ~Theorem 2.5! there exists an ONBO for H consisting of eigen-
vectors foruTau with Je5e;ePO . Let I be a finite subset ofO , PI the orthogonal projection
ontoLH$I %, andhPLH$I %. Using the commutation relations

aF~g!WF~h!5WF~h!S aF~g!1
i

&

^guh& D , aF* ~g!WF~h!5WF~h!S aF* ~g!2
i

&

^hug& D ,
~3.4!

uTl u
25uTau

211, and the Cauchy–Schwarz inequality, we obtain for eachgPH

iaT~g!WF~Uh!VFi25
1
2u^gu~ uTl u2JuTau!h&u21iuTaugi2<tr@ ug&^gu~c~h!PI1Ta*Ta!#

with c(h)>0 only depending onh. Let F be an ONB of the arbitrary finite-dimensional complex
subspaceF#E with associated orthogonal projectionPF . Then

(
ePF

iaT~e!WF~Uh!VFi2<tr@PF„c~h!PI1Ta*Ta…#<tr@c~h!PI1Ta*Ta#,`.

But the set of vectorsWF(Uh)VF with hPLH~O ! is total inH. Hence a Fock-number operator for
nT~vF! exists and Ref. 12. Theorem 5.2.14 yields~i!.

The equivalence~iii !⇔~iv! is easily checked with the decomposition of Theorem 2.5 and
Corollary 2.8. Furthermore, the relationsuTur11>1 and ~uTur21!~uTur11!5uTur

221 imply
0<uTur2 1<T1T21. HenceuTur21 is Hilbert–Schmidt, if and only ifT1T21 is so.

Let us prove the uniqueness ofUT : AssumeUT and ŨT to implementaT . ThenŨT*UT is a
unitary element of the commutantPF„W (E)…8. But PF is irreducible. Now,Ta50, if and only if
T is unitary~S50 in Theorem 2.5!. This holds, if and only ifnT~vF!5vF , which is equivalent to
hT5eiqVF for someqP@0, 2p@, wherehT is the cyclic vector from above. j

Let us remark, that, e.g., Example 2.7 does not fulfill the requirements of Theorem 3.1.
Corollary 3.2: Let TPT (E). Then the GNS representation of the pure statenT~vF! is

„PF+aT ,F1~H!,VF…, and the associated field and annihilation operators,FT( f ) resp.aT( f ), are
given as

FT~ f !5FF~T f !, aT~ f !5aF~Tl f !1aF* ~Taf !, fPE.
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There exists a normalized vectorjTPF1~H! with aT( f )jT50; fPE, if and only if the equiva-
lent assertions (i)–(iv) of Theorem 3.1 are valid, in which casejT uniquely (up to a phase) is given
by jT5UTVF .

Definition 3.3: LetT F(E) be the subgroup of those symplectic transformations TPT (E) for
which uTau is a Hilbert–Schmidt operator onH.

EachTPT F(E) extends continuously to an element ofT F~H!, in which senseT F(E) is a
subgroup ofT F~H!. Because the unitariesUT , TPT F~H!, are unique up to a phase,T°UT is a
projective representation ofT F~H!; some properties of this are discussed in Ref. 8.

In the following we use the determinant det(R) of a bounded~linear! operatorR on H.
det(R) exists ifR21 is of trace class, and it is approximable from finite dimensions with the usual
determinant. det(R)50, if 0Ps(R), with s(R) the spectrum ofR. If 0¹s(R), we have the
formula det(R)5exp$tr@ln(R)#%, where ln(R) is well defined~cf. Ref. 8 Lemma 2.1; Ref. 15,
Sections VII.3 and XI.6; Ref. 7, p. 8; and Ref. 16, Subsection X.I.4!.

Lemma 3.4: Let TPT F~H!. Then the unitary UT implementingaT in the Fock representation
„PF ,F1~H!… is characterized uniquely by the following transition amplitude, which holds for all
g,hPH:

^WF~g!VFuUTWF~h!VF&5^VFuUTVF&exp$
1
2^~Tl !

21guh&

1 1
4„^guTa~Tl !21g&2^~Tl !

21Tahuh&2igi22ihi2…% ~3.5!

with u^VFuUTVF&u5„det(uTl u)…
21/2. One hasdet(uTl u)Þ0, since0¹s(Tl) by Corollary 2.3.

Proof: UTaF(g)UT* 5 aF(Tlg) 1 aF* (Tag), and2 i&(d/dt)WF(t f )VF5 WF(t f )aF* ( f )VF ,
and~3.4! lead to the following differential equations~for eachfPH in dependence of the param-
eter tPR!:

05^WF~ t f !VFuUTaF„~Tl !
21f …VF&

5^aF* ~ f !WF~ t f !VFuUTVF&1^aF„Ta~Tl !
21f !WF~ t f !VFuUTVF&

5 i&
d

dt
^WF~ t f !VFuUTVF&1

i

&

t„i f i22^ f uTa~Tl !21f &…^WF~ t f !VFuUTVF&,

the solutions of which give~3.5! for h50. UTWF(h)VF5WF(Th)UTVF , the Weyl relations and
the decomposition of Theorem 2.5,Tl5UuTl u and Ta5UJuTau with uTl u

25uTau
211, and

[ uTl u,J]50 imply ~3.5! for everyg,hPH. For determiningu^VFuUTVF&u we use Subsection B of
the Appendix. Choose an ONBO forH consisting of eigenvectors ofuTau with Je5e;ePO . Let
L be the set of all finite-dimensional complex subspacesV #LH~UO !. Then 1 5i UTVFi2

5 supV PLiG(PV )UTVFi2 (G(PV ) is defined in Subsection B of the Appendix!. For eachV PL
choose the ONB as a subset ofUO . Then with~3.5! by direct calculation of the integrals~A2! one
obtains the result. j

B. Hamiltonians for symplectic one-parameter groups

Assume$TtutPR% to be a strongly continuous one-parameter group of symplectic transforma-
tions TtPT F~H! with associated Bogoliubov transformationsaTt

on the Weyl algebraW ~H!.
Whenever the group$TtutPR% is nontrivial, then the associated group$aTt

ut P R% onW ~H! is not
strongly continuous, because ofiW( f )2W(g)i52 for fÞg ~e.g., Ref. 12, Theorem 5.2.8!.
Nevertheless it may be possible to implement this group of Bogoliubov transformations by a
strongly continuous unitary group in some representations ofW ~H!. In the present subsection we
are asking for self-adjoint operatorsH on F1~H! such that exp$ i tH % unitarily implementsaTt
with respect to the Fock representation„PF ,F1~H!… for every tPR, that is,
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exp$ i tH %WF~ f !exp$2 i tH %5WF~Tt f !5~PF+aTt
!„W~ f !… ; fPH. ~3.6!

The next two theorems completely solve this problem forH satisfying the additional property
VFPD(H). We need some preparatory considerations.

For the self-adjoint linearC onH the self-adjoint operatoraF*CaF on F1~H! is the second
quantization ofC, often also denoted by dG(C); especiallyaF* 1aF 5 :N is the number operator on
the Fock spaceF1~H! ~cf., e.g., Ref. 12, Subsection 5.2.1, or Ref. 9, Section X.7!, whose
eigenspace with eigenvaluenPN consists just of then-particle subspaceP1~^nH! of F1~H!.
We want to define the quadratic operatorsaF*DaF* andaFDaF .

Definition 3.5: For each antilinear finite rank operator D onH @i.e., ran(D) is of finite
dimension; e.g., Ref. 11, Theorem 6.1] with (nonunique) decomposition D5( j51

p ^•u f j&gj (where
pPN, and fj ,gjPH for jP$1,...,p%) we define

aF*DaF* :5(
j51

p

aF* ~ f j !aF* ~gj !, aFDaF :5(
j51

p

aF~ f j !aF~gj !.

We mention that this definition is independent from the specific decomposition of D, and that
D(N)#D(aF*DaF* ) andD(N)#D~aFDaF!.

Obviously, (aF*DaF* )*$aFDaF and (aFDaF)*$aF*DaF* . Because creation operators com-
mute with each other, we haveaF*DaF* 5 aF*D* aF* , resp.aFDaF5aFD*aF . Hence we may restrict
ourselves to self-adjoint antilinear finite rank operatorsD. HSa

sa~H! denotes the complex-linear
vector space of self-adjoint antilinear Hilbert–Schmidt operators onH. It is well known that the
self-adjoint antilinear finite rank operators onH are i.iHS-dense inHSa

sa~H!.
Lemma 3.6: It holds:
~a! Let D be an antilinear finite rank operator onH. Then

iaF*DaF*ci<iDiHSi„~N11!~N12!…1/2ci ;cPD~N!,

and the same inequality holds for aFDaF . Hence aF*DaF* and aFDaF can be defined for arbitrary
DPHSa

sa~H! by continuous approximation of D by finite rank operators, with the domain
D(aF*DaF* ): 5 D(N) 5 :D(aFDaF).Themapping DP HSa

sa(H)°aF*DaF* is (complex-) linear,
and DPHSa

sa~H!°aFDaF is antilinear.
~b! Let be C5C* linear with coreDC#H, andD5D*PHSa

sa~H!. Then

H:5 1
2~aF*DaF*1aFDaF!1aF*CaF

is essentially self-adjoint on the linear hull L of vectorsP1( f 1^ ••• ^ f n) with f1 ,...,f nPDC and
nPNø$0%. Especially,iHVFi5~1/&!iDiHS .

Proof:We omit the indexF standing for Fock.~a!: We decomposeD5( j51
p a j^.u f j&gj with

ajPC and f j ,gjPH such that$ f 1 ,...,f p% is an orthonormal system ofH and $g1 ,...,gp%, too.
Define the linear operatorXn :^ nH→^ n12H,j°A(n11)(n12)( j51

p a j f j ^ gj ^ j. Then
iXni 5 A(n11)(n12)iDiHS . Now observe thata*Da*5 % nP1XnP1 .

~b!: We show that ran(HuL2z) is dense inF1~H! for eachzPC with Im(z)Þ0, which gives
the essential self-adjointness ofHuL ~e.g., Ref. 11, Theorem 5.21!. Let h5 % khkPF1~H!,
hkPP1~^kH!, with h'ran(HuL2z). Because of~a! especially for vectorsjPLùP1~^kH! we
obtain 2̂ (a*Ca2z)juhk&1^juaDahk12&1^jua*Da*hk22&50. Buta*Ca is essentially selfad-
joint on LùP1~^kH! as an operator onP1~^kH!, which implies hkPD(a*Ca) and
2a*Cahk1aDahk121a*Da*hk225 z̄hk;kPN. Taking the imaginary part of the inner product
with hk , one obtains

Im~z!ihki25Im^hk12ua*Da*hk&2Im^hkua*Da*hk22&.
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Consequently, Im(z)(k50
n ihki

25Im^hn12ua*Da*hn&1Im^hn11ua*Da*hn21&. Hence with the
estimations of~a! we get for eachnPN

uIm~z!u(
k50

n

ihki2<A~n11!~n12!iuDuiHS~ ihn12i1ihn11i1ihni1ihn21i !. ~3.7!

AssumehÞ0. Then there is ann0PN with (k50
n0 ihki2 5 :c . 0. Equation~3.7! now gives

4 (
n5n021

`

ihni2>
uIm~z!uc
iuDuiHS

(
n5n0

`

„~n11!~n12!…21/25`,

which is a contradiction toihi25(kihki
2,`. Thush50 and ran(HuL2z) is dense.

Now use the decomposition~3.8! from below. ThenHVF5
1
2a*Da*VF5221/2(kdkek^ek ,

which givesiHVFi2 5 1
2iDiHS

2 . j

Let be D5D*PHSa
sa~H! and J an antilinear involution onH from Lemma 2.12, i.e.,

D5JuDu and J commutes withD and uDu. We select an ONB$ekukPI % of H consisting of
eigenvectors foruDu so thatJek5ek;kPI , i.e., uDuek5dkek with dk>0;kPI and(kPIdk

2,`.
Hence the antilinearDPHSa

sa~H! may be represented asD5(kPIdk^.uek&ek , and by Lemma
3.6~a! we have

aF*DaF*c5(
kPI

dkaF* ~ek!aF* ~ek!c ;cPD~N!, ~3.8!

where the series converge with respect to the norm onF1~H! ~the analogous equation is valid for
aFDaF!. This implies that, forN5` in the case(n51

` uznu
2,`, the HamiltonianHq from the

introduction is a well-defined self-adjoint operator in the Fock representation~observe that, for
eachnPN, we havezn^.uen&en5uznu^.uznen&(znen) andznan* an* [ znaF* (en)

2 5u znuaF* (znen)
2,

where zn :5exp$~i /2!arg~zn!%!, and the power series in~1.1! converges in the strong resolvent
sense by Ref. 11, Theorem 9.16.

Theorem 3.7: Let C5C* be a linear operator onH and D5D* an antilinear Hilbert–
Schmidt operator onH,and let H5 1

2(aF*DaF* 1 aFDaF) 1 aF*CaFbe the self-adjoint operator on
F1~H! from Lemma 3.6. Then, for each tPR it holds Tt :5exp$ i t (C2D)%PT F~H! ~cf. Theorem
2.10), and exp$ i tH % unitarily implements aTt

with respect to the Fock representation

„PF ,F1~H!… @see Eq. (3.6)#.
Moreover, ^VFuexp$ i tH %VF&5~det„(T2t) l exp$ i tC%…!21/2, where (T2t) l exp$ i tC%21 is of

trace class, and̂WF(g)VFuexp$ i tH %WF(h)VF& is given by Eq. (3.5) with UTt [ exp$itH% for every
f ,gPH and all tPR.

Proof:We omit the indexF. ThatTtPT F~H! immediately follows from the Theorems 2.10
and 3.1 with the perturbation expansion. For antilinearX5X* of Hilbert–Schmidt class we put
H(X):5 1

2(a*Xa*1aXa). Let Ut :5exp$ i ta*Ca% and ut :5exp$ i tC%. We use
UtF(h)U2t5F(uth) and~3.8! applied toX for derivingUtH(X)U2t5H(utXu2t), and the CCR
for checking i [H(X), F(h)]5F(2 iXh) for eachhPH. With the Dyson expansion for the
perturbationH(D) ~e.g., Ref. 12, Proposition 5.4.1! we obtain

exp$ i tH %F~ f !exp$2 i tH %

5 (
n50

` E
0

t

dt1E
0

t1
dt2•••

3E
0

tn21
dtni

n@Utn
H~D !U2tn

,†...@Utn
H~D !U2tn

,UtF~ f !U2t#...‡#

4304 R. Honegger and A. Rieckers: Symplectic and Bogoliubov transformations

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



5 (
n50

` E
0

t

dt1E
0

t1
dt2•••E

0

tn21
dtni

n[H~utnDu2tn
!,†...@H~ut1Du2t1

!,F~ut f !#...‡]

5 (
n50

` E
0

t

dt1E
0

t1
dt2•••E

0

tn21
dtnF„utn~2 iD !u2tn

•••ut1~2 iD !u2t1
ut f …

5F~Tt f !,

which converges for smallt on finite particle vectors because of the estimations of Lemma 3.6
~detailed estimations of the perturbation terms may be done analoguously to Ref. 17!.

We calculatêVFuexp$ i tH %VF&. Equation~3.8! yieldsHVF5
1
2a*Da*VF5221/2(kdkek^ek ,

from which with Eq.~3.3! we obtain the differential equation

1

i

d

dt
^VFuexp$ i tH %VF&5^HVFuexp$ i tH %VF&

5(
k

dk

&

^ek^ekuexp$ i tH %VF&

5
~3.3!

2(
k

dk
2

^eku~Tt!a„~Tt! l…21ek&^VFuexp$ i tH %VF&

52 1
2 tr@D~Tt!a„~Tt! l…

21#^VFuexp$ i tH %VF&. ~3.9!

Obviously, d(Tt) l /dt5~dTt/dt!l5 i „C(Tt) l2D(Tt)a…. Hence, puttingMt :5u2t(Tt) l we obtain
iM t

21dMt/dt5„(Tt) l…
21D(Tt)a to be of trace class, which with the formula

det(Mt)5exp$tr@ln(Mt)#% implies

22iAdet~Mt!
d„det~Mt!…

21/2

dt
5tr@„~Tt! l…

21D~Tt!a#5tr@D~Tt!a„~Tt! l…
21#.

Comparing with~3.9! yields^VFuexp$itH%VF& 5 „det(Mt)…
21/25 (det„(Tt) l* ut…)

21/2. Now observe
T2t5Tt

21, and hence (Tt) l* 5 (T2t) l by Eq.~2.4!. That (T2t) lut21 ~resp.Mt21! are of trace class
follows immediately from the perturbation expansion. j

Theorem 3.8:For each tPR let TtPT F~H!, and let H be a self-adjoint operator on F1~H!
such thatexp$ i tH % unitarily implementsaTt

with respect to„PF ,F1~H!… for every tPR @cf. Eq.
(3.6)#. Then$TtutPR% is a strongly continuous group, and we have the following equivalences

~i! VFPD(H),
~ii ! there exists a linear operator C5C* onH and an antilinear Hilbert–Schmidt operator

D5D* onH with Tt5exp$ i t (C2D)%;tPR ~cf. Theorem 2.10!.

If (i) and (ii) are fulfilled, then the (linear,resp.antilinear) self-adjoint operators C and D are
uniquely given, and it isH5 1

2(aF*DaF* 1 aFDaF) 1 aF*CaF1 k1 for akPR.
Proof: That$TtutPR% forms a group is immediate. Let us check its strong continuity: With the

Weyl relations~3.1! and ~3.2! we obtain for eachfPH
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15 lim
t→0

u^WF~ f !VFuexp$ i tH %WF~ f !exp$2 i tH %VF&u 5
~3.6!

lim
t→0

u^WF~ f !VFuWF~Tt f !VF&u

5
~3.1!

lim
t→0

u^VFuWF~Tt f2 f !VF&u 5
~3.2!

lim
t→0

exp$2 1
4iTt f2 f i2%.

Hence there exists the generatorG,Tt5exp$tG%, a closed real-linear operator onH with dense
real-linear domainD(G).

Because of Theorem 3.7 and since theUTt
are unique up to a phase by Theorem 3.1, it suffices

to prove~i!⇒~ii !. Let H8:5H2^VFuHVF&1. Then Eq.~3.5! gives for eachgPH and all tPR

^WF~g!VFuexp$ i tH 8%VF&5^VFuexp$ i tH 8%VF&exp$
1
4~^gu~Tt!a„~Tt! l…21g&2igi2!%.

~3.10!

SinceVFPD~H8! we may differentiated/dt•••u t50, and it follows that

d

dt
^gu~Tt!a„~Tt! l…21g&U

t50

5
d

dt
^guTt„~Tt! l…21g&U

t50

5:q~g!

exists for allgPH. But q(g)5^guGg&;gPD(G). We define the~complex-! bi-antilinear form
d( f ,g):5 1

4„q( f1g)2q( f2g)… with D(d)5H, which satisfiesd( f ,g)5d(g, f ); f , gPH.
Hence~3.10! implies ^WF(g)VFuH8VF&5

1
4d(g,g)exp$2

1
4igi2%;gPH. Now letV be an arbitrary

finite-dimensional complex subspaceV #H with ONB $e1 ,...,em%, wherem:5dimC V . Then
Proposition A3 and Lemma A2 from the Appendix yield

iG~PV !H8VFi25
1

2 (
k,l51

m

ud~ek ,el !u25
1

2
iDV iHS

2 >
1

2
iDV i2, ~3.11!

whereDV 5 DV
* is the antilinear operator onV with d( f ,g)5^f uDV g&;f , gPV . Consequently

ud( f ,g)u<&iH8VFi i f i igi; f , gPH, and the formd is bounded, which implies the existence of
an antilinear boundedD5D* onH with d( f ,g)5^ f u2 iDg&; f , gPH. Equation~3.11! finally
gives iuDuiHS5&iH8VFi, i.e., uDu is Hilbert–Schmidt.

Now considerH as a real Hilbert space with scalar product~.u.!:5Rê .u.&. Sinced(g,g)5q(g)
5^guGg&;gPD(G), we have that Re„d( f ,g)… is a real-bilinear form onH with

~ f u2 iDg !5~2 iD f ug!5Re„d~ f ,g!…5 1
2„~ f uGg!1~Gf ug!… ; f ,gPD~G!,

which forL:5G1 iD implies 05( f uLg)1(L f ug). HenceL52L1 by Lemma A1, whereL1 is
the adjoint ofL with respect to the real scalar product~.u.!. Then, as in the proof of Theorem 2.10,
it follows: C:52 iL is complex-linear and self-adjoint with respect to the complex scalar product
^.u.&, i.e.,C5C* . j

Corollary 3.9: Let $TtutPR%,T F~H! be a strongly continuous group. Assume the existence
of a TPT F~H! such that T21TtT5exp$ i t (C2D)% ;tPR for some linear C5C* and
DPHSa

sa~H! ~or, equivalently T21GT5 i (C2D) for the generator G of Tt5exp$tG%!. Then
exp$ i tH % unitarily implementsaTt

with respect toPF for every tPR @cf. Eq. (3.6)#, where H5UT

@ 1
2(aF*DaF*1aFDaF)1aF*CaF]UT* .

For C50 the situation is somewhat simpler, which is shown by the following
Corollary 3.10: Let D5D* be antilinear and bounded onH, and J the antilinear involution

from Lemma 2.12. Then

Tt :5exp$2 i tD %5cosh~ tuDu!2 iJ sinh~ tuDu!PT ~H!

for all tPR ~cf. Example 2.13). Moreover, we have the following equivalences:

~i! uDu is a Hilbert–Schmidt operator onH,
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~ii ! TtPT F~H! for some real tÞ0,
~iii ! TtPT F~H! for all tPR,
~iv! there exists a unitary UTt onF1~H!, which unitarily implementsaTt

with respect toPF for

some real tÞ0.

If these conditions are valid, then UTt from (iv) is uniquely (up to a phase) given by UTt
5 exp$itH%withH5 1

2(aF*DaF* 1 aFDaF).
Proof: The decomposition ofTt follows from the exponential series. Because of Theorems 3.7

and 3.8 it remains to prove and~iv!⇒~ii !⇒~i!. However,Vt implementingaTt
with respect toPF

impliesTtPT F~H! by definition. Theorem 3.1 yields sinh~tuDu! to be Hilbert–Schmidt for atÞ0.
Thus there exists an ONB$ekukPI % for H consisting of eigenvectors foruDu,
uDuek5dkek ,dk>0, satisfying

`. (
n51

`

sinh~ tdk!
25

1

2 (
n51

`

„cosh~2tdk!21…>t2(
n51

`

dk
2,

which gives~i!. The rest follows from Theorems 3.1 and 3.7. j

Let us continue Example 2.11.
Example 3.11: Let all be as in Example 2.11. In addition assume R to be Hilbert–Schmidt and

TPT F~H!. Then, by Theorem 3.1 the latter is equivalent withsinh(R) being Hilbert–Schmidt on
H, and Theorem 3.7 implies TtPT F~H!;tPR. Since T F~H! is a group, we have
TtPT F~H!;tPR.

Even in this case C may be chosen such that Sˆ is unbounded. For example, define C by
ck :5k/sinh(r k);kPR. Then (2.6) yields Sˆ to be unbounded.

APPENDIX
1. On generators of groups on real Hilbert spaces

For the proof of Theorem 2.10 we need some group theoretical results on real Hilbert spaces.
Here in the first part of the Appendix we exclusively are concerned with a real Hilbert spaceH r

with scalar product~.u.!, and with real-linear operators having real-linear domains. The adjoint of
the ~real-linear! operatorA onH r is denoted byA

1. Let us mention that each weakly continuous
~semi-! group onH r is strongly continuous and its weak and strong generators coincide~Ref. 12,
Corollary 3.1.8!.

Lemma A1: Let$TtutPR% be a strongly continuous group onHr with generator G, i.e.,
Tt5exp$tG%, tPR, and growthiTti<exp$butu%;tPR for someb>0. It followsD(G)5D~G1!,
G1 is the generator of the adjoint group$Tt

1utPR%, andG decomposes uniquely as G5L1D
with the closed operatorL52L1 and the bounded operator D5D1. Especially, D$ 1

2(G1G1)
andL5 1

2(G2G1).
Proof: G is closed with dense domainD(G) ~Ref. 12, Theorem 3.1.22!. Hence

$T6t exp$2bt%ut>0% defines two semigroups of contractions. Differentiating
iT6t exp$2bt%f i2<if i2 for t>0 yields

0>
d

dt
uuT6t exp$2bt% f uu2U

t50

52~ f u~6G2b! f ! ; fPD~G!,

which gives2bi f i2<( f uGf )<bi f i2; fPD(G). Let us define onD(G) the symmetric~real!-
bilinear forms( f ,g)5 1

2„( f uGg)1(Gf ug)…. Then2bi f i2<s( f , f )<bi f i2; fPD(G) implies the
boundedness ofs ~which we extend to all ofH r! and the existence of a bounded operatorD5D1

onHr with s( f ,g)5( f uDg); f ,gPH r ~Ref. 9, Theorem VIII.15!. Let L:5G2D. Then

05 1
2„~ f uGg!1~Gf ug!…2~ f uDg!5 1

2„~ f uLg!1~L f ug!…

from which followsL#2L1.
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On the other side the adjoint group is weakly~and hence strongly! continuous with generator
G1. NowG15L11D and the same procedure as above yieldL1#2L11. ButG is closed, and
thus L is so, which givesL115L ~Ref. 11, Theorem 5.3!. Uniqueness follows from
D$ 1

2(G1G1) andL51
2(G2G1). j

2. Second quantized projections

Here we prove some results, which we need for Lemma 3.4 and Theorem 3.7. OnCm>R2m we
denote by d2ma the Lebesgue measure dRe~a1! dIm~a1!•••dRe~am! dIm~am! for
a5~a1,...,am!PCm.

Lemma A2: For mPN let E:Cm→C, a°exp$21
2(k51

m uaku
2%. Then for every pk ,qkPNø$0% we

have

E
R2m

E~a!a1
p1•••am

pma1
q1•••am

qm d2ma5~dp1 ,q1
•••dpm ,qm

!~2p!m„2p1~p1! !•••2
pm~pm! !…

wheredk,l50 for kÞ l and dk,l51 for k51.
Proof:We haveakE(a) 5 22(]E/]ak)(a) andakE(a) 5 22(]E/]ak)(a). Now use inte-

gration by parts, *~]E/]ak!F d2ma52*E~]F/]ak!d
2ma and *(]E/]ak)F d2ma

52*E(]F/]ak)d
2ma. j

From now on we are exclusively concerned with complex-linear spaces and operators. LetH

be a Hilbert space. On the Fock spaceF1~H!5%n50
` P1~^nH! the Glauber vectors are given as

G (h)5WF(2 i&h)VF , hPH ~cf., e.g., Ref. 18, Section 8.1!, where

WF~g!VF5exp$2 1
4igi2%F %

n50

` S i

&

D n 1

An!
~ ^ ng!G , gPH. ~A1!

For a subspaceV of H with associated orthogonal projectionPV from H onto V let
G~PV !:5%n50

` ~^nPV ! ~second quantization, cf. Ref. 12, Subsection 5.2.1, or Ref. 9, Section X.7!,
which is an orthogonal projection inF1~H!. As a consequence of Lemma A2 we obtain:

Proposition A3: Let V be an m-dimensional subspace ofH with arbitrary ONB
$ekuk51,...,m%, mPN. Then for eachcPF1~H! we have

iG~PV !cuu25
1

~2p!m
E
R2m

u^WFS (
k51

m

akekDVFuc&u2 d2ma. ~A2!

Proof: Let c5%n50
` cn with cnPP1~%nH!. Then

K ^ nS (
k51

m

akekD UcnL 5 (
a.p.:n1 ,...,nm

n!

n1! •••nm!
a1
n1•••am

nm^P1~e1^ •••em!ucn&,

where(a.p.:n1 ,...,nm
runs over all possibilities fornkP$0,...,n% with (k51

m nk5n andek appearsnk
times in ^P1(e1^ •••em)ucn&[^n1 ,...,nmucn&. Now for MPN let

GM~a!:5AE~a! (
n50

M S 2 i

&

D n 1

An! (
a.p.:n1 ,...,nm

n!

n1! •••nm!
a1
n1•••am

nm^n1 ,...,nmucn&,

for which limM→` GM~a!5^WF((k51
m akek)VFuc&;aPCm by Eq. ~A1!. Now remember that

$An!/An1!...nm! un1 ,...,nm&u(k51
m nk 5 n% forms an ONB forP1~^nH!, and use Lemma A2 to

deduce

E
R2m

uGM~a!u2 d2ma5~2p!m(
n50

M

iG~PV !cni2,

which implies that limM*•••5*limM••• . j
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Consider the linear spaceM of mappingsU:H→C, f°U( f ), for which for each finite-
dimensional subspaceV #H the functionsaPCm>R2m°U~(k51

m akek! are measurable, where
$ekuk51,...,m% is an ONB ofV . Obviously,*R2mU((k51

m akek)d
2ma does not depend on the

ONB of V , and thus one puts [1/(2p)m]d2ma[dmV ( f ). If L is the collections of all finite-
dimensional subspaces ofH ordered by inclusion, one constructs thecontinual integralHilbert
spaceK c~H! to consist of thoseUPM for which limV PL*V uU(f )u2 dmV (f ) , `. Since
limV PLiG(PV )ci 5 ic i;c P F1(H), from Eq.~A2! follows thatF1~H! andK c~H! are uni-
tarily equivalent in the sense thatcPF1~H! corresponds to the functionalfPH°^WF( f )VFuc&
in K c~H! ~cf., e.g., Ref. 7!.
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Path integral solution of the Schro ¨dinger equation
in curvilinear coordinates: A straightforward procedure

J. LaChapelle
Department of Physics and Center for Relativity, University of Texas, Austin, Texas 78712
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A new axiomatic formulation of path integrals is used to construct a path integral
solution of the Schro¨dinger equation in curvilinear coordinates. An important fea-
ture of the formalism is that a coordinate transformation in the variables of the
wavefunction does not imply a change of variable of integration in the path inte-
gral. Consequently, a transformation from Euclidean to curvilinear coordinates is
simple to handle; there is no need to introduce ‘‘quantum corrections’’ into the
action functional. Furthermore, the paths are differentiable: hence, issues related to
stochastic paths do not arise. The procedure for constructing the path integral
solution of the Schro¨dinger equation is straightforward. The case of the
Schrödinger equation in spherical coordinates for a free particle is presented in
detail. © 1996 American Institute of Physics.@S0022-2488~96!02809-5#

I. INTRODUCTION

The generalization of the Feynman path integral to non-Euclidean coordinates has been a long
and sometimes confusing process. Already in 1948, Feynman1 realized that a naive change of
variables in the path integral would not yield the required result. Later, Edwards and Gulyaev,2

working in configuration space, considered a free particle in polar coordinates and found that the
correct Green’s function for the associated Schro¨dinger equation could only be obtained if they
kept terms of higher order in the expansion parameter than one would expect. On the other hand,
Arthurs,3 working on phase space, found that higher-order terms were not required as long as a
suitable Hamiltonian was used. Peak and Inomata4 also considered the path integral in polar
coordinates~see also Ref. 5!. All of these studies found that extra terms were needed in the action
functional to account for the change from Euclidean to polar coordinates.The extra terms were
later interpreted as a consequence of the stochastic nature of the paths used in the integration.

An added source of confusion was the ambiguity in the definition of the time-sliced path
integral. The definition does not specify at which point of the time interval one is to evaluate the
short-time propagator. Each choice leads to a different result. Eventually, it was realized that this
ambiguity was directly related to the operator ordering ambiguity.6–13

Despite improved understanding, expressing the solution of a given Schro¨dinger equation in
terms of the conventional definition of a path integral remains a difficult task in general.

An axiomatic formulation of path integrals currently being developed by Cartier and
DeWitt-Morette14 remedies this situation.~Alternative mathematical approaches to formulating the
Feynman path integral can be found in the literature.15–18! The key to the formulation’sutility is
that it emphasizes the infinite-dimensional space of paths rather than the finite-dimensional mani-
fold where the paths take their values. Moreover, in order that actions be finite, the paths are
differentiable—unlike the continuous paths in conventional path integrals. A change of coordi-
nates~on the manifold where the paths take their values! is easy to handle, and a key theorem
allows for the construction of a path integral solution for the Schro¨dinger equation in curvilinear
coordinates.

We will show that the construction requires only the transformation from Euclidean to curvi-
linear coordinates and knowledge of the free part of the action functional. Notably, no ‘‘extra
terms’’ are needed in the action functional. The procedure is general and simple to use. Of course,

0022-2488/96/37(9)/4310/10/$10.00
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the resulting path integral may not always be easy to evaluate. It can be solved exactly for a free
particle in d-dimensions, and the three-dimensional spherical coordinate case is worked out in
detail. The scope of this paper is confined to curvilinear coordinate systems so onlyflat configu-
ration space will be considered.

II. TWO APPROACHES TO PATH INTEGRALS

In this section we present both the usual derivation of the path integral as a solution of the
Schrödinger equation and the new axiomatic formulation of Cartier/DeWitt-Morette. Although the
first derivation is thoroughly familiar to most physicists, we present a brief review: it is important
to have the salient features in mind in order to better appreciate how the Cartier/DeWitt-Morette
formalism handles the Schro¨dinger equation in curvilinear coordinates. The purpose of this section
is not to give a thorough comparison between the formalisms but to point out two particularly
relevant issues related to a change of coordinates on a flat configuration space.

A. The ‘‘time-slicing’’ method

The conventional definition of a path integral as the matrix elements of the evolution operator
in quantum mechanics employs two principal ideas. First, the Trotter–Kato–Nelson product for-
mula is used to represent the evolution operator,Û(t f ,t i):5exp[2 i (t f2t i)Ĥ(q,p)]
5exp[2 i (t f2t i)$T̂(p)1V̂(q)%], in the form

exp@2 i ~ t f2t i !Ĥ~q,p!/\#5„exp@2 i ~ t f2t i !Ĥ~q,p!/N\#…N

5 lim
N→`

„exp@2 i ~ t f2t i !T̂~p!/N\#

3exp@2 i ~ t f2t i !V̂~q!/N\#…N. ~1!

Here (q,p) is a point in the phase space of the associated classical system, which we take to be the
cotangent bundleT*M of the d-dimensional configuration spaceM . We assumeM is equipped
with a metric g. More general Hamiltonians can be considered which will raise the issue of
operator ordering.

Essentially, this is a time-slicing technique. That is, the time interval [t i , t f ] is divided intoN
small pieces [t i , t1]ø•••ø[ tN21, t f ], and the effect of the evolution operator for the full time
interval is replaced by the short-time evolution operators over each piece of the divided time
interval. In the limit as the number of small intervals goes to infinity and their length goes to zero,
the last line of Eq.~1! becomes exact.

The second step is to insert the mixed representation identity operator

15E
T*M

dqdp

2p\
uq&^qip&^pu ~2!

a total ofN times between each term in the product in the last line of Eq.~1!. We remark that
dqdp̃:5dqdp/2p\ is the Liouville measure in the associated phase space.

In the coordinate basis, the final stateuqf&:5Û(t f ,t i)uqi& can thus be represented as

uqf&5e@2 i ~ t f2t i !Ĥ~q,p!/\#uqi&5 lim
N→`

~e@2 i ~ t f2t i !T̂~p!/N\#e@2 i ~ t f2t i !V̂~q!/N\#!Nuqi&

5 lim
N→`

)
n51

N E
T*M

dqndp̃n e
@ ipn~qn2qn21!/\#

3e@2 i ~ t f2t i !$T~pn!1V~qn21!%/N\#uqN&, ~3!
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whereqn :5q( t̄ n) and pn :5p( t̄ n) for some t̄ nP[ tn , tn11]. If the qn and pn are interpreted as
particular values of position and momentum along some trajectory in phase space, then Eq.~3! can
be interpreted as an integral over all paths in phase space such thatq05qi . Notice that we must
integrate over all values ofqN so that Eq.~3! is an integration over paths with only one endpoint
fixed.

From Eq.~3!, the matrix elements of the evolution operator,^qf uÛ(t f ,t i)uqi&, are given by

^q~ t f !uq~ t i !&:5^qf uÛ~ t f ,t i !uqi&5^qf ue@2 i ~ t f2t i !Ĥ~q,p!/\#uqi&

5 lim
N→`

)
n51

N E
T*M

dqndp̃nd~qf2qN!

3e@ ipn~qn2qn21!/\#e@ i ~ t f2t i !$T~pn!1V~qn21!%/N\#, ~4!

where we have used̂qf uqN&5d(qf2qN). We emphasize that the integration is over paths with
only one fixed endpoint—the other endpoint being fixed by the delta function.

For the special case of a flat configuration space, Eq.~4! is often written schematically as

^q~ t f !uq~ t i !&5E DqDpd~qf2qN!expS i\ E
t i

t f
$p•q̇2H~q,p!%dtD , ~5!

where the domain of integration is understood to be the space of paths which take their values in
phase space and which have one fixed endpoint, i.e.,q05qi . @It should be kept in mind that Eq.
~5! is only a shorthand notation for Eq.~4!.19#

Finally, if the Hamiltonian is quadratic in the momentum, the integration over momentum
variables in Eq.~4! can be done explicitly, resulting in the usual configuration space path integral.

There are two important points to be made concerning this construction of the path integral.
Both points are direct consequences of the use of the Trotter–Kato–Nelson product formula and
the resolution of the identity operator.

The first point is that time-slicing introduces an ambiguity associated with the choice oft̄ n .
Should t̄ n be taken to be the beginning of the time interval, somewhere between, the end, or a
combination of points? In fact, the ambiguity in the choice oft̄ n is related to the operator ordering
problem; each choice oft̄ n corresponds to a different Hamiltonian operator~see, for example,
Refs. 6–13!.20–22

The second point is that the use of the resolution of the identity operator introduces an explicit
choice of representation and, hence, an explicit choice of coordinates on phase space. Indeed, the
whole time-sliced path integral game is played with particular values of pathsin phase space.
Changing coordinates on the phase space manifold changes the expression in Eq.~3!. Exactly how
to change the expression under a change of coordinates is not as straightforward as one might
expect. In general, an extra ‘‘quantum potential’’ term must be added to the action functional to
obtain the correct result. The extra term can be attributed to the stochastic nature of the time-sliced
paths.

B. The new formalism

We will now contrast the time-slicing method with the Cartier/DeWitt-Morette formalism. In
particular, we will see how the two points above do not become an issue. Only a general sketch of
the relevant ideas is presented, and we will confine ourselves to paths which take their values in
configuration space. More complete details can be found elsewhere.14,23

The new method is fundamentally different from the time-slicing technique. The underlying
theme is anemphasis on an infinite-dimensional spaceof paths and ashift away from the finite-
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dimensional manifoldwhere the paths take their values. This allows for a solid mathematical
formalism which, we believe, is advantageous despite the inherent complexity of working with the
infinite-dimensional function~path! space.

1. Definition of the path integral

The generic path integral requires three well-defined components for its construction:~1! a
domain of integration which is an infinite-dimensional function space,~2! an integrator defined on
the domain of integration, and~3! an integrand or integrable functional. Given these three ingre-
dients, a value can be assigned to the path integral.

Thedomain of integration X is a real, separable Banach space andxPX are taken to beL2,1

functions.24 We denote the dual space ofX by X8 and the duality bŷ x8,x&X wherex8PX8.
Assume there exists a continuous, symmetric, nondegenerate linear mapD:X→X8 and denote

its inverse by the mapG:X8→X. Then a quadratic form onX is defined byQ(x)5^Dx,x&X , and
a quadratic form onX8 is defined byW(x8)5^x8,Gx8&X . An integrator DQ,Wx for a path integral
can be defined by the relation

E
X
e$p iQ~x!22p i ^x8,x&X%DQ,Wx5e$2p iW~x8!%. ~6!

We emphasize that the integrator is definedimplicitly in terms ofQ andW by Eq. ~6!. ~More
exotic integrators can be defined, but we choose the familiar example of a Gaussian integrator for
illustration purposes.!

Now, sinceX8 is separable and complete, it is possible to define complex Borel measuresm on
X8. This allows one to relate a class ofintegrable functionals FQ to the fiducial integrand
exp$p iQ(x)% by the relation

Fm~x!5E
X8
e$p iQ~x!22p i ^x8,x&X%dm~x8!, ~7!

whereFmPFQ .
This construction implies the functional integral satisfies

E
X
Fm~x!DQ,Wx5E

X8
e$2p iW~x8!%dm~x8!. ~8!

The right-hand side of Eq.~8! should not be construed as a means to evaluate the left-hand side.
Indeed, the measurem associated with a givenFmPFQ is not usually known. Equation~8! is a
consequence of relations~6! and~7! and is useful for determining when the integral exists or for
proving general theorems—neither of which requires the specific form ofm.

2. Parametrizing the space of paths

We need to say a few things about the domain of integration. For quantum mechanical
applications, one is usually interested in a path integral over all pathsx:T→N where
T5[ t i , t f ],R and N is an n-dimensional manifold. However, in general, the space of paths
which take their values in a manifoldN will not be a Banach spaceX. For suppose that we are
interested in all paths which have the same fixed endpoints att5t i . Thenx11x2PX if and only
if x(t i)50;xPX. This follows because (x11x2)(t i)5x1(t i)1x2(t i) for vanishing endpoints
only. So the space of paths with nonvanishing fixed endpoints is not a vector space and, therefore,
is not a Banach space.

However, if we restrict attention to the space of paths which have only one endpoint fixed in
N ~that is, a space of pointed paths!, then the space of such paths is contractible. Consequently, it
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can be parametrized by a space of pointed paths which take their values in a flat manifoldRn and
have their fixed endpoint at the origin ofRn. But, this parameter space of pathsis a Banach space.
Hence, integration on a space of pointed paths can be defined in terms of integration on the
parameter space.14

The situation is analogous to integration on finite-dimensional manifolds. There one does not
know how to integrate on a general manifold. Instead, one defines the integral by parametrizing
points in the general manifold by points in flat manifolds where one knows how to integrate. For
functional integrals, we do not know how to integrate over a general function space so we
parametrize it with a Banach space where the rules of functional integration are established.

The details of the parametrization for our particular case follow. Let there ber linearly
independent vector fields which generate a vector subspaceRm#TmM at eachmPM , and denote
them byX~a! whereaP$1,...,r %. Let P f

RM denote the space of pointedL2,1 paths with fixedfinal
point x(t f)5mfPM;xPP f

RM and such thatẋ(t)PRx(t) . Denote byP 0R
d5:Zi the space ofL

2,1

paths with fixedinitial point z(t i)50PRd ;zPZi .
25

Since the paths inP f
RM areL2,1 and since the set$X~a!„x(t)…% spansRx(t) , it follows that there

exist functionsża(t) such that

ẋ~ t !5X~a!„x~ t !…ża~ t !, x~ t f !5mf . ~9!

This differential equation associates a pathzPZi with each pathxPP f
RM . If the mapx°z can be

inverted, then, given somezPZi , Eq. ~9! has a unique solutionxPP f
RM . Denote this solution

by x(t,z)5mf•S(t,z) where S(t,z):M→M is a global transformation onM such that
x(t i ,z)5mf•S(t i ,z)5mf .

We now have a parametrizationP:Zi→P f
RM by the solution of Eq.~9!. That is, we have

parametrized the space of pointed pathsP f
RM by the space of pathsZi . Since we know how to do

a functional integral onZi , we simply define

E
P f

RM
F~x!Dx:5E

Zi
F„x~z!…DQ,Wz, ~10!

whereDQ,Wz is characterized by Eq.~6! with X5Zi . Of course, for this definition to be useful, the
right-hand side must be independent of the parametrization used. That is, we must get the same
answer if we use the parametrizationP̃:Z̃ i→P f

RM by z̃°x. But, this just means that the func-
tional integral must be invariant under a change of variable of integration.

Inspection of Eq.~9! shows that a change of variable of integration is not directly associated
with a change of coordinates on the manifoldM . A change of coordinates onM implies a change
in the components of the vector fieldsẋ andX~a! but there is no change in the coordinates ofz: the
parametrization changes, but the integration variables do not. The point is that, in contrast to the
time-slicing method, a change of coordinates on the manifoldM is not associated with a change
of variable of integration.

3. Key theorem

A key result of Cartier/DeWitt-Morette is that the path integral which has been defined above
is the solution of a Schro¨dinger-type partial differential equation:

Theorem14: Let P f
RM be the space ofL2,1 paths with fixed endpointsx(t f)5mfPM whose

velocity vectors are elements ofR#TM. ParametrizeP f
RM by Zi . LetS0(x) be the free action of

a particle given byS0(x)5*Tgx(t)„ẋ(t),ẋ(t)…dt, and letV:M→R be a well-behaved scalar poten-
tial. Letc:M→Cn be any integrableC`(M ) function with compact support. Then the path integral
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C~ t f ,mf !:5~Utf
c!~mf !:5E

P f
DM

c~x!e@p iS0~x!1*TV~x!dt#Dx

5E
Zi

c„x~ t f ,z!…e@p iS0„x~z!…1*TV„x~ t,z!…dt#DQ,Wz

5E
Zi

c~mf•(~ t f ,z!!e@*TV„mf•(~ t,z!…dt#e@p iQ~z!#DQ,Wz ~11!

is a solution of the partial differential equation

]C~ t f ,mf !

]t f
5F i

4p
gabLX~a!

LX~b!
1VGU

mf

C~ t f ,mf !,

~12!
C~ t i ,mf !5c~mf !.

Moreover, the functional operatorUtf
, which evolves the functionc from t i to t f , satisfies the

grouppropertyUt2
+Ut1

5Ut21t1
.

Heregabgbg 5 dg
a , LX(a)

is the Lie derivative in the directionX~a! , andgab is a symmetric
nondegenerate matrix onZi defined by

S0„x~z!…5E
T
gx~ t !„ẋ~ t,z!,ẋ~ t,z!…dt5E

T
gx~ t !„X~a!„x~ t !…,X~b!„x~ t !…) ża~ t !żb~ t !dt

5:E
T
gabż

a~ t !żb~ t !dt

5:Q~z!. ~13!

Equation~11! is the Cartier/DeWitt-Morette analog of the time-sliced configuration space path
integral. This theorem allows one to associate auniqueaction functional25 with a Hamiltonian
operator associated with a given Schro¨dinger equation. Again, this should be contrasted with the
discussion above concerning the analogous situation for conventional path integrals.

III. CURVILINEAR COORDINATES

In this section we will first give a simple example—the Schro¨dinger equation for a free
particle in spherical coordinates—to see how a change of coordinates is handled in the new
formalism. Then we will present the recipe for the general case. Throughout this section we
consider only flat configuration space path integrals. When configuration space is a nontrivial
~pseudo!Riemannian manifold, one can use the Cartan development to parametrize the space of
pointed paths on the manifold by the space of pointed paths on the tangent space at a point of the
manifold.14 This procedure does not alter the methods or results of this or the next section.

A. Spherical coordinates

Consider a free particle onR3. We want to calculate the Green’s function of the Schro¨dinger
equation in spherical coordinates~r ,u,f!5:r onR3. This is equivalent to finding the point-to-point
transition amplitudêr (t f) ur (t i)&5:K ~t f ,r f ;t i ,r i!. The point-to-point transition amplitude can be
obtained from the path integral in Eq.~11! by taking the initial functionalc to be a delta func-
tional. This choice ‘‘ties down’’ the other ends of the paths~recall that we deal with pointed
paths!.
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CoverR3 with an atlas of spherical coordinates such thatr f andr i lie in the same patch. Note
that the space of pathsP f

RR3 is not a Banach space so we parametrize by the space of paths
Zi5P 0R

3. According to Eq.~11!, we have to solve the following functional integral:

K ~ t f ,r f ;t i ,r i !5E
Zi

d~r f•(~ t f ,z!2r i !e
@p iS0„r ~z!…#DQ,Wz ~14!

where

S0~r !5
1

2p\ E
T
~ ṙ 21r 2u̇21r 2 sin2 uḟ2!dt.

The first step in solving Eq.~14! is to find a simplifying parametrization. From the form of the
action functional, the indicated parametrization is fairly obvious. Take Euclidean coordinates for
z(t)PR3 @then Eq.~14! will be easy to solve# and consider the transformation between spherical
and Euclidean coordinates:

r5A~z1!21~z2!21~z3!2,

u5cos21S z3

A~z1!21~z2!21~z3!2
D , ~15!

f5tan21S z2z1D .
Then the parametrization corresponding to Eq.~9! which transforms spherical coordinates to
Euclidean coordinates is

dr~ t !5sin u~ t !cosf~ t !dz1~ t !1sin u~ t !sin f~ t !dz2~ t !1cosu~ t !dz3~ t !,

du~ t !5
cosu~ t !cosf~ t !

r ~ t !
dz1~ t !1

cosu~ t !sin f~ t !

r ~ t !
dz2~ t !2

sin u~ t !

r ~ t !
dz3~ t !,

~16!

df~ t !5
2sin f~ t !

r ~ t !sin u~ t !
dz1~ t !1

cosf~ t !

r ~ t !sin u~ t !
dz2~ t !,

r ~ t f !5r f , u~ t f !5u f , f~ t f !5f f ,

and the solution is

r ~ t,z!5$„r f sin u f cosf f1z1~ t !…21„r f sin u f sin f f1z2~ t !…2

1„r f cosu f1z3~ t !…2%1/2, 0,r,`

cosu~ t,z!5S r f cosu f1z3~ t !

r ~ t ! D , 0<u,p, ~17!

tanf~ t,z!5S r f sin u f sin f f1z2~ t !

r f sin u f cosf f1z1~ t ! D , 0<f,2p.

Hence, the parametrized action functional is given by

4316 J. LaChapelle: Path integral for curvilinear coordinates

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



S0„r ~z!…5Q~z!5
1

2p\ E
T
$~ ż1!21~ ż2!21~ ż3!2%dt ~18!

so thatgab5~2p\!dab.
The delta functional becomes

d3$r ~ t f ,z!2r i ,u~ t f ,z!2u i ,f~ t f ,z!2f i%

5r i
2 sin u id

3S r f sin u f cosf f2r i sin u i cosf i1z1~ t f !,
r f sin u f sin f f2r i sin u i sin f i1z2~ t f !,

r f cosu f2r i cosu i1z3~ t f !
D , ~19!

where the right-hand side follows from Eq.~17! and the well-known identityd3„f (x)…
5 (x0

d3(x 2 x0)/udet f8(x0)uwith f (x0)50. Note that the delta functional depends only on a single
value of the paths, i.e.,z(t f). Thus it is actually just a deltafunction.

Substitute Eqs.~18! and ~19! into Eq. ~14!. The integral can be simplified by making use of
the linear mapL:Zi→R3 by za°ua5za(t f). The integral reduces to a finite integral~see, for
example, Ref. 14!

E
R3
e@p iQ~u!#r i

2 sin u id
3S r f sin u f cosf f2r i sin u i cosf i1u1,

r f sin u f sin f f2r i sin u i sin f i1u2,
r f cosu f2r i cosu i1u3,

D udet 2p i\G~ t f ,t f !u1/2d3u,

~20!

whereQ~u!5u2/2G(t f ,t f). HereG(t,s) is the Green’s function forQ(z) for zPZi . It is easy to
check thatG(t,s)5u(t2s)(t2t i)1u(s2t)(s2t i) so thatG(t f ,t f)5(t f2t i).

Therefore, the final expression for the transition amplitude is

K ~ t f ,r f ;t i ,r i !5r i
2 sin u i@2p i\~ t f2t i !#

23/2 expH i

\

ur f2r i u2

2~ t f2t i !
J . ~21!

This is the propagator for a free particle inR3 expressed in spherical coordinates.
According to the key theorem, the transition amplitude~21! is the solution of a partial differ-

ential equation. By inspecting Eq.~16!, we identify

X~1!5S sin u cosf,
cosu cosf

r
,

2sin f

r sin f D ,
X~2!5S sin u sin f,

cosu sin f

r
,
cosf

r sin u D , ~22!

X~3!5S cosu,
2sin u

r
,0D .

The corresponding Lie derivatives are

LX~1!
5sin u cosf

]

]r
1
cosf

r

]

]u
2

sin f

r sin u

]

]f
,

LX~2!
5sin u sin f

]

]r
1
sin f

r

]

]u
1

cosf

r sin u

]

]f
, ~23!

LX~3!
5cosu

]

]r
2
sin u

r

]

]u
.
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Substituting these Lie derivatives and the transition amplitude into Eq.~12! verifies the partial
differential equation

]K

]t f
5
i\

2 S 1r 2 ]

]r S r 2 ]

]r D1
1

r 2 sin u

]

]u S sin u
]

]u D1
1

r 2 sin2 u

]2

]f2 D U
r f

K ,

~24!
lim
t f→t i

K ~ t f ,r f ;t i ,r i !5d~r f2r i !d~u f2u i !d~f f2f i !,

and we have succeeded in solving the Schro¨dinger equation in spherical coordinates. Note that the
constantr i

2 sinui in Eq. ~21! is consistent with Eq.~24! since

~r i
2 sin u i !

21 lim
t f→t i

K ~ t f ,r f ;t i ,r i !5~r i
2 sin u i !

21d~r f2r i !d~u f2u i !d~f f2f i !

5d~xf2xi !d~yf2yi !d~zf2zi !

5 lim
t f→t i

K ~ t f ,xf ;t i ,xi !. ~25!

B. The general case

To obtain the path integral solution of the Schro¨dinger equation ingeneralcurvilinear coor-
dinates for an interacting particle in Euclidean space, we just outline the necessary steps. The
calculations follow the example in the previous section. Of course for generic interactions the path
integral cannot be solved exactly.

~1! Write the equations for the transformationx5 f (z) from Euclidean to curvilinear coordinates.
~2! Use the derivativesdx5f 8dz to define the parametrization and to identify the vector fields

X~a! , which will be the columns off 8.
~3! Use the free part of the action functional to define the quadratic formQ. Hence, determine

gab .
~4! Use Eq.~11! to solve the Schro¨dinger equation given by Eq.~12!.
~5! If a point-to-point transition is desired, take the initial functional in the path integral to be a

delta functional.

IV. CONCLUSIONS

A new formulation of path integrals has been used to study the relationship between coordi-
nate transformations on a flat configuration space and the path integral solution of the transformed
Schrödinger equation. The variables of the path integral areL2,1 functions which do not share the
stochastic properties of paths in the conventional path integral. In particular, no ‘‘quantum poten-
tial’’ corrections to the action functional are required under a change from Euclidean to curvilinear
coordinates. Moreover, a unique integrator is associated with the Hamiltonian operator encoded in
the Schro¨dinger equation. Given a coordinate transformation, it is straightforward to write down
the path integral solution of the transformed Schro¨dinger equation.

ACKNOWLEDGMENT

I would like to thank C. DeWitt-Morette for offering helpful comments.

1R. P. Feynman, ‘‘Space-Time Approach to Non-Relativistic Quantum Mechanics,’’ Rev. Mod. Phys.20, 367–387
~1948!.

2S. F. Edwards and Y. V. Gulyaev, ‘‘Path integrals in polar co-ordinates,’’ Proc. R. Soc. London, Ser. A279, 229–235
~1964!.

4318 J. LaChapelle: Path integral for curvilinear coordinates

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



3A. M. Arthurs, ‘‘Path integrals in polar coordinates,’’ Proc. R. Soc. London, Ser. A313, 445–452~1969!.
4D. Peak and A. Inomata, ‘‘Summation over Feynman histories in polar coordinates,’’ J. Math. Phys.10, 1422–1428
~1969!.

5F. Steiner,Path Integrals from meV to MeV, edited by Gutzwiller, Inomata, Klauder, and Streit~World Scientific,
Singapore, 1986!, p. 335.

6L. Cohen, ‘‘Hamiltonian operators via Feynman path integrals,’’ J Math. Phys.11, 3296–3297~1970!.
7E. Kerner and W. Sutcliffe, ‘‘Unique Hamiltonian operators via Feynman path integrals,’’ J. Math. Phys.11, 391–393
~1970!.

8F. J. Testa, ‘‘Quantum operator ordering and the Feynman formulation,’’ J. Math. Phys.12, 1471–1474~1971!.
9I. W. Mayes and J. S. Dowker, ‘‘Canonical functional integrals in general coordinates,’’ Proc. R. Soc. London, Ser. A
327, 131–135~1972!.

10I. W. Mayes and J. S. Dowker, ‘‘Hamiltonian orderings and functional integrals,’’ J. Math. Phys.14, 434–439~1973!.
11M. M. Mizrahi, ‘‘The Weyl correspondence and path integrals,’’ J. Math. Phys.16, 2201–2206~1975!.
12J. S. Dowker, ‘‘Path integrals and ordering rules,’’ J. Math. Phys.17, 1873–1874~1976!.
13A. C. Hirshfeld, ‘‘Canonical and Covariant Path Integrals,’’ Phys. Lett. A67, 5–8 ~1978!.
14P. Cartier and C. DeWitt-Morette, ‘‘A new perspective on functional integration,’’ J. Math. Phys.36, 2237–2312~1995!.
15J. R. Klauder, ‘‘Quantization Is Geometry, after All,’’ Ann. Phys.188, 120–141~1988!.
16R. H. Cameron and D. A. Storvick, ‘‘An operator valued function space integral and a related integral equation,’’ J.
Math. Mech.18, 517–552~1968!.

17G. W. Johnson and D. L. Skoug, ‘‘A Banach Algebra of Feynman Integrable Functionals with Application to an Integral
Equation Formally Equivalent to Schroedinger’s Equation,’’ J. Funct. Anal.12, 129–152~1973!.

18G. W. Johnson and M. L. Lapidus, ‘‘Noncommutative Operations on Wiener Functionals and Feynman’s Operational
Calculus,’’ J. Funct. Anal.81, 74–89~1988!.

19The usual text book derivation of Eq.~4! uses the delta function to do the integral overqN . Hence, the number ofdps
anddqs is not equal in general. As a result, the integrand in Eq.~5! does not include a delta function, and the domain
of integration is the space of paths withboth endpoints fixed. Our approach, on the other hand, keeps the balance
between the number ofdps anddqs, but the domain of integration is the space of paths withoneendpoint fixed and the
integrand includes a delta function. This~equivalent! formulation allows for a more direct comparison with the new
formalism described in Sec. II B.

20Closely related to thet̄ n ambiguity and operator ordering is the fact that the ‘‘paths’’ in Eq.~3! behave like Brownian
paths in the sense that (dx)2;dt. This leads to an often fruitful analogy with stochastic calculus and Wiener integrals.
However, analytically continuing Wiener integrals to include the case of quantum mechanics is not possible in general
~see, for example, Refs. 21 and 22!, and the correspondence between path integrals and Wiener integrals is strictly
formal.

21R. H. Cameron, ‘‘A family of integrals serving to connect the Wiener and Feynman integrals,’’ J. Math. Phys.39,
126–140~1960!.

22L. S. Schulman,Techniques and Applications of Path Integration~Wiley, New York, 1981!.
23J. LaChapelle,Functional Integration on Symplectic Manifolds, Ph.D. dissertation, University of Texas at Austin, 1995.
24A function isL2,1 if *Tudx/dtu2 dt,`. We chooseL2,1 functions because of their relevance to physics. Specifically, the
Lagrangian density requires derivatives, and the kinetic energy must be finite.

25For our purpose, it is convenient but not necessary to fix thefinal endpoints for the pathsxPP f
RM and theinitial

endpoints for the pathszPZi : fixing any combination of initial and/or final points is allowed.
26Strictly speaking, the action functional is only unique up to definition~13! which relates the free-particle action to the
quadratic form that characterizes the integrator.
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A symmetry of massless fields
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It is proved that there exists an additional intrinsic symmetry in the left-handed and
right-handed fermions~and other fields!. The corresponding group of transforma-
tions is induced by the Poincare´ translations in the space–time manifold. This
symmetry predicts an additional intrinsic energy-momentum for fermions. Consid-
ering this symmetry as local leads to introduction of a gauge field and of a nonin-
tegrable phase angle, the corresponding Berry-type phase depends on the topology
of the Riemannian space–time manifold as determined by the vierbein. This addi-
tional symmetry provides us with the possibility of considering the fermions as
gauge fields on the nonvector bundle. ©1996 American Institute of Physics.
@S0022-2488~96!02109-3#

I. INTRODUCTION

In the theory of elementary particles we customarily invoke the principles of symmetry. The
discovery of symmetries has brought order into the complexity of data and phenomena; it has
made possible several developments of science. ‘‘Symmetry is one idea by which man through the
ages has tried to comprehend and create order, beauty, and perfection’’ as H. Weyl has expressed
it so concisely.

In elementary particle physics the inherent symmetries of the fields considered have allowed
us either to derive or to incorporate many important properties of the particles, mainly through the
conservation rules~the conserved quantities as invariants of the symmetry groups considered! and
the associated selection rules for possible interactions.

In this paper we will analyze an additional intrinsic symmetry in the left-handed and right-
handed fermion fields. The corresponding group transformation on the null twistor space can be
induced by the Poincare´ translation in the space–time manifold. This symmetry predicts an addi-
tional intrinsic energy-momentum for the fermion. By extension this could be applied to other
massless fields.

It is known that gauge fields in physics are established as connections on a vector bundle. The
theory of a gauge field on a nonvector bundle should deserve more attention.1 We show that an
additional symmetry provides us with the possibility to construct the theory where the fermionic
fields, commonly regarded as matter fields, become the gauge fields on the nonvector bundle. This
opens a new approach in the pursuit of great unification of physical fields.

First we show that the Poincare´ group can be considered as a chiral group. The complexifi-
cation ofR1,3, the Clifford algebra of space–timeR

1,3, will be used for this purpose~R1,3 is called
space–time real geometrical algebra!. This is the algebra generated by representing a space–time
vector tetrad bygm , m50,1,2,3, and the definitions of the multiple index quantities and of geo-
metric multiplication:

gmgn5gmn11gmn , gmn52gnm ,

wheregmn is the scalar metric,1 is the unit of the algebra, thegmn are bivectors;

a!Permanent address: Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100080, China.
b!Also a faculty member of the Facultad de Quı´mica, U.N.A.M. and of the Sistema Nacional de Investigadores~México!.
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gmngl5gmgnl2gmlgn1gmnl ,

defining the trivectors, totally antisymmetric in all three indexes,

gmnl52gmln52gnml5glmn ;

and the pseudoscalarg5 or space–time volume tetravector

gmnlgr5gmnglr2gmlgnr1gnlgmr1g5 .

The indexes are given a definite order and the definitions are consistent with the change of
sign with the exchange of two adjacent indexes.

The reversion of all indexes is denoted by a tilde over a multivectorg̃mn5gnm , g̃mnl5glnm ,
etc.

Second we consider the symmetry generated by these quantities when combined in a form
suitable to have a representation of the Poincare´ group. This is then used to study fermion fields.

This brings the necessity of studying the gauge theory of the translation group as an extension
of the simplest gauge groups for fermions.

We end with some final consideration about the significance of this analysis.

II. THE POINCARÉ GROUP REPRESENTATION AS A CHIRAL GROUP IN SPACE–TIME
ALGEBRA

The equations describing physical relations in space–time~or in ordinary three-dimensional
space! should be covariant under both Lorentz transformationsL and changes of origind of the
coordinate system. This set of operations, called the Poincare´ group, of which rotations and
changes of origin in ordinary three-dimensional space are subgroups, is characterized by the pair
$L,d%.

The group transformation is$L2,d2%$L1,d1%5$L3,d3%. In the geometric algebra of space–time
R1,3 ~the Clifford algebraR1,3! a position vectorx05xmgm is transformed. With the use of the
boosters and rotorsL,

x0→x15L1x0L̃11d1→x25L2x1L̃21d2 , ~1!

or

x25L2L1x0L̃1L̃21L2d1L̃21d2 , ~2!

x25L3x0L̃31d3 , ~3!

defining ~the tilde operation reverses the product of two multivectors!

L35L2L1 and d35L2d1L̃21d2 . ~4!

The ‘‘multiplication’’ of the Poincare´ group is well defined but cumbersome. There are sev-
eral representations, some of which are reasonable to handle. For example, the use of the matrix
form ~here theLi are square matrices and thexi anddi column matrices, the 0

l are row matrices!

S L1 d1

0l 1 D S x0

1 D 5S L1x01d1
1 D ~5!

and
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S L2 d2

0l 1 D S x1

1 D 5S L2x11d2
1 D ~6!

or

S L3 d3

0l 1 D S x0

1 D 5S L2 d2

0l 1 D S L1 d1

0l 1 D S x0

1 D . ~7!

Then

S L3 d3

0l 1 D 5S L2L1 L2d11d2

0l 1 D ~8!

clearly shows that the ‘‘product’’ of group elements are elements of the group. Group multipli-
cation is matrix multiplication here.

In geometric algebra there is a representation of the elements of the group which allows
geometric multiplicationas the group~non-Abelian! multiplication:

$L2 ,d2%$L1 ,d1%5$L3 ,d3%.

For this geometric algebra representation we use the product of the elements~11«d! andL,
which separately have as group multiplication the geometric product

L35L2L1 and ~11«d3!5~11«d2!~11«d1!, ~9!

where d35d21d1 and «d2«d150, requiring that either$«250, «d5d«% or $«1«250,
«1d5d«2%. In the first case«250 is a nilpotent operation commuting with the vectorsd. In the
second case«1~«2! is a projector operator

«1«25«2«150, «11«251, ~10!

which can be written in terms of a unit multivectore, e251 which,ed52de, anticommutes with
the vectorsd. The «151

2~11e! and «251
2~12e!. In general a suitable$«;«250, «d5d«% or

$e;e251, ed52de% can only be found in an algebra of a dimension higher than the Clifford
algebraRp,q corresponding to the spaceRp,q. The formal definition of« or e is enough for the
purpose of studying the Poincare´ group but the possibility of physical usefulness or insight would
be lost.

In the Dirac algebraD corresponding toR1,3 one usually admits its complexification, corre-
sponding to the use ofR0,5.R2,3.R4,1, that isD5$R1,3% iR1,3.R0,5%. The commonly used op-
eratorsig55 ig0g1g2g3 and ig125 ig1g2 are good examples of this complexification of the al-
gebra. It isig5 which has the propertyig5gm52gmig5 , and~ig5!

251 required for the use in~9!
and~10!. Then the group of translationsG has two isomorphic representationsG:d→d8, which are
~11PRd! and ~11PLd! where

PR5 1
2 ~11 ig5! and PL5 1

2 ~12 ig5!,
~11!

PR1PL51, PRPL5PLPR50 and PRPR5PR , PLPL5PL , PRd5dPL .

Here thePR andPL are the operators for right-handed and left-handed projection, respectively:
c5PRc1PLc5R01L0 .

The Lorentz transformationsL,

L:x→x85LxL̃, LL̃5L̃L51, ~12!
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do form a multiplication group

L35L2L1 , L̃35L̃1L̃2 , ~13!

which can be used to construct, together with the~11«d!, a set of tworepresentationsof the
Poincare´ group.

The representations of the Poincare´ group are

Pi
~L !5~11PLdi !Li ; Pi

~R!5~11PRdi !Li , ~14!

and ~A5L,R and, as a reminder,LjPL5PLLj !

Pk
~A!5Pj

~A!Pi
~A!5~11PLdj !Lj~11PLdi !Li ,

Pk
~A!5~11PL~dj1LjdiLj !!LjLi , ~15!

Pk
~A!5~11PLdk!Lk .

The operators~11PAd! then become an important part of the study of the invariances and the
symmetries related to relativistic quantum theory of particle and interaction fields. Their use in
constructing a new representation of the Poincare´ Lie algebra~see below! is thus both straight-
forward and clarifies the reason for some features of the theory of elementary particles.

III. INTRINSIC SYMMETRY OF FERMION

In this section we will show now that there exists a new intrinsic symmetry for the left-handed
and right-handed fermions, which corresponds to a special Poincare´ translation in the phase space
of the spinor space.

One knows that any fermion field can be written as a superposition of handness states:

C5~PL1PR!C5S 12 ig5

2 DC1S 11 ig5

2 DC5L01R0 . ~16!

In the standard Weinberg–Salam model,2 the left-handed fermionL0 and right-handed fermionR0
are treated on different levels. All left-handed componentsL0 are supposed to form SU~2! dou-
blets while the right-handed componentsR0 are SU~2! singlets. From the mathematical point of
view they are mathematically independent quantities.

The Lagrangian in the standard model for a fermion field with electroweak interactions and a
symmetry breaking mass term is

L51
1

2
L0ig

mS 12 ig5

2 D S ]mL01
ig8

2
BmL02

ig

2
Am
i t iL0D2

1

2 S ]mL02
ig8

2
BmL0

1
ig

2
L0t iAm

i D igmS 12 ig5

2 DL01 1

2
R0ig

mS 11 ig5

2 D ~]mR01 ig8BmR0!2
1

2
~]mR0

2 ig8BmR0!ig
mS 11 ig5

2 DR02geFR0F
†S 12 ig5

2 DL01L0S 11 ig5

2 DFR0G , ~17!

where theti ~i51,2,3! are Pauli matrices,F is a Higgs–Goldstone field, andBm andAm
i are U~1!

and SU~2! gauge fields, respectively.
By introducing new special arbitrary phase-angles~which do not change the Lagrangian!, we

can generalize the left-handed and right-handed spinors through a Clifford algebra valued phase
factor in the following form:3
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L0→L[expFbaigaS 12 ig5

2 D GL05F11baigaS 12 ig5

2 D GL0 ,
~18!

R0→R[expFbaigaS 11 ig5

2 D GR05F11baigaS 11 ig5

2 D GR0 .

The last equalities arise because the exponential has a truncated expansion fromgaPL5PRga and
PLPR5PRPL50. The corresponding Dirac conjugate spinors are

L̄5L0F12baigaS 12 ig5

2 D G ,
~19!

R̄5R0F12baigaS 11 ig5

2 D G ,
with L̄L5L̄0L0 and R̄R5R̄0R0 .

In principle,L ~resp.R! is not just a conventional left~resp. right!-handed spinor, as far as it
includes left~resp. right!-handed ‘‘phase anglesba’’. We choose to callL ~resp.R! as ‘‘general-
ized left ~resp. right!-handed spinor’’. In factL ~or R! are closely related to the ‘‘null twistors’’
which were studied early by Penrose.4 ~See Ref. 5 for the geometric algebra formulation of
twistors.! The objects~18! and~19! are faithful representations of the full Poincare´ group and not
only, as spinors are, of the Lorentz group. The geometry of these spinors is clearest in the terms
of projective twistor space. ConsideringL to be fixed and solving for real solutionsbaPM of Eq.
~18!, it turns out that a solution exists only ifL̄L50. These solutions forba in real Minkowski
spaceM constitute a null straight line~null geodesics!, and every null straight line in Minkowski
spaceM arises in this way. So a point in Minkowski space is said to be ‘‘incident’’ with the null
twistor. This is the so-called standard flat-space twistor correspondence.

The generalized left~or right!-handed spinor~null twistor! can be defined by using~the
idempotent! projector operator PL5@11b migm„~12ig5!/2…#„~12ig5!/2…, which satisfies
PLPL5PL . It can be considered as generalization of (PL)05„~12ig5!/2…. We define its comple-
mentV by PL1V51; it also satisfiesVV5V. Any spinor can then be decomposed in two parts:

c5PL~c!1V~c!5L1V~c!. ~20!

It is important to notice that under a newS2b
a PGT transformation of a chiral groupGT @see

the definition ofS2b
a in Eq. ~22!#, the spinorc transforms as

c̃5S2c5S2„L1V~c!…5S2L1V~c!. ~21!

This means that in the spinor spaceS2b
a PGT acts only on its projective subspace~projective null

twistor space!, which can be considered as representation space of this groupGT .
Notice also that although we bear firmly in mind thatL andR include arbitrary ‘‘phase angles

ba’’, these parameters will disappear from the Lagrangian~17! when we replaceL0 andR0 by L
andR. This means that the standard model is invariant under the following transformation3

Râ5S1b
a Rb5F12ksmigmS 11 ig5

2 D G
b

a

Rb,

L â5S2b
a Lb5F12ksmigmS 12 ig5

2 D G
b

a

Lb,

~22!
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S1FgmS 11 ig5

2 D G~S1!215gmS 11 ig5

2 D ,
S2FgmS 12 ig5

2 D G~S2!215gmS 12 ig5

2 D .
The matricesS6b

a with parameterssm constitute a four-dimensional Abelian subgroup of SU~2,2!.
For some physical considerations we can considersm as parameters of Poincare´ translation in the

phase space of the spinor space induced by translationxm̂ 5 xm 1 sm in the space–time manifold.
The generators of Poincare´ group can be taken6,7 therefore as elements of the multivector Clifford
algebra of the complex space–time geometric algebraM5s1v1b1t1p, wheres denotes sca-
lar, v denotes vector,b denotes bivector,t denotes trivector, andp denotes pseudoscalar part, as

Pm
65 i ]m2kgmS 16 ig5

2 D ,
~23!

Lmn5 ixn]m2 ixm]n1
i

4
~gmgn2gngm!.

We can verify that these sets of generators satisfy the usual commutation relations of the Poincare´
Lie algebra~‘‘Poisson brackets’’ relations!

@Pm
6 ,Pn

6#50,

@Lmn ,Llr#5 igmlLmr2 igmlLnr1 ignrLlm2 igmrLln , ~24!

@Pm
6 ,Lnl#5 igmnPl

62 igmlPn
6 .

These generators have been studied as generators of a subgroup of the conformal group by Barut
and Raczka.8 Some interesting results in this direction have previously been obtained by Dirac9

and Hepner.10 We remind the reader that a choice like~23! is in itself a dynamical model. Also,
there exist representations ofM suitable for any spin and not only for spin12 fermions.

5,7

Returning to the consideration of the standard model, we know that, under the gauge group
SU~2! transformations,L andR transform in completely different ways, and now we see that
under the Poincare´ translation they also transform in different ways. We can easily visualize this
situation by the example of two different kinds of screws. When we screw both, the clockwise and
the counterclockwise screws with the same rotation direction, we can observe that if the former is
screwed~translated! in, the latter is screwed~translated! out. The phase angles involved by~22!
correspond to a so-called complex duality rotationv→ i t , t85 ig5v8, where vectors and trivectors
are mapped in thev– t plane.

According to Dirac,11 the task of constructing a relativistic dynamics is equivalent to con-
structing a representation of the inhomogeneous Lorentz group. In other words, ‘‘to construct the
theory of a dynamical system, one must obtain expressions for ten fundamental quantities that
satisfy the ‘Poisson brackets’ relations@i.e., Eq.~24!#. The problem of finding a new dynamical
system reduces to the problem of finding a new solution of these equations.’’

The existence of an additional intrinsic symmetry introduced by enlarging the representation
of Pm predicts an additional intrinsic energy-momentum term for fermions, which is generated, as
discussed below, by the additional second termigm„~16ig5!/2… in the Pm

6 . However, since the
additional termigm„~16ig5!/2… is nilpotent, it turns out that the rest mass corresponding to the
additional intrinsic energy-momentum of a given handness fermion is zero.

Let
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Wm
652 1

2emnlrL
nlP6r ~25!

be the new Pauli–Lubanski vector. Consider now the following linear combinations of~P6!2 and
~W6!2,

C15
3
2~Pm

61 2
3Wm

6!~P6m1 2
3W

6m!5 3
2~P

6!21 2
3~W

6!252]m]m,
~26!

C2
65S Pm

61
2

)

Wm
6D S P6m1

2

)

W6mD 5~P6!21
4

3
~W6!254kigmS 16 ig5

2 D ]m ,

which commute with all the ten generators of the Poincare´ group. The first of these Casimir
operators, which corresponds to the orbital energy-momentum, is associated with the rest massm2.
The second is associated with an internal-orbital interaction.@The invariance of theC2

6 depends on
the invariance of thePL andPR ~see Ref. 7!.#

We can also approach these issues from an equivalent but different perspective. Since the
Lagrangian~39! is invariant under the translational transformation~23!, the Noether conserved
quantity for the left-handed fermion is the energy-momentum tensor density

Tn
2m5

i

2
@„L0g

m~]nL0!2~]nL0!g
mL0…#1

ik2
2

@„L0gn~]mL0!2~]mL0!gnL0!…] ~27!

herek2 depends onk1 andk. The energy-momentum vector is

Pm
25E d3xTm

20,

~28!

Pm
25E d3x

i

2
@ L̄0g

0~]mL0!2~]mL0!g
0L01k2„L̄0gm~]0L0!2~]0L̄0!gmL0…#.

The additional second part corresponds to the intrinsic energy momentum for the left-handed
fermion. Its form is similar to the U~1! charged current. This opens the possibility that a chiral
field behaves as a field with an intrinsic energy momentum current, and intrinsic charged current.

IV. GAUGE THEORY OF THE TRANSLATION GROUP

The gauge theory of the Poincare´ group was brought into consideration by Kibble, Frolov and
Sciama at the beginning of 1960s. Their work generalizes Utiyama’s gauge version of gravity
which left open the question on the gauge status of the tetrad gravitational fields.12 In the same
period of time, the gauge potentials of spatial translations were considered in the gauge theory of
dislocations in continuous media.13

The Poincare´ group combines the group of Lorentz rotationsLb
a and the group of translations

sa in the four-dimensional Minkowski space–time in the form

yâ5Lb
ayb1sa. ~29!

Localization, that is making thisLb
a andsa position-dependentLb

a(x) andsa(x), of these trans-
formations leads in the usual analysis to the introduction of gauge fields~notice that, different
from the coordinate frame vectorsxm, the freeyb are components of the nonvector bundle!. The
covariant derivative“m of the sectionya(x) can be defined as the sum

“m~ya!5]my
a2Gmb

a yb2Nm
a . ~30!
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The transformation properties of the above connections in relation to~29! are

“ m̂~yâ![S ]yâ

]yb
D“my

b5Lb
a~“my

b! ~31!

and ~notice that the following are, in fact, definitions ofG andN!

Gmb
â 5Ld

aGmc
d ~L21!b

c1Ld,m
a ~L21!b

d , ~32!

Nm
â5Lb

aNm
b1]msa2@Ld

aGmc
d ~L21!b

c1Ld,m
a ~L21!b

d#sb. ~33!

As it can be shown that the gauge fieldsGmb
a are related and can be expressed in terms of the

Christoffel symbols and tetrads, it can be shown therefore that they correspond to the gravitational
field. Also, and in the same way, from physical considerations it is possible to select a special,
metric-compatible, gauge potential of the localized Poincare´ translation such that

“m~ya!5]my
a2Gmb

a yb2Nm
a5em

a , ~34!

where em
a is the vierbein field. This invariant condition implies that there is always a certain

translation gauge whereNm
a coincides withem

a . In this case the curvature tensor corresponding to
the translational connection

Fmn
a 5Nn,m

a 2Nm,n
a 1Gnb

a Nm
b2Gmb

a Nn
b5en,m

a 2em,n
a 1Gnb

a em
b2Gmb

a en
b . ~35!

plays the role of the Cartan torsion.
Now we have stated the necessary definitions and we proceed to analyze the gauge theory of

the Poincare´ translation~23! in the phase space of the~chiral projected! spinor space which~as we
mentioned in the previous section! is induced by translations in the tangent bundle of the space–
time manifold. The covariant derivatives of generalized left-handed spinor are defined as

“m~Lb![]mL
b2Nm

a i FgaS 12 ig5

2 D G
g

b

Lg2
1

4
Gmb
a ~gag

b2gbga!g
bLg. ~36!

In analogy to~34!, without losing the invariant property of the theory, we can consider only the
metric compatible translation connectionNm

a , i.e., assume that

“m~ba!5]mb
a2Gmd

a bd2Nm
a5k1em

a , ~37!

whereba(x) are phase angles of generalized left-handed spinor

L5expFbaigaS 12 ig5

2 D GL05F11baigaS 12 ig5

2 D GL0 ~38!

~see Ref. 14 for further discussions of this point and of the importance of twistor-spin1
2-fields!. We

now restrict ourselves to emphasize the new translational symmetry of the spinors to the case
where the gravitational field and the torsion are zero~i.e., Gmd

a 5Tmd
a 50!. We can rewrite the

LagrangianL of the Dirac field in the same form as that for bosons:

L5
21

k1
~“mL !~“mL !1

21

k1
~“mR!~“mR!2mF L̄S 11 ig5

2 DR1R̄S 12 ig5

2 DLG . ~39!

In the torsion-free case, the curvature tensor corresponding to the above connection,
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Fbmn
a 5Fmn

d i FgdS 17 ig5

2 D G
b

a

50 ~40!

@hereFmn
a is defined as~35!#. So we could naively state that the fermions have nowhere experi-

enced any ‘‘force.’’ However, as the Aharonov–Bohm experiment shows, in quantum mechanics
the actual value of the potential plays a role~i.e., in determining some observable effect such as
interference! not expected on classical theories. As stressed by C. N. Yang, the knowledge on the
field strengthsFmn under-describes electromagnetism while the knowledge on the potential over-
describes the physical situation, leading to the attempt of using the nonintegrable phases to char-
acterize a gauge theory. The existence of Berry phases within the well-known framework of the
adiabatic approximation requires the study of the question of phases and angles in quantum
mechanics. The nonintegrable phases for left-handed fermion are defined as

L85expH baigaS 12 ig5

2 D J •L05expH S ba1E Nm
adxmD igaS 12 ig5

2 D J •L0 , ~41!

where theNm
a are metric compatible and satisfy

“m~ba!5]mb
a2Gmd

a bd2Nm
a5k1em

a . ~42!

We see then that the Berry-type phases in the fermion fields depend on the topology of the
space–time manifold which is determined by the vierbeinem

a . Moreover the U~1! phase in exp(ia)
is determined only up to a term exp(i2np) wheren is integer. In contrast with the U~1! case, the
‘phasesba’ in ~41! are only determined to anull straight line in the Minkowski space–time.

It is interesting to notice that in the theory of continuous media,13 Gmd
a corresponds to the

disclination andNm
a corresponds to the dislocation fields, both of which have their origin from line

defects.

V. GAUGE FIELD THEORY FOR FERMION FIELDS

To study, under the previous point of view, the Lagrangian of chiral fermion fields, let us
begin with the definition of the extended Poincare´ group~we remind that this extension is different
from the group used in supersymmetry theory! considering also the standard U~1!3SU~2! gauge
groups in the spinor space:

yd̂5yd1hd,

yÂ5exp~ ig1h
5!SB

A~s i !yB,
~43!

ub̂5exp~ ig2h
5!F11hdigdS 12 ig5

2 D G
a

b

ua1jb,

ub̂5exp~2 ig2h
5!uaF12hdigdS 12 ig5

2 D G
b

a

1 j̄b .

Herehd, h5, si , jb, andj̄b ~for simplicity denoted sometimes asj and j̄! are group parameters of
the Poincare´ translation, the U~1!, the SU~2!, and the spinor translation groups, respectively.
Experimentalists assert that they have not observed fermions withV1A weak interactions. So, for
a reason that will be clear shortly, we will work here with left-Poincare´-translation only. The
generators of the corresponding Lie algebra are

4328 Y.-F. Liu and J. Keller: A symmetry of massless fields

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Td5]d1 i FgdS 12 ig5

2
D G

a

b

ua
]

]ub
2 i ūFgaS 12 ig5

2
D G ]

]ū
,

T55 ig1y
A

]

]yA
1 ig2u

b
]

]ub
2 ig2ū

]

]ū
,

Ti5t iB
A yB

]

]yA
, Tb5

]

]ub
, T̄b5

]

]ub

. ~44!

The nonzero commutation relations among these generators are

@Ti ,Tj #5ci j
k Tk ,

@Td ,Tb#52TgF igdS 12 ig5

2 D G
b

g

,

@Td ,T̄
b#5F igdS 12 ig5

2 D G
g

b

T̄g, ~45!

@T5 ,Tb#52 ig2Tb , @T5 ,T̄
b#5 ig2T̄

b.

In the local coordinate neighborhoodEu(x,y), wherey5(yd,yA,ua,ūb) andx5$xm% are coordi-
nates in the base space~Minkowski space–time!, let

Zm5]m1Nm
dTd1Bm

5T51Am
i Ti1Wm

bTb1W̄bmT̄
b ~46!

be the horizontal vector. Then the functionsNm
d (x), Bm

5 (x), Am
i (x), Wm

b(x), andW̄bm(x) define
connections in a wider sense~gauge fields on nonvector bundle!. The covariant derivatives of a
sectiony(x)5[yd(xm),yA(xm),ub(xm),ūb(x

m)] can be defined as

“m~ya![]my
a2Nm

a ,

“m~yA![]my
A2 ig1Bm

5yA2Am
i t iB

A yB,
~47!

“m~ub![]mub2 ig2Bm
5ub2Nm

d F igdS 12 ig5

2 D G
a

b

ua2Wm
b ,

“m~ ūb![]mūb1 ig2Bm
5 ūb1Nm

d ūaF igdS 12 ig5

2 D G
b

a

2W̄bm .

The corresponding curvature tensor is defined by

@Zm , Zn#[Fmn
d Td1Fmn

5 T51Fmn
i Ti1Fmn

b Tb1F̄bmnT̄
b

5~]mNn
d2]nNm

d !Td1~]mBn
52]nBm

5 !T51~]mAn
i 2]nAm

i 1cjk
i Am

j An
k!Ti

1H ]mWn
b2]nWm

b2 ig2Bm
5Wn

b1 ig2Bn
5Wm

b1Nn
dF igdS 12 ig5

2 D G
a

b

Wm
a
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2Nm
d F igdS 12 ig5

2 D G
a

b

Wn
aJ Tb1H ]mW̄bn2]nW̄bm1 ig2Bm

5W̄bn2 ig2Bn
5W̄bm

2Nn
dW̄amF igdS 12 ig5

2 D G
b

a

1Nm
d W̄anF igdS 12 ig5

2 D G
b

aJ T̄b. ~48!

HereFmn
5 andFmn

i are the electromagnetic field and the Yang–Mills fields, respectively. As we
noted before, it is possible to choose a special metric-compatible gauge potentialNm

d such that

“m~ya!5]my
a2Nm

a5em
a . ~49!

The torsion-free case corresponds toFmn
d 50. In the same way we can introduce a covariant

condition for“m~ua! ~i.e., a restriction for the gauge fieldWm
b!. According to Eq.~20!, by using the

projector operatorsPL5@11yaigm„~12ig5!/2…#„~12ig5!/2… andV, it can be decomposed in to two
parts“mua5PL~“mua!1V~“mua!. Under aS2b

a PGT transformation

“mûb5S2a
b @“mua#5S2a

b @PL~“mua!#1V~“mub!, ~50!

which means that only the componentsPL~“mua! are affected by the transformationS2b
a PGT .

So, without losing the invariant properties of the theory, we can assume thatV~“mua!50. In other
words, the“mua can be assumed to have the following form:

¹mu5Lm5F11ydigdS 12 ig5

2 D GL0m ,

~51!

¹mū5Lm5L̄0mF12ydigdS 12 ig5

2 D G .
In this case, instead ofWm

b andW̄bm , we can useL0m
b and L̄0mb in Fmn

b and F̄bmn . So the Yang–
Mills-type Lagrangian is

L52 1
4 Fmn

5 Fmn
5 2 1

4 Fmn
i Fmn

i 2 1
2 F̄bmnFmn

b

52 1
4 Fmn

5 Fmn
5 2 1

4 Fmn
i Fmn

i 16R̄0igm~]mR01 ig2Bm
5R0!26~]mR̄02 ig2Bm

5 R̄0!igmR0

2L̄0n
T igm~]mL0n

T 1 ig2Bm
5L0n

T !1~]mL̄0n
T 2 ig2Bm

5 L̄0n
T !igmL0n

T 22@ L̄0m
T R01R̄0L0m

T # ,m ,

~52!

where the vector-spinorL0m
b has been decomposed into two parts:

L0m5L0m
T 1 igmS 2 i

4
gmL0mD5L0m

T 1 igmR0 . ~53!

We can verify that the above Lagrangian includes the Dirac Lagrangian of the charged right-
handed fermionR0. One can ignore the last divergence term, as this term may be integrated up to
the topological quantum number. Performing the variation of this Lagrangian with respect toL0m

T ,
and using the method of Lagrange multipliers, we can prove thatL0m

T 5L02m
T 1DmL01 ~here

Dm5]m2 ig2Bm
5 ! includes a spin12 charged left-handed spinor singletL01[

1
2DnL0n

T which satisfies
the massless Dirac equation and the spin3

2 charged left-handed vector-spinor fieldL02m
T ~with the

condition for Rarita–Schwinger fieldsgmL02m
T 50! which satisfiesgmDmL02n

T 5(gn1Fnm
5 gm)L01.

If Wm
b @in addition to Eq.~51!# satisfies following invariant condition~twistor equation!,
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gnS 12 ig5

2 D“mu1gmS 12 ig5

2 D“nu5
1

2
gmnglS 12 ig5

2 D“lu, ~54!

then we can prove that the above Lagrangian includes only a right-handed spinor singlet
R05(2 i /4)gmL0m ~i.e., L0m5 igmR0!.

VI. SOME FINAL CONSIDERATIONS

It is important to notice that if the base space is a Riemannian space with Christoffel connec-
tions $m

n %, then the derivative of any space–time vector]mBn must be replaced by the covariant
derivativeDm(Bn)[]mBn1Bl$mn

l %.
Moreover, in analogy to the Kaluza–Klein15 theory, the base space can be enlarged, and then

more gauge components must be introduced.16 Let us consider for example the case with five-
dimensional base space. We know that the physical charged field has an arbitrary phase
angle, denoted here byx5, and subjected to the condition of cyclicity, i.e.,C(xm,x5)
5C(xm)exp~2ig1x

5!. The Lagrangian does not depend on this phase angle. This condition re-
flects the independence of observed physical phenomena on the fifth coordinate of the base space
and is called the condition of cylindricity. It implies the orthogonality of space–time manifold
with the phase manifold. If we admit that in Eq.~43! the parameters of the~local! gauge group
jb(xm,x5) are not only functions of the space–time coordinatexm but also functions of the phase
anglex5, that leads to the introduction of the additional gauge fieldsL5

b and L̄b5 such that

Zm5]m1Nm
dTd1Bm

5T51Am
i Ti1Wm

bTb1W̄bmT̄
b,

~55!
Z55]51a1L5

bTb1a2L̄b5T̄
b.

For simplicity let us consider only the case withW0m5 igmR0 . As mentioned above, in analogy to
the Kaluza–Klein theory, we can introduce the ansatz of ‘‘dimensional reduction,’’ i.e., taking the
fieldsNm

d , Bm , andAm
i to be independent of the extra coordinatex5, and the fermion fieldsR0 and

L5
b subjected to the condition of cyclicity. We get then additional components of the curvature

tensor

@Zm , Z5#5Fm5
b Tb1F̄bm5T̄

b ~56!

and additional Lagrangian terms (F̄bm5Fm5
b ) which include the Dirac Lagrangian of the left-

handed fermion and the fermionic mass term.
In a similar form, we can enlarge the base spaceM to include the representation space of the

SU~2! group, i.e.,x5(xm,x5,xA). And then, the total Lagrangian will include a left-handed SU~2!
spinor-doublet and a doublet of a Higgs–Goldstone complex scalar field.
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The quantum Boltzmann equation is derived for photons. The form of the scattering
and absorption terms for the case of photon diffusion is discussed in detail. We
show how the structure factor of the scattering centers enters into the scattering rate
of the photons. ©1996 American Institute of Physics.
@S0022-2488~96!02609-6#

I. INTRODUCTION

The quantum Boltzmann equation~QBE! is derived for photons. As far as we know, this is the
first derivation of this fundamental equation. We expect the main application of this result is to
photon diffusion in matter. We distinguish the QBE from the usual Boltzmann equation. The latter
has been studied widely. We explain below the differences between these two equations. We also
show how the usual Boltzmann equation is derived from the QBE.

Photons diffuse through many different kinds of materials, such as clouds, stellar atmo-
spheres, cermats, and human tissue.1–7 The Boltzmann equation for photons is routinely used to
describe the diffusion of light in these materials.

In the Boltzmann equation for photons, the usual practice is to have a differential equation for
the number density of photonsf ~q̂,r ,t! of frequencyv, which depends upon the direction of the
photonsq̂, the position in the mediumr and the timet. The usual equation is

F ]

]t
1cq̂–“ r1S 1ta 1

1

ts
D G f ~ q̂,r ,t !5

1

ts
E dV8

4p
P~ q̂,q̂8! f ~ q̂8,r ,t !, ~1!

where the lifetimes are for absorptionta and scatteringts . The scattering term on the right
contains the informationP(q̂,q̂8) for scattering betweenq andq8. The scattering integral is over
all of the 4p solid angle of theq̂8 variable. This equation is well-known and well studied.1–7

The quantum Boltzmann equation~QBE! is an equation of motion for the photon Green’s
function when the system is not in equilibrium. There are several types of correlation function,
such as retarded, advanced, etc.8 An important one is

Dmn
, ~r1 ,t1 ;r2 ,t2!52 i ^An~r2 ,t2!Am~r1 ,t1!&, ~2!

where the vector potential isAm~r ,t!. From this definition one derives an equation of motion for
the Wigner distribution function~WDF! Dmn~q,v;r ,t!. This equation is the QBE. It is different
than the usual Boltzmann equation described in the previous paragraph. It is a tensor quantity,
rather than a scalar. Also, it has more variables in its arguments, sinceq andv are assumed to be
independent variables. The QBE is the more fundamental equation. From it we derive the Boltz-
mann equation~1!. This derivation gives us definitions of quantities such as the life times for
absorptionta and scatteringts .

There has been prior work on the closely related problem of evaluating the correlation of the
electric field with itself at two different points in space and time^E* ~r1,t1!E~r2,t2!&. Zubairy and
Wolf 9 derived an equation for the correlation function of free fields. Their result is very different
than ours since they are not using Wigner distribution functions. Later work has discussed free

0022-2488/96/37(9)/4333/19/$10.00
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field propagation from partially coherent sources.10 An important line of work was the develop-
ment of theories on weak localization and coherent backscattering of photons.11–13 There they
evaluated the average electric field in the coherent potential approximation, and then used pertur-
bation theory to get the correlation functions of the field with itself. We discuss these results
further in the final section of this paper.

The general procedure is similar to that for phonons, since both particles are boson fields.
There have been numerous derivations of the QBE for phonons.14–21 However, the interaction
between photons and matter is strong, so that several scattering terms must be retained in the
interaction. The same terms are not kept in the QBE for phonons since the interaction there is
weaker. Also, phonon scattering is dominated by anharmonic effects, and these processes are
unimportant for photon diffusion. So the QBE for the two systems are different in detail.

The derivation proceeds in three stages. The next is to derive the QBE for noninteracting
photons. This allows us to introduce the notation and to set up the general formalism. Sections III
and IV discuss the interactions between the photon and the media. We derive the photon Green’s
function for systems in equilibrium. Here, we derive the important self-energy terms which also
contribute to the nonequilibrium case. Section V has the case where photons diffuse through
matter. Here, we assume the scattering centers are fixed. We identify the limits of coherent and
incoherent scattering. The last section contains a brief discussion and summary of the results.

II. NONINTERACTING PHOTONS

The Green’s function for photons is the correlation function of the vector potentialAm~r ,t! at
two different points in space and time

D mn
, ~r1 ,t1 ;r2 ,t2!52 i ^An~r2 ,t2!Am~r1 ,t1!&. ~3!

The QBE for photons is the equation of motion for this correlation function. The derivation
requires other correlation functions, which are defined as8

D mn
. ~r1 ,t1 ;r2 ,t2!52 i ^Am~r1 ,t1!An~r2 ,t2!&, ~4!

D mn
t 5u~ t12t2!D mn

. 1u~ t22t1!D mn
, , ~5!

D mn
t̄ 5u~ t12t2!D mn

, 1u~ t22t1!D mn
. , ~6!

D mn
r 5u~ t12t2!@D mn

. 2Dmn
, #. ~7!

The superscriptst, t̄,r denote the time-ordered, anti-time-ordered, and retarded Green’s functions.
The Hamiltonian for photons depends upon the gauge. Here we use the gauge“–A50 which

makes the scalar potential instantaneous. Then the noninteracting Hamiltonian for photons is given
in terms of the electric and magnetic fields

H05E d3r

8p
@E21B2#, ~8!

E52
1

c

]A

]t
, ~9!

B5“3A. ~10!

The fields are quantized. The electric field is the conjugate momentum to the vector potential, so
that the basic commutation relation is
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@Em~r1 ,t !,An~r2 ,t !#54p i\cdmnd3~r12r2!. ~11!

The commutator is defined at equal times. The first equation of motion

]

]t
Am5 i @H0 ,Am#52cEm ~12!

which reproduces Eq.~9!. The second equation of motion is

]2

]t2
A52 ic@H0 ,E# ~13!

5c2“3~“3A!. ~14!

The term on the right comes from the commutator of the electric and magnetic fields. We use the
fact that“3~“3A!5¹2A2““–A and the second term is zero by our gauge condition. This
expression is the standard equation of motion for the vector potential. For noninteracting photons,
the equation of motion for the Green’s functions are either of the two expressions

F ]2

]t1
22c2¹1

2GDmn
, ~r1 ,t1 ;r2 ,t2!50, ~15!

F ]2

]t2
22c2¹2

2GDmn
, ~r1 ,t1 ;r2 ,t2!50. ~16!

The above two expressions are equations of motion for the Green’s function.
The equation we want is obtain by subtracting them. First we must go to a center-of-mass

coordinate system.

r5r12r2 , ~17!

R5
r11r2
2

, ~18!

t5t12t2 , ~19!

T5
t11t2
2

, ~20!

D~r1 ,t1 ;r2 ,t2!→D~r ,t;R,T!. ~21!

Here, the symbolT denotes center-of-mass time, and not temperature or time ordering. If we
subtract our two equations~15! and ~16!, and convert to c.m. coordinates, then we find

2F ]2

]t]T
2c2“r –“RGD mn

, ~r ,t;R,T!50. ~22!

The next step is to Fourier transform the relative variables to~q,v!

D,~q,v;R,T!5E d3r e2 iq–rE dt eivtD mn
, ~r ,t;R,T! ~23!
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Fv ]

]T
1c2q–“RGD mn

, ~q,v;R,T!50. ~24!

Notice that the last equation is similar to a Boltzmann equation, in that there is a term with a
derivative with respect to time (T) and another term with a derivative with respect to position
~“R!. It is solved by any function of the formf ~vq–R2c2q2T!. Further terms are provided by the
interactions.

In discussing the interactions it is useful to introduce a matrix formalism for the various
Green’s functions8

D̃5S D t

D .

2D ,

2D t̄ D , ~25!

S v
]

]T
1c2q–“RD D̃ ~q,v;R,T!50. ~26!

Each Green’s function obeys the homogeneous Boltzmann equation for noninteracting particles.
Another equation we shall need is

S ]2

]t1
22c2¹1

2D D̃~r1 ,t1 ;r2 ,t2!54pc2dmnd~ t12t2!d~r12r2! Ĩ , ~27!

where Ĩ is the unit matrix. We also give the noninteracting Green’s functions, whereh is infini-
tesimal

D mn
r ~k,v!5

4pc2\~dmn2 k̂mk̂n!

v22c2k21 ih
, ~28!

D mn
, ~k,v!52 iB~k,v!n~v!, ~29!

D mn
. ~k,v!52 iB~k,v!@n~v!11#, ~30!

B~k,v!5
~2pc!2\

ck
~dmn2 k̂mk̂n!@d~v2ck!2d~v1ck!#, ~31!

n~v!5
1

ebv21
, ~32!

D t5D r1D ,5D .1D a, ~33!

D t̄ 5D .2D r5D ,2D a. ~34!

III. PHOTONS INTERACTIONS WITH CELLS

We assume the scattering is done by particles located at pointsRj which are fixed in position.
Each scatterer is an object such as a droplet or cell which can absorb and scatter radiation. Let\vl

denote the energy of an optical transition which has a matric elementr lm5^ f urmu i & between the
initial and final state of that transition. The position and momentum operators for these optical
transitions are22
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Xm5(
l
r lm~bl1bl

†!, ~35!

Pn52 im(
l
r lnv l~bl2bl

†!, ~36!

wherebl and bl
† are the boson quantum operators of the Frenkel exciton. These position and

momentum operators obey the usual commutation relation,

@Xm ,Pn#52im(
l
r lmr lnv l5 iNc\dmn , ~37!

2m(
l
r lmr lnv l5\Ncdmn . ~38!

The last identity is thef -sum rule, whereNc is the number of electrons in the cell.
The dynamic dipole moment of the cell iseXm . The polarizability is the correlation of the

dynamic moment with itself22

amn~ ivn!52
e2

\ E
0

b

dt eivnt^TtXm~t!Xn~0!& ~39!

5
2e2

\ (
l

r lmr lnv l

~ ivn!
22v l

2 ~40!

which has the units of volume. Here, we are using the formalism23 at nonzero temperature, where
the frequencies are imaginaryivn52p ikBTn/\. The symbolTt denotes thet-ordering operator.
Our analysis will also require that we evaluate the correlation function of the momentum with
itself. A short calculation gives

P mn~ ivn!52
e2

\m2 E
0

b

dt eivnt^P~t!P~0!& ~41!

5~ ivn!
2amn~vn!2

e2Nc

m
dmn , ~42!

where we have used thef -sum rule to derive the last expression.
The interaction between the photons and the electrons in the cell is written as

V52
e

mc (
j
Pj–A~Rj ,t !1

e2

2mc2 (
j
A2~Rj ,t !. ~43!

The symbolPj denotes the momentum operator~36! for the cell j at positionRj . This momentum
operator denotes the motion of the electrons within the cell or droplet. Another term, which we do
not write, is contributed by the center-of-mass motion of the cell or droplet.
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IV. HOMOGENEOUS SYSTEMS IN EQUILIBRIUM

A. Dyson’s equation

First we discuss the result for homogeneous systems in equilibrium. Here, the only Green’s
function we need is found at complex frequenciesivn .

8 There is no dependence upon the vari-
ables~R,T!. Dyson’s equation in the Matsubara notation is

D mn~k,ivn!5D mn
~0!~k,ivn!1D mf

~0! ~k,ivn!Mfl~k,ivn!Dln~k,ivn!, ~44!

D mn
~0!~k,ivn!5

4pc2~dmn2 k̂mk̂n!

~ ivn!
22c2k2

. ~45!

The self-energy function of the photon is22Mmn . It is a matrix because the Green’s function is also
a matrix. Repeated indices imply summation.

The interaction in Eq.~43! has two types of self-energy terms. The first contains two factors
of the P–A interaction, and contains the correlation function evaluated in Eq.~42!. The second
self-energy comes from theA2 term in the interaction. It produces a term which is equal, and
opposite in sign, to the second term in Eq.~42!. The sum of the two self-energy terms is just the
first term in Eq.~42! divided byc2. When we solve Dyson’s equation for homogeneous systems
in equilibrium, we find the Green’s function for photons of

Dmn~k,ivn!5
4pc2~dmn2 k̂mk̂n!

~ ivn!
2e~k,ivn!2c2k2

, ~46!

e~k,ivn!5114pnsa~k,ivn!, ~47!

wherens is the density of scattering centers. Here, we have derived the well-known result that the
interactions produce a dielectric functione~k,ivn! which then modifies the dispersion of the
photons.

B. Local field corrections

The above derivation does not include the Lorenz–Lorentz local field corrections to the
dielectric function. This contribution can be included by a more careful derivation, as done in Ref.
22. One must add another interaction term which includes the dipole–dipole interaction between
the fluctuationseXj at different sites

Vd5e2(
i j

Ximfmn~Ri j !Xjn , ~48!

fmn~R!5
dmn

R3 2
3RmRn

R5 . ~49!

A wave vector dependent polarizability for the scattering media can be defined as

amn~k,ivn!52e2(
jÞ i

eik–Rj iE
0

b

dt eivnt^TtXj~t!X~t!&. ~50!

Here, one starts at one scattering sitei and sums over all other scattering sitesjÞ i . The technique
for evaluating this sum, with random scattering centers, is explained in the next section. Now we
show that one can derive a Dyson’s equation for the polarizability using the dipole–dipole inter-
action plus thep•A interaction
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amn~k,ivn!5amn~ ivn!1amf~ ivn!@ tfl~k!1dfl~k,ivn!#aln~k,ivn!, ~51!

tmn~k!5(
jÞ i

eik–Rj ifmn~Rj i !, ~52!

dmn~k,ivn!5
vn
2

c2 (
jÞ i

eik–Rj iDmn~Rj i ,ivn!. ~53!

The symbolamn( ivn) denotes the polarizability of a single scattering center, whileamn~k,icn!
denotes the polarizability in the actual media, including local field corrections. The Lorentz–
Lorenz form of the dielectric function is obtained using the expressions

tmn~k!54pns@ k̂mk̂n2 1
3dmn#, ~54!

dmn~k,ivn!!1. ~55!

Here,ns is the density of scattering sites. This result is derived in the next section.
The photon polarization is perpendicular to the photon wave vectork. This is ensured by the

factor ~dmn2k̂mk̂n!. From now on we assume that all Green’s functions have this factor and write

Dmn~k,ivn!5~dmn2 k̂mk̂n!D~k,ivn!. ~56!

All Green’s functions have a scalar factorD times this polarization factor. We also do this with
our nonequilibrium Green’s functions. Similarly, in Dyson’s equation, the self-energyMmn be-
comes a scalar since its tensor components are averaged over the photon polarization. We also
assume that the polarizabilityamn5dmna is isotropic.

C. Averaging over scattering centers

Here, we wish to reexamine the above self-energy terms, and to consider carefully the method
of averaging over the positions of the scattering sitesRj . We discuss the averaging for theA2 term
in the interaction, since this self-energy is easier. However, exactly the same analysis applies to
thep•A term. In evaluating the perturbation expansion for theSmatrix, the first term which gives
a self-energy has the factor

e2Nc

2mc2 (
j
E d3r 1 e

2 ik•~r12r2!E
0

b

dt1E
0

b

dt eivnt^TtAm~r1 ,t!A2~Rj ,t1!An~r2,0!&

5
e2Nc

mc2 (
j
E d3r 1 e

2 ik•~r12r2!E
0

b

dt1E
0

b

dt eivntDmf~r12Rj ,t2t1!Df,n~Rj2r2 ,t1!

5
e2Nc

mc2
Dmf~k,ivn!

1

V (
jq

Dfn~q,ivn!e
i ~k2q!•~Rj2r2!,

whereV is the volume. In the double sum over~j ,q!, the nonzero term is whereq5k and then the
sum overj givesNs (ns5Ns/V). Thus this term is

e2Ncns
mc2

Dmf~k,ivn!Dfn~k,ivn!. ~57!

This term leads to a self-energy of
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e2Ncns
m

dmn . ~58!

This is the term in the first order of perturbation theory. It cancels the second term in Eq.~42!.
Let us now examine the same interaction in the second order of perturbation theory. The

correlation function is

^TtAm~r1 ,t!A2~Ri ,t1!A
2~Rj ,t2!An~r2,0!& ~59!

54Dmf~r12Ri ,t2t1!Dfl~Ri2Rj ,t12t2!Dln~Rj2r2 ,t2!.
~60!

There is now a double sum over the positions (i , j ) of the scattering centers. We chose to omit the
term where the photons successively interact with the same scattering center. This term does not
contribute to scattering, and merely renormalizes the charge on the electron. So in the above
expression we specify thatiÞ j .

When we express the photon Green’s functions of position as functions of wave vector, we
find the factor

(
iÞ j

ei ~q2k!•~Ri2Rj !5Ns
2dq5k1Ns@S~q2k!21#. ~61!

The first term on the rightNs
2dq5k gives the square of the self-energy found in first-order. The

second term gives a new contribution to the self-energy. The factor ofS~q2k! is the static
structure factor.24 It is the term which depends on the arrangement and density of the scattering
centers. Thep•A term has a similar expression, and the again there is cancellation.

We must now determine the form forS(q). There are three constraints:

~1! It vanishes atq→0.
~2! It goes to one atqa@1 wherea is a length typical of the separation between scattering

centers.
~3! It obeys an important sum rule

E d3q

~2p!3
@12S~q!#5ns, ~62!

wherens is the density of scattering centers.

A formula which obeys the second and third constraints is

12S~q!5
8pa3ns

@11~qa!2#2
. ~63!

One can make it obey the first constraint by choosing 8pnsa
351 which serves to definea

precisely. We do not assert that the random distribution of scattering centers always has this form
for S(q). Instead, we note that this choice is the simplest one which obeys all of the constraints.
We shall use it in the evaluation of integrals. If the wave vector of light isk, our results for
(ka)@1 and also (ka)!1 are independent of the choice ofS(q). However, having a specific form
for S(q) allows a reasonable interpolation between these limits.

We now can evaluate the sums over the scattering centers in Eqs.~52! and~53!. First evaluate
Eq. ~52! which can be written

tmn~k!5nsE d3r g~r !fmn~r !, ~64!

4340 G. D. Mahan: Quantum Boltzmann equation for photons

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



whereg~r ! is the pair distribution function. We rewriteg5(g21)11. The ‘‘1’’ term is just the
Fourier transform offmn which is calledTmn~k!. The fourier transform ofns(g21) is ~S21! so
that we derive the expression

Tmn~k!54p k̂mk̂n , ~65!

tmn~k!5nsTmn~k!2E d3q

~2p!3
@12S~k2q!#Tmn~q! ~66!

54pns$k̂mk̂n2 1
2 @~12j!dmn2~123j!k̂mk̂n#%, ~67!

j5F11
1

l2GF12
1

l
tan21~l!G , ~68!

l5ka. ~69!

A similar analysis for the summation over the photon Green’s functions yields the expression

dmn5qn
2H nsDmn~k,ivn!2E d3q

~2p!3
@12S~q2k!#Dmn~q,ivn!J . ~70!

However, we drop the first term. We have already counted it in the self-energy of the photon, and
including it here is double counting. The second term is new, and is the contribution we want

dmn52qn
2E d3q

~2p!3
@12S~q2k!#Dmn~q,ivn! ~71!

54pnsz
2H ~dmn2 k̂mk̂n!

l21~11z!2
1

z

2
~dmn23k̂mk̂n!J , ~72!

z5
1

l2z
2

1

l3z2 F ~11l2!tan21~l!2~11l22z2!tan21S l

11zD G , ~73!

z5aqn5
vna

c
. ~74!

These complicated expressions become simple in the two important limits.

1. (ka )2!1

Here, the scattering centers are close together on the scale of the wave length of light. Then
one finds thatj51/31O~l2! andz522/@3~11z!2# which gives

tmn~k!52
4pns
3

@dmn23k̂mk̂n#, ~75!

dmn~k,ivn!5
8pns
3

dmn

z2

~11z!2
. ~76!

Eventually we will analytically extend the imaginary frequency to the complex spaceivn→v and
thenz2→2l2. In this limit the termdmn is negligible while the termtmn gives a dielectric function
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of the Lorentz–Lorenz form, with the local field correction. It is suitable for light propagating
through fluids such as water, where the scattering centers are close together. The wavelets from
the scattering add together to form a new wave, in agreement with Huygens principle.

2. (ka )2@1

Here, the scattering centers are far apart on the scale of the wave length of light. In this limit
we find thatz→O(1/l2z) and

j→12
p

2l
1O~1/l2!, ~77!

tmn~k!52
p2ns

l
@dmn23k̂mk̂n#. ~78!

The factortmn is now of orderO~1/l! so the local field correction is small. There are not enough
scattering centers, in the vicinity of each other, to provide such a correction. Similarly, the factor
of dmn is also ofO(ns/l) or elseO(ns/z) and is also negligible.

The case of photon diffusion hasl,z@1. Here, there is no local field correction. So we
generally neglect this contribution to the polarizability.

We end this section by giving the final expression for the dielectric function of the media in
equilibrium

e~k,ivn!5114pnsaL~k,ivn!H 114p~ ivn!
2aL~k,ivn!E d3q

~2p!3
z~ q̂• k̂!

vn
21c2q2

@12S~q2k!#J ,
~79!

aL~k,ivn!5
a~ ivn!

114pnsa~ ivn!tmm~k!
, ~80!

z~ q̂• k̂!5 1
2 @11~ q̂• k̂!2#. ~81!

The polarization factorz(q̂• k̂) needs to be explained. We assume that the polarizabilitiesamn are
isotropic. Then in Dyson’s equation we have the combination of polarization factors

rmn5~dmf2 k̂mk̂f!~dfl2q̂fq̂l!~dln2 k̂lk̂n! ~82!

5dmn2 k̂mk̂n2q̂mq̂n1~ q̂mk̂n1 k̂mq̂n!~ q̂• k̂!2 k̂mk̂n~ q̂• k̂!2. ~83!

After doing the integrals over the variabled3q we are left with a contribution to the Green’s
function which must have a net dependence of~dmn2k̂mk̂n!. This latter expression can be averaged
by taking the sum withm5n which is two. Applying the same sum tormn gives 11(q̂• k̂)2 and
dividing by two givesz.

In the expression for the dielectric function, we treat differently the two factors oftmn anddmn .
The former contributes to the local field correction for the polarizability. The latter does not.
Instead, it is just a correction to the dielectric constant. This difference occurs becausedmn is a
self-energy correction to the photon Green’s function. Higher-order terms in the perturbation
series are examined in Ref. 25.
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V. NONEQUILIBRIUM

A. QBE

Now we consider how these interactions contribute to the QBE for photons. We assume here
that the scattering centers are fixed in space.

We begin by writing Dyson’s equation in real space, and introduce a four vector notation
x5(r ,t!. Then operating upon this equation with the left-hand side of Eq.~27!

D̃mn~x1 ;x2!5D̃mn
~0!~x1 ;x2!1E dx3 dx4 D̃mf

~0! ~x1 ;x3!M̃fl~x3 ;x4!D̃ln~x4 ;x2!

3F ]2

]t1
22c2¹1

2GD̃mn~x1 ;x2!

54pc2dmnd~x12x2! Ĩ14pc2

3E dx3 M̃ml~x1 ;x3!D̃ln~x3 ;x2!F ]2

]t2
22c2¹2

2GD̃mn~x1 ;x2!

54pc2dmnd~x12x2! Ĩ14pc2E dx3 D̃mf~x1 ;x3!M̃fn~x3 ;x2!.

We have given the equations obtained when one takes derivatives either with respect to thex1 or
to thex2 variable. The QBE is obtained by subtracting these last two equations, and then changing
to center-of-mass variables

2i S v
]

]T
1c2q–“ D D̃~q,v;R,T!54pc2@M̃ ~q,v;R,T!D̃~q,v;R,T!

2D̃~q,v;R,T!M̃ ~q,v;R,T!#. ~84!

The matrixM̃ has the same arrangement of elements as Eq.~25!. We have neglected terms which
contain derivatives with respect to the variablesR andT. The left-hand side of this equation has
the same terms we have for the noninteracting QBE. The terms on the right involving the self-
energy operatorM̃ are the contributions of the interactions. This factor is nonzero since the two
matrices do not commute. The various terms which contribute to the self-energy in equilibrium
also contribute to the scattering and interactions in nonequilibrium. We now examine these various
terms to see how they enter into the QBE for photons.

An important question is whether the scattering center remains in thermal equilibrium. When
the photons diffuse they are not in thermal equilibrium. Whether the scattering centers remain in
equilibrium depends upon their connection to the heat bath. If the scattering centers are the cells
of the body, they are probably well connected to a heat bath. We will assume this to be the case.
The cells absorb radiation, and convert it to heat. A counter example is when the scattering is done
by individual atoms in a gas. The atoms have no place to dissipate their energy except by
reradiating the absorbed photons. Then the atoms are out of equilibrium along with the photons.

B. First-order scattering

There are two scattering terms. As for the case of equilibrium, the lowest order term is from
P ~v! which givesM̃5ns(v/c)

2ã(v). The commutator of the two matrices is

ãD̃2D̃ã5@a.D ,2a ,D .#S 11 21
21D . ~85!

In equilibrium we have that
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a,52 in~v!A~v!, ~86!

a.52 i @n~v!11#A~v!, ~87!

A~v!52p
e2

\ (
l
r lm
2 @d~v2v l !2d~v1v l !#. ~88!

We assume that the photons are only slightly out of equilibrium. The photon Green’s functions
D , andD . both equal their equilibrium part plus a nonequilibrium termdD . The QBE for the
nonequilibrium part is, including only the absorption term in the scattering part,

Fv ]

]T
1c2q–“R12pnsv

2A~v!GdD50. ~89!

The last term in brackets is due to photon absorption at the cells, wherens is the volume density
of such scatterers, andA~v! is the spectral function of the polarizability.

C. Second-order scattering

There is a self-energy term in the equilibrium case~60! which is due to a double scattering
event. Here, we consider how the same term enters into the scattering term for the QBE. For this
case we can write the matrixM̃ as

M̃5nsS v

c D 4ãD̃8ã, ~90!

D̃85
1

2V (
q8

@11~ q̂•q̂8!2#@S~q2q8!21#D̃~q8,v;R,T!. ~91!

In order to evaluate the scattering term we need the combination of matrix multiplications

Ñ5ãD̃8ãD̃2D̃ãD̃8ã. ~92!

This expression is complicated. For the QBE we only need the componentN12 of the 232 matrix
which gives the contribution toD,. After much algebra we find

N1252D,@Dr8a r
22Da8aa

2#1~D.2D,!@a,~a rDr81aaDa8!1a raaD
,8#. ~93!

Usually we assume that the system is only slightly out of equilibrium. Then we set the photon
Green’s functions to an equilibrium part plus a nonequilibrium partD→D1dD, etc. The term
containing only equilibrium factors vanishes. We linearize the equations and retain only the terms
proportional to one power of the nonlinear component.

dN125dD8a raa@D
.2D,#2dD@Dr8a r

22Da8aa
2#. ~94!

Factors such asD.,D,,Dr8 ,Da8 are evaluated using their equilibrium values. The first term on the
right is due to the nonequilibriumdD8. It is due to the photons scattering back into the distribu-
tion. The term proportional todD is scattering out of the distribution of photons. The rates of
these two process are not equal. However, we can rearrange this expression to give

dN125 ia raa@BdD82B8dD #12iAdDR$a rD r%. ~95!
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The last term on the right is a contribution to the absorption coefficient. The first two terms give
the scattering in and out of the photons from the distribution. These terms are now symmetrical.

When photons diffuse they scatter without changing frequencies. In the expression for@12S~q
2k!# the two wave vectors will have the same magnitude:uqu5uku. This factor depends mainly on
the scattering angleu between these two vectors. Definem5cos~u! so thatq–k5k2m then our
expression for the structure factor becomes

@12S~q2k!#5
1

@112~ka!2~12m!#2
. ~96!

In the diffusion regime, whereka@1, then this function is highly peaked for forward scattering
~m;1!. Thus we have shown that photon scattering is peaked in the forward direction. This is well
known to workers in the field. However, they have attributed the forward scattering to the prop-
erties of a single cell, which is approximated as a water droplet. Here, we note that another
contribution to the forward scattering is the distribution of cells.

D. J algebra

So far we have treated the self-energies in the first two orders of perturbation. We wish to sum
subsets of diagrams to all orders of perturbation. We have found a simple method of doing this
using an algebra based on a matrix we callJ̃

J̃5S 11 21
21D . ~97!

Now it is possible to prove some theorems

~1!J̃ J̃50, ~98!

~2!ã J̃5a r J̃, ~99!

~3!J̃ã5aaJ̃, ~100!

where products of matrices imply matrix multiplication.
The first theorem is obvious by inspection. The second and third are proved similarly, and it

is sufficient to prove one, say the second. From the definition of the matrices we get

ã J̃5S a t

a.

2a,

2a t̄ D S 11 21
21D ~101!

5S a t2a,

a.2a t̄

2a t1a,

2a.1a t̄ D ~102!

5a r S 11 21
21D , ~103!

wherewehaveused the identities thata r 5 a t 2 a, 5 a. 2 a t̄ .
These results allow us to evaluate in a simple way any product of matrices containing oneJ̃

matrix. An example is

ãD̃J̃ã5a raaDrJ̃. ~104!
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Any matrix to the left ofJ̃ gets replaced by its retarded function, and any matrix to the right ofJ̃
gets replaced by its advanced function. Any string with two of them is zero.

This simple algebra allows us to evaluate in a simple way the perturbation series for the
photon self-energies. The photon Green’s function matrix is evaluated as an equilibrium term plus
a nonequilibrium termdD which is the same for every element of the matrix

D→D1dDJ̃. ~105!

The nonequilibrium term is proportional to theJ̃ matrix. As an example, consider the second-order
self-energy evaluated in the prior section

Ñ5ãD̃8ãD̃2D̃ãD̃8ã. ~106!

We find the term proportional to one power of the nonequilibrium part

dÑ5dD@ãD̃8ã J̃2 J̃ãD̃8ã#1dD8@ã J̃ãD̃2D̃ã J̃ã# ~107!

5dD@a r
2Dr82aa

2Da8#1a raadD8@Da2Dr #. ~108!

This gives the prior result, and by a derivation which takes only a few lines. Similarly, in the next
higher order of perturbation theory we find

Ñ5ãD̃8ãD̃8ãD̃2D̃ãD̃8ãD̃8ã, ~109!

dÑ5dDJ̃@a r
3Dr8

22aa
3Da8

2#1dD8J̃a raa@a rDr81aaDa8#@Da2Dr #. ~110!

Continuing in his way we can easily derive the expressions for terms in the higher order of
perturbation theory. Then it is possible to sum the series and we finally obtain the total result

dÑ5dDJ̃F a r

12a rDr8
2

aa

12aaDa8
G

5
a raadD8

~12a rDr8!~12aaDa8!
J̃@Dr2Da#

5
a raa

~12a rDr8!~12aaDa8!
J̃@dD~Dr82Da8!2dD8~Dr2Da!#1

~a r2aa!dD

~12a rDr8!~12aaDa8!
J̃.

~111!

We have presented two equivalent expressions. In the second expression, we have grouped them
such that the first two terms describe scattering, while the last term describes absorption.

The effect of the higher-order terms is to provide terms in the denominator such as (1
2 a rDr8) and (12 aaDa8). These provide local field corrections to the polarizabilities of the scat-
tering centers. As remarked earlier, for the case of photon diffusion these terms are negligible. We
omit them since we are primarily interested in this case. Then the absorption term is given by the
expression derived from the first-order scattering. The QBE we have derived so far, including
second order terms, is

Fv
]

]T
1c2q–“12pc2~Ga~v!1Gs~q,v!#dD~q,v;R,T!

52pc2nsB~q,v;R,T!E d3k

~2p!3
dD~k,v;R,T!

ds~ q̂• k̂!

dV
@12S~q2k!#, ~112!
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Ga~v!5nsS v

c D 2A~v!, ~113!

Gs~q,v;R,T!5nsE d3k

~2p!3
B~k,v;R,T!

ds~ q̂• k̂!

dV
@12S~q2k!#, ~114!

ds~ q̂• k̂!

dV
5S v

c D 4a~v!2
1

2
@11~ q̂• k̂!2#. ~115!

This QBE is the main result of this calculation. In the next section we discuss various moments of
this equation.

We have written the scattering in terms of the differential cross section for the photon scat-
tering. We also give the cross section for Rayleigh scattering. Another important scattering source
is Mie scattering from a dielectric sphere. Mie scattering is the correct theory if the scattering
centers are spheres. Examples are water droplets in clouds or else latex balls suspended in water.
The theory of Mie scattering is given in standard textbooks.26 A very interesting test of the theory
is given by Zaccanti and Bruscaglioni.27 They show that the Mie scattering is highly peaked in the
forward direction whena@l, wherea is the radius of the spheres.

VI. MOMENTS

One of our goals is to derive Eq.~1!. Since it does not depend upon the frequency variablev
then this equation is obtained from our QBE by an integration over frequency.

‘‘Moment equations’’ are the name applied to macroscopic equations obtained by integrating
the QBE over frequency, over wave vector, or both. Functions of frequency and wave vector are
inserted into these integrals to give various macroscopic equations. We know in advance that we
should obtain equations which depend upon macroscopic quantities such as

~1! The number density of photonsf ~q,r ,t!.
~2! The photon energy density which depends upon electricE and magneticB fields

E~R,T!5
1

8p
@E2~R,T!1B2~R,T!#. ~116!

~3! The Poynting vector for energy flux

S~R,T!5
c

4p
E3B. ~117!

Since the last two quantities do not depend uponq or v they are moments obtained by integrating
over bothdv andd3q.

A. Equilibrium moments

A useful introduction to this topic is obtained by taking moments of the equilibrium functions.
They provide a guide to possible macroscopic variables. The basic definitions are in Eqs.~29! and
~31!. The polarization tensor~dmn2q̂mq̂n! is evaluated by taking its trace which is 2

i(
m
D mn

, ~q,v!52B~q,v!n~v!, ~118!

B~q,v!5
~2pc!2\

vq
@d~v2vq!2d~v1vq!#, ~119!

4347G. D. Mahan: Quantum Boltzmann equation for photons

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Ln~q!5E dv

2p
vnB~q,v!n~v!, ~120!

L05
~2pc!2\

vq
@2n~vq!11#, ~121!

L152~2pc!2\, ~122!

L25~2pc!2\vq@2n~vq!11#. ~123!

The momentL0 appears to be the particle density, whileL2 is the energy density. The momentL1
is just a constant. The even moments are proportional to the photon occupation numbern(vq).
They are candidates for being a distribution function. The odd moments are not proportional to the
photon density.

B. Nonequilibrium moments

Here, we evaluate the same moments using the nonequilibrium distributions. We define them
as

Jn~q,R,T!5 i E dv

2p
vn(

m
D mm

, ~q,v;R,T!

5 i nE dtd~ t !E d3r e2 iq–r
]n

]tn (
m

KAmSR1
r

2
;T1

t

2DAmSR2
r

2
;T2

t

2D L .
~124!

We have used the definition of the correlation functions as a Wigner distribution function. From
now on, in this section, the summation overm is intended, but is not written explicitly. The first
moments are as follows.

1. n50. Here, there are no time derivatives. This suggests the following definition for the
photon density:

f ~q,R,T!5
vq

~2pc!2\
E d3r e2 iq–rKAmSR1

r

2
;TDAmSR2

r

2
;TD L . ~125!

2. n51. Here, there is a single time derivative. We use the notationA~6! to denote
Am~R6 r

2,T!. In the following equations, we use the fact that the time derivative of the vector
potential is proportional to the electric field

J15
i

2 E d3r e2 iq–r^Ȧ~1 !A~2 !2A~1 !Ȧ~2 !& ~126!

52
ic

2 E d3r e2 iq–r^E~1 !A~2 !2A~1 !E~2 !&. ~127!

The quantity in brackets would be the commutator of the electric field with the vector potential,
except that the space arguments in the last term are interchanged. So this moment has a complex
behavior. It is not a simple constant, as it was for the equilibrium case.

3. n52. There are two time derivatives which can be expressed as

J252
1

4 E d3r e2 iq–r^Ä~1 !A~2 !1A~1 !Ä~2 !22Ȧ~1 !Ȧ~2 !& ~128!

4348 G. D. Mahan: Quantum Boltzmann equation for photons

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



52E d3r e2 iq–rF ]2

4]T2
^A~1 !A~2 !&2^Ȧ~1 !Ȧ~2 !&G . ~129!

The first term in brackets is the second time~i.e., T! derivative of f ~q,R,T!. The last term in the
bracket is just the correlation function of the electric field with itselfc2^E(1)E(2)& and is
related to the energy density. For equilibrium moments the second moment was proportional to the
density of photons

~2p!2\W~q,R,T!5E d3r e2 iq–r^Em~R1 1
2r ,T!Em~R2 1

2r ,T!&. ~130!

It is reasonable to suggest that the distributionW, from the energy density, is proportional to
f ~q,R,T!. We can express even moments in terms of this distribution function. However, the odd
moments must be another function.

C. Boltzmann equation

Now we turn to the derivation of Eq.~1!. The obvious way to obtain this equation is to
integrate the QBE over all frequency: to take its zeroth moment. For this discussion, we focus
initially on the first two terms in the QBE which are

Fv ]

]T
1c2q–“GD5. ~131!

If we integrate this equation over all frequency, then there is a problem. The first term has the first
moment while the second term has a zeroth moment. These two moments are fundamentally
different, since one is proportional to the density of photons while the odd moment is something
else. This problem is not corrected by multiplying the equation by any power ofv, since one term
will be an even moment and the other will be an odd moment.

We examined the references on the QBE for phonons, to see how previous authors solved the
problem there. They obtained a BE by a procedure which we regard as incorrect. Theyassumed
that9–16

D,5C~q!d~v2vq! f ~q,R,T!, ~132!

whereC(q) is a function ofq. With this assumption, the zeroth moment of frequency gives an
equation similar to Eq.~1!. However, our moment analysis has shown this assumption is incorrect.
There is no reason to omit the contribution from negative frequencies.

We decided to proceed by deriving two distribution functions. The first isf ~q,R,T! which is
defined in Eq.~125!, and which is related to the density of photons. The second we define as
g~q,R,T! is related to the odd moments of the distribution function

~2pc!2\g~k,R,T!5E dv

2p
vD~k,v,R,T!. ~133!

This correlation is proportional to the bracket in Eq.~127!. Using this definition, we can now take
moments of the Boltzmann equation. In doing the frequency integral, we examine the parity of the
terms multiplyingD in the frequency integrand. If these terms are even in frequency, such asv2n

or elsevA~v!, then this integral is proportional tof ~q,R,T!. However, if these factors are odd
functions of frequency, then we suppose the integral is proportional tog~q,R,T!. The division of
terms into odd and even functions of frequency allows us to define the absorption and scattering
terms.
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1. n50
We take the frequency integral of the QBE in Eq.~112! and derive

]

]T
g1cq̂–“ f1S 1ta 1

1

ts
Dg5

1

ts
E dV8

4p
P~ q̂• k̂!g~k,R,T!, ~134!

1

ta
52pnsvqA~vq!, ~135!

1

ts
5

~2p!3c4

vq
2 nsE d3k

~2p!3
d~vk2vq!

ds~ q̂• k̂!

dV
@12S~q2k!#

5cnsE dV8
ds~cos~u!!

dV8
@12S~2q sin~u/2!!#, ~136!

P~ q̂• k̂!5ctsns
dv~cos~u!!

dV8
@12S~2q sin~u/2!!#. ~137!

Note that the structure factor 12S enters into the definition of the scattering functionP(q̂• k̂).
Previous workers only included the scattering cross section in this function.

2. n51
Here, we multiply the QBE byv and integrate over all frequencies. Sorting integrands ac-

cording to whether they are even or odd functions of frequency produces the following equation:

]

]T FW2
1

4vq
2

]2

]T2
f G1cq̂–“g1S 1ta 1

1

ts
D f5 1

ts
E dV8

4p
P~ q̂• k̂! f ~k,R,T!. ~138!

The terms for absorption and scattering are the same ones in Eq.~134!. We make two approxi-
mations on this expression. First, we neglect the triple time derivative off . Since we are interested
in diffusion, then they should give a very small contribution. Second, we assume the energy
density is just the phonon frequency multiplied byf . If this is true, thenW5 f . With these two
assumptions, Eq.~138! becomes

]

]T
f1cq̂–“g1S 1ta 1

1

ts
D f5 1

ts
E dV8

4p
P~ q̂• k̂! f ~k,R,T!. ~139!

When we compare Eqs.~134! and~139! we see they are similar. One is found from the other by
exchangingf andg. It makes sense to alternately add these two equations, or subtract them

f ~6 !5 f6g,

F ]

]T
1cq̂–“1S 1ta 1

1

ts
D G f ~1 !5

1

ts
E dV8

4p
P~ q̂• k̂! f ~1 !~k,R,T!,

~40!

F ]

]T
2cq̂–“1S 1ta 1

1

ts
D G f ~2 !5

1

ts
E dV8

4p
P~ q̂• k̂! f ~2 !~k,R,T!.

The first of these two equations is the same as Eq.~1!. Thus we have derived this equation, which
was one of the goals of this paper. We now see that it is the Boltzmann equation for the combi-
nation f (1)5 f1g. We associate this function with photons of positive frequency. We have also
derived a second equation forf (2)5 f2g. We associate this function with photons of negative
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frequency. Without any interactions, thenf (1)5F~q•R2vT! while f (2)5F~q–R1vT!. Obvi-
ously f ~1! corresponds to the physics convention that a wave of positiveq and positive frequency
moves in the directionR with increasing time.

VII. DISCUSSIONS

We have provided the first derivation of the quantum Boltzmann equation for photons. We
have showed how the usual Boltzmann equation for the photon density can be derived from this
QBE by taking moments. One result of this derivation is an explicit expression for the scattering
term in the Boltzmann equation. This function contains a factor which relates to the distribution of
scattering centers. We also showed that there are negligible local field corrections for the case of
photon diffusion, which is the primary application of the QBE. Finally, we introduced a matrixJ̃
which makes the discussion of perturbation expansions very easy.

Stephen12 has discussed the phenomena of photon diffusion and coherent backscattering. His
analysis is derived from the correlation function of the electric field with itself. His analysis starts
from a different point, the electric field in the coherent potential approximation. We tried and
failed to derive coherent backscattering using our formalism. We summed several sets of dia-
grams, besides those reported here. We summed every set we could imagine. But none gave
coherent backscattering. We are still working on this problem.
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On the vacuum stability in the Efimov–Fradkin model
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The behavior of the nontruncated and truncated Efimov–Fradkin models
~L int52(n53

N lnw
n! at finite temperature in a genericD-dimensional flat space–

time was investigated. The thermal contribution to the renormalized mass and
coupling constants are obtained in the one-loop approximation by the use of a mix
between dimensional and the Epstein zeta function analytic regularization and a
modified minimal subtraction procedure. We proved that forDc(N21)<D there is
not a temperature for which at least one of the renormalized coupling constants
becomes zero, whereDc(N21) is the critical spacetime dimension for the renor-
malized coupling constantlN21. For Dc(N)<D,Dc(N21) only the renormal-
ized coupling constantlN21 becomes zero at some temperaturebN21

21 . For
D,Dc(N) the renormalized coupling constantslN21~b! andlN~b! become zero at
temperaturesbN21

21 andbN
21, respectively. In the latter situation, for temperatures

bN21
21 ,b21,bN

21 the effective potential has a global minimum. For temperatures
abovebN

21, the system can develop a first order phase transition, where the origin
corresponds to a metastable vacuum. In the nontruncated model, corresponding to a
nonpolynomial Lagrange density, forD>2 all the coupling constants remain posi-
tive for any temperature. ©1996 American Institute of Physics.
@S0022-2488~96!01909-3#

I. INTRODUCTION

In this paper an attempt is made to understand the vacuum stability mechanism in scalar
models at finite temperature assuming polynomial and nonpolynomial Lagrange densities. It is of
common knowledge that the ultraviolet divergences that arise in models with nonpolynomial
Lagrange densities are not worse graph by graph than those encountered in polynomial renormal-
izable models.1 This result was obtained using a summation method introduced by Efimov and
Fradkin.2,3 The idea of the method is to investigate the Borel summability of the divergent per-
turbative series.4 The interaction Lagrange density of these models may be expanded in a power
series of the type,

L int52 lim
N→`

(
n53

N

lnw
n~x!, ~1!

wherew(x) is a Hermitian scalar field andln are the coupling constants of the model.
Instead of regularizing the model using a ultraviolet cutoffL in the Euclidean momenta, or

assuming the existence of a spacetime microscopic structure, characterized by a lattice spacinga,
we preferred to regularize it by using a combination of two different methods: the dimensional5

and analytic regularization methods.6 The advantage of this technique lies in the fact that the
dependence of mass and coupling constant with the temperature appear in a very straightforward

a!Electronic mail: adolfo@lafexsu1.lafex.cbpf.br
b!Electronic mail: nfuxsvai@lca1.drp.cbpf.br
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way. A recent discussion on the relation between the cutoff method and analytical regularization
procedures to obtain the Casimir energy in an arbitrary ultrastatic spacetime with or without
boundaries, may be found in Svaiter and Svaiter.7 Upon the application of the analytic regular-
ization method, a mass parameterm is introduced, in order to deal with dimensionless quantities in
the analytic extensions. It is not difficult to show that the canonical dimension of the coupling
constants of the model are given by

ln5mD2~n/2!~D22!, ~2!

whereD is the space–time dimension. Each coupling constant in the expansion given by Eq.~1!
has a critical dimensionDc(n). By critical dimension of each coupling constant we mean a
space–time dimension such that below it the coupling constant may be a large quantity due to its
positive dimensionD2(n/2)(D22) in terms ofm ~or using the critical phenomena language, in
terms of the original scale 1/a, wherea is the lattice spacing!. We define the critical space–time
dimensionDc(n)52n/(n22), as the space–time dimension where the renormalized coupling
constantln is dimensionless. BelowDc(n), the model is superrenormalizable. We demonstrate
that in the superrenormalizable case above some temperature the system may suffer a first order
phase transition.

In two recent papers studying thelw4 model, the possibility of changing the sign of the
renormalized coupling constant was raised.8,9 In the first one, the thermal and topological contri-
butions to the renormalized mass and renormalized coupling constant in the one-loop approxima-
tion were obtained.8 In the second one we extended the study of thelw4 model at finite tempera-
ture to a genericD-dimensional space–time with trivial topology of the spacelike section and we
also discussed the behavior with the temperature of the Gross–Neveu model, which is an ultra-
violet asymptotically free model. In the Gross–Neveu model, we proved that forD53 the thermal
contribution to the renormalized coupling constant is zero. On the other hand, forDÞ3 our results
are inconclusive.9 Studying thelw4, model we obtained more concrete results. Still using the
effective potential and the one-loop approximation, we presented the thermal contribution to the
renormalized mass and coupling constant. The thermal renormalized coupling constant is given by

l~b!5l~`!1Dl~b!, ~3!

wherel~`! is the temperature independent renormalized coupling constant andDl~b! is its ther-
mal correction. Using the fact thatDl~b! is negative, we proved that forD,4, at sufficiently high
temperatures, the system may suffer a first order phase transition with a metastable vacuum at the
origin.

In the majority of the papers in the literature the temperature dependence of the renormalized
coupling constant is neglected. This approach is reasonable if we are interested in studying a
second order phase transition. In this case, the variation of the squared mass with the temperature
is the most important fact. Therefore, it is sufficient to consider the renormalized coupling constant
as independent of the temperature, and the sign of the squared mass drives the second order phase
transition. The situation that we are interested in discussing here is quite different, since the goal
of our investigation is not the behavior of the system in the neighborhood of a second order phase
transition. Our intention is to study the model in the high temperature regime~far from a critical
temperature!, where the possibility of vanishing some renormalized coupling constant with a first
order phase transition at some temperature arises.

We would like to emphasize that the study of the dependence of the coupling constant with
the temperature is not new in the literature. Many authors have studied such dependence in scalar
models10 and also in non-Abelian gauge theories.11 In the former case, since QCD is an asymp-
totically free theory, it can be shown that as the temperature increases, the temperature dependent
renormalized coupling constant goes to zero. As we discussed, in thelw4 model if D,4, for
temperaturesb21 above the temperaturebT

21 the renormalized coupling constantl~b! becomes
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negative and the origin is a metastable vacuum. This kind of problem occurs with nonasymptotical
models. The growth of the coupling constant at large momenta corresponds to the temperature
growth ~in modulus! of the renormalized coupling constant.

Even in the absence of temperature, the instability of the vacuum of models using scalar fields
has been discussed in the literature. An enlightening discussion has been done by Linde.12 Study-
ing the O(N) model and performing an 1/N expansion of the effective potential, this author
showed that the effective potential is a double-valued function of the fieldw @where the field
F5~w1,...,wN! has a classical partF5AN~w,0,...,0!#. In the upper branch appears a tachyonic pole
that leads us to disregard it as a nonphysical one, remaining the effective potential described by a
unique curve that for large values of the classical field is not bounded from below.

We would like to stress that the situation treated in this paper is very similar to the examples
where renormalized quantities depend on the geometric parameters of the spacelike section. The
simplest example is the renormalized vacuum energy of scalar fields confined in a parallelepipedal
box, where the sign of the energy may depend on the relative lengths of the cavity. Indeed the sign
of the Casimir energy may depend on the spacetime dimension, the type of boundary conditions,
etc.,13 but we would like to emphasize only the dependence of the Casimir energy on the ratio of
the sizes of the box@imposing a Dirichlet boundary condition# to give a rough idea of what kind
of behavior we expect in situations where regularization and renormalization procedures are
obligatory. Note that the possibility of obtaining a negative renormalized coupling constant in the
lw4 model was conjectured by Nash a long time ago.14

In this paper, we will investigate the one-loop renormalization of the truncated and nontrun-
cated Efimov–Fradkin model assuming thermal equilibrium with a reservoir at temperatureb21.
Using the one-loop effective potential discussed briefly in Refs. 8 and 9, we will show that if
D>Dc(N21), all the renormalized coupling constants of the truncated model are positive for any
temperature~note that for reasons of stability in the tree levelN must be even!. For
Dc(N21).D>Dc(N) only the renormalized coupling constantlN21~b! becomes zero at some
temperaturebN21

21 . For Dc(N).D, the renormalized coupling constantslN21~b! andlN~b! be-
come zero at the temperaturesbN21

21 andbN
21, respectively.

The outline of the paper is the following: in Sec. II the effective potential is presented. In Sec.
III the thermal contribution to the renormalized mass and coupling constant are presented in the
truncated model~N54!. In Sec. IV we repeat the calculations of the truncated model forN.4 and
in the nontruncated model. Finally, we discuss some applications of our results in curved space-
time and high order behavior of perturbation theory. Conclusions are given in Sec. V. In this paper
we use\5c51.

II. THE ONE-LOOP EFFECTIVE POTENTIAL OF THE EFIMOV–FRADKIN MODEL AT
ZERO AND FINITE TEMPERATURE

In this section we will generalize some results obtained in Refs. 8 and 9. Suppose we have a
D-dimensional flat space–time with trivial topology of the spacelike section and Bose fields in
thermal equilibrium with a reservoir at temperatureb21. Let us assume the following Lagrange
density associated with a massive neutral scalar field,

L5
1

2
~]mw!22

1

2
m2w22(

n!

`
ln

n!
wn1counterterms. ~4!

Since the model is nonrenormalizable, the counterterms have meaning only in the context of a
finite number of loops. Note that we are not assuming inversion symmetry in the model, i.e.,
V(w0)5V(2w0). If we assume it, the only surviving terms will be the even powers of the field.
The time ordered products of the fields can be continued analytically to imaginary times, and we
define a Euclidean action integrating the analytic continuation to imaginary times in the Lagrange
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density. After a Wick rotation, defining the normalized expectation value of the field by
w05^0uwu0&/^0u0&, the zero temperature effective potential is given in the one-loop approximation
by

V~w0!5VI~w0!1VII~w0!, ~5!

where

VI~w0!5
1

2
m2w0

21 (
n53

`
ln

n!
w0
n1counterterms, ~6!

and

VII~w0!5(
s51

`
~21!s11

2s S (
n53

`
1

~n22!!
lnw0

n22D sE dDq

~2p!D
1

~v21q21m2!s
. ~7!

There is no difficulty in extending the above results, assuming that the system is in thermal
equilibrium with a reservoir at temperatureb21. In the study of quantum fields at finite tempera-
ture two different approaches are currently used. The first one is the real time formalism in the
canonical15 or path integral approach.16 The second one, is the Euclidian time formalism and will
be used from now on in this paper. After a Wick rotation, the functional integral runs over the
fields that satisfy periodic boundary conditions in Euclidian time. The effective action may be
defined, as in the zero temperature case, by a functional Legendre transformation. Regularization
and renormalization procedures follow the same steps taken in the zero temperature case, since
temperature effects do not change the ultraviolet behavior of the model. Summing up, to study
temperature effects in Bose fields we must perform the following replacements in the Euclidian
region:

E dv

2p
→

1

b (
n8

, ~8!

and

v→vn85
2pn8

b
, ~9!

wherevn852pn8/b are the Matsubara frequencies. Introducing a mass parameterm and defining
the dimensionless quantities,

c25
m2

4p2m2 , ~10!

~bm!25a21, ~11!

and

ki5
qi

2pm
, ~12!

the Born terms plus the one-loop contributions to the effective potential are given by

V~b,w0!5VI~w0!1VII~b,w0!,
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where

VI~b,w0!5
1

2
m2w0

21 (
n53

`
ln

n!
w0
n1counterterms, ~13!

and

VII~b,w0!5AamD(
s51

`
~21!s11

2s
S (
n53

`
lnw0

n22

4p2m2~n22!!
D s (

n852`

` E ddk
1

~an821k21c2!s
.

~14!

Owing to the discreteness of the Matsubara frequencies, an analytic regularization procedure
will be used. Defining the inhomogeneous Epstein zeta function as

AN
c2~s,a1 ,a2 ,...,aN!5 (

n1 ,n2 ,...,nN52`

`

~a1n1
21a2n2

21•••1aNnN
21c2!2s, ~15!

we will see that its analytic continuation will be used to regularize the model. Before showing how
this analytic continuation works, and in order to simplify Eq.~14!, it is convenient to definegn and
f as the new coupling constants and an adimensional~for D54! vacuum expectation value of the
field

gn5
ln

4p2m42n~n22!!
, ~16!

and

w0

m
5f. ~17!

Substituting Eq.~16! and Eq.~17! in Eq. ~14! we obtain

VII~b,f!5mDAa(
s51

`
~21!s11

2s
S (
n53

`

gnf
n22D s (

n852`

` E ddk
1

~an821c21k2!s
. ~18!

Since the spatial section of the space–time is noncompact, in order to deal with the divergences in
the integral of Eq.~18!, we will first use dimensional regularization. From the well-known for-
mula,

E ddk

~k21b2!s
5

pd/2

G~s!
GS s2

d

2D 1

b2s2d , ~19!

and definingf (D,s) as

f ~D,s!5 f ~d11,s!5
~21!s11

2s
pd/2GS s2

d

2D 1

G~s!
, ~20!

it is possible to writeVII~b,f! in terms of the inhomogeneous Epstein zeta function given by Eq.
~15! as
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VII~b,f!5mDAa(
s51

`

f ~D,s!S (
n53

`

gnf
n22D sA1

c2S s2
d

2
,aD . ~21!

The termss<D/2 are divergent, which implies that the effective potential is not yet regular-
ized. To complete the regularization, let us assume that each term in the series of the one-loop
effective potentialV~b,f! is replaced by its analytic extension, defined at the beginning in a open
connected set of points of the complex planes. Since we discussed carefully the process of the
analytic continuation in the previous works, here we will only sketch this derivation. First, it is
necessary to write Eq.~21! in terms of the modified inhomogeneous Epstein zeta function as we
did in the above quoted works. For Re(s).N/2, the modified inhomogeneous Epstein zeta func-

tion,EN
c2(s,a1 ,a2 ,...,aN) converges and represents an analytic function ofs, so Re(s).N/2 is the

largest possible convergence domain of the series. The next step is to establish a connection
between the terms of the series defining the inhomogeneous Epstein zeta function and the Euler
integral representation of the gamma function. For instance, in the case of only one sum this
connection is of the type

1

~n1a!s
5

1

G~s!
E
0

`

ts21e2t~n1a!dt.

Summing overn in both sides, we obtain in the left-hand side the inhomogeneous Riemann zeta
function and in the right-hand side a still divergent integral. We split the integral into two parts,
the first one defines an entire functionQ(s) and the second oneP(s) contains the divergences.
Then we use a Bernoulli representation for the integrand ofP(s) and the Weierstrass theorem to
exchange the sum and integral operations. This allows us to show thatP(s) extends to a mero-
morphic function ofs having simple poles. The generalization the case of a multiple sum goes
along the same lines.

Therefore, using the results of Ref. 17 we rewrite Eq.~21! as

VII~b,f!5mD(
s51

` S (
n53

`

gnf
n22D sh~D,s!F 1

2D/22s12 GS s2
D

2 D Smm D D22s

1 (
n851

` S m

m2bn8D D/22s

KD/22s~mn8b!G , ~22!

where

h~D,s!5
1

2D/22s21

1

pD/222s

~21!s11

s

1

G~s!
. ~23!

Although Eq.~22! is ill defined, in the one-loop approximation it is possible to find the exact
form of the counterterms in such a way that, mass and coupling constants~and consequently! the
effective potential are finite quantities. To extract the singularities from the analytic extensions, let
us define the mass squared as the value of the inverse propagator at zero momentum and the
coupling constantln as the propern-point function at zero external momentum. In fact, the true
physical mass is defined as the value ofp2 at which the inverse propagator vanishes. However, the
two values are related by a finite renormalization. In the next section, we will develop such an idea
in a very simple case: the truncated~N54! Efimov–Fradkin model and, subsequently, present the
temperature dependent renormalized squared mass and coupling constants of the model.
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III. THE RENORMALIZED MASS AND COUPLING CONSTANTS IN THE TRUNCATED
(N54) EFIMOV–FRADKIN MODEL

The goal of this section is to study how temperature effects lead to instabilities in scalar
massive models. For the sake of simplicity and in order to obtain some insight about the thermal
contribution to the renormalized mass and coupling constants in the nontruncated Efimov–Fradkin
model, let us suppose the truncated model, i.e.,ln50 for n.4. We remark that the theory defined
only with the terml3 is not consistent in any spacetime dimension since the energy is not bounded
below, and so no ground state can exist in the interacting theory. The inclusion ofl4 introduces a
global minimum in the model. Defining

f ~D,s!5
1

2D/22s12 GS s2
D

2 D ,
it is possible to writeVII~b,f! as

VII~b,f!5mD(
s51

`

(
k50

s

h~D,s!Cs
kg3

s2kg4
kfs1kF f ~D,s!Smm D D22s

1 (
n51

` S m

m2bnD D/22s

KD/22s~mnb!G . ~24!

In order to find the exact form of the counterterms that will render the model finite, let us
consider the renormalization conditions for the nontruncated model

]2

]f2 V~b,f!uf505m2m2, ~25!

and

]n

]fn V~b,f!uf505mnln , n53,4,... . ~26!

We should point out that, strictly speaking, there is no need for wave function renormalization
because the vacuum expectation value of the field has been chosen to be a constant. Using Eqs.
~6!, ~24!, ~25!, and~26!, it is possible to find the exact form of the counterterms in such a way that
they cancel the pole contribution of the analytic extensions. In the neighborhood of the poles, the
regular part of the analytic extension of the inhomogeneous Epstein zeta function has two contri-
butions: one which is independent of the temperature~this contribution can be absorbed in the
counterterms!, and another that depends on it. The thermal contribution to the renormalized cou-
pling constant is proportional to the regular part of the analytic extension of the inhomogeneous
Epstein zeta function in the neighborhood of some poles for the ultraviolet divergent graphs. Of
course, nonultraviolet divergent graphs do not need to be regularized giving a finite thermal
contribution to the renormalized quantities.

Note that we are choosing the renormalization conditions atw050. This may be done in the
truncated model even if the minimum of the effective potential is not atw050, since the renor-
malization point is totally arbitrary. The values of the renormalized quantities obtained using
w050 as the renormalization point are related to the corresponding quantities obtained in the true
vacuumw0Þ0 by the equations,

m2uw05
1
2 m

21 1
2 l3w01

1
4 l4w0

2, ~27!

4358 A. P. C. Malbouisson and N. F. Svaiter: On the vacuum stability in Efimov–Fradkin model

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



l3uw05
1

3!
~l31l4w0!, ~28!

and finally

l4uw05l4 . ~29!

Analyzing the sign of the thermal corrections to the renormalized physical parameters evaluated at
f50, the sign of Eqs.~27! and ~29! does not change. This is expected since the metastable
behavior and the existence of a global minimum cannot depend upon the choice of the renormal-
ization point. For the case of the coupling constantl3~b! with the restrictive conditionuw0l4u,ul3u,
all the forthcoming conclusions also apply.

Let us callDm2(D,b,m,l3 ,l4 ,m) andDln(D,b,m,l3 ,l4 ,m), n53,4 the thermal squared
mass and thermal coupling constants, respectively. In the following, in order to simplify the
notation we keep explicitly only theb dependence of the renormalized quantities. Thus,

m2~b!5m21Dm2~b!, ~30!

ln~b!5ln1Dln~b!, n53,4, ~31!

and for the sake of simplicity in the notation in the rest of this section, we calll3~b!5s~b! and
l4~b!5l~b!. From now on we will disregard the combinatorics factors in front of Feynman
diagrams, since they are always real positive numbers, and cannot change qualitatively the forth-
coming results concerning the sign of the renormalized physical parameters. We are interested
only in the connected one particle irreducible diagrams~1PI! which means that in the approxima-
tion we are making here, we have two graphs that contribute to the temperature dependent renor-
malized squared mass~see Fig. 1!, the termss51, k51 ~of orderl! ands52, k50 ~of orders2!.
It is not difficult to show that the cases51, k51 gives a positive contribution,

Dmg4
2 ~b!2Dmg4

2 ~`!5mD22h~D,1!g4(
n51

` S m

m2bnD
D/221

KD/221~mnb!. ~32!

In the same way, the contribution from the terms52, k50 is negative and it is given by

Dmg3
2 ~b!2Dmg3

2 ~`!5mD22h~D,2!g3
2(
n51

` S m

m2bnD
D/222

KD/222~mnb!. ~33!

Using general properties of the Bessel functionKn(z), we obtain that the leading contribution
comes from the graph given by Fig. 1~a!, i.e.,Dmg4

2 (b) 2 Dmg4
2 (`) 1 Dmg3

2 (b) 2 Dmg3
2 (`) . 0,

and the thermal correction to the renormalized squared mass is always positive. Using the proper
time method, Braden obtained the same expression for the thermal mass in thelw4 model@see Eq.
~32!#. This author also discussed the two-loop correction to the mass and proved that the coun-

FIG. 1. The two graphs that contribute to the temperature dependent renormalized massm2. Note that they are ultraviolet
divergent forD54.
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terterms are temperature independent.18 Note that the nonleading contribution coming from the
graph of Fig. 1~b! is negative, going in the direction of the vanishing of the mass. In other words,
in the truncated model with only nonzerol3 coupling constant~disregarding the problem of the
unboundedness of the effective potential even in the tree level approximation!, the thermal squared
mass will become zero and negative at high temperatures. Various investigations have been made
in theories with cubic coupling. Gross, Perry, and Yaffe19 calculated the thermal mass of a
graviton coupled with massless fermions in the one-loop approximation. These authors found that
the thermal mass squared was negative and the graviton developed an imaginary mass at some
temperature. This lead the authors to conclude that the hot flat space–time is unstable. The thermal
graviton one-loop correction was also analyzed by Kikuchi, Moriya, and Tsukahara and
Holstein.20 It was also shown that the thermal effects destabilize the hot curved space–time.

The situations that we are interested in discussing are the ones in which some renormalized
coupling constantln~b! vanishes by temperature effects. As we discussed above, ifD,Dc(n) this
situation can be realized. It is important to note that in this region the model is superrenormaliz-
able, and when the fields are massless, perturbative expansion suffers from severe infrared diver-
gences. Since the thermal squared mass is always positive and we are interested in the high
temperature regime, this problem does not afflict us, i.e., infrared divergences never appear in our
calculations at least in the one-loop aproximation. It should be noted that this fact does not occur
in higher order-loop calculations. If we considerN self-energy insertions ofO~l! ~a ring correc-
tion! into a single loop, its contribution is infrared divergent in the case of the zero mass of the
field. In other words, on the perturbative level the thermal mass generation does not prevent the
appearance of infrared divergences in higher order loop diagrams.

Let us now study the thermal contribution to the renormalized coupling constants. Initially, for
the thermal renormalized coupling constants~b! we obtain,

s~b!5s~`!1Dsg3
~b!1Dsg3g4

~b!. ~34!

As in the previous case, it is necessary to study the casess52, k51 ands53, andk50 ~see Fig.
2!. In the case ofs52, k51 @of ordersl, see Fig. 2~a!#, it is not difficult to show that it gives a
negative contribution,

Dsg3g4
~b!2Dsg3g4

~`!52mD23h~D,2!g3g4(
n51

` S m

m2bnD
D/222

KD/222~mnb!. ~35!

For the second case,s53, k50 @of the orders3, see Fig. 2~b!# the contribution is positive,

Dsg3
~b!2Dsg3

~`!5mD23h~D,3!g3
3(
n51

` S m

m2bnD
D/223

KD/223~mnb!. ~36!

The thermal correction to the renormalized coupling constants~b! is given by

FIG. 2. The two graphs that contribute to the renormalized coupling constants~b!. Note that only the first one is ultraviolet
divergent forD54.
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@Dsg3g4
~b!2Dsg3g4

~`!#1@Dsg3
~b!2Dsg3

~`!#. ~37!

The term between the first brackets of Eq.~37! dominates over the second one, and the thermal
correction to the renormalized coupling constants~b! is negative. We have the interesting situa-
tion where the renormalized coupling constants~b! attains its maximum at zero temperature
~b215`!, and decreases monotonically as the temperature increases. In other words, the thermal
contribution to the renormalized coupling constantDs~b! is negative, and increases in modulus
with the temperature. As we discussed in the previous sections, forD,Dc(n) the coupling
constant may be a large quantity. From Eq.~2!, it is not difficult to show thatDc(n)52n/(n22)
~see Fig. 3!. Since the thermal contribution to the renormalized coupling constant is negative, there
is a temperatureb3

21 wheres~b! vanishes ifD,6. Above this temperatures~b! becomes nega-
tive. As we will see, even ifD,4, there is a finite range of temperatures wherel~b! is still
positive. The thermal contribution to the renormalized coupling constantl~b! also can be calcu-
lated. The complete expression forl~b! is

l~b!5l~`!1Dlg3
~b!1Dlg3g4

~b!1Dlg4
~b!. ~38!

As in the previous case we need to study the graphss52, k52, s53, k51, ands54, k50 ~see
Fig. 4!. For the first cases52, k52 ~of orderl2!, we get a negative contribution@see Fig. 4~a!#,

Dlg4
~b!2Dlg4

~`!5mD24h~D,2!g4
2(
n51

` S m

m2bnD
D/222

KD/222~mnb!. ~39!

For the cases53, k51 @of the orders2l, Fig. 4~b!# we obtain a positive contribution

FIG. 3. The critical dimension as a function ofn for each coupling constantln .
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Dlg3g4
~b!2Dlg3g4

~`!53mD24h~D,3!g3
2g4(

n51

` S m

m2bnD
D/223

KD/223~mnb!. ~40!

Finally, in the last case,s54, k50 @of the orders4, Fig. 4~c!# we obtain a negative contribution
given by

Dlg3
~b!2Dlg3

~`!5mD24h~D,4!g3
4(
n51

` S m

m2b D D/224

KD/224~mnb!. ~41!

The thermal correction to the renormalized coupling constantl~b! is the sum of the contributions
from the three graphs of Fig. 4, which gives

@Dlg3
~b!2Dlg3

~`!#1@D̄lg3g4
~b!2Dlg3g4

~`!#1@Dlg4
~b!2Dlg4

~`!#. ~42!

The term between the last brackets in Eq.~42! dominates over the others and, since its contribution
is negative, the thermal correction to the renormalized coupling constantl~b! is negative. The
important conclusion from the above discussion is the following: the critical dimension forl is
D54, which implies that if we takeD,4 there is a temperature such thatl~b! becomes zero. Let
us callb4

21 this temperature. If the system is heated above this temperatureb4
21, the renormalized

coupling constantl~b! becomes negative. Note that we have two different temperatures~for
D,4! wheres~b! andl~b! vanish. Firsts~b! becomes zero atb3

21 @wherel~b! is still positive#
and after atb4

21 the renormalized coupling constantl~b! becomes zero@wheres~b! is negative#.
For temperaturesb21.b4

21 the system can develop a first order phase transition with the decay of
a false vacuum.21

Finally, the effective potential as a function of the temperature and the vacuum expectation
value of the field forD,4,m25m5l51 may be plotted in a ‘‘toy’’ model. The temperature is the
parameter that allows us to interpolate between the two configurations: a stable vacuum at low
temperatures and a metastable state at temperaturesb21.b4

21 ~see Fig. 5!. In the next section we

FIG. 4. The three graphs that contribute to the renormalized coupling constantl~b!. Again, only the first is ultraviolet
divergent inD54.
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will repeat the calculations that we have done in this section to the truncated~N.4! and also in the
nontruncated modes.

IV. THE RENORMALIZED MASS AND COUPLING CONSTANTS IN THE TRUNCATED
(N>4) AND THE NONTRUNCATED MODELS

In this section we will suppose a general truncated model, i.e.,ln50 for n.N.4. Since we
intend to disregard at the tree level the problem of the unboundedness of the energy density, we
assume thatN is an even integer. The calculations are now formally identical to the previous ones.
The only difference is the richness coming from the distinct graphs contributing to the thermal
renormalized coupling constants. For reasons that will become clear later we will study two
different situations,

~ i! D,Dc~N21!,

~ ii ! D>Dc~N21!.

For D,Dc(N21), let us investigate the thermal renormalized coupling constantslN22~b!,
lN21~b! andlN~b!, separately. We must analyze the leading diagrams giving contributions to the
renormalized coupling constantslN22~b!, lN21~b!, andlN~b!. In this case, it is not difficult to
show that there is a positive contribution to the renormalized coupling constantlN22~b! given by
the graphs51 in Fig. 6. This is because the leading contribution comes from the graph with the
smaller value ofs. An example of nonleading contributions are those given by the graphs in Fig.
7. The leading thermal contribution gives

FIG. 5. The effective potential as a function of the vacuum expectation value of the field and the inverse of the tempera-
ture. For low temperatures, it has a global minimum and for temperatureb21.bg4

21, the potential has a metastable vacuum.
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lN22~gN ,b!2lN22~gN ,`!>mD2N12h~D,1!gN(
n51

` S m

m2bnD
D/221

KD/221~mnb!. ~43!

The result above can be generalized to the other coupling constantsl3,...,lN23. Thus, the renor-
malized coupling constantsl3,...,lN22 are always positive, for anyD space–time dimension. The
situation changes in the case of the coupling constantlN21~b!. In this case the leading graphs are
given in Fig. 8. The thermal contribution from these graphs to the renormalized coupling constant
lN21 is given by

lN21~gN ,gN21 ,...,g3 ,b!2lN21~gN ,gN21 ,...,g3 ,`!

>mD2N11h~D,2!~gNg31gN21g41••• ! (
n51

` S m

m2bnD
D/222

KD/222~mnb!, ~44!

which is a negative expression, implying that forD,Dc(N21) it must have a temperature where
lN21~b! vanishes. Finally, for the coupling constantlN~b!, the leading graphs are given by Fig. 9.
A straightforward calculation gives for the thermal contribution to the renormalized coupling
constantlN the value

lN~gN ,gN21 ,...,g3 ,b!2lN~gN ,gN21 ,...,g3 ,`!

5mD2Nh~D,2!~gNg41gN21g51••• ! (
n51

` S m

m2bnD
D/222

KD/222~mnb!. ~45!

As in the previous case, the coupling constantlN also becomes zero at the temperaturebN
21 if

D,Dc(N). From the same arguments related to the critical dimension of each coupling constant,
for D>Dc(N21) all the renormalized coupling constants are positive for any temperature. A
very interesting situation is the case whereDc(N)<D,Dc(N21). Although the coupling con-
stantlN21 becomes negative above the temperaturebN21

21 , the effective potential has a global

FIG. 6. The graph that gives the leading contribution to the renormalized coupling constantlN22~b!.

FIG. 7. The graphs that give nonleading contributions to the renormalized coupling constantlN22~b!.
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minimum, since the renormalized coupling constantlN~b! is positive for any temperature. In this
case, the ground state of the model is stable. Note that we are using the renormalization conditions
at f50. Imposing only even powers of the field in Eq.~1!, all the above conclusions apply.
Including odd powers of the field, the global minimum of the effective potential is not atf50. Let
us suppose that the minimum occurs at some valuefÞ0. It is possible to show that the results
concerning the sign of the renormalized coupling constantlN~b! and squared mass do not change.
From a physical point of view this could not be otherwise, since the critical behavior of the system
and the existence or not of vacuum decay should not be affected by a change of the renormaliza-
tion point. Summing up, in the truncated model we have tunneling between different vacua if
D,Dc(N), whereDc(N) is the critical dimension oflN .

The above discussions can be summarized as follows. In a massive scalar superrenormalizable
model at finite temperature, there is a temperaturebN

21 such that the renormalizable coupling
constantlN~b! becomes zero. Above such temperature there is tunneling between different vacua.

Particularly important is the connection between our investigations and instanton solutions in
scalar models. It is well known that inD54 the massivelw4 model does not admit real instanton
solutions. In the massless case, also, there are no real instanton solutions~with positive action!,
nevertheless, a complex instanton solution~with negative action! is known.22 The instanton solu-
tion is related to the fact that the renormalized coupling constantl is negative. It is not difficult to
see the connection between the mechanism studied by us and the possible existence of instantons,
since in our case the renormalized coupling constant may become negative as the temperature
changes. In the simplest case of massivelw4 andD,4, instantons could exist in the model for
b21.b4

21.
As noted a long time ago by Dyson, in QED, for negative coupling constante2, the Hamil-

tonian is unbounded below and the vacuum is a metastable state.23 In this situation, particles and
antiparticles would repel each other, increasing the distance between them and pairs of particle,
and antiparticles would be continually created. In the vacuum energy~the sum of all connected
diagrams havingn vertices and no external legs! appears an imaginary part. As it was noted
originally by Bender and Wu studying the quantum anharmonic oscillator, there is a relation
between thenth Rayleigh–Schrodinger coefficient and the lifetime of the unstable states of a
negatively coupled anharmonic oscillator.24 The idea was used also in field theory by Parisi and
others.25–27Asymptotic estimates in perturbation theory can be obtained by computing the imagi-
nary part of the Green’s functions for small negative coupling constant. More recently, Fainberg
and Yofa also calculated the high order corrections to the instantons contribution to the Green’s
functions in the regimel,0.28

The effects we have described in this paper may also be applied to cosmological phase
transition problems. The study of phase transition in cosmological models has been widely dis-
cussed in the literature. For a complete review see Ref. 29 and other references, therein. It is
shown that in the evolution of the universe, metastable vacuum states may appear. The decay of
such metastable states is materialized in the Lorentzian space–time as nucleation of a bubble of

FIG. 8. The graphs that give the leading contribution to the renormalized coupling constantlN21~b!.
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true vacuum in the false vacuum phase. Frequently, in the study of the false vacuum decay, it is
assumed that the system is ‘‘prepared’’ in a metastable state. Such metastable states appear
naturally in our formalism by temperature effects that change the sign of renormalized coupling
constants. For instance, as we have seen before, in the truncated model~N54! for 4<D,6, the
coefficient of thew3 term becomes negative above the temperatureb3

21. This is a natural realiza-
tion of the potential studied by Gleiseret al.30 and Vilenkin and Ford.31 If we assume that the
universe expands and supercools, the possibility of the creation of bubbles of true vacuum arises,
nevertheless, there are subtleties in this process. Back to Lorentzian time, let us defineDt as the
time necessary to the temperature of the environment to drop down tob4

21, where the vacuum
state becomes stable. On the other hand, if the mean life of the metastable stateDt is larger than
Dt there is no nucleation of the bubbles at all. Only ifDt,Dt, there would be a finite probability
of nucleation of bubbles.

In the case of ‘‘real’’ cosmological evolution, it is necessary to include gravity; nontrivial
problems may appear, as for example the possibility of the presence of horizon. For a careful
analysis of these situations, see Ref. 32. We cannot disregard the possibility that particle creation
associated with the tunneling process will destroy the above scenario. Particle creation that occurs
in the process of nucleation of bubbles was analyzed by Rubakov.33 We still do not know how to
introduce these effects in our model. The discussion of tunneling effects, instantons, and how they
contribute to high order estimates in perturbation theory will be presented in a forthcoming
paper.34

V. CONCLUSION

The purpose of this paper has been to discuss the effect of keeping local terms with higher
powers of the field in the Lagrange density of a neutral scalar field. We also assume that the
system is in thermal equilibrium with a reservoir at temperatureb21. We proved that in the
truncated Efimov–Fradkin model,~i! for D>Dc(N21) there is no a temperature where at least
one of the coupling constants becomes zero;~ii ! for Dc(N21).D>Dc(N), there exists a tem-
peraturebN21

21 , where only the renormalized coupling constantlN21~b! becomes zero and all the
other renormalized coupling constants remain positive; and~iii ! for D,Dc(N), the coupling
constantslN21~b! andlN~b! become zero at some temperaturesbN21

21 andbN
21, respectively.

It is clear that in the nontruncated case, all the renormalized coupling constants remain posi-
tive for D>2. We would like to point out that some care must be taken in order not to extrapolate
the results of this paper to regions outside the domain of validity of the approximation we have
done, i.e., beyond the one-loop level. As we discussed in the previous section, a natural extension
of the ideas of the paper is to include gravitation, although there is some subtleness related to this
approach. The techniques of the paper with the Euclidian path approach can only be implemented

FIG. 9. The graphs that give leading contributions to the renormalized coupling constantlN~b!.
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in some special cases~for example, Schwarzschild or de Sitter spacetime!, i.e., to continue ana-
lytically to Euclidian space the metric must have a section in the complexified spacetime on which
the metric is real and positive-definite. In spacetime metrics where this property works, all the
calculations can be repeated, of course, with the subtleness of the curved metric.
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We show that the Nonlinear Schro¨dinger Equation and the related Lax pair in 111
dimensions can be derived from 211-dimensional Chern–Simons Topological
Gauge Theory. The spectral parameter, a main object for the Loop algebra structure
and the Inverse Spectral Transform, has to appear as a homogeneous part~conden-
sate! of the statistical gauge field, connected with the compactified extra space
coordinate. In terms of solitons, a natural interpretation for the one-dimensional
analog of Chern–Simons Gauss law is given. ©1996 American Institute of Phys-
ics. @S0022-2488~96!02308-0#

I. INTRODUCTION

It has been known for many years that intimate relations between the dimensional reduction
procedure and nonlinear models exist. A first example of such relations was suggested by Kaluza
and Klein1 for unification of gravitation and electromagnetism in a five-dimensional theory of
gravity. Then, the idea was remarkably developed in the context of dual models and the string
theory.2 It turns out that the Yang–Mills theory in 41N dimensions leads, via dimensional reduc-
tion, to a Yang–Mills1Higgs scalars coupled theory with specific couplings.3 In this context we
can suppose that the integrability of some nonlinear models can be related to the dimensional
reduction procedure. This guess is indicated by a ‘‘folk theorem’’ that dimensional reduction from
higher dimensions enlarges the symmetryG to its affine extension.4,5 Then, some infinite-
dimensional symmetries, appearing as the hidden symmetries of integrable models, shall have a
geometrical meaning. Thus, by dimensional reduction, many 011- and 111-dimensional inte-
grable models were embedded to the self-dual Yang–Mills~SDYM! equations.6 By suitable
reduction, the Lax pair associated with the corresponding low-dimensional model has appeared
from the Lax pair for SDYM.7 Moreover, one believes even that the self-dual Yang–Mills equa-
tions are a universal integrable system from which all the others could be obtained by proper
reductions.6 This program, still being intensively studied, requires that there should be a linear
system for equations of the zero-curvature type~the Lax pair!. However, the origin of the linear
system remains aterra incognita. As well as the most mysterious part of the linear problem—the
spectral parameter. From the algebraic point of view, the presence of a spectral parameter in the
linear problem with Lie algebraG announces the appearance of an enlarged, loop algebra struc-
tureG3C@l,l21#, associated with the hidden non-Abelian symmetry of the model. An important
point is that the spectral parameter is present in the linear problem and absent in the related
evolution equation. Since the last one arises from the zero-curvature condition~ZCC! for the
associated flat connections, it suggests a gauge-theoretical formulation of this phenomena. Ac-
cording to this observation we expect the existence of non-Abelian gauge theory, which includes
the spectral parameter as a gauge degree of freedom. Hence, the isospectral deformation defined
by the nonlinear evolution equation should appear as a gauge invariant condition.

Thus, we search for non-Abelian gauge theory with symmetries not less than the integrable
one. Usually, in high-energy physics, the unification procedure means an embedding to a larger

a!Permanent address: Joint Institute for Nuclear Research, Dubna 141980, Russian Federation. Electronic-mail:
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symmetry group. Apparently most drastic possibilities for unification provide the Topological
Field Theory~TFT!.8 As is well known,9 TFT admits a huge diffeomorphism symmetry, which is
realized by gauge transformations. Resulting reparametrization invariance of the model leads to
the trivial dynamics, frozen in the reparametrization of gauge~unphysical! parameters. The di-
mensional reduction idea is very useful in the TFT.10 Thus, three-dimensional Chern–Simons
gauge field theory11 can be reduced from four-dimensional TFT. By a subsequent reduction to two
dimensions the conformal field theory was obtained.12 A general reduction of CS theory leads to
two-dimensional TFT, known as the BF theory.13,14 Furthermore, two linear gravities—based on
the de Sitter group or a central extension of the Poincare´ group—were derived from three-
dimensional TFT.15 These results suggest that TFT could be a good candidate for the universal
model, properly reducing which conformal invariant and integrable systems can be obtained. The
question is how to constrain the model to have an integrable two-dimensional system.

Earlier we showed that for nonlinears models some constraint equations naturally arise. The
idea, inspired by the gauge relation between one-dimensional integrable models, is to use variables
from the tangent space to the nonlinear manifold.16 By this approach, some evolutions models
like the Heisenberg Model~HM! and the Topological Magnet17 are reformulated as theU~1!
gauge invariant field theory.18–20A mapping of the model to the three-dimensional zero-curvature
condition ~or to the CS theory! implies that the field connection should satisfy the proper con-
straint. In contrast with time reparametrization invariance of CS theory, the reduced system
evolves according to the relateds model. For the integrable evolution,19 it means a breaking of
continual TFT symmetry up to a discrete time hierarchy of integrable models.

In the present paper we show that 211-dimensional HM, considered as a constraint for CS
theory, by dimensional reduction provides not only the integrable model, the Nonlinear Schro¨-
dinger Equation~NLSE!, but also the corresponding Lax pair. The spectral parameter appears
automatically in a correct way and has the meaning of the homogeneous~condensate! part for the
statistical gauge field, related with the extra space dimension. Moreover, the nonhomogeneous
structure of the field is related to the Ba¨cklund transformations for NLSE. In Sec. II, we present
the general formalism of constructing the gauge invariant field theory, associated with the non-
linears model. Section III describes the related formulation of the non-Abelian CS theory. In Sec.
IV, we illustrate the general approach with two important examples. Dimensional reduction for
211 HM will be considered in Sec. V. In the conclusion we discuss some physical ideas to
explain our results. We interpret the one-dimensional analog of CS Gauss law in terms of solitons
for integrable models.

II. MOVING FRAME AND ADJOINT REPRESENTATION OF ZCC

In this section we present a general formalism connecting a zero curvature equations onA1
algebra@SU~2! or any noncompact version of it# in the adjoint representation with the moving
trihedral.21,22 This formalism allows us to formulate a nonlinears model as the Abelian gauge
field theory.

Let us consider the groupA1 with elementg, generated byti ~i51,2,3!, satisfying

t it j5hi j1 ic i jktk , ~2.1!

wherehi j andci jk are the Killing metric and structure constants ofA1. We define an orthonormal
trihedral set of unit vectorsni and ei , and matricesNi andEi correspondingly, in the adjoint
representation,

Ni5~ni ,t!5ni
ktk5hklni

kt l5gt ig
21, ~2.2a!

Ei5~ei ,t!5ei
ktk5hkle

kt l5g21t ig. ~2.2b!
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Using ~2.1!, the orthonormality of the trihedral are expressed by the relations

NiNj5hi j1 ic i jkNk , ~2.3a!

EiEj5hi j1 ic i jkEk . ~2.3b!

The Killing metric hi j and structure constantsci jk52cjik defines the inner and cross products
between three-vectors, transforming in the adjoint representation ofA1:

~ninj !5hi j , ~2.4a!

ni`nj5ci jknk ~2.4b!

~and the similar equations forei vectors!. MatricesNi and Ei are connected by the similarity
transformation,

Ni5g2Eig
22, ~2.5!

while relatedni andei vectors satisfy

~ni !
jhj j5~ej !

ihii ~2.6!

~no summation!. Due to this relation, in the present paper we restrict ourselves only withni
vectors.

Let ni5ni(x) are smooth vector fields that define at each space coordinatex5(x1,x2,x3) of M
the three vectors„n1(x),n2 (x),n3(x)…, forming an orthonormal basis called the moving frame.

We can introduce the left- and right-invariant chiral currents,

Jm
R5g21 ]mg, ~2.7a!

Jm
L5]mg g21 ~2.7b!

~m51,2,3!. They are connected by simple transformation,

Jm
R5g21Jm

Lg. ~2.8!

The trihedral moves according to the equations,

]mNi5@Jm
L ,Ni #5g@Jm

R ,t i #g
21, ~2.9a!

]mEi5g21@t i ,Jm
L #g5@Ei ,Jm

R#, ~2.9b!

or in the three-dimensional representation,

]mNi5~Jm
R! ik

~ad!Nk , ~2.10a!

]mEi52~Jm
L ! ik

~ad!Ek , ~2.10b!

where (Jm
R) ik and (Jm

L ) ik are matrices in the adjoint representation,

~Jm
R,L! ik

~ad!52 ic i jk~Jm
R,L! j5 i ~Jm

R,L! j cj ik , ~2.11!

andJm
R,L5((Jm

R,L) j
1
2t j . Related rotation of the moving frame is given by the equations
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]mni5~Jm
R! ik

~ad!nk , ]mei52~Jm
L ! ik

~ad!ek .

MatricesJm
R,L have the symmetry property

~Jm
R,L! i j

~ad!hj j52~Jm
R,L! j i

~ad!hii .

For SU~2! casehi j5d i j , ci jk5e i jk and the matrices~2.11! are antisymmetric.
The zero-curvature conditions for chiral currents~2.7! have the form

]mJn
R2]nJm

R1@Jm
R ,Jn

R#50, ~2.12a!

]mJn
L2]nJm

L2@Jm
L ,Jn

L#50. ~2.12b!

In the following discussion we are concerned mainly on theJm
R matrix and skip theR index.

Let us decompose the matrixJm to the diagonal and off-diagonal parts,

Jm5Jm
~0!1Jm

~1! ,

parametrized in the form

Jm
~0!5

i

4
s3Vm , ~2.13a!

Jm
~1!5S 0 2k2q̄m

qm 0 D , ~2.13b!

wherek2511 for SU~2! andk2521 for SU~1,1! case. Then,

ci jk5k2e i jkhkk ,

and in the adjoint representation we have

~Jm!~ad!5
1

2 S 0 Vm 4k2 Re~qm!

2Vm 0 4k2 Im~qm!

24 Re~qm! 24 Im~qm! 0
D . ~2.14!

The moving frame rotates withx variation according to equations

]mn152 1
2Vmn222k2~Reqm!n3 , ~2.15a!

]mn25
1
2Vmn122k2~ Im qm!n3 , ~2.15b!

]mn352~Reqm!n112~ Im qm!n2 . ~2.15c!

If we denoteUm[„Re~qm!,Im~qm!…, the system can be written in a more compact form,

]mni52 1
2Vme i jnj22k2Uims, ~2.16a!

]ms52Uimni . ~2.16b!

The vectors[n3 satisfies the constraint

„s~x!,s~x!…5h33, ~2.17!
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where h3351 for SU~2! and SU~1,1! @and h33521 for SL~2,R!#. It belongs to the two-
dimensional sphereS2 or pseudosphereS1,1 correspondingly.

FieldsVm andqm are given by projections,

Vm522k2~n2,]mn1!, Re~qm!52
k2

2
~s,]mn1!, Im~qm!52

k2

2
~s,]m n2!. ~2.18!

Two vector fields„n1(x),n2(x)… at eachx form a basis in the tangent space to the corresponding
manifold for s(x). But vectorsn1 andn2 are not uniquely determined by Eq.~2.4!.16

If we choose othern18 ,n28 as a rotated basis,

n185cosan12sin an2 , n285cosan21sin an1 , ~2.18!

relatedVm8 andqm8 defined by~2.18! are theU~1! gauge transformed fields,

Vm8 5Vm12 ]ma, qm8 5eiaqm . ~2.19!

The expression for theqm field is simplified if we introduce a complex basis,

n15n11 in2 , n25n12 in2 , ~2.20!

satisfying the following relations:

~n1 ,n1!505~n2 ,n2!, ~2.20a!

~n1 ,n2!52k2, ~2.20b!

n13s5 in1 , n23s52 in2 , n23n152ik2s. ~2.20c!

Then

qm5
k2

2
~]ms,n1!, q̄m5

k2

2
~]ms,n2!. ~2.21!

In terms of~2.20!, the moving frame equations~2.16! become

Dmn1522k2qms, ~2.22a!

]ms5qmn21q̄mn1 , ~2.22b!

whereDm [ ]m 2 i /2Vm is the covariant derivative.
This form is explicitly invariant under the localU~1! gauge transformations,

s→s, n1→eian1 , n2→e2 ian2 , ~2.23!

which are just the local rotations in the tangent to the vectors plane.
As follows from Eqs.~2.22!, fieldsVm andqm are subject to the system

Dmqn5Dmqm , ~2.24a!

@Dm ,Dn#522k2~ q̄mqn2q̄nqm!. ~2.24b!

To describe a time evolution of the three-dimensional physical system, we need to introduce
the space-timeM35T3M2 decomposition, whereT is associated with the time variablex35t
andM2 is a two-dimensional space manifold. In this case a time evolution of the moving frame,
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D0n1522k2q0s, ~2.25a!

]0s5q0n21q̄0n1 , ~2.25b!

is completely arbitrary due to the arbitrariness ofq0. We recall thatq0 as well asV0 are Lagrange
multipliers of the CS TFT appearing in front of the CS Gauss law of the theory@see Eq.~3.12!#.
Moreover, Eq.~2.25b! shows that evolution of the spin vectors associated with CS TFT,U~1!
being gauge invariant, remains completely arbitrary. In this sense the TFT are related to the
nonlinears model with an arbitrary evolution~reparametrization invariance! or, what is the same,
without any evolution, moduloU~1! gauge transformations.

Formally, we can represent Eq.~2.25b! as the spin precession equation,

]0s5s3H, ~2.26!

in an arbitraryU~1! gauge invariant magnetic field,

H5 i ~ q̄0n12q0n2!. ~2.27!

Nevertheless, to the above results a topological restriction on the possible spin configurations
exists. Indeed, we can imagine that the spaceM2 is compact. For example, if we suppose that the
value of the spin vectorsPS2 @SU~2! case# at infinity is fixed s→~0,0,1!. Then, all smooth
configurations describing the mapping of (x1 ,x2) into s(x), independently of the evolution, are
classified by the integer-valued degree of mapping ofS2→S2, or the topological charge:

Q5
1

8p E e i js~] is3] js!d
2x5

1

8p E e i j ] iVj d
2x. ~2.28!

In terms of our gauge fields, the topological charge density has the form

e i js~] is3] js!5e i j ] iVj5B, ~2.29!

of the radial~along thes! oriented magnetic fieldB associated with the vector potentialVj . As
well known, Eq.~2.28! states that the winding number of mappingS2→S2 coincides with the
winding number of the mapping of the circleS1 at x1

2 1 x2
2→` into the Abelian gauge group

manifold. It means that allU(1) gauge transformations~2.19! also fall into topologicoal classes
characterized by winding number~2.28!. Just substituting~2.19! in to ~2.28! we find that under
Abelian gauge transformations

Vj→Vj12] ja, ~2.30!

Q transforms as

Q→Q1
1

4pE e i j ] i] jad
2x. ~2.31!

For a smooth gauge transformation the second term vanishes andQ is invariant.
More generally, ifM2 is a compact Riemann surface of genusg, M2 5 Sg, the chargeQ in

~2.28! is the first Chern classc1, which is an integer.23

However, ifM2 admits some singular points,Q could be an arbitrary number. Let us consider
a potentialVj with chargeQ. We perform a singlar atx50 rotation~2.31! of (n1,n2) with angle

a~x!5Nu~x!, ~2.32!

whereu~x!5arctan~x2/x1). Then, using unconventional representation for the planard-function24
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e i j ] i] ju5~]1]22]2]1!u52pd2~x!, ~2.33!

we find thatDQ 5 N/2.
As evident, instead of integerN we can use an arbitrary real number which gives us arbitrary

Q. This singular gauge transformation is related with a point vortex creation atx50 and is
described by the anyon potential

Vi
A52

]

]xi
a~x!52N

]

]xi
u~x!522Ne i j ] j lnuxu522Ne i j

xj
uxu
. ~2.34!

In a more general situation, forn point vortices located atx1, . . . ,xn, with related strength
Np(p 5 1, . . . ,n), the vector potential

Vi
A~x;x1, . . . ,xn!522e i j (

p51

n

Np

~xj2xp
j !

ux2xpu2
522e i j ] j (

p51

n

Np lnux2xpu, ~2.35!

produces the magnetic field vanishing almost everywhere,

B~x!5e i j ] iVj54p (
p51

n

Npd
2~x2xp!. ~2.36!

The corresponding charge changes as

DQ5
1

2 (
p51

n

Np . ~2.37!

III. CHERN–SIMONS GAUGE THEORY REDUCTION

In the previous section we introduced the chiral fieldsJm ~2.7! satisfying the zero curvature
condition~2.12!. The last one, in term of components~2.13!, is described by the system~2.24!. For
fields Vm and qm , subject to~2.24!, the moving frame can be reconstructed from Eq.~2.16!.
Moreover, the currentJm can be considered as a non-Abelian pure gauge potential. Then, the
zero-curvature equations~2.12! are of the Lagrangian form for the pure non-Abelian Chern–
Simons functional.

The Chern–Simons action is defined as follows:

S@J#5
k

4p E
M
TrS J`dJ1

2

3
J`J`JD , ~3.1!

whereM is an oriented three-dimensional manifold,J is a gauge connection with values in the Lie
algebraG . Action ~3.1! is manifestly independent from the space metric, so it was interpreted by
Witten as a general covariant theory or topological field theory.8

The classical equations of motion following from action~3.1! have the form

F5dJ1J`J50, ~3.2!

of the zero-curvature condition.
To adopt the canonical approach to the problem, one considers a region of the three-manifold

to be isomorphic toM35T3M2 , where we interpretT as the time. Then, for the gauge field we
haveJm5(J0 ,Jj ), whereJ0 is the time component and the action~3.1! takes the form
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S~J!52
k

4p E
S
E dt e i j TrS Ji ]

]t
Jj2J0Fi j D , ~3.3a!

where

Fi j5] iJj2] j Ji1@Ji ,Jj #. ~3.3b!

In the basis

Ta5
1
2ta ~a51,2,3!, ~3.4a!

@Ta ,Tb#5 icabcTc , ~3.4b!

with

Tr~TaTb!5 1
2hab ~3.4c!

@see Eq.~2.1!#, we have the Poisson brackets for componentsJm5(a51
3 (Jm)aTa :

$Ji
a~x!,Jj

b~y!%5
4p

k
e i j h

abd2~x2y!. ~3.5!

Then, in terms ofVm andqm fields,

$Vi~x!,Vj~y!%52
16p

k
e i j h33d

2~x2y!, ~3.6!

$Re„qi~x!!,Re„qj~y!…%52
p

k
e i j h11d

2~x2y!, ~3.7a!

$Im„qi~x!…,Im„qj~y!…%52
p

k
e i j h22d

2~x2y!. ~3.7b!

The last two relations have a more appropriate form if we introduce new fields~this idea was
inspired by the gauge relation between 111-dimensional NLSE and HM!,

c65
1

2Ap
~q16 iq2!. ~3.8!

They are directly related with the complex structure on the manifoldM2 in terms of

z5x11 ix2 , z̄5x12 ix2 . ~3.9!

The Poisson brackets for thec6 fields are

$c1~x!,c̄1~y!%5
i

2k
~h111h22!d

2~x2y!, ~3.10a!

$c2~x!,c̄2~y!%52
i

2k
~h111h22!d

2~x2y!. ~3.10b!
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As evident, new fields defined by~3.8! are convenient only forSU~2! andSU~1,1! cases. For
SL(2,R) case brackets~3.10! are vanishing and more convenient to use other variables. We can
rewrite the brackets in a compact form,

$Vi~x!,Vj~y!%52
16p

k
e i jd

2~x2y!, ~3.11a!

$c1~x!,c̄1~y!%5
i

k
k2d2~x2y!, ~3.11b!

$c2~x!,c̄2~y!%52
i

k
k2d2~x2y!, ~3.11c!

wherek2511 for SU~2! andk2521 for SU~1,1!.
The brackets~3.11! allow us to interpretVm as an Abelian CS field~the statistical field! and

c1 ,c2 as charged matter fields.18–20

The action in terms of these fields on the plane has the form

S5E dtE d2xH 2
k

32p
emnlVm ]nVl

1
ik

2
@~c1 D̄0c̄12c̄1 D0c1!2~c2 D̄0c̄22c̄2 D0c2!#

2
k

2p
iq0~D̄2c̄12D̄1c̄2!1

k

2p
i q̄0~D2c12D1c2!J , ~3.12!

whereD65D16 iD 25]62 i /2V6 , V65V16 iV2 . From ~3.3! we recognize that the time com-
ponentsV0 andq0 of the gauge potentialJ0 are the Lagrange multipliers, arbitrariness of which
guarantees the gauge invariance~covariance! of the topological action.

Related constraints~3.3a! in componentsF5(a51
3 FaTa generatesu~2! or su~1,1! algebra,

$Ga~x!,Gb~y!%5cabcGc~x!d2~x2y!, ~3.13!

where rescaled constraintsGa52( ik/8p)Fa have the form

G15G11 iG252
k

2p
~D2c12D1c2!, ~3.14a!

G25G12 iG252
k

2p
~D̄2c̄12D̄1c̄2!, ~3.14b!

G35
k

8p
@~]1V22]2V1!18p~ uc1u22uc2u2!#. ~3.14c!

The physical subspace of the TFT is defined by the constraint surface

G650, G050,

and any breaking of the topological symmetry relates with a deviation from this surface. Con-
straints~3.14! form a part of the Euler–Lagrange equations for the action~3.12!:

4376 Oktay K. Pashaev: Dimensional reduction of Chern–Simons theory

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



D0c65
1

2Ap
D6q0 , ~3.15a!

@D1 ,D2#58pk2~ uc1u22uc2u2!, ~3.15b!

@D0 ,D6#524Apk2~ q̄0c62c̄6q0!, ~3.15c!

D1c25D2c1 . ~3.15d!

A solution of these equations defines the moving frame according to

D0n1522q0s, ~3.16a!

]0s5q0n21q̄0n1 , ~3.16b!

D6n1524Apc6s, ~3.16c!

]6s52Ap~c6n21c̄7n1!, ~3.16d!

where fieldsV0 ,V6 , andq0,c6 are given by relations

V052 i ~]0n1 ,n2!, V652 i ~]6n1 ,n2!, ~3.17a!

q05
1

2
~]0s,n1!, c65

1

4Ap
~]6s,n1!. ~3.17b!

We note that the system~3.15!, as well as~3.16!, is invariant under conformal transforma-
tions,

z85 f ~z!, z̄85 f̄ ~ z̄!, V25 f 8V28 , V15 f̄ 8V18 , c25 f 8c28 , c15 f̄ 8c18 .

At the end of this section we reproduce some useful formulas,

~]6s,]6s!516pc6c̄7 , ~3.18!

~]1s,]2s!58p~ uc1u21uc2u2!, ~3.19!

]1s3]2s58ip~ uc1u22uc2u2!. ~3.20!

IV. NONLINEAR s-MODEL EXAMPLES

In this section we describe some simple two-dimensional models in the formalism of Sec. II.
The first model is conformal invariant, while the second one is just integrable. In both cases time
evolution is defined by the Lagrange multipliersq0 ,V0 and has an arbitrary character. Imposing
equations of motion for the model as constraints on the field variables, we restrict the phase space
of CS TFT.

A. 210-dimensional s model

As a first simple example we consider the Euclidean nonlinears model for the classical spin
vectors,

]1 ]2s1~]1s,]2s!s50. ~4.1!
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The model is conformal invariant. This fact guarantees that the conformal invariance of the CS
TFT ~3.12!, supplied with Eq.~4.1!, will be preserved.

Due to Eqs.~3.16c!, ~3.16d!, ~3.19!, and the relation

]1 ]2s52Ap@~D2c1!n21~D̄2c̄1!n1…28p~ uc1u21uc2u2!s, ~4.2!

the moving frame~3.16! and the field equations~3.15!, consistent with Eq.~4.1!, should be
supplied with additional constraints

D2c15D1c250. ~4.3!

The resulting system~3.15! decouples on the evolutionary part,

D0c65
1

2Ap
D6q0 , ~4.4a!

@D0 ,D6#524Apk2~ q̄0c62c̄6q0!, ~4.4b!

which contains arbitrary Lagrange multipliersq0, V0 and the spatial part

D2c15D1c250, ~4.5a!

@D1 ,D2#58pk2~ uc1u22uc2u2!. ~4.5b!

The last system~4.5! is completely equivalent to thes model ~4.1! and has remarkable
properties.18 Most interesting for TFT may be that Eqs.~4.5!, known as the Hitchin equations, can
be formulated on an arbitrary Riemann surface.

The system~4.5! @in contrast to Eqs.~4.4!# is also invariant under simple transformation,

c1→eigc1 , c2→e2 igc2 , V6→V6 , ~4.6!

where g5const. This transformation for thes model is known as the Pohlmeyer’sR~g!

transformation.25 It relates to a ‘‘hidden’’ symmetry of the model and generates an infinite set of
nonlocal conservation laws.16 It seems not obvious as this symmetry acts in the CS TFT~3.12!.

If we attempt to describe the symmetry transformation~4.6! as the globalU~1! gauge trans-
formation~2.19!, ~2.23!, we immediately obtain that one of the fieldsc1 , c2 should vanish. As a
result, the system~4.5! reduces to the self-~anti-!dual Chern–Simons equations:24

D6c750, ~4.7a!

@D1 ,D2#568pk2uc7u2, ~4.7b!

related with the Liouville equation. The instantons~topological solitons! of the model~4.1! cor-
respond to the Chern–Simons solitons of the model~4.7!,18 while the topological charge~2.28!
becomes of the electric charge form

Q656E uc6u2 d2x.

Solutions other than solitons, when bothc1 and c2Þ0, are described by the conformal
Sinh-Gordon equation26 ~Toda hierarchy! reduced from~4.5!.18 It is worth noting that both of the
systems~4.5! and ~4.7! is conformal andR invariant. However, only the self-dual system~4.7!
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admits the Pohlmeyer’s symmetry~4.6!, as a gauge symmetry. This fact intimately relates with the
Darboux andC integrability of the Liouville equation27,28 and with special properties of the CS
action, admitting diffeomorphism invariance as the gauge invariance.

B. (111)-Heisenberg model

If in the previous case we considered the conformal invariant integrable model, now we like
to break the conformal invariance, but preserve integrability. This is the well-known classical
continuous isotropic Heisenberg model, describing precession of the spins according to the
Landau–Lifshitz equation,

]0s5s3] j ] js, ~4.8!

wheres belongs to the two-dimensional sphereS2 ~or pseudosphereS1,1!.31

In this section we examine only the 111-dimensional case~the 211 -dimensional model is
considered in Sec. V!. We will treat here both coordinates as the space coordinates. Then the
model

]1s5s3]2
2s, ~4.9!

is some kind of two-dimensionals model.
Substituting

]1s5q1n21q̄1n1 , ~4.10a!

]2
2s5D2n21D̄2n124uq2u2s, ~4.10b!

to Eq. ~4.9!, we find the constraint between components,

q15 i D 2q2 , ~4.11!

where the covariant derivativeD25]22( i /2)V2 . Equation~4.11! allows us to exclude theq1 field
from equations.

The moving frame equations~2.22! now read as

D1n1522ik2 D2q2 s, ~4.12a!

D2n1522k2q2s, ~4.12b!

]1s5 i D 2q2n22 i D̄ 2q̄2n1 , ~4.12c!

]2s5q2n21q̄2n1 , ~4.12d!

while the field equations are

i D 1q21D2
2q250, ~4.13a!

]1V22]2V1524k2]2uq2u2. ~4.13b!

In terms of redefined fields,

A15V114k2uq2u2, A25V2 , ~4.14!

~4.13! becomes theU~1! gauged Nonlinear Schro¨dinger Equation,
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i S ]12
i

2
A1Dq21S ]22

i

2
A2D 2q222k2uq2u2q250, ~4.15a!

]1A22]2A150. ~4.15b!

The second equation allows one to exclude the potentialsA1 and A2 by the U~1! gauge
transformation. IfAj52] jl, we define a new, gauge invariantF5qeil subject to the Nonlinear
Schrödinger equation,

i ]1F1]2
2F22k2uFu2F50. ~4.16!

As is well known, this equation is integrable and admits an infinite number of conservation
laws, interpreted as continuity equations in our case.

The topological charge~2.28! appears now as

Q52k2
2

p E d2x ]2uFu252k2
2

p E dx1~ uF~x1 ,x25L1!u22uF~x1 ,x25L2!u2!,

whereL6 are the boundary values in the second space direction. The usual evolution form for
NLSE, whenx15t, x25x, gives the meaning of

Q5
1

4p E s ] ts3]xs dt dx52k2
2

p E
x5C

dtuF~x,t !u2,

as a one dimensional Wess–Zumino term. It turns out that well-known soliton solutions on an
infinite space line~the plane forM2! and periodic solutions on the finite interval~the cylinder for
M2! always have vanishingQ. A nonvanishing contribution should appear for the compact on
(x,t) boundary conditions~the Riemann surface forM2!.

It is worth noting that integrability of models~4.9! and~4.16! is connected with the Lax pair
representation or ZCC with an arbitrary spectral parameter. The loop algebra structure provides
nonlocal conserved quantities, generating non-Abelian algebra for the NLSE.29 They arise as a
hidden non-Abelian structure of the model~4.16!. We understand now the geometrical meaning of
this structure, since the model phase space can be considered as the tangent plane to the two-
dimensional manifold, being a sphere fork251 and a pseudosphere fork2521.31 Moreover, in
the next section we show that the spectral parameter has an origin from the extra space direction.

V. DIMENSIONAL REDUCTION OF 211 HM

From the action~3.3! or ~3.12! we conclude that evolution of the model is completely defined
by Lagrange multipliers. Usually to fix gauge freedom one uses the Hamiltonian gauge, when

q050, V050.

Thus, all considered field configurations are static. In this case reparametrization invariance of the
theory corresponds to an arbitrary time dependence for parameters of the moduli space. But if we
like to study an integrable deformation of the topological symmetry we need to consider less
restricted gauge conditions, providing integrable dynamics.

In the present section we choose a different gauge condition. Since evolution equation fors
models in tangent space reduces to constraints on the phase space variables, we can choose this
constraint as a new gauge condition. Then, in this gauge the resulting CS theory should have the
corresponding time evolution.18–20

We consider the HM~4.8! in 211 dimensions,
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]0s5s3~]1
21]2

2!s, ~5.1!

with ~s, s!51.
From the moving frame equations~2.22!, we conclude that Eq.~5.1! leads to the constraint on

q0:

q05 i D 1q11 i D 2q2 . ~5.2!

This relation allows one to excludeq0 from the system~2.22!, and we have

D0n1522ik2~Dkqk!s, ~5.3a!

Dkn1522k2qks, ~5.3b!

]0s5 i ~Dkqk!n22 i ~D̄kq̄k!n1 , ~5.3c!

]ks5qkn21q̄kn1 ~k51,2!. ~5.3d!

Remaining field variables should satisfy the system

iD 0qk1DkDlql50, ~5.4a!

Dkql5Dlqk ~k,l51,2!, ~5.4b!

@Dk ,Dl #522k2~ q̄kql2qkq̄l !, ~5.4c!

@D0 ,Dk#52ik2~qk D̄l q̄l1q̄k Dlql !. ~5.4d!

In terms of complex fields~3.8!,

c65
1

2Ap
~q16 iq2!, ~5.5!

we have for the moving frame

D0n1524iAp~D2c1!s14ipk2~ uc1u21uc2u2!n1 , ~5.6a!

D6n1524Apc6s, ~5.6b!

]0s52iAp„~D2c1!n22~D̄2c̄1!n1…, ~5.6c!

]6s52Ap~c6n21c̄7n1!, ~5.6d!

and for the field equations,

i D 0c61~D1
21D2

2!c618pk2uc6u2c650, ~5.7a!

D2c15D1c2 , ~5.7b!

@D1 ,D2#58pk2~ uc1u22uc2u2!, ~5.7c!

@D0 ,D6#58ipk2~ c̄7 D6c71c6 D̄7c̄6!24ipk2]6~ uc1u21uc2u2!. ~5.7d!
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The covariant derivatives in the system~5.6! and ~5.7! are defined as before@see Eq.~3.12!#:

D65]62
i

2
A6 , D05]02

i

2
A0 , ~5.8!

with A65V6 , but redefined as

A05V028pk2~ uc1u21uc2u2!. ~5.9!

For the static field configurations, Eq.~5.1! reduces to thes model ~4.1!, considered before.
Now we are going to perform a dimensional reduction of the model to have an integrable evolu-
tion system. LetM5T3R3S, whereR is the real line associated with thex1 space coordinate
andS is compactified on the circle second space coordinatex2. As usual, for zero modes we are
looking for equations independent ofx2,

i D 0c61FD1
21S i2 A2D 2Gc618pk2uc6u2c650, ~5.10a!

S ]12
i

2
A2Dc15S ]12

i

2
A1Dc2 , ~5.10b!

]1A2528pk2~ uc1u22uc2u2!, ~5.10c!

]0A12]1A058pk2A2~ uc1u22uc2u2!, ~5.10d!

]0A2528ipk2@~ c̄1 ]1c12c1 ]1c̄1!2~ c̄2 ]1c22c2 ]1c̄2!2 iA1~ uc1u22uc2u2!#.
~5.10e!

If instead of the potentialA0 we introduce

A05A02
1
2A2

2, A15A1 , A25A2 , ~5.11!

Eq. ~5.10d! becomes of the vanishing field strength form

]0A12]1A050, ~5.12d!

and for the remain equations we have

i D0c61D1
2c618pk2uc6u2c650, ~5.12a!

S ]12
i

2
A2Dc15S ]12

i

2
A1Dc2 , ~5.12b!

]1A2528pk2~ uc1u22uc2u2!, ~5.12c!

]0A2528ipk2@~ c̄1 D1c12c1 D̄1c̄1!2~ c̄2 D1c22c2 D̄1c̄2!, ~5.12e!

whereD0 5 ]0 2 ( i /2)A0, D1 5 ]1 2 ( i /2)A1. ComparingEqs.~5.12a!and~5.12d!with gauged
NLSE ~4.15a!–~4.15b!, we recognize complete equivalence. Using the same as before procedure,
we can compensate the gauge potentials viaU~1! rotation,

A052 ]0l, A152 ]1l, F65c6e
il. ~5.13!

Thus, we find that both of theF1 , F2 fields satisfy the NLSE,

4382 Oktay K. Pashaev: Dimensional reduction of Chern–Simons theory

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



i ]0F61]1
2F618pk2uF6u2F650, ~5.14!

and the set of relations connectingA2 with F1 , F2 fields,

]1F12]1F251/2A2~F11F2!, ~5.15a!

]1A2528pk2~ uF1u22uF2u2!, ~5.15b!

]0A2528ipk2@~F̄1 ]1F12F1 ]1F̄1!2~F̄2 ]1F22F2 ]1F̄2!#. ~5.15c!

The system~5.15! allows one to define theA2 field in explicit form,

A25e6Aa0
2216pk2uF12F2u2, ~5.16!

wherea0 is an integration constant,e6561. I can easily show that if bothF1 and F2 are
solutions of the NLSE~5.14!, then the evolution forA2 ~5.16! is satisfied to Eq.~5.15c!.

But Eq.~5.15a! with condition~5.16! is just the space part of the Ba¨cklund transformations for
NLSE ~5.14!. The related time part can be easily reconstructed from the system~5.15!. Thus, a
surprising moment arising from the~211!-dimensional reduction is an interpretation of the Ba¨ck-
lund transformation for NLSE in terms of the Abelian Chern–Simons gauge field, associated with
the extra space coordinatex2.

WhenF15F2 theA25e6a05const. As we show immediately, this constant has the mean-
ing of the spectral parameter. WhenF1ÞF2 , that means a soliton creationA2 is an inhomoge-
neous function measuring the departure ofF1 from F2 .

To clarify the meaning of the homogeneous parta0, we turn now to the chiral current~2.7a!,

Jm5g21 ]mg5
i

4
s3Vm1S 0 2k2q̄m

qm 0 D . ~5.17!

We can carry out theU~1! gauge transformation~5.13!,

g→ge~ i /4!ls3. ~5.18!

As a result we have

J15ApS 0 2k2~F̄11F̄2!

F11F2 0
D ,

J25
i

4
s3A22 iApS 0 k2~F̄12F̄2!

F12F2 0
D ,

J05
i

8
s3@A2

2116pk2~ uF1u21uF2u2!#1 iApS 0 k2~D̄2F̄11D̄1F̄2!

D2F11D1F2 0
D .

Using ~5.7b!,

D2F15D1F2 ,

we can rewrite it as

J152
1

4
s3A212ApS 0 2k2F̄2

F1 0
D , ~5.19a!
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J05
i

8
s3@A2

2116pk2~ uF1u21uF2u2!#12iApS 0 k2 D̄1F̄2

D2F1 0
D . ~5.19b!

Now, let

F15F2[
1

2Ap
F, ~5.20!

then, from~5.16!,

A25e6a0[4l0 . ~5.21!

As a result we have the well-known Lax pair for NLSE,

J152l0s31S 0 2k2F̄

F 0
D , ~5.22a!

J05 is3@2l0
21k2uFu2#1 i S 0 k2~]112l0!F̄

~]122l0!F 0
D . ~5.22b!

The Lax pair for the 111 HM model~4.9! can be constructed from~5.22! by the usual procedure
of the gauge transformation, in terms of~2.2! trihedralN3.

30,31

It is clear now that constantl0 has a meaning of the spectral parameter. The remarkable fact
is that J1 consists of two parts:J1 part is independent of the spectral parameter andJ2 is
completely defined in terms of it.

As known, in order to investigate the infrared properties of the theory, we can expand the
gauge fieldA2 in a Fourier series and separate out the part that plays the main role at long
distances. This is the constant in space~x1! term,

A2>4l0S 11
pk2

2l0
2 uF12F2u21••• D . ~5.23!

Thus, we can interpret the spectral parameter as a condensate value for the Chern–Simons gauge
fieldA2 associated with the extra dimension.

As we see, the Lax pair with the spectral parameter flow, defining all the miracles of soliton
mathematics, has a simple interpretation in terms of an extra space direction and CS TFT.

VI. CONCLUSION

In conclusion I would like to emphasize some points. First, as shown above, the non-Abelian
TFT ~3.1! represented in the form~3.12! could be interpreted as the Abelian Chern–Simons gauge
theory interacting with a doublet of matter fields.20 Usually, the Abelian gauge field is called the
‘‘statistical field’’ since it defines the anyonic statistics for matter fields. For a more direct relation
we need to rescale the ‘‘matter’’ fields,

c65
1

Ak
C6 ,

to have normal canonical brackets~3.11!. Then, the Chern–Simons Gauss law~3.15b! becomes
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]1V22]2V152
8pk2

k
~ uC1u22uC2u2!.

From this form we recognize that the coupling constantk for the non-Abelian theory~3.1! coin-
cides with the statistical parameter for fractional statistics. It means that in quantized~3.1! theory
the matter fields could appear~after singular gauge transformation! as anyons.20

The 111-dimensional reduction of the model~5.7! shows that two componentsA0, A1 of
the statistical gauge field can be removed by gauge transformation. But componentA2 ~5.16!
related to the extra space coordinate has a deep physical meaning. Thus, for infrared properties of
the Chern–Simons theory~3.12!, the constant in space vector potential,

Ai~x!5Xi~ t !1••• ,

depending only of time, is relevant. The corresponding Chern–Simons term in~3.12!,

k

16p
Ẋ3X,

has a simple physical interpretation. If we consider (X1 ,X2) as coordinates of the charged particle
in the plane, and switch on the magnetic field orthogonal to the plane, the Lorentz force will arise.
It connects two directionsX1, X2 in such a way that energy from the first direction will flow to the
second one. In our case it means that due to the Chern–Simons structure in the topological action
~3.12!, our 111-dimensional gauge theory~5.14!, ~5.15! continue to feel an extra space coordi-
nate. But all dependence of the extra space coordinate is hidden in the spectral parameter~5.21!.
Of course, the gauge invariant nonlinear equations~5.14! are independent ofx2 andl0.

Thus, the potential~5.16! generally includes two parts. A part with the spectral parameter only
is a constant, and has meaning of the ‘‘condensate’’ for the statistical gauge field, while the
nonhomogeneous part ofA2 comes from the deviation between two solutions of the NLSE~5.14!.
We know that~5.15!–~5.16! is an elementary Ba¨cklund transformation for NLSE. If one of the
fields is vanishing, it provides the one-soliton solution for the second one. Corresponding value of
A2 we call the one-soliton gauge potential. This allows us to formulate a gauge invariance
principle. The statistical gauge field is a homogeneous, globally defined field in the case~5.20!.
When condition~5.20! is broken, that means a soliton is created, the gauge fieldA2 becomes a
local function of coordinatex1. Hence, we observe that the statistical gauge field is an inseparable
phenomena accompanying the soliton creation. It is a relic of the Chern–Simons Gauss law, which
states the creation of magnetic flux by a particle creation. According to this, in anyon physics, we
interpret the physical excitations as particles with an attached magnetic flux. Consequently, even
the one-dimensional solitons are excitations attached with a statistical magnetic field. Indeed, if we
put one of the fields, sayF250, from Eq.~5.15b! follows the one-dimensional~!! CS Gauss law,

B~x!5
8pk2

k
uC1u2.

For a soliton with large amplitudeh5Im l0, we can write approximately

B~x!'
16pk2

k
hd~x!.

This relation should be compared with a two-dimensional ‘‘prototype’’~2.36!. It shows explicitly
that one soliton is always attached to the ‘‘magnetic’’ field. The line integral~‘‘one-dimensional
flux’’ !,
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E B dx5
8pk2

k E uC1u2 dx5
16pk2

k
h,

is time independent and the well-known first integral of NLSE. It has a simple interpretation of the
rescaled soliton amplitude Iml0 and really is inseparable from the soliton in any collisions.

The above discussion, appearing exactly 120 yr after Ba¨cklund’s first paper on his transfor-
mation theory,32 implies a new, physical interpretation of the Ba¨cklund transformation. It gives BT
explicitly in terms of an inhomogeneous Abelian CS gauge field and indicates the deep relation
between CS TFT and BT. We conjecture that results have the general meaning and are applicable
to other integrable models. In fact, all that we need are constraints for CS theory, arising from the
nonlinears model. Thus, earlier we showed19 that the classical spin model in planar condensed
media, the so-called Topological Magnet,17 provides for gauge invariant fields the Davey–
Stewartson equations. Dimensional reduction in this case also leads to the NLSE and related BT.
Our result suggests that while the Lax pair depends on an additional spectral parameter, which is
remnant of the three-dimensional theory, the reduced Nonlinear Evolution Equation is gauge
invariant and independent of that parameter. It would be interesting to obtain in this way the Lax
pair for the SDYM from proper TFT in higher then four dimensions.

Finally, we remark on the possibility of tracking the connection between quantum exactly
soluble TFT and integrable models in the spirit of Ref. 33. In this case, ideas of dissipative
dynamics associated with CS theory34 could be relevant to treat the indefinite metric structure of
TFT.
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32A. V. Bäcklund,Einiges über Curven und Fla¨chentransformationen~Lund Universitetes, Arsskrift, 1875!, Vol. 10.
33H. Verlinde, Nucl. Phys. B337, 652 ~1990!; A. Bilal, V. Fock, and I. Kogan, Nucl. Phys.359, 635 ~1991!; A. Bilal,
Phys. Lett. B267, 487 ~1991!.

34M. Blasone, E. Graziano, O. K. Pashaev, and G. Vitiello,Dissipation and Topologically Massive Gauge Theories in
Pseudoeuclidean Plane, preprint, University of Salerno, 1996, hep-th/9603092, Ann. Phys.~in press! ~1996!.

4387Oktay K. Pashaev: Dimensional reduction of Chern–Simons theory

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Anomalous thresholds and edge singularities in electrical
impedance tomography

S. Ciulli and S. Ispas
Laboratoire de Physique-Mathe´matique et The´orique, Unitéde Recherche Associee´
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Studies of models of current flow behaviour in electrical impedance tomography
~EIT! have shown that the current density distribution varies extremely rapidly near
the edge of the electrodes used in the technique. This behaviour imposes severe
restrictions on the numerical techniques used in image reconstruction algorithms. In
this paper we have considered a simple two dimensional case and we have shown
how the theory of end point/pinch singularities which was developed for studying
the anomalous thresholds encountered in elementary particle physics can be used to
give a complete description of the analytic structure of the current density near to
the edge of the electrodes. As a byproduct of this study it was possible to give a
complete description of the Riemann sheet manifold of the eigenfunctions of the
logarithmic kernel. These methods can be readily extended to other weakly singular
kernels. ©1996 American Institute of Physics.@S0022-2488~96!02307-9#

I. INTRODUCTION

There are numerous examples of practical situations where electric current is used to probe the
interior of some object of interest. One emerging technology which specifically uses this approach
has become known as electrical impedance tomography~EIT!. This is a method of medical and
industrial imaging in which electrical currents are applied to the surface of an object and the
induced surface voltage is measured. These data are then used to produce an image of the con-
ductivity distribution in the interior of the object. An extensive literature exists on EIT.1

The particular feature of EIT which is of interest to us here is related to the observation that
in practice the electric current can be applied only through a finite number of electrodes—
currently in the range 16–64 for two dimensional applications. The consequences of this fact and
the appropriate mathematical modelling of the electrodes have been discussed in a number of
papers.2–4

In medical applications one of the significant problems for EIT is the existence of a thin layer
of material of high, but unknown, contact impedance lying between the current drive electrodes
and the body. Various models have been proposed to describe this phenomenon but one which has
strong experimental support5 is to suppose that on the~finite size! electrodes the electric potential,
F, is related to the electric currents~]F/]n! by

F1Zs
]F

]n
5V

wheres is the conductivity just below the electrode,Z is the contact impedance andV is the
potential of the electrode~a constant!. The induced voltage,F, is found by making measurements
on high impedance electrodes, also attached to the surface.

0022-2488/96/37(9)/4388/30/$10.00
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This model has been studied numerically using a boundary Fourier technique2 for the case of
constantZ and an interesting phenomenon which was observed was the appearance of very sharp
peaks in the current density distribution at the edge of the electrodes. More recently the model has
been studied numerically for non-constantZ using the weakly singular integral equation de-
scribed in Eq.~6! below. Although the singularity is weak, its existence has important conse-
quences for the numerical treatment of this equation. Details of this work will be given elsewhere6

but the point which we wish to emphasize here is that the distinctive sharp peak behaviour occurs
for a wide range of conductivity distributions and contact impedance forms. In Fig. 1 we show
typical results for the current density distribution in the case of eight electrodes with an input
current on thel th electrode of cosul .

An unwelcome consequence of the sharpness of these peaks is that the direct numerical
modelling of the potential with the finite element method has become an excessively substantial
task due to the high number of mesh points needed near to the edge of the electrodes in order to
accommodate the rapid variation of the normal derivative of the potential. The aim of this article
is to give an explicit analytic description of these singularities in a form which should substantially
improve the speed of the numerical computation.

Since the appearance of the peaks is a boundary phenomenon which is very little influenced
by the actual values of the conductivitys inside the disk—see the discussion in Section III about
the dominant singular integral equation—we shall focus our attention on the constants case. In
this case the governing partial differential equation is Laplace’s equation and our problem be-
comes one in potential theory. Consequently, we shall study the electrode model defined above for
the standard domain of the unit disk. The importance of the unit disk stems from the fact that the
potential problem for any simply connected two dimensional domain can be reduced to the unit
disk by an appropriate conformal mapping.

In earlier investigations of these peaks it had been shown4 that this problem can be solved
explicitly in the zero contact impedance case~Z[0!, for the case of two electrodes. In this
specific case one finds that near the edge of the electrodes

FIG. 1. The current density distribution obtained solving Eq.~6! numerically for the case of 8 electrodes, each having a
contact impedance equal to 0.22.
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]F

]n
;

1

Ax

wherex is the distance, along the boundary, from the edge of the electrode. Thus the normal
derivative ofF becomes infinite at the edge of the electrodes. However if the contact impedance
Z is not zero, although]F/]n still has sharp peaks at the edge of the electrodes~see Fig. 1!, it
remains finite since bothF andV are finite and since]F/]n[~V2F!/~Zs!. This shows that the
nature of the singularities in theZÞ0 casecannotbe obtained from that encountered in the
solubleZ[0 model. Thus, in order to have a correct understanding of these singularities some
deeper investigations are necessary and this represents the main goal of the present paper.

Overview of the paper

After a short description of the mathematical model in Section II, in Section III we formulate
the boundary problem as an integral equation. As shown there the kernel of this integral equation
has a weak~logarithmic! singularity, and this has direct consequences for the singularities of the
solution near the electrodes edges. We will describe these singularities in terms of an asymptotic
series for the potential.

In pursuing this program we shall have to step off the real axis into the neighbouring complex
plane. This will be necessary since we will write the solution of the integral equation as an infinite
sum of the free term and the eigenfunctions of the weakly singular kernel. As one knows, there are
many examples of series uniformly and absolutely convergent on the real axis which cannot be
differentiated term by term@for exampleSn51cos(nx)/n

2 converges uniformly, while thekth
derivatives of its terms contain factors of the formnk22 which spoil any convergence#, but in
deriving asymptotic expressions we will often have to perform this kind of operation. However, in
contrast to what happens on a real interval, in the complex plane there exists a marvelous theorem
which states that given a sequence$ f i% of functions holomorphic in some domainV which
converge uniformly,f i→ f , on all compact subsets ofV, then~a! f is a holomorphic function inV
and~b! f i8 as well as the higher derivativesf i

(n) tend uniformly towardsf 8 and f (n) on any compact
subset ofV. In some way by walking in the complex plane around the singularity one has a better
view of what really happens there.

In studying the analytic properties of the free term~Section IV! and of the eigenfunctions
~Section V!, we shall use techniques similar to those from the ‘‘pinch and end point singularities
theory’’ which was developed some time ago by Eden, Landshoff, Olive and Polkinghorne7 in
elementary particle physics. However our problem is more complex than that related to the
Feynman graphs in two respects. First we will have to consider moving cuts rather than moving
poles, and second we will no longer have integrals over some explicitly given functions, but
integrals over thea priori unknown eigenfunctions whose singularities we are trying to find.

Handling infinite series can also be dangerous because spurious singularities may creep in as
happens, for example, with the common geometric series. The proof that this does not happen in
the neighbourhood of the singular point is given in the first subsection of the Section V. The
analytic properties of the eigenfunctions and the recursive procedure to compute the coefficients in
the asymptotic expansions are given in Section V B@see Eq.~67!#. From this expansion it follows
that the spikes of the current density near the edge of the electrodes are of the form

]F

]n
; (

m51

r

(
k51

m

cmkx
m
• logk~x!1O ~xr112«!1regular part,

wherex is the distance along the boundary from the edge of the electrode andcmk some real
coefficients. Since the derivative ofx log(x) is 11log(x), this means that although these spikes
arefinite they haveinfinite derivatives.
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II. THE MATHEMATICAL MODEL FOR EIT

The usual model used to describe the forward problem in EIT is obtained by considering the
object as consisting of isotropic material with conductivity distributions contained in an open,
simply connected regionV surrounded by a reasonably smooth boundary]V. On the surface,]V,
a number,L, of electrodes are attached and electrical current is applied.

In this case Maxwell’s equations give:

¹•~s¹F!50 in V. ~1!

Further, the total current driven on thel th electrodeI l 5 *G l
s(]F/]n) is a known quantity and

there is no current outflow outside the region covered by the electrodes,G5G1øG2ø•••øGL . If we
now introduce our electrode model mentioned earlier to the case whens is constant andV is the
unit disk, the physical problem is equivalent to the mathematical problem of solving the following
boundary value problem:

¹2F~z!50 in V, ~2!

]F

]n
50 on ]V\G,

]F

]n
5

1

Zl~z!
@Vl2F~z!# on the electrodeG l,]V, ~3!

E
G l

]F

]n
du5I l , l51,...,L,

for constant induced voltage,Vl , and total current driven,I l , on each electrode. HereZl repre-
sents the contact~the ‘‘skin’’ ! impedance andF(z5eiuPG l) is the potential just underneath ‘‘the
skin’’.

III. THE INTEGRAL EQUATION

If the values of the normal derivative

]F

]n U
z5eiu

were known everywhere on the boundary]V of the unit disk, we would be considering a classical
Neumann problem, which is readily solved by means of the formula

F~z!5E
0

2p

N ~z,eiu8;0!
]F

]n U
z85eiu8

du81const., ~4!

where the Neumann kernelN ~z,z8;0! is

N ~z,z8;0!52
1

p
loguz2z8u,

with z85eiu8 on the unit circle.
If we integrate the kernel with the values of the normal derivative]F/]n on the unit circle, we

obtain a functionF which is harmonic throughout the unit disk, which vanishes atz50 and which
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has the prescribed normal derivative values on the boundary. Similar kernelsN (z,z8;z0) produc-
ing functions vanishing atz5z0 rather that atz50 can be written easily,8 but the knowledge of the
normal derivative determinesF only up to a constant.

For what follows it is interesting to continue the Neumann integral~4! up to the boundary.
Since

ueiu2eiu8u2[2@12cos~u82u!#,

if z andz8 are of the formz5eiu andz85eiu8 the Neumann kernel on the unit circle reads:

N ~eiu,eiu8;0!52
1

2p
log$2@12cos~u82u!#%,

52
1

p
logU2 sinS u82u

2 D U. ~5!

In our case the normal derivative is known explicitly only on that part of the boundary which lies
between the electrodes~i.e., on ]V\G! where ]F/]n is identical to zero. However, since the
integral representation~4! can be continued up to the boundary, conditions~3! yield a linear
integral equation for the boundary valuesr~u![F(eiu) of the potential:

r~u!52
1

p (
l51

L

VlE
G l

du8

Zl~u8!
logU2 sinS u82u

2 D U1 1

p (
l51

L E
G l

du8

Zl~u8!
logU2 sinS u82u

2 D Ur~u8!.

~6!

Although the kernel

2
1

p
logU2 sinS u82u

2 D U
becomes infinite each timeu8 equalsu, this logarithmic singularity is weak enough to beL2

integrable. The kernel is therefore of Hilbert–Schmidt type and so one can benefit from all the
advantages of Fredholm integral equations of the second kind, namely the existence and unique-
ness of anL2 solutionr~u!.

Equation~6! may be rewritten in a form which exhibits the logarithmic singularities of the
kernel. Takingeiu P G l0

we may write

r~u!52
1

p (
lÞ l0

E
G l

logU2 sinS u82u

2 D U @Vl2r~u8!#

Zl~u8!
du8

2
1

p E
G l0

logU sinS u82u

2 D
S u82u

2 D U @Vl0
2r~u8!#

Zl0
~u8!

du82
1

p
Vl0EG l0

du8

Zl0
~u8!

loguu82uu

1
1

p E
G l0

du8

Zl0
~u8!

loguu82uur~u8!. ~7!

In order to study the local behaviour of the solutionr~u! near the edges of thel 0th electrode, we
absorb the first two terms which are continuous into the ‘‘free term’’ of the so calleddominant
singular integral equation,9 which is of the form:
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f ~x!5g~x!1lE
0

1

K~x,t ! f ~ t !dt, 0<x<1, ~8!

K~x,t ![ logut2xu. ~9!

Here the pointsx50 and x51 correspond to the edges of the electrode under consideration.
Equation~8! can be readily deduced from~7! by a suitable change of variables and functions in the
Zl~u! constant case, but as we shall show elsewhere10 the discussion for the general case~non-
constantZl , non-constants! is fairly similar. When we follow this procedure we find that, as well
as the first two terms from Eq.~7! which are regular, the functiong(x) contains the term

2Vl0YpE
G l0

du8loguu82uu/Zl0
~u8!,

so that after the changes of variablesg(x) has the form

g~x!5E
0

1

logut2xuw~ t !dt1regular part.

For the convenience of some subsequent proofs we shall also be interested in the iterated equa-
tions obtained by replacingf (t) under the integral by the right hand side of the integral equation
~8!:

f ~x!5g2~x!1l2E
0

1

K2~x,t ! f ~ t !dt,

~10!

f ~x!5g3~x!1l3E
0

1

K3~x,t ! f ~ t !dt,...

and so on, where

g2~x!5g~x!1lE
0

1

K~x,t !g~ t !dt,

~11!

g3~x!5g2~x!1l2E
0

1

K2~x,t !g~ t !dt,...

and

K2~x,t !5E
0

1

K~x,t!K~t,t !dt,

~12!

K3~x,t !5E
0

1

K2~x,t!K~t,t !dt,... .

If this iteration had been continued indefinitely we would have found the Neumann series forf .
Since these series usually converge only for very small values ofl, we shall not use them but stop
after a finite number of terms and take advantage of the fact that the eigenvalues ofKj (x,t) are the
powers$ln

j % of the eigenvalues$ln% of K(x,t). Indeed this will be quite helpful in some subse-
quent convergence proofs.

IV. SINGULARITY OF THE FREE TERM

In this and in the next section we shall try to find the analytic structure of the edge singulari-
ties of the solution without solving the integral equation, the latter being possible only numerically
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or in some very special cases.4 To this aim we shall use methods similar to those from the theory
of the pinch or of the end point singularities,7 well known to particle physicists working in analytic
S-matrix theory. As a preparation to what follows it is probably helpful to look to the correspond-
ing chapters from the classical book of Eden, Landshoff, Olive and Polkinghorne.7

In this section we shall deal with the free termg(x) of Eq. ~8!. As mentioned in the Intro-
duction, in order to find the analytic structure of the singularities we have to step into the neigh-
bouring complex plane. We shall start our investigations with some negative valuesz0 of z for
which logut2zu5log(t2z) since the integration variablet is between 0 and 1. Having to perform
analytic continuations we prefer to handle holomorphic expressions~logut2zu is not a holomor-
phic function ofz! and so, instead working withg(x) we shall focus our attention on functions of
the kind

F~z!5E
0

1

log~ t2z!w~ t !dt ~13!

where the weightw(t) is a function oft, which is holomorphic~no cuts or other singularities! in
neighbourhoods oft50 and t51. Although the holomorphic extensionF(z) is different from
g(x), it is closely related to it since, up to regular terms ReF(x6 i e)5g(x) for xP@0,1# ande↘0.
Since the weightw(t) may differ very much from one case to another, integral~13! cannot be
performed explicitly. Therefore it will be interesting to have a mathematical procedure which
should be able to predict the form of the singularitywithout actually performing the integrals.
However, in order to have a partial check of the results which will be obtained below, we note that
in the simplest casew[1 we obtainFw[1(z)5z log(2z)1(12z)log ~12z!21.

As mentioned at the end of the last section, ifl is small enough the Neumann series converge
and so the solution can be written in terms of the free termsgj of the iterated equations. Therefore
at the end of this section we shall discuss briefly the singularity of the iterated functionsgj (x)
since they provide a check of the results obtained in Section V in the general case.

A. Different ways of defining a cut

We recall that the features which are important when considering the cut structure of complex
functions are the locations of the branch points and not the way in which the cut is taken. Indeed,
the cut can be deformed or trailed as will become apparent below, in Figs. 3 to 5. As a first
example, consider the functionFw[1(z) given above. To define the cut of the first termz log~2z!,
we first introduce the functionZ(z)52z and ask then that the cut of logZ(z) should run along
the positiveZ real axis. One achieves this by writingZ5uZuexp(if) and requiringf to be in the
range@0,2p!. With these conditions the cut of the first term,z log~2z!, of Fw[1(z) runs along the
negativez real axis. The functionz log~2z! is real and equal toz logu2zu[2uzu loguzu below the
cut. Above the cut it will contain an additional imaginary part equal to 2ipz. There will be no cut
along the positivez real axis; here the value ofz log~2z! is equal toz loguzu1 ipz both above and
below the real axis.

It is not compulsory to take the cut of the second term ofFw[1(z) to the left. Indeed, if we
define a new variableZ(z)512z, we can redefine the ‘‘fundamental Riemann sheet’’ of logZ by
requiring that the argumentf of Z to be between2p andp rather than between 0 and 2p, so that
the cut of logZ5log~12z! will run along the negative realZ axis. SummarisingFw[1(z) has no
cut on the interval@0,1# but two cuts running from2` to 0 and from 1 tò .

The possible patterns for the cut of the logarithm are not exhausted by the cases discussed
above. To have a further example let us consider for instance the functionZ(z)[11z and begin
with a cut of logZ running along the negativeZ real axis. In this case the cut of log~z11! looks
as in Fig. 2a where the6ip zonesmean that the values just above or beneath the cut differ by
6ip from the mean value across the cut.„For illustration purposes we have slightly deplaced the
cut: as it stands it corresponds to the function log[z2(212 i e)], e.0.…
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However we could alternatively define the cuts to run as in Fig. 2b where again the6ip zones
mean that the values of the logarithm differ by6ip from the mean value across the cut~which is
not necessarily real!. With these specifications one finds immediately that the value of log~z11! at
the pointsA, B andC are, up to epsilons, equal respectively to loguzA11u, to loguzA11u12ip and
again to loguzA11u. As a further example, the values of log~z11! at the pointsD(z52 i /21 i e)
and E(z52 i /22 i e) are respectively logA5/4 2 (26.5/180)ip 1 2ip and logA5/4
2 (26.5/180)ip, while the mean value across the cut is there equal to logA5/42 (26.5/180)ip
1 ip.

B. ‘‘Hooking’’ the integration contour

Let us come back to the functionF(z). In what follows it is important to consider separately
the parameter~the ‘‘control’’ ! z-plane, and the complext-plane where the integration is per-
formed. As stated above, our aim is to find the singularities ofF(z), in the ‘‘control’’ z-plane,
without performing the integration explicitly. Since our final goal is the description of the singu-
larity of F(z) at z50, in this section we shall consider only analytic continuations performed in
some neighborhood of the origin. A similar discussion can be made for the other end point
z51.

Suppose that initiallyz lies somewhere immediately below the negative real axis in the
complexz-plane:z5z0[x02 i e, wherex0,0 ande.0. The function log(t2z) from the integral
of Eq. ~13! has,as a function of t~i.e. in the complext-plane where the integration is performed!,
a cut running parallel to the realt-axis from t52` to t5z ~see the dashed line in Fig. 3!. From
the point of view of the integrationt-space,z is a parameter. Suppose now thatz moves towards
a pointza5xa2 i e ~xa.0! and then returns toz0 ~x0,0! without crossing the integration contour.

FIG. 2. ~a! and ~b! Example of two different definitions of the cut of log(z11).
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Correspondingly, the head of the cut of the logarithm~as a function oft! will move in thet-plane
as shown in Fig. 3, but, since it will never cross the integration contour, the value ofF(z0) will be
identical with the value that the functionF(z) had before the pointz began to move fromz0.

The situation is however different if the path followed by the pointz in the control complex
z-plane crosses the segment@0,1# before returning to the initial positionz5z0. Here again the path
followed by the ‘‘head’’ of the cut begins atz0 and ends at the same point, but this time it winds
around the integration end pointt50, crossing the real axis att5zb as shown in Figs. 4 and 5.

A genuine analytic continuation of the functionF(z) should, of course, be at least continuous,
i.e. have no jumps or other discontinuities. Therefore, even before the end pointt5z of the
singularity of the logarithm reaches the pointt5zb which lies on the real axis between 0 and 1
~see Fig. 4!, we shall use the freedom we have to deform the integration contours inside the
analyticity domain of the integrand without altering in any way the value of the integralF(z).

Since the branch pointt5z ‘‘trails’’ behind it the cut of the logarithm whenz moves further
through pointszc in the upper halfz-plane~Fig. 4! towardsz0, the value we obtain for the analytic
continuationF (1)(z0) of the initial integral will be given by the integral along the pathC in Fig.
5 ~the dashed line in Fig. 5 represents the cut of the logarithm; as it stands, the cut ends at the
conjugate pointz̄05x01 i e rather than atz0!. Since the value of the logarithm on the lower lip of
the emerging part of the cut contains an additional 2p i with respect to that on the upper lip~recall
the discussions about the pointsA andB from Fig. 2b!, the integral on the part of the contour
around the cut~see Fig. 5! is

E
0

z0
~ logut2z0u1 ip!w~ t !dt1E

z0

0

~ logut2z0u2 ip!w~ t !dt522ipE
z0

0

w~ t !dt.

Here we have supposed that the weightw(t) has no singularities atz50. Such a pointz0 where the
integration starts and which is below the initial integration threshold is called an ‘‘anomalous
threshold’’ in elementary particle physics.

The new valueF (1)(z0) of F(z) obtained by means of this analytic continuation process is
hence

FIG. 3. Integration path~full line! and cut of the logarithm~dashed!.

FIG. 4. The integrals over@0,1# and over the deformed path are identical ifw(t) is holomorphic.
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F ~1!~z0!52ipE
0

z0
w~ t !dt1E

0

1

log~ t2z0!w~ t !dt, ~14!

where the logarithm has the same determination as in Eq.~13! ~i.e., a cut like in Fig. 3!. There are
many ways of defining the Riemann sheets ofF(z) but here we describe only two of them:

~i! If we defineF(x1 iy) for any point in the upper halfz-complex plane to coincide with the
function F (1)(x1 iy) defined above, i.e.F(x1 iy)[F (1)(x1 iy) ~y.0!, we have implicitly re-
quired that the functionF(z) should have no cuts on the segment@0,1# but only on other parts of
the real axis. For instance, from the above discussion it follows that along the negative real axis
F(z) will have a discontinuity

DF~x!5F~x1 i e!2F~x2 i e![F ~1!~x1 i e!2F~x2 i e!

52ipE
0

x

w~ t !dt, xPnegative real axis, ~15!

which means thatF(z) has indeed a cut along the negative real axis. This definition of the
‘‘fundamental’’ Riemann sheet ofF(z) coincides with that for the simple example ofFw[1(z)
discussed in the previous subsection.

~ii ! Alternatively we could have required that the functionF(z) should have no cuts along the
negative real axis. This amounts to redefining its ‘‘fundamental’’ Riemann sheet: we start again
from our z0[x02 i e with x0,0, ask thatF (0)(z0)[F(z0) but then require that the values of
F (0)(z) above the real axis should merge, for Rez,0, with those below the axis. We, therefore,
define F(0)(z) for Rez,0 as

F ~0!~z!5E
0

1

log~ t2z!w~ t !dt. ~16!

This definition which initially has been given only for Rez,0 may then be extended to the whole
complex plane cut along the real segment@0,1# ~and further, along the positive real axis up to
infinity; but, as mentioned at the beginning of this subsection, in order to keep the discussion
simple we shall not consider what happens beyond the end pointz51!. According to the defini-
tion ~ii !, the functionF (0)(z) will have no cuts along the real negative axis, but in return, will have

FIG. 5. The moving cut deforms the integration contour and produces an anomalous threshold.
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different values along the upper and the lower lip of the real segment@0,1#. In the lower half plane
F (0)(z) coincides with the functionF(z) corresponding to the previous definition~i! of the fun-
damental Riemann sheet, but not any longer for Imz.0 whereF(z) was identical toF (1)(z).
However, since by the construction of the functionF (1)(z) @see the discussion preceding Eq.~14!#
we had

F ~0!~x2 i e!5F ~1!~x1 i e!1O ~e!, for e.0 and 0,x,1, ~17!

it follows that F (1)(z) represents now the analytic continuation ofF (0)(z) on the next Riemann
sheet—call it sheet~1!—when one crosses the segment@0,1# in theupwarddirection.

On the other hand, starting from the valuesF (0)(x1 i e) from the upper lip of the segment
@0,1# and continuing themdownwards, one gets the functionF (21)(z):

F ~21!~x2 i e!5F ~0!~x1 i e!1O ~e!, for e.0 and 0,x,1, ~18!

which is obtained by deforming the integration contour in the lower half plane. Hence,F (21)(z)
will have the form

F ~21!~z0!522ipE
0

z0
w~ t !dt1E

0

1

log~ t2z0!w~ t !dt, ~19!

where, again, the logarithm has the same determination as in Eqs.~13! and ~16!. Further, we see
that the jump ofF ~0! across the cut@0,1# is

DF ~0!~x!522ipE
0

z

w~ t !dt, for 0,x,1.

The functionsF (21), F (0), F (1) living on the Riemann sheets~21!, ~0!, ~1! represent in fact a
unique analytic functionF(z), the various branchesF (21)(z), F (0)(z), F (1)(z) being nothing but
its values on a cutting up of the initial Riemann manifold along some arbitrarily given cuts.

If the functionw is holomorphic in some neighbourhood of the origin it admits there an
expansion of the form

w~ t !5a01a1t1a2t
21••• , ~20!

and so, from Eq.~15! we find

DF~x!52ipFa0x1
a1
2
x21

a2
3
x31••• G . ~21!

A function which has precisely the same jump along the negative axis is given by

Fa01 a1
2
z1

a2
3
z21••• Gz log z ~22!

which provides a mathematically correct and at the same time extremely simple description of the
singularity ofF(z) near the pointz50.

Before closing this section we shall discuss briefly the structure of the singularities at the
origin of the free termsg2(z), g3(z),..., gj (z) of the iterated equations~10!. In contrast tog(z),
these functions are written as integrals of the form~13! over weightsw(t) which are no longer
holomorphic but contain the singularities ofg(z), g2(z),..., gj21(z) respectively. By straightfor-
ward integration we find that the general term of the iterated functiongj (z) is
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zm logk~z!, with k50,1,...,j and m>k. ~23!

At this stage we may wonder whether the left hand cuts of the powers of log(t) appearing
under the integrals will not interfere with the above analytic continuation process. This does not
occur since the real part oft becomes negative only along the loop in Fig. 5 around the emerging
part of the cut of log(t2z) which is always at the same side of the negative real axis, i.e. always
in the same ‘‘1ip zone’’ of the function log(t). This means that

DF E
0

1

log~ t2z!tm logk~ t !dtG52ipE
0

z

tm~ logutu1 ip!kdt, zPnegative real axis. ~24!

V. SINGULARITIES OF THE SOLUTION OF THE FULL EQUATION

As mentioned in the Introduction, the specific difficulties of our problem are twofold. We
have first to handle moving cuts; this question has been largely discussed in the previous section
devoted to the free term. Second—and this is probably the main difference with respect to the
classical papers on pinch and end point singularities—we will have to cope with the fact that the
singularities of the function under the integral area priori unknown, this function being the
solution of the integral equation whose analytic properties we are trying to establish. In this
section we shall address this second problem by solving it first for the eigenfunctions which are
the natural building blocks of the solution, with the hope that their analytic properties~together
with those of the free term! will be transmitted to the solution itself. Of course, this is not at all
obvious since we will deal with infinite series and so new singularities may creep in. Therefore
before we embark in Section V B on the study of the Riemann sheet structure and the asymptotic
expansion of the eigenfunctions, we will first make sure in Section V A that the analytic properties
of the eigenfunctions do exhaust the holomorphic characteristics of the solution. This is probably
not entirely pedagogical, but reflects fairly well the way in which our work progressed. We shall
have often to refer in Section V A to various analytic properties of the eigenfunctions which will
be proved only later in Section V B.

This type of analysis presented here is not restricted to this particular integral equation, but we
hope that it provides a working example of how one could proceed in problems involving other
kinds of weakly singular kernels. To this end we tried to avoid as much as possible any special
properties of the logarithmic kernel—for instance the fact that its null-space kerK is empty—and
show how we can proceed in the general case. At a first reading or if not particularly interested in
these mathematical proofs but only in the practical aspects of the asymptotic expansion, the reader
may read only Section V A 1, skip the remainder of the Section V A and pass directly to Section
V B.

A. The absence of summation singularities

We shall proceed in a number of stages:
In SectionV A 1 we discuss the role of eigenfunction expansions in describing the generic

singularities of the solution. In both SectionsV A 1andV A 2we recall some facts from the theory
of integral equations and we identify a class of functions$c% which can be expanded in terms of
the eigenfunctions. We discuss also the possible appearance of additional singularities due to
problems of convergence of infinite sums of functions.

The convergence proofs are provided in two separate subsections. In SectionV A 3we discuss
the continuity of thesec-functions on the real segment@0,1# and we show that their eigenfunction
expansions converge uniformly there. However, in order to be able to consider the holomorphic
properties of the solutionf (z) we need a number of results in the complexz-plane. These are
derived in SectionV A 4where, in particular, we prove that no additional singularities appear as a
result of the summation of the series. The convergence of the asymptotic parts of the eigenfunc-
tions is discussed in SectionV A 5.
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1. Generic singularities and eigenfunction expansions

When discussing the possible singularities of the solution of an integral equation we are faced
with an apparent paradox. Independently of the specific form of the integral kernel, we may
always proceed as a numerical analyst usually does when checking the correctness of computer
code: start in the right hand side of Eq.~8! with some ‘‘nice’’ function f (t) which has no
singularities, integrate it with the kernel and then choose the free termg(x) to recover the initial
function f (x). So, irrespective of the~integrable! singularities of the kernel, the solutionf (x)
might be a polynomial, a simple trigonometric function or anything else. One may feel that this
type of solution is quite exceptional but this example is enough to show that onecannotspeak
about ‘‘the general singularity’’ of the solution of an integral equation with a given singular
kernel. However one is fully entitled to ask oneself what may happen in the non-exceptional
situations, i.e. in thegenericcase.

To this end it is enlightening to express the solution of the integral equation~8! for our
logarithmic kernel in terms of the eigenfunctionsun(x) of K(x,t), defined by

un~x!5lnE
0

1

K~x,t !un~ t !dt, with K~x,t ![ logut2xu, ~25!

as the series

f ~x!5g~x!1 (
n50

`
l

ln2l
gnun~x!, ~26!

derived below in SectionV A 2, where

gn5
defE

0

1

g~x!un~x!dx. ~27!

From expansion~26! it is obvious that in the generic case when small changes in the form of the
functiong(x) and hence in$gn% are allowed, both the singularities of the free termg(x) and of the
eigenfunctionsun(x) will appear in the solutionf (x) since they will no longer cancel identically.

2. The functions c(x )

In what follows we shall use systematically the notationc(x) for the functions from the range
RanK of the integral operator. The properties of these functions are used in the derivation of
expansion~26! which plays a central role for the analytic properties off as a superposition of
those ofg and of theun . However we should exercise great care at this point since additional
singularities may creep in. We should have in mind the case of the sequence of functions
1,11z,11z1z2,... . In the open unit disk this sequence tends to the function 1/~12z! which has a
pole atz51, whereas all the functions in the sequence are holomorphic in an arbitrary large disk.
Later in SectionV A 4we will use a theorem of Vitali and/or of Morera to prove that no additional
singularities appear in a neighbourhood of the origin. The theorem of Vitali, for instance, is
partially based on the requirement that the elements of the sequence of partial sums should be
uniformly bounded, which is clearly not valid in the counter-example with the geometric series if
uzu>1. Hence we have to make sure that in our case all the requirements of these theorems are
fulfilled.

In order to obtain Eq.~26! we first multiply the integral equation~8! by an eigenfunction
un(x), integrate over the variablex and use the symmetry of the kernel to get

f n5gn1
l

ln
f n , ~28!
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where the coefficientsf n are defined fromf (x) by integrals similar to those in Eq.~27!.
From Eq.~28! we find f n5lngn/(ln2l), but we should avoid expressing the solutionf (x)

as a sumS f nun(x) since the latter might not converge pointwise and/or the eigenfunctions$un%
might not represent a complete system of orthonormal functions. In the special case of the loga-
rithmic kernel~25! it happens~see Appendix! that the$un% do represent such a complete ortho-
normal system, but for an arbitrary kernelK, kerK is not empty and so they do not.

Many of the textbook theorems concerning expansions of the type~26! rely on the continuity
of the kernel in the square@0,1#3@0,1#. Since this is certainly not the case for our logarithmic
kernel, some supplementary work is necessary to adapt the proofs to our specific conditions. In the
simple cases where the kernel is continuous one usually takes advantage of this fact to prove that
for any square integrable—even singular—functionw(t), the function

c~x!5
defE

0

1

K~x,t !w~ t !dt ~29!

from RanK is ~a! continuous forxP@0,1#, and ~b! expressible in the form of an uniformly
convergent expansion

c~x!5 (
n50

`

cnun~x!,

[ (
n50

`

wn /lnun~x! ~30!

wherecn andwn are defined by

cn5E
0

1

c~ t !un~ t !dt, wn5E
0

1

w~ t !un~ t !dt.

Here the relation which connects the coefficientscn andwn can be obtained by multiplying Eq.
~29! by un(x), integrating and using the symmetry of the kernel

cn5wn /ln . ~31!

The solutionf (x) itself does not in general have a representation of thec-kind ~29!, but it is clear
from the integral equation~8! that the differencef (x)2g(x) is a truec-kind function. Hence it
can be expanded as the sumS( f n2gn)un(x), which in turn, using the relation~28! betweenf n
andgn , yields the representation~26! for the solution of the integral equation in terms of the free
termg(x) and of the eigenfunctionsun(x).

In SectionV A 3we shall prove that the properties~a! and~b! and hence the expandibility of
f (x)2g(x) are also valid in the case of the logarithmic kernel. Before showing that let us notice
that if kerK is empty as is the case—see the Appendix—with the logarithmic kernel, or ifw is
chosen from the orthogonal complement ker'K of kerK, we also have

Iw~x!2 (
n50

`

wnun~x!I
L2

50. ~32!

However, in contrast with what happens with thec-kind functions, Eq.~32! represents only a
convergence in the mean, i.e.w(x) does not have, in general, an expansion of the form~30! which
converges uniformly. For the study of the analytic properties of the solution we shall need finer
properties than those offered byL2-space arguments, since, for instance, holomorphy and uniform
convergence of the partial sums are essential for the Morera theorem to be used in SectionV A 4.
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3. Continuity of c(x ) in the logarithmic case and the uniform convergence of the
c(j )(x ) on the segment [0,1]

This section deals with the properties of thec-kind functions~29! on the segment@0,1# for the
logarithmic kernel~9!. The arguments are quite similar to those which are used in the case of the
continuous kernels, but we shall discuss them briefly here as a preparation for the next section and
as well as to make this paper self-contained.

Our logarithmic kernel becomes infinite each time the integration variablet equalsx. How-
ever, the continuity~a! of c(x) on the interval@0,1# ~including at its end points! can be proved in
a straightforward manner using the Schwarz inequality. Indeed, for anyL2 functioniwiL2 < M and
for any pointsx andx1d belonging to the~closed! segment@0,1#, we have

uc~x1d!2c~x!u2<E
0

1

@ logut2~x1d!u2 logut2xu#2dt3M2, ~33!

where the integral*0
1uw(t)u2dt has been replaced by the bound on theL2-norm. If d is small

enough, it can be shown that the integral on the right hand side of~33! can be made smaller than
any given nonzeroe2/M2, which proves the continuity of all thec-kind functions of the form~29!.
Since the eigenfunctionsun(x) by their very definition~25! are also functions of thec-kind, we
have hence implicitly proved their continuity on the segment@0,1#, including at the end points
x50 andx51.

We shall now show,~b!, that forxP@0,1# the finite sums

c~ j !~x!5 (
n50

j

cnun~x! ~34!

converge uniformly to the functionc(x) defined in Eq.~29!.
To this end we shall show first that the functionsc( j )(x) converge uniformly to some~con-

tinuous! function c~`!(x): a similar proof may be used then for the uniform convergence of the
analytic extensionsC( j )(z) which will be introduced in the next section. From Eq.~31! and from
the definition~25! of the eigenfunctions$un(x)% we have

U( j11
j1k cnun~x!U2[U( j11

j1k wn

ln
•lnE

0

1

K~x,t !un~ t !dtU25U E
0

1

K~x,t !( j11
j1k wnun~ t !dtU2,

which, using the Schwarz inequality and the fact that the basis$un(t)% is orthonormal, yields

U( j11
j1k cnun~x!U2<E

0

1UK~x,t !U2dt•E
0

1U( j11
j1k wnun~ t !U2dt5E

0

1

uK~x,t !u2dt•( j11
j1k wn

2.

~35!

For each fixed value ofx, 0<x<1, the kernelK(x,t)[log ut2xu regarded as a function oft is in
L2@0,1#, and so,

E
0

1

K2~x,t !dt,M2,`.

Since the functionw is also inL2,S j11
j1kwn

2 tends to zero for;k as j increases. Hence the right hand
side of ~35! can be made arbitrarily small irrespective of the value ofx. This means that the
sequencec( j )(x) convergesuniformly to some limit c~`!(x). Now from the continuity of the
eigenfunctions$un(x)% which we have proved above, it follows that the finite combinations
$c ( j )(x)% are continuous. Since the$c ( j )(x)% convergeuniformly, the limit c~`!(x) is also con-
tinuous.
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On the other hand, by projecting the kernel onto the basis$un% we obtain ‘‘the coefficients’’
un(x)/ln . Bessel’s inequality then ensures that any sum over theun

2(x)/ln
2 is bounded:

(
n50

` un
2~x!

ln
2 <E

0

1

K2~x,t !dt~,`!. ~36!

Integrating with respect tox we see thatS1/ln
2 must also converge and hence theulnu must tend

to infinity with n. This fact will help us to prove thatc~`!(x) is in fact identical to the function
c(x) defined in Eq.~29!.

Indeed, since both functionsc(x) andc~`!(x) are continuous, it is enough to show that the
L2-norm of their difference is zero. To this end we notice that the difference betweenc(x) and the
functionsc ( j )(x) can be written as

c~x!2c~ j !~x!5E
0

1

K ~ j11!~x,t !w~ t !dt ~37!

whereK ( j11)(x,t) is the truncated kernel

K ~ j11!~x,t !5K~x,t !2 (
n50

j
un~x!un~ t !

ln
, ~38!

where we have supposed that the eigenvalues have been labelled according their increasing
moduli: ul0u<ul1u<••• . Unlike the procedure followed before, we shall not try to use the Schwarz
inequality to prove directly the pointwise convergence of thec ( j )(x), but we shall go instead
throughL2-space arguments. Since the firstj11 eigenfunctionsu0(x), u1(x),...,uj (x) are all in
the null space kerK( j11) of the truncated kernel~38!, it follows that its eigenvalue with smallest
absolute value islj11. If we denote byK2

( j11)(x,y) the iterated truncated kernel

K2
~ j11!~x,y!5E K ~ j11!~x,t !K ~ j11!~ t,y!dt, ~39!

its smallest eigenvaluem will be lj11
2 . However for any symmetric Hilbert-Schmidt kernel

K (x,y) we have

sup
iwi5M

U E E K ~x,y!w~x!w~y!dxdyU5 M2

umu

wherem is the smallest eigenvalue ofK . Hence, taking the integral over the square of the
modulus of the left hand side of Eq.~37! we obtain

ic2c~ j !iL2
2

5U E E K2
~ j11!~x,y!w~x!w~y!dxdyU< M2

l j11
2 ~40!

which means thatic 2 c ( j )iL2 < M /ul j11u. Since 1/ulj11u tends to zero asj increases, so does
ic 2 c ( j )iL2. Now, from the uniform convergenceic ( j ) 2 c (`)iL(`)→0 which has proved above
@see Eq.~35!#, we have immediately also theL2 convergence

ic~ j !2c~`!iL2→0. ~41!

From the triangle inequality we have

ic2c~`!iL2<ic2c~ j !iL21ic~ j !2c~`!iL2, ~42!
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where from Eqs.~40! and ~41! we see that the left hand side, which is independent ofj , can be
made arbitrarily small by a suitable choice ofj in the right hand side. This means that
ic 2 c (`)iL2 [ 0 which, since bothc(x) andc~`!(x) are continuous, proves that the two functions
are identical.

4. The functions C (j )(z) and the theorems of Morera and Vitali

In order to be able to study the nature of the singularities of the functions ofc-kind, we will
have to step off the real axis into the complexz-plane. We shall be particularly interested in the
complex plane singularities and the asymptotic expansions nearz50 of eigenfunction expansions
of the form~26!, related to the solutionf (x) of the integral equation. To this end we shall need to
know some analytic properties of the eigenfunctions$un%. These will be derived in section V B
where, similarly to the functionF (0)(z) @see Eq.~16! from Section IV#, we shall define the
analytic functions

Un
~0!~z!5

def

lnE
0

1

log~ t2z!un~ t !dt, n51,2,3,... . ~43!

Although these functions do not yet represent the analytic continuation of the eigenfunctions
un(x) which are defined on the real segment@0,1#, they are closely related to them. This specific
choice is based, as forF (0)(z), on the fact that for real negativez we have log(t2z)[logut2zu,
since the integration variablet on the right hand side of Eq.~43! is always between 0 and 1. In
contrast to the function logut2zu ~which isnotholomorphic because of the modulus!, the function
log(t2z) can be extended analytically in the whole~cut! complexz-plane.

As will become apparent in Section V B, the analytic functionsUn
(0)(z),Un

(1)(z),Un
(21)(z),...

which are the analogues of the functionsF (0)(z),F (1)(z),F (21)(z),..., defined in Eqs.~16!, ~14!
and ~19!, have an infinite Riemann sheet structure; the superscript in parentheses indicates the
Riemann sheet under consideration. From the definition of the Riemann sheets and the continuity
properties across the cut, we have, similar to Eqs.~17!–~18!, for any realx between 0 and 1:

Un
~k!~x1 i e!5Un

~k21!~x2 i e!1O ~e!, e.0, xP@0,1#. ~44!

As will be shown in SectionV B 3, the eigenfunctionsun(x) defined on the interval@0,1# can be
written as simple combinations of the boundary values ofUn

(0)(z), Un
(1)(z) andUn

(21)(z) on the
upper and lower lips of the cut:

un~x!5
1

2
@Un

~0!~x1 i e!1Un
~1!~x1 i e!#, e↘0, 0,x,1,

~45!

un~x!5
1

2
@Un

~0!~x2 i e!1Un
~21!~x2 i e!#, e↘0, 0,x,1.

Hence, in analogy with the functionc(x) and the finite sumsc ( j )(x) defined in the previous
subsection forxP@0,1#, we shall define now forz in some given regionV of the complex plane,
the holomorphic functions

C~z!5
defE

0

1

log~ t2z!w~ t !dt, wPL2@0,1#, ~46!

C~ j !~z!5
def

(
n50

j

cnUn
~0!~z![ (

n50

j
wn

ln
Un

~0!~z!. ~47!
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Since we are mainly interested in the behavior of the solution near the origin, it is sufficient to take
the regionV to be the~open! unit disk cut along the real segment@0,1# ~see Fig. 6!, but any other
~cut! disk of radiusR is also acceptable. The holomorphy ofC(z) in V follows from the theorem
of Morera which states that iff11,12 the functionC(z) is continuousin the open setV and iff

E
]D

C~z!dz50 ~48!

along the border ofeveryclosed triangleD,V ~i.e. along any reasonable regular closed contour!,
then the functionC(z) is holomorphicin V. It is clear that these two conditions are met by any
function having the representation~46! for zPV. The continuity ofC(z) can be established in a
similar way to that of the functionsc(x) @see Eq.~33!#, while the vanishing of the integrals~48!
follows—after the interchange of the integral overtP@0,1# and integrals in thez complex plane—
from the holomorphy of log(t2z) as a function ofzPV. The theorem of Fubini11 permits this
interchange of the integration order since the functionF(z,t)[log(t2z)w(t) is in L1†]D3@0,1#‡
we are interested in. The holomorphy of the functionsC ( j )(z) is an immediate consequence of the
fact that they are finite sums of holomorphic functions.

We denote byC`(z) the limit of the sequence$C ( j )(z)% wherever this limit exists. We will
show thatthere are no new singularitieswhich enter the regionV as a result of the summation
process, i.e., that the limitC`(z) is holomorphic inV. This is an important point: remember the
counterexample with the geometric series from the beginning of SectionV A 2.

In studying the analytic properties of the functionC`(z), the crucial property is again the
uniform convergence—to be proved below—of the sequence$C ( j )(z)%. This might seem surpris-
ing since on the real line there exist examples of sequences of infinitely differentiable functions
which converge uniformly to functions which are nowhere differentiable. However, in the com-
plex plane the uniform convergence of the sequences can be used in conjunction with the theorem
of Morera to prove the holomorphy of their limits. Indeed, as a first consequence of the uniform
convergence of the sequence$C( j )(z)% one obtains the continuity of its limitC`(z). Secondly, the
identities

E
]D

C`~z!dz50 ~49!

FIG. 6. The open setV.
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follow from the vanishing of the corresponding integrals over the holomorpic functionsC( j )(z)
and from the fact that, because of uniform convergence, the integration and the limiting processes
can be interchanged.

To prove the uniform convergence of$C( j )(z)% for zPV we shall proceed similarly to the
method used on the interval@0,1#. Since the sums~47! are finite, they commute with the integral
~43! from the definition ofUn

(0)(z) and so

C~ j !~z![ (
n50

j
wn

ln
Un

~0!~z!5E
0

1

log~ t2z! (
n50

j

wnun~ t !dt. ~50!

Using arguments similar to those which led to Eq.~35!, we find

U( j11
j1k cnUn

~0!~z!U2<E
0

1

u log~ t2z!u2dt•( j11
j1k wn

2 ~51!

where, for allzPV, the integral over the logarithm is bounded while the sum over the coefficients
wn
2 tends to zero asj becomes large. This proves the uniform convergence of the sequence

$C( j )(z)% in V and hence, by the theorem of Morera, that the functionC`(z) has no singularities
in the regionV.

These results can also be proved using a theorem of Vitali13 which states that if~a! the
functionsC( j )(z) are holomorphic forzPV, ~b! the sequence converges uniformly on some subset
S of V which has an accumulation point insideV and ~c! the functionsC( j )(z) are uniformly
boundedin V, then the functionsC( j )(z) tend uniformly towards a functionC`(z) which is
holomorphic inV. Note that the subsetS may be the segment just above the real interval@0,1#
where the uniform convergence has been proved in SectionV A 3.

Using Vitali’s theorem we can easily find the regions whereC`(z) is holomorphic, by looking
at the sets where theC( j )(z) are bounded. In this way we can verify that unlike the functions
Un
(0)(z) which can be continued on higher Riemann sheets, the limitC`(z) generallydoes not

exist there. This is so because the uniform boundness condition~c! is no longer fulfilled outside
the first Riemann sheet~unless the coefficientscn decrease exponentially quickly!. The reason is
the existence of the factor exp[iln(z2t)] in the higher Riemann sheet continuationsUn

(k)(z) of
the functionsUn

(0)(z)—see Eq.~65! from SectionV B 4—which grows exponentially withln if
(z2t) is complex.

Finally we shall show that, similar toc~`! on the real segment, the limitC`(z) coincides
insideV with the functionC(z) defined in Eq.~46!. This is a direct consequence of the fact that
the set kerK is empty in the case of the logarithmic kernel. Indeed, replacingUn

(0)(z) in Eq. ~47!
by its definition~43!, Eq. ~46! and the Schwarz inequality give

uC~z!2C~ j !~z!u2<Iw~x!2(
0

j

wnun~x!I
L2

2 E
0

1

u log~ t2z!u2dt ~52!

where the right hand side tends to zero whenj grows.@For kernels other than the logarithmic one
with non empty null space, we can define appropriateC-functions so that the corresponding
w-functions are contained in ker'K. The simplest way to do this is to begin with a Neumann series
but stop after few iterations so that the neww(x) should belong itself to RanK.#

5. Sums of asymptotic expressions

One of the goals of Section V B is to derive asymptotic expressions valid forz→0 for the
analytic extensionsUn

(0)(z) of the eigenfunctions:

Un
~0!~z!5Un,asy

~0! ~z!1Un,rem
~0! ~z!. ~53!
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The remainderUn,rem
(0) (z) behaves likeO (uzuk2h) wherek is some given positive integer andh.0

but otherwise arbitrary small. However, the coefficients of the asymptotic termsUn,asy
(0) (z) contain

some~fixed! positive power of the eigenvalueln , depending on the value of the exponentk. Since
the $ln% tend to infinity with n, we should choose carefully an appropriate definition for the
$Casy

( j ) % in order to secure their convergence.
The simplest way to solve this problem is to use the iterated integral equations~10! discussed

in Section III. The eigenfunctions of the iterated kernelsKr(x,t) ~12! are identical with those of
the initial one, the only change being that the eigenvalues are now (ln)

r . This introduces a
beneficial factor 1/ln

r in the coefficientscr ,n of the new functions

c r~x!5E
0

1

Kr~x,t !w~ t !dt, ~54!

which are now

c r ,n5
wn

ln
r . ~55!

This ensures the separate convergence of the series

Casy
~ j ! ~z!5 (

n50

j

c r ,nUn,asy
~0! ~z!5 (

n50

j
wn

ln
r Un,asy

~0! ~z! ~56!

and

C rem
~ j ! ~z!5 (

n50

j

c r ,nUn,rem
~0! ~z!5 (

n50

j
wn

ln
r Un,rem

~0! ~z!.

As a result the asymptotic expansion of the solution of the integral equation will contain terms of
the formzm log k(z), k<r , m>k, as do the iterated free term@see Eq.~23!# and the asymptotic
termsUn,asy

(0) (z).
The initial range of validity of the asymptotic expressions derived above is the cut open disk

V and so does not yet extend on the real segment@0,1#. We are of course interested to show the
correctness of these asymptotic series also on some small real interval 0<x<x0 . As has been
shown above, the theorem of Vitali fails to work on higher Riemann sheets since the functions
Un
(1)(z) andUn

(21)(z) are no longer uniformly bounded and so the sequence$C( j )(z)% does not
converge any more there. However it is interesting and important for what follows to note that the
sequence$C( j )(z)% related to our integral equation with logarithmic kernel converges uniformly

also on the closureV of V, i.e. the functionC`(z) is well defined and continuous~because of the
uniform convergence! on the real interval@0,1#, both when approached from above and below. We

have used the symbolV to emphasize the fact that in all this discussion the open setV has to be
considered as an open subset of the whole Riemann manifold of the solution of the integral
equation rather than of thez complex plane~whereas normally the closureV coincides with the

unit disk uzu<1!. The setV contains the interval@0,1# twice ~see Fig. 7! corresponding to the fact
that the functionC(z) has different limits whenz approaches the interval@0,1# from above or
below.

To prove that the sequence$C( j )(z)% converges uniformly also on the interval@0,1# it is
sufficient to note that whenzP@0,1#, ulog(t2z) u is equal tozlogut2zuz if t.z, or to zlogut2zu6 ip z
if t,z. Here the sign ofip depends on whetherz approaches the real axis from above or from
below. However in both cases the integral from Eq.~52! is bounded and hence, the right hand side
of ~52! can be made as small as one wishes by takingj to be sufficiently large.
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It has been already shown in the previous subsection that limitC`(z) coincides with the
holomorphic functionC(z) throughout the open setV. The limitC`(z) does not exist beyond the

two real segments@0,1# from the border ofV but is continuous up to and on them, because of the
uniform convergence of the sequence$C ( j )(z)%. The functionC`(z) is hence defined, by conti-

nuity, in an unambiguous way on the two real intervals on the boundary ofV. It coincides there

with C(z), as everywhere else in the closed setV.
In this way we have shown that the asymptotic seriesCasy

` (z) obtained using the asymptotic

expansions ofUn
(0)(z) are valid in a neighbourhood of the origin inV, and therefore on the~two!

real intervals@0,x0#. This means that the remainderCrem
` (z) of the asymptotic series is bounded by

O (uzuk2h) on the real interval@0,x0# as well as in the open setV.

B. Continuation of the eigenfunctions to the complex plane

In this subsection we shall study the singularities of the eigenfunctions. To this end, similar to
the analytic extensionF ~0! of the free term from Section IV we shall introduce in SectionV B 2 the
analytic extensionsUn

(0) of the eigenfunctionsun(x).
In trying to continueUn

(0) analytically on higher Riemann sheets, i.e. in trying to construct the
functionUn

(1) as we did with the free term in Section IV, we face a specific difficulty related to the
fact that the eigenfunctionsun(x) as they stand are defined only on the segment@0,1#. This means
that we could no longer ‘‘hook’’ the integration contour, as we did in Section IV where the weight
w(t), being analytic, was well defined not only on the real segment but also on the various
complex plane deformations of the initial integration path.

This point will be solved in Section V B 3 where the eigenfunctionsun(x) will be expressed
as linear combinations ofUn

(0) and its Riemann sheet continuations. Another consequence of this
fact will be the Volterra integral equation which relatesUn

(1) to Un
(0) or vice versa~SectionV B 4!.

This Volterra integral equation can be solved effectively, providing explicit expressions forUn
(1)

orUn
(21) in terms ofUn

(0). Finally, in SectionV B 5 this integral equation is used in order to derive
the asymptotic series which describe the singularities of the eigenfunctions around the origin.

1. Eigenfunctions of the logarithmic kernel

It has been proved in the SectionV A 3 that, in spite of the logarithmic singularity in the
integrand, the eigenfunctions$un% defined by

un~x!5lnE
0

1

logut2xuun~ t !dt ~57!

are continuous functions. The graphs of some of these eigenfunctions are depicted in Fig. 8 and

FIG. 7. The closureV% of V drawn as a three dimensional picture in order to emphasize that the interval@0,1# is included
twice.
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Fig. 9. Although these eigenfunctions are finite and look well behaved at the end points 0 and 1 of
the fundamental domain~they are there continuous!, their derivatives are there infinite. It is the
aim of the following subsections to give a full analytic description of the singularities ofun(x) at
these end points.

FIG. 9. The eigenfunctionsu2(x), u3(x) andu4(x).

FIG. 8. The eigenfunctionsu0(x) andu1(x).
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Notice that initially, in order to compute the eigenfunctionsun(x) it has been sufficient to take
the range of the variablex to be the same as that of the integration variablet. Usually to compute
the function from the left hand side of an integral equation for values of the variablex outside this
initial range, we take the so-called Nystro”m continuation, which consists simply of substituting the
new values ofx in the right hand side of the equation. However this is possibleonly if the kernel
is holomorphic in some given region and so this method is not applicable in our case because of
the modulus function inside the logarithm which spoils holomorphy. Thus if in Eq.~57! we take
x to be negative, the left hand side ‘‘un(x)’’ is not the analytic continuation of the functionun(t)
which appears on the right hand side.

2. The functions U n
(0)(z) and their analytic continuations U n

(6k )(z)

The functionun(x), which was defined in this naive way for negative values ofx, may be
used to introduce a new functionUn

(0)(z) which is analytic and, although different fromun(x)
whenxP@0,1#, is intimately related to it. Noticing that forx,0 and;tP@0,1# we have logut2xu
5log(t2x), we shall defineUn

(0)(z) by

Un
~0!~z!5

def

lnE
0

1

log~ t2z!un~ t !dt, n51,2,3,... . ~58!

Taking the cut of log(Z)[log(t2z) along the real negative axis of the complexZ[t2z plane,
Un
(0)(z) is a complex function of real type,Un

(0)(z) 5 Un
(0)( z̄), having, as we shall show later, a

branch point at the origin and a cut lying on the positive real axis. Since we are interested in the
singularity of the function near the origin we shall consider the detailed behaviour ofUn

(0)(z) only
in the neighbourhood ofz50. A similar analysis can be performed at the pointz51.

The superscript~~0! in the present case! of Un
(k)(z) denotes the Riemann sheet under consid-

eration. Our notation will be such that, by crossing the cut ofUn
(k) betweenz50 andz51 in an

anti-clockwiseway, the value of the superscript increases by 1: see, in Fig. 10, the full line
a~0!2b~0! from the sheet~0!, which is continued by the dashed linea~1! lying on sheet~1!.
Conversely, crossing the cut between 0 and 1 in theclockwisedirection, we pass from the full line
a~0! from the sheet~0! to the dotted lineb~21! from the sheet~21!.

We will want to continue the functionUn
(0)(z) defined by the right hand side integral from Eq.

~58!, starting from some pointz5z0 ~z0,0!, along the full line pathb~0! and the dashed linea~1!,
back toz0, obtaining in this way the valueUn

(1)(z0) of Un(z) on the next Riemann sheet. But in
so doing we will need to deform the integration contour on the right hand side of Eq.~58! into the
upper half complext-plane as we did in the case of the free term in Section IV. We are faced,

FIG. 10. Higher Riemann sheet continuations paths ofUn
(0).
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however, with the difficulty thatun(t), as it stands, is defined only on the real segment 0<t<1.
We therefore need to expressun(t) as the value of some analytic function on the upper edge of the
cut. Here we will be interested only in theupper lipof the cut, since moving in an anti-clockwise
direction, the analytic continuation path will hook and deform the integration contour into the
upper halfof the complext-plane~see the curveC from Fig. 5!.

3. Expressing u n(t ), 0<t<1, in terms of U n
(0)(t1 ie) and U n

(1)(t1 ie)

Our first concern will be to rewrite the functions appearing under the integral sign of Eq.~58!
as combinations of analytic functions. To this end we again use the definition~58! and start from
some pointz5z0 , z0,0. We first continueUn

(0)(z) along a path lying in the lower halfz-plane to
a pointz25z12 i e, 0,z1,1, e.0, below the segment@0,1# ~along the pathb~0! from Fig. 10!. If
the cut of log(Z)[log(t2z) is taken to run along the negative realZ-axis, we have

lim
e↘0

log@ t2~z12 i e!#5 H logut2z1u1 ip if t,z1 ,
logut2z1u if t.z1 .

We now split the integral along the segment@0,1# into one between 0 andz1 ~where, of course,
t,z1 and so the integral runs along the upper lip of the cut of the logarithm!, and a second one,
betweenz1 and 1, where the integration points stay apart from the cut of the logarithm. In this way
we get

Un
~0!~z12 i e!5lnE

0

z1
logut2z1uun~ t !dt1p ilnE

0

z1
un~ t !dt1lnE

z1

1

logut2z1uun~ t !dt

5un~z1!1p ilnE
0

z1
un~ t !dt, ~59!

where the last equality follows simply from the fact that the first and the third terms combine to
give exactly the right hand side of Eq.~57!.

Similarly we can make an analytic continuation fromz5z0,0 ~along the patha~0! from Fig.
10! to the pointz15z11 i e above the cut, to obtain

Un
~0!~z11 i e!5lnE

0

z1
logut2z1uun~ t !dt2p ilnE

0

z1
un~ t !dt1lnE

z1

1

logut2z1uun~ t !dt

5un~z1!2p ilnE
0

z1
un~ t !dt. ~60!

The integral overun(t) can be eliminated between Eqs.~59! and ~60! by taking the sum of the
right hand sides, so that

un~z1!5
1

2
@Un

~0!~z11 i e!1Un
~0!~z12 i e!#1O ~e!

5
1

2
@Un

~0!~z11 i e!1Un
~1!~z11 i e!#1O ~e!. ~61!

Here the last line of Eq.~61! follows from the fact that the values ofUn
(1) of the functionUn on

the next Riemann sheet on theupper lipof the cut, merge, by definition@see also Eq.~17!#, with
those ofUn

(0) below the cut:

Un
~0!~z12 i e!5Un

~1!~z11 i e!1O ~e!, 0,z1,1.
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4. A Volterra equation for U n
(1)(z)

We shall now be able to deform the integration contour in the complext-plane in the same
way as we did in Section IV. Recalling that by the analytic continuation ofUn

(0)(z) along the path
b~0!2a~1! from Fig. 10 one obtains the functionUn

(1)(z), we find

Un
~1!~z0!5lnE

C
log~ t2z0!

Un
~0!~ t !1Un

~1!~ t !

2
dt, ~62!

where the integration contourC is shown in Fig. 5 and where we have replacedun(t) under the
integrand by its holomorphic expression~61!. The dashed line represents the cut of log~t2z0! in
the complext-plane, where, again, the1ip-zoneand2ip-zonemean that the logarithm differs
there by1ip and2ip with respect to its mean value across the cut. In the region Ret,0, both
Un
(0) andUn

(1) are holomorphic. So—recollect the discussion from Section IV which led to Eq.
~14!—the integral over the Ret,0 half-plane part of the contourC yields

2 iplnE
z0

0

@Un
~0!~ t !1Un

~1!~ t !#dt,

while the rest of the integral, betweent50 andt51, is identical with that from definition~58! of
the functionUn

(0)(z0). So, Eq.~62! can be rewritten in the form

Un
~1!~z!5Un

~0!~z!1 iplnE
0

z

@Un
~0!~ t !1Un

~1!~ t !#dt, ~63!

which is valid for anyz in the cut complex plane since it involves only analytic expressions.
Equation~63! can be regarded as a Volterra integral equation forUn

(1)(z) if the functionUn
(0)(z)

is known, or equally, as a Volterra integral equation forUn
(0)(z) if Un

(1)(z) were known.
This equation can be solved by differentiation. We find immediately

dUn
~1!~z!

dz
2
dUn

~0!~z!

dz
51 ipln@Un

~0!~z!1Un
~1!~z!#, ~64!

or, rearranging the terms,

dUn
~1!~z!

dz
2 iplnUn

~1!~z!5
dUn

~0!~z!

dz
1 iplnUn

~0!~z!.

This can be rewritten in the form

exp~1 iplnz!
d

dz
@exp~2 iplnz!Un

~1!~z!#5exp~2 iplnz!
d

dz
@exp~1 iplnz!Un

~0!~z!#.

Now, from Eq.~63! it is obvious thatUn
(1)(0)5Un

(0)(0). This is an initial condition which permits
us to write the solution of the Volterra equation as

Un
~1!~z!5Un

~0!~z!12iplnE
0

z

exp@ ipln~z2t !#Un
~0!~ t !dt. ~65!

Similarly we can step backwards and expressUn
(0) with respect toUn

(1), or Un
(21) with respect to

Un
(0):
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Un
~21!~z!5Un

~0!~z!22iplnE
0

z

exp@2 ipln~z2t !#Un
~0!~ t !dt. ~66!

5. Asymptotic expansion

To begin with, we shall suppose that each of the functionsUn
(0)(z) admits an expansion

around the origin of the form

Un
~0!~z!5Un,asy

~0! ~z!1Un,rem
~0! ~z![(

k50

r

akz
k1 (

m51

r

(
k51

r

bmkz
m
• logk~2z!1Un,rem

~0! ~z!, ~67!

whereUn,rem
(0) is O (uzur112h). The choice of these series may look very restrictive, but once we

have shown their consistency, their uniqueness follows from the uniqueness of the solution of a
linear integral equation with a Hilbert-Schmidt kernel. In Eq.~67! the sumSk50

r akz
k comes from

the holomorphic part ofUn
(0) aroundz50. Taking as before the cut of log(Z)[log~2z! along the

negative realZ-axis, the right hand side of Eq.~67! will be holomorphic throughout the domainV
which has a cut running along the positive real axis~see Fig. 6!. From the definition~58! we see
that Un

(0)(z) is a real-analytic function@i.e. Un
(0)(z)5Un

(0)( z̄)# and so the coefficientsak ~k
50,1,2...! andbmk ~m,k51,2,...! have to be real. The coefficientsbmk are then determined in a
recursive manner from the coefficientsak of the regular part.

In order to find the coefficientsbmk we first notice that the analytic continuation ofUn,asy
(0)

across the cut yields

Un,asy
~1! ~z!5 (

k50

r

akz
k1 (

m51

r

(
k51

r

bmkz
m
•@ log~2z!12ip#k. ~68!

Inserting the expressions~67! and ~68! in Eq. ~64! we may then compare the various terms
appearing in the left and right hand sides. This comparison can be done for anyz in the open set
V, for instance for negative realz, in order to be away from the cut of log~2z!. Taking the limit
z→0 in both sides we remark that

b1k50, k52,3,..., ~69!

as a consequence of the fact that the differences of terms of the typez@log(2z)12ip#k and
z logk(2z) from the left hand side of Eq.~64! yield, by differentiation, terms which tend to
infinity and which are not compensated by similar terms from the right hand side. Looking at the
constant terms we get

b115lna0 . ~70!

Similarly, by differentiating with respect toz both sides of Eq.~64! we obtain

bmk50 if k>m11, ~71!

while the coefficientsbmkwith k<m can be expressed iteratively by means of the coefficientsak .
So, for instance, we find

b215
2a1ln2a0ln

2

4
, b225

a0ln
2

4
. ~72!

We tried to check numerically the accuracy of this asymptotic expansion in regions close to the
singularity. To this end we took two terms from the holomorphic part ofUn,asy

(0) (z), and expressed
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the correspondingbmk coefficients in terms of the first two coefficientsa0 and a1. Sincea0 is
determined by the value atx50 of the eigenfunctions which, in turn, is determined by the
normalization condition, we have in factonly one free parameter, the coefficienta1. Using the
above expressions forb11, b21 andb22 in terms ofa0 ~given! anda1 ~free!, we have chosena1 to
obtain the best fit to the first few eigenfunctions, in the region@0,0.01# near the origin where we
expected the asymptotic expansion to hold. When we plot the functionun(x) together with our
asymptotic expansion the two curves appear identical on the interval@0,0.01#. In order to show the
slight difference in these functions we have defined a new functionũn(x)5un(x)2un(0)
2[un(x1)2un(0)]x/x1 which has its end pointsũn~0! and ũn~0.01! at the same height and so
permits the use of a much enlargedy-axis scale. The corresponding plots for the two first eigen-
functions are presented in Figs. 11 and 12. Although as it has been already stressed, these curves
are just one parameter fits and that moreover we have restricted ourselves only to the first terms in
the asymptotic expression, the agreement between these asymptotic expressions~the full lines!
with the computer calculated points of the eigenfunctions~the crosses! is really excellent.

VI. RESUME AND CONCLUSIONS

As indicated in the Introduction, the numerical calculations related to the solution of the
inverse problem for EIT are seriously hampered by the high number of mesh points necessary to
take into account the sharp peaks of the current density near the edge of the electrodes. Since these
peaks seemed to be intrinsic objects describable by only a small numbers of parameters we have
investigated the details of their analytic structure. To this end we have studied the Riemann sheet
structure of the eigenfunctions of the dominant singular integral equation relating to the solution of
the mixed boundary problem for the potential, and derived asymptotic expressions both for the
eigenfunctions and for the solution of the integral equation. These asymptotic expressions provide
very simple parametrisations for the anomalous thresholds, whose effectiveness can be judged
from the Figs. 11 and 12.

FIG. 11. One parameter asymptotic fit ofũ0(x).

4414 Ciulli, Ispas, and Pidcock: Anomalous thresholds and edge singularities in EIT

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The paper is constructed as follows: In the Introduction and in Section II the mathematics of
the EIT modelling is discussed while the corresponding weakly singular integral equation is given
in Section III. In Section IV we have discussed the effect on the singularities of the free term of
the moving cut of the logarithm which ‘‘hooks’’ the integration contour. Thegeneric singularities
of the solution of the integral equation are then described as a superposition of those of the free
term and of the eigenfunctions which were derived in Section V B. Section V A contains the proof
that although we deal with infinite series, no new singularities appear in the neighbourhood of the
origin, i.e. the singularities of the solution are really those of the eigenfunctions and of the free
term. We also determine the limits of the domain where the eigenfunction sum converges uncon-
ditionally and show how one can extend the validity of the asymptotic series also on the real
segment@0,1#.

We hope that the discussion of the analytic properties of the eigenfunctions and solution of
this quite special, logarithmic singular equation, will provide a working example which might be
useful also for the study of the singularities of the solution of other weakly singular integral
equations. The discontinuities across the cuts will certainly be different, but the general discussion
will probably be fairly similar.
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FIG. 12. One parameter asymptotic fit ofũ1(x).
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APPENDIX: COMPLETENESS OF THE BASIS { un}

Following a proof given by Auberson,14 we shall show in what follows that kerK, the null
space of the logarithmic kernel, is empty and so the eigenfunctions$un%n50,1,2...do span the whole
Hilbert space of theL2 functions on@0,1#.

Suppose that kerKÞ$0%, i.e. that there exists at least one non zeroL2-functionf such that

E
0

1

logux2yuf~y!dy50. ~A1!

Defining the function

v~x!5
defE

0

x

f~y!dy, ~A2!

we have

~a!
dv~x!

dx
5f~x! almost everywhere,

~b! v~0!50.

We can easily prove that the functionv(x) satisfies a Ho¨lder condition of index 1/2

uv~x1!2v~x2!u<Aux12x2u1/2, for ;x1 ,x2P~0,1!,

whereA is a positive constant.
By integrating the left hand side of Eq.~A1! by parts we find

E
0

1

logux2yuf~y!dy5v~1!log~12x!2P E
0

1 v~y!

y2x
dy

so that from Eq.~A1! we obtain

P E
0

1 v~y!

y2x
dy5v~1!log~12x!, ~A3!

If we now consider the following function

F~z!5
def

Az~z21!E
0

1 v~y!

y2z
dy for zPD ~A4!

whereD is the complexz-plane cut along the segment@0,1#, we can show that

~i! F is a holomorphic function inD;
~ii ! lim z→`F(z)52*0

1v(y)dy;
~iii ! Im F(x1ie)5Ax(12x)P *0

1@v(y)/(y2x)# dy5Ax(12x)v(1)log(12x), for xP~0,1!;
~iv! ReF(x1 ie)52pAx(12x)v(x), forxP~0,1!.

The properties~i!–~iii ! imply that

F~z!5
v~1!

p E
0

1 Ay~12y!log~12y!

y2z
dy2E

0

1

v~y!dy, zPD, ~A5!
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while from ~iv! it follows that for xP~0,1! we have

2pAx~12x!v~x!5
v~1!

p
P E

0

1 Ay~12y!log~12y!

y2x
dy2E

0

1

v~y!dy. ~A6!

Taking now the limitsx↘0 andx↗1 we find

v~1!

p E
0

1A12y

y
log~12y!dy2E

0

1

v~y!dy50, ~A7!

2
v~1!

p E
0

1A y

12y
log~12y!dy2E

0

1

v~y!dy50. ~A8!

Subtracting~A8! from ~A7! we see thatv~1!50 and hence, from Eq.~A6!,

v~x!5
1

pAx~12x!
E
0

1

v~y!dy[
C

pAx~12x!
. ~A9!

Now, sincev~1! is zero, the constantC also has to be zero and sov(x) has to vanish identically
@it had to be so since neither the right hand side of Eq.~A9! and even less its derivative areL2#.
This implies that kerK is an empty set and so the eigenfunctions$un% of the logarithmic kernel
form a completeL2 basis on the segment@0,1#.
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Localized solutions of the Dirac–Maxwell equations
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The full classical Dirac–Maxwell equations are considered in a somewhat novel
form and under various simplifying assumptions. A reduction of the equations is
performed in the case when the Dirac field is static. A further reduction of the
equations is made under the assumption of spherical symmetry. These static spheri-
cally symmetric equations are examined in some detail and a numerical solution
presented. Some surprising results emerge from this investigation:~i! Spherical
symmetry necessitates the existence of a magnetic monopole.~ii ! There exists a
uniquely defined solution, determined only by the demand that the solution be
analytic at infinity. ~iii ! The equations describe highly compact objects with an
inner onion like shell structure. ©1996 American Institute of Physics.
@S0022-2488~96!03308-7#

I. INTRODUCTION

It is an interesting exercise to compare the current development of a quantum theory of
gravitation, from the fully non-linear Einstein theory, to the development of QED from the lin-
earized Dirac–Maxwell theory. The most startling difference is the large body of work on the
classical, non-linear, theory of gravitation~general relativity!—a theory which includes, in a self
consistent manner, the interactions of the gravitational field itself. There is no comparable body of
work on the full Dirac–Maxwell theory~Dirac equations with electromagnetic interaction, Max-
well equations with Dirac field source—the so-called ‘‘self interaction’’!. Of course this situation
arose, historically, because of the rapid development and stunning success of QED.

Einstein’s equations provide a much better description of gravity than do the linear spin-2
equations. Indeed, one can ‘‘derive’’ classical general relativity from the linear, massless spin-2
theory by summing all the Feynman diagrams to tree level—see Refs. 1 and 2. The full Dirac–
Maxwell equations should provide a much better description of electronic matter than their lin-
earized counterparts~in which self terms are ignored!.

Explicit solutions to the Dirac–Maxwell equations are rare, see Ref. 3. Uniqueness and ex-
istence results for this system have been known for some time, see Ref. 4 and references therein.
More recently, existence results have been obtained for ‘‘soliton like’’ solutions.5,6 Theorem 1 of
Ref. 5 proves the existence of solutions to the Dirac–Maxwell equations as a critical point of the
Dirac–Maxwell action functional in the Sobelev spaceH1/2~R3, C4!; with the Dirac spinor being a
smooth function exponentially decreasing at infinity, together with all its derivatives. The solu-
tions presented here are quite different, they are singular at the origin and behave like 1/r 4 near
infinity.

There exist a number of solutions to the Yang–Mills–Dirac and Yang–Mills–Dirac–Higgs
equations, see Ref. 7 and the comprehensive list of references contained therein.

The paper is organized as follows: in Sec. II we write the equations in 2-spinor form, this
description then allows us to~covariantly! solve the Dirac equations for the electromagnetic
potential and so write down a complete set of equations in terms of the Dirac field. In Sec. III we
examine the static and spherically symmetric reductions of the equations. In Sec. IV we deal with

a!chris@neumann.une.edu.au
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some general properties of the static spherically symmetric system and in Sec. V present a nu-
merical solution to this system.

II. The Dirac–Maxwell Equations

In standard notation the Dirac-Maxwell equations are

ga~]a2 ieAa!c1 imc50, Fab5Ab,a2Aa,b ,
~1!

]aFab524pe jb524pec̄gbc.

Employing theg5-diagonal or van der Waerden description, see for example Ref. 8, we have

ga5&S 0 s
BḂ

a

saAȦ 0
D ,

with sAȦ
a the van der Waerden symbols, i.e.

~s
AȦ

0
!5

1

&

S 1 0

0 1D and ~s
AȦ

j
!5

1

&

3Pauli Matrix, j51,2,3.

WhereA,B50,1 andȦ,Ḃ50̇,1̇ are two-spinor indices~see Ref. 8!. The Dirac bispinor,c is

c5S uAv̄ ḂD and c̄5~vB,ūȦ!.

So that the Dirac equations become

~]AȦ2 ieAAȦ!uA1
im

&

v̄ Ȧ50, ~]AȦ1 ieAAȦ!vA1
im

&

ūȦ50, ~2!

where]AȦ[saAȦ]a , A
AȦ5saAȦAa .

The Maxwell equations are

]aFab524pe jb524pesb
AȦ~uAūȦ1vAv̄ Ȧ!. ~3!

In the linearized theory the ‘‘self current’’j b is ignored. We now eliminate the potentialAAȦ

using ~2!-another approach is to eliminate ‘‘Aa
self’’ using the formal Green’s function3,9—we will

use purely algebraic methods. From Eqs.~2! we have

vA]BȦuB1uA]BȦvB1
im

&

~vAv̄ Ȧ1uAūȦ!5 ie@ABȦ~vAuB2uAvB!#. ~4!

However, because of the two-dimensionality of the 2-spinor space we have

vAuB2uAvB5eAB~u
CvC!.

Here,e015e0151, e105e10521, e005e005e115e1150; we definejA5eABjB andjA5eBAj
B.

We assume thatuCvCÞ0 almost everywhere. Now,j a j a5uuAvAu2, souCvC[0 implies that
the current vector,j , is null—a massive neutrino field.

We can now solve~4! for the electromagnetic potentialA,
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AAȦ5
i

e~ucvc!
H vA]BȦuB1uA]BȦvB1

im

&

~uAūȦ1vAv̄ Ȧ!J . ~5!

Notice that, from~5!, under the gauge transformation

S uAv̄ ḂD→eixS uAv̄ ḂD we have Aa→Aa1
1

e
]ax

as we should expect!
The four complex equations~2! actually over determine the fourreal quantitiesAa . We must

impose on~5! the condition thatAa is real. These reality conditions can be written as

~AAȦuAūȦ!5AAȦuAūȦ , ~AAȦvAv̄ Ȧ!5AAȦvAv̄ Ȧ , ~AAȦuAv̄ Ȧ!5AAȦvAūȦ .

With the use of~5! these reality conditions become

]AȦ~uAūȦ!52
im

&

~uCvC2ūĊv̄ Ċ!,

]AȦ~vAv̄A!5
im

&

~uCvC2ūĊv̄ Ċ!, ~6!

uA]AȦv̄ Ȧ2 v̄ Ȧ]AȦuA50.

These equations constitute four real first order equations for the four complex quantitiesuA and
vA. A further four real third order equations for these quantities is obtained upon substitution of
~5! into the Maxwell equations~3!. Note that adding the first two equations of~6! leads to the
equation of conservation forj a.

III. REDUCTION OF THE SYSTEM

A. The static equations

Firstly, we impose the condition that the field is static. We assume that there exists a Cartesian
Lorentz frame in whichj a5d0

a j 0. Imposing this condition one quickly finds that

vA5eix&s0AȦūȦ , with x a real function.

The current vector is now

j a5&~u0ū0̇1u1ū1̇!d0
a .

The reality conditions are

]AȦ~u
AūȦ!5

22m

&

~ uu0u21uu1u2!sin x,

~]00̇1]11̇!~ uu0u21uu1u2!50,

u0~]00̇1]11̇!u
12u1~]00̇1]11̇!u

05 i @u0u1~]00̇2]11̇!1~u1!2]10̇2~u0!2]11̇#x,
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the expressions for the potentialAAȦ can now be written down, although we will not do this at this
stage.

Now under a gauge transformation we have

uA→eimuA and Aa→Aa1
1

e
]am.

We fix the gauge by defining real functionsX, Y andh as follows:

u05Xei /2~x1h!, u15Yei /2~x2h!.

Our equations can be given in a particularly suggestive three vector form by writing~in our
Cartesian coordinates!

l5~s
AȦ

a
uAūȦ!5S l 0, 1

&

VD
with

l 05
1

&

~X21Y2!

and

V5~2XY cosh,2XY sin h,X22Y2!.

The reality conditions become

]

]t
~X21Y2!50, “–V522m~X21Y2!sin x,

]V

]t
1~“x!3V50.

With electromagnetic potential

A05
m

e
cosx1

~X22Y2!

2e~X21Y2!

]h

]t
1

~“x!–V

2e~X21Y2!
,

A5
1

2e~X21Y2! F]x

]t
V1~X22Y2!“h2“3VG , where A5~A1,A2,A3!.

The full system is given by the above two sets of equations and the Maxwell equations.

B. Spherical symmetry

We now impose spherical symmetry upon our static system. A minimal requirement that the
Dirac field be static and spherically symmetric~in any gauge! is that the vectorl , above, is
spherically symmetric. We require

@Xi ,l #50,

where theXi , i51,2,3, are the three~vector! generators of rotations.
These conditions imply thatl has time and radial components only and that these components

are functions of (t,r ) only, r 5 A(x1)21(x2)21(x3)2.
Using the notation above we have
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X21Y25R5R~r !, only V5uVu r̂5Rr̂ ,

where r̂5~sinu cosf,sinu sinf,cosu! in terms of the polar coordinatesr , u, f. We have

X5AR cos~u/2!, Y5AR sin~u/2!, h5f.

The Dirac bispinor is now

c5ARS 2e~ i /2!~x2f! sin~u/2!

e~ i /2!~x1f! cos~u/2!

2e2~ i /2!~x1f! sin~u/2!

e2~ i /2!~x2f! cos~u/2!

D .

The equations are now as follows

x5x~r !, R5R~r !, A5
1

2e

cot u

r
f̂,

A05
m

e
cosx1

1

2e

dx

dr
,

~7!
d

dr
~r 2R!522mr2R sin x,

d

dr S r 2 dA0dr D54&per2R.

The really surprising result here is the unavoidable appearance of the magnetic monopole term

A5
1

2e

cot u

r
f̂.

Here f̂ is the usual azimuthal unit vector, in terms of a coordinate basisA52(1/2e)cosudf.
We should also impose a normalization condition~or finite total charge condition! on any

solution

E j adSa,`

on any space like hypersurface. This leads to the condition

E
r50

`

r 2Rdr,`.

To end this section we rewrite the determining radial equations in a more transparent form by
introducing the following new~dimensionless! variables

r52mr, a5
e

m
A0, q54p&

e2

m
r 2R.

~8!
dx

dr
5a2cosx,

d

dr S r2
da

dr D5q,
dq

dr
52q sin x.
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IV. STATIC SPHERICAL SYMMETRY: GENERAL PROPERTIES

The system of equations~8! possesses the discrete symmetry

x→p2x, a→2a, q→2q. ~9!

This is just the operation of charge conjugation;q needs to be reinterpreted~it was originally
defined as non-negative! to account for the change in sign of the charge which manifests itself on
the right hand side of the second equation of~8!. We write q5eQ, with e251 andQ>0, so
Q5&(e2/m)r 2R; then, under~9!, we havee→2e andQ→Q.

Our equations read,

dx

dr
5a2cosx,

da

dr
5

e f

r2
,

d f

dr
5Q,

dQ

dr
52Q sin x, ~10!

where we have introduced the new variablef to give a set of four first order, ordinary differential
equations. This new variable is directly related to the magnitude total~Dirac field! charge con-
tained in a ball of radiusr , B(r ),

eE
B~r !

j adSa5eE
B~r !

j 0d3x54pe&E
s50

r

s2R~s!ds5
2p

e E
s50

r

Qds5
1

2e
~ f ~r!2 f ~0!!.

In view of this—and the fact thatd f /dp5Q5eq is proportional to the charge density on a shell
of radiusr—we will use the following condition on our system~10!:

FOn r.0, f is a boundedC1 function, with bounded first derivative.

Both f and
d f

dr
have well defined limits asr→`.

~C1!

We will now develop some qualitative results which indicate the types of solution which can
exist under rather general~and physically reasonable! conditions.

Lemma 1: Suppose (x,a,f,Q) is a solution of (10) onr.0, then under C1 the function a is C2

on r.0 with a and da/dr bounded on intervalsr>r1.0 and ra bounded on 0<r<r1,`. If
f(0)Þ0 or df/dr(0)5Q(0).0 then a is unbounded asr→0.

Proof: We first establish thatQ and f have well defined limits asr approaches 0. We are
assuming that the solution (x,a, f ,Q) exists onr.0, so forr2.r1.0 and using Eq.~10!, we have

uQ~r2!2Q~r1!u5U E
r1

r2
Q~s!sin x~s!dsU

<E
r1

r2
uQ sin xuds,M1~r22r1!, here M15sup

R1

Q,`.

Letting r1 and r2 approach zero, we haveuQ(r2)2Q(r1)u→0. Using Cauchy’s criterion we
conclude thatQ~01! exists. A similar argument can be given to demonstrate the existence of
f ~01!.

The boundedness ofda/dr, on r>r1 follows from

e
da

dr
5 f /r2

Integrate this expression to bounda on r>r1.0.
Write V5era, then
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r
dV

dr
2V5 f , and r

d2V

dr2
5Q.

From the second of these equations we have, on~0,r1#,

2M1 lnS r1
r D1

dV

dr
~r1!<

dV

dr
~r!<

dV

dr
~r1!.

So we have~note asa is C2 away fromr50 so isV!

r
dV

dr
→0, as r→0.

Hence from the first of theV equations we see thatV has a well defined limit asr→0, in fact

lim
r→0

V~r!52 f ~0!.

An immediate consequence is that iff ~0!Þ0 thena is unbounded asr→0.
Now from ~10! we haveQ>Q(0)e2r, so that f (r)2 f (0)>(d f /dr)(0)(12e2r)—recall

d f /dr5eq5Q. Given the earlier result we mayf ~0!50 otherwisea is unbounded. We can now
integrate ourda/dr equation with this bound forf ,

e~a~r!2a~r1!!<2
d f

dr
~0!F ~12e2r!

r
2

~12e2r1!

r1
G2

d f

dr
~0!E

s5r

r1 e2s

s
ds.

As r→0 the integral on the right side of the inequality diverges to1`.
Lemma 2:Suppose (x,a, f ,Q) is a solution of~10! on`.r.0, then under C1 the functionx

is C1 with dx/dr bounded on intervalsr>r1.0. If f ~0!Þ0 thenx is unbounded asr→0.
Proof: The regularity ofx—on its presumed interval of existence—is established using stan-

dard theory~see, for example, Ref. 10 or 11! after first noting that the right side of

dx

dr
5a2cosx

is C2 in r ~treatinga as a known function and using lemma 1! andC` in x.
From the above equation we also have

ea21<e
dx

dr
<ea11,

which gives the required bounds~using lemma 1!. Working on~0,r1! we have~as in the proof of
lemma 1!

C01
f ~0!

r
<e

dx

dr
<C11

f ~r1!

r
,

whereC05ea(r1)212 f (0)/r1 andC15ea(r1)112 f (r1)/r1 .
Integrating,

C22C1~r12r!1 f ~r1!ln~r!<ex<C32C0~r12r!1 f ~0!ln~r!,
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with C25ex(r1)2 f (r1)ln~r1! andC35ex(r1)2 f (0)ln~r1!. If f ~0!,0 chooser1 near 0 so that
f ~r1!,0 and we have from our last inequality thatex→` asr→0. If f ~0!.0 our inequality yields
ex→2` asr→0.

There is one other condition which makes sense ‘‘physically’’: if we have an isolated system
we expect the charge density should go to zero at infinity.

F d fdr
5Q→0, as r→`. ~C2!

Lemma 3: Suppose (x,a,f,Q) is a solution of (10) onr.0 under conditions C1 and C2. Then
21<a`<1 where a→a` as r→`.

Proof:We first establish thata has a well defined limit, written asa` , asr→`; for r2.r1.0,
we have

ua~r2!2a~r1!u5U E
r1

r2 f ~s!ds

s2 U,M2S 1r12 1

r2
D , where M25sup

R1

u f u.

Letting r1 andr2 approach̀ , we conclude that the limita→a` exists.
From the first and second equations of~10! we have

d

dr
lnua2cosxu5S dadr

1sin x
dx

dr D Y ~a2cosx!5sin x2
f

r2~a2cosx!
.

Consequently, onr>r1.0, integrating the last equation of~10! we have

2 ln@Q/Q~r1!#5E
r1

r

sin x~s!ds5 lnU a2cosx

a~r1!2cosx~r1!
U1E

r1

r f ~s!ds

@s2~a~s!2cosx~s!!#
.

Now assumea`.1. In fact, this also takes care of the casea`,21, since under the discrete
conjugation symmetry,~9!, a→2a and in particulara`→2a` . Working onr>r1.0 we have,
for r1 large enough,

a~r!.11a0.0, for r>r1 and some constanta0 .

Then, asa21<(dx/dr)<a11, so

0,a0,
dx

dr
,M , where M is a finite constant—see lemma 1,

i.e., a0,a2cosx,M .

Clearly both terms on the right side of our equation for2ln@Q/Q~r1!# are bounded. This contra-
dicts our assumption C2 thatQ→0 asr→`.

The constanta` can be removed from the potential via a gauge transformation. Under
c→e2 ima`tc, we havea→a2a` . After this transformation the Dirac fieldc has time depen-
dencee2 iEt, where2m<E5a`m<m.

The three lemmas give a basic characterization of the solutions obeying C1 and C2. Iff ~0!Þ0
orQ~0!.0 thena diverges at the origin, these are solutions which can be pictured as a Dirac field
surrounding a central charged monopole—the numerical solution of Sec. 4 is of this type. There is
also the possibility of solutions witha andR ~recall: Q5&(e2/m)r 2R! everywhere bounded,
such solutions were suggested by the work of Wakano,12 who examined numerical solutions for
what could be called ‘‘half linearized’’ Dirac Maxwell equations—‘‘half linearized’’: if the elec-

4425C. J. Radford: Localized solutions of the Dirac–Maxwell equations

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



trostatic potential is ‘‘dominant’’ ignore the Maxwell equation involving the electromagnetic
vector potential and vice versa. In fact, as the following theorem demonstrates, no such solutions
exist.

Theorem: There does not exist a non-trivial solution of (10) onr>0 under conditions C1 and
C2 with a and P5Q/r2 bounded onr>0.

Proof: From lemma 1 we have,f (0)5Q(0)50. Next we establish that bothx anda have
well defined limits asr→0. Note thatdx/dr5a112cosx is bounded, under the hypothesis of
the theorem, asr→0; hence, by an argument of the sort used previously,x→x~0!5x0, say, as
r→0. We also have

f5E
s50

r

Q~s!ds5E
s50

r

s2P~s!ds>0.

Using the mean value theorem we have, for somer1,r.r1.0

f ~r!5rr1
2P~r1!,r3M3 , where M35sup

R1

P,`.

Thus

ua~r2!2a~r1!u5U E
r1

r2 f ~r!dr

r2 U,E
r1

r2
rM3dr5

1

2
M3~r2

22r1
2!.

Letting r1,r2→0 establishes the existence of the limit fora, we write

lim
r→0

a5a0 .

Now we use an argument similar to that used in the proof of lemma 3 to show that
dx/dr5a2cosx→0, asr→0. On ~0,r1! we have

~* !2 ln@Q~r1!/Q~r!#5 lnUa~r1!2cosx~r1!

a2cosx U1E
s5r

r1 f ~s!ds

s2@a~s!2cosx~s!#
.

Assume, (dx/dr)(0)5a02cosx0Þ0. Then, choosingr1 near 0 so that (dx/dr)(r)(dx/dr)(0)
.0, for r1.r.0, we have

U E
r

r1 f ~s!ds

s2@a~s!2cosx~s!#U,M3E
r

r1 sds

Udx

dr
~s!U .

The right side of this inequality is bounded asr→0. Consequently, the right side of~* ! is bounded
asr→0. But this contradicts the assumption of the theorem thatQ5r2P→0 asr→0. Thus

dx

dr
~0!5a02cosx050, or a05cosx0 .

We now assumee511, the casee521 can ~of course!! be obtained by conjugation. As
da/dr5 f /r2,0 on r.0, so

a05cosx0,a,a`<1

on r.0.
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Define new variables

U5AQ cos~x/2!, and V5AQ sin~x/2!.

We have

dU

dr
52

1

2
~a11!V, and

dV

dr
5
1

2
~a21!U.

The pairU andV also satisfy the following linear, second order equations

d2U

dr2
2

f

r2~a11!

dU

dr
1
1

4
~a221!U50,

and ~11!

d2V

dr2
2

f

r2~a21!

dV

dr
1
1

4
~a221!V50.

We note thatf /r2(a11) is bounded on intervals@0,r2#, with 0<r2,` and thatf /r2(a21) is
bounded on~0,̀ #—in the first case we may havea`522, whereas we may havea050 in the
second; we also have

1
4 ~a221!<0, on r>0.

From the definitions ofU andV we haveU,V→0 asr→0 or`. Thus, by the maximum principle
for odes~see Ref. 13!, we concludeU[V[0, soQ[0. There do not exist non-trivial solutions.

V. NUMERICAL SOLUTIONS

Numerical solutions to the system~10!, with e51, were sought by first expanding in a power
series from eithers50 ~r5`, with s51/r! or r50 and then evolving the system ins or r,
respectively, using a MATLAB interface to the NAG library.14

A. Solutions near r50

In lemma 1 we found thatV5ra was bounded, nearr50, with

lim
r→0

V~r!5 f ~0!

It is natural then to seek solutions of the forma5V~r!/r, nearr50, with V analytic inr. From
~10! it can be seen that bothf andQ must be analytic, withQ~0!50.

However, withQ analytic andQ~0!50, the last equation of~10! can only be satisfied with
Q[0–which impliesa5c01c1/r, we will refer to such solutions as trivial. The behavior of the
system nearr50 may be quite complex; from the proof of the theorem~see Eqs.~11!!, with
a5V/r, we see that nearr50 the second order equations forU andV have indicial equation~see
Ref. 15!

l21 1
4 V~0!250.

This implies thatU andV have behavior

U or V;v1~r!cosS V~0!

2
ln r D1v2~r!sinS V~0!

2
ln r D , near r50.
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B. Solutions near r5`

Nearr5` we expecta;a`1c1/r1c2/r
21•••. Assuminga is analytic ins51/r, nears50,

then implies thatf , Q and sinx are also analytic ins, in fact

f5
da

ds
, Q5s2

d2a

ds2
, and sinx52s1s2S d3a/ds3d2a/ds2D .

With the assumption thatx is analytic nears50 a uniquely defined~up to conjugacy! power series
results if we demand that the solution be non-trivial~x does have the freedom to add integer
multiples of 2p!.

The resulting power series has no free parameters, it is uniquely determined. The lower order
portion of the power series solution is as follows

x5p22s2
1

21
s32

3

520
s51O~s7!,

a52114s22
3

7
s41

341

5096
s61O~s7!,

f528s1
12

7
s32

1023

2548
s51O~s7!,

Q58s22
36

7
s41

5115

2548
s61O~s7!.

Using the power series to determine initial conditions it was found that the numerical results were
very stable for a good range of initial values fors ~s050.000001 tos050.01!, the results were
somewhat unstable fors0,0.0000001. The results presented in figures 1 to 4 were obtained by
first shooting from nears50 towardsr50 and then using the final values of this run as initial
conditions to shoot from nearr50 towardss50, to verify the solution. We also note, from the
above power series, thata`521. So in the gauge for whicha→0 asr→` the Dirac field has time
dependenceeimt.

In Figs. 1–4x, a2a`5a11, f (r )2 f (0) ~proportional to the ‘‘electron’’ charge interior to a
ball radiusr ! andQ are plotted against the radial distance measured in units of the Compton
wavelength~i.e. against12r5mr!.

Interpretation: The solution represented in Figs. 1–4 can be thought of as a central, charged
monopole~point source!, surrounded by an oppositely charged Dirac field-near` the electrostatic
potential behaves asA05(m/e)a;2m/e1[1/(me)/r 2] and nearr50 the potential behaves as
A0;2m/e1[(g/e)r ] ~whereg'5.7037 is the magnitude of the slope of the line in Fig. 5, where
a11 is plotted against 1/(mr)!.

At about one half the Compton wavelength from the center there is a shielding effect and the
Coulomb nature of the central charge becomes apparent.@We assume that the constants appearing
in the Dirac equation, i.e.,e andm have there usual meaning—e the square root of the fine
structure constant andm the inverse of the~reduced! Compton wavelength.#At large distances
from the center the electrostatic charges ‘‘cancel’’ each other. We can calculate the magnitude of
the total charge due to the Dirac field~see Sec. III A 3.1!, with f ~0! calculated numerically
~f ~`!50, in this case!,

eE
R3
j adSa5

1

2e
~ f ~`!2 f ~0!!'

1

2e
11.407391.
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FIG. 2. The potential,a11.

FIG. 1. The angular variable,x.
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FIG. 3. The ‘‘charge’’ interior toB(r ), f2 f (0).

FIG. 4. The ‘‘charge’’ on a shell, radiusmr, q.
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FIG. 5. The potential,a, from infinity.

FIG. 6. The shell ‘‘charge,’’q, from infinity.
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This calculation results in a charge of the same magnitude as the central charge.
The object is highly compact, with a radius of about a~reduced! Compton wavelength—see

Figs. 4 and 6. It has an onion like structure consisting of an infinite series of spherical shells—the
local maxima ofQ occur at points,r5rm , where sin~x(rm)!50, however from lemma 2 we see
thatx must diverge asr→0 ~in the present case! so there will be an infinite number of shells.

The ‘‘mass’’ of the Dirac field may be defined as

mE
R3
j adSa5

m

2e2
~ f ~`!2 f ~0!!'11.407391

m

2e2
.

To finish we calculate the energy-momentum of the system. The symmetric energy-momentum
tensor is

Tab5Tab
D 1Tab

em , with

Tab
D 5

i

4
@sa

AȦ~ ūȦuA,b1vAv̄ Ȧ,b!1sb
AȦ~ ūȦuA,a1vAv̄ Ȧ,a!

2sa
AȦ~uAūȦ,b1 v̄ ȦvA,b!2sb

AȦ~uAūȦ,a1 v̄ ȦvA,a!#1eA~a jb! ,

Tab
em52

1

4p S FagFb
g2

1

4
habFmnF

mnD .
These expressions are derived from the Lagrangian

L5
i

2
~ ūȦ]AȦuA2uA]AȦūȦ2 v̄ Ȧ]AȦvA1vA]AȦv̄ Ȧ!2

m

&

~uAv
A1ūȦvG

Ȧ!1e jaA
a2

1

16p
FabF

ab.

Notice that in the absence of the electromagnetic field, for a Dirac field with time dependence
e2 iEt, the energy densityT00

D is

T00
D 5E j0 .

In the present case we have

T00
D 5 j 0eA05

m2

e2
Qa

4pr 2
, T00

em5
m2

2e2 Fr2S dadr D 21 1

r2G S 1

4pr 2D .
These expressions include terms due to the central Coloumb and magnetic monopole fields, they
lead to an infinite total energy when integrated overR3. Formally then, the total energy is

E5
m

4e2 E0
`F f 2r2

1
1

r2
12QaGdr.

Finally, it is perhaps worth mentioning that the highly localized ‘‘multi-electron fields’’ de-
scribed here may in fact have applications to objects described in recent experimental
work16-‘‘geonium’’ or ‘‘kilo- e’’ objects-consisting of highly localized~point like, from the ex-
perimental viewpoint! collections of electrons in atomic traps.
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The role of elastic waves in the scattering problem is examined in the context of
modern field theory. This effort builds upon a previously published, and since
successfully applied formalism for solving the acoustic and electromagnetic scat-
tering problems. It specifically addresses the scattering of acoustic waves from a
fluid-solid interface, as well as the scattering of elastodynamic waves from surfaces
satisfying the zero-displacement, stress-free, and solid–solid boundary conditions.
Expressions for the change in the scattering amplitude due to a perturbation in the
scattering surface are derived directly from the requirement of time reversal sym-
metry ~also known as reciprocity!. These results constitute formal statements of the
composite~or two-scale! model. In a typical application, the perturbation usually
corresponds to Bragg scattering and is treated statistically, while the reference
surface provides tilt, shadowing, and multiple scattering, and is usually treated
deterministically. Used in this way, the new formalism effectively allows existing
numerical and operator expansion methods to be used to calculate the scattering
from rougher and/or higher dimensional surfaces than would otherwise be possible.
An alternate application of the formalism is illustrated using the fluid-solid bound-
ary as an example. A new manifestly reciprocal expression for the scattering am-
plitude is presented, as are the small slope and ‘‘local’’ two-scale approximations
for this problem.~By local, it is meant that only local phenomena such as the tilt of
the reference surface are automatically included. However, since the result is mani-
festly reciprocal, it is fairly straightforward to incorporate a non-local effect such as
shadowing.! During the course of the discussion, the classical scattering problem is
reexamined from an entirely new perspective.@S0022-2488~96!02009-9#

I. INTRODUCTION

A new approach for calculating the far-field scattering of acoustic and electromagnetic waves
from rough surfaces has recently been developed1–5. The formalism is constructed around the
property of time-reversal symmetry~also known as reciprocity!. Well-known proofs for the reci-
procity of acoustic and electromagnetic scattering in a time-independent environment were modi-
fied to produce formal statements of the composite-roughness~i.e., two-scale! model. These con-
sist of approximate expressions for the change in the scattering amplitude corresponding to a small
perturbation of a reference surface. The expressions are good to first order in the perturbation, but
exact with respect to the reference surface. By construction, they manifestly exhibit reciprocity.
Two basic strategies have been used to develop practically useful applications of this fundamental
formal result.

On the one hand, the formal statement of the composite-roughness model can be used directly
to generate an entirely new approach for calculating the field scattered from a rough surface. Let
the unperturbed reference surface include those features of the scattering surface which are large
compared to the wavelength of the field, and let the perturbation contain all the smaller features.
Since the result isexactwith respect to the large features, non-local effects such as shadowing,
multiple scattering, and diffraction can be calculated using high-order perturbation theory,1 or
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non-perturbative numerical or analytic techniques.6 Bragg scattering is associated with the small
surface features, and it is calculated using perturbation theory, and typically treated stochastically.
Note that non-perturbative techniques are usually considered to be inappropriate for use with very
rough scattering surfaces, but in the two-scale context provided by the new formalism, these
restrictions are effectively circumvented. Direct application of the new composite model also leads
to another related line of development. If only local effects are of interest, the formal statements
of the composite model can be used to generate entirely new expansions of the scattering ampli-
tude good to second order in the ratio of the acoustic wavelength to the radius of curvature of the
scattering surface, and, most significantly, also good to much higher orders in the slope.3 ~The
distinctive feature of these results is the presence of an arctangent in the integrand.!

Following the alternate basic strategy, the formal statement of the composite model is used to
generate a second fundamental result. The expressions for thechangein the scattering amplitude,
when applied to an infinitesimal translation, become generating functions for new representations
of the scattering amplitudeitself. Unlike the traditional representations of the scattering amplitude,
these manifestly exhibit reciprocity. In the investigation of acoustic and electromagnetic scatter-
ing, approximation schemes such as perturbation theory, the small slope approximation, and the
composite model were easily derived for a number of boundary conditions.3 In some cases, this
was the first time the results had been derived anywhere.

The utility of the manifestly reciprocal representations of the scattering amplitude is not
restricted to the problem of scattering from rough surfaces alone. The formalism has also led to
breakthroughs in the study of scattering from finite objects. When applied to planar objects, it
provides an exact formula for the scattering amplitude in terms of a line integral around the edge
of the scatterer. Useful approximations can be obtained by approximating the integrand with
solutions to the local half-plane problem. These insights have recently been used by Dashen,
Abawi, and Wandzura7,8 to examine the scattering from planar objects, edges, and corners.

In this paper the formalism will be extended to include elastic solids. The formal statement of
the composite model and the manifestly reciprocal representation of the scattering amplitude will
be derived for scattering from a fluid–solid interface as well as for the interface between two
elastic solids. In addition, the manifestly reciprocal expression for the scattering amplitude will be
used to generate new composite model and small slope approximations for the case of the fluid–
solid interface.

The limiting properties of these results will be considered. It will be shown that, in the limit
as the shear waves disappear~i.e., as the shear velocity approaches zero!, the results for scattering
from a fluid–solid interface approach previously derived results for the fluid–fluid interface~see
Ref. 3!.

The formal mathematical results to be presented in this paper are applicable to several physi-
cal problems. A typical application of the results for scattering from a fluid–solid interface would
be acoustic scattering from some parts of the ocean bottom. This would include areas where there
is a solid rock layer either directly underwater, or submerged beneath a muddy bottom that
acoustically behaves like a liquid. The solid–solid results may find application in the study of
seismic waves, specifically where the scattering between layers of the Earth’s crust is involved.
These results may also find application in the field of non-destructive testing, where scattering
from the interface between different materials would be described by the solid–solid scattering
formalism.

II. A FORMAL STATEMENT OF THE COMPOSITE ROUGHNESS MODEL

A. The general procedure

The derivations in this paper parallel the procedure developed in Refs. 2 and 3. For additional
insight into the notation, the strategy employed, and the underlying physical assumptions, the
reader is referred to those references. Elements of the notation for elastodynamic wave scattering
developed in Ref. 9~pp. 46–50! and Refs. 10–12 will also be used below.
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A small displacement of the material in an elastic solid is given by the vectoruW while the
components of the stress tensor are defined to be

t i j[l~¹W •uW !d i j1m~¹ iuj1¹ jui !, ~2.1!

wherel andm are the Lame´ constants, physical parameters characteristic of the solid. In dyadic
notation, this is written as

tJ[l1I~¹W •uW !1m~¹W uW 1uW ¹W
‚

!, ~2.2!

~where the subscript ‘‘‚ ’’ indicates that the differential operator operates to the left!. The envi-
ronment is assumed to be time-independent. Then, considering each frequencyv independently,
wave propagation is given by the equation

¹W • tJ52rv2uW , ~2.3!

wherer is the density of the solid.
Reciprocity is proven using the elastodynamic equivalent of what is called Lorentz’s Lemma

in electromagnetic theory. This procedure is outlined in Ref. 12~pp. 155–156!. Recall that
Lorentz’s Lemma states that, for any two independent fields labeled 1 and 2 which satisfy the
time-independent problem at a given fixed frequencyv, the vector

EW 13HW 22EW 23HW 1

must be a divergence-free vector. This follows from Maxwell’s equations in the absence of free
charges. The analogous divergence-free vector for elastodynamic waves is

tJ1•uW 22 tJ2•uW 1 .

This follows immediately from the equation of motion~2.3! and the equality

tJ1 :¹W uW 25 tJ2 :¹W uW 1 ,

which in turn follows directly from the definition of the stress tensor~2.1!. ~Note that ‘‘: ’’ is the
double dot product defined byA:B[Ai jBji , where repeated indices are summed.! It follows that
for any closed surface with normaln̂ ~we follow the convention thatn̂ points into the region
bounded byS),

E
S
dSn̂•@ tJ1•uW 22 tJ2•uW 1#50. ~2.4!

Reciprocity follows from this equality as follows.
• S is chosen to be the sum of the scattering surfaceS0 and the sphere at infinityS` ~or the
hemisphere at infinity for a plane scatterer!.

• The two solutions correspond to incoming plane waves labeled by the directionsk̂1 and
k̂2, respectively.

• k̂2 is identified with the negative of the normalized position vector of the observer~i.e.,
k̂252 r̂ ). The solution labeled by ‘‘2’’ is then called the reciprocal solution.r̂ is sometimes
referred to below as the outgoing direction.

Evaluation of equation~2.4! shows that the scattering amplitude remains unchanged under the
exchangek̂1→ k̂2; k̂2→ k̂1 ~this step takes some effort; see Ref. 12!. To put it another way, in the
asymptotic limit, the magnitude and phase of the scattered wave are unchanged by reversing the
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incoming and outgoing directions, and exchanging their roles. This is the reciprocity theorem.
There are some minor complications related to the tensor nature of elastodynamic waves, but these
will be addressed below as they become directly relevant to the discussion.

Following the technique outlined in Ref. 2, the new formalism emerges when the two solu-
tions are chosen so that they correspond to not only to different incoming directions,but also to
scattering from different scattering surfaces—the solution labeled by ‘‘2’’ scatters from a refer-
ence surfaceS2 and the solution labeled by ‘‘1’’ scatters from a perturbed surfaceS1. In equation
~2.4!, chooseS to beS21S` and defineR` to be the negative of the contribution fromS` , the
sphere~or hemisphere! at infinity ~unlessS2 is a closed surface and the integrand is evaluated
using the fieldinside S2; thenS5S2, and just setR`50). We have

R`5E
S2

dS2@ n̂2• tJ1~x2W !•uW 2~x2W !2n̂2• tJ2~x2W !•uW 1~x2W !#. ~2.5!

Consider the following mapping fromS2 to S1. At the pointx2W draw a normal toS2 and follow it
until intersectsS1 at pointx1W . The normal distancej from x1W to x2W is positive ifx1W lies within the
scattering region forS2 and negative if the opposite is true.~This geometry is sketched in Figure
1 of Ref. 2.! It is implicitly assumed that the perturbation is small enough with respect to the
radius of curvature of the reference surface~i.e., the reference surface is smooth! that the trans-
formation is single-valued, and that the solution can be analytically continued beyond the scatter-
ing surface~see Refs. 2 and 13 for a further discussion of this topic!. We now calculate~2.5! to
first order. The details are given in Appendix A.

Here

R`5E
S2

dS2@ n̂1• tJ1~x1W !•uW 2~x2W !2n̂2• tJ2~x2W !•uW 1~x1W !#2E dSj Tr~%J !n̂• tJ1•uW 2

1E dSj@ n̂• tJ2•%J•uW 11n̂• tJ1•%J•uW 2#

2E dSj@ n̂• tJ2•~1I2n̂n̂!•¹W ~uW 1•n̂!1n̂• tJ1•~1I2n̂n̂!•¹W ~uW 2•n̂!#2E dSj@¹W •~ tJ1•uW 2!#

1E dSj@ n̂• tJ2•n̂@ n̂n̂:¹W uW 1#1n̂• tJ1•n̂@ n̂n̂:¹W uW 2##

12E dSjF n̂• tJ2•~1I2n̂n̂!• tJ1•n̂

m
G1O~j2!. ~2.6!

The dyadic%J is the curvature tensor, and it is a geometrical characteristic of the scattering surface
defined by equation~A9!. ~It should not be confused with the scalarr, which is the density of the
material.! Equation~2.6! is an intermediate result. It is best thought of as a mathematical identity,
presented here as a lemma, which underlies the results that will be presented later in this paper.
Subsequent to equation~2.6!, the calculations for scattering from a fluid–solid interface and a
solid–solid interface part ways.

In what follows,¹W •( tJ1•uW 2) will generally be rewritten as

¹W •~ tJ1•uW 2!5~¹W • tJ1!•uW 21 tJ1 :¹W uW 252rv2uW 1•uW 21 tJ1 :¹W uW 2 .

On terms which are manifestlyO(j) there is no need to specify whether the field is evaluated
at x1W or atx2W , because the resulting effect onR` is of O(j2). It also does not matter whether the
solutions correspond to scattering from the reference surface or from the perturbed surface, since
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here too the difference contributes atO(j2). The labels ‘‘1’’ and ‘‘2’’ in this case only refer to
properties of the incident fields such as the direction of the wavevector and sometimes, as we will
see below, whether the incoming wave is longitudinal or transverse and specifying the incoming
polarization for the latter case.

Because of its general nature, equation~2.6! and its components do not easily lend themselves
to straightforward physical interpretation. However, there are some things we can say, even at this
early stage of the calculation. In what follows, as was done in the reciprocity proof outlined
earlier, the direction of the incident wavevector labeled by ‘‘2’’ will always be interpreted as
being the negative of the direction of the observer in the original problem; thus, the solution
labeled ‘‘2’’ almost corresponds to the reciprocal problem~‘‘almost’’ because it scatters from the
reference surface, but we are just a step or two away from eliminating the only terms where the
distinction still matters!. Then, using very general arguments, it is shown in Appendix B that
R` is ~more or less! proportional todT, the difference between the scattering amplitude for the
perturbed surfaceT and that for the reference surfaceT0; i.e., symbolically,

R`}dT[T2T0 .

~Recall that ‘‘[ ’’ implies a definition.! Note that this implies thatR` must be at least first order
in j, and that the first term on the right-hand side of equation~2.6!, although it does not explicitly
appearto be at least ofO(j), must reduce to an expression which is. It is also shown in Appendix
B that if neither field ‘‘1’’ nor field ‘‘2’’ is incoming from a half-space, then the contribution from
the hemisphere at̀ bounding that half-space is zero~i.e.,R`50), even if there are transmitted
waves in the half-space.

We are now in a position to recognize the power of this approach. Once the expression has
been recast so that only terms manifestly proportional toj remain, then we have an expression for
scattering from the perturbed surface, which can be evaluated using only solutions for scattering
from theunperturbed surface. The proviso that only terms manifestly proportional toj remain is
satisfied by invoking specific boundary conditions to evaluate the offending terms@i.e., the first
line on the right hand side of~2.6!#. Four boundary conditions are of interest here~see e.g., Ref.
10, pp. 27–29!:

• fixed rigid boundary:uW 50 on the interface;
• free boundary:n̂• tJ50 on the interface;
• boundary between two elastic solids~i.e., the solid–solid interface!: uW and n̂• tJ continuous
on the interface;

• slip boundary condition~the fluid–solid interface is a special case of this condition!: n̂•uW

and n̂• tJ•n̂ are continuous andn̂• tJ•(1I2n̂n̂)50 on the interface.
Note that the terms in equation~2.6! which are not manifestly proportional toj vanish

automatically in the first two cases. For the solid–solid interface, subtract equation~2.6! for the
region below the interface~i.e., corresponding to the half-space without an incoming plane wave,
or the interior region for a finite scatterer! from the same equation evaluated for the solution above
the interface~recalling thatR`50 in the former case,R` } dT in the latter case!. The continuity
conditions ensure that the first line on the right hand side of~2.6! cancels, and the result is an
equation fordT with an integrand manifestly proportional toj. ~Recall thatdT was defined just
above as the change in the scattering amplitude due to the perturbation of the surface.!

Thus, we have outlined how the first three boundary conditions may be used to eliminate the
O(j 0) terms in equation~2.6!. However, for the slip boundary condition, more work is needed.
This will be considered in the next section, where the problem of scattering from a fluid–solid
interface is considered.
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B. The fluid–solid interface

The fluid–solid interface is subject to the fourth set of boundary conditions listed in the
previous section, the slip boundary conditions. According to these conditions,n̂• tJ anduW are no
longer required to be continuous along the interface. However,n̂• tJ•n̂ and n̂•uW are continuous,
and furthermore, we haven̂• tJ5n̂• tJ•n̂n̂ on the surface, so that

R`5E
S2

dS2@ n̂1• tJ1~x1W !•n̂1n̂1•uW 2~x2W !2n̂2• tJ2~x2W !•n̂2n̂2•uW 1~x1W !#1O~j!. ~2.7!

Next, use equation~A1! to match upuW 2(x2W ) with n̂2 anduW 1(x1W ) with n̂1, and then integrate by
parts. The details are given in Appendix C, leading to the result

R`5E
S2

dS2@ n̂1• tJ1~x1W !•n̂1n̂2•uW 2~x2W !2n̂2• tJ2~x2W !•n̂2n̂1•uW 1~x1W !#1E dSj Tr~%J !n̂•uW 1tnn
2

1E dSjrv2uW 1•uW 21E dSj@uW 2•~1I2n̂n̂!•¹W ~tnn
1 !1uW 1•~1I2n̂n̂!•¹W ~tnn

2 !#

2E dSj
tJ1 : tJ2
2m

1E dSj
l

2m

Tr~ tJ1! Tr~ tJ2!

3l12m
1E dSjF Tr~ tJ1!

3l12m
tnn
2 1

Tr~ tJ2!

3l12m
tnn
1 G ,

~2.8!

wheretnn[n̂• tJ•n̂. Note that theO(j0) terms are now continuous across the interface and may be
canceled by subtraction of the equivalent equation below the surface.

Now, take the limit as the solid becomes a fluid~i.e., letm→0). It is shown in Appendix D
that in this limit ~2.8! reduces to

R`5E
S2

dS2@ n̂1• tJ1~x1W !•n̂1n̂2•uW 2~x2W !2n̂2• tJ2~x2W !•n̂2n̂1•uW 1~x1W !#

1E dSj Tr~%J !n̂•uW 1tnn
2 1E dSjrv2n̂•uW 1n̂•uW 2

2E dSjrv2uW 1•~1I2n̂n̂!•uW 21E dSj
k2

rv2 tnn
1 tnn

2 . ~2.9!

Equations~2.8! and~2.9! will shortly be subtracted from one another to produce an expression
for the change in the scattering amplitudedT corresponding to the perturbation of a fluid–solid
interface. However, we first briefly digress to more closely examine equation~2.9!. This is done in
order to develop a better physical understanding of this equation, and to determine the precise
relationship betweenR` anddT, when the latter is defined in terms of the conventions used in
reference 2~which in turn are conventions commonly used in acoustics!.

Thus, note that for an acoustic field in a fluid:

uW→
¹W P

rv2 ; tJ→2P1I,

whereP is the pressure wave. Making these substitutions, we find
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R`52
1

rv2 H E
S2

dS2@P1~xW1!n̂2•¹W P2~xW2!2P2~xW2!n̂1•¹W P1~xW1!#1E dSj Tr~%J !~ n̂•¹W P1!P2

2E dSjn̂•¹W P1n̂•¹W P21E dSj@¹W P1•~1I2n̂n̂!•¹W P22k2P1P2#J
52

1

rv2R`
f luid52

1

rv2 dTf luid, ~2.10!

whereR`
f luid anddTf luid are analogous quantities for the problem of acoustic propagation through

a fluid as discussed in reference 2.~Recall thatdT represents the correction to the scattering
amplitude for the perturbed surface; i.e.,T5T01dT whereT0 is for scattering from the reference
surface.! The identification ofR`

f luid with dTf luid implies that both the incoming and outgoing
directions lie in the region bounded byS2 and the sphere at infinity~i.e., we are looking at
reflection back into the same medium, not transmission into the medium on the other side of the
interface!. We will implicitly continue to make this assumption in what follows.

Note that in Appendix B, we have the result

R`5
rv2

kp
2 dTpp, ~2.11!

wherepp stands for ‘‘scattering between scalar components of an elastodynamic wave.’’ This
gives the apparent result

dTpp
?
5

2
kp
2

~rv2!2
dTf luid.

It is very important to note that this would be an erroneous conclusion! Equality~2.11! assumes
that the incoming displacement wave has an amplitude of 1, whereas~2.10! assumes that the
incoming pressure wave is normalized to unity. Once the different assumptions are accounted for,
we indeed find

dTpp5dTf luid.

In our study of the fluid–solid interface, we will assume that there is anormalized incoming
pressurewave in the fluid.

We now follow the strategy which was used in reference 2 to calculate the scattering from a
two-fluid or a two-dielectric interface. Equation~2.8! is evaluated in the solid. Since it is assumed
here that there is no incoming wave in the solid, and that the outgoing direction points somewhere
into the fluid, it follows that R`

solid50. Equation ~2.9! is evaluated in the fluid, where
R`52dT/r

I
v2 with r

I
the density of the fluid. Henceforth, the superscript ‘‘I ’’ refers to quan-

tities evaluated on the fluid side, while the superscript ‘‘II ’’ refers to those quantities evaluated on
the solid side.~Later, when we consider the interface between two solids, this will, of course, be
generalized, whereI will refer to the side with an incoming wave.! Now, subtract the equations
and use the boundary conditions~continuity of n̂•uW ,tnn) to simplify the result. Note that the
continuity of tnn implies that the transverse derivative (1I2n̂n̂)•(¹W tnn) must be continuous as
well, so that

~1I2n̂n̂!•~¹W tnn
II !5~1I2n̂n̂!•~¹W tnn

I !52r
I
v2~1I2n̂n̂!•uW I .
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~There is a minor point that may cause some confusion here. In the above derivations, it was
always assumed that the normal points into the volume enclosed byS. Thus, strictly speaking,
below the interface,n̂ should be replaced by its negative. However,n̂→2n̂ also implies that
%J→2%J andj→2j and it turns out that all terms in these equations have the same parity! This
makes comparison and subtraction of the two equations completely straightforward.!

Combining these results, we have the following equation applicable to the case when an
acoustic wave is incident from the fluid side of a fluid–solid interface and scatters back into the
fluid,

2
dT

r
I
v2 5E dSjv2~r

I
2r

II
!n̂•uW 1n̂•uW 21E dSjv2~r

I
2r

II
!uW 1

II
•~1I2n̂n̂!•uW 2

II2E dSjr
I
v2~uW 1

I

2uW 1
II !•~1I2n̂n̂!•~uW 2

I 2uW 2
II !1E dSjS k

I

2

r
I
v2 1

1

2m
II

D tnn
1 tnn

2 1E dSj
tJ1
TII : tJ2

TII

2m
II

2E dSjS l
II

2m
II

D Tr~ tJ 1
II ! Tr~ tJ 2

II !

3l
II
12m

II

2E dSjF Tr~ tJ 1
II !

3l
II
12m

II

tnn1
Tr~ tJ 2

II !

3l
II
12m

II

tnnG .
~2.12!

The superscript ‘‘T’’ denotes the transverse components oft defined by

tJ T[~1I2n̂n̂!• tJ•~1I2n̂n̂!5S t t1t1t t1t2

t t2t1t t2t2
D . ~2.13!

Implicit in the last equality is the choice of alocal coordinate system such that

n̂' t̂1' t̂2 .

Often, t̂1 is chosen to be in the plane of incidence.
In ~2.12!, note that there are noI /II labels onn̂•uW andtnn , since these quantities are the same

on both sides. In interpreting this equation, it is also worthwhile to note that the labels 1 and 2 at
this point refer to the fact that the quantities in question are, in the former case, solutions to the
problem of scattering for an incoming plane wave with wave-vectorkW , and in the latter case to the
reciprocal problem with incoming wave-vector2qW . Also note that

tnn5
Tr~ tJ I !

3
.

The trace of the stress tensor is a physically significant quantity. Note that

Tr~ tJ !

3l12m
5¹W •uW 5D,

whereD is the ‘‘dilatation’’ ~i.e., the increase in volume per unit volume!. D basically propagates
with the longitudinal~i.e., p-, primary, or pressure! wave. Beyond this observation, the physical
interpretation of the terms in equation~2.12! generally will become clear only gradually. Particu-
larly helpful in this regard will be section III D, where certain limits are taken as the solid in
region II becomes a liquid.

Result ~2.12! is, in fact, more general than implied here. In deriving this equation, it was
implicitly assumed thatr I is constant on the sphere at`, but nowhere was it assumed thatr,
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l, or m are constant in the vicinity of the scattering surface. The same applies for the results to
follow in this section as well as those derived in section II C to follow. For a further discussion of
this issue, see Ref. 2.

Following Ref. 2, let dW be an infinitesimal constant translation so that consequently
dT52 iQW •dWT(qW ,kW ) and j52n̂•dW @whereT(qW ,kW ) is the scattering amplitude from the surface
before it is translated andQW [kW2qW ]. Parameterize the surfaceS using the 2-dimensional vector
x, the projection of the coordinates of points onS onto a plane. SincedW is arbitrary, we have

2
iQzT~qW ,kW !

r
I
v2 5E d2x~r

I
2r

II
!v2n̂•uW 1n̂•uW 21E d2x~r

I
2r

II
!v2uW 1

II
•~1I2n̂n̂!•uW 2

II

2E d2xr
I
v2~uW 1

I 2uW 1
II !•~1I2n̂n̂!•~uW 2

I 2uW 2
II !1E d2xS k

I

2

r
I
v2 1

1

2m
II

D tnn
1 tnn

2

1E d2x
tJ1
TII : tJ2

TII

2m
II

2E d2xS l
II

2m
II

D Tr~ tJ 1
II ! Tr~ tJ 2

II !

3l
II
12m

II

2E d2xF Tr~ tJ 1
II !

3l
II
12m

II

Tr~ tJ 2
I !

3
1

Tr~ tJ 2
II !

3l
II
12m

II

Tr~ tJ 1
I !

3 G , ~2.14!

whereQz is the component ofQW in the direction normal to the reference plane~with positive
direction pointing into the fluid!. Note that line 5 of equation~2.14! can be combined with the
second term of line 4 using the following equality:

tnn
1 tnn

2 1 tJ1
TII : tJ2

TII5 tJ1
II : tJ2

II . ~2.15!

This equality follows from equation~E2! and the boundary conditionn̂• tJ•(1I2n̂n̂)50.
Equation~2.14! is somewhat related to an important previous result obtained by Berman and

Dacol and given by Ref. 5, equation~2!. The latter is valid in general for the scattering of an
acoustic wave, where both the incident wave and the observer are in the fluid~i.e.,2kW andqW both
point into the fluid, and the scattering is from an interface obeying either the Dirichlet, Neumann,
impedance, fluid–fluid, or fluid–solid boundary conditions!. The work outlined in Ref. 5 is also
based on the technique proposed by Dashen and outlined in Refs. 1, 2, and consequently the
resultant expression for the scattering amplitude manifestly exhibits reciprocity. Equation~2.14!
and Ref. 5@equation~2!# are both exact, and must ultimately be equivalent, but there are signifi-
cant differences in their practical implementation. For example, the latter depends only on the field
evaluated on the fluid~i.e., incoming! side, and this arguably leads to a~formal! simplification of
the problem. On the other hand, the integrand of~2.14! depends on the displacement vectoruW and
the stress tensortJ only, both of which have a straightforward physical interpretation, while
equation~2! of Ref. 5 explicitly depends on quantities such as¹W uW which can be simplified further
~see, for example, the last few lines of Appendix I!. There is a great deal of physical information
‘‘hiding’’ in these terms. We will see in section III D that the comparative physical transparency
of equation~2.14! leads, for example, to a straightforward examination of the difference between
the Dirichlet, Neumann, fluid–fluid, and fluid–solid boundary value problems. Such an increase in
physical transparency can also be a significant asset in simplifying the results. The scattering
problem is potentially very complex, and the extensive use of physical intuition can be crucial in
making the problem tractable~see once again, for example, section III below!.
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C. Full elastodynamic scattering

When the scattered wave is a full elastodynamic wave, then the problem involves a compli-
cation that does not seem at first glance to be present when the scattered wave is a~scalar! acoustic
wave, namely that the scattering amplitude behaves as a tensor quantity. However, this property
can be viewed as a straightforward generalization of concepts familiar from the scalar problem.
For the acoustic problem, the scattering amplitude can be interpreted as a tensor, with the indices
being the~continuous! variables specifying the direction of the incoming wave and the angular
coordinates of the observer~i.e., the vectorskW and qW , respectively!. For the electromagnetic
problem, the scattering amplitude is additionally labeled by the polarization of the incoming wave
~having implicitly decomposed the incident wave into components of this form! and the polariza-
tion components of the outgoing wave being sampled by the observer~again assuming such a
decomposition!. Thus two more continuous tensor indices are added to the scattering amplitude.
Finally, for elastodynamic waves, it is also necessary to decompose the incident field into scalar or
vector components of the field and to similarly specify whether the observer is sampling the scalar
or vector components of the outgoing waves. Now the new relevant tensor indices take on one of
two discrete possible values~corresponding to ‘‘scalar or vector’’!.

The decomposition of the field~in terms of plane waves, polarizations, etc.!, which is neces-
sary for defining the scattering amplitude as a tensor, is also intimately connected with the concept
of reciprocity. In particular, it is the ‘‘spectral’’ components of the wave after it has been decom-
posed in this way, which are reciprocal. Conversely, a theory constructed from the reciprocity
principle very naturally leads to the scattering amplitude tensor. As demonstrated below, the
scattering amplitude can be written in terms of products of the solution to the problem at hand, and
the solution of the reciprocal problem. The reciprocal problem is defined such that the incoming
wave is characterized by the tensor quantities corresponding to those ‘‘components’’ of the out-
going solution of the original problem which are being sampled by the observer. The key insight
which allows the formalism previously developed for the electromagnetic and acoustic problems
~and in section II B above for the problem of scattering from the fluid–solid interface! to be
extended to elastodynamic waves is the recognition that decomposing an elastodynamic wave into
scalar and vector components is entirely analogous to specifying the polarization or the direction
of propagation of the wave.~This insight is implicitly used, for example, in the reciprocity proof
given on pp. 155–154 of Ref. 12.!

Armed with this insight, it is once again possible to derive a formal two-scale expression for
the scattering amplitude of elastodynamic waves which is exact with respect to a reference sur-
face, and good to first order in a perturbation. This is evaluated explicitly for the zero displacement
boundary condition, the free boundary condition, and the continuity boundary condition found at
the interface between two elastic solids.~The latter may be applicable to the study of scattering
from sub-bottom layers. The two former are expected to apply to certain seismic problems.! These
results are analogous to those obtained for scattering from the fluid–solid interface as well as for
the electromagnetic and acoustic problems.

We are now ready to examine the details. It is shown in Appendix E that equation~2.6!
reduces to

R`5E
S2

dS2@ n̂1• tJ1~x1W !•uW 2~x2W !2n̂2• tJ2~x2W !•uW 1~x1W !#2E dSj Tr~%J !n̂• tJ1•uW 2

1E dSj@ n̂• tJ2•%J•uW 11n̂• tJ1•%J•uW 2#

2E dSj@ n̂• tJ2•~1I2n̂n̂!•¹W ~uW 1•n̂!1n̂• tJ1•~1I2n̂n̂!•¹W ~uW 2•n̂!#
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1E dSjrv2uW 1•uW 11E dSj
tnn
1 tnn

2 12n̂• tJ1•~1I2n̂n̂!• tJ2•n̂

2m

2E dSj
tJ1
T : tJ2

T

2m
1E dSj

l

2m

Tr~ tJ1
T! Tr~ tJ2

T!

3l12m
2E dSj

l

2m

tnn
1 tnn

2

3l12m
. ~2.16!

Note that for the three elastodynamic boundary conditions being considered here~i.e., uW 50;
n̂• tJ50; continuity ofuW , n̂• tJ) the first four lines of equation~2.16! are either zero, or cancel at
the interface.@In particular, consider the 4th line of equation~2.16!. For the zero-displacement
boundary condition (uW 50), uW •n̂50 on S implies that ¹W (uW •n̂)i n̂ and thus
(1I2n̂n̂)•¹W (uW •n̂)50. For the stress-free boundary condition (n̂• tJ50) the term is trivially zero.
For the solid–solid boundary condition, we haveuW continuous onS, which implies that
n̂•(uW I2uW II )50 everywhere onS. Thus¹W (n̂•(uW I2uW II )) is proportional ton̂, and

~1I2n̂n̂!•¹W ~ n̂•~uW I2uW II !!50,

establishing that (1I2n̂n̂)•¹W (n̂•uW ) is continuous across the interface and the term in question
cancels when contributions from the two sides are subtracted.#

Also note that from Appendix B we haveR`5achdTch where the superscriptch stands for
the four possible channelspp, sp, ps, andss; andach is given by

app5rv2/kp
2, asp5rv2/ks

1/2kp
3/2,

~2.17!
aps5rv2/ks

3/2kp
1/2, ass5rv2/ks

2,

where we are implicitly assuming that theincomingwave corresponding to the solution labeled by
1 contains only the type of wave (s or p) given by the 2nd label inch, is normalized to unity, and
approaches from a direction given byk̂, while the incomingwave corresponding to the solution
labeled by 2 contains only the type of wave given by the 1st label inch, is also normalized to
unity, and approaches from a direction given by2q̂52 r̂ ~wherer̂ specifies the angular coordi-
nates of the observer!.

We are now ready to consider specific cases. Along with equation~2.12!, they are thefunda-
mental resultsof this paper.

1. The zero-displacement boundary condition

For the zero-displacement boundary condition,uW 50. This corresponds to scattering from an
infinitely rigid wall. It is shown in Appendix F that in this case, equation~2.16! reduces to

achdTch5E dSjF tnn
1 tnn

2

l12m
1
n̂• tJ1•~1I2n̂n̂!• tJ2•n̂

m
G . ~2.18!

2. The stress-free boundary condition

The stress-free boundary condition (n̂• tJ50) is relevant to the problem of scattering from a
free surface~i.e., the boundary between a solid and a vacuum such as, for example, an air–rock
interface!. When this condition applies, equation~2.16! immediately reduces to

achdTch5E dSjFrv2uW 1•uW 22
tJ1
T : tJ2

T

2m
1

l

2m

Tr~ tJ1
T! Tr~ tJ2

T!

3l12m G . ~2.19!
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The reader should be aware of the availability of an additional technique for solving this type
of boundary value problem. De Santo14 has developed a diagrammatic approach for modeling the
scattering of elastodynamic waves from surfaces obeying stress-free boundary conditions. Of
particular relevance to the discussion here, it should be noted that this method may find use in
solving foruW and tJ of the reference problem.

3. The solid –solid boundary condition

For the solid–solid boundary condition (uW , n̂• tJ continuous! we subtract equation~2.16! on
the two sides of the interface and use the continuity conditions to obtain

achdTch5E dSj~r I2r II !v
2uW 1•uW 21E dSjS 1m I

l I1m I

3l I12m I
2

1

m II

l II1m II

3l II12m II
D tnn

1 tnn
2

1E dSjS 1m I
2

1

m II
D n̂• tJ1•~1I2n̂n̂!• tJ2•n̂2E dSjF tJ1

TI : tJ2
TI

2m I
2

tJ1
TII : tJ2

TII

2m II
G

1E dSjF l I

2m I

Tr~ tJ1
TI! Tr~ tJ2

TI!

3l I12m I
2

l II

2m II

Tr~ tJ1
TII ! Tr~ tJ2

TII !

3l II12m II
G . ~2.20!

The off-diagonal element oftJT, t t1t2 obeys the simple boundary condition given in Appendix G,
but this does not lead to an apparent simplification of the formal result equation~2.20!. Once
again, note that De Santo15 has developed a boundary integral equation approach, which facilitates
numerical calculations modeling the scattering of elastodynamic waves from solid–solid inter-
faces. This method could be useful in solving the reference problem.

III. EXAMPLE: THE ‘‘SMALL SLOPE’’ AND ‘‘ ‘LOCAL’ TWO-SCALE’’ APPROXIMATIONS
FOR THE FLUID-SOLID INTERFACE

To illustrate the results obtained in section II, we now use the formalism for the fluid–solid
boundary@specifically, equation~2.14!# to derive both the small slope and the ‘‘local’’ two-scale
~i.e., composite model! approximations. The approach follows that pursued for the acoustic and
electromagnetic problems as outlined in references 1, 3. For a more complete discussion concern-
ing the origin of this type of approximation, see references 16–22.

The approximations considered here are used to model scattering from a fluid-elastic interface
S which can naturally be parameterized by the coordinatesxW5(x,h(x)) where x is a
2-dimensional vector specifying coordinates in a plane, andh(x) is a single-valued function which
averages to zero whenx is allowed to vary over the entire plane.

Note that in this paper, as in references 2–4, a bold-faced variable indicates a 2-dimensional
vector, while a variable with an arrow on top represents a 3-dimensional vector. We are implicitly
employing a Cartesian coordinate system oriented such that the direction of the positivez-axis
~given by the unit vectorẑ) is given by ẑ5n̂, where n̂ is the unit vector normal to the plane
pointing into the fluid.~Keep in mind that the wave is assumed to be incident from the fluid side.!

Concerning an additional point of notation, the vectorrW will be used to denote an arbitrary point
in space, whilexW ~or xW0) denotes the~3-dimensional! coordinates of a point on a scattering~or
reference! surface.

Typically, h(x) is a statistical quantity, often, but not necessarily always, characterized by
Gaussian statistics~e.g., see reference 1!. The formalism described in this section may, for ex-
ample, be applicable to modeling acoustic scattering from the sea floor in certain regions of the
world’s oceans.
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The small slope approximation is good to 2nd order in both the slope and the radius of
curvature of the scattering surface@i.e., Error5 O(¹h, ¹¹h/k) wherek is the smallest of the
various wavenumbers characterizing the field#. This approximation differs from 1st order pertur-
bation theory primarily because it is good to all orders inQzh.

The ‘‘local’’ two-scale approximation assumes, in addition, the existence of a reference sur-
faceS0 given byxW05(x,h0(x)). This approximation is here called ‘‘local’’ because the particular
two-scale model being developed in this section measures the tilt of the reference surface, but does
not include non-local effects such as shadowing and multiple scattering. It is formally accurate to
1st order in the radius of curvature of thereferencesurfaceS0, but it retains accuracy to much
higher orders with respect to the slope ofS0. Thus, the ‘‘local’’ two-scale approximation is
typically appropriate for use when a reference surface is available so that most of the slope of
S is due to the ‘‘tilt’’ of the reference surface@i.e., for dh[h(x)2h0(x), we have
¹(dh)!¹h0], while the radius of the curvature of the reference surfaceS0 remains small relative
to all of the wavelengths associated with the field~see discussion in section II of Ref. 1!. The
‘‘local’’ two-scale approximation is also well suited to instances when there are large scale
features present which are best described deterministically, while superimposed on these one finds
small scale surface features which can only be conveniently characterized statistically. Such a
scenario may apply to some of the ocean bottom scattering problems referred to just above. In
such cases, a non-local effect like shadowing, if important, must be inserted by hand. Since the
formalism is manifestly reciprocal, this is not too difficult~see comments towards the end of
section IV in reference 2!. As will be shown below, following our approach, the ‘‘local’’ two-scale
approximation turns out to be closely related to the small slope approximation.

A. The general procedure

We begin by deriving the small slope approximation, and then generalizing the result to the
‘‘local’’ two-scale approximation. In so doing, we follow a very general procedure developed in
section II of reference 3. The starting point for this approach is the general form for the scattering
amplitude given by equation~2.2! of reference 3:

T0~qW ,kW !5
i

Qz
E d2xA0~qW ,kW ! ~3.1!

~recalling thatQW [kW2qW ). Note that the equation for a fluid–solid interface, equation~2.14!, has
this form, allowingA0 to be expressed in terms of the displacement vectoruW and the stress tensor
tJ evaluated on the two sides of the interface.T0 andA0 are taken to refer to the problem of
scattering from a reference surfaceS0. The scattering amplitudeT corresponding to the surface
S5(x,h0(x)1dh(x)) is given by equation~2.6! in reference 3:

T~qW ,kW !5
i

Qz
E d2xeiQzdhA0~qW ,kW !1OS ~¹dh!2,S ¹¹dh

k D 2D ~3.2!

@throughO(dh), this result follows directly from~2.12!; higher orders inQzdh essentially come
by considering the phase shift associated with a constant translation, but some effort is needed to
rigorously eliminate the possibility of cross-terms between higher orders ofQzdh and 1st order in
derivatives ofdh; see appendix A of Ref. 3#. The small slope follows when the reference surface
is chosen to be the planeh050. @This case is a little unusual since~3.1! will give d-functions
corresponding to specular scattering directions, but this does not invalidate the method.#

Thus, the small slope approximation can be obtained as follows. SetA0(qW ,kW ) equal tor Iv
2

times the integrand of equation~2.14!, and evaluate it withuW I , tJ I , uW II , and tJ II chosen to be the
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solutions to the flat plane problem. Then insert the resulting expression forA0(qW ,kW ) into equation
~3.2!. Note that the effect of the phase factor exp(iQzdh) in equation~3.2! is simply to shift the
phase to that of the incoming wave at the interface.

The ‘‘local’’ two-scale approximation is obtained from the small slope result when the normal
to the planeẑ is replaced byn̂0, the normal to some reference surfaceS0. Furthermore, the phase
of all the components of the solution must now be set equal to the phase of the incoming wave
evaluated on the reference surfaceS0. In other words, define

k[~1I2 ẑẑ!•kW5 horizontal component ofkW

and consider the solution to the flat plane problem. On the interface~i.e., thez50 plane! the
incident, reflected, and both the transmitted waves have the same phase given by exp(ik•x) ~a
more detailed discussion will be presented when the problem is solved below!. In going from the
small slope to the two-scale approximation, this gets replaced according to the prescription

eik•x→eik•xeikzh05eik
W
•xW0.

What has effectively been done here is to treat the reference surface as being locally flat, with an
additional phase shift accounting for the fact that the origin is no longer on the plane. If there were
no curvature to the surface, the result would be exact.~If this all seems unclear, see reference 3,
section II for further discussion concerning this procedure.! Finally, note that once again, the
phase factor exp(iQzdh) in equation~3.2! will effectively bring the phase up to exp(ikW•xW), where
xW is on the actual scattering surface.

Henceforth, we will conduct our calculation in a general notation which will apply to both the
small slope and the two-scale approximation. This is possible essentially because the small slope
is, formally speaking, a special case of the local two-scale approximation, although a close in-
spection of the procedure described in the preceding paragraph, as well as a comparison of the
error terms, will indicate that some caution must be exercised before taking this connection too
literally.

From now on, we will therefore usen̂ to stand for eitherẑ ~small slope! or n̂0 ~‘‘local’’
two-scale!. The phase on the reference interface is given by exp(ikW•xW0) wherexW5(x,0) for the
small slope calculation, andxW5(x,h0) for the small slope calculation. It will also be useful to
define the quantity

k'[~1I2n̂n̂!•kW .

This is the component of the vector in the tangent plane of the reference surface for the ‘‘local’’
two-scale approximation, and the horizontal componentk ~i.e., in thex-y plane! of the wave
vector in the small slope approximation.

B. Solution for the flat plane problem

Keeping in mind that in the flat plane problem, the unit vectorn̂ is the constant vectorẑ, the
general form of the pressure field resulting when a normalized incoming plane wave scatters from
a flat interface is

P5eik
W
i•r

W
1Beik

W
R•r

W
,

~3.3!
kW i5~k' ,kin!; kWR[~122n̂n̂!•kW i5~k' ,2kin!.

In presenting solutions to the flat plane problem, we will henceforth append the subscripti to the
incoming wavevector~i.e., kW→kW i). As always, the time dependence exp(2ivt) has been dropped.
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~Note that throughout this paper, we have implicitly decomposed the scattering problem for an
arbitrary incoming field into the problem of scattering each individual plane wave component of
the incoming field. This is a standard procedure for problems where the medium does not vary as
a function of the time. See reference 1, section II for more details.!

B will be derived from the boundary conditions below. The general form of the solution and
the definition ofkWR follow from the requirement that the horizontal component of the wavenumber
must be conserved at a flat interface. This is a well known result and can be deduced from very
general arguments@see, for example, reference 23, equation~7.34!#. Note thatki5ukW i u5ukWRu
5v/cI wherecI is the speed of sound in the fluid.

Now, use

uW I5
¹W P

r Iv
2 , ~3.4!

the definition oftJ @equation~2.1!#, and the Helmholtz equation forP to show

tJ I5l I¹W •uW
I52P1I, ~3.5!

and consequently

uW I5
i

r Iv
2 ~kW ie

ikW i•r
W
1BkWRe

ikWR•r
W
!, ~3.6!

tJ I52~eik
W
i•r

W
1Beik

W
R•r

W
!1I. ~3.7!

Also in the solid, we have in general both outgoing primary (p) and secondary (s) waves:

uW II5C@ k̂pe
ikWp•r

W
2ASt̂e

ikWs•r
W
#, ~3.8!

whereC, AS , andt̂ will be determined below. Once again using the definition oftJ equation~2.1!
we have

tJ II5 iC@kp~l II 1I12m II k̂pk̂p!e
ikWp•r

W
2m II ksAS~ k̂st̂1 t̂ k̂s!e

ikWs•r
W
#. ~3.9!

Note thatkp5ukW pu5v/cp , ks5ukW su5v/cs , where

cp5Al II12m II

r II
, cs5Am II

r II
~3.10!

are the propagation speeds for the primary and secondary waves, respectively. We also have

kW p5~k' ,kpn! with kpn5 sgn~kin!Akp22k'•k',
~3.11!

kW s5~k' ,ksn! with ksn5 sgn~kin!Aks22k'•k',

where the principal values of the square roots must be taken~i.e., positive if the argument of the
square root is positive, a positive number timesi if it is negative!. Note that if the positive
z-axis pointsinto the fluid and therefore in the direction of the normaln̂ ~all this is generally
assumed in this paper!, then sgn(kin) corresponds to a ‘‘2 ’’ sign.

It is easily verified that the boundary conditionn̂• tJ II
•(12n̂n̂)50 implies that (12n̂n̂)• t̂

} k' ~independent ofC or AS). Note that this constrainst̂ to the plane of incidence and therefore
implies that the shear wave is linearly polarized for this~the flat plane! problem.
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By additionally recognizing thatt̂'kW s , and recalling thatt̂ is normalized to unity, we can
conclude thatt̂ must ~aside from an overall phase which can be absorbed inAS) be given by

t̂5 k̂s3
n̂3k'

uk'u
5
n̂uk'u22k'ksn

uk'uks
. ~3.12!

Substituting this result back into the equationn̂• tJ II
•(12n̂n̂)50, applying some straightforward

algebra, including the result

12
ksn
2

uk'u2
52S 12

ks
2

2uk'u2D ,
we find

AS5
kskpn

uk'ukp~12ks
2/2uk'u2!

. ~3.13!

The continuity conditions onn̂•uW and tnn provide two equations for the two remaining
unknownsB andC. After some~mostly! straightforward algebra, we find

B5
a1b2d

a1b1d
, C5

22i

a1b1d
,

where

a52kpS l II12m II

kpn
2

kp
2 D 5

ks
kp

2m II

AS

kpn
kp

uk' ,

b52m II S ksnks D uk'uAS , d5
r Iv

2

kin
S ks
2uk'u DAS , ~3.14!

where the expression fora in terms ofASmakes use of a lemma derived in Appendix H. This is
the only tricky part related to the derivation of equation~3.14!. The form of the solution given by
this equation follows directly from the boundary conditions. It is also well suited for verification
of energy conservation~i.e., uBu2<1) even when the transmitted waves become evanescent~i.e.,
kpn imaginary, orkpn andksn both imaginary;ksn only imaginary is impossible!.

For practical applications to be discussed below, it will also be useful to have the following
alternate form of the solution available:

B5
a21

a11
, C5

2b

ikpm II ~l II /2m II11!

1

a11
,

where

a5
a1b

d
5

r II
r I

kin
kpn

F12
4uk'u2ksn~ksn2kpn!

ks
4 G ,

~3.15!

b5
r II
r I

kin
kpn

S 12
2uk'u2

ks
2 D .

Generally straightforward algebra is needed to obtain result~3.15!. The only ‘‘tricky’’ step comes
in eliminating the explicitv2 from C by making the substitution
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kp
25

r IIv
2

2m II ~11l II /2m II !
. ~3.16!

C. Approximate representations of the scattering amplitude

1. Derivation

To evaluate the integrandA0 in equation~3.2!, it is necessary to evaluate the displacement
vector and stress tensor on the reference surface. As stated above, for the small slope approxima-
tion, this means taking the flat plane solution@as given by equations~3.6!–~3.9#, and evaluating it
on the interface, which is calledS0 @recall, this is the plane (x,0) for the small slope approxima-
tion#. Thus, we have

eik
W
i•x

WuS05eik
W
R•x

WuS05eik
W
p•x

WuS05eik
W
s•x

WuS05eik'•x
W
. ~3.17!

For the ‘‘local’’ two-scale approximation, letn̂→n̂0 and make the following replacement~as
discussed above!:

eik
W
R•x

WuS0

eik
W
p•x

WuS0

eik
W
s•x

WuS0

J →eik
W
i•x

WuS01OS 1Rc
D , ~3.18!

where 1/Rc } ¹¹h0 is the reciprocal of the radius of curvature of the reference surfaceS0 given by
(x,h0) ~i.e., at each point, assume that the reference surface is locally flat!. ~For more information
concerning the relationship of¹¹h0 to the geometric quantityRc , see reference 2, Appendix B.!
Once again note that the extra phase in equation~3.2! formally implies that the phase is evaluated
on the ‘‘true’’ scattering surfaceS rather than on the reference surfaceS0, but the normal vector
n̂ is evaluated on the reference surface~i.e., n̂5 ẑ for the small slope,n̂5n̂0 for the ‘‘local’’
two-scale!.

Thus effectively, for the small slope and two-scale approximations, we can now substitute the
following quantities directly into equation~2.14!:

uW 1
I 5

i

r Iv
2 ~kW i1BkWR!eik

W
i•x

W
, tJ1

I 52~11B!1Ieik
W
i•x

W
,

uW 1
II5C@ k̂p2ASt̂#e

ikW i•x
W
, ~3.19!

tJ1
II5 iC@kp~l II 1I12m II k̂pk̂p!2m II ksAS~ k̂st̂1 t̂ k̂s!#e

ikW i•x
W
,

where the quantitiesk̂R , k̂p , k̂s , t̂, B, C, andAS are all evaluated usingn̂ of the reference surface
( ẑ or n̂0) and the position vectorxW in the phase lies on the scattering surfaceS. For the same
quantities labeled by the subscript ‘‘2,’’ just replacekW with 2qW .

Recall that the error introduced when substitutions~3.19! are made into~2.14! is O((¹h)2,
(¹¹h)2) for the small slope approximation andO(¹¹h0) for the ‘‘local’’ two-scale approxima-
tion. For these two approximations, we can further simplify the expression for the scattering
amplitudeT, equation~2.14!, as follows:
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2 iQzT

r1v
2 5E d2x@ Integrand#

Integrand5~r I2r II !v
2n̂•û1n̂•û21@~r I2r II !v

212m II kW i•~1I2n̂n̂!•qW i #uW 1
II
•~1I2n̂n̂!•uW 2

II

2r Iv
2~uW 1

I 2uW 1
II !•~1I2n̂n̂!•~uW 2

I 2uW 2
II !1S ki

2

r Iv
2 1

1

2m II
D tnn

1 tnn
2

1
l II

~3l II12m II !
2 S 11

l II

2m II
D @ Tr~ tJ 1

II ! Tr~ tJ 2
II !#

2
1

~3l II12m II !
S 11

l II

2m II
D @ Tr~ tJ 1

II !tnn
2 1 Tr~ tJ 2

II !tnn
1 #. ~3.20!

The derivation is given in Appendix I. We will see below that the three terms manifestly of order
1/m cancel in the limit asm→0 ~i.e., they are associated with the elastic solid only and disappear
in the limit as the solid becomes a fluid!.

Note that the only quantities needed areuW I , uW II , tnn , and Tr(tJ II ). Suppressing the phase

factor exp(ikWi•xW) @or exp(2iqW i•xW)], we have, using equations~3.15! and ~3.19!:

Tr~ tJ II !5 iCkp~3l II12m II !5
2b~3l II12m II !

m II S 11
l II

2m II
D

1

a11
,

tnn52~11B!5
22a

a11
, ~3.21!

uW I5
i

r Iv
2 @kin~12B!n̂1~11B!k'#5

2i

r Iv
2

1

a11
@kinn̂1ak'#.

RecastinguW II is trickier. The result is

uW II5
2i

r Iv
2

1

a11
@kinn̂1jk'#,

~3.22!

j5
kin
kpnks

2 @~ksn2kpn!
22kp

2#5
kin
kpn

S 122
kW s•kW p
ks
2 D .

The details of the derivation are given in Appendix J.

2. Key result

In Appendix K, it is shown that substituting the results~3.21! and~3.22! into equation~3.20!
leads to the result

T~qW i ,kW i !5
i

Qiz
E d2xeiQ

W
i•x

WF S 12
r II
r I

D 4kinqin
~a111!~a211!

14S 12
r II
r I

D kW i•~1I2n̂n̂!•qW i
j1j2

~a111!~a211!
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1
8r II
r Iks

2 @kW i•~1I2n̂n̂!•qW i #
2

j1j2
~a111!~a211!

24kW i•~1I2n̂n̂!•qW i
~a12j1!~a22j2!

~a111!~a211!

14ki
2 a1a2
~a111!~a211!

12ks
2 r I
r II

~a12b1!~a22b2!

~a111!~a211!
24kp

2 r I
r II

b1b2
~a111!~a211!G ,

~3.23!

wherea1 andb1 are simplya andb given in equation~3.15!, andj1 is similarly given by equation
~3.22!. For the quantities labeled by the subscript ‘‘2’’ just substitute2qW i for kW i everywhere.
Recall thatkW p , kW s , andk' are all derived fromkW i using equations~3.11!, and that2qW p , 2qW s , and
2q' are similarly defined. Since equation~3.23! directly provides the small slope (n̂5 ẑ) and
‘‘local’’ two-scale (n̂5n̂0) approximations for the scattering amplitude corresponding to a fluid–
solid interface, it is one of the major results of this paper.

3. Discussion

Note the following change in notation as compared with previous equations involving the
scattering amplitude@such as~3.1!, ~3.2!, and~3.20!#. We are now appending the subscripti onto
the vectorskW , qW , andQW in order to bring our notation in line with that used to discuss the flat plane
problem. Recall that this change was made in order to clearly distinguish these wavevectors from
those related to thep- ands-waves in the solid~i.e., mediumII ).

Note that it is possible to make the substitutionr II /ks
25m II /v

2 in the third line of equation
~3.23!. We will see below that the 3rd and 6th lines disappear in the limit as the solid becomes a
fluid ~i.e.,m II→0).

In examining~3.23!, also keep in mind thatn̂5 ẑ for the small slope approximation and that
n̂5n̂0 for the ‘‘local’’ two-scale approximation. Recall that the error for the small slope version of
the result is of orderO((¹h)2,(@¹¹h#/ki)

2) ~where¹¹h51/Rc , Rc is the local radius of cur-
vature of the interface!. The error for the ‘‘local’’ two-scale version (n̂5n̂0) of the result is
O(@¹¹h0#/ki) ~where¹¹h051/R0c , R0c is the local radius of curvature of the reference sur-
face!.

The small slope version of result~3.23! must be equivalent to the expression for the small
slope scattering amplitude~also for scattering from a fluid–solid interface! given in references 24
and 25.~To be specific, in reference 24, evaluate equation~~23! with f given by equations~25!
~use 1st order only! and~31!; in reference 25, evaluate equation~2! with f0 given by equation~6!
and f1 given by equation~7!.# Note that, as remarked in reference 24, it is difficult to see
reciprocity in the previously published version of this result, but reciprocity is easy to see in
equation~3.23!.

D. Limiting cases

Consider the limit as the 2nd Lame´ constantm II→0, while the density in the solidr II remains
non-zero. As is demonstrated in Appendix L, this leads to

T~qW i ,kW i !5
i

Qiz
E d2xeiQ

W
i•x

WF S 12
r II
r I

D kinqin~22AkW i
!~22A2qW i

!

1S r I
r II

21D kW i•~1I2n̂n̂!•qW iAkW i
A2qW i

1S ki22 r I
r II

kp
2DAkW i

A2qW i G1O~m II
1/2!, ~3.24!

where
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AkW i
[

2a1
a111

; A2qW i
[

2a2
a211

.

@Recall thata1 ~and analogouslya2) are given by equation~3.15!.# As would be expected, this is
the 2-fluid result given in equation~C12! of Appendix C in reference 3~with the identification
kp5kII , ki5kI , kW i5kW , qW i5qW , andQW i5QW ).

On the other hand, taking the limitm II→`, we recover

T~qW i ,kW i !5
i

Qiz
E d2x eiQ

W
i•x

W
@24kW i•~1I2n̂n̂!•qW i14ki

2#1OS 1

m II
D . ~3.25!

The derivation is given in Appendix M. Note that the object in parentheses can be rewritten as

4@kinqin2kW i•qW i1ki
2#,

and we recover the result for Neumann boundary conditions at the interface given by equation
~C11! in reference 3.

Finally, if we letm II→0, r II→0 simultaneously, we obtain

T~qW i ,kW i !5
i

Qiz
E d2x eiQ

W
i•x

W
4kinqin1O~m II ,r II !. ~3.26!

The derivation is sketched in Appendix N. This is the result for scattering from Dirichlet boundary
conditions, equation~C10! in Ref. 3.

IV. AN IMPORTANT CAVEAT CONCERNING PERTURBATIVE SCATTERING THEORY

As several researchers have noted~see reference 9~pp. 41,100!, and reference26–28!, pertur-
bative approaches for calculating the scattering amplitude do not, in general, conserve energy.
This phenomenon is most easily seen at very shallow grazing angles. Specifically, for the Neu-
mann boundary conditions, the cross-section remains non-zero as the grazing angle approaches
zero. For example, consider the small slope (n̂5 ẑ) versions of equations~3.24!, ~3.25!, and
~3.26!. In equations~3.24! and ~3.26!, the scattering amplitude goes to zero as the angle of
incidence becomes very shallow, but for equation~3.25!, it does not! On the other hand, the
scattered energymust alwaysgo to zero, because energy conservation requires that the scattered
wave disappear as the grazing angle becomes very small, since all the flux associated with the
incoming wave is traveling horizontally, and is thus unavailable for diffuse scattering~i.e., the
energy actually incident on a patch of surface goes to zero!. It is important to keep in mind that
this is a particularly blatant example of what is in fact a more general problem:that perturbative
scattering theory does not conserve energy.

This violation of energy conservation, of course, casts doubt on the validity of the perturbative
approach to surface scattering. However, there are physical and mathematical grounds for con-
cluding that this phenomenon is only important at very shallow grazing angles (1°22°).26,28

Physically, the problem is the result of an interaction between the interface wave and the scattering
process@reference 9,~p. 100! and reference 28# ~i.e., the surface effectively comes out and
‘‘grabs’’ the incoming wave!. A significant interaction between scattering and an interface wave
would reasonably be expected to occur at very shallow grazing angles where the incoming wave
can be thought of as spending a great deal of time close to the interface~without actually touching
it!. More specifically, use an intuitive picture taken from ray theory, and think of a given ray at
shallow grazing angle as spending more time in a thin band near the surface, where it is able to
interact with the interface wave. In addition, note that the purely formal mathematical argument
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presented in the previous paragraph also points to the fact that the breakdown of unitarity~i.e.,
energy conservation! becomes most apparent as the grazing angle becomes very shallow.

In light of these insights, there is reason to believe that use of an approach based on formulas
~2.12!, ~2.18!, ~2.19!, and~2.20! may mitigate these problems. Note that our formulas are formally
exactwith respect to the reference solution. Therefore, provided one chooses a reference surface
so that the corresponding solution includes interaction between the interface wave and the scat-
tering, it may be possible to circumvent this problem within the context of perturbation theory.
There are some tricky issues being raised here, and pursuit of such a project requires original and
possibly subtle uses of the formalism. For example, note that the reference surface is typically
chosen so that the perturbationdh corresponds to components of the surface wavenumber spec-
trum on the order of the Bragg wavenumber and larger.~See, e.g., Ref. 1~section I! for a
discussion of Bragg scattering and Bragg waves.! Such a choice fordh would not mitigate the
unitarity problem, which already shows up for Bragg scattering.~To be specific, note that Bragg
scattering can be extracted directly from the small slope approximation by expanding inQzh, and
dropping the specular component. At lowest order, we are left with a quantity proportional to the
spectral component of the surface roughness parameter evaluated at the Bragg wavevector
dh̃(Q) ~recalling thatQ is the projection onto thex-y plane ofQW [kW2qW ). Consequently the
average cross-section is proportional to the surface roughness spectrumS(Q); e.g., see Ref. 1
@equation~61!# and Ref. 4~equation~4.6!#. This approximation corresponds to the specific physi-
cal effect known as Bragg scattering~i.e., the surface scatters like a diffraction grating!. The
isolation of this physical effect from other physical phenomena, such as interface waves, results
directly from treating the surface roughness on the order of the Bragg scale using perturbation
theory. As suggested above, this decoupling is believed to be the physical reason behind the
breakdown of unitarity.~Note that such decoupling is also inherent in the formal statement of the
composite model whendh is chosen on the order of the Bragg scale.!

However, itwouldbe legitimate to choosedh corresponding to surface spectral components
having wavenumbers larger than the Bragg value~i.e., smaller scale phenomena!. Essentially this
strategy was successfully employed by Orris and Dashen in Ref. 29. That study examined acoustic
scattering from the Dirichlet and Neumann boundary conditions. We will leave the application to
scattering involving elastic solids as a possible future research direction.

For the time being, users of perturbative scattering theory in general, and results~2.12!, ~2.18!,
~2.19!, and~2.20! in particular, need to be aware of this issue, and remain on the lookout for future
developments.

V. CONCLUSION

A. Summary of the basic approach

The technique of constructing a physical theory from a symmetry principle has been a hall-
mark of modern physics. The concept was foreshadowed by the work of Fermat and Hamilton in
which geometrical optics and classical mechanics, respectively, were deduced from a variational
principle. More recently, the connection between symmetry principles, conservation laws, and the
field equations was firmly established by Noether’s theorem~see Ref. 30 for a review of this
topic!. The concept reached its full fruition with the subsequent development of gauge theories,
which form the basis of elementary particle physics, and therefore of modern cosmology~see, e.g.,
Ref. 31 for an overview!.

Recently a similar approach has been applied to a reexamination of a more mundane physical
problem, the scattering of acoustic and electromagnetic waves from interfaces. In Refs. 1–4, a
new formal approach for describing such scattering was bootstrapped from the principle of time-
reversal symmetry~also called reciprocity!. In this paper, the new approach has been extended to
scattering problems where elastodynamic waves are involved as well.
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The overall strategy employed builds upon the previously known proof for the reciprocity
theorem~see, e.g., Ref. 12!. The basic ingredients of this proof are the two quantities known to be
associated with the energy propagation vector. In acoustics, the two field quantities involved in
energy propagation are the pressurep and the displacementuW , for the electromagnetic field it is
the electric fieldEW and the magnetic fieldHW , and for elastodynamic waves the relevant quantities
are the displacementuW and the stress tensortJ. Furthermore, two independent sets of solutions to
the field equations are considered~labeled here by the subscripts ‘‘1’’ and ‘‘2’’!. These ingredi-
ents are combined to form a divergence-free vector. For the electromagnetic field, this result has
a name, ‘‘Lorentz’s Lemma,’’ but the concept also applies to acoustic and elastodynamic fields.
The elastodynamic equivalent of Lorentz’s Lemma is

¹W •~ tJ1•uW 22 tJ2•uW 1!50.

Remarkably, this and all versions of Lorentz’s Lemma involve two completely independent solu-
tions to the field equationsin any region where both solutions are valid. In order to prove
reciprocity, the solutions are chosen to correspond to scattering from the same surface, differing
only in the incoming and outgoing geometries.

Specifically, it is assumed that the problem has been decomposed so that the incoming wave
is a plane wave with wavevectorkW . The reciprocal problem concerns a plane wave incoming from
the angular coordinates of the observer~i.e., with wavevector2qW ). Reciprocity implies that the
scattering amplitude is invariant under the exchangeqW→2kW , kW→2qW . This result emerges when
Lorentz’s Lemma is integrated over the scattering volume, and Gauss’ Law is used to convert the
volume integral to a surface integral over the boundaries of the scattering region. The change in
the scattering amplitude under the reciprocity exchange@i.e., dT[T(qW ,kW )2T(2kW ,2qW )] is pro-
portional to the contribution from the sphere at infinity, while the boundary conditions ensure that
the scattering surface does not contribute to the surface integral. Thus,dT50, so that the scatter-
ing amplitude remains unaffected by the exchange, and reciprocity is established.

In fact, this simple picture only applies to the acoustic case. The electrodynamic and elasto-
dynamic problems are a little more complicated. For the electromagnetic field, it is additionally
necessary to include the polarization of the incoming wave, and to specify the polarization to be
observed. In the elastodynamic case, it is also necessary to further decompose the incoming wave
into primary (p-wave! and secondary (s-wave! components, and consider the scattering of each
separately~the problems legitimately separate, no information is lost!. Similarly, it is necessary to
specify whether the observer is viewing thep- or s-components of the scattered wave. Reciprocity
is only preserved once the problem has been decomposed in this way. The key insight is the
realization that the extra decompositions outlined in this paragraph are not fundamentally different
from the specification ofkW andqW .

In this paper and its predecessors,1–4 the same procedure is followed, but with a crucially
important innovation. The two solutions are now chosen not only to correspond to reciprocal
geometries, but to scattering from different surfaces as well~with one ultimately serving as a
reference surface!. The reciprocity theorem and boundary conditions are then used to obtain
expressions for the change in the scattering amplitude associated with the difference between the
two scattering surfaces. The results are given by equation~2.12! for the scattering of an acoustic
wave from a fluid–solid interface, and by equations~2.18!, ~2.19!, and~2.20! for the scattering of
elastodynamic waves from boundaries obeying the zero-displacement, stress-free, and solid–solid
boundary conditions, respectively.

In this paper, the observer and the incoming waves are always chosen to be on the same side
of the scattering surface. The generalization is very straightforward, as can be seen in analogous
work in Ref. 3. It will be considered in future research as it is needed for specific applications.
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B. Overview of the results

Formulas~2.12!, ~2.18!, ~2.19!, and ~2.20! are the fundamental results of this paper. All
subsequent results follow from these equations. As stated just above, the four formulas correspond
to the four types of scattering problem usually cited in connection with elastodynamic fields. They
each constitute a formal statement of the two-scale~i.e., composite-roughness! model, being exact
with respect to the reference surface and 1st order with respect to the perturbation~i.e., the normal
distance between the surfaces!. Typically, sincethe reference surface is usually smootherthan the
true scattering surface, the solution to reference problem can be found using more conventional
techniques@such as numerical techniques; e.g., see Ref. 6; Milder’s operator expansion method
~see, e.g., Refs. 32, 33! also turns out to be very useful#. When the new scattering formalism is
used in this way, it is effectively extending the range of utility of these techniques, making them
apply to rougher surfaces than would otherwise be possible. Such applications of the formalism
derived above will be a topic of upcoming research.

To provide a comparatively modest illustration of the utility of these results, the formalism
was first used to derive a new manifestly reciprocal expression for the scattering amplitude cor-
responding to scattering from a fluid–solid interface. This is given in equation~2.14!. The expres-
sion is derived from the 1st order perturbative equation~2.12! by considering aninfinitesimal
translation, and it is therefore exact.

Equations~2.12! and ~2.14! are then used to obtain the small slope and ‘‘local’’ two-scale
approximations for the problem of scattering from a rough, but approximately planar fluid–solid
interface~i.e., assume that the interface is a surface which can be parameterized as a single valued
function of coordinates on a plane!. The result for both approximations is given by equation
~3.23!, with the small slope approximation emerging when the reference surface is chosen to be a
plane, while for the two-scale result, the reference surface is formally arbitrary, but its curvature
must be small relative to the wavelength of the field. An examination of equation~3.23! reveals
that formally, this simply implies that the normaln̂ is taken to be a constant unit vectorẑ for the
small slope approximation, andn̂0, the normal to the reference surface, for the ‘‘local’’ two-scale
approximation. The approximation is called ‘‘local’’ because it is of lowest order, and therefore
does not include non-local effects such as shadowing or multiple scattering. From equations
~3.24!, ~3.25!, and ~3.26!, it is clear that in the proper limits, equation~3.23! reduces to the
corresponding previously known acoustic results.

Finally, in section IV, there was a brief discussion of the issue of energy non-conservation in
perturbative scattering theory and its relevance to the results presented above. The reader is
reminded that all perturbative scattering results, including those in this paper, can occasionally be
affected by this issue, particularly at very shallow grazing angles. On the other hand, it was also
pointed out that the formalism presented here can, for some purposes, be used to circumvent this
problem.

C. Significance of the results

The work presented in this paper will form the basis for a number of future research projects.
The most immediate application will be a study of acoustic scattering from the ocean bottom.
There is reason to believe that there are regions of the world’s oceans where the sea floor can be
modeled as an elastic solid. Furthermore, it is also observed that at shallow grazing angles, or
moderately high frequencies (.5 kHz!, scattering from the interface between the ocean and the
bottom dominate the near-bottom scattering results~as opposed to, say, volume scattering in the
sub-bottom!. The goal of theoretical research in this area would be to provide an expression for the
scattering strength in terms of the roughness spectrum for the fine structure of the bottom~i.e.,
features on the order of a wavelength, typically: boulders, small dunes, etc.!, its material param-
eters~e.g., density, the Lame´ constants!, and large-scale location-specific features of the bathym-
etry ~e.g., underwater mountains, ridges, etc.!. Equation~2.12! would form the basis of such a
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study. The fine structure would be treated as a perturbation and considered statistically. The
problem of scattering from the large scale structure would be treated as a deterministic problem to
be solved numerically.

It is important to understand the way in which a formula such as~2.12! becomes useful for
describing scattering from a rough surface such as the sea floor. The complicated multi-scale
topography of such a surface makes scattering calculations very difficult, because there is no
single method suitable for calculating the scattering from both large and small scale surface
features. Large scale features~i.e., those characterized by scales significantly greater than the
wavelength of the field! are associated with non-local scattering effects such as diffraction, shad-
owing, and multiple scattering, while small scales~on the order of a wavelength! are responsible
for Bragg scattering~i.e., the surface acts like a diffraction grating!. The former type of effect
lends itself to numerical calculation~or to an exact solution in a handful of cases!. On the other
hand, use of perturbation theory is greatly complicated by the fact that non-local effects are
associated with higher orders, which are in general very difficult to calculate. Bragg scattering,
however, already emerges from lowest order perturbation theory, which is therefore the method of
choice for calculating this phenomenon. Numerical calculations of Bragg scattering would on the
other hand require such fine grids that a rigorous application of this technique would be prohibi-
tively expensive in terms of time and computing resources. This problem becomes particularly
acute when the full 3-dimensional scattering problem is considered.

Equations such as~2.12! @and similarly ~2.18!, ~2.19!, and ~2.20!# solve this quandary pro-
vided that the perturbationdh is chosen judiciously. Used in this context,dh should correspond to
surface features on the order of the Bragg wavelength and smaller. Thus, non-local events can be
calculated numerically, and Bragg scattering can be handled perturbatively. Alternately, consider
equations~2.14! and especially~3.23!. Since these equations are manifestly reciprocal, the most
important non-local effect, shadowing, can be inserted by hand@by using ray tracing to see which
points on the surface are shielded from either the source or the observer, and setting the contri-
bution to the surface integral to zero at those points. Note that for traditional, non-reciprocal
expressions for the scattering amplitude, this is only really possible for a monostatic~i.e., back-
scattering! geometry, while with the new formalism, this can be done for the full bistatic problem.
See Ref. 2 for further discussion of this issue#.

Thus, it is fair to conclude that the study of non-local effects in rough surface scattering
constitutes an important application of the formalism developed here. Note that such effects are
particularly important at shallow grazing angles, which is precisely where surface scattering be-
comes most important relative to other~e.g., volume scattering! effects. In particular, note that this
observation holds for the problem of scattering from the ocean bottom, or from layers in the
sub-bottom.

The issue of rough surface scattering is only one of many possible applications of the results
in this paper. As mentioned in the Introduction, Dashen, Abawi, and Wandzura7,8 have used the
acoustic version of this formalism to examine the scattering from planar objects bounded by edges
and corners. The scattering from such objects is usually expressed as an integral over a two-
dimensional surface, but in Refs. 7, 8, it is shown that such expressions reduce to~one-
dimensional! line integrals, which are naturally much easier to evaluate. Because of shadowing,
the illuminated area of a finite three-dimensional scatterer consists of such planar areas bounded
by edges and corners, and therefore, the results obtained for the scattering from bounded two-
dimensional surfaces~embedded in three-dimensional space! can be used to develop an entirely
new approach to modeling scattering from typical three-dimensional scatterers~i.e., those bounded
by a closedtwo-dimensional surface!.

Thus, this paper adds another building block to the structure of a new theory for the scattering
of classical fields. This new approach fully incorporates the insights gained from modern field
theory.
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APPENDIX A: DERIVATION OF EQUATION (2.6)

In this appendix, the details of the calculation leading from equation~2.5! to equation~2.6! are
provided. In Figure 2 of Ref. 2, a coordinate system locally tangent to the surfaceS2 is used to
show that

n̂15n̂22~12n̂n̂!•¹W j, ~A1!

where the labels ‘‘1’’ and ‘‘2’’ are dropped if the result is the same to first order inj. We also
have

tJ1~x2W !5 tJ1~x1W !2j~ n̂•¹W ! tJ1 , uW 1~xW2!5uW 1~xW1!2j~ n̂•¹W !uW 1 ,

so that

R`5E
S2

dS2@ n̂1• tJ1~x1W !•uW 2~x2W !2n̂2• tJ2~x2W !•uW 1~x1W !#1E dS@¹W j•~12n̂n̂!• tJ1•uW 2

2jn̂@~ n̂•¹W ! tJ1#•uW 21jn̂• tJ2•@~ n̂•¹W !uW 1##. ~A2!

Note that, on terms ofO(j), there is no need to specify whether the field is evaluated atxW1 or
xW2. Also note that on such terms, the subscripts have been dropped fromdS since to this order,
dS1, dS2, or the area element on any intermediate surface are all the same. Therefore, when
considering terms ofO(j), the surfaces are equivalent, and the labelS will henceforth stand for
S1, S2, or any surface in between. A corresponding coordinate on one of these surfaces will simply
be given byxW ; no subscript is necessary.

The term in~A2! involving ¹W j will now be integrated by parts. For this step, the surfaceS is
parameterized so thatxW is given by the Cartesian coordinates (x,h(x)) where x is a two-
dimensional vector. Let¹ be the associated two-dimensional gradient vector. Then, as in Appen-
dix B of Ref. 2, it follows that

n̂5nz~2¹h,1!, ~A3!

nz[
1

A11~¹h!2
, ~A4!

dS5d2x/nz . ~A5!

Also note that

~12n̂n̂!•¹W j5~12n̂n̂!•¹j,

or more generally,
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~12n̂n̂!•¹W f ~x,y!5~12n̂n̂!•¹ f ~x,h~x!!, ~A6!

for any functionf of the coordinates evaluated on the surfaceS @see Ref. 2, equation~B16!#.
These results are substituted into the second term of equation~A2!, and an integration by parts

is performed. The contribution from the edge ofS is zero: for a closed surface where the param-
eterization is broken into pieces, the edge contribution from adjacent pieces cancels, and there is
no overall edge; similarly for an infinite surface, the edge is out at infinity and therefore does not
contribute to the scattering amplitude. The result is

E d2x

nz
¹j•~12n̂n̂!• tJ1•uW 252E d2xj¹•S 12n̂n̂

nz
D • tJ1•uW 2

2E d2xjS d i j2ninj

nz
D :¹W i~ tJ1•uW 2!

j . ~A7!

Use equation~B21! in Ref. 2 to show

¹•S 12n̂n̂

nz
D5

Tr~%J !

nz
n̂, ~A8!

where

%J[2~1I2n̂n̂!•¹W n̂ ~A9!

is the curvature tensor, and ‘‘Tr’’ is the trace. Use this result, along with straightforward simpli-
fications and cancellations to obtain

R`5E
S2

dS2@ n̂1• tJ1~x1W !•uW 2~x2W !2n̂2• tJ2~x2W !•uW 1~x1W !#2E dSj¹W •~ tJ1•uW 2!

2E dSj Tr~%J !n̂• tJ1•uW 21E dSj@~ n̂• tJ1!•@~ n̂•¹W !uW 2#1~ n̂• tJ2!•@~ n̂•¹W !uW 1##.

~A10!

Note that the result is independent of the parameterization. The parameterization was only used to
perform the integration by parts and it will not be used again in the derivation. As shown in Ref.
6, it is possible to perform this type of integration by parts using techniques from analytic geom-
etry, without recourse to such a parameterization at all. Also note that on terms ofO(j) the
subscripts have been dropped fromS. To the order considered here,S1, S2 or any intermediate
surface are all equivalent.

Decompose the term

E dSj~ n̂• tJ2!•@~ n̂•¹W !uW 1# ~A11!

as follows:

E dSj~ n̂• tJ2•n̂!~ n̂n̂:¹W uW 1!1E dSj~ n̂• tJ2!•~1I2n̂n̂!•@~ n̂•¹W !uW 1#. ~A12!

Use the definition oftJ, equation~2.1!, to obtain the expressions
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n̂n̂:¹W uW 15
n̂• tJ1•n̂

2m
2

l

2m
¹W •uW 1 ,

~1I2n̂n̂!•@~ n̂•¹W !uW 1#5
~1I2n̂n̂!• tJ1•n̂

m
2ni~1I2n̂n̂!¹W u1

i .

These are substituted into~A12! above. After a little bit of algebra, and once again using the
definition of tJ @equation~2.1!#, we are left with

E dSj~ n̂• tJ2!•@~ n̂•¹W !uW 1#5E dSjF n̂• tJ2•~1I2n̂n̂!• tJ1•n̂

m
2n̂• tJ2•~122n̂n̂!•~¹W u1

i !ni G .
~A13!

Now, consider the second term on the right side of~A13! above. Use (¹W ui)ni5¹W (uW •n̂)2ui¹W ni

and the definition of the curvature tensor%J given above to obtain

2E dSjn̂• tJ2•~122n̂n̂!•~¹W u1
i !ni

5E dSj@2n̂• tJ2•~1I2n̂n̂!•¹W ~uW 1•n̂!1n̂• tJ2•%J•uW 11n̂• tJ2•n̂@ n̂n̂:¹W uW 1##, ~A14!

and we obtain the useful result

E dSjn̂• tJ2•~ n̂•¹W !uW 15E dSj
n̂• tJ2•~1I2n̂n̂!• tJ1•n̂

m
2E dSjn̂• tJ2•~1I2n̂n̂!•¹W ~uW 1•n̂!

1E dSjn̂• tJ2•%J•uW 11E dSjn̂• tJ2•n̂@ n̂n̂:¹W uW 1#. ~A15!

Finally, take this result and the same with the labels ‘‘1’’ and ‘‘2’’ exchanged, and substitute into
~A10! to obtain equation~2.6!.

APPENDIX B: THE CONTRIBUTION FROM THE SPHERE AT INFINITY FOR AN
INFINITE ELASTIC MEDIUM

This is a generalization of the calculation presented in Appendix A of Ref. 2. The formal
conventions presented in Ref. 12~pp. 153–154! are used. As indicated in the reference, just as the
acoustic and electromagnetic scattering problems can be decomposed so that scattering by each
plane wave component of the incoming signal may be considered separately, so too can the
elastodynamic scattering problem be decomposed, with the additional property that scattering by
the incomingp-wave components and by the incomings-wave components are decoupled as well.
However, since incomingp-waves ors-waves scatterintowaves of both types, when constructing
a reciprocal theory, it will be convenient to consider incoming waves which consist of both
p-waves ands-waves. However, it is sufficient to combine only plane waves incoming from a
common directionk̂in.

Thus, an incoming plane wave is given by

uW i5~kpks
21!3/2uipeikpk̂

in
•rWk̂in1uiseiksk̂

in
•rW t̂ in, ~B1!

tJ i5 ikp~kpks
21!3/2@l1I12m k̂ink̂in#uipeikpk̂

in
•rW1 iksm@ k̂int̂ in1 t̂ ink̂in#uiseiksk̂

in
•rW, ~B2!
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and the scattered wave has the form

uW sc5~kpks
21!3/2

Ap

kp

eikpr

r
r̂1

As

ks

eiksr

r
t̂sc, ~B3!

tJsc5 i ~kpks
21!3/2@l1I12m r̂ r̂ #Ap

eikpr

r
1 im@ r̂ t̂ sc1 t̂ scr̂ #As

eiksr

r
. ~B4!

The precise value of the unit vectort̂ sc depends on the details of the scattering process, and varies
with r̂ , but it does not need to be specified for the present purposes. However, it is important to
note thatk̂in' t̂ in and r̂' t̂ sc. Furthermore,

• p denotes the primary wave~also known as pressure; or compressional; or longitudinal
wave!;

• s denotes the secondary wave~also known as shear; or equivolume wave!;
• in denotes the incoming wave~in this appendix only; elsewherein is used to denote the
normal component of a vector labeled byi );

• sc denotes the scattered wave.
The wavenumbers are given bykp5v/cp , ks5v/cs , where

cp5Al12m

r
, cs5Am

r

are the velocities of the two waves. Note thatuip anduis are completely independent.
Recall that we are calculatingR` , the negative of the contribution from the sphere at infinity,

R`52E
S`

dS~2 r̂ !•@ tJ1•uW 22 tJ2•uW 1#, ~B5!

where

E
S`

dS⇔ lim
r→`

r 2E
0

2p

dfE
0

p

sin~u!du⇔ lim
r→`

r 2E dV, ~B6!

with f andu polar angles andV a unit of solid angle. UseuW 5uW in1uW sc andtJ5 tJ in1 tJsc to obtain

R`5E
S`

dS@@ r̂ •~ tJ1
in
•uW 2

in!1 r̂ •~ tJ1
sc
•uW 2

sc!1 r̂ •~ tJ1
in
•uW 2

sc!1 r̂ •~ tJ1
sc
•uW 2

in!#2~1↔2!#, ~B7!

where (1↔2) stands for ‘‘same as the preceding term with labels 1 and 2 exchanged.’’

1. Consider B15*S`
dS [r̂ –(tJ1

in
–u¢ 2

in )2(1↔2)]

The incoming plane waves are solutions to the elastodynamic equation of motion in absence
of a scattering surfaceS2, and, following the discussion above equation~2.4!, the integrand is
therefore divergence-free over all space~or the half-space as the case may be!. Once again,
application of Gauss’s law leads us to conclude thatB150. @Another way of saying this: there is
no scattering surfaceS0, and equation~2.4! with S0 being the null set remains valid withS set
equal toS` .]
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2. Consider B25*S`
dS[r̂ –(tJ1

sc
–u¢ 2

sc )2(1↔2)]

From ~B3! and ~B4!, it follows that

r̂ •~ tJ1
sc
•uW 2

sc!5 i
~kpks

21!3

kp
~l12m!

e2ikpr

r 2
A1
pA2

p1 im
e2ikpr

r 2
A1
sA2

s~ t̂1
sc
• t̂2

sc!, ~B8!

which is completely symmetric under the exchange (1↔2), so thatB250.
It has thus been established that for elastodynamic waves, as for scalar and electrodynamic

waves, only cross terms between incoming planar and scattered spherical waves contribute to the
surface integral evaluated on the sphere at infinity.

3. Consider B35*S`
dS [r̂ –(tJ1

in
–u¢ 2

sc )2(1↔2)]

Use ~B3!, ~B2!, ~B6!, and the orthogonality relationr̂' t̂ sc to obtain

B35 lim
r→`

E dVr 2S F i kp3ks3A2
pu1

ip~l12m~ k̂in• r̂ !2!
eikpr

r
eikpk̂

in
•rW

1 imA2
su1

is~ r̂ • k̂1
int̂1

in
• t̂2

sc1 r̂ • t̂1
ink̂1

in
• t̂2

sc!
eiksr

r
eiksk̂

in
•rW

1~ a term proportional tor̂ • t̂1
in!1~ a term proportional tok̂1

in
• t̂1

sc!G2~1↔2! D . ~B9!

It will shortly be shown that the terms proportional tor̂ • t̂1
in and k̂1

in
• t̂1

sc do not contribute to the
integral.

As in Appendix A of Ref. 2 use the stationary phase to evaluate the integral. This turns out to
be exact in the limitr→`. We use the following polar coordinates to evaluate the integral over
the solid angle:

r̂5cosf sin u x̂1sin f sin u ŷ1cosu ẑ .

Perform a change variables usingh[ cosu and pick x̂5 k̂a
in ~where subscripta stands for 1 or

2 as needed!. The axes are oriented so thatk̂a
in points in the direction of thex-axis rather than the

more common choice of thez-axis so that the stationary phase points do not occur at the endpoints
of an integration. Similarly, letf go from2p/2 to 3p/2 rather than 0 to 2p.

The result is a sum of integrals all with the basic form

lim
r→`

E
21

1

dhE
2p/2

3p/2

dfF~ r̂ !eikr
A12h2 cosf,

whereF( r̂ ) is slowly varying near the stationary phase pointsr̂56 k̂a
in Note that this equality

combined with the orthogonality relations given above (k̂in' t̂ in and r̂' t̂ sc) implies that the terms
proportional tor̂ • t̂1

in and k̂1
in
• t̂1

sc do not contribute to integral~B9!.
In the limit r→`, the integrand is non-zero only within an arbitrarily small range about the

stationary phase points, so we can extend theh- andf-integrations to6`. To properly evaluate
the limit, it is necessary to expand the argument of the exponentialikrA12h2 cosf about the
stationary phase variables. Also shift integration variables so thatf2p goes tof where the
expansion was about the pointf5p. Now, we have
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lim
r→`

E
21

1

dhE
2p/2

3p/2

dfrF ~ r̂ !eikk̂a•r
W

5 lim
r→`

(
1/2

e6 ikr rF ~6 k̂a! È2` È2`

dh df expF ikr2 ~h f!S 1 0

0 1D S h

f D G
522p i lim

r→`
F S (

1/2
e6 ikrF~6 k̂a! D G . ~B10!

Finally, usingl12m5v2r/kp
2 andm5v2r/ks we have

B35F1
1
2prv2

ks
3 A2

p~6 k̂1
in!u1

ipei ~161!kpr
2
1
2prv2

ks
3 A2

s~6 k̂1
in!u1

is~ t̂1
in
• t̂2

sc!ei ~161!ksr G2~1↔2!.

~B11!

4. Consider B45*S`
dS [r̂ –(tJ1

sc
–u¢ 2

in )2(1↔2)]

Perform exactly the same procedure as that used in the previous section to obtain

B45F2
1
2prv2

ks
3 A1

p~6 k̂2
in!u2

ipei ~161!kpr
1
1
2prv2

ks
3 A1

s~6 k̂2
in!u2

is~ t̂1
sc
• t̂2

in!ei ~161!ksr G2~1↔2!.

~B12!

5. Combine results

CombiningR`5B11B21B31B4, we have

R`5F1
1
2prv2

ks
3 A2

p~6 k̂1
in!u1

ipei ~161!kpr
2
1
2prv2

ks
3 A2

s~6 k̂1
in!u1

is~ t̂1
in
• t̂2

sc!ei ~161!ksr

2
2
2prv2

ks
3 A1

p~6 k̂2
in!u2

ipei ~161!kpr
1
2
2prv2

ks
3 A1

s~6 k̂2
in!u2

is~ t̂2
in
• t̂1

sc!ei ~161!ksr

2
1
2prv2

ks
3 A1

p~6 k̂2
in!u2

ipei ~161!kpr
1
1
2prv2

ks
3 A1

s~6 k̂2
in!u2

is~ t̂1
sc
• t̂2

in!ei ~161!ksr

1
2
2prv2

ks
3 A2

p~6 k̂1
in!u1

ipei ~161!kpr
2
2
2prv2

ks
3 A2

s~6 k̂1
in!u1

is~ t̂2
sc
• t̂1

in!ei ~161!ksr G , ~B13!

where there is an implicitr→` in this equation. When similar terms are summed together, they
combine to give the equation

R`5
4prv2

ks
3 @A2

p~2 k̂1
in!u1

ip2A2
s~2 k̂1

in!u1
is~ t̂1

in
• t̂2

sc!2A1
p~2 k̂2

in!u2
ip1A1

s~2 k̂2
in!u2

is~ t̂2
in
• t̂1

sc!#.

~B14!

Note that terms proportional to exp(i2kpr) have canceled. Now, define

uW a
ip[uipk̂a

in ; uW a
is[uist̂a

in ,

AW a
p~ r̂ ![Aa

p~ r̂ ! r̂ ; AW a
s~ r̂ ![Aa

s~ r̂ ! t̂ a
sc , ~B15!
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and so

R`5
4prv2

ks
3 @2uW 1

ip
•AW 2

p~2 k̂1
in!2uW 1

is
•AW 2

s~2 k̂1
in!1uW 2

ip
•AW 1

p~2 k̂2
in!1uW 2

is
•AW 1

s~2 k̂2
in!#. ~B16!

Now, following equations~2.63!–~2.64! in Ref. 12, assume thatAW p andAW s depend linearly on
uW ip anduW is:

AW a
p~2 k̂b

in!5AJa
pp~2 k̂b

in ,k̂a
in!•uW a

ip1AJa
ps~2 k̂b

in ,k̂a
in!•uW a

is ,
~B17!

AW a
s~2 k̂b

in!5AJa
sp~2 k̂b

in ,k̂a
in!•uW a

ip1AJa
ss~2 k̂b

in ,k̂a
in!•uW a

is ,

where, for now, the dependence ont̂ a and t̂ b has been suppressed. Note the dyadAJ doesnot
depend on the magnitudesua

ip andua
is . Now,

R`5
4prv2

ks
3 $uW 2

ip
•@2@AJ2

pp~2ˆk1
in ,k̂2

in!# t1AJ1
pp~2 k̂2

in ,k̂1
in!#•uW 1

ip

1uW 2
ip
•@2@AJ2

ps~2 k̂1
in ,k̂2

in!# t1AJ1
sp~2 k̂2

in ,k̂1
in!#•uW 1

ip

1uW 2
ip
•@2@AJ2

sp~2 k̂1
in ,k̂2

in!# t1AJ1
ps~2 k̂2

in ,k̂1
in!#•uW 1

ip

1uW 2
ip
•@2@AJ2

ss~2 k̂1
in ,k̂2

in!# t1AJ1
ss~2 k̂2

in ,k̂1
in!#•uW 1

ip%, ~B18!

where superscriptt stands for ‘‘transpose the matrix.’’ SettingS15S2, it follows thatR`50. With
u1, u2 properly set to 0 or 1, we recover reciprocity relations~2.66!–~2.69! or Ref. 12:

@AJ2
pp~2 k̂1

in ,k̂2
in!# t5AJ2

pp~2 k̂2
in ,k̂1

in!,

@AJ2
ps~2 k̂1

in ,k̂2
in!# t5AJ2

sp~2 k̂2
in ,k̂1

in!,
~B19!

@AJ2
sp~2 k̂1

in ,k̂2
in!# t5AJ2

ps~2 k̂2
in ,k̂1

in!,

@AJ2
ss~2 k̂1

in ,k̂2
in!# t5AJ2

ss~2 k̂2
in ,k̂1

in!,

where note that the subscript 2 onAJ reminds us that the scattering surface isS2.
Return to the problemS1 Þ S2. Define

dAJ[AJ12AJ2 ,

and let

2 k̂2
in[qW ,

~B20!
k̂1
in[kW .

This gives us the important result

R`5
4prv2

ks
3 @uW 2

ip
•dAJpp

•uW 1
ip1uW 2

is
•dAJsp

•uW 1
ip1uW 2

ip
•dAJps

•uW 1
is1uW 2

is
•dAJss

•uW 1
is#. ~B21!
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Alternately, use

uW 2
ip52u2

ipq̂; uW 1
ip5u1

ipk̂,

uW 2
is5uist̂2q̂5u2

ist̂ q̂* ; uW 1
is5u1

ist̂ k̂ ,

and define

Tpp~ q̂; k̂![
4p

kp
~2q̂!•AJpp~ q̂,k̂!• k̂,

Tsp~ q̂, t̂ q̂ ; k̂![
4p

ks
t̂ q̂* •AJ

sp~ q̂,k̂!• k̂,

~B22!

Tps~ q̂; k̂, t̂ k̂![
4p

kp
~2q̂!•AJps~ q̂,k̂!• t̂ k̂ ,

Tss~ q̂, t̂ q̂ ; k̂, t̂ k̂![
4p

ks
t̂ q̂* •AJ

ss~ q̂,k̂!• t̂ k̂ .

Note that we have absorbed the factor 1/ outgoing wavenumber@see equation~B3!# into the
definition of the scattering amplitudeT, bringing it in line with the convention pursued in Ref.
2–4. Also note that thet̂ dependence has now been inserted explicitly. It is left out in some
instances since ap-wave has no polarization, and it will be shown below that~as with the
reciprocity calculation outlined above and in Ref. 12! a judicious choice ofua

ip andua
is completely

decouples the different channelspp, ps, sp, andss. Also note that reversing the direction of the
wavevector is the same as changing the sign of the phase of the plane wave which implies taking
the complex conjugate of the amplitude. We follow the convention that the phase shift of the
s-wave relative to thep-wave is in the unit polarization vectort̂, and thust̂2q̂5 t̂ q̂* . We now have
the very important result

R`5
rv2

ks
3 @kpu2

ipdTpp~ q̂; k̂!u1
ip1ksu2

isdTsp~ q̂, t̂ q̂ ; k̂!u1
ip1kpu2

ipdTps~ q̂; k̂, t̂ k̂!u1
is

1ksu2
isdTss~ q̂, t̂ q̂ ; k̂, t̂ k̂!u1

is#. ~B23!

Finally, to find the fourdT’s, let

~kpks
21!3/2u1

ip

u1
is

;
~kpks

21!3/2u2
ip

u2
is 5H 1,0,

in 1,2 pairs, and solve the resulting four independent problems separately. Specifically, recall that
R` is an integral over the scattering surface of the solutions,givencertain specified plane waves.
Thus writingR` as a function of theui ’s:

R`5R`~@~kpks
21!3/2u2

ip#,u2
is ;@~kpks

21!3/2u1
ip#,u1

is!,

we have
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dTpp~ q̂; k̂!5R`~1,0;1,0!F kp
2

rv2G ,
dTsp~ q̂, t̂ q̂ ; k̂!5R`~0,1;1,0!Fks1/2kp3/2rv2 G ,

~B24!

dTps~ q̂; k̂, t̂ k̂!5R`~1,0;0,1!Fks3/2kp1/2rv2 G ,
dTss~ q̂, t̂ q̂ ; k̂, t̂ k̂!5R`~0,1;0,1!F ks

2

rv2G .
Since the right hand side cannot depend ont̂ a if ua

is50, we now see why somet̂ a’s were left out
beginning with equation~B22!.

As in Ref. 2, by choosingj5n̂, we obtain new manifestly reciprocal expressions for
QW ppTpp,QW spTsp,QW psTps, andQW ssTsswhereQW pp[kpk̂2kpq̂, QW

ps[ksk̂2kpq̂, etc . The bottom line
is that in this formulation, the different channelspp, sp, ps, andss are treated separately. The
result is a scattering matrix which solves the general problem.

Note that acoustics essentially involves findingTpp ~scattering from scalar wave to scalar
wave! whereas the electromagnetic problem~described in Ref. 2! more or less amounts to finding
Tss ~scattering from transverse vector wave to transverse vector wave!. The elastodynamic prob-
lem differs in that it involves more than one such channel.

APPENDIX C: DETAILS IN DERIVATION OF EQUATION (2.8)

Begin with equation~2.6! with theO(j0) term given by~2.7!. Use the boundary condition
n̂• tJ•(12n̂n̂)50 to drop the 3rd, 4th, and 7th rows of~2.6!. It is also necessary to recall the
definition of the curvature tensor~A9!, and to insertn̂n̂ betweentJ1 anduW 2 in the 2nd row of~2.6!.
Next, use equation~A1! to replacen̂1 in n̂1•uW 2(xW2) and n̂2 in n̂2•uW 1(xW1). The result is

R`5 O~j0! terms which cancel at the interface2E dSn̂• tJ1¹j•~12n̂n̂!•uW 2

2E dSn̂• tJ2¹j•~12n̂n̂!•uW 11O~j! terms included previously in equation~2.6!.

~C1!

Note thatI52*dSn̂• tJ1•¹j•(12n̂n̂)•uW 2 and the next term with labels 1 and 2 exchanged have
the same sign~generally such pairs have come with opposite signs!. This is no misprint; it follows
from the fact that equation~A1! is not symmetric under the exchange (1↔2).

Consider

I52*dSn̂• tJ1•¹j•~12n̂n̂!•uW 2 .

We follow the technique outlined in Appendices B and C in Ref. 2. To integrate this result by
parts, writedS as d2x/nz wherenz is the z-component ofn̂ for some coordinate system and
d2x is dx dy for the same coordinate system. Perform the integration by parts. Use from Ref. 2

¹•S 1I2n̂n̂

nz
D 5

n̂

nz
Tr~%J ! ~C2!
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@see the comments below equation~C11!, or equation~B21! and the comment above~B23!; all in
Ref. 2!, and also recall equation~A6!. Putting these results together, we have

I5E dSj Tr~%J !n̂•uW 2tnn
1 1E dSj~1I2n̂n̂!:¹W uW 2tnn

1 1E dSjuW 2•~1I2n̂n̂!•¹W tnn
1 . ~C3!

Get the same result with labels 1 and 2 exchanged. Note that the terms involvingn̂n̂:¹W uW will
cancel the 6th row of equation~2.6!. To recapitulate, we have succeeded in eliminating the 3rd,
4th, 6th, and 7th rows of equation~2.6!. Substitute into equation~2.6! the remaining results
obtained so far in this appendix to obtain

R`5E
S2

dS2@ n̂1• tJ1~x1W !•n̂1n̂2•uW 2~x2W !2n̂2• tJ2~x2W !•n̂2n̂1•uW 1~x1W !#1E dSj Tr~%J !n̂•uW 1n̂• tJ2•n̂

1E dSjrv2uW 1•uW 22E dSj tJ1 :¹W uW 21E dSj@~¹W •uW 2!tnn
1 1~¹W •uW 1!tnn

2 #

1E dSj@uW 2•~1I2n̂n̂!•¹W ~tnn
1 !1uW 1•~1I2n̂n̂!•¹W ~tnn

2 !#. ~C4!

SincetJ is symmetric, we have~summing repeated indicesi , j ; covariance/contravariance notation
is NOT being used here in this paper!

tJ1 :¹W uW 25
1

2
t1
i j ~¹ iu2

j 1¹ ju2
i !5

1

2
t1
i j

t2
i j2l¹W •uW 2d

i j

m

5
tJ1 : tJ2
2m

2
l

2m
Tr~ tJ1!¹W •uW 2

5
tJ1 : tJ2
2m

2
l

2m

Tr~ tJ1! Tr~ tJ2!

3l12m
, ~C5!

and equation~2.8! follows immediately.

APPENDIX D: DETAILS IN THE DERIVATION OF EQUATION (2.9)

Note the fact that for a standard acoustic field in a fluid,

tnn52P⇒¹W ~tnn!52¹W P52rv2uW .

Also note the following three lemmasvalid for an acoustic field in a fluid.
Lemma 1:

tJ1 : tJ2
2m

5
3l2

2m
¹W •uW 1¹W •uW 21

2k2

rv2 tnn
1 tnn

2 1O~m!. ~D1!

Lemma 2:

l

2m

Tr~ tJ1! Tr~ tJ2!

3l12m
5
3l2

2m
¹W •uW 1¹W •uW 21

k2

rv2 tnn
1 tnn

2 1O~m!. ~D2!
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Lemma 3:

Tr~ tJ1!

3l12m
tnn
2 1

Tr~ tJ2!

3l12m
tnn
1 5

2k2

rv2 tnn
1 tnn

2 1O~m!. ~D3!

Given these results,~2.9! follows immediately from~2.8!.
Proof of Lemma 1:Begin with

tJ1 : tJ25tnn
1 tnn

2 12n̂• tJ1•~1I2n̂n̂!• tJ2•n̂1 tJ1
T : tJ2

T ,

where the superscriptT denotes components perpendicular to the normaln̂ @see also equation
~2.13!#.

The ‘‘cross term’’ 2n̂• tJ1•(1I2n̂n̂)• tJ2•n̂ is zero onS by the slip boundary condition
n̂•t1•(1I2n̂n̂)50. It is also worth noting that, even away from the surface, any off-diagonal
component oftJ is automaticallyO(m) so a product of such terms must beO(m2).

From the definition oftJ, equation~2.1!, we have

tnn5l¹W •uW 12mn̂n̂:¹W uW .

From uW 5¹W P/rv2 and the Helmholtz equation forP, we have

l¹W •uW 52P1O~m!~5tnn1O~m!!, ~D4!

and thus

tnn
1 tnn

2 5l2¹W •uW 1¹W •uW 22
2m

rv2 ~ n̂n̂:¹W ¹W P2!P12
2m

rv2 ~ n̂n̂:¹W ¹W P1!P21O~m2!. ~D5!

Now, consider

tJ1
T : tJ2

T5t t1t1
1 t t1t1

2 1t t2t2
1 t t2t2

2 12t t1t2
1 t t2t1

2 ,

where the indicest1 andt2 label components in the ‘‘T’’ direction ~i.e.,'n̂). Note once again that
the cross term isO(m2). From equation~2.1!, we have

t t i t i5l¹W •uW 1
2m

rv2 t̂ i t̂ i :¹W ¹W P1O~m2!.

Consequently, also recalling equation~D4!, we have

t t i t i
1 t t i t i

2 5l2¹W •uW 1¹W •uW 22
2m

rv2 ~ t̂ i t̂ i :¹W ¹W P2!P12
2m

rv2 ~ t̂ i t̂ i :¹W ¹W P1!P21O~m2!. ~D6!

Summing our results, and using

t̂1t̂11 t̂2t̂21n̂n̂51, ~D7!

as well as

1:¹W ¹W P5¹2P52k2P5k2tnn ,

to simplify the result, we have equation~D1!.
Proof of Lemma 2:Note that
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Tr~ tJ !5~3l12m!¹W •uW ,

to obtain

l

2m

Tr~ tJ1! Tr~ tJ2!

3l12m
5

l

2m
~3l12m!¹W •uW 1¹W •uW 25

3l2

2m
¹W •uW 1¹W •uW 21l¹W •uW 1¹W •uW 2 . ~D8!

Simplify using ~D4! and 1/l5k2/rv2 to obtain equation~D2!.
Proof of Lemma 3:We have

Tr~ tJ1!

3l12m
tnn
2 1

Tr~ tJ2!

3l12m
tnn
1 52l¹W •uW 1¹W •uW 25

2

l
P1P21O~m!5

2k2

rv2 tnn
1 tnn

2 1O~m!. ~D9!

APPENDIX E: DETAILS IN THE DERIVATION OF EQUATION (2.16)

Once again, begin with equation~2.6!, and simplify using equation~C5! as well as the
equation

tnn
2m

2
l

2m

Tr~ tJ !

3l12m
5n̂n̂:¹W uW ,

obtained directly from the definition of the stress tensor, equation~2.1!. Thus we have

R`5 terms which are zero or cancel at the boundary1E dSjrv2uW 1•uW 1

1E dSjF2
tJ1 : tJ2
2m

1
l

2m

Tr~ tJ1! Tr~ tJ2!

3l12m G1E dSjFtnn
1 tnn

2

m
1
2

m
tJ1•~1I2n̂n̂!• tJ2•n̂G

2E dSjF l

2m

tnn
2 Tr~ tJ1!

3l12m
1

l

2m

tnn
1 Tr~ tJ2!

3l12m G . ~E1!

Note that

tJ1 : tJ25 tJ1
T : tJ2

T1tnn
1 tnn

2 12tnt1
1 t t1n

2 12tnt2
1 t t2n

2 5 tJ1
T : tJ2

T1tnn
1 tnn

2 12n̂• tJ2•~1I2n̂n̂!• tJ1•n̂.

~E2!

This equality will combine the 1st term in the 3rd line with the 4th line of equation~E1!. Also to
combine the second term in the 3rd line with the last line of~E1!, let a5tnn , b5t t1t1,
c5t t2t2, to obtain

Tr~ tJ1! Tr~ tJ2!2tnn
1 Tr~ tJ2!2tnn

2 Tr~ tJ1!

5~a11b11c1!~a21b21c2!2a1~a21b21c2!2a2~a11b11c1!

5~b11c1!~b21c2!2a1a25 Tr~ tJ1
T! Tr~ tJ2

T!2tnn
1 tnn

2 . ~E3!

Combining these results, we are left with equation~2.16!.

APPENDIX F: DETAILS OF DERIVATION OF (2.18)

SettinguW 50 in ~2.16!, we are left with the last four lines only. To evaluate these, we need to
obtain two intermediate results.
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1. Evaluate tJ1
T : tJ2

T when u¢ 50

Expanding this quantity, we have

tJ1
T : tJ2

T5t t1t1
1 t t1t1

2 1t t2t2
1 t t2t2

2 12t t2t1
1 t t2t1

2 . ~F1!

Considert t2t15m t̂1t̂2 :(¹W uW 1uW ¹W
‚

). Recall uW 50 implies that¹W ui i n̂' t̂ so that t̂•¹W uW 50 and
t t2t150.

Next, considert t1t15t t2t25l¹W •uW , where again we have used¹W ui' t̂. Since¹W ui i n̂ we have

(1I2n̂n̂):¹W uW 50, or ¹W •uW 5n̂n̂:¹W uW ~note, this result is only valid for the special caseuW 50 on
S). Thustnn5(l12m)¹W •uW , and

t t1t15t t2t25l¹W •uW 5
ltnn

l12m
. ~F2!

Substituting into equation~F1!, it follows that

tJ1
T : tJ2

T5
2l2

~l12m!2
tnn
1 tnn

2 . ~F3!

2. Evaluate Tr( tJT)

From equation~F2!, it follows immediately that

Tr~ tJT!5
2l

l12m
tnn .

3. Combine results

Substituting these results into~2.16! we find

R`5E dSjF n̂• tJ1•~1I2n̂n̂!• tJ2•n̂

m
1

tnn
1 tnn

2

2m
S 12

2l2

~l12m!2
1

4l3

3l12m

1

~l12m!2

2
l

3l12m
D G . ~F4!

The object in parentheses on the second line of equation~F4! simplifies to 2m/(l12m), and
equation~2.18! follows immediately. Note that this result is valid for the zero displacement
(uW 50) boundary condition only.

APPENDIX G: THE SOLID-SOLID BOUNDARY CONDITION FOR THE OFF-DIAGONAL
ELEMENT OF tJT

On the interface between two elastic solids labeledI and II , the off-diagonal element of
tJT, t t1t2, obeys a simple boundary condition:

t t1t2
I

m I
2

t t1t2
II

m II
50. ~G1!

The proof is fairly simple. Note that
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t t1t25m t̂1•~¹W uW !• t̂21m t̂2•~¹W uW !• t̂1 ,

so that

t t1t2
I

m I
2

t t1t2
II

m II
5 t̂1•@¹W ~uW I2uW II !#• t̂21~1↔2!50,

sinceuW I2uW II50 onS, and therefore¹W (uW I2uW II ) i i n̂' t̂. Q.E.D.

APPENDIX H: LEMMA USEFUL FOR EXPRESSING a IN TERMS OF AS

Note that

ks
25

cp
2

cs
2 kp

25
l II12m II

m II
,

so that

1

12ks
2/2uk'u2

5
1

12~11l II /2m II !~kp
2/uk'u2!

5
uk'u2

2kpn
2 2~l II /2m II !kp

2

5
uk'u22m II

2kp
2~l II12m II ~kpn

2 /kp
2!!

5
uk'u22m II

kpa
. ~H1!

It follows immediately that

a5
ks
kp

2m II

AS

kpn
kp

uk'u. ~H2!

APPENDIX I: SIMPLE FORM OF THE SCATTERING AMPLITUDE FOR SMALL SLOPE
AND ‘‘LOCAL’’ TWO-SCALE APPROXIMATIONS

In this appendix, equation~3.20! will be derived from equation~2.14! by making the approxi-
mation that the surface is locally flat. In order to do so, it is necessary to simplify the term
involving tJ1

II : tJ2
II . Suppressing the label II~i.e., inside the solid! for now, and summing repeated

indices j andk, we havetJ1
II : tJ2

II5t1
jkt2

jk . Recall thatt jk5l¹W •uW d jk1m(¹ juk1¹kuj ) and define
s jk[¹ juk1¹kuj . It follows that

t1
jkt2

jk5~3l214ml!~¹W •uW 1!~¹W •uW 2!1s1
jks2

jk , ~I1!

where use was made ofd jkd jk53 ands jkd jk52m¹W •uW . Next, we considersJ1 :sJ25s1
jks2

jk . We
can decomposesJ using

sJ5~1I2n̂n̂!•sJ•~1I2n̂n̂!1n̂n̂•sJ•~1I2n̂n̂!1~1I2n̂n̂!•sJ•n̂n̂1snnn̂n̂.

Recall the boundary condition

05n̂n̂• tJ•~1I2n̂n̂!5n̂n̂•sJ•~1I2n̂n̂!

and define

sJT[~1I2n̂n̂!•sJ•~1I2n̂n̂!
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to obtain

sJ[sJT1snnn̂n̂

and thus

sJ1:sJ25sJ1T:sJ2T1snn
1 snn

2 . ~I2!

Now we needs jk
T evaluated for the ‘‘locally flat’’ scattering surface approximation. Using the

equation foruW II ~3.8!, and recalling

~1I2n̂n̂!•kW p5~1I2n̂n̂!•kW s5~1I2n̂n̂!•kW i5k' ,

we have

~1I2n̂n̂!•¹W [¹'}k'

~to be precise, the transverse component of the gradient brings downik'). From equation~3.22!,
we also have~on the boundary!

uW T
II}k' ,

so that~still suppressing the label ‘‘II ’’ !

¹'
j u'

k 1¹'
k uT

j 52¹'
j uT

k .

Thus, since¹' brings down anik' ~or a2 iq'), we have

sJ1T:sJ2T5 ik'
j u1T

k ~2 iq'
j !u2T

k 4m25k'•q'uW 1•~1I2n̂n̂!•uW 24m2

54m2kW i•~1I2n̂n̂!•qW iuW 1•~1I2n̂n̂!•uW 2 . ~I3!

To complete our evaluation of equation~I2!, we also have the result

snn
1 snn

2 54m2~ n̂n̂:¹W uW 1!~ n̂n̂:¹W uW 2!. ~I4!

Use ~I3! and ~I4! to evaluate~I2!, then substitute that result into~I1!, and also make the substi-
tution

¹W •uW 5
tJ

3l12m
.

Thus, we obtain

tJ1 : tJ25
3l214ml

~3l12m!2
Tr~ tJ1! Tr~ tJ2!14m2~ n̂n̂:¹W uW 1!~ n̂n̂:¹W uW 2!

14m2kW i•~1I2n̂n̂!•qW iuW 1•~1I2n̂n̂!•uW 2 , ~I5!

where the 1st and 2nd lines are universally valid, but the 3rd line ignores the curvature of the
scattering surface. Now, split the 1st term using

3l214ml

~3l12m!2
5
3l212ml

~3l12m!2
1

2ml

~3l12m!2
,
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and also restore the labelII to obtain

tJ1
II : tJ2

II5
1

2m II

l II

3l II12m II
Tr~ tJ1

II ! Tr~ tJ2
II !1

l II

~3l II12m II !
2 Tr~ tJ1

II ! Tr~ tJ2
II !

12m II ~ n̂n̂:¹W uW 1
II !~ n̂n̂:¹W uW 2

II !12m II kW i•~1I2n̂n̂!•qW iuW 1
II
•~1I2n̂n̂!•uW 2

II . ~I6!

Note that the 1st term on the right hand side of this equation will cancel line 6 of equation~2.14!.
Thus, substituting the result~I6! into equation~2.14! gives

2 iQzT

r1v
2 5E d2x@ Integrand#

Integrand5~r I2r II !v
2n̂•û1n̂•û21@~r I2r II !v

212m II kW i•~12n̂n̂!•qW i #uW 1
II
•~12n̂n̂!•uW 2

II

2r Iv
2~uW 1

I 2uW 1
II !•~1I2n̂n̂!•~uW 2

I 2uW 2
II !1

ki
2

r Iv
2 tnn

1 tnn
2

1
l II

~3l II12m II !
2 @ Tr~ tJ1

II ! Tr~ tJ2
II !#2

1

3l II12m II
@ Tr~ tJ1

II !tnn
2 1 Tr~ tJ2

II !tnn
1 #

12m II ~ n̂n̂:¹W uW 1
II !~ n̂n̂:¹W uW 2

II !. ~I7!

Note that the 2nd part of line 2~involving kW i andqW i) is the only instance where the ‘‘flat scattering
surface’’ approximation comes in. The remainder of the equation is exact.

Finally, simplify the term involvingn̂n̂:¹W uW . The equation,

tnn5l¹W •uW 12mn̂n̂:¹W uW ,

can be inverted to solve forn̂n̂:¹W uW . This leads to

2m II ~ n̂n̂:¹W uW 1
II !~ n̂n̂:¹W uW 2

II !5
1

2m II
tnn
1 tnn

2 1
1

2m II

l II
2

~3l II12m II !
2 Tr~ tJ1

II ! Tr~ tJ2
II !

2
1

2m II

l II

3l II12m II
@ Tr~ tJ1

II !tnn
2 1 Tr~ tJ2

II !tnn
1 #.

Substituting this result into equation~I7!, we finally obtain equation~3.20!.

APPENDIX J: DETAILS OF THE DERIVATION OF EQUATION (3.22)

In this appendix, equation~3.22! is derived beginning with the 3rd part of equation~3.19!:

uW 1
II5C@ k̂p2ASt̂#e

ikW i•x
W
.

The phase factoreik
W
i•x

W
will be suppressed for the rest of the discussion in this appendix.

DecomposeuW II according to

uW II5~uW II •n̂!n̂1uW II •~1I2n̂n̂!, ~J1!

and note thatuW II •n̂5uW I•n̂ and thatuW I can be evaluated using equation~3.21! to give
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uW II •n̂5
i

r Iv
2 ~12B!kin5

i

r Iv
2

2

a11
kin . ~J2!

Using equation~3.12!, it is easy to show that

uW II •~1I2n̂n̂!5
Ck'

kp
F11

ASkpksn
uk'u

ksG . ~J3!

WhenAS is further evaluated using equation~3.13!, it follows that

uW II •~1I2n̂n̂!5
Ck'

kp
F uk'u22ks

2/21kpnksn
uk'u22ks

2/2 G . ~J4!

From equation~3.15!, we have

C5
22b

ikp~l II12m II !

1

a11
,

wherea andb are also given in~3.15!. Substitute

b5
r II
r I

kin
kpn

S 12
2uk'u2

ks
2 D

into C, and use equation~3.16! to make the substitution

l II12m II5
r IIv

2

kp
2 .

After just a little algebra, we have

C5
2ikp
r Iv

2

kin
kpn

22

ks
2 F uk'u22

ks
2

2 G 1

a11
.

Also, use

uk'u21ksn
2 5ks

2 and 2uk'u25kpn
2 2kp

2

to show that

uk'u22
ks
2

2
1kpnksn52

1

2
~~ksn2kpn!

22kp
2!.

Combining these results, we obtain

uW II •~1I2n̂n̂!5k'

2i

r Iv
2

j

a11
, ~J5!

with j as defined in equation~3.22!. Substituting equations~J2! and~J5! back into equation~J1!,
we finally obtain equation~3.22!.

To obtain the alternate form forj, note that
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~ksn2kpn!
22kp

2

ks
2 5

ksn
2 1kpn

2 22ksnkpn2kp
2

ks
2 5

ks
22uk'u21kp

22uk'u222ksnkpn2kp
2

ks
2

5122
uk'u21ksnkpn

ks
2 5122

kW s•kW p
ks
2 . ~J6!

APPENDIX K: DETAILS OF THE DERIVATION OF EQUATION (3.23)

We need to use the results~3.21! and~3.22! to evaluate the quantities in equation~3.20!. This
is absolutely straightforward, and the result is

eiQ
W
i•x

W
~a111!~a211!@ Integrand#

5
~r I2r II !

r I
2v2 4kinqin1

~r I2r II !

r I
2v2 kW i•~1I2n̂n̂!•qW i4j1j21

8m II @kW i•~1I2n̂n̂!•qW i #
2

r I
2v4 j1j2

2
1

r Iv
2kW i•~1I2n̂n̂!•qW i4~a12j1!~a22j2!1

ki
2

r Iv
24a1a21

1

2m II
4a1a2

1
l II

~3l II12m II !
2 S 11

l II

2m II
D b1b2~3l II12m II !

2

m II
2 ~11l II /~2m II !!2

2
1

~3l II12m II !
S 11

l II

2m II
D 2~b1a21b2a1!~3l II12m II !

m II ~11l II /~2m II !!
. ~K1!

Note the immediate cancellation of 3l II12m II and 11l II /(2m II ) in the last two lines of equa-
tion ~K1! above. Furthermore, to evaluate the last 3 terms, note that

1

m II
5

1

r IIv
2

r IIv
2

m II
5

ks
2

r IIv
2 5

ks
2

r Iv
2

r I
r II

,

so that these 3 terms become

2ks
2

r Iv
2

r I
r II

a1a21
2l II

l II12m II

ks
2

r Iv
2

r I
r II

b1b22
2ks

2

r Iv
2

r I
r II

~b1a21b2a1!

5
2~l II12m II !

l II12m II

ks
2

r Iv
2

r I
r II

b1b21
2ks

2

r Iv
2

r I
r II

a1a2

2
2~2m II !

l II12m II

ks
2

r Iv
2

r I
r II

b1b22
2ks

2

r Iv
2

r I
r II

~b1a21b2a1!

5
2ks

2

r Iv
2

r I
r II

~a1a21b1b22b1a22b2a1!2
4m II

l II12m II

ks
2

r Iv
2

r I
r II

b1b2 .

Simplify using

m II

l II12m II
5
kp
2

ks
2 and ~a12b1!~a22b2!5a1a21b1b22b1a22b2a1 .

Now substitute all this into equation~K1! to obtain
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eiQ
W
i•x

W
r Iv

2~a111!~a211!@ Integrand#

5S 12
r I
r II

D4kinqin14S 12
r I
r II

D kW i•~1I2n̂n̂!•qW ij1j21
8m II

r Iv
2 @kW i•~1I2n̂n̂!•qW i #

2j1j2

24kW i•~1I2n̂n̂!•qW i~a12j1!~a22j2!14ki
2a1a212ks

2 r I
r II

~a12b1!~a22b2!24kp
2 r I

r II
b1b2 .

~K2!

Optionally, usem II /(r Iv
2)5(1/ks

2)(r II /r I) in line 3. Having now evaluated the integrand in
equation~3.20!, equation~3.23! follows immediately.

APPENDIX L: THE LIMIT AS THE SOLID IN REGION II BECOMES A FLUID

In this appendix, we examine the two(locally) flat reference surface approximationsin the
limit as m II→0. ~i.e., as the solid in regionII becomes a fluid!. The result is equation~3.24!.

In this limit, we have from equations~3.10! and ~3.11! that

1/ks
25O~m II !, ksn5O~m II

21/2!,

and further, substituting into equations~3.15! and ~3.22!, we find

a5
r II
r I

kin
kpn

1O~m II !, b5a1O~m II !,

j5
kin
kpn

1O~m II
1/2!5

r I
r II

a1O~m II
1/2!.

Note thata2b5O(m II ), so that

~a12b1!~a22b2!5O~m II
2 !,

and we have

T~qW i ,kW i !5
i

Qiz
E d2xeiQ

W
i•x

WF S 12
r II
r I

D 4kinqin
~a111!~a211!

14S r I
2

r II
2 2

r I
r II

D kW i•~1I2n̂n̂!•qW i
a1a2

~a111!~a211!

24kW i•~1I2n̂n̂!•qW i S 12
r I
r II

D 2 a1a2
~a111!~a211!

14ki
2 a1a2
~a111!~a211!

24kp
2 r I

r II

a1a2
~a111!~a211!G1O~m II

1/2!. ~L1!

Define

2a

a11
[A,

with the identification of the subscripts 1↔kW i , 2↔2qW i and note that
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r I
2

r II
2 2

r I
r II

2S 12
r I
r II

D 25 r I
r II

21

to obtain equation~3.24!.

APPENDIX M: THE LIMIT AS THE SOLID IN REGION II BECOMES INFINITELY STIFF

In this appendix, we examine the two(locally) flat reference surface approximationsin the
limit as m II→`. The result is equation~3.25!

We have

ksn52Aks22uk'u252 i uk'uS 12
r IIv

2

2m II uk'u2D 1OS 1

m II
2 D ,

~M1!

kpn52Akp22uk'u252 i uk'uS 12
r IIv

2

4m II uk'u2D 1OS 1

m II
2 D ,

so that

ksn2kpn5
iks

2

4uk'u
. ~M2!

Thus, substituting into equation~3.15!, we find

a15 i uk'u
r II
r I

~2kin!

ks
2 1O~m II

0 !→`.

Since 1/ks
2 } m II , we havea1→` and

1

a111
5OS 1

m II
D and

a1
a111

→1.

By also substituting the results~M1! in the equation forb in equation~3.15!, we obtain

b152a11O~m II
0 !,

so that (a12b1)/(a111) andb1 /(a111) are bothO(m II
0 ) ~i.e., just finite numbers!.

We also have

kp
25

ks
2

2
1OS 1

m II
2 D ,

so that, using equations~3.22! and ~M2!,

j152
kin
i uk'u F 1ks2 S iks

2

4uk'u D 22 kp
2

ks
2G52

~2kin!

2i uk'u
1OS 1

m II
D ,

and consequently that

j1
a111

5OS 1

m II
D .
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Note thatkp
2 andks

2 are bothO(1/m II ). Substituting these results, and the analogous ones with the
subscript ‘‘2’’ into equation~3.23!, equation~3.25! follows immediately.

APPENDIX N: THE LIMIT AS THE SOLID IN REGION II BECOMES A GAS

Once again, consider equation~3.23!, and this time let the solid in mediumII become gas-like
~i.e., let bothm II andr II go to 0). In Appendix L above, it was shown that takingm II→0 first, we
recover the two-fluid result. It is well-known, and easy to verify that for a two-fluid interface, as
the density of mediumII approaches zero, Dirichlet boundary conditions are satisfied at the
interface. Therefore, we will not reproduce a proof for that case here. Instead, let us take
r II→0 first, and only then letm II→0 ~i.e., assume the densityr II goes to zero more rapidly than
the second Lame´ constantm II ).

If r II→0, with m II not yet 0, we have@cf. equations~M1! and ~M2!#

kp
25

r IIv
2

l II12m II
⇒kpn52 i uk'uS 12

r IIv
2

2~l II12m II !uk'u2D1O~r II
2 !,

~N1!

ks
25

r IIv
2

m II
⇒ksn52 i uk'uS 12

r IIv
2

2m II uk'u2D1O~r II
2 !,

and thus

ksn2kpn52
ir IIv

2

2uk'u S 1

l II12m II
2

1

m II
D1O~r II

2 !. ~N2!

Therefore, we have from equation~3.15!,

a152
2ik inm II uk'u

r Iv
2 S 12

m II

l II12m II
D1O~r II !,

~N3!

b152
2ik inm II uk'u

r Iv
2 1O~r II !.

Furthermore, substituting results~N1! and ~N2! into equation~3.22!, we have

j152
ik in
uk'u

m II

l II12m II
1O~r II !. ~N4!

Once again, the results with the subscript ‘‘2’’ are virtually identical. Finally, lettingm II→0, we
havea,b,j5O(m II )→0, and equation~3.24! follows immediately as these results are substituted
into equation~3.23!.
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In this work the concept of entropy of a dynamical system, as given by Kolmog-
orov, is generalized in the sense of Tsallis. It is shown that this entropy is an
isomorphism invariant, being complete for Bernoulli schemes. ©1996 American
Institute of Physics.@S0022-2488~96!03309-9#

I. INTRODUCTION

Ergodic theory not only is an important chapter of Statistical Physics but also it constitutes by
itself an entire branch of Mathematics.

A basic result of ergodic theory is the isomorphism theorem for Bernoulli schemes, initially
proved by Ornstein.1 This theorem involves the concept of entropy.

Entropy was introduced by Shannon, in his mathematical theory of communications, as a
measure of the amount of information2 and generalized in the context of dynamical systems by
Kolmogorov.3 Subsequently, Sinai4 proved Kolmogorov’s entropy to be an isomorphism invari-
ant, Meshalkin5 demonstrated that some special Bernoulli schemes are always isomorphic whereas
Ornstein’s isomorphism theorem showed the isomorphism to be complete. A nice proof of this last
result, which enables us to construct finitary isomorphisms, was later given by Keane and Smoro-
dinsky based on coding-theoretical arguments.6

Generalizations of Shannon’s entropy have been introduced by Re´nyi7 and, more recently, on
a multifractal basis, by Tsallis.8 These generalized entropies have found a wide field of applica-
tions in the last few years. In particular, they enable us to explain a variety of physical phenomena
such as the behavior of self-gravitating systems, the anomalous diffusion, Euler turbulence, and so
on.9–15

In this work we generalize the concept of Tsallis entropy to abstract dynamical systems in the
same spirit as Kolmogorov did for Shannon entropy and study its invariance under isomorphisms.
Our main result is that the new generalized entropy we consider is also an isomorphism invariant
of dynamical systems. Moreover, it is a complete invariant for Bernoulli schemes. It should be
noted that very recently Zanette has studied the dynamics of multifractal generation using a
generalization of the Kolmogorov entropy.16 Zanette’s generalization, however, is a particular case
of the more general definition that we consider in this paper.

In the next section we give a brief review of the main concepts concerning dynamical systems,
Bernoulli schemes, and isomorphisms. Section III will be devoted to introducing the new gener-
alized entropy, whereas in Sec. IV we prove its properties we are interested in here, namely, the
isomorphism invariance and the complete invariance for Bernoulli schemes.

II. DYNAMICAL SYSTEMS AND BERNOULLI SCHEMES

The idea of measure-preserving transformation,17 mathematically generalizes the physical
concept of a dynamical system. Here we understand by a physical dynamical system a collection
of particles or states, the temporal evolution of which is determined by some physical law in such
a way that Liouville’s theorem is verified.

a!Also at the Departamento de Matema´tica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata.
b!Electronic mail: vericat@iflysi.edu.ar
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From a mathematical point of view a dynamical system or, more precisely, a measure-
preserving dynamical system, also simply called a measure-preserving transformation, is a qua-
druple~X,A,m,T! whereX is a set,A as-algebra,m a measure onA, andT is a mapping of the
underlying setX to itself that is measurable and preserves the measurem, i.e. for any APA,
T21APA andm(T21A)5m(A) @m~•! denotes the measure of an element• of A#.

Bernoulli schemes are particular cases of measure-preserving dynamical systems of great
importance in ergodic theory. Thus, a Bernoulli scheme is also a quadruple~X,A,m,T,!, whereX
is now asample spaceassociated with the possible results arising in a probabilistic experiment,
say 1,2,...,n, having respective probabilitiesp1 ,p2 ,...,pn ~we use the notation of Ref. 17!:

X5$1,2,...,n%Z5$x5~•••x21 ,x0 ,x1 ,...!:xiP$1,2,...,n%, for all iPZ%. ~1!

The s-algebraA on X and the measurem are the standard ones for this kind of probabilistic
experiment. Thus,m5(p1 ,p2 ,...,pn)

Z, assuming that the individual experiments are independent.
Finally, the measure-preserving transformationT is the shift on X definedTx5x8, where xi8
5 xi11. As usual we denote the above Bernoulli scheme byBS(p).

To finish with this brief review let us recall the concept of isomorphism between two dynami-
cal systemS5~X,A,m,T! and S85~X8,A8,m8,T8!. S and S8 are isomorphic if there exists a
measurable mappingf :X→X8, which is a bijection such that(i) for any A8PA8,
m( f21A8)5m8(A8) and (ii) for all x , f (Tx)5T8( f x).

III. GENERALIZED ENTROPY

The Kolmogorov–Shannon entropy is constructed considering that, within Shannon’s infor-
mation theory, the amount of information we have if we know that a pointxPX belongs to some
fixed set of a partitionC5$C1 ,C2 ,...,Cm% of X is

H1~C!52(
i51

m

m~Ci !log m~Ci !. ~2!

A generalization of this magnitude has been given, among others, by Tsallis.8 In our context
it reads as

Hq~C!5~q21!21S 12(
i51

m

@m~Ci !#
qD , ~3!

whereq is any real number. We observe that forq→1, Shannon’s expression~2! is recovered.
Equation~3! enables us to give a generalized formulation of information theory in such a way that
the relevant relationships of Shannon’s information theory are preserved.18

To define our generalized entropy we follow Ref. 17. We firstly consider a finite partition
B5$B1 ,B2 ,...,Bk% of the sample space, i.e.,ø i51

k Bi5X; BiùBj5f; iÞ j . Then we taken
points on the orbit ofX: x,Tx,T2x,...,Tn21x. B being a partition, for each of these points there
exists only one setBi to which it belongs. We associate to eachx a string l5( l 0 ,l 1 ,...,l n21),
called the name ofx, whereTix P Bl i

. FromB we construct a new partitionBn5$Bn( l ): l is any
name of lengthn%, whereBn( l ) is the set ofx with namel .

Thus, we define a generalized mean entropy~Kolmogorov–Tsallis entropy! of the measure-
preserving transformationT by

hq~T!5~q21!21@12exp„h̃q~T!…#, ~4!

where

4481A. M. Mesón and F. Vericat: Invariant of dynamical systems

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



h̃q~T!5sup
B

h̃q~B,T! ~5!

and

h̃q~B,T!5 lim
n→`

1

n
$ log@11~12q!Hq~B

n!#%. ~6!

In particular, for a Bernoulli schemeBS(p), we havem„Bn( l )… 5 pl0pl1•••pln21
for each name

l of lengthn. Therefore, using for the partitionBn the generatorBi 5 $x: x05 i %, 1< i<k we obtain

@ h̃q~T!#BS~p!5 log (
i51

n

pi
q , ~7!

which yields Tsallis’ entropy for arbitraryq,

@hq~T!#BS~p!5~q21!21F12(
i51

n

pi
qG , ~8!

and Shannon’s expression,

@h1~T!#BS~p!52(
i51

n

pi log~pi !, ~9!

for q→1.

IV. ISOMORPHISM THEOREMS FOR THE GENERALIZED ENTROPY

Let us consider two isomorphic measure-preserving dynamical systemsS5~X,A,m,T!,
S85~X8,A8,m8,T8! @with 0,m, m8<1 andm(X)5m8(X8)51# and an arbitrary partition ofX of
size n, say B5$B1 ,B2 ,...,Bn%. Then, if f is a bijection betweenX and X8, the set
C5$C1 ,C2 ,...,Cn%, where Ci5 f (Bi) for each i51,2,...,n, is a partition of X8 also. Let
l5( l 0 ,l 1 ,...,l n21) andl 8 5 ( l 08 ,l 18 ,...,l n218 ) be the names of a given pointxPX with relation toB
and ofy5 f (x) with relation toC, respectively.

SinceSandS8 are assumed to be isomorphic, thusTix P Bl i
→ f Tix 5 (T8) i f x P Cl

i8
. On the

other hand, we also know thatf Tix P f (Bl i
) 5 Cl i

because of the form in which the partition was

constructed. Thereforel i8 5 l i for all i50,1,...,n21 and both namesl and l 8 are the same one.
Consequently, the quantitiesHq(B

n)5(q21)21~12(l@m„B
n( l )…#q! andHq8(C

n) 5 (q 2 1)21(1
2 ( l@m8„Cn( l )…#q), and hence alsoh̃q(B,T) and h̃q8(C,T), are equal because,S andS8 being
isomorphic, we havem8„Cn( l i)…5m8„fBn( l i)…5m„f21fBn( l i)…5m„Bn( l i)…. Then, from Eq.~5!,
we geth̃q(T) > h̃q(B,T) 5 h̃q8(C,T8) andh̃q8(T8) > h̃q8(C,T) 5 h̃q(B,T), which impliesh̃q(T)
< h̃q8(T8) andh̃q8(T8) < h̃q(T) or h̃q(T) 5 h̃q8(T8). Consequently,hq(T) 5 h̃q8(T8). In this way, we
have demonstrated the following theorem.

Theorem 1: If two measure-preserving dynamical systems are isomorphic then the associated
generalized (Kolmogorov–Tsallis) entropies as defined by Eqs. (4)–(6) are equal.

The complete isomorphism is proved just for Bernoulli schemes and reads as the following.
Theorem 2: Two Bernoulli schemes with the same generalized (Kolmogorov–Tsallis) entro-

pies as given by Eq. (8) are finitarily isomorphic.
Remark:we recall that an isomorphismf between two Bernoulli schemes isfinitary if, given

an elementx of the sample spaceX @see Eq.~1!#, there exist two integersn1<n2 such that for any
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other x8PX that verifies x8[n1 ,n2]5x[n1 ,n2], the zero coordinates [f (x)] 0 ,[ f (x8)] 0 and
[ f21(x)] 0 ,[ f

21(x8)] 0 are, respectively, equal. Here we denote withx[n1 ,n2] the word
xn1xna11•••xn221

xn2.
Proof: The demonstration is based on the following lemma, which was proved by Keane and

Smorodinsky6 in the caseq→1.
Lemma:given two Bernoulli schemesBS(p) and BS(p8), wherep5(p0 ,p1•••pa21) and

p8 5 (p08 ,p18•••pb218 ) ~with a>3; b>3! for which @hq(T)]BS(p)5[hq(T)]BS(p8), we can find a
third probability vectorr5(r 0 ,r 1 ,...,r c21) with the same entropy andr 05pi and r 1 5 pj8 for
somei , j .

To prove it we take into account that, without loss of generality, we can assume that the
vectors are orderedp0>p1>•••>pa21 andp08 > p1>8 ••• > pb218 with pa21 > pb218 . Let us consider
an auxiliary tripler 8 5 „p0 ,pb218 ,12 (p0 1 pb218 )…whose generalized entropy is [hq(T)]BS(r 8). It
can be shown that Tsallis entropy, Eq.~8! is a strictly decreasing function ofq and that
[hq(T)]BS(r 8)<[hq(T)]BS(p)5[hq(T)]BS(p8) for any q. So we can increase the entropy until we
reach the entropy [hq(T)]BS(r )5[hq(T)]BS(p) by successively splitting the auxiliary vector:
r 8→r 95„p0 ,pb218 ,r 3,12(p01pb218 1r 3)…→•••→r .

Remark:Fora52 ~or b52! it is still possible6 to prove the lemma by a convenient election of
the components of the vectorr .

The previous lemma put us in the conditions for constructing a finitary isomorphism between
the two Bernoulli schemes following the coding technic of Keane and Smorodinsky.6 This obser-
vation proves Theorem 2.
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The nonunitaryr -matrix theory and the associated bi- and triHamiltonian schemes
are considered. The language of Poisson pencils and of their formal Casimirs is
applied in this framework to characterize the biHamiltonian chains of integrals of
motion, pointing out the role of the Schur polynomials in these constructions. This
formalism is subsequently applied to the periodic Toda lattice. Some different
algebraic settings and Lax formulations proposed in the literature for this system
are analyzed in detail, and their full equivalence is exploited. In particular, the
equivalence between the loop algebra approach and the method of differential-
difference operators is illustrated; moreover, two alternative Lax formulations are
considered, and appropriate reduction algorithms are found in both cases, allowing
us to derive the multiHamiltonian formalism fromr -matrix theory. The systems of
integrals for the periodic Toda lattice known after Flaschka and He´non, and their
functional relations, are recovered through systematic application of the previously
outlined schemes. ©1996 American Institute of Physics.
@S0022-2488~96!01209-1#

I. INTRODUCTION

The multiHamiltonian formalism is a known geometrical tool in the theory of the integrable
Hamiltonian systems; this scheme can be formulated in an elegant way using the theory of the
so-called pencils of Poisson structures and of their formal Casimirs.1 A celebrated scheme to
generate a biHamiltonian structure on~the dual of! an associative algebra is provided byr -matrix
theory.2–4 Recently, the theory was extended, independently, by Oevel and Ragnisco5 and Li and
Parmentier6 to the so-called nonunitary case, in which ther -matrix is not skew-symmetric. In the
best known applications, ther -matrix is induced by a splitting of the algebra into the direct sum
of two Lie subalgebras; in this case, the construction of the first Poisson structure is closely related
to the earlier Adler–Kostant–Symes~AKS! scheme.7–9

A typical application of the nonunitaryr -matrix scheme is the finite Toda lattice with fixed
ends. This system is discussed in both Refs. 5 and 6; for a recent review of the fixed ends
Toda-type lattices, see Ref. 10. The infinite Toda chain~and some generalizations of it! was also
treated within the nonunitary scheme, see Ref. 11. Less material seems to be available on the
multiHamiltonian formalism for the periodic case.

The aim of this article is to discuss some topics in the above mentioned areas, deserving in our
opinion a further analysis or illustration. We are interested in the following items:

~i! to get a deeper insight into the functional relations between the Casimirs of a Poisson
pencil ~i.e., between the chains of integrals in involution! at three different levels: the general

a!Electronic mail address: Pizzoccchero@vmimat.mat.unimi.it
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biHamiltonian framework, ther -matrix scheme and the specific case of the periodic Toda lattice;
~ii ! to point out the connections between the different algebraic environments proposed in the

literature for the periodic Toda lattice; we refer to the loop algebra setting of Adler–van
Moerbeke12 and the differential-difference calculus of Kupershmidt;13

~iii ! to compare two different Lax formulations proposed for the periodic lattice;
~iv! to discuss the multiHamiltonian structure as a reduction of ther -matrix scheme, for both

the Lax formulations in item~iii !.
Concerning item~i!, we will point out that, for any Poisson pencil, the functional relations

between different Casimirs are strictly related to the theory of Schur polynomials, or some natural
generalization of it.14 In the application we will propose to ther -matrix framework, the represen-
tation of the Casimirs as formal power series is particularly elegant; we think that the formal traces
and the formal determinants introduced for this purpose deserve some interest by themselves.

In order to introduce items~ii ! and~iii !, we start from the evolution equations of the periodic
Toda lattice. Using the Flaschka variables, we can describe the phase space of the lattice withn
particles as a set of pairsx5(a,b), wherea5(aa) andb5(ba) are real periodic sequences of
periodn; the equations of motion are

ȧ52ab22ab@1# , ḃ54a@21#
2 24a2, ~1.1!

wherea @21# denotes the sequence~aa21!, andb@1# the sequence~ba11!.
To set up the Lax formulation, one must first of all choose the algebra in which the Lax

operator lives. The framework of loop algebras was strongly supported by Adler and van
Moerbeke;12 these authors employ for Eq.~1.1! the Lax pairdL/dt5[L,B1], based on then3n
matrices

L~x!:5S b1 a1 0 .. .. 0 l21an

a1 b2 a2 0 .. .. 0

0 a2 b3 a3 .. .. ..

.. .. .. .. .. .. ..

.. .. .. .. .. an22 0

0 .. .. 0 an22 bn21 an21

lan 0 .. .. 0 an21 bn

D ,

~1.2!

B1~x!:52S 0 a1 0 .. .. .. 2l21an

2a1 0 a2 0 .. .. 0

0 2a2 0 .. .. .. ..

.. 0 .. .. .. 0 ..

.. .. .. .. 0 an22 0

0 .. .. 0 2an22 0 an21

lan .. .. .. 0 2an21 0

D .

Here,l is a free parameter, and the Lax equation for the matrices in Eq.~1.2! is satisfied identi-
cally in l. Both L(x) and B1(x) are regarded in Ref. 12 as elements of the loop algebra
gl(n)~l,l21#, made of formal Laurent series inl andl21 with coefficients in the algebragl~n,R!
of realn3n matrices.

Using the loop algebra, one can produce other Lax representations for the periodic Toda
lattice, which are alternative to the scheme~1.2!. In order to illustrate one of them, we remark that
the evolution equations~1.1! are equivalent~up to rescaling by a common factor12! to
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ċ52cb22cb@1# , ḃ52c@21#22c, ~1.3!

if one stipulates thatc5a2. Equation~1.3! admits the Lax formulationdV/dt5[V,C1], where, at
each pointy5(c,b),

V~y!:5S b1 1 0 .. .. 0 l21cn

c1 b2 1 0 .. .. 0

0 c2 b3 1 .. .. ..

.. .. .. .. .. .. ..

.. .. .. .. .. 1 0

0 .. .. 0 cn22 bn21 1

l 0 .. .. 0 cn21 bn

D ,

~1.4!

C1~y!:52S b1 1 0 .. .. .. 0

0 b2 1 0 .. .. ..

0 0 b3 1 .. .. ..

.. .. .. .. .. .. ..

.. .. .. .. bn22 1 0

0 .. .. 0 0 bn21 1

l .. .. .. 0 0 bn

D .

This generalizes to the periodic case a Lax scheme well known for the fixed ends lattice.10,15

The formulations~1.2! and ~1.4! have counterparts in the environment of differential-
difference calculus of Kupershmidt.13 In the quoted reference, Kupershmidt defines a discrete
analogue of the algebra of formal pseudo-differential operators, where the derivation] is replaced
by a shift operatorD; the formalism can be applied, in particular, to the periodic lattices. Here, we
will employ the term Kupershmidt algebra and the symbolRn~D,D

21# to denote a suitably defined
algebra of ~formal! differential-shift operators, obtained essentially by realizing the abstract
scheme of Ref. 13 in the periodic case; we will make clear thatRn~D,D

21# is algebraically
isomorphic to the loop algebragl(n)~l,l21# of Ref. 12. Using this isomorphism, one easily
constructs the equivalent of the Lax scheme~1.2!; the matrices appearing in these equations
correspond to the operators

L~x!:5aD1b1a@21#D
21, B1~x!:52aD22a@21#D

21. ~1.5!

More generally, one can write the Lax pairsdL/dtk5[L,Bk] ~k51,2,3,...! for the full hyerarchy of
commuting Toda flows, recovering Eq.~1.1! for k51; the operatorsBk(x) are constructed by
translating toRn~D,D

21# the homologous prescriptions of Ref. 12 for the loop algebra setting.
The differential-difference equivalent of the Lax scheme~1.4! rests on the operators

V~y!:5D1b1c@21#D
21, C1~y!:52~D1b!, ~1.6!

which are just the Lax pair of Ref. 13 for the Toda lattice. More generally, a full hierarchy of
commuting vector fields is generated in this reference prescribing the Lax equations
dV/dtk5[V,Ck] ~k51,2,3,...!, with a suitable rule to define the companion operatorsCk(y); the
flow ~1.3! is recovered fork51.

Let us come to item~iv!, i.e., to the triHamiltonian formulation of the periodic Toda system.
As a matter of fact, the Poisson tensors of the fixed end case can be adjusted a posteriori so as to
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fit the periodicity condition;16 however, the interest in the periodic problem is not just in the final
expression for the Poisson structures, but in their systematic derivation by means of appropriate
reduction methods.

A construction of the first Poisson structure, based on the AKS scheme, can be found in Ref.
12. A derivation of the second Poisson tensor in the framework of loop algebras has been recently
proposed in Ref. 17, but the Lax matrices employed therein are different from bothL(x) in Eq.
~1.2! andV(y) in Eq. ~1.4!, and require a generalization of the standardr -matrix scheme of Refs.
5 and 6. On the contrary, we show in this article that the first, the second and even the third
Poisson tensors of the periodic Toda lattice can be constructed, for both the Lax schemes~1.5! and
~1.6!, inside the standardr -matrix theory, using appropriate splittings.

From a technical viewpoint, in our analysis we draw some advantage using the formal
differential-difference calculus of Ref. 13. However, the splitting we employ for the Lax scheme
~1.5! is just the correspondent inRn~D,D

21# of the one proposed in Ref. 12 in connection with the
AKS scheme. The alternative splitting required for the Lax scheme~1.6! is suggested by the
prescription of Ref. 13 for the companion operatorsCk(y) associated to the full hierarchy. This
splitting is the correspondent of the one employed in Ref. 11 for the infinite Toda chain; in the
periodic case, the reduction of ther -matrix structures requires some supplementary caution, yield-
ing to replace the usual restriction schemes with a slightly more involved restriction/projection
algorithm. This refinement is necessary, in particular, for the third Poisson structure.

The article is organized as follows. Section II is devoted to bi- and triHamiltonian structures
and their reduction techniques, to formal Casimirs and Schur polynomials. The nonunitary
r -matrix theory is reviewed in Sec. III. The isomorphism between the loop algebragl(n)~l,l21#
and the Kupershmidt algebraRn~D,D

21# is exploited in Sec. IV. Ther -matrix triHamiltonian
structure inRn~D,D

21# and its restriction for the Lax scheme~1.5! are presented in Sec. V. In Sec.
VI, the Flaschka and He´non integrals of the Toda lattice are interpreted in terms of the biHamil-
tonian recursion and the Schur polynomials. In Sec. VII we deal with the Lax scheme~1.6! and the
associatedr -matrix; the reduction of the triHamiltonian structure is performed, and the relations
with the Lax scheme~1.5! are illustrated in terms of gauge equivalence~as in Ref. 15 for the
nonperiodic case!.

II. MULTIHAMILTONIAN STRUCTURES AND RECURSION SCHEMES

A. Hamiltonian and multiHamiltonian manifolds

A wide literature is available on this topic~see, for example, Refs. 18–26 and quotations
therein!. If V is a manifold andvPV , we denote byTvV the tangent space and byTv* V the
cotangent space atv; the latter generally means a vector space in separating duality withTvV
through some bilinear pairing~which is a standard procedure in this framework; see, e.g., Refs. 8
and 12!. Tangent vectors and covectors will often be indicated, respectively, byv̇ anddv, and the
pairing by ^dv,v̇&.

A ~2,0! tensor on the manifoldV is a mapv°Qv where, for eachvPV , Qv is a linear
operator fromTv* V to TvV . A Poisson tensor means a skew-symmetric~2,0! tensorQ such that
the bracket$ f ,l %Q :5^d f ,Qdl& ~f ,l real functions onV ! satisfies the Jacobi identity. IfQ is a
Poisson tensor, for each functionh:V →R, the vector fieldX:5Qdh is called the Hamiltonian
vector field corresponding toh ~and it is also said thath is a Hamiltonian function forX w.r.t.Q!.
A function h is said to be a Casimir ofQ if Qdh50. The manifoldV , equipped with a Poisson
tensorQ, is called a Poisson, or Hamiltonian manifold.

Two Poisson tensorsQ,P are said to be compatible in the sense of Magri21 if, for eachjPR,
the linear combinationQ1jP is again a Poisson tensor; similarly, three Poisson tensorsQ,P,S
are compatible ifQ1jP1hS is Poisson for eachj,hPR. The manifoldV , equipped with a pair
~resp. a triple! of compatible Poisson tensors is said to be biHamiltonian~resp. triHamiltonian!.

If hk ~k51,2,3,...! is a sequence of real functions on the biHamiltonian manifoldV , we say
that thehk’s satisfy a biHamiltonian recursion scheme if
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Pdhk5Qdhk11 ~k51,2,3,...!; ~2.1!

if V carries a third compatible Poisson tensor, and it is also

Sdhk215Pdhk ~k52,3,...!, ~2.2!

we say that there is a triHamiltonian recursion scheme. These relations imply that the functionshk
are mutually in involution w.r.t. the Poisson brackets corresponding to bothQ andP ~orQ, P, S!.
The Hamiltonian functionshk and the vector fieldsXk are said to form a biHamiltonian~or
triHamiltonian! hierarchy.

B. BiHamiltonian recursion, formal power series and Schur polynomials

LetU be an arbitrary real associative algebra with unit. We consider the spaceU[z] of the
formal power seriesU5(k50

` Ukz
k in one indeterminatez with coefficientsUkPU ~when it is

convenient, we also writeU(z) instead ofU!. U[z] is an associative algebra with the usual
Cauchy product of series.

LetU0[z] be the subalgebra ofU[z] formed by the seriesU without zero order term:U050.
If R[w] is the commutative algebra of formal seriesE(w)5(k50

` ekw
k, with real coefficientsek ,

we can define a composition lawR[w]3U0[z]→U[z], (E,U)°E(U), where

E~U !:5 (
k50

`

ekU
k5e01e1~U1z1U2z

21...!1e2~U1z1U2z
21...!21... . ~2.3!

Now, let V be a biHamiltonian manifold with the Poisson tensorsQ, P; we apply the above
notions to the commutative algebraU of the smooth real functions onV . Assume we are given
a sequence of functionshk on V , and define a formal power seriesh:5(k51

` hkz
k in the indeter-

minatez. Consider the condition

~Q2zP!dh50; ~2.4!

this equation is satisfied~identically in z! iff the functionshk obey to the recursion scheme~2.1!
andh1 is a Casimir ofQ, i.e.,Qdh150. The condition~2.4! can be interpreted saying thath is a
~formal! Casimir for the Poisson pencilQ2zP; so, the biHamiltonian hierarchies starting from a
Casimir ofQ correspond bijectively to the Casimirs of the Poisson pencilQ2zP.1

Proposition 2.1:Let hk ~k51,2,3,...! be a biHamiltonian hierarchy starting from a Casimir of
Q, so thath:5(k51

` hkz
k is a Casimir of the Poisson pencilQ2zP. Consider a formal series

E(w)5(k51
` ekw

k with real coefficients ek , and put f :5E(h)5e1(h1z1h2z
21...)

1e2(h1z1h2z
21...)21... . Thenf is also a Casimir ofQ2zP; so, if we write f5(k51

` f kz
k, the

functions f k form a biHamiltonian hierarchy starting from a Casimirf 1 of Q.
Proof: From the definition off it follows thatd f5E8(h)dh, whereE8(w):5e112e2w1... is

the term by term derivative ofE. From here and Eq.~2.4! we immediately infer (Q2zP)d f50.L
It is interesting to give explicit formulas for the functionsf k of the above Proposition in terms of
thehk’s and the coefficientsek . For each real formal seriesE(w):5(k51

` ekw
k, define a family of

polynomialsSk(t1 ,t2 ,t3 ,...) in infinitely many variablest j ~j51,2,3,...! stipulating that

ES (
k51

`

tkz
kD 5 (

k51

`

Sk~ t1 ,t2 ,t3 ,...!z
k. ~2.5!

Using some standard combinatorics, it can be shown that, for eachk,
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Sk~ t1 ,t2 ,t3 ,...!5 (
k112k213k31...5k

ek11k21k31...

~k11k21k31...!!

k1!k2!k3!...
t1
k1t2

k2t3
k3... . ~2.6!

In the above sumk1 ,k2 ,k3 ,... are positive integers; note thatSk depends only on the firstk
variablest1 ,...,tk . We will say that theSk’s are the generalized Schur polynomials generated by
the formal seriesE.

The functions in Prop. 2.1 are related byf k5Sk(h1 ,h2 ,h3 ,...). Thefact that thef k’s are
functions of the Hamiltonianshk8 implies that they are in involution~and also commute with all
thehk8! w.r.t. any Poisson bracket in which thehk8 are themselves in involution.

The relation between the functionsf k andhk8 can be inverted if the first coefficiente1 in the
seriesE is nonzero. In this case, there is a unique formal seriesE21(u)5(k51

1` ẽku
k such that

E21(E(w))5w, and we can writeh5E21( f ); this implieshk5S̄k( f 1 , f 2 , f 3 ,...), where theS̄k
are the generalized Schur polynomials generated byE21. In Sec. III and VI, we will be interested
in particular in the choiceE(w)512e2w, giving ek5(21)k11/k! and

Sk~ t1 ,t2 ,t3 ,...!5 (
k112k213k31....5k

~21!11k11k21k31....

k1!k2!k3!...
t1
k1t2

k2t3
k3... . ~2.7!

Up to trivial sign changes, theSk are the ordinary Schur polynomials.27 The inverse ofE is the
formal seriesE21(u)52ln~12u!, with coefficientsẽk51/k, which generates the polynomials

S̃k~ t1 ,t2 ,t3 ,...!5 (
k112k213k31...5k

~k11k21k31...21!!

k1!k2!k3!...
t1
k1t2

k2t3
k3... . ~2.8!

With this choice ofE, the first functions in the biHamiltonian chains of Prop. 2.1 are related by

f 15h1 , f 252 1
2 h1

21h2 , f 35
1
6 h1

32h1h21h3 ,
~2.9!

f 452 1
24 h1

42 1
2 h2

21 1
2 h2h1

22h1h31h4 ,... .

C. Reduction schemes for Poisson structures

The schemes presented in Ref. 23 are sufficient for our purposes; for a more general formu-
lation, see Ref. 24. Let~V ,Q! be a Poisson manifold, andj :M→V an embedding of another
manifoldM into V ~i.e., a map such thatj ~M! is a submanifold ofV and j is a diffeomorphism
betweenM and its image!; in practical applications,M plays the role of a ‘‘coordinate space’’
for the submanifoldj ~M!. FormPM andv5 j (m), we denote byTmj :TmM→TvV the tangent
map; its image ImTmj,TvV is the tangent space atv of the submanifoldj ~M!.

Proposition 2.2:Assume that, for eachmPM and v5 j (m), it is ImQv,ImTmj . Let dv
P Tv* V be any covector extending a given covectordm P Tm*M, i.e., such that

^dv,~Tmj !ṁ&5^dm,ṁ& ~2.10!

for eachṁPTmM; then the tangent vectorQvdvPImTmj is fully determined bydm and does not
depend on the chosen extensiondv. The ~2,0! tensor onM, denoted again byQ and defined by

Qmdm:5~Tmj !
21Qvdv, ~2.11!

is a Poisson tensor. L
Another restriction scheme can be obtained by weakening the assumptions of Prop. 2.2, as

explained hereafter.
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Proposition 2.3:Assume that, for eachmPM anddmPTm*M, the following conditions are
satisfied at the pointv5 j (m):

~a! there is at least one covectordv P Tv* V extendingdm in the sense of Eq.~2.10!, and such
thatQvdvPImTmj ;

~b! for dv as in ~a!, Qvdv is fully determined bydm ~i.e., we haveQvdv85Qvdv for any
other covectordv8 as in ~a!!.

Then a Poisson tensor is induced onM. This tensor, denoted again byQ, is defined as in Eq.
~2.11!, with dv as in item~a!. L

Definition 2.4: If the conditions of Prop. 2.2 are satisfied, we say thatQ can be properly
restricted fromV toM along j . Under the conditions of Prop. 2.3, we say that it can beDirac
restrictedalong j . In both cases, the Poisson tensor induced onM is called the restriction ofQ.L

In the case of bi- or triHamiltonian manifolds, the compatibility of the Poisson structures is
preserved by both types of restriction. The restriction operation can also be applied to Hamiltonian
functions and vector fields@a vector fieldX onV is restrictable toM along j if it is tangent to the
submanifoldj ~M!#.

We now discuss the projection of the Poisson structures.
Let ~V ,Q! be a Poisson manifold, andp:V →W a projection of the manifoldV onto another

manifoldW . For vPV andw5p(v), we consider the tangent mapTvp:TvV →TwW and its
adjointTv*p:Tw*W →Tv* V .

Proposition 2.5:For eachwPW and vPV such thatp(v)5w, let us consider the map
Tvp + Qv + Tv*p:Tw*W →TwW . Assume that this map be completely determined byw, i.e., that it
does not change ifv is replaced by another pointv8Pp21(w). Then the~2,0! tensor onW ,
denoted withQ̃ and defined by

Q̃wdw:5~Tvp +Qv+Tv*p!~dw!, ~2.12!

is a Poisson tensor. L
Definition 2.6:We say that the Poisson tensorQ̃ is the projection ofQ andV ontoW along

p. L
The projection operation preserves the compatibility of Poisson tensors. A functionh:V →R

is said to be projectable ontoW if h(v)5h(v8) for each pairv,v8 such thatp(v)5p(v8); in this
case,h induces in an obvious way a real functionh̃ onW , called the projection ofh. A vector
field X on V is said to be projectable if, forw in W and vPp21(w), the vector
(Tvp)X(v)PTwW depends only onw; in this case, the vector fieldX̃ induced in the obvious way
onW is called the projection ofX.

III. R-MATRIX THEORY: A REVIEW

A. The nonunitary case (Refs. 5,6)

Let g be a real associative algebra with unit 1 and typical elementsV,W,Z,...; theng is a Lie
algebra w.r.t. the commutator [V,W]:5VW2WV.

Definition 3.1:An r -matrix on g is a linear operatorR:g→g satisfying the modified Yang-
Baxter equation

@RV,RW#2R@V,RW#2R@RV,W#1@V,W#50. ~3.1!

L

Here and in the sequel, we assume thatg carries a traceform, i.e., a linear functional Tr:g→R such
that the bilinear form̂,&:g3g→R, ^V,W&:5Tr(VW) is symmetric and nondegenerate; the pairing
^,& will be employed to identifyg with its dual spaceg* ~in the infinite-dimensional case, the
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statementg'g* can be viewed as the definition ofg* , see Ref. 2!. From a geometrical viewpoint,
we can regardg as a manifold, withTVg'g andTV* g ' g at each pointV ~so, a typical element of
g is written asdV when it is viewed as a covector!.

Let R:g→g be a linear operator with adjointR* :g→g ~satisfying the condition
^R*V,W&5^V,RW&!.

Definition 3.2: Q, P andS denote, respectively, the~2,0! tensors on the manifoldg defined at
each pointV settingQV , PV , SV :TV* g ' g→TVg ' g,

QVdV:5@V,RdV#1R* @V,dV#, ~3.2!

PVdV:5@V,R~V•dV!#1V•R* @V,dV#, ~3.3!

SVdV:5 1
2 @V,R~VdVV!#1 1

2 V~R* @V,dV# !V. ~3.4!

In Eq. ~3.3!, • denotes the symmetrized product, soV•dV51/2(VdV1dVV).
We will say thatQ, P andS are, respectively, the linear, quadratic and cubic tensor induced

by R ~this is motivated by their dependence on the footpointV!. L
Proposition 3.3:5,6 If R and its skew-symmetric part 1/2~R2R* ! are r -matrices,Q, P andS

are compatible Poisson tensors. The functionshk :g→R, hk(V):51/kTrVk ~k51,2,3,....! satisfy the
triHamiltonian recursion schemes~2.1!–~2.2!; the vector fieldsXk :5Pdhk are given explicitly by
Xk(V)5[V,R(Vk)]. Finally, the functionh1 is a Casimir ofQ if @V,R~1!#50 for eachVPg. L

B. The split case of r -matrix theory

Given an associative algebrag with unit, assume that there is a vector space decomposition
g5g1%g2 . If g is equipped with a traceform, we can define the annihilators

g6:5~g6!'5$WPgu^W,V&50 for eachVPg6%. ~3.5!

Due to the symmetry and nondegeneracy of^,& one easily infers thatg5g
1

%g
2, and that the dual

of g
7 can be identified withg6:~g

7!*'g6. For eachVPg, we denote withV6 and V6 its
components according to the previous direct sum decompositions ofg. Let P6 ,P

7:g→g be the
projections corresponding to these decompositions. ThenP7 is the adjoint of P6 , and
R:5P12P2 has adjointR*5P22P1.

It is known that, ifg6 are Lie subalgebras ofg, R is anr -matrix. Assume that 1/2~R2R* ! is
also anr -matrix and consider the triHamiltonian structure of Def. 3.2. ExplicitatingR andR* in
Eqs.~3.2!–~3.4! one finds5 that each of the tensorsQ, P andS can be written as follows, in two
equivalent ways:

QVdV52@V,~dV!1#22@V,dV#1522@V,~dV!2#12@V,dV#2, ~3.6!

PVdV52@V,~V•dV!1#22V•@V,dV#1522@V,~V•dV!2#12V•@V,dV#2, ~3.7!

SVdV5@V,~VdVV!1#2V@V,dV#1V52@V,~VdVV!2#1V@V,dV#2V. ~3.8!

The vector fieldsXk:5Pdhk of Prop. 3.3 are given in this case by

Xk52@V,~Vk!1#522@V,~Vk!2#. ~3.9!

In many applications, but not in the one considered in this article, the splitting is such that
g65g6, implying R*52R: this is the so-called unitary case.
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C. Split case: The reduction to g1

Let the assumptions of Prop. 3.3 be satisfied, and consider the triHamiltonian structure~3.6!
–~3.8! on g. Let us regardg1 as a manifold: at each pointLPg1, TLg

1'g1 andTL* g1'g2. We
consider the embeddingj : g1→g given by the identity map, and apply Prop. 2.2.

Proposition 3.4„Ref. 5…: The Poisson tensorQ of Eq. ~3.6! can be~properly! restricted tog1;
at any pointLPg1 the restricted tensor, denoted again withQ, is given by

QLdL522@L,dL#1 ~3.10!

for eachdLPg2. The tensorP of Eq. ~3.7! can be~properly! restricted tog1 if this subspace is
closed in the symmetrized product, i.e.,L •L8 P g1 for eachL,L8 P g1; the restricted Poisson
tensor is given by

PLdL52@L,~L •dL !1#22L •@L,dL#1. ~3.11!

Finally, the tensorS of Eq. ~3.8! can be~properly! restricted tog1 if LL8L P g1 for each,L,L8
P g1, and the restricted Poisson tensor is given by

SLdL5@L,~LdLL !1#2L@L,dL#1L. ~3.12!

Each of the two summands in Eq.~3.11!, as well as in Eq.~3.12!, belongs tog1. L
Under the assumptions of the previous Proposition, the recursion scheme~2.1!,~2.2! is again

satisfied ong1 by the restrictions of the functionshk ; the vector fieldsXk in Eq. ~3.9! are tangent
to this submanifold.

D. Formal Casimirs and other biHamiltonian hierarchies

Let g be an algebra equipped with an abstractr -matrix, as in Sec. III A. We consider
the associative algebrag[z] of formal series W5(k50

` Wkz
k, with coefficients WkPg;

let g0[z] consist of the series with W050. Using the real formal series
ln(11w):5(k51

` (21)k11(1/k)wkPR[w], for eachWPg0@z] we define the element

ln~11W!:5 (
k51

`

~21!k11
1

k
~W1z1W2z

21...!kPg0@z#. ~3.13!

Equivalently, we can consider the seriesU511W and define lnU for eachU5(k50
` Ukz

kPg[z]
U051.

If W5(k51
` Wkz

k, the exponentialeW:511(k51
` (1/k!)Wk is also well defined, and we have

ln(eW)5W in the sense of formal series composition. Similarly, forU511(k51
` (1/k!)Ukzk we

haveelnU5U.
We observe that the traceform Tr:g→R induces a linear function Tr:g[z]→R[z], TrW:

5 (k50
` ~TrWk!z

k. Also, if UPg[z] andU051, we put DetU: 5 eTrlnU ~here, we have a composi-
tion of the real formal series TrlnU and ew:5(k50

` (1/k!)wk!. It is not difficult to check that
TrlnU5ln Det U.

We now refer to ther -matrix Poisson tensorsQ, P of g and consider the hierarchy of
Hamiltonian functionshk :g→R, hk(V)51/kTrVk ~k51,2,3,...!. We recall thath1 is a Casimir of
Q if R~1! is in the center ofg; we will assume this condition to be satisfied. On the grounds of Sec.
II B, the formal seriesh:5(k51

` hkz
k is a Casimir of the Poisson pencilQ2zP. From here one can

generate by composition other Casimirs; in particular, composing with the series 12e2w one gets
the formal Casimir
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f :512e2h5 (
k51

`

f kz
k. ~3.14!

The functionsf k , which can be expressed as Schur polynomials in thehk’s ~see Sec. II B.!, also
satisfy a biHamiltonian recursion scheme w.r.t.Q and P. It is straightforward to check the
following.

Proposition 3.5:At each pointVPg, we have

h~V!52Tr ln~12zV!52 ln Det~12zV!, f ~V!512Det~12zV!. ~3.15!

L

Using the Hamiltoniansf k ~k51,2,3,...!, we can define a sequence of commuting vector fields
Yk :5Pd fk5Qdfk11. Sincef 15h1 , we infer thatY15X1 is as in Prop. 3.3. The Hamiltoniansf k
andhk8 are in mutual involution w.r.t. theQ,P ~andS! Poisson brackets for eachk andk8.

Definition 3.6:The formal Casimirsh and f are called, respectively, the Flaschka Casimir and
the Hénon Casimir; similarly, the functionshk and f k are referred to as the Flaschka and He´non
integrals. L

We use the above names for a historical reason; the integrals of motion of the periodic Toda
lattice first constructed by these authors in Refs. 28 and 29 arise by simply specializing the above
formalism to a particular algebrag, that will be described in the next section.

IV. THE ALGEBRAIC FRAMEWORK FOR THE PERIODIC TODA LATTICE

A. The Kupershmidt algebra Rn(D,D
21]

Throughout the rest of the article,n is a fixed positive integer.
Definition 4.1: Let v5(va)aPZ be a real sequence. For eachnPZ, the n-shift of v is the

sequencev @n# :5(va1n)aPZ . It is said thatv is n-periodic if v [n]5v; Rn denotes the~n-
dimensional! vector space of these sequences. For eachvPRn , we put (0v:5( j51

n v j ,
^v&:51/n(0v. L

Definition 4.2:The Kupershmidt algebraRn~D,D
21# consists of the formal Laurent series

V5 (
sPZ

vsDs, ~4.1!

whereD is an indeterminate; eachvs is an n-periodic sequence~of elementsvsua!; vs50 for
s@0.30 The product ofV as above withV8 5 (sPZvs8Ds is

VV8:5 (
sPZ

S (
mPZ

vmvs2m@m#8 DDs. ~4.2!

The elements ofRn~D,D
21# will be called ~formal! differential-shift operators. L

This definition is modelled on Ref. 13; note that the sum overm on the r.h.s. of Eq.~4.2!
involves only a finite number of nonzero summands, due to the assumptionsvm50 andvm8 5 0 for
m@0.

It is easily checked that the product~4.2! is associative. This product can be characterized
through the multiplication rules for the elementsDm ~mPZ! andvD0:5v ~wherev is an arbitrary
n-periodic sequence!. It is DmDn5Dm1n andDmv5v [m]D

m; for each pair of sequencesv,v8PRn ,
the productvv8 in Rn~D,D

21# is just the ordinary pointwise product. The sequence with all
elements equal to 1 is the unit element of this algebra.
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The composition law~4.2! and the denomination of differential-shift operators can be under-
stood in terms of a representation of the algebraRn~D,D

21# on an appropriate spaceR~`# of real
infinite sequences; in this representation,Dm acts as the shift operator bym, and each sequencev
acts as a pointwise multiplication operator. One easily proves the following

Proposition 4.3:Let R~`# denote the vector space of sequencesc 5 (ca)aPZ such thatca50
for a!0; consider the algebraL in~R~`#! of the linear operators onR~`#. Then the mapp :
Rn~D,D

21#→L in~R~`#! defined by

~p~V!c!a :5 (
sPZ

vsuaca1s ~4.3!

is a faithful representation of the algebraRn~D,D
21#. In particular, for each integerm and each

vPRn , it is

~p~Dm!c!a5ca1m , ~p~v !c!a5vaca . ~4.4!

L

The algebraRn~D,D
21# also carries a trace, given by

TrV:5(
0
v05(

i51

n

v0u i ~4.5!

for V as in Eq. ~4.1!. The bilinear form^,&: Rn~D,D
21#3Rn~D,D

21#→R, ^V,V8&:5Tr~VV8! is
symmetric and nondegenerate.

B. Other realizations of the Kupershmidt algebra

The algebraic setting for the periodic Toda lattice proposed by Adler and van Moerbeke is
based on the loop algebragl(n)~l,l21# of formal Laurent series in a parameterl, where the
coefficients aren3n real matrices. In this subsection, we show thatgl(n)~l,l21# is isomorphic to
Rn~D,D

21#; the link between the two is a third algebragln@`!, consisting of infiniten-periodic
matrices, already considered in Ref. 12. These facts will be illustrated using the natural linear
representations possessed by the three algebras, and finally summarized through the commutative
diagram~4.14!.

Definition 4.4:Throughout this article, an infinite matrix means a familyM 5 (Mab)a,bPZ
with MabPR for eacha,b and with the additional propertyMab50 for b2a@0. An infinite
matrixM is said to ben-periodic ifMa1n,b1n5Mab for eacha,bPZ; gln@`! denotes the set of
such matrices. L

We observe that, for each integers, the matrix elementsMab with b2a5s form thes-th
diagonal ofM . So, a matrix ingln@`! has zero entries above thek-th diagonal for some integerk,
and the elements of each one of its diagonals form ann-periodic sequence.gln@`! is an associa-
tive algebra with the usual matrix product. It carries a trace, given by TrM :5( j51

n M j j .
Definition 4.5:Let R~`# be the vector space of sequences appearing in Prop. 4.3. The tauto-

logical representation ofgln@`! on R~`# is the mapp8: gln@`!→L in~R~`#! given by

~p8~M !c!a :5 (
bPZ

Mabcb . ~4.6!

L
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Proposition 4.6:Let p be the representation ofRn~D,D
21# on R~`# considered in Prop. 4.3.

There is a unique algebraic isomorphismC: Rn(D,D
21]→gln@`! such thatp(V)5p8(C(V)) for

eachVPRn~D,D
21#. The expressions in components of the relationsM5C(V) andV5C21(M )

are

Mab5vb2aua , vsua5Ma,a1s , ~4.7!

for V as in Eq.~4.1! anda,b,s arbitrary integers. Furthermore,C is trace preserving.
Proof: It amounts to simple manipulations on indices. Note that, according to Eq.~4.7!, the

s-th diagonal of the matrixM is fully determined by the sequencevs . L
We finally come to the loop algebragl(n)~l,l21#.

Definition 4.7: gl(n)~l,l21# is the set of formal Laurent series

A5 (
rPZ

Arlr ~4.8!

in an indeterminatel, where, for eachr, Ar5(Aru j l ) j ,l51,...,n is ann3n real matrix andAr50 for
r@0. L

gl(n)~l,l21# is an associative algebra w.r.t. the usual Cauchy product of series. For each
A5(rArlr we put TrA:5tr A0, where tr is the usual trace forn3n matrices ~i.e.,
trA05( j51

n A0u j j !. The bilinear form̂ ,&: gl(n)(l,l21]3gl(n)(l,l21]→R, ^A,A8&:5Tr(AA8) is
symmetric and nondegenerate.

Definition 4.8:Let Rn~l,l21# be the space of formal seriesx 5 (rPZxrlr, where, for eachr,
xr5(xru i) i51,...,n is in Rn andxr50 for r@0. The tautological representation ofgl(n)~l,l21# on
this vector space is the mapp9:gl(n)~l,l21#→L in~Rn@l,l21!! given by

p9~A!x:5 (
rPZ

S (
mPZ

Amxr2mDlr. ~4.9!

L

Now, we introduce a linear isomorphism between the vector spaces of the representationsp8,p9;
this isomorphism is the mapI :R~`#→Rn~l,l21#, c°I c 5 (rPZxrlr, where

xru i :5c i2nr . ~4.10!

By composition withI and I 21, the linear operators onR~`# are applied bijectively into the
linear operators onRn~l,l21#.

Proposition 4.9:There is a unique algebraic isomorphismF:gln[`)→gl(n)(l,l21] such
that

p9~F~M !!5I p8~M !I 21 ~4.11!

for eachMPgln[`). ForM5(Mab) andA5(rArlrPgl(n)(l,l21], the expressions in com-
ponents of the equationsA5F(M ) andM5F21(A) are

Aru j l5M j ,l1nr , M j1nn,l1nm5Am2nu j l ~4.12!

for eachr,m,n,PZ and j ,l51,...,n. Finally, F is trace preserving.
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Proof: The uniqueness of the isomorphismF satisfying Eq.~4.11! follows from the fact that
p8 andp9 are faithful. To show the existence, we defineF to be the map that associates to each
MPgln[`) the elementAPgl(n)(l,l21] as in the first Eq.~4.12!; it can be checked by direct
computation thatF is one-to-one, with inverse as in the second Eq.~4.12!, and that Eq.~4.11!
holds.

Wenote that we canwriteF 5 (p9)21 + AdI + p8 whereAdI :L in~Rn~l,l21#!→L in~R~`#! is
the map given byAdI (L):5I LI

21. So,F is a composition of algebraic isomorphisms, and
therefore it is itself an isomorphism. The preservation of the trace underF follows immediately
from Eq. ~4.12!. L

The isomorphismF appearing in the previous Proposition was introduced in Ref. 12; here, the
infinite periodic matrixM5F21(A) corresponding to an elementAPgl(n)(l,l21] is described
by glueing together infinitely manyn3n blocks:

M5S ••• ••• ••• ••• ••• •••

••• A0 A1 A2 A3 •••

••• A21 A0 A1 A2 •••

••• A22 A21 A0 A1 •••

••• A23 A22 A21 A0 •••

••• ••• ••• ••• ••• •••

D ~4.13!

~with a fixed basepoint!. So,M is organized in block diagonals, and ther-th block diagonal
contains infinitely many copies ofAr for eachrPZ.

Of course, Propositions 4.6 and 4.9 imply the following.
Corollary 4.10: The mapF+C:Rn(D,D

21]→gl(n)(l,l21] is a trace preserving, algebraic
isomorphism. L

We can summarize the above results in the following commutative diagram:

L in~R~`#! →
AdI

L in~Rn~l,l21# !

↗
p ↑p8 ↑p9

Rn~D,D21# →
C

gln@`! →
F

gl~n!~l,l21#

~4.14!

~with AdI as in the proof of Prop. 4.9!.

C. Finite order elements of Rn(D,D
21]: Adjunction and projection on gl (n ,C)

A generic elementV of the Kupershmidt algebra is a formal Laurent series as in Eq.~4.1!. We
now consider the elements which are finite sums:vsÞ0 for finitely many values ofs; these form
a subalgebra ofRn~D,D

21#. The counterparts of this subalgebra ingln@`! andgl(n)~l,l21# are
formed, respectively, by then-periodic matrices with finitely many nonzero diagonals and by the
elementsA as in Eq.~4.8!, with ArÞ0 for finitely many values ofr.

Definition 4.11:Rn~D,D
21! is the subalgebra ofRn~D,D

21# formed by the elementsV as in Eq.
~4.1! such thatvs50 for usu@0.

gln~`! is the subalgebra ofgln@`! formed byn-periodic matricesM such thatMab50 for
ub2au@0.

gl(n)~l,l21! is the subalgebra ofgl(n)~l,l21# formed by the elementsA as in Eq.~4.8! such
thatAr50 for uru@0. L

It is easily checked that these three algebras are mapped into each other by the isomorphisms
F andC in the diagram~4.14!. In each of them, we can introduce an adjunction operation, which
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is preserved by the transformationsF andC; so, we have three involutive algebras, which are
mutually isomorphic. Also, these adjunctions are trace invariant: each element and its adjoint have
equal traces. All these statements are easily checked, on the grounds of the following.

Definition 4.12: The adjoints of the elementsVPRn~D,D
21!, MPgln(`) and

APgl(n)(l,l21), denoted with the suffix* , are defined by

V* :5(
s

v2s@s#D
s, ~M* !ab :5Mba , A* :5(

r
A2r* lr. ~4.15!

In the third equation,A2r* is the usual transpose of then3n matrix A2r . L
The above adjunction inRn~D,D

21# can be characterized as the only involution such that
v*5v for each sequencevPRn andD*5D21. The involution ingl(n)~l,l21! is uniquely fixed
stipulating thatl*51/l and that * coincides with the usual transposition on then3n real
matrices.12

The three algebras of Def. 4.11 can be projected homomorphically onto the algebragl~n,C! of
the complexn3n matrices; there are infinitely many projections, one for eachjPC. In the case of
gl(n)~l,l21!, the projections are the evaluation maps

Evj :gl~n!~l,l21!→gl~n,C!, A5(
r

Arlr°A~j!:5(
r

Arjr. ~4.16!

For each fixedj,Evj is an algebraic morphism~moreover, ifj56i ,Evj maps the adjointA* into
the Hermitian conjugate of the matrixA~j!!. The diagram

Rn~D,D21!→
C

gln~`!→
F

gl~n!~l,l21!→
Evj

gl~n,C! ~4.17!

indicates how to obtain, by composition withF andC, the homomorphic projections ofgln~`!
andRn~D,D

21! ontogl~n,C!. In view of the application to be discussed in Sec. VI, it is interesting
to observe thatEvj is not trace preserving: for eachAPgln(`) and jPC, it is trA(j) 5 TrA
1(rPZ\$0%tr(Ar)j

r.
On the other hand, ifA is the image underF+C of an operatorVPRn~D,D

21!, it is TrA5TrV and
the diagonal elements of the matricesAr areAru j j5vnru j . So,

trA~j!5TrV1 (
rPZ\$0%

S (
j51

n

vnr/ j D jr5TrV1 (
rPZ\$0%

Tr~VD2nr!jr. ~4.18!

In the application to the periodic Toda lattice, this equation will be basic in proving a number of
statements on the Flaschka and He´non integrals.

V. THE TRIHAMILTONIAN STRUCTURE OF THE PERIODIC TODA LATTICE:
DERIVATION FROM THE ADLER–VAN MOERBEKE SPLITTING

In this section, we apply the theoretical schemes of Secs. II and III to construct the triHamil-
tonian structure of the periodic Toda lattice. Here the abstract algebrag of Sec. III is taken to be
the Kupershmidt algebraRn~D,D

21#; the traceform Tr is as in Eq.~4.5!. The splitting we introduce
in g5Rn~D,D

21# can be as well described in terms of the other two realizations of the Kupershmidt
algebra given in Sec. IV. The description in terms of the loop algebragl(n)~l,l21# corresponds to
the original treatment of the Toda lattice given in Ref. 12, where, in place ofr -matrix theory, the
earlier AKS scheme was employed, and only the first Poisson structure was considered. The
realization in terms of infiniten-periodic matrices strongly emphasizes the analogy with the
setting proposed by Refs. 5 and 6 for the finite nonperiodic Toda lattice. In any case, working with
Rn~D,D

21# seems more convenient from the computational viewpoint.
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A. The splitting and the r -matrix

We start with the following.
Definition 5.1:Let V 5 (sPZvsDs be inRn~D,D

21#. We say thatV is
symmetric ifVPRn~D,D

21! andV*5V;
skew-symmetric ifVPRn~D,D

21! andV*52V;
of positive ~resp. negative! type if vs50 for s<0 ~resp.s>0!;
of nonnegative~resp. nonpositive! type if vs50 for s,0 ~resp.s.0!. L

Definition 5.2:g6 andg
6 are the linear subspaces ofg5Rn~D,D

21# defined by

g1 :5$BPguB is skew-symmetric%, ~5.1!

g2 :5$TPguT is of nonpositive type%, ~5.2!

g1:5$LPguL is symmetric%, ~5.3!

g2:5$NPguN is of negative type%. ~5.4!

L

The following statements are easily checked:
Proposition 5.3:The subspacesg6 are Lie subalgebras ofg, and g5g1%g2 ~vector space

direct sum!; g
6 is the orthogonal ofg6 in the pairing^,&. Finally, for eachL,L8Pg

1 one hasL •L8
andLL8LPg

1. L
For eachV 5 (sPZvsDs, we putV.0:5(s.0vsDs, V>0:5(s>0vsDs and defineV,0, V<0

in a similar way. Then

V15V.02~V.0!* , V25V<01~V.0!* , ~5.5!

V15V>01~V.0!* , V25V,02~V.0!* . ~5.6!

The expressions forV1 andV1 can be written equivalently in terms of the symmetrizations and
skew-symmetrizationsVsym:51/2~V1V* !, Vskew:51/2~V2V* !. For eachV5(svsDs, it is
V152~V.0!

skew, V15v012(V.0)
sym. From the projections corresponding to the above splitting

of g, we construct the operatorR:5P12P2 , whose adjoint isR*5P22P1. We note that
1
2(R2R* )V5V.02V,0; it can be checked by direct computation that this operator satisfies the
modified Yang–Baxter equation~3.1!. From here, from Prop. 5.3 and from the generalr -matrix
theory reviewed in Sec. III, we draw the following conclusions:

Proposition 5.4: Rand 1
2~R2R* ! arer -matrices ong; g is a triHamiltonian manifold with the

Poisson tensors~3.6!–~3.8!. Furthermore, each of these Poisson tensors can be~properly! re-
stricted to the subspaceg1, the restrictions being as in Eqs.~3.10!–~3.12!. L

B. Restriction to the Flaschka submanifold

Let us consider the manifoldRn3Rn ; a typical point will be written asx5(a,b). Both the
tangent and cotangent space atx are obviously identified withRn3Rn ; tangent vectors and
covectors will be represented as pairsẋ5(ȧ,ḃ) and dx5(da,db), with the pairing
^dx,ẋ&:5( +(daȧ1dbḃ).

Definition 5.5:For eachx5(a,b), let us put

L~x!:5aD1b1D21a5b12~aD!sym ~5.7!
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~in agreement with Eq.~1.5!!. The embeddingRn3Rn→g
1, x°L(x) will also be denoted byj . Its

imageF , i.e., the set of all the operators~5.7!, will be called the Flaschka submanifold. L
At any pointx, the tangent mapTxj : Rn3Rn→g

1 sendsẋ5(ȧ,ḃ) into

L̇5ȧD1ḃ1D21ȧ5ḃ12~ ȧD!sym; ~5.8!

the set of these operators is the tangent space of the Flaschka submanifoldF . Recalling Eq.~4.13!
and the diagram~4.14!, the following can be checked.

Proposition 5.6:For eachxPRn3Rn , L(x) is the image underC
21

•F
21 of the Lax matrix in

Eq. ~1.2!. L
Proposition 5.7:The linear, quadratic and cubic Poisson tensors~3.10!–~3.12! can be properly

restricted fromg
1 to Rn3Rn along j . The restricted Poisson tensors, denoted again withQ, P and

S, have the following expressions:

Qxdx5 ẋ, H ȧ:52adb22adb@1# ,

ḃ:52a@21#da@21#22ada
~5.9!

Pxdx5 ẋ, H ȧ:5aa@21#da@21#2aa@1#da@1#12abdb22ab@1#db@1# ,

ḃ:52a@21#bda@21#22abda14a@21#
2 db@21#24a2db@1#

~5.10!

Sxdx5 ẋ, H ȧ:5a@21#abda@21#2aa@1#b@1#da@1#1a@21#
2 adb@21#2aa@1#

2 db@2#

1a~a21b2!db2a~a21b@1#
2 !db@1#,

ḃ:5a@22#a@21#
2 da@22#2a2a@1#da@1#1a@21#~a@21#

2 1b2!da@21#

2a~a21b2!da12a@21#
2 ~b@21#1b!db@21#22a2~b1b@1#!db@1# .

~5.11!

Proof: We refer to Prop. 2.2 for the notion of proper restriction. Let us consider a point
x5(a,b)PRn3Rn and its imageL5L(x) in the Flaschka submanifoldF . Our procedure is
divided in the following steps:

~i!–~iii ! to show thatQLdL,PLdL,SLdL are tangent toF , for each covectordL P TL* g1

'g2 ;
~iv! to characterize the covectorsdL extending a given covectordx5(da,db) at x, in the

sense of Eq.~2.10!.
Each of the four items is treated in the sequel. Ifk is an integer, we writel ~Dk! to denote any

element ofg containing only the powers ofD of exponent<k, i.e., of the form(s<kvsDs.
~i! Let us show thatQLdL522[L,dL]1 is tangent to the Flaschka submanifold for each

dLPg2 . An element ofg2 can be written as

dL5p1D21q1l ~D22!, ~5.12!

wherep,qPRn are arbitrary. This implies

@L,dL#5~ap@1#2ap!D1~aq2a@21#q@21#!1l ~D21!; ~5.13!

@L,dL#15~aq2a@21#q@21#!12$~ap@1#2ap!D%sym. ~5.14!

So,QLdL has the form~5.8! ~and is henceforth tangent to the Flaschka submanifold! with coef-
ficients

ȧ52ap22ap@1# , ḃ52a@21#q@21#22aq. ~5.15!
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~ii ! Similar computations are required to prove thatPLdL is tangent toF for eachdLPg2 .
We use again Eq.~5.12! and evaluate separately the two terms 2@L,(L •dL)1# and 2L •[L,dL]

1

giving PLdL according to Eq.~3.11!. The results are

2@L,~L •dL !1#52~a@21#
2 2a2!p12a@21#

2 p@21#22a2p@1#

12$a~bp2b@1#p@1#1bp@1#2b@1#p!D1aa@1#~p@2#2p!D2%sym, ~5.16!

2L •@L,dL#152~a@21#
2 2a2!p22a@21#

2 p@21#12a2p@1#12b~aq2a@21#q@21#!12$a~a@1#q@1#

2q@21#q@21#2bp1b@1#p@1#1bp@1#2b@1#p!D1aa@1#~p@2#2p!D2%sym. ~5.17!

Subtracting Eq.~5.17! from ~5.16!, we obtain thatPLdL is tangent to the Flaschka submanifold
and of the form~5.8!, with coefficients

ȧ5aa@21#q@21#2aa@1#q@1#12abp22ab@1#p@1# ,
~5.18!

ḃ52a@21#bq@21#22abq14a@21#
2 p@21#24a2p@1# .

~iii ! The computation ofSLdL according to Eq.~3.12! requires the separate evaluation of the
terms@L,(LdLL)1# andL[L,dL]1L. We have

@L,~LdLL !1#5k12$mD1rD21sD3%sym, ~5.19!

L@L,dL#1L5u12$wD1rD21sD3%sym, ~5.20!

wherek,m,...,w are given by

k:52a@21#
2 bp22a2bp12a@21#

2 b@21#p@21#22a2b@1#p@1#12a@21#
3 q@21#22a3q,

m:5aa@21#
2 p2aa@1#

2 p@1#1ab2p2ab@1#
2 p@1#1abb@1#p@1#2abb@1#p1a2bq2a2b@1#q,

r :5aa@1#bp@1#2aa@1#bp1aa@1#b@2#p@2#2aa@1#b@2#p@1#1aa@1#
2 q@1#2a2a@1#q,

~5.21!
s:5aa@1#a@2#p@2#2aa@1#a@2#p@1# ,

u:52a@21#
2 bp22a2bp12a2bp@1#22a@21#

2 bp@21#1a@21#
3 q@21#2a3q1ab2q

2a@21#b
2q@21#1a2a@1#q@1#2a@22#a@21#

2 q@22# ,

w:5aa@21#
2 p2aa@21#

2 p@21#1a3p@1#2a3p1abb@1#p@1#2abb@1#p1aa@1#
2 p@2#

2aa@1#
2 p@1#1aa@1#b@1#q@1#2aa@21#bq@21#1a2bq2a2b@1#q.

Subtracting Eq.~5.20! from Eq. ~5.19!, we obtain thatSLdL is as in Eq.~5.8! ~and henceforth
tangent to the Flaschka submanifold! with coefficients

ȧ5a@21#abq@21#2aa@1#b@1#q@1#1a@21#
2 ap@21#2aa@1#

2 p@2#1a~a21b2!p2a~a21b@1#
2 !p@1# ,

~5.22!
ḃ5a@22#a@21#

2 q@22#2a2a@1#q@1#1a@21#~a@21#
2 1b2!q@21#2a~a21b2!q

12a@21#
2 ~b@21#1b!p@21#22a2~b1b@1#!p@1# .
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~iv! On the grounds of the results in items~i!–~iii !, the Poisson tensorsQ, P andS can be properly
restricted toRn3Rn along j . Now, consider~at a pointL5L(x)! a covectordLPg2 , written as in
Eq. ~5.12!; for eachL̇ as in ~5.8!, we have

Tr~dLL̇ !5Tr~pȧD1q@21#ȧ@21#1pḃ1 l ~D21!!5(
0

~qȧ1pḃ!. ~5.23!

By definition, dL extends a covector dx5(da,db)PRn3Rn if ^dL,L̇&5^dx,ẋ&
5(0(daȧ1dbḃ) for eachẋ5(ȧ,ḃ)PRn3Rn . From Eq.~5.23!, it is seen that this happens if
q5da, p5db. Inserting this result in Eqs.~5.15!, ~5.18!, and ~5.22!, we conclude that the re-
stricted Poisson tensorsQ, P andS are as in Eqs.~5.9!–~5.11!. L

VI. RECURSION SCHEMES ON THE FLASCHKA SUBMANIFOLD

Throughout this section, the restrictions ofQ,P,S,hk ,Xk ~k51,2,3...! from g
1 to Rn3Rn

along j are denoted with the same symbols. At each pointx5(a,b), the Hamiltonians are

h1~x!5TrL~x!5(
0

b, h2~x!5
1

2
Tr L2~x!5(

0
S 12 b21a2D ,

~6.1!

h3~x!5
1

3
Tr L3~x!5(

0
S 13 b31a2b1a2b@1#D ,

and so on. We haveQxdxh150, and

Xk~x!5Pxdxhk5Qxdxhk115Sxdxdk21 . ~6.2!

X1(x) has componentsȧ and ḃ as in Eq.~1.1!. The Lax formulation~1.5! for this vector field
follows from Eq.~3.9!; the companionB1(x) in Eq. ~1.5! is just 2~L(x)!1 , and, more generally,
each vector field Xk on Rn3Rn admits a Lax formulation dL/dtk5[L,Bk], with
Bk(x)52(Lk(x))1 .

Let us choose one of the three Poisson structures, sayQ. By construction, all vector fieldsXk

belong to ImQ, so they are tangent to the symplectic leaves of the Poisson tensor;31 on each
symplectic leaf, one can discuss the Arnold–Liouville integrability of the Toda hierarchy. It is
known from the literature12 that only n21 vector fields in the sequenceXk ~k51,2,3,...! are
linearly independent at a generic pointx of Rn3Rn ; the property of being generically independent
is satisfied for instance by the firstn21 fields. On the other hand,n21 is just half the dimension
of a generic symplectic leaf ofQ, so the complete integrability of the system is ensured. Let us
consider onRn3Rn the Hamiltonianshk for the firstn11 values ofk. To compute them, it is not
even necessary to employ the operatorL(x); in fact, it suffices to consider a finite matrixL(x) and
the ordinary traces of its powers.

Proposition 6.1:At each pointx5(a,b), consider then3n matrix

L~x!:5S b1 a1 0 .. .. 0 2 ian

a1 b2 a2 0 .. .. 0

0 a2 b3 a3 .. .. ..

.. .. .. .. .. .. ..

.. .. .. .. .. an22 0

0 .. .. 0 an22 bn21 an21

ian 0 .. .. 0 an21 bn

D ~6.3!
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~obtained settingl5i in Eq. ~1.2!, wherei is the imaginary unit!. Thenhk(x)5~1/k!tr Lk(x) for
k51,2,...,n11.

Proof: With the notations of Sec. IV, the matrix~6.3! is related to the operator
L(x)5aD1b1a[21]D

21 by the equationL(x)5Ev i(C+F(L(x))), and asimilar relation holds
for the powers ofL(x) andL(x). The thesis is proved if we show that trLk(x)5Tr Lk(x) for
k51,2,...,n11. On the grounds of Eq.~4.18!, for each positive integerk we have

tr Lk~x!2Tr Lk~x!5 (
rPZ\$0%

i rTr~Lk~x!D2nr!; ~6.4!

from the explicit expression of the operatorL(x), one infers that the r.h.s. of this equation is zero
for k<n11. L

Remark 6.2:The finite matrixL(x) is also a Lax operator for the periodic Toda lattice. Due
to this fact, one might conjecture that the whole theory of the periodic Toda lattice can be
developed using the finite-dimensional algebrag5gl~n,C! of n3n complex matrices instead of
the infinite-dimensional algebrag5Rn~D,D

21# employed in this article. Unfortunately, it is not
known how to construct anr -matrix in gl~n,C!, so as to induce the Toda multiHamiltonian
structure on the submanifold described by Eq.~6.3!. Working with the finiten3n matrices one
introduces some ‘‘boundary effects’’ related to the presence of the elementan in the corners of the
matrix L(x); the price for the elimination of such effects is the infinite dimensionality of
g5Rn~D,D

21#.
We now recall that in Sec. III D we have considered ong or g

1 an alternative sequence of
Hamiltonian functions f k ~k51,2,3,...!, in such a way that, at each pointL,
Det(12zL)512(k51

` f k(L)z
k. This chain also satisfies a biHamiltonian recursion scheme w.r.t.

Q andP; the f k’s can be expressed as Schur polynomials in thehk’s via Eq. ~2.5!.
Proposition 6.3: f1(x),...,f n(x) are the coefficients of the characteristic polynomial ofL(x),

i.e., det(L(x)2z)5(21)n(zn2 f 1(x)z
n212 f 2(x)z

n222....2 f n(x)). Furthermore, it isf n11(x)
50.

Proof: Let us recall that, for eachk, we havef k(x)5Sk(h1(x),h2(x),h3(x),...), whereSk is
the Schur polynomial defined as in Eq.~2.6!; in particular, f 1(x),...,f n11(x) depend only on
h1(x),...,hn11(x), which can be computed from the traces of the finite matrixL(x) and its
powers~Prop. 6.1!. The thesis follows from this and from elementary matrix theory:32,33 in fact, if
we consider anyn3n matrix L and set t j :5(1/j )trLj , then the Schur polynomials
Sk(t1 ,t2 ,t3 ,...) for k<n are known to give the coefficients of det~L2z! ~this fact is related to the
so-called Leverrier method for computing the characteristic polynomial33,34!. Also, it is known
thatSk(t1 ,t2 ,t3 ,...)50 for k>n11, which means that the characteristic polynomial has degreen.
From here we infer the thesis.35 L

In Sec. III D we proposed the denomination of Flaschka and He´non integrals for the functions
hk and f k on an arbitraryr -matrix algebrag ~not necessarily the one considered here!. In the
present case, considering the functionshk and f k on the ‘‘space of coordinates’’Rn3Rn of the
Flaschka submanifold, we recover fork51,...,n the systems of integrals first constructed in Refs.
28 and 29 for the Toda lattice. The expression of thef k’s as polynomials in thehk’s for the first
values ofk was found by He´non; our formulas~2.7!–~2.8! provide a general rule, based on the
theory of the Schur polynomials.

Our framework also allows us to derive a property of the He´non integrals, which has some
interest from the biHamiltonian viewpoint. In general, for a finite dimensional system the biHamil-
tonian approach acquires a more elegant form if one is able to exhibit a finite hierarchy where both
the initial and the final Hamiltonian are Casimirs. The chainf 1 ,...,f n possesses this property:

Proposition 6.4:The Hénon integralsf 1 ,...,f n and the vector fieldsY15Pd f1 ,...,Yn21
5Pd fn21 on Rn3Rn form a finite biHamiltonian hierarchy, starting from a Casimir ofQ and
ending with a Casimir ofP:
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df1 df2 ... ... dfn

↙
Q

↘
P

↙
Q

↘
P

↙
Q

↘
P

↙
Q

↘
P

0 Y15X1 Y2 Yn21 0

.

~6.5!

Proof: The recurrence relations and the propertyQdf150 hold in general ong or g
1, so they

are also satisfied by the restrictions toRn3Rn along j . The statement thatPd fn50 on Rn3Rn

follows from Pd fn5Qdfn11 and the fact thatf n1150. L
Let us present explicitly the finite biHamiltonian chain forn53. We have

f 1~x!5h1~x!5b11b21b3 , f 2~x!5a1
21a2

21a3
22b1b22b2b32b3b1 ,

~6.6!
f 3~x!5b1b2b32a1

2b32a2
2b12a3

2b2 .

The vector fieldY15X1 is as in Eq.~1.1! andY2(x)5(ȧ,ḃ), where

ȧ52a~a@21#
2 2a@1#

2 !12ab@21#~b@1#2b!,

~6.7!
ḃ54a2b@21#24a@21#

2 b@1# .

It turns out thatY1 and Y2 are independent on a generic subset ofR33R3; so they can be
employed to prove Liouville integrability of the system on the symplectic leaves ofQ ~or P!,
which are four-dimensional in the present case. Forn54, we have a chain of Hamiltonians
f 1 ,...,f 4 with three generically independent vector fieldsY1 ,Y2 ,Y3 , and so on.

VII. THE TODA TRIHAMILTONIAN STRUCTURE: DERIVATION FROM THE
KUPERSHMIDT LAX OPERATOR

In this section, we consider the alternative formulation of the periodic Toda lattice in which
the evolution equations of the system have the form~1.3!, and the associated Lax pair is given in
terms of the operators~1.6!; this is the setting adopted in Ref. 13. The algebrag supporting this
formulation is againRn~D,D

21#.

A. Another splitting of Rn(D,D
21]

The alternative choice is suggested by the prescription of Ref. 13 for the Lax pairs
dV/dtk5[V,Ck] of the Toda hierarchy, which isCk(y)52(Vk(y))>0. The same splitting was
employed in Ref. 11 for the infinite Toda chain and some generalizations of it~in that paper, the
reduction was performed for the first two associated Poisson structures, and not for the third one!.
In the sequel, the symbols>0,.0, etc., are intended as in Sec. V.

Definition 7.1:g6 andg
6 are the linear subspaces ofg5Rn~D,D

21# defined by

g1 :5$CPguC is of nonnegative type%, ~7.1!

g2 :5$NPguN is of negative type%, ~7.2!

g1:5$DPguD is of positive type%, ~7.3!

g2:5$ZPguZ is of nonpositive type%. ~7.4!

L
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Proposition 7.2:The subspacesg6 are Lie subalgebras ofg, and g5g1%g2 ~vector space
direct sum!; g

6 is the orthogonal ofg6 in the pairing^,&. L
For eachVPg, the components according to the splitting of Def. 7.1 areV15V>0, V25V,0,

V15V.0, V25V<0. Of course, the operatorR on g and its adjointR* given by
R(V):5V12V2 ,R* (V)5V22V1 are now different from the operatorsR andR* considered
in Sec. V, but, incidentally, the skew-symmetrization1

2~R2R* ! is again as in Eq.~5.8!. We have
the following.

Proposition 7.3:R and 1
2~R2R* ! are r -matrices ong; g is a triHamiltonian manifold with

the Poisson tensors~3.6!–~3.8!. L
We will employ script letters to denote these Poisson tensors, which have the form

QvdV52@V,~dV!>0#22@V,dV#.0522@V,~dV!,0#12@V,dV#<0 , ~7.5!

P vdV52@V,~V•dV!>0#22V•@V,dV#.0522@V,~V•dV!,0#12V•@V,dV#<0 , ~7.6!

S vdV5@V,~VdVV!>0#2V@V,dV#.0V52@V,~VdVV!,0#1V@V,dV#<0V. ~7.7!

The functionshk(V)5(1/k)TrVk satisfy the triHamiltonian recursion relations~2.1! and ~2.2!
w.r.t.Q , P andS ; also, the functionsf k forming the Hénon Casimir give rise to a biHamiltonian
recursion withQ andP . Using these Hamiltonian functions, we can define infinitely many com-
muting vector fieldsX k :5Pdhk andY k :5Pd fk ; we have

X k~V!52@V,~Vk!>0#. ~7.8!

B. Restriction of the triHamiltonian structure

Let us consider the manifoldR
*

3Rn3Rn , whereR* :5R\$0%. A typical point is written as
z5(K,d,b); here,K is a nonzero real number, whiled andb aren-periodic sequences. Both the
tangent and cotangent space atz are identified withR3Rn3Rn ; tangent vectors and covectors are
represented as triples ż5(K̇,ḋ,ḃ) and dz5(dK,dd,db), with the pairing
^dz,ż&:5dKK̇1(0(ddḋ1dbḃ).

Definition 7.4:For eachz5(K,d,b) we put

V~z!:5KD1b1D21d. ~7.9!

The embeddingR
*

3Rn3Rn→g, z°V(z) will also be denoted byJ. Its imageH, i.e., the set of
all the operators~7.9!, will be called theextended Kupershmidt submanifold. L

We note that, forK51 andd5c, the operator~7.9! becomes the Kupershmidt Lax operator in
Eq. ~1.6!.

At any pointz, the tangent mapTzJ:R3Rn3Rn→g sendsż5(K̇,ḋ,ḃ) into

V̇5K̇D1ḃ1D21ḋ; ~7.10!

the set of these operators is the tangent space of the submanifoldH at V(z).
Our aim is to restrict ther -matrix triHamiltonian structure~7.5!–~7.7! toR

*
3Rn3Rn alongJ.

As we shall see, the linear Poisson tensor fits the proper restriction scheme. This technique is not
appropriate for the quadratic and the cubic ones, and the more subtle machinery of the Dirac
reduction must be invoked; in a sense, this is a price one has to pay for having chosen an
apparently simpler splitting than in Sec. V.

Proposition 7.5:The three Poisson tensors~7.6!–~7.8! can be restricted fromg toR
*

3Rn3Rn

alongJ ~the first one in the proper sense, the other two in the Dirac sense!. The restrictions have
the following expressions:
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Qzdz5 ż,H K̇:50,

ḋ:52ddb22ddb@1# ,

ḃ:52d@21#dd@21#22ddd,
~7.11!

P zdz5 ż,H K̇:50,

ḋ:52d~d@21#dd@21#2d@1#dd@1#1bdb2b@1#db@1#!,

ḃ:52b~d@21#dd@21#2ddd!12K~d@21#db@21#2ddb@1#!,
~7.12!

S zdz5 ż,5
K̇:52K^~b2b@1#!ddd&1K2^d~db2db@1#!&,
ḋ52d~bd@21#dd@21#2b@1#d@1#dd@1#!1Kd~d@21#db@21#2d@1#db@2#!

1d~Kd1b2!db2d~Kd1b@1#
2 !db@1#1d~b@1#2b!^ddd&

1d^~b2b@1#!ddd&2Kd^d~db2db@1#!&11/n Kd~b2b1!dK,

ḃ5K~d@22#d@21#dd@22#2dd@1#dd@1#!1d@21#~Kd@21#1b2!dd@21#

2d~Kd1b2!dd1Kd@21#~b@21#1b!db@21#2Kd~b1b@1#!db@1#

1K~d2d@21#!^ddd&21/n K2~d2d@21#!dK.

~7.13!

~Recall that, for each sequencevPRn , ^v& denotes the average ofv over a period, see Def. 4.1!.
Proof: Let us consider any pointz5(K,d,b) and its imageV5V(z) in the submanifoldH.

Our procedure is divided in the following steps:
~i! to computeQvdV, P vdV andS vdV for an arbitrarydV P Tv* g ' g;
~ii ! to find the most general covectordVPg extending a givendz5(dK,dd,db) in the sense of
Eq. ~2.10!;
~iii !–~v! to check restrictability, and make explicit the restrictions ofQ , P andS .

In the sequel, ifk is an integer, we writeu~Dk! to denote any element ofg in which the powers
of D occur with exponents>k. We also employ the notationl ~Dk! as in Sec. V, to denote the
operators in which the powers ofD have exponents<k.

~i! We must computeQvdV for an arbitrarydVPg. Let us start from the particular case
dV5u(D2). Then [V,dV]<050, and from the second representation in Eq.~7.5! we infer
QvdV50. Similarly, from the first representation in Eq.~7.5! we infer that QvdV50 for
dV5l ~D21!. A general covector ing can be written as

dV5u~D2!1qD1p1l ~D21!, ~7.14!

with arbitrary coefficientsq,pPRn . Only the middle termqD1p gives a nonzero result on
application ofQ ; from the second Eq.~7.5!, we conclude that

QvdV52@KD1b1D21d,qD1p#<052~d@21#q@21#2dq!12D21~dp2dp@1#!. ~7.15!

This means that the vectorQvdV is of the form ~7.10!, and henceforth tangent toH, with
coefficients

K̇50, ḋ52dp22dp@1# , ḃ52d@21#q@21#22dq. ~7.16!

We now computeP vdV for an arbitrarydVPg; the second and the first representations in Eq.
~7.6! can be used to prove thatP vdV50 both fordV5u(D2) and fordV5l ~D22!. We write a
generaldVPg as

dV5u~D2!1qD1p1rD211l ~D22!; ~7.17!

then only the middle terms inq,p,r contribute under application ofP , and the result is
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P vdV5kD1 l1D21m, ~7.18!

k:5K~d@21#q@21#2d@1#q@1#!1K2~r @2#2r !,

l :52d@21#bq@21#22bdq12K~d@21#p@21#2dp@1#!,

m:5d@21#dq@21#2dd@1#q@1#12bdp22b@1#dp@1#2Kd~r @2#2r !.

Note that this vector is not generally tangent toH, because the coefficientk of D is not constant.
We finally computeS vdV. An arbitrary covector ing can be written as

dV5u~D2!1qD1p1rD211sD221l ~D23!; ~7.19!

only the middle terms inp,q,r ,s give a nonzero result on application ofS , and it is found that

S vdV5gD21kD1 l1D21m,5
g:5K2~dq2d@1#q@1#!1K3~r @2#2r @1#!,
k:5Kd~b@1#2b!q1K~bd@21#q@21#2b@1#d@1#q@1#!

1K2d~p2p@1#!1K2~b@1#r @2#2br !1K3~s@2#2s@1#!,
l :5K~d@22#d@21#q@22#2dd@1#q@1#!1d@21#b

2q@21#

2db2q1Kd@21#~b@21#1b!p@21#2Kd~b1b@1#!p@1#

1K2~d@21#r2dr @1#!,
m:5bdd@21#q@21#2b@1#dd@1#q@1#1Kdd@21#p@21#

2Kdd@1#p@2#1b2dp2b@1#
2 dp@1#1Kbd~r1r @1#!

2Kb@1#d~r @1#1r @2#!2K2d~s@2#2s@1#!.
~7.20!

The vector~7.20! is not generally tangent toH, due to the term inD2 and the fact that the
coefficientk of D is not constant.

~ii ! Let us consider~at the pointV5V(z)! a covectordVPg, written as in Eq.~7.14!; for each
V̇ as in ~7.10!, we have

^V̇,dV&5(
0

~K̇r1ḋq1ḃp!5K̇(
0

r1(
0

~ ḋq1ḃp!. ~7.21!

By definition, dV extends a covectordz5(dK,dd,db)PR3Rn3Rn if ^dV,V̇&5^dz,ż&
5dKK̇1(0(ddḋ1dbḃ) for eachż5(K̇,ḋ,ḃ)PR3Rn3Rn . From Eq.~7.21!, it is seen that this
happens iff

q5dd, p5db, (
0

r5dK, ~7.22!

i.e., ^r &5(1/n)dK. So, q,p and the average ofr are uniquely fixed, while the remaining parts
u(D2),l (D22) of dV are arbitrary.

~iii ! We have seen thatQvdV is automatically tangent toH, so we have a proper restriction
of Q to R

*
3Rn3Rn along J. Equations~7.16! and ~7.22! yield the expression~7.11! for the

reduced tensor.
~iv! Let us consider any extensiondV of a given covectordz. The expression ofP vdV is as

in Eq. ~7.18!, with q, p andr as in Eq.~7.22!. The vectorP vdV is tangent toH iff the coefficient
k is a constantK̇. So, we are led to the equation

K̇5K~d@21#dd@21#2d@1#dd@1#!1K2~r @2#2r !. ~7.23!
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The r.h.s. of this equation has zero average, so the constantK̇ must be zero. From here, it follows
r [2]2r51/K(d[1]dd[1]2d[21]dd[21]), which implies

r5
1

K
d@21#dd@21#1w, ~7.24!

wherew is an element ofRn such thatw[2]2w50. Also, w must be such that the condition
^r &5(1/n)dK be satisfied.36 Inserting these results into Eq.~7.18!, we obtainPvdV5ḃ1D21ḋ,
with ḋ and ḃ as in Eq.~7.12!. This means thatP is Dirac restrictable toR

*
3Rn3Rn along J,

yielding the reduced tensor~7.12!.
~v! To restrict the third Poisson tensorS , we reconsider the most generaldV extending a

given covectordz. ThenS vdV is as in Eq.~7.20!, with q5dd, p5db, and we must also take into
account that̂ r &5(1/n)dK.

S vdV is tangent toH iff g50 andk is a constantK̇. We regard these two constraints as
equations forr ands; the equationg50 and the condition on the average ofr imply

r5
1

K
d@21#dd@21#2

1

K
^ddd&1

1

n
dK. ~7.25!

Due to this outcome, the equationk5const.5K̇ becomes

K̇5Kd~b@1#2b!dd1K2d~db2db@1#!2K~b@1#2b!^ddd&1
1

n
K2~b@1#2b!dK1K3~s@2#2s@1#!.

~7.26!

Taking the average of both sides in this equation, we obtain

K̇5K^d~b@1#2b!dd&1K2^d~db2db@1#!&; ~7.27!

Eq. ~7.26! also determines the differences[2]2s[1] . With these tangency prescriptions,SvdV is
fully determined. These results mean that the third tensorS is Dirac restrictable; the explicit
expression of the restriction is immediately found to be as in Eq.~7.13!, and this concludes the
proof. L

From the proper reducibility ofQ and from the representationsX k5Qdhk11, Y k5Qd fk11,
it follows that the vector fieldsX k andY k are also restrictable fromg to R

*
3Rn3Rn alongJ.

The symbolsX k , hk , etc. will be maintained to denote the restrictions of the vector fields and the
Hamiltonians, which satisfy the usual recursion schemes w.r.t. the restricted Poisson tensorsQ , P
andS . For z5(K,d,b), we find

h1~z!5(
0

b, h2~z!5(
0

S 12 b21KdD , h3~z!5(
0

S 13 b31Kdb1Kdb@1#D , ~7.28!

and so on; the components of the vector fieldX 1 at z are

K̇50, ḋ52d~b2b@1#!, ḃ52K~d@21#2d!. ~7.29!

C. A projection of the triHamiltonian scheme

Let us consider the productRn3Rn , and denote withy5(c,b) a typical point. Tangent
vectors and covectors aty are represented as pairsẏ5( ċ,ḃ) anddy5(dc,db), respectively, with
the duality^dy,ẏ&5(0(dcċ1dbḃ).

Definition 7.6:p:R
*

3Rn3Rn→Rn3Rn is the projection given by
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p~K,d,b!:5~Kd,b!. ~7.30!

L

For z5(K,d,b) and y5p(z), the tangent mapTzp:R3Rn3Rn→Rn3Rn sends a vector

ż5(K̇,ḋ,ḃ) into the vectorẏ5( ċ,ḃ), with ċ5K̇d1Kḋ. The cotangent mapTz*p:Rn 3 Rn→R
3 Rn 3 Rn is defined by the condition̂(Tz*p)dy,ż& 5 ^dy,(Tzp) ż& for eachdy andż; Tz*p sends
dy5(dc,db) into dz5(dK,dd,db), with dK5(0(ddc),dd5Kdc.

Our aim in this subsection is to project alongp the triHamiltonian structure of Prop. 7.5.
Before passing to this operation, we suggest a geometrical interpretation for the map~7.30!,
recalling that its domainR

*
3Rn3Rn is the ‘‘coordinate space’’ of the extended Kupershmidt

submanifoldH. According to this interpretation, the codomainRn3Rn of p is the coordinate
space for a quotientH/;, where; is an appropriately defined equivalence relation, andp
corresponds to the quotient map. The relation; arises from the remark that an arbitrary element
V5V(K,d,b) of H can be written as

V5D̃1b1D̃21c, c:5Kd, D̃:5KD. ~7.31!

Some interesting conclusions can be drawn from this representation; for example, we will show
that the traces TrVk(K,d,b) depend only onb and the productKd5c.

Definition 7.7:Given the operatorsV5V(K,d,b) and V85V(K8,d8,b8) in H, we write
V;V8 if b5b8 andKd5K8d8. L

This is clearly an equivalence relation. There is a natural diffeomorphismI :~H/;!→Rn3Rn ,
which associates to any pointV(K,d,b)mod ; in the quotient space the pair (c,b):5(Kd,b).
Employing I and the diffeomorphismJ21:H→R

*
3Rn3Rn , we conclude that the quotient map

H→H/; is just the compositionI21+p+J21, with p as in Eq.~7.30!. By elementary computa-
tions, one can prove the following.

Proposition 7.8:The Poisson tensors~7.11!–~7.13! carried byR
*

3Rn3Rn can be projected
onto Rn3Rn alongp, in the sense of Prop. 2.5. The projected tensors, denoted with the same
letters plus a superscript̃, have the following expressions:

Q̃ ydy5 ẏ, H ċ:52cdb22cdb@1# ,

ḃ:52c@21#dc@21#22cd,
~7.32!

P̃ ydy5 ẏ, H ċ:52c~c@21#dc@21#2c@1#dc@1#1bdb2b@1#db@1#!,

ḃ:52b~c@21#dc@21#2cdc!12~c@21#db@21#2cdb@1#!,
~7.33!

S̃ ydy5 ẏ, H ċ52c~bc@21#dc@21#2b@1#c@1#dc@1#!1c~c@21#db@21#2c@1#db@2#!

1c~c1b2!db2c~c1b@1#
2 !db@1# ,

ḃ5c@22#c@21#dc@22#2cc@1#dc@1#1c@21#~c@21#1b2!dc@21#

2c~c1b2!dc1c@21#~b@21#1b!db@21#2c~b1b@1#!db@1# . ~7.34!

L

Proposition 7.9: The Hamiltonian functionshk , f k and the vector fieldsX k ,Y k on
R
*

3Rn3Rn are projectable ontoRn3Rn alongp.
Proof: The projectability of the vector fields follows from the previous Prop. 7.8, if one shows

that the Hamiltonians can be projected. Thef k’s are functions of thehk’s, so it suffices to show the
projectability of each functionhk(K,d,b)51/k Tr Vk(K,d,b). To this purpose, we recall that each
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operatorV5V(K,d,b)PH can be written as in Eq.~7.31!, using the rescaled shift operator
D̃5KD. From Eq.~7.31!, it follows that we can writeV5(s521,0,1vsD̃s, with v21:5c[21],
v0 :5b, v1:51. For each positive integerk, it is

Vk~K,d,b!5 (
s52k

k

vk,s~c,b!D̃s5 (
s52k

k

Ksvk,s~c,b!Ds, ~7.35!

where the coefficientsvk,s(c,b)PRn are suitable functions ofc andb. By taking the traces, we
obtainhk(K,d,b)5(1/k)(0vk,0(c,b); so, eachhk depends only onc,b and the projectability is
proved. L.

Definition 7.10:The projections alongp of the Hamiltonians and vector fields will be indi-
cated with the same letters plus a superscript˜: h̃k , f̃ k ,X̃ k ,Ỹ k . L

At each pointy5(c,b), we have

h̃1~y!5(
0

b, h̃2~y!5(
0

S 12 b21cD , h̃3~y!5(
0

S 13 b31cb1cb@1#D , ~7.36!

and so on; the first vector fieldX̃ 1 has componentsċ,ḃ as in Eq.~1.3!; here, it was already
observed that the flow ofX̃ 1 gives the time evolution of the Toda lattice, the connection with the
Flaschka variables being the transformationc5a2.

D. The Kupershmidt submanifold and the Lax formalism for the vector fields X̃ k

The Lax formalism for the Toda lattice set up in Ref. 13 does not envolve directly the
manifoldH of Def. 7.4, but rather the subset of operators obtained settingK51 in Eq. ~7.9!.

Definition 7.11:For eachy5(c,b)PRn3Rn , we put

V~y!:5D1b1D21c. ~7.37!

The embeddingRn3Rn→g, y°V(y) will be be denoted byS. Its imageK,H will be called
the Kupershmidt submanifold. L

Recalling the diagram~4.14! and Eq.~4.13!, one can check that, for eachy5(c,b), V(y) is
the image under the mapC+

21F21 of the homologous element of the loop algebragl(n)~l,l21# in
Eq. ~1.4!. If we think geometrically in terms of the equivalence relation; onH and employ the
diffeomorphismI :~H/;!→Rn3Rn ~see the previous subsection!, we can describeS+ I as a sec-
tion of the quotient bundleH→H/;.

It is straightforward to check that the Poisson tensorsQ ,P ~Eqs.~7.6!–~7.7!! can be restricted
directly from g to Rn3Rn alongS ~the first one properly, the second in the Dirac sense!. Per-
forming the necessary computations, one finds that the restrictions coincide exactly with the
tensorsQ̃ andP̃ of Eqs.~7.32-33!, previously obtained by the restriction/projection algorithm of
Secs. VII B and C. Also, the vector fieldsX k on g are restrictable viaS; the restrictions coincide
with the vector fieldsX̃ k , constructed previously with the restriction/projection method. The Lax
formulation for these fields follows immediately from Eq.~7.8!, with the Lax operator~7.37!; this
final result agrees with the Lax scheme of Ref. 13.

On the contrary, the thirdr -matrix Poisson tensor carried byg ~Eq. ~7.7!! cannot be restricted:
the tangency constraints forS vdV appearing if one tries a Dirac reduction have no periodic
solution in general.

E. A comparison with the framework of Sec. V

Let Rn
1 denote the open subset ofRn formed by the periodic sequencesv 5 (va)aPZ with

va.0 for eacha.
Definition 7.12: F:Rn

13Rn→Rn
13Rn is the diffeomorphism given by
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F~a,b!:5~a2,b!. ~7.38!

L

A point to whichF is applied will be typically denoted withx or (a,b) as above; its image under
F will be generally written asy5(c,b). The inverse map is obviously given byF21(c,b)5
(Ac,b).

Proposition 7.13:Consider onRn
13Rn the Poisson structuresQ, P and S given by Eqs.

~5.9!–~5.11!, andQ̃ , P̃ and S̃ as in Eqs.~7.32!–~7.34!. Denoting byF
*
the push-forward along

F, we haveF
*
Q52Q̃ , F

*
P52P̃ , F

*
S52S̃ .

Proof: Let us consider, for example, the tensorQ; at any pointy5(c,b), it is

~F*Q!y :5~TxF +Qx+Tx*F !ux5F21~y! , ~7.39!

whereTxF andTx*F denote, respectively, the tangent map ofF at x and its adjoint, given by
(TxF)(ȧ,ḃ)5(2aȧ,ḃ), (Tx*F)(dc,db) 5 (2adc,db). A straightforward computation gives
F
*
Q52Q̃ ; the analogous relations forP̃ and S̃ are proved similarly. L
To complete the comparison with Sec. V, we point out a relevant connection between the

operatorsV(K,d,b), given by Eq.~7.9!, andL(a,b) in Eq. ~5.7!, existing ifKd5a2. This relation
can be illustrated in terms of the following.

Definition 7.14:Two operatorsL,VPg are said to be gauge equivalent if there exists an
n-periodic sequences5(sa)aPZ such thatsaÞ0 for eacha, and

sL
1

s
5V, ~7.40!

intending the l.h.s. of the above equation as the product ing amongL, the sequences and its
reciprocal (1/s):5(1/sa). L

Proposition 7.15:For each (a,b)PRn
13Rn , there existK.0, dPRn

1 and a never zero se-
quencesPRn such thatKd5a2 and

sL~a,b!
1

s
5V~K,b,d!. ~7.41!

Proof: For each sequencevPRn , we putP0v:5Pa51
n va . Equation~7.41! is satisfied setting

K:5(P0a)
1/n, d:5a2/K and taking fors a periodic solution37 of the equations[1]5(a/K)s. L

The previous result can be used to prove that the diffeomorphismF transforms the Hamilto-
nianshk(a,b) of Sec. V into the Hamiltoniansh̃k(c,b) of Sec. VII C.

Proposition 7.16:For (a,b)PRn
13Rn and (c,b)5F(a,b), it is h̃k(c,b)5hk(a,b).

Proof: By definition, h̃k(c,b):5(1/k)Tr Vk(K,d,b), whereV(K,d,b) is any operator with
Kd5c; also, we know thathk(a,b)5(1/k)Tr Lk(a,b). We can chooseK andd as in the previous
Proposition, so as to set up a gauge equivalence; then

Tr Vk~K,d,b!5TrS sLk~a,b!
1

sD5TrS 1s sLk~a,b! D5Tr Lk~a,b!. ~7.42!

L

Corollary 7.17: Consider onRn
13Rn the vector fieldsXk5Pdhk of Secs. V and VI and

X̃ k5P̃dh̃k of Sec. VII C. For eachk, it is F*
Xk52X̃ k ~k51,2,3,...!. L

4510 C. Morosi and L. Pizzocchero: R-matrix theory and the Toda lattice

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Here,F
*
Xk stands for the push-forward, i.e., the vector fieldy°(TxF)Xk(x)ux5F21(y) ; the

thesis follows from Props. 7.13 and 7.16. Of course, two statements similar to Prop. 7.16 and
Corollary 7.17 hold for the Hamiltoniansf k , f̃ k and the associated vector fieldsYk ,Ỹ k .

VIII. COMMENTS

This article is devoted to the periodic Toda lattice, but ther -matrix methods can be as well
applied to other lattices. The system in 2N field variablesb,c1 ,...,c2N21, described by the
‘‘Kupershmidt-like’’ Lax operator

V5D1b1 (
k51

2N21

D2kck , ~8.1!

was treated in Ref. 11 in the infinite nonperiodic case; its periodic counterpart can be discussed
assumingb,c1 ,...,c2N21 to ben-periodic sequences. ForN51, one reobtains the Toda theory in
the field variablesb andc1 :5c @see Eq.~7.37!#.

As a generalization, it is possible to analyze the theory in infinitely many field variables
b,ckPRn~D,D

21#, described by the Lax operator

V5D1b1 (
k51

1`

D2kck , ~8.2!

which can be regarded as a periodic analogue of the so-called ‘‘full Kostant Toda lattice,’’ or a
discrete version of the KP theory~for the multi-Hamiltonian structure of this system, indepen-
dently of r -matrix theory, see Ref. 13!.

Finally, the treatment of Sec. V could be extended to the system in 2N field variables
b,a1 ,...,a2N21PRn~D,D

21#, described by the symmetric Lax operator

L5 (
k51

2N21

akD
k1b1 (

k51

2N21

D2kak . ~8.3!

It should be noticed that, with the exception of the Toda caseN51, the systems in Eqs.~8.1! and
~8.3! are essentially different: in fact, their Lax operators are not gauge equivalent.

Also, it would be of interest to analyze the continuous limits of the above lattices; for ex-
ample, these could be treated with the methods proposed in Ref. 38; work on this point is in
progress, and it turns out that the limiting systems can be classified in terms of the Drinfeld–
Sokolov scheme for KdV-type hierarchies.39
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In this paper, we outline a method for symplectic integration of three degree-of-
freedom Hamiltonian systems. We start by representing the Hamiltonian system as
a symplectic map. This map~in general! has an infinite Taylor series. In practice,
we can compute only a finite number of terms in this series. This gives rise to a
truncated map approximation of the original map. This truncated map is however
not symplectic and can lead to wrong stability results when iterated. In this paper,
following a generalization of the approach pioneered by Irwin~SSC Report No.
228, 1989!, we factorize the map as a product of special maps called ‘‘jolt maps’’
in such a manner that symplecticity is maintained. ©1996 American Institute of
Physics.@S0022-2488~96!03509-8#

I. INTRODUCTION

Consider a complicated periodic Hamiltonian system that is non-integrable. Suppose we are
interested in the long-term stability of particles being transported through this system. Since the
system is assumed to be nonintegrable, it is very difficult to give stability criteria in an analytic
form. A possible solution is to numerically follow the trajectories of particles through the system
for a large number of periods~a process that goes by the name of tracking!. One could then
attempt to infer the stability of motion in the system by analyzing these tracking results.

The most straightforward method that can be used to perform this long term tracking is
numerical integration. However, this method is too slow for analyzing the stability of very com-
plicated systems. Therefore, we need a method that is both fast and accurate.

Several symplectic integration methods have been discussed in the literature. Ruth,1 Feng,2

Channel and Scovel,3 Yoshida,4 Berget al.5 and others have derived symplectic integrators using
generating functions. These are typically implicit methods and using these methods requires one to
use Newton’s method with its attendent questions of convergence, etc. Another approach is
through solvable maps.6,7 But this method has not been explored in great detail. In this paper,
following Irwin,8 we explore a more direct method of symplectic integration.

The method that we will use is the iteration of symplectic maps9 representing the Hamiltonian
system. We start by defining certain mathematical objects. Let us denote the collection of six
phase space variablesqi , pi ( i51,2,3) by the symbolz:

z5~q1 ,p1 ,q2 ,p2 ,q3 ,p3!. ~1.1!

The Lie operator corresponding to a phase space functionf (z) is denoted by :f (z):. It is defined
by its action on a phase-space functiong(z) as shown below

: f ~z!:g~z!5@ f ~z!,g~z!#. ~1.2!

Here [f (z),g(z)] denotes the usual Poisson bracket of the functionsf (z) and g(z). Next, we
define the exponential of a Lie operator. It is called a Lie transformation and is given as follows:

a!Electronic mail: rangaraj@math.iisc.ernet.in
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e: f ~z!:5 (
n50

`
: f ~z!:n

n!
. ~1.3!

Powers of :f (z): that appear in the above equation are defined recursively by the relation

: f ~z!:ng~z!5: f ~z!:n21@ f ~z!,g~z!#, ~1.4!

with

: f ~z!:0g~z!5g~z!. ~1.5!

For further details regarding Lie operators and Lie transformations, see Ref. 9.
The time evolution of the Hamiltonian system over one period can be represented by a

symplectic mapM.9 Symplectic maps are maps whose Jacobian matricesM (z) satisfy the fol-
lowing symplectic condition:

M ~z!̃JM~z!5J, ~1.6!

whereM̃ is the transpose ofM andJ is an antisymmetric matrix defined as follows:

J5S 0 1 0 0 0 0

21 0 0 0 0 0

0 0 0 1 0 0

0 0 21 0 0 0

0 0 0 0 0 1

0 0 0 0 21 0

D . ~1.7!

MatricesM satisfying Eq.~1.6! are called symplectic matrices and the corresponding mapsM

symplectic maps. It can be shown9 that the set of allM ’s forms an infinite dimensional Lie group
of symplectic maps. On the other hand, the set of all real 636 symplectic matrices forms the finite
dimensional real symplectic group Sp~6,R!.

Using the Dragt–Finn factorization theorem,9,10 the symplectic mapM can be factorized as
shown below:

M5M̂e: f3 :e: f4 :...e: f n :. .. . ~1.8!

HereM̂ gives the linear part of the map and hence has an equivalent representation in terms of the
Jacobian matrixM (0) of the mapM at the origin:9

M̂zi5Mi j zj5~Mz! i . ~1.9!

Thus, M̂ is said to be the Lie transformation corresponding to the 636 matrixM belonging to
Sp~6,R!. The infinite product of Lie transformations exp(:f n :) (n53,4,...) in Eq.~1.8! represents
the nonlinear part ofM. Here f n(z) denotes a homogeneous polynomial~in z! of degreen
uniquely determined by the factorization theorem.

The above mapM is called the one-period map for the system. It gives the final statez(1) of
a particle after one period as a function of its initial statez(0):

z~1!5Mz~0!. ~1.10!

To obtain the state of a particle afterN periods, one has to merely iterate the above mappingN
times, i.e.,
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z~N!5MNz~0!. ~1.11!

It is obvious that one cannot useM in the form given in Eq.~1.8! for any practical compu-
tations. It involves an infinite number of Lie transformations. Therefore, we have to truncateM

by stopping after a finite number of Lie transformations:

M'M̂e: f3 :e: f4 :...e: f P :. ~1.12!

However, we are still not out of the woods. Each exponentiale: f n : inM contains an infinite
number of terms in its Taylor series expansion. One possible solution is to truncate the Taylor
series generated by the Lie transformations to orderP. We denote this truncated map byMP . As
a power series in the six phase space variables, it is given as follows:

MPz5M ~11: f 3 :1••• !~11: f 4 :1••• !

•••~11: f p :1••• !z, ~1.13!

where we have to truncate the power series in such a way that the highest order term generated is
zP21. If we did not impose this restriction, we would generate terms of orderzP and higher. Then,
to be consistent, we would be forced to include in our map, :f n : ’s for n greater thanP ~since these
also generate terms of orderzP and higher!.

Equation~1.13! can be rewritten as follows:

MPz5h1~z!1h2~z!1•••1hP21~z!, ~1.14!

wherehn(z) denotes a polynomial of degreen in z. Since we have decided to consistently drop
terms of orderzP and higher, we can define the following equivalence relation between maps of
orderP:

MP;MP8 if MPz2MP8z5hP~z!1higher order terms. ~1.15!

This can be rephrased in terms of partial derivatives as follows. MapsMP andMP8 are equivalent
if all the partial derivatives ofMPz andMP8z up to orderP21 are equal. An equivalence class
with respect to this equivalence relation is called a jet of orderP. Since the mapMP is obtained
from a symplectic mapM, we callMP ~or more accurately, the equivalence class to which it
belongs! a symplectic jet of orderP. We stress that, despite its name,MP is not symplectic.

We note that symplectic jets of orderP have the following properties. A symplectic jet maps
R6 into R6. It maps the origin ofR6 into itself. It is invertible. And the composition of two
symplectic jetsMP andMP8 is defined as follows:

MP•MP8 5~M•M8!P . ~1.16!

This is again a symplectic jet of orderP. And finally, there exists an identity given by the
following equivalence class:

MP
0z5z1hP~z!1higher order terms. ~1.17!

Therefore, the set of all symplectic jets of orderP forms a group. It can be shown that it is actually
a Lie group. This Lie group formed by the set of all symplectic jets of orderP is called the
symplectic jet group Spj~6;P!.

However, the above solution of truncating the Taylor series has a severe shortcoming. As
mentioned above, the mappingMP generated by the truncated Taylor series is no longer sym-
plectic. Therefore, repeated iterations of this mapping can lead to spurious growth~or damping! in
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the amplitude of motion of the particle being tracked. Obviously, this can lead to wrong conclu-
sions regarding the stability of the system. Therefore it is important to preserve the symplectic
nature ofMP when using it for long term tracking. For this purpose, we need to ensure that each
factor inMP takes the forme:g:. On the other hand, for the numerical tracking scheme to be
practical, we need to ensure that we evaluate only a finite number of terms. In this paper, we
discuss how to reconcile these two apparently contradictory objectives.

The basic goal of this paper is to refactorizeMP @cf. Eq. ~1.13!# as a product of symplectic
maps that can be evaluated exactly. Since we do not truncate the Taylor series, we preserve the
symplectic nature of the map even when we evaluate it. Another attractive feature of these special
maps is that their inverses can also be evaluated exactly. The process of refactorizing a map into
a product of symplectic maps characterized by these nice features is called ‘‘symplectic comple-
tion’’. Since the map that is being refactorized isMP , a symplectic jet, this refactorization
procedure is called ‘‘symplectic completion of symplectic jets’’. And this will be the subject of
this paper.

We start by defining jolt maps in Section II. In Section III, we formulate the problem of
symplectic completion ofMP in terms of these jolt maps. Here, we follow the procedure first
outlined by Irwin.8 To get a better understanding of the problem, we first solve a model problem
in Section IV. In Section V, we formulate a solution to the problem of symplectic completion of
symplectic jets. In Section VI, we optimize the number of jolt maps required so that an efficient
numerical algorithm is obtained.

II. JOLT MAPS

Consider the symplectic map given bye:g(z): whereg(z) is a function of the phase space
variablesz. It is called a jolt map if :g(z): is a nilpotent operator of rank 2, i.e., if the following
condition is satisfied:

:g~z!:2z50. ~2.1!

The functiong(z) is then called a jolt function. We note that jolt maps have only two nonzero
terms in their Taylor series expansions@cf. Eq. ~1.3!#. The term jolt map was first introduced in
Ref. 11.

Examples of jolt maps are given by the following theorem.
Theorem 1: The following maps are jolt maps

~ i! R̂e:q1
n :R̂215e:R̂q1

n :, ~2.2!

~ ii ! R̂e: f ~q1 ,q2 ,q3!:R̂215e:R̂f ~q1 ,q2 ,q3!:. ~2.3!

Here f(q1 ,q2 ,q3) is an nth degree polynomial in variables q1 , q2 , and q3. Finally, R̂ is the Lie
transformation corresponding to a636matrix R belonging to any subgroup ofSp~6,R! [including
Sp~6,R! itself]. It is given by the following relation [cf. Eq. (1.9)]:

R̂zi5Ri j zj5~Rz! i . ~2.4!

See Appendix A for a proof of this theorem. In this theorem, note that the second statement
contains the first statement as a special case. However, a separate~and simpler! proof is given
even for the first statement since we will be using this later in the paper.
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III. FORMULATION OF THE PROBLEM OF JOLT FACTORIZATION

Our goal is to refactorizeMP @cf. Eq. ~1.13!# in terms of a finite number of jolt maps. The
first step towards achieving this goal is to formulate the problem in an appropriate form. The best
way to mathematically formulate the problem appears to be as follows8:

Problem 1: Given the mapMP, find another mapJ specified by the following product of K
jolt maps:

J5M̂e:g3
~1!

1g4
~1!

1•••1gP
~1! :e:g3

~2!
1g4

~2!
1•••1gP

~2! :. ..e:g3
~K !

1g4
~K !

1•••1gP
~K ! : ~3.1!

such that this map agrees withMP to order P, i.e.,

J>MP to order P. ~3.2!

Here gn
(i)’s are (homogeneous) jolt polynomials of degree n given by the following relation:

gn
~ i !5bn

~ i !R̂iq1
n , i51,2,...,K, ~3.3!

whereb n
( i ) is a real coefficient. The matrices Ri belong to a subgroup ofSp~6,R! [including

Sp~6,R! itself] and R̂i denotes the Lie transformation corresponding to these matrices [cf. Eq.
(2.4)].

Before proceeding further, we note that Eq.~3.1! can be rewritten in the following form:

J5M̂e:g
~1!:e:g

~2!:. ..e:g
~K !:, ~3.4!

where

g~ i !5g3
~ i !1g4

~ i !1•••gP
~ i ! i51,2,...,K. ~3.5!

From Eq.~3.3! and Theorem 1@cf. Eq. ~2.2!# it is seen thatg( i )’s are jolt polynomials~a sum of
jolt polynomials is easily shown to be another jolt polynomial!. Consequently, exp(:g( i ):) ’s are
jolt maps.

In order to solve the above problem, we need to determine the various unknown quantities
appearing in the above equations—the number of jolt mapsK, the matricesRi , and the coeffi-
cientsbn

( i ). It turns out thatK andRi can be determined independent of the details of the map
MP . They depend only on the orderP of the map. This will be explicitly demonstrated shortly.
For the moment, we will assume thatK andRi have already been fixed. This reduces our task to
merely finding the coefficientsbn

( i )’s such that Eq.~3.2! is satisfied. We now proceed to solve for
these coefficients order by order.

Since the linear part of a symplectic map can be evaluated exactly, there is no need to
refactorize it in terms of jolt maps. Hence, we have already chosen the linear parts of the maps
MP andJ to be the same. Therefore, we need to refactorize only the nonlinear part ofMP . We
start by comparing terms of order 3 inMP andJ respectively. The third-order term inMP is
given by f 3 . To obtain the third-order term inJ , we need to cast it in the standard Dragt–Finn
form. This is accomplished by using the Baker–Campbell–Hausdorff~BCH! formula10 given
below:

exp~ t: f : !exp~s:g: !5exp~ t: f :1s:g:1ts:@ f ,g#:/21••• !. ~3.6!

We get the following result to third order:

J>M̂e:h3 :, ~3.7!

where
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h35(
i51

K

g3
~ i ! . ~3.8!

Therefore,J andMP will be equal to order 3 if the following equality is satisfied@cf. Eq. ~3.3!#:

(
i51

K

b3
~ i !R̂iq1

35 f 3 . ~3.9!

In other words, we have to determineb3
( i )’s such that the above equation is satisfied.

Next, we compare terms of order 4 inMP andJ . The fourth-order term inMP is given by
f 4 . Using the BCH formula, the Dragt–Finn factorization ofJ correct to fourth order is given by
the following result:

J>M̂e:h3 :e:h4 :, ~3.10!

where

h45(
i51

K

g4
~ i !1

1

2 (
j,k

@g3
~ j ! ,g3

~k!#. ~3.11!

The second term on the right hand side of the above equation is a fourth-order term produced by
the concatenation of third-order terms in Eq.~3.1!. Equating the fourth-order terms ofMP andJ
we get the relation@cf. Eq. ~3.3!#

(
i51

K

b4
~ i !R̂iq1

45 f 42
1

2 (
j,k

b3
~ j !b3

~k!@R̂jq1
3,R̂kq1

3#[ f 48 . ~3.12!

Here f 48 includes the fourth-order terms produced by concatenation of lower order terms. By
choosingb4

( i )’s such that the above equation is satisfied, we ensure thatJ andMP agree to fourth
order.

This process can be continued in a similar fashion to deal with the higher order terms. At the
nth order, we have to choosebn

( i )’s such that the following equality is satisfied:

(
i51

K

bn
~ i !R̂iq1

n5 f n8 . ~3.13!

Here f n8 includes the unwantednth-order terms produced bygl
( i ) ( l,n).

We are now in a position to determine the number of jolt mapsK and the matricesRi . We
will show that they are independent of the mapMP . We note thatf n8 involvesN(n) independent
coefficients whereN(n) is given by the relation8

N~n!5S n15
n D . ~3.14!

Thus, we need at leastN(n) bn
( i )’s to solve the above equation. SinceN(n) is a monotonically

increasing function ofn, the maximum number ofbn
( i )’s are required whenn is equal toP ~the

maximum order!. Thus we needN(P) bn
( i )’s to solve Eq.~3.13! for all n. This fixesK to be equal

to N(P). Moreover,R̂iq1
n ( i51,...,K) should be linearly independent quantities. This imposes

restrictions on the matricesRi that we can choose. Both these conditions are independent off n8 ,
i.e., they are independent of the mapMP . They depend only on the maximum orderP. Therefore
bothK andRi ’s can be fixed in advance independent of the map to be represented.
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OnceK and theRi ’s are fixed, we start by first solving Eq.~3.9! for b3
( i )’s. We then proceed

order by order until we reach thePth-order equation. At thenth order, we have to solve Eq.
~3.13!. The right hand side involvesN(n) independent coefficients. SinceN(n) is less thanK
(5N(P)) for n less thanP, we have morebn

( i )’s than necessary to solve this equation, i.e., the
bn
( i )’s are underdetermined. The naive solution would be to set these extrabn

( i )’s to zero

bn
~ i !50 for i.N~n!. ~3.15!

But there is a better solution. We fix these extrabn
( i )’s by requiring that( i51

K (bn
( i ))2 be a mini-

mum. The reason for this is simple. We have seen that thenth-order jolt polynomials produce
higher order terms@for example, see Eq.~3.11!# upon concatenation. These higher order terms
depend on the coefficientsbn

( i ) @for example, see Eq.~3.12!#. Therefore, by minimizing the sum of
the squares of these coefficients, we reduce the magnitude of the unwanted higher order terms
produced by concatenation of lower order terms.

Putting everything together, the problem of obtaining a jolt map factorization can be reduced
to the following general problem:

Problem 2: Given a nth degree homogeneous polynomial fn and K matrices Ri , find the
coefficientsb n

( i )’s such that the following conditions are satisfied:

~ i! (
i51

K

bn
~ i !R̂iq1

n5 f n ~3.16!

and

~ ii ! (
i51

K

@bn
~ i !#2 is a minimum. ~3.17!

IV. A MODEL PROBLEM AND ITS SOLUTION

Before attempting to solve the general problem outlined above, we will first solve a model
problem in this section. This model problem is deliberately designed to be quite similar to the
problem of jolt factorization@cf. Eqs. ~3.16! and ~3.17!#. Therefore, solving this problem will
enable us to get a feel for the issues involved in the solution of the jolt factorization problem.

Consider an arbitrary vectorv in the two dimensionalx2y plane. It can be expressed as
follows:

v5vxex1vyey , ~4.1!

whereex andey are the usual unit vectors along thex andy axes, respectively, andvx andvy are
the corresponding vector components. Next, we construct a new set ofN basis vectorsei ~where
N is an integer greater than 2! in the x2y plane using the following procedure:

ei5R~u i !ex , i51,2,...,N, ~4.2!

where

R~u i !ex5cos~u i !ex1sin~u i !ey ~4.3!

and

u i5~k21!
2p

N
. ~4.4!
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We are now in a position to state the problem—expressv in the new basis given by theN ei ’s.
Of course, only two basis vectors are actually needed to express the vectorv. Since we have extra
basis vectors, we need to impose a constraint. Taking this into account, the problem can be
formulated as follows.

Problem 3: Given the vector v [cf. Eq. (4.1)], find coefficientsbi such that the following
conditions are satisfied:

~ i! v5(
i51

N

b iei5(
i51

N

b iR~u i !ex ~4.5!

and

~ ii ! (
i51

N

b i
2 is a minimum. ~4.6!

The reader will immediately notice the striking similarity between this problem and the problem of
jolt factorization@cf. Eqs.~3.16! and ~3.17!#.

Instead of solving this particular problem, we will solve the more general problem obtained by
going to the continuum limit. Its solution will then contain the solution to the original~discrete!
problem as a special case. The generalized problem is given as follows.

Generalized Problem 1:Given the vector v [cf. Eq. (4.1)], find the function g~u ! such that
the following conditions are satisfied:

~ i! v5
1

2p E
0

2p

du g~u!R~u!ex ~4.7!

and

~ ii !
1

2p E
0

2p

du g2~u! is a minimum, ~4.8!

where

R~u!ex5cos~u!ex1sin~u!ey . ~4.9!

We solve this generalized problem as follows. We first find functionsgx(u) andgy(u) satis-
fying the following relations:

1

2p E
0

2p

du gx~u!R~u!ex5ex , ~4.10!

1

2p E
0

2p

du gy~u!R~u!ex5ey . ~4.11!

In other words, the functionsgx(u) andgy(u) project out the unit vectorsex andey , respectively.
Substituting Eq.~4.9! in the above expressions, we obtain the relations

1

2p E
0

2p

du gx~u!@cos~u!ex1sin~u!ey#5ex , ~4.12!
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1

2p E
0

2p

du gy~u!@cos~u!ex1sin~u!ey#5ey . ~4.13!

The cosine and sine functions satisfy the following orthonormality conditions:

1

2p E
0

2p

du cos~mu!cos~m8u!5
1

2
dmm81

1

2
dm0dm80 , ~4.14!

1

2p E
0

2p

du sin~mu!sin~m8u!5
1

2
dmm82

1

2
dm0dm80 , ~4.15!

1

2p E
0

2p

du cos~mu!sin~m8u!50, ~4.16!

wherem andm8 are arbitrary integers. Using these orthonormality relations, we get the following
solution forgx(u) andgy(u):

gx~u!52 cos~u!; gy~u!52 sin~u!. ~4.17!

Consider the following function

g~u!5vxgx~u!1vygy~u!. ~4.18!

Substituting this function into the right hand side of Eq.~4.7!, we get the following result:

1

2p E
0

2p

du@vxgx~u!1vygy~u!#R~u!ex . ~4.19!

Using Eqs.~4.10! and ~4.11!, we obtain the relation@cf. Eq. ~4.1!#

1

2p E
0

2p

du g~u!R~u!ex5vxex1vyey5v. ~4.20!

This proves that the functiong(u) given in Eq.~4.18! is a solution satisfying Eq.~4.7!.
Next, we have to show that it also satisfies Eq.~4.8!. Using the standard Fourier series

expansion, the most general function satisfying Eq.~4.7! is found to be

g~u!52vx cos~u!12vy sin~u!1b01 (
n52

`

bn cos~nu!1 (
n52

`

an sin~nu!. ~4.21!

Using the orthonormality relations@cf. Eqs.~4.14!, ~4.15!, and~4.16!#, it is easily verified that this
is indeed a solution to Eq.~4.7!. Substituting this result into Eq.~4.8!, we get the relation

1

2p E
0

2p

du g2~u!52~vx
21vy

2!1b0
21 (

n52

`

~an
21bn

2!/2. ~4.22!

This is a minimum only if the following condition is satisfied:

b050; an5bn50 n.1. ~4.23!
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Imposing these conditions on the general solution@cf. Eq. ~4.21!#, we get back the particular
solution given in Eq.~4.18!. Thus, the functiong(u) displayed below is indeed the solution to the
generalized problem stated in Eqs.~4.7! and ~4.8!:

g~u!52vx cos~u!12vy sin~u!. ~4.24!

This solution satisfies the following relation@cf. Eqs.~4.22! and ~4.23!#

1

2p E
0

2p

du g2~u!52~vx
21vy

2!. ~4.25!

The discrete version of the generalized problem is given as follows: Given the vectorv @cf.
Eq. ~4.1!#, find valuesg(u i) ( i51,2,...,N) such that the following conditions are satisfied:

~ i! v5
1

N (
i51

N

g~u i !R~u i !ex ~4.26!

and

~ ii !
1

N (
i51

N

@g~u i !#
2 is a minimum. ~4.27!

Comparing this with our original problem@cf. Eqs. ~4.5! and ~4.6!#, we make the following
identification:

b i5g~u i !/N. ~4.28!

If we choose the anglesu i to be equally spaced over the interval@0,2p# @as we did in the original
problem, cf. Eq.~4.4!#, cos(u i) and sin(u i) still form an othogonal set. Therefore, the solution
g(u) @cf. Eq. ~4.24!# to the continuum problem is the solution even for the discrete version. The
only difference is thatg(u) is now evaluated only at the discrete set of anglesu i . Therefore, the
coefficientsb i satisfying Eqs.~4.5! and ~4.6! are given as follows@cf. Eqs.~4.24! and ~4.28!#:

b i5@2vx cos~u i !12vy sin~u i !#/N. ~4.29!

The discrete version of Eq.~4.25! is found to be

1

N (
i51

N

@g~u i !#
252~vx

21vy
2!. ~4.30!

Substituting Eq.~4.28! into this expression, we get the relation

(
i51

N

b i
25

2

N
~vx

21vy
2!. ~4.31!

We notice that the sum of the squares of the coefficients decreases as the numberN of basis
vectors increases. We also note that the basis vectorsei @cf. Eq. ~4.2!# form a discrete subgroup of
the rotation group if the anglesu i are equally spaced over the interval@0,2p#.

V. SOLUTION TO THE PROBLEM OF JOLT FACTORIZATION

In this section, we return to the problem of jolt factorization@cf. Eqs.~3.16! and ~3.17!#. In
Section II, we had concluded that the problem of obtaining a jolt factorization is equivalent to the
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determination of the coefficientsbn
( i ) subject to the conditions given in Eqs.~3.16! and ~3.17!.

Hence, we will achieve our goal if we determine thesebn
( i )’s. However, in the previous section, we

had discovered that the solution to such problems is facilitated by going over to the continuum
limit. Therefore, we do the same for the problem of jolt factorization and obtain the following
generalized problem.

Generalized Problem 2:Given an nth degree homogeneous polynomial fn and a subgroup G
of Sp~6,R! on which invariant integration is well defined, find the function g~u! such that the
following conditions are satisfied:

~ i! f n5E
G
du g~u!R̂~u!q1

n ~5.1!

and

~ ii ! E
G
du g2~u! is a minimum. ~5.2!

Here u denotes a general element of the group G and Rˆ ~u! denotes the Lie transformation
corresponding to u. All integrations are invariant integrations performed over the group G.

First we need to choose the groupG. We cannot takeG to be Sp~6,R! since Sp~6,R! is a
noncompact group and therefore its invariant integrals cannot be normalized. We therefore inte-
grate over a compact subgroup of Sp~6,R!. The largest compact subgroup of Sp~6,R! is the unitary
group U~3!. However, we prefer to use SU~3! since it is more convenient for our purposes. If
needed, it is possible to generalize the invariant integrals over SU~3! to those over U~3!.

Having chosenG to be SU~3!, we are now in a position to solve the problem. First, we notice
the strong similarity between the present problem and the model problem that was solved in the
previous section. Therefore, we will closely follow the procedure used to solve the model prob-
lem.

We need to determine the functiong(u). For this, we expand all quantities in terms of certain
basis vectors. Since we are working with SU~3!, it is natural that we use SU~3! basis vectors.
Appendix B defines these basis vectors in terms of phase space variables~see Ref. 7 for additional
details!. Further, one can show7 that any homogeneous polynomialf n in the phase space variables
can be decomposed in terms of these vectors.

We will denote byu j ;m& the basis vectors uniquely labeled according to their transformation
properties under SU~3!. Here, j denotes the collection of indicesj 1 and j 2 labeling the represen-
tation andm denotes the collection of indicesI , I 3 , andY labeling vectors within the represen-
tation. ~These basis vectors are analogous to the basis vectorsex andey of the model problem.!

We expand the given homogeneous polynomialf n in this basis as follows

f n5(
j ,m

fm
j u j ;m& j<n. ~5.3!

A word on the notation used here. Sincej stands for a collection of indicesj 1 and j 2 , j<n
actually means thatj 11 j 2<n. Here, thefm

j ’s are coefficients multiplying the basis vectors.@This
expansion is analogous to the one given in Eq.~4.1! for v in the model problem.# Thus, the left
hand side of Eq.~5.1! has been expanded in terms ofu j ;m&. However the right hand side is in
terms of an integral over SU~3!. Therefore, we will rewriteu j ;m& in terms of an integral over
SU~3! such that a direct comparison of the two sides is possible.

We proceed as follows. Suppose we can find a functiongm
j (u) satisfying the following

relation:

4524 Govindan Rangarajan: Symplectic completion of symplectic jets

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



E
SU~3!

du gm
j ~u!R̂~u!q1

n5u j ;m&, j<n. ~5.4!

In other words, the functiongm
j (u) projects out the basis vectoru j ;m&. ~This function is analogous

to the functionsgx andgy in the model problem.! Substituting this equation and Eq.~5.3! in Eq.
~5.1! we get

(
j ,m

fm
j E

SU~3!
du gm

j ~u!R̂~u!q1
n5E

SU~3!
du g~u!R̂~u!q1

n , j<n. ~5.5!

Comparing both sides, we see that

g~u!5(
j ,m

fm
j gm

j ~u!, j<n. ~5.6!

All that remains to be done is to determinegm
j (u) satisfying Eq.~5.4!. To do this, we rewrite

R̂(u)q1
n in terms of SU~3! basis vectors. As a first step, we expandq1

n in this basis~see Appendix
B for a proof of this result!:

q1
n5(

j<n
j j u j ;mj&. ~5.7!

We note two important features of this expansion~see Appendix B for a proof!. First, the coeffi-
cientsj j are all nonzero:

j jÞ0, j<n. ~5.8!

Second, each representation occursonly once. This is indicated by the fact that there is no
summation over the indicesm that label vectors within a representation. In summary, each rep-
resentation~labeled byj<n! occurs once and only once in the expansion ofq1

n. This result will
play a crucial role in the discussion that follows.

To get R̂(u)q1
n we act on both sides of Eq.~5.7! with R̂(u), obtaining the following result:

R̂~u!q1
n5(

j<n
j j R̂~u!u j ;mj&. ~5.9!

Since the basis vectorsu j ;m& form a complete set for eachj , they satisfy the relation

(
m

u j ;m&^ j ;mu51 ; j . ~5.10!

Inserting this result into the right hand side of Eq.~5.9!, we get the following relation:

R̂~u!q1
n5(

j ,m
j j u j ;m&^ j ;muR̂~u!u j ;mj&, j<n. ~5.11!

However, we have the following standard result from representation theory of SU~3!:

^ j ,muR̂~u!u j ;mj&5D mmj
j ~u!. ~5.12!

Substituting this into Eq.~5.11!, we obtain the result
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R̂~u!q1
n5(

j ,m
j jD mmj

j ~u!u j ;m&, j<n. ~5.13!

Inserting Eq.~5.13! into Eq. ~5.4!, we get the result

E
SU~3!

du gm
j ~u! (

j 8,m8
j j 8D m8mj 8

j 8 ~u!u j 8,m8&5u j ;m&, j<n. ~5.14!

The functionsD j (u) satisfy the following orthogonality relations

E
SU~3!

duD̄ ab
j ~u!D a8b8

j 8 ~u!5
1

d
d j j 8daa8dbb8 . ~5.15!

Here D̄ j is the complex conjugate of the representationD j and d5( j 111)( j 211)
3(( j 11 j 2)/211) is the dimension of the SU~3! representation labeled byj . Using these orthogo-
nality relations, it is easily verified that the expression given below forgm

j (u) satisfies Eq.~5.14!

gm
j ~u!5

d

j j
D̄ mmj

j ~u!, j<n. ~5.16!

We note that this expression is well defined sincej j is nonzero forj<n @cf. Eq. ~5.8!#.
Having determinedgm

j (u), we immediately obtain the required solutiong(u) @cf. Eq. ~5.6!#:

g~u!5(
j ,m

dfm
j

j j
D̄ mmj

j ~u!, j<n. ~5.17!

This is a solution satisfying Eq.~5.1!. We need to verify that it also satisfies Eq.~5.2!.
Again, we proceed as we did in the model problem. The most general solutiong(u) satisfying

Eq. ~5.1! is of the following form:

g~u!5(
j ,m

dfm
j

j j
D̄ mmj

j ~u!1 (
j 8,a,b

cab
j 8 D̄ ab

j 8 ~u!. ~5.18!

Here the indicesj 8, a, andb are required to satisfy the condition

E
SU~3!

duD̄ ab
j 8 ~u!R̂~u!q1

n50. ~5.19!

This condition ensures that the extra terms added to obtain the general solution do not contribute
to the integral in Eq.~5.1!. However, these extra terms do contribute to the integral in Eq.~5.2!.
This is easily seen by substituting the general solution given in Eq.~5.18! into Eq.~5.2!. We obtain
the relation

E
SU~3!

du g2~u!5(
j ,m

dUfm
j

j j
U21 (

j 8,a,b
ucab

j 8 u2. ~5.20!

The above expression is minimized only if the following conditions are satisfied:

cab
j 8 50 ; j 8,a,b. ~5.21!
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Imposing these conditions on the general solution@cf. Eq. ~5.18!#, we get back the particular
solution given in Eq.~5.17!. In summary, the functiong(u) given in Eq.~5.17! is the solution
satisfying both Eqs.~5.1! and ~5.2!.

Having solved the problem in the continuum limit, we now return to the discrete version.
Following the analogy with the model problem, we replace the integral over SU~3! by a sum over
a discrete subgroupG of SU~3!.7 Since the elements of the discrete subgroups satisfy the same
group properties as elements of the original group, the solution for the continuum problem would
still be a solution to the discrete problem. There are several discrete subgroups of SU~3! that could
be used. They are listed in detail in Appendix C. One should choose a subgroup of SU~3! whose
order is greater than or equal toK. The above procedure leads us to the following result:

f n5
1

K (
i51

K

g~ui !R̂~ui !q1
n , uiPG, ~5.22!

whereg(u) is given by Eq.~5.17!. Comparing this with Eq.~3.16!, we get the following solution
for the coefficientsbn

( i ):

bn
~ i !5g~ui !/K. ~5.23!

VI. OPTIMIZATION OF THE NUMBER OF JOLT MAPS

We achieved our primary goal of finding a jolt factorization of the mapMP in the previous
section. We now seek to optimize this solution. More specifically, we attempt to reduce the
number of jolt maps to a minimum.

We start with the following result from the previous section:

f n5E
SU~3!

du g~u!R̂~u!q1
n , ~6.1!

whereg(u) is given by Eq.~5.17!. Here, we take a single jolt monomialq1
n and act on it with the

group SU~3!. An alternative procedure is considered below. We will show that it reduces the
number of jolt maps required by a substantial amount.

First, we factor SU~3! into the orthogonal group SO~3! and SU~3!/SO~3!. The group SO~3! is
taken to be the rotation group in theq1 , q2 , q3 space. We will provide the reason for employing
this factorization later. For the sake of notational convenience, let us denote SU~3!/SO~3! by G8.
To proceed further, we writeu @belonging to the group SU~3!# as the following product of
elements belonging toG8 and SO~3!:

u5c•r , uPSU~3!, cPG8, rPSO~3!. ~6.2!

Then, it can be shown12 that the following relation holds between the measuredu for SU~3! and
the measuresdc anddr for G8 and SO~3!, respectively:

du5dc•dr. ~6.3!

Substituting these results into the expression forf n @cf. Eq. ~6.1!#, we obtain the relation

f n5E
G8
dcE

SO~3!
dr g~c•r !R̂~c•r !q1

n . ~6.4!

Letting the SO~3! part of R̂(c•r ) act first onq1
n, we get the following result:
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R̂~c•r !q1
n5R̂~c! (

k51

N8~n!

dk~r !Pk
~n!~q1 ,q2 ,q3!. ~6.5!

Here we have used the following relation:

R̂~r !q1
n5 (

k51

N8~n!

dk~r !Pk
~n!~q1 ,q2 ,q3!, rPSO~3!, ~6.6!

wherePk
(n)(q1 ,q2 ,q3) denotes anth degree basis monomial in variablesq1 , q2 , andq3 :

Pk
~n!~q1 ,q2 ,q3!5q1

n1q2
n2q3

n3, n1>n2>n3 , n11n21n35n. ~6.7!

The numberN8(n) of nth degree basis monomial in three variables is given by the following
relation:7

N8~n!5S n12
n D . ~6.8!

Substituting Eq.~6.5! into Eq. ~6.4!, we get the relation

f n5E
G8
dcR̂~c!E

SO~3!
dr g~c•r ! (

k51

N8~n!

dk~r !Pk
~n!~q1 ,q2 ,q3!. ~6.9!

Next, we define a functionhk(c) by the following relation:

hk~c![E
SO~3!

dr g~c•r ! (
k51

N8~n!

dk~r !. ~6.10!

We have already calculatedg(c•r ). It is nothing but the functiong(u) given in Eq.~5.17!. Thus,
hk(c) is well defined and can be calculated. Inserting Eq.~6.10! into Eq. ~6.9!, we obtain the
following result:

f n5E
G8
dcR̂~c! (

k51

N8~n!

hk~c!Pk
~n!~q1 ,q2 ,q3!. ~6.11!

Next, we need to obtain the discrete version of the above equation. This is again done by
going over to a discrete sum over SU~3!/SO~3!. Starting from a discrete subgroup of SU~3!, one
can go over to SU~3!/SO~3! following the procedure outlined in Appendix C. We obtain the
following solution:

f n5E
G8
dcR̂~c! (

k51

N8~n!

hk~c!Pk
~n!~q1 ,q2 ,q3!5

1

K~G8! (
l51

K~G8!

R̂~cl ! (
k51

N8~n!

hk~cl !Pk
~n!~q1 ,q2 ,q3!.

~6.12!

Here,K(G8) gives the number of jolt maps required.
We now turn to the task of determining the number of jolt mapsK(G8). It depends onG8 as

indicated. We have already seen in Section V thatK is determined by looking at the equation for
n equal toP ~the maximum order!. Settingn equal toP in the above expression, we obtain the
following result:
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f P5
1

K~G8! (
l51

K~G8!

R̂~cl ! (
k51

N8~P!

hk~cl !Pk
~P!~q1 ,q2 ,q3!. ~6.13!

Since thePth degree homogeneous polynomialf P on the left hand side hasN(P) independent
coefficients@cf. Eq. ~3.14!#, we needN(P) linearly independent vectors on the right hand side.
Only then, we can express anyf P in terms of these vectors.

We are now in a position to justify our decision to factor SU~3! into SO~3! and SU~3!/SO~3!.
Suppose we had not factorized SU~3! as above. Then the analogue of the above equation would be

f P5
1

K8 (
k51

K8

g~ui !R̂~ui !q1
P , ~6.14!

whereui belongs to a discrete subgroup of SU~3!. Since we needN(P) independent coefficients
to describef P , K8 has to equalN(P). On the other hand, with factorization we need onlyN9(P)
jolts in Eq. ~6.13! where

N9~P!5N~P!/N8~P!. ~6.15!

This can be seen as follows. Equation~6.13! can be rewritten to give

f P5
1

K~G8! (
l51

K~G8!

R̂~cl !Hl~q1 ,q2 ,q3!, ~6.16!

where

Hl~q1 ,q2 ,q3!5 (
k51

N8~P!

hk~cl !Pk
~P!~q1 ,q2 ,q3!. ~6.17!

Now, the linear combination ofN8(P) jolt polynomials given byHl(q1 ,q2 ,q3) is again a jolt
polynomial. Since the jolt polynomialHl(q1 ,q2 ,q3) itself hasN8(P) independent coefficients,
K(G8) needs to be equal only toN9(P) @cf. Eq. ~6.15!# in order to give a total ofN(P) indepen-
dent coefficients. On the other hand, in Eq.~6.14!, we only have a single jolt monomialq1

P and
hence a single coefficient. Therefore,K8 has to equalN(P) in this case.

The above discussion demonstrates that a fewer number of jolts are required when SU~3! is
factored intoG8 and SO~3!. We now argue that factorizing SU~3! into a different set of factors
does not give an even better result. First, we note thatq1 , q2 , q3 space~or equivalently,p1 , p2 ,
p3 space! gives the maximal subspace of commuting jolt polynomials. We cannot choose any
group larger than SO~3! since it is shown in Appendix D that SO~3! is the largest subgroup of
Sp~6,R! that leaves theq1 , q2 , q3 space invariant. If we choose a group smaller than SO~3!, we
will not get all theN8(P) jolt monomials. ThenK(G8) might have to be larger to getN(P)
independent coefficients. Therefore, factoring SU~3! intoG8 and SO~3! does appear to be the best
compromise.

For P equal to 6,N9(P) is equal to 17 from the above procedure@cf. Eqs.~6.15!, ~3.14! and
~6.8!#. From Appendix C, we find that starting from~a similarity transformation of! a discrete
subgroup of order 108 of SU~3!, one can go over to a set of 18 elements belonging to SU~3!/
SO~3!. Thus, the number of jolt mapsK(G8) required forP56 is 18. For this case, we have
verified that we do get the required number of linearly independent vectors on the right hand side
of Eq. ~6.13!. Irwin8 factorizesG as U~1!3U~1!3U~1!. Using this factorization, forP56, one
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needs 27 jolt maps. Thus, we find that the number of jolt maps required in our case is less. When
using our factorization for long-term stability analysis of Hamiltonian systems, this can lead to
substantial savings in computer time.

VII. SUMMARY

When a nonlinear symplectic map is used in numerical calculations, one is forced to truncate
the map at a given order in phase space variables. This truncated map~also known as a symplectic
jet! violates the symplectic condition and typically exhibits spurious damping or growth when
used to analyze long-term behavior of particle trajectories. We therefore approximated the map by
a finite product of symplectic jolt maps which constitutes a symplectic completion of the jet. The
action of jolt maps on phase space functions can be evaluated exactly and this should lead to better
predictions of long-term stability in complicated Hamiltonian systems. Further, our jolt factoriza-
tion was optimized so that the number of jolt maps required was significantly reduced. This can
result in substantial savings in computer time when used for long-term stability studies. Finally,
for P56, we explicitly demonstrated that a fewer number of jolt maps were required as compared
to Irwin’s procedure.8 We believe this will be true even for a generalP since we are using a bigger
group.
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APPENDIX A: EXAMPLES OF JOLT MAPS

Proof of Theorem 1: ~i! The equality in Eq.~2.2! follows from Eq.~2.4! and properties of Lie

transformations.9 To show thate:R̂q1
n : is a jolt map, we start by making the following identifica-

tion:

exp~ :R̂q1
n : !5exp~ :~R̂q1!

n: !, ~A1!

where@cf. Eq. ~2.4!#

R̂q15R11q11R12p11•••1R16p3 . ~A2!

The action of the Lie operator :(R̂q1)
n: on the phase space variables is given by the relations

:~R̂q1!
n:zi52n~R̂q1!

n21R1i11 , i51,3,5,
~A3!

:~R̂q1!
n:zi5n~R̂q1!

n21R1i21 , i52,4,6.

Now, consider the action of :(R̂q1)
n:2 on the phase space variables. Using Eq.~A3! we obtain

the following result:

:~R̂q1!
n:2zi52nR1i11@~R̂q1!

n,~R̂q1!
n21#, i51,3,5,

~A4!
:~R̂q1!

n:2zi5nR1i21@~R̂q1!
n,~R̂q1!

n21#, i52,4,6.

But9

@~R̂q1!
n,~R̂q1!

n21#5R̂@q1
n ,q1

n21#50. ~A5!
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This proves thate:R̂q1
n : is a jolt map.

~ii ! We note that the equality in Eq.~2.3! follows from Eq. ~2.4! and properties of Lie
transformations.9 We also note that the following equality is satisfied:9

R̂f ~q1 ,q2 ,q3!5 f ~R̂q1 ,R̂q2 ,R̂q3!. ~A6!

Consider

:R̂f ~q1 ,q2 ,q3!:zi5@ f ~R̂q1 ,R̂q2 ,R̂q3!,zi #. ~A7!

Since R̂qi is linear in the phase space variables, the right hand side can be a function only of
R̂qi ’s. Denote this function byh. Thus

:R̂f ~q1 ,q2 ,q3!:zi5h~R̂q1 ,R̂q2 ,R̂q3!5R̂h~q1 ,q2 ,q3!, ~A8!

where the last equality follows from standard properties of Lie transformations.9

Next, consider the action of :R̂f :2 on the phase space variables. Using Eq.~A8! we get

:R̂f ~q1 ,q2 ,q3!:
2zi5@R̂f ~q1 ,q2 ,q3!,R̂h~q1 ,q2 ,q3!#. ~A9!

Again using properties of Lie transformations,9 we obtain

:R̂f ~q1 ,q2 ,q3!:
2zi5R̂@ f ~q1 ,q2 ,q3!,h~q1 ,q2 ,q3!#. ~A10!

Sinceqi ’s commute with one another, the Poisson bracket on the right hand side is identically

zero. Therefore,e:R̂f (q1 ,q2 ,q3): is indeed a jolt map. This completes the proof of the theorem.

APPENDIX B: REPRESENTATIONS OF SU(3) CARRIED BY q1
(n )

In this appendix, we prove a theorem regarding the representations of SU~3! carried by the
monomialq1

n. The proof will be a constructive one. Therefore, as a by-product, we obtain the
explicit decomposition ofq1

n in terms of the SU~3! basis vectors. We end this appendix with an
example. Using the formulas derived during the course of proving the theorem, we decomposeq1

4

in terms of the SU~3! basis vectors.
Let us denote the SU~3! basis vectors byu j 1 , j 2 ;I ,I 3 ,Y&. Here j 1 and j 2 label the irreducible

representations of SU~3! andI , I 3 andY label weight vectors within the irreducible representation.
It can be shown13–15 that these basis vectors are associated with harmonic functions on the
5-sphereS5. The 5-sphere is defined by the relation

Z1*Z11Z2*Z21Z3*Z35r 251, ~B1!

where

Zj[
1

A2
~qj1 ip j !, ~B2!

Zj*[
1

A2
~qj2 ip j !. ~B3!

Since we are interested in functions defined on the 5-spaceS5, it is convenient to parametrize
S5 in terms of polar coordinatesf1, f2, f3, u andj. These coordinates are related to the complex
phase space variables by the following relations:
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Z15reif1 cosu, ~B4!

Z25reif2 sin u cosj, ~B5!

Z35reif3 sin u sin j, ~B6!

where

0<f1 ,f2 ,f3<2p; 0<u,j<p/2. ~B7!

It can be shown15 that states within the irreducible representation (j 1 , j 2) can be associated
with harmonic functions defined onS5 as shown below:

u j 1 , j 2 ;I ,I 3 ,Y&5
1

sin u
d

~1/6!~ j 12 j 223Y16I13!,~1/6!~ j 12 j 223Y26I23!

~1/2!~ j 11 j 211!
~2u!d~1/3!~ j 12 j 2!11/2Y,I3

~ I !

3~2j!e~1/3!i ~ j 12 j 2!~f11f21f3!eiI 3~f22f3!e~1/2!iY~22f11f21f3!. ~B8!

Here dm8,m
( j ) (b) are the usuald-functions that characterize the irreducible representation (j ) of

SU~2!. The sign convention for thed-function is taken to be that given in Edmonds,16 i.e.,

dm8,m
~ j !

~b!5^ jm8uexp~1 ibJy /h!u jm&. ~B9!

whereu jm& denotes states within the representation (j ) of SU~2!.
Thed-functions can be computed using the following formula:17

dm8,m
~ j !

~b!5@~ j1m8!! ~ j2m8!! ~ j1m!! ~ j2m!! #1/2

3(
s

~21!sS cosb

2 D 2 j1m2m822sS sin b

2 Dm82m12s

~ j1m2s!!s! ~m82m1s!! ~ j2m82s!!
, ~B10!

where the summation indexs ranges over all integral values such that the factorials in the de-
nominator are non-negative. Thed-functions can also be computed using the following recursion
relation:17

dm8,m
~ j !

~b!5S j2m8

j2m D 1/2dm811/2,m11/2
~ j21/2!

~b!cos
b

2
1S j1m8

j2m D 1/2dm821/2,m11/2
~ j21/2!

~b!sin
b

2
, if jÞm.

~B11!

If j is equal tom, the following relation can be used:

dm8, j
~ j !

~b!5~21! j2m8F ~2 j !!

~ j1m8!! ~ j2m8!! G
1/2S cosb

2 D j1m8S sin b

2 D j2m8
. ~B12!

Two additional formulas which facilitate computation of thed-functions are given below

dm8,m
~ j !

~b!5~21!m82mdm,m8
~ j !

~b!, ~B13!

dm8,m
~ j !

~b!5~21!m82md2m8,2m
~ j !

~b!, ~B14!

We are now in a position to state and prove the theorem on the SU~3! content ofq1
n.
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Theorem 2:The monomial q1
n contains only those representations( j 1, j 2) of SU~3! for which

j 11 j 2 is less than or equal to n. Moreover, each such representation occurs once and only once
in q1

n.
Proof: From Eq.~B4!, we obtain the following expression forq1

n in terms of the coordinates
that parametrize the 5-sphere:

q1
n52n/2~ReZ1!

n52n/2r n cosn f1 cos
n u. ~B15!

However, cosn f1 satisfies the relation18

cosn f15 (
j 11 j 25n
j 1> j 2

aj 1 j 2 cos@~ j 12 j 2!f1#, ~B16!

where

aj 1 j 25
1

2n21 S nj 2D , j 11 j 25n, j 1. j 2 , ~B17!

aj 1 j 25
1

2n S nj 2D , j 11 j 25n, j 15 j 2 . ~B18!

Notice that we have denoted the summation indices byj 1 and j 2 in anticipation of results to come.
Substituting Eq.~B16! into Eq. ~B15!, we obtain the result

q1
n52n/2r n (

j 11 j 25n
j 1> j 2

aj 1 j 2 cos@~ j 12 j 2!f1#cos
j 11 j 2 u. ~B19!

The above result has to be expressed in terms of the SU~3! state vectors given by
u j 1 , j 2 ;I ,I 3 ,Y& @cf. Eq. ~B8!#. However,q1

n does not depend on the coordinatesf2, f3, and j.
Therefore, only those SU~3! state vectors that satisfy the following conditions can occur in the
expansion ofq1

n:

I5I 350, Y522~ j 12 j 2!/3. ~B20!

Imposing these conditions on a generalu j 1 , j 2 ;I ,I 3 ,Y& @cf. Eq. ~B8!#, we obtain the relation

u j 1 , j 2 ;0,0,22~ j 12 j 2!/3&5
1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 211!
~2u!ei ~ j 12 j 2!f1. ~B21!

As expected, these vectors do not depend on the coordinatesf2, f3, and j. The d-function
appearing in the above expression satisfies the following property@cf. Eqs.~B13! and ~B14!#:

d
~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 211!
~2u!5d

~1/2!~ j 22 j 111!,~1/2!~ j 22 j 121!

~1/2!~ j 21 j 111!
~2u!. ~B22!

That is, this function is invariant under the exchange of the indicesj 1 and j 2 . Using this property
and Eq.~B21!, we obtain the following result:

1
2 @ u j 1 , j 2 ;0,0,22~ j 12 j 2!/3&1u j 2 , j 1 ;0,0,22~ j 22 j 1!/3&]

5cos@~ j 12 j 2!f1#
1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 211!
~2u!, j 1> j 2 . ~B23!
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Here we have also used the standard relation

1
2 @ei ~ j 12 j 2!f11e2 i ~ j 12 j 2!f1#5cos@~ j 12 j 2!f1#. ~B24!

Comparing Eq.~B23! with the summand on the right hand side of Eq.~B19!, we note that we
somehow have to generate the function cosj11j2 u out of thed-functions by taking appropriate
linear combinations. In order to accomplish this, we first need explicit expressions for the
d-functions. From Eq.~B10!, we get the following result:

1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 211!
~2u!

5@ j 1! ~ j 111!! j 2! ~ j 211!! #1/2(
s50

j 2 ~21!s~cosu! j 11 j 222s~sin u!2s

s! ~s11!! ~ j 12s!! ~ j 22s!!
, j 1> j 2 .

~B25!

Using the standard binomial theorem, we obtain the relation

~sin u!2s5~12cos2 u!s5 (
k50

s S skD ~21!s2k~cos2 u!s2k. ~B26!

Substituting this relation into Eq.~B25!, we get

1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 211!
~2u!

5@ j 1! ~ j 111!! j 2! ~ j 211!! #1/2(
s50

j 2 1

s! ~s11!! ~ j 12s!! ~ j 22s!!

3 (
k50

s S skD ~21!k~cosu! j 11 j 222k, j 1> j 2 . ~B27!

We had noticed earlier @cf. Eq. ~B23!# that the sum of the state vectors
u j 1 , j 2 ;0,0,22( j 12 j 2)/3& and u j 2 , j 1 ;0,0,22( j 22 j 1)/3& is proportional to cos[(j 12 j 2)f1] @cf.
Eq. ~B23!#. This remains true even if we make the following substitution:

j 1→ j 12 i , j 2→ j 22 i , ~B28!

wherei is some integer. More specifically, we have the following relation:

1
2 @ u j 12 i , j 22 i ;0,0,22~ j 12 j 2!/3&1u j 22 i , j 12 i ;0,0,22~ j 22 j 1!/3&]

5
1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 21122i !
~2u!cos@~ j 12 j 2!f1#, j 1> j 2 , i< j 2 , ~B29!

where
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1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 21122i !
~2u!

5@~ j 12 i !! ~ j 1112 i !! ~ j 22 i !! ~ j 2112 i !! #1/2

3 (
s50

j 22 i
1

s! ~s11!! ~ j 12s2 i !! ~ j 22s2 i !! (
k50

s S skD
3~21!k~cosu! j 11 j 222k22i , j 1> j 2 . ~B30!

Therefore, the most general combination of vectors that still gives a quantity proportional to
cos[(j 12 j 2)f1] is as follows:

2n/2r n(
i50

j 2 Ai
~ j 1 , j 2!

2
@ u j 12 i , j 22 i ;0,0,22~ j 12 j 2!/3&1u j 22 i , j 12 i ;0,0,22~ j 22 j 1!/3&]

52n/2r n cos@~ j 12 j 2!f1#(
i50

j 2

Ai
~ j 1 , j 2! 1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 21122i !
~2u!, j 1> j 2 .

~B31!

Comparing the right hand side of the above equation with the summand in the expression for
q1
n @cf. Eq. ~B19!#, we obtain the condition

(
i50

j 2

Ai
~ j 1 , j 2! 1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 21122i !
~2u!5cosj 11 j 2u. ~B32!

In other words, we need to find coefficientsAi
( j 1 , j 2) such that the above condition is satisfied.

Then, we would have succeeded in decomposingq1
n in terms of the SU~3! state vectors. We

proceed as follows. First, we interchange the summations over indicess and k in Eq. ~B30! to
obtain the relation

1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 21122i !
~2u!

5Bi
~ j 1 , j 2! (

k50

j 22 i

~21!k~cosu! j 11 j 222k22i

3 (
s5k

j 22 i
1

s! ~s11!! ~ j 12s2 i !! ~ j 22s2 i !! S skD , j 1> j 2 , i< j 2 , ~B33!

where

Bi
~ j 1 , j 2!

5@~ j 12 i !! ~ j 1112 i !! ~ j 22 i !! ~ j 2112 i !! #1/2. ~B34!

Inserting Eq.~B33! into Eq. ~B32!, we get the condition

(
i50

j 2

Ai
~ j 1 , j 2!Bi

~ j 1 , j 2! (
k50

j 22 i

~21!k~cosu! j 11 j 222k22i

3 (
s5k

j 22 i
1

s! ~s11!! ~ j 12s2 i !! ~ j 22s2 i !! S skD5cosj 11 j 2u, j 1> j 2 . ~B35!

4535Govindan Rangarajan: Symplectic completion of symplectic jets

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The coefficientCl
( j 1 , j 2) of cosj11j222l u on the left hand side of the above equation is given by

the expression~wherel5 i1k!

Cl
~ j 1 , j 2!

5 (
k50

l

~21!kAl2k
~ j 1 , j 2!Bl2k

~ j 1 , j 2!

3 (
s5k

j 22 l1k
1

s! ~s11!! ~ j 12s2 l1k!! ~ j 22s2 l1k!! S skD , j 1> j 2 . ~B36!

The above expression can be simplified by using the following substitution

s85s2k. ~B37!

Making this substitution in Eq.~B36!, we get the relation

Cl
~ j 1 , j 2!

5 (
k50

l
~21!k

k!
Al2k

~ j 1 , j 2!Bl2k
~ j 1 , j 2! (

s850

j 22 l
1

s8! ~s81k11!! ~ j 12s82 l !! ~ j 22s82 l !!
, j 1> j 2 .

~B38!

In order to satisfy Eq.~B35!, we need to impose the following conditions

C0
~ j 1 , j 2!

51, ~B39!

Cl
~ j 1 , j 2!

50, l51,2,...,j 2 . ~B40!

Inserting the expression forCl
( j 1 , j 2) into the above equations, we obtain the following results:

A0
~ j 1 , j 2!

5
1

B0
~ j 1 , j 2!S00

~ j 1 , j 2! ,

Al
~ j 1 , j 2!

5
1

Bl
~ j 1 , j 2!Sl0

~ j 1 , j 2! (
k51

l
~21!k11

k!
Al2k

~ j 1 , j 2!Bl2k
~ j 1 , j 2!Slk

~ j 1 , j 2! , 1< l< j 2 , ~B41!

where

Slk
~ j 1 , j 2!

5 (
s850

j 22 l
1

s8! ~s81k11!! ~ j 12s82 l !! ~ j 22s82 l !!
. ~B42!

From Eqs.~B19!, ~B31!, and~B32!, we finally get the following decomposition forq1
n:

q1
n52n/2r n (

j 11 j 25n
j 1> j 2

aj 1 j 2
2

3(
i50

j 2

Ai
~ j 1 , j 2!

@ u j 12 i , j 22 i ;0,0,22~ j 12 j 2!/3&1u j 22 i , j 12 i ;0,0,22~ j 22 j 1!/3&].

~B43!
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We note that all representations (j 1 , j 2) ~with j 11 j 2 less than or equal ton! appear in the
decomposition~since the coefficientsAi

( j 1 , j 2)aj 1 j 2 are seen to be nonzero for all validj 1 , j 2 , and
i !. Furthermore, from each representation (j 1 , j 2), only one vectoru j 1 , j 2 ;0,0,22( j 12 j 2)/3& ap-
pears in the decomposition. This proves the theorem.

As an example, we obtain the decomposition ofq1
4. Using the above formulas we get the

following results:

a4051/8, a3151/2, a2253/8; ~B44!

A0
~4,0!51/A5, A0

~3,1!51/5A2, A1
~3,1!5A3/5; ~B45!

A0
~2,2!51/10, A1

~2,2!54/15, A2
~2,2!51/6. ~B46!

Substituting these results into Eq.~B43!, we obtain the following decomposition

q1
45

r 4

4A5
@ u4,0;0,0,28/3&1u0,4;0,0,8/3&]1

r 4

5A2
@ u3,1;0,0,24/3&1u1,3;0,0,4/3&]

1
A3r 4

5
@ u2,0;0,0,24/3&1u0,2;0,0,4/3&]1

3

20
r 4u2,2;0,0,0&1

2

5
r 4u1,1;0,0,0&

1
1

4
r 4u0,0;0,0,0&. ~B47!

APPENDIX C: DISCRETE SUBGROUPS OF SU(3)

In this appendix, we study the discrete subgroups of SU~3! which are required in Sections V
and VI. We start by defining the following matrices:

A~a,b!5S eia 0 0

0 eib 0

0 0 e2 i ~a1b!
D , ~C1!

B~a,b!5S eia 0 0

0 0 eib

0 ei ~p2a2b! 0
D , ~C2!

E~a,b!5S 0 eia 0

0 0 eib

e2 i ~a1b! 0 0
D , ~C3!

V5
1

A3i S 1 1 1

1 v v2

1 v2 v
D , ~C4!

V85
1

A3i S 1 1 v2

1 v v

v 1 v
D , ~C5!
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W5
1

2 S 21 m2 m1

m2 m1 21

m1 21 m2

D , ~C6!

Z5
21

A7i S a b c

b c a

c a b
D , ~C7!

where

v5ei2p/3, ~C8!

m15
1
2 ~211A5!, m25

1
2 ~212A5!, ~C9!

a5j42j3, b5j22j5, ~C10!

c5j2j6, j751. ~C11!

The discrete subgroups of SU~3! are listed below along with their generators.19,20First, we list
the crystal-like subgroups. They are denoted byG(n) wheren denotes the order of the group:

~1! G(60):A(0,p), E(0,0), andW;
~2! G(108):A(0,2p/3), E(0,0), andV;
~3! G(168):A(2p/7,4p/7), E(0,0), andZ;
~4! G(216):A(0,2p/3), E(0,0),V, andV8;
~5! G(648):A(0,2p/3), E(0,0),V, andA(4p/9,4p/9);
~6! G(1080):A(0,p), E(0,0),W, andB(p,5p/3).

Next, we list the dihedral-like groups and the disconnected groups. They are denoted byD(n)
wheren denotes the order of the group:

~1! D(3m2):A( j2p/m,k2p/m) andE(0,0) wherej andk are integers;
~2! D(6m2):A( j2p/m,k2p/m), E(0,0), andB( j2p/m,k2p/m) where j andk are integers;
~3! D(3`2):A(a,b) andE(0,0);
~4! D(6`2):A(a,b), E(0,0), andB(a,b).

In Section VI, we will also be interested in discrete elements of SU~3!/SO~3!. We obtain
discrete elements of SU~3!/SO~3! by the following procedure. We start with a discrete subgroup
G(n) of SU~3!. Next, we identify the subgroupG8(n8) of G(n) that belongs to SO~3! @wheren8
is the order ofG8(n8)#. This is easily accomplished once it is realized that an elementG iPG(n)
belongs to SO~3! if and only if all its matrix elements are real. For example, it is seen that all of
G~60! also belongs to SO~3! since each of its elements is real. Next, we construct theG(n)/G8(n8)
as follows. For every elementG i belonging toG(n), we form the right cosetG8(n8)G i . There will
be n/n8 distinct right cosets. From each distinct coset, we select one element to be the coset
representative. Thesen/n8 coset representatives belong toG(n)/G8(n8). Thus we get a collection
of n/n8 discrete elements of SU~3!/SO~3!. Values forn8 andn/n8 for the various crystal groups
are given below:

~1! G(60):n8560, n/n851;
~2! G(108):n856, n/n8518;
~3! G(168):n856, n/n8528;
~4! G(216):n856, n/n8536;
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~5! G(648):n856, n/n85108;
~6! G(1080):n8560, n/n8518.

Finally, we should mention that we rarely make direct use of the complex 333 matricesG i

belonging toG(n). We need objects that act on the six dimensional phase space. Therefore, we
first embed these complex 333 matrices into the compact part of Sp~6,R! following the procedure
outlined in Appendix D. The real 636 matrices that are obtained as a result of this embedding
~and the Lie transformations corresponding to these matrices! can act on phase space variables. It
is these real 636 matrices that are used in Sections V and VI.

APPENDIX D: LARGEST SUBGROUP OF SU(3) THAT LEAVES COORDINATE SPACE
INVARIANT

In this appendix, we prove a theorem satisfied by the special orthogonal group SO~3!. The
result of this theorem will be used in Section VI. Throughout this appendix, we will work in the
rearranged basis of phase space variables given byz5(q1 ,q2 ,q3 ,p1 ,p2 ,p3) for convenience.
Symplectic matrices in the rearranged basis are related to those in the original basis by a simple
similarity transformation.

Theorem 3:Let V(m) be the vector space formed by homogeneous polynomials of degree m in
variables q1, q2, and q3. Then,SO~3! is the largest subgroup ofSU~3! that leaves V(m) invariant.

Proof:We first prove the following lemma.
Lemma 1:SO~3! is the largest subgroup ofSU~3! that leaves V(1) invariant.
Proof: Consider a complex 333 matrix R belonging to SU~3!. It satisfies the following

conditions:

R†5R21; detR51. ~D1!

It can be decomposed into its real and imaginary parts as follows

R52D1 iC, ~D2!

whereC andD are real 333 matrices.
Since the matrixR has to act on functions of phase space variables, we first need to embed it

in the compact part of Sp~6,R!. Following the procedure outlined in Ref. 7, the real 636 sym-
plectic matrixUs ~in the rearranged basis! corresponding to the unitary matrixR is given by the
relation

Us5VsSR 0

0 R* D ~Vs!21, ~D3!

whereVs is given by9

Vs5
1

A2
S I i I

i I I D . ~D4!

Here I is a 333 identity matrix. Upon evaluating this equation, we obtain the following result:

Us5S 2D C

2C 2D D . ~D5!

Next, consider a general 6-vectorvs belonging toV(1). It is given by the relation

vs5~v3
s,03! ~D6!
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wherev3
s and 03 are 3-vectors defined as follows:

v3
s5~a,b,c!, a,b,cPR ~D7!

035~0,0,0!. ~D8!

The action ofUs on vs is given by the following relation:

Usvs5S 2Dv3
s

2Cv3
s D . ~D9!

Therefore,Usvs belongs toV(1) if and only if the following condition is satisfied@cf. Eq. ~D6!#

Cv3
s50. ~D10!

Sincev3
s is an arbitrary 3-vector, this implies thatC is a zero matrix:

C50. ~D11!

Substituting Eq.~D11! into Eq.~D5!, the most general element belonging to the compact part
of Sp~6,R! that leavesV(1) invariant is found to have the following form:

U
*
s 5S 2D 0

0 2D D . ~D12!

We convert this into an element of SU~3! using the following procedure.8 Given a 636 matrixUs

belonging to the compact part of Sp~6,R!, one can extract the complex 333 matrixR belonging to
SU~3! from it through the following relation:

~Vs!21UsVs5SR 0

0 R* D . ~D13!

From the above equation, we obtain the SU~3! elementR
*
corresponding toU

*
s as

R*52D. ~D14!

However, since this is supposed to be an element of SU~3!, it has to satisfy the conditions given
in Eq. ~D1!. Imposing these conditions onR

*
and noting thatR

*
is real, we obtain the following

restrictions onR
*
:

R̃*5R
*
21; detR*51, ~D15!

whereR̃
*
is the transpose ofR

*
. But these are precisely the conditions satisfied by an element of

SO~3!. This proves the lemma.
We now return to the proof of the theorem. Consider an elementPk

(m) belonging toV(m):

Pk
~m!5a1q1

m1a2q1
m21q21•••1aNq3

m , ~D16!

where@cf. Eq. ~6.8!#

N5Sm12
m D . ~D17!
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The action ofÛs ~the Lie transformation corresponding to the matrixUs! on Pk
(m) is given as

follows:

ÛsPk
~m!5a1~Û

sq1!
m1a2~Û

sq1!
m21~Ûsq2!1•••1aN~Ûsq3!

m. ~D18!

Therefore, the condition that ‘‘Us leavesV(1) invariant’’ is sufficient to ensure thatÛs leavesV(m)

invariant, i.e.,

ÛsV~1!#V~1!⇒ÛsV~m!#V~m!. ~D19!

To complete the proof of the theorem, we need to show that this is also a necessary condition.
Suppose thatÛsV(1)#” V(1). Then, there exists a vectorv

*
s belonging toV(1) that is mapped

out of V(1) under the action ofÛs, i.e.,

Ûsv
*
s P” V~1!. ~D20!

This can be rewritten as follows

Ûs~Û1
s!21Û1

sv
*
s P” V~1!, ~D21!

whereÛ1
s is chosen to satisfy the condition

Û1
sv
*
s 5q1 . ~D22!

This is always possible sincev
*
s is effectively a vector in the three dimensionalq12q22q3 space

and therefore can be rotated to orient it along theq1 axis. Since the transformationÛ1
s that brings

about this rotation belongs to the subgroup SO~3!, Ûs(Û1
s)21 ~or more accurately, the unitary

matrix corresponding to this transformation! still belongs to SU~3!. In summary, ifÛsV(1)#” V(1),
there exists a transformationÛ2

s @equal toÛs(Û1
s)21# that mapsq1 out of V

(1):

Û2
sq1P” V

~1!. ~D23!

Now, consider the action ofÛ2
s on the vectorq1

m belonging toV(m):

Û2
sq1

m5~Û2
sq1!

m. ~D24!

SinceÛ2
sq1 does not belong toV

(1), it will consist of at least one nonzero term containingp1 , p2 ,
or p3 . Consequently, from the above equation, evenÛ2

sq1
m will contain at least one such term.

Therefore, the following equation is seen to be true:

Û2
sq1

mP” V~m!. ~D25!

Since we have produced one vector which leavesV(m) under the action ofÛ2
s, we have succeeded

in proving the following statement:

ÛsV~1!#” V~1!⇒ÛsV~m!#” V~m!. ~D26!

Combining Eqs.~D19! and ~D26!, we see that the condition ‘‘Ûs leavesV(1) invariant’’ is
both necessary and sufficient to ensure thatÛs leavesV(m) invariant. Since SO~3! is the largest
subgroup of SU~3! satisfying the first condition, it is also the largest subgroup of SU~3! that leaves
V(m) invariant. This completes the proof of the theorem.
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We give a rigorous proof of the existence of solutions to the nonlinear gauge
conditions on orthonormal frames introduced by Nester to prove the positive en-
ergy theorem in general relativity. The proof holds in all dimensionsn>2. If the
second de Rham cohomology group vanishes one also proves uniqueness. ©1996
American Institute of Physics.@S0022-2488~96!00208-3#

I. INTRODUCTION

Nester’s proof of the positivity of the gravitational energy in general relativity makes use of
gauge conditions which must be satisfied by a global orthonormal frame on the initial-value
threefold.1–3 These gauge conditions can be expressed in terms of a nonlinear elliptic operator
acting on orthogonal automorphisms of the cotangent bundle. In Ref. 4 Nester generalizes the
gauge conditions to Riemannian manifolds of any dimensionn>2, and gives some arguments to
support an existence and uniqueness result for the linearized problem which should hold for
geometries that in some suitable sense are not too far from the Euclidean geometry.

In this paper we provide a rigorous existence result for the full nonlinear problem, which
holds for any parallelizable Riemannian geometry satisfying a suitable condition of asymptotic
flatness~cf. Definition 2.3 below!, and anyn>2. If the second de Rham cohomology group
vanishes, one also has uniqueness.

We consider a connected parallelizable Riemannian manifold (M ,g) with a fixed orientation.
Let $ei% be a global orthonormal frame, and let$u i% be the dual coframe field. We associate with
the frame$ei% the differential forms

q̃5 i eidu i , q5 1
2d ikdu i`uk. ~1.1!

Nester’s gauge conditions are that the formsq̃ and!q are closed,

dq̃5d!q50,

where! is the Hodge duality operator. One therefore looks for anSO(n)-valued functionRi
k on

M such that the formsqD and !q̄ associated with the transformed coframe fieldū i5Ri
ku

k are
closed. A straightforward computation shows that the gauge conditions amount to

d~ q̃1Rc
aR

a
k,cu

k!50, ~1.2a!

d!~q1 1
2daeR

a
bdR

c
b`ue`ub!50. ~1.2b!

The existence and uniqueness result will be proved in four steps. First we prove the existence
of solutions to the corresponding linearized problem; we then use Kuranishi’s technique to solve
the nonlinear problem when the source term in the equations~1.2! ~i.e., the formsq̃,!q! is small
enough. The solution of the general nonlinear equation is then reduced to the solution of a finite

a!Electronic-mail: bruzzo@sissa.it
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number of equations with small source term. We finally prove the uniqueness of the solutions
under the assumption that the second de Rham cohomology group vanishes.

II. STATEMENT OF THE PROBLEM

In this Section we introduce some preliminary definitions and results and give a precise
statement of our result.

Definition 2.1:We say that a tensor fieldT on Rn falls off as r2a if

lim
r→`

r bT50

uniformly for all b,a, wherer is the radial coordinate.
Definition 2.2:Let g be a Riemannian metric onRn, and letg0 be the standard Euclidean

metric. We say thatg is asymptotically Euclidean ifg2g0 falls off as r2m, with m>max $n/2
22,1%.

With this choice of the asymptotic behavior of the metricg all the differential forms we shall
need to consider will be square-summable onM .

We shall assume that the Riemannian manifold (M ,g) is asymptotically Euclidean in the
following sense~this is related to the definition adopted in Ref. 5!.

Definition 2.3:A Riemannian manifold (M ,g) is said to be asymptotically Euclidean if there
is a compact geodesic ballX,M such that (M2X,g) is isometric to the complement of a closed
ball in Rn endowed with an asymptotically Euclidean metric.

Note that since we assume thatX is compact, the Riemannian manifold (M ,g) is complete
~cf. Ref. 6!.

We may extend Definition 2.1 to an asymptotically Euclidean Riemannian manifold (M ,g) by
saying that a~say covariant! tensor fieldT onM falls off as r2a if c*T does so, wherec is an
isometry realizing the condition of Definition 2.3.

We denote byVM
p the bundle ofC` differentialp-forms onM , and byVp(M ) the space of its

global sections, whileHk(M ,Vp) will denote the Sobolev space of indexk of differentialp-forms
on M . Moreover, ifY is a compact manifold with boundary]Y and interiorY°, we denote by
H̄k(Y°,V

p) the space formed by the restrictions to the interiorY° of Y of the elements in
Hk(Y,V

p) ~for a careful definition of these spaces see Ref. 7, Appendix B.2!.
The spaceV of vertical orthogonal automorphisms ofT*M may be regarded as a Banach-Lie

group, modelled on the Banach spaceH2(M ,V2). The latter space may also be identified with the
Lie algebra ofV. The exponential map exp:H2(M ,V2)→V is surjective, i.e.,fPV may be written
asf5expA with APH2(M ,V2); if a global orthonormal frame has been fixed, this is tantamount
to writing the orthogonal point-dependent matrixR representingf asR5expA, whereA is an
antisymmetric point-dependent matrix.

Definition 2.4:We say thatfPV is asymptotic to the identity iff5expA, whereA falls off
as r2a, with a.n/2.

We can now state our result. Given an orthonormal coframeu, let q̃ andq be the associated
forms according to~1.1!, and setp5dq̃1dqPV2(M ). The problem~1.2! may be written in the
form

Fu~f!52p, ~2.1!

wherefPV andFu :V→H0(M ,V2) is a second-order differential operator. Since the metricg is
asymptotically Euclidean,p falls off asr2m22, so that it is square-summable@i.e.,pPH0(M ,V2)#.

Theorem 2.5:Let (M ,g) be a connected parallelizable asymptotically Euclidean Riemannian
manifold, of dimension n>2, and fix a global orthonormal coframeu. There is afPV which
satisfies the condition (2.1) and is asymptotic to the identity. Moreover, the automorphismf is C`.
The automorphismf is unique if HDR

2 (M )50.
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III. THE LINEARIZED PROBLEM

We linearize the problem~2.1! by fixing u and considering an automorphismf which differs
‘‘infinitesimally’’ from the identity. We obtain the conditions

d@dA2 1
2 Aabd~ua`ub!#5dq̃, ~3.1a!

d!@dA2 1
2 Aabd~ua`ub!#52d!q, ~3.1b!

whered is the operatord5(21)k!d!, with k the rank of the form acted upon, and the unknown
A5 1

2Aabu
a`ub is a 2-form onM .

By taking the Hodge dual of~3.1b! and summing the two equations we get a single condition,

FuA5dq̃1dq; ~3.2!

hereFu is the operator,

FuA:5DA2 1
2 d@Aabd~ua`ub!#2 1

2 d@Aabd~ua`ub!# ~3.3!

~cf. Ref. 4!, whereD is the Laplace-Beltrami operatorD5dd1dd. We regardFu as an operator
H2(M ,V2)→H0(M ,V2). The problem~3.2! is equivalent to~3.1! due to the orthogonality of the
two summands inFuA and indq̃1dq.

We start by transferring the problem fromM to the interiorY0 of a compact manifoldY with
boundary]Y diffeomorphic toSn21. In this way we may use available results on elliptic problems
on compact manifolds with boundary~cf. Ref. 7!. Let f :Y0→M be a diffeomorphism; even
though this will be understood in our notation, we shall consider for a while the problem~3.2! on
Y0 endowed with the pullback metricf * g.

Proposition 3.1: There is a differential formAPH̄2(Y°,V
2) such that

FuA5p, Au]Y50.

Moreover,A is C`, and is unique if HDR
2 (Y°!50.

Proof: The proof of this result is given in the Appendix. h

We consider now the pullback~f21!*A of A to M ; we shall denote it by the same letter.
Proposition 3.2: The differential formA on M solves the problem (3.2) and falls off as r2a,

with a.n/2. If HDR
2 (M )50, A is the unique form in H2(M ,V2) which solves the problem (3.2).

Proof: The first claim has already been proved. SinceA is square-summable, it has the
required asymptotic behavior. The uniqueness follows from the corresponding property proved in
Proposition 3.1. h

IV. SOLVING THE NONLINEAR PROBLEM

Provided that the norms of the formsq̃ and!q are small enough, we may use a Kuranishi
technique to reduce the problem~2.1! to the corresponding linearized problem, which we have
solved in Section III. We recall thatV is the Banach manifold of vertical orthogonal automor-
phisms ofT*M . Let Fu , p be as in Eq.~2.1!. The Fréchet differential,

~~Fu!* ! id :TidV.H2~M ,V2!→H0~M ,V2!,

can be identified with the operatorFu studied in Section III~id is the point inV corresponding to
the identity automorphism!.
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As usual, by means of the inverse function theorem one shows the existence of
~i! a neighborhoodU0 of id in V;
~ii ! a neighborhoodU1 of the origin inH2(M ,V2);
~iii ! a diffeomorphismr: U1→U0 such that

Fu+r5Fu and r~0!5 id.

This, together with Proposition 3.2, implies that the equation~2.1! has a solutionf, provided that
theL2 norm of p is small enough, sayipi,e. ~This implies the existence of solutions whenever
the Riemannian metricg is close enough to the Euclidean metric, so that the norm ofp is suitably
small.! One should also notice that the solutionf so found is asymptotic to the identity due to the
asymptotic behavior ofp.

We may now solve the nonlinear problem by iteration. Fix an initial coframeu, let N be an
integer such thatipi,Ne ~where e is the same as in the foregoing discussion!, and set
p15(1/N)p. We may solve the problem

Fu~f1!52p1 .

Let u15f1~u!; a quick computation shows that the corresponding formsq and q̃ are

q15
N21

N
q, q̃15

N21

N
q̃.

We may now solve the problem

Fu1
~f2!52p1 ;

the formsq and q̃ corresponding tou25f2~u1! are

q25
N22

N
q, q̃15

N22

N
q̃.

Applying this procedureN times we obtain a coframe,

u5fN+•••+f1~u!,

which solves the problem~2!; since allfi ’s are asymptotic to the identity,f5fN+•••+f1 is as-
ymptotic to the identity as well.

V. UNIQUENESS

Let f1, f2 be two orthogonal automorphisms which solve the problem~2! and are asymptotic
to the identity, and letx5f2+f1

21. Thenx is asymptotic to the identity, and solves the problem

Fu1
~x!50,

with u15f1~u!. We may letx5r~A!, with APH2(M ,V2); A satisfies the equationFf1
A 5 0. If

HDR
2 (M )50, Proposition 3.2 givesA50, so thatx5id.
This proves the uniqueness part of Theorem 2.5, thus concluding its proof.
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APPENDIX: SOLVING THE LINEAR PROBLEM

Let Y be a compact manifold with smooth boundary]Y. Let g be a Riemannian metric onY.
We consider the operatorFu defined by Eq.~3.3!, and show an existence and uniqueness result for
a homogeneous Dirichlet problem. We shall follow the notation and terminology of Ref. 7. LetF
denote the bundle on]Y defined asVY

2 u]Y, and define the boundary operator,

B:H̄2~Y°,V
2!→H3/2~F !, B~A!5Au]Y.

One easily shows that the pairsFu 5 (Fu ,B) andD̄5(D,B) define elliptic Fredholm operators
~cf. Ref. 7, Chap. XX!,

H̄2~Y°,V
2!→H̄0~Y°,V

2! %H3/2~F !

~D is the Laplace-Beltrami operator!.
LemmaA.1:ker Fu 5 ker D̄
Proof: Since kerD̄ is finite-dimensional, by the Hahn-Banach theorem there is a subspaceW

of H̄2(Y°,V
2) such thatH̄2(Y°,V

2)5ker D̄ %W. We consider the family of operators,

Ft :W→H̄0~Y°,V
2! %H3/2~F !

Ft5D̄1t~Fũ,0!, with tP@0,1#,

where

FũA52 1
2 d@Aabd~ua`ub!#2 1

2 d@Aabd~ua`ub!#,

so thatF1 5 Fu ~in this Lemma we consider all operators as defined onW!. Let ePR1 be such that

maxH iD̄i

iFũi
22,0J ,e,

iD̄i

iFũi
.

SinceD̄uW is injective, the operator

H1 :5D̄1S iD̄i

iFũi
2e D ~Fũ,0!

is injective as well. By iteration we obtain that the operators

Hk5D̄12k21S iD̄i
iFũi2e D ~Fũ,0!

are injective for allk>1. By takingk as the integer part of

12 log2S iD̄i

iFũi
2e D ,

we obtain thatFuuW is injective; thus kerFu,ker D̄.
By repeating the argument after exchanging the roles of the operatorsFu and D̄ we obtain

ker D̄,ker Fu. h

Consider now differential formsq̃PV1(Y) andqPV3(Y), and setp5dq̃1dq. The pair
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~p,0!PH̄0~Y°,V
2! %H3/2~F !

is orthogonal to the cokernel ofFu ~also in view of Lemma A.1!. So there is a differential form
APH̄2(Y°,V

2) such that

FuA5p, Au]Y50. ~A1!

The formA is actuallyC` ~cf. Ref. 7!.
To prove uniqueness we note that any harmonic formAPH̄2(Y°,V

2! which vanishes on the
boundary]Y is d- andd-closed. This establishes an injective map kerD̄→HDR

2 (Y°!.
We may now prove the following result.
Proposition A.2:There is aC` differential fromAPH̄2(Y°,V

2) which solves the problem
~A.1!. If HDR

2 (Y°!50, the formA is unique.
Proof: We need only to note that ifHDR

2 (Y°!50 we have ker D̄50, and by Lemma A.1
ker Fu 5 0 as well. h
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The Einstein action for algebras of matrix valued
functions—Toy models

Piotr M. Hajaca)

~Received 21 November 1995; accepted for publication 22 April 1996!

Two toy models are considered within the framework of noncommutative differ-
ential geometry. In the first one, the Einstein action of the Levi–Civita connection
is computed for the algebra of matrix valued functions on a torus. It is shown that,
assuming some constraints on the metric, this action splits into a classical-like, a
quantum-like and a mixed term. In the second model, an analogue of the Palatini
method of variation is applied to obtain critical points of the Einstein action func-
tional forM4(R). It is pointed out that a solution to the Palatini variational problem
is not necessarily a Levi–Civita connection. In this model, no additional assump-
tions regarding metrics are made. ©1996 American Institute of Physics.
@S0022-2488~96!00808-0#

I. INTRODUCTION

The goal of this paper is to analyze the behavior of a noncommutative analogue of the
Einstein–Hilbert action functional on two toy models. General definitions and constructions em-
ployed to study those models are provided in the next section.

In Section III, we present some results regarding the computation of the Einstein action of the
Levi–Civita connection forC`(Tm)^Mn(R), the algebra of matrix valued functions on an
m-tori. The approach proposed there is analogous to the ‘‘derivation based’’ approach to the
calculation of the Yang–Mills~Maxwell! action for an algebra of matrix valued functions that was
carried out in Ref. 1~see Section V in Ref. 1, cf. Ref. 2 and the sections 4 and 5 of Ref. 3!. We
choose our manifoldM to be anm-tori because it is a compact Abelian group, and we want
integrals overM to be finite, and Der(C`(Tm)) to be commutative as a Lie algebra and free as a
C`(Tm)-module. We also assume that the metric, understood as a pairing of derivations, has its
values in the center of an algebra. Consequently, the results presented there can be interpreted as
concerning the ‘‘commutative part’’ of noncommutative geometry.@Indeed, the Levi–Civita con-
nections forMn(R) can be interpreted as the torsion part of the flat connection onSL(n,R) given
by the left translations; see Remark 14.#

In Section IV, which is the main part of this work, we study a toy model that is based on the
algebraM4(R) of 4 by 4 real matrices, and the 2-dimensional Lie subalgebraso~2!%so~2! of
Der(M4(R)). It is a simple but quite computable model that is presented with the aim of provid-
ing hints on how to approach more complicated situations. For this model, we derive an analogue
of the Einstein vacuum field equation, and apply the Palatini method of variation to obtain critical
points. We find a solution to the Palatini variational problem that is, in general, neither metric nor
torsion free. Yet, this solution~a connection¹g determined by a metricg) turns out to be Ricci
flat for all metrics. Consequently, the Einstein field equation, which depends essentially on the
Ricci curvature@see~7!#, is automatically satisfied, and (g,¹g) is a critical point of the Einstein
action functional for any metricg. The value of this functional at any critical point is the same
~zero!. Thus we obtain a result that partially reflects the classical geometric phenomenon

a!Present address: International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy. On leave from the
Department of Mathematical Methods in Physics, Warsaw University, ul. Hoz˙a 74, Warsaw, 00–682 Poland. Electronic
mail: pmh@ictp.trieste.it or pmh@fuw.edu.pl
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that, for any Riemannian 2-manifold, the Einstein–Hilbert action computed for a metricg and its
Levi–Civita connection does not depend ong ~see 9.1.10 in Ref. 4!. The key difference between
Section IV and the preceding one is that in Section IV we no longer assume that the metric is
center valued.

The proofs or calculations are rather straightforward and are often omitted here for the
sake of brevity. Except for Proposition 4, the letterk will denote a field, A a unital
associative k-algebra, Z(A) its center, and V(A) a differential graded algebra
A % % n>1

` HomZ(A)(`nL, A) with L as below and the differential defined as in Proposition 4.
The Einstein convention of summing over repeating indices is assumed.

II. PRELIMINARIES

LetL be aZ(A)-submodule and Lie subalgebra of Der(A) such thatL^ Z(A)A is a finitely
generated projective rightA-module.~Compare with the notion of a Lie–Cartan pair introduced in
Ref. 5.!

Definition 1: A linear map¹:L^ Z(A)V* (A)→L^ Z(A)V*11(A) is called a connection on
L i f f

;XPL, aPV~A!: ¹~X^ Z~A! a!5~¹X!a1X^ Z~A!da.

Definition 2: The endomorphism¹2 P EndV(A) (L^ Z(A) V(A) ) is called the curvature of a
connection¹.

Remark 3: The notions of connection and curvature defined above are equivalent to the usual
notions of noncommutative connection and curvature on a projective module~e.g., see Section
III.B of Ref. 1!. In this case, the projective rightA-module isL^ Z(A)A. L

Proposition 4 „cf. p. 369 in Ref. 6…: Let A be an associative unital algebra over a commu-
tative ring k. LetLk be a k-Lie subalgebra of the space of all k-derivations of A, and letE be any
right A-module admitting a connection (see Remark 3). IfV(A) is a differential graded subal-
gebra of A% % n>1

` Homk(`nLk , A) with the differential given by (see the first section in Ref. 2):

~da!~X0 ,X1 ,•••,Xn!

5 (
0< i<n

~2 ! iXi a~X0 ,•••,Xi21 ,Xi11 ,•••,Xn!

1 (
0<r,s<n

~2 !r1s a~@Xr ,Xs#,X0 ,•••,Xr21 ,Xr11 ,•••,Xs21 ,Xs11 ,•••,Xn!,

then

;jPE , X,YPLk : ~¹2j!~X,Y!5~@¹X ,¹Y#2¹@X,Y#!~j!,

where, as in the classical differential geometry,¹Zj denotes(¹j)(Z).
Definition 5: A map g:(L^ Z(A)A)3(L^ Z(A)A)→A is called a pseudo-Riemannian metric

onL iff it satisfies the following conditions.
(1) ;a,bPA, j,hPL^ Z(A)A: g(aj,hb)5ag(j,h)b, where the left module structure on

L^ Z(A)A is given by a(Xi ^ Z(A)ci)5Xi ^ Z(A)aci .
(2) ;X,YPL: g(X,Y)5g(Y,X) (symmetry condition).
(3) The induced map g˜ : L^ Z(A)A{j ° g(.,j)PV1(A) is an isomorphism of right

A-modules.
Definition 6: A connection onL is said to be compatible with g iff

;X,Y,ZPL: Xg~Y,Z!5g~¹XY,Z!1g~Y,¹XZ!.
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Definition 7: TheZ(A)-bilinear map,

T¹ :L3L{~X,Y!°¹XY2¹YX2@X,Y# ^ Z~A!1PL^ Z~A!A,

is called the torsion of¹.
Definition 8: LetR¹(X,Y) be the Z(A)-homomorphism given by the formula

L{Z°R¹~X,Y!~Z!5~¹2Y!~Z,X!PL^ Z~A!A,

and letT E P HomA ( HomZ(A)(L,L^ Z(A)A),A ). We call the Z(A)-linear map,

Ric¹ :L{X°T E ~R¹~X,.! !P V1~A!,

the Ricci curvature of¹.
Remark 9: WhenL or A is a finitely generated projectiveZ(A)-module,

HomZ~A!~L,L^ Z~A!A!5 EndZ~A!~L! ^ Z~A!A

~see Proposition 2 in II.4 of Ref. 7!, and we can chooseT E to be a trace on EndZ(A)(L) tensored
overZ(A) with idA . L

Definition 10: LetM(L) andC (L) denote the space of all pseudo-Riemannian metrics on
L, and the space of all connections onL, respectively. The functional E:M(L)3C (L)→k
given by the formula

E~g,¹!52~tg+T E!~ g̃ 21+Ric¹!,

wheretg :A→k is a metric dependent trace, is called the Einstein action functional onL.
Remark 11: With an appropriate choice oftg and T E ~cf. Proposition 15!, the functional

E coincides forA5C`(M ) andL= Der(C`(M )) with the standard Einstein–Hilbert action func-
tional onM , for any ~paracompact! manifoldM admitting a~pseudo-!Riemannian metric. L

III. THE CASE OF Z(A) VALUED METRICS

One can apply the same reasoning as in the case of classical differential geometry to obtain
the following.

Proposition 12 „cf. Section 9 in Ref. 8…: Let g(L,L) #Z(A) or ¹LL#L. Then there
exists at most one metric compatible connection that is torsion free. If it exists, it is given by the
formula

¹XY5 1
2 g̃

21SXg~Y,.!1Yg~X,.!2dg~X,Y!1g~@X,Y#,.!1g~@ .,X#,Y!1g~@ .,Y#,X!D . ~1!

A connection given by~1!, will be called the Levi–Civita connection ofg, and denoted by¹g .
For the rest of this section, we work under the assumption thatg(L,L) #Z(A). The mathemati-
cal model considered here is practically identical with a model constructed in Refs. 9 and 10.
@Compare~2! with ~3.24! in Ref. 9, and Proposition 15 with~3.23!, ~3.21! in Ref. 9 and~3.26! in
Ref. 10.# Note that there is an extra term in~3.24!9 that is absent in Proposition 15 due to our
assumption that the classical and the algebraic derivations are orthogonal to each other. Let us also
mention that the dual point of view regarding linear connections@i.e., where the space of 1-forms
rather thanL^ Z(A)A is taken as a starting point# was studied in Refs. 11 and 12 also in the
context of ‘‘matrix geometry’’~see Section 4.3 in Ref. 11 and Section 3 in Ref. 12; for duality
issues of the aforementioned kind, see Sec. 6 in Ref. 8!.

To begin with, let us consider the algebra of matricesMn(R) and
L= Der(Mn(R))5sl~n,R). Sincesl(n,R) is an (n221)-dimensional vector space overR ~the

4551Piotr M. Hajac: The Einstein action for algebras of matrix valued

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



center of the algebra of matrices!, the endomorphisms of this space are simply
(n221)3(n221) matrices, and we can chooseT E to be the usual matrix trace tensored with
idMn(R)

~see Remark 9!.
Proposition 13: Let A5Mn(R), L5Der(Mn(R)), tg5 (1/n) udetgu1/2Tr, and

T E5Tr^ idMn(R)
. Also, let$Ei% be any basis ofsl(n,R). Then

E~g,¹g!5gjp~Kjp1 1
2g

il grkclp
r ci j

k !Audetgu, ~2!

where K is the Killing metric on SL(n,R), and $Kjp ,gi j ,g
kl,clp

r % are defined by the formulas
K jp5g(Ej ,Ep), grk5g(Er ,Ek), gprgrk5 dk

p , @El ,Ep#5clp
r Er , respectively.

Proof: A direct computation using the symmetry of a metric and the anti-symmetry of the Lie
algebra structure constants. h

Remark 14: Let g be a left invariant metric onSL(n,R). Theng can be identified with a
metric on Der(Mn(R)). The connection onSL(n,R) given by the left translations is compatible
with all left invariant metrics. The torsion part of this connection is given by the formula~see~44!
in Ref. 13!

Tjk
i :5 1

2 ~Qjk
i 1gil gjnQkl

n 1gil gknQjl
n !5 1

2 ~ck j
i 1gil gjnclk

n 1gil gkncl j
n !.

If the coefficients of theMn(R) –Levi–Civita connection ofg are defined by the equality
¹Ej

Ek5Gk j
i Ei , thenG jk

i 5Tjk
i P R. ~Caution: One often defines the Christoffel symbols by the

relation¹Ej
Ek5G̃jk

i Ei . In this notation, which is compatible with the notation used in Ref. 13, the
aforementioned relationship between the Christoffel symbols of the noncommutative connection
and the torsion part of the classical connection can be equivalently written asG̃jk

i 5Tjk
i 1cjk

i .) In
general, if Der(A) equals the Lie algebra of some Lie groupG, then the noncommutative torsion
freeg-compatible connection on Der(A) coincides in the above sense with the torsion part of the
flat connection onG given by the left translations. L

Our next step is to consider an algebra of matrix valued functions. The module of derivations
of such an algebra splits into two direct sum components in the following way~cf. Lemma 2.1 in
Ref. 1!:

Der ~C`~M ! ^Mn~R! !5 Der ~C`~M ! ! ^R % C`~M ! ^ Der ~Mn~R! !.

For M5Tm, this module is a freeC`(Tm)-module of dimensionm1n221. Consequently, its
algebra of endomorphisms is simply the algebra of matricesMm1n221(C

`(Tm)), and, again, we
can chooseT E to be the usual matrix trace@with values inC`(Tm)# tensored withidMn(R)

~see
Remark 9!.

Proposition 15: Let A5C`(Tm)^Mn(R), L5 Der(A), tg5 (1/n) *Tmudetgu1/2Tr, and
T E5Tr^ idMn(R)

. Assume also that there exists a basis$Ei% iP$1,•••,m% of Der(C
`(Tm)), and a

basis$Ej% jP$m11,•••m1n221% of Der(Mn(R)) such that

gi j5H 0, for i<m and j.m,

gc~Ei ,Ej !, for i , j<m,

gq~Ei ,Ej !, for i , j.m,

where gc is a classical (pseudo-)Riemannian metric on T
m, and gq is a function that to each point

of Tm assigns a metric onDer(Mn(R)). Then

E~g,¹g!5E
Tm
RcAudetgcuAudetgqu1E

Tm
RqAudetgquAudetgcu1E

Tm
RmixedAudetgu, ~3!
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where Rc is the classical scalar curvature of gc , Rq is a (point dependent) scalar curvature of
¹gq

@i.e.,Rq5T E(g̃q
21 + Ric¹gq

)#, and Rmixed is a function on T
m that is a sum of mixed terms of

the kind

gAB
]

]xm S gmn
]gAB
]xn D , m,n<m, A,B.m.

Proof: Very much like the proof of Proposition 13. h

As we see from Proposition 15, the assumption that the metricg is block-diagonal allows us
to split the Einstein action of the Levi–Civita connection into the following three terms.

~1! A classical-like term that differs from the usual Einstein–Hilbert action onTm only by the
‘‘quantum volume element’’Audetgqu.

~2! A quantum-like term that is equal to the integral overTm of the ~point dependent! Einstein
action of the Levi–Civita connection onMn(R).

~3! A mixed term that involves the derivatives ofgq .

If gq is constant overT
m, thenRmixed50, and the expression~3! simplifies to

E~g,¹g!5AudetgquE~gc!1E~gq! vol~T
m,gc!,

whereE(gc) is the usual Einstein–Hilbert action,E(gq) is the action computed in Proposition 13,
and vol(Tm,gc) is the volume ofTm with respect to the metricgc .

Finally, let us remark that the Yang–Mills~Maxwell! action calculated in Ref. 1 for a similar
algebra also splits into a classical-like, a quantum-like and a mixed term.

IV. THE CASE OF A VALUED METRICS

Let us now lift the assumption thatg(L,L) #Z(A), and consider a toy model based on the
following data:

A5M4~R!, L5so~2!%so~2!, tg5
1
4AudetguTrM4~R! and T E5Tr^ idM4~R! .

We view L as a Lie subalgebra of Der(M4(R)) generated byF̂1 :5@F1 ,.#, F̂2 :5@F2 ,.#,
where F1 :5( 0 0

F 0), F2 :5( 0 F
0 0), F:5( 21 0

0 1). A metric g is treated as an element of
GL2(M4(R))5GL8(R). An assumption that g is symmetric reads
g(F̂ i ,F̂ j )5:gi j5gji :5g(F̂ j ,F̂ i), or equivalentlyg5gT, whereT is the transpose in the algebra

of 232 matrices. As to the inverse ofg, denoted byg215:( g21 g22
g11 g12 ), in general we do not have

g125g21. For instance, if

g5S 2I 2 0 I 2 I 2

0 I 2 I 2 0

I 2 I 2 I 2 0

I 2 0 0 I 2

D ,
whereI 25( 0 1

1 0), theng12Þg21. Very much as we did before, we define the Christoffel symbols
by ¹ F̂ i

F̂ j5F̂k^ G j i
k , the curvature coefficients by (¹2F̂k)(F̂ i ,F̂ j )5F̂m^Rki j

m , and the Ricci cur-

vature coefficients by (Ric¹F̂ i)(F̂ j )5Rji . It is straightforward to verify that
Rki j
m 5 Gni

m Gk j
n 2 Gn j

m Gki
n 1@Fi , Gk j

m#2@F j , Gki
m# ~see Proposition 4!, Rkj5Rki j

i , and

E~g,¹!52 1
4AudetguTrM4~R!~g

jkRk j!52 1
4Audetgutr ~g21r !, ~4!
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wheretr denotes the usual trace onM8(R), andr :5( R21 R22

R11 R12). In what follows, rather than look

for a Levi–Civita connection, we will use an analogue of the Palatini method of variation~see
21.2 in Ref. 14, cf. 5.4–5.5 in Ref. 15! and find critical points of the Einstein action functional.
First, let us determine the equation equivalent to the condition that the variation ofE with respect
to g vanish. At any critical point, for an arbitrary matrixh P M8(R) with the coefficients satisfying
h125h21P M4(R), wemust have

d

ds
E~g1sh,¹!us5050 . ~5!

After substituting~4! into ~5!, and carrying out the differentiation, we obtain

1
2 tr ~g

21r !tr ~hg21!5tr ~hg21rg21!. ~6!

Now, since~6! must be true for any matrixh such thath125h21, we can conclude that

; i , jP$1,2%: 1
2 tr ~g

21r !~gi j1gji !5gikRklg
l j1gjkRklg

li .

Multiplying both sides bygim , and then taking the trace, we find that

8tr ~g21r !52tr ~g21r !.

Hence, very much as in the classical general relativity, we havetr (g21r )50. Consequently,

g21rg211~g21rg21!T50 . ~7!

The formula~7! is an analogue of the Einstein vacuum field equation.@Observe that the implica-
tion (7)⇒(5) is also true.#

Our next step is to find an explicit form of the equations equivalent to the vanishing of the
variation ofE with respect to¹. Let¹1sA denote a connection onL whose Christoffel symbols
are G j i

k 1sAji
k , wheresP R, Aji

k P M4(R), i , j ,k P $1,2%. Then the condition that

d

ds
E~g,¹1sA!us5050, for any A,

is equivalent to the following 8 equations:

g11G12
2 1 G22

1 g221@ G12
1 1F2 ,g

21#50, ~8!

g11G11
2 1 G21

1 g221@ G11
1 1F1 ,g

21#50, ~9!

g22G22
1 1 G12

2 g111@ G22
2 1F2 ,g

12#50, ~10!

g22G21
1 1 G11

2 g111@ G21
2 1F1 ,g

12#50, ~11!

g22G12
1 2 G22

2 g222g12G12
2 2 G12

2 g212@F2 ,g
22#50, ~12!

g11G22
2 2 G12

1 g112g21G22
1 2 G22

1 g122@F2 ,g
11#50, ~13!

g22G11
1 2 G21

2 g222g12G11
2 2 G11

2 g212@F1 ,g
22#50, ~14!

g11G21
2 2 G11

1 g112g21G21
1 2 G21

1 g122@F1 ,g
11#50. ~15!
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It is straightforward to verify that a connection¹g ~not to be confused with the Levi–Civita
connection¹g) whose Christoffel symbols are given by

G22
1 5 G21

1 52g11, G22
2 52F22g12, G12

1 52F21g21,

G12
2 5 G11

2 5g22, G21
2 52F12g12, G11

1 52F11g21,

satisfies~8!–~15!, and has vanishing Ricci curvature (Ric¹g50). We have thus arrived at the
following.

Proposition 16: Let A,L,tg andT E be as above. Then

;gPM~L! '¹gPC ~L! such that ~g,¹g! is a crit ical point o f E.

Furthermore, the value of E at any critical point is zero.
Remark 17: The value of the functionalE calculated at noncritical points is not necessarily

zero. For example, take a metricg05g0
21 with the components

~g0!115~g0!2250 , ~g0!125~g0!215S I 2 0

0 K D , K:5S 0 1

1 0D ,
and take a connection¹0 whose only nonvanishing Christoffel symbol is (G0)11

1 5( 0 J
0 0), where

J5( 021
1 0 ). ThenE(g0 ,¹0)521. L
Remark 18: Note that for tg equal toTrM4(R)

rather than to14udetgu1/2TrM4(R)
the field

equation~7! and the equations~8!–~15! are still satisfied. Also,tr (g21r ) still equals zero at any
critical point. Consequently, Proposition 16 remains valid as well, if we replace
1
4udetgu1/2TrM4(R)

by the usual trace onM4(R). L

Remark 19:The fact that the functionalẼ:M(L) { g°E(g,¹g) P R equals identically zero
is a reflection of the same effect that we observe for the usual 2-torus. We might try to push this
analogy even further and say that we think of a circleS1 as a Lie group generated byso~2!, and
replace C`(S1) by M2(R) for which so~2! is the space of all derivations satisfying
X(aT)5(Xa)T. Then it is natural to replaceC`(T2) by M2(R)^M2(R)5M4(R). L

Observe that although¹g functions as if it were a Levi–Civita connection, it is in general
neither metric nor torsion free@e.g., takeg to be the identity matrix ofGL8(R)#. It is perhaps
worth emphasizing, however, that the metric compatibility condition, which can be equivalently
written as

gp j G j i
n1 G j i

p gjn1@Fi ,g
pn#50 , i ,p,nP$1,2%,

is not very different from the formulas~8!–~15!. It would be interesting to find a functional on
M(L)3C (L) that not only would coincide with the usual Einstein–Hilbert functional~or
whose equations of motion would agree with the standard ones! in the case of classical geometry,
but also would yield, through its variation with respect to connection, the metric compatibility
condition.
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Imploding scalar fields
M. D. Robertsa)
Flat 5, 17 Wetherby Gardens, London SW5 OJP, United Kingdom

~Received 12 October 1995; accepted for publication 30 April 1996!

Static spherically symmetric uncoupled scalar space–times have no event horizon
and a divergent Kretschmann singularity at the origin of the coordinates. The sin-
gularity is always present so that nonstatic solutions have been sought to see if the
singularities can develop from an initially singular free space–time. In flat space–
time the Klein–Gordon equationhw50 has the nonstatic spherically symmetric
solutionw5s(v)/r , wheres(v) is a once differentiable function of the null coor-
dinatev. In particular, the functions(v) can be taken to be initially zero and then
grow, thus producing a singularity in the scalar field. A similar situation occurs
when the scalar field is coupled to gravity via Einstein’s equations; the solution also
develops a divergent Kretschmann invariant singularity, but it has no overall en-
ergy. To overcome this, Bekenstein’s theorems are applied to give two correspond-
ing conformally coupled solutions. One of these has positive ADM mass and has
the following properties:~i! it develops a Kretschmann invariant singularity,~ii ! it
has no event horizon,~iii ! it has a well-defined source,~iv! it has well-defined
junction condition to Minkowski space–time, and~v! it is asymptotically flat with
positive overall energy. This paper presents this solution and several other nonstatic
scalar solutions. The properties of these solutions which are studied are limited to
the following three:~i! whether the solution can be joined to Minkowski space–
time, ~ii ! whether the solution is asymptotically flat,~iii ! and, if so, what the solu-
tions’ Bondi and ADM masses are. ©1996 American Institute of Physics.
@S0022-2488~96!02409-7#

I. INTRODUCTION

Singularities appear in many physical theories. A singularity can be defined as a domain
where the description provided by the physical theory breaks down. A prime example is the
infinite electromagnetic potential of a point particle in Maxwell’s theory. A common approach to
a theory which has singularities is to produce another theory governed by more general differential
equations and then investigate whether the singularities still occur. For example, in electromag-
netic theory Born and Infeld investigated a generalization of Maxwell’s Lagrangian to see if the
infinite potential was still present. In gravitational theory the situation is more complex: for a point
particle the Kretschmann invariantRabcdR••••

abcd diverges at the position of the particle; also on
occasion the particle is surrounded by an event horizon. The event horizon is not singular in the
sense defined above because a description of its effects can be made: but the effects are so bizarre
that along with singularities they can be called pathological. Vacuum general relativity frequently
has both pathologies, an example being the Schwarzschild solution for a point particle. It is
sometimes argued that the existence of both pathologies is palatable because the event horizon
makes the divergent Kretschmann invariant invisible at infinity. However, the physical description
provided is still incomplete because it does not describe what happens at the divergent
Kretschmann invariant. Vacuum general relativity does not furnish a good description of many
astrophysical phenomena such as gravitational collapse because the pertinent space–time can

a!Electronic mail address: m.d.roberts@uk.ac.ic
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contain many fields and fluids with nonvanishing stress. Astronomical observations purporting to
be of ‘‘black holes’’ in fact do not directly observe event horizons. The models which describe the
situation merely use a steeper potential than that of Newtonian theory; the Newtonian limit of
most relativistic theories produces such a potential.

To find exact solutions of gravitational field equations to fit a particular physical requirement
is notoriously difficult. An example is the two-body problem: since the inception of general
relativity the solution for two-point particles acting only through gravity has been sought. Another
example is the Yukawa problem: in the absence of gravitation a massive scalar field has a shorter
range than the corresponding massless case; Yukawa’s discovery of this lead to the postulation of
nuclear forces. How gravitation alters the shape of the potential is unknown, and this would be of
experimental interest as the Yukawa potential can be accurately measured in accelerators; also, it
is unknown whether the mass of the interacting scalar field is the same as the ADM mass. Scalar
fields coupled to gravity produce unusual potentials, complicated by the fact that the luminosity
radial coordinate is often of the formR5r exp~w!, where the metric is explicitly expressed in
terms ofr . Perhaps the simplest modification of vacuum general relativity is to choose a stress
with an uncoupled scalar field. When this is done the situation is mitigated; for the static case there
is no event horizon. The problem with static space–times is that the Kretschmann invariant is
always present; the space–time does not develop so as to produce it. Nonstatic spherically sym-
metric scalar solutions have been found, one of which is asymptotically flat.1,2 This solution has
unusual energetics; there is no overall energy, the positive energy of the scalar field and the
negative energy of the gravitational field cancel out: as the space–time develops energy is just
exchanged between them. To overcome this, Bekenstein’s theorems are applied to uncoupled
scalar field solutions to give two corresponding conformal scalar solutions. One of these is as-
ymptotically flat and has overall positive ADM energy.

In general relativity scalar fields can implode~and explode! like the example in the abstract;
the situation here is more pathological than in flat space because not only is it possible to produce
a singularity in the scalar field, but in addition, there is a colocational singularity of the gravita-
tional field as indicated by the divergence of the Kretschmann curvature invariantR

••••

abcdRabcd.
Einstein–scalar space–times are sometimes not covered by theorems concerned with the general
global and singular structure of space–time. These often assume the space–time stress tensor is
restricted to: vacuum, or electromagnetic stress, or obey energy inequalities. An example of this is
the formal definition of asymptotic flat space–times which assumes that there is only an electro-
magnetic and gravitational field present. Numerical studies show that the rate of decay of scalar
fields is between these two;1 furthermore, many spherical symmetric perfect fluid stresses do not
have~in the sense of taking a radial coordinater→`! asymptotically flat space–times.3 Here a
scalar solution is taken to be asymptotically flat if it reduces to Minkowski space–time asr→`.
The rate of decay of fields seems to be: most fluids and some conformal scalars are not asymp-
totically flat, then gravitation.uncoupled scalars.uncoupled vectors.interacting fields.

In Sec. II some Robertson–Walker scalar field solutions are given. The examples chosen have
scale factors which can be expressed in terms of straightforward functions. Ordinary scalar
stresses obey the energy conditions, but conformal scalar stresses sometimes do not. Violation of
the energy conditions allow the possibility of a singular free Robertson–Walker space–time; this
can happen for conformal scalar fields4 and when cosmological constant is present.5 Here the
junction conditions of Robertson–Walker space–time are studied, and possible applications men-
tioned. In Sec. III Penny’s6 solution is presented; this can implode, but is not asymptotically flat.
In Sec. IV the solution previously found by the author,1,2 and also its two conformal scalar
extensions as found by Bekenstein’s theorems, are presented. These solutions are explicitly de-
pendent on a radial coordinate so that they are more similar to the example in the abstract than the
examples in Secs. II and III. The solution and one of its Bekenstein extensions are asymptotically
flat, and also have well-defined junction conditions, contrary to what has been stated by
Szabodos.7 The Bondi and ADM masses of the solutions are calculated. In the first two appendices
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I derive the Clarke and Dray8 junction conditions subject to spherical symmetry. In all the specific
cases looked at here if a solution has a continuous metric~and hence first fundamental form!
across a junction, then its surface stress~which depends on the derivatives of the metric! vanishes
and the junction is well defined. In the third appendix I derive the general expression for the ADM
mass subject to spherical symmetry.

The field equations considered are Einstein’s equations with scalar fields as source. Specifi-
cally the ordinary scalar–Einstein equations are

Rab52wawb , ~1.1!

where the coupling constant is taken to be contained in the scalar fieldw. On occasion a null
radiation field is also taken to be present with

Rab5F2kakb , ~1.2!

whereka is a null vector andF is a function ofxa. Conformal scalar solutions can be obtained
from ordinary scalar solutions by using Bekenstein’s9 theorems. To derive these let barred quan-
tities denote these quantities for an ordinary scalar solution, i.e.,R̄ab52wawb . Then under a
conformal transformation

ḡ ab5V2gab ; ~1.3!

the connection is transformed,

Ḡbc
a 2Gbc

a 5V21~db
aVc1dc

aVb2gbcV
a!; ~1.4!

and the Ricci tensor is transformed,

R̄ab2Rab522V~V21! ;ab1V22~V2!
•c
c gab , ~1.5!

where the covariant derivatives ‘‘;’’ are taken in the unbarred system. Now take

V5A6~12j2w2!5 H sechcosech jw,

~1.6!

jw5A17V25 H tanhcoth jw,

wherej is a constant andw is a function. Then, substituting into the Ricci tensor~1.5!, this obeys
the equations for a conformal scalar field

~1/j22c2!Rab54cacb22cc ;ab2~ccc
•
!cgab . ~1.7!

Thus given an ordinary scalar field solution~1.1!, Bekenstein’s theorems give two conformal
scalar solutions~1.6!; Bekenstein refers to the upper sign conformal solution as type A and the
lower sign conformal solution as type B, as no confusion with blood types should occur the
ordinary scalar solution is here called type O. In the conventions used here, the coupling constant
is taken to be in the scalar field and thusj251

3. The conformal scalar solutions are traceless and
also obeyc

•a
a 50. For type A the theorem generalizes for additional stress present; in the case of

a null radiation field this must transform asF2→V22F2, c.f. Bekenstein’s9 equation 15; this
generalization does not work for type B. Type B solutions are anticipated to have unusual global
properties, for example asw→0: V21→0, c→`; and also asw→`: V21→`, c→1; but applying
Bekenstein’s theorems does nota priori produce a maximally extended space–time so that exact
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solutions have to be specified before precise pronouncements on their global properties can be
made. Examples of static spherically symmetric conformal scalar fields with unusual properties
can be found in Ref. 10.

Having presented some of the properties of scalar fields we can now come back to the
questions: general relativity and other gravitational theories are primarily macroscopic theories
which couple to stresses that have macroscopic effect; such electromagnetism and perfect fluids
are natural choices—why choose scalar fields? First, it only takes an infinitesimal scalar field to
change the global nature of a space–time. For example, Wyman’s solution, which is the general
static spherically symmetric O-scalar–Einstein solution, is a two-parameter solution~M ,s! with
M the Schwarzschild mass ands the scalar charge~an infinitesimals is sufficient for there to be
no event horizon present!. Thus microscopic fields, such as those of particle physics, can have a
global effect on space–time. Second, forwa timelike an O-scalar field is a particular example of a
perfect fluid. Perfect fluids which are well behaved and permeate the whole space–time can
usually be shown to have no horizons.3 The fluid conservation equations often allow the fluid
indexv to be equated with the fluid vector and hence the metric. Typically this results in equations
such as the lapseN51/v; thus a well-behaved fluid indexv can often imply a well-behaved
metric. In Appendix D an attempt is made to extend to fields the techniques that lead to this result.
Third, in microscopic physics hypothetical particles, the Higgs scalars, are used to introduce
‘‘mass’’ terms while preserving gauge invariance. Although other mechanisms have been pro-
posed, for example, by using fermion composites, or using fluids Roberts,11,12 the resulting
Lagrangians have terms similar to scalar fields. Fourth, many quantum and unified theories have
gravitational actions with terms of higher order. The quadratic action can be split into two inde-
pendent parts, the traceless part being the Bach tensor and the other part the Pauli tensor. Using a
conformal factor solutions to these equations can be found by Barrow and Cotsakis’13 method.
The Bach tensor has several similarities to conformal scalar fields and there might be a theorem
connecting their solutions. Vacuum solutions can generate O-scalar solutions by Buchdahl’s trick
~the analogous theorem for vector gauge theory is called the Julia–Zee correspondence! ~see, for
example, Ref. 11!; O-scalar solutions can generate A and B scalar solutions by Bekenstien’s
theorems; and perhaps A and B scalar solutions can generate Bach–Einstien solutions. Fifth,
O-scalar solutions obey the energy conditions. The energy conditions are inequalities designed to
judge whether macroscopic fluids have reasonable energetics: they break down when considering
the interacting fields necessary for particle physics~see, for example, Ref. 14, p. 95!.

Apart from the above five reasons for investigating scalar fields, they can be viewed as merely
a scalar function defined on a region of space, and such a requirement seems to be fairly ubiqui-
tous in physics. Systematic discussion of them is hindered because there is no recognized way of
classifying them. Some indications of their properties are given by the following.Coupling clas-
sification: call scalar fields coupled only to Einstein’s equations type O: conformal scalar fields
coupled to Einstein’s equations type C, scalar fields with mass self-interaction type Y, renormal-
izable scalar fields with fourth-order self-interaction type L, inflationary scalar fields with potential
V~w! type V, scalar fields that can be represented as fluids type F, symmetry breaking scalar fields
coupled to vector fields type H, and so on.Generational classification: exact scalar field solutions
can be generated from exact solutions to simpler differential equations. For a given configuration
usually the generated solution is not the most general one.Stress classification: stress tensors can
be classified by the Segre or Plebanski methods.Energy classification: for a space–time with
Lorentz signature~2,1,1,1! rather than positive definite signature~1,1,1,1!, vectors can be
timelike, null, or spacelike. The existence of timelike vectors allows the measurement of the
energy to be defined. For a given space–timeca andcaT•a

b are vectors that can be timelike, null,
or spacelike; the energy conditions can be investigated and on occasion the overall energy mea-
sured.

For conformal scalar fields the energy conditions can be complicated; hand calculations of
them for the specific solutions presented here are too long to be practicable. Three observations are
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now stated which give a rough indication of what energetics to expect. The first observation is that
the general stress for conformal scalar fields contains terms of undetermined sign and this remains
the case even if the conformal scalar stress has been obtained by using Bekenstein’s theorems; this
can been seen from~1.6! and ~1.7!. The second observation is for an O-scalar solution, it is
possible to consider whether the vectorwa is spacelike, timelike, or null: this just depends on the
Ricci scalar becauseḡ

••

abwawb5
1
2R̄; now using Bekensteins’ theorems both for types A and B

there is the equationg
••

abCaCb 5 1
2R̄. Thus there is no change in the causal direction of the scalar

field. The third observation is achieved by direct inspection of the scalar fields. Neglect that the
equation for the stress of a conformal scalar field differs from that of the ordinary case and also
that Bekenstein’s theorems introduce a conformal factor into the metric. Then the energy condi-
tions will just depend on the relative size of the scalar fields involved. The type O scalar field is
a negative real scalar quantity. Bekenstein’s theorems give that the type A scalar is the tanh of this
and that the type B is the coth of this; thus the scalar fields take real values such that 0.A.O
.B.2`. Now the type O scalar field on occasion~an example being that of Sec. IV! contains
the same quantity of energy but of the opposite sign as the gravitational field; the above inequali-
ties suggest that the type A solution would have total positive energy because the scalar field is not
so negative, and also that the type B solution would have total negative energy. This is found to
be the case for the type A solution described in the conclusion. The above suggests that it is a
reasonable guess that type A solutions have well-defined energy conditions and that type B do not:
this is what would be expected from the known exact solutions where it would account for type A
having mundane properties whereas those of type B solutions are bizarre.

II. ROBERTSON–WALKER SCALAR SOLUTIONS

The Robertson–Walker line element can be put in the form

ds252N~ t !2 dt21R~ t !2dS3,k
2 , ~2.1!

where

dS3,k
2 5dx21 f ~x!2~du21sin2 u dw2!

and

f ~x!5sin x,x,sinhx,

for k511,0,21 respectively. TakingA5R2, B5R2f 2, C5N2, andx5r gives the line element in
the spherically symmetric form~B1!. HereN is called the lapse andR the scale factor.N can be
absorbed into the line element; the choiceN51 gives the Robertson–Walker line element in
proper time. For the choiceN5R, Robertson–Walker space–time is conformal to the Einstein
static universe and by convention the time coordinate is denoted byh. ForN51 the scale factor
R can be expanded as a Taylor series around a fixed timet5t0 , thus

R5R0@11H0~ t2t0!2 1
2q0H0

2~ t2t0!
21O~ t2t0!

3#, ~2.2!

where

H[R̊/R ~2.3!

is called the Hubble parameter and

q[2 R̊̊.R/~R̊2! ~2.4!
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is called the deceleration parameter, the subscript ‘‘0’’ indicates that the parameter is evaluated at
t5t0 , andR̊5] tR.

The equation of state

p5~g21!m ~2.5!

produces equations equivalent to those of an ordinary scalar field in the particular case ofg52
~see Appendix D!. Einstein’s equations have been solved by Vajk15 for the metric ~2.1! and
equation of state~2.5!. Specializing to theg52 ordinary scalar field case gives

k50, J5ah1/2, w5
)

2
ln h,

k511, J5a~sin h cosh!1/2, w5
)

2
ln tanh, ~2.6!

k521, J5a~sinhh coshh!1/2, w5
)

2
ln tanhh,

where

a52R0AH0
2R0

2

c2
1k,

c is the speed of light, andJ is equal to both the scale factor and the lapse, i.e.,J5N5R. The
k50 solution is one of the few solutions known to have an exact form for the world function.16

Applying Bekenstein’s theorems,

k50, Y5
a

2
~h61!,

1

)

c5
h71

h61
,

k511, Y5
a

2
~sin h6cosh!,

1

)

c5
sin h7cosh

sin h6cosh
, ~2.7!

k521, Y5
a

2
exp~6h!,

1

)

c52exp~7h!,

whereY5JV21. In the k50 case the61 can be absorbed into the line element by defining
h85h61, giving a single solution. Transferring thek511 solution to proper time by defining
t5~a/2!~2cosh6sinh! gives

ds252dt21S a2

2
2t2DdS3,11

2 ,
1

)

c5S a2

2t2
21D 21/2

, ~2.8!

showing that there is only onek511 metric. In thek521 case definet5~a/2!exp~6h! to give

ds252dt21t2dS3,21
2 ,

1

)

c52
a2

4t2
. ~2.9!
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This is just the Milne universe, further discussed at Eq.~2.16!; the fieldc is a ghost field that does
not contribute to the stress. Conformal scalar stresses are traceless; this can be used to reduce the
number of equations. In particular the Einstein–conformal scalar equations with Robertson–
Walker metric can be quickly reduced to one equation

R8hh 52kR. ~2.10!

This gives solutions more general than those of~2.7!. However, they are particular instances of the
conformal scalar and incoherent radiation solutions of Bekenstein~Ref. 9, 1973! #6. Bekenstein’s
theorems can then be used in reverse to give generalizations of~2.6!.

The null junction conditions are studied by defining

v5h1r . ~2.11!

Robertson–Walker space–time in the conformal time coordinateh takes the single null form~A1!
with X5S5Y f225R(v2r )2. The u andw components of the surface stress vanish identically.
The v and r components are given by

tab52 f22R22@~R2f 2!8#nanb , ~2.12!

which do not vanish at a junction with Minkowski space–time.
The non-null junctions are studied by calculating the second fundamental form as in Appendix

B. The second fundamental form across the spacelike surface normal to~B3! is

Krr5
2RR̊

N
,

~2.13!

Kuu5sin22 uKww52
f 2RR̊

N
,

which gives no junctions to Minkowski space–time. The surface normal to the radial spacelike
vector ~B5! has second fundamental form

Ktt50,
~2.14!

Kuu5sin22 uKww5 f f 8R.

Again there are no junctions to Minkowski space–time. The radial spacelike vector is not well
suited to Robertson–Walker geometries. Choosing the isotropic spacelike vector~B7! gives sec-
ond fundamental form

Ktt5Ktr50,

Kru5
Ktw

sin u
5R

Kuw

sin u
52

1

2
fKrr5

2 f 8R

3)
, ~2.15!

Kuu5
Kru

sin u
5

f

3)
$2cot u12 f 8R%.

Again there are no junctions to Minkowski space–time.
Consider Minkowski space–time in the form~2.1! with k50 andN5R51, f5r , and apply

the coordinate transformation
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t5 t̄ coshx, r5 t̄ sinhx. ~2.16!

This transformation gives the Milne universe which hasN51, R5t, and f5sinhr . The Milne
universe is flat and is identical to Minkowski space–time except that there is a point removed at
the origin t50. At first sight it might be expected that the Milne universe could be joined to
Minkowski space–time across the surface chosen here. The reason that this does not happen is that
the space and time coordinates have been ‘‘mixed’’ by~2.16! so that if there was a well defined
junction it would be across a different surface from those chosen here. A general treatment of
redefinitions of space and time coordinates in Robertson–Walker space–time can be found in Ref.
17.

The junction conditions of Robertson–Walker space–time have two further applications. The
first is the production of a spherical Minkowski cavity which has implications for Mach’s principle
~see, for example, Ref. 18, p. 474!. A point inside the cavity is an inertial frame if it does not rotate
with respect to the reference frame of the rest of the universe, which is taken to be given by the
Robertson–Walker space–time surrounding the cavity. A different approach to Mach’s principle
is discussed in Ref. 19. The second is to the cell universe models. The surface normal to the
vectors chosen here do not allow junctions between Robertson–Walker space–time and Schwarzs-
child space–time. Thus for the Schwarzschild cell universe of Lindquist and Wheeler20 to work, a
different vector has to be chosen or different physical assumptions made.

III. PENNY’S SOLUTION

Penny’s solution,6 and the related solutions of Gurses21 and Ray,22 are conformally flat. The
conformal factor generating technique used to find these solutions is also to study solutions of
higher-order gravity theories, Barrow and Cotsakis~1988!. Here attention is restricted to Penny’s
solution where the conformal factor and the ordinary scalar field are given by

J5kax•
a1a, ka,b50, w5) ln J, ~3.1!

respectively. Defining

Ka52Jka , ~3.2!

Ka is a Killing vector which is null iffka is null. The conformal factor can be expressed as

J25a1bt1cx1dy1ez, ~3.3!

where a,b,c,d are constants. There is no asymptotically flat solution. Fora5c5d5e50,
b52R0

2H0 , this is thek50 solution~2.6!.
Using Bekenstein’s theorems, conformal scalar solutions are

Y5V21J,

2V52H coshsinh jw5J6J21,

~3.4!

jc5 H tanhcoth jw5
J271

J261
,

giving

Y52J2/~J261!.

Defining
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Ka5Y2ka , ~3.5!

againKa is a Killing vector which is null iffka is null.

IV. THE SOLUTION PREVIOUSLY FOUND BY THE AUTHOR

The solution found in Refs. 1 and 2 is

ds252~112a ,v!dv
212dvdr1r ~r22a!dS2

2, ~4.1!

wheredS2
25du21sin2 u/dw2, anda is a twice differentiable function ofv. The stress is given by

a scalar field and a null radiation field

w5
1

2
lnS 12

2a

r D , F25
2aa ,vv

r ~r22a!
. ~4.2!

Defining the luminosity distanceR25r (r22a), and taking the positive sign of the square root,
the solution becomes

ds25S 211
2aa ,v

l Ddv21 2R

l
dr dv1R2dS2

2,

~4.3!

w5
1

2
lnS l2a

l1a D , F252
aa ,v

R2 ,

wherel25a21R2. The Bondi massM (v) is half the coefficient of theR21 term ofgvv . Expand-
ing gives

M ~v !5aa ,v . ~4.4!

For the null radiation field to vanish,a,vv50 or a5sv1b, wheres andb are constants. It is
straightforward to show thatb can be absorbed into the line element leavinga5sv; this can be
substituted into~4.3! for a form of the metric using the luminosity radial coordinate; alternatively
it can be substituted into~4.1!, giving

ds252~112s!dv212dvdr1r ~r22sv !dS2
2,

~4.5!

w5
1

2
lnS 12

2sv
r D .

Definingv8 5 A112sv, and r 8 5 r /A112s, gives

ds252dv8212dv8dr81r 8„~112s!r 822sv8…dS2
2,

~4.6!

w5
1

2
lnS 12

2s

~112s!

v8

r 8 D
Then definingt85v82r 8 gives

ds252dt821dr821r 8~r 822st8!dS2
2,

~4.7!
w5 ln~R/r !.

Also definingt5t8/112s the solution can be put in the form
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ds252~112s!dt21
dr2

~112s!
1r S r

~112s!
22st DdS2

2,

~4.8!

w5
1

2
lnS 1

~112s!
2
2st

r D ,
and from this form using~C5! the ADM mass is seen to vanish identically.

Using Bekenstein’s theorems to find conformal scalar solutions~4.3! gives

R5R̄V215R̄H coshsinh jw5 1
2R̄

12j@~l2a!j6~l1a!j#,

~4.9!

jc5
~l2a!j7~l1a!j

~l2a!j6~l1a!j ,

where l25R̄21a2 and R̄ denotes the luminosity coordinate for the O-scalar solution, andR
denotes it for the conformal scalar solution. For the type A solution general can be retained if the
null radiation field is transformed, but for the type B solutiona must equalsv. Inspecting~4.9!
gives limiting behavior of the conformal scalar solution in terms of the luminosity coordinate for
the ordinary solution,

R̄↑`, Type A: R↑`,c↑0, Type B: R↓2j,c↓2`,
~4.10!

R̄↓0, Type A: R↓0,c↓21, Type B: R↓20,c↑21.

The type B solution does not have an asymptotically flat region, so that attention is restricted to the
type A solution. Expanding~4.9! for largeR gives

R5R̄X11
j2a2

2R̄2
1OS a

R̄
D 3C. ~4.11!

Solving this quadratic

R̄5
R

2 S 16A12
2j2a2

R2 D , ~4.12!

the upper sign is taken so thatR5R̄ whenj50.
Differentiating

dR̄5
1

2 S 11
2

A122j2a2/R2D dR2
2j2aa ,vdv

RA122j2a2/R2
, ~4.13!

inserting into the line element, and using~4.3!, ~4.12!, ~4.13! and thatl25a21R̄2 gives

gvv5211
2~12j2!

R
aa ,v1O~R22!. ~4.14!

Thus the Bondi mass is given by

M ~v !5~12j2!aa ,v , ~4.15!
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which is two-thirds of~4.4!. To calculate the ADM mass note that the conformal factor can be
used:

A
•

t5Ā
•

t1 lim
r→`

F2
1B̄

2r
~V22!8G , ~4.16!

whereB̄,Ā are the values of these quantities in the O-scalar solution. Using the metric in the form
~4.8! and noting that A vanishes,

A
•

t5 lim
r→`

2
B̄j

2
sinh~2jw!•w85 lim

r→`

2
js

2
sinh~2jw!•t. ~4.17!

Expanding sinh~2jw! for r→` gives

A
•

t5 H j2s2t, for 21,2s,1,
2jj22s2j11t, for 2s>1, ~4.18!

for 2s<21 the signature of the metric is not retained.
The surface stress~A6! must vanish at any null junction; this implies@Y8# must vanish iftvv ,

tvr , trv , andtrr are to vanish, and [(X/S)8/2S] must vanish iftuu andtww are to vanish. For the
type O solution take the line element~4.3!; @Y8# vanishes as this line element is expressed in terms
of the luminosity radial coordinate already and

1

2S SXSD 8
5

a

2Rj ~a22la ,v!. ~4.19!

Now the metric can be chosen to continuously join to Minkowski space–time by takinga to
continuously increase from~or decrease to! a50; ~4.19! shows that there is no surface stress at the
join a50 so that the field equations are obeyed throughout the space–time. For the type A and B
solutions~4.9! gives

Y5 1
4 R̄

222j$~l2a!j6~l1a!j%,

Y85
1

2
R̄122j$~l2a!j6~l1a!j%

3H ~12j!~~l2a!j6~l1a!j!1
j

a
R̄2
„~l2a!j216~l1a!j21

…J , ~4.20!

1

2S
S X
S
D 8

5
4a~a2la ,v!

R̄322j$~l2a!j6~l1a!j%
.

For the type B solution the metric is not continuous ata50 as would be anticipated from the
general remarks in the Introduction. The type A solution again has a metric which can be chosen
to continuously join to Minkowski space–time by takinga to behave as before.

At any junction across a timelike surface the limits~B7! of the second fundamental form
either side of the junction must coincide. For the type O solution, dropping the primes on the
metric ~4.7! gives the second fundamental form~B6!

Kuu5sin22 uKww5r2st, ~4.21!
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which gives a junction where the field equations are defined with Minkowski space–time att50.
For type A and B conformal solutions the extension of the metric~4.7! has second fundamental
form ~B6!:

Ktt52 1
2jst„r ~r22st !…2j/221

•$~r22st !j7r j%,
~4.22!

Kuu5sin22 uKww5 1
2„r ~r22st !…2j/2$„r1~j21!st…~r22st !j6„r2~j11!st…r j%.

Again there is a junction att50.

V. CONCLUSION

Solutions to the Einstein–scalar equations which can represent an imploding scalar field were
presented. Bekenstein’s theorems were used to generate the corresponding Einstein–conformal
scalar solutions. The Robertson–Walker solutions presented here are examples of solutions pre-
viously found by Vajk and Bekenstein; they are not asymptotically flat and cannot be joined to
Minkowski space–time by the methods used here. Penny’s solution also can represent an implod-
ing scalar field but it is not asymptotically flat, and only when it reduces to a Robertson–Walker
metric is it spherically symmetric. The solution previously found by the author and its’ Bekenstein
type A extension are asymptotically flat and have well-defined junctions with Minkowski space–
time, and therefore can represent a scalar field imploding from nothing, thus generalizing the
example in the abstract. This solution has Bondi massaa,v , and zero ADM mass. The zero ADM
mass is because the energy of the gravitational field is negative and equals the positive energy of
the scalar field. The type A extension has Bondi mass~1-j2!aa,v, and ADM massj2s2t, ~u2su,1!.
Assuming that the null radiation field vanishes, so that there is only the conformal scalar field
present, the Type A solution hasa5sv, therefore

Type O: M ~v !5s2v, A
•

t50,

Type A: M ~v !5 2
3s

2v, A
•

t5 1
3s

2t.

The type A solution might violate the energy conditions, but subject to this provision it is possible
to start with Minkowski space–time and join the type A solution att50 generating nonzero ADM
mass. This only goes to show that you can get something~as measured by ADM mass! from
nothing.

APPENDIX A: JUNCTION CONDITIONS ACROSS A NULL SURFACE

In single null coordinates a spherically symmetric line element can be written as

ds252X dv212S dvdr1Y~du21sin2 u dw2!. ~A1!

A suitable null tetrad is

l a5~S,0,0,0!, na5~X/2S,21,0,0!, ma5~0,0,1,i sin u!AY/2. ~A2!

The projection tensor is defined byqab 5 gab 1 2l (anb) and has nonvanishing components
qu•

u5qw•
w51. The internal second fundamental form,xab5nd;cq•a

d q
•b
c , involves covariant deriva-

tives of na which can be calculated using the Christoffel symbols in Ref. 2, and it has nonvan-
ishing components

xuu5sin22 u xww52~XY8/2S1Y,v!/2S. ~A3!

The external second fundamental formcab5 l d;cq•a
c q

•b
d is
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cuu5sin22 ucww5Y8/2, ~A4!

and the normal fundamental formha5 l d;cq•a
c n

•

d vanishes. The surface gravityv 5 2 l dn•
cn

•;c
d is

v52~X/S!8/2S. ~A5!

Thesurfacestresstab5 2@Tr c#nanb2 2@h (a#b) 2 @v#qab is

tab52@Y8#nanb /Y1@~X/S!8/2S#qab , ~A6!

with na andqab given by ~A2! and where the bracket ‘‘@ #’’ is defined by

@Q#uy5 lim
x→y1

Q2 lim
x→y2

Q ~A7!

for a pointy in the surface.

APPENDIX B: JUNCTION CONDITIONS ACROSS SPACELIKE AND TIMELIKE
SURFACES

The line element can be taken in the form

ds252C dt21A dr21B~du21sin2 u dw2!. ~B1!

For a non-null surface, the surface stress vanishes iff the second fundamental form obeys

@Kab#50, ~B2!

where the bracket ‘‘@ #’’ is defined by ~A7!. A suitable unit timelike vector field

Uu5~AC,0,0,0!. ~B3!

The projection tensorha•
b5ga•

b1UaU•

b has three componentshr •
r5hu•

u5hw•
w51. The second

fundamental form isKab 5 Uc;dha
ch

•b
d . It involves covariant derivatives ofUa which can be

calculated using the Christoffel symbols in Ref. 2. The nonvanishing components are

Krr52Å/~2AC!, Kuu5sin22 u Kww52B̊/~2AC!, ~B4!

whereÅ5] tA. The radial unit spacelike vector is

Ua5~0,AA,0,0!. ~B5!

The spacelike projection tensorha•
b5ga•

b2UaU•

b has three componentsht•
t5hu•

u5hw•
w51. The

second fundamental form for the corresponding timelike surface is

Ktt52C8/~2AA!, Kuu5sin22 u Kww5B8/~2AA!, ~B6!

whereC85] rC. Choosing the isotropic unit spacelike vector

Ua5
1

)

~0,AA,AB,AB sin u!; ~B7!

similarly the nonvanishing components of the second fundamental form are

Ktt52C8/~2)A!,
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Ktr522AA

B
Ktu5

22

sin u
AA

B
Ktw5

2Å

3A3A
1

B̊

3B
AA

3
,

~B8!

Kru5
Krw

sin u
5

AAKuw

sin u
5

21

2
AB

A
Krr5

2B8

6A3B
,

Kuu5
Kru

sin u
5

1

3A3A
$2B cot u1B8%.

The above three vectors~B3!, ~B5!, and ~B7! are suitable for the majority of purposes; but, for
example, if there is ‘‘Mixing’’ between the space and time coordinates, like that of Eq.~2.16!,
then other vectors have to be used.

APPENDIX C: THE ADM ENERGY

The ADM energy for a spherically symmetric space–time is found by generalizing
Weinberg’s20 derivation for the Schwarzschild solution. Define the rectilinear coordinates

x15r sin u cosw, x25r sin u sin w, x35r cosu; ~C1!

the line element~B1! becomes

ds252C dt21~A/r 22B/r 4!~dx.x!21~B/r 2!dx2. ~C2!

Defininghi j5gi j2h i j , andn•
i 5x

•

i /r , i , j51,2,3, gives

hi j5~A2B/r 2!ninj1~B/r 221!d i j . ~C3!

The ADM mass is given by

A
•

t5 R dS
•

i ~h
• i , j
j 2h

• j ,i
j !. ~C4!

Using ~C3! this is

A
•

t5
21

2
r S 2A

r
1S Br 2D 8

1
B

r 3 D . ~C5!

The remaining components of the ADM vector are given by

8pAj5 lim
r→`

R dS
•

i ~Ki j2d i j K !

using the fundamental form~B5! gives

8pAj5 lim
r→`

~B/~BAC!,0,0!

and this vanishes in all the cases considered here.
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APPENDIX D: A FIELD INDEX

A perfect fluid has LagrangianLd5p ~the pressure! ~see, for example, Ref. 10! and Hamil-
tonian densityHd5m ~the density!. Taking metric variations of the Lagrangian produces the
metric stress

Tab5~m1p!VaVb1pgab , VaV•

a521. ~D1!

The absolute derivative is defined by

X̊abc...5V
•

Xabc... . ~D2!

The Bianchi identities give

2VaT••;b
ab 5m̊1~m1p!Q̌, Q̌5V

•;a
a

habT••;c
bc 5~m1p!a1ha•

bpb . ~D3!

The Eisenhart–Synge fluid index is

v5 ln I5E dp

m1p
, ~D4!

in the literature sometimeI is called the index and sometimesv. Assuming an equation of state

p5 f ~m!, m5 f21~p!, ~D5!

the Bianchi identities can be expressed as

Q̌5v̊
d f21

dp
, V̊a52ha•

bvb . ~D6!

For the equation of state~2.5! the index isv5@~g21!/g#ln m. An O-scalar field has this equation
of state withg52 andVa 5 wa /A2wc

2, p5m52wc
2. Taking a timelike vector field, say

Va5~N,0,0,0!, V
•

a5~21/N,0,0,0!, ~D7!

it is possible to relate the behavior of the lapseN to the fluid index. For many configurations they
can be equatedN5g(v), typicallyN51/v. Thus if the fluid index is well behaved throughout the
space, it is possible, without recourse to field equations, to discuss whether the metric is. Other
choices of timelike vector field can be made; for example, for an asymptotically flat space–time
there is the normal vector to the three-sphere at infinity.

There is no direct analog of the preceding for fields with infinite degrees of freedom. This is
because the stress for fields does not have an explicit dependence on vector fields. It is possible to
introduce vector fields into an action and vary it to produce an extreme configuration between the
metric, fields, and vector field, in the following manner. Let the fields be describable by a La-
grangian

I l5E A2g d4x L~w,wa!. ~D8!

Under infinitesimal coordinate variations this gives
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dI

dx
•

a :E A2g d4x“bUc
ab , ~D9!

whereUc
ab is the canonical stress

Uc
ab5

]L

]wa
]bw2g

••

abLd . ~D10!

The Hamiltonian density is usually defined in terms of componentsHd5Uc•0
0 . More generally it

can be defined as

Hd5VaVbUc
ab , ~D11!

whereVa is a unit timelike vector field. Variations ofI l with respect to the metric produce the
stress

Tab5Dab1Lgab , ~D12!

whereDab is given bydI d/dgab . Applying the timelike vector field and using~D11! gives

Hd1Ld5V
•

aV
•

bDab . ~D13!

Variations of actions corresponding toHd andLd give dynamical equations. This suggests con-
sidering a new actionI n which is a sum of the Hamiltonian and Lagrangian actions

I n5E A2g d4x~Hd1Ld!5E A2g d4xV
•

aV
•

bDab , ~D14!

which will give extremeal~maximally stable or unstable! configurations. Another possible way of
producing further equations between the fields is to consider higher-order variations. For example,
in Ref. 23, the second covariant variation of the point particle action gives the geodesic deviation
equations.

A scalar-electrodynamic Lagrangian for a complex scalar fieldc and a vector fieldAa is

L52 1
4F

21 1
2m

2A22l~A
•a
a !21JaA•

a2DacD
ac̄2V~c2!12bc2R,

Dac5]ac1 iecAa , c25cc̄, ~D15!

Dac̄5]ac̄2 iec̄Aa .

Varying with respect to the metric gives

Dab5FacFb•
c2m2AaAb22JaAb14l2AabAc•

c12D (acDb)c̄22b~c2!ab22bc2R.
~D16!

Setting up the new actionI n and varying with respect to the fields gives

dI n
dc

:522~V
•

aV
•

a
Dbc̄ !a12ieAaV•

aV
•

a
Dbc̄12bc̄@~V

•

aV
•

a!ab2RabV•

aV
•

b#,

~D17!
dI n
dAa

:522~VaV•

bFb•
c1V

•

cV
•

bFba!a12Va~2m2V
•

bAb2JbA•

b!1 ieV
•

a~cDcc̄2c̄Dcc!.

4572 M. D. Roberts: Imploding scalar fields

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



It is also possible to vary with respect toc̊, Åa , gab , andVa . Variations with respect toVa are
best done using velocity potentials~see Ref. 10!. Varying with respect togab a new ‘‘stress’’
tensor can be created. Applying the Bianchi identities to it the equations~D17! are not recovered,
because the conservation equations as derived from~D9! are also changed. ChoosingDab5Rab

and varying with respect togab does not reproduce Raychaudhuri’s equations, but insteadQ̊
5 RabV•

aV
•

b 1 Q2 2 V̊
•;a
a 1 1/2hV2. For the Reissner–Nordstrom solution with vector field~D7!,

and the null vector fieldl a , ~D17! becomes

v t52
4&

r 3N3 eF11
2m

r
2
3e2

r G ,
~D18!

vv54&
e

r 3
.

For static O-scalar fields the field index vanishes everywhere, for nonstatic O-scalar fields usingl a
gives

v522S 2S8

S
1
Y8

Y Dw8. ~D19!

In the solution~4.5! this is

v52
4sv
Y2 ~r2sv !. ~D20!
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By casting the Yang–Mills–Higgs equations of an SU~2! theory in the form of the
Ernst equations of general relativity, it is shown how the known exact solutions of
general relativity can be used to give similar solutions for Yang–Mills theory. Thus
all the known exact solutions of general relativity with axial symmetry~e.g., the
Kerr metric, the Tomimatsu–Sato metric! have Yang–Mills equivalents. In this
paper we only examine in detail the Kerr-like solution. It will be seen that this
solution has surfaces where the gauge and scalar fields become infinite, which
correspond to the infinite redshift surfaces of the normal Kerr solution. Unlike the
Kerr solution, our solution apparently does not have any intrinsic angular momen-
tum, but rather appears to give the non-Abelian field configuration associated with
concentric shells of color charge. Several possible physical consequences of these
axial symmetric Yang–Mills field configurations are discussed. ©1996 American
Institute of Physics.@S0022-2488~96!00709-8#

I. INTRODUCTION

Recently, using the long known connection between general relativity and Yang–Mills
theories,1 we found exact Schwarzschild-like solutions for Yang–Mills theories.2,3 Our results
were conceptually similar to several other recent papers4,5 which discussed related solutions. A
natural question which arises from this is if there are other exact solutions of general relativity
which have corresponding exact Yang–Mills solutions. Of particular interest is the Kerr solution
which has an intrinsic angular momentum. In this paper we show that there are such solutions by
considering an SU~2! gauge theory coupled to a scalar field in the adjoint representation. The
solutions are found by first transforming the Yang–Mills field equations into the Ernst equations6

of general relativity, and then applying the form of the general relativistic solution in terms of the
gauge and scalar fields. Even though we specialize in this paper to the Kerr-like solution, it is in
principle possible to use this same procedure to map over any axially symmetric solutions to
Einstein’s equations into an equivalent Yang–Mills solution. However, as we will show, even the
Kerr-like solution has a very complex structure, which makes it difficult to deal with. In addition
it may be possible to reverse the above method and use known exact solution of Yang–Mills
theory~e.g., the BPS dyon solution7,8 and multimonopole solutions9! to write down undiscovered
solutions to Einstein’s equations. One interesting feature of our previous Schwarzschild-like so-
lution was the existence of a spherical shell surrounding the origin, on which the gauge and scalar
fields became infinite, implying the presence of a spherical distribution of color charge. The
Yang–Mills Kerr-like solution, in contrast, generally has two concentric shells of SU~2! charge
~these shells are the equivalent of the infinite redshift surfaces of the normal Kerr solution!. Just as
the the Kerr solution of general relativity can permanently trap particles which carry the gravita-
tional ‘‘charge’’ ~i.e., mass-energy! behind its event horizons, so too does the Yang–Mills Kerr-
like solution if it is treated as a fixed background field in which a color charged test particle is
placed via minimal coupling. This gives a semi-classical type of confinement which has some
similiarities with phenomenological bag models. It is not clear whether this is in any way con-
nected with the physical confinement mechanism, which is thought to be a quantum field theoretic
effect. Actually, what we call the color event horizon of our solution corresponds to the infinite
redshift surfaces rather than the true event horizons of the normal Kerr metric. The reason for
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calling these surfaces the color event horizons is that the physical quantities of our theory~the
gauge and scalar fields! develop real singularities on these surfaces. These infinite values of the
fields imply, at least classically, that a particle carrying a color charge would either be strongly
repelled or strongly attracted by these surfaces. For general relativity the corresponding singular
surfaces are coordinate singularities which arise because of the particular coordinates that one
chooses. This can best be seen for the normal Schwarzschild solution where one can eliminate the
singularity in the metric at the Schwarzschild radius by transforming to Kruskal coordinates. In
addition to this difference in the nature of the singularities, it is shown that while the regular Kerr
solution has some angular momentum, our Yang–Mills version does not. These differences arise
because the symmetries of general relativity are space-time symmetries, while the Yang–Mills
symmetries are internal Lie symmetries.

II. THE KERR-LIKE SOLUTION

The theory which we consider is an SU~2! gauge field which is coupled to a scalar field in the
adjoint representation, which has no self-interaction or mass terms. The Lagrangian for this theory
is

L52 1
4 F

mnaFmn
a 1 1

2 Dm~fa!Dm~fa!, ~1!

where

Fmn
a 5]mWn

a2]nWm
a1geabcWm

bWn
c ~2!

and

Dmfa5]mfa1geabcWm
bfc. ~3!

To obtain the Bogomolny field equations associated with this theory one finds the field configu-
ration which produces an extremum in the canonical Hamiltonian:

H5E d3x@ 1
4 Fi j

a Fai j2 1
2 F0i

a Fa0i1 1
2 Dif

aDifa2 1
2 D0f

aD0fa#. ~4!

We now introduce an explicit scale factor for the scalar field~i.e.,fa→Afa! so that we can study
the special case with no scalar field by simply takingA50. Next we require that all the fields are
time independent and that the time components of the gauge fields are proportional to the scalar
fields ~i.e.,W0

a5Cfa, wherefa is the rescaled field!. ThusW0
a acts like an additional Higgs field

except that its kinetic term appears with the opposite sign in Eq.~4!. Using all these conditions and
the antisymmetry ofeabc we find thatD0f

a50 and F0i
a 5C(Dif

a), so that the Hamiltonian
becomes

H5E d3x@ 1
4 ~Fi j

a2e i jkAA22C2Dkfa!~Fai j2e i j lAA22C2Dlfa!1 1
2 e i jkAA22C2Fai jDkfa#.

~5!

Using the relationshipe i jkF
ai jDkfa5] i(e i jkF

a jkfa) the last term in Eq.~5! can be turned into a
surface integral, which in the usual development7 is proportional to the magnetic charge carried by
the fields due to the topology of the Higgs field at infinity.10 The lower limit of the above
Hamiltonian can be found be requiring
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Fi j
a5AA22C2e i jkD

kfa,
~6!Bk

a5AA22C2Dkf
a.

These are the usual Bogomolny field equations, with the presence of the scalar and time compo-
nent of the gauge fields explicitly displayed through the constantsA andC.

Several exact solutions to the field equations of this theory have been found which possess
spherical symmetry: the Bogomolny–Prasad–Sommerfield dyon solution,7,8 and more recently a
Schwarzschild-like solution.2 In this paper we are looking for an axially symmetric solution.
Several authors11,12have already given an axially symmetric ansatz for the guage and scalar fields

Fa5~0,f1 ,f2!, Wf
a52~0,h1 ,h2!,

~7!
Wz

a5~W1,0,0!, Wr
a52~W2,0,0!,

wherew,z,r are the usual polar coordinates andf i ,h i ,Wi are functions ofr,z only. With this
ansatz the Bogomolny equations of Eq.~6! become11

AA22C2~]rf12W2f2!52~]zh12W1h2!/r,

AA22C2~]rf21W2f1!52~]zh21W1h1!/r,

AA22C2~f1h22f2h1!5r~]rW12]zW2!, ~8!

AA22C2~]zf12W1f2!5~]rh12W2h2!/r,

AA22C2~]zf21W1f1!5~]rh21W2h1!/r.

These axially symmetric versions of the Bogomolny equations remain invariant under the follow-
ing Abelian gauge transformation:

Wi8→Wi1] iL,

~f18 ,h18!→~f1 ,h1!cos~L!1~f2 ,h2!sin~L!, ~9!

~f28 ,h28!→~f2 ,h2!cos~L!2~f1 ,h1!sin~L!.

If one defines two new functions,f (r,z) and c~r,z!, such that the fields,hi , fi , andWi are
written as

AA22C2f152W15
1

f

]c

]z
, h15rW252

r

f

]c

]r
,

~10!

AA22C2f252
1

f

] f

]z
, h25

r

f

] f

]r
,

then the Bogomolny equations of Eq.~8! become9

Re~e!¹2e5“e•“e, ~11!

wheree5f1 ic, and¹2 and“ are the Laplacian and gradient in cylinderical coordinates.
Equation~11! is the Ernst equation6 of general relativity. This form of the Bogomolny equa-

tions has been used to find exact, nonsingular, multimonopole solutions for the fields through the
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use of the Ba¨cklund transformations of Harrison.13 Since the axial Bogomolny equations can be
written in the form of the Ernst equations, it should be possible to use the known exact solutions
of general relativity to find exact solutions for SU~2! Yang–Mills–Higgs theory. That this link
between the general relativistic solutions and their Yang–Mills counterparts has not been ex-
ploited before can perhaps be attributed to the singularities which exist in these solutions. Here it
is conjectured that these singularities might actually be a desired feature in that they may provide
a confinement mechanism for non-Abelian gauge theories. Previously,2,3 using a different ap-
proach we have found exact Schwarzschild-like solutions for SU~2! and SU~N! Yang–Mills–
Higgs theories. Here we use the well known Kerr solution, written in terms of variables of the
Ernst equation, to give an equivalent solution for the Yang–Mills theory. There are actually
several other exact, axially symmetric solutions in general relativity which could be mapped over
into Yang–Mills theory~e.g., the Tomimatsu–Sato metric14 and the NUT-Taub metric15!. How-
ever, the Kerr metric is the simplest axially symmetric solution, and is of physical interest since it
gives the exterior gravitational field for a central mass with angular momentum. However, our
axial Yang–Mills solution apparently does not possess any angular momentum, but rather seems
to represent the non-Abelian field configuration due to an axial symmetric distribution of SU~2!
charge. Thus although the Kerr-like solution is found using the general relativistic solution, they
appear to have some different physical characteristics.

To find the Kerr solution from the Ernst equation one first introduces the complex potentialz
such that

e5 f1 ic5
z21

z11
~12!

so that f andc are the real and imaginary parts, respectively, of~z21!/~z11!. Substituting this
expression fore into Eq. ~11!, the Ernst equation becomes

~zz̄21!¹2z52z̄“z•“z, ~13!

where z̄ is the complex conjugate ofz. For this form of the equations the Kerr solution is most
easily found using prolate spheroidal coordinates, which can be written in terms of the cylinderical
coordinates,r andz, as

x5
1

2k
@A~z1k!21r21A~z2k!21r2#,

~14!

y5
1

2k
@A~z1k!21r22A~z2k!21r2#,

where the ranges of these prolate spheroidal coordinates areuxu>1 anduyu<1. The inverse trans-
formation is given by

r5kAx221A12y2, z5kxy, ~15!

with k, p, andq are arbitrary constants. In these prolate spheroidal coordinates the gradient and
Laplacian become

“5
k

Ax22y2
F x̂Ax221

]

]x
1 ŷA12y2

]

]yG ,
~16!

¹25
k2

x22y2 F ]

]x
~x221!

]

]x
1

]

]y
~12y2!

]

]yG ,
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where x̂ and ŷ are unit vectors. Using these expressions it is easy to see that a solution to the
second form of the Ernst equation, Eq.~13!, is

z5px2 iqy, ~17!

where the constantsp,q must satisfy the conditionp21q251. The above solution can be trans-
formed into the standard form of the Kerr solution by doing a transformation from the prolate
spheroidal coordinates to Boyer–Lindquist coordinates.6 The special case whenq50, p51, and
z5x gives ~after a transformation to Schwarzschild coordinates! the usual Schwarzschild metric
for general relativity. However, using the solutionz5x in the Yang–Mills case to write down the
expressions for the gauge and scalar fields, we find that we do not recover our previous
Schwarzschild-like solution for SU~2!, but obtain a different solution. The reason for this lies in
the fact that the ansa¨tze we used in each case were different, and in the previous work we found
our solution directly from the Euler–Lagrange field equations, while here we employed the Bogo-
molny formalism. A field configuration that satisfies the Bogomolny equations will also satisfy the
Euler–Lagrange equations, but the reverse is not necessarily true. Neverthelessz5x does give a
solution to the Yang–Mills–Higgs equations, which is a special case of the general solution~i.e.,
p,qÞ0! that we are considering. In general relativityp, q, and k are related to the mass and
angular momentum of the central mass which produces the gravitational field. Herep, q, andk
will be related to the shape of the axially symmetric SU~2! charge configuration of our solution. In
order to find expressions for the fieldsf i ,h i ,Wi it is first necessary to determine the functionsf
andc. From Eqs.~12! and ~17! we find that

f5
p2x21q2y221

~px11!21q2y2
, c5

22qy

~px11!21q2y2
. ~18!

To get the gauge and scalar fields one simply inserts these expressions forf andc into Eq. ~10!.
This is a straightforward but tedious procedure which yields very complicated expressions for the
fields. The explicit expressions for the fields are

AA22C2f152W15
22q@x~12y2!~~px11!22q2y2!22py2~px11!~x221!#

k@~px11!21q2y2#~p2x21q2y221!~x22y2!
,

h15rW25
22qy@~px11!22q2y212px~px11!#~x221!~12y2!

~x22y2!@~px11!21q2y2#~p2x21q2y221!
,

~19!

AA22C2f25
22y@p~x221!~~px11!22q2y2!12q2x~px11!~12y2!#

k~x22y2!~p2x21q2y221!@~px11!21q2y2#
,

h25
22~x221!~12y2!@px~3q2y22~px11!2!12q2y2#

~x22y2!~p2x21q2y221!@~px11!21q2y2#
,

where the partial derivatives like,]c/]z were determined using the chain rule~e.g.,
]xc]zx1]yc]zy! and Eq.~14!. Notice that in general relativity the physical quantities one usually
deals with are the components of the metric tensor. Here the physical quantities are the gauge
fields which correspond to the Christoffel symbols in general relativity. This partly explains the
complexity of the expressions in Eq.~19!, since even in Boyer–Lindquist coordinates, the Christ-
offel coefficients for the Kerr metric are somewhat involved. If one wanted to have the expressions
for the fields in terms of the original coordinates, it would be necessary to use Eq.~14! to replace
x,y with r,z, making an already complicated expression even more intractible. However, by
looking at certain aspects of the expressions of the fields one can still make some interesting
comments about this solution.
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One feature that can be looked for are regions where the fields become singular. In analogy
with Maxwell’s equations, where singularities in the electromagnetic field indicate the presence of
electric charge, we interpret these singularities as the location of color charge. The shape of these
SU~2! charge distributions is much more involved than in electromagnetism. All of the fields from
Eq. ~19! have three similar terms in their denominators, so the fields can be made to approach
infinity if any one of the three factors goes to zero. First, by settingp2x21q2y22150 it can be
seen that all the fields become infinite. This factor is common to all the fields, since from Eq.~10!
they all have a factor off21. In cylinderical coordinates this condition becomes

upqu~z21r22k2!56uq22p2urk. ~20!

By settingq5cosu andp5sinu we replace the two parametersp,q with one parameter, and Eq.
~20! becomes

z21r22k2562ucot~2u!urk. ~21!

Solving the above condition forz as a function ofr allows one to take a vertical slice through the
two axially symmetric surfaces defined by Eq.~21!. One needs only to look in the range
0°<u<45° to cover all the possibilities. What one finds are two concentric surfaces which touch
each other on thez-axis at6k. The outer surface is given by the positive solution to Eq.~21!. It
has a toroidal shape, without the central hole of a normal torus. The inner surface is given by the
negative solution, and has an ellipsoidal shape which runs along thez axis. In the special case
whenu545° ~i.e., p5q! the two surfaces merge into a single sphere with a radius ofk. Second,
the fields can become infinite ifx22y250. However, this condition gives two points~r50,
z56k! which are already included in the first condition of Eq.~20!. Finally some of the fields
become singular wheny50 andpx1150 ~sincex is positive definite this condition only has a
solution whenp,0!. The conditiony50 impliesz50 so that the singularity resides in the plane
perpendicular to thez axis, and thenpx1150 givesr5kuqu/upu5kucotuu. This corresponds to a
ring singularity of radiuskucotuu centered at the origin in the plane perpendicular to thez axis.
However, this singularity, produced by the conditiony50 andpx1150, duplicates that from the
condition of Eq.~21!. Thus the singularity produced by the third term in the denominators of the
gauge fields does not produce an independent singularity. The geometrical structure of the singular
surfaces is different from that of the similar Schwarzschild-like solution. For the Schwarzschild
solution we obtained a spherical shell singularity surrounding a point singularity at the origin. In
the present case we find concentric toroidal and ellipsoidal surfaces on which the gauge and scalar
fields become infinite, with no apparent singularities in the interior of these surfaces.

One of the most interesting features of other Yang–Mills solutions, such as the ’t Hooft–
Polyakov monopole or the Prasad–Sommerfield dyon, was the topological nature of the magnetic
charge carried by these solutions. By examining the far-field behavior of the magnetic field of a
special case of the Kerr-like solution we will find that it does not carry any net topological
magnetic charge, but behaves like a configuration of two opposite magnetic charge sitting on the
z axis, separated by a distance 2k ~i.e., it acts like a magnetic dipole!. The special case we
consider isq50 andp51. In this case the only non-zero fields aref2 andh2, which become

f25
22y

k~x22y2!
, h25

2x~12y2!

~x22y2!
. ~22!

~We are also takingA51 andC50 here so that the time part of the gauge field is absent.! These
fields only become singular at two points2x56y, or r50, z56k. They do not have the singular
surfaces of the more generalqÞ0 case. Looking back at Eq.~8! to obtain the components of the
non-Abelian magnetic field we find thatBz52]rh2/r andBr5]zh2/r. Inserting the fields of Eq.
~22! and applying the chain rule we find
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Bz5
2x@x2~123y2!1y2~32y2!#

k2~x22y2!3
,

~23!

Br5
22yAx221A12y2~3x21y2!

k2~x22y2!3
,

where the group index has been dropped since the magnetic fields all point in the same direction
in iso-space.11 If one looks at these fields along thez axis~i.e.,r50! wherex→z/k andy→1, then
Bz→24zk/(z22k2)2 andBr→0. Now the magnetic field on thez axis of two magnetic point
charges1g and2g located atz52a andz51a, respectively, is24agz/(z22a2)2. Thus this
special case of our solution carries no net topological magnetic charge, but behaves similar to the
magnetic dipole field surrounding two point magnetic charges of opposite sign. The magnetic
charges of this special case solution can be taken to be located at the two singularities on thez axis
at z56k. For the general case withqÞ0 one can again take the solutions of Eq.~19! and insert
them into the right-hand side of Eq.~8! to get the components of the magnetic field. After a
tedious calculation, restricting ourselves to thez axis and taking the limitz→` one finds that all
the components of the magnetic field fall off faster than 1/r 2. Thus none of the Kerr-like solutions
carry a net topological magnetic charge. One can also look at the gauge and scalar fields of Eq.
~19! and see that asr→` andz→` that they fall off as 1/r 2 or faster, rather than the 1/r falloff
one would expect for a radial Coulomb field from a net charge.

Just as the Kerr and Schwarzschild solutions of general relativity confine particles behind
event horizons, so one may hope that the present solutions will trap color charged particles behind
the singularities in the gauge fields. If these axial Yang–Mills solutions are treated as background
fields in which a test particle is placed via minimal coupling, one finds that the singular surfaces
act as impenetrable barriers, and the test particle does become trapped. A similar result is obtained
for the spherically symmetric Schwarzschild-like solutions considered in Refs. 4, 5, and 16. In the
present solution there are in general two concentric singular surfaces so the test particle may be
trapped either within the inner surface or between the inner and outer surface. The special case,
q50 andp51, which was just considered, does not trap test particles in this manner since it only
has singular points, not singular surfaces that act as barriers to the test particle. This type of
semi-classical confinement is similar to the behavior of phenomenological bag models. In a fully
rigorous quantum field theory approach one could argue against these solutions being connected
with the physical confinement mechanism. Due to the singularities one gets an infinite action
contribution from these field configurations to the path integral. This implies that these solutions
are not physically important. This conclusion can be evaded if there is an infinity of neighboring
solutions whose infinite entropy contribution can offset the infinite action. This occurs, for ex-
ample, with the meron solutions considered by Callan, Dashen, and Gross.17 There the logarithmic
divergence of the action was compensated for by the logarithmic increase of the entropy. It is not
clear whether a similar result occurs for these axial symmetric solutions, but there is an infinite set
of related solutions which are obtained by varying the free parametersk andq ~p is not a free
parameter because of the constraintp21q251!. The parameterk can vary from 0 tò , while q
can range from21 to 1.

The exact expressions for the energy and angular momentum of the Kerr-like solution pre-
sented here are rather complicated due to the involved nature of the scalar and gauge fields@see
Eq. ~19!#. Still some interesting general conclusions can be made about these quantities. To find
the energy and angular momentum in the fields it is necessary to calculate the energy-momentum
tensor of the Lagrangian of Eq.~1!:

Tmn5
2

A2g

a~LA2g!

]gmn

5FmraFr
na1DmfaDnfa1gmnL. ~24!
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The energy of the field configuration is then

E5E d3xT005E d3xF14 Fi j
a Fai j1

1

2
F0i
a Fa0i1

A2

2
Dif

aDifa1
A2

2
D0f

aD0faG . ~25!

This is equivalent to the Hamiltonian except the signs are all positive. Now usingD0fa50,
F0i
a 5C(Difa), andFi j

a 5 AA22C2e i jkD
kfa, the energy becomes

E5A2E d3xDif
aDifa5

A2

A22C2 E d3xBi
aBia, ~26!

where the Bogomolny equations (Bi
a 5 AA22C2Dif

a) were used to obtain the last expression.
The constantA is the multiplicative factor that we put in front of the scalar fields in order that we
could easily examine the case when there were no scalar fields by takingA50. From Eq.~26! it
can be seen that for this special case the energy in the fields of the Kerr-like solution is zero. In
addition whenA50 either the time components or the space components of the gauge fields are
pure imaginary. These results were the same for the Schwarzschild Yang–Mills solution, and we
believe that this calls into question the physical relevance of the pure gauge case even though it is
mathematically a solution. Taking this view then requires the presence of a scalar field in order to
get a physically ‘‘reasonable’’ solution. The angular momentum of the field configuration is given
by

Li5E d3xe i jkx
jT0k. ~27!

Using the expression forTmn from Eq. ~24!, the conditionF0i
a 5C(Dif

a), and the Bogomolny
field equations, Eq.~6!, we find

T0k5eklmCAA22C2~Dlf
a!~Dmfa!. ~28!

The antisymmetry ofeklm makesT0k50, so that there is no angular momentum in this non-
Abelian field configuration. This shows that while our Yang–Mills solution is similar in many
ways to its general relativistic counterpart, there are some important distinctions. Part of the reason
for this stems from the fact that the symmetries of general relativity are space-time symmetries,
while those of Yang–Mills theories are internal Lie symmetries. These differences showed up
even in the Yang–Mills Schwarzschild-like solution where the sphere singularity was a true
singularity, while for general relativity the event horizon is a coordinate singularity, as can be seen
by looking at the Schwarzschild solution in Kruskal coordinates.

Finally, one may wonder if the singularities of our Kerr-like solution might not be gauge
artifacts. For example, Arafuneet al.10 have shown that the ’t Hooft–Polyakov monopole can be
formulated either with singularity-free gauge fields and a ‘‘hedgehog’’ configuration scalar field,
or with gauge fields with a Dirac string singularity and a scalar field in an ‘‘Abelian’’ gauge.
These two formulations are connected via a singular gauge transformation. In order to show that
the singularities of the Kerr-like solution are real features of the solution rather than gauge
artifacts one needs to show that these singularities occur in a gauge invariant quantity.~In a certain
respect it would be better if these singularities where gauge artifacts, since—leaving aside the
speculation about the possible connection to the confinement phenomenon—field configurations
with true singularities are often considered unphysical. Even in such cases as the Coulomb poten-
tial of electrodynamics one usually expects that the singularity is an unphysical feature.! To show
that the singularities are a real feature of the Kerr-like solution one can consider the gauge
invariant field energy density, which is the integrand of Eq.~26!. To obtain the explicit expres-
sions forDif

a or Bi
a, which are necessary to obtain the energy density in Eq.~26!, one inserts the
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solutions of Eq.~19! into Eq. ~8! @the left-hand side of Eq.~8! givesDif
a while the right-hand

side givesBi
a#. Again considering the special case whenp51, q50, A51, andC50 @where the

magnetic fields are given by Eq.~23!#, one finds that the field energy density in the integrand of
Eq. ~26! becomes

Bi
aBia5Bz

21Br
25

4~x22y213x2y21y4!

k4~x22y2!4
. ~29!

Thus the energy density develops a singularity atx56y, and the total field energy becomes
infinite if one integrates through these singularities. The general case whenp,qÞ0 follows in the
same way, but the final expressions for the energy density are extremely long and cumbersome. In
the general case one also finds singularities in the gauge invariant energy density at the locations
of the gauge field singularities. A computationally simplier method of showing the gauge invariant
nature of the singularities is to examine the length of the Higgs field,Fa

†Fa 5 f1
2 1 f2

2. In order to
calculate this gauge invariant quantity one simply squaresf1 andf2 from Eq.~19! and takes their
sum. This involves much less work than is necessary to obtain the energy density, where one must
not only take products of the various fields, but also compute their derivatives with respect tor
and z. Once the general expression forFa

†Fa is found, one imposes the condition
p2x21q2y22150, which is where the gauge and scalar fields become singular. On doing this it
is seen that the denominator off1

21f2
2 goes to zero while the numerator remains finite. Thus the

singularities in the fields of Eq.~19! also occur in the gauge invariant quantities,Fa
†Fa and the

energy density.

III. DISCUSSION AND CONCLUSION

Extending our previous work on the Schwarzschild-like solution for Yang–Mills–Higgs theo-
ries, we have written down the Yang–Mills equivalent of the Kerr solution. By writing the
Yang–Mills field equations in the form of the Ernst equation12 of general relativity,6 it is straight-
forward to use any known axially symmetric solution of general relativity to write down similar
solutions in terms of the non-Abelian gauge fields. One disadvantage of these general relativistic
inspired solutions is that they contain singularities in the fields, which lead to infinite field energies
at the classical level. These singularities are of the same character as the singularities which are
found in other classical field theory solutions such as the singularity at the origin in the normal
Schwarzschild solution, the point singularity in the Wu–Yang solution for SU~2!,18 and the sin-
gularity at r50 in the Coulomb potential in electromagnetism. Since our solutions are classical
field theory solutions it may be conjectured, as is the case with general relativity, that a proper
quantum treatment of the problem might modify these singularities. Fortunately, unlike the case of
general relativity, there do exist methods for quantizing such classical solutions.19,20 In one sense,
however, these singularities~particularly the surface singularities! could be a desirable feature in
that they may yield a possible confinement mechanism for non-Abelian gauge theories, which
would be analogous to the confinement mechanism of general relativistic black holes. By treating
these solutions as background fields in which test particles are placed via minimal coupling, one
can show that these surface singularities act as impenetrable barriers to the test particle. This
procedure was outlined in Refs. 4 and 16 where color charged test particles were placed in a
spherically symmetric Yang–Mills field configuration, which had some of the characteristics of
the Schwarzschild solution of general relativity. It was found that the wavefunction of the test
particle was confined to the region around the origin, inside the spherical singular surface. The
singular surfaces of the present axially symmetric solutions should also act as barriers when
treated as a background potential.

While this semi-classical type of confinement is suggestive, and shares some common features
with phenomenological bag models, it does have shortcomings. First, it ignores the interaction
between the color field of the test particle and the field configuration in which it is placed. Since
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the field equations of Yang–Mills theories are non-linear, one is not justified in using superposi-
tion, and the color field of the test particle could significantly alter the color field of the solution.
Second, from a rigorous quantum field theory point of view the existence of singularities in the
solutions implies that they will give an infinite action contribution to the path integral, which
means that they should have no physical effect. This line of reasoning can be circumvented if there
are an infinite set of neighboring solutions in function space whose infinite entropy contribution
can offset the infinite action contribution. This in fact happens for the meron solutions considered
in Ref. 17. Whether a similar thing occurs for the present solutions is not clear, although there are
an infinite number of neighboring solutions which are found by varying the arbitrary parametersk
andq.

The very direct link, via the Ernst equations, between general relativity and Yang–Mills–
Higgs theories can be used to map over any of the known axially symmetric solutions from
general relativity into non-Abelian gauge theories. In this paper we examined in detail only the
Kerr solution in the hope of finding a field configuration, which contained an internal angular
momentum, so that quantizing this angular momentum to\/2 one would be able to have a
fermion-like object from an initial theory with only gauge and scalar fields. Explicitly carrying out
the calculation of the field angular momentum showed that even though the Kerr-like solution was
axially symmetric, it did not carry any angular momentum in its fields. This shows that not all the
features of the general relativistic solution carry over into Yang–Mills theory. So far we have used
this parallel between the two theories to find solutions for Yang–Mills theories from the known
solutions of general relativity. An interesting exercise might be to see if some of the exact
solutions of Yang–Mills theory~e.g., the Prasad–Sommerfield solution or the multimonopole
solutions!9 could be used to give unknown exact solutions in general relativity.
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Exact solutions of the Einstein equations with sources
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It is shown that if (gmn ,Fmn) is an exact solution of the Einstein–Maxwell equa-
tions andlm is a principal null direction ofFmn then (gmn12Hlml n ,Fmn) is also an
exact solution of the Einstein–Maxwell equations if and only if (2Hlml n,0) satis-
fies the Einstein–Maxwell equations linearized about (gmn ,Fmn). It is also shown
that an analogous result applies in the case of the Einstein–Weyl equations iflm is
parallel to the flux vector of the neutrino field. ©1996 American Institute of
Physics.@S0022-2488~96!00508-7#

I. INTRODUCTION

It is known that, despite the nonlinear nature of the Einstein field equations, there exist classes
of metrics~e.g., those of the Kerr–Schild form1! for which the Einstein equations, written in an
appropriate basis, reduce to linear differential equations~see also Refs. 2–4!. A general result,
obtained by Xanthopoulos,5 states that ifgmn is an exact solution of the Einstein vacuum field
equations andlm is a null vector, thengmn1 lml n is also an exact vacuum solution, provided that
lml n satisfies the Einstein vacuum field equations linearized aboutgmn . The occurrence of linear
equations only, simplifies the search for explicit solutions and allows the superposition of solu-
tions.

The aim of this paper is to present a generalization of the Xanthopoulos theorem,5 showing
that if gmn satisfies the Einstein field equations with an electromagnetic or a neutrino field andlm
is a principal null direction of the matter field, thengmn1 lml n is also an exact solution of the
Einstein equations with thesamematter field if and only if the metric perturbationlml n satisfies
the Einstein field equations linearized about the background solution corresponding togmn . The
proof consists of introducing a null tetrad for the perturbed metric related in a simple way with a
null tetrad for the background metric and expressing the Einstein equations in these tetrads. We
find that, with the assumed alignment oflm to the matter field, the Einstein equations only contain
linear terms in the metric perturbation. The formulas obtained in the proof of our main result are
also useful in the search for metric perturbations and a simple example is also given here.
Throughout this paper we make use of the Newman–Penrose notation.6

II. THE FIELD EQUATIONS

We shall consider two metrics,gmn and g̃mn , related according to

g̃mn5gmn12Hlml n , ~1!

whereH is a real function andlm is a null vector with respect to the metricgmn . Whengmn is
flat, g̃mn is said to have a Kerr–Schild form. Ifl

m, nm,mm, andm̄m form a null tetrad for the metric
gmn , with l

m:5gmnl n , then it follows from Eq.~1! that

l̃m:5 lm, ñm:5nm2Hlm, m̃m:5mm, m̃̄m:5m̄m, ~2!

or, equivalently,

0022-2488/96/37(9)/4584/6/$10.00
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D̃:5D, D̃:5D2HD, d̃:5d, d̄̃:5 d̄, ~3!

is a null tetrad for the metricg̃mn . ~Note thatlm is also null with respect to the metricg̃mn and that

d̄˜5 d̃̄.!

The spin coefficients for the tetradD̃, D̃, d̃, d̄̃, can be related with those corresponding to the

tetradD, D, d, d̄, by calculating the Lie brackets [D̃,D̃], [ d̃,D̃], [ d̃,D̃], and @ d̄̃,d̃ #. For instance,

@D̃,D̃#5@D2HD,D#5@D,D#1~DH !D5~g1ḡ !D1~e1 ē !D2~ t̄1p!d2~t1p̄ !d̄1~DH !D

5„g1ḡ1DH1~e1 ē !H…D̃1~e1 ē !D̃2~ t̄1p!d̃2~t1p̄ !d̄̃,

which must be equal to

~ g̃1 g̃̄ !D̃1~ ẽ1 ẽ̄ !D̃2~ t̃̄ 1p̃ !d̃2~ t̃1 p̃̄ !d̄̃.

In this manner, one readily finds that

k̃5k, s̃5s, r̃5r, t̃5t, ẽ5e, p̃5p,

ã5a1 1
2k̄H, b̃5b1 1

2kH, g̃5g1 1
2~D12ē1r2 r̄ !H, ~4!

m̃5m1rH, l̃5l1s̄H, ñ5n1~ d̄12a12b̄2p2 t̄ !H1k̄H2.

Making use of Eqs.~3! and ~4!, from the Ricci identities we find that the components of the

curvature of the metricg̃mn , with respect to the null tetradD̃, D̃, d̃, d̄̃, are related to the compo-
nents of the curvature ofgmn , with respect to the null tetradD, D, d, d̄, by

F̃005F0012k̄kH,

F̃015F011
1
2$H Dk1k~2D1e13ē2r!H1k̄sH%,

F̃025F021~D2e13ē22r̄ !sH1k~d12b12ā2t2p̄ !H1k2H2,
~5!

2F̃1152F111
1
2~D1e1 ē2r1 r̄ !~D12e12ē1r2 r̄ !H2~r22s̄s!H

1~ linear operators acting onk or k̄ !,

F̃125F121
1
2~d1b1ā2t!~D12ē1r2 r̄ !H1e~d12b12ā2t2p̄ !H1s~d̄1a12b̄2p

2 t̄ !H1H~D2e1 ē2 r̄ !b2trH1~ linear operators acting onk or k̄ !,

F̃225F221F00H
21~d13b1ā2t!~ d̄12a12b̄2p2 t̄ !H2~D1g1ḡ1m!rH

2m~D1e1 ē1r!H1HDm2~ls1l̄s̄ !H1p~d12b12ā2t2p̄ !H

1~ linear operators acting onk or k̄ !,

together with

6L̃56L2 1
2~D1e1 ē1r2 r̄ !~D12e12ē1r2 r̄ !H12~D1e1 ē2 r̄ !rH2~r21s̄s!H

1~ linear operators acting onk or k̄ !, ~6!

and
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C̃05C012k2H,

C̃15C11
1
2$HDk1k~2D1e13ē13r22r̄ !H2k̄sH%,

3C̃253C21
1
2~D1e1 ē1r2 r̄ !~D12e12ē13r2 r̄ !H22s̄sH

1~ linear operators acting onk or k̄ !, ~7!

C̃35C31
1
2~ d̄1a1b̄2 t̄ !~D12ē1r2 r̄ !H1~r1e!~ d̄12a12b̄2p2 t̄ !H

1H~D1e2 ē2r!a2s̄~b1t!H1~ linear operators acting onk or k̄ !,

C̃45C41~ d̄13a1b̄1p2 t̄ !~ d̄12a12b̄2p2 t̄ !H2~D13g2ḡ1m1m̄ !s̄H2~l1s̄H !

3~D2e13ē13r2 r̄ !H1HD~l1s̄H !1~ linear operators acting onk or k̄ !.

@Equations~1!–~7! are invariant under the simultaneous interchange of the tilded quantities by the
untilded ones, and ofH by 2H.#

Before we consider the Einstein equations with sources, we shall give a proof of the Xantho-
poulos theorem,5 allowing the presence of a nonzero cosmological constant.

A. Vacuum case

If gmn and g̃mn satisfy the Einstein vacuum field equations, possibly with~different! nonzero
cosmological constantsl0 andl 0̃, respectively, from the first equation in~5! it follows thatk50
~excluding the trivial caseH50!, which means thatlm is geodetic. Then, settingF̃ i j505F i j ,
6L5l0, 6L̃ 5 l 0̃, andk50 in Eqs.~5! and ~6!, the quadratic terms inH disappear, and one
obtains

k50,

~D2e13ē22r̄ !sH50,

1
2~D1e1 ē2r1 r̄ !~D12e12ē1r2 r̄ !H2~r22s̄s!H50,

1
2~d1b1ā2t!~D12ē1r2 r̄ !H1e~d12b12ā2t2p̄ !H

1s~d̄1a12b̄2p2 t̄ !H1H~D2e1 ē2 r̄ !b2trH50,
~8!

~d13b1ā2t!~ d̄12a12b̄2p2 t̄ !H2~D1g1ḡ1m!rH

2m~D1e1 ē1r!H1HDm1p~d12b12ā2t2p̄ !H2~ls1l̄s̄ !H50,

1
2~D1e1 ē1r2 r̄ !~D12e12ē1r2 r̄ !H22~D1e1 ē2 r̄ !rH

1~r21s̄s!H5l02l 0̃,

which means thathmn :52Hlml n satisfies the Einstein vacuum field equations linearized about
gmn .

Conversely, if 2Hlml n satisfies the linearized Einstein vacuum field equations, with or without
cosmological constant, Eqs.~8! are fulfilled; then, assuming thatgmn satisfies the Einstein vacuum
field equations with or without a cosmological constant~i.e., F i j50, 6L5l0!, Eqs.~5! and ~6!
yield F̃ i j50, L̃5const, which means thatg̃mn is also an exact vacuum solution.

4586 G. F. Torres del Castillo: Exact solutions of the Einstein equations

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



If gmn andg̃mn are exact vacuum solutions, from Eqs.~7! it follows that lm is a principal null
direction of the Weyl tensor ofgmn if and only if it is a principal null direction of the Weyl tensor
of g̃mn ~compare Ref. 5!, and thatlm is a double principal null direction of the Weyl tensor ofgmn

if and only if is a double principal null direction of the Weyl tensor ofg̃mn . ~Note that these
conclusions apply wheneverF̃mnl

ml n5Fmnl
ml n.!

B. Einstein–Maxwell case

Let Fmn be an electromagnetic field that satisfies the source-free Maxwell equations in the
background metricgmn , such thatlm is a principal null direction ofFmn . This means that

w050, ~9!

and the remaining components ofFmn satisfy the equations

~D22r!w11kw250, ~d22t!w11sw250,
~10!

~ d̄12p!w12~D12e2r!w250,

~D12m!w12~d12b2t!w250.

From Eqs.~2! and~9! it follows that the components ofFmn with respect to the tetradl̃
m, ñm, m̃m,

m̃̄m are given by

w̃050, w̃15w1 , w̃25w2 . ~11!

Then, using Eqs.~3!, ~4!, ~10!, and~11! one finds thatFmn also satisfies the source-free Maxwell
equations in the background metricg̃mn if and only if

kw250. ~12!

~An alternative proof of this fact can be given using the connection tensor that relates the covariant

derivative operators“m and“̃m , as in Ref. 5.!
If ( gmn ,Fmn) and (g̃mn ,Fmn) are exact solutions of the Einstein–Maxwell equations~possibly

with nonzero cosmological constants!, with lm being a principal null direction ofFmn , using the
fact thatF i j 5 2w iw j ( i , j50,1,2) and Eqs.~5!, ~9!, and ~11!, it follows that k50 and all the
nonlinear terms inH contained in Eqs.~5! and ~6! disappear. Hence, (2Hlml n,0) satisfies the
Einstein–Maxwell equations linearized about (gmn ,Fmn). It must be noticed that the equalities
F i j5F̃ i j , which follow from Eq. ~11!, do notmean that the energy-momentum tensors of the
electromagnetic fieldFmn in the backgroundsgmn andg̃mn necessarily coincide. Even thoughFmn

is left unchanged, the energy-momentum tensors ofFmn in the backgroundsgmn and g̃mn may be
different, owing to the presence of the metric in the expression for the energy-momentum tensor
of the electromagnetic field.

Conversely, if (gmn ,Fmn) is an exact solution of the Einstein–Maxwell equations and
(2Hlml n,0) satisfies the Einstein–Maxwell equations linearized about (gmn ,Fmn), with lm being a
principal null direction ofFmn @Eqs. ~8!#, then (g̃mn ,Fmn) is an exact solution of the Einstein–
Maxwell equations.

C. Einstein–Weyl case

Let hA be a spinor field that satisfies the Weyl neutrino equation in the background metric
gmn , such that the flux vector of the neutrino field is proportional tolm; thus,

h050 ~13!
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and the Weyl equation reduces to

~D1e2r!h150, ~d1b2t!h150. ~14!

The components of the neutrino field with respect to the null tetradl̃m, ñm, m̃m, m̃̄m are given by

h̃050, h̃15h1 ~15!

@i.e., the tensorial objects~the ‘‘flags’’! defined by the components~15! with respect to the
corresponding tetrads coincide# and from Eqs.~3!, ~4!, and~14! it follows thathA also satisfies the
Weyl equation in the background metricg̃mn .

The tetrad components of the Einstein field equations with a neutrino field such thath050, are
explicitly given by

F0050, F0152 ikkh1h1 , F02522iksh1h1 ,

F115 ik@h1 Dh12h1Dh11~ ē2e!h1h1#,

F125 ik@h1 dh12h1 dh11~ ā2b2t!h1h1#, ~16!

F2252ik@h1 Dh12h1 Dh11~ ḡ2g!h1h1#,

L50,

wherek is a real constant. Making use of Eqs.~3!, ~4!, ~14!, and~15! one finds that the right-hand
sides of Eqs.~16! are left unchanged by the substitution ofgmn by g̃mn . Therefore, if (gmn ,hA)
and (g̃mn ,hA) are exact solutions of the Einstein–Weyl equations~possibly with nonzero cosmo-
logical constants!, with lm being parallel to the flux vector of the neutrino field, from Eqs.~5! and
~16!, it follows that k50 and, again, the nonlinear terms inH contained in Eqs.~5! and ~6!
disappear, which means that (2Hlml n,0) satisfies the Einstein–Weyl equations linearized about
(gmn ,hA).

It is easy to see that, conversely, if (gmn ,hA) is an exact solution of the Einstein–Weyl
equations and (2Hlml n,0) satisfies the Einstein–Weyl equations linearized about (gmn ,hA), with
lm being parallel to the flux vector of the neutrino field, then (gmn12Hlml n ,hA) is also an exact
solution of the Einstein–Weyl equations.

D. An example

The Bell–Szekeres solution represents the collision of two plane electromagnetic waves. In
each region before the collision, the space-time can be described by the null tetrad,7

D52
1

A2
]u , D52

1

A2
~12v2!1/2]v ,

~17!
d5~12v2!21/2]z , d̄5~12v2!21/2] z̄ ,

whereu andv are real coordinates,z is a complex coordinate, andz̄ denotes its complex conju-
gate. The only nonvanishing spin coefficient is

m5
1

A2
~12v2!21/2v, ~18!
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and the only nonvanishing component of the curvature is

F225
1
2 . ~19!

Therefore, the electromagnetic field can be taken as

w0505w1 , w25
1
2 . ~20!

Since Eqs.~9! and~12! are satisfied, making use of Eqs.~17! and~18!, one finds that the perturbed
metric g̃mn with the electromagnetic field given by Eq.~20! is a solution of the Einstein–Maxwell
equations, provided that the functionH satisfies Eqs.~8!, which reduce to

]u
2H50, ]z ]uH50, 2]z ] z̄H1vA12v2]uH50. ~21!

Thus,

H5u f~v !2 1
2 vA12v2f ~v !zz̄1g~z,v !1ḡ~ z̄,v !, ~22!

where f is an arbitrary real function andg is an arbitrary function of two variables. Then, from
Eqs.~7!, it follows that g̃mn is of typeN or conformally flat.

III. DISCUSSION

The validity of the results presented in this paper depends crucially on the insensitivity of the
Maxwell and the Weyl equations to the change of the background metricgmn by gmn12Hlml n if
lm is a principal null direction of the electromagnetic or the neutrino field, respectively, which
allows us to consider metric perturbations alone~see also Ref. 4!. Thus, not only it is possible to
consider gravitational perturbations without perturbing the matter field, but they may correspond
to exact solutions.

The results of Sec. II B can also be derived, albeit by lengthier computations, making use of
the tensor formalism, as in Ref. 5. However, the null tetrad formalism employed here allows us to
treat also the Einstein–Weyl equations very easily. It may be pointed out that the perturbation
equations~8! possess the gauge freedom corresponding to the null tetrad rotations that preserve the
direction of lm.

Another remarkable fact is that, owing to the invariance of Eqs.~1!–~7! under the interchange
of H by 2H and of the tilded quantities by the untilded ones, in the perturbation equations~8!,
one can equivalently substitute either the tetrad and spin coefficients corresponding togmn or
to g̃mn .
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The defining conditions for the irreducible tensor operators associated with the
unitary irreducible corepresentations of compact quantum group algebras are de-
duced first in both the right and left regular coaction formalisms. In each case it is
shown that there aretwo types of irreducible tensor operator, which may be called
‘‘ordinary’’ and ‘‘twisted.’’ The consistency of the definitions is demonstrated, and
various consequences are deduced, including generalizations of the Wigner–Eckart
theorem for both the ordinary and twisted operators. Also included are discussions
~within the regular coaction formalisms for compact quantum group algebras! of
inner-products, basis functions, projection operators, Clebsch–Gordan coefficients,
and two types of tensor product of corepresentations. The formulation of quantum
homogeneous spaces for compact quantum group algebras is discussed, and the
defining conditions for the irreducible tensor operators associated with such quan-
tum homogeneous spaces and with the unitary irreducible corepresentations of the
compact quantum group algebras are then deduced. There are two versions, which
correspond to restrictions of the right and left regular coactions. In each case it is
again shown that there are ordinary and twisted irreducible tensor operators. Vari-
ous consequences are deduced, including the corresponding generalizations of the
Wigner–Eckart theorem. ©1996 American Institute of Physics.
@S0022-2488~96!02209-8#

I. INTRODUCTION

It is well known that most of the applications to physics of the theories of groups and Lie
algebras depend on the Wigner–Eckart theorem. It is therefore not surprising that the question of
the generalization of this theorem to Hopf algebras having the structure of a deformation of a Lie
algebra has also been the subject of a number of studies.1–15 The present paper is intended to
complement and extend these investigations in various important respects. Its detailed relationship
to previous work will be indicated in the appropriate places.

The perspective of the present communication is best introduced by considering matters first
in the very well established and familiar context of a compact Lie groupG ~cf. Refs. 16,17!. Even
in this context, one can distinguishthreedistinct forms of the Wigner–Eckart theorem.

1. The original form18 involves the situation in whichG is a group of transformations that act
on an external manifoldM, the classic example being the case in whichM is three-dimensional
Euclidean spaceR3, andG is the group of all rotations in this space about some fixed point, which
may be taken to be the originO of R3. Associated with every such rotationT there exists a
333 real orthogonal matrixR(T), so that the effect ofT is to transform each position vectorr
into another position vectorr 8, where

r 85R~T!r . ~1!

Also associated with every rotationT is a unitary operatorP(T) whose effect on any function
f (r ) is defined by

0022-2488/96/37(9)/4590/45/$10.00
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P~T! f ~r !5 f @R~T!21r #). ~2!

Let Gp be a unitary irreducible representation of dimensiondp of the groupG . If there exists a set
of functionsc1

p(r ),c2
p(r ), . . . ,cdp

p (r ) such that

P~T!cn
p~r !5 (

m51

dp

Gp~T!mncm
p~r !, ~3!

for all T P G and alln51,2, . . . ,dp , then these are said to form a set of basis functions forGp.
Similarly, if there exists a set ofdp operatorsQ1

p ,Q2
p , . . . ,Qdp

p that act on functionsf (r ) in such
a way that

P~T!Qn
pP~T!215 (

m51

dp

Gp~T!mnQm
p , ~4!

for all T P G and all n51,2, . . . ,dp , then these are said to form a set of irreducible tensor
operators forGp. Finally, if the inner product for the Hilbert space of functionsf (r ) is defined by

~ f ,g!5E
2`

` E
2`

` E
2`

`

f ~r !dx dy dz, ~5!

where f (r ) denotes the complex conjugate off (r ), then the Wigner–Eckart theorem for this
situation states that thej ,k, and l dependence of@c l

r ,Qk
q(f j

p)# depends only on Clebsch–
Gordan coefficients for the reduction of the tensor productGp

^ Gq into its irreducible constituents
Gr .

2. In this form the role of the manifoldM is played byG itself, so that one is concerned with
the space of complex-valued continuous functions defined onG . Let this be denoted byC(G ).
The inner product ofC(G ) may be taken to be

~ f ,g!5E
G

f ~T!g~T! dT, ~6!

where the integral is the left and right invariant normalized Haar integral ofG , and f (T) is the
complex conjugate off (T). In theright regular formalism, for eachT P G there exists an operator
R̂(T) that is defined byR̂(T) f (T8)5 f (T8T) for all f and for allT,T8 P G . If f is a member of
C(G ) such thatR̂(T) f spans a finite- dimensional subspace ofC(G ), then f is said to be a
representative functiononG . The subspace ofC(G ) consisting of representative functions will be
denoted byR(G ). If there exists a set of functionsc1

p(T),c2
p(T), . . . ,cdp

p (T) such that

R̂(T)cn
p(T8)5(m51

dq Gp(T)mncm
p(T8) for all T,T8 P G and alln51,2, . . . ,dp , then these are said

to form a set of basis functions forGp. Similarly, if there exists a set ofdp operators
Q1
p ,Q2

p , . . . ,Qdp
p that act on functions f (T) in such a way that

R̂(T)Qn
pR̂(T)215(m51

dq Gp(T)mnQm
p for all T P G and alln51,2, . . . ,dp , then this set is said to

form a set of irreducible tensor operators forGp. The Wigner–Eckart theorem for this case states
that thej ,k, andl dependence of@c l

r ,Qk
q(f j

p)# again depends only on Clebsch–Gordan coeffi-
cients for the reduction of the tensor productGp

^ Gq into its irreducible constituentsGr . In the left
regular formalismthe situation is the same, except only that the operatorsR̂(T) are replaced by
operatorsL̂(T) that are defined byL̂(T) f (T8)5 f (T21T8) for all f and for allT,T8 P G .

3. The final form involves using the abstract carrier spaces of the unitary irreducible repre-
sentations of G . Let Vp be such a carrier space forGp, with ortho-normal basis
c1

p ,c2
p , . . . ,cdp

p , and define for eachT P G a linear operatorFp(T) that acts onVp by the
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requirement thatFp(T)cn
p5(m51

dp Gp(T)mncm
p for all T P G and all n51,2, . . . ,dp . Let Gp,

Gq, andGr be any three unitary irreducible resentations ofG . Then one can consider a set of
irreducible tensor operatorsQ1

q ,Q2
q , . . . ,Qdq

q that each mapVp into Vr and which are such that

F r(T)Qn
qFp(T)215(m51

dq Gq(T)mnQm
q for all T P G and all n51,2, . . . ,dq . In this case the

Wigner–Eckart theorem deals with inner products^,& defined onVr and states that thej ,k, and
l dependence of̂c l

r ,Qk
q(f j

p)& also depends only on Clebsch–Gordan coefficients for the reduc-
tion of the tensor productGp

^ Gq into its irreducible constituentsGr . In a minor extension of this
formalism, one could introduce an inner product spaceV that is a direct sum of carrier spaces of
certain unitary irreducible representations ofG and which contains at leastVp

% Vr ~and which, in
the extreme case, may contain one carrier space for every inequivalent irreducible representation
of G ). Then, for eachT P G an operatorF(T) can be defined which maps elements ofV into
V, and which acts asFp(T) on Vp, asF r(T) on Vr , and so on. The irreducible tensor operators
are then required to each mapV into V and to be such that
F(T)Qn

qF(T)215(m51
dq Gq(T)mnQm

q for all T P G and all n51,2, . . . ,dq . In this case the
Wigner–Eckart theorem deals with inner products^,& defined onV, but is otherwise the same as
above.

The developments that will be described in the present paper up to and including Section VIII
are essentially within the spirit of the second of these formulations, but deal with a more general
Hopf algebra structure. The generalization of the first formulation in terms of quantum homoge-
neous spaces then follows in Section IX.~It is intended to extend this analysis to the remaining
formulation in a subsequent paper.!

One most important lesson that can be drawn from these simple group theoretical consider-
ations concerns theconsistencyof the definitions of the basis functions~or basis vectors! and of
the irreducible tensor operators. The essential point will be illustrated in the first of the above
formulations, but similar considerations apply in the others. AsP(T)P(T8)5P(TT8) and
Gp(T)Gp(T8)5Gp(TT8) for all T,T8 P G , it follows that if ~3! is valid forT and forT8, then it is
also valid for their productTT8. Similarly, and very significantly, by defining for eachT P G an
operatorC(T) by C(T)Q5P(T)QP(T)21 for every operatorQ that acts on functionsf (r ), the
definition ~4! can be recast as

C~T!~Qn
p!5 (

m51

dp

Gp~T!mnQm
p , ~7!

for all T P G and alln51,2, . . . ,dp . AsC(T)C(T8)5C(TT8) for all T,T8 P G , it follows that
if ~7! is valid forT and forT8, then it is also valid for their productTT8. Put another way, because
of the similarity in form between~3! and~7!, theconsistencyof the definition~4! of the irreducible
tensor operatorsQn

p is ensured by the fact that they too form a basis for a carrier space ofGp. In
the analysis that follows~cf. Section VI!, essentially this argument will be used to justify the
definitions that will be given for the irreducible tensor operators of the compact quantum group
algebras in the regular corepresentation formalisms, the only essential difference being that the
argument has to be cast in terms ofcorepresentations instead of representations.

It is well known that the set of functions defined on a Lie groupG form a Hopf algebra,
A, and that the dualA8 of A is the universal enveloping algebra of the Lie algebraL of G .
Moreover, the structure ofG can be encoded into the structure ofA, and, in particular,A is
commutative. A ‘‘deformation’’~or ‘‘quantization’’! ofA8 induces a corresponding deformation
of A, and will makeA non-commutative as well as being non-cocommutative. Most of the
previous work on irreducible tensor operators has been focused on the deformed Hopf algebras
A8, with suq(2) receiving the most attention. However, as has been demonstrated by the pio-
neering work of Woronowicz,19–21which itself has been refined and developed by Dijkhuizen and
Koornwinder,22–26 it is of very great interest to produce a self-contained and direct study of
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generalizations of the Hopf algebrasA, which can be done by assuming that they have certain
characteristic properties. The resulting structures have been calledcompact matrix pseudogroups
by Woronowicz,19–21andcompact quantum group algebrasby Dijkhuizen and Koornwinder.22–26

These provide the framework for the present paper, which is devoted to the study of the irreduc-
ible tensor operators for compact quantum group algebras. As explained above, this analysis will
be given in the regular corepresentation formalisms.@The only previous investigation of irreduc-
ible tensor operators within the general compact matrix pseudogroup theory has been by Bragiel,5

who looked at the analogue of the carrier space formalism~3! above, but with certain restrictive
assumptions on multiplicities, though some of the work of Klimyk9 involves a discussion of
special cases, again in the carrier space formalism.#

The structure of the present paper is as follows. Section II contains a brief summary of the
essential preliminaries, starting in Section II A with the properties of Hopf *-algebras, and con-
tinuing in Section II B with the main features of their right comodules. The definition and relevant
properties of a compact quantum group algebraA follow in Section II C.~Of course the devel-
opments of Woronowicz and of Dijkhuizen and Koornwinder extend far beyond what is men-
tioned here, particularly in their invocation of quantum Tannaka–Krein duality.! This section is
concluded in Section II D with some new lemmas concerning the Haar functional ofA. The right
and left regular comodules ofA are described in Section III, and these are employed in Section
IV to introduce and develop the concept of basis functions for right corepresentations ofA. In
Section V the tensor products~both ‘‘ordinary’’ and ‘‘twisted’’! of corepresentations ofA are
discussed, along with their associated Clebsch–Gordan coefficients. The heart of the paper is
reached in Section VI, where the irreducible tensor operators are defined and some of their
immediate properties are deduced. In particular, it will be shown there that in both the right and
left regular coaction formulations there aretwo types of irreducible tensor operators, which will be
described as beingordinary and twisted, respectively. The motivations for the definitions of
Section VI are deliberately relegated to Appendix B in order to emphasize that the treatment given
for the compact quantum group algebras in Sections II to IX is entirely self-contained. In Section
VII it is shown that there aretwo theorems of the Wigner–Eckart type, one for ‘‘ordinary’’ and
one for the ‘‘twisted’’ irreducible tensor operators. Likewise, in Section VIII, it is demonstrated
that these two types of irreducible tensor operator behave differently under multiplication. Finally,
in Section IX it is shown how all developments generalize when one considers operators associ-
ated with the corresponding homogeneous spaces. In particular, it emerges that there are again two
formulations, one associated with the right regular representation and the other with the left
regular representation. The vital algebraic quantity that appears in each version is a
!-subalgebraB ofA, which is a right coideal ofA in the right regular formulation, but is a left
coideal ofA in the left regular formulation. In Section IX B attention is focused on the right
coactionspB

R andpB
L ofA that are obtained by restricting the right and left regular coactions of

A to its subalgebraB. As these are thetransitive!-coactionsthat correspond to the transitive
action of a quantum group on a quantum homogeneous space in the sense of Dijkhuizen and
Koornwinder,23,24 they play the key role in the analysis. In particular the properties of basis
functions, as defined in terms of these restricted coactions, are presented in Section IX C, and in
Section IX D the irreducible tensor operators are also defined in terms of these coactions. It is
shown there that, associated with bothpB

R and pB
L there are two types of irreducible tensor

operator, which are again calledordinary and twisted, and the immediate properties of all these
irreducible tensor operators are described. In Section IX E it is shown that the irreducible tensor
operators satisfy theorems of the Wigner–Eckart type, and the analysis is concluded in Section
IX F with a demonstration that the products of these irreducible tensor operators are themselves
expressible as linear combinations of irreducible tensor operators that involve the relevant
Clebsch–Gordan coefficients.

Because the space of functions defined on a compact Lie groupG is a special example of a
compact quantum group algebra, all the well-known results for compact Lie groups naturally

4593J. F. Cornwell: Irreducible tensor operators

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



reappear in this particular case. However, as the detailed analysis shows, the theory in the general
situation is rather more subtle, and exhibits various complications.

II. PROPERTIES OF COMPACT QUANTUM GROUP ALGEBRAS

A. Hopf *-algebras

The purpose of this section is mainly to establish notations, and summarize the essential
properties. For further details see, for example, Sweedler,27 Majid,28 and Chari and Pressley.29

A Hopf algebraA over the field of complex numbersC is a complex vector space with an
identity element 1A that possesses a multiplication operatorM ~which mapsA^A intoA), a
unit operatoru ~which mapsC into A), a comultiplication operatorD ~which mapsA into
A^A), a counit operatore ~which mapsA into C), and an antipode operatorS ~which maps
A into A). These are assumed to be linear in all their arguments and to have the following
properties:

M +~M^ id !5M +~ id^M !, ~8!

~D ^ id !+D5~ id^ D!+D, ~9!

D+M5~M^M !+~ id^ s ^ id !+~D ^ D!, ~10!

e+M5MC+~e ^ e!, ~11!

MC,A+~e ^ id !+D5MA,C+~ id^ e!+D5 id, ~12!

u~1C!51A , e~1A!51C , S~1A!51A , ~13!

M ~a^1A!5M ~1A^a!5a, for all aPA, ~14!

D~1A!51A^1A , ~15!

S+M5M +s+~S^S!, ~16!

D+S5~S^S!+s+D, ~17!

M +~S^ id !+D5M +~ id^S!+D5u+e, ~18!

e+S5e. ~19!

Heres is the transposition operator which interchanges the order of its arguments, so that, for
example, when acting onA^A, s(a^b)5b^a for all a,b P A. AlsoMC , MA,C , andMC,A
are the multiplication operators defined byMC(w^z)5wz for all w,z P C, and
MA,C(a^z)5MC,A(z^a)5za for all zP C and alla P A. The productM (a^b) will sometimes
be written more concisely asab, and the coproductD will sometimes be expressed as

D~a!5(
~a!

a~1! ^a~2! . ~20!

If A is finite-dimensional, with basis elementsa1 ,a2 , . . . , the structure constantsmjk
l ,

m l
jk , sj

k , e j , and e j may be defined byM (aj ^ak)5( l mjk
l al , D(al )5( j ,km l

jkaj ^ak ,
S(aj )5(ksj

kak , e(aj )5e j , and 1A5( je
jaj . Then~8! to ~19! imply that
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(
s
mjk
s msl

t 5(
s
mjs
t mkl

s , ~21!

(
j

m l
jkm j

st5(
j

m l
s jm j

tk , ~22!

(
p,q,s,t

m j
pqmk

stmps
r mqt

u 5(
p
mjk
p mp

ru , ~23!

(
l

mjk
l e l 5e jek , ~24!

(
j

m l
jke j5(

j
m l
k je j5d l

k , ~25!

(
j

e j sj
k5ek, (

j
e je j51C , ~26!

(
k

ekmjk
l 5(

k
ekmk j

l 5d j
l , ~27!

(
j

e jm j
kl 5eke l , ~28!

(
q

mjk
q sq

p5(
q,r

mrq
p sj

qsk
r , ~29!

(
k

mk
pqsj

k5(
k,l

m j
kl sl

psk
q , ~30!

(
k,l ,r

m j
kl sk

rmr l
t 5 (

k,l ,r
m j
kl sl

r mkr
t 5e je

t, ~31!

and

(
j

e j sk
j 5ek . ~32!

A Hopf * -algebra A is defined to be a Hopf algebra that possesses an additional
*-operation that mapsA into A. The effect of the * operation ona P A will sometimes be
denoted bya* . In particular

1A* 51A . ~33!

The other properties are

~* +MC,A!~z^a!5MC,A~ z̄^a* !5~* +MA,C!~a^z!5MA,C~a* ^ z̄!5 z̄a* ~34!

~for all z P C and alla P A, wherez̄ denotes the complex conjugate ofz),
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* +*5 id, ~35!

* +M5M +~* ^ * !+s, ~36!

D+*5~* ^ * !+D, ~37!

~e+* !~a!5e~a!, for all aPA, ~38!

S+* +S+*5 id, ~39!

which implies thatS is invertible with inverse given by

S215* +S+*. ~40!

If A is finite-dimensional, its linear dual will be denoted byA8, the prime being used instead
of the usual star to avoid any confusion with the *-operation that has just been defined. The effect
of a8 P A8 on a P A will be denoted bŷ a8,a&, and the evaluation mapev ~fromA8^A to
C) will be defined by

ev~a8^a!5^a8,a&, ~41!

for all a8 P A8 and alla P A. In the case in whichA is of finite dimensionn, the dual basis of
A8 will be denoted bya1,a2, . . . ,an, and will be assumed to be such that

^aj ,ak&5dk
j , ~42!

for all j ,k51,2, . . . ,n.

B. Right comodules of Hopf *-algebras

A right A-comoduleconsists of a vector spaceV and a linear mappingpV from V to
V^A such that

~pV^ id !+pV5~ id^ D!+pV ~43!

and

MV,C+~ id^ e!+pV5 id, ~44!

whereMV,C(v^z)5zv for all v P V and allz P C. The operationpV is then said to be aright
coactionand provides acorepresentationof A with carrier spaceV. The present section will be
devoted to a very brief account of the essential features of the corepresentations ofA. ~For the
intimate connection between thecorepresentationtheory ofA and therepresentationtheory of
A8, see Appendix A.!

If V is of finite dimensiond, with basisv1 ,v2 , . . . ,vd , then there exists a uniquely deter-
mined set of elementsp jk

V ofA ~for j ,k51,2, . . . ,d), called thematrix coefficientsof pV , which
are such that

pV~v j !5 (
k51

d

vk^ pk j
V , ~45!

for all j51,2, . . . ,d. ~In this situation the corepresentation is said to have dimensiond.! The
requirements~43! and ~44! then imply that
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D~p jk
V!5 (

l 51

d

p j l
V

^ p l k
V ~46!

and

e~p jk
V!5d jk ~47!

~for j ,k51,2, . . . ,d). It is sometimes convenient to write

pV~v !5(
@v#

v @1# ^v @2# , ~48!

wherev @1# P V andv @2# PA.
Two rightA-comodules, with carrier spacesV andW, coactionspV andpW , and matrix

coefficientsp jk
V andp jk

W are said to beequivalentif there exists a one-to-mappingF from V to
W such that

pW+F5~F ^ id !+pV . ~49!

If V andW have basesv1 ,v2 , . . . ,vd andw1 ,w2 , . . . ,wd , respectively, then to the mapping
F there corresponds ad3d non-singular matrixF such that

(
l 51

d

F j l p l k
V 5 (

l 51

d

p j l
WF l k , ~50!

for all j ,k51,2, . . . ,d.
A subspaceW,V is said to beinvariant underpV if pV(w),W^A for all w P W, and a

corepresentation is described as beingirreducible if V and 0 are the only invariant subspaces of
V. If V is the direct sum of two invariant subspaces ofV, then the corepresentationpV is said to
be completely reducible.

If V is endowed with an inner product^,&V ~such that̂ zw,z8v&V5 z̄z8^w,v&V for all z, z8
P C and allv, w P V), thenpV is said to give aunitary corepresentation if

(
@v#

^w,v @1#&VS~v @2#!5(
@w#

^w@1# ,v&Vw@2#
* , ~51!

for all v,w P V. It can be shown22–26that if v1 ,v2 , . . . ,vd is an ortho-normal basis ofV then

S~p jk
V!5pk j

V* , ~52!

(
l 51

d

M ~p l j
V* ^ p l k

V !5d jk1A , ~53!

and

(
l 51

d

M ~p j l
V

^ pkl
V* !5d jk1A ~54!

~for all j ,k51,2, . . . ,d).
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Corresponding to a rightA-comodule with carrier spaceV and coactionpV from V to
V^A there exist two other rightA-comodules formed from the same carrier space. Firstly, there
is the coactionpV

‡ which is said to bedoubly contragredientto pV , and which is defined~as a
mapping fromV to V^A) by

pV
‡5~ id^S2!+pV . ~55!

With the matrix coefficientsp jk
V‡ of pV

‡ being defined by

pV
‡~v j !5 (

k51

d

vk^ pk j
V‡ , ~56!

for all j51,2, . . . ,d, it follows from ~45! that

p jk
V‡5S2~p jk

V!, ~57!

for all j ,k51,2, . . . ,d. Secondly, letV̄ be the conjugate space toV @so that as an Abelian group
V̄ is isomorphic toV, but the scalar multiplication operatorMC,V̄ for V̄ is defined in terms of the
corresponding operatorMC,V for V by MC,V̄(z^v)5MC,V( z̄^v)]. Then the coactionp̄ V̄ , which
is said to beconjugateto pV , is defined~as a mapping fromV̄ to V̄^A) by

p̄ V̄5~ id^ * !+pV , ~58!

so its matrix coefficientsp̄ jk
V̄ are given by

p̄ jk
V̄ 5p jk

V* , ~59!

for all j ,k51,2, . . . ,d.

C. Compact quantum group algebras

A compact quantum group algebra~or CQG algebrafor short! may be defined22–26as a Hopf
*-algebra that is spanned by the matrix coefficients of its non- equivalent finite-dimensional
unitary irreducible corepresentations. Koornwinder and Dijkhuizen22–26have shown that ifA is a
CQG algebra then every finite-dimensional corepresentation ofA is equivalent to a unitary
corepresentation, and that every finite-dimensional reducible corepresentation ofA is completely
reducible. Moreover22–26if A is a CQG algebra thenA possesses aHaar functional, h, which is
a mapping ofA into C such that

h~1A!51C , ~60!

h@M „a* ^a…#.0, ~61!

h~a* !5h~a!, ~62!

h@S~a!#5h~a!, ~63!

and

@MC,A+~h^ id !+D#~a!5@MA,C+~ id^h!+D#~a!5h~a! 1A , ~64!

for all aP A.
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Koornwinder and Dijkhuizen22–26have also shown that ifp p andp q are two non-equivalent
irreducible corepresentations of a CQG algebraA with dimensionsdp anddq and matrix coeffi-
cientsp jk

p andpmn
q , respectively, then

h@M ~p jk
p

^S~pmn
q !#50, h@M „S~p jk

p! ^ pmn
q
…#50 ~65!

~for all j ,k51,2, . . . ,dp and for allm,n51,2, . . . ,dq). Moreover everyp
p irreducible corepre-

sentation ofA is equivalent to its doubly contragredient partnerp p‡, so in each such case there
exists a non-singulardp3dp matrix F

p such that

(
k51

dp

F jk
p pkl

p 5 (
k51

dp

p jk
p‡Fkl

p ~66!

~for all j ,l 51,2, . . . ,dp). Then, ifp
p is a unitary irreducible corepresentation ofA,

h@M „p jk
p

^S~pmn
p !…#5d jnFmk

p /tr ~Fp! ~67!

and

h@M „S~p jk
p! ^ pmn

p
…#5d jn@~F

p!21#mk /tr @~F
p!21# ~68!

~for all j ,k,m,n51,2, . . . ,dp).
Of course in the special case in whichA is the space of functions defined on a compact group

G ,A is commutative~i.e.,M5M + s), S25 id, h is the Haar integral,

h~a!5E
G

a~x! dx, ~69!

and ~64! expresses the invariance properties

E
G

a~yx! dx5E
G

a~x! dx5E
G

a~xy! dx ~70!

~for all y P G ). Moreover in this case each corepresentation ofA is identical to its doubly
contragredient partner, and~65!, ~67!, and~68! correspond to the orthogonality theorems for the
unitary irreducible representations ofG .

D. Lemmas concerning the Haar functional

It will now be shown that

(
~b!

h@M ~a^b~1!!#S~b~2!!5(
~a!

h@M ~a~1! ^b!#a~2! , ~71!

for all a,bP A.
To prove this consider the operationu + h + M . As the left-hand equality of~64! can be re-

expressed as

MC,A+~h^ id !+D5u+h, ~72!

it follows from ~10! that

u+h+M5MC,A+~h^ id !+~M^M !+~ id^ s ^ id !+~D ^ D!. ~73!
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However, by~12!, ~18!, and~9!, it also follows that

u+h+M5MC,A+~h^M !+~M^S^ id !+~ id^ D ^ id !+~ id^ D!. ~74!

Comparing~73! and ~74! then gives

MC,A+~h^M !+~M^S^ id !+~ id^ D ^ id !+~ id^ D!

5MC,A+~h^ id !+~M^M !+~ id^ s ^ id !+~D ^ D!,

which can be re-expressed as

M +~U^ id !+~ id^ D!5M +~V^ id !+~ id^ D!, ~75!

where

U5MC,A+~h^ id !+~M^ id !+~ id^ s!+~D ^ id ! ~76!

and

V5MC,A+~h^S!+~M^ id !+~ id^ D!. ~77!

However,~75! implies that

M +~M^ id !+~U^ id^S!+~ id^ D ^ id !+~ id^ D!

5M +~M^ id !+~V^ id^S!+~ id^ D ^ id !+~ id^ D!. ~78!

But

M +~M^ id !+~U^ id^S!+~ id^ D ^ id !+~ id^ D!

5M +~U^ $M +~ id^S!+D%!+~ id^ D!

5M +~U^ $u+e%!+~ id^ D!5U.

As a similar result is true withU replace byV, it follows from ~78! that U5V, which is an
equivalent way of expressing~71!.

It can shown by a similar argument that

(
~b!

h@M ~b~2! ^a!#S~b~1!!5(
~a!

h@M ~b^a~2!!#a~1! , ~79!

for all a,bP A.

III. THE RIGHT AND LEFT REGULAR COMODULES

The right regular comoduleof A is defined to haveA itself as its carrier space, withD
providing the coactionpA

R . That is

V5A, pA
R5D. ~80!

In this case the conditions~43! and~44! for pA
R to be a right coaction are immediately satisfied by

virtue of the assumptions~9! and ~12!.
The left regular comoduleof A is also defined to haveA itself as its carrier space, but has

s + (S^ id) + D as its coactionpA
L . That is
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V5A, pA
L5s+~S^ id !+D. ~81!

For this case the condition~43! for pA
L to be a right coaction is satisfied by the assumptions~9!

and~17!, while the condition~44! is again satisfied as a result of the assumption~12!. It should be
noted thatpA

R andpA
L are bothright coactions, for, as discussed in Appendix A, the designation

‘‘left’’ of pA
L comes from its relation to the left regular action of a group in the special case in

which the dualA8 is a group algebra. It is also useful to note that~81! implies that

D5~S21
^ id !+s+pA

L . ~82!

The notation of~48! can be developed further by writing

pA
X~a!5(

@a#
a@1#
X

^a@2#
X , ~83!

for X5R andX5L, wherea@1#
X anda@1#

X are elements ofA. Then~20! and ~80! imply that

a@1#
R 5a~1! , a@2#

R 5a~2! , ~84!

but ~20! and ~81! give

a@1#
L 5a~2! , a@2#

L 5S~a~1!!. ~85!

The right and left regular corepresentations are bothunitary, provided that the inner products
on the carrier spaceA are chosen in the following way.

1. For theright regular corepresentation take

^a,b&A5~a,b!R5h@M ~a* ^b!#, for all a,bPA; ~86!

2. for the left regular corepresentation take

^a,b&A5~a,b!L5h$M @b^ „S2~a!…* #%, for all a,bPA. ~87!

In outline the proofs of these statements are as follows. For theright regular corepresentation,
the unitary condition~51! with the choice~86! for the inner product and with~84! becomes

(
~v !

h@M ~w* ^v ~1!!#S~v ~2!!5(
~w!

h@M ~w~1!
* ^v !#w~2!

* ,

which in turn reduces to~71! with the substitutionsw5a* andv5b. Similarly, for theleft regular
corepresentation, the unitary condition~51! with the choice~87! for inner product and with~85!
becomes

(
~v !

h$M @v ~2! ^ „S2~w!…* #%S2~v ~1!!5(
~w!

h$M @v^ „S2~w~2!!…* #%@S~w~1!!#* .

With the substitutionsw5S21(a* ) andv5S21(b), and the application of~17!, ~37!, and ~39!,
this reduces again to~71!.

With the choices~86! and~87!, both (a,a)R and (a,a)L are real and positive for all non-zero
a P A. For (a,a)R this is an immediate consequence of~61!, while for (a,a)L the demonstration
requires~63!, ~16!, ~62!, and~39! as well.

The inner products~86! and ~87! will be used throughout this paper. In the special case in
whichA is the space of functions defined on a compact groupG , both (a,b)R and (a,b)L reduce
to the usual inner product,
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E
G

a~x!b~x! dx.

It is worth noting at this stage that the invariance properties~64! imply that

@MC,A+~h^ id !+pA
R#~a!5@MA,C+~ id^h!+pA

R#~a!5h~a! 1A ~88!

and

@MC,A+~h^ id !+pA
L #~a!5@MA,C+~ id^h!+pA

L #~a!5h~a! 1A , ~89!

for all a P A. Acting with h again in~88! and~89!, and using~60!, gives

@MC+~h^h!+pA
X#~a!5h~a!, ~90!

for bothX5R andL and for alla P A. In terms of the notation of~83!, this can be re-expressed
as

h~a!5(
@a#

h~a@1#
X !h~a@2#

X !, ~91!

for X5R andL and for alla P A.
The effects of the right and left regular coactions on products are quite different. For the right

regular coaction,~80! and ~10! imply immediately that

pA
R+M5~M^M !+~ id^ s ^ id !+~pA

R
^ pA

R!, ~92!

whereas for the left regular coaction,~81!, ~10!, and~16! show that

pA
L +M5~M^M !+~ id^ id^ s!+~ id^ s ^ id !+~pA

L
^ pA

L !, ~93!

which contains an extra twist factors.

IV. BASIS FUNCTIONS

A. Definitions and properties

Suppose thatp jk
p are the matrix coefficients of a corepresentationp p of A of finite dimen-

sion dp . Then thebasis functionsc j
pR of p p with respect to the right regular coactionmay be

defined to be a set ofdp elements ofA that have the property that

pA
R~c j

pR!5 (
k51

dp

ck
pR

^ pk j
p , ~94!

for all j51,2, . . . ,dp . Similarly thebasis functionsc j
pL of p p with respect to the left regular

coactionmay be defined as a set ofdp elements ofA that have the property that

pA
L ~c j

pL!5 (
k51

dp

ck
pL

^ pk j
p , ~95!

for all j51,2, . . . ,dp .
In the right regular coaction case, an example of a set of basis functions is provided~for any

fixed choice ofl 51,2, . . . ) by
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c j
pR5p l j

p , ~96!

for all j51,2, . . . ,dp . Likewise, in the left regular coaction case, an example is provided~for any
fixed choice ofl 51,2, . . . ) by

c j
pL5S22~p j l

p* !, ~97!

for all j51,2, . . . ,dp ~provided that the corepresentationp p is unitary!.
One very useful result, which comes from applying~95!, ~82!, ~17!, ~37!, and~39!, is that

pA
L @„S2~ck

qL!…* #5(
t51

dp

@S2~c t
qL!#* ^ p tk

q* , ~98!

for all k51,2, . . . ,dp .
In spite of the fact that the inner products~86! and~87! for the right and left regular coactions

are different, in both the cases the basis functions possess thesameorthogonality properties, which
are as follows: Ifck

qX andf j
pX are basis functions of the unitary irreducible corepresentations

p q andp p of A, then

~ck
qX ,f j

pX!X50 , unless p5q and j5k, ~99!

and

~c j
pX ,f j

pX!X is independent ofj , for j51,2, . . . ,dp. ~100!

HereX denotes bothR andL, and in~100! c j
pX andf j

pX need not be identical sets. Indeed, with
X5R, if the functionsc j

pR andf j
pR are defined by

c j
pR5ps j

p , f j
pR5p t j

p , ~101!

and withX5L, if the functionsc j
pL andf j

pL are similarly defined by

c j
pL5S22~p js

p* !, f j
pL5S22~p j t

p* !, ~102!

then inboth cases

~c j
pX ,f j

pX!X5@~Fp!21# ts /tr @~F
p!21#, ~103!

for j51,2, . . . ,dp .
The proofs of ~99!, ~100!, and ~103! will now be outlined. Applying ~92! and ~88! to

M (ck
qR* ^ f j

pR) gives

h@M ~ck
qR* ^ f j

pR!#1A5(
s,t

h@M ~c t
qR* ^ fs

pR!#M ~p tk
q* ^ ps j

p!.

A further application ofh to both sides gives

~ck
qX ,f j

pX!X5(
s,t

~c t
qX ,fs

pX!Xh@M ~p tk
q* ^ ps j

p!#, ~104!

with X5R, where ~86! and ~60! have been invoked. Similarly, applying~93! and ~98! to
M @f j

pL
^ „S2(ck

qL)…* #, and then applying~89! to the result gives
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h$M @f j
pL

^ „S2~ck
qL!…* #%1A5(

s,t
h$M @fs

pL
^ „S2~c t

qL!…* #%M ~p tk
q* ^ ps j

p!.

A further application ofh to both sides gives~104! with X5L, where this time~87! and~60! have
been used. Thus, in both cases, it follows from~104!, ~52!, ~65!, and~68! that

~ck
qX ,f j

pX!X5(
s,t

~c t
qX ,fs

pX!Xdqpdk j@~F
p!21#st

tr @~Fp!21#
. ~105!

This implies that~99! is true, and ifj5k andp5q, then~105! and ~99! together give

~c j
pX ,f j

pX!X5(
s

~cs
pX ,fs

pX!X@~Fp!21#ss

tr @~Fp!21#
. ~106!

As the right-hand side of~106! is independent ofj , so too must be the left-hand side, which
thereby establishes~100!. Finally the combination of~86! and~101! and the combination of~87!
and ~102! both produce the result

~c j
pX ,f j

pX!X5h$M @S~p js
p! ^ p t j

p#%,

for X5R and forX5L, which gives~103! when ~68! is used.

B. Projection operators

The argument in Appendix C suggests the following definition. Letp p be a unitary irreduc-
ible corepresentation ofA of dimensiondp with matrix coefficientspmn

p . Then the projection
operatorsPmn

pR andPmn
pL are defined by

Pmn
pX~a!5dp(

@a#
a@1#
X h@M ~pmn

p* ^a@2#
X #, ~107!

for X5R andX5L, for allm,n51,2, . . . ,dp , and alla P A.
These projection operators have the following two useful properties: Letp p andp q be two

unitary irreducible corepresentations ofA of dimensionsdp and dq with matrix coefficients
pmn

p andp jk
q

1. Then

Pmn
pX
P jk
qX5dpd

pq$@~Fp!21#n j /tr @~F
p!21#%Pmk

pX , ~108!

for X5R andX5L, for all m,n51,2, . . . ,dp , and for all j ,k51,2, . . . ,dq .
2. Also, if ck

qX are basis functions forp q, then

Pmn
pX~ck

qX!5dpd
pqdnk(

l 51

dp c l
qX@~Fp!21# l m

tr @~Fp!21#
, ~109!

for X5R andX5L, for all m,n51,2, . . . ,dp , and for allk51,2, . . . ,dq .
The proof of~108! is as follows. For anyf P A, ~107! and~9! imply that

Pmn
pX@P jk

qX~ f !#5dpdq(
@ f #

f @1#
X h@M „p jk

q* ^ ~ f @2#
X !~1!…#h@M „pmn

p* ^ ~ f @2#
X !~2!…#.

On applying~79! with a5 f @2#
X andb5p jk

q* this reduces to
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Pmn
pX@P jk

qX~ f !#5dpdq(
@ f #

(
l 51

dq

f @1#
X h@M ~p l k

q* ^ f @2#
X !#h@M „pmn

p* ^S~p j l
q* …#,

so

Pmn
pX@P jk

qX~ f !#5dp(
l 51

dq

P l k
qX~ f !h@M „pmn

p* ^S~p j l
q* …#,

which, by ~52!, ~16!, and~68! gives ~108!.
To prove~109! it suffices to note that~107!, ~94!, and~87! imply that

Pmn
pX~ck

qX!5dp(
l 51

dp

c l
qXh@M ~pmn

p* ^ p l k
q !#,

which, by ~68!, leads immediately to~108!.

V. TENSOR PRODUCTS AND CLEBSCH–GORDAN COEFFICIENTS

A. Ordinary and twisted tensor products

The tensor productof two corepresentationspV andpW of A ~with carrier spacesV and
W, respectively! is the mappingpV�pW from V^W to V^W^A that is defined by

~pV�pW!~v^w!5@~ id^ id^M !+~ id^ s ^ id !+~pV^ pW!#~v^w!, ~110!

for all v P V and allw P W. It is easily checked that the conditions~43! and~44! are satisfied with
pV replaced bypV�pW andV replaced byV^W, sopV�pW is indeed a coaction ofA with
carrier spaceV^W. If V and W are of finite dimensionsdV and dW , with bases
v1 ,v2 , . . . ,vdV, andw1 ,w2 , . . . ,wdW

, then~45! and ~110! give

~pV�pW!~v j ^wk!5(
s51

dV

(
t51

dW

~vs^wt! ^ @M ~ps j
V

^ p tk
W!#, ~111!

which implies that the matrix coefficients ofpV�pW are given by

~pV�pW!st, jk5M ~ps j
V

^ p tk
W!. ~112!

Henceforth it will always be assumed that in tensor product matrices such aspV�pW the pair of
indices that specify the columns have the ordering:

~ j ,k!5~1,1!,~1,2!, . . . ,~1,dW!,~2,1!,~2,2!, . . . , ~113!

and that the same ordering applies to the rows.
There exists a second tensor product ofpV andpW that has the same carrier spaceV^W.

This will be called thetwisted tensor product, and is defined as the mappingpV�̃pW from
V^W to V^W^A that is given by

~pV�̃pW!~v^w!5@~ id^ id^M !+~ id^ id^ s!+~ id^ s ^ id !+~pV^ pW!#~v^w!, ~114!

for all v P V and allw P W. It is again easily checked that the conditions~43! and~44! are satisfied

with pV replaced bypV�̃pW andV replaced byV^W, sopV�̃pW is also a coaction ofA with
carrier spaceV^W. Then~45! and ~114! give
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~pV�̃pW!~v j ^wk!5(
s51

dV

(
t51

dW

~vs^wt! ^ @M ~p tk
W

^ ps j
V!#, ~115!

which implies that the matrix coefficients ofpV�̃pW are given by

~pV�̃pW!st, jk5M ~p tk
W

^ ps j
V!. ~116!

The tensor productpW�pV , whose carrier space ispW^ pV , has matrix coefficients that are
given @according to~112!# by

~pW�pV! ts,k j5M ~p tk
W

^ ps j
V!. ~117!

As the matrix coefficients of~116! and ~117! differ only in their ordering of the pairs of indices

that label their rows~and, in the corresponding manner, their columns!, it follows thatpV�̃pW

andpW�pV areequivalentcorepresentations. IfA is coquasitriangular@that is, ifA8 is quasi-
triangular~cf. Drinfel’d30!#, thenpV�pW andpW�pV are equivalent, so in this casepV�pW and

pV�̃pW are equivalent.~Of course, in the special case in whichA is commutative, the corepre-

sentationspV�̃pW andpV�̃pW are identical.!
Applying these considerations to the special case in whichpV5p p andpW5p q are two

irreducible unitary corepresentations ofA, ~112! and ~116! become

~p p�p q!st, jk5M ~ps j
p

^ p tk
q! ~118!

and

~p p�̃p q!st, jk5M ~p tk
q

^ ps j
p!, ~119!

respectively.

B. Characters

Thecharacterof a corepresentationpV ofA of dimensiondV is defined in terms of its matrix
coefficients by

xV5(
j51

dV

p j j
V , ~120!

soxV is also an element ofA. Clearly equivalent corepresentations have identical characters.
If p p andp q are two irreducible unitary corepresentations ofA ~assumed to be inequivalent

if p Þ q) and if xp andxq are their corresponding characters, then~67! and~68! imply that

h@M ~xp* ^ xq!#5h@M ~xq
^ xp* !#5dpq. ~121!

If pV is a ~completely! reducible corepresentation ofA that is equivalent to the direct sum
( % npp p, then the number of timesnp that the irreducible corepresentationp p ~or a corepre-
sentation equivalent top p) appears in the reduction ofpV is given by

xV5(
p
npxp, ~122!

so, by~121!,
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np5h@M ~xV
^ xp* !#5h@M ~xp* ^ xV!#. ~123!

For the tensor productp p�p q of two irreducible unitary corepresentationsp p andp q the
character is justxpxq@5M (xp

^ xq)#, so the number of timesnpq
r that the irreducible corepresen-

tationp r ~or a corepresentation equivalent top r) appears in the reduction ofp p�p q is given
by

npq
r 5h~xpxqx r* !5h~x r* xpxq!. ~124!

If p̄ p is the irreducible unitary corepresentation that isconjugateto p p, then~59! and ~62!
show that

npq
r 5np̄r

q , nr p̄
q 5nqp

r , ~125!

where np̄r
q is the number of times thatp q ~or its equivalent! appears in the reduction of

p̄ p�p r , andnr p̄
q is the number of times thatpq ~or its equivalent! appears in the reduction of

p r�p̄ p.

C. Clebsch–Gordan coefficients

As above, suppose that the tensor productp p�p q of two irreducible unitary corepresenta-
tionsp p andp q is reducible, and thatnpq

r is the number of times that the irreducible corepre-
sentationp r ~or a corepresentation equivalent to it! appears in the reduction ofp p�p q. If p p

has carrier spaceVp with basis elementsv1
p ,v1

p , . . . ,vdp
p andp q has carrier spaceVq with basis

elementsv1
q ,v1

q , . . . ,vdq
q , then the set of elementsv j

p
^vk

q form a basis forVp
^Vq, the carrier

space ofp p�p q, and consequently appropriate linear combinations form bases for all the irre-
ducible corepresentationsp r that appear in the reduction of the tensor product. Letwl

r ,a be such
a combination, so that

wl
r ,a5(

j51

dp

(
k51

dq S p q

j k
U r , a

l
D v jp^vk

q , ~126!

for l 51,2, . . . ,dr , anda51,2, . . . ,npq
r , and

~p p�p q!~wl
r ,a!5 (

u51

dr

wu
r ,a

^ pul
r , ~127!

for u51,2, . . . ,dr , anda51,2, . . . ,npq
r . The inverse of~126! is

v j
p

^vk
q5(

r
(
a51

npq
r

(
l 51

dr S r , a

l
Up q

j k Dwlr ,a , ~128!

for j51,2, . . . ,dp andk51,2, . . . ,dq . TheClebsch–Gordan coefficientsdefined in~126! form
the elements of adp3dq matrix C, while the inverse coefficients defined in~128! form the
elements ofC21, where

C21~pp�pq!C5(
r

%npq
r p r . ~129!

That is,
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(
j51

dp

(
t51

dq

~p p�p q! is, j t S p q

j t
U r , a

l
D 5 (

u51

dr S p q

i s
U r , a

u Dpul
r , ~130!

for i51,2, . . . ,dp , s51,2, . . . ,dq , l 51,2, . . . ,dr , anda51,2, . . . ,npq
r .

D. Products of basis functions and Clebsch–Gordan coefficients

Consider first theright regular corepresentation. Iff j
pR andck

qR are basis functions of the
unitary irreducible corepresentationsp p andp q of A, then~92! and ~118! imply that

pA
R@M ~f j

pR
^ ck

qR!#5(
s51

dp

(
t51

dq

M ~fs
pR

^ c t
qR! ^ ~p p�p q!st, jk , ~131!

so that if the set of productsM (f j
pR

^ ck
qR) ~for j51,2, . . . ,dp , and k51,2, . . . ,dq) form a

linearly independent set, then they form a basis for the tensor product corepresentation
p p�p q. Thus, by~126! and~127!, there exists a set of elementsu l

r ,aR , all members ofA, that
are defined by

u l
r ,aR5(

j51

dp

(
k51

dq S p q

j k
U r , a

l
DM ~f j

pR
^ ck

qR!, ~132!

for l 51,2, . . . ,dr , anda51,2, . . . ,npq
r , and which have the property that

pA
R~u l

r ,aR!5 (
u51

dr

uu
r ,aR

^ pul
r , ~133!

for u51,2, . . . ,dr , anda51,2, . . . ,npq
r . By ~128!, the inverse of~132! is then

M ~f j
pR

^ ck
qR!5(

r
(
a51

npq
r

(
l 51

dr S r , a

l
Up q

j k D u l
r ,aR , ~134!

for j51,2, . . . ,dp and k51,2, . . . ,dq . On applying the projection operatorP ul
rR of ~107! to

M (f j
pR

^ ck
qR), and using~109!, ~134!, and~132!, it follows that

P ul
rR@M ~f j

pR
^ ck

qR!#

5 (
a51

npq
r

(
v51

dr

(
s51

dp

(
t51

dq S r , a

l
Up q

j k D S p q

s t
U r , a

v D
3dr$~~Fr !21!vu /tr @~F

r !21#%M ~fs
pR

^ c t
qR!, ~135!

for j51,2, . . . ,dp andk51,2, . . . ,dq . However, the definition~107! taken in conjunction with
~131! and ~118! gives

P ul
rR@M ~f j

pR
^ ck

qR!#5dr(
s51

dp

(
t51

dq

M ~fs
pR

^ c t
qR!h~pul

r*ps j
pp tk

q!, ~136!

so equating coefficients ofM (fs
pR

^ c t
qR) in ~135! and ~136! yields
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h~pul
r*ps j

pp tk
q! 5 (

a51

npq
r

(
v51

dr S r , a

l
Up q

j k D S p q

s t
U r , a

v D
3$@~Fr !21#vu /tr @~F

r !21#% ~137!

for all j51,2, . . . ,dp , k51,2, . . . ,dq , and l51,2, . . . ,dr . Of course, this implies that

h~pul
r*p tk

qps j
p! 5 (

a51

nqp
r

(
v51

dr S r , a

l
Uq p

k j D S q p

t s
U r , a

v D
3$@~Fr !21#vu /tr @~F

r !21#%, ~138!

for all j51,2, . . . ,dp , k51,2, . . . ,dq , and l51,2, . . . ,dr .
Although the conclusions~137! and ~138! also follow from consideration of theleft regular

coaction, some of the intermediate results are significantly different in this case. Firstly~93!
implies that

pA
L @M ~f j

pL
^ ck

qL!#5(
s51

dp

(
t51

dq

M ~fs
pL

^ c t
qL! ^M ~p tk

q
^ ps j

p!, ~139!

so, by~119!,

pA
L @M ~f j

pL
^ ck

qL!#5(
s51

dp

(
t51

dq

M ~fs
pL

^ c t
qL! ^ ~p p�̃p q!st, jk , ~140!

so that if the set of productsM (f j
pL

^ ck
qL) ~for j51,2, . . . ,dp , and k51,2, . . . ,dq) form a

linearly independent set, then they form a basis for thetwisted tensor product corepresentation

p p�̃p q. However, on writingFk j
qp5M (f j

pL
^ ck

qL), ~140! can be re-expressed as

pA
L ~Fk j

qp!5(
s51

dp

(
t51

dq

F ts
qp

^ ~p q�p p! ts,k j . ~141!

That is, the setFk j
qp ~for k51,2, . . . ,dq and j51,2, . . . ,dp) form a basis for theordinary tensor

product corepresentationp q�p p. Consequently, there exists a set of elementsu l
r ,aL , all mem-

bers ofA, that are defined by

u l
r ,aL5(

j51

dp

(
k51

dq S q p

k j
U r , a

l
DFk j

qp , ~142!

for l 51,2, . . . ,dr , anda51,2, . . . ,nqp
r , and which have the property that

pA
R~u l

r ,aL!5 (
u51

dr

uu
r ,aL

^ pul
r , ~143!

for u51,2, . . . ,dr , anda51,2, . . . ,nqp
r . Thus

u l
r ,aL5(

j51

dp

(
k51

dq S q p

k j
U r , a

l
DM ~f j

pL
^ ck

qL!, ~144!

whose inverse is
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M ~f j
pL

^ ck
qL!5(

r
(
a51

nqp
r

(
l 51

dr S r , a

l
Uq p

k j D u l
r ,aL , ~145!

for j51,2, . . . ,dp and k51,2, . . . ,dq . Applying the projection operatorP ul
rL of ~107! to

M (f j
pL

^ ck
qL), and using~109!, ~145!, and~144!, it follows that

P ul
rL@M ~f j

pL
^ ck

qL!#

5 (
a51

nqp
r

(
v51

dr

(
s51

dp

(
t51

dq S r , a

l
Uq p

k j D S q p

t s
U r , a

v D
3dr$@~F

r !21#vu /tr @~F
r !21#%M ~fs

pL
^ c t

qL!, ~146!

for j51,2, . . . ,dp andk51,2, . . . ,dq . However, the definition~107! taken in conjunction with
~139! gives

P ul
rL@M ~f j

pL
^ ck

qL!#5dr(
s51

dp

(
t51

dq

M ~fs
pL

^ c t
qL!h~pul

r*p tk
qps j

p!, ~147!

so equating coefficients ofM (fs
pL

^ c t
qL) in ~146! and ~147! yields ~138! again.

It is also possible to obtain~137! @and hence~138!# withoutmaking any linear independence
assumptions about the set of productsM (f j

pR
^ ck

qR), for by ~111!, ~126!, ~127!, and~128!,

(
r

(
a51

npq
r

(
s51

dp

(
t51

dq

(
v,w51

dr S r , a

w
Up q

j k D S p q

s t
U r , a

v D vsp^v t
q

^ pvw
r

5(
s51

dp

(
t51

dq

vs
p

^v t
q

^M ~ps j
p

^ p tk
q!,

for all j51,2, . . . ,dp , and k51,2, . . . ,dq . As the set vs
p

^v t
q ~for s51,2, . . . ,dp , and

t51,2, . . . ,dq) is certainly linearly independent, it follows that

(
r

(
a51

npq
r

(
v,w51

dr S r , a

w
Up q

j k D S p q

s t
U r , a

v Dpvw
r 5M ~ps j

p
^ p tk

q!

~for j ,s51,2, . . . ,dp , andk,t51,2, . . . ,dq). On replacingr by r 8 in the sums of on the left-hand
side, multiplying through bypul

r* from the left, applying the Haar functionalh, and using~65! and
~68!, one regains~137!.

VI. THE IRREDUCIBLE TENSOR OPERATORS

A. Introduction

Let p q be a unitary irreducible right coaction ofA of dimensiondq with matrix coefficients
p jk

q It will be shown that within both the right and the left regular corepresentation formalisms
there exist two types of irreducible tensor operators that both belong to this corepresentation
p q. These will be denoted byQj

qX andQ̃j
qX ~for j51,2, . . . ,dq and forX5R or L), and will be

calledordinary and twisted irreducible tensor operators, respectively. Naturally the two types of
irreducible tensor operators coincide in the special case in whichA is commutative. Moreover, it
should be noted that ifAop is the Hopf algebra in which the multiplication operatorM and
antipodeS of A are replaced byM + s andS21, respectively, then the ‘‘twisted’’ irreducible
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tensor operators forA are the ‘‘ordinary’’ irreducible tensor operators forAop and the ‘‘ordi-
nary’’ irreducible tensor operators forA are the ‘‘twisted’’ irreducible tensor operators for
Aop.

B. Definitions in the right regular corepresentation formalism

1. Definition of the ordinary irreducible tensor operators Q j
qR

The ordinary irreducible tensor operators Qj
qR belonging to the unitary irreducible right

coactionp q of A aredefinedto be members ofL(A) that satisfy the condition

~~ id^M !+~D ^ id !+~Qj
qR

^S!+D!~a!5 (
k51

dq

Qk
qR~a! ^ pk j

q, ~148!

for all a P A and all j51,2, . . . ,dq . HereafterL(A) denotes the set of linear operators that map
A intoA.

Clearly this definition involvesonly quantities defined onA, for the right-hand side is a
member ofA^A. By virtues of~80! this definition can be written equivalently in terms of the
right regular coactionpA

R as

@~ id^M !+~pA
R

^ id !+~Qj
qR

^S!+pA
R#~a!5 (

k51

dq

Qk
qR~a! ^ pk j

q , ~149!

for all a P A and all j51,2, . . . ,dq . @The motivation behind the definition~148! is explained in
Appendix B 2 a#.

It will now be shown that~148! provides aconsistentdefinition, in that it can be re-expressed
by saying that the operatorsQj

qR ~for j51,2, . . . ,dq) form the basis of a carrier space for a certain
right coaction ofA. The motivation for this definition is given in Appendix B 2 b, where the
special case in whichA is finite-dimensional is considered in detail, but for the general case it is
necessary to apply additional conditions to the domain of this coaction. The analysis of Appendix
B 2 b implies that ifA is finite-dimensional then, foreveryoperatorQ P L(A), there exist
operatorsQi P L(A) and elementsqi , both indexed by the samefinite index setI , such that

(
iPI

Qi~a! ^qi5@~ id^M !+~D ^ id !+~Q^S!+D#~a!, ~150!

for all a P A, but this is not necessarily true for everyQ P L(A) if A is infinite-dimensional.
However, one can always define a subspaceT (A) of L(A) by the requirement thatQ
P T (A) if ~i! Q P L(A), ~ii ! Q satisfies~150! with I finite, and~iii ! eachQi appearing on the
left-hand side of~150! also satisfies a condition of the same form. This subspaceT (A) is
certainly not empty, for the identity operator belongs to it@cf. ~170!#, as does every irreducible
tensor operatorQj

qR @cf. ~148!#, and, as just noted, ifA is finite-dimensional thenT (A) is
identical toL(A). The definition of the required right coaction, which will be denoted by
pT (A)

R , is then that it is the mapping ofT (A) into T (A)^A that given by

pT ~A!
R ~Q!5(

@Q#
Q@1# ^Q@2# , ~151!

whereQ@1# P T (A) andQ@1# P A are such that

(
@Q#

Q@1#~a! ^Q@2#5@~ id^M !+~D ^ id !+~Q^S!+D#~a!, ~152!
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for allQ P T (A) and alla P A. It is then quite easily shown@using the identities~8! to ~19!# that
pT (A)

R satisfies~43! and ~44! @with pV andV replaced bypT (A)
R andT (A), respectively, and

with all operators ofT (A) acting on any member ofA according to the prescription of~152!#.
That is,

(
@Q#

(
@Q@1##

~Q@1#!@1#~a! ^ ~Q@1#!@2# ^Q@2#5(
@Q#

Q@1#~a! ^ D~Q@2#! ~153!

and

(
@Q#

~Q@1#!~a!e~Q@2#!5Q~a!,

for all Q P T (A) and alla P A. HencepT (A)
R is indeed a right coaction with carrier space

T (A). Thus~151! and ~152! imply that the definition~148! can be written equivalently as

pT ~A!
R ~Qj

qR!5 (
k51

dq

Qk
qR

^ pk j
q ~154!

~for all j51,2, . . . ).Because~154! is similar in form to~45!, and aspT (A)
R is a right coaction

with carrier spaceT (A), the consistency of the definition~148! is now ensured.

2. Definition of the twisted irreducible tensor operators Q ˜
j
qR

The twisted irreducible tensor operators Q˜ j
qR belonging to the unitary irreducible right coac-

tion p q of A aredefinedto be members ofL(A) that satisfy the condition

@~ id^M !+~ id^ s!+~D ^ id !+~Q̃j
qR

^S21!+D#~a!5 (
k51

dq

Q̃k
qR~a! ^ pk j

q , ~155!

for all a P A and all j51,2, . . . ,dq . This can be written equivalently in terms of the right regular
coactionpA

R as

@~ id^M !+~ id^ s!+~pA
R

^ id !+~Q̃j
qR

^S21!+pA
R#~a!5 (

k51

dq

Q̃k
qR~a! ^ pk j

q , ~156!

for all a P A and all j51,2, . . . ,dq . Both ~155! and~156! differ from the corresponding defini-
tions~148! and~149! only in the replacement ofM byM + s and SbyS21 ~neither of which have
any effect in the special case in whichA is commutative!. ~See Appendix B 2 a for further
discussion of this pair of substitutions. It should be recorded that Rittenberg and Scheunert8 noted
previously, in the context of what was essentially the ‘‘abstract carrier space formalism’’@form ~3!
of Section I# as generalized to irreduciblerepresentationsof A8, that these substitutions do
produce another type of irreducible tensor operator, but they did not pursue this observation at all.!

The demonstration that~155! provides aconsistentdefinition again involves showing that it
can be re-expressed by saying that the operatorsQ̃j

qR ~for j51,2, . . . ,dq) form the basis of a
carrier space for a right coaction ofA. This right coactionp̃T (A)

R @and its associated space
T (A)] are essentially obtained frompT (A)

R by replacingM byM + s andS by S21, sop̃T (A)
R is

definedas the mapping ofT (A) into T (A)^A that given by

p̃T ~A!
R ~Q!5(

@Q#
Q@1# ^Q@2# , ~157!
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whereQ@1# P T (A) andQ@1# P A are such that

(
@Q#

Q@1#~a! ^Q@2#5@~ id^ ~M +s!…+~D ^ id !+~Q^S21!+D#~a!, ~158!

for all Q P T (A) and alla P A. Then~157! and~158! imply that the definition~155! can be
written equivalently as

p̃T ~A!
R ~Q̃j

qR!5 (
k51

dq

Q̃k
qR

^ pk j
q ~159!

~for all j51,2, . . . ),which then ensures the consistency of the definition~155!.

C. Definitions in the left regular corepresentation formalism

1. Definition of the ordinary irreducible tensor operators Q j
qL

The ordinary irreducible tensor operators Qj
qL belonging to the unitary irreducible right

coactionp q of A aredefinedto be members ofL(A) that satisfy the condition

@~ id^M !+~pA
L

^ id !+~Qj
qL

^S!+pA
L #~a!5 (

k51

dq

Qk
qL~a! ^ pk j

q , ~160!

for all a P A and all j51,2, . . . ,dq . @This is can be obtained from~149! by replacingX5R by
X5L, the justification being discussed in more detail in Appendix B 3 a.# In terms of the elemen-
tary operations ofA, ~160! can be re-expressed using~81! as

@s+~S^ id !+~M^ id !+~ id^ D!+~S^Qj
qL!+D#~a!5 (

k51

dq

Qk
qL~a! ^ pk j

q , ~161!

for all a P A and all j51,2, . . . ,dq .
The demonstration that~160! provides aconsistentdefinition proceeds in the same way as

above. In this case the appropriate right coaction will be denoted bypT (A)
L , and will bedefined

as the mapping ofT (A) into T (A)^A that given by

pT ~A!
L ~Q!5(

@Q#
Q@1# ^Q@2# , ~162!

whereQ@1# P T (A) andQ@1# P A are such that

(
@Q#

Q@1#~a! ^Q@2#5~s+~S^ id !+~M^ id !+~ id^ D!+~S^Q!+D!~a!, ~163!

for all Q P T (A) and alla P A. @Here the subspaceT (A) of L(A) is defined as in Section
VI B 1, but with the right-hand side of~163! replacing the right-hand side of~152! in ~150!. The
motivation for this definition is given in Appendix B 3 b.# Then the definition~160! can be written
equivalently as

pT ~A!
L ~Qj

qL!5 (
k51

dq

Qk
qL

^ pk j
q ~164!

~for all j51,2, . . . ),which then guarantees its consistency.
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2. Definition of the twisted irreducible tensor operators Q ˜
j
qL

The twisted irreducible tensor operators Q˜ j
qL belongingp q ofA aredefinedto be members

of L(A) that satisfy the condition

@~ id^M !+~ id^ s!+~pA
L

^ id !+~Q̃j
qL

^S21!+pA
L #~a!5 (

k51

dq

Q̃k
qL~a! ^ pk j

q , ~165!

for all a P A and all j51,2, . . . ,dq . In terms of the elementary operations ofA, ~165! can be
re-expressed using~81! as

@~ id^M !+~s ^S!+~ id^ s!+~ id^ D!+~ id^ Q̃j
qL!+D#~a!5 (

k51

dq

Q̃k
qL~a! ^ pk j

q , ~166!

for all a P A and all j51,2, . . . ,dq . The definition~165! differs from the corresponding defini-
tion ~160! only in the replacement ofM byM + s and Sby S21 ~neither of which have any effect
in the special case in whichA is commutative!. However, because the twoS factors in~161! have
different origins, these substitutions donot convert~161! into ~166!. ~See Appendix B 3 a for a
further discussion of this point.!

The consistency of the definition~165! is again shown in the same way as above. In this case
the appropriate right coaction will be denoted byp̃T (A)

L , and will bedefinedas the mapping of
T (A) into T (A)^A that given by

p̃T ~A!
L ~Q!5(

@Q#
Q@1# ^Q@2# , ~167!

whereQ@1# P T (A) andQ@1# P A are such that

(
@Q#

Q@1#~a! ^Q@2#5@~ id^M !+~s ^S!+~ id^ s!+~ id^ D!+~ id^Q!+D#~a!, ~168!

for all Q P T (A) and alla P A. @Here the subspaceT (A) of L(A) is defined as in Section
VI B 1, but with the right-hand side of~168! replacing the right-hand side of~152! in ~150!. The
motivation for this definition is given in Appendix B 3 b.# Then the definition~165! can be written
equivalently as

p̃T ~A!
L ~Q̃j

qL!5 (
k51

dq

Q̃k
qL

^ pk j
q ~169!

~for all j51,2, . . . ),which then implies the consistency of~165!.

D. The identity operator as an irreducible tensor operator

Suppose thatQ is theidentity operator idof L(A) @so thatQ(a)5a for all a P A]. Then,
on using~9! and ~18!, it follows that

~ id^M !+~D ^ id !+~ id^S!+D5 id^1A , ~170!

which, by ~148!, leads to the agreeable conclusion that the identity operatorid is an ordinary
irreducible tensor operator in theright regular corepresentation formalism for the one-dimensional
identity corepresentation whose sole matrix coefficient is 1A .
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It is easily checked@using~155!, ~161!, and~166! in place of~148!#, that id is also atwisted
irreducible tensor operator for the identity corepresentation in theright regular corepresentation
formalism , as well as being a both anordinary and atwistedirreducible tensor operator for the
identity corepresentation in theleft regular corepresentation formalism.

In fact, if one were to adopt the view that these results concerning the identity operator are an
essentialrequirement of any sensible definition of irreducible tensor operators, the fact that they
are not true ifM is replaced byM + s butS is left unchanged, nor ifM is left unchanged butS is
replaced byS21, then precludes further consideration of these possibilities.

E. Products as irreducible tensor operators

Suppose now thatc j
qR andc j

qL are sets of basis functions forp q @as defined in~94! and~95!,
respectively# and that the operatorsQj

qX andQ̃j
qX aredefinedby

Qj
qR~a! 5 M ~c j

qR
^a!,

Q̃j
qR~a! 5 M ~a^ c j

qR!,

Qj
qL~a! 5 M ~a^ c j

qL!,

Q̃j
qL~a! 5 M ~c j

qL
^a!,

~171!

for all a P A. Then the identities~21! to ~32! imply that the operatorsQj
qR , Q̃j

qR , Qj
qL , and

Q̃j
qL do indeed satisfy~148!, ~155!, ~161!, and ~166!, respectively, and so are irreducible tensor

operators belonging top q.

F. Two useful identities for the ordinary irreducible tensor operators Qj
qX and Q̃j

qX

If Qk
qX is an ordinary irreducible tensor operator belonging to the unitary irreducible right

coactionp q of A andc j
pX is a set of basis functions for the unitary irreducible right coaction

p p of A, then

pA
X@Qk

qX~c j
pX!#5(

s51

dp

(
t51

dq

@Qt
qX~cs

pX!# ^ @M ~p tk
q

^ ps j
p!#, ~172!

for X5R andL, for all j51,2, . . . ,dp , andk51,2, . . . ,dq . That is, by~118!,

pA
X@Qk

qX~c j
pX!#5(

s51

dp

(
t51

dq

@Qt
qX~cs

pX!# ^ ~p q�p p! ts,k j , ~173!

for X5R andL, for all j51,2, . . . ,dp andk51,2, . . . ,dq .
By contrast, ifQ̃k

qX is a twistedirreducible tensor operator belongingp q, then

pA
X@Q̃k

qX~c j
pX!#5(

s51

dp

(
t51

dq

@Q̃t
qX~cs

pX!# ^ @M ~ps j
p

^ p tk
q!#, ~174!

for X5R andL, for all j51,2, . . . ,dp andk51,2, . . . ,dq . It should be noted that the factors in
the second term of the right-hand side of~174! are interchanged relative to those of~172!, which
implies, by~119!, that

pA
X@Q̃k

qX~c j
pX!#5(

s51

dp

(
t51

dq

@Q̃t
qX~cs

pX!# ^ ~p q�̃p p! ts,k j , ~175!
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for X5R andL, for all j51,2, . . . ,dp , andk51,2, . . . ,dq , which involves thetwisted tensor
product.

The proof of~172! is as follows. Applying~94! or ~95! to the casea5cu
pX and invoking~149!

or ~160! ~as appropriate! gives

(
v51

dp

~ id^M !@pA
X
„Qj

qX~cv
pX!…^S~pvu

p !#5 (
k51

dq

@Qk
qX~cu

pX!# ^ pk j
q . ~176!

However, for anya P A,

~ id^M !@pA
X~a! ^S~pvu

p !#5(
@a#

a@1# ^M @a@2# ^S~pvu
p !#,

the right-hand side of which, on multiplication from the right with 1A^ pui
p , and summing over

u, and using~52! and ~53!, reduces tod ivpA
X(a). The desired result~172! is then obtained by

multiplying both sides of~176! from the right with 1A^ pui
p and summing overu. The line of

proof for ~174! is similar.

G. Products of operators

If Q andQ8 are any two members ofT (A) andpT (A)
X is theordinary right coaction defined

in ~151! and ~152! ~for X5R) and ~162! and ~163! ~for X5L), then

pT ~A!
X ~QQ8!5pT ~A!

X ~Q!pT ~A!
X ~Q8!, ~177!

for X5R andL. This can be re-expressed as

~pT ~A!
X +M̂ !~Q^Q8!5@~M̂^M !+~ id^ s ^ id !+~pT ~A!

X
^ pT ~A!

X !#~Q^Q8!, ~178!

for X5R andL, where the operator multiplication operationM̂ is defined by

M̂ ~Q^Q8!5Q+Q8, ~179!

for allQ,Q8 P T (A).
By contrast, ifp̃T (A)

X is thetwistedright coaction defined in~157! and~158! ~for X5R) and
~167! and ~168! ~for X5L), then

~p̃T ~A!
X +M̂ !~Q^Q8!

5@~M̂^M !+~ id^ id^ s!+~ id^ s ^ id !+~p̃T ~A!
X

^ p̃T ~A!
X !#~Q^Q8!, ~180!

for X5R andL, whose righthand side involves an extra twist factor (id^ id^ s) relative to the
corresponding result~178!.

The proofs of these statements just involve a straightforward application of the identities~8!
to ~19!.

VII. THEOREMS OF THE WIGNER2ECKART TYPE

If p p, p q, andp r are unitary irreducible corepresentations ofA of dimensionsdp , dq , and
dr , respectively,f j

pX and c l
rX are basis functions belonging top p and p r , andQk

qX is an
ordinary irreducible tensor operator belonging top q, then
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@c l
rX ,Qk

qX~f j
pX!#X5 (

a51

nqp
r

S r , a

l
Uq p

k j D ~r uQqXup!a , ~181!

for X5R andL, all j51,2, . . . ,dp , all k51,2, . . . ,dq , and alll 51,2, . . . ,dr . Here thereduced
matrix elements(r uQqXup)a are given by

~r uQqXup!a5(
s51

dp

(
t51

dq

(
u,v51

dr

@cu
rX ,Qt

qX~fs
pX!#XS q p

t s
U r , a

v D
3$@~Fr !21#vu /tr @~F

r !21#%, ~182!

for a51,2, . . . ,nqp
r , and the inner products (,)R and (,)L are defined in~86! and ~87!.

On the other hand, ifQ̃k
qX is a twistedirreducible tensor operator belonging top q, then

@c l
rX ,Q̃k

qX~f j
pX!#X5 (

a51

npq
r

S r , a

l
Up q

j k D ~r uQ̃qXup!a , ~183!

for X5R and L, all j51,2, . . . ,dp , all k51,2, . . . ,dq , and all l 51,2, . . . ,dr , where the
reduced matrix elements (r uQ̃qXup)a are given by

~r uQ̃qXup!a5(
s51

dp

(
t51

dq

(
u,v51

dr

@cu
rX ,Q̃t

qX~fs
pX!#XS p q

s t
U r , a

v D
3$@~Fr !21!vu /tr ~~Fr !21#%, ~184!

for a51,2, . . . ,npq
r .

The results~181! and~183! exhibit the classic Wigner2Eckart theorem behaviour, in that they
show that the j , k, and l dependences of the inner products (c l

rX ,Qk
qXf j

pX)X and
(c l

rX ,Q̃k
qXf j

pX)X are determined only by Clebsch2Gordan coefficients, but it should be noted that
in the general case in whichA is non2commutative, the inner products for theordinary and
twistedirreducible tensor operators involvedifferentsets of Clebsch2Gordan coefficients.

The proof of~181! in the caseX5R is as follows. By~92! and ~172!,

pA
R@c l

rR*Qk
qR~f j

pR!#5(
s51

dp

(
t51

dq

(
u51

dr

@cu
rR*Qt

qR~fs
pR!# ^ ~pul

r*p tk
qps j

p!,

for all j51,2, . . . ,dp , k51,2, . . . ,dq , andl 51,2, . . . ,dr . Then, by~91!,

h@c l
rR*Qk

qR~f j
pR!#5(

s51

dp

(
t51

dq

(
u51

dr

h@cu
rR*Qt

qR~fs
pR!#h~pul

r*p tk
qps j

p!,

for all j51,2, . . . ,dp , k51,2, . . . ,dq , andl 51,2, . . . ,dr . Invoking ~86! and~138! then imme-
diately gives~181! and ~182!.

The proof of~181! in the caseX5L is similar. By ~172!, ~93!, and~98!,

pA
L @Qk

qL~f j
pL!„S2~c l

rL !…* #5(
s51

dp

(
t51

dq

(
u51

dr

@Qt
qL~fs

pL!„S2~cu
rL !…* # ^ ~pul

r*p tk
qps j

p!,

for all j51,2, . . . ,dp , k51,2, . . . ,dq , and l 51,2, . . . ,dr . On applying~91!, ~87!, and ~138!,
the results~181! and ~182! are obtained for this case as well.
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The proof of~183! follows the same lines, but employs~174! and~137! in place of~172! and
~138!.

VIII. PRODUCTS OF IRREDUCIBLE TENSOR OPERATORS

If p p and p q are unitary irreducible corepresentations ofA of dimensionsdp and dq ,
respectively, andQj

pX andQk
qX are ordinary irreducible tensor operators belonging top p and

p q, then

pT ~A!
X ~Qj

pXQk
qX!5(

s51

dp

(
t51

dq

~Qs
pXQt

qX! ^ ~p p�p q!st, jk , ~185!

for X5R andL and for all j51,2, . . . ,dp , andk51,2, . . . ,dq . Here the coactionspT (A)
R and

pT (A)
L are as defined in~151!, ~152!, ~162!, and~163!, and the matrix coefficients of the tensor

productp p�p q are given in~118!. @The proof of ~185! just involves applying~178!, ~154!,
~164!, and~179!.#

Because of the similarity in form between~185! and ~131!, it follows immediately that

Ql
rX,a5(

j51

dp

(
k51

dq S p q

j k
U r , a

l
DQj

pXQk
qX , ~186!

for l 51,2, . . . ,dr and a51,2, . . . ,npq
r . Here Ql

rX,a ~for a51,2, . . . ,npq
r ) are npq

r ordinary
irreducible tensor operators belonging top r that are, in general, all different.

By contrast, ifQ̃j
pX and Q̃k

qX are twisted irreducible tensor operators belonging top p and
p q, then

p̃T ~A!
X ~Q̃j

pXQ̃k
qX!5(

s51

dp

(
t51

dq

~Q̃s
pXQ̃t

qX! ^ ~p p�̃p q!st, jk , ~187!

for X5R and L and for all j51,2, . . . ,dp , and k51,2, . . . ,dq . Here the right coactions
p̃T (A)

R andp̃T (A)
L are as defined in~157!, ~158!, ~167!, and~168!, and the matrix coefficients of

the twistedtensor productp p�̃p q are given in~119!. @This result~187! is proved using~180!,
~159!, ~169!, and~179!.#

The analogue of~186! for the twistedcase is

Q̃l
rX,a5(

j51

dp

(
k51

dq S q p

k j
U r , a

l
D Q̃j

pXQ̃k
qX , ~188!

for l 51,2, . . . ,dr anda51,2, . . . ,nqp
r . HereQ̃l

rX,a ~for a51,2, . . . ,nqp
r ) arenqp

r twisted irre-
ducible tensor operators belonging top r that are, in general, all different.

IX. GENERALIZATION TO QUANTUM HOMOGENEOUS SPACES

A. Quantum homogeneous spaces

The definition and role of quantum homogeneous spaces are best introduced by considering
the situation first in the very well established and familiar context of a compact Lie groupG . The
homogeneous space formalism forG has two essential features. Firstly, it is equivalent to the
theory in whichG acts as a transformation group on an external manifoldM, and, secondly, it is
closely related to the regular representation formalisms. Both of these aspects were reviewed
briefly in Section I.
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With G taken to be a group of transformations that act on an external manifoldM, select
some typical point ofM. LetH be theisotropy subgroupof G , which consists of all transfor-
mations ofG that send this point into itself, and letM0 be theorbit of points ofM that are
obtained by acting on this typical point with every transformation ofG . In the case in whichG is
the rotation group aboutO andM is R3, let r0 of R3 be this typical point. ThenH is the
subgroup of all rotations about the axis fromO to the pointr0, andM0 is the sphere centered on
O that contains the pointr0. With an appropriate choice ofr0, M0 can be parametrized by the
spherical polar coordinatesu andf. Effectively it is only the functional dependence onu and
f that comes into symmetry arguments, the dependence on the radial distancer being immaterial.
That is, only the subspaceM0 is actually relevant in the group theoretical calculations. However,
it is easily demonstrated that there is a one-to-one correspondence between the points ofM0 and
the set ofleft cosetsTH of G with respect toH. Thus the quantities of interest are the subset
B of R(G ) that consists of those members ofR(G ) which areconstanton each left cosetTH.
Then the operators acting on the members ofB that correspond to the operatorsP(T) of ~2! may
be identified with the left regular operatorsL̂(T) of ~A18!, as restricted to act only on B.
Moreover the only part of the integral~5! that is relevant to symmetry arguments is the part
involving u andf, which is an integral overM0, and hence is equivalent to the Haar integral of
~6! applied to the functions ofB. Finally, in the homogeneous space version, the irreducible
tensor operators of~4! become mappings ofB into B.

Henceforth the!-Hopf algebra R(G ) will be denoted byA. Then B becomes a
!-subalgebra ofA and aleft coideal ofA. @The convention adopted here is thatB is said to be
a left coideal ofA if D( f ) P A^B for all f P B, andB is said to be a right coideal ofA if
D( f ) P B^A for all f P B.# It is also trivially true thatB isS2-invariant.

There also exists a parallel version of this theory associated with theright regular represen-
tation ofG , the operatorsR̂(T) of which are defined byR̂(T) f (T8)5 f (T8T) for all f and for all
T,T8 P G . Then, for example, ifG is the group of all rotations in this space aboutO andM is
R3, in place of the transformations of~1! one could define another set in which

~r 8!T5rTR~T!, ~189!

whererT denotes the transpose ofr . Then, for a typical pointr0, there is a one-to-one correspon-
dence between the points of the orbitM0 of r0 and the set ofright cosetsHT of G with respect
to the corresponding isotropy subgroupH of r0. In this case the quantity of interest is the set
B of representative functions ofG which are constant on eachright cosetHT. ThenB is a
!-subalgebra ofA and aright coideal ofA, and the analogues of operatorsP(T) of ~2! are the
R̂(T) restricted toB. It is again trivially true thatB is S2-invariant.

There are various ways in which these ideas can be generalized to produce quantum homo-
geneous spaces,23–26,31–36but the present development follows the work of Dijkhuizen and
Koornwinder.23–26 In this formulation one works with a!- Hopf algebraA ~which is in general
both non-commutative and non-cocommutative!, and with a!-subalgebraB ofA that is either a
right coideal ofA or is a left coideal ofA. ~The explicit discussion in Refs. 23–26 is actually
given for the former situation, but clearly the formulation can also be re-expressed for the latter
situation.! Dijkhuizen and Koornwinder23–26 have discussed various other algebraic objects that
are associated withB, and have shown that in the case of the quantum SU~2! group there exists
a one-parameter family of such spaces~called ‘‘quantum 2-spheres’’! which are mutually non-
isomorphic, and they have related these to the work of Podles´.31

For the case in whichB is a left coideal ofA it will be assumed, for reasons that will become
clear in due course, thatB is S2-invariant. However, whenB is a right coideal ofA there is no
need to make this assumption when investigating the irreducible tensor operators. Whether this
assumption is needed in this case for other purposes is a matter that has been discussed by
Dijkhuizen and Koornwinder.23,24
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B. The restricted right and left regular coactions

In the special case in whichA is the dual of a group algebra, the operations ofA corre-
sponding to the right and left regular actions of the group algebra are the right and left regular
coactionsofA. Consequently the restrictions of right and left regular actions of the group algebra
to B correspond to the right and left regular coactions ofA restricted toB. These are not only
the relevant operations of the classical homogeneous space formulation but they are also the basic
operations of thequantumhomogeneous space formulation.

Explicitly, the right regular coactionpA
R and the left regular coactionpA

L for a general
compact quantum group algebraA are defined@in ~43! and ~81!# by

pA
R5D, pA

L5s+~S^ id !+D.

Both areright coactions ofA with carrier spaceA. The correspondingrestricted right regular
coactionpB

R and restricted left regular coactionpB
L may then be defined by

pB
R5pAuB

R 5D uB , pB
L5pAuB

L 5s+~S^ id !+D uB . ~190!

In the context of the restricted right regular coaction it is being assumed thatB is a right coideal
of A, whereas in the restricted left regular coaction contextB is assumed to be a left coideal of
A. Because of the extra twist factors in the definition ofpB

L , it follows that both pB
R and

pB
L are right coactions ofA with carrier spaceB. ~The role ofpB

R as a transitive!-coaction
corresponding to the transitive action of the quantum group associated withA on the quantum
homogeneous space associated withB has been described by Dijkhuizen and Koornwinder.23,24!

The restriction of the Haar functionalh of A to B provides a positive definite integral for
B with the invariance properties

@MC,A+~h^ id !+pB
X#~b!5@MA,C+~ id^h!+pB

X#~b!5h~b! 1A , ~191!

for all b P B and for bothX5R andX5L @cf. ~88! and~89!#.
The restricted right and left regular corepresentations are bothunitary, provided that the inner

products on the carrier spaceB are chosen in the following way.
1. for the restrictedright regular corepresentation take

^b,b8&B5~b,b8!R5h@M ~b!
^b8!#, for all b,b8PB; ~192!

2. for the restrictedleft regular corepresentation take

^b,b8&B5~b,b8!L5h$M @b^ „S2~b8!…!#% for all b,b8PB. ~193!

It should be noted that (S2(b8))! P B if B isS2-invariant.@The proofs of these unitary properties
are essentially the same as for the corresponding results~86! and~87! for the unrestricted regular
coactions.#

The effects of the restricted right and left regular coactions on products are also essentially the
same as for the unrestricted coactions@cf. ~92! and ~93!#.

C. Basis functions for the restricted right and left regular coactions

Suppose thatp jk
p are the matrix coefficients of a corepresentationp p of A of finite dimen-

siondp . Then thebasis functionsc j
pR of p p with respect to the restricted right regular coaction

may be defined to be a set ofdp elements ofB that have the property that

pB
R~c j

pR!5 (
k51

dp

ck
pR

^ pk j
p , ~194!
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for all j51,2, . . . ,dp . Similarly thebasis functionsc j
pL of p p with respect to the restricted left

regular coactionmay be defined as a set ofdp elements ofB that have the property that

pB
L~c j

pL!5 (
k51

dp

ck
pL

^ pk j
p , ~195!

for all j51,2, . . . ,dp . In both cases the matrix coefficientspk j
p are elements ofA, and need not

be members ofB.
By contrast with the unrestricted coaction situation, in neither case is there any guarantee that

for a given corepresentationp p there actually exist basis functions for restricted coactions. For
example, in the restricted right regular coaction case, a set of basis functions is provided~for any
fixed choice ofl 51,2, . . . ) by

c j
pR5p l j

p , ~196!

for all j51,2, . . . ,dp only if p l j
p is an element ofB for some j51,2, . . . ,dp . @Then ~I.43! and

the fact thatB is assumed in this context to be a right coideal ofA imply thatp l j
p P B for all

j51,2, . . . ,dp .# Similarly, in the restricted left regular coaction case, an example is provided~for
any fixed choice ofl 51,2, . . . ) by

c j
pL5S22~p j l

p!!, ~197!

for all j51,2, . . . ,dp only if p j l
p is an element ofB for some j51,2, . . . ,dp . @Then ~I.43! and

the fact thatB is assumed in this context to be aS2-invariant left coideal and!-subalgebra of
A imply thatS22(p j l

p!) P B for all j51,2, . . . ,dp .#
One very useful result, proved in the same way as the corresponding unrestricted identity~98!,

is that if ck
qL exists then

pB
L@„S2~ck

qL!…!#5(
t51

dp

„S2~c t
qL!…! ^ p tk

q!, ~198!

for all k51,2, . . . ,dp .
The orthogonality properties of basis functions are the essentially the same as for those for the

unrestricted case that have been given in~99!, ~100!, and~103!. ~The only qualification is that now
it has to be assumed that the relevant matrix corepresentation coefficients are members ofB.!

If the basis functionsck
qX andf j

pX are members ofB ~so that they are basis functions for the
restricted coactions!, then their productsM (ck

qX
^ f j

pX) are also members ofB. Consequently the
analysis of Section V D goes through without modification, except that all basis functions in-
volved ~including theu l

r ,aX) are inB and one can always replace the unrestricted coactions
pA

X by the restricted coactionspB
X The rest of the discussion of Section V on tensor products and

Clebsch–Gordan coefficients still applies in its entirety.

D. The irreducible tensor operators in the restricted corepresentation formalisms

1. Introduction

Let p q be a unitary irreducible right coaction ofA of dimensiondq with matrix coefficients
p jk

q . It will be shown that within both the restricted right and the restricted left regular corepre-
sentation formalisms there exist two types of irreducible tensor operators that both belong to this
corepresentationp q. These will be denoted byQjB

qX andQ̃jB
qX ~for j51,2, . . . ,dq and forX5R or

L), and will be calledordinary and twisted irreducible tensor operators associated withB, re-
spectively. These operators are members ofL(B), which is the set of linear operators that map
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B into B. Naturally the two types of irreducible tensor operators coincide in the special case in
whichA is commutative. As much of the analysis is the same as for the unrestricted case, all the
proofs will be omitted.

2. Definition of the ordinary irreducible tensor operators Q jB
qX and twisted irreducible

tensor operators Q˜
jB
qX

The ordinary irreducible tensor operators QjB
qX belonging to the unitary irreducible right

coactionp q of A aredefined~for X5L,R) to be members ofL(B) that satisfy the condition

@~ id^M !+~pB
X

^ id !+~QjB
qX

^S!+pB
X#~b!5 (

k51

dq

QkB
qX ~b! ^ pk j

q , ~199!

for all b P B and all j51,2, . . . ,dq .
The twisted irreducible tensor operators Q˜ jB

qX belonging to the unitary irreducible right coac-
tion p q of A aredefined~for X5L,R) to be members ofL(B) that satisfy the condition

@~ id^M !+~ id^ s!+~pB
X

^ id !+~Q̃jB
qX

^S21!+pB
X#~b!5 (

k51

dq

Q̃kB
qX ~b! ^ pk j

q , ~200!

for all b P B and all j51,2, . . . ,dq . @This definition~200! differs from the corresponding defi-
nition ~199! only in the replacement ofM byM + s and SbyS21 ~neither of which have any effect
in the special case in whichA is commutative!.#

3. Properties of the irreducible tensor operators associated with quantum
homogeneous spaces

~1! Suppose thatQ is the identity operator idof L(B) @so thatQ(b)5b for all b P B]. Then
id is both anordinary and a twisted irreducible tensor operator for the one-dimensional
identity corepresentation ofA ~whose sole matrix coefficient is 1A) in the restrictedright
regular corepresentation formalism, as well as being a both anordinary and atwistedirreduc-
ible tensor operator for this identity corepresentation in the restrictedleft regular corepresen-
tation formalism.

~2! Suppose now thatc j
qR andc j

qL are sets of basis functions forp q, as defined in~194! and
~195!, respectively~so that they are members ofB), and suppose that the operatorsQjB

qX and
Q̃jB
qX aredefinedby

QjB
qR~b! 5 M ~c j

qR
^b!,

Q̃jB
qR~b! 5 M ~b^ c j

qR!,

QjB
qL ~b! 5 M ~b^ c j

qL!,

Q̃jB
qL ~b! 5 M ~c j

qL
^b!,

~201!

for all b P B. ThenQjB
qR , Q̃jB

qR , QjB
qL , and Q̃jB

qL are irreducible tensor operators belonging to
p q.

E. Wigner 2Eckart type theorems associated with quantum homogeneous spaces

If p p, p q, andp r are unitary irreducible corepresentations ofA of dimensionsdp , dq , and
dr , respectively,f j

pX andc l
rX are basis functions belongingp p andp r ~with f j

pX andc l
rX being

assumed here to be members ofB), andQkB
qX is anordinary irreducible tensor operator belonging

to p q ~with respect to the relevant restricted regular coaction!, then
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@c l
rX ,QkB

qX ~f j
pX!#X5 (

a51

nqp
r

S r , a

l
Uq p

k j D ~r uQB
qXup!a , ~202!

for X5R andL, all j51,2, . . . ,dp , all k51,2, . . . ,dq , and alll 51,2, . . . ,dr . Here thereduced
matrix elements(r uQB

qXup)a are given by

~r uQB
qXup!a5(

s51

dp

(
t51

dq

(
u,v51

dr

@cu
rX ,QtB

qX~fs
pX!#XS q p

t s
U r , a

v D
3$@~Fr !21#vu /tr @~F

r !21#%, ~203!

for a51,2, . . . ,nqp
r , the inner products (,)R and (,)L are defined in~192! and ~193!, andFr is

defined in~66!.
On the other hand, ifQ̃kB

qX is a twisted irreducible tensor operator belonging top q ~with
respect to the relevant restricted regular coaction!, then

@c l
rX ,Q̃kB

qX ~f j
pX!#X5 (

a51

npq
r

S r , a

l
Up q

j k D ~r uQ̃B
qXup!a , ~204!

for X5R and L, all j51,2, . . . ,dp , all k51,2, . . . ,dq , and all l 51,2, . . . ,dr , where the
reduced matrix elements (r uQ̃B

qXup)a are given by

~r uQ̃B
qXup!a5(

s51

dp

(
t51

dq

(
u,v51

dr

@cu
rX ,Q̃tB

qX~fs
pX!#XS p q

s t
U r , a

v D
3$@~Fr !21#vu /tr @~F

r !21#%, ~205!

for a51,2, . . . ,npq
r .

These results~202! and~204! demonstrate that again thej , k, andl dependences of the inner
products (c l

rX ,QkB
qXf j

pX)X and (c l
rX ,Q̃kB

qXf j
pX)X are determined only by Clebsch2Gordan coef-

ficients, and so they have the same form as in the classic Wigner2Eckart theorem.~However, it
should be noted that in the general case in whichA is non2commutative, the inner products for
the ordinary and twisted irreducible tensor operators involvedifferent sets of Clebsch2Gordan
coefficients.!

As the proofs of~202! and~204! follow the same lines as in the unrestricted case considered
in Section VII, they will be omitted here.

F. Products of irreducible tensor operators associated with quantum homogeneous
spaces

The arguments of Section VIII can be applied~with A replaced byB) to show that

Ql B
rX,a5(

j51

dp

(
k51

dq S p q

j k
U r , a

l
DQjB

pXQkB
qX , ~206!

for l 51,2, . . . ,dr , and a51,2, . . . ,npq
r . HereQl B

rX,a ~for a51,2, . . . ,npq
r ) are npq

r ordinary
irreducible tensor operators belonging top r that are, in general, all different. Moreover,

Q̃l B
rX,a5(

j51

dp

(
k51

dq S q p

k j
U r , a

l
D Q̃jB

pXQ̃kB
qX , ~207!
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for l 51,2, . . . ,dr , and a51,2, . . . ,nqp
r , where Q̃l B

rX,a ~for a51,2, . . . ,nqp
r ) are nqp

r twisted
irreducible tensor operators belonging top r that are, in general, all different.
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APPENDIX A: INTRODUCTION

The purpose of this appendix is tomotivatethe definitions that are given in the main body of
the paper for the irreducible tensor operators and the projection operators. This will be done by
considering the simple special case in which the Hopf algebraA is the set of functions defined on
a finite groupG of orderg, so that the dualA8 ofA is the group algebra ofG . In this situation
bothA andA8 are of finite dimensiong. Of course, asA is commutative in this special case, the
resulting expressions are to some extent ambiguous, in that in this special caseM is indistinguish-
able fromM + s and S is indistinguishable fromS21. The demonstration of the correctness,
consistency, and usefulness of the definitions that are actually employed for thegeneralcase are
the subject matter of the self-contained arguments of the main body of this paper.

To proceed with this motivation, it is necessary to start with some well- known facts concern-
ing the relationship ofA andA8. It is easily shown thatA8 is also a Hopf algebra, whose
multiplication operationMA8 , comultiplication operationDA8 , and antipodeSA8 are related to
those ofA by

^MA8~a8^b8!,a&5^~a8^b8!,D~a!&, ~A1!

for all a P A and alla8,b8 P A8,

^DA8~a8!,~a^b!&5^a8,M ~a^b!&, ~A2!

for all a,b P A and alla8 P A8, and

^SA8~a8!,a&5^a8,S~a!&, ~A3!

for all a P A and alla8 P A8.
Now suppose thatpV is a right coaction ofA with carrier spaceV. Then there exists a

correspondingleft actionpV8 ofA8 with thesamecarrier spaceV. This is a linear mapping from
A8^V to V such that

pV8 +~ id^ pV8 !5pV8 +~MA8^ id ! ~A4!

and

pV8 +~uA8^ id !5MC,V , ~A5!

whereuA8 is the unit operator ofA8, andMC,V(z^v)5zv for all v P V and allz P C. The
relationship betweenpV andpV8 can be expressed as

pV8 ~a8^v !5(
@v#

v @1#^a8,v @2#&, ~A6!

for all a8 P A8 and allv P V, where the notation of~48! has been employed, or equivalently as
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pV8 ~a8^v !5@MV,C+~ id^ev !+~s ^ id !+~ id^ pV!#~a8^v !, ~A7!

for all a8 P A8 and allv P V, where the evaluation mapev of ~41! has been used. The inverse of
these is

pV~v !5(
j

pV8 ~aj ^v ! ^aj , ~A8!

for all v P V, where the basis ofA and the dual basis ofA8 appear, and are assumed to be such
that ~42! holds. If V is of dimensiond with basis elementsv1 ,v2 , . . . ,vd , the matrix elements
p 8(a8) jk of the representation are such that

pV8 ~a8^v j !5 (
k51

d

p8~a8!k jvk , ~A9!

for all a8 P A8 and j51,2, . . . ,d. It then follows from~A8! that these representation matrix
elementsp8(a8) jk are related to the corepresentation matrix coefficients ofp jk

V of ~45! by

p8~a8! jk5^a8,p jk
V&, ~A10!

for all a8 P A8 andj ,k51,2, . . . ,d.
The right regular action Rof G is defined by

@R~x^ f !#~y!5 f ~yx!, ~A11!

for all elementsx,y P G and all functionsf defined onG , whereyx is evaluated using the group
multiplication operation ofG . This definition ~A11! can be immediately extended to allx,y
P A8, with f being any element ofA. It is then easy to verify thatR is a left action ofA8 with
carrier spaceA, and, using~A6! ~or its equivalents!, that it is the left action that corresponds to
the right regular coactionpA

R of A that was defined in~80!. Then, by~A7!,

R~x^ f !5@MA,C+~ id^ev !+~s ^ id !+~ id^ D!#~x^ f !, ~A12!

for all x P A8 and allf P A, and also, by~80! and~A6!,

^y,R~x^ f !&5^y^x,D~ f !&5^y^x,pA
R~ f !&, ~A13!

for all x,y P A8 and all f P A. The content of~A11! can usefully be re-expressed as

R̂~x! f ~y!5 f ~yx!, ~A14!

by introducing an operatorR̂(x) for eachx P A8.
Similarly, the left regular action Lof G is defined by

@L~x^ f !#~y!5 f ~x21y!, ~A15!

for all elementsx,y P G and all functionsf defined onG , which immediately extends to all
x,y P A8 and all f P A. ThenL is the left action ofA8 that corresponds to the left regular
coactionpA

L of A that was defined in~81!. Thus, by~A7!,

L~x^ f !5@MA,C+~ id^ev !+~s ^ id !+~ id^ pA
L !#~x^ f !, ~A16!

for all x P A8 and allf P A, and also, by~81! and~A6!,
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^y,L~x^ f !&5^y^x,@s+~S^ id !+D#~ f !&5^y^x,pA
L ~ f !&, ~A17!

for all x,y P A8 and allf P A. Moreover,~A15! can be re-written as

L̂~x! f ~y!5 f @SA8~x!y#, ~A18!

by introducing an operatorL̂(x) for eachx P A8.

APPENDIX B: IRREDUCIBLE TENSOR OPERATORS

1. Outline of argument

The first stage is to recall the definition of irreducible tensor operators in the group theoretical
context. The next stage is to cast these considerations into the language of Hopf algebras, and the
final stage is to put them into a form in which they involve quantities belongingonly toA. The
argument will be given first for theright regular situation, and then for theleft regular situation. In
each case thedefinitionsof irreducible tensor operators will be deduced first, and motivation for
the right coactions that appear in the consistency arguments will follow.~The diagrammatic
method that is described, for example, by Majid,37 was employed to deduce the proofs that follow,
but for typographical convenience these proofs have been transcribed here into the usual purely
symbolic form.!

2. Irreducible tensor operators in the group theoretical right regular representation
formalism

a. Derivations of the conditions for the Q j
qR and Q̃ j

qR

Let Gq be adq dimensional representation ofG . Then the irreducible tensor operatorsQj
qR

may be defined to act on functions defined onG in such a way that

R̂~x!Qj
qRR̂~x21!5 (

k51

dq

Gk j
q ~x!Qk

qR , ~B1!

for all x P G and j51,2,. . . ,dq , or, more explicitly, such that

@R̂~x!Qj
qRR̂~x21!#@ f ~y!#5 (

k51

dq

Gk j
q ~x!@Qk

qR~ f !#~y!, ~B2!

for all x,y P G , for all functionsf defined onG , and j51,2,. . . ,dq . Now definep̂L(A)
R8 (x) by

p̂L~A!
R8 ~x!~Q!5R̂~x!QR̂~x21!, ~B3!

for all x P G and for all linear operatorsQ that act on functions defined onG , so that~B1!
becomes

p̂L~A!
R8 ~x!~Qj

qR!5 (
k51

dq

Gk j
q ~x!Qk

qR , ~B4!

for all x P G and j51,2,. . . ,dq . As discussed previously in Section I~in only a slightly different
context!, the consistency of the definition~B4! is consequence of the assumption thatGq is a
representation ofG and the fact that

p̂L~A!
R8 ~xy!5p̂L~A!

R8 ~x!p̂L~A!
R8 ~y!, ~B5!

for all x,y P G .
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As

DA8~x!5x^x, SA8~x!5x21, ~B6!

for all x P G , it follows from ~A14! and~A11! that

~p̂L~A!
R8 ~x!~Qj

qR!! f ~y!5@ev+~ id^R!+~ id^ id^Qj
qR!+~ id^ id^R!

+~ id^ id^SA8^ id !+~ id^ DA8^ id !#~y^x^ f !, ~B7!

which is now well-defined for allx,y P A8, for all f P A, andQj
qR P L(A). Thus, by~A12!,

@p̂L~A!
R8 ~x!~Qj

qR!# f ~y!5@ev+~ id^MA,C!+~ id^ id^ev !+~ id^ s ^ id !+~ id^ id^ D!

+~ id^ id^Qj
qR!+~ id^ id^MA,C!+~ id^ id^ id^ev !+~ id^ id^ s ^ id !

+~ id^ id^ id^ D!

+~ id^ id^SA8^ id !+~ id^ DA8^ id !#~y^x^ f !, ~B8!

which reduces, by~A3!, to

@p̂L~A!
R8 ~x!~Qj

qR!# f ~y!5@MC+~ev^MC!+~ id^ s ^ id !+~ id^ev^ id^ id !

+$ id^ id^ ~s+D+Qj
qR! ^ id%+~ id^ id^ s!

+~ id^ id^ev^ id !+~ id^ id^ id^S^ id !+~ id^ DA8^ s!

+~ id^ id^ D!#~y^x^ f !, ~B9!

However,~A2! implies that

~ev+~ id^M !+~ id^ s!!~x^a^b!5~MC+~ev^ev !+~DA8^ id^ id# !~x^a^b!, ~B10!

for all a,b P A and allx P A8, so~B9! reduces to

~p̂L~A!
R8 ~x!~Qj

qR!! f ~y!5@MC+~ev^ev !+~ id^ s ^M !+~ id^ id^ D ^ id !

+~ id^ id^Qj
qR

^S!+~ id^ id^ D!#~y^x^ f !, ~B11!

and hence

~p̂L~A!
R8 ~x!~Qj

qR!! f ~y!5@MC+~ev^ev !+~ id^ s ^ id !+~ id^ id^ id^M !

+~ id^ id^ D ^ id !+~ id^ id^Qj
qR

^S!+~ id^ id^ D!+~ id^ id^MA,C!#

3~y^x^ f ^z!, ~B12!

for all x,y P A8, all f P A,Qj
qRP L(A), and allzP C.

Turning to the right-hand side of~B4!, by ~A10!,

(
k51

dq

Gk j
q ~x!~Qk

qR~ f !!~y!5 (
k51

dq

^x,pk j
q&^y,Qk

qR&,

for all x,y P A8, andj51,2, . . . ,dq , and hence
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(
k51

dq

Gk j
q ~x!~Qk

qR~ f !!~y!5 (
k51

dq

@MC+~ev^ev !+~ id^ s ^ id !

+~ id^ id^Qk
qR

^ pk j
q!+~ id^ id^ id^u!#~y^x^ f ^z!, ~B13!

for all x,y P A8, all f P A,Qk
qRP L(A), and allzP C.

Now ~B4! implies that the expressions on the right-hand sides of~B12! and ~B13! may be
equated. As the first three factors of each, namelyMC + (ev^ev) + ( id^ s ^ id), are the same, the
equality holds with these removed. However, on both sides of this new equality, the factory^x is
only acted on by a succession of identity operators of the formid^ id. Consequently bothy^x
and these identity operators can be removed, leaving the result that~B1! is equivalent to the
condition

@~ id^M !+~D ^ id !+~Qj
qR

^S!+D+MA,C#~ f ^z!

5 (
k51

dq

@~Qk
qR

^ pk j
q!+~ id^u!#~ f ^z!, ~B14!

for all f P A, all j51,2, . . . ,dq , and allz P C. This can be rewritten as

~~ id^M !+~D ^ id !+~Qj
qR

^S!+D!~ f !5 (
k51

dq

Qk
qR~ f ! ^ pk j

q, ~B15!

for all f P A and all j51,2, . . . ,dq , which is the condition~148!.
BecauseM is indistinguishable fromM + s andS is indistinguishable fromS21 in the situation

being considered here, the above arguments would equally well apply with each of the following
3 substitutions.

~1! ReplaceM byM + s, but leaveS unchanged;
~2! leaveM unchanged, but replaceS by S21;
~3! replaceM byM + s andreplaceS by S21.

However, in the general case in whichA is non- commutative, the possibilities~1! and ~2! are
excludedbecause with them the identity operator would not be an irreducible tensor operator
belonging to the identity corepresentation. Of course, with the substitution~3!, ~148! changes into
~155!, which is the defining condition for atwistedirreducible tensor operatorQ̃j

qR .

b. Derivations of the right coactions pL(A)
R and p̃L(A)

R

First recast~B3! as

pL~A!
R8 ~x^Q!5R̂~x!QR̂~x21!, ~B16!

for all x P G and for all linear operatorsQ that act on functions defined onG , wherepL(A)
R8 is a

mapping fromA8^L(A) into L(A). In Hopf algebra language, this can be re-expressed as

pL~A!
R8 ~x^Q!5@M̂ +~ id^ M̂ !+~R̂^ id^ R̂!+~ id^ s!+~ id^SA8^ id !+~DA8^ id !#~x^Q!,

~B17!

where M̂ is the operator multiplication operator defined in~179!. It is then easily shown that
pL(A)

R8 is a left action ofA8 with carrier spaceL(A).
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This expression forpL(A)
R8 can be re- expressed in terms of the structure constants introduced

in Section II with respect to the basisa1 ,a2 , . . . of A, and the basisa1,a2, . . . of its dual
A8. First define the operatorsP j

k by

P j
k~a!5^ak,a&aj ~B18!

~for all a P A and all j ,k51,2, . . . ), andthen define the matrix elementsqj
k of Q by

qj
k5^ak,Q~aj !& ~B19!

~for all j ,k51,2, . . . ).Clearly the operatorsP j
k are members ofL(A), and any operatorQ of

L(A) can be expressed asQ5( j ,kQk
j
P j

k . Then, by~A13! and ~B18!,

R̂~am!5 (
j ,k51

g

mk
jm
P j

k , ~B20!

for all m51,2, . . . ,g. On substituting~B20! into ~B17!, and using~A2! and~A3!, it follows that

pL~A!
R8 ~am^Q!5 (

i , j ,k,l ,u,v,w51

g

~muv
m sw

vm i
jumk

l wql
i !P j

k , ~B21!

for all Q P L(A) and allm51,2, . . . ,g.
Using ~A8!, the corresponding right coactionpL(A)

R of A with the same carrier space
L(A) is given by

pL~A!
R ~Q!5 (

m51

g

pL~A!
R8 ~am^Q! ^am , ~B22!

for allQ P L(A). Thus

pL~A!
R ~Q!5 (

i , j ,k,l ,m,u,v,w51

g

~muv
m sw

vm i
jumk

l wql
i !~P j

k
^am!,

for all Q P L(A). The final stage is to re-express this in a basis free form. This can be done by
writing

pL~A!
R ~Q!5(

@Q#
Q@1# ^Q@2# ,

whereQ@1# P L(A) andQ@1# P A are such that

(
@Q#

Q@1#~a! ^Q@2#5@~ id^M !+~D ^ id !+~Q^S!+D#~a!,

for allQ P L(A) and alla P A.
The right coactionp̃L(A)

R is obtained frompL(A)
R by replacingM byM + s and replacingSby

S21. The right coactionspT (A)
R and p̃T (A)

R of Sections VI B 1 and VI B 2 have essentially the
same definitions aspL(A)

R andp̃L(A)
R , except that their domains are restricted to the appropriate

subspacesT (A).
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3. Irreducible tensor operators in the group theoretical left regular representation
formalism

a. Derivations of the conditions for the Q j
qL and Q̃ j

qL

The argument for theleft regular formalism follows exactly the same line as that for the right
regular case given above up to~B7!, the only differences being that the operatorsR̂(x) must be
replaced by the operatorsL̂(x), the left actionR must be replaced by the left actionL, and the
label R must be replaced byL on the irreducible tensor operatorsQj

qR on the left action
pL(A)

R8 , and on the corresponding right coactionpL(A)
R . Thus, by~A16!, the analogue of~B8! is

~p̂L~A!
L8 ~x!~Qj

qL!! f ~y!~5L̂~x!Qj
qLL̂~x21!!

5@ev+~ id^MA,C!+~ id^ id^ev !

+~ id^ s ^ id !+~ id^ id^ s!+~ id^ id^S^ id !

+~ id^ id^ D!+~ id^ id^Qj
qL!+~ id^ id^MA,C!

+~ id^ id^ id^ev !+~ id^ id^ s ^ id !+~ id^ id^ id^ s!

+~ id^ id^ id^S^ id !+~ id^ id^ id^ D!

+~ id^ id^SA8^ id !+~ id^ DA8^ id !#~y^x^ f !, ~B23!

which reduces, by~A3!, ~B10!, and~16! to

~p̂L~A!
L8 ~x!~Qj

qL!! f ~y!5@MC+~ev^ev !+~ id^ s ^ id !+~ id^ id^ s!+~ id^ id^S^ id !

+~ id^ id^M^ id !

+~ id^ id^ id^ D!+~ id^ id^S^Qj
qL!

+~ id^ id^ D!+~ id^ id^MA,C!#~y^x^ f ^z!, ~B24!

for all x,y P A8, all f P A,Qj
qL P L(A), and allzP C.

The right-hand side of the irreducible tensor operator definition that corresponds to this is

(
k51

dq

Gk j
q ~x!~Qk

qL~ f !!~y!5 (
k51

dq

@MC+~ev^ev !+~ id^ s ^ id !+~ id^ id^Qk
qL

^ pk j
q!

+~ id^ id^ id^u!#~y^x^ f ^z!, ~B25!

for all x,y P A8, all f P A,Qk
qL P L(A), and allzP C.

Equating the right-hand sides~B24! and~B25!, removing the common first three factors
@MC + (ev^ev) + ( id^ s ^ id)# of each, and removing the factory^x and the succession of iden-
tity operators of the formid^ id that act ony^x, it follows that the defining condition becomes

@s+~S^ id !+~M^ id !+~ id^ D!+~S^Qj
qL!+D+MA,C#~ f ^z!

5 (
k51

dq

@~Qk
qL

^ pk j
q!+~ id^u!#~ f ^z!, ~B26!

for all f P A, all j51,2, . . . ,dq , and allz P C. This can be rewritten as

@s+~S^ id !+~M^ id !+~ id^ D!+~S^Qj
qL!+D#~ f !5 (

k51

dq

Qk
qL~ f ! ^ pk j

q , ~B27!
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for all f P A and all j51,2, . . . ,dq , which is the condition~161!.
BecauseDA8 is indistinguishable froms + DA8 andSA8 is indistinguishable fromSA8

21 in the
situation being considered here, the above arguments would equally well apply to~B23! with each
of the following 3 substitutions.

~1! ReplaceDA8 by s + DA8, but leaveSA8 unchanged;
~2! leaveDA8 unchanged, but replaceSA8 by SA8

21;
~3! ~c! replaceDA8 by s + DA8 and replaceSA8 by SA8

21.

In each case theS factor in ~B23! should be left unchanged because it comes from the definition
~81! of the left regular~right! coaction.@ReplacingS by S21 in ~81! would give another right
coaction, but the original one is merely the double contragredient of this.# In the general case in
whichA is non-commutative, the possibilities~1! and~2! are againexcludedbecause with them
the identity operator would not be an irreducible tensor operator belonging to the identity corep-
resentation. However, with the substitution~3!, the analogue of~161! is ~166!, which is the
defining condition for atwistedirreducible tensor operatorQ̃j

qL .

b. Derivations of the right coactions pL(A)
L and p̃L(A)

L

The left regular analogues of~B16! and ~B17! are

pL~A!
L8 ~x^Q!5L̂~x!QL̂~x21!

and

pL~A!
L8 ~x^Q!5@M̂ +~ id^ M̂ !+~ L̂^ id^ L̂ !+~ id^ s!+~ id^SA8^ id !+~DA8^ id !#~x^Q!,

~B28!

wherepL(A)
L8 is a left action ofA8 with carrier spaceL(A). However, by~A17! and~B18!, and

with the basis ofA8 defined above,

L̂~am!5 (
j ,k,l 51

g

mk
l j sl

m
P j

k , ~B29!

for all m51,2, . . . ,g. On substituting~B29! into ~B28!, and using~A2! and~A3!, it follows that

pL~A!
L8 ~am^Q!5 (

i , j ,k,l ,n,u,v,w51

g

~mwu
v sv

msn
wm i

u jmk
nl ql

i !P j
k ,

for all Q P L(A) and allm51,2, . . . ,g.
Then, using~A8!, the corresponding right coactionpL(A)

L of A with the same carrier space
L(A) is given by

pL~A!
L ~Q!5 (

m51

g

pL~A!
L8 ~am^Q! ^am ,

for allQ P L(A). Thus

pL~A!
L ~Q!5 (

i , j ,k,l ,m,n,u,v,w51

g

~mwu
v sv

msn
wm i

u jmk
nl ql

i !~P j
k

^am!,
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for all Q P L(A). The final stage is to re-express this in a basis free form, which can be done by
writing

pL~A!
L ~Q!5(

@Q#
Q@1# ^Q@2# ,

whereQ@1# P L(A) andQ@1# P A are such that

(
@Q#

Q@1#~a! ^Q@2#5@s+~S^ id !+~M^ id !+~ id^ D!+~S^Q!+D#~a!,

for allQ P L(A) and alla P A.
For the corresponding twisted coactionp̃L(A)

L the argument is similar. With the substitutions
DA8→s + DA8 andSA8→S

A8
21 , ~B28! gives

p̃L~A!
L8 ~x^Q!5@M̂ +~ id^ M̂ !+~ L̂^ id^ L̂ !+~ id^ s!+~ id^S

A8
21

^ id !+„~s ^ DA8! ^ id…#~x^Q!,
~B30!

wherep̃L(A)
L8 is another left action ofA8 with carrier spaceL(A). By ~B29! and~29!, this gives

p̃L~A!
L8 ~am^Q!5 (

i , j ,k,l ,n,u,v51

g

~mnv
m su

vm i
u jmk

nl ql
i !P j

k ,

for all Q P L(A) and allm51,2, . . . ,g. Using~A8!, the corresponding right coactionp̃L(A)
L of

A with the same carrier spaceL(A) is given by

p̃L~A!
L ~Q!5 (

m51

g

p̃L~A!
L8 ~am^Q! ^am ,

for allQ P L(A). Thus

p̃L~A!
L ~Q!5 (

i , j ,k,l ,m,n,u,v51

g

~mnv
m su

vm i
u jmk

nl ql
i !~P j

k
^am!,

for all Q P L(A). This can be re-expressed in a basis free form by writing

p̃L~A!
L ~Q!5(

@Q#
Q@1# ^Q@2# ,

whereQ@1# P L(A) andQ@1# P A are such that

(
@Q#

Q@1#~a! ^Q@2#5@~ id^M !+~s ^S!+~ id^ s!+~ id^ D!+~ id^Q!+D#~a!,

for allQ P L(A) and alla P A.
The right coactionspT (A)

L and p̃T (A)
L of Sections VI C 1 and VI C 2 have essentially the

same definitions aspL(A)
L andp̃L(A)

L , except that their domains are restricted to the appropriate
subspacesT (A).
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APPENDIX C: PROJECTION OPERATORS

The right regular formalism will be considered first. IfGp is a unitary irreducible representa-
tion of dimensiondp of a finite groupG of orderg, the projection operators in the right regular
formalism are defined by

Pmn
pR5S dpg D (

xPG

Gp~x!mn* R̂~x!,

for all m,n51,2, . . . ,dp . This can be re-written as

Pmn
pR5S dpg D (

xPG

Gp~x21!nm* R̂~x!,

and hence, by~A10!, ~A14!, ~A11!, and~B6!,

^y,Pmn
pRf &5S dpg D (

xPG
^SA8~x!,pnm

p &^y,R~x^ f !&,

for all m,n51,2, . . . ,dp . Here thepnm
p are the matrix coefficients of the corepresentationp p of

A that is dual toGp. Then, by~A13!, for all x,y P A8 and all f P A,

^y,Pmn
pRf &5S dpg D (

xPG
^@~ id^ id^SA8!+~ id^ DA8!#~y^x!,~pA

R~ f ! ^ pnm
p !&,

and so, by~52! and ~72!,

^y,Pmn
pRf &5S dpg D (

xPG
^~y^x!,@~ id^M !+~ id^ id^S!#~pA

R~ f ! ^ pnm
p !&. ~C1!

But the Haar functional is such that

h~a!5S 1gD (
xPG

^x,a&,

for all a P A, so~C1!, ~83!, and~52! imply that

Pmn
pR f5dp(

@ f #
f @1#
R h@M ~ f @2#

R
^ pmn

p* !#. ~C2!

As multiplication is commutative in this special case, this could equally well be written as

Pmn
pR f5dp(

@ f #
f @1#
R h@M ~pmn

p* ^ f @2#
R !#, ~C3!

for all m,n51,2, . . . ,dp . In the general case the two formulae~C2! and~C3! are different, but the
arguments given in Section IV B show that~C3! @i.e., ~107!# is actually the correct choice.

The argument in theleft regular formalism follows exactly the same line, and can be obtained
by merely replacing the labelR by L at each stage.
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Properties of metrics and pairs consisting of left and right connections are studied
on the bimodules of differential 1-forms. Those bimodules are obtained from the
derivation based calculus of an algebra of matrix valued functions, and an
SLq(2,C)-covariant calculus of the quantum plane at a genericq and the cubic root
of unity. It is shown that, in the aforementioned examples, giving up the middle-
linearity of metrics significantly enlarges the space of metrics. A metric compat-
ibility condition for the pairs of left and right connections is defined. Also, a
compatibility condition between a left and right connection is discussed. Conse-
quences entailed by reducing to the center of a bimodule the domain of those
conditions are investigated in detail. Alternative ways of relating left and right
connections are considered. ©1996 American Institute of Physics.
@S0022-2488~96!00408-2#

I. INTRODUCTION

Motivated to a great extent by the need to reconcile the geometric theory of gravity with the
~noncommutative! operator algebraic theory of quantum physics, there is considerable interest in
generalizing the formalism of General Relativity to the realm of Noncommutative Differential
Geometry.1 In this paper, we study three concepts that are apparently needed for such a generali-
zation: metric, linear connection and metric compatibility condition.

We define a metricg:E3E→A as at-symmetricA-bilinear pairing on anA-bimoduleE,
wheret is some generalized permutation. Then we argue that giving up the~often postulated!
requirement that a metric factor to a map defined onE^ AE one can obtain an essentially bigger
space of metrics. In particular, we provide an example with an ample supply oft-symmetric
metrics but where the requirement that at-symmetric metricg descend toE^ AE amounts to
demanding thatg50 ~see Remark 1!.

Inspired by Ref. 2 on the one hand and by Ref. 3 on the other, we consider a pair of mutually
compatible connections on a bimodule. The first connection of such a compatible pair is a left
connection in the sense that it satisfies the Leibniz rule with respect to the left module structure.
Similarly, the second connection is a right connection in the sense that it fulfills the Leibniz rule

a!Electronic mail: dabrow@sissa.it
b!Electronic mail: pmh@ictp.trieste.it or pmh@fuw.edu.pl. On leave from the Department of Mathematical Methods in
Physics, Warsaw University; ul.Hoz˙a 74, Warsaw 00-682, Poland.
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on the right. The compatibility condition is simply a requirement that the left and the right
connection agree on the center of a bimodule up to a bimodule isomorphisms ~e.g., braiding!.
This bimodule isomorphism is, again, a generalized permutation. Restricting the domain of the
aforementioned left-right compatibility condition to the center of a bimodule permits, at least in
the considered examples, a significantly bigger space of solutions to this condition.~This seems
desired at least from the point of view of developing variational calculus on the space of connec-
tions.!

As to the compatibility between metrics and pairs of left and right connections, we define a
2-parameter family of compatibility conditions, but then restrict ourselves to the one that seems
the most natural.

In the first section, we provide the general formalism and fix the notation. Then we proceed to
the first example, whereA is the algebra of matrix valued functions on a parallelizable manifold,
andE5A1 is the bimodule of 1-forms of the derivation based differential calculus equipped with
the pullback-of-permutation automorphism. Next we pass on to the quantum plane and the differ-
ential calculus with the braiding employed in Ref. 2. First we consider the case of a genericq, and
then the case of the cubic root of unity. To obtain a nonzerot-symmetric metric on the quantum
plane we have to ‘‘rescale’’ the braidings used in Ref. 2 byq2. The thus obtained automorphism
t appears to be in better agreement with the theory presented in Ref. 4.~Even though in this case
both automorphisms can be considered over the same domain, they are different deformations of
the usual tensor product permutation.!

In what follows, Einstein’s convention of summing over repeating indices is assumed, and the
unadorned tensor product stands for the tensor product over a field.

II. GENERAL DEFINITIONS

Let A be a unital associative algebra over a fieldk, andE be a left and right projective
A-bimodule. We begin with a definition of a linear pairingg:E3E→A, which, for the sake of
simplicity ~neglecting the nondegeneracy and reality conditions!, we call a metric onE ~cf.
Section 8 and Section 9 in Ref. 5!.

Definition 1: Let t:E^E→E^E be a bimodule automorphism. A linear map g from
E^E to A is called at-symmetric metricon E ~or simplymetric, if no confusion arises! iff it is

(1) bilinear over A, i.e.,g(az,rb)5ag(z,r)b, ;z,r P E, a,b P A;
(2) t-symmetric, i.e., g+t5g.
Note that if E is a central bimodule,6,5 that is, if the left and right multiplications by the

elements ofZ(A) coincide on any element ofE ~which is always the case in the examples
considered in this article!, then any metricg can be regarded as a map fromE^ Z(A)E to A. We
would like to emphasize here that, contrary to many other papers~e.g., see~10! in Ref. 7!, we do
not requireg to be well-defined onE^ AE. As we show in our three examples, a requirement like
this ~which goes under the name of middle-linearity! can be considered too restrictive~see Propo-
sition 1, Remark 1 and Proposition 5!. Giving up the middle-linearity condition allows us to get
rid of those restrictions.

Another structure on a bimoduleE that we wish to discuss is a pair of compatible left and
right connections.

Definition 2: Let (A1,d) be a first order differential calculus on A, and

s:E^ AA
1→A1

^ AE

be a bimodule isomorphism. Also, let¹L be a left connection, i.e., a linear map from E to
A1

^ AE satisfying the left Leibniz rule,

¹L~az!5da^ Az1a¹Lz, ;aPA,zPE,
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and let¹R be a right connection, i.e. a linear map from E to E^ AA
1 fulfilling the right Leibniz

rule,

¹R~za!5~¹Rz!a1z ^ Ada, ;aPA,zPE.

A pair (¹L,¹R) is calleds-compatibleiff

;zPZ~E!: ¹Lz5~s+¹R!z, ~1!

where Z(E):5$z P Euaz5za, ;a P A% is the center of E.
Let us recall that in Section 8 of Ref. 3 a connection on a bimodule is also defined as a pair

consisting of a left and right connection. There, however, instead ofs-compatibility condition~1!,
the condition of¹L being a rightA-homomorphism and¹R being a leftA-homomorphism is
imposed. The latter condition, albeit it permits for an interesting algebraic theory, cannot be
directly transferred to the commutative caseZ(E)5E. On the other hand, defining a connection
on a bimodule by requiring, much as in Definition 3.2 in Ref. 8, that thes-compatibility condition
is fulfilled on the whole bimoduleE rather than just its centerZ(E), automatically yields, for the
appropriates ~i.e., the usual tensor product flip!, the standard definition of a connection in the
classical case, but entails essential restrictions on the space of connections in noncommutative
examples~see~10!, ~19!, ~32!,9 and Theorem 5.6 in Ref. 8; cf. Lemma 1 in Ref. 5!. If we demand
that the equality¹L5s + ¹Rbe satisfied on the whole bimoduleE, we can equivalently think of a
pair (¹L,¹R) as a left connection¹L fulfilling an additional~right! Leibniz rule of the form

¹L~za!5~¹Lz!a1s~z ^ Ada!, ;aPA,zPE

~cf. the Introduction in Ref. 10!. In the classical differential geometry, with the help of the tensor
product flip, any left connection uniquely determines the corresponding right connection, and
vice-versa, without imposing any limitations on either of the connections. As we demonstrate in
the next section, this is precisely what happens with pairs ofs-compatible connections in the
noncommutative example of a ‘‘matrix geometry’’~see Proposition 2!. A very similar result
~Proposition 6! is obtained for a bimodule of differential 1-forms on the quantum plane~see
Proposition 2 in Ref. 11! at the cubic root of unity.~In fact, in all examples presented in this paper,
we putE5A1, so that the pairs ofs-compatible connections studied here can be thought of as
linear connections.! When dealing with connections and metrics, it seems that in both cases we
have the same mechanism at work: solving constraints over just the commutative part allows
solutions to be parametrized by a whole noncommutative algebra, whereas solving them over an
entire noncommutative space renders the solutions parametrized by the center of an algebra. The
examples of subsequent sections allow us to explore this mechanism in some detail.

Let us now consider possible compatibility conditions between a pair of connections
(¹L,¹R) and a metricg. In order to do so, first we must define two extensions ofg:

ǧ:A1
^ AE^E→A1 and ĝ:E^E^ AA

1→A1.

It appears natural to choose

ǧ~a ^ Az,r!5ag~z,r!, ;aPA1,z,rPE; ~2!

ĝ~z,r ^ Aa!5g~z,r!a, ;aPA1,z,rPE. ~3!

In principle, one can formulate the class of metric compatibility conditions by requiring the
diagram
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~4!

wheref L(t):5(12t)¹L1t(s + ¹R), f R(s):5s(s21 + ¹L)1(12s)¹R, t,sP k, to commute.Here,
however, in order to ensure thatf L(t) and f R(s) are connections, we settle for the particular case
t505s.

Definition 3: We say that a pair of connections(¹L,¹R) is compatible withg iff

dg~z,r!5ǧ~¹Lz,r!1ĝ~z,¹Rr!, ;z,rPE. ~5!

As we show in Proposition 7, formula~5! is not always sensitive to whether we consider it over
E or only overZ(E). Observe that, if~1! is satisfied, then on the center of a bimodule we have
f L(t)5¹L and f R(s)5¹R for any values oft,s P k, and, consequently, all metric compatibility
conditions for a pair ofs-compatible connections are equivalent when considered overZ(E).
Finally, let us remark that the metric compatibility condition for a pair of connections related by
¹L5s + ¹R ~on the whole bimodule! that is given by~1.21! and~1.26! in Ref. 2 seems inappro-
priate for the cases when the metric is not middle-linear.

Next, we apply the above definitions in some quantum geometric models.

III. ALGEBRAS OF MATRIX VALUED FUNCTIONS

Let us chooseA5C`(M )^Mn(C), E5A15 HomZ(A)(DerA,A),

t~a ^ b!~X,Y!5~a ^ b!~Y,X!, ;X,YP DerA,

ands equal tot factored to an automorphism ofA1
^ AA

1. HereM is a parallelizable manifold of
dimension m, and the ground field ofA is the field of complex numbers. Now, let
$u i% iP$1, . . . ,m1n221% be the basis ofA

1 as defined in Section 3 of Ref. 10. An important property
of this basis is that

au i5u ia, ;aPA, iP$1, . . . ,m1n221%, ~6!

t~u i ^ u j !5u j
^ u i , ;aPA, i , jP$1, . . . ,m1n221%. ~7!

In this setting, one can immediately verify the following claim~cf. Section 9 in Ref. 5 and p. 5861
in Ref. 10!.

Proposition 1: Let gi j denote g(u i ^ u j ), where i, jP$1, . . . ,m1n221%. The map
c:g°(gi j ) provides a one-to-one correspondence between the metrics (the middle-linear metrics)
on A1 and the symmetric matrices of Mm1n221(A) @the symmetric matrices of
Mm1n221(Z(A)), respectively#.

In the same basis, let us define the Christoffel symbols of¹L and¹R by

¹Lu i5u j
^ AukG jk

i , ¹Ru i5u j
^ AukG̃jk

i . ~8!

Taking into account~6! and ~7! and noticing that$u i% iP$1, . . . ,m1n221% is also a basis of the
Z(A)-moduleZ(A1), it is straightforward to prove the following.

Proposition 2: A pair of connections(¹L,¹R) is s-compatible if and only if its Christoffel
symbols satisfy the equation
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G̃k j
i 5G jk

i . ~9!

Similarly, a pair of connections iss-compatible on the whole bimodule if and only if@(3.9) in Ref.
10#

G̃k j
i 5G jk

i PC`~M !. ~10!

Thus thes-compatibility condition@over Z(E)# allows ¹L to uniquely determine¹R and vice-
versa. This is not unexpected since~in this set-up!

A15AZ~A1!5Z~A1!A, ~11!

and¹L and¹R satisfy the left and right Leibniz rule, respectively. On the other hand, as we shall
see in Section IV~Remark 3! ¹L and¹R can mutually determine each other even if~11! is not
satisfied.

Concerning the metric compatibility of (¹L,¹R), we can again take an advantage of~6! to
show that~5! is equivalent to

dgi j5~Gkl
i gl j1gil G̃lk

j !uk, ; i , jP$1, . . . ,m1n221%. ~12!

To end this section, let us observe that, if (¹L,¹R) is s-compatible, then~12! coincides with
~3.13! in Ref. 10. One should bear in mind, however, that the latter has been obtained from a
different starting point@~1.9! in Ref. 10# and only for middle-linear metrics.

IV. GENERIC QUANTUM PLANE

The next example that we study regards a bimodule of differential 1-forms (E5A1) on the
quantum plane. We choose as our space of differential 1-forms the grade one of the differential
algebraV(A)5A % A1

% A2 ~e.g., see Ref. 2! that is given by the generators 1,x,y,j,h, where
j5u15dx,h5u25dy, and relations

xy5qyx, xj5q2jx, xh5qhx1~q221!jy, yj5qjy, yh5q2hy,
~13!

hj1qjh50, j250, h250.

For our bimodule automorphisms it is natural@see the paragraph between~2.11! and ~2.12! in
Ref. 2# to take the map defined by

s~j ^ Aj!5q22j ^ Aj, s~j ^ Ah!5q21h ^ Aj,
~14!

s~h ^ Aj!5q21j ^ Ah2~12q22!h ^ Aj, s~h ^ Ah!5q22h ^ Ah.

First we consider the case of a genericq. Then the center ofA is C and, as can be checked by a
direct computation, the center ofA1 is zero. If we chooset equal tos ~modulo the tensor product
over A, as was done in the previous section!, we can immediately see that, unlessq51, there
exists no nonzero metric.2 To remedy this problem, we ‘‘rescale’’s by q2. More precisely, we put

t~j ^ j!5j ^ j, t~j ^ h!5qh ^ j,
~15!

t~h ^ j!5qj ^ h2~q221!h ^ j, t~h ^ h!5h ^ h.

It turns out that thist is quite natural from the point of view of Ref. 4—it factors to an automor-
phism ofA1

^ AA
1 and preservesu ^ Au, whereu5xh2qyj is the only~up to a multiplication by

a complex number! left and right SLq(2,C)-coinvariant 1-form ~see Section 2 in Ref. 2!.
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@Recall that ifA is a Hopf algebra, then there exists a unique bimodule homomorphismt such that
t(aL^ AaR)5aR^ AaL for any left coinvariant 1-formaL and right coinvariant 1-formaR — see
Proposition 3.1 in Ref. 4.#

It is obvious that witht specified as above, the only constraints that the coefficients of a
metricg have to satisfy is

g~j,h!5qg~h,j!. ~16!

On the other hand, it can be computed that the middle-linearity ofg is equivalent to the following
equations:

xg~j,j!5q4g~j,j!x,

yg~j,j!5q2g~j,j!y,

xg~j,h!5q3g~j,h!x1q2~q221!g~j,j!y,

yg~j,h!5q3g~j,h!y,
~17!

xg~h,j!5q3g~h,j!x1q~q221!g~j,j!y,

yg~h,j!5q3g~h,j!y,

xg~h,h!5q2g~h,h!x1q2~q221!g~j,h!y1q~q221!g~h,j!y,

yg~h,h!5q4g~h,h!y.

Notice that, due to the commutation relationxy5qyx, as long asq is generic and no negative
powers of x and y are allowed, there is no nonzero solution to~17! ~look at the equations
with y). Consequently, we obtain the following.

Remark 1: If q is not a root of unity, there is no (t-symmetric! middle-linear metric on
A1 ~see Ref. 12!. L

Proposition 3: If we admit negative powers of x and y, the solutions of (17) form the
following three-parameter family:

g~j,j!5ax22y4,

g~j,h!5qx23~by31q3ay5!,
~18!

g~h,j!5x23~by31q3ay5!,

g~h,h!5x24~cy21q3~q211!by41q8ay6!,

where a, b, c are complex parameters.
Since the center ofA1 is zero, we can immediately conclude that
Proposition 4: If q is not a root of unity, any pair(¹L,¹R) of s-compatible connections on

A1 is a pair of independent and unrestricted left and right connections.
On the other hand, there exists only a one-parameter family of solutions of the

s-compatibility condition considered over the wholeA1 ~see~2.13! in Ref. 2!. Defining Christ-
offel symbols$F jk

i ,F̃ jk
i % i , j ,kP$1,2% of such a compatible pair of connections as in~8!, we can write

the aforementioned solutions in the following way:

F11
1 5nqxy2, F12

1 52nq3x2y, F21
1 52nq2x2y, F22

1 5nq5x3,
~19!

F11
2 5nq3y3, F12

2 52nq4xy2, F21
2 52nq3xy2, F22

2 5nq5x2y,
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wheren is a complex parameter. The Christoffel symbols$F̃ jk
i % i , j ,kP$1,2% can be expressed in a

similar fashion.
As to the metric compatibility condition, formula~5! reads as

ai~dg~u i ,u j !2ukg~u lGkl
i ,u j !2g~u i ,uk!u l G̃kl

j !ã j50, ;ai ,ã jPA,i , jP$1,2%. ~20!

Clearly, ~20! is satisfied if and only if the expression in the large parentheses vanishes for anyi
and j .

V. QUANTUM PLANE AT THE CUBIC ROOT OF UNITY

The setting of this section is identical with the setting of the previous one except that now we
takeq5e2p i /3 rather than genericq. ~For the sake of simplicity, we calle2p i /3 the cubic root of
unity.! Long but rather straightforward reasoning enables one to prove the following lemma.

Lemma 1: Let q be the cubic root of unity. Then

Z~A!5$ai j x
3i y3 j uai jPC%, ~21!

dZ~A!50, ~22!

;aPZ~A!,aPA1: aa5aa, ~23!

Z~A1!5$ciu
iPA1uc15axy2bxy3, c25bx2y2, a,bPZ~A!%, ~24!

ciu
i5u j c̃ j , where c15axy2bxy3, c25bx2y2,

c̃15axy2qbxy3, c̃25c2 , a,bPZ~A! @see~38!#. ~25!

Changing q from generic to q5e2p i /3 entails no consequence as far as the~general
t-symmetric! metric is concerned. However, regarding middle-linear metrics, with the help of
commutation formulas provided in the Appendix, one can prove the following

Proposition 5: If q is the cubic root of unity and g is middle-linear (but not necessarily
t-symmetric), then (17) is equivalent to

g~j,j!5x3Zxy, g~j,h!5qx3Zy21x3Y,
~26!

g~h,j!5x3Zy21x3W, g~h,h!5Ux2y21~qY1W!x2y1q2Zx2y3,

where Z, Y, W, U are arbitrary elements of Z(A). Furthermore, g ist-symmetric if and only if
Y5qW.

Thus, much as in Proposition 1, the space of middle-linear metrics is three-dimensional over
Z(A). This is not unexpected, if one remembers that the quantum plane at then-th root of unity
is nothing butC@x,y# ^Mn(C) ~cf. Section IV.D.15 of Ref. 13!.

Our next step is to determine the space of pairs ofs-compatible connections. In order to make
our reasoning more transparent, we introduceformal inverses ofx and y. ~It is simply more
convenient, for instance, to writeG̃5xyGx21y21 as the solution of the equationG̃xy5xyG rather
than considerG̃ andG as power series inx and y and then express the complex coefficients of
G̃ in terms of the complex coefficients ofG. However, we neither need nor assume the existence
of x21 and y21 in our algebra.! Treating $u i ^ Au j% i , jP$1,2% as a basis of the rightA-module
A1

^ AA
1 and taking advantage of Lemma 1, one can carry out lengthy but straightforward calcu-

lations that show that thes-compatibility condition~1! is equivalent to
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G̃11
1 5q2xyG11

1 y21x211~12q!y2G12
1 y21x211~q221!y2G21

1 y21x21,

G̃12
1 5~q221!xyG12

1 y21x211qxyG21
1 y21x211~q2q2!y2G22

1 y21x21,

G̃21
1 5qxyG12

1 y21x211~12q!y2G22
1 y21x21,

G̃22
1 5q2xyG22

1 y21x21,
~27!

G̃11
2 5xyG11

1 x222xG11
1 yx221~q21!yG12

1 yx221~q2q2!y2G12
1 x221~12q2!yG21

1 yx22

1~12q!y2G21
1 x221q2x2y2G11

2 y22x221~q21!xG12
2 yx22

1~12q2!xG21
2 yx2213yG22

2 yx22,

G̃12
2 5~12q2!xG12

1 yx221~q221!y2G22
1 x221~12q!xyG12

1 x221q2xyG21
1 x222qxG21

1 yx22

1~q21!yG22
1 yx221~q221!x2y2G12

2 y22x221qx2y2G21
2 y22x221~q22q!xG22

2 yx22,

G̃21
2 5q2xyG12

1 x222qxG12
1 yx221~12q2!yG22

1 yx221~q2q2!y2G22
1 x221qx2y2G12

2 y22x22

1~q21!xG22
2 yx22,

G̃22
2 5xyG22

1 x222qxG22
1 yx221q2x2y2G22

2 y22x22,

where the Christoffel symbols are defined as in~8!. The above system of equations allows one to
determine uniquely¹R through¹L, but, as can be seen from the powers ofx andy, it cannot be
done for an arbitrary left connection¹L. @The total power ofx and the total power ofy in each
term of the right hand side of~27! have to be non-negative in order for~27! to make sense.# Since
only total powers ofx turn negative in~27!, it is convenient to think of an element ofA as a
polynomial inx with coefficients in polynomials iny:

G jk
i 5xlG jkl

i , i , j ,kP$1,2%. ~28!

To determine the necessary and sufficient conditions that$G jk
i % i , j ,kP$1,2% have to satisfy in order to

make ~27! well-defined on the quantum plane, we substitute~28! to ~27! and conclude that the
necessary and sufficient conditions for$G jk

i % i , j ,kP$1,2% are fully given by

~12q!y2G120
1 1~q221!y2G210

1 50,

~q2q2!y2G220
1 50, ~12q!y2G220

1 50,

xyG110
1 2xG110

1 y1~q21!yG120
1 y1~q21!yxG121

1 y1~q2q2!y2G120
1 1~q2q2!y2xG121

1

1~12q2!yG210
1 y1~12q2!yxG211

1 y1~12q!y2G210
1 1~12q!y2xG211

1 1~q21!xG120
2 y

1~12q2!xG210
2 y13yG220

2 y13yxG221
2 y50,

~29!
~12q2!xG120

1 y1~q221!y2G220
1 1~q221!y2xG221

1 1~12q!xyG120
1 1q2xyG210

1 2qxG210
1 y

1~q21!yG220
1 y1~q21!yxG221

1 y1~q22q!xG220
2 y50,

q2xyG120
1 2qxG120

1 y1~12q2!yG220
1 y1~12q2!yxG221

1 y1~q2q2!y2G220
1

1~q2q2!y2xG221
1 1~q21!xG220

2 y50,

xyG220
1 2qxG220

1 y50.
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Those equations are equivalent to

G210
1 5G120

1 5G220
1 5G221

1 5G220
2 50

~30!

~q21!G120
2 1~12q2!G210

2 13q2yG221
2 50.

Thus we have obtained the following.
Proposition 6: Thes-compatibility condition (1) has a solution if and only if

G11
1 PA, G12

1 PxA, G21
1 PxA, G22

1 Px2A,
~31!

G11
2 PA, ~q21!G12

2 1~12q2!G21
2 13q2yx21G22

2 PxA, G22
2 PxA.

Moreover, if (31) is satisfied, then the general solution of (1) is given by (27).
Remark 2: Expressing$G jk

i % i , j ,kP$1,2% in terms of$G̃jk
i % i , j ,kP$1,2% would yield conditions for

$G̃jk
i % i , j ,kP$1,2% similar to these in Proposition 6. Only this timey would play the role ofx. Let us

also observe that, if we replaceds by q2s in ~1!, then~1! would have no solutions whatsoever as
long as the negative powers ofx andy are disallowed. L

Remark 3: As in Section II, equations~27! uniquely determine¹L from ¹R, and vice-versa.
Here, however, it happens despite the fact that formula~11! is not fulfilled. @It follows from ~24!
thatAZ(A1)#xyA1.# L

Notice that, had we required thes-compatibility condition to be satisfied on the whole bimo-
duleA1, then, in contrast with Proposition 6, we would obtain that the Christoffel symbols of a
left connection have to fulfill the following equations:

F11
1 5x~y3~2q f12

1 1 f 21
1 !1y f11

1 2qy2f 22
1 !,

F12
1 5x2~y f22

1 1y2f 12
1 !, F21

1 5x2~q2y f22
1 1y2f 21

1 !,

F22
1 52q2x3f 22

1 ,

F11
2 5 f 11

2 1qy4S f 222 2 f 12
1 2

3q

12q
f 21
1 D1qy2~ f 11

1 2 f 21
2 2q f12

2 !, ~32!

F12
2 5x~q2y3~2 f 22

2 1 f 12
1 !1y f12

2 1qy2f 22
1 !

F21
2 5x~qy3~2 f 22

2 1q f21
1 !1y f21

2 1y2f 22
1 !,

F22
2 5x2~2q2y f22

1 1y2f 22
2 !,

wheref jk
i PZ(A),i , j ,kP $1,2%.

The metric compatibility condition~5! can again be written in the form of formula~20!. This
time, however, the center ofA1 is nontrivial and it makes sense to ask what would happen if we
imposed the metric compatibility condition only overZ(A1). It turns out that we have the follow-
ing.

Proposition 7: Requiring that the metric compatibility condition (5) be satisfied only over
Z(A1) is equivalent to demanding that it be fulfilled over the whole A1.
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Proof. Let Pi j denote the expression in the large parentheses in~20!. Furthermore, let us put
Pi j5ukPk

i j , a15axy2bxy3, a25bx2y2, ã15a8xy2qb8xy3, ã25b8x2y2, wherea,b,a8,b8 are
arbitrary elements ofZ(A). Thanks to~24!, substituting those terms to~20! yields an equation that
expresses the metric compatibility condition overZ(A1):

~axy2bxy3!ukPk
11~a8xy2qb8xy3!1~axy2bxy3!ukPk

12b8x2y21bx2y2ukPk
21~a8xy2qb8xy3!

1bx2y2ukPk
21b8x2y250. ~33!

Commuting everything to the right of$u i% iP$1,2% and taking advantage of the fact that$u i% iP$1,2% is
a basis, one can reduce~33! to

~ ~xyP1
111~q2q2!y2P2

11!a 1 ~2q2xP1
11y32~q221!yP2

11y31x2y2P1
211~q22q!xy3P2

21!b!

3~a8xy2qb8xy3! 1 ~ ~xyP1
121~q2q2!y2P2

12!a 1 ~2q2xP1
12y32~q221!yP2

12y3

1x2y2P1
221~q22q!xy3P2

22!b!b8x2y250

~ xyP211a2~qxP2
11y32x2y2P2

21!b!a8xy2qb8xy3

1~ xyP212a2~qxP2
12y32x2y2P2

22!b!b8x2y250. ~34!

Now, sincea, b, a8, b8 are arbitrary elements ofZ(A), the above two equations boil down to

xyP2
11xy50,

xyP1
11xy1~q2q2!y2P2

11xy50,

2qxyP2
11xy31xyP2

12x2y250,

2qxyP1
11xy31~12q2!y2P2

11xy31xyP1
12x2y21~q2q2!y2P2

12x2y250,
~35!

2qxP2
11xy41x2y2P2

21xy50,

2q2xP1
11xy42~q221!yP2

11xy41x2y2P1
21xy1~q22q!xy3P2

21xy50,

q2xP2
11xy42qx2y2P2

21xy32qxP2
12x2y51x2y2P2

22x2y250,

xP1
11xy61~12q!yP2

11xy62qx2y2P1
21xy32~12q2!xy3P2

21xy32q2xP1
12x2y51~12q2!yP2

12x2y5

1x2y2P1
22x2y21~q22q!xy3P2

22x2y250.

HencePk
i j50 for anyi , j ,k P $1,2%. Consequently,Pi j50 for anyi , j P $1,2%, and~5! follows, as

claimed. h

The same effect, though in a more trivial way, occurs in the setting of Section II.

VI. CONCLUSIONS

As we have demonstrated, restricting the domain of thes-compatibility condition
¹L5s + ¹R toZ(A1) yields a theory of noncommutative linear connections that coincides with the
classical theory in the commutative case, does not discriminate against the left or right structure of
a bimodule and appears to be rich in the noncommutative set-up. It is easy to check, however, that
this s-compatibility equation is not, in general, gauge covariant, either when considering it over
the whole bimodule,2 or when considering it only over the center of a bimodule. To provide a
simple example, let us assume the setting of Section IV and choose our gauge
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transformation to beu i°Uj
iu j ,U5(0 1

1 x). Its action on¹L is given by the formula~cf. p. 547 and
p. 559 in Ref. 1! N°dU.U211UNU21, where¹Lu i5Nk

i
^ Auk, N5(Nk

i ) P M2(A
1). It is clear

that, although the pure gauge connections (G jk
i 505G̃jk

i , i , j ,k P $1,2%) satisfy¹L5s + ¹R, the
Christoffel symbolG12

1 of the connection obtained by the action ofU on the left pure gauge
connection does not fulfill~31!. More precisely,G12

1 51¹xA. @This can be obtained from equation
(dU.U21)k

i
^ Auk5u j

^ AukG jk
i , iP$1,2%.#

A different approach to the generalized permutations has been suggested in Ref. 14. In the
set-up of Section 5 in Ref. 14,s is a function of the connection. Consequently, to determine the
space of connections one needs to take into account all possible bimodule homomorphismss.
Allowing s to vary makes it possible to change it under the action of a gauge transformation. If
we take as a gauge transformation a bimodule automorphismf :E→E and define its action by the
formula

~¹L,¹R,s! ° ~~ id^ Af
21!+¹L+ f , ~ f21

^ Aid !+¹R+ f , ~ id^ Af
21!+ s+ ~ f ^ Aid !!, ~36!

then thes-compatibility condition¹L5s + ¹R is gauge covariant. Furthermore, since the center of
a bimodule is preserved by the bimodule automorphisms, thes-compatibility condition is also
gauge covariant when considered only overZ(E). ~We owe noticing this point to Michel Dubois-
Violette.! One should bear in mind, however, that, roughly speaking, the bimodule automorphisms
correspond to the ‘‘commutative sector’’ of the space of gauge transformations.

A more radical point of view that might deserve a detailed investigation relies on employing
the metric compatibility condition~5! rather than the equation¹L5s + ¹R to relate¹L and¹R

uniquely and without~undesirable! restrictions on (¹L,¹R). Clearly, for nondegenerate metrics,
formulas~12! and~20! provide this kind of mutual dependence of¹L and¹R. @In those cases, the
nondegeneracy of a metricg simply means that (gi j ) is an invertible matrix.#

Finally, let us remark that it is plausible that in order to obtain a satisfactory definition of a
bimodule connection, one needs to use the language of quantum principal bundles, and, having
understood and thoroughly worked out the left-right relationship in this context~see Theorem 4.13
and Remark 4.14 in Ref. 15 and Appendix B in Ref. 16!, translate the solution~s! to bimodule
terms.

APPENDIX: COMMUTATION FORMULAS

Here we provide commutation formulas for the differential algebraV(A) that is defined with
the help of~13!. LetQ215Q050 and, forn.0, letQn5(k51

n q2(k21). For any naturaln>0, we
have

xnj5q2njxn, xnh5qnhxn1~q221!Qnjx
n21y, ynj5qnjyn, ynh5q2nhyn;

xnj ^ Aj5q4nj ^ Ajxn,

xnj ^ Ah5q3nj ^ Ahxn1~q221!q2nQnj ^ Ajxn21y,

xnh ^ Aj5q3nh ^ Ajxn1~q221!q2n21Qnj ^ Ajxn21y, ~A1!

xnh ^ Ah5q2nh ^ Ahxn1~q221!qnQnh ^ Ajxn21y1~q221!qn11Qnj ^ Ahxn21y

1q2~q221!2QnQn21j ^ Ajxn22y2;

ynj ^ Aj5q2nj ^ Ajyn, ynj ^ Ah5q3nj ^ Ahyn,

ynh ^ Aj5q3nh ^ Ajyn, ynh ^ Ah5q4nh ^ Ahyn.

One also has
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aj1bh:5aprx
pyrj1bstx

syth

5j ~q2p1raprx
pyr1q2t~q221!Qsbstx

s21yt11!1h ~q2t1sbstx
syt!

5j~~q2p1rapr1q2r22~q221!Qp11bp11 r21 !xpyr1q2pap0x
p!1h ~q2t1sbstx

syt!

5:jã1hb̃, ~A2!

where apr ,bstPC, p,r ,s,tP $0,1, . . .%.
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A method is proposed for defining an arbitrary number of differential calculi over
a given noncommutative associative algebra. As an example the generalized quan-
tum plane is studied. It is found that there is a strong correlation, but not a one-to-
one correspondence, between the module structure of the 1-forms and the metric
torsion-free connections on it. In the commutative limit the connection remains as
a shadow of the algebraic structure of the 1-forms. ©1996 American Institute of
Physics.@S0022-2488~96!01609-X#

I. INTRODUCTION

We propose a method of defining an arbitrary number of differential calculi over a given
noncommutative associative algebra. We shall especially be interested in the generalized quantum
plane, an algebra which has a commutative limit which one can identify with the algebra of
rational functions on the 2-plane minus the axes. We shall see that the commutation relations
between the elements of the algebra and the 1-forms determine a set of torsion-free metric con-
nections which remain non-trivial in the commutative limit. It is to be expected that the converse
is true, that every torsion-free metric connection on the 2-plane determines a set of commutation
relations. This would mean that in particular the covariant calculus of Wess and Zumino1 is
determined by a geometry on the 2-plane.

The differential calculi we introduce here are based on derivations and are similar to those
introduced by Dubois-Violette2 and Dubois-Violetteet al.3 to construct differential calculi over
matrix algebras. We refer to Madore4,5 for a detailed description of how to use this method to
construct a sequence of differential calculi over a given matrix algebra. In this previous work the
set of derivations was chosen to form an irreducible representation of the Lie algebra of a special
linear groupSLm . With this restriction the number of differential calculi which can be put on a
matrix algebra of dimensionn is equal to the number of integersm such thatSLm has an
irreducible representation on a space of dimensionn. There are always of course at least two,
m52 andm5n, but for largen there are in general many more.

In Section II we present a general method for constructing differential calculi, based on a set
of derivations which do not necessarily close to form a Lie algebra. In Sections III and IV we
present some examples using as algebra the generalized quantum plane. In Section V we investi-
gate linear connections and show how they depend on the choice of differential calculus as well
as, of course, the algebra. ByA we designate an arbitrary associative algebra with unit element
and with centerZ~A!.

II. GENERAL FORMALISM

Of the many differential calculi which can be constructed over an algebraA the largest is the
differential envelope or universal differential calculus (Vu* (A),du). Every other differential cal-
culus can be considered as a quotient of it. For the definitions we refer, for example, to the book
by Connes.6 Let ~V* ~A!,d! be another differential calculus overA. Then there exists a unique
du-homomorphismf

0022-2488/96/37(9)/4647/15/$10.00
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A →
du Vu

1~A! →
du Vu

2~A! →
du •••

i f1↓ f2↓

A →
d

V1~A! →
d

V2~A! →
d

•••

~2.1!

of Vu* (A) ontoV* ~A!. It is given by

f~duf !5d f . ~2.2!

The restrictionfp of f to eachVu
p is defined by

fp~ f 0duf 1•••duf p!5 f 0d f1•••d fp .

Consider a given algebraA and suppose that we know how to construct anA-module
V1~A! and an application

A→
d

V1~A!. ~2.3!

Then using~2.1! there is a method of constructingVp~A! for p>2 as well as the extension of the
differential. Since we knowVu

1~A! and V1~A! we can suppose thatf1 is given. We must
constructV2~A!. The simplest consistent choice would be to set

V2~A!5Vu
2~A!/duKerf1, ~2.4!

whereduKerf1 is the bimodule generated byduKerf1. The product of two elementsj andh in
V1~A! is defined by choosing two inverse imagesju and hu in Vu

1~A! and projecting their
product ontoV2~A!:

jh5f2~ju^ hu!.

This is well-defined because of the equality

duKerf15duKerf11~Vu
1~A! ^Kerf1!1~Kerf1^ Vu

1~A!!,

which in turn follows from the identities

f duj5du~ f j!2~duf !j, ~duj! f5du~j f !2jduf .

Equation~2.4! defines the largest set of 2-forms consistent with the constraints onV1~A!. The
mapf2 is defined to be the projection ofVu

2~A! onto V2~A! so defined andd is defined by
d( f dg)5d fdg. This procedure can be continued by iteration to arbitrary order inp. See, for
example, Baehret al.7

To initiate the above construction we shall define the 1-forms using a set of derivations. We
shall suppose that they are interior and exclude therefore the case whereA is commutative. For
each integern let la be a set ofn linearly independent elements ofA and introduce the deriva-
tions ea5adla . In general theea do not form a Lie algebra but they do however satisfy com-
mutation relations as a consequence of the commutation relations ofA. Define the map~2.3! by

d f~ea!5eaf . ~2.5!

We shall suppose that there exists a set ofn elementsua of V1~A! such that
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u a~eb!5d b
a . ~2.6!

In the examples which we consider we shall show that theu a exist by explicit construction. We
shall refer to the set ofua as a frame or Stehbein. It commutes with the elementsfPA,

fu a5u af . ~2.7!

The construction of theua from the derivations did not really use the fact that they were inner.
For example, if theea aren linearly independent vector fields on a manifoldV of dimensionn,
that is,n linearly independent outer derivations of the algebraA5C (V) of smooth functions on
V, thenV* ~A! is the algebra of de Rham forms.

TheA-bimoduleV1~A! is generated by all elements of the formf dg or of the form (d f )g.
Because of the Leibniz rule these conditions are equivalent. Defineu52lau

a. Then one sees that

d f52@u, f # ~2.8!

and it follows that as a bimoduleV1~A! is generated by one element. It follows also that the
2-form du1u2 can be written in the form

du1u252
1

2
Kabu

aub ~2.9!

with coefficientsKab which lie inZ~A!. By definition

f dg~ea!5 f eag, ~dg! f ~ea!5~eag! f .

Using the frame we can write these as

f dg5~ f eag!u a, ~dg! f5~eag! fu a. ~2.10!

The commutation relations of the algebra constrain the relations betweenf dg and (dg) f for all f
andg.

As a left or right module,V1~A! is free of rankn. Because of the commutation relations of
the algebra, or equivalently, because of the kernel off1 in the quotient~2.4!, the ua satisfy
commutation relations. We shall suppose that they can be written in the form

u aub1Cad
cbu

cud50. ~2.11!

The associativity law inV* ~A! will place constraints on theCab
cd which will be satisfied in the

cases which we consider in detail. IfCad
cd5d c

ad d
b, then one sees thatV2~A!50. It follows from

~2.11! that for an arbitrary elementf of the algebra

@ f ,Cab
cd#u

cud50.

We shall suppose that

Cab
e fC

e f
cd5dc

add
b

and that the relations~2.11! are complete in the sense that ifAabu
aub50 we can conclude that

Aab2Ccd
abAcd50. ~2.12!

This will be the case for all the differential calculi which we shall consider on the generalized
quantum plane in the next sections. We can conclude then that theCab

cd are elements ofZ~A!.
In ordinary geometry one can choose
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Cab
cd5d c

bd d
a

and the relation~2.11! expresses the fact that the 1-forms anticommute. Let` C* be the twisted
exterior algebra determined by the relations~2.11!. Then the differential algebraV* ~A! can be
factorized as the tensor product

V* ~A!5A^ c `C* .

Because the 2-forms are generated by products of theu a one has

du a52 1
2C

a
bcu

buc. ~2.13!

Without loss of generality we can suppose that the structure elementsCa
bc satisfy the identities

Ca
bc1Ca

deC
de
bc50. ~2.14!

It is to be noticed that they do not in general lie inZ~A!. In fact from the identity
d( fu a)5d(u af ) one sees that

~ 1
2 @Ca

bc , f #1e(bfd c)
a !ubuc50. ~2.15!

Using the definition of the derivations one can write this in the form

~ 1
2 C

a
bc1l (bd c)

a 2 1
2 F

a
bc!u

buc50 ~2.16!

with Fa
bcPZ~A!. We can suppose that theFa

bc satisfy ~2.14!:

Fa
bc1Fa

deC
de
bc50. ~2.17!

Using this and the relations~2.11! and ~2.14! as well as the completeness assumption~2.12!
we can conclude from~2.16! that

Ca
bc2Fa

bc1l (bd c)
a 2l (dd e)

a Cde
bc50. ~2.18!

The equation~2.16! can also be written in the form

du a52@u,u a#2 1
2 F

a
bcu

buc ~2.19!

with a graded commutator. IfFa
bc50, the form~2.8! for the exterior derivative is valid for all

elements ofV* ~A! and the elementu plays the role of the phase of a generalized Dirac operator
in the sense of Connes.8

From ~2.19! we find that

du522u21 1
2 laF

a
bcu

buc.

Comparing this with~2.9! we conclude that

u25 1
2 ~laF

a
bc1Kbc!u

buc. ~2.20!

If we suppose thatKbc satisfies~2.14!,

Kab1KcdC
cd
ab50,

then we can conclude that
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~lblc2Cde
bcldle2laF

a
bc2Kbc!u

buc50. ~2.21!

Using again the completeness assumption~2.12! we find

lblc2Cde
bcldle5laF

a
bc1Kbc . ~2.22!

If we introduce the twisted bracket

@la ,lb#C5lalb2Ccd
ablcld ,

we can rewrite~2.22! in the form

@lb ,lc#C5laF
a
bc1Kbc . ~2.23!

If we write out in detail the equationd2f50, using~2.12!–~2.14! we find that

@eb ,ec#Cf5eafC
a
bc . ~2.24!

This is the dual relation to the ‘Maurer–Cartan’ equation~2.13!.
The constraint~2.23! follows from the commutation relations~2.11! we have supposed for the

frame as well as from the conditions we have imposed on the coefficientsCab
cd . In the matrix

case the general formalism simplifies considerably. The elements of the frame anticommute and
one can chooseCab

cd5dc
bdd

a. In Equation~2.19! the first term on the right-hand side vanishes and
Fa

bc5Ca
bc . On the right-hand side of Equations~2.9! and ~2.23! we haveKab50.

III. CALCULI BASED ON 2 DERIVATIONS

Using the construction of the previous section one can construct an infinite sequence of
differential calculi over the generalized quantum planeA, the algebra generated by four elements
(x,y,x21,y21) subject to the relationxy5qyx as well as the usual relations between an element
and its inverse. Hereq is an arbitrary complex number. The subalgebra generated by (x,y) alone
with the covariant differential calculus of Wess and Zumino is called the quantum plane. In this
section we shall consider the casen52. Define, forqÞ1,

l15
q

q21
y, l25

q

q21
x. ~3.1!

The normalization has been chosen here so that the structure elementsCa
12 contain no factorsq.

Thela are singular in the limitq→1 for the same reason as the limit from quantum mechanics:

1

\
ad p→

1

i

]

]q
.

We find that

e1x52xy, e1y50, e2x50, e2y5xy. ~3.2!

These rather unusual derivations are extended to arbitrary polynomials in the generators by the
Leibniz rule. From~3.2! we conclude that the commutation relations which follow from~2.10! are

xdx5qdxx, ydx5q21dxy,
~3.3!

xdy5qdyx, ydy5q21dyy.

From these relations, ifqÞ21, we deduce
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~dx!250, ~dy!250, dxdy1qdydx50. ~3.4!

Using the relations~3.2! we find

dx52xyu1, dy5xyu2, ~3.5!

and solving for theu a we obtain

u152q21x21y21dx, u25q21x21y21dy. ~3.6!

The ua satisfy the commutation relations

~u1!250, ~u2!250, u1u21qu2u150. ~3.7!

This is of the form~2.11!. If we reorder the indices~11,12,21,22!5~1,2,3,4!, then the matrixCab
cd

can be written in the form of a 434 matrix

C5S 1 0 0 0

0 0 q 0

0 q21 0 0

0 0 0 1

D . ~3.8!

That is,C12
215q andC21

125q21. The structure elementsCa
bc are given by

C1
1252x, C2

1252y, ~3.9!

and the condition~2.14!. Equation~2.18! is satisfied. Foru we find the expression

u5
1

q21
~qx21dx2y21dy!. ~3.10!

It is a closed form.
As a second example withn52 we define, forq4Þ1,

l15
1

q421
x22y2, l25

1

q421
x22. ~3.11!

The normalization has been chosen here again so that the structure elementsCa
12 contain no

factorsq. We find then that forq2Þ21

e1x52
1

q2~q211!
x21y2, e1y52

1

q211
x22y3,

e2x50, e2y52
1

q211
x22y. ~3.12!

From these we conclude that the commutation relations which follow from~2.10! are

xdx5q2dxx, xdy5qdyx1~q221!dxy,

ydx5qdxy, ydy5q2dyy. ~3.13!
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We have then in this case the covariant differential calculus of Wess and Zumino. It has been
encoded in the functional form of thela . If q

2Þ21, from ~3.13! we deduce

~dx!250, ~dy!250, dydx1qdxdy50. ~3.14!

Using the relation~2.6! we find

dx52
1

q2~q211!
x21y2u1, dy52

1

q211
x22y~y2u11u2!, ~3.15!

and solving for theu a we obtain

u152q4~q211!xy22dx, u252q2~q211!x~xy21dy2dx!. ~3.16!

The u a satisfy the commutation relations

~u1!250, ~u2!250, q4u1u21u2u150. ~3.17!

This is of the form~2.11! if the matrixCab
cd is given by the 434 matrix

C5S 1 0 0 0

0 0 q24 0

0 q4 0 0

0 0 0 1

D . ~3.18!

That is,C12
215q24 andC21

125q4. The structure elementsCa
bc are given by

C1
1252x22, C2

1252x22y2, ~3.19!

and the condition~2.14!. Equation~2.18! is again satisfied.
For u we find the expression

u5
q2

q221
y21dy. ~3.20!

It is again a closed form.
From these two examples we see that each choice of two elementsl1 andl2 gives rise to a

differential calculus on the generalized quantum plane and we shall see in the Section V that each
choice gives rise to a linear connection.

IV. CALCULI BASED ON 3 DERIVATIONS

In this section we shall consider the casen53. There is an essential difference with the
previous case in that relations of the form~3.3! or ~3.13! which allow one to pass from one side
of the differential to the other no longer hold. The difference is given in fact in terms of the extra
elements of the frame. What we do is extend the definition ofdx anddy to another derivation and
the extension satisfies quite naturally less relations. The left~or right! moduleV1~A! is now of
rank 3 instead of 2. As an example we extend thela defined in~3.1! by the addition of al3:

l15
q

q21
y, l25

q

q21
x, l35

q

q21
axy. ~4.1!
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Thea is an arbitrary complex number. We have then@l1,l2#52a21l3, but of course the set ofla
do not form a Lie algebra. To the relations~3.2! we must add two additional ones,

e3x52ax2y, e3y5axy2, ~4.2!

and so we find

dx52xyu12ax2yu3, dy5xyu21axy2u3 ~4.3!

instead of~3.5!. Define

t5xdy2qdyx. ~4.4!

Then one of the commutation relations~3.3! becomes an expression foru3 in terms oft:

t5aq21~q21!x2y2u3. ~4.5!

We can solve then~4.3! for the ua and we obtain

u152q21x21y21dx2
1

q2~q21!
x21y22t,

u25q21x21y21dy2
1

q~q21!
x22y21t, ~4.6!

u35
1

aq3~q21!
x22y22t

instead of~3.6!. This frame is singular in the limitq→1 as it must be. The differential calculus,
expressed in terms ofdx anddy, has however a well-defined limit which lies somewhere between
the de Rham calculus and the universal one. For a discussion of this point we refer to Dimakis and
Müller-Hoissen,9 Dimakis and Tzanakis,10 and Baehret al.7

If qÞ21, we can deduce the first two of the relations~3.4! and we can conclude that

q~u1!21ax~u1u31qu3u1!1a2x2~u3!250,
~4.7!

q~u2!21ay~u3u21qu2u3!1a2y2~u3!250.

Multiply the first equation byy and the second byx and commute through. One deduces then that
each of the coefficients must vanish:

~u1!250, ~u2!250, ~u3!250,

and

u1u31qu3u150, u3u21qu2u350. ~4.8!

There is missing a relation betweenu 1u 2 andu 2u 1. We must therefore rather artificially complete
the coefficients in~2.11! by settingC12

12521 andC12
2150. From ~2.23! we find then that

Kab50 and theFa
bc vanish except for the values

F3
125

2

a~q21!
, F3

215qF312. ~4.9!
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The formu is given by

u52
q

q21
~yu11xu21axyu3!.

It follows then immediately from~2.19! that

du15
q

q21
x~u1u21u2u1!1axyu1u3,

du25
q

q21
y~u1u21u2u1!1axyu3u2, ~4.10!

du35yu1u31xu3u22
1

a~q21!
~u1u21qu2u1!,

from which one can read off the expressions for the structure elements which extend~3.9!. The
third of the relations~3.4! becomes

dt52x2y2„~u1u21qu2u1!1ax~u2u31u3u2!1ay~u3u11u1u3!….

Using ~4.10! one finds

dt52x2y2„~u1u21qu2u1!2aq21~q21!du3…. ~4.11!

If one adds to~4.8! the supplementary relation

u1u21qu2u150, ~4.12!

then V2~A! becomes a quotient of the right-hand side of~2.4!. We can setC12
215q and

C12
1250 as in~3.8!. Now we haveKab50 andFa

bc50 and Equations~4.10! reduce to

du15xu1u21axyu1u3, du25yu1u21axyu3u2, du35yu1u31xu3u2.

Equation~4.11! simplifies to

dt5ax2y2q21~q21!du3. ~4.13!

A similar extension of the second example of the previous section can be given, again by
introducing a third derivation. As before this yields an extension of the module of forms as a left
~or right! module.

V. LINEAR CONNECTIONS

For each of the differential calculi defined in the previous section one can define a set of linear
connections. The definition of a connection as a covariant derivative was given an algebraic form
in the Tata lectures by Koszul11 and generalized to noncommutative geometry by Karoubi12 and
Connes.8,6 We shall often use here the expressions ‘connection’ and ‘covariant derivative’ syn-
onymously. In fact one can distinguish three different types of connections. A ‘leftA-connection’
is a connection on a leftA-module; it satisfies a left Leibniz rule. A ‘bimoduleA-connection’ is
a connection on a general bimoduleM which satisfies a left and right Leibniz rule. In the
particular case whereM is the module of 1-forms we shall speak of a ‘linear connection.’ A
bimodule over an algebraA is also a left module over the tensor productAe5A^CA

op of the
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algebra with its ‘opposite.’ Such a bimodule can have a bimoduleA-connection as well as a left
Ae-connection.13,14 These two definitions are compared in Dubois-Violetteet al.15

LetA be an arbitrary algebra and~V* ~A!,d! a differential calculus overA. One defines a
left A-connection on a leftA-moduleH as a covariant derivative

H→
D

V1~A! ^AH ~5.1!

which satisfies the left Leibniz rule

D~ fc!5d f^ c1 fDc ~5.2!

for arbitrary fPA. This map has a natural extension

V* ~A! ^AH→
¹

V* ~A! ^AH ~5.3!

given, forcPH andaPVn~A!, by ¹c5Dc and

¹~ac!5da ^ c1~21!na¹c.

The operator¹2 is necessarily left-linear. However, whenH is a bimodule it is not, in general,
right-linear.

A covariant derivative on the moduleV1~A! must satisfy~5.2!. ButV1~A! has also a natural
structure as a rightA-module and one must be able to write a corresponding right Leibniz rule in
order to construct a bilinear curvature. Quite generally letM be an arbitrary bimodule. Consider
a covariant derivative

M→
D

V1~A! ^AM ~5.4!

which satisfies both a left and a right Leibniz rule. In order to define a right Leibniz rule which is
consistent with the left one, it was proposed by Mourad,16 by Dubois-Violette and Michor17 and
by Dubois-Violette and Masson18 to introduce a generalized permutation

M^AV1~A!→
s

V1~A! ^AM.

The right Leibniz rule is given then as

D~j f !5s~j ^d f !1~Dj! f ~5.5!

for arbitrary fPA and jPM. The purpose of the maps is to bring the differential to the left
while respecting the order of the factors. It is necessarily bilinear.19 Let p be the product in the
algebra of forms. It was argued by Mourad16 and others19 that a necessary as well as sufficient
condition for torsion to be right-linear is thats satisfy the consistency condition

p+~s11!50. ~5.6!

We define a bimoduleA-connection to be the couple~D,s!. We shall make no mention of
curvature. There is at the moment no general consensus of the correct definition of the curvature
of a bimodule connection. The problem is that the operator¹2 is not, in general, right-linear. We
refer to Dubois-Violetteet al.15 for a recent discussion.
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This general formalism can be applied in particular to the differential calculi which we have
constructed in Section II. SinceV1~A! is a free module the maps can be defined by the action on
the basis elements:

s~u a
^ ub!5Sabcdu

c
^ ud. ~5.7!

By the sequence of identities

fSabcdu
c

^ ud5s~ fu a
^ ub!5s~u a

^ ubf !5Sabcdfu
c

^ ud

we conclude that the coefficientsScd
ab must lie inZ~A!. From ~2.12! we see that the condition

~5.6! can be written

~d e
ad f

b1Sabe f!~d c
ed d

f 2Cef
cd!50. ~5.8!

A natural, but certainly not the unique, choice ofs is given bySabcd 5 Cab
cd.

SinceV1~A! is a free module a covariant derivative can be defined by its action on the basis
elements:

Du a52vbc
a ub^ uc. ~5.9!

The coefficients here are elements of the algebra. Because of the identityD( fu a)5D(u af ) there
are very stringent compatibility conditions, which using~5.7! can be written out as

@vbc
a , f #5edf ~S

ad
bc2d b

dd c
a!.

The general solution to this equation is of the formva
bc 5 v (0)

a
bc 1 xa

bc where

v~0!bc
a 5ld~S

ad
bc2d b

dd c
a! ~5.10!

andxa
bcPZ~A!. One can also expressD ~0! in the form19,20

D ~0!u
a52u ^ u a1s~u a

^ u!.

The torsion 2-form is defined as usual as

Qa5du a2p+Du a.

Comparing~5.10! with ~2.19!, we see that the torsionQ(0)
a of D ~0! is given by

Q~0!
a 52 1

2 F
a
bcu

buc. ~5.11!

In general a covariant derivative is torsion free provided the condition

va
bc2va

deC
de
bc5Ca

bc

is satisfied. The covariant derivative~5.9! is torsion free if and only if

xa
de~db

ddc
e2Cde

bc!5Fa
bc.

On the ordinary quantum plane one can show that there is there is a unique 1-parameter family
of linear connections19 and that this connection is torsion free. We find here a different result;
there is an ambiguity which depends on elements ofZ~A!. An interesting limit case is given by
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Sabcd5Cab
cd5d c

bd d
a . ~5.12!

In this case from~2.18! one sees thatFa
bc 5 Ca

bcÞ0. From~2.22! one sees thatKab50 and thela
form a Lie algebra. The matrix case is a typical example. From~5.10! if follows that D (0)u

a50
and soD ~0! has torsion but no curvature. The connection corresponds to the canonical flat con-
nection on a parallelizable manifold.

One can define a metric by the condition

g~u a
^ ub!5gab, ~5.13!

where the coefficientsgab are elements of the algebra. To be well defined on all elements of the
tensor productV1~A!^AV1~A! the metric must be bilinear, and by the sequence of identities

f g
ab5g~ fu a

^ ub!5g~u a
^ ubf !5gabf ~5.14!

we conclude that the coefficients must lie inZ~A!. The covariant derivative~5.9! is compatible
with the metric19 if and only if

va
bc1v f

ceS
ae
b f50. ~5.15!

The condition that~5.10! be metric compatible can be written as

Saedhg
h fScbe f5gacd d

b . ~5.16!

Consider now the first differential calculus of Section III, defined by~3.1!. On the right-hand
side of~2.23! we haveKab50 andFa

bc50. The torsion ofD ~0! vanishes. The coefficientsg
ab are

complex numbers. With the convention of~3.8! they can be written as (g1,g2,g3,g4). Using the
GL~2,C!-invariance one can impose that

g45g1, g252g2.

If we suppose thatg250, there is no restriction in supposing thatg151; thegab are the compo-
nents of the Euclidean metric in two dimensions. With the convention of~3.8! the condition~5.16!
can be written in the matrix form

S S11 S2
1 S3

1 S4
1

S1
2 S2

2 S3
2 S4

2

S1
3 S2

3 S3
3 S4

3

S1
4 S2

4 S3
4 S4

4

D S S11 S3
1 S1

3 S3
3

S2
1 S4

1 S2
3 S4

3

S1
2 S3

2 S1
4 S3

4

S2
2 S4

2 S2
4 S4

4

D 51. ~5.17!

From the approximation linear inq21 one sees that the solution must be of the form

S5S S11 0 0 S4
1

0 S2
2 S3

2 0

0 S2
3 S3

3 0

S1
4 0 0 S4

4

D . ~5.18!

The consistency conditions~5.8! become

11S2
25q21S3

2, 11S3
35qS2

3. ~5.19!
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In generalSabcd 5 Cab
cd does not yield a metric-compatible covariant derivative. There is a solu-

tion, however, to~5.17! and ~5.19! given by

S5
1

q211 S 2q 0 0 12q2

0 12q2 2q 0

0 2q q221 0

q221 0 0 2q

D . ~5.20!

That is, for example,

S12215S21125
2q

q211
.

The expression~5.20! has the same limit as~3.8! whenq→1, as it must for the right-hand side of
~5.10! to exist. Withs given by~5.7!, the covariant derivative is compatible with the metric~5.13!
and torsion free. Comparing~3.18! with ~3.8! one sees that one obtains for the second example
~3.11! a covariant derivative compatible with the metric~5.13! by the replacementq°q24 in
~5.20!. The dependence onq comes through the conditions~5.19!. SinceS(q)52S(2q21) the
same matrix serves two different values of the parameterq.

The metric we have chosen is not symmetric with respect tos. That is

gabÞSabcdg
cd

in general. If one wishes to find a metric symmetric in the above sense, then one must consider
~5.16! as an equation forS and the metric and add the additional equation

gab5Sabcdg
cd. ~5.21!

The system~5.16! and~5.21!, without the restriction we have placed on the coefficientsgab, if it
has a solution, would yield a symmetric metric with a compatible connection.

Restricting one’s attention to Hermitianx andy and realq, in the limit q→1 one obtains on
the ordinary 2-plane a metric whose Gaussian curvatureK is given by

K15x21y2, K25x24~11y4!, ~5.22!

respectively, for the two examples of Section III. This can be calculated using theq→1 limit of
~5.10!. It is easy to characterize all metrics which can be obtained in this way. In the limitq→1
the commutator determines a Poisson bracket on the 2-plane, given as usual by

$ f ,g%5 lim
q→1

1

i ~q21!
@ f ,g#. ~5.23!

Define

pa5 lim
q→1

i ~q21!la .

In the limit the differential can be written then in the form

d f5$pa , f %u
a. ~5.24!

If we write u a5ub
adxb in terms ofdxa, from this it follows that the equation
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$pc ,x
a%ub

c5d b
a ~5.25!

must have a solution forpa polynomial in the variables. This is not always the case. That is, not
all metrics with polynomial curvature can be obtained as were those given by~5.22!. For example
consider the flat metricub

a5db
a. The equations~5.25! become the equations$pa ,x

b%5db
a. Using

the expression for the Poisson bracket for the generalized quantum plane,$x,y%5xy, one sees
immediately that there is no solution for thepa .

The generalized quantum plane has two outer derivations defined by

e1
~0!x5x, e1

~0!y50, e2
~0!x50, e2

~0!y5y. ~5.26!

The correspondingua are given by

u15x21dx, u25y21dy. ~5.27!

Our construction yields then the ordinary flat metric. If one were to extend the algebra to the
Heisenberg algebra, then these derivations would become interior. To obtain a metric which is
almost flat one can add to~5.26! a ‘small’ inner derivation of the form given in Section II, but
usingla which are ‘small’ of the order of some expansion parametere. One defines

ea5ea
~0!1eadla ~5.28!

and proceeds as above but retaining only corrections of first order ine. A problem closely related
to this has been examined in another context by one of the authors.5

The equations~5.17! and ~5.19! admit also the solution

S5
1

q211 S 22q 0 0 12q2

0 12q2 2q 0

0 2q q221 0

q221 0 0 22q

D . ~5.29!

but the corresponding covariant derivative defined by~5.10! is singular in the limitq→1.
A complete study of the matrix case has not been made. However, for the particular case

~5.12! it is easy to see that the unique torsion free covariant derivative compatible with the metric
~5.13! is given by

Du a52 1
2 C

a
bcu

b
^ uc. ~5.30!

The ordinary quantum plane with the differential calculus given by~3.13! has no metric connec-
tion but it possesses a unique 1-parameter family of linear connections whose curvature is poly-
nomial in the variablesx and y.19 The precise property of the curvatureK2 in ~5.22! which
associates the corresponding metric to theGLq~2!-invariant differential calculus~3.13! is not
clear. We refer to Madore and Mourad21 for a description of the possible relevance to the theory
of gravity of the relation between linear connections on the one hand and commutation relations
on the other.

VI. CONCLUSIONS

We have shown that each differential calculus and set of commutation relations between the
1-forms and the elements of the algebra gives rise in the case of the generalized quantum plane to
a metric connection which remains regular in the limitq→1. Not all metrics with polynomial
curvature can be obtained in this way.
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A non-commutative central limit theorem
T. C. Dorlasa)
University College Swansea, Department of Mathematics, Singleton Park,
Swansea SA2 8PP, United Kingdom

~Received 2 January 1996; accepted for publication 17 June 1996!

We prove a non-commutative version of the Central Limit Theorem for spin-1/2
variables. The non-commutative spins satisfy Bose–Einstein statistics. The proof
involves the Feynman–Kac formula for a hopping process and an explicit calcula-
tion of the Fourier transform of the corresponding measure. The limit process is a
modification of the Ornstein–Uhlenbeck process, the Fourier transform of which
was essentially already calculated by Feynman. However, his derivation is not
rigorous and we therefore present an alternative derivation here. ©1996 Ameri-
can Institute of Physics.@S0022-2488~96!03009-5#

I. MOTIVATION AND THE MAIN RESULTS

The usual Central Limit Theorem in the case of Bernoulli variables states that if a particle can
take on two states1 and2 with probabilities 1/2 then the average value of the sum ofn particle
states has a normal distribution in the limitn→`. To be precise:

lim
n→`

EF f S 1

An (
k51

n

xkD G5
1

A2p
E

2`

`

f ~x!expF2
1

2
x2Gdx ~1.1!

for any continuous bounded functionf . This result can be interpreted as a result in classical
statistical mechanics, giving the asymptotic distribution of the total spin of an assembly of inde-
pendent classical spinsxi . One may then wonder about the behavior of quantum spins.

Quantum spins differ from classical spins in that they are described by non-commuting op-
erators. We introduce annihilation operatorsa1 anda2 and creation operatorsa1* anda2* which
annihilate and create particles with spin1 and 2 respectively. They obey the commutation
relations

@a6 ,a6* #51, @a6 ,a7* #50, ~1.2!

while creation and annihilation operators commute among themselves. The productsN6

5 a6* a6 count the number of particles with spin1 and 2 respectively.a6* and a6 can be
represented on the Hilbert spaceH6 which is spanned by the eigenstatesun&6 of the number
operatorsN6 . The total Hilbert space is the direct sum of these two:H5H1%H2 .

We now consider the operatorsc6 andc6* andD defined by

c65
1

&

~a16a2! and D5a1* a12a2* a2 . ~1.3!

Notice thatc6 andc6* are also annihilation and creation operators in that they satisfy commutation
relations analogous to~1.2!. Thereforec6* c6 is also a number operator, giving the number of
particles in the state~1/&!~u1&6u2&!. We shall writec5c2 in the following. The corresponding
number operator can be written as follows:

a!Electronic mail: T.C.Dorlas@swansea.ac.uk

0022-2488/96/37(9)/4662/21/$10.00
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c* c5 1
2 ~N21N2!2 1

2 ~a1* a21a2* a1!. ~1.4!

The total number operatorN5N11N2 commutes withc* c and also withD. We can therefore
restrict the system to then-particle subspace, that is, the subspace ofH whereN has the eigen-
valuen. The second part of the operatorc* c is a hopping term: it annihilates a particle with one
spin and creates a particle with the opposite spin. The operatorD measures the net spin of all
particles. That is similar to the expression(k51

n xk in ~1.1!. We now prove the following non-
commutative analogue of~1.1!:

Theorem 1.1:For anyn,mPN with 0<m<n, denote byun;m& the eigenstate ofc* c in the
n-particle subspaceHn with eigenvaluem. Then, for any bounded continuous functionf :R→R,

lim
n→`

^n;mu f ~D/An!un;m&5
1

m!A2p
E

2`

`

Hm~x!2e2x2/2f ~x!dx, ~1.5!

whereHm(x) ~m50,1,2,...! are the Hermite polynomials defined by

Hm~x!5~21!mex
2/2S ddxD

m

e2x2/2. ~1.6!

Before we prove this simple result, let us consider the graph of the probability distribution of
the eigenvaluek of the operatorD in the casen550 andm53 ~see Figure 1!. In the same graph
the rescaled distribution function

1

m!A2p
HmS s

AnD
2

exp@2s2/2n#

is plotted as a function of the continuous variables corresponding tok. It is clear that the graphs
are already reasonably close. Notice also that the quantum nature of the system does not disappear
in the limit! One could say that fluctuations of a quantum system still have a quantum nature in
that interference effects remain. A similar phenomenon, but in a different setting was noted by
Goderiset al.1,2

Proof: We prove that the corresponding Fourier transforms converge. This proves the theo-
rem: see, e.g., Refs. 3, 4 or 5. We first compute the characteristic function of the limiting distri-
bution. We use the generating function for the Hermite polynomials:

FIG. 1. The probability distribution of the eigenvalues ofD ~heavy dots! and the limiting distribution~grey curve!.
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(
m50

`

Hm~x!
am

m!
5eax2a2/2. ~1.7!

This yields easily

(
m150

` a1
m

m1!
(
m250

` a2
m2

m2!
E

2`

`

Hm1
~x!Hm2

~x!eitxe2x2/2
dx

A2p
5e2t2/2ei ~a11a2!t1a1a2. ~1.8!

Expanding the exponential factor we have

ei ~a11a2!t1a1a25 (
m150

`

(
m250

` S (
l50

m1`m2 ~ i t !m11m222l

l ! ~m12 l !! ~m22 l !! Da1
m1a2

m2. ~1.9!

Extracting the termsm15m25m we find that

1

m! E2`

`

Hm~x!2eitxe2x2/2
dx

A2p
5 (

k50

m Smk D ~21!k
t2k

k!
e2t2/2. ~1.10!

To compute the characteristic function of the discrete distribution of the eigenvalues ofD we
use the fact that

un;m&5
1

Am! ~n2m!!
c1*

~n2m!c*mu0& ~1.11!

and hence

(
m50

n S nmD 1/2amun;m&5
1

A2nn! (
m50

n S nmDam~a1* 1a2* !n2m~a1* 2a2* !mu0&

5
1

A2nn!
@~11a!a1* 1~12a!a2* #nu0&

522n/2(
k50

n S nkD 1/2~11a!k~12a!n2kuk,n2k&, ~1.12!

whereun1 ,n2& denotes an eigenstate of the operatorsN6 . Inserting this identity one easily finds
that

(
m150

n S n
m1

D 1/2 (
m250

n S n
m2

D 1/2^n;m1ueitDun;m2&a1
m1a2

m2

522n@~11a1!~11a2!e
it1~12a1!~12a2!e

2 i t #n

5@~11a1a2!cos t1 i ~a11a2!sin t#
n. ~1.13!

It follows that
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^n;mueitDun;m&5S nmD 21

(
k50

@n/2#`m S n2kD S 2kk D S n22k
m2k D ~21!k~sin t !2k~cos t !n22k

5 (
k50

@n/2#`m
~21!k

k! Smk D ~n2m!!

~n2m2k!!
~sin t !2k~cos t !n22k. ~1.14!

Replacingt by t/An and takingn→` it is now easy to see that this tends to~1.10!. Q.E.D.
The above theorem gives a way of computing expressions of the form

Tracen~e
2bc* cf ~D/An!!

in the limit n→`. However, in quantum statistical mechanics one is rather more interested in
computing quantities of the form Tracee2bH, where in our case,H 5 c* c 1 f (D/An). This is not
the same as the above because the operatorsc* c andD do not commute. To compute the latter
expression, we could try to use the Trotter product formula~Theorem 1.1 of Ref. 6!:

eA1B5 lim
M→`

~eA/MeB/M !M. ~1.15!

This yields:

Tracen exp@2bc* c1 f ~D/An!#

5 (
m50

n

^n;muexp@2bc* c1 f ~D/An!#un;m&

5 lim
M→`

(
m1 ,...,mM50

n

)
i51

M

^n;mi21uef ~D/An!/Mun;mi&)
i51

M

e2bmi /M, ~1.16!

wherem05mM . Using a simple generalization of Theorem 1 we can now conjecture that the limit
n→` yields

lim
n→`

Tracen exp@2bc* c1 f ~D/An!#

5 lim
M→`

(
m1 ,...,mM50

`

)
i51

M

e2bmi /M3)
i51

M F 1

A2pmi21!mi !

3E
2`

`

Hmi21
~x!Hmi

~x!ef ~x!/Me2x2/2dxG . ~1.17!

Now,

cm~x!5
1

Am!
Hm~x!V0~x! ~1.18!

is them-th eigenfunction of the harmonic oscillator Hamiltonian

H052
d2

dx2
1
1

4
x22

1

2
, ~1.19!

with
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V0~x!5~2p!21/4e2x2/4 ~1.20!

being the ground state:H0V050 andH0cm5mcm . Putting

a5
1

2
x1

d

dx
and a*5

1

2
x2

d

dx
~1.21!

as usual, we have@a,a* #51 and

H05a* a and x5a1a* . ~1.22!

This means that we can write

lim
n→`

Tracen exp@2bc* c1 f ~D/An!#5 lim
M→`

(
m1 ,...,mM50

`

)
i51

M

~cmi21
ue2bH0 /Mef ~a1a* !/Mcmi

!

5 lim
M→`

(
m50

`

~cmu~e2bH0 /Mef ~a1a* !/M !Mcm!

5Trace e2bH01 f ~a1a* !. ~1.23!

Thus we conjecture the following theorem:
Theorem 1.2. For any bounded continuous functionf : R→R,

lim
n→`

Tracen e
2bc* c1 f ~D/An!5Trace e2ba* a1 f ~a1a* !. ~1.24!

It should be realized that the above derivation does not constitute a proof since the limits
n→` andM→` were interchanged without justification.~Professor Zagrebnov suggested that it
may in fact be possible to make the argument rigorous using trace-norm convergence proved in his
paper.7! The remaining sections of this paper are dedicated to a proof of this last theorem using the
Feynman–Kac representation.

Remark. Several versions of the non-commutative central limit theorem were also derived by
Hudson.8–10 Let us briefly comment on the main differences. In Theorem 1.1 we keep the eigen-
valuem of the operatorc* c fixed while taking the number of particlesn to infinity. Also, the
spins are assumed to commute as opposed to anti-commute as in the case of Clifford algebra
version considered in Refs. 9 and 10. Notice that we consider only two pairs of creation and
annihilation operators whereas in Ref. 8 Hudson considers in effect a sequence of creation and
annihilation operators. In Theorem 1.2 the eigenvaluem is not fixed as such but it is implicit in the
proof that the main contribution still comes from the subspaces wherem is bounded. This is a
rudimentary kind of boson condensation and was in fact the main motivation for this work. In both
the above theorems it is the number of particles that tends to infinity as opposed to the number of
creation and annihilation operators.

II. THE FEYNMAN–KAC FORMULA

In this section we derive a Feynman-Kac formula in the spirit of Ginibre.11 ~However, the
derivation is self-contained and does not assume familiarity with Ginibre’s work.! We work with
eigenstates ofD instead ofc* c. Let ux1 ,...,xn& denote the state where thek-th spin is given by
xk~561!. ~For the moment we assume the individual spins to be distinguishable.! Then we can
define individual particle creation and annihilation operators:
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ak,sux1 ,...,xn&5dxk ,sux1 ,...,x̂k,...,xn&,

~2.1!
ak,s* ux1 ,...,xn&5ux1 ,...,xk21 ,s,xk ,...,xn&.

~The hat abovexk in the first formula indicates that this element is to be omitted.! The states
ux1 ,...,xn& form an orthonormal basis of a 2n-dimensional Hilbert space of distinguishable par-
ticles. We can reduce the space to one spanned by distinguishable elements given by symmetric
combinations:

un1 ,n2&5S n11n2

n1
D 21/2

(
x1 ,...,xn56

#$xk56%5n6

ux1 ,...,xn&. ~2.2!

Let F n be the space spanned by all statesun1 ,n2& with n11n25n:

F n5v un1 ,n2&:n11n25nb . ~2.3!

It is then easy to see that the operatorsa6 anda6* defined previously can be represented operating
on F n as follows:

a6uF n
5

1

An (
k51

n

ak,6U
F n

, a6* uF n
5

1

An11
(
k51

n11

ak,6* U
F n

. ~2.4!

Inserting these formulas we can now write

^n18 ,n28 ue2bc* c1 f ~D!un1 ,n2&

5S n
n18

D 21/2S n
n1

D 21/2

3 (
x18 ,...,xn8

#$xk856%5n68

(
x1 ,...,xn

#$xk56%5n6

^x18 ,...,xn8uexpF2
b

2 (
k51

n

~ak,1* 2ak,2* !

3~ak,12ak,2!1 f S (
k51

n

~ak,1* ak,12ak,2* ak,2!D G ux1 ,...,xn&. ~2.5!

The latter scalar products can be written in terms of a stochastic process. Heuristically, we can
define a simple jump processj with continuous time and values61 by the infinitesimal transition
probabilities

Pb@j~ t1dt !5x8uj~ t !5x#5H 12
b

2
dt, if x85x;

b

2
dt, if x852x.

~2.6!

This is the so-calledtelegraph process. It is well-known that this process can be defined rigorously
as a measurePb,x , wherex561 is the starting point of the process, on the spaceD@0,1# of
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functionsj:@0,1#→R which are right-continuous and have limits on the left, the so-called Cadlag
space in French terminology. Thus,jPD@0,1# if and only if, for all t0P~0,1!,

lim
t↓t0

j~ t !5j~ t0! and lim
t↑t0

j~ t !5j~ t0
2! exist, ~2.7!

and, moreover,j~0!5limt↓0j(t) andj~1!5limt↑1j(t). On this space one can introduce a metric,
the Skorokhod metric, by

r~j,j8!5 inf
lPH

@sup
tPR

uj~l~ t !!2j8~ t !u1 sup
tP@0,1#

ul~ t !2tu#. ~2.8!

HereH is the space of increasing functionsl: @0,1#→@0,1#. One has the following characterization
of compact subsets ofD@0,1#:

Lemma 2.1: In order that a subsetK,D@0,1# be compact under the Skorokhod topology it is
necessary and sufficient thatK be bounded and closed and satisfy the condition

lim
d↓0

sup
jPK

vj~d!50, ~2.9!

wherevj~d! is defined by

vj~d!5 sup
t2d<t8<t<t9<t1d

$uj~ t8!2j~ t !u`uj~ t9!2j~ t !u%

1 sup
0<t<d

uj~ t !2j~0!u1 sup
12d<t<1

uj~ t !2j~1!u. ~2.10!

~For a proof, see Ref. 12, Chapter 9, Sec. 5, Theorem 1, or Ref. 13, Chapter 7, Theorem 6.2.!
We now use Prokhorov’s Theorem to extend the finite-dimensional distributions ofPb,x to a

measure onD@0,1#. These finite-dimensional distributions are easily obtained by integrating the
infinitesimal transition probabilities~2.6!:

Pb,x~j~ t1!5x1 ,...,j~ tn!5xn!5pt1~x,x1!pt22t1
~x1 ,x2!,...,ptn2tn21

~xn21 ,xn!, ~2.11!

where the transition probabilitiespt are given by

pt~x,x8!5 1
2 ~11xx8e2bt!. ~2.12!

Lemma 2.2:There exists a unique Radon measurePb,x onD@0,1# ~for b.0 andx561! with
finite-dimensional distributions given by~2.11! for any finite set of points 0,t1,...,tn<1 and
any corresponding set of valuesxi561, i51,...,n.

Proof: According to Prokhorov’s Theorem@see Ref. 14, Theorem 22 of Part I, Chapter I~p.
81!# it suffices to prove that, for alle.0 there exists a compact setK,D@0,1# such that
m (t1 ,...,tn)

@p (t1 ,...,tn)
(K)# > 1 2 e for all finite sets 0,t1,...,tn<1, wherem (t1 ,...,tn)

is the mea-
sure onRn defined bym (t1 ,...,tn)

@A# 5 Pb,x@(j(t1),...,j(tn)) P A# andp (t1 ,...,tn)
is the projection

given byp (t1 ,...,tn)
(j) 5 (j(t1),...,j(tn)).

~Indeed, it is easy to verify that the measuresm (t1 ,...,tn)
form an exact projective system.! The

uniqueness ofPb,x then follows from the fact that the projectionsp (t1 ,...,tn)
separate the points of

D@0,1#.
We define the setKN as follows:
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KN5$jPD@0,1#uj~ t !561 for all tP@0,1# and, for all t0P~0,1!:

if j~ t0!Þj~ t0
2! then j~ t !5j~ t0!;tP@ t0 ,t011/N!

and j~ t !5j~ t0
2!;tP~ t021/N,t0!%.

The latter condition in the definition ofKN means that all jumps inj should be at least 1/N apart.
It is now easy to see that

Pb,x@KN
c #,

b2

2N
→0 as N→`. ~2.14!

One simply divides the interval@0,1# into subintervals [(m21)/N,m/N]. There must then be at
least 2 jumps inside two adjacent subintervals. Since there areN21 pairs of such subintervals this
occurs with probability bounded by

~12~11b/N!e2b/N!~N21!,b2/2N.

~In fact this argument has to be done after projection byp (t1 ,...,tn)
. This slightly complicates

matters and will be omitted here.!
The setsKN are obviously compact by the criterion of Lemma 2.1. Indeed,KN is clearly

bounded and it is easy to see that it is also closed~this is not essential!. Moreover,vj~d!50 for all
jPKN wheneverd,1/2N. Q.E.D.

We will need the following technical result:
Lemma 2.3:Given jPD@0,1# the step functions

j~n!~ t !5 (
i50

n22

jS inD1@~ i21!/n,i /n!1jS n21

n D1@~n21!/n,1#

tend toj in the r-topology asn→`. Moreover, ifjnPD@0,1# is an arbitrary sequence tending to
j for the r-topology thenijn2ji2→0, that is, the inclusion ofD@0,1# into L2@0,1# is continuous.

Proof: The first part of this lemma is proved in Ref. 15~Theorem 1 of Chapter V, Sec. 3!. We
repeat this proof here for convenience as the second part follows the same lines. FixjPD@0,1# and
e.0. LetG~e! denote the set of pointst wherej has a jump.e, that isuj~t!2j~t2!u.e. Then there
is d.0 such thatvj~d!,e/2 by ~2.9!. This implies thatG~e! is a finite set and inft,t8PG~e!ut2t8u>d.
Now choose n.3/d. Then, if t,t8PG~e!, t8Þt and i /n,t<( i11)/n, (i22)/n>t8 or
( i13)/n,t8. We can thus definelnPH on the interval of length 3/n surroundingtPG~e! by

ln~ t !5H i21

n
1
n

2 S t2 i21

n D S t2
i21

n D if
i21

n
<t<

i11

n

t1nS t2 i21

n D S i12

n
2t D if

i11

n
<t<

i12

n
.

Everywhere else we defineln(t)5t. It is now easy to see thatuln(t)2tu<d and
uj(ln(t))2j(t)u<2vj~d!1e,2e. ~Assumingvj~d!,e/2.! This uses Lemma 3 of Ref. 12~Chapter
IX, Sec. 5! or Lemma 6.4 of Ref. 13~Chapter 7!, which says that ifj has no jumps of
magnitude.e in an interval @a,b# then uj(t8)2j(t9)u<2vj~d!1e for all t8,t9P@a,b# with
ut82t9u<d. This proves the first part of the lemma.
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For the second part of the lemma, leth.0 be given and choosee.0 such that 4e2,h2/2. Let
G~e! andd be as above and assume in addition that 8M2d,h2/2, whereM5suptP[0,1]uj(t)u. Then,
if ul(t)2tu,d2 and ut2tu>d2 for all tPG~e!, uj(l(t))2j(t)u<2vj~d!1e,2e by the above
quoted lemma, and hence

ij+l2ji2
2<E

Gd2~e!
uj~l~ t !!2j~ t !u2dt1E

Gd2~e!c
uj~l~ t !!2j~ t !u2dt

<~2M !2•2d2~1/d!1~2e!2,h2

withGd2(e) 5 $t:'t P G(e):ut 2 tu , d2%, since there are atmost 1/d pointstPG~e!.
Now assumer~jn ,j!→0. Then, givend.0, there existsn0 such that for alln>n0 there exists

lPH with ul(t)2tu<d2 and uj(l(t))2jn(t)u<d2 for all tP@0,1#. Takingd as above, and more-
over such thatd2,h then

ijn2ji2<ijn2j+li21ij+l2ji2<d21h,2h.

This proves the second part of the lemma. Q.E.D.
Having defined the measurePb,x we can now formulate the Feynman-Kac formula. In the

proof we need one more technical lemma, however.
Lemma 2.4:If f :Rn→R is a bounded continuous function then the mapj °*0

1f (j(t))dt is
continuous onL2~@0,1#,Rn!.

Proof: Suppose that (jk)k51
` is a sequence inL2~@0,1#,Rn! tending toj. Then every subse-

quence~jk
(1)! has itself a subsequence~jk

(2)! converging almost everywhere toj. It follows that
f +jk

(2) converges almost everywhere tof +j and since it is also bounded,*0
1f (jk

(2)(t))dt converges
to *0

1f (j(t))dt. Since the limit does not depend on the original subsequencejk
(1) chosen, this

means that*0
1f (jk(t))dt must converge to*0

1f (j(t))dt. Q.E.D.
Now notice that the operator (ak,1* 2 ak,2* )(ak,1 2 ak,2) occurring in the expression~2.5!

acting on the 1-particle space~at positionk! acts exactly as~12s(x)!, wheres(x) is the usual Pauli
matrix and, similarly, the operatorak,1* ak,1 2 ak,2* ak,2 acts likes(z). We now have:

Theorem 2.1: Let Pb,x be the measure defined in Lemma 2.2. Then, forx1 ,...,xn ,
x18 ,...,xn8 P $21,1% and any continuous functionf :Rn→R, we have the following integral represen-
tation:

^x18 ...,xn8uexpF2
b

2 (
k51

n

~12sk
~x!!1 f ~s1

~z! ,...,sn
~z!!G ux1 ,...,xn&

5Eb,xFexpF E
0

1

f ~j~ t !!dtG1$j:jk~1!5x
k8;k51,...,n%G , ~2.15!

whereEb,x is the expectation w.r.t. the product measurePk51
n Pb,xk

.
Proof:We can follow the first proof of@Ref. 6 ~Theorem 6.1!#. First note that

^x8uexpF2
bdt

2
~12s~x!!G ux&5pdt~x,x8! ~2.16!

@see~2.12!#. Now, by the Trotter product formula~1.15! we have
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^x18 ,...,xn8uexpF2
b

2 (
k51

n

~12sk
~x!!1 f ~s1

~z! ,...,sn
~z!!G ux1 ,...,xn&

5 lim
M→`

^x18 ,...,xn8u H ef ~s1
~z! ,...,sn

~z!
!/M)

k51

n

e2b~12sk
~z!

!/2MJ M

ux1 ,...,xn&

5 lim
M→`

(
x1

~1! ,...,x1
~M21!

561

••• (
xn

~1! ,...,xn
~M21!

561
)
i51

M H ef ~x1~ i ! ,...,xn~ i !!/M)
k51

n

p1/M~xk
~ i21! ,xk

~ i !!J
5 lim

M→`

Eb,~x1 ,...,xn!FexpF 1M (
i51

M

f S jS i

M D D G1$j:jk~1!5x
k8;k%G . ~2.17!

But

1

M (
i51

M

f S jS i

M D D5E
0

1

f ~j1
~M !~ t !,...,jn

~M !~ t !!dt

if j k
(M ) is the function defined in Lemma 2.3 and hence*f (j (M )(t))dt→* f (j(t))dt for all

jPD@0,1# by Lemma 2.4 sincejk
(M )→jk in r-topology,jk

(M )→jk in L
2 by Lemma 2.3. Moreover,

the integrand in~2.17! is dominated by exp@supuxu<iji`
u f (x)u#, so by the dominated convergence

theorem,~2.15! holds. Q.E.D.
Inserting this formula into~2.5! we obtain immediately

Corollary: Define the measureKb
(n) on D@0,1# by

Kb
~n!@F#5

1

Zn~b! (
k50

n S nkD 21

(
x1 ,...,xn561
#$ i :xi511%5k

(
x18 ,...,xn8561

#$ i :xi8511%5k

Eb,~x1 ,...,xn!
~n! FFS (

i51

n

j i~ t !D)
i51

n

1$j:j i ~1!5x
i8%G

~2.18!

for any continuous functionF:R→R, whereEb,(x1 ,...,xn)
(n) is the expectation with respect to the

n-fold product measurePi51
n Pb,xi

~dji! on D[0,1]
n, andZn~b! is a normalization factor:

Zn~b!5 (
k50

n

e2bn5
12e2b~n11!

12e2b . ~2.19!

Then the expression in the left-hand side of~1.24!, normalized to 1 forf50, is given by

Tracen e2bc* c1 f ~D!

Tracen e2bc* c 5Kb
~n!FexpS E

0

1

f ~j~ t !!dtD G . ~2.20!

There is an analogous formula for the limiting expression in~1.24!:
Theorem 2.2:Let E0 denote the expectation with respect to the Ornstein–Uhlenbeck process

measure on the continuous functionsC@0,1# with generator given byH0 @see~1.19!#. Then the
right-hand side expression of~1.24!, normalized to 1 forf50 is given by

Trace e2ba* a1 f ~a1a* !

Trace e2ba* a 5KbFexpS E
0

1

f ~q~bt !!dtD G , ~2.21!

where the measureKb is defined by
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Kb@F#5
1

Z~b! (
m50

`

E0@cm~q~0!!V0~q~0!!21F@q~• !#cm~q~b!!V0~q~b!!21#, ~2.22!

and whereZ~b! is the normalization constant given by

Z~b!5Trace e2ba* a5
1

12e2b . ~2.23!

@The ground state functionV0 and the excited-state wave functionscm are defined by~1.20! and
~1.18! respectively.#

Proof: Sincef is a bounded function,bH02 f (a1a* ) is a bounded perturbation ofbH0 and
therefore self-adjoint on the domain ofH0. We choose the particular representation fora anda*
given by ~1.21!. We can then apply the Trotter product formula and write

~fue2bH01 f ~a1a* !uc!5 lim
M→`

~fu~e2bH0 /Mef ~a1a* !/M !Muc!

5 lim
M→`

~V0uf̄~x!V0
21~x!e2bH0 /Mef ~x!/M...ef ~x!/Mc~x!V0

21~x!uV0!

5 lim
M→`

EF F f̄~q~0!!V0
21~q~0!!expS (

i51

M

f ~q~b i /M !!/M Dc~q~b!!V0
21~q~b!!D G

5EF f̄~q~0!!V0
21~q~0!!expS E

0

1

f ~q~bs!!dsDc~q~b!!V0
21~q~b!!G .

~2.24!

Here, the first identity is the Trotter product formula, the second uses the particular representation,
the third uses the fact thatH0 is the generator of the Ornstein–Uhlenbeck process~see Ref. 6,
Theorem 4.7 of Chapter II! and the fourth uses the fact that this process has continuous sample
paths~Ref. 6 Theorem 5.2 of Chapter II! and thatf is continuous and bounded.

To prove~2.21! it remains to insert the orthonormal basis$cm%m50
` . Q.E.D.

We next prove that the rescaled measuresKb
(n)[dj/An] converge toKb . For this we compute

the respective Fourier transforms as before. This is done in the next section.

III. THE FOURIER TRANSFORMS

The Fourier transform ofKb has already been computed by Feynman@Ref. 16, Sec. 3.2,
formula ~3.43!#. We shall prove his formula here in a different way:

Theorem 3.1:The characteristic function of the measureKb defined by~2.22! is given by

KbFexpS i E
0

1

u~ t !q~bt !dtD G5expH 2
1

12e2b E
0

1

dt1E
0

1

dt2
1

2
~e2but12t2u

1e2b~12ut12t2u!!u~ t1!u~ t2!J , ~3.1!

for any ~real-valued! functionuPL2@0,1#.
Proof: We first show that it suffices to prove this theorem foruPC@0,1#. Indeed, both the

right-hand side and the left-hand side are continuous inL2@0,1#. In the case of the right-hand side
this is obvious. For the left-hand side this follows from the fact thatD[0,1],L2[0,1] and the
bounded convergence theorem. We can now write
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KbFexpS i E
0

1

u~ t !q~bt !dtD G5
1

Z~b! (
m50

`
1

m!
E0FHm~q~0!!expF i E

0

1

u~ t !q~bt !dtGHm~q~b!!G .
~3.2!

To compute this we use the generating function for the Hermite polynomials: formula~1.7!. Using
the fact that (q(0),q(bt1),...,q(btM21),q(b)) is Gaussian with mean zero and covariance ma-
trix Ci , j5exp@2but i2t j u# we have, for continuous functionsu,

E0Fea1q~0!expF i E
0

1

u~ t !q~bt !dtGea2q~b!G
5 lim

M→`

E0Fea1q~0!)
i51

M

eiu~ t i !q~bt i !/Mea2q~b!G
5 lim

M→`

expH ia1

1

M (
i51

M

e2bt iu~ t i !2
1

2M2 (
i , j51

M

e2but i2t j uu~ t i !u~ t j !

1 ia2

1

M (
i51

M

e2b~12t i !u~ t i !1a1a2e
2b1

1

2
~a1

21a2
2!J

5expH ia1E
0

1

e2btu~ t !dt2
1

2 E
0

1

dtE
0

1

dt8e2but2t8uu~ t !u~ t8!

1 ia2E
0

1

e2b~12t !u~ t !dt1a1a2e
2b1

1

2
~a1

21a2
2!J . ~3.3!

Inserting~1.7! we get

(
m50

`

(
n50

`
1

n!m!
a1
ma2

nE0FHm~q~0!!expF i E
0

1

u~ t !q~bt !dtGHn~q~b!!G
5expH ia1E

0

1

e2btu~ t !dt2
1

2 E
0

1

dtE
0

1

dt8e2but2t8uu~ t !u~ t8!

1 ia2E
0

1

e2b~12t !u~ t !dt1a1a2e
2bJ . ~3.4!

Finally, we have to extract the termsm5n. First notice that

1

12e2b expH z

12e2b J 5 (
k50

`

(
n50

` S n1k
k D zn

n!
e2bk. ~3.5!

With the shorthandu15*0
1e2btu(t)dt andu25*0

1e2b(12t)u(t)dt we have

exp@ ia1u11 ia2u21a1a2e
2b#5S (

n150

`
~ iu1!

n1

n1!
a1
n1D S (

n250

`
~ iu2!

n2

n2!
a2
n2D

3S (
k50

`
~a1a2!

k

k!
e2bkD . ~3.6!
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With A 5 1/2*0
1dt1*0

1dt2e
2but12t2uu(t1)u(t2) this yields

(
m50

`
1

m!
E0FHm~q~0!!expF i E

0

1

u~ t !q~bt !dtGHm~q~b!!G
5e2A(

n50

`

(
k50

`
~n1k!!

~n! !2k!
~2u1u2!

ne2bk5
1

12e2b e2A expF2
u1u2

12e2bG , ~3.7!

which is ~3.1!. Q.E.D.
Next, we would like to find a formula for the characteristic function of the measureKb

(n). To
get an idea about the difficulty, consider the case thatu(t)5u is a constant. In that case we can
work backward and write

Kb
~n!FexpF iuE

0

1

j~ t !dtG G5
Tracen e

2bc* c1 iuD

Tracen e
2bc* c . ~3.8!

The operator2bc* c1 iuD is quadratic in the creation and annihilation operators and can be
diagonalised by means of a Bogoliubov transformation. The result is

Kb
~n!FexpF iuE

0

1

j~ t !dtG G5
sinh~A~b/2!22u2~n11!!

sinh~b~n11!/2!

sinh~b/2!

sinhA~b/2!22u2
. ~3.9!

In a sense, the general case can be reduced to this case. The result is not such a nice explicit
expression, but rather an expression involving series expansions:

Theorem 3.2:The characteristic function of the measuresKb
(n) defined by~2.18! is given by

Kb
~n!FexpF i E

0

1

u~ t !j~ t !dtG G5
1

Zn~b!

l1
n112l2

n11

l12l2
, ~3.10!

where thel6 are the eigenvalues of a 232-matrixA[u]5(Amm8[u])m,m850,1:

l65
1

2
@A001A116A~A002A11!

214A01A10# ~3.11!

and where the matrix elements are given by

A00511 (
k51

`

~21!kE
0

1

dt1E
t1

1

dt2•••E
t2k21

1

dt2ku~ t1!...u~ t2k!e
2b~ t2k2t2k211•••1t22t1!,

~3.12!

A115e2b1 (
k51

`

~21!kE
0

1

dt1E
t1

1

dt2•••E
t2k21

1

dt2ku~ t1!...u~ t2k!e
2b~12t2k1t2k212•••2t21t1!,

~3.13!

A015 i(
k50

`

~21!kE
0

1

dt1E
t1

1

dt2•••E
t2k

1

dt2k11u~ t1!...u~ t2k11!e
2b~12t2k111t2k2•••1t22t1!,

~3.14!

and
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A105 i(
k50

`

~21!kE
0

1

dt1E
t1

1

dt2•••E
t2k

1

dt2k11u~ t1!...u~ t2k11!e
2b~ t2k112t2k1•••1t32t21t1!.

~3.15!

Proof:With F~j~•!!5exp[i*0
1u(t)j(t)dt] the expectation in formula~2.18! splits into single-

particle expectations

Eb,xFexpS i E
0

1

u~ t !j~ t !dtD 1$j:j~1!5x8%G .
This is in fact more easily computed in thec-representation. We first write, assuming thatu is
continuous,

Eb,xFexpS i E
0

1

u~ t !j~ t !dtD 1$j:j~1!5x8%G
5 lim

M→`
(

x~1!,...,x~M21!
)
i51

M

^x~ i !uexpF2
b

2M
~12s~x!!GexpF iM uS i

M Ds~z!G ux~ i21!&.

~3.16!

Next we change basis in this expression fromux& to u1;m& ~m50,1!:

ux&5
1

&

~ u1;0&1xu1;1&)5
1

&

(
m50,1

~~12x!m1x!u1;m&. ~3.17!

We therefore put

Eb,xFexpS i E
0

1

u~ t !j~ t !dtD 1$j:j~1!5x8%G
5^x8uAux&5

1

2 (
m,m850,1

~~12x!m1x!~~12x8!m81x8!^1;m8uAu1;m& ~3.18!

and compute

^1;m8uAu1;m&5 lim
M→`

(
m~1!,...,m~M21!50,1

)
i51

M

^1;m~ i !uexpF2
b

2M
~12s~x!!G

3expF iM uS i

M Ds~z!G u1;m~ i21!&. ~3.19!

~As usual,m(0)5m andm(M )5m8.! Now,

expF iM uis
~z!G u1;m&'S 11

i

M
uis

~z!D u1;m&5u1;m&1
i

M
ui u1;12m&. ~3.20!

First supposem5m850. Then we must have an even number of jumps, i.e.i -values where we
choose the second term in the right-hand side of~3.35!. Thus,
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A005^1;0uAu1;0&

5 lim
M→`

H 12
1

M2 (
1< i1, i2<M

e2b~ i22 i1!/MuS i 1M D uS i 2M D
1

1

M4 (
1< i1, i2, i3, i4<M

e2b~ i42 i31 i22 i1!/MuS i 1M D uS i 2M D uS i 3M D uS i 4M D 1•••J . ~3.21!

This is just ~3.12!. Notice that the series converges foruPL2@0,1# since
uA00u<(k50

` [ iui2
2k/(2k)!]5coshiui2. The other expressions are derived in a similar manner.

It is easy to see, either by direct transformation or by redoing the derivation of~1.16! in the
new basis, that

Kb
~n!FexpF i E

0

1

u~ t !j~ t !dtG G5
1

Zn~b! (
k50

n S nkD 21

(
m1 ,...,mn50,1

(mi5k

(
m18 ,...,mn850,1

(mi85k

)
i51

n

Ami ,mi8
.

~3.22!

We can transformA to Jordan normal form~see Ref. 17. Theorem 6.4.7 or Ref. 18, Sec. 7.3!

A5SJS21, where J5S l1 0

1 l2
D ~3.23!

and then transform~3.22! again to obtain

Kb
~n!FexpF i E

0

1

u~ t !j~ t !dtG G5
1

Zn~b! (
k50

n S nkD 21

(
m1 ,...,mn50,1

(mi5k

(
m18 ,...,mn850,1

(mi85k

)
i51

n

Jmi ,mi8

5
1

Zn~b! (
k50

n

l1
k l2

n2k , ~3.24!

which is just~3.10! sincel6 are the eigenvalues of the matrixA given by ~3.11!. Q.E.D.
Remark: This theorem gives rise to some interesting integral identities. For example, notice

that by ~3.18!,

Trace A@u#5 (
x561

Eb,xFexpS iuE
0

1

j~ t !dtD 1$j;j~1!5x%G ~3.25!

and by~2.15!,

Trace A@u#5Trace e2~b/2!~12s~x!!1 ius~z!
52e2b/2 coshAS b

2
D 22u2. ~3.26!

Inserting the expressions forA00 andA11 we obtain

coshAS b

2 D 22u25 (
k50

`

~21!kE
0

1

dt1E
t1

1

dt2•••E
t2k21

1

dtk

3cosh@b~ 1
2 1t12t21•••1t2k212t2k!#. ~3.27!
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Replacingb/2 by b and taking thek-th term in the Taylor expansion inu2 we get

E
0

1

dt1E
t1

1

dt2•••E
t2k21

1

dt2k cosh@b~112~ t12t21•••1t2k212t2k!!#5
1

k! S d

db2D k coshb.

~3.28!

@This can also be derived by means of the Dyson expansion of the second trace in~3.26!.#

IV. PROOF OF THE MAIN THEOREM

To complete the proof of Theorem 1.2 we shall show that it suffices to show that the Fourier
transforms of the measuresKb

(n) converge to those ofKb after replacingu and by u/An.
The convergence of the Fourier transforms is easy to see since, for largen,the revised matrix
Ã@u# 5 A@u/An# behaves as follows:

Ã00;12
1

n E
0

1

dt1E
t1

1

dt2e
2b~ t22t1!u~ t1!u~ t2!1O ~n22!, ~4.1!

Ã11;e2b2
1

n E
0

1

dt1E
t1

1

dt2e
2b1b~ t22t1!u~ t1!u~ t2!1O ~n22!, ~4.2!

Ã01;
i

An
E
0

1

dte2b1btu~ t !1O ~n23/2!, ~4.3!

and

Ã10;
i

An
E
0

1

dte2btu~ t !1O ~n23/2!. ~4.4!

This leads to

l̃ 1;12
1

n

1

12e2b E
0

1

dt1E
t1

1

dt2u~ t1!u~ t2!@e
2b~ t22t1!1e2b1b~ t22t1!# ~4.5!

and

l̃ 2;e2bH 11
1

n

1

12e2b E
0

1

dt1E
t1

1

dt2u~ t1!u~ t2!@e
2b~ t22t1!1e2b1b~ t22t1!#J . ~4.6!

If we put

R5E
0

1

dt1E
t1

1

dt2u~ t1!u~ t2!@e
2b~ t22t1!1e2b1b~ t22t1!#, ~4.7!

then we have

l̃1
n11;S 12

1

n

1

12e2b RD n11

→expF 1

12e2b RG ,
l̃2;e2b~n11!→0, ~4.8!
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and l̃12l̃2→12e2b and therefore

l̃ 1
n112l̃2

n11

l̃12l̃2

→
1

12e2b
expF2

1

12e2b
RG . ~4.9!

As, moreover,Zn(b)→(12e2b)21, this proves the convergence of the Fourier transforms.
To prove that the weak convergence of the measures follows from the convergence of the

corresponding Fourier transforms we need some detailed estimates. A sufficient condition was
formulated by Smolyanov and Fomin.19 According to this condition it suffices that the Fourier
transforms are equicontinuous with respect to the so-called Sazonov topology. In the present
Hilbert space context this means that for alle.0 there should exist a sequence$lk%k50

` P l 2 such
that

(
k50

`

lk
2uk

2,1⇒U12Kb
~n!FexpF i E

0

1

u~ t !j~ t !dtG GU,e, ~4.10!

where $uk%k50
` are the components ofu with respect to some orthonormal basis ofL2@0,1#.

Unfortunately, this condition seems hard to check in the present case. We therefore use a more
direct approach, starting from one of their main lemmas~Ref. 19, Lemma 2 of Sec. 4!. We repeat
the proof here for completeness:

Lemma 4.1: Suppose thatm is a Radon probability measure onRM and assume that, given
e.0, there existslPRM such that

(
i51

M

l i
2ui

2<1⇒u12Re m̃@u#u<e ~4.11!

wherem̃ denotes the characteristic function ofm. Then, for allh.0 and withc5~12e21/2!21,

m$j:iji2>h%<cS e1
2

h2 ili2
2D . ~4.12!

Proof: Notice first that ifiji>h thenc~12exp@21/2iji2/h2#!>1. It follows that if nh is the
Gaussian measure onRM with covarianceh221,

m$j:iji>h%<cE
RM

S 12expF2
1

2
iji2/h2G Dm~dj!

5cE
RM

nh~du!E
RM

@12ei ~j,u!#m~dj!

5cE
RM

nh~du!@12Re m̃@u##. ~4.13!

The latter integral can be split into one over the region where( i51
M l i

2ui
2<1 and one over the

complementary region. The first is bounded bye by the assumption~4.11!. In the second we
simply bound 12Rem̃[u] by 2. The integral over the region where( i51

M l i
2ui

2.1 is thus bounded
by

2nhH uPRM:(
i51

M

l i
2ui

2.1J <2(
i51

M

l i
2E ui

2nh~du!52h22(
i51

M

l i
2. ~4.14!

This proves the lemma. Q.E.D.
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We now use this lemma directly to prove Prokhorov’s condition for the weak convergence of
measures. This condition holds quite generally but is particularly easy to prove on Hilbert spaces:

Lemma 4.2: In order that the measuresKb
(n) converge weakly toKb it suffices that for all

e.0, there exists a compact setK,L2@0,1# such thatKb
(n)[K].12e uniformly in n.

Proof: Suppose that this condition is fulfilled. Then, givenFPC b(L2[0,1]) ande.0, letK be
compact such thatKb

(n)[Kc]<e/12iFi` and the same forKb . Now,F is uniformly continuous on
K so there existsd.0 such that if ij2j8i2,d then uF(j)2F(j8)u,e/6. Moreover, a set
K,L2@0,1# is compact if and only if it is bounded and closed and, in a given orthonormal basis
$hp%p50

` , for any givend.0 there exists an integerM such that( r5M
` u(j,hp)u

2,d2 for all jPK.
Now letpM be the projectionpM :L

2@0,1#→ RM given bypM(j)5((j,h0),...,(j,hM21)) and let
pM~Kb

(n)! be the image measure. ThenpM~Kb
(n)!→pM~Kb! because the corresponding character-

istic functions converge. It follows that there isn0 such that forn>n0 ,

U E F+pMdKb
~n!2E F+pMdKbU,e/3.

Also, ipM~j!2ji2,d and henceuF(pM(j))2F(j)u,e/6 for all jPK. Thus, forn>n0 ,

U E FdKb
~n!2E FdKbU<U E

K
FdKb

~n!2E
K
FdKbU1U E

Kc
FdKb

~n!U1U E
Kc
FdKbU

<U E
K
F+pMdKb

~n!2E
K
F+pMdKbU1 e

3
12iFi`

e

12iFi`
<U E F+pMdKb

~n!2E F+pMdKbU
12iFi`

e

12iFi`
1

e

3
1

e

6
,e. ~4.15!

This proves the lemma. Q.E.D.
Theorem 4.1:The measuresKb

(n) converge weakly toKb as measures onL
2@0,1#.

Proof: According to the previous lemma it suffices to prove that, for anye.0, there exists a
compact setK,L2@0,1# such thatKb

(n)[K].12e uniformly in n. We shall define this set in terms
of the Haar basishpPL2@0,1# ~p50,1,2,...! defined by:h0(t)51 and

hp~ t !55
2m/2, if p22m21<t,S p1

1

2D22m21;

22m/2, if S p1
1

2D22m21<t<~p11!22m21;

0, otherwise.

~4.16!

We now define the setK as follows:

Kd5H jPL2@0,1#u (
p52m

2m1121

u~j,hp!u2<hm;m>0 and u~j,h0!u<CJ , ~4.17!

wherehm5d23/222m/8 andC is a constant depending one and whered~e! will be determined
later. It is easy to see that this set is compact inL2@0,1#. To prove that the complement of this set
has small measure we shall use Lemma 4.1 above for each value ofm individually. We therefore
need to estimate the characteristic functions of the image measuresmm

(n)5p (m)~Kb
(n)!, wherep(m)

is the projection ofL2@0,1# onto the span of$hp ;p52m,...,2m1121%. We first estimateÃ00[u]
with uPp (m) ~L2@0,1#!. Introducing new variables

4679T. C. Dorlas: A non-commutative central limit theorem

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



si52m11H t i2S p1
1

2D22m21J ~4.18!

and definingbm522m21b we have

Ã00@u#511 (
k51

`
~21!k

nk
2mk222k~m11! (

l51

2k`2m

(
r1 ,...,r l>1

(r i52k

(
2m<p1,•••,pl,2m11

)
i51

l

$upi
r i I m,r i

6 %,

~4.19!

whereup5(hp ,u) and

I m,r
6 5~21!rE

21

1

ds1E
s1

1

ds2•••E
sr21

1

dsr)
i51

r

sgn~si !exp@6bm~sr2sr211•••1~21!r21s1!#

~4.20!

and where the1 or 2 sign is chosen according as to whether( j51
i r j is odd or even. We estimate

I m,r
6 simply as follows. First note that ifgi ,i51,...,r , are odd functions then

E
21

1

ds1E
s1

1

ds2•••E
sr21

1

dsr)
i51

r

gi~si !50. ~4.21!

@This follows from the fact that ifg(s) is odd thenG(s)5*s
1g(s8)ds8 is even.# With

gi(s)5sgn(s) we have thatI m,r
6 ub5050 and subtracting this fromI m,r

6 and using the estimates
uebms2 1u , bmusuebmusu andusr2sr211•••1(21)r21s1u<2wehave

uI m,r
6 u<2bme

2bmE
21

1

ds1E
s1

1

ds2•••E
sr21

1

dsr15
2r11bme

2bm

r !
. ~4.22!

Inserting this into~4.16! we obtain

uÃ00@u#21u<(
k51

`
1

nk
22~m12!k (

l51

2k`2m

(
r1 ,...,r l>1

(r i52k

)
i51

l
2r i11bme

2bm

r i !
(

2m<p1,•••,pl,2m11
)
i51

l

uupiu.

~4.23!

Next we use the fact that, for r>2, (puupu
r<((puupu

2) r /25iui2
r and

22m/2(puupu<((puupu
2)1/25iui2 to bound this by

uÃ00@u#21u<(
k51

`
1

nk
22mkebb2k (

l51

2k`2m

22ml/2 (
r1 ,...,r l>1

(r i52k

S )
i51

l

r i ! D 21
1

l !
iui2k. ~4.24!

Extending the sum overl to infinity this yields

uÃ00@u#21u<eb(
k51

`
22mkb2k

nk (
l51

`
22ml/2l 2k

~2k!! l !
iui2

2k<eb(
l51

`
1

l ! H coshS b

An
22m/2iui2l D 21J

< 1
2 e

b$exp~ebn21/222m/2iui2!1exp~e2bn21/222m/2iui2!22e%. ~4.25!
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In Lemma 4.1 we shall takel to be the vector with componentsd2122m/4 with respect to thehp
with 2m<p<2m1121 and 0 with respect to the others. Thusiui2<d2m/4 and hence

uÃ00@u#21u;O S 1n 22miui2
2D5O ~22m/2!d2 ~4.26!

uniformly in n. In the same way we find that

uÃ11@u#2e2bu;O S 1n 22miui2
2D5O ~22m/2!d2. ~4.27!

An analogous calculation also yields

uÃ01@u#u<
1

2An
eb$exp~ebn21/222m/2iui2!2exp~e2bn21/222m/2iui2!%

;O S 1n 22m/2iui2D<O ~22m/4!d ~4.28!

and similarly

Ã10@u#;O S 1n 22m/2iui2D<O ~22m/4!d. ~4.29!

Inserting in the expression for the eigenvaluesl̃6 it follows that

l̃1;11O ~d22m/2! ~4.30!

and

l̃2;e2b1O ~d22m/2! ~4.31!

and hence

cm@u#5p~m!~Kb
~n!!@exp@ i ~j,u!##;11O ~d22m/2!, ~4.32!

uniformly in n.
Using Lemma 4.1 above withhm5d23/222m/8 andem5dO ~22m/2! we have

Kb
~n!@ ip~m!~j !i2.hm#<c~dm12hm

22lm
2 !;d$O ~22m/2!1O ~22m/4!%. ~4.33!

Adding probabilities we now have that

Kb
~n!@Kd#<d (

m50

`

O ~22m/4!,e ~4.34!

for d small enough. Q.E.D.
To complete the proof of Theorem 1.2 it now suffices to remark that the weak convergence of

measures means that the expectation of bounded continuous functions converges and*0
1f (j(t))dt

is continuous as a function ofjPL2@0,1# because of Lemma 2.4.@Notice also that the denominator
of ~2.20! converges trivially to that of~2.21!.#
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The limit transition q˜1 of the q -Fourier transform
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The behavior of theq-Fourier transformation asq→1 is investigated. It is shown
that theq-Fourier transformation converges to the classical Fourier transformation
in the strong operator topology. ©1996 American Institute of Physics.
@S0022-2488~96!02608-4#

I. INTRODUCTION

Theq-Fourier transformation is regarded as theq analog of the classical Fourier transforma-
tion. It arises as a special case in the context ofq-hypergeometric functions and was defined in a
paper by Koornwinder and Swarttouw.1 As it can be inferred from its name, theq-Fourier trans-
formation reduces to the usual Fourier transformation asq→1. The rigorous proof is of interest
both from a mathematical as well as from a physical point of view. The physical importance of the
limit transition is due to the fact that theq-Fourier transformation turns out to be the appropriate
object when dealing withq-deformed quantum mechanics. In a paper of Hebeckeret al.2 the
representations of aq-deformed Heisenberg algebra were investigated. The transition from mo-
mentum to position eigenstates and vice versa is carried out by means of theq-Fourier transfor-
mation. Thus, the analysis of the limit transition of theq-Fourier transformation is strongly related
to the question of compatibility of theq-deformed theory with the classical quantum mechanics.

In the second section of this paper, theq-Fourier transformation is introduced in a slightly
modified version with respect to Ref. 1. Theq-Fourier transformation is defined on a particular
space of functions, the spaceLq,p0

2 of square-summable functions on the set$p0q
nunPZ%. In the

third section, a possibility of defining theq-Fourier transformation onL2~R1! is presented. This
will enable a rigorous limit transitionq→1, which is the subject of the fourth section.

II. DEFINITION OF THE q-FOURIER TRANSFORMATION

To start, some definitions and results of Koornwinder and Swarttouw1 are stated. In their
paper, the followingq-deformed cosine and sine functions were defined:

cos~z;q2!5 (
k50

`
~21!kqk~k11!z2k

~q;q!2k
,

~2.1!

sin~z;q2!5 (
k50

`
~21!kqk~k11!z2k11

~q;q!2k11
,

whereqPR1, 0,q,1, is the parameter of deformation, and

~a;q!k5 )
n50

k21

~12aqn!, ~a;q!051, ~a;q!`5 )
n50

`

~12aqn!.

As q→1, the limits

lim
q→1

cos„~12q!z;q2…5cosz, lim
q→1

sin„~12q!z;q2…5sin z, ~2.2!

0022-2488/96/37(9)/4683/7/$10.00
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hold pointwise, uniformly on compacta. In the sequel, the discussion is restricted to the cosine
function, the results being analogous for the sine function. Theq-deformed cosine function satis-
fies the orthogonality relation,

(
n52`

`

qn cos~qnqk;q2!cos~qnql ;q2!5
~q2;q2!`

2

~q;q2!`
2

1

ql
dkl . ~2.3!

The goal is now to define aq-deformed Fourier transformation that formally tends to its classical
analog asq→1. According to the limit transitions~2.2!, the q-Fourier transformation has to be
based on the function

Cos~qk;q2!:5cos„~12q!qk;q2…5 (
k50

`
~21!kqk~k11!~12q!2kz2k

~q;q!2k
. ~2.4!

This function obeys an orthogonality relation similar to~2.3!, but only if the range of the param-
eterq is seriously restricted.

Lemma 2.1:For qP$qu(12q)5qj , jPZ% the following identity holds:

(
n52`

`

qn Cos~qnqk;q2!Cos~qnql ;q2!5
~12q!~q2;q2!`

2

~q;q2!`
2

1

ql
dkl . ~2.5!

Proof: The relation is obtained from~2.3! by replacingm1 j for n. The restriction on the
allowed values ofq is due to the fact that the sum(n52`

` qn cos(qaqn;q2)cos(qaqn;q2) diverges
for a¹Z ~see Ref. 3!. h

Theq-deformed Fourier transformation will now be defined.
Definition 2.2: Let f be a function in the spaceLq,p0

2 , with p0PR1 and

Lq,p0

2 :5$ f ui f iq,p0
,`%, i f iq,p0

:5A (
n52`

`

qnu f ~p0q
n!u2.

For q in $qu(12q)5qj , jPZ%, the q-Fourier transformationF q,p0
is given through the

transform pair

g~p0
21qk!5~F q,p0

f !~p0
21qk!5N q (

n52`

`

~12q!p0q
n Cos~qnqk;q2! f ~p0q

n!,

f ~p0q
n!5~F q,p

0
21g!~p0q

n!5N q (
k52`

`

~12q!p0
21qk Cos~qnqk;q2!g~p0

21qk!,

where

N q5
~q;q2!`

A~12q!~q2;q2!`

.

F q,p0
is an isomorphy betweenLq,p0

2 andLq,p
0
21

2
:

(
k52`

`

qkug~p0
21qk!u25p0

2 (
n52`

`

qnu f ~p0q
n!u2. ~2.6!

4684 M. Fichtmüller and W. Weich: Limit transition q→1 of the q-Fourier transform

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



III. THE DIRECT FIBER INTEGRAL OF Lq,p0

2

The problem in trying to carry out a rigorous limit transition is obvious. The metrics of
Lq,p0

2 andL2~R1,dx! are essentially different. Furthermore, the metrics of all the spacesLq,p0

2 are

not equivalent for different values ofq. The only way to consistently overcome this difficulty is
provided by the direct fiber integral. The continuous direct sum of the spacesLq,p0

2 for a fixed

value ofq will be seen to be the spaceL2~R1,dx!. Theq-Fourier transformation is then extended
to L2~R1,dx! in a natural way.

Definition 3.1:The direct fiber integral4,5 is defined through

Hq :5E
~q,1#

%

Lq,m
2 dm,

that is
Hq5$ f u f mPLq,m

2 f.a.e.m, f Lebesgue-meas. andi f iHq
: 5 (*q

1i f miq,m
2 dm)1/2, `%. f m ~or f!

is the restriction off to the corresponding lattice points.
Lemma 3.2:Hq5L2~R1,dx!.
Proof: Let f be a function inL2~R1,dx!. Then the identities

i f iL2
2

5E
0

`

u f ~x!u2 dx5 (
n52`

1` E
qn11

qn

u f ~x!u2 dx5 (
n52`

1`

qnE
q

1

u f ~mqn!u2 dm

5E
q

1

(
n52`

1`

qnu f ~mqn!u2 dm5E
q

1
i fiq,m

2 dm5i f iHq

2 ,

hold and thusfPHq as well. From the second to the third line, a simple substitution is made and
from the third to the fourth line Fubini’s theorem applied@(qn is an integral with the discrete
measures(qn)5qn, and for f to be Lebesgue measurable is equivalent to being measurable with
respect to~q,1]3$qnunPZ%#. If f is a function inHq , then all the identities can be reversed and
thereforefPL2~R1,dx!. h

Definition 3.3:The q-Fourier transformationF q is defined onL2~R1,dx! through the direct
fiber integral of the transformationsF q,p0

:

F q5E
~q,1#

%

F q,m dm, ~F qf !m215F q,mfm .

Lemma 3.4:F q is unitary.
Proof: This is a consequence of~2.6!,

igiq,p
0
215p0i fiq,p0

.

Therefore

igqiHq

2 5E
q

1
igqiq,m

2 dm5E
1

q21 1

s2
igqiq,s21

2 ds5E
1

q21

i fiq,s
2 ds5E

q

1 1

q
i fiq,q21t

2 dt

5
~* !E

q

1
i fiq,t

2 dt5i f iHq

2 .

Equation~* ! is due to
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1

q
i fiq,q21t

2
5 (

k52`

`

qk21uf~ tqk21!u25i fiq,t
2 .

h

IV. THE LIMIT TRANSITION q˜1

Our goal is to prove the convergence of theq-Fourier transformationF q to the classical
Fourier transformationF in the strong operator topology,

F q→s F , ~4.1!

that is for any functionfPL2,

iF f2F qf i→0, as q→1. ~4.2!

In other words, it has to be shown that theq-deformed Fourier transform converges to the classical
Fourier transform in theL2 norm. We denote the classical Fourier transform by

g~l!:5~F f !~l!5A2

pE cos~lx! f ~x!dx,

and theq-deformed transform by

gq~l!:5~F qf !~l!5~F q,m~l!f!~l!5N q (
n52`

`

~12q!m~l!qn Cos~qk~l!qn;q2!f„m~l!qn…

5gq~m~l!21qk~l!!.

As enforced by the direct fiber integral, all functions are considered to be defined onR1, the
corresponding lattice for eachl is determined throughl5[1/m(l)]qk(l), with q,m(l)<1 and
k(l)PZ. The proof is carried out in two steps. First, the uniform convergence on compacta is
proven for functions inCc~R

1!, the set of continuous functions with compact support. This
implies convergence on compacta in theL2 norm. Second, the convergence onR1 for functions in
Cc~R

1! is proven. This implies the convergence for any function inL2, Cc~R
1! being dense inL2.

A. Uniform convergence on compacta

Let f be in the sequel a function inCc~R
1!, the support being contained in the interval [0,K].

The convergence will be investigated on a compactum that is bounded byM.1. The series
(qj ) jPN is fixed through the condition (12q)5qj . It is observed that

lim
j→`

qj51.

It has to be proven that

ug~l!2gqj~l!u→0, for j→`, ~4.3!

uniformly for l,M . The normalization factorN q is known to converge toA2/p asq→1 ~see
Ref. 1!. Using the triangle inequality, the Jackson integral of cos(lx) f (x) is inserted to obtain
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uN qj
21gqj~l!2Ap/2g~l!u

5U E cos~lx! f ~x!dx2 (
n52`

`

~122qj !m~l!qj
n Cos~qj

nqj
k~l! ;qj

2!f~m~l!qj
n!U

<U E cos~lx! f ~x!dx2m~l!E cos„lm~l!x…f~m~l!x!dqjxU
1U (

n52`

`

~12qj !m~l!qj
n$Cos~qj

nqj
k~l! ;qj

2!2cos~qj
nqj

k~l!!%f~m~l!qj
n!U. ~4.4!

Regarding the second term of the right side of~4.4!, it is noted that the support of the cosine
functions is bounded byM•K:5K8, since the support off is in [0,K]. From ~2.2! follows that for
each positive numbere there is an integerNe , such that

max
z<K8

uCos~z;qj
2!2cos~z!u,e, for all j.Ne ,

and the whole term is bounded by

em~l!E
@0,K#

f„m~l!x…dqjx.

Because offPCc~R
1!, there is a constantC, such thatu f (x)u,C for all xPR1, thus

em~l!E
@0,K#

f„m~l!x…dqjx<eCm~l!E
@0,K#

dqjx5eCK.

e was an arbitrary number and the term under consideration converges uniformly to zero asj
becomes infinite.

The uniform convergence of the first term is proven, if for eache.0 there is ad.0 such that
u* cos(lx) f (x)dx2m(l)* cos„lm(l)x…f„m(l)x…dqxu,e for l<M and 12d,q,1. The inte-
gral * cos(lx) f (x)dx is written as(n52`

` qn*qm(l)
m(l) cos(lsqn)f(sqn)ds. According to the mean

value theorem of integration there are valuess8(n)P„qm(l),m(l)…, such that

E
qm~l!

m~l!

cos~lsqn!f~sqn!ds5m~l!~12q!cos„ls8~n!qn…f „s8~n!qn….

The continuous functions cos andf are uniformly continuous on the compactum [0,K8]. Thus
there is for each numbere.0 a numberd.0 such thatucosx2cosyu,e and u f (x)2 f (y)u,e if
x,yP[0,K8] and ux2yu,dK8. Observe that uls8(n)qn2lm(l)qnu,dK8 and
us8(n)qn2m(l)qnu,dK8 if 12d,q,1. Put e.0 and find ad.0 as described above. For
12d,q,1, the inequalities
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U E cos~lx! f ~x!dx2m~l!E cos„lm~l!x…f„m~l!x…dqxU
5U (

n52`

`

m~l!~12q!qn~cos„ls8~n!qn…f „s8~n!qn…2cos„lm~l!qn…f „m~l!qn…!U
< (

n52`

`

m~l!~12q!qn$u~cos„ls8~n!qn!2cos„lm~l!qn…! f „s8~n!qn…u

1ucos„lm~l!qn…~ f „s8~n!qn…2 f „m~l!qn…!u%

< (
n52`

`

m~l!~12q!qn$eu f „s8~n!qn…u1eucos„lm~l!qn…u%

<eK~C11!,

follow and the proof of uniform convergence is completed.

B. Convergence in the strong operator topology

Of course,L2 convergence on compacta does not in general implyL2 convergence onR1. In
the present case, an additional condition is satisfied, namely that all the functions in the series have
the same norm as the function they are converging to on compacta. This feature is due to the
unitarity of both the classical and theq-deformed Fourier transformation:

igiL25i f iL25igqjiL2, ; jPN. ~4.5!

Proposition 4.1:Let (gn)nPN be a series of functions inL
2~R!, such that for every compactum

K ig 2 gniL2(K)→0 asn→`. Let igniL2(R) 5i giL2(R) , ;nPN. Then

ig2gniL2~R!→0, as n→`. ~4.6!

Proof: Put 1.e.0 andigi51. Then there is a compactumBe , such that

igiL2~Be!5S E
Be

ug~p!u2 dpD 1/2>12
e2

36
. ~4.7!

In addition, there is a numberNe , so that

ig2gniL2~Be!<
e2

36
, ;n>Ne . ~4.8!

Because of~4.8!, the norm ofgn overBe is bounded from below for eachn>Ne :

igiL2~Be!<ig2gniL2~Be!1igniL2~Be!<igniL2~Be!1
e2

36
,

⇒igniL2~Be!>igiL2~Be!2
e2

36
>

~4.7!

12
e2

18
~4.9!

~CBe is the complement ofBe in R1!. SinceigniL2(Be)
2

1i gniL2(CBe)
2

5 1, it follows that
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igniL2~CBe!5A12igniL2~Be!
2 <A12S 12

e2

18D
2

<
e

3
. ~4.10!

From ~4.7!, the analogous relation forg is

igiL2~CBe!5A12igiL2~Be!
2 <A12S 12

e2

36D
2

<
e

3
, ~4.11!

and finally

ig2gniL2~R1!<ig2gniL2~Be!1ig2gniL2~CBe!

<ig2gniL2~Be!1igiL2~CBe!1igniL2~CBe!

<
e2

36
~4.8!

1
e

3
~4.11!

1
e

3
~4.10!

<e for all n>Ne . ~4.12!

Sincee was arbitrary, the proof is completed. h

Applying the above proposition to the present case, wheref is still restricted to be inCc~R
1!,

results in

i~F 2F qj
! f iL25ig2gqjiL2→0, as j→`. ~4.13!

To show that the same holds forf in L2~R1!, let (f n)n,Cc~R
1! be a series withi f 2 f niL2→0 as

n→`. Put e.0. There is an integern, such thati( f 2 f n)iL2 , e/3. Due to~4.13!, there is an
integerN, such thati(F 2 F qN) f niL2 , e/3. Therefore,

i~F 2F qN
! f iL2<i~F 2F qN

!~ f2 f n!iL21i~F 2F qN
! f niL2

<iF 2F qN
ii~ f2 f n!iL21i~F 2F qN

! f niL2

<2i~ f2 f n!iL21i~F 2F qN
! f niL2

,e. ~4.14!

Thus, the proof of the strong convergence of theq-Fourier transformation to the classical
Fourier transformation is complete. In the strong operator topology, theq-Fourier transformation
emerges as a ‘‘continuous’’ deformation of the classical Fourier transformation. It is emphasized
that the deformation is not continuous in the proper sense, since the allowed values ofq were
restricted to a discrete set.
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The Hartley transform~HT! of a functiong(x)PL2@2`,`# is given by

gH~y!5E
2`

`

g~x!„cos~xy!1sin~xy!…dx, yP@2`,`#. ~1!

The properties and applications of this transform can be found in Ref. 1. In particular, the inver-
sion formula takes the form of the simple reciprocity relation,

g~x!5E
2`

`

gH~y!„cos~xy!1sin~xy!…dy. ~2!

Actually, we are concerned about the inversion formula for the half-Hartley transform~h-HT!,
which is defined as

gh~y!5E
0

`

g~x!„cos~xy!1sin~xy!…dx, yP@0,̀ #. ~3!

The reciprocity relation, Eq.~2!, is no longer satisfactory in this case, since its use requires us to
know the functiongh(y) in the whole interval@2`,`#.

Recently, Paveri-Fontana and Zweifel2 have obtained an inversion formula for the h-HT by
reducing the problem to invert the half-Hilbert transform. This last problem involves, in its turn,
the solution of the homogeneous Riemann–Hilbert problem. With relation to the method of
Paveri-Fontana and Zweifel, also see the work by Pagani.3

In this paper we solve the integral equation~3! by following a different way. Multiplying both
terms of Eq.~3! by 1/&, it can be rewritten as

1

&

gh~y!5E
0

`

g~x!sinS xy1
p

4 Ddx, ~4!

which, recalling the integral representation,4

sinS xy1
p

4 D5Ay

pEx
` sin~uy!

Au2x
du, x,y.0, ~5!

yields

a!Also at the Grupo de Aplicaciones Matema´ticas y Estadı´sticas de la Facultad de Ingenierı´a ~GAMEFI!—Departamento de
Fisicomatema´tica, Facultad de Ingenierı´a, Universidad Nacional de La Plata, La Plata, Argentina.

b!Electronic-mail: vericat@iflysi.edu.ar
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gh~y!5A2y

p E
0

`

g~x!dxE
x

` sin~uy!

Au2x
du ~6!

or

Ap

2y
gh~y!5E

0

`

sin~uy!duE
0

u g~x!

Au2x
dx. ~7!

By Fourier inverting this equation, we get an Abel integral equation:

E
0

u g~x!

Au2x
dx5F sFgh~y!

Ay G , ~8!

where

F s@ f ~y!#~u![A2

pE0
`

f ~y!sin~uy!dy. ~9!

The solution of~8! yields ~see, for example, Ref. 5!:

g~x!5
1

p

d

dx E0
xF s@gh~y!/Ay#

Ax2u
du, ~10!

which is a formally simple expression for the inversion formula of the half-Hartley transform.
We apply formula ~10! to invert a couple of functions. First we consider

gh(y)5(2p/y)1/2(y.0), which is the half-Hartley transform ofg(x)5x21/2. In fact, we have6

F s[gh(y)/Ay#5p and hence*0
xg(u)du5*0

x(x2u)21/2 du52x1/2. The second example is that
given in Sec. V of Ref. 2. The function to half-Hartley invert isgh(y)5e2ay, a.0, y.0. The
Fourier sine transform in the integral of Eq.~10! can be written as

F sFgh~y!

Ay G52
i

&

F 1Az2
1

Az̄G , ~11!

where i is the imaginary unity,z5a2 iy , and z̄ denotes the complex conjugate ofz. Thus, the
integral yields the difference between two hypergeometric functions:7

E
0

x F s@gh~y!/Ay#

Ax2u
du52

i 1/2

&

sH 2F1S 12,1; 32 ;s2D22F1S 12,1; 32 ;2s2D J
52

i 1/2

&

H lnF ~11s!

~12s!G
1/2

2arctan~s!J , ~12!

with s25 ix/a. By derivating this equation we recover the result of Ref. 2:

g~x!5
1

p

A2ax

a21x2
, x.0. ~13!
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Two types of determinant representations of the rational solutions for the Painleve´
II equation are discussed by using the bilinear formalism. One of them is a repre-
sentation by the Devisme polynomials, and another one is Hankel determinant
representation. They are derived from the determinant solutions of the KP hierarchy
and Toda lattice, respectively. ©1996 American Institute of Physics.
@S0022-2488~96!04209-0#

I. INTRODUCTION

The six Painleve´ transcendents are now regarded as the nonlinear version of the special
functions and hence the Painleve´ equations are the most fundamental integrable systems in some
sense. It is known that the Painleve´ transcendents cannot be expressed by the solutions of linear
equations, except for two classes of solutions, namely, special function solutions and rational
solutions. The Painleve´ II equation~PII!

d2

dz2
v52v324zv14a, ~1!

is the simplest equation that admits such solutions among the Painleve´ equations. In fact, it is
known that it admits one parameter family of Airy function solutions fora being half odd integers,
and only one rational solutions for each integera1 and it has no other classical solution.2

It is well known that the Painleve´ equations can be derived from the similarity reduction of
various soliton equations.3 In particular, PII can be reduced from the modified KdV equation. A
systematic study of the rational solutions was done by Airault,4 who constructed the Ba¨cklund
transformation of PII from the similarity reduction of the modified KdV equation. On the other
hand, Okamoto revealed that the Ba¨cklund transformations of Painleve´ equations are given by the
Toda lattice equation. For the KP and Toda lattice hierarchies, the solutions are described by the
Wronski determinants. The Painleve´ equations are deeply connected with the KP and Toda,
therefore a question naturally arising is what is the structure of the solutions of Painleve´ equations.
Actually for the special function type solutions of Painleve´ equations, it is known that they are
expressed by Wronskians whose entries are given by special functions. Such Wronskians are
called thet function. Here, we note thatt functions are originally defined for arbitrary values of
parameters through the Hamiltonians of the Painleve´ equations.1,5 This Wronskian structure of the
solutions is quite similar to that for the soliton equations. Hence we expect that the rational
solutions also have such a structure. Many studies have been done for the rational solutions, but
curiously, it seems that the determinant structure of solutions itself has not been well discussed.
This situation motivates us for studying the relationship of the solutions of the Painleve´ equations
and integrable PDE.

In this article, we present the determinant representations for the rational solutions of PII and
clarify how those solutions are reduced from thet functions of the KP hierarchy and Toda lattice.

0022-2488/96/37(9)/4693/12/$10.00
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We present two types of determinant representations. One is directly derived from the Schur
polynomials, namely the algebraic solutions for the KP hierarchy, by applying a reduction proce-
dure. Entries of the determinant are expressed by the Devisme polynomials.6,7 This reduction
exactly corresponds to the derivation of PII from the modified KdV equation. The bilinear form for
PII is nothing but the bilinear first Ba¨cklund transformations of the KP hierarchy. Another one is
a Hankel determinant representation which is derived from the Hankel determinant solution of the
B-type Toda lattice equation.8 In this case, the Toda lattice is corresponding to the Ba¨cklund
transformation ladder of the solutions of PII .

In Sec. II, the bilinearization of PII is presented. We give a brief review of the algebraic
solutions for KP and KdV hierarchies in Sec. III. In Sec. IV, we give the derivation of the rational
solutions for PII from the Schur polynomials. In Sec. V, we briefly summarize the determinant
solution for the B-type Toda lattice equation. The Hankel determinant representation of the ratio-
nal solutions is presented in Sec. VI. Section VII is devoted to concluding remarks.

II. BILINEAR FORM FOR P II

By using the dependent variable transformation,

v5
d

dz
log

g

f
, ~2!

Eq. ~1! is decomposed into the following bilinear equations:5,9

~Dz
22l!g• f50, ~3!

~Dz
31~4z23l!Dz24a!g• f50, ~4!

whereDz
n is the Hirota bilinear differential operator andl is an arbitrary function ofz. Dividing

Eqs.~3! and ~4! by g f , we obtain

s1v25l,

vzz13sv1v31~4z23l!v24a50,

wheres5~log g f)zz. Eliminatings from above equations, we get PII~1!, therefore Eqs.~3! and~4!
actually give the bilinear form for PII .

Using the gauge transformation, we can takel as we like. In the case of the rational solutions
of PII , taking l to be 0 is convenient as is shown in the later. On the other hand, for the Airy
function type solutions of PII , l is taken to be 2z.1 If we fix l to be equal 0, the bilinear equations
for PII are

Dz
2g• f50, ~5!

~Dz
314zDz24a!q• f50. ~6!

In this gauge, these equations allow polynomial solutions forf and g which give the rational
solutionsv for PII~1! through the variable transformation~2!. In the following sections, we will
show how the rational solutions are constructed from thet functions of KP hierarchy and Toda
lattice equation.

III. ALGEBRAIC SOLUTIONS FOR KP AND KdV HIERARCHIES

We first give a brief review on the algebraic solutions of KP and KdV hierarchies.10

Definition 3.1:Let pj (y), j50,1,2,..., be polynomials iny5(y1 ,y2 ,y3 ,...) defined by
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J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



(
k50

`

pk~y!lk5exp(
n51

`

ynl
n, and pk~y!50, for k,0. ~7!

Then a set of infinitely many bilinear equations fort(x)5t(x1 ,x2 ,x3 ,...) generated by

S (
j50

`

pj~22y!pj11~D̃ !expS (
n51

`

ynDxnD D t•t50, ~8!

where

D̃5~Dx1
, 12Dx2

, 13Dx3
,...!,

is called the KP hierarchy andt is called thet function.
The simplest bilinear equation included in this hierarchy is

~Dx1
4 24Dx1

Dx3
13Dx2

2 !t•t50, ~9!

which yields the KP equation in nonlinear form,

~24ux316uux11ux1x1x1!x113ux250, ~10!

by the dependent variable transformation,

u52~ log t!x1x1. ~11!

Proposition 3.2:The following Wronskian,

tN,KP5U ]x1
N21f 1 ••• ]x1f 1 f 1

]x1
N21f 2 ••• ]x1f 2 f 2

A ••• A A

]x1
N21f N ••• ]x1f N f N

U , ~12!

solves the KP hierarchy, wheref k , k51,2,...,N are arbitrary functions in infinitely many inde-
pendent variablesx5(x1 ,x2 ,...) satisfying

]xnf k5]x1
n f k , k51,2,...,N, n51,2,... . ~13!

The crucial point is that all the bilinear equations in the KP hierarchy for thet function ~12!
are reduced to the identities of determinant which are called the Plu¨cker relations.

Definition 3.3:A set of infinitely many bilinear equations int(x) andt8(x) generated by

S (
j50

`

pj~22y!pj12~D̃ !expS (
n51

`

ynDxnD D t•t850, ~14!

is called the first modified KP hierarchy.
In particular,t 5 tN11,KP, t8 5 tN,KP solves the first modified KP hierarchy. Hence, this is

regarded as the hierarchy of the first Ba¨cklund transformations. Moreover, the bilinear equations
in this hierarchy are regarded as the identities of (N11)3(N11) determinant andN3N deter-
minant, which are also the Plu¨cker relations. First two equations of this hierarchy are given by
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~Dx1
2 2Dx2

!tN11KP•tN,KP50, ~15!

~Dx1
3 24Dx3

13Dx1
Dx2

!tN11,KP•tN,KP50. ~16!

Now we discuss the algebraic solutions for the KP hierarchy. We can easily verify that the
polynomialspk(x) defined by Eq.~7! satisfy

]xnpk~x!5pk2n~x!, ~17!

and hence Eq.~13!. Taking f k in the t function ~12! aspik1N2k(x), we have,
Proposition 3.4:Let Y5( i 1 ,i 2 ,...,i N), where i 1> i 2>...> i N.0 are integers, be a Young

diagram. Then

tY,KP5U pi1~x! pi111~x! ••• pi11N21~x!

pi221~x! pi2~x! ••• pi21N22~x!

A A � A

piN2N11~x! piN2N12~x! ••• piN~x!

U ~18!

gives the algebraic solution for the KP hierarchy.
The polynomialtY,KP is called the Schur polynomial attached to the Young diagramY. We

note that if we define the weight ofxn asn, thenpk(x) is a polynomial with homogeneous weight
k andtY,KP is also homogeneous with the weightuYu5 i 11 i 21...1 i N . This t function gives the
rational solution of Eq.~10! by the dependent variable transformation~11!.

Let us apply the reduction to the KdV hierarchy. This is achieved by dropping the dependence
of x2 , x4 ,..., in thet functions of KP hierarchy. In order to realize this condition, it is sufficient to
chooseY as (N,N21,...,1) in the algebraic solution for the KP hierarchy~18!.

Proposition 3.5:

tN,KdV5U pN~x! pN11~x! ••• p2N21~x!

pN22~x! pN21~x! ••• p2N23~x!

A A � A

p2N12~x! p2N13~x! ••• p1~x!

U . ~19!

gives the algebraic solution of the KdV hierarchy.
Proposition 3.5 can be easily verified noticing that

]tN,KdV
]x2 j

50, j51,2,3,..., ~20!

which directly follows from Eq.~17!. From Eqs.~15!, ~16!, and~20!, it is clear that thet function
~19! satisfies the following bilinear equations:

Dx1
2 tN11 ,KdV•tN,KdV50, ~21!

~Dx1
3 24Dx3

!tN11,KdV•tN,KdV50. ~22!

The modified KdV equation,
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vx31
3
2 v

2vx12
1
4 vx1x1x150, ~23!

is obtained from Eqs.~21! and ~22! by the dependent variable transformation,

v5
]

]x1
log

tN11,KdV

tN,KdV
. ~24!

IV. RATIONAL SOLUTIONS FOR P II : DEVISME POLYNOMIAL REPRESENTATION

Now we give a determinant representation for the rational solutions of PII . We first give the
definition of the Devisme polynomials.6,7

Definition 4.1:The Devisme polynomialsqk(x1 ,x2 ,...,xm), k50,1,2,..., are polynomials in
x1 ,...,xm defined by

(
k50

`

qk~x1 ,x2 ,...,xm!lk5expS x1l1x2l
21•••1xmlm1

1

m11
lm11D . ~25!

Then one of our main results is stated as follows.
Theorem 4.2: Let qk(z,t), k50,1,2,..., be the Devisme polynomials andtN be anN3N

determinant defined by

tN5U qN~z,t ! qN11~z,t ! ••• q2N21~z,t !

qN22~z,t ! qN21~z,t ! ••• q2N23~z,t !

A A � A

q2N12~z,t ! q2N13~z,t ! ••• q1~z,t !

U , qk~z,t !50 for k,0. ~26!

Then

v5
d

dz
log

tN11

tN
, ~27!

gives a rational solution for PII ~1! with a5N11.
Remark 4.3:~1! The t function ~26! is derived only by putting

x15z, x25t, x35
1
3, x45x55•••50, ~28!

in Eq. ~19!. Namely, the rational solutions of PII are given in terms of the special case of the Schur
polynomials.

~2! The t function ~26! itself does not depend ont, but we have leftt dependence in the
entries in order to relate the solutions with the Devisme polynomials.
Theorem 4.2 is a direct consequence of the following proposition.

Proposition 4.4:The t function tN ~26! satisfies the bilinear equations~5! and ~6! with
a5N11.

Proof:Puttingx55x75•••50 in the rational solutions of KdV hierarchy~19!, it is readily seen
thattN,KdV is a homogeneous weight polynomial inx1 andx3 with weight @N(N11)#/@2#. Hence,
if we put

f N5
1

x3
N~N11!/6 tN,KdV , ~29!

then f N depends only ont5(x1)/(x3
1/3). Thus we have
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]x3f N5
]t

]x3

d

dt
f N , ]x1f N5

]t

]x1

d

dt
f N , ~30!

which yield

]x3tN,KdV5
1

3x3
SN~N11!

2
tN,KdV2x1]x1tN,KdVD . ~31!

Substituting Eq.~31! into Eq. ~22!, we get

SDx1
3 1

4

3x3
x1Dx1

2
4

3x3
~N11! D tN11,KdV•tN,KdV50. ~32!

Moreover, by puttingz5x1 andx35
1
3, tN,KdV reduces totN in Eq. ~26! and Eqs.~5! and~6! with

f5tN , g5tN11 anda5N11 are obtained from Eqs.~21! and ~32!. h

V. HANKEL DETERMINANT SOLUTION FOR TODA LATTICE

Let us consider the Toda lattice equation,

d2uN
dz2

5euN212uN2euN2uN11, ~33!

with the symmetric lattice condition,

uN5u2N21 . ~34!

It is easy to see that Eq.~33! is bilinearized through the dependent variable transformation,

uN5 log
tN21

tN
, ~35!

from which we get

Dz
2f N• f N52~ f N11f N212 f Nf N!, f N5 f2N21 . ~36!

Here, we call this type of symmetric lattice as B-type Toda lattice because it concerns the BKP
hierarchy.8,10Using the gauge freedom, we can translate the above B-type Toda lattice equation in
the following form:

~Dz
212a0!sN•sN52sN11sN21 , ~37!

wheresN5 f N/ f 0 anda05 f 1/ f 0 . It is clear thatsN satisfies

sN5s2N21 , ~38!

s051, s15a0 . ~39!

It is possible to express the general solution of Eqs.~37!–~39! in determinant form.11

Proposition 5.1:The general solution for Eqs.~37!–~39! for an arbitrarya0 is given in the
Hankel determinant form
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sN5U a0 a1 ••• aN21

a1 a2 ••• aN

A A � A

aN21 aN ••• a2N22

U , N>0, ~40!

wherean , n51,2,3,... are recursively defined by

an115
dan
dz

1 (
k50

n21

akan2k21 , n>0. ~41!

This contains one arbitrary functiona0, hence it gives the general solution for the B-type Toda
lattice equation.

VI. RATIONAL SOLUTIONS FOR PII : HANKEL DETERMINANT REPRESENTATION

The rational solutions forPII are derived only by putting

a05z, ~42!

in the abovesN .
Theorem 6.1:Let an , n50,1,2,..., be polynomials defined by

an115
dan
dz

1 (
k50

n21

akan2k21 , n>0, a05z, ~43!

and letsN be anN3N determinant given by Eq.~40!. Then

v5
d

dz
log

sN11

sN
, ~44!

gives a rational solution for PII ~1! with a5N11.
Similar to the previous section, Theorem 6.1 is a direct consequence of the following propo-

sition.
Proposition 6.2: f5sN andg5sN11 satisfies the bilinear equations~5! and ~6! with a5N

11.
To prove proposition 6.2, let us first introduce the notationsNY :
Definition 6.3:Let Y5( i 1 ,i 2 ,...,i h) be a Young diagram. Then we define anN3N determi-

nantsNY by

sNY5U a0 a1 ••• aN2h21 aN2h1 i h ••• aN221 i2
aN211 i1

a1 a2 ••• aN2h aN2h111 i h ••• aN211 i2
aN1 i1

A A ••• A A ••• A A

aN21 aN ••• a2N2h22 a2N2h211 i h ••• a2N231 i2
a2N221 i1

U . ~45!

We first construct the shift operators which are differential operators generatingsNY from sN .
If entries of the determinant satisfy simple equations like Eq.~13!, then construction of the shift
operators is straightforward. But when we have to work on more complicated relations among the
entries like Eq.~41!, it is useful to apply the technique developed in Ref. 12.

We can prove the following lemma.
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Lemma 6.4:

sNh5
d

dz
sN . ~46!

Proof: Notice thatsNh is expressed by

sNh5S a1 a2 ••• aN

a2 a3 ••• aN11

A A � A

aN aN11 ••• a2N21

D •S D11 D12 ••• D1N

D21 D22 ••• D2N

A A � A

DN1 DN2 ••• DNN

D , ~47!

where Di j is the (i , j )-cofactor of sN and A•B denotes a standard scalar product forN3N
matricesA5(ai j ) andB5(bi j ) which is defined as

A•B5 (
i , j51

N

ai j bi j5traceAtB. ~48!

The first matrix of Eq.~47! is rewritten by using the recursion relation~41! as

S ]za0 ]za1 ••• ]zaN21

]za1 ]za2 ••• ]zaN

A A � A

]zaN21 ]zaN ••• ]za2N22

D
1S 0 a0

2 ••• (
k50

N22

akaN2k22

a0
2 a0a11a1a0 ••• (

k50

N21

akaN2k21

(
k50

N22

akaN2k22 (
k50

N21

akaN2k21 ••• (
k50

2N23

aka2N2k23

D . ~49!

The above second term is separated as

S 0 a0
2 ••• (

k50

N22

akN2k22

0 a0a1 ••• (
k50

N22

akaN2k21

A A A A

0 a0aN21 ••• (
k50

N22

aka2N2k23

D
1S 0 0 ••• 0

a0
2 a1a0 ••• aN21a0

A A ••• A

(
k50

N22

akaN2k22 (
k51

N21

akaN2k21 ••• (
k5N21

2N23

aka2N2k23

D . ~50!

Each of these terms gives zero contribution in Eq.~47!. Hence we have proved lemma 6.4.h
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Next we have:

Lemma 6.5:

Proof:We consider

whereDh i j is (i , j ) cofactor ofsNh . The first matrix in the right-hand side is equal to

S ]za0 ]za1 ••• ]zaN22 ]zaN

]za1 ]za2 ••• ]zaN21 ]zaN11

A A A A

]zaN21 ]zaN ••• ]za2N23 ]za2N21

D
1S 0 a0

2 ••• (
k50

N23

akaN2k23 (
k50

N21

akaN2k21

0 a0a1 ••• (
k50

N23

akaN2k22 (
k50

N21

akaN2k

A A A A A

0 a0aN21 ••• (
k50

N23

aka2N2k24 (
k50

N21

aka2N2k22

D
1S 0 0 ••• 0 0

a0
2 a1a0 ••• aN22a0 aNa0

A A ••• A A

(
k50

N22

akaN2k22 (
k51

N21

akaN2k21 ••• (
k5N22

2N24

aka2N2k24 (
k5N

2N22

aka2N2k22

D . ~54!

Taking the scalar product, the first and second terms give]zsNh anda0sN , respectively, and the
third term vanishes. Hence we have
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Next we consider the following equality:

The first matrix of the right-hand side of Eq.~56! is rewritten as

S ]za1 ]za2 ••• ]zaN

]za2 ]za3 ••• ]zaN11

A A � A

]zaN ]zaN11 ••• ]za2N21

D 1S a0
2 a0a11a1a0 ••• (

k50

N21

akaN2k21

a0a1 a0a21a1a1 ••• (
k50

N21

akaN2k

A A A A

a0aN21 a0aN1a1aN21 ••• (
k50

N21

aka2N2k22

D
1S 0 0 ••• 0

a1a0 a2a0 ••• aNa0

A A ••• A

(
k51

N21

akaN2k21 (
k52

N

akaN2k ••• (
k5N

2N22

aka2N2k22

D . ~57!

Here, we note thatan’s also satisfy

]zan1152nan21 , ~58!

which is proved by induction from Eqs.~41! and~42!. The first term of the right hand side of Eq.
~57! is rewritten by using Eq.~58! as

S 0 2a0 ••• 2~N21!aN22

0 2a1 ••• 2~N21!aN21

A A A A

0 2aN21 ••• 2~N21!a2N23

D
1S 0 0 ••• 0

2a0 2a1 ••• 2aN21

A A ••• A

2~N21!aN22 2~N21!aN21 ••• 2~N21!a2N23

D . ~59!

Applying the scalar product on these terms, we obtain

Hence we have proved lemma 6.5.
Continuing the similar argument, we get the following shift operators.
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Lemma 6.6:

Finally, we prove proposition 6.2. From the Plu¨cker relations, we have

which are essentially the same as the bilinear equations~15! and~16! for tN,KP. By using lemmas
6.4, 6.5, and 6.6, we get

Dz
2sN11•sN50, ~66!

~Dz
314zDz24~N11!!sN11•sN50, ~67!

which are the desired result. Thus we have proved proposition 6.2.

VII. CONCLUDING REMARKS

In this article, we have presented two types of determinant representations for the rational
solutions of PII . The Devisme polynomial representation follows from the reduction procedure of
modified KdV equation and the Hankel determinant representation is obtained from the Toda
lattice equation, namely the Ba¨cklund transformation of the solution of PII . These determinant
structures of the rational solutions of PII exactly reflect the Wronskian structure of the solution of
KP hierarchy and Toda lattice equation. The relationship between those two representations is not
clear yet. At least, it seems that there is no simple transformation relating the two representations.

It is known that the Airy function type solutions of PII are expressed as1

v5
d

dz
log

rN11

rN
, ~68!

rN5U Ai
d

dz
Ai •••

dN21

dzN21 Ai

d

dz
Ai

d2

dz2
Ai •••

dN

dzN
Ai

A A � A

dN21

dzN21 Ai
dN

dzN
Ai •••

d2N22

dz2N22 Ai

U , ~69!

where Ai is the Airy function satisfying

d2

dz2
Ai5zAi. ~70!
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Thenv satisfies PII ,

d2v
dz2

52v322zv1~2N11!. ~71!

In Ref. 12, it was shown that thet function ~69! can be reduced from that of the KP hierarchy
~12!.

In the theory of KP hierarchy, an important fact is that we can introduce thet function which
is expressed in terms of determinant. Based on this fact, we can identify the solution space, and the
KP hierarchy is regarded as the dynamical system on the infinite dimensional Grassmann mani-
fold. PII is obtained from the similarity reduction of the modified KdV equation, but the parameter
of the equation appears as the integration constant, which means that PII has the information of
various boundary conditions of the modified KdV equation. From this observation, it looks that
one cannot expect such beautiful structures in the solution space of PII . Nevertheless, the results in
this article may imply that at least for the special function type solutions and the rational solutions,
such structures in the solutions of KP hierarchy may survive through the reduction. It may be an
interesting problem to investigate the determinant structures for other Painleve´ equations. So far,
this is completely an open problem.

Recently, discrete versions of the Painleve´ equations have been proposed through the singu-
larity confinement test.13 As for the solutions, some of them admit discrete orq-difference analog
of special function type solutions expressed by determinants.14,15Moreover, it was reported that
the discrete Painleve´ II equation admits rational solutions with determinant structure.16 We might
expect that through such determinant structures of solutions, similarity reductions17 deriving the
discrete Painleve´ equations from discrete KP~or Toda! would become more transparent, as we
have seen in the continuous PII case.
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The separability theorem states that, given a linear partial differential equation and
special coordinates allowing to find a family of separated solutions, all solutions of
physical interest of the equations can be obtained from linear combinations of the
separated solutions. In developing the theory of interaction between an infinite
cylinder and a Gaussian beam, it has been recently observed that the theorem may
fail in terms of functions. In this paper, it is shown that the separability theorem is
recovered if solutions are expressed in terms of distributions instead of in terms of
functions. Relevance to light scattering theory is discussed. ©1996 American
Institute of Physics.@S0022-2488~96!02709-0#

I. INTRODUCTION

In many fields of physics and, in particular in light scattering theory, we have to deal with
linear partial differential equations of the form

Ac5F ~1!

in which c is a scalar~or a vector! field depending on coordinates and time,A is a differential
operator, andF a function. The quantitiesA andF are known, and the fieldc is unknown.

Let us restrict our attention to homogeneous equations defined byF50. Then, if we possess
a set$ci%, i51,...,N of solutions of the equation, it appears that any linear combinationc of the
solutions is also a solution

c5(
i51

N

a ic i . ~2!

For convenience, let us focus our attention to 3D spaces spanned by coordinates$xi%, i51,2,3.
In some cases, i.e., for some equations, it is possible to find so-called separable coordinate systems
in which there exists a family of separated solutions reading as

c5X1~x1!X2~x2!X3~x3!. ~3!

Let ci be a member of the family. Then the separability theorem states1 that ‘‘all solutions of
the partial differential equation can be built up out of linear combinations of the members of the
family of separated solutions,’’ i.e., ‘‘once we have computed the separated solutions, we can
obtain the rest.’’ Notice that no condition on the solutions is stated, so that one should not
understand this statement as a theorem in the usual meaning but as a property shared by all
solutions of interest in theoretical physics; this is why we may write down ‘‘theorem’’ instead of
theorem.

0022-2488/96/37(9)/4705/6/$10.00
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In this paper, we deal with the theory of interaction between shaped electromagnetic beams
~for example Gaussian laser beams! and regular particles~emphasizing the case of infinite cylin-
ders!. Under these circumstances, the equation to consider is the Bromwich scalar potential equa-
tion. The interaction between shaped beams and spheres~generalized Lorenz–Mie theory, GLMT,
Refs. 2–3 and references therein! or stratified spheres4 has been successfully derived by using the
separability theorem in terms of functions. In developing the theory of interaction between shaped
beams and infinite cylinders, it has, however, been observed that the same mathematical frame-
work could not be used. In particular, the description of the incident Gaussian beam introduced
scalar potentials which, in terms of functions, did not satisfy the separability theorem.5 This fact
induced considerable difficulties in building a complete theory, in particular when handling elec-
tromagnetic boundary conditions at the surface of the cylinder.6 Revisiting the separability theo-
rem, many solutions which do not satisfy the separability theorem in terms of functions have been
exhibited for the Bromwich scalar potential and for the scalar wave equations, in both spherical
and cylindrical coordinate systems.7 Let us call them exotic solutions.

In this paper, it is shown that the separability theorem may, however, be recovered if the class
of admissible solutions is extended from functions to distributions.8,9 As a consequence, the theory
of interaction between shaped beams and infinite cylinders has been afterward successfully devel-
oped by using this extended framework.10–13

The paper is organized as follows. Section II presents the Bromwich scalar potentials and their
general solutions in terms of functions, relying on the separability theorem, in cylindrical coordi-
nates. A counterexample in terms of functions is given. Section III discusses general solutions in
terms of distributions and the aforementioned counterexample is shown to satisfy the separability
theorem in that extended framework. Relevance to light scattering is discussed. Section IV is a
conclusion.

II. THE SEPARABILITY THEOREM IN TERMS OF FUNCTIONS FOR THE BROMWICH
SCALAR POTENTIAL EQUATION

A. Bromwich scalar potentials

Let us consider orthogonal curvilinear coordinates$xi% such as the infinitesimal Riemannian
distanceds between two points [xi(P)] and [xi(P)1dxi ] reads as

ds25 (
n51

3

en
2~dxn!

2 ~4!

in which coefficientsen are called scale factors.
Let us furthermore assume that the scale factors satisfy the following conditions:

e151, ~5!

]

]x1
S e1e3D50. ~6!

Then we may define Bromwich scalar potentials~BSP!, denoted byU, which are solutions of
the partial derivative equation14–16

]2U

]x1
2 1

1

e2e3
F ]

]x2
S e3e2 ]U

]x2
D1

]

]x3
S e2e3 ]U

]x3
D G1k2U50. ~7!

In light scattering theory, BSPs play a dominant role because, once they are known, they
allow the determination of electricEi and magnetic fieldsHi by using a set of derivative operators,
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here symbolically written asd̂U→(Ei ,Hi). Maxwell’s equations are equivalent to Rel.~7! supple-
mented by the setd̂U. Let us note that, within the set of 11 separable coordinate systems for the
wave equation, there are only 6 coordinate systems satisfying conditions~5! and ~6!, including
spherical and cylindrical coordinates~Ref. 1!.

B. Cylindrical coordinates

In cylindrical coordinates

$xi%5$z,r,w%, ~8!

ds25dz21dr21r2 dw2, ~9!

the BSP equation reads as

]2U

]z2
1
1

r

]

]r
r

]U

]r
1

1

r2
]2U

]w2 1k2U50 ~10!

which, in contrast with the case of spherical coordinates, identifies with the wave equation.7

Separability is achieved by setting

U~z,r,w!5U1~z!U2~r!U3~w!. ~11!

Assuming a 2p periodicity with respect tow, looking for solutions which are finite in whole
space, and considering the description of shaped beams propagating in free space~i.e., the solu-
tions must be defined atr50!, it is then found that, in terms of functions, the general solution of
Rel. ~11! is the summation over all separated solutions reading as5–7

U5eikgz (
m52`

1`

AmJm~krA12g2!eimw ~12!

in which (kg) pertains to the real field. Actually, the form of Rel.~12! is general enough to our
purpose but is not the most general form in terms of functions. First, we may add ag spectrum
made of a combination of a discrete and of a continuous contribution. Physically, however, in
studying the interaction between a Gaussian beam and an infinite cylinder, it is found that theg
spectrum contains one single peak. In particular, if the Gaussian beam is perpendicularly incident
on the cylinder, we haveg50.5,6 Therefore, we shall be content with Rel.~12! in this paper.

Second it is also interesting to note what would happen if we relaxed the condition that
solutions should be finite in whole space. Then, we would have to accept solutions diverging
exponentially or linearly with respect toz whenz→6`.7

For g50, i.e., in the case of a Gaussian beam perpendicularly incident on an infinite cylinder,
Rel. ~12! reduces to

U5 (
m52`

1`

AmJm~R!eimw ~13!

in which we use the rescaled coordinateR5kr. However, the structure given by Rel.~13! is not
sufficient to describe the Gaussian beam. Instead, it is found that we may have to deal with BSPs
of the form5,6

U5~Z21 iR cosw!eiR cosw ~14!

which is equivalent to
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U5~Z21 iR cosw! (
m52`

1`

i mJm~R!eimw ~15!

in which Z5kz is a rescaled coordinate. The BSPU is then equal to a(-separable BSP of the
form given by Rel.~13! multiplied by a modulation prefactor~Z21 iR cosw!. The BSP given by
Rel. ~15! is a non-(-separable solution in terms of functions. Let us note thatU diverges
quadratically with respect toZ whenz→6`. Such a behavior cannot be recovered by relaxing the
condition that solutions are finite in whole space because this would lead to exponential or linear
divergence whenz→6` @see comments following Rel.~12!#, not to quadratic divergence.

III. THE SEPARABILITY THEOREM IN TERMS OF DISTRIBUTIONS

We now show that the separability theorem is recovered if we extend the class of solutions
from functions to distributions.

Let us again consider the BSP equation~10! in cylindrical coordinates and look for solutions
which are temperated distributions with respect toz.

Because any temperated distribution possesses a Fourier transform which is a temperated
distribution too,8,9 we may evaluate the Fourier transform of Rel.~10!. For convenience, the
Fourier transform of the distributionU is here defined by

Û~g,r,w!5F z@U#~g! ~16!

in which, for a functionU(z,r,w), we have

F z@U#~g!5E U~z,r,w!e2 ikgz dz. ~17!

Then the Fourier transformÛ satisfies the equation

1

r

]

]r
r

]Û

]r
1

1

r2
]2Û

]w2 1k2~12g2!Û50. ~18!

Demanding thatU be 2p periodic with respect tow, we then have

Û~g,r,w!5(
m

Cm~g,r!eimw ~19!

in which Cm~g,r! is a distribution.
Inserting Rel.~19! in Rel. ~18! shows that the distributionCm~g,r! must satisfy

r2
]2Cm

]r2
1r

]Cm

]r
1@k2~12g2!r22m2#Cm50, ;m ~20!

which is the Bessel equation whose solutions are taken as

Cm~g,r!5am~g!Jm~krA12g2! ~21!

in which am~g! is a distribution.
Therefore,

Û~g,r,w!5(
m

am~g!Jm~krA12g2!eimw ~22!
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which is (-separable in terms of distributions. The distributionU is, therefore,(-separable too
and reads as

U~z,r,w!5(
m
F g

21@am~g!Jm~krA12g2!#~z!eimw. ~23!

As an example, let us consider the BSP given by Rel.~15!. The cosw term may be rewritten
as

Ucos5
1

2
R (
m52`

1`

i meimw@Jm21~R!2Jm11~R!#5R (
m52`

1`

i meimwJm8 ~R!, ~24!

leading to

U5 (
m52`

1`

i meimw@Z2Jm~R!1RJm8 ~R!#. ~25!

On the other hand, Rel.~12! generalizes in terms of distributions to

U5(
m

eimw^Am~g!,Jm~RA12g2!eigZ&. ~26!

From Rels.~25! and ~26!, the distributionAm(g) is the solution of the equation

^Am~g!,Jm~RA12g2!eigZ&5 i m@Z2Jm~R!1RJm8 ~R!#. ~27!

Now, the fact thatg is equal to 0 in terms of functions means that theg spectrum is$0%, i.e.,
that the support of the distributionAm(g) is $0%. However, we possess the following theorem: A
distribution of support$0% reads as

T5 (
k50

N

akd
~k! ~28!

in which akPC andd (k) is thekth derivative of the Dirac distribution~the reciprocal statement is
also true!. It is then found that the distributionAm~g! is of the form given by Rel.~28! and reads
as

Am~g!52 i md9~g!. ~29!

Indeed, we check that

^Am~g!,Jm~RA12g2!eigZ&52 i m^d9~g!,Jm~RA12g2!eigZ&

52 i m~Jm~RA12g2!eigZ!g509

5 i m@Z2Jm~R!1RJm8 ~R!#. ~30!

Therefore, the separability theorem is recovered in terms of distributions.

IV. CONCLUSION

We examined the Bromwich scalar equation and the wave equation in cylindrical coordinates,
in which case both equations identify, and demonstrated that the separability theorem is always
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satisfied if solutions are expressed in terms of distributions rather than in terms of functions. In
light scattering theory, we then obtain an extended framework allowing to study the interaction
between an infinite cylinder and a Gaussian beam,10–12more generally an arbitrary shaped beam.13

In Ref. 7, we also exhibited exotic solutions in spherical coordinates. The effort required to
understand the nature of these solutions appears to be significantly more important than in cylin-
drical coordinates, an issue which is therefore not clarified at the present time. However, from the
point of view of light scattering, exotic solutions in spherical coordinates are of dubious interest in
so far as the theory of interaction between spheres and shaped beams can be fully developed by
using only nonexotic solutions.2–4
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Remarks on the universal central extension of sdiff( T2)loc
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In a paper by C. N. Pope and K. S. Stelle@Phys. Lett. B226, 257–263~1989!#, it
was shown that the algebra of local area-preserving diffeomorphisms on the torus is
equivalent to su~`!. In this paper we present a few remarks on the universal central
extension of this infinite dimensional Lie algebra, and construct, for this case, in
analogy to the situation in which the affine Lie algebra has an underlying finite-
dimensional Lie algebra, the nontrivial universal central extension. ©1996
American Institute of Physics.@S0022-2488~96!01608-8#

I. INTRODUCTION

Let I be the closed unit interval@0,1#, andI3I a topological space lying in the first quadrant
of the x–y plane so that two of its adjacent sides lie on thex andy axes of a two-dimensional
coordinates system. Then the torusS13S15T2 ~whereS15$xPR2uixi51% is the one-sphere! is
the quotient topological space obtained by making two identifications, i.e., by using an equiva-
lence relation.1 This involves first identifying the two parallel horizontal edges and subsequently
the two vertical edges. We note that the first identification results in a space homeomorphic to the
cylinderS13I , while the second, which is the glueing of two circular edges together, results in the
torus. Thus the torus is a polyhedron because of the existence of a triangulation, i.e., an ordered
pair consisting of a simplicial complex~whose vertex set consists of the corners ofI3I , i.e., the
zero-simplices! and a homeomorphism from the underlying space of the complex to the topologi-
cal space, the torus. We may note that other triangulations ofI3I result in spaces of physical
interest such as the real projective planeRP2 and the Klein bottle.

We may note that ifM andN areC` manifolds andf is a mapping ofM into N, then f is
called a diffeomorphism ofM ontoN if f is a one–one differentiable onto mapping andf21 is
also differentiable. The group of diffeomorphisms SDiff(D) on a compact Riemannian manifold
D, such as the torus, has a subgroupS0 Diff( D) consisting of volume-preserving diffeomorphisms
leaving, for example, the center of mass of the torus fixed. This infinite-dimensional group,
S0 Diff ~T

2! to be specific, was first studied by Arnold2 in his research in hydrodynamics in which
the aforementioned group is the configuration space of an ideal fluid filling the torus. This group
corresponds to the Lie algebra on the torus of vector fields having zero divergence and such that
the stream function is single valued. If one thinks of the elements of the Lie algebra as real-valued
functions having zero as average value on the torus, and denotes, for simplicity, the Lie algebra of
local area-preserving diffeomorphisms by sdiff~T2!loc , such functions can be specified by their
Fourier components.

Central extensions will be discussed in Sec. II. However, it was Schur3 who first investigated
the notion of a universal central extension when he was working on finite groups. After the
pioneering work of Arnold, SDiff~T2! manifested itself as the residual symmetry on relativistic
two-dimensional membrane surfaces.4 This residual symmetry of an extended object manifests
itself in the light cone guage. The group has as its elements time-independent reparametrizations
~with unit Jacobian! of the spatial coordinateswa, a51,2, having the form5,6

dwa5ja

a!Permanent address: Physics Department, Oba´fémi Awólówò University, Ilé-Ifè, Nigeria.
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with

]ja50.

One of the two classes of solutions of the latter equation comprises local exact solutions having
the form

ja5eab]bL

while the other class consists of global harmonic solutions which correspond to simultaneously
closed and coclosed one-forms, and whose finite number is given by the first Betti numberb1 of
the manifold. The term Betti number will be explained in Sec. II.

The real functions~modulo a constant!, for example,f (wI ),g(wI ) wherewI 5 (w1 ,w2), identi-
fied with sdiff~T2! on the torus have the Poisson bracket as their Lie bracket:4,7,8

@ f ~wI !, g~wI !#5
] f

]w1

]g

]w2
2

] f

]w2

]g

]w1
.

The Lie algebra also has closed forms whose properties are given in Ref. 5. The formulation of a
guage theory on SDiff~T2! involves the introduction of guage fieldsAm

w1w2, which takes values in
sdiff~T2!. If mPZ2\$0%, whereZ is the set of all integers, and we employ the basis functions,
Ym52 i exp~imw!, then the commutation relation above involving the Poisson bracket becomes

@Ym , Yn#5m3nYm1n ,

where 0Þm5(m1 ,m2), m3n5m1n22n1m2 , Ym
† 5 2Y2m , andw5~w1,w2!P@0,2p#2. This new

form of the Lie bracket can be viewed as a representation of the unextended Lie algebra.
Since the problem of the universal central extension of the sdiff~T2! Lie algebra, i.e., of the

Lie algebra connected with the two-brane, was solved essentially about six years ago, it is appro-
priate to mention, albeit in a very terse manner, the direction in which membrane theory has been
propagating since then. The group manifold approach to the description of supersymmetric theo-
ries pioneered by T. Regge, Y. Ne’eman, R. D’Auria, and P. Fre`, among others, exploits the
advantages of both the superspace and thex-component formulation to supersymmetry while
endeavouring to shy away from their disadvantages.

In Ref. 9 the parallel between superstrings and higher superp-membranes ind dimensions for
d<11 andp<5 is highlighted. Here a geometric formulation ofp-membrane theories results in a
manifestly covariant Wess–Zumino term because this term is~p11!-th order in the supersymmet-
ric currents. Thus it was possible to generalize Siegle’s reformulation10 of the Green–Schwartz
superstring to higher superp-membranes. Consequently, a superp-membrane theory is found to
be associated with every new space–time superalgebra.

In Ref. 11, which parallels the approach in Ref. 12, the consideration of superp-branes is
based on a generalized action principle. This approach derives its impetus from the need to unravel
the origin and the geometrical meaning of the local fermionick-symmetry of superp-branes in the
Green–Schwartz formulation, with the ultimate aim of being able to solve the problem of the
covariant quantization of superstrings. One of the attempts at finding a solution to this problem is
a variant of the twistorlike approach based on a superfield formulation of superp-branes in world
superspace. One may also mention that in Ref. 9 extensions are based on the same gamma matrix
theories underlying superp-brane theories. In Sec. II, we construct for su~`!, in analogy to the
situation in which the affine Lie algebra has an underlying finite-dimensional algebra,13 the non-
trivial universal central extension.
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II. THE UNIVERSAL CENTRAL EXTENSION

Central extensions of Lie algebras are discussed in a mathematical language in which such
terms as~co!chains, ~co!cycles, ~co!boundaries, and~co!homology groups keep on recurring.
Hence, we will first discuss the concepts from the point of view of singular homology theory,1

which provides a graphic manner of perceiving these entities. One starts by defining the standard
n-simplexDn as the following subset ofRn11

Dn5 H ~x1 ,x2 ,...,xn11!PRn11ueach xi>0 and( xi51J .
It is then clear, for example, thatD0 is a point,D1 is a closed interval,D2 is a triangle~with
interior!, while D3 is a ~solid! tetrahedron. Linearly ordering the vertices is synonymous with an
orientation ofDn5[e0 ,e1 ,...,en]. SupposeX is a topological space andDn is the standard
n-simplex. Then a singularn-simplex inX is a continuous mappings:Dn→X. SinceD1 is a closed
interval which is homeomorphic toI , a one-simplex is essentially a path inX, while D0 is a point
in X.

SupposeB is a subset of an additive Abelian groupF. ThenF is said to be free Abelian with
B as basis if the cyclic group generated by each elementbPB is infinite cyclic andF is a direct
sum of these infinite cyclic groups for allbPB. Let X be a topological space. Then forn>0,
Sn(X) is defined as the free Abelian group having as basis all singularn-simplices inX, with
S21(X)[0. We call the elements ofSn(X) the singularn-chains inX. For n.0, lets:Dn→X be
a continuous mapping. Then its boundary is denoted by]nsPSn21(X). Hence, for eachn>0,
there exists a unique homomorphism]n :Sn(X)→Sn21(X) called a boundary operator.

For each topological spaceX, the following sequence of free Abelian groups and homomor-
phisms,

•••→Sn~X!→
]n

Sn21~X!→•••→S1~X!→
]1

S0~X!→
]0

0,

is called a singular complex ofX and is denoted byS
*
(X). For all n>0, ]n]n1150. The kernel

of ]n , ker]n , is called the group of all singularn-cycles inX and is denoted byZn(X), while the
image of]n11, im ]n11, is called the group of singularn-boundaries and is denoted byBn(X). For
everyn>0,

Bn~X!,Zn~X!,Sn~X!.

By definition, for eachn>0, thenth singular homology group,Hn(X), of a spaceX is the quotient
of the groupZn(X) by the groupBn(X), i.e.,

Hn~X!5Zn~X!/Bn~X!5ker ]n / im ]n11

In the language of categories and functors, each homology groupHn(X) is, in fact, the
~homology! functor from the category of all topological spaces to the category of all Abelian
groups. SupposeX andY are homeomorphic topological spaces. ThenHn(X) is isomorphic to
Hn(Y) as groups for alln>0. SinceHn(X) is now an invariant of the topological spaceX, the
rank ofHn(X), i.e., the cardinality ofHn(X), becomes an invariant ofX for eachn>0, and is
called thenth Betti number ofX.

It was shown in Ref. 14 that there are only two inequivalent su~`! algebras, to which the local
area-preserving algebras on the sphere and on the torus were shown in Ref. 5 to correspond. The
Lie algebra sdiff~T2! corresponds to letting the Dynkin diagram ofAl , whose compact real form
is su~l11!, simultaneously approach infinity at both ends. The corresponding Lie algebra su~`!,

4713Wolé Òdúndún : Universal central extension of sdiff(T2)loc

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



unlike su1~`! which corresponds to sdiff~S2! whereS2 is the two-sphere, admits a central exten-
sion. In the theory of completely integrable systems, central extensions of affine Lie algebras of
infinite rank play a prominent role.

If G is a Lie algebra, a central extensionE of G by M is the short exact sequence13

0→M→
i
E→

p

G→0

such thatM is in the center ofE. By the definition of a short exact sequence, the image of the
mappingi ~which is an injection! equals the kernel of the mappingp ~which is a surjection!. We
note that in the extension ofG by aG -moduleM given by the above short exact sequence,M
becomes aG -module by setting, for eachgPG andmPM ,

gm5@ g̃,m#,

which is an element ofG such thatp(g̃)5g
In defining the universal central extension of a Lie algebraG one first notes that if

0→M 8→
i 8
E8→

p8
G→0

is another central extension, then a homomorphism overG from E to this second extension is a
mapping f :E→E8 such thatp5p8f . ThenE is a universal central extension if a unique homo-
morphismf : E→E8 exists for every central extensionE8 of G .

A Lie algebra is said to be perfect if it is equal to its derived algebra. In the finite-dimensional
situation, it is well known that the classical Lie algebrasA,B,C,D are perfect in this sense. If
K[ t,t21] is the associative algebra of finite linear combinations of integral powers oft, andG is
a finite-dimensional Lie algebra, the spaceG ^KK[ t,t

21] is given a Lie algebra structure by the
Lie bracket

@x^ tm,y^ tn#5@x,y# ^ tm1n, x,yPG , m,nPZ.

Hence the elements of this algebra are the Laurent polynomials(xi t
i with xiPG ,m,nPZ. If UG 8

is the universal enveloping algebra ofG 8 ~i.e., the tensor algebra quotiented by a two-sided ideal!,
the Chevalley–Eilenberg complex isV

*
~G 8^KK[ t,t

21#! and equalsV
*
~G 8!^KK[ t,t

21]. In the
untwisted affine Lie algebraG corresponding to the limit asl→` of su~l11! that we are consid-
ering, the Chevalley–Eilenberg complex still decomposes as

V* ~G 8^ KK@ t,t21# !5V* ~G 8! ^ KK@ t,t21#.

If the sequence of homology groups similarly decomposes, i.e., if we have
H
*
~G 8^KK[ t,t

21] !5H
*
~G 8, K!^KK[ t,t

21], we will be able to prove that the affine Lie alge-
bra is perfect.

With k:G 83G 8→K being the Killing form onG 8, the form

bS ( xi t
i ,( xj t

j D5( ik~xi ,yi !

is bilinear and alternating and therefore a cochain. Ifd is the cohomology boundary operator, we
have to show that the corresponding three-cochain is mapped to zero byd by using the invariance
b(x,[yz])5b([xy],z) of the Killing form. In fact, by substitutingx5(xi t

i , y5(yj t
j , and

z5(zkt
k , one finds that

db~x,y,z!52b~@xy#,z!1b~@xz#,y!2b~@yz#,x!50.
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This implies that the class@b# of all two-cocycles is an element ofH2~G 8^KK[ t,t
21],K! with the

following corresponding central extension:

0→K→Ĝ 8→
p

G 8^ KK@ t,t21#→0.

To show thatĜ 8 is perfect, one starts with the exact sequence immediately above, and
considers the vector space splittings of p corresponding to the two-cocycleb. Thusp has a Lie

algebra sections such thatG 8 ^ KK@ t,t21#→
s
Ĝ 8. This vector space splitting enables us to show

that Ĝ 8 is perfect, by showing that@Ĝ 8,Ĝ 8# maps ontoĜ 8, which itself is perfect.
If K5C, there is an elementcPC, such that the short exact sequence immediately above is an

extension ofG 8^KK[ t,t
21]. The universal central extension is the direct sum ofcC and

G 8^KK[ t,t
21], and corresponds to the central extension which is a sum of simple coroots in Ref.

14.
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A method based upon the concept of holonomy of a metric space–time (M ,g), in
order to identify the presence of conical singularities inM is proposed. The validity
and usefulness of this so-called holonomy method is proven by applying it to a set
of four-dimensional space–times and one three-dimensional space–time. The ho-
lonomy method predictions are confirmed by the comparison with the predictions
obtained after coordinate transformations which take the metricsg, to a new basis
where the global properties of conical singularities are explicitly seen. ©1996
American Institute of Physics.@S0022-2488~96!03209-4#

I. INTRODUCTION

Conical singularities have been known to physicists for a long time.1 During the 60’s and
70’s, when a great deal of work was done to understand and classify all types of singularities, the
properties and geometrical nature of the conical singularities became better understood~for a
review on the results in singularities see Ref. 2!.

From these works, we learned that for a space–timeM with a metric tensorg(M ,g), if there
is a conical singularity inM , all scalars formed out of the Riemann tensor are bounded inM , and
the presence of this singularity can only be revealed by means of a global procedure.2 Because of
the good behavior of the scalars mentioned above, the conical singularities belong to a type of
singularities called quasiregular singularities.2,3 A more recent interest in conical space–times
developed after two important results; the first due to Kibble, and the second to Vilenkin.

Kibble showed in Ref. 4, that the mechanisms of symmetry breaking and symmetry restora-
tion in gauge theories, necessarily, led to the formation of topological defects in the early universe.
Among the possible types of defects are the cosmic strings. Inspired by Kibble’s ideas Vilenkin
demonstrated, among other things in Ref. 5, that the space–time geometry due to a static, infinite,
unidimensional string, with a finite linear energy density, in the weak field approximation, is a
conical space–time.

Cosmic strings have attracted greater attention than the other types of defects not only because
the others have some undesirable properties,6 but by their own observable effects.7 Among these
effects one may mention the gravitational lensing of light from distant galaxies or quasars, a
significant effect on the motion of massive particles, frequency shifts of photons passing by the
string and its possible role in the mechanism of galaxy formation~see Ref. 7 for a complete list of
observable effects!.

From the above discussion one can conclude that conical singularities are very important
either on a more formal study of the space–time structure as well as in processes in the early
universe leading to presently observable phenomena. One very proper question, at this stage,
would be how to identify the presence of conical singularities in a given metric space–time. In
fact, there is not a general method of determining whether a metric space–time (M ,g), has a
conical singularity or not.

a!Electronic mail: n04c7@cat.cbpf.br
b!Present address.
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What one usually does, in order to identify the conical singularity in (M ,g), is determining
whether one of the angular variables, ing, which by definition would vary in the range@0,2p# has
its range reduced.8 The amount which is missing to complete 2p is called deficit angle. If a given
space–time has a singular point and all the properties of a conical space–time, as described
above,2 but all the relevant angular variables have their normal range, one may try to find a
coordinate transformation which reveals the presence of a deficit angle in one of these angular
variables range,9 or construct a particular demonstration of the regularity, or not, of the metric
space–time under investigation.10

In this paper we would like to propose a method of identifying if a given metric space–time,
singular in one point, and with all the properties of a conical space–time, is indeed a conical
space–time. This method will use the concept of holonomy group of a space–time~therefore we
shall call it holonomy method!, and the global and local properties of a conical singularity.

In the next section, Sec. II, we shall introduce the holonomy method. Sec. III is devoted to the
application of the holonomy method to four-dimensional space–times which are known to be
conical space–times. In Sec. IV, we investigate a three-dimensional metric space–time with a
conical singularity which cannot be trivially identified unless we use the holonomy method.
Finally, in Sec. V, we conclude by outlining the main results of the paper and commenting on
other applications of the holonomy method.

II. DESCRIPTION OF THE HOLONOMY METHOD

Our method will be based in the application of the concept of holonomy,11 to the space–time
being studied. The holonomy group of a space–timeM , equipped with a metricg, (M ,g) ~there-
fore with an affine connectionG!, is defined as the linear transformations from the tangent space
at the pointp, TpM , to itself, constructed by taking a fiducial vectorv and parallel transporting it
along all closed curves starting and finishing atp. For a space–time, the set of all linear trans-
formations generated by the parallel transport ofv along all possible closed curves fromp, is
called the holonomy group ofM at p. In fact, we shall not be interested in computing the
holonomy group of the given space–time but we shall use this concept in a related way.

Suppose that the metricg of M is apparently singular at a points, and all scalars formed out
of the Riemann curvature are well behaved inM . Then, for a fiducial vectorv in M , we shall
evaluate the transformation generated by the parallel transport ofv around closed loops. This
transformation is a matrix which we call holonomy matrix (H), its elements are functions of the
coordinates. For a pointp belonging to a closed loopC, both inM , the holonomy matrix atp, and
aroundC, relates the initial value ofv atTp with the value ofv, again atTp , but now after it has
completed a full loop aroundC. The closed loops are defined in order to converge to the appar-
ently singular points, of M . The convergence of the loops tos is specified by a certain limit of
the coordinates describing these loops.

Now, after having computed the holonomy matrix we apply to it the same limit of the
coordinates which cause the closed loops to converge to the apparently singular points. Then, if
the points is regular, the limit of the holonomy matrix defined by the parallel transport of the
fiducial vectorv around closed loops must be the identity matrix. In other words, the limit of the
initial and final values of the vectorv at smust be the same. If this is not the case, the space–time
is non-regular ats, or it has a conical singularity.

Let us now apply this method to two different types of space–times: The first is composed of
space–times where one may trivially identify the presence of conical singularities; the second is a
space–time with a conical singularity which cannot be trivially identified unless we use the
holonomy method.
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III. APPLICATION TO CONICAL SPACE–TIMES

We shall consider here a set of three four-dimensional space–times with a conical singularity.
Although we shall treat them together because of their similar metric expressions, they have
distinct topologies and curvature scalarsR. The general metric expression is

ds25h dt21dz21dr21m2F2~r !du2, ~1!

where2`,t,`, 2`,z,`, rmin,r,rmax, 0<u<2p; m is a number which is in the range,
0,m<1; F(r ) is a function of r without numerical coefficients with the property that,
F(r5r 0)50 for a r 0 P @rmin ,rmax#; h may be either21, which means a Lorentzian signature, or
11, which means an Euclidean signature; and the range ofr depends on which space–time we are
considering. Some remarks are now in order.

It is important to note that the angular variable must vary over the full range@0,2p#, other-
wise we would identify the presence of a conical singularity by inspection. Ifm was allowed to be
greater than one, after a coordinate transformation of the type

mu→ ũ, ~2!

the new angular variableũ would vary in the range

0, ũ,2pm. ~3!

This means that we would not be able to talk about deficit angle in a natural way, besides that for
this case the space changes character and the description becomes more complicated.9

The three distinct space–times will be characterized by different values of the function
F(r ).12 We shall compute for each of them the curvature scalarR, which for the generic form of
the metric~1! is

R52
F9~r !

F~r !
, ~4!

where8 means derivation in respect tor .
For each space–time we may list the relevant properties in the following way:

Space–time~a!: TopologyR23S2; F(r )5sin r; 0,r,2p; R51,
Space–time~b!: TopologyR33S1; F(r )5r ; 0,r,`; R50,
Space–time~c!: TopologyR23H2; F(r )5sinhr; 2`,r,`; R521.

One may note by the above properties of~a!, ~b!, and~c!, that they have well behaved scalar
curvaturesR ~it is easy to verify that the same is true for other scalars formed out of the Riemann
tensor! and an apparent singularity atr50. Indeed, by means of the transformation~2! it is very
easy to identify the presence of conical singularities in these space–times. By eq.~3! it is clear
that, if m51 the space–times are regular, otherwise they have conical singularities with deficit
angles 2p(12m). Let us see, now, how to apply the holonomy method to the above space–times
~1!.

We start by computing the holonomy matrixH, which can only be done when we have the
parallel transport equations. The easiest way to derive them, from Eq.~1!, is by working on the
orthonormal basis, defined by the transformations

wi5dxi ; wû5mF~r !du, ~5!

wherex0,1,25t,z,r . The non-vanishing connection coefficient components in this basis are
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2G
ûû

r̂
5
F8~r !

F~r !
5G

r̂ û

û
. ~6!

The general expression for the parallel transport equations of a fiducial vectorv, along a given
curve is13

dva

dl
1vbGbg

a dxg

dl
50, ~7!

wherel is an affine parameter describing the curve; and the Greek indices vary over all the
coordinates.

We must define, now, the closed loops for these cases, as well as the limit which will make
them collapsing to the apparently singular pointr50. Since thet and z directions do not play
important roles in the present cases~the singular point is in ther axis andu is the unique angular
variable!, we set them to be constants, independent ofl. For an apparently singular point inr , the
simplest closed loops have constant and different values ofr , andu is a non-constant function of
l. These loops will collapse tor50 when we take the limitr→0. As a matter of simplicity, we
chooseu to depend linearly onl.

Our curves may be written as

xi5Ci , u5l1l0 , ~8!

wherel0 is a constant andl varies in the range@2l0 ,2l012p#; Ci are constants andi varies
as in eq.~5!.

A final remark before writing down the parallel transport equations, is that the set of eqs.~7!,
for the non-coordinate basis, must be modified such that we may use the closed loops~8! given in
the coordinate basis. Then, the new set of equations is written

dva

dl
1vbGbg

a Ld
g dx

d

dl
50, ~9!

whereL is the basis one-form transformation matrix, also responsible for the transformation of
vector components.

We may now write the parallel transport equations~9!, for the fiducial vectorv, around the
closed loop~8!, with the aid of eq.~6!. They are

dv t̂

dl
505

dv ẑ

dl
, ~10!

dv r̂

dl
2mF8v û50, ~11!

dv û

dl
1mF8v r̂50. ~12!

The general solution for the system of coupled, linear, homogeneous, first order differential
equations~10!–~12!, is given by

v j~l!5C̃j , ~13!

v r̂~l!5A sin~al1d0!, ~14!
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v û~l!5A cos~al1d0!, ~15!

where j5 t̂,ẑ; C̃j , A, d0 are constants to be determined by the initial conditions; and
a[mF8(r ).

The initial conditions will be given by

va~l52l0!5v0
a , ~16!

wherea varies as in eq.~7!; andv0
a are constants. If one imposes these conditions~16! in the eqs.

~13!–~15!, after some calculations one finds

v j~l!5v0
j , ~17!

v r̂~l!5cos@a~l1l0!#v0
r̂ 1sin@a~l1l0!#v0

û , ~18!

v û~l!52sin@a~l1l0!#v0
r̂ 1cos@a~l1l0!#v0

û , ~19!

where j varies as in eq.~13!. We may now write the holonomy matrix which relates the initial
value of the fiducial vectorv, with its value after a complete loop around the closed loop. It is
achieved by settingl52l012p in eqs.~17!–~19!

v~2l012p,a!5H~a!v0 , ~20!

where

H~a!5S 1 0 0 0

0 1 0 0

0 0 cos~2pa! sin~2pa!

0 0 2sin~2pa! cos~2pa!

D . ~21!

Before we proceed, it is important to note thatH is independent ofh, or in other words, it is
independent of the metric signature. One may use, then, this method for Lorentzian or Euclidean
space–times.

It is clear from eq.~21! thatH(a) is not, in general, the identity transformation, not even in
the case of a regular space–time. This fact is only a verification that the space–time has a
non-vanishing curvature. For space–times~a! and ~c! one may verify this fact, for they have
constant positive and negative scalars of curvature, but not for space–time~b! which is flat. The
final step in our present analysis, is the evaluation ofH(a) ~21! in the limit whenr goes to 0.

The relevant components of the holonomy matrix to be analyzed are

cos~2pa! and sin~2pa!. ~22!

We must, now, take the limit of these quantities~22!, whenr goes to 0. It is not difficult because
for all three space–times~a!, ~b! and ~c!, the desired limit of the first derivative ofF(r ) is the
same

lim
r→0

F8~r !51. ~23!

So, oncea5mF8(r ), we obtain the following limit asr→0 to the relevant quantities~22!:

cos~2pm! and sin~2pm!. ~24!
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We may conclude that the space–time is regular, or in other words the holonomy matrix goes
to the 434 identity in this limit, if and only ifm51, otherwise there is a conical singularity in
these space–times. This is the same result stated above and derived by a trivial coordinate trans-
formation in the angular coordinateu.

IV. APPLICATION TO THE DJH CONICAL SPACE–TIME

This space–time was introduced by Deser, Jackiw, and ’t Hooft~DJH!, as a solution of
Einstein’s equations for a single, massive, spinless point-particle, at rest, at the origin of the
coordinate system, in three-dimensions~time12 spatial dimensions!.9 Its metric is given by

ds252dt21
1

R2r ~dR21R2dQ2!, ~25!

where 0<t<`, 0<R<`, 0<Q<2p; and r is proportional to the mass of the particle and
varies in the range 0<r,1.

It is easy to see from eq.~25! thatR50 is an apparent singularity of this space–time, and after
a brief calculation one finds that its scalar of curvatureR is nil. Gathering together these two
results we conclude that it is very likely that the apparent singularity atR50 is of a conical type.
How can we know beyond any doubt? In what follows we shall apply the holonomy method to
this space–time~25!, and compare its result with the one derived in Ref. 9 from a non-trivial
coordinate transformation.

We start the application of the holonomy method by rewriting eq.~25! in a non-coordinate
basis, which coordinate transformations read

wt̂5dt; wR̂5R2rdR; wû5R12rdQ. ~26!

The non-vanishing connection coefficient components in this basis are

G
f̂f̂

t̂
5

2~12r!

t12r 52G
t̂ f̂

f̂
. ~27!

From here onward the calculations will be a repetition of the previous case, discounting the
obvious fact that we have, now, one less spatial coordinate. The closed loops will be defined by
constant values oft andR and a linear function ofQ, which may be written as

xi5Ci , Q5l1l0 , ~28!

wherex0,15t,R; Ci andl0 are constants; andl is an affine parameter describing the closed loop,
which varies in the range@2l0 ,2l012p#. These loops will collapse to the apparently singular
point when we take the limitR→0.

The initial conditions for the fidutial vectorv, which will be parallel transported around the
closed loops, are given by eq.~16! ~where herea5t,R,Q!. With these conditions eq.~16!, and the
aid of eq.~28!, we may write and solve the parallel transport equations forv, derived from eq.~9!.
After some calculations we may write the holonomy matrixH(r), for the present case, in the
following way:

H~r!5S 1 0 0

0 cos@2p~12r!# sin@2p~12r!#

0 2sin@2p~12r!# cos@2p~12r!#
D . ~29!
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Observing eq.~29! carefully, we note that it is already the final result we were looking for
becauseH(r) does not depend uponR. Therefore, the limit ofH(r) whenR goes to zero does not
modify eq.~29!.

The holonomy method predicts, then, that ifr50 the space–time~25! is regular, otherwise
there is a conical singularity in it. Let us compare, now, this prediction with the one derived from
a non-trivial coordinate transformation.

In Ref. 9, Deser, Jackiw, and ’t Hooft, proposed the following coordinate transformation for
the metric~25!

r5
R12r

12r
, u5~12r!Q. ~30!

In terms ofr andu the metric~25! becomes flat

ds252dt21dr21r 2du2. ~31!

The ranges of the new variables may be derived by eq.~30!, with the aid of the ranges of the old
ones, which were given after eq.~25!. They are

0<r<`, 0<u<2p~12r!. ~32!

V. CONCLUSIONS

In the present paper we have introduced what we have called the holonomy method. It is a
systematic way, based upon the concept of holonomy, of determining the presence of conical
singularities in a given metric space–time (M ,g). In Sec. II, we have introduced the holonomy
method. Subsequently, in Secs. III and IV, we have demonstrated the validity and usefulness of
the method by means of its application in two examples.

It is important to mention that the results derived from the application of the holonomy
method for a given metric space–time (M ,g), may be used to analyze another metric space–time
(M̃ ,g̃). This can be done only and if onlyg and g̃ are related by a non-singular basis one-form
transformationS, because the old and new holonomy matrices~H andH̃ respectively! will have
the following transformation relation:

H̃5SHS21. ~33!

Therefore, knowing the value ofH for a given one-form basis one has only to determine the
values of the transformationS, and its inverseS21, in order to derive the holonomy matrix in the
new one-form basisH̃.

Finally, there is yet another type of metric space–times where the use of the holonomy
method greatly simplifies the identification of conical singularities. Thesed-dimensional space–
times have the topologyR ~time! times a flat or negatively curved,d21-dimensional, compact
spatial sector. The compactification of the spatial sector is done via the identification of opposite
d22-dimensional ‘‘sides’’ of a chosen figure.10,12,14It is possible that such identifications intro-
duce a singularity of a conical, or even more complicate nature in the resulting space–time.10,14

Therefore, applying the holonomy method to space–times constructed in this way, one may
identify the presence of conical singularities there.
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Quasitriangularity and enveloping algebras
for inhomogeneous quantum groups
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Coquasitriangular universalR matrices on quantum Lorentz and quantum Poincare´
groups are classified. The results are extended~under certain assumptions! to inho-
mogeneous quantum groups. Enveloping algebras on those objects are described.
© 1996 American Institute of Physics.@S0022-2488~96!01508-3#

I. INTRODUCTION

PossibleR-matrices for the fundamental representations of inhomogeneous quantum groups
were found in Proposition 3.14 of Ref. 1. In the present paper we describe universalR matrices
for those objects~under certain assumptions which are fulfilled in the case of quantum Poincare´
groups2!. Our study will be useful in developing a simple physical model3 of free particles on a
quantum Minkowski space.2

In Section II we show how to construct co~quasi!triangular ~* -!bialgebras and Hopf
~* -!algebras whose relations are given by means of intertwiners: we simplify and extend results of
Ref. 4. Next, in Section III we classify co~quasi!triangular~* -!structuresR on quantum Lorentz
groups.5 Using the results of Sections II and III, in Section IV we classify such structures on
quantum Poincare´ groups2 and also, more generally, on inhomogeneous quantum groups1 ~certain
natural assumptions regarding mainly restriction of those structures to the homogeneous quantum
group are made!. In Section V we useR to define enveloping algebras for inhomogeneous
quantum groups.

We sum over repeated indices~Einstein’s convention!. We work over the fieldC. We write
a;b if a5lb for lPC\$0%. If V,W are vector spaces, thent : V^W→W^V is given byt(x^ y)
5y^x, xPV, yPW. If A is an algebra,vPMN~A!, wPMK~A!, then the tensor product
v^wPMNK~A! is defined by (v^w) i j ,kl5v ikwjl , i ,k51,...,N, j ,l51,...,K. We set dimv5N.
If A is a * -algebra, then the conjugate ofv is defined asv̄PMN~A! where v̄ i j5v i j * , i , j
51,...,N.

Throughout the paper quantum groupsH are abstract objects described by the corresponding
~* -!bialgebras Poly(H)5~A,D!. We denote byD,«,S the comultiplication, counit and~if exists!
coinverse of Poly(H). We say thatv is a representation ofH ~i.e., vPRepH! if vPMN~A!,
NPN, andDv i j5v ik^vk j , «(v i j )5d i j , i , j51,...,N. The conjugate of a representation and ten-
sor product of representations are also representations. Matrix elements of representations ofH
spanA as a linear space. The set of nonequivalent irreducible representations ofH is denoted by
Irr H. If v, wPRepH, then we say thatA P Mdim w3dim v(C) intertwines v with w @i.e.,
APMor(v,w)# if Av5wA. The dual vector spaceA8 is an algebra wrt the convolution defined by
r*r85~r^r8!D. It has a unit IA8 5 «. For rPA8, aPA, we set r* a5( id^ r)Da, a* r
5(r ^ id)Da.

II. COQUASITRIANGULAR BIALGEBRAS

In this section we discuss bialgebras Poly(G)5~B,D! defined by several fundamental repre-
sentations ofG and intertwiners among them. We provide necessary and sufficient conditions for

a!On leave from Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Hoz˙a 74,
00-682 Warszawa, Poland.
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the existence of coquasitriangular structureR for G. Hopf and* structures are also investigated.
The results generalize results of Theorem 1.4 of Ref. 4~see also Theorem 1.1 of Ref. 5!.

Proposition 1:Let B be the universal algebra generated bywmn
a , m,n51,...,da , aPJ , and

relations~0PJ , d051!

wa
^w05w0

^wa5wa, aPJ , ~II.1!

Wm~wam1^wam2^ ••• ^wamsm!5~wbm1^ ••• ^wbmtm!Wm , mPK ~II.2!

~we fix setsJ , K, positive integersda , and matricesWm of suitable dimensions!.
Thenw05~IB! and there exists a uniqueD such that Poly(G)5~B,D! is a bialgebra andwa,

aPJ are representations ofG.
Proof: The proof is the same as in Theorem 1.4 of Ref. 4. h

Let us recall
Definition 1: ~cf. Refs. 6–8! We say that~B,D,R! is a coquasitriangular~CQT! bialgebra if

~B,D! is a bialgebra andRP~B^B!8 satisfies

R~ I ^x!5R~x^ I !5«~x!, ~II.3!

R~xy^z!5R~x^z~1!!R~y^z~2!!, ~II.4!

R~x^ yz!5R~x~1!
^z!R~x~2!

^ y!, ~II.5!

y~1!x~1!R~x~2!
^ y~2!!5R~x~1!

^ y~1!!x~2!y~2!, ~II.6!

where we have used the Sweedler’s notationD(x)5xi
(1)

^xi
(2)[x(1)^x(2).

Remark 1:~cf. Refs. 9, 8, and Proposition 1.3 of Ref. 4! Let Poly(G)5~B,D! be a bialgebra
andRP~B^B!8. For eachv, wPRepG one can defineRvw P Lin(Cdim v

^ Cdim w,Cdim w

^ Cdim v) by

~Rvw! i j ,kl5R~v jk^wil !, j ,k51,...,dimv, i ,l51,...,dimw. ~II.7!

Then

~1^S!Rv1w5Rv2w~S^ 1! if SPMor~v1 ,v2!, ~II.8!

~S^ 1!Rvw15Rvw2~1^S! if SPMor~w1 ,w2!, ~II.9!

v,w,v1 , w1PRepG. Suppose thatL,RepG is such that the matrix elements of representations
vPL linearly spanB ~e.g.,L5RepG!. Consider the conditions

R0v5Rv051, vPL, ~II.10!

Rv1^v2 ,w5~Rv1w^ 1!~1^Rv2w!, v1 ,v2 ,wPL, ~II.11!

Rv,w1^w25~1^Rvw2!~Rvw1^ 1!, v,w1 ,w2PL, ~II.12!

RvwPMor~v^w,w^v !, v,wPL. ~II.13!

Then ~II.10!⇔~II.3!, ~II.11!⇔~II.4!, ~II.12!⇔~II.5!, and~II.13!⇔~II.6!.
Theorem 1: Let Poly (G)5~B,D! be a bialgebra defined in Proposition 1 andRab

PLin(Cda ^ Cdb,Cdb ^ Cda),a,bPJ .
The following are equivalent:
~1! There existsRP~B^B!8 such that~B,D,R! is a CQT bialgebra andRab 5 Rwawb

.
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~2!

R0a5Ra051, aPJ , ~II.14!

~1^Wm!Ram1•...•amsm
,g5Rbm1•...•bmtm

,g~Wm^ 1!, mPK,gPJ \$0%, ~II.15!

Rg,bm1•...•bmtm~1^Wm!5~Wm^ 1!Rg,am1•...•amsm, mPK,gPJ \$0%, ~II.16!

RabPMor~wa
^wb,wb

^wa!, a,bPJ \$0%, ~II.17!

whereRd1•...•dk11 ,g 5 (Rd1•...•dk ,g ^ 1)(1^ Rdk11g),Rg,d1•...•dk115 (1^ Rgdk11)(Rg,d1•...•dk ^ 1),g,
d1,...,dk11PJ , k51,2,... .

Moreover, suchR is unique.
Remark:In special cases related statements can be found in Refs. 10, 8, 7, and Theorem 1.4

of Ref. 4 ~cf. Ref. 9!.
Proof: Assume condition~1!. According to Remark 1,~II.10!–~II.13! follow. Thus we get

~II.14! and ~II.17!. Using ~II.8! and ~II.9! for S5Wm @see ~II.2!# and ~II.11! and ~II.12!, one
obtains~II.15! and ~II.16! and the condition~2! is proved.

Moreover,Rwawb
5 Rab uniquely determineRvw, wherev, wPL0 ,

L05$tensor products of some number of copies of representationswa, aPJ %.

Using ~II.7! and the fact that the matrix elements of representations fromL0 linearly spanB, the
uniqueness ofR follows. It remains to prove

~2!⇒~1!: Assume condition~2!. Using ~II.14!, we can replaceJ \$0% by J in ~II.15!–~II.17!.
We define the homomorphismsRb: B→Mdb

(C), bPJ , by

@Rb~wi j
a !#kl5Rki, j l

ab , aPJ ~II.18!

@later on we will haveRkl
b 5R~•^wkl

b !#. They preserve the relations~II.1! and~II.2! due to~II.14!
and ~II.15!. Settinga50 in ~II.18!, we show thatRb are unital. Settingb50 in ~II.18!, one gets
R11

0 5« ~it is true on the generatorswi j
a !. HenceR11

0
*Rkl

b 5Rkl
b
*R11

0 5Rkl
b . Let

X5$xPB:Wb1 ...btm
,a1 ...asm

~R
asm

csm

amsm * •••*Ra1c1

am1 !~x!

5~R
btm

dtm

bmtm * •••*Rb1d1

b1t1 !~x!Wd1 ...dtm
,c1 ...csm

, mPK%.

It is straightforward to show thatX is an algebra. According to~II.16!, ukl
g PX~k,l51,...,dg ,

gPJ !. Thus X5B. Hence there exists a linear antihomomorphismu : B→B8 such that
u(wkl

b )5Rkl
b , k,l51,...,db , bPJ @u preserves~II.1! and ~II.2!#. SettingR(x^ y)5[u(y)](x),

x,yPB, we obtain anRP~B^B!8 which satisfies~II.5! and ~II.3!. Moreover, ~II.18! yields
Rab 5 Rwawb

. LetY5$zPB:;x,yPB R(xy^z)5R~x^z~1!!R~y^z~2!!%. ThenY is an algebra
@we use~II.5!# andwkl

b PY. Hence,Y5B and ~II.4! follows. Thus~Remark 1! we get ~II.10!–
~II.12! for L5L0 . That and~II.13! for v, wP$wa:aPJ % @see~II.17!# give ~II.13! for L5L0 ,
hence~Remark 1! ~II.6! and the condition~1! is satisfied. h

Remark 2:The unital antihomomorphismu : B→B8 introduced in the above proof exists for
each CQT bialgebra~cf. Ref. 9! and satisfies~u^u!D5D8u whereD8:B8→~B^B!8 is defined by
D8~w!5w+m, wPB8, cf. Appendix of Ref. 4.

Let us now pass to the Hopf algebra structure.
Proposition 2:~cf. Ref. 11 and Proof of Theorem 1.4.1 of Ref. 4! Let Poly(G)5~B,D! be a

bialgebra andw,w8,w9 be representations ofG. Suppose there existEPMor~I ,w^w8!,
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E8PMor(w9^w,I ) such thatE is left nondegenerate, i.e.,Ei2 5 (Ei j ) j51
dim w8 , i51,...,dimw, are

linearly independent andE8 is right nondegenerate, i.e.,E2k8 5 (Emk8 )m51
dim w9 , k51,...,dimw, are

linearly independent. Thenw21 exists.
Proposition 3:~cf. Ref. 11 and Proof of Theorem 1.4.1 of Ref. 4! Let ~B,D! be the bialgebra

defined in Proposition 1. Suppose~ua!21 exist,aPJ . Then~B,D! is a Hopf algebra.
A CQT bialgebra~B,D,R! such that~B,D! is a Hopf algebra is called CQT Hopf algebra.
Proposition 4: ~cf. Proposition 1.3.1.b of Ref. 4! Let Poly(G)5~B,D! and ~B,D,R! be a

CQT Hopf algebra. Then (Rvw)21 exist for anyv, wPRepG. Moreover,R85R(S^ id) satisfies

R8~x~1!
^ y~1!!R~x~2!

^ y~2!!5R~x~1!
^ y~1!!R8~x~2!

^ y~2!!5~« ^ «!~x^ y!

~i.e.,R85R21! and

R8~v i l ^wjk!5~Rvw! i j ,kl
21 , i ,l51,...,dimv, j ,k51,...,dimw.

We say that~B,D! is a * -bialgebra if~B,D! is a bialgebra,B is a * -algebra and

~* ^ * !D~x!5D~x* ! ~II.19!

for xPB. A Hopf algebra which is a*-bialgebra is called Hopf* -algebra.
Proposition 5:Let ~B,D! be the bialgebra defined in Proposition 1. Suppose there exists an

involution;: J→J such that 0̃50, dã 5 da andW̃m P Mor(wãmsm ^ ••• ^ wãm1,wb̃mtm ^ •••

^ wb̃m1) where (W̃m) i tm...i1 , j sm...j 1
5 (Wm) i1 ...i tm, j 1 ...j sm

. Then there exists a unique* :B→B such

that ~B,D! is a* -bialgebra andwa 5 wã, aPJ ~ w̄as defined in the Introduction!.

Proof:Uniqueness is trivial. Our assumptions imply thatzi j
a 5 wi j

ã satisfy~II.1! and~II.2! in the
conjugate algebraB j ~conjugate vector space and opposite multiplication!. Therefore the desired
* exists@we check*

25id and ~II.19! on the generatorswi j
a #. h

Proposition 6: ~cf. the proofs of Proposition 1.3.d.ii and Theorem 1.4.6 of Ref. 4! Let
~B,D,R! be a CQT bialgebra and Poly(G)5~B,D! be a*-bialgebra. SupposeM,RepG is such
that the matrix elements of representations fromM generateB as unital algebra. The following
are equivalent:

~1!R(y* ^x* )5R(x^ y), x,yPB

~2!

~Rwv! j i ,lk5Ri j ,kl
vw , j ,k51,...,dimv, i ,l51,...,dimw, v,wPM . ~II.20!

If one of the above conditions is satisfied,~B,D,R! is called CQT*-bialgebra. If, moreover,
~B,D! is a Hopf algebra,~B,D,R! is called CQT Hopf* -algebra~see Definition 1.1 of Ref. 4!.

Proposition 7:~cf. Ref. 9! Let Poly(G)5~B,D! be a bialgebra andRP~B^B!8. Suppose
M,RepG is such that the matrix elements of representations fromM generateB as unital
algebra. The following are equivalent:

~1!R(x(1)^ y(1))R(y(2)^ x(2))5 (« ^ «)(x^ y), x,yPB (i.e., R215R21).
~2!

~Rvw!215Rwv, v,wPM . ~II.21!

If one of the above conditions is satisfied, we replace CQT by CT~cotriangular! in all definitions
~cf. Ref. 6!.

Proof: Using ~II.10!–~II.12!, one can assume that@in the condition~2!# matrix elements of
representations fromM linearly spanB. Then in ~1! it is enough to considerx5v i j , y5wkl ,
i , j51,...,dimv, k,l51,...,dimw, v, wPM . Then~1! is equivalent to~II.21!. h
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III. QUASITRIANGULAR STRUCTURES ON QUANTUM LORENTZ GROUPS

In this section we classify coquasitriangular~* -! structures on quantum Lorentz groups of Ref.
5. For the quantum Lorentz group of Ref. 12 examples of such structures were given in Ref. 13
and Remark 7 of Section 3 of Ref. 4. We also classify~cf. Ref. 14! coquasitriangular~* -!
structures on~complex! SLq~2! groups and their real forms.

We first recall the definition of Hopf* -algebra corresponding to a quantum Lorentz group5

essentially repeating the arguments of Theorem 1.1 of Ref. 5. The bialgebra structure of~A,D! is
obtained by the construction of Proposition 1 with$wa:aPJ %5$w0,w,w̃%. Here the relations
~II.1! mean thatw05~IB! and the relations~II.2! are given by

~w^w!E5Ew0, ~III.1!

~w̃^ w̃!Ẽ5Ẽw0, ~III.2!

E8~w^w!5w0E8, ~III.3!

Ẽ8~w̃^ w̃!5w0Ẽ8, ~III.4!

X~w^ w̃!5~w̃^w!X, ~III.5!

where

Ẽ5tĒ, Ẽ85Ē8t, ~III.6!

EPLin(C,C2
^C2), E8PLin(C2

^C2,C), XPLin(C2
^C2,C2

^C2) satisfy

~E8^ 1!~1^E!51, ~III.7!

~X^ 1!~1^X!~E^ 1!51^E, ~III.8!

tX̄t5b21X, ~III.9!

E8EÞ0, X is invertible, andbPC\$0%.
Warning:Our choice ofX may differ from the choice of Ref. 5 by a multiplicative nonzero

constant.
Moreover,~III.7! implies thatE andE8 are inverse one to another as matrices,

~1^E8!~E^ 1!51. ~III.10!

Hence,E is left nondegenerate,E8 is right nondegenerate, andw21 exists ~see Proposition 2!.
Similarly, ~1^Ẽ8!~Ẽ^1!51, Ẽ is left nondegenerate,Ẽ8 is right nondenegerate, andw̃21 exists.
But (w0)215w0 and Proposition 3 implies that~A,D! is a Hopf algebra.

Settingw˜ 5 w̃, w̃˜ 5 w,w0˜ 5 w0, the assumptions of Proposition 5 are satisfied and~A,D!
becomes a*-bialgebra where* is defined byw̄5w̃. It has the same Poincare´ series as the classical
SL~2,C! group ~Theorem 1.2 of Ref. 5!. We may assume that

~1! E5e1^e22qe2^e1 , qPC\$0,i ,2 i %, X5atQ, Q is given by~13!–~19! of Ref. 5@q521
in ~17!–~19!#, a5t21/2 for ~13!, a5~2t!21/2 for ~14!, a5q1/2 for ~15!, a5~2q!1/2 for ~16!,
a5~s221!21/2 for ~17!, q5(p221)21/2 for ~18!, a51

2 for ~19!, or
~2! E5e1^e22e2^e11e1^e1 ~in that case we setq51!, X5tQ, Q is given by~20!–~21!

of Ref. 5,
e1 ,e2 is the canonical basis ofC2. Moreover,b5t/utu for ~13! and ~14!, b5q/uqu for ~15!,
b52q/uqu for ~16!, b52i sgn Im(s) for ~17!, b5sgn~upu21! for ~18!, andb51 for ~19!–~21!. In
all cases,b451.
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We shall find allRP~A^A!8 such that~A,D,R! is a CQT Hopf algebra. So~cf. Theorem
1! we need to determineRww, Rw w, Rww, Rww such that 20 relations~II.15! and ~II.16! and 4
relations~II.17! are satisfied@we assume~II.14!#. We shall use them in the following. Irreducibil-
ity of w^ w̄ ~see Ref. 5! and~III.5! giveRww 5 «XX, R

ww 5 «X8X
21, where«X ,«X8 P C\$0% ~cf.

Proposition II.4!. Moreover,D5Rww andD̃ 5 bRww must satisfy~2.11! and~2.17!–~2.20! of Ref.
2 ~with L,L̃ replaced byD,D̃!, hence they are given by~2.21! and~2.22! of Ref. 2, i.e.,Rww5Li ,
Rw w 5 tL j

21t, i , j51,2,3,4,Li5qi~11qi
22EE8!, q1,256q1/2, andq3,456q21/2. Using~2.1!, ~2.3!

and~2.4! of Ref. 2, we obtain«X561,«X8 5 61, andb561. After some calculations one gets that
the 24 relations are satisfied. So we get 4•4•4R for qÞ61, b561; 2•2•4R for q561, b561;
and noR for b56i .

SetM5{ w,w̄%. According to Proposition 6, we get a CQT Hopf* -algebra iff four relations
~II.20! are satisfied iffb51 andqj5qi

21 ~4•4R for qÞ61, b51; 2•4R for q561, b51; noR
for bÞ1!. According to Proposition 7, we get CT Hopf algebra iff four relations~II.21! are
satisfied iffq51, «X8 5 «X ~2•2•2R for q51,b561; noR otherwise!. Clearly, we get CT Hopf
* -algebra iffq5b51 andqj5qi

21, «X8 5 «X ~2•2R for q5b51; noR otherwise!.
Let us also recall SLq~2! groups.15,6 The bialgebra structure is obtained by the construction of

Proposition 1 with$wa:aPJ %5$w0,w%; the relations~II.1! mean thatw05~IB! and those of~II.2!
are given by~III.1! and~III.3!, whereE,E8 are as above withqPC\$0% ~only the case 1.!. One gets
that ~A,D! is a Hopf algebra.

We shall describe~cf. Ref. 14! all RP~A^A!8 such that~A,D,R! is a CQT Hopf algebra.
Due to Theorem 1 we should findD5RwwPMor(w^w,w^w) satisfying four relations~II.15!
and ~II.16!. This meansD5Li , i51,2,3,4, so we get 4R for qÞ61, 0, and 2R for q561. In
other words,Rww56L1

61 whereL15q1/2~11q21EE8!. We get CT Hopf algebras iffL1
251 ~see

Proposition 7 withM5$w%! iff q51.
Let us pass to real forms. Then~A,D! becomes a Hopf* -algebra where* is defined by

w̄5vc, v5BwB21, B51 for SUq~2!, B5diag~1,21! for SUq~1,1!, qPR\$0% ~cf. Refs. 15, 16, and
4!; w̄5w for SLq~2,R!, uqu51 ~cf. Ref. 16 and Proposition 5!. For SUq~2!, SUq~1,1! we get CQT
Hopf * -algebras iffL1 is Hermitian wrt the canonical scalar product inC2 ~see Proposition 6.2
with M5$w% and the proof of Theorem 1.4.6 of Ref. 4! iff q.0. For SLq~2,R! we get CQT
Hopf* -algebras iff tL̄1t5L1 ~see Proposition 6.2 withM5$w%! iff q51. So we have CT
Hopf* -algebras iffq51 ~for each real form!.

IV. QUASITRIANGULAR STRUCTURES ON INHOMOGENEOUS QUANTUM GROUPS

For any Hopf algebra Poly(H)5~A,D! satisfying certain properties one can construct1 a Hopf
algebra Poly (G)5~B,D! which describes an inhomogeneous quantum group. For certain CQT
Hopf algebra structures~A,D,RA! we find all CQT Hopf algebra structures~B,D,R! such that
RuA^A 5 RA. The*-structures and cotriangularity are studied as well. In particular, we find all
C~Q!T Hopf ~* -! algebra structures on quantum Poincare´ groups.

Throughout this section Poly(H)5~A,D! is any bialgebra such that

~a! each representation ofH is completely reducible,
~b! L is an irreducible representation ofH,
~c! Mor(v^w,L ^v^w)5$0% for any two irreducible representationsv,w of H.

Moreover, we assume thatf i j , hiPA8, Ti jPC, i , j51,...,N5dimL, are given and satisfy

~1! A{a→r(a)5(0
f (a)

«(a)
h(a))PMN11~C! is a unital homomorphism,

~2! Lst( f tr* a)5(a* f st)L tr for aPA,
~3! R251, whereRi j ,sm5 f im(L js),
~4! ~L^L!kl,i j (t

i j
* a)5a* tkl for aPA where ti j5(R21!ij,mn„hn*hm2hm(Lns)hs1Tmn«

2 f nb* f maTab…,
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~5! A3F̃50 where A351^1^12R^121^R1~R^1!~1^R!1~1^R!~R^1!2~R^1!~1^R!~R^1!,
F̃ i jk ,m5tij~Lkm!,

~6! A3~Z^121^Z!T50, RT52T whereZi j ,k5h i(L jk).

In particular,~4! and ~5! are satisfied ifti j50.
The inhomogeneous quantum groupG corresponds to the bialgebra Poly~G!5~B,D! defined

~cf. Corollary 3.8.a of Ref. 1! as follows:B is the universal unital algebra generated byA and
yi , i51,...,N, with the relationsIB5IA ,

ysa5~a* f st!yt1a*hs2Lst~h t* a!, aPA, ~IV.1!

~R21!kl,i j „yiyj2h i~L js!ys1Ti j2L imL jnTmn…50. ~IV.2!

Moreover,~A,D! is a subbialgebra of~B,D! andDyi5L i j ^ yj1yi ^ I ~yi were denoted bypi in
Ref. 1!. In particular,P5~0

L
I
y! is a representation ofG.

Remark 3:If H is a matrix group,L its fundamental representation, and~A,D! its corre-
sponding Hopf algebra~generated byLi j , Li j

21!, then, assuming~a!–~c! above and setting
f i j5d i j«, hi50, andT50, ~B,D! corresponds to

G5H›RN5H g5S h a

0 1D PMN11~C!:hPH,aPRNJ ,
f (g)5 f (h), yi(g)5ai , fPA, i51,...,N, gPG.

According to Corollary 3.8.b and the proof of Proposition 3.12 of Ref. 1, the bialgebra~B,D!
can be obtained by the construction of Proposition 1 with$wa: aPJ %5Irr Hø$P %. Here the
relations~II.1! mean thatw0[~IA!5~IB! and the relations~II.2! are given by

~P ^P !RP5RP~P ^P !, ~IV.3!

~P ^w!Nw5Nw~w^P !, wPIrr H, ~IV.4!

~w^w8!Sww8w9
a

5Sww8w9
a w9, w,w8,w9PIrr H, a51,...,cww8

w9 , ~IV.5!

P i5 iL, ~IV.6!

sP5w0s, ~IV.7!

where

RP5S R Z 2R•Z ~R21!T

0 0 1 0

0 1 0 0

0 0 0 1

D , Nw5SGw , Hw

0 1 D , ~IV.8!

(Gw) iC,Dj5 f i j (wCD), (Hw) iC,D5h i(wCD), wPRepH, R5GL , Z5HL , Sww8w9
a (a 5 1,...,cww8

w9 )
form a basis of Mor(w9,w^w8), i : CN→CN

%C, s: CN
%C→C are the canonical mappings. In the

following we assume that~A,D! is a Hopf algebra. Then~Proposition 3.12 of Ref. 1! ~B,D! is
also a Hopf algebra andGw

21 exist:

~Gw
21!Ak,lB5 f kl~wAB

21!. ~IV.9!

If ~A,D! is a Hopf* -algebra, then we also assumeL̄5L,
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f i j „S~a* !…5 f i j ~a!,h i„S~a* !…5h i~a!, i , j51,...,N,aPA, ~IV.10!

T̃ 2 TPMor~w0,L^L!, whereT̃i j 5 Tji . Then
1 ~B,D! has a unique Hopf* -algebra structure such

that~A,D! is its Hopf* -subalgebra andyi* 5 yi .
In the following we assume Mor~I , L^L!ùker~R11!5$0%, i.e., Mor ~I , L^L!,ker~R21!.

Then @using ~4.14! of Ref. 1# T̃5T. The main result of the present paper is contained in the
following.

Theorem 2: Let Poly~H!5~A,D! and Poly~G!5~B,D! be as above,~A,D,RA! be a CQT
Hopf algebra such that

RvL5cvGv , RLv5cv8Gv
21, vPIrr H, ~IV.11!

cv , cv8 P C \$0%. We are interested in CQT Hopf algebra structures~B,D,R! such that

RuA^A5RA. ~IV.12!

One has the following.
~1! Such a structure exists iff

t i j50, i , j51,...,N, ~IV.13!

RvL5Gv , RLv5Gv
21, vPIrr H. ~IV.14!

~2! Suppose~IV.13! and~IV.14!. Then such structures are in one-to-one correspondence with
mPMor~w0, L^L! satisfying

~ f jb* f ia!mab5mi j«, i , j51,...,N, ~IV.15!

and are determined by

Rvw5Rvw for RA, v,wPIrr H, ~IV.16!

RvP5Nv , RPv5Nv
21, vPIrr H, ~IV.17!

RPP5RP1mP , ~IV.18!

where

mP5S 0 0 0 m

0 0 0 0

0 0 0 0

0 0 0 0

D . ~IV.19!

~3! LetR be as in~2! and let~A,D! and ~B,D! be Hopf* -algebras as in the text before the
Theorem. Then~B,D,R! is a CQT Hopf* -algebra iff ~A,D,RA! is a CQT Hopf* -algebra and

mi j5mji , i , j51,...,N. ~IV.20!

~4! Let R be as in~2!. Then ~B,D,R! is a CT Hopf algebra iff~A,D,RA! is a CT Hopf
algebra andm50.

Proof: Ad 1 and 2:Each such structure is~see Theorem 1! uniquely determined byRvw,
RvP , RPv, andRPP satisfying~II.15!–~II.17! @we assume~II.14!#, v,wPIrr H. Using ~IV.12!, we
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get ~IV.16!. In virtue of the properties ofRA the formula~II.17! for Rvw follows. Moreover,
~II.15! and~II.16! for ~IV.6! andwg5vPIrr H meanRvP (1 ^ i ) 5 ( i ^ 1)RvL, RPv( i ^ 1) 5 (1
^ i )RLv. That and~IV.11! give

RvP5cvSGv , ?

0, ?D 5cvNv , RPv5cv8SGv
21 ?

0 ?
D 5cv8Nv

21,

where the second equalities follow from~II.17! for RvP ,RPv, ~IV.4!, the independence of I,
yi( i51,...,N) overA @in left and also in right module, see Corollary 3.6 and~1.4! of Ref. 1# and
the condition~c!. Using~II.15! and~II.16! for ~IV.7! andwg5vPIrr H, one obtainscv 5 cv8 5 1;
we get~IV.14!, ~IV.17!. In virtue of ~II.15! and ~II.16! for ~IV.6! and ~IV.7! andwg5P ,

RPP5S R Z 2R•Z ?

0 0 1 0

0 1 0 0

0 0 0 1

D 5RP1mP

for somemPMor~w0, L^L! where the second equality uses~II.17! for RPP , ~IV.3!, and~IV.19!.
Thus ~IV.18! follows. We setRQ5RP1mP5RPP and replace~IV.3! by equivalent@assuming
~IV.5!# relation

~P ^P !RQ5RQ~P ^P !. ~IV.21!

The relations~II.15! and ~II.16! for ~IV.21!, ~IV.4!, and anywgPIrr Hø$P % are equivalent to

~RQ^ 1!~1^RQ!~RQ^ 1!5~1^RQ!~RQ^ 1!~1^RQ!, ~IV.22!

~1^Nv!~Nv^ 1!~1^RQ!5~RQ^ 1!~1^Nv!~Nv^ 1!, vPIrr H, ~IV.23!

~1^Rvw!~Nv^ 1!~1^Nw!5~Nw^ 1!~1^Nv!~R
vw

^ 1!, v,wPIrr H. ~IV.24!

According to Proposition 3.14 of Ref. 1 and its proof,~IV.22! is equivalent toF̃50. Let us denote
the standard basis elements inCdim v, vPIrr H, by hi

v, i51,...,dimv, ei5hi
L, and inC by f51.

Using ~3.65! of Ref. 1 and

Nv~hi
v

^ej !5~Gv!kl,i j ek^hl
v ,

Nv~hi
v

^ f !5 f ^hi
v1~Hv!kl,iek^hl

v ,

we find that~IV.23! on hi
v

^ej ^ek follows from the last formula before Proposition 3.14 in Ref.
1; on hi

v
^ej ^ f , hi

v
^ f ^ej follows from ~2.18! of Ref. 1; on hi

v
^ f ^ f is equivalent~using

Rm5m! to t i j (vAB)50 and~IV.15! applied tovAB for all i , j ,A,B. So ~IV.23! is equivalent to
~IV.13! ~which impliesF̃50! and~IV.15!. We also get that~IV.24! on hi

v
^hj

w
^ek follows from

~1^Rvw!~RvL
^1!~1^RwL!5~RwL

^1!~1^RvL!~Rvw
^1! @it can be obtained using~II.13! and~II.8!

forRA ; cf. Refs. 6, 8, and~1.14! of Ref. 4#; onhi
v

^hj
w

^ f follows from the equality obtained by
actinghi on ~II.17! for Rvw and using condition~1! ~see the beginning of the Section!.

The relations~II.15! and ~II.16! for ~IV.5! andwgPIrr H follow from ~II.8! and ~II.11! for
RA while for wg5P they are equivalent to

~Nw^ 1!~1^Nw8!~Sww8w9
a

^ 1!5~1^Sww8w9
a

!Nw9 .
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That onhi
w9 ^ ej follows from ~II.8! and ~II.11! for RA and onhi

w9 ^ f that follows from the
equality obtained by actinghi on ~IV.5!.

Ad 3:We need to check~II.20! for M5Irr Hø$P %. ForRvw, v,wPIrr H, it is equivalent to
the fact that~A,D,RA! is a CQT Hopf* -algebra; forRPv andRvP follows from ~IV.9!, ~IV.10!,
and the properties ofhi ; for R

PP it is equivalent@using ~4.14! and the next formula of Ref. 1,
Rm5m, RT52T# to ~IV.20!.

Ad 4:We need to check~II.21! for M5Irr Hø$P %. ForRvw, v,wPIrr H, it is equivalent to
the fact that~A,D,RA! is a CT Hopf algebra; forRPv andRvP follows from ~IV.17!; for RPP it
is equivalent~usingRP

251! to m50. h

Remark: If the first formula of the condition ~6! is replaced by
0ÞA3~Z^121^Z!TPMor~I ,L^L^L! ~this is allowed by Ref. 1!, then~IV.22! is not satisfied and
there is no CQT Hopf algebra structure on~B,D!.

As an application we shall consider~A,D!5Poly(L) whereL is a quantum Lorentz group.
The corresponding inhomogeneous quantum groups are called quantum Poincare´ groups and are
~almost! classified in Ref. 2. The classification of C~Q!T Hopf ~* -! algebra structures on them is
given in the following.

Theorem 3:Let Poly(P)5~B,D! be the Hopf* -algebra corresponding to a quantum Poincare´
groupP ~Ref. 2! described by an admissible choice of quantum Lorentz group@cases~1!–~7!#,
s561, H andT.

~1! Let us consider CQT Hopf algebra structures~B,D,R! on P. One has:
~a!In the cases~1! ~excepts51, t51, t0Þ0, see Remark 1.8 of Ref. 2!, ~2!, ~3!, ~4! ~excepts51,
bÞ0!, ~5! ~excepts561, t51, t0Þ0!, ~6!, and~7! each such structure is uniquely determined by

Rww5kL, Rww5kX, Rww5qkX21, Rww5qkL̃

and ~IV. 17!–~IV.19!, where

m5cm0 , m05~V21
^V21!~1^X^ 1!~E^ tE!, L5sq1/2~11q21EE8!, L̃5qtLt,

wheres561,E,E8 are fixed for fixedP and given in Ref. 2, andk561 ~two possibleR for each
cPC!.
~b! In the other cases there is no such structure.

~2! Let R be as in~1!. We get CQT Hopf* -algebra iff q51 @which excludes the cases
~5!–~7!# andcPR.

~3! LetR be as in~1!. We get CT Hopf algebra iffq51 @which excludes the cases~5!–~7!#
andc50 ~then it is also CT Hopf* -algebra!.

Proof: Ad 1: We shall use Theorem 2, the results of Ref. 2, and Section III. ThusH is a
quantum Lorentz group,L5V21(w^ w̄)V with VCD,i5(s i)CD ~s051,s1,s2,s3 are the Pauli ma-
trices!, q5b561, and the assumptions aboutH and G are satisfied. Moreover,
Gw5~V21

^1!~1^X!~L^1!~1^V! and Gw̄5~V21
^1!~1^L̃!~X21

^1!~1^V!, where
L5sq1/2~11q21EE8! and L̃ 5 qtL21t 5 qtLt. The possibleh andT are described in Ref. 2.
According to the results of Section III, each CQT Hopf algebra structure on~A,D! is uniquely
characterized byRww5eLL, R

w̄w̄5eL8 L̃, R
ww 5 eXX, andR

ww 5 eX8X
21, whereeL

2 5 eL8
2 5 eX

2

5 eX8
2 5 1 ~16 possibleRA!. Using~II.8!, ~II.9!, ~II.11!, and~II.12!, one gets~IV.11! for v5w,w̄

with cw5eLeX , cw 5 eL8eX8 , cw8 5 qeLeX8 , andcw8 5 qeXeL8 . In virtue of Proposition 2.1 of Ref. 2
and ~II.8!, ~II.9!, ~II.11! and ~II.12!, the condition~IV.11! is satisfied for allvPIrr H.

Due to Proposition 3.13.2 and Proposition 4.8 of Ref. 1,~IV. 13! is equivalent tot i j (wAB)50,
i , j50, 1, 2, 3,A,B51,2, which means~cf. the proof of Theorem 1.6 of Ref. 2! l50, which
excludes the case~4!, s51, bÞ0, the case~1!, s51, t51, t0Þ0, and the case~5!, s561, t51,
t0Þ0, wheret0PR is introduced in Remark 1.8 of Ref. 2. Moreover,~IV.14! means thateX8 5 eL8
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5 qk, eX5eL5k for somek561. Using Theorem 2.1–2, Mor~w0,L^L!5Cm0 and ~IV.15! for
m5m0 ~it is enough to prove it onwAB , wAB* when it follows from the 20 relations considered in
Section III!, we get~1!.

Ad 2: We useq5b51 ~which impliesqj5qi
21!, (m0) i j 5 (m0) j i and Theorem 2.3.

Ad 3: We useq51 ~which implieseX8 5 eX) and Theorem 2.4. j

V. ENVELOPING ALGEBRAS

In this section we study enveloping algebras of inhomogeneous quantum groups. We assume
that ~A,D,RA! and~B,D,R! are CQT Hopf algebras as in Theorem 2.1–2~e.g., as in Theorem
3.1!.

We essentially follow the scheme of Refs. 16 and 17, but now we do not assumeZ5T50.
We definel j lPB8,j ,l51,...,N,1, by

l j l ~x!5R~x^P j l ! ~V.1!

~in the CT casel corresponds toL6 of Ref. 16 on the subalgebra generated byP ac!. According to
~II.5! and ~II.13! for v5w5P ,

Rab,cd
PP l d f~x

~1!!l ce~x
~2!!5Rab,cd

PP
R~x~1!

^P d f!R~x~2!
^P ce!

5R~x^Rab,cd
PP

P ceP d f!

5R~x^P acP bdRcd,e f
PP !

5R~x~1!
^P bd!R~x~2!

^P ac!Rcd,e f
PP

5 l bd~x
~1!!l ac~x

~2!!Rcd,e f
PP ,

hence

Rab,cd
PP ~ l d f* l ce!5~ l bd* l ac!Rcd,e f

PP , a,b,e, f51,...,N,1. ~V.2!

Settingl ab5Lab , l a15Ma , and usingl1a50, l115e, a,b51,...,N, and~IV.18!, ~V.2! is equiva-
lent to

Rab,cd~Ldf* Lce!5~Lbd* Lac!Rcd,e f , ~V.3!

Rab,cd~Md* Lce!1Zab,cLce5~Lbd* Lac!Zcd,e1Lbe*Ma , ~V.4!

Rab,cd~Ldf*Mc!2~RZ!ab,dLd f52~Lbd* Lac!~RZ!cd, f1Mb* Laf , ~V.5!

Rab,cdMd*Mc1Zab,cMc2~RZ!ab,dMd1sabe5~Lbd* Lac!scd1Mb*Ma , ~V.6!

a,b,e, f51,...,N, wheres5(R21)T1m. Let us notice that~V.5! follows from ~V.3! and~V.4!.
Moreover, using~II.4!, ~II.3!, l ac(xy)5 l ab(x) l bc(y), l ac(I )5dac , a,c51,...,N,1,x,yPB. Thus
Lac(I )5dac , Ma(I )50,

Lac~xy!5Lab~x!Lbc~y!, ~V.7!

Ma~xy!5Lab~x!Mb~y!1Ma~x!e~y!, ~V.8!

a,b51,...,N,x,yPB.Alsol j l (P ab)5R(P ab^ P j l )5Rja,bl
PP , l j l (wAB)5R(wAB^ P j l )5RjA,Bl

wP

5 (Nw) jA,Bl @see ~V.1!, ~II.7!, ~IV.17!, and ~IV.8!#, a,b, j ,l51,...,N,1,A,B51,...,
dimw,wPRepH. Therefore
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L jl ~Lab!5Rja,bl , ~V.9!

L jl ~ya!52~RZ! ja,l , ~V.10!

L jl ~wAB!5~Gw! jA,Bl , ~V.11!

M j~Lab!5Zja,b , ~V.12!

M j~ya!5sja , ~V.13!

M j~wAB!5~Hw! jA,B , ~V.14!

a,b, j ,l51,...,N,A,B51,..., dimw,wPRepH. It is clear thatl j l generate a unital subalgebra of
B8~wrt convolution* !. Endowing it withD8 of Remark 2, we get a bialgebraU with l as its
corepresentation. Addingl i j

(m)5 l i j +S
m, one obtains a Hopf algebraÛ with coinverse

S8( l (m))5 l (m11) and corepresentationsl (2k), (l (2k11))T, k50,1,2,... . ActingS8m on ~V.2!, one
obtains

Rab,cd
PP ~ l d f

~2k!
* l ce

~2k!!5~ l bd
~2k!

* l ac
~2k!!Rcd,e f

PP ,

Rab,cd
PP ~ l ce

~2k11!
* l d f

~2k11!!5~ l ac
~2k11!

* l bd
~2k11!!Rcd,e f

PP .

HereÛ is called enveloping algebra of~B,D!. It can be sometimes too small. It happens, e.g., in
the classical case~see Remark 3! with R5e^e when Û5Ce ~cf. also Ref. 18!.

Notice thatL jl uA5f j l ,M j uA5ha , l uA 5 r. According to the proof of Theorem 1, there exists
antihomomorphismu:B→B8 ~given byR! such thatu(L j l )5L jl , u(yj )5M j , u(I )5e. There-
fore the formulas~3.60!, ~3.46!, and ~1.12! of Ref. 1 yield ~V.4!, ~V.6! @with s replaced by
~R21)T#, and~V.3! which give

f be*ha5Rab,cdhd* f ce1Zab,cf ce2~ f bd* f ac!Zcd,e

@cf. ~2.18! of Ref. 1#, the conditionti j50, and the last formula before Proposition 3.14 in Ref. 1.
Suppose~L^L!k5kw0, n~L^L!5w0n @w05~IB!#. Applying u, we get

~Lbd* Lac!kcd5kabe, nab~Lbd* Lac!5ncde, a,b,c,d51,...,N. ~V.15!

Let us setXl j5L jl +SPÛ, j ,l51,...,N. Then

Xik~xy!5Xi j ~x!Xjk~y!, Xik~ I !5d ik ,x,yPB, ~V.16!

Xik~a!5 f ki„S~a!…, aPA,i ,k51,...,N. ~V.17!

Using the last equation in the proof of Proposition 3.12 of Ref. 1,~V.7!, ~IV.9!, and~V.10!, we
obtain

Xik~yl !5Zlk,i . ~V.18!

Moreover,~V.15! yields

kab~Xac*Xbd!5kcde, ~Xac*Xbd!ncd5nabe. ~V.19!

As in the proof of Proposition 3.1.2 of Ref. 3, there exists a unital homomorphism
X:B→MN11~C! such that
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X5S ~Xjl ! j ,l51
N ~Yj ! j51

N

0 e
D

for some YjPB8 satisfying Yj (a)50, aPA,Yj (yk)5d jk , j ,k51,...,N. Setting Xj15Yj ,
X1 j50, X115e, j51,...,N, the commutation relations amongXi j , i , j51,...,N, 1, are the same
as in ~3.7! of Ref. 3, i.e.,

~Xab*Xcd!Kbd,st5Kac,bd~Xbs*Xdt!, a,c,s,t51,...,N,1, ~V.20!

where

K5S RT 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

D
@it is also possible to replaceK in ~V.20! by K1nP , wherenPMor~L^L,w0!; see~IV.19! and
~V.19!#.

DefiningXi j
(m)5Xi j +S

m, i , j51,...,N, 1,m50,1,2,..., one gets a Hopf algebraV̂ generated~as
a unital algebra! by l i j

(m) andXi j
(m). Clearly S8(X(m))5X(m11); X(2k), [X(2k11)] T, k50,1,..., are

corepresentations ofV̂. LettingS8 act on~V.20!, one obtains

~Xab
~2k!

*Xcd
~2k!!Kbd,st5Kac,bd~Xbs

~2k!
*Xdt

~2k!!,

~Xcd
~2k11!

*Xab
~2k11!!Kbd,st5Kac,bd~Xdt

~2k11!
*Xbs

~2k11!!.

Here V̂ is called enlarged enveloping algebra of~B,D!. It would be interesting to find the com-
mutation relations betweenMi andYj .
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Invariant integrals of functions and forms overq-deformed Euclidean space and
spheres inN dimensions are defined and shown to be positive definite, compatible
with the star structure and to satisfy a cyclic property involving theD matrix of
SOq(N). The definition is based on spherical and radial integration. Stokes theorem
is proved with and without spherical boundary terms, as well as on the sphere.
© 1996 American Institute of Physics.@S0022-2488~96!03409-3#

I. INTRODUCTION

In recent years, there has been much interest in formulating physics and, in particular, field
theory on quantized, i.e., noncommutative space–time. One of the motivations is that if there are
no more ‘‘points’’ in space–time, such a theory should be well behaved in the UV. The concept
of integration on such a space can certainly be expected to be an essential ingredient. In the
simplest case of the quantum plane, such an integral was first introduced by Wess and Zumino;1

also see Ref. 2. In the presumably more physical case of quantum Euclidean space,3 the Gaussian
integration method was proposed by a number of authors.4,6 However, it is tedious to calculate,
except in the simplest cases, and its properties have never been investigated thoroughly; in par-
ticular, we point out that determining the class of integrable functions is a rather subtle issue.

In this paper, we will give a different definition based on spherical integration inN dimen-
sions and investigate its properties in detail. Although this idea has already appeared in the
literature,7 it has not been developed very far. We first show that there is a unique invariant
integral over the quantum Euclidean sphere, and prove that it is positive definite and satisfies a
cyclic property involving theD matrix of SOq(N). The integral over quantum Euclidean space is
then defined by radial integration, both for functions andN forms. One naturally obtains a large
class of integrable functions. It turns out not to be determined uniquely by rotation and translation
invariance~5Stokes theorem! alone; it is unique after, e.g., imposing a general scaling law. It is
positive definite as well and thus allows us to define a Hilbert space of square-integrable functions,
and satisfies the same cyclic property. The cyclic property also holds for the integral ofN and
N21-forms over spheres, which leads to a simple, truly noncommutative proof of Stokes theorem
on Euclidean space with and without spherical boundary terms, as well as on the sphere. These
proofs only work forqÞ1, nevertheless, they reduce to the classical Stokes theorem forq→1.
This shows the power of noncommutative geometry. Obviously one would like to use this integral
to define actions for field theories on such noncommutative spaces; this is work in progress.

Although only the case of quantum Euclidean space is considered, the general approach is
clearly applicable to, e.g., quantum Minkowski space as well.

II. INTEGRAL ON THE QUANTUM SPHERE Sq
N21

To establish the notation, we briefly summarize the definitions used in this paper, following
Faddeev, Reshetikhin, and Takhtadjan.3

The ~function algebra on the! quantum orthogonal groupOq(N) @which is called SOq(N) in
Ref. 3# is the algebra generated byAj

i modulo the relations

a!Electronic mail: hsteinac@physics.berkeley.edu
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R̂mn
ik Aj

mAl
n5An

i Am
k R̂jl

nm , ~1!

gi j Ak
i Al

j5gkl . ~2!

SOq(N) is obtained by further imposing

Aj 1

i1•••AjN

iNeq
j 1••• j N5eq

i1••• i N, ~3!

using the fact that the quantum determinant is central; see, e.g., Ref. 8.
TheR̂matrix decomposes into three projectors,Rkl

i j 5(qP12q21P21q12NP0)kl
i j . The metric

is determined by (P0)kl
i j 5[(q221)/(qN21)(q22N11)]gi j gkl , wheregikg

k j5d i
j . In this paper,

we assumeq is real and positive. Then there is a star structure~involution!,

Aj
i5gjmAm

l gli , ~4!

so that we really have~S!Oq~N,R!, and the antipode can be written as

S~Aj
i !5Ai

j . ~5!

Quantum Euclidean space3 is generated byxi with commutation relations

~P2!kl
i j xkxl50, ~6!

and the center is generated by 1 andr 25gi j x
ixj . The associated differentials satisfy

(P1)kl
i j dxk dxl50 andgi j dx

i dxj50, i.e.,

dxi dxj52qR̂kl
i j dxk dxl . ~7!

The epsilon tensor is then determined by the unique top (N) form,

dxi1•••dxiN5eq
i1••• i N dx1•••dxN[eq

i1••• i N dNx. ~8!

The above relations are preserved under the coaction of~S!Oq(N),

D~xi !5Aj
i
^xj[x~1!

i
^x~2!

i , ~9!

in Sweedler notation. The involutionxi 5 xjgji is compatible with the left coaction of~S!Oq~N,R!.
One can also introduce derivatives that satisfy

~P2!kl
i j ]k] l50, ~10!

] ixj5gi j1q~R̂21!kl
i j xk] l , ~11!

and

] i dxj5q21R̂kl
i j dxk ] l , xi dxj5qR̂kl

i j dxk xl . ~12!

This represents one possible choice. For more details, see, e.g., Ref. 9. Finally, the quantum sphere
Sq
N21 is generated byt i5xi /r , which satisfiesgi j t

i t j51.
We first define a~complex-valued! integral ^ f (t)& t of a function f (t) over Sq

N21. It should
certainly be invariant under Oq(N), which means

Aj 1

i1•••Ajn

i n^t j 1•••t j n& t5^t i1•••t i n& t . ~13!
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Of course, it has to satisfy

gi l i l11
^t i1•••t i n& t5^t i1•••t i l21t i l12•••t i n& t and ~P2! j l j l11

i l i l11 ^t j 1•••t j n& t50. ~14!

We require one more property, namely thatI i1••• i n [ ^t i1•••t i n& t is analytic in~q21!, i.e. its Lau-
rent series in~q21! has no negative terms~we can then assume that the classical limitq51 is
nonzero!. These properties, in fact, determine the spherical integral uniquely: forn odd, one
should definê t i1•••t i n& t 5 0, and the following occurs.

Proposition 1: For even n, there exists (up to normalization) one and only one tensor
I i1••• i n 5 I i1••• i n(q) analytic in~q21! that is invariant underOq(N),

Aj 1

i1•••Ajn

i nI j 1••• j n5I i1••• i n, ~15!

and symmetric,

~P2! j l j l11

i l i l11 I j 1••• j n50, ~16!

for any l. It can be normalized such that

gi l i l11
I i1••• i n5I i1••• i l21i l12••• i n, ~17!

for any l. I i j}gi j .
An explicit form is, e.g., Ii1••• i n 5 ln(D

n/2xi1•••xin), whereD5gi j ]
i] j is the Laplacian (in

either of the two possible calculi), andln is analytic in ~q21!. For q51, they reduce to the
classical symmetric invariant tensors.

Proof: The proof is by induction onn. For n52, gi j is in fact the only invariant symmetric
~and analytic! such tensor.

Assume the statement is true forn, and supposeI n12 and I n128 satisfy the above conditions.
Using the uniqueness ofI n , we have~in shorthand notation!

g12I n125 f ~q21!I n , ~18!

g12I n128 5 f 8~q21!I n , ~19!

where thef (q21) are analytic, because the left-hand sides are invariant, symmetric, and analytic.
ThenJn12 5 f 8I n12 2 f 8I n128 is symmetric, analytic, and satisfiesg12 Jn1250. It remains to show
that J50.

SinceJ is analytic, we can write

Ji1••• i n5 (
k5n0

`

~q21!kJ
~k!

i1••• i n. ~20!

(q 2 1)2n0Ji1••• i n has all the properties ofJ and has a well-defined, nonzero limit asq→1; so we
may assumeJ~0!Þ0.

Now consider invariance,

Ji1••• i n5Aj 1

i1•••Ajn

i nJj 1••• j n. ~21!

This equation is valid for allq, and we can take the limitq→1. ThenAj
i generate the commutative

algebra of functions on the classical Lie groupO(N), andJ becomesJ~0!, which is just a classical
tensor. Now (P2) j l j l11

i l i l11Jj 1••• j n 5 0 implies thatJ~0! is symmetric for neighboring indices, and
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therefore it is completely symmetric. Withg12J50, this implies thatJ~0! is totally traceless~clas-
sically!!. But there exists no totally symmetric traceless invariant tensor forO(N). This proves
uniqueness. In particular,I i1••• i n 5 ln(D

n/2xi1•••xin) obviously satisfies the assumptions of the
proposition; it is analytic, because in evaluating the Laplacians, only the metric and theR̂ matrix
are involved, which are both analytic. Statement~17! now follows becausex2 is central. h

Such invariant tensors have also been considered in Ref. 4~where they are calledS!, as well
as the explicit form involving the Laplacian. Our contribution is a self-contained proof of their
uniqueness. Sôt i1•••t i n& t [ I i1••• i n for evenn ~and 0 for oddn! defines the unique invariant
integral overSq

N21, which thus coincides with the definition given in Ref. 7.
From now on we only considerN>3 since forN51,2, Euclidean space is undeformed. The

following lemma is the origin of the cyclic properties of invariant tensors. For quantum groups,
the square of the antipode is usually not 1. For (S)Oq(N), it is generated by theD matrix:
S2Aj

i5Dl
iAk

l (D21) j
k, whereDl

i5gikglk ~note thatD also defines the quantum trace!. Then
Lemma 1: For any invariant tensor Ji1••• i n 5 Aj 1

i1•••Ajn

i nJj 1••• j n , Dl1

i1Ji2••• l1 is invariant too:

Aj 1

i1•••Ajn

i nDl1

j 1Jj 2••• l15Dl1

i1Ji2••• l1. ~22!

Proof: From the above,~22! amounts to

~S22Aj 1

i1!Aj 2

i2•••Ajn

i nJj 2••• j nj 15Ji2••• i ni1. ~23!

Multiplying with S21Ai1

i0 from the left and usingS21(ab)5(S21b)(S21a) and (S21Aj 1

i1)Ai1

i0

5 d j 1

i0, this becomes

Aj 2

i2•••Ajn

i nJj 2••• j ni05S21Ai1

i0Ji2••• i ni1. ~24!

Now multiplying with Ai0

l0 from the right, we get

Aj 2

i2•••Ajn

i nAi0

l0Jj 2••• j ni05d i1
l0Ji2••• i ni1. ~25!

But the ~lhs! is just Ji2••• i nl0 by invariance and thus equal to the~rhs!. h

We can now show a number of properties of the integral over the sphere.
Theorem 1:

^ f ~ t !& t5^ f ~ t !& t , ~26!

^ f ~ t ! f ~ t !& t>0, ~27!

^ f ~ t !g~ t !& t5^g~ t ! f ~Dt !& t , ~28!

where(Dt) i5Dj
i t j . The last statement follows from

I i1••• i n5Dj 1

i1I i2••• i nj 1. ~29!

Proof: For ~26!, we have to show thatI j n••• j 1gjni n•••gj 1i1 5 I i1••• i n. Using the uniqueness ofI , it is
enough to show thatI j n••• j 1gjni n•••gj 1i1 is invariant, symmetric, and normalized asI . So first,
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Aj 1

i1•••Ajn

i n~ I kn•••k1gknj n•••gk1 j 1!5gl1i1•••glni nAkn

l n •••Ak1

l1 I kn•••k15Akn

l n •••Ak1

l1 I kn•••k1gl1i1•••glni n

5~ I l n••• l1glni n•••gl1i1!. ~30!

We have used thatI is real ~sincegi j and R̂ are real!, andAj 1

i1gk1 j 1 5 gl1i1Ak1

l1 . The symmetry

condition~16! follows from standard compatibility conditions betweenR̂ andgi j , and the fact that
R̂ is symmetric. The correct normalization can be seen easily usinggi j5gi j for q—Euclidean
space.

To show positive definiteness~27!, we use the observation made by Ref. 3 that

t i→Aj
i uj , ~31!

with uj5u1d1
j 1uNdN

j is an embeddingSq
N21→Fun„Oq(N)… for u1uN5(q(N22)/21q(22N)/2)21,

since (P2)kl
i j ukul50 andgi j u

iuj51. In fact, this embedding also respects the star structure if one
choosesuN5u1q

12N/2 and real. Now one can write the integral overSq
N21 in terms of the Haar

measure on the compact quantum groupOq~N,R!.10,11Namely,

^t i1•••t i n& t5^Aj 1

i1•••Ajn

i n&Au
j 1•••ujn[^AjI

iI&Au
jI, ~32!

~in short notation! since the Haar measurê &A is left ~and right! invariant
^AjI

iI&A5AkI
iI ^AjI

kI&A5^AkI
iI &AAjI

kI and analytic, and the normalization condition is satisfied as well. Then

^t iIt jI& t 5 ^AkI
iIArI

jI &Au
kIurI and forf (t)5( f iIt

iI, etc.,

^ f ~ t !g~ t !& t5 f iIgjI^AkI
iIArI

jI &Au
kIurI5^~ f iIAkI

iIukI !~gjIArI
jI urI !&A5^ f ~Au!g~Au!&A . ~33!

This shows that the integral overSq
N21 is positive definite, because the Haar measure over com-

pact quantum groups is positive definite,10 cf. Ref. 12.
Finally we show the cyclic property~29!. ~28! then follows immediately. Forn52, the

statement is obvious:gi j5Dk
i gjk.

Again using a shorthand notation, define

J12•••n5D1I
23•••n1. ~34!

Using the previous proposition, we only have to show thatJ is symmetric, invariant, analytic, and
properly normalized. Analyticity is obvious. The normalization follows immediately by induction,
using the property shown in proposition~1!. Invariance ofJ follows from the above lemma. It
remains to show thatJ is symmetric, and the only nontrivial part of that is (P2)12J

12•••n50.
Define

J̃12•••n5~P2!12 J
12•••n, ~35!

so J̃ is invariant, antisymmetric, and traceless in the first two indices~12!, symmetric in the
remaining indices~we will say that such a tensor has the ISAT property!, and analytic. It is shown
below that there is no suchJ̃ for q51 ~andN>3!. Then as in Proposition 1, the leading term of
the expansion ofJ̃ in ~q21! is classical and therefore vanishes, which proves thatJ̃50 for anyq.

So from now onq51. We show by induction thatJ̃50. This is true forn52: there is no
invariant antisymmetric traceless tensor with two indices~for N>3!. Now assume the statement is
true forn even, and thatJ̃12•••(n12) has the ISAT property. Define

K12•••n5g~n11!,~n12!J̃
12•••~n12!. ~36!
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K has the ISAT property, so by the induction assumption

K50. ~37!

Define

M145•••~n12!5g23J̃
12•••~n12!5S 14M

145•••~n12!1A14M
145•••~n12!, ~38!

where S andA are the classical symmetrizer and antisymmetrizer. Again by the induction
assumption,A14M

145•••(n12)50 ~it satisfies the ISAT property!. This shows thatM is symmetric
in the first two indices~1,4!. Together with the definition ofM , this implies thatM is totally
symmetric. Further,g14M

145•••(n12)5g14g23J̃
12•••(n12)50 becauseJ̃ is antisymmetric in~1,2!. But

thenM is totally traceless, and as in proposition~1! this impliesM50. Together with~37! and the
ISAT property of J̃, it follows that J̃ is totally traceless. SoJ̃ corresponds to a certain Young
tableaux, describing a larger-than-one-dimensional irreducible representation of O(N). However,

J̃ being invariant means that it is a trivial one-dimensional representation. This is a contradiction
and provesJ̃50. h

Property~27! ~which is also implied by results in Ref. 4, once the uniqueness of the invariant
tensors is established! in particular means that one can now define the Hilbert space of square-
integrable functions onSq

N21. The same will be true for the integral on the entire Quantum
Euclidean space.

The cyclic property~28! is a strong constraint onI i1••• i n and could actually be used to
calculate it recursively, besides its obvious interest in its own. An immediate consequence of~28!
is ^ f (Dt)& t5^ f (t)& t , which also follows from rotation invariance of the integral, becauseD is
essentially the representation of the~exponential of the! Weyl vector ofUq„SO(N)….

Notice that although it may not look like it,~28! is consistent with conjugation: even though
theD matrix is real, we have

f̄ ~Dt !5 f ~D21t !. ~39!

To see this, takef (t)5t i ; then the~lhs! becomes

D~ t i !5D~ t jgji !5Dk
j tkgji ~40!

5Dk
j t lglkgji5t lgjl gji5~D21! l

i t l , ~41!

using the cyclic property ofg andDl
i5gikglk , which is the~rhs! of the above.

III. INTEGRAL OVER QUANTUM EUCLIDEAN SPACE

It is now easy to define an integral over quantum Euclidean space. Since the invariant length
r 25gi j x

ixj is central, we can use its square rootr as well, and write any function on quantum
Euclidean space in the formf (xi)5 f (t i ,r ). We then define its integral to be

^ f ~x!&x5^^ f ~ t,r !& t~r !•r N21& r , ~42!

where^ f (t,r )& t(r ) is a classical, analytic function inr , and^g(r )& r is some linear functional inr ,
to be determined by requiring the Stokes theorem. It is essential that this radial integral^g(r )& r is
really a functional of theanalytic continuation of g(r ) to a function on the~positive! real line.
Only then one obtains a large class of integrable functions, and this concept of integration over the
entire space agrees with the classical one.

It will turn out that the Stokes theorem, e.g., in the form^] i f (x)&x50 holds if and only if the
radial integral satisfies the scaling property
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^g~qr !& r5q21^g~r !& r . ~43!

This can be shown directly; we will instead give a more elegant proof later. This scaling property
is obviously satisfied by an arbitrary superposition of Jackson sums,

^ f ~r !& r5E
1

q

dr0 m~r 0! (
n52`

`

f ~qnr 0!q
n, ~44!

with arbitrary ~positive! ‘‘weight’’ function m(r ).0. The normalization can be fixed such that,
e.g., ^e2r2& r the classical result. Ifm(r ) is a delta function, this is simply a Jackson sum; for
m(r )51, one obtains the classical radial integration,

^ f ~r !r N21& r5E
1

q

dr0 (
n52`

`

qn~qnr 0!
N21f ~qnr 0!5E

0

`

dr r N21f ~r !. ~45!

This is the unique choice ofm(r ) for which the scaling property~43! holds for any positive real
number, not just for powers ofq. We definef (xi) to be integrable@with respect tom(r )# if the
corresponding radial integral in~42! is finite. We therefore obtain generally inequivalent integrals
for different choices ofm(r ), all of which satisfy the Stokes theorem.

Let us try to compare the above definitions with the Gaussian approach. In that case, one does
not resort to a classical integral, and determining the class of integrable functions seems to be
rather subtle. The Gaussian integration procedure is based on the observation that the integral of
functions of the type~polynomial!•~Gaussian! is uniquely determined by the Stokes theorem@and
therefore agrees with our definition for any normalizedm(r )#; one would then like to extend it to
more general functions by a limiting process. Lacking a natural topology on the space of functions
~i.e., formal power series!, this limiting process is, however, quite problematic. One way to see
this is because there are actually many different inequivalent integrals labeled bym(r ), such a
limiting process can only be unique on the~presumably small! class of functions on which the
integral is independent ofm(r ). Furthermore, even classically, although one can calculate, e.g.,
*@1/(r 2 1 1)#e2r2 by expanding it ‘‘properly’’~i.e., using pointwise orL2 convergence! in terms
of Hermite functions, if one tries to expand it formally, e.g., in terms of$r ne2r2%, one obtains a
divergent sum of integrals. Thus the result may depend on the choice of basis and limiting
procedure. It is not clear to the author how to properly integrate functions other than
~polynomial!•~Gaussian! in the Gaussian sense, which would be very desirable, because that
approach may be applied to some quantum spaces that do not have a central length element.6

The properties of the integral overSq
N21 generalize immediately to the Euclidean case, for any

positivem(r ).
Theorem 2:

^ f ~x!&x5^ f ~x!&x , ~46!

^ f ~x! f ~x!&x>0, ~47!

^ f ~x!g~x!&x5^g~x! f ~Dx!&x , ~48!

and

^ f ~qx!&x5q2N^ f ~x!&x , ~49!

if and only if (43) holds.
Proof: Immediately from theorem~1!, ~43!, and~42!, usingDr5r andm(r 0).0. h
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~46! and~49! were already known for the special case of the Gaussian integral.4 It was pointed
out to me by Fiore that in this case, positivity was also shown in Ref. 5.

IV. INTEGRATION OF FORMS

It turns out to be very useful to consider not only integrals over functions, but also over forms,
just like classically. As was mentioned before, there exists a uniqueN form dxi1•••dxiN

5 eq
i1••• i NdNx, and we define

E
x
dNx f~x!5^ f ~x!&x , ~50!

i.e., we first commutedNx to the left, and then take the integral over the function on the right.
Then the two statements of the Stokes theorem^] i f (x)&x50 and*x dvN2150 are equivalent.

The following observation by Zumino13 will be very useful: there is a one-form,

v5
q2

~q11!r 2
d~r 2!5q

1

r
dr5dr

1

r
, ~51!

wherer dxi5q dxi r , which generates the calculus on quantum Euclidean space by

@v, f #65~12q!d f , ~52!

for any form f with the appropriate grading. It satisfies

dv5v250. ~53!

We define the integral of anN form over the spherer •Sq
N21 with radiusr by

E
r •Sq

N21
dNx f~x!5vr N^ f ~x!& t5dr r N21^ f ~x!& t , ~54!

which is a one form inr , as classically. It satisfies

E
r •Sq

N21
qN dNx f~qx!5E

qr•Sq
N21

dNx f~x!, ~55!

where„dr f (r )…(qr)5q dr f(qr). Now, defining*r dr g(r )5^g(r )& r , ~50! can be written as

E
x
dNx f~x!5E

r
S E

r •Sq
N21

dNx f~x! D . ~56!

The scaling property~43!, i.e. *xd
Nx f(qx)5q2N*x d

Nx f(x) holds if and only if the radial
integrals satisfy

E
r
dr f ~qr !5q21E

r
dr f ~r !. ~57!

We can also define the integral of an~N21!-form aN21(x) over the sphere with radiusr :

E
r •Sq

N21
aN215v21S E

r •Sq
N21

vaN21D . ~58!
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Thev21 simply cancels the explicitv in ~54!, and it reduces to the correct classical limit forq51.
The epsilon tensor satisfies the cylic property:
Proposition 2:

eq
i1••• i N5~21!N21Dj 1

i i eq
i2••• i Nj 1. ~59!

Proof: Define

k12•••N5~21!N21D1eq
23•••N1, ~60!

in shorthand notation again. Lemma 1 shows thatk is invariant.k12•••N is traceless and (q)
antisymmetric in~23•••N!. Now g12k

12•••N50 because there exists no invariant, totally antisym-
metric traceless tensor with~N22! indices forq51, so by analyticity there is none for arbitraryq.
Similarly from the theory of irreducible representations ofSO(N),14 P1

12k
12•••N50, whereP1 is

theq symmetrizer, 15P11P21P0. Thereforek12•••N is totally antisymmetric and traceless~for
neighboring indices!, invariant, and analytic. But there exists only one such tensor up to normal-
ization ~which can be proved similarly!, sok12•••N 5 f (q)eq

12•••N . It remains to showf (q)51. By
repeating the above, one getseq

12•••N 5 „f (q)…N(detD)eq
12•••N ~here 12•••N stands for thenumbers

1,2,...,N!, and since detD51, it follows f (q)51 ~times anNth root of unity, which is fixed by the
classical limit!. h

Now consider ak form ak(x) 5 dxi1•••dxikf i1••• i k
(x) and an (N2k) form bN2k(x). Then the

following cyclic property for the integral over forms holds.
Theorem 3:

E
r •Sq

N21
ak~x!bN2k~x!5~21!k~N2k!E

q2kr •Sq
N21

bN2k~x!ak~q
N Dx!, ~61!

whereak(q
N Dx)5 (qND dx) i1•••(qND dx) i kf i1••• i k

(qN Dx).
In particular, whenak and bN2k are forms on Sq

N21, i.e. they involve only dxi(1/r ) and ti ,
then

E
Sq
N21

ak~ t !bN2k~ t !5~21!k~N2k!E
Sq
N21

bN2k~ t !ak~Dt !. ~62!

On Euclidean space,

E
x
ak~x!bN2k~x!5~21!k~N2k!E

x
bN2k~x!ak~q

N Dx!, ~63!

if and only if (57) holds.
Notice that on the sphere,dNx f(t)5 f (t)dNx.
Proof:We only have to show that

E
r •Sq

N21
f ~x!dNx g~x!5E

r •Sq
N21

dNx g~x! f ~qN Dx! ~64!

and

E
r •Sq

N21
dxi bN21~x!5~21!N21E

q21r •Sq
N21

bN21~x!~qND dx! i . ~65!

~64! follows immediately from~28! andxi dNx5dNx qNxi .
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To see~65!, we can assume thatbN21(x) 5 dxi2•••dxin f (x). The commutation relations
xi dxj5qR̂kl

i j dxk xl are equivalent to

f ~q21x!dxj5R„~dxj !~a! ^ f ~1!…~dx
j !~b!„f ~x!…~2!

5~dxjvR1!„f ~x!vR2
…, ~66!

whereR5R1
^R2 is the universalR for SOq(N), using its quasitriangular property and

R(Ak
j
^ l
i)5R̂kl

i j . fvY5^Y, f (1)& f (2) is the right action induced by the left coaction~9! of an
elementYPUq„SO(N)…. Now invariance of the integral implies

~dxjvR1!^ f ~x!vR2& t5dxj^ f ~x!& t , ~67!

becauseR1
^e~R2!51. Using this,~66!, ~55!, and~54!, the ~rhs! of ~65! becomes

~21!N21E
q21r •Sq

N21
bN21~x!qND j

i dxj5~21!N21Dj
i E

r •Sq
N21

dxi2•••dxiN f ~q21x!dxj

5~21!N21 Dj
i e i2••• i Njvr N^ f ~x!& t

5e i i 2••• i Nvr N^ f ~x!& t5E
r •Sq

N21
dxi bN21~x!, ~68!

using ~59!. This shows~65!, and~62! follows immediately.~63! then follows from~57!. h

Another way to show~65! following an idea of Jurco15 is to use

E
r •Sq

N21
~akvSY!bN2k5E

r •Sq
N21

ak~bN2kvY! ~69!

to move the action ofR2 in ~66! to the left picking upR1SR2, which generates the inverse square
of the antipode and thus corresponds to theD21 matrix. This approach, however, cannot show
~28! or ~48!, because the commutation relations of functions are more complicated.

~61! shows in particular that the definition~58! is natural, i.e. it essentially does not matter on
which side one multiplies withv. Now we immediately obtain the Stokes theorem for the integral
over quantum Euclidean space, if and only if~57! holds. Noticing thatv(qN Dx)5v(x), ~63!
implies

E
x
daN21~x!5

1

12q E
x
@v,aN21#6

}E
x
vaN212~21!N21aN21v

5E
x
~21!N21aN21v2~21!N21aN21v50. ~70!

On the sphere, we get as easily

E
Sq
N21

daN22~ t !}E
Sq
N21

@v,aN22#65v21E
Sq
N21

v„vaN222~21!N22aN22v)…50, ~71!

using ~62! andv250.
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It is remarkable that these simple proofs only work forqÞ1, nevertheless the statements
reduce to the classical Stokes theorem forq→1. This shows the power of theq-deformation
technique.

One can actually obtain a version of the Stokes theorem with spherical boundary terms.
Define

E
qkr0

ql r0
v f ~r !5E

qkr0

ql r0
dr

1

r
f ~r !5~q21!(

n5k

l21

f ~r 0q
n!, ~72!

which reduces to the correct classical limit, because the~rhs! is a Riemann sum. Define

E
qkr0•Sq

N21

ql r0•Sq
N21

aN~x!5E
qkr0

ql r0S E
r •Sq

N21
aN~x! D , ~73!

For l→` andk→2`, this becomes an integral over Euclidean space, as defined before. Then

E
qkr0•Sq

N21

ql r0•Sq
N21

daN215
1

12q E
qkr0

ql r0S E
r •Sq

N21
vaN212~21!N21aN21v D

5
1

12q E
qkr0

ql r0S E
r •Sq

N21
vaN212E

qr•Sq
N21

vaN21D
5E

ql r0•Sq
N21

aN212E
qkr0•Sq

N21
aN21 . ~74!

In the last line,~54!, ~58!, and~72! were used.
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Orbit–orbit branching rules for families of classical Lie
algebra–subalgebra pairs

M. Thoma and R. T. Sharp
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Complete orbit–orbit branching rules are derived for each classical algebra–
maximal-subalgebra pairCm1n.Cm%Cn , Bm1n.Dm%Bn , Dm1n.Dm%Dn .
Since each pair is equal rank, and algebra and subalgebra Weyl sectors line up, the
integrity basis in each case consists of the subalgebra orbits contained in the fun-
damental orbits of the algebra. ©1996 American Institute of Physics.
@S0022-2488~96!00109-0#

I. INTRODUCTION

In physics it is generally useful, when possible, to reduce an object of interest to smaller
‘‘building blocks.’’ We are thinking of the reduction of irreducible representations~IRs! of a
simple, or semisimple, Lie algebra to Weyl orbits~W-orbits, or simply orbits!, a device which has
seen little exploitation so far in applications of group theory.

A particular use ofW-orbits is as an intermediate stage in finding branching rules between IRs
of algebra and subalgebra. The procedure consists of three steps.

~i! Reduction of the algebra IR into algebraW-orbits; this can be done by a recursive routine1,2

or better by a procedure described later in this paragraph under step~iii !; extensive tables
exist.3

~ii ! Reduction of algebraW-orbits to subalgebraW-orbits, the subject of this paper, which
treats algebra–subalgebra pairs listed in the abstract.

~iii ! Assembling subalgebra orbits into subalgebra IRs; theW-orbits of the subalgebra IRs may
be lifted, one IR at a time, starting with the highest, from the collection of subalgebra
orbits. Alternatively, each subalgebra orbit can be written directly as a superposition of
subalgebra IRs.4 The relevant orbit–IR triangular matrix~for the algebra! can be inverted
for a solution of step~i! above.

These steps have been applied to a few low-rank Kac–Moody algebras to obtain IR–IR branching
rules.5

Usually, in representation theory, it is simplest to use a fundamental weights basis in weight
space. In the present context we find it more convenient to use an orthonormal weights basis for
the most part; it is easier then to recognize to which algebraW-orbit a given subalgebraW-orbit
belongs.

We complete this section with some information from recent papers which give orbit–orbit
branching rules for some low-rank algebras:5,6 the three families to be considered here have the
properties that algebra and subalgebra have the same rank and that Weyl sectors of algebra and
subalgebra line up, that is, each subalgebra Weyl sector contains only complete algebra sectors.
Then the elementary subalgebra orbits consist of the subalgebra orbits lying in the fundamental
orbits of the algebra; they form the integrity basis from which all subalgebra orbits are formed by
taking stretched products~orbit labels all additive!. We then have only to find which pairs of
elementary orbits are compatible and which are incompatible to complete the solution of the
problem.

II. THE ALGEBRA–SUBALGEBRA PAIR Cm1n'Cm %Cn

We treat this family first because it is simplest.

0022-2488/96/37(9)/4750/8/$10.00
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As basis vectors in weight space we use thel5m1n orthonormal vectorsei ( i51,...l ).
Weyl reflections ofCl consist of sign reversalsei→2ei and interchangesei↔ej .

The simple roots area i5ei2ei11 ( i51,...,l21) anda l52el ; the extended simple root is
a0522e1 ~for simplicity we have multiplied the simple roots, and the fundamental weights below,
by 21/2!. The fundamental weightsvi are given in terms of the simple roots by the inverse Cartan
matrix,

v i5 (
h51

l

~C21! ihah ~ i51,...,l !, ~1!

and thus in terms of the orthonormal basis we find

v i5 (
h51

i

eh ~ i51,...,l !. ~2!

We label aW-orbit by the componentslj of its highest weight in a fundamental weights basis. The
fundamental orbit [i ] @l j5d i j ~the Kronecker delta!# has highest weightvi . According to~2! the
weights of the orbit [i ] consist of all linear combinations ofi distinct eh , each with coefficient
61.

The simple roots ofCl5Cm1n , Cm , andCn are shown in Fig. 1. The simple rootsa j8 of Cm

andak9 of Cn are given in terms of those ofCl by

a j85am2 j , ~ j51,...,m!,
~3!

ak95am1k , ~k51,...,n!.

Hence the fundamental weights ofCm andCn are, respectively,

v j852 (
h51

j

em2h11 , vk95 (
h51

k

em1h . ~4!

The elementaryCm%Cn W-orbits are those contained in the fundamental orbits [i ] of Cl . We
denote one of them by [j ;k], the direct product of the fundamental orbits [j ] of Cm and [k] of Cn ;
the ranges ofj and ofk5 i2 j are specified below@in ~5!#. We may write

@ i #. (
j5max~ i2n,0!

min~ i ,m!

@ j ; i2 j #, i51,...,l ; ~5!

j is the number ofeh in a weight of [i ] for which 1<h<m and k is the number in the range
m11<h< l ; for j50, [ j ] is the zero or point orbit ofCm and fork50, [k] is the zero orbit ofCn .
The elementary orbits [j ;k] are shown in tabular form in Fig. 2.

The elementary orbits constitute the integrity basis for all subalgebra orbits: higher orbits are
stretched~orbit labels additive! products of powers of the elementary ones.

FIG. 1. The Dynkin–Coxeter diagram forCm1n.Cm%Cn . The numbers below the diagram label the simple roots ofCl

( l5m1n). Those to the left above label those ofCm , and those to the right above label those ofCn .
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It remains to find the compatibility rules, i.e., the answer to the question ‘‘Which pairs of
elementary orbits can appear together in a product yielding a higher orbit?’’ Consider the stretched
product of the elementary orbits [j ;k] and [j 8;k8] which belong respectively to theCl orbits [i ]
and@i 8# with i5 j1k and i 85 j 81k8. We may supposei 8. i ~two elementary orbits in the same
fundamental orbit are known to be incompatible!. Our product must belong to theCl orbit [ i ,i 8]
which has labelslh5dhi1dhi8 ~i th andi 8th labels unity, other labels zero!; each weight of [i ,i 8]
hasi eh with coefficient62 andi 82 i with coefficient61; the otherl2 i 8 eh have coefficient 0.
The stretched product [j ;k] •[ j 8;k8] belongs to theCm%Cn orbit [ j , j 8,k,k8] with Cm labelslh8
5 dh j 1 dh j8 andCn labelslh9 5 dhk 1 dhk8 . We may supposej 8> j ~otherwise interchange the
roles ofCm andCn!; among the firstm ehs there are thenj with coefficient62 and j 82 j with
coefficient 61. In the last n ehs there are thusi2 j5k with coefficient 62 and
i 82 i2 j 81 j5k82k with coefficient61. It follows thatk8>k; two elementary orbits are incom-
patible if one lies above and to the right of the other in Fig. 2.

Our solution for theCm1n.Cm%Cn orbit–orbit branching rules is now complete. For the
subalgebra orbit content of the generalCl orbit @l1,...,ll# select a sequence of elementary orbits,
one [j i 8,ki 8] from each diagonalj i 81ki 85 i 85const for whichli 8Þ0. Each one chosen must be
compatible with the preceding one [j i ;ki ] in the list, i.e., j i 8> j i , ki 8>ki . Each such sequence
corresponds to one subalgebra orbit@l18 ,...,lm8 ;l19 ,...,ln9# with lh8 5 ( il idh j i, lh9 5 ( il idhki ~the

stretched product of the chosen mutually compatible elementary orbits, thei th one usedli times!.

FIG. 2. The elementaryCm1n.Cm%Cn W-orbits. The elementary orbit [j ;k] belongs to the (j1k)th fundamental
W-orbit of Cm1n . The elementary orbits [j ;k] and @j 8;k8] are compatible ifj 8> j , k8>k ~we supposej 81k8> j1k!.

4752 M. Thoma and R. T. Sharp: Algebra–subalgebra orbit–orbit branching rules

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



III. THE ALGEBRA–SUBALGEBRA PAIR Dm1n'Dm %Dn

In this section and the next (Bm1n.Dm%Bn), to save space, we state our results without
detailed proofs; the proofs are very similar to those given in Sec. II forCm1n.Cm%Cn , and only
slightly more complicated.

We assume here thatm andn are both greater than 1. Otherwise we would have to takeDm

and/orDn to beu~1! and the details would be rather different; we hope to treatDm11.Dm%u(1)
in a later paper.

As basis vectors in weight space we usel5m1n orthonormal vectorsei ( i51,...,l ). Weyl
reflections forDl consist of interchangesei↔ej and two sign reversals at a timeei→2ei ,
ej→2ej .

The simple roots area i5ei2ei11 ( i51,...,l21) anda l5el211el . The extended simple
root is a052e12e2 . The fundamental weightsvi are given in terms of the simple roots by the
inverse Cartan matrix@see Eq.~1!# and thus in terms of the orthonormal basis we find

v i5 (
h51

i

eh , i51,...,l22,

~6!

v l215
1

2 F (
h51

l21

eh2el G , v l5
1

2 (
h51

l

eh .

TheW-orbit labels are defined as in Sec. II following Eq.~1!. According to~6! the weights of the
fundamental orbit [i ], i51,...,l22, consist of all linear combinations ofi distincteh with coef-
ficients61; the weights of@l21# and [l ] consist of linear combinations of alleh , an odd number
with coefficient2 1

2 and the rest with coefficient1
1
2 for @l21#, an even number with coefficient2

1
2 and the rest with coefficient11

2 for [ l ].
The simple roots ofDl , Dm , andDn are shown in Fig. 3. The simple rootsa j8 of Dm and

ak9 of Dn are given in terms ofDl simple roots by

a j85am2 j , j51,...,m,
~7!

ak95am1k , k51,...,n.

Then the fundamental weightsv j8 of Dm andvk9 of Dn are respectively

v j852 (
h5m2 j11

m

eh , j51,...,m22,

vm218 5
1

2 F2 (
h52

m

eh1e1G , vm8 52
1

2 (
h51

m

eh ,

~8!

FIG. 3. The Dynkin–Coxeter diagram forDm1n.Dm%Dn . The numbers below the nodes label the simple roots ofDl

( l5m1n). Those to the left above label those ofDm , and those to the right above label those ofDn .
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vk95 (
h5m11

m1k

eh , k51,...,n22,

vn219 5
1

2 F (
h5m11

l21

eh2el G , vn95
1

2 (
h5m11

l

eh .

The elementaryDm%Dn orbits are those contained in the fundamental orbits [i ] of Dl . We
denote one of them by [j ;k], the direct product of the orbit [j ] of Dm and [k] of Dn , to be
specified below. We may write

@ i #. (
j5max~0,i2n!

min~ i ,m!

@ j ; i2 j #, i51,...,l22,

@ l21#.@m;n8#1@m8;n#, ~9!

@ l #.@m;n#1@m8;n8#.

In the first of Eqs.~9!, j is the number ofeh in a weight of [i ] for which 1<h<m andk5 i2 j is
the number in the rangem11<h< l ; for j50 [ j ] is the zero orbit ofDm and for j51,...,m22
it is j th fundamental orbit; forj5m21 it is the Dm orbit for which the last two labels, the
~m21!th andmth, are unity and the rest zero; forj5m there are twoDm orbits: [m] and @m8#.
The first, [m], has themth label 2 and the rest 0, while the second,@m8#, has the~m21!th label
2 and the rest 0. The statements in the preceding sentence are all valid with the replacementsj→k,
m↔n. For i5 l21 @the second of Eqs.~9!# there are two elementary orbits,@m;n8# and [m8;n];
for i5 l @the third of Eqs.~9!# there are also two, [m;n] and [m8;n8]; here [m] means themth
fundamental orbit ofDm and @m8# is the ~m21!th; similarly with the replacementm↔n.

Figure 4 shows the elementary subalgebra orbits described above. Except for the four in the
lower right-hand corner, those for whichj1k5 i belong to the orbit [i ] of Dl . The two at the
bottom of thenth column belong to@l21# while the two at the right of themth row belong to [l ].

To complete the description of our solution we must now give the compatibility rules.
Consider a pair of elementary orbits in Fig. 4, of which neither is in the lower right corner,

i.e., belongs to the~l21!th or l th fundamental orbit ofDl and not both of which lie in the bottom
row with j5m orm8 nor both in the right column withk5n or n8. Then they are incompatible if
and only if one lies above and to the right of the other. If both are in the right column and at most
one in the lower right corner, they are compatible if and only if both are labeledn or both labeled
n8. Similarly if both are in the bottom row and at most one in the lower right corner, they are
compatible if and only if both are labeledm or both labeledm8. Those in the lower corner are
compatible with all those for whichj<m21 andk<n21. Finally both in the~l21!th funda-
mental orbit ofDl are compatible with both in thel th fundamental orbit.

For the complete orbit–orbit branching rules, consider aDl orbit. For each nonzero labelli
select one elementary subalgebra orbit from thei th fundamental orbit ofDl so that all the elemen-
tary orbits chosen are mutually compatible. Then form the stretched product~orbit labels additive!
of the elementary orbits chosen, thei th one usedli times. Each such choice of elementary orbits
gives oneDm%Dn orbit in theDl orbit @l1,...,ll#.

IV. THE ALGEBRA–SUBALGEBRA PAIR Bm1n'Dm %Bn

We suppose thatm.1 sinceD1 would beu~1! and the details different. We hope to deal with
Bm11.Bm%u(1) in a future paper.

As basis vectors in weight space we usel5m1n orthonormal vectorseh (h51,...,l ). Weyl
reflections forBl consist of sign reversalsei→2ei and interchangesei↔ej .
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The simple roots area i5ei2ei11 ( i51,...,l21) anda l5el ; the extended simple root is
a052e12e2 . The fundamental weights are given in terms of the simple roots by means of the
inverse Cartan matrix, and in terms of the orthonormal basis we have

v i5 (
h51

i

eh ~ i51,...,l21!,

~10!

v l5
1

2 (
h51

l

eh .

TheW-orbit labels are the componentsli of the highest weight of the orbit in a fundamental
weights basis. According to~10! the weights of the fundamental orbit [i ], i51,...,l21, consist of
all linear combinations ofi distinct eh with coefficients61; the weights of the last fundamental
orbit [ l ] consist of linear combinations of alleh with coefficients61

2.
The simple roots ofBl , Dm , andBn are shown in Fig. 5. The simple rootsa j8 of Dm and

a j9 of Bn are given in terms of theBl simple roots by

a j85am2 j , j51,...,m,
~11!

ak95am1k , k51,...,n.

FIG. 4. The elementaryDm1n.Dm%Dn W-orbits. Which ones belong to aDm1n orbit [ i ] and which pairs are compatible
are stated in the text.

4755M. Thoma and R. T. Sharp: Algebra–subalgebra orbit–orbit branching rules

J. Math. Phys., Vol. 37, No. 9, September 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Then the fundamental weightsv j8 of Dm andv j9 of Bn are respectively

v j852 (
h5m2 j11

m

eh , j51,...,m22,

vm218 5
1

2 S e12 (
h52

m

ehD , vm8 52
1

2 (
h51

m

eh ,

~12!

vk95 (
h5m11

m1k

eh , k51,...,n21,

vn95
1

2 (
h5m11

l

eh .

The elementaryDm%Bn orbits are those contained in the fundamental orbits [i ] of Bl . They
may be written [j ;k], the direct product of aDm orbit [ j ] and aBn orbit [k]. Explicitly we have

@ i #. (
j5max~0,i2n!

min~ i ,m!

@ j ; i2 j #, i51,...,l21,

~13!
@ l #.@m;n#1@m8;n#.

Here j is the number ofeh in a weight of [i ] for which 1<h<m andk5 i2 j is the number in the
rangem11<k< l . For j50, [ j ] is the zero orbit ofDm and fork50, [k] is the zero orbit ofBn .
For j51,...,m22, [ j ] is the j th fundamental orbit ofDm and fork51,...,n21, [k] is the kth
fundamental orbit ofBn . For j5m21 [ j ] is theDm orbit with the~m21!th andmth labels unity
and the rest zero; forj5m there are twoDm orbits, [m], which has themth label 2 and the rest
0, and@m8#, which has the~m21!th label 2 and the rest 0. Fork5n, theBn orbit [n] has thenth
label 2 and the rest 0. Fori5 l , there are twoDm%Bn orbits [m;n] and [m8;n] where [m] and
@m8# are, respectively, themth and~m21!th fundamental orbits ofDm and [n] is thenth funda-
mental orbit ofBn .

It remains to give the compatibility rules forBl.Dm%Bn ; they are very similar to those for
Cl.Cm%Cn andDl.Dm%Dn .

If not more than one of a pair lies in the bottom row of Fig. 6, i.e., ifjÞm for one of the pair,
then they are incompatible if either lies above and to the right of the other, otherwise they are
compatible. If both lie in the bottom row they are compatible if both are labelledm or both
labelledm8; otherwise they are incompatible.

The instructions for finding a complete set of compatible orbits and hence the complete
orbit–orbit branching rules are the same as those forCl.Cm%Cn in Sec. II and forDl.Dm%Dn

in Sec. III.

FIG. 5. The Dynkin–Coxeter diagram forBm1n.Dm%Bn . The numbers below the nodes label the simple roots ofBl

( l5m1n). Those to the left above label those ofDm , and those to the right above label those ofBn .
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V. CONCLUDING REMARKS

We hope in the near future to publish orbit–orbit branching rules for compact algebra–
subalgebra families in which the subalgebra is reductive but not semisimple, i.e., contains au~1!
factor. We are thinking ofAm1n11.Am%An%u(1), Cm11.Am%u(1), andDm11.Am%u(1).
Then we hope to deal with families of Kac–Moody algebra–subalgebras; we had started on this
problem when we noticed that the classical problem had never been solved and decided it should
be dealt with first.
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A group analysis approach for a nonlinear differential
system arising in diffusion phenomena
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We consider a class of second-order partial differential equations which arises in
diffusion phenomena and, following a new approach, we look for a Lie invariance
classification via equivalence transformations. A class of exact invariant solutions
containing an arbitrary function is obtained. ©1996 American Institute of Phys-
ics. @S0022-2488~96!00909-7#

I. INTRODUCTION

Lie point symmetries approach is a systematic way to construct exact solutions for partial
differential equations~PDEs!.1–3 The looking for symmetries via the Lie infinitesimal criterion
leads to the so-called ‘‘determining system’’, which is a linear PDEs system in the unknown
coordinates of the invariance operator. The determining system, in general, is an overdetermined
system which becomes very difficult to solve when arbitrary functions appear. In fact, quite often
in these cases the general solution of the determining system is a wasteful venture. In these cases
an effective way which gives a group classification is based on equivalence transformations.

In some recent papers4–9 it was shown that it is possible to obtain subalgebras of the Lie
algebra of PDEs, starting from equivalence algebra. Of course, this fact allows, quite often, only
a partial classification, but this approach offers a systematic way to get solutions of the determin-
ing system.

In this framework we consider the system

ut5h~u,v !, v t5@g~v !vx1 f ~v !ux!] x , ~1.1!

where we assumeg8Þ0 andf 8Þ0. Moreover, we denote with~ !t and~ !x the partial derivatives
with respect to the independent variablest and x, respectively, while the prime denotes the
derivative of the functions with respect to their argument.

The equations~1.1!, apart from their own theoretical interest, can describe the diffusion of a
solvent into a polymer slab, which is characterized by a sharp front that moves into the medium
and lasts for long time.

The stress in the polymer increases because of the intrusion of the solvent which deforms the
polymer. On the contrary this stress reacts back on the penetrant and tries to push it from regions
of high stress to regions of low stress.

So the model equations proposed include solvent flux due to stress gradients in the polymer in
addition to the fickian flux~see, e.g., Refs. 10 and 11!.

We give a group classification of system~1.1! by means of continuous equivalence transfor-
mations.

As is well known, the equivalence transformations change a system into a system belonging
to the same class.9,12 Generally speaking, the system~1.1! is mapped into a system of the same
form but with differenth(u,v), g(v), and f (v).

In the classical approach for finding equivalence transformations of system~1.1! in agreement
with Ref. 12, by using the Lie infinitesimal criterion, the infinitesimal equivalence generator of our
system is obtained by requiring in the space of (t,x,u,v,h, f ,g) the invariance of~1.1! and the
invariance of the auxiliary conditions

0022-2488/96/37(9)/4758/10/$10.00
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f t5gt5ht5 f x5•••50, ~1.2!

which characterize the functional dependence of the functionsf , g, andh.
Nevertheless, in this paper we leave the classical approach and we behave as follows:8,9

~a! we do not work in the space (t,x,u,v,h, f ,g), but in the space (t,x,u,v,h), in order to
obtain anequivalence classificationwith respect tof andg;

~b! we consider the functionh at first depending ont, x, u, andv.
The plan of the paper is the following:
In Sec. II we give anequivalence classificationof system~1.1! without taking auxiliary

conditions into account~we show, at the end of Sec. III, how the auxiliary conditions restrict the
equivalence algebra!.

In Sec. III we obtain the Lie classification for a functionh(u,v) ~in Tables I–IV the final
results are summarized!.

In Sec. IV we find a class of exact invariant solutions for the system of equations which
describe the behavior of a solvent penetrating in a polymer. In this class an arbitrary function of
x appears which could be determined by the initial conditions.

II. AN EQUIVALENCE CLASSIFICATION

We consider the class of second-order partial differential equation systems

ut5h~ t,x,u,v !, v t5@g~v !vx1 f ~v !ux!] x , ~2.1!

and look for continuous equivalence transformations which map system~2.1! into a system of the
same form but with differenth(t,x,u,v), so we consider the functionh as a dependent variable.
Having in mind to apply the infinitesimal invariance criterion,12 the infinitesimal equivalence
operatorY works in the space (t,x,u,v,h), so it is chosen of the following form:

Y5j1
]

]t
1j2

]

]x
1h1

]

]u
1h2

]

]v
1m

]

]h
, ~2.2!

where the coordinatesj i ,h i are sought as functions oft, x, u andv, while m may depend ont, x,
u, v, andh.

The prolongation ofY, which we need, is

TABLE I. f , g arbitrary.

No. h Extensions ofLP

1 ĥ(v)eau
X352t

]

]t
1x

]

]x
2
2

a

]

]u
aÞ0

2 h0u1ĥ(v)
X35eh0t

]

]u

3 h0
X352t

]

]t
1x

]

]x
12h0t

]

]u

X45
]

]u
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Ỹ5Y1z1
1 ]

]ut
1z2

1 ]

]ux
1z1

2 ]

]v t
1z2

2 ]

]vx
1z22

1 ]

]uxx
1z22

2 ]

]vxx
, ~2.3!

where the coefficientszi
j andz22

i , after putting

~x1,x2![~ t,x!, ~y1,y2![~u,v !,

yj
i5

]yi

]xj
, yjk

i 5
]yi

]xjxk
, Dj5

]

]xj
1yj

i ]

]yi
1yjk

i ]

]yk
i ••• , ~2.4!

are given by

TABLE II. f5 f 0e
pv, g5g0e

qv, pÞ0, qÞ0.

No. h Extensions ofLP

1 ĥ(l)eav

X35~q2p2a!t
]

]t
1

~2q2p2a!x

2

]

]x
1~q2p!~u1d!

]

]u
1

]

]v
l5(u1d)e(p2q)v

qÞp

2 ĥ(l)eav
X352at

]

]t
1
q2a

2
x

]

]x
1d

]

]u
1

]

]v
l5dv2u

3 h0u1h1e
(q2p)v1h2

X35
q

2
x

]

]x
1~q2p!Su1

h2
h0

D ]

]u
1

]

]v
h0Þ0, qÞp

X45eh0t
]

]u

4 h0u1h1v1h2
X35

q

2
x

]

]x
2
h1
h0

]

]u
1

]

]v
h0Þ0, q5p

X45eh0t
]

]u

5 h(v)
X35

]

]u

6 h0v1h1
X35

]

]u

X45~q2p!t
]

]t
1
2q2p

2
x

]

]x
1@~q2p!u1h0t#

]

]u
1

]

]v

7 h1
X35

]

]u

X452qt
]

]t
1@~q2p!u1h1~p22q!t#

]

]u
1

]

]v

X552t
]

]t
1x

]

]x
12h1t

]

]u
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z j
i5Djh

i2yt
iD jj

12yx
i D jj

2, z22
i 5D2z2

i 2ytx
i D2j

12yxx
i D2j

2. ~2.5!

Requiring the invariance of~2.1! with respect the operatorỸ by following the well-known
procedure,5,9,13we obtain the determining system which leads to the following conditions:

TABLE III. f5 f 0(v1n0)
p, g5g0(v1n0)

q; pÞ0, 21; qÞ0, 22.

No. h Extensions ofLP

1 ĥ~l!~v1n0!a
l5(u1d)(u1n0)p2q21

11q2pÞ0

X35~11q2p2a!t
]

]t
1

~112q2p2a!x

2

]

]x

1~11q2p!~u1d!
]

]u
1~v1n0!

]

]v

2 ĥ(l)(v1n0)
a

X352at
]

]t
1

~q2a!x

2

]

]x
1d

]

]u
1~v1n0!

]

]v
l5d lg(v1n0)2u

p511q

3 h0u1(v1n0)
11q2ph11h2

X35
qx

2

]

]x
1~11q2p!Su1

h2
h0

D ]

]u
1~v1n0!

]

]v
h0Þ0, 11q2pÞ0

X45eh0t
]

]u

4 h0u1h1lg(v1n0)1h2
X35

qx

2
]

]x
2
h1
h0

]

]u
1(v1n0)

]

]v
h0Þ0, p511q

X45eh0t
]

]u

5 ĥ(v)
X35

]

]u

6 h0(v1n0)
a1h1

X35
]

]u
aÞ0

X45~12p2a1q!t
]

]t
1
12p12q2a

2
x

]

]x

1@~11q2p!u2ah1t#
]

]u
1~v1n0!

]

]v

7 h0lg(v1n0)1h1
X35

]

]u

X45~12p1q!t
]

]t
1
12p12q

2
x

]

]x
1@h0t1~11q2p!u#

]

]u

1~v1n0!
]

]v

8 h0
X35

]

]u

X452qt
]

]t
1@~11q2p!u1h0~p22q21!t#

]

]u
1~v1n0!

]

]v

X552t
]

]t
1x

]

]x
12h0t

]

]u
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f 8hx
25 f jxx

2 , g8h21g~j t
122jx

2!50,

f 8hx
112g8hx

21g~2hxv
2 2jxx

2 !50, ~2.6!

f 8h21 f ~j t
12hv

21hu
122jx

2!50, fhxx
1 1ghxx

2 2h t
250,

for the functions

j15j1~ t !, j25j2~x!,
~2.7!

h15a~ t !u1b~x,t !, h25g~x,t !v1p~x,t !,

TABLE IV. f5 f 0(v1n0)
21, g5g0(v1n0)

22.

No. h Extensions ofLP

1 h0(v1n0)
ag0 / f0eau

X352t
]

]t
2Sg0f0 1

2

aD ]

]u
1~v1n0!

]

]v
aÞ0

Xc5c~x!
]

]x
1
g0
f0

c8
]

]u
2~v1n0!c8

]

]v

2 ĥ~l!
Xc5c~x!

]

]x
1
g0
f0

c8
]

]u
2~v1n0!c8

]

]v

l5
f0
g0
u1lg~v1n0!

3
h0„u1

g0
f 0

lg~v1n0!…1h1 Xc5c~x!
]

]x
1
g0
f 0

c8
]

]u
2~v1n0!c8

]

]v

X35eh0t
]

]u

4 h0u1h1lg(v1n0)1h2
X35x

]

]x
1
h1
h0

]

]u
2~v1n0!

]

]v

X45eh0t
]

]u

5 ĥ(v)
X35

]

]u

6 h0(v1n0)
a1h1

X35
]

]u
aÞ0

X452t
]

]t
1
21a

a
x

]

]x
1Sg0f0 21a

a
12h1tD ]

]u
2
2

a
~v1n0!

]

]v

7 h0lg(v1n0)1h1
X35

]

]u

X45x
]

]x
1Sg0f02h0tD ]

]u
2~v1n0!

]

]v

8 h0
X35

]

]u

X452t
]

]t
12h0t

]

]u
1~v1n0!

]

]v

Xc5c~x!
]

]x
1
g0
f0

c8
]

]u
2~v1n0!c8

]

]v
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while m is given from

m5h~hu
12j t

1!1h t
1. ~2.8!

After some calculations we obtain the followingequivalence classificationof system~2.1!:
~a! f ,g arbitrary:

j152c3t1c1 , j25c3x1c2 , h15f~ t !, h250, m5f822c3h, ~2.9!

wherec1 , c2 , c3 are arbitrary constants andf is an arbitrary function oft.
~b! f5 f 0e

pv, g5g0e
qv, pÞ0, qÞ0:

j15~2c12qc3!t1c4 , j25c1x1c2 ,

h15c3~q2p!u1f~ t !, h25c3 , ~2.10!

m5f81@c3~2q2p!22c1#h,

with f 0, g0, p, andq constitutive constants, whilec1 , c2 , c3 , c4 are arbitrary constants andf is
an arbitrary function oft.
~c! f5 f 0(v1n0)

p, g5g0(v1n0)
q, pÞ0,21; qÞ0,22:

j15~2c12qc3!t1c4 , j25c1x1c2 ,

h15c3~11q2p!u1f~ t !, h25c3~v1n0!, ~2.11!

m5f81@c3~112q2p!22c1#h,

with f 0, g0, n0, p, andq constitutive constants, whilec1 , c2 , c3 , c4 are arbitrary constants and
f is an arbitrary function oft.
~d! f5 f 0(v1n0)

21, g5g0(v1n0)
22:

j152c1t1c2 , j25c~x!, h15
g0
f 0

c81f~ t !,

h25~v1n0!~c12c8!, m5f822c1h, ~2.12!

with f 0, g0, andn0 constitutive constants, whilec1 , c2 are arbitrary constants,c is an arbitrary
function of x, andf is an arbitrary function oft.

III. LIE SYMMETRIES VIA EQUIVALENCE TRANSFORMATIONS

In this section we will show how it is possible to obtain a symmetry classification of system
~1.1!, starting from the equivalence classifications obtained in Sec. II.

First of all it must be stressed that the projection of operatorY in the space (t,x,u,v), i.e.,

X5j1
]

]t
1j2

]

]x
1h1

]

]u
1h2

]

]v
, ~3.1!

is a symmetry operator.
Then, starting from the equivalence classification of system~2.1!, we obtain some invariance

algebras, applying the following theorem:7,9,13
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Theorem 3.1: Let Y be an equivalence operator for the system~2.1!. The operatorX is an
invariance operator for the system~2.1! whereh5ĥ(t,x,u,v) if and only if ĥ is invariant with
respect toY.

The proof of this theorem follows immediately from the analogous theorems given in Refs. 6
and 9.

Now, we shall give some symmetry operators of systems~1.1! applying the following corol-
lary of previous theorem:

Corollary: By choosingĥ[h(u,v), the operatorX is an invariance operator of systems~1.1!.
The invariance of the functionĥ with respect to the operatorY of the system~2.1!, requested

by Theorem 3.1, leads to

h1hu1h2hv5h~hu
12j t

1!1h t
1. ~3.2!

Specializing the form ofh1, h2, andj1 for each of the equivalence classes obtained in Sec. II,
we obtain a Lie invariance classification with respect toĥ[h(u,v).

We begin by showing the results for the equivalence class~a!. With this class we havef and
g as arbitrary functions and the equivalence operatorY given by

Y5~2c3t1c1!
]

]t
1~c3x1c2!

]

]x
1f~ t !

]

]u
1~f822c3h!

]

]h
. ~3.3!

So the condition~3.2! becomes

f~ t !hu522c3h1f8. ~3.4!

This equation is the classifying equation forh in the equivalence class~a!. Of course forh
arbitrary, from~3.4! we obtain the principal Lie algebraLP spanned by

X15
]

]t
, X25

]

]x
. ~3.5!

The classification ofh and the corresponding extensions ofLP can be obtained solving~3.4!
with respect toh, taking into account thath is independent oft andx. So by deriving with respect
to t we obtain

f8hu5f9. ~3.6!

From ~3.6! and ~3.4! three cases arise which lead, after easy calculations, to the following
results:
~1! h5ĥ(v)eau, aÞ0, f522c3/a,

X352t
]

]t
1x

]

]x
2
2

a

]

]u
; ~3.7!

~2! h5h0u1ĥ(v),f 5 c4e
h0t, c350,

X35eh0t
]

]u
; ~3.8!

~3! h5h0 , f52c3h0t1c4 ,

X352t
]

]t
1x

]

]x
12h0t

]

]u
; X45

]

]u
, ~3.9!
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whereh0 anda are constitutive constants andĥ(v) is a constitutive function ofv, while c3 andc4
are arbitrary constants.

The results concerning the other equivalence classes~b!–~d! can be obtained following a
similar procedure.

The final results are summarized in Tables I–IV, which correspond to equivalence classes
~a!–~d!, respectively.

Remark:We have a symmetry classification of system~1.1! starting from the equivalence
classifications of system~2.1!. It is worthwhile remarking that the symmetry classification ob-
tained is larger than the one which could be obtained following the procedures introduced in Ref.
6. In fact, if we look for equivalence transformations which map the system~1.1! into a system of
the same form but with a functionh depending only onu and v, by following the procedures
introduced in Ref. 6, we must take into consideration the restrictions on the equivalence generator
given from the auxiliary conditions

ht5hx50, ~3.10!

which characterize the functional dependence of the functionh. So, the prolongation ofY, which
now we need, is

Y*5Ỹ1v1

]

]ht
1v2

]

]hx
, ~3.11!

where the coefficientsvi , after recalling the notation introduced in~2.4!, and after putting

D̃ i5
]

]xi
1hxi

]

]h
, ~3.12!

are given by

v i5D̃ im2hxkD̃ ij
k2hykD̃ ih

k. ~3.13!

Then requiring9 the invariance of~3.10!, with respect toY* , we obtain

m t5mx50, h t
15hx

150, h t
25hx

250. ~3.14!

After observing that the additional restrictions~3.14! are decoupled from conditions~2.6!, we
can obtain the equivalence transformations of systems~1.1! for the cases~a!–~d! of the previous
section by substituting

f~ t !5c5 , c~x!5c6x1c7 , ~3.15!

wherec5, c6, andc7 are arbitrary constants.
It is a simple matter to verify that if we look for a symmetry classification of systems~1.1!, by

projection in the space (t,x,u,v), starting from the equivalence transformations of systems~1.1!,
some extensions of the principal Lie algebraLP in Tables I–IV cannot be obtained because of
~3.15!. To ascertain this, it is enough to consider in Table IV the case Nos. 1, 2, 3, and 8 where the
symmetry algebras are infinite dimensional.

IV. A CLASS OF INVARIANT SOLUTIONS

As said in Sec. I, the system of equations~1.1! can describe the diffusion of a solvent in a
polymer slab. The behavior of the diffusion of the solvent in the polymer cannot be explained by
the usual diffusion equation. The introduction of the stress as a dependent variable involves an
evolution equation for it. A general formulation of this equation is
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ut5r ~v !@s~v !2u#, ~4.1!

which is an amalgamation of the Maxwell viscoelastic model and the Kelvin–Voigt elastic
model.10,11

Starting from some results of previous sections, here we give a class of invariant solutions
which involves an arbitrary function of the independent variablex.

After observing that in this case from~4.1! it follows that

h5r ~v !@s~v !2u#, ~4.2!

it is easy to see that such a class of solutions could be obtained from the case No. 3 in Table IV.
Then the system~1.1! is specialized as follows:

ut5h0u1
h0g0
f 0

lg~v1n0!1h1 ,

~4.3!
v t5@ f 0~v1n0!

21ux1g0~v1n0!
22vx#x .

We look for solutions invariant with respect to the generator given by a linear combination of
X1 andXc , that is

X5c1
]

]t
1c2Fc~x!

]

]x
1
g0
f 0

c8
]

]u
2~v1n0!c8

]

]vG . ~4.4!

The invariant surface conditions lead to the following equations:

c1
]u

]t
1c2c~x!

]u

]x
5
c2g0
f 0

c8,

~4.5!

c1
]v
]t

1c2c~x!
]v
]x

52c2~v1n0!c8,

from which we obtain

u5U~s!1
g0
f 0

lgc~x!, v5V~s!c21~x!2n0 , ~4.6!

where

s:5c2t2c1G~x!, G~x!:5E 1

c~x!
dx, ~4.7!

while U andV are solutions of the following reduced system:

c2U85h0U1
h0g0
f 0

lgV1h1 ,

~4.8!
c2V

3V8522g0c1
2V821g0c1

2VV92 f 0c1
2VV8U81 f 0c1

2V2U9,

obtained after substituting~4.6! in ~4.3!. Looking for solutions of the form

V5em1s1m0 ~4.9!
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after some calculations from~4.8! we obtain

U5e~h0 /c2!s12m02
h0g0
2c2f 0

s1g0 , V5e~h0/2c2!s1m0, ~4.10!

with m0 arbitrary constant,

g052
h0g0~2m011!12h1f 0

2h0f 0
, ~4.11!

and provided that

c15
c2

Ah0f 0
. ~4.12!

Going back to~4.6! we obtain

u5e~h0 /c2!s12m02
h0g0
2c2f 0

s1
g0
f 0

lgc~x!1g0 ,

~4.13!
v5c~x!21e~h0/2c2!s1m02n0 ,

wherec(x) is an arbitrary function which will determined, together withm0 andc2, from suitable
initial conditions.

V. CONCLUSIONS

The method proposed in this paper gives a Lie classification of the system~1.1! via equiva-
lence transformations which is larger than that which can be obtained following the classical
equivalence approach.4–9We showed that the auxiliary conditions restrict the equivalence algebra
and then the symmetry algebras.

Moreover, it is interesting to note that, in a physical case, we get a class of invariant solutions
which contain an arbitrary function ofx. Often, in the nonlinear cases, the invariant solutions
contain only arbitrary constants. This implies that such a type of solution cannot satisfy arbitrary
initial boundary conditions. In our case, the presence of an arbitrary function ofx adds more
possibilities in assigning suitable initial conditions.
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Erratum: On the integrability of the inhomogeneous
spherically symmetric Heisenberg ferromagnet in arbitrary
dimensions [J. Math. Phys. 35, 6498–6510 (1994)]
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@S0022-2488~96!01808-7#

There are a few misprints in some of the equations in Sec. V of the paper. The following are
the corrected versions of them.

1. Eq. ~49b!

The expressions forr~t! andz~t! given in Eqs.~49b! should read as

r~ t !5
r~0!12n«2~r2~0!1z2~0!!t

~112n«2r~0!t !214n2«2
2z2~0!t2

, z~ t !5
z~0!

~112n«2r~0!t !214n2«2
2z2~0!t2

.

2. Eqs.~51! and ~52!

In the terms proportional to«1, l2~t!t should be replaced by*0
t l2(t8)dt8.

3. Eq. ~55b!

The term 4«1rt must be replaced by 4«1*0
t r dt8.

4. Eq. ~55a!

The correct form of the solution given in Eq.~55a! must be read as follows.

S6[Sx6 iSy5
2z

r21z2 H r6 i z tanhF2S zr n

n
24«1E

0

t

zrdt8D 2D1G J
3sechF2zH r nn24«1E

0

t

r dt82D1J G
3expF62i H rr n

n
22«1E

0

t

~r22z2!dt81d1J G .
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Erratum: Markov diffusions in comoving coordinates and
stochastic quantization of the free relativistic
spinless particle [J. Math. Phys. 36, 4691–4710 (1995)]
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@S0022-2488~96!00605-0#

Corollary 2 ~and therefore 28! is incorrect. The correct statement should read as follows:
Corollary 2: The global coordinate transformationF:x°j: 5 F(x), x P R11n, transforms the
Euclidean metric tensordmn into the tensorgmn

E with components

gmn
E ~j!:5H g00~j!, m5n50,

0, m50,n51,...,n; n50,m51,...,n,
gi j ~j!, otherwise.

In caseiVi 5 const., theng00(j) 5 f (j0).
Corollary 3 should be understood under the assumptiongi j (j) 5 s i j (j

1,...,jn).
In Sec. IV, the parametert should be understood as belonging to a time interval@2D,D#,

DPR1, where D is chosen on an appropriate scale, so thatgi j (j
0,j1,j2,j3) . gi j (j

0

5 0,j1,j2,j3) [ s i j (q
1,q2,q3). Such a scale is infinite if the fieldV is constant.
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Introduction
G. Jona-Lasinio
Dipartimento di Fisica, Universita’ ‘‘La Sapienza,’’ Piazzale A. Moro 2,
00185 Roma, Italy

@S0022-2488~96!02310-9#

This issue is devoted to mesoscopic physics and related topics. Mesoscopic physics is a
subject whose development was led to a large extent by technology in the search of a progressive
miniaturization of electronic devices. The opportunity to fabricate devices with characteristic
dimensions significantly below 1mm has stimulated the investigation of a whole range of novel
physical phenomena.

It is an area of condensed matter still very young with great experimental achievements. From
a conceptual point of view mesoscopic physics provides direct verifications of the fundamental
laws of quantum mechanics on scales inaccessible only a few years ago. This is a leading thread
that unifies the many facets of this area whose boundaries are not yet well defined.

It was clear from the beginning that this special issue could not cover all the aspects involved
and choices would have to be made in view of the possible mathematical developments. It was
also necessary to make guesses about the directions in which progress may be expected in the near
future. After consultation with several experts I decided to take as a leitmotiv of the issuetrans-
port properties in heterostructures. It is a hard core of mesoscopic physics which, beside its
practical importance, involves in several ways an aspect of quantum mechanics of great concep-
tual and mathematical interest. This is quantum chaos, a theme which appears in many articles of
this issue.

The issue contains 21 original contributions and a reprint of an article by R. Landauer of
considerable historical interest not easily available today. Let me describe briefly the contents of
the articles and their connections.

The first article by F. Capasso, J. Faist, and C. Sirtori provides an overview on heterostruc-
tures with interesting physical properties arising from quantum confinement, tunneling and quan-
tum coherence on a mesoscopic scale. It gives an idea of the great possibilities of quantum design.

We then have a series of six articles focused on transport in mesoscopic conductors.
M. Büttiker discusses conductance and quantum noise phenomena in a unified theoretical frame-
work. C. Presilla and J. Sjo¨strand include the effect of electron–electron interaction in time-
dependent transport. L. S. Levitov, H. Lee, and G. B. Lesovik consider statistical prob-lems
in connection to measurements of mesoscopic currents. Ballistic transport in coupled
quantum waveguides is studied in a rigorous way to P. Exner, P. Seˇba, M. Tater, and D. Vaneˇk
while S-matrix, resonances, and wave functions are exactly calculated for simple models of
billiards with leads by S. Albeverio, F. Haake, P. Kurasov, M. Kus, and P. Seˇba. P. W. Brouwer
and C. W. J. Beenakker develop a diagrammatic method for averaging over the circular ensemble
of random matrix theory and apply it to chaotic billiards and other systems.

Random matrix theory is dominant in the next group of five articles. Originally proposed in
the framework of nuclear physics, this topic has become a central tool in mesoscopic physics in
connection with two different aspects: complex behavior due to the presence of impurities or due
to chaoticity of the corresponding classical system. Both aspects are present in the article by V. I.
Fal’ko and K. B. Efetov in the study of the statistics of wave functions in the more general
framework of the supersymmetric nonlinears model. A. V. Andreev, B. D. Simons, and B. L.
Altshuler are concerned with energy level statistics in disordered systems and how these statistics
deviate from the universal ones. The mathematical structures underlying the connection between
random matrix theory and the supersymmetric formalism is the subject of the article by M. R.
Zirnbauer. P. N. Walker, M. J. Sanchez, and M. Wilkinson discuss singularities of the energy
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levels of a system depending on a set of parameters and described by a random matrix model. A.
M. Khorunzhy, B. A. Khoruzhenko, and L. A. Pastur develop a rigorous method for studying the
normalized trace of the resolvent of large random matrices.

An alternative approach for studying the spectral statistics in disordered conductors in a
regime where random matrix theory is not applicable is proposed in the article by J. T. Chalker, I.
V. Lerner, and R. A. Smith.

The article by K. Richter, D. Ullmo, and R. A. Jalabert studies the response to a magnetic field
of an integrable billiard in presence of disorder.

Mesoscopic physics offers, in perspective, the possibility of studying chaotic phenomena at
the many-particle level when the size of heterostructures and the number of particles are such that
a thermodynamic limit represents a natural first approximation. In this limit a quantum system can
be chaotic in its time evolution and not simply show signatures of classical chaos as is the case
with confined finite systems. One then feels the need for a systematic development of a quantum
ergodic theory. The next two articles by S. Graffi and A. Martinez and by M. Lenci take an
explicit step in this direction and provide, for the first time, a rigorous analytic proof of ergodicity
and mixing for the infinite quantum harmonic crystal and the Volkovisky–Sinai model of an ideal
gas quantized according to Boltzmann statistics, respectively.

Arrays of heterostructures represent a new challenge for experimentalists and theorists and
presumably will be an important direction for development for mesoscopic physics. The articles
by G. Parisi and by V. A. Geyler, B. S. Pavlov, and I. Yu. Popov provide different examples of
theoretical problems arising in such a context. Parisi considers the statistical properties of arrays of
Josephson junctions while Geyler, Pavlov, and Popov study the spectral properties of lattices of
billiards.

Schrödinger operators with singular continuous spectrum have attracted considerable attention
on the part of mathematical physicists in recent years. Mesoscopic physics with its wide possi-
bilities of quantum design presents situations which can be modeled by such operators. The next
two articles must be read in this perspective. I. Guarneri studies the relationship between quantum
dynamics and fractal properties of the spectrum. C. H. Kreft and R. Seiler analyze quantum
mechanical models for transport phenomena in two dimensions with fractal spectra.

The last article by F. Benatti deals with quantum information theory. He compares the concept
of accessible information of quantum communication channels with the entropy of a subalgebra
with respect to a quantum state. Strictly speaking it is a subject which does not belong to the main
theme of the issue. It is however a topic of wide interest which in my opinion should become
relevant in some applications of mesoscopic physics.

The paper by R. Landauer reprinted in the issue is put in perspective by a comment of the
author.
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Mesoscopic phenomena in semiconductor nanostructures
by quantum design

Federico Capasso, Jerome Faist, and Carlo Sirtori
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974

~Received 13 June 1996; accepted for publication 17 June 1996!

The energy levels, wave functions, optical matrix elements, and scattering rates of
electrons can be tailored at will using semiconductor nanostructures as building
blocks for practically any kind of potential. This allows the design and experimen-
tal realization of new artificial materials and devices, with interesting optical
and transport properties arising from quantum confinement, tunneling, and quan-
tum coherence on a mesoscopic scale ranging typically from 1 to 100 nm. This
approach is illustrated with a number of recent examples based on experiments
and calculations, such as resonant tunneling through double barriers, quantum
interference phenomena in transport and optical absorption, bound states in the
continuum, quantum well ‘‘pseudomolecules’’ with giant nonlinear optical suscep-
tibilities, and quantum cascade lasers. ©1996 American Institute of Physics.
@S0022-2488~96!00210-1#

I. INTRODUCTION

Quantum engineering of the electronic energy levels, wave functions and band structure,
matrix elements, and scattering rates using ultrathin semiconductor layers1,2 grown by molecular
beam epitaxy~MBE!3 allows one to design and observe quantum phenomena on a mesoscopic
scale~typically 1–100 nm!, much larger than the atomic one.4–7 This approach is the basis for
modifying and tailoring in unprecedented ways the electronic, transport, and optical properties,
which has led in many cases to altogether new materials~materials by design! and useful device
applications.2,5–8

Essential to the emergence of this field of research has been MBE.3 This epitaxial growth
technique allows multilayer heterojunction structures to be grown with atomically abrupt inter-
faces and precisely controlled material composition over distances as short as a few nanometers.
Such structures include quantum wells. These potential energy wells are formed by sandwiching a
material such as gallium arsenide~of thickness comparable or smaller than the carrier thermal de
Broglie wavelength, which is;25 nm for electrons in gallium arsenide at room temperature!
between two wider energy bandgap semiconductors~for example, aluminum gallium arsenide!.
The energy spacings of the discrete states of the well arising from quantum confinement depend
on the well thickness and depth.

If many quantum wells are grown on top of one another and the barriers are made so thin
~typically,5 nm! that tunneling between the coupled wells becomes important, a superlattice is
formed and the energy levels broaden into energy bands called minibands separated by minigaps.1

Superlattices are artificial materials with novel optical and transport properties introduced by the
artificial periodicity.2,6,7

In this paper we shall review our recent work on mesoscopic quantum phenomena based on
tunneling and on electronic transitions between quantized states of the same band~intersubband
transitions8! in semiconductor nanostructures.

Several of the structures considered in this paper should also appeal to mathematicians and
mathematical-physicists since this approach allows one to design, synthesize, and experimentally
investigate potentials of significant mathematical interest that cannot be found in nature. We shall
limit ourselves to one-dimensional potentials, i.e., structures based on quantum wells. For struc-
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tures based on quantum wires and dots, i.e., relying on quantum confinement along two and three
dimensions, respectively, the reader is referred to Ref. 4.

II. RESONANT TUNNELING AND QUANTUM INTERFERENCE IN ELECTRONIC
TRANSPORT

The resonant tunneling double barrier consists of two potential barriers in series separated by
a potential well.9 This well can, of course, have various shapes~Fig. 1!.

The kinetic energy of an electron’s motion perpendicular to the layers is quantized, just as one
would expect for a particle in a box. In the plane of the layers, however, the electron is free, and
it behaves semiclassically. As a result, two-dimensional energy subbandsEn(k) are formed:

En~k!5En1
\2k2

2m*
, ~1!

whereEn is thenth energy level given by the quantization of the perpendicular kinetic energy, and
the second term is the kinetic energy of the electron’s free motion parallel to the layers, with wave
numberk and effective massm* .

The energy levelsEn correspond to a half-integer number of electron de Broglie wavelengths
across the width of the quantum well. The barriers are thin enough that electrons can tunnel
through them into and out of the quantum well. This structure is often compared to a Fabry–Perot
optical interferometer: the two barriers play the role of partially transparent mirrors through which
light is coupled into and out of a resonant cavity.

As we might expect, the transmissivity for electrons through the double barrier shows reso-
nant peaks when the perpendicular kinetic energy of the incident electrons equalsEn . At these
resonant energies the transmissivity for a symmetric double barrier reaches 100%, even though the
transmissivity for a single barrier might be less than 1%. This striking resonant enhancement of
electron transmission is easily understood in terms of constructive interference between multiply
reflected waves. But it cannot be understood within the semiclassical framework, which forbids
tunneling through even a single barrier.

This description in terms of Fabry–Perot interferometry is somewhat idealized. In many
realistic devices the resonant enhancement of the transmission is considerably weakened by scat-

FIG. 1. Energy diagram of resonant tunneling structure under different conditions of applied electric field.~a! Zero field;
~b!,~c! the electric field is such that electrons resonantly tunnel through the parabolic portion of the well;~d! the applied
field is high enough that electrons probe the continuum resonances. The wells are drawn to scale; however, for sake of
clarity only half the number of levels in an energy interval are shown.
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tering processes because scattering events destroy the phase coherence of multiply reflected
waves. One way to estimate the role of scattering is to compare the intrinsic energy widthGR of
the resonance peak with the collisional broadeningGC of the resonance.GR is determined by the
degree of transmission through the individual barriers, that is, by the degree of external coupling
to the cavity; it is approximately equal toEnTB , whereTB is the transmissivity of one barrier.GC

is determined by the scattering rate, that is, by the internalQ of the cavity.GC is roughly\/t,
wheret is the average time between successive collisions and\ is Planck’s constant divided by
2p. If GR is much larger thanGC , the Fabry–Perot description is appropriate. On the other hand,
if GC is much larger thanGR , the process can be viewed as sequential rather than coherent: the
electrons tunnel into the well, scatter, and tunnel out the opposite side. Devices usually operate
somewhere in between these extremes. The scattering reduces the peak transmissivity and broad-
ens the resonance. The area under the transmissivity curve, however, stays constant.

A very important factor in the operation of resonant tunneling structures is the role of space-
charge buildup within the well, which gives rise to an electrostatic potential that shifts the resonant
energy of the wellEn relative to the energy of incident electrons in the emitter. This is analogous
to the shift in the resonant frequency of a nonlinear Fabry–Perot interferometer due to light-
intensity buildup, which is known to lead to optical bistability. This effect can give rise to
interesting nonlinear oscillations or even chaotic behavior of the charge accumulating in the
well.10,11Other interesting dynamical phenomena associated with charge accumulation in the well
in resonant tunneling structures are discussed in the paper of Presilla and Siostrand of this issue.

In most experiments one measures the current through a resonant tunneling diode when a
voltage is applied across the double barrier through the heavily doped contact layers. The applied
bias voltage lowers the resonant energy of the cavity relative to the energy of the incident elec-
trons. Once the resonant energy has fallen below the range of incident energies—below the
conduction-band edge in the emitter—there is a sharp drop in the current as the applied voltage is
increased further. This negative differential resistance is a useful feature for device applications
such as high-frequency oscillators and multistate transistors.5,6,12Oscillators have operated up to
frequencies in excess of 700 GHz.12

One can design and implement by MBE the electronic potential and the wave functions of a
resonant tunneling structure in a nearly arbitrary way. This is illustrated by the energy diagram
~Fig. 1! of a parabolic well between rectangular barriers under different conditions of applied
electric fields.13 This structure was grown by MBE. The 44 nm wide well is bound by 3.5 nm thick
aluminum arsenide~AlAs! barriers and its chemical composition is varied from Al0.30Ga0.7As ~an
alloy! at the edges and gallium arsenide~GaAs! at the center. The subscripts indicate the molar
fractions of AlAs and GaAs in the alloy. This double barrier is sandwiched between two high
conductivity semiconductor layers to allow application of a voltage. Figure 2 shows the measured
current as a function of applied voltage for opposite polarities and the corresponding conductance
~i.e., the derivative of the current with respect to voltage!. The latter is plotted to enhance the
features corresponding to resonant tunneling through the quantum states.

The overall features of the current voltage curve (I –V) can be interpreted physically by
means of the energy diagrams of Fig. 1. At zero bias,@Fig. 1~a!#, the first six energy levels of the
well are confined by a parabolic well 225 meV deep, corresponding to the grading fromx50 to
x50.30, and their spacing is.35 meV. When the voltage is increased from 0 to 0.3 V the first
four energy levels probed by resonant tunneling@Fig. 1~b!# remain confined by the parabolic
portion of the well, and their spacing is practically independent of the electric field, since it is
primarily controlled by the curvature of the potential. This gives rise to the calculated and ob-
served equal spacing of the first four resonances in theI –V characteristic~Fig. 2!. Consider now
the higher-energy levels confined by the rectangular part of the well~.230 meV! at zero bias.
When the voltage is raised above 0.3 V these levels become increasingly confined on the emitter
side by the parabolic portion of the well and on the opposite side by a rectangular barrier, thus
becoming progressively more separated, although retaining the nearly equal spacing@Fig. 1~c!#.
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This leads to the observed gradual increase in the voltage separation of the resonances as the bias
is increased from 0.3 to 1.0 V. Above 1 V the electrons injected from the emitter probe the virtual
levels in the quasicontinuum above the collector barrier@Fig. 1~d!#. These resonances result from
electron interference effects associated with multiple quantum mechanical reflections at the well–
barrier interface for energies above the barrier height. These reflections give rise to the features
observed above 1 V in thecurrent–voltage characteristic~Fig. 2!, and must be clearly distin-
guished from the ones occurring at lower voltages, which are due to tunneling through two
barriers. It should be noted that in the latter case the reflection from the second barrier is associ-
ated with an imaginary wave number in the barrier. In the case of the continuum resonances
shown in Fig. 1~d! instead, the reflections from the second barrier are associated with a real wave
number since the incident electron energy is greater than the barrier height.

III. QUANTUM INTERFERENCE IN OPTICAL ABSORPTION

Quantum interference effects in the absorption of atoms and molecules have been known
since the classic work of Fano.14 The development of MBE and quantum engineering of semi-
conductor heterostructures has made possible the observation of new optical absorption phenom-
ena. In particular, in this section, we shall focus on intersubband absorption effects.15 Intersubband
transitions are those where the initial and final quantized states are in the same band, e.g. the

FIG. 2. Current versus applied voltage at 10 K temperature and corresponding differential conductance (dI/dV) for a
double barrier structure~Fig. 1! under opposite voltage polarity conditions. The inset shows the eight resonance on a linear
scale. The vertical segments near the horizontal axis indicate the calculated positions of the resonances.
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conduction band.8 In an intersubband transition electrons in a lower state characterized by an
eigenvalue~energy level! Ei with a dispersion of the type shown in Eq.~1! make a transition to a
higher-energy final state~in the case of optical absorption! characterized by an eigenvalueEf .
Conservation of energy and momentum requireEi1\v5Ef , where\v is the photon energy and
ki5kf . The latter equality comes about because of the negligible momentum of the photon
compared to that of the electron\k. It should be noted that in such a transition the envelope
function of the electron, determined by the one-dimensional heterostructure potential, changes
while the rapidly oscillating Bloch function associated with the atomical level periodicity of the
underlying crystal is approximately the same for the final and initial states. The latter approxima-
tion is correct under the assumptions that band nonparabolicities15 associated with the effective
mass being energy dependent are small, a condition verified in many absorption experiments.

The matrix element of thei→ f transition is^ i uzu f )&, wherez is the coordinate normal to the
layers. In order to couple to this matrix element the incident radiation must be polarized or at least
have a component of the polarization normal to the plane of the layers, i.e., alongz. Electrons in
the quantum well structures are introduced during crystal growth by the well-known process of
doping, i.e., through impurities such as silicon atoms that release an electron. The infrared trans-
mission spectrum can then be measured using standard techniques such as Fourier transform
interferometry.

A. Suppression of optical absorption by electric-field-induced quantum interference

Recently the design and demonstration of coupled quantum well structures exhibiting a strik-
ing interference effect in the matrix element for intersubband absorption has been reported.16 The
potential and a specific optical transition~1–3! are designed@Fig. 3~a!# so that under application
of an appropriate electric field the corresponding matrix element has a null@Fig. 3~b!#.

The sample, grown by MBE, comprises 50 coupled quantum wells. Each period consists of
two GaAs wells, respectively, 62 and 72 nm thick, separated by a 2 nm Al0.33Ga0.67As barrier. The
coupled well periods are separated by a 145 nm Al0.33Ga0.67As spacer layer. To supply the electron
charge in the wells an atomically thin layer of silicon dopant~131012/cm2! is inserted in the
spacer layers to ensure a symmetric charge transfer. Figure 3~a! shows the energy diagram of the
coupled quantum well structure with no applied voltage. Indicated are the energy levels and the
moduli squared of the wave functions. The energy levels and wave functions are computed by
solving Schro¨dinger’s and Poisson’s equations in the envelope function formalism.1,15

To get a better insight into the behavior of the coupled well system as a function of the applied
electric field, let us first consider the two quantum wells, denoted here as wells a and b, coupled
by the barrier in a tight-binding approach.1 In such a model, the calculated wave functionsci

~i51,...,4! of this system are expanded in terms of the eigenfunctionsf1,2
a,b of the first two bound

states 1,2 of the two isolated wells. In the tight-binding approximation, the dipole matrix element
z1i5^c1uzuc i& ~i53,4! between the first and the third or fourth state of the coupled well system
can now be written as the sum of the contribution from the two wells a and b,

z1i5^c1uf1
a&^c i uf2

a&z12
a 1^c1uf1

b&^c i uf2
b&z12

b , ~3!

wherez12
a andz12

b are the transition matrix elements computed for the isolated wells. Asc1 is the
ground state of the system,^c1uf1

a& and ^c1uf1
b& have the same sign. On the contrary, since the

second excited statec3 crosses zero twice and is constructed from the antisymmetric wave func-
tionsf2

a,b, ^c3uf2
a& and^c3uf2

b& have opposite signs. Therefore, if we consider a transition between
the first and third state of the coupled well system, the two terms of Eq.~3! have opposite signs.
One thus expects large values ofz13 for large absolute values of the electric field, where both wave
functions are localized in either well a or b@the first or last term of Eq.~3! dominates# and a null
for some intermediate value of the electric field. At this field the absorption will be suppressed.
This behavior is clearly apparent in Fig. 3~b!, where we display the calculateduz13u

2. The absorp-
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tion spectra showed very clearly this effect as the applied electric field was varied.16 The experi-
mentaluz13u

2 is derived from a measurement of the area under the 1–3 absorption peak~in units of
photon energy!, and taking the nominal electron sheet density in the wells~531011 cm22!. The
experimental points in Fig. 3~b! are in good agreement with the calculation.

B. Fano quantum interference

When the excited stateuf& of a quantum system is coupled to a continuumuc& at the same
energy it broadens due to the finite lifetimet introduced by the coupling to the continuum. The
absorption spectrum from the ground stateu1& to this excited state will be Lorentzian with a full
width at half-maximumG5\/t. However, a peculiar situation arises when the matrix element
^1uzuc& from the ground state to the continuum is nonvanishing: the absorption lineshape changes
dramatically, becoming asymmetric, and displaying a zero within a fewG from the absorption
peak. This phenomenon, called Fano interference,14 has been observed in many atomic, molecular,
or solid-state systems.

Recently, we have reported the observation of Fano interference in a heterostructure, where all
the relevant parameters, i.e., the escape rateG and the matrix element to the continuum^1uzuc&, are
tailorable and controlled by design.17

The structures are grown by MBE and consist of ten periods. As shown in Fig. 4, each period
consists of a GaAs coupled well confined by a high, 40 nm thick Al0.33Ga0.67As barrier on the right

FIG. 3. ~a! Energy diagram of an GaAs/Al0.33Ga0.67As coupled-quantum-well structure used to investigate quantum
interference in optical absorption. Shown are the positions of the calculated energy subbands and the corresponding
modulus squared of the wave functions. We computedE1563 meV,E2580 meV,E35198 meV, andE45250 meV.~b!
Square of the transition matrix element~z13!

2 ~right axis!, as derived experimentally from the integrated absorbance below
the ~1–3! absorption peak~left axis!. The solid line is the calculated value.
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and a thick low Al0.165Ga0.835As barrier on the left. The thicknessL5200 nm of the
Al0.165Ga0.835As barrier is chosen such that it is much longer than the electron’s coherence length
lc;20–50 nm, and therefore the states of this region behave as a continuum. Two structures with
different quantum well thicknesses were grown. Sample A had the strongest coupling due to the
relatively thin 2.0 nm Al0.33Ga0.67As barrier coupling the 5.2 nm left well to the 6.4 nm right well.
A doping sheet in the Al0.165Ga0.855As, separated from the quantum wells by a 25 nm spacer layer
provides the 2.531011 cm22 electron sheet density in the coupled well region. Sample B had a
weaker coupling due to the thicker 2.5 nm barrier coupling the 5.5 nm left well to the 6.5 nm well.
The electron sheet density wasns5531010 cm22 and the spacer layer 50 nm.

In these samples, the individual ground states of the two wells couple through the thin
intermediate barrier to form a doublet with a splitting of about 20 meV. The same barrier also
couples the excited state of the right welluf& with energyEr to the energetically degenerate
continuum that broadens the stateuf& by G>12 meV for sample A andG>6 meV for sample B.
In both cases, we have the conditionG@Gd , where Gd;1–2 meV is the broadening ofuf&
~homogenous and inhomogeneous! caused by interface roughness and optical phonon scattering.
Since the ground state wave function spans both wells and therefore has a strong dipole coupling
to both stateuf& and the continuum stateuc& above the left well, the structure fulfills the require-
ments for the observation of Fano interference.14 In a tight-binding picture,1 we are coupling a
bound-to-bound transition in the right well to a bound-to-continuum in the left well. Note that one
would not observe this interference in a sample having only the right well, since the matrix
element^1uzuc&'0 in this case. The features associated with Fano interference are also clearly

FIG. 4. Energy diagram of a portion of the structure used to study Fano quantum interference in absorption. The thick-
nesses and doping used in this self-consistent calculation correspond to sample A~see the text!. The moduli squared of the
wave functions of then51 andn52 states are displayed. The modulo squared of the wave function in the continuumuC&
is represented as a gray-scale density plot. Points a, b, and c represent the final state energies corresponding to the onset
of the continuum, the zero, and the maximum of the absorption spectrum~see Fig. 5!. The shift between the maximum of
the absorption and the position of the resonanceEr is a feature characteristic of Fano interference.
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apparent in the plot of the modulus squared of the eigenfunctionsuc& of the whole system~con-
sisting of the continuum plus the quantum wells! displayed as a gray scale plot in Fig. 4. As
predicted for Fano interference, the calculated maximum and zero of the absorption~points c and
b in Fig. 5! lie above and belowEr , respectively. This occurs because^1uzuf& and^1uzuc& interfere
with opposite phaseon the two sides of the resonance.14 The expected energy-dependent phase
shift experienced by the wave functionuc! is evident in Fig. 5 as an abrupt shift of the position of
the minimum of the modulus squared of the wave functions as the energy crosses the resonant
energy. The absorption for both samples is reported in Fig. 5 along with the calculated spectra.17

The Fano interference is contained in the calculated spectra automatically, since the absorption is
computed using the wave functionuc&, which is an eigenfunction of the whole system, coupled
well plus continuum. Thus the agreement between the measured and calculated spectra is the proof
that these samples exhibit Fano interference. However, note that these experimental lines cannot
be fitted in satisfactory fashion with the original Fano lineshape14 because the same important
assumptions used to derive that expression~invariance of both the matrix element and the coupling
strength as a function of energy! do not hold in our case. Both spectra also show the qualitative
features of the Fano lineshapes with a zero close to the asymmetric absorption peak. The shift
~;100 meV! between the absorption peak and the onset of the continuum is another feature that
is specific of these structures exhibiting Fano resonance. An absorption spectrum from a bound-
to-continuum single quantum well would peak very close~20 meV! to the onset of the continuum.
As expected, the main peak is broader for sample A~50 meV! than for sample B~30 meV! due to
its stronger coupling to the continuum.

FIG. 5. Absorption spectra of structures exhibiting Fano quantum interference.~a! The solid curve is the measured
absorption spectrum for sample A with strong coupling and asymmetry. Points a, b, and c refer to the onset of the
continuum, the zero, and the maximum of the absorption~see Fig. 4!. The dashed curve is the calculated spectrum.~b! The
same for sample B. Note the shift between the absorption peak and the onset of the continuum, which is a feature specific
to these samples exhibiting Fano interference.
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IV. CONTINUUM RESONANCES: ELECTRON WAVE INTERFERENCE AND BOUND
STATES ABOVE A POTENTIAL WELL

In the previous section we have seen how confined states of quantum wells are central in a
number of tunneling and optical phenomena. Highly localized states and even bound states can
also be created at energies above the barrier height in a potential well using constructive interfer-
ence phenomena.18,19

Consider first a conventional rectangular well@Fig. 6~a!#. At energies greater than the barrier
height one has a continuum of scattering states. For discrete energies corresponding to a semi-
integer number of electron wavelengths across the well, one finds transmission resonances. Al-

FIG. 6. Energy diagrams of potentials used to study highly localized states in the continuum.~a! Reference sample. Shown
are the ground state of the well~E15204 meV! and the position~dashed line! of the first transmission resonance in the
continuum~E25560 meV!. ~b! Quantum well cladded by two-period quarter-wave stacks. Shown isuCu2 of the localized
quasibound state~E65560 meV! formed in correspondence to the transmission resonance and the positions of new states
created at lower energies~E25320 meV,E35322 meV,E45356 meV,E55359 meV!. ~c! In the superlattice limit thel/4
stacks behave as Bragg reflectors. The state above the well now becomes a bound state localized by the superlattice
minigap ~5266 meV!. The low-energy miniband extends from 307 to 379 meV.
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though at these energies the electron amplitude in the well layer is enhanced, the wave functions
do not decay exponentially in the barrier, unlike the confined states of the well, but are plane-
wave-like. These states can be localized in the well using as barriers stacks of layers of thickness
l/4 each, wherel is the de Broglie wavelength in the layer~at an energy comparable to that of the
selected transmission resonance! @Figs. 6~b!–6~c!#. The net effect is that the reflection coefficient
of electrons acquires a high value~near unity! for a significant range of energies~typically 0.1–0.2
eV! above the barrier height. This high value of the reflectivity is the result of interference
between the waves partially reflected by the heterointerfaces of thel/4 stacks, which leads to the
formation of a quasibound state above the center well@Fig. 6~b!#. This strongly narrows the
transmission resonance in analogy with a Fabry–Perot optical filter, where sharp optical reso-
nances are produced using as high reflectivity mirrors dielectric quarter-wave stacks. The degree
of localization increases with the number of periods; in the structure with just two-period stacks,
the wave function is already highly confined@Fig. 6~b!#. In the superlattice limit and at low
temperatures, to minimize scattering, the stacks behave as Bragg reflectors; a minigap opens up
@Fig. 6~c!# and the localized state becomes a bound state at energies greater than the barrier height.
The prediction that certain oscillatory potentials support bound states in the continuum, due to
quantum interference, was first put forth by von Neumann and Wigner in 1929.20

The reference sample@Fig. 6~a!# had 20 3.2 nm InGaAs doped quantum wells separated by 15
nm undoped AlInAs barriers. In the other three structures the 3.2 nm wells, doped to the same
level were cladded, respectively, by one-period, two-period@Fig. 6~b!#, and six-period@Fig. 6~c!#
l/4 stacks consisting of 3.9 nm AlInAs barriers and 1.6 nm GaInAs wells, designed as discussed
above. The phase coherence length in the superlattice structure of Fig. 6~c! is estimated to be;30
nm at 10 K.

The room temperature absorption spectra of the reference sample is broad with a long-
wavelength cutoff determined by the height of the barrier.18 In the structure with onel/4 period
the peak is considerably narrower and centered at an energy corresponding to the transition
between the ground state of the well and the localized resonant state at the energyE6.

18 As the
number of quarter-wave stacks is doubled the absorption peak does not shift and considerably
narrows, precisely the behavior expected for an interference filter. In fact, the observed narrowing
~16 meV! can be quantitatively explained in terms of the reflectivity increase of thel/4 stacks.18

In the structure with six periods at cryogenic temperatures, the highly localized state becomes
effectively a bound state confined by Bragg reflectors from the superlattice.19 The absorption
spectrum~Fig. 7! shows an isolated peak at 360 meV of width;10 meV corresponding to the
transition from the stateE1 to the stateE2 in Fig. 6~c!.19 It is worth noting that the width of the
transition to the confined state above the well in the two- and six-period structures is identical to
that of the bound-to-bound state transition measured in a conventional 5.5 nm thick GaInAs well

FIG. 7. Absorption spectra at cryogenic temperature for the structure with superlattice Bragg reflectors of Fig. 6~c!
~bottom!. The transition to the confined state above the well@E2 in Fig. 6~c!# corresponds to the peak at 360 meV, in
excellent agreement with the calculated value forE22E1 .
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with 30 nm thick barriers, thus demonstrating the highly localized nature of the state above the
well.

Other intriguing phenomena arise when, for example, the first continuum resonances of quan-
tum wells are at the same energy of the first barrier resonance.21 This can be achieved by suitable
adjustment of the layer thicknesses in a superlattice. In this case a very broad miniband is formed
that extends ink space fromp/a to 3p/a ~wherea is the superlattice period!, with a minigap
suppression at 2p/a ~see Fig. 8!. This effect has been confirmed experimentally.21

V. COUPLED QUANTUM WELL PSEUDOMOLECULES WITH GIANT NONLINEAR
OPTICAL SUSCEPTIBILITIES

Consider an electromagnetic field at frequencyv, propagating through a material. Optical
phenomena such as dispersion, absorption, and stimulated emission are described in Maxwell’s
equations by a linear polarizationP(v)5e0x(v)E(v) proportional to the electric field of the
waveE~v! via a coefficientx~v! called susceptibility, wheree0 is the vacuum permittivity. More
generally, the polarization contains higher-order but smaller terms at frequencies such as 2v and
3v. These nonlinear terms are proportional to powers of the field via nonlinear susceptibilities
such asx~2! ~2v! and x~3!~3v!, and are responsible for phenomena such as second harmonic
generation~SHG! at 2v and third harmonic generation THG 3v. The polarizations for these two
phenomena can be written asP(2v)5e0x (2v)

(2) E2(v) andP(3v)5e0x (3v)
(3) E3(v). More gener-

ally, when two beams at frequenciesv1 andv2 are present, nonlinear phenomena such as sum or
difference frequency generation atv16v2 are possible.

The structures discussed in this section can be viewed as ‘‘pseudomolecules’’ with giant
dipole matrix elements and nearly equally spaced energy levels~Fig. 9!. These characteristics lead
to a large enhancement of their nonlinear optical susceptibilities.22 Physically these susceptibilities
in our structures arise from the interaction of light with the quantized anharmonic oscillations of
electrons in the potentials of Fig. 10. The latter are grown in the AlInAs/GaInAs system lattice
matched to InP, and only the thickest well is dopedn-type to provide electrons. The choice of this
material system facilitates the tunnel coupling between the layers due to the low effective mass
~0.07 m0! of the barrier region and provides a large potential barrier~0.5 eV! essential for con-

FIG. 8. Energy dispersion along the superlattice axis for a structure~inset! where the first barrier resonanceER1
B is

degenerate with second well resonanceER1
W . The resulting mixing of these states produces a very broad miniband fromp/a

top/3a and suppression of the energy gap atp/2a. The barriers~AlInAs! and the wells~GaInAs! are, respectively, 8.8 and
3 nm thick.
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fining four states in the three-well structure separated by an energy corresponding to that of the
photon from a carbon dioxide~CO2! laser~'120 meV!. To optically excite the quantized motion
normal to the layer interfaces, one must use light with a component of the polarization normal to
the layers. In our experiments this was done using linearly polarized light in a multipass wave-
guide structure wedged at 45°. In our SHG experiment a coherent polarization is created at double
the frequencyv of the pump wave~a CO2 laser beam! due to the lack of reflection symmetry of
our two-well structure@Fig. 9~a!#. This coherent polarization radiates a wave of frequency 2v
colinear with the pump. The vicinity of the pump photon energy toE22E1 and of 2v to E32E1
produces a strong resonant enhancement of the nonlinear susceptibilityx2v

~2! associated with SHG.22

The maximum susceptibility~x2v
~2!! corresponds to exact matching, i.e.\v5E22E15E32E2 .

This can be achieved using the large linear Stark effect typical of this structure by applying an
electric field of suitable polarity normal to the layers. In these conditions aux2v

~2!u51027 m/V was
measured, approximately 300 times the value ofux2v

~2!u in bulk GaAs atl510 mm.22

The three-well structure@Fig. 9~b!# with the near equal separation of its four energy levels is
suitable for triply resonant THG. In this process a pump wave at frequencyv sets up a nonlinear
polarization at 3v that coherently radiates a wave at this frequency.22 The nonlinear susceptibility
x3v

~3! that enters the expression for the polarization is strongly enhanced when the condition

FIG. 9. Energy diagrams of the AlInAs/GaInAs coupled-quantum-well nonlinear optical structures. Shown are the posi-
tions of the calculated energy levels and the corresponding moduli squared of the wave functions.~a! The structure used
for resonant second harmonic generation. The GaInAs wells have thicknesses of 6.4 and 2.8 nm and are separated by a 1.6
nm AlInAs barrier.~b! The structure used for triply resonant third harmonic generation. The GaInAs wells have thicknesses
of 4.2, 2.0, and 1.8 nm, respectively, and are separated by 1.6 nm AlInAs barriers.
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\v.E22E1.E32E2.E42E3 is met. It is important to note that a parabolic well~i.e., a har-
monic oscillator potential! is unsuitable for this purpose, since in such a system the electron
oscillations are linear~in quantum mechanical terms the transition matrix elements between non-
adjacent states are zero, a property of Hermite polynomials!. THG experiments in the structure of
Fig. 10~b! have found aux3v

~3!u510214 ~m/V!2 at 300 K.22 At cryogenic temperaturesux3v
~3!u is four

times larger. These are the highest third-order susceptibility of any known material system. The
three-coupled well structure was also used to study multiphoton electron escape from a well under
an applied electric field, the analog of multiphoton ionization of an atom.23 In this process elec-
trons are photoexcited into the continuum via a CO2 laser using a three photon transition, giving
rise to a photocurrent. The cross section for this process is found to be many orders of magnitude
larger than in atoms and molecules.

Consider now the nonlinear optical phenomenon of difference frequency mixing in which two
incident waves at frequenciesv1 andv2 interact in a suitable asymmetric medium to set up a
polarization at the difference frequencyv12v2.

24 This polarization is responsible for the genera-
tion of radiation atv5v12v2. Quantum nanostructures can be designed to exhibit a very large
x~2!~v5v12v2! when the incident photons and their energy difference are resonant with optical
transitions of the structure. The asymmetric structure of Fig. 3~a! was in fact used for infrared
~l.60 mm! difference frequency generation near the energy difference between statesn52 and
n51, i.e.,v3.(E22E1)/\.

24 The photons atv1 andv2 are chosen to be near resonance with the
~1–3! and ~3–2! transitions, respectively. As the photon energy difference\~v12v2! of the two
incident CO2 lasers was tuned nearE22E1 , the measured far infrared radiation~at l;60 mm!
exhibited the typical resonant behavior of this process.24

FIG. 10. ~a! Energy diagram of a quantum cascade laser showing also the moduli squared of the wave functions.~b!
Schematic representation of the dispersion of then51, 2, and 3 states parallel to the layers;ki is the corresponding wave
number. The wavy lines represent the laser transition.
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VI. QUANTUM CASCADE LASERS

The quantum cascade~QC! laser is an excellent example of how quantum engineering can be
used to design new laser materials and related light sources. It is based on intersubband transitions
between excited states of coupled quantum wells and on resonant tunneling as the pumping
mechanism~Fig. 10!. The population inversion between the states of the laser transition is de-
signed by tailoring the electron intersubband scattering times. This tailoring of scattering adds an
important dimension to quantum engineering of mesoscopic structures. In QC lasers, unlike all
other laser sources, the wavelength is determined by quantum confinement, i.e., by the layer
thicknesses of the active region rather than by the chemical properties of the material. As such, it
can be tailored over a very wide range using the same heterostructure material. Since the initial
report of QC lasers in 1994~Ref. 25!, we have demonstrated emission wavelengths in the 4–8.5
mm range using AlInAs/GaInAs heterostructures lattice matched to InP.26–29 Figure 10~a! illus-
trates the conduction band energy diagram of a portion of the 25-period~active region plus
injector! section of the quantum cascade laser under an applied electric field normal to the layers
;105 V/cm corresponding to lasing conditions. The dashed lines are the effective conduction band
edges of the digitally graded electron-injecting regions, where electrons relax their energy before
being injected in the next region. These injectors are short period superlattices~Fig. 11!. The
population inversion between the states of the laser transition~n53 and n52 in Fig. 10! is
obtained by ensuring, by suitable design, that the scattering time from the upper state~n53! to the
lower one~n52! is larger than the lifetime of the latter. At the same time one must reduce as
much as possible the tunneling escape rate from then53 state to the continuum, since this process
in steady state tends to reduce the population of the upper level. Finally, tunneling out of the
lowest state~n51! should be fast enough to avoid a buildup of electrons in that subband. As
described below, these requirements are met by a suitable choice of layer thicknesses, number of
quantum wells, and electric field in the active region. More specifically, the latter is designed to
have a laser transition that is ‘‘diagonal in real space’’~Fig. 10! and an energy separation between
then52 andn51 states resonant with the optical phonon. Electrons are injected through a 4.5 nm
AlInAs barrier into then53 energy level of the active region. The latter includes 0.8 and 3.5 nm
thick GaInAs wells separated by a 3.5 nm AlInAs barrier. Note the reduced spatial overlap
between then53 andn52 states~‘‘diagonal’’ or photon-assisted tunneling transition! and the
strong coupling to an adjacent 2.8 nm GaInAs well through a 3.0 nm AlInAs barrier. Electrons
escape from this well through a 3.0 nm AlInAs barrier. The calculated energy differences are
E32E25295 meV andE22E1530 meV. The wavy arrow indicates the laser transition. Figure
10~b! shows a schematic representation of the dispersion of then51,2, and 3 states parallel to the
layers;ki is the corresponding wave number. The bottom of these subbands correspond to energy
levels n51, 2, and 3 indicated in~a!. The wavy arrows indicate that all radiative transitions
originating from the electron population~shown as shaded! in then53 state have essentially the
same wavelength. The quasi-Fermi energyEFn corresponding to the population inversion at
threshold~ns51.731011 cm22! is ;8 meV, measured from the bottom of then53 subband. The
straight arrows represent the intersubband scattering processes by optical phonons.

The tunneling rate through the trapezoidal injection barrier is extremely fast~;0.2 ps!21,
ensuring the efficient filling of level 3. The coupled-well region is essentially a four-level laser
system, where a population inversion is achieved between the two excited statesn53 andn52.
The intersubband optical-phonon-limited relaxation time,25 t32, between these states is estimated
to be ;4.3 ps at;105 V/cm; this process is between states of reduced spatial overlap and
accompanied by a large momentum transfer@Fig. 10~b!# associated with the large intersubband
separation; as such,t32 is relatively long. This ensures population inversion between the two states
because the lower of the two empties with a relaxation time estimated around 0.6 ps. Strong
inelastic relaxation by means of optical phonons with nearly zero momentum transfer occurs
between the strongly overlapped and closely spacedn52 andn51 subbands@Fig. 11~b!#. Finally,
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the tunneling escape time out of then51 state is extremely short~&0.5 ps!, further facilitating
population inversion. The ‘‘diagonal’’ nature of the laser transition increases the escape time into
the continuum from then53 level ~tescp.6 ps!, thus enhancing the injection efficiency. Figure 11
is a transmission electron microscope photograph of a cleaved section of the QC laser, showing
three periods of the active region.

The 25-period active region is sandwiched between thick AlInAs cladding layers to provide
an optical waveguide parallel to the layers. The optical cavity is obtained by cleaving 0.5–3 mm
long bars normal to the layers. The crystalline cleavage planes serve as mirrors. With the design
of Fig. 10 laser action was obtained in pulsed mode atl54.3mm with several tens of mW of peak
powers and up to;100 K operating temperatures, but with relatively high thresholds. In this
design, the width of the luminescence transition is relatively broad@full width at half-maximum
~FWHM!522 meV# since a diagonal transition is more sensitive to interface roughness associated
with thickness fluctuations~; one atomic layer! in the plane of the layers. As a consequence, the
peak gain is reduced. To circumvent this problem we designed the structure of Fig. 12, where
electrons make a vertical radiative transition essentially in the same well.26 This reduces consid-
erably the width of the gain spectrum~FWHM'10 meV!, and therefore the laser threshold current
density. To prevent electron escape in the continuum, which is greatly reduced in the case of the
diagonal transition, the superlattice of the digitally graded injector is now designed as an effective
Bragg reflector for electrons in the higher excited state and to simultaneously ensure swift electron
escape from the lower states via a miniband facing of the latter~Fig. 12!.26 The active region
consists of 4.5 mm InGaAs quantum well coupled to a 3.6 nm well by a 2.8 nm AlInAs barrier.
Tunneling injection from the superlattice into the active region is through a 6.5 nm AlInAs barrier
and electrons escape out of then51 state through a 3.0 nm AlInAs barrier. As in the other
structure, the lower state of the laser transition is separated by an optical phonon~'30 meV! from
the n51 state. The calculated relaxation time ist21.0.6 ps, which is considerably less than that
between then53 andn52 state~1.8 ps!, thus creating population inversion condition between
these energy levels. Electrons can, in turn, tunnel out of then51 state in a subpicosecond time to
prevent electron buildup.

Dramatic performance improvements have been obtained with vertical transition QC lasers.26

The threshold current density is considerably reduced~; a factor of 2! leading to higher operating

FIG. 11. Transmission electron micrograph of a portion of the cleaved cross section of the quantum cascade laser of Fig.
10. Three periods of the 25 stage structure are shown. The superlattice period of the digitally graded regions is 3 nm and
the duty cycle of the AlInAs barrier layers varies from 40% to 77% top-to-bottom, creating a compositionally graded
pseudoquarternary alloy in these regions. This is used for injecting electrons from top-to-bottom into the 0.8 nm GaInAs
well. The wells and barriers of the digitally graded regions are dopedn-type to 1.531017 cm23 to avoid space-charge
buildup under injection, while the other layers are undoped.
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FIG. 12. The schematic energy diagram of a portion of the Ga0.47In0.53As/Al0.48In0.52As quantum cascade laser with vertical
transition under positive bias condition and an electric field of 8.53104 V/cm. The dashed lines are the effective conduc-
tion band edges of the 20.8 nm thick superlattice electron injector. As shown, this superlattice is also designed as to create
a minigap that blocks electron escape from level 3. The wavy line indicates the transition responsible for laser action. The
moduli squared of the relevant wave functions are shown.

FIG. 13. Continuous optical output power from a single facet versus injection current for various temperatures of a
quantum cascade laser~Ref. 30!. ~a! Sample D-2122, with a device 2.9 mm long and 7mm wide.~b! Sample D-2160, with
a device 3 mm long and 9mm wide. Single mode high resolution spectra are shown in the inset at various temperatures.
The lasers operated in pulsed mode up to room temperature and above~320 K!.

4790 Capasso, Faist, and Sirtori: Mesoscopic phenomena in nanostructures

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



temperatures. In addition, the peak optical power is also greatly enhanced and the lasers can
operate in continuous wave.27,28

More recently, the design of vertical transition QC lasers has been further improved by adding
a thin quantum well between the graded injector layer and the double-well active region.29 This
increases the tunneling injection efficiency. The above features, together with the substitution of
the AlInAs cladding layers with InP regions of much higher thermal conductivity, has led to the
room-temperature high peak power~;200 mW! pulsed operation of QC lasers atl55.2 mm.30

Continuous wave single mode operation has also been achieved up to 140 K~Fig. 13!. These are
the first semiconductor lasers operating at room temperature in the mid-infrared. Their overall
performance makes them excellent candidates for many applications such as environmental sens-
ing and pollution monitoring in the 3–5mm and 8–13mm atmospheric windows.

VII. CONCLUSIONS

This review has highlighted the range of interesting transport and optical mesoscopic phe-
nomena made possible by wave function engineering in semiconductor nanostructures grown by
MBE. By controlling the phase of the electronic envelope function states and of their transition
matrix elements, a number of interesting quantum interference effects have been observed in
double-barrier transport and optical absorption. This quantum engineering approach has also led to
the design and demonstration of new materials with giant nonlinear optical coefficients. Finally,
not only the electronic states but also the scattering rates can be tailored. This adds a new
dimension to quantum design and has allowed us to demonstrate new light sources~quantum
cascade lasers!, where the population inversion is designed rather than determined by relaxation
times intrinsic to the laser material.
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Dynamic conductance and quantum noise in mesoscopic
conductors
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We present results for the dc conductance, the ac conductance, and the current–
current fluctuation spectra of mesoscopic, phase-coherent conductors based on a
second quantization approach to scattering and a self-consistent potential approach.
A second quantization approach permits an investigation of statistical effects due to
the symmetry of the wave functions under exchange of particles. A self-consistent
approach is needed to enforce overall charge conservation and to obtain current
conserving expressions for frequency-dependent conductances and fluctuation
spectra. For the particular example of a mesoscopic capacitor we present micro-
scopic expressions for the electrochemical capacitance and the charge relaxation
resistance. ©1996 American Institute of Physics.@S0022-2488~96!00810-9#

I. INTRODUCTION

Electrical transport in conductors which are so small that carrier transport from one contact of
the sample to an other contact of the sample is phase coherent is a subject of considerable interest.
Much of what has been learned about samples so small that the wave nature of electrons matters
has been achieved through the theoretical and experimental investigation of dc conductances.1–3

Electrical transport can, however, not only be characterized by its steady state average behavior
but also by dynamical fluctuations away from its average behavior. Therefore, it is desirable to
characterize also the fluctuation, the noise, of such conductors. Moreover, the conductor can, by
application of time-dependent perturbations be brought into a dynamical state and, therefore, it is
useful to characterize the conductor through its ac-conductances. The growing interest in these
subjects is illustrated by a series of recent clever experiments on ac conductances4–7 and quantum
shot noise.8–11 Both noise measurements and dynamic conductance measurements can reveal
properties of a conductor which cannot be tested by a dc experiment.

The purpose of this work is to show that there exists a common theoretical framework to
address dc conductances, quantum noise and the ac conductance of mesoscopic conductors. We
present first a scattering theory of dc-conductance12–17 and the low frequency noise18–24 carried
out in a second quantization framework.19,20,22,23The derivation of the dc-conductances uses in an
essential manner the coherent transmission from one electron reservoir to another and represents a
rederivation of results by Bu¨ttiker15,16and Imry14 and Landauer.17 For the discussion of the noise
our interest is focused on the statistical effects which arise due to the fact that an electrical
conductor is made up of indistinguishable carriers. The quantum statistical effects of such a
system are a property of the wave functions under exchange of two of its particles. Basically under
such an exchange the wave functions must either remain invariant~Bose statistics! or the wave
function changes sign~Fermi statistics!. For multiprobe conductors22,23 this gives a generalized
Johnson–Nyquist formula relating the equilibrium fluctuations to transmission probabilities of the
conductor. We discuss the current–current fluctuations in the presence of transport. We relate the
low-frequency current fluctuations and correlations to products of four scattering matrices.22,23

The discussions by Khlus,18 Lesovik,19 and Yurke and Kochanski20 and Martin and Landauer24 are
essentially single channel discussions or assume that the scattering matrix is diagonal. The second
quantization approach of Refs. 22 and 23 permits to carry out such a discussionat every stagein
an arbitrary basis, for an arbitrary scattering matrix. To highlight the role of statistics we compare

0022-2488/96/37(10)/4793/23/$10.00
4793J. Math. Phys. 37 (10), October 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



a system subject to Fermi statistics with a system subject to Bose statistics. We extend this
approach to ac transport for the case that a sample is brought into a dynamical state by application
of frequency-dependent voltages to the contacts of the sample.25,26 For this discussion the dis-
placement of charge in response to the perturbations is central: to conserve charge the charge
deviation from the equilibrium state must be of dipolar or higher order multipolar form. To
achieve such a charge distribution an independent electron approach27,28 is insufficient. As a
consequence results for the ac conductance must include the effects of the long range Coulomb
interaction. The leading coefficient proportional to frequency which describes the displacement
currents measured at the contacts of the sample is called the emittance.26 The emittance describes
a capacitive current response if carrier transmission plays no role but describes an inductivelike,
kinetic current response if transmission of carriers is important. An extension of this theory to
frequency-dependent noise spectra is discussed for the case of a mesoscopic capacitor.

This work is not a review of these topics but is focused on demonstrating the unity of this
approach as it is applied to these diverse but interrelated subjects. We only motivate and discuss
the results and refer the reader to the original literature for detailed derivations. The conceptual
points we make can be made for normal conductors: the dc conductance29 and the zero-frequency
noise30,31of hybrid normal and superconducting structures can be formulated in close analogy. We
also emphasize only coherent transport. In the frame work presented here incoherence can be
introduced by the addition of ‘‘fictitious’’ voltage probes.32We emphasize expressions in terms of
the local density of states and the local, continuous potential. Much insight can be gained by using
piecewise constant potentials33–35,41instead of the continuous potential distribution.

II. SECOND QUANTIZATION FORMULATION OF THE SCATTERING APPROACH

We present a brief outline of the second quantization approach to scattering theory. First, it is
necessary to discuss the formulation of electron transport in the form of a scattering
problem.12,14–16

A. Quantum channels

We envision a mesoscopic conductor~see Fig. 1! connected to an arbitrary number of
contacts15,16 labeleda51,2,... . Each contact, far away from the connection to the conductor will
be viewed as a perfect, translationally invariant conductor. For contacta, let xa be the coordinate
along the conductor andya and za the orthogonal transverse coordinates. The single-electron
Hamiltonian for a carrier with effective massm in such a lead is given by

H52
\2

2m
Da1eU~ya ,za!, ~1!

FIG. 1. Conductor connected to four contacts with equilibrium Fermi distributionsf a , a51,2,3,4. After Ref. 23.
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with a potentialeU(ya ,za) that might be an arbitrary function of the transverse coordinates but is
independent ofxa . This Hamiltonian is separable. The transverse motion is described by a ladder
of states with eigenfunctions36,37 fan(ya ,za) and energiesEan~0!, labeled by the index
n51,2,3,... . The eigenfunctions of the HamiltonianH are of the form
xan(kan ,xa ,ya ,za)5exp(ikanxa)fan(ya ,za) with an energy

Ean~kan!5Ean~0!1\2kan
2 /2m ~2!

shown in Fig. 2. For a given energyE there are two solutionsk6,an(E) of the equation
E5Ean(kan). If the energyE exceeds the channel thresholdEan~0! the two solutions are real and
describe an in-going state with velocityvan(E) and an out-coming state with velocity2van(E).
We call these two states a quantum channel. In general for a given energyE we will haveN
transverse states with energyEan below E. In this case we have 2N real wave vectors which
characterize in and out-going states. Below such a contact is called anN channel contact. It is not
necessary to have a simple dispersion of the form of Eq.~2!. For a lattice Hamiltonian or in the
presence of a magnetic field the transverse wave functions also depend on the longitudinal wave
vector. The scattering approach to conductance is powerful because none of the results given
below depends on the precise nature of the dispersion in the contacts.

B. Scattering states

The quantum channels defined above can now be used to describe in and out-going states and
can thus be used to define a scattering problem. A scattering state16 Can~E,r ! is a wave function
with unit incident amplitude in channeln in leada and reflected waves in typically all the other
channels in the same contact and transmitted waves in typically all other contacts. The scattering
states together with possible bound states form a complete set. For simplicity we assume here that
all states are extended~no bound states!. The amplitudes of the reflected waves and the transmitted
waves are determined by the elementssbamn of the scattering matrix. The scattering matrix is the
ratio of the out-going current amplitude in contactb in channelm and the incident current
amplitude in contacta in channeln. An elegant description of scattering in second quantization
can be given in terms of two sets of annihilation operators22,23,38âan(E) andb̂an(E). The operator
âan(E) annihilates a carrier in an incoming state in probea in channeln with energyE. The
operatorb̂an(E) annihilates a carrier in an out-going state in probea in channeln with energyE.
It is useful to group these operators for each probe together in a vectorâa(E) and b̂a(E) and to

FIG. 2. Energy dispersionsEn(k) of quantum channels of a perfect wire.En~0! is the energy of thenth transverse state.
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introduce the submatricesba which relates all the current amplitudes incident in probea to the
current amplitudes transmitted into probeb. The âa(E) and b̂a(E) operators are related by a
unitary transformation which is given by the scattering matrix23,38

b̂b5(
a

sbaâa . ~3!

Thus theb̂an operators obey exactly the same commutation~anticommutation! relations as theâan

operators.

C. Self-consistent scattering states

The scattering matrices introduced in Eq.~3! are not only a function of energy but also a
functional of the electrostatic potentialU~r !. The electrostatic potential depends via a Poisson
equation on the charge distribution in the sample. The charge distribution in the sample depends
on the voltages applied to the sample. At equilibrium when all electrochemical potentialsma at all
contacts are identical, this potential is the equilibrium electrostatic potentialUeq~r !. In steady-state
stationary transport the charge distribution and hence the potential depends on the electrochemical
potentials at the contacts. Consequently the nonequilibrium potential is also a function of the
electrochemical potentials at the contactsU~@ma#,r !. Hence the scattering matrix in an electric
conductor is never truly a single particle matrix but is a function both of the energy of the carriers
and implicitly via the electrostatic potential a function of the electrochemical potentials,

sba~E,U~@ma#,r !!. ~4!

The situation is even more complex, when we deal with quantum noise. The fluctuations in the
charge density inside the conductor lead then to a potential that is also fluctuating. In the following
discussion we will now present results which are correct for a fixed given potential. Later on when
we discuss the ac conductance and frequency-dependent noise spectra we will also discuss the
consequence of the time-dependent potential and its fluctuations.

D. The current operator

We now want to express the operator of the total current in probea in terms of the annihi-
lation ~and creation! operators introduced above. A derivation can be found in Ref. 22 and 23. The
result is simple and can be motivated as follows: Consider first the currentdI incident in a fully
occupied quantum channel in a small energy intervaldE at energyE. In channeln in probea this
current is37 dIan5evandnan . Herevan is the velocity of this channel at energyE anddnan is the
carrier density in this energy interval in this channel. This density is (dnan/dE)dE.
But dnan/dE5(dnan/dkan)dkan/dEan is equal to the density of states of a uniform wire in
k space which is 1/2p multiplied by 1/\van . Thus dnan/dE51/hvan . As a consequence
the incident currentdIan5(e/h)dE is independent of any properties of the quantum channel.
This is a central result of the scattering approach to electrical conductance and is deeply connected
to the fact that the conductance of quantum point contacts39 and in Hall conductors3 can
be quantized. Now we take into account that the channel needs not always to be full. We intro-
duce the occupation probabilitynan

1 of the incoming branch of quantum channelan. Similarly,
we introduce the occupation probabilitynan

2 of the outcoming branch of quantum channelan.
The net current on both the incoming and outgoing branch of quantum channeln is
dIan(E)5(e/h)dE(nan

1 (E)2nan
2 (E)). We generalize this result in two ways. First, we assume

that it is valid even if the occupation probabilities are not stationary but are functions of time,
nan

6 (E,t). Second, we express the occupation probabilities in terms of the annihilation~creation!
operators introduced above. We haven̂an

1 (E,t) 5 *d(\v)âan
† (E)âan(E 1 \v)exp(2 ivt) and

4796 M. Büttiker: Dynamic conductance and quantum noise

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



n̂an
2 (E,t) 5 *d(\v)b̂an

† (E)b̂an(E 1 \v)exp(2 ivt). Finally, to obtain the operator for the total
current, we must sum over all channels in probea and integrate the resulting expression over
energy. Consequently, the operator for the total current in probea is23

I a~ t !5
e

h E dEdE8@ âa
†~E!âa~E8!2b̂an

† ~E!b̂a~E8!#exp~ i ~E2E8!t/\!. ~5!

Clearly, this is an intuitively appealing result. Before proceeding, we remark that this expression
contains no detailed spatial information on the location of the carriers but only takes into account
whether a carrier is in an incoming or outgoing channel in a given reservoir. A formal derivation
of Eq. ~5! proceeds by constructing the Fermi field operator. This is carried out in Ref. 23 in detail.
The Fourier transform of Eq.~5! is exact to first order in frequency. For larger frequencies it is an
approximation to the actual space-dependent expression of the current operator~see the discus-
sions in Refs. 40 and 41!.

To proceed we use Eq.~3! to eliminate theb̂ operators in Eq.~5! to find an expression for the
current operator in terms of theâ operators alone. The resulting current operator can be written in
a compact form with the help of the matrix22,23

Abg~a,E,E1\v!51adabdag2sab
† ~E!sag~E1\v!. ~6!

Here1a is a unit matrix with dimensionsNa equal to the number of quantum channels in leada.
The elements of this matrix are the current matrix elements calculated not with the asymptotic
states but with the full scattering statesCbn~E;r ! andCgn~E;r ! evaluated in leada and divided by
(hvan(E)hvam(E))

1/2. With the help of this matrix we obtain the desired expression for the
current operator,22

I a~ t !5
e

h (
bg

E dEdE8âb
†~E!Abg~a,E,E8!âg~E8!exp~ i ~E2E8!t/\!. ~7!

Below we will use this expression to derive the conductane coefficients, the equilibrium and
transport noise of mesoscopic conductors and expressions for the ac conductance.

III. AVERAGE CURRENTS AND CONDUCTANCE

First, we now use Eq.~7! to find the average currents and conductance of an arbitrary
multichannel37,42multilead15,16,43structure. The key assumption of our discussion is that the wide
portion of the leads can be assumed to be reservoirs which are in an equilibrium state. Thus theâa

operators which act on the incident state in reservoira obey the equilibrium statistical mechanics
of reservoira. In principle one first finds the quantum average ofâbm

† (E)âgn(E8) and then
computes the statistical average. To simplify our notation we will use the symbol^ & to denote both
of these averages. With this notation we have

^âbm
† ~E!âg~E8!&5dabdmnd~E2E8! f a~E!. ~8!

Here f a(E) is the Fermi~Bose! function of reservoira. Note that on the average it is only the
product in which bothâ operators have the same reservoir and channel index and the same energy
which is non-vanishing. Using Eq.~8! gives for the average currents23

^I a&5
e

h (
b

E dE Tr@Abb~a,E,E!# f b~E!. ~9!
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Here the trace Tr is over channel indices. Since Tr(saa
† (E)saa(E)) 5 Raa(E) is the total reflection

probability of waves incident from leada back into leada and Tr(sab
† (E)sab(E)) 5 Tab(E) is the

total transmission probability of particles incident from reservoirb into reservoira we find,23

^I a&5
e

h E dEF ~Na2Raa~E!! f a~E!2(
b

Tab~E! f b~E!G . ~10!

Equation~10! is a nonlinear result which depends on the applied voltages not only through the
Fermi functions but as discussed in Sec. II C implicitly through the electrostatic potential. A more
detailed discussion is given in Ref. 26 and in a work by Christen and the author.44 Now we assume
that the electrochemical potentials of the reservoirsma differ only by a small amount from the
equilibrium chemical potentialm0. We can expand the Fermi functions away from this equilibrium
potential,f a(E)5 f 02(d f /dE)~ma2m0!1••• . Similarly the potentialU~@ma#,r ! is expanded away
from the equilibrium potentialUeq~r !. Inserting this into Eq.~10! gives

^I a&5
e

h E dE~2d f /dE!F ~Na2Raa~E!!ma2(
b

Tab~E!mbG . ~11!

That is the central result found in Ref. 15. In this expression the scattering matrix and the
transmission and reflection probabilities are functions of theequilibrium electrostatic potential
Ueq~r !. The equilibrium electrochemical potentialm0 does not appear since the unitarity of the
scattering matrix gives

Na5Raa~E!1(
b

Tab~E!5Raa~E!1(
b

Tba~E!. ~12!

From Eq.~11! we obtain the conductance coefficients at zero bias. The conductance coefficients
Gab are the derivatives of the current in probea with respect to electrochemical potentials of
probeb,Gab 5 ed̂ I a&/dmbu@ma#5m0

. We obtain

Gaa5
e2

h E dE~2d f /dE!~Na2Raa~E!!, ~13!

and for the off-diagonal conductances obtain

Gab52
e2

h E dE~2d f /dE!Tab~E!. ~14!

Note that the unitarity of the scattering matrix~current conservation! also implies

(
b

Gab5(
b

Gba50. ~15!

We will later discuss what the equivalent sum rules are for ac conductances. Typically, in experi-
ments, it is not the conductance coefficients which are measured but resistances.45,46 In the typical
setup only two probes are used to drive a current through the conductor and all other probes are
connected to voltmeters. Since voltmeters have ideally an infinite impedance this implies that at a
voltage probe the average current is zero. The electrochemical potential of this probe floats to a
value which gives zero-current in that probe. Imposing the current on two of the probes and
imposing the zero-current condition on all other probes in Eq.~11! yields rational functions for the
resistances in terms of the conductance coefficients~transmission probabilities! given by Eq.~13!
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and Eq.~14!. It is the wide range of applicability to all possible geometries which has made Eq.
~11! a very useful result. Another important aspect of these results is their symmetry under
magnetic field reversal.15,16,45,47–49

IV. CURRENT–CURRENT FLUCTUATIONS

Electric conduction is not only characterized by its average behavior but also by its fluctua-
tions away from the average. There are typically many sources of fluctuations. Here we are
interested in the fluctuations that are fundamental in the sense that they are unavoidable. There are
two such fundamental sources of fluctuations. First, at equilibrium we have Nyquist–Johnson
noise. At equilibrium such thermal noise is the only unavoidable noise. As is well known, this
noise is related via the fluctuation dissipation theorem to the equilibrium transport coefficients,
Eqs. ~13! and ~14!. In the presence of transport a second more interesting noise comes to the
forefront: a quantum statistical partition noise.18–20,22,50,51

On a single particle level the origin of this noise lies in the fact that a particle can only be
detected at one place and must be detected in its entirety. Consider for a moment a simple
scattering problem with transmissionT and reflection probabilityR. If we consider a series of
events, each with a single particle incident from the left, the average occupation number of the
transmitted beam iŝnT&5T. But the actual occupation number in each event is eithernT51, if
the particle has been transmitted or isnT50, if the particle has been reflected. This leads to a mean
square fluctuation in the occupation number which is^(DnT)

2&5T(12T). This noise peaks when
the uncertainty for the particle to arrive in this channel is maximal, i.e., whenT51/2. In a
conductor we deal not with single particles nor with particles that arrive at the scatterer in a
sequence of events that are separated in time and space. We must allow for states which carry
more then one particle. As a consequence this noise depends on the symmetry of the wave
function under exchange of particles. Concern with such effects in optics goes back to the midel
fifties when Hanbury Brown and Twiss50 carried out a number of experiments which revealed
quantum statistical effects in beams of light from stars or man made light sources. In solid state
physics, partition noise has also been discussed a long time ago, but to our knowledge only as a
purely classical phenomena.52 Text books mostly emphasize the limit of small transmission, and
the resulting noise is called shot noise and given by Shottky,^(DI )2&52eDn^I &. HereDn is the
band width over which the noise is measured and^I & is the average current. According to this
expression the noise is a consequence of carriers arriving and being transmitted with a Poisson
distribution. The quantum statistical partition noise can be much smaller then the Shottky noise.

A. Spectral densities of current fluctuations

The spectral densitiesSab~v! of current fluctuations for a quantum mechanical problem are
given by

~1/2!^D Î a~v!D Î b~v8!1D Î b~v8!D Î a~v!&52pSab~v!d~v2v8!. ~16!

HereD Î a~v! stands for the Fourier transform of Eq.~7! with the average current~zero-frequency
component! subtracted. Below we will use a somewhat more transparent notation. Instead of
Sab~v! we write

^DI aDI b&52DnSab~v! ~17!

with Dn the experimental band width in which the noise is measured.
The spectral densities, Eqs.~16! or ~17!, are defined by expectation values of products of four

operators.53,23 These expectation values for a system at equilibrium are known and given by
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^âam
† ~E1!âbn~E2!âgk

† ~E3!âd l~E4!&2^âam
† ~E1!âbn~E2!&^agk

† ~E3!âd l~E4!&

5daddbgdmldnkd~E12E4!d~E22E3! f a~E1!~12 f b~E2!!. ~18!

The statistical average of only twoâ operators is local in the sense that only products with the
same quantum channel index and the same reservoir index are nonvanishing. However, Eq.~18! is
not local: it correlates average occupation factors of different quantum channels in the same
reservoir and even in different reservoirs!

Using Eq.~18! and the Fourier transform of the current operator Eq.~7! gives for the current-
current correlations the expression40,23

^DI aDI b&5
e2

h
Dn(

gd
E dE Tr@Agd~a,E,E1\v!Agd~b,E1\v,E!#Fgd~E,E1\v!,

~19!

where

Fgd~E,E1\v!5 f g~E!~12 f d~E1\v!!1 f d~E1\v!~12 f g~E!!. ~20!

First, our interest will be in the zero-frequency limit. In this case it can be shown that Eq.~19!
reduces to the following expression:54,23

^DI aDI b&52
e2

h
Dn(

gd
E dE Tr@Agd~a,E,E!Agd~b,E,E!# f g~E!~12 f d~E!! ~21!

This is obvious for the casea5b but requires some consideration for the case thataÞb. We will
discuss Eq.~21! in various limiting cases.

B. Equilibrium current fluctuations

At equilibrium our expression Eq.~21! can be simplified still further since all distribution
functions f a are the same and given by the distribution functionf with an electrochemical poten-
tial m0. Only terms which are bilinear in the scattering matrices survive. Using thatf (12 f )
5kT(2d f /dE) and using Tr(saa(E)saa

† (E)) 5 Raa(E) and Tr(sab(E)sab
† (E)) 5 Tab(E) we find

for the mean square fluctuations~a5b!

^~DI a!2&54DnkT
e2

h E dE~2d f /dE!@Na2Raa~E!#54DnkTGaa ~22!

and the correlations~aÞb!

^DI aDI b&522DnkT
e2

h E dE~2d f /dE!@Tab~E!1Tba~E!#52DnkT@Gab1Gba#. ~23!

Therefore, as we expect it, the equilibrium mean square fluctuations are related to the diagonal
conductances and the correlations are related to thesymmetrizedoff-diagonal conductances.22,23

The equilibrium fluctuations are not without interest. They can serve to calibrate noise
measurements.10,11 The equilibrium fluctuations are also particularly interesting in the quantized
Hall regime since in this case the conductances either vanish or are quantized~at least if the
contacts to the sample behave ideal!. If the contacts along the perimeter of the sample are labeled
clock-wise only conductances between consecutive contactsGa11,a are nonvanishing and
quantized.22 As a consequence only the correlations between currents of two next nearest neighbor
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contacts are nonzero. For the voltage fluctuations this implies the absence of correlations between
Hall voltage fluctuations and longitudinal voltage fluctuations. This has been observed by Kil
et al.55

C. Zero temperature transport fluctuations

We have seen that at equilibrium only expressions survive which are quadratic in the scatter-
ing matrices. In fact, only transmission probabilities matter. In the presence of transport, and in the
zero temperature limit, it is the products of four scattering matrices which count. In Eq.~21! all
terms in the sum for whichg5d vanish, sincef a(12 f a) is zero at zero temperature. But for the
terms for whichgÞd theA matrices are of the form.Agd(a)(E,E) 5 2sag

† (E)sad(E) and conse-
quently we find from Eq.~21!,

^DI aDI b&52
e2

h
Dn (

gd,gÞd
E dE Tr@sag

† ~E!sad~E!sbd
† ~E!sbg~E!# f g~E!~12 f d~E!!,

~24!

where fa(E)5Q(E2ma(E)) with Q the step function.22,24

Let us discuss this result for the case of a two-terminal conductor. Using the notations11[r11,
s22[r22, s21[t21, ands12[t12, which more explicitly emphasizes reflectionr and transmissiont
the conductanceG[G115G2252G1252G21isG5 (e2/h)Tr(t21

† t21) 5 (e2/h)Tr(t12
† t12). The av-

erage current driven through the sample is thus^I &5GV with eV5m12m2. Form Eq.~24! the
mean square current fluctuations are determined by a single term Tr@s11

† s12s12
† s11#

5 Tr@r11r11
† t12t12

† #. Thus we find22

^~DI !2&52
e2

h
DnueVuTr@r11r11

† t12t12
† #. ~25!

The matricesr11r11
† and t12t12

† are hermitian and commute and can, therefore, be diagonalized
simultaneously. Let us denote the eigenvalues oft12t12

† by Tn and the eigenvalues ofr11r11
† by Rn .

In terms of the transmission eigenvaluesTn the conductance is simplyG5(e2/h)(nTn . Our result
Eq. ~25! can be written in the form

^~DI !2&52eDnuVu
e2

h (
n

Tn~12Tn!. ~26!

This result can now be connected with the results obtained by Khlus18 and by Lesovik.19 In these
works it was assumed from the outset that the transmission matrix is diagonal. Thus the results
given in these works are in fact general, if the diagonal elements are identified with the eigenval-
ues of Tr@tt†#. This result seems natural, but it is not as obvious as one might think at first! Below
we illustrate this with a discussion that starts from slightly different assumptions and indeed does
not lead to Eq.~25! even so for a diagonal transmission matrix it leads to the result of Khlus and
Lesovik.

First, we like to discuss the interesting properties of this result. Eq.~26! leads to the standard
Shottky noise formula only and only if all transmission eigenvaluesTn are small compared to 1.
Then we can neglect terms quadratic inTn in Eq. ~26! and find ^(DI )2&52eDnu^I &u. Like the
partition noise Eq.~25! has the property that an eigenmode gives a maximum contribution when
Tn is equal to 1/2 and gives no contribution if the channel is completely closedTn50 or com-
pletely openTn51. Conductors in which situations of completely open or completely closed eigen
channels can be realized are quantum point contacts,39 quantized Hall conductors3 and perhaps
ballistic conductors. Thus at a conductance plateau of a quantum point contact or in the quantized
Hall regime in the range of a Hall plateau the noise given by Eq.~26! vanishes completely.
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Initial experiments on quantum point contacts56 and in quantized Hall conductors57 provided
only an indication of the expected noise reduction in the plateau regions. But the more recent
experiments by Kumaret al.10 and Reznikovet al.9 provide strikingly clear data which makes
even a quantitative comparison with theory possible. This advance is even more striking when one
considers the often wide ranging gap of theory and experiment on noise in physical systems.58

We mention two results to indicate the wide range of problems to which this theory can be
applied. A metallic diffusive conductor~distance between impurities small compared to the
sample width and length! has transmission probabilitiesT12mn which are very small compared to
1 when averaged over an ensemble. Thus one might expect that a mesoscopic metallic diffusive
conductor exhibits full shot noise. However, the eigenvaluesTn of such an ensemble are distrib-
uted in a bi-modal manner with a concentration atTn51 and a concentration atTn50. As a
consequence it is found that a mesoscopic metallic diffusive conductor exhibits a shot noise which
is 1/3 of the full shot noise59

^~DI !2&e5
2
3eDnuVu^I &. ~27!

Here the indexe indicates not only a quantum and statistical average but also an ensemble
average. A recent experimental work by Steinbachet al.11 provides a more complete discussion
and additional references. For a chaotic cavity connected to two leads it is found that the ensemble
averaged shot noise is 1/4 of the full shot noise60

^~DI !2&e5
2
4eDnuVu^I &. ~28!

It is possible to discuss not only the ensemble average but also the mean square deviations away
from this average.61

D. Single particle versus many particle quantum shot noise

It would be deceiving if we tried to understand the result, Eq.~25! only in the special basis of
eigen channels. If we write out the trace of the product of the four scattering matrices in terms of
the transmission and reflection matrix elements, we find

Tr@rr †tt†#5 (
klmn

rmlr ml* tmntkn* . ~29!

In a general basis only a few terms in this expression are products of the transmission and
reflection probabilities. Most of the terms in Eq.~29! consist of products of four scattering am-
plitudes which are not real valued. If we attribute a transmission probability with the transfer of
one electron~a product of two hermitian conjugate! amplitudes, then we should associate a
two-electron process with products of four scattering amplitudes. We should be able to demon-
strate that if only one electron at the time is incident on the conductor such complex products are
in fact not present. The following considerations show that this is indeed the case.

Assume for a moment that we have an electron source which injects single electrons into a
definite quantum channel in events that are well separated in time and space. As above, we
consider the case of vanishing temperature. First let us assume that the current source at contacth
injects carriers into channelo with probability 1. For this experiment the right hand side of Eq.
~18! is replaced by the quantum expectation value

daddbgdmldnkd~E12E4!d~E22E3!nan~E1!~12nbm~E2!! ~30!

with nan5dhadon . The resulting partition noise can then be expressed in terms of the probabilities
Saho5(musahmou

2. Instead of Eq.~25! we find a shot noise proportional toSaho[dab2Sbho]. If
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we now consider a series of successive experiments in which the channelo eventually can be any
of the incident channels in probeh and consider the total noise, the current-current correlations are

^DI aDI b&52
e2

h
DnueVu(

o
Saho@dab2Sbho#. ~31!

It can be shown that these expressions are current conserving,(a^DI aDI b&5(b^DI aDI b&50.
For the mean squared current^(DI )2& we obtain, therefore,̂ (DI )2&5e2/hDnueVu(oT21oR11o
whereT21o5S21o andR11o5S11o. Evidently, if the transmission and reflection matricest andr are
diagonal, Eq.~31! is identical with Eq.~26!. But in contrast to Eq.~25!, Eq. ~31! for the case of
a general scattering matrix is expressed in terms of probabilities only. It contains no exchange
terms.

From this exercise we can conclude that it is not possible, without ad hoc assumptions, to
derive a many-channel result simply by deriving first the result in the eigen channel basis. Ex-
perimentally, it will be difficult to distinguish between Eq.~25! and Eq.~31!. Thus in Ref. 54 we
have proposed an experiment on a multipole conductor to directly detect the exchange terms. We
will briefly restate this proposal below. But first we proceed with the discussion of noise in a two
probe conductor.

E. Quantum statistical shot noise

At elevated temperatures, Eq.~21! predicts a combined thermal and shot noise, which when
expressed in terms of the transmission probabilitiesTn of the eigen channels is given by

^~DI !2&52eDn
e2

h (
n
E dE@ f 1~E!~16 f 1~E!!Tn1 f 2~E!~16 f 2~E!!Tn

6Tn~12Tn!~ f 12 f 2!
2#. ~32!

Here we have compared a system subject to Fermi statistics~upper signs! with a system subject to
Bose statistics~lower signs!. The result for Fermions was obtained by Lesovik19 and the result for
Bose statistics was given in Ref. 54. Clearly, the first two terms in this expression represent
thermal contributions to the noise. The last term which is quadratic in the difference of the
distribution function and has an amplitudeTn(12Tn) is the quantum partition noise. This contri-
bution to the noise is quadratic in the intensity of the incident electron~photon! flux and most
significantly, changes sign as we change statistics. In comparison to the first two terms quantum
statistical partition increases the overall noise for Fermions but quantum statistical partition de-
creases the shot noise for Bosons. The reduction of noise in the bosonic case can be understood as
follows: the scattering obstacle can break up incident multiquanta statesn\v and transmit a
portion and reflect a portion. As a consequence the transmitted stream will on the average contain
particles with fewer quanta and thus produce a reduced noise.62

F. Making exchange effects visible

It is illuminating to consider the following thought experiment:23,54Consider a conductor with
four probes~see for example Fig. 1!. In experiment A, contact 1 is described by a distribution
function f and all other contacts by a distribution functionf 0. The correlation function between
the fluxes at the contacts 3 and 4 is measured and denoted by^DI 3DI 4&A . In a second experiment
B, contact 2 is described by a distribution functionf and all other contacts by a distribution
function f 0. Again the correlation function between the fluxes at contacts 3 and 4 is measured and
denoted bŷ DI 3DI 4&B . In a third experimentboth contacts 1 and 2 are described by the distri-
bution functionf and only contacts 3 and 4 are determined by the distribution functionf 0. The
correlation function measured in the third experiment is denoted by^DI 3DI 4&C . For a classical
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system, we would expect that experiment C is simply determined by the sum of the correlation
functions measured in experiments A and B,^DI 3DI 4&C5^DI 3DI 4&A1^DI 3DI 4&B . The quantum
mechanical result, however, is different, and is given by

^DI 3DI 4&C5^DI 3DI 4&A1^DI 3DI 4&B62Dn
e2

h

3E dE~ f2 f 0!
2@Tr~s31s32

† s41s42
† !1Tr~s32s31

† s42s41
† !#. ~33!

This contribution to the correlation function is an exchange term. It is a consequence of the fact
that we deal with a quantum mechanical problem of many indistinguishable particles. Interestingly
the individual terms in Eq.~33! are not real and thus have a phase associated with them. A more
detailed interpretation and discussion of this phase is presented in Refs. 23 and 54.

G. Frequency-dependent noise spectra

So far we have focused only on the zero-frequency limit of the noise spectra. Let us briefly
consider the equilibrium frequency-dependent spectrum. At equilibrium the function
Fgd(E,E1\v), given by Eq.~20!, simplifies. It is independent of the indicesgd and given by
F(E,E1\v)5( f (E)2 f (E1\v))e(\v)/\v, wheree~\v! is the energy of a harmonic quantum
oscillator with frequencyv at temperatureT. As in the zero-frequency limit, it can be shown that
all products of four scattering matrices vanish identically. The equilibrium frequency-dependent
spectrum can be expressed as asum of two A matrices. It is proportional to
Tr@Abb~a,E,E1\v!1Aaa(b,E1\v,E)# and in terms of thes matrices the frequency-dependent
equilibrium spectrum is40

^DI aDI b&52
e2

h
DnE dE Tr@21adab2sab

† ~E!sab~E1\v!

2sba
† ~E1\v!sba~E!#

~ f ~E!2 f ~E1\v!!

\v
e~\v!. ~34!

Now on general grounds we know that their must exist a frequency-dependent conductance
Gab~v! whose real partGab8 (v) 5 (1/2)@Gab(v) 1 Gba* (v)# is related to this spectrum via a
fluctuation dissipation theorem,

^DI aDI b&54Dne~\v!Gab8 ~v!. ~35!

The task is to find the conductanceGab~v!.

V. DYNAMIC CONDUCTANCE

The standard procedure to derive a dynamical conductance is to use linear response theory.
The current density is calculated in response to an electric field. But which electric field? Most
discussions use without qualification a uniform electric field. But even if we are more ambitious
and calculate the dynamical conductance to a non-uniform field, we will still obtain a frequency-
dependent current response that depends on the particular field configuration. In reality, the field
that counts is not arbitrary but is determined by the distribution of charges inside the sample.

Against this back-ground, the immediate task we have at hand, namely deriving theGab~v!
which belongs to the noise-spectrum Eq.~34!, is puzzling. Clearly, the spectrum Eq.~34! contains
no information on the electric field configuration. In deriving the fluctuation spectra we have made
explicitly the assumption that the electric potential is fixed and given by the equilibrium potential.
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To deriveGab~v! which belongs to Eq.~34! we need thus to find perturbations~driving forces!
which are not given by the frequency-dependent nonequilibrium electric field.

Of course the response to the self-consistent electric field exists and must be part of a com-
plete answer. Therefore, we adopt a two step strategy. First, we find the conductance which
belongs to Eq.~34!. We call this theexternalresponse or theexternalconductance. In a second
step we find the charges, which as a consequence of our dynamical perturbation are injected into
the sample. A self-consistent scheme is then used to find the total charge~injected charge and
induced charges! and the electrical-potential belonging to this charge distribution. In the next step
the current response to this internal potential is calculated. The total current response is then
determined by both the external conductance and an internal conductance in response to the
internal electric potential.

A. External response

In collaboration with Thomas,63 and Pretre and Thomas25 we have found two different per-
turbations which give rise to the conductance which obeys the fluctuation dissipation theorem,
stated in Eq.~35!. The first perturbation has an energy

H1
f5(

a
Î afa . ~36!

HereÎ a is the current operator given by Eq.~5!. The fluxesfa have the property that they act only
on the carriers in reservoira. The fluxesfa are linearly related to the fluxes penetrating the loops
of the external circuit to which the mesoscopic sample is connected.25 It is assumed that the
mesoscopic sample itself is shielded from any effect of these fluxes. A second energy which also
gives the desired response corresponds to a sample connected to an external circuit with infinite
impedance. In this case each reservoir is taken to be a macroscopic entity which is closed, except
for a narrow opening through which it connects to a lead of the sample. We can then define the
chargeQ̂a on such a reservoir. The voltageVa of the reservoir can be made to oscillate by
coupling capacitively to an external circuit. In this case the energy of the perturbation is

H1
V5(

a
Q̂aVa . ~37!

A linear response calculation using the analytic properties of the scattering matrices leads to
Gab(v)5^dI a(v)&/dVa(v) given by25

Gab~v!5
e2

h E dE Tr@1a2sab
† ~E!sab~E1\v!#

~ f ~E!2 f ~E1\v!!

\v
. ~38!

The real part of this conductance obeys the fluctuation dissipation theorem stated above. In the
zero-frequency limit Eq.~38! leads to the dc-conductances Eqs.~13! and~14!. This clearly shows
that the dc-conductances are not a consequence of acceleration of carriers due to an electric field
inside the sample.

Let us next discuss the low-frequency expansion of this result. To first order in frequency we
find from Eq.~38!

Gab~v!5Gab~0!2 ive2E dE~dNab /dE!~2d f /dE! ~39!

where
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dNab

dE
5

1

4p i
TrFsab

† ~E!
dsab~E!

dE
2
dsab

† ~E!

dE
sab~E!G ~40!

is called aglobal partial density of states. It is called global since it relates to a density of states
in an entire volumeV that encloses the mesoscopic conductor and a large portion of the reservoirs.
Later we will also introduce local densities of states. It is called a partial density of states since the
total global density of states insideV is given by the sum of all partial densities of states,
dN/dE5(abdNab/dE. The global partial density of statesdNab/dE is obviously the change of
charge in the sample brought about by the perturbation in contactb which contributes to the
ac-current in contacta. Thus like the scattering matrixsab represents a preselection of carriers
~incident fromb! and a post selection~exiting into contacta! so similarly the global partial
density of states represent both a pre- and postselection. We should emphasize that the partial
densities of states are not density of states in the usual sense. In factdNab/dE, unlike dN/dE is
not necessarily a positive quantity.

The total charge injected into the volumeV by the perturbation in probeb is (adNab/dE. In
a metallic sample which likes to be locally charge neutral, such an addition of charge is unrealistic.
Below we discuss systems with interactions, which make charge accumulation or depletion ener-
getically costly. Before discussing such a self-consistent scheme, we discuss now the response to
an oscillating electrostatic potential.

B. Internal response

Consider a time-dependent electric potentialU~r ,t! which represents a small deviation away
from the equilibrium electrostatic potentialUeq~r ! of the conductor. We assume that the total
potential is of the formU~r ,t!5Ueq~r !1u~r !~U1v exp(2 ivt)1U2v exp(ivt)! whereu~r ! is a
dimensionless function which determines the spatial distribution of the potential away from its
equilibrium value. Since the potential is real we haveU1v 5 U2v* . Scattering theory now leads to
the following picture. Particles which are incident from a reservoir at energyE in the presence of
such an oscillating potential can absorb a modulation quantum\v or emit a modulation quantum
\v or can have their energy unchanged. Thus the reflected and transmitted carriers will emerge not
only at the energyE but also with energiesE6\v. We cannot describe this scattering problem
with the scattering matrix which we have used so far. Now we must introduce the scattering
amplitudess6abmn(E6\v,E)U6v which give the probability amplitude that a carrier incident in
probeb in channeln with energyE leaves the conductor in probea in channelm with energy
E6\v. In the next step we express the operatorsb̂(E) which annihilate outcoming carriers in
terms of theâ operators at energyE,E1\v andE2\v with the help of the original scattering
matrix and with the help of the scattering amplitudess6ab(E6\v,E)U6v . We use again the
current operator Eq.~5! and use the statistical properties of thea operators valid for an equilibrium
reservoir. This gives rise to a current at contacta which is given by an internal conductance
Ga
i (v)5^dIa(v)&/dU1v ,

Ga
i ~v!52

e2

h E dE(
b

Tr@sab
† ~E!s1ab~E1\v,E!#~ f ~E!2 f ~E1\v!!. ~41!

To proceed, we need to specify the amplitudes1ab(E1\v,E). Unfortunately, little is known
about this scattering matrix, except some solutions for particularly simple problems. However, in
the limit of small frequencies, on which we concentrate below, the general solution is known. For
small frequencies the particles see the instantaneous potential. Therefore, this amplitude can be
found by replacing in the ordinary scattering matrixsab~E,Ueq~r !! the equilibrium potential by the
actual potentialU~r ,t! and by expanding the time-dependent matrix in the deviations away from
the equilibrium potential. This gives
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lim
v→0

s1ab~E1\v,E!5E d3r ~dsab~E,U~r !!/dU~r !!u~r !. ~42!

Consequently, to first order inv the low frequency response to an nonuniform potential is deter-
mined by64

Ga
i ~v!5 ie2vE d3r ~dn~a,r !/dE!u~r !. ~43!

Heredn~a,r !dE is a local partial density of states which we call the emissivity of pointr into
contacta,

dn~a,r !/dE52
1

4p i (b TrFsab
† dsab

edU~r !
2

dsab
†

edU~r !
sabG . ~44!

Note that the emissivity is obtained by finding the variation of the scattering matrix in response to
small changes of the~equilibrium! potential. Note also that the emissivity only invokes a postse-
lection. The contact through which carriers enter is immaterial, only the contact through which the
carriers leave the sample matters.

Evidently, there is a closely related local partial density of states, which we call theinjectivity
of contactb into point r . The injectivity26 is obtained by summing over the first index of the
scattering matrices and is given by

dn~r ,b!/dE52
1

4p i (a TrFsab
† dsab

edU~r !
2

dsab
†

edU~r !
sabG . ~45!

The sum over either all the injectivities or all the emissivities is equal to the local density of states,
dn~r !/dE5(adn~r ,a!/dE5(adn~v,r !/dE. In contrast to the partial density of states with both a
pre- and post-selection the injectivities and emissivities are positive. In fact the injectivity is
related to the time a carrier dwells65 in a small region around the pointr . The dwell timedt~r ,a!
nearr for carriers incident from contacta is given bydt~r ,a!5\(dn~r ,a!/dE)d3r . But the dwell
time is directly related to the absolute square of the wave functions at pointr . Hence the injectivity
can also be expressed in terms of the scattering states as64,66

dn~r ,a!/dE5(
am

~1/hvam!uCam~r !u2. ~46!

Using the microreversibility of the scattering matrix, we see that there is a connection between the
injectivity and emissivity,dn1B~r ,a!/dE5dn2B~a,r !/dE. The injectivity from contacta into
point r in positive a magnetic fieldB is equal to the emissivity fromr into contacta in a magnetic
field pointing into the opposite direction. A detailed discussion of possible decompositions of the
local density of states and their relationship to Green’s functions is presented elsewhere.66

To complete the discussion of the ac-conductance, we must next develop a self-consistent
theory of the potentialU~r ,v!. We notice that to liner order inv it is sufficient to develop a
self-consistent theory of the potential to the zero-th order in frequency for the potentialU~r ,v!
since the response given by Eq.~43! is already proportional tov.

C. Self-consistent potentials

The electrostatic potentialU~@ma#,r ! for mesoscopic conductors is a function of the electro-
chemical potentials@ma# of the contacts, and a complicated function of position. Small increases in
the electrochemical potentialsdma bring the conductor to a new state~see Fig. 4! with an elec-
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trostatic potentialU~@ma1dma#,r !. The differencedU between these two potentials can be ex-
panded in powers of the increment in the electrochemical potential. To linear order we have

edU~@ uma#,r !5(
a

ua~r !dma . ~47!

Here,ua(r ) 5 e]U(@ma#,r )/]mauma5m0
are thecharacteristic potentials26 which determine the

electrostatic potential inside the sample in response to a variation of an electrochemical potential
ma at a contact. For the case of a mesoscopic capacitor@see Fig. 3# the electrochemical and the
electrostatic potentials and the characteristic functionu1 are shown in Fig. 4.

Suppose for a moment that we increase all electrochemical potentials simultaneously and by
the same amount,dma[dm. Both before and after the change the conductor is at equilibrium,
hence the physical properties of the conductor remain unchanged. Consequently, the shift of the
electrochemical potentials must be accompanied by a shiftedU[dm of the electrical potential.
This implies that the sum of all characteristic potentials is equal to one at every space point,26

(
a

ua~r ![1. ~48!

FIG. 3. Mesoscopic capacitor: Two small plates are via leads connected to electron reservoirs at electrochemical potentials
m1 andm2. After Ref. 34.

FIG. 4. Electrochemical potentials and electrostatic potentials of the mesoscopic capacitor atm1 andm2 ~solid lines! and at
m11dm1 andm2 ~broken lines!. u1 is the characteristic potential function of contact 1. After Ref. 26.
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Equation~48! is a consequence of the long-range Coulomb interaction. The conservation of charge
under the application of a dc or ac bias and the conservation of current are a consequence of Eq.
~48!.

Let us now return to our original problem and consider what happens if we increase just one
electrochemical potential, say in reservoira, by dma . Obviously, the condition that the electro-
chemical potential and the electrostatic potential move in synchronism deep inside reservoira
implies that the characteristic functionua~r !51 for r deep inside reservoira. This implies that
Eqs. ~13! and ~14! are valid if and only if the characteristic potentials have the property that
ua~r !51 for r deep in contacta andua~r !50 for r deep in any other contact.

The electrostatic potentials are determined by the charge distribution in the sample. As we
increase the chemical potential of contacta keeping the electrostatic potentials fixed, the addi-
tional chargedn~r !5~dn~r ,a!/dE!dma enters the conductor. Here,dn~r ,a!/dE is the injectivity of
contacta into point r of the sample. The injected charges induce a change in the electrostatic
potential which in turn implies an induced contributiondnind to the density. The total charge
density is

dn~r !5~dn~r ,a!/dE!dma1dnind~r !. ~49!

The induced charge density is connected to the electrostatic potential via the response function
P~r ,r 8! ~Lindhard function or polarization function!, dnind~r !52*d3r 8P~r ,r 8!edU~r 8!. The re-
sponse function can be expressed in terms of the scattering states67 ~Green’s function of the
Schrödinger equation!. For the purpose of our discussion we simply assume that this response has
been calculated and is known. By inserting Eq.~49! into Poisson’s equation and using
edU~r !5ua~r !dma , we find that the characteristic potentialua~r ! is the solution of a field equation
with a non-local screening kernel and a source term given by theinjectivity of contacta,

2Dua~r !14pe2E d3r 8P~r ,r 8!ua~r 8!54pe2~dn~r ,a!/dE!. ~50!

We define the Green’s functiong~r ,r0! as the solution of Eq.~50! with the source termedn~r ,a!/
dE replaced by a localized test chargeed~r2r0! at pointr0. The characteristic potentialua~r ! can
then be written in the form

ua~r !5E d3r 8g~r ,r 8!~dn~r 8,a!/dE!. ~51!

Using Eq.~48! a summation overa implies for Green’s function the property26

E d3r 8g~r ,r 8!(
a

~dn~r 8,a!/dE!5E d3r 8g~r ,r 8!~dn~r 8!/dE![1. ~52!

The same relationship follows from the condition that the sum of all induced charge densities plus
the test charge is zero.

Now we find the condition for the electrical self-consistency of Eqs.~13! and~14!. According
to Eq. ~52! the characteristic potential is equal to unity if the Green’s function is convoluted with
the total local density of states. Therefore, in order that the characteristic functionua~r ! is equal to
one in reservoira, we must have that the injectivitydn~r ,a!/dE deep in contacta is equal to the
local density of statesdn~r !/dE. This requires that nearly all~in a thermodynamic sense! electrons
approaching the contacta are reflected back into the reservoir. If the conductor and the reservoir
consist of the same material then the reservoir, as emphasized by Landauer68 must be wide
compared to the mesoscopic conductor. In semiconductor samples with metallic contacts, on the
other hand, the contact might be actually narrow compared to the dimensions of the semiconductor
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since the density of states at the Fermi energy of the metal is much larger then that of the
semiconductor. This is the case, for instance, in Ga/As samples used to measure the quantized Hall
effect.3 In any case, this discussion clearly implies, that one cannot attribute a conductance to a
one-dimensional wire without contacts.

D. Capacitance and emittance of mesoscopic conductors

The total response is the sum of the external response Eq.~39! and the internal response Eq.
~43!, Gab(v)5Gab

e (v)1Gab
i . We express it in the form

Gab~v!5Gab~0!2 ivEab1O~v2! ~53!

and callEab the ~screened! emittanceof the conductor. It is given by26

Eab5e2
dNab

dE
2e2E d3r E d3r 8

dn~a,r !

dE
g~r ,r 8!

dn~r 8,b!

dE
. ~54!

It is important to notice that Eq.~54! applies not only to one conductor but in fact also applies if
there are several nearby conductors which interact via long-range Coulomb forces. The variablea
then runs not only over the contacts of one conductor but over all contacts of all nearby electrical
conductors. In particular it also applies if we bring two~or more! conductors near each other
without any transmission between them~see Fig. 3 and Fig. 5!. In this case, the scattering matrix
consists only of reflection matricessaa . The transmission matricessab with aÞb vanish and all
emittance coefficients are capacitiveEab[Cab . All capacitance coefficients are even functions of
the Aharonov–Bohm flux.26,69 In contrast to the expressions for the capacitance we know from
text books, the microscopic expression given here takes into account that the electric field pen-
etrates the distance of a screening length into the two conductors. As a consequence the capaci-
tance is not a purely geometrical quantity but depends on the physical properties of the conductors.
The field penetration into the conductor gives rise to quantum corrections to the capacitance. In
models in which the potential is taken to be piecewise constant33–35,41these corrections are deter-
mined by the density of states at the surfaces of the two conductors. This has interesting conse-
quences: For the case were one of the plates has the form of a ring with an Aharonov–Bohm flux

FIG. 5. Purely capacitive arrangement of conductors. The Aharonov–Bohm fluxF threading the ring leads to oscillations
in the capacitance coefficients. After Ref. 69.
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through the hole of the ring the density of states is a periodic function of flux and consequently
also the capacitance is a periodic function of the Aharonov–Bohm flux.69,70

If one of the conductors is connected to two or more contacts~see Fig. 6! the emittance tensor
is not purely capacitive. If the conductor permits good transmission, some elements of the emit-
tance acquire a sign that is opposite to that expected for a capacitance tensor. This is reminiscent
of inductive behavior. Furthermore, it can be shown26 and has been experimentally verified5 that
for such a general arrangement the emittance tensor elements are not even functions of flux
~magnetic field! but obey the reciprocity relationEab(F)5Eba(2F).

We emphasize that the emittance tensor is current and charge conserving. The rows and
columns of the emittance matrix add up to zero. Consider the case of a conductor with two
contacts. Consider the first column. If we addE11 andE21 the first terms in the emittance give the
total chargedN11/dE1dN21/dE injected from contact 1. In the second term the two emissivities
add to give the local density of states. Now Eq.~52! is used. What remains is the integral over the
entire volume of the injectivity which is just the total injected charge. Thus for a two terminal
conductor in electrical isolation the emittance matrix satisfiesEm[E1152E1252E215E22. Thus
the dynamical conductance matrixGab where the two indices now run over all contacts of all
nearby conductors obeys the same ‘‘sum rules,’’ Eq.~15!, that we found for the dc conductance.
We conclude by giving two examples. Consider a uniform ballistic conductor connecting two
reservoirs. Assume that contact effects can be neglected and determine the potential from a
condition of local charge neutrality. It is found that the emittance is inductive~negative!. The
emittance is 1/4 of the density of states of the ballistic wire,35

Em52~1/4!e2dN/dE. ~55!

In contrast, the ensemble averaged emittance of a metallic diffusive wire is found to be capacitive
and is determined by 1/6 of the total density of states,35

^Em&e5~1/6!e2^dN/dE&e . ~56!

Since the total unscreened density of states which is available to carriers from one contact is
1/2̂ dN/dE& this corresponds~in magnitude! to a reduction factor of 1/3 similar to the reduction
of the shot noise below the full Poisson result.

FIG. 6. An Aharonov–Bohm ring connected to two contacts, and capacitively coupled to an other nearby conductor. For
a ballistic ring some emittance elements are not capacitive but inductive. After Ref. 69.
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VI. FLUCTUATIONS OF A MESOSCOPIC CAPACITOR

In this section we derive an expression for the conductance of a mesoscopic capacitor~see
Fig. 3! valid up to second order in frequency. To linear order in frequency the current response is
^I (v)&52 ivCm , whereCm is the electrochemical capacitance. To second order in frequency the
response of a capacitor with resistances in series34,71 is determined by the product of the capaci-
tance and a relaxation timeRqCm. Since we know the electrochemical capacitance the second
order term determines the charge relaxation resistanceRq . With the electrochemical capacitance
and the charge relaxation resistance the conductance of the capacitor is to second order in fre-
quency

G~v!52 ivCm1v2Cm
2Rq . ~57!

We want to determine the charge relaxation resistance. One way to proceed is to generalize the
discussion of the conductance. This requires us to determine the potentialU~r ,v! to first order in
frequency. Thus a dynamic screening theory is needed. An alternative way to determine this
resistance is to find the current-current fluctuations to second order in frequency, and to use the
fluctuation–dissipation theorem. This, as we will show, permits us to use again the~fluctuating!
quasistatic potential. We chose this second approach.

The key point of our discussion is again to achieve a current and charge conserving result. A
thermally induced fluctuation which leads to an increase of the charge on one capacitor plate must
lead to a decrease of an equal amount of charge on the other capacitor plate. The long range
Coulomb interaction completely correlates the charge fluctuations on the two plates. Consider first
the charge fluctuations of the capacitor with the potential held fixed at its equilibrium value. These
charge fluctuations can be found from the Fermi field operator.23 For the local density operator we
find quite generally,

n̂~r ,v!5 (
abnm

dE~hvan~E!!21/2~hvbm~E1\v!!21/2Can* ~r ,E!Cbm~r ,E1\v!âan
† ~E!

3âbm~E1hv!. ~58!

Now what counts are the deviation of this ‘‘density’’ away from the equilibrium value. Therefore,
we substitute this density into the Poisson equation. The Poisson equation is now an operator
equation. For each pairâan

† (E)âbm(E 1 \v) there exists a potential operatorûabnm . We introduce
a potential operatorûab which is the sum ofûabnm over all channels in contacta andb. We can
write this operator with the help of a nondiagonal density of states matrix. In the zero-frequency
limit which is of interest here, this matrix is

dngd~r !/dE52~1/4p i !(
b

~sbg
† ~dsbd /edU~x!!2~dsbg

† /edU~x!!sbd! ~59!

with elements

dngdmn~r !/dE5(
mn

~hvgn~E!!21/2~hvdm~E!!21/2Cgn* ~r ,E!Cdm~r ,E!. ~60!

Thus the potential operator is given by

ûab~r !5E d3r 8g~r ,r 8!âa
†~E!@dnab~r 8!/dE#âb~E!. ~61!

So far we have been completely general. Now we consider the mesoscopic capacitor shown in
Fig. 3. There is no transmission. We have only two contactsa51,2. Thus it is only the diagonal
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matricesdnaa~r !/dE which are non-vanishing. Since the scattering matrix is unitary for each
conductor separately, the expression for this matrix can be simplified,dngg(r )/dE 5
2 (1/2p i )sgg

† (dsgg /edU(x)). Next we expand the particle–current operator to first order in fre-
quency. We find

Î a~v!52 ievE dEâa
†~E!~dNaa~a!/dE!âa~E!, ~62!

dNaa~a!/dE5~1/2p i !saa
† ~E!~dsaa /dE!. ~63!

The fluctuations in the potential give rise to an induced current. In response to a classical potential
we found I a(v)5 ie2v*d3r ~dn~a,r !/dE!u~r ! @see Eq.~43!#. Now we need an operator expres-
sion. In the Hartree approach treated here we can replace the classical potential by the quantum
operator potential. Thus the induced current is now

Î a~v!5 ie2vE d3r ~dn~a,r !/dE!(
g

ûgg~r !. ~64!

The total current can be expressed with the help of a screened density of states matrix

Dgg~a!5Fdag~dNgg /dE!2E d3rd3r 8~dn~a,r !/dE!g~r ,r 8!~dngg~r 8!/dE!G , ~65!

in the following simple form

Î a~v!52 ievE dE(
g

âg
†~E!Dgg~a!âg~E!. ~66!

It is seen immediately that we have achieved current conservation. The sumÎ 1(v)1 Î 2(v) van-
ishes identically since *d3r ~dn~r !/dE!g~r ,r 8! is one at every point r 8 and since
*d3r 8(dsbd/edU(x))52(dsbd/dE). As a consequence we haveDgg~1!1Dgg~2!50. Evaluating
the fluctuations and writing the result in the form

^~DI !2&52kTDnv2Cm
2Rq ~67!

determines the charge relaxation resistance. The electrochemical capacitance is the trace of the
effective screened density of states operator,

Cm5e2E dE~2d f /dE!Tr@D#, ~68!

where Tr@D#5Tr@D11~1!#5Tr@D22~2!#52Tr@D11~2!#52Tr@D22~1!#. The charge relaxation resis-
tance is

Rq5S he2D *dE~2d f /dE!(g Tr@Dgg
† ~a!Dgg~a!#

~*dE~2d f /dE!Tr@D# !2
. ~69!

Note that in the expression for the charge relaxation resistancea can be taken to be either 1 or 2.
Equation ~69! which expresses the capacitance as a trace of an effective density of states is
identical to the result that one obtains from the emittance matrix Eq.~54!. Equation~69! is a
microscopic expression of the charge relaxation resistance given in Ref. 34 for the case of a
discrete potential model. The charge relaxation resistance is inversely proportional to the number
of channels which contribute to the density of states. Thus a measurement of this resistance can be
carried out best by changing the number of channels for instance with the help of a magnetic field.

We can also understand the capacitance and the charge relaxation resistance in terms of the
time a carrier isdwelling in the region of the surface over which the electric field penetrates into
the conductors. For noninteracting carriers the dwell time in a volume is the integrated particle
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density in this volume divided by the incident current.65 Here we extend this consideration and
take the dwell time to be the integrated charge density on a capacitor plate divided by the current
at the contact of that plate. The average time a carrier dwells on either one of the plates~at kT50!
is ^t&5h Tr@D#. Thus the capacitance is simplyCm5e2^t&/h. Now we see that the charge relax-
ation resistance is related to the mean square dwell time divided by the average dwell time
squared,Rq5(e2/h)^t2&/^t&2. Note that these times are ultimately determined by functional de-
rivatives ~potential derivatives! of the scattering matrix rather then energy derivatives. We also
note that the dwell time is the same on either plate, in contrast to the dwell times one obtains by
analyzing an unscreened free electron problem. This shows clearly that one cannot apply uncriti-
cally concepts of dwell or tunneling times obtained for noninteracting particles to electrical con-
ductors. The electrical relaxation time is the RC time. From the definition of the dwell time given
above we find that the RC time is the ratio of the mean square dwell time divided by the mean
dwell time, tRC5^t2&/^t&.

VII. CONCLUSION

In this article we have discussed expressions for the dc conductance, the ac conductance and
the spectral densities for the current and charge fluctuations. We have used a common mathemati-
cal framework. Starting from expressions in which the internal potential is held fixed, we have
used a self-consistent scheme to obtain ac conductance and frequency-dependent noise spectra
which are charge and current conserving. In fact the structure of these results suggests that a
self-consistent ac-theory or frequency-dependent spectrum has exactly the same form as that found
for the case of a fixed internal potential, except that the current matrixA needs to be replaced by
a more complicated self-consistent expressionAeff. To show this with more generality then was
done here, is clearly a worthwhile task.
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4815M. Büttiker: Dynamic conductance and quantum noise

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Transport properties in resonant tunneling
heterostructures

Carlo Presillaa)
Dipartimento di Fisica, Universita di Roma ‘‘La Sapienza,’’
Piazzale A. Moro 2, 00185 Roma, Italy

Johannes Sjöstrandb)
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An adiabatic approximation in terms of instantaneous resonances to study the
steady-state and time-dependent transport properties of interacting electrons in bi-
ased resonant tunneling heterostructures is used. This approach leads, in a natural
way, to a transport model of large applicability consisting of reservoirs coupled to
regions where the system is described by a nonlinear Schro¨dinger equation. From
the mathematical point of view, this work is nonrigorous but may offer some fresh
and interesting problems involving semiclassical approximation, adiabatic theory,
nonlinear Schro¨dinger equations, and dynamical systems. ©1996 American In-
stitute of Physics.@S0022-2488~96!00510-5#

I. INTRODUCTION

Man-tailored semiconductor heterostructures1 offer, for the first time, the possibility to test
quantum mechanics at a mesoscopic level.2 The scenario of systems which can be investigated is
so rich that the art of their realization deserves the name of quantum design.

In the simplest case, a quantum designer can grow sandwiches of different semiconductor
alloys by choosing the number of atomic layers for each kind of alloy. In the resulting hetero-
structure, the conduction band profile along the growth direction forms steps whose height can be
continuously varied by a proper choice of the alloy composition. Typical widths and heights are of
the order of tens of Å and tenths of eV, respectively.

At low temperature, the mean free path of carriers for scattering from crystal impurities is of
the order of 104 Å, and for heterostructures smaller than this size the electric transport along the
growth direction is phase coherent quantum scattering from the conduction band discontinuities.3

Due to the translational invariance in the plane orthogonal to the growth direction, the problem is
one-dimensional. Moreover, the carriers are described by an effective mass which accounts for the
microscopic scattering with the periodic crystal sites, and their wave function is an envelope wave
function.4

In a homogeneous neutral conductor, the electron–electron interaction can be taken into
account by a renormalization of the carrier effective masses5 and one deals with a transport
problem like in a noninteracting case. In a heterostructure, even as simple as that described above,
the breaking of translational invariance in the transport direction allows the electric neutrality to be
locally violated. The corresponding interaction potential, obtained, at Hartree level, by solving a
proper Poisson equation, can strongly modify the transport properties. The example of a double
barrier heterostructure with the exterior regions doped with donors is illuminating.6 Due to tun-
neling, electrons populate the resonance~s! created by the double barrier and the region between
the barriers becomes negatively charged. This generates an electric potential which decreases the

a!Electronic mail: presilla@roma1.infn.it
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tunneling probability of electrons in the double barrier region. As a consequence, current oscilla-
tions on the picosecond scale7,8 and chaotic behavior without classical counterpart9 have been
predicted in a ballistic configuration in which electrons are injected at some chosen energy.

Experiments with ballistic electrons are difficult, and measurements became available only
recently.10 Technologically simpler is the case of biased heterostructures where transport is due to
the presence of reservoirs at thermal equilibrium with different chemical potentials. Manifestations
of the electron–electron interaction are known also in this configuration. For example, hysteresis
in the current–voltage characteristics of double barrier heterostructures have been observed11 and
recognized as a consequence of the accumulation of electrons in the resonance.11–15 In this case,
however, one has the theoretical problem of attaching reservoirs at thermal equilibrium to a piece
of conductor where quantum coherent transport takes place.

In the recent paper16 we proposed an approach to this problem based on a mathematical
method earlier applied in the framework of ballistic transport.17 We showed that for heterostruc-
tures with a single resonance our approach allows one~i! to obtain steady-state voltage–current
characteristics having hysteresis or not in agreement with the experimental results18 and ~ii ! to
predict time-dependent properties analogous to those studied in optically bistable systems.19 Here,
we develop the general mathematical scheme of this approach and discuss the case with several
resonances where multistability phenomena can take place as in superlattices.20,21

For simplicity, consider the one-dimensional double barrier heterostructure discussed above.
The idea is that due to the presence of resonances the corresponding Schro¨dinger problem can be
divided in two parts: a Schro¨dinger equation for the barrier region and one for the exterior space,
the two being weakly coupled by tunneling. This decomposition corresponds to the schematization
of the transport process as a coherent process fed by reservoirs. In the exterior space~reservoirs!,
homogeneous and neutral, the electron–electron interaction is neglected and thermal equilibrium
is taken into account by considering a continuous set of energy eigenstates distributed according to
Fermi statistics. In the barrier region~coherent conductor!, the Coulomb interaction is included in
a self-consistent potential obtained by solving the Poisson equation associated with the local
charge density. Under the assumption that the barriers are wide enough, the corresponding non-
linear Schro¨dinger problem is discussed in two steps. In the first step we eliminate the potential
well between the two barriers by artificially increasing the potential there, and we solve the
Schrödinger equation asymptotically for the new potential by means of WKB-expansions. The
resulting solution is then very small near the~filled! potential well, so we get only a small error in
the Schro¨dinger equation when we go back to the true potential. In the second step we correct for
this small error by adding a wave function concentrated near the potential well. Assuminga priori
that the charge in the well changes slowly with time, the correcting wave function can be expected
to be large only at energies close to the resonances, and be well approximated by some linear
combination of the resonant states.

In most of the article we discuss the case in which only one resonance participates. The
validity of this one-mode approximation has been tested numerically with excellent results in the
ballistic configuration of Ref. 17. Here, the coefficient of the one-mode approximation obeys an
ordinary differential equation with respect to time in the infinite-dimensional space of square
integrable functions of energy. We study the stationary points of the corresponding vector field
and their nature, whether they are attractive or not, and arrive at quite neat answers. For solutions
of the dynamical system which have existed as bounded solutions for a long time and in a suitable
asymptotic limit ~of wide barriers! we derive a simplified scalar differential equation for the
evolution of the sheet density of electrons trapped in the well, which gives a good global under-
standing of the more complete dynamical system. Using these results, we are able to discuss the
phenomenon of hysteresis and we support and illustrate the discussion with several numerical
results. The discussion includes the evolution of solutions away from fixed points which neces-
sarily appears when there is hysteresis. We also discuss the case of several resonances and get
analogous results.
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From the mathematical point of view, the present article could be a starting point for rigorous
work on some fresh problems, involving semiclassical analysis, adiabatic theory, nonlinear Schro¨-
dinger equations, and dynamical systems. A strong motivation for such an enterprise is the fact
that the theory of electric transport in semiconductor devices offers many problems similar to the
one we illustrate here.22

The plan of the article is as follows. In Sec. II we define the model. In Sec. III we review the
WKB expansion for slowly varying potentials. In Secs. IV and V we determine the driving term
and the ground resonant state, respectively, within the WKB approximation. The central equation
of our article is derived in Sec. VI, and the general properties of the associated fixed points and
linearizations are discussed in Sec. VII. In Sec. VIII we introduce an approximation valid in the
limit of small resonance width and discuss the corresponding fixed-point solutions and lineariza-
tions. In Sec. IX we obtain a simplified differential equation describing the dynamics of the
electron density in the well. A qualitative discussion of the hysteresis phenomenon in comparison
with numerical results is given in Sec. X. In Sec. XI we finally consider the case with several
resonances.

II. DEFINITION OF THE MODEL

Let us consider a heterostructure whose conduction band profile consists of two barriers of
heightV0 located in [a,b] and [c,d],

Vcb~x!55
0, x,a
V0 , a,x,b
0, b,x,c
V0 , c,x,d
0, x.d

~2.1!

with a,b,c,d along the growth directionx. We wish to evaluate the transport properties of this
device when a bias energyDV is applied between the emitter (x,a) and collector (x.d) regions
uniformly doped. Due to doping, the band of conduction electrons formed in the emitter and
collector regions is characterized by a Fermi energyEF5(3p2nD)

2/3, wherenD is the net donor
concentration. We will use everywhere effective atomic units\52m*51 and e2/e52aB

21,
wherem* is the electron effective mass ande the dielectric constant. In these units, every physical
quantity is expressed in terms of the effective Bohr radiusaB5\2e/(m* e2). Assuming an ideal
heterostructure homogeneous in the planeyz parallel to the junctions~and orthogonal to the
growth directionx!, the single-electron momentaky andkz are conserved quantities. As a conse-
quence, the single-electron wave function at energyE1Ei , whereEi5ky

21kz
2, can be factorized

asf(x,t,E)x(y,z,t,Ei) with

x~y,z,t,Ei!5
1

AA
ei ~kyy1kzz!e2 iE it. ~2.2!

We will assume periodic boundary conditions in a two-dimensional regionA so that the momenta
ky andkz are quantized as in a real device having finite lateral area of sizeA. The time-dependent
Schrödinger equation for the single-electron wave function at energyE along thex direction is

@2 i ] t2]x
21Vcb~x!1U~f,x!#f~x,t,E!50, ~2.3!

whereU(f,x) takes into account the applied bias and, at Hartree level, the electron–electron
interaction. Assuming ideal metallic behavior in the emitter and collector regions, i.e., neglecting
the formation of accumulation and depletion layers,U(f,x) can be obtained as the solution of the
Poisson equation
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]x
2U~f,x!528paB

21r~f! ~2.4!

with Dirichlet boundary conditionsU(f,a)50 andU(f,d)52DV. The densityr takes into
account all the electrons in the occupied energy states and depends only on the wave-function
componentf. Indeed, if the emitter and collector regions are at thermal equilibrium with tem-
peratureT we have

r52E
0

`

dE(
Ei

uf~x,t,E!x~y,z,t,Ei!u2~11e~E1Ei2EF!/kBT!215E dE g~E!uf~x,t,E!u2,

~2.5!

where the factor 2 takes into account the spin degeneracy. Energies are measured from the bottom
of the emitter conduction band, and the lower integration boundE50 in the first line of Eq.~2.5!
stems from the fact that forEF!DV, as we will assume, only electrons from the emitter conduc-
tion band can penetrate the region [a,d] where the electron density is of interest. In the second
line of Eq. ~2.5! this lower bound is absorbed in the definition ofg(E) by a Heaviside function
u(E). The functiong(E) can be explicitly evaluated by approximating the sum over the parallel
degrees of freedom with an integral

g~E!5u~E!2E
0

`

dEi

A

4p U 1AAU
2

~11e~E1Ei2EF!/kBT!21

5u~E!
1

2p
@kBT ln~11e~E2EF!/kBT!1EF2E#. ~2.6!

Note that the chemical potential at temperatureT in the Fermi function has been approximated
with its value atT50, i.e., the Fermi energy determined by the net donor concentration.

In general, the solution of Eq.~2.4! cannot be handled analytically. We will suppose that, due
to the accumulation of electrons in the well with sheet density

s~f!5E dE g~E!E
~a1b!/2

~c1d!/2
dxuf~x,t,E!u2, ~2.7!

ideal metallic behavior in the well [b,c] and ideal insulating behavior in the barriers [a,b] and
[c,d] hold. This is equivalent to approximate Eq.~2.4! with

]x
2U~f,x!528paB

21s~f!@Bd~x2b!1Cd~x2c!#, B1C51 ~2.8!

and the condition that]xU(f,x)50 for b,x,c. In this caseU(f,x) becomes a piecewise linear
function of x with ]xU(f,x) having jump discontinuities atx5b andx5c. The total potential
Vcb1U in Eq. ~2.3! is better rewritten asV1W, where

V~x!55
0, x,a
V02DV~x2a!/ l , a,x,b
2DV~b2a!/ l , b,x,c
V02DV~b2a1x2c!/ l , c,x,d
2DV, x.d

~2.9!

gives the band profile modified by the external bias and
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W~s,x!58paB
21s~f!35

0, x,a
~x2a!~d2c!/ l , a,x,b
~b2a!~d2c!/ l , b,x,c
~b2a!~d2x!/ l , c,x,d
0, x.d

~2.10!

depends on the wave functionf through the sheet density of electrons in the wells(f). Here
l5b2a1d2c. The potentialsV(x) andW(s,x) are shown in Fig. 1.

We will try to solve the nonlinear partial differential equation

@2 i ] t2]x
21V~x!1W~s,x!#f~x,t,E!50, ~2.11!

wheres(f) is given by Eq.~2.7!, in two steps. LetVfill (x) 5 V(x) 1 V01@b,c#(x) be the potential
obtained by filling the well [b,c]. Here 1@b,c#(x) is the characteristic function of the interval
[b,c]. First we solve

@2 i ] t2]x
21Vfill ~x!1W~s,x!#m̃~x,t,E!50 ~2.12!

and then we look forf in the formf5m̃1 ñ, whereñ should solve

@2 i ] t2]x
21V~x!1W~s,x!#ñ~x,t,E!5V01@b,c#~x!m̃~x,t,E!. ~2.13!

The wave functionm̃ describes an electron at energyE which is delocalized in the emitter and
collector regions and has an exponentially small probability to be found in the forbidden region
[a,d]. The wave functionñ describes the localization, driven bym̃, of the same electron in the
well [b,c]. The wave functionf of the original problem~2.11! can be approximated byñ or m̃
inside or outside the two barriers, respectively, with an error which is exponentially small in the
limit of wide barriers.17

To evaluatem̃ we will use a WKB approximation in the forbidden region [a,d]. Equation
~2.13! will be treated with a one-mode approximation in whichñ is assumed proportional to a
resonant state corresponding to the potentialV1W. To evaluate this resonant state and the cor-
responding resonance, we will again use a WKB approximation. In both cases, the justification of
using a WKB approximation stems from the fact thatVfill1W and V1W are slowly varying
potentials in the barriers regions ifb2a andd2c are large whileDV ands remain bounded.

FIG. 1. PotentialV(x) representing the band profile modified by the external bias energyDV ~solid line! and total potential
V(x)1W(s,x) including the electrostatic contribution due to electrons trapped in the well with sheet densitys ~dashed
line!.
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III. WKB EXPANSION FOR SLOWLY VARYING POTENTIALS

Let U5Uh(x) be a real valued potential on some interval, with]xU5O (uhu) and
]x
2U5O (h2), whereuhu!1 is a parameter. LetE be a real energy and assume thatUh(x)2E is
bounded from above and from below by some strictly positive constants that are independent ofh.
This means that we are in the classically forbidden region. Then

@2]x
21U2E #~U2E !21/4 expS 2Ex

dx8~U2E !1/2D
5F2

5

16
~U2E !29/4~]xU!21

1

4
~U2E !25/4]x

2
UGexpS 2Ex

dx8~U2E !1/2D
5e2*xdx8~U2E !1/2O ~h2!, ~3.1!

and therefore

~U2E !21/4 expS 2Ex

dx8~U2E !1/2D ~3.2!

is a good approximation to a corresponding exact eigenfunction, even over intervals of length
O (uhu21).

In the following sections, we will apply the above approximation in the barrier regions [a,b]
and [c,d] with h equal to thex derivative ofV1W in these intervals.

IV. THE DRIVING TERM

Equation~2.12! can be solved by evaluating the instantaneous eigenstates of the potential
Vfill1W. We setm̃(x,t,E)5exp(2 iEt)m(x,t,E) and suppose thatDV ands are slowly varying
functions of time so that alsom(x,t,E) is slowly varying in time. Thus in the equation

@2 i ] t2]x
21Vfill ~x!1W~s,x!2E#m~x,t,E!50, ~4.1!

we make a very small error if we neglect the term2 i ] tm, as we shall do in the following. In the
emitter regionx,a, we takem(x,t,E) as the sum of a left- and a right-going plane wave at energy
E,

m~x,t,E!5
1

A4pAE
@ei

AE~x2a!1r ~E!e2 iAE~x2a!#, ~4.2!

wherer (E) is a reflection amplitude to be computed. Note that the normalization factor in Eq.
~4.2! is chosen in order to have*dxm(x,t,E)m(x,t,E8) 5 d(E 2 E8), in agreement with the ex-
pression of the electron density~2.5! in terms of an integral over the energyE. We propagate the
expression~4.2! to the adjacent regions by requiringm to be of classC1 and applying the WKB
approximation described in Sec. III. In the interval [a,b] the potential isVfill1W5V01a(x2a),
where

a5
8paB

21s~d2c!2DV

b2a1d2c
~4.3!

plays the role of the small parameterh of Sec. III. Fora,x,b we can then use the WKB
approximation
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m~x,t,E!5
1

A4pAE

~V02E!1/4

@V01a~x2a!2E#1/4
t~E!expS 2E

a

x

dx8@V01a~x82a!2E#1/2D ,
~4.4!

wheret(E) is a transmission amplitude to be determined withr (E) from theC1 condition atx5a

11r ~E!5t~E!, ~4.5a!

iAE2 iAEr~E!5t~E!@~V02E!1/22 1
4~V02E!25/4a#. ~4.5b!

Neglecting the last term in the square brackets, which isO ~uau!, we get

r ~E!5
11 i ~V0 /E21!1/2

12 i ~V0 /E21!1/2
, ~4.6a!

t~E!5
2

12 i ~V0 /E21!1/2
. ~4.6b!

Note that the neglected term would give correction factors 11O ~uau! to r (E) and t(E).
At x5b we can set up a similar transition problem but hereVfill1W is continuous and the

corresponding transmission amplitude is 11O ~uau!. Neglecting again a factor 11O ~uau!, for
b,x,c we get

m~x,t,E!5m0~ t,E!e2@V01a~b2a!2E#1/2~x2b!, ~4.7!

where

m0~ t,E!5
1

A4pAE

~V02E!1/4

~V01a~x2a!2E!1/4

2e$~V02E!3/22@V01a~b2a!2E#3/2%2/3a

11 i ~V0 /E21!1/2
. ~4.8!

Only this expression ofm in the region [b,c] will be used in the following as driving term of Eq.
~2.13!.

V. RESONANCE AND RESONANT STATE

In this section we will obtain a WKB approximate expression for the ground-state resonance
l(s)5ER(s)2 iG(s)/2 and the corresponding resonant statee(s,x) for the potentialV1W. We
will assume thatc2b is bounded from below and from above by positive constants, whileb2a
andd2c are large enough.

To start with, we recall the construction of the ground state eigenvalueE0
w of the potential

Vw(x)5V0@1]2`,b] (x)11[c,1`[ (x)# which coincides, up to the constant shift

DE5
8paB

21s~b2a!~d2c!2DV~b2a!

b2a1d2c
, ~5.1!

with the potentialV1W in the well region [b,c]. The corresponding ground eigenstate is

e0
w~x!5C0

w3H cos@AE0
w~c2b!/2#e2~V02E0

w
!1/2~b2x!, x,b

cos$AE0
w@x2~b1c!/2#%, b,x,c

cos@AE0
w~c2b!/2#e2~V02E0

w
!1/2~x2c!, x.c

~5.2!
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where 0,E0
w,min„V0 ,p

2/(c2b)2… is determined by the requirement thate0
w(x) is of classC1,

tan@AE0
w~c2b!/2#5~V0 /E0

w21!1/2, ~5.3!

and the normalization constant is

C0
w5F E0

w

V0~V02E0
w!1/2

1
c2b

2
1

~V02E0
w!1/2

V0
G21/2

, ~5.4!

where we used the identities cos2 u5~11tan2 u!21, ~sin 2u!/25sinu cosu5tanu~11tan2 u!21. In
the following we will assume thatE0

w1DE,V02DV.
Next we look at the ground state of the potential

Vb~x!55
V01a~a2b!, x,a
V01a~x2b!, a,x,b
0, b,x,c
V01b~x2c!, c,x,d
V01b~d2c!, x.d

~5.5!

which coincides, up to the constant shiftDE, with V1W on the larger region [a,d] which
includes the barriers. In Eq.~5.5! a is given by Eq.~4.3! and

b5
28paB

21s~b2a!2DV

b2a1d2c
. ~5.6!

Note that the potentialVb has been obtained by bending the barriers ofVw in the intervals [a,b]
and [c,d] proportionally toa andb, respectively. LetE0

b be the ground state ofVb ande0
b(x) the

corresponding eigenfunction. Sinceuau and ubu are small, from the same WKB considerations of
Sec. III we haveE0

b5E0
w1O ~uau1ubu! ande0

b(x)5e0
w(x)1O ~uau1ubu!. To get the leading asymp-

totics of the resonance width, we need to determine the linear contribution toO ~uau1ubu! in E0
b. By

differentiating the eigenvalue equation for the potentialVb , we have

]aE0
bua5b505E

2`

1`

dxe0
b~x!]aVb~x!ua5b50e0

b~x!.E
2`

b

dx~x2b!ue0
w~x!u2, ~5.7!

]bE0
bua5b505E

2`

1`

dxe0
b~x!]bVb~x!ua5b50e0

b~x!.E
c

1`

dx~x2c!ue0
w~x!u2, ~5.8!

and using Eq.~5.2! we get

]aE0
bua5b5052]bE0

bua5b505~C0
w!2 cos2@AE0

w~c2b!/2#E
2`

0

dx xe2~V02E0
w

!1/2x

52
~C0

w!2E0
w

4V0~V02E0
w!
. ~5.9!

Observing thata2b58paB
21s, we finally get

E0
b5E0

w28paB
21s

~C0
w!2E0

w

4V0~V02E0
w!

1O ~a21b2!. ~5.10!
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The real partER(s) of the shape resonance of2]x
21V1W which is close to the ground-state

eigenvalue of2]x
21Vb1DE is very well approximated by the above calculatedE0

b1DE which
can be rewritten as

ER~s!5ER~0!1hs, ~5.11!

where

ER~0!5E0
w2DV~b2a!/ l ~5.12!

and

h5
8paB

21~b2a!~d2c!

b2a1d2c
2
8paB

21~C0
w!2E0

w

4V0~V02E0
w!

. ~5.13!

Now we discuss the determination of the imaginary partG(s) of the resonance. In the interval
[a,d] the ground state ofVb is

e0
b~x!5C0

b

35
cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01a~x2b!2E0
b#1/4

expS 2E
x

b

dx8@V01a~x82b!2E0
b#1/2D , a,x,b

cos$AE0
b@x2~b1c!/2#%, b,x,c

cos@AE0
b~c2b!/2#~V02E0

b!1/4

@V01b~x2c!2E0
b#1/4

expS 2E
c

x

dx8@V01b~x82c!2E0
b#1/2D , c,x,d

~5.14!

whereC0
b5C0

w1O ~uau1ubu!. In the interval [a,d], the resonant statee(s,x) can be approximated
by adding to Eq.~5.14! terms due to reflections atx5a andx5d. For x&d we try with

e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01b~x2c!2E0
b#1/4

expS 2E
c

d

dx8@V01b~x82c!2E0
b#1/2D

3~e2@V01b~d2c!2E0
b
#1/2~x2d!1re@V01b~d2c!2E0

b
#1/2~x2d!!, ~5.15!

where we have also replaced the exponent with its linear approximation atx5d. For x*d we try
the right-going plane wave

e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01b~d2c!2E0
b#1/4

3expS 2E
c

d

dx8@V01b~x82c!2E0
b#1/2D tei @E0b2b~d2c!#1/2~x2d!. ~5.16!

TheC1 condition atx5d gives, up to termsO ~ubu!,

11r5t, ~5.17a!

2@V01b~d2c!2E0
b#1/21@V01b~d2c!2E0

b#1/2r5 i @E0
b2b~d2c!#1/2t, ~5.17b!

which determinesr and t so that forx*d we have
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e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01b~d2c!2E0
b#1/4

2F12 i
@E0

b2b~d2c!#1/2

@V01b~d2c!2E0
b#1/2

G21

3expH 2

3b
$~V0

2E0
b!3/22@V01b~d2c!2E0

b#3/2%1 i @E0
b2b~d2c!#1/2~x2d!J . ~5.18!

In these calculations we have assumed thatE0
b2b(d2c).0, V01b(d2c)2E0

b.0. The first
inequality is always fulfilled in experimentally relevant situations, while the second one, equiva-
lent toER(s),V02DV may be more critical and, possibly, one should replace Eq.~5.18! by a
more complicated formula.

The same calculation can be repeated forx5a. For x*a we try with

e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01a~x2b!2E0
b#1/4

expS 2E
a

b

dx8@V01a~x82b!2E0
b#1/2D

3~e@V01a~a2b!2E0
b
#1/2~x2a!1re2@V01a~a2b!2E0

b
#1/2~x2a!!, ~5.19!

with a new reflection amplituder . For x&a we try the left-going plane wave

e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01a~a2b!2E0
b#1/4

expS 2E
a

b

dx8~V01a~x82b!2E0
b!1/2D

3te2 i @E0
b
1a~b2a!#1/2~x2a! ~5.20!

with a new transmission amplitudet. TheC1 condition atx5a gives, up to termsO ~uau!,

11r5t, ~5.21a!

@V01a~a2b!2E0
b#1/22@V01a~a2b!2E0

b#1/2r52 i @E0
b2a~a2b!#1/2t, ~5.21b!

which determinesr and t so that forx&a we have

e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V02a~b2a!2E0
b#1/4

2F12 i
@E0

b1a~b2a!#1/2

@V02a~b2a!2E0
b#1/2

G21

3expH 2

3a
$@V02a~b2a!2E0

b#3/22~V02E0
b!3/2%2 i @E0

b1a~b2a!#1/2~x2a!J .
~5.22!

Note that forx&a, e(s,x) is a true left-going plane wave only forDV not too large when
E0
b1a(b2a).0. If E0

b1a(b2a),0, Eq. ~5.22! becomes an exponentially decaying function
whose corresponding probability current density vanishes. SinceE0

b1a(b2a)5ER(s), this case
corresponds toER(s),0. In Eq. ~5.22!, we also assumed thatV02a(b2a)2E0

b.0, i.e.,
ER(s),V0 .

The resonance width can be now computed by means of the Green formula

G~s!E
a8

d8
dxue~s,x!u252 Im@e~s,x!]xe~s,x!#U

a8

d8
, ~5.23!

wherea8,a andd8.d. The integral in the left-hand side~lhs! of Eq. ~5.23! is 11O ~uau1ubu! and
using Eqs.~5.18! and ~5.22! we get, up to such a factor,
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G~s!58~C0
w!2E0

b~V02E0
b!1/2V0

22$@V01b~d2c!2E0
b#1/2@E0

b2b~d2c!#1/2

3e$~V02E0
b
!3/22@V01b~d2c!2E0

b
#3/2%4/3b1@V02a~b2a!2E0

b#1/2

3@E0
b1a~b2a!#1

1/2e$@V02a~b2a!2E0
b
#3/22~V02E0

b
!3/2%4/3a%, ~5.24!

where we usedu15u(u) u.

VI. ONE-MODE APPROXIMATION

Equation~2.13! can be simplified by developingñ into the instantaneous eigenstates of the
potentialV1W and keeping only the contributions from the discrete resonant states, i.e., neglect-
ing the contributions from the continuous spectrum.17 For the moment, we will suppose there is
only one resonant state and setñ(x,t,E)5exp(2 iEt)z(t,E)e(s,x) wheree(s,x) is the ~ground!
resonant state of the potentialV1W,

@2l~s!2]x
21V~x!1W~s,x!#e~s,x!50, ~6.1!

with complex eigenvaluel(s)5ER(s)2 iG(s)/2. The eigenfunctione(s,x) is of classL2 on the
contourg[(eiu]2`,0]1a)ø[a,d]ø(d1eiu[0,1`[) for u conveniently chosen23 and satisfies

E
g
dx e~s,x!251, E

g
dx e~s,x!]se~s,x!50. ~6.2!

Multiplying Eq. ~2.13! with e(s,x) and integrating overg, we get

] tz~ t,E!5 i @E2l~s!#z~ t,E!1B~ t,s,E! ~6.3!

with the driving term given by

B~ t,s,E!5 iV0E
b

c

dx m~x,t,E!e~s,x! ~6.4!

and the sheet density~2.7! reduced, with small error, to

s~ t !5E dE g~E!uz~ t,E!u2[iz~ t !i2. ~6.5!

VII. FIXED POINTS AND LINEARIZATIONS: GENERAL RESULTS

We consider the vector field in the lhs of Eq.~6.3!,

V ~z,E!5A~ izi2,E!z~E!1B~ izi2,E!, ~7.1!

where

A~s,E!52G~s!/21 i $E2@ER~0!1hs#%, ~7.2!

is a nonvanishing function. For simplicity, we assume thatB is independent oft. WhenB varies
slowly with t, the discussion below should be applied to each such fixed value oft.

We first look for fixed points ofV , i.e., functionsz5z(E) in L2„g(E)dE… with V „z(E),E…
50. Clearlyz5z(E) is a fixed point iff
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z~E!52
B~ izi2,E!

A~ izi2,E!
, ~7.3!

so theL2-norm s5izi2 has to satisfy

s5E dE g~E!
uB~s,E!u2

uA~s,E!u2
. ~7.4!

Conversely, ifs>0 is a solution of Eq.~7.4!, then

z~E!52
B~s,E!

A~s,E!
~7.5!

gives the unique fixed point ofV with izi25s.
Assuming that we have found a fixed pointz5z(E), we look for the linearization of the

vector fieldV at that point. By giving an infinitesimal incrementdz(E) to z(E), the correspond-
ing incrementdV to V is

dV ~z,E!5A~s,E!dz~E!1~^dzuz&1^dzuz̄&!@]sA~s,E!z~E!1]sB~s,E!#, ~7.6!

wheres5izi2 is the corresponding solution of Eq.~7.4! and^uuv& 5 *dE g(E)u(E)v(E). Hence,

dV ~z,E!5Ā~s,E!dz~E!1~^dzuz&1^dzuz̄&!@]sA~s,E!z̄~E!1]sB~s,E!#, ~7.7!

so withu(E)5dz(E) andv(E) 5 dz(E), we get the complexification of the linearization,

LS uv D 5SA 0

0 Ā
D S uv D 1S ~^uuz&1^vuz̄&!~]sAz1]sB!

~^uuz&1^vuz̄&!~]sAz̄1]sB!D . ~7.8!

The matrix in the first term of the rhs has a continuous spectrum contained in2G(s)/21 iR and
the second term appears as a rank one perturbation. IflPC is an eigenvalue ofL with a real part
different from2G(s)/2, we get

@A~s,E!2l#u1~^uuz&1^vuz̄&!@]sA~s,E!z1]sB~s,E!#50, ~7.9a!

@Ā~s,E!2l#v1~^uuz&1^vuz̄&!@]sA~s,E!z̄1]sB~s,E!#50. ~7.9b!

We must then have

u~E!5k
]sA~s,E!z1]sB~s,E!

A~s,E!2l
, ~7.10a!

v~E!5k
]sA~s,E!z̄1]sB~s,E!

Ā~s,E!2l
, ~7.10b!

wherek5^uuz&1^vuz̄&. In order to have a nontrivial solutionkÞ0, it is necessary and sufficient
that

11E dE g~E!
]s@~A2l!~Ā2l!#uBu22A~Ā2l!B̄]sB2Ā~A2l!B]sB̄

@~ReA2l!21~ Im A!2#uAu2
50.

~7.11!
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Here, the lhs is real for reall, and tends to 1, whenl→1`.
On the other hand, thes-derivative of the lhs minus the rhs of Eq.~7.4! is

11E dE g~E!
uB~s,E!u2]suA~s,E!u22uA~s,E!u2]suB~s,E!u2

uA~s,E!u4
, ~7.12!

which coincides with the lhs of Eq.~7.11! for l50. So if the expression~7.12! is ,0, we see that
Eq. ~7.11! must have a solutionl.0. Let us say that the fixed point is stable if the spectrum of the
linearizationL is contained in the open left half-plane and unstable otherwise. The discussion
above then gives the following.

Proposition VII.1: Let z be a fixed point ofV so that Eqs. (7.4) and (7.5) hold. If the
s-derivative of thelhs minus therhs of Eq. (7.4) is,0, then z is an unstable fixed point. More
precisely, the linearizationL then has an eigenvalue which is.0.

VIII. FIXED POINTS AND LINEARIZATIONS: THE SMALL- G LIMIT

In this section we assume that the driving termB(s,E) is a sufficiently smooth function ofE,
at least near the pointER(0)1hs, wheres solves Eq.~7.4!. When the barriers are very wide,G(s)
will be very small and

1

uA~s,E!u2
5

1

@G~s!/2#21@ER~0!1hs2E#2

is a function ofE which is sharply peaked atER(s)5ER(0)1hs. In Eq. ~7.4! it is therefore
justified to replaceg(E)uB(s,E)u2 by the constant valueg„ER(0)1hs…uB„s,ER(0)1hs…u2. Then
Eq. ~7.4! is well approximated by

s52p
g„ER~s!…uB„s,ER~s!…u2

G~s!
. ~8.1!

We shall next apply a similar argument to Eq.~7.11! for the eigenvalues of the linearization
L and, for more transparency, we start with a simplified case, in which

B and G are independent ofs. ~8.2!

In this case, Eq.~7.11! reduces to

122hE dE
@E2ER~0!2hs#g~E!uB~E!u2

$~G/21l!21@E2ER~0!2hs#2%$~G/2!21@E2ER~0!2hs#2%
50. ~8.3!

We shall use

E
2`

1`

dt
t2

~q21t2!~p21t2!
5H p

p1q
, Re p.0, Req.0

p

p2q
, Re p.0, Req,0

~8.4!

E
2`

1`

dt
1

~q21t2!~p21t2!
5H p

qp~p1q!
, Re p.0, Req.0

2p

qp~p2q!
, Re p.0, Req,0.

~8.5!
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If we replaceg(E)uB(E)u2 in the integral in Eq.~8.3! with its value atE5ER(0)1hs, that
integral vanishes since the integrand becomes an odd function ofE2ER(0)2hs. Instead, we get
an approximation of the integral in Eq.~8.3! by replacingg(E)uB(E)u2 with the linear term in its
Taylor expansion atE5ER(0)1hs. Using Eq.~8.4!, we then get from Eq.~8.3!

122h
~guBu2!8@ER~0!1hs#p

G1l
50 when G/21Rel.0, ~8.6!

112h
~guBu2!8@ER~0!1hs#p

l
50 when G/21Rel,0, ~8.7!

where~guB u2!85]E(guB u2!. The solution of Eq.~8.6! is

l52ph~guBu2!8@ER~0!1hs#2G, ~8.8!

and this is an eigenvalue of the linearizationL as long as

2ph~guBu2!8@ER~0!1hs#.
G

2
. ~8.9!

The solution of Eq.~8.7! is

l522ph~guBu2!8@ER~0!1hs# ~8.10!

and describes an eigenvalue ofL precisely when Eq.~8.9! is fulfilled. We then have the following
conclusion under the simplifying assumption~8.2! and in the small-G limit.

When2ph(guB u2!8@ER(0)1hs]<G/2: no eigenvalues ofL and hence an attractive fixed
point.

WhenG/2,2ph~guB u2!8@ER(0)1hs],G: two eigenvalues ofL and still an attractive fixed
point.

When2ph~guB u2!8@ER(0)1hs]>G: two eigenvalues and a nonattractive fixed point.
The main conclusion under the same assumptions is then the following.
Proposition VIII.1: We have an attractive fixed point precisely when the s-derivative of the

difference of thelhs and therhs in Eq. (8.1) is.0.
Now we drop the simplifying assumption~8.2! and see that the preceding proposition still

holds in the small-G limit. Let z be a fixed point, so thats5izi2 ~approximately! solves Eq.~8.1!.
In view of Eq. ~7.2!, Eq. ~7.11! can be written as

11E dE g~E!
]s@~A2l!~Ā2l!#uBu22A~Ā2l!]sBB̄2Ā~A2l!B]sB̄

$@G~s!/21l#21@E2ER~0!2hs#2%$@G~s!/2#21@E2ER~0!2hs#2%
50.

~8.11!

Here, the numerator of the integrand can be simplified to

@]sG~G/21l!uBu22~G/2!~G/21l!]suBu2#1$@E2ER~0!2hs#@22huBu2

1 il~]sBB̄2B]sB̄!#%2$@E2ER~0!2hs#2]suBu2%. ~8.12!

Accordingly, we split the integral into three pieces and apply the small-G approximation to each
one. If we assume, for simplicity, thatG/21Rel.0 ~which is necessarily the case if the eigen-
valuel is to ruin attractiveness!, we get
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11
@]sG~G/21l!uBu22~G/2!~G/21l!]suBu2#pg

~G/2!~G/21l!~G1l!

1
„]E$g@22huBu21 il~]sBB̄2B]sB̄!#%2g]suBu2…p

G1l
50 ~8.13!

at E5ER(0)1hs. This can be rewritten as

11
2p~]sG/G!guBu2

G1l
2
2p]s~guBu2!

G1l
2
2ph]E~guBu2!

G1l
1
ilp]E@g~]sBB̄2B]sB̄!#

G1l
50,

~8.14!

again atE5ER(0)1hs. Noticing that

d

ds
@~guBu2!~s,ER~0!1hs!#5~h]E1]s!~guBu2!„s,ER~0!1hs…,

and multiplying withG1l, we get the following approximation of Eq.~7.11!

l$11 ip]E@g~]sBB̄2B]sB̄!#%52G~s!22p
~guBu2!„s,ER~0!1hs…

G~s!
]sG~s!

12p
d

ds
@~guBu2!„s,ER~0!1hs…#. ~8.15!

We assume that 11 ip]E[g(]sBB̄2B]sB̄!#.0, so that the solutionl of Eq. ~8.15! is real and
has the same sign as the rhs of Eq.~8.15!.

On the other hand, thes-derivative of the lhs minus the rhs of Eq.~8.1! is

12
2p

G~s!

d

ds
@~guBu2!„s,ER~0!1hs…#12p~guBu2!„s,ER~0!1hs…

]sG~s!

G~s!2

52
1

G~s! S 2G~s!12p
d

ds
@~guBu2!„s,ER~0!1hs…#

22p
~guBu2!„s,ER~0!1hs…

G~s!
]sG~s! D ,

which is of the opposite sign to the rhs in Eq.~8.15!. We then have the following.
Proposition VIII.2: Under the weaker assumptions above and in the small-G limit, we still

have an attractive fixed point precisely when the s-derivative of thelhsminus therhsof Eq. (8.1)
is .0.

IX. A SIMPLIFIED DIFFERENTIAL EQUATION FOR THE SHEET DENSITY

Consider the differential equation~6.3!

] tz~ t,E!5„2G„s~ t !…/21 i $E2@ER~0!1hs~ t !#%…z~ t,E!1B„s~ t !,E…, ~9.1!

wheres(t)5iz(t,•)i2, and where we could also letB be a slowly varying function oft through
s(t). Assumings(t) to be a known function, the solution of Eq.~9.1! with a prescribed initial
value at timet0 is
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z~ t,E!5E
t0

t

dt8 expS i @E2ER~0!#~ t2t8!2E
t8

t

dt9G„s~ t9!…/22 ihE
t8

t

dt9s~ t9! DB„s~ t8!,E…

1expS i @E2ER~0!#~ t2t0!2E
t0

t

dt8G„s~ t8!…/22 ihE
t0

t

dt8s~ t8! D z~ t0 ,E!.

Assuming that the solution has existed as a bounded solution for a very long time, say from the
time 2`, we can lett0 tend to2` in the formula above and get

z~ t,E!5E
2`

t

dt8 expS i @E2ER~0!#~ t2t8!2E
t8

t

dt9G„s~ t9!…/22 ihE
t8

t

dt9s~ t9! DB„s~ t8!,E….

~9.2!

Taking the scalar product of Eq.~9.1! andz gives the following equation for the derivative of the
sheet density

d

dt
s~ t !52 Rê zu] tz&52G„s~ t !…s~ t !12 Rê zuB&, ~9.3!

where

2 Rê zuB&52 ReE dE g~E!E
2`

t

dt8 expS i @E2ER~0!#~ t2t8!2E
t8

t

dt9G„s~ t9!…/2

2 ihE
t8

t

dt9s~ t9! DB„s~ t8!,E…B„s~ t !,E…. ~9.4!

We now assume thats(t) varies slowly witht and replaceB„s(t8),E… in the above integral by
B„s(t),E…. Making theE-integration first, we get

2 Rê zuB&52 ReE
2`

t

dt8 expS 2 iER~0!~ t2t8!2E
t8

t

dt9G„s~ t9!…/22 ihE
t8

t

dt9s~ t9! D
3F ~guBu2!„s~ t !,t82t…, ~9.5!

whereF denotes the Fourier transform with respect toE. Assuming thatg(E) uB„s(t),E…u2 is
sufficiently smooth as a function ofE, we see thatF ~guB u2!„s(t),t82t… is sufficiently rapidly
decreasing as a function oft82t for the following approximations to be made:~i! sinceG(s) is
small, we may assume that exp$ 2 *t8

t dt9G(t9)/2% . 1 and~ii ! sinces(t9) varies slowly, we may
replace* t8

t dt9s(t9) by s(t)(t2t8). We then get

2 Rê zuB&.2 ReE
2`

t

dt8e2 i @ER~0!1hs~ t !#~ t2t8!F ~guBu2!„s~ t !,t82t…

52 ReE
2`

0

dt8ei @ER~0!1hs~ t !#t8F ~guBu2!„s~ t !,t8….

Using the propertyF (u)( 2 t) 5 F (u)(t), valid for any real valued functionu(E), we obtain

2 Rê suB&5E
2`

1`

dt8ei @ER~0!1hs~ t !#t8F ~guBu2!„s~ t !,t8…52p~guBu2!„s~ t !,ER~0!1hs~ t !….

~9.6!
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Inserting this in Eq.~9.3!, we get the approximate differential equation for the sheet density
s(t)5iz(t,•)i2

d

dt
s~ t !52G„s~ t !…Fs~ t !22p

~guBu2!„s~ t !,ER~0!1hs~ t !…

G„s~ t !… G . ~9.7!

This equation is valid for slowly varying solutions which have evolved for a time much longer
thanG21.

X. QUALITATIVE DISCUSSION AND NUMERICAL RESULTS

We start by examining the simplified fixed-point equation~8.1!. For 0<E&EF with EF!V0 ,
we haveV02E;V0 ~of the same order of magnitude!. By evaluating the integral in Eq.~6.4! with
e(s,x) approximated by Eq.~5.2! and the driving term given by Eq.~4.7!, we have

uB~s,E!u2;~C0
w!2V0

21E0
wE1/2e$~V02E!3/22@V01a~b2a!2E#3/2%4/3a.

Assuming for simplicity zero temperature, so thatg(E)5u(E)(EF2E)1/2p, we get

g„ER~s!…uB„s,ER~s!…u2;~C0
w!2V0

21E0
wER~s!1

1/2@EF2ER~s!#1

3e$@V02ER~s!#3/22@V02ER~s!1a~b2a!#3/2%4/3a.

Recalling thatER(s)5ER(0)1hs5E0
b1a(b2a)5E0

b2b(d2c)2DV, wherea andb are given
by Eqs.~4.3! and ~5.6!, respectively, from Eq.~5.24! we get

G~s!;~C0
w!2E0

bV0
23/2$@V02ER~s!#1/2ER~s!1

1/2e$@V02ER~s!#3/22@V02ER~s!1a~b2a!#3/2%4/3a

1@V02DV2ER~s!#1/2@ER~s!1DV#1/2e$@V02DV2ER~s!2b~d2c!#3/22@V02DV2ER~s!#3/2%4/3b%.

We will consider the following two cases:
~1! The barrier [c,d] is more opaque than [a,b] in the sense that the exponential factor in the

second term of the above expression forG(s) is much smaller than the exponential factor in the
first term.

~2! The barrier [a,b] is more opaque than [c,d].
In the intermediate case when the two barriers have opacity of the same order, the discussion

of case~1! will roughly apply. Notice that opacity depends not only on the relative sizes ofb2a
andd2c, but also ons andDV. Therefore, we may have transitions between the two cases when
these parameters vary. Interesting phenomena appear when case~1! is possible and we start with
that case, recalling thatER(s)5ER(0)1hs5E0

w2DV(b2a)/ l1hs. In this case@and neglecting,
to start with, the possibility of a transition to the case~2!# the first term in the expression forG(s)
dominates, except whenER(s) is negative or very small and positive. The function

f ~s!52p
g„ER~s!…uB„s,ER~s!…u2

G~s!
~10.1!

vanishes forER(s)<0 and rises very sharply@with a square root singularity atER(s)50# from 0
to

fmax;EF ~10.2!

whenER(s) is increased from 0 to a small positive value. WhenER(s) is further increased, the
function f (s) decreases roughly linearly and vanishes forER(s)>EF . The valuesER(s)50,
ER(s)5EF correspond to
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s5@DV~b2a!/ l2E0
w#/h, s5@DV~b2a!/ l2E0

w1EF#/h, ~10.3!

and describe the boundary points of the support of the function~10.1!. WhenDV is increased,
these two points move to the right with the same speed as shown in the example of Fig. 2. In Fig.
2 we also see the graphical solution of Eq.~8.1!, s5 f (s), for different values ofDV. It is clear
that Eq.~8.1! will first have only one solution whenDV(b2a)/ l2E0

w<0, then three solutions for
DV in some interval, untilDV(b2a)/ l2E0

w;h fmax, and again only one solution for even larger
values ofDV. According to the results of Sec. VIII, we see that in the case in which Eq.~8.1! has
only one solution, this solution corresponds to an attractive fixed point, and when there are three
solutions, the smallest and the largest of these correspond to attractive fixed points, while the
intermediate solution corresponds to an unstable fixed point.

For many experimentally relevant situations the resonance width is much smaller than the
other energy scales~essentiallyEF!. In this case we may expect the simplified fixed-point equation
~8.1! to be a very good approximation of the more correct equation~7.4!, except near the boundary
points of the support of the function~10.1!. This is confirmed by Fig. 3 where we show the
numerical solutions~stable and unstable! of both Eqs. ~7.4! and ~8.1! for a system having
G(0)/EF.0.01 atDV50.2 eV. In the case of Eq.~7.4!, the corresponding energy integral has
been evaluated on a uniform energy mesh having a density of points@G~0!21.

The solutions of the simplified differential equation~9.7! converge to one of the solutions of
Eq. ~8.1!, associated with an attractive fixed point. The phenomenon of hysteresis then becomes
clear. We letDV increase very slowly from some sufficiently small value up to some sufficiently
large positive value and subsequently decrease it very slowly, back to its initial value. Consider a

FIG. 2. Graphical solution of the equations5 f (s) for different values of the bias energyDV. Note that the support off (s)
has widthDs.EF/h ~equality strictly holds at zero temperature!. The example shown here corresponds to a typical
GaAs–AlGaAs heterostructure in which the parameters described in the text have the following values:nD5231017

cm23, T51 K, b2a540 Å, c2b556 Å, d2c570 Å, V050.34 eV,e511.44, andm*50.067m, wherem is the free
electron mass.
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corresponding solution of the time-dependent Schro¨dinger equation~2.3! so that we expect the
corresponding evolution of the sheet density to be well approximated by the solution of Eq.~9.7!,
whereB varies slowly with time. First, there is only one~attractive! fixed point and the time-
dependent solution has to stay close to that fixed point. Then we have creation of a pair of fixed
points ~one stable and one unstable! away from the solution, but the solution continues to stay
close to the old~stable! fixed point. WhenDV reaches a sufficiently large value, the unstable fixed
point runs into the old stable one and they both disappear. At this point, the time-dependent
solution has no other choice than to converge to the only remaining fixed point~which is stable!.
When decreasingDV back to its initial value, we have the same behavior, in the sense that the
solution stays close to the initially unique fixed point as long as it exists and converges to the new
unique fixed point after the old one has collapsed with the unstable one. The bias energyDV at
which this collapse happens depends on the value of the time-dependent solution and therefore is
different whenDV is increased or decreased.

The phenomenon of hysteresis is clearly seen in Fig. 3, where the collapse points forDV
decreased from large values andDV increased from small values have been marked withA andB,
respectively. We haveDVA,DVB . We can estimate the order of magnitude of the hysteresis
width DVB2DVA by considering thatDVA is determined by the conditionER(s50)50 andDVB

by the conditionER(s. fmax!.0. We have

DVB2DVA;h fmaxl ~b2a!21;aB
21EF~d2c!. ~10.4!

In Figs. 4 and 5 we show the time-dependent evolution of the sheet densitys(t) when we start
from a fixed point solution corresponding to the pointA or B and give an instantaneous small
decrement or incrementdV to DVA or DVB , respectively. In these figures, the thick lines are the
solutions of the full equations~6.3! and ~6.5! and the thin lines the solution of the simplified
differential equation~9.7!. In Fig. 4 the solutions corresponding to the small-G limit and the full
Schrödinger equation start, as shown in Fig. 3, from different fixed point values,s(0), and
converge to the same~approximatively! values. On the other hand, when the starting point isB
~Fig. 5! the small-G approximation is close to the solution of the full equation except for the value
which s(t) has to converge to, again in agreement with Fig. 3.

As a third example of time evolution of the sheet density of electrons in the well, in Fig. 6 we
show the behavior of thes(t) solution of the full equations~6.3! and~6.5! after an instantaneous

FIG. 3. Fixed point solutions of the sheet density of electrons in the wells as a function of the bias energyDV in the same
case of Fig. 2. The thick line is the exact case~7.4! and the thin line the small-G approximation~8.1!. Unstable solutions
are represented by dashed lines~both thick and thin!.
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changedV of the bias energy corresponding to the pointC of Fig. 3 well inside the hysteresis
region. If udVu is chosen sufficiently large, we observe oscillations ofs(t) on the picosecond time
scale. Contrary to the claim of Ref. 14, these oscillations are damped sinces(t) has to converge
to the fixed point solution corresponding the bias energyDVC1dV.

In case~2!, when the barrier [a,b] is more opaque than the barrier [c,d], the function~10.1!
is very small, and for solutions of Eq.~8.1! we can observe only a microscopical hysteresis effect,
due to the square root singularity atER(s)50, which is likely to be completely absent in the more
correct equation~7.4!. The absence of the hysteresis effect in this case is in agreement with the
experimental results of Ref. 18 and is discussed in Ref. 16.

FIG. 4. Sheet density of electrons in the wells(t) as a function of time after an instantaneous decreasedV of the bias
energy from the pointA of Fig. 3 ~thick lines!. The crosses are the fixed point solutions at biasDVA2dV wheres(t) is
expected to converge. The thin lines are the corresponding small-G approximation starting froms(0)50.

FIG. 5. Sheet density of electrons in the wells(t) as a function of time after an instantaneous increasedV of the bias
energy from the pointB of Fig. 3 ~thick lines!. The crosses are the fixed point solutions at biasDVB1dV wheres(t) is
expected to converge. The thin lines are the corresponding small-G approximation. FordV not too large a ghost fixed-point
solution is observed withs(t) decaying linearly fort<tg and tg defined by the conditionER„s(tg)…50.
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Let us finally consider the case of very wide barriers and see that a transition between
cases~1! and ~2! has to take place in the hysteresis region. Letc2b5const, (b2a)/(d2c)
5const,1, andb2a→`. In this limit, h;aB

21(b2a), and the values in Eq.~10.3! are the
end points of a short interval of length;EFaB/(b2a). Let us consider Eq.~8.1! whenDV is
increased from the initial value (E0

w2EF) l /(b2a) for which the right end point in Eq.~10.3! is
0. If the constant (b2a)/(d2c) is sufficiently small, we are in case~1!. For
(E0

w2EF) l /(b2a)<DV<E0
wl /(b2a), we remain in case~1!, provided that (b2a)/(d2c)

is sufficiently small, and Eq.~8.1! has a unique solution. AtDV5E0
wl /(b2a) we have the

creation of two new fixed points. If we follow the old fixed point, we cannot remain in case~1!
until it disappears. Indeed, if we did, the disappearance would take place whens; fmax and at a
bias energy DV;aB

21(d2c) fmax obtained by the condition ER(s. fmax!.0. Since
ER(s)5E0

b1a(b2a) is between 0 andEF , the inclinationa of the first barrier would have to be
very small, and we get a finite inclinationb;2aB

21fmax for the barrier [c,d]. Therefore, when
b2a→` only the opacity of the first barrier would diverge and, at some point, we would be no
longer in case~1!. What will actually happen is that whenDV reaches some value which is
bounded independently ofb2a, we have a transition from case~1! to case~2!, andfmax decreases
to some value which is much smaller than the rhs in Eq.~10.2!. This will cause the disappearance
of the fixed point for a much smaller value ofs. When a transition from case~1! to case~2!
happens, we still observe a hysteresis phenomenon, but this is now caused not only by the
translationof f (s) as a function ofDV but also by avariation of its height. This effect is already
apparent in Fig. 3 where we see a decreasing height off (s) when increasingDV.

XI. THE CASE OF SEVERAL RESONANCES

In this section we discuss very briefly the case with several shape resonances. Much of the
discussion is similar to the case of one resonance and we shall assume that we are in a parameter
range where all the WKB considerations apply.

First we review the approximation for the shape resonances. We start with the potentialVw

and consider its eigenstatesej
w(x), j50,1,...,N21 and the corresponding eigenvalues

0,E0
w,E1

w,•••,EN21
w ,V0 . Sinceej

w(x) is even as a function ofx2(b1c)/2 for evenj and
odd for oddj , we have

FIG. 6. Sheet density of electrons in the wells(t) as a function of time after an instantaneous changedV of the bias energy
from the pointC of Fig. 3. The crosses are the fixed-point solutions at biasDVC1dV wheres(t) is expected to converge.
For udVu not too small damped oscillations are seen at the picosecond scale.
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ej
w~x!5Cj

w3H sin@~ j11!p/22AEj
w~c2b!/2#e2~V02Ej

w
!1/2~b2x!, x,b

sin$~ j11!p/21AEj
w@x2~b1c!/2#%, b,x,c

sin@~ j11!p/21AEj
w~c2b!/2#e2~V02Ej

w
!1/2~x2c!, x.c.

TheC1 condition atx5b, or equivalently atx5c, gives the quantization condition

tan@~ j11!p/21AEj
w~c2b!/2#52~V0 /Ej

w21!21/2,

which can also be written as

tan@AEj
w~c2b!/22 jp/2#5~V0 /Ej

w21!1/2. ~11.1!

Representing this equation graphically, we see thatN21 is the largest integer>1 with AV0(c
2 b)/2. (N 2 1)p/2. The functionsej

w(x) are normalized, if we choose

Cj
w5S Ej

w

V0~V02Ej
w!1/2

1
~c2b!

2
1

~V02Ej
w!1/2

V0
D 21/2

. ~11.2!

The eigenvaluesEj
b associated with the potentialVb in Eq. ~5.5! can be studied as before, and

we get

Ej
b5Ej

w28paB
21s

~Cj
w!2Ej

w

4V0~V02Ej
w!

1O ~a21b2!. ~11.3!

In the following, we neglect the errorO ~a21b2!. The shape resonancesl j (s)5ER, j (s)2 iG j (s)/2
for the potentialV1W are then given by

ER, j~s!5ER, j~0!1h j s, ~11.4!

where

ER, j~0!5Ej
w2DV~b2a!/ l , h j5

8paB
21~b2a!~d2c!

b2a1d2c
2
8paB

21~Cj
w!2Ej

w

4V0~V02Ej
w!

, ~11.5!

and

G j~s!58~Cj
w!2Ej

b~V02Ej
b!1/2V0

22$@V01b~d2c!2Ej
b#1/2@Ej

b2b~d2c!#1/2

3e$~V02Ej
b
!3/22@V01b~d2c!2Ej

b
#3/2%4/3b1@V02a~b2a!2Ej

b#1/2

3@Ej
b1a~b2a!#1

1/2e$@V02a~b2a!2Ej
b
#3/22~V02Ej

b
!3/2%4/3a%. ~11.6!

The corresponding resonant stateej (s,x), satisfying Eq.~6.2!, can be described as in Sec. V.
We still try to solve Eq.~2.11! in two steps. Equation~2.12! is treated as before, while Eq.

~2.13! is now handled by lettingñ be a linear combination of theN resonant states
e0(s,x),...,eN21(s,x). More precisely, we writeñ(x,t,E)5exp(2 iEt)n(x,t,E) and m̃(x,t,E)
5exp(2 iEt)m(x,t,E), so that Eq.~2.13! becomes

@2 i ] t2]x
21V~x!1W~s,x!2E#n~x,t,E!5V01@b,c#~x!m~x,t,E!. ~11.7!

Assume,
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n~x,t,E!5 (
k50

N21

zk~ t,E!ek~s,x!, ~11.8!

where s is defined in Eq. ~2.7! and hence will be time dependent. The functions
e0(s,x),...,eN21(s,x) approximately form an orthonormal family inL2„[(a1b)/2,(c1d)/2]…,
and if we assume thatn dominates overm in [(a1b)/2,(c1d)/2] then, with a small error, we
have

s~ t !5 (
k50

N21

izk~ t,• !i25iz~ t,• !i2, ~11.9!

where the norms are inL2„g(E)dE… and inL2„g(E)dE…N, respectively.
Substituting Eq.~11.8! into Eq. ~11.7!, multiplying by ej (s,x), and integrating over the con-

tour g, we get

(
k50

N21 E
g
dx@2 i ] t1lk~s!2E#@zk~ t,E!ek~s,x!#ej~s,x!5V0E

b

c

dx m~x,t,E!ej~s,x!.

~11.10!

From the relations*gdx ek(s,x)ej (s,x)5dk, j , we conclude that*gdx[ ]sek(s,x)]ej (s,x) is an
antisymmetric matrix, and sinceek(s,x) are approximately real functions near [b,c], this matrix
is also very close to a real one. Equation~11.10! can be written as

@2 i ] t1l j~s!2E#zj~ t,E!2 i ] t„s~ t !…(
k50

N21 E
g
dx@]sek~s,x!#ej~s,x!

5V0E
b

c

dx m~x,t,E!ej~s,x!. ~11.11!

Due to the facts that~i! ] ts(t) can be expected to be very small and~ii ! ek(s,x) is roughly
independent ofs near [b,c] so that the integral*gdx[ ]sek(s,x)]ej (s,x) can be expected to be
very small, we will neglect the sum in the lhs of Eq.~11.11!. In this case, we have

] tzj~ t,E!5$2G j~s!/21 i @E2ER, j~s!#%zj~ t,E!1B j~ t,s,E!, ~11.12!

whereB j (t,s,E)5 iV0*b
cdx m(x,t,E)ej (s,x).

We assume thatB j vary slowly with t, so it is meaningful to look at instantaneous fixed
points of the vector field defined by the rhs of Eq.~11.12! in L2„g(E)dE…N. Assuming, for
simplicity, thatB j are independent oft we see thatz(E)5„z0(E),...,zN21(E)… is a fixed point
precisely when

zj~E!5
2B j~s,E!

2G j~s!/21 i @E2ER, j~s!#
, j50,...,N21 ~11.13!

from which we get the compatibility condition fors5izi2:

s2 (
j50

N21 E dE
g~E!uB j~s,E!u2

@G j~s!/2#21@E2ER, j~s!#2
50. ~11.14!

Conversely, ifs is a solution of Eq.~11.14!, then Eq.~11.13! defines the unique fixed point with
izi25s.
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In the small-G limit, as in Sec. VIII we get the simplified fixed-point equation

s2 (
j50

N21

2p
~guB j u2!„s,ER, j~s!…

G j~s!
50. ~11.15!

In view of Eq. ~11.4!, the term of indexj in Eq. ~11.15! is a function ofs with support in the
interval

@DV~b2a!/ l2Ej
w#/h j<s<@DV~b2a!/ l2Ej

w1EF#/h j , ~11.16!

and whenDV increases this interval moves to the right with speed (b2a)/( lh j ) as shown in the
example of Fig. 7.

In Fig. 8 we compare the corresponding fixed point solutions obtained by solving Eq.~11.14!
with those obtained in the small-G limit ~11.15! as a function of the bias energyDV. Between the
points marked asA andB we observe five fixed points. Below we give some results about the
nature of fixed points, which are more complicated than those in the case of a single resonance,
and it is not clear that those results are applicable in the situation of Fig. 8. If we assume that they
are applicable, then three fixed points are stable and two unstable. The existence of more than
three fixed points, i.e., the maximum number allowed forN51, is related to the possibility that the
intervals~11.16! are not disjoint, as clearly understood by Fig. 7.

It is interesting to study the evolution of the sheet densitys(t) away from a point likeB in
Fig. 8 where a~presumably! stable fixed point and an unstable one collapse while two other fixed
points survive. In Fig. 9 we show the behavior ofs(t) obtained by numerically integrating Eq.
~11.12! after an instantaneous increaseDV of the initial bias DVB . If the total bias
DVB1dV,DVC , whereC is the next point where a new couple of fixed points collapse,s(t)

FIG. 7. Graphical solution of the equations5 f (s) for different values of the bias energyDV in a multiple-resonance case.
We used the same parameters of Fig. 2 exceptb2a520 Å, c2b5360 Å, d2c550 Å.
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converges to the fixed point closest to its initial values(0). WhenDVB1dV.DVC , s(t) first
approaches the value corresponding to the collapse pointC but finally has to converge to the lower
unique fixed point corresponding to the chosen bias.

Next we study the linearization of the vector field defined by the rhs of Eq.~11.12! at a fixed
point under the following simplifying assumption:

G j is independent ofs, B j5B j~E! is independent oft and s,
~11.17!

h j5h is independent ofj .

Then Eq.~11.12! becomes,

FIG. 8. Fixed-point solutions of the sheet density of electrons in the wells as a function of the bias energyDV in the same
case of Fig. 7. The thick line is the solution of Eq.~11.14! and the thin line the small-G limit ~11.15!. Possibly unstable
solutions are represented by dashed lines~both thick and thin!.

FIG. 9. Sheet density of electrons in the wells(t) as a function of time after an instantaneous increasedV of the bias
energy from the pointB of Fig. 8. The crosses are the fixed-point solutions at biasDVB1dV wheres(t) is expected to
converge.
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] tzj~ t,E!5@2G j /21 i @E2ER, j~0!2hs##zj~ t,E!1B j~E!. ~11.18!

The same calculations as in Sec. VIII show that the complexificationL of the linearization of the
vector field defined by the rhs of Eq.~11.18! at a fixed point is given by

LS u0
A

uN21

v0
A

vN21

D 5S $2G0/21 i @E2ER,0~0!2hs#%u02 ih~^uuz&1^vuz̄&!z0
A

$2GN21/21 i @E2ER,N21~0!2hs#%uN212 ih~^uuz&1^vuz̄&!zN21

$2G0/22 i @E2ER,0~0!2hs#%v01 ih~^uuz&1^vuz̄&!z̄0
A

$2GN21/22 i @E2ER,N21~0!2hs#%vN211 ih~^uuz&1^vuz̄&!z̄N21

D .

~11.19!

Here,^uuz& 5 ( j50
N21^uj uzj&L2(g(E)dE) . The operatorL is a rank one perturbation of an operator

with essential spectrum contained inø j50
N21(2G j /21 iR!. We look for eigenvalueslPC with

RelÞ2G j /2 for all j . If (u0 ,...,uN21,v0 ,...,vN21) is a corresponding eigenvector, we get as in
Sec. VIII

uj5
kzj~E!

2G j /21 i @E2ER, j~0!2hs#2l
, v j5

2k z̄j~E!

2G j /22 i @E2ER, j~0!2hs#2l
,

~11.20!

where

k5 ih~^uuz&1^vuz̄&!. ~11.21!

Using Eqs.~11.13! and ~11.20! in Eq. ~11.21!, we see thatl is an eigenvector precisely when

122h (
k50

N21 E dE
@E2ER,k~0!2hs#g~E!uBk~E!u2

$~Gk/21l!21@E2ER,k~0!2hs#2%$~Gk/2!21@E2ER,k~0!2hs#2%
50.

~11.22!

As in the caseN51, we observe that the lhs of Eq.~11.22! for l50 is equal to the
s-derivative of the lhs of Eq.~11.14!. Moreover, whenl→1`, the lhs of Eq.~11.22! converges to
1, so if it is,0 for l50, it has to vanish for somel.0. Hence, as in the caseN51, we get the
following:

Proposition XI.1: Let z be a fixed point of Eq. (11.18), so that s5izi2 solves Eq. (11.14). If the
s-derivative of thelhs of Eq. (11.14) is,0, then z is not an attractive fixed point.

We now pass to the small-G limit, where Eq.~11.14! is replaced by Eq.~11.15! and we keep
the simplifying assumption~11.17!.

Proposition XI.2 (small-G limit): Assume that the intervals (11.16) are disjoint and let z be a
fixed point of Eq. (11.18). Then z is attractive precisely when the s-derivative of the lhs of Eq.
(11.15) is.0.

Proof: The s-derivative of the lhs of Eq.~11.15! is

12 (
j50

N21
2ph~guB j u2!8@ER, j~0!1hs#

G j
, ~11.23!

where~guB j u
2)85]E(guB j u

2!. On the other hand, in the small-G limit, Eq. ~11.22! for the eigen-
values of the linearization becomes as in Sec. VIII
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122h (
k;Gk/21Rel.0

p~guBku2!8~ER,k~0!1hs!

Gk1l

12h (
k;Gk/21Rel,0

p~guBku2!8~ER,k~0!1hs!

l
50. ~11.24!

We are only interested in the possible existence of solutions to this equation with Rel>0, and for
suchl Eq. ~11.24! reduces to

122h (
k50

N21
p~guBku2!8@ER,k~0!1hs#

Gk1l
50. ~11.25!

If l is a solution, then by the condition that the intervals~11.16! are disjoint, only one term in the
last sum, say fork5m, is Þ0, so that Eq.~11.25! becomes

122h
p~guBmu2!8@ER,m~0!1hs#

Gm1l
50, ~11.26!

while expression~11.23! becomes

122h
p~guBmu2!8@ER,m~0!1hs#

Gm
. ~11.27!

It is then easy to see that the solution of Eq.~11.26! has a negative real part precisely when
expression~11.27! is positive, and this concludes the proof of the last proposition.

When the intervals~11.16! have nonempty intersections, the situation is more complicated,
and the following example is an indication that the last proposition may be false.

Example: There exist G1,G2.0, a1 ,a2PR, such that 12(a1/G11a2/G2).0, while
12[a1/(G11l)1a2/(G21l)]50 for some positivel. Indeed, chooseG151, a152, G25d.0
very small,a2522d. Then 12a1/G12a2/G251.0. If d!l0!1, we have

12
a1

G11l0
2

a2
G21l0

'21.

Hence 12[a1/(G11l)1a2/(G21l)] must vanish for somel between 0 andl0.
As in Sec. IX, we can derive a simplified differential equation for„s0(t),...,sN21(t)…, where

sj (t)5izj (t,•)i
2, so thats(t)5( j50

N21sj (t). We drop the simplifying assumption~11.17!, but keep,
for simplicity, the assumption thatB j are independent of t. Assume that
z(t,E)5„z0(t,E),...,zN21(t,E)… is a solution of Eq.~11.12! which has existed for a long time
with a uniformly bounded norm. As in Sec. IX, we take the scalar product of Eq.~11.12! with zj
and get

d

dt
sj~ t !52G j~s!12 Rê zj uB j&. ~11.28!

Using

zj~ t,E!5E
2`

t

dt8ei @E2ER, j ~0!#~ t2t8!2*
t8
t
dt9G j „s~ t9!…/22 ih j* t8

t
dt9s~ t9!B j„s~ t8!,E…, ~11.29!

and, under the assumption thats(t8) is slowly varying, we get as in Sec. IX
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2 Rê zj uB j&.2p~guB j u2!„s~ t !,ER, j~0!1h j s~ t !…, ~11.30!

and the simplified equations

d

dt
sj~ t !52G j„s~ t !…Fsj~ t !22p

~guB j u2!„s~ t !,ER, j~0!1h j s~ t !…

G j~s~ t !! G , ~11.31!

for j50,1,...,N21, ands5( j50
N21sj . We notice that the region defined bysj>0 for 0< j<N21

is stable under the forward flow associated with the system~11.31!. Moreover, if (s0 ,...,sN21) is
a fixed point of this system, then we get precisely Eq.~11.15!. Conversely, ifs is a solution of Eq.
~11.15!, then

sj52p
~guB j u2!„s,ER, j~0!1h j s…

G j~s!
~11.32!

defines the corresponding unique fixed point solution withs5( j50
N21sj .

We end this section by investigating the linearization of Eq.~11.31! at a fixed-point solution,
under the simplifying assumption~11.17!. An easy calculation shows that the linearization is given
by

MS v0
A

vN21

D 5S 2G0v012phs~guB0u2!8@ER,0~0!1hs#(k50
N21vk

A
2GN21vN2112phs~guBN21u2!8@ER,N21~0!1hs#(k50

N21vk
D . ~11.33!

If l is an eigenvalue ofM with G j1lÞ0 for every j , and t(v0 ,...,vN21) a corresponding
nontrivial eigenvector, we have

v j52ph
~g~ uB j u2!8@ER, j~0!1hs#

G j1l (
k50

N21

vk .

Then necessarily the sum isÞ0, and by summing theseN relations, we see thatl is an eigenvalue
precisely when Eq.~11.25! holds. We finally get:

Proposition XI.3: Under the simplifying assumption (11.17) and in the small-G limit, let z be
a fixed point of Eq. (11.18) and let(s0 ,...,sN21) be the corresponding fixed-point solution of Eq.
(11.31). Then the linearizations of Eqs. (11.18) and (11.31) at the corresponding fixed points have
the same eigenvalues in the right half planeRel>0 [given by Eq. (11.25)]. In particular, z is an
attractive fixed point for Eq. (11.18) precisely when(s0 ,...,sN21) is an attractive fixed point for
Eq. (11.31).
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4843C. Presilla and J. Sjöstrand: Transport in resonant tunneling heterostructures

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



6B. Ricco and M. Ya. Azbel, Phys. Rev. B29, 1970~1984!.
7C. Presilla, G. Jona-Lasinio, and F. Capasso, Phys. Rev. B43, 5200~1991!.
8B. A. Malomed and M. Ya. Azbel, Phys. Rev. B47, 10 402~1993!.
9G. Jona-Lasinio, C. Presilla, and F. Capasso, Phys. Rev. Lett.68, 2269~1992!.
10T. Sajoto, J. J. O’Shea, S. Bhargava, D. Leonard, M. A. Chin, and V. Narayanamurti, Phys. Rev. Lett.74, 3427~1995!.
11V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev. Lett.58, 1256~1987!.
12F. W. Sheard and G. A. Toombs, Appl. Phys. Lett.52, 1228~1988!; Semicond. Sci. Technol.7, B460 ~1992!.
13A. N. Korotkov, D. V. Averin, and K. K. Likharev, Physica B165&166, 927 ~1990!.
14K. L. Jensen and F. A. Buot, Phys. Rev. Lett.66, 1078~1991!.
15Y. Abe, Semicond. Sci. Technol.7, B498 ~1992!.
16C. Presilla and J. Sjo¨strand, e-print archive cond-mat/9602047.
17G. Jona-Lasinio, C. Presilla, and J. Sjo¨strand, Ann. Phys.240, 1 ~1995!.
18A. Zaslavsky, V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Appl. Phys. Lett.53, 1408~1988!.
19R. Bonifacio and P. Meystre, Opt. Commun.29, 131 ~1979!; G. Broggi, L. A. Lugiato, and A. Colombo, Phys. Rev. A
32, 2803~1985!.

20J. Kastrup, H. T. Grahn, K. Ploog, F. Prengel, A. Wacker, and E. Scho¨ll, Appl. Phys. Lett.65, 1808~1993!.
21N. G. Sun and G. P. Tsironis, Phys. Rev. B51, 11 221~1995!.
22A. Wacker and E. Scho¨ll, J. Appl. Phys.78, 7352~1995!.
23J. Aguilar and J. M. Combes, Commun. Math. Phys.22, 269~1971!. See also P. Lochak, Ann. Inst. Henri Poincare´ A 39,
119 ~1983!, and W. Hunziker,ibid. 45, 339 ~1986!.
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A theory of electron counting statistics in quantum transport is presented. It in-
volves an idealized scheme of current measurement using a spin 1/2 coupled to the
current so that it precesses at the rate proportional to the current. Within such an
approach, counting charge without breaking the circuit is possible. As an applica-
tion, we derive the counting statistics in a single channel conductor at finite tem-
perature and bias. For a perfectly transmitting channel the counting distribution is
Gaussian, both for zero-point fluctuations and at finite temperature. At constant bias
and low temperature the distribution is binomial, i.e., it arises from Bernoulli sta-
tistics. Another application considered is the noise due to short current pulses that
involve few electrons. We find the time-dependence of the driving potential that
produces coherent noise-minimizing current pulses, and display analogies of such
current states with quantum-mechanical coherent states. ©1996 American Insti-
tute of Physics.@S0022-2488~96!01610-6#

I. INTRODUCTION

Quantum transport in nanostructures has been a subject of many recent studies.1 Transport
properties like Ohmic conductivity can be understood in terms of the quantum scattering problem
in the conductor, which provides a theory of quantum coherence of transport.2 An interesting topic
emerging from this theory is that of fluctuations of electric current due to the discreteness of
electric charge, a property intrinsic to quantum transport.3–5 It has been found that current fluc-
tuations have properties reflecting profound aspects of underlying quantum dynamics.6–9 For
example, the quantum noise caused by a dc current is reduced below classical shot noise level.3–9

This suppression has been understood as an effect of enhanced regularity of transmission events
due to Fermi statistics.10 Besides theoretical interest, such phenomena may lead to applications.
Given the development of nano-technologies, the transmission of signals by single- or few-
electron pulses will become common, and then one will see the quantum statistics of current
working.

In this paper we update the theory of quantum measurement of electric current.11 Our goal is
a complete description of charge fluctuations, rather than developing measurement theory~see
Secs. II, III!. We shall derive a microscopic formula for electron counting distribution@see Sec.
III, Eq. ~11!, and Sec. IV, Eq.~26!# that can be used for any system, e.g., with an interaction or
with a time-dependent potential.12 As an application, we test the method on the statistics in a
single channel ideal conductor for non-equilibrium and equilibrium noise at finite temperature, and
for zero-point equilibrium fluctuations~Secs. IV, V!. In particular, the fluctuations of a dc current
at zero temperature are found to obey binomial statistics~Sec. VI! with the probabilities of
outcomes related to transmission coefficients of elastic scattering in the system, and with the
number of attemptsN5eVt/h, whereV is applied voltage, andt is the time of measurement.

Another property of quantum noise that does not have a classical analog is its phase
sensitivity.13,14For the current correlator̂̂ j (t1) j (t2)&&1 it results in a periodic sinusoidal depen-
dence on Faraday’s flux due to applied voltage,F5c* t1

t2V(t)dt, with the periodF05hc/e. The
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phase sensitivity manifests itself in singularities of the low frequency noise power in a junction
driven by ac and dc signals together.15

Even more remarkable is the behavior of current fluctuations induced by a short pulse of
voltage.13,16Total charge that flows through the conductor due to a voltage pulse fluctuates in such
a way that the mean square fluctuation diverges whenever the flux of the pulse is not an integer:
w5 e/\ *2`

` V(t)dt Þ 2pn. On the other hand, forw52pn the fluctuation of the transmitted
charge is finite~Sec. VII!. This result has a simple interpretation in terms of the Anderson
orthogonality catastrophe theory, since the fluxw enters the time-dependent scattering matrix of
the conductor through the forward scattering amplitude.

With this, one is led to address the issue of current states that minimize the current fluctua-
tions at fixed mean transmitted charge.16,17It is found in Sec. VIII that such states are produced by
time-dependent voltage of the form

V~ t !56
h

pe(k51

n
tk

~ t2tk!
21tk

2 , tk.0, ~1!

a sum of Lorentzian pulses of unit flux each. It is remarkable that the minimal noise due to such
sequence of pulses is independent of the pulse positionstk and widthstk , which leads to obvious
parallels with solitons in the theory of non-linear integrable systems. The noise minimizing current
states can be compared to the coherent states that minimize the quantum-mechanical uncertainty.
Apart from the obvious similarity, there is a difference: the coherent current states are many-body
time-dependent scattering states. Their role in transport is an interesting subject of future work:
one expects that representing many-body states as a superposition of these coherent states has an
advantage similar to that provided by coherent states of one particle.

II. MEASURING ELECTRIC CURRENT

Instantaneous measurement is described in quantum mechanics by wavepacket reduction that
involves projecting on eigenstates of an observable, represented by a Hermitian operator. A dif-
ferent kind of measurement, extended in the time domain, is realized in detectors and other
counting devices. It is known that in such cases a certain revision of the measurement description
is necessary. A famous example is the theory of photon detectors18 in quantum optics. Due to Bose
statistics, photons entering a photo-counter are correlated in time, and this makes the theory of
photon detection a problem of many-particle statistics. For a single normal mode of radiation field
the probabilityPm to countm photons over timet is given by

Pm5
~ht !m

m!
^:~a1a!me2hta1a:&, ~2!

where a1 and a are Bose operators of the mode,h is the counter efficiency parameter, and
^•••& stands for the average over a quantum state. The normal ordering :•••: is an important
element of the formalism. Physically, it means that, after having been detected, each photon is
destroyed, e.g., it is absorbed in the detector. Instead of the probabilities~2!, it is more convenient
to deal with the generating function

x~l!5(
m

Pme
ilm. ~3!

For the single normal mode Eq.~2! leads to

x~l!5^:expht~eil21!a1a:&. ~4!
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Eqs.~2!, ~3!, and~4! account very well for numerous experimental situations.19 Particularly inter-
esting is the case of a coherent stateuz&, auz&5zuz&, wherez is a complex number. It corresponds
to the radiation field of an ideal laser, and with Eq.~4! one easily gets Poisson counting distribu-
tion,

Pm5
~Jt!m

m!
e2Jt, J5huzu2, ~5!

which describes the so-called minimally bunched light source.
Similar to the photon detection, electric measurement is performed on a system containing an

enormous number of particles—in this case fermions—and thus one expects the effects of Fermi
statistics to be important. Also, the duration of electric measurement is typically much longer than
the time it takes the system to transmit one electron by microscopic tunneling, scattering, or
diffusion. Apart from these similarities, there is, however, a crucial difference from the photon
counting: the number of electrons is not changed by the current measurement, since electric charge
is conserved. This has to be contrasted with absorption of photons in photo-counters. Related to
this, there is another important difference: at every detection of a photon, its energy\v is taken
from the radiation field, which makes plain photodetectors insensitive to zero-point fluctuations of
electromagnetic field. On the contrary, the measurement of current fluctuation is usually per-
formed without changing energy of the system, which makes the zero-point noise an unavoidable
component of any electric measurement.20 ~Let us emphasize that the difference has nothing to do
with the type of quantum statistics, Fermi or Bose. Rather it is the difference between the two
kinds of measurement, e.g., see Ref. 21, where counting of fermions was discussed using an
optical-like counter that has to capture an electron in order to detect it.!

In the classical picture, the measurement gives the chargeQ(t)5*0
t j (t8)dt8 transmitted dur-

ing the measurement timet. The probabilitiesPm of countingm electrons can then be obtained by
averagingd(Q(t)2me) over the state of the system. In a quantum problem electric current is an
operator, and since currents at different moments do not commute, the operator of transmitted
chargeQ̂(t)5*0

t ĵ (t8)dt8 generally does not make any sense. Instead, since we are interested in
higher-order statistics of current fluctuations, beyond^ ĵ (t)& and ^^ j (t1) j (t2)&&1 , in order to
compute electron counting distribution, we have to include the measuring system in the quantum
Hamiltonian. Our approach is motivated by the example of the quantum mechanical systems with
strong coupling to macroscopic environment, introduced by Leggett, that can be treated consis-
tently only by adding the ‘‘measuring environment’’ to the quantum problem.22

For that we introduce a model quantum galvanometer, a spin 1/2 that precesses in the mag-
netic field B of the current. For a classical system, the rate of precession is proportional to
B(t), andB(t) is proportional to the currentI (t): B(t)5constI(t). Therefore, the precession angle
of the spin directly measures transmitted chargedQ5*0

t I (t8)dt8. We adopt the same measure-
ment procedure for the quantum circuit, i.e., we include in the electron Hamiltonian the Ampe`re’s
vector potential due to the spin:

AW ~r !52mŝW3¹W
1

ur u
, ~6!

whereŝW5(sx ,sy ,sz) are Pauli matrices. Thus we obtain a Hamiltonian describing the motion of
electrons, the measuring spin, and their coupling. Now, according to what has been said, we have
to solve dynamics of the spin in the presence of the fluctuating current, find the distribution of
precession angles, and then interpret it as a distribution of transmitted charge. Of course, a
question remains about the back effect of the spin on the system, as in any other problem of
quantum measurement. However, as we find below in~18! and~19!, only the phase of an electron
state is affected by the presence of the spin, not the amplitude. Moreover, the phase will change
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only for the transmitted, but not for the reflected wave. As a result, the probabilities we obtain do
not depend on the coupling constant of the spin. This justifies the assumption that the spin
measures charge transfer in a non-invasive way.

It is worth remarking that our scheme resembles the ‘‘Larmor clock’’ approach23 to the
problem of traversal time for motion through a classically forbidden region. In this problem one is
interested, e.g., in the time spent by a particle tunneling through a barrier. The Larmor clock
approach involves an auxiliary constant magnetic fieldB added in the classically forbidden region,
and a spin 1/2 carried by the particle that interacts with the field:H int52ŝzB. The precession
angle of the spin measures traversal time. Comparing the two approaches is very tutorial: see
Appendix A, where the Larmor clock is reviewed.

III. SPIN 1/2 AS A GALVANOMETER

Having clarified our motivation, we proceed semi-phenomenologically and choose a new
vector potential in the spin-current interaction2 (1/c) jWAW . We replace the Ampe`re’s long-range
form ~6! by a model vector potential,

Âi~r !5
lF0

4p
ŝz¹ iu~ f ~r !2 f 0!, ~7!

concentrated on some surfaceS defined by the equationf (r )5 f 0. HereF05hc/e, l is a coupling
constant,f (r ) is an arbitrary function, and, as usual, the step-functionu(x)51 for x.0, 0 for
x,0. The surfaceS defines a section of the conductor on which the interaction is localized:

H int5E 2
1

c
ĵWÂWd3r52

l\

2e
ŝzÎ S , ~8!

whereÎ S5*Sĵ
W dWs, i.e., the spin now is coupled to the total current through the sectionS. With the

choice~7! of the vector potential one can study current fluctuations in an arbitrary section of the
conductor. Another advantage of the phenomenological Equation~7! is that it involves only one
Pauli matrix, which makes the spin dynamics essentially trivial. The choice of the quantization
axis of the spin is arbitrary since~8! will be the only spin-dependent part of the Hamiltonian.
Finally, another advantage of the form~8! is that by switching from the smooth function~6! to the
singular form~7! we enforce integer values of counted charge. To understand this, let us note that
in the ‘‘fuzzy’’ case ~6! the measurement can start at the moment when one of the electrons is
located somewhere in the middle of the volume whereA Þ 0, and then a fractional part of the
electron charge will be counted. On the contrary, in the ‘‘sharp’’ case~7!, the spin responds to the
presence of an electron only when it crosses the sectionS. We shall see below in a microscopic
calculation that integer values of charge follow automatically from gauge invariance, since the
form ~7! is a gradient of a scalar.

Thus we come to the Hamiltonian,

Ĥs5Ĥ~ p̃,r !, p̃i5pi2
e

c
Âi , ~9!

where the spin-dependentÂW is taken in the form~7!. An essential feature of our approach is that
we treat the constantl of coupling between the spin and the current as avariable, i.e., we consider
the spin precession as a function of the parameterl. The reason is that, unlike the photon counting
problem, our measurement scheme directly generates the functionx(l), and then the counting
probabilitiesPm are obtained by reading Eq.~3! backwards.

At this point we are able to formulate our main result. Let us define a new Hamiltonian,
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Ĥl5Ĥ~ p̃,r !, p̃i5pi2
1
2l\¹ iu~ f ~r !2 f 0!, ~10!

simply by supressingŝz in Eq. ~7!. The HamiltonianĤl involves only quantities of the electron
subsystem. Below we show that by measuring precession of the spin coupled to the current, one
obtains the quantity

x~l!5^eiĤ2lte2 iĤlt&. ~11!

Here the bracketŝ•••& stand for averaging over the initial state of electrons. Note thatx(l) is
written in terms of a purely electron problem, not involving spin variables. We shall find that the
functionx(l) defines the result of any measurement of the spin polarization after the timet when
the spin-current coupling is turned off. Moreover, we shall see that the function~11! has the
meaning of a generating function of electron counting distribution, i.e., the Fourier transform of
x(l) gives counting probabilities, entirely analogous to~3!.

Our goal now will be to express evolution of the spin in terms of quantities corresponding to
the electron system. The interaction is given by Eqs.~7!, ~9!. Suppose that the measurement
started at the moment 0 and stopped at the timet, i.e., the spin-current interaction is turned on
during the time interval 0,t,t. Let us evaluate the density matrixr̂s(t) of the spin, right after it
is disconnected from the circuit. We have

r̂s~ t !5tre~e
2 iĤstr̂eiĤst!, ~12!

wherer̂ is the initial density matrixr̂e^ r̂s at t50, r̂e is the initial density matrix of electrons, and
tre(•••) means the partial trace taken over electron states, the spin indices left free. In terms of the

spin variables, the operatore2 iĤst is a function only ofŝz , and hence it is diagonal in spin:

^↑ue2 iĤstu↓&5^↓ue2 iĤstu↑&50. In other words, if initially the spin is in a pure state, up or down,
it will not precess. Forr̂s(t) this remark yields

r̂s~ t !5F r̂↑↑~0! x~l!r̂↑↓~0!

x~2l!r̂↓↑~0! r̂↓↓~0! G . ~13!

Herex(l)5tre(e
2 iĤltr̂ee

iĤ2lt), wheree2 iĤlt is the evolution operator for the problem~10!.
Now, after the spin degrees of freedom are taken care of by~13!, we are left with a purely electron
problem, that involves only electron degrees of freedom, but not the spin. By using the cyclic
property of the trace tre(•••), one can show thatx(l) in Eq. ~13! is identical to~11!.

In principle, any entry of a density matrix can be measured, and therefore the quantity
x(l) is also measurable. In order to make clear the relation ofx(l) with the distribution of
precession angles, let us recall the transformation rule for the spin 1/2 density matrix under
rotation by an angleu around thez2axis:

Ru~ r̂ !5F r̂↑↑ e2 iur̂↑↓

eiur̂↓↑ r̂↓↓ G . ~14!

By combining this with Eq.~3! we write r̂s(t) as

r̂s~ t !5(
m

PmRu5ml~ r̂ !, ~15!

which assigns toPm the meaning of the probability to observe precession angleml. Let us finally
note that such an interpretation ofPm is consistent with what one expects on classical grounds,
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because for aclassicalmagnetic momentsW interacting with the current according to~7!, the angle
u5l corresponds to the precession due to a current pulse carrying the charge of one electron.

IV. SINGLE-CHANNEL CONDUCTOR. GENERAL FORMALISM

In order to see Eq.~11! working, let us consider an ideal single channel conductor, i.e., the
Schrödinger equation,

i
]c

]t
5F12 S 2 i

]

]x
2

l

2
d~x! D 21U~x!Gc, ~16!

in one dimension, where the potentialU(x) represents the scattering region and the vector poten-
tial is inserted according to~7! at thex50 section. In order to describe transport, we shall use
scattering states, left and right. Their energy distributionsnL(R)(E) are equilibrium Fermi func-
tions with temperatureT and chemical potentials shifted byeV, mL2mR5eV, representing a dc
voltage.

For the problem~16! one can write time-dependent scattering states as

cL,k~x,t!5e2iEktHeikx1BLe
2ikx, x,2a/2,

eil/2ALe
ikx, x.a/2,

~17!

cR,k~x,t !5e2 iEktH e2 il/2ARe
2 ikx, x,2a/2,

e2 ikx1BRe
ikx, x.a/2,

wherea is the width of the barrier, andAL,R andBL,R are the transmission and reflection ampli-
tudes in the absence of the spin vector potential. To make expressions less heavy, we supress
electron spin. The phase factorse6 il/2 in ~17! are found immediately by observing that the vector
potential in the Schro¨dinger equation can be eliminated by the gauge transformation
c(x)→exp(il/2u(x))c(x). The scattering amplitudes form a unitary matrix:

Ŝl5F eil/2AL BR

BL e2 il/2ARG . ~18!

We will study the range of smallT,eV!EF , when only the states close to the Fermi level are
important. In this case, there is an additional simplification because the states near Fermi energy
have almost linear dispersion, and thus all wavepackets travel with the speedvF without changing
shape. Then, following Landauer and Martin,8 instead of the usual scattering states~17!, it is
convenient to use their Fourier transform. By ignoring the energy-dependence ofAL,R and
BL,R , which is equivalent to saying that the scattering time is negligible, and assuming that the
dispersion is strictly linear, one obtains the representation of scattering in terms of time-dependent
scattering wavepackets,

cL,t~x,t!5Hd~x2!, t,t,

eil/2ALd~x2!1BLd~x1!, t.t,
~19!

cR,t~x,t !5H d~x1!, t,t,

e2 il/2ARd~x1!1BRd~x2!, t.t,

where x65x6vF(t2t). Here t is the packet arrival moment, at which it is scattered. It is
straightforward to verify orthogonality of the states~19!. Any time-dependent electron state can be
written as a superposition of the states~19!, with the arrival timet serving in this representation
as a label in the continuum of states, likek in ~17!. The assumption that the scattering amplitudes
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are energy-independent~and thus the scattering takes no time! is equivalent to replacing the barrier
U(x) of finite width byU0d(x) and is consistent with the closeness of relevant energies toEF .

Second-quantized, electron states~19! lead toĉ(x,t)5ĉL(x,t)1ĉR(x,t) with

ĉL~R!~x,t !5(
t

cL~R!,t~x,t !ĉ1~2!,t , ~20!

wherec1,t andc2,t are canonical Fermi operators corresponding to the states~19!, the left and the
right, respectively. One checks that fermionic commutation relations forc1(2),t ,

ci ,t
1 cj ,t81cj ,t8ci ,t

1 5d i jd~t2t8!, ~21!

ci ,tcj ,t81cj ,t8ci ,t50, ci ,t
1 cj ,t8

1
1cj ,t8

1 ci ,t
1 50, ~22!

yield the usual commutation relations forcL(R)(x,t). From that one finds the meaning of the
summation in~20!: (t•••5*2`

` •••dt. Mathematically, in this paragraph we defined the second-
quantizedc(x) in ~16!.

The advantage of introducing the basis of the wavepackets~19!,~20! is that now it is straight-
forward to write the many-particle evolution operator through the single-particle scattering matrix
Ŝl :

e2 iĤlt5exp E
0

t

dt(
i j

ln@Ŝl# i j ci ,t
1 cj ,t , ~23!

whereŜl is given by~18!. To verify ~23!, let us note that in the wavepacket representation~19!,
according to Eqs.~21!, Fermi correlations occur only for the pairs of left and right states that

scatter at the same instant of time. For each of such pairs the evolution operatore2 iĤlt is 1̂ if both
states are occupied or both are empty, otherwise it is given by the single-particle scattering matrix
~18!.

Using similar arguments, we compute

eiĤ2lte2 iĤlt5expE
0

t

dt(
i j

Ŵi j ci ,t
1 cj ,t , ~24!

whereeŴ5Ŝ2l
21Ŝl is readily obtained from~18!:

eŴ5F eiluALu21uBLu2 2i sin lĀLBR

2i sin lB̄RAL e2 iluARu21uBRu2G . ~25!

Using unitarity ofeŴ and commutation rules forca,t one can rewrite~24! in terms of normal
ordering:

eiĤ2lte2 iĤlt5:expE
0

t

dt(
i j

@eŴ21# i j ci ,t
1 cj ,t : ~26!

This form is ready to be plugged into Eq.~11! and averaged over the initial state. Let us note the
striking similarity of two formulas obtained by different means: the fermionic Equation~26! and
the bosonic Equation~4!.

Also, let us mention that the periodicity of the matrix~25! in l ensures periodicity of
x(l), and thus guarantees integer values of charge.
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V. EQUILIBRIUM FLUCTUATIONS

Let us start with a simple one-particle example. Consider a particle in the statec1,t
1 uvac&,

which corresponds to scattering at the momentt. In this case, from~26! and ~11! one gets

x~l!5H eiluAu21uBu2, for 0,t,t;

1 otherwise;
~27!

uAu5uALu5uARu, uBu5uBLu5uBRu. Evidently, according to Eq.~3!, this simply means that for the
scattering occurring during operation of the detector, the counting probabilities are identical to the
one-particle scattering probabilities, as it should be expected.

Now, we consider current fluctuations in an equilibrium Fermi gas. First, let us assume perfect
transmission:BL(R)50. Then Eq.~25! givesŴ5 ilsz , and thus Eq.~24! becomes

eiĤ2lte2 iĤlt5exp ilE
0

t

~c1,t
1 c1,t2c2,t

1 c2,t!dt, ~28!

i.e., the right and the left states separate.
We observe that averaging of~28! over the Fermi ground state is identical to that performed

in the orthogonality catastrophe calculation.24,25Hence, averaging of~28! can be done by using the
bosonization method26 that replaces the fermionic Hamiltonian by a bosonic one.~The calculation
is described in Appendix B.! In the bosonized representation one has to do a simple Gaussian
average, which gives

x~l!5e2 l̃2f ~ t,T!, ~29!

wherel̃/2p11/25 bl/2p11/2c, with b••• c being the fractional part. The function

f ~ t,T!5K K S E
0

t

c1,t
1 c1,t dt D 2L L 52Re

1

4E0
tE

0

t T2 dt1 dt2
sinh2~pT~ t12t22 id!!

~30!

5
1

2p2 lnS 1

pTd
sinhpTtD5H 1

2p2 ln
t

d
, d!t!

\

T
,

Tt

h
2

1

2p2 ln 2pTd, t@
\

T
,

~31!

whered is an ultraviolet cutoff time, of the order of\/EF . At long times, according to~3!, this
leads to Gaussian counting statistics.

As a side remark, the distribution given by Eq.~29! also gives a solution to another problem:
the statistics of the number of fermions inside a segment of fixed length in one dimension. The
relation is immediately obvious after one assigns tot in Eq. ~28! the meaning of a coordinate on
a line. Thus, in this problem the statistics are Gaussian as well.

Now, it turns out that the general case of non-vanishing reflection,B Þ 0, can be reduced to
~28! by a canonical Bogoliubov transformation ofca,t making the quadratic form in~24! diagonal.
The transformation is related in the usual way with the eigenvectors of the matrixŴ. Thus, we
come to Eqs.~28!,~29! with l replaced byl* :

sin
l*
2

5uAusin
l

2
. ~32!

The counting statistics in this case are non-Gaussian:
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x~l!5e2l
*
2f ~ t,T!. ~33!

One checks that the second moment of the distribution,

^^m2&&52
]2x~l!

]l2 U
l50

52uAu2f ~ t,T!, ~34!

agrees with the Johnson-Nyquist formula for the equilibrium noise.

VI. STATISTICS OF A DC CURRENT: QUANTUM SHOT NOISE

Let us consider nonequilibrium noise. In this case, due to the asymmetry in the distributions,

nL(R)(E)5(exp(E6 1
2eV)/T11)21, generally one cannot uncouple the two channels by a canonical

transformation. We calculate the statistics within an approximation that ignores the effect of
switching att50 andt5t. Let us close the axist into a circle of lengtht, which amounts to
restricting on periodic states:

c~t!5c~t6t !. ~35!

For thet2periodic problem, by going to the Fourier space, one has

x~l!5 )
kPZ

@11uAu2~e2 il21!nL~Ek!~12nR~Ek!!1uAu2~eil21!nR~Ek!~12nL~Ek!!#,

~36!

whereEk52p\k/t, k is an integer. For larget, t@\/T or t@\/eV, the product is converted to an
integral:

ln~x~l!!5
t

2p\E2`

1`

dE ln~11uAu2~e2 il21!3nL~12nR!1uAu2~eil21!nR~12nL!!.

~37!

We evaluate it analytically, and get

x~l!5exp~2tTu1u2 /h!, ~38!

where

u65v6cosh21~ uAu2 cosh~v1 il!1uBu2 coshv !, ~39!

v5eV/2T. The answer simplifies in the two limits:T@eV andeV@T. In the first case we return
to the equilibrium result~33!. In the second case, corresponding to the recently discussed quantum
shot noise,3–5 we have

x~l!5~ei eluAu21uBu2!euVut/h, e5sgnV, ~40!

Analyzed according to Eq.~3!, this x(l) leads to the binomial distribution

PN~m!5pmqN2mCN
m ,

p5uAu2, q5uBu2, N5euVut/h. One checks that the moments^m&5pN and^^m2&&5pqN corre-
spond directly to the Landauer formula and to the formula for the intensity of the quantum shot
noise.3–5 The correction to the statistics due to the switching effects is insignificant.10

4853Levitov, Lee, and Lesovik: Counting statistics and coherent states of current

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



VII. NOISE DUE TO A VOLTAGE PULSE: ORTHOGONALITY CATASTROPHE

Here we consider the fluctuations of current in a single-channel conductor induced by a
voltage pulse. The result will be that the dependence of the fluctuations on Faraday’s flux
F52c*V(t)dt contains a logarithmically divergent term periodic inF with the period
F05hc/e. The fluctuation is smallest nearF5nF0. The divergence is explained by a compari-
son with the orthogonality catastrophe problem. TheF02periodicity is related with the discrete-
ness of ‘‘attempts’’ in the binomial statistics picture of charge fluctuations presented above.

Initially, the orthogonality catastrophe problem emerged from the observation that the ground
state of a Fermi system with a localized perturbation is orthogonal to the nonperturbed ground
state, no matter how weak the perturbation.27 Originally, the discussion was focused on the purely
static effect of Fermi correlations on the ground state that leads to the orthogonality, but then it
shifted to dynamical effects. When a sudden localized perturbation is turned on in a Fermi gas, the
number of excited particle-hole pairs detected over a large time intervalt diverges as lnt/t, where
t is the time of switching of the perturbation. This effect leads to power law singularities in
transition rates involving collective response of fermions, such as x-ray absorption in metals.28,24

In this section we present an application of the orthogonality catastrophe picture to the electric
current noise.

Let us consider a single channel conductor in an external field described by the one-
dimensional Schro¨dinger equation,

i
]

]t
c~x,t!5Ĥc~x,t !,

~41!

Ĥ5
1

2 S 2 i
]

]x
2
e

c
A~x,t ! D 21U~x!,

where the potentialU(x) represents the scattering region andA(x,t) is the vector potential cor-
responding to the applied pulse of electric field. Since the pulse durationt is assumed to be much
longer than the time of scattering, one can treat the vector potential as static and apply a gauge
transformation in order to accumulate the fluxw(t)5e/\*2`

t V(t8)dt8 in the phases of the trans-
mission amplitudes, thus making them time dependent. By going through the argument presented
in Sec. IV, one obtains the scattering states~17! and~19! with time-dependent forward scattering
amplitudes:

AL~R!→AL~R!e
6 iw~ tr !, ~42!

where the timet r5t2uxu/vF is taken retarded in order to account for the finite speed of motion
after scattering. As before, here we assume that scattering by the potential as well as traversing the
region where the voltage is applied takes negligible time compared to the duration of the voltage
pulse. In this approximation the amplitudes of backward scatteringBL(R) are time-independent
constants.

To draw a relation with the orthogonality catastrophe problem, let us study the effect of the
voltage pulse on the scattering phasesd1, d2. They can be found by diagonalizing the scattering
matrix,

Ŝ ~ t !5FALe
iw~ t !1 il/2 BR

BL ARe
2 iw~ t !2 il/2G , ~43!

and writing its eigenvalues aseid1,eid2. The relation between the phasesd1,2 before and after the
pulse is written conveniently throughd65(d16d2)/2. The phased1 does not change at any time,
and the phased2 changes according to
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cos2 d2~ t8!1cos2 d2~ t !22 cosd2~ t8!cosd2~ t !cosDw5uALu2 sin2 Dw, ~44!

whereDw5w(t8)2w(t). Now, let us compare the situation to the orthogonality catastrophe in the
Fermi system subjected to a time-dependent perturbation~43!. Change of the flux induces the shift
of the phasesd6→d68 and makes the new ground state orthogonal to the old one:

^08u0&5expS 22
d
*
2

p2 ln
L

lF
D , ~45!

whereL is the system size,lF is Fermi wavelength, andeid* is an eigenvalue of the matrix
Ŝ 21(t5`)Ŝ (t52`):

sin
d*
2

5uALusin
Dw

2
. ~46!

In terms of dynamics, this implies that the old ground state is shaken up so that infinitely many
particle-hole pairs are excited.24 It should lead to a logarithmically diverging contribution to noise,
since for each of the particle-hole pairs there is a finite probability~equal touALBRu2) that the
particle and the hole will go to different terminals of the conductor, thus resulting in a current
fluctuation. The periodicity in Faraday’s fluxF52c*V(t)dt follows from the gauge invariance
and is explicit in Eqs.~44!,~46! for d68 . The logarithmic divergence vanishes atF5nF0, as
expected, since at integerF there is no long-term change of the scattering.

Let us calculate the mean square fluctuation of the charge^^Q2&& transmitted through the
system due to the pulse. For that, one can use the formula~26! with the time-dependent scattering
matrix ~43!. To get the second cumulant^^Q2&& one expands the exponent~26! up to second order
terms inl, and takes an irreducible average using Wick theorem. The averages ofci ,t have the
usual form:

^ci,t
1cj,t8&5dijEn~E!eiE~t2t8!

dE

2p
,

~47!

^ci ,tcj ,t8
1 &5d i j E ~12n~E!!e2 iE~t2t8!

dE

2p
,

wheren(E)5(eE/T11)21 is the Fermi distribution. The result reads as

^^Q2&&5
ge2

2p E S uAu4U E
0

t

eivt8 dt8U21uABu23U E
0

t

eiw~ t8!1 ivt8 dt8U2Dv coth
\v

2T

dv

2p
, ~48!

whereg is spin degeneracy. The first term in~48! is a part of equilibrium noise since it does not
depend onw. To analyze the second term, let us take a step-like time-dependence ofw resulting
from an abrupt voltage pulse applied at the timet0, 0,t0,t, the pulse durationt being much
shorter thant. Taking the integral and keeping only the terms diverging att→`, we find

ge2

2p E U eivt021

iv
1e2p iF/F0

eivt2eivt0

iv U2uvu
dv

2p
5
ge2

p2 S lntEF

\
12 sin2

pF

F0
ln
t

t D , ~49!

where the ultraviolet-diveregent integrals are cut at frequency;EF /\. By subtracting the result
for F50 as corresponding to equilibrium, one obtains a logarithmic contribution to the non-
equilibrium noise:
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^^Q2&&5ge2uABu2F 2p2sin
2
pF

F0
ln
t0
t

1
F

F0
G1•••1^^Q&&eq . ~50!

The origin of the non-diverging term in Eq.~50! proportional toF/F0 will be discussed below.
The dots in Eq.~50! represent corrections higher order inF0 /F, and the equilibrium noise,

^^Q2&&eq5
e2G

p2 ln
tEF

\
, G5g

e2

\
uAu2, ~51!

is obtained by repeating the calculation forF50. The expression~51! agrees with the Nyquist
formula,

^^ j v j2v&&5e2Gv coth
v

2T
, ~52!

taken atT50, Fourier transformed, and combined with the relationQ5*0
t j (t8)dt8.

The term in Eq.~50! proportional toF/F0 is obtained by rewriting the integral in the second
term of ~48! as

E E E dv

2p
uvudt1 dt2 ei ~w~ t1!2w~ t2!1v~ t12t2!!, ~53!

and extracting the contribution of almost coinciding timest1 and t2 by going to new variables
t5(t11t2)/2, t85t12t2, and changing the order of integrations:

E dtE dv

2p
uvu E dt8 eiw~ t1!2 iw~ t2!1 ivt85E uẇudt, ~54!

where we replacedw(t1)2w(t2)5w(t1t8/2)2w(t2t8/2) by ẇt8. The result~54! is approximate:
it does not give the log-term because the transformation~54! properly takes care of the integral
~53! only in the domaint1.t2, under the restriction thatF(t) is varying sufficiently smoothly.
WhenF(t) is a monotonous function,ẇ.0, the integral in the right hand side of~54! equals
2pF/F0 and thus produces the term of Eq.~50! proportional toF/F0.

It is clear from the derivation that the two terms in the brackets in Eq.~50! arise from different
integration domains in thet1-t2 space: the first term corresponds tout1,2u>t,t1t2,0, while the
second one is due to almost coinciding moments,ut12t2u!t. Since these domains are almost
non-overlapping, the two contributions to the noise~50! do not interfere~cross terms are small!.

In order to estimate the correction to the result~50!, let us derive it by another method that
allows to trace out the higher order terms. For that, let us take the flux in the form
w(t)5Nl(t), wherel(t) is a smooth monotonous function,l(2`)50, l(`)52p. For integer
N@1 the Fourier component ofeiNl(t) entering Eq.~54! in the stationary phase approximation is
given by

E
2`

`

eiNl~ t !1 ivt dt5(
k
A 2p i

Nl̈~ tk!
eiNl~ tk!1 ivtk1•••, ~55!

where the dots indicate terms;O(N23/2), and tk’s are real solutions of the equation
Nl̇(t)1v50. Then we can write

U E
2`

`

eiNl~ t !1 ivt dtU25(
k

2p

Nl̈~ tk!
1O~N22!, ~56!
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and thus obtain

^^Q2&&5AE
2`

`

(
k

uvudv

Nl̈~ tk!
1•••, ~57!

where the dots represent higher order terms. By differentiating both sides of the equation
Nl̇(t)52v one finds the relation dv52Nl̈(tk)dtk , which means that
uvudv/l̈(tk)52ul̇(tk)udtk , and therefore the integral in Eq.~57! equalsN*2`

` dl52pN. Since
uvudv scales asN2, the correction to Eq.~57! can be evaluated asO(1), i.e., it is of the order of
one for anyN. This means that Eq.~77! has relative accuracy ofO(1/N).

The term in~50! proportional toF/F0 is interesting in connection with the picture of bino-
mial statistics presented in Sec. VI. In the dc bias case, the distribution of charge for a single
channel situation was found to be binomial with the frequency of attempts equal toeV/h and the
probabilities of outcomesp5uAu2, q5uBu2. Taken literally, this means that the attempts to trans-
fer charge are repeated regularly in time, almost periodic with the periodh/eV, with each attempt
having two outcomes–transmission or reflection–occurring with the probabilitiesp andq. How-
ever, the regularity of the attempts does not lead to an ac component in the current, rather it
appears just as a part of statistical description of charge fluctuations. Still, the presence of a
non-zero frequency in a noninteracting system requires interpretation.

Let us suppose that the flux varies linearly with time,F(t)52cVt. Since the
e.m.f.52]F/c ]t, the linear dependence ofF(t) is equivalent in its effect on the noise to
constant voltageV. In accordance with one’s expectation, the second term in the brackets in Eq.
~50! for a single channel iŝ^Q2&&5ge2uABu2F/F0, i.e., it is precisely of the form arising from
the binomial distribution with probabilities of outcomesp and q, and the number of attempts
N5F/F0. ~Let us recall that the second moment of the binomial distribution equalspqN.! Taking
into account that the time during which the flux changes byF0 is h/eV, we can interpret the
number of attempts in the statistical picture as the number of flux quanta by which the flux is
changed. Such a conclusion suggests an interesting generalization of the picture of binomial
statistics by attributing the meaning of the number of attempts to the flux change measured in the
units ofF0, regardless of the linear or non-linear character of the flux dependence on time.

It is appealing to put the special role of integer fluxes in connection with the binomial
statistics of current, where the flux quanta are naturally interpreted as discrete attempts to transmit
charge. Although this picture is yet to be confirmed by analytic treatment, it receives some support
from the property of theF02periodic term in~50! to vanish at every integerF. One may
conjecture that the statistics are close to binomial only when the flux change is an integer, and
have diverging logarithmic corrections otherwise. The distinction that Eq.~50! makes between
integer and non-integer values of the flux and the relation of integer flux change to the number of
attempts in the binomial distribution, gives another perspective to the statistical picture of a
current pulse.

To summarize, the fluctuations caused by a voltage pulse, in contrast to the average transmit-
ted charge, distinguish between integer and non-integer flux change. As a result, the dependence
of noise on the flux is non-monotonous and has minima at integer values of the flux.

VIII. COHERENT STATES OF CURRENT

The question we address in this section is about the optimal way of changing flux that
minimizes induced noise. It is clear from what has been said that to achieve minimum of the noise
one should change the flux by an integer amount,

Dw5w~ t5`!2w~ t52`!52pn, ~58!
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in order to suppress the logarithmically divergent term. However, since for a givenDw the noise
depends on the actual functionw(t), not just onDw, we have a variational problem to solve for
the noise as a functional of the time dependence of the flux. This functional was derived in Sec.
VII. At zero temperature it is given by

^^Q2&&5
ge2

2p
uABu2E UE eiw~ t !1 ivt dtU2uvu

dv

2p
, ~59!

whereA andB are transmission and reflection amplitudes, andg is spin degeneracy. We shall
study the variational problem~49! with the boundary condition~58! and show that its general
solution has the form of a sum of soliton-like functions:

F~ t !56
F0

p (
k51

n

tan21S t2tk
tk

D , tk.0, ~60!

wheretk andtk are arbitrary constants. Under the condition~58!, any time dependence of the form
~60! gives absolute minimum to the noise:

min@^^Q2&&#5ge2uABu2unu. ~61!

For an optimal time dependence of the voltageV52]F/c ]t, therefore, one has a sum of
Lorentzian peaks:

V~ t !57
F0

cp(
k51

n
tk

~ t2tk!
21tk

2 . ~62!

In order to compare quantum noise with conductance, let us mention that the average transmitted
charge,

^^Q&&5geuAu2
Dw

2p
5g

e2

h
uAu2E V~ t !dt, ~63!

simply obeys the Ohm’s law, i.e., there is no particular dependence on the way the flux change
Dw is realized.

The results~60!,~61! have a simple interpretation in terms of the binomial statistics picture of
charge fluctuations. For the binomial distribution with probabilities of outcomesp and q,
p1q51, and with the number of attemptsN, the second moment is known to be equal to
pqN. The comparison with Eq.~61! suggests that we attribute ton5DF/F0 the meaning of the
number of attempts. This interpretation is supported by the structure of the function~60! consisting
of n terms, each corresponding to a unit change of flux. A remarkable property of the function~60!
is its separability, manifest both in the form of the terms and in the way the parameterstk ,tk enter
the expression. Let us note that by making some of thetk’s close to each other one can have an
overlap in time of different ‘‘attempts.’’ The overlap, however, does not change the fluctuations
~61!. The situation reminds us of the one with solitons in integrable non-linear systems, or with
non-interacting instantons in integrable field theories. Also, the absence of interference is inter-
esting in the context of coherent nature of transport in this system: after all, we simply have
scattering by a time-dependent potential. Perhaps, proper interpretation of this effect should be
sought in establishing a relation with the theory of coherent states, known to eliminate to some
extent the quantum mechanical interference.

Let us now turn to the variational problem. It is convenient to do the integral overv first and
to rewrite ~49! as
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^^Q2&&52
D

pE E eiw~ t !2 iw~ t8!

~ t2t8!2
dt dt8, ~64!

whereD5 (ge2/2p) uABu2. In order to avoid divergence att5t8 the denominator in~64! should
be understood as

1

2 F 1

~ t2t81 id!2
1

1

~ t2t82 id!2
G , d→0, ~65!

the condition that one obtains by introducing regularization in~49!: uvu→uvue2uvud. By consid-
ering variation of the functional~64! we have the equation for an extremum:

ImFeiw~ t !E e2 iw~ t8!

~ t2t8!2
dtG50. ~66!

By using the Cauchy formula one checks that the functions

eiw~ t !5)
k51

n
t2lk

t2l̄k
, lk5tk1 i tk , ~67!

satisfy ~66! provided thattk’s are all of the same sign. Obviously, the functions~67! are just
another form of~60!.

It remains to be shown that the functional reaches its minimum on the solutions~67!. To prove
it we proceed in the following steps. Let us writeeiw(t) as

eiw~ t !5 f1~ t !1 f2~ t !, ~68!

where f1(t) and f2(t) are bounded analytic functions in the upper and lower complext half-
plane, respectively. Representation~68! exists for any non-singular function and defines the func-
tions f1 and f2 up to a constant. Then we substitute Eq.~68! in ~64!, and apply the Cauchy
formula for the derivative,

ḟ6~ t !56
i

2p R f6~ t8!dt8

~ t2t86 i0!2
, ~69!

where the contour of integration is chosen in the half-plane of analyticity off1 or f2 , respec-
tively. Thus one gets

^^Q2&&52 iD E ~ f̄1 ḟ12 f̄2 ḟ2!dt. ~70!

On the other hand,

n5
1

2p i E e2 iw~ t !
d

dt
eiw~ t ! dt52

i

2pE ~ f̄1 ḟ11 f̄2 ḟ2!dt, ~71!

where the last equality is a result of substituting~68! and using the relations

E f̄1 ḟ25E f̄2 ḟ150, ~72!
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which follow from the Cauchy theorem. Now, Eq.~70! can be rewritten through Fourier compo-
nents off1 and f2 as

^^Q2&&5DE
0

`

~ u f1~v!u21u f2~2v!u2!v
dv

2p
, ~73!

thus demonstrating positivity of both terms in~70!. @It is used thatf1(v)5 f2(2v)50 for
v,0.# With this, by comparing~70! and ~71! we obtain

^^Q2&&>2pDunu. ~74!

Equality in ~74! is reached only when eitherf1(t) or f2(t) vanishes. Therefore, to obtain the
minimum one has to take the functionseiw(t) that are regular in one of the half-planes. This remark
is sufficient to see that the functions~67! form a complete family of solutions.

It is worth mentioning that the method used to derive~74! copies almost entirely the proce-
dure of derivation of the duality condition in the theory of instantons. Like in other situations
where the duality condition holds, our ‘‘solitons’’ do not interact:^^Q2&& shows no dependence on
the parameterslk of the solution~67!. Among numerous field theories that allow for an exact
solution of the instanton problem the one most similar to our case is the theory of the classical
Heisenberg ferromagnet in two dimensions. For this problem the instantons were found by map-
ping the order parameter space~i.e., the unit sphere! on the complex plane.29 The duality condition
was shown to take the form of the constraint of analyticity or anti-analyticity of the mapped order
parameter function~compare with the conditionf150 or f250 derived above!. Multi-instanton
solutions were given as products of single instanton solutions@cf. Eq. ~67!#. This analogy obvi-
ously deserves more attention.

At this point let us examine an interesting nonoptimal time dependence of the flux, the sum of
two solitons with opposite charge:

w~ t !52F tan21S t2t1
t1

D2tan21S t2t2
t2

D G , ~75!

t1,2.0. This function corresponds toeiw(t) of the form~67! but with the poles in both half-planes.
In this caseDw50, and thuŝ ^Q&&50, so min@^^Q2&&#50. With the function~75!, however, one
finds

^^Q2&&54pDUl12l2

l12l̄2
U2, ~76!

wherel1,25t1,21 i t1,2. For different values of the parameterst1,2, t1,2, Eq. ~76! interpolates
between two trivial limiting cases:~i! ^^Q2&&→0, when the two flux steps in~75! have nearly the
same duration and almost overlap;~ii ! ^^Q2&&→4pA, when the flux steps either differ strongly in
their duration or do not overlap. In the case~ii ! the noise is two times bigger than the noise due to
a single step, as it should be.

We see that whenDw/2p is of the order of one a non-optimal time dependencew(t) can
considerably enhance the noise. It is not the case, however, forDw/2p@1. This limit was studied
in Sec. VII, where it was found that whenw(t) is a monotonous function the result

^^Q2&&5ge2uABu2uDw/2pu ~77!

is rather accurate, even if the time dependencew(t) is not optimal.13

A more intuitive way to understand the accuracy of Eq.~77! is to note that for a givenn the
number of parameters in the optimal flux dependence~53! is 2n, which means that half of them
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are in some sense redundant. Because of that any smooth monotonous function with sufficiently
large variationDw can be rather accurately approximated by a function of the form~53!, and
therefore the noise exceeds the lower bound just slightly.

An implication of this result for the binomial statistics picture is as follows. As it was dis-
cussed above there is a~conjectured! correspondence of the terms of Eq.~60! and of the attempts.
The deviation from the binomial distribution, that of course should exist for a non-optimal flux
functionw(t), will remain bounded in the case of a smoothw(t), asDw increases taking integer
values. More precisely, the distribution will be written as a mixture of binomial distributions with
different numbersN of attempts,P(m)5(NrNPN(m), wherePN(m)5pmqN2mCN

m . The esti-
mated correction implies that the distribution of attemptsrN has finite variance in the limit
N5Dw/2p→`.

Before closing, let us mention that in order to apply the results of Secs. VII, VIII to transport
in a mesoscopic metallic conductor with disorder, described by many conducting channels with
transmission constantsTn , one just needs to replaceuABu2 by (nTn(12Tn), since different
scattering channels contribute to the noise independently. The condition of validity of our treat-
ment then is that the variation of the flux is sufficiently slow, so that min@tk#@\/Ec , the time of
diffusion across the sample. However, at non-zero temperature one also has to satisfy the condi-
tion tk!\/T, the time of phase breaking. So, the temperature interval where our estimate of the
noise holds isT<Ec .

IX. CONCLUSIONS

We introduced a quantum-mechanical scheme that gives complete statistical description of
electron transport. It involves a spin 1/2 coupled to the current so that the spin precession mea-
sures transmitted charge. The off-diagonal part of the spin density matrix, taken as a function of
the coupling constant, gives the generating function for the electron counting statistics. We find
the statistics in a single-channel ideal conductor for arbitrary relation between temperature and
voltage. In equilibrium, the counting statistics are Gaussian, both for zero-point fluctuations and at
finite temperature. At constant voltage and low temperature the statistics are Bernoullian and the
distribution is binomial.

The theory leads to interesting conclusions applied to the current fluctuations produced by a
voltage pulse. In this case, the noise has phase sensitivity: it oscillates as a function of Faraday’s
flux, c*V(t)dt, reaching minimum at integer fluxes. We studied the noise as a function of the
shape of the voltage pulse and found optimal time dependence that provides an absolute minimum
of the noise for a given average transmitted charge. The solution displays an interesting analogy
with the problem of instantons in the field theories obeying duality symmetry. Optimal time
dependence is a sum of Lorentzian peaks of voltage, each corresponding to a soliton of flux. The
change of flux for a soliton is equal to the flux quantumF0. The solitons are interpreted in terms
of the binomial statistics picture of charge fluctuations as attempts to transmit electrons, one
electron per soliton.

APPENDIX A: LARMOR CLOCK MEASUREMENT OF TUNNELING TIME

How long does it take a particle to tunnel under a barrier? More precisely, suppose a particle
of energyE is moving in one dimension, and is scatterred on a potential barrier:

i
]

]t
c~x,t !5F2

1

2

]2

]x2
1U~x!Gc~x,t !. ~A1!

What is the probability that during the scattering the particle spends timet within the region
a,x,b under the barrier? Questions of that kind arise naturally in discussion of any quantum-
mechanical process that takes finite time, like nuclear or chemical reactions, resonance scattering,
or tunneling.
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There have been several attempts to treat such problems23 that resulted in the formulation of
a very interesting concept of a Larmor clock. It has various analogies with the spin galvanometer
discussed above, and it seems useful to review the Larmor clock here using the same language.
The Larmor clock uses an auxiliary spin 1/2 attached to the scattering particle, and an auxiliary
constant magnetic fieldv localized within the region of interest,a,x,b,

Ĥ int52
1

2
vszE

a

b

c1~x!c~x!dx. ~A2!

The choice of coupling is such that the spin precession angle is proportional to the time spent in
the regiona,x,b. The difference from our spin-galvanometer is that the spin is not stationary,
but travels with the particle, and also that the spin is coupled to the particle density, rather than to
the current.

To find the distribution of times one has to write down the system density matrix evolved in
time, and take partial trace over the particle outgoing states.~We assume that one does not have to
distinguish between different results of scattering, and is interested in the tunneling time only,
regardless of whether the particle went through the barrier, or has been reflected.! Then, by
following the argument of Sec. III one obtains the spin density matrix:

r̂s~ t !5F r̂↑↑~0! x~v!r̂↑↓~0!

x~2v!r̂↓↑~0! r̂↓↓~0! G . ~A3!

Here

x~v!5tre~e
2 iĤvtr̂ee

iĤ2vt!, ~A4!

wheree2 iĤvt is the evolution operator for the one-particle problem with no spin:

i
]

]t
c~x,t !5F2

1

2

]2

]x2
1U~x!2

1

2
vuab~x!Gc~x,t !, ~A5!

whereuab5u(x2a)u(b2x). The auxiliary magnetic fieldv now turns into a constant potential
within the regiona,x,b, and zero outside. Here again, with the spin degrees of freedom taken
care of by~A3!, we are left with a single particle problem. By using cyclic property of the trace
one finds

x~v!5^eiĤ2vte2 iĤvt&. ~A6!

Here the bracketŝ•••& mean averaging over the particle initial state. Note thatx(v) is written in
terms of a purely single particle problem, not involving spin variables.

The quantityx(v) obtained by measuring precession of the spin is a generating function for
the distribution of times, which is clear from the Fourier transform

x~v!5E P~t!eivt dt. ~A7!

The probabilitiesP(t) of different precession angles of the spin should be interpreted as the
scattering time distribution.

The probabilitiesP(t) defined by~A5!, ~A6!, and~A7! have several interesting properties:(a)
*P(t)dt51; (b) P(t) are real numbers;(c) P(t) vanish at negative timest,0. The normaliza-
tion property(a) is derived from~A6! by settingv50. Property(b) ~real valuedness! is derived
from x(2v)5x̄(v) which follows from~A6!. The causality propertyc) follows from considering
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the evolution in the problem~A5! with v continued to complex values. One notes that both the

solutionc(x,t) of Eq. ~A5! and the evolution operatore2 iĤvt are regular in the upper half-plane
Imv.0, which means that the same is true forx(v). From that, the causality property(c) follows
by the usual argument using the Cauchy theorem in the integral

P~t!5E
2`

`

x~v!e2 ivt
dv

2p
, ~A8!

by closing the integration contour in the upper half-plane.
The properties(a), (b) and (c) suggest thatP(t), so far defined formally as the Fourier

spectrum ofx(v), can have a meaning of probability. However, generally the sign ofP(t) can be
either positive or negative, which makes the probabilistic interpretation problematic.

For the one particle problem one can write the generating functionx(v) in terms of the
scattering amplitudesA andB. For that, it is convenient to use the expressions~23!, ~24! for the
evolution operator in terms of the scattering matrixŜ , written using the wavepacket scattering
states~19!. Specializing to one particle and taking partial trace, one finds

x~v!5Ā2v~E!Av~E!1B̄2v~E!Bv~E!, ~A9!

whereA(v) andB(v) are the transmission and reflection amplitudes of the problem~A5! taken
at the energyE of incident particle.

To see the Larmor clock working, let us consider an example of resonance scattering, where
a particle is scattered on a potential forming a quasibound state of life-timeG. Using the method
described above one can find the distribution of times it takes the particle to scatter. For simplicity,
suppose that the particle can be only reflected, but not transmitted (A50). Then the reflection
amplitude as function of energy is given by the Breit–Wigner formula:

B~E!5
E2E02 iG/2

E2E01 iG/2
. ~A10!

Turning on the fieldv in the quasibound state region is equivalent to shifting the resonance
energy:E0→E02v/2. Thus, the generating function of the time distribution is

x~v!5
«2v1 iG

«2v2 iG

«1v2 iG

«1v1 iG
, ~A11!

where«52(E2E0). The distributionP(t) is found by Fourier transform:

P~t!5E x~v!e2 ivt
dv

2p
5d~t!2

4G

«
~G sin «t2« cos«t!e2Gt5

]

]t S u~t!2
4G

«
sin «t e2GtD .

~A12!

The d-function term corresponds to the nonresonance scattering channel. Other terms describe
dwelling in the quasi-bound state. In this exampleP(t) is changing sign, which makes the
probabilistic interpretation ambiguous.

The paradox arising due to negativeP(t) is only an apparent one. Really, the measurement of
time performed by the Larmor clock is not the usual quantum-mechanical measurement, since the
time is not an operator, and thus it cannot be measured in the same sense as other quantum-
mechanical observables. This should be contrasted with the measurement of charge described
above. Although the spin precession measurement scheme we use looks quite similar to the
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Larmor clock, there is a difference: Electric charge is an observable in the usual quantum-
mechanical sense, it takes quantized integer values, and the probabilities of those values resulting
from our calculation are non-negative.

APPENDIX B: BOSONIZATION CALCULATION OF COUNTING STATISTICS

In order to find generating function of counting statistics for a single channel conductor, we
have to evaluate

x~l!5^exp ilN̂t&, ~B1!

whereN̂t5*(c1,t
1 c1,t2c2,t

1 c2,t)dt, andci ,t , ci ,t
1 are canonical Fermi operators.

In one dimension, there is an equivalence between an ideal Fermi gas and a harmonic Bose
chain, which provides a representation of the Fermi problem in terms of free bosons, known as the
bosonization transformation.24–26 This representation facilitates calculting averages like~B1!,
since they are being transformed to the form of a Gaussian average.25

According to the bosonization method, the bosonic Hamiltonian representing the fermionic
problem is written as

ĤBose5
\vF
4p E :~¹uL!2:1:~¹uR!2:dx, ~B2!

whereuL(R)(x) are Bose operators,

@¹uL~R!~x!,uL~R!~y!#562p id~x2y!. ~B3!

Connection to the fermionic problem is given as a relation between the densities of the left- and
right-moving fermions,r̂ i(x)5ci ,x

1 ci ,x , i51,2, and the bosonic variablesuL(R)(x), written as

r̂1~2!~x!5
1

2p
¹uL~R!~x!. ~B4!

One notes that the operatorN̂t in ~B1! is linear in the densitiesr̂ i , and thus it is represented by an
expression linear in the bosonic variables,

N̂t5
1

2p
~uL~ t !2uL~0!2uR~ t !1uR~0!!, ~B5!

which turns the average in~B1! into a Gaussian type.
Therefore, the average of~28! is equal to the product of averages,

x~l!5 K expil2p
~uL~ t !2uL~0!!L K exp2 il

2p
~uR~ t !2uR~0!!L , ~B6!

taken over the ground state of the Hamiltonian~B2!. To perform the average in~B6!, it is
sufficient to deal with the average overuL’s, because of the left-right symmetry of the problem.

Let us writeuL(x) in terms of bosonic operators of plane waves:

uL~x!5(
k.0

S2p

k D1/2@eikxbk1e2 ikxbk
1#;

~B7!

¹uL~x!5 (
k.0

~2pk!1/2i @eikxbk2e2 ikxbk
1#.
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One checks that the commutation relations~B3! are consistent with canonical commutation rela-
tions betweenbk and bk8

1 . ~The Hamiltonian of the left-moving fermions is represented by
ĤL5(k.0vkbk

1bk .) Then the quantityuL(t)2uL(0) appearing in the average~B6! is written as

(
k.0

S 2p

k D 1/2@~eikvt21!bk1~e2 ikvt21!bk
1#. ~B8!

We evaluate the average

^^~uL~ t !2uL~0!!2&&5 (
k.0

2p

k
ueikvt21u2~2NBose~kv !11!

54E
2`

` dk

uku
sin2S vkt2 D cothS vk2TD

52 lnS 1

pTd
sinh~pTt! D , ~B9!

whered is an ultraviolet cutoff. This expression equals (2p)2 times the functionf (t,T) computed
in ~30!. From that, we find the average~B6! to be

x~l!5 K expil2p
~uL~ t !2uL~0!!L 25expF2S l

2p D 2^^~uL~ t !2uL~0!!2&&G5exp~2l2f ~ t,T!!,

~B10!

which is the desired result.
Periodicity ofx(l) in l, corresponding to the charge quantization, is recovered if one corrects

the relation betweenr̂ i(x) andu i(x), in order to take into account the integer-valuedness of the
particle numberN̂t . Using the relation,r̂ i(x)5(ne

inu(x), and performing the average, one arrives
at the result~29!.
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Nuclear Physics Institute, Academy of Sciences, CZ-25068 Rˇežnear Prague,
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We consider a pair of parallel straight quantum waveguides coupled laterally
through a window of a widthl in the common boundary. We show that such a
system has at least one bound state for anyl.0. We find the corresponding eigen-
values and eigenfunctions numerically using the mode-matching method, and dis-
cuss their behavior in several situations. We also discuss the scattering problem in
this setup, in particular, the turbulent behavior of the probability flow associated
with resonances. The level and phase-shift spacing statistics shows that in distinc-
tion to closed pseudo-integrable billiards, the present system is essentially noncha-
otic. Finally, we illustrate time evolution of wave packets in the present model.
© 1996 American Institute of Physics.@S0022-2488~96!00310-6#

I. INTRODUCTION

Spectral and scattering properties of quantum particles whose motion is confined to nontrivial
subsets ofRn represented until recently rather textbook examples or technical tools used in proofs.
There are several reasons why these problems attracted a wave of interest in a last few years. The
most mathematical among them stems from the observation that, roughly speaking, one can
choose the region in such a way that the spectrum of the corresponding Neumann Laplacian
coincides with a chosen set;1,2 of course, the boundary of such a region may be in general rather
complicated.

On the other hand, even regions with nice boundaries may exhibit various unexpected prop-
erties manifested, for instance, in spectra of the corresponding Dirichlet Laplacians. A prominent
example is the existence of bound states, i.e., localized solutions to the free Schro¨dinger equation,
in infinitely stretched regions such as bent, branched, or crossed tubes of a constant cross
section—see, e.g., Refs. 3–7; more references are given in the review paper.8

A. Quantum wire systems

A strong motivation to study such bound states and related resonance effects9–11 comes from
recent developments in semiconductor physics, because they can be used as models of electron
motion in so-calledquantum wires, i.e., tiny strips of a very pure semiconductor material, and
similar structures. Let us briefly recall key features of such systems; more details and a guide to
the physical literature can be found in Ref. 8.

Characteristic properties of the semiconductor microstructures under consideration are of
small size, typically from tens to hundreds of nanometers, high purity, which means that the
electron mean free path can be a fewmm or even larger, and crystalline structure. In addition,
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boundaries of the microstructures consist usually of an interface between two different semicon-
ductor materials; the electron wave functions are known to be suppressed there.

Behavior of an electron in such a ‘‘mesoscopic’’ system structure is, of course, governed by
the many-body Schro¨dinger equation describing its interaction with the lattice atoms including the
boundary, external fields, and possible impurities. The mentioned properties allow us, however, to
adopt several simplifying assumptions. As we have said, the mean free path is typically two or
three orders of magnitude larger than the size of the structure; hence the electron motion can be
assumed in a reasonable approximation as ballistic, i.e., undisturbed by impurity scattering.

The most important simplification comes from the crystalline structure. The one-electron
Hamiltonian as a Schro¨dinger operator with a periodic potential exhibits an absolutely continuous
spectrum~see Ref. 12, Sec. XIII.16!; in the solid-state physics language one says that the electron
moves in the lattice asfreewith some effective massm* . The latter changes, of course, along the
spectrum but one can regard it as a constant when we restrict our attention to the physically
interesting part of the valence band; recall that its value may differ substantially from the true
electron mass, for instance, one hasm*50.067me for GaAs, which is the most common semi-
conductor material used in mesoscopic devices.

This property together with the wave function suppression at the interfaces makes it natural to
model electrons in a quantum wire system as free~spinless! particles living in the corresponding
spatial region with the Dirichlet condition on its boundary; an interaction term must be added only
if the whole structure is placed into an external field. This is the framework in which the men-
tioned curvature-induced bound states and resonances were studied. However, the physical con-
clusions one can draw from it are not restricted to mesoscopic devices: the results are useful for
description of other ‘‘new’’ quantum systems13 and provide fresh insights into the classical theory
of electromagnetic waveguides.14–16

B. Motivation of the present work

Apart from these practical reasons, the curvature-induced bound states provide at the same
time a warning example showing that an intuition based on semiclassical concepts may fail when
dealing with quantum systems. It is well known, for instance, that low-dimensional Schro¨dinger
operators have bound states for an arbitrarily small coupling constant as long as the potential is not
repulsive in the mean and decays sufficiently fast at infinity.17,18A common wisdom, however, is
that this is rather an exception, and that the number of bound states of a quantum system is at least
roughlyproportional to the classically allowed volume of the phase space. The waveguide systems
in question illustrate that this is not true, because they can exhibit in principleany number of
bound states, while havingno closed classical trajectories with the exception of an obvious
zero-measure set.

In this article we are going to consider another example of that kind, this time consisting of
two straight parallel quantum waveguides. We suppose that they have a common boundary which
has a window of a widthl allowing the particle to leak from one duct to the other. This an
idealized setup for several recently studied quantum-wire systems~see Refs. 19–22!. Using a
variational argument we shall show that such a system has always at least one bound state, i.e., an
isolated eigenvalue below the threshold of the continuous spectrum. Moreover, the system can
have any prescribed number of bound states provided the window width is chosen large enough.
These conclusions follow from simple estimates; however, they tell us nothing about the corre-
sponding wave functions and more detailed dependence of the bound-state energies on the param-
eters. To this aim, we shall formulate in Sec. IV a method to solve the problem numerically using
the mode-matching technique. In particular, we shall discuss how the first eigenvalue emerges
from the continuum as the window opens.

Interesting properties of the system are not exhausted by this. The coupling between the wave
functions in the ‘‘arms’’ and the connecting region allows the particle to tunnel between different
transverse modes, so the scattering matrix is nontrivial; one naturally expects it to have resonances
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with properties similar to those of the bound states below the first transverse-mode energy. It is not
easy to prove the existence of such resonances, because there is no natural parameter in the
problem which would make it possible to tune the intermode coupling. Neither the window width
l nor the replacement of the ‘‘empty’’ window by an ‘‘opaque’’ one with a suitable point inter-
action as in Ref. 23 allow for a sensible perturbation theory, because in both cases the unperturbed
bound state disappears as the coupling is switched out. Hence we rely again on a numerical
analysis based on the mode-matching technique; the results confirm our expectation about the
resonance character of the scattering and its dependence on parameters of the problem.

There is one more interesting aspect. The corresponding classical system of coupled ducts is
pseudo-integrable, its phase space being of genus three. Other systems of that type have been
recently studied;24,25 it was shown that their quantum couterparts exhibit a chaotic behavior. One
asks naturally whether a similar effect can be observed here. To find the level-spacing distribution
of the bound states, a very wide window is needed to produce a large number of eigenvalues. At
the same time, the spectrum has to be unfolded, i.e., rescaled so that the mean spacing does not
change along it. The result suggests that the spacing distribution is then sharply localized around
a fixed value; hence there is no chaos. This is not surprising, since all the bound-state wave
functions have transversally the shape of the first mode; so effectively they correspond to a
one-dimensional system. What is less trivial is that the spacing distribution of the scattering phase
shifts also does not witness a fully developed chaos; this suggests that repeated reflections are an
essential ingredient of the chaotic behavior of particles in bounded pseudo-integrable billiards.

The above mentioned scattering analysis relies on the stationary approach. The time evolution
of wave packets deserves a separate study. In this article we limit ourselves to a single example:
in the concluding section we present a numerical method to solve the corresponding time-
dependent Schro¨dinger equation, which allows us to draw some qualitative conclusions about time
delay in the scattering on the connecting window.

II. PRELIMINARIES

The system we are going to study is sketched in Fig. 1. We consider a Schro¨dinger particle
whose motion is confined to a pair of parallel strips of widthsd1 and d2, respectively. For
definiteness we assume that they are placed to both sides of thex-axis, and they are separated by
the Dirichlet boundary everywhere except in the interval~2a,a!; we shall denote this configura-
tion space byV andl :52a. Setting\2/2m51, we may identify the particle Hamiltonian with the
Dirichlet Laplacian,

H[H~d1 ,d2 ; l !:52DD
V , ~2.1!

FIG. 1. Laterally coupled quantum waveguides.

4869Exner et al.: Laterally coupled quantum waveguides

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



onL2~V! defined in the standard way~see Ref. 12, Sec. XIII.15!. Since the boundary ofV has the
segment property, it acts as the usual Laplace operator with the Dirichlet condition at the bound-
ary.

A simple bracketing argument12 shows thatH has bound states for alll large enough. Let us
first introduce some notation. Setd:5max$d1 ,d2% andD:5d11d2 , and furthermore

n:5
min$d1 ,d2%

max$d1 ,d2%
.

We shall also usemd :5(p/d)2, with mD andml corresponding in the same way toD and l ,
respectively. Cutting nowV by the additional Neumann or Dirichlet boundaries parallel to the
y-axis atx56a, we getHt

(N)
%Hc

(N)<H<Ht
(D)

%Hc
(D), where the ‘‘tail’’ part corresponds to the

four half strips and the rest to the central part with the Neumann and Dirichlet condition on the
vertical boundaries, respectively.

Sincesess(Ht
( j ))5[md ,`), j5N,D, the same is by the minimax principle true forH, and

possible isolated eigenvalues ofH are squeezed between those ofHc
( j ), j5N,D. The Neumann

estimate tells us that

inf s„H~d1 ,d2 ; l !…>mD5md~11n!22. ~2.2!

On the other hand,H has an eigenvalue belowmD provided Hc
(D) does, which is true if

mD1m l<md ; this shows that a sufficient condition forH(d1 ,d2 ; l ) to have at least a bound state
is that the length of the opening satisfies the inequality

l>
d~11n!

An~n12!
. ~2.3!

If n51, the coefficient on the right side is 2/)'1.155; it grows asV becomes more asymmetric.
More generally, the number of eigenvalues ofHc

(D) is ND : 5 @A(md2mD)/m l #, where@•#
denotes the entire part~recall that sinceD<2d, the first transversally excited state is already
abovemd!, while the number of ‘‘Neumann’’ eigenvalues isNN :511ND ; this means that the
number of bound states ofH(d1 ,d2 ; l ) satisfies the inequality

F ld An~n12!

11n G<N<11F ld An~n12!

11n G . ~2.4!

We see thatH(d1 ,d2 ; l ) has isolated eigenvalues, at least forl large enough, despite the absence
of ~a nonzero-measure set of! closed classical trajectories mentioned in the Introduction. In heu-
ristic terms, this may be understood as a manifestation of the fact that the semi-infinite ‘‘spikes’’
of the open barrier between the two ducts are capable of reflecting a quantum particle due to a
finite smearing of the wave packet. In the same way, one finds that themth eigenvaluemm of
H(d1 ,d2 ; l ) is estimated by

Sm21

l D 2< mm

md
2

1

~11n!2
<Sml D 2, ~2.5!

wherel:5l /d, and that the critical valuelm[ l m/d at whichmth eigenvalue appears satisfies the
bounds

~m21!~11n!

An~n12!
<lm<

m~11n!

An~n12!
. ~2.6!

4870 Exner et al.: Laterally coupled quantum waveguides

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



To learn more about the dependence of the eigenvalues and the corresponding eigenfunctions on
l andn, we have to use a different technique.

III. EXISTENCE OF BOUND STATES

The above existence argument giving Eq.~2.3! is a crude one; in fact, there is no lower bound
on the window width as the following result shows:

Theorem: H(d1 ,d2 ; l ) has an isolated eigenvalue in [mD ,md) for any l.0.
Proof:We modify for the present purpose the variational argument of Ref. 6; see also Ref. 8,

Sec. 2. Without loss of generality we may assume thatd2<d15d. The transverse ground-state
wave function is then

x1~y!:5HA 2

d1
sin~k1y!, yP~0,d1!,

0, otherwise,

wherek1 : 5 Amd; similarly we define the transverse ground state in the opening,

h1~y!:5A2

D
sin@K1~d12y!#

with K1 : 5 AmD. For anyFPD(H) we set

q@F#:5iHFi22mdiFi2

@if not marked explicitly, the norms always refer toL2~V!#.
Since the essential spectrum ofH starts atmd , we have to find a trial functionF such that

q@F#,0; it has to belong to the form domainQ(H), which means, in particular, that it must be
continuous insideV but not necessarily smooth. Notice first that ifF(x,y)5w(x)x1(y), we have

q@F#5iw8iL2~R!
2 . ~3.1!

To make the longitudinal contribution to the kinetic energy small, we use an external scaling. We
choose an intervalJ:5[2b,b] for a positiveb.a and a functionwPS ~R! such thatw(x)51 if
xPJ; then we define the family$ws : s.0% by

ws~x!:5 Hw~x!, uxu<b,
w„6b1s~x7b!…, uxu>b.

Finally, let us choose a localization functionjPC0
`
„~2a,a!… and define

Fs,e~x,y!:5ws~x!@x1~y!1e j ~x!2h1~y!# ~3.2!

for anys,e.0. The main point of the construction is that we modify the factorized function we
started with in two mutually disjoint regions, outside and inside the rectangleJ3(2d2 ,d1).
Hence the functionsws8 and j 2 have disjoint supports. Using this together with the identity

iws8 iL2~R!
2

5siw8iL2~R!
2

and the explicit forms of the functionsx1,h1, we substitute Eq.~3.2! into Eq. ~3.1! and find after
a tedious but straightforward computation
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q@Fs,e#5siw8iL2~R!
2

24ped1
23/2D21/2i j 2iL2~R!

2 sinS p

11n D
1e2$i2 j j 8iL2~R!

2
2~md

22mD
2 !i j 2iL2~R!

2 %. ~3.3!

By construction, the last two terms on the right side of Eq.~3.3! are independent ofs. Moreover,
the term linear ine is negative~recall thatnP~0,1#!, so choosinge sufficiently small, we can make
it dominate over the quadratic one. Finally, we fix thise and choose a small enoughs to make the
right side of Eq.~3.3! negative. j

Remark:Though it is not the subject of the present article, we want to note that the same
argument demonstrates existence of a bound state in a straight Dirichlet strip with an arbitrarily
small protrusion; one has only to replaceJ3[2d2,0] by a rectangle contained in the protruded
part. An alternative proof of this result has been given recently in Ref. 26; these authors also
derived an asymptotic formula for the eigenvalue in terms of the protrusion volume.

IV. MODE MATCHING

To learn more about the eigenvalues and eigenfunctions in question, we shall now solve the
corresponding Schro¨dinger equation numerically. SinceV consists of several rectangular regions,
the easiest way to do that is by the mode-matching method.

A. Symmetric case

Consider first the situation whend15d25d. The Hamiltonian~2.1! then decouples into an
orthogonal sum of the even and the odd part, the spectrum of the latter being clearly trivial, i.e.,
the same as in the casel50. At the same time, the mirror symmetry with respect to they-axis
allows us to consider separately the symmetric and antisymmetric solutions.

We may therefore restrict ourselves to the part ofV in the first quadrant, with the Neumann
boundary condition in the segment~0,a! of thex-axis, and Neumann or Dirichlet condition in the
segment~0,d! of they-axis. We expand the sought solutions in terms of corresponding transverse
eigenfunctions

x j~y!:5A2

d
sin~k j y!, j51,2,..., ~4.1!

f j~y!:5&h2 j21~y!5A2

d
sin@K2 j21~d2y!#, j51,2,..., ~4.2!

wherek j :5 jk1 andK2 j21:5(2 j21)K1 . A natural Ansatz for the solution of an energyemd ,
1
4<e,1, is

c~x,y!5(
j51

`

bje
qj ~a2x!x j~y! ~4.3!

for x>a, whereqj :5k1Aj 22e, and

cs~x,y!5(
j51

`

aj
cosh~pjx!

cosh~pja!
f j~y!, cas~x,y!5(

j51

`

aj
sinh~pjx!

sinh~pja!
f j~y! ~4.4!
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for 0<x<a and the symmetric and antisymmetric cases, respectively, where the longitudinal

momentum is defined bypj : 5 k1A( j2 1
2)
22e. It is straightforward to compute the norms of the

functions~4.3! and~4.4!; since j21qj and j
21pj tend tomd as j→`, the square integrability ofc

requires the sequences$aj% and$bj% to belong to the spacel 2( j21).
As an element of the domain ofH, the functionc should be continuous together with its

normal derivative at the segment dividing the two regions,x5a. Let us first solve this condition
formally. The continuity means(k51

` akfk(y)5(k51
` bkxk(y); using the orthonormality of$xj %

we get from here

bj5 (
k51

`

ak~x j ,fk!. ~4.5!

In the same way, the normal-derivative continuity atx5a yields

qjbj1 (
k51

`

akpk tanh~pka!~x j ,fk!50 ~4.6!

in the Neumann case, and the analogous relation with tanh replaced by coth for Dirichlet. Substi-
tuting from Eq.~4.5! to Eq. ~4.6!, we can write the equation as

Ca50, ~4.7!

where

Cjk :5S qj1pkH tanhcothJ ~pka! D ~x j ,fk! ~4.8!

in the Neumann and Dirichlet case, respectively, with the two orthonormal bases related by

~x j ,fk!5
~21! j2k

p

2 j

j 22~k2 1
2!
2
. ~4.9!

One has to make sure, of course, that Eq.~4.8! makes sense, and that one can solve it by a
sequence of truncations. It is possible to follow the procedure formulated in Ref. 4. A more direct
way, however, is to notice that ifc is an eigenvector ofH, it must belong to the domain of any
integer power of this operator. It is easy to check thatcPD(Hn) iff $aj%,$bj%P l 2( j 2n21); hence
the sought sequences should belong tol 2( j s) for all s>21. This fact also justifiesa posteriorithe
interchange of summation and differentiation we have made in the matching procedure.

Consider now the diagonal operatorSr on l
2( j21), (Sra) j :5 j2raj . If C has zero eigenvalue

with a fast decaying eigenvector, the same is true forC(s,r ):5SsCSr with arbitrary non-negative
s,r . The last named operator is represented by the matrix

Cjk
~s,r ! :5@qj1pk tanh~pka!#

~21! j2k

p

2 j 12sk2r

j 22~k2 1
2!
2

~for the sake of brevity, we speak about the Neumann case only!, so it is Hilbert–Schmidt case for
r ,s large enough, and its eigenvalues can therefore be obtained from a sequence of truncated
operators. Since finite matrices pose no convergence problems, the truncation procedure may be
applied to the operatorC directly.
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Of course,C(r ,s) may have eigenvectors to which no square-summable eigenvector ofC
corresponds, becauseSr

21 is unbounded forr.0. Fortunately, the search for solutions may be
terminated once we find the number of them which saturates the upper bound derived in Sec. II.

B. Alternative method

A natural modification of the above described procedure is to express$ak% from Eq. ~4.5!
using the orthonormality of$fk%, and to substitute it into Eq.~4.6!; then the spectral condition
acquires the form

b1Kb50, ~4.10!

where

Kjm :5
1

qj
(
k51

`

~x j ,fk!pk tanh~pka!~fk ,xm!, ~4.11!

and the same with coth(pka) in the Dirichlet case.
The two approaches are, of course, equivalent. Solving the equation numerically, however, we

truncate not only the matrices but also the series in Eq.~4.11!. The sequences approximating a
given eigenvalue are therefore different. Moreover, in the examples given below we find them
monotonous in the opposite sense. The sequences coming from Eq.~4.7! were approaching the
limiting values from above, while those obtained from Eq.~4.10! were increasing; in combination
this gives a good idea about the numerical stability of the solution.

C. Asymmetric case

Let us pass now to the case when the widths of the ducts are nonequal,d1Þd2 . Without loss
of generality, we may again suppose thatd2<d15d. With the mirror symmetry with respect to
the y-axis in mind, we shall consider the right-halfplane part ofV only with the Neumann and
Dirichlet condition on the segmentW :5@2d2 ,d1# of the y-axis.

To expand the sought solution, we need again suitable transverse bases. In the ‘‘connecting
part,’’ 0<x<a, we use

hk~y!5A2

D
sin@Kk~d12y!#, k51,2,..., ~4.12!

whereKk :5kK15kk1(11n)21. On the other hand, for the ducts we choose

x j
~1 !~y!:5A 2

d1
sin~k j y!i1~y!, j51,2,..., ~4.13!

x j
~2 !~y!:52A 2

d2
sin~k jn

21y!i2~y!, j51,2,..., ~4.14!

where k j :5 jk1 and i6 are the indicator functions of the intervalsD1 :5@0,d1# and
D2 :5@2d2,0#, respectively.

The union of the two bases is, of course, an orthonormal basis inL2~W !. Since the numerical
computation involves a truncation procedure, we need to introduce a proper ordering. For that we
arrange the eigenvalues corresponding to Eq.~4.13! to a single nondecreasing sequence. Equiva-
lently, we arrange the numbersj ,kn21 with j ,k51,2,... into a nondecreasing sequence~if n is
rational and there is a coincidence, any order can be chosen in the pair!; we denote its elements by
um ,
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u1 :51, u2 :5min$2,n21%, etc.

The corresponding ordered basis inL2~W ! is

jm : jm~y!5H x j
~1 !~y!, um5 j ,

x j
~2 !~y!, um5 jn21

. ~4.15!

Consider first the even solutions, i.e., the Neumann condition atx50. A natural Ansatz for a
solution of an energyemd , ~11n!22<e,1, is

c~x,y!:5 (
k51

`

ak
cosh~pkx!

cosh~pka!
hk~y!, 0<x<a,

where

c~x,y!:5(
j51

`

bj
~6 !eqj

~6 !
~a2x!x j

~6 !~y!, x>a, yPD6 , ~4.16!

where

pj :5k1AS j

11n
D 22e

and

qj
~1 ! :5k1Aj 22e, qj

~2 ! :5k1AS j
n
D 22e.

The duct part of Eq.~4.16! can be also written in a unified way as

c~x,y!5 (
m51

`

cme
rm~a2x!jm~y!, ~4.17!

where

cm :5H bj~1 ! , um5 j

bj
~2 ! , um5 jn21,

rm :5H qj~1 ! , um5 j ,

qj
~2 ! , um5 jn21.

Using the continuity of the function and its normal derivative atx5a together with the orthonor-
mality of $xj

6%, we find conditions for the coefficient sequences,

bj
~6 !5 (

k51

`

ak~x j
~6 ! ,hk!, ~4.18!

qj
~6 !bj

~6 !1 (
k51

`

akpk tanh~pka!~x j
~6 ! ,hk!50. ~4.19!

This can be also written as
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cm5 (
k51

`

ak~jm ,hk!, rmcm1 (
k51

`

akpk tanh~pka!~jm ,hk!50;

substituting from the first equation to the second one, we obtain the spectral condition in the form
~4.7! with

Cmk :5@rm1pk tanh~pka!#~jm ,hk!, ~4.20!

where the overlap integrals are given by

~x j
~1 ! ,hk!5

2 j

pA11n

sin~pk/~11n!!

j 22~k/~11n!!2
,

~x j
~2 ! ,hk!5

2 j

p
A n

11n

sin~pk/~11n!!

j 22~kn/~11n!!2
. ~4.21!

In the odd case, i.e., Dirichlet condition atx50, we get the same equation with tanh replaced by
coth in Eq.~4.20!.

By a straightforward modification of the above argument, one can check that the coefficient
sequences have a faster-than-powerlike decay and the spectral condition can be solved by a
sequence of truncations. One can also rewrite the condition in the form analogous to Eq.~4.10!,
c1Kc50, where

Kjm :5
1

r j
(
k51

`

~j j ,hk!pk tanh~pka!~hk ,jm!. ~4.22!

V. SCATTERING

The analysis is similar to that of the previous section. The incident wave is supposed to be of

the formx j
(1)(y)e2 ik j

(1)x in the upper channel, where we have introduced

kj
~1 ! :5k1Ak22 j 2, kj

~2 ! :5k1Ak22S j
n
D 2;

we denote byr j j 8
(6) ,t j j 8

(6) , respectively, the corresponding reflection and transmission amplitudes to
the j 8th transverse mode in the upper/lower guide. Due to the mirror symmetry, we can again
separate the symmetric and antisymmetric situation with respectx50 and to write

r j j 8
~6 !

5 1
2~r j j 8

~s,6 !
1r j j 8

~a,6 !
!, t j j 8

~6 !
5 1

2~r j j 8
~s,6 !

2r j j 8
~a,6 !

!, ~5.1!

wherer j j 8
(s,6) , s5s,a, are the appropriate reflection amplitudes. In the symmetric case we have

the following Ansatz for the solution

c~x,y!:5(
l51

`

al
cos~plx!

cos~pla!
h l~y!, 0<x<a,

c~x,y!:5 (
j 851

`

~d j j 8e
2 ik j

~1 !
~x2a!1r j j 8

~1 !eik j 8
~1 !

~x2a!!x j 8
~1 !

~y!, x>a, yPD1 ,
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c~x,y!:5 (
j 851

`

r j j 8
~2 !eik j 8

~2 !
~x2a!x j 8

~2 !
~y!, x>a, yPD2 . ~5.2!

The last two relations can be written also as

c~x,y!5 (
m851

`

~dmm8e
2 ikm~x2a!1rmm8e

ikm8~x2a!!jm8~y!,

where

rmm8 :5H r j j 8
~1 !, um5 j , um85 j 8,

r j j 8
~2 ! , um5 j , um85 j 8n,21 km :5H kj~1 ! , um5 j ,

kj
~2 ! , um5 jn21.

Matching the functions~5.2! smoothly atx5a we arrive in the same way as above at the equation

(
m851

`

@ ik l1pm8 tan~pm8a!#~j l ,hm8!am852ik ldml , ~5.3!

where the indexm corresponds to the incident wave and the overlap integrals are given again by
Eq. ~4.21!; in the antisymmetric case one has to replace tan by2cot. The reflection amplitudes are
given then by

rml
~6 !52dml1 (

m851

`

am8
~6 !

~j l ,hm8!; ~5.4!

they determine the fullS-matrix via Eq.~5.1!.

VI. RESULTS

A. Bound states

The results of the mode-matching computation are illustrated on Figs. 2–4. In accordance

FIG. 2. Bound-state energies vs the window widthl in the symmetric case.
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with the general results of Sec. II the eigenvalues decrease monotonously with the increasing
window width and one can sandwich them between the estimates, Eq.~2.5!. The eigenfunctions
decay exponentially out of the ‘‘interaction’’ region. The ground-state wave function is, of course,
positive up to a phase factor; the nodal lines of the excited states are parallel to they-axis. The last
feature illustrates once more that apart of the exponential tails in the ducts, the quantum particle
‘‘feels’’ the window part as a closed rectangular resonator.

FIG. 3. The ground-state eigenfunction in the symmetric case forl /d50.3.

FIG. 4. The eigenfunction of the second excited state in the unsymmetric case,n51/2, for l /d151.08.
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It is also interesting to estimate the rate at which the eigenvalues emerge from the continuum.
The results of the mentioned paper26 together with the Dirichlet bracketing allow us to find a
simple upper bound for the ground-state energy by means of a single strip with a ‘‘blister’’ whose
volume is squeezed to zero. Since the asymptotic formula derived in Ref. 26 applies to ‘‘gentle’’
protrusions, it may be employed if the power with which the bump is scaled transversally is larger
than the longitudinal one. Hence the gap between the eigenvalue and the continuum for a narrow
window is bound from below byC(e) l 41e1O ~l 5! for any e.0.

This can be compared with the numerical results. Redrawing the first eigenvalue curve of Fig.
2 and analogous results fornÞ1 in the logarithmic scale, we find that the asymptotic behavior is
powerlike. The convergence of our method for smalll is rather slow; nevertheless, using cutoff
dimensions of order 103 we get for the power values witnessing clearly that the above bound is
saturated,

m1~ l !5md2c~n!l 41O ~ l 5!. ~6.1!

The numerically found coefficientc~n! is monotonous and reaches its maximum value forn51;
this is the expected behavior as can be seen from a simple bracketing argument. Proving the
conjecture~6.1! and finding an analytical expression forc~n! remains an open problem; the same
can be said about the ‘‘coupling-constant thresholds,’’ i.e., the way the other eigenvalues emerge
from the continuum.

B. Scattering

The passage of the particle through the window region is determined by the transmission and
reflection amplitudes, Eq.~5.1!. The physically interesting quantity is the conductivity. If we
suppose, for instance, that the particle comes from the upper right guide and leaves through the
upper left one, then the conductivity~denoted conventionally as TP and measured in the standard
units 2e2/h! is given by

G~k!5 (
j , j 851

@k# kj 8
~1 !

kj
~1 ! ut j j 8

~1 !
~k!u2, ~6.2!

and similarly for the other combinations; the summation runs over all open channels. The reso-
nance structure is visible on Fig. 5.

Another insight can be obtained by investigating the probability flow distribution associated
with the generalized eigenvector~5.2!, which is defined in the standard way,

j ~x!:52 i c̄~x!“c~x!. ~6.3!

The flow patterns change with the momentum of the incident particle. They exhibit conspicuous
vortices at the resonance energies which represent the ‘‘trapped part’’ of the wave function; this
phenomenon is illustrated on Fig. 6. It has been argued in the literature that leaky wires similar to
those studied here may serve as switching devices.22 The vortices which emerge in resonance
situations lead to the appearance of a magnetic dipole moment, which might be in principle
measured experimentally. In this respect situations with a single well developed vortex such as the
one illustrated on Fig. 7 are particularly promising.

C. Chaos

Discussing a chaotic behavior of a quantum system, it is useful to start with its classical
counterpart, and in particular, its phase space. In the present case of an infinite two-strip ‘‘bil-
liard’’ there are no closed classical trajectories with the exception of the obvious zero-measure set;
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hence one has to consider the scattering, i.e., motion of a point particle bouncing its way through
the system. The reflection from the walls is supposed be perfectly elastic.

There are two integrals of motion: the longitudinal component of the momentum,I 15px , and
the modulus of its transverse part,I 25upyu. Hence the phase space trajectory of the system is
restricted to a two-dimensional manifold~invariant surface! in the four-dimensional phase space.
However, due to the singularity of corresponding classical flow at the edges of the connecting
window, the topology of this surface is not equivalent to that of a two-dimensional cylinder, but
rather of a pair of mutually crossed cylinders; similar systems are usually dubbed
pseudo-integrable.27 The topological structure of the invariant surface has a consequence for the
quantum counterpart: the system cannot be quantized semiclassically.

On the other hand, the quantum system of coupled waveguides has in view of our previous
arguments bound states, even many of them ifflAn@d. Then one can plot the distribution of the
eigenvalue spacing as shown on Fig. 8 for a particular values ofn and l ; the character of the
distribution does not change as they are varied.

A few comments are due. Since the level statistics depends, in general, on symmetry proper-
ties of the corresponding eigenfunction,28 we have to consider separately bound states of even and

FIG. 5. The conductivity for the particle coming from the right in the upper duct as a function of the momentumk and the
width d2 of the lower tube ford15p, l52. ~a! The particle leaves through the upper left channel. A deep resonance is
clearly visible.~b! The particle leaves through the lower left channel. The conductivity is zero when there are no propa-
gating modes in the lower part.
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odd parity. Furthermore, the inequalities~2.5! show that the energy levels have the same mean
spacing if plotted on the scale given by the momentum valueip15Amd@e2(11n)22#. This
represents a natural unfolding of our problem; the mean spacing between levels of the same parity
then equals 2p2/dl.

The distributions shown on Fig. 8 differ from typical~unfolded! eigenvalue distributions in
billiards, both integrable and chaotic, in the first place due to the existence of the sharp localization
around the mean-spacing value. The used statistics~over a thousand eigenvalues in each case!
does not allow us to tell what is the behavior around zero; we see, however, that the decay off the
peak is at least exponential. This differs substantially from a typical behavior of chaotic systems;
however, one should not be surprised because all the corresponding eigenfunctions are dominated
transversally by the lowest mode, so the bound-state family in our ‘‘billiard’’ is effectively one-
dimensional.

It is less trivial whether a chaotic behavior may be manifested in the scattering; recall that
spatially restricted pseudo-integrable billiards are known to exhibit the so-called wave chaos.24 To
decide whether a quantum scattering system is chaotic or not, one has to study eigenvalue distri-
bution of the correspondingS-matrix, again properly unfolded, which is expected to conform with
that of the Dyson circular ensemble of random matrices29 in the former case. We have performed

FIG. 6. The quantum probability flow Eq.~6.3!, for the symmetric situation,n51, in the resonance and nonresonance
situation, respectively. The appearance of vortices associated with the resonance scattering is obvious.
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this task for the system under consideration numerically, analyzing the distribution of the spacing
between two neighboring eigenvalues of theS-matrix. The result is plotted on Fig. 9; they are
compared with the Wigner and the Poissonian distributions peculiar for the chaotic and nonchaotic
situation, respectively. It can be seen that the overall shape of this distribution matches the
Poissonian distribution for all spacings large enough; on the other hand, the deformation of the
distribution near the origin provides a clear sign of nonintegrability of the system. The fact that
this nonintegrability differs from a typical chaotic behavior can be attributed to the fact that the
scattered particle passes the window region ‘‘only once’’ without being bounced to and fro as it is
the case of finite billiards.

The absence of the fully developed chaos in the coupled waveguides can also be seen when
plotting the coefficientsal which determine the wave function in the interaction region by Eq.
~5.2! as illustrated in Fig. 10. Their distribution remains well localized even for higher energies of

FIG. 7. A single vortex corresponding to the sharp stopping resonance of Fig. 5~a!. The conductivity is small in this
situation so the waveguide system is closed for the electron transport.

FIG. 8. The unfolded level-spacing distribution of the symmetric and antisymmetric bound states ford5p, l58800, and
n52(11A5)21. The mean momentum distance between eigenvalues of the same parity is 7.139931024. The white and
grey boxes correspond to even and odd levels, respectively.
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the incoming particle, its tail being approximately exponential, while in case of an irregular
scattering one would expect a slower decay.

VII. TIME EVOLUTION

Up to now we have discussed the coupled waveguide system from the stationary point of view
only. Let us look briefly how the window coupling can affect propagation of wave packets in the
ducts. This problem has a natural motivation: it has been suggested recently22,30,31 that coupled
electron waveguides provide an analog of the optical directional coupler in the sense that they may
switch electrons from one quantum wire to another. Moreover, the authors of Ref. 22 conjectured
that the electron switching process should be rather fast due to the direct character of the corre-
sponding resonance, since the electron is not trapped in the interaction region during the resonant
switching.

FIG. 9. The unfolded level-spacing distribution for theS-matrix corresponding ton52/p and averaged over momentum,
in comparison with the Poisson and Wigner distribution.

FIG. 10. The absolute value of the coefficientsal of Eq. ~5.2! in the symmetric case forn52/p andk528.432; the particle
is supposed to be initially in the eighteenth transverse mode.
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The existence of probability-flow vortices discussed above in the interaction region indicates
that this might not be the case, i.e., that the electron dwelling time in the junction may not be
generally neglected. To get a better insight we have investigated time evolution of wave packets
numerically. This can be achieved by approximating the evolution operator by a Trotter-formula
product~see Ref. 12, Sec. VIII.8! with the Dirichlet boundary condition replaced by a very steep
and narrow potential barrier localized along the boundary; the latter has been chosen in such a way
that the dynamics of the system was equivalent to the dynamics of the true Dirichlet problem for
all times taken into account, i.e., that the tunneling leak was negligible during that period.

The kinetic- and potential-part factors of the evolution operator are then multiplication opera-
tors in the momentum and coordinate representation, respectively; the passage between the two
representations has been realized by means of the two-dimensional fast Fourier transform
method32 with a grid of 29327 points. The time evolution of a wave packet approaching the
junction through the upper right arm of the structure is plotted on Fig. 11. The incoming wave
function was chosen asc(x,y):5g(x)x1

(1)(y), whereg(x):5exp$2a(x2x0)
21 ikx% with suit-

ably chosen parametersa,x0 .
The difference between the resonant and nonresonant situation is clearly visible. In the first

case the electron stays in the junction region and escapes only slowly, while the electron whose

FIG. 11. The time evolution of the wavepacket inside the junction withn52/p plotted for timest50, 5, 10, 15, and 20,
respectively.~a! The resonance case withk51.4242,~b! the near-to-resonance situation,k51.48.
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FIG. 12. The probability that the electron will be found within the junction as a function of time evaluated for the same
parameters as on Fig. 11.

FIG. 11 ~Continued.!
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momentum is localized around a slightly different but nonresonant value of momentum passes the
junction ‘‘ballistically.’’ Wang and Guo22 based the mentioned conjecture—which in a realistic
situation would lead to ultrashort switching times of a few picoseconds only—on a concept of
transmitivity of coupled waveguides leaning on a classical intuition. As we have said in the
introduction and demonstrated in the previous sections, this may be a false guide when quantum
systems are considered. The example of time evolution offers another illustration. During the
resonance-scattering process the evanescent-mode amplitudes inside the quantum wire are consid-
erably enhanced; as a result the electron is trapped temporarily inside the junction. The probability
of finding it there in the resonant and nonresonant case, respectively, is shown on Fig. 12. It is
desirable to perform the time-delay analysis for the present model, in particular, to confirm that the
‘‘switching time’’ of the coupler is inversely proportional to the resonance width.
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For a simple model describing theS-matrices of open resonators the statistical
properties of the resonances are investigated, as well as the wave functions inside
the resonator. ©1996 American Institute of Physics.@S0022-2488~96!00610-X#

I. INTRODUCTION

The properties of ballistic electron transport through a mesoscopic quantum dot are of con-
siderable interest both experimentally and theoretically.1,2 For the character of the electron motion
the shape of the quantum dot is of particular importance. The transport characteristics—such as
the conductance fluctuations—are different for shapes which correspond to integrable and chaotic
classical motion inside the dot.3 Similar results have been obtained also in experiments with
microwave resonators.4,5

The theory accounting for this phenomena is usually based on the so-called stochastic ap-
proach, which is able to reproduce the scattering characteristics of the system6 employing the
theory of random matrices. Our aim here is to develop a simple model which will be able to
describe not only the correspondingS-matrix but also give information about the structure of the
wave function inside the cavity.

The system we would like to investigate consists of a cavity~quantum dot, electromagnetic
resonator! with attached leads~antenna!. The cavity is assumed to be either integrable or fully
chaotic. In particular the following characteristics of the system will be of interest for us:

~1! The structure of theS-matrix.
~2! Statistical properties of the resonances, including the spacing distribution of the resonance

positions and the distribution of the resonance widths.
~3! Statistical properties of the wave function, which is excited inside the cavity by a wave

incoming through the waveguide.
We assume that the whole device consists of two different parts. The first part includes ideal

leads~waveguides! which couple the device to the measuring apparatus and/or serve as a power
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supply. The electron/wave moves freely inside these leads, i.e., without scattering by impurities,
etc. The second part contains the ‘‘randomizing’’ part of the device. Inside this part the electron
acquires chaotic features, for instance, through multiple scattering on the boundary of the sample
and/or impurities. We shall assume that the dynamics inside this part of the system is chaotic so
that its Hamiltonian can be considered as a member of an appropriate random matrix ensemble.
We shall also investigate integrable cavities~like a rectangular resonator! and show that the wave
transport through it also acquires chaotic features since by connecting such a system to continua
one destroys integrability. In the integrable case we shall assume that the internal Hamiltonian is
described by a Poisson ensemble.

II. THE MODEL

In this section we shall construct a Hamiltonian describing a resonator coupled to waveguides.
Starting with the description of the leads we assume these to supportM open channels which are
described by one-dimensional Hamiltonians

Hl52
d2

dx2
1l l , l51,...,M . ~1!

Herell is the threshold energy of thel th channel. Combining these operators into a Hamiltonian
Hex for the ‘‘external’’ part of the system, i.e., the leads, we get

Hex52 %

l51

M d2

dxl
2 1L. ~2!

HereL is a diagonal matrix describing the threshold energies of the channels,

L5diag~l1 ,l2 ,...,lM !. ~3!

The resonator is described by a Hermitian matrixH in of sizeN3N, with N much larger than
the number of open channels,N@M . The matrixH in is assumed to belong to the Gaussian
orthogonal/unitary ensemble~GOE/GUE! for chaotic resonators and to a Poisson ensemble for
integrable ones~see, e.g., Ref. 7 for these concepts!. To describe the scattering we couple the
resonator and leads by defining the HamiltonianH of the whole system as

HS uuinD5S Hexu
H inuin1Au8~0! D , ~4!

whereu5(u1 ,...,uM) stands for the wave function inside the leads anduin describes the wave
function within the resonator;u8~0! denotes the derivative of the wave functions of the leads at the
points of contact with the resonator which are taken as the zeros of the waveguide coordinates, and
A is anN3M coupling matrix. The local character of the coupling in Eq.~4! ~a point contact! is
justified whenever the diameter of the junction of lead and resonator is smaller than a typical
wavelength inside the resonator. The differential operatorHex can be defined on the Sobolev space
W2

2(R1 ,CM) of all complex vector valued square integrable functions onR1 having two gener-
alized square integrable derivatives. Then the operatorH is defined in the Hilbert space
H5L2(R1,CM)%CN with the scalar product

~U,V!5E
0

`

^u~x!,v~x!&CMdx1^uin ,v in&CN,

^•,•&CN denotes the scalar product in theN-dimensional Hilbert space. The domain of the operator
H should contain the domainW2

2(R1 ,CM)%CN but H is not self-adjoint on the latter domain.
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Theorem 1:The operatorH defined by formula~4! is self-adjoint on the domain of functions
fromW2

2(R1 ,CM)%CN satisfying the boundary conditions

A†uin52u~0!. ~5!

Proof: The boundary form of the linear operatorH evaluated on the functions
U,VPW2

2(R1 ,CM)%CN is given by the following expression

b@U,V#5~U,HV!2~HU,V!

5E
0

`K u~x!,2
d2

dx2
v~x!1Lv~x!L

CM

dx1^uin ,H inv in&CN

1^uin ,Av8~0!&CN2E
0

`K 2
d2

dx2
u~x!1Lu~x!,v~x!L

CM

dx2^H inuin ,v in&CN

2^Au8~0!,v in&CN

5^u~0!,v8~0!&CM2^u8~0!,v~0!&CM1^uin ,Av8~0!&CN

2^Au8~0!,v in&CN. ~6!

The boundary form vanishes if both elementsU, V satisfy the boundary conditions~5!

b@U,V#5^u~0!,v8~0!&CM2^u8~0!,v~0!&CM1^A†uin ,v8~0!&CN2^u8~0!,A†v in&CN

5^u~0!,v8~0!&CM2^u8~0!,v~0!&CM2^u~0!,v8~0!&CM1^u8~0!,v~0!&CM

50,

where the dagger denotes the adjoint of an operator. This proves that the operatorH is symmetric.
The self-adjointness of the operator follows from the fact that the range ofH2 i coincides with the
whole Hilbert spaceH. h

Note: In what follows we shall denote byH the self-adjoint operator defined by formula~4!
and the boundary condition~5!. The domain of the operator will be denoted byD(H).

Similar models were suggested first in Refs. 8–11. Their main appeal is that they allow for a
spectral analysis of the operatorH in terms of elementary functions. Moreover, by calculating the
eigenfunctions pertaining to the continuous spectrum one may obtain the scattering matrix in
terms of the internal HamiltonianH in and the coupling matrixA. The eigenfunctions

C~E!5S c~E,x!

c in
D

corresponding to the energyE solve the equations

S 2
d2

dx2
c~E,x!1Lc~E,x!

H inc in~E!1Ac8~E,0!
D 5ES c~E,x!

c in
D . ~7!

The second of the foregoing equations leads, together with the boundary condition~5!, to the
following energy-dependent condition for the external component of the wave function,

c~E,0!5A†
1

H in2E
Ac8~E,0!. ~8!
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Moreover, the external component is a solution of the free Schro¨dinger equation. For the energy
EÞl j , j51,...,M , it can be presented in the form

c~E,x!5
e2 iAE2Lx

A4 E2L
Ainc2

eiAE2Lx

A4 E2L
Aout, ~9!

whereAinc andAout are the amplitudes of the incoming and outgoing wave, respectively. For all
E.max $lj % every solution is bounded and the scattering matrixS(E) can easily be defined. The
normalization used in Eq.~9! ensures that theS-matrix relates the amplitudes of the incoming and
outgoing waves as

Aout5S~E!Ainc .

The scattering matrix can be calculated substituting the external component of the wave function
into the energy-dependent boundary condition~8!. The boundary values of the external component
at the ‘‘origin,’’ i.e., at the coupling points, are equal to

c~0!5Q~12S!Ainc , c8~0!5 iQ21~212S!Ainc ,

whereQ[Q(E) denotes theM3M matrixQ(E)5(E2L)21/4. For energies above the thresholds
theS-matrix can be determined through the following:

Lemma 1:The stationary scattering matrix for the operatorH is equal to

S~E!5
i1W̃†~E2H in!

21W̃

i2W̃†~E2H in!
21W̃

, ~10!

whereE.max$lj % andW̃5AQ21.
Similar results were obtained earlier in Ref. 11.
The knowledge of the Hamiltonian of the system enables us to go beyond the standard

scattering characteristics and to solve Eq.~7! for the internal-component of the wave function,

c in5
2

E2H in

W̃
1

i2W̃†~E2H in!
21W̃

Ainc . ~11!

In Sec. IV we shall use this formula to evaluate the structure of the wave function in the internal
~interaction! part of the system.

Before proceeding further let us shortly comment on the properties of theS-matrix ~10!. First,
we show that theS-matrix ~10! can be rewritten in the more familiar form12

S5I22p iW†
1

E2H in1 ipWW† W. ~12!

To prove the equivalence of Eqs.~10! and ~12! we use the resolvent equation

R~E!5R0~E!2 ipR0~E!P@11 ipPR0~E!P#21PR0~E! ~13!

with R(E)5~E2H in1ipWW†!21, R0(E)5~E2H in!
21, andP5WW†. Inserting this into Eq.~12!

we obtain after a simple calculation

S5
i1pW†R0~E!W

i2pW†R0~E!W
,
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which is fully equivalent to Eq.~10! provided we identifyW̃ andApW. There is, however, one
important difference: The coupling matrixW̃ is energy dependent. This dependence takes into
account the threshold effects which are often disregarded in the stochastic approach; it has,
however, measurable consequences and leads to the correct high-energy behavior of the
S-matrix.13 We shall come back to this point in Sec. V when we use the model to describe the
experimental results obtained for rectangular electromagnetic resonators.

III. RESONANCE DISTRIBUTION

We now propose to study how the distribution of nearest-neighbor spacings between the
resonances of our open system differs from the distribution of spacings between eigenenergies of
the closed resonator. For simplicity we confine ourselves to the simplest case, that of a single open
channel,M51. The originalN3M matrix A becomes then anN-component vector. We shall
focus on an integrable resonator rather than a chaotic one since in this case the differences in
question turn out to be most drastic: roughly speaking, the opening of the resonator by waveguides
destroys the usual spectral signatures of integrability. In what follows we assume that the coupling
vectorA is normalized as

A5ga, iai51,

and that the coupling constantg is large,g@1. The resonances of the whole system are the
eigenvalues of the effective ‘‘Hamiltonian’’

Heff5H in2 iW̃W̃†5H in2 ig2aQ2a†.

The ‘‘perturbation’’2iW̃W̃† of H in is negative imaginary and has rank one. Every eigenfunction
of the effective HamiltonianHeff is a solution to the equation

~H in2 ig2aQ2a†!c in5Ec in ,

and comes with a certain resonance energyEPC. Applying the resolvent of the internal Hamil-
tonian to the latter equality we get a ‘‘dispersion equation’’ for the resonance energy,

1

g2Al2E
5a†

1

H in2E
a. ~14!

Denoting byF(E) the right-hand side~rhs! of Eq. ~14! and expressing it in the eigenrepresentation
of H in we have

F~E!5 (
n51

N uanu2

En2E
, ~15!

whereEn are the eigenvalues of the internal Hamiltonian. The functionF(E) has a positive
imaginary part in the upper half plane and is real on the real axis. Therefore all solutions of Eq.
~14! are localized in the lower complex half plane. Consider the case of strong coupling,g→`.
Then all solutions of the dispersion equation~14! are situated at the zeros of the functionF(E).
Our aim here is to investigate the distribution of spacings between such zeros~following a method
similar to that used in Ref. 14!.

It is clear that between two poles there is exactly one zero ofF(E). Moreover, two neigh-
boring zeros are locked between three neighboring poles. Since we are interested in the distribu-
tion of resonance spacings for small spacings, it suffices to restrict the sumF(E) in Eq. ~15! to
three terms only, namely, to those whose poles lock up the two colliding zeros ofF(E). Let us
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label those poles byE1 ,E2 ,E3 . In order to simplify the expressions~but without loss of general-
ity! we shift the origin of the energy scale to the central pole such thatE250, whereuponE1 is
negative,E1,0. Then the eigenvalue equation~14! simplifies to

w1

E12E
2
w2

E
1

w3

E32E
50 ~16!

with wi5uai u
2, i51,2,3. The two zeros in discussion solve the quadratic equation

~w11w21w3!E
22@~w11w2!E31~w21w3!E1#E1w2E1E350, ~17!

and their squared distanceD5s2 is given by

D5
@~w11w2!E31~w21w3!E1#

2

~w11w21w3!
2 2

w2E1E3

w11w21w3
. ~18!

Our aim here is to investigate the cumulative probability of these squared spacings,
P(D)5P„(z12z2)

2<D…, wherez1 andz2 are the two solutions of Eq.~17! in the case when the
internal HamiltonianH in belongs to the Poisson ensemble, i.e., corresponds to an integrable
system. As already announced above that distribution will reveal level repulsion due to the at-
tached waveguides, even though the internal HamiltonianH in belongs to the Poisson ensemble,
i.e., corresponds to an integrable system. Before proceeding further we shall need the following.

Lemma 2:~a! f (t)[ta exp(2t)<aae2a ;t>0, a.0. ~b! Let 0,a,1, b.0; then the follow-
ing estimate is valid:

E
0

` e2br

r 12a dr<
1

a
1
1

b
.

Proof: ~a! holds becausef is continuous with maximum att5a. ~b! follows from

E
0

` e2br

r 12a dr5E
0

1 e2br

r 12a dr1E
1

` e2br

r 12a dr<E
0

1 1

r 12a dr1E
1

`

e2brdr<
1

a
1
1

b
.

h

A. Estimates from above

It follows from Eq. ~18! that one can use the following lower estimate forD,

D>24
w2

w11w21w3
E1E3 . ~19!

This inequality implies

P~D !<P~X! ~20!

with X524[w2/(w11w21w3)]E1E3 .

Case 1. Constant coupling w 15w25w351

Let us assume first that the coefficientswi are constant and equal, as is not unreasonable when
the antenna is attached to a ‘‘symmetry point’’ of the resonator and when we restrict ourselves to
resonances belonging to one parity class only. For a rectangular resonator this means that we
couple the antenna to the geometric center and investigate only resonances which have even–even
parity. The probability can be estimated as follows,
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P~D !<E
0

D

daE
2`

0

dE1e
E1E

0

`

dE3e
2E3d~2 4

3E1E32a!

52E
0

D

daE
2`

0

dE1
3

4E1
exp~E1!expH 3a

4E1
J .

Thus for any 0,a,1 we have using Lemmas 2 and 3

P~D !<2E
0

D

da
3

4 E
2`

0

dE1
eE1

E1
S 2

3a

4E1
D 2aS 2

3a

4E1
D a

expH 3a

4E1
J

<S 34D
12aE

0

D

da
aa

aa S 11
1

a De2a

5S 34D
12a aa

12a S 11
1

a De2aD12a

5C1~a!D12a.

We note that the latter estimate is valid for any positive value of the parametera, but the constant
C1~a! tends to infinity whena tends to zero.

Case 2. Poisson distribution of w i

Another physically relevant case we discuss here is the case when the coupling vectora is
complex with coefficients whose real and imaginary parts are independent and normally distrib-
uted. Then thewi are independent random numbers with ax2 distribution with two degrees of
freedom. Moreover, the sumw11w21w3 has ax

2 distribution with 6 degrees of freedom. Having
this in mind we obtain thaty5w2/(w11w21w3) has a distribution with a density given by
p(y)52(12y), yP@0,1#. Using Lemma 2 we can estimateP(D) as follows, given by

P~D !<E
0

D

daE
2`

0

dE1e
E1E

0

`

dE3e
2E3E

0

1

dy2~12y!d~24yE1E32a!

52E
0

D

daE
2`

0

dE1e
E1E

0

1

dyea/4yE1
1

4yE1
2~12y!

5E
0

D da

aa E
2`

0

dE1e
E1E

0

1

dyea/4yE1S 2
1

4yE1
D 12aS 2

a

4yE1
D a

2~12y!

<E
0

D da

aa E
0

1

dy2~12y!
aae2a

~4y!12a S 1a 11D<C2~a!D12a

for any 1.a.0. Similarly as in the previous caseC2~a! is some function ofa with lima→0
C2~a!5`. Thus we got the same estimate as in the case 1.

A similar estimate is also valid in the case where the components of the vectorw are real
independent random numbers equally distributed in the interval@0,1#.

B. Lower estimates

To obtain a lower estimate forP(D) we use first following upper estimate for the distance
between the two zeros:

~z12z2!
2<~2E11E3!

2.
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Then

P~D !>E
0

D

daE
2`

0

dE1e
E1E

0

`

dE3e
2E3d„~2E11E3!

22a…

5E E
2E11E3<AD

dE1dE3e
2~2E11E3!

5
1

2 E
0

AD
dxe2xE

2x

x

dy

5E
0

AD
dxe2xx512e2AD~11AD !.

Thus the probabilityP(D) can be approximated from below by a linear function for small values
of D,

P~D !>D1o~D !>BD,

whereB<1, o(D)/D→0 asD→0.

C. Asymptotic behavior at small spacings

Combining together lower and upper estimates for the probability we can write

BD<P~D !<C~a!D12a. ~21!

A similar estimate can be obtained also for the probability of resonance spacingsP̃(s), s25D:

Bs2< P̃~s!<C~a!s222a. ~22!

The physically relevant quantity is, however, not the distributionP̃(s) but the corresponding
probability densityp(s):

P̃~s!5E
0

s

p~ t !dt.

Suppose that for smalls the probability density has the behavior

p~s!;ksb1o~sb!,

with some real constantsk andb. Substituting the last asymptotic expansion into the estimate~22!
we get for the constantsk andb

b51, k>2B.

It follows that the probability density of the spacings is approximately linear for small values of
s. This estimate shows that the presence of the antenna changes the character of the resonance
spacing distribution from Poisson to a distribution which displays linear repulsion for smalls. For
the slopek of the distribution we findk>2 for small s. This means that the slopek is always
larger than the slope of the spacing probability density in a fully chaotic system, which is given by
the Wigner distribution with a slope equal top/2. The resonance repulsion is therefore always
weaker than the level repulsion for a typical GOE matrix.
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IV. INTERNAL WAVE FUNCTION

Let us now discuss the properties of the internal wave function~11!. To investigate the
structure ofcin in a more detailed way we introduce a coupling constantg and will write gW̃ for
the coupling matrix. The complicated part of this expression is contained in the term

1

i2g2T~E!
~23!

with the M3M matrix T(E)5W̃†(E2H in!
21W̃. We solve the spectral problem for the latter

matrix:

T~E! f n5ln~E! f n ~24!

@note that forE real T(E) is a symmetric matrix and hence the eigenvaluesln(E) are real
numbers# and use the eigenvectorsf n to define theM vectorscn living in the N-dimensional
internal space:

cn5~E2H in!
21W̃f n . ~25!

~We shall normalize the vectorsf n , so that if ni51. This means that the vectorscn are not
normalized.!

The vectorcn is a solution of the equation

SH in1
1

ln~E!
W̃W̃†Dcn5Ecn . ~26!

To reveal the usefulness of these vectors we employ the spectral decomposition of the operator
~23!:

1

i2g2T~E!
5 (

n51

M f nf n
†

i2g2ln~E!
~27!

~wheref nf n
† is the projector onto the one-dimensional subspace spanned by the vectorf n!. Insert-

ing this into the internal wave function~11! we finally obtain

c in52g(
n51

M
^ f n ,Ainc&CM

i2g2ln~E!
cn . ~28!

It is most interesting to realize, thus, that internal wave functions~each withN components! can
be linearly composed from onlyM ~fewer!! N-component vectorscn .

It can be easily seen that for real energiesE the vectorscn are real providedH in andW̃ are
real matrices. The properties of the internal wave functioncin depend substantially on the structure
of these vectors and on the number of terms which contribute to the sum~28!. In what follows we
shall investigate the structure ofcin for resonances.

Resonances are defined as poles of theS-matrix in the complex energy plane. Using the above
notation the resonancesEreson5Er2 iG are nothing but the solutions of the following sequence of
equations:

ln~Ereson!5
i

g2
, n51,...,M . ~29!
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~Er describes the position of the resonance peak, whileG gives its width.! We shall now assume
that the energyE in the incoming wave coincides with the position of some resonance:E5Er . To
obtain information aboutcin we insert Eq.~29! into Eq. ~26! obtaining forcn

~H in2 ig2W̃W̃†!cn5Eresoncn . ~30!

It follows therefore that in the resonance casecn are identical with the eigenvectors of the
effective HamiltonianHeff5H in2ig2W̃W̃†.

For weak coupling~g!1! the resonances are localized near the eigenvalues ofH in and the
resonance widths are small~G!1!. Moreover, it follows from Eq.~30! that the vectorscn practi-
cally coincide with the eigenvectors ofH in . Using the relationi 2 g2ln(Er) 5 2 ig2GLn8(Er)
1 O(g4) we obtain from Eq.~28!

c in52i
^ f n0uAinc&CM

gGln8~Er !
cn0

1O~g! , ~31!

wherecn0
refers to the appropriate solution of Eq.~30!. Consequently, the structure ofcin coin-

cides with the structure ofcn0
, which is @up to terms of the orderO(g)# identical with the

corresponding eigenvector ofH in .
A similar analysis can be done also for strong coupling~g@1!. SinceW̃W̃† is a matrix of rank

M the family of resonances can be split into two parts:M resonances are localized deep in the
lower complex half plane and have widthsG'g2, and the remainingN2M resonances approach
the real axis and have widthsG'1/g2. We are interested in the second group of resonances, since
they form sharp resonance peaks and are hence easily measurable. A similar analysis as in the
weak coupling case gives

c in52i
^ f n0uAinc&CM

gGln8~Er !
cn0

1OS 1gD . ~32!

This formula seems to be nearly the same as for weak coupling. There is, however, one deep
difference: the position of the resonanceEr does not tend asg→` to some eigenvalue of the
internal HamiltonianH in . This in turn means that the corresponding vectorcn0

does not coincide
with an eigenvector ofH in . In fact, for a generic coupling matrixW the vectorcn0

is a real
superposition of all eigenvectors ofH in .

For intermediate coupling the resonances overlap and one has to take all terms in Eq.~28! into
account.cin is in this case a superposition of the vectorscn with complex coefficients.

Let us now discuss the consequences of the above analysis for the statistical properties of the
internal wave functioncin . For weak coupling the properties ofcin coincide with those of the
corresponding eigenfunction ofH in . This means that in the GOE caseucinu

2 has a Porter–Thomas
distribution, similarly for strong coupling. In this casecin is proportional to areal superposition of
the eigenvectors ofH in . This means again a Porter–Thomas distribution in the GOE case.

The structure ofcin becomes interesting in particular forH in describing an integrable system.
We know thatcin becomes asuperpositionof the ~integrable! eigenvectors ofH in . Hence the
internal wave function acquires a structure other than an eigenvector of integrable system. We
shall show in the next section thatcin has features which are similar to the properties of eigen-
vectors of chaotic quantum systems. This fact supports the finding of the preceding section that
opening an integrable system leads to a level repulsion which is typical for the behavior of
quantum nonintegrable systems.

It remains to discuss the moderate-coupling case. Here, as already mentioned, the internal
vectorcin becomes a superposition of vectorscn with complexcoefficients. The consequence is
that the statistical properties ofcin differ from the standard predictions of the random-matrix

4897Albeverio et al.: Transport through billiards with leads

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



theory. The complex nature ofcin moves its statistical properties from a GOE prediction~Porter–
Thomas distribution! toward a GUE prediction~Poisson distribution!. ~Note thatcin will display a
Poisson distribution if its real and imaginary parts are statistically independent and of the same
magnitude.! Such a distribution~also known as Rayleigh distribution in the literature15! is usually
observed when waves excited by a monochromatic source propagate through a random medium—
see also Ref. 16. In our case the randomizing effect is due solely to the multiple reflection of the
waves inside the resonator. Numerical estimates show that already forM53 the Rayleigh intensity
pattern inside the resonator is well developed~see Fig. 1!.

V. EXAMPLE

Let us now discuss a rectangular resonator attached to two microwave cables each of which
supports one open channel. We assume that the channel threshold energies are set to zero,
l15l250. This system has recently been experimentally investigated in Refs. 4, 5, and 17. The
HamiltonianH resondescribing the resonator is given by the two-dimensional Laplace operator

H reson52D

defined on a bounded domainV with Dirichlet boundary conditionsf50 on the boundary]V. We
shall investigate the statistical properties of the resonances and the structure of the field intensity
inside the resonator as excited by waves entering through the microwave cable. LetEn

@f n~r !,rPR2# be the eigenvalues@eigenfunctions# of H reson:

FIG. 1. The intensity distributionucu2 of the internal wave function~11! excited inside the resonator cavity is plotted in a
semilogarithmic plot and compared with the Porter–Thomas~dashed line! and the Poisson~Rayleigh! distribution ~full
line!. ~a! pertains to one open channel~M51!. Good agreement with the Porter–Thomas distribution is visible.~b! shows
the result forM510 with a clear shift towards the Poisson distribution.
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H resonf n~r !5Enf n~r !. ~33!

Using these solutions let us define the finite-dimensional internal Hamiltonian acting on the space
spanned by the firstN eigenstates ofH reson,

H in5 (
n51

N

Enf nf n
† . ~34!

The coupling operatorA maps the two-dimensional vector

S u18~0!

u28~0! D
into a certain function belonging to theN-dimensional internal space. Letu1(x) [u2(x)] denote
the first, @second# component of the wave function in the cable. Applying the matrixA to the
incoming vector we get

AS u18~0!

u28~0! D 5a1d1
N~r !u18~0!1a2d2

N~r !u28~0!,

wherea1 anda2 are the coupling constants anddl
N, l51,2 are functions spanned by the vectorsf n ,

n51,...,N. In the experiment the two antennas are coupled to the resonator at the pointsr1 andr2.
In order to mimic this local coupling we choose the functionsdl

N~r !, l51,2, in a special way,
namely, such that they converge tod2~r2r l! whenN→`, i.e.,

dl
N~r !5(

i51

N

f i~r l ! f i~r ! ~35!

such that limN→` dl
N~r !5d2~r2r l! ~in the sense of generalized functions withrPR2!.

The HamiltonianH describing the whole system is self-adjoint on the domain determined by
the boundary conditions

^dl
N ,uin&52ul~0!.

In the limit N→` the boundary conditions are given by the formula

a luin~r l !52ul~0!.

For N large enough theS-matrix reads

S5
i1T~E!

i2T~E!
~36!

whereT(E) is a 232 matrix with elements

T~E! l ,m5a lamAE(
n51

N
f n~r l ! f m~rm!

En2E
. ~37!

~Implicitly a similar formula has already been used in Ref. 18 in order to evaluate the conductance
fluctuation for electrons passing a quantum dot.!
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Let us start with the simplest case with one attached antenna only.~The second antenna is
easily excluded by choosing the couplinga250.! In what follows we shall focus on the statistical
properties of the resonances inside such a resonator.

The resonances are identified with the poles of the correspondingS-matrix. In the case of one
coupled antenna the resonances are just the solutions of the algebraic equationT(E)5 i , which is
equivalent to

(
n51

N u f n~r1!u2

En2E
5

i

a1
2AE

. ~38!

This is an algebraic equation forE which has solutions on the lower complex half plane only. The
solutions coincide with the zeros of a certain polynomial of order 2N11. One can solve this
equation directly using some appropriate numerical method. But before doing this it seems to be
helpful to investigate this equation by decoupling it into real and imaginary parts. LetE5Er2 iG
denote a solution withEr andG the position and the width of the resonance, respectively. Assum-
ing thatG!Er we can approximate Eq.~38! by

(
n51

N u f n~r1!u2

En2Er
50, ~39!

whereby the corresponding resonance widths are given by

G51Ya1
2AEr (

n51

N u f n~r1!u2

~En2Er !
2 . ~40!

This approximation is well justified in particular in the case of strong coupling~a1@1!. In the
numerical tests we used this approximate solution as a starting point for a routine searching for the
complex roots of Eq.~38!.

For the wave functionc excited inside the resonator we find

c~r !5 (
k51

2

(
l51

2

2~E!1/4akG~r ,r k ,E!S 1

i2T~E! D
k,l

Ainc,l , ~41!

where

G~x,xk ,E!5 (
n51

N
f n~x! f n~xk!

En2E

andAinc,l denotes the amplitude of the incoming wave in the channell . It is clear that in the case
of a strong coupling to the antenna the structure of the resonance wave function differs substan-
tially from the structure of the original resonator eigenfunctionf n(x).

Let us now apply the above theory to the description of a rectangular resonator with one
attached antenna. In the case of a rectangular resonator the eigenvaluesEn and the eigenfunctions
f n are explicitly known. Inserting these solutions into the formulas above we obtain an explicit
solution of the perturbed resonator problem. As already mentioned, the resonances of such a
system have been measured systematically.19 In order to enhance the number of measured reso-
nances the results for various rectangular billiards have been combined. In order to reproduce the
experimental results we have evaluated resonances for 40 different rectangular billiards. In each
billiard we evaluated the first 350 resonances which roughly correspond with the number of
experimentally accessible ones. The obtained results have been rescaled~to obtain a mean reso-
nance spacing equal to 1! and divided into three groups: the first group corresponds to resonances
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measured within the frequency range 5–10 GHz, the second group corresponds to 10–15 GHz,
and the third to a frequency range 15–18 GHz. The resonance spacing statistics have been evalu-
ated for each group separately. The coupling constanta1 has been taken to be equal to 2 in all
three cases. The obtained results are plotted in Fig. 2 and compared with the experimental finding.
It is worth noting that the theory predicts the effective coupling of the antenna to the resonator to
become stronger for higher frequencies. This follows from the fact that the effective coupling of
the antenna depends ona1

2AE and hence on the wave frequencyv. ~Note that the energyE and the
microwave frequencyv are related byE'v2.!

The distribution of the corresponding resonance widths is plotted in Fig. 3. We have compared
this distribution with the recent prediction by Fyodorov and Sommers20 for fully chaotic systems
~resonators! with one open channel. It is interesting to remark that even though the rectangular
resonator is originally integrable the distribution of resonance widths resembles closely that of a
fully chaotic system. Clearly, then, the antenna represents a strong perturbation of the original
integrable system. This perturbation is also responsible for the observed linear resonance repulsion
visible in Fig. 2.

The influence of the antenna on the structure of the corresponding resonance function~i.e., on
the structure of the electromagnetic field excited inside the resonator! is demonstrated in Fig. 4.

FIG. 2. The distribution of resonance spacings evaluated for a rectangular billiard is plotted~bins! and compared with the
experimental results obtained in Ref. 19~full line!. The frequency range used was~a! 5–10 GHz;~b! 10–15 GHz.

FIG. 3. The distribution of resonance widths evaluated for the frequency range 10–15 GHz is compared with the theo-
retical prediction for a fully chaotic system with one open channel~Ref. 20!.
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The figure shows that the structure of the original eigenfunctionf n of the resonator is destroyed.
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APPENDIX: PERTURBATION OF THE NEUMANN BOUNDARY CONDITION

The interaction between the external and internal channels can be introduced in a different
way. Consider, for example, the operator

HBS uuinD5S Hexu
H inuin1Bu~0! D ~A1!

with B being a self-adjoint operator.HB is self-adjoint on the domain of functions from
W2

2(R1 ,CM)%CN satisfying the boundary conditions

B†uin5u8~0!.

We arrive at the following energy-dependent boundary conditions for the eigenfunctions of the
operatorHB :

c8~E,0!52B†~H in2E!21Bc~E,0!.

Then the scattering matrix above the thresholds is given by

S~E!52
i1W̃B

†~E2H in!
21W̃B

i2W̃B
†~E2H in!

21W̃B

,

FIG. 4. Nodal lines of the electric field intensity inside a rectangular resonator with sides of lengthsp and 3.~a! pertains
to the unperturbed 187th state.~b! shows how this nodal line pattern changes after an antenna has been attached at the point
marked by a cross.
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whereW̃B5BQ. For the small coupling,W̃B→0, the scattering matrix tends to21 and this shows
that the model operator constructed here can be considered as a perturbation of the operatorHex
with the Neumann boundary conditions at the origin.
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Diagrammatic method of integration over the unitary
group, with applications to quantum transport
in mesoscopic systems
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Instituut-Lorentz, University of Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
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A diagrammatic method is presented for averaging over the circular ensemble of
random-matrix theory. The method is applied to phase-coherent conduction
through a chaotic cavity~a ‘‘quantum dot’’! and through the interface between a
normal metal and a superconductor. ©1996 American Institute of Physics.
@S0022-2488~96!01510-1#

I. INTRODUCTION

The random-matrix theory of quantum transport describes the statistics of transport properties
of phase-coherent~mesoscopic! systems in terms of the statistics of random matrices~for reviews,
see Refs. 1–4!. There exist two separate~but equivalent! approaches: Either the random matrix is
used to model the Hamiltonian of the closed system, or it is used to model the scattering matrix of
the open system. The second approach is more direct than the first, because the scattering matrix
directly determines the conductance through the Landauer formula,

G5
2e2

h
tr tt†. ~1.1!

~The transmission matrixt is a submatrix of the scattering matrix.!
Random-matrix theory has been applied successfully to two types of mesoscopic systems:

chaotic cavities and disordered wires. Baranger and Mello5 and Jalabert, Pichard, and Beenakker6

studied conduction through a chaotic cavity on the assumption that the scattering matrixS is
uniformly distributed in the unitary group, restricted only by symmetry. This is the circular
ensemble, introduced by Dyson,7 and shown to apply to a chaotic cavity by Blu¨mel and
Smilansky.8 The symmetry restriction is thatSS*51 in the presence of time-reversal symmetry.
~The superscript* indicates complex conjugation if the elements ofS are complex numbers; in the
presence of spin-orbit scattering,S is a matrix of quaternions, andS* denotes the quaternion
complex conjugate.! For the disordered wire, the circular ensemble applies not to the scattering
matrix itself, but to the unitary matricesv, w, v8, andw8 in the polar decomposition,

S5S v 0

0 wD S A12T iAT
iAT A12T

D S v8 0

0 w8
D . ~1.2!

The matrixT is a diagonal matrix containing the transmission eigenvaluesTn P @0,1# on the
diagonal.~TheTn’s are the eigenvalues of the matrix producttt†.) The distribution of the trans-
mission eigenvalues is governed by a Fokker–Planck equation, the Dorokhov–Mello–Pereyra–
Kumar ~DMPK! equation.9,10 The isotropy assumption10 states thatv, v8, w, andw8 are uni-
formly and independently distributed in the unitary group, with the restrictionv* v851,
w*w851 in the presence of time-reversal symmetry.

The role of the circular ensemble of unitary matrices in the scattering matrix approach is
comparable to the role of the Gaussian ensemble of Hermitian matrices in the Hamiltonian ap-
proach. However, whereas many computational techniques have been developed for averaging
over the Gaussian ensemble,11–18 the circular ensemble has received less attention. If the dimen-
sion N of the unitary matrices is small, the average over the circular ensemble can be done
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exactly.19,20 For some applications in the regime of largeN, one may regard the elements of the
unitary matrix as independent Gaussian variables,21 and then use the known diagrammatic pertur-
bation theory for the Gaussian ensemble.12,17 In other applications the Gaussian approximation
breaks down.

In this paper we present a diagrammatic technique for integration over the unitary group,
which is not restricted to the Gaussian approximation. We discuss two applications: a chaotic
cavity coupled to the outside via a tunnel barrier, and a disordered wire attached to a supercon-
ductor. In both cases, we calculate the mean and variance of the conductance up to and including
terms of order 1. We point out the analogy between the diagrams contributing to the average over
the circular ensemble and the diffuson and cooperon diagrams which appear in the theory of weak
localization22,23and universal conductance fluctuations24,25in disordered metals. In the presence of
the superconductor a third type of diagrams shows up, which gives rise to the coexistence of weak
localization with a magnetic field,26,27 and to anomalous conductance fluctuations.28

The paper starts in Sec. II with a summary of known results29–31 for the integration over the
unitary group of a polynomial function of matrix elements. The diagrammatic technique is ex-
plained in Sec. III. Generalizations to unitary symmetric matrices and to unitary quaternion ma-
trices are given in Secs. IV and V, respectively. We then apply the technique to the chaotic cavity
~Sec. VI! and the normal-metal–superconductor junction~Sec. VII!. Some of the results of Sec. VI
have been obtained previously by Iida, Weidenmu¨ller, and Zuk,1,15 and by Efetov,32 who used the
Hamiltonian approach to quantum transport and the supersymmetry technique. The results of Sec.
VII have been published in Refs. 26 and 28, without the detailed derivation presented here. There
is some overlap between Sec. VII and a recent work by Argaman and Zee.33

II. INTEGRATION OF POLYNOMIALS OF UNITARY MATRICES

In this section we summarize known results29–31 for the integration of a polynomial function
f (U) of the matrix elements of anN3N unitary matrixU over the unitary groupU(N). We refer
to the integration as an ‘‘average,’’ which we denote by brackets^•••&,

^ f &[E dU f~U !. ~2.1!

HeredU is the invariant measure~Haar measure! onU(N), normalized to unity (*dU51). The
ensemble of unitary matrices that corresponds to this average is known as the circular unitary
ensemble~CUE!.7,34

We consider a polynomial functionf (U)5Ua1b1
. . .Uanbn

Ua1b1
* . . .Uambm

* . The average

^ f (U)& is zero unlessn5m, a1 , . . . ,an is a permutationP of a1, . . . ,an , andb1 , . . . ,bn is a
permutationP8 of b1 , . . . ,bn . The general structure of the average is

^Ua1b1
. . .Uambm

Ua1b1
* . . .Uanbn

* &5dnm(
P,P8

VP,P8)
j51

n

dajaP~ j !
dbjbP8~ j !

, ~2.2!

where the summation is over all permutationsP andP8 of the numbers 1, . . . ,n. The coefficients
VP,P8 depend only on thecycle structureof the permutationP

21P8.30 Recall that each permuta-
tion of 1, . . . ,n has a unique factorization in disjoint cyclic permutations~‘‘cycles’’ ! of lengths
c1 , . . . ,ck ~wheren5( j51

k ck). The statement thatVP,P8 depends only on the cycle structure of
P21P8 means thatVP,P8 depends only on the lengthsc1 , . . . ,ck of the cycles in the factorization
of P21P8. One may therefore writeVc1 , . . . ,ck

instead ofVP,P8 .
As an example, we consider the casen5m52 explicitly. The summation over the permuta-

tions P andP8 extends over the identity permutation id5@(1,2)→(1,2)# and the exchange per-
mutation ex5@(1,2)→(2,1)#. Hence Eq.~2.2! reads
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^Ua1b1
Ua2b2

Ua1b1
* Ua2b2

* &5Vid,idda1a1
db1b1

da2a2
db2b2

1Vex,idda1a2
db1b1

da2a1
db2b2

1Vid,exda1a1
db1b2

da2a2
db2b1

1Vex,exda1a2
db1b2

da2a1
db2b1

.

~2.3!

The permutationP21P8 that corresponds toP5P85 id @the first term on the r.h.s. of Eq.~2.3!# is
again the identity permutation:P21P85 id5@(1,2)→(1,2)#. Its factorization in cyclic permuta-
tions is id5(1→1)(2→2), so thatP21P8 factorizes in two cyclic permutations of unit length.
Hence the cycle structure ofP21P8 is $1,1%, andVid,id5V1,1. The second term on the r.h.s. of Eq.
~2.3!, corresponding toP5ex, P85 id, hasP21P85ex5@(1,2)→(2,1)#, which factorizes in a
single cyclic permutation of length two, ex5(1→2→1). Hence the cycle structure ofP21P8 is
$2%, andVex,id5V2 . Treating the remaining two terms of Eq.~2.3! similarly, we obtain

^Ua1b1
Ua2b2

Ua1b1
* Ua2b2

* &5V1,1da1a1
db1b1

da2a2
db2b2

1V2da1a2
db1b1

da2a1
db2b2

1V2da1a1
db1b2

da2a2
db2b1

1V1,1da1a2
db1b2

da2a1
db2b1

.
~2.4!

In general, the coefficientV1, . . . ,1refers to equal permutationsP5P8, corresponding to a pairwise
~Gaussian! contraction of the matricesU andU* . CoefficientsVc1 , . . . ,ck

with somecjÞ1 give
non-Gaussian contributions.

The coefficientsV are determined by the recursion relation30

NVc1 , . . . ,ck1 (
p1q5c1

Vp,q,c2 , . . . ,ck
1(

j52

k

cjVc11cj ,c2 , . . . ,cj21 ,cj11 , . . . ,ck
5dc11Vc2 , . . . ,ck

,

~2.5!

with V0[1. One can show that the solutionVc1 , . . . ,ck
does not depend on the order of the indices

c1 , . . . ,ck . Results forV up ton55 are given in the Appendix. The large-N expansion ofV is

Vc1 , . . . ,ck
5)

j51

k

Vcj
1O ~Nk22n22!, ~2.6a!

Vc5
1

c
N122c~21!c21S 2c22

c21 D1O ~N2122c!. ~2.6b!

~The numbersc21( c21
2c22) are the Catalan numbers.! For example,V1, . . . ,15N2n1O (N2n22). The

Gaussian approximation amounts to setting allV’s equal to zero exceptV1, . . . ,1, which is set to
N2n.

The coefficientsVc1 , . . . ,ck
determine the moments ofU. Similarly, the coefficients

Wc1 , . . . ,ck
determine the cumulants ofU. The cumulants are obtained from the moments by

subsequent subtraction of all possible factorizations in cumulants of lower degree. For example,

Wc1
5Vc1

, ~2.7a!

Wc1 ,c2
5Vc1 ,c2

2Wc1
Wc2

, ~2.7b!

Wc1 ,c2 ,c3
5Vc1 ,c2 ,c3

2Wc1
Wc2 ,c3

2Wc2
Wc1 ,c3

2Wc3
Wc1 ,c2

2Wc1
Wc2

Wc3
. ~2.7c!

The recursion relation~2.5! for V implies a recursion relation forW,
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NWc1 , . . . ,ck
1 (

p1q5c1
Wp,q,c2 , . . . ,ck

1(
j52

k

cjWc11cj ,c2 , . . . ,cj21 ,cj11 , . . . ,ck

1 (
p1q5c1

(
l51

k
1

~ l21!! ~k2 l !!(P Wp,cP~2! , . . . ,cP~ l !
Wq,cP~ l11! ,cP~k!

50, ~2.8!

with W0[1 andP a permutation of 2, . . . ,k. To leading order in 1/N this equation has the
solution,

Wc1 , . . . ,ck
52kN22n2k12~21!n1k

~2n1k23!!

~2n!! )
j51

k
~2cj21!!

~cj21!! 2
1O ~N22n2k!. ~2.9!

Notice thatWc1 , . . . ,ck
decreases with increasing number of cyclesk, opposite to the behavior of

Vc1 , . . . ,ck
.

In principle, the recursion relations permit an exact evaluation of the average of any polyno-
mial function ofU. In practice, as the number ofU ’s andU* ’s increases, keeping track of the
indices and of the Kronecker delta’s which connect them becomes more and more cumbersome. It
is by the introduction of a diagrammatic technique that one can carry out this bookkeeping
problem in a controlled and systematic way.

III. DIAGRAMMATIC TECHNIQUE

The usefulness of diagrams for the bookkeeping problem is well-established for averages over
the Gaussian ensemble of Hermitian matrices.12 Brézin and Zee17 have developed a diagrammatic
method which can be applied to non-Gaussian ensembles as well, as a perturbation expansion in
a small parameter multiplying the non-Gaussian terms in the distribution. No such small parameter
exists for the circular ensemble. The method presented here deals with non-Gaussian contributions
to all orders. Creutz29 has given a diagrammatic algorithm for integrals over SU(N). Because of
the more complicated structure of SU(N), we could not effectively apply his method to integrals
overU(N) in the case of a large number ofU ’s.

The diagrams consist of the building blocks shown in Fig. 1. We represent matrix elements
Uab or Uab* by thick dotted lines. The first index (a or a) is a black dot, the second index (b or
b) a white dot. A fixed matrixAi j is represented by a directed thick solid line, pointed from the
first to the second index. Summation over an index is indicated by attachment of the solid line to
a dot. As an example, the functionsf (U)5tr AUBU† andg(U)5tr AUBUCU†DU† are repre-
sented in Fig. 2.

The average over the matrixU consists of summing over all permutationsP andP8 in Eq.
~2.2!. Permutations are generated by drawing thin lines~representing Kronecker deltas! between
all black dots attached toU and black dots attached toU* ~one line per dot!. Black dots connect

FIG. 1. Substitution rules for the unitary matricesU andU* , the fixed matrixA and the Kronecker delta.

4907P. W. Brouwer and C. W. J. Beenakker: Integration over the unitary group

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



to black dots and white dots to white dots. To find the contribution of the permutationsP and
P8 to ^ f (U)&, we need~i! to determine the cycle structure of the permutationP21P8, and~ii ! to
sum over the indices of the fixed matricesA.

~i! The cycle structure can be read off from the diagrams. A cycle of the permutation
P21P8 gives rise to a closed circuit in the diagram consisting of alternating dotted and thin lines.
The lengthck of the cycle is half the number of dotted lines contained in the circuit. We call such
circuitsU-cycles of lengthck .

~ii ! The trace over the elements ofA is done by inspection of the closed circuits in the diagram
which consist of alternating thick and thin lines. We call such circuitsT-cycles. AT-cycle con-
taining the matricesA(1),A(2), . . . ,A(k) ~in this order! gives rise to trA(1)A(2) . . .A(k). If the
thick line corresponding to a matrixA is traversed opposite to its direction, the matrix should be
replaced by its transposeAT.

As an example, let us consider the average of the functionsf (U)5tr AUBU† and
g(U)5tr AUBUCU†DU†. Connecting the dots by thin lines, we arrive at the diagrams of Fig. 3.
For f , there is only one diagram. It contains a singleU-cycle of length 1~weightV1) and two
T-cycles~which generate trA and trB). We look up the value ofV151/N in the Appendix, and
find

^ f ~U !&5V1 tr A tr B5N21 tr A tr B, ~3.1!

Four diagrams contribute tog. The first diagram contains twoU-cycles of length 1, and three
T-cycles. Its contribution isV1,1 tr A tr BD tr C. The second diagram contains twoU-cycles of

FIG. 2. Diagrammatic representation of the functionsf (U)5tr AUBU† andg(U)5tr AUBUCU†DU†.

FIG. 3. Diagrammatic representation of the averages of the functionsf andg in Fig. 2.
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length 1 and a singleT-cycle. Its contribution isV1,1 tr ADCB. The third and fourth diagram each
contain a singleU-cycle of length 2 and twoT-cycles. Their contributions areV2 tr A tr BDC
andV2 tr ADB tr C. In total we find

^g~U !&5V1,1~ tr A tr BD tr C1tr ADCB!1V2~ trA tr BDC1tr ADB tr C!

5~N221!21~ tr A tr BD tr C1tr ADCB!

2@N~N221!#21~ tr A tr BDC1tr ADBtr C!. ~3.2!

Whereas each individualT-cycle gives rise to a trace of matrices, it is only the combination of
all U -cycles together that determines the coefficientVc1 , . . . ,ck

. The evaluation of a diagram would
be more efficient, if we could attribute a weight to anindividual U-cycle. We introduced the
cumulant expansion of the coefficientsV in the coefficientsW for this purpose. The leading term
Vc1 , . . . ,ck

5)p51
k Wcp

of the cumulant expansion attributes a weightWcp
to each individual

U-cycle of lengthcp . This is sufficient for the calculation of the large-N limit of the average
^ f &. The next term( i, j

k Wci ,cj
)pÞ i , j
k Wcp

attributes a weightWci ,cj
to the pair (i , j ) of

U-cycles, and the weightWcp
to all others individually. This is sufficient for the variance off . The

general rule is that thej th order cumulant off in the large-N limit requires thej th order term in
the cumulant expansion of the coefficientsV, and hence requires consideration of groups ofj
U-cycles.

Let us summarize the diagrammatic rules:
~1! Draw the diagrams according to the substitution rules of Fig. 1.
~2! Draw thin lines to pair black dots attached toU to black dots attached toU* . Do the same

for the white dots.
~3! Every closed circuit of alternating thick solid lines and thin solid lines~a T-cycle! corre-

sponds to a trace of the matricesA appearing in the circuit. If a thick line is traversed
opposite to its direction, the transpose of the matrix appears in the trace.

~4! Every closed circuit of alternating dotted and thin solid lines~aU-cycle! corresponds to a
cycle of lengthck equal to half the number of dotted lines. The set ofU-cycles in a
diagram defines the coefficientVc1 , . . . ,ck

, which is the weight of the diagram. The coef-
ficient V can be factorized into cumulants. To determine the cumulant coefficientsW,
partition theU-cycles into groups. Every group ofp U-cycles of lengthsc1 , . . . ,cp
contributes a weightWc1 , . . . ,cp

.

The diagrammatic rules are exact. In the large-N limit, we may reduce the number of dia-
grams and partitions that is involved. Let us determine the order inN of a diagram withl
T-cycles andk U-cycles of total lengthn partitioned intog groups. Counting every trace as an
orderN and using the large-N result~2.9! for the coefficientsW, we find a contribution of order
N2g1 l2k22n. Sinceg<k, the order is maximal ifg5k and the total number of cyclesk1 l is
maximal. Thus, for largeN, we may restrict ourselves to diagrams with as many cycles as possible
and with a partition of theU-cycles in groups of a single cycle~i.e., we may approximate
Vc1 , . . . ,ck

'Wc1
•••Wck

).
We conclude this section with one more example, which is the calculation of the variance

var f5^ f 2&2^ f &2 of the functionf (U)5 tr AUBU†. Diagrammatically, we calculatêf 2& as in
Fig. 4~a!, resulting in

^ f 2&5V1,1@~ tr A!2~ tr B!21tr A2 tr B2#1W2@ tr A
2~ tr B!21~ tr A!2 tr B2#, ~3.3a!

⇒ var f5W1,1@~ tr A!2~ tr B!21 tr A2 tr B2#1W1
2 tr A2 tr B2

1W2@ tr A
2~ tr B!21~ tr A!2 tr B2#. ~3.3b!
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If we now consider the order inN of the various contributions, we see that the leadingO (N2) term
of ^ f 2& ( l54, g5k52, corresponding to 6 cycles and a partition of theU-cycles into two groups
of a single cycle!, is exactly canceled bŷf &2. This exact cancelation is possible because the
leading contribution of̂ f 2& is disconnected: EachT-cycle, and each group ofU-cycles belongs
entirely to one of the two factors trAUBU† of f 2. Only connected diagrams contribute to the
variance of f . The connected diagrams are of order 1 (k1 l54 and g5k or k1 l56 and
g5k21). They give the variance

var f5W1,1~ tr A!2~ tr B!21W1
2 tr A2 tr B21W2@ tr A

2~ tr B!21~ tr A!2 tr B2#1O ~N21!.
~3.4!

IV. INTEGRATION OF UNITARY SYMMETRIC MATRICES

In the presence of time-reversal symmetry the scattering matrixS is both unitary and sym-
metric: SS†51, S5ST. The elements ofS are complex numbers.~The case of a quaternionS,
corresponding to spin-orbit scattering, is treated in the next section.! The ensemble of uniformly
distributed unitary symmetric matrices is known as the circular orthogonal ensemble~COE!.7,34

Averages of the unitary symmetric matrixU over the COE can be computed in two ways. One
way is to substituteU5VVT, with the matrixV uniformly distributed over the unitary group. This
has the advantage that one can use the same formulas as for averages over the CUE, but the
disadvantage that the number of unitary matrices is doubled. A more efficient way is to use
specific formulas for the COE, as we now discuss.

The average of a polynomial inU andU* over the COE has the general structure

^Ua1a2
•••Ua2n21a2n

Ua1a2
* •••Ua2m21a2m

* &5dnm(
P

VP)
j51

2n

dajaP~ j !
. ~4.1!

The summation is over permutationsP of the numbers 1, . . . ,2n. We can decomposeP as

P5S )
j51

n

Tj D PePoS )
j51

n

Tj8D , ~4.2!

where Tj and Tj8 permute the numbers 2j21 and 2j , and Pe (Po) permutesn even ~odd!
numbers. BecauseUab5Uba , the moment coefficientVP depends only on the cycle structure
$c1 , . . . ,ck% of Pe

21Po ,
35 so that we may writeVc1 , . . . ,ck

instead ofVP .
The moment coefficients obey the recursion relation

~N1c1!Vc1 , . . . ,ck
1 (

p1q5c1
Vp,q,c2 , . . . ,ck

12(
j52

k

cjVc11cj ,c2 , . . . ,cj21 ,cj11 , . . . ,ck
5dc11Vc2 , . . . ,ck

,

~4.3!

FIG. 4. Diagrammatic representation of^ f 2&.
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with V0[1. The large-N expansion ofV is

Vc1 , . . . ,ck
5)

j51

k

Vcj
1O ~Nk22n22!, ~4.4a!

Vc5
1

c
N122c~21!c21S 2c22

c21 D2N22c~24!c211O ~N2122c!. ~4.4b!

Compared with Eq.~2.6! an extra term of orderN22c appears inVc because of the symmetry
restriction. The recursion relation for the cumulant coefficientsW is

~N1c1!Wc1 , . . . ,ck
1 (

p1q5c1
Wp,q,c2 , . . . ,ck

12(
j52

k

cjWc11cj ,c2 , . . . ,cj21 ,cj11 , . . . ,ck

1 (
p1q5c1

(
l51

k
1

~ l21!! ~k2 l !!(P Wp,cP~2! , . . . ,cP~ l !
Wq,cP~ l11! ,cP~k!

50, ~4.5!

with W0[1 andP a permutation of the numbers 2, . . . ,k. The solution for largeN is

Wc1 , . . . ,ck
522k21N22n2k12~21!n1k

~2n1k23!!

~2n!! )
j51

k
~2cj21!!

~cj21!! 2
1O ~N22n2k11!. ~4.6!

The coefficientsVc1 , . . . ,ck
andWc1 , . . . ,ck

are listed in the Appendix forn5c11•••1ck<5.
For the diagrammatic representation, we again use the substitution rules of Fig. 1. The sym-

metry ofU is taken into account by allowing thin lines between black and white dots. Therefore,
rule ~2! is replaced by

~2! Pair the dots attached toU to the dots attached toU* by connecting them with thin lines.
As examples, we compute the averages off (U)5tr AUBU† and g(U)

5 tr AUBUCU†DU† over the COE. The diagrams for^ f (U)& are shown in Fig. 5, with the result

^ f ~U !&5V1~ tr A tr B1 tr ATB!5~N11!21~ tr A tr B1 tr ATB!. ~4.7a!

Similarly, we find that

^g~U !&5@~N11!~N13!#21~ tr Atr BD tr C1 tr ADTBT tr C1 tr A tr BCTD1 tr ADTCBT

1 tr ADCB1 tr ACTDTB1 tr ADBTCT1 tr ACT tr BDT!2@~N~N11!~N13!#21

3~ tr A tr BDC1 tr ACTDTBT1 tr A tr BDTC1 tr ACT DBT1 tr ADB tr C

1 tr ADTB tr C1 tr ADBCT1 tr ADTBCT1 tr ADTBTCT1 tr ACT tr BD

1 tr ADT CB1 tr ACTDB1 tr A tr BCTDT1 tr ADCBT1 tr A tr BDT tr C

1 tr ADBT tr C!. ~4.7b!

FIG. 5. Diagrammatic representation of^ f (U)& for f (U)5tr AUBU†, whereU is a unitary symmetric matrix. The second
term arises because of the symmetry constraint.
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V. INTEGRATION OF MATRICES OF QUATERNIONS

We extend the results of the previous sections for integrals over unitary matrices of complex
numbers to integrals over unitary matrices of quaternions. This is relevant to the case that spin-
rotation symmetry is broken by spin-orbit scattering.

Let us first recall the definition and basic properties of quaternions.34 A quaternionq is
represented by a 232 matrix,

q5a011 ia1s11 ia2s21 ia3s3 , ~5.1!

where1 is the 232 unit matrix ands i is a Pauli matrix,

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~5.2!

The coefficientsaj are complex numbers. The complex conjugateq* and Hermitian conjugate
q† of a quaternionq are defined as

q*5a0* 11 ia1*s11 ia2*s21 ia3*s3 , q†5a0* 12 ia1*s12 ia2*s22 ia3*s3 . ~5.3!

The complex conjugate of a quaternion differs from the complex conjugate of a 232 matrix,
whereas the Hermitian conjugate equals the Hermitian conjugate of a 232 matrix. LetQ be an
N3N matrix of quaternions with elementsQkl5Qkl

(0)11 iQkl
(1)s11 iQkl

(2)s21 iQkl
(3)s3 . The com-

plex conjugateQ* and Hermitian conjugateQ† are defined by (Q* )kl5Qkl* and (Q†)kl5Qlk
† .

The dual matrixQR is defined byQR5(Q†)*5(Q* )†. We callQ unitary if QQ†51 and self-
dual ifQ5QR. A unitary self-dual matrix is defined byQQ†5QQ*51. The trace trQ is defined
by tr Q5( jQj j

(0) , which equals 1/2 the trace of the 2N32N complex matrix corresponding to
Q. The scattering matrix in zero magnetic field is a unitary self-dual matrix, because of time-
reversal symmetry. The ensemble of quaternion matrices which is uniformly distributed over the
unitary group is called the circular unitary ensemble~CUE!. If the ensemble is restricted to
self-dual matrices it is called the circular symplectic ensemble~CSE!.7,34

The integration of a polynomial functionf (U) of anN3N quaternion matrixU over the CUE
or CSE can be related to the integration of a functionf̂ (U) of anN3N complex matrixU over the
CUE or COE. The translation rule is as follows~a similar rule has been formulated for Gaussian
ensembles in Refs. 36 and 37!:

~1! f̂ (U) is constructed fromf (U) by replacing, respectively, the complex conjugates, Hermitian
conjugates, and duals of quaternion matrices by complex conjugates, Hermitian conjugates,
and transposes of complex matrices. Furthermore, every trace is replaced by2 1

2 tr, and nu-
merical factorsN are replaced by2 1

2N.
~2! The averagê f̂ (U)& is calculated using the rules for integration ofN3N complex matrices

over the CUE or COE.
~3! The averagê f (U)& over the CUE or CSE is found by replacing, respectively, the complex

conjugates, Hermitian conjugates, and transposes of complex matrices by the complex conju-
gates, Hermitian conjugates, and duals of quaternion matrices. Traces are replaced by22 tr
and numerical factorsN by 22N.

As examples, we compute the averages of the functionsf (U)5tr AUBU† and
g(U)5tr AUBUCU†DU† of N3N quaternion matrices over the CUE and CSE. The first step is
to construct the functionsf̂ (U) and ĝ(U) of N3N complex matrices,

f̂ ~U !52 1
2 tr AUBU

†, ĝ~U !52 1
2 tr AUBUCU

†DU†. ~5.4!

The second step is to averagef̂ and ĝ over the CUE. The result is in Eqs.~3.1! and ~3.2!,

4912 P. W. Brouwer and C. W. J. Beenakker: Integration over the unitary group

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



^ f̂ &CUE52 1
2N

21 tr A tr B, ~5.5a!

^ĝ&CUE52 1
2~N

221!21~ tr A tr BD tr C1 tr ADCB!

1 1
2@N~N221!#21~ tr A tr BDC1 tr ADB tr C!. ~5.5b!

The third step is to translate back to quaternion matrices,

^ f &CUE5N21 tr A tr B, ~5.6a!

^g&CUE5~4N221!21~4 tr A tr BD tr C1 tr ADCB!

2@N~4N221!#21~ tr A tr BDC1 tr ADB tr C!. ~5.6b!

Similarly, to average off andg over the CSE we need the average off̂ andĝ over the COE given
by Eq. ~4.7a!, and then translate back to quaternion matrices. For^ f (U)& we find

^ f̂ &COE52 1
2~N11!21~ ttr A tr B1 tr ATB!,

⇒^ f &CSE5~2N21!21~2tr A tr B2 tr ARB!. ~5.7a!

Similarly, we find for^g(U)& the final result

^g&CSE5@~2N21!~2N23!#21~4tr A tr BD tr C22 tr ADRBR tr C22 tr A tr BCRD

1 tr ADRCBR1 tr ADCB1 tr ACRDRB1 tr ADBRCR22 tr ACR tr BDR!

2@~2N~2N21!~2N23!#21~2 tr A tr BDC2 tr ACRDRBR12 tr A tr BDRC

2 tr ACRDBR12 tr ADB tr C12 tr ADRB tr C2 tr ADBCR2 tr ADRBCR

12 tr A tr BCRDR2 tr ADCBR24 tr A tr BDR tr C12 tr ADBR tr C2 tr ADRBRCR

12 tr ACR tr BD2 tr ADRCB2 tr ACRDB!. ~5.7b!

VI. APPLICATION TO A CHAOTIC CAVITY

We consider the system shown in Fig. 6, consisting of a chaotic cavity attached to two leads,
containing tunnel barriers. TheM3M scattering matrixS is decomposed intoNi3Nj submatrices
si j ,

S5S s11 s12

s21 s22
D , ~6.1!

which describe scattering from leadj into leadi (M5Ni1Nj ). The conductanceG is given by
the Landauer formula,

G/G05tr s12s12
† 5tr C1SC2S

†, G052e2/h. ~6.2!

FIG. 6. Chaotic cavity~grey! connected to two leads containing tunnel barriers~black!.
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The projection matricesC1 andC2512C1 are defined by (C1) i j51 if i5 j<N1 and 0 otherwise.
In the absence of tunnel barriers in the leads,S is distributed according to the circular

ensemble. The symmetry indexb P $1,2,4% distinguishes the COE (b51), CUE (b52), and
CSE (b54). Calculation of the average and variance ofG is straightforward,5,6

^G/G0&5
bN1N2

bM122b
, ~6.3!

varG/G05
2bN1N2~bN1122b!~bN2122b!

~bM1222b!~bM122b!2~bM142b!
. ~6.4!

In the presence of a tunnel barrier in leadi with reflection matrixr i , the distribution ofS is given
by the Poisson kernel,38–41

P~S!}udet~12S̄†S!u2~bM122b!, S̄5S r 1 0

0 r 2
D . ~6.5!

The sub-unitary matrixS̄ is the ensemble average ofS: *dSP(S)S5S̄. The eigenvaluesG j of
12S̄S̄† are the transmission eigenvalues of the tunnel barriers. The fluctuating partdS[S2S̄ of
S can be parametrized as

dS5T8~12UR8!21UT, ~6.6!

whereT, T8, andR8 areM3M matrices such that the 2M32M matrix

S5S S̄ T8

T R8
D ~6.7!

is unitary. The usefulness of the parametrization~6.6! is thatU is distributed according the circular
ensemble.21,38,41 In the presence of time-reversal symmetry, we further haveS̄5S̄T, T85TT,
R85R8T, andU5UT. Physically,U corresponds to the scattering matrix of the cavity without the
tunnel barriers in the leads andS corresponds to the scattering matrix of the tunnel barriers in the
absence of the cavity.19,41

The parametrization~6.6! reduces the problem of averagingS with the Poisson kernel to
integratingU over the unitary group. Because the conductanceG is a rational function ofU, this
average cannot be done in closed form for allM . For N1 ,N2@1 a perturbative calculation is
possible. In this section we will compute the mean and variance of the conductance in the large-
N limit, using the diagrammatic technique of the previous sections.

A. Average conductance

According to the Landauer formula~6.2! the average conductance is given by

^G/G0&5^tr C1dSC2dS
†&, ~6.8!

where we have used that^dS&50. Expansion of the denominator in the parametrization~6.6! of
dS yields the series

^G/G0&5 (
n51

`

^ f n~U !&, ~6.9a!

f n~U !5tr C1T8~UR8!n21UTC2T
†U†~R8†U†!n21T8†. ~6.9b!
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The average of the polynomial functionf n(U) can be calculated diagrammatically. We represent
f n(U) by the top diagram in Fig. 7. The average over the matrixU is done as follows.

The leading contribution, which is of orderM , comes from the diagrams with the largest
number ofT- andU-cycles. For a polynomial of the type~6.8! ~all U ’s are on one side of the
U†’s!, these diagrams have a ‘‘ladder’’ structure~see bottom diagram in Fig. 7!. The ladder
diagrams containn U-cycles andn11 T-cycles. Their weight isW1

n5M2n1O (M2n21), result-
ing in

^ f n~U !&5M2n tr T8†C1T8~ tr R8R8†!n21 tr TC2T
†1O ~1!. ~6.10!

Summation of the series~6.9! yields ^G& to leading order inM ,

^G/G0&5
~ tr T8†C1T8!~ tr TC2T

†!

M2 tr R8R8†
1O ~1!5

~N12 tr S̄†C1S̄!~N22 tr S̄C2S̄
†!

M2 tr S̄S̄†
1O ~1!.

~6.11!

In the second equality we have used the unitarity of the matrixS defined in Eq.~6.7!.
The weak-localization correction is theO (1) contribution to^G&. In general, anO (1)

contribution to the average conductance can have two sources:~i! a higher order contribution to
the weightWc1 , . . . ,ck

of the leading-order diagrams, and~ii ! higher order diagrams. In the absence
of time-reversal symmetry both contributions are absent:~i! W15M21 has noO (M22) term, and
~ii ! there are no diagrams of order 1.

The situation is different in the presence of time-reversal symmetry. We discuss the case
b51 in which there is no spin-orbit scattering. The caseb54 then follows from the translation
rule of Sec. V. In the presence of time-reversal symmetry,~i! the coefficient
W15M212M221••• has anO (M22) term, and~ii ! there are diagrams of order 1. The first
contribution is a correctionnM2n21 to the weightM2n in Eq. ~6.10!. Summation overn yields
the first correction to Eq.~6.11!,

dG152
~ tr T8†C1T8!~ tr TC2T

†!

~M2 tr R8R8†!2
. ~6.12!

The second contribution is from diagrams which are obtained from the ladder diagrams by revers-
ing the order of the contractions in a part of the diagram. The central part of the diagram is
‘‘maximally crossed,’’ the left and right ends are ladders~see Fig. 8!. In disordered systems, the
ladder diagrams are known as diffusons, while the maximally crossed diagrams are known as
cooperons. The maximally crossed diagrams are not allowed in the absence of time-reversal

FIG. 7. Top: Diagrammatic representation of the functionf n(U) in Eq. ~6.9!; Bottom: Ladder diagram with the largest
number of cycles, which gives theO (N) contribution to the average conductance. The arrows are omitted if the direction
of the diagram is not ambiguous.
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symmetry, because dots of different color are connected by thin lines@violating rule ~2! in Sec.
III #. A maximally crossed diagram can be redrawn as a ladder diagram by flipping one of the
horizontal lines along a vertical axis~bottom diagram in Fig. 8!.

In the maximally crossed diagrams all cycles but one have minimum length. The cycle with
the exceptional length can be aU-cycle~top diagram in Fig. 8!, or aT-cycle~middle diagram!. To
evaluate these diagrams, we need to introduce some more notation~see Fig. 9!. We denote the left
and right ladder diagrams by matricesFL andFR,

FL5T8†C1T81 (
n51

`

M2n~ tr T8†C1T8!~ tr R8†R8!n21R8†R8

5T8†C1T81S tr T8†C1T8

M2 tr R8R8†DR8†R8, ~6.13a!

FR5TC2T
†1 (

n51

`

M2nR8R8†~ tr R8R8†!n21~ tr TC2T
†!

FIG. 8. Top and middle: Two maximally crossed diagrams contributing to the weak-localization correction to the average
conductance. The right and left parts of the diagram have a ladder structure; Bottom: The maximally crossed part of the top
diagram redrawn as a ladder diagram.

FIG. 9. Diagrammatic representation of Eqs.~6.13! and ~6.14!.
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5TC2T
†1R8R8†S tr TC2T

†

M2 tr R8R8†D . ~6.13b!

The scalarsf UU and f TT represent the maximally crossed part of the diagram,

f TT5 (
n50

`

M2n~ tr R8R8†!n115
M tr RR8†

M2 tr R8R8†
, ~6.14a!

f UU5 (
n50

`

M2n21~ tr R8R8†!n5
1

M2 tr R8R8†
. ~6.14b!

We used the symmetry ofR8 to replaceR8T by R8. With this notation we may draw the contri-
butiondG2 to the weak-localization correction from the maximally crossed diagrams as in Fig. 10.
It evaluates to

dG252M23 tr FL f TT tr FR1 tr FL f UUFR
T . ~6.15!

The total weak-localization correctiondG5dG11dG2 becomes

dG52~ tr T†T!23@~ tr C2T
†T!2 tr C1~T

†T!21~ tr C1T
†T!2 tr C2~T

†T!2#. ~6.16!

SinceT†T512S̄†S̄ has eigenvaluesGn , we may write the final result for the average conduc-
tance in the form

^G/G0&5
g1g18

g11g18
1S 12

2

b D g2g1821g28g1
2

~g11g18!3
1O ~M21!, ~6.17!

gp5 (
n51

N1

Gn
p , gp85 (

n511N1

M

Gn
p . ~6.18!

~Theb54 result follows from the translation rule of Sec. V.! The first term in Eq.~6.17! is the
series conductance of the two tunnel conductancesG0g1 andG0g18 . The term proportional to
122/b is the weak-localization correction. In the absence of tunnel barriers one hasgp5N1 ,
gp85N2 , and the large-M limit of Eq. ~6.3! is recovered. In the case of two identical tunnel
barriers (N15N25M /2[N, Gn5Gn1N for n51, . . . ,N), Eq. ~6.17! simplifies to

^G/G0&5 1
2g11S 12

2

b D g2
4 g1

1O ~M21!. ~6.19!

Eq. ~6.19! was previously obtained by Iida, Weidenmu¨ller and Zuk15. If all Gn’s are equal toG,
Eq. ~6.19! simplifies further tô G/G0&5 1

2NG1 1
4(122/b)G.

FIG. 10. Diagrammatic representation of the weak-localization correctiondG2 from the maximally crossed diagrams. The
total correctiondG5dG11dG2 contains also a contributiondG1 from the weight factors@Eq. ~6.12!#.
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B. Conductance fluctuations

We seek the effect of tunnel barriers on the variance of the conductance,
varG5^G2&2^G&2. We considerb51 and 2 first, and translate tob54 in the end. Using the
parametrization~6.6! we write the variance in the form

varG/G05var~ tr C1dSC2dS
†!5 (

k,l ,m,n>1
covar~ f kl , f mn!, ~6.20a!

f kl5 tr C1T8~UR8!k21UTC2T
†U†~R8†U†! l21T8†. ~6.20b!

Since the numberU ’s and U* ’s must be equal for a non-zero average, covar(f kl , f mn)
[ ^ f kl f mn&2^ f kl&^ f mn&50 unlessk1m5 l1n. Diagrammatically, we representf kl f mn by Fig.
11. The diagram consists of an inner loop, corresponding tof kl , and an outer loop, corresponding
to f mn . The covariance off kl and f mn is given by the connected diagrams. We call a diagram
‘‘connected’’ if ~i! the partition of theU-cycles contains a group which consists ofU-cycles from
the inner and the outer part, or~ii ! the diagram contains a cycle~aU-cycle or aT-cycle! connect-
ing the inner and outer loops.

We first compute the contribution from diagrams which are connected only because of~i!, i.e.,
diagrams in which allU-cycles andT-cycles belong either to the inner or outer loop. The contri-
bution from such a diagram is maximal, if theU-cycles are partitioned in groups which are as
small as possible. The optimal partition consists of groups of size 1, except for a single group of
size 2, which contains oneU-cycle from the inner and one from the outer loop. Furthermore, the
total number of cycles is maximal if both the inner and outer loops are ladder diagrams. This
requiresk5 l andm5n. The covariance from this diagram is

covariance5kmdkldmnW1,1W1
k1m22~ tr T8†C1T8!2~ tr R8R8†!k1m22~ tr TC2T

†!21O ~M21!.
~6.21!

Summing overk andm we obtain the first contribution to varG/G0 ,

variance5M24~ tr FL tr FR!2. ~6.22!

The second contribution, consisting of diagrams in which the inner and outer loops are
connected byT- or U-cycles, is of maximal order if the partition of theU-cycles involves only
groups of size 1. Forb52 there are 16 connected diagrams of maximal order. They are shown in
Fig. 12, and their contribution to varG/G0 is tabulated in Table I. The shaded areas indicate
ladder parts of the diagram~see Figs. 9 and 13!. The matricesFL andFR, and the scalarsf UU and
f TT are defined in Eqs.~6.13! and ~6.14!. The definitions of the matrixH and of the scalarsf UT
and f TU are

f UT5 f TU5 (
n50

`

M2n~ tr R8R8†!n5
M

M2 tr R8R8†
, ~6.23a!

FIG. 11. Diagrammatic representation of a term contributing toG2, and hence to the variance~6.20! of the conductance.
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H5M21~ tr FR!R8T8†C1T81M21~ tr FL!TC2T
†R81M22~ tr FL!~ tr FR!R8R8†R8.

~6.23b!

In the presence of time-reversal symmetry (b51), the matrixU is symmetric. Diagrammatically,
this means that no distinction is made between black and white dots. In addition to the 16
diffuson-like diagrams of Fig. 12, 16 more cooperon-like diagrams contribute. These are obtained
from the diagrams of Fig. 12 by flipping the inner loop around a vertical~Figs. 12a–h! or
horizontal~Figs. 12i–p! axis, so that segments with a ladder structure become maximally crossed.
Their contributions are listed in Table I. The contributions from the individual diffuson-like and
cooperon-like diagrams are different. The total contribution to varG from diffuson-like and
cooperon-like diagrams is the same.

The final result for the variance ofG is

varG/G052b21~g11g18!26~2g1
4g18

214g1
3g18

324g1
2g2g18

312g1
2g18

4

22g1g2g18
413g2

2g18
422g1g3g18

412g2g18
522g3g18

512g1
5g2822g1

4g18g28

24g1
3g18

2g2816g1
2g2g18

2g2813g1
4g28

222g1
5g3822g1

4g18g38!. ~6.24!

Eq. ~6.24! was previously obtained by Efetov.32 One verifies that the large-N limit of Eq. ~6.4! is
recovered in the absence of tunnel barriers. For the special case of identical tunnel barriers
(gp5gp8), this simplifies to

FIG. 12. The 16 connected diagrams which contribute to the variance of the conductance. The shaded parts are defined in
Figs. 9 and 13. These diagrams contribute forb51 and 2. Forb51 there are 16 more diagrams, obtained by flipping the
inner loop around a vertical axis~diagram a–h! or around a horizontal axis~i–p!, so that ladders become maximally
crossed.
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varG/G05~8bg1
2!21~2g1

222g1g213g2
222g1g3!, ~6.25!

in agreement with Ref. 15. Another special case is that of high tunnel barriers,Gn!1 for all n,
when Eq.~6.24! simplifies to42

varG/G054b21~g11g18!24g1
2g18

2. ~6.26!

If all transmission eigenvaluesGn[G are equal, one has varG/G05(8b)21@11(12G)2#. A
high tunnel barrier (G!1) thus doubles the variance.

C. Density of transmission eigenvalues

The transmission eigenvaluesTn P @0,1# are theN1 eigenvalues of the matrix product
s12s12

† . Without loss of generality we may assume thatN1<N2 . The matrix products21s21
† then

TABLE I. Contribution to varG/G0 from the connected diagrams of Fig. 12.

Diagram b51,2 b51

a W2
2(tr FL)

2f TT
2 (tr FR)

2 W2
2 tr FR tr RL f TT

2 tr FL tr FR

b W3(tr FL)
2f TT( tr FR)

2 W3 tr FR tr FL f TT tr FL tr FR

c W2(tr FL)
2f TU

2 tr FR
2 W2 tr FR tr FL f TU

2 tr FL
TFR

d tr HH†f UU tr HTH†f UU

e W2 tr FL
2 f UT

2 (tr FR)
2 W2 tr FR

TFL f UT
2 tr FL tr FR

f W3(tr FL)
2f TT(tr FR)

2 W3 tr FR tr FL f TT tr FL tr FR

g tr FL
2 f UU

2 tr FR
2 tr FR

TFL f UU
2 tr FL

TFR

h tr H†HfUU tr H*HfUU

i W2
2 tr FL tr FRf TT

2 tr FL tr FR W2
2 tr FR tr FL f TT

2 tr FL tr FR

j W2
2 tr FL tr FRf TT

2 tr FL tr FR W2
2 tr FL tr FRf TT

2 tr FR tr FL

k W2 tr HR8†f TUf UT tr FL tr FR W2 tr H
TR8†f TUf UT tr FL tr FR

l W2 tr FL tr FRf TUf UT tr H
†R8 W2 tr FL tr FRf TUf UT tr H*R8

m W2 tr FL tr FRf TUf UT tr R8H† W2 tr FR tr FL f TUf UT tr R8TH†

n W2 tr R8†Hf TUf UT tr FL tr FR W2 tr R8*Hf TUf UT tr FL tr FR

o tr HR8†f UU
2 tr R8H† tr HTR8†f UU

2 tr R8TH†

p tr R8†HfUU
2 tr H†R8 tr R8*HfUU

2 tr H*R8

FIG. 13. Diagrammatic representation of Eq.~6.23!.
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has the sameN1 eigenvalues ass12s12
† , plusN22N1 eigenvalues equal to zero. TheN1 non-zero

transmission eigenvalues appear as the diagonal elements of the diagonal matrixT in the polar
decomposition of the scattering matrix

S5S s11 s12

s21 s22
D 5S v 0

0 wD S A12T 0 iAT
0 1 0

iAT 0 A12T
D S v8 0

0 w8
D . ~6.27!

Herev andv8 (w andw8) areN13N1 (N23N2) unitary matrices and1 is theN22N1 dimen-
sional unit matrix. IfN15N2 , Eq. ~6.27! simplifies to Eq.~1.2!.

So far we have only studied the conductanceG5G0(nTn . The leading contribution to the
average conductance comes from ladder diagrams. If we wish to average transport properties of
the form A5(na(Tn) ~so-called linear statistics on the transmission eigenvalues!, we need to
know the densityr(T) of the transmission eigenvaluesTn . The leading-order contribution to the
transmission-eigenvalue density is given by a larger class of diagrams, as we now discuss.

The densityr(T)5^(n51
N1 d(T2Tn)& of the transmission eigenvalues follows from the matrix

Green functionF(z):

F~z!5^C1~z2SC2S
†C1!

21&, ~6.28a!

r~T!52p21 Im tr F~T1 i e!, ~6.28b!

wheree is a positive infinitesimal. We first computer(T) in the absence of tunnel barriers, when
the result is known from other methods.4–6,43Then we include the tunnel barriers, when the result
is not known.

In the absence of tunnel barriers, the scattering matrixS is distributed according to the circular
ensemble, so that averaging amounts to integrating over the unitary group. We computeF(z) as
an expansion in powers of 1/z,

F~z!5 (
n50

`

^C1z
21~SC2S

†C1z
21!n&. ~6.29!

We will also need the Green function

F8~z!5^C2~z2S†C1SC2!
21&5 (

n50

`

^C2z
21~S†C1SC2z

21!n&. ~6.30!

The two Green functionsF and F8 are represented diagrammatically in Fig. 14. A diagram

FIG. 14. Diagrammatic representation of the Green functions for the density of transmission eigenvalues.
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contributes to leading order@which isO (1)] if the number ofT- andU-cycles is maximal. That
is the case if the diagram isplanar, meaning that the thin lines do not cross. The ladder diagrams
are a subset of the planar diagrams. Planar diagrams have been studied in the context of the
diagrammatic evaluation of integrals over Hermitian matrices, in particular for the Gaussian
ensemble.12,17For the Gaussian ensemble, only planar diagrams withU-cycles of unit length have
to be taken into account. Summation over all these diagrams results in a self-consistency or Dyson
equation forF(z), which solves the problem.17 For an integral of unitary matrices,U-cycles of
arbitrary length need to be taken into account, as is shown diagrammatically in Fig. 15. The
corresponding Dyson equation is

F~z!5z21C11z21C1S~z!F~z!, S~z!5 (
n51

`

Wn@z tr F8~z!#n@ tr F~z!#n21, ~6.31a!

F8~z!5z21C21z21C2S8~z!F8~z!, S8~z!5 (
n51

`

Wn@z tr F~z!#n@ tr F8~z!#n21.

~6.31b!

In terms of the generating function

h~z!5 (
n51

`

Wnz
n215

1

2z
~AM214z2M !, ~6.32!

we may rewrite Eq.~6.31! as

F~z!5C1~z2S~z!C1!
21, S~z!5hb~z tr F~z! tr F8~z!b!z tr F8~z!, ~6.33a!

F8~z!5C2~z2S~z!C2!
21, S8~z!5hb~z tr F~z! tr F8~z!!z tr F~z!. ~6.33b!

In the derivation of Eq.~6.33! we did not use the particular form of the matricesC1 andC2 . As
a check we may chooseC15C251, so thatF(z)5F8(z)5(z21)21, and verify that Eq.~6.33!
holds.

The solution of Eq.~6.33! is

tr F~z!5
N12N2

2z
1

AM2z2~N12N2!
2

2zAz21
, ~6.34a!

FIG. 15. Diagrammatic representation of the Dyson equation~6.31! for F(z).
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tr F8~z!5
N22N1

2z
1

AM2z2~N22N1!
2

2zAz21
. ~6.34b!

The resulting density of transmission eigenvalues is

r~T!5
MAT2Tmin

2pTA12T
u~T2Tmin!, Tmin5

~N12N2!
2

M2 , ~6.35!

in agreement with Refs. 5, 6, and 43.~The functionu(x)51 if x.0 and 0 ifx,0.)
The weak-localization correction tor(T) follows from theO (M21) term in the large-M

expansion ofF(z). As in Sec. VI A, it has two contributions:dF1(z), which is due to the
sub-leading order term in the large-M expansion ofWn , anddF2(z), which is due to diagrams of
orderO (M21). In the absence of time-reversal symmetry, both contributions are absent. In the
presence of time-reversal symmetry, the sub-leading order termdWn52M22n(24)n21 in the
large-M expansion ofWn @cf. Eq. ~4.4!# yields a sub-leading order contributiondh to the gener-
ating functionh,

dh~z!5 (
n51

`

dWnz
n2152~M214z!21, ~6.36!

from which we obtain

tr dF1~z!5 1
4~z2Tmin!

212 1
4~z21!21. ~6.37!

The contributiondF2(z) comes from diagrams in which thin lines connect black and white dots.
Each such diagram contains the productC1C2 , which vanishes. Hence, theO (M21) contribution
to F(z) consists ofdF1(z) only. The resulting weak-localization correction to the transmission
eigenvalue density is

dr~T!5
22b

4b
@d~T2Tmin2e!2d~T211e!#, ~6.38!

in agreement with Refs. 4 and 6.
We now include tunnel barriers in the leads. Motivated by Nazarov’s calculation of the

density of transmission eigenvalues in a disordered metal,44 we introduce the 2M32M matrices

S5SS 0

0 S†D , C5S 0 C2

C1 0 D , F~z!5S 0 F8~z!

F~z! 0 D , ~6.39a!

T5S T 0

0 T†D , T85S T8 0

0 T8†
D , R85SR8 0

0 R8†
D . ~6.39b!

Analogous to Eq.~6.6!, we decomposeS5S̄1dS, whereS̄5^S& and

dS5T8~12UR8!21UT, U5SU 0

0 U†D ~6.40!

is given in terms of a matrixU which is distributed according to the circular ensemble. Because
S̄, C1 , andC2 commute andC1C250, we may replaceS by dS in the expression~6.28a! for
F(z). The result for the matrix Green functionF(z) is
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F~z!5~2z!21(
6

^C6CT8@12U~R86TCT 8z21/2!#21UTCz21/2&

5~2z!21(
6

@C6A6~F62X6!B6#. ~6.41!

In the second equation we abbreviatedX65R86TCT 8z21/2, F65^X6(12UX6)
21&, and de-

finedA6 andB6 such thatA6X65CT8, X6B65TCz21/2.
After these algebraic manipulations we are ready to computeF6 by expanding in planar

diagrams. The result is a Dyson equation similar to Eq.~6.31!,

F65X6~11S6F6!, S65 (
n51

`

Wn~P F6!2n21, ~6.42!

where the projection operatorP acts on a 2M32M matrix A as

A5SA11 A12

A21 A22
D , PA5S 0 1M trA12

1M trA21 0 D , ~6.43!

1M being theM3M unit matrix. The presence of the projection operatorP in Eq. ~6.42! ensures
that the planar diagrams contain only contractions betweenU ~the 1,1 block ofU) andU† ~the
2,2 block ofU). In terms of the generating functionh we obtain the result

F5~2z!21(
6

~C6CT8~12S6X6!21S6TCz
21/2!, ~6.44!

S65~P X6~12S6X6!21!h~~P X6~12S6X6!21!2!. ~6.45!

It remains to solve the 232 matrix equation~6.45!. We could not do this analytically for arbitrary
G j , but only for the case of two identical tunnel barriers:N15N25

1
2M[N, G j5G j1N

( j51,2, . . . ,N). The solution of Eq.~6.45! in that case is

S656~Az2Az21!S 0 1M
1M 0 D , ~6.46!

independent of theG j ’s. The trace of the Green function is

tr F~z!5(
j51

N
2~12G j !~Az2Az21!1G j /Az21

2z~12G j !~Az2Az21!1G jAz
, ~6.47!

and the corresponding density of transmission eigenvalues is

r~T!5(
j51

N
G j~22G j !

p~G j
224G jT14T!AT~12T!

. ~6.48!

As a check, we note thatr(T)→Nd(T) if G j→0 for all j , andr(T)→Np21@T(12T)#21/2 if
G j→1 for all j @in agreement with Eq.~6.35!#.

VII. APPLICATION TO A NORMAL-METAL–SUPERCONDUCTOR JUNCTION

As an altogether different application of the diagrammatic technique, we consider a junction
between a normal metal~N! and a superconductor~S! ~see Fig. 16!. At temperatures and voltages
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below the excitation gapD in S, conduction takes place via the mechanism of Andreev
reflection:45 An electron coming from N with an energy« ~relative to the Fermi energyEF) is
reflected at the NS interface as a hole with energy2«. The missing charge of 2e is absorbed by
the superconducting condensate. We calculate the average and variance of the conductance, for the
two cases that the NS junction consists of a disordered wire or of a chaotic cavity.

Starting point of the calculation is the relationship between the differential conductance
GNS(eV)5dI/dV of the NS junction and the transmission and reflection matrices of the normal
region,46

GNS~«!5
4e2

h
tr~ t8~«!@11r 8~2«!* r 8~«!#21t~2«!* !

3~ t8~«!@11r 8~2«!* r 8~«!#21t~2«!* !†. ~7.1!

This formula requireseV!D!EF and zero temperature. The reflection and transmission matrices
areN3N matrices, which together constitute the 2N32N scattering matrixS. Using the polar
decomposition~1.2! we may rewrite the conductance formula~7.1! as

GNS~«!5
4e2

h
tr@T1~11u1A12T2u2* A12T1!21

3u1T2u1
† ~11A12T1u2

T A12T2u1
† !21#, ~7.2!

whereT65T(6«) and u65w8(6«)w(7«)* . In the presence of spin-orbit scattering,S is a
matrix of quaternions, and the transpose should be replaced by the dual. In what follows, we will
consider the case of no spin-orbit scattering. Spin-orbit scattering~considered by Slevin, Pichard,
and Mello47! will be included at the end by means of the translation rule of Sec. V.

Averages are computed in two steps: first over the unitary matrixu, then over the matrix of
transmission eigenvaluesT. Four cases can be distinguished, depending on the magnitude of the
magnetic fieldB and voltageV relative to the characteristic fieldBc for breaking time-reversal
symmetry (T ) and characteristic voltageEc /e for breaking electron-hole degeneracy (D):48

~1! eV!Ec , B!Bc⇔T andD are both present: Thenu6 may be approximated by the unit
matrix, so that one only needs to average over the transmission eigenvalues. This case has
been studied extensively49 and does not concern us here.

~2! eV!Ec , B@Bc⇔D is present, butT is broken: Then we may neglect the«-dependence of
S, so thatu15u2[u. According to the isotropy assumption,u is uniformly distributed in
U(N).

~3! eV@Ec , B!Bc⇔T is present, butD is broken: Then we may considerS(«) andS(2«) as
independent unitary symmetric matrices. Henceu15u2

† [u is uniformly distributed in
U(N).

FIG. 16. Conductor consisting of a normal metal~grey! coupled to one normal-metal reservoir~N! and one superconduct-
ing reservoir~S!. The conductor may consist of a disordered segment or of a quantum dot.
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~4! eV@Ec , B@Bc⇔ both T andD are broken: Thenu1 andu2 are independent, both uni-
formly distributed inU(N).

We compute the average and variance of the conductance for cases~2!, ~3!, and~4!.

A. Average conductance

We start with the computation of the average conductance^GNS&. We first perform the
averagê •••&u overu6 and then overT6 . To leading order only ladder diagrams contribute, see
Fig. 17. The result is the same for cases~2!, ~3! and ~4!:

^GNS/G0&u52N
t11t12

t111t122t11t12
1O ~1!, ~7.3a!

tk65
1

N
tr T6

k 5
1

N(
j51

N

Tj
k~6«!. ~7.3b!

TheO (1) contributiondGNS is different for the three cases.
Case~2!, absence ofT and presence ofD . We putu65u, tk65tk . For normal metals, the

O (1) contributiondG to ^G& vanishes ifT is broken. However, in the NS junction anO (1)
contribution remains.26 The diagrams which contribute todGNS have a maximally crossed central
part, with contractions betweenU ’s andU* ’s on the same side of the diagram~Fig. 18, top!. The
left and right ends have a ladder structure. In the Hamiltonian approach, a similar maximally
crossed diagram has been studied by Altland and Zirnbauer.27 In total four diagrams contribute to
dGNS, see Fig. 19. The building blocks of the diagram have the algebraic expressions

FIG. 17. Ladder diagram for theO (N) contribution to^GNS&. We definedR6512T6 .

FIG. 18. Maximally crossed diagram for theO (1) correction to^GNS& in the absence of time-reversal symmetry and
presence of electron-hole degeneracy~top!. The right and left parts of the diagram have a ladder structure. The central part
may be redrawn as a ladder diagram~bottom!.
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F65T61~12T6! tr T6 tr~12T7!(
j50

`

N22 j22@ tr~12T1! tr~12T2!# j

5~t161T6t172t11t12!~t111t122t11t12!21, ~7.4a!

F68 52~12T7! tr T6(
j50

`

N22 j21@ tr~12T1! tr~12T2!# j

52~t162t16T7!~t111t122t11t12!21, ~7.4b!

H65 iN21T6A12T6 tr F72 iN22~12T6!A12T6 tr F7 tr F68 , ~7.4c!

f TT652 tr~12T6!(
j50

`

N22 j@ tr~12T1! tr~12T2!# j52N~12t16!~t111t122t11t12!21,

~7.4d!

f UU652 tr~12T6!(
j50

`

N22 j22@ tr~12T1! tr~12T2!# j

52N21~12t16!@t111t122t11t12#21, ~7.4e!

f UU68 5(
j50

`

N22 j21@ tr~12T1! tr~12T2!# j5N21~t111t122t11t12!21. ~7.4f!

Capital letters indicate matrices, lower-case letters indicate scalars. The subscripts6 are omitted
from Fig. 19 because of electron-hole degeneracy. TheO (1) correctiondGNS represented in Fig.
19 equals

dGNS/G058 f UU8 tr iHA12T14W2f TT@~ tr F !21~ tr F8!2#52
8t124t1

214t1
328t2

t1~22t1!
3 .

~7.5!

We still have to average over the transmission eigenvalues. We use that the sample-to-sample
fluctuationstk2^tk& are an order 1/N smaller than the average.~This is a general property of a
linear statistics, i.e. of quantities of the formA5(na(Tn), see Ref. 4.! Hence

^ f ~tk!&5 f ~^tk&!@11O ~N22!#, ~7.6!

FIG. 19. Diagrams for theO (1) correction tô GNS& in the absence of time-reversal symmetry and presence of electron-
hole degeneracy.
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which implies that we may replace the average of the rational functions~7.3! and ~7.5! of the
tk’s by the rational functions of the average^tk&. This average has the 1/N expansion

^tk&5^tk&01O ~N22!, ~7.7!

where^tk&0 is O (N0). There is no term of orderN21 in the absence ofT . The average over
T of Eqs.~7.3! and ~7.5! becomes

^GNS/G0&5
2N^t1&0
22^t1&0

2
8^t1&024^t1&0

214^t1&0
328^t2&0

^t1&0~22^t1&0!
3 1O ~N21!. ~7.8!

Case~3!, presence ofT and absence ofD . We putu15u2
† [u. TheO (1) correction comes

from the maximally crossed diagrams of Fig. 20,

dGNS/G052W2 tr F1 f TT2 tr F28 12W2 tr F18 f TT1 tr F2

12 tr F1 f UU2F28
T12 tr F18 f UU1F2

T . ~7.9!

Averaging over the transmission eigenvalues amounts to replacingtk6 by its average,
tk6→^tk&01N21dtk1O (N22). ~The average oftk6 is the same for1« and2«.) Because
T is not broken there is a term ofO (N21) in this expression. We find for the average conduc-
tance

^GNS/G0&5
2N^t1&0

22^t1&0
1

4dt1

~22^t1&0!
2

1
4 ^t1&0

224 ^t1&0
324 ^t2&014 ^t1&0^t2&0

^t1&0~22^t1&0!
3

1O ~N21!.

~7.10!

Case~4!, bothT andD broken. Becauseu1 andu2 are independent, there are no diagrams which
contribute to order 1. The average conductance is obtained by averaging Eq.~7.3! over the
transmission eigenvalues,

^GNS/G0&5
2N^t1&0
22^t1&0

1O ~N21!. ~7.11!

From the translation rule of Sec. V one deduces that in the presence of spin-orbit scattering, the
leadingO (N) term of the average conductance is unchanged, while theO (1) correction is
multiplied by21/2, in agreement with what was found by Slevin, Pichard and Mello.47

The formulas given above apply to any system for which the isotropy assumption holds. We
discuss two examples:

~a! A disordered wire~length L, mean free pathl , number of transverse modesN), con-
nected to a superconductor. We use the results50

FIG. 20. Diagrams for theO (1) correction tô GNS& in the absence of electron-hole degeneracy and presence of time-
reversal symmetry.
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^t1&05~11L/l !21, ~7.12a!

^t2&05
2
3~11L/l !211 1

3~11L/l !24, ~7.12b!

dt152 1
3~11l /L !23. ~7.12c!

We assumel !L!Nl and neglect terms of orderL/Nl andl /L but retain terms of order 1 and
Nl p/Lp(p>1). Substitution of Eq.~7.12! into Eqs.~7.8!, ~7.10!, and~7.11! yields

^GNS/G0&55
N~11L/l !212114/p2 ~D ,T !,

N~1/21L/l !2121/3 ~D , no T !,

N~1/21L/l !2122/3 ~ noD ,T !,

N~1/21L/l !21 ~ noD , noT !.

~7.13!

The result in the presence of bothT andD has been taken from Refs. 51 and 52. In the presence
of spin-orbit scattering, theO (N) term is unchanged, while theO (1) term is multiplied by
21/2.

~b! A chaotic cavity without tunnel barriers in the leads. Lead 1~with N1 modes! is connected
to a normal metal, lead 2~with N2 modes! to a superconductor. An asymmetry betweenN1 and
N2 appears because the dimension ofu6 in the polar decomposition~6.27! is N23N2 . The
N23N2 matrix T6 contains the min(N1 ,N2) non-zero transmission eigenvalues on the diagonal
~remaining diagonal elements being zero!. We denoteNtot5N11N2 and NA5(N1

216N1N2

1 N2
2)1/2. The averageŝt1&0 and^t2&0 and the correctiondt1 can be computed from the density

of transmission eigenvalues@Eqs.~6.35! and ~6.38!#. The results are

dt152N1N2Ntot
22, ^t1&05N1Ntot

21, ^t2&05N1~Ntot
2 2N1N2!Ntot

23. ~7.14!

Substitution into Eqs.~7.8!, ~7.10!, and~7.11! gives

^GNS/G0&55
Ntot~12Ntot /NA!28N1N2Ntot

2 /NA
4 ~D ,T !,

2N1N2 /~Ntot1N2!24N1N2Ntot /~Ntot1N2!
3 ~D , noT !,

2N1N2 /~Ntot1N2!24N2Ntot
2 /~Ntot1N2!

3 ~ noD ,T !,

2N1N2 /~Ntot1N2! ~ noD , noT !.

~7.15!

The leading order term in Eq.~7.15! has also been obtained by Argaman and Zee.33 ~The case
N15N2 was given in Ref. 6!.

B. Conductance fluctuations

To compute the variance of the conductance, we average in two steps:^•••&5^^•••&u&T ,
where^•••&u and^•••&T are, respectively, the average over the unitary matricesu6 and over the
matrices of transmission eigenvaluesT6 . It is convenient to add and subtract^^GNS&u

2&T , so that
the variance splits up into two parts,

varGNS5^^GNS&u
2&T2^^GNS&u&T

21^^GNS
2 &u2^GNS&u

2&T , ~7.16!

which we evaluate separately.
The first two terms of Eqs.~7.16! give the variance of̂GNS&u over the distribution of trans-

mission eigenvalues. We calculated^GNS&u in Eq. ~7.3!. Since^GNS&u is a function of the linear
statistict16 only, we know that its fluctuations are an order 1/N smaller than the average. This
implies that, to leading order in 1/N,

4929P. W. Brouwer and C. W. J. Beenakker: Integration over the unitary group

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



^^GNS&u
2&T2^^GNS&u&T

25 (
s,s856

K ]^GNS&u
]t1s

L
T
K ]^GNS&u

]t1s8
L
T

covar~t1s ,t1s8!

58G0
2N2~22^t1&0!

24 var t13H 1 ~withoutD !,

2 ~with D !.
~7.17!

We now turn to the third and fourth term of Eq.~7.16!. These terms involve the variance
^GNS

2 &u2^GNS&u
2 of GNS overU(N) and subsequently an average over theTn’s. The calculation

is similar to that of Sec. VI B. We representGNS
2 by the diagram in Fig. 21. The variance with

respect tou6 is given by the connected diagrams. We distinguish between two types of connected
diagrams:~i! diagrams in which the inner and the outer loop are connected by aT-cycle or by a
U-cycle, and~ii ! diagrams in which the partition of theU-cycles involves a group which consists
of aU-cycle from the inner loop and aU-cycle from the outer loop. The diagrams are similar to
those of Fig. 12, and are omitted. The final result is

^^GNS
2 &u2^GNS&u

2&T58G0
2~22^t1&0!

26^t1&0
22~4^t1&0

228^t1&0
319^t1&0

424^t1&0
512^t1&0

6

24^t1&0^t2&012^t1&0
2^t2&022^t1&0

3^t2&022^t1&0
4^t2&016^t2&0

2

26^t1&0^t2&0
213^t1&0

2^t2&0
224^t1&0^t3&016^t1&

2^t3&022^t1&0
3^t3&0!

3H 2 ~D , noT !,

2 ~T , noD !,

1 ~ noD , noT !.

~7.18!

The sum of Eqs.~7.17! and ~7.18! equals varGNS, according to Eq.~7.16!.
In the presence of spin-orbit scattering varGNS is four times as small, according to the

translation rule of Sec. V.
We give explicit results for the disordered wire and the chaotic cavity.
~a! For the disordered wire one has50,53 var t15

1
15N

22, ^tk&05
1
2(l /L)G(

1
2)G(k)/G(k1 1

2.
Substitution into Eqs.~7.17! and ~7.18! yields the variance

varGNS/G055
16/15248/p4'0.574 ~D ,T !,

8/15'0.533 ~D , noT !,

8/15'0.533 ~T , noD !,

4/15'0.267 ~ noD , noT !.

~7.19!

The result in the presence of bothT andD has been taken from Ref. 52 and 54. If bothD and
T are present, breakingT ~or D) reduces the variance by less than 10%.28,55

FIG. 21. Diagrammatic representation ofGNS
2 .
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~b! For the chaotic cavity one has vart152N1
2/bNtot

4 and ^t3&05N1(Ntot
4

2 2Ntot
2 N1N212N1

2N2
2)/Ntot

5 @see Eqs.~6.4! and~6.35!#. In combination with Eq.~7.14! this gives

varGNS/G055
128N1

2N2
2~Ntot

4 12N1
2N2

2!~Ntot
2 14N1N2!

24 ~D ,T !,

32N2
2Ntot

2 ~Ntot
2 2N1N2!~Ntot1N2!

26 ~D , noT !,

32N2
2Ntot

2 ~Ntot
2 2N1N2!~Ntot1N2!

26 ~T , noD !,

16N2
2Ntot

2 ~Ntot
2 2N1N2!~Ntot1N2!

26 ~ noD , noT !.

~7.20!

If the coupling between the cavity and the normal metal is weak compared to the coupling to the
superconductor (N2@N1), one finds varGNS(D ,T )/varGNS(D , noT )5O (N1 /N2)

2. In this
case breakingT greatly enhances the conductance fluctuations. In the opposite case, if the cou-
plings are equal (N15N2), one finds varGNS(D ,T )/varGNS(D , noT )52187/2084'1.07. In
this case breakingT has almost no effect on the conductance fluctuations.

VIII. SUMMARY

We developed a diagrammatic technique for the evaluation of integrals of polynomial func-
tions of unitary matrices over the unitary groupU(N). In the large-N limit the number of relevant
diagrams is restricted, which allows for the evaluation of integrals over rational functions. We also
considered integrals of unitary symmetric matrices, by means of a slight modification of the
diagrammatic rules. A translation rule was given to relate integrals of~self-dual! unitary matrices
of quaternions to integrals over~symmetric! unitary matrices of complex numbers.

We discussed two applications: a chaotic cavity~quantum dot! with tunnel barriers in the
leads and a normal-metal–superconductor~NS! junction. In both cases, the conductance is a
rational function of a unitary matrix. In the large-N limit the average conductance is given by a
series of ladder diagrams. The weak-localization correction consists of maximally-crossed dia-
grams. These two types of diagrams are analogous to the diffuson and cooperon diagrams in the
diagrammatic perturbation theory for disordered systems.22,23We computed the density of trans-

TABLE II. DenominatorsAn of the coefficientsVc1 , . . . ,ck
for n5c11 . . .1ck<5.

n An ~CUE! An ~COE!

1 N N11
2 N(N221) N(N11)(N13)
3 N(N221)(N224) (N21)N(N11)(N13)(N15)
4 N2(N221)(N224)(N229) (N22)(N21)N(N11)(N12)(N13)

3(N15)(N17)
5 N2(N221)(N224)(N229)(N2216) (N23)(N22)(N21)N(N11)(N12)

3(N13)(N15)(N17)(N19)

TABLE III. DenominatorsBn of the coefficientsWc1 , . . . ,ck
for n5c11 . . .1ck<5.

n Bn ~CUE! Bn ~COE!

1 N N11
2 N2(N221) N(N11)2(N13)
3 N3(N221)(N224) (N21)N(N11)3(N13)(N15)
4 N4(N221)2(N224)(N229) (N22)(N21)N2(N11)4(N12)

3(N13)2(N15)(N17)
5 N5(N221)2(N224)(N229)(N2216) (N23)(N22)(N21)N2(N11)5(N12)

3(N13)2(N15)(N17)(N19)

4931P. W. Brouwer and C. W. J. Beenakker: Integration over the unitary group

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



TABLE IV. NumeratorsAnVc1 , . . . ,ck
of the coefficientsVc1 , . . . ,ck

for n5c11 . . .1ck<5. The denominatorsAn are
given Table II.

c1 , . . . ,ck AnVc1 , . . . ,ck
~CUE! AnVc1 , . . . ,ck

~COE!

1 1 1

1,1 N 21N
2 21 21

1,1,1 221N2 215N1N2

2,1 2N 232N
3 2 2

1,1,1,1 628N21N4 23228N128N2111N31N4

2,1,1 4N2N3 24218N29N22N3

2,2 61N2 2417N1N2

3,1 2312N2 10112N12N2

4 25N 21125N

1,1,1,1,1 78N220N31N5 1282408N284N2159N3116N41N5

2,1,1,1 224114N22N4 92138N243N2214N32N4

2,2,1 22N1N3 56143N112N21N3

3,1,1 218N12N3 252140N122N212N3

3,2 22422N2 288218N22N2

4,1 2425N2 27236N25N2

5 14N 38114N

TABLE V. NumeratorsBnWc1 , . . . ,ck
of the coefficientsWc1 , . . . ,ck

for n5c11 . . .1ck<5. The denominatorsBn are
given in Table III.

c1 , . . . ,ck BnWc1 , . . . ,ck
~CUE! BnWc1 , . . . ,ck

~COE!

1 1 1

1,1 1 2
2 2N 212N

1,1,1 8 32
2,1 24N 2828N
3 2N2 214N12N2

1,1,1,1 22161144N2 2168016720N16096N211152N3

2,1,1 72N248N3 2802840N22136N221208N32192N4

2,2 242N2118N4 21402116N1384N21592N31268N4136N5

3,1 215N2115N4 198N1552N21540N31216N4130N5

4 5N325N5 233N2125N22182N32126N4241N525N6

1,1,1,1,1 21382414224N2 24838401297984N1407040N2167584N3

2,1,1,1 3456N21056N3 60480123232N288128N2259328N328448N4

2,2,1 21248N21288N4 212096221120N11152N2118432N319408N411152N5

3,1,1 2480N21240N4 230241192N115072N2118432N317536N41960N5

3,2 312N3272N5 151214152N12496N222448N323480N421320N52144N6

4,1 56N3256N5 2912N23376N224768N323168N42976N52112N6

5 214N4114N6 114N1536N211018N31992N41518N51136N6114N7
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mission eigenvalues, where the leading order term is given by planar diagrams. Resummation of
the diagrams leads to a Dyson equation for the Green function, similar to that encountered in the
theory of integrals over Hermitian matrices.12,17

For the NS junction, theO (1) correction to the average conductance is non-zero in the
presence of a magnetic field, because of a different type of maximally crossed diagrams. These
diagrams are suppressed by a sufficiently large voltage to break electron-hole degeneracy. The
new type of maximally crossed diagrams explains the coexistence of weak localization with a
magnetic field26 and the insensitivity of the conductance fluctuations to a magnetic field.28,55

This research was supported by the ‘‘Nederlandse organisatie voor Wetenschappelijk Onder-
zoek’’ ~NWO! and by the ‘‘Stichting voor Fundamenteel Onderzoek der Materie’’~FOM!.

APPENDIX: WEIGHT FACTORS FOR POLYNOMIAL INTEGRALS

In Tables II–V we list the weight factorsVc1 , . . . ,ck
andWc1 , . . . ,ck

for n5c11 . . .1ck<5
for the CUE and the COE.~tables ofV are also given in Refs. 30, and 31 for the CUE and in Ref.
35 for the COE.! The weight factors are rational functions of the dimensionN of the unitary
matrix. The denominatorsAn andBn of, respectively,Vc1 , . . . ,ck

andWc1 , . . . ,ck
depend only on

n. They are tabulated in Tables II and III. The numeratorsAnVc1 , . . . ,ck
and BnWc1 , . . . ,ck

are
tabulated in Tables IV and V.
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We review the results of a recent study of fluctuations of wave functions in con-
fined chaotic systems. The fluctuations can be due to a random potential or be a
consequence of a chaotic scattering by the walls. The entire distribution function of
the local amplitudes of the wave functions,f 1 , and the joint two-point distribution
are calculated in various situations. The computation is performed using the super-
symmetry technique and employs the studies of a reduced version of the non-linear
supersymmetrics-model developed especially for investigating the properties of a
single eigenstate in a discrete spectrum of a chaotic quantum system. For not very
large amplitudes, the complete description can be achieved using the zero-
dimensional approximation of thes-model. The distribution function calculated in
the limit of various symmetry classes shows the universal behavior known as the
Porter-Thomas statistics, and fluctuations at distant points do not correlate. In the
crossover regime between the ensembles, the distribution of local amplitudes shows
a somewhat more sophisticated behavior: the fluctuations in this case are correlated
over distances exceeding the mean free path. For large amplitudes generated by the
states the most affected by the localization~we call them prelocalized!, the zero-
dimensional approximation is no longer valid. Instead, the statistics of their wave
functions is determined by nontrivial vacua of the reduceds-model which is quite
similar to the Liouville model known in conformal field theory. In particular, the
vacuum state of the reduceds-model obeys the Liouville equation, which indicates
that in two dimensions the prelocalized states have nearly critical properties: we
prove their multifractality and power-law statistically averaged envelopeuw(r )u2

} r22m at the intermediate range of distances below the localization length with a
spectrum of exponentsm,1, as well as obtain a logarithmically-normal tail of the
distribution functionf 1 . We also find an evidence of prelocalized states in quasi-
one-dimensional wires with the length shorter than the localization length: their
statistically averaged envelope has power-law asymptotics,uw(x)u2 } x22, and the
tail of the distribution function is similar to that describing localized states in the
infinite wires. © 1996 American Institute of Physics.@S0022-2488~96!02110-X#

I. INTRODUCTION

The recent progress in semiconductor technology has given an access to the experimental
studies of the physics of nanoscale electronic systems. This, in its turn, has generated a number of
theoretical problems which did not previously call close enough attention, such as the problem of
statistical properties of a single quantum state in a confined chaotic quantum system. Being
studied at low temperatures, the small electronic devices are the objects in which the electron
motion is coherent and the quantum nature of carriers evidences in many experimental data.1,2

During the previous decade, the quantum effects in transport have been mainly explored in the

0022-2488/96/37(10)/4935/33/$10.00
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systems where they give small—but nevertheless observable—features in addition to the conduc-
tance~inverse resistance! values expected on the basis of a purely classical mechanics analysis.
Weak localization effects3 and mesoscopic conductance fluctuations1,4,5 are the best known and,
maybe, the most spectacular examples of them which can be understood and successfully de-
scribed on the basis of a semiclassical analysis of quantum mechanics.4,6,7

In more recent studies8 of smaller structures put into a weak~tunneling! contact to the bulk
electrodes and cooled down to the temperatures of the order of tens of mK, the resonant tunneling
regime of the transport through a single discrete level in a quantum dot has been achieved. Since
the value of the resonance tunneling conductance is determined by the amplitudes of the resonance
state wave functions in the vicinity of contact, fluctuations and spatial structure of the single-
particle eigenstates in a dot become important observables, especially regarding a rich experimen-
tal information which is already available in the literature.9,10

In small semiconductor structures the capacitance of the dot~filled by a large number of
electrons,N@1) is so small that the dot charging energy becomes larger than other relevant
energy scales in the system. Therefore, if the resistance of contacts of a dot to the external world
are much higher than the resistance quantum,h/e2, the system occurs in the Coulomb blockade
regime and the transport through the dot is only possible when a single electron added to the dot
does not change its total energy:EN115EN , whereN is the number of excess electrons. In the
semiconductor structures, the condition of such resonance can be controlled by an external gate
voltageUg applied to the dot. Experimentally, this produces a set of conductance peaks at voltages
Ug(N)'(N11/2)e/C at which the destruction of the Coulomb blockade makes the transport
possible.

Therefore, an important quantity that has become a subject of statistical analysis is the height
of the Coulomb blockade peaks. Although the positions of these peaks are periodic, their strengths
are quite different depending on current-carrying abilities of those states in the dot that should be
filled by the tunneling electrons. Assuming that the level width and the temperature are smaller
than the mean-level spacingD one may consider only a single single-particle level contribution to
each resonance.11,12 This means that one can use a Breit-Wigner type formula to describe the
resonance conductance. Taking into account temperature smearing of the Fermi distribution and
assuming that temperatureT much exceeds the typical level widthg,13 one can write the reso-
nance conductance in the form14,15

g5
e2

h

1

4pT

gLgR

gL1gR
. ~1!

In Eq. ~1!, the level widthsgL,R5AL,Ruwa(rL,R)u2 are determined by the wave function ampli-
tudesuwa(rL,R)u of the resonant state at the coordinatesrL,R of tunnel links to the current leads.
The coefficientsAL,R depend only on the properties of contacts and, together with temperature
T determine the typical conductance values in a specific device, whereas statistics of the heights of
conductance peaks are completely controlled by statistics of amplitudes of the electron waves of
the confined system near the contact.

At present, it is quite clear that the character of the fluctuations in the conductance peaks
series depends on whether the corresponding classical motion of a carrier in quantum dot is
chaotic or regular. In the latter case calculation of the wave functions should follow a straightfor-
ward procedure, whereas a description of the wave functions in the regime of chaotic dynamics
demands considerable effort. By studying experimentally the conductance fluctuations for ‘‘cha-
otic’’ dots, one can check theoretical results for statistics of the amplitudes of the chaotic electron
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waves in mesoscopic dots—at least, would a single-particle description work being applied to the
system of interacting electrons.

Besides the measurements on the quantum dots, a series of experiments on a completely
different object is worth mentioning. These are the experiments on microwave scattering in me-
tallic cavities in which the local amplitudes of electromagnetic waves were measured and their
statistics were analyzed.16,17Being confined to a thin slab, the electromagnetic waves are strongly
polarized and obey the same equation as the Schro¨dinger equation for the electron. One can make
either ballistic cavities where the electromagnetic waves are scattered by the walls or add into the
cavity small pieces of a good metal which models impurities. Changing an impurity configuration
or sweeping the frequency and passing from one resonance to another, one can collect statistics of
the eigenmodes intensities at some fixed point of a sample. In some sense, the microwave cavities
represent convenient toy systems for modelling various regimes of quantum chaos, since they have
a much higher degree of freedom in changing the parameters~as compared to the experiments on
the electronic devices!, e.g., the level of disorder, they operate with much better statististics and
deliver the direct information about the density distributions of the chaotic electromagnetic waves.
At the same time, the single-particle description is completely adequate in this case.

Both types of experiments mentioned above~which can be classified as mesoscopic! provide
a good reason for studying in great detail fluctuations of wave functions in chaotic or disordered
confined systems. At this point we have to note that the simplest way to produce chaos in a
quantum or classical billiard is to fill it with impurities, so that one would expect that all the
generic features of quantum chaos may be understood by studying the disordered conductors.
Although this expectation is partly true, the physics of disordered systems is even more rich than
that. The structure and statistics of eigenstates in the systems where chaos is generated by a large
number of impurities is strongly affected by the localization effects, especially in low-dimensional
systems. From this point of view, the issue which we intend to answer below is what are the
properties of wave functions in disordered systems where localization is expected at long distances
that they show being confined by external boundaries below the localization length scale. In the
cases when the mean free path is determined mainly by scattering by walls, the localization effects
can be ignored, it is reasonable to speak of ‘‘ballistic chaos.’’

II. CHOICE OF THE MODEL

Below wave functions of models with disorder will be studied. In all cases consideration is
restricted to systems of non-interacting particles in a finite volume. The assumption that the
particles do not interact means that, in fact, a one-particle problem is considered. The assumption
is very well justified if we consider electromagnetic or sound waves in a box. At the same time,
the validity of it is less clear for electrons in a quantum dot where both electron-electron and
electron-phonon interactions can be quite important. Nevertheless, at low temperatures the inelas-
tic mean free path can be large and very often the one-particle approximation serves as a good
description of interesting physical problems.

To simplify the discussion we will speak about electrons in a box and study solutions of the
Schrödinger equation although most of the results obtained below are also applicable to electro-
magnetic and sound waves.

So, we start with the Schro¨dinger equation for an electron moving in a limited volumeV in
the presence of an external potentialUdis(r ). The potentialUdis(r ) describes an interaction with
impurities. In principle, an external magnetic fieldH can be applied and the potentialUdis(r ) can
include magnetic and spin-orbit interactions. In the presence of the magnetic and spin-orbit im-
purities one should take into account electron spin and write two-component wave functions. To
avoid complicated formulae, from the beginning we consider first a system without spin interac-
tions. Then, the Schro¨dinger equation can be written in the form

Ĥwa~r !5eawa~r !, Ĥ5Ĥ01Udis~r !, ~2!
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whereea are the eigenenergies of the spectral problem in the dot, Eq.~2!, measured off the energy
e fixed by an external observer~e.g., the Fermi energy in the bulk electrodes attached to the
quantum dot to make an electric measurement!; wa(r ) are the corresponding eigenfunctions, and

Ĥ05EKS 2 i\¹2
e

c
AD2e, ~3!

with EK(p) being the energy of free motion andA being the vector potential corresponding to the
magnetic fieldH5rotA; for the sake of convenience, we use such a gauge that divA50 and
An50 at the surface~edge! of the sample. We also assume that fluctuations ofUdis are Gaussian
and satisfy the following relations:

^Udis~r !&50, ^Udis~r !Udis~r 8!&5
1

2pnt
d~r2r 8!, ~4!

wheret is the mean free path time andn is the density of states at the energye, which are usual
notations of condensed matter physics. The angular brackets stand for the averaging procedure.

In principle, the eigenstates problem Eq.~2! should be complemented by the boundary con-
ditions for the wave functions. The fact that the electron is confined in a finite region means that
it is located in a quantum well. For our consideration the explicit form of the confining potential
is not important. This can be a hard wall model and then the wave functions turn to zero at the
boundary or it can be a more general potential resulting in a fast decay of the wave functions at
infinity. For calculations presented below it is only important that the spectrum of the eigenener-
gies is discrete.

The description of quantum chaos by modelling it using the electron motion in a confined
disordered system seems to be, in principle, very attractive because of a number of powerful
techniques developed during the past two decades in the theory of metals.1,3 Nevertheless, it
remains a non-trivial theoretical problem. This is because the most standard calculational tool—
the diagrammatic perturbation theory— fails to work when it is applied to the description of
properties of a single discrete quantum level. The perturbation theory calculation consists of the
summation of certain classes of diagrams corresponding to terms of an expansion in the impurity
concentration. By now, it is well known that the quantum interference is properly described in
terms of so called ‘‘cooperons’’ and ‘‘diffusons’’ which appear as a result of the summation of
certain ladder diagrams. To use the perturbation theory, one should start with a ‘‘good metal’’ and
to assume that the length of the mean free pathl is much longer than the electron wavelength
l. But this is only one necessary condition. The reason for a limited power of the perturbation
theory with respect to disorder lies in the equivalence of the constraints made for its applicability
and those of the semiclassical approximation.7,18 The semiclassics, in its turn, is able to describe
only wave packets composed of a large number of quantum levels, which require any kind of a
discrete level broadeningg to be larger than the mean level spacingD in the confined quantum
dot. The origin of the broadening may be different. It can result from a strong coupling of the dot
to external leads, so that the broadeningg is caused by the fast decay of the state due to the
particle escape to the bulk electrodes, or this may be a ‘‘homogeneous’’ inelastic broadening of
the level due to any other relaxation process. That is why the perturbation theory analysis gives
reliable results in systems where the contacts of a dot to massive reservoirs have conductances
gc that can be relatively small, as compared to the ‘‘intrinsic’’ conductance of the dot, but should
be larger than the conductance quantume2/h.19–22At the same time, the perturbation theory is not
an adequate tool to study the properties of a single level in a dot where conductances of contacts
are much less than the conductance quantum and where the inelastic broadeningg is much smaller
than the mean level spacing.

Another approach to the quantum chaos in disordered conductors is based on the Gorkov and
Eliashberg idea23 to replace the randomness of an impurity configuration in a small piece of metal
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by a randomness of a matrix Hamiltonian that describes the specral single-particle problem in it.
This enables one to reformulate the issue of statistics of spectra and wave functions in a disordered
system in terms of random matrix theory~RMT! the apparatus of which has been developed in
many details in nuclear physics.24,25

The random matrix theory proved to be a very convenient method and has brought to light
some important features of the statistics of conductance fluctuations in chaotic billiards.14 In
particular, depending on the presence or absence of the time reversal invariance in the systems
~i.e., of a magnetic field!, the eigenstates of the RMT Hamiltonian can be described as either real
or complex vectors and have a purely Gaussian distribution of the amplitudes of their projections
onto some arbitrarily chosen direction in the basis~Porter-Thomas distribution in the RMT!, which
is equivalent to the universal distribution of local densities of single-particle wave functions in the
ergodic regime of a chaos. The intensive numerical studies of a large number of high-lying
eigenstates of confined systems, such as ‘‘quantum billiards’’,26,27 have confirmed the Gaussian
distribution of local wave functions amplitudes,27 and this has been observed directly in the
microwave experiments.16

On the other hand, although the random matrix theory enables one to catch some part of the
physics of quantum chaotic systems, it remains to be a phenomological method which has to be
modified each time when broader classes of chaotic systems are involved. The use of the RMT28

in the studies of the eigenstates problem becomes rather complicated when the crossover regime
between different universality classes is studied29 and is helpless when spatial correlations of the
wave functions are called in question.

Another phenomenological approach related to the RMT which also confirms the Gaussian
distribution of the wave functions amplitudes has been proposed by Berry. It is based on the
assumption that the local structure of the eigenstates can be represented as a superposition of an
infinite number of plane waves with random phases and equal wave number.30 Originally, the
applicability of such a conjecture has been justified by classical ergodicity of chaotic systems. For
ergodic systems one can assume that relevant classical orbits are the typical ones that pass close to
all points on the energy surface corresponding to the energye of the state with the wave function
w and, in the semiclassical approximation, this leads to random phases. Using this approach, one
can describe spatial correlations of the amplitudes of the wave functions of a chaotic billiard31

which show behavior similar to that of the Friedel oscillations.32

However, both the advantage and the disadvantage of this phenomenology are related to the
statistical equivalence of eigenstates which is built into the construction of the random matrix
substituting the real dynamics, or stands behind Berry’s conjecture. This reveals the set of uni-
versal features of chaos in the limits where they do exist but hides peculiarities of physically
different systems in the cases when universality is broken. In particular, the phenomenolgy can be
helpful in the limiting cases of the orthogonal and unitary ensembles corresponding to time
reversal invariant systems or to systems where this invariance is completely broken, but not in the
crossover regime~quantum billiard in a weak magnetic field!. Moreover, they cannot be used in
situations where localization effects due to a real disorder become important and the statistical
equivalence of the eigenstates is no longer valid.

As a result of the disadvantages of the phenomenological approaches, a derivation of statistics
of amplitudes of the wave functions directly from a well defined model without using additional
hypotheses~i.e., from the first principles! is desirable, and this requires development of other
analytical methods. Fortunately, this goal can be achieved by a modification of the supersymmetry
technique originally proposed by one of the present authors~see, e.g., Refs. 33 and 34! for
studying the Anderson localization. Within this method, calculation of different physical quantities
characterizing, e.g., localization or mesoscopic fluctuations is reduced to the study of a non-linear
supermatrixs-model. At present, this method is well developed and has been used for solving a
broad spectrum of quite different problems.34,35Models with disorder were the first ones studied
by the supersymmetry technique. The zero-dimensional~0D! version of the model corresponds to
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the Wigner-Dyson random matrix theory, and, in the simplest cases recovers the RMT results~see
Section V!. Later on, other versions of thes-model have been derived from the RMT,36 from
models of random band and sparse matrices37 and from some models of a ‘‘ballistic chaos’’.38,39

Below, we demonstrate how the supersymmetry technique can be applied to the problem of
the statistics of wave functions in disordered and chaotic confined two-dimensional~2D! and
quasi-one-dimensional~Q1D! systems. In this article, we give a complete account of the
results15,40–46obtained for the disordered models. Most of the methodical part of it~see Sections
VI and VII! is devoted to the derivation of a reduceds-model41,44 that is adapted for describing
the properties of a single eigenstate in the discrete spectrum of a confined chaotic system. The
formal derivation we do here is restricted to the usual potential disorder in Eq.~4!, but the analysis
can also be extended to a broader variety of systems, for example, to the models involving a
random gauge or magnetic field.47 Skipping the details, these models give the same as the analysis
of the unitary ensemble, both on the level of perturbation theory analysis48 and using the non-
linear s-model approach.47 Most of the results presented below for the distribution functions of
the wave functions have been obtained by the supersymmetry technique and, by now, we know no
other way to reproduce them.

III. DEFINITIONS OF THE EIGENSTATES STATISTICS

The most complete information about statistical and correlation properties of the wave func-
tions is implicit to theN-point joint distribution functions fN(p1 , . . .,pN) defined as

f N~p1 , . . .,pN ;r1 , . . .,rN!5DK (
a

d~e2ea!)
n51

N

d~pn2uwa~rn!u2!L
dis

. ~5!

In Eq. ~5! D5(nV)21 is the mean level spacing which is finite in a confined system, and
^ . . . &dis stands for averaging over the random potential configurations. In this definition, we do
not take into account spin degrees of freedom. One can find some details on the definition of
statistics of a local spin desntity of eigenstates in Ref. 45.

The functionf N(p1 , . . .,pN) measures the probability of given amplitudes of the wave func-
tion corresponding to the energye at N different coordinatesrn . When speaking about the
problem of a distribution of irradiation in a chaotic cavity, this function describes a probability to
detect a given configuration of local electromagnetic field intensities in any resonance. In prin-
ciple, using the supersymmetry technique one can try to compute the functionf N(p1 , . . .,pN) for
arbitrary N, but we restrict the analysis below to the functionsf 1 and f 2 that are of special
importance for physical applications. For example, the conductanceg, Eq. ~2!, and its distribution
function can be directly related tof 2 , whereasf 1(p) has been directly measured in the microwave
experiments.16 In addition, sincef 1 and f 2 can be related as follows:

f 1~p,r1!5E
2`

`

f 2~p,p8;r1 ,r 8!dp8, ~6!

it would be enough to calculatef 2 alone. Nevertheless, in some cases, it is much easier to analyze
f 1 , so that below we shall deal with both of them. Knowledge of the distribution functionf 1
makes it possible to calculate its moments, the so-called inverse participation numbers~IPN!,

Pm5K (
a

uwa~r1!u2md~e2ea!L
dis

[E
0

`

pmf 1~p,r1!dp. ~7!

A similar definition can be used for introducing the correlation functions
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Knm~r !5E
0

`

dp1dp2p1
np2

mf 2~p1 ,p2 ;ur12r2u5r !2PmPn ;

~8!

R~p,r !5E
0

`

dp8p8 f 2~p,p8;ur12r2u5r !,

describing spatial correlations of the wave functionswa(r ). Because of the normalization of wave
functions in confined systems, one obtainsP1[V21, and in many cases the correlatorK22 is the
simplest non-trivial one.

To apply the supersymmetry technique to the calculation of physical quantities, one has to
express these quantities in terms of retardedGe

R and advancedGe
A Green functions. These func-

tions are solutions of equations

F Ĥ6 i
g

2GGe
R,A~r,r 8!5d~r2r 8!. ~9!

Each of the functionsGe
R,A(r,r 8) are analytical in the upper~lower! half plane of complexe,

which is controlled by the presence of a finite width of each levelg. The broadeningg is
introduced here artificially and is assumed to be the same for all quantum levelsea . The param-
eterg allows us to relate the properties of a single quantum state to the Green functionsGR,A.
Indeed, the latter can be represented as

Ge
R,A~r,r 8!5(

a

wa~r !wa* ~r 8!

e2ea6 ig/2
, ~10!

so that the procedure of taking theelastic quantum limitg→0 becomes a way to pick up a
contribution to any expression containing some number of Green functionsGe

R,A taken at the same
energye from a single quantum level in order to study statistical and correlation properties of an
individual eigenstate.

The algebraic exercise which shows how one can do this consists in the proof of the following
equality:

lim
g→0,b→1

E
0

1

dt
d

db Fb ~ igbt !m

~x1 ig/2!m
~2 igb~12t !!n

~x2 ig/2!n
g

x21~g/2!2
G52pd~x!. ~11!

To prove Eq.~11!, we integrate, first, overt which gives

E
0

1

tm~12t !ndt5
m!n!

~m1n11!!
, ~12!

and then overx, using the formula

gm1n11i m2nE
2`

` dx

~x1 ig/2!m11~x2 ig/2!n11 52p
~m1n!!

m!n!
. ~13!

Therefore, recalling the definition of the Green functionsGe
R,A(r,r 8), Eq.~10!, one can rewrite

the distribution functionf 2 in the form

4941V. I. Fal’ko and K. B. Efetov: Statistics of wave functions in mesoscopic systems

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



f 2~p1 ,p2 ;r1 ,r2!5
D

p
lim

g→0,b→1

d

db K bE
0

1

dtE dr Im@Ge
A~r,r !#

3d~p11 iYAGe
A~r1 ,r1!!d~p22 iYRGe

R~r2 ,r2!!L
dis

, ~14!

whereYA5gbVt andYR5gbV(12t).

IV. STATISTICS OF WAVE FUNCTIONS AND NON-LINEAR SUPERMATRIX s-MODEL

The goal of the manipulations with the distribution functions in the preceding section was to
represent these quantities in a form suitable for application of the supersymmetry technique.
Following the scheme of calculations developed in Refs. 33 and 34, one should express the
function f N , Eq. ~14!, in terms of an integral over supervectorsc containing both commutings
and anticommutingx elements. To rewrite Eq.~14! in such a form, we expand thed-functions as
a series in the Green functionsGR,A and use the representation of the latter in terms of supersym-
metric functional integrals. To do this, one can use a 4-component supervector for each of retarded
and advanced Green functions, so that the minimal size of the superspace in the theory is 8, Refs.
33 and 34:

c5S c1

c2
D , cm5S lm

Sm
D , lm5

1

A2 S xm*

xm
D , Sm5

1

A2 S sm*
sm

D ,
~15!

c̄5~ c̄1 ,2c̄2!, l̄m5
1

A2
~xm ,xm* !, S̄m5

1

A2
~sm ,sm* !, m51,2.

In Eq. ~15!, the superscripts 1 and 2 relate to the advanced and retarded Green functions, respec-
tively. The componentsx andx* are anticommuting Grassmann variables whereass ands* are
conventional complex numbers conjugate with respect to each other.

In principle, to obtain a proper expression for a product of a large number of Green functions
related to different energies, one would have to increase the size of the superspace, which would
make any further computation extremely difficult. Fortunately, the distribution functionsf N which
describe the properties of a single quantum level are all expressed in terms ofGe

R,A taken at
exactly the same energy. This enables us to operate in the superspacec in Eq. ~15! without
increasing its dimensions. Within the supersymmetry technique, one uses the LagrangianL in the
form

L@c#52E dr c̄~r !F Ĥ01U~r !1
ig

2
LGc~r !, ~16!

where 838 supermatrixL is

L5S 14 0

0 214
D , 145diag~1,1,1,1!, ~17!

and represents any product of Green functions which would appear in a formal series expansion of
Eq. ~14!,

Bmn5^Ge
A~r,r !@Ge

A~r1 ,r1!#
m@Ge

R~r2 ,r2!#
n&dis ~18!

as
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m!n! i n2m21Bmn5 K E x1~r !x1* ~r !us1~r1!u2nus2~r2!u2me2 iL [c]Dc L
dis

, ~19!

Due to the absence of a weight denominator, the averaging in Eq.~19! can be immediately
performed and it leads to the appearance of an effective ‘‘interaction’’ (c̄c)2 in the Lagrangian.
Then, one decouples the interaction using Gaussian integration over 838 supermatricesQ with
indicesQab

i j slowly varying in space. In accordance to the notations of the projections in the
supervector space, we distinguish the pair of upper indicesi ( j )51,2 which indicate from which
Green function~advanced or retarded! the corresponding matrix element ofQ was originated, and
down indicesa,b51.4 which distinguish between commuting~3,4! and anticommuting~1,2!
components ofc1,2. After this, we integrate overc with the quadratic~after decoupling! effective
Lagrangian

Leff@c,Q#52E F c̄~r !S Ĥ01
ig

2
L1

i

2t
QDc~r !Gdr . ~20!

As usual, one can perform the Gaussian integration using the Wick theorem. In principle, not only
pairing of the typê ca(rn)c̄a(rn)&, such that bothc ’s are taken at the same point is possible, but
also pairings likê ca(rn)c̄a(rm)&, n Þ m, should be taken into account. The latter pairing deter-
mines spatial dependence of the correlations of the wave functions. They decay already at dis-
tances of the order of wave length and are even exponentially suppressed at distances longer than
the mean free pathl . As soon as one studies correlations at distancesur12r2u. l only the pairings
at coinciding points need to be considered and now let us restrict ourselves to this case. Of course,
this limits the applicability of this theory to the effects determined by the long-range behavior of
the diffusive waves and washes out all features of an electron motion at the short range scale
where the specific character of a random potential starts playing an important role. To anticipate
a little, the approach we use below enables us to work with zero-dimensional, 2D and quasi-1D
systems where the long enough diffusive electron trajectories dominate in forming the structure of
quantum states and in localization effects, whereas we cannot use it for studying the localization
in three-dimensional~3D! systems.

After these remarks, the Gaussian integration overc in Eq. ~19! with the LagrangianLeff , Eq.
~20! can be easily performed, and, after collecting all termsBnm , one reduces the functionf 2 to
the form

f 2~p1 ,p2 ,;ur12r2u@ l !5 lim
g→0,b→1

d

db K b

2VE dz1dz2

~2p!2
E
0

1

dtE dr ~Q11
11~r !2Q11

22~r !!

3dS p12 tgb

2VD
z̄1Q~r1!z1D dS p21 ~12t !gb

2VD
z̄2Q~r2!z2D L

Q

, ~21!

where^ • • • &Q stands for the integration
33over the supermatricesQ with the free energy functional

F@Q#,

F@Q#5
pn

8
StrE FDS ¹Q2

ie

c\
A@Q,t3# D 22gLQGdr ,^•••&Q5E DQ•••e2F[Q] . ~22!

Str is supertrace andD is the classical diffusion coefficients. The supermatrixQ obeys the
constraintQ251 and can be represented in the form

Q5ULŪ, ~23!
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whereU is a transformation generating the degeneracy space of graded symmetry group.49 This
field-theoretical model is essentially non-linear, since the matrixU satisfies the condition
ŪU51, where an overbar indicates the operation of conjugation defined in Ref. 33 as

Ū5CUTCT; C5SC0 0

0 2C0
D ; C05S 2 i t2 0

0 t1
D , ~24!

whereta are the ordinary Pauli matrices andT means the transposition operation.
The transformationU can be imagined as a pseudo-unitary ‘‘rotation’’,

U5S u1 0

0 v D expS 0 2 iu2
û

2

2 i
û

2
ū2 0

D , ~25!

and can be parametrized with an equal number of commuting and anticommuting variables. The
second matrix in the product in Eq.~25! is composed only of commuting variables withu2 an
ordinary unitary matrix. All anticommuting variables are collected into matricesu1 andv1 . The
vectorsz1,2 and z̄1,2 have the form determined by

z̄15~0,0,ei z1,e2 i z1,0,0,0,0!, z̄25~0,0,0,0,0,0,ei z2,e2 i z2!. ~26!

Equations~21–25! completely reduce the problem of computation of the distribution function
f N to functional integration over supermatricesQ within the non-linears-model.

The reduction of quantum mechanics of a particle in a disorder medium to the non-linear
s-model has several approximations implicit in the above derivation. First of all, by introducing
smoothly varying fieldsQ, we make a separation between ‘‘fast’’ and ‘‘slow’’ variables, where
the ‘‘fast’’ variables have sense only if the particle motion can be everywhere considered as a
semiclassical one, that is, the action it takes should be large and real. This excludes from the
theory below the effects related to the tunneling through potential barriers—the rare configuration
of a random potential which are, nevertheless, possible within the Gaussian model of disorder~but
not allowed in the case of the box distribution, for example!. At the same time, the procedure33

which leads to the conjectureQ251 and the following gradient expansion we use in determining
the effective free energy functional prevents us from discussing features of the wave functions at
the length scales shorter thanl , and what we are able to describe within thes-model approach is
the structure of quantum states smeared over the volume of a ‘‘Hikami-box’’ which is~for the
models with short-range scatterers! ;ld21l . As a result, the localization effects in 3D systems
which are dominated by the short-range dynamics of a particle60 cannot be treated consistently by
thes-model approach we use: they would be systematically underestimated. In 2D and quasi-1D
systems, the long-range diffusive trajectories of a particle are important, so that thes-model
approach works, but we cannot speak about densitiesp higher than (ld21l )21, and we also
cannot anticipate the form of specific configurations of a random potential responsible for forming
prelocalized states. We make the latter remark since at short distance~in small volumes! it is
possible to imagine rare configurations of scatterers~whose probability to be found strongly
depends on the model of disorder! which would appear more efficient being studied beyond the
Born approximation.

The same should be repeated concerning the analysis of a somewhat more simple function
f 1 which can be expressed in terms of an integral over the supermatricesQ in a similar way
starting from Eq.~5!:
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f 1~p,r1!5
1

4VE dz1dz2

~2p!2
lim
g→0

K E dr ~ z̄1~Q~r !2L!z1!

3dS p2
g

2VD
z̄2Q~r1!z2D L

Q

. ~27!

Computation of this function is easier to follow, so that we start the next section from the analysis
of this function and study a situation where thes-model results can be easily compared to those
of the RMT.24

V. UNIVERSAL EIGENSTATE STATISTICS AND 0D s-MODEL FOR SYSTEMS WITH
BROKEN TIME-REVERSAL SYMMETRY

Disordered systems with the broken time-reversal symmetry represent the simplest ones where
the supersymmetrics-model can be applied and where the results obtained by using this method
can be compared with the predictions of the phenomenological approaches. The RMT predicts that
the functionf 1 describes the Gaussian distribution of wave function amplitudes which, in the case
of a broken time-reversal symmetry~unitary ensemble! corresponds to

f 1~p;r !5V exp$2Vp% and Pn5n!V2n. ~28!

Such a distribution has universal form in the sense that it contains no information about any
dynamical parameter such as a mean free path, shape of a cavity or position of the observation
point inside it, but only manifests the fact that the density of all eigenstates in the system is
normalized by its volume~or area in 2D!.

The goal of the analysis presented in this section is to reproduce the result of Eq.~28! using
thes-model calculations. In other words, we have to find an approximation of the complete field
theory which would give us the universal statistics. From the explicit form of the free energy
functionalF@Q# in Eq. ~22!, it is clear that the only way to omit such a dynamical parameter as
the diffusion coefficientD would be to consider the so called zero-dimensional~0D! version of a
model, that is, to assume that the only relevant degree of freedom of the fieldQ(r ) is its zero
space harmonicsQ(r )5const5Q0[Q(r1).

Physically, the 0D approximation described above neglects any localization effect, which
indicates that each wave function is sensitive to boundaries of the sample. The 0D approximation
bridges thes-model to the RMT and, at the same time, drastically simplifies calculations since the
functional integration in it is replaced by a definite integral over superspace with a simplified free
energy,

^ . . . &
Q
5E dQ0e

2F0D, F0D@Q#52
pg

8D
Str~LQ!. ~29!

The choice of the unitary ensemble is also motivated by its simplicity. In a strong magnetic
field, so called ‘‘cooperon’’ degrees of freedom are ‘‘frozen’’, and only the part of the supermatrix
Q commuting with matrixt3 ~see the notations in Refs. 33 and 34! gives a contribution. That is
why, in the unitary case, the number of independent components of the supermatrixQ is two times
smaller than, e.g., in the orthogonal case when the time-reversal symmetry is not broken. The
parametrization of the superspace can be made using the invariant representation of Eq.~25!,
Q5UdLŪd , with group transformationsUd in the form of Eq.~25! where

û5S ud12 0

0 iu1d12
D , 0,ud,p,

0,u1d,`;
125S 1 0

0 1D , u25expS iw1t3 0

0 iw2t3
D , ~30!
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and

u15S 122ĥdĥd
† 2ĥd

22ĥd
† 112ĥdĥd

†D , v5S 112k̂dk̂d
† 2i k̂d

22i k̂d
† 122k̂dk̂d

†D ,
~31!

ĥd5S hd 0

0 hd*
D , k̂d5S kd 0

0 2kd*
D .

In this parametrization, theud,1d andw1,2 are commuting variables, whereashd ,hd* ,kd ,kd* are
Grassmann variables. The integration over the superspace in the parametrization Eqs.~30!, ~31!,
implies the knowledge of the Jacobian,33,34

Jd5
dl1ddld

~l1d2ld!
2

dhddhd* dkddkd*

16

dw1dw2

~2p!2
; l1d5 cosh~u1d!, ld5 cos~ud!. ~32!

In terms of the variablesl1d andld , the free energyF0D can be reduced to the form

F0D5
pg

D
@l1d2ld#. ~33!

The pre-exponential factor in Eq.~27! can be simplified as well, since vectorsz1 and z2
commute withQ, and the integration over the variablesz1 andz2 is trivial. As a result, Eq.~27!
can be rewritten as

f 1~p!5
V

2
lim
g→0

E ~Q33
1121!dS p2

g

D
Q33
22De2F0D[Q]dQ, ~34!

whereQ33
11 andQ33

22 are matrix elements~the superscripts denote the blocks originating from the
presence of both advanced and retarded Green functions and the subscripts—the elements in these
blocks!.

Note that the combination entering thed-function in Eq.~34! contains the broadeningg which
has to be put to 0. Wheng→0, the only possibility to have a finite value of the product
(g/D)Q33

22, which is necessary sincep is a finite wave function density in a finite volume, is to
take into account the values ofQ33

22 as large asD/g→`. We can do it since the degeneracy space
of the supersymmetric field theory is non-compact. To be more precise, one has to deal with that
part of the superspace wherel1d;D/g→`.

This argument simplifies dramatically our calculus. Indeed, in the leading approximation with
respect tog, it is enough to keep only the pseudo-unitary part in the matrixUd and even to replace
it by an asymptotical expression

Ud→U`5
Al1d

2 S u1u2 0

0 v DP, Ūd→Ū`5
Al1d

2
P̄S ū2ū1 0

0 v̄ D ,
~35!

P5S pb pb

pb pb
D , P̄5S pb 2pb

2pb pb
D[LPL, pb5S 0 0

0 12
D .

The matrixU` in Eq. ~35! does not belong to the graded symmetry group. It has a sense only as
an asymptotical form of parametrization of the ‘‘infinities’’ of the superspace in the integrals like
in Eq. ~21,29,34!. Both the Jacobian in Eq.~32! and free energy in Eq.~33! can also be simplified
by neglecting a finiteld<1 in comparison to infinitely largel1d;D/g, which finally results in
the distribution function in the form of Eq.~28!.
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Computation of the functionf 2(p1 ,p2 ;r 1,r 2) in the limit of large distancesur12r2u@ l ), Eq.
~21!, can be performed in the same way. At large distances, the distribution functionf 2 in the
unitary ensemble no longer depends on the coordinates, so they can be omitted. Starting with the
expression from Eq.~21!, we find that the distribution function has a separable form,

f 2~p1 ,p2 ;ur12r2u@ l !5V2 exp$2V~p11p2!%. ~36!

The separability of the joint density distribution function indicates that, at large distances, the
correlations between amplitudes of the wave function are suppressed. To find the law describing
their decay with increase of the distanceur12r2u ~starting from the wavelength scale
l52pk21, k being the wave vector!, one has to take into account pairing^ca(rn)c̄a(rm)& in the
derivation of thes-model in Eqs.~18!–~21!. This analysis has been performed by Prigodin.42 Here
we mention the final result re-addressing the reader to Refs. 42 and 43 for technical details. The
joint distribution functionf 2 in the unitary symmetry class at short distances has the form

f 2~p1 ,p2 ;ur12r2u!5
V2

12g2
expS 2

V~p11p2!

12g2
D I0S 2VAg2p1p2

12g2
D , ~37!

where I0(x) is the modified Bessel function andg2(r ) is the Friedel function32 (r5ur12r2u):

g5H J0~kr !e2r / l , 2D,

sin~kr !e2r / l /~kr !, 3D. ~38!

From Eqs.~36!–~38! we see that the correlations decay at distances of the order of the
wavelength. Absence of distant correlations in wave functions is in so good agreement with a
naive expectation coming from the phenomenological models, that one may think that it is the
general result which is valid for any chaotic system. However, this is not the case. The suppression
of correlations at large distances occurs in the limiting cases of unitary and orthogonal symmetry
classes, but does not work in the crossover regime of weak magnetic fields. The correlation of
wave functions in the crossover regime will be discussed in detail in the next section.

VI. REDUCED s-MODEL AND EIGENSTATE STATISTICS BEYOND THE UNIVERSALITY
REGIMES: CROSSOVER BETWEEN ORTHOGONAL AND UNITARY ENSEMBLES

Note that the procedure of integration over the ‘‘diffusion’’ degrees of freedom in the 0D
approximation of the previous section together with the necessity to take the limitg→0 gives us
a result that is free of any level broadening and describes the statistics of a single chaotic eigen-
state. Moreover, integration over the zero ‘‘diffusion’’ mode in the limitg→0 can be a good
move for any particular realization of thes-model~e.g., in the case where the magnetic fieldH is
so weak that the magnetic flux through the sample area is small, or when the sample is large
enough to expect that the localization effects play an important role!. What we obtain after such a
manipulation is areduceds-modelwhich directly describes the statistical properties and spatial
structure of a single state in the discrete spectrum of a confined quantum system.

In the general case, the fieldQ depends on the coordinates and contains more variables. In the
crossover regime between the unitary and orthogonal symmetry classes, the presence of the
‘‘cooperon’’ degrees of freedom doubles the number of independent parameters, and the transfor-
mationU in Eq. ~27! can be represented50 as the product
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U5UdUc ; Uc5S u1c 0

0 vc
D expS 0 2u2cC0

îuc
2

2
îuc
2
C0
†ū2c 0

D ,
~39!

ûc5S uc12 0

0 iu1c12
D , where

0,uc,p/2,

0,u1c,`,
.

In Eq. ~39!, C0 is defined as in Eq.~24!, and the matricesu1c,2c andvc are similar to those in the
parametrization ofVd in Eq. ~34!. The measure of the integration over the ‘‘cooperon’’ variables
described above is given by

dQc5S 2lc

l1c
2 2lc

2D 2dlcdl1c

16

dw18dw28

~2p!2
dRc , dRc5dhcdhc* dkc* dkc , ~40!

wherehc ,hc* ,kc ,kc* are Grassmann variables.
To derive the reduceds-model, we represent the supermatrix fieldQ(r ) at any pointr inside

the sample in the form

Q~r !5Ud~r1!Q̃~r !Ūd~r1!, ~41!

whereUd(r1) is parametrized by Eqs.~33! and ~34! and describes the values of the full set of
‘‘diffusion’’ variables of the fieldQ at the observation pointr1 . The integration over the zero
diffusion mode is equivalent to integration of Eq.~21! over all possible ‘‘directions’’Ud of the
superfield in the sample ‘‘as a whole.’’ Because of thed-functional form of the pre-exponential
part of the expressions involved, only largeud(r1), such thateud;D/g→`, contribute to the
integrals in Eqs.~21! and ~29!. So, we use Eq.~35! in the same way as in the previous section.

As a result, the generals-model transforms into the reduced one with a modified free energy
functional. It is easier to follow the derivation calculating the distribution functionf 1 . In particu-
lar, the second term inF@Q# in Eq. ~22! containing infinitely smallg, after the integration of
d(p2(g/2VD) z̄1Q(r1)z1) over all the variables ofVd(r0) converts it into

F2@Q#→F2@Q̃#5
p

2z̄1LPQ̃~r1!z1
E drStr~LPQ̃~r !!. ~42!

The term of Eq.~42! plays the role of an ‘‘external field’’~introduced by the procedure of
measurement of the local wave function density! breaking the symmetry between bosonic and
fermionic degrees of freedom of the fieldQ. Note that the above procedure suggests that, the field
Q̃(r ) parametrized asQ̃5ŨdŨcLUD cUD d , corresponds to boundary conditionsUd(r1)51.

On the contrary, the gradient term of the free energyF@Q# in Eq. ~22! does not change its
form:

F1@Q#→F1@Q̃#5
Dpn

8 E drStrS ¹Q̃2
ie

\c
A@Q̃,t3# D 2. ~43!

As to the form of the pre-exponential factor in the generating functional of the reduced
s-model, it depends on the indexN of the joint distribution and can be sufficiently simplified in
several special cases, in particular, when studying the crossover regime between the orthogonal
and unitary symmetry classes. Analogously to the derivation of the universal statistics in the
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previous section, in a relatively small system we can neglect spatial variations of the fieldQ̃, so
that Q̃(r )[Q̃(r1). Then the lowest ‘‘cooperon’’ mode is described by the expression for the free
energy,

F152SX4 D 2Str~@Q̃,t3#
2!5X2~l1c

2 2lc
2!X25~2p!3

D

DE dr

V SA~r !

f0
D 25ag

f2

f0
2

Ec

D
,

wheref05hc/e is the flux quantum,ag is the sample geometry dependent factor,D is the
classical diffusion coefficient,Ec is the Thouless energy equivalent to the inverse time of flight
through the system,L2/D.

The physical meaning of this term arising in the 0Ds-model is that it is related to distribution
of the magnetic fluxes encircled by a semiclassical electron trajectory. Due to the Aharonov-Bohm
effect,51 the encircled fluxes determine the phases of the electron wave in a magnetic field,

e

c\ R ~Adr !5
2p

f0
E HdS.

In a classical picture of chaos, these phases, as well as the magnetic fluxes, can be arbitrarily large.
This is in contrast to the correct semiclassical picture of quantum mechanics where they cannot.
The lengths of geometrical paths attributed to classical trajectories in semiclassics should be
limited, since the trajectorial description breaks down at the time scale longer than the Heisenberg
time, tH;h/D. Hence, the values of the encircled magnetic flux are also limited, so that the
classical ergodicity does not always lead to the complete randomness of the wave function phases.
That is why the crossover between the two limiting symmetry classes extends over a finite region
of magnetic fluxes through the sample cross-sectional area, which indicates that there can exist
long-range correlations in the chaotic wave function in the entire crossover regime. On the other
hand, in classically non-integrable systems, the Heisenberg time is usually much longer than the
time flight L2/D, so that crossover between time-reversal and no-time-reversal symmetry limits
occurs at fairly weak magnetic fields.33,52,53

In order to establish the presence or absence of the correlations, we study the joint distribution
function f 2(p1 ,p2 ;r1 ,r2) at two points separated by the distanceur12r2u much larger than the
mean free pathl and compare it with the single-point distribution functionf 1 . As discussed in the
previous section, the Friedel-type oscillations are dead at these distances, so that the presence of
correlations means the non-separability of the joint functionf 2(p1 ,p2) into the product
f 1(p1) f 1(p2).

After some necessary algebra,41,45 the joint distribution functionf 2 and the distribution func-
tion f 1 can be represented as

f N~p1 , . . . ,pN!5VNE
0

1

dlcE
1

`

dl1cexp~2Ff!3
lc
2

~l1c
2 2lc

2!2

3E E P)
n51

N
dzn
2p

exp~2Vpn /An!

An
dRc , ~44!

which is a parametrized representation of the reduceds-model. In Eq.~44!, N51,2, and functions
P andAn are defined as

P5l1c12~hchc*2kckc* !~l1c2lc!, An511Re
Lei zn

P
,

L5Al1c
2 21~112hchc* !~122kckc* !14A12lc

2hckc .
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Skipping further technical details of the algebraic manipulations with Eq.~44!, we are able to
represent the joint distribution functionf N , N51,2 in the form

f N5VNE
1

`

B~X,x!)
n51

N

M ~Vpn ,x!dx, ~45!

where

B~X,x!5X2@~xX221!F2~X!1F1~X!#e2X2~x21!,

M ~q,x!5Ax exp~2qx!I0~qAx22x!,

Here, I0(z) is the modified Bessel function, and

F1~X!5
e2X2

X E
0

X

ey
2
dy, F2~X!5

12F1~X!

X2
.

First of all, let us compare the result obtained by using thes-model and the predictions of the
random matrix theory for the universal statistics. The comparison with the unitary case,X→`,
may serve as a check of the algebra, since it coincides with the results of Eqs.~30! and~36!. In the
orthogonal ensemble,X→0, we also find from Eq.~45! that the joint distribution function is
separable at large distances,

f 2~p1 ,p2!→ )
n51,2

Ve2Vpn/2

A2pVpn
; f 1~p!→A V

2pp
expS 2

1

2
VpD . ~46!

However, the joint distribution function is not separable at any finite magnetic field, which indi-
cates that, even in the limit of large distances between the pointsr1 andr2 , the correlations do not
vanish. To demonstrate theexistence of a long-range correlation in each individual wave function
in a quantum billiard subjected to a weak magnetic field, we calculate the correlation function
K22(r@ l ) defined in Eq.~8!. Fig. 1~a! illustrates how the correlations evolve as function of a
normalized flux through the sample area. As one can see from Fig. 1~a!, the correlations are
present all over the crossover regime: from the smallest to the highest values of the normalized
flux. Numerically, these correlations are never strong~of the order of one percent!, since the
maximal value of the correlator max(K22)'0.05 has to be compared to the square of the second
momentP2 varying from the value of 3 to 2 between the orthogonal and unitary symmetry
classes. The distant correlations in the wave functions can also be traced in the joint probability to
find simultaneously two zeros of the wave functionw(r1,2)50. At small fluxes corresponding to
X!1, @ f 1(0)#

2' (4p/9)X22 whereasf 2(0,0)'
5
3X

22, and Fig. 1~b! illustrates the evolution of the
distribution functionw(t)52t f 1(t

2) of local amplitudest5A(p) following the variation of a
magnetic flux.

Since the pioneering work by Berry,30 it has been believed that in classically ergodic systems
the local wave function density can be imagined as a result of superposition of an infinite number
of plane waves with random phases and equal momenta. In the unitary case, this is a complete
randomness. In the orthogonal ensemble, the pairs of time-reversed plane waves with wave vec-
tors6k enter this representation with conjugate phases. The randomness of the phases results in
the Gaussian randomness of the amplitudewa and vanishing of correlations at large distances. Our
result in Eq.~45! means that a weak magnetic flux through the sample area introduces some
non-local correlations inwa(r ) related to the fact that the Aharonov-Bohm phases taken by an
electron moving in a quantum billiard cannot be arbitrarily large and that the phases of the ‘‘plane
waves’’ in the phenomenological picture are slightly correlated at each point, which has not been
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anticipated in previous semiclassical theories. These correlations are present in the entire cross-
over regime and can be diminished only by the localization effects which have not been taken into
account, yet, but will be considered in the next section.

FIG. 1. ~a! Two-point correlation function at distant points as a function of a normalized flux.~b! Distribution function of
local amplitudes of wave functions~as described in the text! for various values of a normalized magnetic flux through the
system.
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VII. LOCALIZATION EFFECTS IN THE WAVE FUNCTIONS STATISTICS AND NON-
TRIVIAL VACUUM OF THE REDUCED s-MODEL

To study the localization effects in the wave functions statistics, one has to go beyond the 0D
approximation of thes-model.33,54–59,44,45Depending on the system to be studied and problem to
be considered, the inhomogeneous fieldQ(r ) can be treated in different ways. In the perturbation
theory calculation in the weak localization regime, they appear as non-zero spatial ‘‘cooperon’’
modes.3 In quasi-1D wires, the account for the inhomogeneousQ(x) using the transfer matrix
method gives an exact solution of the localization problem in the limit of a weak disorder.56

Recently, in revising the perturbative results of Ref. 60 on the long-living current relaxation in
mesoscopic conductors, Muzykantskii and Khmelnitskii59 have suggested that an adequate de-
scription of anomalous events in the weak localization regime may involve the treatment of the
supersymmetrics-model by using a saddle-point method.

In the studies of the eigenstates statistics in weakly disordered conductors with a size smaller
than the localization length,44,45 the inhomogeneous supermatrix fields appear as anon-trivial
vacuum state of the reduceds-model.In this Section, we present all details of the calculus for the
unitary symmetry class. That is, regarding to the discussion in Section VI, we assume that the
magnetic field applied to the system is large enough~though the classical cyclotron radius is still
longer than the mean free path! and formally require thatl /l@Hl 2/f0@Al/ l . The unitary sym-
metry class can be also modeled by a random magnetic or gauge field disorder.47,48This allows us
to suppress completely the ‘‘cooperon’’ degrees of freedom of theQ-field and to deal only with
the ‘‘diffusion’’ ones. The content of the next few paragraphs repeats the derivation earlier from
Ref. 44, and one can find in Ref. 45 its generalization to other fundamental symmetry classes. We
also restrict the analysis to the calculation of the single-point distribution functionf 1(p) which
contains enough information to indicate the existence ofprelocalized statesin a disordered system
~the states with an anomalously high local density!, and to the correlation functionR(p,r ) defined
in Eq. ~8! which tells us about their statistically averaged envelopes. The generating functional of
the reduceds-model equals

Fu~p!5E
Q̃~r1!5L

DQ̃~r !e2F[ Q̃] , ~47!

where the free energy has the form

F@Q̃#5E drStrFpnD

8
~¹Q̃!22

p

4
LPQ̃~r !G , ~48!

and we are reminded thatQ̃(ro)5L at the origin and projectorP is that defined in Eq.~35!. At
the same time, the distribution functionf 1 and its momentsPn can be represented~in terms of the
generating functionalFu) as

f 1~p!5
1

V

d2Fu~p!

dp2
, Pn5

n~n21!

V E
0

`

pn22Fu~p!dp. ~49!

As far as other fundamental symmetry classes are concerned, this relation may take various forms
~see Ref. 45!.

The generating functional in Eq.~47! has several funny features. First, atp50, it has a
completely invariant form, and therefore is equal to unity, which corresponds to the normalization
of all wave functions,

VP15Fu~0![1. ~50!
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On the other hand, for any finitep the reduceds-model has broken symmetry, so that the
minimum of the free energy in Eqs.~47! and ~48! corresponds to an inhomogeneousQ̃p(r ).
Indeed,~p/4)LP in the second term in Eq.~48! resembles a field tending to align the matrixQ̃
along the non-compact ‘‘direction’’ of theQ-space~related to the parameteru1d), whereas the
boundary condition atr0 together with the gradient term can be viewed as a rigidity attempting to
prevent that. The competition between these two tendencies results in a non-trivial minimum
configuration ofQ̃. To find this non-trivial vacuum state~saddle-point!, we use again the invari-
ance of theQ-space with respect to rotationsŨ and representQ as

Q̃~r !5Uvac~r !L
11 iP

12 iP
Ūvac~r !, P5S 0 B

B̄ 0 D ^12 , ~51!

where a weak perturbationP stands for fluctuations around the saddle-point, and the matrices
B,B̄ can be decomposed into blocks as follows:

B5S s1,1t01 is1,2t3 ŝ1

ŝ2
1 s2,1t01 is2,2t3

D , ŝa5S sa 0

0 2sa*
D . ~52!

The parametrization of fluctuation using Eq.~52! is especially convenient from the point of view
of the perturbative analysis, since it has a unit value of the Jacobian~Berezian!.34 The form of the
saddle-pointQ̃vac5UvacLŪvac follows from the requirement of the absence of linear terms in the
expansion ofF into the series

F@Q̃#5Fp1F ~2!1F ~3!1F ~4!1 . . . , ~53!

in the perturbationB,B̄. This selects

Uvac5 expS 0
1

2
upe

ixt3pb

1

2
upe

2 ixt3pb 0
D , ~54!

where the parameteru t(r ) satisfies the equation

¹2up~r !52
p

pnD
e2up, x5p, ~55!

with the boundary conditionsup(r1)50 in the origin and (n¹)up50 at the surface of the sample.
In Eqs.~55! and~54!, ¹2 stands for the Laplacian in the reald-dimensional space, and projection
matrix pb is that defined in Eq.~35!.

A similar analysis of the reduceds-model can also be performed for other symmetry classes
and leads us to the same saddle-point equation as in Eq.~55!. The difference between the unitary,
orthogonal and symplectic~including spin-orbit scattering! ensembles leads only to different val-
ues of the coefficientb,

bo5
1

2
, bu51, bs52, ~56!

in the expression describing the minimal free energy,
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Fp5bE dr H pnD

2
~¹up!

21pe2upJ , ~57!

and in the higher order terms of the expansion ofF@Q̃# in the vicinity of the vacuum state
Qvac5UvacLŪvac.

The optimum~saddle-point! equation in Eqs.~54! and ~55! is analogous to the saddle-point
equation derived by Muzykantskii and Khmelnitskii59 when revising the problem of long-living
current relaxation in open conductors.60 Nevertheless, the fact that we started from the reduced
s-model which describes properties of a single quantum state in a confined system results in a
different non-linearity in it and different boundary conditions. Thenon-trivial vacuum of the
reduceds-modelfrom Eqs.~51!–~55! satisfies the Liouville equation. For those familiar with the
conformal theory of quantum gravity,61 this fact immediately points to the critical properties of the
wave functions in two dimensions. The issue of peculiar properties of prelocalized states in 2D
conductors will be discussed in more detail in the next section; here we only mention the general
difference between the purely conformal quantum Liouville theory61 and the localization problem.
The Liouville equation~55! describes the ‘‘mean field’’ distribution of the length scales in the
system and is invariant under rescalingr→ar andup→up22ln(a). Without the above-mentioned
boundary conditions, this would give us an infinitely broad distribution of length scales in the
structure of the wave functions in two dimensions, and there exist several examples62–66when the
critical wave functions can be constructed starting from very special models of disorder~e.g.,
2D-electrons withg-factor 2 living in a random magnetic field,62 or 2D relativistic spin-12 particles
in a randon Abelian gauge field!.63 It is amusing to note that thef 1-statistics and some simple
correlation functions in the above-mentioned models of disorder may be calculated using the
saddle-point method applied to the generating functional analogous to that in Eq.~47!.67

Although the similarity of the optimum equation, Eq.~55!, describing the vacuum state of the
reduced s-model to the Liouville equation and conformal field theory may call helpful
analogies,66 the answers which can be anticipated in this way might be used only as intermediate
asymptotics. In conventional models of disorder, there are several relevant length scales in the
problem, such as the mean free pathl which we keep much smaller than the size of the system
L. In our theory, the latter comes to the play through the boundary condition at the edge; the
former - through the condition at the origin which has to be replaced by the ‘‘smoothed’’ require-
mentup(r 0; l )50. This restricts applicability of the saddle-point calculations by the domain of
validity of thes-model in its standard form: to systems with dimensions lower than three. In 3D
systems, the free energy of the non-trivial vacuum state of reduceds-model is sensitive to the
singular behavior ofQ-fields at distances shorter thanl ,45 and the application of our method to
dimension three cannot give an adequate quantitative description of statistics of anomalously high
splashes of wave functions and would systematically underestimate the probability of their ap-
pearance: As we recently learned from Shklovskii, at short distance~in small volumes!, it is
possible to construct rare configurations of a random potential which would become more efficient
would one go beyond the Born approximation with respect to the random potential implicit to the
s-model approach.

Another difference between precisely conformally invariant Liouville theory and the
s-model description of localization consists in a number of additional degrees of freedom which
are present in the supersymmetric order parameterQ̃. Playing no role in forming the vacuum state,
these degrees of freedom become crucially important if thefluctuations around the non-trivial
vacuumare taken into account. In a complete theoretical construction, they would result in the
localized behavior at long distances of all the states we are studying. At present, we are not able
to provide a rigorous theoretical treatment of this problem, which seems to require some kind of
a functional renormalization group approach. But what we can do here, that is to account for
fluctuations perturbatively and to get the lowest order estimation and to control the regime of
applicability of the saddle-point method and check the stability of the vacuum.
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Since now, we represent the generating functionalFu(p) in the form

Fu~p!5J~p!exp~2Fp!. ~58!

In the conducting regime, the value of the minimal free energy determines the leading term in the
exponential of the generating functional, whereas the effect of fluctuations around the non-trivial
vacuum is included into the functionJ(p),

J~p!5E DB exp$2F ~2!2F ~3!2F ~4! . . . %. ~59!

Because of the normalization condition in Eq.~50!, the relationJ(0)51 holds exactly. The
contribution from the fluctuationsB at p50 can be calculated by expanding the exponential in the
integrand in Eq.~59! in a series in higher order termsF (3,4, . . . ) and performing Gaussian integra-
tions overB with the weight exp$2F(2)% determined by the second order correction to the free
energy.

The applicability of such a perturbation theory is justified by the fact that the contribution of
the higher order terms to the free energy are, at least, by the factor of (2pnD)21!1 smaller, as
compared to what is given by

J~p!'E DB exp$2F ~2!@B#%. ~60!

TheJ(p) is the superdeterminant of the Hamiltonian related to the fluctuations around the saddle-
point. The value ofJ(p) differs from unity merely because the symmetry between fermionic and
bosonic degrees of freedom is broken by a vacuum state. Since not all projections of the infini-
tesimalB to the generators of the Lie algebra of the graded symmetry group are equivalently
affected by the symmetry breaking, it is convenient to separate inF (2) the terms that perceive the
existence of the minimal solution from those that do not. Depending on the physical symmetry
class, this involves different sets of variables. Nevertheless, after an appropriate diagonalization,
the quadratic formF (2) can be represented uniquely for all symmetry classes:45

F ~2!5Fp
~2!1§F0

~2! ,
§u50,

§o,s51
. ~61!

The termF0
(2) in Eq. ~61! is composed of fields which are not affected by the symmetry breaking,

F0
~2!52pnD (

a51,2
E dr $¹W sa

2¹W ~sa
2!*1¹W sa

2¹W ~sa
2!* %.

This term does not contribute to the functionJ in the Gaussian approximation, due to the sym-
metry between boson (s) and fermions degrees of freedom incorporated. On the contrary, the
first term in Eq.~61! is the sum over those four pairs of dynamical variables which are sensitive to
the violation of the boson-fermion symmetry,

Fp
~2!52pnDE dr H (

a51,2
@¹sa¹sa*1Ussasa* #1 (

b,a51,2
@~¹sa,b!21Us

absa,b
2 #J .

Therefore, the pre-exponentialJ can be represented as

J5 expH 12(n lnS ~xs~n!!4

)a,bxs
ab~n! D J , ~62!
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where the sum is extended over all eigenvalues$x% of the spectral problem,

@2D1U2x#f50, f~r1!50, n¹f50uedge. ~63!

As mentioned, any difference ofJ from unity is due to the broken symmetry between fermi-
onic and bosonic degrees of freedom inB. The broken symmetry in the HamiltonianFp

(2) is a
consequence of the difference between the effective potentialsUs andUs ,

Us5
1

4
~¹up!

21
p

2pnD
e2up, Us

ab5
ka,b

4
~¹up!

21
pqa,b

2pnD
e2up, ~64!

in the HamiltonianFp
(2) In Eq. ~64!, ka,15qa,150 and k1,254, k2,250, qa,252. The spectra

$xs(n)% and $xs
ab(n)% of modes remain gapfull, since allU.0. Moreover, because of the sum

rule

(
ab

Us
ab54( Us , ~65!

their main contribution toJ comes from low-lying eigenvalues of Eq.~63!. Since the set ofU ’s in
Eq. ~64! depends on the vacuum state only, the calculation of the correction to the exponent in this
order in (2pnD)21 can be performed for all symmetry classes at once and is small, if the size of
the system is shorter than the localization length.

The existence of a non-trivial vacuum of the reduceds-model and a relatively small contri-
bution from fluctuations in the metallic regime makes it easy to find the form of the cross-
correlation functionR(p,r ) from Eq. ~8!, too. If we study the envelope of the wave function at
sufficiently large distancesr@ l from the position of a high amplitude splash, the reasoning used
above can be repeated forR(p,r ) with minor modifications, and we arrive at

uwp~r !u2;R~p,r !/ f 1~p!}pe2up~r !, ~66!

so that one can say that the envelope ofuw(r )u2 follows the form of the saddle-point configuration
of the reduceds-model.44,45

VIII. MULTIFRACTALITY OF EIGENSTATES IN WEAKLY DISORDERED 2D
CONDUCTORS

The form of the vacuum state of the reduceds-model depends on the real dimensionality of
the system. In 3D systems, the localization effects are known to be the weakest. Although the
distribution functionf 1 acquires a broader distribution than the universal one, all its moments
Pn ~IPN! scale with the inverse integer power of the volume of the system. We, therefore, omit the
3D case, since it gives the results the most resembling the universal ones.45

On the contrary, the statistics of eigenstates in quasi-1D wires are the most affected by the
localization, and show a clear evidence of prelocalized states. The properties of wires will be
discussed in the Section IX, whereas the present chapter is devoted to the most intriguing issue:
the statistics of prelocalized wave functions in disordered 2D systems.

The fact is that the 2D disordered systems are very close to the critical ones and, as it has been
anticipated by Wegner54,55 and by Altshuler, Kravtsov and Lerner60 and confirmed by extensive
numerical simulations,68–73 they possess nearly critical properties in a broad range of distances
between the mean free path and the exponentially long localization length. In our calculations, we
are after manifestations of very peculiar states which show the behavior similar to that of perco-
lating states at the metal-insulator transition point,73,74 and it is already commonly believed that
the criticality is directly related to the logarithmically-normal statistics and multifractal structure
of the objects under investigation.75,74Of course, the localization problem in two dimensions is not

4956 V. I. Fal’ko and K. B. Efetov: Statistics of wave functions in mesoscopic systems

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



really a critical one. The possibility to detect multifractality in the calculations presented below is
only because we study finite systems with a size smaller than 2D localization length, and it
appears as an approximate intermediate asymptotical result, since the wave functions of critical
type are strongly affected by the presence of boundaries, and the evidence about their existence is
hidden in the largep tails of the distribution functionf 1(p).

To find the distribution functionf 1 and the full set of IPN’s in a large (L@ l ) weakly disor-
dered (Lc@ l ) 2D system, one has to solve the optimum equation in Eq.~55! and find the free
energyFp of the vacuum state. For the sake of simplicity, we consider the sample in the form of
a disk~with the radiusL) and place the observation pointr1 exactly in its center. This choice will
be approved by the logarithmic dependences ln(L/l) we get on the end of calculations. Therefore,
we seek a symmetric solutionup(r ) of the equation

~r21] r r ] r !up52
p

pnD
e2up, up~r 0; l !50, ]rup~L!50; r5A2pnD

pl2
. ~67!

This can be done exactly.76 The solution has the form

e2up5F 2~ l /r !12A@A~1/Ar!21111#

@A~1/Ar!21111#22~1/Ar!2S rl D
2AG 2, ~68!

whereA should be found from the boundary condition at the sample edger5L,

AA21r221A5
~L/ l !A

r
A11A

12A
. ~69!

Substituting the saddle-point solutionup(r ) from Eqs.~68! to Eq. ~57!, we find the minimal free
energy,

Fp5b4p2nDH lnS ~L/ l !~11A2!

r2@12A2#
D 12~12AA21r22!J .

Together with Eq.~69!, this can be used for the numerical analysis of the exponential in the
distribution function.

The numerical analysis shows that the consistency equation, Eq.~69!, has positive roots only
if r. ln(L/l)@1, which provides a reasonable limitation to the wave function amplitudes we can
study using this method. It limits the densityp of a splash by the value;(l l )21 related to the
density of an electron state bound to the forward-and-backward scattered trajectory between two
impurities @in fact, we have the restrictionp,pmax'(l l )21/ln(L/l), wherel is the wavelength#.
At the same time, in the limit ofr.1, the roots of Eq.~69! can be approximated byA512m,
wherem,1. The same conditions enable us to replace the exact solution in Eq.~68! by

e2up'~ l /r !2m. ~70!

Prelocalized states which are responsible for the logarithmically-normal tails do not decay
exponentially. The statistically averaged envelope of the density of such states can be anticipated
from the form of the correlation functionR(p,r ) in Eqs.~8! and~66! and has power-law asymp-
totic tails,

uwp~r !u2;
R~p,r !

f 1~p!
5e2up~r !'S lr D

2m

, ~71!
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with the spectrum of exponents$m(p)% described by the equation

m5
~L/ l !222m

2~12m!r2
'

z~T!

2ln~L/ l !
, where zez5T[

pVln~L/ l !

2p2nD
. ~72!

For small values ofp, m→0, when p grows up topmax;( llF)
21/ln(L/l), m approaches the

limiting valuem'1 which corresponds touwp(r )u2 } r22. With the same accuracy, the free energy
of the vacuum state can be approximated by

Fp'b4p2nDH m1m2ln
L

l J , ~73!

and the applicability of the saddle-point method can be now checked by comparingFp to the
effect of the fluctuations in the lowest order.

The contribution of fluctuations in the environs of the vacuum state can be calculated45

following the way described in the Section VII. To find the lowest~second! order corrections to
the minimal free energy, one has to know the spectrum of fluctuations described by Eqs.~61!–
above, this spectrum$x(n,m)% can be classified by the orbital and radial quantum numbersm and
n, respectively, and can be found from the eigenvalues of the Hamiltonian,

Ĥ52r21] r~r ] r !1m2r221U,

whereU is determined by Eqs.~64! and ~65!.
WhenU50, the spectrum ofx ’s can be approximated by

x~0,0!'
2L22

ln~L/ l !
; x~n,m!'S p

L D 2Fn1
1

4
1
m

2 G2. ~74!

In the non-trivial vacuum, the fermion-boson symmetry is broken, which induces effective poten-
tials in fermionic sectors and some of bosonic sectors, too. The latter are composed of two terms,

1

4
k~]up!

2'
km2

r 2
and q

p

2pnD
e2up'qmL22 S Lr D

2m

.

In the above equations, the approximate values are given for the most important range of distances
r<LAz(T)/T, and one has to remember thatm,1.

For anym Þ 0, the potentialU is relatively small,U!m2/r 2, and could be treated perturba-
tively. Due to the sum rule in Eq.~64!, the modes withm Þ 0 contribute only in the second order
in U, and what they give to the exponential ofJ is of the order of eitherm4ln(L/l) or m2. With the
accuracy we need here regarding the leading terms inFp , this contribution can be neglected. The
spectrum of low-lying modes$x(n.0,0)% is given by the expression

x~n,0!;S p

L D 2Fn1
1

4
1Ak

m

2 G2, 0,n<
L

p l
. ~75!

The lesson we learn from the above calculated spectrum of fluctuation is that all the eigen-
valuesx are positive and increase as compared to what one would get starting from the trivial
vacuum (Q̃5L), so that we conclude that the vacuum stateQvac is, at least, locally stable.
However, the account for the fluctuationsB,B̄ in the quadratic approximation does not tell us
more than that and is not informative from the point of view of manifestation of real localization
expected in 2D systems at larger distances.77 This would need a higher order perturbation theory
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with respect toB,B̄ in Eq. ~53!. The second order terms give just corrections to the minimal free
energy which are small, as compared toFp , wheng@1. This can be checked by substituting the
eigenvalues from Eqs.~74!–~75! to the general equation in Eq.~62!:

J5110~T2!, T!1

J}m expS m ln
L

l D;T, T@1.

All this enables us to analyze the distribution functionf 1 . Below, we extend this analysis up
to the leading orders in the exponents. For small amplitudesp,2pnD/@L2lnL/l#, one obtains

f 1' expS 2bVpF12
T

2
1 . . . G D35A

V

2pp
,o,

V,u,

2V,s,

. ~76!

whereT andb are defined in Eqs.~72! and ~56!, respectively.
In the opposite limit,p.2pnD/@L2lnL/l#, the distribution function takes the form

f 1;V expS 2
bp2nD

ln~L/ l !
ln2TD . ~77!

Equation ~77! demonstrates that for all fundamental symmetries, - orthogonal, symplectic and
unitary, - disorder makes the appearance of high-amplitude splashes of wave functions much more
probable than one would expect from the Porter-Thomas formula and, as concerns the most
extra-ordinary events, the tails take the logarithmically-normal form. When written for the or-
thogonal ensemble, the logarithmically-normal law in Eq.~77! coincides with the form of the
asymptotics of the distribution of the local density of states in open systems found in Ref. 60,
although our theory is developed for closed systems and is based on a completely different scheme
of calculations.

Inverse participation numbersPn derived on the basis of Eq.~49! show such a scaling with the
size of a system which implies a multifractal structure. To find the momentsPn accurately enough,
we have to take into account that although the crossover to the 0D case looks like the formal limit
T(p)→0, the Porter-Thomas statistics fail unless the conditionpV!A2pnD is satisfied@see Eq.
~63!#. Figure 2 illustrates how the large amplitude tail of the distribution functionf 1 develops at
higher values ofp, and the exponentially large deviation from the Porter-Thomas distribution, we
find, an indication that only the first few ratiosPn , 2<n!A2pnD, can be estimated using a
finite polynomial expansion off 1(p) in a series inT. Having been treated in such a way, we
reproduce corrections to the universal statistics found pertubatively in Ref. 78. Alternatively, we
derive the higher order IPN’s from Eqs.~49! using the saddle-point method. The momentsPn

calculated in both ways are in a good agreement with each other and, in the leading order, can be
represented as

Pn'
min$c~n!,@2pnD/ lnL/ l #n%

l 2dV
S 1VD t~n!/2

, ~78!

where

t~n!5~n21!d* ~n!, d* ~n!'22
b21n

4p2nD
. ~79!

4959V. I. Fal’ko and K. B. Efetov: Statistics of wave functions in mesoscopic systems

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



In Eq. ~78!, cu(n)5n! in the unitary andco(n)5(2n21)!! in the orthogonal case;b is specified
in Eq. ~56!.

The intermediate asymptotical scaling laws we end up with in Eqs.~78! and~79! manifest the
multifractal behavior of quantum states. The set of indicest(n) determines the spectrum of fractal
~Reny! dimensionsd* (n). In a full agreement with its name, the multifractality indicates that the
density of a wave function may be imagined as distributed over some tree whose Hausdorf
dimension decreases with increasing the length scale. In truly conformally invariant theories,66 this
property might be traced both by enlarging the system sizeL for a fixed amplitude of the wave
function, or by looking at increasingly growing density peaks for a fixedL. Both ways of moving
through the increasing density (p) or length scale (L) would lead to the selection of a ‘‘current’’
value of fractal dimensiond* (n* ) determined by a typicaln* which corresponds to the typical
wave functions living at this scale. In disordered systems we study in this article, the process of
moving along then-axis of the functiont(n) cannot last indefinitely, since we should meet one of
two obstacles: the limiting value of the density,pmax;( ll)21/ln2L/l, or the localization length,
and the effective dimensions at largen’s should start saturating in order to remain positive,
d*.0.

IX. SEMICLASSICAL SOLUTION OF THE TRANSFER-MATRIX METHOD AND
PRELOCALIZED STATES IN A SHORT DISORDERED WIRE

The models of disorder in one dimension are explored the most, and there is a lot known about
the localization effects in one-dimensional and quasi-one-dimensional~Q1D! wires. In particular,
it is well known79,80that all quantum states of a particle in a disordered Q1D system are localized,
even when disorder is weak. In really one-dimensional objects, the localization length is hardly
distinguishable from the classically determined mean free pathl . In wires with cross-sectional
width w ~or areaw2) which is much larger than the wavelengthl ~or l2), the localization length,
Lc , is as large as the number of ‘‘transverse channels’’N5(w/l)d21,80,56

FIG. 2. Distribution function of a local density for 2D disordered system with time reversal symmetry~orthogonal
ensemble! calculated for various levels of disorder.

4960 V. I. Fal’ko and K. B. Efetov: Statistics of wave functions in mesoscopic systems

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Lc5b2pnD;~w/l!d21l;Nl, ~80!

whereb is specified by Eq.~56! and the effective 1D density of statesn is determined as the local
density of states integrated over the cross-section. In the following, we also redefine the variable
p as integrated over the wire cross-section,p→wd21p, so that it is measured in units of the
inverse length. Whenw@l, the localization length in Eq.~80! can be much longer than the mean
free pathl , and the typical~mean value! of the conductance of such a wire,g5Lc /L, is large,
g@1. This allows us to consider short Q1D wires with the lengthl,L,Lc as typically metallic,
and apply to their studies the non-linears-model approach. To avoid discussions of a dimensional
crossover, we also assume thatw, l .

It would be a straightforward procedure to use the transfer-matrix method81 for solving the
s-model in one dimension.56 It consists in projecting the one-dimensional field theory of the
supermatrixQ(x) onto the quantum-mechanical problem of calculation of the Green function of a
‘‘particle’’ living on the degeneracy space of thes-model and an imaginary timeix. To solve
such a problem comprehensively, one has to find the full spectrum of ‘‘energies’’ and ‘‘eigen-
states’’ of the corresponding Schro¨dinger equation determined on theQ-space. Its lowest ‘‘en-
ergy’’ is nothing but the inverse localization length,Lc

21 and the knowledge of the low-lying
modes in such a ‘‘quantum mechanics’’ is necessary when studying the long-range properties of
the system. The problem of statistics of wave functions in disordered quasi-1D wires has been
treated in this context by Mirlin and Fyodorov58 and solved in two asymptotical regimes: of
fluctuations with relatively small amplitudes in short wires, and finite-amplitude fluctuations in
infinitely long wires. As regarding the statistics of densitiesp;V21 in wires which are much
shorter than the localization length, it occurs very close to the universal Porter-Thomas distribu-
tion discussed in Eqs.~28! and ~46!, which is natural to expect for typical states in the metallic
regime. For long wires withL@Lc andg!1, Ref. 58 gives the distributionf 1(p) in the unitary
ensemble which is described by the function of a densityp normalized by the localization length,

f 1~p!}K1
2~4ApLc!1K0

2~4ApLc!}ALc
p
exp~24ApLc!, ~81!

where Kn are modified Bessel functions. Such a scaling law is also naively expected, since it
describes behaviour of the states which live at the length scaleLc and have a normalizable density.

What is not that obvious in the problem of statistics of quantum states in disordered wires, is
that there exist a small number of prelocalized states even in the metallic regime, whenL!Lc and
g@1, which have an anomalously large local amplitude of wave functions. These are described by
the asymptotical form of the distribution function which resembles that in the infinite wire: It is
dominated by the exponential term in which the densityp scales with the localization length and
which is independent of the wire lengthL. In this section, we use the saddle-point method to
derive the statistics of such prelocalized states and to describe their spatial structure. Reciting the
discussion of two previous paragraphs, the saddle-point calculation in Q1D is nothing but the
‘‘quasiclassical’’ solutionof the effective Schro¨dinger equation on theQ-space33,56which appears
in the transfer-matrix method, and the calculational procedure consists of the steps described by
Eqs.~55!–~58!,~62! and ~66! in Section VII.

First of all, we have to solve the Liouville equation on the vacuum state,

]x
2up~x!52

p

pnD
exp$2up%, ~82!

and use its solutionup(x) when calculating the minimal free energyFp . Due to the condition
up(x1)50 at the observation pointx1 , the latter splits the wire with the lengthL into two ~not

4961V. I. Fal’ko and K. B. Efetov: Statistics of wave functions in mesoscopic systems

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



necessarily equal! intervals 0,x,Li5L,R . The form ofup(x) can be found separately in each of
them. In one dimension, the differential equation in Eq.~82! can be solved exactly,76 and we
represent its general solution in the form

e2up5F Ai

cos$AiATi~12 x/Li !%
G2, x.0;i5L,R. ~83!

The general form of this solution formally contains a singularity atx`52Li@p/(2AiATi)21#
located in the non-physical regionx,0 which plays a role when one formulates the limitations to
our theory. The requirementx`@ l is related to the limitations on maximal values of gradients
permitted by the use of only the lowest order gradient expansion in the free energy functional in
Eq. ~20!. We shall discuss the consequences of this condition at the end of this chapter, assuming
for a while that it is satisfied. If so, the consistency equations on the parametersAi come from the
boundary conditions]xup(Li)50 at the edges and have the form

Ai5 cos~AiATi !, ~84!

whereTi are defined as

Ti5
pLi

2

2pnD
. ~85!

The minimal value of the free energy can be found, in its turn, as

Fp5b (
i5L,R

Lip

ATi
@2A12Ai

22Ai
2ATi #. ~86!

The pre-exponential factorJ arising from the fluctuations in the vicinity of the vacuum state
can be taken into account as well. As far as the conditionup50 at x5x1 splits the interval
@0,L# into two pieces, the spectrum$x(n)% of fluctuations in Eqs.~63!–~64! can be found in each
interval separately, and we representJ5JLJR as a product of contributions from the left- and
right-hand-side intervals with lengthsLL,R . Each ofJL,R is determined by the eigenvalues of the
Schrödinger equation in Eqs.~63!,~64! with the symmetry-breaking potentials

Ui5FkTi1qS FATip/2
11ATi

G Y sinH ATip/2
11ATi

x

Li
J D 2GLi22 ,

wherei5L,R. WhenT!1 ~in the paragraph below, we omit indicesL andR), these potentials
can be treated perturbatively. Their first order corrections cancel due to the sum rule from Eq.
~65!, so thatJ'11T2'1. WhenT@1, the same cancellation eliminates contributions from the
high-excitation eigenvaluesx.(p/2L)2T, so that the important contribution comes from the
low-energy part of the spectrum,x,(p/2L)2T, where one can approximate

U'~p/2L !2@k1k8/sin2~px/2L !#, k85k1q,

and the spectral problem can be solved exactly. To find the exact solution, one has to change
variables from x to y5 cot(px/2L) and then seek for the eigenstates in the form
Pn(y

2)/(11y2)d(n), wherePn(y
2) are polynomials. This results in the set of eigenvaluesx(n),

0<n,T,

x~n!5~p/2L !2$@2n11/21Ak811/4#22k%.
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Being substituted into Eq.~62!, this gives the pre-exponential factorJ in the main order in
TL,R :

J' expS (
i5L,R

1

4
lnTi1 constD'C~TLTR!1/4. ~87!

In general, the exact form ofFp in Eq. ~86! based on the closed set of equations in Eqs.
~83!–~85! can be studied numerically at any value of the parameters included, but a somewhat
simpler analytical expression can be written in the asymptotical regions, also because we are able
to analyze the effect of fluctuation around the saddle-point mainly for small and large amplitudes
separately. First of all, we examine the limit of small amplitudes,Ti,1, where the exact distri-
bution has to match the random matrix theory results. AtTi,1, the results of Eqs.~~84!–~86!! can
be expanded into the series inTi , which givesAi'12 1

2 Ti1
13
24 Ti

21 . . . and

Fp'VpS 12 (
i5L,R

TiLi
3L

1 . . . D ,
whereas the contribution from fluctuations can be neglected,45 and we find that

f 1~p!'e2bFp3H V, u,

A V

2pp
, o

. ~88!

Therefore, the Porter-Thomas formula which describes those amplitudesp which are
p,L21ALc /L. Otherwise, the second term of this expansion,VpTi , becomes larger than unity
and strongly affects the probability to detect a very high splash of the wave function attributed to
the prelocalized state.

When

T5
pL2

2pnD
@1, i.e., p.

2pnD

L2
;
g

L
, ~89!

e2up develops at the length scale ofj5A2pnD/p;ALc /p, where it can be approximated as

e2up~x!;~j/x!2, ~90!

and becomes less sensitive to the presence of the boundaries. Indeed, being an image of a statis-
tically averagedenvelope of the density of the prelocalized wave functionswp(x), the vacuum of
thes-model described by Eq.~90! is related to the quantum states with the density integrable at
the short range scale,

uwp~x!u2;
p

wd21
e2up;

Lc /w
d21

x2
;
l /l2

x2
. ~91!

This behavior very much resembles the localization, with an important difference: It is not a
conventional localization with exponential decayw(x) } exp(2uxu/Lc) of the wave functions at
large distancesx.Lc , but only the power-law one.

The asymptotical regime of the distribution function in the limit ofTi@1, i.e., ofp.g/L, is
thus described by the minimal free energy

Fp54AbLcp$12dL2dR%, dL~R!;
p2

8 FTL~R!
21/22

1

2
TL~R!

21 1 . . . G , ~92!
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and by the pre-exponential factor in Eq.~87!. The applicability of the saddle-point method requires
that the value of minimal free energy in Eq.~92! dominates over the contribution from fluctuation
in Eq. ~87!, which is satisfied when the conductance of the wire is large,g'Lc /L@1.

Another limitation to the applicability of the analysis presented above emerges from the
requirement of a smoothness of the saddle-point solution, so that its characteristic length scalej
should be longer than the mean free path,j. l . Otherwise, the singularityx` of the equation in
Eq. ~83! comes too close to the physical part of the space. After taking into account that the
variablep describes the wave function density integrated over the wire cross-section, we find that
max@uwpu2#;p/wd21,1/lld21. This restriction is quite natural45 and is similar to what we wrote
about the 2D systems: It limits the density of the wave function by the density of a state bound to
a forward and backward scattered trajectory at the length scale of the mean free path~i.e., the
inverse volume of the Hikami-box!.

Finally, the probability to find an anomalously high splash of a wave functionp.g/L related
to the power-law prelocalized states has the form

f 1~p!'C
ALLLR
L

ALc
p
exp@24AbLcp$12dL2dR%#. ~93!

In this asymptotical regime, the distribution function depends on the density normalized by
localization length and is insensitive to the systems size, as one gets in the infinite wires.58

Because of such a coincidence, one may aim to get the asymptotical functional form off 1 using
a less formal heuristic argumentation. We have made this attempt together with Kravtsov and
Lerner82 in the spirit of interpretation of localization results in disordered wires.80 First of all, we
assume that the high splash of the density at the coordinatex1 is due to a prelocalized state located
within the interval@x12j,x11j# near this observation point. If so, we describe it as typically
metallic in a shorter wire with the lengthj, with a typical occurrence obeying the Porter-Thomas
law A(p,j); exp(2pj) in such a reduced geometry. On the other hand, the chance to find such
a state is very small. To estimate it, we can try to follow the evolution of a locally created wave
packet which starts to spread diffusively all over the sample. At the short time scale, its spreading
is dominated by the laws of classical random walks, so that the probability of finding a particle
inside an interval@x12j,x11j# after time t.j2/D passes is; exp(2tD/j2). If a prelocalized
state is formed within this interval, it can show up in the wave packet evolution at the time scale
of about the Heisenberg timetH(j);a\/D(j);\nj ~inverse mean level spacing! related to the
length scalej, since this is when the classical regime of a progressively spreading particle density
changes into quantum limit where the states are already formed in a finite volumej. Coming from
the classical side, we estimate the expectation value to find a particle inside the interval as
B(j); exp(2tH(j)D/j

2), which gives us the probabilityA(p,j)B(j) to find a high density splash
p.

When speaking about typical states in an infinite wire, we takep;j21 and find that the length
scalej which we have to choose by assuming thatB;1 is the localization lengthLc;2pnD: that
is where the classical diffusion is typically blocked by the quantum interference.80

If we study the anomalously dense states in a short wire with the lengthL,Lc , we have to
find such a length scalel!j,L that provides an optimum between two competing exponentially
small factorsA andB. The optimum corresponds toj5AanD/p;ALc /p. Since it has any sense
only whenj,L, the above reasoning results in the functional form off 1

82 similar to that in Eq.
~93!,

f 1~p!;min
j

FexpH 2pj2a
Dn

j J G; exp~22AapDn!, ~94!

and which is valid in the same asymptotical regime as desribed by Eq.~89!.
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Note that both in the above-presented scenario of formation of prelocalized states and in the
s-model treatment of the eigenstates statistics, the high amplitude splashes of the densityp are
produced by the states which extend over the distancesj;ALc /p larger than 1/p. This means
that, although we are speaking of the localization effects, the localization is not the only reason for
the high amplitudes of the wave function. It is quite plausible that the statistics in Eq.~93! detect
the rare events of caustics of randomly focused electron waves, whereas the role of localization is
to ‘‘return’’ the wave ‘‘back’’ and to increase the probability of these caustics being formed. This
is also the reason that the wire would be linked to bulk ‘‘electrodes’’, the statistics of the ampli-
tudes would sufficiently change and take the logarithmically-normal asymptotics83 with much
more suppressed tails of a distribution.

X. CONCLUSIONS

In summary, we review the recent results on the statistical properties and spatial structure of
chaotic wave functions in disordered systems obtained using the supersymmetric nonlinear
s-model approach. The use of thes-model allows us not only to revise and recover the universal
statistics of wave functions previously obtained by means of such a phenomenology as the random
matrix theory, but also to go far beyond the universality limit. In particular, we give a full account
of the properties of chaotic wave functions in the crossover regime between the fundamental
symmetry classes~orthogonal and unitary! and in the regime when the localization effects become
important. Concerning the latter case, our calculation enables us to find indications of prelocalized
states~among the eigenstates of disordered cavities! which exist at any weak disorder and manifest
themselves via deformed large-amplitude tails of the distribution function of the local wave func-
tions density, as compared to the universal Porter-Thomas distributions. According to the cross-
correlation functions we calculated above, at the short distances below the localization length, the
prelocalized states in quasi-one-dimensional wires can be associated with a power-law localization
~in contrast to the conventional one which is exponential!, whereas in two dimensions they have
nearly critical properties and possess all the accessories of multifractal behavior.

The common feature of all the effects discussed in the present article is that they have behind
them large random semiclassical phases taken by a particle moving along a chaotic trajectory or
undergoing a random walk. On one hand, the ability of a chaotic trajectory to fill the entire
isoenergetic surface in the classical phase space predetermines some part of the answers. In
unitary or orthogonal fundamental symmetry classes they may be digested just by using the
knowledge that the classical counterpart of quantum dynamics is chaotic, whereas the account for
localization effects is in many aspects based on the statistical properties of diffusive paths. On the
other hand, the deviations from the universal statistics, such as the long-range correlation of the
wave functions at low magnetic fields, as well as prelocalized states and multifractality, give us
the examples where the application of conventional semiclassics meets restrictions from the dis-
creteness of the spectrum of quantum object. The use of the supersymmetry method enables us to
overcome this difficulty and to match the description of a quantum chaos and localization within
a unified theoretical approach.
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This short review is concerned with energy level statistics in weakly disordered
metallic grains. In particular, we concentrate on how these statistics deviate from
the universal ones. Using a nonperturbative approach we evaluate the large fre-
quency asymptotics of the two-point correlator of the density of states. This allows
us to describe the behavior of the system at arbitrary times. ©1996 American
Institute of Physics.@S0022-2488~96!02010-5#

I. INTRODUCTION

A great variety of systems exhibit the phenomenon of quantum chaos. Amongst those most
commonly studied are the neutron resonances of atomic nuclei,1 Rydberg atoms in strong mag-
netic fields,2 and electrons in weakly disordered metallic grains~quantum dots!.3 The energy
spectrum as a whole is specific for each individual chaotic system. However, in contrast to
integrable systems, each eigenstate is characterized only by its energy, rather than by a set of
quantum numbers.4 The variables in the corresponding Schroedinger equation do not separate,
which prohibits its analytical solution. Therefore, the only reasonable description of highly excited
eigenstates in chaotic systems is a statistical one.

The statistical approach assumes certain averaging. Sometimes, as with disorder, one can
think about an ensemble of chaotic systems. In such cases ensemble averaging is sufficient. For an
individual chaotic system, such as Rydberg atoms in a magnetic field averaging over a wide
energy interval, is the only choice.

The quantities studied in the statistical approach to quantum spectra are various correlators of
the density of states~DoS!,

n~E!5Trd~E2H !, ~1!

whereH is the Hamiltonian of the system. It is natural to measure the energy difference in units
of the mean level spacingD. Perhaps the most frequently studied is the dimensionless two-point
DoS correlator,

R2~s!5D2K nSE1
s

2
D D nSE2

s

2
D D L 21, ~2!

wheres is the dimensionless energy difference. As has already been mentioned, for disordered

a!Present address: NEC Research Institute, 4 Independence Way, Princeton, NJ 08540.
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metals the statistical average denoted by^•••& can be performed over different realizations of the
random Hamiltonian, while in general, the average can be taken over a wide energy band.

Associated with each particular chaotic system, there are typically two relevant energy scales.
The first,Ec , is associated with theclassicaltime scaletc51/Ec on which a density distribution
in phase space becomes ergodic, i.e. spreads uniformly over the constant energy shell.5 On these
time scales time averages over a classical trajectory can be substituted by microcanonical aver-
ages. In a cavity in which a quantum particle scatters ballistically from a boundary, known as a
chaotic billiard, the energy scaleEc is typically set by the frequency of the shortest periodic orbit,
or the inverse flight time across the system. In a weakly disordered metallic grain, on the other
hand, the classical energy scale is set by the inverse transport time, or Thouless energy
Ec5D/L2, whereD denotes the classical diffusion constant, andL represents the system size.

The second energy scale is set by the mean energy level spacingD51/tH and defines the
Heisenberg timetH . These energy scales can be combined into the dimensionless ratio,

g5Ec /D@1, ~3!

which represents the ‘‘dimensionless conductance’’6 of a chaotic system. The ergodic time
tc51/Ec sets the scale beyond which the details of the classical dynamics of the system become
irrelevant~as long as the system is chaotic!. Correspondingly for energy scaless!Ec /D5g the
spectral statistics become universal, independent of the details of the underlying classical dynam-
ics. To a very good approximation they are determined only by the global symmetries of the
system, such as T-invariance, and coincide with the universal Wigner–Dyson level statistics of the
corresponding random matrix ensembles:7 Unitary ~broken T-invariance!, Orthogonal~spinless
T-invariant systems!, or Symplectic~T-invariant systems with spin-orbit interaction!.8,9 In the
semiclassical limit, and in dimensions greater than one, the dimensionless conductance is large,
g@1, and universal statistics apply in a wide energy interval.

In metals, where the mean free path is much longer than the electron wavelength, the elec-
tronic motion can be considered semiclassically, andg@1. Thus, the energy interval where the
statistics are universal is indeed wide.

The first application of random matrix theory to disordered metals was made by Gorkov and
Eliashberg.10 More than a decade later Efetov11 provided a microscopic justification for the use of
random matrices by showing that spectral statistics in an ensemble of disordered metallic grains in
the limit g→` are described by the zero dimensional supersymmetric nonlinears-model. The
latter has been shown by Verbaarschot, Weidenmueller, and Zirnbauer12 to be equivalent to
random matrix theory.

Remarkably, even with no ensemble averaging~i.e., only energy averaging! spectral statistics
of chaotic systems for small energy differences also become universal. This is supported by strong
numerical13,14 as well as recent analytical evidence.15,16 Thus, universal spectral statistics are a
ubiquitous feature of quantum chaos.

For random matrix ensembles, analytic expressions forR2(s) were obtained for all three
ensembles by Dyson:7

R2
U~s!5d~s!2

12cos~2ps!

2p2s2
, ~4a!

R2
O~s!5d~s!2

12cos~2ps!

2p2s2
2

d

dsS sin ps

p2s D E
1

`sin pst

t
dt, ~4b!

R2
S~s!5d~s!2

12cos~2ps!

2p2s2
1

d

dsS sin ps

p2s D E
0

1sin pst

t
dt. ~4c!
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We would like to recall a formal but beautiful connection between energy spectra with uni-
versal Wigner–Dyson statistics and one dimensional fermions with interaction inversely propor-
tional to the square of the distance.17 These models are known as the Calogero–Sutherland
models.18,19 It was shown by Sutherland18 that each of the two-point correlation functionsR2(s)
shown in Eq.~4! coincide with the density-density correlation function of one of the Calogero–
Sutherland models if the energy separations is associated with the spatial separation between
quantum particlesr . In the Unitary case, after such a substitution,R2(s) gives the density corr-
elator of noninteracting particles, while the Orthogonal~Symplectic! correlators correspond to
those of the fermions that attract~repel! each other with a certain strength. Indeed a similar
analogy extends even beyond universality~see the discussion in Sec. VII!.

The robust feature of the universal~Wigner–Dyson! level statistics is the rigidity of the
energy spectrum which leads to the following characteristic properties:

1 The probability of finding two energy levels separated by a distances!1 vanishes in the
limit s→0.

2 The typical fluctuation of the number of levels inside some window of widthND as
measured by the variance scales in proportion to lnN. This contrasts with a linear depen-
dence onN expected for systems in which neighboring levels are uncorrelated.

3 Both the monotonic and the oscillatory parts in the two-point correlatorR2(s) shown in Eq.
~4! decay only algebraically.

Spectral rigidity in the dimensionless two level structure factor,

S~t!5E
2`

`

dseistR2~s!, ~5!

is manifest in the vanishing ofS(t) in the limit t→0, while the algebraic decay of the oscillations
in R2(s) leads to a singularity inS(t) which appears at the~dimensionless! Heisenberg time,
tHD. In the unitary case

S~t!5H utu/~2p!, utu<2p,

1, utu.2p;
~6!

i.e., the derivative ofS(t) shows a discontinuity att50 and t52p. In the symplectic case
S(t) itself diverges logarithmically ast→p, while in the orthogonal case its third derivative is
discontinuous att52p.

Note thatS(t) determines the time evolution in quantum systems. For example, the probabil-
ity of finding a quantum particle at the original point at a timet after the start of the evolution is
completely determined byS(t).20

The universal description of spectral statistics of a given chaotic system is far from being
exact. Features specific to a given system become more pronounced for large energy separations
~which correspond to the short time dynamics!. Universality of spectral statistics as well as
deviations from it at short times have been the subject of numerous investigations.13,14,21,22

In order to understand short timet!tH dynamics one can consider spectral statistics smoothed
over a frequency interval of ordert21. For example the structure factorS(t) is related to the
two-point DoS correlation functionR2(s) averaged over a frequency interval of width} t21.
These smoothed correlation functions were studied in Ref. 23 by making use of a perturbation
theory in 1/g ~see, for example, Refs. 24 and 25!. The zeroth order of this perturbation theory was
found to coincide with the random matrix theory results of Eqs.~4! when rapidly oscillating terms
like cos(2ps) are omitted. The corrections to the universal form ofR2(s), though small in 1/g,
turned out to exceed the universal part fors.g.
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Recently Kravtsov and Mirlin26 obtained the corrections, leading order ins/g, to both the
smooth and rapidly oscillating part of the two point correlation function ats!g. In this interval
the nonuniversal corrections are small as compared to the universal results of Eqs.~4! @see Eq.
~14! below#.

In order to understand both the universal and system specific features of level statistics, not
only at short times but also at times of the order oftH , one has to evaluateR2(s) at arbitrarys
without making additional smoothing. This however can not be done in the framework of the
perturbation theory@for example, note that cos(2ps) can not be expanded in series in 1/s].

Here we discuss the field-theoretical scheme that allows an evaluation of the nonperturbative
contributions toR2(s) together with the perturbative ones, as well as a description of the depen-
dence of the two level structure factor ong, and on the geometry of the grains at arbitrary times.
This approach allows a generalization to the case of specific quantum systems without disorder.
We will discuss this generalization very briefly at the end of the paper.

We would like to mention that Bogomolny and Keating27 are developing an interesting alter-
native approach to the energy level statistics beyond universality which is based on the periodic
orbit theory. However since this approach is not directly related with the statistics in disordered
systems we will not discuss it here.

II. MAIN RESULTS

Here we study the high frequencys@1 behavior ofR2(s) retaining the oscillatory terms and
monitor how the singularity inS(t) that develops at the Heisenberg time is modified by the finite
conductanceg. To do so we will make use of the nonperturbative field theoretic approach to
disordered metals based on the supersymmetric nonlinears-model introduced by Efetov.11 For
s@1 ~the relation betweens andg can be arbitrary! we evaluate thes-model functional integral
by a stationary phase approximation. The oscillatory contribution toR2(s) is associated with a
nontrivial saddle-point of the field theory.28 Associated with this nonperturbative saddle-point are
fluctuations which can be treated perturbatively. Their dependence on the same operator that
controls the diagrammatic perturbation theory suggests a generality of the results which will be
discussed in Sec. VIII.

For s@1, R2(s) separates into a sum of the monotonic perturbative contribution,Rp(s) and
the oscillatory nonperturbative contribution,Rosc(s),

R2~s!5Rp~s!1Rosc~s!. ~7!

Here the perturbative contribution is given by

Rp~s,x!5
1

ap2R Tr P~s!2, ~8!

where

P~s!5
1

2 is2 ~D/D! ¹2 ~9!

denotes the resolvent of the classical diffuson~Laplace! operator in the grain (D is the classical
diffusion constant!. The constanta is equal to 1, 2, and 1 for the Orthogonal, Unitary, Symplectic
ensembles, respectively.29

We will show that the oscillatory terms for the three ensembles are given by30

Rosc
U ~s!52

cos~2ps!

2p2s2
D~s!, ~10a!
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Rosc
O ~s!52

cos~2ps!

2p4s4
D2~s,x!, ~10b!

Rosc
S ~s!5

cos~ps!

2s
D~s!1

cos~2ps!

2p4s4
D2~s!, ~10c!

D~s!5 )
m,emÞ0

F11S s

em
D 2G21

, ~10d!

whereem denote the eigenvalues of the dimensionless diffusion operator (D/D) ¹2. D(s) can be
expressed through the regularized determinant ofP(s) defined in Eq.~9!:

D~s!5U det8 P~s!

det8 P~0!
U2. ~11!

Here det8 denotes the determinant of the operator, from which the zero eigenvalue has been
excluded.31

The perturbative part ofR2(s) given by Eq.~8! can be expressed through the spectral deter-
minantD(s) by use of the formula

Rp~s!52
1

ap2s2
2R

1

2ap2

]2 ln@D~s!#

]s2
. ~12!

For a cubic sample in dimensiond,4, with closed boundary conditions ands@g, we obtain
the asymptotics

D~s!→expF2
p~s/pg!d/2

G~d/2!d sin~pd/4!G . ~13!

This shows that the amplitude of oscillations inR2(s) decays exponentially as a function ofs in
contrast to the universal algebraic behavior. This decay removes the singularity inS(t) at the
Heisenberg timetH52p and renders the function everywhereanalytic. The scale of smoothening
of the singularity is the inverse dimensionless conductance 1/g. In real units it is the Thouless time
tc5L2/D. In Figs. 1 and 2 we plot the structure factor around the Heisenberg time for a quasi-one
dimensional sample in the unitary and symplectic cases, respectively.

FIG. 1. Structure factor in the quasi-1D case for unitary symmetry~solid line! and the universal structure factor~dashed
line!. Inset: the two level correlator as a function of level separation.

4972 Andreev, Simons, and Altshuler: Energy level correlations in disordered metals

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



For 1!s!g the sums of Eqs.~10! and Eq.~8! provide the leading high frequency asymptotics
of the universal result. Fors@g we recover the perturbative resultRp(s) in Eq. ~8! found in Ref.
23.

Taking a closed cubic sample~Dirichlet boundary conditions!, the eigenvalues of the dimen-
sionless diffusion operator are given byem5gp2nW 2, where nW 5(n1 ,... ,nd) and ni are non-
negative integers. Then, for frequencies smaller that the dimensionless conductance 1!s!g, the
unitary ensemble yields the expression

R2
U~s!52

sin2~ps!

~ps!2 F12
s2

g2(nW
1

~p2nW 2!2G . ~14!

This coincides with the result of Kravtsov and Mirlin26 who considered nonuniversal corrections
to the Wigner-Dyson result of Eq.~4! for s!1. In the common domain of applicability,
1!s!g, the two approaches lead to the same results for all three ensembles. These differ from
the universal results shown in Eq.~4! by a correction which is as small as (s/g)2. It is interesting
to note that Eq.~14! for the unitary case seems to coincide with the result of Ref. 26 even at
s,1.

This completes the survey of the main results discussed in more detail below. The rest of
paper is organised as follows. In Sec. III we will define the field theoretic construction which
describes the statistical properties of weakly disordered metallic grains. We will identify the
stationary points of the theory—one generates the standard diagrammatic perturbation theory
while others control the dominant nonperturbative contributions. A general scheme to study the
fluctuations around each point will be described. In Secs. IV, V, and VI we will obtain the high
frequency asymptotics ofR2(s) for the unitary, orthogonal, and symplectic ensembles, respec-
tively. This will allow us to study the behavior of the structure factor near the Heisenberg time. In
Sec. VII we make some remarks on our results. Finally, in Sec. VIII we will discuss what
implications these results offer to the problem of general quantum chaotic systems.

III. FIELD THEORY OF DISORDERED METALS

As a model to describe the low energy degrees of freedom of electrons propagating in disor-
dered conductors, the functional nonlinears-model was first proposed by Wegner.32 A subsequent
generalization by Efetov introduced superfields which obviated the need for replicas.11 This de-
velopment was not just convenient but proved to be necessary for describing correlations in the
ergodic limit.33 In this section we will review the microscopic derivation of the nonlinear

FIG. 2. The structure factor for the symplectic case in quasi-1D~solid line! and the universal result~dashed line!. Inset: the
universal structure factor.

4973Andreev, Simons, and Altshuler: Energy level correlations in disordered metals

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



s-model which will serve as the starting point for our investigation of level correlations. Since our
aim is not to supplement the many reviews on the foundation of this method but rather to empha-
size results that can be obtained from it we will keep the discussion brief and refer to Refs. 11,12,
and 34 for a more detailed description.

The model describing a single electron moving in a random impurity potentialV(rW) is de-
scribed by the Hamiltonian

H5
1

2m S pW 2
e

c
AW D 21V~rW !, ~15!

whereAW (rW) denotes the vector potential. For simplicity, we will assume the impurity potential to
be d-correlated and Gaussian distributed with a mean free timet imp :

^V~rW !&50, ^V~rW !V~r 8W !&5
1

2pnt imp
d~rW2r 8W !. ~16!

The dimensions of the grainL are assumed to be much larger than the elastic mean free path
l [vFt imp!L so that the motion of the electron is diffusive.

The starting point is the representation of the generating function of Green functions as a
functional integral over the 8-component superfields corresponding to advanced~A! and retarded
~R! Green functions,

Cgd
p ~rW !5S Cgd

A

Cgd
R D , Cg51,d

p 5S xd
p

xd
p* D , Cg52,d

p 5S Sd
p

Sd
p* D . ~17!

Here, following Ref. 35 we introduced block notations. Superscriptp refers to retarded/advanced
components, subscriptg refers to fermionic~F! componentsx(rW) and bosonic~B! components
S(rW), and subscriptd refers to time-reversal~complex conjugated! components. The introduction
of equal numbers of bosonic and fermionic fields is a standard trick which obviates the need to
introduce replicas and normalizes the generating function to unity. Expressed as a field integral,
the generating function for two-point correlators takes the form

Z~ Ĵ!5E DC expF2
i

2E drWC†~rW !LS Ĝ21~e!2
Ĵ

4D
kL DC~rW !G , ~18!

where

Ĝ21~e!5e2
s1L

2
2
1

D
ĤS pW 2

e

c
t3AW D , ~19!

denotes the dimensionless matrix Green function with energy differences between retarded~R!
and advanced~A! blocks andĴkL represents the source. Matrices

L5S 1 0

0 21D
p

^ 1g^ 1d , k51p^ S 1 0

0 21D
g

^ 1d , t351p^ 1g^ S 1 0

0 21D
d

, ~20!

break the symmetry between the advanced/retarded, graded, and conjugate components, respec-
tively. The operations of complex conjugation and transposition of supervectors are defined fol-
lowing Efetov,11 while STr denotes the trace operation for supermatrices,

STrM5Tr MFF2Tr MBB . ~21!
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Equation~18! can be used to represent the two-point correlator of DoS fluctuations. If we
choose the source to be a constantĴ5J and perform the ensemble averaging of Eq.~16! we obtain

R2~s!52
D2

p2 R
]2

]J2
^Z~ Ĵ!&e0U

J50

. ~22!

Averaging over the disorder potential generates a quartic interaction of the fieldsC(rW). If the
disorder potential is weak, the fields vary only slowly in comparison to the electron wavelength,
l, and the problem can be treated within a semi-classical approximation. In this approximation the
interaction can be decoupled by means of a Hubbard–Stratonovich transformation with the intro-
duction of 838 supermatrix fieldsQ(rW) with the symmetry similar to that of the dyadic product
C ^ C†. As a result theC integration becomes Gaussian and can be performed.

Further progress is possible within a saddle-point approximation. The manifold of saddle-
points is defined byQ5T21LT, where matricesT occupy the symmetric spaceH5G/K . The
groups G and K depend on the ensemble.12 For example, in the unitary ensemble
H5U„1,1/2…/U„1/1…3U„1/1….36 Allowing for slow spatial fluctuations ofT and expanding to
leading order inl /L andsDt imp , we obtain11

^Z&5E d@Q#exp~2S@Q# !, ~23a!

S@Q#5
pn

8 E drWSTrFDS ¹Q1 i
eAW

c
@t3 ,Q# D 212is1DLQ1 iJLkQ2

x2D

2
~LQ!2G , ~23b!

whereQ matrices obey the nonlinear constraintQ(rW)251. Here, we have introduced an additional
term containingx2 into the action which plays the role of a regulator. Its effect will be to stabilise
the stationary points which will arise in the evaluation of the integral in Eq.~23b!. Ultimately,
only after all the integrals have been performed,x2 should be taken to zero. The integration
measure forQ in the functional integral is the invariant measure onH.

The large frequency asymptotics ofR2(s) can be obtained from Eq.~23a! by use of the
stationary phase method. Conventional diagrammatic perturbation theory corresponds to integrat-
ing over the small fluctuations ofQ aroundL.11 A systematic expansion can be obtained from the
explicit parametrisation of the saddle-point manifold,

Q5L~11 iP !~12 iP !21, P5S 0 B

B̄ 0 D , ~24!

where the matrixP describes deviations ofQ from L. However, in Ref. 28 two of us showed that
Q5L is not the only stationary point onH. In fact, it is possible to parameterize fluctuations
around a general stationary pointQ0, whereQ5Q0(11 iP0)(12 iP0)

21. Expanding the free
energy in Eq.~23b! in powers ofP0 we would obtain the stationarity condition]S/]P050.

This route however is inconvenient since the parameterization ofP0 will depend explicitly on
Q0. Instead it is convenient to perform a global coordinate transformation onH that mapsQ0 to
L, Q0→T0

21Q0T05L. Since all points on a symmetric space are equivalent by definition, this
coordinate transformation preserves the invariant measure. In particular, let us concentrate on the
matricesL and2Lk which both belong toH. The corresponding terms in Eq.~23b! can be
viewed as symmetry breaking sources. This transformation mapsL to QL5T0

21LT0 andLk to
QLk5T0

21LkT0. Thus we can employ the parameterization of Eq.~24! with the sameinvariant
measure but simply change the sources. As a result, using Eq.~22!, we find
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R2~s!5
1

64V2 R E d@Q#F E drW STr~QLkQ!G2 exp~2SQL
@Q# !, ~25a!

SQL
@Q#5

pn

8 E drW STrFDS ¹Q1 i
eAW

c
@t3 ,Q# D 212is1DQLQ2

x2D

2
~QLQ!2G . ~25b!

The stationarity condition,

]

]P
SQL

@Q#uP5050, ~26!

implies that all the elements ofQL in the AR and RA blocks should vanish@as can be seen from
Eq. ~24!#.

This completes our formulation of the model. For each symmetry class we will find the
stationary points of the effective action and generate a perturbative expansion around each point.
In principle we could study the transition interval between different universality classes. However,
for simplicity we will focus on the ‘‘pure’’ symmetry classes. We will begin by studying the
Unitary case in some detail.

IV. UNITARY ENSEMBLE

In a strong magnetic field, the components of theQ(rW) matrices that do not commute with
t3 acquire a mass—the Cooperon gap. For a strong enough field those modes with energies
smaller than this gap are frozen out and can be neglected. In the pure unitary ensemble
@t3 ,Q#50 and the magnetic field dependence is removed. In this case we can write an explicit
parametrisation for the 434 supermatricesB and B̄ in the form

B5S a 0 is1 0

0 a* 0 2 is1*

s2* 0 ib 0

0 s2 0 ib*
D , B̄5S a* 0 2s2 0

0 a 0 s2*

2 is1* 0 ib* 0

0 2 is1 0 ib

D . ~27!

The zeros in the ‘‘off-diagonal’’ elements reflect the absence of the Cooperonic degrees of free-
dom.

Besides the conventional saddle-pointL, there is only one otherQL[L̃52kL
(QkL52L) that satisfies the stationarity condition of Eq.~26!. All other matrices from the
saddle-point manifold contain nonzero elements in the AR and RA blocks. To obtain the high
frequency asymptotics ofR2(s) we must take into account both saddle points. Let us first consider
the contribution of the usual saddle-pointQL5L.

A. L point

Instead of calculating the generating function explicitly, we will consider the direct contribu-
tion of this point to the two-point correlator of DoS. The stationary pointQL5L is stable, and we
set x2 to zero before taking the integrals overB. Expanding the effective action Eq.~25b! to
second order inB we obtain

SL@Q#5
pn

8 E drW STr@D¹B̄¹B1 i2s1DB̄B#. ~28!

Employing the parametrisation above and performing the Gaussian integrals we obtain the expres-
sion previously found in Ref. 23,
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Rp~s!5
1

2p2 R Tr P~s!2, ~29!

whereP(s) is defined in Eq.~9!. For a cubic sample of sizeL the eigenvalues of the diffusion
equation are given byenW5gp2nW 2, wherenW 5(n1 , . . . ,nd), andni are non-negative integers.

At large frequenciess@g one can substitute the sum by the integral, which gives the result

Rp
U~s!}sd/222. ~30!

B. L̃ point

Having obtained the contribution toR2 from the conventional perturbation theory, let us now
consider that from the second saddle-point. SubstitutingQL52kL andQkL52L into Eq. ~25!,
expanding both the action and the pre-exponent to the second order inB and B̄, and introducing
the Fourier componentsBqW ,

B~rW !5(
qW

eiq
W rWBqW , ~31!

we obtain

Rosc
U ~s!5e2p isRE d@BqW #F(

qW
@aqWa2qW

* 1bqWb2qW
* 2s1,2qW

* s1,qW1s2,2qW
* s2,qW #G2

3expF22p(
qW

~PqW
21

~2s,x2!aqWa2qW
* 1PqW

21
~s,x2!bqWb2qW

* 2PqW
21

~0,0!

3@s1,2qW
* s1,qW2s2,2qW

* s2,qW # !G . ~32!

wherePqW
21(s,x2) is given by

PqW
21

~s,x2!52 is12x21g~qWL !2, ~33!

and x is the regulator that we introduced in Eq.~23b! to ensure the convergence of the
integrations.37

Since the action in Eq.~32! contains no Grassmann variables in the zero mode they must
come from the pre-exponent. Therefore, out of the whole square of the sum in the pre-exponent
only the terms containing all four zero mode Grassmann variables contribute. There are only two
such terms. The evaluation of the Gaussian integrals is straightforward and generates products of
the determinants of the diffusion operator.

Since the supersymmetry aroundL̃ is broken bys, integration over nonuniform modes yields
a superdeterminant which differs from unity. The integration measure for Grassmann variables
should be defined as

)
qW

ds1qWds1qW
* ds2qW

* ds2qW , ~34!

to enforce the correct sign.~One should keep in mind that the Fourier components with opposite
qW are not independent, andqW in the product ranges over one half of the total vector space only.! In
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an isolated sample the derivative ofQ normal to the boundary must vanish,¹Q'50. For a
d-dimensional cubic sample of sizeL with these boundary conditions we can writeqW 5pnW /L.

After integration we setx to zero and obtain

Rosc
U ~s!5

cos~2ps!

2p2s2 )
nW Þ0W̃

S 11S s

p2gnW 2
D 2D 21

, ~35!

where the tilde signifies that the product should be taken over one half of the vector space. The
product in Eq.~35! can be expressed through the spectral determinant of the diffusion operator.

In the contribution of the conventional saddle-pointQL5L the Green function of the same
operator appears@see Eq.~29!#. The product~sum! over nW should be interpreted as the product
~sum! over the eigenvalues of the diffusion operator for more complicated boundary conditions.

In quasi-1D the product over momenta can be evaluated exactly.

Rosc
U ~s!5

cos~2ps!

2p2s2
s/g

sinh2~As/2g!1sin2~As/2g!
. ~36!

In arbitrary dimensions the product can be evaluated in the limit of high frequencys@g and
expressed as the sum of logarithms. In the limits@g the sum can be substituted by an integral and
we obtain

Rosc
U ~s!→

cos~2ps!

2p2s2
expS 2

1

2 F s

p2gGd/2E d tW ln@11 tW24# D , ~37!

where tW5pnWAg/s.
The full functionR2(s) is given by the sum of contributions from both saddle-points, Eq.~35!

and Eq.~29!. At small frequenciess!g we can expand the product in Eq.~35! in powers of
s/g. Expanding to second order we obtain Eq.~14! which coincides with the result of Ref. 26.

C. Structure factor

The dimensionless two-level structure factorSU(t), defined in Eq.~5!, has singularities at
utu52p andutu50, which are related to the large frequency asymptotics ofR2

U(s). The former is
related toRosc

U (s) and the latter toRp
U(s). We will address the singularity inSU(t) at the Heisen-

berg timet52p.
For closed boundary conditions in quasi-1D the contribution to the structure factor from the

L-point is given by

SU~t!p5E
2`

1`

(
n50

`
ds exp~ ist!

~2p!2 S 1

~2 is1gp2n2!2
1

1

~ is1gp2n2!2D
5

utu
2p (

n50

`

exp~2gp2n2utu!. ~38!

The contribution from the nonperturbative saddle-pointL̃-point is given by

SU~t!osc5E
2`

1`ds cos~2ps!exp~ ist!

2p2s2
s/g

sin~Ais/g!sin~A2 is/g!
. ~39!

The integrand has simple poles ats56 igp2n2 for n51,2, . . . and asecond order pole at
s50. Since the expansion of
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s/g

sin~Ais/g!sin~A2 is/g!
~40!

begins at second order ins, the residue of the pole ats50 is unaffected by the fact thatg is finite.
Therefore this pole always gives the contribution2utu/4p, wheret5t22p. The contribution of
the other poles can be evaluated straightforwardly and gives

(
n51

`
~21!n exp~2p2n2gutu!

p2gn sinh~pn!
. ~41!

Therefore the structure factor is given by

SU~2p1t !osc52
utu
4p

1 (
n51

`
~21!n exp~2p2n2gutu!

p2gn sinh~pn!
, ~42!

and is plotted in Fig. 1.
Even though Eq.~42! seems to depend onutu, SU(2p1t)oscdepends only ont

2 and is regular
at t50.

We can also estimateSU(2p)osc in any dimension. It is proportional to 1/g and is given by

SU~2p!osc5
1

gE2`

1` dz

2p2z2 )
nW Þ0W

S 11
z2

p4n4D
21

. ~43!

At large times we can keep only the first exponentials in the sums in Eq.~42! and Eq.~38! and
obtain the asymptotic expression for the complete structure factor,

S~t!'
utu
2p

exp~2gp2t!2
1

p2g sinh~n!
exp~2gp2@t22p#!, ~44!

which shows the contribution of theL̃-point to be dominant.

V. ORTHOGONAL ENSEMBLE

Consider now ensembles which respect T-invariance—Orthogonal symmetry. In this case it is
necessary to account for both Cooperon as well as diffuson degrees of freedom. However, there
are still only two stationary points on the saddle-point manifold:L and l̃52kL. To obtain the
contribution of theL̃-point we can use the formula in Eq.~25b! with QL5L̃ andQkL52L as
well as the parametrization of Efetov for the perturbation theory.11 The matricesB andB̄ are now
given by

B5S a1 a2 is1 is2

2a2* a1* 2 is2* 2 is1*

s3* s4 ib1 ib2

s4* s3 ib2* ib1*
D , B̄5S a1* 2a2 2s3 2s4

a2* a1 s4* s3*

2 is1* 2 is2 ib1* ib2

2 is2* 2 is1 ib2* ib1

D . ~45!

This parametrization implies the following expansion of the action in Eq.~25b!,

SL̃@Q#522p is12p(
qW

$PqW
21

~2s,x2!~a1,qWa1,2qW
* 1a2,qWa2,2qW

* !1PqW
21

~s,x2!~b1,qWb1,2qW
* 1b2,qWb2,2qW

* !
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1PqW
21

~0,0!~2s1,2qW
* s1,qW2s2,2qW

* s2,qW1s3,2qW
* s3,qW1s4,2qW

* s4,qW !%. ~46!

Once again, since there are no zero mode Grassmann variables in the action, they must come from
the prefactor in Eq.~25a!. Even though an expansion of the action to higher orders inB will
generate Grassmann variables in the zero mode, these terms will contain higher powers of 1/s and
are smaller than the leading terms ats@1. To obtain all eight zero mode Grassmann variables in
the prefactor in Eq.~25a! it is necessary to expand it to eighth order inB and B̄,

@Str~LQ!#2'16@~STr~B̄B!2!212STr~B̄B!STr~B̄B!3#. ~47!

The second term in this expression does not contribute to the highest weight term in Grassmann
variables~it gives only the sixth order! and can be omitted. Then we obtain for theL̃-point
contribution to the two-point correlator of DoS,

Rosc
O ~s!52

cos~2ps!

2p4s4 )
nW Þ0W̃

S 11S s

p2gnW 2
D 2D 22

, ~48!

where, as before, the product goes over one-half of the total space.

VI. SYMPLECTIC ENSEMBLE

Finally, in the case of the symplectic ensemble there are three types of stationary points which
correspond to singularities att50, p, and 2p in the structure factor. The singularity att52p
corresponds toQL5L̃52kL, and its contribution toR2(s) differs from the one for the Orthogo-
nal case in Eq.~48! only by a minus sign.

The parametrization of the matricesB is andB̄ is now given by

B5S a1 a2 is1 is2

a2* a1* 2 is2 is1

s3 s4 ib1 2 ib2

2s4 s3 ib2* ib1*
D , B̄5S a1* a2 s3* 2s4*

a2* a1 s4* s3*

2 is1* is2* ib1* ib2

2 is2* 2 is1* 2 ib2* ib1

D . ~49!

Below we concentrate on the singularity att5p. As we will show, it corresponds to a
degenerate set on the saddle-point manifold.

Using Efetov’s parametrization11 we can representQL as

QL5ÛS cosû i sin û

2i sin û 2cosû
DÛ̄,

~50!

û5S u11 0

0 u22
D
g

, u115S u1 u2

u2 u1
D
d

, u225S u 0

0 u D
d

,

and the explicit form ofÛ is not important for the present discussion.
The stationarity condition Eq.~26! implies sinû50 for QL , so that terms linear inB in the

effective action in Eq.~25b! vanish. It is satisfied ifu50 andu156p/2, u256p/2. The matri-
cesÛ in Eq. ~50! generate a continuous manifold of stationary points. One such matrix is

QL5L̃15L ^ S t1 0

0 1 D
g

, @t1#d5S 0 1

1 0D
d

. ~51!
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In Efetov’s parametrization it corresponds tou15u25p/2 and all other variables equal to zero.
With this source the expression for the effective action, Eq.~25b!, becomes

SL̃1
@Q#5

pn

8 E drW STrFD~¹Q!212is1DL̃1Q2
x2D

2
~L̃1Q!2G . ~52!

In perturbation theory the expression for this effective action can be made more compact by
rewriting B and B̄ in Eq. ~49! in terms of the vectors

aW T5~a1 ,a1* ,a2 ,a2* !, aW T5~b1 ,b1* ,b2 ,b2* !,
~53!

sW 12
T 5~s1 ,s1* ,s2 ,s2* !, sW 34

T 5~s3 ,s3* ,s4 ,s4* !,

and introducing Fourier components as in Eq.~31!.
To second order inB, Eq. ~52! has the form

SL̃1
@Q#52p is1p(

qW
@aW qW

†
Ta,qWaW qW1bW qW

†
Tb,qWbW qW1sW 12,qW

†
Ts12 ,q

WsW 12,qW1sW 34,qW
†

Ts34 ,q
WsW 34,qW #, ~54!

where

Ta,qW5S PqW
21

~0,x2/2! x2 2 is/2 2 is/2

x2 PqW
21

~0,x2/2! 2 is/2 2 is/2

2 is/2 2 is/2 PqW
21

~0,x2/2! x2

2 is/2 2 is/2 x2 PqW
21

~0,x2/2!

D ,
Ts12 ,q

W5S PqW
21

~s/2,x2/2! 0 0 2 is/22x2

0 2PqW
21

~s,x2/2! 2 is/22x2 0

0 is/21x2 PqW
21

~s,x2/2! 0

is/21x2 0 0 2PqW
21

~s/2,x2/2!

D ,
Tb,qW5PqW

21
~s,x2! ^diag~1,1,1,1!, Ts34 ,q

W52Ts12 ,q
W . ~55!

The integral over the variables Eq.~53! for eachqW yields

AdetTs12 ,q
WdetTs34 ,q

W

detTa,qWdetTb,qW
. ~56!

Evaluating the determinants we obtain

detTa,qW5PqW
21

~s/2,x2!PqW
21

~2s/2,x2!~PqW
21

~0,0!!2,

detTb,qW5~PqW
21

~s/2,x2!!4, ~57!

detTs12 ,q
W5detTs34 ,q

W5~PqW
21

~s/2,x2!!2~PqW
21

~0,0!!2.
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The integration over the nonuniform modes generates the product of expressions in Eq.~56! for
differentqW . Taking the limitx2→0 we obtain for this product

)
qW Þ0W

F11S sD

DqW 2
D 2G21/2

. ~58!

The integration over the zero mode variables gives the factor 1/2usu. SinceIa1 andIa2 do not
enter the the effective action of Eq.~54! in the zero mode,38 it might appear that the perturbative
expansion will diverge. However, this is not so. The degenerate manifold of saddle-points of this
type is compact, and the integration overIa1 andIa2 yields a finite result. The simplest way to
obtain it is by making a comparison with the large frequency asymptotics of the Wigner-Dyson
distribution. For a cubic sampleqW 5pnW /L, and we obtain the expression

RS~s!Lt 1
5
cos~ps!

2usu )̃ nW Þ0WF11S s

p2gn2D
2G21

, ~59!

where the tilde signifies that the product goes overnW with non-negative entries only.
In quasi-1D we can obtain the leading contribution to the structure factorS(t) around

t5p,

Ss~ t1p,0!5E
0

`24 sin2~gutuz!dz

sinh2Az1sin2Az
1 ln~1.9g!1OS 1gD . ~60!

The result is plotted in Fig. 2. In all dimensions the logarithmic divergence in the zero mode result
is now cut off by finiteg, andSS(p,0) } ln g.

VII. SOME REMARKS

To conclude, let us mention several remarks about these results.
1. The classification of physical systems into the three universality classes~Unitary, Orthogo-

nal, and Symplectic! is, of course, an oversimplification. In practice there is always a time
scale which determines the crossover from one ensemble to another. For example if a
system is subject to a magnetic field the short time dynamics will appear Orthogonal while
the long time behavior is Unitary. The characteristic time is set by the strength of the
magnetic field.
For a disordered metallic grain in a magnetic field this characteristic time is given by
l H
2 /D. For frequencies larger thanD/l H

2 the system effectively becomes Orthogonal. This
implies that even if we neglect the spatially nonuniform fluctuations of theQ-matrix the
cusp inS(t) at t52p will be washed out on the scale ofDl H

2 /D @although there will still
remain a jump in the third derivative ofS(t)]. For the system to behave as Unitary for
frequencies of orderg the magnetic lengthl H must be shorter than the size of the system.
Spin-orbit interaction that causes the Orthogonal to Symplectic crossover can be consid-
ered in a similar way.

2. A rounding off of the singularity inS(2p) is also present in the random matrix model with
preferred basis.39,40 However, our results differ from those in Ref. 40 substantially. This
means that finiteg is not equivalent to finite temperature for the corresponding Calogero-
Sutherland model.17 In fact, the relation of Eq.~12! between the smooth and the oscillatory
parts of the two-point correlation function is similar to the one for the density-density
correlation function of the Calogero-Sutherland model in a smooth potentialU(E) ~such
that one can neglect back-scattering!. Equation~10! can be recovered if the random poten-
tial is determined by the correlation function^U(E)U(E1sD)& } R(mÞ0(2 is1em)

22.
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This can be checked from the bosonization of the Calogero-Sutherland Hamiltonian where,
in the limit em@1, the assumption that back-scattering is absent is justified.

VIII. CONCLUSIONS AND PERSPECTIVES

We have described in some detail the calculation of nonuniversal corrections to the two-point
density correlation functionR2(s) for an ensemble of disordered metallic grains with the same
conductanceg and the same geometry. Using ensemble averaging we have evaluated this function
for larges: s@1. This enabled us to describe the rounding off of the singularity in the structure
factorS(t) present in the universal limit att→0 andt→tH .

The main conclusion is that this nonuniversal behavior is determined by the spectral proper-
ties of the diffusion~Laplace! operator for a given geometry. In particular, the non-oscillatory part
of the two-point correlation function is determined by the trace of the resolvent of this operator,
while the part that oscillates as cos(2ps) is given by its spectral determinant. As a result, the two
parts ofR2(s) are connected by the relation shown in Eq.~12!.

The diffusion operator is a purely classical one. Nevertheless, the structure of the supersym-
metrics-model allows us to take into account quantum mechanical interference to some extent.
This can be seen from the consideration of T-invariance. The latter is violated by a magnetic field.
The magnetic field manifests itself in quantum dynamics through two effects:~1! through the
Aharonov-Bohm effect which affects the interference of different Feynman paths and does not
alter the classical dynamics, and~2! through the Lorentz force. At weak fields the first effect
dominates and governs the crossover of spectral statistics from the orthogonal to unitary ensemble,
although classically they are equivalent. In thes-model formalism T-invariance manifests itself
through the additional diffusion mode—the Cooperon. From the semiclassical point of view this
difference is due to the fact that, given a trajectory in phase space, the inversion of time transforms
it to a different trajectory which in the orthogonal case is characterized by the same Feynman
amplitude. This multiplicity of equivalent trajectories can therefore be taken into account by the
field theoretic approach.

In general, thes-model approach seems to be capable of describing systems where the
classical limit exists modulo constant degeneracy of Feynman amplitudes. To understand what we
mean consider a quantum mechanical return probability. It is given by the double sum over the
Feynman paths( i , jAiAj* whereAi is the Feynman amplitude of thei th path. If the classical limit
exists, in the limit when actions are large as compared to\ this sum can be substituted by the sum
of probabilities( i uAi u2. Discrete symmetries of the system, such as T-invariance, can lead to the
fact that the Feynman amplitudes of different paths are degenerate. If this degeneracy is finite and
constant for different orbits, like in the case of T-invariance, it could be incorporated into the
s-model.

The results which have been derived here are correct only in the leading order ing21. There
definitely exist quantum corrections which may be referred to as weak localization corrections. It
should be mentioned, however, that the sum of these corrections does not reduce to the renormal-
ization of the diffusion constantD.

Here we discussed only the case of an ensemble of disordered quantum dots. Recently it
became clear that a similar analysis based on as-model approach can be made for individual
chaotic systems with a given HamiltonianH.28,15,41,16,42As mentioned earlier, for a given chaotic
systems one can use only energy averaging for constructing statistics of energy levels. Neverthe-
less, as-model can be derived for each individual system,15,16and results similar to Eq.~10! and
Eq. ~12! can be obtained.16,42The main difference between the general case and that of disorder is
that the diffusion operator is substituted by the classical time evolution operator of the system

L̂5(
i

S ]H

]pi

]

]qi
2

]H

]qi

]

]pi
D , ~61!

4983Andreev, Simons, and Altshuler: Energy level correlations in disordered metals

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



whereqi and pi are, respectively, canonical coordinates and canonical momenta of the system.
The eigenvalues of this operator determine the spectral determinantD(s) in Eq. ~10d! in the same
way as the eigenvalues of the diffusion operator do for a disordered grain.

In common with the diffusion operator in a closed grain,L̂ has a zero eigenvalue which
corresponds to the ergodic state and manifests the conservation of the total probability. The
nonuniversal part of the two point correlation functionR2 is given by the other~nontrivial!
eigenvalues ofL̂.

In contrast to the diffusion operator, the operatorL̂ acts on the functions defined in phase
space rather than in just coordinate space. Moreover, it is very important to realise thatL̂

describestime irreversibledynamics and its nontrivial eigenvalues acquire a finite real part. This
real part appears as a result of the regularization of the operatorL̂. Further details of this
generalization can be found elsewhere.42
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Riemannian symmetric superspaces and their origin
in random-matrix theory
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Gaussian random-matrix ensembles defined over the tangent spaces of the large
families of Cartan’s symmetric spaces are considered. Such ensembles play a cen-
tral role in mesoscopic physics, as they describe the universal ergodic limit of
disordered and chaotic single-particle systems. The generating function for the
spectral correlations of each ensemble is reduced to an integral over a Riemannian
symmetric superspace in the limit of large matrix dimension. Such a space is
defined as a pair (G/H,Mr), whereG/H is a complex-analytic graded manifold
homogeneous with respect to the action of a complex Lie supergroupG, andMr is
a maximal Riemannian submanifold of the support ofG/H. © 1996 American
Institute of Physics.@S0022-2488~96!00710-4#

I. INTRODUCTION

The mathematics of supersymmetry, though conceived and developed in elementary particle
theory, has been applied extensively to the physics of disordered metals during the past decade.
Improving on earlier work by Wegner,1,2 Efetov3 showed how to approximately map the problem
of calculating disorder averages of products of the energy Green’s functions for a single electron
in a random potential, on a supersymmetric nonlinears model. Later it was shown4 that the same
nonlinear s model describes the large-N limit of a random-matrix ensemble of the
Wigner–Dyson5 type. Since then, Efetov’s method has evolved into a prime analytical tool in the
theory of disordered or chaotic mesoscopic single-particle systems. Competing methods are lim-
ited either to the diffusive regime~the impurity diagram technique!, or to isolated systems in the
ergodic regime~the Dyson–Mehta orthogonal polynomial method!, or to quasi-one-dimensional
systems~the DMPK equation!. In contrast, Efetov’s method is applicable to isolated and to open
systems in the diffusive, ergodic, localized, and even ballistic regime, to both spectral correlations
and transport properties, and it can, in principle, be used in any dimension. This versatility has
engendered a large body of nontrivial applications, many of which are outside the range of other
methods. Of these, let me mention~i! the Anderson transition on a Bethe lattice,6–8 ~ii ! localization
in disordered wires,9–13~iii ! multifractality of energy eigenstates in two dimensions,14–16~iv! weak
localization and conductance fluctuations of chaotic billiards strongly coupled to a small number
of scattering channels,17,18 and, most recently,~v! a theoretical physicist’s proof of the Bohigas–
Giannoni–Schmit conjecture for chaotic Hamiltonian systems.19,20

In spite of these manifest successes, Efetov’s supersymmetry method has been ignored~for all
that I know! by mathematical physicists. This is rather unfortunate for several reasons. First, an
infusion of mathematical expertise is needed to sort out some matters of principle and promote the
method to a rigorous tool. Second, various extensions of currently available results seem possible
but have been hindered by the lack of mathematical training on the part of the condensed matter
theorists applying the method. And third, the geometric structures underlying Efetov’s nonlinears
models are of exquisite beauty and deserve to be studied in their own right. Part of the reason why
neither mathematicians nor mathematical physicists have monitored or contributed to the devel-

a!Permanent address: Institut fu¨r Theoretische Physik, Universita¨t zu Köln, Germany.
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opment, may be that there does not exist a concise status report that would appeal to a mind
striving for clarity and rigor. Hence the first, and very ambitious, motivation for getting started on
the present paper was to make an attempt and partially fill the gap.

Another objective is to report on a recent extension of the supersymmetry method to random-
matrix theories beyond the standard Wigner–Dyson ones. In her study of Anderson localization in
the presence of an A–B sublattice symmetry, Gade21 noticed that the manifold of the nonlinears
model is promoted to a larger manifold at zero energy. The same phenomenon occurs in the chiral
limit of the QCD Dirac operator at zero virtuality.22 For several years it remained unclear how to
handle this enlargement of the manifold in the supersymmetric scheme.~Gade used the replica
trick instead of supersymmetry.! The key to solving the problem can be found in a paper by
Andreev, Simons, and Taniguchi,23 who observed that what one needs to do is to avoid complex
conjugation of the anticommuting variables. In the present paper I will elaborate on this observa-
tion and cast it in a concise mathematical language. Moreover, I will show that the same technical
innovation allows one to treat the random-matrix theories that arose24,25in the stochastic modeling
of mesoscopic metallic systems in contact with a superconductor.

An outline of the basic mathematical structure is as follows. Consider a homogeneous space
G/H, whereG and H are complex Lie supergroups, and regardG/H as a complex-analytic
(p,q)-dimensional supermanifold in the sense of Berezin–Kostant–Leites.26,27 To integrate its
holomorphic sections, select a closed, oriented, and realp-manifoldMr contained in the support
M5G0/H0 of the supermanifold. The natural~invariant! supergeometry ofG/H induces a geom-
etry onMr by restriction. If this geometry is Riemann andMr is a symmetric space, the pair
(G/H,Mr) is called a Riemannian symmetric superspace. This definition will be shown to be the
one needed for the extension of the supersymmetry method beyond Wigner–Dyson. The difficul-
ties disordered single-particle theorists had been battling with were caused by the fact that the
exact sequence

0→nilpotents→G/H→M→0,

does not, in general, reduce to an exact sequence of sheaves ofreal-analyticsections terminating
at the Riemannian submanifoldMr .

When integrating the invariant holomorphic Berezin superform onG/H, one must pay careful
attention to its coordinate ambiguity. This subtle point is reviewed in Sec. II A. After a brief
reminder of the procedure of Grassmann-analytic continuation~in Sec. II B!, the complex Lie
supergroups Gl(mun) and Osp(mu2n) ~in Sec. II C!, and Cartan’s symmetric spaces~in Sec. II E!,
the details of the definition of Riemannian symmetric superspaces are given in Sec. II F. Table II
lists the large families of these spaces.

Section III, the largest of the paper, treats the Gaussian random-matrix ensemble defined over
the symplectic Lie algebra sp(N), by an adaptation of Efetov’s method. A simple example~Sec.
III A ! illustrates the general strategy. Details of the method, including a complete justification of
all manipulations involved, are presented in Secs. III B–III F. Theorem 3.3 expresses the Gaussian
ensemble average of a product ofn ratios of spectral determinants as a superintegral. Theorem 3.4
reduces this expression to an integral over the Riemannian symmetric superspace Osp(2nu2n)/
Gl(nun) with Mr5„SO*(2n)/U(n)…3„Sp(n)/U(n)…, in the limit N→`.

According to Cartan’s list, there exists 11 large families of symmetric spaces. Ten of these
correspond to universality classes that are known to describe disordered single-particle systems in
the ergodic regime.24,25 The class singled out for detailed treatment in Sec. III describes mesos-
copic normal-superconducting hybrid systems with time-reversal symmetry broken by a weak
magnetic field. The remaining nine classes are briefly discussed in Sec. IV. Each of them is
related, by the supersymmetry method, to one of the large families of Riemannian symmetric
superspaces of Table II. A summary is given in Sec. V.
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II. RIEMANNIAN SYMMETRIC SUPERSPACES

A. The Berezin integral on analytic supermanifolds

Let A(U) denote the algebra of analytic functions on an open subsetU of p-dimensional real
space. By taking the tensor product with the Grassmann algebra withq generators one obtains
A(U)^L~Rq!, the algebra of analytic functions onU with values inL~Rq!. Multiplication on
L~Rq! is the exterior one, so the algebra is supercommutative~or graded commutative!. The object
at hand serves as a model for what is called a real-analytic (p,q)-dimensional supermanifold~or
graded manifold28! in the sense of Berezin, Kostant, and Leites~BKL !;26,27 which, precisely
speaking, is a sheaf of supercommutative algebrasA with an idealN ~the nilpotents!, such that
M.A/N is an analyticp-manifold and on a domainU,M , A splits asA(U)^L~Rq!. The
global sections of the bundleA→M are called superfunctions, or functions for short.M is called
the underlying space, or base, or support, of the supermanifold.M will be assumed to be orient-
able and closed~]M50!.

The calculus on analytic supermanifolds is a natural extension of the calculus on analytic
manifolds. Functions are locally expressed in terms of~super-!coordinates
(x;j):5(x1,...,xp;j1,...,jq), wherexi(j j ) are even~resp., odd! local sections ofA. If ~x;j! and
~y;h! are two sets of local coordinates on domains that overlap, the transition functions
yi5 f i(x;j) andh j5w j (x;j) are analytic functions of their arguments and are consistent with the
Z2 grading ofA.

In what follows the focus is on the theory of integration on analytic supermanifolds. Recall
that onp-manifolds the objects one integrates arep-forms and their transformation law is given by

dy1`•••`dyp5dx1`•••`dxpDetS ]yi

]xj D .
The obvious~super-!generalization of the Jacobian Det(]yi /]xj ) is the Berezinian29

BerS y,hx,j D :5SDetS ]yi

]xj
]yi

]j j

]h i

]xj
]h i

]j j
D ,

where SDet is the symbol for superdeterminant. Guided by analogy, one postulates that an integral
superform ought to be an objectD̃ transforming according to the law

D̃~y,h!5D̃~x,j!Ber~y,h/x,j!. ~1!

A natural candidate would seem to be

D~x,j!:5dx1`•••`dxp^ ]j1•••]jq,

which is a linear differential operator taking superfunctionsf into p-formsD[ f ] ~]j i denotes the
partial derivative with respect to the anticommuting coordinateji!. The p-form D[ f ] can be
integrated in the usual sense to produce a number. However, the transformation law forD(x,j)
turns out to be not quite~1!, but rather

D~y,h!5D~x,j!Ber~y,h/x,j!1b. ~2!
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An explicit description of the termb on the right-hand side, here referred to as theanomaly, was
first given by Rothstein.30 It is nonzero whenever some even coordinate functions are shifted by
nilpotent terms. Its main characteristic is that on applying it to a superfunctionf , one gets a
p-form that isexact: b[ f ]5d(a[ f ]).

The existence of an anomaly in the transformation law forD(x,j) leads one to consider a
larger class of objects, namely,Lp(M )^AD , the sheaf of linear differential operators onA with
values in thep-forms onM . @Lp(M )^AD naturally is a rightA-module.# To rescue the simple
transformation law~1! one usually passes fromLp(M )^AD to its quotient by the anomalies.30 In
order for the integral to be well-defined over the quotient, one must take the functions one
integrates to be compactly supported.

Sadly, this last optionis not available to us. The functions that will be encountered in the
applications worked out below, do not ever have compact support but areanalytic functions
instead. When integrating such functions, we need to work with the full transformation law~2!,
which includes the anomaly.

Another way of avoiding the anomaly is to arrange for the transition functions never to shift
the even coordinates by nilpotents, by constructing a restricted subatlas.31 However, because the
concept of a restricted subatlas is somewhat contrived, this approach has been found to be of
limited use in the type of problem that is of interest here.

To arrive at a definition of superintegration that is useful in practice, we proceed as follows.
The supermanifold is covered by a set of charts with domainsUi and coordinates (x( i ) ,j ( i ))
( i51,...,n). On chart i let v i :5D(x( i ) ,j ( i ))+ ṽ i with ṽ i a local section ofA, and let a i

P Lp21(M ) ^ AD uUi
. PartitionM into a number of consistently orientedp-cellsD1 ,...,Dn , with

Di contained inUi . For i, j putDi j :5]Diù]Dj and, ifDi j is nonempty and is a~p21!-cell, fix
its orientation by]Di51Di j1••• .

Definition 2.1: A collection $v i ,a i% i51,...,n is called aBerezin measurev if the conditions

ṽ i /ṽ j5Ber~ i / j !, ~3!

v i1da i5v j1da j , ~4!

are satisfied on overlapping domains. The Berezin integralf°*Mv[ f ] is defined as

E
M

v@ f #5(
i51

n E
Di

v i@ f #1(
i, j

E
Di j

a i j @ f #, ~5!

wherea i j5a i2a j . The quantitiesvi andai are called the principal term and the anomaly of the
Berezin measure on charti .

Remark 2.2: The conditions ~3! and ~4! ensure the existence of a global section
vPLp(M )^AD , whose local expression in charti is v i1da i . The existence ofv means that the
distribution~5! is independent of the coordinate systems and the cell partition chosen. Because~5!
depends only on the differencesa i2a j , one can gauge the anomaly to zero on one of the charts
without changing the Berezin integral.

Example 2.3:Consider the real supersphereSpu2, a ~p,2!-dimensional supermanifold with
supportSp, which is the space of solutions in~p11,2! dimensions of the quadratic equation

x̃0
21 x̃1

21•••1 x̃p
212j̃1j̃251.

Cover Sp by two domains 1 and 2 obtained by removing the South~x̃0521! or North Pole
~x̃0511!. Introduce stereographic coordinates~x1 ,...,xp ;j1 ,j2! and~y1 ,...,yp ;h1,h2! for S

pu2 on
these domains with transition functions
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y152
x1
R2 , yi5

xi
R2 ~ i52,...,p!, h j5

j j
R2 ~ j51,2!,

whereR25( i51
p xi

212j1j2 . ~The minus sign preserves the orientation.! Consider

v15D~x,j!+S 11( xi
212j1j2D 2p12

,

v25D~y,h!+S 11( yi
212h1h2D 2p12

,

a1252V
~(xi

2!~p22!/2

~11(xi
2!p22 ^2]j1

]j2
+j1j2 ,

whereV5(( j xj
2)2p/2( i51

p (21)idx1`•••`dxi21`xidxi11`•••`dxp is the solid-angle~p21!
form in p dimensions. It is not difficult to check by direct calculation thatv1, v2 anda15a12,
a2[0 obey the relations~3! and~4!. Hence, they express a globally defined Berezin measurev in
the sense of Definition 2.1.~The geometric meaning ofv will be specified in Sec. II C.! For p>3,
the anomalya12 scales to zero when(xi

2→`, so we may shrink cell 2 to a single point~a set of
measure zero! and compute the Berezin integral simply from

E
Sp

v@ f #5E
Rp
D~x,j!S 11( xi

212j1j2D 2p12

f ~x;j!.

In these cases we can get away with using only a single chart. The situation is different forp52
andp51. In the first case the anomaly is scale-invariant~the solid angle is! and by again shrinking
cell 2 to one point@the South Pole (y1 ,y2)5~0,0! on S2# we get

E
S2

v@ f #5E
R2
D~x,j! f ~x;j!14p fU

South Pole

.

In particular,*S2v@1# 5 4p. For p51 the anomaly diverges atx50 andx5`. In this case the
general formula~5! must be used, and one finds*S1v@1# 5 0.

B. Grassmann-analytic continuation

In the formulation of BKL, the vector fields of a supermanifold do not constitute a module
overA but are constrained to beevenderivations ofA, which is to say that their coordinate
expression is of the form

X̂5 f i~x;j!
]

]xi
1w j~x;j!

]

]j j
,

where f i andwj are even and odd superfunctions, respectively. Unfortunately, this formulation is
too narrow for most purposes. The reason is that in applications one typically deals not with a
single supermanifold but with many copies thereof~one per lattice site of a lattice-regularized field
theory, for example!. So, in addition to the anticommuting coordinates of the one supermanifold
that is singled out for special consideration, there exist many more anticommuting variables
associated with the other copies of the supermanifold. When the focus is on one supermanifold,
these can be considered as ‘‘parameters.’’ Often one wants to make parameter-dependent coordi-
nate transformations, leading to coefficientsf i1••• i n

(x) in the expansion f (x;j)
5 ( f i1••• i n

(x)j i1•••j i n that depend on extraneous Grassmann parameters.~For example, when the
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supermanifold is a Lie supergroup, it is natural to consider making left and right translations
g°gLggR .! The upshot is that one wants to takeA as a sheaf of graded commutative algebras
not overR but over some~large! parameter Grassmann algebraL ~the Grassmann algebra gener-
ated by the anticommuting coordinates of the ‘‘other’’ supermanifolds!. Making this extension,
which is called ‘‘Grassmann-analytic continuation’’ in Ref. 29, one is led to consider the more
general class of vector fields of the form

X̂5 f i~x,j;b!
]

]xi
1w j~x,j;b!

]

]j j
, ~6!

where the symbolb stands for the extra Grassmann parameters and the dependences on these are
such that f i and wj continue to be even and odd, respectively~the Z2 grading ofA after
Grassmann-analytic continuation is the natural one!.

The vector fields~6! still are even derivations of the extended algebra. One can go further by
demanding that DerA be free overA and including the odd ones, too. When that development
is followed to its logical conclusion, one arrives at Rothstein’s axiomatic definition32 of super-
manifolds, superseding an earlier attempt by Rogers.33,34 Although there is no denying the el-
egance and consistency of Rothstein’s formulation, we are not going to embrace it here, the main
reason being that odd derivations will not really be needed. For the purposes of the present paper
we will get away with considering vector fields of the constrained form~6!.

C. The complex Lie supergroups Gl( m zn ) and Osp( m z2n )

The supermanifolds we will encounter all derive from the complex Lie supergroups29,28

Gl(mun) and Osp(mu2n), by forming cosets. The definition of Gl(mun) rests on the notion of an
invertible supermatrix

g5S g00 g01

g10 g11
D ,

whereg00, g01, g10, andg11 are matrices of sizem3m, m3n, n3m, andn3n. The supermani-
fold structure of Gl(mun) comes from taking the matrix elements ofg00 andg11 ~g01 andg10! for
the even~resp., odd! coordinates on suitable domains of the baseM5Gl~m,C!3Gl~n,C!. The Lie
supergroup structure derives from the usual law of matrix multiplication.

FormÞn, it is common practice to split off from Gl(mun) the Gl~1!-ideal generated by the
unit matrix, so as to have an irreducible Lie superalgebra.35,36Form5n, which turns out to be the
case of most interest here, one ends up having to remove two Gl~1!’s, one generated by the unit
matrix and the other one by the superparity matrixs5diag(1n ,21n). And even then the Lie
superalgebra is not irreducible in a sense, for the Killing form STr ad(X)ad(Y) vanishes identi-
cally. We therefore prefer to take Gl(mun) as it stands~with no ideals removed! and replace the
Killing form by the invariant quadratic form B(X,Y)5STrXY, which is nondegenerate in all
cases~includingm5n!.

The complex orthosymplectic Lie supergroup Osp(mu2n) is defined as a connected subgroup
of Gl(mu2n) fixed by an involutory automorphismg° t̂(g) 5 tg21Tt21, wheret is supersym-
metric (t5tTs5stT!.37 The support of Osp(mu2n) is SO~m,C!3Sp~n,C!.

The action of a Lie supergroup on itself by left and right translations gives rise to right- and
left-invariant vector fields. A Berezin measure on a Lie supergroup is said to be invariant, and is
called a Berezin–Haar measure, if its Lie derivatives29 with respect to the invariant vector fields
vanish.

Given a Lie supergroupG and a subgroupH, the coset superspaceG/H is defined by
decreeing that the structure sheaf of the coset superspace is a quotient of sheaves. The action ofG
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onG/H by left translation gives rise to so-called Killing vector fields. A Berezin measure onG/H
is called invariant if its Lie derivatives with respect to the Killing vector fields are zero.

If OspR(mu2n) denotes the orthosymplectic supergroup over the reals, the coset space
OspR(m11u2n)/OspR(mu2n) can be identified with the real supersphereSmu2n. The Berezin mea-
sure discussed in Example 2.3 is invariant with respect to the action of OspR~p11u2! onSpu2 and
can be viewed as the ‘‘volume superform’’ ofSpu2. Hence we can restate the results of that
exampleas follows:vol(S2u2): 5 *S2v@1# 5 4p andvol(S1u2): 5 *S1v@1# 5 0.

D. Holomorphic Berezin measures on complex-analytic supermanifolds

To go from real-analytic supermanifolds to complex-analytic ones, one replaces the structure
sheafA by a sheaf of graded commutative algebrasH overC such thatM.H/N is a complex
manifold andH is locally modeled byH(U)^L~Cq!, whereH(U) is the algebra of holomorphic
functions onU,M . The natural objects to consider then are holomorphic superfunctions, i.e.,
global sections of the bundleH→M . In local coordinatesz1,...,zp; z1,...,zq such sections are
written as f (z;z). Grassmann-analytic continuation is done as before when needed. A Berezin
measure on a complex-analytic (p,q)-dimensional supermanifold is a linear differential operator
v that takes holomorphic superfunctionsf into holomorphicp-formsv[ f ] on M . The statements
made in Sec. II A about the anomalous transformation behavior of Berezin measures apply here,
too ~mutatis mutandi!.

To define Berezin’s integral in the present context, one more piece of data must be supplied,
namely areal p-dimensional submanifoldMr,M over which the holomorphicp-form v[ f ] can
be integrated to produce a complex number. Thus, givenv andMr , Berezin’s integral is the
distribution

f°E
Mr

v@ f #. ~7!

Let me digress and mention that this definition, natural and simple as it is, was not ‘‘discov-
ered’’ by the random-matrix and mesoscopic physics community~including myself! until quite
recently. With one notable exception,23 all past superanalytic work on disordered single-particle
systems employed some operation of ‘‘complex conjugation’’ of the Grassmann generators—
namely an adjoint of the first or second kind29—to make the treatment of the ordinary
~‘‘bosonic’’ ! and anticommuting~‘‘fermionic’’ ! degrees of freedom look as much alike as pos-
sible. Presumably this was done because it was felt that such egalitarian treatment is what is
required by the principle of ‘‘supersymmetry.’’ Specifically, a reality constraint was imposed, not
just on the underlying spaceM ~fixing Mr! but on the entire structure sheaf to reduceH to a sheaf
of algebras overR. Although this reduction can be done with impunity in some cases~namely, the
classic Wigner–Dyson symmetry classes!, it has turned out to lead to insurmountable difficulties
in others~the chiral and normal-superconducting symmetry classes!. A major incentive of the
present paper is to demonstrate that the construction~7! is in fact the ‘‘good’’ one to use for the
application of supermanifold theory to disordered single-particle systems in general. Although that
construction may hurt the physicists’ aesthetic sense by ‘‘torturing supersymmetry,’’ it should be
clear that we are not breaking any rules. Recall that according to Berezin, superintegration is a
two-step process: first, the Fermi integral~i.e., differentiation with respect to the anticommuting
coordinates! is carried out, and it is onlyafterward that the ordinary~Bose! integrals are done.
When the sequential nature of the Berezin integral is taken seriously, there is no compelling reason
why one should ever want to ‘‘complex conjugate’’ a Grassmann variable. In the present paper,
we take the radical step of abandoning complex conjugation of Grassmann variables altogether.

Example 2.4:The simplest nontrivial example23 is given by Gl~1u1!, the Lie supergroup of
regular complex 232 supermatrices
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g5S a b

g d D
with support M5Gl~1,C!3Gl~1,C!. The Berezin–Haar measure on Gl~1u1! is
v5(2p i )21D(ad;bg), whereD(ad;bg)5da`dd^ ]b]g . Solving the regularity conditions
aÞ0 anddÞ0 by parametrizing Gl~1u1! through its Lie algebra,

g5expS z1 z1

z2 z2
D ,

one finds

2p iv5D~z1z2 ;z1z2!+
~z12z2!

2

~12ez12z2!~ez22z121!

2S d ln~ez12ez2!2
~z12z2!~dz12dz2!

~12ez12z2!~ez22z121! D ^ ]z1
]z2

+z1z2 . ~8!

Note that this expression is holomorphic in a neighborhood of the originz15z250. The first term
on the right-hand side is the principal term, and the second one is the anomaly ofv in these
coordinates. To integratev, one might be tempted to choose forMr the U~1!3U~1! subgroup
defined by Re~z1!505Re~z2!. However, since the rank-two tensor
STrdg dg215da da212dd dd211nilpotents52dz1

21dz2
21••• is not Riemann on U~1!3U~1!,

this will not be the best choice. A Riemannian structure is obtained by takingMr5R13S1 defined
by Im~z1!505Re~z2!. To compute*R13S1v@ f # we may use a single cell,

D:2`,x,1`, 2p,y,1p,

wherex5Re~z1! and y5Im~z2!. The boundary]D consists of the two linesy52p and y5p
~xPR!. Using ~8!, paying attention to the orientation of the boundary, and simplifying terms, one
finds the following explicit expression for the integral ofv:

E
R13S1

v@ f #5
1

4p E
2`

`

dxE
2p

p

dy
~x2 iy !2

cosh~x2 iy !21
]z1

]z2
f S expS x z1

z2 iy D D
1
1

2 E
2`

` dx

coshx11
f S S ex 0

0 21D D .
By construction, this Berezin integral is invariant under left and right translations
f (g)° f (gLggR). Evaluation gives*R13S1v@1#51Þ0. The naive guess would have been
*v@1#5(2p i )21*da`dd ]b]g50 due to]b]g•150. Such reasoning is false because*R1da5`.

E. Symmetric spaces: A reminder

A Riemannian~globally! symmetric space is a Riemannian manifoldM , such that every
pPM is an isolated fixed point of an involutive isometry.~In normal coordinatesxi centered
around p, this isometry is given byxi°2xi .! This definition implies~cf. Ref. 38! that the
Riemann curvature tensor is covariantly constant, so that ‘‘the geometry is the same everywhere.’’
The curvature can be positive, negative, or zero, and the symmetric space is said to be of compact,
noncompact, or Euclidean type correspondingly.

According to Cartan’s complete classification scheme, there exist ten39 large classes of sym-
metric spaces. Apart from some minor modifications these are the entries of Table I. The differ-
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ence from the standard table38 is that some of the entries of Table I, namely, the spaces of type A,
AI, and AII, are not irreducible. They can be made so by dividing out a factor U~1! ~R1! in the
compact~resp., noncompact! cases. Division by such a factor is analogous to removing the center
of mass motion from a mechanical system with translational invariance. It turns out that, with a
view to superanalytic extensions~cf. Example 2.4!, it is preferable not to insist on irreducibility
but to ‘‘retain the center of mass motion.’’

The next section introduces supergeneralizations of Cartan’s symmetric spaces, which have
appeared in the theory of mesoscopic and disordered single-particle systems and have come to
play an important role in that field.

F. Riemannian symmetric superspaces (definition)

Let GL be a complex Lie supergroup that is realized as a group of supermatrices

g5S g00 g01

g10 g11
D ,

with matrix elements that take values in a~sufficiently large! parameter Grassmann algebra
L5L01L1. If G C 5 G C

0 1 G C
1 is the Lie superalgebra ofGL , the Lie algebra ofGL is obtained by

taking the even part of the tensor product withL: Lie (GL) 5 L0 ^ G C
0 1 L1 ^ G C

1 5 (L ^ G C)0.
Thus, if $ei ,e j% is a homogeneous basis of complex matrices inG C , an elementXPLie~GL! is
expressed byX5ziei1z je j with ziPL0 andzjPL1.

Let u :GL→GL be an involutory automorphism and letHL,GL be the subgroup fixed byu.
The decomposition into even and odd eigenspaces ofu

*
:Lie~GL!→Lie~GL! is written as

Lie~GL!5Lie~HL!1ML . This decomposition is orthogonal with respect to the Ad~GL!-invariant
quadratic form B:Lie~GL!3Lie~GL!→L0, B(X,Y):5STrXY.

Both GL and HL are supermanifolds with underlying spaces that are Lie groups and are
denoted byGC andHC . Passing to the coset spaces one obtains a graded commutative algebra
H5H01H1 of ~Grassmann-analytically continued! holomorphic sections of the bundle
GL/HL→GC/HC . These sections are called~super-!functions ~on GL/HL! for short. In local
complex coordinates z1,...,zp; z1,...,zq they are written as f (z1,...,zp;z1,...,zq)
5 ( f i1••• i n

(z1,...,zp)z i1•••z i n, where the coefficientsf i1••• i n
(z1,...,zp) take values inL after

Grassmann-analytic continuation. For coordinate-independent calculations the alternative notation
f (gHL) or f (g•o) is used. In the followingGC/HC is assumed to be connected.

EveryXPLie~GL! is associated with a vector field~or even derivation! X̂:H→H by

~X̂f !~g•o!5
d

dsU
s50

f ~e2sXg•o!. ~9!

TABLE I. The large families of symmetry spaces.

Class Noncompact type Compact type

A Gl~N,C!/U(N) U(N)
AI Gl~N,R!/O(N) U(N)/O(N)
AII U*(2N)/Sp(N) U(2N)/Sp(N)
AIII U( p,q)/U(p)3U(q) U(p1q)/U(p)3U(q)
BDI SO(p,q)/SO(p)3SO(q) SO(p1q)/SO(p)3SO(q)
CII Sp(p,q)/Sp(p)3Sp(q) Sp(p1q)/Sp(p)3Sp(q)
BD SO~N,C!/SO(N) SO(N)
C Sp~N,C!/Sp(N) Sp(N)
CI Sp~N,R!/U(N) Sp(N)/U(N)
DIII SO*(2N)/U(N) SO(2N)/U(N)
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HereesXg means the usual product of supermatrices, and the functionf (esXg•o) is determined
from f (g•o) by Grassmann-analytic continuation. The Lie algebra of even derivations ofH is a
left H0-module denoted by Der0H.40

A notion of supergeometry onGL/HL is introduced via a left-invariant tensor field
^•,•&:Der0H3Der0H→H0. The details are as follows.GL acts onGL/HL by left translation,
Th* : f (g • o)° f „(hg) • o…. The left-translatedTh(X̂) of a vector fieldX̂ is defined by the equation
Th* „dTh(X̂) f …5 X̂(Th* f ), and one requires

Th* ^dTh~X̂!,dTh~Ŷ!&5^X̂,Ŷ&.

This equation determineŝ•,•& uniquely within a multiplicative constant. For vector fields of the
special form~9!, one obtains

^X̂,Ŷ&~g•o!5c03B~„Ad~g!21X…ML
,„Ad~g!21Y…ML

!,

where the subscriptML means projection on the odd eigenspace ofu
*
. Note that since

„Ad(gh)21X…ML
5 Ad(h)21

„Ad(g)21X…ML
for hPHL , this is well-defined as a function on

GL/HL . The normalization is fixed by choosingc051.
The metric tensor̂•,•& induces a geometry on the ordinary manifoldGC/HC by restriction~i.e.,

by setting all anticommuting variables equal to zero!. Of course, since the groupsGC andHC are
complex, this geometry is never Riemann. However, there exist submanifolds inGC/HC that are
Riemannian symmetric spaces and can be constructed by selecting from the tangent space
To~GC/HC! a Lie-triple subsystemM ~i.e., †M,@M,M#‡,M!, such that the quadratic form B
restricted toM is of definite sign. It is then not hard to show38 that the image ofM under the
exponential mapX°eXHL is Riemann in the geometry given by restriction of^•,•&. Its completion
is a symmetric space.

Definition 2.5: A Riemannian symmetric superspaceis a pair (GL/HL ;M ), whereM is a
maximal Riemannian submanifold of the baseGC/HC .

Remark 2.6:The merit of this definition is that it avoids any use of an adjoint~or ‘‘complex
conjugation’’! of the Grassmann variables. j

By the complex structure ofGC/HC , the tangent spaceMC :5To~GC/HC! decomposes as
MC5M1iM, whereM is taken to be the subspace ofMC on which the quadratic form B is
strictly positive. Now observe that, since an elementgPGC is of the formg5diag(g00,g11), the
groupGC is a Cartesian product of two factors, and the same is true forHC . Hence,GC/HC factors
asGC /HC 5 MC

0 3 MC
1, andM is a sum of two spaces:M5M0%M1, which are orthogonal with

respect to the quadratic form B.~It may happen, of course, that one of these spaces is trivial.! For
ZPM, let the corresponding orthogonal decomposition be written asZ5X1Y. Then B restricted
toM is evaluated as

B~Z,Z!5Tr0 X
22Tr1 Y

2,

where the relative minus sign between traces is due to supersymmetry~STr5Tr02Tr1!. The
positivity of B on M is seen to implyX5X† and Y52Y† ~the dagger denotes Hermitian
conjugation, i.e. transposition in conjunction with complex conjugation!.

GivenGL/HL , the condition thatM be Riemann and maximal inGC/HC , fixesM uniquely up
to two possibilities: eitherTo(M )5M, or To(M )5 iM. In either case,M is a product of two
factors,M5M03M1 , both of which are Riemannian symmetric spaces. In the first case,M0 is of
the noncompact type andM1 is of the compact type, while in the second case it is the other way
around. We adopt the convention of denoting the compact space byMF and the noncompact one
by MB .

In view of Cartan’s list of symmetric spaces~Table I!, we arrive at Table II listing the large
families of Riemannian symmetric superspaces. Although the entriesAuA, BDuC, andCuBD look
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extraneous because they are groups rather than coset spaces, they fit in the same framework by
putting byGL5G3G andu(g1 ,g2)5(g2 ,g1), soHL5diag(G3G).G andGL/HL.G.

As far as applications to random-matrix theory and disordered single-particle systems are
concerned, the most important structure carried by Riemannian symmetric superspaces is their
GL-invariant Berezin measure. Such a measure always exists by Definition 2.1 and the existence
of local coordinates. To describe it in explicit terms, one introduces a local coordinate system by
the exponential mapML→GL/HL , Z°exp(Z)HL . By straightforward generalization~replace
the Jacobian by the Berezinian! of a corresponding calculation~cf. Ref. 38! for ordinary symmet-
ric spaces, one obtains for the principal term of the invariant Berezin measure the expression
DZ+J(Z),whereDZ5 dz1 ` ••• ` dzp ^ ]z1•••]zqdenotes theflatBerezinmeasureonML , and if
TZ :ML→ML is the linear operator defined by

TZ5 (
n50

`
ad2n~Z!

~2n11!!
,

the functionJ(Z)5SDetTZ . @Note(n50
` x2n/(2n11)!5x21 sinhx#. A universally valid expres-

sion for the anomaly in these coordinates is not available at present.

III. SUPERSYMMETRY APPLIED TO THE GAUSSIAN RANDOM-MATRIX ENSEMBLE OF
CLASS C

The goal of the remainder of this paper will be to demonstrate that Riemannian symmetric
superspaces, as defined in Sec. II F, arise in a compelling way when Gaussian ensemble averages
of ratios of spectral determinants for random matrices are considered in the large-N limit. The
example to be discussed in detail will be the Gaussian ensemble defined over the symplectic Lie
algebra sp(N), which has recently been identified24 as a model for the ergodic limit of normal-
superconducting mesoscopic systems with broken time-reversal symmetry.

A. The supersymmetry method: A simple example

The pedagogical purpose of this section is to illustrate our strategy at a simple example.41 If
u(N) is the Lie algebra of the unitary group inN dimensions, consider oniu(N) ~the Hermitian
N3N matrices! the Gaussian probability measure with widthv/AN. Denoting byH the elements
of iu(N) and bydH a Euclidean measure, we write the Gaussian probability measure in the form
dm(H)5exp~2N Tr H2/2v2!dH, *dm(H)51. This measure is called the Gaussian unitary en-
semble~GUE! in random-matrix theory. The object of illustration will be the average ratio of
spectral determinants,

TABLE II. The large families of Riemannian symmetric superspaces.

Class GL/HL MB MF

AuA Gl(mun) A A
AIuAII Gl(mu2n)/Osp(mu2n) AI AII
AII uAI Gl(mu2n)/Osp(mu2n) AII AI
AIII uAIII Gl(m11m2un11n2)/Gl(m1un1)3Gl(m2un2) AIII AIII
BDuC Osp(mu2n) BD C
CuBD Osp(mu2n) C BD
CIuDIII Osp(2mu2n)/Gl(mun) CI DIII
DIII uCI Osp(2mu2n)/Gl(mun) DIII CI
BDIuCII Osp(m11m2u2n112n2)/Osp(m1u2n1)3Osp(m2u2n2) BDI CII
CII uBDI Osp(m11m2u2n112n2)/Osp(m1u2n1)3Osp(m2u2n2) CII BDI
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Z~a,b!5E
iu~N!

DetSH2b

H2a Ddm~H !,

wherea,b are complex numbers anda is not in the spectrum ofH. Given the generating function
Z, the GUE average resolvent is obtained by

E
iu~N!

Tr~H2z!21dm~H !5
]

]a
Z~a,b!U

a5b5z

.

We will now show how to computeZ using a formalism that readily generalizes to more com-
plicated situations.

To avoid the introduction of indices and have a basis-independent formulation, we choose to
interpretH as a self-adjoint endomorphismHPEnd(V) of N-dimensional complex spaceV:5CN

with a Hermitian quadratic form (x,y)°^x̄,y&V .
The supersymmetry method starts by introducing ‘‘bosonic space’’WB5W05C and ‘‘fermi-

onic space’’WF5W15C. Auxiliary space is theZ2-graded sumW5WB%WF5C1u1. The Cartesian
basis of W is denoted by eB5~1,0! and eF5~0,1!. Let Homl(W,V):5l0
^Hom~WB ,V!1l1^Hom~WF ,V!, where l5l01l1 is the Grassmann algebra with
dimC Hom~WF ,V!5N generators.~Grassmann-analytic continuation will not be needed here.!
Homl̃(V,W) is defined similarly, with another Grassmann algebral̃. The key idea is to utilize the
Gaussian Berezin integral over the complex-analytic superspace Homl(W,V) 3 Homl̃(V,W). Let
D(c,c̃) @with cPHoml(W,V) andc̃ P Homl̃(V,W)# denote a translation-invariant holomorphic
Berezin measure on this linear space. IfcB~c̃B! is the restriction ofc(c̃) to a mapWB→V ~resp.,
V→WB!, fix a Berezin integralf°*D(c,c̃) f (c,c̃) by choosing for the domain of integration the
subspaceMr selected by the linear conditionc̃B 5 cB ~the adjointcB

† :CN→C being defined by
cB
†z 5 ^z̄,cB • 1&V). Because Homl(W,V) 3 Homl̃(V,W) has complex dimension (2N,2N), the

integral*D(c,c̃) f (c,c̃) does not change its value whenf is replaced by the rescaled function
f s(c,c̃)5 f (sc,sc̃) ~sPR!. Now with End0(W)5End~WB!%End~WF! and End1(W)
5Hom~WB ,WF!%Hom~WF ,WB!, let

EndL~W!:5L0^End0~W!1L1^End1~W!,

where L5L01L1 is the Grassmann algebra with dimC End1(W)52 generators, and pick
APEnd(V), BPEndL(W). B corresponds to what is called a 232 supermatrix in physics. An
elementary but useful result is that, if we normalizeD(c,c̃) by *D(c,c̃)exp~2s2 Tr cc̃!51, the
identity

E D~c,c̃ !exp~ i TrV Acc̃2 i STrW Bc̃c!5SDetV^W~A^121^B!2c, ~10!

holds withc51 provided that the integral exists.~The parameterc is introduced for later conve-
nience.! When A and B are represented by diagonal matrices, verification of~10! is a simple
matter of doing one-dimensional Gaussian integrals. The general case follows by the invariance of
D(c,c̃) under unitary transformations ofV and ‘‘super-rotations’’ inW.

Now introduce elementsEBB and EFF of End0(W) by EBBeB5eB , EFFeF5eF , and
EBBeF5EFFeB50. By settingA:5H andB:5aEBB1bEFF5:v, and using

SDetV^W~H^121^ v!5Det~H2a!/Det~H2b!,

we get a Gaussian integral representation ofZ:
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Z~v!:5Z~a,b!5E SDetV^W~H^121^ v!2cdm~H !

5E D~c,c̃ !E exp~ i TrV Hcc̃2 i STrW vc̃c!dm~H !.

~11!

In the next step, the GUE ensemble average is subjected to the following manipulations:

E exp~ i Tr Hcc̃!dm~H !5E
iu~N!

expS i Tr Hcc̃2
N Tr H2

2v2 DdH
5exp2

v2

2N
TrV~cc̃!2

5exp2
v2

2N
STrW~ c̃c!2

5E
R3 iR

DQ expS i STrQc̃c2
N STrQ2

2v2 D
5:E Dm~Q!exp~ i STrQc̃c!. ~12!

The fourth equality sign decouples the quartic term STrW(c̃c)2 by introducing an auxiliary inte-
gration overQPEndL(W). In order for this Gaussian integral to converge, the integration domain
for the BB partQBB :WB→WB ~FF part,QFF:WF→WF!, is taken to be the real~resp., imaginary!
numbers. By using the relations~10!–~12!, we obtain

Z~v!5E D~c,c̃ !S E exp~ i TrV Hcc̃!dm~H ! Dexp2 i STrW vc̃c

5E Dm~Q!E D~c,c̃ !exp i TrV c~Q2v!c̃

5E Dm~Q!SDetV^W„1N^ ~Q2v!…2c

5E Dm~Q!SDetW~Q2v!2N

5E
R3 iR

DQ exp2N STrS Q2

2v2
1 ln~Q2v! D . ~13!

These steps reduce an integral over theN3N matrixH to an integral over the 232 supermatrixQ.
The large parameterN now appears in the exponent of the integrand, so that theQ integral can be
evaluated by a saddle-point approximation that becomes exact in the limitN→`. By solving the
saddle-point equation2Q/v25(Q2v)21 and doing an elementary calculation, one obtains
Wigner’s semicircle law for the GUE density of states:42

E Tr d~E2H !dm~H !5
N

pv
A12S E2v D

2

, ~14!
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which will be of use later.

B. Definition of the Gaussian ensemble of type C

Having run through a simple and well-known example, we now treat in detail a less trivial
case where the reduction to aQ-integral representation requires more care.

The ‘‘physical space’’ of our model isV5C2^CN. As before, letx° x̄ denote complex
conjugation, and fix a symmetric quadratic form^•,•&V :V3V→C, such that the corresponding
Hermitian quadratic form̂x̄,y&V 5 ^ ȳ,x&V is strictly positive. The transpose and the adjoint of a
linear transformationLPEnd(V) are defined bŷx,LTy&V5^Lx,y&V and^x̄,L†y&V 5 ^Lx,y&V , as
usual.

Consider now the space,P, of self-adjoint HamiltoniansHPEnd(V) subject to the linear
condition

H52CHTC 21, ~15!

whereC is skew andC 2521. Clearly, iP is isomorphic to sp(N)5CN ~the symplectic Lie
algebra in 2N dimensions!. Introducing an orthonormal real basis ofV we can representH by a
2N32N matrix. The explicit form of such a matrix is

H5S a b

b† 2aTD , if C5S 0 1N

21N 0 D ,
wherea(b) is a complex Hermitian~resp., symmetric! N3N matrix. The Gaussian ensemble to be
studied is defined by the probability measuredm(H)5exp~2N Tr H2/2v2!dH, *dm(H)51. For
any twoA,BPEnd(V),

E
i3sp~N!

Tr~AH!Tr~BH!dm~H !5
v2

2N
Tr~AB2ACBTC 21!. ~16!

The joint probability density for the eigenvalues ofH has been given in Ref. 24.
The physical motivation for considering a Gaussian random-matrix ensemble of the above

type ~type C! comes from the fact24 that it describes the ergodic limit of mesoscopic normal-
superconducting hybrid systems with time-reversal symmetry broken by the presence of a weak
magnetic field. To deal with such systems, the Bogoliubov–deGennes~BdG! independent-
quasiparticle formalism is used. The first factor in the tensor productV5C2^CN accounts for the
BdG particle-hole degree of freedom, which is introduced for the purpose of treating the pairing
field of the superconductor within the formalism of first quantization. The second factor represents
the orbital degrees of freedom of the electron.H is the Hamiltonian that enters into the BdG
equations, and the relation~15! expresses the particle-hole symmetry of the BdG formalism.

Our goal is to compute the following ensemble average:

Zn~a1 ,...,an ;b1 ,...,bn!5E
i sp~N!

)
i51

n

DetSH2b i

H2a i
Ddm~H !. ~17!

By the particle-hole symmetry ofH, Zn is invariant under a reversal of sign for any pair (a i ,b j ),
so no information is lost by restricting allai to one-half of the complex plane. For definiteness, we
require

Im a i,0 ~ i51,...,n!. ~18!
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All information about the statistical correlations between the eigenvalues ofH can be extracted
from Zn . For example, the probability that, given there is an eigenvalue atE1, there existn21
eigenvalues atE2 ,...,En ~regardless of the positions of all other eigenvalues! is equal to

Rn~E1 ,...,En!5 lim
e→0

S 2e

p D n)
l51

n
]

]a2l
U

a2l5El2 i e
)
l51

n
]

]a2l21
U

a2l2152El2 i e

3Z2n~a1 ,...,a2n ;E12 i e,2E12 i e,...,En2 i e,2En2 i e!. ~19!

The functionRn(E1 ,...,En) is called then-level correlation function in random-matrix theory.42

C. Symmetries of the auxiliary space

To transcribe the supersymmetry method of Sec. III A to the computation ofZn ~which
involvesn ratios of spectral determinants!, a simple and natural procedure would be to enlarge the
auxiliary spaceW by taking the tensor product withCn. However, on using the formula

E exp~ i Tr Hcc̃!dm~H !5expS 2
1

2 E
i sp~N!

~Tr Hcc̃!2 dm~H ! D ,
one faces the complication that the second moment*~Tr Hcc̃!2 dm(H) then is a sum of two
terms, see the right-hand side of~16!. Consequently, one needstwo decoupling supermatricesQ
~one for each term!. Although this presents no difficulty of a principal nature, it does lead to rather
complicated notations. An elegant remedy is to modify the definition ofc andc̃ so thatcc̃ shares
the symmetry~15! of the BdG HamiltonianH. The two terms then combine into a single one:

E ~Tr Hcc̃!2 dm~H !5
v2

N
STrW~ c̃c!2,

which can again be decoupled by a single supermatrixQ. To implement the symmetry~15!, we
proceed as follows.

We enlarge the auxiliary spaceW5WB%WF in some way~left unspecified for the moment!
and fix a rule of supertransposition Homl(W,V)→Homl(V,W), c °cT, and

Homl(V,W)→Homl(W,V), c̃°c̃ T. Such a rule obeyscT T5cs and c̃ T T5sc̃, where
sPEnd0(W) is the operator for superparity, i.e.s(x1y)5x2y for x1yPWB%WF5W. It in-
duces a rule of supertransposition EndL(W)→EndL(W), Q°QT ~no separate symbol is intro-
duced!. Combination with complex conjugation gives a rule of Hermitian conjugation
†:End0(W)→End0(W). Now impose oncPHoml(W,V), c̃PHoml(V,W) the linear conditions

c5C c̃ Tg21, c̃52gc TC 21, ~20!

with some invertible even elementg of End0(W). The mutual consistency of these equations
requires

g5gTs. ~21!

To see that, insert the transpose of the second equation in~20! into the first one. UsingcTT5cs

you obtainc 5 2C C 21TcsgTg21. SinceC C 21T 5 21 andsgT5gTs, Eq. ~21! follows. The
consistency condition can be implemented by takingWB5WF5C2^C n, see below. By multiplying
the equations~20! we obtain

cc̃52C ~cc̃!TC 21, c̃c52g~c̃c!Tg21. ~22!
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The first equation is the desired symmetry relation allowing us to combine terms. To appreciate
the consequences of the second equation, note that by the fourth step in~12! the symmetries ofc̃c
get transferred ontoQ, so that the latter is subject to

Q52gQTg21. ~23!

This symmetry reflects that of the BdG HamiltonianH, see~15!. The linear space EndL(W), when
given a Lie bracket by the commutator, can be identified with gl(2nu2n)5Lie„Gl(2nu2n)…. As g
is supersymmetric~g5gTs!, ~23! fixes an osp(2nu2n) subalgebra.

g is not unique. For definiteness we choose it as follows. Let$Ei j % i , j51,...,M be a canonical
basis of End~CM! satisfyingEi jEkl5d jkEil ~hereM52 orM5n!. ForM52 define the Pauli spin
operatorssx5E121E21, sy52 iE121 iE21, andsz5E112E22. The usual rule of supertransposi-
tion on EndL(W) is given by~m,n51,2 andi , j51,...,n!

~EBB^Emn ^Ei j !
T5EBB^Enm ^Eji ,

~EFB^Emn ^Ei j !
T5EBF^Enm ^Eji ,

~EBF^Emn ^Ei j !
T52EFB^Enm ^Eji ,

~EFF^Emn ^Ei j !
T5EFF^Enm ^Eji .

With these conventions, one possible choice forg is

g5EBB^ gB1EFF^ gF , where gB5sx^1n , gF5 isy^1n . ~24!

This is the choice we make.

D. Gaussian Berezin integral

To repeat the steps of Sec. III A and derive aQ-integral representation for the generating
functionZn , we must first generalize the basic identity~10!, whose left-hand side is

E D~c,c̃ !exp~ i TrV Acc̃2 i STrW Bc̃c!. ~25!

By ~22! we have

Tr Acc̃5Tr~cc̃!TAT5 1
2Tr~A2CATC 21!cc̃,

STr Bc̃c5STr~ c̃c!TBT5 1
2Tr~B2gBTg21!c̃c.

In view of this we demand thatA andB satisfy

A52CATC 21, B52gBTg21. ~26!

When carrying out the calculation~11!–~13! we need to apply the identity~10! twice, the first time
with A5H, B5v, and the second time withA50,B5v2Q. In order for~26! to be satisfied with
these identifications, we choose to set

v5EBB^ sz^ (
i51

n

a iEii1EFF^ sz^ (
j51

n

b jEj j .

The presence of the factorsz5diag~11,21! reverses the sign of theai andbj on that subspace
wheresz acts by multiplication with21. As the imaginary parts of theai control the convergence
of the integral, this sign reversal affects the correct choice of integration domain forcB and c̃B .
To ensure convergence of the integral~25!, we require Im STrvc̃c<0. This inequality is
achieved by imposing the conditionc̃B 5 (sz ^ 1n)cB

† , which is compatible withC5isy^1N ,
cB5C c̃B

TgB
21 , andgB5sx^1n .
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Lemma 3.1:Let D(c,c̃) denote a translation-invariant holomorphic Berezin measure on the
subspace of Homl(W,V)3Homl(V,W) defined by~20!. Fix the integration domain byc̃B 5 (sz

^ 1n)cB
† , and normalizeD(c,c̃) so that*D(c,c̃)exp~2s2 Tr cc̃!51 ~sPR!. Then ifAPEnd(V)

andBPEndL(W) are diagonalizable and satisfy the linear conditions~26!, the identity~10! holds
with c51/2 provided that the integral exists.

Proof: Assume thatA andB are represented by diagonal matrices,

A5sz^ (
i51

N

xiEii , B5EBB^ sz^ (
j51

n

zjEj j1EFF^ sz^ (
j51

n

yjEj j ,

which conforms with~26!. The right-hand side of~10! then reduces to

SDetV^W~A^121^B!21/25)
i51

N

)
j51

n
~xi2yj !~xi1yj !

~xi2zj !~xi1zj !
. ~27!

To evaluate the left-hand side, write

cB5S a b

c dD , cF5S a b

g d D ,
wherea,b,c,d~a,b,g,d! are complexN3n matrices with commuting~resp., anticommuting! ma-
trix elements. The constraintc̃52gcTC 21 results in

c̃B5S 2dT bT

2cT aTD , c̃F5S 2dT bT

gT 2aTD ,
and the reality conditionc̃B 5 (sz ^ 1n)cB

† meansd52ā andc5b̄. The exponent of the integrand
is expressed by

1

2
Tr Acc̃2

1

2
Tr Bc̃c5(

i51

N

(
j51

n

„~xi2zj !ai j āi j2~xi1zj !bi j b̄i j

1~xi1yj !a i jd i j2~xi2yj !b i jg i j ….

Doing the Gaussian integrals one gets a result that is identical to~27!, which proves the Lemma
for diagonalA andB. The general case follows by the invariance properties ofD(c,c̃).

Remark:The condition of diagonalizability can of course be weakened but we will not need
that here. j

To apply Lemma 3.1 to our problem, note

SDetV^W~H^121^ v!1/25)
i51

n

DetVS ~H2a i !~H1a i !

~H2b i !~H1b i !
D 1/25)

i51

n

DetSH2a i

H2b i
D ,

where in the second step we used the invariance of the ratio of determinants underH°2H,
which is due to the particle-hole symmetryH52CHTC 21. Moreover, note

SDetV^W„1^ ~Q2v!…21/25SDetW~Q2v!2N.

The previous calculation~11!–~13! thusformallygoes through withc51/2, andisp(N) for iu(N),
and we arrive at the following representation of the generating function:

5002 Martin R. Zirnbauer: Riemannian symmetric superspaces and their origin

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Zn~v!5E DQ exp2N STrS Q2

2v2
1 ln~Q2v! D , ~28!

where the supermatrix

Q5SQBB QBF

QFB QFF
D

is subject to~23!. To make this rigorous, we have to specify the integration domain forQ and
show that the interchange of the~c,c̃!- andQ-integrations is permitted.

E. Choice of integration domain

If the steps~11!–~13! are to be valid, we must arrange for all integrals to be convergent, at
least. This is easily achieved forQFF, the FF component ofQ, but requires substantial labor for
cB , c̃B , andQBB . ConsiderQFF first. Since2STrQ252Tr QBB

2 1Tr QFF
2 1nilpotents, we want

Tr QFFQFF<0, which leads us to require thatQFF be anti-Hermitian. Combining this with~23! we
get

QFF52gFQFF
T gF

2152QFF
† ,

wheregF5isy^1n ; see~24!. The solution space of these equations is sp(n), the symplectic Lie
algebra in 2n dimensions. Thus we chooseU:5sp(n) for the integration domain ofQFF, and, of
course, the integration measure is taken to be the flat one.

The choice of integration domain forQBB is a much more delicate matter and will occupy us
for the remainder of this section. Recall, first of all, that the convergence of

E D~c,c̃ !exp~ i Tr Hcc̃2 i STr vc̃c!

requires takingc̃B 5 bcB
† , whereb :5sz^1n cancels the minus signs that multiply the imaginary

parts of the parametersai in v. To ensure the convergence of

E D~c,c̃ !exp i Tr c~Q2v!c̃,

one is tempted to chooseQBB in such a way that Re TrcQc̃50. Unfortunately, when this
condition is adopted one getsQBB 5 bQBB

† b, which causes TrQBB
2 5 Tr QBBbQBB

† b, to be of
indefinite sign, so that the integral overQ does not exist.

A way out of this difficulty was first described by Scha¨fer and Wegner2 in a related context.
We are now going to formulate their prescription in a language that anticipates the geometric
structure emerging in the large-N limit. To simplify the notation, we putQBB5iZ. What we need
to do is investigate the expression

exp~2N Tr QBB
2 /2v21 i Tr QBBc̃BcB!5exp~N Tr Z2/2v22Tr Zc̃BcB!. ~29!

The conditions onQBB translate into

Z52gBZ
TgB

2152bZ†b21.

BecausegB5sx^1n is symmetric, the solution space of the first equation is a complex Lie algebra
G C.so~2n,C!. The matrix representation of an elementZPG C is of the form
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S A B

C 2ATD ,
whereB andC are skew. The second equation (Z52bZ†b21) meansA52A† andC5B†,
which fixes a real formG5so*(2n) of G C5so~2n,C!. This real form isnoncompact@i.e.,
G5Lie(G) with G a noncompact Lie group#, which is what causes all the trouble and is forcing
us to work hard. Its maximal compact subalgebraK is the set of solutions ofX5bXb21 in G .
From

X5SA 0

0 2ATD
andA52A† we see thatK.u(n).

To display clearly the general nature of the following construction, we introduce a symmetric
quadratic form B:G C3G C→C by B(X,Y)5Tr XY. The Cartan~orthogonal! decomposition ofG
with respect to this quadratic form is written asG5K%M. An elementY of M satisfies
Y52bYb21. From this, in conjunction with the equation fixingK (X51bXb21), one deduces
the commutation relations

@M,M#,K , @K ,M#,M, @K ,K #,K . ~30!

Note that the elements ofM are Hermitian while those ofK are anti-Hermitian. We will also
encounter the complexified spacesK C5K1iK andMC5M1iM. They, too, are orthogonal
with respect to B and satisfy the commutation relations~30!. The elementb5sz^1n satisfies
b52gBbTgB

21 and can therefore be regarded as an element ofG C . Moreover,bPiK,G C .
Now we embedG5K%M into G C by a mapfb ,

fb :K3M→G C ,

~X,Y!°fb~X,Y!5b3~X1eYbe2Y!,

wherebÞ0 is some constant that will be specified later.
Lemma 3.2:fb~K3M! is an analytic manifold without boundary, and is diffeomorphic to

G .
Proof: Analyticity is clear. To prove the other properties, we first establish thatfb is injective.

For that purpose, we writeeYbe2Y 5 ead(Y)b, where ad(Y)b5[Y,b] is the adjoint action onG C .
Decomposing the exponential function according to exp5cosh1sinh, we writefb5f11f2 ,
where

f1~X,Y!5b3„X1cosh ad~Y!b…,

f2~X,Y!5b3sinh ad~Y!b.

From the commutation relations~30! andbPiK , we see thatf6 takes valuesf1(X,Y)eK C and
f2(X,Y)PMC . SinceG C5K C%MC ~direct sum!, injectivity is equivalent to the regularity of
the mapsX°f1(X,Y) ~with Y viewed as a parameter! and Y°f2(X,Y). The function
f1(X,•)5X1const is obviously regular. ByY5Y† the elementY is diagonalizable with real
eigenvalues. The regularity off2 then follows from sinh:R→R being monotonic andY°ad(Y)b
being regular. This completes the proof thatfb is injective. The injectivity offb means that
fb~K3M! is diffeomorphic toG5K%M. This in turn means that, sinceG has no boundary,
fb~K3M! has no boundary either. j
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We are now going to demonstrate thatfb~K3M! for anyb.0 may serve as a mathemati-
cally satisfactory domain of integration for the variableZ in ~29!. We begin by investigating the
quadratic form TrZ25B(Z,Z) onfb~K3M!. For this we setZ5Z11Z2 with Z65f6(X,Y).
Using B(Z1 ,Z2)50 ~recallK C'MC!, B„ad(Y)A,B…52B„A,ad(Y)B… and cosh22sinh251, we
obtain

B~Z,Z!/b25B~X,X!12B„X,cosh ad~Y!b…1B~b,b!.

The antihermiticity ofXPK gives B(X,X)<0. In contrast, cosh ad(Y)bP iK is Hermitian, so
B„X,cosh ad(Y)b…PiR. It follows that exp~N Tr Z2/2v2!5exp„N Tr fb(X,Y)

2/2v2… is decaying
with respect toX and oscillatory with respect toY.

We have not yet made any use ofb.0 yet. This inequality comes into play when the coupling
term

2Tr Zc̃BcB52B~Z,c̃BcB!52bB~X,c̃BcB!2bB~eYbe2Y,c̃BcB!

is considered. From~22! andc̃B 5 bcB
† we see thatc̃BcB satisfies

c̃BcB52gB~ c̃BcB!TgB
2151b~c̃BcB!†b21,

so c̃BcBPiG . Since B is real valued onG3G , the term B~X,c̃BcB! is purely imaginary. The
other term,

2bB~eYbe2Y,c̃BcB!52b Tr~cBe
2YcB

† !<0,

is never positive ifb.0. Hence the real part of the exponential in~29! is negative semidefinite for
Q5 iZP ifb~K3M! andb.0. As a result, the integrals overQ andc,c̃ converge if the inte-
gration domain forQ is taken to beifb~K3M!3U ~b.0!. Becauseifb~K3M!3U is an
analytic manifold without boundary and Cauchy’s theorem applies, we may perform the shift of
integration variables that is implied by the fourth equality sign in~12!. Moreover, the presence of
the nonvanishing imaginary parts of the parametersai in v ensuresuniform convergenceof the
~c,c̃! integral with respect toQ, so that we may interchange the order of integration@the second
equality sign in~13!#. And finally, any breakdown of diagonalizability ofQ2v occurs on a set of
measure zero, so that the identity~10! ~Lemma 3.1! may be used, and all steps leading to~28! are
rigorous. In summary, we have proved the following result.

Theorem 3.3:For V5C2^CN andW5C1u1
^C2^Cn define the generating function

Zn,N~v!5E
i3sp~N!

SDetV^W~H^121^ v!21/2 expS 2
N Tr H2

2v2 DdH,
v5EBB^ sz^ (

i51

n

a iEii1EFF^ sz^ (
j51

n

b jEj j ~ Im a i,0!.

Let DQ denote a translation-invariant holomorphic Berezin measure of the complex-analytic
superspace osp(2nu2n). Then for allNPN, nPN andb.0, DQ can be normalized so that

Zn,N~v!5E
ifb~K3M!3U

DQ exp2N STrS Q2

2v2
1 ln~Q2v! D , ~31!

where U5sp(n), K.u(n), M is determined by K%M5so*(2n), and fb(X,Y)
5b„X1Ad(eY)(sz^1n)…. j
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We conclude this section with a comment. In the literature a parametrization of the form
Q5TPT21 ~cf. Ref. 43! has been very popular. In our language, this factorization amounts to
choosing for the integration domain ofQBB the image ofw:G5K%M→G , X1Y°eYXe2Y.
This isnot a valid choice asw~G ! does have a boundary, namely the light cone$ZuB(Z,Z)50% in
G , so that shifting of integration variables is not permitted.~However, it turns out that the error
made becomes negligible in the limitN→`, so that the final results remain valid if that limit is
assumed.!

F. Saddle-point supermanifold

The result~31! holds for allNPN. We are now going to use the method of steepest descent to
show that in the limitN→`, the integral on the right-hand side reduces to an integral over a
Riemannian symmetric superspace of typeDIII uCI.

With our choice of normalization, the mean spacing between the eigenvalues ofH scales as
N21 for N→`; see~14!. We are most interested in the eigenvalues close to zero, as their statistical
properties describe those of the low-lying Bogoliubov independent-quasiparticle energy levels of
mesoscopic normal-superconducting systems.24 To probe their statistical behavior, what we need
to do is keepv̂5Nv/pv ~i.e.,v scaled by the mean level spacing! fixed asN goes to infinity. In
this limit v;O ~1/N! can be treated as a small perturbation and we may expand
N STr ln(Q2v)5N STr lnQ2pv STrQ21v̂1O ~1/N! if Q21 exists.

To evaluate the integral~31! by the method of steepest descent, we first look for the critical
points of the functionNF(Q)5N STr~Q2/2v21ln Q!. These are the solutions of

F8~Q!5Q/v21Q2150,

or Q252v2. The solution spaces, the so-called ‘‘saddle-point supermanifolds,’’ are nonlinear
subspaces of osp(2nu2n), which can be distinguished by the eigenvalues ofQ. Of these super-
manifolds, which are the ones to select for the steepest-descent evaluation of the integral~31!?

To tackle this question, we start out by setting all Grassmann variables to zero. The BB part
of the saddle-point manifold~s! is uniquely determined by the forced choice of integration domain
ifb~K3M! and by analyticity. This is because the saddle-point manifold must be deformable
~using Cauchy’s theorem! into the integration domain without crossing any of the singularities of
SDet(Q2v)2N; and by inspection one finds that this condition rules out all saddle-point mani-
folds except for one, which isifv~03M!, the subspace of the integration domain
ifb~K3M!ub5v obtained by dropping fromG5K%M theK degrees of freedom~these are
the directions of steepest descent!. By an argument given in the proof of Lemma 3.2 we know that
ifv~03M! is diffeomorphic toM. On general grounds the latter is diffeomorphic to a coset
spaceG/K by the exponential mapM→G/K, Y°eYK; where in the present caseG 5 $g
P Gl(2n,C)ug 5 gBg

21TgB
21 5 bg21†b21%, andK5$kPGuk5bkb21% ~on settingg5expZ,

k5expX and linearizing, we recover the conditionsZ52gBZ
TgB

2152bZ†b21 definingG and the
conditionX5bXb21 fixing the subalgebraK !. We already knowG5so*(2n) andK.u(n), so
G5expG5SO*(2n) and K5expK5U(n). BecauseK is a maximal compact subgroup, the
coset spaceG/K is a Riemannian symmetric space of the noncompact type. In Cartan’s notation,
G/K5SO*(2n)/U(n) is called typeDIII. For better distinction from its FF analog, we will
henceforth denoteG/K by G/KB .

We turn to the FF sector. Since SDet(Q2v)2N does not have poles but only haszerosas a
function ofQFF, analyticity providesno criterion for selecting any specific solution space of the
saddle-point equationQFF

2 52v2. Instead, the determining agent now is the limitN→`. From~31!
it is seen that integration over the Gaussian fluctuations around the saddle-point manifold produces
one factor ofN21(N11) for every commuting~resp., anticommuting! direction of steepest de-
scent. Therefore, the limitN→` is dominated by the saddle-point manifold that has the minimal
transverse ~super-!dimension dB

'2dF
' . A little thought shows that the transverse dimen-
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sion is minimized by choosingQFF to possessn eigenvalues1iv andn eigenvalues2iv. Thus,
the dominant saddle-point manifold is unique and contains the special pointq0 :5 ivb ~b5sz^1n
now acts in the fermionic subspace!.

Recall that the integration domain forQFF is a compact Lie algebraU5sp(n). The corre-
sponding Lie groupU5Sp(n) operates onU by the adjoint action Ad(u):U→U, X°uXu21.
Because the saddle-point equationQFF52v2QFF

21 is invariant under this action, the FF part of the
~dominant! saddle-point manifold can be viewed as the orbit of the action of Ad(U) on the special
point q0PU. Let KF be the stability group ofq0, i.e., KF5$kPUukq0k

215q0%. By
Ad~KF!q05q0 the orbit Ad(U)q0 is diffeomorphic to the coset spaceU/KF . Arguing in the same
way as for the BB sector, one shows thatKF.KB.U(n). HenceU/KF5Sp(n)/U(n), which in
Cartan’s notation is a compact Riemannian symmetric space of typeCI.

We are finally in a position to construct the full saddle-pointsupermanifold. Recall, first of all,
thatQ is subject to the conditionQ52gQTg21, which defines an orthosymplectic complex Lie
algebraG L :5osp(2nu2n) in EndL(W). The solution spaces inG L of the equationQ/v

21Q2150
are complex-analytic supermanifolds that are invariant under the adjoint action of the complex Lie
supergroupGL :5Osp(2nu2n). They can be regarded as Ad~GL! orbits of elementsQ0PLie~GL!
that are solutions of (Q0)

252v2. From the above analysis of the BB and FF sectors, we know
that the saddle-point supermanifold that dominates in the large-N limit is obtained by setting
Q05 ivSz whereSz51BuF^b5~EBB1EFF!^ sz^1n . If HL is the stability group ofQ0, the orbit
Ad(GL)Q0 is diffeomorphic to the coset spaceGL/HL . From gSz1Szg50 and the equation
hSzh

215Sz ~or, equivalently,h5SzhSz! for hPHL one infersHL.Gl(nun). Hence the unique
complex-analytic saddle-point supermanifold that dominates the large-N limit is
GL/HL.Osp(2nu2n)/Gl(nun).

Turning to the integral ~31! we note the relations STrQ0
252v2 STr 150 and

ln SDetQ05ln 150. These imply that the functionF(Q)5STr~Q2/2v21ln Q! vanishes identically
on Ad(GL)Q0 . Hence the exponent of the integrand in~31! restricted toGL/HL is

pv STrQ21v̂uGL /HL
1O ~1/N!52 ipB„v̂,Ad~g!Sz…1O ~1/N!.

To complete the steepest-descent evaluation of~31! we need to Taylor expand the exponent of the
integrand up to second order and do a Gaussian integral. By the Ad~GL! invariance of the function
NF(Q) it is sufficient to do this calculation for one element of the saddle-point supermanifold, say
Q5Q0 . PuttingQ5Q01Z ~ZPG L! we get

NF~Q01Z!5
N

2v2
STr~Z21ZSzZSz!1O ~Z3!.

Now we make the orthogonal decompositionG L5Lie~HL!1ML , Z5X1Y, whereY52SzYSz

are the degrees of freedom tangent to the saddle-point supermanifold, andX51SzXSz are the
degrees of freedom transverse to it. The translation-invariant Berezin measureDZ of G L factors
asDZ5DY DX. We thus obtain the transverse Gaussian integral

E DX expS 2
N

v2
STr X21O ~N0! D .

The integration domain forX is iKB3K F.iu(n)3u(n). By dim Lie(HL)5(p,q) and p5q,
this integral reduces to a constant independent ofN in the limit N→`.

What remains is an integral over the saddle-point supermanifold itself. SinceDY is the local
expression of the invariant Berezin measure ofGL/HL at Ad(eY)Q0uY505Q0 we arrive at the
following result.

Theorem 3.4: If DgH is a suitably normalized invariant holomorphic Berezin measure of the
complex-analytic supermanifoldGL/HL.Osp(2nu2n)/Gl(nun),
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lim
N→`

Zn,NS pvv̂

N D5E
MB3MF

DgH exp2 ipB„v̂,Ad~g!Sz…, ~32!

whereSz51BuF^sz^1n , MB.SO*(2n)/U(n), andMF.Sp(n)/U(n).
Remark 3.5:This result expresses the generating function forN→` as an integral over a

Riemannian symmetric superspace of typeDIII uCI ~see Tables I and II! with m5n.
In Ref. 44 then-level correlation functionRn is calculated exactly from~32! for all n.

IV. OTHER SYMMETRY CLASSES

There exist ten known universality classes of ergodic disordered single-particle systems.
These are the three classic Wigner-Dyson classes~GOE, GUE, GSE!, the three ‘‘chiral’’ ones
describing a Dirac particle in a random gauge field~chGUE, chGOE, chGSE!, and the four classes
that can be realized in mesoscopic normal-superconducting~NS! hybrid systems. In Ref. 25 it was
noted that there exists a one-to-one correspondence between these universality classes and the
large families of symmetric spaces~with the exception of the orthogonal group in odd dimen-
sions!. Specifically, the Gaussian random-matrix ensemble over the tangent space of the symmet-
ric space describes the corresponding universality class, in the limitN→`. In the notation of Table
I the correspondences areA↔GUE, AI↔GOE, AII↔GSE, AIII↔chGUE, BDI↔chGOE,
CII↔chGSE, and the four NS classes correspond toC, D, CI, andDIII.

We have shown in detail how to use the supersymmetry method for the Gaussian ensemble
overCN5sp(N), the tangent space of the symplectic Lie group. There are nine more ensembles to
study. We will now briefly run through all these cases, giving only a summary of the essential
changes.

A. Class D

Recall the definitions given at the beginning of Sec. III B and replace the symplectic unit by
C5sx^1N . What you get is a Gaussian random-matrix ensemble overDN5so(2N), the orthogo-
nal Lie algebra in 2N dimensions. The explicit form of the Hamiltonian is

H5S a b

b† 2aTD ,
wherea(b) is complex Hermitian~resp., skew!. The treatment of this ensemble closely parallels
that of typeC. A change first occurs in the consistency condition forg, which now reads as
g52gTs ~instead ofg51gTs! by C C 21T 5 11. The extra minus sign can be accommodated by
simply exchanging the BB and FF sectors~gB↔gF!. The linear constraintQ52gQTg21 again
defines an osp(2nu2n) Lie algebra, the only difference being that the BB sector is now ‘‘sym-
plectic’’ while the FF sector has turned ‘‘orthogonal.’’ Everything else goes through as before and
we arrive at the statement of Theorem 3.3 withU.so(2n),K.u(n), andK%M.sp~n,R!.

A novel feature arises in the large-N limit, where instead of one dominant saddle-point
supermanifold there now emergetwo. One of them is the orbit with respect to the adjoint action of
Osp(2nu2n) onQ05 iv1BuF^sz^1n as before, and the other one is the orbit of

Q15 ivEBB^ sz^1n1 ivEFF^ sz^ S E112(
i52

n

Eii D .
@The orbits ofQ0 andQ1 are disconnected because the Weyl group of so(2n) is ‘‘too small.’’#
Consequently, the right-hand side of Theorem 3.4 is replaced by a sum of two terms, one for each
of the two saddle-point supermanifolds. The integral is over a Riemannian symmetric superspace
of typeCIuDIII (m5n) in both cases.
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B. Class CI

Let V5C2^CN carry a Hermitian inner product~as always!, and consider the space,P, of
self-adjoint HamiltoniansHPEnd(V) of the form

H5HT52CHTC 215S a b

b 2aD , where C5 isy^1N5S 0 1N

21N 0 D .
TheN3N matricesa andb are real symmetric. It is easy to see25 that P is isomorphic to the
tangent space of the symmetric space Sp(N)/U(N) ~typeCI!. A Gaussian measuredm(H) onP is
completely specified by its first two moments,*P Tr(AH)dm(H)50 and

E
P
Tr~AH!Tr~BH!dm~H !5

v2

4N
Tr„A~B1BT!2AC ~B1BT!C 21

….

To deal with the random-matrix ensemble defined by this measure, we takeW5C1u1
^C2^C2^Cn.

RecallcPHoml(W,V) andc̃ P Homl̃(V,W). The symmetries ofH are copied tocc̃ by imposing
the linear conditions

c5C c̃ Tg21, c̃52gcTC 21; c5c̃ Tt21, c̃5tcT.

In order for these conditions to be mutually consistent,t, gPEnd0(W) must satisfy

g5gTs, t5tTs, gt2152tg21.

Without loss, we takeg andt to be orthogonal. The consistency conditions can then be written in
the form

g25s5t2, gt1tg50.

If Gl(W).Gl(4nu4n) is the Lie supergroup of regular elements in EndL(W), the equationg25s
in conjunction with gTT5sgs means that the automorphismĝ:Gl(W)→Gl(W) defined by
ĝ(g) 5 gg21Tg21 is involutory. The same is true fort̂ defined byt̂(g) 5 tg21Tt21 and, more-
over, ĝ and t̂ commute bygt1tg50. For definiteness we take

g5EBB^ gB1EFF^ gF ,
t5EBB^ tB1EFF^ tF ,

gB5sx^ sz^1n ,
tB512^ sx^1n ,

gF5 isy^12^1n ,
tF5sz^ isy^1n .

~This choice is consistent withc̃B 5 bcB
† , b5sz^12^1n .! Let

Q :5$QPEndL~W!uQ52gQTg2151tQTt21%

be the subspace distinguished by the symmetry properties ofc̃c. The group Gl(W) acts onQ by
Q°gQg21. We now ask what is the subgroupGL of Gl(W) that leaves the symmetries ofQ
invariant @the normalizer ofQ in Gl(W)#.

Lemma 4.1: GL is isomorphic to Osp(2nu2n)3Osp(2nu2n).
Proof: The conditions ongPGL can be phrased as follows:

g5gggT, t5gtgT.

Equivalently,GL can be described as the simultaneous ‘‘fixed point set’’45 of the involutory
automorphismsĝ and t̂. We first describe the fixed point set ofĝ+ t̂, which acts by
(ĝ+ t̂)(g)5ege21, wheree52igt21. From the explicit expressione51BuF^ sx^ sy^1n we see
that e has 4n eigenvalues equal to11, 4n eigenvalues equal to21, and these are equally
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distributed over the bosonic and fermionic subspaces. Hence the subgroup of Gl(W) fixed by ĝ+ t̂
is isomorphic to G13G2 , where G1.Gl(2nu2n).G2 . Denote the embedding
G13G2→Gl(W) by w(g1 ,g2)5g. The groupGL is the fixed point set oft̂ ~or, equivalently, of
ĝ! in w(G13G2) @t̂ commutes withĝ+ t̂ and therefore takesw(G13G2) into itself#. Note
et52te, e21T 5 2e, and forgPw(G13G2) do the following little calculation:

et̂~g!5etg21Tt2152teg21Tt215t~eg!21Tt215 t̂~eg!.

Combining this withew(g1 ,g2)5w(g1 ,2g2) one infers thatt̂ acting onw(G13G2) is of the
form t̂w(g1 ,g2)5w„t̂1(g1),t̂2(g2)…. By a short calculation~work in an eigenbasis ofe! one
sees that the involutory automorphismst̂ i : Gl(2nu2n)→Gl(2nu2n) ~i56! are expressed by
t̂ i(g) 5 t ig

21Tt i
21 with supersymmetrict i(t i 5 t i

Ts). It follows thatt̂ i fixes an orthosymplectic
subgroup ofGi.Gl(2nu2n), soGL.Osp(2nu2n)3Osp(2nu2n), as claimed.

Corollary 4.2:The spaceQ is isomorphic to the complement of osp(2nu2n)%osp(2nu2n) in
osp(4nu4n).

Proof: The solution space in EndL(W) of Q52gQTg21 is an osp(4nu4n) algebra. Imple-
menting the second conditionQ51tQTt21 amounts to removing from osp(4nu4n) the subalge-
bra fixed byX52tXTt21. By linearization of the conditionsg5ĝ(g)5 t̂(g), this subalgebra is
identified as Lie~GL!.osp(2nu2n)%osp(2nu2n). j

The Gaussian integral identity~10! continues to hold, albeit with a different value ofc51/4.
The proof is essentially the same as before.

SinceQ is not a Lie algebra, the description of the correct choice of integration domain for the
auxiliary variableQ is more complicated than before. In the FF sector we takeU: 5 $QFF

P QFFuQFF 5 2QFF
† %. By Corollary 4.2, sp(2n).„sp(n)%sp(n)…%U. To deal with the BB sector

we introduce the spaces

G5$XPgl~2n,C!uX52gBX
TgB

2152tBX
TtB

2152bX†b21%,

M5$YPG uY52bYb21%, P65$XPQBBuX52bX†b2156bXb21%,

whereb5sz^12^1n . The Lie algebraG is a noncompact real form of the BB part of Lie~GL!.
By bPiP1 and the commutation relations@M,P1#,P2 and@M,P2#,P1, we have an embed-
ding,

fb :P
13M→QBB5P C

11P C
2 ,

~X,Y!°b3~X1ead~Y!b!.

Similar considerations as in Sec. III E show that all integrals are rendered convergent by the
choice of integration domainfb~P

13M!3U ~b.0! for Q. With this choice we again arrive at
Theorem 3.3.

The large-N limit is dominated by a single saddle-point supermanifold, which can be taken as
the orbit ofQ05 ivSz ~hereSz51BuF^sz^12^1n! under the adjoint action ofGL . This orbit is
diffeomorphic toGL/HL , whereHL5$hPGLuhSzh

215Sz%. The stability groupHL can equiva-
lently be described as the fixed point set ofŜz :GL→GL , Ŝz(g)5SzgSz . By the relationsSz

5 Sz
T 5 2gSzg

21 5 tSzt
21 ~SzPQ !, the elementSz anticommutes withe52igt21, andŜz

commutes withĝ+ t̂. These relations are compatible with the existence of an embeddingf :
Osp(2nu2n)3Osp(2nu2n)→Gl(W), such that (Ŝz+f)(g1 ,g2)5f(g2 ,g1). ~Such an embed-
ding is easily constructed.! HenceHL.diag„Osp(2nu2n)3Osp(2nu2n)….Osp(2nu2n). In this
way we arrive at Theorem 3.4 withGL/HL.Osp(2nu2n), and the maximal Riemannian submani-
fold MB3MF , whereMB.SO~2n,C!/SO(2n) andMF.Sp(n) ~typeDuC!.47
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C. Class DIII

Consider forV5C2^C2^CN the linear space

P5$HPEnd~V!uH5H†52CHTC 2151T HTT 21%,

whereC5sx^12^1N and T 512^isy^1N . It has been shown25 that P is isomorphic to the
tangent space of SO(4N)/U(2N) ~a symmetric space of typeDIII !. Introducing an orthonormal
real basis ofV, we can representH by a 4N34N matrix. If C andT are given by

C5S 0 0 1N 0

0 0 0 1N

1N 0 0 0

0 1N 0 0

D , T 5S 0 1N 0 0

21N 0 0 0

0 0 0 1N

0 0 21N 0

D ,
the explicit form of such a matrix is

H5S a b c d

b† aT 2dT 2c†

c† 2dT 2aT b†

d 2c b 2a

D ,
where all entries are complexN3N matrices anda,d(b,c) are Hermitian~skew!.

The Gaussian random-matrix ensemble onP is defined by the Gaussian measuredm(H) with
vanishing first moment, and second moment,

E
P
Tr~AH!Tr~BH!dm~H !5

v2

4N
Tr„AB2ACBTC 211AT BTT 212A~C T !B~C T !21

….

Given the auxiliary spaceW:5C1u1
^C2^C2^Cn, we impose on cPHoml(W,V), c̃

P Homl̃(V,W) the linear conditions

c5gc̃ TC 21,

c5tc̃ TT 21,

c̃52C cTg21,

c̃5T cTt21,

with some invertible orthogonal elementsg,t of End0(W). Consistency requiresg252s5t2 and
gt1tg50. A possible choice is

g5~EBB^ isy^121EFF^ sx^ sz! ^1n ,

t5~EBB^ sz^ isy1EFF^12^ sx! ^1n .

Because this differs from classCI only by the exchange of the bosonic and fermionic subspaces,
the following development closely parallels that forCI, and we arrive at another variant of
Theorem 3.3.

The large-N limit is dominated by a pair of complex-analytic saddle-point supermanifolds,
each being isomorphic to Osp(2nu2n). @The reason why there are two is that O~2n,C! has two
connected components.# The first one is the orbit under Ad~GL! of Q05 iv1BuF^sz^12^1n , and
the second one is the orbit of
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Q15 ivS EBB^ sz^12^1n1EFF^ S 12^ sx^E111sz^12^ (
i52

n

Eii D D .
Both saddle-point supermanifolds are Riemannian symmetric superspaces of typeCuD with di-
mensionalitym52n ~Table II!.47

D. Class A III

The tangent space at the origin of U(p,q)/U(p)3U(q) consists of the matrices of the form

H5S 0 Z

Z† 0D ,
where Z is complex and has dimensionp3q. Such matrices are equivalently described by
H†5H52PHP21, whereP5diag(1p ,21q). For simplicity, we will consider only the case
p5q ~the general case has not yet been analyzed in the present formalism!. The Gaussian en-
semble of random matricesH is taken to have second moment

E Tr~AH!Tr~BH!dm~H !5
v2

2N
Tr~AB2APBP21!.

The physical space isV5C2^Cp, and the auxiliary space isW5C1u1
^C2^Cn. The definition ofv

is unchanged from classC. To implement the symmetry conditioncc̃52Pcc̃P21 we set

c5 iPcp21, c̃5 ipc̃P21,

wherep51BuF^isy^1n . This choice is consistent with the relationc̃B 5 bcB
† which ensures

convergence of the~c,c̃! integration. The auxiliary variableQ ranges over the complex-analytic
superspace

Q5$QPEndL~W!uQ52pQp21%,

and the normalizer ofQ in Gl(W) is

GL5$gPGl~W!ug5pgp21%.Gl~nun!3Gl~nun!.

For the integration domainU in the FF sector we again take the anti-Hermitian matrices inQFF.
In the BB sector we set

M5$YPEndC~WB!uY5pYp2152bYb215Y†%,

P65$XPEndC~WB!uX52pXp2156bXb2157X†%.

The treatment of Sec. III E then goes through as before, leading again to Theorem 3.3.
There is a single dominant saddle-point supermanifold, which is the Ad~GL! orbit of

Q05 iv1BuF^sz^1n and is diffeomorphic toGL/HL.Gl(nun). The integration domainMB3MF
is given byMB.Gl~n,C!/U(n) andMF5U(n). The invariant Berezin measure of this Riemannian
symmetric superspace of typeAuA was discussed forn51 in Example 2.4.
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E. Class BDI

The form of the random-matrix HamiltonianH for classBDI can be obtained from the
preceding case by taking thep3q matrix Z to be real. Put in formulas,H is subject to
H†5H5HT52PHP21. We again make the restriction top5q. The basic correlation law of the
Gaussian ensemble is

E Tr~AH!Tr~BH!dm~H !5
v2

4N
Tr„A~B1BT!2AP ~B1BT!P21

….

To accommodate the extra symmetryH5HT, auxiliary space is extended toW5C1u1
^C2^C2^Cn.

The symmetry conditions onc, c̃ are

c5 iPcp21, c̃5 ipc̃P21; c5c̃Tt21, c̃5tcT,

wherep51BuF^ isy^12^1n andt5~EBB^12^sx1EFF^12^isy!^1n. The auxiliary integration
space,

Q5$QPEndL~W!uQ52pQp2151tQTt21%,

has the symmetry group~or normalizer!

GL5$gPGl~W!ug5pgp215tg21Tt21%.Gl~2nu2n!.

For the integration domainU in the FF sector we once again take the anti-Hermitian matrices in
QFF. In the BB sector we set

M5$YPEndC~WB!uY5pYp2152tYTt2152bYb215Y†%,

P65$XPEndC~WB!uX52pXp2151tXTt2156bXb2157X†%.

The treatment of Sec. III E then goes through with modifications as in Sec. IV B.
There is a single dominant saddle-point supermanifold, which is the Ad~GL! orbit of

Q05 iv1BuF^ sz^12^1n and is diffeomorphic toGL/HL.Gl(2nu2n)/Osp(2nu2n). The integra-
tion domainMB3MF is given byMB.Gl~2n,R!/O(2n) andMF5U(2n)/Sp(n). This is a Rie-
mannian symmetric superspace of typeAIuAII with m52n ~Table II!.

F. Class CII

The tangent space at the origin of Sp(N,N)/Sp(N)3Sp(N) ~a noncompact symmetric space of
typeCII ! can be described by the equations

H†5H52PHP2152T HTT 21,

whereP5sz^12^1N andT 512^ isy^1N ~the physical space isV5C2^C2^CN!. The explicit
form of the matrices is

H5S 0 0 a b

0 0 2b̄ ā

a† 2bT 0 0

b† aT 0 0

D ,
if
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P5S 1N 0 0 0

0 1N 0 0

0 0 21N 0

0 0 0 21N

D
and

T 5S 0 1N 0 0

21N 0 0 0

0 0 0 1N

0 0 21N 0

D ,
wherea and b are complex and have dimensionN3N. The correlation law of the Gaussian
random-matrix ensemble of typeCII is

E Tr~AH!Tr~BH!dm~H !5
v2

4N
Tr~A2PAP21!~B2T BTT 21!.

As before,W5C1u1
^C2^C2^Cn. The symmetry conditions onc, c̃ are

c5 iPcp21, c̃5 ipc̃P21; c5T c̃Tt21, c̃5tcTT 21,

wherep51BuF^ isy^12^1n and t5~EBB^12^isy1EFF^12^sx!^1n . This differs from class
BDI only by the exchange of the bosonic and fermionic subspaces. Once more we arrive at
another version of Theorem 3.3.

There is only one complex-analytic supermanifold of saddle-points that dominates forN→`.
It is isomorphic to that for classBDI. The integration domainMB3MF changes to
MB.U*(2n)/Sp(n) andMF.U(2n)/O(2n) @not U(2n)/SO(2n)#. This is a Riemannian symmet-
ric superspace of typeAII uAI with m52n ~Table II!. The group U*(2n) is defined as the non-
compact real subgroup of Gl~2n,C! fixed byg5C ḡC 21, whereC5isy^1n .

G. Class A

This class forn51 was used to illustrate our general strategy in Sec. III A. Let us now do the
case of arbitraryn,

Zn~a1 ,...,an ;b1 ,...,bn!5E
i u~N!

)
i51

n

DetSH2b i

H2a i
Ddm~H !.

The classes treated so far~C,D,CI,DIII,AIII,BDI,CII ! all share one feature, namely the existence
of a particle-hole type of symmetry~H52PHP21 orH52CHTC 21!, which allows us to restrict
all ai to one-half of the complex plane. Such a symmetry is absent for the Wigner–Dyson
symmetry classesA, AI, andAII, which results in a somewhat different scenario, as it now matters
how manyai lie above or below the real axis. For definiteness let

Im a i,0 ~ i51,...,nA!, Im a j.0 ~ j5nA11,...,n!,

and setnR5n2nA .
Auxiliary space is taken to beW5C1u1

^Cn. The definition ofv changes to
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v5EBB^ (
i51

n

a iEii1EFF^ (
j51

n

b jEj j .

Recall that the imaginary parts of theai steer the convergence of the~c,c̃! integration. Sincev
couples toc,c̃ by exp2i STrW vc̃c, convergence forces us to takec̃B 5 bcB

† , where

b5(
i51

nA

Eii2 (
j5nA11

n

Ej j .

There are no further constraints onc, c̃, or Q. Thus the complex-analytic auxiliary integration
space isQ5EndL(W), andGL5Gl(W).Gl(nun).

The integration domain forQ in the FF sector is taken to be the anti-Hermitian matrices
U5u(n). In the BB sector we introduce

G5$XPgl~n,C!uX52bX†b21%, K5$XPG uX5bXb21%.

The Lie algebraG is a noncompact real form u(nA ,nR) of gl~n,C!, andK5u(nA)%u(nR) is a
maximal compact subalgebra. The spaceM is defined by the Cartan decompositionG5K%M.
The integration domain forQBB is taken to beifb~K3M!, wherefb(X,Y) 5 b(X 1 ead(Y)b)
~b.0!. This gives Theorem 3.3.

By simple power counting, the limitN→` is again dominated by a single complex-analytic
saddle-point supermanifold, which is the Ad~GL!-orbit of Q05 iv1BuF^b. The stability groupHL

of Q0 is HL5Gl(nAunA)3Gl(nRunR), so

Ad~GL!Q0.GL /HL5Gl~nun!/Gl~nAunA!3Gl~nRunR!.

The intersection of Ad(GL)Q0 with ifv~K3M!3U is MB3MF , where
MB.U(nA ,nR)U(nA)3U(nR) andMF.U(nA1nR)/U(nA)3U(nR). This is a Riemannian sym-
metric superspace of typeAIII uAIII with m15n15nA andm25n25nR ~see Table II!.

H. Class A I

The tangent space of U(N)/O(N) is the same as~i times! the real symmetric matrices
H†5H5HT. It differs from the tangent space of SU(N)/SO(N), a symmetric space of typeAI in
an inessential way~just remove the multiples of the unit matrix!. The Gaussian ensemble over the
real symmetric matrices has its second moment given by

E Tr~AH!Tr~BH!dm~H !5
v2

2N
Tr~AB1ABT!.

This ensemble is related to typeA in the same way that typeCI is related to typeC.
To implement the symmetryH5HT we setW5C1u1

^C2^Cn and requirec5c̃Tt21, c̃5tcT,
wheret5~EBB^sx1EFF^isy!^1n . The auxiliary integration space,

Q5$QPEndL~W!uQ5tQTt21%,

has the symmetry group

GL5$gPGl~W!ug5tg21Tt21%.Osp~2nu2n!.

The intersectionU of the FF sectorQFF with the anti-Hermitian matrices is given by sp(n)%U

5u(2n). In theBB sector we put
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M5$YPEndC~WB!uY52tYTt2152bYb215Y†%,

P65$XPEndC~WB!uX51tXTt2156bXb2157X†%,

which leads to yet another version of Theorem 3.3.
The large-N limit is controlled by a single complex-analytic saddle-point supermanifold

Ad(GL)Q0.GL/HL , whereHL.Osp(2nAu2nA)3Osp(2nRu2nR) is the stability group ofQ0

5 iv1BuF ^ (( i51
nA Eii 2 ( j5nA11

n Ej j ). The intersection of Ad(GL)Q0 with the integration domain

fv~P
13M!3U is MB3MF , where MB.SO(2nA,2nR)/SO(2nA)3SO(2nR) and

MF.Sp(nA1nR)/Sp(nA)3Sp(nR). This is a Riemannian symmetric superspace of typeBDIuCII
~Table II! with m152n152nA andm252n252nR .

I. Class A II

Finally, the tangent space of U(2N)/Sp(N) @a symmetric space of typeAII, except for the
substitution SU(2N)→U(2N)# can be described as~i times! the subspace of End~C2^CN! fixed by
the linear equationsH†5H5T HTT 21, T 5isy^1N . The explicit matrix form ofH is

H5S a b

b† aTD ,
whereb is skew anda is Hermitian.

The conditions c5T c̃Tt21 and c̃5tcTT 21 are mutually consistent if, say,
t5~EBB^isy1EFF^sx!^1n . The rest of the manipulations leading up to Theorem 3.3 are the
same as for classAI, except for the exchange of the bosonic and fermionic subspaces~tB↔tF!.
The large-N limit is controlled by a single saddle-point supermanifold~GL/HL ,MB3MF!, where

GL /HL5Osp~2nu2n!/Osp~2nAu2nA!3Osp~2nRu2nR!,

MB5Sp~nA ,nR!/Sp~nA!3Sp~nR!,

MF5SO~2nA12nR!/SO~2nA!3SO~2nR!,

which is a Riemannian symmetric superspace of typeCII uBDI ~Table II! with m152n152nA and
m252n252nR .

V. SUMMARY

When Dyson realized46 that the random-matrix ensembles he had introduced were based on
the symmetric spaces of typeA, AI, andAII, he wrote: ‘‘The proof of~the! Theorem... is a mere
verification. It would be highly desirable to find a more illuminating proof, in which the appear-
ance of the~final result! might be related directly to the structure of the symmetric space...’’. The
advent of the supersymmetry method of Efetov and others has improved the situation lamented by
Dyson. The present work takes the Gaussian random-matrix ensembles defined over Cartan’s large
families of symmetric spaces and, going to the limit of large matrix dimension, expresses their
spectral correlation functions as integrals over the corresponding Riemannian symmetric super-
spaces. These correspondences are summarized in Table III. The Riemannian symmetric super-
spaces that appear there all have superdimension (p,q) with p5q. We say that they are ‘‘perfectly
graded’’ or ‘‘supersymmetric.’’ An interesting question for future mathematical research is
whether our procedure can be optimized by reducing it to a computation involving no more than
the root system of the symmetric space, thereby obviating the space- and time-consuming need to
distinguish cases.~Although I have treated all ten cases separately, it is possible, following
Efetov,3 to shorten the derivation by starting from a large ‘‘master ensemble’’ of highest symme-
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try and then reducing it by the addition of symmetry-breaking terms. I chose not to follow this
route as it involves handling large tensor products, which makes the computations less transparent
and the identification of the spaces involved more difficult.!

The great strength of the supersymmetry method, as compared to other methods of meso-
scopic physics, stems from the fact that it easily extends beyond the universal random-matrix limit
to diffusive and localized systems. What one obtains for these more general systems are field
theories of the nonlinears model type, with fields that take values in a Riemannian symmetric
superspace. The method also extends beyond spectral correlations and allows the calculation of
wave function statistics and of transport coefficients such as the electrical conductance~see the
literature cited in the Introduction!.

Let me end on a provocative note. Mathematicians and mathematical physicists working on
supermanifold theory have taken much guidance from developments in such esoteric subjects as
supergravity and superstring theory. Would it not be just as worthwhile to investigate the beautiful
structures outlined in the present paper, whose physical basis is not speculative but firmly estab-
lished, and which are of direct relevance to experiments that are currently being performed in
physics laboratories all over the world?
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We consider singularities of the set of energy levelsEn(X) of a quantum Hamil-
tonian, obtained by varying a set ofd parametersX5(X1 ,..,Xd). Singularities such
as minima, degeneracies, branch points, and avoided crossings can play an impor-
tant role in physical applications. We discuss a general method for counting these
singularities, and apply it to a random matrix model for the parameter dependence
of energy levels. We also show how the density of avoided crossing singularities is
related to a non-analyticity of a correlation function describing the energy levels.
© 1996 American Institute of Physics.@S0022-2488~96!01810-5#

I. INTRODUCTION

It is now widely accepted that random matrices provide an excellent model for statistical
properties of the spectra of quantum systems for which the energy levels cannot be determined
analytically:1,2 random matrix models have been successfully applied to disordered solids, classi-
cally chaotic systems, and many body problems. There are many contexts in which families of
Hamiltonians depending smoothly on a set of parameters are of physical importance, for example
the parameters could represent the positions of atomic nuclei in the Hamiltonian for the electrons
in a molecule, or the Bloch wavevectors of an electron in a periodic potential. Recently the
random matrix approach has been extended to describe statistics which characterize the parameter
dependence of energy levels.3–9 One approach to analyzing the parameter dependence is to con-
sider correlation functions; an example which has received attention6–8 is the correlation function
C(X) of the derivatives of energy levelsEn85dEn /dX:

C~X!5^En8~X1X0!En8~X0!&. ~1.1!

An alternative approach is to examine various types of singularity in the spectrum, such as
degeneracies9,10 ~where a pair of energy levels become equal at some real valued point in the
parameter space!, branch points8 ~where energy levels become degenerate at complex parameter
values!, and avoided crossings3 ~characteristic structures where energy levels come close to de-
generacy!. These singularities can have direct physical consequences, in determining various
aspects of the breakdown of the adiabatic theorem,11–14,3and discontinuities of the quantized Hall
conductance.15,16,10

This paper has two objectives. The first is to explain the strategy for calculating the density of
singularities in the parameter space; we will present some new calculations of the density of
singularities, as well as reviewing existing results. The second objective is to discuss the impli-
cations of these results for the calculation of correlation functions such as~1.1!. Guaneriet al.8
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demonstrated that the existence of branch point singularities in the spectrum implies that correla-
tion functions such asC(X) have a non-analytic behavior atX50. We will show how the leading
order non-analytic part of this function is obtained from the density of singularities.

This paper is organized as follows. In Sec. II we discuss parameter dependent generalizations
of the standard random matrix models. In Sec. III we describe the approach to counting densities
of singularities of random functions, using the density of minima as an example. In Sec. IV we
review the known results on the density of various types of singularity, and their physical appli-
cations. Some of the results in Sec. IV are new, and of these the density of degeneracies for the
GUE and GSE ensembles are not easily obtained; these calculations are explained in Sec. V and
in an Appendix. Finally in Sec. VI we discuss the implications of the results given in Sec. IV for
correlation functions such as~1.1!.

In this paper we will discuss a variety of different probability distributions. To avoid naming
a multiplicity of different functions describing these distributions, we will introduce the notational
convention thatdP5P@X#dX is a probability measure for the quantityX.

II. PARAMETER DEPENDENT RANDOM MATRICES

The most fundamental random matrix models are the Gaussian ensembles introduced by
Porter and Dyson. These are constructed from real symmetric matricesH̃ (S) and real antisymmet-
ric matricesH̃k

(A) with independent Gaussian distributed elements; the variance of thei j th element
of these matrices is, respectively, 16d i j . There are three Gaussian ensembles, invariant under
orthogonal, general unitary, and ‘‘symplectic’’ unitary transformations,1,2 which are constructed
from combinations of the symmetric and antisymmetric matrices as follows:

@H̃# i j5
1

Ab
H @H̃ ~S!# i je01 (

k51

b21

@H̃k
~A!# i jekJ . ~2.1!

Hereb51,2,4 for the orthogonal, unitary and symplectic ensembles, respectively,e0, e1 are 1,
A21, respectively, and the otherek are the other bases for the quaternion algebra. In order for
these to be useful models for energy level statistics, the dimensionN of the matrix should be large.

In order to study singularities of the spectrum, it is necessary to construct a parameter depen-
dent version of these random matrix models. It is convenient to do this in such a way that
]Ĥ/]X is an independent realization of the same ensemble asĤ, and that the distribution of both
of these quantities is stationary: this is achieved by writing

Ĥ~X!5 cosXĤ11 sin XĤ2 , ~2.2!

where Ĥ1 and Ĥ2 are Hermitean operators represented by independent samples from the same
Gaussian symmetry-invariant ensemble defined above. Reference 5 discusses theoretical argu-
ments and numerical results which support the use of~2.2! as a model for parameter dependencies
of spectra. In the calculations below, we will require the matrix elements ofdĤ/dX in the basis
formed by the eigenstates ofĤ: this is simply an arbitrary unitary transformation ofdĤ/dX within
the appropriate symmetry class~orthogonal, unitary, or symplectic!. Because the Gaussian invari-
ant ensembles are invariant under these unitary transformations, the matrix elements
]Hnm[^fnudĤ/dXufm& have the same statistical properties as those of the matrixdĤ/dX.

In order to compare a random matrix model with the spectrum of a ‘‘real’’ physical system in
the neighborhood of energyE, we must scale energy levels of the system so that the density of
statesr(E) corresponds to that of the random matrix model. In a parameter dependent system, it
is also necessary to adjust another parameter, describing the sensitivity of the energy levels of the
system to perturbations: the natural choice is to use either the variance of the off-diagonal matrix
elements ofdĤ/dX in the eigenbasis,
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s2~E!5^u]Hnmu2&
En;Em;E

nÞm

, ~2.3!

or the variance ofdEn /dX: these are related by

varFdEndX G5
2

b
s2. ~2.4!

Equation~2.4! follows from the definition~2.1! for the Gaussian random matrix models, and there
are several arguments suggesting that it should also hold for complex quantum systems.17,18 For
the random matrix ensemble~2.2!, we haves51.

The model~2.2! can be extended to systems withd parameters in several ways; the simplest
is to use 2d independent realizations of the random matrices, and write

Ĥ~X!5(
i51

d

cosXiĤ2i211 sin XiĤ2i . ~2.5!

Now the sensitivity of energy levels to the parametersXi can be characterized by defining a set of
parametersCi j which generalize~2.3!:

Ci j5^] iHnm* ] jHnm&
En;Em;E

nÞm

, ~2.6!

where] iHnm[^fnu]Ĥ/]Xi ufm&. A change of variables makes the parameter dependence of the
energy levels resemble that of the model~2.5!. In the many-parameter case the parameters
characterizing the sensitivity of energy levels is naturally defined in terms of the Jacobean of this
transformation: noting that for~2.5! we haveCi j5d i j , the natural definition is

s25~det@C̃# !1/d, ~2.7!

whereC̃ is a matrix with elementsCi j . In order to use the parametrized random matrix models,
both the density of statesr and the sensitivity parameters must be estimated. This can always be
done numerically calculating an average over energy levels. For systems which exhibit semiclas-
sical behavior,r can be estimated using the Weyl formula,19 ands2 can be estimated from the
classical correlation function of]H/]X.20

III. COUNTING SINGULARITIES

The method which we use for calculating the density of singularities can be viewed as an
extension of one described by Rice,21 who gives an expression for the frequency of zero crossings
of a random functionf (x), for which the joint probability density of the function and its derivative
f 8 is known. IfD (0) is the density of zeros of the function, the probability of finding a zero in a
short interval of length@x0 ,x01dx# at a randomly chosen pointx0 is dP5D (0)dx. If the point
x0 happens to be close to a zero, the distance fromx0 to this zero crossing is approximately
2 f (x0)/ f 8(x0), and the probability of the zero crossing lying withindx of x0 is

dP;E
2`

`

d fE
2`

`

d f8P@ f , f 8#xS 2 f

f 8dx D ,
~3.1!

x~x!5 H1, 0,x,1,
0, 0.x.1.

Dividing by dx and taking the limitdx→0 gives
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D ~0!5E
2`

`

d fE
2`

`

d f8P@ f , f 8#dS f

f 8 D5E
2`

`

d f8u f 8uP@0,f 8#. ~3.2!

The same approach is used to determine the density of any point singularity: we use the known
statistics of the function to calculate the probability of finding a singularity in a small element
centered on a randomly chosen test point, and equate this to the density of singularities multiplied
by the volume of the element.

As an elementary example, we can use~3.2! to determine the density of minimaD (min) of
En(X) for the random matrix model~2.2!. The density of minima might find physical applications,
for example in determining the number of possible energetically stable configurations of complex
molecules which can be obtained by varying configuration of the nuclei.

The first and second derivatives ofEn(X),

En85
dEn
dX

5]Hnn , En95
d2En

dX2
52(

mÞn

u]Hnmu2

~En2Em!
22En , ~3.3!

are independent, because they depend upon different matrix elements. We denote the distributions
of the first two derivatives byP@E8# andP@E9#, respectively. The first derivativeE8 is Gaussian
distributed with variance 2s2/b, and with a mean value which is zero for the model~2.2!, but
which may have a non-zero value^E8& in physical applications. The distribution of the second
derivative is difficult to calculate: when the matrix dimensionN is large, an excellent
approximation22 is

P@E9#5
Cb

@ab
21E92#~b12!/2 , ~3.4!

which is also an exact result for the GUE in the limitN→`.23 The constantsCb are given in Refs.
4,5,

C152p2r2s4, C2524p2r3s6, C4528p4r5s10/3, ~3.5!

and the ab are then determined by normalizing the distribution: we finda152prs2 and
a15a25a4. The density of minima can now be calculated by using~3.2! to calculate the density
of zeros ofEn8(X), and dividing by two because half of the extrema ofEn(X) are maxima:

Db
~min!5P@E850#E

0

`

dE9uE9uP@E9#5Cb
~min!rs expF 2b^E8&2

4s2 G , ~3.6!

with dimensionless constants

C1
~min!5

Ap

2
, C2

~min!5A2

p
, C4

~min!5
4

3Ap
. ~3.7!

These results are exact for the GUE in the limitN→`, and at least a very good approximation for
the GOE and GSE.

IV. REVIEW OF RESULTS ON DENSITY OF SINGULARITIES

Below we discuss the various other types of singularity of the spectrum which are of interest
and their physical significance, and review the existing results on their density. All of the results
are exact for the random matrix models introduced in Sec. II in the limitN→`.
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A. Degeneracies

A degeneracy occurs when two or more energy levels are equal for some real valued point in
parameter space; in practice we will only be interested in degeneracies between pairs of levels,
because higher order degeneracies have a higher codimension. Generically, two parameters must
be varied in a family of real symmetric matrices to create a degeneracy, three parameters in a
family of Hermitean matrices, and five parameters in a family of quaternion symmetric matrices.24

We will therefore consider the density of degeneracies in the model~2.5! with d52,3,5 for the
GOE, GUE and GSE versions, respectively.

An interesting example of the importance of degeneracies is given by Simon,15 who shows
that the Chern integers describing the quantized Hall conductance16 change, typically by61, at
degeneracies. Degeneracies can also enable other invariant quantities to change; for example the
center of symmetry associated with Wannier functions of a Bloch band can change discontinu-
ously when the band touches a neighboring band at some point in the Brillouin zone.

The density of degeneracies for the parametrized ensembles is defined in a space ofb11
parameters, and their density is

Db
~deg!5Cb

~deg!~rs!b11, ~4.1!

with dimensionless prefactors

C1
~deg!5

p

3
, C2

~deg!5
2Ap

3
, C4

~deg!5
16A2p3/2

45
; ~4.2!

C1
(deg) was derived in Ref. 9 andC2

(deg) was quoted in Ref. 10 without a full derivation. An
estimate consistent with~4.1! was given in an earlier paper25 for the special case of billiards,
without an accurate value of the prefactor. The derivations ofC2

(deg) andC4
(deg) will be given in

Sec. V and in an Appendix, respectively.
In the neighborhood of a degeneracy, the separationD5En112En of the degenerating levels

is given by the square root of a quadratic form; for example in the case of a system such as the
GOE, where the Hamiltonian is real, we can write

D25A11dX1
21A22dX2

212A12dX1dX21O~dX3!. ~4.3!

This quadratic form can be defined by the orientation, eccentricity, and size of the elliptical level
curves ofD. For the model~2.5!, the orientation of the ellipses is random, and the other param-
eters are defined by the tracet5A111A22 and determinantd5A11A222A12

2 of the matrix which
represents the quadratic form. The joint distribution of the trace and determinant has been
calculated:9 it is

P@ t,d#5
d

256s6
expS 2t

8s2 D , ~4.4!

within the physically allowed regiont.0, d.0, d< 1
2 t

2. Other statistics describing the elliptical
contours ofD can be obtained directly from this simple result; for example the distribution of
eccentricitye of the ellipses is

P@e#5S 2e

22e2
D 3. ~4.5!

The distribution of parameters of the quadratic form for the unitary and symplectic ensembles is
not known.
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B. Avoided crossings

When a single parameter is varied, energy levels of systems without symmetries never cross,26

but they can approach each other very closely at events called avoided crossings. When the
separation of a pair of energy levels is very small compared to their separation from all of the
other levels, the structure of these avoided crossings can be understood using degenerate pertur-
bation theory for a two level system: provided the Hamiltonian is a regular function of parameter
in the neighborhood of the near-degeneracy, the levels have a hyperbolic form,

E6~X!;B~X2X0!6
1

2
Ae21A2~X2X0!

2. ~4.6!

The avoided crossing is characterized by four parameters, the gape, the difference of the asymp-
totic slopesA, the mean of the asymptotic slopesB, and the positionX0.

Avoided crossings are physically important because they mediate the breakdown of the adia-
batic theorem by Landau-Zener transitions,11,12,3and in Sec. VI we will show that they determine
the form of singular terms in the expansion of correlation functions such as~1.1!.

The density of avoided crossings can be defined as follows:Db
(ac)(A,B,e)dAdBdedX is the

expected number of avoided crossings between a given pair of successive levels, in an interval of
lengthdX, for which the slope difference, mean slope, and gap parameters all lie in intervals of
widths, respectively,dA, dB, de, centered on the valuesA, B, e. This statistic is only meaningful
for small values ofe, becauseA andB are only defined for avoided crossings with gaps which are
very small compared to the mean level separation 1/r. The avoided crossing density is calculated
by exactly the same approach as for the density of degeneracies, although the calculation is
somewhat more difficult: the result, obtained in Refs. 3 and 5 is

Db
~ac!~A,B,e!dAdBde5P@B#dBCb

~ac!~r/s!b11eb21deAb11 exp@2bA2/8s2#dA, ~4.7!

whereP@B#dB is a Gaussian distribution, with variances2/b, and

C1
~ac!5

p

24
, C2

~ac!5
p3/2

12
, C4

~ac!5
8p7/2

135A2
. ~4.8!

C. Branch points

Degeneracies between levels of the one parameter model~2.2! can occur for complex values
of X; these degeneracies have a branch point structure. The branch points are important because
they are used to determine the exponents describing the probability of non-adiabatic
transitions.13,14 Branch points can be identified with a particular pair of levels by considering a
closed path in the complexX plane which leaves the real axis and loops around one, and only one,
branch point. For all but one of the levels indicesn, the energy levelEn(X) is single valued when
traced around this path, but one level,Em say, is continuously transformed into another level
Em8 when traced around this path. The levels with indicesm, m8 are connected by the branch
point.

We defineDb
(br)(Y,N)dY to be the frequency with which we encounter branch points involv-

ing thenth level and the leveln1N, with the imaginary part of the parameterX in an interval of
width dY centered onY.

We have only been able to find the density of branch points forN51 and smallY. Branch
points very close to the real axis are associated with avoided crossings with very small values of
e: the distance of the branch point from the real axis ise/A. The density of these branch points is
obtained immediately from~4.7! and ~4.8!:
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Db
~br!~Y,1!5E

0

`

dAE
2`

`

dBE
0

`

deD ~ac!~A,B,e!dS Y2
e

A D
5Cb

~br!~rs!b11Yb21, ~4.9!

with dimensionless constants

C1
~br!5

4p

3
, C2

~br!5
16p3/2

3
, C4

~br!5
210p7/2

45A2
. ~4.10!

Guarneriet al.8 gave an argument for an expression of the form~4.9!, but did not obtain the
prefactors~4.10!.

V. DENSITY OF DEGENERACIES

We now discuss how to determine the density of degeneracies. This has already been de-
scribed in detail for the Gaussian orthogonal ensemble,9 and the result for the Gaussian unitary
ensemble has also been quoted in an earlier paper.10 Here we discuss the GUE case in detail,
presenting details of the calculation which were omitted in Ref. 10; the calculation for the GSE
case is similar, and is discussed in an Appendix.

Following the approach introduced in Sec. III, we select an arbitrary point in parameter space
X0. We assume that this point is close to a degeneracy between levels with indicesn andn11. In
the neighborhood of this point we represent the Hamiltonian in the basis formed by the eigen-
functionsucn(X0)& at X0, and apply two-state degenerate perturbation theory. The separation of
the nearly degenerate levels at a nearby positionX5X01dX is

En112En;AFD1(
i

~] iHn11 n112] iHnn!dXi G214U(
i

] iHnn11dXiU2 , ~5.1!

whereD5En11(X0)2En(X0). Within this approximation the degeneracy occurs when the dis-
criminant~5.1! vanishes, at a displacementdX from X0. The componentsdXi of this displacement
are given by solving a system of linear equations:

(
j51

3

Mi jdXj5Dd1 j , ~5.2!

where the elements of the 333 matrix M̃5$Mi j % are

M1 j5] jHn11 n112] jHnn ,
~5.3!

M2 j52 Re@] jHnn11#, M3 j52 Im@] jHnn11#.

Note that theMi j are elements of a real, non-symmetric, random matrixM̃ with statistically
independent elements, all of which are identically Gaussian distributed, with variance 2s2 and
mean 0.

The distance from the reference point to the degeneracy,R5udXu, is proportional toD: we
write R5D f where

f 25(
i51

3

@~M̃21! i1#
2. ~5.4!
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The probabilityP@R# that the nearest degeneracy exists at a small distanceR can then be written,
by analogy with~3.2!,

P@R#5E
0

`

d fE
0

`

dDP@ f #P@D#d~R2 fD!, ~5.5!

where P@ f # is the probability distribution forf , and P@D# is the distribution of neighboring
energy level separations: these quantities are independent because of the statistical independence
of Ĥ and] i Ĥ ~note thatD depends only uponĤ whereasf depends only upon the matrix elements
] iHnm). The distributionP@D# is the well known level spacing distribution.1,2 WhenR is small,
the Dirac delta function only supports small values ofD, for which the level spacing distribution
is known analytically2 in the limit N→`:

P@D#dD5F13p2r3D21O~D3!GdD, ~5.6!

wherer is the density of states. Performing the integrals in~5.5! gives

P@R#5F13p2r3^ f23&R21O~R3!GdR. ~5.7!

The expected number of degeneracies in a spherical shell of radiusR and thicknessdR is
4pD2

(deg)R2dR; comparing this with~5.7! gives

D2
~deg!5

1

12
pr3^ f23&. ~5.8!

It remains to evaluate the integralI5^ f23&, by averaging over the probability density

dP5P@M̃ #dM̃5P@M11,M12, . . . ,M33#)
i j

dMi j5AexpF2
tr~M̃TM̃ !

4s2 GdM̃, ~5.9!

whereA is a normalization factor. To facilitate the calculation of the average, the non-symmetric
real matrixM̃ is decomposed into a product of two orthogonal matricesÕ1, Õ2, and a diagonal
matrix D̃:

M̃5Õ1
TD̃Õ2 . ~5.10!

This gives a useful simplification of the expression forf :

f 25(
i51

3

@~Õ 1
TD̃Õ2!

21# i1
2 5(

i51

3

@Õ2
TD̃21Õ1! i1]

25(
i51

3

l i
22~Õ1! i1

2 , ~5.11!

wherel i is thei th diagonal element ofD̃. Also, the trace in~5.9! takes on a simple form when we
use~5.10!:

tr~M̃TM̃ !5tr~D̃2!5(
i51

3

l i
2. ~5.12!

We can now calculatêf23& by transforming from the coordinates$Mi j % to a set of coordinates
consisting of the three diagonal elements ofD̃, and two sets of three coordinates

5026 Walker, Sánchez, and Wilkinson: Singularities in the spectra of random matrices

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



a5$a1 ,a2 ,a3% and b5$b1 ,b2 ,b3% which parametrize the orthogonal matricesÕ1 and Õ2 ,
respectively. The JacobianJ of the coordinate transformation is defined by

dM̃5Jda1da2da3db1db2db3dl1dl2dl3 , ~5.13!

whereJ5udetj̃ u and j̃ is composed of three, 933 blocks:

j̃ 5S ]M̃

]l
U ]M̃

]a
U ]M̃

]b D . ~5.14!

In the first block, the elements of the type]Mi j /]lk are independent of thel i . In the second
block the elements]Mi j /]ak are linear in thel i ; the same applies for the third block. Expanding
out the determinant, we find that all the terms which contribute toJ are 6th degree polynomials in
the l i . Furthermore, Ifl i56l j for any i , j , then there exists at least one coordinate for the
orthogonal matricesÕ1, Õ2 which does not affect the matrixM̃ . This implies that the Jacobian
J must vanish wheneverl i56l j . These observations lead to a unique form for the Jacobian,

J5g~a!g~b! )
i , j51
i. j

3

ul i
22l j

2u, ~5.15!

whereg(a)da1da2da3 is an invariant measure for the orthogonal group. The probability mea-
sure in the transformed coordinates is therefore

dP5Ag~a!g~b! )
i , j51
i. j

3

ul i
22l j

2uexpF2
1

4s2(
k51

3

lk
2G)

i51

3

da idb idl i . ~5.16!

We can now use~5.11! and ~5.16! to evaluatê f23&. The three elements (Õ1) i1 in ~5.11! are
components of a unit vector with random direction, and can easily be represented using polar
coordinatesu, f. The required average is then

^ f23&5I 1 /I 2 ,

I 15E dlP@l#E
0

p

du sin uE
0

2p

df~l1
22 cos2 u1l2

22 sin2 u sin2 f1l3
22 sin2 u cos2 f!23/2

~5.17!

I 25E dlP@l#E
0

p

du sin uE
0

2p

df,

whereP@l# is the product of the polynomial and exponential in~5.16!. After performing the
integrals overu andf, we find

^ f23&5
A8s3I ~1,12,3!

I ~ 1
2 ,

1
2,3!

, ~5.18!

where theI (a,g,n) are integrals obtained from results derived by Selberg27 and Aomoto,28

quoted by Mehta,2
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I ~a,g,n!5E
2`

`

. . . E
2`

`

)
i51

n

uxi u2a21 )
1< j, i<n

uxi
22xj

2u2g expF 2xi
2

2 Gdxi
52an1gn~n21!)

j51

n
G~11g j !G~a1g~ j21!!

G~11g!
. ~4.29!

We findI (1,12,3)596, I ( 12 ,
1
2,3)524A2p, so that̂ f23&58s3/Ap. The density of degeneracies

is thereforeD2
(deg)5 2

3Apr3s3.

VI. SINGULARITIES OF CORRELATION FUNCTIONS

Now we discuss how the singularities of the energy levels are related to singularities of the
correlation functionC(X) defined in~1.1!. Our contribution builds upon work of Guarneriet al.,8

who showed that the Fourier transform ofC(X) has a power law decay asuku→`:

C̃~k!;
abs

r S rs

uku D
b12

, ~6.1!

where we will define the Fourier transformf̃ (k) of f (x) as follows:

f̃ ~k!5E
2`

`

dx f~x!exp@ ikx#. ~6.2!

Guarneriet al. were not able to determine the coefficientsab ; we will show how they can be
obtained using the results of Sec. IV B. They showed that the power law decay is caused by
avoided crossings with small values of the gap parametere, and deduced that the algebraic decay
of C̃(k) implies thatC(X) has a non-analytic behavior atX50. Using the generalized Fourier
transform pairs,29

f̃ ~k!5
1

uku3
⇔ f ~x!5

1

2p
x2S loguxu1g2

3

2D , ~6.3a!

f̃ ~k!5
1

k4
⇔ f ~x!5

1

12
uxu3, ~6.3b!

f̃ ~k!5
1

k6
⇔ f ~x!52

1

240
uxu5, ~6.3c!

it can be seen that~6.1! implies the existence of non-analytic terms in the expansion of the
correlation function aboutX50. Expressed in terms of the natural dimensionless variable
x5rsX, the behaviour ofC(x) up to and including the leading non-analytic term is

C~x!52s2@11g1uxu2loguxu1•••# ~GOE!, ~6.4a!

C~x!5s2@11C2
~2!x21g2uxu31•••# ~GUE!, ~6.4b!

C~x!5 1
2 s2@11C4

~2!x21C4
~4!x41g4uxu51•••# ~GSE!. ~6.4c!
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The coefficients of the power series expansion are obtained by a straightforward application of
perturbation theory: the quadratic terms were calculated by Simons and Altshuler,6 and take the
valuesC2

(2)522p2 andC4
(2)52 4

3p2, respectively; the coefficientC4
(4) could also be determined

by the same method. The higher order coefficients of the power series expansion diverge because
of the effects of small denominators. We will now calculate the coefficientsab in ~6.1!, enabling
the coefficientsgb of the singular terms to be identified.

We will find it convenient to assume that the energy levels are periodic inX, with period
L, so that the energy levelEn(X) can be expanded as a Fourier series:

En~X!5 (
m52`

`

am expF 2p imX

L G . ~6.5!

Later we will consider the limitL→`. The correlation functionC(X) will be defined in terms of
an average over the lengthL, which is conveniently expressed in terms of the Fourier coefficients
am :

C~X!5
1

LE0
L

dX8En8~X1X8!En8~X8!5 (
m52`

` S 2pm

L D 2uamu2 expF 2p imX

L G . ~6.6!

For largem, the Fourier coefficients are determined by singularities ofEn(X) closest to the real
axis. These are branch points associated with the avoided crossings with small values of the gap
parametere. In order to calculate the effect of these singularities on the Fourier coefficients, we
will assume that the second derivative of the energy can be approximated by a sum of contribu-
tions from the avoided crossings:

En9~X!;(
j

~21!Pj f ~X2Xj ,Aj ,e j !, ~6.7!

whereAj , e j , andXj are the parameters of thej th avoided crossing.~It is more convenient to use
the second derivative, since this approaches zero at6`.) Here the sum runs over all avoided
crossings between 0 andL, Pj is zero if the avoided crossing is with a level below, unity for
crossing with a level above, andf (X,A,e) is the second derivative of the energy associated with
a single avoided crossing with slope and gap parameters (A,e) at positionX50:

f ~X,A,e!5
A2e2

2~A2X21e2!3/2
. ~6.8!

Using ~6.7! to estimate the Fourier coefficientsam , and we find

am52S 2pm

L D 22 1

L(j ~21!PjE
0

L

dx f~x2Xj ,Aj ,e j !

;2
1

k2L(j ~21!Pj exp@ ikXj # f̃ ~k,Aj ,e j !, ~6.9!

wherek52pm/L, and f̃ (k,A,e) is the Fourier transform off (X,A,e) with respect toX: in the
second relation we have assumed thatL is sufficiently large that, for all the avoided crossings
except those close toXj50 orXj5L, the errors associated with taking the limits of integration to
infinity can be neglected. Using~6.9! to estimateuamu2 gives an expression involving a double
sum over pairs of avoided crossings. The positionsXj of the narrowly avoided crossings can be
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assumed to be random, implying that the average over off-diagonal terms of the double sum
containing the phase factor exp@ik(Xj2Xj8)# vanishes. We can therefore write

uamu2;
1

k4L2
(
j

u f̃ ~k,Aj ,e j !u2

;
2

k4L
E
0

`

dAÈ`

dBE
0

`

deDb
~deg!~A,B,e!u f̃ ~k,A,e!u2, ~6.10!

whereDb
(deg) is the density of avoided crossings defined in Sec. IV B, and the factor of 2 is

included because avoided crossings with both the levels above and below must be considered.
The Fourier transform of~6.8! is

f̃ ~k,A,e!5keK1~ke/A!, ~6.11!

whereK1(x) is the Bessel function with imaginary argument.30,31 In the limit L→` we can
approximate the sum in~6.6! as an integral, and using~6.10! we write

C~X!5
1

2pE2`

`

dk exp@2 ikX#C̃~k!,

~6.12!

C̃~k!5
2

k2
E
0

`

dAE
2`

`

dBE
0

`

deDb
~deg!~A,B,e!u f̃ ~k,A,e!u2

5
2Cb

~ac!

k~b12! S r

s D b11E
0

`

dAA2b13 expF 2bA2

8s2 G E
0

`

dxxb11uK1~x!u2,

where we have used~4.7!. Using the integral identity31

E
0

`

dx xnuK1~x!u25
2n26~n11!~n21!3@G~ 1

2 ~n21!!#4

G~n11!
, ~6.13!

we find thatC̃(k) is in the form~6.1!, with dimensionless constants

a154p3, a25
256p3/2

3
, a45

214A2p7/2

45
. ~6.14!

Expressed in terms of the dimensionless variablex5rsX, the correlation function, up to and
including the first singular term, is therefore

C~x!52s2@12p2x2 loguxu1•••# ~GOE!,

C~x!5s2F122p2x22
64p3/2

9
uxu31••• G ~GUE!, ~6.15!

C~x!5 1
2 s2F12

4p2

3
x21C4

~4!x41
2048A2p7/2

675
uxu51 . . . G ~GSE!.
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APPENDIX: THE DENSITY OF DEGENERACIES FOR THE GSE

Here we discuss the density of degeneraciesD4
(deg) for a parametrized Gaussian symplectic

ensemble. The method employed is the same as that for the GUE, and so can be presented briefly.
The quaternion elementsek can be represented by the 232 matrices:

e05S 1 0

0 1D , e15S i 0

0 2 i D , e25S 0 1

21 0D , e35S 0 i

i 0D , ~A1!

enabling the GSE matrix to be represented by a 2N32N real matrix, which hasN, 2–fold
degenerate eigenvalues: this~Kramer’s! degeneracy will be neglected, and we will calculate the
density of degeneracies between pairs of these double levels. Five parameters must be varied in
order to create these degeneracies.

The condition for a degeneracy between levelsn andn11 to be at a distancedX from an
arbitrary point can be written in a form analogous to~5.2!, whereM̃ is now a 535 matrix with
elements

M1 j5@] j H̃
~S!#nn2@] j H̃

~S!#n11 n11 ,

M2 j52@] j H̃
~S!#nn11 , ~A2!

Mi j52@] j H̃ i22
~A! #nn11 , i53,4,5.

Again M̃5$Mi j % is a non-symmetric real matrix with independent, Gaussian distributed elements,
with mean value zero; the variance iss2 in this case.

The Euclidean length of the vector which solves~5.2! is again writtenR5D f , and following
the GUE analysis we find the probabilityP@R#dR that the nearest degeneracy lies in a shell of
thicknessdR at distanceR. Using the fact that for the GSE, the level spacing distribution is
P@D#dD; 16

135p
4r5D4dD for Dr!1, N@1, we find

P@R#;
16

135
p4r5R4^ f25&, ~A3!

which is valid for smallR. The expected number of degeneracies in this shell isP@R#dR

5 8
3 p2R4D 4

(deg)dR implying that the density of degeneracies for the parameterized GSE is

D4
~deg!5

2

45
p2r5^ f25&. ~A4!

The integralI5^ f25& can be evaluated using the same approach as that used for^ f23& in Sec.
V, using the decomposition ofM̃ given by~5.10!. After some algebra, the original 25 dimensional
integral over theMi j is reduced to the quotient of two five dimensional integrals:
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^ f25&5
s5I ~1,12,5!

I ~ 1
2 ,

1
2,5!

5
16s5

A2p
, ~A5!

where I (a,g,n) is the integral ~5.19!. Combining ~A4! and ~A5!, we then find
D 4

(deg)5(16A2p3/2/45)r5s5.
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We study the normalized tracegn(z)5n21 tr(H2zI)21 of the resolvent ofn3n
real symmetric matricesH5@(11d jk)Wjk An# j ,k51

n assuming that their entries are
independent but not necessarily identically distributed random variables. We de-
velop a rigorous method of asymptotic analysis of moments ofgn(z) for
uIzu>h0 whereh0 is determined by the second moment ofWjk . By using this
method we find the asymptotic form of the expectationE$gn(z)% and of the con-
nected correlatorE$gn(z1)gn(z2)%2E$gn(z1)%E$gn(z2)%. We also prove that the
centralized tracengn(z)2E$ngn(z)% has the Gaussian distribution in the limit
n5`. Based on these results we present heuristic arguments supporting the uni-
versality property of the local eigenvalue statistics for this class of random matrix
ensembles. ©1996 American Institute of Physics.@S0022-2488~96!01210-8#

I. INTRODUCTION

Since the pioneer works of Wigner and Dyson random matrix theory~RMT! has been suc-
cessfully used to describe the energy levels of complex quantum systems: heavy nuclei, quantum
chaotic systems, mesoscopic samples, etc.~see, e.g., Refs. 1–5!. Another rather broad field of the
RMT applications is related to quantum field theory: the large colour limit of QCD, two-
dimensional~2D! quantum gravity and bosonic strings~see, e.g., Refs. 6–8!.

The phenomenological nature of the RMT approach that may be regarded as its certain
drawback on the one hand, provides, on the other hand, the model independent frameworks, that
make the approach applicable to a wide variety of systems having different microscopic natures
and origins. These frameworks assume a certain amount of ‘‘robustness’’ of the RMT models and
results. In other words, it is believed that a ‘‘sufficiently large’’ number of them should have no
dependence or a rather weak one on the random matrix ensemble used. This belief partly explains
the fact that the majority of RMT ideas and applications are based on results obtained for the
archetype Gaussian ensembles~GE’s! and the circular ensembles~CE’s!. On the other hand, this
belief requires a certain justification, in particular extending the results known for the GE’s and for
the CE’s to other classes of ensembles.

The most frequently referred to are the Gaussian orthogonal ensemble~GOE! of random
n3n symmetric matrices and the Gaussian Unitary Ensemble~GUE! of randomn3n Hermitian
matrices. The density of the probability distribution in these ensembles has the form

Pn~H !5Zn
21 exp@2n tr F~H !#, ~I.1!

a!On leave from B. I. Verkin Institute for Low Temperature Physics, Kharkov, 310164, Ukraine.
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whereF(x)5x2/4w2 andZn is the normalization constant.
The probability distribution~I.1! possesses two important properties:~i! it is invariant with

respect to either orthogonal or unitary transformations ofRn or Cn, respectively; and~ii ! the
matrix elements are independent random variables~modulo the obvious symmetry conditions!.

These properties of the GE’s determine them uniquely and motivate two classes of generali-
zations of the GE’s.

The first class consists of ensembles having an orthogonal or unitary invariant but not neces-
sarily matrix-element-independent probability distribution. The typical representatives are the en-
sembles with the probability distribution of the form~I.1! in which F(x) is an arbitrary bounded
below and growing fast enough on infinity function. These invariant ensembles can be used to
describe physical systems having no preferential basis. They also arose in studying the large-n
limit in quantum field theory6–8 and later found other applications.3,9,10

Random matrices with invariant distributions show remarkable ‘‘robustness’’~known as the
universality! of spectral properties in the microscopic regime. In this regime one scales the energy
so that the mean distance between nearest eigenvalues remains of the order of unity as the
dimension of matrices increases.1,11 Thus one is able to study properties of a finite number of
eigenvalues. The universality of the level spacing distribution and other microscopic~local! spec-
tral characteristics has been extensively discussed in recent theoretical physics and mathematical
literature. We refer the reader to a number of publications: Refs. 11–16.

The second class consists of ensembles whose matrix elements in a certain basis are indepen-
dent random variables, i.e., the ensemble probability distribution factorizes into a product of
distributions of the matrix elements in this basis. The corresponding random matrices can be
associated with physical systems having a preferential basis and appear, in particular, in con-
densed matter physics and theory of disordered systems. This second class goes back to Wigner17

and we shall refer to the corresponding ensembles as Wigner ensembles~or Wigner matrices!.
The subject of the present paper is the Wigner ensemble ofn3n real symmetric matrices of

the form

H5@Hjk# j ,k51
n , Hjk5~11d jk!Wjk /An, ~I.2!

whereWjk , j<k are independent random variables such that

E$Wjk%50, E$Wjk
2 %5w2. ~I.3!

Here and thereafterE$•% denotes averaging over allWjk , j<k.
The distributions ofWjk’s may depend on (j ,k), but we assume that they are independent of

n. We make the latter assumption mainly for the sake of technical simplicity. On the other hand,
this assumption allows one to consider allWjk on the same probability space and to find an
optimal form of a number of important facts related to the Wigner ensembles~for example, the
convergence with probability 1 in formulae~I.7! and ~I.11! below!. If Wjk’s are independent
Gaussian random variables, then the ensemble~I.2!–~I.3! coincides with the GOE. This justifies
the presence of the term withd jk in Eq. ~I.2!.

Macroscopic properties of Wigner ensembles are more or less well understood. We call
macroscopic the asymptotic regime in which the number of eigenvalues in unit energy interval is
proportional ton. Discussing macroscopic properties of random matrices we have to mention first
of all the density of states~DOS! which is the simplest macroscopic characteristic of the ensemble
eigenvalue statistics. It turns out that under rather natural and mild conditions on the distributions
of Wjk the DOS in the Wigner ensemble~I.2!–~I.3! does not depend on the form of the distribu-
tions ofWjk . This DOS is known as the Wigner semi-circle law~see Eq.~I.5! below!. Other
macroscopic spectral quantities such as the conductivity and the interband light absorption coef-
ficient show the same ‘‘robustness.’’18–20 Definition of these quantities requires some care for
Wigner matrices. However, the conductivity and the interband light absorption coefficient can be
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defined and computed for the so-called band random matrices and random operators with inde-
pendent matrix elements that are quite close to the Wigner ensemble~I.2!–~I.3! in their macro-
scopic properties both technically and by results~see, e.g., Ref. 21!. As for the microscopic scale,
supersymmetry calculations22 suggest ‘‘robustness’’~universality! of spectral properties of the
Wigner ensemble~I.2!–~I.3! as well but evidence of this has not been rigorously established so
far.

Introduce the normalized eigenvalue counting function

Nn~E!5n21#$Ej : Ej is an eigenvalue ofH andEj<E%. ~I.4!

Wigner at the end of the 1950s proved17 that in the case of identically distributedWjk having all
momentsNn(E) converges in probability asn→` to a non-decreasing functionNsc(E) ~the
semi-circle law! whose derivative~DOS! is

r~E!5H 1

2pw2
A4w22E2, uEu<2w

0, uEu.2w.

~I.5!

The modern formulation of Wigner’s result is as follows. Let us consider random matrices
~I.2!–~I.3! with mutually independent arbitrary distributed entries defined on a common probabil-
ity space. Then the condition~the matrix analogue of the Lindeberg condition of probability
theory!

lim
n→`

1

n2
(
j<k

E
uxu.nn1/2

x2 d Prob@Wjk<x#50, for any n.0, ~I.6!

is sufficient23 and necessary24 for the following limiting relation

lim
n→`

Nn~E!5Nsc~E! ~I.7!

to hold for everyE with probability 1.25 If we will not assume thatWjk are defined on the same
probability space or if their probability distributions depend onn, then the same condition~I.6!
will imply the convergence in probability in Eq.~I.7!

As is usual in spectral theory, this result admits a natural reformulation in terms of the
resolvent~Green’s function!. Indeed, the normalized trace of the resolvent

gn~z!5n21 tr ~H2zI!21 ~I.8!

is simply the Stieltjes transform ofNn(E):

gn~z!5
1

n(j51

n
1

Ej2z
5E dNn~E!

E2z
. ~I.9!

Denote the Stieltjes transform of the Wigner law~I.5! by r (z),

r ~z!5E Nsc~dE!

E2z
5

2z1Az224w2

2w2 . ~I.10!

The obvious conditionIr (z)Iz>0 determines the branch of the square root in Eq.~I.10!. Due to
the one-to-one correspondence between non-decreasing functions and their Stieltjes transforms26

Eq. ~I.7! is equivalent to the following limiting relation
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lim
n→`

gn~z!5r ~z!, ~I.11!

which holds with probability 1 for any non-realz.
The relation~I.11! and the obvious boundugn(z)u<uIzu21 imply that the variance ofgn(z)

vanishes asn→` and hence the moments

mn
~p!~z1 , . . . ,zp!5EH)

l51

p

gn~zl !J ~I.12!

factorize:

mn
~p!~z1 , . . . ,zp!5)

l51

p

mn
~1!~zl !1o~1!, n→` ~I.13!

This factorization, which follows already from the convergence in probability in Eq.~I.7! or in Eq.
~I.11! , is typical for the macroscopic regime and can be found hidden behind many calculations
in this regime. It has been known in fact since Refs. 17, 27, 23 and 28.

Since according to Eq.~I.11! mn
(1)(z)5E$gn(z)%5r (z)1o(1), the leading term of

mn
(p)(z1 , . . . ,zp) is P l51

p r (zl). It seems interesting from a number of points of view to also find
sub-leading terms and their dependence on the probability distributions of matrix elements. For
instance these sub-leading terms are important when we would like to go beyond the macroscopic
regime, when we are computing connected correlators ofgn(z), etc.

For the Gaussian entries respective corrections were studied in Ref. 29 where the formal
perturbation theory with respect toHjk and the respective diagrammatic technique were applied.
This approach is an adaptation of the technique developed in Ref. 30 in order to construct the
1/n expansion for the random operator describing disordered systems onZd with n orbitals per
site.

In Ref. 31 we suggested an approach that allows for the rigorous treatment of this problem in
the general case of independent and arbitrary but not necessarily identically distributed matrix
elements. Our approach allows us to estimate remainders in respective asymptotic formulae and
we show that these estimates are in a sense optimal. The approach is also free to a large extent
from the cumbersome combinatorial problem of rearranging diagrams which is necessary in order
to carry out various ‘‘dressing’’ procedures. In particular, the dressing procedure that replaces the
‘‘bare’’ Green function21/z by limn→` E$gn(z)% is automatic in our approach. Following Ref.
31 one is able to find as many terms in the asymptotic expansion ofmn

(p)(z1 , . . . ,zp) as needed,
though the technical difficulties increase with the order.

In the present paper we use the general scheme of Ref. 31 in order to compute first terms in
the asymptotic expansion ofE$gn(z)%. We also prove that if the distributions ofWjk satisfy the
Lindeberg condition~I.6! with x2 in the integral replaced byx4, and if in addition to Eq.~I.3! the
fourth moments ofWjk do not depend on (j ,k), then

Fn~z1 ,z2!5mn
~2!~z1 ,z2!2mn

~1!~z1!mn
~1!~z2!5n22f ~z1 ,z2!1o~n22!, ~I.14!

where

f ~z1 ,z2!5
2w2

@12w2r 2~z1!#@12w2r 2~z2!#
F r ~z1!2r ~z2!

z12z2
G21 2sr 3~z1!r

3~z2!

@12w2r 2~z1!#@12w2r 2~z2!#
~I.15!

and s5E$Wjk
4 %23E2$Wjk

2 % is the excess ofWjk . We also establish a limit theorem for the
centralized tracengn(z)2E$ngn(z)% of the resolvent.
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Unfortunately, our approach gives an estimate for the remainder term in Eq.~I.14! containing
a power ofuIz1Iz2u21 as a factor. Thus we cannot treat rigorously the microscopic regime which
requiresIz } 1/n. On the other hand, the first term@Eq. ~I.15!# of the asymptotic formula~I.14! is
well defined in this regime and coincides with the respective exact expression known for the GOE,
provided that the latter is considered for large level spacings and is smoothed over an interval
D such that 1/n!uDu!1 in proper units~see Section VI!. We feel therefore, that by using our
procedure of computing corrections, i.e., keeping the imaginary part of energy fixed whenn goes
to infinity and then lettingIz go to zero , one may treat energy intervals that are very large on the
microscopic scale. On this intermediate scale the second term on the right-hand side~rhs! of Eq.
~I.15! which contains the probability distribution excesss vanishes and the above mentioned
universality is restored.

Our article is organized as follows. In Section II we present our basic tools. In Section III we
calculate first terms of the asymptotic expansion forE$gn(z)%. In Section IV we give a simple
proof of Eqs.~I.14!–~I.15! with o(n22) replaced byO(n25/2) provided that the fifth absolute
moment ofWjk is uniformly bounded. This result was cited without proof in Ref. 31. In Section
V we treat the general case ofWjk satisfying the higher order Lindeberg condition mentioned
above. We prove that the fluctuations ofngn(z) around its mean value become Gaussian in the
limit n→` and that the covariance of the limiting Gaussian function isf (z1 ,z2), thus proving
Eqs.~I.14!–~I.15! in the general case. Section VI contains a discussion of some implications of our
results.

II. PRELIMINARIES

In this section we present our basic technical tools.
~i! If j is a real-valued random variable such thatE$ujup12%,` and if f (t) is a complex-

valued function of a real variable such that its firstp11 derivatives are continuous and bounded,
then

E$j f ~j!%5 (
a50

p
ka11

a!
E$ f ~a!~j !%1«, ~II.16!

whereka are the semi-invariants~cumulants! of j, u«u<C suptu f (p11)(t)uE$ujup12% and the quan-
tity C depends onp only.

The semi-invariants can be expressed in terms of the moments. IfE$j%50 ~the case we shall
deal with! and ma5E$ja%, then a few such first relations are:k15m150, k25m2 , k35m3 ,
k45m423m2

2, k55m5210m3m2 , k65m6215m4m2210m3
2230m2

3, etc. For a Gaussian random
variable with zero mean, all semi-invariants butk2 vanish and Eq.~II.16! reduces to the exact
relation

E$j f ~j!%5E$j2%E$ f 8~j!%, ~II.17!

which can directly be checked integrating the left-hand side~lhs! of Eq. ~II.17! by parts. This is
only the case when formula~II.16! contains a finite number of terms for non-polynomialf ’s.
Indeed, according to the Marcynkiewicz theorem32 if all but a finite number of cumulants are zero,
then only the first and second can be non-zero.

~ii ! For any matrixA5@Aab#a,b51
n

]

]Ajk
~A21!ab52~A21!a j~A

21!kb

providedA21 exists. For the resolventG of a real symmetric matrixH this becomes
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]Gab

]Hjk
5H 2Ga jGkb , j5k

2Ga jGkb2GakGjb , jÞk. ~II.18!

~iii ! For any two real symmetric matrices and any non-realz the resolvent identity

~H22zI!215~H12zI!212~H12zI!21~H22H1!~H22zI!21 ~II.19!

is valid. In particular, ifH25H, H150 andG5(H2zI)21, then

Gjm5z21d jm1z21(
k51

n

GjkHkm . ~II.20!

Let H belong to the Wigner ensemble~I.2!–~I.3!. For a fixed complexz consider complex-valued
random variablegn(z)5n21 tr(H2zI)21. Define its variance as

E$ugn~z!2E$gn~z!%u2%5Fn~z,z
†! ~II.21!

and define also the domain in the complex plane as follows

U05$zPC6 :uIzu>2w%. ~II.22!

We use an asterisk to denote complex conjugate and the sub-indexC to indicate centering to
zero mean. For instance,gn

C(z)5gn(z)2E$gn(z)% and thus we can rewrite Eq.~II.21! as

Fn~z,z
†!5E$ugn

C~z!u2%5E$gn~z!gn
C~z†!%. ~II.23!

We will write O(n2p) in asymptotic formulae for the remainders having a uniform~with respect
z P U0) upper bound of the formCn

2p whereC does not depend onn. In fact the bounds we are
able to derive contain 1/(12uIzu2/2w2) ~see, e.g., formula~II.29! below for the simplest case!.
ThusC is finite for any fixedz satisfyinguIzu.A2w. But we prefer to useuIzu>2w in favor of
uniformity of the bounds with respect toz P U0 .

~iv! Let H belong to the Wigner ensemble~I.2!–~I.3!. Assume that the fifth absolute moment
of the random variablesWjk is uniformly bounded, i.e. supj<kE$uWjku5%,1`, and thatz P U0 .
Then

E$ugn~z!2E$gn~z!%u2%5E$ugn
C~z!u2%5O~n22!, as n→`. ~II.24!

Let us comment on~i!–~iv!. Facts~ii ! and ~iii ! are well known. The ‘‘decoupling’’ formula
~II.16! is simple to understand in the case whenj has all moments andf (x) belongs to the
Schwartz space. Indeed, by using the Parseval relation for the Fourier transforms we can rewrite
the lhs of Eq.~II.16! as

i

2pE2`

` d

dt
F†~ t !P~ t !dt52

i

2pE2`

`

F†~ t !
d

dt
P~ t !dt ~II.25!

where

F~ t !5E
2`

`

ei jt f ~j!dj and P~ t !5E
2`

`

ei jtdP~j!

are the Fourier transforms off (j) and of the probability distributionP(•) of j, respectively. Now,
if we take into account that
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P~ t !5 (
a50

`
~ i t !ama

a!
and u~ t ![ log P~ t !5 (

a51

`
~ i t !aka

a!

we can rewrite the rhs of Eq.~II.25! as

2
i

2pE2`

`

F†~ t !u8~ t !eu~ t !dt52
i

2p (
a50

`
ka11

a! E
2`

`

~ i t !a11F†~ t !P~ t !dt5 (
a50

`
ka11

a!
E$ f ~a!~j !%,

where we again used the Parseval relation. The latter formula is obviously Eq.~II.16! for
p5`. The case whenj has a finite number of moments andf (j) has a respective number of
derivatives requires certain technicalities which we will not discuss here.

The bound~iv! plays an important role in many questions of random matrix theory and its
applications. In fact, it is the simplest of bounds for connected correlators~cumulants! of gn(z) or,
more generally, for cumulants of linear statistics of the eigenvalues~ i.e., sumsn21( j50

n f(Ej )
wheref(E) is smooth enough!. We are going to present a detailed derivation of these bounds and
asymptotics~both for the Wigner ensembles and unitary invariant ensembles! in a subsequent
publication.

Here we only outline the scheme of the derivation of the bound~iv! considering the simplest
case of the GOE and treating it as a representative of the Wigner ensembles, i.e. ensembles with
independent entries. Setr n(z)5E$gn(z)%. Then, according to Eqs.~II.17!, ~II.18! and ~II.20! we
have the relation

r n~z!52
1

z
2
w2

z
E$gn

2~z!%1
w2

n2z
E$ tr G2%. ~II.26!

Applying similar arguments toE$ugn
2(z)u% and using Eq.~II.26! we obtain the analogous relation

for the variance~II.23!

Fn52
w2

z
E$gn

2~z!gn
C~z†!%2

w2

n2z
E$@gn

C~z!#† tr G2%2
2w2

n3z
E$ tr G~G* !2%, ~II.27!

where G*5(H2z†I )21. By using the identity E$gn
2(z)gn

C(z†)%5E$(gn(z)1E$gn(z)%)
3u gn

C(z)u2%, the Cauchy–Schwarz inequality and the inequality~III.33! below we can show that
the first term on the rhs of Eq.~II.27! is bounded above by 2w2h22Fn , whereh5uIzu, the
second is bounded byw2(nh2)21Fn

1/2 and the third is bounded by 2w2(n2h4)21. As a result we
obtain the following inequality forh2.2w2

S 12
2w2

h2 D Fn2
w2

nh2
Fn
1/22

2w2

n2h4
<0, ~II.28!

which implies that

Fn5E$ugn
C~z!u2%[E$ugn~z!2E$gn~z!%u2%<

C1

n2
, ~II.29!

whereC15h22(e21)22C1(e), e5h2/2w2, 1,e,` andC1(e) is finite for 1<e,` Thus we
have obtained Eq.~II.24! for the GOE. This is the simplest but typical bound that can be obtained
by our method. In the general case of non-GaussianWjk’s one has to iterate the resolvent identity
~I.20! and use Eq.~I.16! instead of Eq.~I.17!, truncating this procedure on the proper step and
estimating remainders by variants of arguments presented above.
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The bounds~II.29! and ~II.26! allow us to prove Eqs.~I.7! and ~I.11! for the GOE. Indeed,
combining Eq.~II.26! and ~II.29! we obtain

Ur n~z!1
1

z
1
w2

z
r n
2~z!U< C2

n
,

whereC2 has same properties asC1 in Eq. ~II.29!. The bound and standard compactness argu-
ments show that any limit pointr (z) of the sequence$r n(z)% satisfies the equation

w2r 2~z!1zr~z!1150 ~II.30!

for uIzu>h0.0. Since this equation has the unique solution~I.10! satisfyingIr (z)Iz>0, we
conclude that uniformly inuIzu>h0.0 limn→` r n(z)5r (z) wherer (z) is given by Eq.~I.10!.
Besides, since the GaussianWjk satisfying Eq.~I.3! can be defined on the same probability space
we conclude from Eq.~II.29! and the Borel–Cantelli lemma that Eqs.~I.11! and ~I.7! and are
valid.

III. ASYMPTOTIC EXPANSION FOR E$gn(z)%

We recall our notationmn
(1)(z) for the mean value ofgn(z)5n21 tr (H2zI)21. In this

section we prove the following
Theorem 1:Consider the Wigner ensemble of random real symmetric matrices with indepen-

dent entries defined by Eqs. (I.2)–(I.3). Assume additionally that the third and fourth moments of
Wjk do not depend on j and k and thatm̂55sup j<kE$uWjku5%,1`.

Then the following asymptotic formula

mn
~1!~z!5r ~z!H 11

1

n F w2r 2~z!

@12w2r 2~z!#2
1

sr 4~z!

12w2r 2~z!G J 1O~n23/2! ~III.31!

holds for any zP U0 (U0 is defined in Eq. (II.22)).
Proof: By the resolvent identity~II.19!–~II.20!,

mn
~1!~z!52z211~zn!21 (

j ,m51

n

E$GjmHmj%. ~III.32!

If we were following the conventional perturbational-diagrammatic approach trying to develop the
asymptotic expansion forE$gn(z)%, we would repeatedly iterate the resolvent identity selecting on
each step the terms that contribute to the leading and sub-leading terms. The obvious drawback of
such an approach is that infinitely many iterations are needed and in the non-Gaussian case, when
there is no analogue of the Wick theorem, the diagrammatic approach is rather complicated.

We propose making use of Eq.~II.16! instead of iterating the resolvent identity. For each pair
( j ,m), Gjm is a smooth function ofHmj and its derivatives are bounded because of Eq.~II.18! and
the inequality

uGjmu<iGi<uIzu21, ~III.33!

which holds for the resolvent of any real symmetric matrix. In particular,uDmj
4 Gjmu<CuIzu25

whereC is an absolute constant. Here and thereafter we use the notationDmj for ]/]Hmj .
According to Eqs.~I.2!–~I.3! and our assumptions, the fifth absolute moment ofHmj is of the

ordern25/2. Thus applying Eq.~II.16! ~with p53) to each of the summands in the rhs of Eq.
~III.32! one finds that
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zmn
~1!~z!5211 (

a51

3
1

n~a13!/2 (
j ,m51

n
ka11~11d jm!~a11!/2

a!
E$Dmj

a Gjm%1«n , ~III.34!

whereka are the semi-invariants ofWmj and

u«nu<
C

n3/2
m̂5

uIzu5
.

Obviously, G is a complex symmetric matrix, i.e.Gjm5Gmj . By Eq. ~II.18!,
Dmm
a Gmm5a!Gmm

a11 and

2Dmj
1 Gjm5Gjm

2 1Gj jGmm, ~III.35!

Dmj
2 Gjm52Gjm

3 16GjmGj jGmm, ~III.36!

2Dmj
3 Gjm56Gjm

4 136Gjm
2 Gj jGmm16Gj j

2Gmm
2 ~III.37!

for distinct j andm. Let us setk25w2 andk45s in Eq. ~III.34!. Then, as a consequence of Eqs.
~III.35!–~III.37!,

zmn
~1!~z!5212w2mn

~2!~z,z!2n21@w2E$cn~z!%1sE$dn
2~z!%#1«n , ~III.38!

where

cn~z!5
1

n (
j ,m51

n

Gjm
2 , dn~z!5

1

n(
m51

n

Gmm
2 ~III.39!

and

u«nu<
C

n3/2S uk3u
uIzu3

1
uk4u
uIzu4

1
m̂5

uIzu5D . ~III.40!

provideduIzu > 2w andn is large enough.
To infer Eqs.~III.38!–~III.40! from Eq.~III.34!, notice first that for the sum overj5m on the

rhs of Eq.~III.34! we have the bound

1

n~a13!/2U (
m51

n

Dmm
a GmmU< C

n~a11!/2uIzua11}
1

n~a11!/2<
1

n3/2
, a52,3

for all realizations ofWjk . Therefore, being interested in the leading-order and 1/n-order terms of
mn
(1)(z) we can omitd jm from the factor in front of the second and third derivatives. As for the

first derivatives, it follows from Eq.~III.35!, that for all j and m (11d jm)Djm
1 Gjm5Gjm

2

1Gj jGmm and the term arising fromd jm contributes to 1/n-order term in the asymptotic expan-
sion ofmn

(1)(z).
Now, Gjm

2 in the rhs of Eq.~III.35! makesE$cn(z)% in Eq. ~III.38! and Gj jGmm does
mn
(2)(z,z).The term containingGj j

2Gmm
2 in the rhs of Eq.~III.37! leads toE$dn

2(z)% in Eq. ~III.38!
and the rest in the rhs of Eqs.~III.36! and~III.37! contributes to«n in Eq. ~III.38!. Corresponding
bounds for the terms coming fromGjm

3 in Eq. ~III.36! and fromGjm
4 andGjm

2 Gj jGmm in Eq.
~III.37! result from the simple inequality
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n21 (
j ,m51

n

uGjmup<uIzu2p, p>2 ~III.41!

which holds for the resolvent of any real symmetric matrix. Estimating the term coming from
GjmGj jGmm in the rhs of Eq.~III.36! requires a longer calculation. Set

hn~z!5
1

n (
j ,m51

n

GjmGj jGmm. ~III.42!

Substitute the rhs of Eq.~II.20! for Gjm in hn(z). Then

zE$hn~z!%52
1

n(
m51

n

E$Gmm
2 %2w2E$gn~z!hn~z!%1O~n21/2! ~III.43!

as follows from Eqs.~II.16!, ~III.35!–~III.37! and simple resolvent bounds like Eq.~III.33! or Eq.
~III.41!. Here and below we use the notationO(n2p) for remainders admitting the upper bound
Cn2p, whereC does not depend onn for uIzu>2w.

According to Eq.~II.24! the variance ofgn(z) is of ordern
22 under our assumptions. In other

words

mn
~2!~z,z!5@mn

~1!~z!#21O~n22! ~III.44!

if zP U0 . Obviously,

E$hn~z!gn~z!%2E$hn~z!%E$gn~z!%5E$hn~z!@gn~z!2E$gn~z!%#%

and by the Cauchy–Schwarz inequality

E$hn~z!gn~z!%5E$hn~z!%mn
~1!~z!1O~n21!.

Therefore by Eq.~III.43!,

@z2w2mn
~1!~z!#E$hn~z!%52

1

n(
m51

n

E$Gmm
2 %1O~n21/2! ~III.45!

andE$hn(z)% is of the order of unity. The term we wish to estimate is

2k3

n5/2 (
j ,m51

n

E$GjmGj jGmm%5
2k3

n3/2
E$hn~z!%

and from Eq.~III.45! we see it is of the order ofn23/2. This proves Eqs.~III.38!–~III.40!.
The calculation above is typical of our approach and uses Eqs.~II.16! and ~II.20! combined

with simple resolvent bounds on different stages. In what follows we shall often use similar
calculations omitting details.

Equations~III.38!–~III.40! and Eq.~III.44! imply that

mn
~1!~z!5r ~z!1O~n21!, ~III.46!

where r (z) solves Eq.~II.30!. Because of Eq.~I.9! mn
1(z) as a function ofz must satisfy the

inequalityIr (z)Iz>0. This restriction fix the branch of the square root in the expression for the
solutions of Eq.~II.30!. Thusr (z) coincides with the Stieltjes transform~I.10! of the semi-circle
law ~I.5!, as expected.
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Once the leading term ofmn
(1)(z) is found, we can proceed with finding the sub-leading term.

From Eq.~III.38! it is clear that performing this task requires calculating the leading-order terms
of E$cn(z)% andE$dn

2(z)%. Substitute the rhs of Eq.~II.20! for one ofGjm in cn(z) and apply Eq.
~II.16!. As a result,

zE$cn~z!%52mn
~1!~z!22w2E$cn~z!gn~z!%1O~n21!.

By Eq. ~II.24!,

zE$cn~z!%52mn
~1!~z!22w2mn

~1!~z!E$cn~z!%1O~n21! ~III.47!

and in the leading order

E$cn~z!%52mn
~1!~z!@z12w2mn

~1!~z!#21.

Taking into account Eqs.~III.46!–~II.30! we conclude that

E$cn~z!%5r 2~z!@12w2r 2~z!#211O~n21!. ~III.48!

Now, calculate the leading-order term ofE$dn
2(z)%. Recall that according to Eq.~II.24! the

variance ofgn(z) is of the order ofn
22. By Eq. ~I.11!, gn(z)5n21(m51

nGmm converges almost
surely tor (z) asn→`. Or, put another way, the Cesaro limit ofGmm is r (z). This suggests that
the Cesaro limit ofGmm

2 should be equal tor 2(z), or in other wordsdn(z) should converge almost
surely tor 2(z). ThereforeE$dn

2(z)% should converge tor 2(z).
To prove the convergence rigorously and to estimate its rate, we first note that the variance of

dn(z) is of ordern
21 if z P U0 ~this can be proved following the calculations of Appendix B!.

Therefore

E$dn
2~z!%5E$dn~z!%21O~n22!. ~III.49!

Thus, it suffices to find the leading-order term ofE$dn(z)%.
Again, as in the case ofcn(z), substitute the rhs of Eq.~II.20! ( j5m) for one ofGmm in

dn(z) and apply Eq.~II.16!. As a result,

zE$dn~z!%52mn
~1!~z!2w2E$dn~z!gn~z!%1O~n21/2!.

By Eq. ~II.24!,

zE$dn~z!%52mn
~1!~z!2w2mn

~1!~z!E$dn~z!%1O~n21/2!

and

E$dn~z!%52mn
~1!~z!@z1w2mn

~1!~z!#211O~n21/2!.

Finally by Eqs.~III.46! and ~II.30!,

E$dn~z!%5r 2~z!1O~n21/2! ~III.50!

and by Eq.~III.49!,

E$dn
2~z!%5r 4~z!1O~n21/2!. ~III.51!

Now we are in a position to find the sub-leading term ofmn
(1)(z). Collect Eqs.~III.38!,

~III.44!, ~III.48! and ~III.51! and write
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zmn
~1!~z!5212w2@mn

~1!~z!#22
1

n F w2r 2~z!

12w2r 2~z!
1sr 4~z!G1O~n23/2!.

In view of Eqs.~III.46! and ~II.30! this relation is obviously equivalent to the statement of the
theorem, i.e. to the asymptotic formula~III.16!. The theorem is proved.

Remarks:
1. Our bound for the remainder in Eq.~III.31! is an optimal one. By assuming the sixth

absolute moment ofWjk to be uniformly bounded and keeping one more term when applying Eq.
~II.16!, we can find a term of the order ofn23/2 in the asymptotic expansion ofmn

(1)(z). This term
is proportional tok35E$Wjk

3 %
2. If the distributions ofWjk are such thatE$Wjk

3 %50, then the boundO(n23/2) for the
remainder in Eq.~III.31! can be strengthened toO(n22). For terms of the order ofn23/2 appear
in Eq. ~III.31! due to the contribution ofk3n

23/2E$hn(z)% to «n in Eq. ~III.38! and also because of
Eq. ~III.51!. If E$Wjk

3 %50, thenk350 and we can prove that the remainder in Eq.~III.51! is of the
order ofn21 ~terms of ordern21/2 in the rhs of Eq.~III.51! are proportional tok3).

3. For GaussianWjk the excesss is zero and Eq.~III.31! reduces to the asymptotic formula

E$gn~z!%5r ~z!F11
1

n

w2r 2~z!

@12w2r 2~z!#2G1O~n22!,

which has been derived earlier by the formal diagrammatic approach.29

IV. LEADING ORDER OF Fn(z1 ,z2)

Let us recall our notationFn(z1 ,z2) ~see Eq. ~I.14!! for the covariance function of
gn(z)5n21 tr(H2zI)21,

Fn~z1 ,z2!5E$gn
C~z1!gn

C~z2!%5E$gn~z1!gn
C~z2!%.

In this section we prove the following
Theorem 2:Consider the Wigner ensemble of random real symmetric matrices with indepen-

dent entries defined by Eqs. (I.2)–(I.3). Assume additionally that the third and fourth moments of
Wjk do not depend on j and k and thatm̂55supj<kE$uWjku5%,1`.

Let f(z1 ,z2) be the function given by Eqs. (I.15). If z1 and z2 belong to U0 Eq. (II.22), then
the following asymptotic relation

Fn~z1 ,z2!5n22f ~z1 ,z2!1O~n25/2! ~IV.52!

is valid.
Proof: Let us first prove Eq.~IV.52! under the assumption

m̂75sup
j<k

E$uWjku7%,1`. ~IV.53!

Let Gjm(z) denote a matrix element of (H2zI)21. By Eq. ~II.20!,

z1Fn~z1 ,z2!5
1

n (
j ,m51

n

E$HmjGjm~z1!gn
C~z2!%.

For each pair (j ,m) Gjm(z1)gn
C(z2) is a smooth function ofHmj and its derivatives are bounded

because of Eq.~III.33!. In particular,uDmj
6 @Gjm(z1)gn

C(z2)#u<C(uIz1u211(uIz2u21)8. Therefore
by Eq. ~II.16!,
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zFn~z1 ,z2!5 (
a51

5
1

n~a13!/2 (
j ,m51

n
ka11~11d jm!~a11!/2

a!
E$Dmj

a @Gjm~z1!gn
C~z2!#%1«n ,

~IV.54!

whereka are semi-invariants ofWmj , as in Eq.~III.34!, and

u«nu<n25/2Cm̂7~ uIz1u211~ uIz2u21!8.

Performing differentiation on the rhs of Eq.~IV.54! one finds that the sums of the fifth, fourth
and second derivatives in the rhs of Eq.~IV.54! contribute toz1Fn(z1 ,z2) terms of ordern

29/2,
n27/2 andn25/2, respectively~corresponding bounds can be obtained using Eqs.~II.24!, ~III.33!
and~III.41!!. So, these derivatives give no contribution to the leading-order term ofFn(z1 ,z2). It
remains to estimate the contributions coming from the first and third derivatives.

The contribution of third derivatives toz1Fn(z1 ,z2) consists of several terms which we shall
label by integera andb satisfying 0<a,b<3 anda1b53. These terms are

sn
~a,b!~z1 ,z2!5

k4

6n3
(

j ,m51

n

E$Dmj
a Gjm~z1!Dmj

b gn
C~z2!%.

First estimatesn
(3,0)(z1 ,z2). After differentiating it takes the form

sn
~3,0!~z1 ,z2!52n22k4EH n21 (

j ,m51

n

Gjm
4 ~z1!gn

C~z2!16hn~z1!gn
C~z2!J 2n21k4E$dn

2~z1!gn
C~z2!%.

~IV.55!

(hn(z) and dn(z) are defined in Eqs.~III.42! and ~III.39!, respectively!. As follows from Eqs.
~II.24! and ~III.41!, the mean value in the rhs of the equation above isO(n21), so

sn
~3,0!~z1 ,z2!52n21k4E$dn

2~z1!gn
C~z2!%1O~n23!.

Now we employ the obvious algebraic relation~in the below sub-indexC indicates the subtracted
mean value!

E$h2jC%52E$hCjC%E$h%1E$~hC!2jC% ~IV.56!

and writeE$dn
2(z1)gn

C(z2)% as

2E$dn
C~z1!gn

C~z2!%E$dn~z1!%1E$@dn
C~z1!#

2gn
C~z2!%.

If z P U0 , variances ofgn(z) anddn(z) are of ordern22. In addition to this,dn(z) is bounded
in absolute value byCuIzu22 for all realizations ofWjk . Therefore by the Cauchy–Schwarz
inequality, E$dn

2(z1)gn
C(z2)%5O(n22), provided z1 ,z2 P U0 . Thus we have proved that

sn
(3,0)(z1 ,z2)5O(n23). A similar argument shows thatsn

(0,3)(z1 ,z2) and sn
(2,1)(z1 ,z2) are

O(n23), too. The last term we need to estimate issn
(1,2)(z1 ,z2). It is easy to see that

sn
~1,2!~z1 ,z2!5n212k4EH n21 (

m51

n

Gmm~z1!Gmm~z2!J EH n21 (
j ,m51

n

Gmm~z1!Gjm
2 ~z2!J 1O~n23!.

Mean values in the above are calculated in exactly the same way asE$cn(z)% andE$dn(z)% have
been done. For largen:
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n212k4EH n21 (
m51

n

Gmm~z1!Gmm~z2!J 5r ~z1!r ~z2!1O~n21/2!

and

EH n21 (
j ,m51

n

Gmm~z1!Gjm
2 ~z2!J 5r ~z1!r

2~z2!1O~n21!

~compare with Eqs.~III.48! and~III.50!!. Thus we conclude that the contribution of third deriva-
tives is

2
1

n2
sr 2~z1!r

3~z2!

12w2r 2~z2!
, ~IV.57!

Eq. ~II.17! ~we recall usings for k4).
First derivatives in the rhs of Eq.~IV.54! contribute toz1Fn(z1 ,z2) the term

tn~z1 ,z2!52w2E$gn
2~z1!gn

C~z2!%2n21w2E$cn~z1!gn
C~z2!%

2n222w2E$n21 tr~H2z1I !
21~H2z2I !

22%. ~IV.58!

By the resolvent identity~II.19!

~H2z1I !
21~H2z2I !

215~z12z2!
21@~H2z1I !

212~H2z2I !
21#.

Thus one reducesE$n21 tr(H2z1I )
21(H2z2I )

22% to

~z12z2!
21@~z12z2!

21E$gn~z1!2gn~z2!%2E$cn~z2!%#.

Now recalling Eqs.~III.46!, ~III.48! and ~II.30!,

E$n21 tr~H2z1I !
21~H2z2I !

22%5
1

r ~z1!@12w2r 2~z2!#
F r ~z1!2r ~z2!

z12z2
G21O~n21!.

~IV.59!

Clearly,E$cn(z1)gn
C(z2)%5E$cn

C(z1)gn
C(z2)% and the corresponding summand on the rhs of

Eq. ~IV.58! is O(n23). So it remains to findE$gn
2(z1)gn

C(z2)%.
Use Eq.~IV.56! to write

E$gn
2~z1!gn

C~z2!%52Fn~z1 ,z2!mn
~1!~z1!1E$@gn

C~z1!#
2gn

C~z2!%52Fn~z1 ,z2!mn
~1!~z1!1O~n25/2!.

~IV.60!

The latter equality usesE$@gn
C(z1)#

2gn
C(z2)%5O(n25/2), the bound which can be obtained fol-

lowing calculations of Appendix B.
Now we are in a position to find the leading order ofFn(z1 ,z2). Collecting Eqs.~IV.57!–

~IV.60!, we find that

z1Fn~z1 ,z2!522w2Fn~z1 ,z2!mn
~1!~z1!2

1

n2
sr 2~z1!r

3~z2!

12w2r 2~z2!

2
2w2

r ~z1!@12w2r 2~z2!#
F r ~z1!2r ~z2!

z12z2
G21O~n25/2!.

As it is clear from Eqs.~III.46! and ~II.30!,
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@z112w2mn
~1!~z1!#

2152r ~z1!@12w2r 2~z1!#
211O~n21!

and we end up with Eq.~IV.52!.
The standard truncation technique of probability theory allows us to prove Eq.~IV.52! in the

case when only the fifth absolute moment of the random variablesWjk is uniformly bounded.
Calculations using the truncation technique are similar to those used in next section in proof of
Theorem 3 and we omit them. Theorem 2 is proved.

One can consider the covariance functionFn(z1 ,z2) for the Wigner ensemble of random
Hermitian matrices~see remark 3 after the statement in Theorem 3 in the next section!. Repeating
almost literally calculations used in the proof of Theorem 2, one can prove that for the Wigner
ensemble of Hermitian matrices Eq.~IV.52! is still valid. The only difference is that now
f (z1 ,z2) is given by the rhs of Eq.~I.15! multiplied by factor 1/2.

V. GAUSSIAN FLUCTUATIONS OF THE CENTRALIZED TRACE OF THE RESOLVENT

In this section we prove the statement which is analogous to the central limit theorem in the
same sense in which the result Eq.~I.11! is analogous to the law of large numbers. Indeed, we can
rewrite ~I.11! as following limiting relation

lim
n→`

1

n(
m51

n

Gmm5r ~z! ~V.61!

valid with probability 1. Since the lhs here has the form of the arithmetic~Cesaro! mean, this
relation is obviously similar to the strong law of large numbers~or more generally to the ergodic
theorem!. Common wisdom of probability and ergodic theory suggests that Eq.~V.61! should
imply that the probability distribution of the random variable

n1/2Fn21 (
m51

n

~Gmm2E$Gmm!%G5n1/2@gn~z!2E$gn~z!%# ~V.62!

has the Gaussian form in the limitn5`. We prove that under rather natural conditions onWjk

this is indeed the case provided that we use non-standard normalization, replacingn1/2 in Eq.
~V.62! by n, i.e., we consider just the centralized trace of the resolvent

g~n!~z!5 (
m51

n

~Gmm2E$Gmm%!5ngn~z!2E$ngn~z!% ~V.63!

instead ofn1/2g (n)(z). This normalization can of course be anticipated from the formula~I.14!
giving the order of magnitude~in fact, the asymptotics! of the variance ofgn(z). This decay of the
variance, which is ‘‘twice’’ as strong than in the standard central limit theorem setting, is rather
typical for a number of problems of the theory of disordered systems with non-local interaction
and is known as the strong self-averaging property~see e. g. Refs. 28 and 33!.

Theorem 3:Consider the Wigner ensemble of random real symmetric matrices with indepen-
dent entries defined by Eqs. (I.2)–(I.3) assuming additionally that the fourth moments of Wjk exist
and are independent of j and k and that the probability distribution functions Pjk(w) of Wjk

satisfy the condition: for any fixedn.0

lim
n→`

1

n2 (
j<k

E
uxu.nn1/2

x4d Prob@Wjk<x#50. ~V.64!
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Then for any z from U05$zP C6 :uIzu>2w% the random functiong (n)(z) [Eq. (V.63)] converges
in distribution as n→` to the Gaussian random functiong(z) with zero mean and the covariance
function f(z1 ,z2) given by Eq. (I.15). In other words, for any integer q and arbitrary collection
z1 , . . . ,zq of complex numbers from U0 the joint probability distribution of random variables
g (n)(z1), . . . ,g

(n)(zq) converges as n→` to the q-dimensional Gaussian distribution with zero
mean and the covariance matrix@ f (zs ,zt)#s,t51

q .
Remarks:
1. Limit theorems concerningg (n)(z) for the Wigner ensemble were established for the first

time by Girko~see Ref. 24 and references therein! under the assumption that there exist a positive
d such that

sup
j<k

EuWjku41d,`, ~V.65!

which is slightly more restrictive than Eq.~V.64!. For example in the case of identically distrib-
utedWjk , Eq. ~V.64! is obviously satisfied ifw4[E$Wjk

4 % is finite. However, in our opinion, the
more important improvement of the result of Ref. 24 is that we calculate the covariance matrix of
the limiting Gaussian process in the explicit form while in Ref. 24 this matrix was given in the
implicit form as a solution of a system of cumbersome partial differential equations.

2. For the random variablesWjk satisfying Eq.~V.65! we can estimate the rate of conver-
gence:

sup
z1 ,z2PU0

uE$g~n!~z1!g
~n!~z2!%2 f ~z1 ,z2!u5O~n2d/2!. ~V.66!

3. Consider the Wigner ensemble of then3n random Hermitian matrices defined as in Eq.
~I.2! with Wjk5Ajk1 iB jk , j<k, Wjk5Wkj

† whereAjk andBjk are mutually independent random
variables with zero mean, variancew2/2 and excesss/2. It can be proved by analogous technique
that in this ensemble the fluctuations of the trace of the resolvent around its mean become Gauss-
ian in the limitn→`. The corresponding covariance function is given by Eq.~I.15! in which the
factor 2 is replaced by 1 in the denominator of both terms.

Proof: We shall work with real-valued variablesa (n)(z)5Rg (n)(z) andb (n)(z)5Ig (n)(z).
Then we have to prove that the limiting random functionsa(z) andb(z) are jointly Gaussian, i.e.
if

X~z,c!5H a~z! if c5a;

b~z! if c5b,

and

~a~c!,b~c!!5H ~1/2,1/2! if c5a;

~1/2i ,1/2i ! if c5b,

thenE$X(z,c)%50 and for any integerq and arbitrary collectionszs ,s51, . . . ,q, zs P U0 and
cs ,s51, . . . ,q, csP$a,b% the joint probability distribution of random variables
X(z1 ,c1), . . . ,X(zq ,cq) is theq-dimensional Caussian distribution with zero mean and covari-
ance matrix

E$X~zs ,cs!X~zt ,ct!%5a~cs!a~ct! f ~zs ,zt!1a~cs!b~ct! f ~zs ,zt
†!

1a~ct!b~cs! f ~zs
† ,zt!1b~cs!b~ct! f ~zs

† ,zt
†!, ~V.67!
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Let us consider the characteristic function of random variablesX(z1 ,c1),..,X(zq ,cq) which we
shall write in the form

eq
~n!~Tq ,Cq ,Zq!5E )

s51

q

exp$ i ts@a~cs!g
~n!~zs!1b~cs!g

~n!~zs
†!#%,

whereTq5(t1 , . . . ,tq), Cq5(c1 , . . . ,cq), Zq5(z1 , . . . ,zq)
Recall that we designate the complex conjugate by the symbol an asterisk. Also writing the

characteristic function we shall often omit indices indicating its dependence onn and some other
variables provided no confusion will arise.

Obviously

]

]ts
E$eq~Tq!%5 iE$eq@a~cs!g

~n!~zs!1b~cs!g
~n!~zs

†!#%.

Our aim is to show that there exists a set of ‘‘covariance’’ coefficientsAst
(n) s,t51, . . . ,q such that

for each fixedTq

lim
n→`

UE$eq
~n!@asg

~n!~zs!1bsg
~n!~zs

†!#%2 i(
t51

q

tsAst
~n!E$eq

~n!%U50, zPU0 ,

to show that limits of all these coefficients exist

Ast5 lim
n→`

Ast
~n! , ~V.68!

and correspond to the rhs of Eq.~V.67!. Then standard arguments will allow us to prove that the
limit characteristic function has the Gaussian form exp(21/2(s,t51

q Asttst t).
Thus, we have to compute

E$eqg
~n!~z!%5(

j51

n

E$eq
C~Zq!Gj j %,

for largen ~we recall that the sub-indexC indicates centering to zero mean!. Then putting one of
z1 , . . . ,zq or one of their conjugates in place ofz we calculate the limits in Eq.~V.68!.

We have complex energiesz,z1 , . . . ,zq and we introduce the notationG(zs) for the resolvent
corresponding tozs keeping the notationG for the resolvent corresponding toz.

By the resolvent identity Eq.~II.20!,

(
j51

n

E$eq
CGj j %5z21 (

j ,m51

n

E$eq
CGjmHmj%. ~V.69!

We compute the average in the rhs of Eq.~V.69! following the scheme described in Section II.
However its direct application requires too strong conditions on the distribution ofWjk . Thus, we
modify slightly the general scheme and carry out more accurate estimates.

Denote byEmj the conditional expectationE$•uWmj5w% and rewrite the right-hand side of
Eq. ~V.69! in the form

z21n21/2 (
j ,m51

n E Emj$eq
CGjm%wdPmj~w!.
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We split the integral into the two ones over setsG1(n)5$v:uWmju<dn1/2% and G2(n)
5$v:uWmju.dn1/2%. Now the inequalities

Un21/2 (
j ,m51

n E
G2~n!

Emj$eq
CGjm%wPmj~w!U<h21n21/2 (

j ,m51

n E
G2~n!

uwudPmj~w!

<h21n23n22 (
j ,m51

n E
G2~n!

w4dPmj~w!

and the assumption~V.64! imply that only the integrals overG1(n) give a non-vanishing contri-
bution to Eq.~V.69!.

Following our general scheme, we expand the functioneq
CGjm in powers of random variable

Hmj5n21/2Wmj restricted toG1(n). Since it is bounded by absolute value byn we can write the
relation

n21/2 (
j ,m51

n E
G1

Emj$eq
CGjm%wdPmj~w!5 (

k51

5

Sk~n!, ~V.70!

where

Sk~n!5nk/2 (
j ,m51

n

E@eq
CGjm#mj

~k21!E
G1

wkdPmj~w!,

and @ . . . #mj
(k) denotes that thekth derivatives with respect toHmj are taken and thenHmj is

replaced by zero. Let us note also that inS5 the expression in square brackets is taken at some
point H̃m jP (0,n).

The termS1(n) vanishes asn→` due to our assumption@Eq. ~V.64!#:

uS1~n!u<Un21/2 (
j ,m51

n

E@eq
CGjm#mjE

G1

wdPmj~w!U<h21n23n22 (
j ,m51

n E
G1

w4dPmj~w!,

whereh[uIzu.
The termS5(n) vanishes asn→` because it can be estimated by

B4~Tp!

h6n5/2 (
j ,m51

n E
G1

uwu5dPmj~w!<
B4~Tp!n

h6n2 (
j ,m51

E
G1

w4dPmj~w!,

whereB4(Tp) is the upper bound of absolute value of the fourth derivative in Eq.~V.70!. For any
fixed Tp , B4(Tp) is finite and recalling Eq.~V.64! we see thatS5(n) goes to zero asn→`.

The termS3(n) also vanishes asn→`. We establish this fact at the end of the proof.
The termsS2(n) and S4(n) give main contributions to Eq.~V.69!. Let us first consider

S2(n). The resolventsG(zs) andG are complex symmetric matrices and we have:

2 (
j ,m51

n

@eq
CGjm#mj

~1!5@eq
CGj jGmm#mj1 (

j ,m51

n

@eq
CGjm

2 #mj1 i (
j ,m51

n F (
s51

q

2ts~as@G
2~zs!# jm

1bs@G
2~zs

†!# jm!GjmeqG
mj

. ~V.71!
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Each term of the right-hand side of this relation is a function ofH in which Hmj is replaced by
zero and we have to come ‘‘back’’ to expressions dependent on the whole matrixH. To this end,
we again use the resolvent identity but now in the ‘‘opposite ’’ direction. We obtain for the first
term of Eq.~V.71!

w2n21 (
j ,m51

n

E$@eq
CGj jGmm#mj%5v2n21 (

j ,m51

n

E$eq
CGj jGmm%2w2C~n!,

where

C~n!5n23/2 (
j ,m51

n

E$@eq
CGj jGmm#mj

~1!%E
G1

wdPmj~w!

2221n22 (
j ,m51

n

E$@eq
CGj jGmm#mj

~2!%E
G1

w2dPmj~w!

2621n25/2 (
j ,m51

n

E$@eq
CGj jGmm#~3!Wmj

3 %.

It is easy to see that the first and the last terms ofC (n) vanish asn→` due to our assumption
~V.64!.

Using Eqs.~V.64! and ~III.37!, we can rewrite the second term ofC (n) in the form

22iw2

n2 (
j ,m51

n

EFeq(
s51

q

ts~as@G
2~zs!#mm@G~zs!# j j1bs@G

2~zs
†!#mm@G~zs

†!# j j !Gj jGmmG
mj

1F~n!,

where the remainderF (n) includes terms which have one or more factorsGjm or terms of the form

n22 (
j ,m51

n

E$@eq
C@G~zs! j j #

2@G~zj ! j j #
2#mj%.

It is clear that in all these expressions we can remove square brackets@ . . . #mj because this
procedure will add terms of orderO(n21/2) to the sums under consideration. Using the estimate
~III.41!, taking into account the self-averaging property

Eugn
C~z!u25o~n21!, as n→` ~V.72!

~see Lemma 1 of Appendix B for the proof!, and the relation

lim
n→`

EUS n21(
j
Gj j

aGj j
b n21(

j
Gmm

m Gmm
n D CU50 ~V.73!

with somea,b,m,n50,1,2~Lemma 2 of Appendix B!, it is easy to prove thatF (n) also vanishes
asn→`.

We finally obtain that among terms coming from the first summand in the right-hand side of
Eq. ~V.71! only the following
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w2z21EH eqC(
j51

n

Gj j J gn~z!2
22iw4

n2
E$eq%(

s51

q

tsEH (
j ,k51

n

~as@G
2~zs!#mm@G~zs!# j j

1bs@G
2~zs

†!#mm@G~zs
†!# j j !Gj jGmmJ ~V.74!

does not vanish asn→`.
The second summand in the rhs of Eq.~V.71! vanishes asn→`. This becomes clear after

applying the same procedure of removing square brackets@ . . . #mj to the expression
n22( j ,m51

n @eq
C(Gjm)

2#mj
(k) and using the estimates~III.41! and ~V.73!.

Let us consider the contribution of the last summand in the rhs of Eq.~V.71! for a fixed
parameterzs ,s51, . . . ,q. Taking into account Eq.~V.64! and repeating the ‘‘returning’’ proce-
dure, we obtain for this term

n21 (
j ,m51

n

@@G2~zs!# jmGmjeq#mj5n21 (
j ,m51

n

@G2~zs!# jmGmjeq

2n23/2 (
j ,m51

n

@@G2~zs!# jmGmjeq#mj
~1!E

G1

wdPmj~w!

2n22 (
j ,m51

n

@@G2~zs!# jmGmjeq#mj
~2!E

G1

w2dPmj~w!

2n25/2 (
j ,m51

n

E$@@G2~zs!# jmGmjeq#
~3#Wmj

3 %.

It is easy to see that in this equality terms with the first and the third derivatives vanish as
n→`. The second derivative gives

2@$@G2~zs!# j j Gj jGmmGmm1@G2~zs!#mmGmm@G~zs!# j j Gj j %eq#mj

and 24 terms having a factor of the form (Ga) jm ,a51,2. Omitting brackets@ . . . #mj and using
Eqs.~V.72!–~V.73!, we see that the last term of Eq.~V.71! gives the leading contribution

E$eq
C%(

s51

q

tsE$asn
21 tr G2~zs!G1bsn

21 tr G2~zs
†!G%2 iw4E$eq

C%

3(
s51

q

tsEH n22 (
j ,m51

n

~as@G
2~zs!# j j @G~zs!#mm1bs@G~zs!# j j @G

2~zs!#mm!Gj jGmmJ .
~V.75!

Consider now the termS4(n) of Eq. ~V.70!. The third derivative@eq
CGjm#mj888 consists of 140

terms. One part of them vanishes asn→` due to the properties~V.72!–~V.73!, another part —
due to the presence of the factor of the form (Ga) jm ,a51,2,3. Only six terms of the form

iw4(
s51

q

E$eq
C%EH n22 (

j ,m51

n

~as@G
2~zs!# j j @G~zs!#mm1bs@G~zs!# j j @G~zs!

2#mm!Gj jGmmJ
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are non-vanishing in the limitn→`. These terms arise when we differentiateGjm once andeq
twice with respect toHmj . Combining these terms with Eqs.~V.74! and~V.75!, we finally obtain
that

E$eq
C tr G%5 i

1

z22w2gn~z!
E$eq

C%(
s51

q

tsS 2w2n21E$ tr ~asG~zs!
21bsG~zs

†!2!G%

12sEH n22 (
j ,m51

~asG
2~zs! j j G~zs!mm1bsG

2~zs
†! j j G~zs

†!mm!Gj jGmmJ D .
~V.76!

Notice, that the denominator in the first term of the rhs of this expression is bounded away
from zero because z belongs to the domain~II.22!. Now, combining Eqs.~I.11! and ~I.10! with
relations

lim
n→`

EH n21(
j51

m

@G2~zs!# j j Gj j J 5r 2~zs!@12w2r 2~zs!#
21r ~z!, ~V.77!

we derive from Eq.~V.76! the final form of the covariance.
Relation~V.77! can be easily deduced from our proof of Eqs.~V.72!–~V.73!.
Let us briefly discuss now the proof of the fact thatS3(n) of Eq. ~V.70! vanishes asn→`.

The second derivative@eq
CGjm#mj

(2) gives terms each having the factor of the form
@(Ga) j j (G

k) jm(G
b)mm#mj . The brackets can be simply omitted because the ‘‘returning’’ proce-

dure adds terms of orderO(n21/2). Now, regardingn21/2(Ga) j j as vectors and (Gm)mj as the
kernel, we can write inequality

Un23/2 (
j ,m51

n

~Ga! j j ~G
m!mj~G

b!mmU<h2a2b2mn21/2

which completes the proof of Theorem 3.

VI. SCALING LIMIT AND UNIVERSALITY CONJECTURE

We have presented above the rigorous derivation of asymptotic corrections~in fact expan-
sions! for moments and more complex quantities constructed from the traces of the Green func-
tions of the Wigner random matrix ensembles. Now we use our result to draw certain non-rigorous
conclusions on the form of the leading term of the correlation functionSn(E1 ,E2) of the formal
level densityrn(E)5n21 tr d(H2EI). Sincern(E)5N

n
8(E) whereNn(E) is defined in Eq.~I.4!,

then based on the relation~I.7! one can conclude that the number of eigenvalues lying inside the
interval (E1 ,E2) with the center atE will be N(E2)2N(E1);nrn(E)(E22E1), i.e. that the
mean distance between levels is@nrn(E)#

21. Thus the scalingE22E15O(n21) defines the
microscopic or local regime in which one deals with a finite numbers of eigenvalues.1,11

Consider the density–density correlation function

Sn~E1 ,E2!5E$rn~E1!rn~E2!%2E$rn~E1!%E$rn~E2!%. ~VI.78!

By using Eqs.~I.8! and~I.9! we obtain from Eqs.~I.14! and~V.63! that the Stieltjes transform of
Sn(E1 ,E2)

Fn~z1 ,z2!5E E Sn~E1 ,E2!

~E12z1!~E22z2!
dE1dE2 , IziÞ0
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is

Fn~z1 ,z2!5n22E$g~n!~z1!g
~n!~z2!%.

It follows from the inversion formula for the Stieltjes transformf (z)5*(E2z)21r(E)dE

r~E!5p21lim
e↓0

If ~E1 i e![I E1$ f ~z!% ~VI.79!

that to findSn(E1 ,E2) , one has to knowFn(z1 ,z2) up to the real axis in both variables because

Sn~E1 ,E2!5I E1+I E2$Fn~z1 ,z2!%. ~VI.80!

On the other hand, we have found the form~I.14! and ~I.15! of Fn(z1 ,z2) only in the domain
uIzu>2w. However, since the functionf (z1 ,z2) given by Eq.~I.15! can obviously be continued
up to the real axis with respect to the both variablesz1 andz2 we can apply to the first term of Eq.
~I.14! the operationI E1I E2, E1 Þ E2 to compute formally the ‘‘leading’’ term of the density–
density correlation function. This means that we perform first the limitn→` and then the limits
e1 ,e2↓0. This order of limiting transitions is inverse with respect to that prescribed by the defi-
nition of this correlation function.

To make these computations, we use the identity

r 12r 2
z12z2

5
r 1r 2

12w2r 1r 2

which follows from Eq. ~I.10! or Eq. ~II.30!. The identity yields the relations
«ur (E1 i«)u25Ir (E1 i«)(12w2ur (E1 i«)u2) and ur (E1 i0)u25w22 for E such that
Ir (E1 i0).0. Combining these relations with Eq.~I.5!, we obtain that

w2@Rr ~E1 i0!#25
E2

4w2 and w2@Ir ~E1 i0!#2512
E2

4w2 .

Using these equalities, we derive from our results~I.14! and~I.15! and from Eqs.~VI.79! and
~VI.80! that

Sn~E1 ,E2!52
1

bp2@n~E12E2!#
2

4w22E1E2

~4w22E1
2!1/2~4w22E2

2!1/2

1
s

2n2p2w8

~2w22E1
2!~2w22E2

2!

~4w22E1
2!1/2~4w22E2

2!1/2
~VI.81!

with b51. It can be shown that for the Hermitian matrices with independent entries~see Remark
3 to Theorem 3! the density–density correlator has the same form withb52. For the Gaussian
orthogonal and unitary ensembles~GOE and GUE! s50, and we recover the result

Sn~E1 ,E2!52
1

bp2@n~E12E2!#
2

4w22E1E2

~4w22E1
2!1/2~4w22E2

2!1/2

obtained in Ref. 34 and Ref. 35.
We see that in a general non-Gaussian case the respective expression depends not only on the

second moment of entries, but also on their fourth moment via the excesss.
The remarkable fact is that this dependence vanishes in the microscopic~also called the

scaling! limit
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E1 ,E2→E, n~E22E1!→s. ~VI.82!

Indeed, it easy to see that in this limit we obtain from Eq.~VI.81! a very simple expression:

lim
n~E22E1!→s

Sn~E1 ,E2!52
1

bp2s2
. ~VI.83!

According to Wigner and Dyson~see, e.g., Ref. 1!, the exact large-s asymptotics for the limiting
correlation function of the Gaussian ensembles are:21/(p2s2) ~GOE! and2sin2 pr(E)s/(p2s2)
~GUE!. Comparing these expressions with our results, we see that the procedure of computing the
correlation function yields for the general case the expression coinciding with the large-s asymp-
totics of the Gaussian ensembles correlation function smoothed over energy intervals whose length
is much smaller than the macroscopic scalew5E$W2%1/2 but much bigger than the microscopic
scale given by the mean level spacing@nr(E)#21. It is natural to think that in our computations
the smoothing has been implemented ‘‘automatically’’ due to the non-zero imaginary part of the
spectral parameterIzj . We notice that the same procedure is widely used in the mesocsopic
calculations based on the Kubo formula, weak disorder perturbation theory, etc.

The independence of the scaling limit expressions~VI.83! on the excesss can be regarded as
a support of the universality conjecture for the Wigner ensembles. Let us mention supports of this
conjecture for other ensembles.

The first one22 concerns the so-called sparse~or diluted! random matrices whose entries are
independently distributed random variables such that Pr$Hk,l50%5p/n. The authors of Ref. 22
used the Grassman integral technique and found the Wigner–Dyson universal form of the
density–density correlator ifp is large enough.

The second36 concerns the ensembleH5(m51
p tm(•,j

m)jm, where tm and jm

5$j1
m , . . . ,jn

m% are independent identically distributed random variables~the ensemble was intro-
duced in Ref. 27!. For this ensemble, whose entries are dependent random variables, the analogue
of Eq. ~VI.81! is obtained and it is shown that its scaling limit is the same as above.

The third follows from Appendix A below. We consider there the case of the deformed GOE
~see definitions below!. For this ensemble the analog of Theorem 3 was proved in Ref. 37. In the
appendix we present a short derivation of the density–density correlator and show that in the
scaling limit it has the form~VI.83!.

We mention also that for the unitary invariant ensembles of the form~I.1! the universality
conjecture is rigorously proved in Ref. 16 for a rather broad class of functionsF(x).
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APPENDIX A: SCALING LIMIT FOR THE DEFORMED GOE

In this Appendix we find the exact form of the leading term of the covariance function
Fn(z1 ,z2) @Eq. ~I.14!# for the ensembleHd5H (0)1H, whereH (0) aren3n nonrandom matrices
such that there exists the ‘‘unperturbed’’ IDS

N~0!~E!5 lim
n→`

n21#$ej :ej is an eigenvalue ofH
~0! andej<E%
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andH belongs to the GOE~Eq. ~I.1! with F5x2/4w2). This ensemble is called2 the deformed
GOE. Because of the orthogonal invariance of the GOE distribution, we can restrict our consid-
eration to the case of diagonalH (0). So we assume thatH (0)5@d jkej # j ,k51

n and real numbersej are
such that the limit

g~0!~z!5 lim
n→`

1

n (
j51

n
1

ej2z
~A1!

exists for all non-realz. The functiong(0)(z) is the Stieltjes transform ofN(0)(E). We shall use
the notationdj (z) for (ej2z)21 andgn(z) for the normalized trace of the resolvent ofHd .

Subsequent arguments are quite similar to those used in derivation of Eqs.~II.24! and
~II.26! –~II.29! for the GOE. By using Eqs.~II.17! and~II.19! for H15H (0) andH25Hd one can
derive the following two relations~ analogues of Eqs.~II.26! and ~II.27!! :

E$Gjk~z!%5dj~z!d jk1E$gn~z!Gjk~z!%dk~z!1n21(
m

E$Gjm~z!Gkm~z!%dk~z!, ~A2!

and

E$gn
C~z1!Gj j ~z2!%5w2E$gn

C~z1!Gj j ~z2!%E$gn~z2!%dj~z2!1w2E$gn
C~z1!gn

C~z2!Gj j ~z2!%dj~z2!

1w2n21E$gn
C~z1!@G

2~z2!# j j %dj~z2!

12w2n22(
m

E$@G2~z1!# jmGmj~z2!%dj~z2!. ~A3!

It follows from Eq.~A2! that if for z P U0 whereU0 is defined in Eq.~II.22!

lim
n→`

E$ugn~z!2E$gn~z!%u%50, ~A4!

then lim
n→`

E$gn(z)%5g(z), whereg(z) is the unique solution of the functional equation23

g~z!5g~0!~z1w2g~z!! ~A5!

satisfyingIg(z)Iz>0. In the equation above,g(0)(z) is given by Eq.~A1!.
It is easy to show that Eqs.~A2! and ~A4! imply the relation

sup
j51, . . . ,n

uE$Gj j ~z!%2gj
~n!~z!u5O~n21!, zPU0 , ~A6!

wheregj
(n)(z) solves the equations

gj
~n!~z!5

1

ej2z2w2g~n!~z!
, j51, . . . ,n g~n!~z!5n21 (

m51

n

gm
~n!~z!. ~A7!

Indeed, ifVj
(n)5E$gn

C(z1)Gj j (z2)% then by Eq.~A3!,
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Vj
~n!5w2Vj

~n!E$gn~z2!dj~z2!%1n21(
j
Vj

~n!E$gn~z2!dj~z2!%

12w2n22EH(
j

@G2~z2!# jmGmj~z2!dj~z2!J 1w2n21E$gn
C~z1!@G

2~z2!# j j %dj~z2!

1w2E$gn
C~z1!gn

C~z2!@Gj j ~z2!#
C%dj~z2!. ~A8!

Now, repeating arguments used at the end of Section II, we can easily obtain the estimate
n21( jVj

(n)5O(n22) which proves Eq.~A6!. Using this estimate and considering Eq.~A8! once
more, we obtain the estimate

supj uVj
~n!u5O~n22!. ~A9!

It follows from the resolvent identity~II.19! that

(
j

@G2~z1!# jm@G~z2!#mj5
@G2~z1!# j j
z12z2

2
@G~z1!# j j2@G~z2!# j j

~z12z2!
2 .

Taking into account this relation, Eq.~A6!, and Eq.~A9!, we obtain that if

f d~z1 ,z2!5 lim
n→`

n2E$gC~z1!g
C~z2!%,

then

Un21(
j
Vm

~n!2 f d~z1 ,z2!U5o~n22!, zPU0 ,

and as the result

f d~z1 ,z2!52
2w2

~z12z2!
2 lim
n→`

n21(m@gm
~n!~z1!2gm

~n!~z2!#gm
~n!~z2!

12w2n21( jgm
~n!~z2!

2

1
1

z12z2
lim
n→`

n21( j@G
2~z1!#~z1!gm

~n!~z2!

~12w2n21( jgm
~n!~z1!

2!~12w2n21( jgm
~n!~z2!

2!
. ~A10!

Since limn→`n
21(m gm

(n)(z)25*(E2z2w2g0(z))
22dN0(E)[F2 , then the second fraction of

the last term of Eq.~A10! is not singular forzi5E6 i0 with E such thatIg(E1 i0).0. Thus, this
term vanishes in the scaling limit~VI.82!.

Consider now the first term of the right-hand side of Eq.~A10!. A simple computation shows
that

n21(
m

gm
~n!~z1!gm

~n!~z2!5
g~n!~z1!2g~n!~z2!

z12z21w2@g~n!~z1!2g~n!~z2!#
.

Since, according to Eqs.~A4!–~A7! limn→` g(n)(z)5g(z) we find for this term

2
2w2

~z12z2!
2 S g0~z1!2g0~z2!

z12z21w2@g0~z1!2g0~z2!#
2F2D ~12w2F2!

211O~ uz12z2u21!.
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This relation implies that in the scaling limit~VI.82! we obtain again the simple universal expres-
sion ~VI.83! .

APPENDIX B: AUXILIARY FACTS

Lemma 1: Self-averageness property (V.72) holds under assumptions of Theorem 3.
Proof:We denote

Fn~z,z8!5E$gC~g8!C%[E$gCg8%, ~B1!

whereg[gn(z) andg8[gn(z8), gn(z)5n21 tr (H2zI)21 andgC5g2E$g%.
Obviously,Gj j (z

†)5Gj j
† (z) andFn(z,z

†)5E$ugC(z)u2%.
Let us apply the resolvent identity~II.20! to the last factorg8 on the right-hand side of Eq.

~B1!. We obtain the relation

Fn~z,z8!5
1

z8n(jm E$gCGjm8 Hmj%, ~B2!

whereG8[G(z8). Comparing relations~B2! and ~V.69!, we see that their right-hand sides are
similar. The only difference is that the sum in Eq.~B2! has an extra factorn21 andeq of Eq.
~V.69! is replaced byg. Hence, one can compute the average in Eq.~B2! in the same way as it
was done for the right-hand side of Eq.~V.69! and come to the expression
Fn(z,z8)5(k51

5 Tk(n), whereTk(n) are similar toSk(n), k51,..,5 in Eq.~V.70!.
Thus we find thatT1(n) and T3(n) are of ordero(n21), as n→` just as in the case of

S1(n) andS3(n).
ConsiderT5(n) which is analogous toS5(n) in Eq. ~V.70!. It contains four derivatives of

GkkGjm by Hmj . It follows from Eq.~III.37! that the result of differentiating includes at least one
factorGjm . Combining Eq.~III.41! with inequalities used to estimateS5(n), we easily derive that
T5(n) is a quantity of orderO(n23/2).

Let us estimateT4(n) acting in the same way as in the case ofS4(n). As mentioned in Sec.
V, the non-vanishing contribution toS4(n) comes from terms arising from one derivative of
Gjm8 and two derivatives ofeq . The rest of the terms are of ordero(1). Thus, in the corresponding
terms ofT4(n) we have to take into account only terms with factorsG or G8 having coincident
arguments. It is easy to see that due to extra factorn21 in front of the whole sum and factor
n21 in g(z), these terms are of ordern22. Thus,T4(n) is of ordero(n

21).
Turning toT2(n) and taking into account previous arguments, we arrive at the relation

Fn~z,z8!52
w2

z8n2(j ,m E$gCGj j8 Gmm8 %2
w2

z8n2(j ,m E$gCGjm8 Gjm8 %1F8~z,z8!, ~B3!

whereF8(z,z8)5o(n21). Using Eq.~III.41!, we easily obtain that

w2

n2 U(j ,m E$gCGjm8 Gjm8 %U< w2

n2(j EH ugCu(
m

uGjm8 u2J <
w2

nuIz8u2
E1/2$ugCu2%.

Observing that

E$gCg8g8%52E$gCg8%E$g8%1E$gC@g8#Cg8%,

we derive from Eq.~B3! that forz85z† andz P U0 @Eq. ~II.22!#:

C1Fn~z,z
†!2C2n

21uFn~z,z
†!u1/22uF8nu<O,
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whereC1 and C2 are absolute constants~cf. Eq. ~II.28!!. This inequality implies Eq.~V.72!.
Lemma proved

Lemma 2: Under assumptions of Theorem 3 the relation Eq. (V.73) is true.
Proof: It suffices to show that

Rn[E$uG2
Cu2%5o~1!, n→`, ~B4!

whereG2[n21( jGj j
2 . Repeating computations of previous proof, we obtain the following rela-

tion

Rn5
1

z8n(j ,m E$G2
CGj j8 Gjm8 Hmj%.

Comparing again the right-hand side of this equality with those of Eqs.~B2! and ~V.69! and
repeating the corresponding computation, we conclude that

Rn52
w2

z8n2(j ,m E$G2
CGj j8 Gj j8 Gmm8 %1

w2

z8n2(j ,m E$G2
CGj j8 Gjm8 Gmm8 %1F9n , ~B5!

whereF9n5o(1) asn→` for z85z† and uIzu.0. Taking into account Eq.~V.72!, we derive
from Eq.~B5! that forz P U0

C3Rn2C3Rn2n21C4uRnu1/21o~1!<0,

whereC3 andC4 are some absolute constants~cf. Eq. ~II.28!!. This inequality implies Eq.~B4!.
Lemma is proved.
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We establish a new approach to calculating spectral statistics in disordered conduc-
tors, by considering how energy levels move in response to changes in the impurity
potential. We use this fictitious dynamics to calculate the spectral form factor in
two ways. First, describing the dynamics using a Fokker–Planck equation, we
make a physically motivated decoupling, obtaining the spectral correlations in
terms of the quantum return probability. Second, from an identity which we derive
between two- and three-particle correlation functions, we make a mathematically
controlled decoupling to obtain the same result. We also calculate weak localization
corrections to this result, and show for two dimensional systems~which are of most
interest! that corrections vanish to three-loop order. ©1996 American Institute of
Physics.@S0022-2488~96!01110-3#

I. INTRODUCTION

Numerous properties of quantum systems can be described in terms of their energy spectra.
For complex systems an exact determination of energy levels is not feasible, and a statistical
description becomes necessary. It turns out that the Wigner–Dyson~WD! statistics1,2 of eigenval-
ues of random Hermitian matrices describes energy levels in a wide variety of different systems.3

The joint distribution of eigenvalues is dominated by level repulsion and is universal in the sense
that level correlations depend only upon the symmetry of the Hamiltonian while all specific
properties of the system are absorbed into the mean level spacing,D. A very important feature of
WD statistics is that — by construction of invariant ensembles of random matrices — spectral
properties are independent of eigenstate correlations. In real systems such an independence can at
best be approximate. It holds, however, in the ergodic regime where the entire phase space of a
system is explored. If a non-ergodic regime is of interest, not only is WD statistics inapplicable but
the whole concept of the independence of spectral and eigenstate correlations should be re-
examined.

Disordered mesoscopic conductors present a natural ensemble for a statistical description - the
ensemble of impurity configurations. In this case spectral statistics in the non-ergodic regime are
very important for both transport and thermodynamic properties of electrons. Different regimes in
disordered conductors are determined by the energy or time scale, as shown in Fig. 1. The ergodic
regime involves energy level separations«&Ec[\/terg whereEc is called the Thouless energy,
and terg;D/L2 is the time required for the electronic diffusive motion, with diffusion constant
D, to fill all phase space, in a sample of sizeL. The quantum limit of this regime corresponds to
smaller energy separations,«&D, where D is the mean level spacing, and to longer times
t*t

H
, where t

H
[\/D is the Heisenberg time. Note that the ratioEc /D is proportional to the

dimensionless conductanceg ~i.e., the conductance measured in the units ofe2/\), and is large in
the metallic phase. The diffusive regime involves energies\/terg&«&\/tel , wheretel is the mean

0022-2488/96/37(10)/5061/26/$10.00
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elastic-scattering time. The largest energies,\/tel&«&«
F
, ~where«

F
is the Fermi energy! and the

shortest times,t&tel , correspond to the ballistic regime in which multiple scattering by impurities
is irrelevant.

It was first conjectured by Gor’kov and Eliashberg4 and then shown by Efetov5 that spectral
correlations in the ergodic regime are described by the random matrix theory~RMT! of Wigner
and Dyson. Correlations in the non-ergodic diffusive regime which are important, in particular, for
universal conductance fluctuations were analyzed by Altshuler and Shklovskii6 at leading order in
diagrammatic perturbation theory. Their results were later reproduced by Argamanet al.7 within
the semiclassical approach, using the diagonal approximation.

We have recently developed8 an alternative approach to level statistics in the non-ergodic
regime which takes into account the inevitable coupling between eigenvalue and eigenstate cor-
relations, and can be extended beyond the region of validity of the perturbative technique. Our
approach is based on the idea of parametric motion through the ensemble of disordered Hamilto-
nians: we treat the energy eigenvalues as particles with fictitious dynamics induced by changing
some parameter of the Hamiltonian. This dynamics takes the form of Brownian motion in a
fictitious time t related to the parameter being changed. Originally, this idea was employed by
Dyson9 in the context of RMT. Later, in the context of the semiclassical description, Pechukas10

used motion along a smooth path in the space of Hamiltonians to generate fictitious dynamics of
a different kind. Both Dyson and Pechukas were interested in level dynamics primarily as a way
of generating the level distribution. In contrast, a number of recent authors,11 notably Szafer,
Simons and Altshuler,12,13 have investigated the dynamical problem in its own right, calculating
parametric statistics: eigenvalue correlations as a function of position in the space of
Hamiltonians.14 In distinction to our approach, eigenfunction correlations have played no role in
previous work,11–15an assumption justified only for the ergodic regime.

We have found8 that a treatment based on Brownian motion through the ensemble of Hamil-
tonians provides a unified description of all regimes in disordered conductors, except the quantum
limit ( t*t

H
, or E&D), which is also beyond the scope of diagrammatic and semiclassical ap-

proaches. The main result is a new relation explicitly linking the spectral correlation function to
the quantum return probability for an expanding wavepacket which, in turn, is related to a certain
eigenfuction correlator. The derivation given in Ref. 8 has a limitation: when obtaining a closed
Langevin equation describing the Brownian motion, we make use of an uncontrolled, although
physically transparent assumption. Thus, within the framework of that calculation it is not possible
to establish exactly the region of validity and accuracy.

In this paper, we re-derive the relation between spectral and eigenstate correlation functions
using a more explicit procedure: we decouple a certain exact relation between two- and three-level
correlation functions using the Kirkwood superposition approximation. Then we examine the
accuracy of this decoupling using perturbative diagrammatic techniques. Remarkably, it not only
reproduces the results of the diagonal approximation6,7 but holds well beyond it. We show this to
third order in a perturbative expansion ing21, for two-dimensional systems with or without
time-reversal symmetry. We are therefore encouraged to believe that the connection between
spectral and eigenstate correlation functions should be useful rather generally, and especially for

FIG. 1. Regimes of energy and time in a disordered metal; heresel5\/telD ands
F
5«

F
/D.
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problems where the usual diagrammatic technique cannot straightforwardly be applied, such as
spectral statistics in the critical regime near the Anderson transition.

II. DEFINITIONS AND MAIN RESULTS

A convenient way to consider spectral correlations is to introduce fictitious level dynamics in
response to changing some parameterl of the Hamiltonian. Thus we parametrize the ensemble of
Hamiltonians as follows;

H~l!5H01lW~r!. ~2.1!

Here bothH0 andH(l) belong to the same symmetry class, and the pointl50 corresponds to
some arbitrary choice of one of the many members of the same ensemble. We will specify the
choice ofH0 andW in the next section.

We consider in this paper the two-level correlation function~TLCF! and its Fourier transform,
the spectral form factor, in a disordered conductor described by the Hamiltonian equation~2.1!.
Let En(l) be the energy levels ofH(l). We introduce the density of states per unit volume~DoS!
as

r~E,l!5
1

Ld (
n

d~E2En~l!!. ~2.2!

The mean level spacing,D, is then related to the mean DoS,r[^r&, byD5(rLd)21. The TLCF
is defined as

R~s,l!5r22^r~E1sD,l!r~E,0!&21 , ~2.3!

wherev5sD is the energy difference between two levels. The mean DoS is practically a constant
in the entire energy region of interest~as it changes only at scale of order«

F
while we consider

energy windows centered at«
F
of width not exceeding\/tel!«

F
). We consider only values of

l small enough so that the statistical regime does not change and neither does the mean DoS~for
large enoughL this nevertheless allows arbitrarily largel on the scale relevant for parametric
correlations!. Because of this the TLCF cannot depend on eitherE, or on the choice of the point
H0 in the ensemble~2.1!. We define the~dimensionless! spectral form factor as

K~ t,l!5E
2`

`

e2 ist/t
HR~s,l!ds. ~2.4!

Our main result relates the spectral form factor to the quantum return probabilityp(t) of a
diffusing electron as follows:

K~ t !5
~2p\r!21utup~ t !

11~p\r!21*01
utu p~ t8!dt8

. ~2.5!

We have obtained this expression for times shorter than the Heisenberg timet
H
[\/D. Here we

definep(t) as the probability density for the wavepacket, originally created in a small volume
V0;l

d, to remain in this volume at the timet (l is the elastic mean free path which is a natural
coarse-graining size for the disordered metal; however, we could chooseV0 arbitrarily, provided
that l d*V0*l

F

d wherel
F
is the Fermi wavelength!. The ensemble-averaged return probability is

related, as we will show later, to the following wave-function correlations:
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p~ t !5E ddr K (
l

ucn~r !u2ucn1 l~r !u2e2 i ~En2En1 l !t/\L . ~2.6!

It is important to note that, by definition of the wave packet above, the summation here is limited
to the number of levelsN ;Ld/V0 with energies lying within the energy band of width
E0;1/rV0 .

Equation~2.5! relates the spectral and wave-function correlations. Let us analyze this relation
in the metallic phase. In the diffusive regime,tel&t&terg, the quantum return probabilityp(t)
reduces at leading order to theclassical return probability for random walks, multiplied by a
symmetry factor 2/b, whereb51, 2 or 4 is the usual index3 corresponding to the orthogonal,
unitary, and symplectic symmetry ensembles, respectively:

p0~ t !5
2

b~4pDt !d/2
. ~2.7!

Noting that in the ballistic regime,t&tel , p(t) saturates atp0(tel);1/l d, one sees that the integral
in the denominator of Eq.~2.5! is of order (tel /\rl d);g0

21 for d.2, and of orderg0
21ln(t/tel) for

d52, whereg0@1 is the dimensionless conductance at scalel . It is well known that such an
integral describes a weak localization correction to conductance and other physical quantities.16

On the other hand, the quantum return probabilityp(t) contains weak localization corrections
itself. Neglecting these corrections in both the numerator and denominator of Eq.~2.5!, we reduce
it to

K0~ t !5~2p\r!21utup0~ t !. ~2.8!

To leading order, this expression is also valid in the ergodic regime,terg&t!t
H
, where the

classical return probability saturates at (2/b)Ld so that the second term in the denominator in Eq.
~2.5! is of ordert/t

H
!1 and may be neglected. We should not expect Eq.~2.5! to be correct in the

quantum limit, t@t
H
, as we have derived it under the assumption that the opposite inequality

holds, as will be seen later. Indeed, in this regime Eq.~2.5! gives the saturation ofK(t) at 1/2
instead of the correct limiting valueK(t)51.

Equation ~2.8! coincides with the result obtained by Argamanet al.7 using the diagonal
approximation in semiclassical periodic-orbit theory. The Fourier transform of this expression
corresponds to the TLCF obtained originally by Altshuler and Shklovskii.6 In the diffusive regime,
R(s,0);Adg

2d/2sd/222, whereAd is a numerical coefficient which is zero17 for d52; and in the
ergodic regime,18 R(s,0);21/s2.

We also obtain a second relation betweenK(t) andp(t)

K~ t !1~p\r!21E
01

utu
K~ t2t8!p~ t8!dt85~2p\r!21utup~ t !, ~2.9!

which we can see is very similar to Eq.~2.5!. The latter is obtained from a diagrammatic analysis
discussed in section VI. The new feature is that we have a convolution ofK(t) andp(t) which
occurs because the decoupling is inv-space rather thant-space. In 2d, up to 3-loop order in
perturbation theory, both these relations correctly reproduce the TLCF. It seems to us quite
remarkable that a relation derived from a phenomenological model of energy level dynamics could
be exact to 3-loop order. We note that the 2d case is expected to be a good model for the behavior
of the system ford.2 at the mobility edge. From the point of view of a power-counting analysis
of the properties ofK(t) at the mobility edge, both Eq.~2.5! and Eq.~2.9! should work equally
well.
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III. RANDOM WALKS THROUGH THE ENSEMBLE OF HAMILTONIANS

We have established elsewhere8 the relation~2.5!, using a Langevin equation to describe the
motion of levels on the energy axis in response to a random walk through the ensemble of
Hamiltonians. In contrast to eigenvalue statistics in RMT where the Brownian motion ideas were
originally applied,9,15 the Langevin equation for level motion is not closed, and certain assump-
tions are required to solve it. In the following section, we will re-derive Eq.~2.5! with the help of
a different approach based on the decoupling of a certain exact relation between two- and three-
level correlation functions. Before doing this, however, it is useful to analyze the Brownian
motion picture within the Fokker–Planck scheme. Although the Langevin and Fokker–Planck
schemes are in principle equivalent, the assumptions required in order to make the description
closed are different. The Langevin scheme of Ref. 8 is physically more transparent. The advantage
of the Fokker–Planck scheme which we develop here is that the approximations made are more
closely related to those analyzed in subsequent sections.

We consider paths of two types through the ensemble of Hamiltonians~2.1! which, for free
electrons in a random potential, have the form

H~l!52
\2

2m
¹21U~r!1lW~r!. ~3.1!

Here bothU(r ) andW(r ) are chosen to be of Gaussian white-noise form with zero average and

^U~r!U~r8!&5
\

2prtel
d~r2r8!,

~3.2!
^W~r!W~r8!&5v2Ldd~r2r8!.

The first type of path is a straight line through the ensemble, and is generated by varyingl in Eq.
~3.1!. The second type is a Brownian path through the ensemble, parameterized by the fictitious
time t, generated in the following way:

H~t!5H01E
0

t

dt8V~t8,r!. ~3.3!

We takeV(t,r) to be Gaussian distributed with zero average and

^V~t,r!V~t8,r8!&5v2Ldd~t2t8!d~r2r8!. ~3.4!

Referring to Fig 2, one sees that the two ways of exploring the ensemble are equivalent if one

FIG. 2. Smooth@H(l)# and Brownian@H(t)# paths through the space of Hamiltonians.
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makes the identificationt5l2.
In our derivation we will use averages over bothW or, equivalently,V and then overH0 , and

we must here discuss the role of each. The average over all possible perturbations,W, will be
necessary to derive the equation of motion of the energy levels, and thence the density of states.
We can then obtain correlation functions for energy levels of the system at different parameter
values by averaging over the starting pointH0 . Such functions should then depend only upon
energy and parameter differences by homogeneity.

The first step in our derivation is to obtain the equation of motion for the joint probability
density function~JPDF! of energy levels,P($En%,t). We use perturbation theory to second order
to calculate the change ofEn(t) in response to the evolution fromt to t1dt. After averaging
overW we obtain

^dEn~t!&5~dt!v2 (
mÞn

cnm~t!

En~t!2Em~t!
, ~3.5a!

^dEn~t!dEm~t!&5~dt!v2cnm~t!, ~3.5b!

where

cnm~t!5LdE ddr ucn~t,r !u2ucm~t,r!u2, ~3.6!

andcn(t,r) are the corresponding eigenfunctions ofH(t). Before we can use the above equations
to derive a Fokker–Planck equation for the JPDF,P($En%,t), we must make an assumption. We
replacecnm(t) by its average over the ensemble ofH0 . This amounts to ignoring correlations
between eigenvalues and eigenvectors. We take the disorder average to be a function only of the
energy difference,v5En2Em , within the window of interest:

^cnm~t!&[c~v!. ~3.7!

Furthermore, we assume that in the Fourier transform of the wavefunction correlatorc(v) we may
neglect the correlations between the eigenvectors and eigenvalues so that

C~ t !5K D

2p\(
l
cn,n1 le

2 iD l t /\L 5E
2`

`

c~v!e2 ivt/\
dv

2p\
. ~3.8!

We can relateC(t) to the return probability of a diffusing electron, Eq.~2.6!. To this end, consider
a wavepacket made from the eigenstates ofH(t) and concentrated initially in a volumeV0 of
order l d near the origin~sincet plays no role, we suppress it as a label in the following!:

C~r,t !5A(
n

cn~0!*cn~r!e
2 iEnt/\.

Here the summation is limited toN ;(L/l )d levels with energiesuEnu&1/rl d, and the normal-
ization constant isA25Ld/N . The ensemble-averaged return probabilityp(t)5^uC(0,t)u2& is
given by

p~ t !5A2(
nm

^ucn~0!u2ucm~0!u2e2 i ~En2Em!t/\&5K (
l

ucn~0!u2ucn1 l~0!u2e2 i ~En2En1 l !t/\L ,
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where we have used the fact that the first sum above depends only on the differenceun2mu.
Noticing also that the ensemble-averaged quantity is spatially homogeneous, we reduce this ex-
pression to that given in Eq.~2.6!. Comparing this to the definition ofcnm , Eq.~3.6!, we obtain for
t.0,

p~ t !5
1

Ld K (l cn,n1 le
2 i ~En2En1 l !t/\L . ~3.9!

On the face of it, this coincides, up to a constant factor, withC(t), the Fourier transform of
cn,n1 l , introduced in Eq.~3.8!. There is, however, an essential difference:C(t) is defined by the
Fourier sum containing all the levels~say, up to«

F
), while the Fourier sum forp(t) contains only

the levels within the bandwidthE0!«
F
. When uEn2En1 l u*E0 the two levels are practically

uncorrelated, andc(v)51 for v*E0 , so thatC(t) contains ad-like function for t near zero. As
we are not interested in an exact description at the ballistic time scale, we can represent the
relation betweenC(t) andp(t) as follows:

p~ t !52p\rC~ t !, t.0 ;
~3.10!

E
0

t

C~ t8!dt85
1

2
1

1

2p\rE01

t

p~ t8!dt8.

We also note that the definition ofH(t) in Eq. ~3.3! causes the energy levels to move away from
each other indefinitely as parametric time increases. To overcome this problem we introduce a
rescaling term,2dtU(En); to the r.h.s. of Eq.~3.5a!. ThisU(En) can be thought of as a Lagrange
multiplier, and it will be set later on by the condition that correlation functions can depend only on
differences in parametric time.

With these considerations, starting with Eqs.~3.5! we end up with the Fokker–Planck equa-
tion for the JPDF:

1

v2
]P

]t
52(

n

]

]En
S ]U

]En
PD1(

nm

]2

]En]Em
~cnmP!, ~3.11!

where the drift potential termU is the sum of one-particle and two-particle potentials,

U~$En%!5(
n

U~En!1
1

2(
mÞn

f ~En2Em!. ~3.12!

The one-particle potential arises from the energy rescaling described above, and may be consid-
ered as a confinement potential for a one-dimensional gas of fictitious particles interacting via the
two-particle potential,f (v), which is related toc(v) by

] f ~v!

]v
5
c~v!

v
. ~3.13!

We see that both the drift potential and the diffusion term in the Fokker–Planck equation are
expressed in terms of the functionc(v), which we have shown to be related to the return
probability p(t). The off-diagonal diffusion terms in Eq.~3.11!, which are due to eigenfunction
correlations, mean that the static solution does not have a simple Gibbs form. In fact we cannot
write down its solution in closed form at all. The absence of a simple static solution to the
Fokker–Planck equation~3.11! is an important difference between the current problem and the
Brownian motion approach to RMT where such a solution yields9 the exact JPDF. However, the
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JPDF contains much more information than we require; for our purposes it is sufficient to study
the equation of motion for the density of states, which can be written in the form

r~E,t!5L2d( n
d~E2En!, ~3.14!

where... means averaging over the JPDFP($En%,t). Following the procedure of Dyson19 and
Pastur20 we obtain

1

v2
]r~E,t!

]t
5

]2

]E2 @c~0!r~E,t!#1
]

]E F]U]E 1LdE dE8r2~E,E8,t!
] f ~ uE2E8u!

]E8 G , ~3.15!

where

r2~E,E8,t!5L22d( nÞm
d~E2En!d~E2Em!. ~3.16!

Since we are only interested in level correlations in energy windows small compared to the scale
at whichr varies, the first term in Eq.~3.15! is negligible. We rewrite the last term in Eq.~3.15!
in terms of the static TLCF,R(E2E8),

r2~E,E8,t!5r~E,t!r~E8,t!@11R~E2E8!#. ~3.17!

After substitution into Eq.~3.15! we see that the integral overrrR is dominated by a region of
relatively small energy differences since the productRf8 falls off rapidly. In this regionr is
roughly constant, and the integral vanishes by oddness of the integrand. We have therefore arrived
at the equation

1

v2
]r~E,t!

]t
5

]

]E Fr~E,t!
]

]E SU~E!1LdE dE8r~E8,t! f ~ uE2E8u! D G . ~3.18!

This is a non-linear equation, and to proceed further we must linearize it. The static solution of Eq.
~3.18! is just the equilibrium density of states,req(E), and we perform our linearization around by
expanding aroundreq(E), to give the following equation forr̃(E,t)5r(E,t)2req(E):

1

v2
]r̃~E,t!

]t
5
1

D

]

]EE dE8 f ~ uE2E8u!
]

]E8
r̃~E8,t!,

where we have approximatedreq(E) by r. Multiplying both sides of this equation byr(E9,0) and
averaging over the starting pointH0 gives us the evolution equation for the TLCF,R(E,t),

]

]t
R~v,t!5

]

]vE dv8

2p\
f ~ uv2v8u!

]

]v8
R~v8,t!, ~3.19!

where we have fixed the units oft by settingv25D/p\. Equation~3.19! can then be solved by
taking the Fourier transform to yield the result for the spectral form factor

K~ t,t!5K~ t,0!expF2
M ~ t !

2\2 uttuG , ~3.20!

whereM (t)52t f (t). From the definition off (v), Eq. ~3.13!, we see thatM (t) is related to
C(t), the Fourier transform ofc(v), by

5068 Chalker, Lerner, and Smith: Fictitious level dynamics in disordered conductors

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



M ~ t !52E
0

t

C~ t8!dt8511
1

p\rE01

utu
p~ t8!dt. ~3.21!

Although Eq. ~3.20! gives the parametric dependence ofK(t,t) in terms of a function
M (t) related to eigenfunction correlations, we still do not knowK(t,0). To relateK(t,0) to
eigenfunction correlations we introduce a Ward identity as follows. Similarly to the TLCF, Eq.
~2.3!, we define the current–current correlation function:

C ~s,l!5D2(
n,m

^Ėn~l!Ėm~0!d~E1sD2En~l!!d~E2Em~0!!&. ~3.22!

The assumption that both the correlation functions depend only upon energy and parameter dif-
ferences leads to the Ward identity

]2C ~v,l!

]v2 5
]2R~v,l!

]l2 , ~3.23!

and thence to the relation

]K~ t,t!

]t
52

D

2E dvC ~v,0!e2 ivt/\. ~3.24!

Finally we can relateC (v,0) to eigenstate correlations assuming, as above, that we can ignore
higher order correlations between eigenvalues and eigenstates:

C ~v,0!5D2 (
nÞm

^WnnWmmd~v2En!d~Em!&'v2c~v!, ~3.25!

from which it follows that

K~ t,0!5
1

2 S t\ D 2 C~ t !

M ~ t !
. ~3.26!

With allowance for Eqs.~3.10! and~3.21!, this is equivalent to the relation~2.5! obtained within
the Langevin picture of Ref. 8.

The crucial assumptions used in the Brownian motion approach were in the linearization of
appropriate equations, and in the neglection of higher order correlations between eigenvalues and
eigenstates. We believe that these assumptions are reasonable provided that one considers only
behavior at energy scales much larger than the mean level spacing. However, it is not possible to
establish exactly their region of validity and accuracy within the Brownian-motion approach
developed here and in Ref. 8. This we will do in the next section using an alternative approach.

IV. EXACT RELATIONS BETWEEN THE RETURN PROBABILITY AND HIGHER ORDER
CORRELATION FUNCTIONS

Our aim now is to re-derive Eq.~2.5! using some exact relations which involve the return
probability by making onlyexplicitassumptions whose region of validity can later be verified. We
again consider the ensemble of Hamiltonians, each describing a particular realization of the im-
purity potential. Now it will be more convenient to use the representation of Eq.~2.1! where the
path through the ensemble is a straight line. We define the Fourier transform of the DoS as
follows:
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R~ t,l!5LdE
2`

`

r~E,l!e2 iEt/\dE5(
n

e2 iEn~l!t/\. ~4.1!

As all members of the ensemble are statistically equivalent, averaging over realizations should
give the same result whatever point along the path has been chosen. Thus one should have

^R~ t,l!R~ t8,l!&5^R~ t,0!R~ t8,0!&. ~4.2!

Now we write for smalll;

R~ t,l!5R~ t,0!1lṘ~ t,0!1
1

2
l2R̈~ t,0!1O~l3!,

and substitute this expansion into Eq.~4.2! to obtain

2^Ṙ~ t,0!Ṙ~ t8,0!&1^R̈~ t,0!R~ t8,0!&1^R̈~ t8,0!R~ t,0!&50 . ~4.3!

We will use this identity to derive exact relations between spectral correlation functions. It follows
from the definition~4.1! that

Ṙ~ t,0!52
i t

\(
n

Ėne
2 iEnt/\,

~4.4!

R̈~ t,0!52
i t

\(
n

S Ën2
i t

\
Ėn
2De2 iEnt/\,

where

Ėn5^nuWun&,Ën5(
m

8
u^nuWum&u2

En2Em
.

First consider̂ Ṙ(t)Ṙ(t8)&. Averaging overW only, we have^ĖnĖn1 l&W5v2cn,n1 l . Hence,
averaging also overH0 , we obtain

^Ṙ~ t !Ṙ~ t8!&5
2pv2t2

\D
d~ t1t8!K 1

Ld(l cn,n1 le
2 i ~En2En1 l !t/\L 5

2pv2t2

\D
p~ t !, ~4.5!

where we have used Eqs.~3.9! and ~3.10! to relate the average above to the return probability
p(t). The crucial assumption in the derivation of Eq.~4.5! was that of homogeneity in energy
space which means that^cn,n1 l& does not depend onn. We expect this assumption to be valid in
the whole energy range of interest since the mean density of states is a disorder-independent
constant in the energy window centered near«

F
of width E0!«

F
.

Next, consider ^R̈(t)R(t8)&, initially averaging only over W. Noting that
^R̈(t)R(t8)&W5R(t8)^R̈(t)&W , asR(t8)[R(t8,0) does not depend onW, and

^Ën&W5
2v2

Ld (
lÞ0

cn,n1 l

En2En1 l
,

we obtain from Eq.~4.4! after rearranging the terms in the summation
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^R̈~ t !&W52
i tv2

\Ld(n H (
lÞ0

12ei ~En2En1 l !t/\

En2En1 l
cn,n1 l2

i t

\
cnnJ e2 iEnt/\

52
tv2

\2Ld(nl e2 iEnt/\E
0

t

dt9ei ~En2En1 l !t9/\cn,n1 l .

Hence, averaging onH0 as well and using the same assumption as in the derivation of Eq.~4.5!,
we have

^R̈~ t,0!R~ t8,0!&52
2pv2t

\D
d~ t1t8!E

0

t

dt9K 1

Ld(lm cn,n1 le
i ~En2En1 l !t9/\e2 i ~En2En1m!t/\L .

~4.6!

On exchangingt and t8, one gets the same expression.
Now, substituting Eqs.~4.5! and ~4.6! into Eq. ~4.3!, we obtain the following exact relation:

tp~ t !5Q~ t ![E
0

t

dt8K 1

Ld(lm cn,n1 le
i ~En2En1 l !t8/\e2 i ~En2En1m!t/\L , ~4.7!

wherep(t) is the return probability, defined by Eq.~2.6!. This exact relation is a starting point to
investigate the nature of the approximations needed to obtain our Brownian motion formula, Eq.
~2.5!. The exact relation involves the higher order correlations, and we need to construct some
decoupling procedure. This will be done in the next section. Then we will use the diagrammatic
technique to analyze the accuracy of the decoupling.

V. DECOUPLING OF THE HIGHER ORDER CORRELATIONS IN v-SPACE
AND t -SPACE

It is seen from Eq.~2.6! that p(t) involves correlations of two energy levels, whereas, from
Eq. ~4.7!, Q(t) involves correlations of three energy levels. We should therefore assume that
Q(t) can be factorized in terms of two-level correlations. In order to see how to factorize Eq.
~4.7!, let us note that, using homogeneity of the energy space and the definitions of the DoS and
TLCF, Eqs.~2.2! and ~2.3!, one can represent the TLCF~at l50) as

R~v![R~sD!5DK (
m

d~v2En1En1m!L 21 .

Then, from the definition~2.4! one obtains the following representation for the form factor:

K~ t !5K (
m

e2 i ~En2En1m!t/\L 2
2p\

D
d~ t !. ~5.1!

Thed function above cancels that arising from summation over high levels in Eq.~5.1!. Naturally,
K(t) defined by Eq.~2.4! as the form factor for the irreducible TLCF, Eq.~2.3!, is regular at
t50. It is seen now that the natural factorization of Eq.~4.7! is

Q~ t !'2E
0

t

dt8K 1

Ld(l cn,n1 le
i ~En2En1 l !t8/\L K (

m
e2 i ~En2En1m!t/\L . ~5.2!

The only feature that deserves comment is the factor of 2 on the r.h.s. of Eq.~5.2!. To see how this
arises we rewrite Eq.~4.7! using the definition ofcn,n1 l ,

5071Chalker, Lerner, and Smith: Fictitious level dynamics in disordered conductors

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Q~ t !5E
0

t

dt8E ddr K (
l ,m

ucn~r!u2ucn1 l~r!u2ei ~En2En1 l !t8/\ei ~En1m2En!t/\L .
This can be represented on the energy axis in the schematic form shown in Fig. 3. We should
allow both for correlations ofEn1m with En andEn1m with En1 l , since these are equivalent. This
is made manifest by changing variable in the integral fromt8 to t95t2t8,

Q~ t !5E
0

t

dt9E ddr K (
l ,m

ucn~r!u2ucn1 l~r!u2ei ~En1 l2En!t9/\ei ~En1m2En1 l !t/\L .
We rewrite Eq.~5.2!, taking into account that~i! Q(t)5tp(t); ~ii ! the first average in Eq.~5.2!
equals 2p\rC(t8), Eq. ~3.8!; and ~iii ! the second average is equal toK(t), Eq. ~5.1!:

K~ t !5
1

4p\r

tp~ t !

*0
t dt8C~ t8!

, ~5.3!

which is, with allowance for Eq.~3.10!, exactly equivalent to the Brownian motion result of Eq.
~2.5!. Now it is clear that the assumptions we have made to derive Eq.~2.5! are equivalent to
neglecting three-level correlations and keeping only two-level correlations. In the above deriva-
tion, we have disregarded thed function coming from Eq.~5.1!, as the exact relation~4.7! has
been actually derived from Eqs.~4.5! and~4.6! ast2p(t)5tQ(t), and thisd function enters in the
combinationtd(t).

For further analysis of the accuracy of Eq.~2.5!, it will be useful to see how the factorization
~5.2! arises in the energy representation. We begin by representingQ(t) in Eq. ~4.7! as follows:

Q~ t !5E
0

t

dt8E dvE dv8e2 iv8t8/\eivt/\Q~v8,v!, ~5.4a!

Q~v8,v!5L2dK (
l ,m

d~En1 l2En2v8!d~En1m2En2v!cn,n1 l L . ~5.4b!

The functionQ(v8,v) can now be related to the three-level correlation functionQ (E9,E8,E)
defined by

Q~E9,E8,E!5L2dK (
n,l ,m

d~E92En!d~E82En1 l !d~E2En1m!cn,n1 l L , ~5.5a!

5LdE ddr ^r~E9,r!r~E8,r!r~E!&[LdE ddrQ~E9,E8,E;r!, ~5.5b!

where

FIG. 3. Structure of the three-level correlation functionQ(t). We see that if in factorization we consider the correlation
betweenEn andEn1m , we must also consider that betweenEn1 l andEn1m .
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r~E8,r![(
n

ucn~r!u2d~E2En! ~5.6!

is the local density of states~LDoS!. Thus the correlation function involves, by definition, corre-
lations of eigenvalues and eigenstates. By the assumption of homogeneity of energy space we see
thatQ (E9,E8,E) is a function only of energy differencesv5E2E9 andv85E82E9, so that we
can putE950 without loss of generality. Integrating Eq.~5.5a! overE9 prior to and after putting
E9 to 0 then yields the following identity:

N Q~v8,v!5E0Q~0,v8,v!,

whereE0 is energy bandwidth andN is the total number of energy levels. From this identity and
Eq. ~5.4b! we obtain the following representation forQ(v8,v):

Q~v8,v!5
D

Ld K (
n,l ,m

d~En!d~En1 l2En2v8!d~En1m2En2v!cn,n1 l L [DQ~0,v8,v!.

~5.7!

We now apply the Kirkwood approximation21 to the correlation function, Eq.~5.5b!, in the fol-
lowing form:

Q~0,v8,v;r!5
^r~0,r!r~v8,r!&^r~0,r!r~v!&^r~v8,r!r~v!&

r3
1B~0,v8,v;r!, ~5.8!

where the numerator is chosen to incorporate all pairwise correlations, and the denominator
ensures the correct limiting value as each energy difference tends to infinity. The correctionB is
small if the approximation is good, which is expected to be the case unlessE9, E8[E91v8 and
E[E91v are all close together. Now from the definitions ofr(E) andr(E,r ), Eqs.~2.2! and
~5.6!, the averages in Eq.~5.8! can be expressed via the TLCF,R(v),

^r~E1v,r!r~E!&5^r~E1v!r~E!&5r2~11R~v!!,

and the Fourier transform of the return probability,p(v),

E ddr ^r~E1v,r!r~E,r!&5
1

2p\D
@p~v!12p\r#5

r

D
c~v!,

where we have taken into account thatp(v) is expressed via the irreducible part of the LDoS
correlation function, and used the relation~3.10!.

Thus the Kirkwood approximation of Eq.~5.8! yields the expression

Q~v8,v!5
r

D
$c~v8!@11R~v!1R~v82v!#%1

r

D
c~v8!R~v!R~v82v!

1DE ddrB~0,v8,v;r!. ~5.9!

The first line of the above equation represents the terms included in the Brownian motion formula,
and the second line is the correction. We can now rewrite the exact relation Eq.~4.7! using Eq.
~5.4! and the factorization given by the first line of Eq.~5.9! to obtain

K~ t !5S 1

4p\r D tp~ t !2A~ t !

*0
t dt8 C~ t8!

, ~5.10!
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where the remainderA(t) is given by the Fourier transform in the form~5.4a! of the second line
of Eq. ~5.9!. Note that in deriving Eq.~5.10!, we have again neglected a non-integratedd(t)
function which does not contribute to the final result.

If we ignore the remainderA(t), Eq.~5.10! is equivalent to Eq.~5.3! and thus to the Brownian
motion result, Eq.~2.5!. We see that the use of the Kirkwood approximation is just a more formal
way of doing the factorization discussed previously. The factor of 2 that occurs in Eq.~5.2!
emerges naturally, as the two equivalent two-level correlations are automatically taken into ac-
count. It is obvious that the second line of Eq.~5.9! could be small only if
uvu,uv8u,uv2v8u@D. Thus we could expectA(t) to be small, and Eq.~2.5! to be valid, only
outside of the quantum regime, i.e. fort&t

H
.

What we would like to be able to do is to find out how big the remainder termA(t) actually
is in this non-quantum limit. We can see thatA(t) consists of two parts: the first involves a
product of three two-level correlation functions, and is the Kirkwood approximation’s attempt to
represent three-level correlations in terms of two-level correlations; the second is the correction to
the approximation itself. To proceed we will introduce diagrammatic perturbation theory in the
next section, rewrite our factorization in this language and hence discover what is left over.

VI. DIAGRAMMATIC ANALYSIS

Our aim now is to check the validity of Eq.~2.5! beyond the trivial diagonal approximation in
which one can just neglect thet-dependence of the denominator, and substitute the classical limit
of p(t) into the numerator of this expression. The simplest way of doing this is to calculate both
K(t) andp(t) to higher order in perturbation theory, and to compare directly the r.h.s. and l.h.s.
of Eq. ~2.5!. It is more instructive, however, to analyze diagrammatically the exact relation~4.7!
and the decoupling procedure based on Eqs.~5.4! and~5.9!. In this way we will not only check the
accuracy of Eq.~2.5!, but arrive at an alternative factorization given by Eq.~2.9!.

Let us note that the role of higher order corrections is different ind52 andd.2. In the
2d case they are universal in the sense that they are due to diffusive motion of electrons through-
out the whole sample and almost insensitive to details of motion at the ballistic scale. Ind.2,
corrections are mainly due to the motion at the ballistic scale, and proportional to powers of an
additional small parameter (t/tel)

d/221 ~as well as to powers of the standard weak disorder param-
eter, inverse dimensionless conductanceg21). These corrections are not only small but of no
particular interest as they do not drive the system from weak to strong-disorder regime. In contrast
to this, the 2d corrections do describe crossover from weak to strong disorder, and are widely
believed to be more relevant in the vicinity of the metal-insulator transition ford.2 than those
calculated in the metallic limit directly ind.2 dimensions. Moreover, since in the diagonal
approximationK(t) } tp(t);const fort&tergatd52, the TLCF vanishes in this approximation in
the diffusive regime (E*Ec). Therefore, in this regime the first non-vanishing higher-order con-
tribution governs the main effect rather than describing some correction. For all these reasons, we
will consider mainly the 2d case in this section.

A. General relations

To be able to work in complete generality we will rewrite the exact equation~4.7! in terms of
Green’s functions that can then be expanded using standard diagrammatic methods. The form of
the diagrams forK(t) is by now well known, but those forp(t) and the three-level correlator
Q(t) are less familiar.

We start with the standard expression for DoS in terms of exact Green’s functions where, as
well as elsewhere in this section, we use the units\51:

r~E,r!5
i

2p
@GR~E;r,r!2GA~E;r,r!#. ~6.1!
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Here the retarded,GR and advancedGA Green’s functions are defined by

GR,A~E;r,r8!5(
n

cn~r!cn~r8!

E2En6 i0
. ~6.2!

For the density–density correlation function we get the formula

R~v!5S iD2p D 2E ddr E ddr 8^G ~0;r,r!G ~v;r8,r8!&, ~6.3!

whereG5GR2GA. The diagrams for this then consist of two loops, each with an external vertex
~with coordinatesr and r8), as shown in Fig. 4~a!. Averaging over the disorder ensemble then
leads to the presence of impurity lines both within a loop and across loops. Only the connected
diagrams contribute toR(v), while the trivial unconnected diagrams are cancelled by the21 in
the definition ofR(v), Eq. ~2.3!.

Similarly, p(v) is given by

p~v!5
2p

rLdE ddr ^r~E1v,r!r~E,r!&52
D

2pE ddr ^G ~v;r,r!G ~0;r,r!&. ~6.4!

The difference between the formulae~6.3! and~6.4! is that in the latter the densities of states are
evaluated at the same pointr in space rather than at different points. In diagrammatic terms this
means thatp(v) consists of two loops connected to a single external pointr, as shown in Fig. 5.

In the diffusive regime of the disordered metal it is impurity ladders describing diffusive
motion which give the important energy dependent contributions. They must have both aR and

FIG. 4. ~a! The two one-loop diagrams forR(v) in a disordered metal. The diagram on the left gives the~dominant!
Altshuler–Shklovskii contribution; that on the right is smaller by a factorDtel , and is usually ignored.~b! Definition of the
impurity ladders occurring in~a!. ~c! Rewriting the impurity ladder as an effective propagator.~d! Rewriting the diagrams
in ~a! using the notation of~c!. The electron Green’s function lines end up in the so-called Hikami boxes.
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A line – so onlyRA andAR diagrams can contribute. Since the latter are complex conjugates of
each other it follows that we can write the expressions forR(v) andp(v) in the following form:

R~v!5
D2

2p2 ReE ddr E ddr 8^GR~v;r,r!GA~0;r8,r8!&, ~6.5!

p~v!5
D

p
ReE ddr ^GR~v;r,r!GA~0;r,r!&. ~6.6!

The impurity ladders@Fig. 4~b!# which connect the two loops describe either diffusion or Coop-
eron propagators and are given in momentum space by

D~q;v!5
1

2prtel
2

1

Dq22 iv
. ~6.7!

We will consider both the cases with and without time-reversal symmetry, referring to them as the
orthogonal case (b51) and the unitary case (b52). Diagrammatically, the latter differs from the
former by the absence of the Cooperon contributions which differ from the diffusions by the
relative direction of arrows in impurity ladders.

The loops can be connected by an arbitrary number of the ladders. In the lowest order there
are the two contributions toR(v) shown in Fig. 4~a!, and one contribution top(v) ~Fig. 5!. The
dominant contribution toR(v) – which is called Altshuler-Shklovskii diagram – has two impurity
ladders; the diagram with only one ladder gives a much smaller contribution.

Thus the perturbation order of a diagram is not determined by the number of ladders. A
standard way22,23 to determine this order, and to make the calculation of diagrams more straight-
forward, is to rewrite them in the form where impurity ladders are represented as propagators@a
wavy line in Fig. 4~c!#; this is convenient since the ladders involve small momentum,ql !1, and
energy,vtel!1. All other Green’s function lines are absorbed into effective interactions between
propagators~as shown in Figs. 4 and 5! known as Hikami boxes. Then the order of a diagram is
the number of independent momenta occurring in the propagators, which is just the number of
loops made of the wavy lines.~Each box can be thought of as being contracted into a single node
which corresponds to a spatial region of sizel ; any diagram would then consist of a number of
wavy lines joined together at such nodes.! The loop-expansion parameter here is 1/g whereg is
the dimensionless conductance of the sample.

The one-loop diagrams forR(v) are shown in Fig. 4~d!. The two external vertices may be in
separate~odd! boxes, or the same~even! box; we ignore the latter since they are smaller than the
former by factorDtel;(l /L)d in the same order of perturbation theory. The remaining Hikami
boxes that do not contain an external vertex have an even number of sides.

Rewriting diagrams forp(v) in terms of Hikami boxes we find that the external vertex
@corresponding to the pointr in Eq. ~6.6!# has two boxes connected to it – these can either both be
odd boxes, or both be ‘‘2-gons’’~larger even boxes are not allowed since one can always string
impurity ladders across them to recover the ‘‘2-gon’’ structure!. All other boxes have no external

FIG. 5. The one-loop diagram for the quantum return probabilityp(v) in the ladder and Hikami-box representations.
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vertex and so have an even number of sides. Note that all the Hikami boxes must be ‘‘dressed,’’
i.e. single-impurity lines should connect~without mutual intersection! thosenon-adjacentsides of
the boxes which have the same analyticity~bothR, or bothA).23 In all diagrams below the boxes
are assumed to be dressed. The one-loop contribution top(v) is given in Fig. 5 in both the ladder
and Hikami representations. All the two-loop contributions top(v) andR(v) are given in the
Hikami representation in Fig. 6.

Before comparing the higher order contributions made to Eq.~2.5! by the diagrams for
R(v) and p(v), we consider the three-level correlatorQ(v8,v). Starting from Eq.~5.7!, and
rewriting the densities of states via Eq.~6.1! we get

Q~v8,v!5DS i

2p D 3E ddr E ddr 8^G ~0;r,r!G ~v8;r,r!G ~v;r8,r8!&. ~6.8!

Following the procedure used forR(v) andp(v) above we see that in the ladder representation
the diagrams forQ(v8,v) consist of three loops, two of which are joined at the external vertex
r, and the third having the external vertexr8. There are now several classes of diagrams that are
not fully connected, as shown in Fig. 7~a!. ~The shaded strips there include symbolically all
possible combinations of impurity ladders.! The most trivial has all loops unconnected and yields
a constant term. The two others are reducible as they have only two out of the three loops
connected by impurity ladders, and contribute terms proportional tor3R(v), r3R(v82v) and
rp(v8). These reducible contributions add up to give

Quc~v8,v!5S rLd

2p D $2pr@11R~v!1R~v82v!#1p~v8!%. ~6.9!

We see that the r.h.s. of the above is similar , but not identical to, the first line of the r.h.s. of Eq.
~5.9!. The difference is that the is nop(v8) multiplying theR(v) andR(v82v) in Eq. ~6.9!,
only its constant part 2pr. If we substitute this term into Eq.~4.7! we obtain
K(t)5(2p\)21tp(t). In other words, the reducible diagrams of the three-level correlatorQ are
enough to reproduce the diagonal approximation of semi-classics. In order to recover our formula,
Eq. ~2.5!, we will need to analyze the irreducible contributions toQ given schematically in
Fig. 7~b!.

If we look at the irreducible contributions the first thing to note is that each diagram can only
have ladders between two of the threepairs of loops. This is because ladders are always between
anR and anA line, and so in an irreducible diagram either two loops areR and the thirdA or vice

FIG. 6. Two-loop order diagrams toR(v) @~a!, ~b!, ~c!#; p̃(v) @~d!, ~e!#; and Q̃(v) ~f!. All diagrams contribute in the
orthogonal case, while only~d! and ~f! contribute in the unitary case.
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versa. There are therefore 6 possibilities which come in complex conjugate pairs:AAR and
RRA; ARAandRAR; RAAandARR. The irreducible part ofQ(v8,v) can then be written in the
form

Qc~v8,v!5
1

4p3rLdE ddr E ddr 8Im$^GA~0;r,r!GA~v;r,r!GR~v8;r8,r8!&

1^GA~0;r,r!GR~v;r,r!GA~v8;r8,r8!&1^GR~0;r,r!GA~v;r,r!GA~v8;r8,r8!&%.

~6.10!

When rewritten in the Hikami-box representation the diagrams forQ consist of the two boxes
connected to external vertexr found in p(v) diagrams, plus a single odd box connected to
external pointr8 as found inR(v) diagrams; these are then held together by wavy lines and even
boxes with no external vertices.QAAR diagrams cannot have the ‘‘2-gon’’ structure in the part
connected to external pointr since such a structure ends in ladders, which cannot happen here as
both lines of the ladder would beA. QARA andQRAA diagrams can have this ‘‘2-gon’’ structure.

If we are to re-derive our main result Eq.~2.5! diagrammatically we will need to show that the
connected part ofQ(v8,v) factors into a product ofR andp. This can be seen by recalling the
derivation of Eq.~2.5! via the Kirkwood approximation, where such factorization occurs in the
first line of Eq.~5.9!. The fact that only two pairs of loops can have ladders between them suggests

FIG. 7. ~a! The reducible contributions to the three-level correlatorQ(v8,v). The first diagram yields no contribution to
the functionQ(t), while the other two yield equal contributions toQ(t) that are proportional toK(t). ~b! The irreducible
contributions to the three-level correlatorQ(v8,v). For analyticity reasons the last two diagrams give no contribution to
the functionQ(t), so we need consider only diagrams of the first type.

5078 Chalker, Lerner, and Smith: Fictitious level dynamics in disordered conductors

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



a possible reason for this to occur. At this point we note that we are interested not inQ(v8,v)
itself but rather inQ(t) which is derived from it by Fourier transforms as in Eq.~5.4a!. The
analyticity properties ofQ(v8,v) diagrams will lead to some types giving no contribution to
Q(t). Eventually, a factorization emerges from this analysis which is different to that suggested in
Eq. ~5.9!, but which, remarkably, yields the same spectral form factor in two dimensions, to
third-loop order.

B. Analytical properties of the three-level correlation function

First let us prove that only theQAAR diagrams survive, starting with the formula forQ(t)
given by Eq.~5.4!,

Q~ t !5E
0

t

dt8E dv8E dve2 iv8t8eivtQ~v8,v!5E dv8E dv
eivt2ei ~v2v8!t

iv8
Q~v8,v!.

~6.11!

Taking the Fourier transform ofQ(t) then yields

E dtei v̄tE dv8E dv
eivt2ei ~v2v8!t

iv8
Q~v8,v!

52pE dv8E dv
1

iv8
@d~v̄1v!2d~v̄1v2v8!#Q~v8,v!

522p i E dv8

v8
@Q~v8,2v̄ !2Q~v8,v82v̄ !#. ~6.12!

Now consider the analyticity properties of theARR, ARA andAAR, respectively. They can be
written in the form

QRAA~v8,v!5 f ~2v8,2v!,

QARA~v8,v!5 f ~v8,v82v!, ~6.13!

QAAR~v8,v!5 f ~v,v2v8!,

where in each casef (v1 ,v2) is a function analytic in the u.h.p. for both arguments. ForQRAAEq.
~6.12! gives

22p i E dv8

v8
@ f ~2v8,v̄ !2 f ~2v8,2v81v̄ !#522p2@ f ~0,2v̄ !2 f ~0,2v̄ !#50 ,

~6.14!

since upon closing each term in l.h.p. we only get contributions from the pole atv850, and these
cancel. Similarly forQARA we get upon closing in the u.h.p.,

22p i E dv8

v8
@ f ~v8,v81v̄ !2 f ~v8,v̄ !#52p2@ f ~0,v̄ !2 f ~0,v̄ !#50 . ~6.15!

Finally for QAAR we get

22p i E dv8

v8
@ f ~2v̄,2v82v̄ !2 f ~v82v̄,2v̄ !#52~2p!2f ~2v̄,2v̄ !, ~6.16!
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where we closed first term in l.h.p., second in u.h.p. to yield contributions that add up. The above
term can be rewritten in the form2(2p)2QAAR(v850,2v̄), so it follows that diagrams for
QAAR can yield Fourier transform ofQ(t) directly. We have therefore verified our previous
assertion, and moreover have derived the contribution to the Fourier transform ofQ(t) coming
from theQAAR diagrams. Diagrammatically the above means that all ladders inQAAR diagrams
will have the same energy dependence.

Let us discuss what the above means for our factorization hypothesis. The reason we expected
that it would be theQRAR andQARR diagrams that survived is that we can envisage a natural
factorization into terms with energy dependence of the formR(v)p(v8) andR(v82v)p(v8),
which are exactly what is needed to reproduce Eq.~2.5!. The fact that it isQAAR which survives
means that our factorization hypothesis must be altered to have an energy dependence
R(v)p(v), which leads to a convolution int-space. More precisely, we expect thev-space
factorization to have the form

Q̃~v!52
~2p!2i

D
p̃~v!R̃~v!. ~6.17!

Here we have introduced the analytical functionsQ̃(v),p̃(v) and R̃(v) as follows:

Q̃~v![QAAR~0,v!; p~v![2Rep̃~v!; R~v![2ReR̃~v!. ~6.18!

Note that diagrammatically we calculate exactly these analytical functions. Before giving the
results for higher-loop contributions, note that calculations ofR̃(v) are considerably simplified
due to the fact that it can be obtained as the second derivative of ‘‘free energy’’F(v):

R̃~v!52S D

2p D 2 ]2

]v2 F̃~v!. ~6.19!

HereF(v) is given by the sum of all diagrams that have no external vertices, and the coefficient
of proportionality is chosen so as to makeF(v) dimensionless.

C. Calculation of diagrams up to three-loop order

As a result of the above discussion we can now lay out the diagrammatic program ahead.
First, we will calculate the contributions toF̃(v), p̃(v) andQ̃(v) up to three-loop order. Then,
we will verify that the exact relation~4.7! is fulfilled with these contributions and check the
factorization scheme of Eq.~6.17! which is dictated by the analytical structure described above.
This factorization is equivalent to that given by Eq.~2.9!. Finally, we will, having verified this
factorization up to the three-loop order, check the factorization that comes out of the Kirkwood
approximation, Eq.~5.9!, and is equivalent to the result of the Brownian-motion model, Eq.~2.5!.
We will show that up to the third-loop order both the factorizations are identical and exact in
d52. Therefore, Eq.~2.5! obtained within the Brownian motion picture turn out to be correct to
quite a non-trivial order of perturbation theory.

Let us introduce a notation that is convenient for further analysis:

P 1 . . .n[D~q11•••1qn!
22 iv, ~6.20!

In particular,P 1[Dq1
22 iv.

Now, two-loop order contributions corresponding to the diagrams in Fig. 8~a! ~equivalent to
those in Figs. 6~a!–6~c!# and in Figs. 6~d!–6~f! may be written as
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F̃2~v!5S 22b

b D D

2p (
q1 ,q2

P 11P 21 iv

P 1P 2
;

p̃2~v!5S 2b D D

2pLd
Re(

q1 ,q2
H 1

P 1P 2
12~22b!

P 11P 21 iv

~P 1!
2P 2

J ; ~6.21!

Q̃2~v!52 i S 2b D 2 D

Ld (
q1 ,q2

1

~P 1!
2P 2

.

Here we note the following. The diagrammatic approach could be used both in the diffusive
regime,v@Ec , where all the sums above should be replaced by integrals, and in the ergodic
regime,Ec@v@D, where only the contribution of the zero mode~all q50) survives. In the
diffusive regime, regularization of divergent integrals is required. Although we do not explicitly
calculate contributions of all diagrams below, in all algebraic manipulations we use dimensional
regularization neard52. These manipulations involve dealing with largeq;l 21, and so all
diagrammatic expressions we give here are not directly valid in the ergodic regime. However, it is
straightforward to verify the accuracy of our factorization scheme in the zero-mode regime as
well.

The three-loop contributions toF(v), p(v) and Q(v) are shown in Figs. 8, 9 and 10,

FIG. 8. Two- and three-loop order diagrams for the functionF̃(v). The two-loop diagram is equivalent to those in Figs.
6a–c, and contributes only to the orthogonal case. All 5 three-loop diagrams contribute to the orthogonal case, while only
3a and 3b contribute to the unitary case.

FIG. 9. Three-loop order diagrams for the quantum return probabilityp̃(v). All 10 diagrams contribute in the orthogonal
case, while only the first 2 contribute in the unitary case.
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respectively. In Fig. 8~a! we have also drawn the two-loop contribution toF(v) which is equiva-
lent to the three two-loop contributions toR(v) shown in Fig. 6. Note that in the three-loop order
there are 41 diagrams that contribute directly toR(v), so that to have instead only the 5 diagrams
for F(v), as in Fig. 8, is a considerable simplification. Nevertheless, these three-loop results are
quite bulky, and we list contributions of each diagram Tables I–III below.

The labels in the tables correspond to those in Figs. 8–10, and in the figure captions we
describe which diagrams are made of diffusions only and thus contribute in the unitary (b52)
case. Obviously, all the diagrams contribute in the orthogonal (b51) case. Results for the sym-
plectic symmetry class (b54) are practically the same as for the orthogonal case but we do not
list them here to avoid complications with the coefficients.

The starting point for our diagrammatic analysis is Eq.~4.7! which we now rewrite as follows.
The Fourier transform, Eq.~5.4!, of the functionQ(t) is split into the reducible and irreducible

FIG. 10. Three-loop order diagrams for the functionQ̃(v). All 13 diagrams contribute in the orthogonal case, while only
the first 4 contribute in the unitary case.

TABLE I. Three-loop order contributions toF̃(v): an overall factor of
(D/2p)2 should be attached to each contribution.

3Fa5Fd522(q1 ,q2 ,q3

2(P 11P 21P 3)13iv
P 1P 2P 3

Fb5
1
4(q1 ,q2 ,q3

(P 121P 23)
2

P 1P 2P 3P 123

Fc52(q1 ,q2 ,q3

(P 11P 21 iv)(P 11P 31 iv)

P 1
2
P 2P 3

Fe5
1
2(q1 ,q2 ,q3

(P 121P 23)(P 131P 32)
P 1P 2P 3P 123
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parts@Eqs.~6.9! and~6.10!, respectively#. As only Q̃(v), Eq.~6.18!, contributes to the irreducible
part, we obtain

]

]~ iv! F 1Ld ]

]~ iv!
F~v!2 p̃~v!G5

i

p
Q̃~v!. ~6.22!

This is the exact relation which holds to all orders in perturbation theory. It allows us to check the
accuracy of our diagrammatics up to three-loop order for both the unitary and orthogonal cases.
We do this by first substituting the two-loop results of Eq.~6.21—which is quite straightforward,
and then the three-loop data from the tables which requires some significant algebra. We verify
that this identity holds with our diagrammatic results which gives us confidence in their accuracy.

TABLE II. Three-loop order contributions top̃(v): an overall factor of
L2d(D/2p)2 should be attached to each contribution.

pa5
1
2pe5pf522(q1 ,q2 ,q3

2(P 11P 21P 3)13iv)

P 1
2
P 2P 3

pb5(q1 ,q2 ,q3

(P 121P 23)
2

P 1
2
P 2P 3P 123

pc54(q1 ,q2 ,q3

(P 11P 21 iv)(P 11P 31 iv)

P 1
3
P 2P 3

pd54(q1 ,q2 ,q3

(P 11P 21 iv)(P 21P 31 iv)

P 1
2
P 2

2
P 3

pg52(q1 ,q2 ,q3

(P 121P 23)(P 131P 32)

P 1
2
P 2P 3P 123

ph54(q1 ,q2 ,q3

(P 11P 21 iv)

P 1
2
P 2P 3

pi524(q1 ,q2 ,q3

1
P 1P 2P 3

pj5(q1 ,q2 ,q3

(P 121P 23)
P 1P 2P 3P 123

TABLE III. Three-loop order contributions toQ̃(v): an overall factor of
(D2/2pLd) should be attached to each contribution.

Qa52Qb5Qh5Qi5Qj5Qk52i(q1 ,q2 ,q3

1

P 1
2
P 2P 3

Qc5Ql5 i(q1 ,q2 ,q3

1
P 1P 2P 3P 123

Qd5Qm522i(q1 ,q2 ,q3

(P 121P 23)

P 1
2
P 2P 3P 123

Qe524i(q1 ,q2 ,q3

(P 11P 21 iv)

P 1
3
P 2P 3

Qf522i(q1 ,q2 ,q3

(P 11P 31 iv)

P 1
2
P 2

2
P 3

Qg522i(q1 ,q2 ,q3

(P 11P 21 iv)

P 1
2
P 2

2
P 3
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The next step is to see whether our projectedv-space factorization occurs to two- and three-
loop order in both the orthogonal and unitary cases. To check Eq.~6.17! up to two-loop order, we
calculate both factors in the r.h.s. to the first order only. This is simple and yields

Q̃2~v!52 i S 2b D 2 (
q1 ,q2

1

~P 1!
2P 2

52
i ~2p!2

D
p̃1~v!R̃1~v!,

so that the factorization~6.17! is exact in this order. The reason why this is so simple is that with
only two momentaq1 andq2 there is no way for the momenta to become ‘‘entangled,’’ and so
there is only really one possible functional form. The fact that the numerical coefficients match up
exactly is the important thing. The three loop case is more involved because now the entanglement
can occur, and this leads to the factorization not being exact. For both the unitary and orthogonal
cases, however, we get the same functional form in the remainder,

Q3~v!1
i ~2p!2

D
@R̃1~v! p̃2~v!1R̃2~v! p̃1~v!#

52
2iD2

pb2Ld (
q1 ,q2 ,q3

H 4

~P 1!
2P 2P 3

2
2~P 121P 23!

~P 1!
2P 2P 3P 123

1
1

P 1P 2P 3P 123
J .

The remainder can then be algebraically manipulated to give

2D2

3pb2Ld
]

]~ iv! (
q1 ,q2 ,q3

H iv

P 1P 2P 3P 123
J . ~6.23!

At the three-loop level we see that the factorization is not exact, but that the remainder term is
simple and its momentum integrals are fully convergent. Certainly for the orthogonal case many
terms have been removed to yield this remainder. We next note that in the special case of two
dimensions this remainder is zero, and the factorization is exact. This is because ford52 dimen-
sional analysis shows that the term inside the derivative is a constant – it is of the form
(2 iv)0, and no logarithmic singularities are present – and so one gets zero upon taking deriva-
tive. Even if the remainder were not able to be written as a derivative, but just as a sum of terms
with no logarithmic singularities, it would yield zero. This is because dimensional analysis shows
that the result is of the forma/(2 iv), wherea is a real constant. Since we have to take the real
part of this to getR(v) this would give zero. However in this case there would be a constant
contribution to the Fourier transformK(t), becausea/(2 iv) does actually have a real part
proportional tod(v) – this is exactly what happens in the case of the 1-loop contribution in
d52. We note that our factorization is exact to 3-loop order ind52 even in the sense of getting
the constant term inK(t) correct.

It seems to us that the exactness of factorization up to three-loop order ind52 for both
orthogonal and unitary cases is no accident, and we conjecture that this result persists to all orders
in perturbation theory. Obviously such a conjecture cannot be proved using order-by-order analy-
sis ~although, of course, it could be disproved this way!, so any attempt to verify this will require
analysis of the structure ofR(v), p(v) andQ(v) diagrams.

D. Comparison of the two factorization schemes

In this section we will compare the two factorization schemes that we have introduced in this
paper: thet-space scheme that arose from consideration of the Brownian motion model of section
III, and thev-space scheme that arose in the diagrammatic analysis of section VI. We have shown
that thev-space scheme is exact to 2-loop order in all dimensions, and to 3-loop order in the 2d
case. We will now examine the validity of thet-space scheme. This involves very little extra work
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because most of the algebraic manipulation has already been performed in thev-space analysis.
We first compare the two relations by writing both of them int-space to yield

K~ t !2~2p\r!21tp~ t !52~p\r!21E
01

t

dt8K~ t8!p~ t2t8!, ~6.24a!

K~ t !2~2p\r!21tp~ t !52~p\r!21K~ t !E
0

t

p~ t8!, ~6.24b!

where, of course, we know the region of validity of the first formula. To investigate thet-space
factorization we need only compare the r.h.s. of the above equations. In the 2-loop case the
K(t) and p(t) in the r.h.s. will both be of 1-loop order, and we know thatp1(t) } t2d/2 and
K1(t) } t12d/2. We find that the two equations above only agree ford52, whereK1(t)51. The
t-space factorization is therefore exact to 2-loops only in 2d, and we restrict ourselves to the 2d
case from now on.

To look at thet-space scheme to 3-loop order in 2d we note that we can have the combina-
tionsK1 , p2 andK2 , p1 . For the unitary caseK2(t)50, so this leaves only the first contribution,
and sinceK1(t)51 the two factorizations become the same. For the orthogonal case we have to
look at the second contribution. We find that the two equations differ by a constant. For the
purpose of calculating the asymptotic behavior ofR(v), constant terms inK(t) have no effect, so
that thet-space factorization works up to 3-loop order in 2d for both orthogonal and unitary cases.

At this point it seems that thev-space scheme may be perturbatively slightly more accurate
than thet-space scheme in that it is correct in 2-loops for all dimensions, and at 3-loop order it
gets the constant term inK(t) correct in the orthogonal case. However we are still justified in
saying that both schemes are correct to 3-loop order in 2d.

VII. SUMMARY

In this paper we have examined spectral correlations in disordered conductors, starting from
the idea@Eq. 4.2# that two samples with impurity configurations differing by an infinitesimal
amount should be statistically equivalent. In the first instance, this equivalence yields an identity
relating two-point to three-point correlation functions; it is useful only if one can decouple the
latter. We argue that a decoupling based on the Kirkwood superposition approximation is physi-
cally reasonable provided one is interested only in correlations at scales large compared to the
mean level spacing. Within this approximation, we express@Eq. 2.5# both the non-parametric and
the parametric spectral form factor in terms of the quantum return probability for a spreading
wavepacket. We test the decoupling by calculating corrections, using the standard diagrammatic
perturbation theory for disordered conductors to expand about the metallic limit in inverse powers
of the dimensionless conductance,g. We show that in two-dimensional systems, the case of
greatest interest, there are no corrections to orderg23. We believe that the results we obtain from
this approach should be useful rather generally, and especially when a diagrammatic analysis is
not straightforward, as at the Anderson transition; the implications of our work in that regime will
be discussed elsewhere.

Note added:Since completing this work, we have become aware of an earlier discussion by
Wilkinson,24 in which the effects of eigenfunction correlations on Brownian level dynamics are
investigated, using periodic orbit theory to treat the semiclassical limit.
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We present a semiclassical theory of weak disorder effects in small structures and
apply it to the magnetic response of non-interacting electrons confined in integrable
geometries. We discuss the various averaging procedures describing different ex-
perimental situations in terms of one- and two-particle Green functions. We dem-
onstrate that the anomalously large zero-field susceptibility characteristic of clean
integrable structures is only weakly suppressed by disorder. This damping depends
on the ratio of the typical size of the structure with the two characteristic length
scales describing the disorder~elastic mean-free-path and correlation length of the
potential! in a power-law form for the experimentally relevant parameter region.
We establish the comparison with the available experimental data and we extend
the study of the interplay between disorder and integrability to finite magnetic
fields. © 1996 American Institute of Physics.@S0022-2488~96!01310-2#

I. INTRODUCTION

Electronic mesoscopic systems offer nowadays the possibility of being used as a laboratory
for studying quantum chaos. The main question of this novel discipline — the quantum signatures
of the underlying classical dynamics — can be addressed in microstructures defined on high
mobility semiconductor heterojunctions. This connection presents a considerable challenge to
experimentalists since it implies complicated fabrication processes and delicate measurements.
The challenge for theoreticians is not any less complicated since semiconductor microstructures
are very rich condensed matter systems~involving effects of temperature, confinement, disorder,
electron-electron and electron-phonon interactions, etc.! where the applicability and validity of
simple models has to be clearly established.

Within the simple model of a particle-in-a-billiard, important differences have been
predicted,1 and later measured,2,3 in the transport through chaotic and integrable geometries. In the
former nearby trajectories diverge exponentially and periodic orbits are usually isolated; the latter
are characterized by having as many constants of motion in involution as degrees of freedom, and
periodic orbits are organized in families on invariant tori.4 Chaotic cavities exhibit a universal
behavior for the conductance fluctuations and weak-localization, characterized by a single scale.
On the contrary, integrable cavities do not show generic behavior presenting more fine-scale
fluctuations and a non-Lorentzian line-shape of the low-field magneto resistance. In the case of
thermodynamical properties like the magnetic susceptibility, the differences between chaotic and
integrable billiards are more spectacular since they involve an order-of-magnitude enhancement of

aPermanent address: Division de Physique The´orique, IPN, 91406 Orsay Cedex, France.
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the low-field susceptibility of integrable geometries compared to that of chaotic ones.5–7 Unlike
the transport problem, the predicted different behavior according to the integrability of the under-
lying classical mechanics, has not been experimentally confirmed.

The residual disorder present in actual microstructures plays a special role in the quantum
chaos studies. Indeed, any perturbing potential, such as the one provided by the disorder, imme-
diately breaks the integrable character of the classical dynamics. Since small amounts of disorder
are unavoidable in actual microstructures, the question of whether or not integrable behavior
should be observed, naturally arises. It is then of foremost importance to establish if the differ-
ences between chaotic and integrable geometries persist when we go beyond the particle-in-a-box
model. This interplay between integrability and disorder is the main subject of this paper.

We start by characterizing the disorder. One limiting case is the absence of it, where the
dynamics is determined by the non-random confinement potential~particle-in-a-box orcleanmod-
els!. On the other extreme we have thediffusivelimit where the electron motion is a random walk
between the impurities and the confining effects are not important. The strength of the disorder in
the diffusive case is characterized by the transport mean free pathl T : the mean distance over
which the electron momentum is randomized. Whenl T becomes of the order of the typical size
a of the microstructure, confinementanddisorder are relevant. Forl T.a we arrive at theballistic
regime where electrons can traverse the structure with a small drift in their momentum~going
along almost straight lines!, and their dynamics is mainly given by the bounces off the walls of the
confining potential. In the ballistic regime the underlying classical mechanics still depends on the
geometry and we would like to understand the different role of disorder in integrable and chaotic
geometries.

For short range impurity potentials~as typically found in metallic samples! the scattering is
isotropic (s-type! and the momentum is randomized after each collision with an impurity. There is
therefore only one length scale, namelyl T , characterizing the disorder. For smooth impurity
potentials~as typically realized in high-mobility microstructures! the scattering is forward directed
and l T may be significantly larger than the elastic mean free pathl associated to the total ampli-
tude diffracted by the disorder.8 The regimel T.a. l is particularly interesting because it is
ballistic ~since the classical mechanics is hardly affected by disorder!, but the single particle
eigenstates are short lived. In a more technical language that we will precise in the sequel, we have
l given by a single-particle Green function andl T by a two-particle Green function.

9 We will study
the interplay between disorder and confinement for physical observables that depend on one- and
two-particle Green functions, concentrating on the magnetic susceptibility of individual and en-
sembles of ballistic microstructures.

The natural tools to attack the interplay between disorder and confinement are semiclassical
expansions since they transparently convey at the quantum level the information about the clas-
sical mechanics. Supersymmetry10 and random matrix theories are quite powerful methods that
have been widely used in recent studies of quantum chaos and disordered systems,11–14but are not
applicable to our regime of interest since they deal with the ergodic universal~long time! prop-
erties of completely chaotic systems. Diagrammatic perturbation theory for the disorder can de-
scribe the diffusive regime,15 but calculations become exceedingly complicated when the confine-
ment and the detailed nature of the impurity potential has to be considered.

In our semiclassical approach we emphasize the dependence of disorder effects on the ratio
between the finite system sizea and the disorder correlation lengthj, showing that confined
systems exhibit strong deviations from the bulk-behavior. In particular we demonstrate that for
integrable geometries the effect of smooth disorder results in a power-law damping of the two-
particle Green function properties, and we compare this behavior with that expected in chaotic
systems. For completeness of the presentation we first briefly review in Sec. II our work on the
magnetic response of clean systems.5,6 We then develop in detail a treatment of disorder in
ballistic microstructures extending some preliminary work.16 In Sec. III we present the disorder
model and some general implications at the level of one- and two-particle Green functions. In
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Secs. IV and V we focus on the impurity averaged magnetic susceptibility for individual and
ensembles of microstructures.

II. ORBITAL MAGNETISM IN CLEAN SYSTEMS: A BRIEF REVIEW

A. Thermodynamic formalism

In this section we present the basic thermodynamical formalism for obtaining the orbital
magnetism within a semiclassical approach. We indicate the main ideas for its application to clean
microstructures5,6 which will be further developed in Secs. IV and V in order to allow for the
treatment of static disorder. The principle is to derive thermodynamical expressions for the free
energy and the grand potential using a semiclassical approximation for the density of states. This
allows us to calculate physical observables such as the magnetic susceptibility for the canonical
and grand canonical ensembles.

For a system of electrons confined to an areaA at temperatureT and subject to a perpendicu-
lar magnetic fieldH, the free energyF(T,H,N) for a fixed numberN of electrons and the grand
potentialV(T,H,m) ~representing the coupling to a particle reservoir with chemical potential
m) are related by means of the Legendre transform

F~T,H,N!5mN1V~T,H,m!. ~2.1!

The canonical (x) and grand canonical (xGC) susceptibilities of a confined electron gas are given
by

x52
1

A S ]2F

]H2D
T,N

, xGC52
1

A S ]2V

]H2D
T,m

. ~2.2!

The grand potential can be expressed in the form

V~T,H,m!52
1

bE dEd~E! ln@11 exp~b~m2E!!# ~2.3!

~with b51/kBT) in terms of the single-particle density of statesd(E) which we decompose into
a smooth mean and oscillating part according to

d~E!5d̄~E!1dosc~E!. ~2.4!

As has first been noticed in the context of persistent currents in disordered rings,17 a distinction
betweenx andxGC may be of crucial importance in mesoscopic thermodynamics: Although the
number of electrons can be large for a mesoscopic system, the fact thatN is fixed must be taken
into account~by working in the canonical formalism! if a disorder or energy averaged magnetic
response of anensembleof isolated microsystems is examined. According to Imry18 a convenient
representation for the canonical free energy in terms of grand canonical quantities is obtained by
expanding the relationship~2.1! to second order inm2m̄ with a mean chemical potentialm̄ being
implicitly defined by accommodatingN charge carriers with the mean number of states

N5N~m!5N̄~m̄ !. ~2.5!

Here

N~m!5E
0

`

dEd~E! f ~E2m! ~2.6!

with the Fermi distribution function
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f ~E2m!5
1

11 exp@b~E2m!#
. ~2.7!

N̄ is obtained in Eq.~2.5! by replacingd(E) by d̄(E). This finally allows an expansion of the free
energy as17

F~N!.F01DF ~1!1DF ~2!, ~2.8!

with

F05m̄N1V̄~m̄ !, ~2.9a!

DF ~1!5Vosc~m̄ !, ~2.9b!

DF ~2!5
1

2d̄~m̄ !
~Nosc~m̄ !!2. ~2.9c!

The functionsVosc(m̄) andNosc(m̄) are expressed by means of Eqs.~2.3! and~2.6!, respectively,
upon inserting the oscillating partdosc(E) of the density of states~2.4!. The leading order contri-
bution toF is given by the first two termsF01DF (1) yielding the susceptibility calculated in the
grand canonical case.F0 gives rise to the~two-dimensional! diamagnetic Landau-susceptibility
which for billiard-like systems is expressed as for the bulk as

2xL52
gse

2

24pmc2
~2.10!

with gs52 the spin degeneracy.

B. Semiclassical treatment of susceptibilities

For a semiclassical computation ofDF (1) andDF (2) and their derivatives with respect toH
we calculatedosc(E,H) from the trace

d~E,H !52
gs
p
Im E dr GE~r ,r ! ~2.11!

of the semiclassical one-particle Green function. Its contribution todosc(E) is given by4

GE~r 8,r !5(
t
Dt expF i SSt\

2h t

p

2 D G , ~2.12!

as the sum over all classical pathst ~of non-zero length! joining r to r 8 at energyE.

St5E
C t

pdq ~2.13!

is the classical action integral along the pathC t . The amplitudeDt takes care of the classical
probability conservation, andh t is the Maslov index.

The evaluation of the trace integral~2.11! for chaotic and integrable systems leads to the
Gutzwiller4 and Berry–Tabor19 periodic-orbit trace formulas, respectively. In order to calculate
the magnetic susceptibility at small fields one has to carefully distinguish6 between the three
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possibilities of a chaotic billiard, the special case of an integrable billiard remaining integrable
upon inclusion of theH-field, and the more general case where the field acts as a perturbation
breaking the integrability of a regular structure.

Since our main interest in Secs. III, IV and V will be devoted to disorder effects on the
susceptibility of billiards being integrable at zeroH-field we will focus here on the last case. There
neither Gutzwiller nor Berry–Tabor-trace formulas are directly applicable and, following Ozorio
de Almeida,20 a uniform treatment of the perturbingH-field is necessary. In the integrable zero-
field limit each closed trajectory belongs to a torusIM and we can replacer in the trace integral
~2.11! by angle coordinatesQ1 specifying the trajectory within the~one-parameter! family and by
the positionQ2 on the trajectory. For small magnetic field the classical orbits can be treated as
essentially unaffected while the field acts merely on the phases in the Green function in terms of
the magnetic flux through the areaAM(Q1) enclosed by each orbit of familyM . Evaluating the
trace integral~2.11! alongQ2 for the semiclassical Green function of an integrable system leads
in this approximation to a factorization of the density of states

dosc~E!5 (
MÞ0

C M~H !dM
0 ~E! ~2.14!

into the contribution from the integrable zero-field limit

dM
0 ~E!5D̃M cosS kFLM2hM

p

2
2

p

4 D ~2.15!

(LM is the length of the orbits of familyM andD̃M the semiclassical weight19! and the function

C M~H !5
1

2pE0
2p

dQ1 cosF2p
HAM~Q1!

F0
G ~2.16!

containing theH-field dependence (F05hc/e). CalculatingDF (1) from Eq.~2.9b! and taking the
derivatives with respect toH gives the grand canonical contribution to the susceptibility at small
magnetic field

x~1!

xL
52

24p

gs
mAS F0

2pAD 2(
M

RT~tM !

tM
2 dM

0 ~m!
d2C M

dH2 . ~2.17!

Here,tM is the period of a closed orbit of familyM and

RT~t!5
t/tc

sinh~t/tc!
; tc5

\b

p
~2.18!

is a temperature damping factor which arises from the convolution integral in Eq.~2.3! and gives
an exponential suppression of long orbits. This is important from a physical as well as computa-
tional point of view, as conceptual difficulties associated with the questions of absolute conver-
gence of semiclassical expansions at zero temperature do not arise.

Eq. ~2.17! is the basic equation for the susceptibility of an individual microstructure. When
considering ensembles of ballistic microstructures however, an average (•) over energy~i.e.,
kF) or over the system sizea usually has to be performed and leads to variations in the phases
~actionsS/\5kFLM) of the density of states~2.15! which are much larger than 2p. Therefore,
x (1) vanishes upon ensemble average. In order to characterize the orbital magnetism of ensembles
we introduce thetypical susceptibilityx (t)5(x2)1/2 ~the width of the distribution! and the en-
semble averagex̄ @its mean value, which is non-zero because of the termDF (2) in the expansion
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Eq. ~2.8!#. The typical and ensemble average susceptibilities are of theoretical interest since they
are based on two-particle Green functions and are relevant for the description of experiments on
ensembles of mesoscopic systems.

If we assume that there are no degeneracies in the lengths of orbits from different families
M we obtain forx (t)

S x~ t!

xL
D 25S 24pgs mAD 2S F0

2pAD 4(
M

RT
2~tM !

tM
4 dM

0 ~m!2 S d2C M

dH2 D 2. ~2.19!

In calculatingx̄, the grand canonical contributionx (1) from DF (1) vanishes under energy average
and the canonical correctionDF (2) in Eq. ~2.8! gives in semiclassical approximation using Eq.
~2.9c!

x̄

xL
.

x~2!

xL
52

24p2

gs
2 \2S F0

2pAD 2(
M

RT
2~tM !

tM
2 dM

0 ~m!2
d2C M

2

dH2 . ~2.20!

Eqs. ~2.17!–~2.20! provide the general starting point for a computation of the susceptibility of
integrable billiards at small fields.

As an important example, which is also of experimental relevance,21 we will apply the results
to square billiards. At finite temperaturex is essentially given by the familyM5~1,1! of the
shortest, flux-enclosing periodic orbits depicted in Fig. 1. A complete treatment including families
of longer orbits is given in Ref. 6. Instead ofQ1 we use the lower reflection pointx0 as orbit
parameterization within the family. The orbits~1,1! have the unique lengthL1152A2a and en-
close a normalized areaA(x0)54px0(a2x0)/a

2. Computation ofd11
0 (m) for the square geom-

etry gives forx (1) @Eq. ~2.17!#

x~1!

x0 5E
0

a dx0
a

A2~x0!cos~wA~x0!!sinS kFL111 p

4 D ~2.21!

as a function of the total fluxw5Ha2/F0 with F05hc/e. The prefactor

x05xL

3

~A2p!5/2
~kFa!3/2RT~L11!. ~2.22!

shows the (kFa)
3/2-dependence typical for~nearly-! integrable systems.

For the square geometry Eqs.~2.19! and ~2.20! for the susceptibilitiesx (t) and x̄ ~character-
izing different ensemble averages! can be reduced to@including only the dominant contributions
from the family ~1,1!#

FIG. 1. Two representative periodic orbits characterized byx0 and x08 belonging to the familyM5~1,1! ~denoting one
bounce with each wall! of a square billiard of lengtha.
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x~ t !

x0 .
Ax~1!2

x0 5
1

A2
E
0

adx0

a
A2~x0!cos~wA~x0!! ~2.23!

and

x̄

x̄0
5
1

2
E
0

a dx0

a
E
0

a dx08

a
@A2

2 cos~wA2!1A1
2 cos~wA1!# ~2.24!

with

x̄0

xL
5

3

~A2p!3
~kFa!RT

2~L11! ~2.25!

andA65A(x0)6A(x08). Although the integrals~2.21!, ~2.23!, and ~2.24! can be evaluated
analytically in the clean case~leading to Fresnel functions of the magnetic flux5!, the above
expressions serve as suitable starting points for the study of disorder effects on ensembles of
microstructures discussed in Secs. IV and V.

III. SEMICLASSICAL APPROACH TO WEAK DISORDER

Disorder is usually studied in terms of the ensemble average over impurity realizations, since
it is a perturbation of an electrostatic potential whose detailed nature is unknown. Typically,
quantum perturbation theory is followed by the average over the strengths and positions of the
impurities. This approach is suited for macroscopic metallic samples~which are self-averaging! or
ensembles of mesoscopic samples~where different samples present different impurity configura-
tions!. The possibility of measuring a single disordered mesoscopic sample poses a conceptual
difficulty since there is not an average process involved. When discussing the effect of disorder on
the orbital magnetism of microstructures, it is therefore necessary to distinguish between the
behavior of an individual sample and an ensemble.22

Moreover, we have to consider the cases where the Fermi energy and size of the microstruc-
tures are kept fixed under impurity average and the cases where these parameters change with the
different impurity realizations. These various averages, that will be thoroughly discussed in the
remainder of the paper, can be expressed in terms of the impurity average of one- and two-particle
Green functions. Therefore we perform in this section a general treatment of disorder effects on
the basis of semiclassical expansions of Green functions. The Green function formalism, which is
useful for a wide range of physical problems, can be applied to thermodynamical quantities like
the magnetic susceptibility~Secs. IV and V! as well as to quantum transport problems.

1. Disorder models

Our basic assumptions for the treatment of disorder are the following: We study a spatially
random potentialV(r ) characterized by a correlation function

C~ ur2r 8u!5^V~r !V~r 8!& ~3.1!

with a typical correlation lengthj and a mean disorder strengthC05C(0). Wewill make use of
a Gaussian correlation

C~ ur2r 8u!5C0 expS 2
~r2r 8!2

4j2 D ~3.2!
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which allows us to derive analytical expressions for the disorder averages considered below.23 The
disorder correlation function~3.2! can be viewed as being generated by means of a realizationi of
a two-dimensional Gaussian disorder potential given by the sum

V~r !5(
j

Ni uj
2pj2

expH 2
~r2Rj !

2

2j2 J ~3.3!

of the potentials ofNi independentimpurities located at pointsRj with uniform probability on an
areaV. The strengthsuj obey ^ujuj 8&5u2d j j 8.The disorder strength@as defined in Eq.~3.2!# is

C05
u2ni
4pj2

~3.4!

with ni5Ni /V. For j→0 this model yields the white noise case ofd-function scatterers
V(r )5( j

Niujd(r2Rj ). We will use the model of Gaussian disorder for some analytical calcula-
tions and for numerical quantum simulations. However, the general results expressed in terms of
the correlation functionC(ur2r 8u) will be valid for any kind of disorder.

As we will show, disorder effects depend on several length scales: the elastic mean free path,
the Fermi-wavelengthlF of the electrons, the disorder correlation lengthj and the sizea of the
microstructure. In the bulk case of an unconstrained two-dimensional electron gas~2DEG! we will
distinguish between short range (j,lF) and finite range (j.lF) disorder potentials. In the case
of a microstructure a third, long range regime forj.a.lF has to be considered. The cleanest
samples used in today experiments are in the finite range regimea.j.lF.

24

2. Single-particle Green function

If we assume a microstructure with sizea@lF ~a condition which is always met in litho-
graphically defined samples! and work in the finite range or long range regime, where the disorder
potential is smooth on the scale oflF , a semiclassical treatment is well justified. A natural
starting point is the semiclassical expression~2.12! for the single-particle Green function
GE(r 8,r ) as a sum over the contributions from classical paths. The classical mechanics of trajec-
tories with lengthLt! l T ~the transport mean free path! is essentially unaffected by disorder.
Therefore the dominant effect on the Green function in Eq.~2.12! results from shifts in the
semiclassical phases due to the modification of the actions while the amplitudesDt and topologi-
cal indicesh t are nearly unchanged. The first-order approximation to the classical action~2.13!
along a pathC t in a system with weak disorder potential is

St
d.St

c1dSt , ~3.5!

where the clean actionSt
c is obtained by integrating along theunperturbedtrajectoryC t

c without
disorder~i.e., St

c5kFLt in the case of billiards without magnetic field! instead of the actual path
C t . The correction termdSt is obtained, after expandingp5A2m@E2V(q)# for smallV/E, by
the integral

dSt52
1

vF
E
C t
c
V~q!dq. ~3.6!

In this approximation an impurity average^ . . . & acts only ondSt and the disorder averaged
Green function reads

^GE~r 8,r !&5(
t
GE,t
c ~r 8,r !K expF i\ dStG L . ~3.7!
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HereGE,t
c is the contribution of the trajectoryt to the zero-disorder Green functionGE

c .
For trajectories of lengthLt@j the contributions todS according to Eq.~3.6! from the

disorder potential at trajectory segments separated by a distance larger thanj are uncorrelated.
The related stochastic accumulation of action along the path can therefore be interpreted as
determined by a random-walk process, resulting in a Gaussian distribution ofdSt(Lt). For larger
j or shorter trajectories (Lt @/ j), one can still think of a Gaussian distribution of the de-phasing
dSt providedV(r ) is generated by a sum of a large number of independent impurity potentials. As
a consequence of the Gaussian character of the distribution ofdSt(Lt), the disorder contribution
involved in Eq.~3.7! is given by

K expF i\ dStG L 5 expF2
^dSt

2&
2\2 G ~3.8!

and therefore entirely specified by the variance

^dSt
2&5

1

vF
2E

C t
c
dqE

C t
c
dq8^V~q!V~q8!&, ~3.9!

which is expressed as the mean of the disorder correlation functionC(uq2q8u) when the unper-
turbed orbit is traversed.

If we consider, to start with, an unconstrained 2DEG the sum in Eq.~3.7! is reduced to the
direct trajectory joiningr andr 8. If L5ur2r 8u@j the inner integral in Eq.~3.9! can be extended
to infinity and we obtain

^dS2&5
L

vF
2E dq C~q!. ~3.10!

The semiclassical average Green function for the bulk exhibits therefore an exponential
behavior16,25 ~on a length scalel T.L@j)

^GE~r 8,r !&5GE
c ~r 8,r !expS 2

L

2l D , ~3.11!

with the damping governed by an inverseelasticmean free path

1

l
5

1

\2vF
2E dq C~q!. ~3.12!

In the case of Gaussian correlationC(q) is given by Eq.~3.2! and we get

l5
\2vF

2

jApC0
. ~3.13!

Using the disorder strength~3.4! we have

l5
4Ap\2vF

2j

u2ni
. ~3.14!

In the Appendix we discuss the relation between the semiclassical elastic MFPs@Eqs. ~3.12!–
~3.14!# and the MFP obtained from quantum diagrammatic perturbation theory for the bulk for the
disorder model~3.3!. The semiclassical and the quantum result@Eq. ~A5!# agree asymptotically to
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leading order inkFj. In the limit of smallj, especiallyj,lF , our semiclassical approach is no
longer applicable.26 However, Eq.~3.11! still holds, but withl replaced byl d given in Eq.~A4!.

We now turn from the semiclassical treatment of the bulk to that of a confined system. In the
constrained case in the limitl T!a impurity scattering is the dominant process.27 This gives rise to
diffusive motion, and thus there is no essential difference to the bulk for the damping of the Green
function. We will treat the ballistic regimel T.a where both, the confinementand the impurities
have to be considered. The calculation ofl T in the Appendix shows that for finitej the transport
MFP l is considerably larger than the elastic one and a ballistic treatment is therefore well
justified, even ifl is of the order of the system size.

In contrast to the bulk case a disorder averaged confined system is no longer translationally
invariant and one has to impose in quantum calculations the correct boundary conditions of the
geometry. Confinement implies semi-classically thatGE

c (r 8,r ) is given as a sum over all direct and
multiply reflected paths connectingr andr 8; disorder modifies the corresponding actions accord-
ing to Eq.~3.6!.

In the regimes of short- and finite-range scatterers, the damping of each contribution^GE,t& to
^GE& is given, analogous to the bulk expression~3.11!, @using Eq.~3.10!# by

^GE~r 8,r !&5(
t
GE,t
c ~r 8,r !expS 2

Lt
2l D . ~3.15!

Here, L is now replaced by the trajectory lengthLt.a@j. This gives an individual damping
exp(2Lt/2l ) for each geometry-affected path contributing to^GE&.

In the long range regime and forj;a the correlation integral~3.9! can no longer be approxi-
mated~as for j!Lt) by L*2`

1` dq C(q) due to correlations across different sectors of an orbit
~with distance smallerj). Therefore, the orbit-geometry enters into the correlation integral. For
j@a we can, however, expandC(ur2r 8u) and obtain in the case of Gaussian disorder~up to first
order inj22) C(ur2r 8u).C0@12(r2r 8)2/(4j2)#. In this approximation the integral~3.9! gives
for the Green function damping an exponent

^dSt
2&

2\2 5
1

4Ap

Lt
2

l j S 12
1

2

I t
j2D . ~3.16!

I t5(1/Lt)*C t
r2(q)dq can be regarded as the ‘‘moment of inertia’’ of the unperturbed trajectory

C t with respect to its ‘‘center of mass’’ (1/Lt)*C t
r (q)dq. Eq. ~3.16! shows that the damping in

the long range regime depends quadratically onLt ~in contrast to linear behavior in the finite range
case or bulk!. The length scale of damping is now given by the geometrical mean of the bulk MFP
l and j. The leading damping term does not depend on the specific orbit geometry since it
essentially reflects the fluctuation in the mean of the~smooth! potentials of different impurity
configurations. Inclusion of higher powers ofj22 leads to additional contributions from higher
moments*C t

r n(q)dq on the RHS of Eq.~3.16!.

3. Two-particle Green function

Density correlation functions in general or the typical@Eq. ~2.19!# and ensemble averaged
susceptibility@Eq. ~2.20!#, which will be treated in the subsequent sections, involve the square of
the density of states. Writing the latter, Eq.~2.11!, in terms of the difference between advanced
and retarded Green functions (G12G2) we are left with products of one-particle Green func-
tions. The terms of most interest are the cross productsG1(r ,r 8)
3 G2(r ,r 8)5G1(r ,r 8)G1* (r 8,r ), because they survive the energy average and are sensitive to
changes in the magnetic field.
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Since, in the non-interacting approach we are using, the two-particle Green function factorizes
into a product of one-particle Green function28 we will use the former as a synonym for the latter.
The semiclassical average for products of single-particle Green functions will be quantitatively
performed for the susceptibility of confined integrable systems in Sec. V, and we discuss here the
underlying ideas for the general case.

Considering for instance the productG(r 1 ,r 2)G* (r 18 ,r 28), the effect of the disorder potential
can be taken into account perturbatively for each realization of the disorder in the same way as
before by Eqs.~3.5!–~3.6!. Using the same kind of argument, one can therefore write the disorder
average as a double sum over the averaged contributions from trajectoriest and t8

^GEGE* &5(
t

(
t8

^GE,tGE,t8
* &5(

t
(
t8

GE,t
c GE,t8

c* ^e~ i /\!~dSt2dSt8!&

5(
t

(
t8

GE,t
c GE,t8

c* expF2
^~dSt2dSt8!

2&
2\2 G . ~3.17!

It is necessary here, however, to take into account the correlation of the disorder potential between
points on trajectoriest andt8. One limiting case for instance would be thatt andt8 are either the
same trajectory or the time reversal one of each other. In these cases their contribution acquires
exactly the same phase shift and^GE,tGE,t* &5uGE,t

c u2. Within our approximation the diagonal
contributionst5t8, which, e.g., are responsible for the classical part of the conductivity, remain
thus disorder-unaffected, since we assume the trajectories have a length much smaller thanl T . ~A
semiclassical consideration of these effects for trajectories of length of the order ofl T or larger
was performed in Ref. 25 for the bulk, giving a damping of the two-point Green function on the
scale ofl T .) At the opposite extreme, if trajectoriest,t8 are completely uncorrelated, i.e., for long
trajectories in classical chaotic systems or trajectories in integrable systems with a spatial distance
larger thanj, the average in Eq.~3.17! factorizes:̂ GE,tGE,t8

* &5^GE,t&•^GE,t8
* & and lead to single-

particle damping behavior.
The double sum Eq.~3.17! may however involve pairs of trajectories which stay within a

distance of the order ofj ~as for nearby paths on a torus of an integrable system!. In this case the
behavior of^GE,tGE,t8

* & is more complicated and depends of the confinement geometry of the
system under consideration. As a simple illustration of the interplay between disorder correlation
and families of orbits, let us consider for the case of the bulk the product ofG(r 1 ,r 2) joining
r 15(0,0) tor 25(L,0) withG* (r 18 ,r 28) joining r 15(0,y) to r 25(L,y), with L@j but y possibly
of the order ofj. Introducing the function

K~y!5E
2`

1`

C~x,y!dx ~3.18!

@for Gaussian correlations Eq.~3.2!, K(y)/K(0)5 exp(2y2/(4j2))], the variance of the de-phasing
is obtained as

^~dSt2dSt8!
2&52L

~K~0!2K~y!!

vF
2 ~3.19!

and thereforêGEGE* &5GE
cGE

c* f̃ (y) with

f̃ ~y!5 expF2
L

l S 12
K~y!

K~0! D G . ~3.20!
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The functionf̃ (y) expresses in a very simple way that asy→0, the effect of disorder disappears
( f̃ (0)51) while for y@j the function f̃ (y) behaves as the square of single particle Green func-
tion damping.

IV. FIXED-SIZE IMPURITY AVERAGE OF THE MAGNETIC SUSCEPTIBILITY

We consider here a disorder average~which will henceforth be called a fixed-size impurity
average! of an ensemble of structures for which the parameters of the corresponding clean system
~geometry, size, chemical potential! remain fixed under the change of impurity realizations. In
Sec. V, we will then treat the more realistic case of the orbital magnetic response of acombined
energy~or size! and disorder average.

As shown in the previous section, averages over weak disorder exponentially damp, but do not
completely suppress oscillatory contributions~with phasekFLt) to the single-particle Green func-
tion from geometrical paths in confined systems. An observable quantity dependent on these
contributions is the disorder averaged susceptibility of an ensemble of billiards of the same size or
same clean-system Fermi energy, which will be studied first.

We will treat regular billiards at zero or small magnetic fields, where the integrability is
approximately maintained and the density of states has theH-dependence of the formulae~2.14!–
~2.16!. The general result forx (1), Eq. ~2.17!, formally persists with the replacement ofC M by

^C M~H !&5
1

2pE0
2p

dQ1 cosF2p
HAM~Q1!

F0
GexpF2

^~dSM~Q1!!2&
2\2 G , ~4.1!

where^dSM
2 (Q1)& is given by Eq.~3.9! with the integrals performed along the orbits of the family

M parameterized byQ1. In the finite range case~if all orbits of a familyM are of the same length
as in billiards! each family exhibits a unique disorder damping giving a contribution

^xM
~1!&5xM

~1!
• expS 2

^dSM
2 &

2\2 D ~4.2!

to the ballistic susceptibility.xM
(1) is the contribution of familyM to the clean susceptibility@Eq.

~2.17!# and ^dSM
2 &/2\25LM/2l .

In the case of square billiards, where the dominant contribution stems from the family~1,1!,
we obtain, in analogy with Eq.~2.21!,

^x&
x0 .

^x~1!&
x0 5E

0

a dx0
a
A2~x0!cos~wA~x0!!K sinS kFL111 p

4
1

dS~x0!

\ D L ~4.3!

with x0 given by Eq.~2.22!. For a square billiarddS(x0) is independent ofx0 for the finite- as
well as for the long-range regime sinceI 115a2/12 @entering into Eq.~3.16!# is the same for all
orbits ~11!. Therefore Eq.~4.2! with M5(1,1) holds for both limiting cases. In the same way as
for the damping of the one-particle Green function@Eq. ~3.15!# we obtain for square billiards at
finite temperature in the finite range regime

^x&.^x~1!&5xcl
~1!
• expS 2

L11
2l D , ~4.4!

wherexcl
(1) denotes the susceptibility of the system without disorder.

In order to control the validity of our analytical semiclassical approximations we performed
numerical quantum calculations by diagonalizing the Hamiltonian for non-interacting particles in
a square billiard subject to a uniform perpendicular magnetic field and a random disorder potential
of the form of Eq. ~3.3!. For a given selected correlation lengthj a quantum mechanically
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calculated elastic MFPl qm and a fixed Fermi momentumkF the product of the impurity density
and squared mean impurity potential,niu

2, is determined by Eqs.~A3! and ~A4!. We found that
our numerical results are essentially independent of the choice ofni ~with u2 adjusted accordingly!
for ni>200 and used this value for the calculations presented here. The positionsRj of the
impurities were chosen as independently distributed and for theuj we used a box distribution.

Each impurity configurationa has a self-averaging effect for anindividual square billiard~for
j,a) due to the differences of the impurity potentialVa(r ) across the structure. In anaverage
over an ensemble of square billiards, differences in the mean impurity potential
Va5(1/a2)*drVa(r ) ~the integral is taken over the area of the billiard! between different squares
lead to an additional damping. It is characterized by the variance

^V̄2&5
u2ni
a2h2 Fh erf~h!1

1

Ap
~e2h221!G 2; h5

a

2j
~4.5!

→
u2ni
4pj2

for j/a→` ~4.6!

→
u2ni
a2

for j→0. ~4.7!

In the limit of j@a our numerical calculations showed that the self-averaging effect is negligible
~since the impurity potential is essentially flat across the square! and the clean susceptibility of an
individual structure remains practically unaffected by disorder. In this limit variations in the mean
potentialV̄ of an ensemble@Eq. ~4.6!# dominate the damping. In the limit of short range disorder,
fluctuations in the meanV̄ of different samples play a minor role and self-averaging is the
predominant process for an integrable system: In semi-classical terms different trajectories of a
family of closed orbits are perturbed by white noise disorder in an uncorrelated manner. Therefore
we do not observe considerable differences between the susceptibility of a single disordered
billiard of integrable geometry and the corresponding ensemble forj!a. In a chaotic billiard this
self-averaging effect does not exist~for not too smallj, see end of Sec. V!, since orbits are
isolated. Therefore distinct differences between an individual disordered sample and an ensemble
of disordered billiards are expected.

To improve the statistics of our numerical ensemble average for square billiards we performed
an average over disorder configurations with the same meanV̄ and in addition averaged overV̄
according to Eq.~4.5!.29 Fig. 2 shows results of the numerical quantum simulations for the average
susceptibility^x& of an ensemble of squares with fixed size but different disorder realizations at a
temperaturekBT53gsD, whereD is the mean level spacing. The characteristic oscillations in
kFa show an interchange between para- and dia-magnetic behavior on a scalekFL11. This indi-
cates that they are dominated by contributions from the shortest flux-enclosing orbits of the family
~1,1! @according to Eqs.~2.17! and~4.3!#, as has been already shown for thecleancase in Refs. 5
and 6. Fig. 2 demonstrates the damping of the clean susceptibility~dotted line! with decreasing
elastic MFPl /a54, 2, 1, 0.5 for fixedj/a50.1 ~which represents a typical disorder correlation
length in experimental realizations!. Variations in the meanV̄ lead to a de-phasing of the oscil-
lations in the finite range case on a scale (dk)a;(4p)1/4Aj/ l qm(j) which is, as discussed above,
small compared to the self-averaging effect in this regime.

Figure 3 depicts the quantitative comparison between numerical and analytical results: It
shows the logarithm of̂x& normalized to the corresponding zero-disorder susceptibility as a
function of the inverse MFP for different correlation lengthsj. The semi-classically predicted
exponential damping@Eq. ~4.2!# is shown as straight lines for the short range@j!a, Eq. ~3.11!,
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full line for j50] and long range@j.a, Eq. ~3.16!, dotted lines forj/a54, 2, 1 from the top#.
The semiclassical predictions accurately agree with the corresponding quantum results~symbols!
for j/a54, 2, 1, 0 and fail for intermediate valuesj/a50.5, 0.2~squares and diamonds! which are
off the range of validity of the approximations. The transition from self-averaging dominated
(j→0) suppression to damping according to fluctuations in the floorV̄ ~for j/a→`) turns out to
be non-monotonic.

FIG. 2. Magnetic susceptibilitŷx& ~normalized with respect to the Landau susceptibilityxL) of a square billiard as a
function ofkFa for the clean case~dotted! and for the ensemble average of billiards of fixed size with increasing Gaussian
disorder (j/a50.1) according to an elastic mean free-pathl /a54, 2, 1, 0.5~solid lines in the order of decreasing
amplitude!. The susceptibility is calculated for zero magnetic field and at a temperature equal to 6 level spacings.

FIG. 3. Logarithm of the ratiôx&/xcl as a function of the inverse elastic MFPa/ l . The symbols indicate the numerical
quantum results~from the top forj/a54, 2, 1, 0, 0.5 and 0.2. The dotted lines show the semiclassical analytical results for
j/a54, 2, 1 ~from above! according to Eq.~3.16!. The full line is the semiclassical result forj50 @Eq. ~3.11!#. The
quantum results forj50.5 ~squares! and 0.2 ~diamonds! are beyond the regime of validity of the analytical limits
j/a@1 andj/a!1.
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V. COMBINED IMPURITY- AND ENERGY-AVERAGE OF THE SUSCEPTIBILITY

In currently experimentally realizable structures disorder averages cannot be performed inde-
pendently from size-averages since the detailed features of the confining potential do not remain
unchanged for different impurity configurations. From the basic expressions~2.21! and ~4.3! for
the susceptibility we see that changes in sizea give rise to rapid variations in the phasekFa ~on
a quantum scale! and a much slower secular variation through the geometrical factorsA. Thus,
the effect of small size variations is equivalent to an energy (kF) average. As discussed in Sec. II
for the clean case, variations inkF lead to vanishingx

(1). Therefore we have to use the typical and
energy averaged susceptibilities@see Eqs.~2.19! and~2.20! for their definition in the clean case#.
When disorder is introduced we must consider energy-anddisorder averages. The typical suscep-
tibility is now defined byx (t)5^x2&1/2. It applies to the case of repeated measurements on a given
microstructure when different impurity realizations~and simultaneous changes inkF) are obtained
by some kind of perturbation~e.g., cycling to room temperature!. From now on we will reserve the
termxcl

(t) for the clean typical susceptibility (x2)1/2. The energy and impurity averaged suscepti-
bility ^x̄& describes the magnetic response of an ensemble of a large number of microstructures
with different impurity realizations and variations in size. This is the situation of the experiment of
Ref. 21 that we discuss in the sequel.

A. Integrable systems: The square billiard

The semiclassical results forx (t) and^x̄& for a system of integrable geometry are obtained in
an analogous way as we proceeded for^x& in Sec. IV, that is by including in the integral~2.16! for
C M a Q1-dependent disorder-induced phase exp(idS(Q1)/\) @see Eq.~4.1!#. However, now we
have to take the square ofC M ~respectively,]2C M /]H

2) before the impurity average and cross
correlations between different pathsQ andQ8 on a torusM or between different tori have to be
considered. We discuss this effect, typical of integrable systems, for the case of a square billiard.
For sake of clarity we assume moreover a temperature range such that only the contribution of the
shortest closed orbit has to be taken into account. Instead of Eqs.~2.23! and~2.24! which hold for
the clean case, the contribution of orbits of topologyM5(1,1) for the typical susceptibility now
reads

S x~ t !

x0 D 251

2E0
a dx0

a E
0

a dx08

a
A2~x0!A

2~x08!cos~wA~x0!!cos~wA~x08!! f ~x0 ,x08!, ~5.1!

with x0 defined as in Eq.~2.22!. The function

f ~x0 ,x08!5 K expH i

\
~dS~x0!2dS~x08!!J L ~5.2!

5expH 2
1

2\2 @^dS2~x0!&1^dS2~x08!&22^dS~x0!dS~x08!&#J ~5.3!

accounts for the effect of disorder on pairs of orbitsx0 andx08 . @See Eq.~3.20! for the treatment
in the general case#. For the magnetic response of an energy- and disorder-averaged ensemble we
find correspondingly

^x̄&

x̄0
5
1

2E0
a dx0

a E
0

a dx08

a
@A2

2 cos~wA2!1A1
2 cos~wA1!# f ~x0 ,x08! ~5.4!

with x̄0 defined in Eq.~2.25! andA6 as in Eq.~2.24!.
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1. Short range case

We begin with the discussion of the short range case: Although we reach the border of
applicability of our semiclassical approximation forj→0, it shows us that in this limit orbits with
x0 Þ x08 are disorder-uncorrelated and all such pair contributions are exponentially damped. Using
exclusively the family~1,1!, one obtains an overall suppression of the typical and average sus-
ceptibility at finite temperature according to

lim
j→0

x~ t !5xcl
~ t !e2L11/2l d, ~5.5!

lim
j→0

^x̄&5x̄e2L11 / l d. ~5.6!

Note that the exponent for̂x̄& differs by a factor 1/2 from that for̂x& @see Eq.~4.2! and
subsequent text#.

Figure 4 depicts thekFa dependence of the ensemble averaged susceptibility^x̄& in the short
range casej50. The dotted curves showing the semiclassical analytical formula~5.6! are com-
pared with a direct quantum mechanical calculation of^x (2)& @using the numerically obtained
Nosc(m̄) in Eq. ~2.9c!# for disorder ensembles of different impurity strength equivalent to an elastic
MFP l d /a5`, 8, 4, and 1 atkFa;65 ~from the top!. Note, that the effective MFP decreases along
the curves with decreasingkF @see Eq.~A4!# and the localized regime may eventually be reached
for small kFa. At the limit of the ballistic regime at smalll;a the semiclassical result begins to
differ from the quantum one although the functional behavior remains the same. This arising
difference may be related to non-ballistic scattering from impurities which is not included here.

2. Finite range case

In the finite rangelF,j!a, the phase shiftsdS(x0) anddS(x08) in f (x0 ,x08) are accumulated
in a correlated way, if the spatial distance of two orbitsx0 andx08 is smaller thanj. To evaluate
the product term 2̂dS(x0)dS(x08)& in the exponent off (x0 ,x08) in this regime the integrations are
performed as in Eq.~3.9! but with q and q8 running along paths starting atx0, respectively,
x08 . Ignoring the additional correlations occuring near the bounces off the boundaries of the
billiard, the trajectoriesx0 and x08 ~see Fig. 1! can be regarded as straight lines remaining at a

FIG. 4. Averaged magnetic susceptibility~at H'0 of an ensemble of square billiards with variations in the size and
impurity potential (j50) for different disorder strength, i.e., elastic mean free pathl d . The full curves show the numerical
quantum results and the dotted lines the semiclassical predictions from Eq.~5.6! taking into account the variations ofl d
with kF @see Eq.~A4!#. The two sets of curves correspond to an elastic MFPl d /a5`, 8, 4, 2, 1~at kFa565), ~from the
top!.
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constant distancey5ux02x08u/A2 from another. We can therefore approximatef (x0 ,x08) by
f̃ (ux02x08u/A2) with the functionf̃ given by Eq.~3.20!. For Gaussian correlation we thus have

f ~x0 ,x08!5 expH 2
L11
l F12expS 2

~x02x08!2

8j2 D G J . ~5.7!

Orbits separated byux02x08u@j are disorder-uncorrelated and exponentially suppressed:
f (x0 ,x08). exp(2L11/ l ). For those orbits the random disorder leads to an uncorrelated detuning
of the phases. In contrast to that, disorder only weakly affects trajectories separated by
ux02x08u,j.

The disorder averages in the finite range regime lead, by means of the functionf , to a
non-exponential damping of the susceptibilities for systems with families of periodic orbits. This
behavior becomes obvious for the case of square billiards where atH50 the integrals~5.1! and
~5.4! can be evaluated analytically in the limits ofL11! l ~extreme ballistic! and L11@ l ~deep
ballistic!. We find for the typical and average susceptibility atH50 in the finite range case for
L11! l

S x~ t !

xcl
~ t !D 2.12

L11
l S 12ct

j

aD , ~5.8a!

^x̄&

x̄
.12

L11

l
S 12ca

j

a
D , ~5.8b!

and forL11@ l ~by steepest descent!

S x~ t !

xcl
~ t !D 2.ctS j

aD S l

L11
D 1/2, ~5.9a!

^x̄&

x̄
.caS j

a
D S l

L11
D 1/2. ~5.9b!

The constants in the above equations arect5(20/7)A2p andca52A2p. Eqs.~5.8! express the
limit of very weak disorder, showing that the small disorder effect is further reduced due to the
correlation of the disorder potential. The other limit, Eqs.~5.9!, is noticeably more interesting
since it shows that disorder correlation effects lead to a replacement of the exponential disorder
damping by a power law.

Figure 5 depicts in logarithmic representation our collected results for the disorder averaged
typical ~a! and averaged~b! susceptibility for square billiards~at H50 andkBT52gsD) as a
function of the inverse elastic MFP for different disorder correlation lengths. The symbols denote
results from numerical quantum simulations described in the previous section and the full curves
semiclassical results from numerical integration of the Eqs.~5.1! and ~5.4!. For the short range
casej50 they reduce to Eq.~5.6! predicting an exponential decrease with exponentL11/ l which
is in line with the quantum calculations~circles!. The semiclassical results for the finite range are
on the whole in agreement with the numerical results forj/a50.1 ~diamonds!, j/a50.2 ~tri-
angles! andj/a50.5 ~squares!. The semiclassical curves seem to overestimate the damping of the
typical susceptibility. The dotted curves~shown fora/ l>1) depict the analytical expressions~5.9!
in the regimeL11. l . Since for finitej the transport MFPl T. l @see Eq.~A6!#, this regime can still
be considered as~deep! ballistic and our semiclassical assumptions being based on straight-line
trajectories remain valid.
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As the semiclassical formulae already indicate, the overall disorder behavior of^x̄& andx (t) is
quite similar.

3. Long range case

For completeness, we will consider the effect of the disorder for the long range regime: We
can use the Eqs.~5.1! and ~5.4! but cannot calculate the disorder functionf (x0 ,x08) in the same
way as for the finite range. We can however, similar as for^x& in Sec. IV, expand the exponent
2^(dS(x0)2dS(x08))

2& of f (x0 ,x08) in Eq. ~5.2! for smalla/j. In the case of the square all orders
up to (a/j)8 vanish and we find averysmall overall reduction of the clean averaged susceptibili-
ties @from family ~11!# given by

S x~ t !

xcl
~ t !D 2.126.5•1025

a

l S aj D 9. ~5.10!

For square billiards this leading order contribution no longer depends onx0. The energy- and
disorder-averagêx̄& exhibits the same damping as (x (t))2. Note that besides the high order in

FIG. 5. Logarithm of the ratio between disorder averaged and clean results for~a! typical x (t) ~b! ensemble averaged
^x̄& susceptibilities as a function of increasing inverse elastic MFPa/ l for different values ofj/a. The symbols denote the
numerical quantum results, the solid lines~for j.0) the semiclassical integrals~5.1! ~a! and~5.4! ~b! and the dashed lines
asymptotic expansions~5.9! of the integrals for largea/ l .
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(a/j) the prefactor is rather small. This weak suppression of the averaged susceptibilities can be
related to the fact that in the long range case, different sectors of the contributing periodic orbits
are highly correlated. As seen in Fig. 5~a!, the quantum mechanical results~squares! for x (t) at
j/a50.5, which are closest to the long range case, exhibit already a very weak damping.

B. Disorder effects at finite H-field: From integrable to chaotic behavior

In Fig. 6 we compare the ratio (x (t)/x0)2 @obtained from calculating the integral in Eq.~5.1!#
as a function of the dimensionless fluxw5Ha2/F0 for the clean case and for disorder character-
ized by l5a andj50.1. This figure shows that the damping due to disorder is maximal at zero
field, but that already forw55 the disorder seems not to affect the magnetic response any further.

The origin of this behavior can be understood readily by observing that as soon asw is larger
than one, the integral Eq.~5.1! is correctly approximated by a stationary phase approximation.5

The stationary pointx0
s5a/2 corresponds to the two periodic orbits of theperturbedsystem, and

only the trajectories such that

~x02x0
s!2w,1 ~5.11!

actually contribute to the integral. The magnetic field causes a de-phasing of the contributions of
the various trajectories of the family, thus breaking the integrability of the system. This effect is
responsible for the overall decrease of the typical susceptibility as the field increases. In this
respect clean and disordered square billiards are not equivalent. In the disordered case, trajectories
separated by a distance larger thanj are already not contributing in phase. Therefore the addi-
tional magnetic field affects the magnitude of the susceptibility much less. This remains true up to
the point where the condition~5.11! implies ux02x0

su,j in which case the disorder is not effective
anymore, and the two curves coincide.

Therefore the behavior of the disorder damping we discussed in the previous subsection is
characteristic for integrable geometries. For chaotic systems diagonal contributions~pair products
of the same periodic orbit! are barely affected by disorder. This behavior is similar to that of
integrable systems at finite field. When evaluating the contribution to the trace of the Green
function in the neighborhood of a periodic orbit by stationary phase approximation,~as for the

FIG. 6. Typical susceptibility as predicted by Eq.~5.1! as a function of the dimensionless fluxw5Ha2/F0. Dash line:
clean case; solid line:l5a andj50.1.
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derivation of the Gutzwiller trace formula! only orbits extremely close to the periodic orbit under
consideration actually contribute. Unlessj is exceedingly small, all these trajectories will see the
same disorder potential.

As a final remark, note thatnon-diagonalcontributions~pairs of different paths! are fully
damped upon impurity average for chaotic as well as integrable systems, since the disorder
potential along two different trajectories is usually not correlated@see also the discussion of the
averaged Green function product after Eq.~3.17!#. Therefore non-diagonal contributions, which
may be necessary to consider in the clean case,30 are exponentially suppressed in the presence of
disorder. On the contrary,diagonalterms which contain orbit correlations on distancesj, exhibit
non-exponential behavior@Eq. ~5.7!# as a function of the inverse MFP 1/l for integrable geom-
etries and are not affected~within our approximations! by disorder in the chaotic case.

C. Relation to experiment and other theories

Measurements of the orbital magnetism of small microstructures are still rare today. The only
experiment on ensembles of ballistic billiards that we are aware of, was performed by Le´vy et al.21

and investigated the magnetic susceptibility of an array of about 105 ballistic square-like cavities.
The size of the squares is on averagea54.5mm, with a large dispersion~estimated between 10%
and 30%! along the array. Each individual square is a mesoscopic ballistic system since the
phase-coherence length is estimated to beLF515–40 mm and the elastic mean-free-path
l54.5–10 mm. The potential correlation length can be estimated24 to be of the order of
j/a.0.1. Taking the most unfavourable case ofl.a.4.5 mm we obtain, with respect to the
clean case, a disorder reduction for the averaged susceptibility of^x̄&/x̄.0.37, showing that the
features of the clean integrable systems~strong paramagnetic susceptibility atH50) persist upon
inclusion of disorder. Sincex̄.100xL,

5–7 our calculations for the paramagnetic response of the
ballistic squares agree quantitatively with the experimental findings~given the experimental un-
certainties!.

Persistent currents in individual quasi-ballistic rings have recently been measured.31 A similar
setup would be needed for measuring the magnetic response of singly connected geometries,
where our typical susceptibility~5.1! should be measured for the integrable case. Since modern
lithographic techniques allow one to design chaotic as well as integrable cavities2,3 and since we
have demonstrated that disorder does not mask this difference, an order-of-magnitude effect is
expected in the susceptibility according to the shape~chaotic vs. integrable! of the cavity.

In a related theoretical work Gefenet al.32 followed a complementary approach to ours and
calculated the disorder-averaged susceptibility for an ensemble of ballistic squares based on long
trajectories~strongly! affected by scattering fromd-like impurities. They found that the average
susceptibility does not depend on the elastic MFP. These results are not borne out by either our
analytical or our semiclassical calculations at temperatures relevant for the experiment, where the
exponential damping from Eq.~2.18! makes very long trajectories irrelevant.

VI. SUMMARY

In this work we have studied the interplay between integrability and disorder in the ballistic
regime. The integrable property of the confining potential of a microstructure implies a peculiar
behavior of its thermodynamical response functions, like the magnetic susceptibility. The disorder
effects provided by remote impurity scattering tend to weaken the importance of the boundary
scattering~and therefore the relevance of the underlying classical mechanics!. Using a semiclas-
sical approach we quantify this damping and show it to be much weaker than previously estimated
~power-law suppression instead of exponential damping for the typical and average susceptibility!.
The disorder damping is decisively affected by finite-size effects since it depends not only on
bulk-like characteristics of the disorder~like the elastic mean-free-path!, but also on the ratio
between the size of the structure and the correlation length of the potential.
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Our finding for the weak disorder damping is particularly important due to the large phase
coherence effects found for clean integrable structures and to the fact that the difference in the
magnetic response between integrable and chaotic geometries has not yet been experimentally
demonstrated.

Our calculational tools have been semiclassical expansions, which naturally convey at the
quantum level information about the underlying classical mechanics and its sensitivity with re-
spect to disorder. For the weak disorder that we have considered in this work, the lowest order
approximation consists of the perturbative modification of the classical actions by the impurity
potential. Averages over impurity configurations following our semiclassical calculations, allow us
to obtain various ensemble susceptibilities. Our analytical calculations have been checked against
numerical quantum simulations performing exact diagonalizations of the corresponding Hamil-
tonian.

The need to consider different averages is inherent to ballistic nanostructures, which are
sufficiently small to be non-self-averaging. These various types of impurity-averaged susceptibili-
ties for integrable systems are summarized in Table I for the three regimes defined by the corre-
lation length of the impurity potential. We have first studied the fixed-size averaged susceptibility,
directly obtainable from the disorder average of one-particle Green functions. It corresponds to the
case where different impurity configurations of a given sample with a fixed Fermi energy are
considered. For the short range regime, where the disorder correlation lengthj,lF , we have an
exponential suppression of the clean results governed by the short-range elastic mean-free-path
l d and the length of the most relevant trajectories. This result also holds in the finite-range
(lF,j!a), but with an elastic mean-free-path that we have evaluated semi-classically. In the
long-range regime (j.a) the fixed-size averaged susceptibility depends exponentially on the
product (L/ l )•(L/j) ~where L denotes the typical orbit length! and a correction taking into
account the geometry of the periodic trajectories.

For comparison with actual experiments we have to take into account that different impurity
realizations are obtained together with a change in the Fermi energy and the size of the structures.
We are then led to consider impurity and size averaged susceptibilities, which are expressed in
terms of two-particle Green functions. The typical susceptibility is appropriate when considering
the magnetic response of an individual sample which is thermally cycled in order to obtain
different realizations of the potential. The average susceptibility is obtained from the measurement
of an array of microscopically different samples. For the short-range case the only difference
between one- and two-point Green function quantities is the factor 1/2 of the exponential damping
of the former. In the finite-range regime there appear important differences when considering
two-point Green function quantities with respect to the one-particle case. Closed trajectories that

TABLE I. Summary of the different average susceptibilities~at H50) considered in the short range (j,lF,a), finite
range (lF,j,a) and long range (lF,a,j) regimes. The fixed-size impurity averaged susceptibility^x& is given by the
one-particle Green function, while the typicalx (t) and averagê x̄& susceptibilities are given by two-particle Green
functions and involve impurity and energy averages. The different average susceptibilities are normalized with respect to
the corresponding clean counterparts.L11 is the length of the shortest flux-enclosing periodic trajectories in the square. In
the short range regime the damping is governed by the elastic mean-free-pathl d given by the quantum mechanical
expression~A4!. The damping in the finite and long range regimes is governed by the elastic MFPl @whose semiclassical
expression is given in Eq.~3.14!#, the correlation lengthj of the impurity potential and the sizea of the structure.I t is the
moment of inertia of the~11! trajectories@Eq. ~3.16!#. The finite-range expressions forx (t) and^x̄& showing a power-law
damping hold in the deep ballistic limitl,L11 . The numerical factors arect5(20/7)A2p,ca52A2p,d151/4Ap, and
d256.5•1025.

Short range Finite range Long range

^x&/xcl exp(2L11/2l d) exp(2L11/2l ) exp$2d1(L
2/lj)@12It /(2j2)#%

(x (t)/xcl
(t))2 exp(2L11 / l d) ct(j/a)( l /L11)

1/2 12d2a/ l (a/j)
9

^x̄&/x̄ exp(2L11 / l d) ca(j/a)( l /L11)
1/2 12d2a/ l (a/j)

9
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remain closer than the correlation length of the potential result in a weak damping with a power-
law dependence onl /L and j/a. This is the experimentally relevant situation, and the use of
standard parameters led us to conclude that disorder damping in currently realizable microstruc-
tures is sufficiently weak in order not to mask the large effects due to integrability. In the long-
range case the damping due to disorder is extremely small.

We have further considered the interplay between disorder and magnetic field in integrable
geometries. It is interesting to note that both have a similar effect since they produce de-phasing
between nearby trajectories. Since the two sources of de-phasing do not superpose, we find that
disorder is less effective at finite fields, and reciprocally, disordered samples are less sensitive to
magnetic field.

In chaotic geometries periodic trajectories are usually isolated, resulting in smaller oscillations
of the density of states and a much smaller magnetic response than integrable systems. Introduc-
tion of disorder in chaotic geometries is therefore less dramatic than in integrable systems, since
it merely changes the action of the relevant periodic trajectories instead of producing de-phasing
within a family. The transition from the ballistic regime~where classical trajectories are essentially
unaffected by disorder! to the diffusive regime will be considered in a subsequent publication.

In this work we have started from a system that is physically realizable using modern tech-
nology and we have developed a theoretical model with some key ingredients involving integra-
bility and disorder. These are deep theoretical issues that need to be complemented by the con-
sideration of other effects, like interactions, in order to obtain a complete description of the
thermodynamics of mesoscopic systems.
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APPENDIX: RELATION BETWEEN SEMICLASSICAL AND QUANTUM MECHANICAL
RESULTS FOR BULK MEAN FREE PATHS

It is instructive to compare the semiclassical results of Eqs.~3.12!–~3.14! for the ballistic
regime with their counterparts obtained from quantum mechanical scattering theory.

In a perturbative diagrammatic approach~treating the related Dyson-equation for scattering
within a self-consistent Born approximation! the damping of the disorder-averaged one-particle
Green function in a random potential is of the same exponential form as in Eq.~3.11!.9 This is
usually obtained by replacing the imaginary part of the self-energy in the Green function after
impurity average by the product of the density of states of the unperturbed system andn:u2. The
resulting quantum mechanical inverse elastic MFPl qm, which appears in Eq.~3.11!, is related to
the total cross sections by means of

1

l qm
5nis, ~A1!

whereni is the impurity density and

s5E dQs~Q! ~A2!

with s(Q) being the partial cross section for scattering with an angleQ.
For a Gaussian disorder potential of the form of Eq.~3.3! a calculation of the cross section can

be performed analytically and the corresponding inverse MFP gives
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1

l qm
5
1

l d
I 0@2~kj!2#e22~kj!2. ~A3!

Here,I 0 is a modified Bessel function and

1

l d
5
2p

\

niu
2

vF
d~m!5

niu
2

vF

m

\3 ~A4!

is the inverse MFP for the white noise case ofd-like scatterers of mean strengthu. ThevF is the
Fermi velocity andd(m)5m/(2p\2) the density of states at the Fermi energy of a 2DEG.9

In order to comparel qm with our semiclassical result we expandl qm(kj) for largekj which
gives

l qm~kj!.A4p~kj!l dF12
1

16~kj!2G for kj→`. ~A5!

The leading order term is exactly the semiclassical MFP Eq.~3.14! for the Gaussian disorder
model~3.3!. The agreement between the semiclassical and diagrammatic approaches for the bulk
can be related to the fact that our semiclassical treatment of disorder corresponds to the use of the
Eikonal approximation~for each single scattering event! which is known to give the same results
as Born approximation for largekj.

In the limit of j,lF where our semiclassical description is no longer applicable, the mean
free path l qm approachesl d , which means that Eq.~3.11! can further be used, but with the
semiclassicall replaced byl d .

The quantum mechanical transport mean free pathl T is calculated by including a factor
(12 cosQ) in the integral~A2! for the scattering amplitude. It reads for Gaussian disorder

1

l T
5
1

l d
~ I 0@2~kj!2#2I 1@2~kj!2# !e22~kj!2 ~A6!

.
1

l qm

1

4~kj!2
for kj→`. ~A7!

This relation shows thatl T can be considerably larger thanl qm for lF,j. This shows that in the
case of a confined system and smooth disorder, the system may behave ballistically although the
elastic MFPl state might be considerably smaller than the system size.
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We prove that the quantum dynamics of a class of infinite harmonic crystals
becomes ergodic and mixing in the following sense: ifHm is the m-particle
Schrödinger operator,vb,m(A)5Tr~A exp2bHm!/Tr~exp2bHm! the correspond-
ing quantum Gibbs distribution over the observablesA,B,cm,l the coherent
states in the mth particle Hilbert space, gm,l5~exp2bHm!cm,l

then limt→` limn→` limm→`(1/T)*0
T^eiHntAe2 iHntcm,l ,cm,l&dt5 limm→`

vb,m(A) if the classical infinite dynamics is ergodic, and
limt→` limn→` limm→` vb,m(e

iHntAe2 iHntB)5 limm→` vb,m(A)limm→` vb,m(B)
if it is in addition mixing. The classical ergodicity and mixing properties are re-
covered as\→0, and limm→` vb,m(A) turns out to be the average over a classical
Gibbs measure of the symbol generatingA under Weyl quantization. ©1996
American Institute of Physics.@S0022-2488~96!01710-0#

I. INTRODUCTION

This paper deals with the ergodic theory of a class of infinite quantum systems, the harmonic
crystals. In this introduction we review the relevance of the infinitely many particle limit in
detecting chaotic behavior of quantum systems, state the results, and relate why in our opinion it
is convenient to examine the problem via pseudodifferential operators.

LetH be the quantization of a Hamiltonian generating a flowSt on a constant energy manifold
ME,Rm, A, BPL~H! any suitable quantum observable inH5L2~Rm!, and lets(H) be discrete
and simple, with projectionsPn on the eigenvectors$un : n50,1,...%. If quantum chaotic behavior
~if any! is to be characterized in terms of ergodicity and mixing, we have to consider the quantum
microcanonical ensemble at energyE, i.e., the applicationvD,E mapping anyAPL~H! into:

vD,E~A!5
Tr A(n:E2D,En,EPn

Tr (n:E2D,En,EPn
[
Tr Ad~H2E!

Tr d~H2E!
~I.1!

~see Ref. 1, Sec. 1.3;D.0 is arbitrarily small!. The quantum evolutionAH(t)5eiHtAe2 iHt of A
leavesvD,E(A) invariant. Hence the consequent definition of mixing is~see Appendix B for
details!

lim
t→`

vD,E~AH~ t !B!5vD,E~A!•vD,E~B!. ~I.2!

We can always find inH ~see Appendix B for easy verification! a family of normalized vectors
~cl!lPL ,L5R2m complete forvD,E , namely,

a!Electronic mail: graffi@dm.unibo.it
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vD,E~A!5E
L

^Acl ,cl&H dnD,E~l!, ;APL~H! ~I.3!

for a well-determined probability measurenD,E~l! on L.1

Then Eq.~I.2! becomes

E
L

^AH~ t !Bcl ,cl&H dnD,E~l!→E
L

^Acl ,cl&H dnD,E~l!E
L

^Bcl ,cl&H dnD,E~l! ~I.4!

as utu→`. This entails the following representation of the quantum ergodicity notion~again see
Appendix B!: for anyAPL~H! and fordn-almost alllPR2m,

1

T E
0

T

^AH~ t !cl ,cl&H dt→E
L

^Acl ,cl&H dnD,E~l!5vD,E~A! as uTu→`. ~I.5!

On the other hand it is well known~and easy to verify! that

lim
T→`

1

T E
0

T

^c,AH~ t !c&dt5 (
n50

`

ulnu2^un ,Aun&. ~I.6!

Here c5(n50
` lnun is any normalized quantum state expanded on the eigenvector basis (un).

Equation ~I.6! is the Von Neumann definition of quantum ergodicity2 on the microcanonical
ensemble. Now the verification of Eq.~I.5! requiresH to have a continuous spectrum~Ref. 1, Sec.
1.3!, and Eq.~I.6! shows that the time average cannot eliminate the dependence on the initial
datumc[$ln%n50

` .
This a priori lack of ergodicity, anda fortiori of mixing, looks like a manifestation of the

so-called ‘‘quantum suppression of classical chaos,’’ which however can disappear when the
number of particles tends to infinity. This has been noted in different contexts and within different
approaches in Refs. 3–6. Hence the quantum counterparts of chaotic systems with infinitely many
degrees of freedom~for a recent review see Ref. 6! are the best candidates to look for chaotic
behavior. The simplest one is the infinite linear harmonic system

q̈i522 (
i , jPZ

Vi j qj . ~I.7!

We prove that, when the couplingsVi j generate an infinite dimensional dynamicsft ergodic with
respect to the (infinite dimensional) Gibbs measure dmG~b!,7–9 the quantum evolution is ergodic,
and mixing if ft is in addition mixing. The averages are now to be computed on the quantum
canonical ensemble~the Gibbs state at an inverse temperatureb!, i.e., the applicationvb mapping
anyAPL~H! into vb(A)5Tr Ae2bH/Tr e2bH. More precisely, denote:

qm~x,j!5 1
2uju21^Vmx,x&, Vm5~Vi , j ! u i u<m

u j u<m
~I.8!

the ~2m11! dimensional Hamiltonian defined onLm5~R2m11!2; Hm5OpW(qm) the operator on
Lm
2[L2~R2m11! defined by its Weyl quantization,A5OpW(a) the operator onLm

2 quantizing
a+ Pm1

(x,j) ~m1 fixed! where a is any smooth classical observable onLm1
. HerePm1

(x,j)
[(x,j) u i u<m1

.
Then the present results are~see Theorems 2.2, 2.3 and Proposition 5.1 for a sharper version!:

;b.0 andm1PN
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lim
T→`

lim
n→`

lim
m→`

1

T E
0

T

^An~ t !cl,m ,cl,m&L
m
2dt5 lim

m→`
E

L`

^Acl,m ,cl,m&L
m
2dnm~l! ~I.9!

for n-almost anyl, and

lim
t→`

lim
n→`

lim
m→`

vb,m~An~ t !B!5 lim
m→`

vb,m~A!• lim
m→`

vb,m~B!. ~I.10!

Here

vb,m~A!5
Tr Ae2bHm

Tr e2bHm
; vb,m~An~ t !B!5

Tr An~ t !Be
2bHm

Tr e2bHm
; ~I.11!

An(t) is the Heisenberg observable corresponding toA under the quantum evolution ofHn ;

cl,m5
exp~2bHm/2! f l,m

iexp~2bHm/2! f l,mi , nm~l!5
iexp~2bHm/2! f l,mi2dl

*Lm
iexp~2bHm/2! f l,mi2dl

,

with f l,m being the Bargmann coherent states~a set of vectors inL2~R2m11! indexed bylPLm

whose definition is recalled in Appendix B!; n~l!5limm→` nm~l!.
Remark 1:The mixing property with respect to the KMS states in the CCR algebra of the

infinite harmonic crystal~which has the sameW* closure of the pseudodifferential algebra we use!
is proved in Ref. 6, Example 4.46, through the asymptotic abelianess of the Weyl algebra auto-
morphism generated by the dynamics of the infinite crystal, whens(V) is purely absolutely
continuous so that classical mixing holds.7 The asymptotic abelianess may however fail ifs(V) is
only continuous and the classical system only ergodic. Hence the ergodicity result~I.9! requires in
general an independent proof.

Remark 2:The main reason why, in our opinion, an ‘‘analytic’’ proof, based on pseudodif-
ferential calculus, is in any case useful is that the notion~I.4! is proved to have the expected
classical limit~Appendix B!.
Additional reasons are as follows.

~1! One finds the right-hand sides~rhs! of Eqs. ~I.9! and ~I.10! to be the relevant classical
averages:

lim
m→`

E
L`

^Am1
cl,m ,cl,m&dnm~l!5E

L`

a+Pm1
dm̂b , ~I.12!

lim
m→`

Tr Am1
e2bHm

Tr e2bHm
•

Tr Bm1
e2bHm

Tr e2bHm
5E

L`

a+Pm1
dm̂b•E

L`

b+Pm1
dm̂b . ~I.13!

Here m̂b5limm→` m̂b,m , wherem̂b,m is the ~explicitly constructed! Gibbs measure onL whose
Weyl quantization yieldse2bHm. It turns out thatm̂b depends on\ to reduce tomG~b! as\→0,
becausee2bgm is just the principal symbol ofe2bHm realized as a pseudodifferential operator.

~2! If the initial statescm,l belong to an explicitly constructed set~the image undere2bHm of
‘‘almost all’’ coherent states onLm!, them→` limit can actually eliminate the dependence of the
rhs of Eq.~I.9! on the particular state in the set.

~3! Unlike the algebraic proof, the analytic one can, in principle, be extended to systems
quantizing nonlinear classical equations. Work in this direction is in progress: it can be proved10

that in some nonlinear cases the above results are still true in the sense of the formal power series
in \.
We conclude Sec. I with the remark that the dynamical mechanism generating chaotic behavior, in
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the classical case and in the quantum one as well, is but free propagation of the chaotic initial
condition: the infinite harmonic crystal indeed goes over~when the spacing goes to zero, and for
special choices ofV! to the free wave equation~equivalently, there exist coordinates in which the
particle motions are free! and the chaotic initial condition is selected by the invariant Gibbs
measure. This situation is referred to as kinematic chaos.11

The paper is organized as follows: in Sec. II we state assumptions and results, after a brief
review of the infinite dimensional classical harmonic dynamics; in Secs. III and IV we prove the
quantum ergodicity and the quantum mixing, respectively, in the most general formulation. In
Secs. V and VI we prove a sharper formulation of the above results when exp2bHm is replaced
by OpW~exp2bqm! and the family of vectors inLm

2 is specialized to the coherent states. Appendix
A contains the proof of some technical lemmas, and Appendix B contains the discussion of our
results in light of the existing notions of quantum ergodicity and mixing, together with the veri-
fication that they have the expected classical limit.

II. ASSUMPTIONS AND STATEMENT OF THE RESULTS

In the notation of Ref. 7, to which we refer the reader for any further detail on the system of
infinitely many oscillators, letV 5 (Vi , j ) i , jPz be an infinite real-symmetric matrix;qm andVm are
as in Eq.~II.8! andLm5~R2m11!2.

We writeSm~1! for the set ofC` functions onLm which are bounded together with all their
derivatives, and foraPSm(1) we denote Op

W(a) the Weyl quantization~with \51! of the symbol
~equivalently, classical observable! a, explicitly given by the oscillatory integral:

OpW~a!u~x!5~2p!2~2m11!E
Lm

ei ^~x2y!,j&aS x1y

2
,j Du~y!dy dj ~II.1!

for all uPS ~R2m11!. In particular the Schro¨dinger operatorHm on L2~R2m11!

Hm :5OpW~qm!5
1

2 S (
j51

2m11

Dxj
2 D 1^Vmx,x&, Dxj

52 i
]

]xj
~II.2!

quantizes the Hamiltonianqm describingm oscillators coupled throughVm .
We assume from now on

~H1! uVi j u5O ~ u i2 j u2`!, u i2 j u→1`

and'0,e,M,` such that;>0, s(Vm),[ e,M ].
In particular,V: l 2~z!→l 2~Z! is bounded and strictly positive, withs(V),[ e,M ].
~H2! The operatorV acting onl 2~Z! has no point spectrum.
Denote

L` :5 ø
kPN

$~xj ,j j !%; uxj u1uj j u5O ~ u j uk!, u j u→`%:5 ø
kPN

Hk . ~II.3!

It is proved in Ref. 7 that under condition~H1!, L` is invariant under the classical evolution of
infinitely many degrees of freedom defined as follows:

f t~x,j![f~ t,x,j!5etB~x,j!, ;~x,j!PL` , ;tPR, ~II.4!

whereB(x,j) is the infinite-dimensional Hamiltonian vector field generated byqm whenm→`

B~x,j!5S j j ,22(
kPZ

VjkxkD
jPZ

. ~II.5!
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Moreover, ifPm :L`→Lm denotes the projection

Pm~x,j!5~xj ,j j ! u j u<m ~II.6!

for any ~x,j!PHk one has

f~ t,x,j!5 lim
m→`

fm,t~Pm~x,j!!PHk , ~II.7!

where

fm,t5exp tHqm
, Hqm

5S ]qm
]j

,2
]qm
]x D

is the vector field generated byqm , and the limit is taken with respect to the natural Banach space
topology ofHk .

Now by condition~H1! the operatorV21/2 exists and is continuous onl 2~Z!. This assumption
and~H2! allow Lanford and Lebowitz7 to prove the existence of the infinite dimensional, ergodic
Gibbs measuredmG~b! on L` , namely

~1!

E
L`

w+Pm1
dmG~b!5 lim

m→`
E

Lm

w+Pm1
~x,j!e2bqm~x,j!

dx dj

Zm
, ;wPCb

0~R2m111! ~II.8!

where

Zm~b!5E
Lm

e2bqm~x,j!dx dj ~II.9!

is them-particle partition function
~2! The Gibbs measure is invariant and ergodic with respect to the flowf~t;x,j!, namely the

continuous dynamical system~L` ,ft ,dmG~b!! is ergodic.
An example of an infinite matrix satisfying~H1!–~H2! is given byV5W where

Wij50, u i2 j u>2, Wii51, Wi ,i115Wi ,i215a ~II.10!

with uau,1
2, aPR. The properties~H1!, ~H2! are proved, e.g., in Ref. 12.

To state our result we need to establish some further notation. ForfPL2~R2m11! and
(x,j)PLm , we introduce the Wigner function off

wf~x,j!5E
R2m11

eiuj f S x2
u

2D f S x1
u

2Ddu ~II.11!

and we restrict our attention to a random set of statesf in the following sense: for allmPN, we
consider a measure space (Xm ,um) with positive measureum , and a family (f l)lPXm

of functions
in L2~R2m11! such that:
~H3! For dxdj-almost all (x,j)PLm the applicationXm { °wfl

(x,j) is in L1(Xm ,dum) with
non-negative values, and the quantity*Xmwfl

(x,j)dum(l) is ~dxdj-almost everywhere! constant
with respect to~x,j!.
Here we can notice that, at least formally, condition~H3! is implied by the property@to be
compared with Eq.~B10!#:
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Tr~A!5E ^Afl , f l&dum~l!

for any trace-class operatorA. Indeed we havewfl
(x,j) 5 ^Ax,j f l , f l& with Ax,j f (y)

5e2i (y2x)j f (2x2y), which actually is not trace-class, but whose distributional kernelKx,j(y,y8)
5e2i (y2x)jd(y81y52x) formally satisfies:*Kx,j(y,y)dy51.

In the last section we develop an example~the so-called coherent states! where condition~H3!
is satisfied. Note that in any case,wf(x,j) is real and satisfies:*wf(x,j)dxdj5(2p)2m11i f i2.

As we shall see, condition~H3! implies among other things that

E
Xm

ie2bHm/2f li2dum~l!,1` ~II.12!

so that we can consider the following probability measure onXm :

dnm~l!5
ie2bHm/2f li2dum~l!

*Xmie2bHm/2f li2dum~l!
. ~II.13!

Now let

Wb5&V21/2 tanh
bV1/2

&

~II.14!

~which is well-defined onl 2~Z!!, and forb.0, denotem̂b the Gaussian probability measure onL`

with mean zero and covariance given by

E@xixj #5^~2VWb!21ei ,ej& l2~Z! ,

E@j ij j #5^Wb
21ei ,ej& l2~Z! ,

E@xij j #50, ~II.15!

whereei 5 (d i j ) jPZ . Then our first main result is as follows:
Theorem II.1: Assume~H1!–~H3!. Then:
~i! For anyb.0, the dynamical system(L` ,f t ,m̂b) is ergodic;
~ii ! For m1PN fixed and aP Sm1

(1), denote

gm,b,l5
e21/2bHmf l

ie21/2bHmf li

and

A~m,n,T,l!5
1

T E
0

T

^eitHn OpW~a+Pm1
!e2 i tHngm,b,l ,gm,b,l&L2~R2m11!dt.

Then one has

lim
T→`

lim sup
n→`

lim sup
m→`

E
Xm
UA~m,n,T,l!2E

L`

a+Pm1
dm̂bUdnm~l!50.

Remarks:
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~1! A(m,n,T,l) can be made arbitrarily close to*a + Pm1
dm̂b in L1(Xm ,dnm(l)) by first

choosingT, thenn5n(T), and finallym5m(n,T) large enough. Thepointwiseconvergence of
A(m,n,T,l) is proved in Proposition 5.1 below, choosing forf l a particular set of coherent states.

~2! Note thatA(m,n,T,l) is well-defined since the action ofeitHnOpW(a + Pm1
)e2 i tHn on

gm,b,l which is aC` function onR2m11 is well-defined forn<m.
~3! For smallb, we haveWb5bI1O ~b3! and therefore the covariance ofm̂b coincides with

the one of the usual Gibbs measuresmG~b! up to aO ~b3!-error term. In this sense, we can say that
m̂b andmG~b! are asymptotically equal for smallb’s ~that is for large temperatures!.

~4! The measurem̂b can be seen as the limit whenm→1` of the probability measure onLm

obtained by normalizinge2qb,m(x,j)dxdj, where

qb,m~x,j!5qm~Wb,m
1/2 x,Wb,m

1/2 j! ~II.16!

and

Wb,m5&Vm
21/2 tanh

bVm
1/2

&

. ~II.17!

~In fact, one can prove that condition~H1! and the spectral theorem imply that for any continuous
function f onR, ^ f (Vm)ei ,ej& tends to^ f (V)ei ,ej& asm→`.! This relation betweenm̂b and the
usual Gibbs measure reflects the relation between the usual quantum Gibbs measuree2bHm and
the Weyl quantization of the classical Gibbs measuree2bqm, namely~see Lemma III.1 below!:

e2bHm5Cb,m OpW~e2qb,m!,

whereCb,m is a constant. In particular, if we denote by # the Weyl composition of symbols, we
get ~with some other constantCb,m8 !:

e2qb,m#e2qb,m5Cb,m8 e2q2b,m, ~II.18!

which also explains the fact thatm̂b appears in the result given the above choice ofgm,b,l ,
dictated by the standard requirement Tre2bHm , 1`.
To state the mixing property we need two additional assumptions
~H4! The spectrum ofV on l 2~Z! is absolutely continuous.
~H5! The matrixWb,m5&Vm

21/2 tanhbVm
1/2/& satisfies:

~Wb,m! i , j5O ~ u i2 j u2`!

uniformly with respect tom, i , and j .
Note that~H5! is satisfied, e.g., forV of the formV5I1aJ whereJ admits only a finite number
of nonzero diagonals andaPR is chosen small enough. In particular, the example given in Eq.
~II.10! satisfies assumption~H1! and assumptions~H4!–~H5! if uau is small enough. Note also that
the absolute continuity ofs(V) implies ~Ref. 7! that the continuous dynamical system
(L` ,f t ,mG) enjoys the mixing property. Form1PN anda P Sm1

(1), wedenoteâ P S 8(Lm1
) the

usual Fourier transform ofa formally given by the integral:

â~x* ,j* !5E
Lm1

e2 i ^~x,j!,~x* ,j* !&a~x,j!dxdj. ~II.19!

Then the result is
Theorem II.2: Assume~H1! and ~H4!–~H5!. For m1PN fixed, a,b P Sm1

(1), and n>m1

denote
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A5OpW~a+Pm1
!,

An~ t !5eitHnAe2 i tHn5OpW~a+Pm1
+fn,t!:5OpW~an,t!,

B5OpW~b+Pm1
!.

Then we have

lim
m→`

Tr~Ae2bHm!

Tr~e2bHm!
5E

L`

a+Pm1
dm̂b :5vb~A! ~II.20!

and if moreover aˆ and b̂are bounded measures onLm1
, one has:

lim
t→`

lim
n→`

vb~An~ t !B!5vb~A!•vb~B!. ~II.21!

Remark:Although this corresponds to the notion of quantum mixing already existing in the
framework ofW* dynamical systems, our procedure permits us to completely avoid to realize any
algebra of operators on an infinite dimensional space.

Under an additional assumption onV the results of Theorems 2.1 and 2.2 admit a less
cumbersome formulation which eliminates the necessity of the double limit with respect tom and
n. The further assumption is
~H6! For all m>0 there exists a (2m11)3(2m11) real-symmetric matrixṼm satisfying the
same assumption~H1! asVm , and such that:

~i! ; i , jPZ, ^Ṽm
21ei ,ej& tends to^V

21ei ,ej& l2 asm→1`;
~ii ! ;m,nPZ, the operatorPmṼn

21/2Pn becomes independent ofn for n̈ sufficiently large;
~iii ! The operatorṼm

21/2PmṼn
21/2Pn tends strongly to the identity on eachHk ~kPN! asm→

1`.

It is not very difficult to verify that an example of suchV satisfying ~H4! ~in addition to
~H1!–~H2!! is given byV5W2 whereW is as in the example~II.10!: in this case one can take
Ṽm5(Wm)

2 whereWm is extracted fromW as in Eq.~I.8!.
Under assumption~H6!, we define for 0,b,(2M )21/2:

q̃b,m~x,j!5^Fb,mj,j&1^Gb,mx,x&, ~II.22!

where~denotingI m the identity onR2m11!:

Fb,m5
1

2b
Ṽm

21~ I m2~ I m22b2Ṽm!1/2!, ~II.23!

Gb,m52ṼmFb,m . ~II.24!

We also consider onXm the probability measure:

dñm~l!5
iOpW~e2 q̃b,m! f li2dum~l!

*XmiOpW~e2 q̃b,m! f li2dum~l!
. ~II.25!

Then the result is:
Theorem II.3: Assume~H1!–~H3! and, ~H6!, and, for m1PN fixed, a P Sm1

(1) and

0,b,(2M )21/2, denote
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g̃m,b,l5
OpW~e2 q̃b/2,m! f l

iOpW~e2 q̃b/2,m! f li

and

Ã~m,T,l!5
1

T E
0

T

^eitHm OpW~a+Pm1
!e2 i tHmg̃m,b,l ,g̃m,b,l&L2~R2m11!dt.

Then one has
~i!

lim
T→`

lim sup
m→`

E
Xm
UÃ~m,T,l!2E

L`

a+Pm1
dmG~b!Udñm~l!50.

~ii ! Assume furthermore~H4!. Then Eq.~II.20! becomes

lim
m→`

Tr A OpW~e2bqm!

Tr OpW~e2bqm!
5E

L`

a+Pm1
dmGb:5ṽb~A! ~II.26!

and if moreover aˆ and b̂ are bounded measures onLm1
, Eq. ~II.21! becomes:

lim
t→`

lim
m→`

ṽb~Am~ t !B!5ṽb~A!•ṽb~B!. ~II.27!

Remarks:
~1! Here, the choice of the quadratic formq̃b,m is dictated from the fact that we have~see

Lemma V.2 below!:

e2 q̃b,m#e2 q̃b,m5Cb,m9 e22b q̃m, ~II.28!

where

q̃m~x,j!5 1
2uju21^Ṽmx,x&.

In view of assumption~H6! ~i!, this explains why we get the usual Gibbs measure in the limit
m→1`. Note that we also haveFb,m5b/2I m1O ~b3! andGb,m5bVm1O ~b3!, so thatq̃b,m is
asymptotically equal tobq̃m asb→01 .

~2! For smallb it is possible to compare OpW(e2 q̃b,m) with e2bH̃m, whereH̃m 5 OpW(q̃m)
5 2/1(( j51

2m11Dxj
2 ) 1 ^Ṽmx,x&. Actually, denotingl̃1,...,l2m11 the eigenvalues ofṼm , we get by

standard formulas~see Eq.~III.3! below! that OpW(e2 q̃b,m) is unitarily equivalent to

^

j51

2m11 1

A12b2l̃j /2
expF 2

1

2 S ln 11bAl̃j /2

12bAl̃j /2
D ~Dxj

2 1xj
2!G ~II.29!

while under the same unitary transformatione2bH̃m becomes

^

j51

2m11
e2bA l̃ j /2~Dxj

2
1xj

2
!. ~II.30!

Since for smallb we have:
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1

2
ln
11bAl̃j /2

12bAl̃j /2
5bAl̃j

2
~11O ~b!!

we get from Eqs.~II.29! and ~II.30!:

OpW~e2 q̃b,m!5e2bH̃m~11bRb,m!, ~II.31!

where [Rb,m ,H̃m]50 and 1/(2m11)Rb,m is uniformly bounded in~b,m!.
~3! The previous remark proves that for smallb, @OpW(e2 q̃b,m),H̃m# 5 0. This is true for all

positiveb, by formula~III.4! below, and the fact that

e2 q̃b,m+exp tH q̃m
~x,j!5e2 q̃b,m+exp tH q̃b,m

~~2Fb,m!21/2x,~2Fb,m!21/2j!

is constant with respect totPR.
~4! Since the choice of the latticeZ does not play any role at all in our proofs, it can be

replaced without modification by any latticeG,Rd ~d>1! of the type considered in Ref. 7, in
which case the model describes an infinite harmonic crystal inRd. Also the choice ofLm is
nonssential, in the sense that any other choiceLm8→L` in a reasonable way leads to the same
results.

III. PROOF OF THEOREM 2.1

Now we turn to the proof of Theorem 2.1. The fact that~l` ,f t ,m̂b! is ergodic essentially
follows from the arguments of Ref. 7, but, for the sake of completeness, we give a sketch of the
proof. First, the invariance ofm̂b underft is a consequence of the commutativity between the
operatorB defined in Eq.~II.5! and the operatorl 2~Z!%l 2~Z!{(x,j)°(Wb

1/2x,Wb
1/2j). Now, de-

noteĥ1 the closure inL
2(L` ,dm̂b) of the set of all finite sums of (ajxj1bjj j )’s, ~aj ,bjPC;jPZ!.

Then, denotingd~Z! the elements ofl 2~Z! with finite support, the application

Q:d~Z! %d~Z!→ĥ1 ,

a%b°(
j

~ajxj1bjj j !,

can be extended into an isomorphism fromD((2VWb)
21/2)%D(Wb

21/2) to ĥ1 ~whereD(A)
denotes the domain of the operatorA!. Moreover, identifyingD((2VWb)

21/2)%D(Wb
21/2) with

l 2~Z!%l 2~Z! in an obvious way, we see that the action offt on ĥ1 is represented onl 2~Z!%l 2~Z!
~via the two previous identifications! by its infinitesimal generator

U5S 0 2V21/2

V1/2 0 D .
Since, by assumption~H2!, U has no point spectrum the result~i! follows by an abstract argument
~see Ref. 7, Proposition 4.2!.

To prove~ii ! we first show:
Lemma III.1: There exists a constant Cb,m such that:

e2bHm5Cb,mOp
W~e2qb,m!.

Proof: Let l1,...,l2m11 be the eigenvalues ofVm , and denotey5(y1 ,...,y2m11) the coordi-
nates inR2m11 corresponding to an orthonormal basis of eigenvectors ofVm . ThenHm becomes:
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Hm8 52
1

2
Dy1(

j
l j y j

2

while the operatorKm 5 OpW(e2qb,m) is transformed into

Km8 5 ^

j51

2m11

OpWS exp2S 1

A2l j

tanhS bAl j

2 D h j
21A2l j tanhS bAl j

2 D yj2D D .
@Hereh is the dual variable ofy, andj5( tM )21h5Mh sincex5My with M orthogonal.# Then
the change of variables

yj°zj5~2l j !
1/4yj

transformsHm8 into

Hm9 5(
j
Al j

2
~Dzj

2 1zj
2! ~III.1!

andKm8 into

Km9 5 ^

j51

2m11

OpWS expF tanhS bAl j

2 D ~z j
21zj

2!G D . ~III.2!

Next, consider the well known one-dimensional identity valid for 0,a,1

OpW~e2a~x21j2!!5
1

A12a2
expS 2

a

2
x2DexpS 2

a

12a2
Dx
2DexpS 2

a

2
x2D ,

which can be for instance verified by explicit computation of the Weyl symbol on the right-hand
side. Then, using the formula~see, e.g., Ref. 13!

expS 2
x2

2 D exp~2tDx
2!expS 2

x2

2 D 5expF2
ln~z1Az221!

4kAz221
~Dx

214k2~z221!x2!G
with k51/4t, z52t11 ~t.0!, we get in particular for 0,a,1:

OpW~e2a~x21j2!!5
1

A12a2
expF2

1

2 S ln 11a

12aD ~Dx
21x2!G ~III.3!

Takinga 5 tanh(bAl j /2), the Lemma follows from Eqs.~III.1!–~III.3!. h

Now, since the flow generated byqn defines a linear canonical transformation onLn , we have

eitHnOpW~a!eitHn5OpW~a+exp tHqn
!, ;aPSn~1!. ~III.4!

This relation@an ‘‘exact Egorov theorem,’’ going back at least to Van Hove~see, e.g., Ref. 14!#
holds only in the Weyl quantization15 ~Sec. 5.2!.

For n<m and (x,j)PLm , denote

r~m,l!5ie21/2bHmf li2, ~III.5!

5121S. Graffi and A. Martinez: Ergodic properties of quantum harmonic crystals

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



an,T~x,j!5
1

T E
0

T

~a+Pm1
+exp tHqn

+Pn!~x,j!)dt. ~III.6!

Using Lemma~III.1!, ~III.4!, and~II.11!, we get

A~m,n,T,l!5
Cb,m
2

r~m,l!
E

Lm

~e2qb,m#an,T#e
2qb,m!~x,j!wfl

~x,j!dxdj, ~III.7!

where # is the Weyl composition of symbols onLm :

~a#b!~x,j!5p22~2m11!E
Lm
2
a~x1y,j1h!b~x1z,j1z!e2i ~zy2zh!dydhdzdz. ~III.8!

Taking advantage of assumption~H3!, we get from Eq.~III.7!

E
Xm

A~m,n,T,l!r~m,l!dum~l!5C0E
Lm

~e2qb,m#an,T#e
2qb,m!~x,j!dxdj, ~III.9!

E
Xm

uA~m,n,T,l!ur~m,l!dum~l!<C0E
Lm

u~e2qb,m#an,T#e
2qb,m!~x,j!udxdj, ~III.10!

whereC05C0(b,m) is a constant, which can be computed by takinga[1 in ~III.9!:

C05S E e2qb,m#e2qb,mdxdj D 21E
Xm

r~m,l!dum~l!. ~III.11!

This also proves Eq.~II.12! so that, using the notation~II.13! we can rewrite Eqs.~III.9!–~III.10!
as:

E
Xm

A~m,n,T,l!dnm~l!5C1E
Lm

~e2qb,m#an,T#e
2qb,m!~x,j!dxdj, ~III.12!

E
Xm

uA~m,n,T,l!udnm~l!<C1E
Lm

u~e2qb,m#an,T#e
2qb,m!~x,j!udxdj ~III.13!

with

C15S E e2qb,m#e2qb,mdxdj D 21

.

Now we make use of the two following properties of the operation #~valid, e.g., for anya,b,c in
S ~Lm!!:

E
Lm

~a#b#c!~x,j!dxdj5E
Lm

~b#c#a!~x,j!dxdj, ~III.14!

E
Lm

~a#b!~x,j!dxdj5E
Lm

a~x,j!b~x,j!dxdj. ~III.15!

The property~III.14! is just a consequence of the cyclicity of the trace of operators, and Eq.
~III.15! comes from a direct computation using Eq.~III.8!.

5122 S. Graffi and A. Martinez: Ergodic properties of quantum harmonic crystals

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Here our symbola is not supposed to be inS ~Lm!, but an easy argument of density allows us
to deduce from Eq.~III.12! and Eqs.~III.14!–~III.15! @using also Eq.~II.18!#:

E
Xm

A~m,n,T,l!dnm~l!5E
Lm

an,T~x,j!@e2qb,m~x,j!dxdj#N , ~III.16!

where we have used the notation:

E
E
f @dm#N5

1

m~E!
E
E
f dm ~III.17!

for any finite positive measurem on a setE.
Now the problem is to rewrite also Eq.~III.13! in this way, despite the appearance of the

modulus. The argument to do this is based upon the following:
Lemma III.2: There exists a positive definite quadratic form Qb,m(x,j,y,h) onLm

2 such that
for all aPSm~1!:

e2qb,m#a#e2qb,m5Cb,m8 ãe2q2b,m,

where Cb,m8 is the constant appearing inEq. ~II.18!, and

ã~x,j!5E
Lm

a~y,h!@e2Qb,m~x,j,y,h!dydh#N .

Proof: See Appendix A.
We deduce in particular from Lemma III.2 the existence of a positiveC` functiong~x,j! on

Lm such that for allaPSm~1!:

E
Lm

~e2qb,m#a#e2qb,m!dxdj5E
Lm

a~x,j!g~x,j!dxdj, ~III.18!

E
Lm

ue2qb,m#a#e2qb,mudxdj<E
Lm

ua~x,j!ug~x,j!dxdj. ~III.19!

By Eqs.~III.12!, ~III.16!, and~III.18! we get thatg equals a constant timese2q2b,m, which by
Eqs.~III.13! and ~III.19! allows us to conclude that:

E
Xm

uA~m,n,T,l!udnm~l!<E
Lm

uan,T~x,j!u@e2qb,m~x,j!dxdj#N . ~III.20!

Without loss of generality, we can assume from now on that*L`
(a + Pm1

)dm̂b 5 0, and then it
remains to estimate the rhs of Eq.~III.20!. Sincean,T(x,j) depends only onPn(x,j), we can let
m go to1` in Eq. ~III.20! and we get

lim sup
m→`

E
Xm

uA~m,n,T,l!udnm~l!<E
L`

uan,T~x,j!udm̂b . ~III.21!

Then we use Eq.~II.7! to let n go to 1` in Eq. ~III.22!. By the dominated convergence
theorem, we then obtain
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lim sup
n→`

lim sup
m→`

E
Xm

uA~m,n,T,l!udnm~l!<E
L`
U1T E

0

T

~a+Pm1
+f t!~x,j!dtUdm̂b .

~III.22!

Finally, we letT go to1`. By the ergodicity property, we have that

1

T E
0

T

~a+Pm1
+f t!~x,j!dt→E

l`

~a+Pm1
!dm̂b50

for m̂b—almost all~x,j! in L` . Therefore, again applying the dominated convergence theorem, we
get from Eq.~III.22!:

lim
T→1`

lim sup
n→`

lim sup
m→`

E
Xm

uA~m,n,T,l!udnm~l!<0 ~III.23!

and this completes the proof of Theorem 2.1. h

IV. PROOF OF THEOREM 2.2

Let us now proceed to the proof of Theorem 2.2. Denote

vb,m~A!5
Tr~Ae2bHm!

Tr~e2bHm!
. ~IV.1!

Using Lemma III.1 and Eq.~III.15! we see that

vb,m~A!5E
Lm

a+Pm1
~x,j!@e2qb,m~x,j!dxdj#N ~IV.2!

so that the first assertion~II.20! of the theorem is obvious.
Form>n>m1 we also have:

vb,m~An~ t !B!5E
Lm

an,t#~b+Pm1
!~x,j!@e2qb,m~x,j!dxdj#N . ~IV.3!

For X5(x,j) andY5(y,h)PLm , we denote

s~X,Y!5jy2xh ~IV.4!

the canonical symplectic form onLm . Then by Eq.~III.8! we have:

an,t#~b+Pm1
!~X!5p22~2m11!E

Ln
2
~an,t+Pn!~Y!~b+Pm1

!~Z!e2i @s~Y,X!1s~Z,Y2X!#dYdZ.

~IV.5!

By the Fourier inversion formula and the assumption ona,b, we can write for anyY1 P Lm1
:

a~Y1!5~2p!22~2m111!E
Lm1

e^Y1 ,Y* &â~Y* !dY* ~IV.6!

and a similar formula forb. Here we have used an abuse of notation by writingâ(Y* )dY* for the
~not necessarily Lebesgue absolutely continuous! measure defined by the Fourier transform ofa.
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In particular, takingY1 5 Pm1
fn,tPn(Y) in Eq. ~IV.6! and substituting in Eq.~IV.5!, we get

an,t#~b+Pm1
!~X!5p22~2m11!~2p!24~2m111!

3E e2i @s~Y,X!1s~Z,Y2X!#1 i ^fn,tPn~Y!,Y* &1 i ^Z,Z* &

3â~Y* !dY* b̂~Z* !dZ* dYdZ,

where the integration runs over (Y* ,Z* ,Y,Z) P Lm1
3 Lm1

3 Lm3 Lm , andLm1
has been identi-

fied in an obvious way with a subspace ofLn and ofLm .
Interpreting the integration over (Y,Z) as an oscillatory one, we can first integrate with

respect toZ, and we obtain~using the well-known identity*Rde
2i (x2y)jdj 5 pdd(y 5 x)!:

an,t#~b+Pm1
!~X!5~2p!24~2m111!E ei ^Z* ,X&1 i ^fn,tPn~X1 Z̃* /2!,Y* &â~Y* !dY* b̂~Z* !dZ* ,

~IV.7!

where we have denotedZ̃*5(2z* ,z* ) if Z*5(z* ,z* ).
Now, inserting Eq.~IV.7! into Eq. ~IV.3!, and making the change of variablesX°X2Z̃* /2,

this gives:

vb,m~An~ t !B!5~2p!24~2m111!E
Lm3Lm1

2
ei ^Z* ,X&1 i ^fn,tPn~X!,Y* &

3@e2qb,m~X2 Z̃* /2!dX#Nâ~Y* !dY* b̂~Z* !dZ*

and therefore, writingqb,m(X)5^Qb,mX,X& with Qb,m(x,j)5(VmWb,mx,Wb,mj):

vb,m~An~ t !B!5~2p!24~2m111!E
Lm1

2
Gm,n,t~Y* ,Z* !e2qb,m~ Z̃* !/4â~Y* !dY* b̂~Z* !dZ* ,

~IV.8!

where

Gm,n,t~Y* ,Z* !5E
Lm

ei ^Z* ,X&1^ Z̃* ,Qb,mX&1 i ^fn,tPn~X!,Y* &@e2qb,m~X!dX#N ~IV.9!

is of the form

Gm,n,t~Y* ,Z* !5E
Lm

Fn,t,Y* ,Z̃* ~Pm1
Qb,mX,PnX!)@e2qb,m~X!dX#N ~IV.10!

with Fn,t,Y* ,Z* smooth and uniformly bounded together with all its derivatives onLm1
3 Ln . To

let m tend to infinity in Eq.~IV.10!, we use the following lemma~which is the point where~H5!
is used!:

Lemma IV.1: Let FP C`(Lm1
3 Ln) be uniformly bounded with all its derivatives. Then

E
Lm

F~Pm1
Qb,mX,PnX!)@e2qb,m~X!dX#N→E

L`

F~Pm1
QbX,PnX!)dm̂b ~m→`!,

wherem̂b is defined in Eq.~II.15!, and Qb is defined onL` by
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Qb~x,j!5~VWbx,Wbj!, Wb5&V21/2 tanh
bV1/2

&

.

Proof: See Appendix A.
Now, for any fixed (n,t,Y* ,Z* ), we see on Eqs.~IV.9!–~IV.10! that, asm→`, Gm,n,t(Y* ,Z* )
tends to

Gn,t~Y* ,Z* !5E
L`

ei ^Z* ,X&1^ Z̃* ,QbX&1 i ^fn,tPn~X!,Y* &dm̂b ~IV.11!

which in turn is of the form:

Gn,t~Y* ,Z* !5E
L`

f Z* ~X!gY* ~Pm1
fn,tPnX!dm̂b ~IV.12!

with f Z* andgY* uniformly bounded, andgY* continuous onLm1
. Then, using Eq.~II.7! and the

dominated convergence theorem, we see on Eq.~IV.12! that, asn→`, Gn,t(Y* ,Z* ) tends to

G t~Y* ,Z* !5E
L`

f Z* ~X!gY* ~Pm1
f tX!dm̂b . ~IV.13!

Now, the same arguments used in the proof of Theorem 2.1~i! ~see the beginning of Sec. III! lead
to the fact that under~H4! the classical dynamical system~L` ,f t ,m̂b! is mixing. As a conse-
quence, we get from Eq.~IV.13!

G t~Y* ,Z* !→E f Z* ~X!dm̂b•E gY* ~Pm1
X!dm̂b as t→`. ~IV.14!

Summing up Eqs.~IV.9!–~IV.14!, we have proved that for any fixed (Y* ,Z* ) P Lm1

2 , we have

lim
t→`

lim
n→`

lim
m→`

Gm,n,t~Y* ,Z* !5E
L`

ei ^Z* ,X&1^ Z̃* ,QbX&dm̂b~X!•E
L`

ei ^X,Y* &dm̂b~X!

~IV.15!

and because of the translation invariance of the Lebesgue measure onLm , and the fact that
^Z* ,Z̃* &50, it is also easy to verify that

E
L`

ei ^Z* ,X&1^ Z̃* ,QbX&dm̂b~X!5e^Qb Z̃* ,Z̃* &/4E
L`

ei ^Z* ,X&dm̂b~X!. ~IV.16!

Since by assumptionâ(Y* )dY* and b̂(Z* )dZ* are bounded measures onLm1
and

uGm,n,t(Y* ,Z* )e
2qb,m( Z̃* )/4u 5 1, we can use the dominated convergence theorem in Eq.~IV.8! and

conclude from Eqs.~IV.15!–~IV.16! ~using also the obvious fact thatqb,m(Z̃* ) tends to
^QbZ̃* ,Z̃* & asm→`! that
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lim
t→`

lim
n→`

lim
m→`

vb,m~An~ t !B!5~2p!24~2m111!E
Lm1

3L`

ei ^X,Y* &â~Y* !dY* dm̂b~X!

•E
Lm1

3L`

ei ^Z* ,X&b̂~Z* !dZ* dm̂b~X!

5E
L`

a+Pm1
dm̂b•E

L`

b+Pm1
dm̂b ,

where the last equality comes again from the Fourier-inversion formula. h

V. PROOF OF THEOREM 2.3

Lemma V.2: For any pair of positive definite real-symmetric matrices F and G onLm, there
exists a constant C5C(F,G,m) such that:

e2~^Fj,j&1^Gx,x&!#e2~^Fj,j&1^Gx,x&!5Ce22~^F~F1G21!21G21j,j&1^~F1G21!21x,x&!.

Proof: See Appendix A.
In particular, takingF5Fb,m andG5Gb,m defined in Eqs.~II.23! and ~II.24! we easily get

Eq. ~II.28! from Lemma V.2. Then computations analogous to those of the previous section@Eqs.
~III.7!–~III.20!# lead to

E
Xm

uÃ~m,T,l!udñm~l!<E
Lm

uam,T~x,j!u@e2b q̃m~x,j!dxdj#N . ~V.1!

Now on the rhs of Eq.~V.1! we make the change of variables:

x5Ṽm
21/2y, j5h,

which gives

E
Lm

uam,T~x,j!u@e2b q̃m~x,j!dxdj#N5E
Lm

uam,T~Ṽm
21/2y,h!u@e2b~h21y2!dydh#N . ~V.2!

Since the quadratic form in the exponent is now diagonal, we can integrate overn>m variables so
that

E
Lm

uam,T~x,j!u@e2b q̃m~x,j!dxdj#N5E
Ln

uam,T~Ṽm
21/2Pmy,Pmh!u@e2b~h21y2!dydh#N

~V.3!

for anyn>m. Coming back to the old variables onLn , this gives

E
Lm

uam,T~x,j!u@e2b q̃m~x,j!dxdj#N5E
Ln

uam,T~Ṽm
21/2PmṼn

1/2x,Pmj!u@e2b q̃n~x,j!dxdj#N .

~V.4!

Now, by assumption~H4! ~ii !, for n large enough, the functionam,T(Ṽm
21/2PmVn

21/2x,Pmj)
depends only on a fixed number of variables independent ofn. Then, by assumption~H4! ~i! and
standard results on the Gaussian measures~see, e.g., Ref. 7!, lettingn tend to1` in Eq. ~V.4!, we
get
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E
Lm

uam,T~x,j!u@e2b q̃m~x,j!dxdj#N5E
L`

uam,T~Ṽm
21/2PmṼn

1/2Pnx,Pmj!udmG~b!. ~V.5!

Finally, using assumption~H4! ~iii !, Eq. ~II.7!, and the uniform~with respect tom>0! continuity
of exptHqm

+ Pm on eachHk , we see that for all~x,j!PL` andtPR:

~a+Pm1
+exp tHqm

!~Ṽm
21/2PmṼn

1/2Pnx,Pmj!→~a+Pm1
+f t!~x,j! as m→1`. ~V.6!

It follows from Eqs.~V.6!, ~V.5!, and~V.1! and the dominated convergence theorem that

lim sup
m→1`

E
Xm

uÃ~m,T,l!udñm~l!<E
L`
U1T E

0

T

~a+Pm1
+f t!~x,j!dtUdmG~b!. ~V.7!

Letting T tend to infinity in Eq.~V.7!, the ergodicity of the system@L` ,f t ,mG~b!# and the fact
that we can restrict to the case*a + Pm1

dmG(2b) 5 0 yield the assertion. h

VI. COHERENT STATES: SHARPENING THE ERGODICITY RESULT

Now we takeXm5Lm , dum(l)5dl, and forl5(lx ,lj)PLm the corehent states defined by

f l~x,j!5eixlj2~x2lx!2/2. ~VI.1!

Then a direct computation gives

wfl
~x,j!522m11pm11/2e2~j2lj!22~x2lx!2 ~VI.2!

so that ~H3! is obviously satisfied. Therefore the results of Theorems 2.1 and 2.2 hold forV
satisfying assumptions~H1!–~H2! @respectively, assumptions~H1!, ~H2!, and~H6!#. The new fact
which appears in this situation is

Lemma VI.1: Under Eq.~VI.1!, the two measures dnm~l! and dñm~l!, defined, respectively,
by Eqs.~II.13! and ~II.25!, are Gaussian probability measures on Xm5Lm .

Proof: In each case, the measure is of the formCiOpW(e2q) f li2dl whereC is a constant and
q is a positive definite quadratic form onLm . Moreover, by computations analogous, e.g., to those
for Eq. ~III.7! we have

iOpW~e2q! f li25C8E
Lm

~e2q#e2q!~x,j!wfl
~x,j!dxdj, ~VI.3!

whereC8 is another constant. Then the result follows immediately by Eq.~VI.2! and the fact that
e2q#e2q5C9e2q8 whereq8 is a positive definite quadratic form onLm andC9 is a constant.h

Now denoteLm andL̃m the two real-symmetric positive definite (4m12)3(4m12) matrices
defined by

dnm~l!5@e2^Lml,l&dl#N , ~VI.4!

dñm~l!5@e2^ L̃ml,l&dl#N . ~VI.5!

Then for any bounded functionA~l! we have

E
Lm

A~l!dnm~l!5E
Lm

A~Lm
21/2l!@e2ulu2dl#N ~VI.6!
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and therefore, by an argument similar to the one leading to Eq.~V.21!:

E
Lm

A~l!dnm~l!5E
L`

A~Lm
21/2Pml!dnG~l!, ~VI.7!

where dnG~l! is the finite dimensional Gibbs measure obtained by taking the limit of

@e2ulu2dl#N on Ln asn→1`. A formula analogous to Eq.~VI.7! is also true fordñm~l!, and
therefore it follows from Theorems 2.1 and 2.2 that we have in this situation:

lim
T→`

lim sup
n→`

lim sup
m→`

E
L`
UA~m,n,T,Lm

21/2Pml!2E
L`

a+Pm1
dm̂bUdnG~l!50, ~VI.8!

lim
T→`

lim sup
m→`

E
L`
UÃ~m,T,L̃m

21/2Pml!2E
L`

a+Pm1
dmG~b!UdnG~l!50. ~VI.9!

Finally, using a very standard argument of measure theory, we easily deduce from Eqs.~VI.8!
and ~VI.9! the following:

Proposition VI.1: Assume~H1!–~H2! and choose the set of coherent states~VI.1!. Then there
exist sequences(Tk)kPN , (mk)kPN , (nk)kPN simultaneously tending to1` such that for
nG—almost alllPL` :

lim
k→1`

A~mk ,nk ,Tk ,Lmk

21/2Pmk
l!5E

L`

a+Pm1
dm̂b .

If moreover assumption~H3! is satisfied, there exist sequences(Tk)kPN , (mk)kPN both tend-
ing to 1` such that fornG—almost alllPL` :

lim
k→1`

Ã~mk ,Tk ,L̃mk

21/2Pmk
l!5E

L`

a+Pm1
dmG~b!.

Remarks:
~1! An analogous result holds if Eq.~VI.1! is replaced by the more general casef l(x,j)

5 eixlj2^Fm(x2lx),x2lx&, Fm being any positive definite symmetric matrix.
~2! Actually, one can replaceLm by any other symmetric matrixLm8 such thatKm

5 (Lm8 )
21/2Lm(Lm8 )

21/2 is a diagonal matrix and the measure@e2^Kml,l&dl#N onLm admits a limit
dn` asm→1`. In this case the ‘‘nG—almost alll’’ of the Proposition must be replaced by
‘‘ n`—almost alll.’’
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APPENDIX A: PROOF OF THE LEMMAS

Proof of Lemma III.2

Using Eq.~III.8!, we see thate2qb,m#a#e2qb,m can be put under the form:

~e2qb,m#a#e2qb,m!~x,j!5C1E
Lm
4
a~Y1!e

2q1~x,j,Y1 ,Y2 ,Y3 ,Y4!dY1dY2dY3dY4 , ~A1!
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where all along this proofCj ~j51,2...! will denote complex constants,q1 is a complex quadratic
form onLm

5 , and the integral~A1! is oscillatory. Moreover, a direct computation gives:

E
Lm
3
e2q1~x,j,Y1 ,Y2 ,Y3 ,Y4!dY2dY3dY45C2e

2Q~x,j,Y1!, ~A2!

whereC2PR andQ is a positive definite quadratic form. Actually, this can also be seen without
computation in the following way: the existence of the complex constantC2 and the complex
quadratic form Q such that Eq. ~A2! holds is clear, and if a is real then
OpW(e2qb,m#a#e2qb,m) 5 OpW(e2qb,m)OpW(a)OpW(e2qb,m) is a symmetric operator. As a con-
sequencee2qb,m#a#e2qb,m must be real fora real, which implies thatCe2Q is real ~and hence
both C and Q are!. Moreover, one can show easily that the applicationSm(1)
{ a°e2qb,m#a#e2qb,m maps continuouslySm~1! into S ~Lm!, so thatQ is necessarily positive
definite.

Whena[1, we get from Eqs.~II.8!, ~A1!, and~A2!:

C1C2E
Lm

e2Q~x,j,Y1!dY15e2 q̃2b,m. ~A3!

Then the result follows from Eqs.~A1!, ~A2!, and~A3! by writing:

~e2qb,m#a#e2qb,m!~x,j!5SC1C2E
Lm

e2Q~x,j,Y1!dY1D E
Lm

a~Y1!@e
2Q~x,j,Y1!dY1#N .

h

Proof of Lemma IV.1

DenoteD(m) the difference between the two expressions. For anyp,qPN, we write:

D~m!5D1~m,p,q!1D2~m,p,q!1D3~m,p!1D4~p,q! ~A4!

with

D1~m,p,q!5E
Lm

F~Pm1
Qb,qPpX,PnX!@e2qb,m~X!dX#N2E

L`

F~Pm1
Qb,qPpX,PnX!dm̂b ,

D2~m,p,q!5E
Lm

~F~Pm1
Qb,mPpX,PnX!2F~Pm1

Qb,qPpX,PnX!!@e2qb,m~X!dX#N ,

D3~m,p!5E
Lm

~F~Pm1
Qb,mX,PnX!2F~Pm1

Qb,mPpX,PnX!!@e2qb,m~X!dX#N ,

D4~p,q!5E
L`

~F~Pm1
Qb,qPpX,PnX!2F~Pm1

QbX,PnX!!dm̂b .

Now, by assumption onF, there exists a positive constantC such that for anym andp:

uD3~m,p!u<CE
Lm

iPm1
Qb,m~X2PpX!i l`@e2qb,m~X!dX#N ~A5!

and we have~with obvious notations!
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iPm1
Qb,m~X2PpX!i l`< sup

u i u<m1

(
u j u.p

u~Qb,m! i , jXj u

< sup
u i u<m1

S (
u j u.p

j 2u~Qb,m! i , j u2D 1/2S 11(
jÞ0

Xj
2

j 2 D 1/2
and therefore, using assumption~H5!:

iPm1
Qb,m~X2PpX!i l`<

C8

p S 11(
jÞ0

Xj
2

j 2 D ~A6!

with a constantC8 independent ofm andp. Since also

E
Lm

Xj
2@e2qb,m~X!dX#N5~Qb,m

21 ! j , j<iQb,m
21 iL~ l2!5O ~1! ~A7!

uniformly with respect tom, we deduce from Eqs.~A5! and ~A6!:

uD3~m,p!u5O ~p21! ~A8!

uniformly with respect tom andp.
In a similar way, using the fact that for fixedp, both finite dimensional matrices

Pm1
Qb,mPp andPm1

Qb,qPp tend toPm1
QbPp asm andq tend to infinity, one can prove that:

D2~m,p,q!→0 as m and q→`. ~A9!

Moreover, for any fixed (p,q) we see that

D1~m,p,q!→0 as m→`. ~A10!

The same arguments also give, substitutingQb for Qb,m , that

D4~p,q!→0 as p and q→`. ~A11!

Then, choosinge.0 arbitrarily small, one can first fixp large enough so thatuD3(m,p) u<e for all
(m,q) anduD4(p,q) u<e for all q sufficiently large, then fixq large enough so thatuD2(m,p,q) u<e
for all sufficiently largem, and finally getuD1(m,p,q) u<e, and thusuD(m) u<4e, by takingm large
enough. h

Proof of Lemma V.2

From Eq.~III.8! we get easily:

e2~^Fj,j&1^Gx,x&!#e2~^Fj,j&1^Gx,x&!5p22~2m11!U E
Lm

e2i zy2^G~x1y!,x1y&2^F~j1z!,j1z&dydzU2
5p22~2m11!uI u2, ~A12!

where

I5e2^Gx,x&2^Fj,j&E eiy~2z12iGx!2^Gy,y&22^Fj,z&2^Fz,z&dydz. ~A13!

Making the change of variablesy85&G1/2y and integrating first with respect toy8 we get:
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I5Ce2^Gx,x&2^Fj,j&E e2^G21~z1 iGx!,z1 iGx&22^Fj,z&2^Fz,z&dz, ~A14!

whereC is a constant, and therefore, settingz85&~F1G21!1/2z, this gives:

I5C8e2^Fj,j&2^~F1G21!21~x2 iF j!,x2 iF j&, ~A15!

whereC8 is a constant. Then Eqs.~A12! and ~A15! yield the result. h

APPENDIX B: REMARKS ON QUANTUM MIXING AND ERGODICITY

The elementary remarks collected here, useful to clarify the subsequent statements, are pre-
sumably known but we were unable to locate a precise reference.

We first formulate into an abstract setting the definitions recalled in the introduction. LetH be
a positive self-adjoint operator on a separable Hilbert spaceH such thats(H) is discrete and
simple ande2bH is trace class for any positiveb. Given APL~H! let v(A) be the quantum
microcanonical measure defined as in Eq.~I.1! or the corresponding quantum Gibbs measure at
inverse temperatureb

v~A!5
Tr~Ae2bH!

Tr~e2bH!
~B1!

indifferently. Let alsoA be a weakly closed sub-algebra ofL~H! invariant under the action of
eitH . In this general context we assume~and verify below in our specific case! the existence of a
family of normalized states~cl!lPL complete forv onA, in the sense that there is a probability
measuredn~l! on the setL such that

v~A!5E
L

^Acl ,cl&H dn~l!, ;APA. ~B2!

Then the quantum mixing property onA, defined as

v~AH~ t !B!→v~A!v~B! as utu→` ~B3!

for any operatorsA,BPA can be rewritten as

E
L

^AH~ t !Bcl ,cl&H dn~l!→E
L

^Acl ,cl&H dn~l!E
L

^Bcl ,cl&H dn~l!. ~B4!

Remark that Eqs.~I.1!, ~B1!, and~B2! imply the invariance property

E
L

^AH~ t !cl ,cl&H dn~l!5E
L

^Acl ,cl&H dn~l! ~B5!

and by analogy with the classical dynamical systems, a natural possible definition of quantum
ergodicity is that for anyAPA:

1

T E
0

T

^AH~ t !cl ,cl&H dt→v~A! n~l!2a.e. as T→`. ~B6!

This definition is also motivated from the fact that in most situations the quantum mixing property
~B4! implies Eq.~B6!. Indeed, still assuming thats(H) is discrete and simple, we see in Eq.~I.6!
that for anyAPA the limit
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lim
T→`

1

T E
0

T

^AH~ t !w,c&H dt:5^Āw,c&H ~B7!

exists for allw, cPH, and the operatorĀPA is invariant under the action ofeitH . As a conse-
quence, the definition~B6! of quantum ergodicity is equivalent to the fact that for anyAPA we
have the identity

^Ācl ,cl&5v~A! ~B8!

for n—almost everyl. Now it is easy to see that the quantum mixing property implies that for any
A,BPA, v(ĀB)5v(A)v(B). Therefore, if we assume moreover~which is obviously true in the
concrete example discussed below! that for anyAPA, the family (v(AB))BPA determines
^Acl ,cl& for n-almost everyl, we deduce immediately that the quantum mixing implies Eq.~B8!,
and hence quantum ergodicity. Concerning this definition of quantum ergodicity, we remark that
it is trivially included in the notion of ergodicity of theW* dynamical systems6,16 with respect to
the triple~A,U,f! whereU is the automorphism ofA generated by the unitary groupeiHt andf
is the state defined by the microcanonical or canonical measure.
Let us now turn to an explicit construction, in the particular caseH5L2~Rm! ~m,1` fixed!
mentioned in Sec. I of the measuresdn~l!, both in the microcanonical case and in the canonical
one as well, through some natural choice of the set$cl :lPL%. This will also enable us to recover
the classical definitions of mixing and ergodicity out of Eqs.~B3! and ~B6! at the classical limit
h→0.

More precisely, forl5~lx ,lj!PR2m consider the Bargmann coherent states defined onR2m:

f l~x!5~ph!2m/4eixlj /h2~x2lx!2/2h. ~B9!

Then it is well known~see, e.g., Ref. 15, Chap. 5! that for any trace class operatorA on L2~Rm!,
one has:

E
R2m

^Afl , f l&L2~Rm!dl5Tr~A!. ~B10!

In particular, sincee2bH is trace class onL2~Rm!, then

E ie2bH/2f li2dl5E ^e2bHf l , f l&dl5Tr~e2bH!,1`.

Hence we can consider the following probability measures onR2m:

dnm~l!5
ie2bH/2f li2dl

*ie2bH/2f li2dl
, dnD,E~l!5

id~H2E! f li2dl

*id~H2E! f li2dl
, ~B11!

whereas in Sec. I,d(H 2 E) 5 (n:E2D,En,EPn with D.0 fixed. If we also set

cl
c5

e2bH/2f l

ie2bH/2f li , cl
mc5

d~H2E! f l

id~H2E! f li . ~B12!

then we have the following result@to be compared with Eq.~B2!#:
Lemma B.1: For any bounded operator A on L2~Rm!, the following identities hold:

Tr~Ae2bH!

Tr~e2bH!
5E ^Acl

c ,cl
c&dnm~l!,

Tr~Ad~H2E!!

Tr~d~H2E!!
5E ^Acl

mc ,cl
mc&dnD,E~l!.
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Proof: Just write

Tr~Ae2bH!5Tr~e2bH/2Ae2bH/2!,

Tr~Ad~H2E!!5Tr~d~H2E!Ad~H2E!!

and use Eq.~B10!. h.
Consider now the particular case whereA is theh-Weyl quantization of a classical observable

a5a(x,j)PS ~R2m!, namely the operator Oph
W(a) defined by the oscillatory integral:

Oph
W~a!u~x!5~2ph!2mE ei ~x2y!j/haS x1y

2
,j Du~y!dydj. ~B13!

A well-known direct application of the stationary phase method yields16

lim
h→0

^Oph
W~a! f l , f l&5a~l!.

As a consequence, if we also have

H5Oph
W~q!

for some symbolqPC`~R2m!, then the semiclassical symbolic and functional calculus of
pseudodifferential operators~see Ref. 17! immediately implies:

Lemma B.2: For anylPR2m,

lim
h→0

^Oph
W~a!cl ,cl&5a~l!.

Moreover,

lim
h→0

E
R2m

^Oph
W~a!cl

c ,cl
c&dnm~l!5E a~l!dmc~l!,

dmc~l!5
e2bqdl

*R2me
2bqdl

and

lim
h→0

E
R2m

^Oph
W~a!cl

mc ,cl
mc&dnD,E~l!5E

R2m
a~l!dmmc~l!,

dmmc~l!5
d~q2E!dl

*R2md~q2E!dl
.

Since, by the semiclassical Egorov theorem~Ref. 17, Sec. 5.4! the principal symbol of
eitH /hOph

W(a)e2 i tH /h is given by

at~x,j!5a~f t~x,j!!

whereft is the Hamiltonian flow generated byq, it follows that for anya,bPS ~R2m!:

lim
h→0

^eitH /h Oph
W~a!e2 i tH /h Oph

W~b!cl ,cl&5a~f t~l!!b~l!. ~B14!
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It has now become clear out of Lemma A.2 and Eq.~A14! that the quantum notions of mixing and
ergodicity given by Eqs.~A3! and ~A6! formally yield the corresponding classical notions as
h→0.

As a final remark let us mention that ifA is a pseudodifferential operator also the Von
Neumann definition~I.6! reproduces the classical one at the classical limit if^un ,Aun& tends to the
phase average of the symbol ofA, as verified in many instances~see, e.g., Refs. 18–23!, in which
H is the quantization of a Hamiltonian generating an ergodic flow. Some authors~Refs. 24 and 22!
assume this limiting property as the very definition of quantum ergodicity.
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Ergodic properties of the quantum ideal gas
in the Maxwell–Boltzmann statistics

Marco Lencia)
Dipartimento di Matematica, Universita` di Bologna, 40127 Bologna, Italy
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It is proved that the quantization of the Volkovyski–Sinai model of ideal gas~in the
Maxwell–Boltzmann statistics! enjoys at the thermodynamical limit the property of
quantum mixing in the following sense: limutu→` lim

m/L→r
m,L→` vb,L

m (eiHmt/\

3Ae2 iHmt/\B)5 lim
m/L→r
m,L→` vb,L

m (A) • lim
m/L→r
m,L→` vb,L

m (B). HereHm is the Schro¨-

dinger operator ofm free particles moving on a circle of lengthL; A andB are the
Weyl quantization of two classical observablesa andb; vb,L

m (A) is the correspond-
ing quantum Gibbs state. Moreover, one has lim

m/L→r
m,L→` vb,m(A) 5 Pr,b(a), where

Pr,b(a) is the classical Gibbs measure. The consequent notion of quantum ergod-
icity is also independently proven. ©1996 American Institute of Physics.
@S0022-2488~96!00910-3#

I. INTRODUCTION

The purpose of the present paper is to analyze the quantum ergodic properties of the
Volkovyski–Sinai model of ideal gas,1 quantized according to a Maxwell–Boltzmann statistics
~i.e., all particles are distinguishable!. This paper represents the companion paper of Ref. 2, where
the same result is proved for a strongly analogous system, namely the infinite harmonic chain with
suitable restrictions on the normal mode frequencies.

These two systems provide examples ofkinematic quantum chaos. We borrow the expression
kinematic chaosfrom the enlightening paper by Jona-Lasinio and Presilla.3 By that we mean
trivial motion whose chaotic behavior is due to the randomness of the infinite-dimensional initial
condition~see, besides Ref. 3 itself, the remark after Theorem III.3!. For both the ideal gas and the
harmonic chain, this is a classical feature of the system, which works on the quantum level as well
because of theexact Egorov Theorem~Lemma IV.1!. The latter is a fundamental fact here, since
it allows us to treat the quantum time evolution as the classical one.

A clear explanation of the motivations for the investigation of the quantum behavior of infinite
systems is given in Ref. 2, as well as further references. Here we just sketch what the immediate
problems are, concerning the search forquantum chaos.

To fix the ideas, letH be a self-adjoint operator acting onL2~V!, VPRm, resulting from the
quantization of some classical Hamiltonian functionH overRm3V. Suppose, as it happens in all
interesting cases, thats(H) is discrete. Consider two operatorsA, BPL„L2~V!…, which is re-
garded as our set of observables, and defineQ[ t](A):5eiHt /\Ae2 iHt /\, the Heisenberg evolution.
All the physical experiments one can do on such a system imply a certain ‘‘measure’’ on the
observables is used. In quantum mechanics such measures arestatesover the algebra of the
operators. Thesequantum ensembles~see Ref. 4, Sec. 1.3! are typically described as

v%~A!5
Tr A%

Tr %
, ~I.1!

with % a suitable trace-class operator. A suitable definition of mixing would be, then5,6

a!On leave at the Department of Mathematics, Princeton University, Princeton, New Jersey 08544. Electronic mail:
marco@math.princeton.edu
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lim
utu→`

v%„Q@ t#~A!,B…5v%~A!v%~B!, ;A,BPL„L2~V!…. ~I.2!

It is easily realized, writingv% by means of the matrix elements of the operators, w.r.t. the
eigenbasis ofH, that such a property can never be verified,for each underlying classical dynam-
ics. The same is true for any reasonable definition of ergodicity, as von Neumann’s formula7

shows ~see Ref. 2 for details!. This is a consequence of the quasiperiodicity of the classical
evolution—as long as we have finite degrees of freedom—and it is called ‘‘quantum suppression
of classical chaos.’’8,3 Hence the idea of taking the number of degrees of freedom to infinity.

The system we consider is the quantization of the ideal gas in the formulation found in Sinai’s
book:9 i.e.,m noninteracting particles moving freely on a circle of lengthL, whenm andL are
taken to infinity, subject to the finite density requirementm/L→r.

For an outline of the ‘‘analytic approach’’ we will follow in studying the quantum infinite
system in question, the reader is definitely referred to the introduction of Ref. 2, due to the
similarities of the two works. There the consequences of such a study are also properly empha-
sized. In the next paragraph we just point out the structural differences, between the two models,
which require nonobvious modifications of the arguments of Graffi and Martinez2 valid for the
harmonic chain. Specifically the following.

~i! The other important classical mechanism which provides the unpredictability~mixing! of
the time evolution here, besides the mentioned kinematic effect, is thesymmetryof the observables
under particle exchange. This corresponds to the physical fact that one is not able to distinguish
between the particles in a gas. Actually, such a restriction on the observables also has the notice-
able outcome to allow the interchange of the time average limit with the thermodynamical limit
@see Theorem III.3, Corollary III.4, and relation~III.19!#. The remark after Theorem III.3 will
contain more comments. On the quantum side, the symmetry of the observables would entail for
a Bose–Einsten or a Fermi–Dirac statistics. Nevertheless, we use Maxwell–Boltzmann for the
sake of convenience: see remark 2 in Sec. II B.

~ii ! The phase space of anym-particle subsystem isRm3(LS1)m, with LS1 denoting hence-
forth the circle of lengthL. In other words, the phase space has a cylindrical structure. This has the
effect of making necessary a Bloch decomposition ofL2~Rm!, and consequently a direct fiber
decomposition of operators, if we want to consider functions on phase space as symbols of
operators on a one-to-one correspondence under quantization. Equivalently,Rm3(LS1)m gener-
ates a cylindrical Heisenberg group~see Ref. 10 and Sec. II B! and its only faithful unitary
representation is given by a fiberedL2 space.

~iii ! The coherent states we use are those adapted to the cylindrical phase space, as presented
in the Appendix, Sec. 1~refer also to Refs. 10 and 11!.

~iv! The infinite-particle limit is a true thermodynamic limit, because here not only do we have
m→`, but alsoL→` under the constraint of finite densitym/L→r,r.0.

~v! On the other hand, in this model the classical dynamics is just free motion. This entails a
simplification: the Weyl symbol of the quantumm-particle Schro¨dinger operatorHm is obviously
the classical HamiltonianHm5( 12)( i51

m pi
2, namelyHm5Op~Hm!. Then the Weyl symbol of the

~unnormalized here! quantum Gibbs measure is

e2bHm5Op~e2bHm!,

where, here and above,Op:5OpW denotes the operation of Weyl quantization of a symbol,
whose definition in the present context is recalled in Sec. II B.

Now, as it will be explained in sharper detail in Sec. III A, consider the normalized quantum
Gibbs state at inverse temperatureb ~for a system ofm free particles inLS1!, namely the func-
tional
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vb,L
m ~A!:5

TrAe2bHm

Tre2bHm
, ~I.3!

defined, for instance, over the class of bounded operatorsA that are ‘‘L-periodic in the coordinate
variable’’ ~refer to Sec. II B!. The application Tr is practically the trace overL2~Rm! ~see Sec.
III A for details!. Then the main result of the present work, in analogy with Ref. 2, can be stated
as

lim
utu→`

lim
m,L→`

m/L→r

vb,L
m ~Qm@ t#~A!B!5 lim

m,L→`

m/L→r

vb,L
m ~A!• lim

m,L→`

m/L→r

vb,L
m ~B! ~I.4!

@see also Theorem III.2 and~III.18!#. Here A and B are actually dependent onL and m
and represent the operators quantizing two classical observables,a and b, over the Hilbert
spaces for m particles in a L circle ~square integrable Bloch functions!. Also
Qm@ t#(A):5 eiHmt/\Ae2 iHmt/\.Moreover,

lim
m,L→`

m/L→r

vb,m~A!5Pr,b~a!. ~I.5!

Formula~I.4! is the quantum mixing property and induces a consistent formulation of the quantum
ergodicity: for instance,

lim
T→`

lim
m,L→`

m/L→r

vb,L
m ~„Jm@T#~A!…2!5 lim

m,L→`

m/L→r

„vb,L
m ~A!…2, ~I.6!

if Jm[T](A)5(1/2T)*2T
T Qm[ t](A)dt.

The present model of quantum ideal gas is structurally different from the free Bose gas or the
free Fermi gas in the grand canonical ensemble, discussed, e.g., in Ref. 5, Sec. 5.2. The
arguments5,6 yielding the mixing property with respect to the KMS states through the asymptotic
abelianess of the CCR~or CAR! automorphisms generated by free dynamics do not apply in this
context.

The paper is organized as follows: in the next section we briefly recall the ideal gas model and
construct its quantization; in Sec. III we state the results, whose proofs are given in Sec. IV.
Finally, in the Appendix we recall the construction of the coherent states on the cylinder10 with
some additional details; we collect two technical lemmas; and we exploit the properties of the
convolution overLS1, asL→`, which are crucially used in the proofs.

II. THE CLASSICAL IDEAL GAS AND ITS QUANTIZATION

A. The Volkovyski–Sinai model

To make the exposition self-contained, a brief reminder is here given of the Volkovyski–Sinai
model of ideal gas. The reader is referred to Ref. 9, Lecture 8, for details.

Consider a system ofm free particles of unit mass constrained to move on a circle of length
L. Its Hamiltonian function is

Hm~p,q!5
1

2 (
j51

m

pj
25

p2

2
, ~II.1!
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defined on the phase spaceLL
m:5Rm3(LS1)m, which, with a view to the limiting caseL→` to be

considered below, will be identified withRm3TL
m, TL

m :5[2L/2,L/2)m. The physical intuition is
to stretch the circleLS1 more and more toward a straight line, namelyR.

OnLL
m the motion is given by the flow map:fL

m[ t](p,q):5(p,q1pt). The dynamical system
is completely integrable andLL

m is decomposed in a noncountable family of invariant tori: all
motions are quasiperiodic. Introducing any ‘‘reasonable’’ measure onLL

m ~in Ref. 9 the microca-
nonical measure is used; for reasons that will become clear when quantizing, the natural measure
to introduce here is the canonical one! the system is, of course, not even ergodic.

But a suitable thermodynamical limit of it might be. The construction of the infinite dynamical
system is based on the idea that the particles should be ‘‘unlabeled.’’ More precisely, the phase
space for the infinite system is defined as follows:

L` :5$~p,q!; q countable subset ofR, p:q→R%, ~II.2!

with the interpretation thatq5$x1 ,x2 ,...,xj ,...% contains the positions of the particles, now
undistinguishable, andp is a function such thatp(xj ) gives the velocity of the particle located at
xj . It may occur that more than one particle—sayn—are located atxj : in this case, with an abuse
of notation with respect to definition~II.2!, p(xj ) is an n-tuple of velocities. The flow
f`[ t]:L`→L` is defined accordingly:f`[ t](p,q)5(p8,q8), whereq8:5$x1p(x)t;xPq% and
p8:q8→R is p8(x1p(x)t):5p(x).

What we have introduced is the natural limiting object of the spacesLL
m/Sm, Sm being the

group of permutations ofm coordinates and momenta. Such spaces are expressly defined in Ref.
9 in a way completely analogous to~II.2!, i.e., as the collection of all couples (p,q) with q,LS1,
#q<m and p:q→R havingm values, in the sense specified above. They can be regarded as
belonging toL` , sinceq,LS1.[2L/2,L/2). This motivates the above identification.

This remark enables us to consider functions defined onL` as having a natural restriction on
LL
m/Sm. And a functionf onLL

m/Sm is simply a totally symmetric function onLL
m, namelyf +PL

m,
wherePL

m is the natural immersionLL
m→L` :

PL
m~p1 ,...,pm ,q1 ,...,qm!:5~p:q→R,q:5$q1 ,...,qm%!, ~II.3!

p taking valuesp(q1)5p1 ,...,p(qm)5pm . It will be useful in the remainder to notice that

f`@ t#+PL
m5PL

m+fL
m@ t#. ~II.4!

To complete the definition of our infinite dynamical system, we need to specify the measurable
functions, i.e., to fix as-algebraA and—after that—a probability measure on it. The answer in
Ref. 1 isA:5s„g~D!…DPB~R!. HereD runs among the Borel sets inR andg~D! is thes-algebra of
all subsets ofL` , depending only on the positions and momenta of theunlabeledparticles inD.12

For the sake of simplicity, we just restrict ourselves to real functions.
Examples of measurable functions aref D(p,q):5#(qùD), the number of particles of the

configurationq located inD; or gD(p,q):5(xPD p(x), the total momentum of the particles inD.
We endowA with the measurePr,b defined by the following properties.
~1! The distribution of particles in the configuration space is Poissonian with parameterr;

that is

Pr,b~$~p,q!; f D~p,q!5n%!5e2ruDu ~ruDu!n

n!
; ~II.5!

for everyDPB~R!. This implies that the distributions over two disjoint Borel setsD1 andD2 are
independent.
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~2! The momenta are independent centered Gaussian variables with variance 1/b. This means
that, fixedAPB~Rn! and a vector (x1 ,...,xn)PRn, we have

Pr,b~$~p~x1!,...,p~xn!!PA%u$$x1 ,...,xn%,q%!5E
A
@e2bp2/2 dp#N , ~II.6!

@•••#N being the normalized measure. This is a Maxwell distribution with inverse temperatureb.
This measure has been chosen intentionally as the limit of the canonical measures over the

phase spaces of finite numbers of particles.
Proposition II.1: Let a measurable inA. At the thermodynamical limit, i.e., m,L→`; m/L→r,

E
LL
m
~a+PL

m!~p,q!@e2bp2/2 dp dq#N→Pr,b~a!.

As regards the proof, the statement concerning the distribution of the positions is clearly explained
in Ref. 9, while~II.6! trivially holds since the distributions over the momentum spaces for a finite
number of particles are given as Maxwellian with inverse temperatureb.

We conclude this section formulating the key theorem.
Theorem II.2: (Ref. 1) The measure Pr,b is invariant underf`[ t] and the dynamical system

~L` ,A,Pr,b ,f`[ t] ! is a K flow.
It may be worth noticing here that the infinite dynamical system just recalled has a nice

abstract construction, which is described in Ref. 13~and shortly in Ref. 6, Example 2.34!. It is
called thePoisson systemconstructed for a one-dimensional free particle with a Maxwell velocity
distribution. Its ergodic properties follow via a general technique, namely theBernoulli construc-
tion. This viewpoint shows clearly thatA is generated by the following sets:

BD,G
~n! :5$~p,q!PL`u#$xPquxPD,p~x!PG%5n%, ~II.7!

whereD,GPB~R!. Such a remark will be useful while proving the statements.
Nonetheless, the approach we have chosen has the advantage of constructing the infinite-

particle dynamical system through a thermodynamical limit~see above, and in particular Propo-
sition II.1!. This fact will be crucial throughout this paper.

B. The quantization

The Hilbert spaces associated to a quantum system ofm particles on a circle of lengthL are
denoted byL (k)

2 (TL
m),kP[0,1/L)m. Each of these is defined as

L ~k!
2 ~TL

m!:5H f on Rmu; jPZm, f ~q1L j !5e2p iLk• j f ~q!,E
TL
m
u f u2,`J , ~II.8!

that is the space of the Bloch functions of parameterk that are square-integrable on a given
fundamental domain. Concerning this definition, we remark the following.

~1! The above family of spaces is the familiar one for Schro¨dinger operators with periodic
potential ~Ref. 14, Sec. XIII.16!. They have to be simultaneously considered for all values of
kP[0,1/L)m, otherwise the quantization application is not well defined since the Schro¨dinger
representation of the Heisenberg group is not faithful: e.g., in one dimension, if we selected only
k50, thenT(L,0)5T(0,0)51 ~see below!.

As a matter of fact, the whole Hilbert spaceL2~Rm! is recovered through the standard direct
integral formula14
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E
@0,1/L !m

%

L ~k!
2 ~TL

m!dk.L2~Rm!. ~II.9!

More details are given in Sec. 1 in the Appendix and in Ref. 10. A basis forL (k)
2 (TL

m) is obviously
ea
(k) :5L2m/2e2p i (a1k)•x, with aP~Z/L!m.

~2! The choice of the Hilbert spaces in~II.8! corresponds to Maxwell–Boltzmann statistics,
since we ask for no wave function symmetry with respect to particle permutations. One could also
think of quantizing this system according to Bose–Einstein or Fermi–Dirac statistics. To give a
physical explanation, we are considering particles that are, in principle, enumerable, but our
observables do not see this enumeration. This approximation makes sense in the semiclassical
realm.15

A further step toward the definition of the quantization application is the introduction of the
Fourier transform and antitransform inLL

m. We define first the dual of the phase space:
~LL

m!* :5Rm3(TL
m)* , where (TL

m)* :5~Z/L!m. Now, if bPS ~LL
m!, that is the Schwartz class of

functions inLL
m; then for ~h,j!P~LL

m!* , the Fourier transform ofb is

b̂~h,j!:5E
Rm
E
TL
m
b~p,q!e22p i ~h•p1j•q! dq dp. ~II.10!

Correspondingly, the antitransformation is given by

b~p,q!:5
1

Lm (
jP~TL

m
!*
E
Rm
b̂~h,j!e2p i ~p•h1q•j! dh. ~II.11!

The Heisenberg group to be considered in this situation is the naturally inducedcylinder subgroup
of the Heisenberg group onR2m3R, namely,~LL

m!*3R endowed with the product law

~h,j,t!~h8,j8,t8!5„h1h,j1j8,t1t81 1
2~h•j82j•h8!…. ~II.12!

Accordingly,16 its unitary Schro¨dinger representation inL2~Rm! is defined in the following way:

„T~h,j! f …~x!5e2p i j•~h/21x! f ~x1h!. ~II.13!

This can be formally written asT(h,j)5e2p i (h•P1j•Q), whereQ corresponds to the multiplication
operator byq, andP5(2p i )21

“x . We have therefore taken\5~2p!21. It is evident thatT~h,j!
preservesL (k)

2 (TL
m): we denote byT(k)~h,j! its restriction to that space.

We are now in a position to define the quantization application. Ifb is a pseudodifferential
symbol of a given finite order16,17 on LL

m, then

Op~b!:5
1

Lm (
jP~TL

m
!*
E
Rm
b̂~h,j!T~h,j!dh; ~II.14!

with b̂ possibly interpreted in a distributional sense.
The restriction of this operator to the invariant spaceL (k)

2 (TL
m) will be once more denoted by

Op(b)(k). The above definition is nothing else than the standard Weyl quantization induced by the
cylindrical Heisenberg group and subject to our choice of inverse Fourier transform~II.11!. As a
matter of fact, elementary algebraic manipulations yield the following explicit formula: for
f (k)PL (k)

2 (TL
m),

„Op~b!~k! f ~k!
…~x!5E

Rm
E
Rm
bS x1y

2
,pDe2p ip•~x2y! f ~k!~y!dy dp. ~II.15!
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Remark that, sincef (k)PS ~R2m!, a priori this makes no sense, even as an oscillatory integral. The
sense we can give it is, again, distributional, as we know17 that for pseudodifferential symbols,
Op(b):S 8→S 8. Notice also that, as usual,~II.15! implies that ifb depends only on one canonical
variable, for instancep, thenOp(b)5b(P) in the spectral-theoretic sense. In particular, if the
quantum Hamiltonian isHm :52(1/8p2)Dx5Op~Hm!, we haveOp(e2bHm) 5 e2bHm.

We can now calculate theWeyl composition a#b of two symbolsa andb, i.e., the~unique!
symbol such thatOp(a#b)5Op(a)Op(b). This is done by means of~II.14!, remembering that
T~h,j! obeys the multiplication law of the Heisenberg group and that a symbol is obtained by its
correspondent operator by substitutinge2p i (p•h1q•j) to T~h,j! when the operator is in the form
~II.14!–compare~II.11! with ~II.14!. The result, after some manipulations of the integrals, is—not
surprisingly—an adaptation of the corresponding formula for the Euclidean space case~Ref. 16,
Sec. 2.1!:

~a]b!~p,q!5
1

L2m (
j1 ,j2

E â~h1 ,j1!b̂~h2 ,j2!e
p i ~h1•j22j1•h2!e2p i @~h11h2!•p1~j11j2!•q# dh1 dh2

5
1

L2m (
j1 ,j2

E aS p1
j1
2
,q1q1DbS p1

j2
2
,q1q2De2p i ~j2•q12j1•q2! dq1 dq2 .

~II.16!

Notice that the sum is carried overj1,j2P(TL
m)* and the integration overq1 ,q2PTL

m.
By the above formula we deduce that the Weyl composition has a property that may be called

thequasitracial property:

E
LL
m
~a#b!~p,q!dp dq5E

LL
m
a~p,q!b~p,q!dp dq, ~II.17!

even though we cannot hope to have the tracial property for someL (k)
2 (TL

m), i.e., ~II.17! with
TrL

(k)
2 (T

L
m)Op(a)Op(b) on the lhs, as explained in Ref. 10. Actually, as it will be clear in Sec.

III A, what appears on the lhs is something resembling TrL2(Rm) .
Given f (k),g(k)PL (k)

2 (TL
m), we define the Fourier–Wigner function relative to those two vec-

tors asVf (k),g(k)(h,j): 5 ^ f (k),T(h,j)g(k)&. This is completely analogous to what is found in Ref.
16. The Wigner functionWf (k),g(k) is defined to be the~possibly distributional! Fourier transform
of Vf (k),g(k) and thus, from~II.14!,

^ f ~k!,Op~b!g~k!&L
~k!
2 ~TL

m!5E
LL
m
b~p,q!Wf ~k!,g~k!~p,q!dp dq; ~II.18!

to be understood asWf (k),g(k) being the distribution kernel ofb°^ f (k),Op(b)g(k)&. Again the
standard form for this ‘‘function,’’16 calculated from~II.15! or from its very definition,

Wf ~k!,g~k!~p,q!:5E
Rm
e22p ip•zf ~k!S q2

z

2Dg~k!S q1
z

2Ddz, ~II.19!

has to be interpreted in the weak sense.

III. STATEMENT OF THE RESULTS

Suppose we have,;L.0; mPZ, m>1 a measure space (XL
m ,du)18 and a family of states

$ f l%lPX
L
m , ø

kP@0,1/L !m
L ~k!
2 ~TL

m!, ~III.1!
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labeled by the indexl ranging inXL
m. Call wl(p,q): 5 Wfl , fl

(p,q), the Wigner function corre-
sponding tof l .

Hypothesis:We suppose that

E
XL
m
wl~p,q!du~l![1, ~III.2!

as a distribution onLL
m.

Remark:Such a family of states represents in this context the quantum substitute for the
classical phase space. As a matter of fact,~III.2! says that the$f l% are evenly distributed, as a
whole, overLL

m. Hence they play the role of ‘‘points.’’ This is clearly seen in the case of the
coherent states, perhaps the most remarkable example of states fulfilling the above hypothesis.
They are introduced in the Appendix, Sec. 1. However,~III.2! can be restated by saying that we
are given a set of states complete over allL (k)

2 (TL
m), kP[0,1/L)m—see Sec. III A.

Sinceie2bHmf li2 5 ^ f l ,e
22bHmf l&,19 then~III.2! immediately implies

E
XL
m

ie2bHmf li2 du~l!5E
LL
m
e22bHm~p! dp dq5LmS p

b Dm/2. ~III.3!

We define

dn~l!:5
ie2bHmf li2 du~l!

*X
L
mie2bHmf l8i

2 du~l8!
~III.4!

and

gl :5
e2bHmf l

ie2bHmf li ~III.5!

be the image under the quantum Gibbs measure of each of our states.
Definition III.1: aPA is said to be anasymptotic symbolif 'm0PN, L0.0 such that

;m>m0 , L>L0 , a+PL
m is a pseudodifferential symbol overLL

m.
Remark:Notice that with such a definition, asymptotic symbols are rather rigid objects. In

fact, fixed anm>m0, takeL0<L<L1 . Now Im(PL
m)#Im(PL1

m )#L` . Soa+PL
m is just the restric-

tion of a + PL1
m to LL

m. But alsoa+PL
m, in order to be a symbol must beC` andTL

m-periodic. This

means that; i51,...,m,

~a+PL1
m !~ ...,2L/2,...!5~a+PL1

m !~ ...,1L/2,...!; ~III.6!

d

dqi
~a+PL1

m !~ ...,2L/2,...!5
d

dqi
~a+PL1

m !~ ...,1L/2,...!, ~III.7!

where~...,6L/2,...! stands for (p1 ,...,pm ,q1 ,...,qi21,6L/2,qi11,...,qm). Thus, parity arguments
imply that for everyuqi u>L0/2,

d

dqi
~a+PL1

m !~ ...,qi ,...!50. ~III.8!
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Hence, for a fixed largem, (a + PL1
m ) is a constantwise continuation of (a + PL0

m ), and the former is

completely determined by the latter. This also explains why we had to ask forasymptoticsymbols:
one could not request the above property to hold;m>0, L>0 . Examples of such functions are to
be found in the familiesB (n) defined after Lemma IV.2 in Sec. IV.

We are now ready to state the theorems. For any operatorA acting overL2~Rm!, define

Qm@ t#~A!:5e2p i tHmAe22p i tHm; ~III.9!

Jm@T#~A!:5
1

2T E
2T

T

Qm@ t#~A!dt. ~III.10!

The quantum mixing property reads as follows.
Theorem III.2: Suppose a,b are asymptotic symbols in L2(L` ,Pr,2b) and denote

I ~ t,L,m!:5E
XL
m
^gl ,Q

m@ t#„Op~a+PL
m!… Op~b+PL

m!gl&dn~l!.

Then

lim
utu→`

lim
m,L→`

m/L→r

I ~ t,L,m!5Pr,2b~a!Pr,2b~b!.

As regards the quantum ergodicity the following is true.
Theorem III.3: Let a be an asymptotic symbol in L2(L` ,Pr,2b). Let

J~T,L,m!:5E
XL
m

i~Jm@T#„Op~a+PL
m!…2Pr,2b~a!!gli2 dn~l!.

Then, for all L,m, the operator

Jm@`#„Op~a+PL
m!…:5 lim

T→`

Jm@T#„Op~a+PL
m!…

exists in the domain of Op(a+PL
m) and

lim
m,L→`

m/L→r

J~`,L,m!50.

Furthermore, if a is also bounded, then the two limits can be inverted:

lim
T→`

lim
m,L→`

m/L→r

J~T,L,m!50.

Remark:The interchange of the time limit with the thermodynamical limit, in the above
theorem, is remarkable. The fact that the time average can be taken before the thermodynamical
limit can be described saying that the finite-particle system~the ‘‘real’’ one! is quasiergodic, for
very largeL andm; that is, the time average of anydecentfunction is close, in measure, to a
constant. This is a feature of the classical ideal gas, which has nothing to do with quantum
mechanics. It is rather a consequence of the kinematic chaos and the restriction to symmetric
observables, as anticipated in the Introduction, remark~i!. This can be seen quite easily, due to the
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integrability of the motion: time averaging means almost averaging everywhere over a torus. The
invariant tori here are the sets$p%3TL

mPLL
m, and so the time average ofa(p,q) is simply

*a(p,q)dq; the invariant functions would depend onp only. Those functions, however, are
requested to be symmetric and thus they cannot concentrate around a torus if they do not concen-
trate around all ‘‘symmetric tori’’ as well. An example is

a~p1 ,...,pm!5 H1 if piPG, ; i51,...,m;
0, otherwise, ~III.11!

whereG is a Borel set ofR. Now the kinematic chaos effect comes: at the thermodynamical limit,
the support of this function, which is the probability to find all the particles having momenta inG,
is exponentially small.

We can compare this to the situation one has for the harmonic chain, as shown in the com-
panion paper.2 In that case, there is no requirement on the observables. The fact that they cannot
concentrate over invariant tori is due instead to the assumptions on the coupling matrix, which
shuffles the tori at the infinite-particle limit.

An even clearer reason for referring to Theorem III.3 as quantum ergodicity comes from the
following.

Corollary III.4: Assume a bounded asymptotic symbol. Then,;e.0; set

K~e,T,L,m!:5n~$lPXL
muu^gl ,J

m@T#„Op~a+PL
m!…gl&2Pr,2b~a!u.e%!.

Then

lim
T→`

lim
m,L→`
m/L→r

K~e,T,L,m!5 lim
m,L→`
m/L→r

lim
T→`

K~e,T,L,m!50.

This can be phrased as follows. Call~T,e!-exceptional initial statesthose statesgl for which the
quantum expectation of theT-time average differs more thane from the classical phase average.
Then the claim is that the measure of the~T,e!-exceptional initial states vanishes when the ther-
modynamical limit and the time limit are performed.

Proof of Corollary III.4: An easy consequence of Theorem III.3, using a Cauchy–Schwartz
inequality. Q.E.D.

A. The quantum Gibbs state

The results just formulated can be given a compact form, within the realm of the
C* -dynamical systems theory. It is beyond the purpose of this paper to go deep into that, so we do
not outline the main notions of such a theory, hoping that the statements in this section are
self-explanatory. However, a brief survey is given in Ref. 2, Appendix 2. Here we just observe
that the relations we will write are included in such a general frame. The interested reader is
referred to Ref. 5 for complete details, and to Ref. 6 for a recent well-organized review.

ConsiderL L
m, the space of all operators onL2~Rm! that are invariant and bounded over all the

fibersL (k)
2 (TL

m). This is aC* -algebra when endowed with the usual operator norm. Associated to
this algebra we define the Heisenberg dynamics given byQm[ t](A) as in~III.9!, and the quantum
Gibbs state expressed by

vb,L
m ~A!:5

*@0,1/L !m TrL,m,k~Ae
2bHm!dk

*@0,1/L !m TrL,m,k~e
2bHm!dk

, ~III.12!

where TrL,m,k denotes the trace overL (k)
2 (TL

m). This functional is clearly normalized20 and invari-
ant for the*-automorphismQm[ t]. Actually, it turns out to be a KMS state with parameterb over
theW* -dynamical system~LL

m ,Qm[ t],vb,L
m ).
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Now consider, for each value ofkP[0,1/L)m, the standard Fourier basis$ea
(k)%, as defined in

Sec. II A. Next, consider the family of all such vectors, labeled by the index
l:5(a,k)PXL

m:5(TL
m)*3[0,1/L)m. EndowXL

m with the measure

du~a,k!:5Lm (
jP~TL

m
!*

d~a2j!da dk. ~III.13!

Such a family satisfies hypothesis~III.2!. In fact, callingwa,k the Wigner function relative toea
(k),

a straightforward computation from~II.19! yields

wa,k~p,q!5
1

Lm
d„p2~a1k!…. ~III.14!

Integrating this indu(a,k) we obtain~III.2!. Thus, define, as it is done in at the beginning of this
section,ga,k : 5 e2bHmea

(k)/ie2bHmea
(k)i . By definition~III.12!, if APLL

m, we have21

v2b,L
m ~A!5

*dk(a^e2bHmea
~k! ,Ae2bHmea

~k!&

*dk(aie2bHmea
~k!i2

5E
XL
m
^ga,k ,Aga,k&dn~a,k!, ~III.15!

with dn defined as in~III.4!. On the other hand, if one calls in a natural wayAL
m :5Op(a+PL

m),
then a simple argument that is better explained in the following@see formulas~IV.2! and ~IV.3!#
gives

v2b,L
m ~AL

m!5E
LL
m
~a+PL

m!~p,q!@e22bHm~p! dp dq#N . ~III.16!

Proposition II.1 immediately yields

lim
m,L→`
m/L→r

v2b,L
m ~AL

m!5Pr,2b~a!. ~III.17!

Hence, ifa,b are asymptotic symbols, we have just proved that Theorem III.2 can be rewritten as

lim
utu→`

lim
m,L→`
m/L→r

v2b,L
m

„Qm@ t#~AL
m!BL

m
…5 lim

m,L→`
m/L→r

v2b,L
m ~AL

m!• lim
m,L→`
m/L→r

v2b,L
m ~BL

m!. ~III.18!

In the same spirit, Theorem III.3 becomes

lim
T→`

lim
m,L→`
m/L→r

v2b,L
m ~„Jm@T#~AL

m!…2!5 lim
m,L→`
m/L→r

v2b,L
m ~„Jm@`#~AL

m!…2!5 lim
m,L→`
m/L→r

„v2b,L
m ~AL

m!…2.

~III.19!

Remark:We have not defined an algebra of quantum observables for the infinite-particle
system, limiting ourselves to deal with finite dimensions and to take a thermodynamical limit
afterward~also see Comment 3 below!. Had we introduced such a mathematical framework, then
relations~III.18! and~III.19!, for the state lim

m/L→r
m,L→` v2b,L

m , would be contained in the general set

of chaoticity notions inC* -dynamical system theory~see Ref. 6, Definitions 4.42, 4.43!.22

Some comments concerning the above reformulation of the theorems as compared to the
paper by Graffi and Martinez follow.2
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~1! ~III.18! is completely analogous to statement~1.10! in Ref. 2. That is, the quantum mixing,
forbidden in the finite-particle frame by the quasiperiodicity of the Heisenberg evolution, regard-
less of the dynamics of the classical flow~see the Introduction!, is restored at the thermodynamical
limit.

~2! A formulation of the ergodicity similar to~1.9! in Ref. 2 has not been chosen in this
context because of the technicalities it would require. The coherent states we have here~see the
Appendix, Sec. 1! are indexed bylPTL

m3Rm3[0,1/L)m5:XL
m, which is not exactly the classical

phase spaceLL
m. However, one could explicitly calculatedn overXL

m, for particular choices of the
coherent states, and find a limit measure space—say—(X,dn), but this turns out to be rather
cumbersome and possibly misleading. Understandably, though,~III.19! and especially Corollary
III.4 carry the same physical meaning as the mentioned result.

~3! As already exploited, we are able to state the ergodicity results here with a commutation
of the limits.

~4! As emphasized in Ref. 2, Sec. 1, Remark 2, the techniques we use to prove the quantum
ergodic properties at the thermodynamical limit, have the useful outcome to show that the rhs of
~III.18! and ~III.19! are the expected classical Gibbs averages. This is why we have formulated
Theorems III.2 and III.3 in the first place.

~5! More importantly, here, results~III.18! and ~III.19! were not known, at least to us.

IV. THE PROOFS

The first key fact is the following.
Lemma IV.1: For every symbol c defined onLL

m,

e2p i tHm Op~c!e22p i tHm5Op~c+fL
m@ t# !.

This is true since we are dealing with a linear flow. This property of linear flows—sometimes
referred to as theexact Egorov Theoremfor the evolution canonical transformation—dates back at
least to Van Hove and is valid only for Weyl quantization, whose restriction toL-periodic symbols
we are now using. Anyway, for the sake of convenience, a direct proof is found in the Appendix,
Sec. 2.

In our case, applying this lemma toa+PL
m and using the remark in formula~II.4!, we have

e2p i tHm Op~a+PL
m!e22p i tHm5Op~a+f`@ t#+PL

m!. ~IV.1!

A. Proof of Theorem III.2

In view of the above relation we callat :5a+f`[ t]. In the rest of this proof, whenever there
is no confusion, we denote by a quote the immersion application fromLL

m to L` . Hence
a8:5a+PL

m, and so on. In other words,a8 is just our observablea looked at in the finite-
dimensional phase spaceLL

m. By ~III.2! and ~III.4!, the definition ofI , in the statement of the
theorem, yields

I ~ t,L,m!5
*L

L
m~e2bHm#at8#b8#e2bHm!dp dq

*L
L
me22bHm dp dq

. ~IV.2!

Using twice~II.17!—once to permutate cyclically the factors in~IV.2! and once to remove one of
the # signs—leads to

I ~ t,L,m!5E
LL
m
~at8#b8!~p,q!@e22bHm~p! dp dq#N , ~IV.3!
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since obviouslye2bHm#e2bHm 5 e22bHm. We further denote bymL
m the classical Gibbs measure

~at inverse temperature 2b! overLL
m :mL

m(p,q): 5 L2m(p/b)2m/2e2bp2, and bym̆m its component
in thep space:m̆m(p): 5 (p/b)2m/2e2bp2.

In view of ~II.16!, ~IV.3! becomes, after some elementary but tedious rearrangements of the
nested integrals,

I ~ t,L,m!5E
LL
m
@at8~b8* LFL

m!#~p,q!dmL
m~p,q!, ~IV.4!

where

FL
m~p,q!5ebp2

1

Lm (
jP~TL

m
!*
e2b~p2j/2!2e2p i j•q, ~IV.5!

and*L means convolution in theq variable onTL
m. Particular care must be taken here about this

convolutionon a torus, in order to prevent mistakes: see the Appendix, Sec. 3.
ThusFL

m is completely factorizable, withFL being a natural symbol for each of his factors: if
f (p1 ,...,pm ,q1 ,...,qm)5 f 1(p1 ,q1)••• f m(pm ,qm), then

~ f * LFL
m!~p,q!5~ f 1* LFL!~p1 ,q1!•••~ f m* LFL!~pm ,qm!. ~IV.6!

This property will be useful in the following. Also, if 1 is the function onLL
m identically equal

to 1,

1* LFL
m51. ~IV.7!

We are going to prove the statement of the theorem, starting from~IV.4!, for b in a dense subspace
of L2(L` ,Pr,2b). To accomplish that we need to make the following construction.

Fix a positive integern and consider the functionb(p,q)PC0
`~R2n!,23 that is, infinitely

differentiable functions with compact support. Form.n define the application

NL,m
~n! ~b!~p1 ,...,pm ,q1 ,...,qm!:5 (

j 151

m

••• (
j n51

m

b~pj 1,...,pjn,qj 1,...,qjn!. ~IV.8!

SoNL,m
(n) ~b! is a function defined onR2m, and thus, in particular, onLL

m. The use of this application
is explained by the following lemma.

Lemma IV.2: If b(p,q)PS ~R2n)24 then there exists a functionbPL2(L` ,Pr,2b) s.t.
NL,m
(n) (b)5b+PL

m. Plus, the following properties hold:

E
LL
m
u~b+PL

m!~p,q!u2dmL
m~p,q!<m2nS sup

~p8,q8!PLL
n

ub~p8,q8!u D 2 ; ~IV.9!

E
LL
m
~b+PL

m!~p,q!dmL
m~p,q!5

m!

Ln~m2n!! ELL
n
b~p8,q8!dm̆n~p8!dq8. ~IV.10!

Proof of Lemma IV.2:The first inequality simply follows by definition~IV.8!, sincemL
m is a

probability measure.
To prove the rest we approximateb with suitably chosen indicator functions overR2n. More

precisely, take two sufficiently fine partitions ofR,$G j%,$D l%,B~R! with supj ,l$m̆(b j ),uD l u%
small.25Letx j 1 ,...,j n ,l1 ,...,l n

(p8,q8) be the indicator function of the setG j 1
3 ••• 3 G j n

3 D l1
3 •••

3 D l1
and approximateb with ba : 5 (cj 1 ,...,l nx j 1 ,...,l n

. So
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NL,m
~n! ~ba!~p,q!5 (

j 1 ,...,l n
cj 1 ,...,l nNL,m

~n! ~x j 1 ,...,l n
!~p,q!. ~IV.11!

Since x j 1 ,...,l n
is completely factorizable, then it is easy to realize, by definition~IV.8!, that

NL,m
(n) (x j 1 ,...,l n

)(p,q) 5 NL,m
(1) (xG j 1

3D l1
)•••NL,m

(1) (xG j n
3D l n

). We see thatNL,m
(1) (xG3D)(p,q) takes in-

teger values between 0 andm. Specifically, it counts the number of particles in the configuration
(p,q)PLL

m whose momentum is contained inG and whose coordinate inD.26 So
NL,m
(1) (xG3D)5NG3D+PL

m, whereNG3D :L`→N is defined by

NG3D~p,q!:5#$xPqùDup~x!PG%, ~IV.12!

where, with sloppy notation, (p,q) denotes a point inL` . Recalling what we said in Sec. II A, this
function obviously belongs toA: see, in particular,~II.7! and comments thereby. Therefore so
does every finite product of similar functions. Looking at~IV.11!, and subsequent comments, this
proves that there exists abaPA, such thatba5ba+PL

m. The analogous statement holds forb as
well, by density.

Let us go over to the proof of~IV.10!. Fix a sequence (j ,l ):5( j 1 ,...,l n) like those we have
in formula ~IV.11! and fix n integersk:5(k1 ,...,kn), such thatk11•••1kn<m. Now consider
thesetAj ,l

(k) : 5 $NL,m
(1) (xG j i

3D l i
) 5 ki ;; i 5 1,...,n% P LL

m , i.e., theset of theconfigurationshavingk1
particles inG j 1

3 D l1
, k2 particles inG j 2

3 D l2
, and so on. Notice that~use some combinatorics!

mL
m~Aj ,l

~k!!5
m!

~m2(ki !!
F)
i51

n
1

ki !
S uD l i

u

L
m̆~G j i

!D kiG S 12(
i51

n uD l i
u

L
m̆~G j i

!D m2(ki

.

~IV.13!

We have seen thatNL,m
(n) (x j 1 ,...,l n

) 5 (kk1•••knAj ,l
(k) . So, when the initially chosen partition is fine,

mL
m(x j 1 ,...,l n

) 5 m!/ „Ln(m 2 n)! …P i uD l i
um̆(G j i

) 1 o„uD l i
u,m̆(G j i

)…. Looking back at~IV.11! this
proves that~IV.10! holds with negligible errors forba , and thus is exact forb. Q.E.D.

Let us callB(n)PA the space of functionsb granted by Lemma IV.2 whenbPC0
`~R2n!.

From now on we will supposebPB (n), so thatb8:5b+PL
m5NL,m

(n) (b). In so doing we will be
proving Theorem III.2 forbP%finiteB

(n). But this is dense inL2(G` ,Pr,2b) since, looking at the
proof of Lemma IV.2, the closure ofB (n) contains the product ofn functions likeNG3D . This
means that in the algebra(%B(n)) we are able to find the indicator functions of the sets
NG3D

21 (n),;nPN. But these generateA @look at ~II.7! and refer to Refs. 13 and 6#.
Under the above assumption, we go back to~IV.4!: since b85NL,m

(n) (b), then
b8* LFL

m5NL,m
(n) (b* LFL

n)27 because of the mentioned properties ofFL
m @see~IV.5!–~IV.7!#. If we

denote bygL :5b* LFL
n, it is obvious thatgLPS ~R2n!, and soNL,m

(n) (gL) 5 cL8 for some
cLPL2(L` ,Pr,2b), by Lemma IV.2. This allows us to rewrite~IV.4! as

I ~ t,L,m!5^at8 ,cL8&L2~L
L
m ,m

L
m! . ~IV.14!

If we are able to find a limit forcL then we are done with the cumbersome part of this proof. To
this goal, we formulate the following.

Lemma IV.3: There exists ag`PS ~R2n! such that

sup
LL
n

ug`2gLu5O ~L2`!. ~IV.15!

Furthermore,
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E
R2n

g`~p8,q8!dm̆n~p8!dq85E
R2n

b~p8,q8!dm̆n~p8!dq8. ~IV.16!

The proof of this lemma is found in the Appendix, Sec. 4.
In analogy with the above notations we callc` the observable inL2(L` ,Pr,2b) obtained

applying Lemma IV.2 tog` . Comparing now~IV.15! in Lemma IV.3 with~IV.9!, we deduce that

lim
m,L→`
m/L→r

ic8̀ 2cL8i
L2~LL

m ,mL
m

!

2
50. ~IV.17!

Dropping for the sake of simplicity the subscript in the scalar product notation, this means that,
whenm, L→`, m/L→r,

u^at8 ,cL8&2Pr,2b~atc`!u<iat8i2icL82c8̀ i21umL
m~at8c8̀ !2Pr,2b~atc`!u→0, ~IV.18!

because of Proposition II.1. Now we use the other main ingredient of this proof, i.e., the classical
result, Theorem II.2. We obtain

lim
utu→`

lim
m,L→`
m/L→r

I ~ t,L,m!5Pr,2b~a!Pr,2b~c`!. ~IV.19!

Now, using the integrals ofg` andb to compare the integrals ofc` andb @apply ~IV.16! into
~IV.10!#, we see thatmL

m(c8̀ ) 5 mL
m(b8). Taking the limits,Pr,2b(c`)5Pr.2b(b), which, together

with the last relation, completes the proof.

B. Proof of Theorem III.3

First of all, it has to be noticed that both statements of Theorem III.3@respectively, relation
~III.19!# cannot be derived so trivially from Theorem III.2@resp.,~III.18!#. This will be seen below
in each case.

We borrow the notation from the previous proof: so, for example,at8 : 5 a + f`@ t# + PL
m . Also,

let aT8 : 5 (1/2T)*2T
T at8 dt. Formula~IV.1! proves that

Jm@T#~AL
m!5Op~aT8 !, ~IV.20!

where, as in Sec. III A, we callAL
m :5Op(a8).

The existence ofJm[`](AL
m) is a trivial consequence of the Heisenberg evolution: we can

easily figure it out looking at its matrix elements wrt the bases$ea
(k)%,L (k)

2 (TL
m). These bases

diagonalize the HamiltonianHm , as well as any operator function ofP only. We call such
eigenvalues

Ea
~k!5

1

2
~a1k!25

1

2 (
i51

n

~a i1ki !
2. ~IV.21!

Now it is easy to see that,;kP[0,1/L)m,a,gP(TL
m)* ,

^ea
~k! ,Jm@`#~AL

m!eg
~k!&5^ea

~k! ,AL
meg

~k!&dE
a
~k! ,E

g
~k!, ~IV.22!

whered is the Kroneckerd-function. This formula shows thatJm[`](AL
m) is well defined on all

vectors inD(AL
m).

One might think to prove now the statement regardingJ(`,L,m) by simply substituting the
Heisenberg invariant operatorJm[`](AL

m) to Op(a8) andOp(b8) in Theorem III.2. We cannot
quite do this, since such operator is not, in general, pseudodifferential. It is obvious, though, that
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it can be approximated to any extent by pseudodifferential operators, and the result would follow
by density. However, as remarked in Sec. III A, we have not defined a properC* -algebra for the
infinite-particle system. Thus, we cannot talk of any density and have to prove the theorem
directly.

Jm[`](AL
m), roughly speaking, represents the quantization ofa8̀ : 5 limT→` aT8 , which is not,

in general, a symbol, being possibly not even continuous. But simple considerations based upon
the trivial dynamics overLL

m ~also see the remark after the statement of this theorem! show that it
is almost everywhere@namely, forp5(p1 ,...,pm) having rationally independent components#
equal to

c8~p,q!5c8~p!:5
1

Lm E
TL
m
a8~p,q!dq, ~IV.23!

which is a symbol. Moreover, we denote itc8 since one can straightforwardly find acPA such
thatc85c+PL

m. The whole idea of this proof is exactly to show that, in some sense,Op(c8) is a.e.
equal toJm[`](AL

m), so that the former can be substituted to the latter in the definition of
J(`,L,m) in order to apply Theorem III.2@also compare~III.19! and ~III.18!#.

We first remark some basic properties ofOp(c8). Sincec8(p,q)5c8(p) thenOp(c8) is
diagonal wrt$ea

(k)%. Its diagonal matrix elements, using~III.14!, are found to be

^ea
~k! ,Op~c8!ea

~k!&5
c8~a1k!

vt
5

1

Lm E
TL
m
a8~a1k,q!dq5^ea

~k! ,AL
mea

~k!&. ~IV.24!

Also ~IV.24!, together with ~IV.22!, implies that Op(c8)(k)5„Jm[`](AL
m)…(k) 28 for those

kP[0,1/L)m for which Hm
(k) is diagonal.

Using ~II.19! over a genericf l picked up from the set of states satisfying~III.2!, one can see
thatwl(p,q) contains a~possibly countable! sum ofd-functions inp. This simple argument shows
that, in order for $f l% to verify ~III.2!, a factor of the measure space (XL

m ,du) must be
„@0,1/L)m,dt(k)…, with dt absolutely continuous wrt the Lebesgue measure.29 So if we prove that
s(Hm

(k)) is simple for Lebesgue—almost allk’s then

J~`,L,m!:5E
Xl
m

i„Op~c8!2Pr,2b~a!…gli2 dn~l!, ~IV.25!

and we can apply Theorem III.2 witha5b5c2Pr,2b(a), which is time invariant. This would
complete the proof of the first claim.

Rescaling~IV.21! by a factorLm, what we need is equivalent to the following lemma.
Lemma IV.4:

u$kP@0,1!mu' j ,nPZms.t.~ j1k!25~n1k!2%u50.

Proof of Lemma IV.4:30 Thinking of it as a geometric problem inRm, when suchj ,n exist,
then2k lies in the axial hyperplane of the segment joiningj to n, i.e., the set of points in the
space equally distant fromj andn. By their very construction there is only a countable number of
such hyperplanes. Q.E.D.

As far as the last statement of Theorem III.3 is concerned, we see again that it cannot be
derived as a corollary of the mixing theorem, since we are taking time limits of both operators. But
we can give a direct proof using the techniques of Sec. IV A and the classical ergodicity result
contained in Theorem II.2.

Exactly as in~IV.2! and ~IV.3! we can write
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J~T,L,m!5E
LL
m
@„aT82Pr,2b~a!…#„aT82Pr,2b~a!…#~p,q!@e22bHm~p! dp dq#N , ~IV.26!

having used~IV.20!. We have become familiar with this object in Sec. IV A, and we have seen
that integrating—wrt the Gibbs measure—the Weyl composition of two functions means integrat-
ing the product of the two functions, one of which is scrambled by a convolution@see~IV.3!,
~IV.4!, and~IV.14!#. At the thermodynamic limit, this amounts to saying that

lim
m,L→`
m/L→r

J~T,L,m!5Pr,2b~„aT2Pr,2b~a!…c~T!!, ~IV.27!

wherec(T) is the limit of the ‘‘scrambled functions’’ constructed upon„aT2Pr,2b(a)…. Its exist-
ence is granted by Lemmas IV.3 and IV.2, which yielded~IV.17!. From the construction we have
just recalled it can be seen that if„aT2Pr,2b(a)… is bounded thenc(T) is as well.

A remark is in order here: in Sec. IV A we have worked with symbols belonging toB (n), and
those are unbounded by definition, being the limits of functions likeNL,m

(n) ~b! defined in~IV.8!. But
a simple argument shows that a boundedaPA5s~%B (n)! remains bounded after the above
procedure, since, roughly speaking, it gets deformed in the same way in each of its
B (n)-components.

Finally, we can apply Lebesgue dominated convergence in~IV.27! since the integrand func-
tion is bounded and tends pointwise to zero asT→`. Thus, theT-limit of ~IV.27! gives the last
statement in Theorem III.3, whence the end of the proof. Q.E.D.
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APPENDIX

1. Coherent states for the cylinder

We begin this section by recalling some notions about the Bloch decomposition~II.9!, fol-
lowing Refs. 14 and 10. The idea is very simple: given a functionfPL2~Rm!, and therefore its
Fourier transformf̂ (p), we pick up from the latter only the terms atp5j1k, „jP(TL

m)* … to
constructf (k), which clearly lies inL (k)

2 (TL
m).

In formula:

f ~k!~x!:5
1

Lm (
jP~TL

m
!*
f̂ ~j1k!e2p i ~j1k!•x. ~A1!

Considering the scalar products in the dual spaces@respectively,L2~Rm! and l 2„~Z/L!m1k…#, it is
easy to see the decomposition property that justifies~II.9!:

^ f ,g&L2~Rm!5E
@0,1/L !m

^ f ~k!,g~k!&L
~k!
2 ~TL

m! dk. ~A2!

An explicit formula for f (k), more direct than~A1!, is also computable with the aid of the Poisson
summation formula:

f ~k!~x!5 (
nPZm

e22p iLn•kf ~x1Ln!. ~A3!
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We can now proceed to the construction of a remarkable example of states satisfying the assump-
tions of the theorems. Let a family of generalized coherent states for the Euclidean 2m-
dimensional phase space be given,

f ~u,v ! :5T~2u,v ! f 0 , ~A4!

as constructed in Ref. 11, where (u,v)PR2m and f 0PL2~Rm!, usually a Gaussian centered at the
origin. According to our preparatory remark, we give the following definition.

Definition A.1:10 The family f(u,v)
(k) where(u,v,k)PXL

m :5TL
m3Rm3[0,1/L)m constructed as

above is called a set ofcoherent states onLL
m.

We endowXL
m with the measuredu(u,v,k):5du dv dk and check that they verify the

hypothesis of the theorem.
We shall work on the Fourier antitransform ofwl , i.e., on the Fourier–Wigner function

relative to the statef l ,

E
LL
m
du dvE

@0,1/L !m
dk^ f ~u,v !

~k! ,T~k!~h,j! f ~u,v !
~k! &L

~k!
2 ~TL

m!

5E
LL
m
du dv^ f ~u,v ! ,T~h,j! f ~u,v !&L2~Rm!

5E
LL
m
du dv^T~2u,v ! f 0 ,T~2u,v !T~h,j! f 0&L2~Rm!e

2p i ~h•v1j•u!

5E
LL
m
du dv^ f 0 ,T~h,j! f 0&L2~Rm! e

2p i ~h•v1j•u!5^ f 0 ,T~h,j! f 0&L2~Rm! djd~h!5djd~h!,

~A5!

which is another way to state~III.2!. The first step is justified by~A2! and the third by the
commutation relations in the Heisenberg group.

Finally, this set of coherent states is perhaps the most important among the possible collec-
tions one could choose. As a matter of fact, such states are indeed introduced to be aslocalizedas
the Heisenberg principle permits.10 Had we performed a limit\→0, exploiting the Wigner func-
tion as a measure of the degree of localization of a state, we would have seen that

Wf
~u,v !
~k! , f

~u,v !
~k! ~p,q!→d~p2u!d~q2v !, as \→0; ~A6!

where the dependence on\ is implicit in the construction off (u,v)
(k) . This is why one can say that

such a state is a good analog of a point in the phase space. Therefore we see that the physical
meaning of our quantum ergodic properties gets clearer and more classical, of course, in the
semiclassical regime.

2. Proof of Lemma IV.1

Let us check that equality on all the matrix elements with respect to the standard basis of
L (k)
2 (TL

m),$ea
(k)%aP(T

L
m)* introduced in Sec. II B. It is easily computed that

T~k!~h,j!ea
~k!5e2p ih•~j/21a1k!ea1j

~k! . ~A7!

If we now denotect(p,q):5(c+fL
m@ t#)5c(p,q1pt), we can compute its Fourier transform,

which turns out to bect̂(h,j)5 ĉ(h2jt,j). Thus, substituting into~II.14! and changing the
variable
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Op~ct!:5
1

Lm (
jP~TL

m
!*
E
Rm
ĉ~h,j!T~h1jt,j!dh. ~A8!

In order for the statement to hold for everyc, it is a necessary and sufficient condition that
;a,gP(TL

m)* ,

^ea
~k! ,T~h1jt,j!eg

~k!&5^ea
~k! ,e2p i tHmT~h,j!e22p i tHmeg

~k!&. ~A9!

Using ~A7! we find on the rhs,

^ea
~k! ,T~h1jt,j!eg

~k!&5e2p i ~h1jt !•~j/21g1k!da,g1j . ~A10!

SinceP(k)ea
(k)5(a1k)ea

(k), on the lhs, we have

^ea
~k! ,e2p i tHmT~h,j!e22p i tHmeg

~k!&5ep i ~a1k!2te2p i ~g1k!2te2p ih•~j/21g1k!da,g1j

5e2p i ~~j/21g1k!jt1~j/21g1k!h!da,g1j , ~A11!

where we have substituted fora its valueg1j. This relation finally verifies~A9!. Q.E.D.

3. Convolutions over tori and over Euclidean spaces

The purpose of this section is to clarify the meaning of the symbol*L , indicating
q-convolution overTL

m, when applied to functions that are, in principle, defined over larger sets,
like the functionsb+PL

m, for instance. Also, we want to understand how this is related to*` , the
ordinary convolution onRm, whenL→`.

Since the arguments here are essentially descriptive, we specialize to one dimension, without
loss of generality. Iff is a nice function defined onR, denote byf (L) its periodic restriction, i.e.,
the function,defined again onR, which isL-periodic and coincides withf on [2L/2,L/2). Then
if g is also a nice function onR, we define

~ f * L g!~x!:5~ f ~L !* g~L !!~x!5E
2L/2

L/2

f ~L !~y!g~L !~x2y!dy5E
2L/2

L/2

f ~y!g~L !~x2y!dy.

~A12!

Thus, for instance, (f * Lg)(x)Þ*2L/2
L/2 f (y)g(x2y)dy. As L→`, however, we expect this to be

approximately true, at least for a fixedxPR. As a matter of fact, requiring some properties off
andg, one can prove a useful lemma. CallSR :5[2R,R].

Lemma A.2: Suppose fPC0
`~R! andsuppf#SR . Assume also thatugu vanishes monotonically

at infinity. Defining

h~x!5~ f * L g2 f * ` g!~x!,

then one has, for sufficiently large L,

h~x!H <M ~ ug~2L/2!u1ug~L/22R!u!, for xP@2L/2,2L/21R!,
50, for xP@2L/21R,L/22R#,
<M ~ ug~L/2!u1ug~2L/21R!u!, for xP~L/22R,L/2#,

where M:5Rmaxu f u.
Proof of Lemma A.2:TakeL so large thatL/2.R andugu is increasing in~2`,2L/21R# and

decreasing in@L/22R,1`!.
Looking at ~A12! and recalling the hypothesis onf , we can write
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~ f * Lg!~x!5E
SR

f ~y!g~L !~x2y!dy. ~A13!

Hence

h~x!5E
SR

f ~y!~g~L !2g!~x2y!dy. ~A14!

Now, g(L)(x2y) coincides withg(x2y) whenx2yPSL/2, that is, whenyP[x2L/2,x1L/2]. So
~A14! is rewritten as

h~x!5E
SR\~x1SL/2!

f ~y!~g~L !2g!~x2y!dy. ~A15!

It is easily seen that ifxP[2L/21R,L/22R], thenSR#(x1SL/2), such thath(x)50 and part of
the claim is proved. IfxP[2L/2,2L/21R], making the change of variablez5x2y, ~A14! gives

uh~x!u5U E
x2R

2L/2

f ~x2z!~g~L !2g!~z!dzU<maxu f u E
2L/22R

2L/2

~ ug~L !~z!u1ug~z!u!dz. ~A16!

Since by definition, forz,2L/2, g(L)(z)5g(z1L), the monotonicity property ofg gives the first
case in the statement of the lemma. The third case is, of course, analogous. Q.E.D

4. Proof of Lemma IV.3

Before even getting started, let us agree upon denoting, throughout this proof, by (p,q) all
momentum-coordinate variables, be they defined onLL

m or onR2n or onLL
1. Notice that, in the

proof of Theorem III.2, we referred ton-dimensional variables as (p8,q8).
The whole idea here is to realize that, ifn is fixed, the functionFL

n defined as in~IV.5!, gets
closer and closer, inLL

n, to

F`
n ~p,q!5ebp2E

Rn
dje2b~p2j/2!2e2p i j•q5ebp2e4p ip•qS 4p

b D n/2e2~4p2/b!q25ebp2e4p ip•qvn~q!,

~A17!

wherev(q):5A4p/be2(4p2/b)q2. In the following we will use repeatedly the asymptotic estimate
v(L/2)5O ~L2`!.

Anyway, F`
n is defined by the fact that it has the same Fourier spectrum ofFL

n, suitably
extended to all ofRn. If we denote by•̃ the q-Fourier transform overTL

n, then this amounts to
saying that, forjP(TL

n)*5~Z/L!n,

E
Rn

F`
n ~p,q!e22p i j•qdq5ebp2e2b~p2j/2!25:F̃L

n~p,j!. ~A18!

So the best candidate forg` is b*`F`
n . The symbol*` designates theq convolution overRn, as

explained in Sec. 3 of this appendix. First of all, such ag` verifies~IV.16!: this is a consequence
of the fact that*RnF`

n 5 1, which is easily verified. Let us proceed to the proof of~IV.15!.
Recalling the warning in Sec. 3 of this appendix, the main inequality will be

sup
LL
n

ugL2g`u5sup
LL
n

ub* LFL
n2b* `F`

n u<sup
LL
n

ub* L~FL
n2F`

n !u1sup
LL
n

ub* LF`
n2b* `F`

n u .

~A19!
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The rightmost term can be worked out easily, using~A17! and Lemma A.2 of Sec. 3 of this
appendix. If (p,q)PLL

n,

u~b* LF`
n2b* `F`

n !~p,q!u<MvnS L22RD5O ~L2`!, ~A20!

whereM.max„ub(p,q)uebp2
… andR is the radius of the ball containing suppb. To work out the

other term in~A19! we employ the ideas stated at the beginning of this section aboutF`
n . We start

by noticing thati • iL1(T
L
n,dq) < Ln/2i • iL2(T

L
n,dq). Wehave

sup
qPTL

n

ub* L~FL
n2F`

n !~p,q!u< sup
qPTL

n

ub~p,q!uLn /2i ~FL
n2F`

n !~p,• !iL2~TL
n,dq!. ~A21!

Notice thatb is compactly supported. We also see that

i~FL
n2F`

n !~p1 ,...,pn ,• !i
L2~TL

n ,d!

2
5)

i51

n

i~FL2F`!~pi ,• !iL2~TL ,dqi !
2 , ~A22!

since FL
n and F`

n are completely factorizable: we call, obviously,FL and F` their one-
dimensional versions, on which we are immediately going to work. As anticipated at the beginning
of this section, we will be a little imprecise and use again the label (p,q) for (pi ,qi). Now

i~FL2F`!~p,• !iL2~TL!
2

5
1

L (
jP~Z/L !

uF̃L~p,j!2F̃`~p,j!u2, ~A23!

with F̃`(p,j) 5 *2L/2
L/2 F`(p,q)e

22p i jq dq. Looking back at~A18! and using definition~A17!, we
can write

uF̃L~p,j!2F̃`~p,j!u5U E
R\TL

F`~p,q!e22p i jq dqU
52ebp2U E

L/2

1`

v~q!cos„2p~j22p!q…dqU
52ebp2UFv~q!sin„2p~j22p!q…

2p~j22p! G
L/2

1`

2E
L/2

1` v8~q!sin„2p~j22p!q…

2p~j22p!
dqU

<ebp2g~j22p!v~L/2!, ~A24!

whereg(x) is a continuous function defined onR behaving likeuxu21 for large values ofuxu. Note
that, asL→`, (1/L)(jP(Z/L)g

2(j 2 2p)→*Rg
2(j)dj 5 :K, uniformlyfor p in a compact set. So,

looking at ~A21!, and merging up~A22!, ~A23!, and~A24!, we have

sup
~p,q!PLL

n

ub* L~FL
n2F`

n !~p,q!u<Ln /2 sup
~p,q!PLL

n

ubu sup
upu,R

i~FL
n2F`

n !~p,• !iL2~TL
n,dq!

<~e2bR2~K11!v2~L /2!L !n /2 supubu5O ~L2`!, ~A25!

sinceb has compact support. Inserting~A20! and~A25! into the fundamental inequality~A19! the
proof is completed.
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2 (TL

m). Since the scalar products have the same
structure on eachL (k)

2 (TL
m) we will drop that subscript.
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m ,du)5„@0,1/L!m,dk!…3some
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I present here some results on the mean field theory approach to the statistical
mechanics of aD-dimensional array of Josephson junctions in the presence
of a magnetic field. The mean field theory equations are obtained by computing the
thermodynamical properties. In the high temperature region in the limitD→`,
where the problem is simplified, this limit defines the mean field approximation.
Close to the transition point the system behaves very similar to a particular form of
spin glasses, i.e., to gauge glasses. We have noticed that in this limit the evaluation
of the coefficients of the high temperature expansion may be mapped onto the
computation of some matrix elements for theq-deformed harmonic oscillator. The
same arguments can be used to predict the thermodynamical properties in the mean
field limit. These results can be extended to the low temperature phase using a
conjecture on the equivalence of some system without disorder with appropriate
random systems. ©1996 American Institute of Physics.
@S0022-2488~96!02210-4#

I. INTRODUCTION

In this article I am interested to study the statistical mechanics of arrays of Josephson junc-
tions inD-dimensions in the limit whereD→`. Here I will show how to obtain the results for the
thermodynamics in the framework of the mean field approximation. In order to obtain a consistent
mean field theory approach I will show how to perform the limit of infinite dimension.

The main motivation for this enterprise would be to have a starting point which could be used
as a starting point to predict the behavior of the system in more realistic situations. Here I will
report mainly the results of Refs. 1 and 2, which are an extension to these systems of previous
results obtained in Ref. 3.

The model has been extensively studied in two dimensions, especially in the low temperature
region.4,5 It is possible that something has been done to study the three-dimensional extension of
the model, but no results are known in very high dimensions.

The article is organized as follows. After this introduction I will describe in detail the model.
In Sec. III will describe the computation of the high temperature expansion in the mean field limit
for the Gaussian model. In Sec. IV I will show how to extend these results to real spins. In Sec.
V I will present the general conjecture which allows us to extend these results to the lower
temperature region. In Sec. VI I will discuss the correctness of this conjecture on the equivalence
of some system without disorder with appropriate random systems. In Sec. VI I will show how to
apply the general conjecture to this case. In Sec. VII I will present a comparison with the numeri-
cal simulations.

II. THE MODEL

The model we consider is described by the Hamiltonian:

H52c~D !(
j ,k

f̄ jU j ,kfk1h.c. ~1!

0022-2488/96/37(10)/5158/13/$10.00
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Herec(D)[(2D)21 is a normalization constant, which will be useful later to rescale the Hamil-
tonian in order to obtain a nontrivial limit whenD goes to infinity. The spinsfj are defined on a
D-dimensional hypercubic lattice.

We will consider three possibilities:
• The spinsfj are constrained to be of modulus one.
• The spinsfj have modulus one in the average atb50: in this limit they have a Gaussian

distribution.
• The spins satisfy the constraint( i uf i u

25N. This is the spherical model which is interme-
diate among the two previous models.6

In the limit where the dimensionD goes to infinity the properties of the first model and of the
third model can be obtained from that of the Gaussian model. We will concentrate our attention on
the Gaussian case and we will later study the other cases.

The couplingsU are nonzero only for nearest neighbor sites. They are complex numbers of
modulus one and they satisfy the relation

Uk, j5Uj ,k. ~2!

In other words the couplingsU are the links variables of anU~1! lattice gauge field.
We will select the couplingsU to give a constant magnetic field. Many different orientations

of the magnetic field can be chosen. For simplicity we restrict our computation to the case where
the flux through each elementary plaquette is given byB ~or 2B! independently from the plane to
which the plaquette belongs. This corresponds to constant uniform frustration on all the plaquettes.
In the extreme case~B5p! we obtain a fully frustrated model, while forB50 we recover the
ferromagnetic case. Random point dependentB values corresponds to a particular form of spin
glasses, i.e., to gauge glasses.7–10

More precisely we set

Ba,b5Sa,bB, ~3!

whereSa,b may take the values 1 or21, Ba,b is the antisymmetric tensor corresponding to the
magnetic field, which in the continuum limit is given by]aAb2]bAa . The ordered product of the
four links of a plaquette in thea,b plane is equal to exp~iBa,b!.

We must now specifySa,b , i.e., the sign ofBa,b . A possible choice would be to take

Sa,b51 for a.b, ~4!

which impliesBa,b5B for a.b.
In two and in three dimensions this choice is equivalent to any other possible choice of the

sign. In three dimensions the magnetic field is a vector and all the vectors corresponding to
different choices of the sign may be obtained one from the other with a rotation. The choice ofS
does not influence the thermodynamics.

In more than three dimensions different choices of the matrixS are not equivalent and we
must select one among all the possible ones. In this note we consider the case in which the matrix
S is a generic one, i.e., the signs ofB are randomly chosen. The system is translation invariant and
the randomness appears in only in the relative orientation of the magnetic field with the crystal
axis.

In the two-dimensional case we recover the usual description for anXY system~or equiva-
lently an array of Josephson junctions! in constant magnetic field.

In order to compute the statistical properties of this model in the mean field approximation in
the high temperature region we must find the spectral properties of the lattice discretized Laplacian
in presence of a magnetic field. The lattice Laplacian is defined as
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~D f ! j5(
k
U j ,kf k . ~5!

The spectral properties of the lattice Laplacian in two dimension have been carefully studied.
They depend on the arithmetic properties of theB/p, i.e., different results are obtained for rational
and irrationalB/p.5

The study of the lattice Laplacian in higher dimensions is much less developed. In any
dimension the explicit construction of the fieldU shows that for rationalB/p, of the form
B52pr /s, with both r and s integers, there is a gauge in which theU couplings are periodic
functions of the position, with periods. In this case the spectrum of the Laplacian has the typical
band form, the edges of the bands being related to the eigenvalues of asD3sD matrix. When both
s andD are large, a direct study of the eigenvalues is rather complex.

We will study this problem in the limit of an infinite number of dimensions. We will find
some unexpected relations with the properties of theq-deformed harmonic oscillator. At the end
the behavior of the model will come out very similar to that of spin glasses. The reader should
notice that the properties of the model in high dimensions may be quite different from that of the
two-dimensional model.

A simplified model~thesingle cellmodel! can be constructed if we restrict the spins to belong
to a single hypercubic cell of sizeL52 and volumeN52D. The advantage of this simplified
model is to allow a simpler computation of the behavior of the system in the low temperature
phase. Moreover it is the only case in which numerical simulations can be done for high values of
D. The difference of the two models should be small when the dimension of the spaceD goes to
infinity. Indeed in many cases the infinite dimensions limit does not depend on the size (L) of the
box, provided thatL.1.

III. ON THE HIGH TEMPERATURE EXPANSION

A. General considerations

There are two extreme cases for theU which are very well studied for the Hamiltonian~1!:
• We set

Uj ,k51. ~6!

In this way we obtain the usual ferromagneticXY model. There is a ferromagnetic transition at
b51 in the limit D→`, if we setc(D)51/2D, i.e., c(D) has to be equal to the inverse of the
coordination number of the hypercubic lattice.

• We set

Uj ,k5exp~ ir j ,k!, ~7!

wherer are random numbers belonging to the interval 022p, such that the symmetry condition
Eq. ~2! is satisfied.

In this way be obtain a spin glass model of theXY type, which is called a gauge glass. The
transition temperature isb51 in the limitD→`, if we setc(D)5(2D)21/2, i.e.,c(D) is equal to
the inverse of the square root of the coordination number.

The model we study is intermediate among the previous two problems. In order to define it
properly, it is convenient to introduce the so-called Wilson loop. Let us consider a closed oriented
circuit (C) on the lattice, which goes from the pointj to the same pointj and let us defineW(C)
as the product of theU ’s along the circuit. The Wilson loopW(C) is a gauge invariant. The
knowledge ofW(C) for anyC gives all gauge invariant information concerning the gauge field.

In the continuum limit we have
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W~C!5expS i E
C
dxm Am~x! D 5exp~ iF~C!!, ~8!

whereF(C) is the magnetic flux entangled withinC.
In 2 dimensions in presence of a constant magnetic field the Wilson loop is given by

W~C!5exp~ iBS~C!!. ~9!

whereS(C) is the signed area of the loopC.
In D dimensions there areD(D21)/2 planes oriented in the directions of the lattice. The

choice of the magnetic field we study here is

W~C!5exp~ iF~C!!,

F~C!5 (
n,m5n,m

Sn,m~C!Bn,m , ~10!

where the indicesn andm denote one of theD possible different directions andSn,m is the signed
area of the projection of the curveC on then, m plane.

As a consequence of gauge invariance there are infinite many choices of theU which corre-
spond to these Wilson loops. All these choice are physically equivalent. In two dimensions we
could set

U1~ j !51, U2~ j !5exp~ iB j 1!,

where j n is thenth component of the vectorj and we have introduced the short-hand notation

Un~ j !5U~ j , j1nn!, ~11!

nn being the unit vector in then direction.
This construction can be generalized to theD-dimensional case. For example in 4 dimensions

one obtains

U1~ j !51, U2~ j !5exp~ iB2,1j 1!,

U3~ j !5exp~ i ~B3,1j 11B3,2j 2!!, U4~ j !5exp~ i ~B4,1j 11B4,2j 21B4,3j 3!!. ~12!

Our main task will be the study of the associated Gaussian model, where the Hamiltonian is
given

H52c~D !(
j ,k

f̄ jU j ,kfk1h.c.21/2(
k

ufku2. ~13!

The solution of this associated Gaussian model is a crucial step in the computation of the
properties of the high temperature expansion.

B. The high temperature expansion for the Gaussian model

In the case of the Gaussian model the free-energy density can be written as

bF~b!5(
C

W~C!~bc~D !!L/~C!/L~C!, ~14!
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where the sum is done over all the closed lattice circuits with given starting point;L(C) is the
length of the circuit.10

In a model~like the present one! where gauge invariant quantities are translational invariant,
we can chose the origin~and the end! of the circuit at an arbitrary point of the lattice. In other
cases, like spin glasses, we must average over all the possible starting points.11,12

The previous formula can also be written as

bF~b!5tr ln~11c~D !bD!5(
n

~bc~D !!n

n
N ~n!^W~C!&n , ~15!

where by^W(C)&n we denote the average over all the circuits of lengthn and byN (n) the
number of~rooted! closed circuits.

Differentiating the previous formulas we obtain a similar result for the internal energy density:

2bc~D !U~b!5(
n

~bc~D !!nN ~n!^W~C!&n . ~16!

Here the factor 1/n has disappeared. It is easy to show that the coefficients of the high temperature
expansions remain finite whenD→` if C(D)5(2D)21. From now on we will follow this choice.

C. The results for gauge glasses

In this case we will compute the spectrum of the random Laplacian. This can be done in the
infinite dimensions limit since we recover the old problem of computing the spectrum of a random
matrix, which is given by a semicircle law.

In this case theU ’s have zero average and are random elements of theU~1! group. After the
average over all the possible starting points.W(C) gets contributions only from those circuits for
which for any step going fromi to k there is a step going fromk to i . In other words we must sum
only overbacktrackingcircuits.

Let us count the number of these circuits in infinite dimensions. We must to compute

G2n5 lim
D→`

~2D !2nN ~2n!^W&2n . ~17!

The computation ofGn can be thus cast under a graphical form. For each given word, we put
its 2n letters~two by two equal!, on a circle starting from a given point, in the same order of the
letters of the corresponding word. We connect those points which have an identical letter by a line
and we count the number of intersections of the lines. This number is topological invariant and it
does not depend on the point where the letters have been put on the circle, but only on their order.

We can associate to each word the number of intersections. Let us callI n(m) the number of
words which havem intersections~m<n(n21)/2!. It is easy to check that

I n~0!5Gn . ~18!

Indeed only in the case in which the resulting diagram is planar, the diagram may be reduced to
zero by removing consecutively equal letters.

The combinatorial problem of computingI n~0! has been solved13 in the past. After a short
computation one finds

I n~0!54n
G~n11/2!

G~1/2!G~n12!
. ~19!

We finally find that
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11bU~b!5(
n

~4b2!n
G~n11/2!

G~1/2!G~n12!
5
2

p E
22

2

dl
~12l2/4!1/2

~11bl!
. ~20!

There is a transition atb51/2, which is characterized by a singularity of the specific heat of
the form ~bc2b!21/2. In other words the critical exponenta is equal to 1/2.

Equation~20! gives the result for spin glasses in the Gaussian approximation. Starting from it
one can obtain the more familiar results for the Ising spin glass or for the spherical spin glass.

D. Josephson junctions in magnetic field

In this case we need at first to compute the function

Gn~B!5 lim
D→`

~2D !2nN ~2n!^W&n . ~21!

We will follow the strategy of first dividing the circuits into classes corresponding to different
words of 2n letters~as in the previous case! and to evaluate the contribution of each class.

Let us start by computingG2(B) ~it is trivial thatG1(B)51!. The backtracking circuits which
correspond to theplanar diagrams,~the corresponding words areaabb andabba! give a contri-
bution 1 each. More generally we can define the area of a circuit as the minimal area of a surface
of lattice plaquettes which have that circuit as boundary. Backtracking circuits can be character-
ized as area zero circuits.

We finally find

G4~B!521q, ~22!

where

q5cos~B!. ~23!

Generally speaking each different word of length 2n is associated to (2D)n circuits having the
same area. The signed area of these circuits having the same area (A) is different. In a large
number of dimensions~in the generic case where all the independent steps are done in different
directions! the projected signed areasSm,n take only the values 0 or61 and

( uSm,nu5A. ~24!

If we average over all the possible orientations of the lattice the contribution coming from the
circuits having the same word, we find that the average value of^W(C)& depends only onA and
it is given by

^W~C!&A5S exp~ iB !1exp~2 iB !

2 D A5qA. ~25!

We finally find that

Gn~B!5(
w

qA~w!, ~26!

where the sum is taken over all words of 2n letters andA(w) is the area associated to each of
these words.

It is possible to prove that the area ofa of the circuit is exactly equal to the number of
intersections of the lines connecting equal letters in the corresponding diagram. In this way we
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have transformed the problem of computing the high temperature expansion into a combinatorial
problem, although not very easy, which generalize the computation of planar diagrams. The
solution of this problem will be presented in the next section.

E. The q -deformed harmonic oscillator plays a role

We have reduced the problem of evaluating the high temperature expansion of the Gaussian
model in the presence of a magnetic field to the computation of the number of words of 2n letters,
two by two equal, such that the number of intersections in the corresponding diagram is equal to
a given number.

A detailed recursive combinatorial analysis show that

Gn~B!5(
w

qA~w!5^0uX2nu0&, ~27!

where

X5Rq1Lq , ~28!

and the operatorsL andR satisfy the commutation relation of aq-deformed harmonic oscillator:

LqRq2qRqLq51. ~29!

@In the caseq51 we have Bosonic commutation relations, forq51 we have Fermionic
commutation relations and forq5exp~iu! anyonic commutation relations. Forq50 we recover
the so-called Kunz algebra. Some applications of the anyonic commutation relations can be found
in Refs. 14 and 15 and references therein.#

ThereforeLq may be identified with the destruction operator andRq with the creation opera-
tor for aq-deformed harmonic oscillator. Forq51 we recover the ferromagnetic case, forq521
the fully frustrated case and forq50 the spin glass case.

These operators may be represented as

Rqum&5@m#q
1/2um11&, Lqum&5@m21#1

1/2um21&, ~30!

where

@m#q5~12qm11!/~12q!, ~31!

andm ranges in the interval@02`#. In the limit q→1 we obtain the usual Bosonic oscillator and
we recover the usual formulas.

Intuitively Eq. ~27! tells us that when we use the Wick theorem forq-deformed harmonic
oscillators, we must bring together the different terms we contract and for each term we get a
factorq to the power of the number of object we have to cross.

If we use this result, we finally find the quite simple formula:

11bU~b!5^0u
1

11bX
u0&q , ~32!

which gives a remarkable connection among the high temperature behavior of the Gaussian model
and theq-deformed harmonic oscillator.

In this way we have reduced the combinatorial problem of computing the high temperature
expansion to an algebraic problem.
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F. Near the critical point

The problem now is reduced to the computation of the spectrum of the operatorX of the
q-deformed harmonic oscillator. The computation is apparently nontrivial. We are however inter-
ested to the computation of the spectral density near the largest eigenvalues.

A simple case isq51, where the operatorXq is not bounded and the high temperature
expansion is divergent. In this caseX has a continuum spectrum and the highest eigenvalues ofX
are concentrated in the largem region. Let us assume that this feature is valid forq inside the
interval @21,1#. One finds that

Lq;~12q!21/2L, R;~12q!21/2R. ~33!

when the operator is applied to a stateum& in the region of largem. ~L andR are the two shift
operators forq50 which are used in the planar case.!

The difference amongLq and~12q!21/2L can be seen only when the two operators act on a
state of lowm. It is very reasonable to assume that the spectral radius and the spectral density near
the maximum eigenvalues is the same in the two case. We have verified numerically that this
conjecture is consistent~at least forq not too close to 1! by estimating the spectral density ofXq

in subspaces of various size~m,M , with M up to 300!.
We find therefore that the critical temperature is given by

bc5~12q!1/2/2, ~34!

which is the inverse of the spectral value ofX, i.e.,

uXu254/~12q!. ~35!

The behavior of the spectral density near the edge is the same as for the random matrix model, i.e.,
in spin glass. In this way we find the same critical exponents as in spin glasses in the Gaussian
approximation.

A possible physical interpretation is the following. In computing the internal energy one has
to sum over all the closed circuits. Circuits with large physical area average to zero and only
fattened backtracking circuits survive. The situation is very similar to spin glasses, where only
backtracking circuits contribute, the only effect being a renormalization of the temperature.

IV. THE HIGH TEMPERATURE EXPANSION

We have explained that we will construct the model based on the random couplingsÛ by
requiring that the highT expansion is the same than in the original model with complex frustration
~and no disorder!. Let us remark that both these models, the random one and the deterministic one,
are regular, i.e., there are no couplings ofO~1! whenD→`. In other words all theU couplings
and theÛ ones, after being multiplied times the appropriatec(D) factor, go to zero in this limit.
Under this condition the high temperature expansion for theXY model is equal to the one of the
spherical model. One can verify this statement by checking that in the two cases~i.e., for the
spherical for theXY model! the same diagrams survive in theD→` limit. This condition guar-
antees the absence of couplings ofO~1! which could break the equivalence.

Thanks to this result we will be able to start from computing the highT expansion of the
spherical model, in order to work out results valid for theXY model. That will make our task far
easier.

We denote the spectral density of the Laplacian operator byrD~l!, and we express the trace of
its nth moment as

22D Tr~Dn!5E dl rD~l!ln. ~36!
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Here the trace is taken over a space of dimensionality 2D, and the normalizing factor 22D is such
that the spectral density of the identity operatorr1~l! is d~l21!.

We start by remarking that the internal energy density of the Gaussian model is given in terms
of rD~l! by

EG5E dl rD~l!
l

12bl
. ~37!

By using the expression of the Hamiltonian which includes the spherical constraint, we find

ES5E dl rD~l!
l

m~b!2bl
, ~38!

wherem is a function ofb. It is fixed by the condition

E dl rD~l!
1

m~b!2bl
51, ~39!

which tells that̂ ( i us i u
2&5N, i.e., that thes variables satisfy the spherical constraint.

Equations~38! and ~39! can be written in a more compact form as

m~b!5RS b

m~b! D , ~40!

E~b!5
m21

b
, ~41!

where the functionR is given by

R~z!5E dl rD~l!
1

12zl
. ~42!

One uses~40! to determinem, and inserting it in~41! one determines the internal energy density
of the system.

The critical temperaturebc
21 is fixed by the condition that Eq.~40! does not admit a solution

for b.bc , i.e., is such that

zcR~zc!5bc , ~43!

wherezc is the inverse of the largest eigenvalue ofD.
In the limit D→`, the functionR(z) has been defined in the previous section:

R~z!5^0u
1

12zX
u0&. ~44!

It can be shown10 that the function,R(z) has a singularity of the form

R~z!5A~zc
22z2!1/2, ~45!

where

zc5A12q/2. ~46!
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The critical behavior does not depend onq.
The critical temperature can be found from Eq.~43!. A simple computation shows that the

specific heat remains finite at the critical temperature.

V. OUR STRATEGY AND THE DEFINITION OF THE RANDOM MODEL

We will use here a strategy we have introduced in Refs. 1 and 2. We start with a model which
does not contain quenched disorder, but that is complex enough to make us suspicious of the
possible presence of a spin glass like phase for temperaturesT low enough. We look for a model
which contains quenched disorder, and that is similar enough to the original model to have
potentially the same behavior~even in the lowT phase, if we are very ambitious!. Replica theory
allows us to solve the random model, and to try and get information about the deterministic model.
Reference 2 discusses successful examples of the use of this strategy.

Here we will adopt the same approach. We will introduce a model containing random
quenched disorder. In this new model the newÛ couplings will be chosen at random@as opposed
to the originalU couplings which are determined by the deterministic equation~12! such to give
us the needed complex frustration#. The random values of theÛ will be selected, following Ref.
2, such that the new free energy will have the same high temperature expansion than the original
model. We will have a model where the couplingsÛ will be distributed according to a probability
distribution, determined from the request of finding the same highT expansion than in the original
frustrated model. The original model will be this way by construction, a given~hopefully typical!
realization of the coupling constants constructed according to this probability distribution.

Because of these remarks, and of our constructive procedure, the deterministic model and the
random one coincide in the highT phase. We hope to learn as much as possible about the lowT
phase, and that the two models are also in this phase very similar.

We will have to start by computing the high temperature expansion for our model with
complex frustration. Knowing that we will use a reverse engineering procedure in order to find out
the probability distribution of random couplingsÛ that have the same high temperature expansion.
Finally we will use the replica theory to compute the low temperature behavior of the random
model. For sake of simplicity we will present here the computation done under the hypothesis of
no replica symmetry breaking. We will compare these analytic results to numerical simulations of
the frustrated model.

We will consider a model containing quenched disorder that has the same form of the original
model with complex deterministic frustration. In the random model the couplingsÛ will be taken
randomly among all matrices having the same spectral distribution of the deterministic model.
More precisely for finiteD we extract a set of 2D values of the eigenvaluesl, such that

22D (
j51,2D

l j
n.E dl rD~l!ln, ~47!

whererD is the spectral density of the Laplacian operator, and will be discussed in more detail in
next section. We finally set

Û i ,k5 (
j51,2D

Vi , j* l jVj ,k , ~48!

whereV is a random unitary matrixi a 2D dimensional space.

VI. THE LOW TEMPERATURE REGION

In Sec. V we have discussed the highT region of the deterministic model with complex
frustration. Monte Carlo has been done in this region and the data reproduce well~as expected! the
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series obtained by computing the Green functions of theq-deformed harmonic oscillator. We also
know that in the highT phase the model with quenched disorder coincides by construction with
the deterministic model, but we will see that better in the following.

In order to get information about the lowT phase we have to use the random model, which we
have defined in Eqs.~47! and~48!. We will use replica theory to solve it both in the highT phase
~where we will find again the same highT series! and in the lowT phase. We will try to
understand how much the replica formulation of the system is connected to the Monte Carlo data
which we will get directly from the deterministic model with complex frustration. This task will be
achieved for thesingle cellmodel, where the computations are much simpler. It is quite possible
that similar results can be obtained for the infinite volume model.

Let us solve the random model by using the techniques introduced in Ref. 2. The computation
follows quite closely the one of Ref. 2, and we will give here only the main details. One introduces
n replicas, wheren has to be sent to zero at the end of the computation. Then-dependent free
energy is given by

f ~n!~b![2 lim
N→`

1

bN

lnZU
n

n
, ~49!

where the bar denotes the average over the random couplings and the replicated partition function
ZU
n depends over the noise and can be written as

ZU
n[E @ds#expS 2b (

a51

n

HU
a D . ~50!

The integration over the unitary group~i.e., the matrixV! can be done explicitly. After some
algebra one finds that one has to evaluate the stationary points of the following free energy:

A@Q,L#52Tr G~bQ!1Tr~LQ!2F~L!, ~51!

whereQ andL aren3n matrices, the functionG is related to the one defined in Eq.~41! by

dG

dz
[E~z!, ~52!

and

F~L![ ln E d@s#expS (
a,b

La,bs
asbD . ~53!

In the high temperature phase the off-diagonal terms of the two matricesQ andL are zero. If we
set

Qa,b5da,bq,

La,b5da,bl, ~54!

we find that the stationary equations imply that

q51 and l5E~b!. ~55!

We finally find that in the high temperature phase
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]F

]b
5E~b!, ~56!

whereE~b! is the function defined in~52!. In this way we have derived again the equivalence of
the model with quenched disorder and the deterministic model with complex frustration in the
high temperature phase.

In the low temperature region the off-diagonal terms of the two matrices are nonzero. If we
assume that replica symmetry is unbroken, we have that the off-diagonal terms are given by

Qa,b5q, La,b5l. ~57!

~We setQa,a51. The value we choose forLa,a is irrelevant, and does not change the results.! In
this way we find that we have to minimize the free energy

G~b~12q!!1bqE~b~12q!!2lq1 f ~l!, ~58!

where the functionf is given by

lnS E dh exp~2h2/2! D lnS E ds r ds i d~s r
21s i

221!exp~2l1/2hs r ! D . ~59!

The energy turns out to be

E~b!5G8~b~12q!!2bq~12q!G9~b~12q!!. ~60!

By deriving this expression and evaluating it forb5bc we find that

CV~bc
1!5CV~bc

2!51. ~61!

The critical temperature can also be determined through the relation

bc
2G9~bc!51. ~62!

One also finds that at zero temperature

CV~`!5 1
2, ~63!

in agreement with the equipartition theorem.
The equations which determine the minimum of such free energy can be solved numerically.
We will show and discuss their solution in Sec. VII, for differentq values, together with the

Monte Carlo results in the lowT phase.
We expect the unbroken replica solution to give rather accurate values for the free energy. In

the SK model the error over the correct, replica broken result is smaller than 3%, and it is likely
to be even smaller in the present case. It is interesting to note that the replica symmetric solution
normally gives a lower bound to the true free energy and to the true internal energy of the system.
Numerical simulations show that when we compare numerical simulations of the deterministic
model to the replica symmetric solution of the disordered model in the cold phase this is not
always the case in our system, pointing to a non complete coincidence of the two models.

5169Giorgio Parisi: Mean field for arrays of junctions

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



VII. COMPUTER SIMULATIONS

We will describe here the numerical simulations of the model with complex frustration,
defined with the couplings of Eq.~12!, and compare them with the analytic solution of the model
with quenched disorder that we have discussed in Sec. III. Here we will mainly focus on the low
T phase.

In Ref. 2, systems of size 2 have simulated withD going from 3 to 16, i.e., containing from
8 to 65 536 sites. In the high temperature phase everything is in reasonable agreement with the
theoretical predictions.

In the lowT phase we will compare the analytic solution of the random model~47! with the
numerical simulation of the deterministic model. We will use the replica symmetric solution,
which we believe is not too wrong. We shall see that the data are indicative of a strong similarity,
but maybe not of a complete equivalence of the two models.

The agreement of Monte Carlo data for the deterministic model and replica symmetric solu-
tion of the random model is quite good also in the broken phase, forT,Tc . We expect that the
solution with broken replica symmetry will have an energy slightly higher than the unbroken one
~as we already said, in the general case the replica symmetric energy is a lower bound to the true
energy of the physical system!. Very small residual finite size effect and this small energy drift to
the the breaking of replica symmetry should explain the small discrepancy between the numerical
data and the analytic curve. So in the case of theq50 model things seem to go smoothly.

When moving on the side of negativeq values things do not change much, and if there is a
discrepancy it is very small. This is completely in agreement with the discussion of the behavior
of the coefficients of the highT expansion of Sec. VI.

In conclusion, it seems that forq,0 and even for smallq positive values the replica theory
describes the deterministic model with very high accuracy. On the contrary forq,0 not so small
there is a clear, even if quite small discrepancy between the two models. It is quite possible,
although it looks strange, that the discrepancy is due to finite volume effects and to a very slow
convergence of the 1/D expansion. The computation of the 1/D corrections in the low temperature
phase would be quite useful to resolve this dilemma.
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A model of the periodic array of quantum antidots in the presence of a uniform
magnetic field is suggested. The model can be conceived as a periodic lattice of
resonators~curvilinear triangles! connected through ‘‘infinitely small’’ openings at
the vertices of the triangles. The model Hamiltonian is obtained by means of
operator extension theory in indefinite metric spaces. In the case of rational mag-
netic flux through an elementary cell of the lattice, the dispersion equation is found
in an explicit form with the help of harmonic analysis on the magnetic translation
group. It is proved, at least in the case of integer flux, that the spectrum of the
model Hamiltonian consists of three parts:~1! Landau levels~they correspond to
the classical orbits lying between antidots!; ~2! extended states that correspond to
the classical propagation trajectories; and~3! bound states satisfying the dispersion
equation; they correspond to the classical chaotic orbits rotating around single
antidots. Among other things, methods of finding the Green’s function for some
planar domains with curvilinear boundaries are derived. ©1996 American Insti-
tute of Physics.@S0022-2488~96!01410-7#

I. INTRODUCTION

Beginning with the works of Azbel,1 Hofstadter,2 and Wannier,3 unusual spectral properties of
two-dimensional periodic systems in a quantizing magnetic fieldB attract ever increasing atten-
tion. The most interesting properties of these systems are connected with the presence of two
natural geometric scales, namely, the magnetic length and the size of the unit cell of the period
lattice. The commensurability~or incommensurability! of the scales leads to such a pecularity of
the systems as the transition from the band structure of the spectrum to the fractal one~Hofstadter
butterfly!.4,5 This pecularity is important in the theory of the quantum Hall effect~see Refs. 6, 7,
and references therein!. Nevertheless, because the numberh of flux quanta through a unit cell of
a crystal lattice is very small for the experimentally accessible values ofB~h;1023!, no energy
spectrum of the Hofstadter type is observable in usual quantum Hall systems. Advances in mi-
cropatterning of two-dimensional electron systems at semiconductor interfaces have rendered it
possible to fabricate a so-called periodic dot array, which is obtained by a laterally periodic
modulation of the confining potential of electrons in the system. In the periodic dot array the
above-mentioned geometric scales are comparable, and, in consequence, an experimental obser-
vation of the Hofstadter butterfly has been made possible.8 Curiously, Hofstadter himself wrote in
1979 that he ‘‘would be the most surprized person in the world if the butterfly came out of any
experiment.’’9

A reversed structure to a dot array, i.e., periodic ‘‘antidot’’ array is obtained by inducing an
periodic array of voids in a two-dimensional electron gas.10,11The magnetotransport experiments
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with the antidot array show that such a structure can be considered the solide-state realization of
a Sinai billiard.12–16The experiments unveiled a series of low-B resistance peaks at commensurate
B, for which the classical cyclotron orbit encompasses a particular number of antidots. A detailed
semiclassical analysis of the transport anomalies in the antidot lattice leads to the conclusion that
they stem from electrons trapped on classically chaotic trajectories for commensurateB.17 The
presence of such trajectories should lead to the appearance of bound states in the quantum-
mechanical energy spectrum of the system. A numerical investigation of the propagator of a
charged particle in a periodic antidot array has been performed by Stratford and Beeby,18 their
results suggest that bound states appear at the condition of the commensurability of the cell size
and the magnetic length.

Up to the present there is no complete quantum-mechanical theory of billiard phenomena in
the antidot array. In this connection various approximate models are of special interest. The aim of
the paper is to construct and study an explicitly solvable model of a periodic antidot array by
means of operator extension theory.

Let us describe the basic idea of the construction, introducing simultaneously some notations.
Let G be a two-dimensional crystal lattice, i.e.,G5K1L[$k1l:kPK, lPL%, whereL is a
Bravais lattice~a discrete additive subgroup ofR2 with two generatorsa1, a2!, andK is a finite
subset of the elementary cellCL5$t1a11t2a2: 0<t1, t2,1% of L; we assume without loss of
generality that 0PK. We can represent the collection of the voids in the array in the formV1G,
whereV is a bounded domain inR2 with the picewise smooth boundary such that 0PV and
(V1g)ù(V1g8)5B if g, g8PG, gÞg8. A realistic quantum-mechanical Hamiltonian of the
system should be the operator

Ĥ5~2 i“2A!2, ~1!

in the domainG5R2\~V1G! with the Dirichlet boundary conditions on]G; hereA is the vector
potential of the magnetic field. In spite of seeming simplicity, the model with the HamiltonianĤ
is far from being explicitly soluble. It is reasonable in this connection to consider two limiting
cases.

~1! V is small enough.
In the limit of ‘‘infinitesimal’’ V we get the model of periodic point interactions.19,20 It is

known that the energy spectrum of the model contains bound states~namely, unbroadened Landau
levels! if h is greater than the number of elements inK. This fact was discovered in numerical
experiments by Ando21 and rigorously proved in Refs. 22 and 23; also see Ref. 24. Nevertheless,
it seems likely that the point interaction model is not relevant to the problem in question. The
appearance of the bound states in the spectrum of the model is connected with the number of
points inK rather than with the sizes ofCL andV.

Now let us take up another limiting case.
~2! V is so large that V1g and V1g8 touch one another.
We restrict our attention to the most interesting case of the honeycomb latticeG; in this case

ua1u5ua2u, a1a2̂ 5 60°, K5$0,b%, whereb52~a11a2!/3 ~Fig. 1!. At first we suppose thatV is a
circle, therefore the collection of the voids in the considered array is the densest packing of equal
disks ~Fig. 2!. Hence,G5V1G, whereV is a curvilinear equilateral triangle with zero angles
~Fig. 3!. We shall denote in the course of the paperVg5V1g, henceG5øgPG Vg . Obviously,
the state spaceH0 is isomorphic to the direct sumH05(gPG%Hg

0 , whereHg
05L2~Vg!, and the

HamiltonianH0 of the model has the formH05(gPG%Hg
0 , whereHg

0 is defined by the differential
expression~1! in the domainVg and the Dirichlet boundary conditions on]Vg . The obtained
operator corresponds to the absence of any charge transport between domainsVg . To get a
nontrivial model Hamiltonian we employ the ‘‘restriction-extension’’ procedure.19,25 Notice that
this procedure found use in constructing and studying of explicitly soluble models of crystals26

and quantum dot arrays.27,28 Intuitively, we puncture the boundary]Vg of every curvilinear tri-
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angleVg in each vertex to connect the domainsVg with each other.29,30 From the mathematical
point of view we restrict the operatorH0 to the set of smooth functions that vanish near the
vertices of the trianglesVg . Nontrivial ~i.e., different fromH

0! self-adjoint extensions of such a
restrictionS0 can be considered as a model HamiltonianH of the antidot array. Nevertheless, the
operatorS0 is essentially self-adjoint, therefore it has no nontrivial self-adjoint extensions in the
spaceL2(G). Beginning with the Berezin31 paper on the Lee model of the quantum field theory
self-adjoint extensions in Pontryagin or Krein spaces containingL2(G) are common. A general
mathematical formalism for such extensions is elaborated by Shondin,32 in an easy-to-use form;
the formalism is explained in Ref. 33. In Refs. 34 and 35 this method has been used to solve some
problems that are similar to those of the present paper. In the cited papers the method of operator
extensions in indefinite inner product spaces is developed for Pontryagin spaces only, but in our

FIG. 1. Honeycomb lattice;a1, a2 are basic vectors,b52~a11a2!/3.

FIG. 2. Periodic system of curvilinear triangles. The centers0, a1, a2, b, a11a2 of the triangles are marked.
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situation we can use this method mutatis mutandis for Krein spaces also.36We do not consider the
physical status of the state spaces with an indefinite metric, but, seemingly, some comments are
necessary. Dirac37 and Pauli38 are the first to use the indefinite inner product spaces in some
problems of quantum mechanics; also see Ref. 39 and references therein. In Refs. 32, 33, and 40,
the physical meaning of the state spaces with indefinite metric and self-adjoint operators in them
are discussed in the context of point perturbations.

The paper is organized as follows. To have an explicitly soluble model, we need a description
of the Green’s function for the domainV. Such a description is given in the first part of Sec. II for
the case of a curvilinear triangle with zero angles and for the Hamiltonian with zero magnetic
field. The description is represented in a convenient form for numerical analysis; such an analysis
of our periodic model will be explained elsewhere. Two last parts of Sec. III are devoted to an
auxiliary ~with relation to our main goal! problem, namely, we show how ‘‘to switch on’’ the
tunneling between two curvilinear triangles. In this part we offer a method to construct the
indefinite inner product space in question. The results of Sec. II are of independent interest also;
they describe a model of two coupled quantum dots of a complicated form and generalize some
results of Ref. 35.

In Sec. III we present the above-mentioned quantum-mechanical lattice model of a periodic
antidot array. The Hamiltonian of the model is invariant with respect to the magnetic translation
group.41 In the case of the rational flux, as it is called, we use the harmonic analysis on the
magnetic translation group to represent the model Hamiltonian as a direct integral of finite-
dimensional operators. Hence we reduce the spectral problem for the Hamiltonian to an eigenvalue
problem of linear algebra, and what is more, in the case of rational flux we obtain the dispersion
equation in an explicit form. The formalism used in Sec. III is a generalization of that in Ref. 23
and employs an appropriate modification of the Krein resolvent formula.42 In conclusion, we
prove a main result of the paper, namely, the existence of bound states in the model spectrum that
are different from levels of the unperturbed operatorH0. Such states may be considered as
quantum-mechanical counterparts of above-mentioned chaotic trajectories. As the final result, we
obtain that the spectrum of the model HamiltonianHA in the presence of a strong magnetic field
consists of three parts:~1! Landau levels that correspond to the classical orbits lying between
antidots;~2! extended states that are solutions of the dispersion equation~45!; they correspond to
the classical propagation trajectories; and~3! bound states that are solutions of Eq.~45! also and
correspond to the classical chaotic orbits rotating around a single antidot. The described structure
of the spectrum coinsides with that obtained by numerical calculation.43

It should be especially stressed that the results of Sec. III do not depend on a particular form
of the Green’s function of the unperturbed operatorH0, therefore the zero-field restriction of Sec.
II does not obstruct the proof of our main result.

II. THE MODEL OF TWO COUPLED TRIANGLES

In this section we show how to find the Green’s function of the Laplace–Dirichlet operator in
a curvilinear equilateral triangle with zero angles. Then we construct an explicitly soluble model

FIG. 3. Curvilinear triangleV.
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of two ‘‘quantum dots’’ coupled with each other by a small opening; the dots are two curvilinear
triangles having only one common point, which is a common vertex of the triangles. The role of
such a model in the context of the model of an antidot array is described in the Introduction.

A. Green’s function for a curvilinear triangle

Here we consider the most complicated case of a curvilinear triangle with zero angles. At first,
we describe the Green’s function for the Dirichlet problem in the auxiliary domainV̂1 shown in
Fig. 4. Let us map this domain onto a semistripṼ1 by a linear-fractional transformationz5 f ~z!.
Then the equation for the desired Green’s functionG1,

2DzG1~z,z8;l!5d~z2z8!1lG1~z,z8;l!,

takes the following form:

2DzG̃1~z,z8;l!5u f ~z!u22d~z2z8!1lu f ~z!u22G̃1~z,z8;l!.

For the casel50,

G̃1~z,z8;0!5Gstrip~z,z8;0!2Gstrip~z,z9;0!,

whereGstrip is the Green’s function for the strip,z9 is the mirror image of the pointz8 with respect
to the end of the semistripṼ1.

In the case of nonzerol we obtain the Lippmann–Shwinger equation for the function
G̃1~z,z8;l!:

G̃1~z,z8;l!5G̃1~z,z8;0!1lu f ~z!u22E
Ṽ 1

u f ~j!u22G̃1~j,z8;0!dj.

It is essentially a one-dimensional integral equation that can be solved by ordinary methods. In a
similar way we can describe the Green’s functions for the domainsṼ2 and Ṽ3 obtained by the
cyclic permutation ofg1, g2, andg3. The corresponding Green’s functions we denote asG2 and
G3.

Now we consider the Green’s function for the curvilinear triangleV ~Fig. 2!. Let G0 be the
Green’s function for the circumscribed circle,v i ~i51,2,3! be some functions defined ongi
~densities!. We seek the Green’s function forV in the form

G5G01P1~v21̇v3!1P2~v31̇v1!1P3~v11̇v2!.

HerePi is an integral operator with the Poisson kernelPi(x,s)5]Gi(x,s)/]ns , andv i 1̇ v j is the
function coinciding withv i on gi and with v j on gj . Bearing in mind the Dirichlet boundary
condition, one comes to the following system of integral equations:

FIG. 4. The auxiliary domainV̂1; gi ~i51,2,3! are arcs of a circle~the boundary of the curvilinear triangleV!.
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Gug1505G0ug11P1~v21̇v3!ug112v1 ,

Gug2505G0ug21P2~v31̇v1!ug212v2 ,

Gug3505G0ug31P1~v11̇v2!ug312v3 . ~2!

Here we take into account that

P2~v31̇v1!ug15P2~v3!ug11P2~v1!ug1501v1 ,

and analogously,

Pi~v j !ugk50, if i , j ,k, are three different indices,

Pi~v j !ug j5v j , iÞ j ,

Pi~v j1̇vk!ug i5Ki jv j1Kikvk , iÞ j ,

whereKi j are integral operators.
Consider the problem of solvability of the system~2!. If l,0, then one has, in accordance

with the maximum principle:

uPi~v j1̇vk!ug iu<max$iv j iC~g j !
,ivkiC~gk!%. ~3!

HereC(g j ) is the space of continuous functions ongj . The system~2! takes the form

G0ug112v11K12v21K13v350,

G0ug212v21K23v31K21v150, ~4!

G0ug312v31K31v11K32v250.

The equations are considered in the spaceC̃5C~g1øg2øg3!. Let K denote the matrix with the
elementsKi j , where we putKii50, and letV5(v1 ,v2 ,v3). Then the system~4! can be rewritten
in the form

221G01V1221KV50, ~5!

where, in accordance with~3!, one getiKi C̃ < 1. Hence it is possible to solve the system by
iterations:

V52221G01222KG02223K2G01••• .

For l.0 the situation is more complicated because there are eigenvalues in this case. Write
Gj in the form

Gj~l!5Gj~0!1 (
k50

n

lk
„Gj~0!…k111ln11

„Gj~0!…n11Gj~l!

~this relation is the iterated Hilbert identity, see, for example, Popov34!. Let n be so large that the
series
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(
l51

` uf l&^f l u
l l
n11~l l2l!

,

converges for eachl outside the spectrum of the Dirichlet problem forV̂ j . Let l range over a
bounded set. Then this set contains only a finite number of eigenvalues, e.g.,l1,...,lN . Hence the
representation of the Green’s functionGj takes the form

Gj~l!5Gj~0!1 (
k50

n

lk
„Gj~0!…k111ln11(

l51

N uf l&^f l u
l l
n11~l l2l!

1ln11 (
l5N11

` uf l^f l u
l l
n11~l l2l!

.

We obtain the similar expression for the Poisson kernel:

Pj~l!5Pj~0!1 (
k50

n

lkS ]

]n
Gj~0! D k11

1ln11(
l51

N uf l&^~]/]n!f l u
l l
n11~l l2l!

1ln11 (
l5N11

` uf l^~]/]n!f l u
l l
n11~l l2l!

.

Note that in this expressionPj ~0! is a contracting operator, the second term is smooth with respect
to l, the third term is finite dimensional, and the fourth one is small for an appropriate choice of
n andN. Substituting this expression into~4!, we represent the operatorK in the form

K5K01K11K21K3 ,

where the operatorK0 is a contraction,K1 is a finite-dimensional operator,K2 is smooth, andK3
is an operator with a small norm. Taking into account the character of singularity of the two-
dimensional Green’s function, one can see that it is possible to choosen50, consequently, there
is no smooth termK2 in the expression

K5K01K11K3 .

Hence the equation~5! takes the form

221G01V1221K0V1221K1V1221K3V50.

Sincei221K0i<221, we havei221K01221K3i,1 for an appropriate choice ofN. Consequently,
the operatorI1221K01221K3 is a reversible one. Then we have

V1~2I1K01K3!
21K1V1~2I1K01K3!

21G050.

The operator (2I1K01K3)
21K1 is finite dimensional, hence it is reversible forl different from

eigenvalues. Thus we prove that the system~2! is solvable ifl range over a bounded set of
half-line containing no eigenvalues.

B. Two coupled curvilinear triangles with nonzero angles

To explain the basic idea of this part we consider at first a planar domainVin with the smooth
boundary]Vin. Let Vex 5 R2\V in, x0P]Vin. We shall consider the operator2D52~Din

%Dex!,
whereDin andDex are the Laplace operators with the Neumann boundary conditions in domains
Vin andVex, respectively.

Let us restrict this operator to the set of smooth functions vanishing near the pointx0, then we
obtain a symmetric operatorS0 with the deficiency indices~2,2!. ThereforeS0 has self-adjoint
extensions that are different from2D. Each such extension may be considered as a model of an
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obstacleVin with very small opening around the pointx0. It was shown that one can choose the
parameters of the extension in such a way that its Green’s function coincides with the leading term
of the asymptotics of the Green’s function for the obstacle with an opening of small but finite
diameter, as the diameter tends to zero.35 It means that the suggested model of an opening in the
obstacle is rather realistic. Furthermore, this model is a solvable one in the following sense: if the
solutions of the spectral or scattering problems in the domainsVin andVex without opening are
known, one can obtain the corresponding solutions for the model operator in an explicit form. The
described model has also another advantage: the model Green’s function and the model solution of
scattering problem have the same analytical properties as the corresponding ‘‘realistic’’ Green’s
function and the solution of a ‘‘realistic’’ scattering problem.

In a similar way we can proceed in the case of two planar domainVi , i51,2, with the smooth
boundaries, having no common interior points but a common pointx0 of their boundaries. The
situation changes radicaly in the case of Dirichlet boundary conditions because the singular solu-
tions with the singularity at the pointx0 do not belong to the spaceL

2 in this case~the singularity
is too strong!. If Vi are curvilinear triangles with a common vertexx0, some additional obstacles
arise connected with singularities of boundaries at the pointx0. We overcome all this difficulties
by using operator extension theory in indefinite inner product spaces~see the Introduction!.

Let us consider two equal nonoverlapping curvilinear equilateral trianglesV1 andV2 having
only one common vertexx0. We shall distinguish two cases:~i! the angles are equal top/p, pPN;
~ii ! the angles are equal to zero.

The case of zero angles will be discussed in the final part of the section; in what follows we
assume that angles are equal top/p, pPN. In this case the principal singularity of the Green’s
function has the orderr p. To construct the nontrivial self-adjoint extensions of the operatorS0 it
is necessary to extend the initial state spaceL2 ~V1øV2! by adding the correspondingpth multi-
pole. More precisely, letGp

j (x,k) 5 Qp( 2 “y)GD
j (x,y;k)uy5x0

, whereGD
j is the Green’s function

for the Dirichlet problem inVj and Qp(x) is the harmonic polynomial corresponding to the
singularity. LetAp

j be the following set of functions:

Ap
j 5H fPL2~V i !:E

V j
u f ~x!uux2x0u2p21 dx,`J .

Introduce the chain of functions,

h2p,p
j ~x!5Gp

j ~x,k0!, h2p12,p
j ~x!5~2D j2l0!

21h2p,p
j ,...,

hp,p
j ~x!5~2D j2l0!

2ph2p,p
j .

Herek0 is a fixed imaginary number such thatl05k0
2 is a regular point of the Laplace–Dirichlet

operatorHj52D j . Consider the setAp
j :

Ap
j 5$ f j : f j5 f p

j 1Cp,p
j hp,p

j 1•••1C2p,p
j h2p,p

j %,

where f p
j PAp

j . We define the scalar product in the spaceAp
j in the following way:

~ f ,g!A
p
j 5~ f p ,gp!L21 (

r52p

p22 E
V j
f p~x!Cr ,p

j ~g!hr ,p
j ~x!dx1 (

r52p

p22 E
V j
Cr ,p
j ~ f !hr ,p

j ~x!gp~x!dx

1 (
r ,q52p

p22

Cr ,p
j ~ f !Cq,p

j ~g!@hr ,p
j ,hq,p

j #, ~6!

where
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@hr ,p
j ,hq,p

j #5H EV j
hr ,p
j ~x!hq,p

j ~x!dx, if the integral converges,

0, otherwise.
~7!

The setAp
j is imbedded as a linear set into the Pontryagin spacePk @k5p/2 for evenp, and

k5~p11!/2 for oddp# by the standard way.31,44

Define an operatorS̃p, j in the following way. The domain of the operator is

D~S̃p, j !5$ f jPAp
j : f p

j PW2,loc
2 ~V j !, f p5 f p11

j 1Chp,p
j %,

where f p11
j belongs toAp11

j and (2S̃p, j2l0) f p11
j PAp

j . On the setAp
j the operatorS̃p, j acts by

definition as the Laplacian, and on the chain$hr ,p
j % the operator~2S̃p, j2l0! is the shift operator:

~2S̃p, j2l0!hr ,p
j 5hr22,p

j .

Lemma 2.1: The operator S˜p, j is self-adjoint.
Proof: It is easy to check by direct calculations thatS̃p, j is symmetric. The relation,

~2S̃p, j2l0!D~S̃p, j !5Ap
j ,

implies that it is self-adjoint. j

Remark:It is worth noting that not onlyl0, but the whole negative half-line, belongs also to
the set of regular points of the operator2S̃p, j . It is simple to show that the spaceAp

j does not
depend on the choice ofl0.

Consider the functionalxj , defined on the spaceD(S̃p, j ) by the relation

~ f ,x j !5„~2S̃p, j2l0! f ,h2p,p
j

…;

this functional is called the generalized deficiency element of the operator2S̃p, j .
31 Formally we

can write

x j5~2S̃p, j2l0!h2p,p
j .

Restrict the operatorS̃p, j onto the following set:

D~Sp, j
0 !5$ fPD~S̃p, j !:~ f ,x j !50%.

We denote the obtained operator asSp, j
0 .

Lemma 2.2: The operator Sp, j
0 is symmetric and has the deficiency indices~1,1!.

Proof: Really, for each functionf from D(Sp, j
0 ) one has

„~2S̃p, j2l0! f ,h2p,p
j

…50.

SinceAp
j is densely imbedded intoPk , Sp, j

0 has no other deficiency elements. j

Thus the operatorS̃p5S̃p, j % S̃p,2 is a self-adjoint one and the operatorSp5Sp,1
0

%Sp,2
0 is

symmetric with the deficiency indices~2,2!. Therefore the operatorSp has self-adjoint extensions.
The domain of such an extension is an annihilator subspace of the following ‘‘boundary form’’ on
D(Sp* ):

J~ f ,f!5„~2Sp*2l0! f ,f…2„f ;~2Sp*2l0!f….

Now let us describeD(Sp* ).
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Lemma 2.3: The setD(SP* ) consists of all elements f fromD(S̃p) satisfying the condition
Cp,p
1 ( f )5Cp,p

2 ( f )50.
Proof:Remark that in accordance with the definition~6! of the inner product in the spaceAp

j ,
the relations

„~2S̃p, j2l0!hr ,p
j ,h2p,p

j
…50, j51,2,

hold for eachhr ,p
j , 2p,r,p. In virtue of the Green’s formula we have for eachf p

j fromD(S̃p, j ),
j51,2:

E
V j

~2S̃p, j2l0! f p
j ~x!h2p,p

j ~x!dx5 lim
e→0

E
Se
j
S f pj ]h2p,p

j

]n
2h2p,p

j
] f p

j

]n
D dx5Cp,p

j ~ f !.

Hence

„~2S̃p, j2l0! f p
j ,h2p,p

j
…5Cp,p

j ~ f !,

and the lemma follows from this equality. j

Note thatCp,p
j ( f ) are the corresponding coefficients of the asymptotics~of the orderr p! of

the functionf p near the pointx0 multiplied by a constant that is independent off .
Lemma 2.3 leads immediately to the following statement.
Lemma 2.4:D(Sp* ) 5 $ f P Ap : f p 5 f p11 1 ahp,p ,a P C%. j

Remark:Lemma 2.4 is equivalent to the assertion

D~Sp* !5D~Sp!1̇N l0
,

whereN l0
is the deficiency subspace corresponding tol0.

Let us consider the boundary formJ( f ,f) thoroughly:

J~ f ,f!5J1~ f ,f!1J2~ f ,f!,

Jj~ f ,f!5„~2Sp*2l0! f
~0!, j ,f~0!, j

…1„~2Sp*2l0! f
~0!, j ,C2p,p

i ~f!h2p,p
j

…

2„C2p,p
i ~ f !h2p,p

j ,~2Sp*2l0!f
~0!, j

…2„f ~0!, j ,~2Sp*2l0!f
~0!, j

…,

wheref (0),j ,f (0),jPD(S̃p, j ), j51,2. Taking into account the self-adjointness of the operatorS̃p, j ,
one gets

J~ f ,f!5„~2Sp*2l0! f
~0!,1,C2p,p

1 ~f!h2p,p
1

…2„C2p,p
1 ~ f !h2p,p

1 ,~2Sp*2l0!f
~0!,1

…

1„~2Sp*2l0! f
~0!,2,C2p,p

2 ~f!h2p,p
2

…2„C2p,p
2 ~ f !h2p,p

2 ,~2Sp*2l0!f
~0!,2

….

After brief calculations one obtains

J~ f ,f!5Cp,p
1 ~ f !C2p,p

1 ~f!2C2p,p
1 ~ f !Cp,p

1 ~f!1Cp,p
2 ~ f !C2p,p

2 ~f!2C2p,p
2 ~ f !Cp,p

2 ~f!.

To construct a self-adjoint extension it is necessary to study the condition of annihilation of
the boundary form. Let us note that the algebraic structure of the form is the same as for conven-
tional zero-width slit model,35 that is why its analysis is similar to one in the cited paper~the
problem now reduces to the problem of linear algebra!. The result is the following description of
all self-adjoint extensionsHA(p),HB(p) of the operatorSp .

Theorem 2.1:There exist two families$HA(p)%,$HB(p)% of self-adjoint extensions of the op-
erator Sp which domains consist of all elements fromD(Sp* ) satisfying the conditions
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SCp,p
1

Cp,p
2 D 5S a11~p! a12

~p!

a21
~p! a22

~p!D SC2p,p
1

C2p,p
2 D ~8!

or

S C2p,p
1

2Cp,p
2 D 5S b11~p! b12

~p!

b21
~p! b22

~p!D S Cp,p
1

C2p,p
2 D . ~9!

j

Let us construct the Green’s function with the source at the pointYPV2 for the extended
operator~for example, for2 HB(p)!. We seek the function in the form

Gp~x,Y;k!55 ap
1Qp21~2“y!

]

]n
GD
1 ~x,y;k!U

y5x0

, xPV1,

G2,p~x,Y;k!1ap
2Qp21~2“y!

]

]n
GD
2 ~x,y;k!U

y5x0

, xPV2,

whereG2,p(x,Y;k) has the following form in a neighborhood of the pointx0:

G2,p~x,Y;k!5Qp21~2“y!
]

]n
GD
2 ~x0 ,y;k!U

y5x0

Qp~x2x0!1o~ ux2x0up!.

Here

Qp~“y!5Qp21~2“y!
]

]n
.

To satisfy~9! it is necessary to determineC2p,p
1 ,C2p,p

2 ,Cp,p
1 ,Cp,p

2 . It is simple to show that

C2p,p
1 5ap

1, C2p,p
2 5ap

2.

There exist two ways to determineCp,p
1 ,Cp,p

2 : to investigate the asymptotic expansions of the
Green’s functions for the operatorsH1 andH2 or to use some operator relations. Let us choose the
second way. We start from the Hilbert identity,

~Hj2l!212~Hj2l0!
215~l2l0!~Hj2l0!

21~Hj2l!21.

Iterating this identityp times, we obtain

~Hj2l!215~Hj2l0!
211~l2l0!~Hj2l0!

21~Hj2l!211•••1~l2l0!
p21

3~Hj2l0!
2p11~Hj2l!211~l2l0!

p~Hj2l0!
2p~Hj2l!21.

After differentiation with respect toy we get

Qp~2“y!GD
j ~x0 ,y;k!5Qp~2“y!GD

j ~x0 ,y;k0!1~l2l0!~Hj2l0!
21Qp~2“y!GD

j ~x0 ,y;k!

1•••1~l2l0!
p21~Hj2l0!

2p11Qp~2“y!GD
j ~x0 ,y;k!

1~l2l0!
p~Hj2l0!

2pQp~2“y!GD
j ~x0 ,y;k!. ~10!
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It is significant that each iteration of the Hilbert identity rises the smoothness of the last term.
Particularly,

~Hj2l0!
2pQp~2“y!GD

j ~x0 ,y;k!uy5x0
PCp.

The remarkable fact is that the other terms in~10! are elements of the chain$hr ,p
j %. That is why the

corresponding coefficient can be simply determined:

Cp,p
1 5C̃p,p

1 ap
1, Cp,p

2 5C̃ p,p
2 1Gp

2,

where

C̃p,p
j 5 lim

e→0
E

Se
j
~l2l0!

pS F j

]h2p,p
j

]n
2h2p,p

j ]F j

]n
D dx,

F j5Qp~2“x!~Hj2l0!
2pQp~2“y!GD

j ~x0 ,y;k!ux5x0 ,y5x0
,

Gp
25 lim

e→0
E

Se
j
SQp~2“y!GD

2 ~x0 ,y;k!Uy5x0
Qp~x2x0!

3
]h2p,p

2

]n
2h2p,p

2 ]

]n
„Qp~2“y!GD

2 ~x0 ,y;k!Uy5x0
Qp~x2x0!…D dx.

C. Two coupled curvilinear triangles with zero angles

Now we consider how to ‘‘switch on’’ the interaction through the vertex of a zero angle. In
this case the Green’s function with the source at the vertex would be a deficiency element. But this
function, as has been mentioned above, has an essential singularity at the vertex. Hence there is no
finite numbern such thatnth power of the resolvent maps the function intoL2. Consequently, we
cannot realize the above construction of the model in a Pontryagin space. We need to construct a
new extension of the initial space such that the determined earlier Green’s function belongs to the
extended spaces. Let us outline a variant of this procedure. We shall use the following result
concerning the asymptotics of theW2

2 solution of the Dirichlet problem near a vertex of zero
angles.45 Choose Cartesian coordinates (x,y) in the curvilinear triangleVi with zero angles in
such a way that thex axis is the common tangent line of two circles forming the zero angle and
that the triangle lies in the half-planex>0. Then the equation of the boundary line has the
asymptotic formy5cx2. The asymptotics of the solutionu(x,y) of the Dirichlet problem for the
equation (Hi2l)u50 is the following:

u~x,y!5C exp~2 i j0x
21!(

j50

`

f j~x
22y!xj ,

wherefj are smooth functions on the cross sectionu of the domain by the linex51, j0 is an
eigenvalue of the operatorA(j)5Hi(d/dy,j) with the domain W2

2(u)øW̊1
2(u). Here

Hi(]/]y,]/]x) is the initial operator for the domainVi ~see Sec. II B!.
In spite of the fact that the described properties of the Green’s function are more complicated

than ones for the case of nonzero angles, the construction of nontrivial extensions of the operator
S0 is developed formally by the same procedure. Here we start from the setA`

i of functions
tending exponentially to zero at the vertex, more precisely,

A`
i 5$uPL2~V i !:DuPL2~V i !, u~x,y!exp~ i j0x

21!→const, asx→0%.
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Then we construct a chain of subspaces, adding step-by-step elements with determined behavior
near the vertex„f j (x

22y)xjh(x,y)…, whereh(x,y) is a smooth cut-off function, i.e.h(x,y)51
for x21y2,1 andh(x,y)50 for x21y2.2. Finally, as above, we add elementsxi that is propor-
tional to the Green’s function for our domain. In the constructed spaceA`

i we introduce an inner
product~•,•!A

`
i . There is some nonessential freedom in the choice of the product. To avoid the

ambiguity, we adapt the usualL2 product on each step of the construction if the corresponding
integral converges and suppose the inner product is equal to zero otherwise@see, e.g., Eqs.~7!#.
Completing the obtained indefinite metric space, we obtain a Krein spaceK i . In this space the
considered operators act formally as the corresponding differential expressions. Restrict such an
operator on the set of all elementsf obeying (f,x i)A

`
i 50; then we get a symmetric operatorS`,i

0 ,

having self-adjoint extensions, and can introduce the symmetric operatorS`5S`,1
0

%S`,2
0 . In the

considered case, the Krein resolvent formula33,36,42 is a more convenient tool to describe self-
adjoint extensions ofS` in the Krein spaceH5K 1

%K 2. Let us denote byH05H1%H2 the
unperturbed operator in the spaceL2~V1øV2! and byR0(z), R0(z)5(H02z)21, its resolvent. Let
R0(z) be the continuous extension ofR0(z) on the spaceH. In what follows we restrict ourselves
to so-called ‘‘transversal’’ toH0 self-adjoint extensions,

46 they are sufficient to our purposes.
According to the Krein approach, the resolventR(z) of a transversal self-adjoint extension ofS`

has the form

R~z!5R0~z!2 (
i , j51

2

@Q~z!2A# i j
21R0~z!ux i&^x j uR0~z!. ~11!

HereA is a Hermitian 232-matrix that parametrize the extension, andQ(z) is the so-called Krein
Q matrix that has the elements

qi j ~z!5 1
2 ~z2z0!^x i uR0~z!R0~z0!ux j&1 1

2 ~z2 z̄0!^x i uR0~z!R0~ z̄0!ux j&, ~12!

wherez0PC\s~H0! is fixed.

III. MODEL OF A PERIODIC ANTIDOT ARRAY

In this section we consider a periodic system of curvilinear trianglesVg5V1g, gPG; hereV
is a fixed curvilinear equilateral triangle with zero angles or with angles equal top/p, wherep>3
is a fixed positive integer~of course, ifp53, this is an ordinary triangle!. Thus the typical voidV
is a circle in the first case and a~in general, curvilinear! triangle in the second one. Instead of
condition 0PV it is convenient now to suppose that 0 is the center of the triangleV5V0. ~Fig. 2!.

As before, the symbolG denotes the domainV1G; remember thatH0 denotes the initial state
spaceL2(G)5(gPG

%Hg
0 andH05(gPG

%Hg
0 is the unperturbed Hamiltonian of the model~see

the Introduction!. This Hamiltonian describes a charge carrier in the set of isolated trianglesVg .
To switch on the tunneling between the triangles through their vertices by means of operator
extension theory, we need three deficiency elementsxi

(g) inHg ~i51,2,3!, corresponding to each
vertex of the triangleVg . As a result we obtain an indefinite metric state space containing the
spaceHg

0 ~see Sec. II!. It is convenient to proceed in the spaceH0
05L2~V! only; this is possible

becauseHg
0 andH0

0 are isomorphic. In the absence of magnetic fields an isomorphism is estab-
lished via translations by vectors fromG, but in the presence of a magnetic field we must deal with
the magnetic translation group.41 In this connection we begin with some basic concepts related to
this group.

A. Magnetic translation group and its lattice representations

Choose some basis vectorsa1 anda2 of the latticeL; if v is any vector fromR2 we denote by
v1 ,v2 the coordinates ofv with respect to the basisa1, a2: v5v1a11v2a2. If v, v8PR2, then the
symbolv`v8 will denote the numberv1v28 2 v2v18 . It is obvious thatv`v85v3v8/SL , where
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v3v8 is the standard symplectic product inR2, andSL5a13a2 is the oriented area of the elemen-
tary cellCL ~see the Introduction!. Remember thath denotes the number of magnetic flux quanta
through the cellCL : h5uSl(Be/2p\c)u. Let Gh be a subgroup of the multiplicative group
S1~S15$zPC:uzu51%!, consisting of all elements of the form exp(p ihn), nPZ. The symbolWh
will be denote the setL3Gh ; Wh become a group structure by defining the multiplication as
follows:

~l,z!~l8,z8!5~l1l8,zz8 exp@p ih~l`l8!# !; ~13!

this group is called the magnetic translation group. It is evident that the definition ofWh does not
depend on a choice of basis vectorsa1, a2.

If a magnetic field is absent, then a quantum-mechanical HamiltonianH of a charged particle
in the lattice system of triangles is invariant with respect to the translations by vectors fromL. The
presence of a magnetic field violates the translation symmetry of the Hamiltonian. Instead of the
L invariance the HamiltonianH is invariant under the composition of the translation by a vector
lPL, and the gauge transformation of the vector potential of the magnetic field:A°A2~B3l!/2.
From the mathematical point of view the operatorH is invariant with respect to a unitary repre-
sentation of the groupWh . Under this representation an element~l,z!PWh corresponds to the
unitary operator@l,z#, which acts on any functionfPL2(G) according to the formula

~@l,z# f !~x!5z exp@2p ih~x`l!# f ~x2l!. ~14!

Let us introduce a lattice counterpart of the representation~14!. Consider a family~G g!gPG of
complete inner product spaces~Hilbert spaces, Pontryagin spaces, or Krein spaces!, such that
G g1

5 G g2
if g1[l2 ~modL!. We shall denote

G5 (
gPG

%G g , G K5 (
gPK

%G g ,

henceG 5 (gPL % G l8 , whereG l8 . G K for eachlPL. In other words,G5G K^ l 2~L!. We shall
consider an elementg5~gg!gPG of the spaceG as a functiong:G→øgPG G l and write g~g!
instead ofgg . Equation~14! requires that we should define the unitary representation~l,z!°@l,z#
of the groupWh in the spaceG in the following way:

~@l,z#g!~g!5z exp@2p ih~g`l!#g~g2l!. ~15!

We shall denote the representation~15! asDh
G .

We recall that each bounded operatorA in the direct sumG5(gPG %G g is represented by the
corresponding matrix„A~g,g8!…g,g8PG, whereA~g,g8! is a bounded operator acting fromG g8 into
G g . Namely, letJg be the canonical imbedding operator,Jg :G g\G , and letPg be the canonical
projection,Pg :G→G g . ThenA(g,g8)5PgAJg8, and for everyfPG we have

~Af!~g!5 (
g8PG

A~g,g8!f~g8!, ~16!

where the series converges unconditionally in the spaceG .
Proposition 3.1: The operator A in the spaceG is Dh

G -invariant iff its matrix„A~g,g8!…g,g8PG

satisfies the condition

A~g2l,g82l!5exp@p ih„~g2g8!`l…#A~g,g8!, ~17!

where, g, g8PG, lPL.
Proof:We have from definitions that the relation
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A@l,1#f~g!5@l,1#A~g!

~gPG! is equivalent to the following one:

(
g8PG

A~g,g8!exp@p ih~l`g8!#f~g82l!5 (
g8PG

A~g2l,g8!exp@p ih~l`g!#f~g8!.

We can rewrite the relation~17! in the form

(
g8PG

A~g,g81l!exp@p ih„l`~g82g!…#f~g8!5 (
g8PG

A~g2l,g8!f~g8!. ~18!

Taking into account that the linear hull of the setøgPG G g is dense in the spaceG , we conclude
that the validity of the equality~18! is equivalent to the validity of the condition

A~g,g81l!5exp@p ih„~g82g…`l!#A~g2l,g8!,

for everyg, g8PG andlPL. Replacingg81l by g8, we finish the proof of the proposition.j
Corollary: The Dh

G -invariant operator A is fully determined only by the matrix elements
A~g,k8! ~gPG, k8PK! by the formula

A~g,g8!5exp@p ih„~g82g!`l8…#A~g2l8,k8!, ~19!

where l85g82k8, k8PK. More precisely, let A~l,k8!:G k8→G g ~gPG, k8PK! be a family of
bounded operators such that for everyfPG the series (16) unconditionally converges if the
operators A~g,g8! are defined by the formula (19); then the formula (16) defines a bounded
Dh
G -invariant operator A. j

Proposition 3.2: In order that the formula (19) gives us a self-adjoint operator A it is neces-
sary and sufficient that the operator family A~g,k8! ~gPG, k8PK! satisfies the condition

A~k1l,k8!5exp@p ih„~k82k!`l…#A* ~k82l,k!, ~20!

wherelPL, k, k8PK.
Proof: In accordance with~19!,

A~g,g8!5exp@p ih„~g2g8!`m…#A~g82m,k!, ~21!

whereg, g8PG, kPK, m5g2k. Hence the equality

A~g,g8!5A* ~g8,g!, ~22!

which is equivalent to the self-adjointness of the operatorA, takes the form

exp@p ih„~g82g!`l…#A~g2l,k8!5exp@p ih„~g82g!`m…#A* ~g82m,k!,

wherem5g2k, l5g82k8. In the other words, the relation~22! is equivalent to the following one:

A~g2l,k8!5exp@p ih„~g82g!`~m2l!…#A* ~g82m,k!,

or

A~k1m2l,k8!5exp@p ih„~k82k1l2m!`~m2l!…#A* ~k81l2m,k!

5exp@p ih„~k82k!`~m2l!…#A* ~k81l2m,k!.
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Replacingm2l by l, we obtain~20!. j

The propositions 3.1 and 3.2 allow us to simplify the construction of a model Hamiltonian.

B. Construction of the model

We return to the construction of the model state space and the model Hamiltonian. In our case
K5$0,b%, where b52~a11a2!/3. We shall identify the spaceHg

05L2~Vg! with the space
H0

05L2~V0! using magnetic translations@g,1# defined in accordance with~14!. More precisely, let
Hg5H0 for everygPG. We shall identify a functionfPL2(G)5L2(V01G) with the family
~f g!gPGPH5@|M#sgPGHg by the relation

f g~x!5exp@p ihx`g# f ~x1g!, xPV0 .

It is a straightforward matter to establish that the isomorphismf°( f g)gPG intertwines the unitary
representations~13! and ~15!, i.e., @l,z#( f g)gPG5(([l,z] f )g)gPG for every ~l,z!PWh .

Let us consider now the unperturbed HamiltonianH05(gPG %Hg
0 , whereHg

05H0
0 is the

operator defined inL2~V0!5H0
0 by the differential expression~1! and Dirichlet boundary condi-

tions. LetS0
0 be the restriction ofH0

0 to the set of functions fromH0
0 vanishing near of the vertices

of the curvilinear triangleV0. We shall denote byxi ~i51, 2, 3! the generalized deficiency
elements ofS0

0 corresponding to the vertices~see Secs. II B and II C!. In accordance with the
results of Sec. II the operatorS0

0 has nontrivial self-adjoint extensions in an inner product space
H0, which is a Pontryagin or Krein space. LetR0(z) be the resolvent of the operatorH0

0 in the
spaceH0

0; as in Sec. II we denote byR0(z) its continuous extension on the spaceH0. Let
R0(z)5(gPG %R(g)(z), whereR(g)(z) 5 R0(z) for eachgPG. Now we are able to introduce the
state spaceH of our model, this is the direct sumH5(gPG %Hg , whereHg5H0 for each
gPG. Let S05(gPG %Sg

0 , whereSg
05S0

0 ;gPG. We shall seek the Hamiltonian of our model
among self-adjoint extensions of the operatorS0 in the spaceH. At first, we describe the required
extensions using the Krein resolvent formula. To do this, we need three auxiliary objects:42 the
typical deficiency spaceG , the Krein G function K(z):G→H, and the KreinQ function
Q(z):G→G „zP C\s~H0!…. Let us describe them. In our case, the Hilbert spaceG is the direct
sumG5(gPG %G g , whereG g is the standard three-dimensional Hilbert spaceC3 for eachgPG.
We shall denote byQg(z) ~gPG! the linear mapping inC3 with the matrixq(z)5iqi j (z)i , where
the elementsqi j (z) are defined by Eq.~12! ~now i , j51,2,3!. The symbolQ(z) will denote the
direct sumQ(z)5(gPG %Qg(z). The operator-valued functionQ(z) defined onC\s~H0! is just
the KreinQ function. Further, denote byKg(z) the linear mapping fromG g5C3 into the space
Hg5H0 defined on the standard basis vectorsej by the formula

Kg~z!ej5R0~z!ux j&.

In our case the KreinG function K(z) is the direct sumK(z)5(gPG %Kg(z). Now all the
required self-adjoint extensions of the unperturbed Hamiltonian are given by the Krein resolvent
formula. Namely, letA be a bounded self-adjoint operator inG such that the bounded inverse
operator exists. Then the operatorRA(z),

RA~z!5R0~z!2K~z!@Q~z!2A#21K* ~z!, ~23!

is the resolvent of a self-adjoint extensionHA of the operatorH0 @see Refs. 33 and 36#.
The Hamiltonian of our model should be invariant with respect to magnetic translations from

Wh . The proposition below provides a condition of the invariance ofHA .
Proposition 3.3: The operator HA is Dh

H invariant-iff the operator A is Dh
G invariant.

Proof: We shall use the standard definition of commutation of a bounded operatorB with a
densely defined closed operatorA ~see, e.g., Ref. 47!: B commutes withA iff BA,AB, i.e. iff for
eachfPD(A) we haveBfPD(A) andABf5BAf. Taking into account that the operatorR0(z)
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is Dh
H invariant and the operatorQ(z) is Dh

G invariant, we can finish the proof by reference to
Ref. 47, Part III.5.6. j

We can decompose the operatorA into two parts:A5B1T, where a bounded self-adjoint
operatorB parametrizes those extensionsHB which are the model Hamiltonians of arrays consist-
ing of isolated domainsVg , like the operatorH0. The operatorT turn on a tunneling between
regionsVg . On the one hand, the physical meaning of the operatorsB andT and on the other the
propositions 3.1, 3.2, and 3.3 impose very strong restrictions to the matrices of the operatorsB and
T. Namely, the matrixB~g,g8! must be of the formB(g,g8)5B0dg,g8, whereB0 is a self-adjoint
operator inC3; in other words,B0 is a Hermitian 333 matrix. A detailed physical motivation how
to choice the matrixT is presented in Refs. 27 and 28; here we follow the line of the cited papers.
To identify an acting in the spaceC3 operatorT~g,g8! with a 333 matrix, we enumerate the
vertices of the triangleV0 with the numbers 1, 2, 3 in an arbitrary way. Then each triangleVg

acquires the uniquely determined enumeration of vertices by means of the translation ofV0 on the
vectorg. If Vg andVg8 have no common vertex, then, evidently, the equalityT~g,g8!50 should be
valid. Otherwise, the magnitudeuTi j ~g,g8!u2 is proportional to the tunneling probability from a
‘‘infinitesimal neighborhood’’ of thei th vertex inVg to a ‘‘infinitesimal neighborhood’’ of thej th
vertex inVg8. By symmetry, all the nonzero elementsTi j must be mutually equal; we shall denote
their common value ast. In virtue of Proposition 3.1 it is sufficient to find the matrices of the form
T~g,0! andT~g,b! only. The above arguments show that only the elements of the kindT~l,b! and
T~b1l,0! ~lPL! may be nonzero. Using Fig. 2 we obtain

T~l,b!5

{S 0 0 t

0 0 0

0 0 0
D , l5a1,

S 0 0 0

0 0 0

0 t 0
D , a5a2,

S 0 0 0

t 0 0

0 0 0
D , l5a11s2,

S 0 0 0

0 0 0

0 0 0
D , in other cases.

~24!

Proposition 3.2 implies that

T~b1l,0!5exp@ 2
3p ih~l12l2!#T* ~2l,b!. ~25!

Finally, the operatorT is determined by~19! and~20!. The construction of the model Hamiltonian
is completed, it is the operatorHA with the parametric matrixA5B1T described above.
The ‘‘fitting parameters’’ of our model are the elementsbi j of the Hermitian matrixB and the
numbert.

C. Dispersion equation for the model Hamiltonian HA—the bound states

If the flux h is a rational number:h5N/M , whereN andM are coprime integers, we can use
harmonic analysis on the groupWh to reduce the spectral problem for the operatorHA to the
eigenvalue problem of linear algebra. Further, we shall writeD instead ofDh

G for simplicity. The
symbolTh

2 will denote the torus,
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Th
25@0,M21!3@0,1!,

and we abbreviateT25T1
25@0,1!3@0,1!.

Let us denote byG̃ the direct integral,

G̃5E
Th
2

% G̃ ~p!dp,

where each fiberG̃ ~p! coincides with the spaceCM
^CM

^G K . It is evident that

G̃5L2~Th
2 ! ^CM

^CM
^G K . ~26!

Thus, we shall consider the elementsf of the spaceG̃ as functions of five variables:

f5f~p1 ,p2 , j ,m,k!5f~p, j ,m,k!,

wherep1P[0,M21), p2P@0,1!, j , mP$0,...,M21%, kPK.
We define an isomorphismF h :G→G̃ in accordance with the formula

~F hf!~p; j ,m,k!5 (
l1 ,l2PZ

f„l1a11~l2M1m!a21k…exp@p ihk`„l1a11~l2M1m!a2…

22p i „l1p11l2p21~l1h/2!~Ml21m12 j !…#. ~27!
Proposition 3.4:The operatorF h is a well-defined Hilbert isomorphism.
Proof: It is easy to prove that the operatorF h is a superposition of the following four

operatorsF h
( i ) ~i51,2,3,4!.

~1! F h
~1! maps the sequencefPG5l 2~L!^G K to the sequencef8PG5l 2~Z2!^CM

^G K in
accordance with the formula

f8~l1 ,l2 ,m,k!5f„l1a11~l2M1m!a21k….
~2! F h

~2! maps the sequence f8PG5l 2~Z2!^CM
^G K to the sequence

f9PG5l 2~Z2!^CM
^G K according to the formula

f9~l1 ,l2 ,m,k!5exp@p ihk`„l1a11~l2M1m!a2…2p il1h~l2M1m!#f8~l1 ,l2 ,m,k!

5exp@p ih~k1ma2!`„l1a11~l2M1m!a…2p iNl1l2#f8~l1 ,l2 ,m,k!.
~3! F gh

~3! is the Fourier transform with respect to the variables fromZ2, i.e., F h
~3! maps the

sequencef9PG5l 2~Z2!^CM
^G K to the functionf̂ from the spaceL2~Th

2!%CM
%G K :

f̂~p,m,k!5 (
l1 ,l2PZ

f9~l1 ,l2 ,m,k!exp@22p i ~l1p11l2p!#.

~4! F h
~4! has the formF ^ ICM%G K

, where the operatorF maps a functionfPL2~T2!, to the
function f̃PL2~Th

2!%CM in accordance with the formula

f̃ ~p1 ,p2 , j !5 f ~p11$h j %,p2!.

Here$x% is the integer part of the real numberx.
Obviously, all the operatorsF h

( i ) ~i51, 2, 3, 4! are Hilbert isomorphisms, hence the operator
F h is an isomorphism too. j

Let F be an boundedD-invariant operator in the spaceG with the matrixF~g,g8!, and letF̃
be the operatorF hFF h

21 . Since the operatorF is D invariant, the operatorF̃ acts fiberwise. By
direct calculation we can obtain that the operatorF̃ in the fiber over a pointpPTh

2 has the
following matrix:
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F̃~p; j ,m,k; j 8,m8,k8!5d j j 8 exp@2p ihm8k`a2# (
l1 ,l2PZ

F„l1a1

1~l2M1m!a21k;m8a21k8…exp@p ihk`„l1a11~l2M1m!a2…

22p i „l1p11l2p21~l1h/2!~Ml21m12 j !…#. ~28!

The formula~28! is equivalent to the following one:

F̃~p; j ,m,k; j 8,m8,k8!5d j j 8 exp@2p ihm8k`a2# (
l1 ,l2PZ

F„l1a11~l2M1m2m8!a2

1k;k8…exp@p ihk`„l1a11~l2M1m!a2…22p i „l1p11l2p2

1~l1h/2!~Ml21m1m812 j !…#. ~29!

Really, in virtue of~17!,

F„l1a11~l2M1m!a21k;m8a21k8…5F„l1a11~l2M1m2m8!a21k;k8…

3exp@2p ih„l1a11~l2M1m2m8!a21k2k8…

`m8a2#

5F„l1a11~l2M1m2m8!a21k;k8…

3exp~2p ihl1m8!exp@2p ihm8~k2k8!`a2#.

Fix a point pPTh
2 and consider the operatorF̃~p! acting in the spaceCM

^CM
^G K and

having the matrix kernelF̃~p;j ,m,k; j 8,m8,k8!. In virtue of ~28! the operatorF̃~p! has a block-
diagonal structure with respect to the indexj . In other words, let„F̃ j j 8~p!… be the matrix repre-
sentation of the operatorF̃~p! @all operatorsF̃ j j 8~p! act in the spaceCM

^G K#, then the matrix
F̃ j j 8~p! is a diagonal one:

F̃ j j 8~p!5d j j 8F̃ j~p!. ~30!

Each operator in~30! is defined in an obvious way according to the formula~26!.
Let V be a unitary operator in the spaceCM

^G K having the form

V5U^ IG K
, ~31!

whereU is a unitary operator in the spaceCM with a matrix of the form

S 0 I M21

exp~2p ip2! 0 D
~here I n denotes then3n identity matrix!. It is evident thatU acts onto the vectorsem of a
standard basis as follows:

Uem5exp@2p idm0p2#em*1 , ~32!

hence

U* em5exp@22p idm,M21p2#em%1 ; ~33!

heren%m andn*m are addition and subtraction moduloM , respectively.
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Proposition 3.5: The following relation is valid for eachpPTh
2 :

VF̃j~p!V*5F̃ j %1~p!. ~34!

Proof: In virtue of ~32! and ~33!, we get

~VF̃jV* !~p;m,k;m8,k8!

5^emuUF̃ j~p;k,k8!U* em8&

5^U* emuF̃ j~p;k,k8!U* em8&

5exp@2p ip2~dm,M212dm8,M21!#^em%1uF̃ j~p;k,k8!em8%1&

5exp@2p ip2~dm,M212dm8,M21!#F̃ j~p;m%1k;m8%1,k8!.

Let us prove that

exp@2p ip2~dm,M212dm8,M21!#F̃ j~p;m%1k;m8%1,k8!5F̃ j %1~p;m,k;m8,k8!. ~35!

This is evident formÞM21 andm8ÞM21 @see~29!#. Letm5M21, butm8ÞM21. Then

F̃ j~p;m%1,k;m8%1,k8!5exp@2p ih~m811!k`a2# (
l1 ,l2PZ

F„l1a11~l2M2m821!a2

1k;k8…exp@p ihk`~l1a11l2Ma2!22p i „l1p11l2p21~l1h/2!

3~Ml21m81112 j !…#

5exp@2p ihm8k`a2# (
l1 ,l2PZ

F~l1a11„~l221!M1m2m8…a2

1k;k8!exp@p ihk`~l1a11„~l221!M1m…a2!22p i ~l1p11l2p2

1~l1h/2!„M ~l221!1m81m12 j12…!#

5exp~22p ip2!F̃ j %1~p;m,k;m8,k8!.

Thus, in this case the equality~34! is proved. Let nowm85M21, butmÞM21. Then

F̃ j~p;m%1,k;m8%1,k8!5 (
l1 ,l2PZ

F„l1a11~l2M1m11!a21k;k8…

3exp@p ihk`„l1a11~l2M1m11!a2…22p i „l1p11l2p2

1~l1h/2!~Ml21m1112 j !…#

5exp@2p ihm8k`a2# (
l1 ,l2PZ

F~l1a11„~l211!M1m2m8…a2

1k;k8!

3exp@p ihk`~l1a11„~l211!M1m…a2!22p i ~l1p11l2p2

1~l1h/2!„M ~l211!1m1m81212 j22M …!#

5exp~2p ip2!F̃ j %1~p;m,k;m8,k8!.
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Hence, in this case the equality~34! is also valid. If lastm5m85M21, then we get

F̃ j~p;m%1,k;m8%1,k8!5 (
l1 ,l2PZ

F~l1a11l2Ma21k;k8!exp@p ihk`~l1a11l2Ma2!

22p i „l1p11l2p21~l1h/2!~Ml212 j !…#

5exp@2p ihm8k`a2# (
l1 ,l2PZ

F„l1a11~l2M1m2m8!a21k;k8…

3exp@p ihk`„l1a11~l2M1m!a2…22p i „l1p11l2p2

1~l1h/2!~Ml21m1m81212 j22M !…#

5F̃ j %1~p;m,k;m8,k8!.

The proof is complete. j

Corollary: Let pPTh
2 be fixed. Then the operators F˜ j ~p! ( j50,...,M21) are mutually uni-

tarily equivalent. j

Now we find the matrixF̃~p;j ,m,k; j 8,m8,k8!, whereF5Q(z)2A5Q(z)2(B1T). In virtue
of Proposition 3.5, it is sufficient to determine the matricesF̃0~p;m,k;m8,k8!
5F̃~p;0,m,k;0,m8,k8! only. It is simple to show that

Q̃0~p;m,k;m8,k8!5 Hq~z!, if m5m8 and k5k8;
0, otherwise. ~36!

Similarly,

B̃0~p;m,k;m8,k8!5 HB0 , if m5m8 and k5k8,
0, otherwise. ~37!

To determine the matrixT̃0 let us introduce the following notations:

L15S 00
0

0
0
0

t
0
0
D , L25S 0 0 0

0 0 0

0 t 0
D , L35S 0 0 0

t 0 0

0 0 0
D . ~38!

Using ~25!, we obtain

T̃0~p;m,0;m8,0!5T̃0~p;m,b;m8,b!50, ;m,m8. ~39!

Moreover, the Hermitian symmetry gives us

T̃0~p;m,b;m8,0!5T̃0* ~p;m8,0;m,b!, ;m,m8. ~40!

To calculate the nonzero elements of the matrixT̃0~p!, we shall deal with three cases.

1. Case M51

In this case the indicesm,m8 are equal to zero, and may be omitted from the notations. Simple
calculations give us

T̃0~p;0,b!5exp~22p ip1!L11exp~22p ip2!L21exp@22p i ~p11p21N/2!#L3 , ~41!

T̃0~p;b,0!5exp~2p ip1!L1*1exp~2p ip2!L2*1exp@2p i ~p11p21N/2!#L3* . ~42!
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Considering cases 2 and 3, we shall writeT̃kk8
(0) (p;m,m8) instead ofT̃~0!~p;m,k;m8,k8!. In virtue

of ~39! and ~40!, it is sufficient to find the matrix elementsT̃0b
(0)(pm,m8) only.

2. Case M52

Simple calculations give us

T̃0b
~0!~p;0,0!5exp~22p ip1!L1 ,

T̃0b
~0!~p;1,1!5exp@22p i ~p11h!#L1 ,

~43!
T̃0b

~0!~p;1,0!5L21exp@22p i ~p11h/2!#L3 ,

T̃0b
~0!~p;0,1!5exp~22p ip2!L21exp@22p i ~p11p213h/2!#L3 .

3. Case M>2

Only the following three subcases are possible:

~ i! l1561,Ml21m2m850;

~ ii ! l150, Ml21m2m851;

~ iii ! l150, Ml21m2m8521.

In subcase~i! the numberl25(m2m)/M should be an integer. Since 0<m,m8,M , then
2(M21)<m82m<M21, hencel2 is an integer iffm2m850. Thus the condition~i! may be
rewritten in the form

~ i8! l1561, l250, m5m8.

In subcase ~ii ! the number l25(11m2m8)/M should be an integer. Since
2M12<11m1m8<M , then 11m2m850 or 11m2m85M . Thus we have two possibilities:

~ ii 8! l150, l250, m85m21,
~ii 9! l150, l251, m85M1m21.

In virtue of the inequality 0<m8<M21 subcase~ii 9! may be reformulated in the following
manner:

~ ii 9! l150, l251, m50, m85M21.

The condition~iii ! divides into the following two subcases by an analogous way:

~ iii 8! l150, l250, m5m82,
~ iii 9! l150, l2521, m850, m5M21.

Using the relations~i8!,...,~iii 9!, it is easy to find all nonzero elements of the matrixT̃0~p!. As a
result, we obtain forM.2:
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T̃0b
~0!~p;m,m!5exp@22p i ~p11hm!#L1 ,

T̃0b
~0!~p;m,m21!5L21exp@22p i „p11h~2m21!/2…#L3 , 1<m<M21,

~44!

T̃0b
~0!~p;0,M21!5exp~22p ip2!L21exp@22p i ~p11p21h~2M21!/2…#L3 .

Now we describe the spectrum of the HamiltonianHA . First, we note that the spectrum of the
unperturbed HamiltonianH0 coincides~as a set! with the spectrum ofH0

0, which is a discrete one.
Hence, the spectrum ofH0 is pure point and consists of infinitely degenerate eigenvalues~Landau
levels!. A pointEPs(H0) is contained in the spectrum ofHA as an eigenvalue, ifh.1 ~Refs. 23,
27, and 28!. Other points of the spectrums(HA) are defined by the dispersion equation

det„Q̃~E!2T̃~p!…50. ~45!

The equation~45! determines a multivalued functionE~p!. The continuous single-valued
branchesEj ~p! of the functionE~p! are called the dispersion laws. The images of the functions
Ej ~p! are segments that form bands of the spectrum. In virtue of the corollary of Proposition 3.5,
each band isM -fold degenerate. As in Ref. 23, the following picture of the spectrums(HA) can
be established: an eigenvalue of the operatorH0 broadens into a band that lies below the eigen-
value; each band divides intoM subbands. It should be emphasized that the bands and the
subbands may overlap.

The origin of an eigenvalueEPs(HA) that is simultaneously an eigenvalue of the unper-
turbed operatorH0 is clear: it corresponds to the classical trajectory lying in an areaVg , wholly.

43

The following theorem, which is the main result of the section, shows that there is another
possibility of appearance of bound states in the spectrums(HA). Namely, a bound state may be
arise as a constant solution~independent of the quasimomentump! of the dispersion equation~45!.

Theorem 3.1:If h is an integer:h5N, then elements of the ‘‘fitting matrix’’ B can be chosen
in such a way that the dispersion equation has a solution independent of a quasimomentumpPT2

and the tunneling parametert.
Proof: Let E0PR\s~H0!; we put

b i j5 Hqi j ~E0!, if i5 j ,
qi j ~E0!21, if iÞ j .

Evidently,B5ib i j i is a Hermitian matrix. Ift is not an eigenvalue of2B, then the Hamiltonian
HA is well defined. By symmetry,qj j (z) does not depend onj ; denotep(z)5qj j (z)2b j j . After
cumbersome algebra, we bring the left-hand side of Eq.~45! for z5E0 to the form

p619tp424t2p31a2t
3p21a1t

4p50, ~46!

where

a2521812@cos 2p~p11N/2!1cos 2p~p21N/2!1cos 2p~p12p2!#,

a154@32cos 2p~p11N/2!1cos 2p~p21N/2!1cos 2p~p12p2!#.

The theorem follows from Eq.~46!. j

Remark:The hypothesis of Theorem 3.1 does not exclude the caseN50 as well.
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Asymptotic estimates which relate the diffusion of wave packets on discrete lattices
to Hausdorff dimensions of the local density of states are discussed. ©1996
American Institute of Physics.@S0022-2488~96!01010-9#

I. INTRODUCTION

The basic mathematical objects of this article are a discrete unitary group$Ut% tPZ in an
infinite-dimensional separable Hilbert spaceH, and a complete Hilbert basisB5$en%nPZ . The
discrete-time evolution of vectorsc P H is obtained by repeated application of the generatorU.
Upon expanding vectorsUtc on the basisB, vectors inl 2(Z) are obtained, which can be physi-
cally depicted as quantum wave packets propagating on a discrete one-dimensional lattice, the
sites of which are in one-to-one correspondence to the basis vectors. According to conventional
wisdom, long-time wave packet dynamics and spectral structure are qualitatively connected: wave
packets will remain essentially confined within a finite region, or will propagate unboundedly,
depending on the discrete or continuous nature of the spectrum. The intuitive idea, that the motion
of wave packets will be more ‘‘delocalized,’’ the more ‘‘continuous’’ the spectrum, turns out to
have a validity at all points between the extreme cases of discrete and absolutely continuous
spectra. It has in fact been turned into rigorous estimates, which relate the asymptotical~in time!
wave packet dynamics, to ‘‘spectral’’ dimensions of the Hausdorff type, which describe how
continuous the spectral measure~local density of states! associated with the vectorc is. Estimates
of this kind make up the subject of this article.

Physical motivation is provided by the increasingly frequent apparition of singular continuous
spectra in quantum mechanical models for electron dynamics in solids, where such spectra may
have a great influence on quantum transport. This issue has been numerically investigated on
several quasiperiodic, incommensurate models. Fractal dimensions which are somehow related to
the singular continuous structure of the spectrum have been numerically obtained from a scaling
analysis of the band spectra of periodic approximants.1–4 The results obtained in this way suggest
a connection between ‘‘band-scaling’’ fractal dimensions and~anomalous! wave packet diffusion.
Recourse to more sophisticated concepts of fractal analysis5,6 now appears necessary, in order to
further pursue this line of investigation; a theoretical approach has been proposed.5

Further numerical works have investigated the multifractal structure of the spectral measure
itself, on different models.6–8 A comparison of such data with data from numerical simulation of
the quantum evolution in time7,8 confirms a qualitative connection, but at the same time indicates
that no simple exact relation exists between diffusion exponents and dimensions of the local
density of states.

Rigorous results available to date concern the decay in time of the time-averaged probability
of survival in the initial state,3,9–11and the algebraic growth of the ‘‘width’’ of wave packets, as
measured, e.g., by the moments of the associated probability distribution. In the latter case,
through successive generalizations the result has been obtained12–16that the exponent of growth is
bounded from below by the information dimensionD1 of the spectral measure, independently of
the choice of the basisB.

No such generalupperbound is to be expected. The very definition of moments depends on
the labeling of the basis vectors, and so do the corresponding growth exponents, independently of
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the properties of spectral measures. Thus, although the growth exponents are in all cases subject to
the above mentioned lower bound, they do actually depend on the choice of a basis; therefore the
‘‘spatial’’ structure of the operatorU on the basisB has to be taken into account in order to get
upper bounds on growth exponents. For instance, it will be shown in sec. V that a ballistic upper
bound is valid as soon as the operatorU satisfies a certain ‘‘analyticity’’ property with respect to
the basisB.

According to empirical evidence, the actual growth exponents can be
significantly different from both the ballistic upper bound and theD1 lower bound. Getting

precise asymptotic estimates on the long-time behavior of wave packets is an open problem that
may not be solvable on the level of generality attained by the existing bounds.

In this article a different dynamical characterization of singular continuous spectra is given,
based on the growth with time of the dimension of the Hilbert subspace explored by the trajectory
of a statec. By refining and extending results of Ref. 15, it will be shown that the corresponding
growth exponents are related by upper and lower estimates to the fractal and Hausdorff dimen-
sions, respectively, of the spectral measure. These results are presented in sec. IV below. In secs.
II and III a survey of some basic definitions and of previous results, which are needed for the
elaborations in sec. IV and VI, is given.

Finally, in this article some steps are taken towards a multifractal analysis of the spatial
structure of the wave packet, following an idea of Evangelou and Katsanos.17 Such an analysis is
suggested by numerical evidence15,17 that growth exponents of moments do not scale in a simple
way with the order of the moments~multiscaling!, and so give rise to a nontrivial spectrum of
growth exponents. This can be taken as an indication that wave packets develop a sort of multi-
fractal structure in space, which may in turn reflect an analogous structure of eigenfunctions.1,18

From this viewpoint, estimating growth exponents is but a special aspect of a more general
problem: how is this structure related to the multifractal structure of the spectral measures? Some
results in this direction, which follow from general lower bound on growth exponents, are pre-
sented in sec. VI.

Multiscaling is also a justification for an aspect of the present article, which may appear
disturbing to the reader: the proliferation of different quantities, all of which somehow measure
the growth of wave packets, but still may behave differently in time. Establishing precise connec-
tions between these different definitions would enable reducing their number; however, this as yet
unsolved problem is closely related to the problem of upper bounds. Previous general remarks
about the latter problem are valid in this case, too.

II. SPECTRAL DIMENSIONS

In the following, the set$l P @0,2p#:eil P Spec(U)% will be called ‘‘spectrum.’’ The spectral
measure of the vectorc will be supported in this set and is denotedmc; the labelc will be usually
omitted. The spectral measuremc is uniquely defined by

~c,Utc!5E
0

2p

eitldmc~l!

valid at all timest. The distribution of the spectral measure is also called~integrated! local density
of states, at least in concrete cases in whichc is an eigenvector of a position operator. In this
section we assumemc(@0,2p#)5ici251.

By dm
2(x),dm

1(x) we will denote the lower and upper pointwise dimensions ofm at the point
x of the spectrum, defined by

dm
2~x!5 lim inf

d↘0

log m„I d~x!…

log d
, dm

1~x!5 lim sup
d↘0

log m„I d~x!…

log d
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where I d(x) is an interval of sized centered atx. If dm
2(x)5dm

1(x), then their common value
defines thelocal, or pointwise, dimension of the measurem at the pointx. Upper and lower global
dimensions ofm will be defined by

dimH
1~m!5m-ess supdm

2~x!

dimH
2~m!5m-ess infdm

2~x!.

Note that both definitions involve thelower local dimension only. The subscriptH stands for
Hausdorff; the connection to Hausdorff dimensions is clarified by the following result, where
dH(A) denotes the Hausdorff dimension of a setA.

Theorem 1:

dimH
1~m!:5 inf$dH~A!:m~A!51%;

dimH
2~m!5sup$a:m~A!50 if dH~A!,a%

Proof: These equalities follow from general results of Rodgers and Taylor,19 compactly re-
viewed in Refs. 16 and 20. Letb.m -ess supdm

2(x); thenm is supported by a set of dimension
b,20 so b>dimH

1(m) by definition; hence,m-ess supdm
2(x) >dimH

1(m). Conversely, let
b,m-ess supdm

2(x), and letS be any set supportingm. Thendm
2(x).b for all x in a setB#S of

positive measure. IfxB is the characteristic function ofB, anddmB :5xBdm, then the measure
mB is supported byB, and satisfiesdmB

2 (x)>dm
2(x).b for mB—almost allx. Any set of Haus-

dorff dimension less thanb must have zeromB measure,20 which entailsdH(B)>b, and also
dH(S)>b. This holds for anyS supportingm, therefore dimH

1(m)>b; it follows that m-ess
supdm

2(x)<dimH
1(m).

The proof of the second equality is similar. Letg5m-ess infdm
2(x). Let us prove

g<dimH
2(m). If g50 this is obvious. Ifg.0, letb,g; thendm

2(x).b for m—almost allx, so
m gives zero weight to any set of dimension less thanb, which meansb<dimH

2(m). Conversely,
if b.g, thendm

2(x),b on a setS of positive measure. This setS is a subset of the setTb ,
defined as

Tb5H x: lim sup
d↘0

m„I d~x!…

db 51`J . ~2.1!

It is a known result20 that a setTb8 exists, withdH(Tb8 )<b, andm(Tb8ùTb)5m(Tb). Therefore,
if S85SùTb8 , thenm(S8)5m(S).0, anddH(S8)<dH(Tb8 )<b. Hence,b.dimH

2(m). h

If dimH
2(m)5dimH

1(m)5d @that is, ifdm
2(x)5d, m-a.e.], the measure is said to haveexact

dimensiond. This denomination is not universally agreed upon; for instance, a measure is
sometimes21 said to have exact dimensiond if dm

2(x)5dm
1(x)5d, m-a.e., that is, if the measure

has a well defined constant local dimensionm-a.e. A measure with this property will be called
here anexactly scaling~ES! measure. ES measures also have exact dimension in the sense used
here, but the converse is not true—in Ref. 20 examples are given of measures with exact dimen-
sion 0 which havedm

1(x)51 m-a.e. Although exceptional on mathematical grounds, in the
physical literature the ES property is often assumed of ‘‘smooth multifractal’’ measures. On
purely empirical grounds, and on the present level of numerical accuracy, this assumption has not
shown, so far, any serious inconsistency with numerical data, at least in a few test cases which are
relevant to the subject of this article, and which were mentioned in the Introduction. On the other
hand, there are certain non generic features in these cases, which enforce great caution in assum-
ing that a likewise smooth structure of spectral measures will be typical, even within the class of
quasi-periodic Schro¨dinger operators.

dimH
1(m) is known as the Hausdorff dimension of the measurem. It is also sometimes called

the information dimension DI(m) of m,22 although the latter name is more often given to a
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generalized fractal dimension, usually denotedD1(m) @which corresponds toq51 in the set of
generalized fractal~box-counting! dimensionsDq(m)]. For ‘‘smooth’’ multifractal measures~as
discussed, e.g., in Ref. 23! DI(m)5D1(m), but this is not true in general, not even of exactly
dimensional measures.

The fractal dimension ofm will instead be defined as

dimF~m!5sup0,e,1infK$dF~K !: K compact, m~K !.12e% ~2.2!

where the fractal dimensiondF(K) of a compact setK is defined by24

dF~K !5 lim sup
d↘0

log NK~d!

log~1/d!
.

Here,NK(d) is the minimum number of closed intervals of size<d which are needed to cover
K.

Theorem 2: dimF(m)<m-ess supdm
1(x).

Proof: Let dm
1(x),a for m—almost allx; we have to show that dimF(m)<a . Because

lim
d0→0

sup
d,d0

log m„I d~x!…

log d
,a ~2.3!

for all x in a set of full measure, then, on the strength of the Egorov theorem, we can find a set
Je,(0,2p), of measurem(Je).12e/2 , in which the monotonic limit on the lhs of~2.3! is
uniform, so there is ad̄e,a such that

m„I d~x!….da ;xPJe , ;d, d̄e,a . ~2.4!

Let us fixd so small that~2.4! holds. The family$I d(x)%xPJe
is a covering ofJe , from which we

can extract a finite or countable covering of the same set with no more thanc overlaps, withc a
fixed integer~this comes, e.g., from the Besicovitch covering lemma, as formulated in Ref. 25!.
Denote by I 1 , . . . the intervals in this covering, and letM be their number. From
mda<(1

mm(I j )<cm(ø1
mI j )<c, which holds for any positive integerm,M , it follows thatM is

finite,M<cd2a. Finally, choose a compactK,Je , with m(Je\K),e/2. For all sufficiently small
d, NK(d)<M , so dF(K)<a; moreover,m(K).12e, so, from ~2.2!, we conclude dimF(m)
<a. h

Remark:Theorem 2 shows that the Hausdorff and the fractal dimensions of ES measures
coincide.

III. SPREADING OF WAVE PACKETS

Let B[$en%nPZ an orthonormal set. For any positive integer timet let

pn~ t !:5
1

t (s50

t21

ucn~s!u2 ~3.1!

where cn(t):5(en ,U
tc). Since time averages like the one in~3.1! appear frequently in the

following, the shorthand notation̂•& t1
t2 will be used for time averages from timet1 to time

t221.
Equation~3.1! defines a finite measureP t,c on subsetsA of Z, via P t,c(A)5(kPApk(t). If

B is complete, then the total mass of this measure is justici2. A minimal e-support of the
measureP t,c will be any finite familyF e,Z such that~i! P t,c(F e).(12e2)P t,c(Z), and~ii !
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P t,c(F 8)<(12e2)P t,c(Z) for any other finite family of indicesF 8 such that](F 8),](F e),
where] denotes cardinality. The distribution~ 3.1! may have different minimale-supports, but
they must have the same ‘‘size’’](F e), which will be denoted byne(c,t,B). For simplicity’s
sake, in the following we shall often omit the complete list of parameters on whichne , and other
quantities, depend, leaving understood those whose specification is not strictly necessary.

If mc is a purely continuous measure, then it is a classical result thatpk(t)→0 as t→`,
;k, soP t,c gives smaller and smaller weight to any finite setA,Z. Thus, if the total mass is
constant, or at least bounded away from zero at all times, thenne diverges in the limitt→`. This
is true, in particular, whenB is complete. It will be shown below that, in the latter case,ne

diverges as soon asmc has a continuous component. Our aim here is to describe asymptotic
bounds on the growth ofne , in terms of spectral dimensions ofmc , defined in sec. II.

The asymptotic spreading ofP t,c can also be quantitatively described by other quantities, e.g.
by the momentsm(a)(t), which are defined, fora.0, by

m~a!~ t !:5 (
kPZ

ukuapk~ t !.

The growth ofne as t→` bounds the growth of (m(a))1/a from below, via a Chebyshev-like
inequality. Instead, from the divergence of moments nothing can be inferred about the behavior of
ne ; examples are known, in whichmc is pure-point,ne is bounded in time, but moments diverge
algebraically.

A description of the asymptotical growth in time of quantities which in one way or another
measure the ‘‘size’’ of wave packets is provided by upper and lower growth exponents, which, for
a given positive sequencec[$ct%, labelled by the discrete timet, will be defined and denoted as
follows:

b2~c!5 lim inf
t→`

log ct
log t

, b1~c!5 lim sup
t→`

log ct
log t

. ~3.2!

Previous results by the present author14,15 can be cast in the form of theorem 3 below. These
results can be significantly strengthened~see remark 1 below!, but the version used here is
convenient for the purposes of this article.

Theorem 3: Let ici51, 0,e,1, and suppose that B is complete. Then
b2($ne(c,t)%)>dimH

2(m).
Remark 1:An immediate corollary isb2

„$m(a)(t)%…>adimH
2(m), because the growth of

ne(c,t) bounds the growth of moments from below. Last16 has strengthened this result, proving

thatm(a)(t).const3 tadimH
1(m) for anyspectral measurem ~Last’s formulation is somewhat dif-

ferent, as it is given in terms of Hausdorff decompositions ofm). A similar generalization of
Theorem 3 is also possible, yielding

sup
e

b2~$ne%!>dimH
1~m! ~3.3!

This step will be explained later.
Remark 2:The result is also true ifB is not complete, still̂ iPBc(t)i2&0

t >D2.0, ;t.0,
PB being the projection onto the subspace spanned byB. In this case Theorem 3 holds for
0,e,D. The same isnot true of the generalization mentioned in remark 1, though.

Remark 3:In Refs. 14 and 15 Theorem 3 was formulated for the case of exactly scaling
measuresm. The proof given there is also valid for the present version, without any modification.
Other minor differences require no special comment.
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Remark 4:Combes and co-workers13,11 and Last16 generalize similar results to continuous
unitary groups, generated by Schro¨dinger operators inL2(Rn).

The following form of Theorem 3 is proven in the same way, and will be used later, in the
proof of Proposition 2.

Theorem 3a: If B is an orthonormal (not necessarily complete) set, and there is a sequence
of times tk→` such that,;k

^iPBU
sci2& tk

tk11>D2, ~3.4!

then, for all sufficiently small positivee,D,

lim inf
k→`

log ne~c,tk!

log tk
>dimH

2~m!. ~3.5!

IV. EFFECTIVE DIMENSIONS

For c Þ 0 consider finite stringsss,t(c)5$Usc,Us11c, . . . ,Us1t21c% of the orbit ofc. If
mc has a continuous component, then,;s,t, ss,t spans a subspaceSs,t of H, of dimensiont.
Nevertheless it may happen that the ‘‘effective dimension’’ ofss,t is significantly
smaller, in the sense that some subspace ofSs,t , of dimension !t, exists, such that
Usc,Us11c, . . . ,Us1t21c have but a small component outside it. This raises the question, how
does the effective dimension of the subspace spanned by a string of lengtht increase witht?

This question will be formalized as follows. Givene P (0,1), letue„ss,t(c)… be the minimum
dimension of an orthogonal projectorP inH, such thatiP'Ujci,e for s< j<s1t21. In other
words, ue„ss,t(c)… is the minimum dimension of a subspace such that the stringss,t(c) lies
within a distancee of it. Moreover, letūe„ss,t(c)… be the minimum dimension of a subspace such
that the same string lies withine of it in the average, that is,^iP'Ujci2&s

s1t,e2. The mentioned
minimal subspaces can be assumed to be subspaces of the subspace spanned byss,t(c). More-
over, sincess,t(c)5Us

„s0,t(c)…, all the strings of a given length are unitary images of one
another, soue„ss,t(c)… and ūe„ss,t(c)… only depend ont, and will therefore be denoted
ue(c,t) and ūe(c,t). If e.ici , thenue(c,t)50.

Immediate consequences of these definitions are as follows.
Proposition 1:
~i! ūe(c,t)<ue(c,t)<t,
~ii ! ue(c,t1s)<ue(c,t)1ue(c,s),
~iii ! if c1 P H1,c2 P H2 whereH1,H2 are mutually orthogonal subspaces, invariant under

U, then

ue~c11c2 ,t !>max@ue~c1 ,t !,ue~c2 ,t !#. ~4.1!

Moreover, (ii and iii) also hold forūe .
Proof: ~i! is obvious.~ii ! follows from ue(s0,tøs t,s)<ue(s0,t)1ue(s t,s). As to ~iii !, note

that s0,t(c i),H i , and that vectorsj1 , ... ,j t exist, which span a subspace of dimension
ue(c11c2 ,t), and satisfyij j2Uj (c11c2)i,e for j50, ... ,t21. Now let projectionsPij j on
H i span a subspaceS i of H i , with i51,2. On one hand, dim(S i) cannot be larger than
ue(c11c2 ,t), and on the other it cannot be less thanue(c i ,t), becauseiPij j2Ujc i i,e for
j50, ...t21. Thusue(c11c2 ,t)>ue(c i ,t). For ūe the proof proceeds in a similar way. h

At given e,c, bothue(c,t) and ūe(c,t) are positive nondecreasing sequences. Their growth
exponents will be presently investigated.

Proposition 2: If dm
2(x).a, m-a.e., then, for sufficiently small positivee, b2( ūe)>a.

Proof: Given a sequence of timestk→`, such that
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b2~ ūe!5 lim
k→`

log ūe~c,tk!

log tk
,

let us recursively construct a subsequence$tkj%, with k151, and

kj115min$k: tk.2l j%,

where l j5(s51
j tks. Let us partition the orbit ofc into segmentss j[$c(s),l j<s, l j11%; the

length ofs j is thus tkj . According to the definition ofūe(c,t) we can find a sequence$w t% of
vectors such that,; j ,

^iws2Usci2& l j
l j11,e2 ~4.2!

~so thats j lies within an average distancee of the subspace spanned by$ws , l j<s, l j11%), and,
moreover, the subspace spanned by$ws ,l j<s, l j11% has exactly dimensionūe(c,tkj). On or-
thonormalizing the sequence$w t% we obtain an orthonormal setBe with the property that,; j

^iPBe
Usci2& l j

l j11.ici22e2. ~4.3!

Therefore we can use Theorem 3a to the effect that, ife is small enough,

lim inf
j→`

log ne~c,Be ,l j !

log l j
>a. ~4.4!

On the other hand,c(0), ... ,c( l j ) lie within an average distancee of the subspace spanned
by the first l j vectorsw t . This subspace has dimensionN( l j ) <(s51

j ūe(c,tks), and is also
spanned by the firstN( l j ) vectors inBe . From the definition of a minimale- support it follows
thatne(c,Be ,l j )<N( l j )<(s51

j ūe(c,tks); therefore, using Proposition 1,

log2ne~c,Be ,l j !

log2l j
<
log2(s51

j ūe~c,tks!

log2l j
<
log2(s51

j21tks
log2tkj

1
log2ūe~c,tkj !

log2tkj

<
log2l j21

l j21
1
log2ūe~c,tkj !

log2tkj

Taking the limit j→` and using~4.4! the required result is obtained. h

One further step can be taken, in the spirit of Last’s extension of Theorem 3.16 Recall that
dimH

1(m)5m-ess supdm
2(x). For any small h, let Ah5$x:dm

2(x).dimH
1(m)2h%; then

m(Ah).0, and one can writec5c11c2, the spectral decomposition ofc according to the set
Ah and its complement. Thendmc1

5xAh
dm, so dmc1

2 (x)>dm
2(x), and dimH

2(mc1
)>dimH

1

3 (m)2h. On account of Proposition 2 and of Proposition 1~iii !, b2( ūe)>dimH
1(m)2h if e

is smaller than somee0. The latter depends in general onh, so we can conclude the following.
Proposition 3: For anyc Þ 0, and for sufficiently smalle, b2

„ūe(c,t)…>dimH
2(m). More-

over,

supeb
2
„ūe~c,t !…>dimH

1~m!.
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Remark:This result includes all the versions of Theorem 3 discussed in Remarks 1–3, and
inequality ~3.3! in particular.

Proposition 4: ;e.0, b1(ue)<dimF(m) ~the fractal dimension ofm).
Proof: By spectral equivalence, we can work in the spaceL2(@0,2p#,m), wherec(t)[eitx

m-a.e. Choosee.0 and define, for all integer timest, d t5e/tA2. Then, ifa.dimF(m), we can
find a compactK with m(K).12e2/2, and with a fractal dimensiondF(K) ,a. For all suffi-
ciently larget, K can be covered byNt closed intervalsI j of width <d t , with Nt<d t

2a . We can
assume that the intervalsI j have no more than 2 overlaps; therefore, using their endpoints we can
define a covering ofK with a numberMt<2Nt<2d t

2a of disjoint intervals of width<d t , which
for simplicity will be denoted again byI j , and which satisfym(øI j ).12e2/2. In every interval
I j choose a pointxj and, for 0<s<t21, define

js~x![(
j51

Mt

eisxjx j~x!, for xPøI j ,

js~x![0, elsewhere,

wherex j (x) is the characteristic function ofI j . Then

ic~s!2jsi25E
0

2p

ueisx2js~x!u2dm~x!<s2d t
21m~@0,2p#\øI j !,t2d t

21
e2

2
,e2

Now js (s50, ... ,t21) belong by construction in the subspace spanned by$x j%1< j<Mt
, which,

for sufficiently larget, has dimensionMt<2Nt<2(A2t/e)a. Thus, this subspace contains vectors
which aree2close toc, ... ,c(t21); therefore, at large times,ue(c,t)<2(A2t/e)a. h

Putting Theorem 2 and propositions 1~i!, 2, 3, 4 together, we get
Proposition 5: If m is exactly scaling, with dimension d, then, for sufficiently smalle.0 the

limits

lim
t→`

log ū~e,c,t !

log t
, lim

t→`

log u~e,c,t !

log t
~4.5!

exist, and have the same value d5dimH(m).
Remark:One may speculate whether Proposition 3, too~hence, Theorem 3 itself! can be

proven by a ‘‘box counting’’ argument of the kind used in the proof of Proposition 4.

V. A BALLISTIC UPPER BOUND

It is not possible to extract from the above results upper bounds for moments, and not even for
the growth of the size of minimale-supports. Further assumptions are needed, which concern the
‘‘spatial’’ structure of the operatorU on the basisB. Here a result in this vein is presented. For
convenience, we’ll say that the spread isnot faster than ballisticif @m(a)(t)#1/a does not increase
faster than linearly witht, ;a.0. In this case, it is easily seen thatne(c,t,B), too, does not
increase faster than linearly.

Proposition 6: For a>0 let

Xa :5$cPH such that icia :5sup
nPZ

u~en ,c!expaunuu,`%

and suppose thatU(Xa)#Xa for somea.0. Then, ifc P Xa , the spread is not faster than
ballistic. Moreover,;c P H, ne(c,t,B) does not increase faster than linearly.

Proof: Under the stated hypothesis ,U eXa is an everywhere defined linear operator inXa ,
which is a Banach space under the normi•ia . Let $cn% be a convergent sequence in the
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Xa-norm, such that$Ucn% also converges in that norm, and letc` ,c 8̀ be the corresponding
limits. Thencn→c` andUcn→c 8̀ in the weaker Hilbert norm, too; thereforeUcn→Uc` in the
Hilbert norm becauseU is unitary. It follows thatc`85Uc` , soU eXa is a closed operator in
Xa . By the Closed Graph Theorem, it must be bounded. Therefore, ifc P Xa , then;t,n

ucn~ t !u<iUtciae
2aunu<iUia

t iciae
2aunu. ~5.1!

Using ~5.1! for n>nt :5a21t log iUia1a21log icia , and ucn(t)u<1 for n,nt , the announced
bound on the growth of moments is immediately obtained. Finally, given anyc P H, there is a
c8 P Xa with ic2c8i,e/2; at any timet, any e/2- support forUtc8 is also ae-support for
Utc. h

Remark 1:Under the hypotheses of Proposition 6, the spread of wave packets in the presence
of an absolutely continuous component is exactly ballistic.

Remark 2:Proposition 6 applies in several cases of concrete interest, including tight-binding
discrete models and quantum maps like the kicked rotor26 or the kicked Harper model.4

VI. DYNAMICAL DIMENSIONS

In this section, we shall discuss a different characterization of the structure of wave packets,
which still makes reference to a specific basis, but, unlike moments, does not depend on the
labelling of the basis vectors, or sites. On formal grounds, the construction to be presently de-
scribed looks like a multifractal analysis of the measureP t,c , with the scaling limit defined by
t→`. It has been proposed, and numerically implemented, on the critical Harper model, in Ref.
17. In the following,ici51, and completeness ofB, are always assumed. Let us define the family
of partition functions

Zq~c,t !:5 (
kPZ

pk
q~ t !, ~6.1!

for all values ofq such that the series converges at all timest. Such values include a half line
q.q0 ,with 0<q0<1; for instance, under the assumptions of Proposition 6,Zq is finite ;t,
; q.0. In the followingq0,1 is assumed. Generalized entropies are defined, forq Þ 1, by

Sq :5
1

12q
log Zq

and forq51 by

S15 (
kPZ

Q„~pk~ t !…, ~6.2!

whereQ(x)52xlog x for 0,x<1,Q(0)51.S1 is the Shannon entropy of the distribution~3.1!.
With such definitions,Sq is a continuous function ofq. Finally, define thenumber of states

N q~ t !:5eSq~ t !5Zq
1/~12q!~ t ! ~6.3!

~the 2nd equality forqÞ1) which, at fixedt, is a nonincreasing function ofq.
The growth exponentsb6(N q)5Dq

6 will be called heredynamical dimensions. From their
very definition it follows that

Proposition 7: Dq
6 are nonincreasing functions of q, and (12q)Dq

6 are convex functions of
q. Therefore, Dq

6 are continuous functions of q, except possibly at q51.
Proposition 8: ~i! Dq

2>dimH
1(m) for q,1, ~ii ! D1

2>dimH
2(m).
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Proof: Given e.0, q,1, define Ae,q,t :5$k P Z:pk(t),e1/(12q)N q(t)
21% and

Be,q,t :5Z\ Ae,q,t . Thenpk
q21.e21Zq(t) if k P Ae,q,t . From

Zq~ t !> (
kPAe,q,t

pk~ t !pk
q21~ t !>e21Zq~ t !P c,t~Ae,q,t!

we obtainP c,t(Be,q,t)>12e. From the definition of a minimal-support ofP c,t it follows that
](Be,q,t)>ne(c,t); therefore,

Zq~ t !> (
kPBe,q,t

pk
q~ t !

>ne~c,t !e
q

12qN q~ t !
2q

5ne~c,t !e
q

12qZq~ t !
2

q
12q

which entailsN q(t)5Zq(t)
1/(12q)>eq/(12q)ne(c,t). Since this holds for arbitrarily smalle, part

~i! of the thesis follows from inequality~3.3!.
If q51, let Ae,t :5$k P Z:pk(t),e2S1(t)/e%, and Be,t5Z\Ae,t . If k P Ae,t , then

log
1

pk(t)
.@S1(t)/e#, which implies P c,t(Be,t)>12e, so ](Be,t)>ne(c,t). Now let B̄e,t :

5 Be,tù$kP Z:pk(t),e21%. Then](B̄e,t)>ne(c,t)23.Consequently,

S1~ t !> (
kPB̄e,q,t

Q„pk~ t !…>~ne~c,t !23!e21S1~ t !e
2S1~ t !/e

becauseQ(x) is increasing in (0,e21). Now, if b2(ne)50, then also dim2(m)50 by Theorem 3,
so ~ii ! is obvious; if, instead,b2(ne).0, thenne.3 eventually, so,N 1>e2e

„ne(c,t)23…e, and
finally D1

2>eb2(ne)>edimH
2(m) by Theorem 3. Sincee,1 is arbitrary,~ii ! is proved. h

Remark 1:D1
2>dimH

1(m) is false in general. If the ‘‘width’’ of the wave packet on the basis
B is measured by means of the ‘‘informational’’ number of statesN 1, then the wave packet does
not necessarily spread as fast as its fastest component, contrary to what happens with moments.
The following elementary example illustrates this and other peculiarities. LetUek5ek11 for k
Þ 0,21, andUe215e1 , Ue05e0 . If c5e0cosa 1e1sina, thendmc5(cos2a)d1(sin2a)dx, with
d, anddx the Dirac and Lebesgue measures respectively; so dimH

1(m)51. On the other hand,
Dq

650,sin2a,1 respectively forq.1,q51,q,1. This example shows that, at fixed dimH
1(m), the

value of D1
6 is affected by the weight of different spectral components, and suggests that a

discontinuity ofDq
6 at q51 may be typical of non-exactly dimensional spectral measures. In

particular, such a discontinuity should always appear, in case of coexistence of both a point and a
continuous component of the spectral measure.

Remark 2:Inequalities of ‘‘thermodynamic’’ type show thatN 1 cannot increase faster than
@m(a)(t)#1/a.

Remark 3:Like moments,N q (q<1) can, in principle, diverge ast→`, even in the absence
of a continuous spectrum.

Remark 4:In casemc has a point component~and only in that case!, some at least of the
pk(t) will not converge to 0 ast→`; thenZq will be bounded away from zero at large times, and
N q will not diverge in the limitt→` if q.1. Therefore the presence of a point component of
mc enforcesDq

650 for q.1.
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Finding upper bounds for dynamical dimensions appears difficult in general, except in the
limit q→`, and in the particular case in whichc is one of the basis vectors, which without loss
of generality we may assume to bee0. Then let

lim inf
t→`

log p0~ t !

log t
52c1; lim sup

t→`

log p0~ t !

log t
52c2

Now c6 can be exactly identified with certain fractal dimensions ofm. Rigorous reformulations of
a result by Ketzmerick, Petschel, and Geisel,3 due to Holschneider,9 Barbaroux, Combes, and
Motcho,11 and Guerin and Holschneider,10 show thatc65D2

6(m), the upper and lowercorrela-
tion dimensionsof the spectral measure~for the exact definition of which the reader is deferred to
the quoted papers!. In the case whenD2

1(m)5D2
2(m), their common value is just called corre-

lation dimension and denotedD2(m). Then, denotingD`
6 the q→` limits of the monotonic

functionsDq
6 , we have

Proposition 8: If c P B, thenD`
2<D2

2(m), andD`
1<D2

1(m).
Proof: If q.1, fromZq(t)>p0

q(t) >t2(c11h)q, which is eventually true~in t) for any small
h, we getDq

1<@q/(q 2 1)#(c11h). Analogously, fromZq(t)>p0
q(t) >t2(c21h)q, which is

frequently true, we getNq(t)<tq(c
21h) frequently, that is,Dq

2<@q/(q 2 1)#(c21h). h

The above results intuitively fit in a rough qualitative picture of the role of spectral dimen-
sions. The behavior ofZq(t) at q,1 is mainly determined by that part of the probability distri-
bution, which decays faster. This part corresponds to the fastest component of the wave packet,
which, according to Theorem 3@in the form of inequality~3.2!#, probes the ‘‘most continuous’’
part of the spectrum; this is the sense of Proposition 8. Asq.1 increases, instead, the slowly
propagating part of the wave packet becomes more and more important. This very part also
accounts for the tail in the decay of the probability at the initial site, which is determined by a less
continuous region of the spectrum, and is in fact described by the correlation dimension~s!.
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Models of the Hofstadter-type
Ch. Krefta) and R. Seiler
Fachbereich Mathematik, Technische Universita¨t Berlin, 10623 Berlin, Germany
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Spectra and eigenfunctions of discrete Hamiltonians are computed using algebraic,
analytic, and numerical tools. In particular, we consider the Hofstadter and the
Second Neighbor Square Lattice model, the Triangular Lattice model in an inho-
mogenous magnetic field, the Doubly-discrete Quantum Pendulum, and the
Honeycomb model. Qualitative properties of the spectra are related to symmetries.
Semiclassical analysis in the algebraic setting for the Doubly-discrete Quantum
Pendulum is shown to match numerical results well. The connection to integrable
models is mentioned. ©1996 American Institute of Physics.
@S0022-2488~96!01910-X#

I. INTRODUCTION

The subject of this paper lies on the edge of physics, mathematics, and computer science. It
concerns the analysis of some quantum mechanical models for transport phenomena in two-
dimensional solids.

For many decades it has been well known that the transport of electrons shows remarkable
properties. The collective behavior of particles often leads to situations where charge transport can
be described best in terms of quasiparticles. They can have positive, negative, or even noninteger
charge. Of particular interest are phenomena that are seen in two-dimensional systems in the
presence of large magnetic fields and at low temperature. It is there where integer or fractional
quantum Hall conductance is observed.

Such phenomena can be modeled in part by Hamiltonians of the Hofstadter type. These
operators have interesting mathematical properties. Their spectra are typically fractal and charge
transport is integral.

There are several computational methods for dealing with Hamiltonians of the Hofstadter
type. For the computation of spectra Chambers formula~see Sec. V, Theorem 1! is most useful.1

Dynamics of wave functions can be visualized best in terms of Husimi functions~see Sec. II and
Sec. III!.

The elementary objects that underlie the construction of all model Hamiltonians are the
discrete magnetic translations.2 We will give a systematic exposition of these operators in terms of
Weyl operators in the following section. At this point let us just adopt a pragmatic point of view
and discretize the well-known expressions for a charged particle in a constant magnetic field in the
most straightforward way.

Let C be a function onZ2 with values inC andx5~x1,x2! a discrete and real valued vector
potential, such that

curl x~n!:5]1x22]2x15F. ~1!

Discrete derivatives are defined by

] jF~n!:5F~n!2F~n2ej ! ~ j51,2!, ~2!

a!Present address: IVU-Gesellschaft fu¨r Informatik, Verkehr und Umweltplanung mbH, 12161 Berlin, Bundesallee 88,
Germany.
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and magnetic translations as follows:

T1C~n!5eix1~n!C~n121,n2!, ~3!

T2C~n!5eix2~n!C~n1 ,n221!. ~4!

@The magnetic translations can be interpreted as connections on the trivial discrete vector bundle
Z23C. Equation~1! definesx in terms ofF up to a discrete gradient~]1w,]2w!, wherew denotes
a function onZ2 generating a discrete gauge transformation.# They are unitary onl 2~Z2!. Due to
the phase in their definition they have an elementary holonomy,

T1
21T2

21T1T25eiF. ~5!

~12T1! and ~12T2! are discrete magnetic momentum operators and give rise to the magnetic
discrete Laplacian,

D5(
l51

2

~12Tl !* ~12Tl !, ~6!

coinciding with the Hofstadter Hamiltonian up to a sign and an additive constant,

HHof5T11T21T1*1T2* . ~7!

The Hofstadter model has several physical interpretations. The most prominent one is as a tight-
binding approximation for electrons bound to atomic sites in a two-dimensional crystal and in a
strong external magnetic field. It is a model with two typical frequencies. The first corresponding
to the area of the unit cell in the lattice, the second to the flux through a unit cell, which in our
notation isF.

The history of the Hofstadter model goes back to the work of Peierls3 on Bloch electrons in
metals under the influence of a magnetic field. In the 1950s and 1960s progress was made by
Azbel,4 Harper,5 Zak,2 Chambers,1 and Langbein.6 They discovered the role of magnetic transla-
tions and began a systematic study of the square lattice model.

In 1976, Hofstadter7 published the famous Hofstadter butterfly~Fig. 3!. He found that the
figure of the spectral bands versus the magnetic flux exhibits a complicated yet beautiful fractal
structure. A detailed study of the square lattice and other models began thereafter. We just men-
tion work by Wilkinson8 who related the fractal structure to a WKB analysis of tunneling between
different lattice cells. This semiclassical approach was put in a rigorous form by Helffer and
Sjöstrand9–13 using pseudodifferential operator calculus. This work was recently simplified and
completed by Buslaev and Fedotov14–18 by means of a WKB approach for difference equations.
Since the Hofstadter model turns into Harper’s equation by a Bloch-wave ansatz, the spectral
analysis of the two models is the same. About the latter and its generalization, the Discrete
Mathieu model, detailed results are known. Let us mention just one, the theorem by Last and
Wilkinson about the total length of the band spectrumS for the critical valuel52 ~Harper’s
equation! and magnetic fluxf52pp/q:19,20

2~A511!

q
,S,

8e

q
. ~8!

For more details we refer to the recent articles by Last, Jitomirskaya, and Shubin.21–23In parallel,
the algebraic study was put forward by Bellissard,24–26who related the Hofstadter model to the
work of Connes27 on noncommutative geometry.
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It was a big surprise at the beginning of the 1990s when it turned out that the Quantum
Discrete Sine–Gordon equation28,29 leads to the Hofstadter model.29 Presently, Quantum groups
and the Bethe Ansatz in the context of the Hofstadter model receive considerable attention.30–32

Hamiltonians of the Hofstadter type like the Hofstadter Hamiltonian, the triangular, the hex-
agonal model, or the Doubly-discrete Quantum Pendulum are the main objects of analysis in this
paper. They are all elements of aC* -algebra generated by the magnetic translations, the so-called
rotation algebra, which is a particular case of a Weyl-Heisenberg algebra. Furthermore, they can
be understood as pseudodifferential operators on the circle. In this setup the classical symbol of
the Hofstadter Hamiltonian is

HHof~j,x!5cosj1cosx. ~9!

It is defined on phase spaceS13S1 with the natural symplectic structure. For a list of the Hamil-
tonians discussed in this paper and their symbols, we refer to Table II.

Many of these Hamiltonians allow for a completely different interpretation: they are quantum
integrals of a dynamical automorphism of the rotation algebra. Consider, e.g., the Hamiltonian of
the Doubly-discrete Quantum Pendulum forkPR\$0%,

HQP52~T11T21T1*1T2* !1k~e2 iF/2T1T21eiF/2T2*T1* !1~1/k!~e2 iF/2T2T1*1eiF/2T1T2* !.
~10!

It is invariant under the automorphism generated by the map

a:^T1 ,T2&° K T2 ,T35T1* S k1eiF/2T2
11keiF/2T2

D 2L . ~11!

This automorphism appeared first in the doubly discrete integrable sine–Gordon theory.29,28,33

@In the continuum case the automorphism is generated by Eq.~12! below. It is a special case
of the hyperbolic equation,

~] t
22]x

2!f~ t,x!1g sin f~ t,x!50. ~12!

For space-independent solutionsf(t), one gets the pendulum equation,

] t
2f~ t !1g sin f~ t !5o.] ~13!

This paper is structured as follows. In the next section we formulate elementary discrete
quantum mechanics. The ground state of the elementary Hofstadter Hamiltonian is shown to be
unique and invariant under discrete Fourier transformation. All this lays the basics for the ‘‘Ki-
nematics of the Hofstadter Type Models,’’ which is the subject of the third section, where there is
some overlap with a recent article by Faddeev34 on the Discrete Heisenberg–Weyl Group and the
Modular Group. The discrete analog of the Landau momentum and the Landau velocity is intro-
duced and combined to form generators of the quantum groupSLq . In the fourth section we
describe the models and present numerical results. Symmetries are used to understand some
qualitative properties of the spectra. The Husimi functions of the Doubly-discrete Quantum Pen-
dulum are shown to be localized at the classical orbits. In the last section we discuss Chambers
relation for the Doubly-discrete Quantum Pendulum and comment on semiclassical methods for
the computation of spectra. The semiclassical results are shown to approximate the numerical
results well. For details on most of the material presented here we refer to Ref. 35.

Quantum group structures appear naturally in the context of the models of the Hofstadter type.
It is hoped that this will eventually lead to a better understanding of the complicated and inter-
esting nested structure of their spectra. This has, however, not yet materialized, although we have
worked in this direction for several years.
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II. ELEMENTARY DISCRETE QUANTUM MECHANICS

The irreducible state space for a discrete quantum system with one degree of freedom and
rational Planck constantF⁄ 5 p/q, wherep andq are relatively prime, is the complex vector space
Cq. The canonical position and momentum operators are

t15S 0 0 ... ... 0 1

1 0 0 0

A � �

A � �

A � 0 0

0 ... ... ... 1 0

D ~14!

and

t25diag~eiF,e2iF,...,eiqF!, F52pF⁄ . ~15!

The operatorst1 and t2 have simple and remarkable properties listed below.
~1! t1 andt2 satisfy the same commutation relations~5! as the magnetic translationsT1 andT2

defined in the Introduction, formula~3!.
~2! They are, however, idempotent,

t1
q5t2

q51. ~16!

~3! t1 can be understood as a shift on theq-periodic doubly infinite sequences~which is
naturally identified withCq!.

~4! t1 and t2 are related by discrete Fourier transformation,

F :Cq→Cq, f ~n!° f̂ ~n!5
1

Aq (
m

einmF f ~m!, ~17!

t25F t1F
21. ~18!

Note thatF is unitary,F 215F * andF 451. Thus

s~F !,$1,21,i ,2 i %. ~19!

~5! t1 and t2 have the same invariants. Particularly forq.1, one gets the equations

det t15det t251, tracet15tracet250. ~20!

The elementary Hofstadter Hamiltonian is the simplest nontrivial self-adjoint operator made out of
t1 and t2,

h5t11t21t1*1t2* . ~21!

It is invariant under Fourier transformation.h is the elementary constituent of the Hofstadter
Hamiltonian~see Theorem 3, Sec. III and remark 1 thereafter!. Furthermore,h ~or rather, 42h! is
the discrete analog of the harmonic oscillator. Unfortunately, its ground state is not expressible in
simple terms. Nevertheless, a partial characterization can be given, as the following theorem
shows.
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Theorem 1:
~i! 42h has a nondegenerate ground state,v. There is a strictly positive choice forv.
~ii ! v is invariant under Fourier transformation.
Proof:
~i! The first statement follows from the Perron–Frobenius theorem.36 Consider the Hamil-

tonian h13. It has non-negative entries only. Furthermore, for each entry of the matrices the
following inequality holds:

„~h13!q…i , j>„~ t11t1*11!q…i , j . ~22!

Next we replacet1 by the nilpotent matrixD,

D5S 0 0 ... ... 0 0

1 0 0 0

A � �

A � �

A � 0 0

0 ... ... ... 1 0

D , ~23!

and obtain the inequality

~ t11t1*11!q>~D1D*11!q>(
l51

q

~dl1d* l !11. ~24!

Hence each entry of the matrix (h13)q is larger than one; therefore,h13 is ergodic.
~ii ! SinceF commutes withh, there is a choice ofv that is an eigenvector ofF too:

F v5lv, ~25!

for somelP$11,21,2i ,1 i %.
Consider now the last component in the equation above,

1

Aq ( eiqlFv~ l !5
1

Aq ( v~ l !5lv~q!. ~26!

Sincev( i ), iP$1,...,q%, is strictly positive, this is consistent withl51 only.
So it is well motivated to call the ground statev of h a discrete version of the Gauss function.

This is supported by numerical computations~see Fig. 1!.
Discrete quantum mechanics can also be formulated in terms of functions on discrete phase

spaceCq3Cq. The transition from one formulation to the other is given by a discrete Bargmann
transformation. This formulation is useful—as in the continuous case—for making contact with
the corresponding classical theory.

Discrete position and momentum give rise to the Weyl operatorsw(m), mPZ2, defined by

w~1,0!5t1 , w~0,1!5t2 ,
~27!

w~m1n!5expF2
i

2
Fs~m,n!Gw~m!w~n! ~m,nPZ2!.

s(m,n) denotes the standard discrete sympletic form,
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s~m,n!:5m1n22m2n1 . ~28!

Note that the discrete Weyl operatorw is doublyq-periodic,

w~m1qn!5w~m! ~m,nPZ2!. ~29!

Fourier transformation acts onw like a rotation byp/2,

F w~m!F 215w~Jm! @m5~m1 ,m2!PCq3Cq#, ~30!

whereJ denotes the discrete complex structureJn5(2n2 ,n1), nPZ2.
In terms of the discrete Weyl operatorw and the ground statev of h, the discrete Bargmann

transformation is defined by

B:Cq→Cq3Cq, c°Bc~m!:5„v,w~Jm!c…. ~31!

The action of all relevant operators on the state spaceCq can now easily be transformed to the
Bargmann representation.

In order to interpret wave functions in classical terms it is useful to look at the Husimi
functions. They are usually defined in terms of Bargmann functions,

Hc~m!5uBc~m!u2. ~32!

Notice, however, that they can also by given in terms of a trace over projectors in the original state
spaceCq,

Hc~m!5trace@pcw~m!pvw
21~m!#, ~33!

wherepc andpv denote the projectors ontoc andv, respectively.

III. KINEMATICS OF HOFSTADTER-TYPE MODELS

Kinematics of the Landau, the Hofstadter model, and their descendents are very close to each
other. It is, therefore, natural to develop them in parallel. The basic object in the background of
what follows is the Heisenberg group in 211 one dimensions. It gives rise to the following family
of unitary Weyl operators onL2~C!:

WF~x!F~y!5expF i2 Fs~x,y!GF~y2x!. ~34!

FIG. 1. Ground state of the Discrete Harmonic Oscillator forq56.
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s denotes the natural symplectic quadratic form onC, s(x,y)5Im x̄y5x1y22x2y1
~x5x11 ix2PC!, andF is a real parameter that is interpreted to be the magnetic flux through a
surface of unit area. Some times it is convenient to identifyF with a vector~0,0,F!PR3.

The Weyl operatorsWF satisfy the composition law

WF~x!WF~y!5expF i2 Fs~x,y!GWF~x1y!, ~35!

which gives rise to the canonical commutation relation

WF~x!WF~y!5exp@ iFs~x,y!#WF~y!WF~x!. ~36!

Equations~34! and~36! have nice and simple geometric interpretations.@WF(x) is the integrated
connection“5d1 iA, dA5F dx1`dx2 onC3C. Furthermore,WF is a projective representation
of the Abelian groupC, and at the same time a noncommutative deformation of the characters of
R2.#

The operatorsW2F commute with theWF’s. In fact, it can be proved
23 that the commutand of

the von Neumann algebra generated by theWF’s is equal to the von Neumann algebra generated
by theW2F’s and vice versa,

$WF~x!uxPC%85$W2F~x!uxPC%9. ~37!

The operatorsWF andW2F form two commuting two-parametric, strongly continuous unitary
groups and are, therefore, generated by self-adjoint operators,v andk, as follows:

WF~x!5exp ix•v, x•v5x1v11x2v2 ,

v15 i ]12
F

2
y2 , v25 i ]21

F

2
y1 ;

~38!
W2F~x!5exp ix•k, x•k5x1k11x2k2 ,

k15 i ]11
F

2
y2 , k25 i ]22

F

2
y1 .

The commutation relations~36! imply

@v1 ,v2#5 iF, @k1 ,k2#52 iF, @km ,vn#50, m,nP$1,2%. ~39!

In physical terms,v is the velocity andk the momentum operator. Fromk, one derives the
operatorc51/F2 ~k`F!, which is the operator of the Landau center.~The expectation value of the
position operator circles around the expectation value ofc according to the dynamics of the
Landau Hamiltonian. Furthermore,c is an integral of motion.! It has the commutation relations

@c1 ,c2#52
i

F
. ~40!

The magnetic fluxF plays a role much like Planck’s constant in quantum mechanics. This analogy
leads naturally to quantization of arbitrary functions on phase space. LetF be an element of the
Schwartz test function space andF̂ its Fourier transformation. The corresponding quantization is
naturally defined by
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WF~F !5S 1

2p D E dx F̂~x!WF~x!. ~41!

@The definition below produces a noncommutativeF-deformation of the algebra of functions on
phase spaceC.# These operators generate aC* algebra~norm closure! or a von Neumann algebra
~weak closure!, respectively. According to the von Neumann uniqueness theorem the von Neu-
mann algebra has irreducible constituents that are all equivalent to the standard Schro¨dinger
representation.

Kinematics of the models of the Hofstadter type are a discrete version of the one for the
Landau model described above. Consider the discrete phase spaceZ2 and the standard discrete
symplectic structures as defined before~28!.

The corresponding Weyl operators onl 2~Z2! are defined by

WF~m!F~n!5expF i2 Fs~m,n!GF~n2m!. ~42!

Again, they satisfy the Weyl relations,

WF~m!WF~n!5expF i2 Fs~m,n!GWF~m1n!, ~43!

WF~m!WF~n!5exp@ iFs~m,n!#WF~n!WF~m! ~45!

Equations~42! and~43! again have simple geometric interpretations in terms of connections on a
discrete complex line bundle overZ2.

The discrete Weyl operatorsW2F commute with theWF’s and they generate their respective
commutant,

$WF~n!unPZ2%85$W2F~m!umPZ2%9. ~46!

The operatorsWF andW2F form 2-parametric, discrete unitary groups. They are generated by the
elementary pairs of unitary operators,

T1
~v ! :5WF~1,0!, T2

~v ! :5WF~0,1!, ~47!

and

T1
~k! :5W2F~1,0!, T2

~k! :5W2F~0,1!, ~48!

respectively, and satisfy the relations

T1
~v !T2

~v ! :5eiFT2
~v !T1

~v ! , T1
~k!T2

~k!5e2 iFT2
~k!T1

~k! . ~49!

In physical termsT(v) is the discrete velocity andT(k) the discrete momenum operator.
Each pair (T1

(v) ,T2
(v)), (T1

(k) ,T2
(k)) generates a rotation algebra. Together they have a natural

structure as a quantum groupSLq , q5eiF. @Each pair forms a degenerate representation of a
quantum groupSLq with theL operators

L ~v !5S T1~v ! T2
~v !

0 T1
~v !* D , L ~k!5S T2~k! 0

T1
~k! T2

~k!* D . ~50!

SinceL (v) andL (k) satisfy the Yang–Baxter equation,
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R12L1
~s!L2

~s!5L2
~s!L2

~s!R12 ~sP$v,k%!, ~51!

the same is true for their tensor product,

L ~v !
^L ~k!5S T1~v !T2

~k!1T2
~v !T1

~k! T2
~v !T2

~k!*

T1
~v !*T1

~k! T1
~v !*T2

~k!* D . ~52!

TheR-matrix is the canonical one,

R5S q 0 0 0

0 1 q2
1

q
0

0 0 1 0

0 0 0 q

D . ~53!

By contruction theq determinant is unity.#
In the following we will mostly use the first pair,T1

(v), T2
(v). To simplify notation we drop the

upper index from now on and simply writeT1 :5T1
(v), T2 :5T2

(v). Furthermore, we replaceWF(n)
byW(n).

Quantization of phase space functions,fPC`(T2), whereT2 denotes the two-torus, given by

W~ f !5( f̂ ~m!W~m! S f ~x!5( f̂ ~m!eimxD , ~54!

leads to theC* -algebraC F and the von Neumann algebraN F by norm and weak closures,
respectively. To fix the notation, let us callC F the rotation algebra andN F the Weyl–Heisenberg
algebra.@The above definition produces a noncommutativeF-deformation of the algebra of func-
tions on the torus. In the terminology of Connes this is the quantized torus.# f is the classical
symbol of the operatorW( f ). There is a natural trace on theC* -algebra generated by the Weyl
operatorsW( f ),

trace W~ f !5 f̂ ~0!. ~55!

The GNS construction with respect to this trace leads back to the representation~42! we
started from.

It is well known that all irreducible representations of the Weyl–Heisenberg algebraN F for
rationalF” 5F/2p can explicitly be written in terms of finite-dimensional matrices.

Theorem 2:Let the magnetic flux be rational,F52p(p/q) andp,q relatively prime. Then all
irreducible representations ofN F are labeled by an element of the torusS13S1. The represen-
tationpu is, up to unitary conjugation, defined by

pu~T1!5eiu1t1 , pu~T2!5eiu2t2 , ~56!

wheret1 and t2 are the discrete momentum and the discrete position operators introduced in Sec.
II, formulas ~14! and ~15!.

The irreducible representationspu have several interesting properties that are, in part, just
translations from the corresponding properties oft1 and t2.

~1! Representationspu , uPS13S1 are not injective sinceT1
q and (eiqu1. 1! have the same

image under the mappu .
~2! Two representations,pu and pu8 for uÞu8 and (u,u8)P[0,2p/q)3[0,2p/q), are in-

equivalent because the spectra ofpu(Tl) andpu8(Tl), l51,2, are different.
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~3! If howeveru85u1(2p/q)m for mPZ2, the two representationspu8 andpu are equivalent.
The unitary intertwining betweenpu8 andpu is constructed as follows: From the commutation
relations of the Weyl operators we conclude that for everynPZ2 andAPN F ,

pu1Fn~A!5W~Jn!pu~A!W21~Jn!. ~57!

Since, furthermore, the Diophantine equation forr ,s in Z,

pr1qs51, ~58!

has a solution—due to the Euclidean algorithm—we find, for everymPZ2, an elementnPZ2 such
that

F” n5
m

q
modulo 1. ~59!

For rationalF⁄ , the von Neumann algebraN F is of Type Iq , whereF⁄ 5p/q, p and q
relatively prime. This situation changes ifF⁄ ¹Q. In this case the centerN FùN F8 5 C1, hence
N F is a factor. In fact,N F is a II1 factor because the trace defined by~55! is weakly continuous
and strictly positive.23

The representation of the Weyl algebraN F for rationalF⁄ is reducible. In fact, each irreduc-
ible representation appears exactly once. This is the content of the following theorem that we cite
with no proof.

Theorem 3: For rationalF⁄ 5p/q, p andq relatively prime, there exists a unitary transfor-
mation,

0TABLE I. Useful homomorphisms of the rotational algebra.

No. Description Matrix det(M ) Automorphism Classical

i Rotation byp/2 S0 21

1 0
D 1 T1→T2

T2→T1*
x1→x2
x2→2x1

ii Rotation byp S21 0

0 21
D 1 T1→T1*

T2→T2*
x1→2x1
x2→2x2

iii Reflection atx15x2 S 0 21

21 0
D 21 T1→T2

T2→T1

x1→x2
x2→x1

iv Reflection atx152x2 S0 1

1 0
D 21 T1→T2*

T2→T1*
x1→2x2
x2→2x1

v Shear S 1 0

21 1
D 1 T1→T1

T2→ei (F/2)T1T2

x1→x1
x2→x11x2

vi Rotation and stretch S21 1

21 21
D 2 T1→e2 i (F/2)T1*T2*

T2→ei (F/2)T1T2*
x1→x11x2
x2→x12x2

vii Rotation byp/3 S21 21

1 0
D 1 T1→T2

T2→e2 i (F/2)T1*T2*
x1→x2
x2→2x12x2

viii Reflection atx50 S21 0

0 1
D 21 T1→T1

T2→T2*
x1→x1
x2→2x2

No. Description ~z1,z2! Automorphism

ix Reverse sign ofT’s ~21,21! T1→2T1
T2→2T2

x Reverse sign ofT2 ~1,21! T1→T1
T2→2T2
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U: l 2~Z2!→
1

uBu EB
%

d2u Cq^Cq, ~60!

such that

Ta
~v !>

1

uBu EB
%

d2u pu~Ta! ^ 1, Ta
~k!>

1

uBu EB
%

d2u 1^ pu~Ta11! ~aPZ2!. ~61!

Here,> denotes equality up to conjugation byU andB denotes the magnetic Brillouin torus,

B5RSmod2p

q DRSmod2p

q D . ~62!

Theorem 3 has several useful consequences.
~1! The spectral analysis of an elementA of N F can be reduced to the analysis of its

restriction to each individual fiber, since

A>
1

uBu EB
%

d2uA~u! ^ 1, ~63!

s~A!5 ø
uPB

s„pu~A!…. ~64!

TABLE II. Models, Hamiltonians, and classical symbols.

Model Hamiltonian Classical symbol

Hofstadter HHof5T11T21h.c. 2 cos~x1!12 cos~x2!

Mathieu Hm5T11mT21h.c. 2 cos~x1!12m cos~x2!

Second neighbor He5T11T21e(T1
21T2

2)1h.c. 2 cos~x1!12 cos~x2!
12e„cos(2x)1cos~2x2!…

Quantum PendulumHe,k5e(T11T2)1ke2 i (F/2)T1T2

1
1

k
ei~F/2!T1T2*1h.c.

e„2 cos~x1!12 cos~x2!…
12k cos(x11x2)1(2/k)cos(x12x2)

Triangular lattice Hh5T11T21e2 ihT1T21h.c. cos~x1!1cos~x2!1cos~x11x22h1f/2!

Honeycomb lattice
HHC5S 0 T11T21e2i~F/2!T1T2

T211T221eiF/2T2
21T1

21 0
D none

TABLE III. Symmetries of the Mathieu model.

Transformation Description Symmetry

No. i Rotation byp/2 ~Aubry duality! s~m!5ms~1/m!
No. x Reverse sign ofT2 s~m!5s~2m!
No. ix Reversion of sign infront ofTj s~m!52s~m!
No. viii Reflection atx50 s~F!5s~2F!
F→F12p Flux periodicity s~F!5s~F12pn!

Parameter space FP@0,p#
mP@0,1#
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This means, in particular, that the spectral analysis of a Hamiltonian of the Hofstadter type is
reduced to a matrix problem, e.g.,

s~HHof!5 ø
uPB

s„HHof~u!…, ~65!

HHof~u!5eiu1t11eiu2t21e2 iu1t1*1e2 iu2t2* , ~66!

where we used the notationHHof~u!5pu~HHof!.
~2! The commutand ofN F is given by the formula

N F8 5End„L2~B!…^ 1^End~Cq!, ~67!

where End„L2~B!… and End~Cq! denote the spaces of bounded linear operators onL2~B! andCq,
respectively.@We used the natural identification of (1/uBu)*B

% d2u Cq ^ Cq with L2~B!^Cq^Cq.#
As a last subject in this section we mention a useful property of the Husimi functions. Let

C~u! be an eigenvector ofH(u)5pu(H), ~uPB!, whereH denotes a Hamiltonian, which by
assumption is an element of the von Neumann algebraN F .

Due to equation~57! one gets for the Husimi function,

HC~u!~n!:5u„w,W~Jn!C~u!…u2, ~68!

FIG. 2. Classical contour levels the the Discrete Mathieu model form50.5.
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the equation

HC~u!~n!5HC~u1Fn!~0! ~nPZ2,uPR2!. ~69!

It defines a natural interpolationHC(u)(x), xPR, between the discrete values ofHC(u)(n):

HC~u!~n!5HC~u1Fn!~0! ~nPZ2,uPR2!. ~70!

In particular, one gets the formula

HC~0!~u!5HC~Fu!~0! ~uPR2!. ~71!

IV. THE MODELS

There are many automorphisms of the discrete Weyl–Heisenberg algebra; some are linear
others are nonlinear—some are inner others not. We have not studied them systematically. This
would be an interesting mathematical problem in itself. However, we will give a list of examples.
Many of them will show up later as symmetries of model Hamiltonians.

The simplest class of automorphisms are the linear ones. They may be called discrete
Bogoliubov–Valatin transformations.

FIG. 3. Hofstadter Butterfly: Spectrum of the Hofstadter Model.
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Proposition:LetM be a 232 matrix with integer entries and nonvanishing determinant. Then
the map

aM :W~m!→W~Mm! ~mPZ2!, ~72!

generates an algebra homomorphism fromN F ontoN detM,F .
The statement follows directly from the commutation relations~45!. The discrete Fourier

transformation implements a special case of a discrete linear automorphism,

W~m!5F W~Jm!F 21, ~73!

whereJ denotes the discrete complex structure introduced before. Others are summarized in Table
I.

Nonlinear automorphisms are typically generated by an arbitrary functionf that maps the unit
circle into itself. In terms of magnetic translations they are defined by the shift

a f :~T1 ,T2!→~T2 ,T3!, T1T35 f ~T2!, ~74!

FIG. 4. Spectrum of the Discrete Mathieu Hamiltonian form50.5 andq,40.
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FIG. 5. Continuous Husimi Transformation for Hofstadter model~p/q51/6!.
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whereT3 is defined by~74!. It is easy to check thataf is an algebra automorphism as long as all
quantities encountered on the way of verification are well defined.~This requires some regularity
for f .! A particularly nice example is the one arising from the Doubly-discrete Quantum
Pendulum,29 where

FIG. 6. Spectrum of the Second Neighbor Square Lattice model fore50.25 andq,40.

TABLE IV. Symmetries of the second neighbor model.

Transformation Description Symmetry

No. iii Reflection atx5p s~F!5s~2F!
No. ix Reversion of sign infront ofTj s~e!52s~2e!
F→F12p Flux periodicity s~F!5s~F12pn!

Parameter space FP@0,p#
eP@0,̀ !
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fQP~z!5
k1eif/2z

i1keif/2z
, ~75!

k is a real parameter defining the model; it is related to discrete curvature.
The algebra automorphism generated byfQP is a symmetry of the Hamiltonian,

FIG. 7. Classical contour levels in the Second Neighbor Square Lattice model fore50.25.

FIG. 8. Hopping interaction in the Triangular Lattice model.
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HQP:52„W~1,0!1W~1,0!*1W~0,1!1W~0,1!* …1k„W~1,1!1W~1,1!* …

1
1

k
„W~1,21!1W~1,21!* …,

~76!

a fQP
~HQP!5HQP.

Put differently,HQP is a quantum integral of the dynamics generated bya fQP
.

In the remaining part of this section we introduce several models of the Hofstadter type and
mention their symmetries, from which one can deduce then some qualitative properties of their
spectrum and eigenfunctions. Furthermore, we show the results of numerical computations of
spectra and eigenfunctions. In Table II the Hamiltonians of all these models are listed, together
with their classical symbols.

FIG. 9. Spectrum of the Triangular Lattice model forh50.075 andq<40.

TABLE V. Symmetries of the triangular lattice model.

Transformation Description Symmetry

No. ii Rotation byp s~h,F!5s~h1F,F!
No. iii Reflection atx15x2 s~h,F!5s~h,2F!
No. iv Reflection atx152x2 s~h,F!5s~2h,F!
No. ix Reversion of sign infront ofTj s~h!5~21!ns(h1pn)
F→F12p Flux periodicity s~F!5s~F12pn!

Parameter space FP@0,2p#
hP@0,p#
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All numerical computations of the spectra are based on Chamber’s relation~see Sec. V!. This
implies, in particular, that symmetries of classical symbols are reflected in spectral properties@see
formula ~108! in Sec. V#.

A. The discrete Mathieu model

The discrete Mathieu Hamiltonian describes an anisotropic variant of the Hofstadter model. It
contains a real parameterm, which may be interpreted as the relative strength between the hopping
interactions in the two lattice directions. The Hamiltonian is given by

FIG. 10. Interactions in the Honeycomb model.

FIG. 11. Spectrum for the Honeycomb model.
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FIG. 12. Examples for classical contour levels in regions A–E for the Doubly-discrete Quantum Pendulum.
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H~m!5T11mT21T1*1mT2* . ~77!

For m51, we recover the Hofstadter Hamiltonian and, form50, the one-dimensional discrete
Laplacian, which can be diagonalized explicitly. Hencem interpolates between these limiting
cases; therefore the discrete Mathieu model is a tool to derive properties of the Hofstadter model;
e.g., in Ref. 37, the Chern number has been computed in this way. Other properties discussed by
that method are the gap labeling,38 the total gap length, and the spectrum for irrational flux~for
recent results see Last20!.

In Table III the symmetries including the automorphism that gives rise to the Aubry duality
are put together.~Notice that in our formulation the Aubry duality transformation is simply the
linear automorphism generated by a rotation about the anglep/2. It is implemented by discrete
Fourier transformation.! In the last column of the table, their consequence for the spectrum is

FIG. 13. Regions A–E for critical points in parameter space for the Doubly-discrete Quantum Pendulum.

TABLE VI. Symmetries of the Doubly-discrete Quantum Pendulum.

Transformation Description Symmetry

No. i Rotation byp/2 s(k)5s(1/k)
No. iii Reflection atx15x2 s~F!5s~2F!
No. ix Reversion of sign infront ofTj s~e!52s~2e!

Reversion of energyH→2H s(e,k)52s(2e,2k)
Derived s(k)52s(2k)

F→F12p Flux periodicity s~F!5~21!ns(F12pn)
Parameter space FP@0,2p#

kP~0,1#
eP@0,̀ !
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shown. These symmetries can also be read off from the contour levels of the classical symbol~Fig.
2!. The spectra of the Hofstadter and the discrete Mathieu model are shown in Figs. 3 and 4,
respectively. In Fig. 5, the Husimi functionHC(0)(n) for eigenstates of the Hofstadter model are
shown. Small values are dark and large values white. The interpolation between the discrete values
of n here and in the sequel are done using Eq.~71! of Sec. III.

B. The second neighbor square lattice model

The model was discussed by Wilkinson already in 1984.8 Its Hamiltonian is given by the
formula

HSN~«!5T11T21«~T1
21T2

2!1h.c., ~78!

where« denotes the relative strength of the coupling to the second neighbor in the lattice. Some
qualitative properties of the spectrum~Fig. 6! follow already from the symmetries of the classical
symbol ~Table IV!. Wilkinson’s computation of the spectrum showed a splitting of the lowest
subband into a braid-type structure~Fig. 6, focus on the point flux50 and energy22.4!. This has
been investigated in Ref. 39, and it was shown that the braid structure can be understood as a
phase space tunneling between the four bottom wells in the Brillouin torus~Fig. 7!.

C. The triangular lattice model

The triangular model was introduced by Claro and Wannier40 and describes a hexagonal
crystal. They computed the spectrum nummerically and found a nesting structure similar to the
one for the Hofstadter model. A semiclassical analysis was presented in Ref. 41. In Ref. 42 the
model was generalized to different fluxes in the two classes of triangles~Fig. 8!. Its Hamiltonian
is

HTR~h!5T11T21e2 ihT1T21h.c.. ~79!

It is remarkable that also in this case the spectrum can be computed in spite of the spatial
inhomogeneity of the flux~Fig. 9!. This is possible because Chamber’s relation still holds~Sec.

TABLE VII. Critical points of the classical symbol for the Quantum Pendulum.

Critical point

Energy

Region

x,p A B C D E

Ia 2pn, 2pm 2(2e1k1
1
k)

a max. a max. a max. a max. a max.

Ib 2pn, p~2m11! or
p~2n11!, 2pm

22(k1
1
k)

a min. a min. a min.5IV saddle saddle

Ic p~2n11!, p~2m11! 2(22e1k1
1
k)

1 max. saddle saddle saddle a min

II pn6→arccos~~21!n11ek/2!,
pn7→arccos~~21!n11ek/2!

2((12 e2/2k)2
1
k

saddle saddle a min5IV a min -

III pn6→arccos((21)n11 ),

2pn6→arccos((21)n11 e
2k)

2(2k1(12 e2/2)
1
k)

saddle - - - -

IV t6→arccos(2
ek
2 cos(t)),

2 t6→arccos(2
ek
2 cos(t))

22(k1
1
k)

- - a min. - -
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V!. Numerical computations are in excellent agreement with semiclassical analysis.42 Several
qualitative aspects of the spectrum can already be understood by a simple consideration of sym-
metries~see Table V!.

D. The honeycomb lattice model

This model has been introduced by Rammal43 and is defined in terms of the Hamiltonian,

HHC5S 0 T11T21W~1,1!

T1*1T2*1W~1,1!* 0 D . ~80!

He computed the spectrum numerically. The Hamiltonian linkes sites of a bipartite lattice
~Fig. 10!. This implies that the square of the Hamiltonian is just two independent triangular

FIG. 14. Spectrum of the Doubly-discrete Quantum Pendulum ate52 andk51/2 ~region C!.
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lattice models with, as it turns out, fluxh50. Hence the computation can be reduced to the
previous case~Fig. 11!.42

E. The doubly-discrete quantum pendulum

Recently, Bobenko, Kutz, and Pinkall have introduced a family of Hamiltonians that arises in
the analysis of the Doubly-discrete sine-Gordon equation,29

HQP~«,k!5«~T11T2!1kW~1,1!1
1

k
W~1,21!1h.c., ~81!

where« andk are real parameters. For«52, the Hamiltonian represents a quantum integral with
respect to the automorphism defined by the Doubly-discrete sine-Gordon equation in zero spatial
dimension@see the Introduction, Eq.~11!#. k is related to curvature.

The HamiltonianHQP in ~81! belongs to the class of the next nearest neighbor Hamiltonians
introduced by Hatsugai and Kohomoto.44

FIG. 15. Spectrum of the Doubly-discrete Quantum Pendulum ate51 andk53/4 ~region A!.
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From the contour levels in classical phase space~Fig. 12!, it becomes clear that the model is
related to a classical pendulum. In each unit cell of phase space we have closed classical orbits at
small energies. At high energies we see extended contours giving rise to rotating solutions. The
parameterk is the analog of the gravitational constant in the usual pendulum and controls the
onset of rotating solutions. The parameter« interpolates between the discrete Mathieu model
~«50! with flux F852F and rescaled energyE85kE and the quantum integral~«52!. Here, we
used the algebra homomorpism

F°2F, T1°eif/2T2*T1* , T2°eif/2T1T2* . ~82!

In the limit k→0 the term 1/k dominates and the system turns into a discrete Laplacian~up to the
factor 1/k!. Finally, if «5k, the Hamiltonian converges in the limit«→` to the Hamiltonian of a
triangular lattice model with rescaled energy. Qualitative properties of the spectrum follow again
from symmetries of the classical symbol~Table VI! due to the Chambers relation@~108!, Sec. V#.

The discussion of this model will be continued in the next section.

FIG. 16. Spectrum of the Doubly-discrete Quantum Pendulum ate51,5 andk51/2 ~region B!.
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V. SPECTRA AND EIGENFUNCTIONS

The analysis of the spectra for Hamiltonians of the Hofstadter-type models is greatly simpli-
fied by the Chambers relation. It expresses the fact that the characteristic polynomial of the
Hamiltonian restricted to a fiber over the Brillouin torus is the sum of two terms. The first one is
a universal polynomial, i.e., it is independent of the coordinateu of the Brillouin zone, and the
second term is the zeroth-order term of the polynomial. It is the only term where theu dependence
enters. This term is furthermore a scaled version of the principal symbol of the Hamiltonian.

We explain Chambers relation for the case of the Doubly-discrete Quantum Pendulum and
prove the following result.

Theorem 1: If the flux F⁄ 5p/q is rational andp,q relatively prime, the secular determinant
for the Doubly-discrete Quantum Pendulum is given by Chamber’s formula,

det„HQP~u!2z…5p~z!1hQP~u!, ~83!

wherep(z) is a polynomial of degreeq and

FIG. 17. Spectrum of the Doubly-discrete Quantum Pendulum ate53 andk51/4 ~region D!.
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hQP~u!524Tq~2«/2!~cosqu11cosqu2!12~21!pS kq cosq~u11u2!1
1

kq
cosq~u12u2! D .

~84!

Here Tq denotes the Chebyshev polynomial of degreeq, defined byTq~cosx!5cosqx and
Tq(21)5(21)q.

Chamber’s relation is not only very useful to compute spectra. It also shows several concep-
tually interesting features. The offset functionhQP~u!—which is almost the classical symbol—
generates on the Brillouin torus a Hamiltonian vector field, which gives rise to an isospectral
flow.45 Furthermore, the secular determinant for the Hofstadter model can be factorized at the
band edges. This makes it possible to compute the spectral bands algebraically for rather large
values ofp andq in the field of the cyclotomic extensions of the rationals.46

Proof: The characteristic polynomial is a function ofuPB andzPC,

FIG. 18. Spectrum of the Doubly-discrete Quantum Pendulum ate53 andk53/4 ~region E!.
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F~u,z!:5det„HQP~«,k,u!2z…. ~85!

By definition, it is 2p periodic in the variableu. Due to Remark 3 after Theorem 2 in Sec. III it
is, however, 2p/q-periodic inu1 andu2. Hence, it can be expressed in terms of a Fourier series as
follows:

FIG. 19. Husimi transformation for eigenstates of the Quantum Pendulum atF52p~1/12!, e52, k51/2, u5~0,0!.
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F~u,z!5 (
nPZ2

Fn~z!j1
qn1
•j2

qn2, ~86!

where we introduced the notationj1 5 eiu1, j2 5 eiu2.
Next, we argue that the only nonvanishing terms in the above Fourier series are those for

which un1u<1 andun2u<1. This follows from the explicit form of the Hamiltonian,

HQP~«,k,u!5«S j1t11j2t21
1

j1
t1*1

1

j2
t2* D1kS j1j2W~1,1!1

1

j1j2
W~1,1!* D

1
1

k S j1
j2

W~1,21!1
j2
j1

W~1,21!* D , ~87!

and the obvious fact that the determinant is homogeneous of orderq in the entries of theq3q
matrix; so we get

FIG. 20. Husimi transformation of the ground state of the Doubly-discrete Quantum Pendulum forF52p
1
9.
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F~u,z!5 (
un1u<1
un2u<1

Fn~z!j1
qn1j2

qn2. ~88!

The coefficientsFn(z) are now computed by taking limits in this equation to various singular
points,

det„HQP~«,k,u!2z…5detS «S j1t11j2t21
1

j1
t1*1

1

j2
t2* D1kS j1j2e

2 iF/2t1t21
1

j1j2
eiF/2t2* t1* D

1
1

k S j1
j2

eiF/2t1t2*1
j2
j1

e2 iF/2t2t1* D2zD5 (
un1u<1
un2u<1

Fn~z!j1
qn1j2

qn2. ~89!

Consider, for instance, the casej1→`. It leads to the equation~using dett151!

FIG. 21. Husimi transformation of the third state of the Doubly-discrete Quantum Pendulum forF52p
1
9.
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detS «t11k«2e
2 iF/2t1t21

1

kj2
e2 iF/2t1t2* D5detS «1kj2e

2 iF/2t21
1

kj2
eiF/2t2* D

5F1,0~z!1F1,1~z!j2
q1F1,21

~z! j2
2q . ~90!

A second limiting procedurej2→` leads to

det~ke2 iF/2t2!5F1,1~z!. ~91!

Since det~t1!5det~t2!51, we get the result

F1,1~z!5kq•e2 iqF/25kq~21!p. ~92!

If we replace the limit above byj2→0, we find

F1,21~z!5k2q~21!p. ~93!

FIG. 22. Husimi transformation of the sixth state excitation of the Doubly-discrete Quantum Pendulum forF52p
1
9.

5237C. Kreft and R. Seiler: Models of the Hofstadter type

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Similarly, we can replace the limitj1→` by j1→0 followed byj2→` andj2→0.
This leads to

F21,1~z!5k2q~21!p, F21,21~z!5kq~21!p. ~94!

Among the coefficients arising in these equations, onlyF1,0(z) remains to be computed. This
follows easily from the following proposition.

Proposition 2:for any zPC, j51,2, andlPC\$0%,

detS lt j1
1

l
t j*2zD522TqS z2D1~lq1l2q!, ~95!

whereTn(x)5cos„n arccos(x)… is thenth Chebyshev polynomial.
The proof of the proposition uses again the same idea as before. The function@lt1

1 (1/l)t1* 2 z# is a Laurent polynomial inl of order q and invariant under the substitution
l→e2p i /ql. Hence, it can be expressed in terms of a Fourier series with three terms only,

FIG. 23. Exact spectrum and semiclassical Landau levels ate52, k51/2.
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detS lt11
1

l
t1*2zD5b0~z!1b11~z!lq1b21~z!l2q. ~96!

The termsb61(z) can be computed through the limitsl→6`, from which we infer that
b6(z)5dett1

6151. So we are left with the computation of the polynomialb0(z).
By construction,t1 has the eigenvalue one and is diagonal. Hence, the left-hand side of~96!

vanishes if

l1
1

l
2z50. ~97!

From this equation and~96! we conclude that

b0S l1
1

l D1lq1l2q50, ~98!

which up to trivial factors, is the functional equation for the Chebyshev polynomialTq(x),

TqS 12 ~l1l21! D2
1

2
~lq1l2q!50. ~99!

So, we finally get the result

b0~x!522TqS x2D . ~100!

This proves Proposition 2.
Now we are prepared to computeF10 from Eq. ~90!:

F10~z!5detS «1kj2e
2 iF/2t21

1

kj2
eiF/2t2* D2kq~21!p~j2

q1j2
2q!522TqS 2

«

2D . ~101!

Analogously, we obtain

F21,0~z!522TqS 2
«

2D . ~102!

The only term left isF00(z). The results proved so far show that it is the only coefficient among
the Fn’s, which possibly has an explicitz dependence. All other terms are independent ofz.
Summarizing, we obtain

F~u,z!5F ~0,0!~z!1 (
un1u51
un2u51

~21!pkn1n2qj1
n1qj2

n2q22Tq~2«/2!„~j1
q1j1

2q!1~j2
q1j2

2q!….

~103!

This finishes the proof of Theorem 1.
Similar results hold for many other Hamiltonians of the Hofstadter type; in particular, for all

those that are of the form

H5 (
um1u<1
um2u<1

t~m!W~m!. ~104!
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This class contains all the models mentioned so far~except the second neighbor square lattice
model!.

For rational flux the spectrum of the Hamiltonian is computed in terms of band functions,
defined as follows. ForF⁄ 5p/q, p`q51, the HamiltonianH may be expressed in terms of a
direct integral~Sec. III, Theorem 3 and Eq.~63!#,

H>
1

uBu EB
%

d2u H~u! ^ 1, ~105!

whereH~u! is a q3q matrix operator. Its spectrum is given in terms of the spectra of the fiber
Hamiltonians,H~u!, by

s~H !5 ø
uPB

s„H~u!…. ~106!

The latter is computed as the zero set of the secular determinant:

$zudet~H~u!2z!50%5$E1~u!,...,Eq~u!%. ~107!

E1(u),...,Eq(u) are the band functions. SinceH(u)5H( ū)* is analytic inu1 and u2 the band
functions are real analytic in bothu1 andu2 separately and continuous jointly inu1 andu2.

47

Due to Chambers relation,

det„H~u!2z…5P~z!2h~u!, ~108!

the band functions are the branches of the relationP21+h.
Each band functionE~u! gives rise to a band@Emin ,Emax#,s~H!, where the band edges are

critical points,dE~umin!5dE~umax!50.
Chamber’s relation has another interesting consequence for the critical points of all band

functions. Every critical point of the classical symbolh~u! is a joint critical point of all band
functions, since

P8„E~u!…•E8~u!5h8~u!. ~109!

The converse is slightly more subtle. IfE~u! describes a band that does not touch another one, i.e.,
P8„E~u!…Þ0, for critical pointsu of h, the critical points ofE~u! coincide with those ofh~u!.
Degeneracies of spectra occur generically only on a set of codimension 3, hence for discrete points
~u,F! in B3R ~Neumann and Wigner48!.

Notice that the fact just mentioned simplifies the computation of spectra considerably since
instead of computing all the band functions one merely needs to compute the band edges, i.e., the
zeros of the equation

P~z!5h~ucrit!, ~110!

for all critical pointsucrit of h.
Critical points of band functions or of the corresponding classical symbol, respectively, are

relevant for the semiclassical analysis of the spectra~see below!. They can have a complicated
geometrical structure depending on the parameters of the model.

As an example we consider the case of the Doubly-discrete Quantum Pendulum. The param-
eter space is decomposed into five regions A–E as shown in Fig. 13. In Table VII we list the
critical sets in the Brillouin torusB of the classical symbol.a max anda min denote absolute
maxima and absolute minima, respectively, while max and min refer to local maxima and minima.

In all five regions, there is just one absolute maximum at (x1 ,x2)5~0,0!. In a vicinity of this
point the Hamiltonian is parabolic and gives rise to oscillating classical solutions. There is one
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absolute minimum in all regions except in case C, where«52. This case is the one originating
from discrete geometry. The absolute minimum is a loop inB, hence a classical orbit.

In the general case, there is a saddle point between the absolute maximum and the absolute
minimum. This is clearly seen from the plot of classical contour levels~see Fig. 12!.

We have computed numerically the band spectrum of the Doubly-discrete Quantum Pendulum
for rational flux by diagonalizing the fiber HamiltonianH~u! at the critical points of the dilated
classical symbolhQP defined in~84!. These values can be computed easily from the critical points
of the classical symbol~Table VII!. In Figs. 14–18 we present typical spectra for the regions A–E.
In Figs. 19–22, Husimi functions for various parameters and quantum numbers are shown. The
figures contain the classical orbits and show that the Husimi functions are localized at their
classical counterparts.

Now we present a semirigorous semiclassical analysis of the spectrum of the Doubly-discrete
Quantum Pendulum and apply techniques known from the Hofstadter model8 to the critical points
of the classical symbol. If the critical points are not isolated, as is the case for the Doubly-discrete
Quantum Pendulum with«52, one has to apply technics that are analytically even more
involved.49,50 They go back in spirit to the reaction path method of quantum chemistry.51,52

In the case of an isolated critical point there are classically oscillating orbits nearby, giving
rise to quasimodes. Their energy can be computed as follows: Consider, e.g., the absolute maxi-
mum of the classical symbol at (x1 ,x2)5~0,0!, which is unique for all parameter values. Using a
semiclassical representation of the Rotation Algebra, namely,

T15ei ~x11AFK1!, T25ei ~x21AFK2!, @K1 ,K2#5 i , ~111!

we expand the Hamiltonian inAF around the critical point up to second order and obtain the
formal expression

H5HQP~0,0!6uFuAdetD2HQP~0,0!~K1
21K2

2!1O~ uFu3/2!. ~112!

D2HQP~0,0! is the Hessian of the classical symbol at the critical point~0,0! where the equation
holds:

v«,k52AdetD2
QP~0,0!5A~«12k!~«12/k!, ~113!

and, thus, the semiclassical eigenvalues are given by

En52~2«1k11/k!2v«,k~2n11!, ~nPZ!. ~114!

In physical terms this corresponds to a Bohr–Sommerfeld quantization of classically oscillating
solutions.

This approach is oriented toward energies at the top—respectively for isolated critical values
of the classical symbol—and small flux. In this case the bands are very short, so one may refer to
them as single numbers. As in other Hofstadter-like, models the results match the exact spectrum
very well, even for comparatively large values of magnetic fluxF @see Fig. 23#. For larger flux
and smaller energies this changes—due to tunneling—and the bands get longer.

This semiclassical argument does not hold anymore if the energy is close to a classical saddle
point, where there are rotating classical solutions.

Except at«52 the classical symbol possesses an absolute minimum in phase space, which,
again, gives rise to energy levels of the same type as before. This time, however, they emerge
from the minimal classical energy. In Fig. 18~region E! one can easily spot them since the
minimal energy is well separated from the separatrix energy, as in the case of the square lattice.

In each region of the parameter space we find rotating solutions for the classical Hamiltonian.
In the covering space of phase space they appear as noncompact contours in an energy range
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between two distinct saddle points. Except for the trajectory at minimal energy for«52, we
always find two different rotating solutions at the same energy level. Their semiclassical analysis
is more complicated and will not be discussed here.49,50
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Entropy of a subalgebra and quantum estimation
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In this paper we compare the accessible information of quantum communication
channels with the entropic content of finite-dimensional matrix algebras with re-
spect to quantum states, as defined by Connes, Narnhofer, and Thirring. In particu-
lar, every Abeliann3n matrix algebra together with a density matrix define the
input alphabet of a quantum communication channel whose accessible information
equals the entropic content of the algebra with respect to the state. The casesn52
and n53 are concretely examined in connection with the problem of the best
estimation. ©1996 American Institute of Physics.@S0022-2488~96!00110-7#

I. INTRODUCTION

The recent advances in the technology of information transmission1,2 and the highly stimulat-
ing field of quantum computation3 have greatly enhanced the need of noncommutative generali-
zations of Shannon’s classical information theory.4

We will consider idealized communication channels at whose ends Alice is the sender and
Bob the receiver. Alice uses quantum means~photons and an optical fiber! to encode a message
and to send it to Bob. She might transmit photons in orthogonal, say vertically–horizontally
polarized states, each one containing a classical bit of information. Then Bob, by measuring
whether the incoming photons are vertically or horizontally polarized, would decode Alice’s
message.

On the other hand, according to the prescriptions of quantum criptography, possible eaves-
droppers will be baffled by Alice using nonorthogonal, say vertical, respectively, 60° right of the
vertical, polarized states.3,5 In this case, however, Bob needs an error correcting code to cope with
the fact that he has fixed probabilities of measuring both vertical and horizontal linear polariza-
tions when the incoming photon is not vertically polarized. More photons are to be sent by Alice
in order to correct Bob’s imperfect distinction between two nonorthogonal photon states, whence
the problem of estimating how manyquantum itsin Wheeler’s therminology1 are needed to
convey a certain amount ofclassical bits.6

In general, Alice might be using a quantum statistical ensemble composed byn quantum
~mixed! statesr̂ j with weightspj which is thus represented by the density matrix

r̂5(
j
pj r̂ j . ~1!

Bob’s decoding strategy rests on some set of observablesêk he chooses in order to maximize the
amount of information he extracts from his measurements. Let theêk be orthogonal, one-
dimensional projections such that that(kêk51̂. Out of the incoming signal statesr̂ j , Bob will get
the êk’s eigenstateuek& with probabilitypk

e( r̂ j ):5Tr r̂ j êk , respectively,pk
e( r̂):5Tr r̂êk if he hap-

pens to measureêk on the whole mixture represented byr̂. The information content of the
~discrete! probability distributions,

pe~ r̂ !:5$pk
e~ r̂ !%, pe~ r̂ j !:5$pk

e~ r̂ j !%, ~2!

a!Electronic mail: Benatti@Trieste.infn.it
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is measured by the Shannon’s entropies:

S„pe~ r̂ !…52(
k

pk
e~ r̂ !log pk

e~ r̂ !, ~3!

S„pe~ r̂ j !…52(
k

pk
e~ r̂ j !log pk

e~ r̂ j !. ~4!

Since we assumed theêk to be orthogonal, one-dimensional projections,pe( r̂), respectively
pe( r̂ j ), are the spectra of the states resulting fromr̂, respectivelyr̂ j , after repeated, nonselective
measurements of the observablesêk :

r̂e:5(
k

pk
e~ r̂ !êk , respectively r̂ j

e :5(
k

pk
e~ r̂ j !êk . ~5!

Then ~3! and ~4! coincide with the von Neumann entropies,

S~ r̂e!52Tr r̂e log r̂e52(
k

pk
e~ r̂ !log pk

e~ r̂ !, ~6!

S~ r̂ j
e!52Tr r̂ j

e log r̂ j
e52(

k
pk
e~ r̂ j !log pk

e~ r̂ j !. ~7!

Notice that from~1! and ~2! it follows that( j pj pk
e( r̂ j )5pk

e( r̂), whencepe( r̂ j ) can be inter-
preted as the probability of the eventêk conditioned upon the occurrence of the eventr̂ j and

(
j
pjS„p

e~ r̂ j !…, ~8!

as the corresponding conditional entropy. Then, Shannon’s mutual information is defined as the
difference,2

I r̂
e :5S„pe~ r̂ !…2(

j
pjS„p

e~ r̂ j !…. ~9!

In the conventional~classical! setting Alice sends signals to Bob by means of orthogonal photon
statesr̂1,2 out of, say, a mixture of them with probabilitiesp1 andp2512p1 . Then, by measuring
the orthogonal projectionsr̂1,2, Bob will maximize the amount of information he can extract per
measurement. In fact, in this case, the conditional probabilitiespk

e( r̂ j )50,1 so that the conditional
entropy vanishes andI r̂

e
5 2p1 log p12 p2 log p2 is maximal.

In Sec. IV we will address the corresponding quantum problem, namely the question of the
best noncommutative decoding strategy.

Dynamical entropies

The Kolmogorov–Sinai dynamical entropy1 is, in essence, classical information applied to
ergodic theory and provides us with powerful methods to characterize the degree of randomness of
classical dynamical systems.

Abstractly, the dynamics is represented by the iterations of a mapT on a measure spaceX ,
equipped with an invariant measurem ~a priori state!. Information about the system is gained by
assigning the phase point representing the system to one of the disjoint atomsPj , 1< j<n of a
chosen coarse-grained description~partition! P of X . The atoms have volumesm(Pj ) that are
probabilities, and the entropy
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Hm~P !52(
j

m~Pj !log m~Pj ! ~10!

measures thea priori information relative toP .
If we get information about the system by means of a different partitionQ :5$Qk%k51

m ,
m jk
Q :5m(PjùQk)/m(Pj ) is the probability of finding the system in the atomQk if it is in the

atomPj . The uncertainty removed as a consequence of the assignment of the phase point to any
of the atomsQk is thus given by

Hj
Q :52(

j
m jk
Q log m jk

Q , ~11!

and Shannon’s mutual information reads as

Im
Q5Hm~P !2(

j
m~Pj !Hj

Q . ~12!

We can identify the triple~m,P ,Q ! with a classical communication channel by simply think-
ing of P as providing a decomposition of the statem and ofQ as of a decoding procedure. Then,
I Q measures the information capacity of the given classical communication channel and attains its
maximumHm~P ! whenQ5P . This fits very well with the use ofHm~P ! as the natural measure of
the information content of the partitionP with respect to the statem. The entropy of a partition is
indeed the central notion for the dynamical entropy constructed by Kolmogorov and Sinai.1

Any attempt at a quantum generalization of the above considerations encounters a major
conceptual problem. In fact, quantum states are generally perturbed by measurement processes.
For instance, in~5! r̂ j

eÞr̂ j , unlessr̂ j commutes with theêk’s. In classical contexts the perturba-
tions of the state due to measurements can always be made negligible, at least in the line of the
principle. As a matter of exemplification, in the case of the localization of the phase point within
one of the atoms of the partitionP , what corresponds to the quantum stater̂ transforming into the
new stater̂e in ~5! is the following:

m°mP:5(
j

m~Pj !xPj
, ~13!

where thexPj
are the index functions of the various~disjoint! atoms. ThatmP5m can be checked

by considering the mean valuesm( f ) andmP( f ) of anym-integrable functionf .
Intuitively, at the core of the notion of dynamical entropy lies the idea that the more we know

about the past of an evolving system, the more confident we are on our predictions about its future.
If this is not the case then we have a signature of random behavior. The reliability of our
predictions also depends on the degree of accuracy of the observations we performed on the
system in order to acquire information about it. In a classical context we can always think of
carrying them out without altering the regularity or irregularity of the system, the latter being then
intrinsic properties. Quantum mechanically instead, one is very likely to introduce randomness
into the system by performing measurements on it. Thus, an observer-independent characterization
of quantum chaos based on any meaningful notion of quantum information requires that informa-
tion be gathered without perturbing the physical state. However, the effects of quantum measure-
ments are inherently quantum mechanical and one is not at all sure that these should not be
incorporated in any physical theory of quantum chaos.7

In the case of a formulation solely based on the dynamics with respect to which the given state
of the system is invariant, what is required is, first, a good notion of ‘‘quantum partition’’ and,
second, a good measure of the amount of information contained in it with respect to a given
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quantum state. In the following, we will be dealing with a proposal of quantum dynamical entropy
that tries to fulfill the latter needs, while we refer the reader to Ref. 8 for a formulation that allows
for external perturbations of the quantum states.

In the noncommutative setting one usually replaces the measure-theoretic description of clas-
sical dynamical systems with an algebraic one. That is, one refers to some algebraA of bounded
operators~C* or von Neumann algebra! equipped with a dynamical automorphismu that respects
the algebraic relations and preserves a statev, the latter assigning the expectation values of all the
observables of the system.

Finite-dimensional subalgebrasN,A offer themselves as natural substitutes for classical
partitions. In Ref. 9 the infinitely many decompositions of any nonpure quantum state are used to
construct theentropy of a subalgebra Hv~N!, the quantum generalization of the classical entropy
of a partitionHm~P ! in ~10! ~also see Ref. 10!. We will show that the entropy of an Abelian
subalgebraA,Mn ~C! coincides with the accessible information of a specific quantum communi-
cation channel. Moreover, a temptative information-geometric interpretation of these optimal de-
compositions is compared with recent results concerning generic states onM2~C! and completely
symmetric ones onM3~C!.11

II. ENTROPY OF A SUBALGEBRA

We consider the simplest possible quantum mechanical setting, namely ann-level system the
observables, respectively the states, of which are Hermitiann3n matrices inMn~C!, respectively
density matricesr̂, with positive eigenvaluesrl , l51,...,n such that( lr l51. Any density matrix
r̂ for which r̂2Þr̂ is a mixed state and can be arbitrarily decomposed into a convex linear
combination of other statesr̂ jPMn~C! as in ~1!, with given weights 0<pj<1, ( j pj51. For our
purposes, we will be content with finite linear convex combinations that we will call ‘‘decompo-
sitions.’’

Two observations are in order at this point: the effect of a quantum measurement on a
quantum state is usually described as in~5!.12 The latter amounts to a decomposition if and only
if the êk ~in general, not orthogonal projections! commute with the state itself. Second, any
resolution of the identity,( j x̂ j51̂, by means of positive operators 0<x̂ jPMn~C! gives a decom-
position of a stater̂PMn~C!. As follows:

r̂5(
j
Tr r̂ x̂ j

Ar̂ x̂ jAr̂

Tr r̂ x̂ j
. ~14!

Remark 1: The converse is also true: given a decompositionr̂5( jl j r̂ j , there exists a set of
positive operators xˆ jPMn~C!, (j x̂ j51̂, such that (14) holds. The clue to it is the so-called GNS
construction based onr̂ itself, if it is invertible, otherwise upon restricting to its support
projection.13

The information content of quantum states is measured by the von Neumann entropy:

S~ r̂ !52Tr r̂ log r̂. ~15!

Let us now consider a maximally Abelian subalgebraA,Mn~C! generated byn orthogonal one-
dimensional~minimal! projectionsâ j such that(j â j51̂. The restrictionr̂�A of any stater̂ to A
provides us with a discrete probabilityPr̂

a : 5 $pj
a%, j51,...,n andpj

a:5Tr r̂â j . That is,

r̂�A5(
j
â j r̂â j5(

j
$Tr r̂â j%â j ~16!

and
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S~ r̂�A!52(
j
pj
a log pj

a . ~17!

Now, the mapr̂°( j â j r̂â j is such thatS( r̂)<S( r̂�A! ~Ref. 14, Chap. 2!, and

S~ r̂ !5min$S~ r̂�A!:A,Mn~C!maximally Abelian%, ~18!

the minimum being attained at any maximally AbelianA containing the spectral projections ofr̂.
The above result makes clear thatS~r̂�N! is useless as a measure of the information content

of a subalgebraN#Mn~C! with respect to the stater̂. Indeed, we expect that, like finer classical
partitions have greater entropy, larger subalgebras contain more information. At the core of the
fact that there are subalgebrasN andM with N,M and, nevertheless,S~r̂�N!.S~r̂�M !, we find
purely quantum reasons~state entanglement!: the singlet state of two spin12 particles is pure and
has zero entropy, whereas restricted to the single spin algebra it becomes a mixture of equally
distributed spin up and down states with von Neumann entropy log 2.

An entropic-like quantity that is always increasing under embedding is therelative entropyof
two statesr̂,ŝ:

S~ r̂,ŝ !:5Tr ŝ~ log ŝ2 log r̂ !. ~19!

Among other properties,S( r̂,ŝ) is always positive and vanishes if and only ifŝ5 r̂. Moreover, it
is monotonic~see Ref. 15!:

S~ r̂�N1 ,ŝ�N1!<S~ r̂�N2 ,ŝ�N2!, if N1#N2 . ~20!

Let a stater̂, a subalgebraN#M ~C! and a decompositionr̂5( j pj r̂ j be given. Then, we construct
the functional

H r̂~ $pj r̂ j%,N!:5(
j
pjS~ r̂�N,r̂ j�N!, ~21!

5S~ r̂�N!2(
j
pjS~ r̂ j�N!. ~22!

The latter equality follows fromr̂5( j pj r̂ j and ~19!.
Definition 1: The entropy of a subalgebraN#Mn~C! with respect to a stater̂ is defined9 as

H r̂~N!:5supHH r̂~ $pj r̂ j%,N!: r̂5(
j
pj r̂ j J , ~23!

the supremum being computed over all possible decompositions ofr̂. The decomposition(s) at
which it is attained are called ‘‘optimal decomposition(s).’’

The entropy of a subalgebra has the right monotonicity properties and fulfills the following
bounds:

M#N⇒0<H r̂~M !<H r̂~N!<S~ r̂�N!. ~24!

Some concrete results

We now enumerate a series of known results that mainly stem from Refs. 16 and 11. Four of
them are easier to discuss than the others:~0! the stater̂ is pure, that is, it cannot be decomposed;
~1! The subalgebraN coincides with the whole algebraMn~C!; ~2! N is a maximally Abelian
subalgebraA commuting with the stater̂; ~3! N#Mn~C! is any subalgebra, but the stater̂ is
the so-called ‘‘tracial state’’~denoted byt!, namelyt 5 1̂/n.
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Case (0):this case is trivial, namelyH r̂(N) 5 0 for all N#Mn~C!.
Case (1):one chooses any decomposition ofr̂ as in ~14! with the x̂ j to be one-dimensional

projections inMn~C!. The correspondingr̂ j are one-dimensional projections and they obviously
equal their restrictionsr̂ j�Mn~C!. Thus, the entropyS„r̂ j�Mn~C!…50 and the functional in~22!
attains its maximumH r̂„Mn(C)… 5 S( r̂) at infinitely many optimal decompositions.

Case (2):a generic one-dimensional projection is seen as a mixed state when restricted toA.
However, using~14! and the choicex̂ j5â j , where theâ j are the minimal projections that generate
A, one sees that the states

r̂ j�A5
Ar̂â jAr̂

Tr r̂â j
�A ~25!

are orthogonal, one-dimensional projections, whenceS~r̂ j�A!50. Therefore, the maximum in~23!
equalsH r̂(A) 5 S( r̂�A) and is attained at the optimal decompositionr̂ 5 ( jAr̂â jAr̂.

Case 3:one considers any maximally Abelian subalgebraA#N, with minimal ~in N! projec-
tions âk of dimension Trâk5dk>1. Then

Ht~A!<Ht~N!<S~t�N!<S~t�A!, ~26!

because of~24! and ~18!. Let t be decomposed ast5( j51
n p̂j /n, where thep̂ j , ( j51

n p̂j51̂, are
minimal @in Mn~C!# projections such that eitherp̂ j âk50 or p̂ j âk5 p̂ j . It follows that

Ht~N!5S~t�A!52(
k

dk
n
log

dk
n
. ~27!

Obviously, the optimal decompositions correspond to the possible refinements of the orthogonal
projectionsâk into one-dimensional orthogonal onesp̂ j .

In more general situations than those discussed above, there are general results concerning
M2~C!.11,16Hopes for easy generalizations to higher dimensions are somehow frustrated by a result
concerning the entropy of a maximally Abelian subalgebra ofM3~C! with respect to a particularly
symmetric state.11

By means of the Pauli matrix (ŝx ,ŝy ,ŝz) a generic state inM2~C! can be written by means
of a vectorbPR3. As follows:

r̂5
1̂

2
1

bx
11b2

ŝx1
by

11b2
ŝy1

bz
11b2

ŝz , b5ubu. ~28!

When b51, r̂ is a pure state~one-dimensional projection!, whereas, ifb50, r̂ is the two-
dimensional tracial statet.

Any proper subalgebraN of M2~C! is a maximally Abelian subalgebraA that is not restrictive
to identify with the one generated by the minimal projectionsâ6 :51̂/26ŝz/2. Setting
n:52b/~11b2! andk:5~0,0,1!, we shall write

r̂5
1̂1n–ŝ

2
, â65

1̂6k–ŝ

2
. ~29!

Let n' :5~nx ,ny ,0!, n6* :5 n' 6 A12n'
2k and

r̂6* :5
1̂1n6* –ŝ

2
, p6* :5

1

2
6

bz

A~12b2!214bz
2
. ~30!
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As n6* –n6* 5 1, the statesr̂6* are one-dimensional projections, but, in general, not orthogonal. The
weightsp6* are such thatr̂ 5 p1* r̂1* 1 p2* r̂2* . It follows

16,11 that the entropyH r̂(A) of A with
respect tor̂ is attained exactly at this decomposition, that is

H r̂~A!5S~ r̂�A!2p1* S~ r̂1* �A!2p2* S~ r̂2* �A!. ~31!

It is easy to check that, whenb50 or b5~0,0,b!, the results of the previous cases~2! and~3!
are reproduced. Moreover, according to Remark 1, there exist ‘‘observables’’ê6* P M2(C), ê1*
1 ê2* 5 1̂, namely,

ê6* 5
1̂6e* –ŝ

2
, e* :5

~2bxbz,2bybz,12b212bz
2!

A~12b2!214bz
2

, ~32!

that allow us to write

r̂6* 5
Ar̂ê6* Ar̂

Tr r̂ê6*
. ~33!

We shall call them ‘‘optimal observables.’’
Remark 2: There are some peculiar geometrical symmetries inM2~C!. For sake of simplicity

and of comparison with Ref. 16, let the vectorb identifying the state equal~z,0,0! so that

r̂5S 1
2 z

z 1
2

D .
Then, the z-dependent optimal observables eˆ

6* (z) remain the same,

ê6* ~z!5
1̂6k–ŝ

2
5â6 , for all 21/2,z,1/2. ~34!

Vice versa, let us fixb5~b,0,0! (hence the optimal decomposersr̂6* ) and construct the state

r̂~ t !5t r̂1* 1~12t !r̂2* 5
1̂
2

1
b

11b2
ŝx1S t2 1

2D 12b2

11b2
ŝz , ~35!

where0,t,1. Then, the optimal observables eˆ
6* (t) vary, while the optimal decomposersr̂6* (t)

remain the same, namelyr̂6* , for all 0,t,1.
The latter observation is a particular instance of the following general result that we quote

from Ref. 11.
Proposition 1: Letr̂5( jPJpj r̂ j be an optimal decomposition for a subalgebraN#Mn~C!

with respect to the stater̂. Let ŝ5(kPJlkr̂k be any other state obtained as a convex linear
combination of (some of) the optimal decomposersr̂ j . Then, this is already an optimal decom-
position forN with respect toŝ, namely

H ŝ~N!5S~ ŝ�N!2(
k

lkS~ r̂k�N!. ~36!

As to the second geometrical symmetry present in the two-dimensional case, one wonders
whether that too holds in greater generality. A clue to this problem comes from considering the
maximally Abelian subalgebraA,M3~C! generated by

5250 Fabio Benatti: Entropy of a subalgebra and quantum estimation

J. Math. Phys., Vol. 37, No. 10, October 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



â15S 1 0 0

0 0 0

0 0 0
D , â25S 0 0 0

0 1 0

0 0 0
D , â35S 0 0 0

0 0 0

0 0 1
D . ~37!

The calculation of its entropy with respect to the symmetric state,

r̂~z!:5S 1
3 z z

z 1
3 z

z z 1
3

D , 2 1
6<z< 1

3, ~38!

leads to a surprising and intriguing departure from the two-dimensional case.
Let a: 5 A116z andb: 5 2A123z. It turns out11 that r̂(z) can be decomposed as

r̂~z!5 1
3 @ ufu,z

~1!&^fu,z
~1!u1ufu,z

~2!&^fu,z
~2!u1ufu,z

~3!&^fu,z
~3!u#, ~39!

by means of a one-parameter family of vectors and their cyclic permutations:

ufu,z
~1!&:5S f1~u,z!

f2~u,z!

f3~u,z!
D , ufu,z

~2!&:5S f3~u,z!

f1~u,z!

f2~u,z!
D , ufu,z

~3!&:5S f2~u,z!

f3~u,z!

f1~u,z!
D , ~40!

f1~u,z!:5
1

3 Fa1b cosS u2
p

3 D G , ~41!

f2~u,z!:5
1

3 Fa1b cosS u1
p

3 D G , ~42!

f3~u,z!:5
1

3
@a2b cosu#. ~43!

Proposition 2: There exists a value z*,0 of the real parameter z,

z*5
1

3

~ t* !224t*13

2~ t* !224t*13
, where e2t*5t*21, ~44!

such that, for z>z* , the angular parameter u5p/3 renders the decomposition (39) optimal for
the maximally Abelian subalgebraA,M3~C! with respect to the stater̂(z).When z,z* , there are
two possible optimal decompositions corresponding to u6(z)5p/36a(z).

The proof of this result is partly analytic partly numerical.11 We examine its consequences.
Proposition 3: The optimal observables xˆ j (z) that, according to Remark 1, correspond to the

optimal decompositions of the previous proposition are the minimal projections aˆ j of A when
z*<z,1/3. Whereas, for21/6,z,z* , they are one-dimensional, but not orthogonal projec-
tions.

Proof: The observablesêj (u,z) associated with a given decomposition of the form~39! are
given by

1
3 ufu,z

~ j ! &^fu,z
~ j ! u5Ar̂~z!êj~u,z!Ar̂~z!, ~45!

whence, via invertingr̂(z):
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ê1~u,z!5
1

9 S C1
2 C1C2 C1C

C2C1 C2
2 C2C

CC1 CC2 C2
D , HC6511cosu6) sin u,

C5122 cosu. ~46!

ê1(u,z) projects onto u1&:51/3(C1 ,C2 ,C) and ê2(u,z), respectively ê3(u,z), project onto
u2&51/3(C,C1 ,C2), respectivelyu3&:51/3(C2 ,C,C1).

According to Proposition 2, forz*<z,1/3, u5p/3 fixes an optimal decomposition and one
sees thatu1&5~1,0,0!, henceêj* (p/3,z) 5 â j .

On the other hand, the scalar products^ i u j &, iÞ j , i , j51,2,3, equal 2 cos2 u1cosu21 and
vanish foru5p/3, p only. Therefore, the angular valuesu6(z)5p/36a(z) fixing two optimal
decompositions when21/6,z,z* , determine two sets of optimal observablesêj* (u6(z),z) that
are one-dimensional, but not orthogonal projections. h

Remark 3: For z*<z,1/3 the three- and two-dimensional cases agree (compare Remark 2).
However, when21/6,z,z* the situation drastically changes and two different optimal decom-
positions appear. Moreover, every linear convex combination of optimal decompositions ofr̂(z)
with respect toA is again optimal, and thus, below the critical value z* , we have infinitely many
of them.11

III. ACCESSIBLE INFORMATION

In this section we establish a connection between the concept of entropy of a subalgebra with
respect to a given quantum state introduced in the previous section and the notion of information
capacity briefly touched upon in the Introduction~see Ref. 17 for the classical case, Ref. 18 and
Ref. 15 for the quantum one!.

Definition 2: We call ‘‘quantum communication channel’’ the couple$R,E%, where
R:5$pj ,r̂ j% is a statistical ensemble of quantum statesr̂ j with weights pj , ( j pj51, andE :5$êk%
is a set of operators0<êk such that(kêk51̂.

The quantum stater̂5( j pj r̂ j is Alice’s signal source, or ‘‘input alphabet,’’ whereas the
observablesE5$êk% make up Bob’s detection scheme or ‘‘output alphabet.’’

17 Notice that, unlike
in the Introduction, theêk need not be orthogonal projections. More generally, they define a
so-called ‘‘Positive Operator Valued~POV! Measure,’’ which generalizes~5! to the following
completely positive map12 on quantum states:

r̂°E~ r̂ !5(
k

Aêkr̂Aêk. ~47!

The next almost obvious Lemma establishes a natural connection between certain input al-
phabetsE and the restrictionsr̂�A of quantum states to Abelian subalgebras.

Lemma 1: Given a density matrixr̂PMn~C!, every (not necessarily maximally) Abelian sub-
algebraA,Mn~C! identifies an input alphabetAr̂ .

Proof: We simply use the projectionsâ j , 1< j<n @not necessarily minimal inMn~C!# to
decompose the stater̂ as in ~14!, whence

Ar̂ :5$pj
a ,r̂ j

a%, pj
a :5Tr r̂â j , r̂ j

a :5
Ar̂â jAr̂

Tr r̂â j
. ~48!

Given an input, respectively output, alphabetR5$pj ,r̂ j%, respectivelyE5$êk%, the argument
developed in the Introduction for Shannon’s mutual entropy~9! leads to associating with the
probability measurespe( r̂):5$Tr r̂êk% andp

e( r̂ j ):5$Tr r̂ j êk%, the information contents,
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S„pe~ r̂ !…:52(
k
Tr r̂êk log Tr r̂êk , ~49!

S„pe~ r̂ j !…:52(
k
Tr r̂ j êk log Tr r̂ j êk , ~50!

whence the following18,19 occurs.
Definition 3: Let a quantum communication channel$R,E% be given, whereR5$pj ,r̂ j% and

E5$êk%, then the mutual information of the channel is

I ~R,E !:5S„pe~ r̂ !…2(
j
pjS„p

e~ r̂ j !…. ~51!

For a given input alphabetR,

I ~R!:5sup
E

I ~R,E !, ~52!

represents the maximal information achievable by varying the detection strategy, namely the
output alphabetE . I ~R! is called ‘‘accessible information.’’

As we have seen in the previous section any mixed stater̂ can be decomposed asr̂5( j pj r̂ j

by using whatever decomposition of the identity by means of positive operators we might envis-
age. From a statistical point of view all these possibilities are equivalent: they all are described by
the same density matrix. However, the average relative entropy,

(
j
pjS~ r̂,r̂ j !5S~ r̂ !2(

j
pjS~ r̂ j !, ~53!

we have already encountered@see~21!# is a tool to partially distinguish among them. An important
relation between the accessible information of a given statistical mixturer̂5( j pj r̂ j , and the
average relative entropy is contained in the so-called Holevo bound.20 If R5$pj ,r̂ j% is Alice’s
input alphabet, Bob’s accessible information must fulfill

I ~E !<S~ r̂ !2(
j
pjS~ r̂ j !. ~54!

Notice that if ther̂ j are pure states, then the bound reduces toS( r̂).
The above considerations point to a close connection between the notion of entropy of a

subalgebra and the accessible information of an input alphabet. Indeed, the entropy of an Abelian
subalgebraA,Mn~C! with respect to a stater̂PMn~C! equals the accessible information of the
input alphabetAr̂ determined byA and r̂.

Proposition 4: LetA,Mn~C! be an Abelian subalgebra generated by orthogonal projections
âj , 1< j<n, and r̂PMn~C! a given state. Then

H r̂~A!5I ~Ar̂ !, ~55!

where the left-hand side is the entropy ofA with respect tor̂ as defined in Definition 1, while the
right-hand side is the accessible information of the input alphabet associated withA and r̂ as in
Lemma 1.
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Proof: Let Ar̂ 5 $pj
a ,r̂ j

a% be the input alphabet as in~48!, that is pj
a5Tr r̂â j and r̂ j

a

5Ar̂â jAr̂/Tr r̂â j . Let E5$êk% be a given output alphabet and use it to decomposer̂ as in~14!,
namelyr̂5(kpk

er̂k
e, pk

e5Tr r̂êk , r̂k
e5Ar̂êkAr̂/Tr r̂êk . Then, from~22! and~17! ~the latter holds

independently of theâj being minimal projections!,

H r̂~ $pk
er̂k

e%,A!5S~ r̂�A!2(
k

pk
eS~ r̂k

e�A!52(
j
pj
a log pj

a1(
j ,k

pk
e Tr r̂k

eâj log Tr r̂k
eâj .

~56!

Using the cyclycity of the trace, we write

Tr r̂k
eâj5

pj
a

pk
e Tr r̂ j

aêk , ~57!

whence~56! reads as

H r̂~ $pk
er̂k

e%,A!5(
j ,k

pj
a Tr r̂ j

aêk log Tr r̂ j
aêk2(

j
pj
a log pj

a1(
j ,k

$TrAr̂â jAr̂êk% log
pj
a

pk
e

~58!

52(
k

pk
e log pk

e1(
j ,k

pj
a Tr r̂ j

aêk log Tr r̂ j
aêk5I ~Ar̂ ,E !. ~59!

h

Let us now go back to the two-dimensional case whereA is the Abelian subalgebra generated
by projectionsâ6 of ~29! and the state is parametrized as in the same~29!. The input alphabet
Ar̂ is formed by the statistical mixture of the pure states,

r̂6
a :5

Ar̂â6Ar̂

Tr r̂â6
5

1̂
2

1
n6

2
–ŝ, n6 :5

2b~16bz!6~12b2!k

162bz1b2
, ~60!

with weights

p6
a :5Tr r̂â65

11b262bz
2~11b2!

. ~61!

In Ref. 19 one finds that this is one of the few cases when the accessible informationI (Ar̂) can
be explicitly worked out together with the optimal output alphabetE at which it is attained. The
latter, according to the previous proposition, must consist of the two orthogonal projectionsê6* in
~32!. Due to interesting connections with the problem of optimal parameter estimation, the proof
of this fact will be postponed to the next section.

Remark 4: From the upper bound in (24) and the previous result we deduce that I(Ar̂)
5 H r̂(A) < S( r̂�A).On the other, whenA is maximally Abelian the statesr̂ j

a in the input alphabet
Ar̂ are one-dimensional projections so that the Holevo bound (54) gives I(Ar̂) < S( r̂). This is a
better bound than the previous one, as follows from (18).

IV. OPTIMAL ESTIMATION

In this section we address the question of whether there is any operational interpretation
behind the optimal observables giving the accessible informationI (Ar̂), or equivalently, the
entropyH r̂(A) of the Abelian algebraA,Mn~C! with respect to the stater̂. Again, it will turn out
that the nice picture that emerges in the two-dimensional case is somewhat misleading. Indeed, the
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optimal observablesê6* in ~32! maximize the so-called Fisher information. The latter appears in a
lower ~Cramer–Rao! bound to the variance of any functionX that estimates the parametert when
one deals with a one-parameter family~state path! of classical probability distributionsP(t) or
quantum statesr̂(t).21 Quite interesting are the connections, both in the classical and quantum
case, between the best estimation problem and the so-called distinguishability metrics on the state
space.22–24 We will adapt the discussion to the context previously developed in this paper by
following Ref. 23.

Let r̂(t) be a one-parameter family of quantum states inMn~C! such that the ‘‘derivative’’
r̂8(t):5dr̂(t)/dt is well defined. LetE5$êk%kPK be a set of observables~an output alphabet or
POV measure as in Definition 2!, that when measured give a~finite! set of resultskPK with
probabilitiespk

e(t):5Tr êkr̂(t). Out of iterated measurements ofE one tries to estimate the pa-
rametert by means of an estimator functionXN

e (k1 ,...,kN). After N measurements one ends up
with a joint probability measurePN

e (k1•••kn ;t): 5 P j51
N pkj

e (t) and with a mean valuêXN
e &(t):

5 (k1•••kn
PN
e (k1•••kn ;t)XN

e (k1•••kn) for the estimated parametert. Let DN
eX:5XN

e (k1•••kn)

2^XN
e &(t). From the obvious equality(k1•••kn

PN
e (k1•••kn ;t)DN

eX 5 0 one first derives

d^XN
e &~ t !

dt
5 (

k1•••kn
PN
e ~k1•••kn ;t !(

j51

N d log pkj
e ~ t !

dt
DN
eX. ~62!

Then, the Cauchy–Schwartz inequality gives the Crame´r–Rao lower bound,

^~DN
eX!2&N~ t !>

1

NF~ t ! S d^XN
e &~ t !

dt D 2, ~63!

to the variance of the estimator function, where

Fe~ t !:5(
kPk

pk
e~ t !S d log pk

e~ t !

dt D 2 ~64!

is the Fisher information relative to the distributionpe(t):5$pk
e(t)%.

Roughly speaking, in order to diminish the error in the estimate oft one tries to maximize

Fe~ t !5 (
kPK

~pk
e!21~ t !S dpke~ t !dt D 2. ~65!

Of great help is the so-called logarithmic derivative ofr̂8(t) at r̂(t). The latter, denoted by
L r̂(t)@ r̂8(t)#, is defined by Refs. 23 and 24~also see Ref. 22!:

1
2 $r̂~ t !L r̂~ t !@ r̂8~ t !#1L r̂~ t !@ r̂8~ t !#r̂~ t !%5 r̂8~ t !, ~66!

and allows us to rewrite~65! as follows~Re means real part!:

Fe~ t !5 (
kPK

$Tr r̂êk%
21@Re Tr r̂~ t !L r̂@ r̂~ t !#êk#

2. ~67!

Then, from the cyclicity of the trace and the properties of the Hilbert–Schmidt norm, namely that
uTr â* b̂u2<Tr â* âTr b̂* b̂, we get the upper bound,
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@Re Tr r̂~ t !L r̂~ t !@ r̂~ t !#êk#
25@Re TrAr̂~ t !L r̂~ t !@ r̂8~ t !#AêkAêkAr̂~ t !#2

<Tr r̂~ t !L r̂~ t !@ r̂8~ t !#êkL r̂~ t !@ r̂8~ t !#Tr r̂êk . ~68!

Finally, since(kPKêk51̂,

Fe~ t !<Tr r̂8~ t !L r̂~ t !@ r̂8~ t !#. ~69!

The upper bound is attained at the input alphabetE5$êk%, such that

L r̂~ t !@ r̂8~ t !#Aêk5lkAêk, lk5
Tr r̂~ t !êkL r̂~ t !@ r̂8~ t !#

Tr r̂~ t !êk
PR, ~70!

a condition that can always be met by choosing theêk as the eigenprojections of the~self-adjoint!
operatorL r̂(t)@ r̂8(t)#.

Concretely, we will consider the two-dimensional case by taking as state pathr̂(t), 0<t<1,
the one-parameter family of density matrices,

r̂~ t !:5t r̂1
a 1~12t !r̂2

a 5
1̂
2

1
n~ t !

2
–ŝ, ~71!

where, from~60!, n(t):5tn11~12t!n2 . Namely, we will deal with the convex hull of the states
corresponding to the input alphabetAr̂ defined by the Abelian algebraA of the projectionsâ6 in
~30! and by the stater̂ in ~29!.

In order to arrive at an explicit expression of the logarithmic derivativeL r̂(t)@ r̂8(t)#, we
notice that

r̂8~ t !5 r̂1
a 2 r̂2

a 5n12–ŝ, n12 :5~12b2!
~11b2!k22bzb

~11b2!224bz
2 , ~72!

is a self-adjoint operator and that its logarithmic derivative atr̂(t) is self-adjoint, too. We shall
then insert

L r̂~ t !@ r̂8~ t !#5l1x̂11l2x̂2 , ~73!

in ~66! and solve for the orthogonal eigenprojectionsx̂6 and the eigenvaluesl6 . After writing
x̂651̂/26x/2–ŝ, with x–x51 ~the projection condition!, we obtain

l11l21~l12l2!n~ t !–x50, ~74!

~l12l2!x1~l11l2!n~ t !54n12 . ~75!

From these equations we calculate the unit vectorx:

N ~ t !x52b@~12bz!~11b212bz!22t~11b222bz
2!#2k~12b2!~11b212bz24tbz!,

~76!

N ~ t !:5A~11b2!224bz
2216t~12t !~b22bz

2!A~11b2!224bz
2. ~77!

The stater̂ of ~29! corresponds to the choicet5p1
a @see ~61!#. Once inserted in the above

expression it givesx5e* . Therefore we have the following.
Proposition 5: LetA,M2~C! be the subalgebra generated by the projections aˆ6 of (29) and

r̂ a given density matrix. Letr̂(t) the state path in (71). Then, the eigenprojections of the
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logarithmic derivative atr̂(p1
a )5 r̂ coincide with the observables at which the entropy Hr̂(A),

equivalently the accessible information I(Ar̂), is attained. The same optimal observables maxi-
mize the Fisher information Fe(p1

a ) in (64).
The above proposition is in agreement with analogous results in Ref. 19, where a proof of the

Holevo bound is given by using the logarithmic derivative and in Ref. 2, where the more general
question of the optimal measurements inM2~C! is addressed.

Optimizing the Fisher information with respect to all possible generalized quantum measure-
ments is essential in constructing a so-called distinguishability metric on the state space. The idea
is to provide density matrices with a distance that reasonably discriminates between neighboring
states.23,24 In the symmetric case of Remark 2, that is, forb5~b,0,0!, the logarithmic derivative at
r̂~1/2! equals

L r̂~1/2!F r̂8S 12D G522
12b2

11b2 S 1 0

0 21D . ~78!

The projectionsâ6 can thus be interpreted as the observables that optimally distinguish the
symmetric stater̂~1/2! from neighboring statesr̂(t) along the state path~35!.

A similar argument does not hold inM3~C! for the symmetric stater̂(z) in ~38!. Indeed, one
can consider, for instance, the state path

r̂~ t,z!5t r̂1~z!1t r̂2~z!1~122t !r̂3~z!, r̂ j~z!5
Ar̂~z!â jAr̂~z!

Tr r̂~z!â j
, ~79!

where theâ j are the projections in~37!, 0<t<1/2, andr̂(1/3,z)5 r̂(z). After some labor, it turns
out that, unlessz50, that is, unlessr̂(z) is the three-dimensional tracial state,

L r̂~z!F r̂8S 13 ,zD G5S L1 L2 L3

L2 L1 L3

L3 L3 22L1
D , 5

L15114
A113z218z2

213z
,

L25224
A113z218z2

213z
,

L35122
A113z218z2

213z
,

~80!

is not diagonal in the basis in which theâ j are diagonal.
Actually, according to Proposition 3, the situation is even more troublesome. In fact, when

z*<z,1/3, the possibility still remains of envisaging a suitable state path, such that the corre-
sponding logarithmic derivative atr̂(1/3,z) has theâ j as eigenprojections. On the contrary, for
21/6,z,z* , not only are there two sets of optimal observables for the entropyH r̂(z)(A) of A
with respect tor̂(z), but, above all, theêj* (u6(z),z) are one dimensional, nonorthogonal projec-
tions, therefore they cannot be the spectral projections of a nontrivial logarithmic derivative.

V. CONCLUSIONS

In this paper we have compared two concepts: the accessible information of a quantum
communication channel and the entropy of a subalgebra with respect to a quantum state. The first
is an important tool to investigate the information content of messages transmitted by quantum
carriers; the second aims at generalizing the notion of entropy of a partition of classical ergodic
theory. Both find a common ground in the increasingly felt necessity of extending to quantum
systems the apparatus of Shannon information theory.
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We have pointed out the connections between the two notions, showing that the entropy of a
subalgebra corresponds to the accessible information of a particular quantum communication
channel, thus giving this seemingly abstract concept a nearly operative concreteness.

On the other hand, the fundamental role of the entropy of a subalgebra in generalizing to the
noncommutative realm the dynamical entropy of Kolmogorov and Sinai, opens a wider horizon to
the accessible information itself.

In the case of the two-dimensional algebraM2~C! we have reviewed results common to both
contexts, but apparently unknown to each other. The peculiarity of quantum mechanics, however,
shows up when working inM3~C!, where a recent surprising result renders somehow problematic
the promising relationships between the optimal observables and the so-called information geom-
etries or distinguishability metrics that hold in the two-dimensional case.
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Comment by R. Landauer

The paper, published in the first volume of the then newly established IBM Journal of Re-
search and Development, is not all that easily located in 1996. As a result the frequent citations to
it often assign content to that paper which does not agree with reality. The primary purpose of the
paper, conveyed by its title, was to investigate the spatial variation of the transport field, in the
presence of highly localized scatterers, and to show that such scatterers were associated with
highly localized transport fields. The viewpoint has, since then, been elaborated by a good many
other investigators, but has still not become a part of the material widely reflected in texts, review
papers and conferences. A second aim of the 1957 paper was to bring a new view to electron
transport theory. To the physicist the applied field has always been the source of transport, and the
resulting carrier flow is viewed as the response. Electrical engineers, in circuit theory, have had a
broader view, allowing for a duality between current sources and voltage sources. My 1957 paper
introduced the notion that we can view the carriers introduced at the boundaries of the sample as
the source of transport, and then ask how the resulting build-up of carriers produces fields. My
1957 paper is most often cited in connection with the now widely used expressions which relate
conductance to the overall transmissive behavior of a sample which transmits carriers in a quan-
tum mechanically coherent and elastic fashion. That result is, however, not contained in the 1957
paper, which is semi-classical and assumes that scatterers act incoherently. It took me several
more years to understand that the relation between conductance and transmission is general, and
not only applicable to localized plane barriers. It took about another decade after that to get the
material accepted by a journal. That history was presented in the introductory paper of a recent
conference volume.1

1R. Landauer, inCoulomb and Interference Effects in Small Electronic Structures, edited by D. C. Glattli, M. Sanquer,
and J. Traˆn Than Vân ~Editions Frontie`res, Gif-sur-Yvette, 1994!.
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One may introduce at least three different Lie algebras in any Lagrangian field
theory: ~i! the Lie algebra of local BRST cohomology classes equipped with the
odd Batalin–Vilkovisky antibracket, which has attracted considerable interest re-
cently; ~ii ! the Lie algebra of local conserved currents equipped with the Dickey
bracket; and~iii ! the Lie algebra of conserved, integrated charges equipped with the
Poisson bracket. We show in this paper that the subalgebra of~i! in ghost number
21 and the other two algebras are isomorphic for a field theory without gauge
invariance. We also prove that, in the presence of a gauge freedom,~ii ! is still
isomorphic to the subalgebra of~i! in ghost number21, while ~iii ! is isomorphic to
the quotient of~ii ! by the ideal of currents without charge. In ghost number differ-
ent from21, a more detailed analysis of the local BRST cohomology classes in the
Hamiltonian formalism allows one to prove an isomorphism theorem between the
antibracket and the extended Poisson bracket of Batalin, Fradkin, and Vilkovisky.
© 1996 American Institute of Physics.@S0022-2488~96!03508-6#

I. INTRODUCTION

The first appearance of an antibracket in the context of Lagrangian field theories can be traced
back to the study of the renormalization of Yang–Mills theories when the Ward identities are
expressed in terms of the generating functional for one-particle irreducible proper vertices.1 This
antibracket has been developed and generalized in the work of Batalin and Vilkovisky2 on La-
grangian quantization methods for generic gauge theories. The Batalin–Vilkovisky formalism and
the antibracket play, for instance, a fundamental role in the covariant formulation of string field
theory.3 It is therefore of interest to gain a better understanding of the physical significance of this
antibracket.

We relate in this paper the Batalin–Vilkovisky antibracket at ghost number21, both to the
bracket introduced by Dickey4 in the space of local currents, and to the Poisson bracket of
conserved charges. More generally, we relate the Batalin–Vilkovisky antibracket for arbitrary
values of the ghost number to the extended Poisson bracket appearing in the Hamiltonian formu-
lation of the BRST theory.5,6

The paper is organized as follows. In the next section, we review the Batalin–Vilkovisky
construction and show that the Batalin–Vilkovisky antibracket naturally induces a well-defined
odd Lie bracket$•,•% in the cohomolgy classesH* ,n(sud) of the BRST differentials modulo the
exterior space–time differentiald in form degreen. The algebra~H* ,n(sud), $•,•%! possesses a
subalgebraS , namely~H21,n(sud), $•,•%!.

We then define the Dickey algebra of conserved currentsj m ~Sec. III! and show that it

a!Aspirant au Fonds National de la Recherche Scientifique~Belgium!.
b!Also at the Centro de Estudios Cientı´ficos de Santiago, Chile.

0022-2488/96/37(11)/5273/24/$10.00
5273J. Math. Phys. 37 (11), November 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



possesses an ideal, namely the idealI of nontrivial conserved currents for which the charge
Q5*dn21x j0 is zero on shell. Such currents are trivial~i.e., on shell equal to identically con-
served currents! when there is no gauge freedom, so thatI is effectively zero in that case. They
may, however, be nontrivial otherwise. We introduce furthermore the Lie algebra of integrated
conserved charges equipped with the covariant Poisson bracket induced by the Dickey bracket.

Isomorphism theorems betweenS and the other two Lie algebras in the case of nondegener-
ate field theories are proved in Sec. IV. The modification of these theorems for gauge theories are
discussed in Sec. V. More precisely, we show thatS is still isomorphic to the Dickey algebra, but
this algebra itself is now isomorphic to the Lie algebra of conserved charges only after taking the
quotient by the idealI .

In Sec. VI, we investigate the antibracket map for an arbitrary ghost number. In order to do so,
we go to the extended Hamiltonian formalism and use the fact that the local BRST cohomology
group and the associated antibracket map are invariant under this change of description of the
theory. The advantage of the Hamiltonian formulation is that the equations of motion are in
normal form, which allows one to control the antifield dependence of the local BRST cohomology
classes. We show that it is always possible to choose representatives that are, at most, linear in the
antifields of the Hamiltonian description. This allows one to get the general relationship between
the antibracket map and the extended Poisson bracket map of the Hamiltonian BRST formalism.

By applying these results to the case of ghost number21, we find in particular thatI is an
Abelian subalgebra and corresponds to a subspace of the characteristic cohomology associated
with the Hamiltonian constraint surface.

II. THE ANTIBRACKET MAP INDUCED IN LOCAL BRST COHOMOLOGY

In the Batalin–Vilkovisky formalism for gauge theories, which we consider for notational
simplicity to be irreducible, one introduces, besides the original fieldsfi of ghost number 0 and
the ghostsCa of ghost number 1 related to the gauge invariance, the corresponding antifields
f i* andCa* of opposite Grassmann parity, and ghost number21 and22, respectively.2,6 It is
natural to define an antibracket by declaring that the fieldsfA[(f i ,Ca) and antifieldsfA* are
conjugate:

„fA~x!,fB* ~y!…5dB
Adn~x2y!. ~1!

The antibracket is then given for arbitrary functionalsA1 andA2 by

~A1 ,A2!5E dnxS dRA1

dfA~x!

dLA2

dfA* ~x!
2

dRA1

dfA* ~x!

dLA2

dfA~x! D . ~2!

The central goal of the formalism is the construction of a proper solution to the master equation,

~S,S!50. ~3!

The functionalS is required to start like the classical actionS0, to which one couples through the
antifields the gauge transformations with the gauge parameters replaced by the ghosts:

S5E dnx L̂5E dnx L̂01f i*Ra
i Ca1•••. ~4!

The BRST symmetry is canonically generated in the antibracket through the equation

s5~S,• !. ~5!
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In order to analyze the properties of the antibracket, it is necessary to have a more precise
definition of the functionals to which it applies. We will consider in the following only local
functionals. A local functional,

A@za~x!#5E
X
dnx â@za#, za~x!→0, for x→]X, ~6!

is defined as the integral over an orientable domainX of space–timeMn of a local functionâ[za],
i.e., a functiona of xm, the fields and antifieldsza [ (fA,fA* ), and their derivatives up to some
finite order, evaluated for field and antifield historiesza(x), which appropriately vanish at the
boundary]X. Note thatX can be all of Minkowski spaceMn, and that a local function corre-
sponds to a function on the finite-dimensional ‘‘jet space’’Mn3Vk with coordinates
xm,] (n)z

a,unu<k ~see Appendix A for more details!. The space of local functionals so defined can
be proved~see for instance Refs. 7, 6! to be isomorphic to the space of equivalence classes of local
functionsâ modulo total divergences]mj

m, for some arbitrary local currentj m. The total derivative
]m is defined in multi-index notation by

]m5
]L

]xm 1]m~n!z
a

]L

]~]~n!z
a!
. ~7!

Furthermore one can prove that a local function is a total divergence if and only if its Euler–
Lagrange derivatives vanish~see, e.g., Ref. 7!.

Turning to form notations,â→a5dnx â and introducing the space–time exterior derivative
d5dxm ]m , the space of local functionals can be identified with the cohomology groupHn(d) of
the differentiald in form degreen in the space of local, form-valued functions.

It is easy to verify that the antibracket of two local functionals is also a local functional. Thus
the antibracket induces a well-defined map in the cohomology groupHn(d),

$•,•%:Hn~d!3Hn~d!→Hn~d!. ~8!

This bilinear map inherits from the antibracket the property of being a true, odd, Lie bracket. If we
denote by [a] the cohomological class of then-form a in Hn(d), one may view the antibracket in
Hn(d) as arising from a local antibracket in the space of local functions defined as follows:

$â1 ,â2%5
dRâ1
dfA

dLâ2
dfA*

2
dRâ1
dfA*

dLâ2
dfA , ~9!

$@a1#,@a2#%5@dnx$â1 ,â2%#. ~10!

In ~9!, d/dfA is the Euler–Lagrange derivative defined by

d

dfA 5~2]!~n!

]

]~]~n!f
A!
, ~11!

with ~2]!~n!5~2!unu]~n! . While the bracket~8! in Hn(d) is a true bracket, the local antibracket~9!
in the space of local functions is graded symmetric, but satisfies the graded Leibnitz rule and
Jacobi identity only up to total divergences~see Appendix B!.

It is clear that the antibracket for the integrands that gives rise to the antibracket inHn(d) is
not unique, but expressions differing from the one in~9! by a total divergence are also admissible.
This is the case, for instance, for the following expression~see Appendix B!:
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$â1 ,â2%alt5]~n!S dRâ1
dfA D ]Lâ2

]~]~n!fA* !
2]~n!S dRâ1

dfA*
D ]Lâ2

]~]~n!f
A!
, ~12!

which satisfies a graded Leibnitz rule in the second argument, but is only graded symmetric up to
a total divergence.

In the Batalin–Vilkovisky formalism, one introduces additional fields, the ghosts and anti-
fields. Quantities of direct physical interest are recovered by considering the cohomology classes
of the BRST differentials. The identification of local functionals with the cohomology group
Hn(d) implies that the BRST cohomology for local functionals is given byH* „s,Hn(d)…. This last
group is isomorphic to the relative cohomology groupH* ,n(sud) of s modulod in form degreen
evaluated in the space of form-valued local functions. Due to the fact that the BRST symmetry
acting on a local function is canonically generated through the formula

sâ5$L,â%alt , ~13!

it is straightforwardb to verify that the local antibracket induces a well-defined odd Lie bracket in
the relative cohomology group ofs modulod:

$•,•%:Hg1,n~sud!3Hg2,n~sud!→Hg11g211,n~sud!,$@a1#,@a2#%5@dnx$â1 ,â2%#. ~14!

An inspection of the various possible cases shows that it is only for ghost number21 that this map
associates to two cohomology classes a cohomology class of the same type, i.e., of the same ghost
number. The subspaceH21,n(sud) equipped with the antibracket defines a subalgebra of
H* ,n(sud), which we denote byS ,

S 5~H21,n~sud!,$•,•%!. ~15!

III. THE DICKEY BRACKET

Let Sk be the stationary surface, i.e., the surface defined by the equations

]~l!

dL̂0

df i 50, ~16!

~with ulu<k22 for second-order equations! in the spacesMn3Fk with coordinatesxm, ]~m!f
i ,

umu<k.
The vector space of~equivalence classes of! inequivalent Lagrangian conservation laws is

defined by

$ j m,]m j
m'0, modulo the identificationj m;uS j m1]nS

@nm#%, ~17!

where thej m are local functions. In form notation, we get equivalence classes [j ] of n21 forms
whose pullback to the stationary surface isd closed, where two such forms have to be identified
if they differ by the exterior derivative of ann22 form on the stationary surface:

@ j #PHn21
„d* ,V~S!…. ~18!

Inequivalent conserved currents belong, by definition, to the so-called characteristic cohomology
of the stationary surface in form degreen21.

The standard regularity conditions are that locally in the jet space, the equationsdL̂0/dfi and
their derivatives can be split into two groups: the ‘‘independent equations,’’ which can be taken
locally as a new coordinate system on the jet space, replacing some of the fields and their
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derivatives; and the ‘‘dependent equations’’ which hold as a consequence of the independent ones.
One then can prove7,6 that a function that vanishes on the stationary surface can be written as a
linear combination of the equations defining the surface, hence

]m j
m5Xi ~l!]~l!

dL̂0

df i , ~19!

for some local functionsXi (l). This equation does not determineXi (l) completely, one is, for
instance, free to add functions of the form

Yi ~l! j ~n!]~n!

dL̂0

df j , ~20!

with Y antisymmetric under the exchange of the pairsi ~l! and j ~n!c.
The characteristic7,4 of the equivalence class of conservation laws described by [j ] is defined

by the equivalence class of local functions of the formXi5(2])(l)X
i (l), where two setsXi ’s of

local functions have to be identified if they differ by a function of the form

~2]~l!!FYi ~l! j ~n!]~n!

dL̂0

df j G . ~21!

It is straightforward to verify that the characteristic does not depend on the choice of the repre-
sentative forj m. Let dX be the evolutionary vector field defined byXi :

dX5]~l!X
i

]

]~]~l!f
i !
. ~22!

Note thatXi anddX satisfy the equations

Xi
dL̂0

df i 5]m j 8
m, dXL̂05]m j 9

m, ~23!

with j 8m, j 9m in the same equivalence class asj . This means that the characteristics define varia-
tional symmetries, i.e., symmetries of the action. In the nondegenerate case, one can then prove
directly that there is a one to one correspondence between inequivalent symmetries of the action
and inequivalent conservation laws~Noether’s theorem!,7 but we will not do so here because it is
also a direct consequence of our analysis in the next section.

The Dickey bracket in the space of inequivalent conservation laws~17! is defined by4

$@ j 1#,@ j 2#%D52@dX1 j 2#. ~24!

By using properties of the Euler–Lagrange derivatives, one finds the following equivalent expres-
sions~see Ref. 4 and Appendix B!:

$@ j 1#,@ j 2#%D5@dX2 j 1#5
1

2
@dX2 j 12dX1 j 2#

5F2
~ ñ !m1

11

unu11
]~n!F dX2S dL̂0

d~]~n!m1
f i !DX1

i 2dX1S dL̂0

d~]~n!m1
f i !DX2

i G
3

1

~n21!!
em1•••mn

dxm2•••dxmnG , ~25!
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where~ñ!m denotes the number of occurrences ofm in the multi-index~n!. This last expression
corresponds to the contraction of the horizontal~n21! and vertical 2 form,

V5
1

~n21!!
em1•••mn

dxm2•••dxmn

~ ñ !m1
11

unu11
]~n!FdVS dL̂0

d~]~n!m1
f i !D dVf i G , ~26!

with the evolutionary vector fieldsdX1 anddX2. This formula involves the vertical derivatives and
the higher-order Euler operators defined, for instance, in Refs. 7, 4~see also Appendices A and B!.

Again, in the nondegenerate case, one can prove directly that the Dickey bracket is a well-
defined Lie bracket in the space of inequivalent conserved currents~see Ref. 4!; namely, it is
unambiguous in the quotient space, antisymmetric, and satisfies the Jacobi identity. Alternatively,
these properties follow from the isomorphism theorem proved in the next section.

Among the conserved currents, one may distinguish those for whichj 0 is trivial, i.e. of the
form j 0']mS

m0. The corresponding Noether chargeQ5*dn21x j0 is zero on the stationary
surface. These currents form an ideal for the Dickey bracket sincedXj

0 is trivial if j 0 is trivial. We
call this ideal the ideal of ‘‘conserved currents without charge’’ and we denote it byI .

As we shall show in the next section, the idealI is trivial in the absence of gauge symmetry.
That is, if a conserved current has a vanishing Noether charge, then, it is trivial, i.e., on shell equal
to an identically conserved current. But this may not be so in the presence of gauge freedom, for
which there exist nontrivial currents inI .

The third algebra that we shall introduce is the algebra of conserved, integrated charges,
Q5*dn21x j0, ]0 j

0'2]kj
k for some spatial currentj k, with the identification of two such

charges if they agree on the stationary surface. By using the Hamiltonian formalism, one may
equip this algebra with a well-defined even bracket, namely, the standard Hamiltonian Poisson
bracket. We denote this algebra byQ . It is clear thatQ is isomorphic as a vector space to the
quotient of the space of conserved currents by the idealI . We shall prove furthermore that the
Poisson bracket is just the corresponding induced Dickey bracket.

IV. ISOMORPHISMS IN THE CASE OF NONDEGENERATE LAGRANGIAN FIELD
THEORY

In the absence of gauge invariance, the only additional fields in the Batalin–Vilkovisky
construction besides the originalfi , which we assume for simplicity to be bosonic, are the
antifieldsf i* . The original actionS[f

i ]5*dnx L̂0@f
i# is by itself a proper solution of the master

equation generating the BRST symmetry,

sf i*5
dL̂0

df i , sf i50, s]m5]ms, ~27!

which reduces to the so-called Koszul–Tate differentiald.6 In the nondegenerate case, the equa-
tions of motion and their derivatives can be taken locally as first coordinates in a new coordinate
system replacing some of the fields and their derivatives. One can prove6 that the BRST coho-
mology in the spacesC`(Rn3Fk) 3 R@] (n)f i* # ~with unu<k22 for second-order equations! is
given by smooth functions defined on the stationary surfaced: H0(d).C`~Rn3Sk! andHg~d!50,
gÞ0.

In the new coordinate system, where the equations and their derivatives are taken as new
coordinates, we denote byI 05$xa% the set of fields and their derivatives needed to complete the
coordinate system. Let us assume that the nondegenerate theory is of Cauchy order 1, meaning
that]kxaPI 0 for k>1. One can then prove8 that, apart fromH0,n(sud), which corresponds to local
functionals defined on the stationary surface, the only nontrivial local BRST cohomology classes
are in ghost number21 and form degreen.
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By integrations by parts, the representatives ofH21,n(sud) can be assumed to be of the
characteristic form

a5dnx f i*X
i@f i #, ~28!

for local functionsXi . The cocycle condition reads as

dL̂0

df i X
i5]m j

m, ~29!

and implies that the field variationdf i5Xi defines a variational symmetry. Furthermore, to a
trivial representative ofH21,n(sud) corresponds to a variational symmetry that is given by an
‘‘antisymmetric’’ combination of the equations of motions as in~21!e. The spaceH21,n(sud) is
accordingly given by inequivalent variational symmetries or characteristics of inequivalent con-
servation lawsf.

The local antibracket map for such representatives ofH21,n(sud) is given by

$@dnx f i*X1
i #,@dnx f i*X2

i #%5†dnx f i* @X1 ,X2#L
i
‡,

~30!

@X1 ,X2#L
i 5

]X1
i

]f~m!
j ]~m!~X2

j !2
]X2

i

]f~m!
j ]~m!~X1

j !5dX2X1
i 2dX1X2

i .

Hence we find that, in ghost number21, the local antibracket map corresponds to the traditional,
even Lie bracket for inequivalent variational symmetries under characteristic form given in Ref. 7.
Since the Lie bracket for evolutionary vector fields is induced by the commutator for vector fields,
we get the following.

Theorem 1: The odd Lie algebraS 5(H21,n(sud),$•,•%) is isomorphic to the algebra of
inequivalent variational symmetries equipped with the bracket induced by the commutator for
vector fields.

Using the acyclicity ofs5d6 at negative ghost numbers and the triviality of the cohomology
of d in form degreep,n @Hp(d)5d0

pR, see, e.g., Ref. 7#, we can easily prove the isomorphism

H21,n~dud!.Hn21,0~dud!/d1
nR. ~31!

This follows from a general relationship for relative cohomology groups proved in Ref. 9. The last
space corresponds to the space of inequivalent conserved currents. Indeed, the cocycle condition
implies that representatives must ben21 forms, which restrict to closed forms on the stationary
surface, while the coboundary condition requires two such currents to be considered as equivalent
if they differ on this surface by the exterior derivative of ann22 form, i.e., the divergence of a
‘‘superpotential’’ in dual notation, or by a constant in one dimension.

The above isomorphism is explicitly given by associating to a representativea of the first
space the representativej of the second space in the equationsa1d j50. Furthermore, the anti-
bracket map induces through this isomorphism a well-defined Lie bracket in the space of inequiva-
lent conserved currents. An explicit calculation~Appendix B! shows that the corresponding
bracket is just given by the Dickey bracket. Hence the following holds.

Theorem 2: The odd Lie algebraS is isomorphic to the space of inequivalent conservation
laws equipped with the Dickey bracket.

There is no contradiction in the fact that the isomorphism relates an odd bracket to an even
bracket, because there is at the same time a shift in the degree@from odd ~21! to even~0!#.

Combining theorems 1 and 2, we get the full Noether theorem.
Corollary 1: There is a Lie algebra isomorphism between inequivalent conservation laws and

inequivalent variational symmetries.
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The idealI of currents without charge is trivial. Indeed, the coboundary condition allows us to
take all thej k to depend on thexa alone. Because]kxa depends also onxa and not on equations
of motion, one must have]kj

k50 identically, which implies thatj k5d2
nR1]mS

[mk] . Hence, the
Dickey algebra and the space of inequivalent, integrated conserved charges are isomorphic as
vector spaces. That the induced Dickey bracket in the spaceQ corresponds to the Poisson bracket
in Q in the Hamiltonian formalism is a consequence of the analysis in Sec. VI. Alternatively, it
could be proved directly along the lines of Ref. 10, by taking, furthermore, locality into account.
Hence the following is true.

Theorem 3: In dimensions different from 2, if the theory is of Cauchy order 1, the Dickey
algebra of inequivalent conserved currents is isomorphic to the algebra of inequivalent conserved
charges equipped with the Poisson bracket.

V. GAUGE THEORIES. GHOST NUMBER 21

The advantage of the cohomological reformulation of Noether’s theorem in Eq.~31! is that
one can extend this theorem in a straightforward way to gauge theories, which are not covered by
the analysis in Refs. 7, 4. One can prove8 that the subalgebraS is isomorphic to the algebra
R5(H1

n(dud),$•,•%R), where the cohomology groupH1
n(dud) involves only the original fields

and the antifields, but no ghosts,d being the Koszul–Tate part ofs and the degree ofd the
antighost number, which is minus the ghost number~for a function that does not involve the
ghosts!. The restricted antibracket map$•,•%R is the antibracket map restricted to the original fields
fi and the antifieldsf i* .

The differentiald acts nontrivially on the antifields of higher order. In the case of irreducible
gauge theories, its action onCa* is given by

d ]~l!Ca*5]~l!@Ra
1 i ~n! ]~n!f i* #, ~32!

where the operatorsRa
1 i (n)]~n! define the Noether identities of the theory, i.e.,

Ra
1 i ~n!]~n!

dL̂0

df i 50. ~33!

This additional piece maintainsd250 and guarantees thatd still defines a homological resolution
of the functions defined on the constraint surface, implying for instance that Eq.~31! still holds.

If we still want Theorem 1 to hold, the definition ofd requires that we change the notion of
a trivial variational symmetry; they have to correspond toXi ’s that are ‘‘antisymmetric’’ combi-
nations of the equations of motion up to a gauge transformation, where the gauge parameters are
replaced by arbitrary local functions:

Xi5~2]!~l!FYi ~l! j ~n!]~n!

dL̂0

df j G1Ra
i ~n! ]~n! f

a. ~34!

The operatorsRa
i (n)]~n! are the adjoints of the operators defining the Noether identities and define

the gauge transformations.
With this modification of the space of inequivalent variational symmetries, Theorems 1, 2 and

Corollary 1 hold, as in the case with no gauge invariance.
The idealI , however, is not trivial in the case of gauge theories, because the theory is no

longer of Cauchy order 1. For instance, the currentj m5F0m5(0,F0k) in free Maxwell’s theory
belongs toI since*j 0 dn21x50, butF0kÞ]mS

[km] ~even weakly!. Theorem 3 becomes the fol-
lowing.

Theorem 4:The Dickey algebra of conserved currents modulo the ideal I is isomorphic to the
algebra of inequivalent conserved charges equipped with the Poisson bracket.
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The proof that the induced Dickey bracket is, in fact, the ordinary Poisson bracket in the
Hamiltonian formalism again follows from the reasoning given in the next section.

VI. GAUGE THEORIES. GENERAL ANALYSIS

The previous theorems relate the antibracket and the Poisson bracket at particular values of
the ghost number. In order to fully prove them, we shall first put them in a more general setting.
Indeed, these theorems can be extended to arbitrary values of the ghost number.

To relate the antibracket and the Poisson bracket for all values of the ghost number, one first
uses the invariance of the local BRST cohomology group with respect to the introduction of
auxiliary fields and generalized auxiliary fields, as shown in Ref. 8. One proves by an analoguous
reasoning that the same is true for the antibracket map induced in cohomology. This implies that
one can go to the total Hamiltonian formalism and then to the extended Hamiltonian formalism,
which we will assume to be local,6 and describe the solution of the master equation in terms of the
Batalin–Fradkin–Vilkovisky framework.

Let us recall that in this framework, a central object is the extended Poisson bracket@•,•#P for
which the ghostsCa and the ghost momentaP b are considered as conjugate dynamical variables,
in addition to the usual fields and their momenta. One then constructs out of the constraints, which
we assume for simplicity to be irreducible and first class, the BRST chargeV5*dn21x v, which
is a local functional in space verifying@V,V#P50. The HamiltonianH5*dn21x h verifying
@V,H#P50 is also a local functional in space and these two functionals depend only on the fields
f̃A[f i ,p j ,C

a,P b and their spatial derivatives.
The functionals in space are replaced by spatial functions in the same way as in the space–

time case, which leads to a local extended Poisson bracket$•,•%P defined through spatial Euler
Lagrange derivatives. The BRST chargeV generates the symmetrysv5$v,•%P,alt, where$•,•%P,alt is
defined in a way analoguous to$•,•%alt in ~12!. The local extended Poisson bracket induces a
well-defined even Lie bracket, the Poisson bracket map, in the cohomology group ofsv modulo
the spatial exterior derivatived̃.

The symmetrysv is only a part of the BRST symmetry, which is isomorphic to the BRST
symmetry of the initial Lagrangian system through the elimination of~generalized! auxiliary
fields. The complete BRST symmetry is generated through the solution of the master equation in
the extended Hamiltonian formalism given by11,6

SH@f̃A,f̃A* #5E dt dn21xS 2
1

2
f̃
˙ A~s21!ABf̃

B2h2$f̃A* f̃A,v%P,altD , ~35!

where we have introduced the notation

sAB5S 0 0 d j
i 0

0 0 0 2db
a

2d j
i 0 0 0

0 2db
a 0 0

D . ~36!

Explicitly, the BRST symmetrysH5$SH ,•%alt reads as

sH5]~m!S d̃Rv

df̃AD sAB
]L

]~]~m!f̃
B!

1]~m!LA

]L

]~]~m!f̃A* !
, ~37!

where the tilded Euler–Lagrange derivatives are restricted to spatial derivatives only and
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LA[2f̃
˙ B~s21!BA2

d̃Rh

df̃A
2

d̃R

df̃A
~$f̃B* f̃B,v%P,alt!. ~38!

Note that in the proper solutionSH to the master equation in the extended Hamiltonian formalism,
we have made the identification of minus the antifields2la* of the Lagrange multipliers for the
first class constraints with the ghost momentaP a . This implies that in terms of the new antifields,
the Koszul–Tate part is now associated to the surfaceLA~f̃*50!50 and not with the gauge-
invariant, original, Hamiltonian equations of motion. The part in resolution degree 0, the resolu-
tion degree being the degree associated to the Koszul–Tate differential,6 with respect to thenew
antifields, is given by

g5sv
02]~m!

d̃R

df̃A
~$f̃B* f̃B,v%P,alt!

]L

]~] (m)fA* !
, ~39!

and the BRST differential has no contributions in higher resolution degree, contrary to what may
happen in the old resolution degree. Here,sv

0 is defined by the first term on the right-hand side of
Eq. ~37! and coincides withsv when acting on a function involving no time derivatives of the
fields. Evaluating the action ofsv

~0! onfi , pj and putting to zero the ghost momentaP a reproduces
the gauge transformations of these fields with gauge parameters replaced by the ghostsCa.

One then investigates the local BRST cohomology groupsH~sHud!. A first step is the follow-
ing theorem.

Theorem 5: The ordinary BRST cohomology depending on the fieldsfA, the antifieldsfA* ,
and their derivatives is isomorphic to the cohomology of sv depending on the fieldsf̃A and their
spatial derivatives:

H~s,@fA,fA* # !.H~sH ,@f̃A,f̃A* # !.H~sv ,@f̃A# !. ~40!

In other words, in asH cocycle, one can get rid of the temporal derivatives and of the antifields
through the addition of asH coboundary. For a proof of this theorem, see Appendix C.

Starting from the bottom of the descent equations, one then proves~see again Appendix C!
that a nontrivial cocycle modulod, a, sHa1db50, given bya5ã1dt a0, where ã does not
involve the differentialdt, can be characterized by

a5dt~2$f̃A* f̃A,b̃0%P,alt1a0
0!1ã0 , ~41!

verifying

svã01d̃b̃050, ~42!

sva0
01d̃b0

02
]

]t
b̃01$h,b̃0%P,alt50. ~43!

Here,ã0, b̃0, a0
0, andb0

0 contain no antifields and no time derivatives of the fields, whileb̃0 and
b0
0 satisfy analoguous equations toã0 anda0

0 for somem̃0, m0
0. In maximum form degreen, there

is, of course, noã and at the bottom, sayn, of the descent equations,ñ0 andn0
0 aresv cocycles

g.
In the coboundary condition for such cocyclesa5sHc1de, we have

c5dt~2$f̃A* f̃A,ẽ0%P,alt1e0
0!1ã0 , ~44!

giving the conditions
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ã05svc̃01d̃ẽ0 , ~45!

a0
052svc0

02d̃e0
01

]

]t
ẽ02$h,ẽ0%P,alt, ~46!

where c̃0, ẽ0, c0
0, ande0

0 again contain no antifields and no time derivatives of the fields, with
analogous equations holding forb̃0, b0

0 in terms ofẽ0, e0
0, f̃ 0, f 0

0. In maximum form degree, there
is no ã, c̃ and Eq.~45! is trivially satisfied.

In order to characterize the local BRST cohomology groupsHg,k~sHud!, one can first find a
basis for the vector spaceHg,k(svud̃) in the space of antifield and time derivative-independent
local forms with only spatial differentials~the most general nontrivial solution forã0!. One then
finds a basis forHg11,k21(svud̃) ~the most general nontrivial solution forb̃0!. One finally consid-
ers the subspacel [Hg11,k21(svud̃)] for which Eq. ~43! admits a particular solutiona0P

0 . The
general nontrivial form for a0

0 is then given by a0
05a0P

0 1ā0
0, where ā0

0 belongs to
r [Hg,k21(svud̃)], which is the subspace ofHg,k21(svud̃) remaining nontrivial under the more
general coboundary condition~46!.

We thus get the following result on the relationship between the local BRST cohomology
groups in Lagrangian and Hamiltonian formalism.

Theorem 6: The local BRST cohomology groups are isomorphic to the direct sum of the
following three local cohomology groups of the Hamiltonian formalism:

Hg,k~sud!.Hg,k~sHud!.Hg,k~svud̃! % l @Hg11,k21~svud̃!# % r @Hg,k21~svud̃!#. ~47!

Note that in maximal form degreen, the first group of the last expression vanishes. This decom-
position is, in general, quite difficult to achieve in practice since it requires the resolution of
complicated equations. However, it corresponds to the natural resolution of the spatiotemporal
descent equations in the Hamiltonian formalism, and it is useful, in principle, since it enables one
to relate the bracket and the antibracket.

Remark:The groups with prefixr and l appear also in the covariant analysis of the descent
equations in the following way. The descent equations provide a homomorphism
D : Hg,k(sud)→Hg11,k21(sud) with D [a]5[b] for sa1db50(→sb1dc50). The kernel ofD
can easily be shown to consist of the vector spaceHg,k(s) seen as a subspace ofHg,k(sud), i.e.,
the equivalence classes ofs-cocycles, with the equivalence relation determined bys modulod
exactness. We denote this kernel byr [Hg,k(s)].

The image ofD is given by the classes [b]PHg11,k21(sud), which can be lifted, i.e., such
that there existsa with sa1db50. We denote this space byl [Hg11,k21(sud)].

This implies the isomorphism

Hg,k~sud!. l @Hg11,k21~sud!# % r @Hg,k~s!#, ~48!

and, by iteration,

Hg,k~sud!. % i50
k l i r @Hg1 i ,k2 i~s!#, ~49!

where in the last space (i5k) one can forget ther , because there are nod exact terms in form
degree 0. Note that sinceH0(d)5R, if g52k, the last space has to be replaced by the space
$e,se5c,e;e1s f1c8;c,c8PR%, which is isomorphic toH0(s)/R.

In the Hamiltonian case above, we consider only the part of the descent equations involving
the exterior derivative with respect to time:d05dt(d/dt). h

We now use Theorem 6 to derive information on the antibracket from the Poisson bracket
induced inH(svud̃). On the representatives of the local BRST cohomology groups determined by
Eqs.~41!–~46!, the local antibracket gives
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$â1 ,â2%5ˆf̃A* f̃A,$ b̂̃1 ,b̂̃2%P‰P,alt2$â1
0,b̂̃2%P2~2 !e b̃

ˆ
1$ b̂̃1 ,â2

0%P. ~50!

Hence,~i! the antibracket map can be entirely rewritten in terms of the local Poisson bracket; and
~ii ! it is nontrivial only if l [H* ,n21(svud̃)] is nontrivial.

More precisely, according to the split ofH* ,n(sud) in ~47! to which corresponds the split of
a0 into aP

0 and ā0, we see that the antibracket map~14! is completely determined by the local
Poisson bracket map induced in

$•,•%P: l @H
g111,n21~svud̃!#3 l @Hg211,n21~svud̃!#→ l @Hg11g212,n21~svud̃!#, ~51!

and by the local Poisson bracket map in

$•,•%P: l @H
g111,n21~svud̃!#3r @Hg2 ,n21~svud̃!#→r @Hg11g211,n21~svud̃!#. ~52!

Hence the antibracket map is determined by the following matrix in maximum spatial form degree
n21:

S $ l @Hg111~svud̃!#,l @Hg211~svud̃!#%P ~2 !eg1
11$ l @Hg111~svud̃!#,r @Hg2~svud̃!#%P

$r @Hg1~svud̃!#,l @Hg211~svud̃!#%P 0
D . ~53!

Equations~52! and~53! mean, in particular, thatr [H* ,n21(svud̃)] is an abelian subalgebra and an
ideal in the odd Lie algebra (H* ,n(sud),$•,•%). We have thus proved the following.

Theorem 7: The odd Lie algebra(H* ,n(sud),$•,•%) is isomorphic to the semidirect sum of
the Abelian Lie algebra r[H* ,n21(svud)] and the Lie algebra„l [H* ,n21(svud)],$•,•%P…, where
the action of l[H* ,n11(svud̃)] on r[H* ,n21(svud)] is determined by the Poisson bracket map
from one space to the other. By taking the quotient, the following isomorphism is seen to hold:

„H* ,n~sud!/r @H* ,n21~svud̃!#,$•,•%….„l @H* ,n21~svud̃!#,$•,•%P…. ~54!

The consequences of this result in the particular case of conserved currents, i.e., for
g15g2521, k5n are as follows. Using the results of Ref. 8 in both the Lagrangian and the
Hamiltonian context, the isomorphism~47! means:

~i! The space of inequivalent Lagrangian conservation laws not belonging to I is isomorphic to
the subspace of spatial local functionals in the coordinates and momenta, defined on the constraint
surfaceS̃ and gauge invariant on this surface, whose Poisson bracket with the first class Hamil-
tonian H̃0 plus the explicit time derivative vanishes on the constraint surface,

HQ5E
t5t0

b̃0@f ip j #[E
t5t0

d1x•••dn21x j̃0@f ip j #,

@Q,H0#P1
]

]t
Q50uS̃,Q;QuS̃J , ~55!

~ii ! The space of inequivalent Lagrangian conservation laws belonging to I is isomorphic to a
subspace of the characteristic cohomology of the constraint surface in spatial form degree~n21!
21, the space of conservation laws associated to the constraint surface, where two such conser-
vation laws have to be considered to be equivalent if they differ on the constraint surface by a
spatial superpotential and the total time derivative of a spatial current,

H j̃ k,]k j̃ k50uS̃ , j̃ k;uS̃ j̃ k1] j S̃
@ jk#1

]

]t
f̃ k2$h0 , f̃

k%P,alJ . ~56!
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For example, the current corresponding to the Lagrangian currentj m5F0m is given by the
momentapk in the case of electromagnetism.

The semidirect sum structure holds also for the Lagrangian Dickey algebra, but furthermore,
we get from ~53! that ~i! the algebra of inequivalent conserved chargesQ equipped with the
induced Dickey bracket corresponds to the ordinary Poisson bracket algebra of conserved in-
equivalent charges in the Hamiltonian formalism; and~ii ! that the idealI of conserved currents
without charge forms an Abelian subalgebra.

VII. CONCLUSION

We have shown what is the precise relationship between the antibracket map and various Lie
algebras existing for local gauge field theories. In the case of conserved currents, where ‘‘cova-
riant’’ Poisson brackets are known, a direct comparison has been given.

In the general case, the antibracket map is related to the Poisson bracket of the canonical
formalism. The core of this analysis is the relationship of the local BRST cohomologies in the
Lagrangian and the Hamiltonian formalisms~i.e., the cohomologies modulod in the Lagrangian
case and modulod̃ in the Hamiltonian one!. This relationship turns out to be somewhat more
subtle than for the ordinary cohomologies, or the cohomologies modulod̃, which are simply
isomorphic.

We have shown, in particular, what is the precise analog of the Lie algebra of inequivalent
conserved currents in the Hamiltonian framework, which in turn allows some general statements
on the structure of this Lie algebra and could be useful for its actual computation.
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APPENDIX A: JET SPACES, VARIATIONAL BICOMPLEX, AND KOSZUL–TATE
RESOLUTION

In this appendix, we recall briefly the construction of jet bundles and of the variational
bicomplex. We will construct a tricomplex containing the horizontal, the vertical, and the Koszul–
Tate differentials. The construction enhances the cohomological setup of the variational bicomplex
associated to possibly degenerate partial differential equations by implementing the pullback from
the free bicomplex to the bicomplex of the surface defined by the equations through the homology
of the Koszul–Tate differential.~Different considerations on the Batalin–Vilkovisky formalism in
the context of the variational bicomplex are given in Ref. 12.!

Let us first recall some of the ingredients of the variational bicomplex relevant for our purpose
~for a review see Refs. 7, 13, and 14 and the references to the original literature therein!. As we
will not be concerned with global properties, we will work in local coordinates throughout.
Consider a trivial fiber bundle,

p:E5Mn3F→Mn, ~A1!

with local coordinates

p:~xm,f i !→~xm!, ~A2!

wherem50,...,n21 andi51,...,m, with F a manifold homeomorphic toRm parametrized by the
fi . For simplicity, we assume here that all thefi are even, but all the considerations that follow
could also be done in the case where the original bundle is a superbundle.

The induced coordinates on the infinite jet bundle,
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p`:J`~E!5Mn3F`→Mn ~A3!

of jets of sections onMn are given by

~xm,f i ,fm
i ,fm1m2

i ,...,!. ~A4!

Let VP
„J`(E)… be the local differential forms onJ`(E). The exterior differentialdT is split into

horizontal and vertical differentials:dT5dH1dV , with

dH5dxm ]m , ]m5
]L

]xm 1f~n!m
i ]L

]f~n!
i ~A5!

and

dVf~n!
i 5df~n!

i 2dxm f~n!m
i , dVx

m50. ~A6!

Note that everywhere else in the paper, we have omitted the subscriptH on the horizontal
differential and that we have introduced the more compact notationf (n)

i [] (n)f
i for the indepen-

dent coordinates corresponding to the derivatives of the fields.
Furthermore, we have

dHdV1dVdH5dH
2 5dV

250. ~A7!

A local p-form of Vp
„J`(E)… can then be written as a sum of terms of the form

f @f#dxm1•••dxmr dVf (n1)
i1 •••dVf (ns)

i s of horizontal degreer and vertical degrees with r1s5p

and f @f# a smooth function ofxm,f i , and a finite number of their derivatives. The free variational
bicomplex is the double complex~V* ,* „~J`(E)…,dH ,dV! of differential forms on„J`(E)…,

A A A
dV↑ dV↑ dV↑

0 → V0,2
„J`~E!… →

d
••• →

d
Vn,2

„J`~E!… →
*

F 2
„J`~E!… → 0

dV↑ dV↑ dV↑
0 → V0,1

„J`~E!… →
d

••• →
d

Vn,1
„J`~E!… →

*
F 1

„J`~E!… → 0

dV↑ dV↑ dV↑
0 → R → V0,0

„J`~E!… →
d

••• →
d

Vn,0
„J`~E!… →

*
F 0

„J`~E!… → 0

↑ ↑ ↑
0 → R → L0~Mn! →

d
••• →

d
Ln~Mn! → 0

The important property of this bicomplex is that all the rows and columns of the above
diagram are exact.7,13,4 The integral sign* denotes the projection, for each vertical degrees, of
horizontaln-forms onto the space of local functional formsF s, i.e., the space of equivalence
classes obtained by identifying exact horizontaln-forms with zero:F s5Vn,s/dHVn21,s. dV is the
induced action of the vertical derivative inF s: dV*vn,s5*dVvn,s. An evolutionary vector field
on E is given byyQ5Qi [f] ]L/df i . It prolongation is given bydQ5] (n)Q

i]L/]f (n)
i . Because

@dQ ,]m#50, the contraction of a functional form with the prolongation of evolutionary vector fields
is well defined.
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A systemR of kth-order partial differential equations onE,

Ra~x
m,f i ,fm

i ,...,fm1•••mk

i !50, a51,...,l , ~A8!

defines a sub-bundleR→Rn of Jk(E)→Rn. We shall assume that the equationsRa50,
]mRa50,...,]m1•••m1

Ra 5 0 define, for eachxm, a smooth surface and provide a regular represen-
tation of this surface in the vector spacesFs1k for eachs, i.e., the equations can be split into
independent equations (Lm), which can be locally taken as first coordinates in a new, regular,
coordinate system in the vicinity of the surface defined by the equations, and into dependent ones
~LD!, which hold as a consequence of the independent ones.

This implies that one can split locally thefi and their derivatives up to orders1k into
independent variablesxA not constrained by the equations and dependent variablesza in such a
way that the equationsRa50,...,]m1•••ms

Ra 5 0 are equivalent toza5za(xA ,Lm). A local coor-
dinate system adapted to the equations is then given by (xm,xA ,Lm) in J

s1k(E). How this works
in detail for Yang–Mills theory, gravity, or two-form fields is discussed in Ref. 8. The infinite
prolongationR` of R, i.e., the given sets of equations and all their total derivatives, define a
sub-bundle inJ`(E). In the sequel, by ‘‘stationary surface’’ or by ‘‘on shell’’ we mean that we are
on the sub-bundle defined byRa50 and an appropriate number of its derivatives, depending on
the spaceJl(E) under consideration.

A consequence of the regularity condition is that any functionf @f# that vanishes on the
stationary surface,f'0, can be written as a combination of the equations defining this surface.7,6

The knowledge of the split of the equations into dependent and independent ones allows one
to find a locally complete set of nontrivial local reducibility operators inJl(E), i.e., operators
Ra1

1a(m)] (m) for some local functionsRa1
1a(m)@f# on Jl(E), which do not all vanish on shell, such

that

R1a~m!]~m!Ra50, ~A9!

and verifying the property that ifl1a(m)]~m!Ra50 for some local functionsl1a(m)@f# on Jl(E),
then

l1a~r!]~r!5l1a1~l!]~l!~Ra1
1a~m!]~m!• !1ma~m!b~n!~]~n!Rb!]~m! , ~A10!

for some local functionsl1a1(l)@f#, andma(m)b(n) on Jl(E), wherema(m)b(n)52mb(n)a(m). Fur-
thermore, the first term of the right-hand side of Eq.~A10! can be assumed to be absent if the
functionsl1a(m) vanish on shell.6 Such reducibility operators will be called trivial because they
exist for any gauge theory.

For simplicity, we will assume here that the reducibility operators are themselves irreducible
in the sense that ifl1a1(l)R1a(m)] (m) vanishes on the stationary surface, the functionsl1a1(l)

vanish on the stationary surface. All the considerations that follow can be generalized to the case
with higher-order reducibility operators at the price of increasing the number of additional gen-
erators introduced below like in Ref. 6.

The variational bicomplex„V* ,* ~R`!,dH ,dV… of the differential equationsR is the pullback
of the variational bicomplex fromJ`(E) toR`. With the previous assumptions, it is straightfor-
ward to verify thatV* ,* ~R`! is locally isomorphic to the forms indxm anddVxA with coefficients
that are smooth functions in thexm,xA . The columns of this bicomplex remain exact, because the
contracting homotopy,7 which allows us to prove exactness in the free case, still holds when we
consider onlydVxA’s. There exist, however, nontrivial cohomology groups along the rows.

The Koszul–Tate resolution of this bicomplex is obtained by a straightforward generalization
of the Koszul–Tate resolution of the stationary surfaceR`.6 One considers the superbundle

5287G. Barnich and M. Henneaux: Batalin–Vilkovisky and Poisson bracket

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



p:K5Mn3~F% F* %C* !→Mn, ~A11!

and the associated free variational bicomplex~V* ,* „J`(K)…, dH ,dV!. F* is the vector space with
coordinates the Grassmann oddfa* and is of dimensionl , the number of original equations.C* is
the vector space with coordinates, the Grassmann evenCa1

* , and its dimension equals the number

of nontrivial reducibility operatorsRa1
1a(m)] (m) . The Koszul–Tate differentiald is defined on

V* ,* „J`(K)… by

dxm5d dxm5df i50,

dfa*5Ra , dCa1
* 5Ra1

1a~m!]~m!fa* , ~A12!

ddH1dHd505ddV1dVd,

and is extended as a left antiderivation. The associated grading is obtained from the eigenvalues of
the antighost number operator defined by

antigh5fa~m!
*

]L

]fa~m!
*

1dVfa~m!
*

]L

]dV fa~m!
*

12Ca1~m!
*

]L

]Ca1~m!
*

12 dVCa1~m!
*

]L

] dVCa1~m!
*

.

~A13!

As in Ref. 6, one can then prove that

H0~d,V0*
,* „J`~K !…!.V* ,* „J`~E!…/N .V* ,* ~R`!, ~A14!

and that

Hk~d,Vk*
,* „J`~K !…!50, for k.0. ~A15!

Here,N is the ideal of forms such that each term contains at least one of the terms]~m!Ra or
dV ]~m!Ra . Hence, locally, the quotient is isomorphic to the forms indxm anddVxA with coeffi-
cients that are smooth functions in thexm,xA . By using a partition of unity, we then get the last
isomorphism in the above equation. This means that the diagram,

•••→
d

Vk*
,* „J`~K !…→

d

Vk21* ,* „J`~K !…→
d

•••

•••→
d

V1*
,* „J`~K !…→

d

V* ,* ~R`!→0,

is exact.
In the three-dimensional grid corresponding to the tricomplex,

~V
*
* ,* „J`~K !,dH ,dV ,d…!, ~A16!

augmented by the projection on local functionals in thedH direction and by the projection on the
bicomplex for the partial differential equations„V* ,* ~R`!,dH ,dV… in the d direction, except for
the rows of this last complex, the sequences are exact in all directions.

The advantage of this cohomological resolution of the variational bicomplex for partial dif-
ferential equations is that the nontrivial cohomology groupsHr ,* „dH ,V

r ,* ~R`!… are given by
relative cohomology groups in the free tricomplex,

Hr ,* „dH ,V
r ,* ~R`!….H0

r ,* ~dHud,V0
r ,* „J`~K !…!. ~A17!
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SinceH
*
q,* (dH ,V*

q,* „J`(K)…) 5 0 for 0,q,n andHk*
,* (d,Vk*

,* „J`(K)…) 5 0 fork.0, one can,
for instance, apply the method of diagram chasing~or ‘‘snake lemma’’! in the horizontal andd
directions to get, for (r ,s)Þ~0,0!,

H0
r ,s~dHud,V0

r ,s
„J`~K !…!.H1

r11,s~dHud,V1
r ,s
„J`~K !…!.•••.Hn2r21

n21,s ~dHud,Vn2r21
n21,s

„J`~K !…!.
~A18!

For (r ,s)5~0,0!, the same chain of isomorphisms remain true if one replaces the first element in
the chain byH0,0(dHud,V0

0,0
„J`(K)…!/R. Furthermore, like in Ref. 9, one proves that

Hk
r ,* ~dHud,Vk

r ,* „J`~K !…!

p]Hk
r ,* ~dH ,Vk

r ,* „J`~K !…!
.
Hk11
r11,* ~dudH ,Vk11

r11,* „J`~K !…!

p]Hk11
r11,* ~d,Vk11

r11,* „J`~K !…!
, ~A19!

wherep] denotes the natural inclusion of an absolute cohomology group as a relative cohomology
group. Using the results on the cohomology ofdH andd, these relations reduce to

H0
0,0~dHud,V0

0,0
„J`~K !…!/R.H1

1,1~dudH ,V1
1,1
„J`~K !…!, ~A20!

Hk
r ,* ~dHud,Vk

r ,* „J`~K !…!.Hk11
r11,* ~dudH ,Vk11

r11,* „J`~K !…!, ~r ,s,k!Þ~0,0,0!, r,n.
~A21!

APPENDIX B: LOCAL BRACKETS AND SURFACE TERMS

In the first part of this appendix, we want to calculate explicitly the total divergences that arise
in the Jacobi identity for the local~anti!bracket.

Letza 5 (fA,fA* ) and

zab5S 0 dB
A

2dB
A 0 D .

Let (ñ )m1
denote the number of times the indexm appears in the multiindex~n!. The higher Euler

operators7 are uniquely defined by the expression

dQf5]~n!SQa
dL f

dz~n!
a D . ~B1!

Let us furthermore define the ‘‘generalized Hamiltonian vector field:’’

ā b5S dRâ

dza D zab. ~B2!

Then the local antibracket in the space of integrands~9! can be rewritten as

$a1 ,a2%5dnxF ]~m!S dRâ1
dza D zabS ]Lâ2

]z~m!
b D 2

~ ñ !m11

unu11
]m~n!S dRâ1

dza
zab

dâ2
dzm~n!

b D G[d ā1
a22dI ā1 a2 .

~B3!

This expression implies that the graded Leibnitz rule holds up to a total divergence.
We have pointed out in the text that the local antibracket~B3! does not satisfy the graded

Jacobi identity strictly, but only up to a total divergence. Similarly, in the Hamiltonian theory, the
Poisson bracket among local functions of the fields, their conjugate momenta, and their deriva-
tives,
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$â1 ,â2%P5
d̃Râ1
df i s i j

d̃Lâ2
df j , ~B4!

satisfies the Jacobi identitŷâ,$b̂,ĉ%‰1cyclic50 only up to a~spatial! total divergence. In Eq.
~B4!, fi collectively denotes the fields and their conjugate momenta, the tilde superscript denotes
the spatial Euler–Lagrange derivatives, and

s i j5S 0 d j
i

2d j
i 0

D .
For definiteness, we shall evaluate here explicitly the boundary terms in the Jacobi identity in

the Hamiltonian case and assume that the fieldsfi and the densitiesâ, b̂, andĉ are all even. We
will, however, not write explicitly the tilded superscript to indicate the spatial derivatives. The
calculation for the local antibracket or the local extended Poisson bracket is simply a matter of
taking care of the sign factors.

We will need the following lemma:

~2]!~a!S f ]

]f~a!
i ]bgD 52~2]!~a!S ]b f

]

]f~a!
i gD . ~B5!

The proof of this lemma follows from a straightforward extension of the proof of
(d/df i)(]bg)50 in Ref. 15.

A direct calculation, using the analog of~B3! for the Poisson bracket and the fact that the
Euler–Lagrange derivatives annihilate total divergences, yields

ˆa,$b,c%‰1cyclic5ˆa,$b,c%‰2ˆb,$a,c%‰2ˆ$a,b%,c‰

5d ād b̄c2d b̄ d āc2d$a,b%c, ~B6!

2dI ā~d b̄c!1dI b̄~d āc!1dI $a,b%c. ~B7!

We have

~d ād b̄2d b̄d ā !c5d d̄c, ~B8!

with

d̄ i5d āS db̂

df j Ds j i2~ â↔b̂!

5
d

df j ~d ā b̂!s j i2~2]!(a)F ]

]f~a!
j S ]~b!

dâ

dfkDskl
]b̂

]f~b!
l Gs j i2~ â↔b̂!

5
d

df j $â,b̂%s j i2~2]!(a)F ]

]f~a!
j S dâ

dfkDskl
db̂

df l Gs j i2~ â↔b̂!

52
d

df j $â,b̂%s j i2~2]!(a)F ]

]f~a!
j S dâ

dfk skl
db̂

df l D Gs j i5
d

df j $â,b̂%s j i5$a,b% i . ~B9!

To get the line before last, we have used repeatedly the above-mentioned lemma~B5!. Hence,

ˆa,$b,c%‰1cyclic5d„2I ā~d b̄c!1I b̄~d āc!1I $a,b%c…. ~B10!

5290 G. Barnich and M. Henneaux: Batalin–Vilkovisky and Poisson bracket

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



This is the desired formula.h h

We now prove that the expressions in Eq.~25! for the Dickey bracket are equivalent to the
definition in Eq.~24!. Let us write terms that vanish on shell byd~ !. By applying the lemma~B5!,
we find that, ifX is the characteristic of a variational symmetry, the following equation holds:

dXS dL̂0

df i DYi dnx52~2]!~m!F ]

]f~m!
i ~]~n!X

j !
]L̂0

]f~n!
j GYi dnx

52~2]!~m!F ]

]f~m!
i ~Xj !

dL̂0

df j GYi dnx52dY~Xj !
dL̂0

df j d
nx1dd~ !.

~B11!

Let us evaluated( 2 dX1 j 2). Using~B11! twice, we get,

d~2dX1 j 2!52dX1S dL̂0

df i X2
i D dnx1dd~ !

52dX1~X2
i !

dL̂0

df i d
nx1dX2~X1

j !
dL̂0

df i d
nx1dd~ !,

~B12!

5d~dX2 j 1!1dd~ !. ~B13!

From this equation it also follows immediately that

d~2dX1 j 2!5 1
2 d~dX2 j 1!2d~dX1 j 2!1dd~ !. ~B14!

Using the triviality of the cohomology ofd in form degreen21~.0! implies the first two expres-
sions in Eq.~25!.

From Eq.~B12!, it follows that

d~2dX1 j 2!5Fd@X1 ,X2#L
L̂02

~ ñ !m11

unu11
]m~n!S dL̂0

df~n!m
i @X1 ,X2#L

i D Gdnx1dd~ !. ~B15!

But we also have

d@X1 ,X2#L̂05~dX2dX12dX1dX2!L̂0

5]m~dX2 j 1
m2dX1 j 2

m!1
~ ñ !m11

unu11
]m~n!FdX2S dL̂0

df~n!m
i X1

i D 2dX1S dL̂0

df~n!m
i X2

i D G .
~B16!

This implies

d~2dX1 j 2!5d~dX2 j 12dX1 j 2!1
~ ñ !m11

unu11
]m~n!S dX2S dL̂0

df~n!m
i DX1

i 2dX1S dL̂0

df~n!m
i DX2

i D dnx
1dd~ !. ~B17!

Using ~B14!, we find the last expression of~25!:
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d~2dX1 j 2!52
~ ñ !m11

unu11
]m~n!S dX2S dL̂0

df~n!m
i DX1

i 2dX1S dL̂0

df~n!m
i DX2

i D dnx1dd~ !. ~B18!

h

In the last part of the appendix, we establish the relationship between the antibracket map and
the Dickey bracket. As explained before theorem 2, we have to evaluated$a1 ,a2%, wherea
5 dnx f i*X

i , with Xi defining a variational symmetry:

d$a1 ,a2%5S dnx dX1
i

df j X2
j 2

dX2
i

df j X1
i D dL̂0

df i 5dnx~dX2X1
i 2dX1X2

i !
dL̂0

df i 1dd~ !

5d~2dX1 j 2!1dd~ !, ~B19!

where we have used~B12! in order to get the last equality. This proves that to the antibracket map
of two classes inH1

n(dud) corresponds to the Dickey bracket of the corresponding currents.h

APPENDIX C: DESCENT EQUATIONS IN THE HAMILTONIAN FORMALISM

We analyze in this appendix, first of all, the relationship between the cohomology ofsH
defined in Eq.~37! and the cohomology ofsv , thereby proving Theorem 5. Then we analyze the
spatiotemporal descent equations ofsH by choosing representatives appropriate to the Hamiltonian
formalism, proving Eqs.~41!–~46!.

1. Cohomology of sH and sv

The cocylen in sHn50 depends on the coordinatesxm,] (m)f̃
A,] (m)f̃A* . Consider the change

of coordinates, which consists in replacing the time derivatives of the fields and all their deriva-
tives by the]~m!LA . In the new coordinates,n depends onxm,] (k)f̃

A,] (m)f̃A* ,] (m)LA . Using
svV5svH50 and the identity

2sv$f̃A* f̃A,•%P,alt1]~k!

d̃R

df̃C
~sCA$f̃B* f̃B,v%P,alt!

]L

]~]~k!f̃
A!

5$f̃A* f̃A,sv•%P,alt ~C1!

we find thatsHLA50. This means that in the new coordinate system,

sH5sv1]~m!LA

]L

]~]~m!f̃A* !
, ~C2!

wheresv is restricted to spatial derivatives. Introducing the contracting homotopy,

r5]~m!f̃A*
]L

]~]~m!LA!
, ~C3!

the anticommutator$sH ,r%5N5za(]L/]za) is the operator counting the number of coordinates,
za [ ] (m)f̃A* ,] (m)LA . The standard argument is then that

n5n~za50!1E
0

1 dl

l
~Nn!@lza#, ~C4!

5n01sHS E
0

1 dl

l
~rn!@lza# D . ~C5!
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The cocycle condition now reduces tosvn050, and the coboundary conditionn05sHp re-
duces ton05svp0 . Indeed, applyingN to the coboundary condition implies thatNsHp50. Using

@N,sH#50, ~C6!

and the same decomposition ofp as forn in ~C4!, this equation implies thatsHp5svp0 .
This proves Theorem 5. h

In order to analyze the spatiotemporal descent equations forsH , we start form the bottom,
which we can assume to be of the formn0, as above. We then want to know under what conditions
n0 can be lifted i.e., what are the conditions for the existence ofm, such thatsHm1dn050. We
will now prove, in particular, the crucial lemma thatm can be assumed to be independent of the
coordinates]~m!LA , with a linear dependence in the antifields] (k)f̃A* only in the terms involving
the differentialdt.

2. First lift from the bottom of the descent equations

The spatial exterior differential has the same form in the new coordinate system as it had in
the old one. The total time derivative, however, is given by

d

dt
5

]

]t
1]~k!l11f̃A*

]L

]~]~k!lf̃A* !
1]~k!l11LA

]L

]~]~k!lLA!

1]~k!s
CAF2LC2

d̃Rh

df̃C
2

d̃R

df̃C
$f̃B* f̃B,v%P,altG ]L

]~]~k!f̃
A!
. ~C7!

We then decomposem andn0 into pieces, respectively, containing the differentialdt or not
~m0, n0

0, andm̃,ñ0!. The cocycle condition splits into

sHm̃1d̃ñ050, sHm
01d̃n0

02
d

dt
ñ050 ~C8!

From the homotopy formula~C4! applied to m̃ and the cocycle condition, we get that
m̃5m̃01sH~ !2d̃(*0

1(dl/l)(rñ0)[lz
a) becauser ~anti!commutes withd̃ andd̃ is homogeneous

of degree 0 inza. The last expression vanishes sincerñ050. Injecting the remaining expression
into the cocycle condition, we get

svm̃01d̃ñ050. ~C9!

The homotopy formula~C4! applied tom0, together with the cocycle condition, implies that

m05m0
01sH~ !1d̃ S E

0

1 dl

l
~rn0

0!D 1E
0

1 dl

l
rsCA]~k!S 2LC2

d̃Rh

df̃C

2
d̃R

df̃C
$f̃B* f̃B,v%P,altD ]L

]~]~k!f̃
A!

ñ0@lza#

5m0
01sH~ !2$f̃A* f̃A,ñ0%P,alt, ~C10!

proving in particular the lemma on the dependence ofm on the coordinatesza. Injecting this last
expression in the cocycle condition, usingsvn0

050 and~C1!, implies
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svm0
01d̃n0

02
]

]t
ñ01$h,ñ0%P,alt50. ~C11!

3. Next steps in the lifting procedure

We then have to try to lift the equivalent representative ofm given by

m85dt~2$f̃A* f̃A,ñ0%P,alt1m0
0!1m̃0 , ~C12!

i.e., find l5dt l01 l̃ , such thatsHl1dm850. This implies

sHl̃1d̃m̃050, sHl
01d̃~2$f̃A* f̃A,ñ0%P,alt1m0

0!2
d

dt
m̃050. ~C13!

By exactly the same reasoning as before, the first equation implies that

l̃ 5 l̃ 01sH~ !, sv l̃ 01d̃m̃050. ~C14!

The second equation implies as before that

l 05 l 0
01sH~ !2$f̃A* f̃A,m̃0%P,alt, ~C15!

becauser annihilates the supplementaryf̃A* -dependent term, which does not depend onLA .
Injecting into the cocycle condition, we get

svl 0
01d̃m0

02
]

]t
m̃01$h,m̃0%P,alt50, ~C16!

the supplementary antifield-dependent term inm0 cancelling the term coming from~C1! using the
fact that svm̃01d̃ñ050. This shows that at every step we get the same dependence on the
coordinatesza, i.e., independence on]~m!LA , or by going back to the old coordinate system, on
the time derivatives of the fields, with a linear dependence in the antifields and their spatial
derivatives] (k)f̃A* only in the terms involving the differentialdt. Furthermore, we have proved
the set of equations~41!–~43!.

4. Coboundary condition

Let us now consider the coboundary condition forl 8 defined in an analoguous way asm8 in
~C12!. From l 85sHr1du, we have, by applyingsH , thatsHu1dp50. Hence,u satisfies the same
equation asl above, which implies by~C14! and an appropriate modification ofr that we can
assumeũ5ũ0 andu

05u0
0 2 $f̃A* f̃A,p̃0%P,alt.

We have thatl̃ 05sHr̃1d̃ũ, which implies, by applying the homotopy formula~C4! to r , that
we can assume thatr̃5 r̃ 0, ũ5ũ0. The coboundary condition becomesl̃ 05sv r̃ 01d̃ũ0 , proving
Eq. ~45!.

By applying the homotopy formula~C4! to r 0, the coboundary condition,

2$f̃A* f̃A,m̃0%P,alt1 l 0
052sHr

02d̃u01
d

dt
ũ0 , ~C17!

implies
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2$f̃A* f̃A,ñ0%P,alt1 l 0
052svr 0

02sHE
0

1 dl

l S rS $f̃A* f̃A,m̃0%P,alt

2 l 0
02d̃u01

d

dt
ũ0D D @lza#2d̃u01

d

dt
ũ0 . ~C18!

This gives

l 0
052svr 0

02d̃u0
01

]

]t
ũ02$h,ũ0%P,alt, ~C19!

proving Eq. ~46!. These coboundary conditions are satisfied by choosing in the equation
l5sHr1du, r to be given bydt( 2 $f̃A* f̃A,ũ0%P,alt1 r 0

0) 1 r̃ 0 and a similar equation holding foru.
This proves~44!. h

NOTES
aWe will not be too precise about the nature of the field dependence of the local functions

~polynomiality or smooth dependence!. Similarly, we will not specify whether one should consider
polynomials or infinite formal series in the antifields and their derivatives,8 since most aspects we
will consider are really independent of these considerations. For simplicity, we will assume,
however, that all the fields live on a star-shaped space.

bOne uses the facts that~i! $•,•%alt differs from$•,•% by a total divergence;~ii ! that$•,•% satisfies
the graded Jacobi up to a total divergence; and~iii ! that Euler–Lagrange derivatives annihilate
total divergences.

cThis exhausts the arbitrariness of the functionsXi (l) only in the case where the equations and
their derivatives are independent;7,6 in the general case, one has to also take care of the Noether
identities, as shown below.

dOne says that the Koszul–Tate differentiald provides a homological resolution of the func-
tions defined on the stationary surface~also see Appendix A!.

eA trivial variational symmetry vanishes on the stationary surface. Under certain
assumptions,8 one can prove thatvice versaevery variational symmetry that vanishes on the
stationary surface corresponds to a trivial representative ofH21,n(sud), i.e., an ‘‘antisymmetric’’
combination of the equations of motion.

fThis is the formalization in the appropriate jet space of the idea that functions linear in the
antifields define tangent vectors,16 the physically relevant ones here being those that are ‘‘tangent’’
to the stationary surface.

gThese equations have been first used in Ref. 17 to compare anomalies in the Hamiltonian and
the Lagrangian formalism.

hIt also follows from this proof that the alternative bracket given by$a,b%alt5dāb satisfies a
strict Jacobi identity under Leibnitz form@defined by the second expression of~B6!#, using,
furthermore, the fact that$a,b%alt5$a,b%.
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On Green–Cusson Ansa ¨ tze and deformed supersymmetric
quantum mechanics

J. Beckersa) and N. Deberghb)
Theoretical and Mathematical Physics, Institute of Physics (B.5), University of Lie`ge,
B-4000-Liege 1, Belgium

~Received 6 October 1995; accepted for publication 1 July 1996!

Supersymmetric quantum mechanics cannot be deformed when the superposition of
only a pair of usual bosons and fermions is considered, but it can if nontrivial
parabosons and parafermions of the same orderp of paraquantization are super-
posed. We take the simplest casep52 and exhibit reducibility problems in that
context by using Green–Cusson Ansa¨tze following Macfarlane methods. Specific
representations of the Lie superalgebra osp~2u2, R! play an interesting role in
connection with possible deformations. ©1996 American Institute of Physics.
@S0022-2488~96!01411-9#

I. INTRODUCTION

By revisiting the so-calledGreen Ansa¨tze1 in parastatistical developments,2,3 Macfarlane4 has
recently pointed out some‘‘methods allowing various new results for q-deformed (parabose)
oscillators to be derived.’’ In particular, Fock bases characterized by bilinear~rather than trilinear!
structure relations play a very interesting role in such considerations. Here, we plan to exploit the
correspondingGreen–Cusson Ansa¨tze5,6 in the study of quantum deformations in a fundamental
physical theory such as supersymmetric quantum mechanics~SSQM!.7

Let us recall that quantum deformations8 have been investigated, developed, and applied in a
large number of fields in quantum physics. More recently, different generalizations9–13 have also
been proposed in order to cover a maximum of information through refined methods.

In particular, a specific question has been asked by Spiridonov14 in connection with the
possible deformation of the standard Witten model7 of SSQM. A few months later, his answer
presented as aq-deformation has been shown15 as resulting only from ordinary SSQM but includ-
ing q-dependent superpotentials. It is now evident that SSQM@based on theD (1/2)2 representation
of su~2,C!# cannot be deformed although its super-Hamiltonian can.16 Let us also mention another
recent approach17 containing investigations on links between high-order derivative supersymmetry
andq-deformed SSQM but without direct connections with the point of view we want to develop
here.

One of the main purposes of this paper is to circumvent this difficulty by using the above-
mentioned Green–Cusson Ansa¨tze and by constructing, in the Macfarlane way, a Fock space
exploiting the context of the second-order~p52! of paraquantization in the so-called relative
parabosonic~or relative parafermionic! set characterized by Greenberg and Messiah.3 Through
such developments we will show that SSQM can be deformed by exploiting previous results.6,18

The contents of this paper are then distributed as follows. In Sec. II we summarize a few
properties18 resulting from supersymmetric developments in connection with parabosons and para-
fermions~of order 2, but also valid for arbitrary orders!, an important one being the existence of
an invariance Lie superalgebra of SSQM, i.e., the orthosymplectic Lie superalgebra osp~2/2,R!.
Section III is then devoted to the construction of an effective Fock basis in the context of the
relative parabosonic set when Green–Cusson Ansa¨tze are exploited. The corresponding state

a!Electronic mail: Jules.Beckers@ulg.ac.be
b!Institut Interuniversitaire des Sciences Nucle´aires, Brussels.

0022-2488/96/37(11)/5297/13/$10.00
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vectors will appear as characterized by a family of six~simultaneously measurable! observables
associated with two usual bosons and four usual fermions. They will be classified in three irre-
ducible representations of the above orthosymplectic Lie superalgebra and will allow us to deter-
mine the energy superspectrum of such a context. In Sec. IV, we construct the pair of deformed
parabosonic and parafermionic operators leading to generalized deformed supercharges in particu-
lar, but also to the eight deformed generators of the orthosymplectic Lie superalgebra. In Sec. V
we discuss possible deformations of the superalgebra sqm~2! seen as a subalgebra of osp~2/2,R!.
The conclusion will be that, effectively, SSQM can be deformed.

II. SUMMARY OF SOME PRECEDING RESULTS

After Greenberg–Messiah,3 we have learned that there exist only two different relative sets of
trilinear structure relations which are respectively called theparabosonic~or para-Bose! and
parafermionic~or para-Fermi! sets characterized by typical relations as follows. If we denote by
a ~anda†! the parabosonic annihilation~and creation! operator~s! and byb ~andb†! the parafer-
mionic annihilation~and creation! operator~s!, we have for the two sets thecommonstructure
relations~when only one pair of paraparticles are concerned!

@a,$a†,a%#52a, †b,@b†,b#‡52b,

@$a†,a%,b#50, †@b†,b#,a‡50, ~2.1a!

@$a,a%,b#50, @$a†,a†%,b#50.

They are supplemented by the following ones,

@$a,b%,a†#52@$a†,b%,a#52b,

$$a,b†%,b%5$$a,b%,b†%52a,
~2.1b!

@$a,b%,a#5$$a,b%,b%50,

@$a†,b%,a†#5$$a,b†%,b†%50,

when therelative parabosonic setis concerned,andby

$a,@a†,b#%5$a†,@b,a#%52b,

†b†,@b,a#‡5†b,@b†,a#‡52a,
~2.1c!

†b,@a,b#‡5$a,@b,a#%50,

†b†,@a,b†#‡5$a†,@b,a†#%50,

when therelative parafermionic setis concerned.
From the first and second sets, we have shown18 that it is possible to define two supercharges

in each context such that, with the corresponding HamiltonianH, they generate the superalgebra
of ordinary SSQM, i.e., sqm~2! ~Ref. 7! characterized by the structure relations

H5$Q,Q†%, $Q,Q%5$Q†,Q†%50, @H,Q#5@H,Q†#50, ~2.2!

whereH is the sum of a~para!bosonic part12$a,a
†% and a~para!fermionic part 12[b

†,b] as in
SSQM. Indeed, we have defined, for the relativeparabosonicset ~2.1a! and ~2.1b!, the two
supercharges
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Q~1!5
1
2$a,b%, Q~1!

† 5 1
2$b

†,a†% ~2.3a!

and, in correspondence with the relativisticparafermionicset ~2.1a! and ~2.1c!, the other two
supercharges

Q~2!5
1
2@a,b#, Q~2!

† 5 1
2@b

†,a†#, ~2.3b!

each context ensuring the relations~2.2!. Physically speaking, these results mean that the super-
position of parabosons with parafermions of orderp52 @but this is also true forarbitrary orders
p ~Ref. 18! iff the sameorders of paraquantization are considered# leads to the rich concept of
supersymmetry pointed out by superposing usual bosons and fermions. As we want to show and
to exploit in the following, this property leads to a large number of ‘‘reducibility problems,’’ as
mentioned in particular by Macfarlane4 in his disconnected considerations on parabosons and
parafermions. In fact, we will use the Green–Cusson Ansa¨tze ~as proposed in the next section! for
illustrating this reducibility.

In order to shorten and to simplify our paper, let us immediately inform the reader that we
plan, in the following, to limit ourselves to the explicit use of the relative parabosonic set with the
characteristics~2.3a!. In fact, all the corresponding developments can also be realized with the
relative parafermionic set and the characteristics~2.3b!, but they lead to the same conclusions, the
resulting~para!supersymmetric Hamiltonian,

H5 1
2$a,a

†%1 1
2@b

†,b#, ~2.4!

being a common operator whose properties have already been pointed out.18

III. THE CONSTRUCTION OF A FOCK BASIS FROM THE GREEN–CUSSON ANSÄ TZE

As SSQM cannot be deformed when only a pair of usual bosons and fermions are superposed
~i.e., when one paraboson and one parafermion of orderp51 are superposed!, let us go to the
orderp52 of paraquantization, the first nontrivial order characterized bytrilinear structure rela-
tions but maintaining the main properties of SSQM as recalled in the preceding section. Moreover,
let us introduce the Green–Cusson Ansa¨tze forp52 parabosons as well as forp52 parafermions,
in order to construct anad hocFock basis. This will help us in the realization of the corresponding
operators~annihilation and creation ones, parasupercharges, etc.! when, as already chosen, we will
consider operators belonging to therelative parabosonic setcharacterized by the structure rela-
tions ~2.1a! and ~2.1b!.

Inside this set, let us denote as already mentioneda(a†) andb(b†) the corresponding anni-
hilation ~creation! operators for the paraboson and the parafermion, respectively, so that the
Green–Cusson Ansa¨tze can be expressed in terms of a pair oftwo ~independent! bosonic oscilla-
tors @let us call them in the followinga1 and a2, see Eq.~3.3a!# and of four ~independent!
fermionic ones@let us call thenb1, b2, b3, and f , see Eq.~3.3b!#, the motivations for these last
four ones having to be justified as follows. The relations~2.1a! and ~2.1b! are satisfied if we
realize the parabosonic and the parafermionic annihilation operators through the following Green–
Cusson Ansa¨tze.

a5 (
a51

p52

Aaja , b5 (
b51

p52

Bbjb , ~3.1!

respectively, with the relations6

$ja ,jb%52dab , ja
†5ja , a,b51,2, ~3.2a!
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@Aa ,Ab
† #5dab , $Ba ,Bb

†%5dab . ~3.2b!

The simultaneous consideration of~3.1! thus asks for a usual fermionic annihilation operator@let
us call it f , f[ 1

2(j12 i j2), see Eqs.~3.3! and ~3.4!# besides the two usual bosonic operatorsA1,
A2 implied by a in Eq. ~3.1! and the two usual fermionic operatorsB1, B2 implied by b in Eq.
~3.1! also. These two anticommuting@see Eq.~3.2b!# operators can be replaced by three commut-
ing sets of fermions@see Eq.~3.46!# with

B11 iB25&b1~b31b3
†!

and

B12 iB25&b2~b32b3
†!.

The Fock basis vectors will then be characterized by two ‘‘eigenvalues’’n1 andn2 of the bosonic
number operatorsN1 andN2 supplemented by four ‘‘eigenvalues’’s of the four fermionic number
operators corresponding to the four types of necessary fermions. We evidently know thatn1,
n250,1,2,...,̀ while s takes only the values 0 or 1, so that we are interested in basis vectors
labelled in the following way:un1 ,n2 ,s1,s2,s3,s4&. Due to the fact that the independent fermion
f has to deal with the usual bosons as well as with the usual fermions, we have to take care of
precise combinations inside the resulting Green–Cusson Ansa¨tze. In fact, we explicitly have

a5&~a1f1a2f
†!, ~3.3a!

where

a1[
1

&

~A11 iA2!, a2[
1

&

~A12 iA2!,

and

b5&@b1~b31b3
†! f1b2~b32b3

†! f †#. ~3.3b!

Let us remember that the independent character of these sets of bosons and fermions requires the
relations

@aa ,aa
† #51, @a1 ,a2#50, $ f , f †%51, @aa , f #50, a51,2 ~3.4a!

and

$bj ,bj
†%51, @bj ,bk

†#50 ~ jÞk!,
~3.4b!

@bj ,bk#50, @bj , f #50, @aa ,bj #50, j ,k51,2,3.

With such expressions~3.3! and their Hermitian conjugates, we can show that the relative para-
bosonic set is correctly realized when these operators act on the above Fock basis. A final useful
refinement consists of distinguishing more specifically the subspaces corresponding to the eigen-
valuess450 ands451 due to the specific role played by the fermionf with respect to the two
bosons associated witha1 anda2 @see Eq.~3.3a!#.

At this stage, we are thus interested in the action ofa, a†, b, andb† on the two kinds of states
un1 ,n2 , s1, s2,s3,0& and un1 ,n2 ;s1, s2,s3,1&. If we recall

19 that usual bosonic operators are such
that
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aauna&5Anauna21&, aa
† una&5Ana11una11&, a51,2, ~3.5a!

while usual fermionic operators are characterized by

bj u0&50, bj u1&5u0&, bj
†u0&5u1&, bj

†u1&50, j51,2,3,4, ~3.5b!

it is straightforward to get the following information by taking account of the definitions~3.3!:

aun1 ,n2 ;s1 ,s2 ,s3,0&5A2n2un1 ,n221;s1 ,s2 ,s31&, ~3.6a!

aun1 ,n2 ;s1 ,s2 ,s3,1&5A2n1un121,n2 ;s1 ,s2 ,s3,0&, ~3.6b!

a†un1 ,n2 ;s1 ,s2 ,s3,0&5A2~n111!un111,n2 ;s1 ,s2 ,s3,1&, ~3.6c!

a†un1 ,n2 ;s1 ,s2 ,s3,1&5A2~n211!un1 ,n211;s1 ,s2 ,s3,0&, ~3.6d!

bun1 ,n2 ;s1 ,s2 ,s3,0&5A2s2s3un1 ,n2 ;s1 ,s221,s321,1&

2A2s2~s311!un1 ,n2 ;s1 ,s221,s311,1&, ~3.6e!

bun1 ,n2 ;s1 ,s2 ,s3,1&5A2s1s3un1 ,n2 ;s121,s2 ,s321,0&

1A2s1~s311!un1 ,n2 ;s121,s2 ,s311,0&, ~3.6f!

b†un1 ,n2 ;s1 ,s2 ,s3,0&5A2~s111!s3un1 ,n2 ;s111,s2 ,s321,1&

1A2~s111!~s311!un1 ,n2 ;s111,s2 ,s311,1& ~3.6g!

and

b†un1 ,n2 ;s1 ,s2 ,s3,1&5A2~s211!~s311!un1 ,n2 ;s1 ,s211,s311,0&

2A2~s211!s3un1 ,n2 ;s1 ,s211,s321,0%. ~3.6h!

Having these relations at our disposal, it is then easy to verify that all the trilinear relations~2.1a!
and ~2.1b! are satisfied on the Fock space characterized by the above basis

$un1 ,n2 ;s1 ,s2 ,s3 ,s4&%. ~3.7!

In order to complete the characteristics of SSQM in the context of the relative parabosonic set,
we also have to give the action of the two ‘‘supercharges’’~2.3a! and to confirm6 that this set
admits the simple Lie superalgebra osp~2u2,R! as invariance algebra. Here we obtain

Q~1!un1 ,n2 ;s1 ,s2 ,s3 ,s4&5As1s3n2un1 ,n221;s121,s2 ,s321,s4&1As1~s311!n2un1 ,n2

21;s121,s2 ,s311,s4&1As2s3n1un121,n2 ;s1 ,s2 ,21,s3

21,s4&2As2~s311!n1un121,n2 ;s1 ,s221,s311,s4& ~3.8a!

and
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Q~1!
† un1 ,n2 ;s1 ,s2 ,s3 ,s4&5A~s111!s3~n211!un1 ,n211;s111,s2 ,s321,s4&

1A~s111!~s311!~n211!un1 ,n211;s111,s2 ,s311,s4&

1A~s211!~s311!~n111!un111,n2 ;s1 ,s211,s311,s4&

2A~s211!s3~n111!un111,n2 ;s1 ,s211,s321,s4&, ~3.8b!

leading to the supersymmetric Hamiltonian@cf. Eq. ~2.4!#

Hun1 ,n2 ;s1 ,s2 ,s3 ,s4&5$Q~1! ,Q~1!
† %un1 ,n2 ;s1 ,s2 ,s3 ,s4&

5~ 1
2$a,a

†%1 1
2@b

†,b# !un1 ,n2 ;s1 ,s2 ,s3 ,s4&

5~HPB1HPF!un1 ,n2 ;s1 ,s2 ,s3 ,s4&

5$~s111!s3~n211!1~s111!~s311!~n211!1~s211!~s311!

3~n111!1~s211!s3~n111!1s1s3n21s1~s311!n21s2s3n1

1s2~s311!n1%un1 ,n2 ;s1 ,s2 ,s3 ,s4&. ~3.9!

A very simple discussion of the possible values of the fourss leads to 16 sets of eigenvectors
labeled by the discrete numbersn1 and n2 which can take all non-negative integer values. In
correspondence, we also find three parts of the energy spectrum distributed in subspectra charac-
terized byn11n212, n11n211, andn11n2 , the last one ensuring already that we are dealing
with anexact‘‘supersymmetry’’ due to the possible valuesn15n250.

Let us now complete the information on the invariance superalgebra osp~2u2,R! through the
five generators complementary to the three above ones calledH, Q~1! andQ1

† , i.e., the operators

H85 1
2$a,a

†%2 1
2@b

†,b#5HPB2HPF, ~3.10a!

C15 1
2$a

†,a†%, C25 1
2$a,a%, ~3.10b!

S5 1
2$b

†,a%, S†5 1
2$a

†,b%, ~3.10c!

which have also a well-defined action on the basis~3.7!. The eight generators of osp~2u2,R! now
help us to search for how many of the 16 sets of eigenvectors do survive according also to the
well-known typical characteristics of parabosonic2,20 and parafermionic2 operators in thep52
context. Effectively, in the parabosonic case, we have to distinguish between even and odd state
vectors as follows:

au2n&5A2nu2n21&, ~3.11a!

au2n11&5A2n12u2n&, ~3.11b!

while, in the parafermionic case, we have~due to the propertyb350! to point out only three state
vectors@remember theD ~1! representation of su~2,C!#:

bu0&50, bu1&5&u0&, bu2&5&u1&. ~3.12!

Acceptable eigenvectors compatible with Eqs.~3.6e! and~3.12! are, for example,un1 ,n2 ;0,0,0,0&,
un1 ,n2 ;1,0,1,1&, and un1 ,n2 ;1,1,0,0&, and the ladder operatorsQ, Q†, S, andS† selectonly five
more of the type un1 ,n2 ;1,0,1,0&, un1 ,n2 ;0,1,1,0&, un1 ,n2 ;1,1,0,1&, un1 ,n2 ;0,0,0,1&, and
un1 ,n2 ;0,1,1,1&, so that such considerations show that there are eight sets of linearly independent
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state vectors in the Fock basis~3.7!. Moreover, by taking care of the requirements~3.11!, we
immediately notice that, ifs450 or 1, the ‘‘even’’ vector states always have to be characterized by
n15n25n, while the ‘‘odd’’ ones are such thatn15n11 andn25n.

By collecting all these details, our Fock basis is finally characterized by the followingeight
~families of! vectors~n50,1,2,...!,

un,n;0,0,0,0&,un,n;1,1,0,0&,un,n11;1,0,1,0&,un11,n;0,1,1,0&,un11,n;1,0,1,1&,

un12,n;1,1,0,1&,un11,n21;0,0,0,1&,un12,n21;0,1,1,1&. ~3.13!

By means of the supercharges~2.3a!, the corresponding Hamiltonian~3.9!, and its energy eigen-
value problem, it results that there are only three~infinite! irreducible representations of osp~2/
2,R! which appear in our Fock space, two of them beingatypicalones and one being of thetypical
type. These properties are obtained through the study of the Casimir operator of osp~2/2,R! and
the well-known properties of the above Lie superalgebra.16,21 Let us only recall that the Casimir
operator here is given by

C5HPB
2 2 1

2$C1 ,C2%2HPF
2 2@Q1 ,Q2#1@S2 ,S1# ~3.14!

and leads to eigenvalues 4~t22q2!. First, we get anatypical irreducible representation associated
with the valuest 51, q51 ~and evidentlyC50! admitting twofold degeneracies for each energy
eigenvaluesEn52n12, these results being characteristic of the family of eigenvectors
un,n;0,0,0,0&. Second, there is anotheratypicalone~t 51, q521,C50!, possible twofold degen-
eracies,En52n andun,n;1,1,0,0&. Third, there is atypical irreducible representation characterized
by t 51, q50 ~C54!, showing possible fourfold degeneracies,En52n12 andun11,n;1,0,1,1&.
All the states vectors~3.13! are recovered by acting with the ladder operatorsQ~1! andQ(1)

† and
the complete spectrum is shown in Fig. 1, pointing out the whole set of eigenvalues and eigen-
vectors corresponding ton50,1,2,... . Such a spectrum appears as the superposition of the three
subspectra: we have only a fundamental state with zero energy~exact supersymmetry!, six states
with the energy eigenvalue equal to 2, and eight states with energy eigenvalue equal to all the even
value 4,6,8,... .

FIG. 1. The three subspectra associated with the three irreducible representations of osp~2/2;R! displayed in our Fock
space. The first two columns refer to the atypical~t 51, q51! representation and the energy eigenvaluesEn52n12; the
third and fourth columns to the atypical~t 51, q521! one andEn52n; the fifth to eighth columns to the typical~t 51,
q50! one andEn52n12. The four columns on the left refer to the eigenvalues450 while the four on the right refer to
s451.
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Such results associated with our Fock basis show the reducibility obtained by having realized
parabosonic and parafermionic operators through Green–Cusson Ansa¨tze. This reducibility will be
exploited in the following sections in order to get possible deformations.

IV. TOWARD DEFORMED PARABOSONIC AND PARAFERMIONIC OPERATORS

Having at our disposal an interesting Fock space, with precise information on its contents with
respect to the irreducible representations of the invariance superalgebra osp~2/2,R! of SSQM, let
us now polarize our attention on the deformation of the symmetry operators. We notice that we
recover here a completely parallel situation with respect to the pioneering contributions22 for
deforming the simple Lie algebra su~2,C!.

We want thus to deform more particularly the fundamental operatorsa andb given by Eqs.
~3.1! and, correspondingly, the osp~2/2,R! generators in the relative parabosonic context given by
Eqs.~2.3a!, ~2.4!, and~3.10!.

Let us first take advantage of the generalized deformed parafermions recently proposed by
Quesne.11 In correspondence with the typical double commutator

†b,@b†,b#‡52b ~4.1!

contained in the set~2.1a!, we propose to associate to the annihilation operatorb of parafermion~s!
a generalized deformed one—hereafter denotedB—defined by

b→B5
1

2&
~AF1b

†b21AF2b
2b†!, ~4.2!

whereF1 andF2 are constants which, except for the particular caseF15F2, will assign a de-
formed character toB. We have to remember that, in thep52 context, parafermionic operators are
such that

b2b†1b†b252b, bb†b52b, ~4.3!

in perfect agreement with Eq.~4.1!. When F15F2, the two operatorsb and B are directly
proportional and such a case does not interest us.

The second step now consists of the deformation of the parabosonic annihilation operatora.
This context is not analogous to the parafermionic one due to the important different behavior of
even or odd state vectors as already quoted in Eqs.~3.11!. In order to circumvent this difficulty,
we propose to introduce functions of the number operatorN rather than constants entering into the
deformed expression. Here, according to the peculiar relation~2.1a!,

@a,$a†,a%#52a, ~4.4!

and the correspondingp52 property,

a2a†2a†a252a, ~4.5!

we suggest the association

a→A5
1

2&
„AF2~N!a2a†2AF1~N!a†a2…, ~4.6!

where the number operator is as usual defined by

N5 1
2$a,a

†%215HPB21 ~4.7!
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characterized in the bosonic context resulting from Sec. III@see Eq.~3.3a!, for example# by
eigenvaluesn11n2 ~n1 ,n250,1,2, . . . ! . In passing, let us notice that the caseF1(N)5F2(N) still
corresponds to a deformation in this parabosonic context due to the explicit dependence onN.

By taking care of the specificities introduced in Sec. III for the construction of the Fock basis
~3.7!, we can apply our new generalized deformed operatorsA, A†, B, andB† and obtain the
relations corresponding to Eqs.~3.6!. By defining the special functions

G~n1 ,n2!5@~n211!F2~n11n2!#
1/2~n111!2@~n211!F1~n11n2!#

1/2n1 , ~4.8!

we get the following information:

Aun1 ,n2 ;s1 ,s2 ,s3,0&5G~n1 ,n221!un1 ,n221;s1 ,s2 ,s3,1&, ~4.9a!

Aun1 ,n2 ;s1 ,s2 ,s3,1&5G~n2 ,n121!un121,n2 ;s1 ,s2 ,s3,0&, ~4.9b!

A†un1 ,n2 ;s1 ,s2 ,s3,0&5G~n2 ,n1!un111,n2 ;s1 ,s2 ,s3,1&, ~4.9c!

A†un1 ,n2 ;s1 ,s2 ,s3,1&5G~n1 ,n2!un1 ,n211;s1 ,s2 ,s3,0&, ~4.9d!

Bun1 ,n2 ;s1 ,s2 ,s3,0&5@s1s3AF11~s111!s3AF2#As2s3un1 ,n2 ;s1 ,s221,s321,1&

2@s1~s311!AF11~s111!~s311!AF2#As2~s311!

3un1 ,n2 ;s1 ,s221,s311,1&, ~4.9e!

Bun1 ,n2 ;s1 ,s2 ,s3,1&5@s2s3AF11~s211!s3AF2#As1s3un1 ,n2 ;s121,s2 ,s321,0&

1@s2~s311!AF11~s211!~s311!AF2#As1~s311!

3un1 ,n2 ;s121,s2 ,s311,0&, ~4.9f!

B†un1 ,n2 ;s1 ,s2 ,s3,0&5@s2s3AF11~s211!s3AF2#A~s111!s3un1 ,n2 ;s111,s2 ,s321,1&

1@s2~s311!AF11~s211!~s311,AF2#

3A~s111!~s311!un1 ,n2 ;s111,s2 ,s311,1&, ~4.9g!

and

B†un1 ,n2 ;s1 ,s2 ,s3,1&5@s1~s311!AF11~s111!~s311!AF2#A~s211!~s311!

3un1 ,n2 ;s1 ,s211,s311,0&2@s1s3AF11~s111!s3AF2#

3A~s211!s3un1 ,n2 ;s1 ,s211,s321,0&. ~4.9h!

Let us insist on the fact that these relations are evidently in correspondence with Eqs.~3.6!, the
resulting state vectors being unchanged up to factors characterizing the deformation. Moreover,
through the new deformed supercharges corresponding, for example, to the definitions~2.3a!, i.e.,

Q~1!5
1
2$A,B%, Q~1!

† 5 1
2$B

†,A†%, ~4.10!

the above relations~4.9! allow us to deduce constraints on the special functions~4.8! in order to
discuss possible or impossible deformations of sqm~2!, in particular.

So, by applying the operators~4.10! to the Fock state vectors~3.7!, it is easy to test the
relations ~2.2! of the superalgebra sqm~2!. An interesting result comes out immediately: by
limiting our developments to the acceptable eigenvectors defined after Eqs.~3.12!, we have to
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mention that the expected nilpotencies (Q(1)
2 5Q(1)

†2 50) are not true in general. They fail when
applied to the families of state vectorsun1 ,n2 ;1,1,0,0& and un1 ,n2 ;1,1,0,1&, but are such that, on
these states, we have~also evidently on the others!

Q~1!
3 50. ~4.11!

Such a nilpotency calls for analyzing possible deformations in connection with parasupersymmet-
ric developments23,24 that will be discussed in the following section.

In order to be as complete as possible, let us go now to the eight explicit families of our Fock
space subtended by the Lie superalgebra osp~2/2; R! and its atypical and typical irreducible
representations pointed out in the previous section.

V. ON POSSIBLE DEFORMATIONS OF sqm (2)

Let us mainly polarize our attention on the superalgebra sqm~2! seen as a subalgebra of osp
~2/2; R! in the above deformed context with the operators~4.2! and ~4.6! and their actions~4.9!.
Explicit calculations lead to the results thatQ~1!, Q(1)

† , andH still admit only the eight families of
state vectors that we have already mentioned in connection with the Casimir operator~3.14! and
the atypical and typical representations associated with the spectrum of Fig. 1.

More precisely, let us mention that, on the states belonging to the atypical representation
~t51, q51, C50!, we have

Q~1!un,n;0,0,0,0&50,

Q~1!~ un,n11;1,0,1,0&1un11,n;0,1,1,0&)5AF2G~n,n!un,n;0,0,0,0&,

Hun,n;0,0,0,0&5
F2

2
G2~n,n!un,n;0,0,0,0&, ~5.1!

and

H~ un,n11;1,0,1,0&1un11,n;0,1,1,0&)5
F2

2
G2~n,n!~ un,n11;1,0,1,0&1un11,n;0,1,1,0,&).

Double degeneracies are thus present, corresponding to eigenvaluesEn'G2(n,n) leading to a
deformed superspectrum but to an undeformed superalgebra sqm~2! always characterized by the
structure relations~2.2!.

On the states belonging to the other atypical representation~t51, q521, C50!, we also get
relations similar to Eqs.~5.1!, but here we have

Q~1!un,n;1,1,0,0&52
AF1

2
G~n,n21!~ un21,n;1,0,1,0&2un,n21;0,1,1,0&),

Q~1!~ un21;n;1,0,1,0&2un,n21;0,1,1,0&)50, ~5.2!

Hun,n;1,1,0,0&5
F1

2
G~n,n21!un;1,1,0,0&

and

H~ un21,n;1,0,1,0&2un,n21;0,1,1,0&)5
F1

2
G2~n,n21!~ un21,n;1,0,1,0&2un,n21;0,1,1,0&).
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In this case, we point out the existence of a null energy eigenvalue due to the property~4.9a! when
n15n25n50 and its implicationG~0,21!50. Moreover, the other energy eigenvalues are once
again doubly degenerated and are such thatEn11'G2(n11,n). We thus obtain a new deformed
superspectrum but an undeformed superalgebra sqm~2!.

The third irreducible representation, i.e., the typical~t51, q50! one, will happily give us the
opportunity to open some possibilities of deformations of sqm~2!. Indeed, if we notice that

Q~1!un12,n21;0,1,1,1&5
AF2

2
G~n21,n11!un11,n21;0,0,0,1&,

Q~1!un11,n;1,0,1,1&5
AF2

2
G~n11,n21!un11,n21;0,0,0,1&, ~5.3!

Q~1!un12,n;1,1,0,1&5
AF1

2
@G~n12,n21!un12,n21;0,1,1,1&2G~n,n11!un11,n;1,0,1,1&],

and

Q~1!un11,n21;0,0,0,1&50,

we evidently get

Q~1!
2 un12,n;1,1,0,1&5

AF1F2

4
@G~n12,n21!G~n21,n11!2G~n,n11!G~n11,n21!#

3un11,n21;0,0,0,1& ~5.4!

and

Q~1!
3 un12,n;1,1,0,1&50. ~5.5!

The nilpotencies of sqm~2! @see Eqs.~2.2!# are thus only ensured iff

G~n12,n21!G~n21,n11!5G~n,n11!G~n11,n21!, ~5.6!

leading once again to a deformed spectrum but to an undeformed structure. In this case, a conve-
nient choice for the functionsG ensuring Eq.~5.6! is, for example,

G~x,y!5@~y11! f ~y!F1#
1/2 for even ux2yu ~5.7a!

and

G~x,y!5@~y11! f ~y!F2#
1/2 for odd ux2yu. ~5.7b!

Then, simple calculations lead to a diagonal super-Hamiltonian whose spectrum has the same
configuration as the one contained in the four columns on the right of Fig. 1,butwith the energy
eigenvalues given by

En
~d!5n f~n21!1~n12! f ~n11!, n50,1,2,... . ~5.8!

the upper index (d) referring to the deformed spectrum. Remembering that this context corre-
sponds to the undeformed eigenvaluesEn52n12, we understand their relation by noticing that,
within our choice, the undeformed functionf (x) has to become one.
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Let us end this section by coming back on the only context leading to possible deformations
of sqm~2!, i.e., when Eq.~5.6! is not valid, so that we have the constraints~5.4! and~5.5!, the last
one looking like a nilpotency typical ofp52 parastatistical developments.2 Within our Fock basis
and its typical representation~t 51, q50, CÞ0!, the missing information is now only transferred
on the corresponding Hamiltonian.As an example, let us requiretrilinear relations definingH as
it is the case in the parasupersymmetric quantum context23 but with three unknown complex
constantsci ~i51,2,3!, i.e.,

c1Q~1!
2 Q~1!

† 1c2Q~1!
† Q~1!

2 1c3Q~1!Q~1!
† Q~1!5HQ~1! , ~5.9!

besides evidently the necessary relations~4.11! and

@Q~1! ,H#50, @Q~1!
† ,H#50. ~5.10!

Now, by defining

G~x,y!5@~y11! f ~x!F1#
1/2 for even ux2yu ~5.11a!

and

G~x,y!5@~y11! f ~x!F2#
1/2 for odd ux2yu, ~5.11b!

and by asking that

f ~n12! f ~n21!Þ f ~n! f ~n11! ;n50,1,2,... , ~5.12!

we can search for the corresponding spectrum ofH in terms of these functionsf and the constants
ci ~i51,2,3!. In that way, six constraints are put in evidence and lead to a specific discussion not
reproduced here for brevity. Let us only point out that, if we choosec15c250, c351, and the
following values,

f ~4n!523n, f ~4n11!5n11, f ~4n12!53n12, f ~4n13!52n21, ~5.13!

we can recover the spectrum of the supersymmetric harmonic oscillator but with further degen-
eracies in comparison with old results.25 In that way, we can interpret the Rubakov–Spiridonov
structure23 as a deformation of sqm~2!. The other casec15c251, c350, is also interesting: it
shows that the Beckers–Debergh structure24 does not appear as a deformation of sqm~2!, this
property acting once again the nonequivalence of these two approaches of parasupersymmetric
quantum mechanics.23,24

As a final comment, let us mention that, if we come back to the relations~5.3!, it is not
difficult to realize the chargeQ~1! as a 434 matrix and to realize, for example, the Beckers–
Debergh structure24 by constraining the different functionsG(x,y) and constantsF1 and F2.
Applied to the particular context of the harmonic oscillator with angular frequencyv, we get the
conditions

F2
1/2G~n11,n21!52Anv5F2

1/2@~n12!AnF2~2n!2~n11!AnF1~2n!#,

F1
1/2G~n,n11!52Anv5F1

1/2@~n11!A~n12!F2~2n11!2nA~n12!F1~2n11!#,
~5.14!

G~n12,n21!522Anv5F1
1/2@~n13!AnF2~2n11!2~n12!AnF1~2n11!#,

and
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F2
1/2G~n21,n11!52Anv5F2

1/2@nA~n12!F2~2n!2~n21!A~n12!F1~2n!#,

where, besides the constantsF1 andF2, we have taken care of the relations~4.8! in terms of the
deformed functionsF1(x) andF2(x). Consistency relations impose

F1~0!50, F2~0!5
v

F2
, F1~1!5

v

F1
, F2~1!50,

~5.15!
@F1~2n!#1/2>0, @F2~2n!#1/2>0, @F1~2n11!#1/2>0, @F2~2n11!#1/2>0,

and the Beckers–Debergh structure will be a deformation of sqm~2! under the following set of
final conditions for eachn50,1,2,...:

@F1~2n!#1/25Avn

F2
~An122An!,

@F2~2n!#1/25
1

n12
Av

F2
„~n11!An~An122An!12…,

~5.16!

@F1~2n11!#1/25Av

F1
S n111~n13!A n

n12D ,
@F2~2n11!#1/25Avn

F1
~An121An!.
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We present here the zero curvature formulation for a wide class of field theory
models. This formalism, which relies on the existence of an operatord which
decomposes the exterior space–time derivative as a BRS commutator, turns out to
be particularly useful in order to solve the Wess–Zumino consistency condition.
The examples of the topological theories and of theB2C string ghost system are
considered in detail. ©1996 American Institute of Physics.
@S0022-2488~96!00911-5#

I. INTRODUCTION

Nowadays it is an established fact that the search for the possible anomalies and for the
counterterms which arise at the quantum level in local field theories can be done in a purely
algebraic way1 by identifying the cohomology classes of the nilpotent Becchi–Rouet–Stora~BRS!
operatorb in the space of the integrated local polynomials in the fields and their derivatives. This
means that one has to look at the nontrivial solutions of the equation

bE vD
G50, ~1!

vD
G denoting a local polynomial in the fields of ghost numberG and form degreeD, D being the

dimension of the space–time. The casesG50,1 correspond, respectively, to counterterms and
anomalies.

The BRS consistency condition~1!, when translated at the nonintegrated level, yields a system
of equations usually called descent equations~see Ref. 1 and references therein!

bvD
G1dvD21

G1150, bvD21
G111dvD22

G1250,
•••
•••

bv1
G1D211dv0

G1D50, bv0
G1D50,

~2!

d5dxm]m being the exterior space–time derivative andvj
G1D2 j (0< j<D) being the local poly-

nomials of ghost number (G1D2 j ) and form degreej . The operatorsb andd obey the algebraic
relations

b25d25bd1db50. ~3!

It should be remarked that at the nonintegrated level one loses the property of making integration
by parts. This implies that the fields and their derivatives have to be considered as independent
variables.

0022-2488/96/37(11)/5310/15/$10.00
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The problem of solving the descent equations~2! is a problem of cohomology ofb modulod,
the corresponding cohomology classes being given by solutions of~2! which are not of the type

vm
G1D2m5bv̂m

G1D2m211dv̂m21
G1D2m , 1<m<D,

~4!
v0
G1D5bv̂0

G1D21,

with v̂ ’s being local polynomials.
Recently a new method for finding nontrivial solutions of the tower~2! has been proposed by

one of the authors2 and successfully applied to a large number of field models such as Yang–Mills
theories,3 gravity,4–6 topological field theories,7–9 string10 and superstring11 theories, as well as
W3-algebras.

12 The method relies on the introduction of an operatord which allows the decom-
position of the exterior derivative as a BRS commutator, i.e.,

d52@b, d#. ~5!

It is easily proven that, once the decomposition~5! has been found, repeated applications of the
operatord on the polynomialv0

G1D which solves the last of the equations~2! will give an explicit
nontrivial solution for the higher cocyclesvj

G1D2 j .
One has to note that solving the last equation of the tower~2! is a problem of local cohomol-

ogy instead of a modulo-d one. Moreover, the former can be systematically attacked by using
several methods such as, for instance, the spectral sequences technique.13 It is also worth men-
tioning that the solutions of the descent equations~2! obtained via the decomposition~5! have
been proven to be equivalent to those provided by the transgression procedure based on the
so-calledRussian Formula.14,15

The aim of the present work is twofold: first, to improve and extend the results obtained in
Ref. 2 and, second, to discuss the deep relation between the existence of the operatord entering
the decomposition~5! and the possibility of encoding all the relevant informations~BRS transfor-
mations of the fields, BRS cohomology classes, solutions of the descent equations! into a unique
equation which takes the form of a generalized zero curvature condition:

F̃ 5d̃Ã2 iÃ250. ~6!

The operatord̃ and the generalized gauge connectionÃ in Eq. ~6! turn out to be respectively the
d-transform of the BRS operatorb and of the ghost fieldc corresponding to the Maurer–Cartan
form of the underlying gauge algebra

d̃5edbe2d5b1d1••••, d̃250,
~7!

Ã5edc5c1•••• .

The main purpose of this work will be that of clarifying the meaning of the generalized gauge
connectionÃ and of the dots••• appearing in Eq.~7! with the help of several examples.

In particular, as we shall see, the zero-curvature condition~6! immediately yields the coho-
mology classes of the generalized operatord̃,16 the nilpotency of which being a direct conse-
quence of the zero curvature condition~6!. The latter turns out to be naturally related to the
solutions of the descent equations~2!. In other words, once the zero-curvature condition of the
model under consideration has been established, the problem of finding the anomalies and the
invariant actions becomes straightforward to be solved.

For the sake of completeness and in order to present several detailed models, the paper has
been split in two parts, referred as part I and part II. This division corresponds to two different
situations, called, respectively, thecompleteand thenoncompleteladder case. In the first case the
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components of the generalized gauge connectionÃ form a ladder of fields which span all possible
form degrees compatible with the space–time dimensionD, i.e., ordering the components ofÃ
according to their increasing form degreep, the allowed interval 0<p<D, is fully covered.
Instead, in the noncomplete ladder case the maximum form degree reached by the components of
Ã is strictly lower than the space–time dimensionD, i.e., 0<p,D. Examples of models be-
longing to the first case are, for instance, the topological models of the Schwartz type such as the
Chern–Simons and theBF models,17 and theB-C ghost system of the bosonic string theory.18 On
the other hand, the Yang–Mills-type theories can be accommodated in the noncomplete ladder
case.

As we shall see in details in the next sections, this means that we shall deal with a generalized
gauge connectionÃ which takes respectively the following forms:

Ã5(
j50

D

w j
12 j5w0

11w1
01w2

211•••1wD
12D , complete ladder case, ~8!

and

Ã5 (
j50

q,D

w j
12 j5w0

11w1
01w2

211•••1wq
12q , noncomplete ladder case, ~9!

where the set$wj
12 j % denotes generically the field content which will be used through the work, the

indices (12 j ) and j identifying respectively the ghost number and the form degree. One has to
note that in writing the expressions~8! and ~9! we have tacitly assumed that the class of models
which we shall consider can be indeed described in terms of the form-valued fields$wj

12 j % ap-
pearing in Eqs.~8! and~9! and of their exterior derivatives. In other words, we shall assume that
the descent equations~2! will be restricted to the functional space of form-valued polynomials in
the fields$wj

12 j % and their differentials. Of course, the same assumption holds for the decompo-
sition ~5!.

It is worthwhile to recall here that in the case of the aforementioned topological models this
assumption is in fact realized. As it is well known,7–9,17,19this is due to the fact that the topological
models turn out to be characterized by a set of fields which can be naturally accommodated in a
complete ladder.

For where it concerns the Yang–Mills-type theories, it should also be remarked that the use of
the space of the form-valued polynomials is not the most general one. Indeed such a functional
space does not allow us to obtain all possible Yang–Mills actions,20 due to the absence of the
space–time metric tensor. However, as proven in Refs. 15 and 21, the space of polynomials of
forms turns out to be bigger in half to include the anomalies and the Chern–Simons-type actions
which, due to their topological character,14 can be systematically written in terms of differential
forms. Therefore also in the noncomplete ladder case, we shall limit ourselves to the algebraic
characterization of topological objects like anomalies and Chern–Simons terms.

Even if many properties of the models covered by the complete ladder case have already been
investigated,8,19 their zero curvature formulation still represents a very elegant and interesting
aspect. Moreover, in the noncomplete case, the zero curvature condition~6! requires the existence
of a set of new operators~G k

12k, 2<k<D! which are in involution, i.e., the operatorG k
12k is

generated by the commutator betweenG k21
22k and the operatord of ~5!, according to the recursive

formula
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G 2
215 1

2@d,d#,
~10!

G k
12k5

1

k
@d,G k21

22k#, k.2.

This structure naturally reminds us of the recursive construction of the Lax pair operators of
the integrable systems.22 This is a quite welcome and attractive feature which may signal a deeper
relation between the BRS cohomology techniques and the integrability. Needless to say, the
zero-curvature condition represents in fact one of the most important chapters of the integrable
systems~see also the recent works of Ref. 23!.

This paper~referred to as part I! is organized as follows. In Sec. II the general algebraic setup
is presented. In Sec. III we discuss the geometrical meaning of the zero-curvature condition.
Sections IV and V are devoted, respectively, to the computation of the BRS cohomology and to
characterizing the solution of the descent equations. In Sec. VI we deal with the coupling with
matter fields in the context of theBF models. Without entering in details, let us briefly comment
that, in analogy with the gauge ladderÃ, the matter fields can be introduced by means of a second
complete ladderB̃ constrained by the requirement of being covariantly constant with respect to
the gauge ladder, i.e.,

D̃B̃5d̃B̃2 i @Ã,B̃#50. ~11!

As we shall see, condition~11! completely characterizes the BRS transformations of the various
components ofB̃.

Finally, Sec. VII contains a detailed discussion of the zero-curvature formulation of theB2C
string ghost system.

II. THE GENERAL SETUP

In order to present the general algebraic setup, let us begin by fixing the notations. As already
said in the Introduction, we shall work in a space–time of dimensionD equipped with a set of
fields generically denoted by$wq

p%, q and p being, respectively, the form degree and the ghost
number. The componentswq

p will be treated as commuting or anticommuting variables according
to the fact that their total degree, i.e., the sum (q1p), is even or odd. Otherwise stated, thewq

p are
Lie algebra valued,wq

p5(wq
p)aTa, Ta being the Hermitian generators of a compact semisimple Lie

groupG. Moreover, these fields are assumed to be collected into a unique generalized complete
field Ã of total degree one, i.e.,

Ã5(
j50

D

w j
12 j5w0

11w1
01w2

211•••1wD
12D . ~12!

The name complete is due to the fact that the field content of the expansion~12! spans all
possible form degrees. In addition, Eq.~12! shows that the generalized fieldÃ contains a zero
form with ghost number onew0

1, and a one-form with ghost number zerow1
0. These fields will be

naturally identified with the Faddeev–Popov ghost field and with the gauge connection of the
familiar Yang–Mills gauge transformations. ThereforeÃ will be called the gauge ladder and the
componentsw0

1 andw1
0 will be denoted, respectively, byc andA, so that

Ã5c1A1w2
211•••1wD

12D . ~13!

Finally, as already remarked, the functional spaceV the BRS operatorb acts upon is the
space of the form-valued polynomials in the fieldswj

12 j and their differentials, i.e.,
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V 5polynomials in ~w j
12 j ,dw j

12 j ;0< j<D !, ~14!

d being the exterior derivative defined as

dhp5dxm]mhp ~15!

for any p-form

hp5
1

p!
h i1••• i p

dxi1•••dxi p, ~16!

where a wedge product has to be understood. Observe also thatdwD
12D automatically vanishes,

due to the dimension of the space–time.
In order to obtain the BRS transformations of the fields belonging to the gauge ladder~13!, we

introduce the generalized operator of total degree one~we recall here that the operatorsb andd
raise respectively the ghost number and the form degree by one unit!

d̃5b1d, ~17!

and we impose the zero curvature condition

d̃Ã5 iÃ25
i

2
@Ã,Ã#, ~18!

where [a,b]5ab2(21)uauububa denotes the graded commutator anduau is the total degree ofa.
Developing equation~18! in components and identifying the terms with the same ghost num-

ber and form degree, we obtain the following transformations:

bc5 ic2, bA52dc1 i @c,A#, ~19!

bw j
12 j52dw j21

22 j1
i

2 (
m50

j

@wm
12m ,w j2m

12 j1m#, 2< j<D,

which are easily checked to be nilpotent.

b250. ~20!

Notice that, as announced, the transformations of the first two components of the ladderÃ are
nothing but the familiar BRS transformations of the Faddeev–Popov ghost and of the Yang–Mills
gauge connection.

Let us introduce now the operatord defined by~see also Refs. 1, 4, and 8!

Ã5edc, ~21!

i.e.,

dw j
12 j5~ j11!w j11

2 j , 0< j<D21, dwD
12D50. ~22!

Its action extends on the differentials~dw j
12 j , 0< j<D! as

ddw j
12 j5~ j11!dw j11

2 j , 0< j<D22,
~23!

ddwD21
22D50.
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It is easily verified then that, on the functional spaceV , the operatorsb andd obey

d52@b,d#, @d,d#50, ~24!

i.e., d allows the decomposition of the exterior derivative as a BRS commutator.
Equations~22! and ~23! show that the operatord increases the form degree by one unit and

decreases the ghost number by the same amount, so that it has total degree zero. In particular from
Eq. ~24! it follows that

d̃5b1d5edbe2d. ~25!

III. THE GEOMETRICAL MEANING OF THE ZERO-CURVATURE CONDITION

In the previous section the BRS transformations of the component fieldswj
12 j have been

obtained as a consequence of the zero-curvature condition~18!.
Conversely, it is very simple to show that, assuming the BRS transformations~19! hold, the

zero-curvature condition can be derived as a consequence of the existence of the operatord.
Indeed, applyinged to the BRS transformation of the ghost fieldc, i.e.,

edbe2dedc5 iedc2, ~26!

and making use of Eq.~21! and ~25!, one gets the zero-curvature condition

d̃Ã5 iÃ2. ~27!

This is not surprising since, as it is well known, the ghost fieldc identifies the so-called Maurer–
Cartan form of the gauge groupG, and its BRS transformation is nothing but the corresponding
Maurer–Cartan equation,24 which is in fact a zero-curvature condition. This is the geometrical
meaning of Eq.~18!.

IV. COHOMOLOGY OF THE BRS OPERATOR

Even if the cohomology of the BRS operator in the case of a complete ladder field has already
been studied,8 let us present here a simple derivation which may be useful for the reader.

In order to compute the cohomology of the BRS operatorb on the functional spaceV , we
introduce the filtering operator1,13N defined as

N w j
12 j5w j

12 j , 0< j<D,
~28!

N dw j
12 j5dw j

12 j ,

according to which the BRS operatorb decomposes as

b5b01b1 , ~29!

with

b0c50, b0wm
12m52dwm21

22m , b0dwm21
22m50, 1<m<D, ~30!

and

b0
250. ~31!
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The usefulness of the above decomposition relies on a very general theorem on the BRS
cohomology.13 The latter states that the cohomology of the operatorb is isomorphic to a subspace
of the cohomology ofb0. We focus then on the study of the cohomology ofb0.

In particular, Eq.~30! shows that all the fields~wm
12m, 1<m<D! with form degree greater

than zero and their differentials are grouped in BRS doublets.1,13,21It is known that the cohomol-
ogy does not depend on such variables. Therefore the cohomology classes ofb0 depend only on
the ghost fieldc undifferentiated, i.e., they are given by elements of the type

v i1••• i n
ci1•••cin ~32!

with v i1••• i n
arbitrary coefficients. Moreover, from the previous theorem it follows that the coho-

mology of b is also given by elements of the form~32! with, in addition, the restriction that the
coefficientsv i1••• i n

are invariant tensors of the gauge group.15,20,21,25

In summary, the cohomology of the BRS operatorb in the complete ladder case is spanned by
invariant polynomials in the ghost fieldc built up with monomials of the type

TrS c2n11

~2n11!! D , n>1. ~33!

V. SOLUTION OF THE DESCENT EQUATIONS

Having computed the cohomology of the BRS operatorb, let us face now the problem of
solving the descent equations

bvD2 j
G1 j1dvD2 j21

G1 j1150, 0< j<D21,
~34!

bv0
G1D50.

Introducing the generalized cocycle of total degree (G1D)

ṽG1D5(
j50

D

v j
G1D2 j , ~35!

the descent equations~34! can be cast in the more compact form

d̃ṽG1D50, ~36!

d̃ being the nilpotent generalized differential of Eq.~25!. Taking into account the zero-curvature
condition

d̃Ã5 iÃ2 ~37!

and the previous result~33! on the cohomology of the BRS operatorb, it follows that the gener-
alized monomials of the type

Tr
Ã2n11

~2n11!!
, n>1, ~38!

belongs to the cohomology ofd̃,

d̃S Tr Ã2n11

~2n11!! D 50, Tr
Ã2n11

~2n11!!
Þd̃ Q̃ 2n, ~39!
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for any local polynomialQ̃ 2n.
Thus it is apparent that a solution of the descent equations~34! is simply provided by

ṽG1D5Tr
ÃG1D

~G1D !!
, ~40!

which, of course, is nonvanishing only if its total degree (G1D) is odd. In fact, developing
~Tr ÃG1D! according to the form degree and to the ghost number

S Tr ÃG1D

~G1D !! D 5(
j50

D

v j
G1D2 j , ~41!

and recalling thatd̃ṽG1D50, it is easily verified that thev’s in Eq. ~41! obey

bvD2 j
G1 j1dvD2 j21

G1 j1150,
~42!

bv0
G1D50,

i.e., they solve the descent equations.
In addition, from~Tr Ã2n11Þd̃Q̃ 2n!, it follows that they provide a nontrivial solution

v j
G1D2 jÞbQ j

G1D212 j1dQ j21
G1D2 j , 1< j<D,

~43!

v0
G1DÞbQ0

G1D21.

In particular, for the zero formv0
G1D we obtain

v0
G1D5Tr

cG1D

~G1D !!
. ~44!

Let us remark, finally, that as a consequence of the fact that the generalized ladderÃ is the
d-transform of the ghost fieldc, Ã5edc, the generalized cocycle~38! is thed-transform of the
corresponding ghost cocycle~44!, i.e.,

S Tr Ã2n11

~2n11!! D 5ed TrS c2n11

~2n11!! D . ~45!

A. Example I: The Chern–Simons theory

For a better understanding of the previous construction let us discuss in detail the case of the
three-dimensional Chern–Simons theory, corresponding toG50 andD53. This example will
give us the possibility of clarifying the meaning of the negative ghost number components~wj

12 j ,
2< j<D! of the gauge ladderÃ. As we shall see, these fields turn out to be the so-called external
BRS sources~called also antifields in the framework of Batalin–Vilkovsky26! needed in order to
properly define1 the nonlinear transformations of the gauge connectionA and of the Faddeev–
Popov ghostc. The external sources are then naturally included in the zero-curvature formalism.

In a three-dimensional space–time the complete gauge ladderÃ of Eq. ~13! takes the fol-
lowing form:
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Ã5c1A1g1t, ~46!

g andt identifying, respectively, the negative ghost number componentsw2
21 andw3

22. From the
zero curvature condition~18! one obtains the BRS transformations:

bc5 ic2, bA52dc1 i @c, A#,
~47!

bg52F1 i @c, g#, bt52dg1 i @c, t#1 i @A, g#,

F being the two-form gauge field strengthF5dA2 iA2. As explained before, in order to find a
solution of the descent equations

bv32 j
j 1dv22 j

j1150, 0< j<2,
~48!

bv0
350,

it is sufficient to expand the generalized cocycle of total degree three:

ṽ35
1

3!
Tr Ã3. ~49!

After an easy computation we get

1

3!
Tr Ã35v3

01v2
11v1

21v0
3, ~50!

with

v0
35

1

3!
Tr c3, v1

25
1

2
Tr c2A,

~51!

v2
15

1

2
Tr~c2g1cA2!,

v3
05

1

2
TrS c2t1cAg1cgA1

A3

3 D .
From

2 i Tr~c2t1cAg1cgA!52Tr AF1b Tr~ct1Ag!1d Tr cg, ~52!

the three-formv3
0 can be rewritten as

v3
05

2 i

2
TrSAF1 i

A3

3 D1
i

2
b Tr~ct1Ag!1

i

2
d Tr cg, ~53!

yielding thus the invariant action

S5 i E v3
05

1

2 E TrSAF1 i
A3

3 D2
1

2
bE Tr~ct1Ag!, ~54!
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which is easily recognized to be the so-called truncated action1 of the fully quantized Chern–
Simons gauge theory. In particular, one sees that the components~g,t! of the gauge ladder~46! are
the BRS external sources corresponding to the nonlinear transformations of the fieldsA andc.

VI. COUPLING WITH MATTER FIELDS

The zero-curvature formalism can be extended to include the case in which the gauge fields
are coupled to matter fields whose quantization requires the introduction of a complete ladder
matter multiplet. A typical example of this kind of coupling is given by the topologicalBF
systems17,27whose classical action reads

TrE
MD

BD22
0 F, ~55!

whereF is the two-form gauge curvature,BD22
0 is a ~D22! form with ghost number zero, and

MD is aD-dimensional manifold without boundaries.
In the next section we shall discuss another example of matter system, namely theB-C ghost

system of the string theory, whose action is not directly given in terms of differential forms.
Nevertheless we shall see that this model, although different from theBF systems, actually shares
many properties of the latters.

The inclusion of the matter fields goes as follows~see also Ref. 19!: we introduce a set of
fields~B0

D22,B1
D23,...,BD23

1 ,BD21
21 ,BD

22! which together with the matter fieldBD22
0 give rise

to a complete ladderB̃ of total degree~D22!, i.e.,

B̃5(
j50

D

B j
D222 j . ~56!

The BRS transformations of the various components of this ladder are obtained by requiring that
B̃ is covariantly constant with respect to the generalized covariant derivativeD̃5d̃2i @Ã,#,

D̃B̃5d̃B̃2 i @Ã, B̃#50. ~57!

This condition, when expanded in terms of the form degree and of the ghost number, gives in fact
the following nilpotent transformations:

bB0
D225 i @c, B0

D22#,
~58!

bB j
D222 j52dB j21

D212 j1 i (
m50

j

@wm
12m , B j2m

D222 j1m#, 1< j<D.

Repeating the same procedure of Sec. IV and making use of the general results of Refs. 15, 20, 21,
and 25, one easily checks that with the inclusion of the matter ladder the cohomology of the BRS
operator is given by polynomials in the undifferentiated zero form ghosts~c,B0

D22! built up with
factorized monomials of the type

S Tr c2n11

~2n11!! D •Tr~B0
D22!m, m,n>1. ~59!
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In much the same way as the gauge ladderÃ, the operatord extends to the matter multipletB̃ by
means of

B̃5edB0
D22, ~60!

i.e.,

dB j
D222 j5~ j11!B j11

D232 j , 0< j<D21,
~61!

dBD
2250,

and

ddB j
D222 j5~ j11!dB j11

D232 j , 0< j<D22,
~62!

ddBD21
21 50,

so that the algebraic relations

d52@b, d#, @d, d#50, ~63!

are fulfilled.
For what concerns the cohomology of the generalized operatord̃ of Eqs.~37! and ~57!, it is

immediately seen from Eq.~59! that it is spanned by factorized monomials in the laddersÃ and
B̃ of the type

S Tr Ã2n11

~2n11!! D •~Tr B̃m!. ~64!

As already discussed in the previous section, the expansion of the above expression~64! in terms
of the form degree and of the ghost number yields a solution of the descent equations~34! in the
presence of a matter field ladder, reproducing thus the results already established in Ref. 8. Again

S Tr Ã2n11

~2n11!! D •Tr B̃m5edS Tr c2n11

~2n11!! D •„Tr~B0
D22!m…, ~65!

which shows that the cohomology ofd̃ is thed-transform of that of the BRS operatorb. Let us
conclude this section by remarking that in a space–time of dimension~D>2! the gauge ladderÃ
contains ~D21! components of negative ghost number, i.e.,~w2

21,...,wD
12D!, while the matter

ladderB̃ contains~D22! components with positive ghost number, i.e.,~B0
D22,B1

D23,...,BD23
1 !,

and two components of negative ghost number, namely~BD21
21 , BD

22!.
These fields turn out to possess the following meaning. The set~B0

D22, B1
D23,...,BD23

1 !
identifies the well-known tower of ghosts for ghosts needed for the quantization of theBF
systems. The components~w3

22,...,wD
12D! are then the corresponding~D22! external sources~or

antifields! associated to the nonlinear transformations of the ghosts for ghosts@see Eq.~58!#, while
w2

21 is the external source for the~D22! form BD22
0 . Finally ~BD21

21 , BD
22! are the sources

corresponding to the first two components of the gauge ladder, i.e.,c andA. We thus see that in
the case of theBF systems the external sources are exchanged,8 i.e., the sources for the quantized
components of the matter ladder are grouped into the gauge ladder and vice versa.

Let us also recall, for completeness, that the truncated action~including the ghosts for ghosts
and the external sources! for theBF systems can be cast in the simple form19
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S5TrE
MD

B̃~dÃ2 iÃ2!U
D

0

52TrE
MD

B̃bÃU
D

0

, ~66!

whereuD
0 means the restriction to terms of ghost number 0 and form degreeD. The equality in Eq.

~66! stems from the zero-curvature condition~18!.
In particular, using Eq.~57!, expression~66! is easily proven to be invariant under the action

of the operatorb,

bS50, ~67!

this equation expressing the content of the Slavnov–Taylor~or Master Equation! identity.

VII. EXAMPLE II: THE B-C GHOST SYSTEM

We present here, as another interesting example of matter system, the zero-curvature formu-
lation of the two-dimensionalB-C model whose action reads

SB-C5E dz dz̄B ]̄C, ~68!

where the fieldsB5Bzz andC5Cz are anticommuting and carry, respectively, ghost number21
and11.

It should be noted that, unlike the previous examples, the fields appearing in the action~68!
are not naturally associated to differential forms. However, we shall see that, in spite of the fact
that these fields do not give rise to a complete ladder structure, this system turns out to possess the
same algebraic features of theBF models. The action~68! is recognized to be the ghost part of the
quantized bosonic string action which, as it is well known, is left invariant by the following
nonlinear BRS transformations

sC5C]C,
~69!

sB52~]B!C22B]C.

The above expression~68! is usually accompanied by its complex conjugate. However, the inclu-
sion of the latter in the present framework does not require any additional difficulty.

In particular, the right-hand side of the BRS transformation of the fieldB is recognized to be
the componentTzzof the energy–momentum tensor corresponding to the action~68!, this property
allowing for a topological interpretation of the model.

Transformations~69! being nonlinear, one needs to introduce two external invariant sources
m 5 m z̄

z andL 5 Lzz z̄of ghost numbers, respectively, 0 and22

Sext5E dz dz̄~msB1LsC!. ~70!

The complete action

S5SB-C1Sext ~71!

obeys thus the classical Slavnov–Taylor identity

E dz dz̄S dS

dB

dS

dm
1

dS

dL

dS

dCD505
1

2
bS, ~72!
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b denoting the nilpotent linearized operator

b5E dz dz̄S dS

dB

d

dm
1

dS

dm

d

dB
1

dS

dL

d

dC
1

dS

dC

d

dL D . ~73!

The operatorb acts on the fields and on the external sources in the following way:

bC5sC5C]C, bm5 ]̄C1~]m!C2m~]C!, ~74!

and

bB5sB52~]B!C22B]C,
~75!

bL5 ]̄B2~2B!]m2m]B1~]L !C12L]C.

It should be noted that, due to the fact that the BRS transformation ofB is the componentTzz of
the energy-momentum tensor, the differentiation with respect to the external sourcem of the
Legendre transformation of the complete action~71!,

Z~ j ,m,L !5S1E dz dz̄~ j CC1 j BB!, ~76!

allows us to obtain the Green’s functions with insertion ofTzz. In other words, the Slavnov–
Taylor identity ~72! is the starting point for the algebraic characterization of the energy–
momentum current algebra.

Introducing now the two functional operators10

W 5E dz dz̄
d

dC
, W̄ 5E dz dz̄S m

d

dC
1L

d

dBD , ~77!

one easily proves that

d5dzW 1dz̄W̄ ~78!

obeys

d52@b, d#, @d, d#50, ~79!

d being the exterior derivatived5dz]1dz̄]̄. We have thus realized the decomposition~24!. In
order to derive the transformations~74! and ~75! from a zero curvature condition we proceed as
before and we define the analogue of the gauge ladder~13! as

C̃z5edCz5Cz1dz1dz̄m z̄
z . ~80!

Introducing then the holomorphic generalized vector fieldC̃5C̃z]z , it is easily checked that
equations~74! can be cast in the form of a zero curvature condition

d̃C̃5 1
2@C̃, C̃#5LC̃C̃, ~81!

where, as usual,d̃ is the operator

d̃5edbe2d5b1d, ~82!
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andLC̃ denotes the Lie derivative with respect to the vector fieldC̃. Of course, the bracket
[ C̃, C̃] in Eq. ~82! refers now to the usual Lie bracket of vector fields.

Concerning now the second set of transformations~75!, we define the matter ladderB̃zz as

B̃zz5edBzz5Bzz1dz̄ Lzz z̄. ~83!

To expression~83! one can naturally associate the generalized holomorphic quadratic differential

B̃5B̃zz dz^dz. ~84!

Therefore, transformations~75! can be rewritten as

d̃B̃2LC̃B̃50. ~85!

This equation is the analogue of the covariantly constant matter condition~57! and together with
Eq. ~81! completely characterizes theB-C system. One has to remark that, as it happens in the
case of theBF models, the external sources~m, L! are interchanged, i.e., the sourcem associated
to the nonlinear transformation ofB belongs to the gauge ladderC̃ and vice versa.

Let us consider now the problem of identifying the anomalies which affect the Slavnov–
Taylor identity ~72! at the quantum level. We look then at the solution of the descent equations

bv2
11dv1

250, bv1
21dv0

350, bv0
350. ~86!

As it has been proven in Refs. 10 and 28, the cohomology of the BRS operator in the sector of the
zero forms with ghost number three contains, in the present case, a unique element given by

v0
35C]C]2C. ~87!

From the zero-curvature condition~81!, it follows then that the generalized cocycle of total degree
three,

ṽ35C̃]C̃]2C̃, ~88!

belongs to the cohomology ofd̃. The expansion ofṽ3 will give thus a solution of the ladder~86!,
i.e.,

ṽ35v0
31v1

21v2
1, ~89!

with v1
2, v2

1 given, respectively, by

v1
25~C]C]2m2C]2C]m1m]C]2C!dz̄1~]C!~]2C!dz,

~90!
v2
15~2]C]2m1]m]2C!dz̀ dz̄.

In particular,

E v2
152E dzdz̄C]3m ~91!

is recognized to be the well-known two-dimensional diffeomorphism anomaly characterizing the
central charge of the energy–momentum current algebra.

Let us conclude by remarking that the completeB-C action ~71! can be written, in perfect
analogy with Eq.~66! as
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S5E B̃zz~dC̃
z2C̃z ]C̃z!dzU

2

0

52E B̃zzbC̃
z dzU

2

0

, ~92!

showing that theB-C model can be interpreted as a kind of two-dimensionalBF system.

VIII. CONCLUSION

The zero curvature formulation of models characterized by means of a complete ladder field
can be obtained as a consequence of the existence of the operatord realizing the decomposition
~5!. Moreover, the zero curvature condition enables us to encode into a unique equation all the
relevant informations concerning the BRS cohomology classes.
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I. INTRODUCTION

In the first part of this work1 ~referred to as part I!, we have studied the zero-curvature
formulation of systems described by means of a complete ladder field, the components of which
span all possible form degrees. The present paper is devoted to analyzing the zero-curvature
equation in the case in which the completeness condition for the generalized ladder field is
relaxed. This means that we shall deal with a gauge ladderÃ for which the form degree of the
highest component is strictly lower than the space–time dimensionD, i.e.,

Ã5c1A1w2
211•••1wq

12q , 1<q,D. ~1!

As we shall see in the following, the noncomplete case will display a set of remarkable features
which will make it quite different from the previous complete case. The first interesting aspect, as
already mentioned in the Introduction of part I, is that the consistency of the zero-curvature
condition

F̃ 5d̃Ã2 iÃ250 ~2!

implies now the existence of a set of new operators~G k
12k, 2<k<D! which are in involution,

according to the algebra

G 2
215

1

2
@d, d#,

~3!

G k
12k5

1

k
@d, G k21

22k#, k.2,

d being the operator which together with the Becchi–Rouet–Stora~BRS! operatorb decomposes
the exterior space–time derivatived as

d52@b, d#, ~4!

where, as already remarked in the Introduction of part I, the decomposition~4! has to be under-
stood to hold in the space of form-valued polynomials. This space is in fact the basic functional
space of our analysis.

0022-2488/96/37(11)/5325/12/$10.00
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The second interesting feature of the noncomplete case is that the cohomology of the BRS
operatorb is richer than the corresponding one of the complete case. Indeed, the noncompleteness
of Ã will allow us to introduce a set of curvatures~Rm11

12m, 1<m<q! which are a generalization
of the familiar two-form gauge field strengthF5dA2 iA2. It follows then that, in addition to the
usual ghost cocycles~Tr c2n11! of the complete case~see Sec. IV of part I!, the cohomology ofb
now includes also invariant polynomials in the highest curvature (Rq11

12q).
As a consequence of these new features, the expressions of the polynomialsvj

G1D2 j

(0< j<D) which solve the descent equations

bvD2 j
G1 j1dvD2 j21

G1 j1150, 0< j<~D21!,
~5!

bv0
G1D50,

will get modified with respect to the complete case. This modification will result in the appearance
of a set of local polynomialsVj

G1D2 j (q11< j<D) in the curvatures (Rm11
12m) which have to be

added to the cocycles obtained from the expansion of the generalized terms~Tr ÃG1D!. These
polynomials, as already observed in Refs. 2 and 3 in the case of Yang–Mills, turn out to be
characterized by a set of consistency conditions involving the operatorsG k

12k.
This second part of the work is organized as follows. In Sec. II we present the zero-curvature

condition for the noncomplete gauge ladder. Section III is devoted to the study of the cohomology
of the BRS operator. In Sec. IV we solve the descent equations. Sections V and VI are finally
devoted to the discussion of several examples among which one finds the zero-curvature formu-
lation of the pure Yang–Mills gauge theory.

II. THE ZERO-CURVATURE CONDITION

In part I ~cf. Sec. II! the BRS transformations of the various components of the gauge ladder
Ã have been obtained by constraining the latter to obey a zero-curvature condition. Equivalently,
as we have seen in Sec. III of part I, once the BRS transformations of the fields have been given,
the zero-curvature condition becomes a consequence of the existence of the operatord which
realizes the decomposition~4!. This second procedure will be taken as the starting point for the
discussion of the zero-curvature condition in the present noncomplete case. The gauge ladderÃ

now takes the following form;

Ã5c1A1w2
211•••1wq

12q , 1<q,D, ~6!

D being the dimension of the space–time. We will assume therefore that the nilpotent BRS
transformations of the componentsw j

12 j (0< j<q) of ~6! will be the same as those of the corre-
sponding complete case~see Sec. II of part I!, i.e.,

bc5 ic2, bA52dc1 i @c, A#,
~7!

bw j
12 j52dw j21

22 j1
i

2 (
m50

j

@wm
12m , w j2m

12 j1m#, 2< j<q,

where, as usual, [a, b]5ab2(21)uauububa denotes the graded commutator and, as done in part I,
we shall work in the functional spaceV of form-valued polynomials built up with the fieldswj

12 j

and their differentialdw j
12 j , i.e.,

V 5polynomials in ~w j
12 j ,dw j

12 j ;0< j<q!. ~8!

Having assigned the BRS transformations, let us turn to the introduction of the decomposition~4!.
To this purpose we define the operatord as
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Ã5edc,

dw j
12 j5~ j11!w j11

2 j , 0< j<q21, ~9!

dwq
12q50,

and

ddwm
12m5~m11!dwm11

2m , 0<m<q22,

ddwq21
22q5qdwq

12q2~q11!S dwq
12q2

i

2 (
j51

q

@w j
12 j , wq2 j11

j2q # D , ~10!

ddwq
12q5

i

2
~q11!(

j51

q

@wq122 j
212q1 j , w j

12 j #.

One easily checks that, on the functional spaceV , the operatorsb andd realize the decom-
position ~4!, i.e.,

d52@b, d#. ~11!

Comparing now Eqs.~9! and~10! the corresponding ones of the complete ladder case~see Sec. II
of part I! one sees that, while the action of the operatord on the components~wj

12 j ! is the same,
the transformations of the differentials of higher form degree, i.e., (dwq21

22q) and (dwq
12q), are now

nonvanishing. This fact implies that, contrary to the complete case, the operatord does not
commute anymore with the exterior derivatived,

@d, d#Þ0. ~12!

In addition, depending on the dimension of the space–timeD and on the numberq of components
of the gauge ladderÃ, the commutators

@d,†d,@d,...,d#‡# ~13!

turn out to be nonvanishing as well.
This algebraic structure, which generalizes that of Refs. 2 and 3, will have important conse-

quences on the zero-curvature condition. The latter, repeating the same argument of Sec. III of part
I, is obtained by applying the operatored on the BRS transformation of the zero-form ghost field
c, i.e.,

edbe2dedc5edic2. ~14!

Recalling now thatÃ5edc and defining the generalized operatord̃ as

d̃5edbe2d, ~15!

we get the zero-curvature condition

d̃Ã5 iÃ2 ~16!

for the noncomplete ladder case. Equation~16! is, however, only apparently similar to the corre-
sponding condition of the complete ladder case. In fact, due to Eqs.~12! and~13!, the operatord̃
is now given by
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~17!

so that, defining the operators

G 2
215

1

2
@d, d#,

G 3
225

1

3!
†d,@d,d#‡5

1

3
@d, G 2

21#,

~18!

G 4
235

1

4!
@d,†d,@d,d#‡#5

1

4
@d,G 3

22#,

••• ,

we have

d̃5b1d1 (
k>2

D

G k
12k ~19!

with

G 2
215

1

2
@d, d#,

~20!

G k
12k5

1

k
@d, G k21

22k#, k.2.

One thus sees that in the noncomplete case the zero-curvature condition is accompanied by a
set of operatorsG k

12k which are in involution, according to Eq.~20!. We underline, in particular,
that the origin of the operatorsG k

12k actually relies on the noncomplete character of the gauge
ladder ~6!. It is very easy, using Eqs.~9! and ~10!, to derive the explicit form of the various
operatorsG k

12k appearing in Eq.~16!. In particular, as we shall show later on in the examples, the
number of operatorsG k

12k which do not identically vanish depends both on the dimensionD of
the space–time and on the numberq of components of the gauge ladderÃ. We also notice that
these operators are absent whenq5D, i.e., they are not present in the case in which the ladder is
complete.

Moreover their existence implies that the cohomology of the operatord̃ is no more directly
related to that of the operator (d1b). Therefore the cohomology classes ofd̃ do not immediately
provide solutions of the descent equations~5!. It turns out indeed that in order to obtain a solution
of the tower~5! we must add to the cohomology classes ofd̃, i.e., TrÃ2n11, certain polynomials
Vj
G1D2 j (q11< j<D) which obey a set of consistency conditions involving the operatorG k

12k.
In other words, the presence of theG k

12k’s requires a modification of the solution of the descent
equations with respect to the complete ladder case~see Sec. V of part I!.

Let us conclude this section with the following remark. Instead of having assumed the BRS
transformations~7! we could have started directly with the zero-curvature condition~16!. It is
easily verified then that the introduction of the operatorsG k

12k is needed in order to avoid the
appearance of constraints among the components of the noncomplete ladder fieldÃ.
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III. COHOMOLOGY OF THE BRS OPERATOR

The first step in order to solve the descent equations~5! is that of computing the cohomology
of the BRS operatorb. This task, due to the noncomplete character ofÃ, will turn out to be
simplified by the introduction of the following curvaturesRm11

12m of total degree two:

Rm11
12m5dwm

12m2
i

2 (
k51

m

@wk
12k , wm112k

k2m #; 1<m<q. ~21!

In particular, form51 the expression~21! reduces to

R2
05dA2 iA25F, ~22!

i.e., one recovers the familiar two-form gauge field strength. We also remark that, form.1, the
curvaturesRm11

12m possess the property of having negative ghost number.
The great advantage of working with the curvaturesRm11

12m relies on the fact that they trans-
form covariantly under the action of the BRS operator, i.e.,

bRm11
12m5 i @c, Rm11

12m#. ~23!

This feature, following the well-known Yang–Mills case,4–7 suggests that it is convenient to use
the curvaturesRm11

12m as independent variables instead of the differentialsdwm
12m, i.e., we replace

everywhere the variablesdwm
12m by Rm11

12m making use of Eq.~21!. Consequently, for the func-
tional spaceV we have

V 5polynomials in ~c,A,wm
12m,2<m<q;dc,Rj11

12 j ,1< j<q!, ~24!

and, for the nilpotent BRS transformations,

bc5 ic2,

bA52dc1 i @c, A#,

bwm
12m5 i @c, wm

12m#2Rm
22m , 2<m<q, ~25!

bdc5 i @c, dc#,

bRj11
12 j5 i @c, Rj11

12 j #, 1< j<q.

Let us turn now to the computation of the cohomology ofb. Introducing the filtering operatorN

N c5c, N A5A,

N wm
12m5wm

12m , 2<m<q, ~26!

N dc5dc, N Rj11
12 j5Rj11

12 j , 1< j<q,

the BRS operator decomposes as

b5b01b1 , ~27!
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with

b0c50, b0A52dc, b0dc50,
~28!

b0wm
12m52Rm

22m , b0Rm
22m50, 2<m<q,

b0Rq11
12q50, b0

250.

Equations~28! show that all the variables except the zero-form ghostc and the highest curvature
Rq11
12q are grouped in BRS doublets. This implies that the cohomology ofb0 and, in turn, that of the

full BRS operatorb, depend only onc andRq11
12q. More precisely, using the general results of Refs.

4–7, it follows that the cohomology ofb on the functional spaceV is spanned by invariant
polynomials in the variables (c,Rq11

12q) built up with factorized monomials of the form

S Tr c2n11

~2n11!! D •~Tr~Rq11
12q!m!, n,m51,2,... . ~29!

One sees that in the noncomplete ladder case the cohomology of the BRS operatorb, in addition
of the usual ghost cocycles~Tr c2n11!, includes also polynomials in the highest curvaturesRq11

12q.
Notice finally that, being the ghost number of the highest curvatureRq11

12q negative forq.1, the
cohomology classes ofb are nonvanishing in the negative charged sectors.

We conclude this section by remarking that the highest curvatureRq11
12q is actually related to

the ghost fieldc through the action of the operatorG q11
2q ,

G q11
2q c5~const!Rq11

12q , ~30!

the proportionality factor being easily computed by means of Eqs.~9! and ~10!.

IV. SOLUTION OF THE DESCENT EQUATIONS

Having characterized the cohomology of the BRS operatorb, let us focus on the cohomology
of b modulod, i.e., let us try to solve the descent equations

bvD2 j
G1 j1dvD2 j21

G1 j1150, 0< j<~D21!,
~31!

bv0
G1D50.

As mentioned before and as already observed in the case of pure Yang–Mills~i.e., q51!, the
presence of the operatorsG k

12k in the zero-curvature condition~16! requires a slight modification
of the climbing procedure presented in the previous complete ladder case~see part I!.

Repeating indeed the same argument of Ref. 2, it is easy to convince oneself that, once a
solutionv0

G1D of the last equation of~31! has been obtained, an explicit expression for the higher
polynomialsvj

G1D2 j is provided by the generalized cocycleṽG1D of total degree (G1D),

ṽG1D5(
j50

D

v j
G1D2 j ,

~32!

ṽG1D5edS v0
G1D1 (

j5q11

D

V j
G1D2 j D ,

wherev0
G1D is
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v0
G1D5Tr

cG1D

~G1D !!
, ~33!

and the quantitiesVj
G1D2 j are determined recursively by means of the consistency conditions

bV j
G1D2 j5~ j21!~21! jG j

12 jv0
G1D1 (

k52

~ j21!

~k21!~21!kG k
12kV j2k

G1D2 j1k ,

~34!
V j2k

G1D2 j1k50, if ~ j2k!,q11.

As we shall see, the latter turns out to be easily disentangled by using the results~29! on the BRS
cohomology. Moreover, settingq51, Eqs.~34! are seen to reproduce those already met in the pure
Yang–Mills case.1 In particular, from Eqs.~32! and~33!, we see that the solution of the tower~31!
in the noncomplete case turn out to be deformed with respect to the corresponding solution of the
complete ladder case~see Sec. V of part I! by the inclusion of the cocyclesVj

G1D2 j .

V. EXAMPLE I: PURE YANG–MILLS THEORY AS A ZERO-CURVATURE SYSTEM

As a first important example of a noncomplete ladder system, let us present here the zero-
curvature formulation of the pure Yang–Mills gauge theory in any space–time dimension, corre-
sponding to a generalized ladder withq51, i.e.,

Ã5c1A. ~35!

It is worthwhile to recall that, since the Yang–Mills theories are power-counting nonrenormaliz-
able for space–time dimensions greater than four, the fieldsA andc, unlike the three-dimensional
Chern–Simons case discussed in Part I, are now regarded as unquantized external fields coupled
to currents of quantum matter fields. Therefore, the existence of gauge anomalies at the quantum
level will correspond to a violation of the conservation law of the matter currents and to the
appearance of Schwinger terms in the corresponding current algebra.

It is easily checked that in this case the consistency of the zero-curvature condition~16!
requires that only the first operatorG 2

21 of Eq. ~19! is nonvanishing. Therefore, for the operatord̃
we get

d̃5b1d1G 2
21, ~36!

and from

d̃Ã5 iÃ2 ~37!

we obtain

bc5 ic2, bA52dc1 i @c, A#, ~38!

and

G 2
21c52dA1 iA252F,

G 2
21dc5 i @A, F#, ~39!

G 2
21A5G 2

21F50.

From Eqs.~9! and ~10!, for the operatord we have
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dc5A, d dc52dA12iA2,
~40!

dA50, ddA50,

and

d52@d, d#, G 2
215 1

2@d, d#,
~41!

@d, G 2
21#5@b, G 2

21#5@d, G 2
21#50.

For what concerns the solutions of the descent equations~31!, here we shall limit ourselves only
to state the final result, reminding the reader of the detailed discussion and proofs already given in
Ref. 2. We underline in particular that, as proven in Ref. 3, the cocyclesVj

G1D2 j appearing in Eq.
~32! can be summed up into a unique closed generalized expression which collects both the gauge
anomalies and the Chern–Simons terms. The latter are given respectively by

v2n
1 5 (

p50

n
i ~n2p!

~2n2p11!!p!
~P „c,Fp,~A2!n2p

…

1 i ~n2p!P „@c, A#,Fp,A,~A2!n2p
…! ~42!

and

v2n11
0 5 (

p50

n
i ~n2p!

~2n2p11!!p!
P „Fp,A,~A2!n2p

…, ~43!

where the integern51,2,... labels the various dimensions of the space–time andP ~J 1,J 2,...,J n!
denotes the symmetric invariant polynomials defined as

P ~J 1 ,J 2 ,...,J n!5J 1
a1J 2

a2•••J n
anS Tr~Ta1Ta2•••Tan!, ~44!

STr being the symmetrized trace8 and, following Zumino’s notations,9 we have used

~45!

It is worthwhile to emphasize that, actually, the formulas~42! and~43! represent one of the most
compact expressions for the gauge anomaly and for the Chern–Simons term in any space–time
dimension.

VI. EXAMPLE II: THE CASE D56, G51, q53

In order to clarify the role of the operatorsG k
12k and of the generalized curvaturesRm11

12m, let
us discuss in this second example the solution of the descent equations~5! in the six-dimensional
caseD56 with ghost numberG51 and a gauge ladder withq53, i.e.,

Ã5c1A1w2
211w3

22. ~46!

From Eqs.~25!, for the BRS transformations we have
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bc5 ic2,

bA52dc1 i @c, A#,
~47!bw2

215 i @c, w2
21#2R2

0,

bw3
225 i @c, w3

22#2R3
21,

whereR2
0 andR3

21 are the generalized curvatures of Eq.~21! whose expressions are given

R2
05F5dA2 iA2,

R3
215dw2

212 i @A, w2
21#. ~48!

In particular, for the highest curvatureR4
22 we have

R4
225dw3

222 i @A, w3
22#2

i

2
@w2

21, w2
21# ~49!

and

bRm11
12m5 i @c, Rm11

12m#, 1<m<3. ~50!

The curvatures (R2
0 ,R3

21 ,R4
22) obey the following generalized Bianchi identities:

dR2
05 i @A, R2

0#,

dR3
215 i @A, R3

21#1 i @w2
21, R2

0#, ~51!

dR4
225 i @A, R4

22#1 i @w2
21, R3

21#1 i @w3
22, R2

0#.

They transform under the operatord of Eqs.~9! and ~10! as

dR2
052R3

21,

dR3
2152R4

222
i

2
@w2

21, w2
21#, ~52!

dR4
2252 i @w3

22, w2
21#.

For what concerns the operatorsG k
12k of Eq. ~20! it is easily seen that in the present example the

zero-curvature Equation~16! implies the existence of a set of five nonvanishing operators
~G 2

21,G 3
22,G 4

23,G 5
24,G 6

25!. Their action on the fields and on the curvatures is given, respectively,
by

G 2
21c50, G 2

21A50, G 2
21w2

21522R4
22,

G 2
21w3

2252i @w3
22, w2

21#,

G 2
21dc50, G 2

21R2
050, ~53!

G 2
21R3

2152i ~@w2
21, R3

21#1@w3
22, R2

0# !,

G 2
21R4

2252i @w3
22, R3

21#;
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G 3
22c50, G 3

22A5
4

3
R4

22,

G 3
22w2

2152
4i

3
@w3

22, w2
21#,

G 3
22w3

2252i @w3
22, w3

22#,

G 3
22dc50, ~54!

G 3
22R2

052
4i

3
~@w2

21, R3
21#1@w3

22, R2
0# !,

G 3
22R3

2154i @w3
22, R3

21#,

G 3
22R4

2250;

G 4
23c52

1

3
R4

22, G 4
23A5

i

3
@w3

22, w2
21#,

G 4
23w2

2152
5i

2
@w3

22, w3
22#, G 4

23w3
2250,

G 4
23dc5

i

3
~@A, R4

22#1@w2
21, R3

21#1@w3
22, R2

0# !, ~55!

G 4
23R2

05
i

3
~@w2

21, R4
22#211@w3

22, R3
21# !,

G 4
23R3

2150, G 4
23R4

2250;

G 5
24c50, G 5

24A5
6i

5
@w3

22, w3
22#,

G 5
24w2

2150, G 5
24w3

2250,
~56!

G 5
24dc5

16i

5
@w3

22, R3
21#,

G 5
24R2

05G 5
24R3

215G 5
24R4

2250;

G 6
25c52

i

5
@w3

22, w3
22#,

G 6
25A5G 6

25w2
215G 6

25w3
2250, ~57!

G 6
25dc5G 6

25R2
05G 6

25R3
215G 6

25R4
2250.

Turning now to the descent equations
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bv62 j
11 j1dv52 j

21 j50, 0< j<5,
~58!

bv0
750,

we have that, taking into account the result~23! on the cohomology of the BRS operatorb and the
equation~32!, a solution of the ladder~58! is provided by the generalized cocycle of total degree
seven

ṽ75ed~v0
71V4

31V5
21V6

1! ~59!

with

v0
75Tr

c7

7!
, ~60!

and ~V4
3,V5

2,V6
1! solutions of the equations~34!, i.e.,

bV4
353G 4

23v0
7, ~61!

bV5
2524G 5

24v0
7, ~62!

bV6
15G 2

21V4
315G 6

25v0
7. ~63!

This system can be easily solved by using the cohomology ofb. Indeed, beginning with the first
equation~61!, we have from~55!

G 4
23v0

752
1

6!
Tr

R4
22c6

3
, ~64!

so thatV4
3 may be identified with

V4
352

1

6!
Tr R4

22c5. ~65!

Concerning now the second equation~62!, we get from~56! that

G 5
24v0

750. ~66!

Moreover, since the cohomology ofb in the sector of form degree five and ghost number two is
empty, we may chooseV5

2 to be vanishing as well

V5
250. ~67!

Finally for the last equation~63!, we get

bV6
15

2

6!
Tr~@w3

22, R3
21#c52 iw3

22w3
22c6!. ~68!

However, from

b~Tr w3
22w3

22c5!5Tr~@w3
22, R3

21#c52 iw3
22w3

22c6!, ~69!

we obtain
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V6
15

1

6!
Tr~@w3

22,w3
22#c5!. ~70!

Summarizing, an explicit expression for theV’s is given by

V4
352

i

6!
Tr R4

22c5,

V5
250, ~71!

V6
15

1

6!
Tr~@w3

22,w3
22#c5!.

Of course, the above expressions are always determined modulo trivialb-cocycles.
Concluding, for the generalized cocycleṽ7 we have

ṽ75TrS Ã7

7!
1V4

31dV4
31

d2

2
V4

31V6
1D . ~72!

The expansion ofṽ7 in terms of components of different degree and ghost number will give an
explicit expression for the cocycles entering the descent equations~58!.

VIII. CONCLUSION

We have shown that the Yang–Mills-type theories can be characterized by means of a non-
complete gauge ladder field constrained to obey a zero curvature condition, which implies the
existence of a set of new operatorsG k

12k. These operators give rise together with the BRS
operatorb to a kind of descent equation which is easily solved using the results on the cohomol-
ogy ofb. These solutions provide a deformation of the cohomology ofb modulod with respect to
the corresponding complete ladder case presented in the part I.
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As has already been pointed out by Birkhoff and von Neumann, quantum logic can
be formulated in terms of projective geometry. In three-dimensional Hilbert space,
elementary logical propositions are associated with one-dimensional subspaces,
corresponding to points of the projective plane. It is shown that, starting with three
such propositions corresponding to some basis$u,v,w%, successive application of
the binary logical operation (x,y)°(x ~ y)' generates a set of elementary propo-
sitions which is countable infinite and dense in the projective plane if and only if no
vector of the basis$u,v,w% is orthogonal to the other ones. ©1996 American
Institute of Physics.@S0022-2488~96!00309-X#

I. INTRODUCTION

The geometrization of quantum logic was initiated by Birkhoff and von Neumann.1 In their
‘‘top-down’’ approach, the logical entities are identified with Hilbert space entities as follows.
Elementary propositions are identified with one-dimensional subspaces or with the vector span-
ning that subspace. The binary logical operations ‘‘and’’ (` ) and ‘‘or’’ ( ~ ) correspond to the set
theoretic intersection and to the linear span, respectively. The unary logical operation ‘‘not’’
(') corresponds to the orthogonal subspace. The proposition which is always false is identified
with the null vector. The proposition which is always true is identified with the entire Hilbert
space. In that way, the geometry of Hilbert space induces a logical structure which, if Hilbert
space quantum mechanics2 is an appropriate theory of quantum physics, describes correctly the
logical structure of measurements~cf. Refs. 3–7!.

In what follows, we concentrate on the following question. Assume we start with a set
$u,v,w% of three elementary quantum mechanical propositions representable as one-dimensional
subspaces~spanned by the vectors$u, v, w%! of three-dimensional Hilbert space. New propositions
can be formed from the old ones by the logical operations ‘‘and, or, not.’’ In particular, the
operation (x ~ y)' corresponding to ‘‘not (x or y)’’ is just the subspace spanned by the vector
productx3y. Suppose this operation is carried out recursively. That is, at each step we form the
vector product of all~nonparallel! vectors and add the~nonparallel! results to the previous set of
vectors. One may ask, what are the conditions for the resulting set~of intersection points with the
unit ball! to be dense? Evidently, the set of one-dimensional subspaces spanned by the recursive
application of the vector product can at most be countable~cardinality:0). It is less obvious if
there can be any regions or ‘‘holes’’ formed by the recursively obtained set of one-dimensional
subspaces which are unreachable. An answer is given in Theorem 3.

As has been already pointed out by Birkhoff and von Neumann,1 the structure obtained for
three-dimensional Hilbert space is essentially a projective plane. Points of the projective geometry
are identified with elementary propositions, and lines are identified with two-dimensional sub-

a!Electronic mail: havlicek@geometrie.tuwien.ac.at
b!Electronic mail: svozil@tph.tuwien.ac.at
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spaces. We emphasize this point of view by reformulating the above problem into the geometric
language of the real projective plane endowed with the elliptic metric.

The original motivation for this question originates from the consideration of Kochen-Specker
type constructions.8,9 It has been conjectured that every set of three nonorthogonal one-
dimensional subspaces generates a Kochen-Specker paradox.10 More generally, one could ask if
any single elementary proposition~corresponding to a one-dimensional subspace of three-
dimensional Hilbert space! can be approximated by a logical construction originating from just
three propositions~corresponding to nonorthogonal one-dimensional subspaces of three-
dimensional Hilbert space!.

It has to be kept in mind, however, that a consistent two-valued measure—serving as a
classical truth function—will in general not be definable on the set of recursively generated
one-dimensional subspaces identifiable with elementary propositions. Indeed, due to complemen-
tarity, even for the generating set of three vectors, such an identification of truth functions will
only have an operational~physical! meaning if these vectors were mutually orthogonal—a condi-
tion which would yield a trivial orthogonal tripod configuration, for which any recursion does not
produce any additional vectors.

II. SUBPLANES OF PROJECTIVE PLANES

A projective planeis formally a geometric structure (P ,L,I ) consisting of a setP of ele-
ments calledpoints, a setL of elements calledlines and a binary relationI,P3L called
incidencesatisfying the following axioms.

~P1! Any two distinct points are incident with exactly one common line.
~P2! Any two distinct lines are incident with a common point.
~P3! There are four points, no three of which are incident with a common line.
Instead of (p,L) P I we also writepIL and use familiar expressions like ‘‘p is onL,’’ ‘‘ L is

running throughp,’’ etc. A set of points is said to becolinear, if all points are on a common line,
a triangle is a set of three non-colinear points, aquadrangleis a set of four points satisfying the
condition of axiom~P3!. If we are given two distinct pointsp1 ,p2 P P thenp1 ~ p2 denotes the
unique line joining these two points. By~P1! and ~P2!, two distinct linesL1 ,L2 P L meet at a
unique point which is written asL1 ` L2. For basic properties of projective planes see@Ref. 11,
Chap. 4#, Ref. 12 or Ref. 13.

Let F be a skewfield~division ring!. ThenF3 ~regarded as left vector space overF) gives rise
to a projective plane as follows: DefineP as set of all one-dimensional subspaces ofF3, viz.

P :5$FauoÞaPF3%, ~1!

andL as the set of all two-dimensional subspaces ofF3. Incidence is defined by

I :5$~Fa,L…PP3LuFa,L%. ~2!

We set (P ,L,I )5: PG(2,F). See, e.g., Ref. 14, p. 29, Ref. 15, p. 222 or the textbooks mentioned
above for more details.

We remark that there are also projective planes that are not isomorphic to any plane of the
form PG(2,F). Such projective planes are calledNon-Desarguesianand will not be of interest in
this paper.

Suppose that (P ,L,I ) is a projective plane and thatP̃ is any subset ofP . Put

L̃ :5$p1~p2up1 ,p2P P̃ ,p1Þp2% and Ĩ :5Iù~ P̃ 3 L̃ !. ~3!

The substructure (P̃ , L̃ , Ĩ ) is satisfying axiom~P1!, but not necessarily~P2! or ~P3!. If
( P̃ , L̃ , Ĩ ) is a projective plane, then it is called aprojective subplaneof (P ,L,I ). A degenerate
subplane( P̃ , L̃ , Ĩ ) is satisfying~P2!, but not~P3!.
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All degenerate subplanes are easily described: If #L̃ <1, then P̃ is a set of colinear points.
If # L̃ >2, then P̃ is formed by a set of two or more points on a line, sayL, plus one more
point, sayu, off the lineL. This L is the only line in L̃ not running throughu.

In PG(2,F) we may obtain a projective subplane as follows: Let$b1,b2,b3 %,F3 be a basis
and letF̃,F be a sub-skewfield ofF. Then set

P̃ 5H FaUa5(
i51

3

j ibi ,~0,0,0!Þ~j1 ,j2 ,j3!PF̃3J , ~4!

and defineL̃ , Ĩ according to~3!. The verification of~P2! amounts to solving a homogeneous
system of linear equations within the sub-skewfieldF̃. A quadrangle in P̃ is given by
$Rb1 ,Rb2 ,Rb3 ,R(b11b21b3)%.

The backbone of this article is the following innocently looking result~Ref. 13, p. 266!: Any
projective subplane of PG(2,F) is of the form~4!. ~See also Ref. 16, p. 1008.! This allows us to
recover an algebraic structure, namely a sub-skewfield ofF, from a projective subplane of
PG(2,F). Let us add, for the sake of completeness, the following remark: If in~4! the basis
$b1,b2,b3% is replaced by$ab1,ab2,ab3 % for some nonzeroa P F and if F̃ is modified to the
sub-skewfield aF̃a21, then P̃ remains unchanged. Actually, a projective subplane of
PG(2,F) determines ‘‘its’’ sub-skewfield ofF only to within transformation under inner auto-
morphisms ofF. Clearly, for a~commutative! field F this means uniqueness.

We confine our attention to thereal projective planePG(2,R). The elliptic metric on P is
given by

d:P3P→R,~Ra,Rb!°arccos
ua•bu

iaiibi PF0,p2 G , ~5!

where• denotes the standard dot product andi i stands for the Euclidean norm ofR3. Theelliptic
distance d(Ra,Rb) of two points of PG(2,R) is just the Euclidean angle of the corresponding
one-dimensional subspaces through the origin ofR3. It is invariant under transformations~e.g.,
rotations! which preserve normality. Besides, a connection can be made between the elliptic
distance and the more physically motivatedstatistical distance.17

For each pointRa of PG(2,R) there are exactly two unit vectors inRa. This gives the
well-known alternative description of the real projective plane: The ‘‘points’’ may be viewed as
unordered pairs of opposite points of the unit sphere, the ‘‘lines’’ are the great circles and inci-
dence is defined via inclusion. In this interpretation the elliptic distance is equal to thespherical
distance~Ref. 18, Chap. VI!.

If T is a subset ofR3 thenT':5$aua–t50 for all t P T% is a subspace. In geometric terms
' is apolarity of the projective plane PG(2,R); cf. ~Ref. 11, Chap. 17, Ref. 18, p. 52, Ref. 14, p.
110, or Ref. 12, p. 45!. Points and lines are interchanged bijectively subject to the ruleRa
3(PP )°a'(PL).The geometric operations of‘‘ join’’ ( ~ ) and‘‘meet’’ ( ` ) therefore allow
a simple algebraic description: Given linearly independentvectorsa,bPR3 then

Ra~Rb5~a3b!', ~6!

a'`b'5R~a3b!. ~7!

The following result is essentially (F̃5Q) due to Möbius:
Lemma 1:If ( P̃ , L̃ , Ĩ ) is a projective subplane of (P ,L,I )5 PG(2,R), then P̃ is dense

in P .
Proof: Let P̃ be given according to~4! with F̃,R. The fieldQ of rational numbers equals

the intersection of all subfields ofR, whenceQ,F̃. Given a pointRa P P we obtain
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a5j1b11j2b21j3b3 with ~j1 ,j2 ,j3!PR3. ~8!

There exist three sequences,

~j j ,i ! iPN , with j j ,iPQ\$0% and lim
i→`

j j ,i5j j ~ jP$1,2,3%!. ~9!

Defining

ai :5j1,ib11j2,ib21j3,ib3Þo ~ iPN! ~10!

yields a sequence of pointsRai P P̃ with (Rai) iPN→Ra, since, by the continuity of dot product
and norm,

lim
i→`

a–ai
iaiiai i

5
a–a

iaiiai 51. ~11!

This completes the proof. h

The projective subplanes of PG(2,R) belonging to the rational number field are calledMöbius
nets. They allow a simple recursive geometric construction~Ref. 19, p. 140!: Starting with a
quadrangle one draws all the lines spanned by these points. Next mark all points of intersection
arising from these lines. With this set of points the procedure is repeated, and so on. The set of all
points that can be reached in a finite number of steps gives then a projective subplane overQ.

III. MAIN THEOREMS

Theorem 1: Let V15$u,v,w% be a basis ofR3. Define subsetsVi ,V of R3 as follows:

Vi11 :5Viø$r3sur ,sPVi ,r3sÞo% ~ iPN!, V:5 ø
i51

`

Vi . ~12!

Then

P̃ :5$RauaPV% ~13!

yields a projective or degenerate subplane (P̃ , L̃ , Ĩ ) of PG(2,R) which is ortho-closed. That is,
RaP P̃ impliesa' P L̃ .

Proof: Let L1 ,L2 P L̃ be distinct. By ~6! and the definition ofL̃ , there are vectors
p1,q1,p2,q2PV with

L15~p13q1!
', L25~p23q2!

'. ~14!

Now ~7! yields

L1`L25R~~p13q1!3~p23q2!!P P̃ . ~15!

This establishes~P2!.
Given a pointRa P P̃ , there exist two vectors inV1, sayu,v, such that$a,u,v% is a basis of

R3. Thenu¹ span$a,v%5(a3v)', butu P (a3u)'. ThusR(a3v) andR(a3v) are distinct points
of P̃ on the linea'. h

Observe that axiom~P2! may be derived alternatively from the well-known formula

~p13q1!3~p23q2!5det~p1 ,q1 ,q2!p22det~p1 ,q1 ,p2!q25det~p1 ,p2 ,q2!q12det~q1 ,p2 ,q2!p1 .
~16!
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since linearly dependent vectors yield colinear points.
Theorem 2:The subplane (P̃ , L̃ , Ĩ ) described in Theorem 1 is degenerate if and only if one

vector of the basis$u,v,w% is orthogonal to the other ones.
Proof: Let ( P̃ , L̃ , Ĩ ) be degenerate.$Ru,Rv,Rw% being a triangle forces #L̃ >3. We read

off from the description of degenerate subplanes in section II thatP̃ has to consist of one point
of this triangle, sayRu, and a subset of points on the line joiningRv andRw. The lineu' belongs
to L̃ by Theorem 1. Nowu¹u' tells us that the pointRu is off that line. SinceRu is on all lines
of L̃ but one, we obtainv,w P u'.

Conversely, assume thatv,w P u'. Then

P̃ 5$Ru,Rv,Rw,R~u3v!,R~u3w!% ~17!

is a set of five points ifv'”w, and it is a set of just three points ifu,v,w are mutually orthogonal.
Thus P̃ yields a degenerate subplane. h

Summing up, gives this final result.
Theorem 3:With the settings of Theorem 1 the following assertions are equivalent.
1. The basis$u,v,w% of R3 does not contain a vector that is orthogonal to the remaining ones.
2. The point setP̃ given by ~13! is dense in PG(2,R).
3. The point setP̃ given by ~13! is infinite.
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in topological Yang–Mills–Higgs theory
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We study the topological Yang–Mills–Higgs theories in two and three dimensions
and the topological Yang–Mills theory in four dimensions in a unified framework
of superconnections. In this framework, we first show that a classical action of
topological Yang–Mills type can provide all three classical actions of these theories
via appropriate projections. Then we obtain the Becchi–Rouet–Stora–Tyutin
~BRST! and anti-BRST transformation rules encompassing these three topological
theories from an extended definition of curvature and a geometrical requirement of
the Bianchi identity. This is an extension of Perry and Teo’s work in the topologi-
cal Yang–Mills case. Finally, comparing this result with our previous treatment in
which we used the ‘‘modified horizontality condition,’’ we provide a meaning of
the Bianchi identity from the BRST symmetry viewpoint and thus interpret the
BRST symmetry in a geometrical setting. ©1996 American Institute of Physics.
@S0022-2488~96!01611-8#

I. INTRODUCTION

Soon after Witten1 constructed the topological Yang–Mills theory to generate the Donaldson
invariants of smooth four-manifolds, Baulieu and Singer2 showed that Witten’s topological quan-
tum action could be obtained by gauge fixing the classical topological action

I 45E
M4

Tr F`F ~1!

in the Becchi–Rouet–Stora–Tyutin~BRST! quantization scheme. Then Perry and Teo3 argued
that the asymmetry of BRST transformation rules that appeared in Baulieu and Singer’s work was
caused by treating only the BRST symmetry,4 and not the anti-BRST symmetry.5 And they
obtained symmetric BRST and anti-BRST transformation rules by treating them on an equal
footing. They further identified the difference between the ordinary Yang–Mills theory and the
topological Yang–Mills theory as follows. In the ordinary Yang–Mills theory, one can impose the
so-called ‘‘horizontality condition’’ to find BRST symmetry. This is tantamount to requiring that
the unphysical components of Yang–Mills field strength~curvature!, which contain ghosts, van-
ish. In the topological case, one cannot impose this vanishing field strength condition along
unphysical directions, and one can only impose the Bianchi identity in the extended space where
ghosts are included.

Parallel to this development, topological Yang–Mills–Higgs actions in two and three dimen-
sions were also constructed. Following the Baulieu and Singer’s approach, Baulieu and Grossman6

found a topological action for magnetic monopoles by gauge fixing the following classical action
in three dimensions:

I 35E
M3

Tr F`Df. ~2!
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The two-dimensional case was studied by Chapline and Grossman7 by gauge fixing the following
two-dimensional classical action:

I 25E
M2

Tr~F@F†, F#2DF†`DF!, ~3!

and the quantized version of this theory turned out to be connected to the theory of vortices and
knots.

In our previous work,8 we investigated the BRST/anti-BRST symmetry of the above topo-
logical Yang–Mills–Higgs theory in two and three dimensions by modifying the horizontality
condition in a way that it could account for the topological symmetry in addition to the ordinary
Yang–Mills gauge symmetry. This work was done in the superconnection framework so that the
scalar and vector gauge fields were treated on the same footing as a connection. Thereby we could
find the BRST/anti-BRST transformation rules of the scalar and vector gauge fields immediately
in one calculation instead of doing additional and separate calculations.

In this paper, we investigate the BRST/anti-BRST symmetry of these theories through the
‘‘Bianchi identity’’ in the same superconnection framework that we used in our previous work.
This investigation was motivated by the question of whether Perry and Teo’s work could be
extended to the topological Yang–Mills–Higgs case where additional ghosts for the scalar field
appear. The superconnection framework became a very natural testing ground for this idea. The
result of the test is affirmative. By comparing these two approaches—the present work and our
previous work—we can further provide a meaning for the Bianchi identity in the extended space
from the BRST symmetry view point. This in turn allows a geometrical interpretation of the
BRST/anti-BRST symmetry in the extended space.

In Sec. II, we show that the classical actions,I 4 , I 3 , I 2 , can be obtained from a classical
action of the topological Yang–Mills type written in superconnection language by appropriate
projections depending on the dimensions of spaces to which corresponding theories belong. In
Sec. III, we find the BRST/anti-BRST transformation rules of the topological Yang–Mills–Higgs
theory from the Bianchi identity in the extended space and an extended definition of curvature
expressed in superconnection formalism. In Sec. IV, we compare our present work with the
‘‘horizontality condition’’ approach which we adopted in our previous work. From the comparison
of these two approaches, we provide a geometrical meaning to the BRST symmetry in the topo-
logical Yang–Mills–Higgs theory. In Sec. V, we draw our conclusions.

II. CLASSICAL TOPOLOGICAL ACTION WITH SUPERCONNECTIONS

In 1982, while studying a generalized gauge theory possessing an internal supersymmetry,
Thierry-Mieg and Ne’eman9 constructed a generalized system of connections with arbitrary form
degrees hinted from the old idea of Cartan’s integrable system.10 In mathematics, a similar concept
was introduced by Quillen in 198511 under the notion of superconnections, independently of
Thierry-Mieg and Ne’eman’s work. Then Ne’eman and Sternberg12 used Quillen’s superconnec-
tion concept to study the Higgs mechanism where the Higgs field occurred as the zeroth-order part
of the superconnection. Ne’eman and Sternberg’s work made it easier for physicists to understand
the superconnection concept. It has also shown that the superconnection is not much different
from Thierry-Mieg and Ne’eman’s generalized connection, except for the existence of zeroth-
order connection. In this paper, we follow Ne’eman and Sternberg’s presentation of superconnec-
tions. In general, the superconnection contains all orders. It contains an even part with odd degree
forms and an odd part with even degree forms. However, since the theories we are dealing with
have scalar and vector gauge fields only, we shall deal with superconnections which only contain
zero-forms and one-forms in this paper. Now, we may write down our superconnection as
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J5S A iF

iF† A D ~4!

whereA andF are Lie-algebra-valued one-form and zero-form, respectively. The multiplication
rule among the elements of totalZ2-graded ‘‘superspace’’ is given by12

S A C

D BD S A8 C8

D8 B8 D 5S A`A81~21! uD8uC`D8 A`C81~21! uB8uC`B8

~21! uA8uD`A81B`D8 ~21! uC8uD`C81B`B8
D , ~5!

whereA,...,A8,... are matrices of differential forms, anduA8u, uB8u, uC8u, uD8u denote form
degrees ofA8, B8, C8, D8, respectively.

The ‘‘super’’ curvature is defined from superconnection as

F 5dJ1JJ , ~6!

whered denotes a one-form differential operator given byd5(0
d
d
0) with d denoting the ordinary

one-form exterior derivative times a unit matrix. For brevity, we shall use the term curvature
instead of ‘‘super’’ curvature from now on. Written in the component form, the curvature is given
by

F 5S F2FF† iDF

iDF† F2F†F
D , ~7!

whereF5dA1A`A andDF5dF1AF2FA. Now, we claim our classical topological action
as

I5E
M
G Tr F F , ~8!

and explain ‘‘GTr’’ below. In general, we can write downF as

F 5S F ev ~F od!1

~F od!2 F ev
D ,

andF F can be written as

F F 5S ~F ev!
22~F od!1~F od!2 F ev~F od!11~F od!1F ev

~F od!2F ev1F ev~F od!2 ~F ev!
22~F od!2~F od!1

D . ~9!

In four dimensions, only~F ev!
2 terms can contribute sinceF ev is either a two-form or zero-form.

Thus we take the ordinary trace for ‘‘GTr’’ in order to get a meaningful result. In three dimen-
sions, onlyF odF ev-type terms can contribute sinceF od is a one-form. In this case, ‘‘GTr’’
becomes taking the ordinary trace after adding the odd parts ofF F . We denote this procedure as
‘‘QTr’’ following the notation of the queer trace defined in Ref. 13. In two dimensions, two types
of terms can contribute,~F ev!

2 andF odF od . However, onlyF odF od-type terms have second
derivative terms and we take ‘‘GTr’’ in such a way that these terms do not vanish. Thus we take
supertrace in the two-dimensional case. Given this rule, the classical topological action~8! be-
comes

~a! in four dimensions
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I5E
M4

Tr F F 52E
M4

Tr F`F; ~10!

~b! in three dimensions

I5E
M3

Q Tr F F 54i E
M3

Tr F`Df, ~11!

wheref51
2~F

†1F!;
~c! in two dimensions

I5E
M2

S Tr F F 52E
M2

Tr~F@F†, F#2DF†`DF!, ~12!

where we used the anticommuting property of one formDF. In this way, we retrieve all three
classical actions of the topological Yang–Mills–Higgs theory that appeared in Refs. 2, 6, and 7.

III. CURVATURE, BIANCHI IDENTITY, AND BRST/ANTI-BRST SYMMETRY

In the geometrical BRST quantization scheme, the base space is extended to a~double! fiber
bundle space so that it contains unphysical~fiber–gauge orbit! directions, as well as physical
~space–time! directions. This scheme was first developed by Thierry-Mieg and Ne’eman14,15with
the principal fiber bundle structure yielding only the BRST symmetry which is related to the ghost
~fiber! direction. It was further developed to yield the BRST and anti-BRST symmetry together.
This was yielded by including the antighost direction and employing a double fiber bundle
structure.16 In order to have the antighost direction a double fiber bundle structure must be used.
In this scheme, the ghost~antighost! field is obtained from the gauge field by replacing its
space–time legdxm with dyN(dȳ N) wherey,ȳ represent the fiber coordinates in a double fiber
bundle.9,17–19 If one does not like the interpretation of this extended fiber bundle approach, one
can take the superspace interpretation given in Refs. 20 and 21, whose view was taken in Perry
and Teo’s work.3 In the superspace approach, the fiber coordinatesy,ȳ are replaced by a set of
anticommuting variablesu and ū which represent the coordinates of an abstract superspace ex-
tended from the space–time basemanifold. However, the resultant BRST/anti-BRST transforma-
tion rules are exactly the same whichever approach one uses. We do not need to distinguish
between the subtle differences of the two approaches because they yield the same result. In the
ordinary Yang–Mills theory, the BRST/anti-BRST symmetry is obtained from a condition which
is to let the ordinary curvature equal the extended curvature. This is tantamount to requiring the
curvature components containing vertical~fiber! directions to vanish, thus only the horizontal
components of curvature~physical Yang–Mills field strength! in the extended space survive. For
this reason, people gave the name ‘‘horizontality condition’’18 to this condition. In this paper, we
denote objects in the extended space with tildes.

Following this geometrical BRST scheme, we first extend the superconnection as

J̃5J1C1C̄ , ~13!

whereC and C̄ are the first generation ghost and antighost forJ , which are given by

C5S c 0

0 cD , C̄5S c̄ 0

0 c̄D . ~14!

Here c and c̄ denotec5ANdy
N and c̄5ĀNdȳ

N, and represent the ghost and antighost fields,
respectively. In this extended space, the curvature is given by
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F̃ 5d̃J̃1J̃ J̃ , ~15!

where

d̃5d1s1 s̄. ~16!

Here,s and s̄ denote one-form exterior derivative operators acting on ghost and antighost direc-
tions expressed in superconnection language. They do the role ofd in space–time. Now, following
the spirit of Refs. 2 and 3, we identify the curvature components in unphysical directions with new
fields. One thing which is different from the previous works2,3 is that here we have the first
generation ghost and antighost fields which are one-forms in the extended space~having onlydy
or dȳ !. This difference was caused by the existence of the one-form curvature components due to
the zero-form scalar field in superconnection formalism:

F̃ 5S F2FF†1c1c̃1m1l1m̄ i ~DF1j1 j̄ !

i ~DF†1j†1 j̄†! F2F†F1c1c̄1m1l1m̄
D . ~17!

Herec, c̄, m, l, andm̄ are the first and second generation ghost and antighost fields for the two
form curvatureF, and j, j̄ are the first generation ghost and antighost fields for the one form
curvatureDF:

c5F mN
1 dxm dyN, c̄5F mN

21 dxm dȳ N,

m5F MN
2 dyM dyN, l5F MN

0 dyM dȳ N,
~18!

m̄5F MN
22 dȳM dȳ N,

j5F N
1 dyN, j̄5F N

21 dȳ N,

where upper indices 1,21,2, etc., represent ghost numbers. For instance,c has ghost number 1 and
c̄ has ghost number21.

The curvature in the extended space should also satisfy the Bianchi identity:

d̃ F̃ 1@J̃ , F̃ #50. ~19!

We thus have two conditions now:

~a! We have to equate Eq.~15! with Eq. ~17!, and
~b! the Bianchi identity, Eq.~19!.

The rules of BRST/anti-BRST symmetry are obtained from these two conditions. The BRST/anti-
BRST transformation rules for the components of the extended superconnectionJ̃ are given by
the condition~a!:

even part: sA1dc1cA1Ac5c,

s̄A1dc̄1 c̄A1Ac̄5c̄,

sc1cc5m,

s̄ c̄1 c̄ c̄5m̄,

sc̄1 s̄c1cc̄1 c̄c5l,

~20!

odd part: sF1cF2Fc5j,

s̄F1 c̄F2F c̄5 j̄.
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The condition~b!, the Bianchi identity, gives the BRST/anti-BRST transformation rules for the
components of the extended curvatureF̃ :

even part: sc1dm1Am1cc2mA2cc50,
s̄c̄1dm̄1Am̄1 c̄c̄2m̄A2c̄ c̄50,
sc̄1 s̄c1dl1Al1cc̄1 c̄c2lA2c c̄2c̄c50,
sm1cm2mc50, ~21!

s̄m̄1 c̄m̄2m̄c̄50,
sl1 s̄m1cl1 c̄m2mc̄2lc50,
sm̄1 s̄l1cm̄1 c̄l2l c̄2m̄c50,

odd part: sj1cj1Fm2mF1jc50,
s̄j̄1 c̄j̄1Fm̄2m̄F1 j̄ c̄50,
sj̄1 s̄j1cj̄1 c̄j1Fl2lF1j c̄1 j̄c50.

As usual, we have to introduce auxiliary fields to completely fix the BRST/anti-BRST transfor-
mation rules. We define auxiliary fields as

sc̄5b, sc̄52k, sl5h, sm̄5h̄, sj̄5z, ~22!

then we get the following from Eqs.~20! and ~21!:

s̄c52b2@c, c̄#1l, s̄c5k2Dl2@c, c̄#2@ c̄, c#,

s̄m52h2@c, l#2@ c̄, m#, s̄l52h̄2@c, m̄#2@ c̄, l#, ~23!

s̄j52z2@F, l#2@c, j̄ #2@ c̄, j#.

The nilpotency of BRST/anti-BRST transformation operators,s25 s̄250, determines all the rest:

sb50, s̄b5@b, c̄#2h̄,

sk50, s̄k52@b, c̄#1Dh̄2@ c̄, k#1@m̄, sA#,

sh50, s̄h5@b, l#2@c, h̄#2@ c̄, h#2@m̄, sc#, ~24!

sh̄50, s̄h̄5@b, m̄#2@ c̄, h̄#,

sz50, s̄z5@b, j̄ #2@F h̄#2@ c̄, z#2@m̄, sF#.

HeresA, sc, andsF were given in Eq.~20!. The square brackets in Eqs.~23! and~24! denote a
graded commutator. For instance, [c,c̄]5cc̄1 c̄c and [b,c̄]5bc̄2 c̄b, sincec andc̄ are anticom-
muting fields andb is a commuting field. In this way, we obtain all the transformation rules of the
BRST/anti-BRST symmetry of the topological Yang–Mills–Higgs theory in Refs. 3, 6, and 7.
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IV. COMPARISON WITH THE ‘‘HORIZONTALITY CONDITION’’ APPROACH

The BRST symmetry of the ordinary Yang–Mills theory can be obtained from the so-called
horizontality condition.18 On the other hand, the BRST symmetry of the topological Yang–Mills
theory cannot be obtained through a direct application of the horizontality condition. However, it
can be obtained through a modified definition of extended curvature, and the Bianchi identity in
the extended space.3 In Ref. 8, we modified the horizontality condition in a way that it yielded the
complete BRST symmetry of the topological Yang–Mills–Higgs theory, without relying upon the
Bianchi identity. The rationale of this modified horizontality condition approach was the follow-
ing. In the ordinary Yang–Mills case, the curvature in the extended space has vanishing compo-
nents along the vertical directions which represent the gauge fiber orbits of classical gauge sym-
metry. This fact can be expressed as the horizontality condition

F̃5d̃Ã1ÃÃ5dA1AA5F, ~25!

where d̃5d1s1 s̄ and Ã5A1c1 c̄. In the topological case, the symmetry is bigger than the
gauge symmetry, and the extra symmetry which cannot be included as gauge symmetry also has
to be gauge fixed. This means that we need extra ghosts besides the ordinary ones (c,c̄) which are
originated from the gauge symmetry. Hence one may modify the horizontality condition by adding
‘‘permissible’’ ghosts to the extended curvature so that these additional ghosts account for the
extra symmetry of topological nature. For this purpose, we take the modified horizontality condi-
tion as

F̃T5F, where F̃T5F̃1F̃8, ~26!

whereF̃8 consists of ghosts and antighosts only and satisfies the nilpotency of BRST symmetry,
s2F̃8(5 s̄ 2F̃8)50. Furthermore, thisF̃8 has to be chosen in a way that it respects
s2Ã8(5 s̄ 2 Ã)50. In this way, we can obtain the correct BRST/anti-BRST symmetry of the
topological Yang–Mills theory in Ref. 3. What we have explained so far is for the topological
Yang–Mills case, not including the Higgs field. In order to encompass the topological Yang–
Mills–Higgs case,6,7what we did in our previous work8 was to carry out the same procedure in the
superconnection framework:

F̃ T5F , where F̃ T5F̃ 1F̃ 8. ~27!

Here,F , F̃ were given by Eqs.~7! and ~15!, respectively, andF̃ 8 was given by

F̃ 852S c1c̄1m1l1m̄ i ~j1 j̄ !

i ~j†1 j̄†! c1c̄1m1l1m̄
D .

Comparing the above approach that we used in our previous work with the Bianchi identity
approach that we have carried out in this paper, we note two things. First, the newly defined
components of the extended curvature in the Bianchi identity approach correspond to the addi-
tional curvatureF̃8 ~or F̃ 8! in the modified horizontality condition approach. Second, the Bianchi
identity condition for the newly defined curvature in Eq.~17! is replaced with the BRST/anti-

BRST nilpotency condition for the additional curvature,F̃8 ~or F̃ 8!, in the modified horizontality
condition approach. Now, the first observation tells us that the newly defined curvature compo-
nents (c,c̄,m,l,m̄,j,j̄) in Eq. ~17! in the Bianchi identity approach are necessitated by the
existence of extra symmetry of topological nature, since the ordinary gauge symmetry has been
accounted for by the ghost sector of the extended connectionÃ ~or J̃ !. The second observation
tells us that the Bianchi identity in the extended space is simply another expression of the BRST/
anti-BRST nilpotency condition for the extra ghost/antighost fields appearing in the newly added
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piece of curvature,F̃8 ~or F̃ 8!, in the modified horizontality condition approach. In fact, the last
point was already implied in the Bianchi identity approach, since the validity of the Bianchi
identity, which is given by

d̃F̃1@Ã, F̃#50, where F̃5d̃Ã1ÃÃ, ~28!

depends on the nilpotency property of the extended exterior derivatived̃5d1s1 s̄. Also, the
nilpotency of d̃ implies the nilpotency of the BRST symmetry,s25 s̄250. Therefore, in the
Bianchi identity approach one does not require the nilpotency condition for the newly introduced
ghost degrees of freedom, since this condition is taken care of by the Bianchi identity itself.

Now, the above observations can be summed up as follows. Loosening the horizontality
condition is necessary in the topological Yang–Mills-type theories so that new ghost degrees of
freedom, which take care of the extra symmetry of topological nature, can be introduced. This
point can be implemented either by modifying the definition of the extended curvature in the
Bianchi identity approach or by adding a new piece of extended curvature, which is solely con-
sisted of~anti! ghost fields, in the modified horizontality condition approach. The correct behavior
of these new ghost fields is then insured by the BRST nilpotency condition in the modified
horizontality condition approach, and by the nilpotency property of the extended exterior deriva-
tive in the Bianchi identity approach. Hence, in the geometrical setting, the BRST symmetry of
topological nature can be expressed by the extended curvature containing all ‘‘permissible’’ ghosts
whose property is dictated by the Bianchi identity in the extended space. In other words, from the
BRST symmetry view point only the extended curvature containing all ‘‘permissible’’ ghosts is a
geometrically meaningful object in the topological Yang–Mills–Higgs theory.

V. CONCLUSIONS

In this paper, we found the rules for the BRST/anti-BRST symmetry encompassing topologi-
cal Yang–Mills–Higgs theory in two, three, and four dimensions. This was done in the supercon-
nection framework so that the scalar field is regarded as a part of a connection, as is the vector
gauge field. Using the superconnection language, we obtain the classical topological actions in
two, three, and four dimensions from a classical action of topological Yang–Mills type through
appropriate projections depending on the dimensions of space–times to which corresponding
theories belong. In this framework, the BRST/anti-BRST rules for the scalar and vector gauge
fields are obtained together rather than separately. This also tells us that the usefulness of the
superconnection language when dealing with the scalar and vector gauge fields is greater than in
the ordinary treatment, because in the ordinary treatment the BRST/anti-BRST rules for these two
fields are obtained separately. In the superconnection language these rules are obtained in one
calculation. As a result, we extend the work of Perry and Teo3 in the topological Yang–Mills case
to the topological Yang–Mills–Higgs case in two7 and three6 dimensions using the Bianchi
identity. Comparing the present work with our previous work of the modified horizontality con-
dition approach, we conclude the following in the topological Yang–Mills–Higgs theory. First,
new ghost fields appear due to the existence of topological symmetry, and these fields can be
identified as the components of the modified extended curvature in Perry and Teo’s work.3 Sec-
ond, the symmetry property that these new ghosts should obey is constrained by the Bianchi
identity in the extended space, and this requirement is nothing but the nilpotency condition of the
BRST symmetry in another guise. Thus in theories with topological symmetry, it can be said that
if things are expressed in the extended space, a space which contains the ghost directions, then one
can treat the BRST symmetry in a geometrical setting. In this geometrical setting the curvature
should contain all the ‘‘permissible’’ ghosts, and the BRST symmetry due to the topological
symmetry is constrained by the Bianchi identity in this extended space.
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It is shown that there exists such a collection of variables that the standard QCD
Lagrangian can be represented as the sum of usual Palatini Lagrangian for Einstein
general relativity and the Lagrangian of matter and some other fields where the
tetrad fields and the metric are constructed from initial SU(3) Yang–Mills fields.
© 1996 American Institute of Physics.@S0022-2488~96!02309-2#

I. INTRODUCTION

Unified description of all interactions is one of the main goals of modern physics. Partial
unification, namely unification of electromagnetic and weak interactions, is achieved in Salam–
Weinberg theory and its numerous modifications. More or less satisfactory unification of electro-
magnetic, weak and strong interactions is achieved in grand unified theories based on various
‘‘large’’ gauge groups~SU(5),SO(10),etc.! But the satisfactory unified description of electro-
magnetic, weak, strong, and gravity interactions is still an open problem.

The origin of the difficulties is clear. Whereas all realistic theories of strong, weak, and
electromagnetic interactions are based on Yang–Mills~YM ! action

SYM5E tr~dA1A`A!`* ~dA1A`A!, ~1!

the general relativity is based on Einstein–Hilbert action

SEH5E dxAgR ~2!

or, in Palatini formalism, on the action

SP5E ea`eb`~dG1G`G!cd«abcd. ~3!

@We omit inessential overall factors before actions~1!–~3!.#
Obviously, the mathematical structure of action~1! and actions~2! or ~3! is very different. So

the origination of the theory, that reduces to Eqs.~1! and~2! ~or Eq. ~3!! in certain limiting cases
is a very hard problem.

The most direct way to construct unified theory of all interactions is, of course, to replace
action~1! by some gravity-like action, or, vice versa, to replace action~2! or ~3! by another one,
that is more similar to Eq.~1!.

The first possibility is realized, for instance, in tensor dominance~or strong gravity! model1

~see also Ref. 2 for review and further references!. The Lagrangian of this model is very similar to
a gravitational one, but until now relation of this model and realistic physical models based on YM
action is unclear.

The second possibility is realized, for example, in Poincare gauge theories of gravitation~see
Refs. 2 and 3 for review!, or in SL(6,C) gauge theory of Salam, Isham, and Strathdee4 and their
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modifications.2,5,6But physical meaning of all above mentioned theories is not quite clear because
the corresponding actions are unlike the action of the standard model and it is not obvious that the
latter can be considered as some limiting case of the former.

There exist also many other approaches to unification of gravity and YM gauge theories based
on different modifications of actions~1!–~3!. But, to author’s knowledge, all theories proposed are
rather far from real physics.

But there exist the third way to unification of general relativity and YM theories. Namely, one
can try to find such variables that standard Einstein–Hilbert or Palatini actions written in these
variables are transformed in standard YM action~plus, maybe, the action with some supplemen-
tary fields!, or, vice versa, one can try to transform by change of variables the usual YM action in
Einstein–Hilbert or Palatini ones.

During the last 20 years, and especially during last 5 years, the great progress was achieved in
both directions.

First of all, the author would like to mention the Ne’eman–Sijacki ’’chromogravity’’ ap-
proach to QCD developed in Ref. 7. Ne’eman and Sijacki showed that there exists the mechanism
of appearance of gravity-like forces in infrared limit of QCD. Some speculations in spirit of
Ne’eman–Sijacki approach were also given in recent paper of Kuchiev.8

But in present paper we will follow another approach, namely the approach proposed in a
previous paper.9

Let us consider, first, YM theory and general relativity in three dimensional space-time.10 In
this case YM action in the first order formalism can be written in the form

SYM5E tr*F`~dA1A`A!1l2E tr*F`F, ~4!

whereas first order action for gravity is

S3D5E ea`~dG1G`G!bc«abc . ~5!

In formula ~4! l means coupling constant and* is the Hodge operator with respect to the
space–time metricgmn . ~We reserve more usual notationse or g for determinants of the tetrad
and the metric, respectively.! Below we will consider the case of Euclidean space–time.

For SU(2) gauge group, formsF andA valued in the space of anti-symmetric 333 matrices
and so we can write

*Fab52«abc*Fc, ~6!

SYM5E *Fa`~dA1A`A!bc«abc2l2E *Fa`Fa. ~7!

In three dimensions*Fa are 1-forms and so the first term in Eq.~7! coincides with three
dimensional Palatini actions~5! up to notations! This fact allows to formulate 3D YM theory in
general relativity-like form with the tensor

Gmn5~*Fa!m~*Fa!n ~8!

as the new space–time metric. In particular, usual YM equations appear to be equivalent to
Einstein ones with simple rhs.

The above mentioned results concerning relations between 3D gravity and 3D YM theory
were obtained, first, in the author’s paper.9 Independently, analogous results were obtained also in
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Ref. 11 in the context of~311! dimensional SU(2) YM theory in the gaugeA0
a50. However, in

the latter approach YM induced gravity lives only on the three dimensional hyperplanes
x05const and so this approach is essentially non-covariant.

Further three dimensional space-time geometry discovered in works 9 and 11 was investigated
in Refs. 12–18. In particular, in Ref. 12 solutions of Euclidean 3D YM equations with singularity
on the sphere were discovered. These solutions can be also interpreted as stationary solutions of
4D YM equations in the gaugeA050 and can be considered as analog of Schwarzchild solution
in general relativity. Analogous Schwarzchild-like and Kerr-like solutions of Yang–Mills–Higgs
equations were recently discovered by Singleton.19

It was shown that a quantum particle moving in such a YM field~that is considered as external
one! inside this sphere cannot leave it. So, maybe, such solutions can be used for elaborating the
black hole or microuniverse~see Ref. 20! mechanism of confinement.

We see that in a three dimensional world, gravity does live inside YM theory. It is easy to
understand the origin of such YM induced gravity. Indeed, the usual gravity is described by the
triad of covectorsea defined in each point of the space-time up to SO(3) rotation, and SO(3)
connectionG that defines the parallel transport of tensors in the space-time. All these objects
appear naturally in YM theory–1-forms*Fa play the role of the triad and SU(2) YM connection
A plays the role of the space-time connectionG.

But how to generalize this construction for a realistic four dimensional case?21 Direct gener-
alization is not possible, because, first,*F in four dimensions are 2-forms~rather then 1-forms as
in 3D case!, and, the second, the structure of 4D Palatini action~3! differs from one of 3D action
~5!. Nevertheless, such generalization exists. Moreover, this problem was partially solved, in fact,
almost 20 years ago in Plebanski’s work.22 But Plebanski obtained his results in absolutely dif-
ferent context~he investigated complex structures in general relativity!. Maybe, due to this reason
his results have not been used in investigations of YM induced gravity until now.23

Let us rewrite the Palatini action~3! in spinor notations

SP5E eC8
A `eBC8`~dGAB1GAC`GB

C!. ~9!

~We use the usual isomorphism between the spaces ofO(4) vectors and SU(2)3SU(2) spinors.!
Sign conventions, normalization factors, etc., are describe in section II below. Further, we omit the
part of Palatini action that contains the fieldsGA8B8 . ~See, for instance, Refs. 24 and 25, in which
it was shown that the using of chiral action~9! is very natural, in particular, in Ashtekar formal-
ism.!

One can note that 1-formseAA8 enter in action only in the combination

SAB5eC8
A `eBC8. ~10!

So the Palatini action~9! can be represented in the form

SP5E SAB`~dGAB1GAC`GB
C!. ~11!

Of course, the quantitiesSAB in Eq. ~11! cannot be considered as the independent dynamical
variables. Indeed, due to Eq.~10! the 2-formsSAB satisfy the condition

S~AB`SCD)50. ~12!

Further, Plebanski showed that if the conditions~12! are satisfied and

SAB`SABÞ0, ~13!
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thenSAB can be represented in form~10! with non-degenerate tetradeAA8. So the Palatini action
~9! is equivalent to Plebanski action

SPl5E SAB`~dGAB1GAC`GB
C!1E fABCDS

AB`SCD. ~14!

The second term in Eq.~14! with totally symmetric Lagrange multipliersfABCD is introduced
to take into account condition~12!.

In action~14! fieldsSAB, GAB andfABCD are independent dynamical variables. The first term
in Eq. ~14! coincides with the first term in the first order SU(2) YM action

SYM5E FBC`~dABC1ABD`AC
D!1l2E FBC`*FBC ~15!

up to notations. But it does not mean that the gravity lives inside SU(2) YM theory as in 3D case,
because the analog of the second term in Eq.~14! is absent in Eq.~15! and so we have no analog
of Eq. ~12! in SU(2) YM theory. But without condition~12! we cannot reconstruct the tetrad
eAA8.

Let us consider, however, the theory with more large gauge groupG.SU(2). One can
choose amongN5dim G 2-formsF three formsFAB5F (AB) that are transformed as rank two
symmetric spinor under gauge transformations from certain SU(2) subgroup of the groupG. Then
action~15! will be a piece of the total YM action. Further, if dimG>8, then, in general, we can
impose, using other gauge degrees of freedom, five SU(2) invariant gauge conditions

F (AB`FCD)50. ~16!

Conditions~16!, that we will call ‘‘the Plebanski gauge,’’ coincide with Plebanski conditions
~12! up to notations whereas the first term in YM action~15! coincides, up to notations, with the
first term in Plebanski action~14!. So we can conclude that gravity lives inside YM theory if the
dimension of the gauge group is more or equal to eight.Indeed, due to Plebanski theorem we can
reconstruct the tetradeAA8 and the corresponding metric

FAB5eA8
A `eBA8, ~17!

Gmn5em
AA8eAA8n . ~18!

After substituting Eq.~17! in the first term of action~15! we obtain the usual Palatini action
for gravity ~9!.

The main idea of the present work is to use of the gauge (16) to reformulate the YM theory in
general relativity-like form.Below we will show that the gauge~16! really exists for the gauge
group SU(3) and the corresponding gauge theory, the Quantum Chromodynamics, can be formu-
lated in the close analogy with general relativity. But before author would like to give some
additional notes concerning 2-forms formalism in general relativity.

Plebanski results allow to use three 2-formsSAB instead of metric. In Plebanski’s approach
these forms satisfy the constraints~12! that play the crucial role in Plebanski’s formalism. But
later it was shown that this conditions are not necessary. Namely, it appears that, in generic case,
any three 2-forms define unique, up to conformal factor, the metric, with respect to which they are
~anti!-self-dual. These statement is known now as Urbantke theorem~see Ref. 26. Another proof
and some refinements were given in Ref. 27!. In particular, in generic case any collection of three
2-forms defined up to SL(3) transformation naturally determine the unique metric. Moreover,
later t’Hooft showed28 that any triple of two forms~with some non-degeneracy condition! natu-
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rally defines not only the metric but also certain SL(3) connection and so it is possible to
reformulate the general relativity in terms of triples of 2-forms. Similar formalism with GL(3)
connection instead of SL(3) ones was proposed also in recent paper.29

However, the Lagrangian of t’Hooft and its modifications are reduced to Plebanski’s Lagrang-
ian ~14! by imposing of gauge conditions that are exactly coincide with Eq.~12!. On the other
hand, t’ Hooft Lagrangian, without the imposing of conditions~12!, is quadrilinear and so is not
similar to YM one. By these reasons in the present paper we use the old Plebanski formalism
rather then its further generalizations.

Clear relations between gravity and YM theory also appear in Ashtekar formalism.30 An
attempt to develop the formalism for unified description of YM and gravity fields in the spirit of
Ashtekar phase space approach was done in other works.31 However, this theory gives the con-
ventional YM theory only in the lowest order in the fields and so it is hard to make consistent its
predictions with ones of the Standard Model. Originally discovered,30 it was very unlike the
Plebanski approach. But later it was shown32 that Ashtekar formalism can be reproduced by~311!
decomposition of Plebanski Lagrangian.

The paper is organized as follows. In section II we describe our notations. In sections III and
IV we formulate QCD in general relativity-like form at classical amd quantum levels respectively.
In section V we discuss obtained results.

II. NOTATIONS

Indexesa,b,c,d are frame ones and run over the set$0,1,2,3%. Indexesm,n,p,q are world
ones and run over the same set. Upper case Latin indexesA,B,C, . . . are SU(2)spinor ones and
run over the set$0,1%. Greek indexesa,b,g runs over the set$1,2,3%.

A. SU(2) spinors and O(3) vectors

Lowering and raising of SU(2) spinor indexes are performed by anti-symmetric spinors
«AB , «AB, «015«01511,

wA5wB«BA , wB5«BAwA . ~19!

Hermitian conjugation of SU(2) spinors are defined as

~w†!AB . . .5w̄CD . . .«
CA«DB . . . , ~20!

where quantitiesw̄CD . . . are complex conjugated towCD. The spaces of symmetric second rank
SU(2) spinors and O(3) vectors are isomorphic. The isomorphism is established by the formula

Sa↔SAB52
i

&

Sasa
AB , ~21!

wheresaB
A are Pauli matrices. Real vectors correspond to Hermitian spinors,

«abgUaVbWg5&UABVBCWA
C SaSa5SABSAB . ~22!

Below we will use the convention~21! with one exception: ifGa are components of some
O(3) connection and

Ra5dGa1
1

2
«abgGb`Gg ~23!
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are components of the corresponding curvature form, then

GAB5
1

2i
sa
ABGa, RAB5

1

2i
sa
ABRa. ~24!

Using Eq.~24!, one can prove that

RAB5dGAB1GC
A`GCB. ~25!

B. SU(2)3SU(2) spinors and O(4) vectors

O(4) frame vector indexes are lowered and raised by the tensordab. The spaces of rank~1,1!
SU(2)3SU(2) spinors and O(4) vectors are isomorphic. The isomorphism is established by the
formula

SAA8↔Sa5ga
AA8SAA8 , ~26!

wherega
AA8 are Euclidean Infeld–van der Vaerden symbols for flat space

~ga
AA8!5S 1

&

dA8
A ,

i

&

saA8
A D . ~27!

Real vectors correspond to Hermitian spinors~Hermitian conjugation of the latter is defined in
the previous subsection!,

SaSa5SAA8S
AA8. ~28!

C. O(4) (anti)-self-dual tensors and O(3) vectors

For frame O(4) tensors Hodge operator is defined as usual

*Mab5
1

2
«abcdMcd . ~29!

The spaces of the~anti!-self-dual tensors and O(3) vectors are isomorphic. The isomorphism
is estublished by the formula

6Ma56hab
a 6Mab , ~30!

where6hab
a are t’Hooft symbols

1hab
a 52

1

2i
s̄aB8
A8 gaAA8gb

AB8 , ~31!

2hab
a 5

1

2i
saB
A gaAA8gb

BA8 . ~32!

t’Hooft symbols satisfy the following equations:

6hac
a 6hcb

b 52
1

4
dabdab1

1

2
«abg 6hab

g ~33!
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6hab
g 6hcd

g 5
1

4
~dacdbd2daddbc6«abcd!. ~34!

Formulas~22!, ~28!, ~33!, and~34! allow easy translation of any formula from spinor to vector
language and vice versa.

III. PLEBANSKI GAUGE IN SU(3) YANG-MILLS THEORY

A. Plebanski theorem for real 2-forms

Plebanski showed that three complex 2-formsSAB, satisfying conditions~12! and~13!, can be
represented in form~10!. The ‘‘real’’ variant of this theorem can be formulated in the following
way:

Let Sa be three real 2-forms obeying the conditions

Sa`Sb5
1

3
dabSg`Sg, ~35!

Sg`SgÞ0. ~36!

Let Gmn be the Urbantke metric~our definition of the metric~37! differs from the original
definition of Urbantke26 by inessential factor!

Gmn52
4

3
@Stu

d Svw
d « tuvw#21«abg«pqrsSmp

a Sqr
b Ssn

g . ~37!

Then Gmn has definite signature,(1111) or (2222), and Sa can be represented, respec-
tively, as

Sa562hab
a ea`eb. ~38!

One notes, that the equations~35! and~36! are nothing but reformulation of Eqs.~12! and~13!
in vector language. The spinor analog of Eq.~38! is

SAB56
1

2
eAC8`eC8

B , ~39!

where

~S†!AB5SAB, ~e†!AA85eAA8. ~40!

Equation~39! is the analog of Eq.~10!.
Let us prove the theorem formulated above. Let

Mab5«mnpqSmn
a Spq

b . ~41!

Then the matrixMab has a definite signature@see Eq.~35!#. So, due to results of Urbantke26 and
Harnett,27 the Urbantke metric~37! is non-degenerate, has a definite signature, and 2-formsSa are
self-dual or anti-self-dual with respect to Hodge operator corresponding to this metric. Hence, the
Urbantke metric can be written as

Gmn56em
a en

a , ~42!

whereas 2-formsSa as
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Sa5Cb
a 2hab

b ea`eb ~43!

or

Sa5Cb
a 1hab

b ea`eb, ~44!

because the set of three 2-forms6hab
a ea ` eb is a basis in the space of the~anti!-self-dual forms.

One notes, that Eq.~44! can be transformed in Eq.~43!. Indeed, 1-formsea are defined by Eq.
~42! up to transformation

ea→Ob
aeb, OPO~4!. ~45!

Let O5diag$1,21,21,21%. Then

1hab
a Oc

aOd
b522hcd

a . ~46!

So, redefiningea andCb
a according to Eqs.~45! and~46!, one can transform Eq.~44! in Eq. ~43!.

One substitutes Eq.~43! in Eq. ~35!. Using the formulas of the section II C, one obtains

Cg
aCg

b5
1

3
dabCg

dCg
d . ~47!

So

Cb
a56COb

a , ~48!

where

OPSO~3!, C5A1

3
Cg

dCg
d.0. ~49!

For givenO P SO(3) there exists the matrixÕ P SO(4) such that

2hab
a Õc

aÕd
b5~O21!b

a 2hcd
b . ~50!

So, redefiningea according to Eq.~45! with O5Õ, and taking into account Eq.~45!, one reduces
Eq. ~43! to

Sa56C2hab
a ea`eb. ~51!

Finally, substituting Eq.~51! in Eq. ~37!, one obtains thatC51. The theorem is proved.

B. SU(3) YM action in Plebanski gauge

We start from the usual SU(3) YM action in the first order formalism,

SYM5E tr@F`~dA1A`A!1l2F`*F#, ~52!

whereF andA are considered as independent variables.
The formsF andA valued in the space of 333 anti-Hermitian traceless matrices. So we can

write

A5G1 iF, F5S1 iQ, ~53!
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whereG, F, S, andQ valued in the space of real 333 matrices, and

GT52G, ST52S,

FT5F, QT5Q, ~54!

tr F50, tr Q50,

where the superscriptT means transposition.
Substituting Eq.~53! in Eq. ~52!, one obtains

SYM5E tr@S`~R2F`F!1Q`DF1l2S`*S2l2Q`*Q#, ~55!

where

R5dG1G`G, ~56!

DF5dF1G`F1F`G. ~57!

Decomposition~53! corresponds to certain embedding of the algebra su(2)'o(3) in su(3).
So G andR can be considered as the forms of connection and curvature corresponding to the
subgroup SU(2) of the gauge group SU(3) whereasD is covariant derivative defined by the
connectionG.

Due to Eq.~54!, one can write

Sab52«abgSg

and to impose the gauge conditions~35! on the 2-formsSa.
Substituting Eq.~39! in Eq. ~55!, one obtains the action

S52E eC8
A `eBC8`RAB12E eAC8`eC8

B `FA
CDE`FBCDE1E QABCD`DFABCD

2l2E eAC8`eC8
B `* ~eA

D8`eBD8!2l2E QABCD`*QABCD , ~58!

whereRAB is defined by formula~25!, FABCD andQABCD are the formsF, Q written in the spinor
language Here we have wrote the YM action in new variables for the upper sign case in Eq.~39!.
Below we will show that this is enough to formulate quantum version of the theory under con-
sideration.

The first term in Eq.~58! is the Palatini action. So action~58! can be considered as one for
gravity coupled with several matter fields. In particular, first three terms in action~58! are invari-
ant under the action of the group of the general coordinate transformations Diff(R4)—just as in
general relativity. But the total action, of course, is not Diff(R4) invariant because the last two
terms in Eq.~58! depend on fixed space–time metric via Hodge operator.

Action ~58! can be rewritten in several equivalent forms. First, one can represent the connec-
tion in the form

G5Ĝ1K,

where Ĝ is unique torsionless metric connection andK is contorsion 1-form. LetD̂ and R̂ are
covariant differential and curvature 2-form corresponding to connectionĜ. Then
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E eC8
A `eBC8`RAB5E eC8

A `eBC8`~R̂AB1D̂KAB1KAC`KB
C!. ~59!

But due to torsionless condition

D̂eAA850

the second term in the rhs of Eq.~59! is total divergence and so can be omitted. Hence, the action
~58! can be rewritten as

S52E eC8
A `eBC8`~R̂AB1KAC`KB

C!12E eAC8`eC8
B `FA

CDE`FBCDE1E QABCD

`~D̂FABCD14K (A
E F uEuBCD)!2l2E eAC8`eC8

B `* ~eA
D8`eBD8!2l2E QABCD`*QABCD .

~60!

We see that the first term in Eq.~60! is nothing but usual Einstein–Hilbert action. Further, as
in usual theories of gravitation with torsion, action~60! depend on torsion quadratically without
derivatives. So torsion can be eliminated from action by solving equations of motion. We return to
discussion of this point in the last section.

The ‘‘matter’’ terms in the action seem rather strange. But they can be rewritten in more
familiar form if one eliminates the fieldF from the action by solving the equations

dS

dF
50. ~61!

Substituting the solution of Eq.~61! in Eq. ~58!, one obtains

S52E eC8
A `eBC8`RAB1

1

2 E DQABCD`!DQABCD2
1

6 E eC8
A `eBC8`!DQA

CDE`!DQBCDE

2l2E QABCD`*QABCD2l2E eAC8`eC8
B `* ~eA

D8`eBD8!, ~62!

where! denotes Hodge operator with respect to YM metricGmn .
This form of matter action is more recognizable The second and the third terms in Eq.~62!

can be interpreted as ‘‘kinetic’’ ones whereas the forth term can be considered as ‘‘mass’’ term for
field Q. The last term in Eq.~62! can be rewritten as

S25E dxAg@gmpgnqGmnGpq2~gmnGmn!
2#

and so can be considered as ‘‘mass’’ term for chromo-gravity field. Terms of such type in the
action are already considered in context of strong gravity approach.20

We will continue the investigation of SU(3) YM theory in introduced variables in the next
section at quantum level. But before we must prove that Plebanski gauge really fixes the gauge up
to SU(2) transformations.

C. Investigation of the Plebanski gauge

Any SU(3) matrixU can be written in the form

U5eiv, ~63!
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wherev is a traceless Hermitian 333 matrix. Pure imaginary matricesv corresponds to genera-
tors of the subgroup SU(2), whereas real matrices can be considered as coordinates on the space
SU(3)/SU(2).Obviously, the latter satisfy the equations

vab5vba, vaa50. ~64!

Let us consider the infinitesimal gauge transformations with parameters obeying Eq.~64!

dA5 idv1 i @A,v#, ~65!

dF5 i @F,v#. ~66!

Comparing Eqs.~65!, ~66!, and~53!, one obtains

dG52@F,v#, dF5Dv, ~67!

dS52@Q,v#, dQ5@S,v#. ~68!

Let

TABCD5* @S(AB`SCD)#. ~69!

Using Eq.~68!, one finds

dTABCD5c«mnpqeA8m
(A en

BuA8uQEFGpq
C vD)EFG, ~70!

wherec is irrelevant numerical constant,em
AA8 andQpq

ABCD are components of the formseAA8 and
QABCD, whereasvABCD is SU(2) spinor that corresponds to O(3) tensorvab.

To prove that Plebanski gauge reduces the initial SU(3) YM theory to the SU(2) one, it is
sufficient to prove that the equations

dTABCD50 ~71!

have the only trivial solutionvABCD50 for almost all field configurations.
One notes that due to Eq.~64!

vABCD5v~ABCD!. ~72!

So Eqs.~71! are the system of five linear homogeneous equations for five unknownvABCD.
The system~71! can be rewritten as

GEFG
(ABCdH

D)vEFGH50, ~73!

where

GABCEFG5«mnpqeA8m
A en

BA8Qpq
CEFG . ~74!

In generic case, the spinorGABCEFG satisfies the only constraints

GABCDEF5G~AB!CDEF, GABCDEF5GAB~CDEF!. ~75!

Now let us consider the field configuration for which the only non-zero components of
GABCDEF areG000000, G111111, and

G0001115G0010115G0011015G001110.
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For such configuration one obtains from Eq.~73!

G000000v00011G000111v111150,

G000000v000050, G000111v001150, ~76!

G111111v011150, G111111v111150.

Obviously, that the system~76! has the only trivial solution for non-zeroG000000, G111111, and
G000111.

Let

MEFGH
ABCD5G(EFG

(ABCdH)
D) ~77!

the spinorMEFGH
ABCD can be considered as some 535 matrixM . We have proved that detM Þ 0 for

certain field configuration. But detM is polynomial with respect to fieldseAA8 andQABCD. So
detM Þ 0 for almost all field configuration. This means that the system~73! has the only trivial
solution for almost all configurations of fields.

IV. QUANTIZATION

We start from usual expression for Euclidean vacuum expectation value of certain Hermitian
gauge invariant functionalO5O @A,C,C̄#:

^O &5E dAdC̄dCO @A,C̄,C#exp$2SYM2Smat%, ~78!

whereC̄,C are matter fields,

SYM@A#52
1

4l2 E tr~dA1A`A!`* ~dA1A`A!, ~79!

and

Smat5E dxAgH (
flavors

~C̄f¹̂C f2mfC̄fC f !J . ~80!

Formula~78! can be written as

^O &5E dFdAdC̄dCO @A,C̄,C#expH i E tr@F`~dA1A`A!#J expH 2l2E trF`*F2SmatJ
~81!

or, finally, as

^O &5E dSdQdGdFdC̄dCO @G1 iF,C̄,C#

3expH i E tr@S`~R2F`F!1Q`DF#J expHl2E tr@S`*S2Q`*Q#J exp$2Smat%,

~82!

where variablesS, Q, G, andF are defined by~53!.
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We will fix the gauge~namely, Plebanski gauge! by usual Faddeev–Popov trick. We insert in
Eq. ~82! the unit

15E
SU~3!/SU~2!

dm~v!d~* @~Sv!(AB`~Sv!CD)# !DFP ~83!

wheredm(v) is invariant measure on SU(3)/SU(2), (Sv)AB is a gauge transformation ofSAB,
andDFP is Faddeev–Popov functional. Then, after usual manipulations, one obtains

^O &5E dSdQdGdFdC̄dCO @G1 iF,C̄,C#d~* @S(AB`SCD)# !detM

3expH i E tr@S`~R2F`F!1Q`DF#J expHl2E tr@S`*S2Q`*Q#J exp$2Smat%.

~84!

Here detM is Faddeev–Popov determinant, whereM is 535 matrix

MEFGH
ABCD5* @S(AB`Q(EFG

C dH)
D)#. ~85!

This matrix coincides, on the surface

S(AB`SCD)50, ~86!

with the matrix~77!. So detM Þ 0 for almost all field configurations~see the section III C!.
Let S 1(S 2) be the set of all 2-formsSa for which Urbantke metric~37! is positive~nega-

tive! definite. We can write the integral~84! as the sum of the integrals overS 1 andS 2 .
Obviously, thatS 2 is mapped ontoS 1 by the transformationS→2S, Q→2Q. But the

latter is equivalent to the complex conjugation in the integral overS 2 . So the integral over
S 1 is equal to complex conjugated integral overS −. Hence,

^O &5ReE
S 1

dSdQdGdFdC̄dCO @G1 iF,C̄,C#d~* @S(AB`SCD)# !detM

3expH i E tr@S`~R2F`F!1Q`DF#J expHl2E tr@S`*S2Q`*Q#J exp$2Smat%.

~87!

We showed in the section III A that the solution of Plebanski gauge conditions~86! for S
P S 1 is given, in vector language, by the formula

Sa52hab
a ea`eb. ~88!

So, forSP S 1 ,

E )
a,n

den
a)

a
m.n

d~Smn
a 22hab

a em
a en

b!5 f ~S! )
a<b

~a,b!Þ~3,3!

dS * FSa`Sb2
1

3
dabSg`SgG D , ~89!

where the functionf (S) to be determined.
It is easy to prove that

f5const. ~90!
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Indeed,f (S) is scalar density with respect to general coordinate transformations and O(3) gauge
transformations. So

f5 f ~«mnpqSmn
a Spq

a !. ~91!

But the dimension off is zero. So the function~91! is a constant.
Inserting Eqs.~89! and ~90! in Eq. ~87!, one obtains

^O &5ReE dedQdGdFdC̄dCO @G1 iF,C̄,C#detM exp$ iS12l2S22Smat%, ~92!

where

S15E eC8
A `eBC8`RAB12E eAC8`eC8

B `FA
CDE`FBCDE1E QABCD`DFABCD ,

S25E dxAg@gmpgnqGmnGpq2~gmnGmn!
2#1E QABCD`*QABCD , ~93!

where

Gmn5em
a en

a ~94!

is YM induced metric, detM is Faddeev–Popov determinant,

MEFGH
ABCD5* @e(AuC8u`eC8

B `Q(EFG
C dH)

D)# ~95!

and

Smat5 (
flavors

E dxAg$ i C̄fAB
~0!ea

ngaDnC f
AB1 i C̄fAB

~0!ea
ngaFn

ABCDC fCD2mfC̄fABC f
AB%.

In the latter formula(0)ea
n means the space–time tetrad~that is,gmn5 (0)ea

m(0)ea
n!.

The integrand in Eq.~92! is O(4) gauge invariant. To fix this gauge freedom, it is necessary
to impose further gauge conditions. The simplest choice is

ema5eam . ~96!

This gauge entangles space–time and gauge degrees of freedom and so, after imposing of the
gauge~96!, they must be considered on the equal footing.

It is easy to prove, that Faddeev–Popov determinant, corresponding to gauge~96!, is equal to
ueu3/2. So formula~92! can be written as

^O &5ReE
eam5ema

dedQdGdFdC̄dCO @G1 iF,C̄,C#ueu
3
2 detM exp$ iS12l2S22Smat%.

~97!

~It would be remind, thatem
AA8 andeam in ~97! are connected, according to rules of the section

II B, by relationem
AA85gaAA8eam!.

The formula ~92! can be also rewritten in manifestly O(4) invariant variables, such as
Gmn ,

Fmnpqrdx
r[F r

abhab
a em

a en
bhcd

b ep
ceq

ddxr ,
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etc. But in such variables the corresponding action in Eq.~92! contains Einstein–Hilbert term
AGR and so is not polynomial. So we prefer to consider formulas~92! and~97! as final results of
our investigation.

V. DISCUSSION

We have shown that gravity-like interactions live inside QCD. This conclusion is supported
by the results of Ne’eman and Sijacki7 concerning existence of gravity-like interactions in infrared
sector of QCD, and vice versa.

Author hopes that the results presented in this paper will be starting point of various new
approaches to QCD. Here we will list only some themes of the further investigations.

• Rescaling fieldsQABCD andGmn in Eq. ~92!, one can rewrite this formula as

^O &5ReEdedQdGdFdC̄dCO @G1 iF,C̄,C#detM expH il S12S22SmatJ . ~98!

So it is naturally to apply the stationary phase method for expansion of^O & in power series with
respect tol

Such expansion in our theory is absolutely unlike standard perturbative ones in quantum field
theory because in our theory one must expend integrand near some non-perturbative~most likely!
solution of Einstein–Cartan equations~99! that corresponds to some non-trivial vacuum of the
theory under consideration. So the expansion of path integral in power series inl doesn’t mean
that interaction is supposed to be weak. So, in particular, there are no contradictions between our
results and Ne’eman–Sijacky ones concerning the appearance of gravity-like interactions in in-
frared limit of QCD in which interaction is strong.

The stationary points are determined by equations
dS150. ~99!

But Eqs. ~99! are nothing but Euclidean Einstein ones. What is the meaning of known exact
solutions of Einstein equations~such as gravitational instantons, wormholes, etc.! in the context of
QCD?

• In particular, what is the meaning of the flat space solution
Gmn5c2gmn, c5const ~100!

of Eq. ~99!? How to construct the expansion of the integrand in Eq.~98! near such solution? Does
the existence of the flat solutions~100! leads to appearance the vacuum condensates of the gluon
fields?

• The action~92! depends on contorsion 1-form quadratically without derivatives. So the
contorsion can be integrated out. Obviously, this leads to four-fermion interaction terms in the
action~as in usual theories of gravitation with torsion!. Recently such four-fermion interaction are
intensively investigated at effective low energy theory in the spirit of Nambu–Jona-Lasinio
model.33 It would be very interesting to try to investigate such effective theory in framework of
our approach.

• The actionsS1 , S2 , andSmat in Eq. ~92! are polynomial. So it is possible to derive the
corresponding Schwinger equations. What are the solutions of these equations in the usual ap-
proximations? Do the solutions exist that correspond to non-zero vacuum condensate of the field
Gmn?

• The actionS1 in Eq. ~92! is invariant with respect to the group Diff(R4) of the general
coordinate transformations. It is easy to derive the corresponding Ward identities. Obviously, that
these identities express nothing but the energy—momentum conservation. Nevertheless, it is in-
teresting to investigate consequences of such Ward identities because in proposed variables they
have very unusual form and, most likely, can lead to new interesting results.

Now let us discuss the shortcomings of the proposed approach. First, our formulation is
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essencially chiral because left and right SU(2) subgroups of the total SU(2)3SU(2)'O(4)
invariance group of the action~58! play the different roles in our formalism. In itself, it is not a
difficulty, but after imposing of the gauge conditions that entangle space–time and internal de-
grees of freedom@as the gauge~96!#, one obtains the theory that is not manifestly parity invariant.
It is not convenient.

This left–right asymmetry in our approach is connected with the structure of the group
SU(3). Indeed, there is no faithful embedding of the group O(4) in SU(3). So it isneeded more
large gauge group to originate left–right symmetric general relativity-like formalism. Thus

• it is interesting to develop general relativity-like formalism for the grand unified theories
based on the groups SU(5),SO(10),etc. Except left–right symmetric formulation, one may
hope to find natural spontaneous parity breaking mechanism in electroweak sector of the
theory in this way.

Further, our theory is essentially Euclidean and it is unclear how to develop the general
relativity-like formulation of YM theory in which YM induced metric has Lorentzian signature in
presented approach. This shortcoming again is connected with the structure of the gauge group
SU(3). Indeed, the gauge group SU(3) is compact, and so it is impossible to embed in SU(3)
neither the non-compact group SO(3,1) nor any its subgroup in a covariant way.

The existence of the only Euclidean formulation of the theory, per se, is not a difficulty. But
the formulation of the theory in the Minkowski space is more visual. In particular, the absence of
such formulation hampers the investigation of the confinement in our approach. Meanwhile, the
results of the works12,19 indicates that, may be, there exists black hole like mechanism of the
confinement. But black holes live in the Lorentzian space rather then in the Euclidean one.

• The author hopes to overcome the above mentioned difficulties by using the formalism
developed in Ref. 34 where it was shown that SU(N) YM theory is equivalent to certain
GL(N,C) gauge theory in the following sense: classes of the gauge equivalent solutions of
the initial SU(N) YM theory are in one-to-one correspondence to classes of the gauge
equivalent solutions of the above mentioned GL(N,C) gauge theory. In the QCD case
N53, and so Lorentz group SL(2,C) can be embedded in the QCD gauge group in such
GL(3,C) formalism. So it is possible to develop the Lorentzian analog of the Euclidean
general relativity like formulation of QCD given in the presented work.
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A formulation of the consistent histories approach to quantum mechanics in terms
of generalized observables~POV measures! and effect operators is provided. The
usual notion of ‘‘history’’ is generalized to the notion of ‘‘effect history.’’ The
space of effect histories carries the structure of aD-poset. Recent results of J. D.
Maitland Wright imply that every decoherence functional defined for ordinary his-
tories can be uniquely extended to a bi-additive decoherence functional on the
space of effect histories. Omne`s’ logical interpretation is generalized to the present
context. The result of this work considerably generalizes and simplifies the earlier
formulation of the consistent effect histories approach to quantum mechanics com-
municated in a previous work of this author. ©1996 American Institute of Phys-
ics. @S0022-2488~96!00211-3#

I. INTRODUCTION

Nonrelativistic quantum mechanics in its standard formulation is not a theory which describes
dynamical processes in time, but it is a theory which gives probabilities to various possible events
and measurement outcomes at fixed instants of time. The dynamical law of quantum mechanics,
the Schro¨dinger equation, describes the change of the probability amplitude with time. Quantum
mechanics in its usual form does not provide us with a dynamical law which describes the time
evolution of events. This can be succinctly summarized by saying that quantum mechanics in its
usual form does not provide us with a~naive! model of what is ‘‘actually’’ going on on a
microscopic level in a quantum system. It is often felt that this is a serious drawback of quantum
mechanics. Examples for attempts to modify quantum mechanics to a theory providing us with a
model for what is ‘‘actually’’ happening are hidden variables theories~see, e.g., Refs. 1–3!, the
dynamical state vector reduction models~see, e.g., Refs. 4–7!, or related models~see, e.g., Ref. 8!.
The consistent histories formulation of quantum mechanics is another attempt to remedy the
situation and to incorporate time sequences of events and—as a special case—sequential measure-
ments into quantum mechanics without providing a naive dynamical model for the microscopic
world in the above sense and without altering the basic principles and the basic mathematical
structure of Hilbert space quantum mechanics.

The consistent histories approach to nonrelativistic quantum mechanics has been inaugurated
in a seminal paper by Griffiths9 and further developed by Griffiths,10–12 by Omnès,13–20 by
Isham21 and Isham and Linden22,23 and by Isham, Linden, and Schreckenberg24 and applied to
quantum cosmology by Gell-Mann and Hartle25–30and Hartle.31,32Dowker and Kent have carried
out a critical reexamination of the consistent histories approach and particularly of Omne`s’ notion
of truth and of the Gell-Mann–Hartle program~see Refs. 33–35!. A critical discussion of the
consistent histories approach can also be found in Ref. 36. The consistent histories approach
asserts that quantum mechanics provides a realistic description of individual quantum mechanical
systems, regardless of whether they are open or closed. The possibility of a quantum mechanical
description of single closed systems, which neither interact with their environment nor are exposed
to measurements, is denied by the conventional Copenhagen-type interpretations of quantum
mechanics.

By contrast, in the logical interpretation developed by Omne`s, the notion of measurement is
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not a key concept. Instead one takes the point of view that the aim of an interpretation is generally
to provide us with a systematic and unambiguous language specifying the meaning of the objects
in the formalism in terms of real physical objects and specifying what can meaningfully be said
about the physical systems described by the theory. We will call this attitude thesemanticap-
proach to interpretation. Clearly the logical interpretation is a realistic interpretation in the sense
that it is presupposed that physical systems really exist and have real properties regardless of
whether they are measured or not.

A key notion in the formulation of quantum mechanics is the notion of observable. In the
spirit of the logical interpretation the termspeakablewould be more appropriate, but we stick to
the usual terminology. In usual Hilbert space quantum mechanics the observables are identified
with self-adjoint operators on the Hilbert space and propositions about quantum mechanical sys-
tems are identified with projection operators on Hilbert space. There is a one-to-one correspon-
dence between self-adjoint operators on Hilbert space and projection valued~PV! measures on the
real lineR. To every Borel subsetB of R there corresponds one projection operator representing
the proposition that the value of the considered observable is in the setB. More remarks about
observables and propositions in ordinary quantum mechanics can be found in Ref. 37.

The question which objects in the formalism have to be identified with observables~or speak-
ables! is clearly a question belonging to the interpretation of quantum mechanics. Reasonableness
and mathematical simplicity are the guiding principles to answer this question. The most general
notion of observable compatible with the probabilistic structure of quantum mechanics is that of
positive operator valued (POV) measures, which contains the ordinary observables represented by
PV measures onR as a subclass. Quantum mechanics is totally consistent without POV measures,
but POV measures enrich the language of quantum mechanics and enlarge the measurement
theoretical possibilities of quantum mechanics.38,39 On the other hand, the claim that POV mea-
sures represent the observables in quantum mechanics is not only consistent with the mathematical
structure of Hilbert space quantum mechanics but furthermore is also reasonable. Many examples
can be found in the monograph by Buschet al.40

In this work we take on the view that POV measures are the observables in quantum mechan-
ics and that all POV measures should be treated on the same footing and that all effects should be
identified with the general properties~or speakables or beables! of quantum systems. We further
considereveryeffect operator as representative of some sort of reality. Some arguments support-
ing this view can be found in Ref. 37 and references therein. It is perhaps worthwhile to mention
a further simple argument which is essentially due to Ludwig.41 To this end consider a measuring
deviceM consisting of a detectorD ~designed to measure some propertyE associated with some
projection operator! and some scattererS . An appropriately prepared incident physical systemI
~e.g., a particle! is first scattered byS and then detected by the detectorD . To obtain the property
F measured by the deviceM one has to apply the unitary transformation given by the S-matrix
S of S to the property measured byD . Let %I denote the initial state ofI and%S denote the
initial state ofS . Then the relation betweenE andF is given by

tr„S~%I ^ %S !S†~E^1!…5tr~%IF !,

where the trace on the right-hand side is in the Hilbert spaceHI of I and the trace on the
left-hand side is in the tensor productHI ^HS of the Hilbert spacesHI of I andHS of S . The
operatorF is uniquely determined by this equation. However, realistic physical S-matricesS
transform projection operators~according to the above equation! in general to effect operators and
only the set of effect operators is invariant under this transformations. Therefore whether a mea-
suring device measures an effect or a property associated with some projection operator may
depend on an arbitrary cut between the system and the apparatus. This argument can be formalized
~see Ref. 42!.

In the consistent histories approach it is claimed that all results of measurement theory also
follow from the consistent histories approach. In the present work we take seriously this claim and
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continue our efforts to formulate the consistent histories formalism for general observables rep-
resented by POV measures. This program was first formulated and studied in Ref. 37. We will
freely use the notation and terminology from Ref. 37 and review only the bare essentials.

This work is organized as follows: In Sec. II we summarize the consistent histories approach
to nonrelativistic Hilbert space quantum mechanics and the logical interpretation of quantum
mechanics. In Sec. III we recall basic definitions and results from Ref. 37 and we formulate our
generalized~effect! history theory and a generalized logical rule of interpretation for effect histo-
ries. Our results are based on an important theorem by Wright.43 This theorem relies heavily on
the recent solution of the Mackey–Gleason problem~see Refs. 44 and 45!. The results in Sec. III
considerably simplify and generalize the results formulated in Ref. 37. In Sec. IV we present our
summary.

As in Ref. 37 it must be emphasized that the representation and the interpretation of the
consistent histories approach in this work might not be accepted by the authors cited. The present
work solely reflects the inclination and the views of this author.

II. CONSISTENT HISTORIES AND THE LOGICAL INTERPRETATION

We consider a quantum mechanical systemS without superselection rules represented by a
separable complex Hilbert spaceH and a Hamiltonian operatorH. Every physical state of the
considered system is mathematically represented by a density operator onH, i.e., a linear, positive,
trace-class operator onH with trace 1. The time evolution is governed by the unitary operator
U(t8,t)5exp„2i (t82t)H/\… which maps states at timet into states at timet8 and satisfies
U(t9,t8)U(t8,t)5U(t9,t) andU(t,t)51.

In the familiar formulations of quantum mechanics the observables are identified with~and
represented by! the self-adjoint operators onH, and according to the spectral theorem observables
can be identified with projection operator valued~PV! measures on the real line; that is, there is a
one-to-one correspondence between self-adjoint operators onH and mapsO : B~R!→P ~H!, such
that O ~R!51 andO (ø iKi)5( iO (Ki) for every pairwise disjoint sequence$Ki% i in B~R! ~the
series converging in the ultraweak topology!. HereB~R! denotes the Borels-algebra ofR and
P ~H! denotes the set of projection operators onH, i.e., self-adjoint operatorsP satisfyingP5PP.

A meaningful proposition about the system~also calledphysical quality! is a proposition
specifying that the value of some observableO lies in some setBPB~R!. This means that to
every meaningful proposition about the system under consideration there corresponds one projec-
tion operator onH.

In the state represented by the density operator% the probability of a proposition represented
by the projection operatorP is given by tr(%P), where tr denotes the trace inH.

Positive and bounded operatorsF onH, satisfying 0<F<1, are commonly calledeffectsand
the set of all effects on the Hilbert spaceH will be denoted byE~H!. We further denote the set of
all bounded, linear operators onH by B~H!.

If H is an infinite-dimensional Hilbert space, then the set of all projection operatorsP ~H! on
H is weakly dense inE~H!.46

Generalized observablesare now identified with positive operator valued~POV! measures on
some measurable space~V,F !, i.e., mapsO:F→E~H! with the following properties.

~i! O(A)>O(B), for all APF .
~ii ! Let $Ai% be a countable set of disjoint sets inF , thenO(ø iAi)5( iO(Ai), the series

converging ultraweakly.
~iii ! O~V!51.

Generalized observables are also calledeffect valued measures. Ordinary observables~associated
with self-adjoint operators onH! are then identified with the projection valued measures on the
real lineR. Generalizing our above terminology, we regard all propositions specifying the value of
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some generalized observable as generalized physical qualities. In order to discriminate physical
qualities corresponding to ordinary observables from physical qualities corresponding to general-
ized observables, we will call the former ‘‘ordinary physical qualities’’ and the latter ‘‘generalized
physical qualities.’’ In the generalized approach to every physical quality there corresponds one
effect operator.

A homogeneous historyis a maph:R→P ~H!, t°ht . We call t i(h):5min~tPRuhtÞ1! the
initial andt f(h):5max~tPRuhtÞ1! thefinal timeof h, respectively. Furthermore, thesupport of h
is given bys(h):5$tPRuhtÞ1%. If s(h) is finite, countable, or uncountable, then we say thath is
a finite, countable, or uncountable history, respectively. The space of all homogeneous histories
will be denoted byH~H!, the space of all finite homogeneous histories byHfin~H!, and the space
of all finite homogeneous histories with supportS byHS~H!.

By a history propositionwe mean a proposition about the system specifying which history
will be realized. We use the terms history and history proposition synonymously in this work.

In this work we focus attention on finite histories. If a homogeneous history vanishes for some
t0PR, i.e.,ht0 5 0, then we say thath is azero history. All zero histories are collectively denoted
by 0, slightly abusing the notation.

For every finite subsetS of R we can consider the Hilbert tensor product^ tPSH and the
algebraBS

^ ~H!:5B~^ tPSH! of bounded linear operators on̂tPSH. It has been pointed out by
Isham21 that for any fixedS there is an injective~but not surjective! correspondencesS between
finite histories with supportS and elements ofBS

^ ~H! given by

sS :HS~H!→BS
^~H!, h.$htk% tkPS° ^ tkPShtk. ~1!

The finite homogeneous histories with supportS can therefore be identified with projection op-
erators on̂ tPSH. The set of all projection operators on̂tPSH will in the sequel be denoted by
P S

^ ~H!. However, not all projection operators inP S
^ ~H! have the formsS(h) with hPHS~H!.

The projection operators inP S
^ ~H! are calledfinite inhomogeneous histories with support S

and the spaceKS~H!:5P S
^ ~H! of projection operators on̂ tPSH is called thespace of finite

inhomogeneous histories with support S. The space of all finite inhomogeneous histories with
arbitrary support will be denoted byK fin~H! or by P fin

^ ~H!. Furthermore, to every finite homo-
geneous historyhPHfin~H! we associate itsclass operator with respect to the fiducial time t0 by
Ct0

(h): 5 U(t0 ,tn)htnU(tn ,tn21)htn21
•••U(t2 ,t1)ht1U(t1 ,t0). The class operators can be unam-

biguously extended to finite inhomogeneous histories such thatCt0
is additive for orthogonal

projectors, i.e.,Ct0
(h ~ k): 5 Ct0

(h) 1 Ct0
(k) for h'k. The functionald% :K fin~H!3K fin~H!→C,

(h,k)°d%(h,k): 5 tr„Ct0
(h)%(t0)Ct0

(k)†… will be called theconsistency functional associated
with the state%. The consistency functionald% satisfies for allh,h8,kPK fin~H!

~i! d%(h,h)PR andd%(h,h)>0;
~ii ! d%(h,k)5d%(k,h)* ;
~iii ! d%~1,1!51;
~iv! d%(h~h8,k)5d%(h,k)1d%(h8,k), wheneverh'h8;
~v! d%(0,h)50, for all h.

In Ref. 37 we have used a slightly different terminology: the above consistency functionald% has
been called there ‘‘decoherence functional.’’ In this work we want to carefully distinguish biad-
ditive functionals on a Boolean lattice from biadditive functionals defined on a D-poset. Thus, the
former are called consistency functionals, whereas we reserve the term ‘‘decoherence functional’’
for a biadditive functional defined on a D-poset~see below!.

Any collectionC 8 of histories inP fin
^ ~H! is said to beconsistent with respect to the state% if

C 8 is a Boolean algebra@with respect to the meet, join, and orthocomplementation inP fin
^ ~H! and
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with unit 1C 8# and if Red%(h,k)50 for every two disjoint historiesh,kPC 8. Here two~possibly
inhomogeneous! finite historiesh andk are said to bedisjoint if h<¬k, where< is the partial
order onK s(h)øs(k)(H).

It is now easy to see that the consistency functionald% induces an additive probability mea-
surep% on every consistent Boolean sublatticeC,P fin

^ ~H!. The probability measurep% is defined
by

p% :C→R1, p%~h!:5
d%~h,h!

d%~1C ,1C !
. ~2!

The probability measurep% on a consistent Boolean algebraC of history propositions induced by
the consistency functionald% according to Eq.~2! defines two logical relations inC , namely an
implication and an equivalence relation between histories. A history propositionh is said toimply
a history propositionk if the conditional probabilityp%(kuh)[@p%~h`Ck!#/p%(h) is well defined
and equal to one. Two history propositionsh andk are said to beequivalentif h implies k and
vice versa.

The universal rule of interpretation of quantum mechanics can now be formulated as follows.
Rule 1 (Omne`s): Propositions about quantum mechanical systems should solely be expressed

in terms of history propositions. Every description of an isolated quantum mechanical system
should be expressed in terms of finite history propositions belonging to a common consistent
Boolean algebra of histories. Every reasoning relating several propositions should be expressed
in terms of the logical relations induced by the probability measure from Eq. (2) in that Boolean
algebra.

III. CONSISTENT EFFECT HISTORIES

In Ref. 37 we have motivated and introduced the following notion of homogeneous effect
history

Definition 1:A homogeneous effect history„of the first kind … is a map u:R→E~H!, t°ut .
Thesupport of u is given bys(u):5$tPRuutÞ1%. If s(u) is finite, countable, or uncountable, then
we say that u is afinite, countable, or uncountable effect history, respectively. The space of all
homogeneous effect histories (of the first kind) will be denoted byE~H!, the space of all finite
homogeneous effect histories (of the first kind) byEfin~H!, and the space of all finite homogeneous
effect histories (of the first kind) with support S byES~H!. All homogeneous effect histories for
which there exists at least one tPR such that ut50 are collectively denoted by0, slightly abusing
the notation.

The class operatorCt0
defined above for finite ordinary homogeneous histories can be defined

for homogeneous finite effect historiesuPEfin~H!:

Ct0
~u!:5U~ t0 ,tn!AutnU~ tn ,tn21!Autn21

•••U~ t2 ,t1!Aut1U~ t1 ,t0!.

For every pairu and v of finite homogeneous effect histories~of the first kind! we define the
decoherence weightof u andv by

d%~u,v !:5tr„Ct0
~u!%~ t0!Ct0

~v !†….

The functionald% :Efin~H!3Efin~H!→C, (u,v)°d%(u,v), will be called thedecoherence func-
tional associated with the state%.

The mapsS given by Eq.~1! can be extended to a map

sfin :Efin~H!→Bfin
^ ~H!, u.$utk% tkPs~u!° ^ tkPs~u!utk, ~3!
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whereBfin
^ ~H! denotes the disjoint union of allBS

^ ~H!, S,R finite. The mapsfin is neither
injective nor surjective. However,d%(u,v) depends onu andv only throughsfin(u) andsfin(v).
From a mathematical point of view it thus seems to be natural to define the notion ofinhomoge-
neouseffect history as follows:

Definition 2: Let S be a finite subset ofR. Then we call the spaceES
^ ~H!:5E~^ tPSH! of effect

operators on^ tPSH the space of finite inhomogeneous effect histories with supportS. The
space of all finite inhomogeneous effect histories with arbitrary support will be denoted byEfin

^ ~H!.
The elements inEfin

^ ~H! will also be calledeffect history propositions.
The homogeneous elements inEfin

^ ~H! represent equivalence classes of homogeneous effect
histories. In this work we will carefully distinguish between homogeneous effect histories as
defined in Definition 1 and homogeneous elements inEfin

^ ~H!. For clarity of exposition we will call
the formerhomogeneous effect histories of the first kindor ~where no confusion can arise! simply
homogeneous effect histories, whereas the latter will be calledhomogeneous effect histories of the
second kind.

In technical termsEfin
^ ~H! is the direct limit of the directed system$ES

^ ~H!uS,R finite%. All the
ES

^ ~H!, S,R, andEfin
^ ~H! carry several distinct D-poset structures, as discussed in Ref. 37. For

further literature on D-posets and effect algebras, see Refs. 47–54. As in Ref. 37 we use the terms
D-posetandeffect algebrasynonymously. We refer to the D-poset structure onEfin

^ ~H! given by
the partial addition%, whereE1%E2 is defined if E11E2<1 by E1%E2 :5E11E2 , as the
canonical D-poset structure. We will denote the canonical partial addition onEfin

^ ~H! by % and the
canonical partial substraction onEfin

^ ~H! by *.
In Ref. 37 we have used a different notion of inhomogeneous effect history, because it was not

clear whether the decoherence functionald% defined above on the space of homogeneous effect
histories~of the first kind! can be~uniquely! extended to in some appropriate sense a biadditive
functional on the space of inhomogeneous effect histories as defined in Definition 2. In Ref. 37 we
gave a rather technical definition of the notion of inhomogeneous effect history. Essentially we
defined an inhomogeneous effect history to be a member of the free lattice generated by the
homogeneous effect histories~of the first kind! by at most finitely many applications of the
grammatical connectives ‘‘and’’ and ‘‘or,’’ to wit, we have viewed inhomogeneous effect histories
to be—in essence—propositions in the language of quantum mechanics involving several~but at
most finitely many! homogeneous effect histories. In turn only the latter were viewed as the basic
physicalentities in the formalism. We have shown in Ref. 37 that with this definition it is possible
to consistently extend the consistent histories formulation of quantum mechanics and to incorpo-
rate effect histories. However, this approach involves a rather technical and mathematically by no
means canonical definition of the notion of inhomogeneous history. Inhomogeneous effect histo-
ries in the sense of Ref. 37 represent only semantical entities without an obvious physical inter-
pretation. In this work the term inhomogeneous effect history is always meant in the sense of
Definition 2 unless explicitly otherwise stated.

In this work we use a recent result of J. D. Maitland Wright43 which implies that the deco-
herence functionald% as defined above on the space of homogeneous effect histories~of the
second kind! can indeed be extended to a functional on the space of inhomogeneous effect
histories with the desired properties. We first recall the central result from Ref. 43.

Theorem 1: Let A be a von Neumann algebra with no type I2 direct summand. Let d:P (A)
3P (A)→C be a decoherence functional. If d is bounded, then d extends to a unique bounded
bilinear functional d̃ on A3A. Furthermore, d is continuous whenP (A) is equipped with the
topology induced by the norm of A. Also, d(u,v)*5d(v* ,u* ).

If A is a von Neumann algebra, letP (A) denote the set of projectors inA. A function
d:P (A)3P (A)→C is called adecoherence functional, if ~i! d(p1%p2 ,q)5d(p1 ,q)1d(p2 ,q),
wheneverp1 and p2 are mutually orthogonal;~ii ! d(p,q)*5d(q,p); ~iii ! d(p,p)>0; and ~iv!
d~1,1!51.

Since the setB~H! of bounded operators on a Hilbert spaceH with dimension greater than 2
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is a von Neumann algebra~of type I !, Theorem 1 can be applied to the decoherence functional
d% :K fin(H) 3 K fin(H)→C,(h,k)°d%(h,k): 5 tr„Ct0

(h)%(t0)Ct0
(k)†… defined in Sec. II above.

Thus for every finite subsetS,R there is a unique bounded bilinear functionald̃%,S on
BS

^ ~H!3BS
^ ~H! extending the decoherence functionald% restricted toP S

^ ~H!3P S
^ ~H!.

The restrictiond̂%,S of d̃%,S to ES
^ ~H!3ES

^ ~H! is a bounded functional which is additive in
both arguments with respect to the canonical D-poset structure onES

^ ~H!. The collection of all
such functionalsd̂%,S for any finiteS,R induces a bounded functionald̂% on Efin

^ ~H!3Efin
^ ~H!

which is additive in both arguments with respect to the canonical D-poset structure onEfin
^ ~H!. The

functional d̂% will be called thedecoherence functional with respect to the state% on Efin
^ ~H!.

SinceEfin
^ ~H! is a D-poset,Efin

^ ~H! is in particular a partially ordered set. However, for two
elementse1 ,e2PEfin

^ ~H! the supremume1~e2 and the infimume1`e2 not necessarily exist, that
is, Efin

^ ~H! is not a lattice. But there exists a partially defined join operation denoted by~ and a
partially defined meet operation denoted bỳ. To every elementePEfin

^ ~H! there exists one
unique elemente8PEfin

^ ~H! such thate%e8 is well defined ande%e851. We refer toe851*e as
to thecomplementof e.

Definition 3: A subsetB,Efin
^ ~H! is said to be anadmissible Boolean lattice of„inhomo-

geneous… effect histories if the following conditions are satisfied.

~i! There exist two binary operations onB, denoted by~B and`B , respectively, and one
unary operation onB, denoted by¬B , such that the operations~B , `B , and ¬B are
compatible with the partial order onB induced by the partial order onEfin

^ ~H! and such
that ~B, ~B , `B , ¬B! is a Boolean lattice, i.e.,~B is the join operation, `B is the meet
operation, and¬B is the complementation operation onB. The lattice-operations~B and
`B coincide with the partially defined meet operation~ and join operatioǹ on Efin

^ ~H!
whenever the latter are well defined, to wit, e1`Be25e1`e2 and e3~Be45e3~e4 for all
e1 ,e2 ,e3 ,e4PB, whenever the right-hand sides are well defined inEfin

^ ~H!. The lattice
operations~B and`B are such that a complementation¬B can be unambiguously defined
onB.

~ii ! There exists an injective mapM:B→Efin
^ ~H!, which satisfies the following conditions:

~a! M is a positive valuation on B with values inEfin
^ ~H!, to wit, a map satisfying the

valuation conditionM~b1~Bb2!*M~b1!5M~b2!*M~b1`Bb2!, for all b1 ,b2PB. This
condition means in particular that the left-hand side and the right-hand side are well
defined for all b1 ,b2PB;
~b! M preserves decoherence weights, i.e., dˆ

%(e1 ,e2)5d̂%„M~e1!,M~e2!…, for all
e1 ,e2PB.

An admissible Boolean sublattice ofEfin
^ ~H! will be briefly denoted by~B,M!.

Remark 1: Strictly speaking asublattice L of Efin
^ ~H! is a subsetL,Efin

^ ~H! such thatL
endowed with the restrictions of~ and ` to L is a lattice. It makes thus sense to speak of
sublattices ofEfin

^ ~H!. However, it is important to notice that an admissible Boolean sublattice of
Efin

^ ~H! is not necessarily a sublattice ofEfin
^ ~H! in this sense.

Remark 2: LetL1,L2 be lattices. A mapn:L1→L2 is calledpositive if n(p),n(q), when-
ever p,q. Since any Boolean lattice is relatively complemented, the condition that the mapM in
Definition 3 is positive is actually redundant and follows already from the definition of D-posets
and from the valuation condition. In particularM is order preserving.

Remark 3: The complement e8512e in Efin
^ ~H! of some element ePB does in general not

coincide with the complement¬Be inB. The greatest element1B and the least element0B in B
do not necessarily coincide with the greatest element1 and the least element0 in Efin

^ ~H!, respec-
tively.

Our target is to generalize Omne`s’ logical rule and thus to single out the appropriate subsets
of Efin

^ ~H! on which a reasoning involving~inhomogeneous! effect histories compatible with
‘‘common sense’’ can be defined. The conditions in Definition 3 are clearly the minimal structure
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required. Usually ‘‘common sense’’~compare Ref. 19! is tacitly associated with Boolean lattices.
Thus the first condition in Definition 3 thatB is a Boolean lattice is indispensable. We have
already mentioned above that the setEfin

^ ~H! carries~among others! a canonical D-poset structure,
but no lattice structure, and that the decoherence functionald̂% is additive with respect to the
D-poset structure onEfin

^ ~H!. In the consistent histories approach, however, reasoning is defined on
Boolean latticesB with the help of consistency functionals which are additive with respect to the
lattice structure ofB. Thus one has to restrict oneself to Boolean latticesB,Efin

^ ~H! such that the
lattice structure ofB is exactly mirrored in the D-poset structure ofEfin

^ ~H! ~by the mapM!. This
leads to the condition that there exists a positive valuationM as required in the second condition
of Definition 3. The reasoning to be defined should be independent of the mapM chosen. Thus it
is necessary to require thatM preserves decoherence weights.

Remark 4: The decoherence functional dˆ
% induces a consistency functional d%,B onB3B by

d%,B :B 3 B→C,d%,B(p1 ,p2): 5 d̂%„M(p1),M(p2)…, which is additive in both arguments with
respect to the Boolean lattice structure onB.

Definition 4: An admissible Boolean lattice~B,M! is calledconsistent wrt% if for every pair
of disjoint elements b1,b2PB (i.e., elements satisfying b1 ` Bb2 5 0) theconsistency condition
Red%,B(b1 ,b2) 5 0 is satisfied.

Theorem 2:Let ~B,M! be a consistent admissible Boolean lattice of effect histories. Then the
consistency functional d%,B induces a probability functional p%,B on B by b°p%,B(b)
[@d%,B„M(b),M(b)…#/d%,B„M(1B),M(1B)….

Definition 5: An effect history proposition e1 P Efin
^ (H) is said to imply an effect history

proposition e2 P Efin
^ (H) in the state% if there exists a consistent admissible Boolean sublatticeB

of Efin
^ ~H! containing e1 and e2 and if the conditional probability p%,B(e2ue1) [ @p%,B(e1

` Be2)#/p%,B(e1) is well defined and equal to one. We write e1⇒% e2. Two history propositions e1
and e2 are said to beequivalent if e1 implies e2 andvice versa. We write e1⇔% e2.

Remark 5: If e1`e2 exists inEfin
^ ~H!, then it is easy to verify that if p%,B0

(e2ue1) is well

defined and equal to one in some consistent admissible Boolean latticeB0 containing e1 and e2,
then p%,B(e2ue1) is well defined and equal to one in every consistent admissible Boolean lattice
B containing e1 and e2. If e1`e2 does not exist inEfin

^ ~H!, then there may be consistent Boolean
latticesB1 containing e1 and e2 such that p%,B1

(e2ue1) is not one or is not well defined. If e1`e2
does not exist inEfin

^ ~H!, then it seems reasonable to define e1⇒%e2 if there exists an admissible
Boolean latticeB containing e1, e2 and some further element e3PEfin

^ ~H! satisfying e1>e3 and
e2>e3 such that@p%,B(e3 ,e3)#/p%,B(e1 ,e1) is well defined inB and equal to one.

The generalized universal rule of interpretation of quantum mechanics can now simply be
formulated as follows.

Rule 3: Propositions about quantum mechanical systems should solely be expressed in terms
of effect history propositions. Every description of an isolated quantum mechanical system should
be expressed in terms of finite effect history propositions belonging to a common consistent
admissible Boolean algebra of effect histories. Every reasoning relating several propositions
should be expressed in terms of the logical relations induced by the probability measure from
Theorem 2 in that Boolean algebra.

~This rule is numbered ‘‘Rule 3’’ in order to distinguish it from Rule 2 stated in Ref. 37.! It
is instructive to compare Rule 3 with Rule 2 stated in Ref. 37. It is obvious that Rule 1 is contained
in Rule 3 as a special case. A more extensive discussion of the motivation and the philosophy
underlying the logical interpretation of quantum mechanics can be found in Refs. 17–19 and 37
and will not be repeated here.

Compared with the treatment in Ref. 37 we have achieved a considerable simplification of the
logical interpretation in terms of generalized observables and of the formalism of the consistent
effect histories approach to generalized quantum mechanics. From a mathematical point of view,
the extension of the ordinary consistent histories approach given in this article is a natural one.

Rule 3 asserts that to every meaningful proposition about a quantum mechanical system there
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is an inhomogeneous effect historyePEfin
^ ~H!. However, homogeneous effect histories of the first

kind, which have a direct physical interpretation, are not contained inEfin
^ ~H!. According to Rule

3, homogeneous effect histories of the first kind can only indirectly be included into a description
of a quantum mechanical system by representing every homogeneous effect history of the first
kind e by its corresponding homogeneous effect history of the second kindsfin(e).

It remains to determine the connection of Rule 3 stated above and the generalized logical rule
~Rule 2! formulated in Ref. 37. In contrast to Rule 3 above, the propositions about a quantum
mechanical system permitted by Rule 2 stated in Ref. 37 contain the homogeneous effect histories
of the first kind as a subclass and accordingly a description of a quantum mechanical system and
reasoning can be done directly in terms of homogeneous effect histories of the first kind. In the
next subsection we will see, however, that in an appropriate sense Rule 3 is a generalization of
Rule 2 stated in Ref. 37 and that a description and reasoning~permitted by Rule 2! directly in
terms of homogeneous effect histories of the first kind can always be lifted to a description and
reasoning~permitted by Rule 3! in terms of the corresponding homogeneous effect histories of the
second kind.

A. The connection between admissible and allowed Boolean lattices

In this subsection we will show that Rule 3 formulated above is indeed a generalization of the
generalized logical rule as formulated in Ref. 37. In this subsection we will use the notation and
terminology introduced in Ref. 37 without further notice. In this subsection the termhomogeneous
effect historyis always meant to denote homogeneous effect histories of the first kind.

Consider some homogeneous effect history of orderk.0 denoted bywE1 ,...,Em
k , where

E1 ,...,EmPE~H!. The corresponding history proposition states that first atk successive times
t1,1,...,t1,k the appropriately time translated effectE1(t1,j )5U(t1,j ,t1,1)E1U(t1,j ,t1,1)

† ~1<j<k! is
realized and then atk successive timest2,1,...,t2,k the effectE2(t2,j )5U(t2,j ,t1,1)E2U(t2,j ,t1,1)

†

~1<j<k! and so on.@We refer the reader to the discussion following Theorem 4 in Ref. 37; for
simplicity we assume that the historyw0 appearing there is the unit history, i.e., (w0) t51 for all
t.#

Now we first observe that the exact times associated with the effects in some homogeneous
effect history are inessential. The only thing that physically matters is the order and sequence of
the effects in the homogeneous history. The time points associated with the effect operators in
some homogeneous effect history can be changed provided the order remains fixed and provided
the effect operators associated with the shifted times are appropriately time translated with the
unitary evolution operatorU. We say that two homogeneous effect histories related in this way to
each other areshift equivalent.

If we defineF j :5Ej
k/2, for all 1< j<k, then we see that every homogeneous effect history

wE1 ,...,Em
k of orderk can be mapped to a homogeneous effect historywF1 ,...,Fm

2 of order 2. This

map preserves decoherence weights. The historywF1 ,...,Fm
2 is unique up to shift equivalence. That

the F j are effect operators follows from Proposition 2 in Ref. 55. We further recall that
F% 1F85F%F85(E% 2/kE8)k/2, whereF5Ek/2 and F85(E8)k/2 whenever the expressions are
well defined. Now it is easy to see that for every allowed Boolean algebra~B,B! of orderk ~as
defined in Ref. 37! there exists an allowed Boolean algebra~B8,B8! of order 2 and a lattice
isomorphismw:B→B8 such that B5B8+w. Thus, it suffices to consider allowed Boolean algebras
of order 2 in the sequel. In Theorem 3 belowN denotes the canonical map defined in Remark 15
in Ref. 37.

Theorem 3: Let ~B,M! be an admissible Boolean lattice in the sense of Definition 3 above
and let~A,J! be an allowed Boolean lattice of effect histories of order k as defined in Ref. 37. Let
A0 denote the set of atoms ofA. Then there exists a lattice isomorphismc:A→B preserving
decoherence weights and satisfyingJ5M+c if an only if B is atomic,M maps the setB0 of
atoms ofB bijectively toJ~A0!, andM~0B!5J~0A!.
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Proof: ‘‘ ⇒:’’ trivial. ‘‘ ⇐:’’ M
21+J restricted toÃ:5A0ø$0A% can in an obvious way be

extended to a lattice isomorphismc:A→B by requiringc( ~ A,iPIai) 5 ~B,iPIc(ai) for any
$ai% iPI,A0. ThenJ̃:5M+c is a positive valuation satisfying the valuation condition and extend-
ing the mapNuÃ as required in the Definition of the allowed Boolean lattice. Since~A,J! is an
allowed Boolean lattice,J is the unique positive valuation with this property and thusJ5J̃. That
c preserves decoherence weights follows immediately:d%,A(a1 ,a2):5d%,E,k„J(a1),J(a2)…
5 d̂%„M + c(a1),M + c(a2)…5 d̂%„c(a1),c(a2)…, for alla1 ,a2PÃ, whered%,E,k denotes thedeco-
herence functional onE(H)2/k,E ~compare Remark 20 in Ref. 37!.

Theorem 4: For every allowed Boolean lattice~A,J! in the sense of Ref. 37 there is an
admissible Boolean lattice~B,M! such that there exists an isomorphismc:A→B satisfying the
conditions from Theorem 3.

Proof: We denote byA0 the set of atoms ofA. We constructB inductively. We choose
J~A0! to be the set of atoms ofB and 0B :5J~0A!. We defineJ~a1!~BJ~a2!:5J~a1~Aa2! for
all a1 ,a2PA0. If A0 contains more than two elements, thenJ~a1!~BJ~a2!5J~a1!%J~a2! for
a1Þa2 . This definition makes sense sinceJ~a1!%J~a2! is well defined for alla1 ,a2PA0 with
a1Þa2 and sinceJ~a1!ÞJ~a2! for all a1 ,a2PA0 with a1Þa2 . If A0 contains exactly two
elements, thenJ~a1!~BJ~a2!5J~a1!%J~a2!*J~0A! for a1Þa2 . This definition makes sense since
J~a1!%J~a2!*J~0A! is well defined for alla1 ,a2PA0 with a1Þa2 and sinceJ~a1!ÞJ~a2! for all
a1 ,a2PA0 with a1Þa2 .

The full D-posetsalso discussed in Ref. 37 are trivially contained in the class of admissible
Boolean lattices defined in Definition 3.

From Theorem 4 and our Definition 5 of the implication relation between effect histories it
follows immediately that ife1 ande2 are homogeneous effect histories such thate1⇒%e2 in the
sense of Ref. 37, then alsoe1⇒%e2 in the sense of Definition 5.

Thus, Theorem 4 clearly shows that Rule 3 is indeed a generalization of Rule 2 stated in Ref.
37.

IV. SUMMARY

We now summarize our discussion by stating the general axioms for a generalized quantum
theory based on our generalized history concept. This subsection parallels the discussion in Ref.
21.
~1! The spaceU of general history propositions.

~a! The spaceU carries a canonical D-poset structure denoted by%.
~i! In this workU is given byEfin

^ ~H!.
~2! The spaceU of history filters or homogeneous histories.

~a! U is the space of the basic physical properties of a physical system with a direct physical
interpretation. An element ofU is a time-ordered sequence of one-time propositions
about the system. There exists a mapF mapping the elements ofU to a D-posetE. Here
E can be interpreted as the set of~equivalence classes of! one-time propositions.
~i! In this workU equals the space of homogeneous effect histories of the first kind
U5Efin~H!, cf. Definition 1; E is given by E~H! and F is given by F(u)
5Ct0

(u)†Ct0
(u).

~b! U is a partially ordered set with unit history 1 and null history 0.
~c! There exists an order preserving mapt:U→U, i.e., t~U!,U.

~i! In this work t is given bysfin .
~d! U is a partial semigroup with composition law+, cf. Ref. 21. Herea+b is well-defined if

t f(a),t i(b). In this case we say thata proceeds bor that b follows a. Further, 1+a
5a+15a anda+050+a50. If a+b is defined, thena+b5a`b, in particular the right-
hand side is well defined.

~e! The partial ordering onU induces a partial unary operation ¬~complementation! and two
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partial binary operations̀ and~ ~meet and join! onU.
~3! The space of decoherence functionals.

~a! A decoherence functional is a mapd:U3U→C which satisfies for alla,a8,bPU

~i! d~a,a!PR andd~a,a!>0;
~ii ! d(a,b)5d(b,a)* ;
~iii ! d~1,1!51;
~iv! d~0,a!50, for all a;
~v! d(a1% a2 ,b)5d(a1 ,b)1d(a2 ,b) for all a1,a2,bPU for which a1%a2 is well

defined.
~b! In Ref. 37 it was possible to explicitly construct the decoherence functional on all inho-

mogeneous effect histories considered. In this work we have no explicit construction of
the decoherence functional onEfin

^ ~H!. Only its existence is known by Theorem 1.
~4! The physical interpretation.

~a! The physically interesting subsets ofU are the ‘‘admissible’’ Boolean sublatticesB of U

~see Definition 3! on which a positive valuationM can be defined with values inU such
that for everyuPB the valueM(u) does not depend upon the particular ‘‘admissible’’
Boolean latticeB chosen.

~b! The mapM ‘‘lifts’’ the lattice structure ofB to the D-poset structure ofU and every
decoherence functional onU induces a consistency functional onB.

~c! The decoherence functional induces a probability measure on the consistent~wrt the
decoherence functional! ‘‘admissible’’ Boolean sublattices ofU.

~d! On the ‘‘admissible’’ Boolean sublattices ofU decoherence functional defines a partial
logical implication which allows us to make logical inferences.

~e! The description of a physical system and reasoning in terms of elements ofU ~homoge-
neous effect histories of the first kind! is only indirectly possible by using the map
t:U→U.

~f! While homogeneous effect histories have a direct physical interpretation in terms of time
sequences of physical properties, inhomogeneous~effect! histories have no such direct
interpretation. We tentatively suggest, however, that they may be interpreted as represen-
tatives ofunsharp quantum events, i.e., events which cannot be associated with some fixed
time, but which are smeared out in time.
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We use Greechie diagrams to construct finite orthomodular lattices ‘‘realizable’’ in
the orthomodular lattice of subspaces in a three-dimensional Hilbert space such that
the set of two-valued states is not ‘‘large’’~i.e., full, separating, unital, nonempty,
resp.!. We discuss the number of elements of such orthomodular lattices, of their
sets of~ortho!generators and of their subsets that do not admit a ‘‘large’’ set of
two-valued states. We show connections with other results of this type. ©1996
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I. INTRODUCTION

Quantum logic, as it has been pioneered by Birkhoff and von Neumann,1 is usually derived
from Hilbert space. There, the logical primitives, such as propositions and the logical operators
‘‘and,’’ ‘‘or,’’ and ‘‘not’’ are defined by Hilbert space entities. For instance, consider the three-
dimensional, real Hilbert spaceR3 with the usual scalar product (v,w):5( i51

3 v iwi , v,wPR3.
There, any proposition is identified with a subspace ofR3. For instance, the zero vector corre-
sponds to a false statement. Any line spanned by a nonzero vector corresponds to the statement
that the physical system is in the pure state associated with the vector. Any plane formed by the
linear combination of two~noncolinear! vectorsv,w corresponds to the statement that the physical
system is either in the pure statev or in the pure statew. The whole Hilbert spaceR3 corresponds
to the tautology~true propositions!. The logical ‘‘and’’ operation is identified with the set theo-
retical intersection of two propositions; e.g., with the intersection of two lines. The logical ‘‘not’’
operation, or the ‘‘complement,’’ is identified with taking the orthogonal subspace; e.g., the
complement of a line is the plane orthogonal to that line.

In this top-down approach, one arrives at a propositional calculus that resembles the classical
one, but differs from it in several important aspects. It has a non-Boolean, i.e., nondistributive,
algebraic structure. Furthermore, as has first been pointed out by Kochen and Specker in the
context of partial algebras,2–4 there exist certainfinite sets of lines, such that the associated
propositional structure cannot be classically embedded. That is, there does not exist any classical,
i.e., two-valued, measure that could be interpreted as the fact that propositions are either ‘‘true’’
~[measure value 1! or ‘‘false’’ ~[measure value 0!. The Kochen and Specker original construc-
tion used 117 lines. The number of lines has been subsequently reduced.5–8 These constructions
are examples of propositional structures without any two-valued measures.

In this paper we shall deal with the following questions: which orthomodular structure—finite
or infinite—underlies the Kochen–Specker construction. The question can be approached from
two different viewpoints:~i! Whichminimalset of propositions generates some Kochen–Specker-
type configurations? By ‘‘generate’’ we mean the construction of the propositional structure con-

a!Electronic mail: svozil@tph.tuwien.ac.at
b!Electronic mail: tkadlec@math.feld.cvut.cz
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taining it. ~ii ! What is theminimal propositional structurecontaining some sort of Kochen–
Specker-type configuration? In particular, is it finite or infinite?

II. BASIC NOTIONS

The following definition gives two main concepts of a propositional structure.
Definition 2.1: An orthomodular posetis a structure (P,<,8,0,1) fulfilling the following

conditions.
~1! (P,<) is a partial ordered set such that 0<a<1 for everyaPP.
~2! 8:P→P is an orthocomplementation, i.e., for everya, bPP: ~a! a95a; ~b! a<b implies

b8<a8; ~c! a~a851.
~3! If a<b8 then the supremuma~b exists inP.
~4! If a<b then there is an elementcPL such thatc<a8 andb5a~c ~the orthomodular

law!.
An orthomodular latticeis an orthomodular poset that is a lattice.
Elementsa, b of an orthomodular poset are calledorthogonal~denoted bya'b! if a<b8. A

subsetO of an orthomodular poset is calledorthogonalif every pair of its elements is orthogonal.
Definition 2.2:Let P1 , P2 be orthomodular posets.P1 is orthorepresentablein P2 if there is

a mapping~calledorthoembedding! h: P1→P2 such that for everya, bPP1 , ~1! h(0)50, ~2!
h(a8)5h(a)8, ~3! a<b if and only if h(a)<h(b), and ~4! h(a~b)5h(a)~h(b) whenever
a'b.

P1 is representablein P2 if there is a mapping~calledembedding! h: P1→P2 such thath is
orthoembedding, and for everya, bPP1 , ~48! h(a~b)5h(a)~h(b).

The seth(P1) is then called an(ortho)representationof P1 in P2 .
A suborthoposet~subortholattice, resp.! is a subset such that the identity mapping is orthoe-

mbedding~embedding, resp.!.
Boolean subalgebraof an orthomodular poset is a suborthoposet that is a Boolean algebra.

Block is a maximal Boolean subalgebra.
As we will see later, there are latticesL1 , L2 such thatL1 is a suborthoposet but not a

subortholattice ofL2 . On the other hand, a suborthoposet of an orthomodular lattice need not be
a lattice.

Definition 2.3:Let L be an orthomodular lattice,G, L̄#P and let us denote byL(G) @P(G),
resp.# the least subortholattice~suborthoposet, resp.! of L containingG. We say thatG generates
~orthogenerates, resp.! L̄ if L̄#L(G) @L̄#P(G), resp.#.

P(G) and L(G) can be explicitly defined by the following process:P(G)5øn50
` Pn(G),

L(G)5øn50
` Ln(G), whereP0(G)5L0(G)5G and, for every natural number,n:

Ln11~G!5$~O; O is a finite subset ofLn~G!øLn~G!8%,

Pn11~G!5$~O; O is a finite orthogonal subset ofPn~G!øPn~G!8%

~M 8 denotes the set$a8;aPM %!. Hence, every countable setG generates a countable subortho-
lattice and orthogenerates a countable suborthoposet.

A very useful tool for constructing and representing some orthomodular posets is the so-called
Greechie diagram.

Definition 2.4:A diagram is a pair (V,E), whereVÞ0” is a set ofvertices~usually drawn as
points! andE#expV\{0” % is a set ofedges~usually drawn as line segments connecting corre-
sponding points!.

Let n>2 be a natural number. Aloop of order n in a diagram (V,E) is a sequence
(e1 ,...,en)PEn of mutually different edges such that there are mutually different vertices
v1 ,...,vn with v iPeiùei11 ~i51,...,n, en115e1!.

A Greechie diagramis a diagram fulfilling the following conditions.
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~1! Every vertex belongs to at least one edge.
~2! If there are at least two vertices then every edge is at least a two-element.
~3! Every edge that intersects with another edge is at least a three-element.
~4! Every pair of different edges intersects in at most one vertex.
~5! There is no loop of order 3.
Some examples of diagrams that are not Greechie diagrams are given in Fig. 1—these ex-

amples violate exactly one of conditions~2!–~5! in the above definition.~We usually do not
denote one-element edges.! The condition~4! states that in Greechie diagrams there is no loop of
order 2.

Before we present the representation theorem let us recall that anatom in an orthomodular
posetP is a minimal element ofP\{0” %.

Theorem 2.5:For every Greechie diagram with only finite edges there is exactly one (up to
an isomorphism) orthomodular poset, such that there are one-to-one correspondences between
vertices and atoms and between edges and blocks that preserve incidence relations. A Greechie
diagram does not contain any loop of order 4 if and only if the corresponding orthomodular poset
is a lattice.

The proof can be found, e.g., in Ref. 9. Let us reserve the notionGreechie logicfor an
orthomodular poset that can be represented by a Greechie diagram with only finite edges. It is easy
to see that such an orthomodular poset does not contain any infinite chain, hence every element is
a supremum of a finite orthogonal set of atoms.

Let us remark that there are finite orthomodular posets not representable by Greechie
diagrams—intersections of blocks might be greater than a four-element Boolean subalgebra, and
hence the condition~4! of Definition 2.4 cannot be fulfilled. On the other hand, every orthomodu-
lar poset with only finite and at most three atomic blocks~the case we are interested about! is a
Greechie logic.

We will have a special interest about the following example.
Definition 2.6:The three-dimensionalHilbert logic H3 is the orthomodular lattice of linear

subspaces ofR3. The ordering is given by inclusion and the orthocomplementation is given by
a85$vPR3; v'a% for everyaPH3 .

The least element ofH3 is 05$~0,0,0!%, the greatest element ofH3 is 15R3. Moreover,
a`b5aùb anda~b5Sp(aøb) for everya,bPH3 , where Sp(G) is thespanof G in R3. @We
will usually omit unnecessary parentheses, e.g., Sp~1,0,0! denotes Sp„$~1,0,0!%….#

Every element ofH3\$0,1% is either an atom or a coatom, every block inH3 is finite and at
most a three-element, every suborthoposetP of H3 is a Greechie logic and is uniquely determined
by the setA1(P) of its one-dimensional atoms~lines!:

P5$0,1%øA1~P!øA1~P!8.

~There might be also two-dimensional atoms inP, e.g., if P is a four-element.! Moreover, for
every setG of lines inH3 the set of lines of the orthomodular latticeL(G) @orthomodular poset
P(G), resp.# generated ~orthogenerated, resp.! by G can be expressed as follows:
A1„P(G)…5øn50

` Pn , A1„L(G)…5øn50
` Ln , whereP05L05G and, for every natural numbern,

FIG. 1. Examples of diagrams that are not Greechie diagrams.
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Ln115Lnø$~a~b!8;a,bPLn%,

Pn115Pnø$~a~b!8;a,bPPn , such thata'b%.

III. TWO-VALUED STATES AND GREECHIE DIAGRAMS

Let us present the main definition.
Definition 3.1:Let P be an orthomodular poset and letG,P. A state sonG is a mappings:

P→[0,1], such that
~1! s(0)50,
~2! s(a)<s(b) whenevera,bPG with a<b;
~3! (aPOs(a)<1 for every orthogonal setO,G; and
~4! (aPOs(a)51 for every orthogonal setO,G with ~O51.
A two-valued stateis a state with values in$0,1%.
If G5P then conditions~1!–~2! follow from conditions~3!–~4! and from the orthomodular

law and, moreover,s(a8)512s(a) for everyaPP.
The Kochen–Specker construction gives an example of a propositional structure without any

two-valued state. We will use a more general attempt and will ask whether there is a propositional
structure without ‘‘enough’’ two-valued states. Originally, ‘‘enough’’ meant ‘‘at least one.’’ We
will also use the following properties of state space, which are important in quantum logic theo-
ries.

Definition 3.2:Let P be an orthomodular poset and letG#P. A setS of states onG is called
unital if for every aPG\$0% there is a statesPS such thats(a)51;

separatingif for every a,bPG with aÞb there is a statesPS such thats(a)Þs(b);
full if for every a,bPG with a<” b there is a statesPS such thats(a).s(b).
Existence of a unital set of states means that every proposition that is not a tautology is

sometimes false. Existence of a separating set of states means that a different propositions are
distinguishable. Existence of a full set of two-valued states means that if some proposition does
not imply another, then there is such a state that the first is true while the second is not. These
properties are largely studied. An orthomodular poset with a full set of two-valued states is called
a concrete logic~see, e.g., Ref. 10!, an orthomodular poset with a separating set of two-valued
states is called apartition logic—this notion is within orthomodular posets equivalent to the
notion ofautomaton logic~see, e.g., Refs. 11–14!.

It is easy to see that a full set of states is separating and that a separating set of two-valued
states is unital. Before we give examples demonstrating differences in the above-defined notions
let us give some criteria, how we can verify whether an orthomodular poset given by a Greechie
diagram has ‘‘enough’’ two-valued states.

Definition 3.3:Let P be an orthomodular poset and letA be the set of atoms inP. A weight
w on A is a mappingw: A→[0,1], such that(aPOw(a)51 for every maximal orthogonal set
O#P. A two-valuedweight is a weight with values in$0,1%.

Lemma 3.4: Let P be a Greechie logic and let A be the set of atoms in P. Then there is a
one-to-one correspondence between two-valued states s on P and two-valued weights w on A
given by w5suA.

Proof: Obvious.
Due to this correspondence we may~and will! identify states and weights and study only the

values of states on the set of atoms. Since every maximal orthogonal set of atoms corresponds
uniquely to a block, we need only to check that the sum of values of a state on every edge in a
Greechie diagram is equal to 1.

Proposition 3.5: Let P be a Greechie logic and let A be the set of atoms in P. Then P has a
full set of two-valued states (i.e., P is a concrete logic) if and only if for every pair a1, a2PP of
different nonorthogonal atoms there is a two-valued weight w on A such that w~a1!5w~a2!51.
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Proof⇒: Let a1 , a2PA, such thata1'” a2 . Thena1 < a28 and there is a two-valued states on
P such that 15 s(a1) . s(a28) 5 0. Hence,s(a2)51 and, according to Lemma 3.4, it suffices to
takew5suA.

⇐: Let b1 , b2PP such thatb1<” b2 , i.e., b1'” b28 . There are orthogonal setsA1 , A2Þ0” of
atoms inP such thatb15~A1 , b28 5 ~A2 . According to Lemma 3.4, it suffices to prove that there
are atomsa1PA1 , a2 P A28 and a weightw onA such thatw(a1)5w(a2)51. Let us suppose first
thatA1ùA250” . Then there are atomsa1PA1 anda2PA2 such thata1Þa2 anda1'” a2 and, due
to our assumption, a weightw on A such thatw(a1)5w(a2)51. Let us suppose now that
A1ùA2Þ0” . Then there is an atoma1<b1 , b28 and either there is an atoma2Þa1 such that
a1'” a2 , or a1'a for every atomaÞa1 . In both cases there is a two-valued weightw on A such
thatw(a1)51; in the first case due to our assumption and in the second case we can putw(a)51
iff a5a1 .

The situation for a separating set of states is much more complicated and we will state a
criterion in a special case~which is in our interest here!.

Proposition 3.6: Let P be a Greechie logic with, at most three atomic blocks and let A be the
set of atoms in P. Then the set of two-valued states on P is separating (i.e., P is a partition logic)
if and only if the following conditions hold.

~1! For every atom aPP there is a two-valued weight w on A such that w~a!51.
~2! For every pair a1, a2PP of different nonorthogonal atoms there are two-valued weights

w1 , w2 on A such that w1~a1!5w1~a2! and w2~a1!Þw2~a2!.
Proof ⇒: Let aPA. ThenaÞ0 and there is a two-valued states on P such that 15s(a)

.s(0)50. Let a1 , a2PA such thata1Þa2 anda1'” a2 . Then alsoa1 Þ a28 and there are two-
valued statess2 , s1 on P such that 15s2(a1).s2(a2)50, 1 5 s1(a1) . s1(a28) 5 0, i.e.,
s1(a1)5s1(a2). The rest follows from Lemma 3.4.

⇐: Let b1 , b2PP such thatb1Þb2 . Since every element ofP\$0,1% is either an atom or a
coatom, there are atomsa1 , a2PP such thatb1 P $0,a1 ,a18,1% andb2 P $0,a2 ,a28,1%. If a15a2
then there are two-valued weightsw1 , w2 onA such thatw1(a1)51 andw2(a1)50. If a1Þa2
then there are two-valued weightsw1 , w2 on A such that w1(a1)5w1(a2) and
w2(a1)Þw2(a2). In both cases there are, according to Lemma 3.4, two-valued statess1 , s2 on
P such that eithers1(b1)Þs1(b2) or s2(b1)Þs2(b2).

Let us present a lemma, which might simplify to verify criteria in Proposition 3.6.
Lemma 3.7: Let P be a Greechie logic and let A be the set of atoms in P. If W is an at least

three-element set of two-valued weights on A such that$w21~1!;wPW% is a partition of A, then
~1! for every atomaPA there is a weightwPW such thatw(a)51;
~2! for every paira1 , a2PA there is a weightwPW such thatw(a1)5w(a2).
Proof: Obvious.
Let us remark that in Greechie diagrams it suffices to use the above conditions for every

connected subdiagram separately~weights behave independently on nonconnected subgraphs!. In
terms of orthomodular posets we can use the following important notion.

Definition 3.8: Let P be a set of orthomodular posets such thatP1ùP25$0,1% for everyP1 ,
P2PP with P1ÞP2 . The horizontal sum (PPP P is defined as (øPPP P,øPPP<P ,
øPPP8P,0,1).

More generally, we speak about the horizontal sum ofPi , iPI . It is an abbreviation for saying
that we take disjoint representationsP̄i of Pi ~e.g.,$ i %3Pi!, identify all 0̄i ( iPI ) and all 1̄i ( iPI ),
and take( iPIPi . It is easy to see that a horizontal sum of orthomodular posets~orthomodular
lattices, resp.! is an orthomodular poset~orthomodular lattice, resp.! and that a set of states is
nonempty~unital, separating, full, resp.! on a horizontal sum if and only if it is nonempty~unital,
separating, full, resp.! on every horizontal summand.

In a Greechie diagram every connected subdiagram corresponds to a horizontal summand.~In
particular, every finite two-atomic block is a horizontal summand.! On the other hand, the hori-
zontal sum of Greechie logics is a Greechie logic with the Greechie diagram, which is a~disjoint!
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union of summands with only one exception—we lose isolated vertices~these correspond to the
trivial orthomodular poset$0,1%!.

The notion of a horizontal sum is a special kind of the notion ofpasting. We are not interested
here in a general setting~see, e.g., Ref. 9!, thus we describe only special cases showing how we
can obtain a new Greechie logic using this process. Greechie diagram of thepasting of Greechie
logics Pi ( iPI ) for atoms aiPPi ( iPI ) we obtain as follows: we take the disjoint union of
Greechie diagrams ofPi( iPI ), identify vertices corresponding toai ( iPI ) and, if someai ( iPI )
belong to a two-atomic block, we delete necessary vertices corresponding to suchai8 such that the
condition~3! of Definition 2.4 is fulfilled. Greechie diagram of thepasting of Greechie logics Pi
( iPI ) for blocks Bi#Pi ( iPI ) with the same number of atoms we obtain as follows: we take the
disjoint union of Greechie diagrams ofPi ( iPI ) and identify edges corresponding toBi ( iPI )
~i.e., we identify also atoms in these blocks.! It is easy to see that such pastings of~lattice!
Greechie logics are~lattice! Greechie logics.

The notion of a horizontal sum is also related to the following notion.
Definition 3.9: Let P be an orthomodular poset. Thedistance don P is a mappingd:

P3P→Nø$`%, defined by
d(a,b)5infˆnPN; there are blocksB1 ,...,Bn in P such thatBiùBi11Þ$0,1% for i50,...,n,

B05$a%, Bn115$b%‰.
The distance function defines the largest decomposition ofP into horizontal summands—the

least summands are maximal subsets ofP\$0,1% of elements with finite distances joined with$0,1%.
The following result we will use in the sequel.
Proposition 3.10: Every Greechie logic without any loop has a full set of two-valued states.
Proof: The distance function onP decomposeP into the horizontal sum( iPIPi , such that the

distance of every pair of elements in every summand is finite. It suffices to prove fullness for every
summand. According to Proposition 3.5, it suffices, for everyiPI and for every paira1 , a2 of
different nonorthogonal atoms inPi , to find a weightw on the setA of atoms inPi , such that
w(a1)5w(a2)51. Let us putAn5$aPA;d(a,a1)5n% for every natural numbern and let us
definew by induction.

I. w(a1)51.
II. Let us suppose that there is a natural numbern>0 such thatw is defined onA0ø•••øAn .

Every element ofAn11 belongs to some blockB in Pi such thatBùAnÞ0” . For every such block
B we haveBùAn5$aB%. If w(aB)51, we putwuBùA\An50. If w(aB)50, we can choose~B
has at least three atoms! properly abBPBùA\An and putw(bB)51,wuBùA\bB%50. Properly
means that ifn5d(a2 ,a1)22 thenbB is chosen such that it does not belong to the same block as
a2 and if n5d(a2 ,a1)21 thenbB5a2 .

Let us present examples demonstrating differences in properties of state space.
Proposition 3.11:Let us consider the following conditions.
~1! The set of two-valued states is full.
~2! The set of two-valued states is separating but not full.
~3! The set of two-valued states is unital but not separating.
~4! The set of two-valued states is nonempty but not unital.
~5! The set of two-valued states is empty.
For each of the above conditions there is an orthomodular lattice with only finite three-atomic

blocks, which fulfills it.
Proof: ~1! See Fig. 2.1. It is a Boolean algebra, which obviously has a full set of two-valued

states.
~2! See Fig. 2.2. For every two-valued states we have s(a)1s(b) <„12s(ca)

112s(da)112s(cb)112s(db)…/25„22s(c)2s(d)…/2<3/2. Hences(a)1s(b) <1 and, ac-
cording to Proposition 3.5, this orthomodular lattice has not a full set of two-valued states. The set
S15$s1 ,s2 ,s3% of states given in Fig. 3 fulfills conditions of Lemma 3.7. It can be checked that
the set of all two-valued states ‘‘symmetric’’ to some state fromS distinguish different nonor-
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thogonal atoms. Hence, the set of two-valued states fulfills conditions of Proposition 3.6. A
smaller example of a separating set of states is given in Fig. 3. We can express this orthomodular
lattice as a partition logic on a six-element set of these states—see Fig. 4.1.~Compare with the
representation on the 14-element set of states in Ref. 14!.

~3! See Fig. 2.3. Let us use the previous result. For every two-valued states with s(a1)51
we obtains(a2)5s(b)50, hences(a4)51. Using the symmetry we obtains(a1)5s(a4) for
every two-valued state, hence the set of two-valued states is not separating. The unitality can be
verified routinely.

~4! See Fig. 2.4. For every two-valued states there is aniP$1,2,3% such thats(ai)51 and
therefores(b)50. Hence, the set of two-valued states is not unital. Existence of a two-valued
state can be verified routinely.~Let us note that if we paste ‘‘sides of the triangle’’ not only forb
but for the whole block we obtain a smaller example with 25 atoms.!

~5! See Fig. 2.5. According to part~3! of this proof,s(a1)5s(a2)5s(a3)5s(a4) for every
two-valued states. Hence all these values are equal to 0 ands(b)51. The desired example we
obtain by pasting this orthomodular lattice with the orthomodular lattice from Fig. 2.4 forb’s or,
more effectively, by pasting for blocks containingb’s anda2’s.

IV. SUBORTHOLATTICES OF H3

There are only several types of finite subortholattices ofH3 . The following characterization of
finite subortholattices ofH3 seems to be in a common knowledge~see, e.g., Ref. 15, Example
1.5.3!, but we do not know a proper reference for its proof.

Lemma 4.1: Let L be a subortholattice of H3 and let lines a1, a2, a3, bPL be such that a1, a2,
a3 are mutually orthogonal and b'”a1, a2, a3. Then there is a line cPL such that c'”a3 and the
angle/~c,a3! is greater than/~b,a3!.

Proof: Let us choose the system of coordinates such thata15Sp~1,0,0!, a25Sp~0,1,0!,
a35Sp~0,0,1!, b5Sp(x,y,z), such thatx,y,z.0. SinceL is a subortholattice ofH3 , the following
elements belong toL:

FIG. 3. Separating set of two-valued states on an orthomodular lattice from Fig. 2.2.~only atoms in which the correspond-
ing state is equal to 1 are marked!.
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b̄5~a1~a2!`b85Sp~y,2x,0!,

c5~a1~a3!`~b~b̄!5Sp~x1y2/x,0,z!.

Hence,

0,cos/~c,a3!5
z

A~x1y2/x!21z2
,

z

Ax21y21z2
5cos/~b,a3!.

Theorem 4.2:Let L,H3 be a finite orthomodular lattice. Then L is a subortholattice of H3 if
and only if exactly one of the following possibilities is fulfilled.

~1! L5$0,1%, i.e., L is a one-atomic Boolean algebra;
~2! L5$0,a,a8,1% for some line aPH3, i.e., L is a two-atomic Boolean algebra.
~3! L 5 $0,a1 ,a2 ,a3 ,a18 ,a28 ,a38,1% for some orthogonal set$a1,a2,a3% of lines in H3, i.e., L is

a three-atomic Boolean algebra.
~4! L5$0,a,a8,1%øGøG8ø$a~b;bPG%ø$a8`b8;bPG% for some line aPH3 and some at least

two-element set G of mutually nonorthogonal atoms orthogonal to a, i.e., L is a finite pasting of at
least two three-atomic Boolean algebras for a given atom.

Proof: It is easy to see that each of these conditions excludes the others and gives a subortho-
lattice ofH3 . Let us suppose that there is a finite subortholatticeL of H3 that fulfills no condition
~1!–~4!, and seek a contradiction. There are three mutually nonorthogonal linesa,b,cPL. Let
d35(a~b)8PL. SinceL is finite, there is a lineePL such that/(e,d3) is the greatest among all
lines fromL nonorthogonal tod3 . Sincea'” b there is ad1P$a,b% such thatd1'” e,e8 ` d38 . Let us
putd2 5 d18 ` d28 P L. Hence, linesd1 ,d2 ,d3 aremutually orthogonal ande'” d1 ,d2 ,d3 . According
to Lemma 4.1, there is an elementfPL such thatf'” d3 and/( f ,d3),/(e,d3)—this contradicts
the selection ofe.

Greechie diagrams of finite subortholattices ofH3 are given in Fig. 5.
Corollary 4.3: Every finite subortholattice of H3 has a full set of two-valued states.
Proof: It follows from Theorem 4.2 and Proposition 3.10.

FIG. 4. Various representations of an orthomodular lattice from Fig. 2.2.

FIG. 5. Greechie diagrams of finite subortholattices ofH3 .
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As concerns infinite subortholattices ofH3 , there is a countable subortholattice ofH3 without
any two-valued states~e.g., generated by finite sets without any two-valued state—see Corollary
7.5!. On the other hand, there are infinite subortholattices with a full set of two-valued states, e.g.
infinite pastings of three-atomic Boolean algebras for a given atom@compare condition~4! of
Theorem 4.2#. It seems to be an open problem whether there is an infinite subortholattice ofH3
that is not of this type and that has a two-valued state. Moreover, there might be an interesting
connection between the nonexistence of a two-valued state and density inR3. This might give
better insight into the nature of subortholattices ofH3 and the connection with the famous Gleason
theorem,16,10which ~among other things! states that there is no two-valued state onH3 .

It should be noted that Greechie diagrams of subortholattices ofH3 are relatively
‘‘complex’’—the distance of every pair of elements is at most 2~every pair of different lines has
a common orthogonal line!. Hence, it is usually difficult to give a Greechie diagram of an infinite
subortholattice ofH3 .

V. REALIZABILITY IN H3

The study of finite suborthoposets ofH3 is more complicated. We would like to know whether
a Greechie logic is orthorepresentable inH3 . The first problem erases with the intrinsic geometri-
cal structure ofH3 .

Definition 5.1:Let P be an orthomodular poset. We say thatP is weakly realizablein H3 if
there is a mappingh: P→H3 , such that, for everya,bPP,

~1! h(0)50;
~2! h(a8)5h(a)8,
~3! h(a)<h(b) whenevera<b; and
~4! h(a)Þ0 wheneveraÞ0.
If, moreover, the mappingh fulfills for every a,bPP the following occurs:
~48! h(a)Þh(b) wheneveraÞb,
we say thatP is realizable. The seth(P) is called a~weak! realizationof P in H3 .
Weak realizability means that all orthogonality relations remain true in the images, and, since

every nonzero element has a nonzero image, if the set of two-valued states onG#P is empty~not
unital, resp.! then the set of two-valued states onh(G) is empty~not unital., resp.!, too. Realiz-
ability means that, moreover, the mapping is one to one. Hence, if the set of two-valued states on
G#P is not separating~full, resp.!, then the set of two-valued states onh(G) is not separating
~full, resp.!, too. A realization need not be a suborthoposet because a new orthogonal pairs might
appear in the images.

Let us give a characterization of orthomodular posets weakly realizable inH3 .
Lemma 5.2: Let PP be the pasting of a setP of orthomodular posets and let there is a

mapping h: PP→H3 such that h(P) is a weak realization of P for every PPP . Then h(PP ) is a
weak realization of PP in H3. In particular, every horizontal sum of orthomodular posets weakly
realizable in H3 is weakly realizable in H3.

Proof: Obvious.
Proposition 5.3: An orthomodular poset is weakly realizable in H3 if and only if every its

block is finite and at most three-atomic.
Proof⇒: Every orthogonal set of nonzero elements in an orthomodular posetP corresponds

to an orthogonal set of nonzero elements inH3 . Since such a set inH3 is at most a three-element,
every block ofP is finite with at most three atoms.

⇐: Let P be an orthomodular poset with only finite, at most three-atomic blocks. Let us
decomposeP into the horizontal sum( iPIPi of minimal horizontal summands. Let us choose a
line lPH3 and let us define a mappinghi for every iPI as follows:h(0)50, h(1)51; if Pi is a
four element, then let us take an atomaiPPi and puth(ai)5 l , h(ai8) 5 l 8; if Pi has more than
four elements then every block has three atoms, and we puth(a)5 l , h(a8)5 l 8 for every atom
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aPPi . It is easy to see thathi(Pi) is a weak realization ofPi in H3 and thatø iPIhi(Pi) is a weak
realization ofP in H3 .

The situation with realizability is more difficult and we do not know a characterization of it.
Some results we will present in the next section. Let us now present another necessary condition.

Proposition 5.4: Every orthomodular poset realizable in H3 is a lattice.
Proof: Let us suppose thatP is an orthomodular poset with a loop of order 4 realizable inH3

and seek a contradiction. There are nonzero mutually different elementsa1'a2'a3'a4'a1 in P
~see Fig. 6.2!. Since for every pair of different nonzero elements there is only one nonzero element
in H3 orthogonal to them,a15a3—a contradiction.

Examples of orthomodular posets nonrealizable inH3 are given in Fig. 6. The first has a
four-atomic block, the second is not a lattice. The third example is much more subtle and depends
on the following intrinsic property ofH3 .

Lemma 5.5: Let L be a realization of an orthomodular lattice given inFig. 2.2. Then
/~a,b!P^arccos 1/3,p/2!. On the other hand, for everyaP^arccos 1/3,p/2! there is a realization
of L such that/~a,b!5a.

Proof [See also Ref. 17]:Let us choose a coordinate system such thatc5Sp~1,0,0!,
d5Sp~0,1,0!. Hencee5Sp~0,0,1!. Sinceca'c anddb'd, there arex,yPR\$0% such that

ca5Sp~0,y,1!, db5Sp~x,0,1!.

Sincecb'c, ca andda'd, db , a'ca , da , andb'cb , db , we obtain

cb5Sp~0,21,y!, da5Sp~21,0,x!,

a5Sp~xy,21,y!, b5Sp~21,xy,x!.

Thus, using an elementary calculus,

cos/~a,b!5
uxyu

A~11x21x2y2!~11y21x2y2!
PS 0, 13L .

For an arbitraryaP~arccos 1/3,p/2! we can solve this equation and obtain, e.g.,

x5y5A1/cosa21

2
2AS 1/cosa

2 D 221.

For a5arccos 1/3 we have exactly one realization~two different solutions given by the sym-
metry of the Greechie diagram!. In Fig. 4.2 there is an example such that symmetries of the
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realization are easily seen~with respect to the axiso of a andb and to planes Sp$a,b%, Sp$o,a
3b%!. ForaP~arccos 1/3,p/2! we have two different realizations~each symmetric with respect to
the axis ofa andb!.

The orthomodular lattice given in Fig. 6.3 is not realizable, because for every triplea1 , a2 ,
a3PH3 of mutually orthogonal nonzero elements and for everybPH3 there is aniP$1,2,3% such
that/(b,ai)<arccos 1/).

Let us note that in Ref. 17 the above lemma is also stated fora5p/2. This is not true, because
then eitherx50 or y50 and we obtain only a weak realization.

VI. SUBORTHOPOSETS OF H3

We would like to present examples of orthomodular lattices orthorepresentable inH3 . To
ensure that an orthomodular lattice is orthorepresentable inH3 it suffices to find its realization in
H3 such that there are not ordered~orthogonal, resp.! pairs other than it was intended, e.g., it can
be easily verified that an orthomodular lattice given in Fig. 2.2 is orthorepresentable inH3 ~see
Fig. 4.2!. We present partial results that orthomodular lattices are orthorepresentable~realizable,
resp.! in H3 . The idea of their proofs is that we can find uncountable many~continuum! weak
realizations while only for a countable many of them some images coincide or, in case of
orthorepresentability, give a new ordered~orthogonal, resp.! pair.

We show that there is a large class of infinite suborthoposets ofH3 with a full set of two-
valued states.

Proposition 6.1: Every horizontal sum of countable many countable orthomodular lattices
orthorepresentable (realizable, resp.) in H3 is orthorepresentable (reliazable, resp.) in H3.

Proof: It suffices to prove this proposition for two summands~we can proceed by induction!.
Let L1 , L2 be their orthorepresentations~realizations, resp.! in H3 . It suffices to prove that we can
rotateL2 to L̄2 such thata1£za2 anda2#” a1 for everya1PL1\$0,1% and for everya2PL̄2\$0,1%,
i.e. such thatl#” ø(L1\$1%) for every linelPL̄2 . If L25$0,1% then the proof is complete. Let us
suppose thatL2Þ$0,1%. Then there is a linel 0PL2 . Since ø(L1\$1%)ÞR3 there is a line
l̄ 0#” ø~L1\$1%! and we can rotateL2 such thatl 0 goes tol̄ 0 . Rotating now the image ofL2 around
l̄ 0 we obtain an uncountable many possibilities, while for only a countable many of them there is
a line l̄PL̄2 such thatl̄#ø(L1\$1%). Indeed, for everylPL2 all possible positions ofl̄ in a unit
sphereS(0,1) inR3 form a circleC with the center onl̄ 0 , while, for everyaPL1\$1%, aùS(0,1)
is either a two-element set~a is a line! or a circle not identical toC; henceaùS(0,1)ùC is at
most a two-element.

Proposition 6.2: Every pasting for an atom of a pair of countable orthomodular lattices
orthorepresentable (realizable, resp.) in H3 is orthorepresentable (realizable, resp.) in H3.

Proof: If we paste for an atom in a two-atomic block then we obtain a horizontal sum and the
proof follows from Proposition 6.1. Let us suppose that we paste for atoms in three-atomic blocks.
Let L1 , L2 be orthorepresentations~realizations, resp.! in H3 of given orthomodular lattices such
that L1ùL2{ l 0 , wherel 0 represents the atom in bothL1 , L2 for which we paste. It suffices to
prove that there is a rotationL̄2 of L2 around the linel 0 such thata1#” a2 anda2#” a1 for every
a1 P L1\$0,1,l 0 ,l 08% and for everya2 P L2\$0,1,l 0 ,l 08%, i.e., such thatl#” ø(L1\$1,l 08%) for every
line lPL̄2 . This gives only countable many restrictions to uncountable possible positions ofL̄2 ,
hence the proof is complete.

Corollary 6.3: Every countable Greechie logic with at most three atomic blocks and without
any loop is orthorepresentable in H3.

Proof: Every countable Greechie logic with only finite at most three atomic blocks is a
horizontal sum of subsequent countable pastings of finite three-atomic Boolean algebras for an
atom. The rest follows from Theorem 4.2, Proposition 6.2~using the induction! and Proposition
6.1.

According to Proposition 3.10, Greechie logics from the above Corollary have a full set of
two-valued states.
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Lemma 6.4: Let L1 be a countable orthomodular lattice orthorepresentable (realizable, resp.)
in H3 and L2 be an orthomodular lattice given in Fig. 7.1 such that L1ùL25$0,a,b,a8,b8,1% and
aÞb are nonorthogonal atoms in L1 (in its realization, resp.). Then the pasting of L1 and L2 is
orthorepresentable (realizable, resp.) in H3.

Proof: Let us suppose thatL1 is an orthorepresentation~realization, resp.! in H3 of a given
orthomodular lattice. Ifa ~b, resp.! is a two-dimensional subspace ofH3 thena ~b, resp.! is a part
of a four-element horizontal summand, and this summand might be considered as a part ofL2 .
The proof then follows from Proposition 6.2. Let us suppose thata, b are lines. Let us consider all
atomsca<a8. We have uncountable many possibilities that fill in the unit sphereS(0,1) a circle
Ca . Of course,ca<a8 andac 5 a8 ` ca8 < a8 but all other ordering ofca andac with elements of
L1\$0,1% can be excluded if we exclude a countable many possibilities. Similarly, if positions ofca
fill a circle Ca then positions ofcb'ca , b fill a circle Cb,b8 (a'” b!. Again, there is only a
countable many positions ofca for which eithercb or bc 5 b8 ` cb8 is ordered with some element
of L1\$0,1,b8%. Finally, it can be shown that positions ofc fill a smooth curve onS(0,1), which
is not a circle. Hence, there is a possibility to chooseca such that we obtain the desired orthorep-
resentation~realization, resp.!.

Proposition 6.5: Let n>5 be a natural number and let B1,...,Bn be finite three-atomic Boolean
algebras such thatBiùBi11 5 $0,ai ,ai8,1% for every iP$1,...,n%, where Bn115B1 and a1,...,an are
mutually different atoms. Then the pasting of$B1,...,Bn% (so-called n-cycle) is orthorepresentable
in H3.

Proof: It follows from Proposition 6.2 and from Lemma 6.4.

VII. KOCHEN–SPECKER-TYPE CONFIGURATIONS

We will give several examples of Kochen–Specker-type configurations that arise from
Greechie diagrams. Some of these examples has been already used in the literature in the attempt
to find a subset ofH3 without a two-valued state. We present the connection to Greechie diagrams
~this gives a better geometric insight!, show a nonexistence of a ‘‘large’’ set of two-valued states
for various concepts, and, moreover, we do not stop in proving weak realizability but we discuss
the real number of elements.

Proposition 7.1: There is a finite suborthoposet of H3 such that the set of two-valued states on
it is not full.

Proof: Let us consider a suborthoposetL of H3 given in Fig. 4.2. It is an orthorepresentation
of an orthomodular lattice given in Fig. 2.2, it is 28 element~13 atomic!, and the set of two-valued
states onL is not full @see the proof of Proposition 3.11.~1!#. In fact, in the proof of Proposition
3.11~1! it was shown that there is no two-valued state on the eight-element set
$a,ca ,da ,c,d,cb ,db ,b%, such thats(a)5s(b)51 ~a reformulation of fullness—see Proposition
3.5!. This orthomodular lattice can be orthogenerated, e.g., by the six-element set
$a,ca ,cb ,b,db ,da% and generated, e.g., by the three-element set$a,cb ,db%.

FIG. 7. Greechie diagrams of orthomodular lattices weakly realizable inH3 .
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Proposition 7.2: There is a finite suborthoposet of H3 such that the set of two-valued states on
it is not separating.

Let us note that we can take a realization of an orthomodular lattice given in Fig. 2.2, such
that we obtain an orthorepresentation of the orthomodular lattice given in Fig. 2.3, but the set of
~ortho!generators is larger in this case.

Proposition 7.3: There is a finite suborthoposet of H3 such that the set of two-valued states on
it is not unital.

Proof: Let us consider an orthomodular latticeL given in Fig. 7.3. It is an orthomodular lattice
without a unital set of two-valued states. Indeed, for every two-valued states on L with s(a1)51
we haves( f )5s(a2)5s(a5)50, s(ā2)5s(ā5)51, s(ā3)5s(ā4)50, s(a3)5s(a4)51-a contra-
diction. It has 132 elements~65 atoms! and a 40-element subset without a unital set of states~six
hidden in every circle and all markedai ’s andāi ’s!. Let us find a weak realization ofL. It can be
done as follows: Putf5Sp~0,0,1!, a15Sp~1,0,0!, ā15Sp~0,1,0!, and let ak ,āk(k52,...,5) be
images ofa1 ,ā1 in rotations aroundf aboutk•72°. Find a realization of the orthomodular lattice
given in Fig. 2.2 such that the angle of images ofa,b is 72° ~see the proof of Lemma 5.5! and
rotate this realization to the following pairs of lines: (a1 ,a2), (ā2 ,ā3), (a3 ,a4), (ā4 ,ā5), (a5 ,a1)
~i.e., a goes to the first andb to the second line for every pair!. It can be checked that an
orthomodular poset orthogenerated by this weak realization is finite.~In fact, it is a weak realiza-
tion of an orthomodular lattice given in Fig. 7.4 by the same way.!

It can be shown that if we take the realization of the orthomodular lattice given in Fig. 2.2
such that the angle betweena andb is equal to 72° by the expression given in the proof of Lemma
5.5 as the first copy and if the second and the third copy arise by rotations around the axis of the
plane given bya and b such thatb coincides witha of the next copy, then some elements
coincide:

~ca ,c,cb ,bc ,b,bd ,db!15~d,db ,da ,ad ,a,ac ,ca!2 ,

~c,db ,d,da ,e!15~ca ,d,c,e,cb!3 .

~The index denotes the number of the copy.! Hence, the weak realization of the orthomodular
lattice from the above proof gives a 29-element subset ofH3 without a unital set of two-valued
states and the suborthoposet orthogenerated by it has 104 elements~51 atoms!, is orthogenerated
by a 16-element set and generated by a four-element set~e.g., elementsa, cb , db of somea????b
and some element from the inner ‘‘pentagon’’!. The ‘‘almost’’ Greechie diagram~20 points that
belong to exactly one edge are for simplicity omitted! of this suborthoposet ofH3 ~realization of
the orthomodular lattice given in Fig. 7.4! is given in Fig. 8, with

a15Sp~1, 0, 0!,

a25Sp~A32A5, A51A5, 0!,

a35Sp~2A31A5, A52A5, 0!,

5392 K. Svozil and J. Tkadlec: Measures and the Kochen–Specker theorem

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



a45Sp~2A31A5, 2A52A5, 0!,

a55Sp~A32A5, 2A51A5, 0!,

ca15Sp~0,2A211A5, 1!,

da15Sp~0, A2,A221A5!,

c15Sp~AA5, A21A5, A31A5!,

d15Sp~2AA5,2A221A5, A2!,

cb15Sp~2A51A5, A32A5,2A221A5!,

db15Sp~AA5,2A221A5, A2!,

e15Sp~AA5, 2A21A5, A32A5!,

c25Sp~2AA5, A21A5, A31A5!,

cb25Sp~2AA5, 2A21A5, A32A5!,

e25Sp~A51A5, A32A5,2A221A5!,

f5Sp~0, 0, 1!.

FIG. 8. ‘‘Almost’’ Greechie diagram of a suborthoposet ofH3 without a unital set of two-valued states.
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Elements of the 29-element subset without a unital set of two-valued states are all marked points
that are not crossed, a set of orthogenerators is e.g., the set of vertices of both pentagons withai ’s
and with the middle point, a set of generators is marked by circles.

It should be noted that in Refs. 8 and 18 there is an example of an 11-element set of lines
orthogenerating a 25-element set of lines and a 76-element~37-atomic! suborthoposet ofH3
without a unital set of two-valued states. This suborthoposet is generated by a three-element set.
The Greechie diagram of this example does not seem to provide an easy survey, hence we omit it.
A more detailed description of this example is given in Sec. VIII.

Proposition 7.4: There is a finite suborthoposet of H3 such that the set of two-valued states on
it is empty.

Proof: Let us consider an orthomodular latticeL, which is the pasting of the orthomodular
lattice given in Fig. 7.3 fora1 and of the orthomodular lattice given in Fig. 7.4 for its middle point.
It is an orthomodular lattice without any two-valued state. Indeed, ifs is a two-valued state onL
then s(a1)50 ~see above!. Analogously from the other diagram,s(a1)51—a contradiction. It
has 374 elements~186 atoms! and a 110-element subset without any two-valued state~six ‘‘hid-
den’’ in every circle and all marked except two of them—a1 and ā1!. According to Proposition
6.2, this orthomodular poset is weakly realizable inH3 .

It can be shown that we can paste for the whole block and obtain a weak realization, which is
a union of weak realizations of two copies of an orthomodular lattice given in Fig. 7.4. Hence, this
suborthoposet has 200 elements~99 atoms! and a 58-element subset without any two-valued state.

It should be noted that in Ref. 6 there is an example of a 33-element set of lines without any
two-valued state. Direction vectors of these lines arise by all permutations of coordinates from
~0,0,1!, ~0,61,1! ~0,61,&!, and~61,61,&!. This set of lines orthogenerates a suborthoposet of
H3 with 116 elements~57 atoms!. Direction vectors of remaining lines arise by all permutations of
coordinates from~61,63,&!. This suborthoposet ofH3 has a 17-element set of orthogenerators
~e.g., lines with direction vectors~0,0,1!, ~0,1,0! and all coordinate permutations from~0,1,&!,
~1,61,&!! and a three-element set of generators@e.g., lines with direction vectors~1,0,0!, ~1,1,0!,
~&,1,1!#. The ‘‘almost’’ Greechie diagram~24 points that belong to exactly one edge are, for
simplicity, omitted! of this example is given in Fig. 9~one edge is denoted by a circle!. The
above-mentioned three-element set of generators is marked by circles.

Corollary 7.5: There is a three-element set of lines in H3 such that no subortholattice of H3
containing it has a two-valued state.

It seems to be an open question whether every three-element set of mutually nonorthogonal
lines inH3 generates a subortholattice without any two-valued state. The least numbers in con-
structions are given in Table I.

Let us note that the examples in Proposition 7.1 and in Proposition 7.2 appeared in Ref. 17,
the example in Fig. 7.4 appeared~not explicitly! in Refs. 17 and 5 as a part of their construction.
In Ref. 19 the author uses~not explicitly! the orthomodular lattice given in Fig. 7.3 and paste three
copies to distinct atoms of a block obtaining thus an orthomodular lattice without any two-valued
state~however, his estimation of lines does not seem to be correct!.

In Ref. 7 the author uses weak realizability of an orthomodular lattice in Fig. 7.5 whenever we
represent elementsa, b by lines inH3 , such that their angle is less than 45°. This leads to the
construction of an orthomodular lattice with 392 elements~146 atoms! weakly realizable inH3
and ~at most! 130-element set of lines without any two-valued state.

VIII. DISCUSSION OF PHYSICAL RELEVANCE

In this final section we shall give a brief review of the physical relevance of the above
findings. The nonexistence of two-valued measures on certain finite propositional structures in
three-dimensional Hilbert spaces has first been explicitly demonstrated by Kochen and Specker.17

It is strongly recommended that this original account be read. Their result has given rise to a
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number of interpretations, by Kochen and Specker and others. A detailed overview of the history
of the subject can, for instance, be found in the reviews by Mermin7 and Brown.20

What does it physically mean thatthree nonorthogonal rays in three-dimensional Hilbert
space are sufficient to generate a finite system of rays that have no two-valued state? To state the
associated Kochen–Specker paradox explicitly, let us associate any one-dimensional subspace
Sp(v) spanned by a nonzero vectorv with the proposition that the physical system is in a pure
state associated with that subspace. That is,

Sp~1,0,0!5a, Sp~1,1,0!5b, Sp~A2,1,1!5c,

FIG. 9. ‘‘Almost’’ Greechie diagram of a suborthoposet ofH3 without any two-valued state@e.g., 1!2 denotes
Sp~1,21,&!#.

TABLE I. Numbers of elements of constructed propositional structures inH3 without a ‘‘large’’ set of two-valued states.

‘‘Large:’’ Full Separating Unital Nonempty
Example~figure! 4.2 7.2 cf. Refs. 8,18 8 9

Elements of a suborthoposet 28 56 76 104 116
Atoms of a suborthoposet 13 27 37 51 57
Lines 8 17 25 29 33
Orthogenerators 6 9 11 16 17
Generators 3 4 3 4 3
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wherea, b, andc are propositions. Ifa ~similar for b andc! is measured, then we associate the
logical value ‘‘true’’ or ‘‘false’’ with the two-valued state functions(a)51 ands(a)50, respec-
tively. a, b, c generate the propositional structure derived by Peres6 ~cf. also Ref. 21, pp. 186–
190!. That is, ifv andw are two vectors in three-dimensional Hilbert space corresponding to the
propositionspv andpw , respectively, then the vector productv3w corresponds to the proposition
~pv~pw)8. In particular,

Sp~1,0,0!5a,

Sp~1,1,0!5b,

Sp~A2,1,1!5c,

Sp~0,0,1!5„Sp~1,0,0!~Sp~1,1,0!…85~a~b!8.

Sp~0,1,21!5„Sp~1,0,0!~Sp~A2,1,1!…85~a~c!8,

Sp~0,1,0!5„Sp~1,0,0!~Sp~0,0,1!…85„a~~a~b!8…8,

Sp~0,1,1!5„Sp~1,0,0!`Sp~0,1,21!…85„a~~a~c!8…8,

Sp~1,21,0!5„Sp~1,1,0!~Sp~0,0,1!…85„b~~a~b!8…8,

Sp~21,A2,0!5„Sp~A2,1,1!~Sp~0,0,1!…85„c~~a~b!8…8,

Sp~A2,21,21!5„Sp~A2,1,1!~Sp~0,1,21!…85„c~~a~c!8…8,

Sp~21,0,A2!5„Sp~A2,1,1!~Sp~0,1,0!…85„c~~a~~a~b!8!8…8,

Sp~A2,1,0!5„Sp~0,0,1!~Sp~21,A2,0!…85~~a~b!8~„c~~a~b!8…8!8,

Sp~1,A2,0!5„Sp~0,0,1!~Sp~A2,21,21!…85~~a~b!8~„c~~a~c!8!)8)8,

Sp~1,0,A2!5„Sp~0,1,0!~Sp~A2,21,21!…85~~a~~a~b!8…8~„c~~a~c!8…8!8,

Sp~A2,1,21!5„Sp~0,1,1!~Sp~21,A2,0!…85„a~~a~c!8…8~„c~~a~b!8))8)8,

Sp~A2,0,1!5„Sp~0,1,0!~Sp~21,0,A2!…85„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8,

Sp~A2,21,0!5„Sp~0,0,1!~Sp~1,A2,0!…85„~a~b!8~~~a~b!8~„c~~a~c!8…8!8…8,

Sp~A2,21,1!5„Sp~0,1,1!~Sp~21,0,A2!…85„„a~~a~c!8…8~~c~„a~~a~b!8…8!8…8,

Sp~21,1,A2!5„Sp~1,1,0!~Sp~A2,0,1!…85~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8,

Sp~0,A2,21!5„Sp~1,0,0!~Sp~21,1,A2!…8

5„a~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8!8)8…8,

Sp~A2,0,21!5„Sp~0,1,0!~Sp~1,0,A2!…8

5„„a~~a~b!8…8~~„a~~a~b!8…8~„c~~a~c!8…8!8…8,
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Sp~1,21,A2!5„Sp~1,1,0!~Sp~21,1,A2!…8

5„b~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8!8)8…8,

Sp~0,1,A2!5„Sp~1,0,0!~Sp~0,A2,21!…8

5~a~„a~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8…8!8,

Sp~0,A2,1!5„Sp~1,0,0!~Sp~1,21,A2!…8

5~a~„b~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8…8!8,

Sp~21,21,A2!5„Sp~1,21,0!~Sp~A2,0,1!…8

5~„b~~a~b!8…8~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8,

Sp~0,21,A2!5~Sp~1,0,0!~Sp~0,A2,1!!8

5„a~~a~„b~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8…8!8…8,

Sp~1,1,A2!5„Sp~1,21,0!~Sp~0,A2,21!…8

5~„b~~a~b!8…8~„a~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8…8!8,

Sp~21,A2,21!5„Sp~A2,1,0!~Sp~0,1,A2!…8

5„~~a~b!8~„c~~a~b!8…8!8~a~„a~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8…8,

Sp~21,A2,1!5„Sp~A2,1,0!~Sp~0,21,A2!…8

5~~~a~b!8~„c~~a~b!8…8!8~„a~~a~„b~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8!8)8,

Sp~1,A2,21!5~Sp~A2,21,0!~Sp~0,1,A2!!8

5„„~a~b!8~~~a~b!8~„c~~a~c!8…8!8…8~~a~„a~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8…8,

Sp~21,0,1!5„Sp~0,1,0!~Sp~21,A2,21!…8

5„„a~~a~b!8…8~„~~a~b!8~„~~a~b!8…8!8

~~a~„a~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8…8)8,

Sp~1,A2,1!5„Sp~A2,21,0!~Sp~0,21,A2!…8

5~„~a~b!8~~~a~b!8~„c~~a~c!8…8!8…8

~„a~~a~„b~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8!8)8,
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Sp~1,0,1!5„Sp~0,1,0!~Sp~21,A2,1!…8

5„„a~~a~b!8…8~~~~a~b!8~„c~~a~b!8…8!8

~„a~~a~„b~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8…8!8…8.

Suppose, for the sake of contradiction, that each one of the above 33 propositions corresponds
to an ‘‘element of physical reality’’.22 That is, suppose that its value is either ‘‘true’’~exclusive!
or ‘‘false,’’ irrespective of whether it has been actually measured or just counterfactually inferred.
Let us further assume with Peres6,21 that—provided these ‘‘elements of reality’’ exist—Sp~0,0,1!
5Sp~1,0,1! 5Sp~0,1,1! 5Sp~1,21,&! 5Sp~1,0,&! 5Sp~&,1,1! 5Sp~&,0,1! 5Sp~1,1,&!
5Sp~0,1,&! 5Sp~1,&,1! 5‘‘true.’’ One can follow Peres’ arguments to show that—provided
these ‘‘elements of reality’’ exist—all other rays belong to triads that are orthogonal to the above
rays. Therefore, these latter rays must correspond to propositions whose value is ‘‘false.’’ In
particular, Sp~1,0,0!5Sp~0,&,1!5Sp~0,21,&!5‘‘false,’’ associate with s„Sp~1,0,0!…
5s„Sp~0,&,1!…5s„Sp~0,21,&!…50. Thus, s„Sp~1,0,0!…1s„Sp~0,&,1!…1s„Sp~0,21,&!…5010
1050. But Sp~1,0,0!, Sp~0,&,1!, and Sp~0,21,&! are mutually orthogonal. This is in contradic-
tion to the assumption that for any orthogonal triad spanning the entire Hilbert space, the sum of
the measures should be one@cf. Definition 3.1.~4!#. Notice that in order to arrive at this Kochen–
Specker paradox, we had to explicitly assume the existence of the ‘‘elements of reality,’’ irre-
spective of whether they have~or could have! actually been measured or not.

What physical use can be a paradox? How can one measure a contradiction? Indeed, what can
actually be measured is merelyone triplet of propositions corresponding to some of the triads of
mutually orthogonal rays. Such a measurement can be performed with the operator discussed by
Peres, or with an arrangement of beam splitters discussed by Recket al.23

For instance, afterc is found to be ‘‘true’’ @corresponding tos(c)51#, then measurement of
the original values ofa or b is no longer possible. However, suppose one would be willing to
believe in the existence of ‘‘elements of reality,’’22,24 which could merely becounterfactually
inferred. Then one could for instance—at least in principle—‘‘measure’’ all 16 orthogonal triads
by the production of a state with 16 entangled subsystems. On each one of the 16 different
entangled subsystems one could measure one of the 16 different orthogonal triads. This is similar
to a proposal by Greenberger, Horne, and Zeilinger,25 which use three particles and eight-
dimensional Hilbert space. Indeed, only in such a way—namely by~counterfactually! inferring
noncomeasurable propositions—one would encounter a complete Kochen–Specker contradiction.

As has been already proven in the Kochen and Specker original work~cf. Ref. 17, pp. 82–85,
Theorem 4!, the notion of tautology is connected to a classical~Boolean! imbedding of a partial
Boolean algebra. Indeed, there exist propositions that are tautologies in the classical~Boolean!
algebra but that are not tautologies in the partial Boolean algebra if and only if the partial Boolean
algebra does not have a unital set of two-valued states and thus cannot be imbedded into a
classical~Boolean! algebra.

This is true for all partial Boolean algebras, in particular for orthomodular posets. Notice that
the above result does not imply that every propositional structure giving rise to a~classical!
Boolean tautology that is no quantum tautology also has no two-valued measure~cf. below!.

Until now, the lowest number of rays necessary to produce a classical tautology that is not
always true quantum mechanically is due to Schu¨tte.8,18 The 11 rays used by Schu¨tte can also be
generated by the three vectors~1,0,0!, ~1,1,0!, and ~&,1,1! ~corresponding toa, b, andc! used
before. Indeed,d5Sp~0,1,21!5„Sp~1,1,0!~Sp~&,1,1!…85(a~c)8 and

a15Sp~1,0,0!5a,

a25Sp~0,1,0!5„Sp~1,0,0!~Sp~0,0,1!…85„a~~a~b!8…8,
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b15Sp~0,1,1!5„Sp~1,0,0!~Sp~0,1,21!…85~a~d!8,

b25Sp~1,0,1!5„Sp~0,1,0!~Sp~21,1,1!…85~„a~~a~b!8…8~~b~d!8!8,

b35Sp~1,1,0!5b,

c15Sp~1,0,2!5„Sp~0,1,0!~Sp~2,1,21!…85„„a~~a~b!8…8~~~a~d!8~„b~~a~d!8…8!8…8,

c25Sp~2,0,1!5„Sp~0,1,0!~Sp~21,0,2!…85„„a~~a~b!8…8~~„a~~a~b!8…8~„~a~d!8

~~~a~d!8~„b~~a~b!8…8!8…8)8…8,

d15Sp~21,1,1!5„Sp~1,1,0!~Sp~0,1,21!…85~b~d!8,

d25Sp~1,21,1!5„Sp~1,1,0!~Sp~0,1,1!…85„b~~a~d!8…8,

d35Sp~1,1,21!5„Sp~0,1,1!~Sp~1,21,0!…85~~a~d!8~„b~~a~b!8…8!8,

d45Sp~1,1,1!5„Sp~0,1,21!~Sp~1,21,0!…85~d~„b~~a~b!8…8!8,

where

Sp~2,1,21!5„Sp~0,1,1!~Sp~1,21,1!…85~~a~d!8~„b~~a~d!8…8!8,

Sp~21,0,2!5„Sp~0,1,0!~Sp~22,1,21!…85~„a~~a~b!8…8~„~a~d!8~~~a~d!8

~„b~~a~b!8…8)8…8)8,

Sp~2,21,1!5„Sp~0,1,1!~Sp~1,1,21!…85„~a~d!8~~~a~d!8~„b~~a~b!8…8!8…8.

As we have mentioned above, there is not a unital set of two-valued states on a suborthoposet
orthogenerated by these rays~e.g., there is no two-valued states with s„Sp~1,0,0!…51!. On the
other hand, a two-valued can be defined bys„Sp~0,1,0!… 5s„Sp~0,1,1!… 5s„Sp~1,1,0!…
5s„Sp~1,1,1!… 5s„Sp~1,1,2!… 5s„Sp~1,2,1!… 5s„Sp~2,1,1!… 5s„Sp~1,2,21!… 5s„Sp~21,2,1!…
5s„Sp~1,5,2!… 5s„Sp~2,5,1!… 5s„Sp~21,5,2!… 5s„Sp~2,5,21!… 5s„Sp~1,5,22!… 5s„Sp~22,5,1!…
51 and s„Sp~1,0,0!… 5s„Sp~0,0,1!… 5s„Sp~1,0,1!… 5s„Sp~0,1,21!… 5s„Sp~1,0,21!… 5s„Sp~1,
21,0!… 5s„Sp~1,1,21!… 5s„Sp~1,21,1!… 5s„Sp~21,1,1!… 5s„Sp~21,21,2!… 5s„Sp~21,2,21!…
5s„Sp~2,21,21!… 5s„Sp~1,21,2!… 5s„Sp~21,1,2!… 5s„Sp~2,1,21!… 5s„Sp~2,21,1!…
5s„Sp~1,0,2!…5s„Sp~2,0,1!…5s„Sp~21,0,2!…5s„Sp~2,0,21!…5s„Sp~1,25,2!…5s„Sp~2,25,1!…50.

Consider now the following propositions~notice that any binary operation is either performed
by orthogonal rays or by a ray and an orthocomplement of another ray, such that these rays are
orthogonal!:

f 15d1→b285~d1`b2!8,

f 25d1→b385~d1`b3!8,

f 35d2→a2~b25„d2`~a2~b2!8…8,

f 45d2→b385~d2`b3!8,

f 55d3→b285~d3`b2!8,
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f 65d3→~a1~a2→b3!5~d3`„~a1~a2!8~b3…8!8,

f 75d4→a2~b25„d4`~a2~b2!8…8,

f 85d4→~a1~a2→b3!5~d4`„~a1~a2!8~b3…8!8,

f 95~a2~c1!~~b3~d1!5„~a2~c1!8`~b3~d1!8…8,

f 105~a2~c2!~~a1~b1→d1!5~~a2~c2!8`„~a1~b1!8~d1…8!8,

f 115c1→b1~d25„c1`~b1~d2!8…8,

f 125c2→b3~d25„c2`~b3~d2!8…8,

f 135~a2~c1!~@~a1~a2→b3!→d3#5„~a2~c1!8`~„~a1~a2!8~b3…8~d3!8…8,

f 145~a2~c2!~~b1~d3!5„~a2~c2!8`~b1~d3!8…8,

f 155c2→@~a1~a2→b3!→d4#5„c2`~„~a1~a2!8~b3!8~d4)8…8,

f 165c1→~a1~b1→d4!5~c1`„~a1~b1!8~d4…8!8,

f 175~a1→a2!~b15~a18~a2!~b1 .

The ‘‘implication’’ relation has been expressed asx→y[x8~y[(x`y8)8.
As can be straightforwardly checked, the proposition formed by

F: f 1` f 2`•••` f 16→ f 17,

is a classical tautology. Nevertheless,F is not valid in three-dimensional~real! Hilbert spaceR3,
since f 1 , f 2 ,...,f 165R3, whereasf 175„Sp~1,0,0!…85Sp~0,1,0!~Sp~0,0,1!ÞR3.

The three vectors~1,0,0!, ~1,1,0!, and ~&,1,1! generating the Schu¨tte rays are not mutually
orthogonal. Therefore, the corresponding propositionsa, b, andc are not comeasureable. In the
sense of partial algebras, they cannot be combined by logical operations ‘‘or’’~~!, ‘‘and’’ ~`!,
‘‘not’’ ~8! to form new expressions. Thus, it would be incorrect to state that there exists a classical
tautology in the three variablesa, b, and c, which is no quantum tautology. Indeed, Coray
proved26 that all classical tautologies in three variables are tautologies in all partial algebras, in
particular in the one associated with the logic of quantum observables.

However, also Schu¨tte’s example is counterfactual in nature. Although every operation or
relation is solely defined on comeasurable propositions, the entire formulaF contains 11 non-
comeasurable variables~nonorthogonal rays!. In order to be able to evaluate this formula, one
would have to know the true value of all these 11 variables in parallel. Since they are not
comeasurable, this is possible only by counterfactual inference; in very much the same way as
discussed before in the case of the original Kochen–Specker paradox. Indeed, Corey’s result
shows thatanyclassical~Boolean! tautology that is no quantum tautology will have to rely on at
least four variables that cannot be mutually orthogonal~in R3!, and therefore must be based upon
counterfactual inference.

Finally, let us briefly mention the relevance of these findings to the partition logic of au-
tomata. Corollary 4.3 states that every finite subortholattice ofR3 has a full~and thus separating!
set of two-valued states. Thus, any finite subortholattice ofR3 can be expressed as an automaton
logic. The subortholattices ofR3 that have no two-valued state are infinite.
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The canonical form of the Rabi Hamiltonian
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The Rabi Hamiltonian, describing the coupling of a two-level system to a single
quantized boson mode, is studied in the Bargmann–Fock representation. The cor-
responding system of differential equations is transformed into a canonical form in
which all regular singularities between zero and infinity have been removed. The
canonical or Birkhoff-transformed equations give rise to a two-dimensional eigen-
value problem, involving the energy and a transformational parameter which af-
fects the coupling strength. The known isolated exact solutions of the Rabi Hamil-
tonian are found to correspond to the uncoupled form of the canonical system.
© 1996 American Institute of Physics.@S0022-2488~96!01211-X#

I. INTRODUCTION

In the study of dynamical problems the harmonic oscillator occupies a prominent place as a
prototype of the fundamental unitary symmetry group. The spell of group theory also extends to
anharmonic oscillators, which have recently been exposed as mereq-deformations of the unitary
group algebra.1 In contrast dynamical problems which arise in the study of boson–fermion inter-
actions are more reluctant to reveal their hidden symmetries. Such problems are more involved
since the actual states of the system are of composite nature with a boson and a fermion part. This
results in the appearance of singularities in the corresponding eigenvalue problem. Examples
include the Jahn–Teller Hamiltonian in molecular physics and the Rabi Hamiltonian in nuclear
physics and quantum optics.

A rather peculiar feature of these systems is the emergence of isolated exact solutions, with
eigenvalues that correspond to simple expressions in rational numbers. Such were obtained—in a
rather heuristic way—by Judd2 for the case of theE^e Jahn–Teller Hamiltonian, and by Kus´3 for
the spectrum of a two-level atom coupled to a single quantized mode. It was suggested that the
exact solutions probably hint at some dynamical symmetry group, but so far no progress was
reported in this direction.

In the present paper we analyze the one-mode Rabi problem in a more rigorous way. First—
following Refs. 3 and 4—the dynamical problem is defined in the Bargmann–Fock Hilbert space
of entire functions. The resulting system of differential equations is then put into canonical form
using a theorem due to Birkhoff. Under this transformation the Kus´ exact solutions are found to be
mapped onto the levels of a displaced harmonic oscillator. In this way hidden symmetry appears.

II. THE BARGMANN–FOCK REPRESENTATION OF A HILBERT SPACE

Before turning to the actual results we briefly review basic information about the Hilbert space
of entire functions introduced by Fock5 and Bargmann.6 Let F n , for n integral, be the set of entire
analytic functionsf (z), wherez5(z1 ,...,zn) and zkPC are complex numbers,k51,...,n. Be-
causef (z) is entire it has an everywhere converging power series

f ~z!5 (
k1 ,...,kn

ak1 ,...,kn
z1
k1
• ••• •zn

kn, ~1!

a!On leave of the Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland.
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where summation extends over the whole set of non-negative integersk1 ,...,kn andak1 ,...,kn
are

complex coefficients. We define an inner product of two elementsf andg of F n by

~ f ,g!5E f ~z!•g~z!dmn~z!, ~2!

wheref (z) • g(z) is a usual scalar product inCn,

dmn~z!5
1

pn exp~2 z̄•z!)
k51

n

dxkdyk , zk5xk1 iyk , ~3!

and the integration extends over the whole spaceCn. The Bargmann–Fock spaceF n is a set of all
entire functions~1!, which have a finite norm (f , f ),`. This is equivalent to the requirement that

u f ~z!u<c exp~ 1
2g z̄•z!, ~4!

wherec andg are positive constants withg,1. The Bargmann–Fock spaceF n with the inner
product defined by~2! is a Hilbert space.

Let us now consider two operators inF n : multiplication by zk and differentiationd/dzk .
Since the functionsf (z) of F n are analytic,zkf and (d/dzk) f always exist. The operators satisfy
the commutation rules

@zk ,zl #50, F d

dzk
,
d

dzl
G50, F d

dzk
,zl G5dkl . ~5!

Furthermore, with respect to the inner product~2!, zk andd/dzk are Hermitian conjugate

~zkf ,g!5S f , d

dzk
gD ~6!

wheneverzk f and (d/dzk) f belong toF n .
On the other hand, relations~5! and~6! are well-known algebraic relations defining Hermitian

conjugate annihilationak and creationak
1 operators of boson fields in second quantization:

@ak
1 ,al

1#50, @ak ,al #50, @ak ,al
1#5dkl . ~7!

We conclude therefore that withinF n the annihilation operatorak is represented by the operation
d/dzk , and the creation operatorak

1 corresponds to the multiplication byzk .
As an instructive example let us take a set ofn identical uncoupled harmonic oscillators which

are described up to a constant by the HamiltonianH5( l51
n al

1al . The corresponding operator in
the Bargmann–Fock space~denoted byH! isH5( l51

n zld/dzl and the corresponding eigenprob-
lem is the system of differential equations

(
l51

n

zl
d

dzl
f k~z!5Ek f k~z!. ~8!

It is easily verified that the eigenfunctions in this case are functions of the type~1!, which are
homogeneous polynomials of the orderk, i.e., in ~1! the sum is overk11•••1kn5k and the
corresponding eigenvalues areEk5k.
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III. THE TRANSFORMATION TO A CANONICAL FORM

In the Bargmann–Fock representation of a Hilbert space, quantum mechanical equations for
bosons interacting with a manifold of fermion states are represented by a system of linear differ-
ential equations in the complex domain.3,4 The physical solutions~1! of such a system must belong
to F n , i.e., be entire and obey condition~4!. In practice the solution of this equation is compli-
cated due to the occurrence of finite regular singularities.

In this section we describe a transformation, due to Birkhoff,7 which allows us, for a system
of linear equations of the first order in one variable, to find a canonical form. To be in the
canonical form the system must be transformed in such a way that all its finite singularities reduce
to only one singularity at zero, while at the same time preserving the order of the singularity at
infinity. Consequently, the transformed system is more likely to be exactly solvable.

The system ofm linear differential equations of the first order has a general form

d fr
dz

5(
s51

m

prs~z! f s , r51,...,m, ~9!

and we assume thatprs(z) are analytic functions of a complex variable apart from a finite number
of regular singularities~even at infinity!. Practically it means that, outside the circleuzu5R, which
includes all the finite singular points, the coefficients may be expanded in a Laurent series

prs~z!5 (
k52`

q

prs
~k!zk, prs

~k!PC, ~10!

whereq>21 andq11 is termed therank of the singular point at infinity. In general the system
~9! can havem independent sets of solutionsf s

(t)(z), wheres51,...,m denotes different solutions
within a sett51,...,m. Now we assume a linear transformation of the form

f r~z!5(
s51

m

ars~z!Fs~z!, ~11!

where the coefficientsars(z) are analytic at infinity and reduce at infinity to a unit matrix

ars~z!5 (
k50

` ars
~k!

zk
, ars

~k!PC, ars
~0!5d rs . ~12!

In a sense this$ars(z)% matrix could be said to contain all the finite singularities of the initial
system. Under this transformation the original system~9! turns into a system of a slightly different
form:

z
dFr~z!

dz
5(

s51

m

Prs~z!Fs~z!, r51,...,m. ~13!

The coefficients of the transformed system are given by the equation

$Prs~z!%5zS $ark
21~z!%$pkl~z!%$als~z!%2$ark

21~z!%H d

dz
aks~z!J D , ~14!

where $ark
21(z)% is the matrix inverse to the matrix$ark(z)% and $ark(z)%$pks(z)% denotes the

matrix multiplication. Now we are in the position to formulate the Birkhoff theorem—the crucial
result in our analysis.
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The Birkhoff theorem states thatfor every system of the type (9) there exists a transformation
matrix (12) such that the coefficients Prs(z) of the transformed system (13) are polynomials of a
degree not exceeding q11.7

There are several properties of the above transformation which should be stated here.

~i! All finite singular points of the initial system~9! coalesce to only one singularity at zero
@becausePrs(z) are polynomials#. This is the most significant property of the transforma-
tion and because of it the system~13! may be termed thecanonicalform of the system~9!.

~ii ! The ranks of the singular points at infinity for both systems~9! and ~13! are equal.
~iii ! If a given set of solutionsf s

(t)(z), s51,...,m, belongs to the Bargmann–Fock spaceF 1,
then the corresponding transformed solutionsFs

(t)(z), which are found due to the Birkhoff
theorem, also belong to this space. This can easily be shown by adapting the treatment by
Birkhoff to the case of entire functions.

The final property allows us to reject all the solutions of the transformed system which do not
belong to the Bargmann–Fock space as being nonphysical. However, the inverse of this property
is not automatically true, but requires a proper choice of the transformation matrix. We will come
back to this point when discussing the actual solutions of the system under investigation.

A useful test to check if the solutions of the transformed system can be entire is given by the
indicial equation of the transformed system8

det$crs2rd rs%50, ~15!

wherecrs5Prs(0), r ,s51,...,m. The solutions of~13! depend on the rootsr1,...,rm of the indicial
equation. There are several rules connected with this equation which indicate the possibility of
existence of entire solutions and their degeneracy.

D0. If none of the roots is a non-negative integer, the equation~13! has no entire solutions
~because they are not analytic in the origin!.

D1. If one of the rootsrt is a non-negative integer and the remaining roots are either nonin-
tegers or are equal tort , then there exists exactly one, up to linear dependence, set of analytic
solutions of~13! and it is of the form

Fs
~ t !~z!5zr tus~z!, s51,...,m, ~16!

where theus(z) are analytic andus~0!Þ0. Functions~16! are entire provided their radii of con-
vergence are infinite.

D2. In the remaining cases if two or more roots of the indicial equation are integers~at least
one of them is non-negative!, there exists at least one analytic set of solutions of the form~16!,
wherert is the maximal integral root of~15!. The remaining solutions corresponding to other
integral roots are usually singular in the origin, but in exceptional cases may also be analytic.

It should be pointed out that the Birkhoff theorem is an existence theorem, which as such does
not provide the actual form of the canonical equation nor the transformation matrix. In practice at
least the canonical equation can usually be found relatively easy by the use of~14!, keeping in
mind that thePrs(z) are polynomials of a given degree. To this aim we invert Eq.~14! and express
it in terms of the relevant expansion coefficients. This yields, for every integerl>0, a system of
m2 equations

(
i50

l

~$ark
~ l2 i !%$Pks

~q112 i !%2$prk
~q2 i !%$aks

~ l2 i !% !5~ l2q21!$ars
~ l2q21!%, ~17!
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where expansion coefficients for$prk(z)%, $ark(z)%, and$Prs(z)% are defined by~10!, ~12!, and
Prs(z)5(k50

q11Prs
(k)zk, respectively. We assume also that$ark

( i )% and $Prk
( i )% with negative indicesi

are zero matrices.
This formula can now be used to find the coefficientsPrs(z) of the transformed system. In this

case we only need the equations corresponding tol50,...,q11. Here the trivial case withl50
immediately yields

$Prs
~q11!%5$prs

~q!%. ~18!

For higherl , 1< l<q11, the resulting expansion coefficients in the transformed system may also
depend on theaks

(1) ,...,aks
(q11) coefficients in the expansion of the transformation matrix. These

coefficients thus may enter the transformed system as extra degrees of freedom, which we will
denote as theparametersof the transformed equation. The canonical transformation can only be
defined up to these parameters. However, in the context of a physical model, their values will be
constrained by the requirement that the solution of the initial system belong to the Bargmann–
Fock space.

The remaining equations in the system~17!, i.e., the formulas corresponding tol5q12,
q13, ..., form a set of recurrence equations for the$ars(z)% matrix. This system determines
$ars(z)% as a function of the parameters of the transformed system. The procedure of determining
the transformation matrix for a given set of parameters is in general infinite and it may be very
difficult to find the parameters that lead to solutions in the Bargmann–Fock space. Hence it is
conceivable that we know the initial~9! and the transformed~13! systems of equations, without
being able to solve the transformation matrix~12!. In some cases this still allows us to draw some
important conclusions about features of physical interest, such as degeneracies or symmetries.

A special case arises if we assume that the expansion~12! of $ars(z)% in negative powers of
z is finite. In this case confinement to the Bargmann–Fock space can indeed easily be guaranteed.
If the highest order in the denominators of~12! is not greater thanrt from ~16!, which is the lowest
power in the expansion of theFs

(t)(z), then the corresponding solution of the initial system is
automatically analytic in the origin. In this case the system~17! also remains finite and can be
solved. This procedure precisely leads to the isolated exact solutions of the initial system.

IV. THE SOLUTION OF A TWO-LEVEL SYSTEM COUPLED TO A SINGLE QUANTIZED
MODE

A. The canonical form

In this section we derive the canonical form of the dynamical equations for a two-level system
coupled to a single quantized mode. The Hamiltonian of such a system, sometimes called Rabi
Hamiltonian,4 is of the form

H5va1a1ms31l~s11s2!~a11a!, ~19!

wherea1 anda are boson field~7! creation and annihilation operators,s651
2~s16is2!, ands1,

s2, s3 are Pauli matrices. The parameterv is the boson field frequency, 2m is the atomic level
separation, andl is the atom–boson field coupling constant. We choose the energy unit in such a
way thatv51, and we assume thatl andm are not vanishing simultaneously.

The first step to solve the system~19! is to make a unitary transformation which replaces
operatorss1→s3, s3→s1, ands2→2s2. Then we write the stationary Schro¨dinger equation for
the two-component wavefunction in the position variable (f2(j)

f1(j)). In the second step, by replacing

a1→z and a→d/dz, we perform a transition to a Bargmann–Fock space. In this space the
Schrödinger equation is equivalent to a system of two first-order differential equations for the
Bargmann–Fock space functionsf 1(z), f 2(z)PF 1:
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d

dz
f 1~z!5

E2lz

z1l
f 1~z!2

m

z1l
f 2~z!,

~20!
d

dz
f 2~z!52

m

z2l
f 1~z!1

E1lz

z2l
f 2~z!,

whereE is an eigenenergy ofH. Note that in the Schro¨dinger representation of creation and
annihilation operators we havea1→(1/&)(j2 ipj), a→(1/&)(j1 ipj), where j and pj are
conjugate position and momentum. The system corresponding to~20! in this representation consist
of two second-order differential equations in a real variablej.

The present Bargmann–Fock space formulation of the problem has been investigated earlier
and approximate solutions have been found.4,9 In addition Kuśhas derived some isolated exact
solutions, corresponding to degenerate levels.3

For our purposes we point out three properties of the system. First, it is of the form~9! with
two finite singularities inz5l,2l. Second, expanding coefficients of~20! in a Laurent series~10!
we find thatq50 and therefore the singular point at infinity is of the first rank. Finally, we note the
following symmetry: if (f2(z)

f1(z)) is a solution of~20!, then (f1(2z)
f2(2z)

) is also a solution, corresponding

to the same energy value.
The Birkhoff theorem is found to apply to the system in~20!. Hence one can claim the

existence of a canonical form. Withq50, the coefficients of this form will be polynomials of the
first degree! They can be obtained from Eqs.~17! and ~18!, as explained in the previous section.
The linear terms ofPrs(z) are inferred at once from~18!, i.e.,Prs

(1)(z)5(21)rld rs . To calculate
the remaining four zeroth-order terms ofPrs(z) we use Eq.~17! with l51. The canonical form of
the system~20! is therefore

z
d

dz
F1~z!5~E2lz1l2!F1~z!1~2m22la12

~1!!F2~z!,

~21!

z
d

dz
F2~z!5~2m12la21

~1!!F1~z!1~E1lz1l2!F2~z!,

where F1(z) and F2(z) are linearly transformedf 1(z) and f 2(z) ~11!, and a12
~1! and a21

~1! are
parameters belonging to the transformation matrix~12!.

The main feature of the canonical system is that it has only one singularity atz50, and
because of that is exactly solvable. Prior to solving it, however, we exploit the symmetry of
solutions (f2(z)

f1(z)) of the initial system~20!. To preserve this symmetry in the transformed pair, i.e.,

if ( F2(z)
F1(z)) is a solution of~21!, then so is (F1(2z)

F2(2z)), we must impose the following symmetry of the

transformation matrix

ai j ~z!5a@ i11#@ j11#~2z!, i , j51,2, ~22!

where@•1•# denotes an addition modulo 2.

B. Quantization conditions and canonical solutions

Physical constraints require the solutions of~20! belong to the Bargmann–Fock space, i.e., to
converge in the entire plane. This leads to quantization conditions, as we will show in this section.

The canonical system contains four parametersl, m, E, anda12
~1! . In the usual perception of the

probleml andm are external quantities, describing the physics of the system, whileE anda12
~1! are

essentially free parameters, to be determined by the quantum conditions. The indicial equation
~15! corresponding to the system~21! is seen to linkE anda12

~1! :
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r5E1l26A, ~23!

whereA5m12la12
(1). For the system~21! to have solutions in the Bargmann–Fock space, at least

one value ofr must be a non-negative integer. The value ofA thus determines the whole energy
spectrum, but in turn it is controlled by thea12

~1! parameter, from which the transformation matrix
can be generated via~17!. For the time being we will treat it as a free parameter, delineating
classes of solutions in the energy spectrum. As we will see later its value will be fixed by the
requirement that the solutions of the original system~20! are in the Bargmann–Fock space.

The general solution of~21! can be obtained by transforming it into a second-order form

z2F19~z!1z@122~E1l2!#F18~z!1@~E1l2!22A21lz2l2z2#F1~z!50. ~24!

This equation can be reduced to a confluent hypergeometric~or Kummer! equation. Its general
solution is a combination of two functions

F1~z!5C1 exp~lz!1F1~11A,112A;22lz!zE1l21A

1C2 exp~lz!1F1~12A,122A;22lz!zE1l22A, ~25!

with arbitraryC1 andC2. The function1F1(a,c;z) is called confluent series or Kummer function
and is defined for all complexa, z andcÞ2n, n50,1,2,...:

1F1~a,c;z!511
a

c

z

1!
1
a~a11!

c~c11!

z2

2!
1
a~a11!~a12!

c~c11!~c12!

z3

3!
1••• . ~26!

The Kummer function is entire. The solutions forF2(z) are of the same general form~25!, with
howeverz replaced by2z.

The asymptotic behavior of the solution~25! for uzu→` is restricted by the function
za1 exp(lz) 1 za2 exp(2 lz), wherea1 anda2 are real numbers

10 and therefore the condition~4! is
always obeyed. Consequently the solution~25! belongs to the Bargmann—Fock spaceF 1, pro-
vided at least one of the roots of the indicial equation~23! is a non-negative integer.

A particularly simple case occurs ifl50 because then the transformed system~21! coincides
with the initial one~20!. The transformation matrix reduces in this case to the unit matrix.

Let us now discuss the solutions~25! and their degeneracy for different values ofE1l2.

~i! If E1l2 is neither an integer nor a half-integer, then, to get physical solutions, we should
takeA such that one of the numbersr15E1l21A andr25E1l22A is a non-negative
integer. In this case, according to the general ruleD1, one of the two functions composing
F1(z) can be entire. The corresponding solution forF2(z) is also one-dimensional and is
given by F2(z)5(21)r t1tF1(2z).

~ii ! If E1l2 is a half-integer, then we takeA also half-integral. Despite the fact that both
E1l21A andE1l22A are now integers~rule D2!, the solutionsF1(z) andF2(z) are
still one-dimensional because in this case one of the numbers 112A or 122A is a non-
positive integer and the corresponding Kummer function is not defined.

~iii ! If E1l2 is an integer, we can take the simple choiceA50. Then, forE1l2>0, each of the
solutions is entire and forms a one-dimensional space~rule D1!, but because the system
~21! is diagonal we can always take its two linearly independent solutions of the form
(F2(z)
F1(z)) and (

2F2(z)
F1(z) ). Consequently in this case the solutions are degenerate. This class of

solutions will comprise the exact solutions found by Kus´.
~iv! If E1l2 is an integer andE1l2.0, we can also takeA integral, 0,uAu<E1l2. In this

case, although the system~21! is no more diagonal, solutionsF1(z) andF2(z) become
two-dimensional and lead to degenerate solutions. This represents the rarest case ofD2
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when two roots of the indicial equation are integral and both corresponding solutions are
analytical.

To summarize we conclude that the only case where solutions are degenerate can occur when
E1l2 is a non-negative integer.

C. The isolated exact solutions

In the previous section we have shown that the canonical form of the Rabi Hamiltonian can be
solved within Bargmann–Fock conditions. This results in a coupling betweenA andE parameters,
which is interesting in its own right, but does not lead to quantized energies. As we have already
mentioned, the true quantization condition stems from the requirement that the solutions of the
original system belong to the Bargmann–Fock space. This implies that the transformation of the
canonical solutions must act within the Bargmann–Fock space. In this way we fixA and henceE.

In general this procedure is nontrivial since the transformation matrix is generated by an
infinite system of equations~17!, yielding an infinite series of coefficientsars

(k). In this section we
will not be concerned with the general case, but only study the exactly solvable class of solutions,
which corresponds toA50. We assume that the transformation is nontrivial, i.e.,lÞ0.

Let us first consider the simplest possibilitym50. With A50, and hencea12
~1!50, the indicial

equation yields thatr5E1l2 must be a non-negative integer. It is easy to find that the corre-
sponding transformation matrix is diagonal and reads

$ars~z!%5S S 11
l

zD
E1l2

0

0 S 12
l

zD
E1l2D , ~27!

whereas the solutions are generated by

F1~z!5exp~2lz!zE1l2, F2~z!5exp~lz!zE1l2. ~28!

Note that in this case the expansion~12! in negative powers of both diagonal terms terminate. The

last nonzero coefficients arears
(E1l2) . On the other hand, the lowest power ofz in the expansion

of the transformed solution~25! is alsoE1l2. It is then easily verified that the solution of the
initial system, which follows from~11!, is of form ~1! and thus belongs to the Bargmann–Fock
space. The energy spectrum is obtained directly from the indicial equation~23! and reads
Er5r2l2, wherer50,1,2,... .

In the line of this example we now turn to the more general casemÞ0 but keep thears
(k) matrix

finite. As a first example we assume that the expansion~12! of the transformation matrix termi-
nates, andars

(1) are the only nonzero coefficients. In other words,ars
(2)5ars

(3)5•••50. In this case
the system~17! is also finite because starting froml53 all the higher-order equations are equiva-
lent to equations corresponding tol52. Taking into account symmetry properties~22! of the
matrix, the system reduces to four equations

ā1112mā1212lā12
2 2l~E1l2!50, 2mā111ā1212lā11ā121lm50,

~29!
~E1l2!ā111mā122l~E1l2!50, mā111~E1l2!ā121lm50,

where we denoteākl5akl
(1) for convenience. Letm be nontrivial and 0,m<~E1l2!. Then, after

some algebra, one can show that the system~29! is equivalent to the transformation matrix
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$ars~z!%5S 11
11m2

4lz
2

m

2lz

m

2lz
12

11m2

4lz

D ~30!

and two other conditions:E1l251 and 4l21m251. From thea12(z) element in~30! it also
follows thatA5m12la12

(1)50.
Thus the very assumption that the transformation matrix terminates gave us the form of the

matrix, the values ofE1l2 andA, showing that they correspond to a degenerate solution of~25!.
In addition the system has energyE512l2 only if the atomic level separation 2m and the
atom–boson field couplingl obey condition 4l21m251. The corresponding eigenfunction
(F2(z)
F1(z)) is given by~28! and (f2(z)

f1(z)) can be found by applying~11!. One can easily show thatf 1(z)

and f 2(z) belong to the Bargmann–Fock space. This solution agrees with the first root of the Kus´
series.3

In an analogous way one can show that if the transformation matrix terminates from the
third-order coefficients onwards,ars

(3)5ars
(4)5•••50, and 0,m<~E1l2!, then the transformation

matrix functions are

a11~z!5a22~2z!511

2l1
m2

2l

z
1

l21m21
m42m2

8l2

z2
,

~31!

a12~z!5a21~2z!52
m

2lz
1

m~6l21m221!

4l2z2
,

i.e., again A50 and the remaining conditions areE1l252 and 32l4232l2112l2m2

25m21m41450, which corresponds to the second root of the Kus´ series. In this way all solutions
of the Rabi Hamiltonian characterized by a terminating$ars(z)% can be generated. They are found
to coincide with all known exact solutions.

V. DISCUSSION

The Rabi Hamiltonian describes the coupling between a two-level system and a single mode
through a linear interaction termls1(a

11a). This problem is relevant in quantum optics but also
appears in molecular physics as the simplest example of vibronic coupling.11,12

In Bargmann–Fock space it can be represented by a system of two first-order differential
equations, as shown in~20!. Form50 this system separates into two independent equations:

~z1l!
d

dz
f 1~z!5~E2lz! f 1~z!,

~32!

~z2l!
d

dz
f 2~z!5~E1lz! f 2~z!.

This situation corresponds to a highly symmetric case with two uncoupled harmonic oscillators
that are displaced to the left and to the right in coordinate space,9 and cross at the coordinate
origin. From this perspective the introduction of the level separation 2m may be viewed as a
symmetry-lowering perturbation, which couples the two oscillators.

If we now compare the original system~20! to the canonical one~21!, we still have essentially
a set of two displaced oscillators—but now the coupling term no longer corresponds tom but to
m12la12

~1!! Hence the canonical transformation provides a degree of freedom that allows us to
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perform a displacement in the space of the coupling parameter itself. We can thus adjusta12
~1! in

such a way that it compensates for the energy gap, by requiringa12
~1!52m/2l, or A50. System

~21! then becomes

z
d

dz
F1~z!5~E2lz1l2!F1~z!, z

d

dz
F2~z!5~E1lz1l2!F2~z!. ~33!

This system again describes two degenerate harmonic oscillators that are displaced in coordinate
space and also underwent a translation inz space over1 or 2l.

We thus have shown that the exact solutions that are found forA50 can be mapped onto the
energy spectrum of a degenerate harmonic oscillator. A similar result can also be obtained for the
Juddian exact solutions of theE^e Jahn–Teller Hamiltonian.13
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A one-dimensional boson–fermion model with two-body interactions between the
two types of chiral fermions is considered. It is shown that the model is exactly
soluble and the general Bethe eigenstates are constructed. On the basis of the Bethe
ansatz equations, the ground state, the low lying elementary excitations, and the
thermodynamics are also given in some closed integral equations. ©1996 Ameri-
can Institute of Physics.@S0022-2488~96!03305-2#

I. INTRODUCTION

A many-body problem plays a very important role in modern physics, especially in statistical
physics and condensed matter physics. After the establishment of quantum mechanics, very many
methods had been developed to approach this problem. However, most of the theories are approxi-
mate and exact results are still rare. Although many efforts have been done in this aspect, the exact
results were only obtained in a few special two-dimensional classical models and one-dimensional
quantum models. At present, perhaps the most powerful method to approach one-dimensional
quantum soluble models is the Bethe ansatz method. After the elegant work of Bethe,1 a dozen of
models have been solved with his brilliant ansatz. Great achievements have been reached in
111-dimensional quantum field theory2–4 and condensed matter physics.5,6 Among the exactly
soluble models, there is a special type, i.e., theN wave interaction model7 in which there are
interactions breaking the conservation of the particle numbers. Such interactions put the eigen-
states of the Hamiltonian into the coherentlike states. The first Bethe ansatz result of the quantum
three wave interaction model was given by Wadati and co-workers after some lengthy
calculations.8 Very recently, a systematic method to approach such interacting systems has been
developed by one of the present authors and co-workers.9

In this article, we study the boson–fermion model with two-body interactions in one dimen-
sion. It is shown that this model is also Bethe ansatz soluble.

The Hamiltonian we shall consider reads

H5E H 2 i FQ1
† ]

]x
Q12Q3

† ]

]x
Q3G1nQ2

†Q21cQ1
†Q3

†Q3Q11g@Q1
†Q3

†Q21Q2
†Q3Q1#J dx,

~1!

where theQj
†s(Qj8s) are particle creation~annihilation! operators.Q1

† andQ3
† create spinless chiral

fermions with different chiral indices61 andQ2
† creates localized bosons;g is the ‘‘contraction-

decay’’ coupling constant;c describes the coupling constant betweenQ1 andQ3 particles. Note
such an interaction in the Tomonaga model10 is irrelevant but indeed relevant in the present model
as in the Luttinger model;11 n is a positive number which denotes the virtual level of the bosons.
In our model, we define the bosons being localized. Thus the bosons may describe the bi-polaron

a!Permanent address: Cryogenic Laboratory, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China.
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states or the dimer states.13 Although the bosons are static initially, the spontaneous decay into
itinerant fermions does allow them to behave itinerantly. The outline of this article is the follow-
ing. In Sec. II we construct the eigenstates of the model Hamiltonian. Through the consideration
of a two-body state, the general eigenstates can be constructed with a theorem. In Sec. III, the
ground state or the physical vacuum~Fermi sea! is discussed in a cut-off scheme because the
energy spectrum is not bounded from below. Some elementary excitations are given in Sec. IV. It
is found that all the four types of elementary excitations fall into the particle-hole scheme with the
‘‘back flow’’ of the Fermi sea compensated. The thermodynamics is given in Sec. V by a closed
set of integral equations. As checks, some special cases are studied on the basis of the integral
equations.

II. CONSTRUCTION OF THE EIGENSTATES

We shall follow the method developed in Ref. 9 to construct the eigenstates of the Hamil-
tonian~1!. Traditionally, the Bethe ansatz method is used to construct the common eigenstates of
the Hamiltonian, the total momentum, and the particle number~s!. However, the total particle
number is not conserved in the present model. Fortunately, the quantities

N15E @Q1
†Q11Q2

†Q2#dx, N25E @Q3
†Q31Q2

†Q2#dx, ~2!

which we call ‘‘pseudoparticle numbers’’ and the total momentum

P52 i E (
j51

3

Qj
† ]

]x
Qj dx ~3!

are conserved. Therefore, we can specify the eigenstates byuN1 ,N2&. To show the procedure
clearly, it is convenient to consider first theN15N251 state. Such a state is the simplest non-
trivial state which gives the main information about the general eigenstates. Theu1,1& state can be
written as

u1,1&5E dx1 dx2 C~x1ux2!Q1
†~x1!Q3

†~x2!u0&1E dy C1~y!Q2
†~y!u0&, ~4!

whereu0& is the vacuum state defined byQj u0&50. The Schro¨dinger equationHu1,1&5Eu1,1& leads
to

2 i F ]

]x1
2

]

]x2
GC~x1ux2!1@gC1~x1!1cC~x1ux2!#d~x12x2!5EC~x1ux2!,

~5!
nC1~y!1gC~yuy!5EC1~y!,

whereE is the eigenvalue. To solve the above equations, we make the following ansatz:

C~x1ux2!5exp@ ikx11 iqx2#@u~x12x2!1u~x22x1!S~k,q!#,
~6!

C1~y!5S1~k,q!C~yuy!,

whereu(x) is the step function withu~0!51
2. Other choices ofu~0! value induce nothing but the

renormalization of the coupling constantsc andg. The discontinuity ofC(x1ux2) at x15x2 is due
to the linear kinetic energy term in the Hamiltonian. Substituting Eq.~6! into Eq. ~5! we deduce
the two-bodySmatrix and the contraction matrixS1 as
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S~k,q!5S21~q,k!5eif
k2q2n1 im

k2q2n2 im*
,

~7!

S1~k,q!5
g

k2q2n
,

with m5g2/(41 ic) and eif5(42 ic)/(41 ic). Then the stateu1,1& defined in Eq.~4! is an
eigenstate with the eigenenergyE5k2q.

Now we turn to construct the general eigenstate with arbitraryN1 andN2. Such an eigenstate
can be written as

uN1 ,N2&5Emin

(
M50

@N1 ,N2#

CM~x1 ,...,xN12Muy1 ,...,yN22Muz1 ,...,zM !

3@M ! ~N12M !! ~N22M !! #21

3 )
i51

N12M

Q1
†~xi !dxi )

j51

N22M

Q3
†~yj !dyj)

l51

M

Q2
†~zl !dzl u0&. ~8!

Notice that theQ1
†(xi)s andQ3

†(yj )s in the products have a well defined order. That means that if
i, i 8, Q1

†(xi) must be on the left-hand side ofQ1
†(xi 8). From the Schro¨dinger equation

HuN1 ,N2&5EuN1 ,N2& we get

H 2 i(
i

]

]xi
1 i(

j

]

]yj
1MnJ CM1g(

l51

M

CM21~ ...,zl ,zi ,...u...,zl21 ,zl11 ,...!

1g(
i , j

~21!N12M2 i1 j21CM11~ ...,xi21 ,xi11 ,...u...,yj21 ,yj11 ,...uxi ,...!

3d~xi2yj !1c(
i , j

d~xi2yj !CM5ECM . ~9!

To give the explicit form ofCM , it is convenient to construct firstC0. We define the color indices
of the coordinatesxi andyj asai51 andaN11 j 5 21, respectively. Also, we introduce the color
indices of the momenta asgi51 for $k1 ,...,kN1% andgN11 j 5 21 for $q1 ,...,qN2%, wherekis and
qjs are the momenta carried by theQ1 andQ3 particles, respectively. AQ2 particle may carry a
momentumki1qj as shown in Eq.~6!. Introduce the notations

$s1 ,...,sN%5$k1 ,...,kN1;q1 ,...,qN2%,

$t1 ,...,tN%5$x1 ,...,xN1;y1 ,...,yN2%,

and then make the following ansatz:
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C0~x1 ,...,xN1uy1 ,...,yN2!5(
P,Q

AP~Q!expF i(
j51

N

sPjtQjG
3)

j51

N

d
aQj

gPj u~ tQ1
,•••,tQN

!5(
Q,P

C0@Q,P#. ~10!

Above we have putN5N11N2 . P,Q are permutations of~1,...,N! andAP(Q)s are constants
which satisfy

A...,Pi ,Pi11,...,
~Q!52A...,Pi11 ,Pi ...,

~Q!, ~11!

due to the antisymmetry of fermion wave functions. The general eigenstates can be constructed by
the following theorem.

Theorem: The constantsAP(Q)s in Eq.~10! satisfy

A...,Pi ,Pi11 ,...,
~ ...,Qi ,Qi11 ,...,!5S~Pi ,Pi11!A...,Pi11 ,Pi ,...,

~ ...,Qi11 ,Qi ,...!, ~12!

with theSmatrix

S~Pi ,Pj !5eif
sPi2sPj2n1 im

sPi2sPj2n2 im*
for gPi

51,gPj
521,

S~Pi ,Pj !5e2 if
sPi2sPj1n1 im*

sPi2sPj1n2 im
for gPi

521,gPj
51, ~13!

S~Pi ,Pj !51 for gPi
5gPj

.

Then the wave function~10! is uniquely defined.CM in Eq. ~8! is theM order contraction ofC0.
A zl coordinate corresponds to the contraction of a pair

$xi5zl ,yj5zl u i.N12M , j.N22M %.

In a given range@Q,P#, put

xi5zl5tQm
, yj5zl5tQm11

; k~ l !5sPm, q~ l !5sPm11
,

and

CM@Q,P#5(
Q,P

)
l51

M

S1~k~ l !,q~ l !!~21!N12M2 i1 j21C0@Q,P#.

Then the state defined in Eq.~8! is an eigenstate with the eigenenergy

E5(
i51

N1

ki2(
j51

N2

qj .

Proof: The above theorem can be demonstrated directly from Eq.~9!. In a given coordinate and
momentum arrangement [Q,P], the corresponding termCM[Q,P] of CM can be expressed as
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CM@Q,P#5AM@Q,P# )
i51

N12M

exp~ ik i8xi ! )
j51

N22M

exp~ iq j8yj !)
l51

M

exp@ i ~k~ l !1q~ l !!zl #,

ki8 andk
( l ) belong to$k1 ,...,kN1% andqj8 andq

( l ) belong to$q1 ,...,qN2%. AM[Q,P] is a constant.
The theorem defines

CM21@Q,P#~ ...,zl uzl ,...u...,zl21 ,zl11 ,...!5
1

S1~k~ l !,q~ l !!
CM@Q,P#,

CM11@Q,P#~ ...,xi21 ,xi11 ,...u...,yj21 ,yj11 ,...uxi ,...!

5~21!N12M2 i1 j21S1~ki8 ,qj8!CM@Q,P#.

Thus we have

M nCM@Q,P#1g(
l51

M

CM21@Q,P#~ ...,zl uzl ,...u...,zl21 ,zl11 ,...!

5(
l51

M

~k~ l !2q~ l !!CM@Q,P# ~14!

and

2 i H (
i51

N12M
]

]xi
2 (

j51

N22M
]

]yj
J CM@Q,P#1(

i , j
@c1gS1~ki8 ,qj8!#CM@Q,P#d~xi2yj !

5H (
i51

N12M

ki82 (
j51

N22M

qj8J CM@Q,P#. ~15!

Substituting Eqs.~14! and ~15! into Eq. ~9! we find that Eq.~9! is an identity ifE 5 ( i51
N1 ki

2 ( j51
N2 qj . Then the state~8! with the functionsCMs defined in the theorem is really an eigen-

state.~QED!
From the periodic conditions

CM~ ...,xi u...,yj ,...!5CM~ ...,xi1L,...!5CM~ ...,yj1L,...!

we get the following Bethe ansatz equations:

eikiL5eiN2f)
j51

N2 ki2qj2n1 im

ki2qj2n2 im*
, eiq jL5e2 iN1f)

i51

N1 qj2ki1n1 im*

qj2ki1n2 im
, ~16!

whereL is the length of the system.
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III. PHYSICAL VACUUM

Take the logarithm of Eq.~16!,

kiL52pI i1(
j

Q~ki ,qj !1N2f, qjL52pJj2(
i

Q~ki ,qj !2N1f, ~17!

whereI i andJj are integers or half-odd integers and

Q~k,q!522 tan21
k2q2n2m I

mR

with

mR5Rem,m I5Im m.

There are no twoI is or twoJjs and then twokis or twoqjs being equal. It can be deduced from
Eq. ~16! that the present model has no bound state. That means the spectrum of the Hamiltonian
must be given in real$k,q% sets. A set of$I i ,Jj% defines a unique eigenstate of the Hamiltonian
and Eq.~17! gives a complete set of the solutions.12

Because the energy spectrum is not bounded from below, a cutoffK should be introduced.
The cutoffs are defined aski.2K and qj,K. In the ground state, allI is andJjs must be
consecutive numbers. Now we consider the thermodynamic limit of the system withN→`, L→`,
andN/L5D keeping finite. Introducing the density functions

r0~k!5
1

L~ki112ki !
, s0~q!5

1

L~qj112qj !
, ~18!

and taking the infinite limit we get

152pr0~k!2E
0

K 2mRs0~q!dq

@k2q2n2m I #
21mR2

,

~19!

152ps0~q!2E
2K

0 2mRr0~k!dk

@q2k1n1m I #
21mR2

.

Here we have put the Fermi level at zero.
The Fermi sea consists thus of all negativek-states and all positiveq-states are filled with

cutoffs. The density of ground state energy is

Eg /L5E
2K

0

kr0~k!dk2E
0

K

qs0~q!dq, ~20!

and the momentum density is

Pg /L5E
2K

0

kr0~k!dk1E
0

K

qs0~q!dq, ~21!

with the cutoffK determined by

D5E
2K

0

r0~k!dk1E
0

K

s0~q!dq. ~22!
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IV. ELEMENTARY EXCITATIONS

The excitations are described by the ‘‘quasiholes’’ in the Fermi sea and the ‘‘quasiparticles’’
above the Fermi level. There are four types of such excitations. In an isolated system, the number
of quasiholes is exactly the same of that of quasiparticles. For an excited state, Eq.~17! shows that
the quantum numbersI is andJjs are also in the same two lattices, but not occupied consecutively.
We shall call the empty lattice sites ofI i andJj holes. Now let

Lh1~k!5kL2N2f2(
j

Q~k,qj !,

~23!

Lh2~q!5qL1N1f1(
i

Q~ki ,q!.

Those values ofk andq whereLh1(k)52pI andLh2(q)52pJ areks andqs. Those values of
k andq whereLh1(k)52pI h andLh2(q)52pJh arekhs andqhs. Thus

dh1~k!

dk
52p@r~k!1rh~k!#,

dh2~q!

dq
52p@s~q!1sh~q!#, ~24!

wherer(k),s(q) andrh(k),sh(q) are the particle and hole densities, respectively, in an excited
state. For low lying excitations, there are only few quasiholes in the Fermi sea and few quasipar-
ticles above the Fermi level. We may define the densities of quasihole states in the Fermi sea as

rh~k!5
1

L ( d~k2kh!, sh~q!5
1

L ( d~q2qh!, ~25!

and the densities of quasiparticle states above the Fermi level as

1

L ( d~k2k2!,
1

L ( d~q2qp!, ~26!

where the symbol( denotes the summation ofh or p. From Eq.~23! we obtain

152pr~k!1
2p

L ( d~k2kh!2E
0

K

a~k,q!s~q!dq2
1

L
a~k,qp!,

~27!

152ps~q!1
2p

L ( d~q2qh!2E
2K

0

a~k,q!r~k!dk2
1

L
a~kp,q!.

Above we have put

2K,k,0, 0,q,K, a~k,q!5
2mR

@k2q2n2m i #
21mR2

.

Defining
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F~k!5L@r~k!2r0~k!#1( d~k2kh!,

~28!

H~q!5L@s~q!2s0~q!#1( d~q2qh!,

then we have

2pF~k!2E
0

K

a~k,q!H~q!dq5( a~k,qp!2( a~k,qh!,

~29!

2pH~q!2E
2K

0

a~k,q!F~k!dk5( a~kp,q!2( a~kh,q!.

The excitation energy is then given by

e5( ukpu1( ukhu1( uqpu1( uqhu1E
2K

0

kF~k!dk2E
0

K

qH~q!dq, ~30!

where the last two terms are usually called back flow of the Fermi sea. Notice that herekp,qh.0
and kh,qp,0. Whenm→`, the fermions are too hard to close each other and the system will
behave as two noninteracting subsystems. In this case,a(k,q)→0 andF(k),H(q)→0. The exci-
tations are exactly described by the quasiparticles and quasiholes. It is just the anticipated result.

V. THERMODYNAMICS

We construct the thermodynamics following the standard method developed by Yang and
Yang.12 At finite temperature, the method used to describe the low lying excitations is inappro-
priate because the number of quasiparticles and quasiholes becomes a large quantity. Taking the
infinite limit of Eq. ~17! with Eq. ~24! we obtain

152p@r~k!1rh~k!#2E
2`

K

a~k,q!s~q!dq,

~31!

152p@s~q!1sh~q!#2E
2K

`

a~k,q!r~k!dk.

The energy density is

E/L5E
2K

`

kr~k!dk2E
2`

K

qs~q!dq ~32!

and

D5E
2K

`

r~k!dk1E
2`

K

s~q!dq. ~33!

The entropy of the state described byr(k) ands(q) is not zero because of the empty sites in the
I i and Jj lattices which allow many wave functions of approximately the same energy to be
described byr(k),rh(k) ands(q),sh(q). In an intervaldk, the total number ofks and holes is
L(r1rh)dk. Thus the choices of states indk with given r(k) andrh(k) is
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@L~r1rh!dk#!

@Lrdk#! @Lrhdk#!
.

For s(q) andsh(q) we have the same discussion. Then the density of the total entropy is given
by

S/L5E
2K

`

@~r1rh!ln~r1rh!2r ln r2rh ln rh#dk

1E
2`

K

@~s1sh!ln~s1sh!2s ln s2sh ln sh#dq. ~34!

The partition function can be written as

Z5E Ds Dsh Dr Drh exp~S2E/T1AN/T!, ~35!

whereA is the Lagrange multiplier. At the thermal equilibrium, we should maximize the contri-
bution to the partition function from the states described byr,rh ands,sh. The equilibrium values
of r ands are then obtained from variation. The above described procedure leads to the following
equations for the equilibriumr ands:

k1T ln
r

rh
2

T

2p E
2`

K

a~k,q!lnS 11
s

shDdq5A,

~36!

2q1T ln
s

sh2
T

2p E
2K

`

a~k,q!lnS 11
r

rhDdk5A.

Introducing the notations exp@e1(k)/T]5rh(k)/r(k) and exp@e2(q)/T]5sh(q)/s(q), we may
rewrite Eq.~36! as

A5k2e1~k!2
T

2p E
2`

K

a~k,q!ln@11exp~2e2 /T!#dq,

~37!

A52q2e2~q!2
T

2p E
2K

`

a~k,q!ln@11exp~2e1 /T!#dk.

Multiply Eq. ~37! by r(k) ands(q), respectively, with integral and then sum them to obtain

AD5E
2K

`

r~k2e1!dk1E
2`

K

s~2q2e2!dq1TE
2`

K H 1

2p
2s@11exp~e2 /T!#J

3 ln@11exp~2e2 /T!#dq1TE
2K

` H 1

2p
2r@11exp~e1 /T!#J ln@11exp~2e1 /T!#dk.

~38!

Now rewritingS/L as
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S/L5E
2K

`

~r1rh!ln@11exp~2e1 /T!#dk1
1

T E
2K

`

re1 dk

1E
2`

K

~s1sh!ln@11exp~2e2 /T!#dq1
1

T E
2`

K

se2dq, ~39!

we obtain the density of free energy

F/L5AD2
T

2p H E
2K

`

ln@11exp~2e1 /T!#dk1E
2`

K

ln@11exp~2e2 /T!#dqJ . ~40!

Below we shall check some special cases.

A. A5Chemical potential

By thermodynamics we have

F52PL1NB, ~41!

whereP andB are the pressure and chemical potential, respectively. The pressure is thus given by

P52N
]A

]L
2

N

2pD F E
2K

` dk

11exp~e1 /T!

]e1
]A

1E
2`

K dq

11exp~e2 /T!

]e2
]A G ]A

]L

1
T

2p H E
2K

`

ln@11exp~2e1 /T!#dk1E
2`

K

ln@11exp~2e2 /T!#dqJ . ~42!

Differentiating Eq.~37! with respect toA, we obtain

152
]e1
]A

1
1

2p E
2`

K

a~k,q!
]e2 /]A

11exp~e2 /T!
dq,

~43!

152
]e2
]A

1
1

2p E
2K

`

a~k,q!
]e1/]A

11exp~e1 /T!
dk.

Comparing the above equations with Eq.~31! we get

2
]e1
]A

52pr~k!@11exp~e1 /T!#, 2
]e2
]A

52ps~q!@11exp~e2 /T!#. ~44!

Substituting Eq.~44! into Eq. ~42! we find

P5
T

2p H E
2K

`

ln@11exp~2e1 /T!#dk1E
2`

K

ln@11exp~2e2 /T!#dqJ . ~45!

From Eqs.~40! and ~41! with Eq. ~45! we conclude thatA is the chemical potential.

B. m˜`

In this case, the integrals in Eq.~37! contribute nothing. Thus

e1~k!5k2A, e2~q!52q2A. ~46!
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From Eq.~31! we deduce

r~k!5
1

2pF11expS k2A

T D G u~k1K !,

~47!

s~q!5
1

2pF11expS 2q2A

T D G u~K2q!.

The Lagrange multiplier can be obtained from Eq.~33! as

A5T ln@exp~pD/T!21#2K. ~48!

Notice that the cutoffK does not depend on temperature. WhenT→0, A→2K1pD and from
Eq. ~22! we obtain

K5pD, z5eA/T512exp~2K/T!. ~49!

The free energy is given by

F/L5TD lnF12expS 2
K

T D G2
T2

p E
2K/T

`

ln@11ze2x#dx. ~50!

C. m˜0, n˜0

As m→0, n→0, a(k,q)→2pd(k2q), so Eq.~37! becomes

A5k2e1~k!2T ln@11exp$2e2~k!/T%#u~K2k!,
~51!

A52q2e2~q!2T ln@11exp$2e1~q!/T%#u~q1K !.

Thus we have

e1~k!5@k2A#u~k2K !1F12 ~k2A!1T ln sinhS 2
A

TD2T ln cosh
k1A

2T Gu~K2uku! ~52!

and

e2~q!5@2q2A#u~2K2q!1F2
1

2
~q1A!1T ln sinhS 2

A

TD2T ln cosh
A2q

2T Gu~K2uqu!.

~53!

From Eq.~31! we have

152pr~k!@11exp~e1 /T!#12ps~k!u~K2k!,
~54!

152ps~q!@11exp~e2 /T!#12pr~q!u~q1K !.

Thus the thermodynamics can be constructed from Eqs.~33! and ~40! with Eqs. ~52!, ~53!, and
~54!.
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VI. CONCLUSION

In conclusion, we have established the exact eigenstates of a boson–fermion model with
two-body interactions. The physical properties including the ground state, the low lying elemen-
tary excitations, and the thermodynamics have been studied in a cut-off scheme. In the present
model, the cutoffK is only a parameter which is relevant to the physical data in a concrete system.
In fact, we can take the scaling limitK→`. In this case, the quantityF2Eg ~free energy minus
the ground state energy! is indeed convergent. It should be pointed out that the model Hamiltonian
is not analytic atmR50 due to the special form of the ‘‘contraction–decay’’ interaction which
breaks the particle hole symmetry. That means that this type of interactions cannot be turned on
adiabatically. This is why them→0 limit does not give the results of a free fermion system as
discussed in the above section.

We would like to point out that even for the particles with arbitrary moving velocities
~v1Þv2Þv3!, the model is also solvable with the same algebra. At first glance, it seems that the
linear spectrum of the bosons with a finite moving velocity is ill-defined. However, we notice that
the bosons are nothing but the ‘‘fusion’’ of two fermions in our model. Thus they behave as hard
core bosons. That means the bosons obey Fermi-like statistics rather than Bose statistics. The
system has a well defined ground state~Fermi sea! even the velocity of the bosons takes a finite
value. Such a result can also be deduced from the Bethe ansatz equations. The energy for a given
eigenstate determined uniquely by the two set of real numbers$k% and$q% which obey the Fermi
statistics.
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A one-dimensional massive Lee model is studied via the Bethe ansatz method. The
exact engenstates and the energy spectrum are obtained. The general picture of the
excitations is discussed. ©1996 American Institute of Physics.
@S0022-2488~96!00809-2#

I. INTRODUCTION

In the past few decades, a dozen models have been solved via the Bethe ansatz1 and the
Bethe–Yang ansatz.2 In this paper, we consider a new Bethe ansatz soluble model, e.g., the
Dirac-like Lee model. The Lee model3 plays an important role in the quantum field theory.
Recently, similar models have been proposed to describe the high Tc superconductivity.4,5

The Hamiltonian we shall consider reads as

H5E dxH 2 i (
r56

rC r
†~x!

]

]x
C r~x!1m@C1

† ~x!C2~x!1C2
† ~x!C1~x!#

1g@C1
† ~x!C2

† ~x!b~x!1b†~x!C2~x!C1~x!#J , ~1!

whereC r
†(x)„C r(x)… are the creation~annihilation! operators of the fermions andb

†(x)„b(x)… is
the creation~annihilation! operator of the bosons.m andg are real constants. The massive term in
~1! may be induced by either the electron–phonon (2kF) interaction or the backward scattering
among the electrons. The bosons, however, may represent a variety of physical situations phe-
nomenologically, such as the Cooper-pair-like bound state or the dimer state. We would like to
point out that the Hamiltonian~1! is similar to that of the massive Thirring model.6

A special feature of the Lee model is that the particle numbers are no longer conserved. It can
be easily read off from~1!. However, the quantity

N5E F (
r56

C r
†~x!C r~x!12b†~x!b~x!Gdx, ~2!

is conserved. Therefore, we can establish the common eigenstates ofH andN.

II. BETHE STATES

To show the procedure clearly, it is convenient to consider theN52 case first. Such a state is
the simplest nontrivial state, which gives the main information about the general engenstates. As
done in the massive Thirring model,6 we introduce the operator

Ca
†~x!5ea/2C1

† ~x!1e2a/2C2
† ~x!, ~3!

wherea takes values in the lines Ima50 and Ima5p. An N52 eigenstate can be written as

0022-2488/96/37(11)/5424/5/$10.00
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ua1 ,a2&5E dx1 dx2 f ~x1 ,x2!Ca1
† ~x1!Ca2

† ~x2!u0&1E dy h~y!b†~y!u0&, ~4!

whereu0& is the pseudovacuum state defined byC r(x)u0&5b(x)u0&50. The Schro¨dinger equation
Hua1 ,a2&5E(a1 ,a2)ua1 ,a2& gives

E dx1 dx2H (
r56

F2 irera1/2
]

]x1
1me2ra1/2G f ~x1 ,x2!C r

†~x1!Ca2
† ~x2!u0&

1Ca1
† ~x1! (

r56
F2 irera2/2

]

]x2
1me2ra2/2G f ~x1 ,x2!C r

†~x2!u0&J 1gE dy h~y!

3C1
† ~y!C2

† ~y!u0&12gE dx f~x,x!sinh
a12a2

2
b†~x!u0&5E~a1 ,a2!ua1 ,a2&.

~5!

Make the following ansatz:

f ~x1 ,x2!5exp$ ix1m sinha11 ix2m sinha2%@11 il~a1 ,a2!e~x12x2!#,
~6!

h~x!5S1~a1 ,a2! f ~x,x!,

wheree(x)5u(x)2u(2x) and u(x) is the step function. Substituting~6! into ~5!, we readily
obtain

E~a1 ,a2!5m cosha11m cosha2 , ~7!

S1~a1 ,a2!5
2g sinh@~a12a2!/2#

m cosha11m cosha2
, ~8!

l~a1 ,a2!52
g2

4m

tanh@~a12a2!/2#

cosha11cosha2
. ~9!

Through the same procedure, we can establish the general eigenstates with arbitraryN by intro-
ducing the ladder wave functionsf M ,

7

ua1 ,...,aN&5E (
M50

@N/2#

(
$ i k, j k%

f M~x1 ,...,xi k21 ,xi k11 ,...,xNuxi15xj 1,...,xiM5xjM!

3 )
l51

lÞ$ i k , j k%

N

Ca l
† ~xl !dxl)

k51

M

b†~xi k!dxiku0&, ~10!

where$ i k, j k% denotes the choices ofi k’s and j k’s with the restrictionsi k, j k andi k Þ i k8 , j k8 for
kÞk8. After some manipulations we deduce the ladder wave functionf M as

f M~x1 ,...,xi k21 ,xi k11 ,...,xNuxi15xj 1,...,xiM5xjM!

~11!5)
l51

N

eimxl sinha l )
1<m,n<N

@11 il~am ,an!e~xm
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2xn!#)
k51

M

zk
2g sinh@~a i k

2a j k
!/2#

m cosha i k
1m cosha j k

,

wherezk 5 ( 2 1)i k2 j k11 is induced by the contraction process of two fermions to a boson. It is
easy to verify that withf M defined in~11!, the state~10! is really an eigenstate of the Hamiltonian
~1! with the eigenenergy and the momentum,

E~a1 ,...,aN!5(
l51

N

m cosha l , P~a1 ,...,aN!5(
l51

N

m sinha l . ~12!

Imposing the periodic conditions inf M ’s we obtain the following Bethe ansatz equation:

eiLm sinha j5)
i51

N
cosha j1cosha i1 ic tanh@~a j2a i !/2#

cosha j1cosha i2 ic tanh@~a j2a i !/2#
, ~13!

whereL is the length of the system andc5g2/4m. The physical properties of the present model
~1! are uniquely determined by the Bethe ansatz equation~13!. The physical vacuum or the ground
state is the state in which all thea modes in the line Ima5p are filled. Supposeb5Rea. By
taking the limitL→` in ~13!, we deduce that the density ofb in the ground state satisfies the
following integral equation:

m coshb52pr~b!

1E
2L

L 2c

cosh@~b2b8!/2#

cosh@~b1b8!/2#2sinhb sinh@~b2b8!/2#

~coshb1coshb8!21c2 tanh2@~b2b8!/2#
r~b8!db8,

~14!

whereL→` is a cutoff for the modesb that renormalizes the massm and the velocities of the
modes.6

III. ELEMENTARY EXCITATIONS

Based on the Bethe ansatz equation~13!, we can discuss the excitations of the system. The
simplest excitation possible is obtained by moving a mode froma5b1 ip and placing it at
a5b8, whereb andb8 are real. In free field theory, this particle–hole pair is a state with a fermion
and an antifermion. The antifermion~hole! has energy2m cosh(b1 ip)5m coshb, and the
fermion has energym coshb8. In the interacting system, the energy has the same form to that of
the free system. Given ab, we can chooseb8 arbitrarily to satisfy the Bethe ansatz equation~13!
becausec is a positive number. This is not the case of the massive Thirring model as described in
Ref. 6, where there may be some restriction for the choice ofb8.

There are also other possible excitations in the interacting theory. The modes can be put in the
complex plane. Generally, we must be careful to place modes symmetrically about the lines
Im a5p and or Ima50 ~mod 2p! to ensure the energy and the momentum to be real. An imaging
a (aÞnp) introduces the possibility of an exponentially growing wave function in some direc-
tion. However, the coefficient of the exponentially growing term vanishes if we choose the com-
plex modes properly. The excitations for the present model have special features because the
two-body scattering matrix is not a function ofa i2a j : ~i! Only the two strings with position-
dependent lengths may exist apart from the origin. The failure of Lorentz invariance in Lee-type
models like this one leads to the position dependence of the length of strings;~ii ! the n-body
bound state corresponds to a bentn string. Here a bent string means that the real parts of the roots
are not equal, hence the string is not a straight line parallel to the imaginary axis and may be bent
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in the complex plane. A bent 2n string is composed byn conjugate pairs and a bent 2n11 string
is composed byn conjugate pairs plus a mode in the lines Ima50, p. Below we discuss some
special cases.

A. Two-string solutions

The two-string excitation is obtained by moving two modes in the line Ima5p to the strip
uIm au,p conjugately. Suppose the two string has the form

a65b6 iD~b!, ~15!

whereb, D~b! are real. The complex roots are determined either from the zeros or poles from the
right side of the Bethe ansatz equation~13! because of theL→` behavior of the left side. We
deduce that

sin D~b!5
~c2116 cosh2 b!1/22c

4 coshb
. ~16!

Obviously, there are two solutions for a givenb. One is D15arcsin$@~c2116 cosh2 b!1/2

2c#/4 coshb% and the other isD25p2D1. The length of the string depends on both its position
and the constantc. The position of the string is completely determined by the positions of the
holes.6,8

B. Bent three-strings

One type of the bent three-string is composed by a conjugate paira65b6 iD(b) and a real
modeb0. To meet the Bethe ansatz equation,a6 andb0 must satisfy

cosha11coshb01 ic tanh
a12b0

2
50, sinD~b!.0. ~17!

For a givenb, b0 andD~b! are determined by the following equations:

coshb cosD1coshb05
c sin D

cosh~b2b0!1cosD
,

~18!

sinhb sin D1
sinh~b2b0!

cosh~b2b0!1cosD
50.

For b50, we haveb050. This solution is a normal three-string. The other type of the bent
three-string is composed by a conjugate paira65b6 iD and a modeb01 ip. b, b0, andD satisfy
the equations

coshb cosD2coshb05
c sin D

2cosh~b2b0!1cosD
,

~19!

sinhb sin D1
sinh~b2b0!

cosh~b2b0!2cosD
50.

C. n string on the imaginary axis

Higher strings can be constructed by the same procedures. Any string, consisting of 2s11
modes, wheres is either an integer or a half-integer, has its modes atas , as21,...,a2s , where
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cosha j1cosha j211 ic tanh 1
2~a j2a j21!50.

In the special case where all the modes lie on the imaginary axis, the equation can be
simplified. For a 2n string,

a j656 iD j , j5
1

2
,...,

n

2
21, ~20!

we have the solutions

sin D1/25
~c2116!1/22c

4
,

~21!

cosD j111cosD j5c tan
D j112D j

2
, for j>

1

2
.

For a 2n11 string,

a050, a j656 iD j , j51,2,...,n, ~22!

we have the solution

11cosD15c tan
D1

2
,

~23!

cosD j111cosD j5c tan
D j112D j

2
, for j>1.

Note by moving the modes byip we can obtain a string symmetric to the line Ima5p.

IV. CONCLUDING REMARKS

In conclusion, we have established the exact eigenstates of a massive Lee model. The elemen-
tary excitations are discussed. It is found that the general complex excitations are bent strings.
Some special cases are discussed.
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Microcanonical ensemble and algebra of conserved
generators for generalized quantum dynamics
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It has recently been shown, by application of statistical mechanical methods to
determine the canonical ensemble governing the equilibrium distribution of opera-
tor initial values, that complex quantum field theory can emerge as a statistical
approximation to an underlying generalized quantum dynamics. This result was
obtained by an argument based on a Ward identity analogous to the equipartition
theorem of classical statistical mechanics. We construct here a microcanonical
ensemble which forms the basis of this canonical ensemble. This construction
enables us to define the microcanonical entropy and free energy of the field con-
figuration of the equilibrium distribution and to study the stability of the canonical
ensemble. We also study the algebraic structure of the conserved generators from
which the microcanonical and canonical ensembles are constructed, and the flows
they induce on the phase space. ©1996 American Institute of Physics.
@S0022-2488~96!00511-7#

I. INTRODUCTION

Generalized quantum dynamics1,2 is an analytic mechanics on a symplectic set of operator-
valued variables, forming an operator-valued phase spaceS . These variables are defined as the set
of linear transformations, in general, local~noncommuting! quantum fields, on an underlying real,
complex, or quaternionic Hilbert space~Hilbert module!, for which the postulates of a real,
complex, or quaternionic quantum mechanics are satisfied.2–6 The dynamical~generalized Heisen-
berg! evolution, or flow, of this phase space is generated by the total trace HamiltonianH5Tr H,
where for any operator O we have

O[Tr O[Re Tr~21!FO5Re(
n

^nu~21!FOun&, ~1.1!

H is a function of the operators$qr(t)%,$pr(t)%, r51,2,...,N ~realized as a sum of monomials, or
a limit of a sequence of such sums; in the general case of local noncommuting fields, the indexr
contains continuous variables!, and~21!F is a grading operator with eigenvalue 1~21! for states
in the boson~fermion! sector of the Hilbert space. Operators are called bosonic or fermionic in
type if they commute or anticommute, respectively, with~21!F; for eachr , pr andqr are of the
same type.

The derivative of a total trace functional with respect to some operator variation is defined
with the help of the cyclic property of theTr operation. The variation of any monomial O consists
of terms of the form OLdxrOR , for xr one of the$qr%,$pr%, which, under theTr operation, can be
brought to the form

dO5dTr O56Tr OROLdxr ,

so that sums and limits of sums of such monomials permit the construction of

a!On sabbatical leave from School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Ramat Aviv, Israel, and Department of Physics, Bar Ilan University, Ramat Gan, Israel.
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dO5Tr (
r

dO

dxr
dxr , ~1.2!

uniquely definingdO/dxr .
Assuming the existence of a total trace Lagrangian1,2 L5L ~$qr%,$q̇r%!, the variation of the

total trace action

S5E
2`

`

L ~$qr%,$q̇r%!dt ~1.3!

results in the operator Euler–Lagrange equations

dL

dqr
2

d

dt

dL

dq̇r
50. ~1.4!

As in classical mechanics, the total trace Hamiltonian is defined as a Legendre transform,

H5Tr (
r
pr q̇r2L , ~1.5!

where

pr5
dL

dq̇r
. ~1.6!

It then follows from~1.4! that

dH

dqr
52 ṗr ,

dH

dpr
5e r q̇r , ~1.7!

whereer51~21! according to whetherpr ,qr are of bosonic~fermionic! type.
Defining the generalized Poisson bracket

$A,B%5Tr (
r

e r S dA

dqr

dB

dpr
2

dB

dqr

dA

dpr
D , ~1.8a!

one sees that

dA

dt
5

]A

]t
1$A,H%. ~1.8b!

Conversely, if we define

xs~h!5Tr ~hxs!, ~1.9a!

for h an arbitrary, constant operator~of the same type asxs , which denotes hereqs or ps!, then

dxs~h!

dt
5Tr(

r
e r S dxs~h!

dqr

dH

dpr
2

dH

dqr

dxs~h!

dpr
D , ~1.9b!

and comparing the coefficients ofh on both sides, one obtains the Hamiltonian equations~1.7! as
a consequence of the Poisson bracket relation~1.8b!.
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The Jacobi identity is satisfied by the Poisson bracket of~1.8a!,7 and hence the total trace
functionals have many of the properties of the corresponding quantities in classical mechanics.8 In
particular, canonical transformations take the form

dxs~h!5$xs~h!,G%, ~1.10a!

which implies that

dpr52
dG

dqr
, dqr5e r

dG

dpr
, ~1.10b!

with the generatorG any total trace functional constructed from the operator phase space vari-
ables. Time evolution then corresponds to the special caseG5H dt.

It has recently been shown by Adler and Millard9 that a canonical ensemble can be con-
structed on the phase spaceS , reflecting the equilibrium properties of a system of many degrees
of freedom. Since the operator

C̃5(
r

~e rqrpr2prqr !5(
r ,B

@qr , pr #2(
r ,F

$qr ,pr%, ~1.11!

where the sums are over bosonic and fermionic pairs, respectively, is conserved under the evolu-
tion ~1.7! induced by the total trace Hamiltonian, the canonical ensemble must be constructed
taking this constraint into account. This is done by constructing the conserved quantityTr l̃C̃, for
some given constant anti-Hermitian operatorl̃.

In the general case, in the presence of the fermionic sector, the graded trace of the Hamil-
tonian is not bounded from below, and the partition function may be divergent. When the equa-
tions of motion induced by the LagrangianL coincide with those induced by the ungraded total
trace of the same Lagrangian,

L̂5Re TrL

without the factor~21!F, the corresponding ungraded total trace HamiltonianĤ is conserved. It
may therefore be included as a constraint functional in the canonical ensemble, along with the new

conserved quantityT̂r l̃̂Ĉ̃ ~see Appendices 0 and C of Ref. 9!, where

Ĉ̃5(
r

@qr , pr #5(
r ,B

@qr , pr #1(
r ,F

@qr , pr #. ~1.12!

It was argued that the Ward identities derived from the canonical ensemble imply thatl̃̂ andl̃ are
functionally related, so that they may be diagonalized in the same basis~Appendix F of Ref. 9!. It
was then shown that, since the ensemble averages depend only onl̃ and ~21!F, the ensemble
average of any operator must commute with these operators. Since the ensemble-averaged opera-
tor ^C̃&AV is anti-self-adjoint, if one furthermore assumes it is completely degenerate~with eigen-
value i eff\!, the ensemble average of the theory then reduces to the usual complex quantum field
theory. In this paper, we construct a microcanonical ensemble from which the canonical ensemble
of Ref. 9 can be obtained following the usual methods of statistical mechanics. This construction
gives some insight into the interpretation of the parameters, relates the canonical and microca-
nonical entropies, and identifies the generalized free energy. It also permits estimates of the
statistical fluctuations admitted by the canonical ensemble, and error bounds on the Ward identity
which we shall treat elsewhere. We give, in this framework, a self-consistency proof of the
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stability of the canonical ensemble. We then go on to discuss the algebraic structure of the

canonical generators related to the conserved operatorsC̃ and Ĉ̃, and the flows on phase space
induced by these generators.

II. THE MICROCANONICAL AND CANONICAL ENSEMBLES

Introducing a complete set of states$un&% in the underlying Hilbert space, the phase space
operators are completely characterized by their matrix elements^muxr un&[(xr)mn , which have
the form

~xr !mn5(
A

~xr !mn
A eA , ~2.1!

whereA takes the values 0,1 for complex Hilbert space, 0,1,2,3 for quaternion Hilbert space
~technically, a Hilbert module!, and just the one value 0 for real Hilbert space, and theeA are the
associated hypercomplex units~unity, complex, or quaternionic units2!. The mathematical proce-
dures we establish here are applicable to more general Hilbert modules; arguments are given in
Ref. 2, however, for restricting our attention to these three cases, and we shall therefore concen-
trate on the real, complex, and quaternionic structures in the examination of specific properties.
The phase space measure is then defined as

dm5)
A

dmA, dmA[ )
r ,m,n

d~xr !mn
A , ~2.2!

where redundant factors are omitted according to adjointness conditions. The measure defined in
this way is invariant under canonical transformations induced by the generalized Poisson bracket.9

We then define the microcanonical ensemble in terms of the set of states in the underlying
Hilbert space which satisfyd-function constraints on the values of the two total trace functionals

H andĤ and the matrix elements of the two conserved operator quantitiesC̃ and Ĉ̃ discussed in
the previous section. The volume of the corresponding submanifold in phase space is given by

G~E,Ê,ñ, n̂̃ !5E dmd~E2H!d~Ê2Ĥ! )
n<m,A

d~nnm
A 2^nu~21!FC̃um&A!d~ n̂nm

A 2^nuĈ̃um&A!,

~2.3!

where we have used the abbreviationsñ[$nnm
A % and n̂̃ [ $n̂ nm

A % for the parameters in the argu-

ments on the left-hand side. The factor~21!F in the term withC̃ is not essential, but convenient
in obtaining the precise form given in Ref. 9 for the canonical distribution. The entropy associated
with this ensemble is given by

Smic~E,Ê,ñ, n̂̃ !5 log G~E,Ê,ñ, n̂̃ !. ~2.4!

As we shall see, it is not possible to associate a temperature to this structure in the usual simple
way.

The operatorsC̃ and Ĉ̃ are defined in terms of sums over degrees of freedom. In the context
of the application to quantum field theory, the enumeration of degrees of freedom includes con-
tinuous parameters, corresponding to the measure space of the fields. These operators may there-
fore be decomposed into parts within a certain~large! region of the measure space, which we
denote asb, corresponding to what we shall consider as abath, in the sense of statistical mechan-
ics, and within another~small! part of the measure space, which we denote ass, corresponding to
what we shall consider as asubsystem. We shall assume that the functionalsH andĤ may also be
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decomposed additively into parts associated withb and s; this assumption is equivalent to the
presence of interactions in the Hamiltonian or Lagrangian operators which are reasonably local-
ized in the measure space of the fields~the difference in structure between the Lagrangian and
Hamiltonian consists of operators that are explicitly additive!, so that the errors in assuming
additivity are of the nature of ‘‘surface terms.’’ The constraint parameters may then be considered
to be approximately additive as well, and we may rewrite the microcanonical ensemble as

G~E,Ê,ñ, n̂̃ !5E dmbdmsdEsdÊs~dns!~dn̂s!d~E2Es2Hb!

3d~Es2Hs!d~Ê2Ês2Ĥb!d~Ês2Ĥs!

3 )
n<m,A

d~nnm
A 2nnm

A,s2^nu~21!FC̃bum&A!d~nnm
A,s2^nu~21!FC̃sum&A!

3d~n̂nm
A 2 n̂nm

A,s2^nuĈ̃bum&A!d~ n̂nm
A,s2^nuĈ̃sum&A!. ~2.5!

We recognize the integrations overdms anddmb in ~2.5! in terms of the corresponding microca-
nonical subensembles, for the bathb and subsystems, respectively, i.e., we may write~2.5! as

G~E,Ê,ñ, n̂̃ !5E dEs dÊs~dns!~dn̂s!Gb~E2Es ,Ê2Ês ,ñ2 ñs , n̂̃2 n̂̃s!Gs~Es ,Ês ,ñs , n̂̃s!.

~2.6!

We now assume that the integrand in~2.6! has a maximum for a large number of degrees of
freedom that dominates the integral. In the treatment of the statistical mechanics of classical
particles, the number of degrees of freedom generally vastly exceeds the number of variables
controlling the constraint hypersurfaces in the phase space; in our case, due to the presence of the

constraints imposed by the operatorsC̃ and Ĉ̃, there are an infinite number of variables, and the
question of the development of a significant maximum may be more delicate. We will demon-
strate, however, that due to the semidefinite form of the autocorrelation matrix of the fluctuations,
the canonical distribution that we obtain with this assumption is at least locally stable.

Let us, for brevity, define

j5$j i%[$E,Ê,ñ, n̂̃%, ~2.7!

where the indexi refers to the elements of the set of variables, so that~2.6! takes the form

G~J!5E djsGb~J2js!Gs~js!, ~2.8a!

whereJ corresponds to the set of total properties for the whole ensemble. A necessary condition
for an extremum in all of the variables atjs5 j̄ is then

]

]j
@Gb~J2j!Gs~j!#u j̄ 50, ~2.8b!

which implies that

1

Gs~j!

]Gs

]j i
~j!u j̄ 5

1

Gb~J2j!

]Gb

]J i
~J2j!u j̄ . ~2.8c!
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The logarithmic derivatives in~2.8c! define a set of quantities analogous to the~reciprocal!
temperature of the usual statistical mechanics, i.e., equilibrium-fixing Lagrange parameters com-
mon to the bath and the subsystem. We write these separately as

t5
]

]E
log Gs~j!u j̄ , t̂5

]

]Ê
log Gs~j!u j̄ ,

~2.9!

lnm
A 52

]

]nnm
A log Gs~j!u j̄ , l̂nm

A 52
]

]n̂nm
A log Gs~j!u j̄ .

According to the definition of entropy~2.4!, the bath phase space volume is given by

Gb~J2js!5eSb~J2js!>eSb~J! expH 2(
i

j i ,s
]Sb
]J i

~J!J . ~2.10!

Neglecting the small shift in argumentJ→J2js , it follows from ~2.8a!–~2.8c!, ~2.9!, and~2.10!
that

Gb~J2js!>eSb~J! expH 2tEs2 t̂Ês1 (
n<m,A

~nnm
A,slnm

A 1 n̂nm
A,sl̂nm

A !J . ~2.11!

We now return to~2.6!, replacing the phase space volume of the bath,Gb , by the approximate
form ~2.11!, and the subsystem phase space volumeGs by the phase space integral over the
constraintd-functions, i.e.~we use the equality henceforth, although it should be understood that
we have included just the dominant contribution!,

G~J!5E dms dEs dÊs~dns!~dn̂s!d~Es2Hs!d~Ês2Ĥs!

3 )
n<m,A

d~nnm
A,s2^nu~21!FC̃sum&A!d~ n̂nm

A,s2^nuĈ̃sum&A!

3eSb~J! expH 2tEs2 t̂Ês1 (
n<m,A

~nnm
A,slnm

A 1 n̂nm
A,sl̂nm

A !J . ~2.12!

Carrying out the integrals over the parameters, thed-functions imply the replacement of the
parametersEs , Ês , nnm

A,s, andn̂nm
A,s in the exponent by the corresponding phase space quantities. For

the product

lnm
A ^nu~21!FC̃sum&A, ~2.13!

we note that the anti-self-adjoint property ofC̃s implies that

^nu~21!FC̃sum&52^mu~21!FC̃sun&* , ~2.14!

with * denoting conjugation of the hypercomplex units, so that

^nu~21!FC̃sum&052^mu~21!FC̃sun&0,
~2.15!

^nu~21!FC̃sum&A5^mu~21!FC̃sun&A, AÞ0,

for all three cases of real, complex, or quaternionic Hilbert spaces. Thus we have
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Relnm^mu~21!FC̃sun&52(
A

lnm
A ^nu~21!FC̃sum&A. ~2.16a!

Defining the operatorl̃ for which the matrix elements are

^nul̃un&A5lnn
A , ^nul̂um&A5 1

2lnm
A , n,m, ~2.16b!

we see that the sum overn<m of the expression~2.16a! is Tr l̃C̃s. A similar result holds for the
last term of ~2.12! @in this case, since we did not insert the factor~21!F, we obtain theT̂r
functional#. The volume in phase space is then

G~J!5eSb~J!E dms exp2$tHs1 t̂Ĥs1Tr l̃C̃s1T̂r l̃̂Ĉ̃s%, ~2.17!

so that the normalized canonical distribution function~with the subscriptss removed! is given by

r5Z21 exp2$tH1 t̂Ĥ1Tr l̃C̃1T̂r l̃̂Ĉ̃%, ~2.18!

where

Z5E dm exp2$tH1 t̂Ĥ1Tr l̃C̃1T̂r l̃̂Ĉ̃%. ~2.19!

This formula coincides with that obtained by Adler and Millard.9 Note that the operatorsl̃ and

l̂̃ appear as an infinite set of inverse ‘‘temperatures,’’ i.e., equilibrium Lagrange parameters
associated both with the bath and the subsystem, corresponding to the conserved matrix elements

of ~21!FC̃ and Ĉ̃.
We finally remark that the microcanonical entropy defined in~2.4! provides the Jacobian of

the transformation from the integration over the measure ofS in ~2.19! to an integral over the
parameters defining the microcanonical shells. To see this, we rewrite~2.19! as

Z5E dm dE dÊ~dn!~dn̂ !d~E2H!d~Ê2Ĥ! )
n<m,A

d~nnm
A 2^nu~21!FC̃um&A!

3d~n̂nm
A 2^nuĈ̃um&A!exp2$tE1 t̂Ê1Tr l̃ñ1T̂r l̃̂n̂̃%, ~2.20a!

where we have defined the anti-self-adjoint parametric operatorsñ and n̂̃ by

nnm
A 5^nu~21!Fñum&A, n̂nm

A 5^nu n̂̃um&A. ~2.20b!

The phase space integration over thed-function factors reproduces the volume of the microca-
nonical shell associated with these parameters, i.e., the exponential of the microcanonical entropy,
so that the partition function can be written as

Z5E dE dÊ~dn!~dn̂ !eSmic~E,E
ˆ
, ñ , n̂̃ ! exp2$tE1 t̂Ê1Tr l̃ñ1T̂r l̃̂n̂̃%. ~2.21!

III. STABILITY AND THERMODYNAMIC RELATIONS

In this section, we study the stability of the canonical ensemble as associated with the domi-
nant contribution to the microcanonical phase space volume. To this end, we formally define the
free energyA as the negative of the logarithm of the partition function,
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Z[e2A~t,t̂, l̃ ,l̃
ˆ
!, ~3.1!

so that~2.19! can be written as

15E dm eA~t,t̂,l̃,l̃
ˆ

! exp2$tH1 t̂Ĥ1Tr l̃C̃1T̂r l̃̂Ĉ̃%. ~3.2!

Differentiating with respect to~the hypercomplex indexA should not be confused with the con-
ventional symbol for the free energy! t, t̂, and the matrix elementslnm

A , l̂nm
A , we obtain@as in Eqs.

~49! of Ref. 9#

]A

]t
5^H&AV , ~3.3!

]A

]t̂
5^Ĥ&AV , ~3.4!

and using

Tr l̃C̃52 (
n<m,A

lnm
A ^nu~21!FC̃um&A,

~3.5!

T̂r l̃̂Ĉ̃52 (
n<m,A

l̂nm
A ^nuĈ̃um&A,

we find

]A

]lnm
A 52Š^nu~21!FC̃um&A‹AV[2^Cnm

A &AV , ~3.6!

]A

]l̂nm
A

52Š^nuĈum&A‹AV[2^Ĉnm
A &AV . ~3.7!

We now consider the identity

05E dm~H2^H&AV!eA~t,t̂, l̃ ,l̃
ˆ
! exp2$tH1 t̂Ĥ1Tr l̃C̃1T̂r l̃̂Ĉ̃%. ~3.8!

Differentiating with respect tot, one finds

05E dmS ]A

]t
2HD ~H2^H&AV!eA~t,t̂, l̃ ,l̃

ˆ
! exp2$tH1 t̂Ĥ1Tr l̃C̃1T̂r l̃̂Ĉ̃%2

]^H&AV
]t

, ~3.9!

so that, from~3.3!, we find that~as in Ref. 9!

Š~H2^H&AV!2‹AV52
]^H&AV

]t
52

]2A

]t2
>0. ~3.10!

In fact, applying this argument to all of the parameters, we now show thatA is a locally
convex function. With this result, we will prove the stability of the canonical ensemble.

The derivative of~3.8! with respect tot̂ yields, using the second of~3.3!,
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^~H2^H&AV!~Ĥ2^Ĥ&AV!&52
]^H&AV

]t̂
52

]2A

]t]t̂
. ~3.11!

In the same way that we obtained~3.10!, we also find~using Ĥ2^Ĥ&AV as a factor in the inte-
grand!

Š~Ĥ2^Ĥ&AV!2‹AV52
]^Ĥ&AV

]t̂
52

]2A

]t̂2
>0. ~3.12!

We consider next the identity

05E dm~Cnm
A 2^Cnm

A &AV!eA~t,t̂,l̃,l̃
ˆ
! exp2$tH1 t̂Ĥ1Tr l̃C̃1T̂r l̃̂Ĉ̃%. ~3.13!

Differentiating with respect toln8m8
B and l̂n8m8

B , we find

]2A

]lnm
A ]ln8m8

B 52Š~Cnm
A 2^Cnm

A &AV!~Cn8m8
B

2^Cn8m8
B &AV!‹AV ,

]2A

]l̂nm
A ]ln8m8

B 52Š~Ĉnm
A 2^Ĉnm

A &AV!~Cn8m8
B

2^Cn8m8
B &AV!‹AV ,

]2A

]l̂nm
A ]l̂n8m8

B 52Š~Ĉnm
A 2^Ĉnm

A &AV!~Ĉn8m8
B

2^Ĉn8m8
B &AV!‹AV . ~3.14!

Finally, we differentiate~3.8! with respect tolnm
A and l̂nm

A to obtain

]2A

]t]lnm
A 5Š~H2^H&AV!~Cnm

A 2^Cnm
A &AV!‹AV ~3.15!

and

]2A

]t]l̂nm
A

5Š~H2^H&AV!~Ĉnm
A 2^Ĉnm

A &AV!‹AV , ~3.16!

as well as the corresponding identity with coefficientĤ2^Ĥ&AV to obtain

]2A

]t̂]lnm
A 5Š~Ĥ2^Ĥ&AV!~Cnm

A 2^Cnm
A &AV!‹AV ~3.17!

and

]2A

]t̂]l̂nm
A

5Š~Ĥ2^Ĥ&AV!~Ĉnm
A 2^Ĉnm

A &AV!‹AV . ~3.18!

Combining ~3.3!–~3.18!, we find that the Taylor expansion ofA through second derivatives is
given by
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A~t1dt,t̂1dt̂,l̃1dl̃,l̃̂1dl̃̂!

5A~t,t̂,l̃,l̃̂!1dt^H&AV1dt̂^Ĥ&AV2 (
n<m,A

~dlnm
A ^Cnm

A &AV1dl̂nm
A ^Ĉnm

A &AV!

2
1

2 K Fdt~H2^H&AV!1dt̂~Ĥ2^Ĥ&AV!

2 (
m<n,A

dlnm
A ~Cnm

A 2^Cnm
A &AV!1dl̂nm

A ~Ĉnm
A 2^Ĉnm

A &AV!G2L
AV

; ~3.19!

the uniform negative sign of the quadratic term in the expansion indicates thatA is a locally
convex function, and shows that the matrix of second derivatives ofA is negative semidefinite.

We now turn to the alternative expression of~2.21! for the partition function, defined in terms
of an integral over the parameters of a sequence of microcanonical ensembles. The existence of a
maximum in the integrand which dominates the integration assures the stability of the canonical
ensemble; we now show that~3.19! implies the self-consistency of our assumption of a maximum.

Returning to~2.21!, we see that the conditions for a maximum of the integrand atj5j̄ are that
there be a stationary point, i.e., that

t5
]

]E
Smic~j!U

j̄

, t̂5
]

]Ê
Smic~j!U

j̄

,

~3.20!

lnm
A 52

]

]nnm
A Smic~j!U

j̄

, l̂nm
A 52

]

]n̂nm
A Smic~j!U

j̄

,

together with the requirement that the integrand should decrease in all directions, so that this point
corresponds to a maximum. To make our demonstration of stability more transparent, let us define

x5$x i%5$t,t̂,2lnm
A ,2l̂nm

A %, ~3.21!

so that~3.20! takes the form

x i5
]Smic
]j i

U
j̄

, ~3.22!

where the indicesi are in the correspondence implied by~3.20!, together with the requirement that
the second derivative matrix

]2Smic
]j i]j j

5
]x i

]j j
~3.23!

should be positive definite. However, the values ofE, Ê, nnm
A , andn̂nm

A are equal toH, Ĥ, Cnm
A , and

Ĉnm
A in the microcanonical ensemble, as seen from~2.3!. If the stationary values are those given by

~3.3!, ~3.4!, ~3.6! and ~3.7!, then we must have

j i5
]A

]x i
, ~3.24!

which implies that the matrix inverse to the right-hand side of~3.23! is given by
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]j j
]x i

5
]2A

]x i]x j
, ~3.25!

which we have shown to be a negative semidefinite matrix. This in turn implies that the matrix on
the right-hand side of~3.23! is negative definite, giving the condition needed to assure that the
stationary point in~3.20! is indeed a maximum.

Assuming this maximum dominates the integration, then the logarithm of the integral in~2.21!
~up to an additive term which is relatively small for a large number of degrees of freedom! may be
approximated by

A>tE1 t̂Ê1Tr l̃C̃1T̂r l̃̂Ĉ̃2Smic~E,Ê,C̃,Ĉ̃!, ~3.26!

where the arguments are at the extremal values, giving the analog of the standard thermodynami-
cal resultA5E2TS for the free energy.

IV. THE OPERATORS C̃ and C̃
ˆ
AS GENERATORS

The microcanonical ensemble is constructed as a set of elements ofS , which satisfy a
constraint described by the value ofH. This subset ofS is invariant to the flow generated byH,
where we define the flow induced by a functional according to the canonical transformation
formulas of~1.10a! and ~1.10b!. As we have remarked above, the space is further restricted by

values ofĤ and, in the canonical ensemble, the values ofTr l̃C̃ and T̂r l̃̂Ĉ̃. Since these four
quantities have vanishing Poisson brackets with each other under our present assumptions, the
flow generated by all of these functionals lies in the constrained subset ofS . In constructing the

microcanonical ensemble, we constrain the values of the conserved operatorsC̃ and Ĉ̃, i.e., we
constrain the values of all total trace functionals constructed by projection from these operators. It
is therefore instructive to study the action of general total trace functionals projected fromC̃ and

Ĉ̃ as generators of canonical transformations on the phase space.
We first remark that it was pointed out in Ref. 9 that a canonical generator of unitary trans-

formations on the basis of the underlying Hilbert space has the form

G f̃ 52Tr(
r

@ f̃ , pr #qr , ~4.1!

where f̃ is bosonic. Using~1.11! and the cyclic properties ofTr , one sees that

G f̃ 52Tr f̃ (
r

~prqr2e rqrpr !5Tr f̃ C̃. ~4.2!

We thus see that the conserved operatorC̃ has the additional role of inducing the action of unitary
transformations on the underlying Hilbert space.

That this action preserves the algebraic properties of functionals of the typeG f̃ can be seen by
computing the Poisson bracket,

$G f̃ ,Gg̃%5Tr(
r

e r S dG f̃

dqr

dGg̃

dpr
2

dGg̃

dqr

dG f̃

dpr
D . ~4.3a!

We use the result that
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dG f̃ 5Tr f̃dC̃5Tr(
r

$e r~ f̃ qr2qr f̃ !dpr2~ f̃ pr2pr f̃ !dqr% ~4.3b!

to obtain

dG f̃

dqr
52@ f̃ , pr #,

dG f̃

dpr
5e r@ f̃ , qr #, ~4.4!

and hence, expanding out the commutators,

$G f̃ ,Gg̃%52Tr(
r

$pr f̃ qr g̃2pr f̃ g̃qr2 f̃ prqr g̃1 f̃ pr g̃qr2prg̃qr f̃1prg̃ f̃ qr1g̃prqr f̃2g̃pr f̃ qr%.

~4.5!

The first and last terms on the right cancel under theTr , as do the fourth and fifth. These
cancellations do not depend on the grading under the trace, since they involve only cycling of the
bosonic operatorsf̃ ,g̃. The remaining terms can be rearranged to the form

$G f̃ ,Gg̃%52Tr(
r

@ f̃ , g̃#~prqr2e rqrpr !5Tr @ f̃ , g̃#C̃5G@ f̃ , g̃# . ~4.6!

These relations, corresponding to the group properties of integrated charges in quantum field
theory, can be generalized to a ‘‘local’’ algebra. Defining

G f̃ r5Tr f̃ C̃r , ~4.7a!

where

C̃r5e rqrpr2prqr , ~4.7b!

one obtains in the same way that

$G f̃ r ,Gg̃s%5d rsG@ f̃ , g̃#r . ~4.8!

In studying the flows induced by conserved operators, we shall also need the properties of

generators projected fromĈ̃. We therefore define

Ĝ f̃ 5Tr f̃ Ĉ̃. ~4.9!

Note that, in terms of this definition,

T̂r l̃̂Ĉ̃5Tr ~21!F l̃̂Ĉ̃5Ĝ~21!F l̃
ˆ
.

Substituting~1.12!, we find that the operator derivatives ofĜ f̃ with respect to the phase space
variables are

d

dqr
Ĝ f̃ 52~21!F@~21!F f̃ , pr #52~ f̃ pr2e rpr f̃ !,

~4.10!
d

dpr
Ĝ f̃ 5~21!F@~21!F f̃ , qr #5 f̃ qr2e rqr f̃ .
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Computing Poisson brackets in the same way as above, we find that the algebra of the generators
G f̃ andĜ f̃ closes,

$Ĝ f̃ ,Ĝg̃%5G@ f̃ , g̃# , $Ĝ f̃ ,Gg̃%5$G f̃ ,Ĝg̃%5Ĝ@ f̃ , g̃# , ~4.11!

giving a structure reminiscent of the vector and axial-vector charge algebra in quantum field
theory. Just as the vector and axial-vector charge algebra can be diagonalized into two indepen-
dent chiral charge algebras, so the algebra of~4.6! and ~4.11! can be diagonalized into two
independent algebras

G6 f̃ 5
1
2~G f̃ 6Ĝ f̃ !, ~4.12!

which obey the algebra

$G6 f̃ ,G6 g̃%5G6@ f̃ , g̃# , $G1 f̃ ,G2 g̃%50. ~4.13!

Defining a ‘‘local’’ version ofĜ f̃ by

Ĝ f̃ r5Tr f̃ Ĉ̃r , ~4.14!

where

Ĉ̃r5qrpr2prqr , ~4.15!

the algebras of~4.11! and ~4.13! can be converted to local versions analogous to~4.8!.
We now turn to the flows associated withG f̃ and Ĝ f̃ when used as canonical generators.

Beginning withG f̃ , we consider its action on the functionxs~h! defined in~1.9a!, for which
dxs~h!5Tr hdxs . Defining a parameterg along the motion generated byG f̃ , we choosedxs as
dxs/dg, so that by~1.10a! we have

dxs~h!5$xs~h!,G f̃ %dg. ~4.16!

Comparing~1.10b! with ~4.4! and ~4.16! gives

dqs
dg

5@ f̃ , qs#,
dps
dg

5@ f̃ , ps#. ~4.17!

In both the boson and fermion sectors we see that, as a solution of the differential equations~4.17!,
G f̂ induces the action of a unitary group generated byf̃ ,

xs~g!5ef̃ gxs~0!e2 f̃ g. ~4.18!

The unitary transformation~4.18! preserves the supremum operator norm

ixsi5sup$un&%

u^nuxsun&u
u^nun&u

, ~4.19!

where the supremum is taken over all statesun& in Hilbert space.$The spectrum ofxs may be
unbounded; the argument we have given above then applies to all bounded functions of thexs , for
which the operator norm exists. There is, moreover, a possibility that in the unbounded case, a
phase space operator may be an eigenfunction off̃ , in the sense that [f̃ , xs]5ssxs for some real
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ss . The transformation~4.17! would then correspond to dilation, therefore admitting conformal
transformations on some subset of the phase spaceS ~for which preservation of the operator norm
does not form an obstacle!.%

We next consider the canonical transformation induced onxs~h! by the functionalĜ f̃ defined
in ~4.9!. Introducing a parameterĝ along the motion generated byĜ f̃ , we have in this case by
~1.10a!

dxs~h!5$xs~h!,Ĝ f̃ %dĝ. ~4.20!

Comparing~1.10b! with ~4.10! and ~4.20! gives

dqs
dĝ

5es~21!F@~21!F f̃ , qs#5esf̃ qs2qsf̃ ,

~4.21!
dps
dĝ

5~21!F@~21!F f̃ , ps#5 f̃ ps2espsf̃ .

For the bosonic sector,~4.21! can be rewritten as

dqs
dĝ

5@ f̃ , qs#,
dps
dĝ

5@ f̃ , ps#, ~4.22!

and can be integrated as a unitary transformation for bothqs andps ,

xs~ ĝ !5ef̃ ĝxs~0!e2 f̃ ĝ. ~4.23!

For the fermionic sector, however, the grading index~21!F anticommutes withqs andps and
es521; consequently, the differential equations~4.21! in this case take the form

dqs
dĝ

52$ f̃ ,qs%,
dps
dĝ

5$ f̃ ,ps%, ~4.24!

and involveanticommutatorswith the operatorf̃ , i.e., a graded action. We note, however, that the

total trace Lagrangians for whichĈ̃ is conserved are ones in which the fermion fields appear as
bosonic bilinears of the formprqs ; for these bilinears, and for the reverse ordered bosonic
bilinearsqspr , we find from~4.24! that

d~prqs!

dĝ
5@ f̃ , prqs#,

d~qspr !

dĝ
52@ f̃ , qspr #. ~4.25!

The solution of these differential equations is the unitary group action

~prqs!~ ĝ !5ef̃ ĝ~prqs!~0!e2 f̃ ĝ, ~qspr !~ ĝ !5e2 f̃ ĝ~qspr !~0!ef̃ ĝ, ~4.26!

which preserves the supremum operator norm of the bilinearsprqs andqspr . However, it is easy
to see that for fermionic operators, the supremum operator norm of~4.19! is not preserved by the
evolution of ~4.24!. For example, to lowest order indĝ, for the fermionic coordinate variableqs
we have

„n,qs~dĝ !n…5~n,qsn!2@~n, f̃ qsn!1~n,qsf̃ n!#dĝ1O„~dĝ !2….

Now, lettingn5g1hdĝ, we obtain
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„n,qs~dĝ !n…5~g,qsg!1@~h,qsg!1~g,qsh!#dĝ2@~g, f̃ qsg!1~g,qsf̃ g!#dĝ1O~~dĝ !2!.

Taking h5 f̃ g, we see that (g,qsh)5(g,qsf̃ g) cancels the fifth term on the right, but
(h,qsg)5( f̃ g,qsg)52(g, f̃ qsg) does not cancel the fourth. The action of the diagonalized gen-
erators defined in~4.12! is therefore norm preserving on bosonic, but not on fermionic operators.

Finally, it is also useful to define parametersg6 along the flows generated byG6 f̃ according
to

dxs~h!5$xs~h!,G6 f̃ %dg6 , ~4.27a!

so that

dxs
dg6

5
1

2 S dxsdg
6
dxs
dĝ D . ~4.27b!

Then taking sums and differences of~4.17!, ~4.22!, and ~4.24!, we find that for bosons~with xs
eitherqs or ps!

dxs
dg1

5@ f̃ , xs#,
dxs
dg2

50, ~4.28a!

which integrate to

xs~g1!5ef̃ gxs~0!e2 f̃ g, xs~g2!5xs~0!. ~4.28b!

Similarly, for fermions we find that

dqs
dg1

52qsf̃ ,
dps
dg1

5 f̃ ps ,

~4.29a!
dqs
dg2

5 f̃ qs ,
dps
dg2

52psf̃ ,

which integrate to

qs~g1!5qs~0!e2 f̃ g1, ps~g1!5ef̃ g1ps~0!,
~4.29b!

qs~g2!5ef̃ g2qs~0!, ps~g2!5ps~0!e2 f̃ g2.

This identifiesG6 f̃ as the generators of the one-sided unitary transformations acting on the
fermions which are discussed in Refs. 1 and 2.
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The aim of this paper is to develop the classical lattice models with unbounded spin
to the case of nonquadratic polynomial interaction. We demonstrate that the distinct
relation between the growths of potentials leads to the uniqueness and the fast
decay of correlations for Gibbs measure. ©1996 American Institute of Physics.
@S0022-2488~96!00611-1#

There is an approach initiated in Refs. 1–3 to describe the probability measures on infinite-
dimensional spaces in the terms of conditional distributions. This approach has already found its
nontrivial applications to the natural construction of the different models in the quantum field
theory, mathematical and statistical physics.4–7

The effective criteria on the existence and uniqueness of such systems were obtained~see
Dobrushin’s criterion1,2,8 and Dobrushin–Shlosman mixing condition9,10!. In the essence of the
Dobrushin-type criteria lie the keen variational estimates on the one-point conditional measures,
which admit iteration and application of the fixed point arguments. Moreover, such estimates were
used in the applications to the lattice spin systems of the statistical physics to the study of decay
of correlations, differentiability of pressure, and the connected questions.11–17

In the noncompact spin case the check of Dobrushin’s conditions is rather complicated be-
cause of the principle unboundedness of interaction potentials. The results in this direction were
mainly centered around the regular interactions,11,18–23i.e., when the many-point potentials in the
Hamiltonian admit the quadratic domination, for example with the quadratic two-point potentials

H~x!5 (
kPZd

F~xk!1l (
k, jPZd

bk2 j~xk2xj !
2.

On the other hand, a wide class of models with nonregular interaction, associated with mass-
less free lattice field, perturbed by~“w!4,

H~x!5 (
uk2 j u51

~xk2xj !
21l (

uk2 j u51
~xk2xj !

4,

has already obtained a detail investigation through various techniques.24–28 In particular, it was
shown that the exponential decay of correlations for such systems does not occur for alll.0,24

i.e., the Dobrushin uniqueness technique does not work for such Hamiltonians.
In this paper we demonstrate that there is a wide class of the Gibbs lattice systems whichdo

not fulfill the regularity assumption but have the fast decay of correlations. The aim of this paper
is to show that the application of Dobrushin’s uniqueness technique for the Hamiltonian

a!Alexander von Humboldt Research Fellow 1994/95. Electronic address: mathkiev@imat.gluk.apc.org
Fax: Ukraine 044 225 20 10.
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H~x!5 (
kPZd

F~xk!1l (
k, jPZd

Gk2 j~xk2xj !

with polynomials$Gj% requires the distinct correlations between the growths of the interaction
potentials$Gj% and self-action$F%. This gives us the possibility of treating the problem of the
existence, uniqueness, and theexponentiallyfast decay of correlations in the case ofnonquadratic
polynomial interaction. We base our investigation on the scheme of Refs. 1, 2, 8, 12, 13, and 16
and apply the Brascamp–Lieb inequality29 to obtain estimates on the distance in variations.

ConsiderZd to be ad-dimensional integer lattice, to each point of which corresponds the
linear spin spaceR1. Let G $mL% denote the set of Gibbs measures1–3 on the products-algebra on
RZd. It means that the corresponding conditional measures$mL% in the finite volumes of the lattice
L,Zd are defined by

dmL5
1

ZL
expH 2l (

$k, j %øLÞB
Gk2 j~xk2xj !J 3

kPL

e2F~xk!dxk , ~1!

i.e., for all cylinder bounded functionsf P Cb,cyl(R
Zd) we havem„mL( f )…5m( f ), wherem( f )

denotes the expectation andZL is a normalization factor.
We put the following conditions on the interactive potentials$F,Gj% in the Gibbs measure~1!.
~A! Self-action potentialsFPC2~R1!, fulfill F~0!50, '« . 0 infxPRF9(x) > « and have no

more than the exponential growth on the infinity'c,a: ;xuF(x)u<ceauxu.
~B! Interaction potentials$Gj P C2(R1)% jPZd\$0% , fulfill Gj ~0!50, ; j P Zd\$0%;x

P R1:Gj9(x) > 0 and'r 0; j :u j u.r 0⇒Gj[0.
~C! Growth condition;kPZduku<r 0

sup
xk ,x0PR1

uGk9~xk2x0!u

AF9~xk!AF9~x0!
,`.

Immediately remark that condition C states the domination of the one-point potentials over the
interaction. It always holds for the quadratic and less than quadratic interaction due to
supuG9u<const. Actually condition C permits the consideration of the interaction$Gj% to be of
polynomial type.

The following theorem states the uniqueness and the exponentially fast decay of correlations
for the Gibbs measure~1!. The existence of such a measure and finiteness of its moments is shown
in Theorem 2.

Theorem 1.Suppose conditions A–C hold and the set of measuresmPG $mL%, which satisfy

mm5 sup
kPZd

E
RZd

r2~xk,0!dm,`, r~x,y!5U E
y

x
AF9~s!dsU, ~2!

is nonempty. Denote

gd5 (
kPZd

ed~k,0! sup
xk ,x0PR1

uG9~xk2x0!u

AF9~xk!AF9~x0!

for some transitional invariant semimetric d(k, j ) on the latticeZd.
Then;lP@0,1/gd! measurem̃PG $mL%,mm̃ , `, is unique and has exponentially fast decay of

correlations, i.e.,
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(
kPZd

ed~k,0!ucovm̃~ f ,tkg!u<
1

12lgd
S (
kPZd

ed~k,0!dk~ f !D S (
jPZd

ed~ j ,0!d j~g!D . ~3!

Abovetk is a shift operator on vector kPZd,

dk~ f !5 sup
xPRZd

U ]kf ~x!

AF9~xk!
U , ]kf ~x!5

] f ~x!

]xk
, x5$xk%kPZd. ~4!

Inequality (3) is understood on the cylinder bounded differentiable functions f,g P Cb,cyl
1 (RZd)

such that( jPZde
d( j ,0)d j ( f ) , `.

Proof:We discuss the main tool, which enables us to deal with the polynomial interaction in
the Gibbs measure. First note that the usual estimate on the covariance30,31

covm~ f , f ![E
R1

S f2E
R1
f dm D 2dm<

1

« E
R1
U] f]xU

2

dm, ~5!

for the probability measurem,dm5e2F(x)dx on the line R1, holds for arbitrary function
FPC2~R! such thatF9(x)>«.0 for all xPR1. Actually the above inequality~5! is not optimal
and in Ref. 29~Th.4.1! it was found that the next weighted generalization is true:

covm~ f , f !<E
R1

1

F9~x!
U] f]xU

2

dm, ~6!

with the weight 1/F9, which in the cases whenF9 grows on the infinity improves inequality~5!.
Introduce the family of one-point conditional measures$mk%kPZd

dmk5
1

Zk
expH 2l (

j : jÞk
Gk2 j~xk2xj !J e2F~xk! dxk , ~7!

whereZk is a normalization factor. Below we also understand the measuremk as the operator of
conditional expectation

mk :Cb,cyl
1 ~RZd!{ f→mk~ f ![

defE
Rk
1
f dmkPCb,cyl

1 ~RZd!.

The next identity forj ,kPZd, jÞk,

] jmk~ f !5m~] j f !2l covmk
„f ,] jGk2 j~xk2xj !…

leads to

d j„mk~ f !…5supU] j~mk~ f !!

AF9
U5supUmkS ] j f

AF9~xj !
D 2l covmkS f , ] jGk2 j~xk2xj !

AF9~xj !
D U

<d j~ f !1l supUcovmkS f , ] jGk2 j~xk2xj !

AF9~xj !
D U . ~8!

Using the convexness ofGj we obtain the following consequence of the weighted inequality
~6!:
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covmk
~ f , f !<E

R1

u]kf u2

F9~xk!1( jÞkGk2 j9 ~xk2xj !
dmk<E

R1

u]kf u2

F9~xk!
dmk<@dk~ f !#2. ~9!

Inequality ~9! enables us to estimate the second term in~8!:

supUcovmkS f , ] jGk2 j~xk2xj !

AF9~xj !
D U<sup covmk

1/2~ f , f !covmk

1/2S ] jGk2 j~xk2xj !

AF9~xj !
,

] jGk2 j~xk2xj !

AF9~xj !
D

<dk~ f !S E
R1

u]k] jG~xk2xj !u2

F9~xk!F9~xj !
dmkD 1/2

<dk~ f !sup
uGk2 j9 ~xk2xj !u

AF9~xk!AF9~xj !
.

Finally from ~8! we obtain that

d j„mk~ f !…<d j~ f !1lCkjdk~ f ! ~10!

with

Ckj5 sup
xk ,xjPR1

uGk2 j9 ~xk2xj !u

AF9~xk!AF9~xj !
.

The estimate~10! is a key point of the Dobrushin’s uniqueness technique and the special
structure of thecovariancematrix Ckj permits the polynomiality of$Gj% in the interaction.

Below we follow the scheme of Refs. 12, 13, and 16. The principal modification lies in the use
of weighted inequality~6! and weighted estimate on covariances~10!.

1. Uniqueness of the Gibbs measure.As in Ref. 12 we say that the vector$aj% jPZd is an
estimate for probability measuresm,n if ; f P Cb,cyl

` (RZd):(kPZddk( f ) , ` we have

U E
RZd

f dm2E
RZd

f dnU< (
jPZd

ajd j~ f !. ~11!

For any two measuresm1,m2PG $mL% with property~2! there is an estimateã 5 $ã j [ m0

[ const%jPZd with m0 5 mm1

1/2 1 mm2

1/2. To show this, note first that forf P Cb,cyl
1 (RZd) with

(kPZddk( f ) , ` wehave

u f ~x!2 f ~y!u< (
iPZd

d i~ f !r~xi ,yi !

and therefore

U E
RZd

f dm12E
RZd

f dm2U5U E
RZd
„f ~x!2 f ~0!…dm12E

RZd
„f ~x!2 f ~0!…dm2U

< (
kPZd

dk~ f !E
RZd

r~xk,0!$dm1~x!1dm2~x!%<m0 (
kPZd

dk~ f !.

~12!
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By ~10! the operator f→mk( f ) preserves the class of functions$ f
P Cb,cyl

1 (RZd):(kPZddk( f ) , `%. From~10! and~12! we have

um1~ f !2m2~ f !u5u~m12m2!„mk~ f !…u

< (
jPZd

ãjd j„mk~ f !…

< (
j : jÞk

ãjd j~ f !1ldk~ f ! (
i : iÞk

ãiCki . ~13!

Iterating the above estimate by choosing some enumerationk1 ,...,kn , of the points of latticeZd

one can in a purely algebraic way achieve the following estimate~see Ref. 12, Lemma 2.3!:

um1~ f !2m2~ f !u<l (
kPZd

dk~ f !S (
jPZd

ãjCk jD ,
which gives

um1~ f !2m2~ f !u< (
kPZd

„ã~lC!n…kdk~ f !

for all n>0.
Due to

i ã~lC!ni l`~Zd!5m0 sup
kPZd

(
jPZd

$~lC!n%k j

5m0 sup
kPZd

ln (
j ~1!PZd

••• (
j ~n21!PZd

(
jPZd

Ck j~1!•••Cj ~n21! j

<m0S sup
kPZd

l (
jPZd

Ck jD n
<m0~lgd!

n→0, n→`, ~14!

we obtain the uniqueness of the Gibbs measure.
2. Decay of correlations.Fix function g P Cb,cyl

1 (RZd) such that*RZdg dm 5 1, g.0 and
(kPZde

d(k,0)dk(g) , `. Then measuredn5g dm for the unique measuremPG $mL% with property
~2! has the same property

sup
kPZd

E
RZd

r~xk,0!dn~x!<igiCbmm
1/2,`.

In analog to~12! this gives the estimateã 5 $ã j [ mm
1/2(igiCb 1 1)% jPZd on measuresm andn

um~ f !2n~ f !u< (
kPZd

ãkdk~ f !5mm
1/2~ igiCb11! (

kPZd
dk~ f !.

Now we prove that if$aj% jPZd is an estimate, then$( jPZdajCjk 1 bk%kPZd for bk5dk(g) is an
estimate too. Indeed
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um~ f !2n~ f !u<U~m2n!yH E
Rk
f ~•uy!dmk~•uy!J U

1UnyH E
Rk
f ~•uy!dmk~•uy!2E

Rk
f ~•uy!dnk~•uy!J U

5 (
jPZd

ãjd j„mk~ f !…1UnyH E
Rk
f ~•uy!dmk~•uy!2E

Rk
f ~•uy!dnk~•uy!J U. ~15!

Using ~10! the first term in~15! can be estimated by

(
jÞk

ãjd j~ f !1ldk~ f !H(
iÞk

ãiCikJ .
We apply inequality~6! to the second term. We use thatdn5g dm, sodnk5[g/mk(g)]dmk

and obtain

UnyH E f dmk~•uy!2E f dnk~•uy!J U5UnyH E @ f2mk~ f !#S dmk2
g

mk~g!
dmkD J U

5UmyH g

mk~g!
E „f2mk~ f !…„g2mk~g!…dmkJ U.

The result of integration onRk does not depend on variablexkPRk , therefore we continue:

UmyH g

mk~g!
E „f2mk~ f !…„g2mk~g!…dmkJ U5UmH E

Rk
„f2mk~ f !…„g2mk~g!…dmkJ U

<sup covmk

1/2~ f , f !covmk

1/2~g,g!<dk~ f !dk~g!

5bkdk~ f !.

Finally we have obtained the estimate on~15!:

um~ f !2n~ f !u<(
jÞk

ãjd j~ f !1dk~ f !H(
iÞk

ãilCik1bkJ . ~16!

By iteration of~16! as in Refs. 12, 13, and 16, one achieves that (ãlC1b) is an estimate, too:

um~ f !2n~ f !u< (
kPZd

$ãilCik1bk%dk~ f !. ~17!

The vectorb(n50
` (lC)n is also an estimate because of the following convergence inl`~Zd!:

b(
n50

N

~lC!n1ã~lC!N11→b(
n50

`

~lC!n, N→`.

Thus we achieve estimate12,13,16

ucovm~ f ,g!u5U E
RZd

f dn2E
RZd

f dmU< (
k, jPZd

Dk jdk~ f !d j~g! ~18!

for D5(n50
` (lC)n. Therefore
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ucovm~ f ,t ig!ued~ i ,0!< (
k, jPZd

ed~ j ,k!Djke
d~k,0!dk~ f !ed~ i , j !d j2 i~g!.

Summing up oniPZd we have the required decay of correlations forg.0.
The case of arbitraryg P Cb,cyl

1 (RZd) with (kPZde
d(k,0)dk(g) , ` is obviously due to the iden-

tity covm( f ,c1g1c2)5c1 covm( f ,g) j

Theorem 2: Under conditions A–C the set of Gibbs measuresG $mL% with condition

mm5 sup
kPZd

E
RZd

r2~xk,0!dm~x!,` ~19!

is nonempty.
Moreover, at the coupling interaction constantlP@0,1/gd!, the Gibbs measurem̃ of Theorem

1 fulfills the estimate

sup
kPZd

E
RZd

exp$axk
2%dm̃<expS a

e22aD ~20!

for all aP@0,e/2!.
Proof: Let

UL5 (
kPL

F~xk!1l (
$k, j %,L

Gk2 j~xk2xj !

and consider the family of Gibbs measures$mL% with the free boundary conditions in the finite
volumesL,Zd

dmL
0 5

1

Z
e2UL dxL .

The potentials~UL!9>eI are convex, so the measuresmL
0 satisfy inequality~24! in form30,31

covm
L
0 ~ f , f !<

1

e E
RL (

kPL
u]kf u2 dmL

0 .

Substitutingf5xk and using that*RLxkdmL
0 [ 0 by the symmetry ofmL

0 , we have that uni-
formly on L andkPL

sup
L,Zd, kPL

E
RL
xk
2 dmL

0<1/e. ~21!

The convexness of the potentialsUL also implies the Log–Sobolev inequality for the mea-
sures$mL

0 %:30

E
RL
f 2 ln f 2 dmL

0 2E
RL
f 2 dmL

0 ln E
RL
f 2 dmL

0<
2

e E
RL (

kPL
u]kf ~xL!u2 dmL

0 ~xL!. ~22!

Fix L,Zd andkPL. Consider increasing onn>1 sequence of functions:
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f n5H 2n, xk,2n,

xk, uxku<n,

n, xk.n.

As in Ref. 31 introduce the sequence of functionshn(a) 5 *RL exp(afn
2)dmL

0 > 1 on half-line
aP@0,̀ !, increasing on botha and n with all derivatives hn

(k)(a).0, a.0. Then for
gn5exp~a fn

2/2! we apply the Log–Sobolev inequality~22!:

ahn8~a!5E
RL
a fn

2 exp~a fn
2!dmL

0 5E
RL
gn
2 ln gn

2dmL
0

<
2

« E
RL (

jPL
u] jgnu2 dmL

0 1hn~a!ln hn~a!

<
2

«
a2E

RL
f n
2 exp~a fn

2!dmL
0 1hn~a!ln hn~a!.

Therefore the familyhn(a), increasing on bothn anda>0, hn~0!51, satisfy the inequalitya(1
2 2a/«)hn8(a) < hn(a)ln hn(a). To find the major function we must seth~0!51 and take the
highest growth of its derivative, soa(122a/«)h8(a)5h(a)ln h(a) and

h~a!5exp@aD/~122a/«!#

for someD. The restriction onD we obtain from the highest growth ofhn at zero,

hn8~0!5E
RL
f n
2 dmL

0<E
RL
xk
2 dmL

0 ~x!5D,`,

and achieve estimate

hn~a!<expH a

122a/« E
RL
xk
2 dmL

0 ~x!J .
Tendingn→` we obtain the estimate of the next form ataP@0,«/2!,

E
RL

exp~axk
2!dmL

0<expS a

122a/« E
RL
xk
2 dmL

0 D ,
which by ~21! gives

;aP@0,«/2! sup
L,Zd,kPL

E
RL

exp~axk
2!dmL

0 ,expS a

«22aD . ~23!

Compactness of the function exp(axk
2) leads by the Prochorov’s theorem7 to the existence of

the weak local limitm̃,

lim
L↗Zd

E
RL
f ~xL!dmL

0 5E
RZd

f ~x!dm̃,

on any cylinder functionf P Cb,cyl(R
Zd).

5451A. V. Antoniouk and A. V. Antoniouk: Gibbs systems with nonquadratic interaction

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Due to the finiteness of the interaction radius~condition B!, the limit measurem̃ has the
conditional measures$mL% in the finite volumes, i.e.,m̃PG $mL% and the set of the Gibbs measures
is nonempty. From~23! we also have that the measurem̃ is tempered, i.e.,

sup
kPZd

E
RZd

exp~axk
2!dm̃,expS a

«22aD , aP@0,«/2!,

which obviously gives the statement~20!. j

Model 1:Let the potentials be defined by

F~xk!5~11xk
2!2n11 and Gk2 j~xk2xj !5bk2 j~xk2xj !

2n12

and assume that the coefficients$bj% jPZd satisfy

; jPZd bj>0 and 'r 0;u j u.r 0 :bj50.

Then for

0<l,
1

~n11!22n11ibid
, ibid5 (

jPZd
bje

d~ j ,0!,`

the statements of Theorems 1 and 2 are valid.
Model 2. Lattice spin system on Riemannian manifold. DenoteM5Mk , kPZd, a noncompact

Riemannian manifold with covariant derivative]k and Ricci curvature tensor Rick .
Let potentialsFk(xk), Gkj(xk ,xj ) satisfy
~1! FkPC2(M ), '«.0;xkPMk Rick1]k]kF(xk)>«;
~2! GkjPC2(M3M ), 'aPR1]k]kGk j(xk ,xj )>2a, k, jPZd andGkj[0, for uk2 j u>r 0;
~3! ak, j5supxPMZdiB21/2(xk)B

21/2(xj )]k] jGk j(xk ,xj )iTMk3TMj
,`,

whereB(xk)5Rick(xk)1]k]kFk(xk) andi •i TMk3TMj
is a standard Hilbert norm on tangent space

to Mk3M j .
Then forlP@0,min„«/a(2r 011)d,1/gd…! the lattice system, described by Hamiltonian

H5 (
kPZd

Fk~xk!1l (
uk2 j u<r0

Gkj~xk ,xj !,

has exponentially fast decay of correlations and the Gibbs measure is unique.32 Above gd

5supkPZd( jPZde
d(k, j )ak j .

This result is achieved by the scheme of this paper. One needs to consider

dk~ f !5 sup
xPMZd

i„Rick1]k]kF~xk!…
21/2]kf ~x!iTMk

and apply in corresponding places the following generalization of the Brascamp–Lieb inequality
~6! to the case of arbitrary Riemannian manifold:32 under condition'«.0 Ric1]]F>« we have

covm~ f , f !<E
M

^~Ric1]]F !21] f ,] f &dm, fPCb
1~M !, ~24!

with probability measuredm5e2F ds ~s denotes Riemannian volume on manifoldM ! and
Riemannian pairinĝ•,•& on tangent space to manifold.
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Developing idea of Helffer28,33 we can shortly explain inequality~24! in the following way.
Takeu5]Hm

21(g2*g dm) for Hm 5 ]m* ] with dual gradient]m* v 5 2div v 1 ^]F,v&. Then]m* u
5HmHm

21(g2 *g dm)5 g2 *g dm and we have

covm~g,g!5E gS g2E g dm Ddm5E ^u,]g&dm

5E ^~Hm1Ric1]]F !21]g,]g&dm

<E
M

^~Ric1]]F !21]g,]g&dm,

where we used the positivity ofHm andu5~Hm1Ric1]]F!21]g by a simple commutation]g
5]]m* u5(]m* ]1Ric1]]F)u.
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Integration of thermodynamic identities for a relativistic
general equation of state

Sankar Chattopadhyay and Dipankar Ray
Department of Mathematics, Jadavpur University, Calcutta-700032, India
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In a recent paper Mason and Kgathi have integrated some well-known thermody-
namic identities for an equation of statep5nkT and thereby have obtained some
explicit expressions for the thermodynamic variables concerned. In the present
paper we integrate the same identities for a more general equation of state
p5p(n,T) and thereby obtain more general expressions for the same thermody-
namic variables. ©1996 American Institute of Physics.
@S0022-2488~96!00608-1#

I. INTRODUCTION

In a recent paper Mason and Kgathi1 have shown that the well-known thermodynamic iden-
tities,

dm5T dS1K dn ~1a!

and

m5TS1Kn2p, ~1b!

together can be integrated for an equation of state,

p5nkT. ~2!

Herem is the total energy density,T is the temperature in Kelvin,S is the entropy per unit volume,
n is the particle number density,K is the chemical potential per particle,k is Boltzmann’s
constant, andp is the pressure. The purpose of the present paper is to integrate equations~1! for
a more general equation of state,

p5p~n,T!. ~3!

II. SOLUTIONS

Equations~1! and ~3! can be combined to give

m~s,n!5S
]m~S,n!

]S
1n

]m~S,n!

]n
2p~n,T!, ~4!

where

T5
]m~S,n!

]S
, ~5a!

K5
]m~S,n!

]n
. ~5b!
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Also, by virtue of Eq.~5a!, one can rewrite Eq.~4! as

m~S,n!5S
]m~S,n!

]S
1n

]m~S,n!

]n
2pS n, ]m

]SD . ~6!

Equation~6! is a nonlinear partial differential equation form(S,n) that can be solved as follows.
Differentiating Eq.~6! wrt S while treatingn as constant one gets

S
]2m~S,n!

]S2
1n

]2m~S,n!

]S ]n
2
p„n,~]m/]S!…

]~]m/]S!

]2m

]S2
50, ~7!

which by virtue of Eq.~5a! can be rewritten as

S
]T~S,n!

]S
1n

]T~S,n!

]n
2

]p~n,T!

]T
•

]T~S,n!

]S
50. ~8!

TreatingS as a function ofn andT, one can rewrite Eq.~8! as

S~n,T!2n
]S~n,T!

]n
5

]p~n,T!

]T
,

which can be easily integrated as

S5n
]

]T S f ~T!2E 1

n2
p~n,T!dnD , ~9!

where f (T) is an arbitrary function ofT.
Equation~5a! can now be integrated wrtS by treatingn as constant to give

m5E T dS1a~n!5TS2E S dT1a~n!, ~10!

wherea(n) is an arbitrary function ofn while * S dT represents an integration ofS wrt T,
treatingn as constant.

From Eqs.~9! and ~10! one gets

m5nTF f 8~T!2E 1

n2
]p~n,T!

]T
dn2nF f ~T!2E 1

n2
p~n,T!dnG1a~n!G . ~11!

Equations~9! and~11! together give a form form as a function ofS andn whereT is a parameter.
Obviously any solutionm(S,n) of Eq. ~6! must be of this form. But anym of the form given by
Eqs.~9! and ~11! together may not satisfy Eq.~6!, because the equations~9! and ~11! are essen-
tially obtained from Eq.~7!, which was obtained by differentiation of Eq.~6! wrt S. So putting
Eqs.~9! and ~11! back into Eq.~6! and using relations like

S ]m

]nU S as
constant

D 5S ]m

]nU T as
constant

D 2S ]m

]TU n as
constant

D S ]S~n,T!/]n

]S~n,T!/]TD ,
one gets after a little calculation,

n
da~n!

dn
5a~n!,
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which givesa(n)5nL, whereL is a constant of integration. Putting this form ofa(n) back into
Eq. ~11!, it is easy to see that the constant of integrationL can be easily absorbed intof (T). Hence
one gets finally

m5nFTH f 8~T!2E 1

n2
]p~n,T!

]T
dnJ 2H f ~T!2E 1

n2
p~n,T!dnJ G . ~12!

III. CONCLUSION

In summary, we have integrated the thermodynamic identities given by~1a! and~1b! for any
equation of state of the form~3!. On integration the total energy density functionm is expressed
as a function of other thermodynamic variablesn andT, as is given by Eq.~12!, the entropy per
unit volumeS is obtained as a function ofn andT, and is given by Eq.~9!.

1D. P. Mason and A. M. Kgathi, J. Math. Phys.32, 493 ~1991!.
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We show that a rigorous statistical mechanics description of some Dirichlet series
is possible. Using the abstract polymer model language of statistical mechanics and
the polymer expansion theory we characterize thelow activityphase by the suitable
exponential decay of the truncated correlation functions. ©1996 American Insti-
tute of Physics.@S0022-2488~96!01511-3#

I. INTRODUCTION

The idea to relate number theory and equilibrium statistical mechanics or, more precisely, zeta
functions and partition functions, is now already quite old. One motivation for pursuing this idea
lies in the probabilistic aspects of the prime number distribution. Statistical mechanics as an
intrinsically probabilistic theory is hoped to be an appropriate language for these phenomena. The
book1 by Kac nicely presents this kind of probabilistic reasoning.

More concretely, the formulation of the famous Lee–Yang theorem was influenced by a
paper2 by Pólya on the Riemann zeta function. In that paper Po´lya took the asymptotics of the
Fourier transformed zeta function and proved for its inverse Fourier transform the ‘‘Riemann
hypothesis,’’ saying that the nonreal zeroes have real part1

2.
As described by Kac in Ref. 2, the method of Po´lya’s proof inspired the first version of the

Lee–Yang theorem~which says that the partition function of ferromagnetic Ising models has only
zeroes on the unit circle of the activity plane!.

This led to the natural question whether inversely the Riemann hypothesis or simpler number-
theoretical questions could be proven by some statistical mechanics method.

In recent years two approaches have been followed. In one of them the Riemann zeta function
z(s) itself was interpreted as partition function of a system ofinteracting primesat inverse
temperatures ~see Refs. 3–6!. In the last-mentioned paper the system was shown to exhibit a
phase transition ats51 with type I states~resp. type III! at low ~resp. high! temperature.

In the second approach mentioned the quotientz(s21)/z(s) is interpreted as a partition
function at the inverse temperatures ~see Refs. 7–13!.

It was shown that the partition function described a spin chain with asymptotically translation-
invariant long-range ferromagnetic interaction~thenumber-theoretical spin chain!. The points52
corresponds to a phase transition where magnetization jumps from 0 to 1.

Although there exist versions of the Lee–Yang theorem predicting zero-free half-planes in the
inverse temperature plane, unfortunately these theorems cannot be applied to the above spin chain,
since its interaction includes multi-body terms.

In this paper, using the general polymer model approach of statistical mechanics, we propose
a criterium to interpret a large class of Dirichlet series as grand canonical partition functions of
hard-core interacting systems.

The criterium involves a finite-volume approximation and a precise notion of activity. We

a!Electronic mail address: contucci@virginia.edu
b!Electronic mail address: knauf@math.tu-berlin.de
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present two possible polymerizations: the first is based on the notion of Euler product and works
for multiplicative arithmetical functions, the second covers a wider class of cases.

We show that the natural thermodynamical quantities of the polymer model, like correlation
functions, carry a deep number-theoretical meaning being the probability of suitable divisibility
properties.

In order to control the behavior of the correlation functions we apply the polymer expansion
technique by means of the Kirkwood–Salsburg iterative equations: the low activity expansion
theory enables us to prove the exponential decay of all the truncated correlation functions and
provides, in general, a full analytical control of the low temperature phase.

This shows that the language of polymer models is not only formally but also analytically
adequate to describe the considered class of Dirichlet series.

Our approach clarifies the statistical mechanics meaning of the absolute convergence theory
for the Dirichlet series and introduces new perspectives on it; moreover, it has the merit to point
out the natural limits of each polymerization. The polymerizations treated in this work, like similar
techniques in number theory, provide an approximation of the Dirichlet function which works well
for the large real part of the complex plane but its results are too nonuniform elsewhere, especially
on the critical strip.

We believe that, in order to obtain new analytical results from the number-theoretical point of
view, one has to search for different polymerizations, for instance the high temperature ones, or
better to explore more subtle strategies like therearrangementprocedure for polymer models~see
Refs. 14 and 15! which, in some cases, provide a good control of the asymptotic behavior of the
correlation functions in the interesting regions of the phase space.

All these ideas can be improved and tested with the study of the number theoretical spin
chain: the interacting objects there are not directly related to primes and could suggest different
types of polymerization based on groups of spins~see Ref. 13!. Moreover the approximant family
wk ~Refs. 7 and 8! of the Euler totient function could really be seen as a systematic way to
rearrange the Euler totient functionw thought as abare interaction. We will return to these
questions elsewhere.

Notation: Sums ~resp. products! over empty sets equal zero~resp. one!. We write N:
5$1,2,3,...% for the integers,N0:5Nø$0% andP[$2,3,5,...% for the primes. Ifn dividesm, we write
num and the symbol(num denotes a sum over all the divisors ofm; (n,m) is the greatest common
divisor ofm andn.

II. THE POLYMER EXPANSION

Statistical mechanics seeks to describe the collective behavior of a large number of similar
particles. One assumes that these particles are enclosed in a finite regionL,S of spaceS ~typi-
cally S5Rd or S5Zd! and then considers the thermodynamic limitL↗S.

The mutual interaction between the particles in a configurations is encoded by their total
energy HL~s!. At inverse temperatures the probability of that configuration is given by
exp„2sHL~s!…/ZL(s),

ZL~s!:5(
s

exp„2sHL~s!… ~1!

being the partition function for volumeL.
So the basic objects of statistical mechanics are the Boltzmann factors exp„2sHL~s!… of the

configurations.
Whereas the above Gibbs probability measures for the finite volumeL are real-analytic in the

parameters, in the thermodynamic limitL↗S nonanalyticities arise which are called phase
transitions. Different asymptotic Gibbs measures may then be compatible with a given interaction
and inverse temperature.
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This phenomenon is typical for random fields, i.e., random functions in several variables, and
is of central interest in today’s theory of probability.

Thus one basic problem of statistical mechanics consists of determining regions in parameter
space~e.g., in thes plane! where intensive quantities like the free energyuLu21 ln„ZL(s)… stay
analytic in the thermodynamic limit.

Many of the techniques employed in that context recently turned out to be related, the com-
mon ground being the abstractpolymer modelformulation ~see Refs. 16–18!.

In the abstract setting one starts with a denumerable setP[$g1,g2,...% whose elements are
calledpolymersand with an assigned reflexive symmetric relation ofincompatibilitybetween each
of the two of them.

In the concrete application of a two-dimensional Ising model, the polymers may be the
contours enclosing a region of constant spin direction, or the subgraphs of the nearest-neighbor
graph, depending on whether one is interested in small or large temperatures; the incompatibility
between two of them is simply the mutual overlapping.

Thus one may associate to ak-polymer X:5$g1 ,...,gk%PPk an undirected graphG(X)
5„V(X),E(X)… with vertex setV(X):5$1,...,k%, vertices iÞ j being connected by the edge
$g i ,g j%PE(X) if gi andgj are incompatible. Accordingly thek-polymerX is called connected if
G(X) is path connected and~completely! disconnected if it has no edges@E(X)5B#.

The corresponding subsets ofPk are calledCk resp.Dk, with D0:5P0:5$B% consisting of a
single element. MoreoverP`:5øk50

` Pk with the subsetsD`:5øk50
` Dk andC`:5øk51

` Ck. We
write uXu:5k if XPPk; indicating withX~g! the multiplicity of g in X it results ink5( iX(g i). It
is useful to define the functionc(X):5P iX(g i)!. We will indicate with a hat the Abelianized set:
for instanceP̂` is the set of Abelian words~which we also call polymer configurations! which
arises if one identifiesk-polymersX5$g1 ,...,gk%, Y5$d1 ,...,dk%PP` if dp( i )5g i for some
permutationp.

Statistical weights or activitiesz:P→C of the polymers are multiplied to give the activities
zX:5P i51

k z(g i) of k-polymers.
The thermodynamical properties of the model are defined through the partition function

Z5 (
XPD̂`

zX. ~2!

We observe that no multiple occurrence of a polymer is allowed since the incompatibility relation
is reflexive; for this reason the sum is finite whenP has finite cardinality which corresponds to a
finite volume in the concrete cases.

It has to be stressed that the polymer models are not statistical mechanics models in the usual
form ~1!. They are useful devices to study the true models in thelow activity regime of the phase
diagram: for this reason a given model is often mapped into different polymer models according
to each different phase regime.

One is mainly interested in theuPu→` limit ~thermodynamic limit! for the mean values of the
configuration functionsh:

^h&z5
(XPD̂`h~X!zX

(XPD̂`zX
, ~3!

and especially for the correlation functions

rz~Y!5^xY&z , ~4!

wherexY is the characteristic function ofY. Often the dependence of the correlation functions on
the activity is studied in terms of parameters such as, for instance in statistical mechanics, the
inverse temperature or a magnetic field.

5460 P. Contucci and A. Knauf: The low activity phase of some Dirichlet series

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



An important quantity to be studied in the thermodynamic limit is the free energy density, or
pressure, which turns out to be~see, for instance, Refs. 16 and 19! up to a suitable normalization
factor

ln~Z!5 (
XP P̂̀

nT~X!

c~X!
zX, ~5!

with nT(X):5n1(X)2n2(X), n6(X) being the number of subgraphs ofG(X) connecting all the
vertices ofG(X) with an even~resp. odd! number of edges. The structure of the factorsnT implies
that the previous sum is actually supported only onĈ`.

We notice that, although in the partition sum only compatible configurations of polymer may
appear, the free energy contains contribution from all the configuration and also coincident poly-
mers~multiplicities! are allowed.

Formula~5! is important from the conceptional as well as from the analytical point of view.
It is complemented by the so-called tree estimateunT(X)u<ut„G(X)…u, wheret(G) denotes the set
of maximal subtrees of the connected graphG. This inequality is useful, since there exist tech-
niques to estimate the number of subtrees. As an example, a theorem by Cayley says that the
complete~all edges present! graphK(k) with k vertices containsut„K(k)…u5kk22 maximal trees.

It is easy to check that the simplest exampleP5$p%, i.e., Z511z, of a polymer model
reduces the formula~5! to the Taylor expansion for the logarithm ln(Z)5(k51

` [(21)k21/k]zk,
sincenT„K(k)…5(21)k21(k21)! ~the last formula showing, by the way, that the tree estimate is
nonoptimal!.

So even for a finite cardinality ofP one needs bounds on the activities to ensure convergence
of the free energy. In the statistical mechanics applications such bounds are given in terms of
energy~or activity! and entropy bounds.

III. DIRICHLET SERIES

A basic object of analytic number theory is the Dirichlet series consisting of terms of the form
e2sln whose exponents$ln%nPN are a real-valued sequence strictly increasing to limn→` ln5`.

A formal series of the form

(
n51

`

a~n!e2sln ~6!

with complex coefficientsa(n) and arguments is called a general Dirichlet series. In this context
functionsA:N→C are calledarithmetical functions.

Dirichlet series have abscissaesa(sc) of absolute ~resp. conditional! convergence. For
ln :5n Eq. ~6! is a power series inx:5e2s so thatsa andsc coincide.

For ln :5ln(n) Eq. ~6! is called an ordinary Dirichlet series, and we write it in the form

Za~s!:5 (
n51

`

a~n!n2s. ~7!

In that case 0<sa2sc<1.
The simplest choicea(n):51 of coefficients leads to the Riemann zeta function

z(s)5(n51
` n2s with inverse 1/z(s)5(n51

` m(n)n2s, with the Möbius functionm ~see Appendix
A!. In that casesa51 and 1

2<sc<1, the Riemann hypothesis beingsc5
1
2.

Many Dirichlet series arising in number theory can be written as a Euler product~see Ref. 20!:
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(
n51

`

a~n!n2s5 )
pPP

f p~p
2s!. ~8!

By the fundamental theorem of arithmetic this is the case exactly if the arithmetical function
n°a(n) is multiplicative, that is, it is not identically zero, and

a~mn!5a~m!a~n! if gcd ~m,n!51.

Thenf p(x)5(k50
` a(pk)x2k. For example,z(s) 5 PpPP(12 p2s)21.

The product

Zf~s!Zg~s!5Zf* g~s! ~9!

of Dirichlet series has coefficients

f * g~n!5(
dun

f ~d!gS ndD , ~10!

which are given by the Dirichlet convolution productf * g of the arithmetical functions of the
factors.

With pointwise addition and Dirichlet multiplication the set of arithmetical functions becomes
an associative algebra with unitI , I (n)5d1,n ~a so-called monoid!. It is easy to prove that when
f ~1!Þ0 a Dirichlet inversef ~21! exists.

Dirichlet series are used in number theory in order to make use of analytic tools in the theory
of prime numbers. As an example, the prime number theorem states that the numberp(x)
5u$pPPup<x%u of primes smaller thanx is asymptotic tox/ln x. This can be shown by analyzing
z8(s)/z(s) for Re(s)51, which is on the line containing the pole.

In order to give a statistical mechanics interpretation of~some! Dirichlet series as polymer
partition functions we have to identify the sums~7! and~2!. This can be done, of course, in many
ways: the main point is that in the partition sum each polymer can only have simple multiplicity.

We propose two types of polymerization: the first works for multiplicative arithmetical func-
tions and is based on the notion of Euler product, the second is more general. We introduce both
of them because the first admits a special treatment in the convergence theorems leading to better
convergence estimates~see Appendix B!.

A. Multiplicative polymerization

~i! If we now interpretz(s) 5 (n51
` e2s ln(n) as a partition function for an infinite system with

state spacenPN and energies ln(n), then z8(s)/z(s) is minus the expectation of the internal
energy. Moreover, in the notation of the previous section,

z~s!5 )
pPP

~12p2s!215 (
XPD̂`

zs
X ,

taking the primes as the polymers~P:5P!, assuming different primes to be compatible and setting
the activitieszs(p):51/(ps21); moreover

z8~s!/z~s!5
d

ds
ln„z~s!…52 (

pPP
ln~p!•zs~p!.
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~ii ! Alternatively one may consider the setP:5$pnupPP,nPN% of prime powers as polymers
with the activitieszs(x):5x2s for xPP and callp1

n1,p2
n2 P P incompatible iff p15p2 . Then,

again,z(s) can be written as a polymer model~2! and thus its logarithm may be written using
formula ~5!.

Clearly this kind of game can be played with any Dirichlet series having a Euler product~8!.
Then for the first choiceP5P of polymers the activities arezs(p):5 f p(p

2s)21, whereas
zs(p

k):5a(pk)p2sk in the second case.
It is clear that when the multiplicative arithmetical functiona:N→C is a square-free function

~that is, it vanishes on integers containing squares!, then both polymer model interpretations lead
to the same activityzs(p) 5 a(p)e2s ln p, zs(p

k)50 for k.1. The functiona plays the role of an
interaction.

B. General polymerization

1. Square-free case

A large class ofsquare-freeDirichlet series admit the interpretation of polymer models where
each prime number is considered a polymer. For instance we can consider the family of arithmeti-
cal functionsf5v f where f is multiplicative ~and possibly positive to have a genuine probabi-
listic framework! and the functionv is defined as

v~n!5H 1, if n51,p,

)
pp8un

g~p,p8!, otherwise, ~11!

whereg(p,p8) takes values 0,1 and is a symmetric function vanishing on the diagonal. We stress
that the previous conditions define aclassof matrices@of entriesg(p,p8)# and correspondingly a
class of square-free arithmetical functionsf not necessarily multiplicative. Two primes with
g(p,p8)50 are called incompatible; two integers are incompatible if there are two incompatible
primes in the respective decomposition.

Some examples of incompatibility are the following:p,p8 are compatible polymers when

2pÞp8;

2up2p8u.const;

2up2p8u. log App8.

The first case corresponds to the square-free functionumu ~see Appendix A! in which the only
interaction is the Fermi statistic; the relative zeta function isZumu(s)5z(s)/z(2s). The interest of
the third case will be clear in the section on convergence.

The fundamental theorem of arithmetic on the unique decomposition of an integer into primes
permits the formal identification of the function

Zf~s!5 (
nÞN

f~n!n2s, ~12!

with a partition function of a polymer system in which each prime has activityzs(p)
5 f (p)e2s log p and the functionv play the role of the hard-core interaction.

2. Non-square-free case

An important observation is that to treat the case of non-square-free Dirichlet series we have
simply to change the polymer identification: the polymers are now the prime powers
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P:5$pnupPP,nPN%[$2,3,4,5,7,8,9,...% with the activitieszs(x):5 f (x)x2s for xPP. The class of
arithmetical function treated in this way is defined byf5fv where f is multiplicative and

v~n!5H 1, if n51,pk,

)
x,x8PP,xx8un

g~x,x8!, otherwise, ~13!

whereg(x,x8) takes values 0 and 1 and is a symmetric function vanishing on all the couples
(x,x8)5(pk,pk8). The previous conditions define aclassof matrices and correspondingly a class
of arithmetical functionsf in general not square-free nor multiplicative.

Also in this case there are plenty of examples; for instance, the second and third example of
the previous polymerization can be rephrased exactly in this one. The simplest example is just the
Riemann zeta function: it corresponds to the element of the previous class in whichf (n)51 and
g(x,x8)51 if (x,x8)Þ(pk,pk8) which says that two polymers are incompatible when they are
power of the same prime and they are compatible otherwise.

This means that the Riemann zeta function admits the interpretation of the partition function
of a hard-core interacting polymer system.

IV. THE HARD-CORE MODELS

Let us consider, for simplicity, the square-free case withf5v. We introduce now a family of
approximating functionsvk depending on an integerk; the meaning of this approximation is just
the finite volume approximation in statistical mechanics which manifests itself with a finite num-
ber of polymers. The corresponding partition function becomes a finite series for eachk and the
problem to control the thermodynamical limit for the correlation functions concerns the possibility
of obtaining bounds which are uniform ink.

We first define thekth set of square-free integersNk as the integers of the form

n5p1
a1p2

a2•••pk
ak, where a i50 or 1, ~14!

andp1 ,...,pk are the firstk prime numbers. Then, for instance,N05$1%, N15$1,2%, N25$1,2,3,6%,
N35$1,2,3,5,6,10,15,30%, etc., anduNku52k . Now we define

vk~n!5 Hv~n!, if nPNk ,
0, otherwise. ~15!

It is easy to prove that

vk~n!5v~n! for n<pk , ~16!

and

vk~n!50 for n.p1•••pk . ~17!

The origin of this approximation is quite simple: we consider the natural numbers progres-
sively generated by prime numbers; the nature of the functionv implies that for each generation
only a finite quantity of integers gives a contribution.

Remark:The above mechanism induces in general a one-to-one correspondence between the
functions of the variable~a1,...,ak! and thekth approximation of a square-free arithmetical func-
tions.

It clearly turns out that the approximating zeta function admits the interpretation of a grand
canonical partition function for a system ofk particles interacting via a hard-core two-body
potential:
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Zvk
~s!5 (

nPN
vk~n!n2s5(

a
)
i
pi

2sa i)
i, j

@11a ia j„g~pi ,pj !21…#, ~18!

wherea5~a1,...,ak!. A mean values are

^ f &k~s!5
(a f ~a!P i pi

2sa iP i, j@11a ia j„g~pi ,pj !21…#

Zvk
~s!

. ~19!

The basic objects of our model are ther -points (r<k) correlation functions:

^a i1
•••a i r

&k~s!, ~20!

with i 1, i 2,•••, i r ; it is interesting to notice that, by comparing with~20!, they represent the
probability of divisibility by the integerpi1•••pi r. Without loss we assumei 1 ,...,i r<k because
otherwise~20! vanishes.

One of our main problems is to study the limitk→` of the correlation functions, and to prove
that they describe, indeed, the equilibrium state of a system of interacting polymers defined by the
partition function~18!.

There are various approaches in the study of the properties of the polymer models. One of
them, the one we consider here, is based on the use of the Kirkwood–Salsburg-type iterative
equations to control the analytical behavior of the correlation functions and related quantities. We
will follow the ideas of Ref. 19~see also Refs. 21 and 22! with a different proof of the conver-
gence theorems according to the number theoretical framework which requires a slightly different
identification of interaction and activity function.

V. THE ITERATIVE EQUATION FOR THE CORRELATIONS

The analytic control of a polymer model is based on two interrelated axioms carrying a deep
statistical mechanics meaning.

Activity Bound:There exists a constanta,1 and a positive functionv~g! ~the volume! such
that

uz~g!u<av~g!. ~21!

DefiningN(g,x) as the number ofg-incompatible polymers for which the functionv stay inside
the interval@x,x11!, we impose the following.

Entropy Bound:There exists a constantc such that

N~g,x!<v~g!cx. ~22!

From an analytic point of view the two requirements are simply saying that the terms we sum have
to be not too large and not too many. In our context the activity bound can be naturally fulfilled
with the choicea5e2s andv(p)5log(p) and the entropy bound defines the class of function we
are treating. It is easy to see that the three concrete examples of the general polymerization fulfill
the entropy axiom for anyc.1; for each of them one could actually improve the general conver-
gence strategy we are going to present.

Our first goal is to express the correlation function at the temperatures as a zeta function:

^a i1
•••a i r

&k~s!5(
l

^n&~ l !l2s, ~23!
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wheren 5 pi1•••pi r. The algebraic properties of the Dirichlet convolution imply that Eq.~23! can
be solved in the arithmetical function̂n& and the solution is

^n&5n2s~vk
~21!

*Dnvk!, ~24!

where we have introduced the operationDn as

Dnf ~k!5 f ~nk!. ~25!

One immediately realizes that the arithmetic function corresponding to the correlations of a
square-free modelis not square-free. This is because the Dirichlet inverse operation does not
conserve the square-free property and it is the main motivation to introduce a formalism able to
handle generic polymer configurations with the suitable convolution. Moreover, it also implies
that, even for finitek, the correlation’s zeta function is no more a finite series; we want to show
how it is possible to control its properties in the limitk→` using the statistical mechanics method
of the iterative equations. This will provide a statistical mechanics meaning to the limiting corre-
lations and a new point of view in the study of some number theoretical quantities.

The idea, which is a central one in statistical mechanics, is to study the ‘‘interaction’’ between
one particle and the remaining ones or, in number theoretical terms, to have some control on the
nonmultiplicativity of thev.

Defining the function

Gn :5vk
~21!

*Dnvk , ~26!

we consider an integer of the formpn, wherep is a prime compatible withn ~otherwiseGpn50!.
By definition we have

Gpn~ l !5(
du l

vk
~21!~d!vkS pn l

dD ; ~27!

indicating(k,n a sum over all the divisors ofn counted with multiplicity~see Appendix A!, we
first observe that

vkS pn l

dD5vkS n l

dD (
r, l /d

p
l~r !, ~28!

where the(p means a sum over all square-free integers build onp-incompatible primes and the
functionl is the Liouville function defined byl(n)5(21)V(n) whereV is the number of prime
factors counted with multiplicity. Sincev(p)51, the previous formula gives an evaluation of how
much the interactionv deviates from a completely multiplicative function; it can be proved, for
instance, observing that the factorG(p,h) defined by

v~ph!5v~h!G~p,h! ~29!

is

G~p,h!5 )
p8,h

g~p,p8!5 )
p8,h

~„g~p,p8!21…11!5(
r,h

p~21!V~r !, ~30!

which is the~28! since the integerpn is supposed to be compatible. Substituting the~28! inside
the ~27! we have
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Gpn~ l !5(
du l

vk
~21!~d!vk~p!vkS n l

dD (
r, l /d

p
l~r !, ~31!

and interchanging the summation order

Gpn~ l !5(
r, l

p
l~r ! (

du l /r
vk

~21!~d!vkS nld D , ~32!

which is, up to renaming the sets,

Gpn~ l !5(
r, l

p
l~r !GnrS lr D . ~33!

This is the iterative equation we want to consider. In order to control its solutions we observe that,
by inspection, it lives naturally as an equation for thetwo-variablearithmetical functionG; more-
over, defining the ‘‘index’’ of the quantityGn( l ) asV(nl), Eqs. ~33! can be solved iteratively
observing that they allow us to compute the family of indexV(nl)11 in terms of that whose
index isV(nl). This fact not only makes it possible to study the iterative solutions with the initial
conditionG1~1!51 but it also gives hints on the suitable Banach space structure to be introduced
in order to make use of the contraction principle.

VI. THE CONTRACTION REGIME FOR THE ITERATION

In our number-theoretical context we can introduce the seminorms for the family of the^n&( l )
with V(nl)5m, depending on a parameterd to be optimized at the end,

Nm~d!5 sup
n,1<V~n!<m

(
l ,V~nl !5m

u^n&~ l !u l2sn~s2d!. ~34!

We claim that, for suitable values ofd, this norm is contractive for the iterative equations. The
proof is along the following lines. Using the~33! we observe that it holds the bound

(
l ,V~nl !5m

u^pn&~ l !u l2s~pn!~s2d!< (
l ,V~nl !5m

p2s(
r, l

p
r su^rn&S lr D u l2s~pn!~s2d!, ~35!

since the Liouville function is bounded in modulus by one. It follows that

(
l ,V~nl !5m

u^pn&~ l !u l2s~pn!~s2d!<Nm~d!p2d(
r

p
r2~s2d!, ~36!

where the last sum runs over the square-freer build on p-incompatible primes. We also observe
that, sincer runs over square-free integers,

(
r

p
e2~s2d! log r< (

n50

`
1

n! S (
p8

pe2~s2d! log p8D n. ~37!

Making use of the entropy bound it is possible to control the sum onp-incompatible primes,
observing that it can be written as
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(
v51

`

(
p8,v< log p8,v11

e2~s2d! log p85 ~38!

< log p(
v51

`

~ce2~s2d!!v5 log p
ce2~s2d!

12ce2~s2d! , ~39!

providedce2s,e2d; we notice that the extension of the previous sum up to infinity makes the
resulting bound uniform ink. Taking the supremum norm of~35! we obtain

Nm11~d!<Nm~d!expS log 2S 2d1
ce2~s2d!

12ce2~s2d!D D , ~40!

which means that we are in the contraction regime whence2s,de2d/(11d). The right-hand side
can easily be optimized, observing that it is, on the positive real line, a function with the only
maximum reached at thegolden ratiod̄5 (A5 2 1)/2 ~see Ref. 23 for a discussion!. The previous
convergence theorem means that the limitk→` of the correlation functions exists in the range
defined by

ce2s,
d̄e2 d̄

11 d̄
'e21.58 ~41!

and describes the equilibrium state of a hard-core interacting polymer system.
An easy corollary to be used in the control of connected correlations functions is that, for all

the s defined by the~41!, one has the bound

Nm11<Nme
2r, ~42!

where, defining the positive numbere: 5 d̄e2 d̄/(1 1 d) 2 ce2s, one hasr 5 eed̄ log 2(21 d̄). In
particular, it is possible to check that, sinceN1<1, it results thatNm<e2mr.

The reader should compare this general result with the one for the multiplicative case~Ap-
pendix B!, where one has optimal convergence estimates.

VII. THE EXPONENTIAL DECAY OF THE CORRELATIONS

The statistical mechanics theory of the low activity expansion gives a systematic way to
obtain bounds for the free energy and for all its derivatives with respect to external parameters. It
is well known that those bound are equivalent to the bounds for the truncated correlation function
and are usually given in terms of the distance between the polymers.

In our context the convolutory algebra permits a natural rephrasing of all these properties: the
bounds we present are given in terms of the volume of each polymer, i.e., logp.

The quantities we are mainly interested in are the generalization of the two-point truncated
correlation function

^a i1
,a i2

&T~s!:5^a i1
a i2

&~s!2^a i1
&~s!^a i2

&~s!. ~43!

This function represents the deviation from the independence of the two events ‘‘pi1 divides an
integer’’ and ‘‘pi2 divides an integer.’’ As for the simple correlations, an easy computation shows
that it is possible to express them as Dirichlet series of a suitable arithmetical function:

^a i1
,a i2

&T~s!5(
l

~pi1pi2!
2s~Gpi1

pi2
2Gpi1

*Gpi2
!l2s. ~44!
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We recognize that the two-point truncated expectation is the Dirichlet series of the arithmetical
function given by the second order of the formal logarithm of the functionsG with respect to the
lower variable:

GT:5 log G. ~45!

Let us clarify the geometrical meaning of the operations which naturally appear considering
the simple and the truncated correlation functions. First we notice that for the operationDn it
holds ~see Ref. 24! the Leibnitz rule with respect to the circle product~see Appendix A!:

Dn~ f +g!5Dnf +g1 f +Dng. ~46!

From it one can easily prove that the operation]n , defined by

]nf ~k!5 f ~nk!
c~nk!

c~k!
, ~47!

plays the role of amultiple derivative with respect to the Dirichlet product since it fulfills the
composition rule]n1]n2 5 ]n1n2 and, whenn is a prime number, the Leibnitz rule with respect to
the Dirichlet multiplication. This can be seen observing that defining the operationD from the set
of the one-variable to that of the two-variable arithmetical functions by

~D f !~n,k!5 f ~nk!
c~nk!

c~n!c~k!
; ~48!

it holds for it the important property:

D~ f * g!5D f *Dg, ~49!

where the convolution on the right-hand side is the two-variable Dirichlet convolution.
In particular it holds the

]p Exp f5]pf * Exp f , ~50!

and

]p Log g5g~21!* ]pg. ~51!

Sincev is a square-free functionDnv5]nv, we have, withvT:5Logv,

]nv
T5Gn

T . ~52!

Choosingn5p it holds ]pv
T5Gp , which is

vT~pn!5
c~n!

c~pn!
Gp~n!. ~53!

This relation enables us to obtain a bound, inside our contraction regime, on a quantity which
represents the free energy density centered around the primep:

(
l51,pu l

`

vT~ l !l2s. ~54!

In fact applying Eq.~53! and the contraction scheme for the norm one has
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(
l51,pu l

`

vT~ l !l2s<(
k51

`

(
l ,V~pl !5k

uGp~ l !up2sl2s ~55!

<p2~s2 d̄ !(
k51

`

e2rk5e2~s2 d̄ !log p
e2r

12e2r , ~56!

which is the claimed exponential decay in terms of the polymer volume~notice thats. d̄ in the
contraction regime!. In the same way it is possible to obtain the decay for the multiple truncated
correlations functions; let us show it for the two-point case.

From ~44! we have

u^a i1
,a i2

&T~s!u<~pi1pi2!
2s(

l51

`

~ uGpi1
pi2

~ l !u1uGpi1
*Gpi12

~ l !u!l2s. ~57!

The term with the convolution product on the right-hand side is bounded using the~56! and the
multiplicative property of the relative Dirichlet series. For the first terms one has

(
l51

`

uGpi1
pi2

~ l !u l2s5~pi1pi2!
d̄ (
k52

`

(
l ,V~pi1

pi2
!5k

^pi1pi2&~ l !l
2s~pi1pi2!

~s2 d̄ ! ~58!

<~pi1pi2!
d̄ 2s(

k52

`

e2kr5e2~s2d!log~pi1
pi2

!
e22r

12e2r . ~59!

Summing the two contributions we obtain

u^a i1
,a i2

&T~s!u<e2~s2 d̄ !log~pi1
pi2

!S e22r

12e2r 1
e22r

~12e2r!2D , ~60!

which is the desired result. In the same way one can obtain the same exponential decay for all the
other truncated correlation functions.
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APPENDIX A: SOME ARITHMETICAL FUNCTIONS

Some arithmetical functions considered on this work are the identity for the pointwise multi-
plication:

u~n!51 ;n, ~A1!

the identity for the Dirichlet product:

I ~n!5 H1, if n51,
0, otherwise, ~A2!

the identity map fromN to N:
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N~n!5n ~A3!

and the ‘‘square’’ function:

Q~n!5 H1, if n is a square,
0, otherwise ~A4!

In terms of them it is easy to express other important functions: the Mo¨bius function

m5u21, ~A5!

its absolute value

umu5u*Q~21!. ~A6!

and the Liouville function

l5m*Q5umu~21!. ~A7!

It can be useful to introduce another convolution product: considering an integer as an unordered
sequence of primesn [ $pi1,...,pi1,pi2,...,pi2,...,pin%, the natural definition of convolution is the
sum over all the subsequences

f +g~n!5 (
d,n

f ~d!gS ndD , ~A8!

where, for instance, the set of subsequences of 4 is$1,2,2,4%. It is easy to see that it is related to
the Dirichlet one by

f +g~n!5(
dun

f ~d!gS ndD cS d, ndD , ~A9!

wherec( l ,m)5c( lm)/c( l )c(m) with c(p
i1

a i1•••p
ik

a i k) 5 P j51
k a i k

!. This property is equivalent to

the fact that the+-product plays the role of the convolution for the deformed zeta functions with
the noncharacter activityz̃(n)5n2s/c(n);

Z̃f~s!5(
n

f ~n!z̃~n!, ~A10!

i.e., it holds

Z̃f~s!Z̃g~s!5Z̃f +g~s!. ~A11!

For both the convolution products it is possible to define the powers of a function and, in some
cases, power series like exponential and logarithm: Defining the sets of arithmetical functionsA0
andA1, respectively, by the conditionsf ~1!50 andf ~1!51 it is possible to construct well-defined
power series in the convolution products; in particular, the arithmetical function corresponding to
the exponential forfPA0 is

Exp f5 (
k50

`
f ~k!

k!
~A12!

and the logarithm, forhPA1 which is, definingh5I1h̃,
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Log h5 (
k50

`

~21!k
h̃~k!

k
. ~A13!

It is easy to see that the operation Exp:A0→A1 and Log:A1→A0 are mutually inverse.
From a combinatorial point of view, the main advantage to considering the circle product is

that it permits the definition of the exponential of a function as the sum over thepartitions.
Example: the+-exponential off in 12522•3 is in fact

Exp~ f !~12!5 f ~12!12 f ~2! f ~6!1 f ~3! f ~4!1 f ~2! f ~2! f ~3!. ~A14!

On the other hand, the Dirichlet exponential implies the importantformal property:

Zf~s!5exp„ZLog f~s!…, ~A15!

which permits us to obtain thefree energyseries expansion starting from the partition function
series expansion on a Dirichlet series.

APPENDIX B: CONVERGENCE IN THE MULTIPLICATIVE CASE

First keeping within the context of general polymer models, we setc(X):5f(X)zX so that
the partition function equalsZ 5 (XP P̂`c(X). Then the probability that thek-polymerX is present
is defined by

r~X!:5
(YP P̂`c~Y•X!

(YP P̂`c~Y!
5 (

YP P̂`
DX~Y! ~B1!

with DX(Y)5(c21
*DXc)(Y).

The termsDX(Y) meet the following recursive equation wrt addition of a polymergPP to X:

Dg•X~Y!5z~g! (
S,Y

g~21! uSuDX•S~Y/S!. ~B2!

Here the superscriptg means that summation is restricted to multi-polymersS of Y which are
incompatible withg.

We now express the correlation function

rk~X!5^a i1
•••a i r

&k~s!5 (
YPN

DX
k ~Y!

TABLE I. Values of some arithmetical functions on the first 10 integers.

Function 1 2 3 4 5 6 7 8 9 10

Q 1 0 0 1 0 0 0 0 1 0
Q~21! 1 0 0 21 0 0 0 0 21 0
l 1 21 21 1 21 1 21 21 1 1
m 1 21 21 0 21 1 21 0 0 1
v3 1 1 1 0 1 1 0 0 0 1
v3

~21! 1 21 21 1 21 1 0 21 1 1
D2v3 1 0 1 0 1 0 0 0 0 0
v3

~21!*D2v3 1 21 0 1 0 0 0 21 0 0
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at the inverse temperatures as a series in the activities. By definitionDX
k (Y)

5(vk
21
*DXvk)(Y)•z

XzY, with Dn defined in~25!.
Now by ~B2! for a primepPPk

Dp•X
k ~Y!5zs~p!(

SuY

p~21! uSuDS•X
k ~Y/S!5zs~p! (

S:puSuY
l~S!DS•X

k ~Y/S!, ~B3!

since SPN is incompatible with pPN iff puS. Furthermore, for an integerS of the form
S5P i pi

a i, by definition uSu5( ia i5V(S). Moreover, the Liouville functionl is defined by
l(S)5(21)V(S), showing~B3!.

Equations~B3! are the iterative equations we want to consider. Defining the ‘‘index’’ of the
quantityDX

k (Y) asV(XY), the equations~B3! can be solved iteratively observing that give the
family of indexV(XY)11 in terms of that whose index isV(XY). This fact not only makes it
possible to study the iterative solutions with the initial conditionD1

k~1!51, but it also gives hints
on the suitable Banach space structure to be introduced in order to make use of the contraction
principle.

In our number-theoretical context the seminormsNm
d have the form

Nm
d ~rk!5 sup

XPN
(

YPN,V~XY!5m
uDX

k ~Y!ue2„ln~a!1d…v~X!5 sup
XPN

(
YPN,V~XY!5m

uDX
k ~Y!uX~A82d8!

~B4!

with A82ln(a)/ln 2, d85d/ln 2, andv(X)5ln(X)/ln~2!.
In the multiplicative casev5umu we can improve the convergence estimate to the optimal

value:

Nm
d ~rk!5 sup

XPN
(

YPN,V~XY!5m
uvk

21
*DXvk~Y!uuzXzYue2„ln~a!1d…v~X!

5 sup
XP P̂k

`
(

YP P̂k
` ,V~XY!5m

uv21*DXv~Y!uuzXzYue2„ln~a!1d…v~X!. ~B5!

Remember thatPk consists of the firstk primes. So

P̂k
`5$nPNupPP and pun⇒pPPk%.

Since we have assumedv5umu, v215l. So

v21*DXv~Y!5(
duY

l~Y/d!umu~Xd!5 (
duY,~d,X!51

l~Y/d!5 Hl~Y!, puY⇒puX~pPP!

0, otherwise .

Now if there is anm-independent boundb on the minimal number of prime factors of anX which
attains the supremum in~B4!, thenm°Nm

d (rk) converges exponentially fast to zero, since then
there are onlyO (bm) terms in the sum~B4!. Then we are done.

So we can assume wlog that the maximal number of prime factors of theX grows withm.
Now sincem11>2, theX̃PN which attain the supremum inNm11

d (rk) are unequal to 1 so that
we can write them in the formX̃05pX and assume thatpPP is the largest prime factor. Then we
use the recursion relation~B2!:

Nm11
d ~rk!5sup

X̃PN

(
YPN,V~X̃Y!5m11

uD
X̃

k
~Y!uX̃~A82d8!
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5 (
YPN, V~XY!5m

uDpX
k ~Y!u~pX!~A82d8!

5 (
YPN, V~XY!5m

uzs~p! (
S:puSuY

l~S!DXS
k ~Y/S!u~pX!~A82d8!

<p2d8 (
YPN, V~XY!5m

(
S:puSuY

uDXS
k ~Y/S!u~SX!~A82d8!S~d82A8!

5p2d8 (
S:puS

S~d82A8! (
Y:SuY,V~XY!5m

uDXS
k ~Y/S!u~SX!~A82d8!

<p2d8 (
S:puS

S~d82A8!Nm
d ~rk!

5p2A8z~A82d8!Nm
d ~rk!. ~B6!

Now we assume thatA8.1 andd851
2~A821!. Then asm and thusp become large, the constant

c:5p2A8z(A82d8) in

Nm11
d ~r!<cNm

d ~r!

coming from~B6! is getting strictly smaller than one, implying convergence. In other words, we
have absolute convergence ifuz(p)u<p212« for some«.0. This is clearly optimal.
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Criteria for inverted temperatures
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A recent criterion for shock waves which predicts the behaviors of the internal
energy across the shock is extended to a vapor between two interfaces. We look at
the predictions of monotonic or not behavior and at the possible inversion of the
internal energy inside the gas. We consider different discrete Boltzmann models,
construct new classes of exact solutions~models with a rest particle and models
leading to 333 Riccati systems!, and verify the criteria predictions. ©1996
American Institute of Physics.@S0022-2488~96!03111-8#

I. INTRODUCTION

Twenty-five years1 ago a remarkable and paradoxal result was found in the kinetic treatment
of slow evaporation/condensation between two parallel liquid surfaces: The temperature of the
vapor at the warm interface can be below the one of the cold wall, the so-called ‘‘inverted
temperature gradient paradox.’’ Experiments and many numerical, analytical, and ‘‘controversial’’
studies using the continuous Boltzmann kinetic theory have been performed2 and, very recently,
the discrete kinetic theory.3

In the context of the shock waves, a criterion4 was established to predict, from the knowledge
of the two equilibrium states, whether or not the temperature across the shock could present
nonmonotonic behavior.

Could the two phenomena be linked in the sense that the criterion for shock waves could be
applied to predict the temperature inversion in the vapor between two interfaces? This conjecture
is the motivation of the present work. Our tool is discrete kinetic theory with a finite number of
velocities and we deal only with internal energy.5 In fact, the same criterion with a slight modi-
fication could be applied to the two phenomena but with an important difference. We try to see
whether the change of sign of the derivative of the internal energy which, for shock waves, can be
predicted by the macroscopic quantities at the upstream and downstream states, could similarly be
predicted from the knowledge of the vapor near the two interfaces. However, for shock waves we
cannot have equal masses or pressures in the two equilibrium states. No such restriction applies to
the vapor. For the vapor our result is that, in general, the inversion arises after a transition where
the masses are equal near the two interfaces. Moreover, before and after this transition the internal
energy is monotonic, either increasing or decreasing. We call this effect ‘‘strict inversion.’’ On the
other hand, for shock waves, we obtain an overshoot with the internal energy increasing and
decreasing. In some cases we still find this effect for the gas between two interfaces and we call
this ‘‘partial inversion.’’

We find two new classes for the exact solutions6 of the discrete Boltzmann models7 ~DBMs!.
First, for stationary solutions, the linear differential term of the rest particle density being zero, the
sum of the collision terms of the rest particle is also zero. Thus, when a rest particle is present, in
addition to the usual nonlinear differential system for the other densities, we must add these
identically zero nonlinear terms. For instance, instead of the usual quadratic, cubic, quartic,...,
nonlinearities, here we find a ratio of a cubic polynomial by a linear one. Second, we obtain also
exact solutions for a 636 nonlinear differential system of DBMs. Taking into account the three
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linear differential conservation laws~that we integrate with three integration constants!, we are
reduced to a 333 Riccati differential system. We seek Riccati scalar-type solutions for the 333
system. From the number of parameters and the number of constraints, the surprising result is that
we obtain a scaling parameter and exact solutions without any restriction on the coefficients of the
nonlinear 333 Riccati system.

We recall the criterion for shock waves4 in one dimension with the variableh5x2zt. Let us
assume for the massM ~h!, the momentumJ~h!, and the energyE~h! the existence ofh-dependent
‘‘shock profiles:’’ c11c2/D~h! with D~h! monotonic. CallM6 , J6 , andE6 the values at the
upstream and downstream states and define

l6 :5M6m1J6~J1M22J2M1!,
~1.1!m:5M1E22M2E1 , Pl5l2l1 .

Depending whetherPl>0 or,0, the internal energy is monotonic or not. In Sec. II we derive the
same criterion for a gas between two interfaces, theM6 ,..., being now the states of the gas near
the two interfaces, the only change being that the momentum is a constantJ65 j . The two
interfaces being parallel we callz a perpendicular axis. For the connection with classical discrete
models and, due to the boundary conditions, for their modification we refer to the thesis of
d’Almeida and to Ref. 3. For instance, we recall the Cabannes3 results for two cubic 10v i models
with velocity v i coordinates (x,y,z):

v i :~6ax ,6ay ,6az!, ~0,0,6a!, ax5ay5az51, a51,2. ~1.2!

For the second model witha52 ~and for the first one witha51! Cabannes has found inversion
effects ~and nothing!. Here we will study models ind52,3 dimensions~in the paper we write
d* :5d21! which are generalizations and extensions of~1.2!. In Sec. II B we construct a class of
DBMs such that the velocities have only one projection on thez.0 axis and another opposite on
z,0. Applying the criterion we prove that the internal energy is monotonic and, for exact solu-
tions of two collision terms, without inversion. On the contrary, in Secs. III and IV we study other
DBMs ~with and without a rest particle! with different projections on thez.0 axis ~opposite for
z,0!. We verify the predictions given by the criterion and observe partial and strict inversions but
in general strict inversion alone.

We explain the determination2,3 of the macroscopic quantities at the two interfaces or walls:
Mw,6 for the masses andEwI,6 for the internal energies which are associated to isotropic Max-
wellians. We apply the following boundary conditions:2,3 At a given wall we retain only the
densities associated to the emitted molecules. More explicitly for any densityNi , associated to a
velocity with az for z-component, depending whetheraz.0 or ,0, we retainNi at the interface
with z-component negative or positive.

From the boundary conditions and the geometry of the flow we require that the densities with
velocities symmetrical to thez-axis are equal. More explicitly, to any velocity with coordinates
(ax ,ay ,az) exist other velocities with coordinates (6ax ,6ay ,az). For stationary solutions with
a variableh, we assume that the associated densities are equal. The important point is that these
associated velocities have both the same speed and the same projection on thez axis. In the
standard discrete velocity models we eliminate the velocities parallel to the two interfaces. For the
two-dimensional~three! models, with (x,z)[(x,y,z)] coordinates and the interfaces parallel to the
x axis @(x,y) plane#, we do not consider velocities along thex axis @in the (x,y) plane#. The
distinctions between the models become the number of projections of the velocities along thez
axis and the fact that the velocities are along thez axis or not.
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For the gas near the two interfacesh561
2 we defineNi ,6 , M6 , E6 , andEI6 for the density

Ni , the massM , the energyE, and the internal energyEI . We will construct mainly two classes
of exact stationary solutions for nonlinear differential systems with quadratic and quartic nonlin-
earities:

D~h!:511lenh.0, hP@2 1
2,

1
2#, ~1.3a!

Ni~h!5n0i1ni /D~h!, ~1.3b!

Ni~h!5n0i1ni /D
1/3~h!. ~1.3c!

If we find Ni ,15Ni ,2 , for instance for a transition value, for the monotonic~1.3a!–~1.3c! solu-
tions this meansNi~h!5const. We can find eitherl50 or` while before and after the transition,
l changes sign.

II. CRITERIA FOR THE INVERSIONS OF THE INTERNAL ENERGY

Let us callNi the densities associated to the projectioneiÞ0 of the velocities along thez axis.
We consider stationary solutions with Ni depending only on z. To Ni we associate the linear
differential termsl i5ei]zNi , we write the differential mass conservation law, we integrate, and
we find that the momentum along thez axis,J(z), is a constant:

( l i50→J~z!5(eiNi~z!5 j5const.

Taking into account the Knudsen number we writeh instead ofz for the variable.
We study both partial and strict inversions for the internal energyt~h! defined from the mass,

the energy, and the momentumj which is a constant:

t~h!52E~h!/M ~h!2@ j /M ~h!#2, hP@2 1
2,

1
2#. ~2.1a!

We associate two parametersl6 , which depend on the macroscopic quantities:

l6 :5M6m1 j 2~M22M1!, Pl5l1l2 , ~2.1b!

their product withm written down in~1.1!. As we shall see, the derivative]ht does not change
sign if Pl>0, contrary to the case wherePl,0. For this last case, called partial inversion, there
exists an extremum fort~h! and in our examples we find a maximum leading to an overshoot. For
the second effect, called strict inversion, at the warm interface with internal energyTw

1 which can
be either ath51

2 or 21
2, we associatet

1 for the gas and similarlyt2 at the cold interfaceTw
2,Tw

1.
The strict inversion exists whent2.t1. We consider a family oft~h! functions, depending on one
arbitrary parametera. It can happen that for a particular transition valuea5a0 both l650
whereas, before and after that value, bothl6 have the same sign which is changing across the
transition value whilePl.0. As we shall see, the sign oft22t1 changes across that value and a
strict inversion exists for eithera.a0 or a,a0. Of course in the whole interval arounda0, the
inequalityTw

2,Tw
1 must remain valid.

A. Criterion for partial inversion

We assume~i! j is a constant, ~ii ! both M~h! and E~h! are of the type c11c2/D(h) with
ci5constants and D is a monotonich function, without roots forhP@21

2,
1
2#. We define

D65D(h561/2) and write the energy:

E~h!~D22D1!5E2D22E1D11D1D2~E12E2!/D~h!, ~2.2!
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while M ~h! is obtained with the substitutionE6→M6 . We definea, b, and g and get the
derivative of the internal energy written down in~2.1a!:

a:5~M2D22M1D1!m2 j 2~M12M2!~D2D1!,

b:5m~M12M2!D1D2 , g:5~DM !3~D22D1!2/2D1D2 ,
~2.3a!

g]ht~h!/]hD~h!5aD~h!1b.

For the sign of the derivative we use

D6a1b5D6~D22D1!l6 ,
~2.3b!

~D1a1b!~D2a1b!5D2D1~D12D2!2l1l2 ,

and deduce, forhP@21
2,
1
2#, that t is monotonic or not depending on whetherl1l2>0 or ,0. In

the following we study different classes of models differing by their positive projections along the
z axis, perpendicular to the interfaces: either the same or different.

B. A class of models without partial inversion

We notice that, for models withM65M5const., Eq.~2.1b! yields

l65M2~E22E1!,
~2.4!

Pl5l2l15M4~E22E1!2>0.

This leads to a monotonic internal energy and partial inversion cannot exist. We construct a
simple class of models withv i in two and three~d52,3! dimensions satisfyingM15M2 . They
have two speeds, 4(d21)12 v i , and generalize the first Cabannes model:

v i :~6ax ,6ay ,az561!, ~0,0,61!, ay50 for d52. ~2.5a!

To v i we associate densitiesNi and, from the boundary conditions, allNi , with associatedv i
symmetrical with respect to thez axis, are equal. There remain four independent densities:

N1 :~ax.0,ay>0,1!, N5 :~0,0,1!,
~2.5b!

N3 :~2ax ,2ay ,21!, N6 :~0,0,21!.

We consider stationaryz-dependent solutions. In Appendix A 1 we write the three conservation
laws, linear combinations of the differential termsl i5az]hNi . We integrate the momentum con-
servation law along thez axis and obtain that the mass is a constant:

d* :5d21, 2d* ~ l 12 l 3!1 l 52 l 650,
~2.5c!

M ~h!52d* ~N11N3!1N51N65const5M6 .

There exist generalizations of these models in d52,3with az561 and leading to M25M1 . We
must check that the models do not share spurious conservation laws. We present a model with
8~d21!12, velocities, three speeds,

1, A11ax
21ay

2, A114ax
214ay

2, ~2.6a!

az561 and from thez-axis symmetry, there are only six independent densities:

5479H. Cornille and A. d’Almeida: Criteria for inverted temperatures

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



N1 :~ax.0,ay.0,1!, N2 :~2ax,2ay,1!, N3~0,0,1!, ~2.6b!

while Ni13, i51,2,3, are associated to velocities opposite to those ofNi . Collisions not conserv-
ing the number of particles with a given speed exist and the models are acceptable:

4@11ax
21ay

2#53@1#1@114ax
214ay

2#,
~2.6c!

N1
3N42N3

2N2N6 , N4
3N12N5N6

2N3 .

The linear differential momentum conservation law still leads toM15M2 :

2d*(~ l i2 l i13!50, i51,2,3→M ~h!5const. ~2.6d!

C. Criterion for strict inversion

Let EwI6 be the internal energy at the walls. Depending whether

Q5~EI22EI1!~EwI22EwI1!,0 or >0, ~2.7!

we have a strict inversion or not. For a strict inversion alone we assume~i! bothl650 for some
particular value a0 of one arbitrary parameter a building up the solutions of the densities, ~ii !
l1l2.0 for aÞa0 and bothl6 change of sign when a crosses the a0 value. From ~2.1b! we
deduce fora0 that bothM15M2 , E15E2 , andt15t2, whereas foraÞa0 they are different.
From~2.3b! we get that fora.a0 anda,a0 bothD6a1b have the same sign which are opposite
whena crosses thea0 value. The same property holds forDa1b and the derivative]ht andt is
monotonic but increasing and decreasing whena crosses thea0 value. Consequently, either for
a.a0 or a,a0 , necessarilyt

2.t1 and the transition value leads to a strict inversion effect. We
must verify that the hot and cold interfaces remain at the same interface during the transition
where a strict inversion occurs. Later we will illustrate this strict inversion with different ex-
amples.

D. Partial proof for a class of models without strict inversion

For the class of models~2.5a!–~2.5c! with 61 for the projections of the velocities along thez
axis, for different collision terms, we havenumerically not found any strict inversion. We have not
a general proof, independent of the choice of the collision terms, as done in Sec. II B for the
partial inversion. For the study, done in Appendix A 1, we first give, forEI6 andQ defined in
~2.7!,

EI22EI15c1~N1,22N1,1!,
~2.8!

Q5c2~N1,2N6,12N3,1N5,2!~N1,22N1,1!, ci.0

without strict inversion if Q>0. Second, assuming a binary collision term, we prove Q>0 for the
solutions. Third, we add a quaternary collision term and solve the nonlinear equation for a class
of exact solutions, proving there is no strict inversion. More explicitly we show that forl<0
@defined in~1.3a!# the positivity is violated whereasQ>0 for l.0.
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III. MODELS WITH FOUR AND FIVE INDEPENDENT DENSITIES AND TWO z>0
VELOCITY PROJECTIONS

We study two classes of models in two dimensions,d52 @cf. Fig. 1~A!#, and three dimen-
sions,d53, symmetrical with respect to thez axis. From the boundary conditions there are only
four and five~rest particle present! independent densities. Ind52,3 we consider models with six
and ten velocities~or seven and eleven when a rest particle is present!:

v i :~6ax ,6ay ,az561!, ~0,062!, v0 :~0,0,0!
~3.1a!

ay50 for d52, ax
21ay

251 if v0 is present,

generalizing~v0 absent! the second Cabannes model. Tov i we associate stationary densitiesNi(z)
and, from the boundary conditions, we write the remaining independentNi :

N1 :~ax.0,ay>0,1!, N5 :~0,0,2!,
~3.1b!

N3 :~2ax ,2ay ,21!, N6 :~0,0,22!, N0 :~0,0,0!.

The difference, with the previous models in Sec. II B, is that theaz562 values forN5 andN6 are
different from61 forN1 andN3. It follows that the differential momentum conservation law does
not lead to a constant mass. In Appendix A 2 a we write down the three linear differential con-

FIG. 1. ~A! Models with four and five independent densities.~B! Model with four independent densities: partial and strict
Inversions, ternary Collisions.~C! Model with four independent densities: strict inversion, ternary plus fifth-order colli-
sions.~D! Model with five independent densities and a rest particle: strict inversion.
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servation laws~N0-independent!, deduce three differential relations forN3 ,N5 ,N6 in terms ofN1,
we integrate, and we obtain relations~N0-independent! for the densities and the momentumj
along thez axis, with integration constantsai :

N35N11a3 , N51d*N1/25a5.0, N61d*N1/25a6.0, ~3.2a!

j52d* ~N12N3!12~N52N6!52~a52a62d* a3!. ~3.2b!

All collision terms can be written in terms ofN1~h! ~with the Knudsen number!.
At this stage we discuss models withoutN0 and for the connection with the boundary near the

interfaces, we write for the gas both the masses and internal energies:

Ni ,6 :5Ni~h561/2!, M652d* ~N1,61N3,6!1N5,61N6,6 ,
~3.3!

EI65@2d* ~11ax
21ay

2!~N1,61N3,6!14~N5,61N6,6!#/M62~ j /M6!2,

which can be rewritten with only theN1,6 values and the constantsak . For the transition towards
a strict inversion we easily write the difference:

EI12EI25@N1,12N1,2#F~N1,2 ,N1,1 ,a3 ,a5 ,a6! ~3.4!

with FÞ0 for N1,25N1,1. For a transition we have two possibilities:

~i! N1,25N1,1. For monotonic solutions, of the~1.3a!–~1.3c! type, this means thatN1~h! is a
constant as well as the other densities, the mass, and the internal energy. The transition is
characterized by constant microscopic and macroscopic quantities.

~ii ! N1,2ÞN1,1 and necessarilyF50 in ~3.4!. In this case the microscopic and macroscopic
quantities are not constant at the transition. AddingN0 ~in M !, written in terms ofNi orN1,
does not change the discussion of the two~i! and ~ii ! cases.

At the interfaces or at the walls we associate macroscopic quantities~respectivelyN1, N5 and
N3, N6 to the interfaces ath571

2!. At h521
2 we get

Mw,254d*N1,212N5,2 ,
~3.5!

EwI25@4d* ~11ax
21ay

2!N1,218N5,2#/Mw,2 ,

while ath51
2 we getMw,1 andEwI1 with the substitution ofN3,1,N6,1 to N1,2,N5,2.

Finally we define as kinetic temperature~internal energy! Tw
1 at the warm interface andTw

2 at
the cold interface satisfying the inequality

Tw
15sup~EwI1 ,EwI2!, Tw

25 inf~EwI1 ,EwI2!. ~3.6!

This fixes theh561
2 value for warmness and coldness. For the gas at the warm and cold interfaces

we deduce the massesM6 ~from M6! and we callt6 the associated limit values of the internal
energies (EI6). If we find solutions witht

2.t1 we have a strict inversion. We write the internal
energyt and the massM inside the gas:

M ~h!52d* ~N11N3!12~N51N6!1N0 ,
~3.7!

t~h!5@2d* ~11ax
21ay

2!~N11N3!18~N51N6!#/M2~ j /M !2.

We have a partial inversion ift~h! is nonmonotonic forhP@21
2,
1
2#. In Secs. III A ~without rest

particle! and III B ~with rest particle! we first, with the conservation laws~3.2a!, eliminateN3, N5
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andN6 and second, solve the nonlinear equation forN1. We give examples where either both
effects exist or only one. At the transition we give examples where either microscopic and mac-
roscopic quantities are constant or not.

A. Models, without rest particle, with four independent densities

We consider ternary and fifth-order collisions with associated parametersu3 andu5:

X:53~N3
2N52N1

2N6!, ]hN15~u31N1N3u5!X,

f 1 :53a3~2a52d* a3/2!, f 0 :53a5a3
2, ~3.8!

]hN15@3 jN1
2/21 f 1N11 f 0#@u31u5N1~N11a3!#,

and j written down in~3.2b!. We get either a quadratic Riccati scalar equation~u550! or a quartic
nonlinear equation. With solutions of the type~1.3a!–~1.3c! in Appendices A 2 b and c, we
determinen01, n1, andg. OnceN1 is known we deduce, with~3.2a!, all n0i , ni , andNi .

In all figures of the paper we present three solutions:~a! without strict inversiont2,t1, ~b!
transitiont25t1, and ~c! with a strict inversiont2.t1. In Fig. 1~B! ~d52, only ternary colli-
sions! we observe both partial and strict inversions with parameter values: Fig. 1~B!:
N1,250.673, N3,250.679, N6,253.107,N5,2 varying in ~a!–~c!.

UFig. 1~B! N5,2 Tw
2 Tw

1 t2 t1 M2 M1 l2 l1 l

~a! 0.081 2.06 ,3.8 2.24 ,2.29 8.6 .5.13 1 2 2

~b! 0.0315 2.02 ,3.8 2.21 52.21 8.54 .5.07 1 2 2

~c! 0.005 2.0 ,3.8 2.2 .2.174 8.52 .5.04 1 2 2

U .
~3.9a!

We note thatl6Þ0 have opposite signs so that the criterionl2l1,0 for nonmonotonict~h! is
always satisfied. The only equality at~b! is t25t1, neverthelessl, defined in~1.3a! is Þ0, Þ`,
N1,2ÞN1,1. Consequently the transition is of the type (ii) with densities and macroscopic quan-
tities which areh-dependent functions.

In Fig. 1~C! ~d53 and fifth-order collision included! with only a strict inversion, the momen-
tum j524.091 and two other constants are fixed whilel is varying:

UFig. 1~C! Tw
2 Tw

1 t2 t1 M2 M1 l2 l1 l

~a! 0.7 ,0.74 0.318 ,0.334 6.24 ,6.47 2 2 10.075

~b! 0.62 ,0.74 0.33 50.33 6.48 56.48 0 0 0

~c! 0.56 ,0.74 0.348 .0.334 6.72 .6.48 1 1 20.092

U .
~3.9b!

For the transition curve~b! we verify bothl650 andl50 and the changes of signs between~a!
and~c!. From the criterionl2l1>0 we verify thatt~h! is monotonic. Due tol6,0 in ~a!, .0 in
~c!, and50 at the transition~b! we see that the curves~a! and ~c! are monotonic but either
increasing or decreasing.Due tol50 or N1,25N1,1, the transition is of the (i) type, with con-
stants for all densities and macroscopic quantities.

B. Models with a rest particle and five independent densities

We add the rest particle densityN0 to the previous models and forN1 andN3 the speed of the
associated velocities is&. Binary collisions includingN0 of the type@4#1@0#5@2#1@2# are pos-
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sible, while for the collisions withoutN0, we keep in~3.8! only the ternaryX collision term. For
the stationary solution there is no differential term associated to the rest particle densityN0. From
the sum of the two collision terms includingN0 we get

N05@N1
21N3

2#/~N51N6!5@2N1
212a3N11a3

2#/@2d*N11a51a6#, ~3.10a!

leading to an analytic expression ofN0 in terms ofN1, because the relations~3.2a! for N3, N5, and
N6 are still valid. In order to distinguish the collisions with and withoutN0, we add a cross section
u2 and substitute~3.10a! for N0 in the collision term:

]hN15X1u2~N0N52N1
2!,

~3.10b!
@2d*N11a51a6#]hN1~h!5@3 jN1

21 f 1N11 f 0#@2d*N11a51a61u2/3#.

We finally have a nonlinear differential equation forN1 alone which is an unusual DBM equation.
The study is done in Appendix A 2 d and, except forN0, we still find solutions of the~1.3a! and
~1.3b! type. We start witha3, a5, anda6 as arbitrary parameters and from the coefficients ofD2q

in ~3.10b! we deduce successivelyn01 as a solution of a quadratic equation andu2, n1, andg. For
the massesMw,6 at the interfaces we can addN0 or

N1,2
2 /N5,2 at h52 1

2, N3,1
2 /N6,1 at h5 1

2,

but we have not found any significant difference concerning the existence of a strict inversion. In
Fig. 1~D! we present the three solutions~a!, ~b!, and~c! for d53 ~warm interface ath521

2!. We
give the values of the fixed parameters andl which is varying:

Fig. 1~D!: N1,250.1021, N3,250.3019, N5,250.5015

UFig. 1~D! Tw
2 Tw

1 t2 t1 M2 M1 l2 l1 l

~a! 1.05 ,3.07 2.12 ,2.36 2.87 .2.38 1 1 183.1025

~b! 1.6 ,3.07 2.36 52.36 2.38 52.38 0 0 0

~c! 2.11 ,3.07 2.81 .2.36 1.76 ,2.38 2 2 297.1025

U .
~3.11!

For the transition curve~b! we find bothl650 andl50, N1,25N1,1, and the changes of signs
between~a! and ~c!. We still have a transition of the~i! type with densities and macroscopic
quantities which are constant. Concerning the masses we always noticeM2.M1 in Fig. 1~B!
while in Fig. 1~C! @contrary to Fig. 1~D!#, when there exists a strict inversion the inequality
M2.M1 is reversed when there is no inversion. In Figs. 1~B!–1~D! @contrary to Fig. 1~C!# we
observe, near and at the two interfaces, the normal pattern:t2.Tw

2 and t1,Tw
1. This was also

observed previously.2,3

IV. MODELS WITH SIX INDEPENDENT DENSITIES

A. Riccati scalar solutions to a 3 33 Riccati system

We start with a 636 differential Riccati system, with only quadratic nonlinear terms, satisfied
by six densitiesXi , i51,..,6. In DBMs these densities satisfy three linear differential equations for
the conservation laws of mass, momentum, and energy:

(
j51

6

ci j ]hXj50, i51,2,3.
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We rewrite the linear system such that three]hXk , k54,5,6, are linear combinations of three other
]hXi , i51,2,3. We integrate, introducing three constantsak , k54,5,6, and the three densitiesXk

are linear combinations of theXi with the three constantsak . The three remainingXi satisfy a
333 Riccati system:

]hXi5(
j51

3

Xj~ai j Xi1bi j !1 (
jÞ i ,kÞ i , j<k

ai jkXjXk1ci , i51,2,3, ~4.1!

with quadratic and linear terms,ai j andai jk independent on the integration parametersaj while
thebi j andci are respectively linear and quadratic in these parameters. We look at solutions of the
scalar Riccati type~1.3a! and ~1.3b!:

Xi~h!5x0i1xi /D~h!, D~h!511legh. ~4.2a!

We show that such solutions, with ten parametersxi , x0i , ai , and g, satisfying nine relations
@coefficients ofD2k, k50,1,2 in ~4.1!# exist. We define scaled parameters

b i j5xj /x1 , a1 j5x0 j /x01, lk5ak /x01, b̄i j5bi j /x01, c̄i5ci /x01
2 , ~4.2b!

the b̄i j ,c̄i being, respectively, linear and quadratic inlk . We will see thatx01 is finally an arbitrary
scaling parameter. First, from the threeD22 relations, we get

g/x15(
j ,k

@ai jb1 j1ai jkb1kb1 j /b1i #, i51,2,3. ~4.3a!

On the rhs we have two independent relations forb12, b13:

(
j

b1 jb1l~a1 j2al j !1(
j ,k

b1 jb1k~a1 jkb1l2al jk !50, l52,3. ~4.3b!

We deduceb12 andb13 as solutions of two coupled polynomials with coefficientsai j and ai jk
independent on theak . Second, we get from the threeD21 relations withi51,2,3

2g

x01
5F(

j
ai j ~b1 ja1i1b1ia1 j !1(

jk
ai jk~a1 jb1k1a1kb1 j !1(

j
b̄i jb1 j G Y b1i , ~4.4a!

On the rhs we have two independent relations, fora12 anda13 with coefficientsb̄i j , which are
linear inlk . We substract the two relations fori51,2 andi51,3:

( b1 j~a1 jb1l2al ja1l !1b1la1 j~a1 j2al j !1( ~b1ka1 j1b1 ja1k!~a1 jkb1l2al jk !

5( b1 j~ b̄l j2b̄1 jb1l !, l52,3. ~4.4b!

Theb12 andb13 are known from~4.3b! andthe two (4.4b) relationslead toa12 anda13, which are
linear combinations ofb̄i j or equivalently oflk , k54,5,6. Third, we get from the three constant
relationsD0 of ~4.1!

(
j
ai ja1ia1 j1(

jk
ai jka1 ja1k1(

j
b̄i ja1 j1 c̄i50, i51,2,3. ~4.5!
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We substitutea12 anda13 given by ~4.4b!, and which are linear inlk , into ~4.5!. We get three
quadratic polynomials inlk that we solve and thelk anda1l are known. Withbi j , a1 j , andlk
known, from~4.3a–4.4a! we deduceg/x1, g/x01, andx1/x01. Finally we considerx01 as a scaling
parameter and all ratios ofxi , x0i , g, andak by x01 are known.

B. Models with six densities and four velocities along the z-axis

We consider models with 8v i in d52 @Fig. 2~A!#, coordinates (x,y50,z) for the velocities,
and 12v i in d53 with four velocities along thez axis:

v i :~6ax ,6ay ,az561!, ax
21ay

254, ay50 d52, ayÞ0 d53,
~4.6a!

~0,0,az561!, ~0,0,az563!.

To thev i we associate the densitiesNi . From the boundary conditions allNi with associatedv i
symmetrical with thez axis are equal. There remain six independent densities:

N1 :~ax.0,ay>0,1!, N5 :~0,0,1!, N7 :~0,0,3!,
~4.6b!

N3 :~2ax ,2ay ,21!, N6 :~0,0,21!, N8 :~0,0,23!.

The speeds being 1, 3, andA5 it follows that collisions of the type 2@5#5@1#1@9# are possible. In
Appendix B 1 we write down the differential conservation laws, deduceN3, N6, andN8 as linear
combination ofN1, N5, andN7 with constantsak , k53,6,8, write the collision terms leading to an
heavy 333 Riccati system of the~4.1! type forN1, N5, andN7:

FIG. 2. ~A! Models with six independent densities and three speeds.~B! Model with six independent densities,d53, and
strict inversion.~C! Model with six independent densities,d52, and strict inversion
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]hN55N5
2
„~d27!/311/d* …1N5„6~22d!12d* 2/3…~N113N7 /d* !1d* @~1324d!N1

2

12~a613a3!N11a3
22a8N5#181N7

2/d*118N1N7~42d!1N52a3~22d!118N7a3 ,

]hN15N1
2~2d23!29N7

21N1@3N51~1122d!N7#1N5~9N71N5!/d*1a6~N72N1!1a3N5 ,
~4.6c!

]h3N7 /d*5N1
21N7~9N712d*N11a6!.

We obtain, for~1.3a! and~1.3b! type of solutions, the ratios of the parametersni , n0i , ak , andg
by n01. Furthermore, we write downMw,6 andEwI6 at the two interfaces and for the gas, both the
mass and the energy. A sufficient condition that these last quantities, and consequently the internal
energy, be equal at the two interfaces is that the three densitiesN1, N5, andN7 be also equal. For
our solution of the~1.3a! and~1.3b! type, we can thus find a transition towards a strict inversion
with constant densities and macroscopic quantities for the gas. On the contrary, at the wall,EwI6

will be different.
In Fig. 2~B! for d53 ~warm interface ath521

2! and in Fig. 2~C! for d52 ~warm interface at
h51

2! we still present the three solutions~a!, ~b!, and ~c! with a strict inversion. We present the
values of the fixed parametersb1,l anda1,l and ofl defined in~4.2b! and ~1.3a!:

Figs. b17 b15 a17 a15 N1,2

2~B! 20.462 1.387 7.45 0.748 0.215

2~C! 0.0579 1.122 0.0886 3.333 0.015

U Figs. Tw
2 Tw

1 t2 t1 M2 M1 l2 l1 l

2~B!~a! 4.593 ,7.189 3.17 ,3.2 ,2.61 ,2.63 1 1 210.0

2~B!~b! 4.592 ,7.197 3.04 53.04 2.81 52.81 0 0 `

2~B!~c! 4.59 ,7.202 2.95 .2.92 2.97 .2.96 2 2 113.0

2~C!~a! 3.10 ,4.29 3.63 ,3.7 2.38 ,2.48 2 2 21.8

2~C!~b! 2.6 ,3.52 2.63 52.63 0.40 50.40 0 0 `

2~C!~c! 2.44 ,3.34 2.37 .2.33 0.48 .0.475 1 1 15.0

U . ~4.7!

For the two transition~b! curves we findl650 andl5` or Ni ,25Ni ,1 and changes of signs
between~a! and~c!. For the gas we still have a transition with constants for the densities and the
macroscopic quantities~contrary toTw

6 at the walls which are different!. The difference between
the two pictures is the fact thatt2,Tw

2 in Figs. 2~B! and 2~C!, curve ~c!, while the pattern is
normal in Fig. 2~c!, curves~a! and ~b!.

C. Models with six densities and two velocities along the z axis

For these models with 10v i @d52, Fig. 3~A!# and 18v i ~d53!, speeds 3 and), only two
velocities are along thez axis with z coordinates63:

v i :~6ax ,6ay ,az561!, ~62ax ,62ay ,az561!, ~0,0,az563!,
~4.8a!

ax
21ay

252, ay50d52, ay@Þ#d53.

From the boundary conditions allNi with v i symmetrical with respect thez axis are equal. There
still remain six independent densities:
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N1 :~2ax.0,2ay>0,1!, N5 :~ax ,ay,1!, N9 :~0,0,3!,
~4.8b!

N3 :~22ax ,22ay ,21!, N7 :~2ax ,2ay ,21!, N10:~0,0,23!.

In Appendix B 2 we write the collision terms, the differential conservation laws, deduceN7, N3,
andN10 as a linear combination ofN1, N5, andN9 with constantsak , k53,7,10, leading to a 333
Riccati system of the~4.1! type forN1, N5, andN9:

]hN1522N1
222N9

21N5
21N5N9„11~2724d* 2!/6d* …2N1„N51N9~2714d* 2!/6d*1a31a7…

1N9~a71a10!1N5a3 ,

3]hN9/2d*52~N1
21N9

21N1N5!1N9@~2714d* 2!N1/6d*1N5~2d25!/32a72a10#1N1a3 ,
~4.8c!

]hN55N5@2d* ~N51N1!/313N91a72a10#1a7@3N11N9~2d17!/2d*1a3#

with d*5d21. For solutions of the~1.3a! and~1.3b! type, we find the ratios of the parametersni ,
n0i , ak , andg by n01, like for the previous model. We write alsoMw,6 andEwI6 at the two
interfaces and both the mass and the energy for the gas. A sufficient condition for the equality of
the internal energy ath561

2 is the equality ofN1, N5, andN7 ath561
2. For ~1.3a! and~1.3b! type

solutions we can find a transition with, for the gas, densities and macroscopic quantities constant
~at the wallsEwI6 are different!.

In Fig. 3~B! for d53 ~warm interface ath521
2! and in Fig. 3~C! for d52 ~warm interface at

h51/2! we still present three solutions with curves~a!–~c!, the fixed parameters values, and the
three values forl:

FIG. 3. ~A! Models with six independent densities and two speeds.~B! Model with six independent densities,d53, and
strict inversion.~C! Model with six independent densities,d52, and strict inversion.
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Figs. b19 b15 a19 a15 N1,2

3~B! 5.040 6.374 20.3684 20.1489 0.011

3~C! 1.847 2.514 20.3169 20.2827 0.025

U Figs. Tw
2 Tw

1 t2 t1 M2 M1 l2 l1 l

3~B!~a! 5.7, 6.72 6.294, 6.296 3.52, 3.54 2 2 20.13

3~B!~b! 5.83, 6.25 6.265 6.26 3.175 3.17 0 0 0

3~B!~c! 6.1, 6.48 6.188. 6.184 2.61. 2.58 1 1 10.28

U , ~4.9!

U3~C!~a! 6.71, 7.55 6.34, 6.35 0.426, 0.429 2 2 20.11

3~C!~b! 6.82, 7.53 6.165 6.16 0.415 0.41 0 0 0

3~C!~c! 6.98, 7.50 5.89. 5.87 0.385. 0.383 1 1 10.17
U .

The transition cases~b! still correspond tol650 andl50, their changes of signs between~a! and
~c! and, due tol50, to constant densities Ni~h!. At the transition (b) both the masses and the
internal energies are constant while these quantities are different at the two walls. The difference
between the two pictures is stillt2,Tw

2 in Fig. 3~C! and the opposite in Fig. 3~B!. For the masses
near the interfaces, in Figs. 2~B!, 2~C!, 3~B!, and 3~C! we noticeM2.M1 when there exists a
strict inversion and the reversed inequality when there is no inversion.

V. CONCLUSION

In this paper we have applied and modified, to a vapor between two interfaces, a criterion
previously established for shock waves. However, we look at stationary solutions~not shock
waves! and we have eliminated the velocities parallel to the two interfaces. Our results confirm,
generalize, and extend those of Ref. 3. The two different effects~either partial inversion, where the
internal energy between the two interfaces is not monotonic, or strict inversion, where the internal
energy of the gas is larger at the cold interface! have been illustrated with different possibilities:
either both effects exist or only one or none. Summarizing the results for the nonexistence or
existence of at least one effect:~i! no effect when only onez.0 projection of the velocities exists
and ~ii ! at least one effect when more than one positivez.0 projection exists. With different
models we have verified that the distinctions~i! and~ii ! hold whatever the number and location of
the velocities are, parallel to thez axis or oblique. For models of the type~i! we can prove, without
explicit construction of the solutions, that no partial inversion can occur. This is an immediate
consequence of the fact that the mass inside the gas remains constant. On the contrary for the
nonexistence of a strict inversion, we must construct explicitly the solutions. We have given the
proof for two collision terms, verified numerically for some other collisions; however, we have not
a general proof independent of the collision terms.

Summarizing the results for the existence of both effects or only one~strict inversion!, we find
a distinction at the transition where the values of the internal energy at the two interfaces are the
same:~i! both the masses and the densities are the same at the two interfaces and only the strict
inversion occurs and~ii ! they are different and we find both effects. In the first case, due to the fact
that our particular solutions~1.3a!–~1.3c! for the densities are monotonic, the densities and all
macroscopic quantities of the gas are necessarily constant at the transition. On the contrary, in the
second case the microscopic and macroscopic quantities are not constant.

If we want to enlarge the present exact results, we can either introduce rest particles in the
models with six independent densities or we can consider more general models with eight, ten,...,
densities. However, in these cases, taking into account the fact that the number of linear conser-
vation laws remains three, we are reduced to 535,737,..., nonlinear systems and the determina-
tion of exact solutions becomes more and more difficult. Another possible extension is the deter-
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mination of density solutions which are not monotonic. We know that this is possible for Riccati
systems.8 At the transition, the equality at the two interfaces will not necessarily lead to constant
solutions. However, these solutions are more difficult to handle. It will be useful to establish the
connection between these results of the discrete theory with those of the continuous one. We
notice also a recent study9 of evaporation/condensation in the scope of the Navier–Stokes equa-
tions.
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APPENDIX A: EXACT SOLUTIONS FOR MODELS WITH FOUR AND FIVE DENSITIES

1. No strict inversion for a model with 61 for the z-axis velocities projections

We study the models~2.5a!–~2.5c!, like Fig. 1~A! but az561 for N5 and N6, with four
independent velocitiesN1, N3, N5, andN6. We have the three linear differential conservation
laws:

2d* ~ l 16 l 3!1 l 56 l 650,
~A1a!

d* :5d21, 2d* ~11ax
21ay

2!~ l 11 l 3!1~ l 51 l 6!50.

We deducel 3, l 5, and l 6 from l 1, integrate and getN3, N5, andN6 from N1:

N32N15a3 , N512d*N15a5.0, N612d*N15a6.0. ~A1b!

Taking into accountM25M1 , we get for the gas ath561
2 the difference

EI21EI152~E22E1!/M5c1~N122N11!, c1.0, ~A2a!

and for the internal energy at the two interfaces,

EwI22EwI15c2~N1,2N6,12N1,1N5,2!, c2.0,
~A2b!

j5a52a622d* a3 , EwI22EwI15c2„~N1,22N1,1!a52 jN1,22a3a5….

If the productQ of the two differences~2.7! is positive, there is no strict inversion

Q/c1c2 :5a5~N1,22N1,1!21Q̄.0 if Q̄.0,
~A2c!

Q̄52~ jN1,21a3a5!~N1,22N1,1!,

andQ̄.0 is a sufficient condition for the nonexistence of a strict inversion.
~i! First, we can proveQ̄.0 for a simple example of a binary collision:

]hN1~h!5N3N52N1N65 jN1~h!1a3a5 , N1~h!52a3a5 / j1cejh,
~A3!

c5const, Q̄5 jc2~12e2 j !>0.

~ii ! Second, we add a quaternary collision termu4(N5
2N3

22N1
2N6

2), u4.0,

]hN1~h!5„jN1~h!1a3a5…@11u4„24d*N1
2~h!1~ j12a6!N1~h!1a3a5…#. ~A4a!

For cubic jÞ0 nonlinearity, we have found two exact solutions with the samejg,0:
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D511legh.0, jÞ0, N15n011N1 /D
1/2. ~A4b!

Solution 1: a3 ,a5 ,u4 ,N1,2, arbitrary:a652d* a31a5 , n015a5/4d* , n1
24d*51/u41a6a5/2d* :

j524d* a3 , jg528d* ~ jn1!
2,0 ~A4c!

Solution 2: a3 , a5 , a6 arbitrary: n015( j12a6)/12d*2a3a5/3j , n15n011a3a5/ j , 1/u4
54d* n01

2 2n01( j12a6)2a3a5 .

With l.0 we get both sign ofQ̄5 jl(e2g21).0 and positivity foru4, solutions 1 and 2.
We give the proof for solution 1 and notice

a6.0→y:52d* a3 /a5.21, 2&d* un1u/a5.A11y. ~A5a!

First we assumel50 or N1,25N1,1, find four cases, and with~A1b! for N3, N5, andN6,

n1,0, a3.0→N15a5/4d*2un1u,a5~12& !/4d*,0,

n1,0, a3,0→4d*Ns3 /a5,y1A11y@A11y2&#,0,
~A5b!

n1.0, a3.0→N5,a5~12& !/2,0,

n1.0, a3,0→N6 /a5,1/21y2A11y/&,0.

Second, forl,0, D(l,0),D(l50)51, we defineÑi5Ni~l50! with four cases:

n1,0, a3.0→N1~l!5n012n1uAD~l!,Ñ1,0,

n1,0, a3,0→N3~l!5Ñ31un1u~121AD~l!!,0,

n1.0→N1~l!5n011un1uAD~l!.Ñ1 , ~A5c!

n1.0, a3.0→N5~l!,22d* Ñ11a55Ñ5,0,

n1.0, a3,0→N6~l!,2d* Ñ11a65Ñ6,0.

For j50 we have found one exact solution N15n011n1/D:
Solution 3: a3 , a5 , u4 , N1,2 arbitrary:a65a522d* a3 , g524d* u4n1a3a5 ,

n01
2 2n01a6/2d*52n01~n11n01!5~a3a511/u4!/4d* ~A5d!

Ni.0, signQ̄5a3n1l(e
2g21).0 for l.0 and positivity violated forl<0.

2. Models with 61, 62 for the z-axis velocity projections (Sec. III)

a. Conservation laws for stationary solutions

We call l i5ei]hNi with ei561 for N1 andN3,562 for N5 andN6, and50 for N0. We have
l 050 and for the three linear differential conservation laws

2d* ~11ax
21ay

2!~ l 11 l 3!14~ l 51 l 6!50,
~A6!

2d* ~ l 16 l 3!1~371!~ l 56 l 6!/250, l 152 l 352 l 5 /d*5 l 6 /d* .
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We integrate and, fromN1, find ~3.2a! for N3, N5, andN6.We note that the masses associated to
the densities with the same speed satisfy N11N3Þconst. andN51N6Þconst.

b. Only ternary collisions for the Sec. III A models with N 050, u550

In ~3.8! for N1 solutions~1.3a! and ~1.3b!, from the coefficients ofD2q, q50,1,2 we get

3 jn01
2 /21 f 1n011 f 050→n01→n1522n012 f 1/3j→g5n13 j /2. ~A7!

c. Ternary and fifth-order collisions for the Sec. III A models with N 050

In ~3.8!, u5Þ0, we get a quartic nonlinearity witha3, a5, a6, u3, andu5 dependent coeffi-
cients:

f̄ 1 :5 f 1 /a3 , ū355~u3 /u5!~ j /a3!
2, A451, A352 f̄ 1/31 j ,

A252 j ~a51 f̄ 1/3!1 ū35, A153 j 2a51 f̄ 1ū35, A053 ja5ū35, ~A8!

]hN1~h!

~1.5ju5!
5 (

k50

4

AkS a3j D 42k

N1
k~h!,

For ~1.3a!–~1.3c! solutions, withD2q/3 coefficients, we get from const,D22/3, andD21

n0152~a3/4j !A3 , A253A3
2/8→ ū35522 j ~a51 f̄ 1/3!13A3

2/8,
~A9a!

3A3
4/3222A1A318A050→ ū355

A3@3A3
3/3226a5 j

2#

@2A3 f̄ 1224ja5#
.

Here f̄ 1 and j are arbitrary. From~A8! and~A9a! we get,A3, a5 ~quadratic equation!, andū35 and
deduce successivelyaj , u3/u5, Ak , andn01. FromD24/3 andD21/3 we getg andn1:

2g/9j5~a3 / j !
3~A3

3/162A1!5n1
3. ~A9b!

We know theN1~h! solution ~1.3!–~1.3c! and the otherNi with ~3.2a!.

d. Binary and ternary collisions for the Sec. III B models with N 0Þ0

We write the rhs of~3.10b! as a cubicZ(N1) polynomial with j , f 0, and f 1 defined in
~3.2b!–~3.8!:

b0 :52d* f 113~a51a6! j /2, c0 :52d* f 01 f 1~a51a6!, d05 f 0~a51a6!,
~A10!

Z~N1!523 jd*N1
3/21N1

2~b01u2 j /2!1N1~c01u21 f 1/3!1d01u2f 0/3,

while the~3.10b! lhs is the product of the derivative by a first-order polynomial. ForN1 solutions
of the ~1.3a! and ~1.3b! type, fromD2q, q50,1,2,3, we successively getn01, u2, n1, andg :

(
q50

2

Aqn01
1 50, e0 :5 j ~a51a6!/2d*1 f 1/3, A0 :5d0e01d* f 0

2/3,
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A1 :5c0e012 f 1f 0d* /31 jd0/2, A2 :5b0e01d* ~ j f 01 f 1
2/3!1c0 j /2,

~A11!
u25d* @3 jn01

2 /21 f 1n011 f 0#/@ jn01/21e0#,

n15v2/3d*22n0122 f 1/3j , g53 jn1/2.

With N1~h!, from ~3.2a! we get all otherNi~h! densities and, from~3.10a!, N0~h!.

APPENDIX B: EXACT SOLUTIONS FOR MODELS WITH SIX INDEPENDENT DENSITIES

1. Scalar Riccati-type solutions for the Sec. IV B models

For stationary solutions we define the differential termsl i5ei]hNi , ei561 for i51, 3, 5, and
6,563 for N7 andN8, write the linear differential conservation laws

2d* ~ l 16 l 3!1 l 56 l 61~271!~ l 76 l 8!50,
~B1a!

10d* ~ l 11 l 3!1 l 51 l 619~ l 71 l 8!50,

deducel 3, l 6, andl 8 from l 1, l 5, andl 7, integrate, and getN3, N6, andN8 from N1, N5, andN7:

N353N11~N519N7!/d*1a3 , N6522d*N129N71a6 ,
~B1b!

N852@6N712d*N11N5#/31a8 .

We write the collision terms and the nonlinear equations for three densitiesN1, N5, andN7:

X15N3N52N1N6 , X05N7N62N1
2, X005N8N52N3

2,
~B2!

]hN15X01X1 , ]hN552d* ~2X11X00!, 3]hN752d*X0 .

We substitute~B1b! and get the 333 ~4.6c! system forN1, N5, andN7. ForNi of the ~1.3a! and
~1.3b! type, we defineb1 j5nj /n1,j55,7, and from the coefficients ofD22 we obtain two polyno-
mials of the~4.3b! type and we deduce a polynomial forb17:

b15b17@31~b1519b17!/d* #2b17
2 @5d21419b17#2~2d* 2/32312d!b172d* /350,

~B3!
d52:6075b17

4 11140b17
3 1116b17

2 140b172350.

As explained in Sec. IV A,n01 is a scaling parameter. We definelk5ak/n01, a1 j5n0 j /n01, j55,7,
and get from the two constant relations of theN1 andN7 collision terms in~4.6c!

l659a1712d*11/a17, l352329a172a15/d*11/a17a15. ~B4!

From the twoD21 relations for theN1 andN7 collision terms, substitutingl6 andl3 given by~B4!
we obtain a polynomial relation fora17,a15:

Aa15
2 1Ba151C50, A:52~b1519b17!/d*23, C:52b15/a17,

~B5!
B:5a17@5d*19b1712d* 2/3b17#1~42d23b17!/3a1712~22d!29b1712d* /b17.

We start witha17 as an arbitrary parameter, we deducea17, l6, andl8 from ~B5! and~B4!, and
we see from~4.6c! that a8 or l8 enters only in the collision term forN5 and linearly in the
coefficient ofD21. From the twoD21 relations forN1 andN5 we deducel8 as a function ofa17.
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Substituting all parameters deduced froma17 into the constant term of the~4.6c! N5 equation fixes
a17 and all other values except the scaling parametern01 andl in D~h! of ~1.3a!. Finally we write
the mass and the internal energy at the wallh521

2:

Mw,254d*N1,212N5,212N7,2 ,
~B6!

EwI25~20d*N1,212N5,2118N7,2!/Mw,2 ,

while ath51
2 we getMw,1 , EwI1 with the substitution ofN3,1, N6,1, N8,1 to N1,2, N5,2, N7,2.

The hot and cold interfaces are still defined by~3.6!. With ~B1b! we write the massM and the
energyE in terms ofN1 , N5 , N7 :

M ~h!58~2d*N11N513N7!/312d* a31a61a8 ,

2E~h!58~4d*N11N519N7!110d* a31a619a8 , ~B7!

Ni ,25Ni ,1 , i51,5,7→M25M1, E25E1→t25t1.

2. Scalar Riccati-type solutions for the Sec. IV C models

For stationary solutions we define the linear differential termsl i5ei]hNi , ei561 for
i51,5,3,7,ei563 for N9 , N10. We write the linear differential conservation laws:

2d* ~ l 16 l 31 l 56 l 7!1~271!~ l 96 l 10!50,
~B8a!

6d* ~3~ l 11 l 3!1 l 51 l 7!19~ l 91 l 10!50,

We deducel 3, l 7, andl 10 from l 1, l 5, andl 9, we integrate, and we getN3, N7, andN10 from N1,
N5, andN9:

N75N51a7 , N352N11N519N9/2d*1a3 ,
~B8b!

N10522d* ~N11N5!/322N91a10.

We write the collision terms and the equations for three densitiesN1, N5, andN9:

X15N9N102N1N3 , X25N3N52N1N7 ,

X35N3N72N5N10, X45N1N52N9N7 , ~B9!

]hN15X11X22X3 , ]hN552X21X32X4 , 3]hN952d* ~2X11X3!.

We substitute~B8b! and get the 333 ~4.8c! equation forN1, N5, andN9. ForNi of the ~1.2a! and
~1.2b! type withD511legh. We defineb1 j5nj /n1,j55,9, and, from the coefficients ofD22, we
obtain two polynomials of the~4.3! type:

d52,3:3~12d247!b19
2 119~2d11!b19112~9d213!50,

~B10!
b15~8b19/324d* !5~4d213!b19

2 1~6d113!b19/314d* ;

n01 is still a scaling parameter. We definelk5ak/n01, a1 j5n0 j /n01, j55,9, and from the two
constant relations of theN1 andN9 collision terms in~4.8c! we get

l352a152129a19/2d*1l7 /a15,
~B11!
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l105~11a15!/a1912a191a15~2d25!/31l7~1/a15a1921!.

From the threeD21 relations for theN1, N5, andN9 collision terms, substitutingl3 andl10 we
obtain two rational fractions of polynomialsPj ,Qj , with a19-dependent coefficients,

l7 /a195P1~a15!/Q1~a15!5S1~a15!/T1~a15!, ~B12!

linear ina15.We start witha19 arbitrary, we deducea15, l7, l3, l10 from ~B12! and~B11!, all
parameters substituted into the constant term of~4.8c! for N5 fixed a19 and all parameters except
n01, andl in D~h!. Finally we writeMw,2 , EwI2 andM (h),E(h) with ~B8b!:

Mw,254d* ~N1,21N5,2!12N9,2 ,

EwI25„4d* ~9N1,213N5,2!118N9,2…/Mw,2 ,

M ~h!516d* ~N11N5!/318N912d* ~a31a7!1a10, ~B13!

E~h!512d* ~2N11N5!136N913d* ~3a31a7!19a10/2,

Ni ,25Ni ,1 , i51,5,9→M25M1, E25E1→t25t1,

while we getMw,1 ,EwI1 with the substitution ofN3,1, N6,1, N10,1 to N1,2, N5,2, N9,2.
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One-dimensional time-dependent potentials are considered for which an invariant
can be expressed in terms of the potential and the momentum according to the
formulation of Giacomini. New solutions of Giacomini’s equations are derived. In
addition, possibilities are discussed for extending Giacomini’s approach to more
general systems. ©1996 American Institute of Physics.
@S0022-2488~96!02211-6#

I. INTRODUCTION

Giacomini1 has presented a formalism for examining Hamiltonian systems in which a one-
dimensional potential admits an invariant that can be expressed solely as a function of the poten-
tial and the momentum, and he derived some solutions of the associated equations. In Sec. II, we
summarize Giacomini’s formalism and derive some additional solutions of his equations. In Sec.
III, we explore the possibility of extending Giacomini’s approach to cases where the invariant
cannot be expressed solely as a function of a potential and the momentum. The starting point for
that discussion is the work of Lewiset al.,2 who deduced all one-degree-of-freedom Hamiltonians
H(q,p,t) for which a specified function of (q,p,t) is an invariant. Certain differential identities
that are used in Sec. III are given in the Appendix.

The one-degree-of-freedom HamiltonianH(q,p,t) under consideration is that associated with
a one-dimensional potentialV(q,t),

H~q,p,t !5 1
2p

21V~q,t !. ~1.1!

An invariant for this system is any functionI (q,p,t) whose total time derivative vanishes:

05
dI

dt
5I t~q,p,t !1@ I , H#5I t~q,p,t !1I qp2I pVq , ~1.2!

where [I , H] is the Poisson bracket ofI with H. Potentials for which~1.2! can be solved ana-
lytically to give an invariant are usually identified by invoking some symmetry of the system, or
by using a direct method, in which some functional restriction of the potential or the invariant is
postulated. For example, it may be possible to apply Noether’s theorem,3–5 or to apply the theory
of extended Lie groups.6 Examples of the use of direct methods can be found in Refs. 7–11.

a!Also affiliated with CEA, Centre d’Etudes de Saclay, DRECAM/SPEC, 91191, Gif sur Yvette, Cedex, France.
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II. NEW SOLUTIONS OF GIACOMINI’S FORMALISM

Giacomini1 has developed a theoretical framework that defines exact invariants for a certain
class of one-dimensional time-dependent potentials and he used the relevant equations to deter-
mine examples of such potentials. Giacomini’s result begins with the ansatz that the invariant is
expressible as a function of two arguments,V(q,t) andp:

I ~q,p,t !→I @V~q,t !,p#5I ~v,p! $v5V~q,t !%. ~2.1!

Then ~1.2! can be written as

F Vt~q,t !

Vq~q,t !
1pG I v@V~q,t !,p#2I p@V~q,t !,p#50. ~2.2!

In order for ~2.2! to have a solution,V(q,t) must satisfy

Vt~q,t !5 f @V#Vq~q,t !, ~2.3!

where f is an arbitrary function. The implicit solution of~2.3! is

F@V#2t2
q

f @V#
50, ~2.4!

where alsoF is an arbitrary function. As a result, the equation forI (v,p) is

@ f ~v !1p#I v~v,p!2I p~v,p!50, ~2.5!

whose characteristic equation is

dv
dp

1 f ~v !1p50. ~2.6!

Giacomini treated the case

f ~v !5a1v
21a2v1a3 , ~2.7!

where (a1 ,a2 ,a3) are arbitrary constants, analytically in terms of Airy functions.
New solutions of Giacomini’s relations~2.5! and~2.6! can be obtained by defining a function

X(v) as

X~v !5
1

p1 f ~v !
, ~2.8!

wherep is to be interpreted as a function ofv along a characteristic of~2.5! that is determined by
solving ~2.6!. By differentiating~2.8! with respect tov and using~2.6! we find thatX(v) satisfies
the Abel equation of the first kind12

dX

dv
5X32

d f

dv
X2. ~2.9!

By means of the transformation fromX(v) to U(v) defined by12

U~v !5
@X~v !2X2~v !#

@X1~v !#1/3
, ~2.10!
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where

X1~v !52
1

3

d2f

dv2
2

2

27 S d fdv D
3

, X2~v !5
1

3

d f

dv
, ~2.11!

~2.9! is transformed to

dU

dv
5X1

2/3F12S 3X1
22/3X2

21
1

3
X1

25/3
dX1
dv DU1U3G . ~2.12!

We shall use~2.12! for finding solutions to the characteristic equation~2.6!.
Equation~2.12! can be solved analytically if it is separable. In order for it to be separable, the

coefficient ofU must be a constant, which we denote byK. This gives the following condition on
f (v):

F9 d3fdv3
115

d2f

dv2 S d fdv D
2

12S d fdv D
5G35SK3 D 3F9 d2fdv2

12S d fdv D
3G5. ~2.13!

We have found three values ofK for which ~2.13! can be solved in terms of implicit relations that
do not involve integrals; these values areK53/22/3, K53(A226)/[2A(A229)]2/3 ~A5const
Þ63,Þ0,ÞA6!, andK50. In addition, a general partial treatment of~2.13! can be given in terms
of implicit relations that involve an indefinite integral.@It has been pointed out by the referee of
this paper that~2.13! is formally integrable for all values ofK because~2.13! has three Lie point
symmetries.#

A. K53/22/3

This choice ofK leads to

f ~v !5a2v1a3 , ~2.14!

wherea2 anda3 are arbitrary constants. This is a case analyzed by Giacomini~Giacomini’s form
with a150!.1 For f (v)5a1v

21a2v1a3 , which is the most general form for which Giacomini
solved his equations,~2.13! cannot be satisfied ifa1Þ0. This is associated with the fact that~2.6!
can only be solved with Airy functions in this case, but Airy functions do not solve
dU/dV5[X1(V)]

2/3(12KU1U3).

B. K53(A226)/[2A (A229)] 2/3, A5const Þ63

In this case, we find

f ~v !5AAv. ~2.15!

It is interesting to note that one is also led to~2.15! by considering the Lie invariance properties
of ~2.6!.13 The invariant associated with~2.15! is given by

I @V~q,t !, p#5 ln~2V1p21AAVp!2AEAV/p dy

~2y21Ay11!
~2.16!

and, from~2.4!, the potential is determined from

F@V#2t2
q

AAV
50. ~2.17!
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It is instructive to examine the special caseA50. Thenf (v)50, ~2.3! impliesV(q,t) is a function
of q only, and~2.16! reduces toI [V(q,t), p]5ln(2V1p2). Thus, the energy is conserved, as
expected.

C. K50

With this choice,~2.13! reduces to

9
d3f

dv3
115

d2f

dv2 S d fdv D
2

12S d fdv D
5

50. ~2.18!

This equation can be integrated completely in terms of three arbitrary constants as follows. Be-
cause~2.18! is autonomous and depends only on the derivatives off , we introduce

W5
d2f

dv2
~2.19!

and

F5
d f

dv
, ~2.20!

in which case~2.18! is transformed into the first-order differential equation

9W
dW

dF
115WF212F550. ~2.21!

This equation can be integrated by changing variable to

Z5W/F3. ~2.22!

The result is

uZ1 2
9u22uZ1 1

3u3uFu35C1 , ~2.23!

whereC1 is an arbitrary positive constant. Moreover, since by construction we haveW5dF/dv,
we also haveZ5(dF/dv)/F3, which can be written in the form

dv5
1

F3

dF

dZ

dZ

Z
. ~2.24!

Using dF/dZ52FZ/[3(Z12/9)(Z11/3)], which is obtained from~2.21! and ~2.22!, and
uFu5C1

1/3uZ12/9u2/3/uZ11/3u, which is obtained from~2.23!, ~2.24! becomes

dv52
«1

3C1
2/3

~Z1 1
3!

uZ1 2
9u7/3

dZ, ~2.25!

where«1 is the sign of~Z12
9!. This relation, which is valid forC1Þ0, can be integrated to yield

v1C25C1
22/3@«1uZ1 2

9u21/31 1
36uZ1 2

9u24/3#, ~2.26!

whereC2 is a constant of integration. Using~2.20!, ~2.25!, and the expression forF in terms ofZ,
we can obtain
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d f52
«1«2«3
3C1

1/3

dZ

uZ1 2
9u5/3

, ~2.27!

wheree2 ande3 are, respectively, the signs ofZ1 1
3 andF. This can be integrated to givef as a

function ofZ:

f1C35
«2«3
2C1

1/3 uZ1 2
9u22/3, ~2.28!

whereC3 is a constant of integration.
It is now possible to derive the relation between the functionf and the potentialV for K50.

Combining~2.26! and ~2.28!, and substitutingv5V(q,t) from ~2.1!, an easy calculation yields

V~q,t !1C25«1A2/C1A«2«3„f ~V!1C3…1„f ~V!1C3…
2/9, C1Þ0. ~2.29!

C150 and C15` are interesting special cases. ForC150, we use ~2.23! to get
2 1

35Z5(dF/dv)/F3, which can be integrated to givef (v)5[6(v1k1)]
1/21k2 , wherek1 andk2

are arbitrary constants. Ifk15k250, this corresponds to~2.15! of Case B withA5A6. ForC15`,
we may use~2.29! to obtainf (v)5[3(v1C2)]

1/22C3 . If C25C350, this corresponds to~2.15!
with A53, which was excluded in our discussion of Case B.

For K[3X1
22/3X2

21(1/3)X1
25/3(dX1/dv)50, ~2.12! can be integrated and the constant of

integration equals the invariant that we seek:

I @v,p#5EU dU8

11U83
2Ev

@X1~v8!#2/3 dv8. ~2.30!

HereU as defined by~2.10! depends onv; it also depends parametrically on the constant that
labels the characteristic. The constant can be expressed as a function ofv andp, so thatU can in
fact be expressed directly in terms ofv andp. The result, which can be found by combining~2.8!
and ~2.10!, we denote byU(v,p):

U~v,p!5
12@p1 f ~v !#X2~v !

@p1 f ~v !#@X1~v !#1/3
. ~2.31!

Thus, the formula for the invariant in terms of (q,p,t) is

I @V~q,t !,p#5EU@V~q,t !p# dU8

11U83
2EV~q,t !

@X1~v8!#2/3 dv8. ~2.32!

Carrying out the integrations in~2.32! is a lengthy calculation. The result is

I @V~q,t !,p#5
1

6 H lnF ~11U@V~q,t !,p# !3

11U@V~q,t !,p#3 G1e2 lnF ~11u f @V~q,t !#1C3u!3

11u f @V~q,t !#1C3u3 G J
1

1

)

FarctanS 2U@V~q,t !,p#21

)

D 1e2 arctanS 2u f @V~q,t !#1C3u21

)

D G .
~2.33!

The constantse1 ande3 do not appear in this formula because, in the derivation, certain quantities
occur raised to fractional powers. In order for those quantities to be positive,e1 ande3 are required
to have the valuese151 ande3521.
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D. General treatment of Eq. (2.13)

Introduce functionsW andF as in ~2.19! and ~2.20! so that~2.13! becomes

S 9W dW

dF
115WF212F5D 35SK3 D 3~9W12F3!5. ~2.34!

Then, withZ as defined by~2.22!, this can be transformed to

9FZ
dZ

dF
127Z2115Z125

K

3
~9Z12!5/3, ~2.35!

9ZdZ

27Z2115Z122
K

3
~9Z12!5/3

52
dF

F
. ~2.36!

DefiningY by

Y5~9Z12!1/3⇒dY53Y22dZ, ~2.37!

we can write~2.36! as

~Y322!dY

Y~Y32KY211!
52

dF

F
, ~2.38!

which can be integrated to give

ln~F4uY42KY31Yu!1E 3KY211

Y42KY31Y
dY50. ~2.39!

From this relationF can be obtained as a function ofY and then ofZ. Equation~2.22! gives the
relation betweenF andW, which leads to an equation relatingd2f /dv2 andd f /dv. This equation
can be solved in principle to givef (v).

III. AN APPROACH FOR EXTENDING GIACOMINI’S ANSATZ

Attempts to generalize ansatz~2.1!, which is the basis of Giacomini’s formalism, have not led
to equations from which new invariant/potential pairs have been derived. In this section we
generalize Giacomini’s formalism within the context of the theoretical framework of Lewiset al.2

Although this generalization has not led to new invariant/potential pairs, it is sufficiently general
to hold the promise of new results.

A. The result of Lewis et al .

Lewis et al.2 showed that all HamiltoniansH(q,p,t) for which a specified functionP̃(q,p,t)
is an invariant are given by

H~q,p,t !5K~ t !2Ft@ P̃~q,p,t !,t#2Eq

Gt@q8,P̃~q,p,t !,t#dq8, ~3.1!

whereG(q,P,t) is the inverse ofP̃(q,p,t),

p5G~q,P,t !↔P5 P̃~q,p,t !, ~3.2!
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and whereF(P,t) andK(t) are arbitrary functions. For a givenH(q,p,t), the functionF(P,t) can
be determined and a canonically conjugate second invariant can be constructed.14 We note in
passing that~3.1! is related to the Hamilton–Jacobi equation through a Type-Two generating
functionS(q,P,t) for a canonical transformation that is defined by

S~q,P,t !5Eq

G~q8,P,t !dq81F~P,t !2E t

K~ t8!dt8, ~3.3!

with p5Sq(q,P,t) andQ5SP(q,P,t). From ~3.3!, G(q,P,t) andS(q,P,t) are related by

G~q,P,t !5Sq~q,P,t !. ~3.4!

As a result,~3.1! can be written in terms of (q,P,t) as

H@q,Sq~q,P,t !,t#1St~q,P,t !50, ~3.5!

which is the Hamilton–Jacobi equation. In the remainder of this paper we shall not use the
generating functionS(q,P,t).

Equation~3.1! written in terms of the variables (q,P,t) and the functionG(q,P,t) is

H@q,G~q,P,t !,t#5K~ t !2Ft~P,t !2Eq

Gt~q8,P,t !dq8. ~3.6!

Differentiating ~3.6! with respect toq gives

Hq@q,G~q,P,t !,t#1Hp@q,G~q,P,t !,t#Gq~q,P,t !52Gt~q,P,t !, ~3.7!

whereHq(q,p,t) andHp(q,p,t) are the derivatives with respect toq andp of H(q,p,t). We now
specialize to the case of motion in a time-dependent potentialV(q,t),

H~q,p,t !5 1
2p

21V~q,t !. ~3.8!

Then ~3.7! becomes

Gt~q,P,t !1G~q,P,t !Gq~q,P,t !52Vq~q,t !, ~3.9!

which determines the functionsG(q,P,t) that are allowable for a given potentialV(q,t). If we
associateG(q,P,t) with the momentum density as a function of (q,t) of a fluid of particles acted
upon by a force density2Vq(q,t), then~3.9! is the equation of motion of that fluid.

Giacomini’s ansatz~2.1! is equivalent to demanding thatG(q,P,t) be expressible in terms of
a functionḠ of two arguments, where the two arguments areV(q,t) andP:

G~q,P,t !5Ḡ@V~q,t !,P#. ~3.10!

Our objective is to explore the consequences of generalizing~3.10! to allow the two arguments to
be arbitrary functions of (q,P,t). That is, we assume thatG(q,P,t) can be written as

G~q,P,t !5Ḡ~x,y!5Ḡ@ f ~q,P,t !,h~q,P,t !#, ~3.11!

where the variablesx andy are defined in terms of arbitrary functionsf (q,P,t) andh(q,P,t) by

x5 f ~q,P,t !, y5h~q,P,t !. ~3.12!

The idea is to restrictf (q,P,t) and h(q,P,t) in such a way as to facilitate finding functions
G(q,P,t) that solve~3.9! for some new potentialsV(q,t). In Sec. III C we shall demonstrate that
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Giacomini’s equations can be derived easily by choosingh(q,P,t)5P and takingf (q,P,t) to be
an arbitrary function of (q,t). With the ansatz~3.11!,~3.9! can be written as

Ḡx~x,y! f t~q,P,t !1Ḡy~x,y!ht~q,P,t !1Ḡ~x,y!@Ḡx~x,y! f q~q,P,t !1Ḡy~x,y!hq~q,P,t !#

52Vq~q,t !. ~3.13!

Equation~3.13! is a very general equation that can be arbitrarily nonlinear. If we were to specify
Ḡ(x,y), which is a function of only two arguments, then there generally would be solutions,
becausef (q,P,t) andh(q,P,t) are unspecified functions of three arguments. However, viewed in
that way, the equations are too complicated and general to be amenable to analysis. The approach
that we adopt is to view~3.13! as an equation forḠ(x,y). BecauseḠ(x,y) is a function of only
two arguments, this imposes consistency conditions onVq(q,t) and on the coefficients ofḠ(x,y)
and its derivatives. In the remainder of this paper we examine~3.13! as an equation forḠ(x,y).

B. Consistency conditions

The derivatives of~3.13! with respect toq, P, and t involve Ḡ(x,y) and the derivatives of
Ḡ(x,y) with respect tox andy. Thus,~3.13! and the derivatives of~3.13! up to some order with
respect toq, P, and t may be viewed as a system of algebraic equations forḠ(x,y) and those
derivatives ofḠ(x,y) that appear up to that order. Equation~3.13! involves three functions of
(x,y) @i.e., Ḡ(x,y) and its first derivatives#. The four equations comprising~3.13! and its three
first derivatives involve six functions of (x,y) @i.e., Ḡ(x,y) and its first and second derivatives#.
The ten equations comprising~3.13! and its first and second derivatives involve ten functions of
(x,y) @i.e., Ḡ(x,y) and its first, second, and third derivatives#. The twenty equations comprising
~3.13! and its first, second and third derivatives involve 15 functions of (x,y) @i.e., Ḡ(x,y) and its
first, second, third, and fourth derivatives#. The ten equations comprising~3.13! and its first and
second derivatives are unique in that there are exactly the same number of functions of (x,y) as
there are equations. Thus, one might consider solving that algebraic system of ten equations for
Ḡ(x,y) and its first, second, and third derivatives. One would then have the consistency conditions
that the algebraically obtained solutions forḠ(x,y) and its first, second, and third derivatives@in
terms of f (q,P,t),h(q,P,t),V(q,t) and their derivatives# would need to satisfy in order to be
consistent with one another. For example, if the algebraic solutions forḠ(x,y) and its first
derivatives were given by

Ḡ@ f ~q,P,t !,h~q,P,t !#5L~0!~q,P,t !, ~3.14!

Ḡx@ f ~q,P,t !,h~q,P,t !#5L~1!~q,P,t !, ~3.15!

Ḡy@ f ~q,P,t !,h~q,P,t !#5L~2!~q,P,t !, ~3.16!

where L~0!(q,P,t), L~1!(q,P,t), and L~2!(q,P,t) were defined as explicit functions of
f (q,P,t),h(q,P,t),V(q,t), and their derivatives, then the relation

Lq
~0!~q,P,t !5L~1!~q,P,t ! f q~q,P,t !1L~2!~q,P,t !hq~q,P,t ! ~3.17!

would need to hold. Similarly for theP and t derivatives.
Two salient facts are encountered in an attempt to solve the ten equations forḠ(x,y) and its

first, second, and third derivatives. First, there is a subsidiary consistency condition that must be
satisfied by the three first derivatives of~3.13! in order that they be soluble for the second
derivatives ofḠ(x,y). Second, proceeding beyond that condition leads to extremely complex
equations. We shall not proceed beyond that condition here.
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The derivatives of~3.13! with respect toq, P, andt can be viewed as a system of three linear
equations for the three second derivatives ofḠ(x,y). In matrix form they are

AS Ḡxx

Ḡxy

Ḡyy

D 5b, ~3.18!

where

A5S f q~ f t1Ḡf q! @hq~ f t1Ḡf q!1 f q~ht1Ḡhq!# hq~ht1Ḡhq!

f P~ f t1Ḡf q! @hP~ f t1Ḡf q!1 f P~ht1Ḡhq!# hP~ht1Ḡhq!

f t~ f t1Ḡf q! @ht~ f t1Ḡf q!1 f t~ht1Ḡhq!# ht~ht1Ḡhq!
D , ~3.19!

b5S 2Ḡx~ f t1Ḡf q!q2Ḡy~ht1Ḡhq!q2Vqq

2Ḡx~ f t1Ḡf q!P2Ḡy~ht1Ḡhq!P
2Ḡx~ f t1Ḡf q! t2Ḡy~ht1Ḡhq! t2Vqt

D . ~3.20!

The matrixA is singular, corresponding to a null vectorn of its transpose:

Ãn50, n5S f thP2 f Pht
2 f thq1 f qht

2 f qhP1 f Phq
D . ~3.21!

The subsidiary consistency condition for~3.18! is

ñb50. ~3.22!

The meaning of this condition can be understood clearly by transforming variables from (q,P,t)
to (x,y,t), wherex andy are defined by~3.12!. Denote the inverse transformation by

q5r ~x,y,t !, P5s~x,y,t !. ~3.23!

Derivatives off (q,P,t) andh(q,P,t) are related to derivatives ofr (x,y,t) ands(x,y,t) by the
derivatives of the identities

x[ f @r ~x,y,t !,s~x,y,t !,t#, y[h@r ~x,y,t !,s~x,y,t !,t#. ~3.24!

Those relations are presented in the Appendix.
Completely in terms of (x,y,t), we can express~3.13! as

Ḡx@~r yst2r tsy!1syḠ#2Ḡy@~r xst2r tsx!1sxḠ#5~r ysx2r xsy!Vq@r ~x,y,t !,t#. ~3.25!

SinceḠ(x,y) is not a function oft, the derivative of~3.25! with respect tot is

Ḡx@~r yst2r tsy! t1sytḠ#2Ḡy@~r xst2r tsx! t1sxtḠ#5$~r ysx2r xsy!Vq@r ~x,y,t !,t#% t .
~3.26!

The consistency condition~3.22! is the same as the condition obtained by subtracting the product
of (r ysx2r xsy) t with ~3.25! from the product of (r ysx2r xsy) with ~3.26!.

If we view ~3.25! and ~3.26! as equations forḠ(x,y) given r (x,y,t), s(x,y,t), and
V[ r (x,y,t),t], three approaches come to mind for performing an analysis. None of them has
proven fruitful. The first approach is to eliminateḠ(x,y) algebraically from~3.25! and ~3.26!.
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Note that the case (syḠx2sxḠy)50 is not of interest. This is because that case would imply
s(x,y,t)5@function ofḠ(x,y) andt#, so thatḠ(x,y) could be expressed as a function ofs(x,y,t)

andt; in that event, the invariantP̃(q,p,t) would have to be a function ofp andt alone. The result
for (syḠx2sxḠy)Þ0 can be written as

]

]t
H @~r yst2r tsy!Ḡx2~r xst2r tsx!Ḡy#

~syḠx2sxḠy!
J 5

]

]t
H @~r ysx2r xsy!Vq#

~syḠx2sxḠy!
J , ~3.27!

which can be immediately integrated to give

A~x,y!~syḠx2sxḠy!1@~r yst2r tsy!Ḡx2~r xst2r tsx!Ḡy#5@~r ysx2r xsy!Vq#, ~3.28!

whereA(x,y) is arbitrary. However, comparison with~3.25! shows that

A~x,y!5Ḡ~x,y!, ~3.29!

so that~3.28! is really the same as~3.25!.
The second approach is to solve~3.25! and~3.26! algebraically forḠx(x,y) andḠy(x,y) and

then impose the compatibility condition that the cross derivatives must be equal:

Ḡxy~x,y!5Ḡyx~x,y!. ~3.30!

This condition is very complicated and will not be pursued further.
The third approach is to construct a linear combination of~3.25! and ~3.26! which does not

contain the nonlinear productsḠ(x,y)Ḡx(x,y) andḠ(x,y)Ḡy(x,y). This requires

05sxsyt2sysxt⇒
]

]t S sxsyD50⇒s~x,y,t !5s0@u~x,y!,t#, ~3.31!

wheres0[z,t] andu(x,y) are arbitrary functions. The linear combination of~3.25! and~3.26! is a
linear differential equation that can be solved formally. With that solution,~3.25! can be reduced
to another formally soluble linear differential equation. Unfortunately, the formal solutions of the
linear differential equations involve arbitrary functions whose occurrence prevents practical use of
the formal solutions.

C. A different approach in ( x ,y ,t ) space

Let us view~3.25! as an equation fors(x,y,t) given r (x,y,t), Ḡ(x,y), andVq(q,t). In that
case, it is appropriate to write~3.25! in the form

~r yḠx2r xḠy!st2$r yVq@r ~x,y,t !,t#2r tḠy1ḠḠy%sx1$r xVq@r ~x,y,t !,t#2r tḠx1ḠḠx%sy50.
~3.32!

We can recover Giacomini’s equations from~3.32! as follows. Assume

f ~q,P,t !5A~q,t !, h~q,P,t !5P, ~3.33!

which implies that the inverse functions can be written as

r ~x,y,t !5B~x,t !, s~x,y,t !5y. ~3.34!

Then ~3.32! reduces to

BxVq@B~x,t !,t#2BtḠx1ḠḠx50. ~3.35!
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Differentiation with respect tox gives

BtḠxy5~ḠḠx!y , ~3.36!

which implies thatBt(x,t) is a function ofx alone:

Bt~x,t !52 f ~x!⇒ At~q,t !

Aq~q,t !
5 f @A#. ~3.37!

Applying ~3.37! to ~3.35! shows thatBxVq[B(x,t),t] is a function ofx alone:

Vq

Aq
5S8@A~q,t !#⇒V~q,t !5S@A~q,t !#1a~ t !, ~3.38!

whereS anda are arbitrary. Without loss of generality, we can takeS(A)5A anda50. Then,
~3.37! becomes

Vt5 f ~V!Vq , ~3.39!

which is identical to~2.3!. Finally, ~3.5! can now be written as

11 f ~x!Ḡx1ḠḠx50. ~3.40!

Equations~3.39! and~3.40! constitute Giacomini’s result expressed in terms of (x,y,t). Giacomini
expressed~3.40! in terms of an invariant functionI [V(q,t),p]. Here I (x,p) is the inverse of
Ḡ(x,y):

p5Ḡ~x,y!↔y5I ~x,p!. ~3.41!

Differentiation of the identity

y[I @x,Ḡ~x,y!# ~3.42!

with respect tox yields

Ḡx52
I x
I p
. ~3.43!

Combining this with~3.11! gives

@ f ~x!1p#I x2I p50, ~3.44!

which is the actual equation derived by Giacomini.
In order to obtain a generalization of Giacomini’s equations in terms of the variables (x,y,t),

we would need to generalize~2.4! and ~3.40!. Perhaps this could be achieved with the following
approach. Assume

f q~q,P,t !5a@ f ,P#Vq , f t~q,P,t !5b@ f ,P#Vq , ~3.45!

h~q,P,t !5P, s~x,y,t !5y. ~3.46!

From ~3.45!, f (q,P,t) must satisfy
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f t2
b

a
f q50, ~3.47!

whose solution is

V@ f ,P#5
b

a
t1q, ~3.48!

whereV is arbitrary. Equation~3.48! is a generalization of~2.4!. If we expressa[ f ,P] as

a@ f ,P#5
1

Af@ f ,P#
, ~3.49!

then ~3.45! implies

A@ f ~q,P,t !,P#5V~q,t !1g~P,t !, ~3.50!

whereg is arbitrary. As a result of~3.46!, ~3.32! now reduces to

Af@ f ,P#1Af@ f ,P#b@ f ,P#Ḡx~x,y!1Ḡ~x,y!Ḡx~x,y!50, ~3.51!

which is a generalization of~3.40!. For ~3.48! and~3.51! to be legitimate generalizations of~2.4!
and~3.40!, it is imperative that~3.47! and~3.49! be satisfied in a way that does not makeV(q,t)
depend uponP when it is calculated from~3.50!.

APPENDIX: RELATIONS AMONG THE DERIVATIVES OF f , h , r , AND s

Define the transformation from variables (q,P,t) to variables (x,y,t) by

x5 f ~q,P,t !, y5h~q,P,t !, ~3.12!

and define the inverse transformation by

q5r ~x,y,t !, P5s~x,y,t !. ~3.23!

The formulas relating the first derivatives off (q,P,t) and h(q,P,t) to the first derivatives of
r (x,y,t) ands(x,y,t) can be obtained from the first derivatives of the identities

x[ f @r ~x,y,t !,s~x,y,t !,t#, y[h@r ~x,y,t !,s~x,y,t !,t#; ~A1!

the identities are linear in the derivatives. The relations are

f q5
sy

r xsy2r ysx
, f p52

r y
r xsy2r ysx

, f t5
r yst2r tsy
r xsy2r ysx

, ~A2!

hq52
sx

r xsy2r ysx
, hp5

r x
r xsy2r ysx

, ht5
r tsx2r xst
r xsy2r ysx

, ~A3!

r x5
hp

f qhp2 f phq
, r y52

f p
f qhp2 f phq

, r t5
f pht2 f thp
f qhp2 f phq

, ~A4!

sx52
hq

f qhp2 f phq
, sy5

f q
f qhp2 f phq

, st5
f thq2 f qht
f qhp2 f phq

. ~A5!
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An explicit formula for a second invariant of a one-degree-of-freedom time-
dependent Hamiltonian is derived in terms of the Hamiltonian and an assumed first
invariant. If the first invariant is expressed as a function of two canonical functions,
a transformation to an autonomous Hamiltonian system is possible. ©1996
American Institute of Physics.@S0022-2488~96!02411-5#

I. INTRODUCTION

Considerable attention has been paid in recent years to the question of finding invariants for
one-degree-of-freedom, time-dependent Hamiltonian systems. In this paper we assume that one
invariant is known as an explicit function of two canonically conjugate variables and time, and we
derive an explicit formula for a second invariant in terms of the Hamiltonian and the assumed first
invariant. The two invariants are canonically conjugate to one another. Then we consider the
special case in which the assumed first invariant is expressed as a function oftwo arguments,
which are canonically conjugate functions of the canonical variables and time. This is always
possible in principle, but such an expression for the invariant may not be known for a particular
problem. If it is known, then a relatedautonomousHamiltonian system can be derived that leads
to a simplification of the formula for the second invariant. The related autonomous system is in
terms of a new time variable that is defined separately for each value of the assumed first invariant.

By an invariant we mean any functionĨ (q,p,t) whose total time derivative vanishes:

05
dĨ

dt
5 Ĩ t~q,p,t !1@ Ĩ ,H#5 Ĩ t~q,p,t !1 Ĩ q~q,p,t !Hp~q,p,t !2 Ĩ p~q,p,t !Hq~q,p,t !, ~1.1!

where [Ĩ ,H] is the Poisson bracket ofĨ with H, and Hamilton’s equations of motion have been
taken into account in the evaluation of the total time derivative.

Our starting point is the formulation of Lewiset al.,1 who gave an expression for all Hamil-
toniansH(q,p,t) for which a specified functionĨ (q,p,t) is an invariant. In addition to the general
case in whichĨ (q,p,t) is given explicitly as a function of thethreearguments (q,p,t), they also
treat the special case in whichĨ (q,p,t) is expressed as an explicit function oftwo arguments
which are canonically conjugate to one another. The results of Lewiset al.1 allow a simple,
elegant derivation of a canonically conjugate second invariant within the framework of canonical
transformation theory. A derivation of an equivalent canonically conjugate second invariant from
a different point of view was given earlier by Dewisme and Bouquet.2

In Sec. II, we derive the general formula for a second invariant in terms of the Hamiltonian
and the assumed first invariant. In Sec. III, we consider the special case in which the assumed first
invariant is expressed as a function of two canonically conjugate functions and we present an

a!Also affiliated with CEA, Centre d’Etudes de Saclay, DRECAM/SPEC, 91191 Gif sur Yvette, Cedex, France.
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example. In Appendix A we verify a required mathematical property of a function that is intro-
duced in the derivation of the second invariant. In Appendix B we demonstrate directly that the
general expression for a second invariant derived in this paper and the general expression derived
by Dewisme and Bouquet2 both satisfy the equation that defines an invariant and that they both are
canonically conjugate to the assumed first invariant.

II. THE GENERAL CASE

Lewis et al.1 showed that all HamiltoniansH(q,p,t) for which a specified functionĨ (q,p,t)
is an invariant are given by

H~q,p,t !5K~ t !2Ft@ Ĩ ~q,p,t !,t#2E
q0

q

Gt@q8, Ĩ ~q,p,t !,t#dq8, ~2.1!

whereG(q,I ,t) is the inverse ofĨ (q,p,t),

p5G~q,I ,t !↔I5 Ĩ ~q,p,t !, ~2.2!

and whereF(I ,t) and K(t) are arbitrary functions andq0 is a constant. Consider a canonical
transformation from variables (q,p,t) to variables (J,I ,t),

J5 J̃~q,p,t !, I5 Ĩ ~q,p,t !, ~2.3!

such that the new Hamiltonian isK(t). Then the functionsJ̃(q,p,t) and Ĩ (q,p,t) are canonically
conjugate invariants ofH(q,p,t). A result of Lewiset al.1 is that a Type Two generating function
S(q,I ,t) for the canonical transformation from variables (q,p,t) to variables (J,I ,t) is given by

S~q,I ,t !5F~ I ,t !1E
q0

q

G~q8,I ,t !dq8. ~2.4!

The transformation equations are

p5Sq~q,I ,t !, J̃~q,p,t !5SI@q, Ĩ ~q,p,t !,t#, ~2.5!

and

K~ t !5H~q,p,t !1St@q, Ĩ ~q,p,t !,t#, ~2.6!

which is equivalent to~2.1!. If we arbitrarily chooseK(t)50 and use~2.5! to write ~2.6! in terms
of (q,I ,t), the result is the Hamilton–Jacobi equation forS(q,I ,t). There is an analogous result if
one of the other generating functions is used mutatis mutandis, but the equation analogous to~2.6!
would not normally be called the Hamilton–Jacobi equation.

We assume that both the HamiltonianH(q,p,t) and a first invariantĨ (q,p,t) are given. In
order to determine the second invariantJ̃(q,p,t), we shall determine a suitable functionF(I ,t)
that occurs in~2.1!. Equation~2.1! written in terms of the variables (q,I ,t) is

H@q,G~q,I ,t !,t#5K~ t !2Ft~ I ,t !2E
q0

q

Gt~q8,I ,t !dq8. ~2.7!

Integration of~2.7! with respect tot gives
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F~ I ,t !2F~ I ,t0!5E
t0

t

K~ t8!dt82E
t0

t

H@q,G~q,I ,t8!,t8#dt82E
q0

q

G~q8,I ,t !dq8

1E
q0

q

G~q8,I ,t0!dq8, ~2.8!

where t0 is a constant. That this formula forF(I ,t) is indeed independent ofq is verified in
Appendix A. For that verification and for the remainder of the derivation of the second invariant,
we use the following identities that relate the derivatives ofG(q,I ,t) and Ĩ (q,p,t):

Gq~q,I ,t !52
Ĩ q@q,G~q,I ,t !,t#

Ĩ p@q,G~q,I ,t !,t#
, ~2.9!

GI~q,I ,t !5
1

Ĩ p@q,G~q,I ,t !,t#
, ~2.10!

Gt~q,I ,t !52
Ĩ t@q,G~q,I ,t !,t#

Ĩ p@q,G~q,I ,t !,t#
. ~2.11!

They can be derived by differentiating the identity

I5 Ĩ @q,G~q,I ,t !,t# ~2.12!

with respect toq, I , andt and solving the resulting three equations for the derivatives ofG(q,I ,t).
Now that we haveF(I ,t) we can use~2.4! and ~2.5! to calculate the second invariant

J̃(q,p,t). TakingF(I ,t0)50, the generating functionS(q,I ,t) is given by

S~q,I ,t !5E
t0

t

K~ t8!dt81E
q0

q

G~q8,I ,t0!dq82E
t0

t

H@q,G~q,I ,t8!,t8#dt8, ~2.13!

and its derivative with respect toI is

SI~q,I ,t !5E
q0

q

GI~q8,I ,t0!dq82E
t0

t

Hp@q,G~q,I ,t8!,t8#GI~q,I ,t8!dt8

5E
q0

q 1

Ĩ p@q8,G~q8,I ,t0!,t0#
dq82E

t0

t Hp@q,G~q,I ,t8!,t8#

Ĩ p@q,G~q,I ,t8!,t8#
dt8. ~2.14!

In order to obtain~2.14! we have used the identity~2.10!. The second invariantJ̃(q,p,t) is
obtained directly from~2.14! by replacing the variableI by the functionĨ (q,p,t).

The expression for the second invariant specified by~2.14! is very similar to, but different
than, the expression given by Dewisme and Bouquet in Eq.~2.7! of Ref. 2. That both expressions
are indeed invariants canonically conjugate toĨ (q,p,t) is verified directly in Appendix B.

III. THE FIRST INVARIANT GIVEN AS A FUNCTION OF TWO CANONICALLY
CONJUGATE FUNCTIONS

We now suppose that the first invariant,Ĩ (q,p,t), is given as a function of two canonically
conjugate functions:

Ĩ ~q,p,t !→ Ĩ ~x,y!, ~3.1!
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where

x5 x̃~q,p,t !, y5 ỹ~q,p,t !, ~3.2!

@ x̃~q,p,t !,ỹ~q,p,t !#51. ~3.3!

As is demonstrated by Lewiset al.,1 a representation in the form~3.1! with canonically conjugate
functionsx̃ and ỹ is always possible in principle for any invariant. Although a realization of~3.1!
may not be available in a particular case, such a representation is a natural generalization of the
form of invariants that are quadratic in the momentum for the case of a particle moving in a
potential.3 The treatment leading to a second invariant is analogous to that for the general case, the
canonical variables (x,y) replacing (q,p). However, becauseĨ (x,y) does not depend ont, the
treatment is simpler.

DefineG(x,I ) as the inverse ofĨ (x,y),

y5G~x,I !↔I5 Ĩ ~x,y!. ~3.4!

All HamiltoniansH(x,y,t) for which a specified functionĨ (x,y) is an invariant are given by

H~x,y,t !5K~ t !2Ft@ Ĩ ~x,y!,t#, ~3.5!

whereF(I ,t) andK(t) are arbitrary functions. Consider a canonical transformation from variables
(x,y,t) to variables (J,I ,t),

J5 J̃~x,y,t !, I5 Ĩ ~x,y!, ~3.6!

such that the new Hamiltonian isK(t). Then the functionsJ̃(x,y,t) and Ĩ (x,y) are canonically
conjugate invariants ofH(q,p,t). A Type Two generating functionS(x,I ,t) for the canonical
transformation from variables (x,y,t) to variables (J,I ,t) is given by

S~x,I ,t !5F~ I ,t !1E
x0

x

G~x8,I !dx8, ~3.7!

wherex0 is a constant. The transformation equations are

y5Sx~x,I ,t !, J̃~x,y,t !5SI@x, Ĩ ~x,y!,t#, ~3.8!

and

K~ t !5H~x,y,t !1St@x, Ĩ ~x,y!,t#, ~3.9!

which is equivalent to~3.5!.
Equation~2.1! written in terms of the variables (x,I ,t) is

H@q,G~x,I !,t#5K~ t !2Ft~ I ,t !. ~3.10!

Integration of~3.10! with respect tot gives

F~ I ,t !2F~ I ,t0!5E
t0

t

K~ t8!dt82E
t0

t

H@x,G~x,I !,t8#dt8, ~3.11!

where t0 is a constant. That this formula forF(I ,t) is indeed independent ofx is verified in
Appendix A.
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Now that we haveF(I ,t) we can use~3.7! and~3.8! to calculate the second invariantJ̃(x,y,t).
TakingF(I ,t0)50, the generating functionS(x,I ,t) is given by

S~x,I ,t !5E
t0

t

K~ t8!dt81E
x0

x

G~x8,I !dx82E
t0

t

H@x,G~x,I ,t8!,t8#dt8, ~3.12!

and its derivative with respect toI is

SI~x,I ,t !5E
x0

x

GI~x8,I !dx82E
t0

t

Hy@x,G~x,I !,t8#GI~x,I !dt8

5E
x0

x 1

Ĩ y@x8,G~x8,I !#
dx82E

t0

t Hy@x,G~x,I !,t8#

Ĩ y@x,G~x,I !#
dt8. ~3.13!

In order to obtain~3.13! we have used the identity analogous to~2.10!. The second invariant
J̃(x,y,t) is obtained directly from~3.13! by replacing the variableI by the functionĨ (x,y).

It is possible to convert the Hamiltonian system in terms of (x,y,t) to an autonomous system
by introducing a new time variableT that is defined separately on each level curve ofĨ (x,y). This
leads to an elegant expression forJ̃(x,y,t). Hamilton’s equations for the Hamiltonian given by
~3.5! are

ẋ~ t !52FtI@ Ĩ ~x,y!,t# Ĩ y~x,y!, ẏ~ t !5FtI@ Ĩ ~x,y!,t# Ĩ x~x,y!. ~3.14!

Define the new time variableT by

T52FI~ I ,t !, ~3.15!

and defineX(T)5x(t) andY(T)5y(t). Then Hamilton’s Eqs.~3.14! can be written as an au-
tonomous Hamiltonian system in (X,Y,T),

dX

dT
5 Ĩ y~X,Y!5hY~X,Y!,

dY

dT
52 Ĩ x~X,Y!52hX~X,Y!, ~3.16!

whose Hamiltonian is

h~X,Y!5 Ĩ ~X,Y!. ~3.17!

Thus, a canonically conjugate second invariant written in terms of (X,Y,T) is immediately given
by

J̃̃~X,Y,T!52T1E
X0

X 1

hY$X8,G@X8,h~X,Y!#%
dX8, ~3.18!

and in terms of (x,y,t) by

J̃~x,y,t !5FI@ Ĩ ~x,y!,t#1E
x0

x 1

Ĩ y$x8,G@x8, Ĩ ~x,y!#%
dx8. ~3.19!

As an example, we consider the system discussed in Sec. IV C of Ref. 1. The Hamiltonian in
terms of (q,p,t) is

H~q,p,t !5 1
2p

21V~q,t !, ~3.20!
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where the potential is

V~q,t !52
1

2 S ȧ1q1ḃ1

a1
D 22 ȧ1

a1
2 S 12 ȧ1q1ḃ1D q1

1

a1
S 12 ä1q1b̈1D q

2a1
2 ln~a1q1b1!2

a1
2

2~a1q1b1!
2 E t

a1
2~ t8!dt8 ~3.21!

anda1(t) andb1(t) are two arbitrary functions of time. An invariant for this system is

Ĩ ~x,y!5xy21 ln y, ~3.22!

wherex andy are defined by

x5 x̃~q,p,t !5
1

2
~a1q1b1!

21
a1~a1q1b1!*

ta1
2~ t8!dt8

p2
a1

~a1q1b1!
* ta1

2~ t8!dt81
~ ȧ1q1ḃ1!

a1

, ~3.23!

y5 ỹ~q,p,t !5
p

a1~a1q1b1!
1

~ ȧ1q1ḃ1!

a1
2~a1q1b1!

2
1

~a1q1b1!
2 E t

a1
2~ t8!dt8. ~3.24!

The functionF(I ,t) is

F~ I ,t !52a1
2~ t !I , ~3.25!

and the new time is

T5E t

a1
2~ t8!dt8. ~3.26!

For this example, the new time is independent ofI . The autonomous Hamiltonian is

h~X,Y!5XY21 ln Y ~3.27!

and Hamilton’s equations are

dX

dT
52XY1

1

Y
,

dY

dT
52Y2. ~3.28!

A second invariant canonically conjugate toI is

J52T1
1

Y
52E t

a1
2~ t8!dt81

1

ỹ~q,p,t !
. ~3.29!

Direct integration of~3.28! yields

X~T!5~T1c1!
2@c21 ln~T1c1!#, Y~T!5~T1c1!

21, ~3.30!

wherec1 andc2 are constants of integration equal toJ and I , respectively.

APPENDIX A: VERIFICATION OF THE FUNCTIONAL DEPENDENCE OF F(I,t )

In order to verify that the rhs of~2.8! is independent ofq, we evaluate its derivative with
respect toq:
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]

]q
rhs~2.8!52

]

]q E
t0

t

H@q,G~q,I ,t8!,t8#dt82G~q,I ,t !1G~q,I ,t0!. ~A1!

The first term can be transformed as follows:

2
]

]q
E
t0

t

H@q,G~q,I ,t8!,t8#dt8

52E
t0

t 1

Ĩ p@q,G~q,I ,t8!,t8#
$Hq@q,G~q,I ,t8!,t8# Ĩ p@q,G~q,I ,t8!,t8#

2Hp@q,G~q,I ,t8!,t8# Ĩ q@q,G~q,I ,t8!,t8#%dt8 ~A2!

In order to obtain~A2! we have used the identity~2.9!. The expression in the curly brackets in
~2.10! is minus the Poisson bracket ofĨ with H. Therefore we may use~1.1! to obtain

2
]

]q
E
t0

t

H@q,G~q,I ,t8!,t8#dt852E
t0

t Ĩ t@q,G~q,I ,t8!,t8#

Ĩ p@q,G~q,I ,t8!,t8#
dt85E

t0

t

Gt~q,I ,t8!dt8. ~A3!

In order to obtain~A3! we have used the identity~2.11!. Finally, by substituting~A3! into ~A1!,
we obtain

]

]q
rhs~2.8!50, ~A4!

as is required in order that~2.8! be a valid formula forF(I ,t).
The derivative of the rhs of~3.11! with respect tox can be evaluated as follows:

]

]x
rhs~3.11!52

]

]x
E
t0

t

H@x,G~x,I !,t8#dt8

52E
t0

t 1

Ĩ y@x,G~x,I !,t8#
$Hx@x,G~x,I !,t8# Ĩ y@x,G~x,I !#

2Hy@x,G~x,I !,t8# Ĩ x@x,G~x,I !#%dt8. ~A5!

In order to obtain~A5! we have used the identity analogous to~2.9!. The expression in the curly
brackets in~A5! is minus the Poisson bracket ofĨ with H. Therefore, sinceĨ (x,y) is not an
explicit function of t, we obtain

]

]x
rhs~3.11!50, ~A6!

as is required in order that~3.11! be a valid formula forF(I ,t).

APPENDIX B: DIRECT VERIFICATION OF EQ. (2.14) AND OF THE CORRESPONDING
RESULT OF DEWISME AND BOUQUET

The expression forJ̃(q,p,t) specified by~2.5! and~2.14! is very similar to, but different than,
the expression given by Dewisme and Bouquet in Eq.~2.7! of Ref. 2. The two expressions may
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differ by a function of the invariantĨ (q,p,t). Here we verify directly that both expressions are
indeed invariants canonically conjugate toĨ (q,p,t). For that purpose we substitute the expressions
into ~1.1! and evaluate their Poisson brackets withĨ (q,p,t).

1. J̃ (q ,p ,t ) specified by Eq. (2.14)

The total time derivative ofJ̃(q,p,t) is

d

dt
J̃~q,p,t !5 J̃t~q,p,t !1@J,H#5SIt1SII Ĩ t1SIqHp1SII @ I ,H#5SIt1SIqHp52

Hp~q,p,t !

Ĩ p~q,p,t !

1H 1

Ĩ p~q,p,t0!
2E

t0

t ]

]q

Hp@q,G~q,I ,t8!,t8#

Ĩ p@q,G~q,I ,t8!,t8#
dt8JHp~q,p,t !. ~B1!

The integral in~B1! can be evaluated by transforming the integrand to a derivative with respect to
t holding (q,I ) fixed. In order to do that, we use the derivative with respect top of ~1.1!,

05 Ĩ tp1 Ĩ qpHp1 Ĩ qHpp2 Ĩ ppHq2 Ĩ pHqp , ~B2!

along with ~2.10!, ~1.1!, and~2.12!:

]

]q

Hp@q,G~q,I ,t !,t#

Ĩ p@q,G~q,I ,t !,t#
5

1

Ĩ p
2 $@Hpq1HppGq# Ĩ p2Hp@ Ĩ pq1 Ĩ ppGq#%

5
1

Ĩ p
2 $ Ĩ tp1 Ĩ ppGt%52

]

]t

1

Ĩ p@q,G~q,I ,t !,t#
. ~B3!

Substitution of~B3! into ~B1! immediately shows satisfaction of~1.1!.
The following evaluation demonstrates thatJ̃(q,p,t) and Ĩ (q,p,t) are canonically conjugate:

@J,I #5
1

Ĩ p~q,p,t0!
Ĩ p~q,p,t !2H E

t0

t ]

]q

Hp@q,G~q,I ,t8!,t8#

Ĩ p@q,G~q,I ,t8!,t8#
dt8J Ĩ p~q,p,t !

5H 1

Ĩ p~q,p,t0!
1E

t0

t ]

]t8

1

Ĩ p@q,G~q,I ,t8!,t8#
dt8J Ĩ p~q,p,t !51. ~B4!

2. J̃ (q ,p ,t ) as given by Dewisme and Bouquet

The expression forJ̃(q,p,t) given by Dewisme and Bouquet in Eq.~2.7! of Ref. 2, written in
the notation of the present paper, is

J̃~q,p,t !5SI@q, Ĩ ~q,p,t !,t#,

as in ~2.5!, but whereSI(q,I ,t) is given by

SI~q,I ,t !5E
q0

q 1

Ĩ p@q8,G~q8,I ,t !,t#
dq82E

t0

t Hp@q0 ,G~q0 ,I ,t8!,t8#

Ĩ p@q0 ,G~q0 ,I ,t8!,t8#
dt8, ~B5!

instead of by~2.14!. The total time derivative of thisJ̃(q,p,t) is
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d

dt
J̃~q,p,t !52

Hp~q0 ,p,t !

Ĩ p~q0 ,p,t !
1E

q0

q ]

]t

1

Ĩ p@q8,G~q8,I ,t !,t#
dq81

Hp~q,p,t !

Ĩ p~q,p,t !
. ~B6!

The integral in~B6! can be evaluated by using~B3!. It follows immediately that~1.1! is satisfied.
Verification of the Poisson bracket relation [J,I ]51 is very simple whenSI(q,I ,t) is given by

~B5!.
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It is shown theoretically for the first time that, depending on its period, amplitude,
and initial phase, a periodic parametric modulation can suppress a chaotic escape
from a potential well. The instance of the Helmholtz oscillator is used to demon-
strate, by means of Melnikov’s method, that parametric modulations of the linear or
quadratic potential terms inhibit chaotic escape when certain resonance conditions
are met. ©1996 American Institute of Physics.@S0022-2488~96!03709-7#

I. INTRODUCTION

Escape from a potential well is a general problem in the physical sciences. One finds it in very
different contexts: the escape of stars from a stellar system,1 the orbits of a photon near a
Schwarzschild black hole,2 the photodissociation of molecules as described by the driven Morse
oscillator,3 the capsizing of a boat subjected to trains of regular waves,4 and the stochastic escape
of a trapped ion induced by a resonant laser field,5 to quote a few. All of these systems~except the
integrable one of Ref. 2! present a common characteristic: before escape, chaotic transients of
unpredictable duration are usually observed for orbits starting from chaotic generic phase space
regions~such as those surrounding separatrices!, in both Hamiltonian1,3,5and dissipative4 systems.
As the application of weak parametric modulations~PMs! is an effective technique for taming
chaos arising from such a wide class of dynamical systems,6 one might conjecture that there would
be a similar efficacy for suppressing chaotic escape. The approach is of the nonfeedback type, and
is easily implemented in practical systems, where the performance of a specific nonlinear system
with a potential well subjected to a periodic excitation would generally be considered optimal if it
operates in a periodic mode~i.e., inside the well!.

For the sake of clarity, we shall concentrate in this paper on the simplest model for a universal
chaotic escape situation—the Helmholtz oscillator.7 We first added a weak PM of the quadratic
term,

ẍ5x2b@11h sin~Vt1f!#x22d ẋ1g sin~vt !, ~1!

wherex is the displacement,V, h andf are the normalized frequency, amplitude, and initial
phase, respectively, of the PM~h !1!, which will have an inhibitory effect on the chaotic escape
of the remaining system~d,g !1!,8 andv, d, andg are the normalized parameters of frequency,
damping coefficient, and driving term amplitude, respectively. We shall then apply instead a PM
of the linear term

a!Also at the Departamento de Fı´sica, Facultad de Ciencias, Universidad de Extremadura; Electronic mail:
rchacon@unex.es
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ẍ5x@11h8 sin~V8t1f8!#2bx22d ẋ1g sin~vt !, ~2!

whereV8, h8, andf8 are the normalized frequency, amplitude, and initial phase, respectively, of
the PM ~h8!1!, and compare the results.

II. MELNIKOV ANALYSIS

Melnikov’s method~MM ! is the main analytical technique currently available to provide a
criterion for the occurrence of homoclinic~and heteroclicic! chaos in a dynamical system, and is
today considered standard. As is well known, MM predictions are both approximate~the MM is a
first-order perturbative method! and limited ~only valid for orbits starting at points sufficiently
near the separatrix!. However, they are highly valued because of the quite general scarcity of
analytical results in the theory of chaos. Since it has been described many times by different
authors, we shall not discuss it in detail here, but refer the interested reader to that literature.9–13

A. Melnikov function

The application of MM to Eq.~1! involves calculating the Melnikov function,

M ~ t0!52dE
2`

`

ẋ0
2~ t !dt1gE

2`

`

ẋ0~ t !sin@v~ t1t0!#dt2bhE
2`

`

ẋ0~ t !x0
2~ t !sin@V~ t1t0!1f#dt,

~3!

where

x0~ t !5
3

2b
sech2S t2D ,

~4!

ẋ0~ t !52
3

2b
sech2S t2D tanhS t2D ,

is the parametric representation of the separatrix of the underlying conservative system~d5g5h
50!. After substituting Eq.~4! into Eq. ~3! and computing the resulting integrals with the aid of
standard integral tables,14 Eq. ~3! can be written as

M ~ t0!52C2A cos~vt0!1B cos~Vt01f!, ~5!

with

C5
6d

5b2 ,

A5
6pg

b
v2 cosech~pv!, ~6!

B5
3ph

5b2 V2~V211!~V214!cosech~Vp!.

As is well known,11–13 the Melnikov functionM (t0) measures the distance between the
perturbed stable and unstable manifolds in the Poincare´ section att0. If M (t0) has a simple zero,
then a homoclinic bifurcation occurs, signifying the possibility of chaotic behavior, i.e., only
necessaryconditions for steady chaos are obtained from MM, and therefore one always has the
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possibility of findingsufficientconditions for the elimination of even transient chaos. Indeed, we
shall show in the following that the MM provides, for the system under consideration, sufficient
conditions for the inhibition of chaotic escape.

B. Escape Inhibition Theorem (EIT)

Suppose that forh50 the system~1! undergoes a chaotic escape for which the associated
Melnikov function M0(t0)[2C1A cos~vt0! has simple zeros, i.e.,A2C[d>0, where the
equal sign corresponds to the case of tangency between the stable and unstable manifolds. If we
now let the PM act on the system~hÞ0! in such a way thatB.d, i.e., A2B2C,0, this
relationship provides a necessary condition forM (t0) to always have the same sign, specifically
M (t0),0, which is

h.S 12
C

ADR, ~7!

with

R5
10gbv2

V2~V211!~V214! Fsinh~pV!

sinh~pv! G . ~8!

For generalV andf ~0<f<2p!, we shall see that this condition is not sufficient to assure the
negativity ofM (t0). In order to achieve such a sufficient condition, we shall first need three
lemmas.

Lemma I: Let V/v be irrational. Then there exists ant̄0 such that
B cos(V t̄01f)2A cos(v t̄0).A2B.

Lemma II: Let pv5qV for some positive integersp and q. Then a t0* exits such that
cos(vt0* )5cos(Vt0* 1 f)5 21 if andonly if

p

q
5
2m212f/p

2n21
, ~9!

for some integersm andn.
Remark:Observe that a requirement for Eq.~9! to be fulfilled for some integersm andn is

f5m1p/m2 , m1,2 integers.
Lemma III:Let g(t;p,q)5@12cos(pt/q)#/~12cost!, t real,p andq integers. Theng is finite

if and only if q51. One also has that 0<g(t;p,1)<p2.
It is obvious that for Eq.~7! to also be a sufficient condition forM (t0) to be negative for all

t0, one must have

A2B>B cos~Vt01f!2A cos~vt0!. ~10!

We now look for the values ofv, V, andf, permitting Eq.~10! to be fulfilled for all t0. From
Lemma I, a resonance condition is required:pv5qV. In such a situation, Lemma II provides a
condition for Eq.~10! to be satisfied for an infinity oft0 values. Thus, let us assume thatp, q, and
f verify Eq. ~9!. We can then rewrite Eq.~10! in the form

A

B
>
12cos~pt/q!

12cost
, ~11!

with t [vt02(2n21/2)p. Finally, if q51, Lemma III provides a condition for Eq.~11! to be
fulfilled for all t :
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h<
R

p2
, ~12!

with R given by ~8!. The proofs of the lemmas are quite straightforward, so they will not be
included here. In brief we have the following.

Escape Inhibition Theorem „EIT …: Let V5pv, p an integer, such thatp5(2m212f/p)/
(2n21) is satisfied for some integersm and n. ThenM (t0) always has the same sign, i.e.,
M (t0),0, if and only if the following condition is fulfilled:

hmin,h<hmax,

hmin5S 12
C

ADR, ~13!

hmax5
R

p2
.

Remarks:First, note that, for a given set of parameters satisfying the theorem’s hypothesis, as
the resonance orderp is increased, the allowed interval#hmin ,hmax# for escape inhibition shrinks
rapidly. One may therefore expect only the first few resonances to be suitable for suppressing
chaotic escape~as, in fact, we observed in numerical experiments!. Figure 1 shows the width
Dh ~v!5hmax2hmin vs v for d,g5const. There exist a minimum-range frequency for each reso-
nance. Observe that the minimumvmin is lower as the resonance order is increased. The asymp-
totic behaviorDh ~v→0,̀ !5` means that chaotic escape is impossible in these limits. Second, we
can test the EIT theoretically by considering the limiting cased50. From Eqs.~9! and ~13!, one
hasf50, V5v, and h5R as a necessary and sufficient condition for eliminating stochastic
escape. But this is the obvious result arising from a direct analysis of Eq.~5!. Third, the EIT
imposes havingf50 ~f5p! for odd ~even! values ofp. Note that since distinctf values imply
different initial conditions for the complete system~1!, the above results provide information
about theextensionand structureof the basin of attraction of the regularized~periodic! orbits
inside the well.

C. Case of a PM of the linear term

We now compare the above results with those corresponding to the application of a PM of the
linear term as in Eq.~2!. Proceeding similarly to the quadratic case, the Melnikov function
corresponding to Eq.~2! is

FIG. 1. FunctionDh ~v!5hmax2hmin vs v for d5const,b5const,g5const, andV5pv: ~a! p51; ~b! p52; ~c! p53.
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M 8~ t0!52C2A cos~vt0!1B cos~V8t01f8!, ~14!

with

B85
3ph8

b2 V82~V8211!cosech~pV8!, ~15!

andC, A given by Eq.~6!. Note that Eqs.~5! and ~14! become identical with the substitutions:
B→B8, V→V8, f→f8. Therefore~cf. Sec. II B!, one obtains a similar escape inhibition theorem
~that we shall denote EIT8!: Let V85pv, p an integer, such thatp5(2m212f8/p)/(2n21) is
satisfied for some integersm andn. ThenM 8(t0) always has the same sign, i.e.,M 8(t0),0, if and
only if

hmin8 ,h8<hmax8 ,

hmin8 5S 12
C

ADR8,

~16!

hmax8 5
R8

p2
,

R85
2gbv2

V82~V8211! Fsinh~pV8!

sinh~pv! G .
The same remarks hold as for EIT. In order to compare the quadratic and linear cases we set
V5V8, f5f8 and defineDh8(v) 5 hmax8 2 hmin8 . We then obtain@cf. Eqs.~13! and~16!#

Dh~v!

Dh8~v!
5

5

p2v214
. ~17!

Figure 2 shows the relative widthDh ~v!/Dh8~v! vs v for several values ofp. First, observe that
for v51/p, Dh ~v!5Dh8~v!, whereas for v.1/p ~v,1/p! one has Dh ~v!,Dh8~v!
@Dh ~v!.Dh8~v!#, i.e., the effectiveness of the quadratic PM~in the frequency domain! relative to
the linear PM rises with decreasing resonance order, andvice versa. Second, with fixedp, the
asymptotic behavior@Dh/Dh8#~v→`!50 means that a linear PM inhibits chaotic escape much
more easily~i.e., for a larger interval of amplitudes! than a quadratic PM for small driving periods

FIG. 2. FunctionDh ~v!/Dh8~v! @Eq. ~17!# vs v for several values ofp: ~a! p51; ~b! p52; ~c! p53.
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of the primary chaos-inducing modulation. From the other limit~Dh/Dh8!~v→0!55/4, we deduce
the opposite result for large driving periods, i.e., for resonances with orbits~of the conservative
Helmholtz oscillator! very close to the separatrix~for which T5`!.

III. CONCLUSIONS

We have shown here for the first time that the application of periodic PM is an efficient
procedure for suppressing chaotic escape from a potential well. Analytical estimates of the ranges
of parameters for inhibition were found by means of the Melnikov analysis of the example of the
Helmholtz oscillator. The cases of PMs of the linear and quadratic potential terms were studied
and compared. It was demonstrated that a PM of the linear~quadratic! term suppress chaotic
escape more efficiently than that of the quadratic~linear! term for small~large! driving periods of
the primary chaos-inducing modulation.
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An approach of constructing isospectral flowsKl , nonisospectral flowssk and their
implicit representations of a general Lax integrable system is proposed. By intro-
ducing product function matrices, it is shown that the two sets of flows and of
related symmetries both constitute infinite-dimensional Lie algebras with respect to
the commutatorv•,•b given in this paper. Algebraic properties for some well-known
integrable systems such as the AKNS system, the generalized Harry Dym system,
and then-wave interaction system are obtained as particular examples. ©1996
American Institute of Physics.@S0022-2488~96!00311-8#

I. INTRODUCTION

Many ~111!-dimensional Lax integrable systems, such as the AKNS system, the generalized
Harry Dym ~HD! system, and then-wave interaction system, possess a couple of isospectral flows
Kl and nonisospectral flowssk . For an integrable system with a recursion operator, by using the
hereditariness of this operator, an infinite-dimensional Lie algebra constituted by the flowsKl and
sk can be derived. In recent years, there are some new methods that do not use the concept of
hereditary symmetry in the study of the algebraic structure of the flows. On the basis of Fokas–
Fuchssteiner’s idea of the master symmetry, Chenget al.1,2 have introduced the notion of semi-
product Lie algebra of Lax operator. From here, they have suggested a direct approach to derive
the commutator relations of flows for some integrable systems. Following this line and assuming
that there exists a recursion operator for flows and some other restrictive conditions, Ma3 has
further given the algebraic structure of Lax operator and corresponding flows for the spectral
problemLf5lf. However, the applied scope of Ma’s results is very limited. In Refs. 4–6, we
have introduced the implicit representations of the flows of some soliton systems by using the
zero-curvature equation and have also obtained the algebraic properties of these flows by simple
computation.

In this paper, we would like to consider the algebraic properties of an integrable system
associated with the general linear problem

fx5M ~h,u!f, ~1.1a!

f t5N~ t,x,h,u!f. ~1.1b!

We first put forward a simple method to derive respectively its isospectral flowsKl , nonisospec-
tral flowssk ~may be no recursion operator!, and their implicit representations. Then we introduce
the notion and some Lie commutator equalities of product function matrices which play crucial
roles in our theory. As a result, the infinite-dimensional Lie algebraic structures of the flows and
related symmetries of the general Lax integrable system can be derived naturally. Finally we shall
apply our results to several known integrable systems such as the AKNS system, the generalized
HD system, and then-wave interaction system.

The method used in this paper is universal and can be extended to some high-dimensional Lax
integrable systems. Thus it is revealed that there exists a close relationship between infinite-
dimensional Lie algebra of flows and Lax integrability of corresponding evolution equations.

0022-2488/96/37(11)/5524/15/$10.00
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This paper is organized as follows. Section II gives the notion of the Gateaux derivative and
some required derivation formulas. In Sec. III we derive the isospectral flowsKl and nonisospec-
tral flows sk of a general integrable system associated with the linear problem~1.1! and their
implicit representations. In Sec. IV we introduce product function matrices and related Lie com-
mutator equalities. In Sec. V, we derive Lie algebraic structure of flowsKl andsk of the general
Lax integrable system. Finally, we apply the results obtained to some classical integrable systems
in Sec. VI.

II. GATEAUX DERIVATIVE

Let xPRn, u5u(t,x)5(u1 ,u2 ,...,us)
T, whereui5ui(t,x)PS(Rn) ~the space of rapidly de-

creasing functions!. Supposef5 f (t,x,u)5( f 1 , f 2 ,...,f m)
T with f i5 f i(t,x,u,Du,D

2u,...,Dru),
in which Dru 5 D1

r1D2
r2•••Dn

rnu, Diu5]u/]xi , and r is a set of non-negative integers
$r 1 ,r 2 ,...,r n%, is aC

` differentiable vector filed with respect tox, u, Du, D2u,..., andDru. By
V(m) denote a complex linear space constructed by these vector fields. ByQ(m) denote a set
composed of all the linear operators@in the form ofT5T(t,x,u)] acting on the vector field space
V(m) and beingC` differentiable forx andu as well. Obviously,Q(m) is also a linear space. In
addition, byQ0

(m) denote a subspace described by all them3m function matrices inQ(m).
Definition 1:Let fPV(m), hPV(s), andTPQ(m). Then

f 8@h#5 f 8~u!@h#5
d

d«
f ~u1«h!u«50 ~2.1a!

and

T8@h#5T8~u!@h#5
d

d«
T~u1«h!u«50 ~2.1b!

are called, respectively, the Gateaux derivatives of the vector fieldf and linear operatorT in the
directionh with respect tou, or called theG-derivative for short.

From the definition, we obtain the following.
Lemma 1:Let fPV(m), hPV(s), andT, SPQ(m). Then the Leibniz formulas

~T f !8@h#5T8@h# f1T f8@h# ~2.2a!

and

~TS!8@h#5T8@h#S1TS8@h# ~2.2b!

are valid.
Clearly, T8PQ(m), and theG-derivative can also be defined. So we have the following

lemma.
Lemma 2:Let f ,gPV(s) andTPQ(m). Then

~T8!8@ f #g5~T8!8@g# f . ~2.3!

Definition 2:Let f ,gPV(s). Then

v f , gb5 f 8@g#2g8@ f # ~2.4!

is named the commutator of vector fieldsf andg.
Lemma 3:Linear spaceV(s) constitutes a Lie algebra with respect to the commutator opera-

tion ~2.4!.7
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Lemma 1 together with Lemma 2 immediately implies the following.
Lemma 4:Let f ,gPV(s) andTPQ(m). Then

~T8@ f # !8@g#2~T8@g# !8@ f #5T8@ v f , gb#. ~2.5!

III. ISOSPECTRAL AND NONISOSPECTRAL FLOWS

Let h be a spectral parameter andL(Q0
(m)) be a linear space containing all the polynomials of

h onQ0
(m).

Suppose that the couple of function matricesM5M (h,u) andN5N(t,x,h,u) in the linear
problem~1.1! belong toL(Q0

(m)). The compatible condition of~1.1! is

Mt2Nx1@M , N#50, ~3.1!

where [M ,N]5MN2NM andxPR8. Usually, ~3.1! is called the zero-curvature equation.
From Eq.~3.1!, if one can derive a hierarchy of isospectral evolution equations

ut5Kl , KlPV~s!, l50,1,2,..., ~3.2!

or of nonisospectral evolution equations

ut5sk , skPV~s!, k50,1,2,... . ~3.3!

Then ~3.2! or ~3.3! are called to be Lax integrable.
In the isospectral case,Mt5M 8[ut]5M 8[Kl ]. It follows that Eq.~3.1! can be written as

M 8@Kl #5Nl ,x1@Nl , M #, ~3.4!

whereNl5Nl(t,x,h,u)PL(Q0
(m)). While for nonisospectrum,Mt5M 8[sk]1Mhh t ; then Eq.

~3.1! implies

M 8@sk#5Pk,x1@Pk , M #2Mhhak1b, ~3.5!

wherePk5Pk(t,x,h,u)PL(Q0
(m)), h t5hak1b, anda, b, andk are all integers. Equations~3.4!

and~3.5! are named respectively the implicit representations of the hierarchies of evolution equa-
tions ~3.2! and ~3.3! ~or of the flowsKl andsk!.

In what follows, we shall discuss a sufficient condition under which the above implicit rep-
resentations are existential and unique. Suppose that for the given function matrix
M5M (h,u)PL(Q0

(m)) and vector fieldY5Y(t,x,u)PV(s)(Yuu5050), the matrix equation

M 8@X2haY#5Nx1@N, M # ~3.6!

possesses unique solutionsX5X(t,x,u)PV(s) and N5N(t,x,h,u)PL(Q0
(m)) which meet the

condition

Nuu505d0M uu50h
m, ~3.7a!

wherea~aÞ0! andm are integers andd0 is given by

d05 H1, if Y50,
0, if YÞ0. ~3.7b!

Then for eachj there exists a unique vector fieldKjPV(s) with Kj uu5050 @see~3.16! and~3.17!#
and a unique function matrixUjPL(Q0

(m)) ~j50,1,...,l !, which satisfy in turn the following:

M 8@K0#5U0,x1@U0 , M #, U05M uu50h
m, ~3.8a!

5526 D.-Y. Chen and D.-J. Zhang: Lie algebraic structures of Lax integrable systems

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



M 8@Kj2haKj21#5Uj ,x1@Uj , M #, Uj uu5050 ~ j51,2,...,l!. ~3.8b!

Equation~3.8! suggests

M 8@Kl #5M 8@K0#h
a l1(

j51

l

M 8@Kj2haKj21#h
a~ l2 j !

5(
j50

l

U j ,xh
a~ l2 j !1F (

j50

l

U jh
a~ l2 j !, M G , ~3.9!

that is to say, the vector fieldKl possesses a unique implicit representation~3.4! where

Nl5(
j50

l

U jh
a~ l2 j !PQ0

~m! , Nl uu505M uu50h
a l1m. ~3.10!

In the same way, if we suppose that there exist a vector fields0PV(s) ~s0uu5050! and a
function matrixW0PL(Q(m)) which satisfy

M 8@s0#5W0,x1@W0 , M #2Mhhb ~3.11a!

and

W0uu505~p0xMuu501A0!h
b21, ~3.11b!

herep05p0(t)PQ0
(1), A05A0(t)PQ0

(m), both depend on given spectral problem. Then for eachj
there also must exist uniquely a vector fieldsj with s j uu5050 @see~3.18!# and a function matrix
WjPL(Q0

(m))( j51,2,...,k) which satisfy in turn

M 8@s j2has j21#5Wj ,x1@Wj , M #, Wj uu5050 ~ j51,2,...,k!. ~3.12!

Equation~3.11! coupled with~3.12! yields

M 8@sk#5M 8@s0#h
ak1(

j51

k

M 8@s j2has j21#h
a~k2 j !

5(
j50

k

Wj ,xh
a~k2 j !1F (

j50

k

Wjh
a~k2 j !, M G2Mhhak1b. ~3.13!

That means the vector fieldsk possesses the implicit representation~3.5! where

Pk5(
j50

k

Wjh
a~k2 j !PL~Q0

~m!! , Pkuu505~p0xMuu501A0!h
ak1b21. ~3.14!

It should be noted that if Eq.~3.6! has unique solutions meeting Condition~3.7!, then the
matrix equation

M 8@X#5Nx1@N, M #, Nuu5050, ~3.15!

only admits zero solutionsX50 andN50. As a result, the solutionss0 andW0 of ~3.11! are
unique, and so is the implicit representation ofsk .

From the above note, it is easy to know that if Eq.~3.6! possesses solutionsXPV(s) and
NPL(Q0

(m)) meeting Condition~3.7!, the two following propositions are equivalent:
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~1! The solutions satisfying Eq.~3.6! and Condition~3.7! are unique.
~2! In ~3.15!, operatorM 8 is an injective homomorphism and fromNuu5050 it can be deduced

thatN50.

Furthermore, from~3.8!, we have

M 8@K0#uu5050, M 8@Kj2haKj21#uu5050 ~ j51,2,...,l!. ~3.16!

BecauseM 8 is an injective homomorphism~so isM 8uu50!, ~3.16! suggests

Kj uu5050 ~ j50,1,...,l!. ~3.17!

Similarly, ~3.12! associated with the assumptions0uu5050 yields also

s j uu5050 ~ j51,2,...,k!. ~3.18!

The above results can be generalized to the following theorem:
Theorem 1: Suppose that for any given vector fieldY5Y(t,x,u)PV(s)(Yuu5050! the func-

tion matrix equation~3.6! possesses unique solutions vector fieldX5X(t,x,u)PV(s) and function
matrix N5N(t,x,h,u)PL(Q0

(m)) which satisfy the condition~3.7!. Then the vector field
KlPV(s) constructed in turn by~3.8! meets the condition~3.17! and has a unique implicit repre-
sentation~3.4!, in which the function matrixNl5Nl(t,x,h,u)PL(Q0

(m)) is described by~3.10!.
While if there exist solutionss0PV(s) ~s0uu5050! andW0PL(Q0

(m)) satisfying~3.11!, then the
vector fieldskPV(s) constructed in turn by~3.11! and ~3.12! satisfies Condition~3.18! and has
also a unique implicit representation~3.5! wherePk5Pk(t,x,h,u)PL(Q0

(m)) is expressed by
~3.14! andp0 andA0 in ~3.14! satisfy

@A0 , M uu50#52p0M uu501Mhuu50h. ~3.19!

Here it suffices to deduce~3.19!. In fact, substituting the condition~3.14! into Eq. ~3.5! and
noticingM 8[sk] uu5050 yield ~3.19! easily.

IV. PRODUCT FUNCTION MATRICES AND RELATED ALGEBRAIC STRUCTURES

In this section, we first introduce the notion of product function matrices.
Definition 4: Suppose, respectivelyKl and skPV(s) are the isospectral and nonisospectral

flows of the Lax integrable system associated with the linear problem~1.1! and have the unique
implicit representations~3.4! and ~3.5!. Then

^Nl , Nk&5Nl8@Kk#2Nk8@Kl #1@Nl , Nk#, ~4.1a!

^Nl ,Pk&5Nl8@sk#2Pk8@Kl #1@Nl ,Pk#1Nl ,hhak1b, ~4.1b!

^Pl ,Pk&5Pl8@sk#2Pk8@s l #1@Pl , Pk#1Pl ,hhak1b2Pk,hha l1b ~4.1c!

are named three kinds of product function matrices.
Concerning the product function matrices, we give the following theorems:
Theorem 2: Suppose that̂ Nl , Nk&, ^Nl , Pk&, and ^Pl , Pk& are defined by~4.1! and

b215a i 0 ~i 0 integer!. Then we have

M 8@ vKl , Kkv #5^Nl , Nk&x1@^Nl , Nk&, M #, ~4.2a!

M 8@ vKl , skb#5^Nl , Pk&x1@^Nl , Pk&, M #, ~4.2b!
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M 8@ vs l , skb#5^Pl , Pk&x1@^Pl , Pk&, M #2a~ l2k!Mhha~ l1k1 i0!1b. ~4.2c!

Proof: We only prove the equality~4.2b!; the other equalities~4.2a! and ~4.2c! can be ob-
tained similarly. Respectively, from the representations~3.4! and ~3.5!, we have

~M 8@Kl # !8@sk#5Nl ,x8 @sk#1@Nl8@sk#, M #1@Nl , Pk,x#1@Nl , @Pk , M ##2@Nl , Mh#hak1b

~4.3a!

and

~M 8@sk# !8@Kl #5Pk,x8 @Kl #1@Pk8@Kl #, M #1@Pk , Nl ,x#

1@Pk , @Nl , M ##2Nl ,xhhak1b2@Nl , M #hhak1b. ~4.3b!

Because of

@Nl , @Pk , M ##2@Pk , @Nl , M ##5@@Nl , Pk#, M #,

~4.3! suggests

~M 8@Kl # !8@sk#2~M 8@sk# !8@Kl #5~Nl8@sk#2Pk8@Kl #1@Nl , Pk#1Nl ,hhak1b!x

1@Nl8@sk#2Pk8@Kl #1@Nl , Pk#1Nl ,hhak1b, M #. ~4.4!

From ~4.4! and using Lemma 4 and Definition 4, we obtain~4.2b! immediately.
Theorem 3: Suppose that the matricesNl andPk are respectively described by~3.10! and

~3.14!. Then

^Nl , Nk&uu5050, ~4.5a!

^Nl , Pk&uu505~a l1m1p0!Nl1k1 i0
uu50 , ~4.5b!

^Pl , Pk&uu505a~ l2k!Pl1k1 i0
uu50 . ~4.5c!

Proof: By Theorem 1, we knowKi uu5050 ands j uu5050. Thus

Nl8@Kk#uu505Nk8@Kl #uu505Nl8@sk#uu5050, ~4.6a!

Pl8@sk#uu505Pk8@s l #uu505Pk8@Kl #uu5050. ~4.6b!

Recalling the condition~3.10! we obtain

^Nl , Nk&uu505@Nl , Nk#uu505@M uu50 , M uu50#h
a~ l1k!12m50. ~4.7!

Next, using~3.14!, we have

^Nl , Pk&uu505@Nl , Pk#uu501Nl ,hhak1buu50

5@M , A0#uu50h
a~ l1k1 i0!1m1Mhuu50h

a~ l1k1 i0!1m11

1~a l1m!M uu50h
a~ l1k1 i0!1m. ~4.8!

Substitution of~3.19! into ~4.8! yields ~4.5b!. At last, it follows from a similar argument that
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^Pl , Pk&uu505@Pl , Pk#uu501Pl ,hhak1buu502Pk,hha l1buu50

5a~ l2k!~p0xMuu501A0!h
a~ l1k1 i0!1b21

5a~ l2k!Pl1k1 i0
uu50 . ~4.9!

V. LIE ALGEBRAIC STRUCTURE OF THE FLOWS K l AND sk

In this section, we use the equalities~4.2! and ~4.5! which the product function matrices
satisfy to derive the Lie algebraic structure of the flowsKl andsk .

Theorem 4: Suppose respectively that the isospectral flowsKl and nonisospectral flowssk

have the unique implicit representations~3.4! and~3.5!, and thatNl andPk are described by~3.10!
and ~3.14!. Then

vKl , Kkb50, ~5.1a!

vKl , skb5~a l1m1p0!Kl1k1 i0
, ~5.1b!

vs l , skb5a~ l2k!s l1k1 i0
. ~5.1c!

Proof: Since the implicit representation ofK0 is unique, i.e.,~3.8a! has solitary solutions, it
follows that~3.15! only admits zero solutions and so does Eq.~4.2a! @under the condition~4.5a!#.
That is to say,~5.1a! is valid. Next, set

u5vKl , skb2~a l1m1p0!Kl1k1 i0
, ~5.2a!

Ñ5^Nl , Pk&2~a l1m1p0!Nl1k1 i0
. ~5.2b!

Obviously,uPV(s) and ÑPL(Q0
(m)). By Theorem 1 we have

M 8@Kl1k1 i0
#5Nl1k1 i0 ,x

1@Nl1k1 i0
, M #. ~5.3!

Then it follows from~4.2b!, ~5.3!, and~4.5b! that

M 8@u#5Ñx1@Ñ, M #, Ñuu5050, ~5.4!

has only zero solutionsu50 andÑ50; that means~5.1b! is true. At last, set

v5vs l , skb2a~ l2k!s l1k1 i0
, ~5.5a!

P̃5^Pl , Pk&2a~ l2k!Pl1k1 i0
; ~5.5b!

clearly,vPV(s) and P̃PL(Q0
(m)). By Theorem 1 we also know

M 8@s l1k1 i0
#5Pl1k1 i0 ,x

1@Pl1k1 i0
, M #2Mhha~ l1k1 i0!1b. ~5.6!

Similarly, ~5.6! together with~4.2c! and ~4.5c! yields

M 8@v#5 P̃x1@ P̃, M #, P̃uu5050. ~5.7!

Hence we havev50 andP̃50, which means~5.1c! is also right.
If by A we denote an infinite-dimensional linear space which is generated by all the isospec-

tral flowsKl and nonisospectral flowssk , and byA1 andA2 denote two subspaces ofA which
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are generated respectively by all the isospectral flowsKl and nonisospectral flowssk , then Theo-
rem 4 shows thatA constitutes an infinite-dimensional Lie algebra with respect to the binary
operation~2.4!, andA1 andA2 are, respectively, a commutative subalgebra and a Virasoro
subalgebra ofA.

Furthermore, in the above proof, we have already obtained^Nl , Nk&50, Ñ50, and P̃50.
Therefore, the following result holds.

Corollary 1: The function matricesNl andPk in the implicit representations ofKl andsk

satisfy the following algebraic relations:

^Nl , Nk&50, ~5.8a!

^Nl , Pk&5~a l1m1p0!Nl1k1 i0
, ~5.8b!

^Pl , Pk&5a~ l2k!Pl1k1 i0
, ~5.8c!

which are similar to those ofKl andsk for v•,•b.
From Theorem 4, we can still deduceK symmetry,t symmetry, and their infinite-dimensional

Lie algebra structure of a general isospectral evolution equation.
Corollary 2: The two sets of symmetries of Eq.~3.2! are Kj and t k

l 5 (a l 1 m
1 p0)tKl1k1 i0

1 sk , and satisfy the following Lie algebraic relations:

vKj , Kkb50, ~5.9a!

vKj , t k
l b5~a j1m1p0!Kj1k1 i0

, ~5.9b!

vt j
l , t k

l b5a~ j2k!t j1k1 i0
l . ~5.9c!

VI. APPLICATION

1. To AKNS system

It is well-known that the hierarchies of isospectral and nonisospectral evolution equations of
the AKNS system are

ut5Kl , Kl5Ll~2gu! ~ l50,1,2,...! ~6.1.1a!

and

ut5sk , sk5Lk~xgu! ~k50,1,2,...!, ~6.1.1b!

whereKl , andskPV(2) andL is a recursion operator given by

L5 1
2~gD22guIuTd!, ~6.1.2a!

g5S 21 0

0 1D , d5S 0 1

1 0D , u5S qr D , ~6.1.2b!

D5
]

]x
, I5E

2`

x

•dx, DI5ID51. ~6.1.2c!

Set
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M5S 2h q

r h D . ~6.1.3!

Then the hierarchies~6.1.1! are associated with the linear problem~1.1!.
Now, we explain that the flowsKl andsk have respectively the unique implicit representa-

tions ~3.4! and ~3.5! with a51, m521, b50, p051, andA050.
By Theorem 1, first, we have to prove that for any given vector field

Y5(Y1 ,Y2)
TPV(2)(Yuu5050), Eq.~3.6! has only a couple of solutionsX5(X1 ,X2)

TPV(2) and
NPQ0

~2! satisfying Condition~3.7!. Here, a51 and m521. For this sake, write~3.6! in the
following form:

S 0 X12hY1

X22hY2 0 D 5Nx1@N, M #. ~6.1.4!

Setting

N5N~ t,x,u!5S A B

C 2AD , ~6.1.5!

we have

Ax5qC2rB, ~6.1.6a!

X12hY15Bx12hB12qA, ~6.1.6b!

X22hY25Cx22hC22rA. ~6.1.6c!

Comparing the coefficients of the same powers ofh and noticingN independent ofh yield

A5IuTdgF2d0 , Y52gF, ~6.1.7a!

X52LgF12d0gu, ~6.1.7b!

whereF5(B,C)T, andd0 is given by~3.7b!. Further, we have

A5 1
2 Iu

TdY2d0 , F5 1
2 gY, ~6.1.8a!

X5LY12d0gu. ~6.1.8b!

It is obvious that for any givenYPV(2)(Yuu5050), the unique vector fieldX and unique function
matrix N respectively defined by~6.1.8b! and ~6.1.8a! satisfy ~3.6! and ~3.7!. Especially, when
Y50 ~6.1.8! gives

X5K052gu, N5U05g. ~6.1.9!

Second, by a similar discussion, it is easy to get the solutions of~3.11! with b50, p051, and
A050:

s05xgu ~s0uu5050!, W05xg. ~6.1.10!

From the above statements, it is shown that if we choosea51, b50, m521, p051, and
A050, then Theorem 4 holds for the AKNS system. That means the following:
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Theorem 5: The isospectral flowsKl and nonisospectral flowssk of the AKNS system
constitute an infinite-dimensional Lie algebra, and possess the following commutator relations
~also see Ref. 4!:

vKl , Kkb50, ~6.1.11a!

vKl , skb5 lK l1k21 , ~6.1.11b!

vs l , skb5~ l2k!s l1k21 . ~6.1.11c!

Recalling Corollary 2~or directly using Theorem 5! we have the following.
Corollary 3: The two sets of symmetries of the Eq.~6.1.1a! areKj and t k

l 5 l tK l1k211sk

which constitute a Lie algebra with the following commutator relations:

vKj , Kkb50, ~6.1.12a!

vKj , t k
l b5 jK j1k21 , ~6.1.12b!

vt j
l , t k

l b5~ j2k!t j1k21
l . ~6.1.12c!

2. To generalized HD system

In this subsection, we will consider the second-order linear spectral problem:

cxx1S (
i50

h

uih
i Dc50, uh521. ~6.2.1!

If we setf15c, f25cx , andf5~f1,f2!
T, ~6.2.1! can be written in the form of~1.1a! where

M5(
i50

h

M ih
i5S 0 1

2(
i50

h

uih
i 0D , ~6.2.2a!

Mi5S 0 d0,i
2ui 0 D ~ i50,1,...,h!. ~6.2.2b!

From Eq. ~3.1!, one can obtain the hierarchies of isospectral and nonisospectral evolution
equations,6,8,9 i.e.,

ut5Kl , Kl5DLlu ~ l50,1,2,...! ~6.2.3a!

and

ut5sk , sk5
1
2DL

k~hxu1uIu! ~k50,1,2,...!, ~6.2.3b!

where

u5u~ t,x!5~u0 ,u1 ,u2 ,...,uh21!
T, ~6.2.4a!

L5 (
i50

h22

Ei11,i1 (
i50

h21

JiEi ,h21 , ~6.2.4b!
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u5 (
i50

h21

~h22i !Eii , ~6.2.4c!

D and I are described by~6.1.2c!. The operatorsJi and theh3h matricesEi j are respectively
given by

Ji5
1
4d0iD

21ui2
1
2Iui ,x ~ i50,1,...,h21! ~6.2.4d!

and

~Ei j !kl5d ikd j l . ~6.2.4e!

For convenience, we appoint that if a vector fieldZPV(h), thenZ has the following form:

Z5~Z0 ,Z1 ,Z2 ,..,Zh21!
T. ~6.2.5!

In Eq. ~3.6! and Condition~3.7!, we takea51, m50, X andYPV(h), NPL(Q0
(2)) , and

N5N̄1q~M2M0!, N̄5S Ā B̄

C̄ 2Ā
D , ~6.2.6!

whereĀ, B̄, C̄, andq are all undetermined functions independent ofh. It follows that~3.6! can be
written as

M 8@X2hY#5„N̄1q~M2M0!…x1@N̄, M #2q@M0 , M #. ~6.2.7!

Substituting~6.2.2a! into ~6.2.7! and comparing the coefficients of the same powers ofh yield

M08@X#5N̄x1@N̄, M0#, ~6.2.8a!

Mi8@X#2Mi218 @Y#5~qMi !x1@N̄, Mi #2q@M0 , Mi # ~ i51,2,...,h21!, ~6.2.8b!

2Mh218 @Y#5~qMh!x1@N̄, Mh#2q@M0 , Mh#. ~6.2.8c!

From ~6.2.8a!, ~6.2.8b!, and~6.2.8c!, respectively, we have

Āx5u0B̄1C̄, B̄x12Ā50, X052C̄x22u0Ā, ~6.2.9a!

q5B̄, Xi52DJiB̄1Yi21 ~6.2.9b!

and

B̄5 1
2IYh211d0 , ~6.2.9c!

where~6.2.9a! implies

X052DJ0B̄. ~6.2.10!

Substituting~6.2.9c! into ~6.2.9a!, ~6.2.9b!, and~6.2.10!, we obtain easily

Ā52 1
4Yh21 , ~6.2.11a!

q5B̄5 1
2IYh211d0 , ~6.2.11b!
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C̄52 1
4~D12u0I!Yh212d0u0, ~6.2.11c!

and

X5DLIY1d0ux , ~6.2.11d!

whered0 is given by~3.7b!. By now, we have proved that for any givenYPV(h)(Yuu5050), the
unique vector fieldXPV(h) and unique function matrixNPL(Q0

(2)) respectively defined by
~6.2.11d! and ~6.2.11a!–~6.2.11c! satisfy ~3.6! and ~3.7!. In particular, whenY50, we obtain

X5K05ux , N5U05M . ~6.2.12!

Next, in order to find the solutions of~3.11!, we take

W05W̃01q̃~M2M0!, W̃05S Ã0 B̃0

C̃0 2Ã0
D ~6.2.13!

and W̃0 is independent ofh. Substituting~6.2.13! into ~3.11a! ~with b51! and comparing the
coefficients of the same powers ofh lead to

M08@s0#5W̃0,x1@W̃0 , M0#, ~6.2.14a!

Mi8@s0#5~ q̃M i !x1@W̃0 , Mi #2q̃@M0 , Mi #2 iM i ~ i51,2,...,h21!, ~6.2.14b!

05~ q̃Mh!x1@W̃0 , Mh#2q̃@M0 , Mh#2hMh . ~6.2.14c!

From these equalities, an argument similar to above yields

s05
1
2D~hxu1uIu! ~s0uu5050!, W05

h

4
~g12xM!, ~6.2.15!

which meet~3.11! with p05h/2 andA05hg/4, whereu andg are given by~6.2.4c! and~6.1.2b!,
respectively.

So it follows from Theorem 1 that the flowsKl andsk possess respectively the unique implicit
representations~3.4! and ~3.5!.

In light of the results described in Sec. V, we obtain immediately the following.
Theorem 6: The isospectral flowsKl and nonisospectral flowssk of the generalized HD

system associated with the linear problem~1.1! @in which M is given by ~6.2.2!# constitute an
infinite-dimensional Lie algebra, and possess the following commutator relations~also see Ref. 6!:

vKl , Kkb50, ~6.2.16a!

vKl , skb5S l1 h

2DKl1k , ~6.2.16b!

vs l , skb5~ l2k!s l1k . ~6.2.16c!

Corollary 4: The two sets of symmetries of Eq.~6.2.3a! are Kj and t k
l 5( l1h/2)tKl1k

1sk which constitute a Lie algebra with the following relations:

vKj , Kkb50, ~6.2.17a!
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vKj , t k
l b5S j1 h

2DKj1k , ~6.2.17b!

vt j
l , t k

l b5~ j2k!t j1k
l . ~6.2.17c!

3. To n -wave interaction system

In the linear problem~1.1!, set

M5hH1S ~6.3.1!

andH, S PQ0
(n) andNPL(Q0

(n)) whereH is a constant diagonal matrix:

H5diag~h1 ,h2 ,h3 ,...,hn! ~hiÞhj ,iÞ j !, ~6.3.2a!

S5S~ t,x,u!5 (
i , j51 iÞ j

n

ui j Ei j , ~6.3.2b!

in which the vector fieldu P V„n(n21)… is described by

u5~u12,u13,...,u1n ,u21,u23,...,ui j ,...,un,n21!
T ~ iÞ j !. ~6.3.2c!

Then(n21) ui j ’s are nonzero functionally independent potentials and then3n matricesEi j ’s are
given by ~6.2.4e!.

Then, from the compatible condition~3.1! of ~1.1!, we can obtain isospectral and nonisospec-
tral flowsKl andsk of then-wave interaction system. In a general way, it is very difficult to write
these flows in the formKl5F lK0 andsk5Fks0 , whereF P Q„n(n21)… is some operator. There-
fore, Ma’s method~see Ref. 3! cannot be applied to construct the flows’ Lie algebra for this kind
of Lax integrable system. However, our method has such advantage indeed, because we derive the
isospectral and nonisospectral flows and their Lie algebraic properties without using the recursion
operatorF of the integrable system.

In fact, by Theorem 4, we only need to prove that there exist respectively the unique implicit
representations~3.4! and ~3.5! for flows Kl andsk of then-wave interaction system.

For simplicity, in what follows, we make the appointment that

Z5~Z12,Z13,...,Z1n ,Z21,Z23,...,Zi j ,...,Zn,n21!
T ~ iÞ j !, ~6.3.3!

if vector fieldZ P V„n(n21)….
Now, in Eq. ~3.6! and the condition~3.7!, for any givenY 5 Y(t,x,u) P V„n(n21)…(Yuu50

5 0), we takeX 5 X(t,x,u) P V„n(n21)… N5N(t,x,u)PQ0
(n) anda51,m521. Then~3.6! can be

written in the form

S8@X#2hS8@Y#5Nx1h@N, H#1@N, S#. ~6.3.4!

Comparison of the coefficients of the same powers ofh in the above equality yields

(
i , j51iÞ j

n

Xi j Ei j5Nx1@N, S#, (
i , j51iÞ j

n

Yi j Ei j5@H, N#. ~6.3.5!

Further, let I andd0 be described respectively by~6.1.2c! and ~3.7b!. We have

Ni j5
Yi j

hi2hj
~ iÞ j !, ~6.3.6a!

5536 D.-Y. Chen and D.-J. Zhang: Lie algebraic structures of Lax integrable systems

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Nii5I (
k51,kÞ i

n
ukiYik1uikYki

hk2hi
1d0hi , ~6.3.6b!

and

Xi j5
Yi j ,x

hi2hj
1 (

k51,kÞ i , j

n S uk jYik

hi2hk
2
uikYk j

hk2hj
D

1ui j IS (
k51,kÞ i

n
ukiYik1uikYki

hk2hi
2 (

k51,kÞ j

n
uk jYjk1ujkYk j

hk2hj
D

1ui jd0~hi2hj ! ~ iÞ j !, ~6.3.6c!

which immediately shows that for any given vector fieldY P V„n(n21)…(Yuu50 5 0). Equation~3.6!
has unique solutionsX andN satisfying the condition~3.7!, and in particular, ifY50, the solu-
tionsX andN are given respectively by

X5K0 , K0i j5~hi2hj !ui j ~ iÞ j !, ~6.3.7a!

and

N5U05H. ~6.3.7b!

Second, takingb50, p051, andA050 in ~3.11!, we have

S8@s0#5W0,x1h@W0 , H#1@W0 , S#2H. ~6.3.8!

Here,s0PV(n(n21)) andW0PQ0
(n) are all independent ofh. Equation~6.3.8! implies

(
i , j51iÞ j

n

s0i j Ei j5W0,x1@W0 , S#2H, @W0 , H#50, ~6.3.9!

which suggests a couple of solutionss0 andW0 described respectively by

s0i j5~hi2hj !xui j ~ iÞ j ,s0uu5050! ~6.3.10a!

and

W05xH. ~6.3.10b!

So we have shown that the conditions of Theorem 1 are satisfied for then-wave interaction
system. That is to say, the flowsKl andsk of this system can be generated by~3.8!, and~3.11!,
and ~3.12!, respectively and have their unique implicit representations.

Further, according to the results of Sec. V, we have the following.
Theorem 7:The isospectral flowsKl P V„n(n21)… and nonisospectral flowssk P V„n(n21)… of

then-wave interaction system associated with the linear problem~1.1! @in whichM is described
by ~6.3.1!# constitute an infinite-dimensional Lie algebra, and possess the following commutator
relations:

@Kl , Kk#50, ~6.3.11a!

@Kl , sk#5 lK l1k21 , ~6.3.11b!
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@s l , sk#5~ l2k!s l1k21 . ~6.3.11c!

Theorem 7 shows that the flows’ commutator relations of then-wave interaction system are
independent of wave numbern. Therefore, if setn52 andh152h251, then~6.3.11a!–~6.3.11c!
becomes~6.1.11a!–~6.1.11c!. That is to say, isospectral flowsKl and nonisospectral flowssk of
the n-wave interaction system constitute the same infinite-dimensional Lie algebraic structure as
the AKNS system. The similar conclusion for symmetries of the two systems is also valid. So we
have the following.

Corollary 5: The two sets of symmetries of the isospectral equationut5Kl are Kj and
t k

l 5 l tK l1k211sk , which constitute a Lie algebra with the following relations:

@Kj , Kk#50, ~6.3.12a!

@Kj , t k
l #5 jK j1k21 , ~6.3.12b!

@t j
l , t k

l #5~ j2k!t j1k21
l . ~6.3.12c!

As mentioned earlier, it is not easy to derive the general explicit expressions of the flowsKl

andsk of then-wave interaction system, which leads to the algebraic properties of these flows and
related symmetries have not been reported in any literature up to now. So we have enough reason
to believe that Theorem 7 andCorollary 5 obtained by means of the so-called ‘‘implicit repre-
sentations’’ are new results.
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On the polynomial first integrals of the ( a,b ,c )
Lotka–Volterra system
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Using elementary differential algebraic techniques, we prove that the 3D Lotka–
Volterra dynamical system has no other nontrivial polynomial first integrals than
the previously known ones. ©1996 American Institute of Physics.
@S0022-2488~96!01409-0#

I. INTRODUCTION

The (a,b,c) or 3D Lotka–Volterra dynamical system1,2

ẋ5x~cy1z!, ẏ5y~az1x!, ż5z~bx1y!, ~1!

where (a,b,c) are three real~or complex! parameters, appears in various areas of science such as
ecology ~in which it models a three-species competition!, plasma physics~in which it approxi-
mates the Vlasov–Poisson equation!, and so on.

It can be generalized by adding an isotropic linear damping term. Indeed, the dynamical
system

ẋ5x~l1cy1z!, ẏ5y~m1az1x!, ż5z~n1bx1y!, ~2!

reduces to Eq.~1!, if l5m5n, by setting

x85xe2lt, y85ye2lt, z85ze2lt, t85elt,

and then dropping the primes. It may be worth noticing that the linear term isotropy is a necessary
condition for Eq.~2! to have the Painleve´ property.3

Up to now, using various techniques~extension of the Lie symmetry method,4 Painlevé
analysis3!, the following cases of polynomial integrability of the system~1! have been found~see
Refs. 4 and 5 for further matter!:

1. abc521⇒I5x2cy2b21z;
2. abc521⇒I5xaby2bz; one sees that this integral can be made a polynomial iff

(a,b,c)P~Q2!3;
3. abc51 and a52(c11)21 and b52(c11)/c⇒I5x21c2y21c2(c11)22z2

22cxy12c2(c11)21xz12c(c11)21yz.
The aim of this paper is to show that there are no other cases of polynomial integrability and no
other polynomial first integrals than these ones and their combinations when the parameters are
real, which is the case in the biological and physical applications. We will prove this result in the
following way. In Sec. II, we recall the definition and the general properties of the Darboux
polynomials of a polynomial dynamical system. Then we establish some useful features of the
Darboux polynomials of the Lotka–Volterra system. Section III is devoted to the proof of the
result itself; and Sec. IV summarizes our results.

a!Electronic mail: labrun@amoco.saclay.cea.fr

0022-2488/96/37(11)/5539/12/$10.00
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II. ON THE DARBOUX POLYNOMIALS OF THE LOTKA–VOLTERRA SYSTEM

Consider an autonomous polynomial dynamical system

ẋi5Vi~x1 ,...,xn!, i51•••n. ~3!

It induces a derivationD—i.e., a linear endomorphism such thatD( f g)5D( f )g1 fD(g)—on
the space of real~or complex! polynomials inn variables, calledderivation associated to (or with
respect to) the system~3!, which reads

Df5(
i51

n

f xiVi .

Then a Darboux polynomial6 of Eq. ~3! is a polynomialf (x1 ,...,xn) such that there is another
polynomial p(x1 ,...,xn) satisfyingDf5p f . The couple (p, f ) may also be called aDarboux
element. The following properties of Darboux elements can be shown easily:

~1! If m is the greatest of degVi , i51•••n, then degp<m21.
~2! The product of two Darboux polynomials is still Darboux, namely~Df 15p1f 1 and

Df 25p2f 2!⇒D( f 1f 2)5(p11p2)( f 1f 2). This can be generalized to any number of factors.
~3! All the irreducible factors of a Darboux polynomial are Darboux. Thus the search for Darboux

polynomials can be restricted to irreduciblef .
~4! If the dynamical system~3! is homogeneous of degreem, i.e., all Vi are homogeneous of

degreem, thenp is homogeneous of degreem—1 and all homogeneous components off are
Darboux. Thus the search can be restricted to homogeneousf .

Darboux polynomials give rise to numerous~polynomial or not! first integral search tech-
niques for polynomial dynamical systems, such as the Prelle–Singer procedure.7 Indeed a poly-
nomial first integralf is a Darboux polynomial withp50. Up to now, only semidecisive proce-
dures are known; however it is possible to find a reciprocal for some dynamical systems. This
shall we undertake with the (a,b,c) system, using its homogeneity and symmetry properties.

These properties yield first that for any Darboux element (p, f ), p is homogeneous of first
degree andf can be taken homogeneous; so the definition equation for the Darboux polynomials
of ~1! is

x~cy1z! f x1y~az1x! f y1z~bx1y! f z5~ax1by1gz! f , ~4!

wherea, b, g as well as the coefficients off area priori complex. For a Darboux polynomialf ,
the coefficientsa, b, g in Eq. ~4! may be denoteda( f ),b( f ),g( f ).

The following statements are evident:
• The Lotka–Volterra system~1! is invariant by simultaneous cyclical permutations of (x,y,z)

and (a,b,c); and identically Eq.~4! is invariant by simultaneous cyclical permutations of (x,y,z),
(a,b,c), and~a,b,g!.

• x, y, andz—and thus all monomials—are Darboux polynomials of the system~1!.
The following notations will be of constant use. For any polynomialg(x,y,z) we shall write

ĝ(y,z)5g(0,y,z), g̃(x,z)5g(x,0,z), ḡ(x,y)5g(x,y,0). These restriction operators commute
with derivation with respect to theother variables.

Proposition 2.1: Let f be a (homogeneous) solution of degree m to Eq. (4). Then ifgÞ0, f has
no zm term and thus reads f(x,y,z)5xw(x,y,z)1yc(x,y,z).
Since the polynomialf is homogeneous, we use Euler’s theorem:

x fx1y fy1z fz5mf.

Eliminating, e.g.,f x between this equality and Eq.~4!, we find that
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y fy~az1x2cy2z!1z fz~bx1y2cy2z!5@ax1~b2mc!y1~g2m!z# f .

Settingx50 andy50 @andF(z)5 f (0,0,z)# yields

2z2F8~z!5~g2m!zF~z!,

thus F5lzm2g. But, as f is homogeneous of degreem, the only term containing onlyz is
necessarilyzm. Hence, ifgÞ0, we haveF50, which means thatf (x,y,z) is in the ideal generated
by x andy.

Proposition 2.2: Let f be a solution of Eq. (4). Then~g¹N⇒yu f ! and ~g¹aN⇒xu f !, and,
cyclically:

• ~b¹N⇒xu f ! and ~b¹cN⇒zu f !;
• ~a¹N⇒zu f ! and ~a¹bN⇒yu f !.

If g¹N or g¹aN, thengÞ0, and thusf (x,y,z)5xw(x,y,z)1yc(x,y,z). Setting this in Eq.~4!
yields

xDw1yDc5~ax1by1gz2cy2z!xw1~ax1by1gz2az2x!yc. ~5!

Supposeg ¹N. Sety50 in Eq. ~5!:

xDw̃5~ax1~g21!z!xw̃.

The operatorw°w̃ commutes with the derivations with respect tox andz, hence

xzS ]w̃

]x
1b

]w̃

]z D5~ax1~g21!z!w̃. ~6!

So x divides the right-hand side; sinceg ¹ N, g21Þ0, andx does not divide [ax1(g21)z].
Thusxuw̃.

Settingw̃5xw1 we get

]w̃

]x
5x

]w1

]x
1w1 ,

]w̃

]z
5x

]w1

]z
,

and Eq.~6!, after some calculations, may be rewritten as

xzS ]w1

]x
1b

]w1

]z D5@ax1~g22!z#w1 .

SincegÞ2, one hasxuw1, so x
2uw̃; and if g¹N the same argument can be repeated indefinitely.

The polynomialw̃ is divisible by any power ofx, hence is zero. Asw̃(x,z)5w(x,0,z), this means
thatw is divisible byy; hencef5xw1yc is divisible byy. QED.

If we now assumeg ¹ aN, settingx50 in Eq. ~5! yields

yzS a ]ĉ

]y
1

]ĉ

]z D 5@by1~g2a!z#w̃.

By recurrence it can be shown as above thatĉ is divisible by any power ofy, hence is zero, hence
that xuc and f is divisible byx.

This leads to the following statement, a characterization of the ‘‘eigenvalues’’ of the Darboux
polynomials of the system~1!, which will be a fundamental tool for proving our main result.

Proposition 2.3: Let f be a nonzero Darboux polynomial. Then there exist two positive
integersg1 andg2 such thatg5g11g2a.
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Supposeg¹N1Na. Sog¹N andg¹Na. Hence by Proposition 2.2f is divisible byx:

f5x f1 and Df 15@ax1by1~g21!z# f 1.

But g21 cannot be inN1Na unlessg be in it. As this procedure can be repeated indefinitely,f
may be divided by an infinity of powers ofx, hence is zero. Contradiction.

This result allows to classify all the Darboux polynomials of Eq.~1! when (a,b,c)P~R\Q1!3,
as is shown in the two following propositions.

Proposition 2.4: Let f be a solution of Eq. (4). If a is neither zero nor a positive rational
number, then f reads

f5xg1yg2f 1 , ~7!

where the positive integersg1 andg2 satisfyg( f )5g11ag2 and f1 is a solution to Eq. (4) such
that g~f 1!50.

If a¹Q1, NùNa5$0%. If g is zero, settingg15g250 yields the result. If not, then eitherg¹N
or g¹Na. Assumeg¹N; f can be divided byy. Let this procedure be repeated as many times as
it can, and letg2 be the number of times it can. We havef 5 yg2f 0, and f 0 is solution to Eq.~4!
with g( f 0)5g( f )2ag2 . This g15g~f 0! must be integer since we had to stop the division pro-
cedure off by y.

Thus eitherg150 or g1¹Na. In the first case, Eq.~7! is satisfied withf 15 f 0 . In the second
case,f 0 can be dividedg1 times byx, and Eq.~7! is satisfied withf 1 5 f 0 /x

g1.
Assume nowgPN* ; applying only the second step of the above procedure yields the same

conclusion. In both cases, it follows from the basic properties of Darboux polynomials thatf 0 is
solution to Eq.~4! with g~f 0!50 and thatg( f )5g11ag2 .

Theorem 2.5:Let f be a solution of Eq. (4). If none of the three system parameters is zero or
a positive rational number, then there exist three positive integers p,q,r and a polynomial first
integral I of Eq. (1)—which may be trivial—such that

f5xpyqzr I ~8!

and

a5q1br, b5r1cp, g5p1aq. ~9!

By cyclical permutations Proposition 2.4 can be rewritten as statements ona andb. These three
results will be successively used in the following algorithm:

~1! Setn50 and f n5 f .
~2! Applying Proposition 2.4 fora yields

fn5ya1za2fn11, a~fn11!50.
~3! If f n11 is a first integral, go to the final step, else incrementn by one.
~4! Applying Proposition 2.4 forb yields

fn5zb1xb2fn11, b~fn11!50.
~5! If f n11 is a first integral, go to the final step, else incrementn by one.
~6! Applying Proposition 2.4 forg yields

fn5xg1yg2fn11, g~fn11!50.
~7! If f n11 is a first integral, go to the final step, else incrementn by one and return to step 2.
~8! ~Final step! Set I5 f n11 and, using the sequence of equations linkingf i to f i11, i51•••n

given by the algorithm, determine the exponents (p,q,r ) in Eq. ~8!.
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At every step, one has degf i11<deg f i ; and when three consecutive terms of the sequence are of
same degree, they are equal anda( f i)5b( f i)5g( f i)50, so f i is a first integral. Thus the algo-
rithm converges in a finite number of steps. Once the existence of (p,q,r ) is proven, Eq.~9!
follow by the basic properties of Darboux polynomials.

III. POLYNOMIAL FIRST INTEGRALS

Proposition 3.1 Let f be a polynomial first integral of degree m with a nonzero zm term. Then
a must be nonzero and there exists a polynomial k(x,y,z) such that

f5lF ~z2bx!m1S z2
y

aD
m

2zmG1xyk~x,y,z!.

The homogeneity off yields f (x,y,z)5xw(x,y,z)1yc(x,y,z)1lzm. Thus,Df50 reads

xDw1yDc52~cy1z!xw2~az1x!yc2l~mbx1my!zm. ~10!

Sety50 in Eq. ~10!

xDw̃52zxw̃2lmbxzm.

Simplifying by x we get after some calculations:

xzS ]w̃

]x
1b

]w̃

]z D52zw̃2lmbzm. ~11!

This shows that

xu2w̃2lmbzm21.

Hence we set

w05w̃5xw12lmbzm21,

then the derivatives ofw̃ are

]w̃

]x
5x

]w1

]x
1w1 ,

]w̃

]z
5x

]w1

]z
2l~m21!mbzm22.

Putting these expressions in Eq.~11! gives

xzS x ]w1

]x
1w11b

]w1

]z D52zxw12zl~2mb!zm212lmbzm.

The last two terms compensate; in all other termsx is in factor and we simplify:

xzS ]w1

]x
1b

]w1

]z D522zw11lmb~m21!bzm21.

By recurrence, we get a sequence of PDE,

xzS ]wk

]x
1b

]wk

]z D52~k11!zwk1l~k11!~2b!k11Cm
k11zm2k, ~12!

linked by the recurrence formula
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wk215xwk1l~2b!kCm
k zm2k. ~13!

As degw05degw5m21, this formula shows that degwk5m212k; thus degwm2150 and
wm215C5cst. Then Eq.~12! reads

xz052mzC1lm~2b!mz1

or C5l(2b)m. Hence the sequence of Eq.~13! yields finally

w̃5l (
k50

m21

xk~2b!k11Cm
k11zm212k

or, sincew̃5w~.,0,.!:

w5
l

x
@~z2bx!m2zm#1yK1~x,y,z!. ~14!

We now determinec similarly. Settingx50 in Eq. ~10! yields

yzS a ]ĉ

]y
1

]ĉ

]z D 52azĉ1l~2m!zm. ~15!

Thus,

yu2aĉ1l~2m!zm21.

This showsaÞ0, otherwise we get the contradictionyulzm21 with lÞ0. Now, Eq.~15! is inte-
grated by a method similar to that used for Eq.~11!. So we find that

c5
l

y F S z2
y

aD
m

2zmG1xK2~x,y,z!.

Since f5xw1yc1lzm we have

f5l1@~z2bx!m1~z2y/a!m2zm#1xyk1~x,y,z!, ~16!

which we had to prove.
Using the variable and coefficient symmetry, we get the following results:
• if f is a polynomial first integral with nonzeroym term thencÞ0 and

f5l2@~y2az!m1~y2x/c!m2ym#1xzk2~x,y,z!, ~17!

• if f is a polynomial first integral with nonzeroxm term thenbÞ0 and

f5l3@~x2cy!m1~x2z/b!m2xm#1zyk3~x,y,z!. ~18!

These facts yield a first distinction between polynomial first integrals.

Proposition 3.2: Let f be a polynomial first integral of degree m of (1). Then the coefficients
of xm, ym, zm—which we will call theextremal terms—are either all zero or all nonzero.

Assume that thezm term is zero, i.e.,f5xw1yc. The equivalent of Eq.~11! in that case is

xzS ]w̃

]x
1b

]w̃

]z D52zw̃.
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Thus, xuw̃, then repeating the proof of Proposition 2.2 yieldsw̃50; or yuw and thusyu f . In
particular thexm term in f is zero.

Suppose the coefficient ofym is nonzero. ThencÞ0 and Eq.~17! shows that the coefficient of
xm is nonzero. Contradiction.

The variable symmetry allows to complete the proof: if any of the extremal terms is zero, so
are the other two. QED.

The first integrals with no extremal terms are characterized by the following statement.

Proposition 3.3: Let f be a polynomial first integral of degree m, with no xm, ym, zm terms.
Then:

• the system parameters(a,b,c) are negative rational numbers whose product is21;
• we have f5xpyqzr I , where I is another polynomial first integral—which may be trivial—

and (p,q,r ) satisfy Eq. (9) witha5b5g50, i.e.,

q1br50, r1cp50, p1aq50. ~19!

If f has no extremal terms, it reads

f ~x,y,z!5xyw~x,y,z!1xzx~x,z!1yzc~y,z!,

i.e., all terms divisible byxyz have been put inw. ThenDf50 yields

~bx1y!z~xx1yc1xzxz1yzcz1xywz!1y~x1az!~xw1zc1yzcy1xywy!

1x~cy1z!~zx1yw1xzxx1xywx!50, ~20!

thus, settingx50,

~y1az!c1yz~acy1cz!50.

Hence we havezuc; by recurrence we can show thatc is divisible by any power ofz. Thusc50.
If similarly we sety50 in Eq. ~20!, we get

~bx1z!x1xz~xx1gxz!50.

Hencexux; by recurrence we show thatx is divisible by any power ofx. Thusx50.
Finally, replacingz with 0 in Eq. ~20! yields

~x1cy!w̄1xy~cw̄x1w̄y!50.

Hencew̄50, which meansw5zQ. Thus we havef5xyzQ. ThenDf50 reads

xyzDQ1@~11b!x1~11c!y1~11a!z#xyzQ50.

By definition,Q is thus a Darboux polynomial witha(Q)52(11b), b(Q)52(11c), g(Q)5
2(11a). Proposition 2.3 shows that the parameters (a,b,c) are strictly negative. Indeed, if, e.g.,
a>0, it yieldsg>0, butg5212a,0. Hence Theorem 2.5 holds forQ andQ 5 xp1yq1zr1I . Hence
f5xpyqzr I with p5p111, etc.

We check that (a,b,c) satisfy Eq.~19!. Those implya,b,cPQ2, sincep,q,r are positive
integer numbers. Moreover, in order for this linear system to admit a nonzero solution (p,q,r ), it
is necessary that its determinant be zero; but this determinant is preciselyabc11. QED.

As for the first integrals with extremal terms, we shall prove that when (a,b,c) are real the
conditionabc561 is a necessary one for their existence.
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Proposition 3.4: Let f be a polynomial first integral of degree m with extremal terms. Then
the system parameters satisfy(2abc)m51. Thus, if they are real the condition abc561 holds,
the plus sign being excluded if m is odd. Moreover, f satisfies in all cases:

f5l~~2a!m~~z2bx!m2zm2~2bx!m!1~y2az!m1~y2x/c!m2ym!1xyzQ~x,y,z!.
~21!

First, the presence of all extremal terms implies that the three system parameters are nonzero.
Hence the three expressions~16!, ~17!, and~18! for f hold. We can identify the terms without the
variablex in Eqs.~16! and ~17!:

l2~y2az!m5l1~z2y/a!m.

Hencel15l2(2a)m. Then we identify the terms containingx in factor:

l2@~y2x/c!m2ym#1xzk25l2~2a!m@~z2bx!m2zm#1xyk1 . ~22!

The identification of the coefficients ofxm yields (21/c)m5(ab)m; in other words,2abcmust be
an mth root of unity. Since the parameters are real, we must haveabc521 if m is odd and
abc561 if m is even.

Settingy50 in Eq. ~22! and recalling the compensation of thexm terms, we get

xzk̃25l2~2a!m@~z2bx!m2zm2~2bx!m#,

hence the equality

xzk25l2~2a!m@~z2bx!m2zm2~2bx!m#1xyzQ,

which combined to Eq.~17! yields Eq.~21!.
Up to now, all computations could have been carried with real or complex parameters and/or

Darboux elements. However, the assumption of reality for (a,b,c) will play a crucial role for
completing the proof of the result announced in the Introduction.

Indeed, there are only two real roots of unity: 1~‘‘first’’ root ! and21 ~square or ‘‘second’’
root!. The above Proposition suggests that whenabc561 a polynomial first integral of first or
second degreemayexist; but we know itdoes. Then the most natural idea is to compare these
known first integrals to Eq.~21!. But the latter contains a polynomialQ which seems hard to
determine: we have exhausted all the arithmetic arguments. Now we have got it: if degf51 or 2,
then thexyzQ term in Eq.~21! must be zero.This allows us to guess what the least-degree first
integral should be and at what condition it is a first integral. We are now able to prove that in both
cases the polynomial first integrals reduce to the known ones.

Now, in the case where the parameters can be complex, Proposition 3.4 suggests that other
cases can exist, and indeed they do.5 But they cannot be found out by the above theory. When
2abc is aprimitive mth root of unity, a polynomial first integral needs to be of degree at leastm.
Thus, it cannot be derived from Eq.~21! because of thexyzQterm. In other words, we can check
that this formula holds in the integrability cases with complex parameters,but it does not allow to
guess new cases nor to discard their existence. We intend to reserve the problem of integrability
with complex parameters for a future publication.

Theorem 3.5: If abc521, the generators of the algebra of polynomial first integrals are:
• in all cases, the first integral f15abx1y2az;
• when, moreover,(a,b,c)P~Q2!3, xpyqzr , where(p,q,r ) is the least positive integer solution

to the system (19).
We shall use the following algorithm:
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1. If f has no extremal terms, apply Proposition 3.3 as many times asf can be factored by
xpyqzr . Finally, we get either a constant, or a first integral of strictly lower degree, with extremal
terms. In the first case we havef5l(xpyqzr) i for somei , which is in the algebra defined by our
statement. In the second case, go to the following step.

2. If f possesses extremal terms, it satisfies Eq.~21!. Indeed, settingc521/ab andm51, this
formula does readf5l f 15l(abx1y2az), and form52, f5l( f 1)

2—we recall that if degf,3,
the termxyzQmust be zero. Supposem5deg f>3. The terms in the expansion of (f 1)

m which do
not containxyz in factor are the ones in factor ofl in Eq. ~21!. Consequently

f5l~ f 1!
m1xyzQ1 .

On the other hand, we check thatDf 15(11abc)xy50, hencexyzQ1 is a polynomial first
integral with no extremal terms. If it is zero, thenf5( f 1)

m, else return to the first step.
As the first step produces an integral of strictly lower degree, this algorithm must terminate in a
finite number of steps. So we shall obtain an expression off in function of f 1 andx

pyqzr .

Theorem 3.6:If abc51, polynomial first integrals exist on the extra condition that11b1ab
50, and in this case the algebra they span is generated by f25a2b2x2

22abxy1y222ayz22a2bxz1a2z2.
We know that forabc51 the degree of the integral is necessarily even:m52k. Whenk51 and
c51/ab, Eq. ~21! reads f5l f 2—since the termxyzQmust then be zero. If we calculate the
derivative of this function with respect to the system~1!, we find

Df 2524axyz~11b1ab!,

thus, asaÞ0, f 2 cannot be a first integral unless 11b1ab50.
For k.1, Eq. ~21! showsf2( f 2)

k5xyzQ1 , or, sincef is assumed to be a first integral,

D@ f2~ f 2!
k#502D@~ f 2!

k#5D~xyzQ1!,

which yields

4akxyz~11b1ab!~ f 2!
k215xyz$DQ11@~11b!x1~11c!y1~11a!z#Q1%.

The linear differential operator inQ1 which appears in the right-hand side has been studied in the
proof of Proposition 3.3. In particular, a necessary condition for its kernel to be nontrivial is
abc521, which is clearly not true. Hence, this operator is injective, and, if 11b1ab50, we
haveQ150 and f5l( f 2)

k.
The rest of the proof will be devoted to show that the case 11b1abÞ0 is in fact impossible.

Supposeab absurdothat 11b1abÞ0; then the previous equation reads

m~ f 2!
k215$DQ11@~11b!x1~11c!y1~11a!z#Q1%, ~23!

with mÞ0. Setting thenz50 in this equality yields

xyS c ]Q̄1

]x
1

]Q̄1

]y D 1@~11b!x1~11c!y#Q̄15m~abx2y!2k22. ~24!

Clearly if Eq.~23! admits a polynomial solution—which must be of degree 2k23—then Eq.~24!
does. We shall integrate this equation by the method of characteristics.

Equation~24! is equivalent to the following system:

ẋ5cxy, ẏ5xy,

u̇52@~11b!x1~11c!y#u1m~abx2y!2k22, ~25!
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by the correspondenceu(t)5Q̄1[x(t),y(t)].
The first two equations can be uncoupled from the third one. Their quotient yieldsẋ/ ẏ5c,

thus, ẋ5cẏ or x5c(y2y0), where y0 is an integration constant. Then the second becomes
ẏ5cy(y2y0), a separable variable equation which easily integrates as

y5
y0

12ecy0t
,

and, sincex5c(y2y0),

x5
cy0e

cy0t

12ecy0t
.

SettingX 5 ecy0t andY5y0, we get

x5
cXY

12X
, y5

Y

12X
.

Before we integrate the third equation in Eq.~25!, we remark thatQ̄1 is a homogeneous polyno-
mial of degree 2k23 in (x,y) iff u(t) can be written asu5Y2k23A(X)/(12X)2k23 whereA(X)
is a polynomial of degree 2k23. Then we get

u̇5
]

]X S Y2k23A~X!

~12X!2k23D dX

dt
,

withdX/dt5 cy0e
cy0t 5 cXYanddY/dt50.

Then the third equation in Eq.~25! reads

cXYFA8~X!~12X!2k231~2k23!~12X!2k24A~X!

~12X!4k26 GY2k23

5
Y2k23A~X!

~12X!2k23 S 2c~11b!XY2~11c!Y

12X D1mS abcXY2Y

12X D 2k22

.

Sinceabc51, the last term simplifies asY2k22. Multiplying then this equation by (12X)2k22 and
dividing it by Y2k22 yields

cX@A8~X!~12X!1~b12k22!A~X!#1~11c!A~X!5m~12X!2k22. ~26!

The latter is a linear differential equation. Notice, thatcÞ21 for otherwise we would have
Xum(12X)2k22 which is impossible sincemÞ0. The general solution to the homogeneous equa-
tion is

A~X!5K~12X!b12k2111/cX2~111/c!. ~27!

Let the constant vary:K5K(X). Then Eq.~26! becomes

K8~X!5
m

c
X1/c~12X!2~21b11/c!.

For anyaPR, we denote (a)n5a(a11)•••(a1n21); i.e., the generating function of the~a!n
being ~12X!2a, we have
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K8~X!5
m

c (
n50

`

~21b11/c!n
Xn11/c

n!
.

We see that if there existsnPN such thatn11/c521, the functionK has a logarithmic singu-
larity at 0; and so doesA.

Hence, ifA is a polynomial, then necessarilyc¹2N* and the indefinite integral is calculated
as

K~X!5
m

c (
n50

`

~21b11/c!n
Xn1111/c

~n1111/c!n!
1k

~k5cst!, and so

A~X!5~12X!b12k2111/cS m

c (
n50

`

~21b11/c!n
Xn

~n1111/c!n!
1kX2~111/c!D .

Clearly, the integral series in this formula is not equal to a power of 12X. Thus A being a
polynomial implies that (21b11/c)n is zero forn sufficiently large, i.e., 21b11/c52n1P2N
and thatb12k2111/cPN; since the value of this integer must be at most degA52k23, we get
once more the condition 21b11/cP2N.

This is the only possibility of existence of a polynomial solution to Eq.~26!—hence to Eq.
~24!. If it holds, we check that degA52k23. But the analysis carried out by suppressing the
variablez can be achieved by settingx50 or y50 and hence we get the three equalities

21b11/c52n1 , 21a11/b52n2 , 21c11/a52n3 , ~28!

wheren1, n2, n3PN. Sinceabc51, there are two possibilities: either the three parameters are
positive, or one is positive, e.g.,a and the other two are negative. The first possibility is excluded
by Eq. ~28!.

Thus, if a.0 and b,c,0, the second equation yields 0,a52n22221/b or
21/b.n212>2 and henceubu,1/2. In the same way we getu1/cu,1/2. Then the first equation
in Eq. ~28! yields2n1521b11/c.221/221/251, a contradiction.

Consequently, it is absurd to assume the existence of a polynomial solution to Eq.~23!.
Hence, in the caseabc51,11b1abÞ0, there cannot be a polynomial first integral to the dy-
namical system~1!.

IV. CONCLUSION

We have proved the following characterization of all existence cases and values of polynomial
first integrals for the Lotka–Volterra dynamical system with real parameters.

~1! The (a,b,c) Lotka–Volterra system cannot have a nontrivial polynomial first integral unless
abc561.

~2! If abc51, the algebra of polynomial first integrals is generated by the integral
I 25a2b2x222abxy1y222ayz22a2bxz1a2z2 if 11b1ab50, and trivial if not.

~3! If abc521 and (a,b,c)¹~Q2!3, this algebra is generated byI 15abx1y2az.
~4! If abc521 and (a,b,c)P~Q2!3, the generators areI 15abx1y2az and xpyqzr , where

(p,q,r ) is the least strictly positive solution to the linear system~19!.

Our method yields no characterization of the integrability cases for complex parameters. It gives
however a necessary, but clearly not sufficient, condition for their existence, which is effectively
satisfied by all known cases.5
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Symmetries of discrete dynamical systems
D. Levia) and P. Winternitz
Centre de Recherches Mathe´matiques, Universite´ de Montréal, Case postale 6128,
Succursale centre-ville, Montre´al, Québec H3C 3J7, Canada

~Received 2 November 1995; accepted for publication 15 February 1996!

Differential–difference equations of the formün5Fn(t,un21,un ,un11) are classi-
fied according to their continuous Lie point symmetry groups. It is shown that for
nonlinear equations, the symmetry group can be at most seven-dimensional. The
integrable Toda lattice is a member of this class and has a four-dimensional sym-
metry group. ©1996 American Institute of Physics.@S0022-2488~96!03906-0#

I. INTRODUCTION

The purpose of this article is to classify differential–difference equations (DDE) of the form

Dn[ün~ t !2Fn~ t,un21~ t !,un~ t !,un11~ t !!50, ~1.1!

into conjugacy classes and to determine the Lie point symmetries for each conjugacy class.
Conjugacy is considered under a group of ‘‘allowed transformations,’’ preserving the form of Eq.
~1.1!, while possibly changing the functionFn . We restrict the allowed transformations to be fiber
preserving, i.e., to have the form

un~ t !5Vn~ ũn~ t̃ !,t,g!, t̃5 t̃~ t,g!, ñ5n, ~1.2!

whereVn and t̃ are some locally smooth and monotonous~invertible! functions, andg represents
the group parameters. These functions are such thatũn( t̃) satisfies an equation of the form~1.1!
with Fn replaced by some functionF̃n( t̃,ũk( t̃)) k5n21,n,n11.

With this formulation, Lie symmetries of Eq.~1.1! are special cases of allowed transforma-
tions, namely, those for which we have

F̃n~ t̃,ũk~ t̃ !!5Fn~ t̃,ũk~ t̃ !!. ~1.3!

In this article we restrict to Lie point symmetries only. The algorithm for calculating them for
a given equation was presented in our earlier articles1,2 and was called ‘‘the intrinsic method’’ in
Ref. 2. Thus we assume that the Lie algebra of the symmetry group is realized by vector fields of
the form

X̂5t~ t,un!] t1fn~ t,un!]un, ~1.4!

and request that the prolongation prX̂ of X̂ should annihilate the equation on its solution set

pr X̂DnuDn5050. ~1.5!

The prolongation formula forDDE was given earlier.1 This definition of Lie point symmetries@as
in Eqs.~1.2!,...,~1.5!# is closely related to that of Maeda3 for difference equations, and also to that
of Quispelet al.4 We note that the restrictionñ5n is an important one and significantly cuts down

a!Permanent and present address: Dipartimento di Fisica, Universita` di Roma III, and INFN-Sezione di Roma, P. le A.
Moro 2, 00185 Roma, Italy.

0022-2488/96/37(11)/5551/26/$10.00
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on the number of symmetries of a difference equation, as opposed to a differential one. Symme-
tries transforming the discrete variables, can also be incorporated systematically, but that is a topic
for a different article.5

Our motivation is the same as for classifying differential equations according to their sym-
metries. Dynamical systems of the form~1.1! occur in many applications, ranging from classical
mechanics to molecular physics, or mathematical biology.6–8 If the functionFn(t,uk) is such that
Eq. ~1.1! allows a nontrivial symmetry group, then it is usually possible to obtain exact analytical
solutions satisfying certain symmetry requirements.

A different aspect is the possible connection between symmetries and integrability. Indeed,
integrable equations, be they differential, or differential–difference ones, tend to have large Lie
point symmetry groups. For instance, the Korteweg–de Vries equation with variable coefficients
was shown to have at most a four-dimensional Lie point symmetry group.9 More important, it has
a four-dimensional symmetry algebra precisely if it is equivalent, under point transformations, to
the KdV equation itself.

In the same context, we mention that integrable equations involving three independent vari-
ables~like the Kadomtsev–Petviashvili, Davey–Stewartson, 3-wave equations, and others! have
infinite dimensional Lie point symmetry algebras with a specific Kac–Moody–Virasoro
structure.10–13Interestingly enough, this is also true when one of the three variables is discrete, as
in the two-dimensional Toda lattice.1,2

In short, nonlinear differential and differential–difference equations with large Lie point sym-
metry groups are prime candidates for being integrable, or having some of the attributes of
integrability.14

Throughout this article we impose some restrictions.
~1! Only point symmetries are considered, i.e., all elements of the symmetry algebra have the

form ~1.4!.
~2! The interactionFn and the vector fieldX̂ depend continuously onn. This rules out terms

of the type [A6(21)nB] in Fn , or fn . Such terms will be considered elsewhere, once we treat
systems ofDDE. Indeed, they correspond to treating even and odd values ofn separately.

~3! In the bulk of the article the interactionFn is assumed to be nonlinear and coupled, i.e.,

]2Fn

]ui]uk
Þ0, S ]Fn

]un21
,

]Fn

]un11
DÞ~0,0! ~1.6!

~on some open set of values of the variables!. The linear case is considered in Sec. VIII.
~4! The interactionFn involves only nearest neighbors on the lattice, i.e., depends on

un ,un11,un21, but not say onun12.
~5! We only list the ‘‘maximal’’ symmetry algebras for a given interactionFn . Thus if Fn

allows say a five-dimensional symmetry algebra, we will not include it among those with sym-
metry algebras of dimension dimL<4.

In Sec. II we present the determining equations for the symmetries and introduce the classi-
fication group, i.e., the allowed transformations. We also find all interactionsFn with one-
dimensional symmetry algebras. Section III is devoted to interactions with abelian symmetry
algebras. We denote them Ai ,k , where the first index shows the dimension of the algebra. This
turns out to satisfy 1<dim L<4. All nilpotent nonabelian symmetry algebras are found in Sec. IV.
We call them Ni ,k with i indicating the dimension. In this case we have 3<dim L<5. Solvable
symmetry algebras SNi ,k with nonabelian nilradicals are treated in Sec. V. There exist eight
classes of such algebras. Their dimensions are four, or six. Section VI is devoted to solvable
symmetry algebras with abelian nilradicals SAi ,k . Their dimensions satisfy 3<dim L<5 and there
are altogether 30 inequivalent symmetry algebras of this type. In Sec. VII we treat nonsolvable
symmetry algebras. They all contain sl~2,R! as a subalgebra. Their dimensions are dimL53, 4, 5,
and 7 and there exist five inequivalent ones. Linear equations were so far excluded from consid-
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eration and are investigated in Sec. VIII. Their symmetry algebras are infinite-dimensional, but
this just reflects the linear superposition principle. A summary of results and some conclusions are
presented in the final Sec. IX.

II. FORMULATION OF THE PROBLEM AND EQUATIONS WITH ONE-DIMENSIONAL
SYMMETRY ALGEBRAS

In order to implement the symmetry algorithm~1.5! for Eq. ~1.1!, we need the second pro-
longation of the vector field~1.4!. We use the general formulas presented earlier,1,2 i.e., in our case

pr~2! X5t~ t,un!] t1 (
k5n21

n11

fk~ t,uk!]uk1fn
tt] ün, ~2.1!

fn
tt5Dt

2fn2~Dt
2t! u̇n22~Dtt! ün , ~2.2!

whereDt is the total derivative.
We apply pr~2! X to Eq. ~1.1!, eliminate theün terms using Eq.~1.1! and then request that the

coefficients of (u̇n)
k, k50,1,2,3 should vanish. We find that, for anyFn that depends nontrivially

on at least oneuk , kÞn, the coefficients in the vector field~1.4! satisfy

fn~ t,un!5~ 1
2ṫ~ t !1an!un1bn~ t !, t~ t,un!5t~ t !, ȧn50. ~2.3!

Moreover, the constantsan and functionst(t), bn(t) satisfy the remaining determining equation
~the coefficient of the term independent ofu̇n!

1
2t̂un1b̈n1~an2

3
2ṫ !Fn2tFn,t2 (

a5n21

n11

@~ 1
2ṫ1aa!ua1ba#Fn,ua

50. ~2.4!

Let us now determine the allowed transformation~1.2!. Substituting Eq.~1.2! into Eq. ~1.1!

and requiring that the terms (u̇̃n)
2 and u̇̃n be absent, we find that the allowed transformation~1.2!

must be linear and satisfy

un~ t !5
An

At̃ t
ũn~ t̃ !1Bn~ t !, t̃5 t̃~ t !, An,t50, t̃̇Þ0, AnÞ0, ñ5n. ~2.5!

Equation~1.1! is transformed into

ü̃n5
1

An
~ t̃̇ !23/2HFn~ t,uk!1F2 3

4An~ t̃̇ !
25/2~ t̃̈ !21

An

2
~ t̃̇ !23/2̂ t̃ G ũn~ t̃ !2B̈nJ , ~2.6!

wheret, un21, un , andun11 must be expressed in terms oft̃, ũk , using Eq.~1.2!.
The vector field

X̂5t~ t !] t1@~ 1
2ṫ~ t !1an!un1bn~ t !#]un, ~2.7!

is transformed into

X̂5t~ t ! t̃̇] t̃ 1H F t

2
t̃̈~ t̃̇ !211

1

2
ṫ1anG ũn1~ t̃̇ !1/2An

21F S 12 ṫ1anDBn1bn2tḂnG] ũn . ~2.8!
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Let us now assume that the interactionFn is given and that it is invariant under a one
parameter symmetry group, generated by the vector field~2.7!, with coefficients satisfying Eq.
~2.4!. Let us now use the allowed transformation~2.6! to simplify the vector fieldX̂, i.e., transform
it into a convenient ‘‘canonical’’ form. Once this is done, we insert the coefficients of the canoni-
cal vector field into the determining equation~2.4! and solve this equation forFn(t,uk). This is
easy to do, since we have a first order linear partial differential equation and we simply apply the
method of characteristics.

We see from Eq.~2.8! that three different possibilities occur.

A. t(t )Ó0

If we havet(t)Þ0 ~in some open neighborhood!, we chooset̃(t) andBn(t) to satisfy

dt̃

dt
5@t~ t !#21, t

dBn
dt

2S 12 ṫ1anDBn2bn50.

We obtain

A1,1: X̂5] t1anun]un, ~2.9!

and using Eq.~2.4! with t51, bn50 we find

Fn~ t,uk!5 f n~jk!e
ant, jk5uke

2akt, k5n21,n,n11. ~2.10!

In particular, foran50 we have invariance with respect to time translations:Fn does not depend
on t.

B. t(t )50, anÓ0

We chooseBn52bn(t)/an and obtain

A1,2: X̂5anun]n , ~2.11!

Fn~ t,uk!5unf n~ t,jk!, jk5uk
anun

2ak, k5n61. ~2.12!

The vector field~2.11! can be interpreted as generating site dependent~n dependent! dilations of
the functionun .

C. t(t )50, an50, bn(t )Þ0

In this case we already have

A1,3: X̂5bn~ t !]un, ~2.13!

and obtain

Fn~ t,uk!5
b̈n

bn
un1 f n~ t,jk!, jk5bn~ t !uk2bk~ t !un , k5n61. ~2.14!

In this case allowed transformations provide the equivalence

bn~ t !;bn~ t !~ t̃ t!
21/2An

21. ~2.15!
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In particular, if bn(t) factorizes as a function ofn and t, i.e., bn(t)5mnh(t), ṁn50, we can
transformbn(t) into bn(t)51. In this case the vector field~2.13! corresponds to a translation of
the dependent variable:un→un1c.

We see that the existence of a one-dimensional symmetry algebra imposes a certain restriction
on the form ofFn . Instead of being an arbitrary function of four variables, it will involve a
function of only three ‘‘symmetry’’ variables. By allowed transformations it can be taken into one
of three ‘‘standard’’ form Eq.~2.10!, ~2.12!, or ~2.14!.

Below we shall always assume thatFn and one of the symmetry generators is already in
standard form and will show howFn is further restricted by the existence of a higher dimensional
symmetry algebra.

The strategy that we shall follow is to proceed ‘‘structurally.’’ Thus we shall first find all
interactions that allow abelian symmetry algebras~of any dimensionN, but it turns out that in this
case we haveN<4!. We then proceed to classify nilpotent~nonabelian! symmetry algebras. For
these we find that their dimensions satisfy 3<N<5. The classification of abelian and nilpotent
symmetry algebras is then used to find all solvable~nonabelian! Lie algebras. To do this we use a
known result, namely, that a solvable Lie algebraL of dimension dimL5d, has a~unique!
nilradical NR(L) of dimension dim NR(L)>d/2. The nilradical is defined as the maximal nilpo-
tent ideal of a Lie algebra.15 Finally, we shall construct all nonsolvable Lie algebras. These are
either simple, or they have a nontrivial Levi decomposition15,16 into a semidirect sum of a simple
Lie algebra and a solvable one~the radical, i.e., the maximal solvable ideal, unique up to equiva-
lence!.

III. ABELIAN SYMMETRY ALGEBRAS

The procedure that we adopt for finding all interactionsFn allowing abelian symmetry alge-
bras is an inductive one. We start from each of the dimL51 cases found in Sec. II, and then add
further generatorsXi of the form~2.7!, commuting with those that have already been standardized.
ThusX1 is chosen in the form~2.9!, ~2.11!, or ~2.13!, respectively. We then addX2, satisfying
[X1 ,X2]50 and takeFn in the form~2.10!, ~2.12!, or ~2.14!, as the case may be. The generatorX2
is first simplified, using allowed transformations that leave the space$X1% invariant. The standard-
ized X2 andFn are then inserted into the determining equation~2.4! and this is solved for the
arbitrary functionf n in Eq. ~2.10!, ~2.12!, or ~2.14!, respectively. Thus we obtain two-dimensional
abelian symmetry algebras and the corresponding interactions, again in ‘‘canonical forms.’’ To
obtain higher dimensional symmetry algebras, we successively add further linearly independent
vector fields to the already established ‘‘canonical’’ algebras and impose further restrictions on
Fn . The results for dimL52 can be summed up in theorem that we state without proof. The
interactionFn throughout satisfies condition~1.6!.

Theorem 1: There exist precisely 5 classes of interactions Fn for which Eq. (1.1) allows a
two-dimensional abelian symmetry algebra. The algebras and interaction functions can be repre-
sented as follows:

A2,1: X15] t1a1nun]un, X25a2nun]un, ~3.1!

Fn5unf n~jk!, jk5uk
a2nun

2a2ke~a1na2k2a1ka2n!t, a2nÓ0, k5n21,n11. ~3.2!

A2,2: X15] t1anun]un, X25eant]un, ~3.3!

Fn5an
2un1eant f n~jk!, jk5uke

2akt2une
2ant, k5n21,n11. ~3.4!

A2,3: X15a1nun]un, X25a2nun]un, ~3.5!
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Fn5unf n~ t,j!, j5un21
an11nun

an21n11un11
ann21, akl5a1ka2l2a1la2kÞ0. ~3.6!

A2,4: X15b1n~ t !]un, X25b2n~ t !]un, U b1n

b1n11

b2n

b2n11
UÞ0, ~3.7!

Fn5
~b1nb̈2n2b̈1nb2n!un112~b1n11b̈2n2b̈1nb2n11!un

b1nb2n112b1n11b2n
1 f n~ t,j!, ~3.8!

j5~b1nb2n112b1n11b2n!un211~b1n11b2n212b1n21b2n11!un

1~b1n21b2n2b1nb2n21!un11 .

A2,5: X15]un, X25t]un, ~3.9!

Fn5 f n~ t,jk!, jk5uk2un , k5n21,n11. ~3.10!

Comments:~1! Notice that forA2,1,...,A2,4 the interaction involves an arbitrary functionf n of
two variables. ForA2,5 f n depends on three variables. In all cases we requiref nÞ0. ~2! It is easy
to verify that no algebra in the representative list is conjugate to any other one in the list~under
allowed transformations! and that any two-dimensional abelian symmetry algebra is conjugate to
precisely one in the list.

For dimL53 we proceed in the same manner. We start from the algebrasA2,1,...A2,5 and add
a further linearly independent elementX3, commuting withX1 andX2. Again, without proof, we
present the following result.

Theorem 2: Precisely four classes of three-dimensional abelian symmetry algebras exist.
They are represented by the following ones.

A3,1: X15] t1anun]un, X25bnun]un, X35cnun]un. ~3.11!

Fn5unf n~j!,

j5un21
an11nun

an21n11un11
ann21 exp~an21ann111an11an21n1anan11n21!t, ~3.12!

akm5bkcm2bmck .

A3,2: X15] t1anun]un, X25eant]un, X35gne
ant]un, gn11Þgn , ġn50. ~3.13!

Fn5an
2un1eant f n~j!,

j5~gn2gn11!un21e
2an21t1~gn112gn21!une

2ant1~gn212gn!un11e
2ant, ~3.14!

A3,3: X15b1n~ t !]un, X25b2n~ t !]un, X35@l1~ t !b1n~ t !1l2~ t !b2n~ t !#]un , ~3.15!

l̈1b1n12l̇1ḃ1n1l̈2b2n12l̇2ḃ2n50, Ub1n

b2n

b1n11

b2n11
UÞ0, l̇1l̇2Þ0. ~3.16!

Fn as in Eq.~3.8!

A3,4: X15]un, X25t]un, X35bn~ t !]un, bn11Þbn , b̈nÞ0. ~3.17!
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Fn5
b̈n

bn112bn
~un112un!1 f n~ t,j!,

j5~bn2bn11!un211~bn112bn21!un1~bn212bn!un11 . ~3.18!

Comments:~1! Equation~3.16! can be solved in all generality to yield

b1n5
1

Al̇1
f~ t !, b2n5

1

Al̇2
Fgn2E

0

tAl̇1~s!

l̇2~s!
ḟn~s!dsG , ġn50. ~3.19!

We see that interaction~3.8! always allows the two-dimensional symmetry algebraA2,4. If the
functionsb1n andb2n satisfy Eq.~3.16!, i.e., can be expressed in terms of one functionfn(t) of
n and t, two functionsl1(t) andl2(t) of t alone, and one functiongn of n, then the symmetry
algebra is three-dimensional.

~2! For b̈n50 in Eq. ~3.17! the interactionFn5 f n(t,j) allows a four-dimensional symmetry
algebra, a special case of Eq.~3.34! below.

~3! The algebra$Xi 5 b in(t)]un, i51,2,3% with bin satisfying

Ub1n21

b1n

b1n11

b2n21

b2n

b2n11

b3n21

b3n

b3n11

UÞ0, ~3.20!

is not listed above. The reason is that the corresponding invariant equation has the form

ün5An~ t !un1Bn~ t !un211Cn~ t !un111Dn~ t !.

Thus the equation is linear~inhomogeneous! and the invariance algebra is a reflection of the linear
superposition principle~see Sec. VIII below!.

~4!The algebra$Xi 5 ainun]un, i51,2,3% also corresponds only to a system of decoupled linear
equations.

The algebrasA3,1 andA3,2 cannot be extended to four-dimensional ones, or rather, the corre-
sponding invariant equations would be linear. Hence, for dimL>4 the symmetry algebra must
have the formXi 5 b in(t)]un, i51,2,••• . At most two of the functionsbin(t) can be linearly
independent as functions ofn, otherwise the equation would be linear. If allbin are proportional
to b1n(t), thenL is at most two-dimensional. Hence, we need only consider

X15b1n~ t !]un, X25b2n~ t !]un, b1nb2n112b1n11b2nÞ0,

X35@l1~ t !b1n~ t !1l2~ t !b2n~ t !#]un, X45@m1~ t !b1n~ t !1m2~ t !b2n~ t !#]un. ~3.21!

We consider separately the casesl1l250 ~or m1m250! andl1l2m1m2Þ0.
In both cases we find that the existence of an abelian symmetry algebra of the type~3.21!

~dim L54! implies that the interaction has the form

Fn5Pn~ t !un111Qn~ t !un1 f n~ t,j!, ~3.22!

j5~gn2gn11!un211~gn112gn21!un1~gn212gn!un11 , ~3.23!

gn11Þgn , ġn50, f n,jjÞ0.
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Let us now find the abelian symmetries for interaction~3.22!. We already know that they have
the formXi 5 b in(t)]un. Substituting Eq.~3.22! into Eq. ~2.4! and solving the corresponding
determining equations, we find

b in~ t !5f i~ t !1gnc i~ t !, i51,2, ~3.24!

where the functionsfi(t) andci(t) satisfy

f̈ i1c̈ ign2~f i1c ign11!Pn2~f i1c ign!Qn50, i51,2. ~3.25!

The two equations~3.25! determine the dependence ofPn and Qn on n. The condition
b2n(t)Þl(t)b1n(t) impliesf1c22f2c1Þ0, and we obtain

Pn52
1

gn2gn11
@A1~B1C!gn1Dgn

2#,

~3.26!

Qn5
1

gn2gn21
@A1Bgn1Cgn111Dgngn11#,

where A, B, C, and D are arbitrary functions of timet. The determining equations for the
symmetriesXi with bin as in Eq.~3.24! reduce to

c̈2Bc1Df50, f̈1Cf2Ac50. ~3.27!

The general solution of Eq.~3.27! involves four arbitrary constants, hence the abelian sym-
metry algebraL will be precisely four-dimensional and never larger.

Allowed transformations make it possible to exchange the roles offi andci , hence of (B,D)
and (C,A). Two cases can be distinguished.

~1! AÞ0 ~or equivalently,DÞ0!. We reduce Eq.~3.27! to

c5
1

A
~f̈1C~ t !f!, ~3.28!

f̂
•

12AS 1AD •f̂1AF S 1AD ¨1 C2B

A G f̈12ASCAD •ḟ1AF SCAD ¨1 DA2BC

A
f50. ~3.29!

A basis for the symmetry algebra is obtained in the form

Xi5Ff i1
1

A
~f̈ i1Cf i !gnG]un, i51,...,4, ~3.30!

wheref1,...f4 are four linearly independent solutions of Eq.~3.29!. Using allowed transforma-
tions we can setf151 and hence

SCAD ¨1 DA2BC

A
50. ~3.31!

~2! A5D50. Using allowed transformations we setf151 and thusC50, andf25t.
Thenc1 andc2 are two linearly independent solutions of the equation
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c̈2B~ t !c50. ~3.32!

We arrive at the following result.
Theorem 3: An abelian symmetry algebra of Eq. (1.1) satisfying conditions (1.6) can be at

most four-dimensional. A four-dimensional symmetry algebra occurs in the following two cases.

A4,1: X15]un, X25t]un, X35c1~ t !gn]un, X45c2~ t !gn]un, ~3.33!

gn11Þgn , ġn50.

Fn5
Bn~ t !gn

gn2gn11
~un2un11!1 f n~ t,j!, f n,jjÞ0, ~3.34!

with j as in Eq.~3.23! andc1, c2 satisfying Eq.~3.32! and hence also

c1ċ22ċ1c25const. ~3.35!

A4,2: Xi5@f i~ t !1c i~ t !gn#]un, i51,...,4, ~3.36!

Fn5
1

gn2gn11
@A~ t !1~B~ t !1C~ t !!gn1D~ t !gngn11#un11

1
1

gn2gn11
@A~ t !1B~ t !gn1C~ t !gn111D~ t !gngn11#un1 f n~ t,j!, ~3.37!

where (A,D)Þ~0,0!, fi andci are solutions of Eq.~3.27!, j is as in Eq.~3.23!, and f n,jjÞ0.

IV. NILPOTENT NONABELIAN SYMMETRY ALGEBRAS

Nilpotent nonabelian Lie algebrasL exist for dimL>3. For dimL53 the only such algebra is
the Heisenberg algebra with commutation relations

@X2 ,X3#5X1 , @X1 ,X2#5@X1 ,X3#50. ~4.1!

To construct all such algebras, we letX1 run through the three possible standard forms~2.9!,
~2.11!, and~2.13!. The generatorsX2 andX3 are taken in generic form, and further simplified by
allowed transformations, after the commutation relations~4.1! are imposed. We thus obtain two
mutually nonconjugate representative Heisenberg algebras, namely,

N3,1: X15]un, X25] t , X35t]un, ~4.2!

Fn5 f n~jk!, jk5uk2un , k5n11,n21. ~4.3!

N3,2: X25] t1anun]un, X35~ t1gn!e
ant]un, X15eant]un, ~4.4!

ȧn50, ġn50, gnÞgn11 ,

Fn5
an
2~gn112gn!22an

gn112gn
un1

2an
gn112gn

un11e
~an2an11!t1eant f n~j!,

j5~gn2gn11!un21e
2an21t1~gn112gn21!une

2ant1~gn212gn!un111e2an11t. ~4.5!
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Notice that the algebra~4.2! is obtained from Eq.~4.4! by settingan50, gn50, however, inter-
action~4.3! is more general than the one obtained from Eq.~4.5! by settingan5ga50. HenceN3,1
is not a special case ofN3,2.

Every nonabelian nilpotent Lie algebra contains a Heisenberg subalgebra, so we can proceed
to higher dimensions, by adding further operators toN3,1, or N3,2.

The algebraN3,1 thus yields a five-dimensional Lie algebra, namely,

N5,1: X15]un, X25t]un, X35S kt22 1gnD ]un, X45S kt36 1gnt D ]un, ~4.6!

X55] t , k50,1,

Fn5
2k

gn112gn
~un112un!1 f n~j!, ~4.7!

j as in Eq.~3.23!. The commutation relations are

S @X5 ,X1#

@X5 ,X2#

@X5 ,X3#

@X5 ,X4#
D 5S 01 0

k 0

1 0

D S X1

X2

X3

X4

D , @Xi ,Xk#50, i ,k51,2,3,4. ~4.8!

If we leave out the generatorX4, we obtain a four-dimensional nilpotent subalgebra. How-
ever, the corresponding invariant interaction is again Eq.~4.7!, so this subalgebra need not be
listed separately. We mention that$X1 ,...,X4% is an abelian subalgebra ofN5,1. It corresponds to
A4,2 of Sec. III, withA52k, B5C5D50.

Finally, the Lie algebraN3,2 can be extended to a four-dimensional nilpotent symmetry alge-
bra of a nonlinear interaction precisely if we have

anÞan11 , gn52
1

2an
. ~4.9!

The result is

N4,1: X15ane
ant]un, X25~2ant1

1
2!e

ant]un,

X35~ 1
2ant

22 t
2!e

ant]un, X45] t1anun]un, ~4.10!

Fn5
~an!

2

an112an
@4ane

~an2an11!tun112~3an111an!un#1eant f n~j!,

j5~an2an11!un21e
2an21t1~an112an21!une

2ant1~an212an!un11e
2an11t. ~4.11!

The commutation relations are

S @X4 ,X1#

@X4 ,X2#

@X4 ,X3#
D 5S 0 0 0

1 0 0

0 1 0
D S X1

X2

X3

D , @Xi ,Xk#50, i ,k51,2,3. ~4.12!

We can sum up the results as follows:
Theorem 4: Four classes of nonlinear interactions with nilpotent symmetry algebras exist.

They are represented by N3,1, N3,2, N4,1, and N5,1, respectively.
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V. SOLVABLE SYMMETRY ALGEBRAS WITH NONABELIAN NILRADICALS

All nilpotent symmetry algebras were classified in Sec. IV. Let us now embed them into
solvable Lie algebras as nilradicals and find the corresponding invariant interactions. In all cases
it is possible to add at most one elementY outside the nilradical. The commutation relations are
hence those of the nilradical plus the relation

@Xi ,Y#5AikXk , ~5.1!

whereA is some fixed matrix.

A. Nilradical N3,1

To the basis elements$X1 ,X2 ,X3% of Eq. ~4.2! we add a general elementY of the form~2.7!.
Imposing the commutation relations~5.1! we find thatt(t) in Y must satisfy eithert5t or t50.
We consider the two cases separately. Simplifying by allowed transformations and solving the
determining equations, we find that the symmetry algebras can be at most four-dimensional. We
obtain four classes of such symmetry algebras and they can be represented as follows. The
nilradical is as in Eq.~4.2! with commutation relations~4.1!.

Below we listY, the matrixA, the elements of which figure in Eq.~5.1!, and the invariant
interactions.

SN4,1: Y5t] t1~ 1
21a!un]un

A5S 1
21a

1

2 1
21a

D , aÞ2
1

2
, ~5.2!

Fn5~un112un!
~a23/2!/~a11/2! f n~j!, j5

un212un
un112un

.

SN4,2: Y5t] t1~2un1t2!]un

A5S 2 1 2

0 1
D , ~5.3!

Fn5 ln~un112un!1 f n~j!, j5
un212un
un112un

,

SN4,3: Y5t] t1gn]un, gn21Þgn ,

A5S 0 1

21
D , ~5.4!

Fn5expS 22
un112un
gn112gn

D f n~j!,

with j as in Eq.~3.23!
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SN4,4: Y5un]un,

A5S 1 0

1
D , ~5.5!

Fn5~un112un! f n~j!, j5
un212un
un112un

.

B. Nilradical N3,2 and N4,1

Proceeding as forN3,1, we find that no solvable symmetry algebras with nilradicalsN3,2 orN4,1
exist for nonlinear equations.

C. Nilradical N5,1

We start from the algebraN5,1 with basis as in Eq.~4.6! and commutation relations as in Eq.
~4.8!. We add a further operatorY and find that this is possible only fork50 in Eq. ~4.6!. Forgn
generic we find that the corresponding solvable algebras are six-dimensional. The case
gn5A1(21)nB would lead to a seven-dimensional Lie algebra, but by caveat we do not consider
such algebras in this article.

For genericgn with gn11Þgn we have the nilradical~4.6! and commutation relations~4.8!
with k50. The interaction will in all cases be

Fn5 f n~j!, ~5.6!

with j as in Eq.~3.23!. Four nonequivalent cases occur:

SN6,1: Y5t] t1~ 1
21a!un]un,

Fn5cnj
~a23/2!/~a11/2!, aÞ2 1

2,aÞ 3
2,

A5diag$ 1
21a,2 1

21a, 121a,2 1
21a,1% ~5.7!

SN6,2: Y5t] t1@2un1~a1bgn!t
2#]un, ~a,b!Þ~0,0!

Fn5cn1~a1bgn!ln j,

A5S 2

1

0 2

0 0 1

2a 0 2b 1

D ~5.8!

SN6,3: Y5t] t1rn]un, rnÞA1Bgn , ṙn50, ~5.9!

Fn5cn expS 2
2j

~gn2gn11!rn211~gn112gn21!rn1~gn212gn!rn11
D , ~5.10!

A5diag$0,21,0,21,1%.
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Theorem 5:Seven classes of solvable symmetry algebras with nonabelian nilradicals exist for
equations of type (1.1). Their dimension can be 4, or 6 and the algebras and invariant interactions
are represented above as SN4,1,...,SN4,4, with nilradical N3,1 and SN6,1,...,SN6,3 with nilradical N5,1.

VI. SOLVABLE LIE ALGEBRAS WITH ABELIAN NILRADICALS

A. General strategy

We shall run through all abelian Lie algebras of Sec. IV and denote their basis elementsXi .
We extend them by a nonnilpotent elementY in the general form~2.7!. We then find the invariant
interactionFn(t,un21,un ,un11), keeping it only ifFn is nonlinear and coupled. We then check
whether the considered algebra is maximal among those that leave the obtained equation~1.1!
invariant. We shall only list maximal symmetry algebras. Once a maximal symmetry algebra is
found, we check whether we can add further non-nilpotent elementsYi , to the Lie algebra. If that
is the case, we then obtain the further restricted interactionFn .

We use several results on the structure of solvable Lie algebras.15–22

~1! The nilradical NR(L) of a solvable Lie algebra is uniquely defined~up to conjugacy! and
its dimension satisfies

dim NR~L !> 1
2dim L. ~6.1!

~2! The derived algebra is contained in the nilradicalD(L)#NR(L).
~3! If the nilradical$X1 ,...,Xn% is abelian, then the commutation relations for the solvable Lie

algebraL can be written as

@Xi ,Yk#5~Ak! i j Xj , @Ak ,Al #50, @Yi ,Yk#5cik
l ,Xl , @Xi ,Xk#50. ~6.2!

The matricesAk commute and are linearly nilindependent~i.e., no nontrivial linear combination of
them is a nilpotent matrix!.

If only one elementY outside the nilradical exists, we have

@Xi ,Y#5AikXk , ~6.3!

and the non-nilpotent matrixA can be taken in Jordan canonical form.
~4! A partial classification of solvable Lie algebras exists.17–22

B. dim NR( L )51

The commutation relation is Eq.~6.3! with A51; X1 runs through the standard forms~2.9!,
~2.11!, and ~2.13!. The algebra~2.11! cannot be extended, nor can Eq.~2.9! for anÞ0. The
remaining cases provide four solvable Lie algebras and the corresponding interactions. They are

SA2,1: X5] t , Y5t] t1~ 1
21an!un]un, anÞ2 1

2, ~6.4!

Fn5un
anf n~jn21 ,jn11!,

jk5uk
an11/2un

2ak21/2, k5n21,n11, an5
an23/2

an11/2
, ~6.5!

SA2,2: X5] t , Y5t] t1]un ~6.6!

Fn5e22unf n~jn21 ,jn11!,
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jk5uk2un , k5n21,n11,

SA2,3: X5e~an21!t]un, Y5] t1anun]un, ~6.7!

Fn5~an21!2un1eant f n~jn21 ,jn11!,

jk5uke
2akt2une

2ant, k5n21,n11,

SA2,4: X5bn~ t !]un, Y5un]un,

Fn5
b̈n

bn
un1~bnun112bn11un! f n~ t,j!, j5

bnun212bn21un
bnun112bn11un

. ~6.8!

We see that in all cases the interaction involves an arbitrary functionf n of two variables. For
algebra SA2,1, SA2,2, and SA2,3 the transformations act nontrivially on time and induce a gauge
transformation ofun . For SA2,4 we have pure gauge transformations.

C. dim NR( L )52

Five classes of two-dimensional abelian symmetry algebras exist, namely,A2,1,...,A2,5 of Sec.
III. We have dimL53, or 4. The algebraA2,3 does not allow any solvable extensions; the others
do, at least in special cases. We shall present the Lie algebras, interactionsFn and matricesA of
Eq. ~6.3!.

1. NR(L )5A2,1

We must takean50 and we obtain a decomposable Lie algebra, namely,

SA3,1: X15] t , X25bnun]un, Y5t] t1~ 1
21cn!un]un, cnÞ2 1

2.

A5S 1 0

0 0D . ~6.9!

The invariant interaction is

Fn5un@un11
bn un

2bn11#4/~ann11! f n~j!, j5un21
ann11un

an11n21un11
an21n,

akm5bm2bk22~bkcm2bmck!.
~6.10!

2. NR(L )5A2,2

For anÞ0 we get just one extension, namely,

SA3,2: X15eant]un, X25] t1anun]un, Y5un]un,

Fn5an
2un1~un11e

~an2an11!t2un! f n~j!, ~6.11!

j5
un21e

2an21t2une
2ant

un11e
2an11t2une

2ant
.
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The commutation relations are as in the case~6.9!.
For an50, further possibilities arise, namely,

SA3,3: X15] t , X25]un, Y5t] t1gn]un,

Fn5expS 22
un2un11

gn2gn11
D f n~j!, gnÞgn11 , ~6.12!

j5~gn2gn11!un211~gn112gn21!un1~gn212gn!un11 .

The commutation relations are as in the case~6.9!.

SA3,4: X15] t , X25]un, Y5t] t1~ 1
21a!un]un, aÞ2 1

2

Fn5~un112un!
~a23/2!/~a11/2! f n~j!, j5

un212un
un112un

.

~6.13!

A5S 1 0

0 a1 1
2
D , ~6.14!

SA3,5: X15]un, X25] t , Y5t] t1~un1t !]un, Fn5~un112un!
21f n~j!,

j5
un212un
un112un

, A5S 1 0

1 1D . ~6.15!

3. NR(L )5A2,4

When the nilradical isA2,4 the additional operatorY can be further simplified so as to have
t51, or t50, anÞ0. Moreover, the case witht50 leads toFn linear. We obtain the following
three-dimensional Lie algebras

SA3,6: X15e~an21!t]un, X25gne
~an2p!t]un, Y5] t1anun]un,

Fn5~an21!2un2
gn

gn2gn11
~p21!~2an2p21!@un2un11e

~an2an11!t#1eant f n~j!,

j5~gn2gn11!un21e
2an21t1~gn112gn21!une

2ant1~gn212gn!un11e
2an11t, gn11Þgn ,

~6.16!

with

A5S 1 0

0 pD ~6.17!

SA3,7: X15e~an2p!t cos~ t2an!]un, X25e~an2p!t sin~ t2an!]un, Y5] t1anun]un,

Fn5@~an2p!22122~an2p!cot~an2an11!#un1
2~an2p!

sin~an2an11!
un11e

~an2an11!t1eant f n~j!,

j5un21e
2an21t sin~an2an11!1une

2ant sin~an112an21!

1un11e
2an11t sin~an212an!, anÞan11 , ~6.18!
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with

A5S p 1

21 pD , ~6.19!

SA3,8: X15e~an21!t]un, X25~2t1gn!e
~an21!t]un, Y5] t1anun]un,

Fn5~an21!2un2
2~an21!

gn2gn11
~un2un11!e

~an2an11!t1eant f n~j!,

~6.20!

with j as in Eq.~6.16! and

A5S 1 0

1 1D . ~6.21!

4. NR(L )5A2,5

We add Y in the general form~2.7! to X1 and X2. The commutation relations imply
t5t01t1t1t2t

2, an5a. Using allowed transformations we setbn(t)50. Four inequivalent three-
dimensional symmetry algebras are obtained.

SA3,9: X15]un, X25t]un, Y5un]un,

Fn5~un112un! f n~ t,j!, j5
un212un
un112un

,

~6.22!

with

A5S 1 0

0 1D , ~6.23!

SA3,10: X15]un, X252t]un, Y5] t1un]un,

Fn5~un112un! f n~jn21 ,jn11!, jk5e2t~uk2un!, k5n61,

~6.24!

with

A5S 1 0

1 1D , ~6.25!

SA3,11: X15]un, X25t]un, Y5t] t1~ 1
21a!un]un,

Fn5~un112un!
~a23/2!/~a11/2! f n~jn21 ,jn11!, ~6.26!

jk5~uk2un!t
2a21/2, aÞ2 1

2,k5n61,

with

A5S a1 1
2 0

0 a2 1
2

D , ~6.27!

5566 D. Levi and P. Winternitz: Symmetries of discrete dynamical systems

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



SA3,12: X15]un, X25t]un, Y5~ t211!] t1~ t1a!un]un,

Fn5~un112un!~ t
211!22f n~jn21 ,jn11!, ~6.28!

jk5~ t211!21/2~uk2un!e
2a arctant, k5n61,

with

A5S a 1

21 aD . ~6.29!

We see that for algebras SA3,1,...,SA3,8 the interactionFn involves an arbitrary functionf n of
one variablej. None of these algebras can be further extended by another symmetry operatorỸ,
outside the nilradical. Indeed, the existence of such an operator would force the interaction to be
linear.

The situation is different for algebras SA3,9,...,SA3,12, whereFn involves an arbitrary function
of two variables. Extensions of these algebras lead to two inequivalent four-dimensional solvable
Lie algebras with two-dimensional nilradicals, namely, the following:

SA4,1: X15]un, X25t]un, Y15un]un, Y25~ t211!] t1tun]un,

Fn5~un112un!~ t
211!22f n~j!, j5

un212un
un112un

.

~6.30!

SA4,2: X15]un, X25t]un, Y15un]un, Y25t] t1
1
2un]un,

Fn5~un112un!t
22f n~j!, j5

un112un
un212un

.

~6.31!

D. dim NR( L )53

1. NR(L )5A3,1

This algebra can figure as a nilradical only foran50. We then obtain

SA4,3: X15] t , X25bnun]un, X35cnun]un, Y5t] t1~ 1
21an!un]un,

Fn5pnunj
22/a, Ubncn bn11

cn11
UÞ0,

j5un21
ann11un

an11n21un11
an21n, akm5bmck2bkcm , ~6.32!

a5~ 1
21an21!an,n111~ 1

21an!an11,n211~ 1
21an11!an21n ,

A5S 1 0

0
D . ~6.33!
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2. NR(L )5A3,2

The algebraA3,2 can serve as a nilradical only foran50. We addY as usual and it turns out
that we must havet of the formt5t1t1t0. However, the invariant interactions obtained are either
linear, or such that they allow a symmetry algebra with a larger~four-dimensional! nilradical.
Hence, no algebrasL with NR(L)5A3,2 are obtained.

3. NR(L )5A3,3

Using allowed transformations we can simplifyt(t) in the additional operatorY to bet51, or
t50. We can always setbn(t)→0 in Y. For a four-dimensional symmetry algebra the nonzero
commutation relations will be as in Eq.~6.3! ~with 1<i , k<3!. We list the matricesA below.
Inequivalent symmetry algebras are distinguished by the Jordan canonical forms ofA.

The algebras we obtain are

SA4,4: X15~2an2p22p3!e
~an2p1!t]un,

X25~2an2p12p3!e
~an2p2!t]un,

X35~2an2p12p2!e
~an2p3!t]un, p1,p2,p3 , ~6.34!

Y5] t1anun]un, an11Þan ,

Fn5Anun1Bne
~an2an11!tun111eant f n~j!,

j5~an2an11!un21e
2an21t1~an112an21!une

2ant1~an212an!un11e
2an11t,

An5
1

2~an112an!
$2an11@23an

212an~p11p21p3!2p1p22p2p32p3p1#

22an~an2p12p22p3!
21~p11p2!~p21p3!~p31p1!%,

Bn5
1

2~an112an!
~2an2p12p2!~2an2p22p3!~2an2p32p1!,

A5diag~p1 ,p2 ,p3!. ~6.35!

SA4,5: X15e~an2p!t cos~ t2gn!]un,

X25e~an2p!t sin~ t2gn!]un, X35e~an2q!t cosgn]un, Y5] t1anun]un, ~6.36!

tangn5
~2an2p2q!~p2q!11

2~an2p!
, an11Þan ,

Fn5@~an2p!22122~an2p!cot~gn2gn11!#un12
an2p

sin~gn2gn11!
un11e

~an2an11!t1eant f n~j!,

j5un21e
2an21t sin~gn2gn11!1une

2ant sin~gn112gn21!1un11e
2an11t sin~gn212gn!

A5diagF S p 1

21 pD ,qG . ~6.37!
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SA4,6: X15
1
2@~an21!22~an2p!2#e~an21!t]un,

X25$2 1
2@~an21!22~an2p!2#t1~an21!%e~an21!t]un,

X35~an21!e~an2p!t]un, pÞ1,

Y5] t1anun]un, an11Þan ,

~6.38!

Fn5
an21

an112an
@~an1121!~2p23an11!2~an2p!2#un

1
~an21!~2an212p!2

an112an
un11e

~an2an11!t1eant f n~j!,

with j as for algebra SA4,4.

A5diagF S 1 0

1 1D ,pG . ~6.39!

SA4,7: X15~2an21!eant]un, X25@~2an21!t11#eant]un,

X352ane
~an21!t]un, Y5] t1anun]un, ~6.40!

Fn5
@an~an2an11!2~2an1121!~2an21!#an

an2an11
un1

~2an21!2an
an2an11

un11e
~an2an11!t1eant f n~j!,

with j as for algebra SA4,4.

A5diagF S 0 0

1 0D ,1G . ~6.41!

SA4,8: X15~an21!e~an21!t]un, X25~2~an21!t1 1
2!e

~an21!t]un,

X35
1
2@~an21!t22t#e~an21!t]un, Y5] t1anun]un,

Fn5
~an21!2

an112an
$@~an112an!24~an1121!#un14~an21!un11e

~an2an11!t%1eant f n~j!,

~6.42!

with j as for algebra SA4,4.

A5S 1 0 0

1 1 0

0 1 1
D . ~6.43!

We see that the matrixA in Eq. ~6.43! is indecomposable. The case~6.35! corresponds to the
decomposition 11111, while Eqs.~6.37!, ~6.39!, and ~6.41! correspond to the decomposition
211, with different structures of the 232 block.
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4. NR(L)5A3,4

We take$X1 ,X2 ,X3% as in Eq.~3.17! and addY in the form~2.7!. The commutation relations
~6.3! imply that the coefficients inY must satisfyan115an and t5t01t1t1t2t

2. By allowed
transformations we taket into one of the following:t50,1,t,11t2. Moreover,bn(t) of Y can be
set equal to zero. We find thatt50 leads to a linear equation. The valuest51, t andt211 lead to
five different four-dimensional symmetry algebras. However, none of them is maximal among
those existing for the given interactionFn . In each case the abelian nilradical can be extended to
a four-dimensional one and the corresponding maximal symmetry algebras will appear below.

E. dim NR( L )54

1. NR(L)5A4,1

We takeX1 ,...X4 as in Eq.~3.33!. The additional elementY must again satisfyan115an ,
t51, t or t211, bn(t)50.

Up to allowed transformations the following five-dimensional symmetry algebras represent all
possibilities. In each case we list the algebra, the interaction and the matrixA of Eq. ~6.3!.

SA5,1: X152]un, X25t]un, X35etgn]un ,

X45e2tgn]un, Y5] t1aun]un, aÞ0

Fn5
gn~un112un!

gn112gn
1eatf n~j!, ~6.44!

j5@~gn2gn11!un211~gn112gn21!un1~gn212gn!un11#e
2at,

A5diagH S a 0

1 aD ,a21,a11J .
SA5,2: X152]un, X25t]un, X352gn]un ,

X45tgn]un, Y5] t1un]un, Fn5et f n~j!, ~6.45!

A5diagH S 1 0

1 1D ,S 1 0

1 1D J .
Here,j is as in case SA5,1 with a51

SA5,3: X152]un, X25t]un, X35gn sin t]un,

X45gn cos t]un, Y5] t1aun]un, ~6.46!

Fn52
gn~un112un!

gn112gn
1eatf n~j!, A5diagH S a 0

1 aD ,S a 21

1 a D J .
Again, j as in case SA5,1.

SA5,4: X15]un, X25t]un, X35t1/21a2pgn]un ,

X45t1/22a1pgn]un, Y5t] t1~ 1
21a!un]un ,
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Fn5
@~a2p!22 1

4#gn~un112un!

~gn112gn!t
2 1ta23/2f n~j!, ~6.47!

j5@~gn2gn11!un211~gn112gn21!un1~gn212gn!un11#t
2a21/2,

A5diag~ 1
21a,2 1

21a,p,a2p!, pÞa.

SA5,5: X15]un, X25t]un, X35gnAt cos~ ln t !]un,

X45gnAt sin~ ln t !]un, Y5t] t1~ 1
21a!un]un,

Fn52
5

4

gn~un112un!

~gn112gn!t
2 1eatf n~j!, A5diagH a1

1

2
,a2

1

2
,S a 1

21 aD J ,
~6.48!

with j as in case SA5,1

SA5,6: X15]un, X25t]un, X35gnAt211 cos~q arctant !]un,

X45gnAt211 sin~q arctant !]un, Y5~ t211!] t1~ t1a!un]un,

Fn5
~12q2!gn~un112un!

~gn112gn!~ t
211!2

1
ea arctant

~ t211!3/2
f n~j!,

j5$~gn2gn11!un211~gn112gn21!un1~gn212gn!un11%
e2a arctant

~ t211!1/2
,

A5diagH S a 1

21 aD ,S a q

2q aD J , q.0. ~6.49!

SA5,7: X15]un, X252t]un, X35~2 ln t1gn!]un,

X45~ t ln t1gnt !]un, Y5t] t1~ 1
21a!un]un , ~6.50!

Fn5
un112un

t2~gn112gn!
1ta23/2f n~j!,

A5S 1
21a

0 2 1
21a

1 0 1
21a

0 1 0 2 1
21a

D ~6.51!

with j as in the case SA5,4.
None of the algebras SA4,3,...,SA4,8 nor SA5,1,...,SA5,7 can be extended by a further element

Y2, outside the nilradical.
Let us sum things up as theorem.
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Theorem 6: Altogether 31 classes of solvable symmetry algebras with abelian nilradicals
exist for Eq. (1.1). Their dimensions are 2, 3, 4, and 5. Each class is represented by one algebra
in this Section, namely, SA2,1,...,SA2,4; SA3,1,...,SA3,12; SA4,1,...,SA4,8, and SA5,1,...,SA5,7.

VII. NONSOLVABLE SYMMETRY ALGEBRAS

A nonsolvable Lie algebra must contain a simple subalgebra. The only simple Lie algebra that
can be realized in terms of vector fields of the form~2.7! is sl~2,R!. Upto allowed transformations
it can only be realized, together with the corresponding invariant interaction, as

NS3,1: X15] t , X25t] t1
1
2un]un, X35t2] t1tun]un, ~7.1!

Fn5
1

un
3 f n~jn21 ,jn11!, jk5

uk
un
. ~7.2!

We now write the determining equation~2.4! for Fn in the form ~7.2! and look for additional
symmetries. As a result we obtain algebras containing~7.1!, plus further vector fields, forming the
radical of the final symmetry algebra. They are

NS4,1: X45anun]un, an11Þan ,

Fn5un
23S un11

un
D ~4an!/~an112an!

f n~j!, ~7.3!

j5un11
an212anun

an112an21un21
an2an11.

NS5,1: X45anun]un, X55bnun]un,

an11Þan , bn11Þbn , bnÞlan ,

Fn5cnun@un21
~bn11an2bnan11!un

~bn21an112bn11an11!un11
~bnan212bn21an!

#4/an, ~7.4!

an5bn21~an2an11!1bn~an112an21!1bn11~an212an!.

NS5,2: X45]un, X55t]un,

Fn5~un112un!
23f n~j!, j5

un112un
un212un

.

~7.5!

NS7,1: X45]un, X55t]un, X65gn]un, X75tgn]un ,

Fn5@~gn2gn11!un211~gn112gn21!un1~gn212gn!un11#
23.

~7.6!

To sum up:
Theorem 7: Nonsolvable symmetry algebras of Eq. (1.1) can have dimensions 3, 4, 5, or 7.

There are 5 classes of them, NS3,1, NS4,1, NS5,1, NS5,2, and NS7,1.

VIII. SYMMETRIES OF LINEAR DIFFERENTIAL–DIFFERENCE EQUATIONS

Let us now consider the case excluded in the rest of this article, namely when Eq.~1.1! has the
form
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ün5An~ t !un211Bn~ t !un1Cn~ t !un111Dn~ t !, ~8.1!

i.e., is a linear inhomogeneousDDE. Substituting into the determining equation~2.4! and reading
off the coefficients ofun21, un11, un , and 1 we obtain four equations.

@~an2an21!22ṫ #An2tȦn50, ~8.2!

@~an2an11!22ṫ #Cn2tĊn50, ~8.3!

1
2t̂22ṫBn2tḂn50, ~8.4!

b̈n1~an2
3
2ṫ !Dn2tḊn2bn21An2bnBn2bn11Cn50. ~8.5!

For An andCn generic, Eqs.~8.2! and ~8.3! imply

t50, an115an[a. ~8.6!

Equation~8.4! is satisfied identically and Eq.~8.5! has the following solutions:
~1! For a50 we have

X~b!5bn~ t !]un, ~8.7!

wherebn(t) is a solution of the homogeneous equation, i.e., Eq.~8.1! with Dn(t)50.
~2! For aÞ0 choosea521. We then have

XI5@un2bn,I
~ t ! #]un, ~8.8!

wherebn,I is any solution of the inhomogeneous equation~8.1!.
Thus the symmetry algebra is infinite dimensional, but this simply reflects the linear super-

position principle. This is still a useful property. Indeed the existence of an infinite-dimensional
symmetry algebra can serve as a criterion of linearizability by point transformations for equations
of the form ~1.1!, just as in the case of partial differential equations.23 The linearizing transfor-
mations would of course not be amongst the allowed transformations~2.5!.

Now let us find additional symmetries existing for special forms of Eq.~8.1!. Allowed trans-
formation preserve linearity, so we can use them to simplify the vector fieldX.

Let one additional symmetry generator exist.

A. t50

ForAnÞ0, orCnÞ0 we findan115an and we reobtain the generator~8.8! and hence nothing
new.

For An5Cn50 Eq. ~8.1! decouples into

ün5Bn~ t !un1Dn~ t !. ~8.9!

For eachn separately we obtain an sl~3,R! symmetry algebra, as in the case for any linear, or
linearizable ODE.24

B. tÞ0

We transformt into t51 and considerX in the form~2.9!. Solving the determining equations
~8.2!,...,~8.4! for the coefficientsAn , Bn , Cn , Dn , we find that such an additional symmetry exists
only for
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ün5Rne
~an2an21!tun211Bnun1Sne

~an2an11!tun1Wne
ant,

Ṙn5Ḃn5Ẇn5Ṡn50, X5] t1anun]un.
~8.10!

A two-dimensional additional symmetry algebra for coupled equations~Rn andSn not both van-
ishing! can exist only if we haveAn50, orCn50 and alsoan50 in Eq. ~8.10!. For instance, for
Cn50, AnÞ0, we have

Fn5Anun211Dn , X15] t , X25t] t1@~ 1
212n1r!un1bn#]un, ~8.11!

wherer andbn satisfy

b̈n1~2n1r2 3
2!Dn2bn21An50.

If, in particular, we also haveDn50, then the entire symmetry algebra is as follows:

ün5Anun21 , ~8.12!

X15] t , X25t] t1~ 1
212n!un]un,

X35]un, X~b!5bn~ t !]un,

wherebn(t) is a solution of Eq.~8.12!.

IX. CONCLUSIONS

~1! The results of the symmetry classification of the nonlinearDDE ~1.1! are summed up in
Table I.

In the first rowA, N, SN, SA, NS, andT mean abelian, nilpotent, solvable with nonabelian
nilradical, solvable with abelian nilradical, nonsolvable, and total, respectively. In the second to
fifth column we give the number of each type of symmetry algebra for each dimension dimL. The
total number for each dimension is given in the last column.

The A, N, SN, SA, and NS type symmetry algebras are reviewed in Secs. III–VII, respec-
tively.

We see that we have dimL<7. For dimL56, or 7 the interactionsFn are completely speci-
fied ~up to 1 or more functions ofn!. Several types of ‘‘symmetry variables’’ occur for the higher
dimensional symmetry algebras. Let us denote them as follows:

TABLE I. The results of the symmetry classification of the nonlinearDDE ~1.1!.

dim L A N SN SA NS T

7 0 0 0 0 1 1
6 0 0 3 0 0 3
5 0 1 0 7 2 10
4 2 1 4 8 1 16
3 4 2 0 12 1 19
2 5 0 0 4 0 9
1 3 0 0 0 0 3
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j5~gn2gn11!un211~gn112gn21!un1~gn212gn!un11 ,

h5jh~ t !, z5pn21~ t !un211pn~ t !un1pn11un11 ,

r5
un112un
un212un

, s5un21
an21un

anun11
an11,

~9.1!

wheregn andqn depend only onn, h(t) is some~specific in each case! function of t andpn(t) is
a ~specific! function ofn and t.

We can write the interactions having symmetry algebras of dimension 5<dim L<7 as fol-
lows:

NS7,1: Fn5cnj
23, ~9.2!

SN6,1: Fn5cnj
p, ~9.3a!

SN6,2: Fn5cn1~a1bgn!ln j, ~9.3b!

SN6,3: Fn5cn1ebnj, ~9.4a!

SN6,4: Fn5cnj
21, ~9.4b!

SN6,5: Fn5
2k

gn112gn
1 f n~j!, ~9.4c!

SA5,1,...,SA5,7: Fn5
a~ t !1b~ t !gn

gn112gn
~un112un!1g~ t ! f n~h!, ~9.5a!

where the functions ofa, b, g, andh are different in each case

NS5,1: Fn5cns, ~9.5b!

SN5,2: Fn5~un112un!
23f n~r!. ~9.5c!

For 1<dim L<4, see Secs. II, III, and VI.
~2! Among the interactions with four-dimensional symmetry algebras a case of particular

interest is SN4,3 of Eq. ~5.4!. This case contains the well-known and integrable Toda lattice.25

Indeed, if we choose

gn52n, f n~j!5211e1/2j, ~9.6!

we obtain the equation

un,tt5eun212un2eun2un11. ~9.7!

Thus the Toda lattice is not singled out by its Lie point symmetry group, at least not by symme-
tries generated by vector fields of the type~1.4!. Instead, it comes in a family involving two
arbitrary functions,gn and f n~j!. Nor is the Toda lattice the one with the largest symmetry group
of the considered type. This distinction goes to the interaction~9.2!.

~3! The connection between Lie point symmetries ofDDE and their integrability remains
open. We plan to investigate other types of symmetries of Eq.~1.1!, or at least special cases
thereof in the near future.
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The behavior of nearby trajectories in magnetic billiards
Tamás Tasnádia)
Institute for Solid State Physics, Eo¨tvös University, 6-8., Mu´zeum krt.,
Budapest, 1088 Hungary
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In chaos theory the separation of infinitesimally close trajectories has great impor-
tance. In present paper this behavior is investigated for classical magnetic billiard
systems on Riemannian manifolds. The separation of the trajectories during the
bounceless segments as well as at the reflections is studied generally, with a method
similar to that of Jacobi fields for geodesic flows. For two-dimensional manifolds
the results are also given in a natural coordinate frame, and they are illustrated in
special~homogeneous! cases. We relate our issues to the known properties of the
curvature of the horocycles, too. ©1996 American Institute of Physics.
@S0022-2488~96!00609-3#

I. INTRODUCTION

The geodesic motion on Riemannian manifolds became a very important model in ergodic
theory, since due to the theorem of Lobatchewski and Hadamard1 the geodesic flow on the unitary
tangent bundle of any compact Riemannian manifold with negative curvature shows strongly
stochastic properties, it is aC-system, ergodic, mixing and has positive entropy.2,3 With the
method of Jacobi fields4 it has been shown that on Riemannian manifolds with negative curvature
the separation of nearby geodesic trajectories is exponential and the long-time evolution depends
very sensitively on the initial conditions, i.e., the system is chaotic.

Slightly more difficult systems are the billiards, which were also traditionally investigated in
chaos theory5–9 and later from the point of view of quantum chaos, too.10–12 In these systems a
particle moves freely~along geodesic segments! in a bounded region of a Riemannian manifold,
and changes its velocity according to the law of elastic reflection at the boundaries of the billiard.
The long-time behavior of nearby trajectories is controlled by two effects; by the separation of the
geodesic segments between subsequent bounces, and by the reflections themselves, which can
focus or defocus the bunch of trajectories. The first effect is essentially equivalent with that
mentioned in the previous paragraph, and depends on the curvature of the Riemannian manifold,
while the second one is an instantaneous, local effect, which does not depend on the properties of
the manifold, but only on the curvature of the billiard boundary at the reflection point and on the
angle of reflection. A conventional way, motivated by geometric optical analogies, for keeping
track of these separating effects is to follow the evolution of the curvature of the horocycle
~wavefront in geometric optics! along the investigated bunch of trajectories.5,6,8,11,13,14The curva-
ture k of the horocycle satisfies a first-order ordinary differential equation along the geodesic
segments, and it has jumps depending on the angle of reflection and on the curvature of the wall
at the bounces. Having known the time~or parameter! dependence ofk, one can get the transverse
separation of nearby trajectories by integration.

A bit more complicated family of systems are billiards with force field, which results in that
the particle no longer follows geodesic segments between the subsequent bounces. Special types
of these systems are the magnetic billiards, in which a charged particle moves in the billiard under
the action of magnetic Lorentz force, that changes only the direction of its velocity, but does not
change its kinetic energy. These systems also have a great importance in chaos theory because of
their ~relative! simplicity and richness.14–17 The presence of the magnetic field breaks the time-
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reversal symmetry of the system, and strongly influences the behavior of nearby trajectories during
the bounceless segments as well as at the reflections. Changing the value of the magnetic field one
can study the transition from completely integrable systems to soft or hard chaos.14,17 Since the
Schrödinger equation can be relatively easily treated in magnetic billiards with numerical meth-
ods, these systems also provide a good framework for studying the quantum mechanical aspects of
classical chaos.18

In this paper we study magnetic billiard systems from a classical point of view, and derive
some formulas describing the separation of nearby trajectories during the bounceless periods and
at the reflections. With the help of these formulas one can calculate the Lyapunov exponent for
special trajectories. We summarize the main results of the paper along with its organization.

In Sec. II the bounceless motion of a charged particle is studied on a Riemannian manifold
with magnetic field, and, using a method similar to that of Jacobi fields for geodesics,4 a gener-
alization of the Jacobi equation4 is also derived for this case. This latter equation describes the
infinitesimal separation of nearby trajectories in magnetic systems. In Appendix A a mathematical
addendum is given about the properties of vector fields along mappings needed in Sec. II.

From Sec. III our attention is restricted to two-dimensional systems. In the third section we
rewrite the Jacobi equation obtained in Sec. II in a more expressing form using a naturally chosen
coordinate frame along the investigated trajectory, and discuss the behavior of its solutions. It is
shown that the positive~Gaussian! curvature and the presence of the magnetic field locally stabi-
lize the given bunch of trajectories, the behavior of which is also influenced by the transverse
inhomogeneity of the magnetic field. The results are illustrated in simple, homogeneous cases,
with special emphasis on the Bolyai–Lobatchewski plane with constant magnetic field.18 Appen-
dix B contains a brief survey of the cycles and isometries of the hyperbolic plane using its
pseudosphere model.10

In Sec. IV the bouncing effects are investigated, and a formula is derived, which gives the
jump of the Jacobi field at the reflections. In contrast with geodesic billiards, at the presence of
magnetic field this jump depends on the value of the field, too; moreover, the field can also change
the focusing or defocusing character of the bounce. We illustrate this in a simple case using purely
classical geometrical tools in Appendix C.

In Sec. V we relate our method, using generalized Jacobi fields along the trajectories for
calculating the behavior of nearby trajectories, to the method which uses the curvaturek of
horocycles. We expressk with the help of the Jacobi field, rewrite our results as equations fork,
and show that they agree with the known results when the magnetic field is zero,5,6,8,11,13or when
the magnetic field is homogeneous and the curvature of the billiard plane is zero.14

Our main results are summarized again in Sec. VI.

II. INFINITESIMAL VARIATIONS AND GENERALIZED JACOBI EQUATION

From this section, in differential geometrical calculations we generally adopt the notations of
Ref. 4. For a smooth manifoldM ,Tx(M ) denotes its tangent space at the pointxPM , T(M ) and
pM : T(M )→M denotes the tangent bundle and its canonical projection toM . F (M ) is the
algebra of smooth functions onM andV (M ) is the Lie algebra of smooth vector fields onM . For
a differentiable mappingf :N→M we denote its differential~resp. its differential at a pointpPN!
with f

*
@resp. with (f

*
)p#. The tensor fieldf *V is the pull back of the covariant tensor fieldV

given onM to the manifoldN. The set of smooth vector fields alongf is denoted byV f . If
“:V (M )3V (M )→V (M ) is a connection of M , then the induced connection
“̃:V (N)3V f→V f is distinguished by a tilde. Since our derivations are strongly based on the
concept of vector fields along mappings,19 we give the definition and summarize the basic prop-
erties of this notion in Appendix A.

Let ~M ,^•,•&! be anm-dimensional Riemannian manifold with scalar product^•,•&, and let us
denote its Levi-Civita connection, torsion, and curvature tensor with“, T~50! andR, respec-
tively.
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Let B be a given antisymmetric tensor field of type~1,1! @i.e., ^X,B(X)&50 for all XPV (M )#.
This plays the role of the magnetic field in our system. The equation of motion of a particle of unit
charge and mass is

“ ġġ5B~ ġ !, ~1!

whereg :R→M gives the trajectory of the particle parametrized with time. For physical reasons
we assume furthermore that in the investigated system every solution of Eq.~1! is complete, so the
motion of the particle can always be followed infinitely both backwards and forwards in time.
Multiplying the equation withġ we get that (d/dt)^ġ,ġ& 5 2^ġ,“ ġġ& 5 2^ġ,B(ġ)& 5 0, so the
speed~kinetic energy! of the particle is constant. We can assume, without loss of generality, that

uġu251. ~2!

~Otherwise one should change the scale of time and magnetic field byuġu.)
The following two concepts help us to handle the behavior of nearby trajectories~Fig. 1!.
Definition 1: Let g0:R→M be a solution of the equation of motion~1!. A differentiable

mapping d :R3~2«0,«0!→M ~«0.0! is said to be a variation of the curve g0, if
d(t,0)5g0(t) ~tPR!, and the curvesg« :R→M defined byg«(t):5d~t,«! also satisfy Eq.~1!.
The curvesg« are thevaried curves. If the varied curves satisfy also the additional condition~2!,
d is called aspecial variation.

Definition 2: Let g0 be a solution of Eq.~1!, and letd be a variation of it. Theinfinitesimal
variation of g0 corresponding to the variationd is a smooth vector fieldV0 P V g0

alongg0, for
whichV0(t)5(]/]«)u(t,0)d(t,«). In accordance with the previous definition,V0 is called aspecial
infinitesimal variationif it is induced by a special variation. We denote the set of infinitesimal
variations~resp. special infinitesimal variations! alongg0 with I g0

~resp. withS I g0
!.

It is intuitively clear that a~special! infinitesimal variation of a trajectory describes the relative
motion of another particle moving~at the same speed! along an infinitesimally close path. Since
the possible initial conditions of a trajectory constitute a finite-dimensional manifold, it is also
expectable that the setI g ~or S I g! of ~special! infinitesimal variations alongg form a finite-
dimensional subspace of the infinite-dimensional vector spaceV g . In the following we define a
finite-dimensional subspace ofV g , whose elements are called~special! generalized Jacobi fields,
and show that these vector fields are exactly the~special! infinitesimal variations ofg.

FIG. 1. The variation of a trajectory.
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Definition 3:Let g :R→M be a solution of the equation of motion~1!. A vector fieldVPV g

alongg is a generalized Jacobi field alongg, if it satisfies the following second-order ordinary
differential equation calledgeneralized Jacobi equation:

V95~“VB!~ ġ !1B~V8!2R~V,ġ !ġ, ~3!

whereR is the curvature tensor ofM , andV8PV g is the derivative“̃]/]tV of VPV g with respect
to the parametertPR of g. If V beside the equation~3! also satisfies the condition

^V8,ġ&50, ~4!

thenV is said to be aspecial~generalized! Jacobi field. The set of~generalized! Jacobi fields and
special~generalized! Jacobi fields alongg are denoted byJ g andS J g , respectively.

We note that, if the magnetic field is zero, the first two terms on the right side of Eq.~3!
vanish, and the generalized Jacobi equation simplifies to the usual Jacobi equation for geodesic
variations.4 In this paper variations of geodesics are not treated, so for the sake of brevity the
attribute~generalized! of Jacobi fields and Jacobi equation is omitted.

Since Eq.~3! and condition~4! are linear inV, J g andS J g are vector spaces overR. To
give a particular solutionVPJ g of ~3!, V(t0), V8(t0) P Tg(t0)

(M ) must be prescribed~arbitrarily!
at a given instant of timet0. This means, that dimJ g52m @m5dim(M )#.

A straightforward calculation shows that for a Jacobi fieldVPJ g the scalar product
p:5^V8,ġ& is independent of time. Indeed,dp/dt 5 d/dt^V8,ġ& 5 ^V9,ġ& 1 ^V8,“ ġġ&, and
insertingV9 from ~3! and“ ġġ from ~1! we obtain

dp

dt
5

d

dt
^V8,ġ&52^R~V,ġ !ġ,ġ&1^~“VB!~ ġ !,ġ&1^B~V8!,ġ&1^B~ ġ !,V8&50, ~5!

which is zero due to the properties of the curvature tensor and the antisymmetry ofB. So if the
condition~4! is satisfied at an arbitrary instant of time, then it holds for all parameter valuestPR.
It means thatS J g is a hyperplane~2m21-dimensional subspace! of J g . It is also easy to show
that for everyaPR, aġPV g is a special Jacobi field.

The following theorem gives the connection between the~special! Jacobi fields and the~spe-
cial! infinitesimal variations along a trajectoryg.

Theorem 4: For every solutiong0:R→M of the equation of motion~1!, the setI g0
of

infinitesimal variations ofg0 is identical with the setJ g0
of Jacobi fields alongg0. Moreover, for

a solutionh0 of the equation~1!, which also satisfies the condition~2!, the setS I h0
of special

infinitesimal variations ofh0 is identical with the setS Jh0
of special Jacobi fields alongh0.

Proof: First we prove that every infinitesimal variation ofg0 satisfies the Jacobi equation. Let
d :R3~2«0,«0!→M ~«0.0! be a variation ofg0, and let us denote the canonical base vector fields
on the parameter planeR3~2«0,«0! with X:5]/]t andY:5]/]«, wheret is the first and« is the
second coordinate of the parameter plane~Fig. 1!. The longitudinal vector field HPV d and the
transverse vector field VPV d are constructed from these base fields with the help ofd

*
:

H:5d*X, V:5d*Y. ~6!

@If the mappingd were injective, the vector fieldsX andY could be simply pushed forward to
the manifoldM . But generallyd is not injective; moreover, it usually has critical points alongg0
~conjugate points!. This is the reason whyH andV have to be defined as vector fields alongd.#

It is clear thatV(t,0) is just the infinitesimal variation corresponding tod at the pointg0(t),
and that the longitudinal vector fieldH consists of the tangent vectors of the varied curves, i.e.,
H(t,«)5ġ«(t). Since the varied curves also obey Eq.~1!, we have
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“̃XH5B~H ! ~7!

for H ~“̃ denotes the covariant derivation onV d induced by“!. Differentiating Eq.~7! with
respect toY, we obtain

“̃Y“̃XH5“̃Y„B~H !…. ~8!

Now we transform this equation into a form which does not contain derivations ofH or V
with respect toY, so in which it is enough to knowH andV alongg0. Using ~A2! and the facts
thatT50 and [X,Y]50, we have

“̃XV5“̃YH. ~9!

Using ~A3! and ~9!, the left side of Eq.~8! can be rewritten in the following form:

“̃Y“̃XH5R~V,H !H1“̃X“̃YH1“̃ @Y,X#H5R~V,H !H1“̃X“̃XV. ~10!

The right side of~8! can be written as follows:

“̃Y„B~H !…5~“̃YB!~H !1B~“̃YH !5~“̃YB!~H !1B~“̃XV!. ~11!

Putting together the two sides~10! and ~11!, considering the equation obtained at«50, and
writing ġ0(t) in place ofH(t,0), we obtain

R~V,ġ0!ġ01V95~“VB!~ ġ0!1B~V8!, ~12!

which agrees with the Jacobi equation~3!.
For a special variationd of the curveh0, the property~4! of the corresponding infinitesimal

variationV can be proved using a similar trick. LetX, Y, H, andV be the same vector fields as
before. Sinced is a special variation, we have

^H,H&51 ~13!

for H. Differentiating it with respect toY and using~9!, we find that

“̃Y^H,H&52^“̃YH,H&52^“̃XV,H&50. ~14!

Considering it at«50, we find that̂ V8,ḣ0&50, soV is indeed a special Jacobi field.
Now we sketch the proof of the theorem in the opposite direction. LetṼ be a given Jacobi

field along the trajectoryg0. From Ṽ we construct a variationd, for which the transverse vector
field VPV d is identical withṼ alongg0. Since bothṼ andVu«50 are Jacobi fields, to prove their
equality it is enough to show that they and their first derivatives with respect toġ0 agree at a single
point of g0. However, using~9! the derivations with respect to tangent vectors ofg0 can be
rewritten as derivations with respect to transverse vectors. The construction ofd can be followed
in Fig. 2.

Let n :~2«0,«0!→M ~«0.0! be a smooth injective curve, for whichn~0!5g0~0! and ṅ(0)
5Ṽ(0). Let G andKPV n be the vector fields alongn, obtained by autoparallel translation of
ġ0~0! andṼ8~0! alongn, respectively. Let us define the ‘‘longitudinal’’ vector fieldH̃ alongn by

H̃~«!:5G~«!1«K~«! ~15!

@«P~2«0,«0!#. It comes immediately from this construction that

“ Ṽ~0!H̃5K~0!5Ṽ8~0!. ~16!
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Now let us define the varied curvesg« @«P~2«0,«0!# as the solutions of Eq.~1! with initial
conditionsg«~0!5n~«! and ġ«(0)5H̃(«), and define the variation withd(t,«):5g«(t). ~It is a
simple consequence of the construction thatd is indeed a smooth variation ofg0.!

Let X, Y andH, VPV d denote the canonical vector fields on the parameter plane and the
longitudinal, transverse vector field alongd, respectively, as before. Due to the construction ofd,
H coincides withH̃ andV coincides withv̇ alongn, so especiallyV agrees withṼ andṅ at g0~0!
and“V(0,0)H 5 “ Ṽ(0)H̃. Using~16! and~9!, this means, thatV8 agrees withṼ8 atg0~0!. Since the
values and the first derivatives of the Jacobi fieldsV andṼ P J g0

coincide atg0~0!, V agrees with
Ṽ along the whole trajectory.

If h0 is a trajectory satisfying condition~2! andṼ is a special Jacobi field, we must construct
a special variation inducingṼ. For this reason the equation~15! defining H̃ has to be slightly
changed:

H̃~«!:5
G~«!1«K~«!

uG~«!1«K~«!u
. ~17!

Since in this caseuḣ0u51 and ^V8,ḣ0&50, the denominator in~17! is of order 11« 2, and
~16! remains valid. With this modificationuH̃ u51, so the correspondingd is a special variation.
The proof can be finished in the same way as in the previous case.

This completes the proof of Theorem 4.
Q.E.D.

We note, that the Jacobi fieldV(t)5aġ(t) ~aPR! along g corresponds to the variation
d(t,«)5g(t1a«), which is a translation ofg in its parameter lineR.

For a Jacobi fieldVPJ g let p:5^V8,ġ&PR. @As we have seen in~5!, p is independent of
time.# A simple calculation shows thatp is the rate of change of the speed of the varied trajec-
toriesg« as a function of«:

]

]«U
~ t,0!

uġ«~ t !u5
]

]«U
~ t,0!

uH~ t,«!u5
^“̃YH~ t,0!,H~ t,0!&

uH~ t,0!u
5

^V8,ġ0&
uġ0u

5p. ~18!

FIG. 2. The construction of the variation from the Jacobi field.
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@Here the notations were introduced before, and Eqs.~2! and ~9! were used.# It is also clear
that for a special infinitesimal variationp is zero; namely, this is the condition~4! in Definition 3
of special Jacobi fields.

III. SPECIAL FORMULAS FOR TWO-DIMENSIONAL MANIFOLDS

From here our study is restricted to two-dimensional manifolds. The low dimensionality
enables us to introduce a natural coordinate system along the trajectories, in which the Jacobi
equation~3! and condition~4! can be written in a more adequate form.

Let ~M ,^•,•&! be a two-dimensional Riemannian manifold with magnetic fieldB, and letV
denote the antisymmetric tensor field of type~1,1! corresponding to the volume formv @i.e.,
^V(Y),X&5v(X,Y) for all X,YPV (M )#. Due to the properties of the metric tensor and the
volume form,V satisfies the following two conditions:

V2521, “V50. ~19!

~The effect ofV on a tangent vector is just a rotation of 90° in the tangent plane.!
Since dim~M !52, the magnetic fieldB can be uniquely written in the form

B5bV, ~20!

wherebPF (M ) is a smooth function.
Let VPJ g be a Jacobi field along the trajectoryg of unit speed~uġu51!, and let us denote the

~strength of the! magnetic field alongg by bg :5b+g :R→R. Inserting~20! into the Jacobi equa-
tion ~3!, we obtain

V95V~b!ġ '1bgV~V8!2R~V,ġ !ġ, ~21!

whereV~b! is the derivative ofb in the direction ofV, andġ ':5V(ġ) denotes the vector field
of unit vectors perpendicular toġ along the trajectory.

Since dim(M )52, VPJ g can be uniquely written in the form

V5aġ1bġ ', ~22!

wherea andb are functions onR. The coordinate functiona describes thelongitudinalseparation
of nearby trajectories, while functionb shows the relative motion of two infinitesimally closed
trajectories in thetransversedirection.

In the following theorem the Jacobi equation~21! is expressed with the help of these coordi-
nate functions.

Theorem 5: A vector field V5aġ1bġ 'PV g along the trajectoryg of unit speed on a
two-dimensional manifoldM is a Jacobi field if and only if the coordinate functionsa andb of V
satisfy for somepPR the following system of differential equations:

a85p1bg b, b952b~r1bg
22bg

'!2bgp, ~23!

where b g
' :5ġ '~b! denotes the derivative ofb with respect to ġ ', bg5b + g, and

r :5^R(ġ ',ġ)ġ,ġ '&:R→R is the sectional~Gaussian! curvature ofM along g. Here V is a
special Jacobi field, ifp50.

If VPJ g is a Jacobi field, then the constantp is

p5^V8,ġ&5a82bbPR. ~24!

~It is in accordance with our previous notation.!
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It is worth mentioning that~23! is not a real coupled system of differential equations; the
second equation of~23! is an ordinary differential equation only forb. Having known the initial
conditionsa(t0),b(t0),a8(t0),b8(t0)PR, expression~24! gives the value ofp, the time depen-
dence ofb can be obtained by solving the second equation of~23!, and inserting it into the first
equation of~23!, an integration gives the functiona(t).

Proof: First we prove the ‘‘only if’’ part of the theorem. LetV5aġ1bġ 'PJ g be a Jacobi
field. Using the expressions~19! and~20! and the equation of motion~1!, the derivatives ofV can
be written as follows:

V85~a82bgb!ġ1~b81bga!ġ ', ~25!

V95~a92bg
8 b22bg b82b2a!ġ1~b91bg8a12bg a82bg

2 b!g '. ~26!

Substituting these equations as well as expression~22! into the Jacobi equation~21!, using again
the properties~19! of V and the symmetry properties ofR, we obtain the following system of
ordinary differential equations for the coordinate functionsa andb:

a95bg8 b1bg b85~bg b!8, b952b~r2b g
' !2bg a8. ~27!

With the help of the expression~24! for p, it is easy to transform this system of equations into
the desired form~23!, and it is also obvious that, ifV is a special Jacobi field, thenp50. This
proves the ‘‘only if’’ part of the theorem, and following the calculations backwards, one can easily
check, that the ‘‘if’’ part is also true.

Q.E.D.
If the factorr1b g

22b g
' were constant on the right side of the second equation of~23! then the

solutionb(t) would be an exponential or a harmonic~sine or cosine! function depending on the
sign of r1b g

22b g
' . According to this fact, a trajectoryg is said to be locally stable at

a pointg ~t0!, if r1b g
22b g

'.0 at that point, andlocally instable, if r1b g
22b g

',0. The negative
curvature causes instability, the presence of the magnetic field works against it, and the inhomo-
geneity of the magnetic field also influences the stability of the trajectories.~The fact that the
magnetic field suppresses chaos has been also observed in Ref. 17.!

In the remaining part of this section the results obtained are illustrated by presenting particular
cases, where the Gaussian curvaturer and the magnetic fieldb is constant. In this caseb'50, so
the stability of the trajectories depends~globally! on the sign ofr1b 2. If the scalar curvature is
positive, the trajectories are stable for every valueb of the magnetic field. It is more interesting
that in the case of negative curvature the trajectories can be either stable or instable, depending on
the strength of the magnetic field.

First we study in detail the motion of a charged particle on the hyperbolic~Bolyai–
Lobatchewski! plane, denoted byS, for which r521. This means, that for magnetic fieldsubu,1
the trajectories are instable, and for fieldsubu.1 the trajectories are stable.18 In Appendix B we
summarize some basic facts connected with the cycles and isometries of the hyperbolic plane
using the pseudosphere model.10

For a trajectoryg :R→S let the image of the mappingg ~as a subset ofS! be called thepath
of the particle~or thepathbelonging to the trajectoryg!. The following theorem relates the cycles
of the hyperbolic plane to the paths of charged particles.

Theorem 6: The possible paths of charged particles moving on the hyperbolic plane in
constant nonzero magnetic field are the cycles. If the charge, mass, and speed of the particle is
unit, then for magnetic fieldsubu,1 the paths are hypercycles, forubu.1 the paths are circles, and
at the magnetic fieldsubu51 the particles move along paracycles.

The possible directed paths~i.e., the directed cycles! constitute in a natural way a three-
dimensional differentiable manifoldP. The points ofP can be identified with the paths belonging
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to trajectories of unit speed, and the tangent planeTg(P) at the pointgPP can be brought into
one-to-one correspondence with the factor spaceJ g /Rġ, whereRġ,S J g is a one-dimensional
subspace of the~special! Jacobi fields.

Proof: It is a direct consequence of the rich symmetry~homogeneity and isotropy! of the
hyperbolic planeS, and the autonomity of the equation of motion~1!, that the trajectories can be
translated along themselves. Indeed, for every two tangent vectorsġ(t0) andġ(t1) ~t0 ,t1PR! of
a solutiong of ~1!, there is an isometry ofS, which transforms the first vector into the second one.
~See Lemma 14.! Since the equation of the motion is independent of time, this isometry transforms
the path of the trajectoryg onto itself.

It is also obvious that the trajectories are curves of constant curvature. The equation of motion
~1! just tells us that the curvature of a solutiong of speedv5uġu in magnetic fieldb is
u¹ġ/uġuġ/uġuu 5 (b/v2)uġ 'u 5 b/v. So, using Lemma 17, the trajectories of unit speed are hyper-
cycles of altitude artanhubu, if ubu,1; paracycles, ifubu51, and circles of radius arcothubu, if ubu.1.
This proves the first part of the theorem.

For defining a differentiable structure on the set of directed cycles we use the pseudosphere
model of the hyperbolic plane. Let~V,^•,•&! be the three-dimensional Minkowskian vector space
into which the pseudosphereS is embedded.~See Lemma 12 and Definition 13 in Appendix B.!
First we prove that the set of all oriented affine hyperplanes~i.e., two-dimensional affine sub-
spaces! of V possesses a natural differentiable structure. For this reason, let us introduce~beside
the Minkowskian structurê•,•&! a Riemannian~positive definite! scalar productg:V3V→R on
V. With the help of this multiplication every directed hyperplane ofV can be unambiguously
characterized by its~g-orthogonal! normal ~unit! vector and its distance from the origin ofV
measured in the direction of the normal vector.~The normal vector gives also the orientation of the
hyperplane.! So the hyperplanes are in one-to-one correspondence with the points of the product
manifoldN3R, whereN is theg-unit sphere ofV, and the differentiable structure ofN3R can
be carried over to the set of affine hyperplanes ofV. It is also easy to show that this is a canonical
differentiable structure, i.e., independent of the special choice of the scalar productg.

According to Lemma 17, the cycles are the plane sections of the pseudosphereS in V. Since
the affine hyperplanes intersecting the pseudosphere in more than one point correspond to the
elements of an open subset ofN3R, the cycles indeed form in a natural way a differentiable
submanifoldP of the manifold of all affine hyperplanes ofV.

As we have seen, the curvature of a trajectory of speedv in magnetic fieldb is b/v. This
means that at an appropriate value of the magnetic fieldb every cycle~of arbitrary curvature! can
be realized as the path belonging to a trajectory of unit speed, so the points ofP can be regarded
as the paths belonging to the trajectories of unit speed.

To establish the correspondence between the tangent planeTg(P) and the factor space
J g /Rġ is also easy, but a bit more cumbersome. In Definition 1 the magnetic field is fixed during
the variation of a trajectory, and the speed of the varied trajectories can be changed, while the
points ofP are regarded as paths of trajectories of unit speed, corresponding to different values of
the magnetic field. So, first the varied trajectories have to be brought into correspondence with the
trajectories of unit speed. This can be easily done by relating a trajectory of speedv at magnetic
field b to the trajectory of unit speed belonging to the same path at magnetic fieldb/v. Using this
connection, the variation of a trajectorygPP is just a curve in the manifoldP, and an infinitesi-
mal variation, or Jacobi field alongg corresponds to a tangent vector inTg(P). It is also evident
thatJ g has to be factorized withRġ, since the infinitesimal variationsRġ moveg along itself, so
they present the null vector inTg(P).

This completes the proof of Theorem 6.
Q.E.D.

Figure 3 shows the variation of a hypercycle and a circle on the pseudosphere model. The
behavior of the transverse coordinatesb can be clearly seen in both cases. This figure also
illustrates that in the manifold of the cyclesP there is a preferred path between every pair of
different pointsS, PPP consisting of the plane sections ofS with planes having a common line
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e with S andP. ~If S andP are parallel, then all the other planes are parallel with them, ande is
the ideal line.!

Similar considerations can be followed for constant positive curvature. In the case ofr51, the
two-dimensional manifold is the unit sphere embedded into a three-dimensional Euclidean vector
space. The trajectories of curvatureb/v are just the circles of radius arcctg~b/v! ~measured on the
sphere!, and these curves are also the plane sections of the unit sphere.

For r50 the trajectories are the usual circles on the two-dimensional Euclidean plane.

IV. THE EFFECT OF THE BOUNCES

Till now the behavior of nearby trajectories of charged particles in magnetic systems has been
studied during the bounceless segments. However, in billiards the reflections also strongly influ-
ence the separation of close trajectories. At the bouncing point~s! neither thevariation nor the
infinitesimal variation of a bouncing trajectoryis smooth, the variation is continuous there, and
the Jacobi field and its first derivative have certain jump at the reflection point. In the ongoing
section this effect is investigated in detail for two-dimensional systems, and a formula is derived
which gives the jump of the Jacobi field and its derivative in terms of the magnetic field, the angle
of reflection, and the curvature of the billiard wall at the reflection point.

For this purpose the definition of the variation and infinitesimal variation~Definitions 1 and 2!
should be slightly modified for bouncing trajectories.@The bouncing trajectories are continuous
curves, which are everywhere smooth, except at the bouncing point, they satisfy the equation of
motion ~1! for parameter values before and after the reflection, and obey the law of elastic
reflection at the bouncing point.#

Definition 7: The mappingd : R3~2«0,«0!→M ~«0.0! is a variation of the bouncing tra-
jectory g0, if the varied trajectoriesg«(t)5d(t,«) ~u«u,«0! are also trajectories of charged par-
ticles bouncing on the billiard wall according to the law of elastic reflection, andd is smooth on
its domain before and after the reflection. Theinfinitesimal variation V0 of the bouncing trajectory

FIG. 3. The variation of a hypercycle and a circle.
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g0 corresponding to the variationd is defined similarly as in Definition 2,V0(t)5]/]«u(t,0)d(t,«),
but in this caseV0 has a jump at the reflection point, since the variationd is not smooth there.

The lettersv, V, and B5b V @bPF (M )# denote the same tensor fields on the two-
dimensional Riemannian manifold~M ,^•,•&! as in the previous section. Letn: R→M be the
billiard wall parametrized in such a way thatT:5 ṅ is its unit tangent vector and the unit normal
vectorN:5V( ṅ) points outwards of the billiard~Fig. 4!. Let g : R→M be the trajectory of a
particle of unit speed bouncing onn at the pointn ~0!5g~0!, and letV be an infinitesimal variation
of it. The values of the vector fieldsT, NPV n at the bouncing point are denoted by
T0 ,N0PTn(0)(M ). Sinceg obeys the law of elastic reflection,

ġ15ġ222^ġ2 ,N0&N0 , ~28!

where ~and in the remaining sections further on! the subscripts ‘‘2’’ and ‘‘ 1’’ distinguish the
vectors~and coordinates! just before and just after the reflection, respectively. The coordinates
a6 ,b6PR of V6PTg(0)(M ) are defined by the following two formulas:

V25a2ġ21b2ġ 2
' , ~29!

V15a1ġ11b1g 1
' , ~30!

whereġ 6
' 5V(ġ6)PTg(0)(M ), like before. Let the angle of reflection, directed from the velocity

vector ġ2 ~just before the reflection! to the normal vectorN0, be denoted bym, as it is shown in
Fig. 4. This means that

N05ġ2 cos~m!1ġ 2
' sin~m!, ~31!

T05ġ2 sin~m!2ġ 2
' cos~m!. ~32!

Let b andq be the value of the magnetic field and the curvature of the billiard wall at the
bouncing point, respectively, where the curvatureq is defined by the equation

“T0
T52qN0 . ~33!

SinceN points outwards of the billiard,q is positive if the billiard wall is focusing at the reflection
point and negative if it is defocusing.

FIG. 4. The variation of a bouncing trajectory.
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The following theorem gives the jump of the Jacobi field and its first derivative.
Theorem 8:Using the notations introduced above, the infinitesimal variationV1 of a bounc-

ing trajectoryg of unit speed and its first derivativeV18 just after the reflection can be calculated
by the following formulas:

V15V222^V2 ,N0&N0 , ~34!

V18 5V28 22^V28 ,N0&N012
^bN01qġ 2

' ,V2&
cos~m!

„ġ2 sin~2m!2ġ 2
' cos~2m!…, ~35!

whereV2 andV28 are the infinitesimal variation and its first derivative just before the reflection.
These equations result in the following connections between the coordinates and their deriva-

tives at the reflection point:

a15a2 , b152b2 ; ~36!

a18 5a28 22bb2 , b18 52b28 12b2

q1b sin~m!

cos~m!
. ~37!

We remark that Eq.~34! or ~36! means thatV1 is simply the reflection ofV2 in the line ofT0.
Proof: First we prove the assumptions~34! and~35!. Let d be a variation ofg corresponding

to the infinitesimal variationV, and letX,Y andH← ,V← ~or H→ ,V→! be the canonical vector
fields on the parameter plane and the longitudinal, transverse vector field before~or after! the
bounce, respectively.@This means thatH←(0,0)5ġ2 , H→(0,0)5ġ1 , V←(0,0)5V2 and
V→(0,0)5V1 .# To avoid unnecessary technical difficulties, let us suppose thatd is regular at the
point t5«50, and letZ5jX1hY be the vector on the parameter plane, for whichd

*
Z5T0

holds. This means that

T05jġ21hV25jġ11hV1 . ~38!

Since the velocity vectorġ1 is the reflection of the vectorġ2 in the line ofT0, it follows from the
previous equation that the infinitesimal variation vectorV1 is also the reflection of the vectorV2

in this axis; this proves assumptions~34! and~36! of the theorem.@In the second equation of~36!
the negative sign appears because the reflection ofġ 2

' in T0 is 2ġ 1
' .#

With the help of the formulas~31!, ~32!, and~29! the factorsj,h can be easily expressed in
terms of the angle of reflection and the~coordinates of the! infinitesimal variation vector before
the bounce:

j5
^N0 ,V2&

^ġ 2
' ,V2&

5sin~m!1
a2

b2
cos~m!,

~39!

h52
cos~m!

^ġ 2
' ,V2&

52
cos~m!

b2
.

Since the varied trajectories satisfy the law of elastic reflection,

H→„t~«!,«…5H←„t~«!,«…22^H←„t~«!,«…,N&N, ~40!

where the functiont~«! gives the parameter value corresponding to the bounce of the varied
trajectoryg« . Differentiating this equation with respect to the vectorZ5jX1hY at the point
t5«50, and using Eq.~28! as well as the expressions
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“̃ZH↔5j“̃XH↔1h“̃YH↔5bjġ 6
' 1hV68 , ~41!

“̃ZN5V~“̃ZT!52qV~N0!5qT0 , ~42!

we obtain

V18 5V28 22^V28 ,N0&N01
22~jb1q!

h
~^ġ2 ,N0&T01^ġ2 ,T0&N0!. ~43!

@For deriving the expressions~41! and ~42! and Eq.~43!, the connection~9!, the equation of
motion ~1!, and the properties~19! of the tensorV are to be used.#

With the help of Eqs.~31! and ~32!, it is easy to show that

^ġ2 ,N0&T01^ġ2 ,T0&N05ġ2 sin~2m!2ġ 2
' cos~2m!. ~44!

Using this, and substitutingj,h from ~the coordinate free expression of! ~39! into Eq. ~43!, Eq.
~35! of the theorem can be obtained.

Differentiating the expressions~29! and~30! at t50 with respect toġ2 andġ1 , respectively,
and in the second equation replacing the vectorsġ1 ,ġ 1

' in terms of the vectorsġ2 ,ġ 2
' using the

low of elastic reflection ~28!, one can express the vectorsV28 and V18 in the basis
$ġ2 ,ġ2

' %,Tg(0)(M ):

V28 5~a28 2bb2!ġ21~b28 1ba2!ġ 2
' , ~45!

V18 5„2~a18 1bb2!cos~2m!1~b18 1ba2!sin~2m!…ġ2

1„2~a18 1bb2!sin~2m!2~b18 1ba2!cos~2m!…ġ 2
' . ~46!

Substituting these expressions, as well as expression~29!, into Eq. ~35! and using the conditions
~31! and ~32!, after straightforward calculations one can derive Eqs.~37!.

This completes the proof of Theorem 8.
Q.E.D.

It can be seen from Eqs.~37! @or ~35!# that the presence of the magnetic field really influences
the behavior of nearby trajectories at the instant of the bounce. A reflection at an anglem on a wall
of curvatureq in magnetic fieldb causes the same jump in the transverse part of the infinitesimal
variation and its first derivative, as a reflection on a wall of curvatureq85q1b sin~m!, without
magnetic field. If ubu.uqu, at appropriate value ofm the magnetic field can even change the
focusing or defocusing character of the wall.

In Appendix C we give an elementary proof of Eqs.~36! and ~37! in a special case, where
b28 and the curvatureq of the billiard wall are zero.

V. RELATION WITH THE CURVATURE OF THE HOROCYCLES

In this section we relate our method for calculating the separation of nearby trajectories in
billiard systems to the earlier method of Bunimovich and Sinai5,6,8 according to which the trans-
verse separation of the trajectories can be obtained by integrating the curvature of thehorocycles
along the trajectory investigated.

Let g :R→M be a trajectory of unit speed in the two-dimensional manifold~M ,^•,•&! with
magnetic fieldB5bV, let d be a variation ofg corresponding to the infinitesimal variation
V05aġ1bġ'PV g , and letX,Y andH,VPV d be the canonical base fields on the parameter
plane and the longitudinal, transverse vector fields, respectively. The vector fieldV(H)PV d
perpendicular toH is denoted byH'.
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Definition 9: The horocyclescorresponding to the variationd of the trajectoryg ~of unit
speed! are the integral curves of the vector fieldH' perpendicular to the varied trajectories.
Assuming thatd is regular at the point~t,0!, thecurvaturek(t) of the horocycleat the pointg(t)
is defined by the following equation:

“̃P~ t !

H'

uH'u
52k~ t !ġ~ t !, ~47!

whereP(t) is the vector of the parameter plane, for whichd
*
P(t)5V„ġ(t)…5ġ '(t) holds.@Due

to the negative sign in Eq.~47!, the curvaturek is positive, if the varied trajectories diverge.#
In the following theorem we calculate the curvaturek of the horocycles as a function of the

infinitesimal variation, and give expressions describing the evolution ofk along the trajectory as
well as at the bouncings.

Theorem 10:Using the notations introduced above, the curvaturek is given by the following
equation:

k5
^V08 ,ġ

'&2bg^V0 ,ġ&

^V0 ,ġ
'&

5
b8

b
5~ lnubu!8, ~48!

wherebg5b + g.
The curvaturek1 just after a reflection at an anglem on a wall of curvatureq is

k15k222
q1b sin~m!

cos~m!
, ~49!

where k2 is the curvature of the horocycle just before the bounce andb is the value of the
magnetic field at the reflection point.

Assuming that the horocycles correspond to a special variation, their curvature obey the
following differential equation:

k852r2b g
21b g

'2k2, ~50!

wherer :R→R is the scalar curvature ofM alongg, andb g
'(t)5ġ '(t)(b) is the derivative ofb

in the direction perpendicular toġ(t).
@We emphasize that the statements~48! and ~49! are valid for any variation, while the last

formula is valid only for special variations.#
Proof: Let P(t)5x(t)X1c(t)Y be the vector of the parameter plane for which

d
*
P(t)5ġ '(t) holds. This means, thatġ '5xġ1cV0 , and a simple calculation shows that

x52
^V0 ,ġ&

^V0 ,ġ
'&

, c5
1

^V0 ,ġ
'&

. ~51!

The curvaturek of the horocycles is calculated directly, according to its definition:

“̃P

H'

uH'u
52P~ uH'u!ġ '1“̃PH

', ~52!

where the differentiationsP(uH'u) and“̃PH
' can be further simplified:

P~ uH'u!5~xX1cY!~ uHu!5c
]

]«U
«50

uHu5c^V08 ,ġ&5cp, ~53!

5590 Tamás Tasnádi: Nearby trajectories in magnetic billiards

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



¹̃PH
'5V~“̃PH !5xV~“̃Xġ !1cV~“̃YH !52xbgġ1cV~V08!. ~54!

@We have used Eqs.~1!, ~9!, ~18!, and~19!.# SubstitutingV(V08) with ^V08 ,ġ&ġ ' 2 ^V08 ,ġ
'&ġ in

Eq. ~54! and putting the expressions~53! and ~54! into Eq. ~52!, we obtain

“̃P

H'

uH'u
52~xbg1c^V08 ,ġ

'&!ġ. ~55!

With the help of this equation, using expressions~51! and Eqs.~22! and ~25! for x,c and
V0 ,V08 , respectively, it is easy to prove assumption~48! of the theorem.

The conjecture~49! describing the jump of the curvaturek at the reflection can be proved by
dividing the second equation of~37! with b152b2 .

Differentiating Eq.~48! we getk85(b9b2b82)/b2, from whichb95b(k81k2) follows. Sub-
stituting it into the second equation of~23!, and using thatp50 for special variations, assumption
~50! of the theorem can be also proved.

Q.E.D.
The results of Theorem 10 are in accordance with the earlier results of Bunimovich and

Sinai5,6,8 in the case ofb50.
Following a given bunch of trajectories in a billiard system, with the help of the equations

~49! and ~50! the evolution of the curvaturek of the horocycles can be determined as a function
of time, and, according to the connection~48!, the integral*0

t k(t)dt5ln(ub(t)u/ub(0)u) gives the
logarithm of the transverse stretching.@Due to the second equation of~36!, the absolute value of
the transverse coordinate is continuous at the bounces.#

VI. CONCLUSIONS

In the present article the behavior of nearby trajectories has been investigated in classical
magnetic billiard systems on Riemannian manifolds with a method which is similar to that of
Jacobi fields for geodesic flows. The relative motion of two particles moving infinitesimally close
to each other is described by theinfinitesimal variationvector field along one of the trajectories
~Definitions 2 and 7!. In the bounceless segments the infinitesimal variations of the trajectories
satisfy a second-order ordinary differential equation, which is the usual Jacobi equation in the lack
of magnetic field~Theorem 4!. Restricting our studies to two-dimensional systems, differential
equations describing the transverse as well as the longitudinal behavior of nearby trajectories have
been derived~Theorem 5!. The transverse behavior depends on the~Gaussian! curvature of the
manifold, on the value of the magnetic field, and its derivative in transverse direction. The positive
curvature and the presence of the magnetic field suppress chaos.

The bouncing effects have been also investigated in two-dimensional billiards, and a formula
describing the jump of the infinitesimal variation and its derivative at the reflections has been
given ~Theorem 8!. These jumps depend not only on the curvature of the wall and on the angle of
incidence, but also on the value of the magnetic field at the bouncing point. The magnetic field can
even change the focusing or defocusing character of the wall.

We have expressed the curvaturek of the curves perpendicular to a bunch of trajectories
~horocycles, Definition 9! in terms of the infinitesimal variation. It has been shown that in the
bounceless segmentsk obeys a first-order differential equation containing the~Gaussian! curva-
ture of the manifold, the magnetic field, and its derivative in transverse direction, and at the
reflectionsk has a definite jump depending on the curvature of the wall, the angle of incidence,
and the value of the magnetic field~Theorem 10!. In the lack of magnetic field our results are in
accordance with the known properties ofk.

After finishing this work the author was informed that another paper14 is being published on
partially similar topics on two-dimensional Euclidean surface. The author of Ref. 14 has also
obtained Eq.~49! of theorem 10 describing the jump of the curvaturek of the horocycles at
reflections in presence of magnetic field, and he has given the bounceless evolution ofk in
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homogeneous magnetic field.@It is the solution of Eq.~50! in the special case ofr5b g
'50.#

Furthermore, Ref. 14 contains nice applications for the evaluation of the Lyapunov exponent in
different magnetic billiard systems.
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APPENDIX A: VECTOR FIELDS ALONG DIFFERENTIABLE MAPPINGS

In this Appendix the basic properties of thevector fields along differentiable mappingsare
summarized.

Definition 11:Let f :N→M be a smooth mapping. A differentiable mappingX:N→T(M ) is
a ~differentiable! vector field along f, if pM + X5 f holds. The set of vector fields alongf is
denoted byV f .

The most common examples for this concept aref
*
UPV f andV+ fPV f , whereUPV (N),

VPV (M ). For vector fields alongf essentially the same calculus can be developed as for those on
M . A covariant derivation“:V (M )3V (M )→V (M ) of M can be naturally extended to one
“̃:V (N)3V f→V f on V f , so it is reasonable to derivate an element ofV f with respect to a
vector field onN. If d is regular at the pointnPN, then for everyPPTn(N) andUPV (N)

“̃Pd*U5“ ~d
*

!nP
V, ~A1!

where VPV (M ) is an arbitrary vector field onM , for which V+d5d
*
U holds in an open

neighborhood ofnPN. The derivation“̃ satisfies the usual algebraic axioms@F (N)-linearity in
its first and Leibnitz rule in its second argument#, and for the torsion tensorT and curvature tensor
R of M it is also valid that

~ f *T!~X,Y!5T~ f * X, f *Y!5“̃Xf *Y2“̃Yf *X2 f * @X,Y#, ~A2!

R~ f *X, f *Y!Z5“̃X“̃YZ2“̃Y“̃XZ2“̃ @X,Y#Z, ~A3!

whereX,YPV (N) andZPV f . The detailed proofs of these properties can be found in Ref. 19.

APPENDIX B: THE PSEUDOSPHERE MODEL AND SOME PROPERTIES OF THE
HYPERBOLIC PLANE

In this Appendix the pseudosphere model of the hyperbolic plane is introduced, and using it
in a series of lemmas with short proofs or references the basic properties of the isometries and the
cycles of the Bolyai–Lobatchewski plane are summarized.

Let ~V,^•,•&! be an oriented, arrow-oriented three-dimensional vector space with an indefinite
scalar product̂•,•& of signature~2,1,1! on it. For the sake of simplicity we use the attributes
introduced in the theory of special relativity~spacelike, lightlike, timelike, future/past oriented! for
characterizing the vectors and hyperplanes ofV. Let S,V be the set of future-oriented timelike
unit vectors.

Lemma 12: Sis a two-dimensional, oriented, noncompact, simply connected embedded sub-
manifold ofV, which inherits a~positive definite! Riemannian metrics fromV. Equipped with this
Riemannian structure~denoted also bŷ•,•&!, S is diffeomorphic with the hyperbolic plane.

The inherited metrics is positive definite because of the fact that the tangent planeTx(S) at
any pointxPS is just the spacelike affine hyperplane throughx orthogonal to the vectorxPV. It
is also easy to show thatS is homogeneous and isotropic~see Lemma 14!, so it has constant
curvature. The detailed proof of Lemma 12 can be found in Ref. 10.

5592 Tamás Tasnádi: Nearby trajectories in magnetic billiards

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Definition 13:The setS equipped with its inherited Riemannian structure is called thepseu-
dosphere.

The following lemma gives a survey of the isometries of the hyperbolic plane using the
pseudosphere model.

Lemma 14:Every arrow-orientation-preserving^•,•&-orthogonal transformation ofV leavesS
fixed, and induces and isometry on the pseudosphereS. Conversely, every isometry ofS can be
uniquely extended to an arrow-orientation-preserving orthogonal transformation ofV. An isom-
etry ofS is orientation-preserving if and only if it is induced by an orientation-preserving orthogo-
nal transformation ofV.

Every orientation and arrow-orientation-preserving transformationO of V which is not the
identity can be put into one of the following three classes:

~i! The characteristic equation ofO has three different roots; one of them is 1, which belongs
to a timelike eigenvector, and the other two eigenvalues are complex numbers of unit
absolute values conjugate to each other. The~spacelike! affine hyperplanes perpendicular to
the timelike eigenspace are invariant under the effect ofO. ~The effect ofO is simply a
rotation in the invariant planes around the timelike eigenvector.! The isometries of the
hyperbolic plane induced by this kind of orthogonal transformations are calledelliptic
isometries (rotations). The elliptic isometries have one fixed point~the center of the rota-
tion!, which is the intersection ofS and the timelike eigenspace ofO. The rotations having
the same center form a one-parameter subgroup of the isometry group ofS. ~See Fig. 5.!

~ii ! The characteristic equation ofO has three different real roots; one of them is 1, which
belongs to a spacelike eigenvector, the other two real eigenvalues are reciprocal to each
other, and the corresponding eigenvectors are lightlike vectors perpendicular to the space-
like eigenspace. The~timelike! affine hyperplanes perpendicular to the spacelike eigenvec-

FIG. 5. The elliptic isometries.
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tor are invariant under the transformationO. ~This transformation is similar to the Lorentz
boosts in the theory of special relativity.! The isometries of the hyperbolic plane induced by
this kind of orthogonal transformations are calledhyperbolic isometries (translations). The
hyperbolic isometries do not have fixed points, but they have a~not pointwise! fixed line,
which is the intersection ofS and the hyperplane spanned by the two lightlike eigenspaces.
The translations having the same invariant line form a one-parameter subgroup of the
isometry group ofS. ~See Fig. 6.!

~iii ! The 1 is a three times degenerate root of the characteristic equation ofO. O has only one
lightlike eigenspace, and the~lightlike! hyperplanes orthogonal to it are invariant under the
transformation.~In the invariant plane the effect ofO is a shearing along the lightlike
eigenvector.! The isometries of the hyperbolic plane induced by this kind of orthogonal
transformations are calledparabolic isometries. The parabolic isometries have neither fixed
points nor invariant lines, but they have a fixed ideal point lying ‘‘infinitely far’’ in the
direction of the lightlike eigenvector of the transformation.~This means that for every line
directed towards this ideal point, the transformed image of the line also tends to this point.!
The parabolic transformations having the same ideal point~or the same lightlike eigenvec-
tor! form a one-parameter subgroup of the isometry group ofS. ~See Fig. 7.!

The statements of this lemma can be proved step by step using standard linear algebraic
methods.

It follows from Lemma 14 that for every pair of unit tangent vectors of the pseudosphereS
there exists exactly one isometry ofS, which transforms the first vector into the second vector.
This means that the hyperbolic plane is homogeneous and isotropic, and its isometry group is a
three-dimensional Lie group.

Now let us overview the properties of the most important curves~called thecycles! of the
hyperbolic plane on the pseudosphere model.

Definition 15:The set of points lying at a distancer.0 from a fixed pointo of the hyperbolic
plane is called thecircle of centero and radiusr . The set of points lying at a distanced>0 from
a fixed geodesic lineg ; on one side ofg is called the hypercycle of base lineg and altituded.
~Specially the geodesic lines are hypercycles of altitude zero.! A curve perpendicular to a bunch of

FIG. 6. The hyperbolic isometries.
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geodesic lines tending towards the same ideal point in one direction is calledparacycle ~or
sometimeshorocycle!. The circles, hypercycles, and paracycles together are namedcycles.

Definition 16:A curveg on a Riemannian manifoldM is said to betranslatable along itself,
if there exists a one parameter subgroup of the isometry group ofM , every element of which
transforms the curve onto itself.

Lemma 17:Every cycle of the hyperbolic plane can be translated along itself. For circles, this
translation is realized by a one-parameter subgroup of elliptic isometries, for hypercycles by
hyperbolic isometries, and the subgroups of parabolic isometries translate the paracycles along
themselves.@In other words, the circles~resp. the hypercycles, paracycles! are the orbits of the
action of one-parameter subgroups of elliptic~resp. hyperbolic, parabolic! isometries.# Every cycle
is a curve of constant curvature, a circle of radiusr has curvature coth(r ), a horocycle of altitude
d has curvature tanh(d), and the curvature of the paracycles is 1. On the contrary, every~unex-
tendable! curve of the hyperbolic plane, which has constant curvature, or which is translatable
along itself, is a cycle.

On the pseudosphere model of the hyperbolic plane the cycles are exactly the sections ofS
with affine hyperplanes ofV. The intersections of hyperplanes containing the origin ofV give the
geodesic lines, the timelike affine hyperplanes intersect the pseudosphere in hypercycles, the
lightlike affine hyperplanes in paracycles, and the intersections ofS with spacelike affine hyper-
planes are the circles.~See Figs. 5–7.!

It follows immediately from Definition 15 and lemma 14 that the cycles are translatable
curves along themselves, and for the three different types of cycles the translations are realized by
different types of isometries as stated in the lemma. It also means that the curvature of the cycles
is constant, and a direct calculation using elementary techniques gives its value. It is also easy to
show the converse of the first two statements. The assertion in the second paragraph of the lemma
can be proved with the help of Lemma 14. For every cycle there is a one-parameter isometry

FIG. 7. The parabolic isometries.
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subgroup ofS, which transforms the cycle along itself. According to Lemma 14, there is a family
of affine hyperplanes parallel to each other inV, which are invariant under the one-parameter
isometry subgroup. The investigated cycle is the intersection ofS and one of these invariant affine
planes.

APPENDIX C: ELEMENTARY ILLUSTRATION OF THE BOUNCING EFFECT

In this Appendix we give an elementary demonstration of the equations~36! and~37! describ-
ing the jump of the infinitesimal variation and its first derivative at the bounce in a special case,
where the derivative of the transverse infinitesimal variationb8 and the curvatureq of the billiard
wall are zero at the reflection point. Since the curvature of the manifoldM does not play any role
in the bouncing effects, it is assumed furthermore that~M ,^•,•&! is the Euclidean plane. For the
sake of simplicity, we deal only with special variations.

It is better to work in an ‘‘inverted picture,’’ i.e., reflect the trajectories after the bounce in the
wall of the billiard. In this case the billiard wall can be considered as the boundary between two
domains of opposite magnetic field, which the particles cross without changing their velocities
~Fig. 8!. It can be also seen that the infinitesimal variation is everywhere continuous in the inverted
picture.

Let us use the usual notationsa2 ,b2PR anda28 ,b28 P R ~introduced in Sec. IV! for describ-
ing the coordinates of the~special! infinitesimal variation and their derivatives just before the
bounce, respectively. For distinguishing the coordinates~and their derivatives! in the inverted
picture from the ordinary ones after the bounce, we use a tilde above the letters. Since the
reflection in the billiard wall changes the orientation of the plane, the transverse coordinate
changes sign in the inverted picture, but the longitudinal one remains unaltered, i.e.,

a15ã1 , a 18 5ã 18 , b152b̃1 , b18 52b̃18 . ~C1!

As the infinitesimal variation is continuous in the inverted picture,a25ã1 , b25b̃1 , and this
together with~C1! proves Eqs.~36!.

FIG. 8. The ‘‘inverted picture’’ of the bouncing trajectories for straight billiard wall.
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To prove the equations~37! in the special case ofb28 5 q 5 0, let us consider the two infini-
tesimally close trajectories of unit speed in Fig. 8, where 0,m,p/2 is the angle of reflection,b.0
is the magnetic field, andR51/b is the radius of the trajectories. Sinceb28 5 0, the centersO0 ,O1
of the incident trajectories and the reflection pointA of the unvaried trajectory are collinear, and
O0O1 5 b2 . 0. The centersO08 ,O18 of the trajectories after the bounce~in the inverted picture! are
obtained by reflecting the centersO0 ,O1 of the incident trajectories in the bouncing pointsA,B,
respectively. LetO19 be the central inverse image ofO1 in the pointA, and letC, resp.C8 be the
foot of the perpendicular dropped from the pointsB, resp.O18 , to meet the lineO0O08 . The
trianglesABC andO19O18C8 are similar in the ratio of 2. Further on we assume that the variation
is small, i.e., the angle/BO1A!1 or equivalentlyb2!R cot~m!. This means that the angle of
incidence of the varied trajectory is also~approximately! m, andAC ' C8O08 ' b2 5 O0O1

5O08O19.
It can be seen in Fig. 8 thatAB ' b2 /cos(m), so O18O19 ' 2b2 /cos(m), and the angle

/O08O19O18 5 m. Let us denote the angle/O18O08O0 with a ~directed in the way shown in Figs. 8
and 9!, and lets: 5 O08O18 ~Fig. 9!. Applying the sine rule to the triangleO08O18O19 ,

s sin~a!5sin~m!
2b2

cos~m!
. ~C2!

In order to determine the derivativesã18 ,b̃18 of the coordinates of the~special! infinitesimal
variation just after the bounce~in the inverted picture!, let us consider two particles starting from
the pointsP,Q and moving along the trajectories shown in Fig. 9 at unit speed.~The pointsP, Q,
O08 , andO18 are collinear.! After the timeRã, whereã 5 /QO18F 5 /PO08D is the angle of the
arcs covered, the particles are at the pointsD, F, and the longitudinal, resp. transverse, distance
between them areã1(ã)5 2EF5 2s sin(ã), resp.b̃1(ã)5DE5 s cos(ã).~Since the varia-
tion is small,DEF is a right triangle.! Differentiating these expressions with respect to time~i.e.,
with respect toRã! at ã5a,

FIG. 9. The trajectories after the bounce in the ‘‘inverted picture.’’
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ã18 5
d

d~Rã !
U

a

„2s sin~ ã !…52sb cos~a!52bO08C852bb2 , ~C3!

b̃18 5
d

d~Rã !
U

a

„s cos~ ã !…52sb sin~a!52b sin~m!
2b2

cos~m!
. ~C4!

@The right triangleO08C8O18 shows thats cos~a!5b2 , and we used expression~C2! in Eq. ~C4!.#
Inserting the connections~C1! into Eqs.~C3! and ~C4!, and using the fact that for special

variationsa68 5 bb6 @see the first equation of~23! in Theorem 5, withp50#, it is easy to obtain
Eqs.~37! in the special case ofb28 5 q 5 0.
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The problem of exact integration of the Einstein–Dirac equation is studied. To
solve this set of equations metrics admitting complete separation of variables in the
Dirac equation are considered. At the first stage Sta¨ckel spaces of types~3.1! and
~3.0! are studied. For the first case obtained solutions contain arbitrary functions
depending on one variable only~five real functions for the Einstein–Weyl equa-
tions and four real functions for the Einstein–Dirac ones!. For the second one all
solutions belonging to the diagonal metrics of Bianchi type 1 are found. ©1996
American Institute of Physics.@S0022-2488~96!02909-X#

I. INTRODUCTION

Exact integration of the Einstein–Dirac equations is one of the complicated problems in the
modern mathematical physics. As far as we know at this writing only few exact solutions of these
equations have been found~see, for example Refs. 1, 2 and references therein!. Our approach is
based on using metrics of the space-times for which the Dirac equation can be integrated by
complete separation of variables method. Many authors studied these metrics~see Refs. 3–9!. In
the papers, metrics admitting Yano–Killing tensors or Yano vectors were studied. Using these
geometrical objects one can construct symmetry operators of the Dirac equation. These spaces
have been found in Ref. 10. Other trend was investigate in Ref. 11 where all spaces for which the
Dirac equations can be integrated by diagonalization and separation of variables have been found.
In the paper12 it was proved that if the Dirac equation admits complete separation of variables the
Hamilton–Jacobi equation can be integrated by complete separation of variables in the same
coordinate set too. In other words, spaces for which Dirac equation can be separated belong to the
class of Sta¨ckel spaces~Riemannian space is called the Sta¨ckel one if in this space the Hamilton–
Jacobi equation can be integrated by the complete separation of variables13,14!. Recall the main
states of the theory of Sta¨ckel spaces~see Refs. 14–16!. Let gi j be a metric tensor of the Rie-
mannian spaceVn . The Hamilton–Jacobi equation

gi j S,iS, j5m2 ~1.1!

admits complete separation of variables if coordinate set$ui% exists for which the complete
integral can be presented in the form:

S5(
i51

n

Si~u
i ,l1 ,...,ln!. ~1.2!

It was proved that the separation takes place if and only if the metric tensorgi j can be put in the
form

gi j5 (
n5N

n

~F21!n
nhn

i j ~un!, ~1.3!

Fn
m5Fn

m~un!, hn
i j5dn

i dn
j hn

nn1~dn
i dp

j 1dp
i dn

j !hn
i j1dp

i dq
j hn

pq ,
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p,q51,...N, n,m5N11,...,n.

One can verify, thatVn admits mutually commuting Killing vectors and tensors:

Yp
i 5dp

i , Yn
i j5 (

n5N

n

~F21!n
mhm

i j . ~1.4!

These geometrical objects form a so called compete set. Next designations are adopted in the
theory. Riemannian space is called the Sta¨ckel one of type (N,N0) if the metric tensor can be
presented in the form~1.3!. N is the number of the Killing vectors entering into the complete set,

N05N2rankugi j Yp
i Yq

j u. ~1.5!

If Vn has the Lorentz signature (1,2,2,2), numberN0 may take a value of 0 or 1. Hence there
are seven types of Sta¨ckel spaces with signature (1,2,2,2): four non-null types~N,0! and three
null types~N,1!.

According to the definition the Dirac equation

~g i~x!D̂ i2m!C50 ~1.6!

can be integrated by complete separation of variables if anyC may be present in the separated
form:

C5Ŝ~u!ŵ0~u
0,l!,ŵ1~u

1,l!,ŵ2~u
2,l!,ŵ3~u

3,l!. ~1.7!

Here

det Ŝ~u!Þ0, @ŵ i ,ŵ j #50.

~The analogous definition takes place for the squared Dirac equation.11,12Another approach to the
problem of separation of variables for the Dirac equation has been studied in Ref. 17.! In Ref. 3
it was proved that the existence of Yano vectors or Yano–Killing tensors is the necessary condi-
tion of the separation. Moreover,gi j must have the form~1.3!. ~The space belongs to the Sta¨ckel
one.! In Ref. 10 it was found that only spaces (2,N0) can admit Yano vectors or Yano–Killing
tensors. Hence only six types of spaces for whichC can be present in the form~1.7! exist. There
are two types (3,N0) and four types (2,N0) ~two types with Yano vector and two types with
Yano–Killing tensor! satisfying these conditions. Thus all appropriate metrics are known now and
it is possible to consider the problem of integration of the Einstein–Dirac equations for the case
when the Dirac equation can be integrated by complete separation of variables. We try to solve the
problem of the complete classification of the Einstein–Dirac spaces for which the Dirac equation
admits complete separation of variables. Note that a similar problem has been solved for the case
when gravitational field interacts with a vector one~Einstein–Maxwell equation18–20!. Therefore
the problem of classification for the interacting spinor and gravitational fields can be regarded as
a part of the general classification problem. We begin our investigation from the spaces of types
(3,1) and (3,0).~For the last type we restrict ourselves to the case when the metric has Bianchi
type I form.! Other types will be considered in the next papers. Moreover, at the first stage it is
possible to suppose that solutions of the Dirac equation have separate forms.

II. FIELD EQUATIONS

In the present section we restrict our attention to the case when the space-time has a form of
Stäckel space of type~3.1!. The Metric tensor for this case has a form:
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gmn5gnm~x0!, g0050, n,m50,1,2,3.

Obviously the space admits three Killing vectorsYp
i . To write Einstein–Dirac equations one has

to use Newman–Penrose formalism.21,22 Let us introduce the complex tetrad in the form

l i5~1,0,0,0!, ni5~0,1,b2 ,b3!, mi5~0,0,v,u!

l i5~0,1,0,0!, ni5~1,0,0,0!,
~2.1!

mi5~0,i ~b3u2b2v !/G,2 iu/G,iv/G!),

G[ i ~uv̄2ūv !, b̄25b2 , b̄35b3 .

All functions depend onx0 only, bar means complex conjugation. From~2.1! it follows

D5]0 , D5]11b2]21b3]3 , d5v]21u]3~] i[]/]xi !, ~2.2!

k5l5n5m50, a5 i ~ ḃ3v̄2ḃ2ū!/4G, 2b̄5 t̄5l̄52a,
~2.3!

s5 i ~ v̇u2u̇v !/G, r5 i ~vG u2uG v1u̇v̄2 v̇ū!/2G5Ġ/2G,

«5 i ~uG v2vG u1u̇v̄2 v̇ū!/4G.

Dots mean derivatives with respect to the variablex0. Using ~2.2! and ~2.3! one can find spinor
components of the Weyl tensor

c05ṡ2s~2r14«!, c15aG 2~r12«!ā23sa,
~2.4!

3c25216aā, c35c450,

and spinor components of the Ricci tensor

F005 ṙ2r22ss̄, F015 ǡ 2~3r12«!ā2sa,
~2.5!

F11526aā, F02524a2, 3L52aā, F125F2250.

In this formalism the Einstein–Dirac equations have the form

Fab8gd81«ag«b8d8H5aTab8gd8 , ~2.6!

¹ab8j
a5m0hb8 , ¹a8bha85m0jb . ~2.7!

Here m05m/&, m is the mass of a spinor particle,F0080085F00, F0080185F01,
F0180185F02, F0181185F12, F1181185F22, F00811852(F1123L), F018108522(F1113L),
ja85 j̄a , a,b,g,d50,1, H is the cosmological constant,a5const, andTab8gd8 is the stress-
energy tensor of the particle with spin 1/2. It has the form

Tab8gd85 ik@T~j!ab8gd82T~h!ab8gd8#, ~2.8!

T~w!ab8gd85wd8¹ab8wg1wb¹gd8wa2wa¹ab8wd82wa¹gd8wb8 . ~2.9!

Here

¹008w05Dw02«w01kw1 , ¹008w15Dw12pw01«w1 ,
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¹018w05dw02bw01sw1 , ¹018w15dw12mw01bw1 ,

¹108w05 d̄w02aw01rw1 , ¹108w15d̄w12lw01aw1, ~2.10!

¹118w05Dw02gw01tw1 , ¹118w15Dw12nw01gw1 ,

¹ab8wg85~¹ba8wg!.

For the Einstein–Weyl casem5ha50. Using~2.10! one can find functionT(w)ab8gd8 :

T~w!0080085w08Dw02w0Dw082~«2 «̄ !w0w081kw08w12k̄w0w18 ,

2T~w!0080185w18Dw02w0Dw181w08dw02w0dw081w0w08~ ā2b1p̄ !

1kw1w182~«1 «̄1 r̄ !w0w181sw08w1 ,

T~w!0180185w18dw02w0dw181sw1w181l̄w0w082~b1ā !w0w18 ,

2T~w!0181185w18dw12w1dw181w18Dw02w0Dw181 n̄w0w08

1~b2ā1t!w1w182~ ḡ1g1m!w0w181l̄w1w08 ,

T~w!1181185w18Dw12w1Dw181~g2ḡ !w1w182nw0w181 n̄w1w08 ,

2T~w!0081185w18Dw12w1Dw181w08Dw02w0Dw081~«2 «̄ !w1w18

1~ ḡ2g!w0w082~ t̄1p!w0w181~t1p̄ !w1w08 ,

2T~w!0181085w08dw12w0d̄w181w18d̄w02w1dw081~m̄2m!w0w08

1~r2 r̄ !w1w181~b1ā !w08w12~a1b̄ !w0w18 .

Let us transform tetrad~2.1! in the following manner:

l̃→ l , ñ→n, m̃→m exp iu~x0!. ~2.11!

Then

ã→a exp2 iu, b̃→b exp iu, t̃→t exp iu, p̃→p exp2 iu. ~2.12!

Other spin coefficients do not transform. If functionu will be chosen in the form

2u52 i ln~a/ā !

coefficientsa,b,t,p become real functions

ā5a5b5t/25p/2. ~2.13!

Then Einstein–Dirac equations can be present in the form

~D1«2r!j12~ d̄1a!j05m0h08 , ~d2a!j12Dj05m0h18 ,
~2.14!

~D2«2r!h182~d1a!h085m0j0 , ~ d̄2a!h182Dh085m0j1 ;

j18Dj12j1Dj182h18Dh11h1Dh1850; ~2.15!
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j18dj12j1dj181j18Dj02j0Dj1812aj1j18

2@h18dh12h1dh181h18Dh02h0Dh1812ah1h18#50; ~2.16!

iak@j18Dj02j0Dj181j08dj02j0dj0812aj0j082rj0j181sj08j12h18Dh01h0Dh18

2h08dh01h0dh0822ah0h081rh0h182sh08h1#54@a~3r12«1s!2ȧ#; ~2.17!

ika$j1@~D1«2r!j12~ d̄1a!j0#2j1@~D2«2r!j182~d1a!j08#1j08@Dj02~d2a!j1#

2j0@Dj082~ d̄2a!j18#2h18@~D2«2r!h12~ d̄1a!h0#1h1@~D2«2r!h18

2~d1a!h08#2h08@Dh02~d2a!h1#1h0@Dh082~ d̄2a!h18#%516a224H; ~2.18!

ika@j08dj12j0d̄j182j18d̄j02j1dj0812a~j08j12j0j18!2h08dh11h0d̄h18

2h18d̄h01h1dh0822a~h08h12h0h18!#5232a212H. ~2.19!

Separated solutions of Eqs.~2.13! have the form

ja5wa exp i ~l1x
11l2x

21l3x
3!, ha5ca exp2 i ~l1x

11l2x
21l3x

3!,

wa5wa~x
0!, ca5ca~x

0!, l1 ,l2 ,l35const. ~2.20!

One can show that Eqs.~2.6! are compatible if and only iflp50. That is why we shall suppose
that

ja5ja~x0!, ha5ha~x0!. ~2.21!

III. EINSTEIN–WEYL EQUATIONS

First we consider the case whenm5ha50. Then Eqs.~2.6! and ~2.7! have the form

ika@j08j̇02j0j̇0822«j0j08#522~ ṙ2r22ss̄!; ~3.1!

j18j̇02j0j̇182rj0j181sj08j150; ~3.2!

sj1j1850; ~3.3!

H50; ~3.4!

j̇15~r2«!j11aj0 ; ~3.5!

aj150. ~3.6!

From Eqs.~3.5! and ~3.6! it follows that a50. If function j1 Þ 0 from Eq. ~3.4! it follows
s50. Using Eqs.~3.2! and ~3.5! one can show that

j08j̇02j0j̇0822«j0j0850. ~3.7!

By this is meant thatTab8gd8[0. That is why from Eq.~3.4! it follows thatj150. To findj0 one
has to solve Eq.~3.1!. Let us presentj0 in the form

j05X exp iY ~X̄5X, Ȳ5Y!. ~3.8!
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Then Eq.~3.1! can be written in the form

akX2@Ẏ1 i«#5 ṙ2r22ss̄. ~3.9!

ObviouslyẎ1 i« Þ 0 ~otherwiseTab8gd8[0!. Then

X5@~ ṙ2r22ss̄!/ak~Ẏ1 i«!#1/2. ~3.10!

Let us consider condition

a50.

From Eq.~2.3! it follows

ḃ3v̄2ḃ2ū50⇒ḃ25ḃ350⇒b2 ,b35const.

These conditions are equivalent tob25b350. Thus obtained solution can be written in the form

l i5~1,0,0,0!, ni5~0,1,0,0!, mi5~0,0,v,u!,

ja5da0@~ ṙ2r22ss̄!/ak~Ẏ1 i«!#1/2 exp iY, H50.

HereY,v,u are arbitrary functions depending onX0 only, Ȳ5Y. Functionsr,s,« can be found
from Eq. ~2.3!. Note that the obtained metric belongs to Petrov typeN.

IV. EINSTEIN–DIRAC EQUATIONS

Using ~2.21! one can present Dirac equations in the following form:

~D1«2r!j12aj05m0h08 ,
~4.1!

~D2«2r!h182ah085m0j0 ;

aj11m0h1850,
m0j11ah1850;⇒a5m0 , h1852j1 . ~4.2!

Let us put~4.2! into ~4.1!. In result we shall obtain

~D2r!h150⇒h15cuGu1/2, c5const,
~4.3!

j052~h081«h18 /m0!.

From Eqs.~2.18!, ~2.19! and ~4.3! it follows

H58m0
2 , ~4.4!

ika~h0h182h1h082«h1h18 /m0!54m0 . ~4.5!

Thus cosmological constantH is determined by the mass of a spinor. Other equations have the
form

ika@h1ḣ082h18ḣ01«h1ḣ18 /m01r~h0ḣ182h1ḣ081~h0h182h08h12«h1h18 /m0!

3~2«1s1r!#54m0~3r12«1s!; ~4.6!
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ika@2~h0ḣ082h08ḣ0!1~ «̇1«r!~h1h081h0h18!/m022«2~h0h182h08h12«h1h18 /m0!

2«~h1ḣ081ḣ0h18!/m0#522~ ṙ2r22ss̄!. ~4.7!

Equation~4.6! is consequent from Eqs.~4.3! and~4.7!. Indeed from Eqs.~4.3! and~4.7! it follows

«̇h1ḣ185m0@ḣ0h182ḣ08h11r~h0h182h1h08!#22«rh1h18 . ~4.8!

Using Eq.~4.8! one can present Eq.~4.6! in the form

r@ iak~h0h182h08h12«h1h18 /m0!24m0#50.

The left-hand side of Eq.~4.7! can be transformed in the following way:

ik@2~h0ḣ082h08ḣ0!1~ «̇1«r!~h1h081h0h18!/m02«~h1ḣ081ḣ0h18!/m0#28«2

5 ika@2~h0ḣ082h08ḣ0!1~h1h081h0h18!~ ḣ0h182ḣ08h11r~h0h182h1h08!!/h1h18

22«r/m02«~h1ḣ081ḣ0h18!/m01«r~h1h081h18h0!/m0#28«2

54m0~h1h081h0h18!
•/h1h1828«2.

Thus Eq.~4.7! is equivalent to

~h0h181h08h1!
•5h1h18~r22 ṙ1ss̄14«2!/2m0 . ~4.9!

Let us present functionh0 in the form

h05h1X5cXG1/2.

Then from Eqs.~4.5! and ~4.8! it follows

X5
1

2 H 1

h1h18
F E ~r21ss̄14«22 ṙ !

h1h18
2m0

dx02
4im0

ka G1
«

m0
J .

Hereh15cuGu1/2 functionsr, s, and« have the form~2.3!. To determine tetrad one has to solve
Eq. ~4.2!:

a5~ ḃ3v̄2ḃ2ū!/~uv̄2ūv !54m0 . ~4.10!

From Eq.~4.9! it follows

ḃ254m0~v1 v̄ !, ḃ354m0~u1ū!.

Thus

v5~ ḃ21 iq2!/8m0 , u5~ ḃ31 iq3!/8m0 , ~4.11!

q2 andq3 are arbitrary functions depending onx0.
Let us present obtained solutions in the final form

l i5~1,0,0,0!, ni5~0,1,b2 ,b3!,

mi5~1,0,~ ḃ31 iq3!/8m0 ,~ ḃ31 iq3!/8m0!,

j1524m0p̄~ ḃ3q22ḃ2q3!, h154m0p~ ḃ3q22ḃ2q3!;
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j05
2 p̄~ ḃ3q22ḃ2q3!

21/2

2
H 2~ ḃ3q22ḃ2q3!

•12E S @~ ḃ3q22ḃ2q3!
•#2

ḃ3q22ḃ2q3
1b̈2q̇32b̈3q̇2D dx0

1 i F b̈3ḃ22b̈2ḃ31q̇3q22q̇2q31
1

kapp̄
G J ;

h05
p~ ḃ3q22ḃ2q3!

21/2

2
H 2~ ḃ3q22ḃ2q3!

•12E S @~ ḃ3q22ḃ2q3!
•#2

ḃ3q22ḃ2q3
1b̈2q̇32b̈3q̇2D dx0

1 i F b̈3ḃ22b̈2ḃ31q̇3q22q̇2q32
1

kapp̄
G J .

Here p5const, b2 , b3 , q2 , q3 are arbitrary functions depending onx0 only, and
H58m0

25(2m)3.

V. BIANCHI TYPE I METRIC

We intend to consider others types of the Sta¨ckel spaces in the next paper. In this paper we
consider in addition to the spaces of type (3,1) the special case of the spaces of type (3.0) for
which the Killing vectors entering into the complete set are spacelike and non-null. These metrics
are known as Bianchi type I. The diagonal metrics of this type has a form:

dS25dx0
2
2(

i51

3

~dxi expa i !
2, a i5a i~x

0!.

Let us introduce the complex tetrad:

l a5
1

&

~d0
a2d1

a exp2a1!, l a5
1

&

~da
01da

1 expa1!,

na5
1

&

~d0
a1d1

a exp2a1!, na5
1

&

~da
02da

1 expa1!, ~5.1!

ma5
1

&

~d2
a exp2a22 id3

a exp2a3!, ma52
1

&

~da
2 expa22 ida

3 expa3!.

Using~5.1! let us find the spin coefficients the spinor components of the Ricci tensor and the Weyl
one,

k5a5b5t5p5n50,

m52r5
1

2&
~ ȧ21ȧ3!, s52l5

1

2&
~2ȧ21ȧ3!, ~5.2!

«52g5
ȧ1

2&
,
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F005F225
1

4
~2ä22ä32ȧ2

22ȧ3
22ȧ1~ ȧ21ȧ3!!,

~5.3!

F015F2150, F115
1

4
~ ȧ2ȧ32ȧ1

22ä1!,

12L5ä11ä21ä31ȧ1
21ȧ2

21ȧ3
21ȧ1ȧ21ȧ1ȧ31ȧ2ȧ3 ,

4F025ä22ä31~ ȧ22ȧ3!~ ȧ21ȧ31ȧ1!,
~5.4!

C05C45
1

4
~2ä21ä32ȧ2

21ȧ3
21ȧ1~ ȧ22ȧ3!!, C15C350,

6C252ä12ȧ1
22ȧ2ȧ31

1

2
~ ä21ä31ȧ2

21ȧ3
21ȧ1ȧ21ȧ1ȧ3!.

One can show that Einstein equations~2.6!–~2.7! are simultaneous only ifja5ja(x
0),

ha5ha(x
0). In this case Dirac equation~2.7! will take the form:

j̇052
~ ȧ11ȧ21ȧ3!

2
j02mh18 , ḣ0852

~ ȧ11ȧ21ȧ3!

2
h082mj1

~5.5!

j̇152
~ ȧ12ȧ21ȧ3!

2
j11mh08 , ḣ1852

~ ȧ11ȧ21ȧ3!

2
h181mj0 .

Let us denote

ja5wa exp2
V

2
, ha85 i«a8b8x

b8 exp2
V

2
.

Using ~5.5! one can find thatwa ,xa have the form

wa5pa exp imx01qa exp2 imx0, xa85pa exp imx01qa exp2 imx0,
~5.6!

pa ,qa5const, pa85 p̄a , q̄a85qa .

Let us enumerate all components of the tensorTab8cd8 :

T0081185T1181185T008008 , ~5.7!

T0080085
ikm0

&

~j0h12j08h181h08j182h0j1!,

T0180185
ik

2&
~2ȧ21ȧ3!~j1j182j0j082h1h181h0h08!, ~5.8!

T0080185T0181185T01810850.

Now Einstein equations can be present in the equivalent form

äp1ȧp
22ȧsȧq5c exp2V, ~p,q,sÞ!,
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ȧ1ȧ21ȧ1ȧ31ȧ2ȧ352H2c exp2V, ~5.9!

p,q,sÞ1,2,3c5&m0ak~q0q081q1q182p0p082p1p18!,

~ ȧ12ȧ2!~p0p181q0q181p08p11q08q1!5~ ȧ12ȧ3!~p0p181q0q181p08p11q08q1!

5~ ȧ22ȧ3!~p0p081q0q081p18p11q18q1!50.

~5.10!

Equations~5.9! can be integrated:

ap52
1

3 F«bpE expVdV

Al 2 exp 2V23H23c expV
1VG ,

«x05E dV

Al 2 exp 2V23H23c expV
.

~5.11!
b15 l 11 l 2 ,b25 l 322l 2 , b35 l 222l 3 ,

l q5const, «561, l 25 l 2
21 l 3

22 l 2l 3 .

One can show that the conditions~5.10! lead to the next variants

I. a15a25a3⇒ l p50, II. a25a3⇒ l 25 l 35 l .

Let us enumerate all obtained solutions:

ja5waQ
1/3, ha85 i«a8b8x

b8Q1/3

@fa ,x
b have the form~5.6!#

I. dS25dx0
2
2Q2/3@dx1

2
1dx2

2
1dx3

2
#,

~1! H50, c,0, Q5
3ucu
4

x0
2
, ~5.12!

~2! H,0, c.0, Q5u
c

H
uch2SA3uHu

2
x0

2D , ~5.13!

~3! H.0, c,0, Q5u
c

H
usin2SA3uHu

2
x0

2D , ~5.14!

~4! H,0, c,0, Q5u
c

H
ush2SA3uHu

2
x0

2D ; ~5.15!

II. dS25dx0
2
2Q2/3@W24/3dx1

2
1W2/3~dx2

2
1dx3

2
!#, c5jucu, j251,
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~1! H50 Q5
3c

4 S 4l 29c2
2x0

2D , W5
2l /3c1x0

2l /3c2x0
, ~5.16!

~2! H,0, y25212
4Hl 2

3c2
, Q5

jucu
2H

~j2y shA3uHux0!,

~5.17!

W5
jy1sh~A3uHux0!1 ~2lA3uHu/3c! ch A3uHux0

j2y shA3uHux0
,

~3! H,0, y2511
4Hl 2

3c2
, Q52

jc

2H
~y ch~A3uHux0!2j!,

~5.18!

W5
2jy1ch~A3uHux0!1 ~2lA3uHu/3c! shA3uHux0

j2y ch A3uHux0
,

~4! H.0, y2511
4Hl 2

3c2
, Q5

jc

2H
~y cos~A3uHux0!2j!,

~5.19!

W5
jy2cos~A3/uHux0!1 ~2lA3uHu/3c! sin A3uHux0

j2y cosA3uHux0
.

VI. CONCLUSION

~1! One can show that if for solutions obtained in Sec. III and IV spinor fields will be
directed to zeroja ,ha→0 the metrics take the form

dS252dx0x12gpq~x
0!dxpdxq, p,q52,3. ~6.1!

MoreoverRab50. It is known that such metrics describe a gravitational plain wave. Thus the
obtained solution can be interpreted as plain gravitational wave interacting with a spinor field. As
functions determining metric tensor are arbitrary one can find solutions with or without singular-
ity. Solutions with neutrinos belong to Petrov type N. They can be regarded as a model of
interacting plain gravitational and plain neutrino waves.

Solutions with massive spinor belong to Petrov type II~or D!. Nevertheless they can be
regarded as a plain wave too. All functions in this case depend onx0 only. Let us transform the
coordinate set in the following manner

x05u02u1, x15u01u1, x25u2, x35u3.

Then all functions will depend on (u02u1) only. In these coordinatesT00.0 and (u02u1) have
the same sense as for the electromagnetic wave in the flat space-time.

~2! Bianchi type I case. The spaces of this type for the general case describe the heterogeneous
cosmological model.~Note that case when cosmological constant equals to zero was considered
in!.23 They can be regarded as a generalization of the Kasner solutions. All of them have the
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singular points. Apparently pulsating solution~5.19! is the same. It has infinitely large number of
the repeating singular points. Let us calculate componentsTab for all obtained solutions

T005
ikm

&

~q0q081q1q182p0p082p1p18!

exp~a11a21a3!
5

c

2G
exp 2V,

T0i5Ti j50, i , j51,2,3.

If c.0 T00 and energy are positive. Note in conclusion that~5.12!–~5.15! belong to the class of
the conformally flat spaces, solutions~5.16!–~5.19! to Petrov type D ones.
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Topology changing processes in the WKB approximation of four dimensional
quantum cosmology with a negative cosmological constant are investigated. As
Riemannian manifolds, which describe quantum tunnelings of space–time, constant
negative curvature solutions of the Einstein equation, i.e., hyperbolic geometries
are considered. Using four dimensional polytopes, one can explicitly construct
hyperbolic manifolds with topologically nontrivial boundaries which describe to-
pology changes. These instantonlike solutions are constructed out of 8-cells, 16-
cells, or 24-cells and have several points at infinity called cusps. The hyperbolic
manifolds are noncompact because of the cusps but have finite volumes. Topology
change amplitudes in the WKB approximation in terms of the volumes of these
manifolds are evaluated and it was found that the more complicated the topology
changes, the more likely are suppressed. ©1996 American Institute of Physics.
@S0022-2488~96!04409-X#

I. INTRODUCTION

In classical gravity the topology change of the universe can be considered only in the case
where a normally assumed principle like causality is violated.1 In quantum gravity, on the other
hand, topology changing processes are rather ubiquitous. For example, topology changes can
happen in the birth of the universe, in the evaporation of a black hole, and so on. Moreover, the
topology changes, if possible by any mechanism either in classical or quantum gravity, may
induce important physical effects.

Recently there have been new progress in the investigation of topology changes. In~211!-
dimensional simplified models, the topology changes have been demonstrated to happen indeed by
some explicit examples. In three dimensional space–times with a negative cosmological constant,
two kinds of topology changes have been investigated. The first one was associated with the
existence of a compactified three dimensional black hole solution~or a higher genus universe with
a negative cosmological constant!. One of present authors~M.S.! showed that its analytical con-
tinuation around the coordinate singularity of the space–time may provide a process of topology
change.2 The second one was in the context of quantum cosmology. Siinoet al.3 constructed
topology changing solutions by quantum tunneling. To discuss more physical topology changes
these works should be generalized to four dimensional space–times. The former will be general-
ized to the~311!-dimensional compact hyperbolic cosmology.4 The purpose of the present article
is the generalization of the latter. That is to say, we investigate quantum topology changes in a
cosmological model through tunneling processes in four dimensions.

According to Gibbons and Hartle,5 a quantum tunneling space–time is semiclassically ap-

a!Electronic mail: msiino@th.phys.titech.ac.jp, JSPS fellow.
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proximated by a Riemannian manifold with totally geodesic boundaries. In Ref. 3, the authors
found some constantly curved Riemannian manifolds with topologically nontrivial, totally geode-
sic boundaries. If such a manifold has two connected pieces of boundary components with differ-
ent topologies, it describes a process of topology change between the two Lorentzian space–times
connected on the boundaries. Such 3-manifolds were constructed out of regular truncated polyhe-
dra embedded in a hyperbolic 3-space. In the present article, we discuss the topology change of the
universe along the same line but in four dimensions. The four dimensional analog of polyhedra is
called polytope and we shall construct four dimensional Riemannian manifolds by four dimen-
sional regular truncated polytopes embedded in a hyperbolic 4-space.6 The resultant manifolds
describe topology change of a vacuum universe with a negative cosmological constant.

In Sec. II we briefly review quantum tunnelings of space–times in general, and give a math-
ematical preliminary for hyperbolic space and quotient manifolds. Section III gives topology
changing solutions in four dimensional space–times of a constant negative curvature. We inves-
tigate their amplitudes and discuss the strong rigidity of the tunneling manifolds in Sec. IV.
Section V is devoted to summary and discussions.

II. QUANTUM TUNNELING OF SPACE–TIMES AND HYPERBOLIC MANIFOLDS

A. Quantum tunneling of space–times: Formalism

In the context of quantum cosmology, a quantum tunneling should be described by Riemann-
ian path integral formalism proposed by Hartle and Hawking.7 We would like to appeal to the
WKB approximation to compute tunneling amplitudes, since exact computations are almost hope-
less in four dimensions. In this case, a quantum tunneling means a transition~classically forbid-
den! from a spatial hypersurfaceSi to another spatial hypersurfaceSf . By topology change of
space–time it is meant thatSf is topologically different fromSi . These hypersurfaces may consist
of some disconnected components.

Gibbons and Hartle5 showed that, in the WKB approximation, the tunneling process is de-
scribed by a Riemannian manifold which has the boundary componentsSi andSf . In the ADM
formalism, a spatial hypersurfaceS is characterized by a spatial metrichi j and an extrinsic
curvatureKi j on it. In a semiclassical picture, an ordinary space–time manifoldML with a
Lorentzian signature~Lorentzian manifold! and a quantum tunneling manifoldMR with a Euclid-
ean signature~Riemannian manifold! are connected on the hypersurfaceS ~see Fig. 1!. The spatial
metrichi j can be uniquely defined from the viewpoints of both regions, because it is independent
of the time coordinates. However, the hypersurfaces connectingML andMR cannot be arbitrarily
chosen. Now we work out the condition the connecting hypersurfaces should satisfy. By a lapse
functionN and a shift vectorNi , the extrinsic curvature ofS is defined as

FIG. 1. A manifold with a Euclidean signatureMR interpolates the two manifolds with a Lorentz signatureML through
Si , f .
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Ki j52
1

2N S ]hi j
]t

2D ( iNj )D , ~1!

in the Riemannian manifold, wheret is the time coordinate in this region, and it is defined as

Ki j52
1

2N S ]hi j
]t

2D ( iNj )D , ~2!

in the Lorentzian manifold, wheret is the time coordinate in this region. In these definitions,Di is
the covariant derivative with respect tohi j . Since the timet in MR is analytically continued to the
time t in ML as t 5i t at S, the analytical continuation of geometrical variables,hi j andKi j ,
requires vanishingKi j andNi atS. Hereafter the boundary hypersurfaces with vanishing extrinsic
curvature will be called totally geodesic boundaries. Then on the connecting hypersurface, it must
be totally geodesic.

For the sake of cosmological interest and simplicity, in the present article, we consider a
vacuum space–time with a cosmological constant. If we further assume vanishing Weyl curvature,
the space–time has a geometry with constant curvature. Thus the Riemannian tunneling manifold
MR becomes locally isometric to one of the following cases,S4 ~4-sphere!, R4 ~4-plane!, or H4

~4-hyperboloid!. In Ref. 5, however, it was proved that if a 4-manifold has two pieces of discon-
nected boundariesSi andSf , the space–time should violate the energy condition at some points.
The energy condition states

RmnV
mVn.0 ~3!

for all vectorVm. Therefore, we can excludeS4 from our considerations of topology changing
manifolds because the curvature of it is positive definite.

From the Gauss–Codazzi equation, the vanishing extrinsic curvature makesSi andSf also
have constant curvatures~locally isometric toS3, R3, or H3! if the 4-manifold has a constant
curvature. To consider topology changes we need a variety of topologies. The Riemannian mani-
fold locally isometric toR4 does not satisfy this requirement because the topology ofS is too
restricted~see Ref. 8!. On the other hand, since the variety of hyperbolic 3-manifolds~Riemannian
manifolds locally isometric toH3! is very rich, we will consider the Riemannian manifolds which
are locally isometric toH4. A vacuum space–time with a negative cosmological constant can
serve our purpose. Then the main question we want to answer is: Can we construct a hyperbolic
4-manifold with totally geodesic boundariesSi andSf which have different topologies?

Mathematically, hyperbolic 4-manifolds are quotient manifolds of a 4-hyperboloidH4 by
discrete subgroups of its isometry group SO~4,1!. The fundamental region of this quotient
4-manifold is a 4-polytope~four dimensional objects bounded by a collection of polyhedra! em-
bedded intoH4. Intuitively, a quotient manifold means taking some copies of the fundamental
regions with their faces identified pairwisely. If we need a 4-manifold with boundaries, some of
the 3-faces of the fundamental regions should remain unidentified which form the 3-boundaries of
the 4-manifold. Previously, some~211!-dimensional analog of this have been discussed.3 Al-
though it is more complicated in four dimensions, by similar procedures, we can determine the
fundamental region and then the identifications of its 3-faces in hyperbolic geometry.6

B. Hyperbolic geometry and the Klein model

To give a hyperbolic, structure of four dimensional polytopes we embed them intoH4. In our
constructions, we use ann-dimensional Klein model~projective model!6 as the model of hyper-
bolic geometry. Then-Klein model is a model on an openn-disk

Dn5$xiPRnuxixi,1%, ~4!
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in which a metric is

ds25
1

12r 2 S dr2

12r 2
1r 2dVn21

2 D . ~5!

As r goes to 1, one approaches a sphere at infinity]Dn. This metric gives a constant sectional
curvature21 and has a hyperbolic structure. Then this Klein model is isometric to the spatial
hypersurface of the well-knownn-dimensional open-universe~k521!.

Here, we briefly review the important properties of this model. First, it is easy to find that all
totally geodesic~extrinsic curvature vanishing! m(,n)-hypersurfaces arem-planes in this model.
Then we can construct totally geodesic boundaries by connecting suchm-planes. For example, if
m5n21, them-planes bound a polytope. We know that eachm-plane can be identified with
another by the isometry SO~n,1! of Hn. By these identifications we shall construct quotient
manifolds. A more important property arises when we consider ideal points outside the sphere at
infinity ]Dn. As depicted in Fig. 2, most of ‘‘parallel’’~n21!-planes, which do not intersect each
other inside the Klein modelDn but intersect outside the sphere at infinity]Dn. For our purpose
we consider situations in which some~n21!-planes share only one point ‘‘a’’ outside the sphere
at infinity. The~n21!-planes form a pyramid with the vertexa. There ought to exist a special cone
which is tangent to the sphere at infinity. There exists an~n-1!-plane which intersects the cone at
the tangent points~exemplified in Fig. 3!. The virtue of the Klein model is that this~n21!-plane
is orthogonal to all of the planes forming the pyramid.

These facts facilitate our procedure of construction of tunneling manifolds. As an example, we
show a simple case of a 2-Klein model ofH2. In Fig. 4, two regular triangles are drawn in the
2-Klein model so that each vertex protrudes fromD2. As mentioned above, we can draw dotted
lines which are orthogonal to the edges of the triangle and truncate off the vertices along these
dotted lines. We call such a truncation a regular truncation. Gluing the triangles so that the labeled

FIG. 2. A two dimensional example. There are some lines not intersecting each other inside the Klein modelDn. They are
parallel lines and intersect outside the sphere at infinity]Dn.

FIG. 3. Three planes share the pointa outside the sphere. The cone with the vertexa, is tangent to the sphere at infinity.
Then the plane through the tangent points is perpendicular to the three planes.
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edges match each other, we get a hyperbolic manifold with threeS1 boundaries. Since the lines
composing the boundaries are geodesic and orthogonal to the edges of the regular triangle, the
boundaries become smooth totally geodesicS1.9

Finally, we should remark upon the relation between the size of an object bounded by planes
and the angles between these planes. In the hyperbolic geometry, if we enlarge the size of the
object, the angles decrease. When the size approaches zero, the angles become the same values in
Euclidean geometry. An angle on the sphere at infinity]Dn vanishes. We have no well-defined
angle outside the sphere at infinity]Dn.

C. Four dimensional polytopes

First we prepare regular truncated 4-polytopes in the 4-Klein model of hyperbolic 4-spaceH4.
Regular 4-polytopes are 5-cell, 8-cell, 16-cell, 24-cell, 120-cell, and 600-cell.10 For example,
‘‘5-cell’’ means that there are five congruent polyhedra which bound the 4-polytope. We shall
consider large polytopes in the 4-Klein model in the following sense:

~1! All the vertices are outside of the sphere at infinity.
~2! Each edge of polytopes has intersection with the sphere at infinity.

The above conditions guarantee that a single ideal vertex shared by 3-planes which are cells
~polyhedra! bounding the polytope can be regularly truncated off. As a generalization of the
discussion in the last subsection, to a vertex, there is a unique 3-plane which is perpendicular to
the polyhedra bounding the polytope. Also as mentioned in the previous subsection, the dicellular
angle~the angle between two adjacent polyhedra in a 4 dimensional space! decreases as the size
of the polytope increases in the hyperbolic geometry. To produce a regular and smooth structure
after gluing of polytopes, we choose the size of the polytope to make dicellular angles become
2p/n ~n is an integer!. Then the size of the polytopes are restricted further to some discrete values.
From a geometrical calculation we can find the allowed dicellular angles of the polytopes. The
allowed polytopes are shown in Table I.

The first column gives the names of polytopes and the second column the polyhedra which
bound the polytope. Allowed dicellular angles are shown in the third column. The fourth column
shows polyhedra produced by regular truncations. The solid angles of these polyhedra at their

FIG. 4. Two hexagons made by regular truncations of triangles are glued. The resultant space is one of the simplest
topology changing manifolds.
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vertices are in the fifth column. Here, it should be noted that the edges of the polytope are tangent
to the sphere at infinity except for the cases of a 24-cell with a dicellular angle 2p/5 and a 600-cell
with a dicellular angle 2p/3. Therefore, in most situations, vertices made by the truncation are on
the sphere at infinity.~This aspect is reflected in the fifth column since the vertices at infinity have
vanishing solid angles.! In these cases, the truncated polytopes are of course noncompact~exem-
plified for the case of 8-cell in the next section!. Calculating the volume, however, in the next
section, we find that their volumes are finite. In the present article, we only consider these
noncompact cases. By allowing the points at infinity, the construction of the tunneling manifold
becomes much easier. Because a constructed object is required to be a manifold, we should
consider completeness of the construction which gives a restriction at every vertex generally.
However, in the special cases with vertices on the sphere at infinity, these restrictions do not exist.

In the next section we shall demonstrate some examples of constructions of Riemannian
manifolds which describe topology changing processes. One of such Riemannian manifolds is
constructed from 12 8-cells which are 4-polytopes bounded by eight congruent hexahedra. The
development of such an 8-cell on 3-space is shown in Fig. 5. Gluing faces in four dimensions
according to the arrows in Fig. 5, we get a 4-dimensional polytope bounded by these eight
hexahedra, which has 16 vertices.

III. RIEMANNIAN MANIFOLDS WITH TOTALLY GEODESIC BOUNDARIES

A. Construction from an 8-cell

We can adjust the size of the embedded 8-cell so that all the dicellular angles arep/3. Then
we can show that all vertices are located outside the sphere at infinity]D4. This 8-cell satisfies the
two conditions given in the previous section. The edges of the 8-cell are coincidentally tangent to

TABLE I. The first column is the name of polytopes, which are bounded by the polyhedra on the second column. The third
column gives possible dicellular angles. After regular truncation, there appear new polyhedra shown in the fourth column
whose vertices have a solid angle on the fifth column.

Polytope
Bounding
polyhedra

Dicellular
angle

Polyhedra made
by truncation

Solid angle
around the vertices

5-cell 5 tetrahedra p/3 5 tetrahedra 0
8-cell 8 hexahedra p/3 16 tetrahedra 0
16-cell 16 tetrahedra p/2 8 octahedra 0
24-cell 24 octahedra 2p/5 24 hexahedra 4p/20

24 octahedra p/3 24 hexahedra 0
120-cell 120 dodecahedra p/3 600 tetrahedra 0
600-cell 600 tetrahedra 2p/3 120 icosahedra 4p/12

FIG. 5. The development of an 8-cell. Gluing the faces of the hexahedra along the arrows in four dimensions, we get the
8-cell of a 4-dimensional polytope.
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the sphere at infinity. Each hexahedron of the 8-cell is embedded into an induced 3-Klein model
~sub-model of the 4-Klein model! as shown in Fig. 6. In this three dimensional figure, all vertices
are also outside the sphere at infinity]D3 and all edges are tangent to the sphere.

To get smooth totally geodesic boundary hypersurfaces, we truncate every vertex of the 8-cell
in an analogous way as we did in the 2-dimensional example in Sec. II B. Let us pay attention to
the four hexahedra having a vertex in common in Fig. 5. The property of the Klein model
guarantees the existence of a unique 3-hyperplane which is perpendicular to all of the four hexa-
hedra as mentioned in the previous section. In this way we cut out the regions near the 16 vertices
of the 8-cell by these perpendicular 3-hyperplanes to get a regular truncated 8-cell embedded
completely in the 4-Klein model. The truncation of 8-cell induces truncation on every hexahedron
bounding the 8-cell. The resultant hexahedron is shown in Fig. 6. On each hexahedron the trun-
cation of the vertex of the 8-cell makes a triangle with its vertices on the sphere at infinity]D3. It
is noticed that the triangles share vertices with adjacent triangles@for example, the vertex (u) is
shared by the two adjacent trianglesDstu andDuvw in Fig. 6#. In this case, any edge of the
original hexahedron can be completely truncated off by the two truncations of the two adjacent
vertices connected by the edge~see Fig. 6!.

Because four hexahedra share one vertex in an 8-cell~see Fig. 7!, each 3-boundary of the

FIG. 6. The shaded sphere is a sphere at infinity in the 3-Klein model. Each edge of the hexahedra is tangent to the sphere
at s,t,u••• . The sphere is cut by planes throughs,t,u••• . Along these planes we truncate the vertices of the hexahedron.

FIG. 7. A part of the 8-cell in Fig. 5. Four hexahedra meet at a vertex. When we truncate the vertex, a tetrahedron appears.
We label the faces and the vertices of the tetrahedra at the vertices~a! by the index number of the cell which the face
belongs to and the vertices of the 8-cells on the opposite side of~a!, respectively.
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8-cell made by the truncation of a vertex is bounded by four triangles. From Fig. 7 we see that the
3-boundary is a tetrahedron whose vertices are on the sphere at infinity.~To the cases of other
4-polytopes, see the fourth column of the Table I!. Since each tetrahedron is orthogonal to the
hexahedra in the hyperbolic 4-space, the dihedral angle of the tetrahedron, which equals the
dicellular angle of the 8-cell, isp/3. The volume integration tells us that such tetrahedra have finite
volumes6 though they are noncompact. A single 8-cell includes 16 vertices and therefore has 16
tetrahedra as the boundary after regular truncations.

The next step is to find a certain gluing of appropriate number of regular truncated hyperbolic
8-cells by identifying the hexahedra, so that the resultant space becomes a smooth manifold and
the collection of the tetrahedra produced by regular truncations form smooth 3-boundaries of the
manifold. In mathematical language, we want to find a discrete subgroup of the isometry group
SO~4,1! so that the quotient space ofH4 by the discrete subgroup is a manifold. First, we would
like to try a generalization to four dimensions of what was illustrated in the simple two dimen-
sional example and see whether a manifold can be formed or not. Below is an example of the trial.

We prepare two regular truncated 8-cells and put them in the position so that they have a
reflection symmetry as depicted in Fig. 8. Gluing the hexahedraX~51–8! andX8~518–88! so that
all vertices (a) – (p) match, we get a 4-space with 16 boundary components. To make sure
smoothness of this 4-space in terms of hyperbolic geometry, it is sufficient to check the smooth-
ness on the boundaries since the dicellular angles of the 8-cell equal the dihedral angles of the
tetrahedra on the boundaries. The inside of a truncated hyperbolic 8-cell is smooth and regular.
We can nicely glue the two hexahedra in four dimensions because the hexahedra are totally
geodesic. Therefore, singular structures possibly appear only on the faces, edges and/or vertices of
each hexahedron. From Fig. 6 we see that the singularity should appear on the boundary tetrahedra
if any. The gluing of the hexahedra induces the gluing on the boundary tetrahedra. Fig. 7, for
example, shows that the gluing of two tetrahedra corresponding to the vertex (a) both in the
unprimed and primed 8-cells is determined by the identifications of the truncated hexahedra
around the vertex (a). Since each unprimed hexahedron is identified with its primed partner, every
face of unprimed tetrahedron is glued with its primed partner so that all vertices match. In this

FIG. 8. Two types of 8-cells. Upper ones are left-handed while lower ones~with primes! are right-handed. The corre-
sponding cells with the same number which are primed and unprimed are identified~for example, 11 and 118 , 41 and
438•••!.
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configuration, the topology of this space composed of the two tetrahedra isS3. Nevertheless, we
have only 2p/3 turning around each edge of the tetrahedra after gluing, since only two edges of the
tetrahedra with the dihedral anglep/3 are identified into one edge. This means a singularity by the
deficit angle 2p223p/354p/3. Therefore, we fail to get a smooth manifold by a simple minded
generalization of the 2-dimensional example in the previous section.

However, there is a way to improve the construction so that we can get a neat manifold, i.e.,
without a deficit angle. We consider a branched covering space of this singular space. The appro-
priate branched covering space can be given by a sixfold cover~12 tetrahedra! of the original
singular space. The faces and vertices of the twelve tetrahedra are labeled as Fig. 9~i51–6!. The
following pairs of the faces of unprimed and primed tetrahedra are glued so that all labeled
vertices match:

A12A18B12B38C12C28D12D48 , A22A28B22B18C22C48D22D38 ,

A32A38B32B28C32C58D32D68 , A42A48B42B68C42C18D42D58 , ~6!

A52A58B52B48C52C68D52D18 , A62A68B62B58C62C38D62D28 .

For instance,A1 is matched withA18 . All the verticesp1 ,p2 ,p3 of A1 are identified to the vertices
p1 ,p2 ,p3 of A18 , respectively.

Figure 10 shows consistency of the gluing around every edge. There are twelve edges in the
sixfold covering space after the gluing. There are six dihedral angles which meet at one edge so
that there is no deficit angle since each dihedral angle isp/3.

On the other hand, the vertices of the tetrahedra are on the sphere at infinity]D3. By the
gluing, these vertices are identified into four points at infinity,p1 ,p2 ,p3 ,p4 . Such points at
infinity are called cusps in the hyperbolic geometry. They are not singularities of the manifold but
open boundaries at infinity.6 Topologically a cusp looks like a torus crossing a half-open interval
~see Fig. 11!. The boundary space composed of twelve tetrahedra is a noncompact smooth mani-
fold, which is calledMB8 in the present paper.

The cusp will not cause any serious physical problem because one cannot observe the infinity
of the universe. On the contrary, the existence of such structures at infinity renders the manifold of
primary importance. It is a known fact in mathematics that there is a family of almost isometric
compact manifolds limiting a cusped manifold.11 It is expected that the limiting cusped manifold
shares common characters of the family. Furthermore, the cusped manifold is the simplest one
among the family in some sense. Hence, admitting the cusp to our manifold, we get the following
simplest example of topology changing of space–time by quantum tunneling.

Now we expect that the branched covering proceeded above can be straightforwardly ex-
tended to the whole of 8-cells. Since the sixfold cover of the boundary 3-space produced by the
simple minded identification is the smooth 3-manifoldMB8, the sixfold cover of the 4-space

FIG. 9. Six unprimed tetrahedra and six primed tetrahedra. Twelve tetrahedra constituteMB8.
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produced by the simple minded identification will have smooth boundary manifolds,MB8s. We
prepare six pairs of unprimed and primed 8-cells as Fig. 8~the pairs are labeled byi51–6!. Every
vertex and cell~hexahedron! of the 8-cells are also labeled in Fig. 8. All subsequent gluings will
be done so that these labeled vertices are matched. We determine the gluing of hexahedra around
each vertex (a) of 8-cells~cell 1i–cell 4i , so that they induce gluing~6! on a tetrahedron made by
the truncation of the vertex (a) to formMB8. Figure 7 shows the tetrahedron by the truncation of
each vertex (a). In this figure, each face of a tetrahedron is labeled by an index of the cell which
the face belongs to, and each vertex of the tetrahedron is labeled by the same character as that of
the nearest vertex of the hexahedron.

From Figs. 7 and 9 we find a correspondence, 1i[Ai , 4i[Bi , 3i[Ci , 2i[Di . By Eq. ~6!,
the gluing of the hexahedra, which constructsMB8 from the tetrahedra produced by the truncation
of the vertex (a) are the following:

112118412438312328212248 , 122128422418322348222238 ,

132138432428332358232268 , 142148442468342318242258 , ~7!

FIG. 10. The consistency check of the manifold which is composed of the tetrahedra in Fig. 9 with the rule of Eq.~6!. Six
dihedral angles meet at the edges in Fig. 9. Since each dihedral angle isp/3, there is no deficit angle.

FIG. 11. An intuitive picture of a cusped hyperbolic manifold. The cusp topologically looks like a torus cross a half-open
interval.

5620 Ding, Maeda, and Siino: Four dimensional quantum topology change

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



152158452448352368252218 , 162168462458362338262228 .

It is a nontrivial problem to determine whether it is possible or not for the tetrahedra produced
by the truncations of the other vertices (b) – (p) to formMB8s by appropriate choices of gluing of
the other cells~cell 5–cell 8!. Determining the other gluings as shown below, we can see that two
adjacent tetrahedra, e.g., formed by the truncations of vertices (a) and (b) ~see Fig. 12!, are
symmetric under the inversion because of the symmetry of the 8-cell

512518812838712728612648 , 522528822818722748622638 ,

532538832828732758632668 , 542548842868742718642658 , ~8!

552558852848752768652618 , 562568862858762738662628 .

Since the inversion of oneMB8 gives anotherMB8, each group of 12 tetrahedra forms one
MB8 at each vertex (b) – (p). Therefore, the glued twelve 8-cells have 16MB8s on their boundary.
Here, a fact should be noticed that the tetrahedra are orthogonal to the cells~hexahedra! of the
8-cell, which guarantees that theMB8 is smooth at the points at which the tetrahedra join. Then
MB8 on the boundary is a totally geodesic smooth manifold inH4.

Of course, these identifications are orientation preserving isometry transformation because of
the reflection symmetry between the unprimed and primed 8-cells. The resultant space is orient-
able.

To check that this 4-space is a complete smooth 4-manifold, we consider the neighborhood of
the faces, edges and vertices. In four dimensions, when we turn around each face completely, the
total angle should be 2p for consistency. We shall check this consistency on the boundary of it.
On the boundary 3-hypersurface, we should check whether it is 2p or not around the edges
~a,b,g... in Fig. 6! of the tetrahedra. This consistency is guaranteed by our previous analysis where
we have shown that the boundary consists of several pieces of the manifoldsMB8 ~see Fig. 10!.
The remaining vertices after the regular truncation~s,t,u... in Fig. 6! cause no problem since they
form 4-cusps at infinity. Hence this space is a complete smooth non-compact hyperbolic
4-manifold with totally geodesic 3-boundaries. The boundaries are sixteenMB8s.

FIG. 12. If we treat 8i as if it were 4i , a tetrahedron from vertex~a! and a tetrahedron from vertex~b! would be symmetric
under the inversion.
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B. Other solutions

As shown in Table I, there are seven kinds of 4-polytopes admitting regular truncations.
Geometrical calculations reveal that two of them, 24-cell with a dicellular angle 2p/5 and 600-cell
with a dicellular angle 2p/3, are compact and the others are noncompact after regular truncations.
We can apply our method for the 12 noncompact 8-cells to these noncompact cases. By a similar
method, we can successfully get complete smooth hyperbolic 4-manifolds with totally geodesic
3-boundaries in the two cases. One of them is the case of a 16-cell~bounded by 16 tetrahedra!
with a dicellular anglep/2 and the other is the case of a 24-cell~bounded by 24 octahedra! with
a dicellular anglep/3. Four 16-cells form a manifold whose 3-boundaries are eightMB16s ~we
consider a twofold cover of a simple minded identifications!, where anMB16 with six cusps is
composed of four octahedra. Similarly, 6 24-cells also constitute a manifold whose 3-boundaries
are 24MB24s ~we consider a threefold cover of a simple minded identifications!, where anMB24
with eight cusps is composed of six hexahedra.

Here, we would like to point out a peculiarity of the hyperbolic manifold by referring to a
mathematical fact. For three or four dimensional hyperbolic manifoldM3,4, the fundamental group
p1~M3,4! determinesM3,4 uniquely up to an isometry and a choice of normalizing constants.

12 This
has been known as the Mostow rigidity. Then it is sometimes sufficient to determine the homology
groupH1 of the hyperbolic manifold in order to distinguish the manifolds, whereH1 is an Abelian
group such thatH15p1/@p1,p1#. To characterize the boundaries topologically we calculate the
corresponding homology groups,13

H1~MB8!5Z1Z1Z1Z; ~9!

H1~MB16!5Z1Z1Z1Z1Z1Z; ~10!

H1~MB24!5Z1Z1Z1Z1Z1Z1Z1Z. ~11!

Clearly they are topologically inequivalent. Since the rank of the free finite Abelian group part of
H1 counts the number of two dimensional holes,13 MBn has a more complicated topological
structure thanMBm has ifn.m. On the other hand, the torsion-free property may be considered
as a pleasant feature of the universe because otherwise the universe might be non-orientable. If we
had a method which can produce a solution whose boundaries have torsion part, much more
solutions could be found.

Incidentally, it is impossible to construct a solution from 5-cells or 120-cells in our way. The
remaining regular truncated polytopes are compact. In the compact case, we should check consis-
tency also around the vertices of the regular truncated polytopes. However, it is too complicated
for us to work out this consistency check and we need more advanced techniques. This is our
project in future.14

IV. TOPOLOGY CHANGING AMPLITUDE AND STRONG RIGIDITY

We have constructed three hyperbolic 4-manifolds with totally geodesic boundaries. From
Gibbons and Hartle5 and Siinoet al.,3 these manifolds can be regarded as instantons causing
topology changes by quantum tunneling. For example, the manifold of 12 8-cells can describe the
topology changes: ‘‘from nothing to sixteenMB8s,’’ ‘‘from one MB8 to fifteenMB8s’’ or ‘‘from
twoMB8s to fourteenMB8s,’’ and so on~see Fig. 13!. It is also worthy of notice that by plumbing
them we can get infinite series of topology changing solutions as exemplified in Fig. 13. Since
each boundary is totally geodesic, the gluing is perfect to make a neat manifold when we identify
two boundary components of the same shape and size.

We have demonstrated topology changing processes between nontrivial spatial topologies in
four dimensions by quantum tunneling, which cannot be reduced to a lower dimensional subspace.
Brill constructed a 4-dimensional topology changing solution which, in fact, is effectively a direct
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product of a topology changing two dimensional space–time and the other two dimensional
space.9 Of course, the pair creation of charged black holes,15 in an extended sense, is also a
process of topology change. The Riemannian manifold for that process has a single totally geo-
desic 3-boundary which can be interpreted as a topology change from ‘‘nothing’’ to the space
containing a pair of black holes. However, the present paper gives descriptions of processes which
include not only the creation of the universe from ‘‘nothing’’ but also the change fromn MB tom
MB(nÞm). Both of initial and final spatial hypersurfaces~Si andSf! have nontrivial topologies.

Now let us evaluate the tunneling amplitude for these topology changes. In the context of the
Hawking’s Riemannian path integral, the amplitude can be formally described as

T~hi ,hf !5(
MR

E Dg exp~2SE@g# !, ~12!

wherehi andhf are the 3-dimensional metrics on the initial and final spatial hypersurfacesSi and
Sf , respectively.SE is the Euclidean action,

SE52
1

16pG E
MR

~R22L!Agd4x1
1

8pG E
]MR

KAhd3x. ~13!

The path integral is over smooth 4-metricg on the Riemannian manifoldMR which has appro-
priate boundariesSi andSf by assumption. In our cases,MR is one of the 4-manifolds which have
been constructed in the previous section. Then we can evaluate the path integral~12! in the WKB
approximation for the topology changing processes. The second term comes from the contribution
of the boundaries other thanSi , f , namely, that of the open boundaries at the cusps. It is easy to see
by explicit calculation thatK vanishes at the cusps. Since our solution has a constant negative
curvatureR54L,0, the classical actionS̄E is proportional to the 4-volume of the space–time and
is given by

FIG. 13. A Riemannian manifold with 16 boundaries is regarded as a topology change solution ‘‘from nothing to sixteen
MB8s’’ ‘‘from one MB8 to fifteenMB8s,’’ or ‘‘from two MB8’s to fourteenMB8s,’’ and so on. Furthermore, by plumbing
of the solution we can obtain various types of topology change solutions.
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S̄E5
1

8pG

V

uLu
, ~14!

whereV is a numerical value of the volume ofMR in the case ofL523. It follows from Eq.~14!
that the WKB approximation of the tunneling amplitude is exponentially suppressed for a tunnel-
ing manifold of a large volume. Then we intuitively expect that the topology change between more
complicated topologies requires a larger volume of tunneling manifold and is more suppressed
provided that the WKB prefactors are of the same order.

Though our manifolds have cusps, their volumes are finite. Following Kellerhals,16 the hy-
perbolic volumes of the 4-polytopes that we have used are calculated as

Volume~ truncated 8-cells!5
4p2

3
, ~15!

Volume~ truncated 16-cells!5
4p2

3
, ~16!

Volume~ truncated 24-cells!5
20p2

3
, ~17!

and the volume of the manifolds are summarized in Table II.
The volume of a constant curvature space is given by the Gauss–Bonnet theorem,17

x~M !5
1

32p2 E
M

eabcdR
ab`Rcd2

1

32p2 E
]M

eabcd~2uab`Rcd2 4
3u

ab`ue
c`ue

c`ued!,

~18!

whereRab anduab are the curvature 2-form and the second fundamental form. Since the bound-
ary ]M is totally geodesic,uab vanishes there. The Euler numbersx(M ) are combinatorially
determined as

x~tunneling manifold consisting of 12 8-cells!512, ~19!

x~tunneling manifold consisting of 4 16-cells!54, ~20!

x~tunneling manifold consisting of 6 24-cells!530, ~21!

and agree with Eq.~18! and the volumes given in Table II.
Roughly speaking, more polytopes are needed to get a manifold with a more complicated

topological structure. Then we expect that the volumes are largely related to the topological
structure~just the Euler number in a constant curvature space!. The larger volume will imply a

TABLE II. The topology changing manifolds that we have constructed. The first column is the polytope we have used. The
resultant manifolds have the boundaries on the second column whose homology groupH1 are shown in the third column.
The volume of solutions are displayed on the fourth column.

Building block BoundarySi , f H1~S! The volume of solutions

8-cell312 163MB8 Z1Z1Z1Z 4p2

3
312

16-cell34 83MB16 Z1Z1Z1Z1Z1Z 4p2

3
34

24-cell36 243MB24 Z1Z1Z1Z1Z1Z1Z1Z 4p2

3
330
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more complicated topological structure. Now let us recall one of the peculiarities of the hyperbolic
manifold, Mostow rigidity. For three or four dimensional hyperbolic manifoldM3,4, the funda-
mental groupp1~M3,4! determinesM3,4 uniquely up to an isometry and a choice of normalizing
constant.12 Therefore, our tunneling manifolds include no degrees of freedom of deformation8 as
long as the manifold is hyperbolic. If we include nonzero Weyl curvature, the manifold can
become inhomogeneous and the degrees of freedom of deformation becomes dynamical. In such
a situation, the quantum theory of the dynamical degrees of freedom have to be developed for a
quantum topology change theory.

V. SUMMARY AND DISCUSSIONS

In the present paper, we have found instantons which describe topology changing processes
by quantum tunneling of spatial hypersurfaces of space–times which are locally anti-de Sitter.
Here we summarize our results in the Table II.

It may be intuitively expected that the more complicated is the topology of the universe which
topologically changes, the larger is the volume of the tunneling manifold. Let us investigate
whether this is the case in our examples. From Table II, however, we cannot easily draw a
conclusion directly since the number of boundary manifolds are different. Quantitatively, we can
compare a set of three topology changing manifolds with 163MB8, a set of six topology changing
manifolds with 83MB16 and a set of two topology changing manifolds with 243MB24. All the sets
have 48 boundaries though they are not arcwise connected. Then the corresponding manifolds
have volumes 48p2, 32p2, and 80p2, respectively. The result is just not what we expected.
Although the third one is much larger than the other two, which means thatMB24 is more unlikely
to appear comparing to the other two, the first one and the second one are comparable. What is
more, the probability for the first one to appear is smaller than that for the second one. Since
H1~S! characterizes the topological structure ofS by Eqs.~9!, ~10!, and~11!, the boundary of the
first one is simpler than that of the second one. However, their volumes imply that the topology of
the first one is more complicated than the topology of the second one. Nevertheless, we cannot
conclude that the tunneling ofMB16 has the maximum of probability. There might be a smaller
manifold describing the topology change ofMB8s. If we could find the relation between the
volume of the solution~the Euler number! and the boundary of it, the relation would explain this.

One might think that our constructions are too restricted. First, the identification is determined
so as to preserve the symmetry of the polytope. Second, the resultant polytopes are identical with
each other. From these restrictions, for example, one cannot consistently identify the polyhedra
which bound a single polytope. Our restrictions made the construction simple. However, it may
well be the case that there are much more solutions which have been ruled out by the restrictions.
To complete the discussion about the topology change by quantum tunneling, we should relax
these restrictions. Then the structure of the tunneling manifold becomes more involved. Construct-
ing such complicated cases will need the aid of computer.

When we evaluate the topology changing amplitude, the formalism of Hartle and Hawking
has been used. However, the exact no-boundary condition in the original formalism of Hartle and
Hawking does not allow the existence of boundary at infinity. In our solutions, the tunneling
manifolds have cusped boundaries at infinity. Since the cusped boundaries are infinitely small and
the manifolds have finite volumes, we may generalize the formalism of Hartle and Hawking to
such a case. If we stick to impose the no-boundary condition in a strict sense, we need compact
tunneling manifolds. An investigation in this direction is also in progress.14

People might be disturbed by the existence of the cusps. If we study the effect of ‘‘matter
fields’’ or fluctuations of the metric~‘‘one-loop corrections’’!, the boundary conditions at the
cusps are needed. The conditions and the effects will be studied in appropriately simplified
situation.18 Furthermore, some people might insist that the cusps do not allow one to use Einstein–
Hilbert action and the idea of a smooth manifold in this arbitrary small scale. A calculation in the
~211!-dimensional gravity will reveal something about this as a simplified case. On the other
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hand, it observationally causes no problem since the cusps are at infinity and we cannot ‘‘see’’
them. We see only the pattern of spatial periodicity.19 If we observe the pattern of the spatial
periodicity as the super large scale structure of the universe, we may be able to determine the
topology of our universe and to know whether the universe has the cusps or not.

In the case of the topology change in~211!-dimensional quantum tunneling, the rigidity of
the hyperbolic manifold is easier to understand. While hyperbolic 2-boundaries have moduli
parameters as the dynamical degrees of freedom, the tunneling manifolds do not allow any defor-
mation corresponding to them, which is consistent with the rigidity. In four dimensional case,
however, the situation is different because the 3-boundary is also rigid as well as the tunneling
manifold itself. The dynamical degrees of freedom will appear only when we allow nonzero Weyl
curvature. In such a case the gravitational degrees of freedom should be considered. As a first step
we can consider the linear perturbation of them. If we quantize these degrees of freedom, we
expect particles be created. This might cause a quantum instability of topology changing solutions
if the backreaction to the space–time is too large.
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We discuss Einstein’s field equations in the presence of signature change using
variational methods, obtaining a generalization of the Lanczos equation relating the
distributional term in the stress tensor to the discontinuity of the extrinsic curvature.
In particular, there is no distributional term in the stress tensor, and hence no
surface layer, precisely when the extrinsic curvature is continuous, in agreement
with the standard result for constant signature. ©1996 American Institute of
Physics.@S0022-2488~96!02611-4#

I. INTRODUCTION

Classical cosmological models containing an initial region of Euclidean signature joined to a
final region with the usual Lorentzian signature were introduced by Elliset al.1,2 A basic feature
of this work is the use of the Darmois junction conditions at the surface where the signature
changes. This assumption has been questioned by Hayward,3 who prefers to assume the stronger
conditions appropriate for quantum cosmology. We argue here in favor of the Darmois approach
by deriving these junction conditions from the Einstein-Hilbert action.

What are Einstein’s equations in the presence of signature change? Formal computation
quickly goes astray: A signature-changing metric is necessarily degenerate at the hypersurface of
signature change. The Geroch-Traschen conditions4 for the existence of a distributional curvature
tensor thus fail to be satisfied, and it is not clear whether a preferred connection exists. Supposing
that a suitable distributional connection is available, the distributional curvature tensor could be
readily constructed, but it would still be unclear at best how to reverse its trace with the degenerate
metric to obtain a distributional Einstein tensor.

We adopt instead a variational approach, and begin with the natural generalization of the
Einstein-Hilbert action to signature change, subtracting the standard surface term used in the
nondegenerate case in the presence of boundaries. We choose to work with a discontinuous metric,
as this permits the introduction of a frame which is orthonormal almost everywhere. Having made
these choices, we find that the variations proceed unchanged from the degenerate case, and we
recover the identical result: The Darmois conditions~continuity of the extrinsic curvature! ensure
the absence of a surface layer, and the Lanczos equation relates the discontinuity of the extrinsic
curvature to the surface stress tensor. The former result agrees with one of Embacher’s variational
principles;5 the latter result is new.

The paper is organized as follows. In Section II we introduce the necessary notation for
dealing with signature change, and introduce the concept of an ‘‘almost’’ orthonormal frame. In
Section III we review the standard Einstein-Hilbert variational principle for Einstein’s equations,
showing that the usual derivation applies without change. Finally, in Section IV we discuss our
results.

a!Permanent address: Oregon State University; Electronic mail: tevian@math.orst.edu
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II. NOTATION

Let S be a~smooth! hypersurface in a smoothn-dimensional manifoldM which dividesM
into disjoint open regionsM6 with smooth, nondegenerate metric tensorsg6. We will assume that
the limits g6uS exist, and that the pullbacks ofg6uS to S agree. The common pullback is the
induced metric onS, which will be further assumed to be nondegenerate and which will be
denoted byh. In particular, we are assuming thatS is not null.

A tensor fieldF is said to beregularly discontinuous6,7 if F is continuous onM6 and if the
one-sided limits,

F6uS5 lim
→S6

F, ~1!

exist. Thediscontinuityof F is the tensor onS defined by

@F#S5F1uS2F2uS . ~2!

Note thatF itself need only be defined onM6. In thecontinuous metricapproach, one assumes
that @g#S50; this is the standard assumption for constant signature. If the signatures ofg6 differ,
g6uS will necessarily be degenerate (detg6uS50) in this approach, whereas for constant signature
one can also assume thatg6uS is nondegenerate. In thenondegenerate metricapproach, one
instead assumes thatg6uS are not degenerate. If the signatures ofg6 differ, this necessarily
implies that@g#S Þ 0; in this case, we will refer to this approach as thediscontinuous metric
approach. The two approaches are mutually exclusive in the presence of signature change,
whereas for constant signature one normally makes both sets of assumptions.

Introduce an orthonormal~with respect toh) frame onS, i.e. a basis$êi ,i51...n21% of
1-forms onS. In each ofM6 separately, we can extend this to a smooth orthonormal frame
$e6

a %5$e6
0 ,e6

i % with ei uS5êi . We have@ei #S50 by construction, and we will furtherassumethat
@e0#S50. This can always be done in the continuous metric approach, although if the signature
changes we havee6

0 uS50. For discontinuous metrics, this is a further restriction ong6, which
amounts to assuming that both 1-sided notions of the unit normal vector toS are the same—which
would imply continuity of the metric if the signature were constant—or equivalently that proper
time/distance fromS is aC1 coordinate. Let$Xa

6% denote the basis of vector fields onM6 which
is dual to$e6

a %. Note that in the presence of signature change,X0
6 will admit limits to S only in

the discontinuous case.
Consider the separate Hodge dual operators defined byg6 onM6, both written as* , and the

Hodge dual operator defined byh on S, written as*̂ . The metric volume element onS is

*̂ 15e6
1 `•••`e6

n21, ~3!

and the metric volume elements onM6 are

* 15e6
0 `e6

1 `•••`e6
n21, ~4!

which admit continuous limits toS by assumption. For discontinuous metrics, this provides the
usual Leray decomposition,

* 15e0` *̂ 1, ~5!

wheree0 here denotes the common limit ofe6
0 to S. However, in the continuous metric approach

for a signature-changing metric, these limits are identically zero!
We therefore take the nondegenerate metric approachin the remainder of the paper, resulting

in discontinuous metrics if the signature changes. We emphasize that this choice means that both
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@e0#S505@X0#S , ~6!

so that there is a continuous ‘‘orthonormal’’ frame on all ofM , which in turn defines a continuous,
nondegenerate, volume element on all ofM .

Metric-compatible connection 1-formsv6
a
b onM

6 satisfy

dgab5vm
agmb1vm

bgma , ~7!

and have torsion

Ta5dea1va
b`eb, ~8!

where we have dropped the6 index. For an orthonormal frame$ea%,

dgab50, ~9!

and the unique metric-compatible, torsion-free connection is given by8

2gamvm
b5gmne

mi Xa~ i Xb~de
n!!1gani Xb~de

n!2gmbi Xa~de
m!, ~10!

where

gab5g~Xa ,Xb!. ~11!

By assumption,gab is regularly discontinuous. We will further assume that the connection 1-forms
va

b are regularly discontinuous. Physically, this means that not onlyg6 but also their derivatives
admit 1-sided limits toS, so thatM6øS are ~pseudo! Riemannian manifolds-with-boundary.

III. VARIATIONAL APPROACH

We first review the Palatini formalism for obtaining Einstein’s equations in vacuum for
nondegenerate metrics. We then show by example how to include matter fields, and finally con-
sider degenerate metrics.

A. Nondegenerate metrics

The Einstein-Hilbert action on a manifold with nondegenerate metric but without boundary
can be written in terms of the Lagrangian density

LEH5gacR
c
b`* ~ea`eb!, ~12!

where the curvature 2-formsRa
b are defined by

Ra
b5dva

b1va
c`vc

b , ~13!

We adopt the Palatini approach and vary the action separately with respect toea andva
b , noting

thatgac is constant,R
c
b is independent ofe

a, and the remaining factor is independent ofva
b .

Taking thev variation first, ifv°v1dv then

dvR
a
b5d~dva

b1va
c`vc

b!

5d~dva
b!1dva

c`vc
b1va

c`dvc
b . ~14!

Thus,
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dvLEH5gacdvR
c
b`* ~ea`eb!

5gacd~dvc
b`* ~ea`eb!!1gacdvc

b`d* ~ea`eb!

1gacdvc
d`vd

b`* ~ea`eb!2gacdvd
b`vc

d`* ~ea`eb!. ~15!

Since there is no boundary, the surface term does not contribute. Furthermore, using~7! in the last
term yields

2gacdvd
b`vc

d5gcddvd
b`vc

a , ~16!

so that requiring thatdvR
a
b vanish for arbitrary variations inv results in

D* ~ea`eb!:5gacdvc
b~d* ~ea`eb!1vb

m`* ~ea`em!1va
m`* ~em`eb!!50. ~17!

Working in 4 dimensions for convenience and introducing the totally antisymmetric tensor
habcd with h012351, whose indices are raised and lowered withgab we have

* ~ea`eb!5
1

2!
hab

cd~e
c`ed!, ~18!

which leads directly to

D* ~ea`eb!5* ~Ta`eb1ea`Tb!52* ~Ta`eb!. ~19!

The result of thev variation is thus that the connection must be torsion-free

Ta50. ~20!

~We have assumed that the connection is metric-compatible. A similar computation starting in-
stead from the assumption that the connection is torsion-free leads to the requirement that the
connection be metric-compatible. A general computation, making noa priori restriction on the
connection, results in an equation relating the nonmetricity of the connection to its torsion.9!

Moving on to thee variation, we obtain

de* ~ea`eb!5deS 12! hab
cde

c`edD
5hab

cde
c`ded

52* ~ea`eb`emgmd!`ded

52 i Xd* ~ea`eb!`ded, ~21!

where we have used8

* ~f`X[!5 i X*f, ~22!

whereX[ denotes the 1-form which is the metric dual of the vector fieldX. Thus

deLEH52gacR
c
b` i Xd* ~ea`eb!`ded

52Gd`ded, ~23!
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where the right-hand-side defines8 the Einstein 1-formGd , which is related to the Einstein tensor
G by

Ga5G~Xa ,Xb!e
b. ~24!

Thus, in the absence of a matter Lagrangian, we obtain the vacuum Einstein equations

Ga50. ~25!

B. Matter terms

Before considering boundaries, we show by example what changes need to be made in the
presence of matter. Consider for simplicity a massless scalar fieldF, with Lagrangian density

2LF5dF`* dF. ~26!

The field equations

d* dF50 ~27!

are derived by varyingLF with respect toF.10 The stress 1-forms are obtained by varyingLF

with respect toea. We first note that

05dedF5de~Xa~F!ea!

5dXa~F!ea1Xa~F!dea. ~28!

The variation is thus essentially a variation of* , and we obtain

de* dF5de~Xa~F!* ea!

5deSXa~F!
1

3!
hbcd
a eb`ec`edD

5dXa~F!* ea1Xa~F!
1

2
hbcd
a eb`ec`ded

52Xa~F!* dea1Xa~F!* ~ea`emgmd!`ded

52 i Xa~dF!* dea1Xa~F!i Xd~* e
a!`ded, ~29!

where we have again used~22!. Thus,

2 deLF5dF`de* dF

52 i Xa~dF!dF`* dea1dF` i Xd~* dF!`ded

52 i Xa~dF!dea`* dF1dF` i Xa~* dF!`dea

5 i Xa~dF!* dF`dea1dF` i Xa~* dF!`dea, ~30!

so that the stress 1-forms are
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2 * ta52
dL

dea
5 i Xa~dF!* dF1dF` i Xa~* dF!. ~31!

The stress 1-forms are related to the stress tensorT by

ta5T~Xa ,Xb!e
b ~32!

@compare~24!#. If we now take as our total Lagrangian

L5LEH216pGLF , ~33!

then the variation with respect tov is unchanged, and the variation with respect toe yields
Einstein’s equations in the form

Ga58pGta . ~34!

C. Signature change

We now consider a manifoldM divided as before into disjoint open regionsM6 by a hyper-
surfaceS. We will take as our Lagrangian the piecewise sum of the Einstein-Hilbert Lagrangians.
For variations with support away fromS, everything is as before, and we obtain Einstein’s
equations separately in the two regions. But for variations ofv in a neighborhood ofS, the
surface term which we previously discarded would now contribute, and we do not wish to impose
anya priori conditions on the smoothness of the variations ofv, and thus implicitly onv itself.
We thus modify the Einstein-Hilbert action by adding a surface term,

Lg5LEH2d~gacv
c
b`* ~ea`eb!!, ~35!

and note that this will precisely cancel the surface term in the variation ofv. We emphasize that
this change in the action has nothing to do with signature change, and is required for the standard,
constant signature case.5,11

We thus consider the theory with action,

S 5E
M1
Lg

11E
M2
Lg

2 , ~36!

and reiterate that variations with support away fromS lead as expected to Einstein’s equations and
the torsion-free condition separately in the two regions. If we now assume that

@ea#S50, ~37!

and consider continuous variations ofea across the boundary, we obtain on each side a surface
term of the form

2E
S
de~gacv

c
b`* ~ea`eb!!5E

S
gacv

c
b` i Xd* ~ea`eb!`ded, ~38!

where we have used~21!. Consider the term

rd :5gacv
c
b` i Xd* ~ea`eb!, ~39!

and note that only the pullbackr̂d of rd occurs in~38!. A tedious but straightforward computation
making repeated use of identities like
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gamgbn* ~em`en!5gbni Xa* e
n5 i Xai Xb* 1, ~40!

va
b` i Xca52 i Xc~va

b`a!1 i Xcv
a
b`a, ~41!

g00* ~e0`ei !5 *̂ ei , ~42!

shows that

r̂0522v i
j~Xi ! *̂ e

j , ~43!

r̂ i5~2v0
j~Xi !22d i jd

klv0
k~Xl !! *̂ ej , ~44!

and we see at once thatr̂0 is continuous, as it only depends on the frame atS. Requiring that~38!
vanish for arbitrary variations, we thus obtain the boundary condition

@ r̂ i #S50. ~45!

The extrinsic curvature ofS is defined by~the 1-sided limits toS of!

K~X,Y!52¹Xe
0~Y!. ~46!

~One usually assumesX0 is geodesic to ensure thatK only has components tangent toS; it is in
any case only these components which matter. One can therefore without loss of generality restrict
X andY to the tangent space toS, which is spanned by$Xi : i51, . . . ,n21%.! We have

K~Xi ,Xj !52~¹Xi
e0!~Xj !5v0

c~Xi !e
c~Xj !5v0

j~Xi !. ~47!

We define the trace ofK by

tr K:5hi j K~Xi ,Xj !5d i j K~Xi ,Xj !. ~48!

Inserting~47! and ~48! into ~45! and ~44!, we see that thee variation yields

05@ r̂ i #S5~2@K~Xi ,Xj !#S22d i j @ tr#SK ! *̂ ej , ~49!

which is equivalent to

@K~Xi ,Xj !#S50, ~50!

so that the extrinsic curvature must be continuous.

D. Lanczos equation

If the matter Lagrangian contains a surface term of the form

S S5E
S
LS , ~51!

then there will be a surface stress tensor of the form

*̂ t i
S5

dLS

dei
. ~52!
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Relating this to the variation of the~surface term of the! Einstein-Hilbert action yields the Lanczos
equation12,13 in the form

@ r̂ i #S516pGt i
S , ~53!

or equivalently

~@K~Xi ,Xj !#S2d i j @ tr#SK !ej58pGt i
S , ~54!

relating the discontinuity in the extrinsic curvature to the surface stress tensor. This equation is
identical in form to that obtained when the metric is nondegenerate.

IV. DISCUSSION

We reiterate that there are no canonical ‘‘Einstein’s equations’’ in the presence of signature
change. One can try to construct a theory by formal substitution of a signature-changing metric
into equations derived for constant signature, but it is not at all obvious that the resulting theory
could be derived from an appropriate starting principle. For instance, for continuous, signature-
changing metrics there is no~metric! volume element at the surface of signature change, so in this
approach it is not clear what one should mean by a surface layer. And for discontinuous metrics,
it is not even clear whether a~distributional! metric-compatible connection exists, since the stan-
dard computational techniques involve contracting the distributional derivatives of the metric with
the discontinuous metric. One intriguing possibility involves a connection which is merely dis-
continuous but not metric-compatible.14 Even with a discontinuous~as opposed to distributional!
connection, however, the formal computation of Einstein’s equations fails in general: While a
distributional curvature tensor~or 2-form! can be constructed, with a signature-changing metric
there is no way to take the trace to obtain the Einstein tensor.

Our results agree with Embacher5 that the boundary condition obtained from the action~35! is
precisely that the extrinsic curvature be continuous, which is the well-known Darmois junction
condition for the absence of a surface layer.15 Our derivation thus supports the work of several
authors1,2,16,17who postulate the Darmois conditions for Einstein’s equations in the presence of
signature change. Hellaby and Dray16–18 have pointed out, however, that in the presence of
signature change the Darmois junction conditions are not sufficient to obtain the usual conserva-
tion laws, in contrast to the usual situation.4,19–22We note in particular that the Kossowski and
Kriele claim23 that the Darmois conditions lead to a surface layer which was missed by Ellis is
incorrect,24 as it is based on a smoothness assumption which does not hold in the Darmois
approach.

We emphasize that not only does our work support our previous claims that the Darmois
junction conditions are precisely the conditions for there to be no surface layer in the presence of
signature change, but it also derives the precise relationship between the discontinuity in the
extrinsic curvature and the stress tensor of the surface layer, namely the Lanczos equation.

Our theory is constructed using standard variational techniques from a straightforward gener-
alization of the standard Einstein-Hilbert Lagrangian. A surface term is added to avoid having to
specify continuity conditions on the connection variations without knowing anything in advance
about the continuity of the connection itself. It is remarkable that even though our metric is
discontinuous, there is still a continuous frame which is orthonormal almost everywhere, and we
work with this frame to avoid having to vary the metric.

One might question whether our variations of the frameea are indeed arbitrary. There are two
separate issues here, the first being that we have restricted our variations so that away fromS the
frame remains orthonormal. This is merely a reflection of the gauge freedom in Einstein’s theory
to work with a preferred category of frames, such as coordinate bases, null tetrads, or orthonormal
frames. The second issue is at first sight more worrisome: Our class of nearly orthonormal frames
for signature-changing metrics uniquely determinese0 at S, so that

5634 Tevian Dray: Einstein’s equations in the presence of signature

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



de0uS50 ~55!

~which also restricts the variationsdei uS to be tangent toS). The careful reader will have noticed
that we have not tried toderivethe condition@ r̂0#50 from the variational principle; we now see
that this can not in fact be done. Fortunately, this condition is identically satisfied. This is just a
reflection of the fact that we have fixed the hypersurfaceS, so thatX0uS is a geometric object, the
normal vector field to the given surface. So long asS is fixed, there is no physical or geometric
content to varyingX0, or equivalently varying its duale

0. This point of view is supported by the
fact that, if one permits such variations in the nondegenerate case, one obtains no new information.
In any case, we expect our results to generalize directly to permit continuous variations of an
arbitrary~non-orthonormal! frameea, yielding the same results. Strong evidence for this claim is
provided by the fact that Embacher5 obtains the same results as we do by varying~35! with respect
to the metric and connection in a coordinate basis.

Similar results to those obtained here were derived earlier for the scalar field10,25 from several
different approaches, including a variational principle. These results agree with those obtained by
Ellis et al.1,2 for the coupled Einstein-Klein/Gordon system. Carfora and Ellis26 have recently
given a an elegant approach to signature changing spacetimes, in which the Darmois conditions
are generalized to allow a diffeomorphism of the surfaceS of signature change.
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The problem of geodesic incompleteness is examined for space–times with
Finkelstein–Misner kinks. A discussion of spherically symmetric kink space–times
is followed by specific examples in which geodesics, initially incomplete in the
original space–time, are shown to be extendible by the Kruskal technique. The
structure of the two Kruskal patches and their matching at the patch boundaries are
worked out in detail for one such example. Comments are made concerning a
possible link between extendibility and energy conditions. It is shown that the kinds
of spherically symmetric kink space–times examined in the present paper do not
satisfy the strong energy condition. ©1996 American Institute of Physics.
@S0022-2488~96!01711-2#

I. INTRODUCTION

Kink space–times were originally discovered by Finkelstein and Misner1 and were further
studied by Finkelstein and McCollum2 who showed how kink space–times which were geodesi-
cally incomplete when presented in terms of so-called ‘‘rotational’’ coordinates could sometimes
be extended by performing a Kruskal transformation3 to obtain new coordinates which range over
a larger geodesically complete manifold. Finkelstein and McCollum also raised the question of
whether a geodesically complete kink space–time could arise from a physically reasonable source,
and they formulated a set of conditions that~a certain class of! spherically symmetric kink space–
times would need to satisfy if the source were to be physically reasonable.

More recently, Chamblin~Ref. 4, pp. 376–377! has raised questions concerning the relation-
ship between kinking and geodesic incompleteness. In further work, Chamblin5 studies chrono-
logical asymptotically flat kink space–times that satisfy the strong and generic energy conditions
~and are already maximally extended!. He argues that such a space–time will be timelike and null
~i.e., nonspacelike! geodesically incompletein an absolute sense. That is to say, the space–time
cannot be further extended to a geodesically complete space–time. The de Sitter kink space–time,
which does not satisfy the energy conditions, was previously extended by Dunn, Harriott, and
Williams.6 The purpose of the present paper is to pursue this tie between incompleteness and
energy conditions by examining other examples of spherically symmetric kink space–times. Such
space–times are characterized by a tipping over of the light cones asr varies from 0 tò . The
angle of tilt of the light cones will be denoted bya, which will be assumed to be a function ofr ,
but not oft. Although it is always possible to find alocal coordinate system in whicha(r ) is zero,
it is not possible to do thisgloballywhen there are kinks. Throughout the present paper, we shall

a!Electronic mail address: kdunn@is.dal.ca
b!Electronic mail address: tina.harriott@msvu.ca
c!Electronic mail address: williams@brandonu.ca
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impose the boundary conditionsa~0!50 anda~`!5p, which correspond to a kink number of one.

II. SIMPLEST SPHERICALLY SYMMETRIC KINKS

The simplest spherically symmetric space–time with a kink present is given by2,6–11

ds252cos 2a dt222 sin 2a dt dr1cos 2a dr21r 2 dV2.

This is a special case of the space–time discussed by Letelier and Wang.12,13 The Christoffel
symbols and the Ricci and Einstein tensors are listed in Appendix A. Examples of such space–
times include the de Sitter kink space–time9,10 and the Tolman–Hawking and Schwarzschild kink
space–times discussed by Gonza´lez-Dı́az.11 ~See also Ref. 14.!

Sincea varies from 0 top, there will be two horizons: one ata5p/4 and the other at
a53p/4. For the example of the de Sitter kink space–time, the horizons are of the cosmological
kind and the geodesics can be straightened by transforming to Kruskal coordinates.6 For other
examples, it may not be possible to extend the geodesics ata5p/4 anda53p/4, but if it is
possible, since one cannot expect to find a coordinate system that will straighten the geodesics at
botha5p/4 anda53p/4 simultaneously, two coordinate patches will be needed to describe the
resulting geodesically complete space–time with Kruskal coordinates.2 In terms of the originala,
the coordinate patches correspond to the ranges 0<a<p/2 ~first patch! andp/2<a<p ~second
patch!. There is a further difficulty concerning the joining together of the two patches. The smooth
joining of such patches requires the metric and its first derivatives to be continuous at the bound-
ary ~the Lichnerowicz junction conditions15! or alternatively, and more covariantly, that the first
and second fundamental forms of the boundary three-manifold be the same for both patches~the
Darmois junction conditions16–18!. This is not the case for the de Sitter kink space–time.19

The two patches are most easily described in terms of a new time coordinate2,6

t̄5t1h~r !,

with h(r ) chosen to satisfy

dh

dr
5
sin 2a2k

cos 2a
,

wherek511 for the first patch andk521 for the second patch. The apparent singularities at
a5p/4 for k511 and ata53p/4 for k521 ~i.e., for sina5k cosa! can be removed by using the
identities

sin 2a71[~cosa7sin a!2,

cos 2a[~cosa2sin a!~cosa1sin a!

to rewrite the derivativedh/dr as

dh

dr
5

k sin a2cosa

sin a1k cosa
.

This is clearly well defined and henceh(r ) is also well defined, thus ensuring that the kink number
will not be affected by the transformation to the new time coordinatet̄. The metric is transformed
to

ds252cos 2a dt̄222k dt̄ dr1r 2 dV2,
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and will be geodesically incomplete ata5p/4 for k511 and ata53p/4 for k521, angles which
correspond to the same sina5k cosa condition under which trouble originally arose fordh/dt.

Kruskal coordinates,3 U, V, are given by2,6

U57eg t̄ expS 2gkE
0/A

r dr

cos 2a D ,
V57

1

gak
e2g t̄ ,

where the lower limit of integration 0/A refers to the choicesr50 or r5A at the start of the first
or second patches, respectively, whereak denotes the values ofr at the horizons which occur at
a11 in the first patch and ata21 in the second patch, and whereg is a constant. The metric
becomes

ds2522F~U,V!dU dV1r 2 dV2,

with F given by

F5
2ak cos 2a

2g
expS 22gkE

0/A

r dr

cos 2a D .
~The factor of2ak in this expression forF was omitted by error in our earlier paper.!6 The
constantg, which has so far been undetermined, must be chosen so that the functionF is finite and
nonzero when sina5k cosa ~i.e., asr→ak!. Wheng is chosen in this way, the extension process
is complete. If no suchg can be found, then the Kruskal extension fails.

If the possibility of extending a nonspacelike geodesically incomplete kink space–time to one
that is geodesically complete hinges, in part, on the energy conditions being satisfied,5 then it is
appropriate to review these energy conditions and also the physical conditions that were put
forward by Finkelstein and McCollum.2 Following the procedure of Hawking and Ellis~Ref. 20,
p. 89!, consider the eigenvalue equation

~Gmn2lgmn!jn50.

The componentsGm
n of the Einstein tensor are listed in Appendix A. In terms of the function

m~r !:5 1
2~r2r cos 2a!5r sin2 a,

introduced by Finkelstein and McCollum,2 the eigenvalues are given by

l05l152r22 ] rm, l25l352r21 ] r
2m.

Corresponding eigenvectors are

E05~cosa,sin a,0,0!, E15~sin a,2cosa,0,0!,

E25~0,0,r21,0!, E35~0,0,0,~r sin u!21!.

The eigenvectorE0 is timelike ~with the remaining eigenvectors being spacelike! and so, of the
four canonical forms listed by Hawking and Ellis~Ref. 20, p. 89!, this situation isType I. The$Ea%
form an orthonormal basis and the tetrad components of the metric tensor are computed according
to
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ḡab5g~Ea ,Eb!5gmnEa
mEb

n 5diag~21,1,1,1!.

Note thatḡab5ḡab . It is straightforward to calculate the tetrad componentsḠab of the Einstein
tensor and hence, using the Einstein equationsḠab5T̄ab, the tetrad componentsT̄ab of the
energy-momentum tensor are found to beiT̄abi5diag(r,p1 ,p2 ,p3), where

r52r22 ] rm, p1522r22 ] rm, p25p352r21 ] r
2m.

The weak energy condition states that the energy density as measured by any observer is non-
negative, and this is equivalent to requiringr>0 andr1pa>0, for a51, 2, 3 ~Ref. 20, p. 90!.
These inequalities imply]rm>0 and] r(r

22 ] rm)<0. The strong energy condition holds for a
Type Ienergy-momentum tensor provided that, fora51, 2, 3,r1pa>0 andr1(pa>0 ~Ref. 20,
p. 95!. The latter condition is equivalent to]r

2m<0. Note that the strong energy condition doesnot
imply the weak energy condition~Ref. 21, p. 219!. We now list some physical conditions for
m(r ):

~a! ]rm>0 for all r ,
~b! ] r(r

22] rm)<0 for all r ,
~c! m5O(r 3) as r→0 ~i.e., uGm

n u,` at r50!,
~d! 0<m/r<1 ~i.e., 0<sin2 a<1!,
~e! ]r

2m<0 for all r .

Taken together, conditions~a! and ~b! have been shown to be equivalent to the weak energy
condition. From Appendix A,

Gt
t5Gr

r522r22] rm,

Gu
u5Gw

w52r21] r
2m,

and so requiringm5O(r 3) asr→0 will ensure thatGm
n , and henceTm

n , is finite at the origin. This
is condition~c!. Condition~d! follows from the definitionm:5r sin2 a. For present purposes, one
needs a somewhat stronger condition than~d! since, to ensure the presence of a kink, we are
imposing the boundary conditionsa~0!50 anda~`!5p. Thus we requirem to satisfy

~f! limr→0(m/r )5limr→`(m/r )50,

with m/r attaining its maximum value of 1 at the value ofr corresponding toa5p/2. Our
conditions ~a!, ~c!, and ~d! agree with the corresponding conditions given by Finkelstein and
McCollum ~Ref. 2, p. 2253!. However, our condition~b! differs from Finkelstein and McCollum’s
condition ~b!.

Taken together, conditions~b! and~e! have been shown to be equivalent to the strong energy
condition. However, for the kind of spherically symmetric one-kink metrics being discussed,
conditions~d! and~f! mustbe satisfied. From condition~f!, limr→0(m/r )50 implies that, for small
r , m5O(r 11c) with c.0. Hence, for smallr.0, ] rm5O(r c).0 and] r

2m5O(r c21).0. The
latter inequality violates condition~e!, thus showing that the strong energy condition cannot be
satisfied by kink metrics of this kind.

In the present paper, the space–times considered are spherically symmetric and have one kink
on each hypersurface of constantt. Note that Alty22 has given a formula for counting the number
of kinks on a closed three-manifold or hypersurface within any nonsingular~311!-dimensional
space–time. An alternative formula has been given by Torre.23 ~See also Ref. 24 for an earlier
approach and Ref. 25 for a formula that is valid in 111 dimensions.! This concludes the analysis
for generala. In Secs. III–V, specific functional forms fora will be chosen.
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III. STEREOGRAPHIC KINK

Let the functional form ofa(r ) be given by

tan~a/2!5r /a,

wherea is a positive constant and 0<r,`. Sincea varies continuously froma~0!50 toa~`!5p,
the resulting metric describes a one-kink space–time. The functionm(r ) is given by

m5
4a2r 3

~a21r 2!2
.

Of conditions ~a!–~f!, only conditions~c!, ~d!, and ~f! hold. Thus not even theweak energy
condition is satisfied. This space–time can be aptly called the ‘‘stereographic kink space–time,’’
since the anglea is mapped into a radial distancer in accordance with the usual stereographic
projection from a sphere onto a plane with radial coordinater . The first patch corresponds to the
range 0<r<a, and the second patch corresponds to the rangea<r,`. The r5ak ~i.e., sina
5k cosa! horizons are located atr5a65a(21/271), where we are abbreviatinga11 to a1 and
a21 to a2 . The derivativedh/dr is given by

dh

dr
5

k2ar2~a22r 2!

2ar1k~a22r 2!
,

and it is straightforward to show~Ref. 26, §2.103, p. 57! that, to within an arbitrary constant,

h~r !52kr221/2$a1 ln~r1ka1!1a2 ln~2kr1a2!%.

Both dh/dr andh(r ) are well defined everywhere.
The constantsa1 anda2 satisfy the equations

a1a25a2,

a1
2 5@322~21/2!#a2,

a2
2 5@312~21/2!#a2,

a2
222a1

22524~21/2!a22,

which lead to

1

cos 2a
5

~a21r 2!2

~a22r 2!22~2ar !2

511
8a2r 2

~a22r 2!22~2ar !2

511
8a2r 2

~r 22a1
2 !~r 22a2

2 !

51221/2a4H a2
22

r 22a1
2 2

a1
22

r 22a2
2 J

512221/2a2H a2
21S 1

r2a1
2

1

r1a1
D 2a1

21S 1

r2a2
2

1

r1a2
D J ,
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and hence, ignoring the constant factor coming from the lower integration limit, to

E r dr

cos 2a
5r2221/2a2$a2

21~ lnur2a1u2 lnur1a1u!2a1
21~ lnur2a2u2 lnur1a2u!%.

This expression is undefined atr5a1 which occurs in the first patch, and atr5a2 which occurs
in the second patch. The constantg must now be chosen~if possible! so thatF is nowhere zero
and nowhere infinite. Since

cos 2a5~r 21a2!22~r2a1!~r1a1!~r2a2!~r1a2!,

it follows from the equation forF given in Sec. II that the appropriate choices forg are
g52221/2a22a2 in the first patch, andg52221/2a22a1 in the second patch. More concisely,
g52221/2a22a2k . Since the resultingF is a complicated function ofr , it will not be easy to
expressF as an explicit function ofU andV ~as was done in the de Sitter case6!.

IV. NEWTONIAN KINK

The example

m5
2ar2

a21r 2

was considered some years ago7 and was shown to reproduce the Newtonian potential for larger .
We shall call it the ‘‘Newtonian kink.’’ Conditions~a!, ~b!, ~d!, and ~f! are satisfied, but not
conditions~c! or ~e!. Thus the weak energy condition is satisfied. The anglea is related tor by

sin a5S 2ar

a21r 2
D 1/2, cosa5

a2r

~a21r 2!1/2
,

so that the boundary between patches is located atr5a. The roots of cos 2a area65a~2731/2!.
From

a1a25a2, a11a254a, a2
212a1

21522a2131/2,

it follows that

cos 2a512
4ar

r 21a2
5

~r2a1!~r2a2!

r 21a2
,

and

1

cos 2a
511

4ar

~r2a1!~r2a2!
5122a231/2H 1

a2~r2a1!
2

1

a1~r2a2! J .
Hence, neglecting the constant factor coming from the lower integration limit,

E r dr

cos 2a
5r22a2321/2~a2

21 lnur2a1u2a1
21 lnur2a2u!.

It follows from the equation forF given in Sec. II thatF will be nowhere zero and nowhere
infinite if we chooseg52~31/2/4!a2a2 in the first patch andg52~31/2/4!a2a1 in the second
patch.
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V. FINKELSTEIN–McCOLLUM KINK

Finkelstein and McCollum2 proposed

m5S 3

211/r
D 35 27r 3

8r 3112r 216r11
,

which violates condition~e! but satisfies the remaining conditions. Hencem satisfies the weak but
not the strong energy condition. It is interesting to note that Finkelstein and McCollum’s condition
~b! is also satisfied. The abovem implies

cos 2a5
8r 3242r 216r11

8r 3112r 216r11
.

The numerator factorizes as

8r 3242r 216r1158~r1b!~r2a1!~r2a2!,

where

b5 1
2~3

3/225!'0.0981, a15 1
4, a25 1

2~3
3/215!'5.0981,

so that problems with geodesic incompleteness arise ata1 in the first patch and ata2 in the
second patch. The boundary between patches occurs atr51.

1

cos 2a
511

27r 2

4~r1b!~r2a1!~r2a2!

511
27

4 F 1

r1b
1

~a11a2!r2a1a2

~r1b!~r2a1!~r2a2!
G

511
27

4 F b2

~a11b!~a21b!~r1b!
2

a1
2

~b1a1!~a22a1!~r2a1!

1
a2
2

~b1a2!~a22a1!~r2a2!
G .

RequiringF to be nowhere zero and nowhere infinite in the two patches implies

g52
2~b1ak!~a22a1!

27ak
2

.

This givesg522 in the first patch~k511!, andg'20.0718 in the second patch~k521!. The
above values ofa1 anda2 agree with those of Finkelstein and McCollum but the above values of
g do not @Ref. 2, Eqs.~37! and ~38!, p. 2256#.

VI. SPHERICALLY SYMMETRIC KINKS WITH xÞ0

A slightly more general form of metric than that of Sec. II is given by

ds252ex cos 2a dt222 sin 2a dt dr1e2x cos 2a dr21r 2 dV2.
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Again, this is a special case of the metric discussed by Letelier and Wang.12,13 The Christoffel
symbols and the Ricci and Einstein tensors are listed in Appendix B. After a change of time
coordinate,

t̄5t1h~r !,
dh

dr
5
sin 2a2k

ex cos 2a
,

the method of extension proceeds as in Sec. II, with

U57eg t̄ expS 2gkE
0/A

r dr

ex cos 2a D ,
V57

1

gak
e2g t̄ ,

F5
2ake

x cos 2a

2g
expS 22gkE

0/A

r dr

ex cos 2a D .
The functionm defined in Sec. II will now be generalized by defining

m~r !:5 1
2~r2rex cos 2a!.

The eigenvalue analysis is similar to before and the energy-momentum tensor can be shown to be
of Type I, with the elements ofiT̄abi5diag(r,p1 ,p2,p3) being related to]rm and]r

2m exactly as
before, except that the generalizedm is now being used. The form of conditions~a!, ~b!, and~e! is
unchanged, as is the relationship between these conditions and the weak and strong energy con-
ditions. However, for the generalizedm, the other conditions listed in Sec. II must be modified:

~c8! uGm
n u,` at r50,

~d8! 0<sin2 a<1,
~f8! a~0!5limr→0~sina!5limr→`~sina!50,

with, as before, the understanding that the presence of the kink will forcea to pass throughp/2 so
that sina will attain its maximum value of 1. The discussion of the strong energy condition that
was presented at the end of Sec. II can be adapted to the present situation by noting that a
space–time with a well-defined kink number requires the metric to be continuous, and soex must
be a regular function ofr in the neighborhood ofr50. The fact thatex is regular atr50 implies
that, for small r , the ~generalized! m satisfiesm5O(r 11c) with c.0. One can now deduce,
following the argument of Sec. II, that the strong energy condition cannot be satisfied by the more
general spherically symmetric kink metrics discussed in this section.

VII. EXAMPLE

As an example, leta be the same as for the ‘‘Newtonian’’ kink of Sec. IV and letex be given
by

ex5
2~r 21a2!

a~a22a1!
.

The (r 21a2) in the numerator is chosen so that it will cancel with the similar term in the
denominator of cos 2a. The constant factors are chosen for later convenience, remembering also
thatex must be dimensionless. Conditions~a!, ~c8!, and~e! are violated. Conditions~b!, ~d8!, and
~f8! are satisfied.
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It follows from Sec. IV that

ex cos 2a5
2~r2a1!~r2a2!

a~a22a1!
,

wherea65a~2731/2! anda1,a,a2 . Horizons occur atr5a1 in the first patch and atr5a2 in
the second patch. The boundary between the two patches occurs atr5a.

E
0/a

r dr

ex cos 2a
5
1

2
aE

0/a

r S 1

r2a2
2

1

r2a1
Ddr5 1

2
aF lnUr2a2

r2a1
UG

0/a

r

.

Consider the first patch, 0<r<a;

E
0

r dr

ex cos 2a
5
1

2
aF lnS a22r

a12r D G
0

r

5
1

2
a lnS a1~a22r !

a2~a12r ! D .
From the equation forF given in Sec. VI, it follows thatF will be finite and nonzero ifg52a21.
This leads to

F5
a1
2 ~r2a2!2

a2~a22a1!
.

Recall thata5(a1a2)
1/2 and define

l:5S a2

a1
D 1/25a22a

a2a1
'3.732.

It follows that

U57l2e2 t̄ /aS a12r

a22r D , V56le t̄ /a, UV52l3S a12r

a22r D .
These formulas forF, U, V, andUV are valid for 0<r<a. It follows that, for the first patch,

r5a1l2S l1UV

l31UV
D

and

F5
a1l4~a22a1!

~l31UV!2
.

The first patch is illustrated in Fig. 1. RegionsI1 and II 1 are original regions. ~Following
González-Dı́az,14 a 6 subscript indicates that the region is in the first/second patch.! Within
I1øII 1 , r50 corresponds to the hyperbolaUV52l; r5a1 corresponds to the lineU50 ~for
V.0!, andr5a corresponds to the hyperbolaUV5l2. The extension is performed by allowingV
to be negative in the formulas above. This creates thenewregionsIII 1 andIV1 of Fig. 1. The line
r5a1 , t52` ~i.e.,V50! forms the boundary between the original and the new regions.

Now consider the second patch,a<r,`:
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E
a

r dr

ex cos 2a
5
1

2
aF lnS a22r

r2a1
D G

a

r

5
1

2
a lnS a22r

l~r2a1! D .
From the equation forF given in Sec. VI, it follows thatF will be finite and nonzero ifg52a21.
This leads to

F5
2la2~r2a1!2

a22a1
,

U57l21e2 t̄ /aS a22r

r2a1
D , V56l21e t̄ /a, UV52l22S a22r

r2a1
D ,

and

r5
a2~12UV!

12l2UV
, F5

2a2l~a22a1!

~12l2UV!2
.

FIG. 1. First patch.

FIG. 2. Second patch.
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The second patch is illustrated in Fig. 2. RegionsI2 andII 2 areoriginal regions. The liner5a2 ,
t52` ~i.e.,V50! forms the boundary betweenI2øII 2 and the unionIII 2øIV2 of the twonew
regions,III 2 andIV2 . The twoUV5l22 hyperbolas correspond tor5` and the twoUV52l21

hyperbolas correspond tor5a. The lower of the two latter hyperbolas~i.e., theUV52l21

hyperbola of regionI2! is to be joined with the correspondingr5a, UV5l2 hyperbola of region
II 1 in the upper part of Fig. 1. Physical time is measured upwards in Figs. 1 and 2, and an
example of a null geodesica1a2a3 is pictured starting fromr50, crossing fromI1 into II 1 and
then into I2 , and finally into the new regionIII 2 . The part of this geodesic that is within the
original regionI1øII 1øI2 is illustrated in rotational coordinates in Fig. 3.

Let S1 denote the upperUV5l2 hyperbola in regionII 1 of the first patch and letS2 denote
the lowerUV52l21 hyperbola in regionI2 of the second patch. In constructing the kink space–
time, one needs to show thatS1 and S2 can be smoothly joined. The rotational coordinates
t,r ,u,w spanII 1øI2 and it is easily shown that, in these coordinates,gmn and]lgmn are continu-
ous acrossS6. Thus the Lichnerowicz junction conditions15 are satisfied and so smooth joining is
possible. Although this implies that the Darmois junction conditions16–18 are also satisfied, it is
instructive to check these conditions in theUV-coordinate systems of the two patches. Following
Lake,18 let S denote a three-space within the~311!-dimensional space–time manifold and let the
coordinates intrinsic toS be denoted byj i , i51,2,3. Let the equation forS be given in terms of
the space–time coordinates byxm5xm(j i). Now define the intrinsic metric ofS ~Gauss’ first
fundamental form! by

g i j :5
]xm

]j i
]xn

]j j
gmn ,

FIG. 3. Kink in rotational coordinates.
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and the extrinsic curvature ofS ~Gauss’ second fundamental form! by

Ki j :5
]xm

]j i
]xn

]j j
“mnn ,

where the unit vectornl is normal toS and can be found by writing the equation forS in the form
f „xm(j i)…50 and putting

nl56Ugmn
] f

]xm

] f

]xnU21/2 ] f

]xl .

An alternative and more convenient formula forKi j is given by17,18

Ki j52nlS ]2xl

]j i]j j
1

]xm

]j i
]xn

]j j
Gmn

l D .
For the first patch, choose the intrinsic coordinates onS1 to be ~j1,j2,j3!5~V,u,w! and note

that, onS1, ]U/]V52l2V22. The first and second fundamental forms onS1 will be denoted by
gi j

1 and Ki j
1, respectively. For the second patch, choose the intrinsic coordinates onS2 to be

~j1,j2,j3!5~V,u,w! and note that, onS2, ]U/]V5l21V22. The first and second fundamental
forms onS2 will be denoted bygi j

2 and Ki j
2, respectively. The two Darmois conditions are

g i j
15g i j

2 andKi j
15Ki j

2, for i , j51,2,3. It is straightforward to show that

gVV
1 5gVV

2 5 1
3a~a22a1!V22,

guu
1 5guu

2 5a2, gww
1 5gww

2 5a2 sin2 u,

with the remaining components ofgi j
6 being zero. Thus the first Darmois condition is satisfied.

The components of the unit normal vector onS1 andS2 are, respectively,

nU
15~l2C!21V, nV

15~CV!21 nu
15nw

150,

nU
25lC21V, nV

252~CV!21, nu
25nw

250,

where

C521/2a21~a2
1/21a1

1/2!~a22a1!21/2.

Care has been taken to choose the signs ofnm
6 so thatnm

1 is directed outwards fromII 1 andnm
2 is

directed intoI2 . It can now be shown that

KVV
1 5KVV

2 522C21~l21!~l11!21V22,

Kuu
1 5Kuu

2 522C21,

with Kww
6 5sin2 uKuu

6 and the remaining components ofKi j
6 being zero. Thus the second Darmois

condition is satisfied.

VIII. SUMMARY

The problem of geodesic incompleteness was considered for two kinds of spherically sym-
metric kink space–times. Conditions that these space–times might satisfy were discussed in rela-
tion to the weak and strong energy conditions, and it was shown that the strong energy condition
could not be satisfied. Examples were introduced and, in each case, the constantg necessary to
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perform the Kruskal extension was computed. In the most complicated of these examples, a
judicious choice of the functionex enabled the transformation betweentr -coordinates andUV-
coordinates to be calculated explicitly and the Kruskal patches to be constructed. The junction
conditions were shown to hold across the hypersurface located at the join of the two patches.
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APPENDIX A: EINSTEIN TENSOR FOR SIMPLEST SPHERICALLY SYMMETRIC KINK

For the metric

ds252cos 2a dt222 sin 2a dt dr1cos 2a dr21r 2 dV2,

with a5a(r ), the nonzero Christoffel symbols are as follows:

G tt
t 5sin2 2a ] ra, G tr

t 5G tt
r 52sin 2a cos 2a ] ra,

G rr
t 5~11cos2 2a!] ra, G tr

r 52sin2 2a ] ra,

Guu
t 5r sin 2a, Gww

t 5r sin2 u sin 2a,

G rr
r 5sin 2a cos 2a ] ra, Guu

r 52r cos 2a,

G ru
u 5G rw

w 5r21, Gww
r 52r sin2 u cos 2a,

Gww
u 52sin u cosu, Guw

w 5cot u.

With D defined as

D:52r22] r~r sin
2 a!,

the nonzero components of the Ricci tensor are

Rtt52Rrr52~2r !21 cos 2a ] r~r
2D!,

Rtr52~2r !21 sin 2a ] r~r
2D!,

Ruu5r 2D, Rww5r 2 sin2 uD,

with the curvature scalar being given by

R52r22] r
2~r 2 sin2 a!52D1r21] r~r

2D!.

The nonzero mixed components of the Einstein tensor are

Gt
t5Gr

r52D, Gu
u5Gw

w52~2r !21] r~r
2n !.

Them(r ) of Finkelstein and McCollum2 is related ton by

D:52r22] rm,
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whence

Gt
t5Gr

r522r22] rm, Gu
u5Gw

w52r21] r
2m.

APPENDIX B: EINSTEIN TENSOR FOR SPHERICALLY SYMMETRIC KINK WITH x50

For the metric

ds252ex cos 2a dt222 sin 2a dt dr1e2x cos 2a dr21r 2 dV2,

with a5a(r ) andx5x(r ), the nonzero Christoffel symbols are as follows:

G tt
t 5ex sin 2a~sin 2a ] ra2 1

2 cos 2a ] rx!,

G tr
t 5cos 2a~2sin 2a] ra1 1

2 cos 2a ] rx!,

G tt
r 5e2x cos 2a~2sin 2a ] ra1 1

2 cos 2a ] rx!,

G rr
t 5e2x@~11cos2 2a!] ra1 1

2 sin 2a cos 2a] rx#,

G tr
r 5ex sin 2a~2sin 2a] ra1 1

2 cos 2a ] rx!,

Guu
t 5r sin 2a, Gww

t 5r sin2 u sin 2a,

G rr
r 5cos 2a~sin 2a ] ra2 1

2 cos 2a ] rx!,

Guu
r 52rex cos 2a, G ru

u 5G rw
w 5r21,

Gww
r 52rex sin2 u cos 2a, Gww

u 52sin u cosu,

Guw
w 5cot u.

DefineF by

F5r22] r~r2rex cos 2a!

~noting thatF5D wheneverx50!. The nonzero Ricci tensor components and the Ricci scalar are

Rtt52~2r !21ex cos 2a ] r~r
2F!,

Rtr52~2r !21 sin 2a ] r~r
2F!,

Rrr5~2r !21e2x cos 2a ] r~r
2F!,

Ruu5r 2F, Rww5r 2 sin2 uF, R52F1r21 ] r~r
2F!.

The nonzero mixed components of the Einstein tensor are

Gt
t5Gr

r52F, Gu
u5Gw

w52~2r !21] r~r
2F!.
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The possibility of assigning topological properties to gravisolitons has been re-
cently discussed by Belinsky, who considered perturbations of certain diagonal
metrics with two commuting Killing vectors. The discussion given by Belinsky
relies on the properties of the solitonic part of the projection of the four-
dimensional space–time metric onto the two-dimensional space spanned by the
Killing vectors. In that context, for single soliton perturbations, he finds two types
of, in principle, disjoint solutions, characterized respectively by the functionsmin
andmout, such that one can assign a ‘‘topological charge’’ to the corresponding
space–time. In this article we analyze this problem, studying in detail the single
soliton perturbation of a Bianchi-typeVI0 background, and prove that when we
consider the full four-dimensional metric, it is possible to construct locally smooth
extensions that connect sectors associated tomin to sectors associated tomout.
Therefore, the concept of ‘‘topological charge’’ for this type of gravisolitons needs
to be revised. Some ideas in this direction are discussed in this paper. We also show
that this behavior is not restricted to the particular case of a Bianchi-typeVI0
background, but holds in general for the whole set of diagonal background metrics
considered by Belinsky. An interesting side result is that the soliton perturbation
‘‘erases’’ the ‘‘cosmological’’ singularity that appears naturally in the background
metrics, and that they can be extended to regions not covered in the original charts.
In the particular case of a Bianchi-typeVI0 background, the resulting extended
metric is regular everywhere. Finally we present an extension of the soliton metric
to the background by matching these metrics through a null hypersurface. This
extension requires the presence of a ‘‘null dust’’ on the matching hypersurface, and
therefore the resulting space–time is not a vacuum everywhere. ©1996 American
Institute of Physics.@S0022-2488~96!01911-1#

I. INTRODUCTION

The possibility of assigning topological properties to gravisolitons has been recently discussed
by Belinsky,1 who considered perturbations of certain diagonal metrics with two commuting
Killing vectors. These are of the form

ds25 f 0~2dt21dz2!1aeu0~dx1!21ae2u0~dx2!2, ~1!

where f 0, a, andu0 are functions oft andz. If we sett5j2h andz5j1h, a andu0 satisfy the
equations

a ,jh50, ~2!

~auo,j! ,h1~auo,h! ,j50. ~3!

We may then write

0022-2488/96/37(11)/5652/13/$10.00
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a5a~j!1b~h!, ~4!

wherea andb are arbitrary functions, and define

b5a~j!2b~h! ~5!

so thata andb are linearly independent solutions of the wave equation~2!.
According to Ref. 1, the one-soliton metric on this background can be written in the form

ds25 f ~ t,z!~dz22dt2!1gabdx
adxb, ~6!

wherea,b51,2 ~x15x, x25y!, and we have

g5S g11 g12

g21 g22
D 5

1

2umucosh~r! S ~m2er1a2e2r!eu0

a22m2
a22m2

~a2er1m2e2r!e2u0D ~7!

and

f5c0f 0a
1/2umucosh~r!~a22m2!21. ~8!

We notice that any solution of the vacuum Einstein equations that can be written in the form
~6! is defined up to an arbitrary constant multiplying the coefficientf . On this account, and for
further convenience, we have explicitly included the real parameterc0 in ~8!. The sign of this
constant will determine the timelike or spacelike nature of the vectors]/]t and]/]z.

The functionm(t,z) is a solution of the quadratic equation

m212~b2w!m1a250 ~9!

in whichw is an arbitrary real constant and the functionr(t,z) can be found by quadratures from
the differential equations

r ,j5~a1m!~a2m!21u0,j ,

r ,h5~a2m!~a1m!21u0,h . ~10!

Following the notation of Ref. 1, the solutions of~9! can be written as

m in5~w2b!$12@12a2~w2b!22#1/2%,

mout5~w2b!$11@12a2~w2b!22#1/2%. ~11!

These definitions are motivated by the fact that ifm5min , then the values ofm are inside the
interval @2a, a#, while for m5mout the corresponding values are outside that interval. It is clear
from the previous expressions that the property, e.g.,m5min ~or m5mout!, is maintained in any
neighborhood where~7! and ~8! are well defined and regular, since the functionsf and r are
singular whenm56a.

The discussion given by Belinsky in Ref. 1 relies on the properties of the solitonic part of the
projection of the four-dimensional space–time metric onto the two-dimensional space spanned by
the Killing vectors. In that context, for single soliton perturbations, and in accordance with the
previous discussion, he finds two types of, in principle, disjoint solutions, characterized respec-
tively by having eitherm5min or m5mout, in such a way that one can assign a ‘‘topological
charge’’ to the corresponding space–time.

There are, however, some difficulties in this interpretation when we look at the complete set
of metric coefficients characterizing the solitonic solutions. As indicated in Ref. 1, we have
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m inmout5a2. ~12!

Then, if we callrin androut the functionsr, defined by~10!, associated respectively withmin and
mout, it is easy to check that for anyrin we may chooserout such thatrin52rout. However, as can
be seen by making the appropriate replacements in~7! and~8!, this means that if we callf in and
gab
in the metric coefficients in~7! and~8! corresponding to a solution withmin andrin , and f out and
gab
out those corresponding to a solution withmout androut, and the samec0, we have

g11
in5g11

out, g12
in52g12

out,

g22
in5g22

out, f in52 f out.

Since a change in sign ing12 corresponds to an isometry where we change the sign of either
x1 or x2, we conclude that a solution withmin andrin , and a certain choice ofc0, is indistinguish-
able from that corresponding tomout androut and the opposite sign ofc0. This discrete symmetry
bears a certain formal resemblance to that present for the kink and anti-kink solitons in the
Sine–Gordon equation, in the sense that one is formally indistinguishable from the other if we
include the changex→2x as a symmetry operation. We also remark that a change in sign inc0
corresponds to a change in the choice of which of]/]t or ]/]z is timelike.

In this article we analyze these properties in detail, studying the particular example of the
single soliton perturbation of a Bianchi-typeVI0 background. We show that when we consider the
full four-dimensional metric, it is possible to construct locally smooth extensions that connect
sectors associated tomin to sectors associated tomout. Furthermore, by some rather natural restric-
tions on the coordinate ranges, it is possible to give a simple and interesting geometrical interpre-
tation to the soliton metric, where we find sectors withm5min and sectors withm5mout. There-
fore, our results seem to indicate that the concept of ‘‘topological charge’’ for this type of
gravisolitons needs to be revised. Some ideas in this direction are discussed in this paper in Sec.
V, where the present case is compared to that of the Sine–Gordon equation.2

We also show that this behavior is not restricted to the particular case of a Bianchi-typeVI0
background, but holds likewise for the whole set of diagonal background metrics considered by
Belinsky. An interesting general property, obtained as a side result in our derivation, is that the
soliton perturbation ‘‘erases’’ the ‘‘cosmological’’ singularity that appears naturally in the back-
ground metrics. The proofs are given in two Appendices.

Finally we present an extension of the soliton metric to the background, by matching these
metrics through the null hypersurfacesm25a2. These extensions require the presence of a ‘‘null
dust’’ on the matching hypersurface, and therefore the resulting space–time is not a vacuum
everywhere.

II. THE METRIC

We consider a single real pole soliton perturbation of a seed metric that is a particular case of
the metrics of the form~1!, and corresponds to a vacuum Bianchi-typeVI0 metric.

3 This seed
metric can be written in the form

ds25 f 0~dz
22dt2!1te2kzdx21te22kzdy2, ~13!

where f 05exp(k2t2)/At and k.0.
In the case of~13!, a5t, we may takeb5z, and the functionsm andr can be written as
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me5v2z1e@~v2z!22t2#1/2, ~14!

r52ke@~v2z!22t2#1/2, ~15!

wherev is an arbitrary constant ande561. Comparing with Ref. 1, we havem115min and
m215mout. Without loss of generality, we may setv50 in what follows, on account of the
homogeneity of the background.

It is clear from these definitions that the coefficientsgi j depend only ont2. Replacing the
definitions ofm andr in ~8!, we have

f5c0 exp~k
2t2!umucosh~r!/~a22m2!. ~16!

Therefore, the metric depends only ont2, and any region witht restricted tot,0 is isometric to an
appropriate region wheret.0. Since there is, in principle, a singularity fort50, on account of the
vanishing ofa5det(g)1/2, we only need to considert.0 in our analysis of the geometrical
properties of the metric.

The single soliton metric resulting from~13! is a well-defined vacuum solution of Einstein’s
equations, only if we restrict toz2.t2, becausem is complex whenz2,t2, and the metric is no
longer real. Therefore, the regionsz.0 andz,0 correspond to separate charts in the (t,z) plane.
It is not difficult to show, however, that a single soliton metric defined for certain fixedc0 ande,
in the regionz,0, is isometric to a single soliton metric with the samec0, but the opposite sign
for e, defined in the regionz.0.4 Since we are considering both signs fore, we may, without loss
of generality, restrict our discussion to the sectorz.0, t.0, with z.t.

We now notice that, besides those already mentioned, there is also a singularity inf for
z25t2, since in that case we havea25m2, and the denominator vanishes. The consequences of the
presence of this type of singularity in solitonic solutions have been analyzed in detail in Ref. 5. In
the present case, the procedures developed in Ref. 5 to handle this problem may be applied as
follows: if we consider the general form of the metric~6!, together with the restrictionz.0, t.0,
which defines a sector whose boundaries are att50 corresponding to the vanishing of det(g), and
t5z, where the square root inm vanishes, we notice that we still have two possible choices fore,
and two signs forc0. With the given restrictions, the coefficientf may be written as

f5c0e
exp~k2t2!cosh~r!

2~z22t2!1/2
. ~17!

This implies that]/]t is timelike if c0e.0, corresponding to the choice made in Ref. 1, but
]/]t is spacelike whenc0e.0, which is also a solution, not considered in Ref. 1.

We take first the casec0e.0, and notice thatm can be written in the form

me52@~z2t !1/22e~z1t !1/2#2/2. ~18!

This suggests5 the introduction of new coordinatesu andv, given by

u51~z1t !1/2, v52~z2t !1/2. ~19!

The regionz.t.0 in thet,z plane is then mapped one-to-one to the regionu.2v.0 in the
u,v plane, and using~19! we find

me52~u1ev !2/2, ~20!

r522keuv, ~21!

a5t5~u22v2!2, ~22!
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z5~u21v2!/2. ~23!

The metric coefficientsgab in the coordinate system$u,v,x,y% are simply obtained by replac-
ing, in the corresponding functions, the appropriate functional dependencies inu and v @Eqs.
~20!–~23!#. Taking into account thate561, this gives the following expressions forgab :

g115
~u1v !2 exp„k~u2v !2…1~u2v !2 exp„k~u1v !2…

4 cosh~2kuv !
,

g1252
euv

cosh~2kuv !
, ~24!

g225
~u1v !2exp„2k~u2v !2…1~u2v !2 exp„2k~u1v !2…

4 cosh~2kuv !
.

Then, using the relation2dt21dz254uvdudv, after the coordinate transformation~19!, we
find

ds2522 f̃ ~u,v !dudv1g̃ab~u,v !dxadxb, ~25!

with g̃ab(u,v)5gab„t(u,v),z(u,v)… and

f̃5C 0 cosh~2kuv !exp„k2~u22v2!2/4…, ~26!

whereC 05c0e is a positive constant, on account of our choicec0e.0.
The results summarized in~24! and~26!, though rather surprising, because it is apparent that

almost all information one ~and, therefore, onmin andmout! has been lost, except for the sign of
the coefficientg12, are in agreement with the discussion in Sec. I. Moreover, as indicated, even
this sign has noa priori ~local! geometrical meaning, because it can be changed to the opposite by
a linear isometry inx1 and x2. The situation may be different, however, if we consider global
properties of the solitonic solutions.

We remark again that~25! is isometric to~6! in the regionu.2v.0. However, it is clear
from ~24! and~26! that the solitonic metric~25! is well defined and regular forv50 ~that is,z5t!
and foru.v.0. The regionu.v.0 in ~25! corresponds, therefore, to a locally smooth exten-
sion of ~6! through the hypersurfacez5t, where the coordinate system of~6! is singular.

To clarify the nature of this extension tov.0, we consider again the metric in (t,z) coordi-
nates, but now in the casec0e,0, where]/]t is spacelike. We define new coordinatesu andv by

u51~z1t !1/2, v5~z2t !1/2, ~27!

which now map one-to-one the regionz.t.0 in the t,z plane to the regionu.v.0 in theu,v
plane. If we carry out the same procedures as in the previous case, we find exactly the same forms
~24! and ~26! for the transformed metric coefficients~up to an isometry of the formx→2x!,
provided we define, in this case, the positive constantC 0 by C 052c0e. This metric is, in this
case, defined forv.0, but, on account of the previous discussion, it is trivially smoothly extended
to the regionv,0. Thus, if we consider the metric defined by~24! and ~26! in the whole region
u.0, 2u,v,u, we find that all the single soliton metrics derived from~13!, with a given value
of uc0u, and anye, can be isometrically mapped to either the regionv.0, or the regionv,0, of a
single (u,v) chart, where the metric takes the form~24! and ~26!, with C 05uc0u. In other words,
all forms of the single soliton metrics derived from~13! are contained in the extended (u,v) chart.

Going back to the question of the distinction betweenmin andmout, we notice that going from
v,0 to v.0 corresponds formally to the changev→2v. However, a change in sign in the
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coordinatev is equivalent to the changee→2e along with a change of sign inf . Therefore, the
original sectorz.t.0 of ane-type single soliton metric is smoothly extended to a similar sector,
z.t.0, of a2e-type single soliton metric, but with the opposite sign for thec0 parameter, that
is, to a sector where]/]t is spacelike and]/]z is timelike. Thus, the metric~25! smoothly matches
a region of space–time wherem5min with a region wherem5mout, a result that does not agree, in
principle, with that described in Ref. 1. We shall comment more on this below, but first we will
consider further extensions of~25!, and show the interesting fact that in these the solitonic per-
turbation ‘‘erases’’ the ‘‘cosmological singularity’’ present in~13! for t50.

As a final comment on this section, we remark that the possibility of smoothly extending the
soliton metric through the hypersurfacesm25a2 is not restricted to the Bianchi-typeVI0 metrics,
but, as shown in Appendix B, holds for general single soliton transformations of background
metrics of the form~1!.

III. GEOMETRICAL INTERPRETATION

The metric ~25! is regular everywhere in the regionu.uvu, but, since we have
det(g)1/25(u22v2)/2, it is singular foru56v. In this section we analyze the nature of these
singularities of the soliton solution and show that with appropriate choices and restrictions on the
coordinate systems, the metric can be made regular both foru5v andu52v.

The analysis is simplified if we introduce new coordinates,t andR, related tou andv by

t5u1v, R5u2v. ~28!

In terms of these coordinates, the metric coefficients take the form

2 f̃ ~u,v !dudv5F~t,R!~2dt21dR2!5 1
2C 0 cosh@k~R22t2!/2#exp~k2R2t2/4!~2dt21dR2!

~29!

and

g5
1

4 cosh@k~R22t2!/2# S t2 exp~kR2!1R2 exp~kt2! e~R22t2!

e~R22t2! t2 exp~2kR2!1R2 exp~2kt2!
D .
~30!

We notice that det(gab)5R2t2/4. That is, the singularities foru5v andu52v appear in this
coordinate system as singularities forR50 andt50. To analyze their structure, we consider the
behavior of the metric coefficients in the limitsR→0 andt→50.

We first notice that nearR50 we have

g.
1

4 cosh@kt2/2# S t21R2 exp~kt2! 2et2

2et2 t1R2 exp~2kt2!
D ~31!

while

2F~t,R!.C 0 cosh@kt2/2#, ~32!

These results suggest that we may ‘‘diagonalize’’ the metric~nearR50 and to orderR2! by
introducing a ‘‘rotation’’ in thex,y plane, defining new coordinatesh andF by the relations

x5F2eh, y5F1eh. ~33!

With this change of coordinates the Killing part of the metric becomes
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gFF5
R2 cosh~kt2!1t2cosh~kR2!1~R22t2!

2 cosh„k~R22t2!/2…
, ~34!

ghF5
R2 sinh~kt2!1t2 sinh~kR2!

2 cosh„k~R22t2!/2…
, ~35!

ghh5
R2 cosh~kt2!1t2 cosh~kR2!2~R22t2!

2 cosh„k~R22t2!/2…
, ~36!

and in the limitR→0, the leading orders of the metric coefficients are of the form

F5 1
2C 0 cosh~kt2/2!1O ~R2!, ~37!

gFF5cosh~kt2/2!R21O ~R4!, ~38!

gFh5O ~R2!, ~39!

ghh5
t2

cosh~kt2/2!
1O ~R2!. ~40!

However, then the singularity forR50 is removed if we chooseC052, restrictF andR to the
ranges 0<R,`, 0<F<2p, and identifyF50 andF52p, because in this case, fortÞ0, the
singularity alongR50 can be interpreted as the coordinate singularity along a regular symmetry
axis in cylindrical spatial coordinates.6

Similarly, taking as beforeC 052, neart50, the leading orders of the metric coefficients are
of the form

F5cosh~kR2/2!1O~t2!,

gFF5
R2

cosh~kR2/2!
1O~t2!,

~41!
gFh5O~t2!,

ghh5cosh~kR2/2!t21O~t4!.

This form of the metric coefficients implies that the singularity fort50 is of the Rindler type.
It can be removed by the following coordinate transformation:7

T5t cosh~h!, Z5t sinh~h!. ~42!

This transformation maps the regiont.0, 2`,h,1`, of the ~t,h! plane to the region
T>uZu of the (T,Z) plane. However, after replacing the new coordinates in the metric coefficients,
it is easy to check that the new metric is defined forall values ofT andZ, and the already defined
ranges forF andR, and can be, therefore, naturally extended to the regionsuTu,uZu.

We notice, however, that the extended regionsuTu,uZu do not correspond to any of the
regions defined by the ‘‘canonical’’ chart (t,z,x1,x2). This is easily seen if we transform the
metric to new coordinatest̃ and h̃ defined by

T5 t̃ sinh~ h̃ !, ~43!

Z5 t̃ cosh~ h̃ !. ~44!
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In this case the new metric coefficients corresponding to the regionsuTu,uZu have the same
formal expressions as~29! and ~30! but with the ~formal! replacementt→i t̃. Since the metric
depends ont only throught2, the net effect is that]/]t̃ is now spacelike. Moreover, the deter-
minant ofgab , namelya2, is now given by2t̃ 2R2, and becomes negative. Therefore, one of the
Killing vectors changes from spacelike to timelike when we cross the boundaryt250, and the
metric is actuallystationaryin the regionsuTu,uZu.

This dependence of the metric ont2 implies also that the solitonic metric is symmetric also
with respect toT, where the metric is regular forT50. ThereforeT50 corresponds to a moment
of time symmetry for the whole space–time.

One may shed more light on the nature of the symmetries of this space–time by considering
the Killing vector]/]h. In the chart~t,h,R,F!, its norm is given byghh . In the coordinate chart
(T,R,F,Z), in the overlap regionT2.Z2, we have

]

]h
5T

]

]Z
1Z

]

]T
, ~45!

but it is clear that the right-hand side of~45! provides a smooth, well-defined extension for]/]h
to the whole (T,R,F,Z) chart, which is also a Killing vector field. We shall retain the name]/]h
for this extended field. Its norm is given by

]

]h
•

]

]h
5
R2 sinh@k~T22Z2!#1~T22Z2!sinh~kR2!

2 cosh@k~R21Z22T2!/2#
~46!

and, therefore,]/]h is spacelike forT2.Z2, timelike whenT2,Z2, and null on the hypersurface
T25Z2.

In particular, in the regionT2.Z2, for fixed t, the trajectories of]/]h generate a spacelike
hypersurface that nowhere touches the null hypersurfacesT25Z2. This latter hypersurface, which
corresponds tot50 is, in turn, smoothly generated by the trajectories of theextended]/]h, but has
no image on the~t,h,R,F! chart, sincet50 is outside that chart.

It is interesting to look at the form of the fronts corresponding to eitheru50 or v50. From
the equalities

24euv5t22R25T22Z22R2, ~47!

we find that these null hypersurfaces correspond to~topological! spheres which are contracting for
T,0 and expanding forT.0. The constantT two-dimensional sections of these hypersurfaces
approach a spherical shape for smalluTu, but their form is distorted in general, on account of the
nonflat nature of the background where they propagate. However, suppose now that we look at the
functionsmin andmout in the regionu.2v.0, with u andv considered as functions ofT, R, and
Z. We have

m in52 1
2~T

22Z2!, ~48!

mout52 1
2R

2, ~49!

a25 1
4~T

22Z2!R2. ~50!

As we approach and cross the boundaryv50 from v,0 to v.0, we move from the region
T22Z2.R2, whereuminu,a to the regionT22Z2.R2, whereuminu.a, while the opposite is true
for umoutu. This confirms our assertion that the extension throughv50 connects a region associated
to min to one associated tomout. However, as we have already indicated, there seems to be no
natural isometrically invariant way of assigning eitherm to the extended soliton metric. We shall
comment more on this below.
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Summarizing results, we have found that the solitonic metrics can be extended to define a
space–time where the metric is regular everywhere. These space–times contain, in general, two
stationary regions separated by a nonstationary region, isometric to the original soliton metric. The
hypersurface where we have the transition from stationary to nonstationary corresponds to the
original ‘‘cosmological singularity,’’ which is, therefore, eliminated by the soliton transformation.
This behavior is not restricted to the Bianchi-typeVI0 background. In Appendix A we show that
this ‘‘cosmological singularity’’ appears, in general, for background metrics of the form~1!, and
that it is ‘‘cancelled’’ in the soliton transformation.

IV. MATCHING THE SOLITON SOLUTION TO THE BACKGROUND

We have already indicated that in the original chart$t,z,x,y% there is a singularity in the
coefficient f whenm→6a. However, since we also have in this caser→0, the remaining coef-
ficientsgab (a,b5x,y) have a finite limit which coincides with that of the corresponding coeffi-
cients in the background metric. It is then tempting to try to find an extension of the soliton metric
that matches it to the background through the hypersurfacesz56t, where we havem25a2.

Let us consider again the soliton metric in the sectorz.t.0. The coordinate singularity inf
can be eliminated if we apply the coordinate transformation~19!. The matching hypersurfacez5t
is then approached by taking the limitv50 from the regionv,0, and we have the following
expansions for the solitonic metric coefficients nearv50:

f̃5c0e exp~k2u4/4!1O ~v2!, ~51!

g115
u2

2
exp~ku2!1O ~v2!, ~52!

g125euv1O ~v2!, ~53!

g225
u2

2
exp~2ku2!1O ~v2!. ~54!

We may, on the other hand, introduce the coordinate change

u51~z1t !1/2, v52~z2t ! ~55!

in the regiont.z.0 of the background metric. The matching surface is then approached by
taking the limitv50 from positive values ofv. In this case, the expansions for the seed metric
coefficients forv.0, nearv50, are

f̃5& exp~k2u4/4!1& exp~k2u4/4!
12k2u4

2u2
v1O ~v2!, ~56!

g115
u22v
2

exp~ku2!1O ~v2!, ~57!

g1250, ~58!

g225
u22v
2

exp~2ku2!1O ~v2!. ~59!

Therefore, we conclude that, if we takec0e5& in ~51!, the solitonic metric and the back-
ground metric can be matched continuously through the null hypersurfacev50. We notice, how-
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ever, that although the metric coefficients are continuous inv50, their first derivatives have finite
jumps on this hypersurface. Since this is a null hypersurface, this type of behavior of the metric
can be interpreted in terms of the presence of a matter shell~null dust! or of an impulsive
gravitational wave, depending on the detailed structure of the singularity. This interpretation can
be inferred from the fact that the Ricci tensor may, in this case, contain terms of the form8 d(v) or
u(v). On the other hand, because of the continuity of the metric coefficients, there will be terms
containing ad(v) function only in those components of the Ricci tensor that contain a second
derivative of a metric coefficient with respect of thev coordinate. The only component of the
Ricci tensor satisfying this requirement isRvv , which, for a general metric of the form~7! and~8!,
can be written as

Rvv5
a ,vv

a
1terms with lower derivatives inv, ~60!

where the ‘‘terms with lower derivatives inv ’’ give actually a vanishing contribution, on account
of the fact that the metric is a vacuum solution forvÞ0.

To computeRvv , near the hypersurfacev50, we writea in the form

a5
u2

2
2
v2

2
„12u~v !…2

v
2

u~v !, ~61!

which leads to

Rvv5
d~v !

u2
, ~62!

while the other components of the Ricci tensor vanish. The corresponding energy-momentum
tensor can be interpreted as representing surface distribution of null dust located onv50 with a
positive energy densityr proportional tou22.

In order to have a more symmetric space–time, we may consider the solitonic solution~6! in
the region2z.t.0 and match it again to the background metric on the hypersurfacez52t. This
is easily achieved by a simple modification of the previous procedure. The result is that, for any
tÞ0, we have two solitonic regions, one forz.t and the other for2z.t, matched to the back-
ground metric through the hypersurfacesuzu5t. The matching requires the presence of surface
distributions of null dust, with nonvanishing positive energy density, confined to the hypersurfaces
uzu5t.

We notice that again the matching does not impose any condition on the functionsm, and it is
possible to have solitons of the same or opposite sign fore in the solitonic regions.

V. FINAL COMMENTS

The analysis carried out in this paper shows that the solitonic metrics considered by Belinsky
in Ref. 1 can be locally~smoothly! extended in such a way that in a single chart the functionm
satisfies, e.g.,umu,uau in one region, andumu.uau in another. The distinction betweenmin andmout
as indicating a topological characteristic of the solution does not appear then to be as clear as
inferred from the considerations given in Ref. 1.

This situation is somewhat worsened if we consider also the equivalence of the metrics under
isometric mappings, for, in this case, we have shown that a metric obtained using, say,min , is
isometric to a metric obtained starting withmout.

There is here, however, an important point that makes again contact with the topological
character of some classical solitons. Consider, for instance, the Sine–Gordon equation,
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]2f~x,t !

]t2
2

]2f~x,t !

]x2
1sin f~x,t !50. ~63!

As is well known, it is possible to construct soliton solutions of this equation, known askinks
andantikinks, which are different solutions as long as we do not consider as equivalent situations
related by the transformationx→2x, which leaves the equation invariant, but changes akink into
anantikink. In other words, even though~63! is invariant underx→2x, to be able to distinguish
between the two types of topological solitons, we must exclude thisdiscretetransformation9 for
there is nointrinsic property that we can use to distinguish between a kink and an antikink.
Therefore, if we consider that solutions of~63! related by coordinate transformations~discrete or
not! are equivalent, then the only apparent way of deducing the existence of two different solu-
tions is by introducing some additional structure that defines a preferential orientation on thex
axis. This structure could be the result of the presence of fields in the physical situation consid-
ered, or we could consider a solution of~63! with a kink and an antikink. In the latter case, we
could easily recognize the difference between the kink and antikink solutions in the asymptotic
regions of the multi-kink solution.

Similarly, the isometry that makes the solutions related tomin and tomout equivalent is a
discrete transformation that corresponds to change in the orientation of the space axis. If we
exclude these changes, we still havetwo types of soliton, and, although the reference tomin and to
mout is essentially lost, they in some sense resemble even more thekink andantikink solutions of
~63! because they are indistinguishable under certain discrete symmetry of their governing equa-
tion, but correspond to different solutions for a givenfixedorientation of the space axis. Again,
just as in the case of~63!, where, assuming thatf(x,t) represents some physical quantity, we
would not know if the situation corresponds to a kink or an antikink until we fix an orientation for
the x axis, we have in the gravisoliton case a sort of ‘‘rotation’’ or ‘‘twist’’ that allows us to
distinguish between a ‘‘gravisoliton’’ and an ‘‘antigravisoliton,’’ only after we have somehow
fixed the orientation of the space axis of our reference system, but there is no intrinsic feature that
we can use to distinguish one from the other.

Finally, it is also possible that, as in the case of the solutions of~63!, in the gravitational case
we could note the differences between the two types of gravisolitons analyzing multisoliton
solutions, along lines similar to those given in Ref. 1. This possibility will be considered else-
where.
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APPENDIX A: BEHAVIOR NEAR a50

In this Appendix we consider the behavior of a general metric of the form~1! neara50. We
assume thatgmna,n is timelike. It is clear from~1! and~4! that in any neighborhood here botha~j!
and b~h! and their first derivatives are nonvanishing we may choose coordinatest and z that
preserve the form~1! and wherea5t. We impose the~mild! restriction that there is such a
coordinate system in a neighborhood ofa50. Then, the vacuum Einstein equations for~1! can be
put in the form

]2u0~ t,z!

]z2
2

]2u0~ t,z!

]t2
2
1

t

]u0~ t,z!

]t
50 ~A1!

and
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1

f 0

] f 0
]z

5t
]u0
]t

]u0
]z

, ~A2!

1

f 0

] f 0
]t

52
1

2t
1

t

2 S ]u0
]t D 21 t

2 S ]u0
]z D 2. ~A3!

It is easily checked that~A1! is precisely the integrability condition for the system~A2! and
~A3!. We therefore assume thatu0(t,z) is regular neart50. Then we may write

u0~ t,z!5u00~z!1u01~z!t1u02~z!t21u03~z!t31u04~z!t41••• . ~A4!

Replacing in~A1! we find that the coefficients of odd powers oft should be zero. The function
u00(z) is arbitrary, and the other coefficients are determined onceu00 is given. In particular we
have

u02~z!5
1

4

d2u00
dz2

; u04~z!5
1

64

d4u00
dz4

; ••• . ~A5!

We notice that the simplest choice foru00, namelyu0052kz, corresponds to the Bianchi-typeVI0
background.

Using this result in~A2! and ~A3!, we find the behavior off 0 neart50. This is given by

ln f 05 ln C02
1

2
ln t1

1

4
t2S du00dz D 21O ~ t4!. ~A6!

Therefore, for a generalu0(t,z), regular neart50, the functionf 0 is the productt
21/2 times a

regular part. In other words, in all these metricsf 0 contains a factora
21/2, which can be associated

to a ‘‘cosmological’’ singularity. This factor is precisely cancelled in the single soliton transfor-
mation, which, therefore, has the effect of ‘‘erasing’’ the singularity.

APPENDIX B: BEHAVIOR NEAR zmz5za z

In this Appendix we consider the behavior of a general metric of the form~1! nearumu5uau.
We assume thatgmna,n is timelike. In particular, we assume thatda/dj anddb/dh are nonvan-
ishing in a neighborhood of the region whereumu5uau. We may then define new coordinatesu and
v, given by

u5@2a~j!2w#1/2, v52@22b~h!2w#1/2. ~B1!

In these new coordinates we have

a5 1
2~u

22v2!, m52 1
2~u1ev !2, b5 1

2~u
22v2!1w, ~B2!

and the conditionumu5uau is satisfied for eitheru50 or v50.
It is easy to check that the equations forr can be written in the form

r ,u52e
v
u
u0,u , r ,v52e

u

v
u0,v . ~B3!

The integrability condition forr is

2au0,uv1a ,uu0,v1a ,vu0,u50, ~B4!

which is equivalent to~3!, in u,v coordinates.
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We shall analyze the behavior of the metric coefficients nearv50. We assume regularity ofu0
in the sense that it admits an expansion of the form

u0~u,v !5uo0~u!1uo1~u!v1uo2~u!v21uo3~u!v31••• . ~B5!

Then, ~B4! puts no restriction onuo0(u), but uo1 must be of the formuo15C/u, whereC is a
constant, while the other terms should satisfy equations such as

2u2
duo2
du

12uuo25
duo0
du

, ~B6!

which do not mix coefficients of even and odd powers ofv. If we replace~B5! in ~B3!, we find
that r should be of the form

r~u,v !52euuo1 ln v22euuo2v1••• . ~B7!

If we further require regularity ofu0 nearu50, we should haveuo150, and all coefficients of odd
powers ofv should also vanish. The coefficients of even powers ofv can, on the other hand, be
chosen such that the expansion~B5! is regular and nontrivial nearu50. With this restriction we
have thatr vanishes at least asv for v50. A simple example is, of course, the Bianchi-typeVI0
case analyzed in this paper, wherer522keuv.

Going back to the general form of the metric, if, as required by the regularity conditions on
u0, r50 whenv50, that is, whenm25a2, thengab is regular in a neighborhood ofv50, and
coincides with the background metric forv50. However, the full metric is not regular because
there is a vanishing denominator and, therefore, a singularity inf . It is easy to show that singu-
larity is related to coordinate choice and can be eliminated by an adequate change of coordinates.
Namely, if we consideru andv as new coordinates, it is easy to verify that

f ~ t,z!~dz22dt2!5c0f 0a
1/2umu

cosh~r!

~a22m2!
djdh

5&ec0f 0~u
22v2!1/2 cosh~r!S dbdh

da

dj D 21

dudv,

and, clearly, the last expression is regular forv50, and the singularity has been cancelled.
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single soliton metric to the background, are contained in one of authors~AG! doctoral thesis,~Universidad Nacional de
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want to avoid a ‘‘conical singularity’’ forR50. These ‘‘conical singularities’’ have been used to represent ‘‘thin cosmic
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complex ‘‘cut and paste’’ type of singularities that would result from different identifications in the range ofF.
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Initial and final singularities in the closed Friedman world model are typical ex-
amples ofmalicious singularities. They form the single point of Schmidt’s
b-boundary of this model and are not Hausdorff separated from the rest of space–
time. The method of noncommutative geometry, developed by A. Connes and his
co-workers, is applied to this case. We rephrase Schmidt’s construction in terms of
the groupoidḠ of orthonormal frames over space–time and carry out the ‘‘desin-
gularization’’ process. We define the line bundlet :V1/2→Ḡ overḠ and change the
space of its cross sections into an involutive algebra. This algebra is represented in
the space of operators on a Hilbert space and, with the norm inherited from these
operators, it becomes aC* -algebra. The initial and final singularities of the closed
Friedman model are given by two distinct representations of thisC* -algebra in the
space of operators acting on the Hilbert spaceL2„O~3,1!…. © 1996 American
Institute of Physics.@S0022-2488~96!01009-2#

I. INTRODUCTION

The problem of correctly defining singularities which appear in relativistic cosmology and
relativistic astrophysics has been recently less investigated than it deserves. This is probably so
because of the prevailing opinion that in the quantum gravity theory singularities will be irrevo-
cably eliminated. However, this is not at all certain,1 and—as we shall argue in the present
paper—it may turn out that the study of classical singularities could suggest some indications
concerning the looked for quantum gravity theory. Besides, the nature of classical singularities is
interesting from the mathematical point of view and certainly deserves further study.

In the famous theorems of Hawking and Penrose on the existence of singularities, the latter
were effectively identified with the geodesic incompleteness of space–time.2 It was Schmidt3 who
proposed a very elegant construction of a singular boundary of space–time. Singularities were
understood by him as points of this boundary, calledb-boundaryof space–time, and identified not
only with the endpoints of~timelike and null! incomplete geodesics but also with the endpoints~in
the generalized affine parameter! of timelike curves of bounded acceleration. This definition of
singularities was soon accepted as the best available one within the framework of relativistic
theories of gravitation. However, its popularity suddenly ended when Bosshard4 and Johnson5

demonstrated that in the closed Friedman world model the initial and final singularities formed the
single point of theb-boundary, and thatb-boundaries of the closed Friedman model and of the
Schwarzschild solution are not Hausdorff separated from the rest of space–time. Some attempts to
modify Schmidt’s construction were lacking either the required generality or the original
elegance.6 In practice, Schmidt’s construction was soon eliminated from current research.

We have returned to Schmidt’s definition of singularities by looking at it from a slightly

a!Correspondence address: ul. Powstan´ców Warszawy 13/94, 33-110 Tarno´w, Poland. Electronic mail:
atheller@cyf-kr.edu.pl. On leave from Vatican Observatory, V-12000 Vatican City State.
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different perspective. In our previous works7 we have demonstrated that all troubles connected
with the b-boundary construction have their origin in the fact that it is carried out in the bad
category, namely in the category of smooth manifolds, whereas space–times with their singulari-
ties, from their very nature, go beyond this category. We have also shown that one can effectively
work with the b-completed closed Friedman model~i.e., with its space–time together with its
b-boundary! within the category of structured spaces. The structured space concept is based on the
idea of ‘‘algebraization’’ of geometry, and it was Koszul who, in his classical paper,8 gave a
dictionary for translating geometry into algebra. By astructured spacewe mean the pair (M ,C),
whereM is a topological space andC the sheaf of algebras of real functions onM such that, for
any open setUPM and any functionsf 1 ,...,f nPC(U), vPC`~R!, one hasv+( f 1 ,...,f n)PC(U).
The sheafC is called thedifferential structureonM . The theory of structured spaces, developed
in Ref. 9, is a strong generalization of the theory of smooth manifolds~any function belonging to
the differential structure isex definitioneassumed to be smooth!. By using the theory of structured
spaces one can safely work with theb-completed closed FriedmanM space–time as long as one
deals with local cross sections ofC(U) and local vector fields onU,M . However, one must be
cautious since there exists the unique differential structure which can be prolonged to the
b-completed space–time, namely the one consisting only of constant functions. If one ‘‘touches’’
either of the two singularities~i.e., if one prolongs the differential structure to the singularity!,
pathologies immediately occur: the differential structure consists only of constant functions, there
exist only zero derivations of such functions, i.e., zero vector fields, and consequently the ‘‘bundle
length’’ of a curve joining the singularity with any point in space–time is zero, and everything
shrinks to the single point.

To deal with similar ‘‘pathological situations,’’ Alain Connes10 developed his noncommuta-
tive approach to geometry. This approach is a further generalization as compared with our struc-
tured space theory. Functional algebras appearing in the differential structure of structured spaces,
being functional, are always commutative. In Connes’ approach, the entire information about a
given geometry is encoded in a non-necessarily commutative algebra. If this algebra happens to be
commutative, it is essentially equivalent to the complex counterpart of our differential structure.
Noncommutative algebras are indispensable in dealing with strongly singular situations. The aim
of the present paper is to analyze space–times withb-boundaries, and in particularb-completed
space–time of the closed Friedman model, within the framework of Connes’ noncommutative
geometry. We strictly follow Connes method; our only modification consists in replacing the
ordinary concept of smoothness~in the manifold category! by its generalized counterpart in the
theory of differential spaces.

In Sec. II we give a short account of Schmidt’s construction and rephrase it in terms of the
groupoid theory. In Sec. III we discuss the groupoid counterpart of singular fibers. By constructing
the suitable line bundle on this groupoid we perform what could be called thedesingularization
process. Cross sections of this line bundle with suitably defined convolution~as ‘‘multiplication’’
of cross sections! and involution form a~noncommutative! involutive algebra. This algebra can be
represented in the space of operators on a Hilbert space and, with the norm inherited from these
operators, it becomes aC* -algebra. With the help of this algebra we gain the insight into the
structure of the initial and final singularities in the Friedman model. All this is presented in Sec.
IV. Section V contains a discussion of the obtained results. Both initial and final singularities are
given in terms of the algebra of operators acting on the Hilbert spaceL2„O~3,1!… of square
integrable functions defined on the Lorentz group@let us notice that by replacingO~3,1! by its
double covering we are led to the spinorial formalism#. It might well be that classical singularities
are not entirely classical; they somehow seem to know that in the extreme conditions of shrinking
quantum structures must be used to model physical processes.

II. FRAME BUNDLE OVER SPACE–TIME AS A GROUPOID

Schmidt’s construction of theb-boundary of space–time can be summarized in the following
way ~details can be found in Ref. 3!. LetM be a space–time carrying the Lorentz metric, andOM
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~the connected component of! the orthonormal frame bundle overM , p :OM→M . The Levi–
Civita connection inM determines the family of uniformly equivalent Riemannian~positive
definite! metrics onOM. We select one of them and notice that further construction does not
depend of the particular choice. With the help of this metric we determine the distance function on
OM and construct, in the usual way, the Cauchy completionOM of OM. The Lorentz group acts
on OM to the right,OM3O(3,1)→OM, and since this action maps Cauchy sequences into
Cauchy sequences, we can naturally extend the action ofO~3,1! into OM, i.e., OM
3 O(3,1)→OM. The quotient spaceM̄ : 5 OM/O(3,1) is called the b-completionof space–time
M . HereM turns out to be open and dense inM̄ , and]bM5M̄ \M is said to be the b-boundaryof
M . ~The above construction in the category of structured spaces is presented in Refs. 7 and 9.!

To treatM as a noncommutative space we shall apply Connes’ method to our case and regard
the fiber bundle of orthonormal frames overM as a groupoid. This could look like a slight change
of perspective, but it has important consequences. Our construction applies to any space–time
with its b-boundary, but in what follows we can think about theb-completed space–time of the
closed Friedman world model, and regard it as a typical case to which noncommutative methods
have to be applied.

For the groupoid definition, see Ref. 10 or 11; here we shall describe the groupoidḠ
5 OMvO(3,1) called the groupoid of orthonormal frames overM̄ . Elements ofḠ are pairs of
orthonormal frames. Therefore, an elementg5(p,pg) of Ḡ ~one can also writeg5(p,g)! can be
interpreted as an arrow beginning at the orthonormal framep P OM and ending at the framepg
P OM, or equivalently as the elementg of the groupO~3,1! transformingp into pg. Two arrows
(p,g1) and (q,g2) can be composed ifpg15q. The set of all composable arrows is denoted by
G~2!. Elements of the form (p,pe), wheree is the unit ofO~3,1!, should be regarded as loops
beginning and ending atp. The set of all such loops is denoted byG~0!. This interpretation is
obvious for pPOM. It can also be extended to ‘‘singular fibers’’OM\OM with a suitable
understanding of ‘‘singular frames,’’ as it is discussed below.

It should be noticed that the groupoidḠ of orthonormal frames overM̄ is smooth as a
structured space. Indeed, the differential structure onOM can be pulled back from the Euclidean
space in which it is embedded, andO~3,1! itself carries the smooth manifold structure. In factḠ
is aD0 structured space of constant dimension~for details concerning smooth structured spaces
see Ref. 9!. We thus have the following.

Proposition 2.1:The semidirect productḠ 5 OMvO(3,1), whereOM is the Cauchy com-
pleted total space of the fiber bundle of orthonormal frames over theb-completionM̄ of space–
timeM , is a groupoid. h

The above construction can locally be presented in the following way. Letw be a map of an
atlas on the manifoldM ~for the time being we consider space–timeM without itsb-boundary!.
To every pointpPOM, i.e., to every frame atxPM , there corresponds its matrix representation
Ap,w in the local mapw. The matrix representation of the pointpgPp21(x) is the matrixApg,w ,
and consequently the arrowg5(p,pg) can be represented by the matrixAg,w5Ap,w1 iApg,w .

Our strategy in the following will be to extend this representation to singular frames and then
to define a suitable~complex! C* -algebra which would encode the geometric information about
space–time with itsb-boundary.

III. THE STRUCTURE OF SINGULAR FIBERS

Let us consider a singular fiberḠx0
(2),Ḡ(2) wherex0P]bM :5M̄ \M . The pairs belonging to

Ḡx0
(2) are no longer the pairs of orthonormal frames, but rather the pairs of limits of Cauchy

sequences of orthonormal frames. Letp̄5limn→` pn and p̄g5limn→` png, gPO~3,1!, wherepn
andpng are Cauchy sequences inOM. From Schmidt’s construction3 it follows that these limits
always exist.
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To see how singularities of this kind can be analyzed, let us consider the most pathological
situation that can arise. Let us suppose that the singular fiberp21~x0!, wherex0P]bM , degener-
ates to a single point. In Refs. 7 and 9 such singularities were calledmalicious singularities. They
appear in the closed Friedman model and in the Schwarzschild solution~Refs. 4 and 5!. We
immediately have the following.

Lemma 3.1:The following conditions are equivalent:

~i! x0P]bM is a malicious singularity,
~ii ! Ḡx0

(2)5$(p,e)%5Ḡx0
(0) ,

~iii ! the isotropy groupGp of the pointpPp21(x0) coincides with the groupO~3,1!. j

Proof: To see the equivalence of~i! and~ii ! it is enough to notice that ifp5p21(x0), then, for
everygPO~3,1!, one haspg5p, and the equivalence of~i! and~iii ! follows from the fact thatp
is a fixed point of the action ofO~3,1!. h

The following sets will be useful in the sequel

Gp5$gPḠ:r ~g!5p%5$~p,g!:gPO~3,1!%,

Gq5$gPḠ:s~g!5q%5$~qg21,q!:gPO~3,1!%.

The first of these sets consists of all arrows that begin atp P OM, the second of all arrows that end
atqPOM.

Lemma 3.2:The setsGp andGq can be given the structure of the group manifoldO~3,1!.j
Proof: The sets Gp and Gp can be written in the form Gp5$p%3O(3,1),

Gq5$qg21%3O(3,1) from which the bijection between these sets and the setO~3,1! is evident.
With the help of this bijection the manifold structure can be carried out fromO~3,1! to Gp and
Gq . h

It should be noticed that this structure of the setsGp andGq is preserved also in the malicious
singularity.

Let w:M→Rn be a map belonging to an atlas onM andDw its domain. The mapw̃ onOM is
said to be associated to the map w if it is of the form w̃:p21(Dw)→Rn3Rd, where
d5dimO~3,1!. The mapw is said to beaccessible~to the singularity! if cl D w̃ù]cOM Þ B,
where]cOM is the Cauchy boundary ofOM. From Schmidt’s construction3 it follows that for
everyx0P]bM there exists an accessible map~i.e., a map from the domain of whichx0 can be
reached!. It should be noticed that the set clD w̃ is O~3,1!-saturated, i.e.,
cl D w̃ùp21(x0).p21(x0), x0P ]bM .

If p is an element of a singular fiber~not necessarily over the malicious singularity!, from the
Schmidt’s construction one hasp5 limn→` pn, wherepn P p21(Dw), w being an accessible map,
and correspondinglygn5(pn,g). This gives us the local matrix representation of the singular fiber

Ag,w5 lim
n→`

Agn,p
,

where

Agn,w
5Apn,w

1 iApng,w
.

The convergence of matrices should be understood in the following way. The obvious bijec-
tion Ap,w°p can be treated as a homeomorphism with the help of which we can pull back the
Riemannian metric fromOM to the space of matrices. The ‘‘limit matrices’’Ag,w should be
understood as equivalence classes of the corresponding matrix sequences. Let us notice that if
x0P]bM is a malicious singularity, the singular fiberp21(x0) has the local matrix representation
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Ap,w 1 iAp,w, wherew is an accessible map onM . This trivially follows from the fact that the
singular fiber consists of the one ‘‘limit frame’’p which is represented by a loop.

IV. DESINGULARIZATION OF SPACE–TIME

Now—strictly following Connes’s method—we construct the line bundlet :V1/2→Ḡ over the
groupoidḠ whereV1/2 5 øgPḠVg

1/2 andVg
1/2 is of the form

Vg
1/25$r:`kTg~Gp! ^ `kTg~Gq!→C:

r~ln!5ulu1/2r~n!, lPR, nP`kTg~Gp! ^ `kTg~Gq!%

for g5~p,q!5~p,pg!. Herek5dim(Gp)5dim(Gq) and, forG
p 5 Gq5O~3,1!, k56. Forg5~p,pg!,

one hasTg„O~3,1!….o~3,1!, whereo~3,1! is the Lie algebra of the Lorentz groupO~3,1!. It can be
easily seen that the line bundlet : V1/2→Ḡ is trivial. It should be emphasized that the trivial
structure of this line bundle is preserved at singularities~even malicious ones!. This is the first
important step in the process of ‘‘desingularization of space–time.’’

Let Cc
`(Ḡ,V1/2) denote the space of smooth sections with compact support of the bundle

t : V1/2→Ḡ. In the space of sectionsCc
`(Ḡ,V1/2) we define theconvolution in the following

way:

~s* t !~g!5E
Gp

s~g1!t~g2!,

where s,tPCc
`(Ḡ,V1/2), and g5~p,pg!, g5g1 + g2. The integral is well defined since

s(g1)t(g2) is a one-density and it does not depend on the particular compositiong5g1 + g2.
For eachs P Cc

`(Ḡ,V1/2) we also define theinvolution s°s* by s* ~g!5 s(g21).
Now we can formulate our final result:
Theorem 4.1:Let Ḡ5 OMvO~3,1! be the groupoid of orthonormal frames over space–time

M̄ with its b-boundary.
~1! With convolution and involution defined aboveCc

`(Ḡ,V1/2) is an involutive algebra.
~2! For eachqP G(0) the expression

„pq~s!j…g5E
Gq

s~g1!j~g1
21g!,

g P Gq, j P L2(Gq), sP Cc
`(Ḡ,V1/2), defines an involutive~nongenerate! representation

pq:Cc
`~Ḡ,V1/2!→EndL2~Gq!

of Cc
`(Ḡ,V1/2) in the Hilbert spaceL2(Gq) of the square integrable functions on the manifold

Gq.
~3! The completion ofCc

`(Ḡ,V1/2) with respect to the norm

isi5supqPG~0!ipq~s!i

is aC* -algebra; it will be denoted byC* (OM). j

Proof is the repetition of the proof given by Connes12 with minor changes following from the
fact thatḠ is smooth in the sense of structured spaces. h
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Every representationpq, q P OM, can be prolonged to the representation ofC* (OM), and
part ~2! of theorem 4.1 remains valid also forC* (OM). TheC* -algebraC* (OM) is a noncom-
mutative counterpart of the algebra of functions on a given space, and it conveys all relevant
information about space–time with singularities.

V. INTERPRETATION

How is the noncommutativeC* -algebraC* (OM) related to the geometry of space–timeM̄
5 Mø]bM with its b-boundary? In noncommutative geometry there is no concept of point, but in
some respects it could be replaced by the concept of state. IfA is aC* -algebra,p a representation
of A in the Hilbert spaceH, andjPH, thena°„p ~a!j,j… is a positive form onA. If addi-
tionally this positive form is suitably normed, it is called astate. We have, therefore, a correspon-
dence between~equivalence classes of! representations ofA in a Hilbert space and states ofA
~the state is pure if and only if the corresponding representation is nonzero and irreducible!.13 In
the present work we have shown that the initial and final singularities of the closed Friedman
world model, understood as theb-boundary points, are distinct structures given by two represen-
tations

ppi
:C* ~OM!→EndL2~Gpi

!,

i51,2, wherep1 is the single ‘‘limit frame’’ in the singular fiber over the initial singularity, andp2
is the single ‘‘limit frame’’ in the singular fiber over the final singularity. Therefore, although the
initial and final singularities, in the sense of Schmidt, cannot be regarded as points~or regions! in
space–time~even if space–time is modelled by a structured space!, they can be treated as the
states of the universe.

Of course, we can apply the above-presented method to space–timeM with no singularities.
In such a case, we obtain a noncommutativeC* -algebraC* (OM); being noncummutative this
algebra loses information about individual points and their neighborhoods, but instead it informs
us about the states of the closed Friedman universe. As should be expected, such states coincide
with space sectionst5const of the Friedman model@indeed, because of the maximal symmetry of
such space sections, it is easy to show that all corresponding representations of the algebra
C* (OM) are equivalent#. Consequently, if we look at the history of the closed Friedman universe
as a sequence of states, the initial and final singularities are full rights elements of this history.

TheC* -algebraC* (OM) must be strongly related to the~commutative! algebraF (M ) of
complex functions on the manifoldM . Mathematically speakingC* (OM) and F (M ) are
strongly Morita equivalent. The concept of strong Morita equivalence plays the role of the iso-
morphism in the theory ofC* -algebras. In particular, two strongly Morita equivalentC* -algebras
have the same space of equivalence classes of irreducible representations.

Since the closed Friedman space–timeM is a solution to Einstein field equations, the algebra
C* (OM) contains full information about this solution. Using our former terminology14 we can
say thatC* (OM) is a noncommutative Einstein algebra of the closed Friedman world model.
Consequently,C* (OM) is the extension of this Einstein algebra to theb-completed closed Fried-
man space–time, and as such it can be regarded as a generalization of Einstein equations to the
space–time with singularities. In this sense, the noncommutative approach to general relativity
leads to its essential generalization.

Let us notice that the pathological behavior of the closed Friedman space–time with
b-boundary is produced by forming the quotientM̄ 5 OM/O(3,1). In the desingularization pro-
cess, described in the preceding sections, this quotient has nowhere been used. Moreover, based on
the C* -algebraC* (OM) one can develop the measure theory, theK-theory, differential and
integral calculi, as it has been done by Connes himself10,15 and his co-workers.16 In this sense,
singularities, even the malicious ones, are no longer geometrically nontractable entities.
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The method of dealing with singularities presented in this paper can be applied to any singu-
larities understood asb-boundary points but, of course, it would be rather meaningless to apply
this method to milder types of singularities which could be analyzed with the help of simpler and
more standard strategies. On the other hand, the present method seems to be the only possible one
as far as the malicious singularities are concerned. Singularities of this type, as proved in Refs. 7
and 9, always lead to typically nonlocal~non-Hausdorff! situations.

It is a striking fact that classical singularities are represented by typically quantum object
EndL2(Gp), the algebra of operators on the Hilbert space of square integrable functions. More-
over, if we replace the Lorentz groupO~3,1! by its double coveringSL~2,C! we are automatically
led to the spinor formalism. We should also notice that in the construction of the object
EndL2(Gp) typically relativistic concepts~Lorentz frame bundle, Lorentz metric, connection,
etc.! are involved and they nicely interact with typically quantum concepts~Hilbert space with its
scalar product, bounded operators, etc.!. We would like to emphasize that this interaction of
relativistic and quantum structures was not put into our model by hand~it was not even intended!,
but it came to surface quite unexpectedly. It seems as if classical singularities knew something
about quantum phenomena acting in the beginning and in the end of the closed Friedman universe.

It is tempting to speculate that beneath the Planck threshold smooth~commutative! geometry
breaks down and essentially global, perhaps strongly singular, noncommutative geometry~with no
points and no time instances! takes over. The space of states of such a quantum noncommutative
universe~the counterpart of superspace in quantum canonical theory! would be the space of states
of the correspondingC* -algebraA, and ~Hermitian! elements ofA could be regarded as the
quantum gravity counterpart of observables in the usual quantum theory. Then one could try to
proceed in analogy with the standard quantization methods.
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A distributional method to solve the Einstein’s field equations for thin shells is
formulated. The familiar field equations and jump conditions of Darmois-Israel
formalism are derived. A careful analysis of the Bianchi identities shows that, for
cases under consideration, they make sense as distributions and lead to jump con-
ditions of Darmois-Israel formalism. ©1996 American Institute of Physics.
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I. INTRODUCTION

The study of hypersurfaces of discontinuity in general relativity began in the early twenties.1–3

But it has been revived through new questions raised in cosmology and black-hole physics.
Domain walls separating two coexisting different phases in inflationary scenarios,4 bubble
dynamics,5 wormholes,6 signature changes,7 and interior structures of black-holes8 are just some
of the recent applications of the thin shell formalism of general relativity.

The traditional and most widely used method of handling such problems is that of Darmois-
Israel~DI!, based on the Gauss-Kodazzi decomposition of space-time.9,10 It expresses the surface
properties in terms of the jump of extrinsic curvature across the layer directly as functions of the
layer’s intrinsic coordinates. Thus the four-dimensional coordinates may be chosen freely and
independently, adapted to the symmetry requirements, on the two sides of the layer. This is the
very practical advantage of that method which has found its final formulation in the outstanding
paper of Israel.9 The geometric conditions for the layer to be considered as a boundary of two
different manifolds glued together at this boundary were first formulated by Darmois.3 Those are
the minimum conditions which had been assumed by Israel. There are other conditions formulated
by Lichnerowicz,11,12which means basically continuous coordinates across the layer, and seems to
be necessary for using distributional tensor calculus. It is interesting to note that Sen,2 in this
relatively unknown paper, used the same conditions, without any further discussion, derived the
reduced Einstein’s equations for the general case, and solved it for the spheric symmetric 211
dimensional mass distribution. The O’Brien-Synge conditions13,14are in most cases equivalent to
the Lichnerowicz ones, so we are not going to consider them here.15 Because of the restrictive
choice of coordinates the Lichnerowicz conditions are not usually used. But there are cases where
the distributional method, and therefore the Lichnerowicz conditions, are more suitable for calcu-
lation. The case of a cylindrically symmetric thin layer, for example, has been solved by the
distributional method using these conditions.16

There have been attempts to formulate the problem of a thin layer in general relativity using
distributional methods, familiar in other part of physics. In fact many physical systems, classical
and relativistic, undergo very rapid transitions of their state of motion. Think of shock waves in
hydrodynamics. Although the state of the system need not be described by discontinuous functions
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0022-2488/96/37(11)/5672/12/$10.00
5672 J. Math. Phys. 37 (11), November 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



of space and time, or by functions having discontinuity in their first or second derivatives, a
mathematical description of the system which is based on the distribution valued states of the
system gives an accurate picture of some important aspects of the physical problem. Usually such
a description is more amenable to treatment than the treatment which contains a smooth descrip-
tion of the physical state. This has not only been used in classical hydrodynamics, but also has
been applied in the relativistic case. Lichnerowicz11,12has given a discussion of hydrodynamic and
gravitational shock wave problems by using curvature tensors for space-time which contain a
Dirac d function with support on a submanifold. Y. Choquet-Bruhat has used similar methods to
treat high-frequency gravitational waves.17

Rapid changes of physical quantities occur also in electromagnetism. One might have, for
example, some charge distribution which is confined to a one- or two-dimensional region of space
that is small compared with characteristic distances of the problem. This distribution of charge can
be replaced by a concentrated source, and the problem can be formulated in the sense of distri-
butions, but not of smooth functions. There is a natural mathematical framework in electromag-
netism. Recall that linear operations, including differentiations, make sense when applied to dis-
tributions. Hence, Maxwell’s equations, by virtue of their linearity in both fields and sources,
make sense as equations on these distributions. This means that the machinery of distribution
theory is available in electromagnetism, and guarantees that distributional Maxwell fields with
distributional charge-currents make physical sense, and at the same time gives a well defined and
detailed sense in which a distributional charge density must approximate our real smooth charge
density distribution.

In general relativity, where the field equations are non-linear, the use of distributional objects
seem not to be trivial. Although Raju18 claims to give an analytical formalism to deal with the
occurrence of jump discontinuities in the metric across a hypersurface, using a non-linear theory
of distributions,18,19his method does not seem to be conclusive. The application he mentions is for
a continuous metric where no non-linear distributional operations are needed. Anyhow, here the
mathematical framework cannot be as simple as for electromagnetism. Efforts to implement dis-
tributional methods in general relativity go back to works of Papapetrou and Treder.20 Nariai,21

aiming to understand the O’Brien-Synge junction conditions, and demanding the Einstein’s tensor
to be free ofd functions, uses continuous metrics and so brings in distributions in the formalism,
which is consequently used by Kumar.22 Papapetrou and Hamoui23,24 then try to formulate a
general method with application to a spherical symmetric thin layer. Their method has then been
reformulated and corrected by Evans.25 Lichnerowicz12 gives a detailed mathematical analysis of
distributions in curved space-time and comes to the conclusion that the classical properties of the
covariant derivatives and all of the corresponding formulas are valid for tensor distributions.
Barrabes26 uses tensor distributions specially to include null hyper-surfaces in the shell dynamics.

Taub27 is interested in relativistic hydrodynamics and shock waves but also discusses the
previous accounts on the concentrated 2- and 3-dimensional sources. Israel28 and Taub27 give a
formulation for a 2-dimensional concentrated mass distribution. These attempts have been criti-
cized by Geroch and Traschen29 who gave an extensive and thorough analysis of concentrated
mass distributions in general relativity. This work is a milestone in all the discussions about the
validity of distributional Einstein’s field equations and its applications to concentrated sources.
There the authors define some regularity conditions for metrics, for which the distributional tensor
calculations are allowed. Hence, for example, the line source case should be handled with care,
although some authors have criticized it.30 The ~211!-dimensional case, as a result of this work,
should not cause any problem, as far as the continuity of the metric is assured. We have thereafter
used distributional tensors to solve Einstein’s equations directly, without any use of Gauss-
Kodazzi decompositions. The coordinates have to be prepared to make them continuous at the
hypersurface of discontinuity, but the method has been applied easily for several cases.16,31,32

Naturally, there should be no difference in the results using either the distributional- or Gauss-
Kodazzi-method. But the complete equivalence has never been demonstrated explicitly, and the
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role of jump conditions by using the distributional method has never been clearly stated.
With the results of Geroch and Traschen in mind, we show here that all the dynamical- and

constraint-equations derived by the DI-formalism results very naturally in the distributional
method, without any need to define a new covariant derivative. For the sake of transparency, we
limit ourselves to the non-null shells. The null case can be treated along the same line as this
paper.33

In section II we review shortly the DI formalism and give the necessary formulae. Section III
begins with the formulation of the distributional method. Covariant derivative of distributions and
some useful formulae are given in section III A, and the Einstein’s equations for a thin shell in
section III B. Section III C deals with the conservation laws and the Bianchi identities. In this
section we will see the full equivalence of the two methods. We end with a conclusion in section
IV.

Conventions and definitions:We use the signature~2111!, and follow the curvature con-
ventions of Misner, Thorn, and Wheeler~MTW!.10 However, our sign convention for extrinsic
curvature is that of Israel,9 which is the opposite of MTW. The Greek indices run from 0 to 3 and
Latin indices from 1 to 3. A semicolon indicates covariant derivatives with respect to either the
four-metric of the whole space-time or the three-metric of the layer. There will, however, be no
confusion because the kind of indices and objects used makes the difference transparent. The
symbol¹6 denotes the covariant derivative with respect to either of the metrics of partial mani-
foldsM6 which are to be glued together.

The square brackets [F] are used to indicate the jump of any quantityF at the layer, and bars
F̄ the arithmetic mean of it. As we are going to work with distributional valued tensors, there may
be terms in a tensor quantityF proportional to somed-function. These terms are indicated byF̆.

II. DARMOIS-ISRAEL FORMALISM

Assume two space-timesM1 andM2 with boundariesS1 andS2. M1 andM2 may have
been cut from space-timesM1 andM2, respectively, but this is irrelevant for our task of glueing
these together. Coordinates on the two space-time manifolds are defined independently asx1

m and
x2

m , and the metrics denoted bygab
1 (x1

m ) andgab
2 (x2

m ). The induced metrics on the boundaries are
called gi j

1(j1
k ) and gi j

2(j2
k ), wherej6

k are intrinsic coordinates onS6 , respectively. Bringing
these 3- and 4-dimensional quantities in connection is trivially done with the help of tetrads
defining onS.34

Now, to paste the manifolds together we demand that the boundaries be isometric having the
same coordinates

j1
k 5j2

k 5jk.

The identification

S15S25:S

gives us the single glued manifoldM5M1øM2 .
This is the minimum requirement for glueing two manifolds together. Formulated as

@gi j #50 ~1!

gives together with the continuity of the second fundamental form onS

@Ki j #50 ~2!
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the Darmois conditions. Both conditions should be satisfied ifS is just a boundary surface. But in
the case of a thin shell we do not expect the second condition to be satisfied. In fact, the matter
content of the shell should lead to a jump in the extrinsic curvatureKi j .

The condition~1! leaves the coordinates inM6 free. If we assume the continuity of the
coordinatesx6

m at S we then have to require

@gmn#50, ~3!

which together with the corresponding equation for derivatives of the metric

F]gmn

]xa G50 ~4!

gives the Lichnerowicz conditions. In the following we just assume condition~1! or ~3!, respec-
tively.

On S we define a three-bein

ei5
]

]j i

having the components

ei
m5

]xm

]j i
. ~5!

The induced metric onS is given by the scalar product

gi j5ei•ej5gmnei
mej

n . ~6!

Note that, because of the assumed isometry, this metric is the same on both facesS1 andS2 . We
note that the subscripts of the three-beins onS are not the component indices, but as this distinc-
tion is trivial we prefer for the sake of simplicity not to use parentheses to distinguish them, as is
usually done.

We choose the parametric equation forS in the form

F~xm~j i !!50, ~7!

having the unit normal four-vectornm given by

nm5a21]mF, ~8!

where

a56AS Ugng
] f

]xn

] f

]xgU D . ~9!

Therefore

nmei
m50, ~10!

and

nmn
m5e, ~11!
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wheree511 or 21 for S to be time- or space-like, respectively. We supposenm to be directed
fromM2 toM1, i.e., in the direction of increasing a space- or time-like coordinate corresponding
to time- or space-likeS. Therefore we have to take the positive~negative! sign in ~9! for time-
~space-!like S. This choice gives us the useful relation

signa5
uau
a

5e.

The choice of the Lichnerowicz condition~3! makes it possible to have a unique normal vector for
each case. As we want to concentrate on the formulation of the distributional method and avoid
any undue complications, we leave aside the case of null hypersurfaces.

Now, in general the metrics inM1 andM2 need not to be continuous atS, but they could be.
However, the normal extrinsic curvature~second fundamental form! is not continuous for a thin
shell. It is defined by

Ki j
65ei

mej
n¹m

6nn52nmej
n¹n

6ei
m52nmei

n¹n
6ej

m5Kji
6. ~12!

Now, we have all the prerequisites to write the Einstein’s equation for the hypersurface. These are
10 equations which will be written in components normal and tangent to the hypersurface. The
first and second contracted Gauss-Kodazzi equations are9,10

Gmnn
mnn5 1

2 ~K22Ki jK
i j2e3R!, ~13!

Gmnei
mnn5Ki ; j

j 2K ,i , ~14!

where3R and 3G are the Ricci scalar and Einstein tensor of the three metricgi j , respectively.
Now, to discover the effect the energy-momentum tensorSi j of S on the space-time geometry, we
perform a ‘‘pill-box’’ integration of Einstein’s equations acrossS:

Smn5 lim
S→0

E
2S

S S Tmn2gmn

L

k Ddn5
1

k
lim
S→0

E
2S

S

Gmndn, ~15!

wheren is the proper distance throughS in the direction of the normalnm . Smn is the associated
4-tensor of energy momentum of the shell. The equations~13!, ~14! have the physical meaning
that no moment associated with the surface layer flows out ofS. ThereforeSmn vanishes off the
hypersurfaceS, which is expressed as

Smnn
n50. ~16!

The energy momentum 4- and 3-tensors are related as

Smn5ei
mej

nSi j . ~17!

The covariant derivative of such a tensor relative to the corresponding connections is given by9

¹n
6Smn5ei

mS; j
i j2eSi jKi j

6nm, ~18!

which leads to the following useful relation

ei
m¹nSm

n 5Si : j
j . ~19!

Similarly we can associate to the 3-tensorKi j defined onS, the corresponding 4-dimensional
tensor:
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Kmn5Ki j ei
mej

n , ~20!

satisfying

Kmnnn50. ~21!

The remaining components of the Einstein’s equations lead to the following non-vanishing result

lim
S→0

E
2S

S

Gmnei
mej

ndn5e~@Ki j #2gi j @K# !5kSi j . ~22!

This distributional equivalent of Einstein’s equations is calledLanczosequation, which partly
determines the dynamic of the thin shell. The other dynamical equations come from the defining
equation of the matter contents of the shell. Now, the two Gauss-Kodazzi equations act as con-
straints. The first one~13! is the so-called ‘‘Hamiltonian’’- and the second one~14! the ‘‘ADM’’-
constraint. Note however that these equations are valid inM1 andM2 on taking the limits as one
approaches the layerS. Therefore we are actually faced with 8 equations, the sum and difference
of which give us the junction conditions. The Hamiltonian constraint along with the Einstein’s or
Lanczos equations then give theevolution identity:

Si j K̄ i j52@Tmnn
mnn2L/k# ~23!

and

3R1~K̄ i j K̄
i j2K2!52ek~Tmnn

mnn2L/k!1
ek2

4 SSi jSi j2 S2

2 D . ~24!

The ADM constraint gives theconservation identity

Sj ; i
i 52e@Tmnn

mej
n# ~25!

and

K̄ j ; i
i 2K̄ , j5k~Tmnn

mei
n!. ~26!

Not all of these jump conditions are independent. Usually one takes the evolution identity~23! and
the conservation identity~25! as the proper junction conditions, which in addition to the Lanczos
equation should be satisfied.35

III. DISTRIBUTIONAL METHOD

Here we intend to give a formulation of the Einstein’s equations for the case where there
exists a hypersurface of concentrated source immersed in an otherwise arbitrary space-time, not
necessarily vacuum. We assume the metric to be continuous at the hypersurface:

@gmn#50. ~27!

Otherwise we would have to consider non-linear operations of distributions such asdu or dd. The
disadvantage of having a continuous metric across the shell pays off by the simplicity of the
method to calculate specific solutions.16,31,32

Write the metric in the following form

gmn5gmn
1 u~F~x!!1gmn

2 u~2F~x!!, ~28!

5677R. Mansouri and M. Khorrami: Darmois-Israel and distributional method

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



whereu is the step function and

gmn
1 uF~x!505gmn

2 uF~x!50. ~29!

This condition guarantees the smoothness of the metric on the hypersurface. Should this not be the
case we try a coordinate transformationx5x(x8) having a jump in the first derivative:

]xm

]x8r 5ar
1mu~F~x!!1ar

2mu~2F~x!!. ~30!

The condition for the new metric to be continuous comes out to be

ar
1mas

1ngmn
1 uF~x!505ar

2mas
2ngmn

2 uF~x!50. ~31!

We assume from now on that the metric is smooth everywhere,C1 at the hypersurface andC` on
both sides of it.

Although the metric is continuous onS, its derivatives, and so the corresponding connections,
are discontinuous. Nevertheless the connection corresponding to the metricgmn can be written in
the following compact form:

Gmn
r 5 1

2 grs~gms,n1gns,m2gmn,s!5u~F~x!!G1r
mn1u~2F~x!!G2r

mn , ~32!

whereG6r
mn are the ordinary connections onM

6. The above connection has jump discontinuities
on S.

To write the field equations for the hypersurface we need the formulation of the energy-
momentum tensor of the shell. Generally it can be written in the form

T̆mn5CSmnd~F~x!!, ~33!

whereC is a constant to be calculated. We integrate the above equation in the direction of the
normal to the hypersurface

E T̆mndn5CSmnE d~F~x!!dn5CSmnU dndFU. ~34!

Therefore, using the definition~15!, we obtain

C5UdF

dnU ~35!

and

T̆mn5SmnUdF

dnUd~F~x!!. ~36!

Note that in the literature one usually takesC51, which is correct just for special cases. But in
general the factorC is necessary~see also Ref. 33!. Now, the derivative ofF in the normal
direction can be written in terms of unit normal vectornm:

C5UdF

dnU5unm]mFu5ueau5uau, ~37!

where we have used~8!–~11!. Therefore~33! will be written in the form
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T̆mn5Smnuns]sFud~F~x!!5CSmnd~F~x!!5uauSmnd~F~x!!. ~38!

A. Covariant derivative of distributional valued tensors

There is no need to change the ordinary concept of covariant derivative, as it has been
carefully shown by Lichnerowicz.12 In fact, all the known properties of covariant derivative and
the corresponding formulae in a pseudo-Riemannian manifold are valid for tensor distributions.
But for the sake of convenience of calculation we refer to some useful formulae. Consider first an
arbitrary vectorAm defined as

Am5u~F!A11u~2F!A2, ~39!

whereA6 has the support onM6. It is therefore useful to define the operator

¹5u~F!¹11u~2F!¹2. ~40!

We can now write the covariant derivative of a distributional valued vectorAm in terms of the
covariant derivatives of its defining parts inM6. The following relation is easily obtained:

A;n
m 5¹nA

m1@Am#]nFd~F!. ~41!

This relation can be generalized easily for a distributional tensor of any rank. The covariant
derivative of the tensor

T~r!5u~F!T1~r!1u~2F!T2~r!, ~42!

where~r! stands for any number of indices, is calculated to be

T~r!
;n5¹nT

~r!1@T~r!#]nFd~F!. ~43!

In case a tensor has the support onS its covariant derivative is in the usual form. Take the tensor
T̆mn from ~33!. Its covariant derivative can be written

~ T̆mn! ;r5~CSmn! ;rd~F!1CSmn~d~F!! ,r5~CSmn! ;rd~F!1CSmn]rFd8~F!. ~44!

We will need this relation later to discuss the conservation laws.

B. The field equations

Einstein’s field equations are valid on both sides of the hypersurface as usual. So we concen-
trate our procedure onS, where we expect the curvature and Einstein tensor to be proportional to
d. That means that in calculating the connection coefficients and the components of the Ricci
tensor we can ignore terms not proportional tod. Hence, e.g., the terms in the Ricci tensor

Rmn5Gmr,n
r 2Gmn,r

r 1Gmr
s Gsn

r 2Gmn
s Grs

r ~45!

proportional toG’s can be ignored. The only relevant terms are

R̆mn5Ğmr,n
r 2Ğmn,r

r . ~46!

Now,

Gmr
r 5

1

2g
g,m , ~47!
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whereg is the determinant of the metric. Thed distribution can only occur in the second deriva-
tives of the metric. Therefore

Ğmr,n
r 5

1

2g
ğ,mn. ~48!

Similarly, for the second term in the Ricci tensor we have

Ğmn,r
r 5 1

2 g
rs~ ğsm,nr1ğsn,mr2ğmn,sr!. ~49!

Having the metric in the form~28! we obtain

ğab,mn5@gab,m#~]nF!d~F~x!! ~50!

and

ğ,mn5@g,m#]nFd~F~x!!. ~51!

As a result we obtain for terms in the Ricci tensor proportional tod

R̆mn5S 1

2g
[g,m] ]nF2grs~@gsm,n#1@gsn,m#2@gmn,s#!]r f D d~ f ~x!!

5S 1

2g
@g,m#]nF2@Gmn

r #]rF D d~F~x!!. ~52!

This enables us to write the Einstein’s equations for the layer:

Ğmn5kT̆mn. ~53!

Defining

Qmn5~a!21S 1

2g
@g,m#dn

r2@Gmn
r # D ]rF5S 1

2g
@g,m#dn

r2@Gmn
r # Dnr ~54!

we obtain, using~38! and ~52! for the energy momentum tensor, the field equations in the
4-dimensional form

Qmn2 1
2 gmnQ5ekSmn , ~55!

whereQ5Qmng
mn, and we have used the relatione5uau/a. Note thatQmn is a tensor with support

on S. This equation, for the time-like case, has been first derived, without using the hitherto
unknown distributional calculus, by Sen.2 We would like, therefore, to coin it bySen equation.
The three dimensional form of the Sen equation is readily obtained by decomposing it to
tangential- and normal-components toS. Multiplying ~54! with nm we obtain

Smnn
n50, ~56!

which is the same relation as~16!. This tells us immediately that the components corresponding to
Smnn

mnn andSmnn
mei

n identically vanishes. To obtain the proper 3-dimensional components we
notice first that

Qi j5Qmnei
mej

n52@Gmn
r #nrei

mej
n5@Ki j #. ~57!
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Therefore, we obtain from the Sen equation

Qi j5ek~Si j2
1
2 gi j S!, ~58!

which is equivalent to the Lanczos equation~22!.
We have therefore seen that the explicit method of writing the Einstein’s field equations for a

regular metric which is continuous without having continuous derivatives leads to the equation
~55! and is equivalent to the DI-formalism based on the Gauss-Codazzi formalism. In practice, one
begins with known solutions of the Einstein’s equations inM6, and after making sure the conti-
nuity of the metric onS, tries to solve equations~55!. In the following we will show that the jump
conditions of DI-formalism follows from the Bianchi identities corresponding to the metric~28!,
and are therefore implicit in the equations we have used.

C. Conservation laws

We have now all the prerequisites to evaluate the Bianchi identities and the conservation of
energy momentum tensor of our pasted space-time. The energy momentum of the whole space-
time, including the cosmological termsL6 is

Tmn5T̆mn1~T1mn2L1/kg1mn!u~F!1~T2mn2L2/kg2mn!u~2F!, ~59!

whereT̆mn is defined in~38!. Having in mind that the covariant divergences ofT6mn andg6mn with
respect to the corresponding connections vanishes, we obtain

Tmn
;n5~ T̆mn! ;n1@Tmn2L/k#]nFd~F!, ~60!

where we have used the relation~43!. Now inserting forT̆mn from ~38! and using~44! we obtain
an equation having terms proportional tod~F! andd8~F!. Each term vanishes independently. The
term proportional tod8~F! gives

~Smn]nF!~ns]sF!50, ~61!

which leads to the~56! and ensures the orthogonality of the energy-momentum tensor ofS to the
hypersurface normalnm. We use in the following this relation to simplify the remaining calcula-
tions. The term proportional tod is

~CSmn! ,n1CSmrGnr
n 1CSrnGrn

m 1@Tmn2L/kgmn#]nF)d~F!50. ~62!

We have leftd~F! as proportionality factor to stress its influence especially on terms containing
G’s and gmn’s. Note that the third term containingG’s contains terms likeu•d, i.e., product of
distributions. This is in analogy to the elementary problem of evaluating the electrostatic force on
a sheet of charge.5 There the linearity of electrostatic equation resolve the ambiguity. But how
about our case where the Einstein equations are non-linear? We have already shown that in the
case of thin shells the only terms contributing to the Einstein tensor are the derivatives of the
connection, or the second derivative of the metric, which appear linearly. It is then easily seen that
in the case of a layer the Einstein’s equations leads to a Poisson-like equation corresponding to the
Sen equation~55! for concentrated distribution, where the second derivative can be replaced by
~50! and~51!. Therefore, in analogy to the electromagnetic case, we can use the linearity of~55!
to show that

Grn
m d~F!5 1

2 ~G1m
rn1G2m

rn!d~F!. ~63!
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Using this result and multiplying equation~62! by nm , we obtain the component in the normal
direction.

~CSmn!,nnm1CSrnḠrn
m nm5e@Tmn2L/kgmn#nm]nF. ~64!

Using the relations~63! and the definition of the extrinsic curvature~12!, we obtain the final result

Si j K̄ i j5e@Tmnnmnn2L/k#. ~65!

This is the evolution identity~23! derived as one of the jump conditions in the Darmois-Israel
method. Here it is just a consequence of the Bianchi identities. To obtain the remaining three
equations we multiply~64! by em

i . Using ~19! we obtain

Sj ; i
i 52e@Tmnn

mei
n#, ~66!

which is the conservation identity~25!. It gives the conservation law for the energy momentum
tensor of the layer. We therefore see that our explicit distributional method of solving the Ein-
stein’s equations gives all the dynamical and constraint equations of the Darmois-Israel method,
and is therefore equivalent to it.

IV. CONCLUSION

We have seen that, based on the Lichnerowicz condition~3!, a distributional method can be
formulated to solve Einstein’s field equations for a thin shell, which is equivalent to the Darmois-
Israel formalism, and gives all the necessary equations and jump conditions formulated there. In
fact, it has been shown that the jump conditions are a consequence of the Bianchi identities, and
therefore implicit in the formalism, once the Lichnerowicz condition is satisfied. This makes the
distributional formalism easy to apply, especially when explicit solutions are to be found, and it
pays off the disadvantage of the continuity of the coordinates across the shell.

ACKNOWLEDGMENTS

R.M. would like to thank Dr. Habil. Hans-Juergen Schmidt for the hospitality at the Kosmolo-
gie Gruppe, Potsdam, and Alexander von Humboldt Stiftung for support.

1C. Lanczos, Phys. Z.23, 539 ~1992!; Ann. Phys.~Leipzig! 74, 518 ~1924!.
2N. Sen, Ann. Phys.~Leipzig! 73, 365 ~1924!.
3G. Darmois, ‘‘Les equations de la gravitation einsteinienne,’’ inMemorial de Sciences Mathematiques, Fascicule XXV,
Chap. V~1927!.

4A. Vilenkin, Phys. Rep.121, 263 ~1984!.
5S. K. Blau, E. I. Guendelman, and I. I. Tkachev, Phys. Rev. D35, 2919~1987!.
6M. Visser, Nucl. Phys. B328, 203 ~1989!.
7Ch. Hellaby and T. Dray, Phys. Rev. D49, 5096~1994!.
8C. Barrabes and V. P. Frolov, gr-qc/95 11 136.
9W. Israel, Nouvo Cimento B44, 1 ~1966!; Corrections in44, 463.
10C. W. Misner, K. S. Thorn, and J. A. Wheeler,Gravitation ~Freeman, San Franciso, 1973!.
11A. Lichnerowicz, inTheories Relativistes de la Gravitation et de l’Electromagnetisme~Masson, Paris, 1955!.
12A. Lichnerowicz, inRelativity, Quanta, and Cosmology~Einstein 1879–1979!, Vol. II ~Johnson, New York, 1979!.
13S. O’Brien and J. L. Synge, Commun. Dublin. Inst. Adv. Stud. A., No. 9~1952!.
14W. B. Bonnor and P. A. Vickers, Gen. Rel. Grav.13, 29 ~1981!.
15R. Mansouri, ‘‘The Art of Glueing Space-Time Manifolds: Methods and Applications,’’ Lectures given at Kosmologie
Gruppe, Mathematisches Institut, University of Potsdam, Germany~1996!.

16M. Khorrami and R. Mansouri, J. Math. Phys.35, 951 ~1994!.
17Y. Choquet-Bruhat, Commun. Math. Phys.12, 16 ~1969!.
18C. K. Raju, J. Phys. A15, 1785~1982!.
19C. K. Raju, J. Phys. A15, 381 ~1982!.
20A. Papapetrou and H. Treder, Math. Nachr.23, 371 ~1961!.
21H. Nariai, Prog. Theor. Phys.34, 173 ~1965!.

5682 R. Mansouri and M. Khorrami: Darmois-Israel and distributional method

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



22M. M. Kumar, Prog. Theor. Phys.44, 2 ~1970!.
23A. Papapetrou and A. Hamoui, Ann. Inst. H. Poincare9, 179 ~1968!.
24A. Papapetrou and A. Hamoui, Gen. Rel. Grav.10, 253 ~1979!.
25A. B. Evans, Gen. Rel. Grav.8, 155 ~1977!.
26C. Barrabes, Class. Quantum Grav.6, 581 ~1989!.
27A. H. Taub, J. Math. Phys.21, 1423~1980!.
28W. Israel, Phys. Rev. D15, 935 ~1977!.
29R. Geroch and J. Traschen, Phys. Rev. D36, 1017~1987!.
30G. Hayward and J. Louko, Phys. Rev. D42, 4033~1990!.
31M. Khorrami and R. Mansouri, Phys. Rev. D44, 557 ~1991!.
32R. Mansouri, ‘‘Gravitational Field of Plane Domain Walls,’’ Sharif University of Technology, report, unpublished

~1990!.
33C. Barrabes and W. Israel, Phys. Rev. D43, 1129~1991!.
34K. Kuchar, Czeck. J. Phys. B18, 435 ~1968!.
35P. Musgrave and K. Lake, gr-qc/95 10 052.

5683R. Mansouri and M. Khorrami: Darmois-Israel and distributional method

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Gravitational and electromagnetic perturbations
of the Schwarzschild solution
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It is shown that the complete metric and vector potential perturbations of the
Schwarzschild solution can be expressed in terms of radial functions that share
several differential properties. The energy flux of the incident, reflected, and ab-
sorbed gravitational and electromagnetic waves is given and the polarization
changes are also analyzed. ©1996 American Institute of Physics.
@S0022-2488~96!03609-2#

I. INTRODUCTION

The perturbations of space–times describing black holes have been the subject of numerous
investigations, making use of diverse methods~see, e.g., Ref. 1!. The simplest of these space–
times corresponds to the Schwarzschild solution, which describes a static, uncharged black hole,
and the study of its perturbations was initiated some time ago, originally in connection with the
stability of the Schwarzschild black hole2–4 ~see also Refs. 5–7 and the references cited therein!.
Although it is generally believed that the perturbations of the Schwarzschild solution are fairly
well understood, as we shall show below, some existing results are wrong or incomplete.

The aim of this paper is twofold; we show that the gravitational and the electromagnetic
perturbations of the Schwarzschild solution can be expressed in terms of radial functions that obey
sets of equations of the same form. This allows us to show that the Teukolsky–Starobinsky
identities, which in the case of the gravitational and the electromagnetic perturbations involve
differential operators of order four and two, respectively, follow from a single basic identity@Eq.
~30! below#. We also give expressions for all the components of the perturbed conformal curvature
and of the electromagnetic perturbations. The energy fluxes at spatial infinity and at the horizon
are then calculated and it isexplicitly shown that the energy carried by the gravitational or
electromagnetic waves is conserved. We show that an ingoing circularly polarized gravitational
wave produces an elliptically polarized scattered wave, even though the black hole does not rotate.
Throughout this paper we make use of the Newman–Penrose notation.

II. DEBYE POTENTIALS

As shown in Refs. 8–11, the metric perturbations of an algebraically special solution of the
Einstein vacuum field equations, in a frame such thatC05C150 ~or, equivalently,k5s50!, are
given by

hmn52$ lml n@~d13b1ā2t!~d14b13t!2l̄~D14e13r!#

1mmmn~D13e2 ē2r!~D14e13r!2 l (mmn)@~D13e1 ē2r1 r̄ !~d14b13t!

1~d13b2ā2t2p̄ !~D14e13r!#%cG1c.c., ~1!

up to the gauge transformationshmn°hmn 2 2“ (mjn) , wherejm is an arbitrary vector field, with
the complex scalar potentialcG governed by the equation

@~D13g2ḡ1m̄ !~D14e13r!2~ d̄13a1b̄2 t̄ !~d14b13t!23C2#cG50. ~2!
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The Schwarzschild solution can be specified by the null tetrad,

lm]m5] r1
r 2

x
] t , nm]m52

1

2

x

r 2 S ] r2
r 2

x
] tD ,

~3a!

mm]m5
1

&r
~]u1 icosecu]w!, m̄m]m5

1

&r
~]u2 icosecu]w!,

with

x[r 222Mr . ~3b!

The nonvanishing spin coefficients can be conveniently expressed as

r52D ln r , m5D ln r , g5D ln rx21/2,
~4!

b5d ln sin1/2 u, a52 d̄ ln sin1/2 u,

and the only nonvanishing component of the Weyl spinor is

C252
M

r 3
. ~5!

SincecG has spin weight22, we seek solutions of Eq.~2! of the form

cG5r 3Y22~r !e2 ivt
22Yjm~u,w!, ~6!

where thesYjm are spin-weighted spherical harmonics.12 Substituting Eqs.~3!–~6! into Eq.~2! one
obtains the ordinary differential equation,

D*
r 6

x
DY225h2

r 6

x2 S 11
6M

h2r DY22 , ~7!

where

D*[] r1
ivr 2

x
, D[] r2

ivr 2

x
~8!

and

h[@~ j21!~ j12!#1/2. ~9!

If one introduces the function13

X21[
r 6

h2x
D Y22 , ~10!

then Eq.~7! is equivalent to the system of first-order equations,

D Y225h2
x

r 6
X21 , D *X215

r 6

x2 S 11
6M

h2r DY22 . ~11!
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On the other hand, the vector potential perturbations of an algebraically special solution of the
Einstein vacuum field equations, in a frame such thatC05C150 are given by14,9,10

bm5 lm~d12b1t!cE2mm~D12e1r!cE1c.c., ~12!

where the complex scalar potentialcE satisfies

@~D1g2ḡ1m̄ !~D12e1r!2~ d̄1a1b̄2 t̄ !~d12b1t!#cE50. ~13!

Commuting the derivatives acting oncE, making use of the fact thatk5s5C150, one obtains

@~D13e1 ē12r2 r̄ !~D12g1m!2~d13b2ā12t1p̄ !~ d̄12a1p!26C2#cE50.
~14!

Using the fact thatcE has spin weight21, we look for solutions of Eq.~14! of the form

cE5
x

r 3
X22~r !e2 ivt

21Yjm~u,w!. ~15!

Then, substituting Eqs.~3a!, ~4!, and~15! into Eq. ~14!, one finds that

D
x2

r 6
D *X225h2

x

r 6
S 11

12M

h2r
DX22 . ~16!

Therefore, introducing the function

Y21[
x2

r 6
D *X22 , ~17!

Eq. ~16! is equivalent to

D Y215h2
x

r 6 S 11
12M

h2r
DX22 , D *X225

r 6

x2
Y21 ~18!

@cf. Eqs.~11!#.
Equations~11! and ~18! can be written in the common form

D Y2k5h2
x

r 6
S 11

2qk

h2r
DX2 l , D * X2 l5

r 6

x2 S 11
ql

h2r
DY2k ~k,l51,2; kÞ l !, ~19!

where

q1[6M , q2[0. ~20!

In the study of the perturbations of the Reissner–Nordstro¨m solution, Chandrasekhar15,5 obtained
a set of equations identical to Eqs.~19!. It must be noticed, however, that in the present case there
is no need to make infinitesimal tetrad rotations as in Refs. 15 and 5. The solution of Eqs.~19! can
be expressed in terms of a single functionZk

(1) or Zk
(2), which obeys the Schro¨dinger-type

equation,15,5

S 2
d2

dr
*
2

1Vk
~6 !D Zk~6 !5v2Zk

~6 ! , ~21!
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wherer
*
is defined bydr

*
/dr5r 2/x and

Vk
~6 ![6ql

d fk
dr*

1ql
2f k

21h2~h212! f k ,

~22!

f k[
x

r 3~h2r1ql !
~k,l51,2; kÞ l !.

The solution of Eqs.~19! is given by

Y2k5Vk
~6 !Zk

~6 !1~Wk
~6 !12iv!S d

dr*
1 iv DZk~6 ! ,

~23!

h2X2 l57qlZk
~6 !1 f k

21S d

dr*
1 iv DZk~6 ! ~kÞ l !,

with

Wk
~6 ![2

d

dr*
ln f k7ql f k ~kÞ l !. ~24!

It may be noticed that, sinceq2 vanishes, the potentialsV1
~1! andV1

~2! , which correspond to the
electromagnetic perturbations, coincide and, similarly, thatW1

(1)5W1
(2); therefore, Eqs.~21!–~24!

yield only one expression forY21 andX22. On the other hand, Eqs.~3b!, ~20!, and~22! give two
distinct potentials,

V2
~1 !5

x

r 5
h4~h212!r 316h4Mr 2136h2M2r172M3

~h2r16M !2
~25!

and

V2
~2 !5

x

r 5
@~h212!r26M #. ~26!

The potentialsV2
~1! andV2

~2! were originally obtained by Zerilli3 and by Regge and Wheeler,2

respectively, in the study of the polar and axial metric perturbations of the Schwarzschild metric.
Chandrasekhar and Detweiler16 proved that the reflection and transmission coefficients corre-
sponding to the potential barriersV2

~1! andV2
~2! are the same~also see Refs. 5 and 15 and Sec. IV!.

In the present treatment, the functionsZ2
~1! andZ2

~2! lead to the same set of solutions of Eqs.
~11! and, as we shall show in Sec. IV, the reflection and transmission coefficients for the gravi-
tational waves impinging on a Schwarzschild black hole coincide with those of the potential
barrier employed to express the solution of Eqs.~11! @Eqs. ~23!#; therefore, without any further
calculation or without having to relate the functionsZ2

~1! andZ2
~2! that produce a given perturba-

tion, it follows that the reflection and transmission coefficients forV2
~1! andV2

~2! must coincide.~It
may be remarked that in Ref. 5 it is shown that the perturbed value ofC4, with respect to the
tetrad~3!, can be expressed in terms of the radial functionsY22, which are given in terms of either
Z2

~1! or Z2
~2! by Eq. ~23!; this fact alone does not imply the equality of the reflection and trans-

mission coefficients forV2
~1! andV2

~2! since the computation of the reflection and transmission
coefficients of the black hole requires the knowledge of the corresponding perturbed value ofC0
@see Eqs.~51!, ~53! and ~56! below#.! Note also that the meaning of the functionsY2k andX2 l

appearing in the present treatment differs from that of analogous functions introduced by
Chandrasekhar.15,5
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III. THE DIFFERENTIAL IDENTITIES

Since the complete perturbations~gravitational or electromagnetic! are given in terms of
derivatives of a single scalar potential, there must exist differential identities relating the perturbed
quantities. In fact, some differential relations of this type~called Teukolsky–Starobinsky identi-
ties! were obtained in the study of the Kerr metric perturbations. In terms of the notation used
here, the Teukolsky–Starobinsky identities can be expressed as17–19,5

x2D *D *D *D * r 3Y12}r
3Y22 , x2DDDDr 3Y22}r

3Y12 , ~27!

for the gravitational perturbations, and

xD *D *
x

r 3
X12}

x

r 3
X22 , xDD

x

r 3
X22}

x

r 3
X12 , ~28!

in the case of the electromagnetic perturbations, whereY1k andX1 l are radial functions satisfying
the differential equations

D *Y1k5h 2
x

r 6
S 11

2qk

h2r
DX1 l , D X1 l5

r 6

x2 S 11
ql

h2r
DY1k ~kÞ l !, ~29!

@cf. Eqs.~19!#.
Since the radial dependence of the scalar potentialscG and cE is determined by similar

equations@Eqs.~19!#, it is not surprising that the identities~27!–~28! can be derived from a single
relation. Indeed, the functionsX6k can be normalized in such a way that20

h2r 3D *D *
x

r 3
X1k1qkr

2D *
1

r
D *

x

r 2
X1k5CkX2k ~30!

and

h2r 3DD
x

r 3
X2k1qkr

2D
1

r
D

x

r 2
X2k5C̃kX1k , ~31!

whereCk and C̃k are constants such that

C̃k5Ck, for v real. ~32!

Whenk52, owing to the fact thatq250, Eqs.~30! and ~31! reduce to

xD *D *
x

r 3
X125

C2

h2

x

r 3
X22 , xDD

x

r 3
X225

C̃2

h2

x

r 3
X12 , ~33!

which correspond to Eqs.~28!.
On the other hand, applying the operatorD* to both sides of Eq.~30! and making use of Eq.

~19!, one readily finds that

h2
x2

r 4
D *D *D *

x

r 2
X1k5CkY2 l ~kÞ l !. ~34!

In an analogous manner, one obtains the identity
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h2
x2

r 4
DDD

x

r 2
X2k5C̃kY1 l ~kÞ l !. ~35!

Settingk51 in Eqs.~34! and~35!, and eliminatingX61 in favor ofY62, making use of Eqs.~19!
and ~29!, one obtains

x2D *D *D *D * r 3Y125C1r
3Y22 , x2DDDDr 3Y225C̃1r

3Y12 , ~36!

which correspond to Eqs.~27!.
From Eqs.~19! and ~29! one can derive two additional useful identities,

r 2D *D *D * r 2Y1k5h2rD *D *
x

r 3
X1 l12qkD *D *

x

r 3
X1 l24qkD *

x

r 4
X1 l ~kÞ l !

~37!

and

r 2DDDr 2Y2k5h2rDD
x

r 3
X2 l12qkDD

x

r 3
X2 l24qkD

x

r 4
X2 l ~kÞ l !. ~38!

The value ofCkC̃k can be obtained by eliminatingX1k from Eqs.~30! and~31! and making
use repeatedly of Eqs.~19!, this gives

CkC̃k5h4~h212!214v2qk
2. ~39!

The phase ofCk depends on the relative normalization of the functionsX2k andX1k .

IV. REFLECTION, TRANSMISSION, AND ABSORPTION OF GRAVITATIONAL AND
ELECTROMAGNETIC WAVES

All the components of the perturbed Weyl spinor, distinguished with a superscript B, can be
calculated making use of Eq.~1! and the relation21

CACDE
B 5 1

2 ¹ (A
R8
“C

S8hDE)R8S81
1
4 h

m
mCACDE . ~40!

Then, by means of a straightforward but lengthy computation, using Eqs.~1!, ~3!, ~4!, and~6! one
obtains

C0
B5~DDDDr 3Y22!e

2 ivt
22Yjm~u,w!,

C1
B52

h

&

~DDDr 2Y22!e
2 ivt

21Yjm~u,w!,

C2
B5

hAh212

2r
~Dr 2D Y22!e

2 ivtYjm~u,w!, ~41!

C3
B52

h~h212!

2&
D Y22e

2 ivt
1Yjm~u,w!,

C4
B5

h2~h212!

4r
Y22e

2 ivt
2Yjm~u,w!2

3iMv

r
Y22e

ivt
22Yjm~u,w!.
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@In order to obtain the reduced expression forC4
B given by Eq.~41! one has to employ repeatedly

Eq. ~2! or ~11!.22,23# Similarly, from Eqs.~3!, ~4!, ~12!, ~13!, and~15! it follows that the compo-
nents of the electromagnetic field perturbations are given by

w05SDD x

r 3
X22De2 ivt

21Yjm~u,w!,

w152
Ah212

&

S 1r D x

r 3
X22De2 ivtYjm~u,w!, ~42!

w25
~h212!

2

x

r 5
X22e

2 ivt
1Yjm~u,w!.

Alternative expressions for the perturbations~41! and~42! can be obtained, making use of the
differential relations~11!, ~33!, ~36!, and~38!. In particular,C0

B andC4
B, which are invariant under

the gauge transformationshmn°hmn 2 2“ (mjn) and represent the ingoing and outgoing gravita-
tional radiation, respectively~see below!, are given by

C0
B5C̃1

r 3

x2 Y12e
2 ivt

22Yjm~u,w!, ~43a!

C4
B5

1

4r
$h2~h212!Y22e

2 ivt
2Yjm~u,w!212iMvY22e

ivt
22Yjm~u,w!%. ~43b!

Equations~43! correspond to Eqs.~362! and~363! of Sec. 32 of Ref. 5; however, Eq.~43b! is not
equivalent to the corresponding expression given in Ref. 5.

Since the potentialsVk
(6) are of short range,Zk

(6) have the asymptotic behaviorse6 ivr * both
for r

*
→` and r

*
→2` ~the horizon of the black hole! and from Eqs.~23! one can find the

asymptotic forms ofY2k andX2 l .
5 If the functionsZk

(6) have the asymptotic behaviore2 ivr * for
r→`, then Eqs.~41! and ~42! show that

C i
B5OS 1

r 11 i D , w i5OS 1

r 11 i D ,
which means that, for ingoing waves,C0

B and w0 represent the ingoing fields and that these
perturbations satisfy the ‘‘peeling property’’~see Ref. 24!. Similarly, if Zk

(6) have the asymptotic
behavioreivr* for r

*
→`,

C i
B5OS 1

r 52 i D , w i5OS 1

r 32 i D ;
hence, at spatial infinity,C4

B andw2 represent the outgoing fields.
By definition, under a rotation through an anglef determined bymm°eifmm, a quantityj

with spin weights transforms asj°eisfj; therefore, sinceC0
B, C4

B, w0, andw2 have spin weight
22, 2,21, and 1, respectively, if any of these quantities is proportional toeivt or to e2 ivt, the
corresponding field has circular polarization, while the presence of both factors,eivt ande2 ivt,
means that the field has elliptic polarization. Thus, at spatial infinity, the ingoing gravitational
waves and the~ingoing and outgoing! electromagnetic waves given by Eqs.~41! and ~42! have
right ~left! circular polarization ifv.0 ~v,0!. ~Note thatw0 andw2 have opposite spin weights,
but they represent waves propagating in opposite directions.! On the other hand, the outgoing
gravitational waves given by Eqs.~41! will be elliptically polarized~unlessMvY22 vanishes!.
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Equation~43b! deserves some comments. First, the presence of a term proportional toeivt is
a consequence of consideringreal metric perturbations@Eq. ~1!#. Second, unlessMvY22, or
MvY12, vanishes, there are no real gravitational perturbations such that all the components of the
perturbed Weyl spinor have a time dependence of the formeivt ~or e2 ivt!. Third, the presence of
both factorseivt ande2 ivt in C4

B has an objective physical meaning: it signifies that the outgoing
gravitational waves are elliptically polarized if the ingoing gravitational waves are circularly
polarized. In most previous investigations on black hole perturbations~see, e.g., Ref. 5! it is
assumed that all the perturbed quantities have a time dependence of the forme2 ivt, which, as
remarked above, is not consistent if the metric perturbations are real@see also Ref. 7, Eqs.~3.97!
and~3.98!# and, furthermore, it amounts to assuming that the helicity of the gravitational waves is
left unchanged by the scattering from the black hole. Note that in the case of the scattering of
electromagnetic waves, a circularly polarized ingoing wave gives rise to a circularly polarized
outgoing wave~a result that is not obvious!.

Assuming that there are no waves emerging from the horizon, the functionsZk
(6) have the

asymptotic forms

Zk
~6 !→Ak

~6 !e2 ivr *1Bk
~6 !eivr * ~r *→1`!,

→Dk
~6 !e2 ivr * ~r *→2`!.

~44!

Since the potentialsVk
(6) are real, from Eq.~21! it follows that the amplitudes

Rk
~6 ![

Bk
~6 !

Ak
~6 ! , Tk

~6 ![
Dk

~6 !

Ak
~6 ! , ~45!

satisfy

uRk
~6 !u21uTk

~6 !u251. ~46!

Expressing the radial functionsY2k , X2 l in terms ofZk
(6), by means of Eqs.~23!, and assuming

thatZk
(6) have the asymptotic forms~44!, from Eqs.~41! and ~42! one finds that whenr *→`,

1

4
rC0

B→2v2@h2~h212!612iMv#A2
~6 !e2 iv~ t1r * !

22Yjm ,

rC4
B→2v2@h2~h212!B2

~6 !e2 iv~ t2r * !
2Yjm212iMvB2

~6 !eiv~ t2r * !
22Yjm#,

1

2
rw0→2 ivh~h212!A1e

2 iv~ t1r * !
21Yjm ,

rw2→ ivh~h212!B1e
2 iv~ t2r * !

1Yjm . ~47!

Similarly, whenr
*
→2` ~the horizon of the black hole!,

x2C0
B→4ivS iv1

1

4M D ~2M !3@h2~h212!612iMv#D2
~6 !e2 iv~ t1r * !

22Yjm ,

~48!
xw0→24iMvh~h212!D1e

2 iv~ t1r * !
21Yjm .

~We have supressed the superscript~6! in the coefficientsA1, B1, andD1, since there is no
difference betweenZ1

~1! andZ1
~2! @see Eqs.~21!–~24!#.!
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From Eqs.~47! and ~48! it follows that the functionsZ2
~1! andZ2

~2! , satisfying the boundary
conditions~44!, give rise to the same gravitational perturbations, provided that the coefficients
A2

~6! , B2
~6! , andD2

~6! are related by

@h2~h212!112iMv#A2
~1 !5@h2~h212!212iMv#A2

~2 ! ,

B2
~1 !5B2

~2 ! ,

@h2~h212!112iMv#D2
~1 !5@h2~h212!212iMv#D2

~2 ! ,

~49!

which, among other things, implies that@see Eqs.~45!#

R2
~1 !5

h2~h212!112iMv

h2~h212!212iMv
R2

~2 ! , T2
~1 !5T2

~2 ! . ~50!

~An alternative proof of these relations was given by Chandrasekhar.15,5!
Using Eqs.~47! one finds that the flux of energy per unit time of the gravitational or electro-

magnetic radiation coming from infinity is given by

dEin
grav

dt
5

1

4pv2 lim
r→`

E U14 rC0
BU2 dV5

v2

4p
@h4~h212!21144M2v2#uA2

~6 !u2 ~51!

and

dEin
em

dt
5

1

2p
lim
r→`

E U12 rw0U2 dV5
v2

2p
h2~h212!2uA1u2, ~52!

respectively. Similarly, since the power flux per unit solid angle of the outgoing gravitational and
electromagnetic waves is

d2Eout
grav

dt dV
5

1

4pv2 lim
r→`

urC4
Bu2,

d2Eout
em

dt dV
5

1

2p
lim
r→`

urw2u2, ~53!

respectively, thetime-averagedflux of energy per unit time of the outgoing gravitational waves is

K dEoutgrav

dt L 5
v2

4p
@h4~h212!21144M2v2#uB2

~6 !u2, ~54!

and the flux of energy per unit time of the outgoing electromagnetic waves is

dEout
em

dt
5

v2

2p
h2~h212!2uB1u2. ~55!

Finally, using the fact that the flux of energy across the event horizon is given by

d2Ehole
grav

dt dV
5

1

64p
lim

r→2M

ux2C0
Bu2

~2M !6@v211/~4M !2#
,

~56!
d2Ehole

em

dt dV
5

1

8p
lim

r→2M

uxw0u2

~2M !2
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@see Ref. 17 and Ref. 5, Eq.~258! of Chap. 8 and Eq.~516! of Chap. 9#, from Eqs.~48! one obtains

dEhole
grav

dt
5

v2

4p
@h4~h212!21144M2v2#uD2

~6 !u2, ~57!

dEhole
em

dt
5

v2

2p
h2~h212!2uD1u2. ~58!

Thus, Eqs.~45!, ~46!, ~51!, ~52!, ~54!, ~55!, ~57!, and ~58! explicitly show that the energy
carried by the gravitational or the electromagnetic perturbations is conserved.~Note that in order
for these conservation relations to hold, it may be necessary to consider the time-averaged flux of
energy@see Eq.~54!#.! Furthermore, one has

^dEout
grav/dt&

dEin
grav/dt

5uR2
~6 !u2,

dEhole
grav/dt

dEin
grav/dt

5uT2
~6 !u2 ~59!

and

dEout
em/dt

dEin
em/dt

5uR1u2,
dEhole

em /dt

dEin
em/dt

5uT1u2, ~60!

which means that the energy reflection and transmission coefficients for the gravitational and
electromagnetic waves do coincide with the reflection and transmission coefficients for the poten-
tial barriersV2

~6! and V1, respectively, in the Schro¨dinger-type equations~21!. Note that the
‘‘conservation relations’’~46! can be properly interpreted as expressions of the conservation of
energy only after the energy fluxes~51!, ~52!, ~54!, ~55!, ~57!, and ~58! are derived, which
requires, in particular, the knowledge ofC0

B andC4
B with the correct relative normalization.

V. CONCLUDING REMARKS

As pointed out in Sec. II, Eqs.~19!, which we take as the basic equations for the~uncoupled!
gravitational and electromagnetic perturbations of the Schwarzschild solution, possess the form of
a set of equations found in the study of the coupled gravitational and electromagnetic perturbations
of the Reissner–Nordstro¨m solution,15,5 although with a different meaning for the functionsY2k

andX2 l . This fact suggests that, going in the opposite direction, the equations for the gravitational
and electromagnetic perturbations of some solutions of the Einstein vacuum field equations can be
written in a form useful in the study of the coupled perturbations of the charged version of the
background solution.

The derivations presented here illustrate the many simplifications that follow from the use of
the Debye potentials in the study of perturbations.
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A null-tetrad approach to Kerr–Schild gravitational fields
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The null tetrad formalism is used to investigate the structure of the Einstein field
equations for Kerr–Schild gravitational fields in the presence of an elastic solid
source. It is shown that such equations may be reduced to five nonlinear partial
differential equations for five variables. It turns out that, when the interior solutions
admit the same preferred null congruence of the vacuum ones and some compat-
ibility conditions hold, it is possible to reduce them to a linear system and to
develop a method of solution which closely resembles the ‘‘variation of the arbi-
trary constants’’ for ordinary differential equations. In the present paper, the above
technical framework is developed in general and applied to two simple examples,
deferring to future work the approach to the Kerr–interior problem. ©1996
American Institute of Physics.@S0022-2488~96!02509-1#

I. INTRODUCTION

In a recent paper1 a new approach to the problem of finding the sources of the Kerr metric was
presented. The key idea of such a paper was to search for elastic-solid sources within the same
algebraic class to which the Kerr metric itself belongs, namely the Kerr–Schild2 one~KS in what
follows!. In that paper it was shown that any stationary KS field in elastic matter may be obtained
by solving threelinear partial differential equations for the gravitational field and a set of six
nonlinear, but algebraic, relations for the stresses. Such results lead to a new class of exact
solutions which may be interpreted as describing elastic sources of the Kerr metric, the matching
surface being an oblate spheroid. However, some open problems remain. First, the matching of the
interior solution with the Kerr vacuum is not smooth, so that it is necessary to interpret the
corresponding jump of the exterior curvature as a surface distribution; this fact strongly depends
on the specific choice of the matching surface, but if one tries to change this choice one has to face
a very difficult potential problem in Newtonian theory. Moreover, it is difficult to study the
physical behavior of the stresses when the rotation rate becomes high.

The above results were obtained by means of a coordinate-dependent method. However, it is
well known that the use of the Newman–Penrose~NP! formalism3 proves very useful in dealing
with KS gravitational fields. Recent developments in this area regard the ‘‘generalized’’ Kerr–
Schild problem both in vacuum4 and in presence of matter5 and the generalization of the Kerr
theorem to the nonstationary case.6 The suitability of the NP formalism arises essentially because
the preferred null direction of the KS geometry is a natural candidate for one of the null vectors of
the NP tetrad. In fact, this observation was the starting point of the work by Debney, Kerr, and
Schild ~DKS!7 who characterized the KS solutions of the Einstein and Einstein–Maxwell equa-
tions having a nonvanishing complex expansion. Here arises also the idea of the present paper, in
which the search for exact KS solutions for the gravitational equations in elastic matter is con-
ducted by making use of the tetrad formalism. Our main result is that, assuming as a source a
non-prestressed elastic material, the gravitational field equations in the tetrad formalism can be
reduced to five partial differential equations for five variables which have interesting properties.
Such equations may in fact be written in a form which makes them directly comparable to that of
vacuum, and this comparison suggests the possibility of constructing some nonvacuum solutions
starting from the DKS vacuum ones. This may be done with a method which closely recalls the
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‘‘variation of the arbitrary constants’’ for ordinary differential equations. It consists of choosing a
vacuum solution and imposing that the corresponding nonvacuum one have the same preferred
null congruence. This fixes two of the three quantities that characterize the gravitational field and,
whenever the appropriate compatibility conditions hold, the determination of the field variables
can be reduced to the integration of two suitable, linear differential forms. This quite unexpected
result shows the way in which linearity comes into play using the null-tetrad formalism.

The present paper presents the framework of this null-tetrad approach to KS gravitational
fields in elastic matter; the method described above is thus developed in general but only applied
to two simple examples, deferring to a future work the application to the problem of the sources
of the Kerr and the Kerr–Newman metric. To construct our examples we start from a Newman–
Unti–Tamburino~NUT!8 vacuum solution having a null Killing vector and from the Schwarzs-
child solution, respectively. The first choice gives rise to an independent derivation of a class of
solutions originally due to Kowalczyn´ski and Pleban´ski,9 while the second one produces a new
class of~generally singular! nonstationary solutions, which, for certain choices of the integration
parameters, reduces to an already known regular, static and spherically symmetric subclass.10

The paper is structured as follows. The null-tetrad formalism for KS fields is briefly recalled
in Sec. II. The energy-momentum tensor and the Einstein field equations in the tetrad form are
obtained in Secs. III and IV. Section V contains an overview on the vacuum DKS solutions, while
the method of reduction of the nonvacuum field equations is presented in Sec. VI. The two
examples are finally treated in Secs. VII and VIII, respectively. The paper ends with some con-
cluding remarks and an outline about future work on this subject.

II. NULL-TETRAD FORMALISM FOR KERR–SCHILD FIELDS

Let M be the general-relativistic space–time equipped with the pseudo-Riemannian metric
tensorgmn @m,n50,1,2,3, signature~2,1,1,1!#.11

Introduce at each point ofM a tetrad of independent vectorsea
m ~a,b51,2,3,4! such that

ea
mebm5da

b, whereebm is the dual tetrad. We denote byea the linear differential formseamdx
m.

The tetrad components of a tensorTmn are given byTab5Tmnea
meb

n. The directional derivatives
along tetrad vectors will always be denoted by a comma preceding the indexa, so that, for
example,

f ,a :5ea
m]m f

for any scalar functionf . The tetrad components of the covariant derivativesea
m
“m will instead be

denoted by a semicolon, while the symbol ‘‘]’’ with a subscript will be always reserved for the
partial derivative.

In the tetrad formalism the role of the Christoffel symbols is played by the Ricci rotation
coefficients, defined by

Ga
bc :52eam;neb

mec
n.

For instance, the covariant derivative of a tensor reads

Tab;c5Tab,c2Gd
bcT

a
d1Ga

dcT
d
b .

The Ricci coefficients also determine the commutator between directional derivatives along tetrad
vectors:

T..,@ab#
.. :5 1

2 ~T..,ab
.. 2T..,ba

.. !5T..,c
.. Gc

@ab# .

We adopt the Newman–Penrose choice for the tetrad, which consists of using four null
vectors such thateI 1 andeI 2 are complex conjugates whileeI 3 andeI 4 are real. However, we will not
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use the Newman–Penrose notations and conventions but rather that used by Debney, Kerr, and
Schild. The scalar products between the tetrad vectors are therefore given by

gab5gmnea
meb

n5S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D ~2.1!

whereas in the standard conventiong34 equalsminusone.
The numerical values 1,2,3,4 will always refer to tetrad indexes. These are raised and lowered

by performing the permutation 1,2,3,4°2,1,4,3. The complex conjugate of a real geometrical
object may be obtained by applying the permutation 1,2,3,4°2,1,3,4.

We are going to consider here only space–times which are of the Kerr–Schild type, namely
we assume that the metric tensor may be put into the form

gmn5hmn12hlml n ,

wherehmn is the metric tensor of Minkowski space,h is a scalar function, andlm is a null vector
with respect to both the flat and the curved metric. It is therefore natural to picklm as one of the
null real vectors of the tetrad, sayeI 4. Starting with a system of pseudo-Cartesian coordinates
xm5~x,y,z,t! such that the Minkowski metric assumes its canonical form, and introducing the null
coordinates

j5
x1 iy

&

, j̄5
x2 iy

&

,

u5
z1t

&

, v5
z2t

&

,

the line element reads

ds252 dj dj̄12 du dv12h~e3!2. ~2.2!

It is well known that a general field of null directions in Minkowski space may be parametrized in
the form

e35du1Ȳdj1Ydj̄2ȲYdv,

whereY is a complex function, so far arbitrary. The null tetrad may be completed as follows:

e15dj2Ydv, e25dj̄2Ȳdv, e45dv1he3.

The directional derivatives of a scalar functionf therefore read

f ,15]j f2Ȳ]uf ,

f ,25] j̄ f2Y]uf , f ,35]uf2h f ,4 ,
~2.3!

f ,45]v f1Y]j f1Ȳ] j̄ f2YȲ]uf .
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The tetrad componentsRab of the Ricci tensor can now be calculated in terms of the three
unknownsh,Y,Ȳ and their derivatives in the following way. Starting from the first Cartan equa-
tion

dea5Ga
bce

b`ec,

one can calculate the quantitiesGa[bc] ~listed in Appendix A!. The Ricci rotation coefficientsGa
bc

are then obtained by

Gabc52Gbac5Ga@bc#1Gb@ca#2Gc@ab# ,

and, finally, the tetrad components of the Riemann and the Ricci tensor can be deduced from the
second Cartan equation

1
2R

a
bcde

c`ed5dGb
a1Gc

a`Gb
c ,

whereGb
a5Ga

bce
c.

We shall consider KS fields characterized by the following properties of the congruence of
null curves havingeI 4 as the tangent vector:

~1! the curves are geodesic, so that

G42452Y,450; ~2.4!

~2! the complex expansion~expansion1i rotation!,

Z:52G4215Y,1 , ~2.5!

is nonzero.
For such gravitational fields, the tetrad componentsRab of the Ricci tensor may be easily

calculated. Any real, symmetric tensor in the null tetrad formalism is completely identified by four
real components~with the values 12,33,34,44 of the indexes! and three complex components, the
remaining three being obtainable by complex conjugation. In particular, for the Ricci tensor we
have the following seven independent components:

R2450, R4450, R22522Y,2@h,41h~ Z̄2Z!#,

R3452@h,41h~ Z̄2Z!#,422Z@h,41h~ Z̄2Z!#,

R1252~Z1Z̄!@h,41h~ Z̄2Z!#22hZ212hY,2Ȳ,1 , ~2.6!

R2352@h,41h~ Z̄2Z!# ,21@h,41h~ Z̄2Z!#Y,322Y,3hZ12Y,2~h,12hȲ,3!,

R33522~hZ! ,312ZZ̄h222~h,12hȲ,3!Y,322hZ@h,41h~ Z̄2Z!#12~h,12hȲ,3! ,212h2Ȳ,1Y,2 .

III. THE ‘‘CONSTITUTIVE CONSTRAINT’’ EQUATION AND THE STRUCTURE OF THE
ENERGY-MOMENTUM TENSOR

In this section we obtain the structure of the energy-momentum tensor, which is obviously
needed to write the Einstein field equations, in the case of an elastic material acting as a source of
a KS geometry. This problem has been extensively treated in a recent paper,1 so here we simply
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express the main results in the tetrad formalism. For a detailed discussion and a brief introduction
on the basic structures of relativistic elasticity we refer the reader to that paper.

The energy tensor of an elastic body may be written as

Tmn5eumun1Pmn , ~3.1!

wheree is the energy density,um is the velocity field of the material, andPmn is the stress tensor
~sometimes called the ‘‘pressures tensor’’!. It is symmetric and orthogonal to the velocity
~Pmnu

n50!. The state of strain of the material is characterized by another symmetric, orthogonal
tensorHmn and, in order to describe the physical state of the material, the relation connecting the
strain and the stress must be given. For a generic, isotropic material such a relation may be
obtained observing that the energy density is a function of three independent strain invariants, for
which we choose the following definition:

I 1 :5
1
2~Tr K24!,

I 2 :5
1
4@Tr K

22~Tr K !2#13,

I 3 :5
1
2~detK21!,

where the symbols detK and TrK denote the determinant and the trace, respectively, of the
auxiliary tensor

Kn
m :5Hn

m2umun .

The resulting stress–strain relation is the following:

Pmn5S ]e

]I 3
detK2e D ~gmn1umun!1S ]e

]I 1
2Tr K

]e

]I 2
DHmn1

]e

]I 2
HmrHn

r . ~3.2!

In order to calculate the tetrad expression of the above quantities, it is convenient to start with
the pseudo-Cartesian coordinates x,y,z,t. Greek indexes will always refer to such coordinates; no
confusion between their numerical values and that of tetrad indexes may occur since we shall only
need the ‘‘temporal’’ components~i.e., zero-components! of the tetrad vectors.

It may be shown that relativistic elasticity has a ‘‘gauge invariance’’ which allows the choice
of the ‘‘comoving gauge’’ or, in other words, the kinematical description of the material such that
the velocity field has the simple form

um5~1/A2g00!d0
m .

In what follows, we consider only the case of non-prestressed materials, deferring a more general
treatment to a future paper in which the problem of the sources of the Kerr field will be analyzed
in details. For non-prestressed bodies, it may be shown that the expression of the strain in the
comoving frame is simply given by

Hmn5d i jd m
i d n

j .

We can now calculate the required tetrad expression of the energy tensor. First of all, we
observe that

ua5Gea0 , ua5G~2ea
012hkda

3!,

where we have defined
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G:5
1

A2g00
5A 1

122hk2
,

k:5 l 05
1

&

~11YȲ!.

The tetrad version of the strain reads

Hab5gab1ea
0eb

022hda
3db

3.

The square of such a tensor is then

HacHb
c5Hab22hQab ,

where

Qab :5da
3db

32k~ea
0db

31eb
0da

3!1k2ea
0eb

0.

FromKab5Hab2uaub it follows

detK51/G2, Tr K5422hk2.

Inserting the above results in~3.1! and~3.2!, one readily obtains the tetrad version of the energy-
momentum tensor:

Tab5euaub1S 1G2

]e

]I 3
2e D ~gab1uaub!1F ]e

]I 1
2~322hk2!

]e

]I 2
GHab22h

]e

]I 2
Qab .

It may be shown that, if the null vectorlm of a KS metric is geodesic, then it is an eigenvector
of the Einstein tensor.12 All the KS space–times considered here have a geodesic null vector@Eq.
~2.4!#, so that the energy tensor of the material has to satisfyTn

ml n52e lm. This equation may be
interpreted as a condition on the state equation of the body, and therefore has been called ‘‘con-
stitutive constraint.’’1 The tetrad version of such a constraint reads

Ta452ega4 , ~3.3!

that is,

2~da
31kea

0!S ]e

]I 3
1

]e

]I 1
23

]e

]I 2
D50.

Therefore, the constraint implies

]e

]I 3
1

]e

]I 1
53

]e

]I 2
. ~3.4!

This result obviously agrees with that previously obtained1 using a coordinate-dependent method.
From now on, we assume that the energy density, regarded as a function of the strain invari-

ants, satisfies~3.4!. Using such an equation to eliminate]e/]I 1 in the expression of the energy
tensor, we obtain

Tab52~e1k2P !gab2kP ~ea
0db

31eb
0da

3!1P ~112hk2!da
3db

3, ~3.5!
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where

P :52hS ]e

]I 3
2

]e

]I 2
D .

We stress that the material described by Eq.~3.5! is not a perfect fluid. In fact, although such a
material is described by the energy density and only one principal stressP , it may be easily
verified that the corresponding energy tensor~3.5! is anisotropic. It becomes isotropic only ifP
vanishes. In this case, however, the energy tensor turns out to be proportional to the metric
(Tab52egab) and it follows fromTa;b

b 5 0 thate has to be a constant. Thus the resulting ‘‘perfect
fluid’’ is formally equivalent to a cosmological constant term in the vacuum Einstein field equa-
tions.

IV. THE EINSTEIN FIELD EQUATIONS

We consider here the Einstein field equations in the formGab52Tab owing to our choice of
units and to the useful conventionTab 5 8pTab

true ~in other words, we adsorb the factor 8p into the
definition of e and P !. Due to Ra

a52(R121R34), one hasG1252R34, G3452R12, while
Gab5Rab for the other components. From the constitutive constraint~3.3! we haveT245T4450.
But, from ~2.6!, one hasR245R4450 and therefore the corresponding field equations hold iden-
tically. Using ~3.5! and ~2.6! the field equations to be satisfied turn out to be the following:

R2250, R1252e, R3452~e1k2P !,
~4.1!

R1352~kȲ/& !P , R2352~kY/& !P , R335YȲP .

We start considering equationR2250. From~2.6! we obtain eitherY,250 orh,41h(Z̄2Z)50.
We remind the reader that, in the vacuum case, the Goldberg–Sachs theorem assures thatY,2
vanishes and therefore thee3 congruence is shear-free. In the nonvacuum case, the vanishing of
h,41h(Z̄2Z) givesR3450, which is consistent with the sources only ife1k2P vanishes too. It
may be verified that this situation corresponds to a very particular case in which the energy-
momentum tensor has limiting~stringlike or monopolelike! properties.13 We shall not further
investigate this case in the present paper, and therefore, from now on, we proceed assuming
e1k2P to be nonvanishing. This implies that thee3 congruence is shear-free:

Y,250, ~4.2!

so that

dY5Y,ae
a5Ze11Y,3e

3. ~4.3!

The field equationR2250 is now satisfied. Due to~4.2!, the remaining equations reduce to the
following:

@R12#°~Z1Z̄!@h,41h~ Z̄2Z!#12hZ25e,

@R34#°@h,41h~ Z̄2Z!# ,412Z@h,41h~ Z̄2Z!#5e1k2P ,

@R13#°@h,41h~Z2Z̄!# ,12@h,41h~Z2Z̄!#Ȳ,312Ȳ,3hZ̄5kȲP /&, ~4.4!

@R23#°@h,41h~ Z̄2Z!# ,22@h,41h~ Z̄2Z!#Y,312Y,3hZ5kYP /&,

@R33#°2~hZ! ,322ZZ̄h212~h,12hȲ,3!Y,312hZ@h,41h~ Z̄2Z!#22~h,12hȲ,3! ,252YȲP .
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The equations above are a system of five partial differential equations for the five unknowns~three
real and two complex conjugate! e,P ,h,Y,Ȳ. Therefore, we expect them to allow the determina-
tion of such fields.

We shall now elaborate the field equations ending up with a form which makes them directly
comparable with the DKS vacuum ones.

Rewrite the equation@R12# in the form

h,41h
Z21Z̄2

Z1Z̄
5

e

Z1Z̄
.

If e50, this is obviously a vacuum equation and, from the DKS work, we know that its general
solution is proportional toZ1Z̄, the factor of proportionality having zero fourth tetrad derivative
~this is a consequence of the commutation relationZ,452Z2, see Appendix B!. Then, we can
write

h5 1
2M ~Z1Z̄!, ~4.5!

where

M ,45
2e

~Z1Z̄!2
. ~4.6!

The field equation@R12# is thus equivalent to the above equation. It is easy to check that, using
~4.5! and ~4.6! in the equation@R34#, one obtains

e ,45k2P ~Z1Z̄!. ~4.7!

This equation, as we shall see, coincides with the ‘‘conservation’’ equationT4;b
b 5 0.

Consider now the equation@R23# and its complex conjugate. Using Eqs.~4.5! and ~4.6!, it
reduces to

M ,223
Z̄

Z
Y,3M5L,

where we have defined

L:5
1

Z2 F S e

Z1Z̄D
,2

2
e

Z1Z̄
Y,32

YkP

&

G . ~4.8!

The real equation@R33# may finally be simplified using all the previous results. A rather cumber-
some but straightforward calculation~in which the commutation relations listed in Appendix B
play a key role! leads to

M ,32
Y,3

Z
M ,12

Ȳ,3

Z̄
M ,252

e

Z1Z̄
M1K

with

K :5
1

2ZZ̄
@2YȲP1~ZL! ,11~ZL! ,22ZLȲ,32ZLY,3#. ~4.9!
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Summarizing, the field equations~4.4! may be rewritten as follows:

M ,153
Z

Z̄
Ȳ,3M1L̄, M ,253

Z̄

Z
Y,3M1L,

M ,35
Y,3

Z
M ,11

Ȳ,3

Z̄
M ,22

e

Z1Z̄
M1K , ~4.10!

M ,45
2e

~Z1Z̄!2
, e ,45k2P ~Z1Z̄!.

Together with the Einstein field equations, obviously we have to take into account their
compatibility conditions~due to Bianchi identities!, which in the presence of matter fields are
equivalent to the ‘‘conservation’’ equationsTa;b

b 5 0 for the energy tensor.
In our case, these equations may be written as follows:

~e1k2P ! ,15k2Ȳ,3P1
kP Ȳ

&

~Z12Z̄!1
kȲ

&

P ,4 ,

~e1k2P ! ,25k2Y,3P1
kPY

&

~ Z̄12Z!1
kY

&

P ,4 , ~4.11!

D̂e50, e ,45k2P ~Z1Z̄!,

where we have introduced the differential operatorD̂ whose action on a scalar functionf is given
by

D̂ f :5~1/& !@Y f,11Ȳf ,21k& f ,31~hk&21! f ,4#. ~4.12!

It is easy to check that this expression is the tetrad version of the partial derivative with respect to
the pseudo-Cartesian t-coordinate. Therefore, owing to the Bianchi identityD̂e50, the energy of
the source must be a stationary function.

V. THE VACUUM CASE: AN OVERVIEW ON THE DEBNEY–KERR–SCHILD SOLUTIONS

In the present section, we briefly overview the integration of the vacuum equations originally
due to Debney, Kerr, and Schild.14 This account is essential for our purposes, and, moreover, we
hope that it may be useful for the readers.

When no matter is present,e5P50 and thereforeL andK vanish. As a consequence, Eqs.
~4.10! reduce to

M ,153
Z

Z̄
Ȳ,3M , M ,253

Z̄

Z
Y,3M ,

~5.1!

M ,35
Y,3

Z
M ,11

Ȳ,3

Z̄
M ,2 , M ,450.

Observe now that, as a consequence of~2.4! and ~4.3!, the three functionsY, Ȳ, andM each
satisfy the same pair of partial differential equations
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X,450, X,32
Y,3

Z
X,12

Ȳ,3

Z̄
X,250. ~5.2!

However, the base space on which such functions are defined is four dimensional, andY andȲ are
functionally independent according to the hypothesis of a nonvanishingZ. Therefore, any other
function satisfying~5.2! must be functionally dependent onY and Ȳ. Thus, we can put

M5
m

P3 , ~5.3!

wherem is a constant andP5P(Y,Ȳ) is a real function. The equations forM ,3 andM ,4 are now
satisfied while the equation forM ,2 may be rewritten as

Y,352
ZPȲ

P
, ~5.4!

wherePȲ 5 ]P/]Ȳ. It follows that alsoY,3 /Z 5 2PȲ /P depends only onY andȲ, so that

SY,3

Z D
,2

5Z̄SY,3

Z D
Ȳ

,

and, using the commutation relations of Appendix B,

S Y,3

Z
D
Ȳ

5
1

Z̄
S Y,3

Z
D
,2

5
1

Z̄
S Y,32

Z
2
Y,3

Z2
Z,2D 5S Y,3

Z
D 2.

Thus,~5.4! implies

PYY52S P Y,3

Z D
Ȳ

50.

SinceP is real.PYY vanishes, too, and thereforeP must be a bilinear function inY and Ȳ:

P5pYȲ1qY1q̄Ȳ1c ~5.5!

with p andc real constants andq complex constant. Finally, one reaches the following formula for
dY:

dY5
Z

P
~Pe12PȲe

3!, ~5.6!

that is, using the explicit expression of the tetrad vectors,

dY5
Z

P
@~qY1c!~dj2Ydv !2~pY1q̄!~du1Ydj̄ !#. ~5.7!

This differential equation may now be integrated and the general solution is given in implicit form
by
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F50,
~5.8!

F:5f~Y!1~qY1c!~j2Yv !2~pY1q̄!~u1Yj̄ !,

wheref(Y) is an arbitrary analytic function. This result, not completely straightforward in our
opinion, is given without an explicit proof in the original DKS paper; we sketch then a proof in
what follows.

The functionY defined by~5.7! identifies a particular class of geodesic, shear-free congru-
ences characterized by~4.3!. However, Kerr’s theorem15 states that all such congruences are given
implicitly by an equation of the form

F ~Y,l1 ,l2!50, ~5.9!

whereF is a completely arbitraryanalytic function of the quantities

l15j2Yv, l25u1Yj̄.

Therefore, all we have to do is to identify which further restrictions are imposed onF by the
Einstein field equations. Comparing~4.3! with ~5.6!, we see thatY satisfiesonemore equation
besidesY,25Y,450 ~which are the hypotheses of Kerr’s theorem!, namely ~5.4!. Using
Z5]jY2Ȳ]uY and ~5.5!, such equation gives

~pY1q̄!]jY52~qY1c!]uY.

However, ifY is defined implicitly by~5.9!, one has

]jY52
1

F Y

]F

]l1
, ]uY52

1

F Y

]F

]l2
,

and thereforeF must be a solution of

~pY1q̄!
]F

]l1
1~qY1c!

]F

]l2
50.

This linear partial differential equation in three independent variables fixes only the dependence of
F on l1 andl2. Thus, it is easy to check that its general solution is given by

F ~Y,l1 ,l2!5F̃ ~Y,t!,

whereF̃ is a new arbitrary analytic function, and

t :5~qY1c!l12~pY1q̄!l2 .

It follows that the general solution of~5.7! is given by

F̃ „Y,~qY1c!~j2Yv !2~pY1q̄!~u1Yj̄ !…50.

This equation definesY as a function oft, but alsot as a function ofY, and therefore one can
substitute it~without loss or gain in generality! with the DKS formula~5.8!.

Returning to the solution of the field equations, and differentiating~5.8!, we readily obtain

Z52
P

FY
. ~5.10!
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Summarizing, the vacuum DKS solutions are given by the following line element:

ds252 dj dj̄12 du dv1m
Z1Z̄

P3 ~du1Ȳdj1Ydj̄2YȲdv !2, ~5.11!

whereP, Y, andZ are defined by~5.5!, ~5.8!, and~5.10!, respectively. It may be shown12 that all
such solutions are algebraically special, the null vectoreI 4 being a multiple principal null direction
of the Weyl tensor.

The solutions~5.11! may be simplified by coordinate transformations because all of them
admit at least one group of motions. In fact, introducing the real, linear differential operator

K̂:5Km]m5c]u1q̄]j1q] j̄ 2p]v ,

it is easy to check thatK̂Y50. Moreover,K̂ commutes with the directional derivatives alongeI 1
andeI 2, so thatK̂Z also vanishes. It follows thatKm is a Killing vector of the DKS metrics. Since
Km has constant components, it is also a translational Killing vector of flat space–time. In the three
cases in whichhmnK

mKn is ~a! negative,~b! positive, or ~c! zero, one can, without loss of
generality, make the following choice for the coefficients inP:

~a!p5c51/&,q50; ~b!p52c521/&,q50; ~c!p5q50,c51. ~5.12!

Correspondingly, one has

~a!P5k, Km]m5~1/& !~]u2]v!,

~b!P5~1/& !~12YȲ!, Km]m5~1/& !~]u1]v!,

~c!P51, Km]m5]u .

The case~a! evidently corresponds to stationary space–times (Km]m5D̂).
One may now ask whether the DKS solutions admit additional Killing vectors. In particular,

a physically interesting case is obviously that of axially symmetric space–times. The generator of
rotations along the z axis written in the x,y,z,t coordinates is obviously given by

F̂:5Fm]m5x]y2y]x5 i ~ j̄] j̄ 2j]j!.

It is not difficult to verify thatFm is a Killing vector for the metric~2.2! if and only if

F̂Y52 iY, F̂h50.

In each of the three cases listed in~5.12!, the first of such equations implies

f5YfY .

Once this condition is satisfied, one hasF̂P5F̂Z5F̂Z̄50 so thatF̂h50 holds identically due to
the relation

h5
1

2
~Z1Z̄!

m

P3 .

It follows that axisymmetric DKS solutions exist only iff is a linear homogeneous function ofY.
If the Killing vector Km is timelike, one obtains stationary, axially symmetric KS fields. In
particular, the choicef52iaY with a reala leads to the Kerr solution of massm and angular
momentumma, and thereforef50 leads to the Schwarzschild solution.
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VI. THE NONVACUUM CASE: A METHOD OF REDUCTION OF THE FIELD EQUATIONS

We turn now to the Einstein field equations in matter@Eqs. ~4.10!#. Such equations are five
highly nonlinear partial differential equations for the five unknownse,P ,M ,Y,Ȳ. We know a
particular solution of them, namely the DKS vacuum fielde5P50 andY,Ȳ,M given by the
equations~5.3!, ~5.5!, and~5.8! above. In general, of course, knowledge of vacuum solutions is of
little help in solving the coupled Einstein–matter problem. However, there are interesting cases in
which generating techniques may be applied to vacuum solutions to obtain nonvacuum ones. We
shall now try to construct one such technique to obtain some solutions of our equations. It will turn
out that it is, in fact, possible to obtain solutions using an approach similar to the method of
variation of the arbitrary constants familiar from the theory of ordinary differential equations.

The idea is the following. The first four equations in~4.10! look like the vacuum ones@Eqs.
~5.1!# with the addition of a source term on the right-hand side. This suggests the ansatz

M5
N

P3 ,

whereP is defined in~5.5! andN is a new unknown. Such a function is a ‘‘variation of the
constant’’m which appears in the vacuum case. The equation forM ,2 now gives

N,223Z̄NS PȲ

P
1
Y,3

Z D5P3L. ~6.1!

The above formula would effectively correspond to the result of a ‘‘variation of the arbitrary
constants’’ with respect to the vacuum solution if the term in brackets vanishes. Evidently, this is
possible whenever the equation~5.4! ~which is a field equation for vacuum fields! holds in the
nonvacuum case too. Therefore, in order to proceed with our construction, we have toassumethe
validity of such an equation as a condition onY.16 From now on, we introduce such a condition as
an explicit assumption. It must, however, be remarked that~5.4! and its complex conjugate have
now to be considered as additional partial differential equations ‘‘superimposed’’ on a system of
five equations for five variables and must be compatible with such equations. Therefore, it is not
guaranteeda priori that the resulting system does admit, in general, solutions different from the
‘‘trivial’’ vacuum ones.

Recall now that the field equations in vacuum give only one differential equation forY,
namely~5.4!. Therefore, if~5.4! is satisfied also in the matter case, the functionY turns out to be
the same as in vacuum. In such a case, in order to obtain a solution in matter, one can choose an
explicit DKS solution forY ~choice off,p,q,c! as a ‘‘seed.’’ Then, the gravitational field turns
out to be described by thevacuumfieldsY andȲ and by the functionh, which is given in terms
of N by the relation

h5
1

2
~Z1Z̄!

N

P3 . ~6.2!

The physical properties of the elastic material are described by the functionse andP , and the
three unknownsN,e,P are governed by the following eight equations~Einstein1Bianchi!:

N,15P3L̄, N,25P3L,
~6.3!

N,352PȲP
2L̄2PYP

2L2
e

Z1Z̄
N1P3K , N,45P3

2e

~Z1Z̄!2
,
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~e1k2P ! ,152
k2PYZ̄

P
P1

kP Ȳ

&

~Z12Z̄!1
kȲ

&

P ,4 ,

~e1k2P ! ,252
k2PȲZ

P
P1

kPY

&

~ Z̄12Z!1
kY

&

P ,4 , ~6.4!

D̂e50, e ,45k2P ~Z1Z̄!.

As we have already stressed, once a seed solution has been explicitly chosen, one has to check
whether this ‘‘seed’’ is such as to generate a nonvacuum solution. This requirement may be
expressed in terms of the integrability conditions on the above equations, conditions which may be
obtained using the commutation relations between tetrad derivatives~Appendix B!. It turns out to
be very complicated to identifyall the compatible DKS seeds. Fortunately, however, the set of
such ‘‘seeds’’ turns out to be not empty. In the present paper we shall concentrate only on two
simple but interesting cases which are generated by two Petrov type D vacuum solutions and will
be discussed in the next two sections.

VII. A SIMPLE EXAMPLE: THE KOWALCZYN´ SKI–PLEBAŃ SKI SOLUTIONS

As a first example of the procedure outlined above, we are going to deduce within our
formalism a simple class of solutions originally due to Kowalczyn´ski and Pleban´ski.9

We start from vacuum solutions having a null Killing vectorKm and restrict ourselves to the
‘‘Kerr choice’’ for f, namelyf(Y)52 iaY. These assumptions imply thatP51 and that the
‘‘seed’’ vacuum solution is

Y5Y~j,v !5
j

v1 ia
. ~7.1!

It may be verified17 that this seed corresponds to one of the NUT8 solutions, the constanta being
related to the NUT parameter.

As far as the material source is concerned, we consider only the casee5const5l andP50,
so that the energy tensor (Tab5lgab) is formally equivalent to a cosmological constant term in
the vacuum Einstein field equations. It follows that the ‘‘conservation’’ equations~6.4! hold
identically.

From ~7.1! one obtains thatY,3 vanishes and that

Z5Z~v !5
1

v1 ia
;

thusZ,1 andZ,2 both vanish together with their complex conjugates due to Eqs.~2.3!. In turn, this
implies thatL andK vanish@Eqs.~4.8! and ~4.9!# and Eqs.~6.3! reduce to

N,15N,250, N,352
l

Z1Z̄
N, N,45

2l

~Z1Z̄!2
.

This system of equations is compatible, as one may readily check observing that
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dN5N,3e
31N,4e

45
1

2
lS v21a2

v D 2dv, ~7.2!

and thusN is a function ofv only. Straightforward integration now yields

N~v !5
l

2 S v33 12a2v2
a4

v D1m0 ,

wherem0 is an arbitrary constant. Finally, due to~6.2!, we end up with the Kowalczyn´ski–
Pleban´ski result

h~v !5
1

2
~Z1Z̄!N~v !5

1

2
m0~Z1Z̄!1

l

2
ZZ̄S v43 12a2v22a4D .

VIII. GENERATION OF SOLUTIONS STARTING FROM THE SCHWARZSCHILD ‘‘SEED’’

As we have seen, among the DKS solutions, the stationary ones contain the Kerr field and
therefore the Schwarzschild one. It is of obvious physical interest to investigate whether the seeds
corresponding to such solutions generate interior solutions. In the present paper we shall focus our
attention only on the most simple case, namely the Schwarzschild one.

Letting f50 and assuming stationariety (P5k), Eq. ~5.8! reads

j̄Y21z&Y2j50,

@where z5(u1v)/&# so thatY is given by a quadratic equation. We choose the positive root and
therefore set

Y5
r2z

j̄&
,

wherer 5 Ax21y21z2 is the radial coordinate of a spherical system in the flat base space.
It turns out that the complex expansion actually is real,

Z5
r2z

jj̄&
5Z̄,

and the commutation relations then implyZ,25Z̄,250 together with their complex conjugates.
Moreover, one has

k5
1

&

~11YȲ!5rZ. ~8.1!

Applying the ‘‘D̂ ’’ operator ~4.12! to the last equation in~6.4!, and observing thatD̂ com-
mutes with the directional derivative alongeI 4 whenD̂Y vanishes, we see thatP is stationary ife
andY are. Therefore, the Bianchi identities~6.4! may be rearranged in terms of the tetrad deriva-
tives of the auxiliary function

h:5e1k2P ,

and read
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h ,15
kȲ

&

@P ,412ZP #, h ,25
kY

&

@P ,412ZP #,

~8.2!
D̂h50, h ,45k2@P ,412ZP #.

The above equations may be rewritten~formally, at the present stage! as

dh5~P ,412ZP !F Ȳdj1Ydj̄1
1

&

~12YȲ!dzG . ~8.3!

We remind the reader that, in the above formula, bothY andȲ areknownfunctions coming from
the chosen seed solution. Using the seed explicitly, one obtains

dh5~P ,412ZP !
r2z

jj̄&
~ j̄ dj1j dj̄1z dz!5~P ,412ZP !Zr dr. ~8.4!

Therefore, in order to assure the compatibility of the above equation,h must be a function ofr
only and the relation

P ,412ZP5
1

rZ

dh

dr
~8.5!

must hold. Using~8.1! andP5~h2e!/k2, this gives

h ,42e ,412Z~h2e!5Zr
dh

dr
. ~8.6!

It is now convenient to introduce the anglesq 5 arctan(Ax21y2/z! and w5arctan~y/x! of the
spherical system of coordinates in the base space. It is easy to check that

r ,45Zr, q ,45w ,450.

and then

e ,45
]e

]r
r ,41

]e

]q
q ,41

]e

]w
w ,45Zr

]e

]r
,

while

h ,45Zr
dh

dr
.

It follows that ~8.6! reads

]e

]r
5
2

r
~h2e!,

for every arbitrary choice ofh. The general solution, denoting

h5 f ~r !,

is then given by
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e5
E~q,w!

r 2
1

2

r 2 Er0
r

s f~s!ds,

P5
1

~Zr !2
„f ~r !2e~r ,q,w!…,

where f (r ) andE~q,w! are arbitrary functions.
The above procedure allowed us to calculate the material variablese andP independently

from N. Therefore,~6.3! now become linear differential equations inN only. Denoting byC the
action ofD̂ on N, a simple calculation shows that such equations can be written as follows:

N,15S r 3e2 D
,1

2
Ȳr 2f ~r !

&

, N,25S r 3e2 D
,2

2
Yr2f ~r !

&

,

N,35S r 3e2 D
,3

1
C

rZ
2
r f ~r !

2Z S 12YȲ22
N

r D , N,45S r 3e2 D
,4

2Z f~r !r 3.

Defining the auxiliary function

L:5N2
r 3e

2
,

we can write the following formula for the differential ofL:

dL5
1

Zr
@C2r 2f ~r !#F Ȳdj1Ydj̄1

1

&

~12YȲ!dzG1Cdt5@C2r 2f ~r !#dr1Cdt. ~8.7!

In order to assure the compatibility of the above equation we must calculateC explicitly. A quite
long but straightforward calculation gives

C5D̂N5 1
2r
2~E,121E,21!5 1

2r
2DE,

whereD denotes the flat Laplace operator. ThereforeC5r 2DE/2 is a function ofu andw only,
and the necessary and sufficient condition for the compatibility of~8.7! isC5const. It follows that
the functionE must be a solution of the equation

]2E

]q2 1
cosq

sin q

]E

]q
1

1

sin2 q

]2E

]w2 52C.

It is easy to check that such an equation admits a regular solution only ifC vanishes, and in such
a case the solution is constant. Therefore, nonsingular solutions of our problem exist only ifC is
zero andE is a constant or, in other words, ifL depends onr only. In any case, we have

L~r ,t!5C~r2r 0!2E
r0

r

s2f ~s!ds1Ct,

and finally

N~r ,q,w,t!5C~r2r 0!1E
r0

r

s~r2s! f ~s!ds1
1

2
rE~q,w!1Ct. ~8.8!

5711E. Brinis Udeschini and G. Magli: A null-tetrad approach to KS fields in matter

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The line element we have obtained reads, therefore, as follows:

ds252dt21dr21r 2~dq21sin2 qdw2!1
2N~r ,q,w,t!

r
~dt1dr !2. ~8.9!

For N5m5const, this is the Schwarzschild line element~in the so-called Eddington form!, as it
must be. ForC50 andE5const, this is a static, spherically symmetric interior solution.10 It
satisfies the familiar mass-density relation for spherically symmetric static fields, namely

]N

]r
5
1

2
r 2e.

In the general case in whichC is nonvanishing, the line element~8.9! describes an interior
Kerr–Schild geometry which has no easily recognizable symmetries. As far as we are aware such
metrics are new, but their physical meaning is doubtful because they are necessarily singular in
u50 or u5p.

IX. CONCLUDING REMARKS

The main problems in solving the Einstein field equations are obviously due to their intrinsic
nonlinearity. However, since the work by Gu¨rses and Gu¨rsey,18 it is known that an underlying
linear structure exists in the case of Kerr–Schild space–times both in the vacuum and in the
electrovacuum case. As was recently shown,1 this linear structure comes into play also in the case
of elastic matter, and allows the decoupling of the equations governing the gravitational field
~which are linear partial differential equations! from those governing the material quantities
~which turn out to be algebraic!.

In the present paper we have shown that, if the same problem is approached using the
null-tetrad formalism, linearity appears under the quite unexpected form of the possibility of
‘‘variation of the arbitrary constants.’’ This result appears to be promising in the perspective of
solving some of the open problems left unsolved in Ref. 1. In fact, approaching the field equations
using the coordinate-dependent method, one has to solve a boundary value problem for an elliptic,
although linear, equation. Therefore, one is immediately faced with the absence of explicit sets of
eigenfunctions if the boundary is not trivial. Here instead, although the null-tetrad machinery is
somewhat intricate, the ‘‘variation of arbitrary constants’’ should allow us to study, for example,
the matching problem with the Kerr metric, starting with a seed metric whose principal null
direction satisfies the boundary conditions however complicated they can be. We think, in addi-
tion, that the possibility of expressing the stresses in terms of invariant tetrad components should
result in facilitating the analysis of the physical properties of the sources even in the general case
of prestressed bodies. It might be necessary to consider such bodies in order to satisfy the com-
patibility conditions in the Kerr case. Work in this direction is now in progress.
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APPENDIX A: Ga[bc ] COEFFICIENTS

The nonvanishing skew-symmetric part of the Ricci rotation coefficients in the case of a
geodesic~Y,450! Kerr–Schild geometry are given by
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2G1@14#52Ȳ,1 ,

2G1@13#5hȲ,1 ,

2G1@23#5hZ̄,

2G1@24#52Z̄,

2G1@34#52Ȳ,3 ,
2G2@14#52Z,
2G2@13#5hZ,
2G2@23#5hY,2 ,

2G2@24#52Y,2 ,
2G2@34#52Y,3 ,

2G3@12#5h~Z2Z̄!,

2G3@31#5hȲ,32h,1 ,

2G3@32#5hY,32h,2 ,
2G3@43#5h,4 ,

2G4@12#5Z2Z̄,

2G4@31#5Ȳ,3 .

APPENDIX B: COMMUTATION RULES IN THE SHEAR-FREE CASE

For Y,250, the commutation rules coming from the above Ricci coefficients read

2 f @12#5~Z2Z̄!~ f ,31h f ,4!,

2 f @13#5hZ f,12Ȳ,3~ f ,31h f ,4!1 f ,4h,1 ,

2 f @14#52Z f ,1 ,

2 f @34#52~Y,3f ,11Ȳ,3f ,21h,4f ,4!,

2 f @23#5hZ̄f ,22Y,3~ f ,31h f ,4!1 f ,4h,2 .

Applying such formulas toY, it follows

Z,25~Z2Z̄!Y,3 , Z,35Y,311hZ22Y,3Ȳ,3 ,

Z,452Z2, Y,3452ZY,3 , Y,325~Y,3!
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The heat kernel expansion for a general nonminimal operator on the spacesC`(Lk)
andC`(Lp,q) is studied. The coefficients of the heat kernel asymptotics for this
operator are expressed in terms of the Seeley coefficients for the Hodge–de Rham
Laplacian. ©1996 American Institute of Physics.@S0022-2488~96!01509-5#

Let M be a compact Reimannian manifold of dimensionm without boundary. IfM is
equipped with integrable complex structure, one can split tagential indices into holomorphic and
antiholomorphic ones and define space of differential formsC`(Lp,q). The exterior differentiald
can be also split into a sumd5]1 ]̄ of anticommuting nilpotent operators:]25 ]̄25]]̄1 ]̄]50.
If M is a Kähler manifold, the corresponding ‘‘Laplacians’’ can be reduced to the Hodge–de
Rham Laplacian:

]]*1]* ]5 ]̄ ]̄*1 ]̄* ]̄5 1
2D5 1

2~dd1dd!. ~1!

Using these first order differential operators one can construct a~nonminimal! second order
differential operator:

D5g1]]*1g2]* ]1g3]̄ ]̄*1g4]̄* ]̄1g5]]̄*1g5* ]̄]* , ~2!

with real constantsg1 ,...,g4 and a complex constantg5. For some values of the constants this
operator reduces to that considered previously in the paper,1 where one can find some motivations
for studying nonminimal operators. Such operators appear naturally in quantum gauge theories
after imposing gauge conditions.2–5

For a self-adjoint second order operatorL with non-negative eigenvalues$ln% one can define
the integrated heat kernel

Tr~e2tL!5(
n

e2tln. ~3!

As t→01 , there is an asymptotic expansion of the form

Tr~e2tL!5
1

~4p!m/2 (
n50

`

an~L !t ~2n2m!/2. ~4!

a!On leave from: Department of Theoretical Physics, St. Petersburg University, 198904 St. Petersburg, Russia. Electronic
mail: vasilevich@phim.niif.spb.su
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In this paper, we study the heat kernel expansion for the nonminimal operatorD ~2! and relate the
Seeley coefficientsan~D! to that for the Laplace operatoran~D!. General expressions foran~D!,
n50,1,2,3 suitable for the spaces of differential forms can be found in the paper.6 In particular
cases, this problem was solved in Refs. 1, 3–5. In a sense, we suggest an extension of the Theorem
1.2 of Ref. 1 for the case of complex geometry.

First we study the heat kernel forD acting on the space ofk forms,C`(Lk). Next the caseD :
C`(Lp,q)→C`(Lp,q) is considered. This assumes some restrictions on the constants in Eq.~2!,
but a more detailed information can be obtained.

Consider the heat kernel for nonminimal operators acting on the spaceC`(Lk) of k forms. Let
us discuss some properties of first order operatorsD1 andD2, which will be used later to build up
a general nonminimal second order operatorD .

Lemma 1: LetD1 andD2 be operators onC
`~L! having the following properties:~a! D1, D2:

C`(Lk)→C`(Lk11), ~b! D1
25D2

250, ~c! D1D2 1 D2D1 5 D1D2* 1 D2*D1 5 0, ~d! D1D1*
1D1*D15aD, D2D2* 1D2*D25bD, a,bÞ0. Then

~1! C`(Lk)5Ker(D)% im(D1)% im(D1* )5Ker(D)% im(D2)% im(D2* ),
~2! C`(Lk)5Ker(D)% (D1D2)k% (D1D2* )k% (D1*D2)k% (D1*D2* )k .
~3! The following mappings are isomorphisms:

~D1D2!k ↔
D1D1*

~D1*D2!k21 , ~D1*D2!k ↔
D2D2*

~D1*D2* !k21 ,

~D1D2* !k ↔
D1D1*

~D1*D2* !k21 , ~D1D2!k ↔
D2D2*

~D1D2* !k21 ,

where operatorsD act from right to left, andD* act from left to right. We introduced the notation
(AB)k5im(A)ùim(B)ùC`(Lk).

~4! LetDk5 DuC`(Lk) , f (t,D)5 Tr exp(2 tD)f(t,A,B,k)5Tr exp@ 2 tDu(AB)k#.Then in theseno-
tations

f ~ t,D1* ,D2* ,k!5(
l50

k

~21! l~ l11!~ f ~ t,Dk2 l !2bk2 l !, ~5!

wherebk denote Betti numbers.
Proof: The proof of the first statement repeats standard proof7 of the same property for

operatord. The decomposition 2. can be obtained by repeating twice the decompositions 1. The
third statement follows from the anticommutativity properties~b! and ~c!. To prove the last
statement observe that all spaces appearing in the second statement of Lemma 1 are eigenspaces
of the Laplace operator. Hence,

f ~ t,Dk!5bk1 f ~ t,D1 ,D2 ,k!1 f ~ t,D1* ,D2 ,k!1 f ~ t,D1 ,D2* ,k!1 f ~ t,D1* ,D2* ,k!, ~6!

f ~ t,D1 ,D2 ,k!5 f ~ t,D1* ,D2 ,k21!5 f ~ t,D1 ,D2* ,k21!5 f ~ t,D1* ,D2* ,k22!. ~7!

Now we can expressf (t,D1* ,D2* ) from Eq. ~6! and by repeated use of Eq.~7! obtain

f ~ t,D1* ,D2* ,k!52 f ~ t,D1* ,D2* ,k21!1(
l50

k

~21! l~ f ~ t,Dk2 l !2bk2 l !. ~8!

Now the statement of the Lemma follows by induction. h

It is easy to see that the operators
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D15x1]1y1]̄, D25x2]1y2]̄, ~9!

satisfy conditions of Lemma 1 provided the equationx1x2* 1 y1y2* 5 0 holds for complex param-
eters x1, x2, y1, and y2. The constantsa and b are real and positive:a51

2(ux1u
21uy1u

2),
b51

2(ux2u
21uy2u

2). The nonminimal operator

D5aD1D1*1bD1*D11cD2D2*1dD2*D2

5~aux1u21cux2u2!]]*1~bux1u21dux2u2!]* ]1~auy1u21cuy2u2!]̄ ]̄*

1~buy1u21cuy2u2!]̄* ]̄1@~a2b!x1y1*1~c2d!x2y2* #]]̄*1@~a2b!y1x1*1~c2d!y2x1* #]̄]*

~10!

with real constantsa, b, c, d is the most general hermitian operator onC`(Lk) which can be
constructed using], ]̄, ]* , and ]̄* . This operator has the form~2!.

The following Theorem gives the heat kernel asymptotics forD .
Theorem 1. Let D1 andD2 satisfy conditions of Lemma 1. Then the coefficientsan of the

heat kernel expansion for the operatorD ~10! have the form

an@D uC`~Lk!#5~aa1bc!n2~m/2!(
l50

k22

~21!k2 l~k2 l21!an~D l !2@~aa1bd!n2~m/2!

1~ab1bc!n2~m/2!#(
l50

k21

~21!k2 l~k2 l !an~D l !1~ab1bd!n2~m/2!(
l50

k

~21!k2 l

3~k2 l11!an~D l !.

Proof consists in repeated use of Lemma 1. Note, that to ensure existence of all traces of
exponentials for positivet one should take non-negativea, b, c, d.

Consider nonminimal operators onC`(Lp,q). To ensure thatD mapsC`(Lp,q) on itself we
should chooseD15], D25 ]̄. The following notations will be useful:

~AB!p,q5 im~A!ù im~B!ùC`~Lp,q!, Dp,q5DuC`~Lp,q! . ~11!

Other notations are modified by replacingk by p,q in Lemma 1.bp,q will denote Hodge numbers.
Next Lemma replaces the Lemma 1.
Lemma 2. 1:C`(Lp,q)5Ker(Dp,q)% (]]̄)p,q% (]]̄* )p,q% (]* ]̄)p,q% (]* ]̄* )p,q .

2. The following maps are isomorphisms:

~]]̄ !p,q↔
],]*

~]* ]̄ !p21,q , ~]* ]̄ !p,q↔
]̄, ]̄ *

~]* ]̄* !p,q21 ,

~]]̄* !p,q↔
],]*

~]* ]̄* !p21,q , ~]]̄ !p,q↔
]̄, ]̄ *

~]]̄* !p,q21 ,

where the operators] and ]̄ act from right to left, and the operators] * and ]̄* act from left to
right.
4. f (t,]* ,]̄* ,p,q)5(k,l50

p,q (21)k1 l( f (t,Dp2k,q2 l)2bp2k,q2 l).
The proof repeats that of Lemma 1 with minor modifications Now we can prove the following

theorem.
Theorem 2: Let D5a]]*1b]* ]1c]̄ ]̄*1d]̄* ]̄ on C`(Lp,q). Then
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an~D !5S b1d

2 D n2~m/2!

an~Dp,q!1F S b1c

2 D n2~m/2!

2S b1d

2 D n2~m/2!Gan~Dp,q21!1F S a1d

2 D n2~m/2!

2S b1d

2 D n2~m/2!Gan~Dp21,q!1F S a1c

2 D n2~m/2!

1S b1d

2 D n2~m/2!

2S a1d

2 D n2~m/2!

2S b1c

2 D n2~m/2!G (
k,l50

p21,q21

~21!p1q2k2 lan~Dk,l !.

In this paper, we expressed the heat kernel coefficients for nonminimal operators onC`(Lk)
andC`(Lp,q) in terms of the Seeley coefficients for the Laplace operators on the same spaces.
Expressions for the heat kernel asymptotics applicable for Laplacian on differential forms can be
found in the literature.6

The fact that underlying manifold is Ka¨hlerian was used only to relate]] *1] *]
and]̄ ]̄* 1 ]̄* ]̄ to D5dd1dd. With some modifications our results can be extended to a general
complex manifold. Another generalization could consist in adding an endomorphismE to the
operatorD .
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Towards the canonical tensor operators of u q(3).
I. The maximal null space case

Sigitas Ališauskas
Institute of Theoretical Physics and Astronomy, A. Gosˇtauto 12, Vilnius 2600, Lithuania

~Received 27 February 1995; accepted for publication 20 May 1996!

Generalizing the SU~3! canonical tensor operator concept~Biedenharn and Louck!
to the quantum algebrauq~3!, the Wigner–Clebsch–Gordan coefficients ofuq~3!
with repeating irreducible representations are considered. Extremal projectors of
the quantum algebrauq~3! in terms of the ordered generator polynomials are used
for evaluation of the bilinear combinations of theuq~3! canonical isoscalar factors.
Explicit expressions of theuq~3! isofactors, corresponding to the maximal null
space case of theuq~3! unit canonical tensor operators, and their normalization
factors ~denominator functions! are presented. The transposition and conjugation
phase factors for the SU~3! and uq~3! canonical isofactors are correlated with
phases and zeros of boundary isofactors. Invariance of the canonical isofactors~or
absence of such invariance! under interchange of the tensor operator and the initial
or final state parameters is correlated with the existence and invariance~or numeri-
cal degeneracy! of the usual splitting~distinctive! conditions. Some oversights of
previous publications are disclosed. ©1996 American Institute of Physics.
@S0022-2488~96!00509-9#

I. INTRODUCTION

The matrix elements of the canonical unit SU~3! tensor operators1–4 provide the most univer-
sal complete algebraic system of the orthonormal coupling~Wigner–Clebsch–Gordan! coeffi-
cients of SU~3! group with the repeating irreducible representations~irreps! in the direct product
decomposition. The canonical SU~3! tensor operators are determined by the null space inclusion
property,4–6 together with their Hermitian and conjugation properties and vanishing conditions2,3,6

of certain SU~3!:U~2! projective operators and corresponding maximal shift isoscalar factors~iso-
factors!. Biedenharn, Louck, and collaborators solved explicitly5–7 the normalization problem of
the canonical SU~3! isofactors. The definite advance for the evaluation of the explicit canonical
SU~3! isofactors is presented by the recursive construction of the SU~3! tensor operators,8 al-
though an additional orthogonalization procedure is necessary in the general case.

With the growing interest in the Wigner–Racah irreducible tensor calculus of the quantum
groups, some elementary coupling coefficients for the quantum algebrauq~3! were considered by
Smirnovet al.9,10and Lienert and Butler.11 Some multiplicity-free isoscalar factors~isofactors! for
the unitary quantum algebrauq(n) of an arbitrary rank were considered by Gould and
Biedenharn12 ~with presented pattern calculus rules! and by Ališauskas and Smirnov13 ~for the
coupling of arbitrary and one-parametric irreps, and for the semistretched and stretched coupling!.
Ališauskas14 proposed alternative recursive constructions for the biorthogonal systems ofuq(n)
isofactors with the repeating irreps in the coproduct decomposition.

Biedenharn and Tarlini15 presented a definition of theq-tensor operators transforming under
representations ofq-deformed universal enveloping algebras and compatible with the coproduct
expansion rules and Klimyk16 reconsidered the Wigner–Eckart theorem for the quantum group as
dual touq(n) Hopf algebra. In both cases their matrix elements are proportional to the coupling
~Wigner–Clebsch–Gordan! coefficients of the quantum algebra. The explicit symmetric
~multiplicity-free! tensor operators ofuq(k) were expressed

13 in terms of theuq(k11) generators.
However, contrary to theuq~2! case17,18 and the SU~3! case, even for the rank~1 1! the separate

0022-2488/96/37(11)/5719/28/$10.00
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components of the self-conjugate minimal null space canonical tensor operator ofuq~3! are rather
complicated~and, as a rule, nonlinear! functions19 of uq~3! generators. Hence, the matrix elements
of the simplest non-multiplicity-freeuq~3! unit canonical tensor operator of the rank~1 1!, pre-
sented by Smirnov and Kharitonov,19 cannot be written straightforwardly from the matrix ele-
ments of theuq~3! generators, as it was done in the SU~3! case.20,21

In general, the external multiplicity labels of the all orthonormal analytical systems of the
SU~3!.U~2! isofactors~including the matrix elements of the unit canonical tensor operators, the
paracanonical22,23and pseudocanonical22 isofactors! may be associated with solution of the inter-
nal SU~3!.U~2!.U~1!^U~1! weight multiplicity problem and represented by the operator
~Gelfand–Weyl–Biedenharn! patterns2–7 ~or by the external isospin type parameters22! with the
different distribution of the null spaces@which inclusion property5,6 is not exceptional24 just for the
canonical tensor operators and defining condition~1.26b! of Ref. 6 is insufficient#. In all these
cases isofactors@matrix elements of the SU~3!:U~2! projective operators# with the fixed multiplic-
ity label may be expressed6 in terms of the definite numerator polynomials~or the multiple
terminated series! in the free irrep parameters of SU~3! and U~2!, with the linear numerator pattern
calculus factors and the corresponding SU~3! and U~2!-invariant denominator polynomials under
the square root sign. For all three analytical systems,22 the guessed denominator functions5,7,23,24

and the boundary23,24 SU~3!.U~2! isofactors are determined completely by their polynomial,
reduction, and symmetry properties and zeros@associated with the null spaces and the additional
selection rules in frames of SU~2!#. Since the overlaps of the biorthogonal systems ofuq~3!
isofactors14 are expressed in terms of the multiple balanced terminated basic hypergeometric series
@and are invariant with respect to the substitutionq→q21, similarly as theuq~2! Racah coeffi-
cients#, the analogical unambiguous extrapolation is possible for the paracanonical and pseudoca-
nonical isofactors ofuq(3).uq(2), although the proof is rather problematic.

For the fixed rank, shifts, and multiplicity label of theuq~3! canonical tensor operators, we
may also deduce the analogical structure of their matrix elements, with rational numerator func-
tions and the correspondingq-pattern calculus factors anduq~3! denominator functions under the
square root sign, such that the expressions are valid for the entire values of parameters of initial
state and give zeros in the null space region. However, appearingq-phases provide serious diffi-
culties for the extrapolation of the SU~3! denominatorG-function7,25 for theuq~3! canonical tensor
operators.$Note, that the role of Milne’s26 q-analog [G]m

(3) or, respectively, the well-poised
multiple seriesWm

(3), cf. introduced by Holmanet al.27 SU~3! invariantG-function, for theuq~3!
irreducible tensor operators15 is not clear.%

In this paper, some important constructive elements of the explicit matrix elements of the
uq~3! canonical tensor operators are presented and some distinction and symmetry problems of the
uq~3! canonical isofactors are considered@together with some questionable aspects of the SU~3!
case#. Unambiguous orthonormal systems of theuq(3).uq(2) isofactors may be derived from
special bilinear combinations of isofactors, including, respectively, single, two, or other restricted
number of values of the multiplicity labels, i.e., by means of the Gram-Schmidt process. Such
bilinear combinations~presented for the paracanonical and pseudocanonical cases in Ref. 14!
could be expressed by means of the integration of threeqD-matrices, if theq-integration
technique28 could be extended to the quantum group space ofuq~3!, or using theq-boson realiza-
tions of theuq(3).uq(2) basis states. In Sec. II of this paper, we apply an easier approach—the
generalized projection operator technique8,9 anduq~2!-irreducible properties13 of the uq~3! gen-
erator powers and their ordered products for the explicit construction of the restricted bilinear
combinations of theuq~3! canonical isofactors, equivalent to the SU~3! canonical isofactors for
q51.

The differentuq~3! tensor operators may be constructed in analogy with~2.10! of Ref. 8 by
means of the stretched coupling@see Eq.~4.10! of Ref. 13# of the maximal null space canonical
tensor operator and the~q-self-adjoint! minimal null space canonical tensor operator, varying each
rank. Since both the auxiliaryq-tensor operators are still available19 only in the case of rank~1 1!,
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it may be suitable to use construction~2.10! of Ref. 8 step by step, takingk51, and to postpone
the final ~correct! construction of the orthogonal SU~3! anduq~3! canonical isofactors to a later
publication, reconsidering below only some questionable aspects of orthogonality. Therefore, in
Sec. III, the expressions for the product of isofactors with a single~extreme! value of the canonical
multiplicity label are considered. Some of our results are different in formal structure from those8

of SU~3! only by the appearance of rather complicatedq-phases, but the explicit expressions for
the square of the extreme maximal null space isofactor and the corresponding normalization
factors, presented in Sec. III@as well as the expression for the most general bilinear combinations
of the uq~3! canonical isofactors in Sec. II#, were never published before, even in the SU~3!
version. After unsuccessful efforts to rearrange this normalization factor in the genericqÞ1 case
into form, related to theG-function,7,25we observed that the first presented solution does not cover
all the cases of the matrix elements of the maximal null spaceuq~3! canonical tensor operators,
unless the normalization factor is expressed in a more convenient form, which was eliminated
from the product of two different extreme canonical isofactors. The second version of the projec-
tion operator and the symmetries of theuq~3! canonical isofactors were indispensable for this
purpose.

The essential advantage of the canonical tensor operators consists of their elementary behavior
under conjugation and transposition. The symmetry properties of their matrix elements in the
uq~3! case should be consistent with their depending on the multiplicity label phase relations of
the SU~3! canonical isofactors1,8 and include the correspondingq-factors,29 but unquestionable
~cf. Refs. 8 and 30! complete phase factors are correlated with the conjugation and transposition
~1↔3! invariant extreme isofactors, derived in Sec. III. In Sec. IV, we~re!consider the symmetry
phase factors of the SU~3! anduq~3! canonical isofactors, correlating them also with the definite
zeros of the SU~3! isofactors@similar to zeros ofC000

l1l2l for l 11 l 21 l odd in the SU~2! case31#.
Besides, we anticipate conditions for the existence or absence of the 1↔2 and 2↔3 S2-irreducible
transposition symmetry32 of the uq~3! and SU~3! canonical isofactors, associated with the ob-
served invariance or the degeneracy of the distinctive conditions. We also discuss the contradic-
tions between the Derome32 and Biedenharnet al.30 approaches to this problem, when some
parameters before and after transposition coincide.

We use here the same notations for irreps and basis states ofuq~3! as were used in Ref. 8 for
SU~3!, with (a b) for the mixed tensor irreps~more convenient to catch symmetries in the
presented below results!,

a5m132m23, b5m232m33 where @m13,m23,m33# ~1.1a!

is a Young frame~partition!. The basis states are labeled by the hyperchargey, the isospini and
its projectioni z :

y5m121m222
2
3 ~m131m231m33!, i5 1

2 ~m122m22!, i z5m112
1
2 ~m121m22!,

~1.1b!

wheremi j are the Gelfand–Tsetlin parameters. Sometimes the parameter

z5 1
3 ~b2a!2 1

2 y5m232
1
2 ~m121m22! ~1.1c!

is more convenient thany, because

i6z>0, a1z2 i>0, b2z2 i>0 ~1.1d!

are integers. For the state of irrep (a b) in the coproduct (a8b8)^ (a9b9) decomposition,

z5z81z91v where v5 1
3 ~a82b81a92b92a1b!. ~1.2!
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The multiplicity r of irrep (a b) in the coproduct (a8b8)^ (a9b9) decomposition~intertwin-
ing number! is equal to8,22

r5min r abg11 ~a51,2,3;b51,2,3;g51,2! ~1.3a!

where integersr abg form the following 33332 array~the third dimension of which is represented
by a skew shift in plane!:

ur abgu5Ub82a91a1v b2v b8

a82b91b2v b b81v

a a2a81b91v a92v

a1v a92b81b2v a9

a82v b9 b81b92b1v

a8 b91v a81a92a2v

U
~1.3b!

with equidistant parameters in the layers, rows, and columns:

r ab22r ab15r a8b822r a8b815v, r abg2r ab8g5r a8bg2r a8b8g . ~1.3c!

Similar to the SU~3! canonical tensor operators,1–6 the matrix elements ofuq~3! canonical unit
tensor operators coincide with the coupling coefficients ofuq~3!,

K ab
yii zUTy9 i 9 i z9~a9b9!t,qU a8b8

y8i 8i z8L
q

5F ~a8b8! ~a9b9!
t

~a b!

y8i 8 y9i 9 y i
G
q

~3!F i 8 i 9 i

i z8 i z9 i z
G
q

~2!

, ~1.4!

which are expressed on the rhs in terms of theuq(3)↓uq(3) isofactors~with the external canonical
multiplicity label t written over the irrep which corresponds to the irreducible tensor operator! and
Clebsch–Gordan coefficients ofuq~2!. In order to escape some ambiguities and complications in
the analytical expressions and, especially, in the phases,30 we prefer to use the linear external
multiplicity label t 5 min(m139 2 g12,g22 2 m339 ) 1 1 instead of the operator Gelfand–Weyl–
Biedenharn pattern3–7 G t 5 (g12 g22

g11 ) , usual in the case of the partition type notations. In accor-

dance with~2.7! of Ref. 8 @cf. ~1.11! of Ref. 6#, the multiplicity labelt of the canonical tensor

operatorTy9 i 9 i z9
(a9b9)t,q accepts values 1,2,...,M, whereM is the number of independent tensor op-

erators,

M5min r a8b8g11~a852,3;b852,3;g51,2!, ~1.5a!

with the tensor operator characterizing parameters, presented as 23232 subarray

ur a8b8gu5UD1 p2D2

p2D3 a9

b9 D3

D2 p2D1

U , ~1.5b!

expressed in terms of the shift parametersD1,D2,D3(p5a91b9) used in Refs. 5–7.
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The null space property of theuq~3! canonical tensor operatorTy9 i 9 i z9
(a9b9)t,q with the definite shifts

of uq~3! irrep parameters means the complete vanishing of its matrix elements~and canonical
isofactors! for4,6,8

t<M2r , ~1.6!

when acting on the subspaceN t of an infinite dimensional Hilbert spaceH of all irreps~a8b8!.
Vanishing of theuq~3! canonical isofactors for

i 91u i2 i 8u.a91b92t11 ~1.7a!

is another important generalization of the distinctive property6 of the SU~3! canonical tensor
labeling scheme. Particularly, in analogy with the SU~3! case,2,3,8,33 it may be supposed that the
complete system of the independentuq~3! isofactors is ensured by their vanishing condition for the
sufficient shifts of theq-isospin,

u i2 i 8u. im9 2t11 ~1.7b!

@i.e., theuq(3):uq(2) projective operators with the definite shifts of theuq~2! irrep parameters are
zero operators6#. To some extension, a sufficient distinction may be ensured even by vanishing
~i.e., equal to zero values! of isofactors for

im2 i 8. im9 2t11, ~1.7c!

where isospin accepts the maximal values

i5 im[ 1
2 ~a1b!, i 95 im9 [ 1

2 ~a91b9!.

We are using also the notations

ym5 1
3 ~a2b!, zm5 1

2 ~b2a!.

At first, conditions~1.7a!–~1.7c! may be proved by induction for theuq~3! self-adjoint tensor
operator of the rank (k k) in the minimal null space case witht5k11. In order to prove that
vanishing condition~1.7c! yields the vanishing conditions~1.7b! and~1.7a! for the generaluq~3!
canonical isofactors, we use the recursive construction~cf. Ref. 8! of the independent tensor
operators

T̃y9 i 9 i z9
~a9b9!t,q

5@T~ t21,t21!t,qT~a92t11,b92t11!1,q#y9 i 9 i z9
~a9b9!t,q , ~1.8!

derived by means of the stretched coupling of the self-adjoint minimal null space tensor operator
Ty3 j 3m3

(t21,t21)t,q @with trivial shift of uq~3! irreps and restricted shift ofuq~2! irreps for special

j 35t21# and maximal null space tensor operatorTy1 j 1m1

(a92t11,b92t11)1,q @which ensure the null space

properties of the full operator~1.8!#. However, contrary to conjecture presented in Ref. 8, the
orthogonalization process begun from the maximal value oft is as a rule necessary. Otherwise, the
null space condition~1.6! is mainly ~but incompletely! ensured by construction~1.8!. Therefore,
the superfluous tensor operators that appeared should be eliminated and the canonical tensor
operators can be obtained only by the Gram–Schmidt process begun from the maximal value oft,
although the tensor operators~1.8! with t51 andM ~after normalization! are always canonical.

Of course, conditions~1.7a!–~1.7c! are trivially satisfied ~and, therefore, they seemed
meaningless6! for the maximal null space tensor operators. Nevertheless, for the complete proof of
the canonical distinctiveness, we need to find such triplet of parametersi 8,i 9 5 im9 , andi with
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u i2 i 8u5 im9 2t11 ~at least im2 i 85 im9 2t11 and/or im8 2 i5 im9 2t11!, ~1.9!

for which isofactor does not vanish and a Gram–Schmidt process from the bilinear combinations
of isofactors may be ensured. However, in Secs. III and IV, some ambiguous situations~associated
to the absence of the transposition 1↔2 or 2↔3 symmetry of the canonical isofactors! will be
demonstrated, for which condition~1.9! ~and beginning of any numerical Gram–Schmidt proce-
dure! is impossible, because the corresponding values of parameters in triplet are not allowed~e.g.,
they are nonlexical4,6! for any value oft. Hence, the distinction properties~1.7a!–~1.7c! for special
values of the irrep parameters may be degenerated, since the null space of the SU~3!:U~2! and
uq(3):uq(2) projective operators may exceed the corresponding null space of the SU~3! anduq~3!
canonical operators, contrary to Lemma 1.1, postulated in Ref. 6. Theorems 1.1 and 1.2 of Ref. 6
also turned out to be questionable. Nevertheless, Theorem 1.2 may be correct under the additional
restrictions, when isofactors or matrix elements are conjugation invariant and expressed as ratios
of the most simple non-singular functions. In such degenerated cases the analytical continuation
procedure from the generic~non-degenerated! region may be helpful, as well as the remaining
universal properties1–7 of the canonical tensor operators.

II. EXTREMAL PROJECTORS AND BILINEAR COMBINATIONS OF Uq(3) ISOFACTORS

As in Refs. 9 and 13, we use the Cartan–Weyl generatorsEik( i , j ,k51,2,3) of the unitary
quantum algebrauq(3)5Uq(u(3)), which satisfy the commutation relations

@Eii ,Ekk#50, @Eii ,Ejk#5d i j Eik2d ikEji , ~2.1a!

@Eik ,Eki#5@Eii2Ekk#, ~2.1b!

where [x] and [x]! are q-numbers andq-factorials, respectively:

@x#5
~qx2q2x!

~q2q21!
, @x#!5@x#@x21#...@2#@1#, @1#!5@0#!51. ~2.2!

The composite generators may be expressed in terms of theq-deformed commutators

E135@E12,E23#q[E12E232qE23E12, ~2.3a!

E315@E32,E21#q21[E32E212q21E21E32, ~2.3b!

and satisfy the Serre identities

@Eik ,@Eik ,Ekl#q#q2150 ~ i ,k,l51,2,3, or 3,2,1!, ~2.4a!

@E12,E32#5@E21,E23#50. ~2.4b!

GeneratorsE12 andE21 are chosen for the canonicaluq~2! subalgebra, used for labeling of the
basis states.

We use the coproduct expansion rules9

D~Eii !5Eii ^111^Eii , ~2.5a!

D~Eii11!5Eii11^q1/2~Eii2Ei11,i11!1q21/2~Eii2Ei11,i11!
^Eii11 , ~2.5b!

D~Ei11i !5Ei11i ^q1/2~Eii2Ei11,i11!1q21/2~Eii2Ei11,i11!
^Ei11i , ~2.5c!

as well as special coproduct formulas
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D~E13!5@D~E12!,D~E23!#q5E13^q1/2~E112E33!2~q2q21!q21/2~E222E33!E12

^E23q
1/2~E112E22!1q21/2~E112E33! ^E13, ~2.6a!

D~E31!5@D~E32!,D~E21!#q215E31^q1/2~E112E33!1~q2q21!q21/2~E112E22!E32

^E21q
1/2~E222E33!1q21/2~E112E33! ^E31 ~2.6b!

for the composite generatorsE13 andE31 @see Eqs.~7.5! and~7.6! of Ref. 9# and the corresponding
q-binomial andq-trinomial expansions9 of the generator powers.

For the maximal isospin stateuabymimim&q with ym 5 1/3(a 2 b), im 5 1/2(a 1 b),
zm51/2(b 2 a), the maximal projector of the quantum algebrauq~3! accepts the following form:

P ymimim ,ymimim
~ab!q 5 (

n1n2n3

~21!n11n21n3qn3@a11#! @b11#! @a1b12#!

@n1#! @a1n111#! @n2#! @b1n211#! @n3#! @a1b1n312#!

3E31
n1E13

n1E21
n3E12

n3E23
n2E32

n2. ~2.7!

Contrary to the SU~3! case, we cannot go immediately from the highest weight projector9 to ~2.7!
by a simple relabeling of subscripts in generators, but we need to check the identities

E13P imax,imax
~ab!q 5E32P imax,imax

~ab!q 5P imax,imax
~ab!q E315P imax,imax

~ab!q E2350, ~2.8!

using the generator transposition formulas, similarly as it was done in Ref. 9.
We may write a more universal projection operator as

P ymimim ;yii
~ab!q 5^abymimimuE13

a1z2 iE32
b2z2 i uabyii&q

21
P ymimim ,ymimim

~ab!q E13
a1z2 iE32

b2z2 i
P i i

i ,q ~2.9a!

5d3@ab#S @a#! @b#! @a1b11#! @ i1z#! @ i2z#! @a1z1 i11#! @b2z1 i11#!

@2i11#! @a1z2 i #! @b2z2 i #! D 1/2

3 (
n1n2n3

~21!n11n2q~n111!n3@a1b1n11n21n312#!

@n1#! @a1n111#! @n2#! @b1n21n311#! @n3#! @a1b1n11n312#!

3
1

@a1b1n21n312#!
E21
n3E31

n1E23
n2E13

a1z2 i1n11n3E32
b2z2 i1n21n3P i i

i ,q ~2.9b!

whered3[ab]5[a11][b11][a1b12] and

P i i
i ,q5(

n8

~21!n8@2i11#!

@n8#! @2i1n811#!
E21
n8E12

n8 ~2.10!

is the maximal projector ofuq~2!. For the rearrangement of~2.9a! @as well as~2.7!# to ~2.9b!, we
use the transposition formulas presented in Appendix of Ref. 9, conditionE12P i i

i ,q50, and sum-
mation formula~cf. Ref. 34!

(
s

qs~a1b1c!

@s#! @b2s#! @c2s#! @a1s#!
5

qbc@a1b1c#!

@b#! @c#! @a1b#! @a1c#!
. ~2.11!

By the way, we may also write the weight lowering operator for acting into the maximal
isospin state:
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F̃S abyii D uabymimim&q5uabyii&q ~2.12a!

where

F̃S abyii D5S @2i11#! @a1z2 i #! @a1z1 i11#! @b2z2 i #! @b2z1 i11#! @ i2z#!

@a#! @b#! @a1b11#! @ i1z#! D 1/2

3(
s

q2s~2i1s11!@ i1z1s#!

@s#! @a1z2 i2s#! @b2z2 i2s#! @2i1s11#!
E21
s E31

a1z2 i2sE23
b2z2 i2s.

~2.12b!

In accordance with condition~1.7c!, we may express the bilinear combinations of isofactors as
follows:

(
t51

Î82 im1 im
9 11 F ~a8b8! ~a9b9!

t

~a b!

y8i 8 y9i 9 y i
G
q

~3!F ~a8b8! ~a9b9!
t

~a b!

ŷ8 Î 8 ym9 im9 ymim
G
q

~3!

5S F Î 8 im9 im

im2 im9 im9 im
G
q

~2!D 21

(
m8

F i 8 i 9 i

m8 i2m8 i G
q

~2!

3K ~a8b8!

ŷ8 Î 8im2 im9
U
q
K ~a9b9!

ym9 im9 im9
U
q

P ymimim ;y i i
~ab!q U ~a8b8!

y8i 8m8L
q
U ~a9b9!

y9i 9i2m8L
q

. ~2.13!

Although ~2.13! provides an overcomplete system of non-orthogonaluq~3! isofactors, the direct
canonical resolution of the multiplicity problem from the triangular system of equations~2.13!
~i.e., by means of the Gram–Schmidt process! is not always possible~see Sec. IV!.

We expand the powers of generators in~2.9b! when substituted into~2.13! in accordance with
coproduct rules.9 OperatorsE21

n3, E31
n1 andE23

n2 give only a single term in the coproduct expansion
of ~2.13! in accordance with formulas~7.9!, ~7.11! and ~7.8! of Ref. 9, respectively, with the
operators

qn3~E112E22!/21n1~E112E33!/21n2~E222E33!/2,

acting in the space of the second irrep (a9b9). Expansion ofE13
k (k5a1z2 i1n11n3) in ac-

cordance with~7.10! of Ref. 9 gives a sum with a single summation parameter, as well as
expansion ofE32

l ( l5b2z2 i1n21n3) in accordance with~7.9!. Moreover, the powers of op-
eratorsE13 andE32 acting in the second space are fixed by the shift conditions for the isospin
projection and the hypercharge. Thus, the total number of sums~seven! does not exceed the SU~3!
case8 and we may write
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(
t

F ~a8b8! ~a9b9!
t

~a b!

y8i 8 y9i 9 y i
G
q

~3!F ~a8b8! ~a9b9!
t

~a b!

ŷ8 Î 8 ym9 im9 ymim
G
q

~3!

5~21! Î 81 im9 2 imq~ Î 82 im1 im9 !~ Î 82 im9 1 im11!/2~@ im1 im9 2 Î 8#! @ im1 im9 1 Î 811#! !1/2d3@a b#

3S @a#! @b#! @ i1z#! @ i2z#! @a1z1 i11#! @b2z1 i11#!

@2i11#! @a1z2 i #! @b2z2 i #! @a91b9#! D 1/2

3 (
n1 ,n2 ,n3 ,m8

~21!n11n2qQ1@a1b1n11n21n312#!

@n1#! @n2#! @n3#! @a1n111#! @b1n21n311#!

3
@a1z2 i1n11n3#! @b2z2 i1n21n3#!

@a1b1n11n312#! @a1b1n21n312#! @a91z92 i1m8#! F i 8 i 9 i

m8 i2m8 i G
q

~2!

3
1

@a2a91v1z82m81n11n3#! @b92z92 i1m8#! @b2b92z82v2m81n21n3#!

3 K ~a8b8!

ŷ8 Î 8im2 im9
UE21

n3E31
n1E23

n2E13
a2a91v1z82m81n11n3E32

b2b92z82v2m81n21n3U ~a8b8!

y8i 8m8L
q

3 K ~a9b9!

ym9 im9 im9
UE13

a91z92 i1m8E32
b92z92 i1m8U ~a9b9!

y9i 9i2m8L
q

, ~2.14!

where

ŷ85ym2ym9 5 1
3 ~a2b2a91b9!5 1

3 ~a82b8!2v

andq-phase

Q15~n111!n32
1
2 ~a91z92 i1m8!~a2a912n12n21n3!

1 1
2 a9~a2a91v1z82m81n11n3!

1 1
2 ~b2b92z82v2m81n21n3!~b92a923z91m82 i !

2 1
2 ~b82a823z82m8!~b92z92 i1m8!

1 1
2 ~a91b9!n31

1
2 a9n12

1
2 b9n2; ~2.15!

~b82a823z85 3
2 y8, b92a923z95 3

2 y9!

appeared from the above mentioned coproduct expansion of the generator powers, after substitut-
ing the proper values ofEii .

We express the matrix elements of the generator powers as follows:13

K ~ab!

yimUE21
n U ~ab!

yim1nL
q

5S @ i1m1n#! @ i2m#!

@ i1m#! @ i2m2n#! D
1/2

, ~2.16!

5727Sigitas Ališauskas: Canonical tensor operators of uq(3)

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



K ~ab!

y8i 8m8UE23
r E13

p2rU~ab!

yim L
q

5dz2p/2,z8dm1p/22r ,m8q
~ i1p/22 i 8!~ i1p/21 i 811!/22p~ i2m!/22rm

3
G@abiz#~@p2r #! @r #! @2i11# !1/2

¹@ 1
2 p,i ,i 8#G@abi8z8#

F i 1
2 p i 8

m 1
2 p2r m8

G
q21

~2!

,

~2.17a!

K ~ab!

y8i 8m8UE31
r E32

p2rU~ab!

yim L
q

5dz1p/2,z8dm1p/22r ,m8~21! i1p/22 i 81r

3q~ i1p/22 i 8!~ i2p/21 i 811!/22p~ i 82m8!/22r ~m811!

3
G@abi8z8#~@p2r #! @r #! @2i11# !1/2

¹@ 1
2 p,i ,i 8#G@abiz#

F i 1
2 p i 8

m 1
2 p2r m8

G
q

~2!

,

~2.17b!

where the Clebsch–Gordan coefficients ofuq~2! are presented in Refs. 13, 35, 36, and

¹@abc#5S @a1b2c#! @a2b1c#! @a1b1c11#!

@b1c2a#! D 1/2, ~2.18!

G@abiz#5S @ i1z#! @a1z2 i #! @a1z1 i11#!

@ i2z#! @b2z2 i #! @b2z1 i11#! D
1/2

. ~2.19!

The last matrix element on the rhs of Eq.~2.14! may be expressed without sum as follows:

K ~a9b9!

ym9 im9 im9
UE13

a91z92 i1m8E32
b92z92 i1m8U ~a9b9!

y9i 9i2m8L
q

5
@a91z92 i1m8#! @b92z92 i1m8#!

@ i2z92m8#!

3S @ i 92z9#! @a9#! @b9#!

@ i 91z9#! @a91z92 i 9#! @b92z92 i 9#!

3
@a91b911#! @2i 911#@ i 91 i2m8#!

@a91z91 i 911#! @b92z91 i 911#! @ i 92 i1m8#! D
1/2

. ~2.20!

Finally, the total number of sums in~2.14! is seven, including two isospin-type parameters of the
intermediate states~which appear after acting with a power ofE32 into ua8b8&q , but before acting
with E31

n1! and a single sum of theuq~2! Clebsch–Gordan coefficient, appearing in accordance with
Eq. ~2.17a!.

III. ISOFACTORS CHARACTERIZED BY THE MAXIMAL NULL SPACE

The three sums vanish in Eq.~2.14! for the canonical tensor operators, characterized by the
maximal null space, whenÎ 8 5 im 2 im9 >u ẑ8u @hereẑ8[1/2(b82a81v)# and labelt accepts the
single valuet51. Hence, we obtain
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F ~a8b8! ~a9b9!
t51

~ab!

y8i 8 y9i 9 yi
G
q

~3!F ~a8b8! ~a9b9!
t51

~ab!

ŷ8 Î 8 ym9 im9 ymim
G
q

~3!

5N ~a9b9!@a8b8;ab#
~@a11#@b11#@a1b12# !1/2

¹@ i i 8i 9#G@a8b8i 8z8#R@a9b9i 9z9#

3S @2i 811#@ i 92z9#! @a1z1 i11#! @b2z1 i11#! @ i1z#! @ i2z#!

@ i 91z9#! @a1z2 i #! @b2z2 i #! D 1/2

3 (
n1 ,n2 ,m8, j 8

~21!~b91v2b1z81m81n2!/22 i 81 j 81n1qQ2@2 j 811#

@n1#! @n2#! @a1n111#! @b1n211#! @a1b1n112#! @a1b1n212#!

3
@a1b1n11n212#! @a1z2 i1n1#! @b2z2 i1n2#!

@ i2m82z9#! @ i 92 i1m8#! @a81a92a2v2n1#!

3
@ i 91 i2m8#! @a2a91v1n1#! @b82a91a1v1n111#!

¹2@ 1
2 ~a2a91v1z82m81n1!,im2 im9 1 1

2 ~n11n2!, j 8#

3
G2@a8,b8, j 8, 1

2 ~b2b92v1z82m81n2!#

¹2@ 1
2 ~b2b92v2z82m81n2!, j 8,i 8#

~3.1!

where the summation parameters satisfy the conditions8

max~0,a92a2v !<n1<a81a92a2v, 0<n2<b81b92b1v,

i2 i 9<m8<min~ i 8,i2z9!,

max$ 1
2 ~b2b92v2z81m81n2!,

1
2 ub2b92v1z82m81n2u%< j 8,

j 8<min$b82 1
2 ~b2b92v1z82m81n2!,

1
2 ~b2b92v2z82m81n2!1 i 8%

and are restricted by the non-negative integer values of the denominatorq-factorial arguments.
Besides, in~3.1! notations~2.18! and ~2.19!, together with those presented below, are used:

N ~a9b9!@a8b8;ab#

5S @a11#! @b11#! @a1b12#! @2im22im9 11#! @a81 ẑ82 Î 8#! @b82 ẑ82 Î 8#!

@ Î 81 ẑ8#! @ Î 82 ẑ8#! @a81 ẑ81 Î 811#! @b82 ẑ81 Î 811#!
D 1/2 ~3.2a!

5S @a11#! @b11#! @a1b12#! @a81a92a2v#! @b81b92b1v#! @a1b2a92b911#!

@a2a91v#! @b2b92v#! @a82b91b2v11#! @b82a91a1v11#! D 1/2,
~3.2b!
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R@abiz#5S @a1z2 i #! @a1z1 i11#! @b2z2 i #! @b2z1 i11#!

@2i11#@a#! @b#! @a1b11#! D 1/2, ~3.3!

Q25~n12n2!~ i1z92m8!2 1
2 ~a91z92 i1m8!~a2a9!2 1

2 ~b92z92 i1m8!~ 3
2 y82m8!

1 1
2 ~ 3

2 y92 i1m8!~b2b92v2z82m8!1 1
2 a9~a2a91v1z82m8!1 1

2 ~ i 81 i 92 i !

3~ i2 i 81 i 911!2~ i11!~ i 82m8!1 j 8~ j 811!2 1
4 ~b2b92v2z81m81n2!

3~b2b92v2z81m81n212)22n1z9. ~3.4!

Notation ~3.3! is also used in the expression13 for the stretcheduq~3! isofactors:

F ~a8b8! ~a9b9! ~a81a9,b81b9!

~z8!i 8 ~z9!i 9 ~z81z9!i
G
q

~3!

5q~a8b92a9b8!/21z8~a91b9!2z9~a81b8!

3
R@a81a9,b81b9,i ,z81z9#

R@a8b8i 8z8#R@a9b9i 9z9# F i 8 i 9 i

z8 z9 zG
q

~2!

,

~3.5!

which, of course, corresponds to a multiplicity-free case of~3.1!.
The following particular case of~3.1! with i 8 5 i 2 im9 is especially important for the solution

of its normalization problem:

F ~a8b8! ~a9b9!
t51

~ab!

y8i2 im9 ym9 im9 yi
G
q

~3!F ~a8b8! ~a9b9!
t51

~ab!

ŷ8im2 im9 ym9 im9 ymim
G
q

~3!

5S @2i 811#! @ i1z#! @ i2z#! @a81z81 i 8#! @b82z82 i 8#! @a1z1 i11#! @b2z1 i11#!

@2i11#! @ i 81z8#! @ i 82z8#! @a1z2 i #! @b2z2 i #! @a81z81 i 811#! @b82z81 i 811#! D 1/2

3qa9~a1z2 i !/22b9~b2z2 i !/2~d3@ab# !1/2N ~a9b9!@a8b8;ab#D2S q,t51
a9b9 D @a8b8;ab#,

~3.6!

where

D 2S q,t51
a9b9 D @a8b8;ab#

5D 2S q21,t51
b9a9 D @b8a8;ba# ~3.7a!

5 (
n1 ,n2

~21!n11n2qa9n12b9n2@a1b1n11n212#!

@n1#! @n2#! @a1n111#! @b1n211#! @a1b1n112#! @a1b1n212#!
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3
@a2a91v1n1#! @b82a91a1v1n111#! @b2b92v1n2#! @a82b91b2v1n211#!

@a81a92a2v2n1#! @b81b92b1v2n2#! @a1b2a92b91n11n211#!
.

~3.7b!

Takingi 5 im, y 5 ym, we obtain square of isofactor

F ~a8b8! ~a9b9!
t51

~ab!

ŷ8im2 im9 ym9 im9 ymim
G
q

~3!

5N ~a9b9!@a8b8;ab#DS q,t51
a9b9 D @a8b8;ab#. ~3.8!

Now ~3.8! may be inserted into the lhs of~3.1! to express the normalized isofactor of the maximal
null space case, but some reasoning was necessary for choice of the sign of the boundary canoni-
cal isofactor. Acceptance of the separate isofactors~3.8! being positive requires use of the supple-
mentary phase factors (21)b82b or ~21!v for the multiplicity-free13 isofactors ofuq~3! ~with
parameterb950, or in the semistretched case, respectively!. We see that the denominator
q-factorials [a2a91v]! and [b2b92v]!, restricting the regions of non-vanishing for~3.1! and
~3.6!–~3.8!, cancel and the matrix elements of theuq~3! canonical tensor operator witht51 may
be obtained by an analytical continuation procedure and may exist also fora2a91v or b2b92v
negative. Really, the sum overn1 ,n2 ,m8, j 8 on the rhs of~3.1! is restricted only by the triangular
and betweenness conditions~1.1d!, but the rhs of~3.7b! is indefinite for negativea2a91v or
b2b92v. The latter problem was escaped in Ref. 8 for the SU~3! isofactors, after the correspond-
ing double sum~at first rearranged into theGb81b92b1v

1 -function! has been transformed by means
of its reduction formulas6,7 into theGb9

1 -function.5,7,25

We tried to replace some ratios ofq-factorials in the first and the last rows of Eq.~3.7b!
separately by theq-analogs of the Vandermonde formulas,34 in analogy with~3.17! of Ref. 8, but
we failed to transform the double sum~3.7b! into another form, related to the denominator
polynomials5–7 of the SU~3! maximal null space tensor operators.25 Unfortunately, after summa-
tion over n1 ~or n2!, it was impossible to take the sum over the second original summation
parametern2 ~or n1! because of the non-balanced~i.e., non-correlated with the difference of the
factorial argument sums in numerator and denominator! q-power, unlessb950 ~or a950!.

In order to obtain more convenient expressions for the denominator functionD 2(a9b9
q,t51), let us

consider another product~trivial bilinear combination! of isofactors, corresponding to the maximal
null space tensor operator:

F ~a8b8! ~a9b9!
t51

~ab!

ym8 im8 ym9 im9 ŷim8 2 im9
G
q

~3!F ~a8b8! ~a9b9!
t51

~ab!

ŷ8im2 im9 ym9 im9 ymim
G
q

~3!

. ~3.9!

Formula ~3.1! gives a triple sum for~3.9!, which is not preferable to~3.7b!. Otherwise, an
alternative expression~3.15! of Ref. 8, together with the Vandermonde formula, gives a double
sum in the corresponding denominator function of the SU~3! maximal null space tensor operator.
Hence, it is expedient to derive aq-analog of the projection operator~3.3b! of Ref. 8:
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P yii ;ymimim
~ab!q

5F̃S abyii DP ymimim ;ymimim
~ab!q ~3.10a!

5d3@ab#~@a#! @b#! @a1b11#! @2i11#! @ i2z#! @a1z2 i #!

3@a1z1 i11#! @b2z2 i #! @b2z1 i11#!/ @ i1z#!) 1/2

3 (
n1n2ur

~21!n11n2qu~ i1z11!1r ~a22i1n12r !@a1b1n11n22u12#!

@u#! @a1n12u11#! @n22u#! @b1n211#! @a1b1n112#! @a1b1n212#!

3
1

@b2z2 i2r1u#! (
s

q2s~a1n12u11!@ i1z1s#!

@s#! @a1z2 i2s#! @r2s2u#! @n12r1s#! @2i1s11#!

3E21
r E31

a1z2 i2r1n1E23
b2z2 i2r1n2E13

n1E32
n2P imim

im ,q . ~3.10b!

Formula ~3.10b! is obtained, using in~3.10a! our formulas~2.9b!, ~2.12b!, and the generator
transposition formulas.9 The sum overs is more convenient if transformed~cf. Refs. 8 and 34!
into

(
s
...5

@ i1z#!q2~r2u!~a1z2 i !

@ i2z#! @n12u#! @a1z2 i2r1n1#!

3(
s

~21!s
qs~ i1z2n11r !@ i2z1s#! @a1z2 i1n12s2u#!

@s#! @a1z2 i2s#! @r2s2u#! @2i1s11#!
. ~3.11!

However, the coproduct expansions~2.6a! and~2.6b! of theE31 andE13 powers in the matrix
elements of projector~3.10b! give some additional sums in the expression of~3.9! to compare with
the SU~3! case@see Eq.~3.3b! of Ref. 8#. An expression without additional sums may be obtained
for the following bilinear combination of isofactors:

(
t

F ~a8b8! ~a9b9!
t

~ab!

ym8 im8 ym9 im9 ŷim9 2 im8
G
q

~3!F ~a8b8! ~a9b9!
t

~ab!

ym8 im8 ŷ9im2 im9 ymim
G
q

~3!

. ~3.12!

After permutation of the both states to be coupled in~3.12!, relabeling of the parameters
a8,b8,y8,i 8↔a9,b9,y9,i 9, andq-inversion:q→q21 ~together with an elementary phase factor!,
product~3.9! may be presented as

F ~a8b8! ~a9b9!
t51

~ab!

ym8 im8 ym9 im9 ŷim8 2 im9
G
q

~3!F ~a8b8! ~a9b9!
t51

~ab!

ŷ8im2 im9 ym9 im9 ymim
G
q

~3!

5~21!b91vq2Q3S d3@ab#@a81b811#

d3@a8b8#@2im8 22im9 11#D 1/2

N ~a9b9!@a8b8;ab#

3N ~a9b9!@ba;b8a8#D2S q,t51
a9b9 D @a8b8;ab# ~3.13!
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with

D2S q,t51
a9b9 D @a8b8;ab#

5qb9~a82b91b2v12!2a9~b82a91a1v12!D2S q21,t51
a9b9 D @ba;b8a8# ~3.14a!

5~21!b82b1vqa9~a92a2v21!2b9~b92b1v21!1b82b1v

3
@a9#! @b9#! @a82b91b2v11#! @b82a91a1v11#! @b82a91v#!

@b81b91v11#! @a81a91b2v12#! @b81b91a1v12!]!

3(
s,u

~21!s1uqs~b92b1v !2u~a91b2v12!@a91b92s2u#! @s1u#!

@s#! @a2a81b91v2s#! @b2b81a92v2s#! @b82b1v1s#!

3
@a82b92v1s#!

@a81b82a92b91s11#! @u#! @a81a92a2v2u#! @b81b92b1v2u#!

3
@a81b81a91b92u12#!

@b2b82v1u#! @a81a92v2u11#!
~3.14b!

and

Q35
1
2 b9~a82b91b2v11!2 1

2 a9~b82a91a1v11!. ~3.15!

The factors in the first row of the rhs of Eq.~3.13! are mainly motivated by the symmetry
properties of theuq~3! canonical isofactors, presented in the last section of this paper, but the
equivalence question for the denominator functions~3.7b! and ~3.14b!, including the above pre-
sented distribution ofq-powers between~3.13! and ~3.14b!, should be considered separately,
unlessq51.

Taking into account the generic structure of thet51 isofactors with the extreme shift ofuq~2!
irreps, grounded on the pattern calculus12 principles, the ratio of such isofactors may be expressed
as follows:

F ~a8b8! ~a9b9!
t51

~ab!

ŷ8im2 im9 ym9 im9 ymim
G
q

~3!S F ~a8b8! ~a9b9!
t51

~ab!

ym8 im8 ym9 im9 ŷim8 2 im9
G
q

~3!D 21

5~21!b91vqQ3S d3@a8b8#@2im8 22im9 11#

d3@ab#@a81b811# D 1/2

N ~a9b9!@a8b8;ab#

N ~a9b9!@ba;b8a8#
. ~3.16!

Particularly, theq-power in formula~3.16! is extrapolated from the multiplicity-free isofactors,13

respectively, witha5a81a92v, or b5b81b91v, or b950, or a950. The single sums remain-
ing in the corresponding formulas~4.5!, ~3.4!, or ~3.16! of Ref. 13 were taken, respectively, by
means of the basic generalizations34 of the Vandermonde, balanced, and Carlson formulas@see, for
example,~3.11! and ~3.15! of Ref. 13#.

However,~3.14b! is also indefinite forb82a91v,0, or a82b92v,0 anda2a91v,0. It
is evident that the infinities~poles! of the denominator function, appearing together with the
negative arguments of the numeratorq-factorials, determine the null space for
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a82b92v,0 and a2a91v,0 both together ~3.17a!

~i.e., r a1g,r a2g and r a1g,r a3g!, or

b2b92v,0 and b82a91v,0 both together ~3.17b!

~i.e., r 1bg,r 3bg andr 1bg,r 2bg!. Otherwise, if the null space situation is excluded, we should use
the symmetry relations~3.7a! or ~3.14a! of the denominator functions forb82a91v,0 in order
to get expressions without indefinities, unless bothb82a91v,0 anda2a91v,0, when Eq.
~3.14b! can be used only together with relation~3.14a!. In general, for the fixed rank (a9b9) and
shifts D1,D2,D3 @see array~1.5b!# of the q-tensor operatorT(a9b9)1,q, we may choose such a
version of the denominator function, where indefinities appear only together with singularities
~poles!. Hence, the left~generic! isofactor with t51 on the lhs of~3.1! may accept non-zero
values, althoughim 2 im9 , 0 and the right isofactor is equal to 0. In this case we get the null space
of the uq(3):uq~2! extreme projective operator, exceeding the null space of the corresponding
canonical tensor operator.

For final fixation of the phases in the symmetry relations~4.2a! and~4.2b!, it is expedient to
write the following expression of special isofactors:

F ~a8b8! ~a9b9!
t51

~ab!

ym8 im8 ŷ9i 9 ymim
G
q

~3!

5
~21!v1 i 91 ẑ9qQ4

D S q,t51
a9b9 D @a8b8;ab#R@a9b9i 9ẑ9#

3S @a81b811#@a1b12#@a11#! @b11#! @a8#! @b8#! @ im1 im8 2 i 9#! @ im1 im8 1 i 911#!

@2im8 12im9 13#@a81a92v11#! @b81b91v11#! @b1a92v11#! @a1b91v11#! D 1/2

3
~@2im9 1 im1 im8 2 i 912#! @2im9 1 im1 im8 1 i 913#! !1/2

@a81a91b2v12#! @b81b91a1v12#! F im9 1 im11 i 9 im8 1 im9 11

ẑ8 ẑ9 ẑ G
q

~2!

,

~3.18!

where

Q45
1
2 $ẑ9~a1b14!1b9~b2b82v !2a9~a2a81v !1 im9 ~b82a81a92b9!1v~ im9 2 im8 !%,

ẑ85 1
2 ~b82a81v !, ẑ95 1

2 ~b92a91v !, ẑ5 1
2 ~b2a2v !. ~3.19!

Formula~3.18! may be derived directly from Eq.~3.15! of Ref. 8 in theq51 case, but for arbitrary
q we use projector~3.10b!, together with transformations, applied between~3.12! and ~3.13!,
explicit expressions36 and symmetry properties35 of theuq~2! Clebsch–Gordan coefficients.

Let us consider the simplest non-trivial example—special cases of the denominator function
~3.7b! and ~3.14b! for a95b951, a85a, b85b, v50. It may be written as
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D2S q,t51
11 D @ab;ab#5

f 2@ab#

@a1b11#@a1b12#@a1b13#@a#@a11#@a12#@b#@b11#@b12#
~3.20!

in terms of function

f 2@ab#5@a1b13#@b12#~@a1b#@a12#2q@a#@a1b11# !1@a1b11#@b#~@a#@a1b14#

2q21@a12#@a1b13# ! ~3.21a!

5qb2a$@2#@a1b14#@a1b#2q2b11@a#@a1b14#

2q2b23@a1b#@a12#1@2#@a#@a12#% ~3.21b!

5@2#~@a11#@a1b12#q2a211@b11#2qa1b122qa1b122qb2a2q2a2b22!
~3.21c!

5@2#~@a2b#@a1b12#q2a2b221@b11#@a12b13#2qa1b122qb2a2q2a2b22!,
~3.21d!

where~3.21a! ~where 4 is the initial formal total degree ofa,b in the q51 case polynomial! is
obtained, respectively, from~3.7b! and reduced with considerable efforts to~3.21c! and ~3.21d!;
the corresponding version~3.21b! of Eq. ~3.14b! is more simpleab initio. Perhaps, function
f 2[ab] accepts the simplest form after the multiplication byqb11 and substitutionq→q21 into the
normalization factor19 glm(q) of the canonical tensor operators of rank~1 1!:

f 2@ab#5@2#$q2a21~@a1b13#@a#1@b# !1qa1b12@b#@b12#%. ~3.22!

It is invariant with respect to interchangea↔b, together with substitutionq→q21. For q51,
function f 2[ab] turns into the usual quantity, related to the eigenvalue of the SU~3! Casimir
operator

f 2~ab!52~a21ab1b213a13b!. ~3.23!

Some blocks of~3.14b! may be associated with the rhs of~2.11!, but the rearrangement of the
denominator functionD2(a9b9

q,t51) into an analogue ofG-function7,25 is possible only in theq51
case.37 The requirement of theq→q21 antisymmetry for the normalization factors makes any
straightforward extrapolation of the denominator functions5,7 of the SU~3! canonical tensor opera-
tors rather problematic. The necessity to fix two parameters from subarray~1.5b! in Eqs. ~3.7b!
and~3.14b! also restricts the possibility of introducingq-analog ofG-function ~for which fixation
of a single parameter is sufficient!.

We considered also the properties of Milne’s26 q-analog [G]m
(3) of the introduced by Holman

et al.27 invariantG-function ~in terms of the well-poised seriesWm
(3)!, using Ref. 38 for agreement

of notations.@Note that theG-functions, as introduced in Ref. 27, satisfy the complete explicit
symmetry under permutations of array~1.5b!, but present problems when reducing the total degree
of polynomial, i.e., rearranging sums of fractions into polynomials of minimal degree#. However,
we didn’t find any coincidence of the genericq case even with our Eq.~3.21! or ~3.22!. Non-
balanced and quadratic in the summation parametersq-powers of the well-poised series [W]m

(3),
when presented in terms of the symmetricalq-factorials ~2.2!, appear in contradiction with the
requirement of theq→q21 antisymmetry under conjugation.
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IV. SOME SYMMETRIES AND DISTINCTION PROBLEM OF THE SU(3) AND uq(3)
CANONICAL ISOFACTORS

The symmetry properties of the matrix elements of theuq~3! canonical tensor operators should
be consistent with the symmetry properties of the SU~3! canonical isofactors1,8 ~cf. also Ref. 30!
and include the correspondingq-factors.29 We prefer to use the SU~3! conjugation relation

uabyiiz&q*5~21!a1b1z1 i zub,a,2y,i ,2 i z&q21 ~4.1!

@with the phase factor~21!r~3!, r(n)5( j51
n ( i51

j mi j , in the Gelfand–Tsetlin parameters, cf. Ref.
1# instead of~2.20! of Ref. 30@which gives the phase factor~21!a1b if applied twice#. Theuq~3!
unit tensor operator conjugation and transposition~Hermitian! properties give the following
S23S2 symmetry of isofactors:

F ~a8b8! ~a9b9!
t

~ab!

y8i 8 y9i 9 yi
G
q

~3!

5~21! t211 i 81 i 92 iF ~b8a8! ~b9a9!
t

~ba!

2y8i 8 2y9i 9 2yi
G
q21

~3!

~4.2a!

5~21!a91b91v1t211 i 92z9q23y9/2

3

3S @2i 811#d3@ab#

@2i11#d3@a8b8#D 1/2F ~ba! ~a9b9!
t

~b8a8!

2yi y9i 9 2y8i 8
G
q21

~3!

~4.2b!

together withq-inversion. Dependencies of the phase factors on the basis labels are the same as
for other external labeling schemes of SU~3! isofactors22,23,39 @e.g., labeled by means of SU~3!
invariant operators22,39 in the SU~3!^SU~3! enveloping algebra# and for the multiplicity-free
isofactors13 of uq~3!. Dependence of the phase factors on the multiplicity labelt is completely
determined by the numbert21 of the self-adjoined minimal null space operators in the canonical
tensor operator1,8,30,33 under consideration, but the total phase factors in~4.2a! and ~4.2b! are
consistent with~3.18!, as well as with~4.1!. In accordance with~4.2a! or ~4.2b!, the SU~3!
canonical isofactors with the sign change and coinciding after permutation parameters should be
equal to 0.

However, the phase factors, obtained by extrapolation from the matrix elements of the el-
ementary self-adjoined tensor operators and presented in Eq.~2.16b! of Ref. 8, should be cor-
rected, as well as the phase factors of the SU~3! 3-j coefficients.30 Of course, some alternatives in
the phase choice are possible for different phase systems, but the conjugation properties of the
evidently non-vanishing SU~3! isofactors

F ~a8a8! ~a9a9!
t51

~aa!

0im2 im9 0im9 0im
G ~3!

~a>a9! ~4.3a!

@see Eq.~3.8!# should not contradict with phase factor in Eq.~4.2a!. Especially, the phase factor
asymmetry with respect to the permutationa8↔b8, a9↔b9, a↔b @contrary to proposition~4.11!
of Ref. 30# cannot be allowed, because it sometimes induces improper sign changes of the con-
jugation invariant canonical isofactors or 3-j coefficients, e.g., for the triplet of irreps~5 5!, ~3 3!,
and~4 4! with the shiftsD152,D253,D354 and the operator patternG15(5 0

2 ) of the rank@6 3 0#
tensor operator in the partition-type notations. Besides, for this triplet~and in the all cases with
D1ÞD3! the use ofḠ15(0 25

22 ) as multiplicity label in the coproduct@0,25,210#^@0,23,26#→
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@24,28,212# decomposition is incompatible with condition~2.11! of Ref. 30 between the weights
and shifts. The conjugation of irreps~in the partition-type notations! interchanges the order and
signs of shifts, but formal conjugation of the operator pattern changes only the signs of shifts. Of
course, the equivalence relationḠ1>(6 1

4 ) Þ (5 0
2 ) ~used together with@0,23,26#>@6,3,0#! does

not improve the situation, but the operator pattern (6 1
4 ) is consistent with the transposed triplet of

irreps ~4 4!, ~3 3!, and ~5 5!, as well as the generalḠ1 is consistent with the triplet
(ba)^ (a9b9)→(b8a8).

Otherwise, the phase factor (21)a91b91v5(21)a82b82a1b in ~4.2b! is determined by ex-
plicit isofactors~3.18! and does not contradict with the explicit multiplicity-free isofactors13 after
correlation of the fixed signs of the corresponding boundary cases. It is also consistent with the
vanishing properties of special SU~3! isofactors

F ~ba! ~a9b9!
t51

~ab!

2ymim ŷ9i 9 ymim
G ~3!

, ~4.3b!

@with ŷ9 5 2ym, i 9>u 12(b92a91v)u5ub2a2v)u#, corresponding to zeros of the Clebsch–
Gordan coefficients of SU~2! on the rhs of Eq.~3.18!, related in frames of the Regge symmetry to
the SU~2! Wigner coefficients with equal to 0 projections of angular momentum. In its turn, the
q-power in ~3.14a! may be found using the general version of~4.2b!, together with~3.18!.

Using elementary uq~3! Wigner–Clebsch–Gordan coefficients for the coupling
(b-a-)^ (a-b-)→~0 0! @which are consistent with~4.2b! in thea5b50 case#, together with the
phase factor (21)a81a91a-, we may introduce theuq~3! 3-j coefficients~cf. Refs. 30 and 40!

S ~a8b8! ~a9b9!
t

~a-b-!

y8i 8i z8 y9i 9i z9 y-i-i z-
D
q

~3!

5~21!c1a81a91b-1z-1 i z-q2~3y-1 i z-!/2S @2#

d3@a-b-#D 1/2

3F ~a8b8! ~a9b9!
t

~b-a-!

y8i 8 y9i 9 2y-i-
G
q

~3!F i 8 i 9 i-

i z8 i z9 2 i z-
G
q

~2!

~4.4!

for coupling of three irreps (a8b8)^ (a9b9)^ (a-b-)→~0 0!. In accordance with Pluharˇ et al.39

and Biedenharnet al.30 ~see Sec. V! for c50 or v we obtain coinciding~but not equivalent with
that presented in Ref. 30! conjugation and transposition 1↔3 phase factors~21!v1t21 @herev
5 1

3(a81a91a-2b82b92b-)# of the uq~3! 3-j coefficients ~together with theq-inversion
q→q21 in the both cases!. However, these phase factors are different, ifc5a81a91a- or
b81b91b-. Note, that our self-consistent conjugation phase factor~4.1! is sufficient for motiva-
tion ~but, of course, not for the proof! of the phase factors in~4.2a! and ~4.2b! in the t51 case.

There are two different possible approaches to the permutations 1↔2 or 1↔3 in the canonical
isofactors and 3-j coefficients ofuq~3! or SU~3!. Extending results discussed in Sec. VI and the
conclusion of Ref. 22 about three versions of the canonical labeling, we may write explicitly also
the relations between the isofactors with the permuted first and second irreps or the permuted and
conjugated third and second irreps:
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F ~a8b8! ~a9b9!
t

~ab!

y8i 8 y9i 9 yi
G
q

~3!

5~21!w121t211 i 81 i 92 iF ~a9b9!
t

~a8b8! ~ab!

y9i 9 y8i 8 yi
G
q21

~3!

~4.5a!

5~21!w321t211 i 81z8q3y8/2S @2i 911#d3@ab#

@2i11#d3@a9b9#D 1/2

3F ~a8b8! ~ba! ~b9a9!
t

y8i 8 2yi 2y9i 9
G
q21

~3!

, ~4.5b!

but in this case we are also transposing the multiplicity labelt of the tensor operator of rank
(a9b9), together with selection rules~1.7!. Hence, this operation means transition to a labeling
scheme22 different from the canonical one, similar to transition between two versions of the
paracanonical22,23 labeling or between six versions of the pseudocanonical22 labeling. We are not
able to specify phasesw12 andw32 until we have concrete applications of~4.5a! and ~4.5b! with
fixed phase systems of these new labeling schemes.

Invariance in the absolute value of SU~3! 3-j coefficients under transposition of the irrep
parameters, without special attachment to any definite labeling scheme, was usual according to de
Swart,40 although Derome32 warned care should be taken when some transposed irreps are equiva-
lent. Transposition of the isofactor parameters and multiplicity label, together with the change of
its labeling scheme, was also used for the different labeling schemes22,23 of the SU~3! isofactors
and may be used without restriction~but with some distrust if irreps before and after transposition
coincide! for isofactors of arbitrary non-multiplicity-free group, derived by means of the definite
Gram–Schmidt process. Similar to any transformation of an arbitrary vector together with its
coordinate system, these two dual operations both together give an identity~up to a possible sign
change! and always may be associated30 with the one-dimensional irrep ofS3, although the proof
presented in Ref. 30 is unquestionable only when the below-discussed distinctive~splitting! con-
ditions ~factually always associated with a definite Gram–Schmidt process! are not spoiled. Nev-
ertheless, it is not evident how the operations of different nature~4.2a!, ~4.2b!, ~4.5a!, and~4.5b!
~which leave invariant or change the labeling scheme! may be joined into a single representation
of S3, since unambiguous Derome’s32 character analysis of theS3 or S2 irreducible structure
cannot be applied to relations~4.5a! or ~4.5b! @unlike as to Eqs.~4.2a! or ~4.2b!# ~neither zeros of
isofactors may be predicted!.

Otherwise, instead of Eq.~4.5a! or ~4.5b!, we may write the numerical symmetry relations29,30

F ~a8b8! ~a9b9!
t

~ab!

y8i 8 y9i 9 yi
G
q

~3!

5(
t8

Bt,t8~21! i 81 i 92 iF ~a9b9! ~a8b8!
t8

~ab!

y9i 9 y8i 8 yi
G
q21

~3!

, ~4.6a!

5(
t9

B̃t,t9~21! i 81z8q3y8/2S @2i 911#d3@ab#

@2i11#d3@a9b9#D 1/2

3F ~a8b8! ~ba!
t9

~b9a9!

y8i 8 2yi 2y9i 9
G
q21

~3!

, ~4.6b!
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preserving the canonical~or other fixed! labeling scheme. When irreps before and after transpo-
sition coincide, the orthogonal~unitary! expansion matricesBt,t8 and/or B̃t,t9 are representation
matrices32,41with definiteS2 or S3 irreducible~or reducible! structure, similar to the antidiagonal
transition matrices in the case of the odd permutations for the external labeling scheme of Ref. 39.
~Note that for isofactors of some groups32 the two-dimensional irreducible representation ofS3
may also appear.!

As the simplest situation with non-trivial transition matricesBt,t8 and B̃t,t9, the following
example may be considered: In agreement with the presented-above and transposed conditions
~1.7b! and~1.7c! and tabulated19 expressions of theuq~3! canonical tensor operators, we may write
the following evident relations:

F ~2 1! ~1 1!
t52

~2 1!

1

3

3

2
00

1

3

3

2

G
q

~3!

Þ0, F ~2 1! ~1 1!
t52

~2 1!

1

3

3

2
01

1

3

1

2

G
q

~3!

50, ~4.7a!

F ~1 1! ~2 1!
t52

~2 1!

00
1

3

3

2

1

3

3

2

G
q

~3!

50, F ~1 1! ~2 1!
t52

~2 1!

01
1

3

3

2

1

3

3

2

G
q

~3!

Þ0, ~4.7b!

when for a ‘‘transposed’’ canonical labeling scheme we obtain

F ~2 1!
t52

~1 1! ~2 1!

1

3

3

2
00

1

3

3

2

G
q

~3!

50, F ~2 1!
t52

~1 1! ~2 1!

1

3

3

2
01

1

3

3

2

G
q

~3!

Þ0, ~4.7c!

F ~1 1!
t52

~2 1! ~2 1!

00
1

3

3

2

1

3

3

2

G
q

~3!

Þ0, F ~1 1!
t52

~2 1! ~2 1!

01
1

3

3

2

1

3

3

2

G
q

~3!

50. ~4.7d!

Hence, we verify that even 232 matrix Bt,t8 is non-diagonal. A similar situation@and non-
diagonal matrixBt,t8 in ~4.6a!# occurs for theuq~3! canonical isofactors with (a9b9)5~1 1!,
(a8b8)5(a b), a.1, b>1 or a>1, b.1, with exception of thea5b case for SU~3!.

Favorably for the SU~3! anduq~3! canonical labeling scheme~but never for the non-trivial
cases of the paracanonical22,23 and some other labeling schemes!, these expansion matricesBt,t8
are usually diagonal for an elementary transposition~odd permutation! of the coinciding irreps in
the canonical isofactors and always diagonal~what will be proved below! when the all three irreps
in the canonical 3-j coefficient of SU~3! or uq~3! are equivalent. Otherwise, the antidiagonal form
of the expansion matrices for the odd permutations of the SU~3! isofactors in the labeling scheme
of Ref. 25 ensures the appearance of the two-dimensional reducible representations and solely
one-dimensional irreps ofS3 for the all values of representation parameters of the SU~3! isofac-
tors, in addition to the special cases, considered by Derome.32

Moreover, the sufficient conditions of the one-to-one correspondence between the isofactors
on the lhs and the rhs of~4.6a! and~4.6b!, labeled byt andt8 @associated, respectively, with irreps
(a9b9) and (a8b8) and taking values, as a rule, in the different intervals#, may be strictly formu-
lated for the SU~3! and uq~3! canonical tensor operators. For this purpose, let us reconsider
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conditions~1.7b! and~1.7c!. Following Hecht20 and Refs. 8, 22, and 30, it may be supposed that
for a given triplet (a8b8)(a9b9)(a b) of SU~3! or uq~3! irreps at least one triplet of the basis state
labels~the initiation point! exists, for which only a single value of the external multiplicity label
with non-vanishing isofactor is possible.~Usually, from such point a Gram–Schmidt process is
begun!. For example, exactly three initiation points exist for the~non-trivial! paracanonical22,23

external labeling scheme. For the SU~3! and uq~3! canonical isofactors, sometimes many such
initiation points may be chosen, with the parametersi 8,im9 ,i ,y8,ym9 ,y, satisfying the following
conditions:

u i2 i 8u5 im9 2M1r , y5y81ym9 ~4.8!

and, possibly, forming two isolated sets~for i2 i 8.0 andi2 i 8,0, respectively!, when the mul-
tiplicitiesM5r . For example, represented by~4.7! isofactors have more than two initiation points
for tensor of rank~1 1! and a mutually shared initiation point for the both tensor operators of rank
~2 1!.

Specifying the parametersi5 im, y5ym as in~2.13!, ~2.14!, and~3.1! and taking into account
possible additional restrictions in the null space case, we may write condition~4.8! for the first
main initiation point as

i init.8 5 im2 im9 1M2r>uẑ8u, ẑ85 1
2 ~b82a81v !, and i init.8 > im9 2 im

if im2 im9 ,0 in addition. ~4.9a!

Otherwise, condition~4.8! with special parametersi 8 5 im8 , y8 5 ym8 gives the second main initia-
tion point

i init.5 im8 2 im9 1M2r>uẑu, ẑ5 1
2 ~b2a2v !, and i init> im9 2 im8 if im8 2 im9 ,0 in addition.

~4.9b!

However, the above discussed problems with the normalization factor~3.7b! or ~3.14b! are
caused by the absence of some initiation points. We see that such triplets (a8b8),(a9b9),(a b) of
SU~3! or uq~3! irreps are also possible, for which the initiation points of the canonical splitting
scheme are missing, since neither~4.8!, nor at least~4.9a! or ~4.9b! may be satisfied.@Of course,
the initiation points presented as~3.1!–~3.3! of Ref. 30, perhaps with intention to escape the
ambiguities of attaching the operator pattern to the first or third irrep, may also be non-existent,
whena91b9.a1b anda91b9.a81b8 without the null space situation.# Contrary to the para-
canonical and pseudocanonical isofactors22,23 ~for which the numerical transitions from the bior-
thogonal to orthogonal sets are always possible!, the canonical isofactors cannot always be ob-
tained immediately from the bilinear combinations of isofactors~solving the triangular systems of
equations in numerical or analytical forms, i.e., by a Gram–Schmidt process! but only by an
analytical continuation procedure~extrapolation! from the region with infinite~but countable!
number of points, in which initiation points are existing.~Note that the numerical approach of
Draayer and Akiyama42 and its analytical generalization8 are independent of our initiation prob-
lem.!

Using array~1.3b!, together with its equidistantness properties~1.3c! and relations

im2 im9 5 1
2 ~r 1112r 331!, ẑ85 1

2~r 1312r 311!,

im8 2 im9 5 1
2 ~r 1112r 221!, ẑ5 1

2 ~r 1212r 211!,

it may be shown that the initiation points of each@either~4.9a! or ~4.9b!# type may disappear and
the nearest allowed value ofîmin8 . i init.8 or îmin.i init. ~with the remaining parameters chosen as
above! is not distinctive~i.e., not sufficient! for the canonical labeling of the external multiplicity
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with fixed position of the tensor operator labels. For example, only one initiation point from two
sets exists when non-diagonal parameterr 13g ~respectively,r 12g, or r 31g, or r 21g! from array~1.3b!
strictly exceeds eight remaining parametersr abg in the same layer of~1.3b!. Separately for con-
crete versions ofM2r we also prove that both inequalities~4.9a! and ~4.9b! have no solutions
when non-diagonal parameterr 32g, i.e., b9 or b91v ~or, respectively,r 23g, i.e., a9 or a92v!,
strictly exceeds eight remaining parametersr abg in the same layer of~1.3b!, i.e.,

r 32g.r abg.0 unlessa53, b52 both together, ~4.10a!

or

r 23g.r 22g , r 23g.r 33g , r 23g.r 21g , r 23g.r 13g . ~4.10b!

~The both conditions, for maximalr 32g and for maximalr 23g, are written above in the different,
but equivalent forms!.

Hence, we found the regions of the irrep parameters (a8b8)(a9b9)(a b), for which condi-
tions ~1.7a!–~1.7c! are not sufficient for the canonical splitting. We see that initiation points may
be absent without the null space situation for parametersr 1bg or r a1g accepting intermediate
values, respectively, betweenr 2bg andr 3bg, or betweenr a2g andr a3g, for example, in the case of
the coproduct decomposition~12!^~31!→~21! or ~24!^~51!→~42!. Using recursive construction
~2.13! of Ref. 8 @which is equivalent fort5M with algorithm of Draayer and Akiyama42 in the
SU~3! case#, we see that isofactor

F ~1 2! ~3 1!
t

~2 1!

2
1

3

1

2

2

3
2

1

3

3

2

G
q

~3!

~4.11a!

does not vanish for the both values of the multiplicity labelt51,2. Of course, their parameters
with the maximal shiftu i 82 i u52 are impossible and system of equations~2.13! is unsolvable in
terms of the canonical isofactors, without using results of Sec. III. Otherwise, labels of~4.11a!
corresponds to an initiation point, associated with the last tensor of rank~2 1! or, respectively,
with the isofactor

F ~1 2! ~1 2!
t51

~1 3!

2
1

3

1

2
2
1

3

3

2
2
2

3
2
G

q

~3!

. ~4.11b!

Since~4.11a! has a definite symmetry, described by~4.2b!, the transposition matrixBt,t8 of ~4.6a!
for ~4.11b! @and in the all cases, described by the conditions~4.10a! or ~4.10b!# is non-diagonal, in
spite of the coinciding first and second irreps, and corresponds to a reducible representation ofS2
according Derome.32

Therefore, dependency~4.10a! or ~4.10b! between the isofactor parameters forbids any sym-
metries associated with the interchange of the SU~3! tensor operator and initial or final labels, even
if the corresponding irreducible representations coincide. For example, recursive construction
~2.13! of Ref. 8 ~equivalent with the approach of Ref. 42! never gives 0 for isofactors

F ~3 2! ~3 2!
t52

~5 3!

1

3

5

2

1

3

5

2

2

3
i
G ~3!

~1< i<4!, ~4.11c!
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which should appear at least for two values ofi in the case of diagonal matrixBt,t8 in ~4.3c!. Thus,
the canonical resolution of the SU~3! external multiplicity problem sometimes is not optimal with
respect to Derome’s32 approach.

Let us consider another concrete example of the irrep parameters with absent initiation points
of the canonical isofactors. We take the canonical tensor operator of rank~6 4! for the coproduct
decomposition~2 4!^~6 4!→~3 3!, with non-vanishing isofactors fort54 and 5. The initiation
points for the tensor operators of the rank~3 3! and~2 4! exist ~but are not common for the both
operators! and correspond to the isofactors of the alternative labeling schemes

F ~2 4! ~6 4! ~3 3!
1

2
1

3
2

1

3
5 0 3

G
q

~3!

and F ~2 4!
1

~6 4! ~3 3!

2
1

3
3

1

3
5 0 2

G
q

~3!

. ~4.12a!

The corresponding canonical isofactors cannot be extracted immediately from the bilinear com-
binations of the type~2.14! by any Gram–Schmidt process, but generalized touq~3! recursive
construction~2.13! of Ref. 8 ~see also Ref. 42! may be useful, when applying our Eq.~2.14! for
normalization~unless theq-analog for the denominator function5,7 will be derived!. This construc-
tion, together with non-vanishing values of the multiplicity-free isofactors13

F ~2 4! ~2 0! ~3 3!

2
1

3
2

1

3
1 0 3 G

q

~3!

and F ~2 4! ~2 0! ~3 3!

2
1

3
3

1

3
1 0 2 G

q

~3!

, ~4.12b!

allows us to prove that

F ~2 4! ~6 4!
t55

~3 3!

2
1

3
2

1

3
5 0 3

G
q

~3!

Þ0, F ~2 4! ~6 4!
t55

~3 3!

2
1

3
3

1

3
5 0 2

G
q

~3!

Þ0. ~4.12c!

Finally, the absence of the initiation points for this case of the canonical coupling is also proved,
taking into account that triplets satisfying~4.8! ~1, 5, 3 or 3, 5, 1! are not allowed.

Similar to formula~3.6! with inserted Eq.~3.8! and the non-singular version of the denomi-
nator function~3.14b!, expression~4.7! of Ref. 43 for the SU~3! isofactors with extreme shifts of
the SU~2! irreps@or Eq. ~5.8! of Ref. 8 which, nevertheless, is correct# may give zero for param-
eters satisfying conditions~4.10a! or ~4.10b! @e.g., for triplet~2 4!^~6 2!→~4 2!#, without the null
space situation of the canonical tensor operator. Hence, we conclude that the null space of
SU~3!:U~2! and uq(3):uq(2) projective operators may exceed the null space of the SU~3! and
uq~3! canonical tensor operators, contrary to Lemma 1.1 and Theorem 1.1 of Ref. 6. Since the
tertium non datur principle now is questionable in the proof of Theorem 1.2 of Ref. 6, the defining
conditions~1.26b! of the canonical tensor operators6 should be replenished. Particularly, now it is
not evident that the isofactor vanishing condition~1.7a! is completely determined by the null space
inclusion propertyN 1.N 2.•••.N M , just together with the conjugation invariance, without
any supplementary condition. Paradoxically, we see that construction~2.13! of Ref. 8 is conjuga-
tion invariant ~up to sign! independently on its orthogonality, as well as the isofactors on the
left-hand and right-hand sides of Eqs.~4.6a! and~4.6b!, although matricesBt,t8 andB̃t,t9 may be
non-diagonal. The author did not find any reason why some unitary transformation with the
non-diagonal matrix elements, vanishing on the disjunctive complement ofN t8 in N t , for t8.t
cannot be invented, similar to the transformation between the canonical and pseudocanonical
isofactors.

Hence, together with the arguments versus the null space inclusion property being sufficient
for the canonical splitting, the author understood that the SU~3! isofactors with tÞ1 or M,
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constructed by means of~2.13! of Ref. 8, may be non-orthogonal. Besides, the Gram–Schmidt
process begun fromt51 ~actually from t52! spoils forM.2 ~when the set of isofactors is
overcomplete!, the null space inclusion property@perhaps, with exception of the rank~2 2! case#.
@In this last case,~2.13! of Ref. 8 does not contradict with the results, tabulated in Ref. 44, but the
null spaces also coincide.# The overlaps of the SU~3! isofactors from Ref. 8 were considered for
the tensor operators of the multiplicity 4 and rank~3 3! and were expanded in terms of the
overlaps~3.6! of the dual~biorthogonal! SU~3! coupled states22 by means of the expansion coef-
ficients ~5.1! from Ref. 8 and expressed in terms of polynomials and linear functions ina,b by
means of the computer algebra. Since the non-diagonal overlaps with unequalt52,3,4 were
expressed purely in terms of the linear functions ina,b, without any non-trivial polynomials, our
approach of Ref. 8 does not seem hopeless for the final explicit construction of the SU~3! and
uq~3! canonical tensor operators.

We see that some oversights of Ref. 8 and Refs. 6 and 30 are ‘‘dual’’ in a similar sense as the
biorthogonal coupled bases:22 the bases with subscripts are overcomplete and the bases with
superscripts present additional definition problems. Hence, our Eq.~2.13! and the corresponding
algorithm from Ref. 30, or used in Sec. VI of Ref. 22 distinctive conditions~6.1a,b!, do not ensure
sometimes the null space inclusion properties, when the corresponding initiation points are not
correlated as above with the canonical splitting. Nevertheless, our Eq.~2.13! is overcomplete for
the algorithm, consistent with the Braunschweig conjecture.45,46Particularly, the Williams46 con-
struction of the orthogonal SU~3! coupling coefficients is also equivalent to the numerical Gram-
Schmidt procedure, whose initiation points may be either associated with some ‘‘transposed’’
version of the canonical labeling scheme@in analogy with ~1.9!, or ~4.9a,b!#, or may not be
correlated with any considered analytical solution of the external multiplicity problem~although
isofactors with the coinciding irreps should be equivalent up to sign with the canonical ones for
the multiplicity 2!. The above presented arguments may show some transposition symmetry of the
coupling coefficients46 being not universal, although the alternative symmetry relations46 under
definite restrictions may be equivalent to our results.

It is evident that matrixBt,t8 accepts in~4.6a! a shift-diagonal form, if the initiation points for
the tensor operators of rank (a9b9) and (a8b8) are mutually related by the same transposition
(a8b8)↔(a9b9). This is possiblewhenim8 2 im9 2 M 1 r 5 im9 2 im8 , or in the inverse situation~ap-
pearing after the transposition!, also when the null space appears before and/or after transposition
~and Lemma 1.1 of Ref. 6 is valid!. Thus, relation~4.6a! may be reduced to the phase factor when
diagonal parameterr 33g of array ~1.3b! exceeds all the remaining parameters of the same layer:

r 33g>r abg ~4.13a!

with the corresponding shiftr 11g2r 22g or r 22g2r 11g betweent andt8. Similarly, the transposition
(b a)↔(a9b9) @with the antidiagonal transposition of the both layers of array~1.3b!# gives only
phase factor in~4.6b! when

r 22g>r abg ~4.13b!

with the corresponding shift6 2(im 2 im9 ) of t. Supremacy of the parameterr 11g determines the
possibility of transposition (b8a8)↔(a b) for the external multiplicity label, associated with
tensor operator of rank (a8b8) or (a b). Relations~4.13a! and ~4.13b! turn into equalities and
determine theS3 transposition invariance~up to sign! of the SU~3! or uq~3! canonical 3-j coeffi-
cients, when the all three irreps are equivalent. Of course, conditions~4.13a! and ~4.13b! are
satisfied and Lemma 1.1 of Ref. 6 is not violated for the self-conjugated tensor operators with
v50 and in some their vicinity.

The vanishing~non-vanishing! properties of the canonical SU~3! isofactors with coinciding
parameters allows us to fix some phases also in~4.6a! and~4.6b!, whenBt,t8 or B̃t,t9 are diagonal.
For example, non-vanishing of isofactors
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F ~a8b8! ~a8b8!
t51

~a b!

ym8 im8 ym8 im8
2
3 ~b2a!0

G ~3!

for v5a82b85b2a ~4.14a!

or, in general,

F ~a8b8! ~a8b8!

t0

~a b!

ym8 im8 ym8 im8 2ym8 t021
G ~3!

with t05ub82a81vu11 ~4.14b!

do not contradict with~4.6a!, if we include intoBt,t8 the phase factor (2 1)v1t2t0, together with
the corresponding shifts oft, determined by ~4.13a! and t05M2r11 in the general
[(a8b8)Þ(a9b9)] case. The same phase factor~21!v appears for transposition 1↔2 in the
multiplicity-free cases, without dependence on condition~4.13a!.

We see that alternatives in the symmetry properties of the canonical isofactors and possibili-
ties in abbreviating tables depend on what—diagonal or non-diagonal—position is accepted by the
maximal entry of array~1.3b!, when the external multiplicity of the SU~3! or uq~3! tensor operator
or in the isofactors is determined by the minimal entry@in the opposite row, column, and layer of
subarray~1.5b!#. Note that only diagonal entries belong to two different subarrays 23232 of the
type ~1.5b!, or related with~1.5b! by the corresponding transposition. Remember that the denomi-
nator functions5–7 and the boundary SU~3! isofactors ~orthogonalization of which leads in a
shortest way to the canonical ones—see Sec. V of Ref. 8! are dermined only for a fixed integer
value of at least single entry of subarray~1.5b! and the multiplicity labelt. Thus, the interchange
of the tensor operator and initial~or, respectively, final! basis labels in the canonical SU~3! or
uq~3! isofactors may give the coinciding~when the Gram–Schmidt processes are allowed before
and after transposition! or alternative~transposed! numerical versions of the canonical splitting
~with changed position of the tensor operator in its matrix element!. The differences of thet shifts
after such interchange and the different alternatives between the Gram–Schmidt and analytical
continuation processes forbid speaking about the uniqueness of the canonical resolution of the
external multiplicity problem analytical in all 12 isofactor parameters, unless~before! the position
of the tensor operator in isofactor is fixed. The definition ambiguity of the canonical tensor
operators may be excluded, if the null space inclusion property is used together with the linear
independence condition of the all non-zerouq(3):uq(2) @or SU~3!:U~2!# projective operators.

Nevertheless, in addition to the symmetries, induced by conditions~4.13a!, and~4.13b!, some
simple symmetries of the canonical isofactors may be caused by accidental initiation points. For
example, vanishing of special SU~3! isofactors

F ~1 1! ~a a!
t52

~a a!

0 0 0 a 0 a
G ~3!

50, F ~a a! ~1 1!
t52

~a a!

0 a 0 0 0 a
G ~3!

50 ~4.15a!

@in accordance with condition~1.7c! in the first case, and in accordance with the conjugation
symmetry ~4.2a!, or with the tabulated isofactor expressions in the second case# induces the
complete S33S2 symmetry of the canonical SU~3! isofactors for coupling
(a a)^ (1 1)→(a a). In accordance with~3.18! and ~4.2b!, accidental initiation points exist
also for SU~3! isofactors

5744 Sigitas Ališauskas: Canonical tensor operators of uq(3)

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



F ~1 2! ~3 1!
t

~2 1!

2
1

3

3

2

2

3
i 9

1

3

3

2

G ~3!

~4.15b!

with t51 and 2 fori 950 ~or 2! and 1, respectively@cf. isofactors~4.11a! and ~4.11b!#.
In general, when all three irreps are self-adjoint, i.e., for coupling (a8a8)^ (a9a9)→(a a),

one or two independent versions of the canonical labeling may exist in accordance with satisfied
condition~4.13a! or ~4.13b!. Anyway, the elements of matricesBt,t8 andB̃t,t9 with the positions of
different parity in rows and columns are 0, since the transpositions do not mix states with the
different irreducible behavior under conjugation. Returning to the triplet of irreps~5 5!, ~3 3!, and
~4 4!, we may predict that the canonical labeling scheme is completely invariant under transposi-
tion for t52, but t51 andt53 states of the rank~3 3! tensor mix after transposition.@There is
one-to-one correspondence between the all matrix elements of the rank~4 4! and ~5 5! tensors#.
However, the symmetries of this type are not satisfied by the correspondinguq~3! isofactors.

In spite of absent initiation point on the lhs or rhs of Eq.~4.6a! or ~4.6b!, zeros may be found
in unitary matricesBt,t8 andB̃t,t9 from the analysis of the original and transposed conditions~1.7!.
Distribution and number of zeros depend on the degree to which~4.9a! or ~4.9b! are spoiled and
determine some restrictions for the remaining non-vanishing matrix elements. For example, iso-
factor without any initiation point

F ~2 3! ~4 2!
t

~3 2!

2
1

3

5

2

2

3
3

1

3
î
G

q

~3!

S î5 1

2
,
3

2
,
5

2D ~4.16!

may be expanded according~4.6a! by means of the matrixBt,t8 with B3150 and some dependen-
cies ~e.g.,B12B235B13B22! between the remaining matrix elements.
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8S. Ališauskas, J. Math. Phys.33, 1983~1992!. Note that the seconda8 should be corrected toa9 in the denominator of
~3.19b! ands appears as summation parameters in~3.19a! and~4.5!; the first factor under square root on the rhs of Eq.
~3.21! should be corrected to (a12z11) and the phase factor~21!v should be included into Eq.~3.21! when presenting
it as a particular case of~3.20!; correction to (k2 i 82 i 91 i2...) is necessary in the denominator of the last but one row
of ~4.13b!; the multiplicity labelt should appear as a subscript~instead ofr! in the lhs of~5.8!; 2i should be corrected
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22S. Ališauskas, J. Math. Phys.29, 2351~1988!. Note that the numerator factor~a1 691v12!! of Eq. ~3.6! should be
corrected into~a1681v12!!.
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A general theory of quantum Clifford algebras is presented, based on a quantum
generalization of the Cartan theory of spinors. We concentrate on the case when it
is possible to apply the quantum-group formalism of bicovariant bimodules. The
general theory is then singularized to the quantum SL~n,C! group case, to generate
explicit forms for the whole class of braidings required. The corresponding spinor
representations are introduced and investigated. Starting from our Clifford algebras
we introduce the quantum-Euclidean underlying spaces compatible with different
choices of* -structures from where the analogues of Dirac and Laplace operators
are built. Using the formalism developed, quantum Spin(n) groups are defined.
© 1996 American Institute of Physics.@S0022-2488~96!01709-4#

I. INTRODUCTION

In this paper we present a general theory of quantum Clifford algebras and spinors based on
the incorporation, into the quantum context, of Cartan’s theory of spinors.1,2 Our approach de-
pends essentially on constructing the ‘‘spinor representation’’ that would lead us to the proper way
of defining the abstract algebra.

In Cartan’s classical theory, spinors are considered as elements of the graded exterior algebra
over one of the two isotropic subspaces into which the underlying 2n or 2n11-dimensional
Euclidean or pseudo-Euclidean spaceW decomposes. These two isotropic subspaces are mutually
dual and hence we can writeW5V%V8 for even-dimensional spaces andW5M%V%V8 for
odd-dimensional spaces, where dimV5dimV85n, and dimM51. Spinors are based onV, and if
any vectorw in W is written as the unique decompositionw5x0ê01x1 f , where ê0 is a unit
vector inM andxPV, fPV8, then the generators of the Clifford algebra acting on a spinorj are
determined by the relations

H~w!j5x`j1i fj1x0Sj, ~1!

whereS is the parity operator which acts on homogeneous spinorsj (p)PV`p according to

Sj~p!5~21!pj~p!. ~2!

In our quantum construction we shall start from a vector spaceV endowed with a braiding
s :V^2→V^2 satisfying the Hecke conditions25(12q)s1q1 for someqPR, such thatV ands

0022-2488/96/37(11)/5747/29/$10.00
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~together with the dualV8 andC! with the usual tensor products~and appropriate subspaces and
factor-spaces! generate a braided monoidal category. Moreover, we ask that the contraction map
betweenV8 andV is functorial @see diagrams~32! and ~33!#.

We can defineV`, the exterior braided algebra ofV, asT(V)/J whereT(V) is the tensor
algebra ofV andJ is the ideal ofT(V) generated by ker(A). HereA5(k>0

% Ak , andAk is defined
onV^k byAk 5 (pPSk

( 2 1)l (p)sp , wheresp are operators obtained by replacing transpositions
in the minimal decomposition ofp by the correspondings-twists, andl ~p! is the length ofp. We
then haveAk

25ckAk with ckÞ0. Under our assumptionsT(V)5ker(A)%Im(A), thereforeT(V)/
J.Im(A), so we can identifyV` with Im(A), a subspace ofT(V). Explicitly, we will assume the
following identifications:

@w1ker~A!#↔A~w!,

wherewPT(V).
This identification allows us to define a transformationi f :V

`→V` for any fPV8 given by
i f(h)5 ( f (h i1

)h i2
^ ••• ^ h i k

forh 5 (h i1
^ h i2

^ ••• ^ h i k
.Having thisoperationwecandefine,

for anywPW, an action onV` by means of the relation~1!, so we have a mapH:W→L(V`). We
then find thatCl(W), the algebra generated byH(W), is isomorphic toT(W)/J whereJ is the
ideal generated by the elementsx^ y1(1/q)s(x^ y); x^ f1s(x^ f )2^s(x^ f )&;
f ^x1s21( f ^x)2 f (x); f ^g1(1/q)s( f ^g). Herex,yPV; f ,gPV8, while ^,&:V8^CV→C de-
notes the contraction map and the symbols is used for all the braidings in the above-mentioned
braided monoidal category.

We recall thatT(W) is a filtered algebrawith filtration

Td~W!5(
i<d

W^ i .

This filtration induces a filtration inCl(W). The corresponding graded algebra

gr@Cl~W!#5(
%

Cl~W! i11/Cl~W! i ,

is naturally isomorphic, as a vector space, toV`
^V8`, while the product is appropriately ‘‘de-

formed’’ with the help ofs.
Moreover, it is possible to introduce a braidingt in W, which depends exclusively on the

initial braidings, such that the mentioned graded algebra is isomorphic, in a natural manner, to
the correspondingt-exterior algebraW`. From this point of view, our Clifford algebra can be
interpreted as aChevalley–Kähler-type deformationof the exterior algebra. It is worth noticing
that this fact can be used as a starting point3 for constructing quantum Clifford algebras, as in the
classical theory. Such a generalization of the Chevalley–Ka¨hler construction works for arbitrary
braids.

The paper is organized in the following way. In Sec. II we shall review some basic facts about
Hecke algebras and quantum groups, which are then applied to the cases of~general! quantum
SL(n) groups. We shall also explain why it is possible to apply the theory of compact quantum
groups in the noncompact context. In Sec. III a general theory of quantum Clifford algebras is
given, together with some concrete examples and computations. Section IV is devoted to a more
detailed study of the spinor representation. We shall prove that this representation is faithful and
irreducible, as in the classical theory. Questions related to the spinor scalar product and the
associated*-structure on the Clifford algebras will be discussed also. In Sec. V we construct the
flip-over operators starting from the fundamental representation of SLq~n,C!. In Sec. VI we intro-
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duce and investigate quantum Euclidean underlying spaces induced by our Clifford algebras. We
also discuss different choices of* -structures. Finally, in Sec. VII we use our formalism to describe
briefly the general procedure for defining quantum Spin(n) groups.

As a concrete example of constructing the braided monoidal category generated byV, V8, C,
ands :V^V→V^V, we shall consider the case when a quantum group formalism of bicovariant
bimodules can be applied. More specifically, we letG be a quantum group andA be the asso-
ciated Hopf algebra of ‘‘polynomial functions’’ onG. We then takeV as a rightA-module and
right A-comodule. Under some necessary and sufficient conditions we have thatV.Ginv5left
invariant elements of a bicovariant bimoduleG. Then, if in the category of bicovariant bimodules
T G we take the braided monoidal category generated byG, G8 ~dual toG!, A, ~including the
appropriate submodules and factor-modules! and consider the left invariant part of the objects of
this last category we obtain the required braided monoidal category.

Our approach differs from others appearing in the literature~Refs. 4–6! in that the procedure
followed in these papers consists essentially in deformingCl(W) by stressing its presentation in
terms of generators and relations rather than its representation inV`. In this case if we consider an
appropriate~Hecke! braidings :W^W→W^W, it is natural to define the corresponding Clifford

algebraCl̃(W) as the factor algebraT(W)/K whereK is the ideal generated by elementsx^ y
1(1/q)s(x^ y)2(x,y)1, wherex,yPW and ~,! is an appropriate~s-symmetric! bilinear form.
Thus the corresponding graded algebra is simplyW`. A problem with this approach is that if

W5V%V8, then it is not possible to have a representation ofCl̃(W) a la Cartan, because it is not
possible to have thats(V^V8)5V8^V and s(V8^V)5V^V8 at the same time~the Hecke
relation is incompatible with that, if the braid is not symmetric!.

Another approach for deforming Clifford algebras is due to Hayashi,7 where an analogy is
made between the usual presentation ofCl(W) by generators and relations with the Chevalley
generators of the enveloping algebraU(X) of a symmetrizable generalized Cartan matrixX. The
corresponding quantum Clifford algebra is then obtained in analogy with the quantized enveloping
algebra. In this case a representation of the quantum Clifford algebra is given on a usual exterior
algebra. The resulting quantum Clifford algebra turns out to be a direct product of classical
Clifford algebras. It is worth noticing that our Clifford algebra is also isomorphic to the full
endomorphism algebraL(V`), via the representationH ~if V` is finite dimensional!.

It is interesting to consider possible physical applications of the formalism of quantum Clif-
ford algebras from the point of view of introducing ‘‘quantized’’ space–time models. Logically,
several possibilities are open. Perhaps the most natural approach is to define the corresponding
space–time algebra starting from relations defining the quantum Clifford algebra. The space–time
algebra is then generated byW, and quadratic relations obtained by requiring that the square of the
generic vector fromW is the space–time ‘‘distance.’’ In this picture the deviation from classical
of the generating relations for quantum Clifford algebras is responsible for the noncommutativity
of the space–time algebra. However, given a compatible* -structure, the space–time algebra is
uniquely fixed. Essentially, it will be a variant of a ‘‘quantum plane.’’

On the other hand, it is possible to relax such a relation between the Clifford algebra and the
‘‘space–time,’’ and to introduce axiomatically the analogues of spin bundles. The advantage of
such approach is in its flexibility, since the ‘‘horizontal’’ and the ‘‘vertical’’ parts of the formalism
become relatively independent. In particular, it is possible to introduce a concept of a classical
spinor structure on a quantum space.8 The material presented here constitutes a base for further
studies related to these matters.

II. HECKE ALGEBRAS, BICOVARIANT BIMODULES, AND INTERTWINERS FOR
QUANTUM GROUPS

A. On Hecke algebras

Let qPC\$0% be a complex number andn>2 an integer. By definition in Ref. 9, the corre-
sponding Hecke algebraHn,q is described by generatorss1,...,sn21 and relations
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s i
25~12q!s i1q1, ~3!

s is j5s js i , if u i2 j u>2, ~4!

s is i11s i5s i11s is i11 . ~5!

In what follows, it will be assumed thatq.0. The algebraHn,q is finite dimensional, more-
over dimHn,q5n!. It can be understood as a deformation of the functional algebra of the sym-
metric groupSn . A natural basis inHn,q is given by elements (@p#q)pPSn

, where@p#q denotes the
element obtained by replacing transpositions in aminimal decomposition of the permutationp
with the corresponding generatorssi .

In this article Hecke algebras will appear via their representations, which will be of the
following particular kind: LetV be a vector space ands :V^V→V^V be an arbitrary braid
operator satisfying the Hecke relation of the form~3!. Then there exists the unique representation
Ds of the algebraHn,q in the spaceV^n satisfyingDs(s i)5 idi21

^ s ^ idn2 i21. For our pur-
poses, we shall further assume that the spaceV is a carrier of an irreducible representationv of an
appropriate quantum groupG, such thats intertwines the square of this representation. This
condition will ensure that all entities constructed intrinsically fromV ands areG-covariant, in a
natural manner. In fact, we shall go beyond this and assume thatV, v, ands are interpretable in
the framework of the theory of bicovariant bimodules10 overG. More precisely, it will be assumed
that V consists of left-invariant elements of some bicovariant bimoduleG overG such that the
representationv can be viewed as the restriction of the right action ofG on G, and such thats
becomes~the ‘‘left-invariant part’’ of! the canonical flip-over operator.

In our considerations, the main object associated tos andV will be the correspondingbraided
exterior algebra V̀ . This algebra can be described as the factor algebra of the tensor algebraV^

through the idealJ generated by ker~I2s!. This ideal coincides with the kernel of the correspond-
ing ‘‘total antisymmetrizer’’A:V^→V^ , which is explicitly given by

A5 (
n>0

%

An ,

whereAn :V
^n→V^n are operators given by

An5 (
pPSn

~21! l ~p!sp ,

andsp are operators obtained by replacing transpositions in the minimal decomposition ofp by
the correspondings-twists. In other words,

sp5Ds~@p#q!.

In consequence, the following decomposition holds:

V^ 5ker~A! % Im~A!.

In fact, due to the Hecke relation, it follows thatA is a projection operator, up to a multiplication
constant in eachV^k. Explicitly, we have

Ak
25ckAk , ~6!

where
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ck5S (
pPSk

ql ~p!D . ~7!

The algebraV` can be naturally identified, with the help ofA, with the space Im(A). In what
follows it will be assumed that the identification

V`{~w1J!↔A~w!PV^

is made.
It is very important to observe that all our considerations apply for general Hecke braidings

~with q.0!, and in particular it is not necessary to assume that dimensions of braided exterior
algebra spacesV`k are classical~for example, classicalsymmetricalgebras are included trivially
in the procedure!.

B. On bicovariant bimodules

In this subsection we shall summarize the most important elements of the theory of bicova-
riant bimodules over~compact matrix! quantum groups. We shall basically follow Ref. 10, in a
slightly different notation.

1. Structure of bicovariant bimodules

Let G be a bicovariant bimodule overG, and letGf:G→G^A andfG :G→A^G be the right
and the left action ofG on G, respectively. These maps satisfy the following identities

~ id^ e!Gf5 id, ~8!

~e ^ id !fG5 id, ~9!

Gf~au!5f~a!Gf~u!, ~10!

Gf~ua!5Gf~u!f~a!, ~11!

fG~au!5f~a!fG~u!, ~12!

FG~ua!5fG~u!f~a!, ~13!

~ id^ f!Gf5~Gf ^ id !Gf, ~14!

~f ^ id !fG5~ id^ fG!fG , ~15!

~fG ^ id !Gf5~ id^ Gf!fG . ~16!

Let V5Ginv be the space of left-invariant elements ofG. The spaceV possesses a natural right
A-module structure. This structure is given by

u+a5k~a~1!!ua~2!, ~17!

wherek :A→A is the antipode map. Equivalently, we have

u+a5P~ua!, ~18!

whereP:G→V is the canonical projection onto left-invariant elements. This map is given by

5751Bautista et al.: Quantum Clifford algebras

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



P~w!5(
i

k~ai !w i ,

whereSiai ^ w i5fG~w!.
The spaceV is right-invariant in the sense that

Gf~V!#V^A. ~19!

Let v:V→V^A be the restriction ofGf onV. This map is a representation ofG ~in other words
V is a rightA-comodule!.

The module and comodule structures onV are mutually related in the following way:

v~u+a!5(
k

~uk+a
~2!! ^ k~a~1!!cka

~3!, ~20!

where

v~u!5(
k

uk^ck . ~21!

The mapI :A^V→G given by

I ~a^ u!5au ~22!

is a leftA-module isomorphism. If we identify the two spaces~with the help ofI !, then the right
A-module structure onG is given by

~a^ u!b5ab~1!
^ ~u+b~2!!. ~23!

Further, left and right actions ofG on G are given by

fG~a^ u!5a~1!
^a~2!u, ~24!

Gf~a^ u!5(
k
a~1!

^ uk^a~2!ck . ~25!

Consequently,G is completely determined by~V,v,+!.
Let s :V^V→V^V be ~the left-invariant part of! the canonical flip-over operator.10 The

following identities hold:

s~h ^ u!5(
k

uk^ ~h+ck! , ~26!

s21~u ^ h!5(
k

@h +k21~ck!# ^ uk . ~27!

The maps intertwines the squarev2:V^V→V^V^A with itself.

2. Reconstruction problematics

Let V be a vector space,v:V→V^A be a representation ofG on V, and + be a right
A-module structure onV. Let us assume that~20! holds, and let us define a leftA-moduleG as
the free structureG5A^V.
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It then follows that formula~23! defines a right module structure onG, while formulas~24!
and ~25! define the left and the right action ofG on G. Endowed with all these structures,G
becomes a bicovariant bimodule. Moreover,V5Ginv and the initial+ and v are understood as
associated rightA-module and comodule structures onV, respectively. In such a way, the circle
is closed.

3. Some technical criteria for compatibility between the module and the comodule
structure on V

Let us assume that a~finite-dimensional! vector spaceV is endowed with a rightA-comodule
structurev:V→V^A as well as with a rightA-module structure+. Let s :V^V→V^V be a
linear map given by~26!. This map is always bijective~independently of mutual compatibility
between+ andv! and its inverse is given by~27!.

Let us assume that the matrix elements of the representationv together with the matrix
elements of the contragradient representationk(v){ generate the algebraA.

Lemma II.1:The following conditions are equivalent:
~i! Equality ~20! holds for eachuPV andaPA.
~ii ! The maps intertwinesv2.
Proof: If equality ~20! holds, thenG5A^V becomes in a natural manner a bicovariant

bimodule overG ands becomes its canonical flip-over operator. Therefore~ii ! holds.
Conversely, let us assume that~ii ! holds.
Let us fix a basise1 ,...enPV. Matrix elementsv i j of v are given by

v~ei !5(
j
ej ^v j i . ~28!

The intertwining property ofs can be expressed as

v^2s~ei ^ej !5(
k
v^2@ek^ ~ei+vk j!#5(

k,n
~en^vnk!v@ei+vk j#5~s ^ id !v^2~ei ^ej !

5(
k,l

s~ek^el ! ^vkiv l j5 (
k,l ,n

en^ ~ek+vnl! ^vkiv l j .

In other words,

(
k,l

~ek+vnl! ^vkiv l j5(
k

~1^vnk!v@ei+vk j#.

Now multiplying by 1̂ k(vmn) both sides, and summing over then we obtain

(
k,l ,n

~ek+vnl! ^ k~vmn!vkiv l j5v@ei+vmj#.

Hence,~20! holds for alla of the formv i j .
Similarly, using~26! and the intertwining property ofs21 we conclude that~20! holds for all

a of the form k21(v i j ). To complete the proof it is sufficient to observe thatv i j and k21(v i j )
generateA, and that if~20! holds fora,bPA, then it holds also fora1ab andab.

Let us now assume that the matrix elementsv i j are mutually linearly independent.
Lemma II.2:If ~20! holds for eachaPA and for one nonzero vectoruPV, then it holds for

all vectorsu ~and for allaPA!.
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Proof:Without a lack of generality we can assume thatu5ei , for some fixedi . Equation~20!
~for this choice ofu! implies

~1^a~1!!v~ei+a
~2!!„1^ k~a~3!!…5(

j
~ej +a! ^v j i .

Acting byv^ id on both sides of the above equality, and using the comodule property and~20! we
obtain

(
kn

~ek+a
~4!! ^ k~a~3!!vkna

~5!
^a~1!k~a~2!!vnia

~6!k~a~7!!

5(
kn

~ek+a
~2!! ^ k~a~1!!vkna

~3!
^vni5(

j
v~ej +a! ^v j i .

Hence

v~ej +a!5(
k

~ek+a
~2!! ^ k~a~1!!vk ja

~3!,

for an arbitraryj ~because of linear independence of thev i j !. h

4. The dual bimodule

Assume now that a bicovariant bimoduleG overG is specified by~V,v,+!. Then the corre-
spondingdual bimoduleG8 can be specified by the triple~V8,vc,+! wherevc:V8→V8^A is the
conjugate representation, while+ is the rightA-module structure onV defined by

^ f +a,u&5^ f ,u+k21~a!&. ~29!

Here, fPV8, uPV, and ^,& is the contraction map. By a straightforward generalization of
Woronowicz’s considerations, we conclude that for any two bicovariant bimodulesG1 andG2 there
exists the canonical bimodule isomorphisms :G1^A G2→G2^A G1. Let Vi be the space of
left-invariant elements ofGi . The left invariant part of this flip-over operator is an operator
s : V1^V2→V2^V1 , explicitly given by ~26!, where nowhPV1 and uPV2 @with the inverse
given by ~27!#. Under these conditions all possible braid-type equations are satisfied.

We shall denote byT G the categoryof bicovariant bimodules overG. Morphisms in this
category are bimodule homomorphisms intertwining the corresponding right and left actions ofG.
Endowed with canonical braidings,T G becomes abraided monoidal category.11 Everybicovari-
ant algebrais automatically an algebra in the categoryT G ~the product map is functorial with
respect to all braidings!. In what follows we shall use, without risk of confusion, the same symbol
s for all possible braidings appearing in the categoryT G .

If G1 andG2 are bicovariant bimodules determined by~V1, v1, +! and~V2, v2, +!, respectively,
then the product bimoduleG 5 G1 ^ AG2 is determined by (V,v,+) whereV5V1^V2 , while v is
the product ofv1 andv2 and + is given by

~u ^ h!+a5~u+a~1!! ^ ~h+a~2!!. ~30!

If G is a bicovariant algebra, thenGinv is its subalgebra and we have

~uh!+a5~u+a~1!!~h+a~2!!, ~31!

for eachu, hPGinv .
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It is also worth noticing that the contraction map betweenV andV8 is functorial, in a natural
manner. In other words,

Lemma II.3.The diagrams

~32!

~33!

are commutative. HereCP$V,V8%.
Proof: Let us check diagrams~32!. Diagrams~33! can be checked similarly. By direct com-

putation we have

~ id^ ^,&!~s ^ id !~ id^ s!~ f ^ u ^ h!5~ id^ ^,&!~s ^ id !S f ^ (
l

h l ^ ~u+dl ! D
5~ id^ ^,&!S (

l
h l ^ ~ f +dl

~1!! ^ ~u+dl
~2!! D

5(
l

h l ^ ^ f +dl
~1! ,u+dl

~2!&

5(
l

h l ^ ^ f ,~u+dl
~2!!+k21~dl

~1!!&

5(
l

h l ^ ^ f ,u+„dl
~2!k21~dl

~1!!…&

5(
l

h ^ ^ f ,ue~dl !&5h ^ ^ f ,u&,

where(lh l ^dl5v~h! or vc~h! depending on the choice ofC. h

In fact, the above diagrams hold for an arbitraryCPT G .

C. Quantum SL( n ,C) groups

For application of the above general theory to the construction of the quantum Clifford
algebras, which we present in Sec. III, we shall require the consideration of the specific case of the
special linear groups. Following Ref. 12, let us consider a vector spaceV5Cn, and a linear
operators :V^V→V^V given by
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s~ei ^ej !5m~ej ^ei !, i, j ,

s~ei ^ei !5ei ^ei ,

s~ei ^ej !5m~ej ^ei !1~12m2!~ei ^ej !, i. j ,

wheremP~21,1!\$0%. This operator is a Hecke braiding withq5m2. A quantum deformation of
the SL(n) group can be described as follows~it is obviously equivalent to theR-matrix
definition13!. LetH be the algebra generated by the elementsui j ( i , jP$1,...,n%) and the following
relations

(
kl

skl
i j ukmuln5(

kl
uikujlsmn

kl , ~34!

(
pPSn

~2m! l ~p!up1z1
•••upnzn

5~2m! l ~z!. ~35!

The meaning of relation~34! is thats intertwines the square of the ‘‘fundamental representation’’
v:V→V^A @v(ei)5( jej ^uji , whereei are the absolute basis vectors#. Relation ~35! corre-
sponds to the classical determinant requirement. Geometrically, it means that the reduction of the
nth power ofv on the one-dimensional subspaceV`n#V^n gives a trivial representation. Con-
dition ~35! can be also rewritten in the form

(
pPSn

~2m! l ~p!uz1p1
•••uznpn

5~2m! l ~z!. ~36!

The Hopf algebra structure, the coproductf:H→H^H, the counite :H→C, and the antipode
k : H→H are specified by

f~ui j !5(
k
uik^uk j , e~ui j !5d i j ,

k~ui j !5~2m! i2 j (
pPSn21

up11
•••up i21i21up i11i11•••upnn

.

In the formula for the antipode, permutationspPSn21 are represented by sequences
(p1 ,...,p i21,p i11,pn) of numbers (1,...,j21,j11,...,n).

All operators of the formDs~w! ~wherewPHn,q! intertwine thenth power of the fundamental
representationu. Let us observe that the flip-over operators is borrowed from the theory of
quantum SU(n) groups,14 which arecompact quantum objects~s is a canonical intertwiner of the
square of the fundamental representation of this group!. In particular,14 operators belonging to the
image of the corresponding Hecke algebra representations are the only intertwiners ofun.

Moreover, in all algebraic considerations with the above-described quantum SL~n,C! group it
is possible to deal with itscompact form SmU(n). This is based on the fact that the Hopf algebras
representing these two groups are isomorphic, the only difference being that the algebraA

representingSmU(n) possesses the*-structure. Speaking in classical terms, the elements of the
algebraH correspond toholomorphicpolynomial functions on the quantum space SL(n) ~and in
the framework of this picture it is not possible to introduce the*-conjugation!. On the other hand
the elements ofA correspond to all polynomial functions onSmU(n).

It is important to stress that the above argumentation only applies for the ‘‘holomorphic part’’
of the theory of the quantum SL(n) group. For example, if the full theory is considered~as for
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example in Ref. 15!, then the corresponding ‘‘functional algebra’’B on the quantum SL(n) group
is much larger~because thenB represents all polynomial functions!, and there exists the canonical
Hopf algebra epimorphismj :B→A ~the dualized inclusion map!.

III. ON QUANTUM CLIFFORD ALGEBRAS

In this section we shall present a general construction of quantum Clifford algebras~for
even-dimensional vector spaces!, together with the corresponding spinor representation. The main
geometrical classical idea that will be incorporated into the quantum context is that the spinor
space is interpretable as the exterior algebra built over one of two isotropic~with respect to a given
quadratic form! subspaces, into which the initial vector space decomposes. These subspaces are
mutually dual, in a natural manner. The duality between them is realized via the scalar product.
Therefore we canstart from a vector spaceV ~endowed with the appropriate structures! anddefine
the ‘‘total’’ vector space as the direct sumW5V%V8.

In the next subsection general considerations will be given. After that, the theory will be
illustrated for the concrete example of four-dimensional spinors built from the quantum SL~2,C!
group, and its fundamental representation.
A. General considerations

LetG be a compact matrix quantum group. The algebra of polynomial functions onG will be
denoted byA. The quantum group structure is specified by the coproductf :A→A^A, the
counite :A→C, and the antipodek :A→A. The result of an~n21!-fold coproduct ofaPA will
be denoted bya(1)^ ••• ^a(n).

Let v:V→V^A be an irreducible representation ofG in a ~finite dimensional! unitary vector
spaceV. Let us assume that the spaceV possesses a unital rightA-module structure+, such that
the compatibility condition~20! holds. In other words,V is understood as the left-invariant part of
a bicovariant bimoduleG overG, andv is the restriction onV of the corresponding right action of
G onG. Let us assume that the corresponding canonical flip-over operators ~eventually modified
by an inessential multiplication constant! satisfies the Hecke condition

s 25~12q!s1qI,

for someq.0 ~however, this assumption is not essential for our constructions!.
Let V` be the corresponding exterior algebra. This algebra is also naturally isomorphic to the

subalgebra of left-invariant elements of the bicovariant10 exterior algebraG`.
The following identities hold:

s~m`
^ id !5~ id^m`!~s ^ id !~ id^ s!, ~37!

s~ id^m`!5~m`
^ id !~ id^ s!~s ^ id !, ~38!

wherem`:V`
^V`→V` is the multiplication map inV`. These identities express ‘‘functorial-

ity’’ of m`, with respect to the natural braiding inV`, and follow directly from the fact that
V`>Ginv

` . Indeed, using~31! we find

s~m`
^ id !~u ^ h ^ z!5(

k
zk^ ~uh!+ck5(

k
zk^ ~u+ck

~1!!~h+ck
~2!!

5(
k

~ id^m`!~s ^ id !~u ^ zk^ ~h+ck!!

5~ id^m`!~s ^ id !~ id^ s!~u ^ h ^ z!,

for eachz,u,hPV`, where(kzk^ck5v`~z! and v`:V`→V`
^A is the natural multiplicative

extension ofv ~the restriction of the right action ofG on V`!. Property~37! follows similarly.
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Let us now define the actionH:W→L(V`) of vectors fromV%V85W onV` by the follow-
ing formulas:

H~x!j5x`j, ~39!

H~ f !j5~ f ^ id !j5i fj, ~40!

wherexPV, fPV8 and in~40! the spaceV` is realized as a subspace inV^ ~with the help of the
antisymmetrizerA!.

For eachfPV8 the mapi f :V
`→V` satisfies the following ‘‘braided’’ Leibniz rule:

i f~uh!5i f~u!h1~21!]ums21~i f ^ id !s~u ^ h!. ~41!

This follows easily from the definition ofif as a contraction, as well as from the definition of the
embeddingV`

�V^ .
Proposition III.1: The following identities hold:

H~x!H~y!1
1

q (
k
H~yk!H~xk!50, ~42!

H~ f !H~g!1
1

q (
l
H~gl !H~ f l !50, ~43!

H~ f !H~x!1(
i
H~xi8!H~ f i8!5 f ~x!, ~44!

H~y!H~g!1(
j
H~gj8!H~yj8!5(

j
gj8~yj8!. ~45!

Here,x,yPV and f ,gPV8, while

(
k
yk^xk5s~x^ y!, (

l
gl ^ f l5s~ f ^g!,

(
i
xi8^ f i85s21~ f ^x!, (

j
gj8^ yj85s~y^g!.

Proof: Identities~42! and~43! follow directly from the definition of exterior algebras overV and
V8, as well as from the fact thatI1s/q is the projector on the space ofs-symmetric elements of
V^V and V8^V8. Identities ~44! and ~45! are mutually equivalent. Let us check~44!. First,
observe that the introduced ‘‘contraction’’ betweenV8 andV` can be naturally extended to a map
i:V8`

^V`→V` such that

iuw5iuiw ~46!

for eachu,wPV8`, whereiuw(x)5i(u,w^x).
Now, by the use of the braided Leibniz rule~41! and the identities

s~i ^ id !5~ id^ i !~s ^ id !~ id^ s!, ~47!

s~ id^ i !5~i ^ id !~ id^ s!~s ^ id !, ~48!
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we obtain, by a direct computation,

H~ f !H~x!j5 f ~x!j2m`s21~i f ^ id !s~x^ j!

5 f ~x!j2m`s21~i ^ id !~ id^ s!~ f ^x^ j!

5 f ~x!j2m`~ id^ i !~s21
^ id !~ f ^x^ j!5 f ~x!j2(

i
H~xi8!H~ f i8!j.

h

Motivated by the above proposition we candefineabstract quantum Clifford algebras. In fact,
let Cl(W) be a unital associative algebra generated by the vector spaceW5V%V8 and the
following relations

xy1
1

q (
k
ykxk50, ~49!

f g1
1

q (
l
gl f l50, ~50!

f x1(
i
xi8 f i85 f ~x!. ~51!

Definition III.1: The constructed algebra is called the quantum Clifford algebra associated to
~V,s!.

The relations defining the algebraCl(W) can be written in a compact form as

qh1(
k

hkqk5 f ~q,h!.

Here,(khk^ qk5t~q^h! andt :W^2→W^2 is a braiding given by the block matrix

t5S s/q 0 0 0

0 0 s21 0

0 s 0 0

0 0 0 s/q

D ,
and f is the corresponding bilinear form onW, extending the contraction map@uniquely deter-
mined by relations~49!–~51!#.

To end this section, we observe that a quantum analogue of the Clifford algebra for the
odd-dimensional case can be introduced as follows. We put

W5V%V8%M ,

whereM is a one-dimensional space, and defineCl(W,s) to be the abstract algebra generated by
the spacesV andV8, the corresponding relations~42!–~45!, as well as by an elementS satisfying
S251, Sx1xS50, andSf1 fS50, for eachxPV and fPV8.
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IV. SPINOR REPRESENTATIONS

In this section we shall introduce the spinor representation. The braided exterior algebraV`

will play the role of the space of algebraic spinors.
A. Algebraic spinors

From the relations definingCl(W) and the braided Leibniz rule~41! for i, it follows that the
mapH:W→L(V`) can be uniquely extended to a unital homomorphismH:Cl(W)→L(V`).

Definition IV.1:The introduced homomorphismH is called the spinor representation.
Proposition IV.1:The algebraCl(W) acts onV` faithfully and irreducibly.
Proof: We shall prove that each nonzero vectorjPV` is cyclic for H, which immediately

implies thatH is irreducible.
Without a lack of generality we can assume thatj is homogeneous~jPV`k!.
Let us first observe that the spacesV8` andV` are mutually dual, in a natural manner. The

corresponding pairinĝ,&:V8`
^V`→C can be explicitly constructed by taking the restriction of

the natural pairinĝ,&:V8^
^V^→C. Second, we have

^w,j&5cki~w ^ j!, ~52!

for eachwPV8`k. In particular, there existsfPV8` such thati~f ^j!51. In other words, 1 can be
obtained by acting with the operatorsH( f ) ~where fPV8! on j, and taking appropriate linear
combinations. Consequently,j is cyclic forH, because 1 is cyclic for the left regular representa-
tion of V` on itself.

Let us prove thatH is faithful. From the relations definingCl(W) it follows that the inclu-
sions V�W and V8�W can be extended to inclusions of algebrasV`

�Cl(W) and
V8`

�Cl(W). Moreover, from the same relations we conclude that the map
m:V`

^V8`→Cl(W), given by

m~j ^ w!5jw,

is bijective. Using this, Eq.~52!, and the fact thatV` andV8` are mutually dual, it is easy to see
that the vectorsj distinguish elements ofV`

^V8`. More precisely, let us consider the maps of
the formdj :V

`
^V8`→V` given by

dj~U!5H@m~U!#j.

If UPker~dj! for eachjPV`, then we haveU50. In other words, the representationH is faith-
ful. h

In the odd-dimensional case, the corresponding spinor representation can be constructed es-
sentially in the same way as in the even-dimensional case. The additional generatorS acts as the
parity operator. According to Proposition IV.1~applied to the Clifford algebra generated byV and
V8!, the operatorH(S) can be expressed algebraically through the operatorsH(x), where
xPV,V8, if V` is finite dimensional.

To end this section we shall briefly consider other possible approaches for introducing spinors,
following Ref. 3. First, we give a more concise general definition.

Let Ã:V8`→C be a linear multiplicative functional, specified byÃ~1!51 andÃ~V8!5$0%.
This gives a leftV8`-module structure on the number fieldC. On the other hand,Cl(W) is
naturally a rightV8`-module ~the multiplication on the right!. Let S be a leftCl(W)-module,
given by

S 5Cl~W! ^ * C,

where the tensor product is taken overV8`.
Proposition IV.2:The modules (V`,H) andS are naturally isomorphic. The isomorphism is

explicitly given by
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V`{j↔j ^ * 1PS .

Proof: The statement follows from the relations defining the quantum Clifford algebra.h

Let us now assume for a moment that we are dealing with classical Clifford algebras. Then
spinors can be viewed in another~but equivalent! way as elements of the leftCl(W)-ideal,
generated by a volume element ofV8.

An analogous description of spinors works in the quantum context if there exists a ‘‘volume
element’’ in the braided exterior algebraV8`. More precisely, let us assume that there exists~a
volume element! vPV8`\$0% satisfyingxv50, for eachxPV8.

Proposition IV.3:Let I v be a left ideal inCl(W) generated byv. Then there exists the
uniqueCl(w)-module mapiv :V

`→I v satisfyingiv~1!5v.
Proof: The statement easily follows from the definition of the spinor moduleI5~V`,H!, and

its simplicity. h

B. Scalar products and * -structures

In this subsection we shall introduce a natural scalar product in the spinor space, and inves-
tigate its properties. With the help of this scalar product, a* -structure on the corresponding
quantum Clifford algebra will be introduced. The construction generalizes classical considerations
in the case when the underlying space is endowed with an Euclidean~strictly positive! scalar
product. Pseudo-Euclidean spaces are dealt with in a forthcoming paper.

Let us assume that the spaceV is endowed with a unitary structure, such that the braidings :
V^2→V^2 is Hermitian with respect to the corresponding scalar product. Letj :V→V8 be the
canonical antilinear map~induced by the scalar product!. In what follows it will be assumed that
V8 is endowed with the correspondingj -induced scalar product~so thatj is antiunitary!.

We can now introduce a*-involution in the main vector spaceW5V%V8, by means of the
block matrix.

*5S 0 j21

j 0 D .
We shall prove that this involution can be extended to a*-structure on the Clifford algebra
Cl(W).

Assume thatV` is realized as a subspace of completelys antisymmetric elements of the
tensor algebraV^. Furthermore, let us assume thatV` is endowed with the scalar product^,& given
by

^w,c&5cn~w,c!,

where~,! is the scalar product inV^, andw, cPV`n, while

cn5~nq!!, nq5
12qn

12q
, for qÞ21.

By definition, the elements of different degrees are orthogonal.
Lemma IV.1:We have

^H~x!w,c&5^w,H~x* !c&, ~53!

for eachxPW andw, cPV`.
Proof: Clearly, it is sufficient to check the above equation for elementsxPV, wPV`n21, and

cPV`n. A direct calculation gives
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^H~x!w,c&5cn„A1n21~x^ w!,c…5cn~x^ w,A1n21
† c!5cnS (

i50

n21

qi D ~x^ w,c!

5cn21„w,H~x* !c…5^w,H~x* !c&.
h

Therefore, the*-involution is compatible with the spinor representationH. Having in mind
that theH is an isomorphism betweenCl(W) and L(V`), we can define a*-structure on the
wholeCl(W) by requiring that

^H~a!w,c&5^w,H~a* !c&,

for eachaPCl(W). Evidently, this gives an antimultiplicative and involutive extension of the
previously introduced map.

V. FLIP-OVER OPERATOR AND q-CLIFFORD ALGEBRA

In order to obtain concrete relations that will enable a comparison of our results with those of
other authors, we focus our attention on theq-Clifford algebra for a 2n-dimensional total vector
spaceW, with basis$ei ,ei8% i51

n , and quantum group SLq~n,C! with metric representation onV
given byv(ei)5( jej ^uji .

Following the methodology developed in the general theory contained in Sec. II, one arrives
at the following results:

H~ei8!H~ej !1(
k,l

~s21! i j
klH~ek!H~el8!5d i j E, ~54!

where

s21~ei8^ej !5(
k,l

~s21! i j
klek^el8 , ~55!

andE is the identity operator. The inverse relation is given by

H~ei !H~ej8!1(
k,l

~s! i j
klH~ek8!H~el !5h i j E, ~56!

with

s~ei ^ej8!5(
k,l

~s! i j
klek8^el and h i j[(

l
~s! i j

l l . ~57!

We also have

H~ei !H~ej !1
1

m2 (
k,l

~s! i j
klH~ek!H~el !50, ~58!

where

s~ei ^ej !5(
k,l

~s! i j
klek^el , ~59!

and
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H~ei8!H~ej8!1
1

m2 (
k,l

~s! i j
klH~ek8!H~el8!50, ~60!

where

s~ei8^ej8!5(
k,l

~s! i j
klek8^el8 . ~61!

To compute the flip-over operators, we use the formalism of bicovariant bimodules. Here, we
shall denote bys̃ the canonical intertwiners given by formula~26!. Up to a multiplication con-
stant,s̃:V^V→V^V coincides with the flip-over operators :V^V→V^V. In fact, the condition
s̃5bs with bPR1 uniquely fixes the corresponding rightA-module structure+ on V. Applying
~26! and ~27! and making use of the fact that

k21~u!5F21k~u!F, ~62!

wherek(u)5u†, andF:V→V is the canonical intertwiner16 betweenu and its double contragra-
dient ucc, which in our case is explicitly given byFek5m2k2n21ek , we obtain expressions for
ei+uk j andei + uk j* . Using the definition~29! of + in the dual space we obtain the expressions for
ei8 + uk j andei8 + uk j* .

The rightA-module structures onV andV8 ~cf. equations given in the Appendix! enable us
to compute the remaining three flip-over operators. A direct calculation based on~26! and ~27!
gives

s̃~ei ^ei8!5
1

b
ei8^ei1

12m22

b (
k, i

m2~ i2k!ek8^ek ,

s̃~ei ^ej8!5
1

bm
ej8^ei , iÞ j ,

s̃21~ei8^ei !5bei ^ei81b~12m2!(
k, i

ek^ek8 ,

s̃21~ei8^ej !5bmej ^ei8 , iÞ j ,

s̃~ei8^ei !5
1

b
ei ^ei81

12m22

b (
k. i

ek^ek8 , ~63!

s̃~ei8^ej !5
1

bm
ej ^ei8 , iÞ j ,

s̃~ei8^ei8!5bei8^ei8 ,

s̃~ei8^ej8!5b~12m2!ei8^ej81mbej8^ei8 , i, j ,

s̃~ei8^ej8!5bmej8^ei8 , i. j .

We can renormalize these flip-over operatorss̃ in such a way that they become extensions of
the initial Hecke braidings :V^V→V^V. This involves multiplying byb the ‘‘mixing opera-
tors’’ acting onV^V8 andV8^V and, dividing byb the braid operator inV8^V8. We denote by
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s all these new operators. From the quantum determinant condition~35! it is straightforward to
determine thatb5m(12n)/n. For the four-dimensional case, theq-Clifford algebra generated by
H(W) becomes

H~ei !H~ej8!1Li j
klH~ek8!H~el !5h i j E, ~64!

with

L5S 1 0 0 0

0 0 m21 0

0 m21 0 0

~m221! 0 0 1

D
and

h5S 1 0

0 m2D ;
H~ei !H~ej !1Mi j

klH~ek!H~el !50,

with

M5m22S 1 0 0 0

0 0 m 0

0 m ~12m2! 0

0 0 0 1

D ;
H~ei8!H~ej8!1Mi j8

klH~ek8!H~el8!50, ~65!

with

M 85m22S 1 0 0 0

0 ~12m2! m 0

0 m 0 0

0 0 0 1

D .
For the four-dimensional case, it is also possible to arrive at the aboveq-Clifford algebra by

a stepwise procedure, which consists of making use of the definition of the action of the operator
H on each element of the basis, applied twice on a spinorj5j01j1e11j2e21j3e1`e2 . For
example, the double action ofH(e1)H(e18) on j results in

H~e1!H~e18!j5e1`~ie
18
j!5j1e11j3e1`e2 , ~66!

and, similarly,

H~e18!H~e1!j5ie
18
~e1`j!5j01j2e2 . ~67!

Adding these two expressions yields
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„H~e1!H~e18!1H~e18!H~e1!…j5Ej, ~68!

which coincides with our previous result.
Finally we consider the matrixR̂5PR @corresponding to the quantum group SLq~2,C!13# that

satisfies both the Hecke condition and the braid equation. In matrix form we have

R̂5S m21 0 0 0

0 m212m 1 0

0 1 0 0

0 0 0 m21

D .
Furthermore, since for this case

m21s5S m21 0 0 0

0 0 1 0

0 1 m212m 0

0 0 0 m21

D ,
with s corresponding to the flip-over operator onV^V, which also satisfies the Hecke condition,
both matrices are related by the similarity transformation

SR̂S215m21s, ~69!

with

S5S 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

D .
This enables us to obtain a relation between theR matrix, which determines the quantum group
SLq~2,C!, and the operators, which establishes the anticommutation relations of the Clifford
algebra.

VI. q -CLIFFORD ALGEBRAS AND q-DIRAC OPERATOR

In this section we use theq-Clifford algebra to construct a realq-space and a differential
calculus associated to this space. We also build up theq-Dirac and theq-Klein–Gordon scalar
operators from the dualq-Clifford algebra.

We shall introduce a formal background for the coordinates and the derivation operators,
based on ourq-Clifford algebras, and define a consistent* -structure which will allow us to
describe realq-Euclidean spaces and the corresponding differential calculi. We also describe an
interesting and purely quantum phenomenon which appears in the presented theory, which is
related to a certain nonuniqueness of ourq-Clifford algebras, as well as of the algebras of coor-
dinates and derivations.

A. Differential calculus in isotropic basis

Consider a bilinear map̂,&:W3W→C, given by the matrix elements figuring in theq-Clifford
algebra relations

2^ea ,eb&5 f ab5„eaeb1mt~ea ^eb!…, ~70!
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with ea 5 $ei ,ei8% i51
n . The introduced ‘‘scalar product’’ ist-symmetric^w^z&5^t~w^z!&, and

nondegenerate, because the only contributions of the braidt to ~70! come from the part which
mixes elements inV with elements inV8, which is involutive due to relations~63!.

Following the classical Cartan theory, we would like to satisfy the fundamental property of
spinor transformationsH~w! associated with a vectorw, that is,

H~w!H~w!5^w,w&E. ~71!

Maintaining the above relation for the quantum case will make it also possible to preserve the
geometric interpretation of the spinor transformationsH~u! as ‘‘plane inversions’’ in a subspace
perpendicular to the unit vectoru. This in turn will be important for the construction of a spinor
algebra, a naturalq-spinor bilinear inner product, and its relations to the Hermitian product
introduced in the previous section.

Relation~71! implies

(
ab

wawb
^ea ^ebPB^ Im~11t!, ~72!

whereB is the algebra generated by the coordinateswa5$w1,...,wn,w81,...,w8n% in the isotropic
basis.

The above relation is equivalent to

05@ id^ ~12t1!#~w
awb

^ea ^eb!, ~73!

wheret1 is an operator onW satisfying

ker~12t1!5Im~11t!.

An explicit solution for this is given by a braiding

t15S s 0 0 0

0 0 s21 0

0 s 0 0

0 0 0 s

D , ~74!

where, as already mentioned,s denotes all functorial extensions of the originals ~the domain is
clear from the context!.

From ~73! we immediately obtain the following algebra for the coordinateswa:

wawb5mt1
{~wa

^wb!. ~75!

In explicit form,

wiwj5mwjwi , i, j ,

w8 iw8 j5m21w8 jw8 i , i, j ,
~76!

wiw8 j5mw8 jwi , iÞ j ,

wiw8 i5w8 iwi1(
l. i

~12m2!w8 lwl .
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Note that essentially the same algebra is obtained in Ref. 17 for the four-dimensional case. The
basic difference being that in our approach the commutation relations~76! on the underlying base
space are imposed by the ansatz~71! on theq-Clifford algebra.

To complete the algebra, we also need an algebraS of q-symbolic derivations$] i ,] i8% i51
n .

Relations for the algebraS follow by dualizing relations~75! and noting that for an arbitrary
braidingh there corresponds a braidingch{c acting in the dual space. Herec denotes the standard
transposition operator~if we include the dual spaces in the braided monoidal category generated
by h and require the functoriality of the contraction map!. Thus we get the following symmetric
algebra for theS space ofq-derivations

] i] j5m21] j] i , i, j ,

] i8] j85m] j8] i8 , i, j ,
~77!

] i] j85m] j8] i , iÞ j ,

] i] i85] i8] i1(
l, i

~12m2!] l8] l .

We shall be needing in addition the braided Leibniz rule with actions ofq-derivations both
from the left and from the right. The braided Leibniz rule with derivations from the left is given
by

]aw
b5da

b1~T 21!ae
bgwe]g . ~78!

To determine the coefficients in~78! we use the functoriality relation

~ id^c!~T 21
^ id !~]a ^wb

^wg!5~c^ id !~ id^ h!~]a ^wb
^wg!, ~79!

wherec denotes contraction. This enables us to find the relation betweenT 21 and the braidingh
in the space of coordinates. We obtain

~T 21!ae
bg5hbg

ae , ~80!

with

h[H m22s{ : ~a,b!5~ i , j !,
m22~s!{ : ~a,b!5~ i 8, j 8!,
~ s̃ 21!{ : ~a,b!5~ i 8, j !,
~s!{ : ~a,b!5~ i , j 8!.

In explicit form, using~78!–~80!, the Leibniz rule with action from the left is

] iw
j5m21wj] i , iÞ j

] iw
i511m22wi] i1~m2221!(

k, i
wk]k ,

] i8w8 j5m21w8 j] i8 , i 8Þ j 8,

] i8w8 i511m22w8 i] i81~m2221!(
k. i

w8k]k8 ,
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] i8w
j5mwj] i8 , i, j ,

~81!
] i8w

j5mwj] i81~12m2!wi] j8 , i. j ,

] i8w
i5wi] i8 ,

] iw8 j5m21w8 j] i ,

] iw8 j5m21w8 j] i1~12m22!m2~ i2 j !w8 i] j , i. j ,

] iw8 i5w8 i] i .

In a similar manner, we obtain the Leibniz rule withq-derivation action from the right. Thus

wb]Qa5da
b1hea

gb]Qgw
e, ~82!

where

h[H m22s{ : ~b,a!5~ j ,k!,
m22~s!{ : ~b,a!5~ j 8,k8!,
~s21!{ : ~b,a!5~ j 8,k!,
~s!{ : ~b,a!5~ j ,k8!.

Explicitly, we have

wj]Q k5m21]Q kw
j , jÞk, ~83!

wj]Q j511m22]Q jw
j1~m2221!(

i. j
]Q iw

i , ~84!

w8 j]Q k85m21]Q k8w8 j , jÞk, ~85!

w8 j]Q j8511m22]Q j8w8 j1~m2221!(
i, j

]Q i8w8 i , ~86!

w8 j]Q k5m]Q kw8 j1~12m2!]Q jw8k, j,k ~87!

w8 j]Q k5m]Q kw8 j , j.k, ~88!

w8 j]Q j5]Q jw8 j , ~89!

wj]Q k85m21]Q k8w
j1~12m22!m2~k2 j !]Q jw

k, j,k ~90!

wj]Q k85m21]Q k8w
j , j.k, ~91!

wj]Q j85]Q j8w
j . ~92!

The left and right partial derivatives used above are related to the differential by the following
symbolic expression

5768 Bautista et al.: Quantum Clifford algebras

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



d5(
a

dwa ]a5(
a

]Qa dwa. ~93!

Note that all the expressions derived in this section are automatically consistent, because all
constructions are intrinsic, and are performed in a braided monoidal category. An alternative and
explicit way to check consistency could be based on an approach similar to that followed by Pusz
and Woronowicz12 and Wess and Zumino.18 Essentially such a procedure consists of introducing
a flip operatorC between differentials and coordinates which is required to satisfy the relations

E1C5t1
{1Ct1

{ , ~94!

~ id^ t1
{!~C^ id !~ id^C!5~C^ id !~ id^C!~t1

{
^ id !. ~95!

B. On two natural Clifford algebras

As we have seen, starting fromCl(W) it is possible to construct aq-analogue of the polyno-
mial algebra overW. This algebra is generated byW and relations resulting from the requirement
that the expression

S (
i
ei8xi81eixi D 25^x,x&

be scalar. This leads to the braided-symmetric algebraB overW, based on the operatort1
{ .

However, using the induced commutation relations for the partial derivatives, it is easy to show
that the square of the symbolic ‘‘Dirac operator’’

“5(
i
ei8] i81ei] i

is not a scalar operator.
On the other hand, it is possible to adopt a different point of view, which consists of intro-

ducing a new Clifford algebra, starting from the explicit requirement that¹2 be a scalar operator
and that relations between partial derivatives are assumed the same as in~77!.

In other words we should look for such a braidingt̃ :W^2→W^2 which is related toct1c in
the same way ast is to t1

{ @see Eqs.~73! and ~74!#. Explicitly

t̃5ct{c.

This leads to the following expression for the Laplacian:

D5¹25(
i

] i8] i . ~96!

Note, however, that this new Clifford algebra would exchange the role of coordinates and
derivatives figuring in their commutation relations and when applying twice the procedure we
would return to the starting point.

In the classical case both Clifford algebras coincide. However, from the point of view of
introducing quantum space models, there isa priori no reason to favor oneq-Clifford algebra over
the other. Furthermore, from the perspective of developing an analogue of the Hamiltonian for-
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malism, it may be desirable to work simultaneously with the two Clifford algebras, since one of
them is intrinsically connected with coordinates, and the other is connected with derivation op-
erators.

C. Real q -space and corresponding differential calculus

Let W be the algebra generated by the coordinateswa, the left and right partial derivatives,
and all the above-mentioned relations. We can now extend the antimultiplicative*-involution
introduced in Sec. IV to the whole algebraW .

For simplicity in what follows we shall restrict ourselves to the four-dimensional case. Clearly
the results can be readily generalized to arbitrary dimensions.

In the isotropic basis$ei ,ei8% i51
2 of the vector spaceW, the *-operation is given by

e1*5e18 , e18*5e1 , ~97!

e2*5e28 , e28*5e2 . ~98!

This * -operation induces the following*-operation for partial derivatives:

~]1!*5]Q18 , ~]2!*5]Q28 , ~99!

~]18!*5]Q1 , ~]28!*5]Q2 . ~100!

The * is extended to the whole algebraW by making use of the properties

* 25 id, ~wawb!*5wb*wa* ,

~]aw
b!*5wb* ~]a!* , ~wa]Qb!*5~]Qb!*wa* .

It is easy to verify that, with these relations, the algebra is consistent. Furthermore, defining reality
by means of the conditionw*5w, we can apply the above formalism to construct the Dirac and
Klein–Gordon operators for the case ofq-deformed Euclidean spaces.

Clearly, to the generator level, the resulting expressions will reproduce the ones in the clas-
sical case. However, for computations with these operators involving higher-order terms in the
generators, the quantum nature of the algebra will appear.

It is important to mention that the above*-structure is not unique. Another natural choice is
to adopt a ‘‘quantum plane’’ viewpoint, and to consider the* invariant under the natural action of
a certain quantum group. In the considered case, the group isSmU~2!. Explicitly, the*-structure is
then given by

w1*5w81, w81*5w1, w2*5m2w82, w82*5m22w2, ~101!

and

~]1!*5m2]Q81 , ~]2!*5]Q82 , ~]18!*5m22]Q1 , ~]28!*5]Q2 . ~102!

From this we construct the ‘‘real’’ basis of vectors$ai% i51
4 :

a15e11e18 , ~103!

a25e21m2e28 , ~104!

a35 i ~e12e18!, ~105!
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a45 i ~m2e22e28!. ~106!

Making use of~106! it immediately follows that

^ai ,aj&[gi j[

{
1 : i5 j51 or i5 j53,
1
2 ~11m22! : i5 j52,

m2

2
~11m2! : i5 j54,

i

2
~12m2! : i52, j54,

2 i

2
~12m2! : i54, j52,

0 : otherwise.

Note that thegi j can be seen as the coefficients of a ‘‘q-metric,’’ appearing in the corresponding
q-Clifford algebra

aiaj1mt~ai ^aj !52gi j . ~107!

In the basis~106!, the coordinates of any ‘‘real’’ vectorAPW are given in terms of the former
isotropic coordinates by

A15 1
2 ~w11w81!, ~108!

A25 1
2 ~w21m2w82!, ~109!

A35
i

2
~w812w1!, ~110!

A45
i

2
~2m22w21w82!. ~111!

Substituting~108!–~111! in the algebra~76!, we obtain the following commutation relations for
theAi :

A2A45A4A2, ~112!

A2A12 iA2A35m~A1A22 iA3A2!, ~113!

A3A41 iA1A45m21~A4A31 iA4A1!, ~114!

A1A32A3A15
i

2
~m2221!~A2A21m4A4A4!. ~115!

Note that from the relations~76! and ~101!, it follows that the ‘‘q-distance’’ defined as the
fundamental bilinear form is ‘‘real,’’ i.e.,

^w,w&5w81w11w82w25^w,w&* , ~116!

and it is also central to the algebraB.
If we now write theq-distance in terms of the ‘‘real’’ coordinates, we have
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^w,w&5AiAjgi j5A1A11A3A31 1
2~11m22!~A2A21m4A4A4!. ~117!

Observe that~117! has the Euclidean metric as the classical limit. Theq-derivations$]/]Ai%,
corresponding to the real coordinatesAi , follow directly from the chain rule

]

]Ai 5
]wj

]Ai

]

]wj [
]wj

]Ai ] j . ~118!

We thus obtain

]

]A1 5]11]18 , ~119!

]

]A2 5]21m22]28 , ~120!

]

]A3 5 i ~]12]18!, ~121!

]

]A4 5 i ~m2]22]28!, ~122!

and]Ai /]Aj5d i j , (]/]A
i)*5]Q /]Ai .

Note also that, in contrast to the solution suggested in Ref. 19, where conjugation of partial
derivatives involves nonlinear terms of arbitrary order, our* -operation preserves the space of
partial derivatives, intertwining the left and right differential structures.

Another approach in constructing a differential calculus is given in Ref. 20, where analogues
of the Laplacian~see Sec. VI B! and the metric observable are similar to the entities considered
here. On the other hand, our approach is fully based on the general theory of Clifford algebras, and
does not presume a unique*-structure, since quantum groups are used mainly as auxiliary entities
for the construction of the corresponding braidings~via the formalism of bicovariant bimodules!.
Thus we believe that our formalism would be less restrictive because one could exploit the
nonuniqueness of the*-operator to investigate several possibleq-Euclidean spaces with the same
classical limit, as we commented before.

VII. QUANTUM GROUPS FROM CLIFFORD ALGEBRAS

Our above described general theory of quantum Clifford algebras based on a deformation of
Cartan’s theory of spinors can be readily applied to the construction of the differentq-groups
associated with the underlying Euclidean and pseudo-Euclidean spaces, as well as to the construc-
tion of their corresponding double covering quantum spin groups.

Indeed, by requiring that the fundamental property of spinor transformations@Eq. ~71!# be
preserved in the quantum case, and using the linearity ofH~w!, a noncommutative algebraB with
a consistent* -structure can be imposed for which the generators are the ‘‘coordinates’’ of the
underlying~pseudo!-Euclidean space.

The fundamental representation of the corresponding quantum group comes from providing
the algebraB with the structure of a comodule on which this quantum group coacts. By further
requiring that the resulting quantum group leaves invariant the fundamental quadric^x,x& results in
theOq(n2h,h) groups associated to the possible signatures (n2h,h) of theq-spaces.

To derive the corresponding double-coveringq-spin groups, we use our Clifford algebra to
define aq-spinor representation by
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j5 (
p50

n

(
k1,•••,kp

jk1•••kp^Hk1
•••Hkp

•1. ~123!

The spinor componentsjk1•••kp generate a noncommutative algebra.
We also introduce the involutive and antimultiplicative{-transpose operation,j P S→j{

P S8, which maps linearly spinors inS to spinors in the dual spaceS8. This operation is uniquely
defined by its action on the generators of the Clifford algebra:

1{518,Hi
{5Hi8 ,~Hi8!{5Hi ,~HiH j •••Hl•••Hp!

{5Hp8•••Hl8•••Hj8Hi8 , ~124!

which defines a right action of the initial Clifford algebra in the dual space.
Hence

j{5 (
p50

n

(
k1,•••,kp

jk1•••kp^18•Hkp
8 •••Hk1

8 . ~125!

Note that by virtue of~39!–~40! and~124! the elements$(Hk1
•••Hkp

• 1){ 5 18 • Hkp
8 •••Hk1

8 % form

a basis reciprocal to$Hk1
•••Hkp

• 1%, k1,•••,kp , which allows us to define a scalar product for
homogeneous spinors ofp-degree, given by

@~j~p!!{, h~p!#:5 (
k1,•••,kp

jk1•••kphk1•••kp@18•Hkp
8 •••Hk1

8 ,Hk1
•••Hkp

•1#

5 (
k1,•••,kp

jk1•••kphk1•••kp18•Hkp
8 •••Hk1

8 •Hk1
•••Hkp

•1

5 (
k1,•••,kp

jk1•••kphk1•••kp. ~126!

Requiring that the scalar product of any two spinors respects gradation, we thus have

@j{, h#5 (
p50

n

(
k1,•••,kp

jk1•••kphk1•••kp. ~127!

~Note that the above formula for the scalar product reduces to the definition used in Sec. IV when
the spinor components becomeC-numbers!. Now, in analogy to the classical Cartan spinor theory,
we introduce a spinor metric operatorC, acting on spinors via theq-Clifford product, by

C5 (
p50

n

~21!p~p11!/2 (
pPSn

p~1!,•••,p~p!
p~p11!,•••,p~n!

~21! l ~p!ap~1!•••p~p!
p ~m!Hp~1!•••Hp~p!~Hp~p11!•••Hp~n!!

{,

~128!

whereap(1)•••p(p)
p (m) arem-parameter-valued commuting quantities such that in the classical limit

they are equal to one.
This allows us to define a fundamental spinor bilinear by means of

~j,j!5@j{,C•j#. ~129!

The quantum Spin (n) groups can then be constructed by introducing a matrix with block-
diagonal entries, giving these entries the structure of a Hopf algebra and requiring that:
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~1! each block sub-matrix should be unimodular,
~2! the fundamental spinor bilinear be central in the spinor components algebra,
~3! the fundamental spinor bilinear be invariant under the coaction map,
~4! we have

d:~j,Haj!°(
b

tab ^ ~j,Hbj!,

wheretab are the elements of the correspondingq-orthogonal groups.
Conditions~2! and~3! fix uniquely and consistently the parameters in~128!, while ~4! estab-

lishes the covering character of theq-spin groups.
The details of this procedure, which applies to arbitrary dimensions, are beyond the scope of

this work, and will be presented in a forthcoming separate paper.
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APPENDIX: RIGHT A-MODULE STRUCTURES ON V AND V8 FOR SL(n ,C)

From ~26!–~29! we get the following rightA-module structure onV:
for i, j ,

ei+uk j5dk jbmei , ej +uii*5
1

mb
ej ,

ej +ui j*5
m221

bm2~11 i2 j ! ei , ej +uik*50, kÞ$ i , j %;

for i. j ,

ei+ui j5b~12m2!ej , ei+uj j5bmei ,

ei+uk j50, kÞ$ i , j %, ej +uik*5
dki
bm

ej ;

and finally, for i5 j ,

ei+uik*5
1

b
d ikei , ei+uki5dkibei ,

whereb5m12n/n ~as follows from the quantum determinant condition!.
Now using the definition~29! of + in the dual spaceV8 we obtain foriÞ j ,

ei8+uji*50, ei8+ui j*5 H b~12m2!ej8 if i, j ,
0 if i. j ,

ei8+uj j*5bmei8 , ei8+uk j* 50, kÞ$ i , j %, ei8+uk j50, kÞ$ i , j %,
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ei8+ui j50, ei8+uj j5
1

bm
ei8 , ei8+uji5H m221

bm2 ej8 if j. i ,

0 if j, i ,

and the relations

ei8+uii5
1

b
ei8 , ei8+uii*5bei8 ,

when i5 j .
The rightA-module structures onV andV8 enable us to compute in an analogous way the

remaining three flip-over operators. We shall omit listing them.
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An ill-posed problem of the continuation of transient data
for a hyperbolic equation in a three-dimensional
inhomogeneous half-space

Jiasu Cao, Sailing He, and Vaughan H. Westona)
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S-100 44 Stockholm, Sweden
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A time-domain data continuation problem for a second order hyperbolic equation in
a three-dimensional inhomogeneous half-space, which is a common problem in
time-domain layer-stripping, is considered. Two different approaches, namely the
local continuation approach and the wave-splitting approach, are used to propagate
the surface data~the Dirichlet and Neumann data! to the data at deeper planes. The
local continuation approach requires a regularization in order to obtain a stable
numerical result. The wave-splitting approach uses larger transverse spatial domain
of dependence, and gives reasonably stable results even without any additional
smoothing process. ©1996 American Institute of Physics.
@S0022-2488~96!00811-0#

I. INTRODUCTION AND STATEMENT OF THE PROBLEM

For any time-domain layer-stripping approach to an inverse problem, one has to propagate the
transient wave field~the Dirichlet data! and its normal derivative~the Neumann data! to the next
layer below~layer by layer! starting from the surface data which can be obtained from experi-
mental measurements. In the present paper we treat such a data continuation problem for the
following second order hyperbolic equation:

~] t
22]z

2!u5F~x,y,z,t;u!, ~1!

where

F~x,y,z,t;u!5a1]x
2u1a2]y

2u1A1]xu1A2]yu1A3]zu2b] tu, ~2!

and where the coefficientsa1, a2, Aj ~j51,2,3!, b are functions of spatial variables (x,y,z). The
data continuation problem is to determine the internal fieldu and its normal derivative]zu from
the surface data, i.e.,uuz50 and (]zu)uz50. Such a data continuation problem is in general ill-posed
in the high-dimensional case. The ill-posedness can be illustrated by a simple example in homo-
geneous space witha15a251 andA15A25A35b50. Assume that the exact surface data are
uuz505v0(x,y,t),(]zu)uz5050 and the corresponding solution to the internal field is
u5w(x,y,z,t). Now if there is a small perturbation~error! to the field at the surface such that
uuz505v0(x,y,t)1e sin(k1x)sin(k2y)sin(kt) ~e is a small constant, andk1

21k2
2.k2!, then the

solution to the internal field becomesu 5 w 1 e sin(k1x)sin(k2y)sin(kt)cosh(Ak121k2
22k2z), which

has an exponentially growing error as the depthz increases. Some mathematical aspects of the
propagation problem in a homogeneous space have been considered in Refs. 1 and 2. In the
present paper, we give two alternative approaches to the ill-posed problem of the continuation of
the transient data in an three-dimensional inhomogeneous half-space. The first approach is to use
the local continuation formulas for which a regularization process is necessary. The second ap-

a!Permanent address: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907.
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proach is to use the dynamic integro-differential equations for the split fields~see, e.g., Refs. 3–8
for wave-splittings and their applications to inverse problems!. In the wave-splitting approach, a
larger transverse spatial domain of dependence is used, and the continuation results are reasonably
stable even without any additional smoothing process. Once a successful continuation approach
has been established, one can use the wave front condition, which relates the split fields at the
wave front to the material parameters, to reconstruct these parameters.7

II. APPROACH ONE: LOCAL CONTINUATION FORMULAS

A. Local continuation theorem

In order to obtain a local continuation formula that can be employed in the next subsection,
we prove a continuation theorem for the hyperbolic equation~1!.

The continuation problem involves determining the values ofu in some region of the half-
spacez.0 for a range of value oft, given the Dirichlet and Neumann values ofu on the plane
z50,

u5v0~x,y,t !,
]u

]z
5v1~x,y,t !; z50, ut2t0u,T. ~3!

To specify the conditions on the data and the coefficients of Eq.~1!, we need to introduce the
local Banach spaceAs of analytic functionsw(x,y) in the transverse variables (x,y), whose norm
is defined as follows:

iwis5(
l50

`

(
p50

`
sl1p

l !p! U]
l1pw~0,0!

]px] l y U, ~4!

wheres is real ands.0. We will assume thatv0, v1 belong toAs0
, and v0 is a C1, v1 a C

0

function of time. Forut2t0u<t, v0PC1(As0
,@ t02 t,t01 t#), v1PC0(As0

,@ t02 t,t01 t#).
We will also assume that the coefficientsa1, a2, Aj ~j51,2,3! andb belong toAs0

and are
continuous functions ofz for 0<z<T, and so the solution of Eq.~1! will be in the following (z,t)
domain:

DT5$~z,t !u0<z<T, z2T,t2t0,T2z%. ~5!

We use the following norm:

iuis,DT
5 max

~z,t !PDT

iuis~z,t !, ~6!

for functionsu(x,y,z,t), which are analytic in (x,y) and continuous in (z,t) in the domainDT .
Equation~1! can be transformed in the following integral differential form:

u~x,y,z,t !5u0~x,y,z,t !2
1

2 E
0

zE
t2z1z8

t1z2z8
F~x,y,z8,t8;u!dt8dz8, ~7!

where

u05
1

2
@v0~x,y,t1z!1v0~x,y,t2z!#1

1

2 E
t2z

t1z

v1~x,y,t8!dt8. ~8!

Differentiating Eq.~7! with respect toz and t, we obtain the additional equations
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]u

]z
5

]u0
]z

2
1

2 E
0

z

@F~x,y,z8,t1z2z8;u!1F~x,y,z8,t2z1z8;u!#dz8, ~9!

and

]u

]t
5

]u0
]t

2
1

2 E
0

z

@F~x,y,z8,t1z2z8;u!2F~x,y,z8,t2z1z8;u!#dz8. ~10!

By setting

U5F u
]zu
] tu

G , U05F u0
]zu0
] tu0

G , ~11!

the systems of Eqs.~7!–~10! can be expressed in the following operator form:

U5U01T@U#. ~12!

As will be shown in a subsequent theorem, the above system of equations can be solved by
successive approximation,

Un115U01T@Un#, n50,1,2,..., ~13!

starting fromU0 @given by Eq.~11!#. To show convergence of the iteration process, we need to
introduce the sequenceVn,

Vn5Un112Un, n50,1,2,... . ~14!

Obviously, we have

V05T@U0#, ~15!

Vn5T@Vn21#, n51,2,3,... . ~16!

From the definitions~4!–~6!, and Eq.~8!, it follows that there exists a positive real constanta such
that for 0,s<s0 ,

maxH iu0is,DT
,I ]u0

]z I
s,DT

,I ]u0
]t I

s,DT

J <a. ~17!

Thus, the components ofU0 satisfy the inequality

iUj
0is,DT

<a, 0,s<s0 , j51,2,3. ~18!

To obtain estimates forV(n) we need to introduce the constantb such that

max$ia1is0 ,DT
,ia2is0 ,DT

,iAj is0 ,DT
~ j51,2,3!,ibis0 ,DT

%<b. ~19!

Set

r05b~3216s0!, ~20!

and choose the positive real constanta0 such that
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a0r0,1, a0
2r0,1, a0s0,T, a0,T. ~21!

Let

r5max@a0r0 ,a0
2r0#, ~22!

it then follows thatr,1. In the following lemma we will need the following decreasing sequence

an5an21 /@111/n2#, n51,2,3,... . ~23!

Note that the sequence$an% is bounded away from zero.
Lemma:For 0<z,an(s02s), ut2t0u<z, the following inequalities hold:

iV1
nis~z,t !,l0r

nz/@an~s02s!2z#, ~24!

iVj
nis~z,t !,l0r

nanz/@an~s02s!2z#2, j52,3, ~25!

where

l054ba@81s01s0
2/2#max@a0 ,a0

2#. ~26!

See the Appendix for the proof of the above lemma.
It can now be shown that the method of successive approximation~13! converges.
Restricting (z,t) to the region 0<z,an11(s02s), ut2t0u<z, it follows from the lemma

that

(
k50

n

iV1
kis<l0(

k50

n
rkz

@ak~s02s!2z#
,

(
k50

n

iVj
kis<l0(

k50

n
rkakz

@ak~s02s!2z#2
, j52,3.

Using the result thatz,an11(s02s)<a0(s02s), and relation~23!, it follows that

(
k50

n

iV1
kis<l0(

k50

n
rkak11

@ak2ak11#
<l0(

k50

n

rk~k11!2, ~27!

(
k50

n

iVj
kis<

l0

~s02s! (
k50

n
rkak11ak

~ak2ak11!
2<

l0

~s02s! (
k50

n

rk@~k11!41~k11!2#, j52,3.

~28!

Since the constanta0 has been chosen so thatr,1, the series on the right-hand sides of the above
two inequalities converge. Thus, it follows from the above two inequalities that the left-hand sides
converge. From Eq.~14! it follows that

Un115U01 (
k50

n

Vk. ~29!

Thus forn.m,
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iUj
n2Uj

mis5I (
k5m11

n

Vj
kI< (

k5m11

n

iVj
ki , j51,2,3, ~30!

which implies thatUj
n, j51,2,3, converge. We can now state the theorem.

Local Continuation Theorem: For 0<z,a`(s02s), ut2t0u<z, wherea`5 limn→`an , the
sequence$Un% converges, and the solutionu(x,y,z,t) to the system of Eqs.~1!–~3! exists such
thatu(x,y,z,t) is an analytic function inAs and aC1 function in z and t.

B. Finite-difference formulas

Here we give the finite-difference formulas of the local continuation theorem for the following
acoustic wave equation:

] t
2u2r¹•S 1r ¹uD1b] tu50, ~31!

wherer(x,y,z) is the density, andb(x,y,z) is the dissipation coefficient~the velocity has a value
of unity!. Consider the problem of determining the value ofu and]u/]z on z5h ~h is small for
use in a finite-difference formula! for Eq. ~31!, given the datau5v0 , ]u/]z5v1 on the plane
z50. We will assume that the datav0, v1, are piecewise analytic in the transverse variables (x,y),
with v0, v1 beingC

1 andC0 functions oft, respectively, over certain intervals, with the discon-
tinuities inx, y andt being of a wave front type~on the intersection of a characteristic surface and
the planez50!. In this paper we will treat the case where the discontinuity is a wave front moving
in the positivez-direction. For the wave front moving in the opposite direction or combined
directions, the theorem in the previous subsection has to be properly modified.

To apply the theorem in the previous subsection, we takea15a251, (A1 ,A2 ,A3)52¹~ln r!.
For small values ofz5h, we take the approximate solution of system~12!, given by the iterate
U15U01T(U0), whereU0 is given by Eq.~11!. Thus, it follows from Eqs.~2!, ~7!, ~8!, and~9!
that the solution to the above order is

u~x,y,h,t !5u0~x,y,h,t !2
1

2 E
0

hE
t2h1z8

t1h2z8
F~x,y,z8,t8;u0!dt8dz8, ~32!

]zu~x,y,h,t !5]zu0~x,y,h,t !2
1

2 E
0

h

@F~x,y,z8,t1h2z8;u0!1F~x,y,z8,t2h1z8;u0!#dz8,

~33!

where

u0~x,y,z,t !5
1

2
@v0~x,y,t1z!1v0~x,y,t2z!#1

1

2 E
t2z

t1z

v1~x,y,t8!dt8,

~34!
F~x,y,z,t;u0!5~]x

21]y
2!u02¹~ ln r!•¹u02b] tu0 .

Therefore, the sought-for expressions foru and]u/]z at z5h are

u~x,y,h,t !5
1

2
@v0~x,y,t1h!1v0~x,y,t2h!#1

1

2 E
t2h

t1h

v1~x,y,t8!dt82
h2

2
@~]x

21]y
2!v0

2~]xv0!]x~ ln r!uz502~]yv0!]y~ ln r!uz502v1]z~ ln r!uz502b] tv0#1O~h3!,

~35!
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@]zu#~x,y,h,t !5 1
2 @] tv0~x,y,t1h!2] tv0~x,y,t2h!#1 1

2 @v1~x,y,t1h!1v1~x,y,t2h!#

2h@~]x
21]y

2!v02~]xv0!]x~ ln r!uz502~]yv0!]y~ ln r!uz50

2v1]z~ ln r!uz502b] tv0#1O~h2!. ~36!

Repeatedly applying the above two formulas, one can propagate the data (u,]zu) layer by
layer~from the surface data! to the data at the planesz5nh, n51,2,3,... . Note that in the repeated
application of the formulas, the smoothness parameters0 has to be replaced bysn , n51,2,3,...,
which is related toh through the constanth,a`(sn2sn11), n51,2,3,... . This limits the range of
continuation with respect toz.

In order to obtain some reliable reference data to compare with our continuation results, we
generate the data with either an explicit solution~in the case of a homogeneous medium! or a
finite-difference time-domain method. In all the numerical examples, we assume that the medium
above the surfacez50 is homogeneous and non-dissipative, and a point source is located at the
point r05(0,0,z0)(z0,0) in the homogeneous upper half-spacez,0 ~the inhomogeneity is con-
fined in the lower half-spacez.0!. The incident field in an entirely homogeneous space satisfies
the following equation:

] t
2pi2¹2pi5d~r2r0! f ~ t !, ~37!

which has the solution

pi5
f ~ t2ur2r0u!
4pur2r0u

. ~38!

In all the numerical examples in the present paper, we choose the position of the point source to
be z0520.5, andf (t) to be

f ~ t !5H sin2~pt/t0!, when 0<t<t0 ,

0, otherwise,

wheret050.4.
Numerical example 1~case of a homogeneous medium!: Consider the simplest case when the

whole space is homogeneous and non-dissipative. The surface fields and their normal derivatives
can be obtained from the explicit solution~38!. We chooseDx5Dy5Dz52Dt50.005, and
calculate the field and its normal derivative at the point~0,0,0.1!, which is on the 20th layer, using
the local continuation formulas~35! and ~36!. The continuation results are given by the dotted
lines in Figs. 1~a! and 1~b!, where the corresponding exact values@obtained from~38!# are given
by the solid lines. Numerical results in Figs. 1~a! and 1~b! show that the continuation scheme is
not stable, which is mainly due to the second order transverse spatial derivatives of the fields in the
formulas~35! and ~36!. Thus, one needs to regularize9 ~smooth! the data before using the finite-
difference formulas~35! and~36!. In the next subsection, we describe a way to regularize the data.

C. Regularization

To obtain reliable second order transverse spatial derivatives of the fieldu, we need to smooth
u to at least twice differentiable in respect with the transverse spatial variablesx5(x,y). Define a
function

S~x!5
e22gAuxu14

2pAuxu14
. ~39!
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FIG. 1. ~a! and~b! The local continuation formulas for data continuation in a homogeneous space. The solid lines are the
exact reference data at a point~0,0,0.1! obtained from Eq.~38!. The dotted lines are the corresponding continuation results
using the local continuation formulas~35! and ~36! without regularization. Here we chooseDx5Dy5Dz52Dt50.005,
and the point~0,0,0.1! is at the 20th layer. The crosses are the corresponding continuation results using the regularization
formula ~43! with d50.005.
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Its Fourier transformation is

S̃~ x̄![~F21S!~ x̄!5E S~x!eixx̄dx52pE
0

`

S~x!J0~ uxuux̄u!uxuduxu5
exp~22Aux̄u21~2g!2!

Aux̄u21~2g!2
.

~40!

If we chooseg such that it satisfiesg51/2e24g, i.e.,

g50.21315138, ~41!

thenS~x! andS̃~x̄! are a pair of Fejer kernels~cf. e.g., Ref. 10!, sinceS̃~0!51, S~2x!5S~x!, and
S, S̃PL1.

Define

Sd~x![
1

d2
SS xdD5

1

2p
•

exp@~22g/d!~Auxu21~2d!2!#

dAuxu21~2d!2
, ~42!

then we have the following theorem.
Regularization Theorem: If uPL1 and is bounded, then the following formula holds:

lim
d→10

E
R2
Sd~x2 x̄!u~ x̄!dx̄5u~x!. ~43!

Proof: Introduce the Fejer mean ofu defined as

ud~u!5E
R2
e2 ixx̄S̃d~dx̄!ũ~ x̄!dx̄, ~44!

whereS̃d andũ are the inverse Fourier transform ofSd andu, respectively. SinceuPL1, accord-
ing to Theorem 1.13 in Ref. 10, we have

ud~u![E
R2
Sd~x2 x̄!u~ x̄!dx̄. ~45!

Also sinceuPL1 and is bounded, we have~cf. Theorem 1.15 in Ref. 10!,

lim
d→10

ud~x!5u~x!. ~46!

Equation~43! follows immediately from the above two equations. The regularization theorem is
thus proved.

Note that if the sources have spatial compact support~e.g., in a point source case!, the field
u(x,y,z,t) is non-zero only within a finite regionAx21y2 , D0 on a planez5z0 at any finite time
t5t0 , and thus obviouslyuPL1(R

2). Using the regularization formula~43!, we first test the
homogeneous case as described in the numerical example 1. The crosses in Figs. 1~a! and 1~b! are
the continuation results using the local continuation formulas~35! and~36! with u being smoothed
@using the formula~43! with d50.005# for each time at each layer. These numerical results
indicate that the local continuation formulas give quite good continuation results in a homoge-
neous space if the regularization formula~43! is also used. In the next example we test the local
continuation formulas~with the regularization! for a case of an inhomogeneous medium.

Numerical example 2~the case of an inhomogeneous medium!: In this numerical example, we
consider an inhomogeneous half-space with the following synthetic density profile:
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r~x,y,z!5112 sin2~pz!exp@2~x21y2/41z2/9!#, z>0. ~47!

The dissipation coefficient is chosen to beb50 in the whole space. The reference data for the
fields and their normal derivatives are calculated with a finite-difference time-domain method, in
which one computes the fields step by step in time starting from the trivial initial condition for the
fields ~see Refs. 11 and 12! for a detailed description; our Connection machine with a memory of
2 GByte in RAM has enough memory to set all the boundary surfaces inx-, y-, andz- directions
of the computation domain to be far enough away so that putting the fields to zero at the boundary
surfaces will have no effect on the fields at the receiving points and during the time periods of
interest!. We then use the local continuation formulas~35! and ~36! to migrate the surface data
~obtained from the finite-difference time-domain method! to the data at the planez50.1 inside the
inhomogeneous medium withDx5Dy5Dz52Dt50.005. The formula~43! is used to regularize
the data at each time and at each layer withd50.005. The crosses in Figs. 2~a! and 2~b! are the
continuation results at the point (x,y)5~0,0! on the planez50.1 ~the solid lines are the corre-
sponding reference data!. The continuation results appear to be quite good.

Note that in the local continuation formulas, one has to do the regularization~spatial convo-
lution! at each time and at each layer~the spatial convolution is done only after computingu and
]zu for all time steps and locations!. As shown in Ref. 13, the analyticity of the data can guarantee
the stability of the solution to the inverse problem. By such a spatial convolution, the analyticity
of the data can be restored after the data continuation in deeper layers. In the next section, we give
another approach for the data continuation, which does not require such a regularization.

III. APPROACH TWO: WAVE-SPLITTING FORMULAS

The acoustic wave equation~31! can be written in matrix form as

]zF u
]zu

G5F 0
h1~¹T ln r!•¹T1b] t

1
~]z ln r!GF u

]zu
G[DF u

]zu
G , ~48!

whereh5] t
22]x

22]y
2, and ]T5(]x ,]y). The total field can be decomposed into a down-going

componentu1 and an up-going componentu2 as follows:

Fu1

u2G5
1

2 F1 2K

1 K GF u
]zu

G[TF u
]zu

G , ~49!

whereK is the wave-splitting operator, which has the following explicit expression~see Ref. 4 for
a detailed mathematical description of the wave-splitting operator!:

Ku5
1

2p E
0

tE
0

2p

u~x1~ t2s!cosu,y1~ t2s!sin u,z,s!duds. ~50!

Differentiating Eq.~49! with respect toz and using Eq.~48!, yields

]zFu1

u2G5TDT21Fu1

u2G . ~51!

After a formal matrix calculation, one obtains7

~]z1K21!u15 f , ~52!

~]z2K21!u252 f , ~53!

whereK21 is the inverse ofK, and
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FIG. 2. ~a! and~b! Data continuation using the local continuation formulas~with the regularization! in an inhomogeneous
half-space with a synthetic density profiler(x,y,z)5112 sin2(pz)exp@2(x21y2/41z2/9)#, for z>0 ~the dissipation co-
efficient b[0!. The solid lines are the reference data at a point (x,y)5~0,0! on the planez50.1, calculated with a
finite-difference time-domain method. The crosses are the corresponding continuation results using the local continuation
formulas withDx5Dy5Dz52Dt50.005. The regularization parameter is chosen to bed50.005.
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f52 1
2 K@~¹T ln r!•¹T1b] t#~u

11u2!1 1
2 K@~]z ln r!K21#~u12u2!. ~54!

The operatorK21 can be expressed in the following form:12

K215] t2L , ~55!

where

Lu5
1

2p
@]x

2~L1u!1]y
2~L2u!22]xy

2 ~L3u!#, ~56!

with

L1u5E
0

tE
0

2p

sin2 uu~x1~ t2s!cosu,y1~ t2s!sin u,z,s!duds, ~57!

L2u5E
0

tE
0

2p

cos2 uu~x1~ t2s!cosu,y1~ t2s!sin u,z,s!duds, ~58!

L3u5E
0

tE
0

2p

sin u cosuu~x1~ t2s!cosu,y1~ t2s!sin u,s!duds. ~59!

Note that the integrations in the expressions~57!–~59! have a smoothing effect to the datau, and
thus the spatial second order derivatives in the expression~56! is not a serious problem in the
numerical evaluation of the operatorL .

From the dynamic integro-differential equations~52! and ~53! for the split fields, we obtain
the following approximations:

u1~x,y,z1h,t !5
1

2p E E
D~x,y,t !

h

R3 @u1~x8,y8,z,t2R!1R] tu
1~x8,y8,z,t2R!#dx8dy8

1h f~x,y,z,t !1O~h2!, ~60!

u2~x,y,z1h,t !5u2~x8,y8,z,t1h!2h@Lu21 f #~x,y,z,t !1O~h2!, ~61!

whereR 5 A(x2x8)21(y2y8)21h2, andD(x,y,t) is a disk with center (x,y) and radiust at the
z plane. Note that iff50, then Eq.~60! gives the free-space integral formula.6

When bothu1 andu2 are calculated at a plane, the internal fieldu and its normal derivative
]zu at that plane can be immediately obtained by

u5u11u2, ~62!

]zu5K21@u22u1#. ~63!

Numerical example 3~using wave-splitting approach!. In this numerical example, we consider
an inhomogeneous half-space with the following synthetic profile for the dissipation coefficient:

b~x,y,z!5100 sin2~pz!exp@2~x21y2/41z2/9!#, z>0 ~64!

~the densityr is a constant everywhere!. The solid and dashed lines are the reference data for the
fields at points~0,0,0.1! and ~0.2,0,0.1!, respectively, calculated with the finite-difference time-
domain method. The dotted line is the free-space~i.e., whenb[0! solution for the fieldu at the
point ~0,0,0.1!, and the difference between the solid line and the dotted line indicates the magni-
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tude of scattering due to the dissipation. We use the wave-splitting formulas~60! and ~61! to
propagate the split fields at the surface~i.e., the incident field, and the reflected field obtained from
the finite-difference time-domain method! to the split fields at the planez50.1 inside the inho-
mogeneous medium, withDx5Dy5Dz52Dt50.02. The continuation results are output at two
points ~0,0,0.1! and ~0.2,0,0.1! by the crosses and circles, respectively, in Fig. 3. One sees from
Fig. 3 that the continuation data using the wave-splitting approach is smooth, even without any
additional smoothing process. To compare with the local continuation approach described in the
previous section, we plot the fields at a planez50.1 with a fixed timet50.8 in Figs. 4~a!–4~c!.
Figure 4~a! is the reference data calculated by the finite-difference time-domain method. Figure
4~b! is the continuation result obtained by the wave-splitting formulas. Figure 4~c! is the continu-
ation result obtained by the local continuation formulas~with regularization!. Both the local
continuation approach~with regularization! and the wave-splitting approach give quite good con-
tinuation results.

The reason why the wave-splitting approach gives stable results even without any additional
smoothing process, is that it takes a larger transverse spatial domain of dependence. Notice that
the transverse spatial domain of dependence of the operatorK or L is a disk area with radiust.
Therefore, if one wants to calculate the field at a pointx on the planez5h up to the timet5T, the

FIG. 3. Data continuation using the wave-splitting formulas~60! and~61! in an inhomogeneous half-space with a synthetic
dissipation coefficient profileb(x,y,z)5100 sin2(pz)exp@2(x21y2/41z2/9)#, z>0 ~the densityr is constant every-
where!. The solid and dashed lines are the reference data at points~0,0,0.1! and~0.2,0,0.1!, respectively, calculated with a
finite-difference time-domain method. The crosses and circles are the corresponding continuation data using the wave-
splitting formulas withDx5Dy5Dz52Dt50.02.
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FIG. 4. ~a!–~c! Data continuation results at a planez50.1 with a fixed timet50.8 in an inhomogeneous half-space with
a synthetic dissipation coefficient profileb(x,y,z)5100 sin2(pz)exp@2(x21y2/41z2/9)#, z>0 ~then densityr is constant
everywhere!. ~a! is the reference data calculated by the finite-difference time-domain method.~b! and ~c! are the corre-
sponding continuation results obtained from the wave-splitting formulas and the local continuation formulas~with the
regularization!, respectively.
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transverse spatial domain of dependence on the surface data is a disk area centered atx with radius
T for the wave-splitting formulas~60! and~61!, while for the local continuation formulas~35! and
~36! the transverse spatial domain of dependence on the surface data is merely a disk centered at
x with radiush. Thus, in a sense, the wave-splitting approach stabilizes the ill-posedness by using
a larger transverse spatial domain of dependence.

IV. CONCLUSION

In the present paper we have considered the ill-posed problem of the time-domain data
continuation for a second order hyperbolic equation in a three-dimensional inhomogeneous half-
space. Two different approaches, namely the local continuation approach and the wave-splitting
approach, have been used to propagate the surface data~the fields and their normal derivatives! to
the data at deeper planes. A local continuation theorem has been given, and its finite-difference
form has been used for the data continuation. To obtain a stable continuation result, a regulariza-
tion process at each time at each plane is necessary in the local continuation approach. The
wave-splitting approach uses a larger transverse spatial domain of dependence, and gives reason-
ably stable results even without any additional smoothing process. Numerical implementations for
both the local continuation and the wave-splitting approaches are very suitable for parallel com-
puting ~without a parallel machine, the computation time for obtaining the results in Numerical
examples 2 and 3 will be several years!.
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APPENDIX: PROOF OF THE LEMMA IN SECTION II A

Since

F~x,y,z,t;V!5~a1]x
21a2]y

21A1]x1A2]y!V11A3V22bV3 , ~A1!

it follows for 0,s<s0 ,(z,t)PDT , on using the following properties of analytic functions in
As0

~see, e.g., Ref. 13!:

i]x
2uis,i]y

2uis<
4

~s82s!2
iuis8 , 0,s,s8,s0 ,

i]xuis ,i]yuis<
1

s82s
iuis8 , 0,s,s8,s0 ,

iuis<iuis8 , 0,s,s8,s0 ,

that

iF~x,y,z,t;V!is~z,t !<bF 8

~s82s!2
1

2

~s82s!G iV1is81biV2is81biV3is8 . ~A2!

Thus, from the relation@the first component of Eq.~16!#,
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V1
n~x,y,z,t !52

1

2 E
0

zE
t2z1z8

t1z2z8
F~x,y,z8,t8;Vn21!dz8dt8, ~A3!

wheren51,2,..., it follows that for (z,t)PDT ,

iV1
nis~z,t !<

1

2
bE

0

zE
t2z1z8

t1z2z8H F 8

~s82s!2
1

2

~s82s!G iV1
n21is81iV2

n21is81iV3
n21is8J dt8dz8.

~A4!

Whenn50, Vj
n21, j51,2,3, on the right-hand side of Eq.~A4! should be replaced byUj

0.
In a similar manner, it can be shown using the second and third components of Eq.~16! that

of j52,3,

iVj
nis~z,t !< max

ut82tu<z2z8

bE
0

zH F 8

~s82s!2
1

2

~s82s!G iV1
n21is81iV2

n21is81iV3
n21is8J dz8,

~A5!

for n51,2,..., and whenn50, Vj
n21 on the right-hand side of Eq.~A5! should be replaced byUj

0.
Define the following sequence:

sn8~z!5~s01s2z/an!/2, n50,1,2,3,... . ~A6!

The lemma can now be proved by induction. Forn50, takes8 5 s08(z8) 5 (s 1 s0 2 z8/a0)/2 in
expressions~A4!, ~A5!, and restrictz so that 0<z,a0(s02s), ut2t0u<z. Using Eq.~18! and the
inequalitys0(z8)2s<s0/2, it can be shown that

iV1
0is~z,t !<4a0

2baS 81s01
s0
2

2 D E
0

z ~z2z8!dz8

@a0~s02s!2z8#2
<l0•

z

@a0~s02s!2z#
. ~A7!

In a similar manner, it can be shown that

iVj
0is~z,t !<l0a0E

0

z dz8

@a0~s02s!2z8#2
<

l0za0
@a0~s02s!2z#2

, ~A8!

for 0<z,a0(s02s).
Hence, inequalities~24! and ~25! hold for n50.
Assume that inequalities ~24! and ~25! hold for n21. Then set

s85sn8(z8)5(s1s02z8/an)/2 in Eq.~A4!, restrictz so that 0<z,an(s02s), use the inequalities
an<an21<•••<a0 , and [an21(s02s)2z8]>[an(s02s)2z8] valid for 0<z8,an(s02s) to ob-
tain

iV1
nis~z,t !<ana0bl0r

n21~3216s0!E
0

z ~z2z8!z8dz8

@a0~s02s!2z8#3
<l0r

n
•

z

@a0~s02s!2z#
. ~A9!

The last inequality is obtained by straightforward integration.
In a similar manner, it can be shown from Eq.~A5! for 0<z,an(s02s), ut2t0<zu, that

iVj
nis~z,t !<a0anl0r

n21r0E
0

z z8dz8

@a0~s02s!2z8#3
<l0r

n
•

zan
@a0~s02s!2z#2

. ~A10!

The lemma is thus proved.
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In relativity, planes and two-forms play important roles in the description of physi-
cal configurations or objects. When these configurations or objects interact, or are
superposed, the corresponding planes or two-forms appear associated by pairs, and
therelative positionof the pair allows the classification of the particular form of the
interaction. Here it is shown that in Minkowski space a pair of planes may adopt 35
relative positions. This result allows the almost complete characterization of the
dimension of the Lie~sub!algebras~of the Lorentz group! generated by a pair of
two-forms in terms of the relative position of their invariant planes. Furthermore, it
is shown that, apart from Pateraet al. algebrasF2 andF5 ~for which the eigenval-
ues’ ratios have to be computed as well!, the position of their invariant planes is
also sufficient to determine the algebra itself generated by two two-forms. ©1996
American Institute of Physics.@S0022-2488~96!03811-X#

I. INTRODUCTION

A smooth surface, the evolution of a rod, a string, a point mass with spin, a polarized photon;
any of these objects define, in relativistic macroscopic physics, a~two-dimensional! planeat every
point of its space–time support.1

Consequently, the study of shocks, diffusion, or interaction of any two of these elements
involves the analysis of the differentrelative positionsthat the associated planes may have in
Minkowski space–time.

Planes appear also naturally in relativity in many other domains, such as perfect fluids with
heat flow,2 anisotropic fluids,3 tilted cosmologies,4 magnetohydrodynamics,5 two perfect fluid
sources,6 or regular or pure radiative electromagnetic fields.7

Thus, their junctions, shocks, phase changes, or chemical reactions across a hypersurface,
their interactions,8 or superpositions in a domain are processes that involves the study of the
relative position of the pair of planes that they define. And so is also the description of the
evolution of any of the above objects in these media.

The study of the variety of these relative positions not only induces a classification of the
corresponding physical situations, allowing an easier analysis of them, but may help, in some
cases, in the search of first integrals of the motion.9

Here we show that there exist 35 different relative positions for a pair of planes in Minkowski
space–time~Theorem 1!.

Relativistic Helmholtz vorticity of fluid currents,10 Minkowski description of electromagnetic
fields,11 or infinitesimal generators~algebra! of Lorentz transformations12 are perhaps the best-
known examples of space–time two-forms. However, many other important two-forms have been
considered in relativity, such as principal Riemann,13 Killing–Yano,14 Hertz potential,15 or
Frenkel intrinsic angular momentum16 two-forms.

As two-forms in space–time univocally determine nonspacelike planes, our Theorem 1 di-
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rectly applies to the characterization of therelative position of two two-forms, and may help to find
conserved quantities for the corresponding field equations.17

At any point of the space–time, a two-form amounts to an infinitesimal generator~element of
its algebra! of a local Lorentz transformation; this interpretation ofany two-form may be of
interest in some problems related to adapted observers or frames.12Moreover, the determination of
a Lorentz transformation by the corresponding Lorentz algebra two-form reduces the parametri-
zation to its intrinsic elements.18 In Ref. 19 it was shown a striking property of the commutator of
two two-forms, namely that it defines an internal binary operation on the space of planes: the
invariant planes of the commutator depend exclusively on the invariant planes of the two-forms
~and not on their eigenvalues!.

This last property strongly suggests that the Lie~sub!algebra~of the Lorentz group! generated
by two two-forms depends essentially on the relative position of its invariants planes, and very
little on their eigenvalues. In the second part of the article we examine this question. Our main
result ~Theorem 3! is that, apart from a special case of regular two-forms for which the ratio of
eigenvalues are needed, the algebra generated by two two-formsdepends exclusivelyon the
relative position of the principal planes of the two-forms.

In the above-mentioned interpretation of any two-form as generator of a Lorentz transforma-
tion, but also in other situations,20 one is naturally lead to consider the Baker–Campbell–
Hausdorff formula21 for the two-form associated to a product of two Lorentz transformations. Our
Theorem 3 directly applies to simplify its general expression; this will be seen in a later work.

II. PRELIMINARIES

Let (V4 ,g) be Minkowski space andP andQ be two planes~two-dimensional linear sub-
spaces ofV4!. In order to render easier the study of their relative position, it is convenient to range
the intersections of them and their~biunivocally determinated! orthogonal planesP' andQ' as a
232 matrix:

D~P,Q![S PùQ PùQ'

P'ùQ P'ùQ'D .
The set of these matricesD(P,Q) will be denoted byD . These matrices have the following
properties;P,Q ~Proposition 2 of Ref. 19!:

„D~P,Q!…i j '„D~P,Q!…mn ;~ i , j !Þ~m,n!,

dim„D~P,Q!…115dim„~P,Q!…22, ~1!

dim„D~P,Q!…225dim„D~P,Q!…21.

By reasons explained in Ref. 19 we are interested by the following transformations ofD ~bijec-
tions ofD!:

t:D~P,Q!°D t~P,Q![D~Q,P!,

c:D~P,Q!°Dc~P,Q![D~P,Q'!,
~2!

r:D~P,Q!°D r~P,Q![D~P',Q!,

l:D~P,Q!°D l~P,Q![D„l ~P!,l ~Q!…,

where lPL, L being the Lorent group.
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Let us consider the subgroups of transformations ofD generated by the elements$t%, $t,cr%,
$t,c,r%, and$l%, respectively. Apart from those given by~2!, the images of the matrixD(P,Q) by
the transformations of the subgroup generated by$t,c,r% are

D tr~P,Q!5D~Q',P!, Dcr~P,Q!5D~P',Q'!,
~3!

D tcr~P,Q!5D~Q',P'!, D tc~P,Q!5D~Q',P!.

This subgroup, which is the same as the one generated by$tr,t%, is the dihedral groupD4. The
subgroups generated by$t,cr% and$t% are, respectively, the dihedral groupD2 and the permutation
groupS2.

Two results are needed. The first result says~Proposition 3 of Ref. 19! that in Minkowski
space the elements ofD /~D43L! are

F S 0 0

0 0D G[m0 , F S a 0

0 bD G[m10
0 , F S i 0

0 pD G[m10
2 ,

F S a b

c dD G[m1
0, F S i i

p qD G[m1
3, F S i i

i i D G[m1
1, ~4!

F SR 0

0 R'D G[m20, F S I i

i I'D G[m21,

where a, b, c, d, p, andq are non-null directions, i is a null one, and R and I are respectively a
non-null and a null plane.

The second result says~Proposition 4 of Ref. 19! that the components of the matrixD(P,Q)
determine the planes P and Q as indicated in Table I, where$a,b,c,d,% is a tetrad of orthogonal
directions, $a,b,c8% and $a,b,c9% are different orthogonal triads, $ i ,i 8,i 9% is a triad of null direc-
tions, and p and p8 are different and nonorthogonal directions which are orthogonal to the null
directions of each case.

III. RELATIVE POSITION

In a linear space, the relative position of two planes (P,Q) is determined by the dimension of
their common elements, dim(PùQ); thus in V4 there are three relative positions for a pair of
planes.

If the linear space is endowed with a Euclidean metric, which associates to every plane its
orthogonal, the~qualitative! relative positions of two planes are determined by the dimensions of
relevant intersections of pairs of planes taken from the set$P,Q,P',Q'%; i.e., by the dimension
matrix D(P,Q) such that„D(P,Q)…i j5dim~D(P,Q)!i j . Thus, from~1! it is easy to see thatin
four-dimensional Euclidean space(V4 ,ge), there are six relative positions for a pair of planes,
corresponding to the dimension matrices

TABLE I. Planes determined byD(P,Q).

m0 m10
0 m10

2 m1
0 m1

3 m1
1 m20 m21

S0 0

0 0
D Sa 0

0 b
D S i 0

0 p
D Sa b

c d
D S i i

p q
D S i i

i i
D SR 0

0 R'D S I i

i I'
D

Undetermined
P5a1c8
Q5a1c9

P5 i1 i 8
Q5 i1 i 9

P5a1b
Q5a1c

P5 i1 i 8
Q5 i1p

P5 i1p
Q5 i1p8

P5R
Q5R

P5I
Q5I
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S 0 0

0 0D S 1 0

0 1D S 0 1

1 0D S 1 1

1 1D S 2 0

0 2D S 0 2

2 0D .
If the linear space is endowed with a Lorentzian metric, which associates to every plane also

a causal character, the~qualitative! relative position of a pair of planes will be determined by the
corresponding matrix D(P,Q) but also by the causal character ofP andQ and the elements of
D(P,Q). The object of this section is to characterize all of them.

Let us be slightly more precise. The six above-mentioned relative positions of the Euclidean
case correspond to elements ofD /(D23O), bijectively related to the set D of dimension matrices
D(P,Q). HereD2 appears because the pairs (P,Q), (Q,P), (P',Q'), and (Q',P') have the
same relative position. However, in Minkowski space because of the causal character, we have to
distinguish between (P,Q) and (P',Q'). Thus, in addition to the causal character ofP andQ, we
have to consider the groupS2 in place ofD2 ~and, of course,L in place ofO!.

Denoting bycP the causal character of the planeP ~cP52,0,1, resp. ifP is timelike, null,
spacelike!, by c(P,Q) the couple of causal characters ofP andQ, c(P,Q)[(cP ,cQ), and byC
the set$c(P,Q)%;P,Q, we are led to give the following definition:

Definition 1. Therelative position of two planesP and Q is the element ofC /S23D /~S23L!
that contains„c(P,Q),D(P,Q)….

From ~2!–~4! it is easy to compute the elements ofD /~S23L!; one has22

F S 0 0

0 0D G[m0 ,

F S 0 t

e 0D G[m01
21 , F S 0 e

e8 0D G[m01
11 , F S 0 i

e 0D G[m01
01 ,

F S t 0

0 eD G[m10
21 , F S e 0

0 e8
D G[m10

11 , F S e 0

0 t D G[m10
21 ,

F S i 0

0 eD G[m10
01 , F S e 0

0 i D G[m10
10,

~5!

F S t e

e8 e9
D G[m1

21 , F S e e8

e9 t D G[m1
12 , F S e t

e8 e9
D G[m1

11 ,

F S i i

e e8
D G[m1

01 , F S e i

e8 i D G[m1
10, F S i i

i i D G[m1
00,

F S T 0

0 ED G[m20
21 , F SE 0

0 TD G[m20
12 , F S 0 T

E 0D G[m02,

F S I i

i I'D G[m21, F S i I

I' i D G[m12,

where t and i are, respectively, a timelike and a null direction;e, e8, and e9 are spacelike
directions, andT, I , andE are, respectively, a timelike plane, a null plane, and a spacelike plane.
We are thus able to prove the following result:

Theorem 1: In Minkowski space there are 35 relative positions for a pair of planes. They are
characterized in Table II.
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Proof: Suppose@D(P,Q)]5m0; let $a,b,a8,b8% be its characteristic tetrad~Definition 1 of
Ref. 19! and $K,K'% its characteristic planes~Definition 2 of Ref. 19!; then a1a85K,
b1b85K', P5a1b, andQ5a81b8. Taking into account that the characteristic planes are not
null and thata'” a8 andb'” b8 one has that [c(P,Q)] can be any element ofC /S2.

Suppose@D(P,Q)#5m10
11 ; from the Table I one hasP5e1c8 and Q5e1c9, verifying

c8'e'c9 andc8'” c9. ThenP has the causal character ofc8 andQ has the character ofc9. As c8
andc9 can have any causal character, [c(P,Q)] can be any element ofC /S2.

Suppose@D(P,Q)#5m01
11 . Then, one has@D(P',Q)#5m10

11 ; by the preceding argument
[c(P',Q)] is any element ofC /S2, so that [c(P,Q)] do as well.

Finally, let us take any other elementm of D /~S23L!. It is easily deduced from~2!, ~3!, ~5!,
and Table I thatD(P,Q)Pm implies that [c(P,Q)] is univocally determined.

Then, Table II follows. h

TABLE II. Relative positions of a pair of planes.

C /S2 D /~S23L! Symbol

@~2,2!# m0 P6,1

m01
11 P6,2

m10
11 P3,1

m10
21 P3,2

m1
21 P3,3

m10
01 P2,1

m20 P1,1

@~2,0!# m0 P6,3

m01
11 P6,4

m10
11 P3,4

m1
01 P2,2

@~2,1!# m0 P6,5

m01
11 P6,6

m01
21 P6,7

m01
01 P4

m10
11 P3,5

m1
11 P3,6

m02 P2I ,1

@~0,0!# m0 P6,8

m01
11 P6,9

m10
11 P3,7

m1
00 P2I ,2

m12 P2I ,3

m21 P1,2

@~0,1!# m0 P6,10

m01
11 P6,11

m10
11 P3,8

m1
10 P3,9

@~1,1!# m0 P6,12

m01
11 P6,13

m10
11 P3,10

m10
10 P3,11

m10
12 P3,12

m1
12 P3,13

m20
12 P1,3
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IV. BASIC NOTIONS ABOUT TWO-FORMS

Every two-form F has two independentinvariant scalars, namely fF[(F,*F) and
cF[(F,F), where* is the Hodge dual operator and~.,.! stands for the scalar product induced by
g: (F,G)[2~1/2!tr(FG), tr being the trace operator andFG the ~cross-!product of two-forms.23

A nonvanishing two-formF is callednull if fF
21cF

250, regular otherwise,simpleif fF50,
andunitary if it is simple andcF521.

The principal directionsof F are the common eigendirections ofF and*F, which are nec-
essarily null. Let6a and 6i ã be the eigenvalues of a regular two-form verifyinga.0,
fF522aã, and c52a21ã2. Then F admits a unique decomposition of the formF5aU
2ã*U, whereU is unitary. The pair$U,*U% is called thegeometryof F. For a nullF, it is the
pair $F,*F% itself which is called thegeometryof F.

It is alwayspossible to write univocally any two-formF in terms of its geometry$U,*U% as
F5aU2ã*U, where theweightsa and ã take the valuesa51 andã50 whenU is null. This
decomposition is useful when~as in the present case! only algebraic calculations are involved.

An inner direction xof a simple two-formF is a direction such that any of its elementsx̂
verifies x̂`F50, where` stands for the exterior product. The plane of inner directions will be
noted p(F). The invariant planesof a two-form F are the planes of inner directions of its
geometry:$p(U),p(*U)%. It is clear thatp(*U)5p(U)'.

There are six invariant scalars for a pair of two-forms,F andG, namelyfF , cF , fG , cG , and
the twomixed invariant scalarsrFG[(F,*G) andsFG[(F,G). The geometrical meaning of the
mixed invariant scalars is as follows~see Lemma 2 in Ref. 19 for a proof!:

Lemma 1: The planesp(F) andp(G) of simple two-forms F and G have common directions
if, and only if, the mixed invariantrFG vanishes.

It is to be noted that, because of the identitysFG52rF*G , this lemma also asserts thatp(F)
andp~*G! have common directions if, and only if,sFG50.

Let us recall that two-forms build the Lie algebra of Lorentz group with the commutator as the
Lie bracket

@F,G#5FG2GF;

the properties of its geometry have been studied in Ref. 19. Now we are concerned with the
subalgebrasA(F,G) of the Lie algebra of Lorentz group generated by two-formsF andG.

V. A BASIS FOR THE SUBALGEBRAS GENERATED BY TWO TWO-FORMS

Let us consider the set

G ~F,G![$F,G,*F,*G,@F,G#,* @F,G#%

associated to two-formsF and G and letL„G (F,G)… denote the linear space generated by
G (F,G).

Taking into account the identitiesFG2*G*F52sFGg and [F,*G]5* [F,G], one has

†@F,G#,F‡52sFGF1cFG1rFG*F2fF*G,
~6!

†@F,G#,G‡52cGF1sFGG1fG*F2rFG*G,

and it is clear that all the elements ofA(F,G) may be expressed as a linear combination of the
elements ofG (F,G). Therefore, the following holds:

Lemma 2: For any two-forms F and G, one hasA(F,G),L„G (F,G)….
Thus we can always select a basis ofA(F,G) from G (F,G). Concerning the dimension of

L„G (F,G)…, we have the following.
Proposition 1: For nonproportional two-forms F and G, one has
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dim L„G ~F,G!…P$2,4,6%.

This dimension is 2 if, and only if, they have the same principal directions, it is 4 if, and only if,
they have one common principal direction and at least one that is not common, and it is 6 if, and
only if, they have no common principal directions.

Proof: Let $U,*U% and$V,*V% be the geometries ofF andG, respectively. As the elements
of G (F,G) may be expressed as linear combinations of the elements ofG (U,V) and vice versa,
it is clear that dimL„G (F,G)…5dimL„G (U,V)…. Hence, we only have to prove the proposition
for the two-formsU andV.

Let us remember thatU andV have same principal directions iffU5lV1m*V ~l51 and
m50 if they are regular!. Hence, if they have the same principal directions dimL$U,V,*U,*V%
52; and as [U, V]50 ~Proposition 8 from Ref. 19!, dimL„G (U,V)…52.

If U and V have one common principal direction and at least one noncommon,
dimL$U,V,*U,*V%54. Then there exist some vectorsx, y, andz verifying U5x`y, V5x`z,
and (x,x)50. Since

@U, V#52~x,x!y`z2~x,z!U1~x,y!V52~x,z!U1~x,y!V, ~7!

it follows that dimL~G (U,V)!54.
If U and V have no common principal directions, dimL$U,V,*U,*V%54 and dim-

L„G (U,V)…>4. Suppose dimL„G (U,V)…54 so that

@U, V#5lU1mV1n*U1j*V,

and then

†@U, V#, U‡52~lm2jn!U2~m22j2!V2~lj1mn!*U22mj*V,

†@U, V#, V‡5~l22n2!U1~lm2jn!V22ln*U1~lj1mn!*V.

However, from~6!, fU52mj50 andfV522ln50, so that all the solutions forl, m, n, andj lead
to expressions of the form~7! implying the existence of common principal directions. Thus
dimL„G (U,V)….4. Suppose dimL„G (U,V)…55, and then either dimL$U,V,*U,*V,[U,V] %
55 or dimL$U,V,*U,*V,* [U,V] %55 or both. Assume the first condition verified so that

* @U, V#5lU1mV1n*U1j*V1x@U, V#

and callA[lU1mV1n*U1j*V. It follows

@U, V#52*A2x* @U, V#52xA2*A2x2@U, V#,

and we obtain

~xl2n!U1~xm2j!V1~xn1l!*U1~xj1m!*V1~11x2!@U, V#50.

Following our assumption this expression leads to the incompatibility 11x250. The same con-
clusion is obtained assuming the other conditions, so that dimL„G (U,V)…56 forU andV having
no common principal directions. h

VI. DIMENSION OF THE ALGEBRAS GENERATED BY TWO SIMPLE TWO-FORMS

Let U and V be simple noncommuting two-forms~they do not have the same principal
directions; see Proposition 8 in Ref. 19!, and letc, c8, r, ands be their nonzero invariant scalars.
From ~6! we obtain
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†@U, V#, U‡52sU1cV1r*U, †@U, V#, V‡52c8U1sV2r*V. ~8!

Therefore,r50 implies dimA(U,V)<3. Conversely, when dimA(U,V)<3, from ~8! we have
eitherr50 or

*U5lU1mV1n@U, V#, *V5l8U1m8V1n8@U, V#. ~9!

However, if ~9! is verified, thennn8Þ0; hence we can obtain [U, V] in two different ways from
~9! and, equating them, we have

~l8n2ln8!U1n8*U5~mn82m8n!V1n*V,

and soU andV would have same geometry. Thus dimA(U,V)<3⇔r50. Then, from Lemma 1
and ~7!, we have the following:

Lemma 3: For noncommuting simple two-forms U and V, one has

~i! dimA(U,V)52 if, and only if, they have one common inner principal direction, and
~ii ! dimA(U,V)53 if, and only if, they have one common non-null inner direction.

Let us suppose now dimA(U,V)54. The last lemma impliesrÞ0, and, from~8!, we get

@@@U, V#, U#, V#52s@U, V#1r* @U, V#; ~10!

hence, dimA(U,V)54 ⇒ dimL„G (U,V)…54. Therefore, from Proposition 1 and Lemma 3,U
and V must have one common principal direction and no common inner directions for both
two-forms. Conversely, whenU andV have a common principal direction and no common inner
directions, dimL„G (U,V)…54 ~Proposition 1! and dimA(U,V)<4 ~Lemma 2!. As rÞ0,
dimA(U,V)54 ~Lemma 3!. Thus, the following lemma has been proved:

Lemma 4: The necessary and sufficient condition fordimA(U,V)54 is that the simple
two-forms U and V have one common principal direction and no common inner directions.

Finally, suppose dimA(U,V)56.24 By Lemmas 3 and 4, the two-formsU andV have neither
common principal directions nor common inner directions. Conversely, by Proposition 1 whenU
andV have neither common principal directions nor common inner directions, dimL„G (U,V)…
56. As rÞ0, from ~8! and ~10!, the two-formsU, V, [U, V], †[U, V],U‡, †[U, V],V‡ and
@†[U,V],U‡,V# are linearly independent; hence24 dimA(U,V)56. We have shown the following
result:

Lemma 5: The necessary and sufficient condition fordimA(U,V)56 is that the simple
two-forms U and V have neither common principal directions nor common inner directions.

As a corollary of the last results and Proposition 8 of Ref. 19 we have the next proposition:
Proposition 2: Let U and V be nonproportional simple two-forms. It holds that

~i! dimA(U,V)52 and [U, V]50 if, and only if, all principal directions are common;
~ii ! dimA(U,V)52 and [U, V]Þ0 if, and only if, there is one common principal direction

and at least one noncommon principal direction;
~iii ! dimA(U,V)53 if, and only if, there is only one common non-null inner direction;
~iv! dimA(U,V)54 if, and only if, there is only one common principal direction and no

common inner directions; and
~v! dimA(U,V)56 if, and only if, there are neither common principal directions nor common

inner directions.

Hence, the following is now evident.
Corollary 1: The dimension of the algebraA(U,V) generated by the simple two-forms U and

V is d when the relative position of the planes of inner directions isPd, as given in Table II.
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VII. DIMENSION OF THE ALGEBRA GENERATED BY ANY TWO TWO-FORMS

Here we shall consider pairs of noncommuting two-forms such that at least one is not simple,
sayF5aU2ã*U andG5bV2b̃*V such thatcU521 andcVP$21,0%.

Suppose thatF andG have only one common principal direction; then lemma 2 and propo-
sition 1 imply dimA(F,G)<4. SinceU is unitary butV is unitary or null,~7! gives

@U, V#5gU1dV ~11!

~note thatg2P$1,0%, d251, and thatg50 iff V is null!. Hence,

@F, G#5gbF1daG2gb̃*F2dã*G. ~12!

For F not simple and dimL$F,G,*F,*G%54, dimA(F,G)>3. Then, dimA(F,G)P$3,4%. In
order to have dimA(F,G)53 we must impose†[F, G], F‡, †[F, G], G‡PL$F,G,[F, G] %.
Taking into account~11! and ~12! we get

†@ f , G#, G‡5gd~ab2ãb̃ !F2~a22ã2!G1gd~ab̃1ãb!*F12aã*G,

†@F, G#, F‡5~b22b̃2!F1gd~ab2ãb̃ !G22bb̃*F2gd~ab̃1ãb!*G,

so, dimA(F,G)53 iff g(ab̃2ãb)50; equivalently,G is null or the ratio of the weights ofF
equals the ratio of the weights ofG.

Lemma 6: Let F and G be two-forms such that at least one is not simple. Then

~i! dimA(F,G)53 if, and only if, there is only one common principal direction and either
one of the two-forms is null or, being regular, their weights’ ratios coincide, and

~ii ! dimA(F,G)54 if, and only if, they are regular, have only one common principal direc-
tion and their weights’ ratios are different.

Finally, assume that they have no common principal direction. By Proposition 1
dimL„G (F,G)…56 and by Lemma 6 dimA(F,G).4, hence24 it is 6. Conversely, when
dimA(F,G)56, from Lemma 2 and Proposition 1 they do not have any common principal
direction. We have shown the following result:

Lemma 7: Let F and G be two-forms such that at least one is not simple. Then, the necessary
and sufficient condition fordimA(F,G)56 is that they do not have common principal directions.

As a corollary of proposition 8 of Ref. 19, and due to Lemmas 3–7 we have the following
theorem:

Theorem 2: Let F and G be nonproportional two-forms. Then

~i! dimA(F,G)52 and [F, G]50 if, and only if, they have the same principal directions;
~ii ! dimA(F,G)52 and [F, G]Þ0 if, and only if, they are simple, have only one common

principal direction, and at least one noncommon principal one;
~iii ! dimA(F,G)53 if, and only if, either they are simple and have only one non-null common

direction or they are not simple, have one common principal direction and their weights’
ratios coincide, or one is null, the other is not simple and have one common principal
direction;

~iv! dimA(F,G)54 if, and only if, they are both regular, have one common principal direc-
tion and their weights’ ratios do not coincide; and

~v! dimA(F,G)56 if, and only if, there are not common principal directions and, when they
are simple, neither common inner directions.

This theorem shows that the relative position of the geometries of a pair of two-forms deter-
mines the dimension of the algebra that they generate except in the case of regular two-forms
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verifying the conditions that only one is simple and have one common principal direction. In this
case we have to compute the weights’ ratio of each one to discriminate between dimensions 3
and 4.

VIII. ALGEBRAS GENERATED BY TWO TWO-FORMS

Table III gives the subalgebras of the Lie algebra of Lorentz group. Each type corresponds to
a class of conjugation by the orthochronous proper Lorentz group~connected component of the
identity!, except for the types where it the real numberl appears; eachl defines a different
conjugation class. In the type column theRs and theFs correspond, respectively, to notations by
Schell~see Ref. 25! and by Pateraet al. ~see Ref. 26!; the last column includes a basis of each type
in terms of the two-forms associated to a real null tetrad$ l ,m,p,q%.27 We have made use of the
notation:

A15 l`m, A35 l`p, A55m`p,
~13!

A25p`q, A45 l`q, A65m`q.

In this section we will see which types of these algebras can be generated by a pair of
two-forms and which are the necessary and sufficient conditions for a pair of two-forms to
generate a given type. These conditions will be expressed in terms of the geometric ingredients of
the two-forms.

There are four types of subalgebras of dimension 1. Three of them (R2 ,R3 ,R4) correspond to
each causal character~resp., timelike, null, spacelike! of the plane of inner directions of a simple
two-form. TypeR5 corresponds to classes of algebras generated by a nonsimple two-form, where
l is related to the weights’ ratio of the two-form. It is clear that these types can be generated by
two proportional two-forms with the characteristics listed above.

There are three types of subalgebras of dimension 2:R6 is nonconmutative andR7 andR8 are
conmutative; the former corresponds to regular geometry, and the latter to null geometry. From
Theorem 2 we obtain the following result:

Lemma 8: For nonproportional two-forms F and G,

TABLE III. Subalgebras of the Lie algebra of Lorentz group.

Dimension Type Basis

0 R1 F15

1 R2 F13 A1

1 R3 F14 A3

1 R4 F12 A2

1 R5 F11 A11lA2 ~lÞ0!

2 R6 F8 A1 , A3

2 R7 F9 A1 , A2

2 R8 F10 A3 , A4

3 R9 F7 A1 , A3 , A4

3 R10 F4 A1 , A3 , A5

3 R11 F6 A2 , A3 , A4

3 R12 F5 A11lA2 , A3 , A4 ~lÞ0!
3 R13 F3 A2 , A32A5 , A42A6

5 R14 F2 A1 , A2 , A3 , A4

6 R15 F1 A1 , A2 , A3 , A4 , A5 , A6
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~i! A(F,G) is an R6-algebra if, and only if, they are simple, have only one common principal
direction and at least one noncommon principal one,

~ii ! A(F,G) is an R7-algebra if, and only if, they are regular and have the same geometry,
and

~iii ! A(F,G) is an R8-algebra if, and only if, they are null and have the same principal
direction.

Table IV shows the three-dimensional subalgebras of the Lorentz group and the correspon-
dence between the Schell types and the Krameret al.29 notation of Bianchi28 types.

The three planes of inner directions of the elements of the basis ofR10, R11, andR13 ~see
Table III! generate a timelike, null, and spacelike hyperplane, respectively; forR9 they generate all
Minkowski space. Moreover, for typesR9, R10, R11, andR13, any linear combination of the
elements of the basis is simple, but this does not hold forR12. We deduce thatR9, R10, R11, and
R13 can only be generated by a pair of simple two-forms and thatR12 can only be generated by a
pair where at least one is not simple. By Proposition 2, the two-forms generatingR9, R10, R11, and
R13 have a non-null common inner direction; taking into account~7!, these two-forms and their
commutator belong to a hyperplane; consequentlyR9 cannot be generated by a pair of two-forms.

For algebrasR10, R11, andR13 it is verified that

p~@F,G# !5~ tr D„p~F !,p~G!…!'.

This follows directly from the theorem of Ref. 19 and 7. Then, with the aid of Table II and
relations~5!, the relative position of the plane of inner directions ofF andG that generate algebras
R10, R11, andR13 may be obtained without difficulty. The result is given by the following lemma:

Lemma 9: The algebraA(F,G) generated by the two-forms F and G is never R9 and it is
R10, R11 or R13 if, and only if, F and G are simple and the relative position of the planes of inner
directions isP3,r with rP$1,2,3,4,5,6,7,8,10%, rP$9,11%, or rP$12,13%, respectively.

For R12 we have the result of part~i! of Lemma 6:
Lemma 10: Let F and G be two-forms with geometries$U,*U% and $V,*V%, respectively.

Then,A(F,G) is a R12 if, and only if, F and G are such that at least one is not simple and the
relative position of„p(U),p(V)… is P2,2 or is P2,1 and their weights’ ratio coincide.

HereR14 andR15 are the only algebras of dimension 4 and 6, respectively, so we only have to
use Table II and~5! to express the conditions of Theorem 2 in terms of the relative position of the
geometry. Then, taking into account Lemmas 8–10, we have the following theorem:

Theorem 3: Let F and G be nonproportional two-forms andp(U) andp(V) the nonspace-
like planes of its geometries. The algebraA(F,G) generated by F and G is

~i! never R9,
~ii ! R7 or R8 if the relative position of(p(U),p(V)) is P1,1 or P2I ,r with rP$1,2%,
~iii ! R6, R10, R11, R13, R14, or R15, if F and G are simple and the relative position of

„p(F),p(G)… is P2,• for R6, P3,r with rP$1,2,3,4,5,6,7,8,10% for R10, P3,r with rP$9,11%
for R11, P3,r with rP$12,13% for R13, P4 for R14, or P6,• for R15, and

~iv! R12 or R15 if F and G are not both simple and the relative position of the planes
„p(U),p(V)… isP2,2 for R12 or P3,r , rP$1,2,3,4,7%, or P6,r 8, r 8P$1,2,3,4,8,9% for R15. R12,
or R14 if they are not both simple, the relative position of the planes„p(U),p(V)… is P2,1
and their weights’ ratios, respectively, coincide or differ.

TABLE IV. The three-dimensional algebras of the Lorentz group.

Schell type R9 R10 R11 R12 R13

Bianchi type V VIII VII0 VII h ~hÞ0! IX
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1For a surface, this plane is the tangent one at the point, which, depending on its physical materialization, may have any
causal orientation. For the rod or the string, the plane at every point is the one determined by the orientation of the object
and its space–time velocity. For the point mass with spin, the appropriate plane is that defined by the spin two-form@see
Ref. 16 or, for example, J. Iban˜ez, J. Martin, and E. Ruiz, Gen. Rel. Grav.16~3!, 225~1984! and references therein#. For
the photon, it is the lightlike plane determined by the polarization and its null direction of propagation.

2In Landau and Lifchitz’s as well as in Eckart’s schemes; in both cases the plane is that defined by the velocity and the
heat flow vectors. Such fluids may be of interest in the study of inhomogeneous universes; see, for example, J. Triginer
and D. Pavo´n, Class. Quant. Grav.12, 689 ~1995!.

3The anisotropic fluids concerned here are those that, like in spherical symmetry, admit an isotropic two-surface, the plane
in question being then that containing the fluid velocity and the anisotropic direction.

4That is, cosmologies in which the velocity of the cosmological~usually perfect! fluid does not coincide with that of the
observers at rest with respect to theinstants~spacelike hypersurfaces! of symmetry.

5In ~perfect! relativistic magnetohydrodynamics, the plane is that determined by the velocity of the fluid and the magnetic
field. For the subject, see, for example, B. Coll, Ann. Inst. Henri Poincare´ 25~4!, 363 ~1976! and references therein.

6Some astrophysical and cosmological situations seem to correspond to the sum of two perfect fluids. See G. S. Hall and
D. A. Negm, Int. J. Theo. Phys. 25~4!, 405~1986!; J. J. Ferrando, J. A. Morales, and M. Portilla, Gen. Rel. Grav.22~9!,
1021 ~1990! and references therein. In this case the plane is necessarily the spacelike eigenplane of the energy tensor.

7An electromagnetic field is described by a two-form~see Ref. 11!, and it is well known@G. Y. Rainich, Trans. Am. Math.
Soc.27, 106 ~1925!# that a regular~resp. null! two-form in space–time is strictly equivalent to a 212 weighted~resp.
degenerated! local almost product structure, which may always be determined by its nonspacelike field of planes.

8Of particular importance is that of fluids~or magnetofluids! in the presence of pure radiative electromagnetic fields
~relativistic cosmology!, that of regular fields with radiation or that of two beam pure radiative interferences~relativistic
optics! or that of the interaction of two spinning particles~relativistic mechanics and astronomy!.

9Consider a system of two interacting point particles in Newtonian gravity, and let us associate to every one of them the
plane containing its velocity and the relative position vector. In this case there are only two relative positions for the
planes: they coincide or they cut each other. The statement that every one of these relative positions ispermanentis
equivalent to that of theconservationof the direction of the angular momentum. In some other more complicated
relativistic systems for which we do not know first integrals, the analysis of the evolution of each of the possible relative
positions of associate planes, easier to do in general, may help us to find some of these integrals.

10The classical Helmholtz vorticity@H. Helmholtz, Crelle’s J.55, 25 ~1858!#, was extended to relativity by Synge@J. L.
Synge, Proc. Lond. Math. Soc.43, 376 ~1937!#, and appears at present in all the studies involving relativistic fluids.

11Minkowski was the first to show that the electric and magnetic fields are in fact the components of a second-order
skew-symmetric form~Nach. der K. Gessellschaft der Wissenschaften zu Go¨ttingen Math. Phys. Klas. 53–111~1908!.

12Lorentz transformations in the exponential domain may be expressed in terms of the corresponding Lie algebra element,
which is represented in Minkowski space by a constant antisymmetric form. In many problems in relativity, mainly those
related to adaptobservers~timelike directions! or reference systems~tetrads! to particular data,local Lorentz transfor-
mations~point dependent! are needed; they are then defined by an~exterior! two-form.

13These forms~antidual eigenforms of the Riemann tensor, or their real part!, omnipresent in complex formalisms of
general relativity, seem to have been first considered by Pirani in his analysis of the three Petrov types@F. A. E. Pirani,
Phys. Rev.105 ~3!, 1089~1957!# and by Bel in his completion to five of those three types@Ll. Bel, Cahiers Phys.138,
59 ~1962!#.

14The Killing–Yano two-forms are potentiallike generators of some second-order Killing tensors~see for instance, Ref.
29!. They are of importance in questions related to the symmetries of the space–time and in the problem of separation
of variables of the Laplacian or the geodesic equations@see, for instance, S. Benenti, ‘‘L’inte´gration de l’équation
d’Hamilton-Jacobi par se´paration des variables: histoire et re´sultats re´cents,’’ in La ‘‘Mécanique analytique’’ de
Lagrange et son he´ritage ~Acta Acad. Scient. Taurinensis, Torino, 1990!, pp. 119–144, and references therein#.

15That Hertz potentials for electromagnetic field@H. Hertz, Ann. Phys. Lpz.36, 1 ~1889!# can be defined in any space–time
~Debye particular Hertz potentials cannot! was shown in J. M. Cohen and L. S. Kegeles, Phys. Rev. D10~4!, 1070
~1974!.

16The introduction in relativity of the spin two-form was due to J. Frenkel@Zeit. Phys.37, 243 ~1926!#, the equations of
motions for spinning particles in a gravitational field were due to A. Papapetrou,@Proc. R. Soc. Lond., A209, 248
~1951!#, and the interaction of two such particles was studied by Iban˜ez, Martin, and Ruiz~see reference in Ref. 1!.

17By the same method indicated in Ref. 9.
18See comments on this subject in Ref. 19.
19B. Coll and F. San Jose´, J. Math. Phys.38, 4350~1995!.
20For example, those given rise to effects of theThomas precessiontype@cf. L. M. Thomas, Nature117~2945!, 514~April,
1926!#.

21Let L[expF andM[expG be two ~field of! Lorentz transformations generated by the two-formsF andG, respec-
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tively. The product transformationN[LM is of the formN[expH whereH[FdG is given by the so-called BCH
formula. See Ref. 19 for references.

22Subscripts denote dimension of a component of each diagonal and superscripts the causal character of the elements of the
principal diagonal if they are not zero and of the second one otherwise.

23In local coordinates one has (*F)ab[(1/2)habgdF
gd and (FG)ab[FarGb

r , wherehabgd is the volume element induced
by the Minkowski metricg.

24It is well known that the Lorentz group has no subgroup of dimension 5; see, for instance, Ref. 25.
25J. F. Schell, J. Math. Phys.2, 202 ~1961!.
26J. Patera, P. Winternitz, and H. Zassenhaus, J. Math. Phys.16, 1597~1975!.
27That means: (l ,l )5(m,m)5( l ,p)5( l ,q)5(m,p)5(m,q)5(p,q)50 and (l ,m)52(p,p)52(q,q)51.
28L. Bianchi, Soc. Ital. Mem. di Mat.11, 267 ~1897!.
29D. Kramer, H. Stephani, M. MacCallum, and E. Herlt,Exact Solutions of the Einstein’s Field Equations~VEB Deutscher
Verlag der Wissenschaften, Berlin, 1980!.
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We study functional determinants for Dirac operators on manifolds with boundary.
We give, for local boundary conditions, an explicit formula relating these determi-
nants to the corresponding Green’s functions. We finally apply this result to the
case of a bidimensional disk under baglike conditions. ©1996 American Institute
of Physics.@S0022-2488~96!00306-4#

I. INTRODUCTION

It is well known that functional determinants have wide application in quantum and statistical
physics. Typically, one faces the necessity of defining a regularized determinant for elliptic dif-
ferential operators. In this context, the Dirac first-order differential operator plays a central role.

Seeley’s construction of complex powers of elliptic differential operators provides a powerful
tool to regularize such determinants: the so-calledz-function method.1

In the case of boundaryless manifolds, this construction has been largely studied and applied
~see, for instance, Ref. 2 and references therein!.

For manifolds with boundary, the study of complex powers was performed in Refs. 3 and 4
for the case of local boundary conditions, while for the case of nonlocal conditions, this task is still
in progress~see, for example, Ref. 5!.

In general, the regularized determinant turns out to be nonlocal and, so, it cannot be expressed
in terms of just a finite number of Seeley’s coefficients. However, such determinant can always be
obtained from the Green’s function in a finite number of steps involving these coefficients. For
boundaryless manifolds this was proved in Ref. 6, while for a particular type of local boundary
condition the procedure was introduced in Ref. 7.

The aim of this paper is to give the explicit relationship between determinants and the corre-
sponding Green’s functions of Dirac operators under general local elliptic boundary conditions.

Dirac operators defined on manifolds with boundaries have been the subject of a vast literature
~see, for instance, Refs. 8 and 9 and references therein!, mainly concerning anomalies and index
theorems. However, in these papers, the emphasis was put on nonlocal boundary conditions of the
type introduced in Ref. 10. We leave for a forthcoming publication the treatment of such condi-
tions.

The outline of this paper is as follows:
In Sec. II we introduce some general definitions and conventions concerning elliptic boundary

problems for Dirac operators.

0022-2488/96/37(11)/5805/15/$10.00
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In Sec. III we present a formula relating the determinant of the Dirac operator with its Green’s
function for the case of local boundary conditions.

In Sec. IV, an explicit computation of the determinant of a Dirac operator in a bidimensional
disk with baglike boundary conditions is performed, making use of the results in Sec. III.

II. ELLIPTIC BOUNDARY PROBLEMS, COMPLEX POWERS, AND REGULARIZED
DETERMINANTS

Throughout this paper we will be concerned with boundary value problems associated to
first-order elliptic operators

D:C`~M ,E!→C`~M ,F !, ~1!

whereM is a bounded closed domain inRn with smooth boundary]M , and E and F are
k-dimensional complex vector bundles overM .

In a collar neighborhood of]M in M , we will take coordinatesx̄5(x,t), with t the inward
normal coordinate andx local coordinates for]M ~that is,t.0 for points inM \]M and t50 on
]M !, and conjugated variablesj̄5~j,t!.

As stated in the Introduction, we will mainly consider the Euclidean Dirac operator. Let us
recall that the free Euclidean Dirac operatori ]” is defined as

i ]”5 (
m50

n21

igm

]

]xm
, ~2!

where the matricesgm satisfy

gmga1gagm52dma , ~3!

and that, given a gauge potentialA5$Am , m50,...,n21% on M , the coupled Dirac operator is
defined as

D~A!5 i ]”1A” , ~4!

with A”5(m50
n21gmAm .

One of the most suitable tools for studying boundary problems is the Caldero´n projector
Q.11,12For the case we are interested in,D of order 1 as in~1!, Q is a ~not necessarily orthogonal!
projection from [L2(]M ,E/]M)] onto the subspace $(Tw/w!Pker(D)%, being T:
C`(M ,E)→C`(]M ,E/]M) the trace map.

As shown in Ref. 11,Q is a zeroth-order pseudodifferential operator and its principal symbol
q(x;j), which depends only on the principal symbol ofD, s1(D)5a1(x,t;j,t), turns out to be
the k3k matrix

q~x;j!5
1

2p i EG
„a1

21~x,0;0,1!a1~x,0;j,0!2z…21 dz, ~5!

whereG is any simple closed contour oriented clockwise and enclosing all poles of the integrand
in Im(z),0.

HereQ is not unique, since it can be constructed from any fundamental solution ofD, but its
principal symbolq(x;j) is uniquely determined.11

According to Caldero´n11 and Seeley,12 elliptic boundary conditions can be defined in terms of
q(x;j).

Definition 1:Let us assume that therank of q(x;j) is a constantr ~as is always the case for
n>3!.11
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A zeroth-order pseudodifferential operatorB: [L2(]M ,E/]M)]→[L2(]M ,G)], with G an r -
dimensional complex vector bundle over]M , gives rise to anelliptic boundary conditionfor a
first-order operatorD as in ~1! if, ;j:uju>1,

rank„b~x;j!q~x;j!…5rank„q~x;j!…5r , ~6!

whereb(x;j) coincides with the principal symbol ofB for uju>1.
In this case we say that

Dw5x in M , BTw5 f on ]M , ~7!

is an elliptic boundary problem, and denote byDB the closure ofD acting on the sections
wPC`(M ,E) satisfyingB(Tw)50.

An elliptic boundary problem such as~7! has a solutionwPH1(M ,E) for any (x, f ) in a
subspace ofL2(M ,E)3H1/2(]M ,G) of finite codimension. Moreover, this solution is unique up
to a finite-dimensional kernel.11 In other words, the operator

~D,BT!:H1~M ,E!→L2~M ,E!3H1/2~]M ,G! ~8!

is Fredholm.
WhenB is a local operator, Definition 1 yields the classical local elliptic boundary conditions,

also called Lopatinsky–Shapiro conditions~see, for instance, Ref. 13!.
For Euclidean Dirac operators onRn, E/]M5]M3Ck, local boundary conditions arise when

the action ofB is given by the multiplication by ak/23k matrix of functions defined on]M .
Owing to topological obstructions, chiral Dirac operators in even dimensions,D , do not admit

local elliptic boundary conditions~see, for example, Ref. 14!. Nevertheless, it is easy to see from
Definition 1 that local boundary conditions can be defined for the full, either free or coupled,
Euclidean Dirac operator

D~A!5S 0 D†

D 0 D
onM .

We now sketch Seeley’s construction of the complex powers of the operatorD under a local
elliptic boundary conditionB.3,4,15

Definition 2:The elliptic boundary problem~7! admits a cone of Agmon’s directions if there
is a coneL in thel-complex plane such that

~1! ; x̄PM , ;j̄Þ0, L contains no eigenvalues of the matrixs1(D)( x̄,j̄),
~2! ;j:uju>1, rank„b(x;j)q(l)(x;j)…5rank„q(l)(x;j)…, ;lPL,

whereq~l! denotes the principal symbol of the Caldero´n projectorQ~l! associated toD2lI , with
l included ins1(D2lI ) @i.e., consideringl of degree one in the expansion ofs(D2lI ) in
homogeneous functions#.3,15

An expression forq(l)(x;j) is obtained from~5!:

q~l!~x;j!5
1

2p i EG
„a1

21~x,0;0,1;0!a1~x,0;j,0;l!2z…21 dz, ~9!

wherea1(x;t;j,t;l)5s1(D2lI ), with l considered of degree one as stated above.
Henceforth, we assume the existence of an Agmon’s coneL. Moreover, we will consider only

boundary conditionsB giving rise to a discrete spectrum sp(DB). Note that this is always the case
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for elliptic boundary problems unless sp(DB) is the whole complex plane~see, for instance, Ref.
13!. Now, for ulu large enough, sp(DB)ùL is empty, since there is nol in sp„s1(DB)…ùL. Then,
sp(DB)ùL is a finite set.

The usual definition of elliptic boundary conditions through ordinary differential equations in
the normal variable can be recovered from Defn. 1 by introducing the ‘‘partial symbol’’ at the
boundary:3 Let us write

s~D2lI !5a0~x,t;j,t;l!1a1~x,t;j,t;l!, ~10!

with al homogeneous of degreel in ~j̄,l!. We replace the coefficients ofD by their Taylor
expansions in powers oft, and group the resulting terms according to their degree of homogeneity
in ~1/t,j,2 i ] t ,l!. More precisely, we set

a~ j !5a~ j !~x,t,j,2 i ] t ,l!5 (
l2k5 j

tk

k!
al
k~x,0,j,2 i ] t ,l!, ~11!

with al
k5] t

kal .
Let us denotes8(D2lI )5( ja

( j ) the partial symbol ofD2lI at the boundary.
Now, condition~2! is equivalent to the following:
~28! ;lPL, ;xP]M , ;gPCr , the initial value problem

s18~D !~x;j!u~ t !5lu~ t !,

b~x;j!u~ t !u t505g,

has, for eachjÞ0, a unique solution satisfying limt→` u(t)50. This is the form under which this
condition is stated in Ref. 3.

For lPL not in sp(DB), an asymptotic expansion of the symbol ofR(l)5(DB2lI )21 can
be explicitly given:3

s„R~l!…;(
j50

`

c212 j2(
j50

`

d212 j , ~12!

where theSeeley coefficients c212 j andd212 j satisfy

(
j50

1

a12 j +(
j50

`

c212 j5I ~13!

with a12 j as in ~10!, + denoting the usual composition of homogeneous symbols, and

s8~D2l!+(
j50

`

d212 j50,

s8~B!+(
j50

`

d212 j5s~B!+(
j50

`

c212 j at t50, ~14!

lim
t→`

d212 j50.

Note that condition~28! implies the existence and unicity of the solution of~14!.
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The coefficientsc212 j (x,t;j,t;l) and d212 j (x,t;j,t;l) are meromorphic functions ofl
with poles at those points where det@s1(D2l)(x,t;j,t)# vanishes. Thec212 js are homogeneous
of degree212j in ~j,t,l!; thed212 js are also homogeneous of degree212j , but in ~1/t,j,t,l!.3

This gives an approximation to~DB2l!21, a parametrix constructed as3

PK~l!5(
w

cF (
j50

K

Op~u2c212 j !2(
j50

K

Op8~u1d212 j !Gw, ~15!

wherew is a partition of the unity,c[1 in Supp~w!,

u2~j,t,l!5x~ uju21utu21ulu2!,
~16!

u1~j,l!5x~ uju21ulu2!,

with

x~ t !5H 0, t< 1
2,

1, t>1,
~17!

and

Op~s!h~x,t !5E s~x,t;j,t!ĥ~j,t!ei ~xj1tt!
dj

~2p!n21

dt

2p
,

~18!

Op8~s!h~x,t !5E E s̃~x,t;j,s!h̃~j,s!eixj
dj

~2p!n21

ds

2p
,

whereĥ~j,t! is defined in~30! and

h̃~j,s!5E h~x,s!e2 ixj dx. ~19!

Moreover, it can be proved from~12! that, forlPL,

iR~l!iL2<Culu21, ~20!

with C a constant.3,15

The estimate~20! allows for expressing the complex powers ofDB as

DB
z5

i

2p E
G
lzR~l!dl ~21!

for Rez,0, whereG is a closed path lying inL, enclosing the spectrum ofDB .
4 Note that such

a curveG always exists for sp(DB)ùL finite.
For Rez>0, one defines

DB
z5Dl+DB

z2 l , ~22!

for l a positive integer such that Re(z2 l ),0.
If Re(z),2n, the powerDB

z is an integral operator with continuous kernelJz(x,t;y,s) and,
consequently, it is trace class. As a function ofz, Tr(DB

z ) can be extended to a meromorphic
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function in the whole complex planeC, with only simple poles atz5 j2n, j50,1,2,..., and
vanishing residues whenz50,1,2,... .4 Throughout this paper, analytic functions and their mero-
morphic extensions will be given the same name.

The function Tr(DB
z ) is usually calledz (DB)

(2z) because of its similarity with the classical
Riemannz-function: if $lj % are the eigenvalues ofDB , $lj

z% are the eigenvalues ofDB
z ; so

Tr(DB
z )5(l j

z whenDB
z is a trace class operator.

A regularized determinant ofDB can then be defined as

Det~DB!5expF2
d

dz
Tr~DB

z !GU
z50

. ~23!

Now, let D~a! be a family of elliptic differential operators onM sharing their principal
symbol and analytically depending ona. Let B give rise to an elliptic boundary condition for all
of them, in such a way thatD(a)B is invertible and the boundary problems they define have a
common Agmon’s cone. Then, the variation of DetD(a)B with respect toa is given by~see, for
example, Refs. 10 and 16!

d

da
ln Det D~a!B5

d

dz FzTrH d

da
„D~a!B…D~a!B

z21J G
z50

. ~24!

Note that, under the assumptions made, (d/da)„D(a)B… is a multiplication operator.
Given a0 anda1, the quotient Det„D~a1!…B/Det„D~a0!…B can be obtained by integrating the

variation in ~24! along a path froma0 to a1.
AlthoughJz(x,t;x,t;a), the kernel ofD(a)B

z evaluated at the diagonal, can be extended to the
wholez-complex plane as a meromorphic function, the rhs in~24! cannot be simply written as the
integral overM of the finite part of

trH d

da
„D~a!B…Jz21~x,t;x,t;a!J ~25!

at z50 ~where tr means matrix trace!. In fact, Jz21(x,t;x,t;a) is in general nonintegrable in the
variablet near]M for z'0.

Nevertheless, an integral expression for the rhs in~24! will be constructed in Sec.~III !, from
the integral expression for Tr„D(a)B

z21
… holding in a neighborhood ofz50 and obtained in the

following way:4

if T.0 is small enough, the functionj z(x;a), defined as

j z~x;a!5E
0

T

Jz~x,t;x,t;a!dt ~26!

for Rez,12n, admits a meromorphic extension toC as a function ofz. So, if V is a neighbor-
hood of]M defined byt,e, with e small enough, Tr„D(a)B

z21
… can be written as the finite part of

E
M /V

tr Jz21~x,t;x,t;a!dx dt1E
]M
tr j z21~x;a!dx, ~27!

where a suitable partition of the unity is understood.

III. GREEN’S FUNCTIONS AND DETERMINANTS

In this section, we will give an expression for (d/da)ln Det[D(a)B] in terms of
GB(x,t;y,s;a), the Green’s function ofD(a)B @i.e., the kernel of the operatorD(a)B

21#.
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With the notation of Sec. II,~24! can be rewritten as

d

da
ln Det D~a!B5F.P.

z50
E
M
trF dda

„D~a!B…J2z21~x,t;x,t;a!Gdx̄, ~28!

where the rhs must be understood as the finite part of the meromorphic extension of the integral at
z50.

The finite part ofJ2z21(x,t;x,t;a) at z50 does not coincide with the regular part of
GB(x,t;y,s;a) at the diagonal, since the former is defined through an analytic extension.

However, it can be shown that there exists a relation between them, involving a finite number
of Seeley’s coefficients. In fact, for boundaryless manifolds this problem has been studied in Ref.
6, by comparing the iterated limits F.P. limz→21$ lim ȳ→ x̄ Jz(x,t;y,s;a)% and
R.P. limȳ→ x̄$ limz→21 Jx(x,t;y,s;a)%5R.P. limȳ→ x̄ GB(x,t;y,s;a).

In the case of manifolds with boundary, the situation is more involved owing to the fact that
the finite part of the extension ofJz(x,t;x,t;a) at z521 is not integrable near]M . ~A first
approach to this problem appears in Ref. 7!. Nevertheless, as mentioned in Sec. II, a meromorphic
extension of*0

TJz(x,t;x,t;a)dt, with T small enough, can be performed and its finite part at
z521 turns to be integrable in the tangential variables. A similar result holds,a fortiori, for
*0
TtnJz(x,t;x,t;a)dt, with n51,2,3... . Then, near the boundary, the Taylor expansion of the
function Aa5(d/da)D(a)B will naturally appear, and the limits to be compared are
F.P. limz→21$ lim ȳ→ x̄ *0

TtnJz(x,t;y,s;a)dt% and R.P. limȳ→ x̄$ limz→21 *0
TtnJz(x,t;y,s;a)dt%

5R.P. limȳ→ x̄ *0
TtnGB(x,t;y,s;a)dt.

The starting point for this comparison is to carry out asymptotic expansions and to analyze the
terms for which the iterated limits do not coincide~or do not even exist!.

An expansion ofGB(x,t,y,s) in M \]M in homogeneous and logarithmic functions of (x̄2 ȳ)
can be obtained from~12! for l50:

GB~x,t,y,s!5 (
j512n

0

hj~x,t,x2y,t2s!1M ~x,t !logu~x,t !2~y,s!u1R~x,t,y,s!, ~29!

with hj the Fourier transform F 21(c2n2 j ) of c2n2 j for j.0 and
h05F

21(c2n)2M (x,t)logu(x,t)2(y,s)u. The functionM (x,t) will be explicitly defined below
@see~35!#. Our convention for the Fourier transform is

F ~ f !~ j̄ !5 f̂ ~ j̄ !5E f ~ x̄!e2 i x̄ . j̄ dx̄,

~30!

F 21~ f̂ !~ x̄!5 f ~ x̄!5
1

~2p!n E f̂ ~ j̄ !ei x̄ . j̄ dj̄.

For t.0, R(x,t,y,s) is continuous even at the diagonal (y,s)5(x,t). Nevertheless,
R(x,t,y,s)u(y,s)5(x,t) is not integrable because of its singularities att50. On the other hand, the
functionstnR(x,t,y,t) are integrable with respect to the variablet for yÞx andn50,1,2,... . An
expansion of*0

`tnR(x,t,y,t)dt in homogeneous and logarithmic functions of (x2y) can also be
obtained from~12!:

E
0

`

tnR~x,t,y,t !dt5 (
j5n122n

0

gj , j1n122n~x,x2y!1Mn~x!log~ ux2yu!1Rn~x,y!, ~31!

whereRn(x,y) is continuous even aty5x, andgj , j1n122n is the Fourier transform of the~ho-
mogeneous extension of! *0

`tnd̃212 j (x,t,j,t,0)dt, with
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d̃212 j~x,t,j,s,l!52E
G2
e2 ist d212 j~x,t,j,t,l!dt ~32!

for G2 a closed path enclosing the poles ofd212 j (x,t,j,t,l) lying in $Im t.0%.
Since d̃212 j is homogeneous of degree2j in (1/t,j,1/s,l),gj , j1n122n turns out to be ho-

mogeneous of degreej1n122n in x2y.
From the forementioned comparison, the following Theorem can be shown to hold~the proof

will be given in Ref. 17!:
Theorem 1: Let M be a bounded closed domain inRn with smooth boundary]M and E a

k-dimensional complex vector bundle over M.
Let (Da)B be a family of elliptic differential operators of first order, acting on the sections of

E, with a fixed local boundary condition B on]M, and denote by Jz(x,t;x,t;a) the meromorphic
extension of the evaluation at the diagonal of the kernel of(Da)B

z .
Let us assume that, for eacha, (Da)B is invertible, the family is differentiable with respect to

a, and]/]a(Da)Bf 5 Aa f , with Aa a differentiable function.
If V is a neighborhood of]M defined by t, e and T. 0 small enough, then
~a!

]

]a
ln Det~Da!B5 F.P.

z521
F E

]M
E
0

T

tr$Aa~x,t !Jz~x,t;x,t;a!%dtdxG
1 F.P.

z521
F E

M /V
tr$Aa~ x̄!Jz~ x̄; x̄;a!%dx̄G , ~33!

where a suitable partition of the unity is understood. (This expression must be understood as the
finite part at z5 21 of the meromorphic extension.)

(b) For everya, the integral*0
TAa(x,t)Jz(x,t;x,t;a)dt is a meromorphic function of z, for

each xP ]M, with a simple pole at z5 21. Its finite part (dropping, from now on, the indexa for
the sake of simplicity) is given by

F.P.
z521

E
0

T

A~x,t !Jz~x,t;x,t !dt52E
0

T

A~x,t !E
u~j,t!u51

i

2p E
G

ln l

l
c2n~x,t;j,t;l!dl

dsj,t

~2p!n dt

1 (
l50

n22 ] t
lA~x,0!

l ! E
uju51

E
0

`

t l
i

2p

3E
G

ln l

l
d̃2~n21!1 l~x,t;j,t;l!dldt

dsj

~2p!n21 1 lim
y→x

H E
0

T

A~x,t !

3FGB~x,t;y,t !2 (
l512n

0

hl~x,t;x2y,0!2M ~x,t !
Vn

~2p!n ~ lnux

2yu211K n!Gdt1 (
j50

n22

(
l50

n222 j ] t
lA~x,0!

l !
gj ,l2~n222 j !~x,x2y!

1 (
l50

n22 ] t
lA~x,0!

l !
M n222 l~x!

Vn21

~2p!n21 ~ lnux2yu211K n21!J ,
~34!

with
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M ~x,t !5
1

Vn
E

u~j,t!u51
c2n~x,t;j,t;0!dsj,t ,

~35!

M j~x!5
1

Vn21
E

uju51
E
0

`

tn222 j d̃212 j~x,t;j,t;0!dt dsj ,

whereVn5Area~Sn21!,K n 5 ln 2 2 1
2g 1 1

2G8(n/2)/G(n/2) with g the Euler’s constant and
where hl and gl are related to the Green’s function GB as in (29) and (31),

h12n1 j~x,t;w,u!5F ~j,t!
21 @c212 j„x,t;~j,t!/u~j,t!u;0…u~j,t!u212 j #~w,u!,

h0~x,t;w,u!5F ~j,t!
21 @P.V.$~c2n„x,t;~j,t!/u~j,t!u;0…2M ~x,t !!u~j,t!u2n%#~w,u!,

gj ,l~x,w!5F j
21F E

0

`

tnd̃212 j~x,t;j/uju,t;0!dtuju212 j2nG~w!,

with

l5 j1n2n12,

and

gj ,0~x,w!5F j
21FP.V.F E

0

`

tn2 j22d̃212 j~x,t;j/uju,t;0!dt2M j~x!G uju2~n21!G~w!. ~36!

(c) The integral*M \V tr@A( x̄)Jz( x̄; x̄)#dx̄ in the second term on the rhs of~33! is a meromor-
phic function of z with a simple pole atz 5 21. Its finite part is given by

F.P.
z521

E
M \V

tr@A~ x̄!Jz~ x̄; x̄!#dx̄5E
M \V

A~ x̄!E
u j̄ u51

i

2p E ln l

l
c2n~ x̄,j̄;l!dl

dj̄

~2p!n

1E
M \V

lim
y→ x̄

A~ x̄!FGB~ x̄,ȳ!2 (
l512n

0

hl~ x̄,x̄2 ȳ!

2M ~ x̄!
Vn

~2p!n ~ lnux̄2 ȳu211K n!Gdx̄. ~37!

This Theorem gives a closed expression for the evaluation of the determinant when the
associated Green’s function is known.

Awful as it looks,~34! is not so complicated: In the first place, all terms can be systematically
evaluated. Moreover, the terms containinghl subtract the singular part of the Green’s function in
the interior of the manifold@see~29!# and can thus be easily identified from the knowledge ofGB .
R(x,t,y,t), the regular part so obtained, is still nonintegrable near the boundary. Those terms
containinggj ,l subtract the singular part of the integrals*0

TtnR(x,t,y,t)dt @see~31!#. Finally, the
terms containingc2n andd2n11 arise as a consequence of having replaced an analytic regulariza-
tion by apoint splittingone.

Even though Seeley’s coefficientsc and d̃ are to be obtained through an iterative procedure,
which can make their evaluation a tedious task, in the cases of physical interest only the few first
of them are needed. In fact, for the two-dimensional example in Sec. IV we will only need two
such coefficients.
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IV. TWO-DIMENSIONAL DIRAC OPERATOR ON A DISK

In this section, we will use the method previously discussed to evaluate the determinant of the
operatorD5 i ]”1A” acting on functions defined on a two-dimensional disk of radiusR. A family
of local baglike18 elliptic boundary conditions will be assumed.

We takeAm to be an Abelian field in the Lorentz gauge; as it is well known, it can be written
asAm5emn]nf ~e0152e1051!. Forf we choose a smooth bounded functionf5f(r ). Notice that,
with these assumptions,Ar50 andAu(r )52] rf(r ). We call

F5 R
r5R

AuR du522pR] rf~r !ur5R . ~38!

The free Dirac operator in polar coordinates is

i ]”5 i S g r] r1
1

r
gu]uD , ~39!

with

g r5S 0 e2 iu

eiu 0 D , gu5S 0 2 ie2 iu

ieiu 0 D . ~40!

With these conventions, the full Dirac operator can be written as

D5e2g5f~r !i ]”e2g5f~r !. ~41!

Now, in order to perform our calculations, we consider the family of operators

Da5 i ]”1aA”5e2ag5f~r !i ]”e2ag5f~r !, with 0<a<1, ~42!

which will allow us to go smoothly from the free to the full Dirac operator. If we call

W~a!5 ln Det~Da!B , ~43!

whereB represents the elliptic boundary condition, we have

]

]a
W~a!5F.P.

z50
@Tr„A” ~Da!B

2z21
…#. ~44!

From the Theorem in Sec. III we obtain
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]

]a
W~a!5

1

~2p!2
trH E lim

y→x
F E FA” ~ t !S 4p2GB~x,t,y,t !2

1

ux2yu E ei j~x2y!/ux2yuc21

3S x,t; ~j,t!

u~j,t!u
;0D dj dt2E

u~j,t!u>1
ei j~x2y!c22~x,t;j,t;0!dj dt

2E i

2p E
G

ln l

l
c22

3S x,t; ~j,t!

u~j,t!u
;l D dl dsj,tD 1A” ~0!S Euju>1

ei j~x2y!d̃21~x,t;j,t;0!dj

1E i

2p E
G

ln l

l
d̃21

3S x,t; j

uju
,t;l D dl dsjD GdtGdxJ , ~45!

where the Fourier transforms ofc22 and d̃21 have been left explicitly indicated.
Now, the coefficientsc and d̃ in the previous equation are those appearing in the asymptotic

expansion of the resolvent (Da2lI )21.
From ~41!, the symbol of (Da2lI ) is

s~Da2lI !5~2j”2lI !1aA”5a1~u,t,j,t,l!1a0~u,t,j,t,l!, ~46!

where

a152j”2lI , a05aA” . ~47!

The required Seeley’sc-coefficients are given by2

c215
1

~l22j22t2!
~j”2lI !,

~48!

c225
a

~l22j2!2
~2ljmAmI2~l22j2!A”22jmAmj” …,

wherej”5jgu1tg t .
As regards the boundary contributors to the parametrix, i.e., the coefficientsd212 j , they are

the solutions of~14!. In our case, the equation to be solved is

~2lI2jgu1 ig t] t!d2150, ~49!

with boundary conditions

b0d215b0c21 at t50, ~50!

plus the vanishing ofd21 as t→1`. Equation~49! can be recast in the form

] td2152Md21 , ~51!

whereM5jg51 ilg t . It can be easily verified that
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tr~M !50, M25~j22l2!I . ~52!

So,M has eigenvalues6 Aj22l2, corresponding to the eigenvectors

u65S ie2 iu~j6Aj22l2!

l D . ~53!

Sinced21→0 for t→`, we obtain

d21~x,t;j,t;l!5e2tAj22l2u1 ^ S fgD †, ~54!

where the vector (g
f ) must be determined from the boundary condition att50 (r5R), given by

~50!.
We now consider a parametric family of baglike local boundary conditions leading to an

elliptic boundary problem,

b05~1,we2 iu!, ~55!

with w a nonzero complex constant.~Notice that these boundary conditions reduce to those of an
MIT bag18 whenw561.!

We define the operator (Da)B as the differential operator in~41!, acting on the dense subspace
of functions satisfying

Bc[b0cu t5050. ~56!

It is easy to verify that this operator has no normalizable zero modes.~Notice that these are not the
most general local elliptic boundary conditions. In fact, zero modes would in general arise if one
allowedw to depend onu.!

Now, from ~50! and the expression forc21 given in ~48!, it turns out that

S fgD †5 eiu

~j21t22l2!~lw1 i j1 iAj22l2!
„l1w~2 i j1t! e2 iu~ i j1t1lw!…. ~57!

Placing this expression into~54!, and taking into account~32!, we finally obtain

d̃215p i
e2~u1t !Aj22l2

Aj22l2~ iwl2j2Aj22l2!

3S ~j1Aj22l2!„il1w~j1Aj22l2!… e2 iu~j1Aj22l2!~ iwl2j1Aj22l2!

2 ileiu„il2w~j1Aj22l2!… 2 il~ iwl2j1Aj22l2!
D .
~58!

In order to apply~45!, we look for the functionGB(x,y) satisfying

DaGB~x,y!5d~x,y!, BGB~x,y!uxP]V50, ~59!

whereDa andB are given by Eqs.~41! and ~56!, respectively. Now, with the notation

x5~x0 ,x1!5~r cosu,r sin u!, X5x01 ix15reiu,
~60!

y5~y0 ,y1!5~r cosw,r sin w!, Y5y01 iy15reiw,
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it is easy to see thatGB(x,y) is given by

GB~x,y!5
1

2p i S Rwea„f~x!1f~y!22f~R!…

XY*2R2

ea„f~x!2f~y!…

X2Y

e2a„f~x!2f~y!…

~X2Y!*
Re2a„f~x!1f~y!22f~R!…

w~XY*2R2!*

D . ~61!

With these elements at hand, we now perform the calculation of the determinant.
From ~61!, one can see that

GB~u,r ,w,r ! ;
w→u

diagonal matrix1
1

2p ir ~u2w!
gu . ~62!

When placed into~45!, we obtain for the first term on the rhs

tr$AuguGB~u,r ,w,r !% ;
w→u

Au

p ir ~u2w!
. ~63!

For the second term in~45!

2
1

4p2ux2yu E dj dt ei j~x2y!/ux2yuc21S x,t; ~j,t!

u~j,t!u
;l50D ;

w→u

21

2p ir ~u2w!
gu , ~64!

which exactly cancels the singularity of the Green’s function. Therefore, the contribution of the
first two terms in~45! vanishes.

As regards the third term,

21

~2p!2
trE lim

y→x
A” ~ t !E

u~j,t!u>1
ei j~x2y!c22~x,t;j,t;0!dj dt dx dt

5
2a

2p2 lim
y→x

E Au
2d2xE

u~j,t!u>1
ei j~x2y!

~t22j2!

~j21t2!2
dj dt

52
a

p E Au
2d2x lim

y→x
E

ux2yu

`

J2~u!
du

u

5
2a

2p E AnAn d
2x. ~65!

whereJ2(u) is the Bessel function of order two.
Now, the fourth term in~45! is
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21

~2p!2
trE A” ~ t !E i

2p E
G
ln lc22S x,t; ~j,t!

u~j,t!u
;l D dl

l
dsj,t dx dt

5
2 ia

4p3 E Au
2 d2xE

G

ln l

~l221!2
E ~12l222j2!dsj,t

dl

l

5
ia

2p2 E Au
2 d2x 2p i E

0

` m dm

~m211!2

5
2a

2p E AnAn d
2x. ~66!

This term gives rise to a contribution identical to that of~65!.
The last term in~45! is

i

~2p!3
tr E A” ~0! (

j561
E

G
ln ld̃21S x,t; j

uju
,t;l D dl

l
dx dt

5
iF

~2p!2
E

G

u ln l

~11u2l2!
@lA11u22 iA12l2#

dl

A12l2
, ~67!

whereu5(12w2)/2w. We choose the curveG as in Fig. 1.
Therefore,~67! reads

2
F

2p
uE

0

` 1

~12u2m2! Fm
A11u2

A11m2
21Gdm5

2F

4p
ln w2. ~68!

Putting all pieces together@~65!, ~66!, and~68!#, we finally find

FIG. 1. The ContourG.
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ln Det~D !B2 ln Det~ i ]” !B52
1

2p E
V
AnAn d

2x2
F

4p
ln w2

52
1

2p E
V
AnAn d

2x

2
1

4p
ln w2E

]V
An dxn . ~69!

The first term is the integral, restricted to the regionV, of the same density appearing in the
well-known case of the whole plane.19 The second term is well defined for everywÞ0, and
vanishes for a null total flux,F50. Forw50, b0 in ~55! does not define an elliptic boundary
problem. It is also interesting to notice that this term vanishes in the case of MIT bag boundary
conditions, i.e.,w561.

This calculation is to be compared with the case of the compactified plane,2 where the deter-
minant can be expressed in terms of just the kernel of thez-power of the operator analytically
extended toz50, which is a local quantity. The presence of boundaries makes the evaluation more
involved, since even in simple cases as the present~or the half-plane treated in Ref. 7!, the
knowledge of the Green’s function of the problem is needed.
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The differential calculus onn-dimensional~n>3! quantum Minkowski space co-
variant with respect to left action ofk-Poincare´ group is constructed and its unique-
ness is shown. ©1996 American Institute of Physics.@S0022-2488~96!03909-6#

I. INTRODUCTION

Thek-Poincare´ algebra, introduced in Ref. 1, provides a Hopf algebra deformation of standard
Poincare´ algebra which depends on dimensionful parameterk. Its global counterpart,k-Poincare´
groupPk has been constructed by Zakrzewski.2 It is a free*-algebra generated by the hermitean
elementsLm

n , a
m, subject to the following conditions:

~gmn5diag~1222 !!: @am,an#5
i

k
~d0

man2d0
nam!,

@Lm
n ,L

a
b#50, @Lm

n ,a
a#52

i

k
~~Lm

02d0
m!La

n1~L0
n2dn

0!gma!,

~1!

D~Lm
n!5Lm

a ^ La
n , D~am!5Lm

n ^an1am
^ I , S~Lm

n!5Ln
m,

S~am!52Ln
man. e~Lm

n!5dn
m , e~am!50.

It appears2,3 that one can also define a noncommutative generalization of Minkowski spacetime—
the k-Minkowski spaceMk . Thek-Poincare´ group acts onMk covariantly from the left. Once
one accepts the idea that thek-deformed Poincare´ symmetry can have something to do with
reality, the next step is to find the natural generalizations of standard geometric notions related to
Minkowski space. The first step toward this directions was made by Sitarz4 who showed that one
cannot construct four-dimensional differential calculus onMk which is covariant with respect to
infinitesimal left action ofP k . He sketched also the construction of five-dimensional covariant
calculus.

In the present paper we consider the problem of the classification of differential calculi on
Mk which are covariant with respect to the leftglobal action ofk-Poincare´ group onMk . No
restriction is made concerning the dimensionality of spacetime~i.e., the indicesm, n, etc., in Eq.
~1! run from 0 ton21! exceptn>3. We show that the lowest dimensional nontrivial left-covariant
calculus isn11-dimensional and is unique. Its construction is given explicitly and the result
coincides with the suggestion of Sitarz.

As a main tool we use the beautiful Woronowicz theory of differential calculi.5 In Sec. II we
show that the Woronowicz theory can be immediately extended to deal with the problem of
covariant differential calculi on quantum spaces. This natural extension provides a nice framework
to discuss our problem. In Sec. III we use the scheme developed in Sec. II to show that there is a

0022-2488/96/37(11)/5820/8/$10.00
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uniquen11-dimensional calculus onMk which is left-covariant with respect to the action ofP k .
This calculus is explicitly constructed and shown to be lowest-dimensional nontrivial calculus on
Mk .

The results obtained here were briefly reported in Ref. 6. Let us also mention that the differ-
ential calculi on quantum spacetimes covariant with respect to other deformations of Poincare´
group were considered by Podles´.7

II. COVARIANT DIFFERENTIAL CALCULI

Let us first indicate how one can extend the Woronowicz theory of differential calculi5 to the
following situation: Assume that the quantum groupB acts on quantum spaceA; one looks for
differential calculi onA on which the covariant action ofB can be defined as ‘‘induced’’ by the
action ofB onA. All proofs are omitted as being a straightforward extension of those given by
Woronowicz.

LetA be an algebra with unity~quantum space!. The starting point in Woronowicz construc-
tion is the universal bimoduleA2,A^A defined by

A25H(
k
ak^bkPA^Au(

k
akbk50J ,

cS (
k
ak^bkD 5(

k
cak^bk , S (

k
ak^bkD c5(

k
ak^bkc. ~2!

The universal differentialD:A→A2 is given byda5I ^a2a^ I .
It can be easily shown that any other calculus is obtained from the universal one by dividing

by an appropriately chosen sub-bimoduleN ,A2.
Let now rL be a left action of a quantum groupB on A, i.e., a homomorphism

rL :A→B^A obeying

~ id^ rL!+rL5~D ^ id!+rL , ~e ^id!+rL5 id. ~3!

Let us define the actionr̃L of B onA2 as follows: Let

q5(
i
xi ^ yiPA^A, rL~xi !5(

k
ai

k
^xi

kPB^A,

rL~yi !5(
l
bi

l
^ yi

lPB^A; ~4a!

then

r̃L~q!5(
i ,k,l

ai
kbi

l
^xi

k
^ yi

l . ~4b!

Obviously, r̃L :A^A→B^A^A; however, it is straightforward to show that
r̃L :A

2→B^A2. Following the same lines as in Ref. 5, one easily proves the following proper-
ties of r̃L

(iL) for xPA, yPA2

r̃L~xy!5rL~x!r̃L~y!, r̃L~yx!5 r̃L~y!rL~x!

~iiL!
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r̃L+D5~ id^D !+rL ~5!

~iii L!

~ id^ r̃L!+ r̃L5~D ^ id!+ r̃L , ~e ^ id!+ r̃L5 id.

Property~iii L! means thatr̃L is the left action ofB onA2 while ~i!, ~ii ! can be summarized
by saying thatr̃L is the lift of rL to A2 ~r̃L is the left action ofB on universal differential
calculus onA induced from the left actionrL!. Moreover, let us note that the following formula
holds:

r̃L5S (
i
xiDyi D 5(

i
rL~xi !~ id^D !rL~yi ! ~6!

which is a counterpart of Eq.~1.15! of Ref. 5.
Now, assume thatN ,A2 is a subbimodule such that

r̃L~N !,B^N . ~7!

Then the differential calculus~G,d! determined byN has the following property:

(
i
xi dyi50⇒(

i
rL~xi !~ id^d!rL~yi !50. ~8!

Therefore,

r̃LS (
i
xi dyi D 5(

i
rL~xi !~ id^d!rL~yi ! ~9!

is well defined linear mapping fromG into B^G. Formulate~iL!–~iii L! and Eq.~6! hold upon
replacingA2 by G andD by d.

We shall say that~G,d! is left-covariant with respect to the action ofB.
All the above results can be extended mutatis mutandis to right actions. LetrR :A→A^B be

right action ofB onA

~rR^ id!+rR5~ id^ D!+rR , ~ id^ e!+rR5 id. ~10!

For

q5(
i
xi ^ yiPA^A, rR~xi !5(

k
xi
k

^ai
kPA^B,

rR~yi !5(
l
yi
l
^bi

lPA^B, ~11a!

we put

r̃R~q!5(
i ,k,l

xi
k

^ yi
l
^ai

kbi
k, ~11b!

Again r̃R :A
2→A2

^B obeys
~iR! for xPA, yPA2
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r̃R~xy!5rR~x!r̃R~y!, r̃R~yx!5 r̃R~y!rR~x!,

~iiR!

r̃R+D5~D^ id!+rR ~12!

~iii R!

~ r̃R^ id!+ r̃R5~ id^ D!+ r̃R , ~ id^ e!+ r̃R5 id

as well as

r̃RS (
i
xiDyi D 5(

i
rR~xi !~D^ id!rR~yi !. ~13!

Now assumeN PA2 to be a sub-bimodule such thatr̃R~N !,N ^B. Then, for the calculus
~G,d! determined byN , ~iR!–~iii R! and Eq.~13! hold with appropriate replacementsA2→G,
D→d.

Finally, let the pair (rL ,rR) of actions ofB onA be given. We assume thatrL ,rR commute

~ id^ rR!+rL5~rL^ id!+rR . ~14!

We say that~G,d! is bicovariant with respect to the action ofB on A if it is left- and
right-covariant. Then, it has all properties of left- and right-covariant calculi together with the
following one @cf. Eq. ~1.20! of Ref. 5#;

~ id^ r̃R!+ r̃L5~ r̃L^ id!+ r̃R . ~15!

Let us now discuss the problem of infinitesimal action ofB onA. Let x be any element of
the Hopf algebra dual toB. We put

xrL
5~x ^ id!+rL , x r̃L

5~x ^ id!+ r̃L . ~16!

The first definition, introduced by Woronowicz,8 coincides with the one used by Majid and
Ruegg.3 The second one is equivalent to the proposal of Sitarz4

x r̃L
~x dy!5~x ^ id!~rL~x!~ id^d!rL~y!!

5@~x~1! ^ id!rL~x!#~ id^d!@~x~2! ^ id!rL~y!#

5x~1!rL
~x!~ id^d!x~2!rL

~y!, ~17!

whereDx5x~1!^x~2!. Analogous definitions can be given forrR and r̃R .
From the above discussion it follows then that in order to check whether a calculus onA is

consistent with the action ofB on A it is sufficient to check the property
r̃L~N !,B^N ~r̃R~N !,N ^B!.

This simplifies considerably ifA itself is a quantum group andN defines~say! left-covariant
calculus on it. ThenN 5r21~A^R! whereR is a right ideal in kere; any element ofA^R can
be written as

t5(
i
ai ^xibi , ~18!
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whereai ,biPA andxi are generators ofR. From the very definition of the operationr21 the
following formula follows immediately:5

r21~ t !5(
i ,l

aiS~bl 8 i !r
21~ I ^xi !b

l 9
i , ~19a!

where

D~bi !5(
l
bl 8 i ^bl 9 i . ~19b!

The properties~5! applied to the universal calculus imply

r̃L~r
21~ t !!5(

i ,l
rL~aiS~bl 8 i !r̃L~r

21~ I ^xi !!rL~b
l 9
i !. ~20!

Therefore it is sufficient to check that

r̃L~r
21~ I ^xi !!,B^N ~21!

for all generatorsxi of R.
Let us now pass to the external algebra. Givenr̃L :G→B^G we definer̃L

^2:G^2→B^G^2 by

r̃L
^2~v1^ v2!5(

k,l
a1ka2l ^ v1k^ v2l ~22!

extended by linearity; hereviPG and

r̃L~v i !5(
k
aik^ v ik , i51,2. ~23!

Let us assume thatA is a quantum group,~G,d!—a bicovariant calculus on it and lets be the
module homomorphism defined in Proposition 3.1 of Ref. 5. ThenG`2 is defined as

G`25G ^2/ker~ I2s! ~24!

and, in order to have a consistent action ofB on G`2 we must only check that

~ id^ s!+ r̃L
^25 r̃L

^2+s. ~25!

Due to the property

r̃L
^2~xy!5rL~x!r̃L

^2~y!, xPA, yPG ^2 ~26!

it is sufficient to verify Eq.~25! for the basic elements only.

III. LEFT-COVARIANT CALCULI ON k-MINKOWSKI SPACE

The n-dimensionalk-Minkowski spaceMk is an *-algebra with unity generated byn her-
mitian elementsxm subject to the following conditions:2,3

@xm,xn#5
i

k
~d0

mxn2d0
nxm!. ~27!

5824 Gonera, Kosiński, and Maślanka: Differential calculi on quantum Minkowski space

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Mk can be equipped with the structure of the quantum group by putting

Dxm5I ^xm1xm
^ I , S~xm!52xm, e~xm!50. ~28!

The left action ofn-dimensionalk-Poincare´ groupP k onMk can be defined as follows:

rL~ I !5I ^ I , rL~x
m!5Lm

n ^xn1am
^ I ~29!

extended by linearity and multiplicativity.
We want to find a left-covariant~with respect to action ofP k! calculi onMk . The proof will

be given forn54. However, for generaln>3 the proof goes along the same way. As the first step
let us note thatMk is a subgroup ofP k . Indeed,P:P k→Mk given

P~am!5xm, P~Lm
n!5dn

mI ~30!

is an epimorphism obeying

DM+P5~P ^ P!+DP . ~31a!

Moreover, it is immediate to check that

~P ^ id!+rL5DM . ~31b!

Let r̃L be the extension ofrL toMk
2 . Equations~8!, ~31!, and the results contained in Ref. 5

imply that any calculus onMk left-covariant with respect to action ofP k is also left-covariant
with respect to action ofMk on itself. Therefore the relevant sub-bimoduleN is of the form
r21~Mk^R! whereR is a right ideal in kereM .

LetR be any ideal in kereM . Any aPR can be written as~m[~m0,mk!!

a5 (
m0 ,mk

cm~x0!m0)
k51

n21

~xk!mk. ~32!

Let us callumu5m01(k51
n21mk ; obviously,cm50 for umu50; further, let

m~a!5max
cmÞ0

umu, m~R!5min
aPR

m~a!. ~33!

Obviously,m~R!>1; let us first assume thatm~R!51. This means thatc0x
01ckx

kPR for
some~not all zero! constantsc0 ,ck . But

r̃L~r
21~ I ^cmx

m!!5cmLm
n ^ r21~ I ^xn!. ~34!

Therefore,xmPR for all m, i.e.,R5ker eM and the corresponding calculus is trivial.
As the next step let us takem~R!52. It is straightforward to check that

r̃L~r
21~ I ^xmn!!5Lm

aLn
b ^ r21~ I ^xab!, ~35!

where

xmn[xmxn1
i

k
~gmnx02g0mxn!. ~36!

Due to the fact thatL’s commute among themselves we can write a standard representation
theory of Lorentz group. First of all, we note thatr21(I ^xmn) transform as a second order
symmetric@xmn5xnm due to Eqs.~27! and ~36!# tensor. It carriesD (1,1)

%D (0,0) representation of
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Lorentz group. Let us first take allxmn as generators ofR. Then ~x0)25x00PR and
xix05xi0PR, i.e., [(x0!2,xi#PR; therefore xix01x0xiPR and x0xiPR. However,
x0i5x0xi2( i /k)xiPR which impliesxiPR. Then Poincare´ invariance impliesx0PR and our
calculus is trivial.

To improve the situation we can only, due to condition~21!, subtractD ~0,0! or D ~1,1!. Obvi-
ously, subtractingD ~1,1! gives larger calculus, so we will subtractD ~0,0!.

It is not difficult to check that for generaln>3 the following lemma holds.
Lemma:LetR,ker eM be right ideal generated by the elements

xmxn1
i

k
~gmnx02g0mxn!2

1

n
gmnS x21 i ~n21!

k
x0D . ~37!

Then
~a! R defines a left-P k-covariant calculus onMk ,
~b! aPR impliesS(a)*PR,
~c! ker eM/R is spanned byxm and by

w[x21
i

k
~n21!x0. ~38!

Now, we can construct the relevant calculus. The left-invariant forms are

tm5pr21~ I ^xm!5dxm, t5pr21~ I ^ w!5dw22xmdx
m ~39!

and they appear to be also right-invariant. The commutation rules are easily derived according to
the standard procedure of Ref. 5

@tm,xn#5
i

k
g0mtn2

i

k
gmnt01

1

n
gmnt, @t,xm#52

n

k2 tm ~40!

while the hermicity properties read

~tm!*5tm, t*52t. ~41!

The left action ofP k onMk is easily calculated to be

r̃L~tm!5Lm
n ^ tn, r̃L~t!5I ^ t. ~42!

In order to construct the external algebra we first verify property~25! for the bimodule
homomorphisms: s~tm

^tn!5tn
^tm, s~t^tm!5tm

^t, s~tm
^t!5t^tm. The external algebra im-

plied bys takes the standard form

tm`tn52tn`tm, t`tm52tm`t. ~43!

Moreover,

dtm50, dt522 dtm`dtm . ~44!

From the discussion carried out above it follows that then11-dimensional calculus described
by Eqs.~39!–~43! is the lowest dimensional nontrivial calculus onMk covariant with respect to
the left action ofP k . This is due to the fact that all differential calculi withm~R!>3 have higher
dimensions.

5826 Gonera, Kosiński, and Maślanka: Differential calculi on quantum Minkowski space

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Finally, let us compare our calculus with that proposed by Sitarz.4 Our Eqs.~40! agree with
Eqs. ~60! of Ref. 4 under the identification:xm→ ixm, t→~4/k2!w. In the two-dimensional case
there is also an agreement provided the replacementt→~2/k2!w is made; also the multiplication
rules for one-forms@Eqs.~58! of Ref. 4# coincide in this case.
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A general method to map a polynomial recursion on a matrix linear one is sug-
gested. The solution of the recursion is represented as a product of a matrix mul-
tiplied by the vector of initial values. This matrix is product oftransfermatrices
whose elements depend only on the polynomial and not on the initial conditions.
The method is valid for systems of polynomial recursions and for polynomial
recursions of arbitrary order. The only restriction on these recurrent relations is that
the highest-order term can be written in explicit form as a function of the lower-
order terms~existence of a normal form!. A continuous analog of this method is
described as well. ©1996 American Institute of Physics.
@S0022-2488~96!00111-9#

I. INTRODUCTION

Recurrent relations take a central place in various fields of science. For example, numerical
solution of differential equations and models of evolution of a system involve, in general, recur-
sions.

By now, only linear recursions could be solved1–3while even the simplest nonlinearity usually
made an analytic solution impossible. A good example for this is a rather simple recursion, the
logistic map,yn115lyn(12yn). The analysis of its behavior, while based on roundabout ap-
proaches, has revealed many unusual features.

In this paper we propose a new approach to the solution of polynomial recursions. It turns out
that the coefficients of thei -th iteration of the polynomial depend linearly on the coefficients of
the ~i21!-th iteration. Using this fact we succeed in writing down the general solution of the
recursion.

To make this paper more readable we include some auxiliary material on linear recursions as
well as an introductory example.

II. INTRODUCTORY EXAMPLE: LOGISTIC MAPPING

To demonstrate our approach we begin with the recursion equation known as the logistic
mapping:

yn115lyn~12yn! with y0[y. ~1!

Very recently it was shown by Rabinovichet al.4 that the solution of this recursion is given by

yn5^euTnuy&, ~2!

whereT is a transfer matrix with elements

Tjk5~21!k2 j S j
k2 j Dl j . ~3!

0022-2488/96/37(11)/5828/9/$10.00
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The vectorsuy& and ^eu are correspondingly a set ofy’s powers and the first ort defined as

uy&5$yj% j51
2n and ^eu5@d j1# j51

2n , ~4!

wheredjk is the Kronecker symbol.
Equations~2! and ~3! were derived in Ref. 4 by consideration of a branching process. How-

ever, knowing the representation of the solution~2! one can obtain the matrix elements~3! in a
‘‘one-line’’ way. Namely, we have to find a matrixT that transforms a column$yj% to a column
$[ly(12y)] j%. Expanding this last expression

@ly~12y!# j5(
i50

j

~21! i S ji Dl j y j1 i5(
k5 j

2 j

~21!k2 j S j
k2 j Dl j yk5(

k5 j

2 j

Tjky
k

and extending the last summation over all natural numbers$due to the vanishing of the binomials
(k2 j

j ) for k outside the interval [j ,2j ] % we immediately recover Eq.~3! for the elements of the
matrix T.

III. GENERAL CASE OF FIRST-ORDER POLYNOMIAL RECURSION

Here we consider a first-order recursion equation in its normal form

yn115P~yn!, ~5!

whereP(x) is a polynomial of degreem:

P~x!5 (
k50

m

akx
k, amÞ0. ~6!

Let y0[y be an initial value for the recursion~5!. We denote byuy& the column vector of powers
of y

uy&5$yj% j50
`

and the vector̂eu is a row vector

^eu5@d j1# j50
` .

It should be emphasized thatj runs from 0, since in the general casea0Þ0. In this notation̂ euy&
is a scalar product that yields

^euy&5y. ~7!

Theorem: For any recursion of the type of Eq.~5! there exists a matrixT5$Tjk% j ,k50
` such

that

yn5^euTnuy&. ~8!

Proof: For n50 the statement of the theorem is valid@see Eq.~7!#. We introduce the column

vectoruy1 5
def

$y1
j % j50

` , wherey15P(y). Let T be a matrix such that

uy1&5Tuy&. ~9!
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The existence of this matrix will be proven later on. If such a matrix exists, then, analogically to
Eq. ~7!, we have

y15^euy1&5^euTuy&.

Therefore, the statement of the theorem is true forn51 as well.
Assume that Eq.~8! is valid for n5 l and any initial valuey. Thenyl11 can be represented as

yl115^euT l uy1&, wherey15P(y) is considered as a new initial value of the recursion. Then, using
Eq. ~9! one gets

yl115^euT l uy1&5^euT lTuy&5^euT l11uy&.

To prove the existence of the matrixT we useuy1& 5
def

$Pj (y)% j50
` . In turn,Pj (y) is the jm-th

degree polynomial

Pj~y!5S (
i50

m

aiy
i D j5 (

k50

jm

Tjky
k, ~10!

and we infer thatT5$Tjk% j ,k50
` obeys Eq.~9!.

Note that forj andk satisfyingk> jm we haveTjk[0. Therefore, each row is finite~i.e., there
is only a finite number of nonzero matrix elements in each row!. This proves the existence of
powers ofT and completes the proof.

The method of this section can be generalized to an arbitrary analytic function in the right-
hand side of Eq.~5!.5

IV. SPECIAL CASES

A. The binomial case, P(x )5apx
p1aqx

q

As one can see, in the general case elements of the matrixT have a form of rather complicated
sums. However, they are degenerated to a fairly simple expression, when the polynomial~6! has
only two terms. In this case one gets

Pj~y!5~apy
p1aqy

q! j5(
i50

j S ji Dapj2 iaq
i yp~ j2 i !1qi.

Denoting

k5p~ j2 i !1qi, i5 l ~k!5~q2p!21~k2p j !,

we have

Pj~y!5 (
k5 jp

jq

ykS j
l ~k! Dapj2 l ~k!aq

l ~k! .

Thus, the matrix elementsTjk are

Tjk5S j
l ~k! Dapj2 l ~k!aq

l ~k! .

By substituting herep51, q52, ap52aq5l, we immediately recover the solution for the logis-
tic map, Eq.~3!.
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B. The trinomial case, P(x )5a01apx
p1aqx

q, a0Þ0

Here, the transfer matrixT admits the following decomposition:

T5AT0 ,

whereT0 is the matrix corresponding to the polynomialP0(x)5apx
p1aqx

q andA is an upper-
triangular matrix. Indeed, let us considerP0(x)5apx

p1aqx
q and the corresponding matrixT0. It

yields

T0uy&5uy18&5
def

$P0
j ~y!% j50

` .

For the matrixT one gets

Tuy&5uy1&5
def

$P~y! j% j50
` ,

Pj~y!5(
i50

j S ji Da0j2 i~apy
p1aqy

q! i .

Denoting in the last lineAji[( i
j )a0

j2 i one obtainsuy1& 5 Auy18& 5 AT0uy& 5 Tuy&, andT5AT0.

V. NONCONSTANT COEFFICIENTS

As shown in Ref. 4 a generalization of Eq.~1!,

yn115lnyn~12yn! with y0[y, ~11!

can be solved using a similar approach. The solution is

yn5^euTn•••T2T1uy&, ~12!

where the matrix elements ofT i are nowi -dependent:

~Ti ! jk5~21!k2 j S j
k2 j D ~l i !

j . ~13!

The same argument is valid for an arbitrary recursionyn115Pn(n,yn) and therefore solution
Eq. ~8! takes the form of Eq.~12! with the obvious changes~a0 ,...,am becomei -dependent
functions! in the corresponding matrix elements.

VI. THE RICCATI RECURSION

This name is commonly used for the equation

yn11yn1an8yn111bn8yn1cn850.

However, by a proper change of variable1,2 this equation can be reduced to a linear one and then
treated by conventional techniques. Here we shall be dealing with the following recursion:

yn115an1bnyn1cnyn
2 with y0[y.

This is a possible~asymmetric! discrete analog of the Riccati differential equation.6 It is well
known that the latter cannot be solved in quadratures.
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The general results of the two previous sections can be employed to write down the solution
of this recursion. Namely, the solution reads

yn5^euTn•••T2T1uy&,

where the matrixT i is a product of two matrices

T i5A iSi

with matrix elements

~A i ! jk5S jkDaij2k and ~Si ! jk5S j
k2 j Dbi2 j2kci

k2 j .

VII. SYSTEM OF LINEAR FIRST-ORDER RECURSIONS

The next three sections deal with linear recursions. They are well known,1,2 but we include
those sections to help the understanding of subsequent sections, devoted to systems of nonlinear
recursions.

The solution of a system of linear first-order recursions in the most general case is rather
trivial, but for the sake of clarity we shall demonstrate it on a 232 homogeneous system

un115~l11!nun1~l12!nvn with u0[u,
~14!

vn115~l21!nun1~l22!nvn with v0[v.

Introducing the vector̂xnu5(un ,vn) and the matrix

Ln5S ~l11!n ~l12!n

~l21!n ~l22!n
D ,

one rewrites Eq.~14! as follows:

uxn11&5Lnuxn&

and, thus,

uxn11&5Ln ...L0ux0&,

where^x0u5(u,v) is an initial vector.
Further generalization to a homogeneous system ofN linear equations of first order is straight-

forward.

VIII. LINEAR EQUATION WITH NONCONSTANT COEFFICIENTS

The result of the previous section allows one to solve linear recursions of an arbitrary order
with nonconstant coefficients. As usual, we start with the simplest case—a second-order equation

xn111lnxn1mn21xn2150. ~15!

Denotingyn[mn21xn21 we obtain the system

xn1152lnxn2yn , yn115mnxn . ~16!

The solution of this equation is written as in the previous section but now
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Ln5S 2ln 21

mn 0 D
and the initial vector is (x1 ,m0x0), wherex0 andx1 are initial values of the recursion~15!.

The method we used to transform Eq.~15! to Eq. ~16! is well known in the theory of
differential equations,7 but it is useful for the simplest case of constant coefficients only.

Again, the generalization of~16! for a linear equation of arbitrary order is quite simple.

IX. SYSTEM OF LINEAR HIGHER-ORDER RECURSIONS

The generalization to higher orders is rather obvious. The simplest example is

xn111~l11!nxn1~l12!nxn211~m11!nyn1~m12!nyn2150,
~17!

yn111~m21!nyn1~m22!nyn211~l21!nxn1~l22!nxn2150.

One proceeds as in the previous section with new variablesun5xn21 andvn5yn21. Then, the
system~17! takes the form

xn111~l11!nxn1~l12!nun1~m11!nyn1~m12!nvn50,

yn111~m21!nyn1~m22!nvn1~l21!nxn1~l22!nun50,

un112xn50, vn112yn50,

i.e., the vector (xn ,yn ,un ,vn) is transformed by the transfer matrix

Ln5S 2~l11!n 2~m11!n 2~l12!n 2~m12!n

2~l21!n 2~m21!n 2~l22!n 2~m22!n

1 0 0 0

0 1 0 0

D
and subject to appropriate initial conditions.

X. SYSTEM OF NONLINEAR FIRST-ORDER RECURSIONS

Actually, very little is known about systems of nonlinear recursions.8 We now extend our
method of Sec. III to deal with systems of nonlinear equations. Let us demonstrate it on the
following example:

un115lun~12vn! with u0[u,
~18!

vn115mvn~12un! with v0[v.

Proceeding here as in Sec. III, we are checking the transformation of a productujvk:

@lu~12v !# j@mv~12u!#k5(
r ,s

l juj~21!r S jr Dv rmkvk~21!sS ksDus
5(

p,q
upvq~21!~p2 j !1~q2k!S j

q2kD S k
p2 j Dl jmk. ~19!
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We prefer to proceed with the aid of multidimensional matrices9 as being the most natural
way. However, a possibility of using traditional two-dimensional matrices also exists.5

Indeed, introducing here a four-dimensional matrixT with the elements

Tjkpq5~21!~p2 j !1~q2k!S j
q2kD S k

p2 j Dl jmk

~it can also be viewed as an ordinary matrix on the space of index pairs! we basically return to the
familiar transfer-matrix construction but for more complex objects. Namely, we shall operate with
a two-dimensional matrixX, defined as a direct product of vectorsuu& and uv&:

Xjk5ujvk.

Here the matrixX plays the same role as the vectoruy& in Sec. III. The four-dimensional matrixT
is analogous to its two-dimensional relativeT. The multiplication of such matrices is defined
rather naturally:

X1X25(
p,q

~X1!pq~X2!pq , ~TX ! jk5(
p,q

TjkpqXpq , ~T1T2! jkpq5(
rs

~T1! jkrs~T2!rspq .

Note that the matrix analog of the scalar product of vectors is just a contraction,X1X2, in the
tensor algebra nomenclature.

As in Sec. X, one can obtain the solution of the system in the form

un5E1T
nX, vn5E2T

nX,

where, as usual,

~E1! jk5d1 jd0k , ~E2! jk5d0 jd1k .

Further generalization of this approach is also rather simple. In the general case ofm first-
order nonlinear equations

xn11
~ i ! 5Pi~xn

~1! ,...,xn
~m!!, i51,...,m, ~20!

one has to consider the 2m-dimensional transfer matrixT. To construct it we are checking as
before the product

Pj 1 ,...,j m
[P1

j 1•••Pm
jm,

and them-dimensional matrixX, defined as a direct product ofm vectors of initial values
ux~1!&,...,ux(m)&.

The polynomialPj 1 ,...,j m
depends onm variablesx(1),...,x(m) and therefore can be repre-

sented as

P~ j 1 ,...,j m!~x
~1!,...,x~m!!5T~ j 1 ,...,j m!X,

whereT j 1 ,...,j m
is a constant multidimensional matrix of coefficients of the polynomialPj 1 ...,j m

.
This matrixT j 1 ,...,j m

is the (j 1 ,...,j m)-th m-section of the transfer matrixT.
Then defining the matrixEi by

~Ei ! j 1 ,...,j i ,...,j m5d0 j 1...d1 j i...d0 j m
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one can write down the solution of the system in the form

xn
~ i !5EiT

nX.

XI. SYSTEM OF NONLINEAR HIGHER-ORDER RECURSIONS

We are not going to write down even the simplest example, but the scheme is quite obvious:
introduction of new variables to bring each equation to the first-order structure and, then, con-
struction of a transfer matrix~as in the two previous sections!.

XII. CONTINUOUS ANALOG OF THE TRANSFER MATRIX

In this section we present a continuous generalization of our transfer matrix technique. We
consider the general case, the multivariable function,f :Rn→Rn. We do not try to establish the
exact conditions for existence of all the functions involved, but merely describe the algorithm.

Let

Fx→s@w~x,t!#5~2p!2nE
Rn

exp~2 i ^x,s&!w~x,t!dx,

where ^x,s& is the scalar product of two real vectorsx and s, be the Fourier transform of the
functionw:R2n→C, s,x,tPRn andFs→x

21 be the corresponding inverse Fourier transform.10 Then,
we define the transfer kernel of the functionf :Rn→Rn as Fourier transform
T~t,s!5Fx→s exp@i ^f ~x!,t&#.

For example, let us consider the logistic map,f (x)5lx(12x). Then the transfer kernel is the
function11

T~ t,s!5E
2`

`

exp@2 ixs1 i tlx~12x!#dx5Ap

tl
expF2

ip

4
1
i ~ tl2s!2

4tl G .
We define the product of the transfer kernelsS~t,s! andT~t,s! of the functionsg~x! and f ~x!

by

S(T~ t,s!5
defE

Rn
S~ t,t!T~t,s!dt.

Theorem: The product,S(T~t,s!, of the transfer kernelsS~t,s! and T~t,s! is the transfer
kernel of the compositiong+ f ~x!, whereg+ f ~x![g~f ~x!!.

Indeed, performing the inverse Fourier transform for the functionS(T~t,s! one gets

Fs→x
21 @S(T~ t,s!#5E

Rn
S~ t,t!Fs→x

21 @T~t,s!#dt5E
Rn
S~ t,t!exp@ i ^ f ~x!,t&#dt

5Ft→ f ~x!
21 @S~ t,t!#5exp@ i ^g+ f ~x!,t&#.

One can see that the product of the transfer kernels is defined in analogy to the matrix product
and we can obtain the solution of the recursion~see Sec. III! in the form

yn
~ j !52 ln$Fs→y

21 @Tn~ t,s!#u t5 iej
%

whereej5$d jk%k51
n .
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XIII. SUMMARY

In this paper we have presented a new method to obtain the solution of arbitrary polynomial
recursions. The method has been generalized to systems of multivariable recursions and recursions
of arbitrary order, in analogy to the solution of linear recursions, also presented in this paper.

Generally, the solution is obtained in the form of a matrix power, applied to the vectors of
initial values. We have presented a way to construct such a matrix.

Famous and important examples, such as the logistic map and the Riccati recursion, have been
considered and the corresponding matrices have been written down explicitly.

We also generalized the method in another direction. It is shown that instead of transfer matrix
one can use transfer kernel which can be considered as a continuous matrix.12

While the investigation of the solutions found is beyond the scope of the paper this challeng-
ing task deserves a few words. For example, the logistic map solution~2! can be used to construct
a generating function.4 Unfortunately, this latter may have an essential singularity. Therefore, it is
more natural to construct an exponential generating functionf(z)[(n

`(1/n!)ynz
n5^euexp~zT!uy&.

Then, one can try to understand the parametric dependence of the logistic map asymptotics from
a steepest descent of the Cauchy integral

yn5
1

2p i R
C0

f~z!

zn11 dz,

where the contourC0 includes the origin of coordinates.
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We consider the problem of rigging for the Koopman operators of the Renyi and
the baker maps. We show that the rigged Hilbert space for the Renyi maps has
some of the properties of a strict inductive limit and give a detailed description of
the rigged Hilbert space for the baker maps. ©1996 American Institute of Phys-
ics. @S0022-2488~96!01809-9#

I. INTRODUCTION

The notion of a generalized spectral decomposition of self-adjoint operators on a Hilbert space
goes back to Dirac,1 who assumed that a given self-adjoint operatorA must be of the form

A5E
s~A!

dl lul)~lu, ~1!

wheres (A) is the spectrum of the operatorA. This formula is a straightforward generalization of
the familiar decomposition of a self-adjoint operator on a finite-dimensional Hilbert space

A5(
i

l i uei)~ei u, ~2!

whereli andei are the eigenvalues and eigenvectors ofA, respectively. In infinite-dimensional
Hilbert spaces, however, the situation is not so simple. The notion of an eigenvalue is replaced by
the spectrum, but eigenvectors can be associated only with the discrete part of the spectrum.
Nevertheless, a precise meaning can be given to the decomposition~1!, if we replace eigenvectors
by ‘‘generalized eigenvectors,’’ which will, in general, lie outside the given Hilbert space. This is
achieved by replacing the initial Hilbert spaceH by a dual pair~F,F3!, whereF is a locally
convex space, which is a dense subspace ofH endowed with a topology, stronger than the Hilbert
space topology. This procedure is referred to as rigging and the triple

F,H,F3 ~3!

0022-2488/96/37(11)/5837/11/$10.00
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is called arigged Hilbert space~see Refs. 2–5 for details!. Gelfand3,4 was the first to give a
precise meaning to the generalized eigenvectors, which was later elaborated by Maurin.5 Although
generalized eigenvectors have a very natural physical interpretation, generalized spectral decom-
positions have not been used in physics for a long time. Only a few papers had appeared by the
end of the 1960s~see, for example, Refs. 6–8!, followed by a series of papers by Bohm and
Gadella~see Ref. 2 and references therein!. The latter publications are particularly significant,
because they provide the basis for a rigorous and systematic approach to the problems of irrevers-
ibility and resonances in unstable quantum systems like the Friedrichs model.9 The same ideas can
be extended to chaotic dynamical systems, like Kolmogorov systems or exact systems.10,11 The
observable phase functions of dynamical systems evolve according to the Koopman operator10

Vf~x!5 f ~Sx!,

whereS is an endomorphism or an automorphism of a measure space, andf is a square-integrable
phase function.

The spectrum of the Koopman operator determines the time scales of the approach to equi-
librium very much in analogy with quantum unstable systems, where the spectra of the Hamilto-
nians determine the decay rates. More precisely, the eigenvalues of the Koopman operator or that
of its adjoint, known as the Frobenius–Perron operator, are the resonances of the power
spectrum.12–15 Eigenvalues and eigenvectors of simple chaotic systems have recently been con-
structed by several authors.16–24

The question of the existence of a generalized spectral decomposition of extensions of the
Koopman operator was raised and resolved by Antoniou and Tasaki.17–19 This issue is delicate,
because the original Gelfand–Maurin theory was constructed for operators which admit a spectral
theorem,25 like normal operators, giving a generalized spectrum identical with the Hilbert space
spectrum. The Koopman operator of unstable systems, however, either does not admit a spectral
theorem, as in the case of exact systems,18 or the generalized spectrum is very different from the
Hilbert space spectrum, as in the case of Kolmogorov systems.19 The original Gelfand–Maurin
theory had to be extended17–19 to arbitrary dual pairs~F,F3! of linear topological spaces.

Summarizing for the reader’s convenience, a dual pair~F,F3! of linear topological spaces
constitutes a rigged Hilbert space for the linear endomorphismV of the Hilbert spaceH if the
following conditions are satisfied:

~1! F is a dense subspace ofH.
~2! F is complete and its topology is stronger than the one induced byH.
~3! F is stable with respect to the adjointV† of V, i.e.,V†F,F.
~4! The adjointV† is continuous onF

The extensionVext of V to the dualF3 of F is then defined in the standard way as follows:

~fuVextf !5~V†fu f !,

for everyfPF.
In the sequel we shall not distinguish betweenV andVext if confusion is unlikely to arise.
The choice of the test function spaceF depends on the specific operatorV and on the

physically relevant questions to be asked about the system. For self-adjoint operatorsV, for
example, the generalized spectral theorem can be justified for nuclear test function spaces; for
normal operators this condition may be relaxed.26,27

Here, we shall discuss the problem of rigging for the generalized spectral decompositions of
the Koopman operators for two specific but typical models of chaotic systems, namely, the Renyi
maps and the baker maps.

In the case of the Renyi map various riggings exist28 and our task will be to choose a tight
rigging within spaces of analytic test functions. We call a rigging ‘‘tight’’ if the test function space
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is the ~set theoretically! largest possible within a chosen family of test function spaces, such that
the physically relevant spectral decomposition is meaningful. This notion of tightness is more
general than that of Fredricks.7 It turns out that the topology of this rigged Hilbert space enjoys
some of the properties of a strict inductive limit of Banach spaces, which greatly simplifies
convergence arguments.

The construction of the rigged Hilbert space for the baker map, on the other hand, reveals a
different aspect of the problem of rigging. In fact, here the problem is to understand the very
nature of the rigging, since the test function space is the tensor product of the space of polynomials
with the space of square-integrable functions corresponding to the expanding and contracting
fibers. Our task will be to investigate the properties of this rigged Hilbert space.

II. RIGGED HILBERT SPACES FOR THE RENYI MAPS

In this section we discuss the rigged Hilbert spaces for the Koopman operator of the general
b-adic Renyi map.

Theb-adic Renyi mapS on the interval@0,1! is the multiplication, modulo 1, by the integer
b>2

S:@0, 1!→@0, 1!: x°Sx5bx~mod 1!.

The probability densitiesr(x) evolve according to the Frobenius–Perron operatorU ~Ref. 11!:

Ur~x![ (
y,S~y!5x

1

uS8~y!u
r~y!5

1

b (
r50

b21

rS x1r

b D .
The Frobenius–Perron operator is a partial isometry on the Hilbert spaceL2 of all square inte-
grable functions over the unit interval; it is, moreover, the dual of the isometric Koopman operator
V:

Vr~x!5U†r~x!5r~Sx!.

In Ref. 18 two of us~I.A. and S.T.! constructed a spectral decomposition of the Koopman operator
using a general algorithm based on the subdynamics decompositions. The Koopman operator can
be expressed as follows:

V5 (
n50

`
1

bn uB̃n)~Bnu, ~4!

whereBn(x) is thenth-degree Bernoulli polynomial defined by the generating function~Ref. 29,
§9!

zezx

ez21
5 (

n50

`
Bn~x!

n!
zn

and

uB̃n)5H u1), n50,

U~21!~n21!

n!
$d~n21!~x21!2d~n21!~x!%), n51,2,... .

The bras~•u and ketsu•! denote linear and antilinear functionals, respectively. Formula~4! defines
a spectral decomposition for the Koopman and Frobenius–Perron operators in the following sense:
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~ruVf !5~Uru f !5 (
n50

`
1

bn ~ruB̃n!~Bnu f !,

for any density functionr and observablef in the appropriate pair~F,Fx!. Consequently, the
Frobenius–Perron operator acts on density functions as

Ur~x!5E
0

1

dx8 r~x8!1 (
n51

`
r~n21!~1!2r~n21!~0!

n!bn Bn~x!.

The orthonormality of the systemuB̃n) and (Bnu follows immediately, while the completeness
relation is just the Euler–MacLaurin summation formula for the Bernoulli polynomials~Ref. 29,
§9!

r~x!5E
0

1

dx8 r~x8!1 (
n51

`
r~n21!~1!2r~n21!~0!

n!
Bn~x!. ~5!

The Bernoulli polynomials are the only polynomial eigenfunctions as any polynomial can be
uniquely expressed as a linear combination of the Bernoulli polynomials.

The spectral decomposition~4! has no meaning in the Hilbert spaceL2, as the derivatives
d (n)(x) of Dirac’s delta function appear as right eigenvectors ofV. A natural way to give meaning
to formal eigenvectors of operators which do not admit eigenvectors in Hilbert space is to extend
the operator to a suitable rigged Hilbert space. A suitable test function space is the spaceP of
polynomials. The spaceP fulfills the following conditions:

~i! P is dense inL2 ~see Ref. 30, ch. 15!,
~ii ! P is a nuclearLF-space~Ref. 30, ch. 51! and thus, complete and barreled,
~iii ! P is stable with respect to the Frobenius–Perron operatorU, and
~iv! U is continuous with respect to the topology ofP , becauseU preserves the degree of

polynomials.

It is, therefore, an appropriate rigged Hilbert space, which gives meaning to the spectral decom-
position ofV.

We shall, however, look for a tight rigging. The test functions should at least provide a
domain for the Euler–MacLaurin summation formula~5!. The requirement of absolute conver-
gence of the series~5! means that

(
n51

` Uf~n21!~y!

n!
Bn~x!U,` ~y50,1!.

This implies18 that the appropriate test functions are restrictions on@0,1! of entire functions of
exponential typec with 0,c,2p. For simplicity we identify the test functions space with the
spaceEc of entire functionsf(z) of exponential typec.0 such that

uf~z!u<Kecuzu, ;zPC, for some K.0.

Each member of the whole familyEc , 0,c,2p, is a suitable test function space, since
properties~1!–~4! are fulfilled. Indeed, each spaceEc is a Banach space with norm~Ref. 30, ch.
22!:

ific[sup
zPC

uf~z!ue2cuzu,
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which is dense in the Hilbert spaceL2, asEc includes the polynomial spaceP . EachEc is stable
under the Frobenius–Perron operatorU, and it is easily verified thatU is continuous onEc . Now,
observe that the spaces are ordered

Ec,Ec8 , c,c8,

and consider the space

Ẽ2p[ ø
c,2p

Ec .

The spaceẼ2p, also preserved byU, is the~set theoretically! largest test function space in our
case. SinceẼ2p is a natural generalization of the spaceP of polynomials, we want to equip it with
a topology which is a generalization of the topology ofP .

Recall thatP was given the strict inductive limit topology of the spacesP n of all polynomials
of degree<n. A very important property of this topology is that the strict inductive limit of
complete spaces is complete. Moreover, it is exceptionally simple to describe convergence in this
topology. For example, a sequence$wn% of polynomials converges inP if and only if the degrees
of all wn are uniformly bounded by somen0 and$wn% converges inP

n0.
We cannot, however, define the strict inductive topology onẼ2p because forc,c8 the topol-

ogy onEc induced byEc8 is essentially stronger than the initial one. Nevertheless, as we shall see
in the theorem below, it is possible to define a topology onẼ2p, which is a natural extension of the
topology onP in the following sense.

Theorem 1:There is a locally convex topologyT on Ẽ2p for which it is a nuclear, complete
Montel space. Moreover, a sequence$ f n%,Ẽ2p is convergent in theT topology if and only if
there isc0P~0,2p! such that 1°f n , n51,2,..., are of exponential typec0 and 2°$ f n% converges in
i•ic0-norm.

Proof:Denote byf̂ the Fourier transform of a functionf and by f̆ its converse. By Schwartz’s
extension of the Paley–Wiener theorem~Ref. 31, vol. II, p. 106! a functionf belongs toEc if and
only if f̂ is a distribution with compact support contained in the interval@2c, c#.

Note that, if the functionfPẼ2p is integrable or square integrable, thenf̂ is a function.
However, for an arbitrary function its Fourier transform is correctly defined only as a distribution
with compact support, i.e., as a continuous linear functional on the spaceC`~V! of all infinitely
differentiable functions on the intervalV5~22p, 2p!, endowed with the topology of uniform
convergence on compact subsets ofV of functions together with all their derivatives.

The Fourier transform, therefore, establishes an isomorphism betweenẼ2p and the topological
dual C`(V)x of the spaceC`~V!. Consequently, the strong dual topology ofC`(V)x can be
transported through the inverse Fourier transform to the spaceẼ2p. The strong dual topology is the
topology of uniform convergence on bounded subsets ofC`~V!. ThenC`(V)x is nuclear~Ref. 30,
p. 530!, complete~Ref. 31, vol I, p. 89!, and a Montel space~Ref. 30, prop. 34.4 and 36.10!. In
this way we obtain onẼ2p a topology with the same properties.

We shall now prove the second part of the theorem. Let$ f n% be convergent to zero inẼ2p.
This means that$ f̆ n% converges inC

`(V)x. Therefore$ f̆ n% is a bounded subset ofC
`(V)x, which

implies ~Ref. 30, th. 34.4, p. 359! that the supports of allf̆ n are contained in a compact setK,V.
Takec with c,2p andK,(2c,c). Therefore@see Ref. 31, vol. I, th. XXVI and the remark

afterwards which remains true if we replaceR1 by the open setV5~22p,2p!#, there is a number
p>0 and a family of continuous functionsgj ,n such that the supports ofgj ,n are contained in the
interval (2c,c),

f̌ n5(
j<p

D jgj ,n
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~Dj denotes thej th derivative, classical or in the sense of distributions! and gj ,n(x) converges
uniformly to zero asn→`.

Using the above representation off̆ n we obtain thatf̆ n converges to zero uniformly on each
setUA :

UA[H fPC`~V!: sup
xP@2c,c#

U djdxj
f ~x!U<A, j50,1,...,pJ ,

whereA.0. Indeed, for eachj

u^Djgj ,n , f &u5U~21! jE
2c

c

gj ,n~x!
dj

dxj
f ~x!dxU

<AE
2c

c

ugj ,n~x!udx→0,

asn→`.
Let us take anyc0P(c,2p). Then for eachzPC the function

x°eizxe2c0uzu, uxu<c, ~6!

belongs toUA . Indeed

U djdxj
~eizxe2c0uzu!U<uzu jeuzu~ uxu2c0!5uzu jeuzu~ uxu2c!e2~c02c!uzu

<uzu je2~c02c!uzu.

The right-hand side is bounded, for eachj50,1,...,p, by some constantAj . Thus taking
A5max0< j<pAj we see that the functions~6! belong toUA , for eachzPC.

From

f n~z!5~ f̆ n!̂ ~z!

and uniform convergence off̆ n on UA we have

sup
zPC

u f n~z!ue2c0uzu5sup
zPC

u^ f̆ n ,eize2c0uzu&u→0,

asn→`, which means thati f nic0→0. This proves 2°. Condition 1° is also satisfied because we
have chosenc0.c. Thus, the supports of thef̆ ns are also contained in (2c0 ,c0) and by the
Paley–Wiener–Schwartz theorem thef ns are of exponential typec0.

The converse of the second part of the theorem is now trivial. If$ f n% satisfies 1° and 2°, then
by applying the Paley–Wiener–Schwartz theorem again we obtain convergence of$ f̆ n% in
C`(V)x.

Remark 1: Using the above method one can show an analogous criterion of convergence for
bounded nets inẼ2p but not for an arbitrary net.

Remark 2: Note that it is not always possible to obtain convergence of the type given in the
above theorem. Actually, to prove the second part of the theorem we needed the following
property:

Let F be a Frechet space and let$xn8% be a sequence in its dualF8 which converges to zero in
the strong dual topology. Then there exists an open subsetU of F such that
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u^xn8 ,x&u→0, uniformly for xPU. ~7!

As mentioned in Ref. 32, some concreteF-spaces have this property although it is not true in
general. It was stated there as an open problem to describe thoseF-spaces for which~7! is true.
This situation motivated us to include the full proof.

Remark 3: An alternative but less constructive proof of the theorem can be found in Ref. 28.
It is based on a theorem by Raikov33 and the nuclearity of the imbedding

Ec�Ec8 , c,c8.

III. THE RIGGED HILBERT SPACE FOR THE BAKER TRANSFORMATIONS

Theb-adic,b52,3,..., baker’s transformationB on the unit square@0, 1!3@0, 1! is a two-step
operation: ~1! squeeze the 131 square to ab31/b rectangle and~2! cut the rectangle into
b ~131/b! rectangles and pile them up to form another 131 square:

~x,y!°B~x,y!5S bx2r ,
y1r

b D , for
r

b
<x,

r11

b
, r50,...,b21.

The invariant measure of theb-adic baker transformation is the Lebesgue measure on the unit
square. The probability densitiesr(x,y) evolve according to the Frobenius–Perron operatorU
~Ref. 11!:

Ur~x,y![r„B21~x,y!…5rS x1r

b
,by2r D , for

r

b
<y,

r11

b
, r50,...,b21.

The Frobenius–Perron and Koopman operators are unitary on the Hilbert spaceLx,y
2 of square

integrable functions over the unit square and has a countably degenerate Lebesgue spectrum on the
unit circle plus the simple eigenvalue 1 associated with the equilibrium~as is the case for all
Kolmogorov automorphisms!.

Theb-adic baker automorphismB is the natural extension34 of theb-adic Renyi map on the
unit interval @0, 1!, described in the previous section.

It was shown in Ref. 19 that the Koopman operatorV has a spectral decomposition involving
Jordan blocks

V5u f̃ 00)( f 00u1 (
n51

` H (
r50

n
1

bn u f̃ n,r)( f n,r u1 (
r50

n21

u f̃ n,r11)( f n,r uJ . ~8!

The vectorsf n, j and f̃ n, j are linear functionals over the spacesLx
2

^P y andP x^Ly
2, respectively,

with well-defined inner product (f n,r u f̃ n8,r 8)5dnn8d rr 8, and(n50
` ( r50

n u f̃ n,r)( f n,r u5I . Moreover,

( f n,r uV5H 1

bn „~ f n,r u1~ f n,r11u…, r50,...,n21,

1

bn f n,r , r5n,

Vu f̃ )n,r5H 1bn „u f̃ n,r)1u f̃ n,r21)…, r51,...,n,

1

bn f̃ n,r , r50.
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While the Koopman operatorV is unitary in the Hilbert spaceLx,y
2 and thus has spectrum on

the unit circleuzu51 in the complex plane, the spectral decomposition~8! includes the numbers
1/bn,1 which are not in the Hilbert space spectrum. The spectral decomposition~8! also shows
that the Frobenius–Perron operator has Jordan-block parts despite the fact that it is diagonalizable
in the Hilbert space. As bothf n, j and f̃ n, j contain distributions, the spectral decomposition~8! has
no meaning in the Hilbert spaceLx,y

2 but only on the subspacesLx
2

^P y andP x^Ly
2. Therefore,

our purpose is to define an appropriate topology on these spaces. We shall give the construction
for P x^Ly

2 only; a similar argument applies toLx
2

^P y .
We will start from the most natural, i.e., the strict inductive limit topology, which coincides

with other, apparently stronger, tensor product topologies.
Let us consider the spaceP ^L2 ~for simplicity we omit the subscriptsx andy!, whereP is

the space of all polynomialsw of finite degree:

w5 (
k50

n

akx
k, ~9!

Ly
2 is the space of all square integrable functions on the spaceY5@0, 1#.
Let P n be the space of all polynomials of degree<n. For aw of the form ~9!,

iwin5 max
0<k<n

uaku

defines a norm onP n. Then P is defined as the unionønP
n with the strict inductive limit

topology ~Ref. 30, sec. 13!.
Similarly P ^L2 was defined in Ref. 19 as the strict inductive limit of the spacesP n

^L2

endowed with the topologyt, generated by the norms

I (
k51

n

xk^ fkI
n

5 max
0<k<n

ifiL2. ~10!

It is very easy to see that (ønP
n)^L25øn~P

n
^L2!. Thus, we have,algebraically,

P ^L25~ lim
nW
P n! ^L25 lim

nW
~P n

^L2!,

and, as we will see below, also topologically.
In fact, it will be shown that thet-topology defined by the seminorms~10! is also, roughly

speaking, the only natural locally convex tensor product topology on the spaceP ^L2.
This will be done in three steps:
~1 ! t is a cross-seminorm topology, i.e., the tensor product seminorm~10! is a cross-norm35

when restricted to the Banach spacesP n andL2. Indeed, forwPP n, fPL2,

iw^ f in5I (
k51

n

akx
k

^ f I
n

5I (
k51

n

xk^ ~akf !I
n

5 max
0<k<n

iakf iL25 max
0<k<n

uakui f iL2

5iwini f iL2.
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~2! The t-topology is weaker than the projective topology~shortly p-topology! on the tensor
product P ^L2 ~see Ref. 30, sec. 43, for the definition!. Indeed, consider an element
f̃5( i51

N wi ^ f i of the spaceP ^L2 and letn be the maximal degree ofwi ,i51,...,N. Then we
can writewi5(k50

N ak
( i )xk, i51,...,N ~someak

( i ) can be zero!. Therefore

f̃5I(
i51

N

wi ^ f i I
n

5I(
i51

N S (
k50

n

ak
~ i !xkD ^ f i I

n

5I (
k50

n S (
i51

N

ak
~ i ! f i D ^xkI

n

5 max
0<k<n

I(
i51

N

ak
~ i ! f i I

L2

< max
0<k<n

(
i51

N

uak
~ i !ui f i iL2.

Denote byR the right-hand side in the above inequalities and letk0 be the index which
realizes the maximum ofR. Then

R5(
i51

N

uak0
~ i !ui f i iL2<(

i51

N

max
0<k<n

uak
~ i !ui f i iL2

5(
i51

N

iwi ini f i iL2.

Therefore, we obtain the inequality

i f̃ in<(
i51

N

iwi ini f i iL2,

which does not depend on the particular representation off̃ . Thus i f̃ in<i f̃ ip,n , where i•ip,n
denotes thep-seminorm corresponding to the seminormi•in onP andi •i L2.

~3! The t-topology is stronger than the«-topology~see Ref. 30, sec. 43 for the definition! on
P ^L2. To see this let us first note that the spaceP with its topology can be identified with the
spaceCc

0(X) of continuous functions onX with compact support~Ref. 30, p. 132!, provided we
take as the locally compact space the setNø$0% with the discrete topology. In such a case,
functions with compact support are just sequences with at most finitely many nonzero elements
and the family of seminorms is here precisely the same as that forP described above. Similarly,
P ^L2 with the t-topology can be identified withCc

0(X;L2) which is a subspace of the space
C0(X;L2) of all continuous functions onX with values inL2 ~see Ref. 30, p. 412 for the definition
of the topology!.

On the other hand,Cc
0(X;L2) is topologically isomorphic withCc

o(X) ^̂eL
2 ~ˆ denotes comple-

tion!. Since the topology induced byC0(X;L2) on Cc
0(X;L2) is weaker than thet-topology we

obtain thatthe «-topology onP ^L2 is weaker thant-topology.
Therefore after completion we obtain

P ^̂ pL
2,P ^̂ tL

2,P ^̂ eL
2.

However, sinceP is a nuclear space we have~Ref. 30, th. 50.1!

P ^̂ eL
2>P ^̂ pL

2
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~> denotes topological isomorphism!. BecauseP ^L2 is already complete in thet-topology19 we
obtain the following.

Theorem 2: The t-topology onP ^L2 coincides with the« and thep topology.

IV. CONCLUDING REMARKS

~1! We have characterized the natural rigged Hilbert spaces of analytic functions associated with
the prototype of dynamical systems, namely the Renyi and the baker transformations. In the
case of the Renyi map, we constructed a tight rigged Hilbert spaceẼ2p within the spaces of
analytic functions, which gives meaning to the simple resonance spectrum. We have shown
that Ẽ2p inherits the crucial properties of strict inductive limits of Banach spaces without
being a strict inductive limit itself. For the baker maps we characterized the topology of the
tensor product which gives meaning to the multiple resonance spectrum.

~2! We expect that these rigged Hilbert space topologies are typical for chaotic maps, if the
evolution of analytic densities is considered. In the case of nonanalytic densities we may have
test function spaces satisfying properties~1!–~4! with different extension properties.
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A structure theorem concerning projective quaternionic representations is stated
and proved. A corollary to the structure theorem is then proved, answering a ques-
tion recently posed by Adler. ©1996 American Institute of Physics.
@S0022-2488~96!01309-6#

I. INTRODUCTION

In a recent paper,1 Adler builds on some of the material in his book,2 specifically that which
concerns general, multicentral and central quaternionic projective representations. He asks if a
multicentral representation can be constructed that is not central or if it can be proved that a
multicentral representation must always be central. For a given Lie groupG, the answers to these
questions depend on the connectedness of the group. IfG is not connected, it is possible to
construct a multicentral representation that is not central and we provide an example of such in
this paper. Our main result, however, is to prove that ifG is connected, then a multicentral
representation must also be central. This is actually a corollary to a structure theorem that divides
irreducible representations into three types according to the reality and commutativity of the
projective phases.

II. USEFUL TERMS AND COMMON THEMES

For a general introduction to quaternions and their application to quantum mechanics, we refer
the reader to Adler’s book.2

The quaternions include both real and complex numbers, and by a suitable categorization the
commutativity properties of the different types of quaternion can be concisely summarized. In this
paper, we use the following categories in the proof of the structure theorem and of its corollary.

Definition 1: A real number has vanishing i, j , and k coefficients.
Definition 2: A complex number has vanishing j and k coefficients. It is the most general

a-symplectic quaternion.
Definition 3: A strictly complex number has vanishing j and k coefficients but nonvanishing i

coefficient.
Definition 4: A skew-complex number has vanishing 1 and i coefficients. It is a purely

b-symplectic quaternion.
Definition 5: A strictly quaternionic number has nonvanishingb-symplectic part.
It should be noted that these definitions are dependent on the choice ofi , j , andk, so the

quaternionic basis must be specified before the above terms can be used.
Other useful quaternionic quantities are phases. A phase is a real, complex or quaternionic

number that has unit norm, in other words it is an element of, respectively,U~1,R!, U~1,C ! or
U~1,H!. A real phase must then be61 while a complex phase can be parametrised as the familiar
exp~iu!.

The connectedness ofG is crucial to the structure theorem and is used several times in the
proof. Typically, we will deduce that, for eacha in G, a certain quantity dependent ona must
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have one of two mutually exclusive ‘‘disconnected’’ properties,P or Q. We use disconnected to
mean that it is impossible to have a smooth transition fromP to Q. SinceG is connected, either
propertyP holds for alla or propertyQ holds for alla; there cannot be one region ofG whereP
is satisfied and one whereQ is since the regions’ boundary would be a discontinuity. To determine
which property holds for alla, it then suffices to test which property holds for some particulara,
such as the multiplicative identity 1.

As a tool for applying the consequences of connectedness, it is useful to be able to perturb
group elements by a small amount. If we perturb a group elementa by a small amount, we write
the new group element asada whereda is a group element in some neighborhood of the identity;
letting da tend to 1 then defines a limiting process that generates elements tending toa.

III. THE STRUCTURE THEOREM AND ITS COROLLARY

Let G be a connected Lie group with identity element 1, and suppose thatV is a quaternionic
Hilbert space with a privileged set of~quaternionic! orthonormal basis elements$u f &%. Let

U:G→U~V,H!

be a smooth assignment from a group elementa to a unitary right-linear operatorUa onV. We say
thatU is a projective quaternionic representation ifU151 and

V~b,a!5Uba
21UbUa

is diagonal on the basis$u f &% for all group elementsb anda, that is

V~b,a!5(
f

u f &v~ f ,b,a!^ f u

for some quaternionic phasev( f ,b,a) called the projective phase. The above definition of a
representation is partially dependent on the choice of basis; a representation which is projective
with respect to one basis need not be projective with respect to another. However, one can safely
reray a basis

u f &°u f &f f

v~ f ,b,a!°f fv~ f ,b,a!f f ,

where theff are quaternionic phases, without changing the projective nature of the mapU—this
reraying affects thev but not theV. Let us also make the technical assumption thatU is irreduc-
ible, in the sense that there does not exist a partition of the basis elements into two sub-bases with
respect to which the operatorsUa are block-diagonal for all group elementsa. A reducible
representation can easily be expressed as the direct sum of irreducible ones, so this is not a severe
restriction. There are three obvious ways to make such a representation. The first way is to start
with a genuine representation~so that

Uba5UbUa

for all b anda!; this is, of course, automatically a quaternionic projective representation in any
basis. We can modestly generalize this by requiring only that the representation be real-projective,
that is, so that

Uba56UbUa .
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A second way is to start with a complex projective representation on a complex spaceVC , so that
one has complex operatorsUa

C such that

Uba
C v~b,a!5Ub

CUa
C

for some complex phasev(b,a), and extend it to a projective quaternionic representation on
VC % VC j in the canonical manner. The third way is to start with a real projective representation,
Ua
R on a real spaceVR and tensor product it with an otherwise arbitrary phase map

s:G→U~1,H!

to obtain a quaternionic projective representation on the quaternionic spaceVR^H. The follow-
ing theorem states that these three methods are, up to a reraying, the only ways to create irreduc-
ible projective quaternionic representations.

Structure Theorem: Let U be an irreducible projective representation of a connected Lie
group G. There then exists a reraying of the basisu f & under which one of the following three
possibilities must hold.

~1! U is a real projective representation~type I!. That is,v( f ,b,a)5v(b,a) is independent ofu f &
and is equal to61 for eachb anda.

~2! U is the extension of a complex projective representation~type II!. That is, the matrix ele-
ments^ f uUau f 8& are complex andv( f ,b,a)5v(b,a) is independent ofu f & and is a complex
phase.

~3! U is the tensor product of a real projective representation and a quaternionic phase~type III!.
That is, there exists a decomposition

Ua5Ua
R(

f
u f &sa^ f u,

where the unitary operatorUa
R has real matrix elements,sa is a quaternionic phase and

Uba
R56Ub

RUa
R

for all b anda.

It should be noted that the three cases are not mutually exclusive; for example, a one-dimensional
type I representation is a type III representation with realsa and a one-dimensional type II
representation is a type III representation with complexsa .

We use this structure theorem to answer Adler’s question. Let a multicentral projective rep-
resentation be one in whichV(b,a) commutes withUb andUa for all b anda, and let a central
projective representation be one in whichV(b,a) commutes withUc for all a, b, and c. Our
answer is then as follows.

Corollary 1: Any multicentral quaternionic projective representation of a connected Lie
group is central.

The requirement thatG is connected is not redundant, as shown in the following example. Set
G to be the union of two copies of the quaternionic phase groupU~1,H! labeled by1 and2,
respectively, with these labels combining underZ2. Let U be the one-dimensional representation
defined byUa1

5 a andUa2
5 1 for allaPU~1,H!. The whole system is now a quaternionic pro-

jective representation ofZ23U~1,H!, which is not connected, the operators multiplying according
to Table I. By inspection, for each rowV(b,a) commutes withUa and withUb , so the represen-
tation is multicentral, butV(b,a) does not generally commute with allUc , so the representation
is not central.
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IV. PROOF OF THE STRUCTURE THEOREM

Following Adler’s analysis,1 we begin with the crucial observation that

Statement 1:

Ua
21V~b,c!Ua5V~bc,a!21V~b,ca!V~c,a!,

is unitary and diagonal for all a, b, and c.
We may therefore, write this unitary diagonal operator as

Ua
21V~b,c!Ua5(

f
u f &n~ f ,a,b,c!^ f u, ~1!

where then are quaternionic phases that are formed from thev,

n~ f ,a,b,c!5v~ f ,bc,a!21v~ f ,b,ca!v~ f ,c,a!.

We multiply Eq.~1! on the left byUa and take matrix elements to give

v~ f ,b,c!^ f uUau f 8&5^ f uUau f 8&n~ f 8,a,b,c!. ~2!

If the underlying algebra was commutative and the matrix elements ofUa were invertible, we
could cancel the matrix elements and conclude that thev were independent off . Since the
quaternions are not commutative, we can only expect to show that the conjugacy class of thev is
independent off .

We shall use Eq.~2! for various values off and f 8 to derive a relationship that involves the
v but not then. However, it is necessary to first ensure that the matrix elements ofUa are
invertible for suitablea, u f & and uf 8&. This motivates the following.

Definition 6: We say that two basis statesuf 1& and uf 2& are directly connected if there exists a
basis stateuf 3& (which may be equal touf 1& or uf 2& or both) and a group element a such that
^ f 1uUau f 3& and ^ f 2uUau f 3& are both nonzero (and hence invertible).

The relationship of direct connectivity is symmetric but is not necessarily an equivalence
relation. In order to form equivalence classes, we shall also define a completion of direct connec-
tivity.

Definition 7: We say that two basis statesu f & and uf 8& are indirectly connected if there exists
a non-negative integer n and a sequence of basis statesu f 0&,...,u f n& with u f 0&5u f & and u f n&5u f 8&
such thatu f i& and u f i11& are directly connected for all0< i,n.

It can easily be verified that indirect connectivity is an equivalence relation. Note, that two
states which are directly connected are automatically indirectly connected. This allows us to
propose the following.

Proposition 1: All basis states are indirectly connected to each other.
Suppose this were not true. Then one can partition the basis states into two nonempty classes

A andA8 such that no state inA is directly connected to any state inA8. To do this, pick any basis
stateuf 0& and letA be the set of all states indirectly connected touf 0&; by the hypothesis that not

TABLE I. Representation forZ23U~i ,H!.

a b ba Ua Ub Uba V(b,a)

a1 b1 ba1 a b ba 1
a1 b2 ba2 a 1 1 a
a2 b1 ba2 1 b 1 b
a2 b2 ba1 1 1 ba ba
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all states are indirectly connected,A and its complementA8 are nonempty. LetVA andVA8 be the
subspaces ofV spanned by the states ofA and those ofA8 respectively, so thatV5VA%VA8.
Choose a basis stateu f & from A and a group elementa. Then the Hilbert space stateUau f & can
have components from states inA or components from states inA8 but not both, since that would
contradict the fact thatA andA8 are not directly connected. Sinceu f & is normalized and sinceUa

is unitary,Uau f & is also normalized and hence lies either in the unit sphere ofVA or in the unit
sphere ofVA8 for eacha. Whena is the multiplicative group identity 1,Uau f & lies in ~the unit
sphere of! VA ; by the connectivity argument,Uau f & lies in VA for all a, and sinceu f & was an
arbitrary basis state ofA, this means thatU mapsVA to VA . Similarly it must mapVA8 to VA8.
HenceU is reducible, contradicting the assumptions of the theorem, and the proposition is proved.

Corollary 2: For any basis statesuf 1& and uf 2& there exists a quaternionic phasef( f 1 , f 2) such
that

v~ f 2 ,b,c!5f~ f 1 , f 2!v~ f 1 ,b,c!f~ f 1 , f 2!, ~3!

for all b and c.
Sinceuf 1& anduf 2& are indirectly connected by the previous proposition, it is sufficient to prove this
corollary for the case when the states are directly connected and then to use induction.~The claim
is trivial when the states are the same.! We may thus assume the existence of a group elementa
and a stateuf 3& such that̂ f 1uUau f 3& and^ f 2uUau f 3& are invertible. Substitutingf 1 for f and f 3 for
f 8 and thenf 2 for f and f 3 for f 8 in Eq. ~2! and eliminating then dependence yields Eq.~3! with

f~ f 1 , f 2!5
^ f 2uUau f 3&@^ f 1uUau f 3&#21

u^ f 2uUau f 3&@^ f 1uUau f 3&#21u
5f~ f 2 , f 1!.

Corollary 2 can now be used to simplify the problem as follows. Choose a fixed basis stateuf 0&; all
other basis states may now be rerayed,

u f &°u f &f~ f , f 0!,

without changing the projective nature of the representationU. Under this reraying, Eq.~3!
implies that

v~ f ,b,c!°v~ f 0 ,b,c!;

in other words,v( f ,b,c)5v(b,c) is independent of the basis stateuf &.
There are then three cases depending on the range of thev. We list them here and then

consider each in turn.

~1! Thev(b,c) are real for allb andc.
~2! Thev are not always real, but they commute with each other.
~3! There existv(b,c) andv(b8,c8) which do not commute with each other.

For the first case, since thev must have unit magnitude, each is therefore,61—this is the first
case of the structure theorem so the representation is of type I.

Another way to state the second case is to say that there exists a single reraying under which
thev are all complex. In this case, we must re-examine Eq.~2!, which is an identity of the form
pr5rq. Now then are each the product of three of thev; in particular, then are also complex. We
can then use the following fact.

Quaternionic Identity 1: If the p is strictly complex, q are complex and r is quaternionic such
that

pr5rq,
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then either p5q, in which case r is also complex, or p5q* , in which case r is skew-complex.
~This is easily proved by decomposing all quantities into complex and skew-complex compo-
nents.! Since it is assumed thatv(b,c) is not real for at least one pairb andc, this means that, for
eacha, Ua either has all complex matrix elements or all skew-complex matrix elements. However,
sinceUa never completely vanishes and is complex whena51, we can use the connectedness of
G as before to show thatUa must be complex for alla—this is the second case of the structure
theorem so the representation is of type II.

For the third case, we must again re-examine Eq.~2!. Since thev are independent ofu f & and
the n are formed from thev, the n are also independent ofu f &. Thus, wheneverx is any matrix
element ofUa , we have

v~b,c!x5xn~a,b,c!. ~4!

Whenx andy are two nonzero matrix elements ofUa , a double application of Eq.~4! gives, after
some manipulation, that

v~b,c!xy215xn~a,b,c!y215xy21v~b,c!,

in other words,xy21 commutes withv(b,c). Similarly, xy21 commutes withv(b8,c8). Now we
use the following fact.

Quaternionic Identity 2: If p, q, and r are quaternions such that r commutes with both p and
q, but p and q do not themselves commute, then r must be real.

Hence,xy21 is real for all pairs of nonzero matrix elementsx andy of Ua . This is equivalent
to saying that the nonzero matrix elements ofUa all have the same quaternionic phase, so we can
separateUa into the product of a real matrixUa

R and a quaternionic phase matrixSa ,

Sa5(
f

u f &sa^ f u,

so that

Ua5Ua
RSa5SaUa

R .

SinceUa andSa are unitary,Ua
R must also be unitary. Repeatedly using the fact that real matrices

commute with constant diagonal ones~we recall that theV are constant diagonal!, we find that

~Uba
R !21Ub

RUa
R

is simultaneously real unitary and constant diagonal and must, therefore, be plus or minus the
identity. Thus, we have achieved the third case of the structure theorem and the representation is
of type III.

Since these are the only three possibilities for thev, the structure theorem is proved.

V. PROOF OF THE STRUCTURE THEOREM’S COROLLARY

We may again assume without loss of generality that the representation is irreducible, in
which case the structure theorem applies. Representations of type I and type II are automatically
central, so we immediately pass to consideration of type III representations. Here, we effectively
have a one-dimensional projective quaternionic representation

a°sa .

Since the real partUa
R of the representation is real-projective and commutes with constant diag-

onal operators, the multicentrality condition reduces to the quaternion-valued constraint
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@sba
21sbsa ,sa#5@sba

21sbsa ,sb#50. ~5!

One immediate consequence of multicentrality is
Statement 2: If any two ofsa , sb , andsba commute, then all three commute.
Our task is to show that in factsba

21sbsa commutes with allsc , meaning that the represen-
tation is also central. We may assume that thesa do not all commute with one another as if they
did, the representation would be of type II which is always central. This lack of total commuta-
tivity may be stated as follows.

Statement 3: For any choice of i, there is an a such thatsa is strictly quaternionic and so does
not commute with any strictly complex number.

In particular, this means that we can always find ana such thatsa is not real.
Given that there are some noncommuting phases, centrality is equivalent to the statement that

sba56sbsa ~6!

for all a and b, in other words the representation must, after all, be of type I. We begin by
observing that from Eq.~5! and from quaternionic identity 2, we have that

Statement 4:sba56sbsa is true wheneversa andsb do not commute.
This is actually a special case of a more general statement.
Proposition 2: Unless exactly two ofsa , sb , andsba are real, it is true thatsba56sbsa .
In other words, if none of, one of, or all three ofsa , sb , andsba are real, then Eq.~6! holds.

By statement 4, we may begin by assuming thatsa andsb commute and hence by statement 2,
they also commute withsba . We can then reray them to be complex, in which case, statement 3
allows us to find ac such thatsc does not commute with any ofsa , sb , or sba .

If all three ofsa , sb , andsba are real, then the proposition is trivially true, so we can assume
that at most one of them is real. This gives four cases as follows.

~1! sb , sa , andsba are all strictly complex.
~2! sb is real butsa andsba are strictly complex.
~3! sa is real butsb andsba are strictly complex.
~4! sba is real butsb andsa are strictly complex.

In the first case, we have from statement 4 that

scb56scsb ;

since this is the product of something strictly complex and something strictly quaternionic, it is
also strictly quaternionic. Hence, by statement 4 again,

scba56scbsa56scsbsa ,

On the other hand, another application of statement 4 gives that

scba56scsba ,

which on cancelingsc means that Eq.~6! holds and the proposition is true.
In the second case, we again have from statement 4 that

scba56scsba ,

so scba is strictly quaternionic and does not commute withsa . Hence, by statement 2, none of
scba , scb , or sa can commute with each other and hence by statement 4,

scba56scbsa ;
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therefore,

scsba56scbsa

or, after rearrangement,

sasba
2156scb

21sc .

However, the left-hand side of this equation is the product of two strictly complex quantities and
hence is complex while the right-hand side commutes withsc by statement 2; thus, both sides
must be equal to61 or, sincesb is real, to6sb . Hence Eq.~6! holds and the proposition is again
true.

The third and fourth cases are handled in a similar manner to the above treatment of the
second case, althoughsbac is considered instead ofscba in the third case.

We now develop an important corollary to this proposition by introducing the following
definitions.

Definition 8: s is locally constant at x if there is a neighborhood Vx around x such that
sx5sy for all y in Vx .

Definition 9: If sx is real ands is locally constant at x, thensx is strongly real.
The corollary to proposition 2 is then as follows.
Corollary 3: Unless exactly two ofsa , sb , and sba are strongly real, it is true that

sba56sbsa .
This is trivially true if sa , sb , andsba are all strongly real, since they are then real and Eq.

~6! holds. Suppose, then, that neithersa norsb are strongly real: then we can find~multiplicative!
perturbationsada andbdb of a andb for which sada andsbdb are not real so that proposition 2
applies. Lettingda anddb tend to 1 and using the continuity ofs, Eq. ~6! continues to hold and
hence the proposition is true. The other two cases are handled similarly.

We wish to prove that Eq.~6! always holds, and we shall do this by showing that there is no
a such thatsa is strongly real, allowing us to apply corollary 3. A convenient origin for our
argument is the multiplicative identity ofG.

Proposition 3:s1 is real but is not strongly real.
Sincesa commutes with itself, statement 2 implies thats1 commutes with allsa . Since not

all s commute, quaternionic identity 2 means thats1 is real. We will now prove thats1 is not
strongly real.

Suppose thats1 is strongly real, so that

sda561 ~7!

for all da in the neighborhoodV1. Let a be any group element such thatsa is not real; by
continuity, we can then find a neighborhoodV1

a of 1 such thatsada is also not real and is not equal
to 2sa for all da in V1

a. Then, by proposition 2, we may conclude that

sada5sa

for all da in V1ùV1
a—in other words,s is locally constant ata wheneversa is not real. We will

now generate a contradiction to the supposition thats1 is strongly real.
We use the connectedness ofG to construct a trajectory froma, wheresa is not real, to the

identity,

$a~ t !:tP@0,1#%; a~0!5a, a~1!51.

At t50, sa(t)5sa but att51, sa(t)Þsa . Let t0 be the first time thatsa(t) departs fromsa ; more
precisely,
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t05sup$s:sa~ t !5sa;0<t,s%.

By continuity, we then have thatsa(t0)
5 sa so thatsa(t0)

is not real. Now, by the argument in the
previous paragraph, which we recall follows from the supposition thats1 is strongly real,s is
locally constant ata. However, this means that

sa~ t01dt !5sa~ t0!

for all sufficiently smalldt. However, this contradicts the definition oft0, which means thats1
cannot be strongly real, proving the proposition.

Sinces1 is not strongly real, we ought to be able to prove the converse result of the conclu-
sion of the second paragraph of the above proof, and this is in fact the case.

Corollary 4: If sa is not real, thens is not locally constant at a.
If s is locally constant ata, then for allada in the neighborhoodVa of a,

sada5sa ;

now, sa is not real and so by proposition 2,

sada56sadda ,

which, with the previous equation, means that Eq.~7! is again true. However, that implies thats1
is strongly real, which contradicts the proposition.

Corollary 5: If at least two ofsa , sb , andsba are not strongly real, then all three phases are
not strongly real.

Suppose thatsa andsb are not strongly real but thatsba is. Sincesa is not strongly real,
corollary 4 implies thats is not locally constant ata. Thus, we can find ada close to 1 such that
sada is not equal to6sa or 61; in particularsada is not strongly real, so by corollary 3,

sbsada56sbada .

However, sincesba is strongly real,

sbada56sba56sbsa ,

contradicting the fact thatsadaÞ6sa . The other two cases are handled similarly.
Corollary 6: For da sufficiently close to 1, sda is not strongly real.
Choosea such thatsa is not real. By continuity,sada is also not real forda sufficiently close

to 1. Sincesa andsada are not real, they are not strongly real, so by corollary 5,sda is also not
strongly real.

With one main step remaining, we are now very close to our goal.
Proposition 4: There is no a such thatsa is strongly real.
Suppose there exists ana such thatsa is strongly real. We use the connectedness ofG to

construct a trajectory froma to the identity,

$a~ t !:tP@0,1#%; a~0!5a, a~1!51.

At t50, sa(t)5sa and hence is strongly real, but att51, sa(t)5s1 which is not strongly real. Let
t0 be the first time thatsa(t) is not strongly real; more precisely,

t05sup$s:sa~ t ! is strongly real;0<t,s%.

The definition oft0 means thatsa(t) is strongly real for allt,t0 and that, for alle.0, we can find
dtP@0,e# such thatsa(t01dt) is not strongly real.
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Supposesa(t0)
was itself strongly real. There is then a neighborhoodVa(t0)

such thats is real
and constant in that neighborhood. However, this lets us choose ane.0 such thata(t0 1 dt)
P Va(t0)

for all dtP@0,e#; sinces is real and constant in this neighborhood, this means that
sa(t01dt) is also strongly real, contradicting the definition oft0.

Suppose, then, thatsa(t0)
is not strongly real. Chooseda near 1 such that

a~ t0!da5a~ t02dt !,

wheredt is, as usual, small and positive. Sincesa(t0)
and, by corollary 6,sda are not strongly real,

by corollary 5,sa(t02dt) is not strongly real, again contradicting the definition oft0.
Sincesa(t0)

must be either strongly real or not strongly real, the supposition thatsa was
strongly real is false and we have proved the proposition. By corollary 3, therefore, Eq.~6! is
always true, so that the representation is central, in the case that thesa do not all commute. All
cases now having been covered, we have also proved the main corollary.

An alternative to the last couple of steps is to formH, the set of allaPG such thatsa is not
strongly real.H is then a subgroup ofG by corollary 5. We then prove thatH is an open subset
of G, and thatG\H, the set of allaPG such thatsa is strongly real, is also an open subset ofG.
However, by the definition of connectedness, there is no way to partitionG as the union of two
disjoint nonempty open sets, and since 1 is inH by proposition 3, it must beG\H that is empty,
proving proposition 4.

The above proof of the corollary to the structure theorem shows that for a multicentral~and
hence central! type III representation, either all thesa commute and can thus be rerayed to be
complex—so the representation is type II—or thes satisfy Eq.~6!—so the representation is type
I. The only irreducible multicentral projective quaternionic representations are, therefore, either
real projective representations or extensions of complex projective representations.
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We prove that the second cohomology group with coefficients in the adjoint mod-
ule of both the infinite-dimensional Lie superalgebrask~1! and k1~1!, as well as
their unique central extensions, which are known as the Neveu–Schwarz and the
Ramond superalgebras, respectively, is equal to zero. This particularly implies that
all these Lie superalgebras are rigid, i.e. they can only be deformed in a trivial
manner. ©1996 American Institute of Physics.@S0022-2488~96!03809-1#

I. INTRODUCTION

From the general theory on deformations of algebraic structures~see, e.g., Ref. 1!, we learn
that constructions of deformations involve cohomology computations. The infinitesimal part of an
algebra deformation can be represented as an element of the second cohomology group with
coefficients in the adjoint representation. An algebra is called rigid if all its deformations are
trivial, i.e. any algebra that is obtained from it by deformation is isomorphic to the original algebra
by means of an isomorphism that depends on the deformation parameter, which reduces to the
identity mapping when this deformation parameter is set equal to zero. A sufficient condition for
the rigidity of an algebra is that its second cohomology group is equal to zero. Therefore, algebras
that satisfy this condition are usually called absolutely rigid.

In recent years quite a number of papers have been written on the topic of deformations of
nilpotent subalgebras of graded infinite-dimensional Lie algebras~see, e.g., Refs. 2–6!. These
works show that the nilpotent subalgebras have several nontrivial deformations that have a fairly
simple algebraic description. In Refs. 7 and 8 the author shows that the situation is similar in the
case of graded infinite-dimensional Lie superalgebras. With respect to the corresponding graded
Lie ~super!algebras, one could say there is common consent that these Lie~super!algebras are
rigid. In this paper we show that the results of the cohomology computations for the positive
nilpotent part of the Neveu–Schwarz and the Ramond Lie superalgebras presented in Ref. 7, can
be fruitfully used to prove that these Lie superalgebras are absolutely rigid. In fact, the presented
method of rigidity proving is another illustration of the usefulness of studying these nilpotent
subalgebras.

The Neveu–Schwarz and Ramond superalgebras are usually called super-Virasoro algebras
since they can be viewed as superanalogs of the Virasoro algebra. As the Virasoro algebra arises
as the unique~up to equivalence! central extension of the Witt algebra, they are the unique central
extensions of the simple Lie superalgebrask~1! andk1~1!, respectively~see, e.g., Ref. 9!. Both
superalgebras appear in mathematical physics~see, e.g., Refs. 10 and 11!. For instance, in super-
string theory~see, e.g., Ref. 12! the Neveu–Schwarz algebra describes the super-Virasoro algebra
in the bosonic sector, whereas the Ramond algebra describes the super-Virasoro algebra in the
fermionic sector.

a!Electronic mail: nico@cwi.nl
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The Neveu–Schwarz algebra can be presented as theZ2-graded vector space with
$Lp ,D%pPZ as a basis of the even homogeneous part and$Gq%q11/2PZ as a basis of the odd
homogeneous part. Its commutator is defined by

@Lp ,Lq#5~p2q!Lp1q1
1
8~p

32p!dp1q,0D,

@Lp ,Gq#5~ 1
2p2q!Gp1q , ~1!

@Gp ,Gq#52Lp1q1
1
2~p

22 1
4!dp1q,0D,

and the property thatD is a central element. The Ramond algebra has$Lp ,D%pPZ as a basis of the
even homogeneous part and$Fq%qPZ as a basis of the odd homogeneous part. It is equipped with
the commutator

@Lp ,Lq#5~p2q!Lp1q1
1
8p

3dp1q,0D,

@Lp ,Fq#5~ 1
2p2q!Fp1q , ~2!

@Fp ,Fq#52Lp1q1
1
2p

2dp1q,0D,

whereD is defined to be central.

II. THE RIGIDITY OF k (1) AND NS

The Lie superalgebrak~1! ~see Ref. 9! is defined as theZ2-graded vector spaceC@t,t21,u#
equipped with the commutator

@ f ,g#5S 2 f2u
] f

]u D ]g

]t
2

] f

]t S 2g2u
]g

]u D2~21! u f u ] f

]u

]g

]u
, f ,gPC@ t,t21,u#. ~3!

The parametert is even and the parameteru is odd. The symbolu f u denotes the parity of the
elementf in C@t,t21,u#. As basis ofk~1! we choose$ep%pPZ where

e2p5tp11, e2p215utp ~pPZ!. ~4!

Note that the elements in this basis are homogeneous, in particular, the parity ofep equalsp
modulo 2. The unique central extension ofk~1!, which we denote byNS, is determined by the
2-cocyclecPZ2„k~1!…, defined as

c~ f`g!5ResH S ] f

]u
2u

] f

]t D ]2g

]t2
2~21! u f u ]2f

]t2 S ]g

]u
2u

]g

]t D J . ~5!

In this formula the symbol Res denotes the residue, i.e., Res(h) is the coefficient of the termut21

in hPC@t,t21,u#. The wedge~`! in formula ~5! denotes theZ2-graded antisymmetric tensor prod-
uct, so for homogeneous elementsf andg in k~1! we have

f`g5 f ^g2~21! u f uugug^ f52~21! u f uugug` f .

Naturally a basis forNS is found by adding the central elementg to the given basis ofk~1!. The
linear mapw defined by

w~ tp11!52L2p , w~utq!5G1/22q , w~g!5 1
4D ~p,qPZ! ~6!
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is an isomorphism that explicitly describes the connection between the description of the Neveu–
Schwarz algebra given in~1! and the one presented above. Besides theZ2 grading ofNS,

NS5 %

jPZ2

NSj , NS05~ %

jPZ
^e2 j&! % ^g&, NS15 %

jPZ
^e2 j21&,

which describesNS as a superspace, the elemente0 defines an inner grading onk~1! andNS by
means of its adjoint action. The basis elements are homogeneous with respect to this innerZ
grading. We denote the eigenspace ofad(e0) corresponding to the eigenvaluel byNS~l! ; then we
have

NS5 %

lPZ
NS~l! , NS~0!5^e0 ,g&, NS~l!5^el& ~lPZ\$0%!. ~7!

We remark that the inner grading is compatible with theZ2 grading in the sense that a homoge-
neous element of degreel has parityl modulo 2. For later use we write out explicitly the
commutators of the basis elements:

@e2 j ,e2k#52~k2 j !e2 j12k12k~k221!d j1k,0g,

@e2 j21e2k#5~k22 j11!e2 j12k21 ,
~8!

@e2 j21 ,e2k21#5e2 j12k2212k~k21!d j1k,1g,

@ej ,g#50.

The commutators ink~1! are the same with the omission of all terms involving the central element
g.

Theorem 1: The second cohomology group of k~1! with coefficients in the adjoint represen-
tation is equal to zero:

H2
„k~1!;k~1!…50.

Proof: TheZ grading ofk~1! induces aZ grading on the cochain complex~C•
„k(1);k(1)…,d!,

so we can write

Cq
„k~1!;k~1!…5 )

lPZ
Cq
„k~1!;k~1!…~l! ~qPZ!,

and similarly for the corresponding cohomology groups. For details on the coboundary operator on
this cochain complex and the corresponding cohomology groups we simply refer to Refs. 8, 13,
and 14. Since nonzero cohomology classes can only exist at degree zero~see, e.g., Ref. 8 or 15!,
we know that

Hq~k~1!;k~1!!~l!50 ~qPZ!,

for all degreesl not equal to zero. This observation reduces the work to be done considerably; we
can confine ourselves to studying homogeneous 2-cocycles of degree zero.

An arbitrary 2-cocycle of degree zero can be written as

c~ej`ek!5a j ,kej1k ~ j ,kPZ!, ~9!

with coefficientsaj ,kPC satisfyinga j ,k52(21) jkak, j . A cocycle represents a cohomology class,
in general; it is, however, not unique since there exist other cohomologically equivalent cocycles.

5860 N. W. van den Hijligenberg and Yu. Yu. Kotchetkov: The rigidity of NS and R superalgebras

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



By application of coboundary corrections, we will determine a set of conditions for the coeffi-
cientsaj ,k such that each cohomology class has a unique representative with coefficients that
satisfy these specific conditions.

Lemma 1: An arbitrary cohomology class of H2„k(1);k(1)…0 can be represented by a
2-cocycle as described by formula (9), with coefficientsaj ,k satisfying

a21,15a0,150, a j ,k50 ~ jk.0!.

Proof: We perform coboundary corrections in several steps. We refer to each step by the
condition it imposes on the coefficientsaj ,k .

Step 1:aj ,k50 ~j ,kPZ.0!
We define the Lie supersubalgebra ofk~1! spanned by the homogeneous elements of positive

degree and denote it by

k~1!15 %

lPZ.0

k~1!~l! .

In Ref. 7 we proved~by application of the Feigin–Fuchs spectral sequence; for its definition see
Ref. 16! thatH2

„k~1!1 ;k~1!1…~0!50; hence the restriction ofc to `2
„k~1!1… is a coboundary. So

there exists an elementb1 in C1
„k~1!1 ;k~1!1…~0! such thatd(b1)(ej`ek)5c(ej`ek) for all

j ,kPZ.0. We expandb1 trivially from k~1!1 to k~1! by definingb1(ej )50 for all jPZ<0 and we
replacec by c85c2d(b1). The 2-cocyclec8 has coefficientsa j ,k8 satisfyinga j ,k8 5 0 for all
j ,kPZ.0. From here on we will denotec8 again byc.

Step 2:aj ,k50 ~j ,kPZ,0!
Similar to the previous step, we define

k~1!25 %

lPZ,0

k~1!~l! ;

this is the Lie supersubalgebra ofk~1! spanned by the homogeneous elements of negative degree.
It is isomorphic tok~1!1 by the isomorphismw: k(1)1→k(1)2 , satisfying

H w~e2 j !52e22 j

w~e2 j21!5 ie122 j
~ jPZ.0!.

Hence,H2
„k(1)2 ;k(1)2…~0!50 and there exists an elementb2 in C1

„k(1);k(1)…~0! such that
„d(b2)2c…(ej`ek)50, ~j ,kPZ,0!, and b2(ej )50, ~jPN!. In particular, we have
d(b2)(ej`ek)50 for all j ,kPZ.0, sod(b2) respects the previous conditions for the coefficients
aj ,k . We adjustc to c2d(b2) and obtainaj ,k50 for all j ,kPZ,0.

Step 3:a0,150
We define the elementb3 in C1

„k(1);k(1)…~0! by b3(ej )5d j ,0e0 ~jPZ!. The coboundary
d(b3) satisfiesd(b3)(ej`ek)50 ~jk.0!, so it respects the preceding conditions for the coeffi-
cientsaj ,k . Sinced(b3)(e0`e1)5e1 we can adjustc such thata0,1 becomes zero.

Step 4:a21,150
Defineb4PC1

„k(1);k(1)…~0! by b4(ej )5 jej ~jPZ.0! andb4(ej )50 ~jPZ<0!. One easily
verifies thatd(b4)(ej`ek)50 for jk>0, hence the coboundaryd(b4) respects the preceding
conditions foraj ,k . On account ofd(b4)(e21`e1)5e0 it is possible to adjustc such that
a21,1,50. h

It is not yet clear that a representative of the form described in the previous lemma is unique.
We will prove that any 2-cocycle that satisfies these conditions is equal to zero. The cocycle
conditiond(c)50 gives rise to four types of equations for the coefficientsaj ,k . Since we will need
them frequently we write down these equations explicitly:d(c)(e2 j`e2k`e2l)50 gives
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~k2 j !a2 j12k,2l2~ l2 j !a2 j12l ,2k1~ l2k!a2l12k,2j

2~ l1k2 j !a2k,2l1~ j1 l2k!a2 j ,2l2~ j1k2 l !a2 j ,2k50; ~10!

d(c)(e2 j21`e2k`e2l)50 gives

~k22 j11!a2 j12k21,2l2~ l22 j11!a2 j12l21,2k12~ l2k!a2k12l ,2j21

2~ l1k22 j11!a2k,2l1~2l12 j2k21!a2 j21,2l2~2 j12k2 l21!a2 j21,2k50; ~11!

d(c)(e2 j21`e2k21`e2l)50 gives

a2 j12k22,2l2~ l22 j11!a2 j12l21,2k212~ l22k11!a2k12l21,2j21

2a2k21,2l2a2 j21,2l22~ j1k2 l21!a2 j21,2k2150; ~12!

andd(c)(e2 j21`e2k21`e2l21)50 gives

a2 j12k22,2l211a2 j12l22,2k211a2k12l22,2j212~k1 l22 j !a2k21,2l21

2~ j1 l22k!a2 j21,2l212~ j1k22l !a2 j21,2k2150. ~13!

By substituting specific values forj , k, andl in these equations we prove in several steps that
all coefficientsaj ,k are equal to zero. Again we refer to each step by the condition it imposes on
the coefficients.

Step 1:a0,p50 ~pPZ!
We substitute (j ,l )5(k,0) in ~12! and find a4k22,052a2k21,0. In particular k51 yields

a0,250, then by substituting (j ,k,l )5~0,Z.0,Z.0! in ~10! we find
( l2k)(a2l12k,02a2l ,02a2k,0)50 anda0,2l5 la0,250 for all lPZ.0. A similar proof can be given
for lPZ,0 since putting (j ,k,l )5~0,1,0! in ~12! yieldsa21,050.

Step 2:a21,p5a1,p50 ~pPZ!
We already havea21,p50 for p<1; in order to show thata21,p50 for p>2 we take

( j ,k,l )5~0,1,Z.0! and (j ,k,l )5~0,Z.0,1! in ~12!, yielding 2( l21)a21,2l112a21,2l50 and
22(12k)a21,2k112a21,222(k22)a21,2k2150. The choicel51 in the first equation gives
a21,250, and by that the second one yieldsa21,2k115(k22)a21,2k21/(k21). The choicek52
gives a21,550 and by induction we finda21,2p1150 for p>2. Then again, the first implies
a21,p50 for all p>4. The last casea21,350 follows from substituting (j ,k,l )5~10,0,2! in ~13!.
The casea1,p50 for all pPZ can be handled similarly.

Step 3:a2,2p5a22,2p50 ~pPZ!
We considera2,2p with pPZ,0. Putting (j ,k,l )5~1,1,21! in ~12! yields a22,250 and

( j ,k,l )5~21,Z,0,1! in ~10! gives (k11)a2k22,22(k12)a2k,250. So by takingk522 we obtain
a2,2650 and inductivelya2,2p50 for all p<23. The conditiona2,2450 follows from (j ,k,l )
5~23,22,1! in ~10!. The casea22,2p can be handled similarly.

Step 4:a4,2p50 ~pPZ!
We only need to considerp,21. We substitute (j ,k,l )5~21,Z,0,2! in ~10! and obtain

(k11)a2k22,42(k13)a2k,450. The choicek523 yields a4,2p50 for p<24. By combining
k522 with ( j ,k,l )5~23,22,2! in ~10!, we obtaina4,265a4,2450 and hencea4,2p50 for all p in
Z.

Step 5:a2n,2p50 ~n,pPZ!
We only need to considera2n,2p with nPN andpPZ. The casesn50,1,2 are already evident.

We proceed by induction, assuming thata2 j ,2p50 for all j<n. Substituting (j ,k,l )5(p,1,n) in
~10! gives (n21)a2n12,2p50.

Step 6:a2,p50, ~pPZ!
We only need to consider oddp. Put (k,l )5~1,1! in ~13!, thena2,2j2150.
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Step 7:a3,p50 ~pPZ!
We put (j ,k)5~2,0! in ~12! and ~13! and find a2l ,32( l11)a3,2l2150 and

a2l22,32( l12)a3,2l2150. Settingl522 yields by inductiona3,p50 for p<26. The casep524
follows from, e.g., (j ,k,l )5~2,210,212! in ~11! and puttingl521 and l522 in the equations
above yielda3,235a3,2550. By this and previous steps all coefficientsa3,p are equal to zero.

Step 8:an,p50 ~n,pPZ!
We only need to prove this fornPN andpPZ. We use induction onn. The casesn50,1,2,3

are evident on account of previous steps. It is completed by the substitutions

~ j ,k,l !5~1,p,n! in ~11!, ~12n!a2n11,2p50 ~n>2!,

~ j ,k,l !5~p11,1,n! in ~12!, ~12n!a2n11,2p1150 ~n>2!,

~ j ,k,l !5~p11,1,n! in ~13!, a2n,2p1150.

This completes the proof that any 2-cocycle of degree zero is a coboundary. So by the previous
remarks on the inner grading we haveH2

„k(1);k(1)…50.
We will use the same technique to prove that the central extensionNS is rigid.
Theorem 2: The second cohomology group of NS with coefficients in the adjoint represen-

tation is equal to zero:

H2~NS;NS!50.

Proof: Due to the inner grading ofNS it suffices to prove thatH2(NS;NS)050. An arbitrary
2-cocycle of degree zero can be written as

c~ej`ek!5a j ,kej1k1d j1k,0bkg ~ j ,kPZ!,
~14!

c~g`ej !5l jej1d j ,0mg ~ jPZ!,

whereaj ,k , bk , lj , andm are complex numbers satisfying

a j ,k52~21! jkak, j ~ j ,kPZ!, b2k52~21!kbk ~kPZ!.

Again we use coboundary corrections to choose representatives of a specific form. The notation
will be similar to the one in Theorem 1.

Lemma 2: An arbitrary cohomology class of H2(NS;NS)0 can be represented by a 2-cocycle
as described by formula (14), with coefficients satisfying

a21,15a0,15b15b35l150, a j ,k50 ~ jk.0!.

Proof:
Step 1:a21,15a0,150 aj ,k50 ~jk.0!
Use the coboundariesd(bl) ~1<l<4!, wherebl is the extension of the elementbl given in

Theorem 1, defined bybl~g!50.
Step 2:l150
We defineb5 in C1(NS;NS) ~0! by b5(g)5e0 , b5(ej )50, ~jPZ!; thend(b5)(g`e1)5e1 so

we obtainl150.
Step 3:b150
We define b6 in C1(NS;NS) ~0! by b6~g!50, b6(el)5d l ,0g, ~lPZ!, and we see that

d(b6)(e21`e1)52g. By this b1 becomes zero.
Step 4:b350
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Define b7 in C1(NS;NS) ~0! by b7~g!5g, b7(el)50, ~lPZ!; then d(b7)(e23`e3)524g ;
henceb3 becomes zero.

It can easily be verified that all these corrections respect the preceding ones. h

We will prove that any representativec of this form is equal to zero. For that purpose we write
out some consequences of the cocycle conditiond(c)50:

d~c!~g`e2 j21`e2k21!5~l2 j12k222l2k212l2 j21!e2 j12k22

1d j1k,1~m2l2 j212 j ~ j21!2l2k212k~k21!!g50, ~15!

d~c!~g`e2 j21`e2k!5~k22 j11!~l2 j12k212l2k2l2 j21!e2 j12k2150, ~16!

d~c!~g`e2 j`e2k!52~k2 j !~l2 j12k2l2 j2l2k!e2 j12k

12kd j1k,0~2m2~k221!~l2 j1l2k!!g50. ~17!

We take (j ,k)5~1,0! in ~15! andk50 in ~16! and obtainm5l050. By substitutingj51 in ~15!
and~16!, we findlk5l150 for all kPZ. Since the equations~10!–~13! still hold, we conclude that
aj ,k50 for all j andk in Z. Finally, we prove that the coefficientsbj are equal to zero,

d~c!~e2 j21`e2k21`e222 j22k!

52$b222 j22k1~3 j1k22!b2k211~3k1 j22!b2 j21%g50, ~18!

d~c!~e2 j`e2k`e22 j22k!52$~k2 j !b2 j12k2~2 j1k!b2k1~2k1 j !b2 j%g50. ~19!

We substitute (j ,k)5~1,1! and (j ,k)5~1,2! in ~18! and obtainb25b450. The choicej51 in
~19! yieldsb2k125[(k12)/(k21)]b2k ~kÞ1!, and by induction allb2k are equal to zero. Then
j5k in ~18! impliesb2k2150 for all k in Z and the proof is complete. h

III. THE RIGIDITY OF k1(1) AND R

The Lie superalgebrak1~1! ~see Ref. 9! looks quite similar tok~1!; it consists of theZ2-graded
vector spaceC@ t,t21,uAt# equipped with the commutator of formula~3!. We define a basis of
k1~1! by $ep%pPZ , where

e2p5tp11, e2p215utpAt ~pPZ!.

The elements in this basis are homogeneous; the parity ofep is p modulo 2. The Ramond algebra
is the unique central extension ofk1~1!. It is described by the 2-cocycle of formula~5! and we
shall denote it byR. Let g denote the central element ofR. An isomorphism that relates this
description with the one presented by formula~2! in the Introduction can be given by

w~ tp11!52L2p1
1
16dp,0D, w~utqAt !5F2q , w~g!5 1

4D ~p,qPZ!. ~20!

We will use the inner grading ofR corresponding to the special element1
2e0. This boils down

to

R5 %

lPZ
R~l! , R~l!5^e2l21 ,e2l& ~lPZ\$0%!, R~0!5^e21 ,e0 ,g&.

The basis elements are homogeneous with respect to thisZ grading, however, theZ2 grading ofR
is not compatible with thisZ grading. To be more precise, we have

R~l!5R~l!,0%R~l!,15^e2l& % ^e2l21& ~lÞ0!
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and

R~0!5R~0!,0%R~0!,15^e0 ,g& % ^e21&.

This makes the rigidity proof in this case slightly more technical than the one presented in the
previous section. For later use we write out the commutators of the basis elements:

@e2 j ,e2k#52~k2 j !e2 j12k12k~k221!d j1k,0g,

@e2 j21 ,e2k#5~k22 j !e2 j12k21 ,
~21!

@e2 j21 ,e2k21#5e2 j12k12~k22 1
4!d j1k,0g ,

@ej ,g#50.

The commutators ink1~1! are as described above with the omission of all the terms involving the
central elementg.

Theorem 3: The even part of the second cohomology group of k1~1! with coefficients in the
adjoint representation is equal to zero:

H2
„k1~1!;k1~1!…50.

Proof: Due to the inner grading ofk1~1!, we only need to proveH2
„k1(1);k1~1!…~0!,050, i.e.

we can restrict ourselves to studying even 2-cocycles of degree zero. We will use the same
technique as described in the two proofs of the previous section, therefore we will confine our-
selves to shortly indicating the various steps without discussing them in detail.

An even 2-cocyclec of degree zero is of the following form:

c~e2 j`e2k!5a2 j ,2ke2 j12k ,

c~e2 j21`e2k!5a2 j21,2ke2 j12k21 , ~22!

c~e2 j21`e2k21!5a2 j21,2k21e2 j12k ,

with aj ,kPC anda j ,k52(21) jkak, j ~j ,kPZ!.
Lemma 3: An arbitrary cohomology class of H2„k1(1);k1~1!…~0!,0 can be represented by a

2-cocycle as described by formula (22), with coefficientsaj ,k satisfying

a22,215a22,15a0,150, a j ,k50 ~ j ,k.0; j ,k,21!.

Proof:
Step 1:aj ,k50 ~j ,k.0!
Define

k1~1!15 %

lPZ.0

k1~1!~l! ;

this is the Lie supersubalgebra ofk1~1! spanned by the homogeneous elements of positive degree.
From Ref. 7 we know thatH2

„k1(1)1 ;k1~1!1…~0!50; hence the restriction ofc to `2
„k1~1!1… is

a coboundary. By subtractingd(b1) from c, whereb1 denotes the trivial expansion of the element
that yields the coboundary mentioned above, we obtain a 2-cocycle with coefficientsaj ,k satisfy-
ing the described property.

Step 2:aj ,k50 ~j ,k,21!
Define
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k1~1!25 %

lPZ,0

k1~1!~l!

and note thatk1~1!2 is isomorphic tok1~1!1 by the isomorphismw:k1(1)1→k1(1)2 , given by

H w~e2 j !52e22 j

w~e2 j21!5 ie22 j21
~ jPZ.0!.

By a similar argument as given in Step 1, we obtainaj ,k50 for j ,k,21.
Step 3:a0,150
Used(b2) with b2(ej )5d j ,0e0 ~jPZ!; thend(b2)(e0`e1)52e1 .
Step 4:a22,2150
Used(b3) with b3(ej )5d j11,0e21 ~jPZ!; thend(b3)(e22`e21)5e23.
Step 5:a22,150
Define b4 by b4(e2 j )5 je2 j ,b4(e2 j21)5 je2 j21 ~jPZ<0!, and b4(ej )50 ~jPZ.0!; then

d(b4)(e22`e1)523e21.
One can easily verify that each coboundary respects the conditions that have been imposed on

the coefficientsaj ,k in preceding steps. h

By similar inductive arguments, as demonstrated in the preceding theorems, one can prove
that any 2-cocycle of the form described in the lemma is equal to zero. By that the proof is
complete. h

Theorem 4: The even part of the second cohomology group of R with coefficients in the
adjoint representation is equal to zero:

H2~R;R!050.

Proof: Due to the inner grading ofR, it is sufficient to prove thatH2(R;R) ~0!,050. An arbitrary
even 2-cocycle of degree zero can be written as

c~e2 j`e2k!5a2 j ,2ke2 j12k1d j1k,0b2kg,

c~e2 j21`e2k!5a2 j21,2ke2 j12k21 ,
~23!

c~e2 j21`e2k21!5a2 j21,2k21e2 j12k1d j1k,0b2k21g,

c~cg`ej !5l jej1d j ,0mg,

wherea j ,k ,bk ,l j , andm are complex numbers such that

a j ,k52~21! jkak, j ~ j ,kPZ!, b22k52b2k , b2k215b22k21 ~kPZ!.

Lemma 4: An arbitrary cohomology class of H2(R;R) ~0!,0 can be represented by a 2-cocycle as
described by formula (23), with coefficientsaj ,k satisfying

a22,215a22,15a0,150, a j ,k50 ~ j ,k.0; j ,k,21!,

and coefficientsbk andlj that satisfy

b15b25l250.

Proof: It is evident that the restrictions from Step 1–5 from Theorem 3 can also be obtained for
aj ,k in this case. Furthermore, we perform the following steps.

Step 1:b250
Used(b1) with b1(ej )5d j ,0g ~jPZ!, andb1~g!50; thend(b1)(e22`e2)524g.
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Step 2:b150
Used(b2) with b2~g!5g andb2(ej )50 ~jPZ!; thend(b2)(e23`e1)52 3

2g.
Step 3:l250

Used(b3) with b3(g)5e0 andb3(ej )50 ~jPZ!; thend(b3)(g`e2)52e2 . h

We will prove that any 2-cocyclec given by~23!, with coefficients satisfying the conditions
of the preceding lemma, is equal to zero,

d~c!~g`e2 j`e2k!52~k2 j !~l2 j12k2l2 j2l2k!e2 j12k

1d j1k,02k„2m2~k221!~l2 j1l2k!…g50, ~24!

d~c!~g`e2 j21`e2k!5~k22 j !~l2 j12k212l2 j212l2k!e2 j12k2150, ~25!

d~c!~g`e2 j21`e2 j21!5~l4 j22l2 j21!e4 j1d j ,0~m1l21!g50. ~26!

From the substitution (j ,k)5~21,1! in ~24!, we obtainm50. Then j50 in ~26! yields l2150.
Fromk51 in ~25! we concludel2 j215l2150 for all jPZ. Finally, Eq.~25! impliesl2k50 for all
kPZ.

Since the conditions for the coefficientsaj ,k from Lemma 4 coincide with the conditions in
Lemma 3, the proof of the preceding theorem implies that all coefficientsaj ,k are equal to zero. In
order to show thatbk equals zero for allkPZ, we write out the following two expressions:

d~c!~e2 j`e2k`e22 j22k!52$~k2 j !b2 j12k2~k12 j !b2k1~2k1 j !b2 j%g50, ~27!

d~c!~e2 j21`e2k21`e22 j22k!5$b2 j12k2~k13 j !b2k212~ j13k!b2 j21%g50. ~28!

We take (j ,k)5~1,1! in ~28! and obtainb450. Then by inductive use of Eq.~27! we conclude that
b2k50 for all kPZ. Finally, j51 in ~28! givesb2k2150 for all kPZ. This completes the proof that
any even 2-cocycle of degree zero is a coboundary. h

IV. SOME FINAL REMARKS

The even parts of the Lie superalgebrasNS andR are isomorphic to the Virasoro algebra.
Therefore one could consider the rigidity proofs of these superalgebras, as extensions of a rigidity
proof for the Virasoro algebra. In fact, this is how the presented technique has arisen. This
technique can also be used with respect toW algebras, work on this is in progress.

In the introductory part of this paper we mentioned the possibility of deforming Lie superal-
gebras. A deformation of a Lie superalgebraL is defined by a new commutator onL, which is a
power series in a formal parameter, with the zeroth-order term equal to the bracket ofL. Since the
parameter involved is usually even, it is only the even part of the cohomology group ofL that is
of interest with respect to the rigidity ofL. Nevertheless, one can formally carry out the construc-
tion of a deformation ofL by using an odd parameter, such deformations are therefore called odd
deformations. For details on this we refer to Ref. 8. On account ofZ homogeneity; the cocycle that
describes an odd deformation needs to be odd. By consequence, a sufficient condition for the
rigidity of a Lie superalgebra with respect to these kinds of odd deformations is that the odd
component of its second cohomology group with coefficients in the adjoint module is equal to
zero. From Theorems 1 and 2 we learn thatk~1! andNSsatisfy this condition. We can give proofs
similar to the ones given in Theorems 3 and 4, to show thatH2

„k1(1);k1~1!…150 and
H2(R;R)150. Hence, we can conclude that the Lie superalgebrask~1!, k1~1!, NS, andR are also
rigid with respect to odd deformations.
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A classical method of stationary phase for oscillatory integrals is generalized to
oscillatory Riemann–Hilbert problems of the kind arising in the theory of inte-
grable nonlinear equations. The proposed approach is developed for the phase with
N first-order stationary points, and the final formulas can immediately be applied to
the problem of long-time behavior of the solutions of equations such as the NLS,
KdV, mKdV sine-Gordon, and others. ©1996 American Institute of Physics.
@S0022-2488~96!01111-5#

I. INTRODUCTION

It is well known that the Riemann–Hilbert problem~RHP! plays an important role in the study
of a certain class of nonlinear evolution equations.1 In particular, the long-time behavior of the
solution of the initial value problem for the evolution equation can be found by finding a viable
method of asymptotic analysis of the RHP. A great progress has already been made when that is
the 232 matrix RHP on the real axis with oscillations in its conjugation matrix: this will also be
treated here. However, the results obtained in this paper are more general, and the approach used
allows us to formulate these results in the spirit of the method of stationary phase.

The mentioned oscillatory Riemann–Hilbert problem is a search for a matrixM ~l! analytic in
l for Im lÞ0, satisfying a conjugation condition on the real axis, and normalized at infinity:

M1~l!5M2~l!G~l,t !, lPR,

M ~`!5I , ~1.1!

where the jump~conjugation! matrix,G(l,t) is given by

G~l,t !5S 11p~l!q~l! p~l!e2 i tu~l!

q~l!eitu~l! 1 D . ~1.2!

Solving a nonlinear wave equation by the inverse scattering method, one looks for potentials

u~ t !5 lim
l→`

lM12~l!, v~ t !5 lim
l→`

lM21~l!. ~1.3!

In this paper, we study~1.1! with general phase, assuming that it hasN first-order stationary
phase points. More precisely, it is supposed that

~A! p~l!, q~l! belong to the Schwartz space.
~B! uPC`(R), Im u~l!50, u~l!;ld asl→6`, whered is some integer. The asymptotics are

differentiable.
~C! The first derivative ofu vanishes only in pointsl1,...,lN , whereu9~ln!Þ0.
~D! 11p(l)q~l!.0 for all lPR.

Conditions A and B can be chosen weaker but we use them in order to simplify formulations of
some results. On the contrary, assumptions C and D are strict.

a!Electronic mail: varzugin@phim.niif.spb.su

0022-2488/96/37(11)/5869/24/$10.00
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Theorem: Let conditions A, B, C, and D be satisfied. Then, there is a numbert0 such that the
solution of the RHP exists at least fort>t0. The leading asymptotics of the potentials are given as
the sum of contributions from the distinct stationary phase points:

u~ t !5 (
n51

N

u0
n~ t !1O~ t23/4 ln t !, v~ t !5 (

n51

N

v0
n~ t !1O~ t23/4 ln t !. ~1.4!

The functionsu0
n andv0

n are determined by

u0
n5

inn

«nAunnu9~ln!tu

p~ln!

Aup~ln!q~ln!u
exp$2 i tu~ln!2 inn lnuu9~ln!tu1 ian~l1 ,...,lN!%,

~1.5a!

v0
n5

inn

«nAunnu9~ln!tu

q~ln!

Aup~ln!q~ln!u
exp$ i tu~ln!1 inn lnuu9~ln!tu2 ian~l1 ,...,lN!%,

~1.5b!

where

«n5sgnu9~ln!, nn52
1

2p
«n ln„11p~ln!q~ln!…,

and

an~l1•••lN!5«n
p

4
1argG~ inn!1 (

k51,kÞn

N

2nk lnuln2lku

1
1

p E
u8~z!,0

lnuz2lnud ln„11p~z!q~z!…

~hereG is the standard gamma function!. Moreover, foruIm lu>a.0, one has

M ~l!5S d~l! d21~l! (
n51

N

u0
n/~l2ln!

d~l! (
n51

N

v0
n/~l2ln! d21~l!

D 1O~ t23/4 ln t !, ~1.6!

where

d~l!5expH 1

2p i Eu8~z!,0

ln„11p~z!q~z!…

z2l
dzJ .

The order of decay of the corrections in formulas~1.4! and~1.6! is not the best possible one:
the estimates for these corrections in~1.4! and~1.6! for the nondiagonal elements ofM ~l! can be
improved to ordert23/2 ln t. The error term for the diagonal part ofM ~l! in ~1.6! must be
O~t21 ln t!.

The firstdirectmethod for analyzing the asymptotics of the factorization problem~1.1! was
proposed by Its.2 Its considered the nonlinear Schro¨dinger equation ~NLS! @the phase,
u~l!5~l2l0!

2, has one stationary point in this case# and showed that problem~1.1! could be
reduced, up to small errors which decay ast→`, to a model RHP, which in turn was explicitly
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solvable. The extension of those ideas to the phase with more then one stationary point led to the
necessity of involving the technique~which is quite difficult itself! from the theory of isomono-
dromic deformations.3

The second was presented by Deift and Zhou4 who investigated the modified Korteweg–de
Vries equation~mKdV!. The phase,u~l!54~l323l0

2l!, has two stationary points in this case.
They separated the contribution from the distinct stationary phase points and derived the model
RH problem by deforming contours in the spirit of the classical method of steepest descent. In
other words, they reduced the situation with two stationary phase points to the situation with one
stationary phase point. The Deift–Zhou procedure is a general and rigorous approach to analyzing
oscillatory RHPs of the form~1.1!.

We emphasize that only the direct approaches to~1.1! have been described, i.e., those not
involving a priori ansatz for the asymptotic form of the solution of an integrable nonlinear
equation~the further references can be found in Refs. 3 and 4!. We mention also that formulas
~1.4! and ~1.5! have already appeared in the literature5 but as a hypothesis.

Before describing the background of this paper and its relationship with earlier works, let us
recall the classical theory of oscillatory integrals. Note that ifp~l!50, we derive that

v~ t !5
i

2p E
2`

`

q~l!eitu~l! dl, u~ t !50. ~1.7!

For studying~1.7! there exist two commonly known approaches: the method of steepest descent
and the method of stationary phase. The main idea of the first is an appropriate deformation of the
contour of integretion. This method can be applied only ifq andu are analytic, but it may give
more detailed information about the asymptotic behavior of~1.7! and can be used when the
contour is not the real axis. The method of stationary phase is based on integration by parts and is
applicable whenq andu are smooth functions. In this paper, we advocate the point of view that
all results obtained for oscillatory integrals can be generalized to oscillatory RHPs~1.1!. Indeed,
it has been shown by the authors of Ref. 4 that one can investigate~1.1! by deforming the
conjugation contour of~1.1!. It is worth mentioning that in Ref. 4 a special technique of rational
approximations ofq was developed to include not only analyticq. The theorem posed in this
Introduction establishes a result which, in the classical theory, is stated by the method of stationary
phase. It is interesting to note that formulas~1.4! and ~1.5! become classical if one passes to the
limit p→0 and takes into account that the potentials in this case are given by~1.7!.

The present paper is closely related to Refs. 2 and 4. We proceed by conjugating the original
RHP ~1.1! to

M1
F~l!5M2

F~l!F2
21~l!G~l,t !F1~l!, lPR,

~1.1!
MF~`!5I ,

where piecewise analytical matrix functionF is constructed explicitly: this is a way of Ref. 2 as
well. The transformation~1.8! is employed both to localize the problem and to derive the model
RHP. The latter was introduced in Ref. 2. The scheme of proof in the method of Ref. 2 was not
developed rigorously. As it was demonstrated in Ref. 4, the most successful way for justification
of asymptotics is to use the operator approach to the RHP of Beals and Coifman.6 This is also
applied here in a manner similar to Ref. 4, however, on the basis of completely different estimates.

As a final remark, we say a few words on the relationship between the steepest descent
method and the method of stationary phase. Suppose it is desired to evaluate an integral

I ~ t !5E
a

b

q~l!eitu~l! dl
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as t→`, whereq~l! and u~l! are smooth, andu~l! is real. If q~l! is analytic, andu~l! is real
analytic, and if, in addition, for some~small! «.0,

Im u~l!.0 for a,Rel,b, 0,Im l,«, ~1.8!

then the above integral can be deformed to an integral on a contour lying ina ,Rel,b,
0,Im l,«. But then Reiu~l!,0, and ast→`, the leading contributions toI (t) clearly arises
from small neighborhoods ofa andb. These observations, in particular, are taken for the ground
of the method in Ref. 4.

Now asu~l! is real analytic, it follows from~1.8! and the Cauchy–Riemann equations that

u8~l!5
] Re u

]~Rel!
~l!5

] Im u

]~ Im l!
~l!.0,

and hence asu8~l!Þ0 in (a,b) one can evaluateI (t) asymptotically simply integrating by parts on
the real axis. In other words analyticity is not needed to evaluateI (t) as t→`: all that is needed
are familiar to~1.8! conditions on the signature ofu8~l! on appropriate subintervals ofR. This is
the basis of the method in the present paper.

II. THE SCALAR RIEMANN–HILBERT PROBLEM

In this section, we discuss the properties of the solution of the scalar factorization problem:

d1~l!5d2~l!„11p~l!q~l!…, lPD2 ,

d1~l!5d2~l!, lPD1 , ~2.1!

d~`!51,

where

D15$l:lPR,u8~l!.0%, D25$l:lPR,u8~l!,0%. ~2.2!

The role ofd~l! will be made clear in the sequel.
The problem~2.1! has a unique solution in the class of bounded functions. It is given by the

following formula:

ln d~l!5
1

2p i ED2

ln„11p~l!q~l!…

z2l
dz. ~2.3!

Standard theorems concerning singular integrals reveal thatd6 are smooth functions in the domain
D1øD2 . The preceding as well as following statements are a consequence of conditions A and
D.

Assume for the moment that

n~l!52
1

2p
ln„11p~l!q~l!… ~2.4!

is analytic in some small neighborhood of the stationary phase pointln . Then, one can verify
calculating the jump on the left-hand side of

ln d~l!2 i«nn~l!ln„«n~l2ln!…5L~l! ~2.5!
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thatL is analytic in a neighborhood ofln . We choose the principle branch of the logarithm, and
«n denotes sgnu 9~ln!.

Now, consider the general case. Letw~l! be a finite function whose support contains only one
stationary phase pointln andw~l!51 if ul2lnu<r ,r.0. Furthermore, splitn~l! as follows:

n~l!5n1~l!w~l!1„n~l!2n1~l!…w~l!1n~l!„12w~l!…,
~2.6!

n1~l!5 (
k50

m11
n~k!~ln!

k!
~l2ln!

k.

Divide ~2.3! into three Cauchy integrals in accordance with~2.6!. The density of the third Cauchy
integral is zero whenzPI n ~I n denotes the intervaluz2lnu,r !, hence analytic in the circle
ul2lnu,r . The density of the second Cauchy integral can be extended by zero fromD2ùI n to
I n : the extension belongs toCm11(I n). Therefore, this integral produces the piecewise analytic
function whose boundary values are inCm(I n). The first term in~2.6! is analytic in the circle
ul2lnu,r . Thus ~2.5! and ~2.6! give rise to the proceeding representation ford~l! in a small
neighborhood ofln :

ln d~l!5 i«nn
1~l!ln «n~l2ln!1L1~l!. ~2.7!

In ~2.7!, L1 is analytic for ImlÞ0, ul2lnu,r , and its boundary values,L6
1 , belong toCm(I n).

Note also that

L1
1 ~ln!5L2

1 ~ln![ ig~ln!. ~2.8!

From ~2.7! it is easy to see that the local behavior ofd~l! at ln is described by

d n~l!5~l2ln!
inn«n

inneig~ln!, 2p,arg «n~l2ln!,p,

~2.9!
nn5«nn~ln![sgnu9~ln!n~ln!.

We summarize the results as follows:
Proposition 2.1:Let d~l! be a solution of~2.1! in the class of bounded functions. Then,
~1! it is unique, andd6 are smooth functions inD1øD2 , and
~2! in a sufficiently small neighborhood of the stationary phase pointln , the following

estimates are valid:

U dk
dlk d6~l!U< C

ul2lnuk
, ~2.10!

ud~l!2dn~l!u<Cul2lnu lnul2lnu. ~2.11!

A simple way to derive an explicit expression forg~ln! is to obtain it through

e2ig~ln!5 lim
l→ln

ul2lnu22innd1~l!d2~l!. ~2.12!

Direct calculations lead to

g~ln!5 (
k51,kÞn

N

nk lnuln2lku1
1

2p E
D2

lnuz2lnud ln„11p~z!q~z!…. ~2.13!

Here we have used the fact that
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ln d1~l!d2~l!5 (
k51

N

2ink lnul2lku22i E
D2

lnuz2ludn~z!. ~2.14!

Identity ~2.14! is found by integration by parts.
In later sections, we shall thoroughly investigate the piecewise analytic matrix

m~l!5M ~l!e2s3 ln d~l!. ~2.15!

It satisfies the following factorization problem:

m1~l!5m2~l!~b2!21b1, m~`!5I , ~2.16!

whereb6 are triangular matrices,

b1~l!5S 1 0

r̄~l,t ! 1D , b2~l!5S 1 2r~l,t !

0 1 D ~2.17a!

if lPD1 ,

b1~l!5S 1 r~l,t !

0 1 D , b2~l!5S 1 0

2 r̄~l,t ! 1D ~2.17b!

if lPD2 . Here, we have introduced the notations:

r~l,t !5p~l!d1~l!d2~l!e2 i tu~l!, r̄~l,t !5q~l!d1
21~l!d2

21~l!eitu~l!. ~2.18!

It is clear that one may find the potentials,u andv, through the solutions of~2.16! by the same
formulas~1.3! with m~l! in place ofM ~l!.

III. OPERATOR FORMULATION OF THE RHP

As in Ref. 4 we shall employ the method of Beals and Coifman6 in order to construct the
singular integral equation associated with~2.16!. It will be the basis for later proofs. All the results
in this section can be found in Ref. 6. They are given here merely for convenience of subsequent
use.

We begin with classical properties of Cauchy operators,

~C6 f !~l!5
1

2p i
lim
«→0

E
2`

` f ~z!

z2~l6 i«!
dz, «.0. ~3.1!

A natural way of treatingC6 is to regard them as operators inL2(R). The Fourier transform gives

~C6 f !~l!56E
2`

`

f̂ ~s!H~7s!e2 isl ds, ~3.2!

whereH(s) is the Heavyside unit symbol. It follows trivially from~3.2! that6C6 are bounded
operators fromL2(R) to L2(R); moreover, they are mutually complementary orthogonal projec-
tion operators.

Introduce

Cwf5C1~ fw2!1C2~ fw1!, ~3.3!

where
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w656~b62I ! ~3.4!

and

w5w11w2. ~3.5!

The operatorCw in ~3.3! acts on the space of 232 matrix-valued functions. It is understood
throughout the article that theL2 and L`-norms, respectively, in this space are conventionally
given by

i f iL2~R!
2 5E

2`

`

trace f f * dl, i f iL`~R!5sup
l

u f ~l!u,

andu f u denotes maxi j u f i j u. The matricesw
6 are ambiguously determined by the jump matrix of the

RHP. However, we shall call them the data of the RHP, pointing out explicitly the chosen
factorization of the jump matrix.

Let m be a solution of the basic integral equation

m5I1Cwm. ~3.6!

If the solution of Eq.~3.6! exists, then one defines the solution of RHP~2.16! as

m~l!5I1
1

2p i E2`

` m~z!w~z!

z2l
dz. ~3.7!

Indeed, simple calculations show that

m6~l!5I1C6~mw1!1C6~mw2!56mw61I1Cwm5m~ I6w6!5mb6~l!, ~3.8!

which implies ~2.16!. It is not necessary, but sufficient, to suppose thatw6PL2(R)ùL`(R).
Then,Cw is a bounded map fromL`(R) to L2(R); hence,Cw(I )PL2(R),

iCw~ I !iL2~R!<iw2iL2~R!1iw1iL2~R! . ~3.9!

This fact, along with the uniqueness of the solution of the RHP, reveals that Eq.~3.6! has a unique
solution if id2Cw is invertible as an operator fromL2(R) to L2(R). As an operator inL2(R), Cw

has norm dominated by

iCwi<iw2iL`
iC1i1iw1iL`

iC2i<iw2iL`
1iw1iL`

. ~3.10!

In particular, the solution of the RHP exists wheniw2iL`
1i w1iL`

, 1. In addition, note that if
Eq. ~3.6! has a solutionm, thenm2IPL2(R).

Examine the question of what happens if the factorization data of the jump matrix~b6! are
changed. Setb65Ub86, where the matrixU is invertable. Then one has the following relation:7

~ id2Cw!5~ id2Cw8!Û, ~3.11!

hereÛ is an operator of right multiplication byU ~Û f5 fU!. In fact,

~ id2Cw8!Û f5 fU2C1„fU~ I2b82!…1C2„fU~ I2b81!…

5 fU2C1„f ~U2b2!…2C2„f ~b
12U !…

5 f2C1~ fw2!2C2~ fw1!5~ id2Cw! f .
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IV. LOCALIZATION PRINCIPLE

In this section, we shall show that only small neighborhoods of the stationary phase points
give an essential contribution to the potentials. This fact will help us to reduce the original
Riemann–Hilbert problem to some RHPs with one stationary phase point. First, we shall discuss
some asymptotic properties of singular integrals. The method of stationary phase based on inte-
gration by parts8 is the most useful for this purpose.

Lemma 1:Let fPC2k21(R), k.1, and
~1! suppf,D1 or suppf,D2 .
Suppose also that for any set of non-negative integersb, ai such that

(m50
n am5(m50

n mam5n2b,
~2! f b,a0 ,...,an

n →0 asl→6`, n,k.

~3!f b,a0 ,...,ak
k uu8udPL1 at 6`, d51, 1

2, where f b,a0 ,...,an
n 5u f (b)uuu8ub1d22nuu8ua0

•••uu (n11)uan. Then,

lim
«→0

1

2p i E2`

` f ~z!eitu~z!

z2~l1 i«!
dz5sgn«H„sgn«u8~l!…f ~l!eitu~l!1I 0~l!, ~4.1!

whereH~l! is the Heavyside unit symbol, and forI 0~l!, one has the estimates

i I 0iL`~R!<
C

tk21 , i I 0iL2~R!<
C

tk21/2. ~4.2!

Proof: It is sufficient to prove the lemma for suppf,D1 , since the proof when suppf,D2

is similar. It is enough to prove the result for«,0, since for«.0 it follows immediately from the
fact that6C6 are complementary orthogonal projection operators.

Represent the left-hand side of~4.1! in the form ~3.2!:

I 0~l!5
1

2p i E2`

` f ~z!eitu~z!

z2~l2 i0!
dz52E

0

`

f̂ t~s!e2 isl ds.

Applying integration by parts, we get

f̂ t~s!5
1

2p E
2`

`

f ~l!eitu~l!1 isl dl5
~21!k

2p i k E
2`

`

f k~l,s,t !eitu~l!1 isl dl,

where

f k~l,s,t !5
d

dl S 1

v~l!
f k21~l,s,t ! D , f 0~l!5 f ~l!,

v~l!5tu8~l!1s.0 for lPsupp f , s.0.

Note that

f k~l,s,t !5 (
b50

k

f ~b!~l!vb22kCb
k ~v,v8,...,v~k!!,

where Cb
k are homogeneous polynomials of orderk2b whose coefficients,

Cba0•••ak
k va0•••(v (k))ak, are nonzero only if(m50

k mam5k2b. We now use the Minkowski

integral inequality,
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S E
0

`

u f̂ t~s!up dsD 1/p< 1

2p E
2`

`

dlS E
0

`

dsu f k~l,s,t !upD 1/p. ~4.3!

Sincev(m) does not depend ons for m.0, the first integral on the right-hand side of~4.3! can be
easily calculated; one derives

i I 0iL`
<E

0

`

u f̂ t~s!uds<
1

tk21

1

2p

1

k21 (
b50

k E
2`

`

u f ~b!~l!uuu8~l!ub1122kuCb
k ~l!udl,

i I 0iL25A2pS E
0

`

u f̂ t~s!u2dsD 1/2< 1

tk21/2

1

A2p

1

A2k21
(
b50

k E
2`

`

u f ~b!

3~l!uuu8~l!ub11/222kuCb
k ~l!udl.

In the above inequalities,uCb
k ~l!u denote(a0•••ak

uCba0•••ak
k uuu8(l)ua0uu9(l)ua1•••uu (k11)(l)uak.

The lemma is evident.
To separate the contributions from the distinct stationary phase points, we shall employ a

partition of unity:

(
n51

N

wn~l!1w~l!1c~l!51,

where w, c, wnPC`(R), wn~l!51 if ul2lnu<3e/4, wn~l!50 if ul2lnu.e, suppw,D1 ,
suppw,D2 , ande is some positive number such that there is only one stationary phase pointln
in suppwn .

Set

r6
w 5C6~wr!, r6

c 5C6~cr!,
~4.4!

r̄ 6
w 5C6~wr̄ !, r̄ 6

c 5C6~cr̄ !.

One can apply Lemma 1 to~4.4!. Indeed, Proposition 2.1 shows thatwr, cr, wr̄, andcr̄ are
smooth functions whose supports are inD1 or D2 . Conditions A and B imposed onu, p, andq
make premises~2! and ~3! of the lemma fulfilled as well. It is convenient to summarize the
properties of~4.4! as follows:

Proposition 4.1:For any givenk, there are constantsC(k) independent ont such that

r2
w 52rw1r1

w , ir1
w i<

C~k!

tk
, r1

c 5rc1r2
c , ir2

c i<
C~k!

tk
,

r̄ 1
w 5 r̄w1 r̄ 2

w , i r̄ 2
w i<

C~k!

tk
, r̄ 2

c 52 r̄c1 r̄ 1
c , i r̄ 1

c i<
C~k!

tk
.

Here,iri denotes theL`- or L2-norms.
Suppose thatmL~l! is a solution of the RHP

m1
L ~l!5m2

L ~l!~bL
2!21bL

1 , mL~`!5I , ~4.5!
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wherebL
6 are related to the datawL

6 given bywL
65(n51

N wnw
6 @see~3.4!#. It is clear that these

data are not zero only in neighborhoods of the stationary phase points. In the following sections,
we shall prove that the operatorid 2 CwL

associated with~4.5! is invertible as an operator inL2 if
t is large enough, and the norm of its inverse is bounded whent→`.

Proposition 4.2:There is a numbert0 such that the solution of the RHP~2.16! exists at least
for t>t0. Moreover, for any givenk, one has

um~l!2mL~l!u<
C~k!

tk
if uIm lu>a.0, ~4.6!

and

u~ t !5uL~ t !1OS 1tkD , v~ t !5vL~ t !1OS 1tkD . ~4.7!

Proof: Introduce the piecewise analytical matrix function

F~l!5S 1 0

2 r̄ 1
w ~l! 1D S 1 2r1

c ~l!

0 1
D , Im l.0,

F~l!5S 1 2r2
w ~l!

0 1
D S 1 0

2 r̄ 2
c ~l! 1D , Im l,0.

BecauseuF(l)2I u<Ct2k when uIm lu>a.0, it is sufficient to prove the results for matrix

mF~l!5m~l!F~l!, ~4.8!

which satisfies the factorization problem

m1
F~l!5m2

F~l!~bF
2!21bF

1 , bF
65b6F6 ,

~4.9!
mF~`!5I .

It follows from Proposition 4.1 that the data of the RHP~4.9! can be decomposed in the form

wF
65wL

61wR
6 , ~4.10!

wherewR
6 are small in the sense of theL2- or L`-norms, viz.,

iwR
6iL`~R! ,iwR

6iL2~R!<
C

tk
. ~4.11!

The basic integral equation,

mF5I1CwF
mF, ~4.12!

can be equivalently rewritten as

A~mF2mL!5~ id2CwL
!21CwR

mL,

~4.13!
A5 id2~ id2CwL

!21CwR
,
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provided thatid 2 CwL
is invertible. The norm ofCwR

converges to zero ast→`. Therefore, the
operatorA has an inverse ift is large enough. This leads to the desired existence of the solution
of ~4.12! and hence of~4.9!.

From ~3.7! and ~4.10!, one has

mF~l!2mL~l!5
1

2p i E2`

` wR~z!

z2l
dz1

1

2p i E2`

` ~mF2mL!wF

z2l
dz1

1

2p i E2`

` ~mL2I !wR

z2l
dz,

~4.14!

and for uIm lu>a.0

umF~l!2mL~l!u<C$iwRiL21imF2mLiL2iwFiL21imL2I iL2iwRiL2%. ~4.15!

Inserting~4.11! and the estimate

imF2mLiL2<C„iwR
1iL21iwR

2iL21~ iwR
1iL`

1iwR
2iL`

!imL2I iL2…, ~4.16!

which is a consequence of~4.13!, in ~4.15!, one derives~4.6!.
To complete the proof, observe that

wR5S 0 r1
w 2r2

c

r̄1
c 2 r̄2

w 0
D 1wI . ~4.17!

In the splitting of ~4.17!, each element ofwI belongs toL1(R) as a sum of the functions like
rwr̄1

c ,r1
w r̄1

c ••• ; its L1-norm is dominated byir1
w iL2 1i r2

c iL2 1i r̄1
w iL2 1i r̄2

c iL2 < C(k)t2k.
Multiply ~4.14! by l and pass to the limitl→`. In the process of estimating this limit, only the
first term of ~4.14! is troublesome. However, note that

1

2p i E2`

` wR2wI

z2l
dz5S 0 r1

w ~l!

r̄1
c ~l! 0

D ,
if Im l>0. The above formula and analogous one for Iml<0, together with~4.17!, say that

U lim
l→`

1

2p i E2`

` lwR~z!

z2l
dzU< C

tk
, Im lÞ0.

Now, the asymptotics of~4.7! are evident.
The proof of Proposition 4.2 illuminates the reason why the original RHP~1.1! was conju-

gated to the RHP~2.16! in which the jump matrix had factorization~2.17!. To have a better grasp
of that, it is useful to review the proof for the phase with no stationary points. Letu8~l!.0 for
definiteness. Then, one must choose the factorization~2.17a!. Split r~r̄! in the formr5r12r2

( r̄5 r̄12 r̄2). Since r1 , r̄2 are small whiler2~r̄1! can be incorporated intom2 ~m1!, we
conclude thatF~c50! is an approximating solution of~2.16!, and the potentials decrease to higher
order in t.

In the rest of this section, we pursue the study of oscillatory singular integrals. Before for-
mulating our results, let us introduce some notations. Set

rn5p~ln!e
2 i tu~ln!d 1

n ~l!d 2
n ~l!e2 i t«nkn~l2ln!2,

~4.18!
r̄n5q~ln!e

itu~ln!
„d 1

n ~l!…21
„d 2

n ~l!…21eit«nkn~l2ln!2,
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and

h~l!5H„«n~l2ln!…, e~l!5H„2«n~l2ln!…, ~4.19!

wherekn5
1
2uu9(ln)u anden5sgnu9~ln!. Then, define

r6
h 5C6„~rwn2rn!h…, r6

e 5C6„~rwn2rn!e…,
~4.20!

r̄ 6
h 5C6„~ r̄wn2 r̄n!h…, r̄ 6

e 5C6~~ r̄wn2 r̄n!e!.

Proposition 4.3:

r2
h 52~rwn2rn!h1r1

h , ir1
h iL`

<Ct21/2 ln t, ir1
h iL2<Ct23/4 ln t,

r1
e 5~rwn2rn!e1r2

e , ir2
e iL`

<Ct21/2 ln t, ir2
e iL2<Ct23/4 ln t,

r̄ 1
h 5~ r̄wn2 r̄n!h1 r̄ 2

h , i r̄ 2
h iL`

<Ct21/2 ln t, i r̄ 2
h iL2<Ct23/4 ln t,

r̄ 2
e 52~ r̄wn2 r̄n!e1 r̄ 1

e , i r̄ 1
e iL`

<Ct21/2 ln t, i r̄ 1
e iL2<Ct23/4 ln t.

Proof: We prove the estimates forr2
e in the case when«n521, because the proofs for the

other estimates are similar. Notice thatrwn can be rewritten forl2ln>0 in the form

rwn5wne
2 i tud1

2 r , r ~l!5
p~l!

11p~l!q~l!
.

Set

r1wn5wne
2 i tud1

2 r 1, r 1~l!5 (
m50

3
r ~m!~ln!

m!
~l2ln!

m.

Since

rwn2r1wn5Re2 i tu, R~l!5wn~l!d1
2 ~l!„r ~l!2r 1~l!…,

e(l)R~l! belongs toC3(R) @because of~2.10!#, and suppeR,D2 , Lemma 1 yields

iC2„~r2r1!wne…iL`
<Ct21, iC2„~r2r1!wne…iL2<Ct23/2. ~4.21!

Now we replace the phase by its Taylor’s series:

u1~l!5 (
m50

5
u~m!~ln!

m!
~l2ln!

m.

Let

rt5e2 i tut
d1
2 r 1, ut~l!5u1~l!1t„u~l!2u1~l!….

Then

C2„~r12r0!wne…52 i t E
0

1

dtC2„~u2u1!rtwne…. ~4.22!
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Recall thatwn~l!50 for ul2lnu>«. Until now, « was arbitrary; at this point, however, choose«
such that

u18~l!

u8~l!
>a.0 for ul2lnu<«.

This condition guarantees thatut~l! has only one stationary pointln in suppwn . Application of
Lemma 1, taken together with the Minkowski integral inequality, to~4.22! results in

iC2„~r12r0!wne…iL`
<Ct21, iC2„~r12r0!wne…iL2<Ct23/2. ~4.23!

By virtue of Lemma 1, it is also easy to show that theL2- andL`-norms ofC2„rn(12wn)e…
decay to higher order ast→`.

To conclude the proof, it remains to evaluateC2„(r
02rn)wne…. Note that (r

02rn)wn has an
analytic continuation in the quadrantul2lnu,

3
4«, Re~l2ln!.0, Iml.0 @indeed,wn~l!51 if

ul2lnu<
3
4«, d1

n d2
n 5(d1

n )2/„11p(ln)q(ln)… if l2ln.0#. Let G5G1øG2øG3 be the contour
which consists of an interval joiningln with ln1«8eip/4 ~G1!, an arc joiningln1«8eip/4 with
ln1«8 ~G2!, and a ray joiningln1«8 with 1` ~G3!. Here,«8 is a positive number less than34«.
Write

C2„~r02rn!wne…5
1

2p i Eln

`
„r0~z!2rn~z!…wn~z!

z2~l2 i0!
dz5

1

2p i EG1

r0~z!2rn~z!

z2l
dz

1
1

2p i EG2øG3

„r0~z!2rn~z!…wn~z!

z2~l2 i0!
dz. ~4.24!

It is possible to choose«8 such that Imu1~l!<0 aslPG1øG2, Im u1~«8eip/4!,0, andu18~l!Þ0 as
lPG2. Therefore, the second integral on the right-hand side of~4.24! can be estimated by inte-
gration by parts forl¹@«8, «#. However, notice that the variation of« leads to the appearance in
~4.24! of a small correction described by Lemma 1. Eventually, one derives appropriateL2 andL`

evaluations for this integral.
Consider the first integral on the right-hand side of~4.24!. Since

ud1
2 ~l!r 1~l!2„d 1

n ~l!…2r 1~ln!u<Cul2lnu lnul2lnu,

which is true because of~2.11!, and since

ue2 i tu1~l!2eitu
0~l!u<tuu1~l!2u0~l!u,

which is true if Imu1~l! and Imu0~l!<0, one obtains

U 1

2p i EG1

r0~z!2rn~z!

z2l
dzU<C1E

0

«8eip/4 uzu lnuzueitkn Im z2

uz2~l2ln!u
dz1C2tE

0

«8eip/4 uzu3eitkn Im z2

uz2~l2ln!u
dz

<C
ln t

At
E
0

`eip/4 ~ uzu lnuzu1uzu3!eikn Im z2

uz2ju
dz5

ln t

At
f ~j!, ~4.25!

wherej5At(l2ln). The functionf , determined through~4.25!, is a function ofj only obviously
belonging toL2ùL` . This completes the proof.

It should be pointed out that the above proof is a combination of ideas from Refs. 8 and 9.
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V. MODEL RIEMANN–HILBERT PROBLEM

It has been explained that the asymptotic investigation of the RHP~2.16! is equivalent to the
RHP ~4.5!. That the jump matrix in~4.5! is unity everywhere except small neighborhoods of the
stationary phase points allows us to divide the factorization problem~4.5! into N simpler prob-
lems. As it turns out, the solution of~4.5! can be expressed, up to small errors, in terms of the
solutions of the following RH problems:

f1
n ~l!5f2

n ~l!~bn
2!21bn

1 , n51,...,N,
~5.1!

f~`!5I ,

wherebn
6 are associated with the datawn

65wnw
6(bn

65I6wnw
6). More precisely, it is a product

of fn, while the potentials,uL and vL are a sum of potentials of~5.1!. Before proving these
statements rigorously, we shall conduct a comprehensive asymptotic analysis of~5.1!.

On the other hand, problems~5.1! can be reduced, again up to small errors, to explicitly
solvable ones. It is suitable to begin with these problems. To produce them,r and r̄ in ~2.16!
should be replaced byrn and r̄n of ~4.18!, respectively. In new notations, after this substitution,
one gets

c1
M~l!5c2

M~l!~bM
2 !21bM

1

5c2
M~l!S 1 rn~l!

0 1 D S 1 0

r̄n~l! 1D , «n~l2ln!.0

5c2
M~l!S 1 0

r̄n~l! 1D S 1 rn~l!

0 1 D , «n~l2ln!,0,
~5.2!

cM~`!5I .

A more clear form of~5.2! is obtained with the following change of variables. Set

j5«nA2knt~l2ln!, 2p,arg j,p. ~5.3!

Then

rn5p0j
1

innj
2

inne2 i«nj2/2, r̄n5q0j
1

2 innj
2

2 innei«nj2/2, ~5.4!

where

p05p~ln!e
2 ib~ln!, q05q~ln!e

ib~ln!, b5tu~ln!22g~ln!1nn ln 2knt. ~5.5!

Inserting~5.3!–~5.5! into ~5.2!, we learn that

c1
0 ~j!5c2

0 ~j!j2

inns3 expH 2 is3«n
j2

2 J v«n expH is3«n
j2

2 J j
1

2 inns3. ~5.6!

Here,c0~j! is determined by the identitycM~l!5c0~j!, and

v15S 11p0q0 p0

q0 1 D , v215S 1 2p0

2q0 11p0q0D .
One thing which is worth mentioning is that, in the case when«n521, the substitution~5.3! maps
the upper half-plane onto the lower half-plane and vice versa. This means that it is necessary to
invert the jump matrix of~5.2! in deriving ~5.6!, whereascM(l6 i0)5c0(j7 i0).
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A natural method for solving~5.6! is to consider the piecewise analytic functionC(j)
5 c0(j)j

inns3 exp(2 is3«nj
2/2). It happens that the jump matrix ofC is independent onj; hence,

(dC/dj)C21 is an analytic function easily calculated through its known behavior at infinity. This
results in a linear equation forC which can be solved explicitly in terms of parabolic-cylinder
functions. However, we shall find the solution of~5.6! directly, without calling on the linear
equation.

Let

Din~z!, Din~2z!, D2 in21~ iz!, D2 in21~2 iz! ~5.7!

be the standard notations for the parabolic-cylinder functions. Recall that they are entire for anyn.
Introduce

C1~j!5S epn/2Din~ iaj! ye2pnD2 in21~2aj!

2 ȳepn/2Din21~ iaj! e2pnD2 in~2aj!
Da2 ins3,

C2~j!5S epn/2Din~ iaj! 2yD2 in21~aj!

2 ȳepn/2Din21~ iaj! D2 in~aj!
Da2 ins3,

C3~j!5S e2pn/2Din~2 iaj! 2yD2 in21~aj!

ȳe2pn/2Din21~2 iaj! D2 in~aj!
Da2 ins3,

C4~j!5S e2pn/2Din~2 iaj! yepnD2 in21~2aj!

ȳe2pn/2Din21~2 iaj! epnD2 in~2aj!
Da2 ins3,

wherey, ȳ, andn satisfy the constraintn5yȳ. Any three of the functions from the set~5.7! are
linearly dependent as solutions of the same second-order linear differential equation. The exact
connection formulas can be found in Ref. 10. Using them, one easily checks

C2~j!5C1~j!S1 , C3~j!5C2~j!S2 , C4~j!5C3~j!S3 , ~5.8!

whereSk are triangular matrices given by

S15a ins3S 1 iA2pe2pn

ȳG~ in!

0 1
D a2 ins3, S25a ins3S 1 0

iA2p

yG~2 in!
1D a2 ins3,

S35a ins3S 1 2
iA2pepn

ȳG~ in!

0 1
D a2 ins3, s35S 1 0

0 21D .
Taking the asymptotic expansion ofDin(z) asz→`,

Din~z!5zine2z2/4S 11OS 1
z2

D D , uarg zu,
3p

4
, ~5.9!

and settinga 5 e2 i«np/4, one observes

Ck~j!5S S 1 2yei«np/4/j

2«nȳe
2 i«np/4/j 1 D 1OS 1

uju2D D e2 i«n~j2/4!s31 ins3 ln j ~5.10!
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if jPVk(«n), j→`,

Vk~1!5H j:2
3p

2
1
kp

2
,arg j,2

p

2
1
kp

2 J ,
Vk~21!5H j:22p1

kp

2
,arg j,2p1

kp

2 J , k51,2,3,4.

Ending our construction, we demand thaty, ȳ, andn be chosen so that

n5nn , p05
iA2pe2«npnn/2

ȳG~ inn!
, q05

«niA2pe2«npnn/2

yG~2 inn!
. ~5.11!

Identities~5.11! are consistent with the constraintn5yȳ. Indeed,

p0q052«n
2pe2«npnn

nnG~ inn!G~2 inn!
52«n2i sin~ ipnn!e

2«npnn5211e2«n2pnn.

Now, there are no obstacles to achieve the desired goal of solving~5.6!. In fact, from ~5.8!,
~5.10!, and~5.11! it is seen that

c0~j!5H C3~j!j2 inns3ei ~j2/4!s3,

C1~j!j2 inns3ei ~j2/4!s3,

Im j.0,
Im j,0,

is a solution of~5.6! when«n51, while

c0~j!5H C4~j!j2 inns3e2 i ~j2/4!s3,

C2~j!j2 inns3e2 i ~j2/4!s3,

Im j.0,
Im j,0,

is a solution of~5.6! when«n521.
The solution of ~5.2! has been found explicitly. At this point, consider the operatorid

2 CwM
related to~5.2! [wM

656(bM
62I ),wM5wM

11wM
2 ]. Dealing with the operator form of the

RHP which was discussed in Sec. III, the following result from Refs. 4 and 7 is very useful:
Lemma 2: Let f~l! be a piecewise analytic invertible matrix, withf~`!5I . Define

wf5wf
11wf

2 , wf
656~bf

62I !,

b65bf
6f6 , w656~b62I !.

Then

~ id2Cw!5~ id2Cf!~ id2Cwf
!,

~ id2Cf21!~ id2Cf!5~ id2Cf!~ id2Cf21!5 id,

where

Cf f5C1„f ~ I2f2!…1C2„f ~f12I !…,

Cf21f5C1„f ~ I2f2
21!…1C2„f ~f1

212I !….

Proof: In fact,
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CfCwf
5Cf„C1~•wf

2!1C2~•wf
1!…

5C1@„C1~•wf
2!1C2~•wf

1!…~ I2f2!#1C2@„C1~•wf
2!1C2~•wf

1!…~f12I !#

5C1„C1~•wf
2!~ I2f2!…1C2„C2~•wf

1!~f12I !…

5C1„•wf
2~ I2f2!…2C2„•wf

1~f12I !…5Cwf
2Cw1Cf ,

whereas

wf
2~ I2f2!5wf

22w21~ I2f2!, wf
1~f12I !5w12wf

11~ I2f1!.

The rest of the lemma is proved with similar calculations.
Return to the operator (id 2 CwM

). Application of Lemma 2 in the case whenf~l!5cM~l!

andb65bM
6 leads to

~ id2CwM
!215m̂M~ id2Cf21!. ~5.12!

In the above formula,m̂M denotes right multiplication bymM (m̂M f5 fmM),

~mM !215bM
1~c1

M !215bM
2~c2

M !215bf
6 . ~5.13!

We have also used the identity

~ id2Cwf
! f5 f ~mM !21.

From ~5.12! one concludes that (id 2 CwM
)21 exists and is bounded ast→`. In addition, since

Cf21I 5 0,mM is a solution of the basic integral equation.
Formula~5.13! gives a useful representation formM which, after simplification by~5.8! and

~5.11!, takes the form

mM~l;«n51!5H C2~j!j2 inns3ei ~j2/4!s3,

C4~j!j1

2 inns3ei ~j2/4!s3,

j.0,
j,0, ~5.14a!

mM~l;«n521!5H C3~j!j2 inns3e2 i ~j2/4!s3, j.0,

C1~j!j2

2 inns3e2 i ~j2/4!s3, j,0.
~5.14b!

From ~5.10! and ~5.14! we learn that

mM~l!5m̃M~j!5I1O~1/j! as j→6`,

whence

imM2I iL2<Ct21/4. ~5.15!

Let un,vn andu0
n ,v0

n be potentials of the RHPs~5.1! and~5.2!, respectively. Note thatu0
n and

v0
n can be obtained from~5.5!, ~5.10!, and~5.11!. The result of these calculations is given by~1.5!.
Proposition 5.1.There is a numbert0 such that the solution of RHP~5.1! exists at least for

t>t0. Moreover,

ufn~l!2cM~l!u<Ct23/4 ln t if uIm lu>a.0 ~5.16!

and
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un~ t !5u0
n~ t !1O~ t23/4 ln t !, vn~ t !5v0

n~ t !1O~ t23/4 ln t !. ~5.17!

Proof: The proof is virtually the same as the proof of Proposition~4.2!. Here we use the
piecewise analytical matrixF~l! determined by

F~l!5S 1 0

2 r̄1
h ~l! 1D S 1 2r 1

e ~l!

0 1
D , Im l.0,

F~l!5S 1 2r2
h ~l!

0 1
D S 1 0

2 r̄2
e ~l! 1D , Im l,0.

Passing to the new RHP~4.9! with b6 replaced bybn
6 and with

mF~l!5fn~l!F~l!,

one deduces from Proposition 4.3 that the data of~4.9! can be decomposed in the form

wF
65wM

61wR
6 ,

wherewM
6 are the data of~5.2! while wR

6 have smallL2- andL`-norms which are dominated by

iwR
6iL2<Ct23/4 ln t, iwR

6iL`
<Ct21/2 ln t. ~5.18!

Due to the estimates~4.15! and ~4.16! with cM,mM in place ofmL,mL and due to inequalities
~5.15! and ~5.18!, one gets

umF~l!2cM~l!u<Ct23/4 ln t if uIm lu>a.0,

imF2mMiL2<Ct23/4 ln t. ~5.19!

To derive~5.16!, it is sufficient to note that

uF~l!2I u<Ct21 ln t if uIm lu>a.0.

Instead of the splitting~4.17!, we now have

wR5S 2 r̄1
e rnh2r1

h r̄ne r1
h 2r2

e

r̄1
e 2 r̄2

h 2 r̄2
h rne2r2

e r̄nh
D 1wI ,

where again each element ofwI belongs toL1(R) but with L1-norm decaying ast23/4 ln t. Since
the diagonal elements ofwR2wI do not play any role in the evaluation of the potentialsun andvn,
the end of the proof is similar to that of Proposition 4.2.

Proposition 5.2:The operatorid 2 Cwn
related to~5.1! has an inverse at least for larget, and

this is bounded ast→`.
Proof: Let (id 2 CwF

) be the operator associated with the new RHP~4.9!. Because of the
identity

id2CwF
5~ id2CwM

!„id2~ id2CwM
!21CwR

…

and estimates~5.18!, (id 2 CwF
) is invertible at least for larget. Using Lemma 2, the proof is

complete.
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Proposition 5.3:Let mn be the solution of the basic integral equation related to~5.1!. Then

imn2mMiL2<Ct23/4 ln t. ~5.20!

Proof: From ~3.8! it is easily seen thatmF5mn, whereF was determined in the proof of
Proposition 5.1. Therefore, inequality~5.19! implies ~5.20!.

Proposition 5.4:For any reall which is not in the support ofwn , the following estimate is
valid:

mn~l!5f1
n ~l!5f2

n ~l!5mM~l!1O~ t23/4 ln t !

5I1S 0 u0
n/~l2ln!

v0
n/~l2ln! 0

D
1O~ t23/4 ln t !. ~5.21!

Proof: Take the representation~3.7! for the solution of the RHP:

f1
n ~l!5f2

n ~l!5I1
1

2p i E2`

` mM~z!wn~z!

z2l
dz1

1

2p i E2`

`
„mn~z!2mM~z!…wn~z!

z2l
dz.

~5.22!

The second integral in the above formula is evaluated by

1

2p

1

ul2lnu2«
imn2mMiL2iwniL2<Ct23/4 ln t.

The first is equal toCwn
(mM)(l), whereaswn

6~l!50. Hence, one may show that

f1
n ~l!5f2

n ~l!5mM~l!1Cwn2wM
~mM !~l!1O~ t23/4 ln t !. ~5.23!

Define

Rn~l!5Cwn2wM
~mM !~l!5C1„m

M~wn
22wM

2 !…~l!1C2„m
M~wn

12wM
1 !…~l!.

It turns out that

uRn~l!u<C
ln t

t
; ~5.24!

thus~5.21! follows from ~5.23!. To obtain~5.24!, one should consider each element of the matrix
Rn~l! distinguishing two cases:«n51, and«n521; for instance, we illustrate the proof of~5.24!
for R12

n ~l!, assuming that«n51.
A straightforward calculation yields

mM~wn
22wM

2 !5S m12
M~ r̄wn2 r̄n!e m11

M~rwn2rn!h

m22
M~ r̄wn2 r̄n!e m21

M~rwn2rn!h
D ,

mM~wn
12wM

1 !5S m12
M~ r̄wn2 r̄n!h m11

M~rwn2rn!e

m22
M~ r̄wn2 r̄n!h m21

M~rwn2rn!e
D .

Therefore,

5887G. G. Varzugin: Asymptotics of oscillatory RHPs

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



R12
n ~l!5C1„m11

M~rwn2rn!h…~l!1C2„m11
M~rwn2rn!e…~l!

5C1„d
h~r1

h 2r2
h !…~l!1C2„d

e~r1
e 2r2

e !…~l!,

where we have used~5.14a! and replacedm11
M by

dh5~C2!11j
2 innei j

2/45epnn/4Dinn
~ iaj!j2 innei j

2/4

or

de5~C4!11j1

2 innei j
2/45e23pnn/4Dinn

~2 iaj!j2 innei j
2/4.

Notice that dh(de) is an analytic bounded function in the sector2p,arg~l2ln!,p/2
@0,arg~l2ln!,3p/2# with unit behavior at infinity@see~5.9!#,

dh~l!511OS 1

uju2D , de~l!511OS 1

uju2D .
Hence,dhr2

h (der1
e ) belongs to the null space ofC1(C2). This means that

R12
n 5C1~dhr1

h !~l!2C2~der2
e !~l!

5r1
h ~l!1r2

e ~l!1C1„~d
h21!r1

h
…~l!2C2„~d

e21!r2
e
…~l!.

Let

Gln

1 5$l:l5ln1zeip/4,zPR%, Gln

2 5$l:l5ln1ze2 ip/4,zPR%.

Recall thatr1
h (r2

e ) is the boundary value of the analytic, in the complex plane with the cut
l2ln>0(l2ln<0), functionrh(re). Deforming the contour of integration, we deduce

R12
n ~l!5r1

h ~l!1r2
e ~l!1„dh~l!21…r1

h ~l!h~l!1„de~l!21…r2
e ~l!e~l!

1
1

2p i EGln

1

„dh~z!21…rh~z!

z2l
dz1

1

2p i EGln

1

„de~z!21…re~z!

z2l
dz.

The last identity reveals that

uR12
n ~l!u<C1~ ur1

h ~l!u1ur2
e ~l!u!1C2

t21/4

ul2lnu
~ irhiL2~G

ln

1 !1ireiL2~G
ln

1 !!. ~5.25!

Reviewing the proof of Proposition 4.3, one sees that

ur1
h ~l!u,ur2

e ~l!u<C
ln t

t
, irhiL2~G

ln

1 ! ,ireiL2~G
ln

1 !<Ct23/4 ln t.

Thus, estimate~5.25! implies

uR12
n ~l!u<C

ln t

t
.

The contourGln

2 is needed when the case«n521 is considered.
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VI. THE PROOF OF THE THEOREM

We take up the investigation of the RHP~2.16!, which is equivalent to the original one~1.1!.
In Sec. IV,~2.16! was reduced, without loss of asymptotic information, to the factorization prob-
lem ~4.5!, provided the operator associated with~4.5! was invertible at least for larget. The data
of the RHP~4.5! had support localized in neighborhoods~which could be chosen arbitrarily small!
of the stationary phase points. This result, namely, Proposition~4.2!, is in complete correspon-
dence with analogous ones from the asymptotic theory of oscillatory integrals, known as the
localization principle. The next problem is to separate the contributions from the distinct stationary
phase points. The present section is dedicated to it.

Consider the piesewise analytic matrixmLf defined through

mL~l!5mLf~l!f1~l!, ~6.1!

wheref1 is the solution of~5.1! with n51. It evidently satisfies the following factorization
problem:

m1
Lf~l!5m2

Lf~l!~bLf
2 !21bLf

1 , mLf~`!5I . ~6.2!

We choose the decomposition of the jump matrix in the form

bLf
2 5m1bL

2~f2
1 !21, bLf

1 5m1bL
1~f1

1 !21. ~6.3!

Since (m1)215b1
2(f2

1 )215b1
1(f1

1 )21, it occurs that

wLf
6 5 (

n52

N

wnm
1w6~m1!21. ~6.4!

Furthermore, estimate~5.21! gives rise to the splittings

wLf
6 5 (

n52

N

wnw
61wR

6[wL8
6

1wR
6 , ~6.5!

in which the correctionswR
6 are small, viz.,

iwR
6iL2,iwR

6iL`
<Ct21/2. ~6.6!

Moreover,

wR
65 (

n52

N

wn~V1w
62w6V1!1wI

6[wV
61wI

6 , ~6.7!

where

V15S 0 u0
1/~l2l1!

v0
1/~l2l1! 0

D , iwI
6iL1,iwI

6iL2,iwI
6iL`

<Ct23/4 ln t. ~6.8!

Let mL8~l! be the solution of the RHP with datawL8
6 ,

m1
L8~l!5m2

L ~l!~bL8
2

!21bL8
1 , bL8

6
5I6wL8

6 ,

~6.9!
mL8~`!5I ,

5889G. G. Varzugin: Asymptotics of oscillatory RHPs

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



and letid 2 CwL8
have an inverse which is bounded ast→`. Then, rewriting the basic integral

equation related to~6.2! in the form ~4.13!, one gets

imLf2mL8iL2<C~ iCwR
I iL21~ iwR

1iL`
1iwR

2iL`
!imL82I iL2!. ~6.10!

Inequalities~6.6! and ~6.10! imply that

imLf2mL8iL2<Ct21/2. ~6.11!

To proceed, we must suppose thatimkiL`
< C. Then, Lemma 2 and relation~3.11! reveal

~ id2CwL
!215m̂1~ id2CwLf

!21~ id2Cf21!, ~6.12!

wheref5f1, m̂1f5 fm1. Thusid 2 CwL
is invertible at least for larget @see~6.5! and~6.6!#, and

( id 2 CwL
)21 is bounded ast→`. In addition,mL5mLfm1 becauseCf21I 5 0. The last identity

and ~6.11! show

imL2mL8m1iL2<Ct21/2;

hence

imL2I iL2<im12I iL21im1iL`
imL82I iL21Ct21/2.

It is clear that the same arguments work with respect toid 2 CwL8
. Continuing the induction, which

consist of a finite number of steps, we find

imL2I iL2<(
k51

N

Ckimk2I iL21C0t
21/2<Ct21/4, imL82I iL2<Ct21/4. ~6.13!

We now want to improve estimate~6.11!. Note that the leading terms ofwR
6 have been found

explicitly. These are of ordert21/2 but contain oscillations as well. Taking this into account, one
observes

iCwV
I iL2<Ct23/4, iCwR

I iL2<Ct23/4 ln t. ~6.14!

Hence

imLf2mL8iL2<Ct23/4 ln t. ~6.15!

Return to the RHP~4.5!. Using the analogous of formula~4.14!, we derive

mLf~l!2mL8~l!5
1

2p i E2`

` wV~z!

z2l
dz1O~ t23/4 ln t !5O~ t23/4 ln t !, ~6.16!

provideduIm lu>a.0. Here, the oscillations inwV
6 have been taken into account again. Then

mL~l!5mL8~l!f1~l!1O~ t23/4 ln t !, uIm lu>a.0, ~6.17!

and

uL5uL81u11O~ t23/4 ln t !, vL5vL81v11O~ t23/4 ln t !, ~6.18!
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whereuL8 andvL8 are the potentials of~6.9!. It is obvious from~6.17! that, applying induction on
the number of stationary phase points, we eventually obtain

mL~l!5fN~l!•••f1~l!1O~ t23/4 ln t !, uIm lu>a.0, ~6.19!

and

uL5 (
n51

N

un1O~ t23/4 ln t !, vL5 (
n51

N

vn1O~ t23/4 ln t !. ~6.20!

The evaluations from Propositions~4.2! and ~5.1! and the above ones complete the proof of the
theorem.

Since there is one hole in the above proof, we describe briefly another approach in the end of
this section. First, note that the assumptionimkiL`

< C has been used in two places. One is the
existence proof of (id 2 CwL

)21. Second, it has been needed in the proof of estimates~6.13!.
However, it is possible to state these results independently of whethermkPL` or not. Indeed, we
know that the operators associated with the RHP~5.1!, id 2 Cwn

, are invertible. Further, inspection
reveals the following identities:

~ id2CwL
!S id1 (

k51

N

Cwk
~ id2Cwk

!21D 5 id2 (
k,n,kÞn

N

Cwk
Cwn

~ id2Cwn
!21,

~6.21!

S id1 (
k51

N

Cwk
~ id2Cwk

!21D ~ id2CwL
!5 id2 (

k,n,kÞn

N

~ id2Cwk
!21Cwk

Cwn
.

Recall thatCwL
5 (k51

N Cwk
. Evidently, if the operators on the right-hand side of~6.21! are invert-

ible, then (id 2 CwL
)21 exists. The former is true for larget because of the inequalities

iCwk
Cwn

iL2→L2
<Ct21/4, kÞn.

The latter can be found by the method of stationary phase sinceCwn
f is an analytic function

whose derivatives are bounded int for any fPL2 in some neighborhood of suppwk

~suppwkùsuppwn5B, nÞk!. The desired evaluations~6.13! are now consequence of

iCwL
I iL2<Ct21/4.

We have developed our approach, assuming that the phase of the RHP~1.1! is a smooth
function on the real axis; however, the RHPs which arise in the theory of integrable nonlinear
equations~e.g., sine–Gordon! may have a phase with poles on the real axis. These cases can easily
be incorporated into the method presented here if we assume thatp~l! andq~l! have zeros of
appropriate order at the poles of the phase. Therefore, the theorem is still valid for suchp, q, and
u.
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8L. Hörmander,The analysis of linear partial differential operators~Springer-Verlag, Berlin, 1983!, Vol. 1.
9M. V. Fedoruk,Asymptotics, integrals, and series~Nauka, Moscow, 1987!.
10H. Bateman and A. Erdelyi,Higher transcendental functions~McGraw-Hill, New York, 1953!, Vol. 2.

5892 G. G. Varzugin: Asymptotics of oscillatory RHPs

J. Math. Phys., Vol. 37, No. 11, November 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Factorization of scattering matrices due to partitioning
of potentials in one-dimensional Schro ¨dinger-type
equations

Tuncay Aktosun
Department of Mathematics, North Dakota State University, Fargo, North Dakota 58105

Martin Klaus
Department of Mathematics, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061

Cornelis van der Mee
Department of Mathematics, University of Cagliari, Cagliari, Italy

~Received 11 April 1996; accepted for publication 24 June 1996!

The one-dimensional Schro¨dinger equation and two of its generalizations are con-
sidered, as they arise in quantum mechanics, wave propagation in a nonhomoge-
neous medium, and wave propagation in a nonconservative medium where energy
may be absorbed or generated. Generically, the zero-energy transmission coeffi-
cient vanishes when the potential is nontrivial, but in the exceptional case this
coefficient is nonzero, resulting in tunneling through the potential. It is shown that
any nontrivial exceptional potential can always be fragmented into two generic
pieces. Furthermore, any nontrivial potential, generic or exceptional, can be frag-
mented into generic pieces in infinitely many ways. The results remain valid when
Dirac delta functions are included in the potential and other coefficients are added
to the Schro¨dinger equation. For such Schro¨dinger equations, factorization formu-
las are obtained that relate the scattering matrices of the fragments to the scattering
matrix of the full problem. ©1996 American Institute of Physics.
@S0022-2488~96!02111-1#

I. INTRODUCTION

In this paper we consider the one-dimensional Schro¨dinger equation and two of its generali-
zations. The Schro¨dinger equation~2.1! describes the quantum mechanical behavior of a particle
interacting with the potentialV(x). From the corresponding transmission coefficientT(k) we
obtain the probabilityuT(k)u2 that a particle of energyk2 can tunnel through this potential.
Generically, the zero-energy transmission coefficient is zero and hence a zero-energy particle
cannot tunnel through a nontrivial potential. However, in the exceptional case, the transmission
coefficient does not vanish at zero energy. In this paper, we analyze certain aspects of this
exceptional case. With the help of a factorization formula, we show that a nontrivial exceptional
potential can always be fragmented into generic pieces; i.e., a nontrivial potential allowing tun-
neling at zero energy can always be decomposed into pieces none of which allow such tunneling.
The factorization formula~2.17! used to obtain this result allows us to express the scattering
coefficients corresponding to a potential in terms of the scattering coefficients corresponding to its
fragments. We show that similar factorization formulas hold for certain generalized Schro¨dinger
equations describing the wave propagation in one-dimensional nonhomogeneous or nonconserva-
tive media. For such generalized Schro¨dinger equations, the generic and exceptional cases are
again determined by the zero-energy behavior of the transmission coefficients.

The generalized Schro¨dinger equation~3.3! can be analyzed by locally transforming it into a
finite number of Schro¨dinger equations; the results obtained in Sec. II show that each of these
Schrödinger equations can be chosen to have generic potentials. In Sec. III we obtain the corre-
sponding factorization formula for Eq.~3.3!. This formula, Eq.~3.15!, brings insight to the analy-

0022-2488/96/37(12)/5897/19/$10.00
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sis of wave scattering in a one-dimensional nonhomogeneous medium and allows us to see how
the scattering process can be viewed as resulting both from ‘‘soft scatterers’’1 ~responsible for
continuous changes in the medium parameters! and from ‘‘hard scatterers’’1 ~responsible for
discontinuous changes in the medium parameters!. This formula also explains how the total
scattering matrix can be obtained in terms of the scattering matrices of the individual fragments
localized in space.

In Sec. IV, we generalize the factorization formula~2.17! in a different way to analyze how
the scattering process takes place in a one-dimensional nonconservative medium governed by the
generalized Schro¨dinger equation~4.1!, where energy absorption or generation may occur. Al-
though the scattering matrix is no longer unitary when energy absorption or generation is present,
we still have a factorization formula, namely Eq.~4.5!, showing how the scattering resulting from
the fragments is superposed to give the total scattering.

The small-energy analysis of the exceptional case for these three equations usually requires
elaborate calculations. In addition to giving insight into the scattering process, the factorization
formulas associated with these equations are expected to simplify the small-energy analysis of the
wavefunctions and scattering coefficients.

II. SCHRÖDINGER EQUATION

Consider the one-dimensional Schro¨dinger equation

d2c~k,x!

dx2
1k2c~k,x!5V~x!c~k,x!, ~2.1!

wherek2 is energy,x is the space coordinate, andV(x) is a real-valued potential belonging to
L1
1~R!, i.e., *2`

` dx (11uxu)uV(x)u is finite. The scattering solutions of Eq.~2.1! are those that
behave likee6 ikx asx→1` andx→2`. There are two linearly independent scattering solutions
f l(k,x) and f r(k,x) of Eq. ~2.1!, known as the Jost solutions from the left and from the right,
respectively, satisfying the boundary conditions

f l~k,x!5H eikx1o~1!, x→1`,
1

T~k!
eikx1

L~k!

T~k!
e2 ikx1o~1!, x→2`,

~2.2!

f r~k,x!5H 1

T~k!
e2 ikx1

R~k!

T~k!
eikx1o~1!, x→1`,

e2 ikx1o~1!, x→2`,
~2.3!

whereT(k) is the transmission coefficient andR(k) andL(k) are the reflection coefficients from
the right and from the left, respectively. The scattering matrix associated with Eq.~2.1! is defined
as

S~k!5FT~k! R~k!

L~k! T~k!
G , ~2.4!

and it satisfies

S~2k!5S~k!, kPR, ~2.5!

where the overline denotes complex conjugation. The scattering matrix is unitary; thus,

uT~k!u21uR~k!u25uT~k!u21uL~k!u251, kPR, ~2.6!
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and from Eq.~2.5! we see that

R~k!T~2k!1L~2k!T~k!50, kPR. ~2.7!

It is also known that the determinant ofS(k) is given by

T~k!22R~k!L~k!5
T~k!

T~2k!
, kPR. ~2.8!

For a potential inL1
1~R!, the corresponding scattering matrix is well understood. Generically,

the transmission coefficient vanishes linearly ask→0 andR(0)5L(0)521. In the exceptional
case, we haveT~0!Þ0 and henceuR(0)u5uL(0)u,1. There are other characterizations of these
two cases. For example, the potentialV(x) is exceptional if and only iff l(0, x) and f r(0, x) are
linearly dependent. Equivalently,V(x) is exceptional if and only if at least one off l(0, x) and
f r(0, x) is bounded; in that case both of these functions are bounded forxPR. Furthermore, the
potentialV(x) is exceptional if and only if

E
2`

`

dx V~x! f l~0, x!50, ~2.9!

which is equivalent to*2`
` dx V(x) f r(0, x)50 becausef l(0, x) and f r(0, x) are linearly depen-

dent in the exceptional case. Moreover, the exceptional case occurs if and only iff l8(0,2 `) 5 0 or
f r8(0, 1 `) 5 0. Here and throughout the paper the prime denotes the spatial derivative and we
interpretf l8(0,2 `) as limx→2` f l8(0, x) and interpretf r8(0,1 `) as limx→1` f r8(0, x).

If the potential has support on a half-line, i.e., ifV(x)50 for x.b or x,a for some constants
a andb, we have the exceptional case if and only iff r8(0, x) 5 0 for all x>b or f l8(0, x) 5 0 for
all x<a, respectively. For example, whenV(x)50 for x.b, the linear dependence off l(0, x) and
f r(0, x) in the exceptional case requires thatf r(0, x) is a constant forx>b and hencef r8(0, b)
5 0; in the generic case, sincef r(0, x) is linear forx>b and linearly independent off l(0, x), it
follows thatf r8(0, b) Þ 0. Note thatf l(0, x) andf l8(0, x) cannot simultaneously vanish at the same
x value; otherwise, we would havef l(0, x)50 for xPR contradicting f l~0,1`!51. Similarly,
f r(0, x) and f r8(0, x) cannot simultaneously vanish at the samex value. Thus, ifV(x)50 for x,a
and if f l(0, a)50, thenV(x) must be generic. Similarly, ifV(x)50 for x.b and f r(0, b)50,
thenV(x) must be generic.

In the exceptional case, letg denote the constant

g5
f l~0, x!

fr~0, x!
. ~2.10!

We have2

F f l~2k,x!

f r~2k,x!G5F T~k! 2R~k!

2L~k! T~k!
GF f r~k,x!

f l~k,x! G , kPR, ~2.11!

and hence from Eqs.~2.10! and ~2.11! at k50 we get

g5
T~0!

11R~0!
5
11L~0!

T~0!
. ~2.12!

Using Eqs.~2.7!, ~2.8!, and~2.12!, we obtain
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T~0!5
2g

g211
, L~0!52R~0!5

g221

g211
. ~2.13!

Further information on the generic and exceptional cases can be found in Refs. 2–6. For later
reference, we summarize some of the necessary and sufficient conditions for the exceptional case.

Proposition 2.1:A potentialVPL1
1~R! is exceptional if and only iff l8(0,2 `) 5 0 or equiva-

lently if and only if f r8(0, 1 `) 5 0. If V(x) vanishes forx.b, it is exceptional if and only if
f r8(0, b) 5 0. Similarly, if V(x) vanishes forx,a, it is exceptional if and only iff l8(0,a) 5 0.

The trivial potentialV(x)50 is exceptional. IfV(x) is nontrivial andV(x)>0, thenV(x) is
generic. The exceptional case is unstable in the sense that a small change in the potential usually
makes the case generic. As an example, consider the square-well potential: the exceptional case
occurs at the exact depths when a bound state is added to the potential; at any other depth the
square-well potential is generic.

The distinction between the generic and exceptional cases becomes relevant when the small-
energy behavior of the scattering coefficients and of the wavefunctions is considered. In many
instances one has to deal with quantities involving the factorT(k)/k. In the generic case this factor
remains bounded and continuous ask→0, but in the exceptional case it behaves asT(0)/k with
T~0!Þ0. In some applications the factorT(k)/k is multiplied by a continuous functiong(k) and
one has to prove, for example, the integrability of the productg(k)T(k)/k ask→0. In the generic
case this integrability holds automatically, but in the exceptional case one has to prove, for
instance, thatg(k) is of order ukug for somegP~0,1# as k→0. This is one of the reasons why
proofs tend to be more elaborate in the exceptional case than in the generic case. In this Section
we show among other things that an exceptional potential can always be ‘‘fragmented’’ into two
generic pieces and that a matrix closely related to the scattering matrix can be written as a product
of factors, where each factor carries the information pertaining to one fragment. The term ‘‘frag-
ment’’ will be made precise below. We expect our results to offer simplifications in dealing with
exceptional potentials.

We now consider Eq.~2.1! and first explain the term fragment used in this paper. Choose a
partition2`,x1,x2,•••,xn,1` of the real lineR and define

Vj , j11~x!5 HV~x!, xP~xj ,xj11!,
0, x¹~xj ,xj11!,

so that

V~x!5(
j50

N

Vj , j11~x!, ~2.14!

where in Eq.~2.14! and below we use the convention thatx052` and xN1151`. We call
Vj , j11(x) a fragment ofV(x). In analogy to Eq.~2.4! we let

Sj , j11~k!5FTj , j11~k! Rj , j11~k!

L j , j11~k! Tj , j11~k!
G

denote the scattering matrix associated with the potentialVj , j11(x), where each matrixSj , j11(k)
only carries the information pertaining to the fragmentVj , j11(x). Using the scattering coefficients,
we introduce the matrices
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L~k!5F 1

T~k!
2
R~k!

T~k!

L~k!

T~k!

1

T~2k!

G , L j , j11~k!5F 1

Tj , j11~k!
2
Rj , j11~k!

Tj , j11~k!

L j , j11~k!

Tj , j11~k!

1

Tj , j11~2k!

G . ~2.15!

Note that each matrix in Eq.~2.15! can be written as the product of two matrices in the following
way:

L~k!5F 1

T~k!
2
R~k!

T~k!

L~k!

T~k!

1

T~2k!

G5F 1 0

L~k! T~k!
GF 1

T~k!
2
R~k!

T~k!

0 1
G . ~2.16!

Note also that using Eq.~2.7! it is possible to express the entries of each matrix in Eq.~2.15! in
terms of the transmission coefficient and only one of the reflection coefficients; for example, we
have

L~k!5F 1

T~k!
2
R~k!

T~k!

2
R~2k!

T~2k!

1

T~2k!

G5F 1

T~k!

L~2k!

T~2k!

L~k!

T~k!

1

T~2k!

G .
It is known7 thatL(k) can be written as the product

L~k!5L0,1~k!L1,2~k!•••LN,N11~k!. ~2.17!

It can be proved that Eq.~2.17! remains valid if we allow the potentialV(x) to contain a finite
number of Dirac delta functions. When delta functions are included, the proof of Eq.~2.17! can be
obtained from Eqs.~3.15! and~3.16! in the special caseH(x)[1. If all the fragments in Eq.~2.14!
are delta-function potentials, Eq.~2.17! reduces to Eq.~3.17!. In Sec. III we will elaborate on the
inclusion of delta functions.

The matricesL(k) andL j , j11(k) are usually called transition matrices. The reason for this
terminology is as follows, which at the same time proves Eq.~2.17!. Any scattering solution
c(k,x) of ~2.1! obeys c(k,x)5c1e

ikx1c2e
2 ikx1o(1) as x→1` and c(k,x)5d1e

ikx

1d2e
2 ikx1o(1) asx→2`, wherec1,c2,d1,d2 are function ofk alone. By using Eqs.~2.2!, ~2.3!,

and ~2.8!, we can relate the vectors [c1 c2] and [d1 d2] corresponding to each of the Jost solu-
tions f l(k,x) and f r(k,x), and hence we obtain [d1 d2]

t5L(k)[c1 c2]
t. We use the superscriptt

to denote the transpose. HenceL(k) provides the link between the asymptotics of the solutions of
Eq. ~2.1! at 1` and those at2` when the functionse6 ikx are chosen as an~asymptotic! basis.
Now letN51, i.e., the partition is simply2`,x1,1`. Let c1,2(k,x) be the solution of Eq.~2.1!
with the potentialV1,2(x) that satisfiesc1,2(k,x)5c(k,x) for x>x1 , and letc0,1(k,x) be the
solution of Eq.~2.1! with the potentialV0,1(x) such thatc0,1(k,x)5c(k,x) for x<x1 . Then
c1,2(k,x)5d̃1e

ikx1d̃2e
2 ikx for x<x1 , where [d̃1 d̃2]

t5L1,2(k)[c1 c2]
t. Since c(k,x1)

5c0,1(k,x1)5c1,2(k,x1) and c8(k,x1)5c0,18 (k,x1)5c1,28 (k,x1), it follows that c0,1(k,x)

5d̃1e
ikx1d̃2e

2 ikx for x>x1 . So L0,1(k)[ d̃1 d̃2]
t5[d1 d2]

t, and hence [d1 d2]
t

5L0,1(k)L1,2(k)[c1 c2]
t. Thus,L(k)5L0,1(k)L1,2(k), proving Eq.~2.17! whenN51. ForN>2

the result follows by induction.
For later use we note that whenN51, from Eqs.~2.15! and ~2.17! we obtain

1

T~k!
5
12R0,1~k!L1,2~k!

T0,1~k!T1,2~k!
. ~2.18!
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Now we return to Eq.~2.1! and discuss some consequences of Eqs.~2.17! and~2.18!. The first
result concerns resonant energies. These are energies at which the potential is perfectly transpar-
ent; in other words, energieski

2>0 whereuT(ki)u51. Because of Eq.~2.5!, T(2k) 5 T(k) for real
k, and hence it is sufficient to consider the resonant frequencies only forki>0. Typically, if V(x)
is a square-well potential, the existence of such resonant energies is well known~p. 94 of Ref. 8!.
There are also some general existence results9 concerning resonances for potentials that are sym-
metric with respect to the midpoint of the potential barrier. The resonant energies play an impor-
tant role in tunneling spectroscopy.10 Here we consider a related but somewhat different problem.
We consider the one-parameter family of potentials

Vj~x!5V0,1~x1j!1V1,2~x2j!, ~2.19!

where j .0 is a real parameter. In other words, we take a potentialV(x) consisting of two
fragmentsV0,1(x) andV1,2(x) and vary the distance between them by changingj. The goal is to
adjust the distance between the fragments so that the transmission coefficient has magnitude 1. Let
Tj(k) denote the transmission coefficient forVj(x), and fix anyk5k0>0. Then we ask: are there
any values ofj for which uTj(k0)u51? The answer whenk0.0 is contained in the next theorem.
The analysis fork050 will be given at the end of this section.

Theorem 2.2: Consider the potentialVj(x) defined in Eq.~2.19! with the corresponding
transmission coefficientTj(k). For any fixedk0.0, there are three possibilities:~i! uTj(k0)u51 for
all j .0, ~ii ! there is noj .0 for which uTj(k0)u51, ~iii ! the valuesj .0 for which uTj(k0)u51
form an infinite sequence tending to1`.

Proof: Before starting the proof we remark that case~i! occurs when both of the fragments
have a common resonant energy, that is whenuT0,1(k0)u5uT1,2(k0)u51; case~ii ! occurs when
uT0,1(k0)uÞuT1,2(k0)u; case~iii ! occurs whenuT0,1(k0)u5uT1,2(k0)uÞ1. For example, ifV(x) is
symmetric aboutx5x1 and henceV0,1(x12x)5V1,2(x11x), then we are either in case~i! or case
~iii !; the same is true ifV1,2(x) is a translate ofV0,1(x).

The reflection coefficients from the right and left associated with the potentialsV0,1(x1j) and
V1,2(x2j) are given byR0,1(k)e

2ikj andL1,2(k)e
2ikj, respectively. The transmission coefficients

of the individual fragments are not affected by the shifts6j. Thus, by Eq.~2.18!, uTj(k0)u51 if
and only if

uT0,1~k0!uuT1,2~k0!u5u12R0,1~k0!L1,2~k0!e
4ik0ju. ~2.20!

Clearly, if R0,1(k0)5L1,2(k0)50, then, by Eq.~2.6!, uT0,1(k0)u5uT1,2(k0)u51, and Eq.~2.20!
holds independently ofj, which is case~i!. If R0,1(k0)50 but L1,2(k0)Þ0 ~or vice versa!, then
uT0,1(k0)u51 anduT1,2(k0)u,1 ~or vice versa!. Then Eq.~2.20! does not hold for anyj. This is a
special case of case~ii !. Now suppose thatR0,1(k0) and L1,2(k0) are both nonzero. Note the
inequality

12ab>~12a2!1/2~12b2!1/2, a,bP@0, 1#,

with the equality holding if and only ifa5b. Using this inequality witha5uR0,1(k0)u and
b5uL1,2(k0)u, we see that Eq.~2.20! holds if and only ifuR0,1(k0)u5uL1,2(k0)u and

R0,1~k0!L1,2~k0!e
4ik0j5uR0,1~k0!uuL1,2~k0!u.

Hence, ifuR0,1(k0)uÞuL1,2(k0)u, then we are in case~ii !. If uR0,1(k0)u5uL1,2(k0)u, then we set

R0,1~k0!L1,2~k0!5uR0,1~k0!uuL1,2~k0!ueiw~k0!,

and we see that the valuesj are given by 4k0j1w(k0)52pn, wheren is any integer large
enough to ensurej .0. Hencejn5pn/(2k0)2w(k0)/(4k0) is the desired sequence in case~iii !. j
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Next we give some results concerning the nature of the pointk50. Let f l ; j , j11(k,x) and
f r ; j , j11(k,x) denote the Jost solutions from the left and from the right, respectively, for the
potentialsVj , j11(x). Since the potentialsVj , j11(x) have compact support forj51,...,N21, using
Proposition 2.1 we can conclude thatVj , j11(x) is generic if and only iff l ; j , j118 (k,xj ) Þ 0 or if and
only if f r ; j , j118 (k,xj11) Þ 0. Equivalently,Vj , j11(x) is exceptional if and only iff l ; j , j118 (k,xj )
5 0 or if and only if f r ; j , j118 (k,xj11) 5 0. This characterization also applies to the fragments
V0,1(x) andVN,N11(x) if we use f l ;0,18 (k,x0) and f r ;N,N118 (k,xN11), respectively.

Theorem 2.3:Consider a potentialV(x) given in Eq.~2.14! with N>1. Then:
~i! ⇒ If all N11 of the fragments are exceptional, thenV(x) is exceptional.
~ii ! ⇒ If exactly one fragment is generic, thenV(x) is generic.
Proof: ~i! We give two proofs of~i! illustrating different aspects of the problem. First let

N51. Then, from Eq.~2.18! we see that if bothT0,1~0! andT1,2~0! are nonzero, then the trans-
mission coefficientT(k) corresponding toV(x) cannot vanish atk50. Using induction, it then
follows from Eq.~2.18! that if none of the transmission coefficientsTj , j11(k) vanish atk50, then
T(k) cannot vanish atk50. Hence~i! is proved. Alternatively, one can argue by using the
zero-energy Jost solutions. LetM j , j11 denote the transfer matrix such that

F c~0, xj !
c8~0, xj !

G5M j , j11F c~0, xj11!

c8~0, xj11!
G , j51,...,N21,

for any zero-energy solution of Eq.~2.1!. Notice that

f l ; j , j11~0, xj11!51, f l ; j , j118 ~0, xj11!50.

Hence, ifVj , j11(x) is exceptional, then@1 0# t is an eigenvector ofM j , j11 corresponding to the
eigenvaluef l ; j , j11(0, xj ); if Vj , j11(x) is generic, then@1 0# t is not an eigenvector ofM j , j11,
since in that casef l ; j , j118 (0, xj )Þ0 and f l ; j , j118 (0, xj11)50. Furthermore, we havef l(0, xN)
5 f l ;N,N11(0, xN) for xP[xN ,1`) and hencef l8(0, xN) 5 0 wheneverVN,N11(x) is exceptional.
Since all fragments are assumed exceptional, and hence@1 0# t is a common eigenvector of all
matricesM j , j11, it follows that

F f l~0, x1!f l8~0, x1!
G5M1,2•••MN21,NF f l~0, xN!

0 G5cF10G ,
wherec5Pn51

N f l ;n,n11(0, xn). Now notice thatf l(0, x) satisfiesf l9(0, x) 5 V0,1(x) f l(0, x) with
the boundary conditionsf l(0, x1)5c andf l8(0, x1) 5 0; sinceV0,1(x) is exceptional,f l(0, x) must
be a constant multiple off r(0, x) in the interval~2`, x1#. HenceV(x) is exceptional.

~ii ! WhenN51 and exactly one of the two fragments is generic, then the assertion immedi-
ately follows from Eq.~2.18!. Indeed, from Eqs.~2.15! and ~2.17! we have

1

T1,2~k!
5
12L0,1~2k!L~k!

T0,1~2k!T~k!
,

and hence ifT~0!Þ0 andT0,1~0!Þ0, we must haveT1,2~0!Þ0. Consequently, if bothV(x) and
V0,1(x) are exceptional,V1,2(x) has to be exceptional. A similar argument shows that ifT~0!Þ0
and T1,2~0!Þ0, we must haveT0,1~0!Þ0. When N>2, assume that the generic fragment is
Vj 0 , j 011(x). Multiply Eq. ~2.17! by Tj 0 , j 011(k) so that

Tj 0 , j 011~k!L~k!5L0,1~k!•••@Tj 0 , j 011~k!L j 0 , j 011~k!#•••LN,N11~k!. ~2.21!
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Now let k→0 in Eq.~2.21!. Since in the generic case, limk→0 T(k)/k5 ic0 for some real, nonzero
constantc0 ~p. 303 of Ref. 5!, we haveTj 0 , j 011(0)/Tj 0 , j 011(0) 5 21. Also,R(0)5L(0)521 in
the generic case. Thus on the right-hand side of Eq.~2.21! we get

lim
k→0

@Tj 0 , j 011~k!L~k!#5L0,1~0!L1,2~0!•••F 1 1

21 21G •••LN,N11~0!.

Since detLj , j11(k)51, the matricesLj , j11~0! are invertible and hence it follows that the matrix
product in Eq.~2.21! is nonzero ask→0. This implies that limk→0[kL(k)]Þ0 and henceV(x)
must be generic. As in~i!, one could also use the transfer matrices to give an alternate proof of
part ~ii !. j

Theorem 2.4:Any nontrivial potential, generic or exceptional, can be fragmented into at least
two generic pieces. There are infinitely many different ways of fragmenting a nontrivial potential
into generic pieces.

Proof: If suffices to show that if a given portion contains an exceptional piece that is not
identically zero, then that piece can further be partitioned into infinitely many generic pieces.
Suppose thatVj , j11(x) is exceptional and not identically zero. Then there is a subinterval of
(xj , xj11) on which f l8(0, x) Þ 0. Choosing any point in this subinterval to partitionVj ,J11(x)
yields two fragments that are both generic.

An alternate proof can be given as follows. Letf l ; j , j11(k,x) be the corresponding Jost solu-
tion from the left for the potentialVj , j11(x). From Eq.~2.9! we have

E
xj

xj11
dx Vj , j11~x! f l ; j , j11~0, x!50. ~2.22!

Then for anyzPR, consider the fragmentation ofVj , j11(x) given by

Vj , j11~x!5u~z2x!Vj , j11~x!1u~x2z!Vj , j11~x!, ~2.23!

whereu(x) is the Heaviside function, i.e.,u(x)51 if x.0 andu(x)50 if x,0. The fragments
given in Eq.~2.23! have to be generic for an infinite number of valueszP(xj ,xj11), because
Vj , j11(x) is nontrivial and so the integral obtained by replacing the lower limit in~2.22! by z has
to be nonzero for somez, and hence, by continuity, for infinitely manyz. j

One can also consider fragmentations that contain exceptional pieces. From Theorem 2.3 we
already know that a generic potential cannot be divided into two exceptional fragments. A generic
potential can be divided into one generic and one exceptional piece if and only if there is a point
x1 where eitherf l8(0, x1) 5 0 or f r8(0, x1) 5 0. In the first case, the piece to the right ofx1 is
exceptional while the piece to the left ofx1 is generic. In the second case, the types of the pieces
are reversed. We may or may not be able to fragment a nontrivial exceptional potential into two
nontrivial exceptional pieces. For example, the square-well potential supported on 0,x,a be-
comes exceptional at the depths2j 2p2/a2 with j51, 2, 3,..., and hence the square-well potential
given by

V~x!5 H 2p2, xP~0,1!,
0, elsewhere,

cannot be fragmented into two nontrivial exceptional pieces. A nontrivial exceptional potential can
be cut into two nontrivial exceptional pieces if and only if there is a pointx1 where f l8(0, x1)
5 0. If we have an exceptional potential we can choose each zero off l8(0, x) as a separation point.
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This will give the partition into the largest possible number of exceptional pieces, and that number
may be finite or infinite. Example 3.1 demonstrates that an exceptional potential can be frag-
mented into an infinite number of exceptional pieces. IfV(x) is generic, then choosing the zeros
of f l8(0, x) @respectively,f r8(0, x)# as separation points, we obtain a partition where all pieces are
exceptional except one, namelyV0,1(x) @respectively,VN,N11(x)#.

We note that if more than one fragment ofV(x) is generic, thenV(x) may be generic or
exceptional. The following example illustrates this point.

Example 2.5:Assume

V0,1~x!5
24e&x

~11e&x!2
u~2x!, V1,2~x!5

24e2&x

~11e2&x!2
u~x!.

Both V0,1(x) andV1,2(x) are generic, and in fact we have

T0,1~k!5T1,2~k!5
k~k1 i /& !

k211/4
, R0,1~k!5L1,2~k!5

21

4k211
.

Note that corresponding toV(x)5V0,1(x)1V1,2(x) we have

T~k!5
k1 i /&

k2 i /&
, R~k!50,

which is the exceptional case.
On the other hand, in terms ofu(x) andv(x) given by

u~x!58@4~312& !e&x264e2x18e~21& !x2e~212& !x14~322& !e~41& !x#,

v~x!5818e2x2~312& !e&x2~322& !e~212& !x,

let us define

V0,1~x!5
u~x!

v~x!2
u~2x!, V1,2~x!5

2e2&x

~11e2&x/4!2
u~x!,

both of which are generic with the corresponding transmission coefficients

T0,1~k!5
50k~k1 i !~&k1 i !

50&k3170ik2113&k131i
, T1,2~k!5

25k~&k1 i !

25&k2115ik14&
.

The sumV(x)5V0,1(x)1V1,2(x) is a generic potential with the scattering coefficients given by

T~k!5
2k~k1 i !

2k211
, R~k!5

21

2k211
.

Finally, we analyzeTj ~0! corresponding to the potentialVj(x) given in Eq.~2.19!, as the
analysis ofTj(k) for k50 was omitted from Theorem 2.2. In order to haveuTj ~0!u51, it is
necessary thatVj(x) is exceptional, and hence we first analyze the conditions for whichVj(x) is
exceptional. LetFl(k,x) andFr(k,x) denote the Jost solutions from the left and from the right,
respectively, for the potentialVj(x). Let us also usef l(k,x) and f r(k,x) to denote the Jost
solutions from the left and from the right, respectively, for the potentialV(x). Note thatVj(x)50
for xP(x12j,x11j), and hence we have
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Fl~0, x!5H f l~0, x1j!F122j
f l8~0, x1!

f l~0, x1!
22j f l8~0, x1!

2E
x1j

x1 dt

f l~0, t !
2G , x<x12j,

~x2x12j! f l8~0, x1!1 f l~0, x1!, xP@x12j, x11j#,
f l~0, x2j!, x>x11j,

~2.24!

Fr~0, x!5H f r~0, x1j!, x<x12j,
~x2x11j! f r8~0, x1!1 f r~0, x1!, xP@x12j, x11j#,

f r~0, x2j!F112j
f r8~0, x1!

f r~0, x1!
22j f r8~0, x1!

2E
x1

x2j dt

f r~0, t !
2G , x>x11j.

~2.25!

From Eqs. ~2.24! and ~2.25! we see thatVj(x) is exceptional if and only if the ratio
Fr(0, x)/Fl(0, x) is independent ofx; sinceFl(0, x) and Fr(0, x) are linear functions in the
interval xP[x12j,x11j], we can conclude thatVj(x) is exceptional if and only if

Fr~0, x11j!

Fl~0, x11j!
5
Fr~0, x12j!

Fl~0, x12j!
,

from which we obtain

j5
@ f l~0, x1!; f r~0, x1!#

2 f l8~0, x1! f r8~0, x1!
5
dr2dl
2drdl

, ~2.26!

where@ f ;g# 5 f g8 2 f 8g denotes the Wronskian and we have defined

dl5
f l8~0, x1!

f l~0, x1!
, dr5

f r8~0, x1!

f r~0, x1!
.

The cases in whichf l(0, x1)50 and f r(0, x1)50 are included by settingdl5` and dr5`, re-
spectively.

~a! If dlÞ0 anddrÞ0, then there is exactly one value ofj given by Eq.~2.26! for whichVj(x)
is exceptional provided the right-hand side of Eq.~2.26! is positive. Otherwise,Vj(x) is
generic.

~b! If dl5dr50, i.e., if f l8(0, x1) 5 f r8(0, x1) 5 0, then both fragments and hence alsoV(x) are
exceptional. Thus,Vj(x) is exceptional for allj > 0.

~c! If dlÞ0 and dr50, thenV0,1(x) is exceptional andV1,2(x) is generic. Thus,T0,1~0!Þ0,
T1,2~0!50, R1,2~0!521, anduL0,1~0!u,1, and Eq.~2.18! shows thatTj ~0!50 and hence we
are in the generic case for allj > 0. This is also in agreement with Theorem 2.3~ii !.

~d! If dl50 anddrÞ0, then the analysis is similar to case~c!; thusVj(x) is generic for allj>0.
~e! If dlÞ0 anddr5`, then f l8(0, x1) Þ 0 and f r(0, x1)50; both fragments are generic. From

Eq. ~2.26! we see thatVj(x) is exceptional only whenj51/~2dl! provided thatdl.0.
OtherwiseVj(x) is generic, and in particularV(x) is generic.

~f! If dl5` anddrÞ0, the analysis is similar to case~e!. Then, from Eq.~2.26! we see that
Vj(x) is exceptional only whenj521/(2dr) provided thatdr,0. OtherwiseVj(x) is ge-
neric, and in particularV(x) is generic.

~g! If dl50 anddr5`, from ~2.26! in the limiting case it is seen that noj exists for whichVj(x)
is exceptional. Similarly, ifdl5` anddr50, Vj(x) is always generic.

~h! If dl5dr5`, we havef l(0, x1)5 f r(0, x1)50 and hencef l(0, x) and f r(0, x) are linearly
dependent. Thus,V(x) is exceptional. However, as seen from Eq.~2.26!, Vj(x) is generic
for everyj . 0. In other words,Tj ~0!Þ0 for j50 butTj~0!50 for all j . 0.
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Once all thej values are obtained in cases~a!, ~b!, ~e!, and~f! for which Vj is exceptional,
one needs to determine which of thesej values correspond touTj ~0!u51. For example, in case~b!,
we can proceed as follows. From Eq.~2.18! we have

1

Tj~0!
5
12R0,1~0!L1,2~0!

T0,1~0!T1,2~0!
, ~2.27!

and henceTj ~0! is independent ofj. Let g0,1 be the constant defined as in Eq.~2.10! giving the
ratio of the zero-energy Jost solutions for the potentialV0,1(x), and letg1,2 be defined similarly for
the potentialV1,2(x). As in Eq. ~2.13!, we have

R0,1~0!5
12g0,1

2

11g0,1
2 , L1,2~0!5

g1,2
2 21

11g1,2
2 . ~2.28!

Using Eq.~2.28! in Eq. ~2.27! we obtain

Tj~0!5
2g0,1g1,2

11g0,1
2 g1,2

2 ,

from which we see thatuTj ~0!u51 if and only if g0,1g1,2561.

III. WAVE PROPAGATION IN A NONHOMOGENEOUS MEDIUM

The fragmentation of an exceptional potential into two generic pieces has important conse-
quences in direct and inverse scattering problems associated with wave propagation, where the
governing equations are related to the Schro¨dinger equation or its variants. One such differential
equation is given by

d2c~k,x!

dx2
1

k2

c~x!2
c~k,x!5Q~x!c~k,x!, ~3.1!

or by its time domain equivalent

]2f~ t,x!

]x2
2

1

c~x!2
]2f~ t,x!

]t2
5Q~x!f~ t,x!. ~3.2!

Equation~3.1! describes the quantum mechanical behavior of a particle when the potential also
depends on its energy. Equations~3.1! and ~3.2! describe the propagation of waves in a one-
dimensional nonhomogeneous, nonabsorptive medium where the wavespeed isc(x) and the re-
storing force density isQ(x). These equations can be analyzed by transforming them into Schro¨-
dinger equations by using local Liouville transformations.11 In the special~but still significant!
caseQ(x)50, the potential in the transformed Schro¨dinger equation is always exceptional. One
important outcome of Theorem 2.4 is that it is possible to choose the local Liouville transforma-
tions in such a way that all the resulting fragments of the transformed Schro¨dinger equations are
either generic or pertain to a potential vanishing identically. This leads to considerable simplifi-
cations in the small-k analysis of Eqs.~3.1! and~3.2!. For example, consider Eq.~3.25! of Ref. 11
where the Jost solutions and their space derivatives are expressed as a product of matrices, each of
which is expressed in terms of the quantities related to one fragment only. The matrices in Eq.
~3.25! of Ref. 11 contain the factort j21,j (k)/k, where t j21,j (k) is the transmission coefficient
corresponding to thej th fragment; that factor remains continuous ask→0 if the j th piece is
generic and it is singular if thej th piece is exceptional. Hence, by fragmenting the exceptional
pieces into generic ones, it becomes obvious that the Jost solutions and their space derivatives are
continuous atk50.
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Let us write Eq.~3.1! as

c9~k,x!1k2H~x!2c~k,x!5Q~x!c~k,x!, xPR. ~3.3!

Our assumptions onQ(x) andH(x) are as follows:
~H1! H(x) is strictly positive, piecewise continuous with possible discontinuities inH(x) or

H8(x) occurring at theN pointsx1,•••,xN .
~H2! H(x)→H6 asx→6`, whereH6 are positive constants.
~H3! H2H6PL1~R6!, whereR25~2`,0! andR15~0,1`!.
~H4! H8 is absolutely continuous on (xn ,xn11) and 2H9H23(H8)2PL1

1(xn ,xn11) for
n50,...,N, wherex052` andxN1151`.

~H5! Q(x) is real valued and of the formQ(x)5W(x)1( j51
N cjd(x2xj ), whereWPL1

1~R!
andd (x) is the Dirac delta function.

Conditions~H1!–~H5!, without the delta-function terms in~H5!, were introduced in Ref. 11,
where the inverse scattering problem for Eq.~3.3!, namely the recovery of the coefficientH(x)
from an appropriate set of scattering data, was studied. Hypothesis~H1! allows for abrupt changes
in the material properties of the medium in which the wave propagates. In~H5! we have now
included delta functions because they are often useful in working out explicitly solvable examples.
Moreover, it is of interest to see how some of the results are affected by delta functions superim-
posed on discontinuities inH(x) andH8(x). The delta-function potentialV(x)5ad(x2a) cor-
responds to

T~k!5
k

k1 ia/2
, R~k!5

2 ia/2

k1 ia/2
e2ika, L~k!5

2 ia/2

k1 ia/2
e22ika, ~3.4!

from which we see that it is a generic potential.
As for Eq. ~2.1!, Eq. ~3.3! also has two linearly independent scattering solutions, namely the

Jost solutionsf l(k,x) and f r(k,x) satisfying the boundary conditions

f l~k,x!5H eikH1x1o~1!, x→1`,
1

Tl~k!
eikH2x1

L~k!

Tl~k!
e2 ikH2x1o~1!, x→2`,

f r~k,x!5H 1

Tr~k!
e2 ikH1x1

R~k!

Tr~k!
eikH1x1o~1!, x→1`,

e2 ikH2x1o~1!, x→2`.

Here,Tl(k) andTr(k) are the transmission coefficients from the left and from the right, respec-
tively, andL(k) andR(k) are the reflection coefficients from the left and from the right, respec-
tively. Associated with Eq.~3.3! is the scattering matrix

S~k!5FTl~k! R~k!

L~k! Tr~k!
G . ~3.5!

The matrixS(k) is not unitary unlessH15H2 ; we haveS(2k) 5 S(k) for realk, and

H1Tl~k!5H2Tr~k!, Im k>0,

Tr~2k!Tl~k!1uR~k!u25Tr~k!Tl~2k!1uL~k!u251, kPR,

R~k!Tr~2k!1L~2k!Tr~k!50, kPR.
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In the study of the scattering matrixS(k) given in Eq. ~3.5!, one again has to distinguish
between the generic case and the exceptional case. As in Sec. II, in the generic case the transmis-
sion coefficients vanish linearly ask→0, whereas in the exceptional case we haveTl~0!Þ0 and
Tr~0!Þ0. Furthermore, in the generic caseR(0)5L(0)521, while in the exceptional caseuR(0)u
5uL(0)u,1. The coefficientH(x) in Eq. ~3.3! has no influence on the leading behavior of the
transmission coefficients ask→0, and hence the generic and exceptional cases are determined by
the potentialQ(x) only. All the characterizations of the two cases for the Schro¨dinger equation
hold verbatim also for Eq.~3.3!. If Q(x)50 in Eq.~3.3!, we have the exceptional case. IfQ(x) is
nontrivial andQ(x)>0 in Eq.~3.3!, then we have the generic case. All the differences between the
two cases ask→0 outlined in Sec. II also exist11–13 in the wave propagation problem associated
with Eq. ~3.3!.

Let us generalize the factorization formula~2.17! to the scattering problem for Eq.~3.3!.
Under the Liouville transformation

y5y~x!5E
0

x

ds H~s!, c~k,x!5
1

AH~x!
f~k,y!, ~3.6!

Eq. ~3.3! is transformed into

d2f~k,y!

dy2
1k2f~k,y!5V~y!f~k,y!, ~3.7!

where

V~y!5V~y~x!!5
H9~x!

2H~x!3
2
3

4

H8~x!2

H~x!4
1

Q~x!

H~x!2
. ~3.8!

Since, by~H1!, H(x) andH8(x) are allowed to have jump discontinuities atxj for j51,...,N, the
function V(y) is undefined atyj5y(xj ) for j51,...,N. In agreement with Eq.~3.6!, we set
y05y(x0)52` and yN115y(xN11)51`. ThenV(y) is well defined in each of the intervals
(yj ,yj11) for j50,...,N, and ~H4! ensures thatVPL1

1 on these intervals. In view of~H5!, the
solutions of Eq.~3.3! satisfy the conditions

c~k,xn20!5c~k,xn10!, c8~k,xn10!2c8~k,xn20!5cnc~k,xn!. ~3.9!

As a result, by using Eqs.~3.6! and ~3.9!, we deduce that the solutions of Eq.~3.7! satisfy the
self-adjoint boundary conditions

f~k,yn20!5Aqn f~k,yn10!, ~3.10!

df~k,yn20!

dy
5nnf~k,yn10!1

1

Aqn

df~k,yn10!

dy
, ~3.11!

where

qn5
H~xn20!

H~xn10!
,

nn5
1

2AH~xn20!H~xn10!
FH8~xn20!

H~xn20!
2
H8~xn10!

H~xn10!
22cnG . ~3.12!
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The scattering matrix corresponding to Eq.~3.7! equipped with these boundary conditions is
known as the ‘‘reduced scattering matrix’’11 and is given by

s~k!5F t~k! r~k!

l ~k! t~k!
G ,

wheret (k) is the reduced transmission coefficient andr (k) andl (k) are the reduced reflection
coefficients from the right and from the left, respectively. The reduced scattering matrix is unitary
and its entries are related to the scattering matrixS(k) given in Eq.~3.5! as follows:11

t~k!5AH1

H2
Tl~k!eikA5AH2

H1
Tr~k!eikA, ~3.13!

r~k!5R~k!e2ikA1, l ~k!5L~k!e2ikA2,

where

A656E
0

6`

ds @H62H~s!#, A5A11A2 .

The pointsyj generate a partition of the real line, and so we define

Vj , j11~y!5 HV~y!, yP~yj ,yj11!,
0, elsewhere.

We let t j , j11(k), r j , j11(k), and l j , j11(k) denote the transmission coefficient and the reflection
coefficients from the right and from the left, respectively, for the potentialVj , j11(y), and, as in
Eq. ~2.15!, we define

L~k!5F 1

t~k!
2

r~k!

t~k!

l ~k!

t~k!

1

t~2k!

G , L j , j11~k!5F 1

t j , j11~k!
2

r j , j11~k!

t j , j11~k!

l j , j11~k!

t j , j11~k!

1

t j , j11~2k!

G . ~3.14!

By suppressing thek-dependence of the transition matrices in Eq.~3.14!, we have the generali-
zation of Eq.~2.17! in the case of Eq.~3.3! given by13

L5L0,1F1L1,2F2L2,3•••FNLN,N11 , ~3.15!

whereF j for j51,...,N are the matrices defined by

F j~k!5F an1
nn
2ik S bn1

nn
2ik De22iky

S bn2
nn
2ik De2ikyn an2

nn
2ik

G ,
with

an5
1

2 FAH~xn20!

H~xn10!
1AH~x10!

H~xn20!
G , bn5

1

2 FAH~xn20!

H~xn10!
2AH~xn10!

H~xn20!
G ,

and where the constantsnn are given in Eq.~3.12!.
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The matricesF j account for the internal boundary conditions~3.10! and ~3.11!. In order to
justify Eq. ~3.15!, again consider the caseN51 first. Using notations similar to those used below
Eq. ~2.17!, we letf (k,y) be a solution of Eq.~3.7! such thatf(k,y)5c1e

iky1c2e
2 iky as y→

1`, and we definef1,2(k,y) andf0,1(k,y) as solutions of Eq.~3.7! for the fragmentsV0,1(y) and
V1,2(y) such that f1,2(k,y)5f(k,y) for y.y1 and f0,1(k,y)5f(k,y) for y,y1 . Then,

f1,2(k,y)5d̃1e
iky1d̃2e

2 iky for y,y1 andf0,1(k,y)5 c̃1e
iky1 c̃2e

2 iky for y.y1 , with suitable

constantsd̃1, d̃2, c̃1, andc̃2. Now the coefficientsd̃1 andd̃2 are related to the coefficientsc̃1 and
c̃2 through the boundary conditions~3.10! and ~3.11! by setting f(k,y120)5f0,1(k,y1),
f8(k,y1 2 0) 5 f0,18 (k,y1), and f(k,y110)5f1,2(k,y1), f8(k,y1 1 0) 5 f1,28 (k,y1). This-
yields

F eiky1 e2 iky1

ikeiky1 2 ike2 iky1GF c̃1c̃2G5F Aq1 0

n1
1

Aq1
G F eiky1 e2 iky1

ikeiky1 2 ike2 iky1GF d̃1d̃2G ,
from which we obtain [c̃1 c̃2]

t5F1[ d̃1 d̃2]
t. This proves Eq.~3.15! whenN51, and the general

case follows by induction. Note thatFn can be written as a product of three matrices, namely

Fn5L~xn20, xn!L@xn ,xn#L~xn ,xn10!, ~3.16!

where

L~xn20, xn!5F an
21

nn
2

2ik S bn
21

nn
2

2ik De22ikyn

S bn
22

nn
2

2ik De2ikyn an
22

nn
2

2ik

G ,
L@xn ,xn#5F 12

cn
2ik

cn
2ik

e22ikyn

2
cn
2ik

e2ikyn 11
cn
2ik

G ,
L~xn ,xn10!5F an

11
nn

1

2ik S bn
11

nn
1

2ik De22ikyn

S bn
12

nn
1

2ik De2ikyn an
12

nn
1

2ik

G ,
with

an
75

1

2 FAH~xn70!1
1

AH~xn70!
G , bn

756
1

2 FAH~xn70!2
1

AH~xn70!
G ,

nn
75

61

2AH~xn70!

H8~xn70!

H~xn70!
.

We remark that the transition matrixL(xn20, xn) is due to the hard scatterer caused by a jump in
H(x) from H(xn20) to 1 and a jump inH8(x) from H8(xn20) to 0. The transition matrix
L[xn ,xn] is due to the hard scatterercnd(x2xn), as seen from Eq.~3.4!. The transition matrix
L(xn ,xn10) is due to the hard scatterer caused by a jump inH(x) from 1 toH(xn10) and a
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jump in H8(x) from 0 toH8(xn10). The transition matricesLn,n11(k) in Eq. ~3.15! are due to
the soft scatterersVn,n11(y). In the special case whenH(x)51 andW(x)50 in ~H5!, Eq. ~3.15!
takes the form

L5L@x1 ,x1#•••L@xN ,xN#, ~3.17!

which describes scattering by a superposition of delta functions located atx1 ,...,xN .
We mention one application of the factorization formula~3.15! in the inverse scattering

problem for Eq.~3.3! concerning the large-k asymptotics oft(k), r(k), and l (k); we refer the
reader to Refs. 11–13 for details: it is known that from the large-k asymptotics of a reduced
reflection coefficient one can recover the ratiosqn andnn ~cf. Ref. 13, where the casecn50 was
studied!. It is seen from Eq.~3.12! that the coefficientscn affect the large-k asymptotics through
the constantsnn and thus contribute in the same manner as the jumps in the derivative ofH(x).
We also see thatcn can be chosen suitably to cancel the contribution from a jump inH8(x).

In the recovery ofH(x) in Eq. ~3.3!, the distinction between the exceptional and generic cases
is important. For example, in the absence of bound states, given the scattering data consisting of
a reduced reflection coefficient andQ(x), one obtains a one-parameter family ofH(x) in the
exceptional case and a uniqueH(x) in the generic case.11–13Therefore, in the exceptional case one
must include eitherH1 or H2 in the scattering data for the unique recovery ofH(x); however, in
the generic case,H1 or H2 cannot be specified in the scattering data and instead these constants
are themselves recovered during the inversion procedure.

Finally in this section we give an example of an exceptional potential that can be fragmented
into an infinite number of only exceptional pieces.

Example 3.1:In Eq. ~3.3! chooseQ(x)50 and

H~x!5H 11S sin xx D 3, xÞ0,

2, x50.
~3.18!

Note thatH(x) is strictly positive and bounded,H651, and

H8~x!5H 3 sin2xx4
@x cosx2sin x#, xÞ0,

0, x50,

H9~x!5H 3 sin xx5
@x2~3 cos2x21!26x cosx sin x14 sin2x#, xÞ0,

0, x50,

and henceH, H8, andH9 are all continuous onR. SinceQ(x)50, we are in the exceptional case,
and hence the transmission coefficientsTl(k) andTr(k) cannot vanish atk50. Note thatH(np)
51,H8(np)50, andH9(np)50 for any integern. Using Eq.~3.6! let us defineyn5y(np). Now
consider the potentialV(y) obtained by using Eq.~3.18! andQ(x)50 in Eq. ~3.8!. That potential
must be exceptional, and in fact from Eq.~3.13! it can be seen that the transmission coefficient
t (k) corresponding to the potentialV(y) cannot vanish atk50. Now let us fragmentV(y) as
V(y)5(n52`

` Vn,n11(y), where we have defined

Vn,n11~y!5 HV~y!, yP~yn ,yn11!,
0, elsewhere. ~3.19!
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The following argument shows that eachVn,n11(y) is exceptional. SinceQ(x)50 in Eq.~3.3!, the
corresponding zero-energy Jost solution is given byf l(0, x)51 for xPR. Using Eq. ~5.1! of
Ref. 11, we see that the zero-energy Jost solution from the left of Eq.~3.7! is given by

gl~0,y!5gl„0,y~x!…5AH~x!.

Hence, we obtain

gl8~0,y!5
dgl~0,y!

dy
5
dx

dy

dAH~x!

dx
5

H8~x!

2H~x!3/2
. ~3.20!

SinceH8(np)50, from Eq.~3.20! we see thatgl8(0,yn) 5 0, and hence we can chooseyn as the
separation points to fragmentV(y) into only exceptional pieces, which are given by Eq.~3.19!.

IV. WAVE PROPAGATION IN A NONCONSERVATIVE MEDIUM

The wave propagation in a one-dimensional nonconservative medium is described, in the
frequency domain, by the generalized Schro¨dinger equation

c9~k,x!1k2c~k,x!5@ ikP~x!1Q~x!#c~k,x!, xPR, ~4.1!

wherek is the wave number,P(x) represents the joint effect of energy absorption and generation,
andQ(x) stands for the restoring force density. In the time domain Eq.~4.1! corresponds to

]2u

]x2
2

]2u

]t2
2P~x!

]u

]t
5Q~x!u, t,xPR,

where the wavespeed is equal to one. We will assume thatQ(x) is real valued and belongs to
L1
1~R!, and thatP(x) is real valued and belongs toL1~R!. We have energy absorption when

P(x)<0 and energy generation whenP(x)>0; however, our results in this section are valid
without assuming thatP(x) is positive or negative.

The scattering solutions of Eq.~4.1! are those behaving likeeikx or e2 ikx asx→6`, and such
solutions occur whenk2.0. Among the scattering solutions are the Jost solution from the left
f l(k,x) and the Jost solution from the rightf r(k,x) satisfying the boundary conditions~2.2! and
~2.3!, respectively. The scattering matrixS(k) associated with Eq.~4.1! has the form~2.4!. When
P(x) is purely imaginary, the inverse scattering problem for Eq.~4.1! was analyzed by Jaulent and
Jean;14–17 in this case the scattering matrixS(k) is unitary and hence the reflection coefficients
cannot exceed one in absolute value. An incomplete study of the same problem whenP(x) is real
was outlined in Ref. 18. In that case the differential equation~4.1! is no longer self-adjoint and the
scattering matrixS(k) is no longer unitary. Consequently, the analysis of the direct and inverse
scattering problems for realP(x) is much more complicated than for imaginaryP(x).

We are interested in the analog of the factorization formula~2.17!. As in Sec. II, let us
partition the real axisR into x0,x1,x2,•••,xN,xN11 with x052` andxN1151`. Consider
the analog of Eq.~4.1! given by

c9~k,x!1k2c~k,x!5@ ikPj , j11~x!1Qj , j11~x!#c~k,x!, ~4.2!

where we have defined the fragments

Pj , j11~x!5 HP~x!, xP~xj ,xj11!,
0, elsewhere, ~4.3!
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Qj , j11~x!5 HQ~x!, xP~xj ,xj11!,
0, elsewhere. ~4.4!

Let the scattering matrix associated with Eq.~4.2! be given by

sj , j11~k!5F t j , j11~k! r j , j11~k!

l j , j11~k! t j , j11~k!
G .

Proceeding as in the previous sections or as in Ref. 7 or Ref. 13 we obtain

L~k!5L0,1~k!L1,2~k!•••LN,N11~k!, ~4.5!

where we have defined the transition matrices

L~k!5F 1

T~k!
2
R~k!

T~k!

L~k!

T~k!

T~k!22L~k!R~k!

T~k!

G , ~4.6!

L j , j11~k!5F 1

t j , j11~k!
2
r j , j11~k!

t j , j11~k!

l j , j11~k!

t j , j11~k!

t j , j11~k!22 l j , j11~k!r j , j11~k!

t j , j11~k!

G . ~4.7!

As in the previous sections, the transition matrix given in Eq.~4.6! provides the link between the
asymptotics of the scattering solutions of Eq.~4.1! at1` and those at2` whene6 ikx are chosen
as an asymptotic basis; the transition matrices in Eq.~4.7! have similar interpretations. Again, each
of the matrices in Eqs.~4.6! and~4.7! can be decomposed as in Eq.~2.16!. Note that the~2,2! entry
in Eq. ~4.6! is analytic in the lower-half complex planeC2 and in general cannot be replaced by
1/T(2k); however, it is known that14 this entry is equal to 1/T ~2k!, whereT (k) is the trans-
mission coefficient associated with the differential equation obtained from Eq.~4.1! by changing
the sign ofP(x).

Again one has to distinguish between the generic and exceptional cases in studying the
scattering and inverse scattering problems for Eq.~4.1!. As for Eq.~3.3!, the potentialQ(x) alone
determines whether we have the generic case or the exceptional case. The difficulties arising in
proofs in the exceptional case outlined in the previous sections remain true also for Eq.~4.1!, and
by choosing each fragment in the partitioning~4.3! and ~4.4! to be either generic or identically
zero we expect simplifications in the smallk-analysis of the direct and inverse scattering problems
for Eq. ~4.1!.
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We derive a set of inequalities which relate the translation invariant problem ofN
identical particles with pairwise interactions to an independent particle problem.
These inequalities apply to attractive power law potentialsV(r )5r q, 1<q<`, and
superpositions of such potentials; they become identities in the harmonic oscillator
caseq52. We use the inequalities to derive new upper and lower bounds for the
ground state energies of fermion systems, which interact through these potentials.
These bounds improve all previous results in the range 1<q<`; they reduce to the
exact answer in the harmonic oscillator case. ©1996 American Institute of Phys-
ics. @S0022-2488~96!01109-7#

I. INTRODUCTION

Since the pioneering works of Fischer and Ruelle on the thermodynamic limit,1 of Dyson and
Lenard on the stability of matter,2 and of Lévy-Leblond on the nonsaturation of gravitational
forces,3 a great deal of interest has been devoted to the derivation of lower bounds for the ground
state energies of many particle systems in terms of two particle spectra.

In Ref. 4 we have shown that for boson systems, or particles of different masses, previous
bounds could be considerably improved by a simple technique. The improved bounds coincide
with the exact answer for harmonic interactions. This has a number of applications, for instance in
relating baryon to meson masses in the quark model.

Pairwise interactingN fermion systems present a variety of interesting applications. In that
case, however, the methods introduced in Ref. 4 are not able to produce any improvements to the
bounds obtained by the Fischer–Ruelle–Dyson–Lenard–Le´vy-Leblond ~FRDL3!1–3 technique.
This is quite frustrating in the harmonic oscillator case which can be solved exactly, and where the
FRDL3 bound differs from the exact result by a factor of&. Similarly, the attractive Coulomb
case can be calculated for largeN with the Thomas–Fermi method. In that case, the FRDL3 result
is off by a factor of;3.

One reason for this difficulty in improving the FRDL3 bounds can be traced back to the
known difficulty of constructing an orthogonal set ofN particle wavefunctions which satisfies the
three conditions of being completely antisymmetric, translationally invariant, and of being eigen-
functions of an independent particle Hamiltonian. This can only be done in the harmonic case.

In this paper, we present a new approach to theN fermion problem with pairwise interactions
which deals with the particular class of potentials

a!Electronic mail address: basdevan@frcpn11.in2p3.fr
b!Unité de Recherche des Universite´s Paris XI et Paris VI associe´e au CNRS.
c!URA 14-36 du CNRS associe´e à l’Ecole Normale Supe´rieure de Lyon et a` l’Université de Savoie.
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V~r !5E
1

`

r qm~q!dq, m>0.

Although, this class does not include some cases of practical interest such as the Coulomb and
Yukawa potentials, or the quark–quark confining potentials, the results are nevertheless very
interesting insofar as~1! they systematically improve the FRDL3 results;~2! they produceboth
upperand lower bounds; and~3! they reduce to the exact answer in the harmonic case.

The derivation of these new bounds relies on the existence of a set of inequalities which is
interesting as such. The proof of these inequalities is nontrivial, it requires the techniques ofl P

interpolation, and the Riesz–Thorin interpolation theorem. For the class of potentials under con-
sideration, these inequalities allow us to relate anN-body problem with pairwise interactions and
translation invariance to an independent particle problem whose solution is known.

In Sec. I, we state the problems under consideration and recall previous bounds. In Sec. II, we
use the inequalities to derive the upper and lower bounds on fermion systems, and we draw our
first conclusions. Finally, in Sec. III, we give the derivation of the inequalities themselves.

II. POSITION OF THE PROBLEM

Consider a system ofN identical particles with pairwise interactionsVi j[V(r i2r j ), of
Hamiltonian

HN5(
i51

N

pi
21(

i51

N

(
j5 i11

N

Vi j ~1!

~for simplicity we have set the mass equal to12!.
We denote byen~m! the energy levels of a particle of massm/2 placed in the potentialV(r )

centered at the origin, of Hamiltonianh5p2/m1V(r ), by gn their degeneracies, and byf N~m! the
ground state energy ofN independent fermions, of spins and massm/2, each placed in this
potential, of Hamiltonian

H̃N5(
i51

N

hi5(
i51

N S pi2m
1V~r i ! D . ~2!

We have

f N~m!5~2s11! (
n51

k

gnen~m!1r ek11~m!, ~3!

where the integerk is defined in terms ofN by

~2s11! (
n51

k

gn1r5N,~2s11! (
n51

k11

gn , r>0. ~4!

In the Coulomb case,V521/r , we have en(m)52m/4n2, gn5n2, and, for largeN,
f N(m)'2(m/4)(2s11)2/3(3N)1/3.

In the three-dimensional harmonic oscillatorV5r 2, en(m)5(2n11)/Am, gn5n(n11)/2,
and, for largeN, f N(m)'(6N)4/3/„~2s11!1/34Am….

Following an argument due originally to Fischer and Ruelle,1 one can obtain a lower bound on
the N-particle ground state energyEN, in terms of the two-particle spectrum, by rewriting the
Hamiltonian~1! as a sum ofN terms
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HN5
1

2 (
i51

N

Hi , ~5!

Hi5 (
j51,jÞ i

N S 2pj
2

~N21!
1Vi j D . ~6!

If uV& is theN particle ground state,EN5^VuHNuV&, and therefore

EN5
N

2
^VuHi uV&. ~7!

In Eq. ~6!, Hi appears as the Hamiltonian ofN21 independent particles of massm/2
5~N21!/4, placed in the field of particlei considered as infinitely massive. Since^Hi& is larger
than the ground state energy of this system, one obtains the desired lower bounds.

For bosons, we have

EB
N>

N~N21!

2
e1~m5~N21!/2!, ~8!

which yields in the Coulomb and harmonic cases

EB
N>3NA~N21!/2 ~V5r 2!, ~9a!

EB
N>2N~N21!2/16 ~V51/r !. ~9b!

In the case of fermions, the antisymmetry ofuV& imposes retention of only those levels ofHi

which correspond to antisymmetric states in theN21 particles j51,...,N, jÞ i . The minimal
requirement is therefore to distribute evenly theN21 particles over theN21 lowest eigenstates of
the one-particle Hamiltonian. One thus obtains

EF
N>

N

2
f N21~m5~N21!/2!. ~10!

For largeN, in the harmonic and Coulomb cases, respectively, one obtains

EF
N>

64/3

21/24~2s11!1/3
N11/6 ~V5r 2!, ~11a!

EF
N>2

~2s11!2/331/3

16
N7/3 ~V521/r !. ~11b!

These bounds are off by factors ofA2 ~harmonic case, which is exactly soluble! and'3 ~Coulomb
case, which can be treated by the Thomas–Fermi method for largeN!.

In the case of bosons~more generally, nonidentical particles!, we have improved the above
bounds4 in what we believe is an optimal way.

We use the identity

N(
i51

N

pi
25 ((

1< i, j<N
~pi2pj !

21S (
i51

N

pi D 2, ~12!
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valid for any set ofN vectorspi , i51,...,N of Rk, to separate out the center-of-mass motion in~1!
as

HN5H rel
N 1P2/N, ~13!

where the relative Hamiltonian is

H rel
N 5 ((

1< i, j<N
S 1N ~pi2pj !

21Vi j D ~14!

andP5(pi is the total momentum.
In theN body center-of-mass frame^P&50 @this can be made rigorous by adding, e.g., a term

a2((r i /N)
2 which commutes withH rel

N and lettinga2 tend to zero#, and therefore

EN5
N~N21!

2
^VuS 4N S pi2pj

2 D 21Vi j D uV&. ~15!

Since (pi2pj !/2 and (r i2r j ) satisfy canonical commutation relations, one obtains, for bosons

EB
N>

N~N21!

2
e1~m5N/4!, ~16!

which improves~8! sinceen~m! increases with 1/m.
This new lower bound becomes the exact answer for a harmonic interaction:

EN53(N21)AN, and we have shown4 that it is very close to the exact answer for the power-law
potentialsV5r q, 21<q<5, including the Coulomb case~we thank J. M. Richard for making new
tests forq.3, N53!.

In fermion systems, however, this procedure does not help. We can, of course, perform a
decomposition ofHN similar to ~5! and ~6!:

HN5
1

2 (
i51

N

Hi , ~17!

Hi5 (
j51,jÞ i

N S 4N S pj2pi
2 D 21Vi j D , ~18!

butHi is no longer an independent particle Hamiltonian, and it cannot be diagonalized in general.
In fact, although (pj2pi)/2 and (r j2r i) have canonical commutation relations, (pj2pi) and
(r k2r i) do not commute.

HereHi can be viewed as describing the motion ofN21 independent particles of massN/2,
placed in the field of a much lighter particlei of massN/„2~N11!…. This problem has no simple
solution in general. The difficulty we meet here is also related to the known difficulty of con-
structing fully antisymmetricN-particle wavefunctions which are both eigenstates of anN21
independent particle Hamiltonian and translationally invariant.

No recasting of the kinetic term, such as~12! or the many analogous formulas one can write,
can do the job, and it seems impossible to improve the fermionic bound~10! in a simple way
without further specifying the potential.

This situation is rather frustating with regards to the harmonic interaction, where we know the
exact answer and the bound~10! is off by a factor of&.

A naı̈ve conjecture, following from the inspection of Eq.~14!, and assuming the firstN21
levels of the Hamiltonian (4/N)p21V(r ) are equally populated, such as what would occur in a
Slater determinant, would lead to
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EF
N>

N

2
f N21~m5N/4!, ~19!

which, in the harmonic case, reduces toANfN21(1), giving the right answer asymptotically inN.
However, it does not seem possible to prove such a conjecture in a simple way.

III. DERIVATION OF NEW FERMIONIC BOUNDS

Improved bounds on fermion systems may be obtained by further specifying the potential.
In what follows, we restrict ourselves to power-law potentials,

V~r !5r q, 1<q<`, ~20!

which include the harmonic caseq52 and the infinite square wellq5`, and superpositions of
such potentials.

It is instructive to recall the solution of the harmonic case. Consider the independent particle
Hamiltonian

H̃N5(
i51

N

pi
21N(

i51

N

r i
2; ~21!

the ground-state energy of the totally antisymmetric solution is

ẼN5ANfN ~22!

@from now on we writef N instead off N~1! since we know that the eigenvalues ofap21brq scale
asaq/(q12)b2/(q12), and thereforef N~m! can be expressed in terms off N(1)#.

Using the identity~12! both for the kinetic and potential terms, we obtain

H̃N5H rel
N 1S P2

N
1N2X2D , ~23!

whereX5(r i /N is the center of gravity of the system. The second term on the right-hand side of
~23! is a one-particle Hamiltonian which commutes withH rel

N . Therefore the ground state energy
of H̃N is the sum of ground state energiesẼN5EN1ANe1 , that is to say,

EN5AN~ f N2e1!. ~24!

In order to derive upper and lower bounds for fermion systems withV(r )5r q potentials, we
will follow a similar procedure, and we will make use of the following inequalities.

ConsiderN vectorsr i , i51,...,N, of R3, and 1<q<`. Then

4 ((
1< i, j<N

Ur i2r j
2 Uq1N2U( i51

N r i
N

Uq:N(
i51

N

ur i uq, ~25!

((
1< i, j<N

ur i2r j uq1U(
i51

N

r iUq"N(
i51

N

ur i uq, ~26!

where the upper inequality holds for 1<q<2, and the lower one for 2<q<`; ur u is the Euclidean
norm of rPR3.

The proof of these inequalities is given in the next section. Notice that both of them become
identities forq52 since they reduce to~12!.
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The physical interest of such inequalities lies in the fact that they allow us to relate a problem
of translationally invariant pairwise interaction to an independent particle problem.

Indeed, both inequalities are of the form

((
1< i, j<N

ur i2r j uq1auXuq:b(
i51

N

ur i uq, ~27!

whereX5(r i /N is the position of the center of gravity. We therefore have theoperatorinequali-
ties

(
i51

N

pi
21(( ur i2r j uq1auXuq:(

i51

N

~pi
21bur i uq!. ~28!

The right-hand side of~28! is an independent-particle Hamiltonian whose~antisymmetric!
ground state energy is

Ẽf
N5b2/~q12! f N . ~29!

Using~12! the left-hand side can be rewritten as the sum of two commuting Hamiltonians, the
Hamiltonian we are interested inH rel

N , and a one-particle Hamiltonian

h5
P2

N
1auXuq ~30!

whose ground state energy isa2/(q12)N2q(q12)e1. H rel
N andh commute, their eigenstates factorize,

and their eigenvalues add.
Since~28! is an operator inequality, we therefore have the bounds

Ef
N1a2/~q12!N2q/~q12!e1:b2/~q12! f N . ~31!

Inserting the actual values of the coefficientsa andb, as can be read from Eqs.~25! and~26!,
we obtain the following upper and lower bounds for the ground state energyE1

N of a N fermion
system with pairwise interactionsur i2r j u

q. For 1<q<2,

2@2~q22!#/~q12!@N2/~q12! f N2N~42q!/~q12!e1#<EF
N<N2/~q12! f N2Nq/~q12!e1 ~32!

and, for 2<q<`, the inequalities are reversed. Atq52, we recover the exact harmonic oscillator
results.

Since, forV5r q, f N;N(5q16)/(3q16) asN→` in three dimensions, as it can be shown from
semi-classical estimates valid in the largeN limit for power potentials, thef N terms dominate over
the e1 terms at largeN, and, for simplicity, we concentrate on this limit for the discussion:

2@2~q22!#/~q12!" lim
N→`

@EF
N/N2/~q12! f N#"1, ~33!

the upper and lower inequalities corresponding respectively to 1<q<2 and to 2<q<`.
For q51, the upper and lower bounds differ by a factor 22/351.59; the lower bound is the

same as the previous result~10!. Forq5` ~infinite square well! the upper and lower bounds differ
by a factor of 4 and again the lower bound coincides with~10!.

In all the range 1,q,`, the previous result~10! is improved. The maximal improvement
occurs for the harmonic caseq52, where these bounds reduce to the exact answer.

This approach providesbothupper and lower bounds.

5921J.-L. Basdevant and A. Martin: l P interpolation and optimized bounds on pairwise

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



We shall exploit this fact in turning to the more general class of potentials which are linear
superpositions of power law potentials~20!:

V~r !5E
1

`

r qm~q! dq. ~34!

In principle, since we have both upper and lower inequalities in the two ranges 1<q<2 and
2<q<`, we should be able to write upper and lower bounds for this class of potentials.

Consider first the simplest case which corresponds to linear superpositions~34! with positive
weights andq>2,

V~r !5E
2

`

r qm~q! dq, m~q!>0, ~35!

a particular case of which is entire functions with positive expansion coefficients and no linear
term ~a constant can always be subtracted out!.

From the inequalities~25! and ~26!, we readily obtain, writing down~35! on both sides,

((
1< i, j<N

V~r i2r j !1VS ( r i D>N(
i51

N

V~r i !, ~36!

(( V~r i2r j !1
N2

4
VS 2(r i

N D<
N

4 (
i51

N

V~2r i !. ~37!

Adding the kinetic terms and taking into account that the eigenvalues of
ap21bV5b(a/bp21V) are directly expressed in terms of those ofV: en(m5b/a), and that
multiplying r by a constant is equivalent to rescaling the mass by the inverse squared of this
constant, one obtains the bounds

EF
N>NfN~m5N!2e1~m51/N!, ~38!

EF
N<

N

4
f NS m5

N

16D2
N2

4
e1S m5

N3

16D . ~39!

For potentials of the class

V~r !5E
1

2

r qm~q!dq, m>0, ~40!

the signs of these two bounds are simply reversed.
The bounds~38! and ~39! are quite remarkable in that they hold for any potential of the

classes~35! and~40!, and are expressed in terms of the two-particle spectrum. They reduce to the
particular cases~32! for power law potentials, and become exact for a harmonic potential.

We notice that, although~38! reproduces the harmonic result, it is different from the naı¨ve
conjecture~19!. It is only for potentials of the class~35! that ~38! is an improvement over the
result ~10!.

For the more general superposition~34! with positive weights, one can obtain similar formulas
but these are more complicated to write. TheN-body results are expressed in terms of two-body
spectra corresponding not to the original potential but to a modified one:
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Ṽ~r !5E
1

2 ~2r !q

4
m~q!dq1E

2

`

r qm~q!dq5V~r !2E
1

2S 12
2q

4 D r qm~q!dq. ~41!

For weights of alternating signs, sticking to the class~35! for simplicity, one can write the
potentialV(r ) as

V~r !5V1~r !2V2~r ! ~42!

with

V6~r !5E
2

`

r qm6~q! dq, m6~q!>0. ~43!

In order to write lower bounds, for instance, one uses inequality~36! for V1 and inequality~37!
for V2 in order to obtain

HN1
P2

N
1V1~NX!2

N2

4
V2~2X!>(

i51

N Fpi21NV1~r i !2
N

4
V2~2r i !G . ~44!

Leaving aside the one-particle Hamiltonian for the center-of-mass variableX in the left-hand side,
this inequality allows us to relateHN to an independent-particle Hamiltonian where the potential
is no longerV(r ) but the effective potential

Ṽ~r !5V1~r !2 1
4V2~2r !. ~45!

In general, however, this is of no use in deriving lower bounds because in many cases of interest
Ṽ(r ) is unbounded from below. Consider, for instance

V52lr 2 exp~2r !, ~46!

which possesses two-body bound states forl large enough, and pertains to the class under con-
sideration. For this potential, one has

V1~r !5r 2 sinh r , V2~r !5r 2 coshr , ~47!

therefore the effective potentialṼ(r ) entering on the right-hand side of~44! is

Ṽ~r !5r 2 sinh r2r 2 cosh 2r , ~48!

which is unbounded from below.
Upper bounds can nevertheless be obtained in such cases.
Lower bounds can only be obtained ifm(q) oscillates in a bounded region inq ~for instance,

if V is a polynomial inr !.

IV. PROOF OF THE INEQUALITIES

We now give the proof of the inequalities~25! and~26!. The keypoint in this proof is due to
Jean-Michel Bony.

ConsiderN1 vectorsxi , i51,...,N1 , of R
3 ~or Rk in general! and let uxi u denote the usual

Euclidean norm ofxi .
The setX 5 $x1 ,x2 ,...,xN1% can be considered as a point in (R3)N1. In this latter space one

defines the l P norm of X, noted ixip , p>1, associated with the positive coefficients
g1 ,g2 ,...,gN1

as
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iXip5~g1ux1up1g2ux2up1•••1gN1
uxN1u

p!1/p. ~49!

Consider a pointY 5 $y1 ,y2 ,...,yN2% of (R
3)N2 with thel p normiYip 5 (( i51

N2 d i uyi up)1/p, di
positive, and an injective linear transformationL from X P (R3)N1 to Y P (R3)N2 notedY5LX,
such that, for 1<p2<p1<1`,

iLXip1<c1iXip1, ~50a!

iLXip2<c2iXip2. ~50b!

The Riesz–Thorin interpolation theorem5 states that for allp betweenp2 andp1

p1>p>p2 , iLXip<CpiXip , ~51!

with

Cp5C2
12uC1

u , ~52!

u being given in terms ofp, p2, andp1 by

1

p
5

u

p1
1
12u

p2
. ~53!

Returning to our problem, we first considerX5$x1 ,x2 ,...,xN% e~R3)N with the l P norm

iXip5SN(
i51

N

uxi upD 1/p ~54!

andY5$$v i j %,w% e(R3)N
8
, N85N(N21)11, where

v i j5
xi2xj
2

, w5(
i51

N
xi
N
, ~55a!

the inverse transformation being

xi5
~w12( j51

N v i j !

N
. ~55b!

Equations~55a! and ~55b! provide a bijection of (R3)N and its imageJ in (R3)N8 which is
such that

v i j1v j i50, v i j1v jk1vki50.

The l p norm ofY is defined by

iYip1S 2(i51

N

(
j51

N

iÞ j

uv i j up1N2uwupD 1/p

. ~56!

For p52, these norms are equal since they reduce to the identity~12!: iXi25iYi2.
For p51, using the identity
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xi5
1

N S (
j51

N

~xi2xj !1(
j51

N

xj D ,
one has

uxi u<
1

N S (
j51

N

uxi2xj u1u(
j51

N

xj u D .
Therefore, by summing overi ,

N( uxi u<2(
i51

N

(
j51

N

iÞ j

Uxi2xj
2 U1N2U(xiN U. ~57!

In other words,iXi1<iYi1 , and by the Riesz–Thorin interpolation theorem

iXip<iYip , 1<p<2,

which proves the inequality~25! in this case.
For p.2, the inequality is reversed. Indeed

iXi`>iYi` , ~58!

which can be seen as follows. Letuxi u5supj uxj u. It is obvious thatuxi u>uxj2xku/2 ; j ,k and
uxi u>u(xi u/N.

So, supj uxj u>sup(uv i j u,uwu).
The only case we need to consider is when all vectors are collinear and of equal moduli. If all

vectors are equal, both sides of~58! are equal. Ifp vectors are equal tox and (N2p) to 2x, one
easily checks thatN(uxi u>2((uv i j u, this becoming an inequality forp5N/2.

Therefore,~58! holds and, sinceiXi25iYi2 ,

iXip>iYip for p>2,

which completes the proof of inequality~25!. This inequality issaturated, i.e., it becomes an
equality, when either allxi are equal, orN/2 of thexi are equal tox and the otherN/2 are equal
to 2x ~N even!.

Turning to inequality~26!, we now replace~55! by

v i j5~xi2xj !, w5(
i51

N

xi , ~59!

and we define thel p norm ofY by

iYip5S 12 (
i51

N

(
j51

N

iÞ j

uxi2xj up1U(
i51

N

xiUpD 1/p

, ~60!

iXip being defined as previously.
For p52 we still haveiXi25iYi2 , of course.
The proof thatiYi1>iXi1 is straightforward. We have
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uxi2xj u<uxi u1uxj u, U( xiU<( uxi u.

Therefore

1

2 (
i51

N

(
j51

N

iÞ j

uxi2xj u1U(
i51

N

xiU<N(
i51

N

uxi u.

and

iYip<iXip ~61!

for 1<p<2, which proves~26! in that range of values ofp.
Notice that we also have for anyl>0

1

2 (
i51

N

(
j51

N

uxi2xj u1l2U(xil U<~N211l!(
i51

N

uxi u,

1

2 (
i51

N

(
j51

N

uxi2xj u21l2U(xil U2<N(
i51

N

uxi u2,

which lead to a set ofl-dependent inequalities valid for 1<p<2 where one makes full use of the
Riesz–Thorin interpolation theorem, in particular Eq.~52!.

In practice, we have found out that, by optimizing inl, one does improve the upper bound in
the range 1<p<2, but not asymptotically inN. One can readily check that, forp51, the upper
bound can be brought down toEF

N<(N21)2/3 ( f N
32Ne1

3)1/3 instead ofEF
N<N2/3 f N2N1/3e1 . The

improvement is only felt for small values ofN.
Finally, for p→1` we want to prove that

S 12 (( uxi2xj up1U( xiUpD 1/p>N1/pS ( uxi upD 1/p. ~62!

Let x1 be one of the vectors of largest normux1u>uxi u, i52,...,N. If one other vector,x2, of
nonvanishing norm points in the backward hemisphere ofx1, that is to sayx1•x2/ux1uux2u,0, then
ux12x2u>ux1u and the inequality holds.

If all vectorsxi , iÞ1, point in the forward hemisphere ofx1 and at least one is of nonzero
norm, thenu(xi u.ux1u and the inequality holds.

If all vectors vanish exceptx1, both sides of~62! are equal.
Therefore,iXi`<iYi` , and iXip<iYip for p>2, which completes the proof of inequality

~26!. This inequality is saturated when allxi vanish except one of them.
One can derive, in a similar manner, a variety of other inequalities, for instance by using

Jacobi variables.
The Riesz–Thorin interpolation theorem actually applies to a much larger class of problems

since it applies to measure spaces, with positive measure, in general. Notice, for instance, by
dividing Eq. ~25! by N2, one can rewrite it in integral form as

2E E Ux~u!2x~v !

2 Updm~u!dm~v !1U E x~u!dm~u!Up:E ux~u!up dm~u!,
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where we have introduced a positive measure such that*dm(u)51. In order to recover~25! we
set

dm~u!5
1

N (
i51

N

d~u2xi !du.

In this more general formulation, these inequalities may turn out to be useful in dealing with
systems with an infinite number of degrees of freedom.
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Interchannel resonances at a threshold
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Fermi’s Golden Rule, the perturbation theoretic formula for calculating the half-
width of a resonance, is not applicable to the case of a transition from a bound state
into an open channel, when the energy of the bound state is exactly at the threshold
of the continuum. We study solvable models of this phenomenon. The exact results
coincide in leading order with the formulas found by modifying Fermi’s Golden
Rule. © 1996 American Institute of Physics.@S0022-2488~96!03011-3#

I. INTRODUCTION

An interchannel resonance in quantum mechanical scattering is considered as arising by a
perturbation of a bound state in a closed channel, with the bound state energy lying in a region
where other channels are open.1 In the case of a small perturbation, the half-width of the resonance
is in general calculated withFermi’s Golden Rule ~FGR!.2–4 If the unperturbed HamiltonianH0

~which is the kinetic energy plus interchannel potentials! with a bound stateuw& in the closed
channel and continuum wavefunctionsck in the open channel~we will consider only one open
channel! is perturbed byaV, then FGR gives the imaginary part of the resonance energy as a
product of

~1! a 2,
~2! the absolute square of the transition matrix element^wuVck&,
~3! the spectral density in the open channel, and
~4! the constantp.

A mathematical treatment, using complex scaling,5 confirms Fermi’s Golden Rule as the contri-
bution to perturbation theory in second order, with the exception ofthe case where the energy of
the bound state does coincide with the threshold of the continuous spectrum in the open channel.
When trying to apply FGR to such a case, one observes the following facts:

~a! The transition matrix element is zero in general; only in the case of an opens-channel with
a zero-energy inner-channel resonance may it be nonvanishing at the threshold.

~b! The spectral density at the threshold is infinite.

So FGR gives either infinity or an undecided value of zero times infinity; up to now we don’t
know for sure whether the bound state turns into a resonance, and, in case it should do so, we
don’t have a perturbation-theoretic formula for its lifetime.

Such cases actually do occur with atoms.6 In principle they could also appear with nuclei or
in solid state physics, where the channels are the bands of electron states, and where a bound state
is located at an impurity. For semiconductors just the resonances near a band edge~5threshold!
are of particular importance.7

In this paper we study simple solvable models: first, a one-dimensional lattice model with two
bands. Then we make a comparison with a simplified model, which keeps only the barest essen-
tials. This serves as an argument for the validity of the solvable continuum models with a sepa-
rable potential for coupling of the channels. The continuum models are one-dimensional or the
radial parts of a rotation-invariant three-dimensional system.

The leading term in an expansion of the lifetime turns out to be proportional to a half-integer-

0022-2488/96/37(12)/5928/11/$10.00
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exponentiated coupling constant. We end up with a conjecture how to modify FGR to get a
generally valid formula for the imaginary part of the resonance energy.

II. A ONE-DIMENSIONAL LATTICE MODEL

We consider a one-dimensional latticeZ, carrying two channels, which would be translation
invariant, if there were not an impurity at the point denoted byn50. We consider only a local
action of the impurity, so we can restrict the Hilbert space for each channel to the space of even
functions. ~The odd functions are zero atn50 and are not affected by the impurity.! So it is
enough to consider the half-space with pointsn>0, and the even wavefunctions can be repre-
sented by elements of the Hilbert spacel 2~N! with the norm forc5~cn!Pl

2~N! given by

ici25uc0u252(
n51

`

ucnu2. ~1!

In each channel there is a kinetic energyK:

~Kc!n5H 2cn2cn212cn11 , n>1

2c022c1 , n50.

The complete system with two bands is modelled in the Hilbert spacel 2~N!%l 2~N!. One
channel gives a band shifted by a positive energyb, so, without impurity, the Hamiltonian would
be ~K1b1!%K. The impurity is represented by a negative local inner-channel potential
(2wdn,0)% (2vdn,0), wherew is positive.

We are interested in the bound state in the upper band. It has the wavefunction

wn5ce2ng0, c5~cothg0!
21/2, ~2!

where

2 sinhg05w ~3!

and a binding energy which we consider as exactly equal to the relative shift of the bands:

b52 coshg022. ~4!

Now we collect all these contributions as the unperturbed HamiltonianH0. In matrix notation

H05S b11K2wdn,0 0

0 K2vdn,0
D ~5!

it has the bound state (0
wn) with energy zero, which equals the lower band edge of the lower

channel.
Next we add a perturbationaV by an impurity at the pointn50, which introduces a coupling

of the channels. For explanations see the discussion in Sec. III. We define

Ha5H01aV, V5dn,0S 1 t*

t u D , tPC, uPR. ~6!

In the open channel the resonance state should behave like a Gamow function,8 so, to solve the
equation, we make the ansatz
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cn5S e2ng

a•eiknD , ~7!

~Ha2E!c50, ~8!

and search for solutions with Im(k),0, E→0, a→0, andg→g0 asa→0.
Inserting~7! into ~8! gives for the components„(Ha2E)c…n for n>1 the equations

E5222 coshg1b5222 cosk, ~9!

b1222e2g2w2E1a~11t* a!50,
~10!

~222eik2v2E!a1a~ua1t !50.

ExpressingE by the appropriate parts of~9! we transform~10! to

a5
2at

au2v22i sin k
5

a2w12 sinhg

2t*a
~11!

and

a2~ t* t2u!1a~ f1ug!2 f g50, ~12!

where we have introduced

f :5v12i sin k,
~13!

g:5w22 sinhg.

Considering, by way of Eq.~9!, E, g, f , andg as analytic functions of the uniformizing complex
variablek,

g5g~k!5arcosh~b/21cosk! ~14!

with

lim
k→0

g~k!5g0.0,

we will be mainly interested in the behavior of these functions ofk near zero. The expansions are

E5k22
k4

12
1O~k6!,

f5v12ik2
i

3
k31O~k5!, ~15!

g5k2 cothg01S 1w1
2

w32
Aw214

12w D k41O~k6!5:c22k21dk41O~k6!.

The goal is to getE as a function of reala by way of k. Using Eq.~12! it seems easier first to
considera as a complex-valued function ofk, and then to invert this to a functionk~a!. Four
different cases have to be treated separately:

~a! If t* t2u50,
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a5
f •g

f1ug H ~c22k21dk4!S 12
t* t
c2v

k21 i
2t* t
c2v

k3D1O~k6!, if vÞ0,

~c22k21dk4!S 11 i
t* t
2c2D k1O~k5!, if v50.

~16a!

~b! If t* t2uÞ0, the solution of the quadratic equation witha→0 ask→0 has to be chosen:

a5
f1ug

2~ t* t2u!
SA11

4 f g~ t* t2u!

~ f1ug!2
21D

5H ~c22k21dk4!S 12
t* t
c2v

k212i t * t
c22

v2
k3D1O~k6!, if vÞ0,

~c22k21dk4!S 11 i
t* t
2c2

kD1O~k4!, if v50.
~16b!

The leading contributions to the power series for the case b are independent ofu and identical to
the power series in case a, where we may replaceu by t* t. However, the distinction between
absence and presence of an impurity well,v50 andvÞ0, is important.
For vÞ0,

a5c22k22S t* tvc4
2dD1 i

2t* t

vc4
k51O~k6!.

For v50,

a5c22k21 i
t* t
2c4

k31O~k4!. ~17!

In all the casesa(k) is an analytic function ofk in some neighborhood ofk50, which is a zero
point of second order, so the function can be inverted to givek as an analytic function of the
square root ofa.9,10 Its expansion is
for vÞ0,

k5ca1/21
1

2 S t* t cv2c5dDa3/22 i t * t
c2

v2
a21O~a5/2!,

~18!

E5c2a1S t* t c2v 2c6d2
c4

12Da22 i t * t
2c3

v2
a5/21O~a3!;

for v50,

k5ca1/22 i
t* t
4

a1O~a3/2!,

~19!

E5c2a2 i t * t
c

2
a3/21O~a2!.

III. DISCUSSION

The model has been chosen to investigate the basic mathematical structure, with best possible
ease in computation. The impurity’s potential and the perturbation are therefore assumed to act
locally at one point only. From there on everything is as general as possible. For the closed
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channel the inner-channel part of the perturbing potential has been set equal to one in Eq.~6!. The
reason is the following: If it were zero, the bound state would under perturbation not turn into a
resonance, but would remain a bound state.@This can be checked with the ansatz of a wavefunc-

tion Fn 5 (a•e2kn
e2gn

), and proceeding in a similar way as for the resonance.# So we are only inter-
ested in the case where this inner-channel perturbation is strictly positive, and we may use the
freedom of shifting the normalization between the coupling constant and the potentialV to set this
matrix element equal to one.

The threshold behavior of the open channel, connected with the absence or presence of an
impurity well, determines the leading term for the imaginary part: IfvÞ0, there is a nonvanishing
effective range of the impurity and the continuum wavefunctions at low energy tend to stay away
from it. The transition probability from the bound state to the continuum increases with the
coupling constanta more slowly than in other cases. Ifv50, there is no effective range, the
transitions are not hindered, and the high spectral density of the continuum effects an increase of
Im „E~a!… faster thana2. These effects will be discussed in closer detail for the continuum models.

IV. THE SIMPLIFIED LATTICE MODEL

To pave the way for simple continuum models, we simplify this two-band model by ignoring
any inner-channel effects in the closed channel, except for the change in energy. So, we replace
Ha by PHaP, with the projection operator

P5S uw&^wu 0

0 1D , ~20!

whereuw& is the unperturbed bound state~2!.
So we work in the restricted Hilbert spaceP@l 2~N!%l 2~N!#>C%l 2~N!, where the closed

channel is represented by only one state. Moreover, we feel free to replace the inner-channel part
u of the perturbationV by t* t, because the leading terms in the expansion of~16b! are identical
to those of~16a!.

The Hilbert space isH5C%l 2~N!, the HamiltonianHa5H01aV,

H05S 0 0

0 K2vdn0
D , V5S c2 ct* dn0

ctdn0 t* tdn0
D . ~21!

With the ansatz for the unnormalized resonance wavefunction

C5S 1
a•eiknD ~22!

inserted into (Ha2E)C50, we get

E52~12cosk!,

a5~E/ac2c!/t* , ~23!

a5
c22~12cosk!~v12i sin k!

v/21 i sin k1t* tc22~12cosk!
.

This a is an analytic function ofk, with the power series in a neighborhood of the origin
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a5H c22k21S t* tvc4
2

1

12c2D k42 ik51O~k6! for vÞ0,

c22k21 i
t* t
2c4

k31O~k4! for v50.
~24!

These functions can be inverted to a function ofAa, analytic in a neighborhood of the origin:
For vÞ0,

k5ca1/21S t* t
2vc2

2
1

24D c3a3/22 i
t* tc2

v2
a21O~a5/2!,

~25!

E5c2a1
t* tc2

v
a22 i

2t* tc3

v2
a5/21O~a3!.

For v50,

k5ca1/22 i S t* t4 Da1O~a3/2!,

~26!

E5c2a2 i
t* tc
2

a3/21O~a2!.

The leading contributions both to the real part and to the imaginary part of the energy in~25! and
~26! are identical to those in the formulas~18! and ~19!.

V. A SIMPLE CONTINUUM MODEL

The studies of the lattice model encourage us to use two simple building blocks: To keep only
a single bound state, representing the closed channel, and to consider a rank one operator as the
perturbationV, coupling the bound state to the open channel. In the open channel we consider the
particle to be free. Everything is reflection or rotation invariant in one or three dimensions.

The Hilbert space is now

H5C%L 2~R1!5 H S p
uc& D ,pPC,uc&5c~x!PL2~R1!J .

As Hamiltonian we consider

Ha5H01aV, H05S 0 0

0 Kn
D , V5S c2 c^vu

cuv& uv&^vu D , ~27!

with c.0, v(x)5O(e2kx) for somek.0, asx→`. The kinetic energy, plus the angular momen-
tum barrier, is either

Kn52
d2

dx2
1
l ~ l 11!

x2
, l 5n2

1

2
PN ~28!

with Dirichlet-boundary conditions~b.c.! at x50, orKn52d2/dx2 with Neumann~b.c.! at x50
andn521

2. The models in one dimension are either of parity21 or11, concerning the reflection
at x50 inL2~R!. They can thus be reduced to models on the half lineR1 , with n561

2, the sign
of n corresponding to the sign of the parity.
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The indexn is chosen in such a way that it coincides with the standard indication of the Bessel
functions, which, multiplied byApkx/2, give the eigenfunctions ofKn .

The formal ansatz for the resonance wavefunction at positivea is

Ca5S 1
ca~x! D , ~29!

supposed to be a solution of the differential equation

„Ha2E~a!…Ca50, ~30!

with the asymptotic behavior

ca~x!;eikx at x→`, with Im~k!,0, Re~k!.0. ~31!

A discussion of this asymptotic behavior would involve mathematical subtleties, especially ifv(x)
is not of compact support. So we will instead analyze these formulas first for negative coupling
constantsa. There we get unnormalized bound statesCa with negative energiesE~a!, the asymp-
totic behavior as in~31!, but with k 5 k(a) 5 iA2E(a). Then we may consider the analytic
continuation ofE~a! andca(x) to positivea. This is again achieved by inverting the function
a(k).

Inserting~27! and ~29! into ~30! gives the pair of equations

ac21ac^vuca&2E50,
~32!

~Kn2E!uca&1a~c1^vuca&!uv&50.

The second equation is transformed to

uca&52a~c1^vuca&!~Kn2E!21uv&52
E

c
~Kn2E!21uv&. ~33!

Multiplying ~33! by ^vu, and eliminatinĝ v uca& from the pair of equations, we get

a5
E

c22E^vu~Kn2E!21uv&
. ~34!

For negative real energiesE, ~34! gives negative reala. In the uniformizing variablek, this
functiona(k) can be analytically continued into the region Im(k).2k ~Appendix A!. In Appen-
dix B we prove that the energiesE5k2 in the unphysical sheet, giving positive reala(k), are
actually poles of the resolvent ofHa . In Appendix A it is shown that

^vu~Kn2k2!21uv&5F~k!2 ik2nG~k!, ~35!

with F(k) andG(k) analytic functions ofk, real and even forkPR. G~0! is the absolute square
of a scaled transition matrix element fromuv& into the continuum ofKn at energy zero:
utu25G(0). Theanalytic functiona(k) can be split into a real and an imaginary part, forkPR,
and expanded in powers ofk:

a~k!5
k2

c22k2F~k!2 ik2n12G~k!
5
k2

c2
1O~k4!1 i F utu2c4 k2n141O~k2n16!G . ~36!

To invert it, we have to form the square root:
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a1/2~k!5
k

c
1O~k3!1 i F utu2

2c3
k2n131O~k2n15!G . ~37!

In both equations the remaining contributions, which we indicate by the order of their leading
terms, have real-valued expansion coefficients. The inversion of this function neark50 gives the
searched for expansions ofk and ofE in the square root of the coupling constant:

k~a1/2!5ca1/21O~a3/2!2 i Fc2n11

2
utu2an13/21O~an15/2!G , ~38!

E~a1/2!5c2a1O~a2!2 i @c2n12utu2an121O~an13!#. ~39!

VI. DISCUSSION

The leading term in the expansion of the real part of the resonance energy is precisely as in
ordinary first-order perturbation theory. The leading term in the expansion of the negative imagi-
nary part increases asa3/2 for n521

2, where standard FGR would give infinity timesa 2. In the
other cases, forn>1

2, the increase is slower thana
2. Now it turns out that the leading term in the

expansion can be calculated with amodified FGR:
As afirst stepone has to take into account the shift in energy of the bound state toEa5c2a.
Then as asecond stepone has to proceed with standard FGR, applied to the bound state with

the shifted energy.
In the present case this procedure gives the transition matrix element to the wavefunction

bn(kx) in the open channel~see Appendix A!

tk :5A2

p
cE

0

`

v* ~x!bn~kx!dx ;
k→0

ckn11/2A2

p
t. ~40!

The spectral density is 1/2k. Evaluating all the contributions atk 5 AEa, one gets

G

2
5uIm E~a!u5

p

2k
utku2a25c2n12utu2an12, ~41!

precisely the leading term in~39!.
Concerning the relevance of the model for physics, one has to observe that the wavefunctions

in the continuum of an open channel with a short range potential behave as in the open channel
without a potential and with Dirichlet b.c.,unless there is a zero energy bound state or inner-
channel resonance. In an open channel withl50 and a zero-energy resonance, the wavefunctions
behave as in the open channel with Neumann b.c. and the transition matrix element into the
continuum stays finite atE50.

The exponential falloff of the perturbing potential in the model corresponds to the exponential
decrease of the bound state wavefunction to be incorporated in the model: Consider the case of
two particles with the bound stateF in the closed channel,

F~x,y!5w1~x!w2~y!

perturbed by an interactionaW~x2y!. It enables transitions into an open channel, where the
second particle withy-coordinate is still bounded with the wavefunctionw3~y!, but the first
particle is free. In this open channel the general wavefunction is

C~x,y!5c~x!w3~y!,
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the transition matrix element is

^CuaWuF&5^cuav&

with

v~x!5w1~x!E d3yW~x2y!w3* ~y!w2~y!.

The decay ofv~x! is thus determined by the decay of the bound state wavefunctionw1~x!.
There remains the problem of the behavior of continuum wavefunction in the open channel in

the presence of a long range potential.

APPENDIX A: ANALYTIC CONTINUATION

The solutions to the differential equation

„~Kn2k2! f …~x!50

are given by the transformed Bessel and Hankel functionsbn anden :

bn~kx!:5~pkx/2!1/2Jn~kx!,
~A1!

en~kx!:5~pkx/2!1/2Hn
~1!~kx!.

The asymptotic behavior is11

bn~kx! ;
kx→0 Ap

G~n11! S kx2 D n11/2

, ~A2!

en~kx! ;
kx→`

ei „kx2p~n11/2!/2…. ~A3!

The Wronskian

bn

d

dx
en2en

d

dx
bn5 ik. ~A4!

The Green’s functionGn,k(x,y), the kernel of the resolvent (Kn2k2)21 for Im k.0, is thus

Gn,k~x,y!5
i

k
@U~y2x!bn~kx!en~ky!1U~x2y!bn~ky!en~kx!#. ~A5!

For half-integer-valuedn, it is an entire function ofk.
Since in the limitx→` v(x)5O(e2kx), the integration

E
0

`

dxE
0

`

dyv* ~x!Gn,k~x,y!v~y!

converges for Imk.2k. So does the integration withGn,k replaced by the kernel (d/dk)(kGn,k),
and the existence of a continuation of the analytic function

kQ~x!:5k^vu~Kn2k2!21uv&
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is established for Imk.2k. In order to distinguish between real and imaginary coefficients of the
expansions, we use the transformed Neumann functions

nn~kx!:5~pkx/2!1/2Nn~kx!

and split

en5bn1 inn . ~A6!

The Green’s function is now written as

Gn,k~x!5
i

k
bn~ky!bn~kx!1

1

k
@U~y2x!nn~ky!bn~kx!1U~x2y!bn~ky!nn~kx!#. ~A7!

The Bessel and Neumann functions take real values at positive real arguments. So,for positive
real k, we may splitQ(k) into real and imaginary parts:

Q~k!5F~k!1 ik2nG~k!, ~A8!

F~k!52
1

k E
0

`

dxE
0

`

dyU~y2x!nn~ky!bn~kx!@v* ~y!v~x!1v~y!v* ~x!#. ~A9!

The productnn(ky)bn(kx) lifts the singularity of 1/k. For half-integer-valuedn, F(k) has an
analytic expansion in powers ofk2:

G~k!5k2~2n11!U E
0

`

dxv* ~x!bn~kx!U2 →k→0
utu2, ~A10!

with the ‘‘scaled transition matrix element’’

t:5 lim
k→0

k2~n11/2!E
0

`

dxv* ~x!bn~kx!5
Ap

2n11/2G~n11!
E
0

`

dxv* ~x!xn11/2. ~A11!

At k;0, G(k) has an analytic expansion in powers ofk2.

APPENDIX B: POLES OF THE RESOLVENT

We split the HamiltonianHa as

Ha5L1W, L:5S ac2 0

0 K1auv&^vu D , W:5S 0 ac^vu

acuv& 0 D ~B1!

~we simply writeK instead ofKn! and use the iterated resolvent equation in the Hilbert space
C%L 2~R!,

~Ha2E!215~L2E1W!215
1

L2E
2

1

L2E
W

1

L2E1W
5

1

L2E
2

1

L2E
W

1

L2E

1
1

L2E
W

1

L2E
W

1

L2E1W
~B2!

to calculate the matrix element with~u0&
1 !:
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r :5(1,̂ 0u!
1

L1W2E S 1
u0& D . ~B3!

We get

r5
1

ac22E
1

a2c2

ac22E
^vu

1

K1auv&^vu2E
uv&r . ~B4!

Again we use the resolvent equation, now in the smaller Hilbert spaceL2~R1!:

1

K2E1auv&^vu
5

1

K2E
2

a

K2E
uv&^vu

1

K2E1auv&^vu
. ~B5!

Taking the expectation value of~B5! with uv&, we get an equation, to be transformed to

^vu
1

K2E1auv&^vu
uv&5

^vu
1

K2E
uv&

11a^vu
1

K2E
uv&

. ~B6!

Inserting~B6! in ~B4! and solving forr results in

r5
11a^vu~K2E!uv&

ac22E2aE^vu~K2E!21uv&
. ~B7!

Due to the asymptotic bound at largex

v~x!5O~e2kx!, ~B8!

the matrix element̂vu(K2k2)21uv& can be continued to an analytic function ofk, for Im k.2k.
The poles of the matrix elementr5r (k) in this region are the zeroes of the denominator of~B7!.
Finding these zeroes amounts to solving Eq.~34!.

Other matrix elements of the resolvent involve the same denominator.
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Transmission of conduction electrons through
a symmetric pair of delta-barriers or delta-wells
embedded in a semiconductor or a metal

V. Bezák
Department of Solid State Physics, Faculty of Mathematics and Physics,
Comenius University, 84215 Bratislava, Slovakia

~Received 26 June 1996; accepted for publication 12 August 1996!

The transmission coefficientT(k0) is calculated for conduction electrons incident
with a wave vectork0 upon a double barrier~double well! formed of two equal
delta-barriers~of two equal delta-wells! embedded in a one-dimensional~1-D!
semiconductor or in a 1-D metal. The stationary Schro¨dinger–Wannier equation
E(2 i ]/]x)c1V(x)c5Ec is solved forV(x)5g[d(x1a/2)1d(x2a/2)] ~with
real and time-independent parametersg, a! andE5E(k0).0. ~The interband tran-
sitions are neglected.! The operatorE(2 i ]/]x) corresponds to a given~possibly
nonquadratic! dispersion functionE(k) of the conduction electrons@E~0!50#. It is
shown that T(k0) is an oscillating function reaching the maximum value
@T(k0)→1# on an infinite set$K ( j )% of values ofk0. The shape ofT(k0) depends on
the shape of the dispersion functionE(k) in a simple way:T(k0)5Tpar„mv(k0)/\!…
where Tpar~k0! means the transmission coefficient in the special case when the
dispersion function is quadratic,Epar(k)5\2k2/2m, andv(k)5(1/\)]E(k)/]k is
the group velocity due toE(k). @HereE(k) is taken as an increasing function.#
© 1996 American Institute of Physics.@S0022-2488~96!01812-9#

I. INTRODUCTION

A. Physical motivation

The use of delta-function pseudopotentials is an old and frequent approach in the solid state
physics. For instance, in general discussions of the behavior of conduction electrons in metallic
polycrystals, interfaces between crystalline grains were often interpreted as very thin potential
energy barriers~cf. e.g., Refs. 1 and 2! and afterwards, from mathematical grounds, simplified as
delta-barriers.3 Similarly, a narrow quantum well~e.g., a sandwich structure with a very thin inner
layer! can be approximated as a delta-well. In the literature, we could find examples that even the
potential energy of point defects was sometimes modelled as a delta-potential, or~more correctly!
as ;2~2ps2!23/2 exp@2~r2r i!

2/2s2#, wheres is a small real parameter. Such a point-defect
potential may correspond to a deep level in a 3-D semiconductor and we can put it into conformity
with the spirit of the well-known Koster–Slater theory.4,5 ~For brief information about this theory
cf. e.g., Ref. 6.! If these point defects are densely packed along a plane~and at present there are
modern techniques of the so-called delta-doping enabling to implant atomically thin layers of
dopants in a crystalline structure!, we may approximately replace the sum
;2(i~2ps2!21/2 exp@2~r2r i!

2/2s2# by an averaged function approximated asgd(x) ~with g,0!.
Generally, if we can verify that a quantum mechanical method is adequate for solving a

problem in which the potential energy is taken as a delta-function, we may believe that the same
method is also applicable for solving more realistic~and potentially more difficult! problems.

Thus, there is good motivation to study Bloch electrons near a delta-barrier or a delta-well
embedded in a crystalline lattice.

In this paper, we will consider the delta-barrier or the delta-well as an abstraction in a context
of the mesoscopic quantum physics. Therefore, we will not focus attention on the Bloch wave-
functions themselves. Instead, we will pay heed to envelope wavefunctions. The only fact which

0022-2488/96/37(12)/5939/19/$10.00
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we will explicitly take into account from the Bloch theory is the existence of dispersion functions
En~k! defining the electron energy bands. For the sake of simplicity, we will consider one energy
band only, the conduction band; therefore, we omit the band indexn and write the dispersion
function asE~k!. We assume thatE~k! is an analytical function of the variablek.

Obviously, the equationE~2i“!c0~r !5Ec0~r ! is satisfied by the plane waves
c0~r !;exp~ik•r ! if E5E~k!. In spite of this fact, it is not trivial to solve the delta-barrier or
delta-well problem ifE~k! is a general function. That is why papers which dealt with delta-
potentialsgd(x) in crystals specified, as a rule, the dispersion law, i.e., the dependenceE5E~k!,
in the parabolic form,

Epar~k!5\2k2/2m.

However, there are only a few cases where the parabolic dispersion law of the conduction
electrons is actually a good approximation. First of all, we can mention two such cases:

~1! the AIIIBV semiconductors~if energies of the conduction electrons are close to the lower
boundary of the conduction band! and

~2! the alkaline metals~then the electron energies may be as high as the Fermi energy!.

In the majority of other cases, we have to assume that the dispersion functionE~k! of the
conduction electrons is not quadratic.

In our recent papers7,8 where we have already gone beyond the quadratic approximation of the
functionE(k!, we have derived, having employed the one-band Schro¨dinger–Wannier equation9

~the same equation which has been used in the Koster–Slater theory4,5 for the envelope wave-
functions of the conduction electrons!, general formulas for the reflection~transmission! coeffi-
cient from ~through! a single delta-barrier or asingle delta-well. The one-band Schro¨dinger–
Wannier equation differs from the usual Schro¨dinger equation solely in the kinetic energy term: in
the r -representation, we have to use the operatorE~2i“! instead of the usual kinetic energy
operator2\2¹2/2m. In general, the McLaurin development of the functionE~k! may involve an
infinite number of terms; in other words,E~2i“! may mean a functional differential operator.
Therefore, if the potential energy is of the formgd(x), it is uneasy to formulate correct boundary
conditions atx50. Fortunately, these conditions can be avoided~as we have shown right in Refs.
7 and 8! if one uses thek-representation.

The purpose of the present paper is to show that our former analysis7,8 can readily be ex-
tended. Now we will considertwo equal delta-barriers~g.0! or two equal delta-wells~g,0!
instead of one. To avoid formal complications, we will solve the problem in the one-dimensional
version.

Before formulating our problem mathematically, let us mention some relevant configurations
on which it may have a special bearing. First, there are planar faults of the crystalline periodicity
consisting of two closely positioned parallel defect planes. Such faults were really observed. Here
we can discuss, e.g., pairs of stacking faults or pairs of twin planes. For example, recently Rosova´
et al.10–12 presented thorough electron microscopic observations of pairs of twin planes~the so-
called twin lamellae in the electron micrographs! in YBaCuO—in the material most reputed as one
of the high-temperature superconductors. We believe that the idea of modelling an effective
potential energy of conduction electrons by pairs of delta-functions in such a case can be sup-
ported by arguments of the theory of pseudopotentials13 well known to solid state theorists.

Second, in view of interesting applications in the semiconductor electronics, there is one
specifically good reason why a detailed analysis of the situation with the potential energy defined
as a sum of two delta-functions may be worth doing: if a conduction electron is to travel across a
double barrier or a double well, its transmission coefficientT(k0) has to manifest the phenomenon
of the ideal transparency at ‘‘resonances.’’ Indeed, microelectronic structures in which the poten-
tial energy of electrons is modelled as a symmetric double barrier are nowadays a matter to which
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great attention is being paid in connection with theresonant tunnelling transistors.14–17Until now,
any theoretical analysis of the resonant tunnelling through pairs of equal barriers was always
confined to the case when the dispersion dependenceE5E(k) was taken parabolic. Moreover, if
the shape of these barriers was not taken as rectangular, the tunnelling probability through them
was almost always calculated approximately, mainly within the framework of the WKB approxi-
mation. Notwithstanding, if these barriers are taken as delta-barriers, the calculations can be done
without resorting to such an approximation. That is why we may consider even solutions concern-
ing the simplified situation where the symmetric double barrier is composed of delta-functions as
truly archetypal for the theory of the resonant tunnelling transistors.

Admittedly, we must say that ifE(k)[Epar(k), the problem of deriving the transmission
probability @then we write it asTpar~k0!# with the potential energy in the form of two equal
delta-functions is not new: for instance, Galindo and Pascual devote much attention to this prob-
lem in their monograph.18 Nevertheless, without repeating their way of derivations, we intend to
generalize their results. Our intent is to show a general way of deriving the oscillating transmission
coefficientT(k0) under the assumption thatE5E(k) may be a nonparabolic dependence.

B. Mathematical preliminaries

In accordance to what has just been said, the majority of calculations in the present paper
concern the Hamiltonian

H~x!5ES 2 i
]

]xD1gFdS x1
a

2D1dS x2
a

2D G . ~1!

~Only at the end of this paper, the Hamiltonian will be written in a more general form.!
We assume that the functionE(k) ~a real function ifk is real! is known in advance. We take

E~0!50 and

E~2k![E~k!. ~2!

For the sake of simplicity, we takeE(k) as a growing function ifk.0.
Condition ~2! implies that

E~k!5 (
n51

`

ank
2n. ~3!

As in Ref. 7, we do not confine the definition region ofE(k) to the ~first! Brillouin zone and
stipulate formally that

E~k!/uku→` ~4!

if uku→`. Of course, we assume that the functionE(k) is realistic enough if values ofuku are not
too high, namely if the energiesE(k) lie still well below the upper boundary of the band under
consideration. Therefore, condition~4! corresponds to nothing more than to a mathematical ex-
trapolation.

In particular, ifE(k) defines the conduction band in a narrow-gap semiconductor, we may
exemplify our derivations by takingE(k) in the form of the well-known Kane function19–23

EKane~k!5
Eg

2 F S 11
2\2k2

mEg
D 1/221G , ~5!

whereEg is the width of the forbidden gap.@In the case of metals for which our calculations are
also applicable,E(k) should be exemplified by another function.#
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Before ending this Section, let us make two remarks.
First, even if the Kane function does not respect condition~4!, we can easily make a math-

ematical amendment: to secure the fulfillment of condition~4!, it is sufficient to multiplyEKane(k)
by a convenient formal factorF(u), fulfilling the conditionsF~0!51, F(u)→`, with u5«k2,
where«.0 is a very small constant. Essentially, as we have shown in Refs. 7 and 8, condition~4!
is only to guarantee that there is a finite lower bound for all eigenenergies ofH(x) even in the case
wheng,0 and that the transmission coefficientT(k0) does not tend~on the average! to a value
different from unity if uk0u→`.

Second,E(k) need not be an entire function~i.e., a function analytical on the whole complex
k-planeD`! and the functionEKane(k) is really not. We stipulate, however, the existence of a
domainD involving both the realk-semiaxes~the point zero may be excluded! and the infinite
point and assume that the functionE(k) is analytical inD . In the case of the Kane function, we
defineD5D`2I , whereI is an interval on the imaginaryk-axis with boundaries defined by the
values Imkd5 2(1/\)AmEg/22 « and Imku5 1(1/\)AmEg/21 «. If k is complex in formula~5!,
we might formally discuss two separated analytical branches of the functionEKane(k) in D . From
physical reasons, however, we do only accept the branch for whichEKane(k).0 if kÞ0 is real.

II. THE TRANSMISSION COEFFICIENT

A. Some relations formulated via the x -representation

In the x-representation, the stationary one-band Schro¨dinger–Wannier equation reads

HES 2 i
]

]xD1gFdS x1
a

2D1dS x2
a

2D G J ck0
~x!5E~k0!ck0

~x!. ~6!

Without loss of generality, we may confine ourselves to considering a conduction electron incident
upon the pair of the delta-barriers or of the delta-wells from the left~i.e., we may takek0.0!.
Then we take the~envelope! wavefunction in the form

ck0
~x!5@12U~x1a/2!#@exp~ ik0x!1B exp~2 ik0x!#1@U~x1a/2!2U~x2a/2!#

3@F cos~k0x!1G sin~k0x!#1U~x2a/2!C exp~ ik0x! ~7!

or

ck0
~x!5exp~ ik0x!1B exp~2 ik0x!1U~x1a/2!@F cos~k0x!1G sin~k0x!2exp~ ik0x!

2B exp~2 ik0x!#1U~x2a/2!@C exp~ ik0x!2F cos~k0x!2G sin~k0x!#. ~8!

Here, U(x) is the Heaviside step function:U(x)50 if x,0 andU(x)51 if x.0. Since the
functionck0

(x) is continuous atx56a/2, we obtain the equations

ck0
~2a/2!5exp~2 ik0a/2!1B exp~ ik0a/2!5F cos~k0a/2!2G sin~k0a/2!, ~9!

ck0
~a/2!5C exp~ ik0a/2!5F cos~k0a/2!1G sin~k0a/2!. ~10!

From them, we obtain the expressions

F5
exp~2 ik0a/2!1~C1B!exp~ ik0a/2!

2 cos~k0a/2!
, ~11!

G5
2exp~2 ik0a/2!1~C2B!exp~ ik0a/2!

2 sin~k0a/2!
. ~12!
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When inserting~11! and~12! into ~8!, we obtainck0
(x) as a function of two complex coefficients:

B[B(k0) andC[C(k0).
The transmission coefficient is

T5
uCu2

uBu21uCu2
. ~13!

However, since

uBu21uCu251 ~14!

~we will verify this explicitly!, then

T~k0!5uC~k0!u2. ~15!

The complementary probability, i.e.,

R~k0!512T~k0!5uB~k0!u2, ~16!

is the reflection coefficient.
Thus, the basic problem is to calculate the coefficientsB andC.

B. Form of the wavefunction in the k -representation

Let MK(k), NK(k), PK(k), etc., be the Fourier originals tomK(x), nK(x), pK(x):

mK~x!5E
2`

`

dkMK~k!exp~ i kx!, ~17!

etc.
We assume thatK is a real parameter. The Fourier original to the exponential

mK~x!5exp~ i Kx! ~18!

is the delta function

MK~k!5d~k2K !. ~19!

The Fourier original to the generalized analytical function

nK~x!5U~x!exp~ iKx! ~20!

is

NK~k!5
1

2
d~k2K !2

i

2p
v.p.

1

k2K
5
1

2
d~k2K !2

i

4p S 1

k2K2 ie
1

1

k2K1 ie D . ~21!

~In the last relation,e is a positive infinitesimal quantity. The symbol v.p. means the Cauchy
principal value.24!

In the wavefunction~8!, we have also got the terms of the type

pK~x!5U~x2b!exp~ i Kx!, ~22!

qk0~x!5U~x2b!cos~k0x!, ~23!
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r k0~x!5U~x2b!sin~k0x!. ~24!

Respectively, they correspond to the Fourier originals

PK~k!5exp@2 i~k2K !b#NK~k!, ~26!

Qk0
~k!5 1

2„exp@2 i~k2k0!b#Nk0
~k!1exp@2 i~k1k0!b#N2k0

~k!…

5 1
2 exp~2 ik0b!„exp~ ik0b!Nk0

~k!1exp~2 ik0b!N2k0
~k!…, ~27!

Rk0
~k!5

1

2i
„exp@2 i~k2k0!b#Nk0

~k!2exp@2 i~k1k0!b#N2k0
~k!…

5
1

2i
exp~2 ik0b!„exp~ ik0b!Nk0

~k!2exp~2 ik0b!N2k0
~k!…, ~28!

whereNK(k) is given by expression~21!. ~In our case,b is equal either to2a/2 or toa/2.!
We define the Fourier originalfk0

(k) to ck0
(x) as well:

ck0
~x!5E

2`

`

dkfk0
~k!exp~ ikx!. ~29!

When employing the wavefunction~8! on the lhs of~29! and utilizing correspondingly, term by
term, the Fourier originals~19!, ~21!, ~26!, ~27!, and~28!, we obtain the decomposition

fk0
~k!5fk0

d ~k!1fk0
vp~k! ~30!

where

fk0
d ~k!5 1

2@~11C!d~k2k0!1Bd~k1k0!# ~31!

is the ‘‘delta function part.’’ The ‘‘valeur principale part’’fk0
vp(k) will be calculated in the next

section.

C. Solution of the Schro ¨dinger–Wannier equation in the k -representation

The functionfk0
(k) has to obey the Schro¨dinger–Wannier equation

@E~k!2E~k0!#fk0
~k!52

g

2p E
2`

`

dk8fk0
~k8!H expF2 i~k82k!

a

2G1expF i~k82k!
a

2G J .
~32!

Equation~32! results directly from Eq.~6! if the convolution theorem is applied.@Note that the
Fourier original tod(x2b) is exp~2i kb!/2p.# However, according to~29!, we have

ck0S 2
a

2D5E
2`

`

dk8fk0
~k8!expS 2 ik8

a

2D , ~33a!

ck0S a2D5E
2`

`

dk8fk0
~k8!expS ik8 a2D , ~33b!

and thus we may write the Schro¨dinger–Wannier equation in the form

5944 V. Bezák: Transmission through delta-function potentials

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



@E~k!2E~k0!#fk0
~k!52

g

2p Fck0S 2
a

2DexpS ik a2D1ck0S a2DexpS 2 ik
a

2D G . ~34!

Obviously,

@E~k!2E~k0!#fk0
d ~k!50. ~35!

Therefore, instead of~34!, we may write the equation

@E~k!2E~k0!#fk0
vp~k!52

g

2p Fck0S 2
a

2DexpS ik a2D1ck0
~a!expS 2 ik

a

2D G . ~36!

According to the very definition of the functionfk0
vp(k), if any product of this function with an

analytical function is to be integrated with respect to the variablek, the integration has to be done
in the Cauchy sense. So we have to exempt two infinitesimally short intervals centered in the
points 6k0, i.e., (2k02e,2k01e) and (k02e,k01e), from the real k-axis. Then, as
E(k)ÞE(k0) for all values ofk outside these intervals, we may divide Eq.~36! by E(k)2E(k0).
Thus we obtain the expression

fk0
vp~k!52

g

2p
v.p.Fck0S 2

a

2D exp~ ika/2!

E~k!2E~k0!
1ck0S a2D exp~2 ika/2!

E~k!2E~k0!
G . ~37!

Its Fourier image is

ck0
vp~x!5E

2`

`

dkfk0
vp~k!exp~ i kx!. ~38!

Formulas~37! and ~38! imply that we have to cope with the calculation of the integral

v.p.E
2`

`

dk
exp@ ik~x2b!#

E~k!2E~k0!
5
1

2 E
2`

`

dk
exp@ ik~x2b!#

E~k2 i e!2E~k0!
1
1

2 E
2`

`

dk
exp@ ik~x2b!#

E~k1 i e!2E~k0!
.

~39!

In Sec. IB, we have defined~for k taken as a complex variable! the domainD and the intervalI .
Now we add the definition of the subdomainD1,D and of the subintervalI 1,I by the
condition Imk.0. ~Analogically, we say thatkPD2,D or kPI 2,I if Im k,0.! The function
1/@E~k2ie!2E(k0)# has two single poles,k1,2

1 56k01ie, lying in D1, while 1/@E~k1ie!2E(k0)#
has two single poles,k1,2

2 56k02ie, lying in D2. If x.b, we define a closed contourG1 con-
sisting of five parts as follows. The first part is the negative half of the realk-axis. The second and
third parts ofG1 are the left-hand and right-hand boundaries ofI 1. The fourth part is the positive
half of the realk-axis. The final~fifth! part is an infinitely large semicircle~centered atk50! lying
in D1. Similarly, if x,b, we define the closed contourG2 as the mirror image~with respect to the
real k-axis! of G1. Then, using the theorem of residua, we obtain the results
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1

2 E
2`

`

dk
exp@ ik~x2b!#

E~k2 ie!2E~k0!

5
1

2 R
G1
dk

exp@ ik~x2b!#

E~k2 ie!2E~k0!

5 ipU~x2b!~resk5k01 ie1resk52k01 ie!
exp@ ik~x2b!#

E~k2 ie!2E~k0!

5 ipU~x2b!
exp@ ik0~x2b!#2exp@2 ik0~x2b!

E8~k0!
, ~401!

1

2 E
2`

`

dk
exp@ ik~x2b!#

E~k1 ie!2E~k0!
52

1

2 R
G2
dk

exp@ ik~x2b!#

E~k1 ie!2E~k0!

52 ip@12U~x2b!#~resk5k02 ie1resk52k02 ie!
exp@ ik~x2b!#

E~k1 ie!2E~k0!

52 ip@12U~x2b!#
exp@ ik0~x2b!#2exp@2 ik0~x2b!#

E8~k0!
. ~402!

Here we have introduced the symbolr in the usual sense, i.e., we have reserved it for the
anticlockwise integration. When integrating alongG1 ~G2!, we observe that the contributions due
to the left-hand and right-hand sides ofI 1 ~I 2! exactly cancel out.

For brevity, we have introduced the symbol

E8~k!5
dE~k!

dk
. ~41!

@Note thatE8(k).0 andE8(2k)52E8(k).#
In this way we have derived the formula

v.p.E
2`

`

dk
exp~ ikX!

E~k!2E~k0!
522p@2U~X!21#

sin~k0X!

E8~k0!
. ~42!

With its aid, formulas~37! and ~38! yield us the function

ck0
vp~x!52

g

E8~k0!
H ck0S 2

a

2D F2US x1
a

2D21GsinFk0S x1
a

2D G
1ck0S a2D F2US x2

a

2D21GsinFk0S x2
a

2D G J . ~43!

Hence

ck0
vpS 2

a

2
20D5

g

E8~k0!
ck0S a2D sin~k0a!5

g

E8~k0!
C expS ik0 a2D sin~k0a!, ~44!

ck0
vpS a210D5

g

E8~k0!
ck0S 2

a

2D sin~k0a!5
g

E8~k0!
FexpS 2 ik0

a

2D1B expS ik0 a2D Gsin~k0a!.

~45!

@Here we have employed formulas~9! and ~10!.#
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However, the respective Fourier images to functions~30! and ~31! are

ck0
~x!5ck0

d ~x!1ck0
vp~x!, ~46!

ck0
d ~x!5 1

2@~C11!exp~ ik0x!1B exp~2 ik0x!#. ~47!

The function~46! is continous. When takingx equal to2a/220 and toa/210, and bearing in
mind expressions~44! and ~45!, we obtain the following two linear algebraic equations for the
coefficientsB andC:

expS 2 ik0
a

2D1B expS ik0 a2D5
1

2 F ~C11!expS 2 ik0
a

2D1B expS ik0 a2D G
1

g

E8~k0!
C expS ik0 a2D sin~k0a!, ~48!

C expS ik0 a2D5
1

2 F ~C11!expS ik0 a2D1B expS 2 ik0
a

2D G
1

g

E8~k0!
FexpS 2 ik0

a

2D1B expS ik0 a2D G ~49!

@cf. again~9! and ~10!#.
Their solution is

B~k0!5exp~2 ik0a!
2g@E8~k0!cos~k0a!1g sin~k0a!#

D~k0!
, ~50!

C~k0!5 i exp~2 ik0a!
@E8~k0!#

2

D~k0!
, ~51!

where

D~k0!522gE8~k0!cos~k0a!1@@E8~k0!#
222g2#sin~k0a!

1 iE8~k0!@E8~k0!cos~k0a!12g sin~k0a!#. ~52!

D. General result for the transmission coefficient T(k 0)

The square of the absolute value of~52! is

uD~k0!u25@E8~k0!#
414g2@E8~k0!cos~k0a!1g sin~k0a!#2. ~53!

When calculatinguC(k0)u
2, we obtain the formula

T~k0!5
@E8~k0!#

4

@E8~k0!#
414g2@E8~k0!cos~k0a!1g sin~k0a!#2

~54!

giving the probability with which a conduction electron with the wavevectork0 can travel across
the system of two equal delta-barriers or delta-wells that are the distancea apart. The comple-
mentary probability, i.e., the reflection coefficient which is equal touB(k0)u

2, then is
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R~k0!5
4g2@E8~k0!cos~k0a!1g sin~k0a!#2

@E8~k0!#
414g2@E8~k0!cos~k0a!1g sin~k0a!#2

. ~55!

The identityT1R51 proves exactly the validity of identity~14!.

III. DISCUSSION AND CONCLUDING REMARKS

A. The oscillations of the transmission coefficient T(k 0)

When introducing the group velocity

v~k!5
1

\
E8~k!, ~56!

we may rewrite formula~54! in the form

T~k0!5
@\v~k0!#

4

@\v~k0!#
414g2@\v~k0!cos~k0a!1g sin~k0a!#2

. ~57!

According to this formula, there are values ofk0 at which T(k0) is equal to unity. This ideal
transparency of the symmetric delta-function double barrier or double well takes place at all values
of k0 that are equal to the rootsK ( j ) of the equation

\v~K ~ j !!52g tan~K ~ j !a!. ~58!

Notice that

vpar~k!5
\k

m
, ~59!

while

vKane~k!5
\k

m F11
2\2k2

mEg
G21/2

. ~60!

Let us introduce the dimensionless parameters

k5k0a, ~61!

b5
mga

\2 . ~62!

Then we define the dimensionless functionh~k!,

E~k0!5
\2

ma2
h~k!. ~63!

In particular,

hpar~k!5 1
2k

2, ~64!

hKane~k!5
hg

2 F S 11
2k2

hg
D 1/221G . ~65!
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In the latter formula, we have usedhg instead ofEg :

Eg5
\2

ma2
hg . ~66!

Clearly, \2/ma2 anda are, respectively, the units for energies and distances. After defining the
dimensionless group velocity

v~k!5
dh~k!

dk
, ~67!

we obtain the functions

vpar~k!5k, ~68!

vKane~k!5
k

~112k2/hg!
1/2. ~69!

Thus, according to formula~57!, we obtain the function

T ~k!5
@v~k!#4

@v~k!#414b2@v~k!cos~k!1b sin~k!#2
~70!

so that

T par~k!5
k4

k414b2@k cos~k!1b sin~k!#2
~71!

@cf. formula ~A12! in the Appendix# and

T Kane~k!5
k4

k414b2~112k2/hg!@k cos~k!1b~112k2/hg!
1/2 sin~k!#2

. ~72!

In Fig. 1, we compareT par~k! ~the upper frame! with T Kane~k! ~the lower frame!. Both the frames
are equally scaled. The vertical dashed lines correspond tok5jp, while the dotted lines corre-
spond tok5~j21/2!p, j51,2,... . The full curved lines correspond to the double delta-function
barrier withb55 and the dashed curved lines correspond to the double delta-function well with
b525. The curves showingT Kane~k! concern the valuehg5120.

As it is seen from formula~70!, the valuesT ~jp/2! ~with an arbitrary integerj ! are always for
b and for2b equal to one another.~In both the frames of Fig. 1, the full curved line and the
dashed curved line intersect one another just atk5jp/2.!

In the dimensionless variables that we are now using formula~58! reads

v~k~ j !!52b tan~k~ j !!, ~73!

so that

vpar~k~ j !!5k~ j !, ~74!

vKane~k~ j !!5k~ j !@112k~ j !2/hg#
21/2. ~75!

If b.0 and j→`, the positionkpar
( j ) of the j th maximum of the functionT par~k! ~51! tends to the

value ~j21/2!p from the right. In the double-well case, however, forj→`, we find that
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kpar
( j )→( j 1 1/2)p from the left for21,b,0 if 21,b,0 andkpar

( j )→( j 2 1/2)p from the left if
b,21. On the other hand, the asymptotic behavior of the positionkKane

( j ) of the j th maximum of
the functionT Kane~k! ~51! is different. Formula~75! implies thatyKane~k!→k~hg/2!1/2 if k→`.
Therefore, ifb.0 and j→`, the positionkKane

( j ) of the j th maximum of the functionT par~k! ~51!
tends to the valuejp2arctan@~hg/2!1/2/b!# from the right. In the double-well case, we find for
j→` that kKane

( j ) → jp 1 arctan@(hg/2)
1/2/ubu# from the left if 21,b,0 and kKane

( j ) → jp
2 arctan@(hg/2)

1/2/ubu# from the left ifb,21.

B. The transmission coefficient as a function of energy

If we depict the transmission coefficientT as a function of the energyE(k0), and not as
function ofk0 ~in contrast to the Sec. III A!, the difference betweenTpar andTKane becomes even
more visible.

SinceE(k) has been taken as a growing function ofuku, we may equally say thatuku is a
growing function ofE. In particular, after inverting formulas~64! and ~65!, we obtain the func-
tions

kpar~h!5~2h!1/2, ~76!

kKane~h!5~2h!1/2@11h/hg#
1/2. ~77!

Correspondingly, we define the functions

T̃ par~h![T „kpar~h!…, ~78!

T̃ Kane~h![T „kKane~h!…. ~79!

These functions are shown in Fig. 2. The vertical dashed lines are erected ath5hpar( jp) ~in the
upper frame! and ath5hKane( jp) ~in lower frame!. Respectively, the vertical dotted lines are
erected ath5hpar„~j21/2!p… and ath5hKane„~j21/2!p…. The shifts of the vertical dashed~dotted!
lines of the lower frame against the corresponding vertical dashed~dotted! lines of the upper frame
demonstrate the extent of the deviation from the parabolicity ifEpar(k) is replaced byEKane(k)
with preserving the same effective massm at k50:

1

m
5

1

\2

]2Epar~k!

]k2 U
k50

5
1

\2

]2EKane~k!

]k2 U
k50

. ~80!

Evidently, the number of the maxima in the lower frame is higher than in the upper frame, in
correspondence with the fact that the curveE5EKane(k) lies below the curveE5Epar(k).

C. The limiting case when a˜0

In our previous paper,7 we have calculated the transmission coefficientTg
single~k0! for conduc-

tion electrons incident upon a single delta-function potential of the strengthg:

Tg
single~k0!5

@\v~k0!#
2

@\v~k0!#
21g2 . ~81!

According to formula~57!, if a→10, i.e., if two delta-potentials of the strengthg join together,
the pair of these delta-potentials gives the same transmission probabilityT(k0) as one single
delta-potential but with the strength 2g :
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lim
a→10

T~k0!5T2g
single~k0!. ~82!

D. Difficulties with boundary conditions in the x -representation

Our main intent in the present paper was to demonstrate explicitly that it is really advanta-
geous to solve the Schro¨dinger–Wannier equation in thek-representation since then we are free of
difficulties which otherwise arise with boundary conditions in thex-representation whenever the
potential energy term of the Hamiltonian involves at least one delta-function, provided thatE(k)
is a nonquadratic function.~Of course, there are no difficulties with boundary conditions followed
from the overall continuity of any envelope wavefunction; actually, problems arise only with
boundary conditions formulated for derivatives—and not only for the first-order derivative but
also for higher-order derivatives—of the envelope wavefunction.!

Fortunately, if we focus attention on eigenfunctionc(x) [ ck0
(x) due to positive eigenener-

giesE5E(k0), then for any positionxs of the delta-function potential;d(x2xs), wemaywrite
a relation which looks like a boundary condition involving derivatives ofck0

(x).
We will now briefly elucidate this statement with a more general Hamiltonian than~1!. We

define the Hamiltonian

HS~x!5ES 2 i
]

]xD1(
s51

`

gsd~x2xs!, ~83!

FIG. 1. The upper frame: the transmission coefficientT 5T par~k! @i.e., if E(k)5Epar(k)# for b55 ~full curved line! and for
b525 ~dashed curved line!. The lower frame: the transmission coefficientT 5T Kane~k! @i.e., if E(k)5EKane(k)# for b55
~full curved line! and forb525 ~dashed curved line! ~hg5120!.
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assuming that the~real! valuesgs andxs are arbitrary butx1,x2,...,xS . In ~83!, we assume
that the operatorE~2i]/]x! corresponds to an arbitrary dispersion functionE(k). @Regard only
condition ~4!.# In particular, we define also

HS,par~x!52
\2

2m

]2

]x2
1(

s51

`

gsd~x2xs!. ~84!

Let Cpar(x,t) be an arbitrary wavefunction satisfying the Schro¨dinger–Wannier equation

i \
]Cpar~x,t !

]t
5HS,par~x!Cpar~x,t !. ~85!

SinceHS,par(x) is a second-order differential operator, we may write down the boundary condi-
tions

2
\2

2m F ]Cpar~x,t !

]x U
x5xs10

2
]Cpar~x,t !

]x U
x5xs20

G1gsCpar~xs!50. ~86!

If we prefer to use the group velocityvpar(k) @cf. formula~59!#, we can rewrite equation~86! into
the form

FIG. 2. The same as in Fig. 1~b565! but the corresponding transmission coefficients are taken as functions of the energy
parameterh: T̃ par~h!5T par~k!, T̃ Kane~h!5T Kane~k! ~hg5120!.
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2 iS \

2D FvparS 2 i
]

]xDCpar~x,t !Ux5xs102vparS 2 i
]

]xDCpar~x,t !Ux5xs20G1gsCpar~xs ,t !50.

~87!

@The envelope wavefunctionCpar(x,t) itself is continuous but its first derivative]Cpar (x,t)/]x is
discontinuous atx5xs .#

Let us now discuss stationary wavefunctions

CE~x,t !5exp~2 i E t/\!c̃E~x! ~88!

in the case whenE(k) @satisfying condition~4!# is not a quadratic function.
In accordance with the way of derivations which we have decided to follow in Sec. II, we may

make the following general statement:
if E5E(k0).0, then forc̃E(x) 5 ck0

(x) we may write the identities

2 iS \

2D FvS 2 i
]

]xDck0
~x!Ux5xs102vS 2 i

]

]xDck0
~x!Ux5xs20G1gsck0

~xs!50 ~89!

where the operatorv(2 i]/]x! derives from the group velocityv(k) @cf. formula~54!# by replacing
the argumentk by 2i]/]x.

We do not call equalities~89! boundary conditions since generally, ifE(k) is not quadratic,
equalities~89! cannot be employed in the case whenE,0 @if ck0

(x) is replaced byc̃E(x)#. @In
general, the localized wavefunctionsc̃E(x) for E,0 cannot be constructed as finite sums of
exponentials. Therefore, ifE,0, not only that is it dubious whether equalities~89! are valid but it
is also questionable for which functions these equalities are usable at all.#

To conclude this discussion, we state that in the case of the equation

i \
]C~x,t !

]t
5HS~x!C~x,t ! ~90!

concerning a nonquadratic dispersion functionE(k), we may surely rely upon the equalities

2 iS \

2D FvS 2 i
]

]xDC~x,t !Ux5xs102vS 2 i
]

]xDC~x,t !Ux5xs20G1gsC~xs ,t !50, s51,...,S

~91!

provided that none of the constantsgs is negative.

E. The possibility of a direct translation of results from the case when the dispersion
law E5E(k ) is parabolic to the case when it is nonparabolic

In this section hand in hand with equalities~89!, we will state the validity of the following
corollary:

Corollary: LetApar be a quantum mechanical coefficient determining the nonlocalized wave-
functionck0

(x) derived from the equation

HS,par~x!ck0 ,par
~x!5E~k0!ck0 ,par

~x! ~92!

@E(k0).0 andk0 is an arbitrary real fixed value#. After introducing the variablesks5k0xs ~s
51,2,...,S), we considerApar as a function ofS11 independentvariables k0 ,k1 ,...,kS :
Apar[Apar(k0 ,k1 ,...,kS).

If HS,par(x) is replaced byHS(x) @respecting condition~4!#, the functionApar(k0 ,k1 ,...,kS)
is transformed into another function,A(k0 ,k1 ,...,kS), in correspondence with the equation
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HS~x!ck0
~x!5E~k0!ck0

~x!. ~93!

Then

A~k0 ,k1 ,...,kS![Apar„mv~k0!/\,k1 ,...,kS…. ~94!

~Recall thatk05mvpar~k0!/\.!
Undoubtedly, identity~94! is of appreciable practical value since to solve the Wannier–

Schrödinger equation in the case whenE~2i]/]x! is a second-order differential operator is evi-
dently an easier task@because of the possibility to use thex-representation and the boundary
conditions~87!# than to solve this equation in any other case whereE~2i]/]x! corresponds to a
nonquadratic functionE(k). A general way of how to obtain the exact solution of the Schro¨dinger
equation @for E(k)[Epar(k) and E.0# with d-function potentials of arbitrary position and
strength has been presented by Reading and Sigel.25 ~For a simplified alternative to their deriva-
tions cf. Ref. 26.!

To suggest the proof of formula~94!, let us dissect the realx-axis on S11 intervals
[(xj21,xj ) ( j51,2,...,S11) with x052` andxS115`. Takingk0.0, we write

ck0
~x!5@12U~x2x1!#@exp~ ik0x!1B exp~2 ik0x!#1 (

s51

S21

@U~x2xs!2U~x2xs11!#

3@Fs cos~k0x!1Gs sin~k0x!#1U~x2xS!C exp~ ik0x!. ~95!

As it is seen, here we have 2S coefficients:B, $Fs ,Gs% andC; s51,...,S21. For these coeffi-
cients, we obtainS linear algebraic equations simply from the continuity of function~95!. Sub-
sequently we can carry out analogical calculations as in Sec. II C. This means that we are to solve
the Schro¨dinger–Wannier equation in thek-representation at first and afterwards return to the
x-representation. If we choosex5xs20 ~or x5xs10! in the wavefunctionck0

(x) obtained in this
way, we arrive atS new linear equations~independent of the former ones! for B, $Fs ,Gs% andC.
These equations involve the derivativeE8(k0) as a parameter. Thus, we can indeed derive 2S
independent linear algebraic equations for 2S coefficients of the wavefunctionck0

(x). Each co-
efficient is derived uniquely and whichever dispersion functionE(k) is used, the formal expres-
sion for each coefficient is the same: it a function of the variablesks5k0xs ~which occur as
arguments in sines and cosines;s51,...,S! and ofE8(k0)5\v(k0). However, this function can
also be obtained in a different way if we use the functionEpar(k) in the role ofE(k). If we prefer
to express any coefficient—let us call itA—as a function ofk0 andks instead ofv(k) andks

(s51,,...,S), we obtain right equality~94!.
Simultaneously, we can clarify the validity of identities~89!. If we take into consideration any

interval xj21,xj @cf. the definition ofck0
(x) by expression~95!#, we may state that

vS 2 i
]

]xDexp~6 ik0x!56v~k0!exp~6 ik0x!. ~96!

In the special case whenE(k)[Epar(k), these equalities, when respected in relations~89!, have
yielded correct values for each coefficientApar(k0 ,k1 ,...,kS). Then, if the dependence of the
corresponding coefficientA(k0 ,k1 ,...,kS) on v(k) is to be@according to formula~94!# the same
for nonquadratic functionsE(k) as for the quadratic one, it is only then possible if relations~89!
are valid generally, i.e., not only in the case whenE(k)[Epar(k).

Finally, it is instructive to exemplify identity~94! with the transmission coefficientT(k0)
which we have calculated so carefully in this paper for the double delta-function potential. In the
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Appendix, we present the calculation ofTpar~k0! within the framework of thex-representation as
well. Now we haveS52, g15g25g, k152k0a/2, k25k0a/2. According to~A12!, we have the
function

Tpar~k0!5
k0
4

k0
414~mg/\2!2@k0 cos~k22k1!1~mg/\2!sin~k22k1!#

2 . ~97!

If we substitutemv(k0)/\ for k0 in the rhs~retaining the variablesk1 andk2 intact!, we obtain the
expression

TparSmv~k0!

\ D5
@\v~k0!#

4

@\v~k0!#
414g2@\v~k0!cos~k22k1!1g sin~k22k1!#

2 . ~98!

However, the rhs of~98! is nothing but the expression forT(k0) according to formula~57!. Thus,
we have indeed verified that

T~k0![Tpar~mv~k0!/\!, ~99!

in full concordance with the general equality~94!.
We close this paper by expressing our hope that the line of thought as it has been presented

here may have rewarding potentialities especially in view of some interesting problems occurring
in the theory of mesoscopic phenomena.
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APPENDIX: COEFFICIENT Tpar(k 0) FOR THE PARABOLIC DISPERSION LAW
E5Epar(k )

Within the framework of thex-representation, the traditional way of calculatingTpar~k0! for a
symmetric delta-function double barrier~double well!, if E5\2k2/(2m), is as follows.

We solve the Schro¨dinger equation

2
d2

dj2
c12b@d~j11/2!1d~j21/2!#c5k2c. ~A1!

Here we have introduced the dimensionless parameters~59! and ~60! and the dimensionless
variable

j5x/a. ~A2!

We assume that the solution is of the form

c~j!5U~j1 1
2!@exp~ ikj!1B exp~2 ikj!#1@U~j1 1

2!2U~j2 1
2!#

3@F cos~kj!1G sin~kj!#1U~j2 1
2!C exp~ i kj!. ~A3!

From the continuity of the wavefunctionc~j!, we obtain the equations

expS 2
ik

2 D1B expS ik2 D5F cosS k

2D2G sinS k

2D , ~A4!
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C expS ik2D5F cosS k

2D1G sinS k

2D . ~A5!

Equations~A4! and ~A5! are, of course, equally correct whichever dispersion functionE(k) is
taken into consideration.

However, the usability of the following step which we are now intending to do is strictly
limited to the parabolicity of the dependenceE5E(k) @or h5h~k!#.

When integrating~A1! with respect toj from 2a/22« to 2a/21« and froma/22« to a/21«
~where«.0 is an infinitesimal quantity!, we obtain, respectively, the equations

2b1 ik

k
expS 2 ik

2 D1
2b2 ik

k
expS ik2 DB5F sinS k

2D1G cosS k2D , ~A6!

2b2 ik

k
expS ik2 DC5F sinS k

2D2G cosS k

2D . ~A7!

Equation~A6! represents a linear relation between the left-hand and right-hand first derivatives of
c~j! at j521

2. Similarly, Eq. ~A7! is a linear relation between the left-hand and right-hand first
derivatives ofc~j! at j51

2. If E(k) is quadratic, then it is needless to try to find relations between
higher-order derivatives ofc~j! at j561

2. Only if E(k) were a nonquadratic function, then higher-
order derivatives ofc~j! would have indispensably to be reckoned with. Nevertheless, the method
of the k-representation, as we have employed it in Sec. II, has enabled us fully to miss any
complications with the higher-order derivatives in boundary conditions at all.

Equations~A5! and ~A7! imply the relations

F5C expS ik2 D FcosS k

2D1
2b2 ik

k
sinS k

2D G , ~A8!

G5C expS ik2 D FsinS k

2D2
2b2 ik

k
cosS k

2D G . ~A9!

After inserting~A8! and ~A9! into ~A4! and ~A6!, we obtain two linear equations forC andB.
Their solutions are

C5 i
k2 exp~2 ik!

22bk cosk1~k222b2!sin k1 ik~k cosk12b sin k!
. ~A10!

B5
2b exp~2 ik!~k cosk1b sin k!

22bk cosk1~k222b2!sin k1 ik~k cosk12b sin k!
. ~A11!

Correspondingly, denotingT par~k![uCu2 andRpar~k![uBu2, we obtain the functions

T par~k!5
k4

k414b2~k cosk1b sin k!2
, ~A12!

Rpar~k!5
4b2~k cosk1b sin k!2

k414b2~k cosk1b sin k!2
. ~A13!

When returning to the variablesk0 andg and using the denotation
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Epar8 ~k0!5
dEpar~k0!

dk0
5

\2k0
m

, ~A14!

we may state that formulas~A12! and~A13! are in full agreement with formulas~54! and~55! if
E(k)[Epar(k).

Finally, let us point out that Galindo and Pascual18 have derived expression~A12! for the
transmission coefficient@cf. their formula~4.133!# by means of another method. Their calculation
has relied on Jost functions.
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We obtain phase space representations of the Poincare´ group for zero mass particles
of all helicities, including photons. A natural quantization scheme for massless
particles arises, and a covariant phase space localization operator is found.
© 1996 American Institute of Physics.@S0022-2488~96!02311-0#

I. INTRODUCTION

In this paper we investigate the particle-like nature of the photon and other massless relativ-
istic objects.

An elementary particle in relativistic theory is, according to Newton and Wigner,1 described
mathematically by a unitary, irreducible representation of the Poincare´ group together with a
collection of localization operators transforming covariantly. The conventional view adheres to
two specific tenets:~i! the localization operators are described through the use of a Borel structure
on the space or the space–time of the theory, and covariance is with respect to the Euclidean
subgroup;~ii ! the localization operators are to be projection operators.

While maintaining the assumption regarding the representation, we advance an extension of
the conventional view concerning the localization operators, proposing that~i! the localization
operators be described through the use of a Borel structure in the phase space of the theory, and
covariance be with respect to the full Poincare´ group;~ii ! the localization operators are nota priori
restricted to be projection operators.

It appears that a completely satisfactory description is not to be found in either of the con-
ventional formulations of classical relativistic particle mechanics in space–time or of relativistic
quantum mechanics. Employing a framework reflecting but extending and unifying these two
formulations, we take as fundamental a phase space formulation of relativistic particle mechanics.
We also allow a measurement theory in quantum mechanics based upon unsharp measurement
~positive operator-valued measures, systems of covariance! rather than one based solely on sharp
measurement~projection-valued measures, systems of imprimitivity!. Our position is founded
upon recent developments in classical relativistic particle mechanics and quantum mechanics as
outlined in the following.

In the realm of classical mechanics we adopt the apparatus of symplectic geometry to describe
Hamiltonian systems.2–5 We follow generally the treatment of relativistic particle mechanics as
advanced by Ku¨nzle,6 Souriau,7 and exposited further by Woodhouse.8

In the domain of quantum mechanics, we recall that elementary relativistic systems are asso-
ciated with irreducible representations of the Poincare´ group,9 and that elementary particles re-
quire, in addition, a covariant notion of localizability.1 For localization describable by projection
operators10 these two characteristics of elementary particles merge to form a system of
imprimitivity11 with respect to a Euclidean subgroup of the Poincare´ group.12 Within this scheme
the photon fails to be localizable. Hegerfeldt13 proved more generally that covariant localization of
elementary relativistic systems by projection operators is inconsistent even for massive systems. In
order to treat localizability of the photon it was suggested14,15 that positive operator-valued mea-
sures be employed. Positive operator-valued measures are now an essential ingredient in quantum
measurement theory.16–20 Independent of these developments, phase space representations of the
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Poincare´ group with a concept of unsharp localizability for massive particles were discovered by
Prugovecˇki21 and further elaborated by Ali and Prugovecˇki.22

The following is our strategy:

~i! identify symplectic homogeneous spaces~phase spaces! of the Poincare´ group relevant to
massless particles;

~ii ! construct unitary representations of the Poincare´ group on Hilbert spaces of functions on
these phase spaces;

~iii ! define the phase space localization operators on such Hilbert spaces;
~iv! carry out harmonic decompositions of these representations into irreducible components on

which the projected localization operators define covariant positive operator-valued mea-
sures.

Summary of the results:

~i! We construct informationally complete covariant localization operators for elementary
massless particles of arbitraryhelicity/spinin explicit form.

~ii ! The operator for localization within a region of phase space is realized as an integral with
respect to a density; consequently, to a measurable function on classical phase space there
corresponds an operator obtained by averaging the function with respect to this density,
itself an operator. This correspondence defines a natural quantization scheme bearing some
similarity to suggestions of Berezin,23 Prugovecˇki,24 Ali and Prugovecˇki,25 Schroeck,26,27

Ali and Emch,28 and Ali and Doebner.29

In quantum mechanics over phase space, a quantization scheme may also be defined as
follows: to each measurable functionf , associate the operator of multiplication byf , and restrict
this operator to the irreducible subspace which is the Hilbert space of the physical system. Choos-
ing f to be the characteristic function for a measurable set, one obtains a localization operator. The
localization operator so obtained may be used to produce a quantization scheme in the manner
outlined in the previous paragraph. The result is the same quantization scheme with which we
began. In this sense, there is a natural equivalence between quantization and localization. This
equivalence is both conceptual and practical.

This formalism also yields a dequantization scheme whereby a classical probability density on
phase space is naturally associated with a density operator in conventional quantum mechanics so
that classical and quantum expectations agree. In this respect these two correspondences are dual.

II. GROUP STRUCTURE, GEOMETRIC STRUCTURE, DEFINITIONS, AND NOTATION

Minkowski space–time and energy-momentum space are both identified withR4 equipped
with the Minkowski metricg[diag~1,21,21,21!. We identifyR4 with the set of 232 Hermitian
matrices according to the correspondence:

~p0,p1,p2,p3!↔S p01p3 p12 ip2

p11 ip2 p02p3 D ~1!

using the boldface notationp in either situation. The Minkowski inner productg~p,p! is expressed

g~p,p!5detS p01p3 p12 ip2

p11 ip2 p02p3 D . ~2!

The Minkowski inner product is abbreviated

p–q[g~p,q!. ~3!

5959J. A. Brooke and F. E. Schroeck, Jr.: Localization of the photon on phase space

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The identification in~1! permits a flexible expression of the natural action of elements A of
SL~2,C!, the double cover of the Lorentz group onR4, as follows:

p°A•p[ApA†. ~4!

The Poincare´ group,P , is taken to be the semi-direct product:

P5R4�L, L[SL~2,C!. ~5!

Two closed subgroups ofP of particular relevance in the representation theory of massless
spinning particles are

~a! H1[R4�SL~2,C!p ,
~b! H2[Rp�SL~2,C!p ,

where SL~2,C!p , the stability subgroup of the future-pointing null vectorp in R4 viewed as
energy-momentum space, consists of thoseAPSL~2,C! satisfying the conditionA•p5p. Case~a!
occurs in the theory of induced irreducible representations where the homogeneous spaceP /H1 is
the conventional momentum space~future null cone!. Topologically,P /H1 is homeomorphic to
R13S2. In case~b!, P /H2 is the symplectic homogeneous space identified by Souriau3 ~see also
Ref. 8! as the phase space of the photon. Topologically,P /H2 is homeomorphic toR

33R13S2.
The orbitO p of p under SL~2,C! consists of all pointsA•p, APSL~2,C!. Whenp is a future-

pointing null vector~p0.0!, thenO p is the future null coneV0
1 :

V0
15$pug~p,p!50, p0.0%. ~6!

Henceforth,po denotes the point~1,0,0,1!PV0
1 .

If q belongs toO p with q5A•p, then the stabilizers ofq andp are related:

SL~2,C!q5ASL~2,C!p A
21.

A computation shows that SL(2,C)po is the subgroup of matricesA of the form A 5 (0
1

1
z)

3(0
t

t21
0 ), utu51, zPC. If u is the angle of right-hand rotation about the~0,0,1!-axis inR3 whenA

acts onR4 by ~4!, thent5e2 iu/2; the matrices of the type (0
t

t21
0 ) form a group isomorphic to

O(2)˜, a double cover ofO~2!. The matrices of the type~0
1

1
z! form a group isomorphic toR2.

Therefore, the group SL(2,C)po is isomorphic toE(2)˜ 5 R2�O(2)˜, a double cover of the
Euclidean group ofR2.9 For anyp5(p0,pW )PV0

1, an element of SL(2,C)p > E(2)˜ factorizes
similarly into a product of a translation preceded by a rotation inR3 about the axispW .

We now describe the homogeneous spacesP /H1 andP /H2 and their left-invariant measures
in coordinates. For this, we use the general fact thatG/Gx is diffeomorphic toO x theG-orbit of
x under the action of the groupG through the diffeomorphismAGx°A•x, APG. Let H0

[ SL(2,C)po so thatL/H0 5 SL(2,C)/SL(2,C)po. In the present case, SL(2,C)/SL(2,C)po is diffeo-
morphic toV0

1 by the mapping

A SL~2,C!po°A•po . ~7!

Since SL~2,C! andE(2)˜ 5 R2�O(2)˜ are unimodular Lie groups, the homogeneous space
SL(2,C)/SL(2,C)po has an SL~2,C!-invariant measure unique up to scalar multiples. On the other
hand,V0

1 also has the SL~2,C!-invariant measuren, which whenV0
1 is identified withR3 by

p5(p0,pW )5(p0,p1,p2,p3)°pW , is given by

dn~p!5~p0!21dp1`dp2`dp3, ~8!
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wherep05upW u, and which, whenV0
1 is identified withR13R2 by p°(p01p3,p1,p2), is given by

dn~p!5~p01p3!21d~p01p3!`dp1`dp2. ~9!

The diffeomorphism~7! identifies these three invariant measures. From this, we obtain the fol-
lowing:

~a! The homogeneous spaceL/H0 5 SL(2,C)/SL(2,C)po is diffeomorphic toV0
1 and possesses

the SL~2,C!-invariant measuren.
~b! The homogeneous spaceP /H1 5 R4�SL(2,C)/R4�SL(2,C)po is diffeomorphic to

SL(2,C)/SL(2,C)po and henceP /H1 is also diffeomorphic toV0
1 . From ~7! and ~8! P /H1

possesses theP -invariant measuren.
~c! The homogeneous spaceP /H2 5 R4�SL(2,C)/Rpo�SL(2,C)po may be described as the

space of cosets (a,A)„Rpo�SL(2,C)po… 5 „a1 RA • po ,ASL(2,C)po… which corresponds by
~7! to ~a1Rp,p! wherep5A•po . Thus,P /H2 is seen to be diffeomorphic to the bundle
øpPV

0
1R4/Rp. Consequently, aP -invariant measure onP /H2 is seen to be

dm~a1Rp,p!5dlp~a!dn~p!, ~10!

wheredlp~a! is the Lebesgue measure on the three-dimensional quotient spaceR4/Rp of R4.
We stress that in using this measure, one must necessarily integrate over theR4/Rp coordi-
nates first.

We turn now to a brief description of the symplectic structure of the homogeneous space
P /H2 by paralleling results obtained for the case of relativistic massive spinning particles~Refs.
30–32!. For lPR, let El denote the evolution space of triples~Ref. 7!: ~q, p, s!PR43R43R4,
satisfying the conditions:pP V0

1 , s5lp. The origin of the latter condition is the classical me-
chanical requirement thatg~p,s!50 and the additional requirement thats be a null vector~Ref.
33!. Spacelikes leads to continuous spin representations which are not treated here. IflÞ0, then
l is the classical counterpart ofhelicity/spin; the sign ofl labels the two circular polarizations
~Ref. 3!. If l50, E0 will be understood to be the set of pairs:~q,p!PR43R4, pPV0

1 . ForlÞ0, El

is topologicallyR43R3S2.
For theMinkowski space–timeM5~R4,g! and any pointqPM , defineV0

1 (q) [ $pP Tq*M : p
is future pointing and null%. This is essentially theV0

1 introduced earlier. If~e0, e1, e2, e3! is a
Lorentz frame atq @i.e.,g~ea ,eb!5gab# and~u 0, u 1, u 2, u 3! is the dual frame atq, anypPV0

1~q!
may be expressedp5pau

a. We may always choose a Lorentz frame so thatp5u 02u 3. In
arbitrary coordinates, this may be writtenpm5u m

02u m
3 , or pm5e0

m1e3
m. Define

S[lu1`u2; i.e., Srs5l~ur
1us

22us
1ur

2!. ~11!

With this choice, regardingSas the angular momentum tensor relative to the originq of the frame
~ea!, one computes the corresponding Pauli-Lubanski spin vector

sm5 1
2e

mrstSrspt . ~12!

In coordinate free terms,

s5* ~p`S!, ~13!

where* denotes the Hodge dual mapping forM . From the definition ofS we find thats5lp.
On the bundle Lor(M ) of Lorentz frames overM , with coordinates (qa,ea

a), define the
two-form
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V5dpm`dqm1~2l2!21~dSb
a`Sg

bdSa
g !, ~14!

where, as before,Sab5l(e1
ae2

b2e1
be2

a) andpm5um
02um

3 . ~See Ref. 3, p. 190, equation', with
‘‘ h’’ 511 and Ref. 6.! Regard the evolution spaceEl as a subset of the Lorentz bundle by the
injection

i:El→Lor~M !,
~15!

i:~q,p,s!°~qa,ea
a!,

where

p5u 02u 3 and lp5* ~p`S!. ~16!

Then we pull backV to obtain the two-formi*V on El . On El , i*V is degenerate, with a
one-dimensional kernel. Thus,V induces a symplectic structure on the six-dimensional phase
spaceEl/ker~i*V!. The action ofP on El is given by

~a,A!~q,p,s!5„A21
•~q2a!, A21

•p, A21
•s…. ~17!

This induces an action onEl/ker~i*V!, and shows~see Ref. 3, pp. 189–192 and Ref. 5, pp.
341–343! that El/ker~i*V! may be identified with the bundleøpPV

0
1R4/Rp and hence with

P /H2. Alternatively, the phase spaceEl/ker~i*V! and its symplectic structure may be identified
with the coadjoint orbit of the Poincare´ group corresponding to the point~p, S! as in~16! and its
canonical symplectic structure~Ref. 34!.

The following notation will be used for the canonical projectionspi and ~local! Borel cross
sectionssi :

~0!

p0 :SL~2,C!→SL~2,C!/SL~2,C!po>V0
1 by p0~A!5A•po ;

s0 :SL~2,C!/SL~2,C!po→SL~2,C! with p0+s0~p!5p. ~18!

~1!

p1 :R
4�SL~2,C!→R4�SL~2;C!/R4�SL~2,C!po>V0

1 by p1~a,A!5A•po ;

s1 :R
4�SL~2,C!/R4�SL~2,C!po→R4�SL~2,C! with p1+s1~p!5p. ~19!

~2!

p2 :R
4�SL~2,C!→R4�SL~2,C!/Rpo�SL~2,C!po by p2~a,A!5~a1RA•po ,A•po!;

s2 :R
4�SL~2,C!/Rpo�SL~2,C!po→R4�SL~2,C! with p2+s2~a1Rp,p!5~a1Rp,p!.

~20!

III. INDUCED MASSLESS REPRESENTATIONS OF THE POINCARÉ GROUP

In this section we develop the representations of the Poincare´ group induced from irreducible
representations of the two subgroupsH1 andH2. These are respectively the standard irreducible
representation on the null cone, and the phase space representation.
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A. Induced massless representations of the Poincare ´ group on the null cone

The Mackey11 procedure of induced representations will be employed to obtain massless
unitary irreducible representations ofP . In this way we will recover not only the ‘‘standard’’
irreducible representations for massless spinning particles, but also unitarily equivalent represen-
tations that are analogous to the phase space representations.

The unitary irreducible representationsMl of O(2)˜ are parametrized bylP1
2Z and act on

H05C. If R~c! denotes rotation byc, thenMl„R~c!…5exp(ilc).
The unitary irreducible representationLl of E(2)˜ 5 R2�O(2)˜ induced fromMl is given

by

Ll~z,t![L„x0 ,Ml ;~z,t!…5x0~z!Ml~t!5tl, ~21!

where, using the notation from Sec. II,~z,t! denotes an element ofE(2)˜. The representation
space ofLl isH05C.

We are now ready to describe the unitary irreducible representations of the subgroupH1 of the
Poincare´ group corresponding to massless particles with quantized spin~helicity!. Continuous spin
representations will not be considered.

Massless discrete spin unitary irreducible representations ofH1 5 R4�@SL(2,C)#po
5 R4�E(2)˜ arise from the choice of a characterxj wherej is any vector in the SL~2,C!-orbit of
po , and one of the representationsLl , lP1

2Z, of E(2)˜. Denoting this representation byLj l and
using the notation of Sec. II, we have

Lj l„k,~z,t!…[L~xj ,Ll ;„k,~z,t!…!5xj~k!Ll~z,t!5exp$ ij•k%tl. ~22!

We induce a representation ofP from this representation ofH1.
Theorem 3.1:Let jPV0

1 , andlP1
2Z. The Hilbert space of the representation is

Hmom
jl 5Ln

2~P /H1!. ~23!

The induced unitary irreducible representation Ujl of P is given by

@Ujl~a,A!F#~p!5exp$ i @s0~p!•j#•a%Ml„s0~p!21As0~A
21
•p!…F~A21

•p!. ~24!

To obtain the familiar representation,9 one identifiesP /H15V0
1 with R3 by p5(p0,pW )°pW

andHmom
jl with Ln

2~R3!, dn(pW )5ipW i21dpW , and one choosesj5po to obtain

@Upol~a,A!F#~p!5exp$ ip–a%Ml„s0~p!21As0~A
21
•p!…F~A21

•p!. ~25!

A unitarily equivalent representation is obtained by choosingj5qo[~12,0,0,2
1
2! ~that is,qo is

a future null vectork such thatk–po51!, andq5s0~p!•qo , to obtain

@Uqol~a,A!F#~p!5exp$ iq–a%Ml„s0~p!21As0~A
21
•p!…F~A21

•p!. ~26!

The choicesl56 1
2 have been identified as the neutrino representations, and the casesl561

as the photon representations~Refs. 9 and 35–37!. The graviton has been associated withl562.
The choices ‘‘6’’ reflect the two-valued nature of helicity.

B. Induced massless representations of the Poincare ´ group on phase space

Because the phase space representations will be induced from representations ofH2

[ Rpo�@SL(2,C)#po > R�E(2)˜, po5~1,0,0,1!, it is useful to describe the unitary irreducible
representations ofH2.
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In the notation of Sec. II, let„kpo ,(z,t)…P Rpo�E(2)˜ 5 Rpo�@SL(2,C)#po [ H2. Letxb be
a character forR: xb~k!5exp$ ibk%, bPR. Again, we denote irreducible unitary representations of
E(2)˜ by Ml , as in~21!. We obtain then the irreducible unitary representationLbl of H2:

Lbl„k,~z,t!…5L~xb ,Ml ;„kpo ,~z,t!…!5xb~k!Ml~z,t!5exp$ ibk%tl, ~27!

whereb is any real number,lP1
2Z.

From these representations ofH2, we now obtain phase space representations ofP .
Theorem 3.2:Let bPR, andlP1

2Z. The Hilbert space of the representation is

Hphase
bl 5Lm

2 ~P /H2!, ~28!

wherem is theP -invariant measure onP /H2 defined in (10). Recalling from Sec. II the identifi-
cation ofP /H2 with R33V0

1 by ~k1Rp,p!°~k,p!, we identify elements ofHphase
bl as functions F:

R33V0
1→C satisfying F~k1ap,p!5F~k,p!, for all aPR. The induced unitary irreducible repre-

sentation Ubl of P is given by

@Ubl~a,A!F#~k,p!5Lbl~h2~b,B!@h2„~a,A!21~b,B!…#21!F„~a,A!21~k,p!…, ~29!

where, for~k,p!, ~b, B! is any element ofP such thatp2~b, B!5~k1Rp,p! and where h2: P→H2
by g°[s2+p2(g)]

21g.
Proof: The induced representation spaceHphase

bl [Lm
2~P /H2! consists of functionsf : P→C

such thatf +s2 is square integrable onP /H2 and

f ~gh!5Lbl~h21! f ~g! ~30!

for all hPH2, gPP . On such functions we define the left quasi-regular representationULbl

[ Ubl by

@Ubl~g! f #~g8!5 f ~g21g8! ~31!

for all g,g8PP . Sinceh2(g)5[s2+p2(g)]
21g is an element inH2, ~30! becomes

f ~g!5Lbl„h2~g!21
…f „s2+p2~g!…. ~32!

It follows that

@Ubl~g! f #~g8!5 f ~g21g8!5Lbl„@h2~g
21g8!#21

…f „s2+p2~g
21g8!….

Then, by replacingf with Ubl(g) f in ~32!, we obtain

@Ubl~g! f #„s2+p2~g8!…5Lbl„h2~g8!…@Ubl~g! f #~g8!

5Lbl„h2~g8!…Lbl„@h2~g
21g8!#21

…f „s2+p2~g
21g8!…

5Lbl„h2~g8!@h2~g
21g8!#21

…f ~s2„g
21p2~g8!…!. ~33!

Note that, in~33!, Lbl„h2(g8)[h2(g
21g8)]21

… depends ong8 only throughp2~g8!. In order to
simplify ~33!, define

F~k,p![ f „s2~k1Rp,p!…. ~34!

It follows thatF~k1ap, p!5F~k,p! for all aPR, and also, from~33!, that such functionsF
are form invariant under the action ofP defined by

@Ubl~g!F#~k,p![@Ubl~g! f #„s2~k1Rp,p!…. ~35!
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Equation~33! becomes

@Ubl~a,A!F#~k,p!5Lbl~h2~b,B!@h2„~a,A!21~b,B!…#21!F„A21
•~k2a!,A21p…, ~36!

for any ~b,B! such thatp2~b,B!5~k1Rp,p!. Since f +s2PLm
2~P /H2![Hphase

bl , by an abuse of
notation, we writeFPHphase

bl .
Equation~36! may, in turn, be simplified by lifting the action ofP onP /H2 to an action ofP

on R43V0
1 defined by

~a,A!21~k,p![„A21
•~k2a!,A21p…. ~37!

This results in

@Ubl~a,A!F#~k,p!5Lbl~h2~b,B!@h2„~a,A!21~b,B!…#21!F„~a,A!21~k,p!…, ~38!

for any ~b,B! such thatp2~b,B!5~k1Rp,p! with FPHphase
bl .h

The expression~38! is a general phase space representation ofP depending on the arbitrary
choice of sections2. Any sections2 may be expressed in the form

s2~k1Rp,p!5„k,2k~k,p!p,A~k,p!… ~39!

where

p5A~k,p!•po , k~k1ap,p!5k~k,p!1a, A~k1ap,p!5A~k,p! ~40!

for all aPR. From this one computes

h2~b,B![„k~b,p!po ,A~b,p!…21B), p5B•po ,

and

h2~b,B!@h2„~a,A!21~b,B!…#21

5~@k~b,p!2k„~a,A!21~b,p!…#po ,@A~b,p!#21A@A„~a,A!21~b,p!…# !. ~41!

Equation~38! now reads

@Ubl~a,A!F#~k,p!5exp$ ib„k~k,p!2k@~a,A!21~k,p!#…%

3Ml$@A~k,p!#21A@A„~a,A!21~k,p!…#%F„~a,A!21~k,p!…. ~42!

In order to compare~42! with ~26!, we choose

A~k,p!5s0~p!, k~k,p!5k–q, ~43!

whereq is a null vector such thatp–q51. This special choice of section yields

@Ubl~a,A!F#~k,p!5exp$ iba•q%Ml„s0~p!21As0~A
21p!…F„~a,A!21~k,p!… ~44!

with FPHphase
bl andMl~t! given by ~21!. By settingb51, the representation~44! is strikingly

similar to the representation~26!. Note also that~40! precludes the choicek~k,p!5k–p; so, we
may not obtain such a similarity between~42! and ~26!, the standard irreducible representation.

The choice~43! for the section is special, leading directly to the orthogonality relations which
follow. Other choices give more complicated relations. The variety of results so obtainable have
been worked out for the 111-dimensional Poincare´ group but only in representations with trivial
multiplier ~Ref. 38!.
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IV. ORTHOGONALITY RELATIONS

We now introduce an isometry fromLn
2~P /H1! to a closed subspace ofLm

2~P /H2! by first
deriving an appropriate orthogonality relation. The orthogonality relation will play many addi-
tional roles subsequently.

For this, it is convenient to establish a coordinate system, so that some of the computations are
easier to follow. As always, we choosepo5~1,0,0,1!; then po–po50. We also chooseqo , uo ,
voPR4 such that qo–qo50, uo•uo5vo–vo521, po–qo51, po–uo5po–vo5qo–uo5qo–vo
5uo–vo50. Define, forpPV0

1 , qp[s0~p!–qo , up[s0~p!–uo , vp[s0~p!–vo . Then any vectoraPR4

may be written in coordinates as

b5~b–qp!p1~b–p!qp2~b–up!up2~b–vp!vp; ~45!

i.e., by ~43!,

b2k~b,p!p5~b–p!qp2~b–up!up2~b–vp!vp. ~46!

In this coordinate system, the invariant measure~10! on R33R13S2 becomes

dm~b1Rp,p!5dlp~b!dn~p!5d~b–p!d~b–up!d~b–vp!~p
0!21dp1`dp2`dp3. ~47!

Theorem 4.1: (Orthogonality) Let Upol be the irreducible zero mass representation of the
Poincarégroup on Ln

2~P /H1! as in Theorem 3.1, (25). LetE be the multiplication operator on
Ln
2~P /H1! given by

~Ec!~k!5E~k!c~k!. ~48!

Let h1, h2, w1, w2PLn
2~P /H1!. Let Wh be defined by

Wh :Ln
2~P /H1!→CP , ~49!

@Wh~w!#~b,B!5^EUpol~b,B!h,w&. ~50!

For any sections2 given by (39) withk~k,p!5k–q, Wh~w! as a function onP /H2 is defined by

@Wh~w!#~a1Rp,p![@Wh~w!#„s2~a1Rp,p!…. ~51!

Define positive operator C on Ln
2~P /H2! by

~C2h!~p![4~2p!3~p01p3!22h~p!. ~52!

If

E~k!5Ak05„~k1!21~k2!21~k3!2…1/4, ~53!

then

^Wh2
~w2!,Wh1

~w1!&L
m
2 ~P /H2!5^h1 ,C

2h2&L
n
2~P /H1!^w2 ,w1&L

n
2~P /H1! ; ~54!

conversely (54) holds for allh1, h2PD(C), w1, w2PLn
2~P /H1! iff uE(p)u 5 Ap0.

Proof: In the computation below, we shall use a delta function property; we begin with a
derivation of this property: From~46! we compute,

~p2t!•„b2k~b,k!k…5~b–k!„~p2l !•qk…2~b–uk!„~p2l !•uk)2~b–vk!„~p2l !•vk…. ~55!
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Hence

E dlk~b!exp$ i ~p2t!•„b2k~b,k!k…%5E d~b–k!d~b–uk!d~b–vk!exp$ i @~b–k!~~p2t!•qk!

2~b–uk!„~p2t!•uk!#%exp$2 i ~b–vk!„~p2t!–vk…#%

5~2p!3d„~p2t!–qk…d„~p2t!–uk…d„~p2t!–vk…. ~56!

Now if p is any null vector, from~45! we may write

p5~p–k!qk1~p–qk!k2~p–uk!uk2~p–vk!vk.

Then, for purposes of integration after applying thed-functions in~56!, one obtains

05p–p52~p–k!~p–qk!2~p–uk!
22~p–vk!

252~p–k!~ t–qk!2~ t–uk!
22~ t–vk!

2.

If also t–t50, then

052~ t–k!~ t–qk!2~ t–uk!
22~ t–vk!

2;

consequently,

p–k5t–k.

We may therefore restate~56! in the symbolic form

E dlk~b!exp$2 i ~p2t!•„b2k~b,k!k…%5~2p!3d~p2t!. ~57!

We see from this form that the result is independent of the choice made for the basis elementsqo ,
uo , vo .

We now use~57! to prove the theorem. Initially assume either thath1,h2 are such that
Upol

„s2 + p2(b,B)…h i is in the domain ofE for all ~b,B!PP , or thatw1,w2 are in the domain ofE .
We have, fork[B•po ,

^EUpol
„s2+p2~b,B!…h i ,w i&5^EUpol

„b2k~b,k!k,s0~k!…h i ,w i&

5E dn~p!E~p!exp$2 ip•„b2k~b,k!k…%

3Ml„s0~p!21Bs0~B
21
•p!h i~s0~k!21p!…w i~p!. ~58!

However,

^Wh2
~w2!,Wh1

~w1!&L
m
2 ~P /H2!5E

P /H2

dm„(p2~b,B!…@Wh1
~w1!#~s2„p2~b,B!…!

3@Wh2
~w2!#~s2„p2~b,B!…!

5E
P /H2

dm„p2~b,B!…^EUpol~s2„p2~b,B!…!h1 ,w1&

3^w2 ,EU
pol~s2„p2~b,B!…!h2&

5E
P /H2

dm„b2k~b,k!k,k…E dn~p!dn~ t!
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3exp$2 i ~p2t!•~b2k~b,k!k…%Ml„s0~p!21Bs0~B
21
•p!…

3Ml„s0~ t!
21Bs0~B

21
•t!…E~p!E~ t!

3h1„s0~k!21p…h2„s0~k!21t…w1~p!w2~ t!

5E dn~p!dn~ t!E~p!E~ t!w1~p!w2~ t!Ml„s0~p!21Bs0~B
21
•p!…

3Ml„s0~ t!
21Bs0~B

21
•t!…d~p2t!~2p!3

3E dn~k!h1„s0~k!21p)h2„s0~k!21t…

5E dn~p!w1~p!w2~p!uE~p!u2~p0!21

3F ~2p!3E dn~k!h1„s0~k!21p…h2„s0~k!21p…G
5E dn~p!w1~p!w2~p!uE~p!u2~p0!21N12~p!

5^w2 ,EN12w1&L
n
2~P/H1! , ~59!

where

N12~p![~2p!3E dn~k!h1„s0~k!21p…h2„s0~k!21p… ~60!

and

E~p!5uE~p!u2~p0!21.

We shall show thatN12 is independent ofp. Recallh~k!5f „0,s0~k!… for somef transforming
underUpol as in ~25!. Then

N125~2p!3E dn~k! f 1„0,s0~k!21s0~p!…f 2„0,s0~k!21s0~p!…. ~61!

DefineF by F„0,s0~p!…5f „0,s0~p!21
…. Then, by the SL~2,C! invariance ofn,

N125~2p!3E dn~k!F1„0,s0~p!21s0~k!…F2„0,s0~p!21s0~k!…

5~2p!3E dn~k!F1„0,s0~k!…F2„0,s0~k!…5~2p!3E dn~k! f 1„0,s0~k!21
…f 2„0,s0~k!21

….

Also, we have from~7! and ~18!, s0~k!215s0~k̃!h~k! for some null vectork̃, and some
elementh~k! of E(2)˜. Using ~22! and the analog of~30! common to any induction procedure,
we obtain

N125~2p!3E dn~k! f 1„s0~ k̃!h~k!…f 2„0,s0~ k̃!h~k!…5~2p!3E dn~k! f 1„0,s0~ k̃!…f 2„0,s0~ k̃!….
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With a similar computation, one also shows that the last expression is independent of any
particular choice fors0, any other choice again differing by anE(2)˜-valued function acting on
the right. To proceed, it then suffices to computek̃ using any convenient choice of sections0. We
do this in the Appendix in order to extract the Jacobiandk̃/dk, which is all we need for what
follows. We obtain

@~ k̃!0#21dk̃/dk524@k0#21@k01k3#22. ~62!

Using this, and substitutingk̃5r , we compute

N125~2p!3E dn~k! f 1„0,s0~ k̃!…f 2„0,s0~ k̃!…5~2p!3E dn~k!h1~ k̃!h2~ k̃!

5~2p!3E dk

k0
h1~ k̃!h2~ k̃!5~2p!3E dk

dk

dk̃

1

k0
h1~ k̃!h2~ k̃!

5~2p!3E dr
dr̃

dr

1

r̃ 0
h1~r !h2~r !54~2p!3E dr

r 0
~r 01r 3!22h1~r !h2~r !

5^h1 ,C
2h2&L

n
2~P/H1! . ~63!

Then ~59! becomes

^Wh2
~w2!,Wh1

~w1!&L
m
2 ~P /H2!5^w2 ,Ew1&L

n
2~P/H1!^h1 ,C

2h2&L
n
2~P/H1!

which equals

^w2 ,w1&L
n
2~P/H1!^h1 ,C

2h2&L
n
2~P/H1!

iff E~p!51, i.e.,uE(p)u 5 Ap0.
This proves~54! under the initial assumptions onh1,h2 or w1,w2. However,C

2 acting on
Ln
2~P /H1!, being an operator of pointwise multiplication by a function that is nonzero, has dense

range. Thus~54! and ~52! have unique bounded linear extensions. h

The integral ~63! is geometrically more transparent if one uses the coordinates
$p01p3,p1,p2% rather than$p1,p2,p3%. Here as in~10!, there is the constraintp01p3>0. The
Jacobian for this transformation isp0/(p01p3) and ~63! becomes

N1254~2p!3E dp1dp2dp3

p0
~p01p3!22h1~p!h2~p!

54~2p!3E d~p01p3!dp1dp2~p01p3!23h1~p!h2~p! ~64!

where the integral is over the half-spacep01p3>0.
Corollary 4.2: With the notation above and choosingh15h25h so that N11[iChi251, then

Wh is an isometry:Wh :Ln
2~P /H1!→Lm

2~P /H2!. Defining the representation U
h,l ofP on the range

of Wh in Lm
2~P /H2! by intertwining,

Uh,l[WhU
polWh

21, ~65!

then Uh,l is an irreducible representation ofP .
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Proof:One need only show thatWh is a closed operator, the proof of which is straightforward.
Then the range ofWh is closed subspaceHh of Lm

2~P /H2!. h

In a similar fashion, one could begin with the representationUbl on Lm
2~P /H2! as in~29!, and

form the pull-back representationWh
21UblWh on Ln

2~P /H1!. SinceU
bl is not irreducible, as we

show below, this is not as useful.
Notation:Henceforth, we shall say thath is admissible ifN[iChi2,`. Furthermore, the

symbolh will henceforth be reserved to denote an admissible vector.
The projection: Lm

2~P /H2!→the range ofWh will be denotedPh.

V. PHASE SPACE LOCALIZATION AND INTERTWINING WITH PHASE SPACE
REPRESENTATIONS

We recall the familiar result that, for massive irreducible representations of the Poincare´
group, there are Euclidean covariant Euclidean space localization operators1,12 allowing one to
define ‘‘massive elementary particles.’’ This result has been generalized to show the existence of
phase space localization operators covariant under the action of the entire Poincare´ group.31On the
other hand, it was also shown1,12 that no Euclidean covariant Euclidean space localization operator
existed for the photon or for other massless particles of helicity greater than 1. We shall next show
that this precludes intertwining the standard irreducible massless representations with any left-
quasiregular representation on phase space such as is given in~44!. Nevertheless, we shall exhibit
explicitly the phase space representation intertwined via theWh given above.

Definition: Define the familyA[$A~D!uD a Borel set inP /H2% on Lm
2~P /H2! through multi-

plication by characteristic functionsxD for Borel setsD:

D°A~D!5MxD
;

~66!
@A~D! f #~y!5xD~y! f ~y!a.e.y, fPLm

2 ~P /H2!.

On Ln
2~P /H1! define the familyAh by

Ah[$Ah~D!uD5Borel set of P /H2%, ~67!

where

Ah~D![Wh
21PhA~D!Wh[Wh

21PhA~D!PhWh . ~68!

SinceA is the phase space localization operator onLm
2~P /H2!, andAh is its pullback to the

irreducible representation spaceLn
2~P /H1!, Ah is the natural choice for a phase space localization

operator for massless particles.
Definition: Let G be a group onP /H2 and letU be a representation ofG on Lm

2~P /H2!. The
phase space localization operatorA is said to beG-covariant with respect toU if and only if

U~g!A~D!U~g!215A~g•D! for all DPBorel~P /H2!, gPG.

Theorem 5.1:The family A5$A~D!uD5Borel set inP /H2% is aP -covariant projection-valued
measure (PVM) on Lm

2~P /H2! with respect to Ubl of (44) [and not with respect to Uh,l of (65)].
Ah is a positive operator-valued measure (POVM) on Ln

2~P /H1!.
Proof: ThatA is a PVM is trivial. To see the covariance, choosefPLm

2~P /H2!. Now, from
~44! we have, forw[k~k,p!2k„~b,B!21~k,p!…,

@Ubl~b,B!A~D!Ubl~b,B!21F#~k,p!

5exp$ ibw%Ml„s0~p!21Bs0~B
21p!…@A~D!Ubl~b,B!21F#~B21

•~k2b!,B21
•p!
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5 H0 if „B21
•~k2b!,B21

•p…¹D
F~k,p! if „B21

•~k2b!,B21
•p…PD

5@A„~b,B!+D…F#~k,p! ~69!

where

~k,p!P~b,B!+D iff ~b,B!21~k,p!5„B21
•~k2b!,B21

•p…PD.

Hence,A is P -covariant with respect toUbl. SinceAh is the projection of a PVM, it is a
POVM. h

As a consequence of Theorem 5.1, we have the following:
Result:Let U be an irreducible representation ofP on a Hilbert spaceH. LetW intertwine

U with the left-regular representationV of P on Lm
2~P /H2!. Let P denote the projection of

Lm
2~P /H2! onto the range ofW. Let B be defined by

B~D!5W†PA~D!W, DPBorel~P /H2!,

whereA is the phase space localization operator defined above. ThenB is aP -covariant local-
ization operator onH.

Proof: SinceWU(g)5V(g)W for all gPP , one hasU(g)W†W5W†WU(g) for all gPP .
SinceU is irreducible,W†W5g1 for someg.0. Then

~g21WW†!Wf5g21W~W†W!f5Wf

for all fPH. Therefore, iffPLm
2~P /H2! is orthogonal to the range ofW, then

^g21WW†f ,Wf&5g21^W†f ,W†Wf&5^W†f ,f&5^ f ,Wf&50.

Thus,g21WW†5P. It follows by intertwining thatV(g)P5PV(g) for all gPP . Hence, for all
gPP ,

U~g21!B~D!U~g!5U~g21!W†PA~D!WU~g!5W†V~g21!PA~D!V~g!W

5W†PV~g21!A~D!V~g!W5W†PA~g•D!W5B~g•D!.
h

In particular, if we takeW to beWh defined through~51! andB5Ah , then ifWh intertwined
the irreducible representationUjl in ~24! with Ubl in ~29! or ~44!, it follows thatAh would define
aP -covariant configuration space localization operator, and hence a Euclidean space localization
operator covariant under the Euclidean subgroup ofP . This would contradict the result of Wight-
man~Ref. 12, pp. 850, 862!. One concludes thatWh cannot intertwineU

jl with any phase space
representation ofP such asUbl.

To obtain the same result without relying on Wightman’s result, we may do the following:
Define a Euclidean subgroup ofP , by first picking a preferred time axis. In the basis defining the
notation of~45!, the time direction corresponds top12qp . Then,~up , vp , p22qp! forms a basis
of spacelike vectors in what may viewed as ordinary momentum space. This identification of
‘‘ordinary space’’ is not Poincare´ invariant, but is invariant under the subgroup SL(2,C)p12qp
> O(3) of SL~2,C!. ThenR4�SL(2,C)p12qp

> R4�O(3) includes the Euclidean groupE(3)
5@R4/(p12qp)#�SL(2,C)p12qp

.
The next theorem isolates the desired intertwining condition.
Theorem 5.2:For Upol as in (25), Ubl as in (29), and Wh as in (49) and (50), then

WhU
pol~g!5Ubl~g!Wh ~70!
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iff gPP satisfies

EUpol
„s2~g

21
•x!…h5Upol~g21!EUpol

„s2~x!…h, a.e. x. ~71!

Proof:We have

@WhU
pol~g!w#~x![@WhU

pol~g!w#„s2~x!….5^EUpol
„s2~x!…h,Upol~g!w&

5^Upol~g21!EUpol
„s2~x!…h,w&. ~72!

On the other hand,

^EUpol
„s2~g

21
•x!…h,w&5@Whf#„s2~g

21
•x!…[@Whf#„g21

•x…5Ubl~g!@Whw#~x!.
~73!

Since both~72! and ~73! hold for all w, then~70! is equivalent to~71!. h

The condition~71! is the source of the general failure of achieving Euclidean covariance in the
massless representations of the Poincare´ group. To see this, supposeg P R4�SL(2,C)p12qp

. It
follows thatEUpol(g) 5 Upol(g)E . Then~71! reduces to showing that

Upol
„s2~g

21
•x!…h5Upol

„g21s2~x!…h, a.e. x.

By usings2 as defined in~39! and~43! and settingx5~k,p! andg5~b,B!, one shows that this is
equivalent to

Upol~~2b–q!p,A~k,p!21BA„B21~k2b!,B21p…!h5h for all ~k,p!.

For Upol as in ~25!, this requiresh50.
For comparison, we note that a similar analysis in the massive case has a nontrivial solution,

namely thath be rotation invariant~Ref. 31!.
We exhibit precisely the form of the irreducible unitary phase space representation intertwined

from Upol by ~65!.
Theorem 5.3:The irreducible representation Uh,l intertwined from Upol by (65) is given, for

N5iChi2, by the integral representation

@Uh,l~g!~Ph f !#~x!5N21E dm~y!^EUpol
„s2~x!…p,Upol~g!EUpol

„s2~y!…h&~Ph f !~y!.

~74!

Proof: From ~72! we have

@WhU
pol~g!w#~x!5^Upol~g21!EUpol

„s2~x!…h,w&.

Using the orthogonality relation~54!, this reads

@WhU
pol~g!w#~x!5N21^WhU

pol~g21!EUpol
„s2~x!…h,Whw&

5N21E dm~y!@WhU
pol~g21!EUpol

„s2~x!…h#~y!@Whw#~y!.

From the definition~50! of Wh , this may be written

@WhU
pol~g!Wh

21Whw#~x!

5@WhU
pol~g!w#~x!
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5N21E dm~y!^EUpol
„s2~x!…h,Upol~g!EUpol

„s2~y!…h&@Whw#~y!.

By ~65!, ~74! follows. h

Again we see that~74! does not correspond to the left-quasiregular representation for the
action ofg unless~72! is satisfied.

VI. QUANTIZATION AND DEQUANTIZATION

With the results above, we may define a natural quantization scheme. OnLm
2~P /H2!, and for

f a measurable function onP /H2, define the operatorMr by

@Mr f #~y![r ~y! f ~y!. ~75!

For cPLn
2~P /H1!, defineAh(r )c by

Ah~r !c[Wh
21PhMrWhc. ~76!

Theorem 6.1: „Quantization…:

Ah~r !5E
P /H2

r ~x!uEUpol
„s2~x!…h&^EUpol

„s2~x!…hudm~x!. ~77!

Proof: Let c, wPLn
2~P /H1!. We have,

^w,Ah~r !c&5^w,Wh
21PhMrWhc&5^Whw,PhMrWhc&5^Whw,MrWhc&

5E @Whf#~x!@MrWhc#~x!dm~x!

5E ^w,EUpol
„s2~x!…h&r ~x!^EUpol

„s2~x!…h,c&dm~x!. h

Remark:If r ~x![1, a.e.x, then~77! shows thatAh(r )51. Alternatively,

E
P /H2

uUpol
„s2~x!…h&^Upol

„s2~x!…hudm~x!5E22. ~78!

We introduce the notation

Th~x![uEUpol
„s2~x!…h&^EUpol

„s2~x!…hu. ~79!

Then Theorem 6.1 may be reexpressed

Ah~r !5E
P /H2

r ~x!Th~x!dm~x!. ~80!

There is also a natural dequantization scheme:
Theorem 6.2.(Dequantization): Letr be a density operator in Ln

2~P /H1!, and define

Rr~x![Tr„rTh~x!…. ~81!

Then Rr is a classical probability density over the phase spaceP /H2 and, moreover,
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Tr„rAh~r !…5E
P /H2

Rr~x!r ~x!dm~x!; ~82!

i.e., the quantum and classical expectations agree, making the quantization map and the dequan-
tization map dual in the sense of (82).

Proof: The theorem follows from~80!, ~81!, and the interchangeability of trace with the
integral. h

Two questions which we now ask are:

~1! Which operators inLn
2~P /H1! may be written in the form~76! and~80! for some measurable

function r?
~2! Does the set of expressions in~81!, $Rr~x![Tr„rTh~x!…uxPP /H2%, uniquely determiner?

To analyze this, we introduce the concept of ‘‘informational completeness:’’
Definition: A collection $AauaPI % of operators acting on Hilbert spaceH is said to be

informationally complete iff, forr1 andr2 any positive trace class operators of trace one onH,
the equality Tr~r1Aa!5Tr~r2Aa! for all aPI , impliesr15r2.

A result of P. Busch39 shows that, if$AauaPI % is informationally complete, then the closure
of the span of$AauaPI %ø$1% @in the sense of a topology related to the formA°Tr(rA)# includes
all of B~H!. In this sense, possessing the informational completeness property implies a positive
response to both questions. This has a physical interpretation if theAa are all quantum observables
~that is, they are self-adjoint, or at least symmetric operators!, since the positive traceclass opera-
tors of trace one onH are the quantum statistical density operators and Tr(rA) is just quantum
expectation. The question of informational completeness is addressed as we introduce families of
localization operators below.

VII. INFORMATIONAL COMPLETENESS OF THE LOCALIZATION OPERATOR

To demonstrate the informational completeness property, we will use the mathematical trick
of introducing an action of the Heisenberg group on an extension of the phase space representation
of zero mass particles. Then we will employ the known informational completeness property of
the Wigner coefficients of the Heisenberg group:

Consider fPL2(V0
1 ,dn), dn~k!5d~k–q0!d~k–u0!d~k–v0!/k–q0. Since, for kPV0

1 ,
k–p05@~k–u0!

21~k–v0!
2#/2k–q0, we may considerV0

1>R13R2, and functionsf in V0
1 to be

functionsf of ~k–q0, k–u0, k–v0! in R13R2 which are extended to all ofR3 with support on the
closure ofV0

1 . We set

j :V0
1→R3, j ~k!5~k–q0 ,k–u0 ,k–v0!. ~83!

Similarly, j21: R3→V0
1øV0

2ø$0!, and j21 mapsxPR3 into V0
1 iff x5(x0 ,x1 ,x2) with x0.0.

We may now define the bijective isometry

J:L2~V0
1 ,dn!→L2~R3!, J:f~k!→uk–q0u21/2f̃„j ~k!…. ~84!

By ~64!, h is admissible iff

E
R2
d~k–u0!d~k–v0!E

R1
d~k–q0!~k–q0!

23uh~k!u2,`.

Thus, as a function ofk–q0, if h is smooth, it may be extended smoothly to a function onR3.
Now, for tPR, r 8PV0

1 , r 8–q050 ~the ‘‘prime’’ 8 will henceforth signal this condition!, define

l ~r 8!5~r 8–p0 ,2r 8–u0 ,2r 8–v0!PR3. ~85!

5974 J. A. Brooke and F. E. Schroeck, Jr.: Localization of the photon on phase space

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



These are the coordinates ofr85(r8–p0)q02(r8–u0)u02(r8–v0)v0 relative to the basis
$q0 ,u0 ,v0%; with respect to the Minkowski metric, this basis is dual to the basis$p0 ,
2u0 , 2v0% f or which the coordinates are given by the map j.

Next, for suchr8 and for sPR4, de f ine a representation W o f the Heisenberg
group by

W„t,l ~r 8!, j ~s!…:L2~R3!→L2~R3!,

@W„t,l ~r 8!, j ~s!…Jf#~x!5e2 ip l ~r8!• j ~s!ei2p~ t1 l ~r8!•„x1 j ~s!…!@Jf#„x1 j ~s!…, xPR3, ~86!

where l ~r 8!•j ~s! and l ~r 8!•„x1j ~s!… employs the usual inner product inR3. Becauser 8–q050,
these two inner products agree with the Minkowski inner productsr 8–sandr 8•„j21~x!1s…, and we
may write

@W„t,l ~r 8!, j ~s!…Jf#~x!5e2 ipr8–sei2p~ t1r8•„j21~x!1s!…@Jf#„x1 j ~s!…. ~87!

One verifies the Heisenberg relation

W„t,l ~r 8!, j ~s!…W„u,l ~q8!, j ~p!…5W„t1u1~q8–s1r 8–p!/2,l ~r 8!1 l ~q8!, j ~s!1 j ~p!…,

q8–q050. ~88!

The Heisenberg orthogonality relations are computed and expressed as

E
R6
d~r 8–p0!d~r 8–u0!d~r 8–v0!d~s–q0!d~s–u0!d~s–v0!^Jf1 ,W„0,l ~r 8!, j ~p!…Jf2&L2~R3!

3^W„0,l ~r 8!, j ~s!…Jf3 ,Jf4&L2~R3!5^Jf3 ,Jf2&L2~R3!^Jf1 ,Jf4&L2~R3! . ~89!

If we denote byU the action of the Poincare´ group onL2(V0
2) with invariant measure

dn~k!5d~k–q0!d~k–u0!d~k–v0!/uk–q0u corresponding to the same helicity as the representationU
on L2(V0

1), then the Heisenberg operators are computed to have the following covariance with
respect to our section of the Poincare´ group:

Theorem 7.1:For x5~a1Rp,p!, s~x!5~a8,Ap!, a85a2~a–qp!p ~hencea8–q050!, then

U„s~x!…21J21W„0,l ~r 8!, j ~s!…JU„s~x!…5eia8–sJ21W„0,l ~Ap
21r 8!, j ~Ap

21s!…J. ~90!

We may now reexpress the expected values of the phase space localization operators as
follows:

^f2 ,Th~x!f1&L2~V0
1!

5^U„s~x!…h,f1&L2~V0
1!^f1 ,U„s~x!…h&L2~V0

1!

5^JU„s~x!…h,Jf1&L2~R3!^Jf1 ,JU„s~x!…h&L2~R3!

5E
R6
d~r 8–p0!d~r 8–u0!d~r 8–v0!d~s–q0!d~s–u0!d~s–v0!

3^Jf2 ,W„0,l ~r 8!, j ~s!…Jf1&L2~R3!^W„0,l ~r 8!, j ~s!…JU„s~x!…h,JU„s~x!…h&L2~R3!

5E
R6
d~r 8–p0!d~r 8–u0!d~r 8–v0!d~s–q0!d~s–u0!d~s–v0!

3^Jf2 ,W„0,l ~r 8!, j ~s!…Jf1&L2~R3!e
2 ia8–s^W„0,l ~Ap

21r 8!, j ~Ap
21s!…Jh,Jh&L2~R3!
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5E
R6
d~r 8–p0!d~r 8–u0!d~r 8–v0!d~s–q0!d~s–u0!d~s–v0!e

2 i l ~a8!• j ~s!

3^Jf2 ,W„0,l ~r 82qp!, j ~s!…Jf1&L2~R3!

3^W~0,l „Ap
21~r 82qp!…, j ~Ap

21s!!Jh,Jh&L2~R3!, ~91!

where we have introduced the shiftr 8→r 82qp , qp5Apq0, in order to ‘‘center’’ the last factor in
j (V0

1).
Next, as in the informational completeness proof for the affine group,40 we introduce a

‘‘chirp,’’ c. Define

c~ t!5eipt–t, tPR3. ~92!

Take

Jh5cg, some gPL2~R3!. ~93!

Then

^W~0,l „Ap
21~r 82qp!, j ~Ap

21s!…!Jh,Jh&L2~R3!

5^W~0,l „Ap
21~r 82qp!, j ~Ap

21s!…!cg,cg&L2~R3!

5E
R3
d3tc~ t!g~ t!e2 ip„Ap

21
~r82qp!…•Ap

21sei2p„Ap
21

~r82qp!…•~ j21t1Ap
21s!c„t1 j ~s!…g„t1 j ~s!…

5^W~0,l ~Ap
21~r 82qp!1 j ~Ap

21s!, j ~Ap
21s!…!g,g&L2~R3!

5^W„0,l ~Ap
21r 82q0!1 j ~Ap

21s!, j ~Ap
21s!…g,g&L2~R3! . ~94!

Finally, also as in the informational completeness proof for the affine group, we show that by
replacingh with a delta sequence$hl%, we may isolate the Fourier transform of all Wigner
coefficients^W„0,l (Ap

21r 8 2 q0) 1 j (Ap
21s), j (Ap

21)…g,g&L2(R3) . As an example, if one takes
g5glPL2~R3!,

gl~ t!5Ne2pt–t/l2, ~95!

N a normalization constant, then one obtains

^W„0,l ~Ap
21r 82q0!1 j ~Ap

21s!, j ~Ap
21s!…gl ,gl&L2~R3!

5e2 ip j ~Ap
21s!• j ~Ap

21s!/~2l2!e2pl2$ l @Ap
21r82q0#1 j ~Ap

21s!%•$ l @Ap
21r82q0#1 j ~Ap

21s!%/2

5e2p j ~Ap
21s!• j ~Ap

21s!/~2l2!l23225/2Kl~ l @Ap
21r 82q0#1 j @Ap

21s# ! ~96!

where$Klul.0,l21→01% is a delta sequence~Ref. 27, pp. 309–310!. Also, in the limitl21→01,
the first exponential converges to 1. We therefore have

l325/2^f2 ,Thl
~x!f1&L2~V0

1!

5l325/2E
R6
d~r 8–p0!d~r 8–u0!d~r 8–v0!d~s–q0!d~s–u0!d~s–v0!e

2 i l ~a8!• j ~s!

3^Jf2 ,W„0,l ~r 82qp!, j ~s!…Jf1&L2~R3!^W„0,l ~Ap
21~r 82qp!, j ~Ap

21s!…cgl ,cgl&L2~R3!
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5E
R6
d~r 8–p0!d~r 8–u0!d~r 8–v0!d~s–q0!d~s–u0!d~s–v0!e

2 i l ~a8!• j ~s!

3^Jf2 ,W„0,l ~r 82qp!, j ~s!…Jf1&L2~R3!e
2p j ~Ap

21s!• j ~Ap
21s!/~2l2!

3Kl~ l @Ap
21r 82q0#1 j @Ap

21s# !

→l21→01E
R3
d~s–q0!d~s–u0!d~s–v0!e

2 i l ~a8!• j ~s!^Jf2 ,W„0,l ~r 8•qp!, j ~s!…Jf1&L2~R3! . ~97!

Similarly, for

r5(
k

gkPfk

any density operator inLn
2(V0

1),

l325/2TrL
n
2~V0

1!„rThl
~x!…→l21→01E

R3
d~s–q0!d~s–u0!d~s–v0!e

2 i l ~a8!• j ~s!

3TrL2~R3!@JrJ21W„0,l ~r 82qp!, j ~s!…#. ~98!

Here r 8 is given by

l @Ap
21r 82q0#1 j @Ap

21s#50; ~99!

i.e.,

~Ap
21r 8–p011,2Ap

21r 8–u0,2Ap
21r 8–v0!1~Ap

21s–q0,Ap
21s–u0,Ap

21s–v0!50; ~100!

so,

r 8–p05~p–q0!
21@11~r 8–u0!~p–u0!1~r 8–v0!~p–v0!#2s–q0,

r 8–u05s–u02~p–u0!~s–q0!~p–q0!
21, ~101!

r 8–v05s–v02~p–v0!~s–q0!~p–q0!
21.

Hence

l ~r 82q0!5„2p–q01~p–q0!
211~p–q0!

21@~s8–u0!~p–u0!1~s8–v0!~p–v0!#2~s–q0!

3~p–q0!
22@~p–u0!

21~p–v0!
2#2s–q0, s–u02~p–u0!~s–q0!~p–q0!

21,

s–v02~p–v0!~s–q0!~p–q0!
21
…. ~102!

Therefore, the map (p,s)°„l (Ap
21r 8 2 q0), j (s)…, V0

13R4→R6 is surjective, and all Wigner coef-
ficients TrL2(R3)@JrJ21W„0,l (r 8 2 qp), j (s)…# may be obtained by Fourier transform. By the infor-
mational completeness of these coefficients40 JrJ21, and hencer, is determined uniquely.

For consistency with the original problem inLn
2(V0

1), one needs to work with a slightly
different delta sequence than this Gaussian net$hl% for the informational completeness since none
of thesehl are supported onV0

1 ; however, as the example shows, it is enough for the distribution
to be centered atqpPV0

1 , and this may be accomplished with suitably supported delta sequences.
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VIII. EXPLICIT FORMULAS FOR Ph AND Wh
21

To simplify subsequent analysis, we present explicit expressions forPh andWh
21 .

Theorem 8.1:Let fPLm
2 ~P /H2!. Define P by

~Pf !~z![iChi22E
P /H2

dm~x!^EUpol
„s2~z!…h,EU

pol
„s2~x!…h& f ~x!. ~103!

ThenP is the projectionPh from Lm
2~P /H2! to the range ofWh .

Proof: ~1! PfPRange ofWh since we may rewrite the integral in~103! in the form

E dm~x! f ~x!@Wh~EUpol
„s2~x!…h!#~z!.

~2! ~PWhw!~z!5iChi22E dm~x!^EUpol
„s2~z!…h,EU

pol
„s2~x!…h&^EUpol

„s2~x!…h,w&

5^EUpol
„s2~z!…h,w&5~Whw!~z!.

ThereforeP is the identity on the range ofWh .

~3! ~PPf !~z!5iChi22E dm~x!^EUpol
„s2~z!…h,EU

pol
„s2~x!…h&~Pf !~x!

5iChi24E dm~x!dm~y!^EUpol
„s2~z!…h,EU

pol
„s2~x!…h&

3^EUpol
„s2~x!…h,EUpol

„s2~y!…h& f ~y!

5iChi22E dm~y!^EUpol
„s2~z!…h,EU

pol
„s2~y!…h& f ~y!

5~Pf !~z!.

Therefore

P25P.

~4! P is an integral operator with kernelK such thatK(x,y) 5 K(y,x). Thus

P5P†. h

Theorem 8.2:Wh
21 :PhLm

2 ~P /H2!→Ln
2~P /H1! is given by

Wh
21~Ph f !5N21E ~Ph f !~x!EUpol

„s2~x!…h dm~x!, ~104!

whereN5iChi2.
Proof:Recall, (Whw)(x) 5 ^EUpol

„s2(x)…h,w&. Also, since forfPLm
2 ~P /H2!, there exists a

uniquewPLn
2~P /H1! such thatPh f5Whw, then for anycPLn

2~P /H1! we compute

K c,N21E ~Ph f !~x!EUpol
„s2~x!…h dm~x!L 5 K c,N21E ~Whw!~x!EUpol

„s2~x!…h dm~x!L
5N21E ~Whw!~x!~Whc!~x!dm~x!5^c,w&

5^c,Wh
21Ph f &. h
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Theorem 8.3:For Ph and Wh as above,

Ph5iChi22WhWh
† . ~105!

Proof: From the orthogonality theorem we have

@WhWh
†Whw#~x!5^EUpol

„s2~x!…h,Wh
†Whw&5^WhEU

pol
„s2~x!…h,Whw&

5iChi2^EUpol
„s2~x!…h,w&5iChi2@Whw#~x!.

ThusiChi22WhWh
† is the identity on the range ofWh . If f is orthogonal to the range ofWh ,

then

WhWh
† f ~x!5^EUpol

„s2~x!…h,Wh
† f &5^WhEU

pol
„s2~x!…h, f &50. h

With these results, we may present an alternate proof of the integral representation forUh,l as
intertwined fromUpol and given in Theorem 5.3,~74!.

Alternative Proof of Theorem 5.3:

@Uh,l~g!~Ph f !#~x!5~WhU
pol~g!Wh

21Ph f !~x!5^EUpol
„s2~x!…h,Upol~g!Wh

21Ph f &

5N21KEUpol
„s2~x!…h,Upol~g!E ~Ph f !~y!EUpol~s2~y!!hdm~y!L

5N21E dm~y!^EUpol
„s2~x!…h,Upol~g!EUpol

„s2~y!…h&~Ph f !~y!. h

Corollary 8.4: Theorem 5.3 (74) may also be written, using Theorem 8.1, to read

@Uh,l~g!~Ph f !#~x!5N21E dm~y!^EUpol
„s2~x!…h,Upol~g!EUpol

„s2~y!…h&iChi22

3E dm~z!^EUpol
„s2~y!…h,EUpol

„s2~z!…h& f ~z!

5N21E dm~z!^EUpol
„s2~x!…h,Upol~g!EUpol

„s2~z!…h& f ~z!. ~106!

This provides a explicit integral representation.

IX. COVARIANCE ASPECTS OF THE LOCALIZATION OPERATOR

We next determine the covariance properties of the phase space localization operators for the
photon and other zero mass particles. For notation, see Sec. V.

Theorem 9.1:Ah(D)w 5 N21*Ddm(y)^EUpol
„s2(y)…h,w&EUpol

„s2(y)…h; i.e.,

Ah~D!5N21E
D
dm~y!uEUpol

„s2~y!…h&^EUpol
„s2~y!…hu5N21E

D
dm~y!Th~y!. ~107!

Proof: In fact, ~107! follows immediately from~80!; but for reasons given below, we offer an
independent proof here:

Ah~D!w5Wh
21PhA~D!Whw5N21E

P /H2

dm~x!„PhA~D!Whw…~x!EUpol
„s2~x!…h
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5N22E
P /H2

dm~x!E
P /H2

dm~y!

3^EUpol
„s2~x!…h,EUpol

„s2~y!…h&„A~D!Whw…~y!EUpol
„s2~x!…h

5N22E
P /H2

dm~x!E
D
dm~y!^EUpol

„s2~x!…h,EUpol
„s2~y!…h&

3~Whw!~y!EUpol
„s2~x!…h

5N22E
P /H2

dm~x!E
D
dm~y!^EUpol~s2~x!!h,EUpol~s2~y!!h&

3^EUpol
„s2~y!…h,w&EUpol

„s2~x!…h

5N22E
D
dm~y!E

P /H2

dm~x!^EUpol
„s2~y!…h,w&

3^EUpol
„s2~x!…h,EUpol

„s2~y!…h&EUpol
„s2~x!…h

5N21E
D
dm~y!^EUpol

„s2~y!…h,w&EUpol
„s2~y!…h. h

Equation~107! proves thatD→Ah~D! is an absolutely continuous POVM with respect to the
invariant measure, andAh has operator densityTh. Then using the theory of integration with
respect to a POVM one may establish a quantization scheme.41 The specific quantization scheme
from that theory gives precisely~80!. Hence, one could have definedA andAh by ~66! and~68!,
and then derived the quantization scheme. In contrast, in Sec. V the localization is derived from
the quantization scheme~75! and ~76!. Theorem6.1 shows the equivalence of these two ap-
proaches.

Theorem 9.2:As an operator on Ln
2~P /H1!, Ah satisfies

EUpol~g!E21Ah~D!E21Upol~g!21E5Ah~g@D#!. ~108!

Proof:

EUpol~g!E21Ah~D!w5EN21E
D
dm~y!^EUpol

„s2~y!…h,w&Upol
„gs2~y!…h

5EN21E
yPD

dm~g•y!^EUpol
„g21s2~g•y!…h,w&Upol

„s2~g•y!…h

5N21E
g@D#

dm~z!^EUpol
„g21s2~z!…h,w&EUpol

„s2~z!…h

5N21E
g@D#

dm~z!^EUpol
„s2~z!…h,E

21Upol~g!Ew&EUpol
„s2~z!…h

5Ah~g@D#!E21Upol~g!Ew.

Thus

EUpol~g!E21Ah~D!5Ah~g@D#!E21Upol~g!E . h

Corollary 9.3: D→E21Ah~D!E21 defines a non-normalized POVM transforming covariantly
under Upol:
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Upol~g!„E21Ah~D!E21
…Upol~g21!5E21Ah~g@D#!E21. ~109!

Proof: From ~108!, the covariance follows. For the normalization

E21Ah~P /H2!E
215E22, not 1. h

Remark:Equation~109! may be reexpressed

E21Ah~D!E21w5N21E
D
dm~y!^Upol

„s2~y!…h,w&Upol
„s2~y!…h, ~110!

or

E21Ah~D!E215N21E
D
dm~y!uUpol

„s2~y!…h&^Upol
„s2~y!…hu. ~111!

It is not known at this time if this family of phase space localization operators reduces, by
marginality, to the family of configuration space localization operators of Kraus42 in the photon
case.

X. THE ANALOG OF THE WIGNER TRANSFORM

We define a transform in analogy to the Wigner transform of nonrelativistic massive quantum
theory:

Definition: The Wigner transform will be defined in the massless Poincare´ case by

r°$Tr~EUpol
„s2~x!…C22r!uxPP /H2%, ~112!

and the Weyl dequantization by

B°$Tr~EUpol
„s2~x!…B!uxPP /H2% ~113!

whereB is any operator such that almost every Tr(EUpol
„s2(x)…B) exists.

Remark:As in the massive, nonrelativistic case, the right-hand side of~112! does not gener-
ally define a probability density, and~112! does not define a proper dequantization scheme.

Theorem 10.1:Let hPD(C2) and leth be admissible. Then the one-dimensional projection
PC2h is given by

PC2h5iC2hi22E
P /H2

^EUpol
„s2~x!…,C2h&EUpol

„s2~x!…dm~x!. ~114!

Proof: Let c, wPD~E!. Then

^c,iC2hi22E
P /H2

^EUpol
„s2~x!…h,C2h&EUpol

„s2~x!…dm~x!w&

5iC2hi22E
P /H2

dm~x!^EUpol
„s2~x!…h,C2h&^c,EUpol

„s2~x!…w&

5iC2hi22^C2h,w&^c,C2h&5^c,PC2hw&

for a dense set ofw,c. Hence, it holds for allw, cPLn
2~P /H1!. h

Theorem 10.2:Let r be a density operator in Ln
2~P /H1!. Then
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r5E
P /H2

Tr~EUpol
„s2~x!…C22r!EUpol

„s2~x!…dm~x!; ~115!

i.e., $EUpol
„s2(x)…C

22ux P P /H2% is informationally complete in Ln
2~P /H1!.

Proof: Begin withr 5 (r iPc i
, ci in the range ofC

2. Then, writec i5C2w i :

r5(
i

r i iC2w i i22E
P /H2

^EUpol
„s2~x!…w i ,C

2w i&EU
pol
„s2~x!…dm~x!

5(
i

r i ic i i22E
P /H2

^EUpol
„s2~x!…C22c i ,c i&EU

pol
„s2~x!…dm~x!

5E
P /H2

Tr(EUpol
„s2~x!…C22(

i
r i ic i i22uc i&^c i u!EUpol

„s2~x!…dm~x!

5E
P /H2

Tr~EUpol
„s2~x!…C22r!EUpol~s2~x!!dm~x!. h

This theorem does not carry direct physical meaning since physical observables are self-
adjoint or symmetric operators, while the operatorsEUpol

„s2(x)…C
22 are not even symmetric.

Theorem 10.3:

Tr~rB!5E
P/H2

Tr~EUpol
„s2~x!…C22r!Tr~EUpol

„s2~x!…B!dm~x!; ~116!

that is, the quantum expectation and the analog of the classical expectation coincide.
Theorem 10.4:For sections2 as in (39) and (40), operators U

pol as in (25), andE as in (48)
and (53), the set

$EUpol
„s2~x!…uxPP /H2% ~117!

is informationally complete in Ln
2~P /H1!. Furthermore, the reconstruction of vector states Pc

from the set$Tr(PcEU
pol
„s2(x)…)ux P P /H2% is particularly simple.

Proof: Informational completeness follows from Theorem 10.2 and the invertibility ofC22.
For the reconstruction of vector states, let$ej u j51,2,3,...% be an orthonormal basis for

Ln
2~P /H1!. Then

E
P /H2

dm~x!^ej ,EU
pol
„s2~x!…h&Tr~PcEU

pol
„s2~x!…!

5E
P /H2

dm~x!^ej ,EU
pol
„s2~x!…h&^EUpol

„s2~x!…c,c&

5^c,C2h&^ej ,c&.

Since

^c,C2h&c5(
j

^c,C2h&^ej ,c&ej ,

one can construct normalized vectorc up to a constant phase from the set

$Tr~PcEU
pol
„s2~x!…!uxPP /H2%. h
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This approach also gives a formula for reconstructingPc from its Wigner transform~112!. In
particular,

E
P /H2

dm~x!^ej ,EU
pol
„s2~x!…h&Tr~PcEU

pol
„s2~x!…!

5E
P /H2

dm~x!^ej ,EU
pol
„s2~x!…h&^EUpol

„s2~x!…C22c,c&5^c,h&^ej ,c&,

~118!

from which we can determine normalizedc up to a constant phase, and hencePc .

XI. COMPARISON WITH OTHER RESULTS

The methods used here are closest to those of Ali and Antoine38,43 and Ali, Antoine, and
Gazeau44 in their treatment of the Poincare´ group in two dimensions, but differ in several essential
ways. First of all, in our treatment we intertwine irreducible representations with representations in
Lm
2~P /H2!, but not with the left-quasiregular representation onLm

2~P /H2!. Second, our orthogo-
nality result~54! exhibits a factoring into a factor involving only the resolution generators and a
second term that is independent of the resolution generators; this factorization plays a role in the
proof of informational completeness. Furthermore, their treatment of the Poincare´ group in two
dimensions deals only with the massive case with a recent extension to the massless case,45 while
the present work deals with the massless case in the full four dimensions. In a sequel paper, we
shall treat the massive case as well, but even there our two approaches will differ, this latter
difference occurring since we use methods parallel to the general scheme employed to discuss
informational completeness of Wigner coefficients and localization operators in the Heisenberg,
affine, and Galilei groups;40 in that setting, the presence of nontrivial cocycles requires a modifi-
cation of the standard process. In the four-dimensional Poincare´ group there are no nontrivial
cocycles; however, for the two-dimensional Poincare´ group, there is a one-dimensional manifold
of inequivalent multiplier representations based on distinct cocycles~Ref. 46, pp. 478–484!. For
this reason, two-dimensional Galilean theory is closer to the two-dimensional Poincare´ theory than
the corresponding four-dimensional cases~and may be related by group contraction!. Ali et al.
discuss only the representation based on the trivial multiplier representation. The difference is in
the nature of the approaches, ours beginning with the identification of the physically relevant and
classically motivated homogeneous spaces, after which all related induced representations play a
role. Fourth, the inclusion of all three spatial dimensions allows for spin and helicity. The non-
trivial restrictions on the resolution generators under rotations that derive from the intertwining
property are inherently connected with the identification of the value ofspin/helicity. This simply
cannot be discussed in the two-dimensional setting.

Points of similarity of their approach and ours are also manifold and include: the operatorE

appearing in~48! and~50!, as well as the choice between the localization operatorAh transforming
under a nonunitary representation of the groupP @Eq. ~108!# versusE21AhE

21 transforming
covariantly under the ‘‘proper’’ unitary representation but being normalized toE22 @Eq. ~109!# are
both consistent with the results of Aliet al. and would not be anticipated from results of others
known to us.

Our approach here is different in spirit from all prior treatments based on deforming results in
the massive case to massless ones by taking ‘‘suitable’’ limits. The treatment of the massive case,
in particular, will be seen in the sequel to have no terms corresponding to theE factors here;
therefore, the essential introduction of thisE will not be obtained by any such limiting process,
nor will the travelling coordinate system introduced in~64! arise in such a limit. In fact, essential
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structural differences should occur between the massive and massless cases, since the geometry of
the corresponding homogeneous spaces is different because the little groups for the two cases are
different.

APPENDIX: CHOICE OF CROSS SECTION FOR SL(2,C)/[SL(2,C)](1,0,0,1)

If aÞ0, then the element (c
a

d
b) of SL~2,C! may be factored uniquely in the form

S a b

c dD 5S uau 0

uauca21 uau21D S auau21 buau21

0 a21uau D . ~A1!

The last factor is inH15@SL~2,C!#~1,0,0,1!.
The set of elements for which this decomposition fails~a50! is of Haar measure zero;

consequently, we may impose the conditionaÞ0 when integrating over the group.
Henceforth, forA5(c

a
d
b), we define

uA[auau21 ~A2!

and almost everywhere choose the canonical projectionp0 and Borel sections0 by

p0 :SL~2,C!→SL~2,C!/@SL~2,C!#~1,0,0,1! , ~A3!

p0~A!5p0S S a b

c dD D 5S a b

c dDH15S uau 0

uauca21 uau21DH1

[H S uau 0

uauca21 uau21D S u z

0 u21D , uuu51,zPCJ ;
s0 :SL~2,C!/@SL~2,C!#~1,0,0,1!→SL~2,C!,

s05p0S S a b

c dD D °s0+p0S S a b

c dD D[S uau 0

uauca21 uau21D . ~A4!

We may parametrize the cosets with the parametersca21PC, uauPR1 up to a set of measure
zero. Next, set

p05S 2 0

0 0D ~A5!

and

p[A•p0 . ~A6!

Then

S p01p3 p12 ip2

p11 ip2 p02p3 D 5AS 2 0

0 0DA†52S uau2 ac̄

āc ucu2D ; ~A7!

so;

p0.0, p–p50,
~A8!

p01p352uau2, p11 ip252āc.
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Conversely, every future-pointing null vectorpPR4 uniquely determines a class in
SL~2,C!/SL~2,C!~1,0,0,1! and a uniques0+p0(A). For suchp we defineAp by

Ap[S „~p01p3!/2…1/2 0

~p11 ip2!/„2~p01p3!…1/2 „2/~p01p3!…1/2
D 5s0+p0~A!. ~A9!

In this way, we may identify SL~2,C!/SL~2,C!~1,0,0,1! with V0
1 . From ~A9!,

Ap
21[S ~2/~p01p3!!1/2 0

~2p12 ip2!/„2~p01p2!…1/2 „~p01p3!/2…1/2D[Ap̃ , ~A10!

where

p̃ 01 p̃ 354~p01p3!21,

p̃ 1522p1~p01p3!21,
~A11!

p̃ 2522p2~p01p3!21,

p̃ 02 p̃ 35p02p3.

From ~A11!, the Jacobian~62! follows.
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Multi-periodic coherent states and the WKB exactness
Kazuyuki Fujiia)
Department of Mathematics, Yokohama City University, Yokohama 236, Japan

Kunio Funahashib)
Department of Physics, Kyushu University, Fukuoka 812-81, Japan

~Received 8 May 1996; accepted for publication 28 June 1996!

We construct the path integral formula in terms of a ‘‘multi-periodic’’ coherent
state as an extension of the Nielsen–Rohrlich formula for spin. We make an exact
calculation of the formula and show that, when a parameter corresponding to the
magnitude of spin becomes large, the leading order term of the expansion coincides
with the exact result. We also give an explicit correspondence between the trace
formula in the multi-periodic coherent state and the one in the ‘‘generalized’’
coherent state. ©1996 American Institute of Physics.@S0022-2488~96!03911-4#

I. INTRODUCTION

Spin, a system being subject to the SU~2! group, is a simple and pedagogical model so that
many useful results and discussions have been made. In the framework of the path integral, it is
applied to, for example, the explanation of the Fermi–Bose transmutation.1–3

In quantum mechanics there exist few systems which are solved exactly, so various approxi-
mations such as the perturbation or the variational method have been invented to give useful
results. The most suitable one in the path integral formalism is the WKB approximation, which
can be stated as the stationary phase method in quantum mechanics. Although the WKB approxi-
mation is useful, the result differs from the exact one in general. However, it is known that there
exist some systems in which they coincide with each other, for example, the harmonic oscillator:
this is a kind of trivial example since the approximation gives the same form with the original
action which is the Gaussian to be integrated exactly.

In the stationary phase approximation in finite dimensions, the conditions that an approxima-
tion gives the exact result of the integral has been discovered by Duistermaat and Heckman,4,5 so
that the fact is called as the DH theorem.

Recently there have been some discussions6–9 that the WKB approximation gives the exact
result ~we call this fact theWKB exactness! in the trace formula of spin in connection with the
DH theorem. However, there are some unsatisfactory points in the preceding discussions, for
example, the manner of construction of the trace formula and the use of the continuum path
integral. By paying attention to the above points, we have shown the WKB exactness in terms of
the spin coherent state10 with the form

Z5 lim
N→`

E )
i51

N

dm~j i ,j i* !expF iJ(
k51

N H 2i logS 11jk* jk
11jk* jk21

D 1Dth
12jk* jk21

11jk* jk21
J GU

jN5j0

,

~1.1!

whereJ is the magnitude of spin andh is the external magnetic field. We have also extended the
WKB exactness in terms of the ‘‘generalized’’ coherent state.11

As for path integrals for spin, there exists another expression, the Nielsen–Rohrlich
formula,12,13which is constructed in terms of the periodic coherent state. Its trace formula is

a!Electronic-mail address: fujii@yokohama-cu.ac.jp
b!Electronic-mail address: fnhs1scp@mbox.nc.kyushu-u.ac.jp
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Z5 (
n52`

`

lim
N→`

E
2np

2~n11!p dwN

2p E
2`

`

)
i51

N21
dw i

2p E
2J21/21«

J11/22«

)
j51

N
dpj
2p

3expF i(
k51

N

~pk1J!~wk2wk21!2Dt(
k51

N

h~k!pkGU
wN5w012np

, ~1.2!

where« is positive infinitesimal. On the other hand, the trace formula of the spin coherent state is
~1.1!. The two representations look quite different despite starting from the same Hamiltonian. The
integration domain ofps and the existence of infinite sum lead to the observation that the phase
space is considered to be the ‘‘punctured sphere’’, while the phase space of the spin coherent state
is CP1.S2, the ‘‘sphere.’’ In the latter case, the WKB exactness holds. However, in the former
case, from~1.2!, the equations of motion are

wk2wk215h~k!Dt,
~1.3!

pk2pk2150,

which does not meet the boundary conditionwN5w012np in a generalh(k). Thus there seems
to be no classical solutions. We have clarified this puzzle in Ref. 14. The phase space of the
Nielsen–Rohrlich formula is not ‘‘punctured’’ and the appearance of the infinite sum is superfi-
cial. The trace formula is equivalent to that of the spin coherent state. By rewriting~1.2! to

Z5 (
n52`

`

ei2npJ lim
N→`

E
2np

2~n11!p dwN

2p E
2`

`

)
i51

N21
dw i

2p E
0

p

)
j51

N

l sin u jdu j

3expH il(
k51

N

cosuk~wk2wk212hDt !J U
wN5w012np

, ~1.4!

the WKB exactness also holds in this case.
Although the extension of the Nielsen–Rohrlich formula has been attempted,15 the explicit

form has not yet been obtained. In this paper we construct the path integral formula and clarify the
WKB exactness.

The contents of this paper are as follows. In Sec. II, we define the ‘‘multi-periodic’’ coherent
state to construct the path integral formula. In Sec. III, we make an exact calculation of the trace
formula. We establish a relationship with the trace formula to that of the generalized coherent state
in Sec. IV. Then we perform the WKB approximation to confirm the WKB exactness in Sec. V.
The last section is devoted to the discussion.

II. CONSTRUCTION OF THE TRACE FORMULA

First we make up theu(N11) algebra and the representation space by means ofN11
harmonic oscillators. The method is called the Schwinger boson method.16 The commutation
relations of oscillators are

@aa , ab
† #5dab , @aa , ab#5@aa

† , ab
† #50, a,b51,...,N11, ~2.1!

and the Fock space is
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$um1,...,mN11&%, ma50,1,2,..., with a51,...,N11,

um1,...,mN11&[
1

Am1! •••mN11!
~a1

†!m
1
•••~aN11

† !m
N11

u0&, ~2.2!

aau0&50.

By putting

Eab5aa
†ab , a,b51,...,N11, ~2.3!

theu(N11) algebra

@Eab , Egd#5dbgEad2ddaEgb ~2.4!

is realized.
The Fock space~2.2! is too large to be the representation space ofU(N11). We restrict the

representation space with the identity operator

1Q[ (
imi5Q

um1,...,mN11&^m1,...,mN11u, ~2.5!

where we have used the abbreviation

imi[ (
a51

N11

ma. ~2.6!

Now we introduce the highest weight vector defined by

EN11,N11uQ;N11&‹5QuQ;N11&‹,
~2.7!

EN11,auQ;N11&‹50, a51,...,N,

whereEa,N11(EN11,a) is the lowering~raising! operator ofu(N11). We can identify

uQ;N11&‹[u0
1

,...,0
N

, Q
N11

&. ~2.8!

The ‘‘multi-periodic’’ coherent state is defined by

uw&[uw1,w2,...,wN&[
1

~2p!N/2 (
imi5Q

A mN11!

m1! •••mN!Q! )
a51

N

„e2 imawa
~Ea,N11!

ma
…uQ;N11&‹

5
1

~2p!N/2 (
imi5Q

e2 i(a51
N mawa

um1,m2,...,mN11&, ~2.9!

which satisfies periodicity

uw1,...,wa12np,...,wN&5uw1,...,wa,...,wN&, n: integer. ~2.10!

The inner product is
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^wuw8&5
1

~2p!N (
imi5Q

ei(a51
N ma~wa2wa8!, ~2.11!

and the resolution of unity is

E
0

2p

dwuw&^wu51Q , ~2.12!

where

E
0

2p

dw[E
0

2p

)
a51

N

dwa. ~2.13!

To construct the path integral formula, we utilize the next relation: Form0 ,m1PZ,

(
m5m0

m1

eimw f ~m!5 (
n52`

` E
m02«

m11«

dpeip~w12np! f ~p!, 0,«,1. ~2.14!

We rewrite~2.11! with the aid of~2.14! to

^wuw8&5
1

~2p!N (
m150

Q

(
m250

Q2m1

••• (
mN50

Q2(a51
N21ma

ei(a51
N ma~wa2wa8!

5
1

~2p!N (
m150

Q

(
m250

Q2m1

••• (
mN2150

Q2(a51
N22ma

ei(a51
N ma~wa2wa8!

3 (
nN52`

` E
2«N

Q2(a51
N21ma1«NdpNeip

N~wN2wN812nNp!

5•••5
1

~2p!N (
n152`

`

••• (
nN52`

` E
2«1

Q1«1
dp1E

2«2

Q2p11«2
dp2•••E

2«N21

Q2(a51
N22pa1«N21dpN21

3E
2«N

Q2(a51
N21pa1«NdpNei(a51

N pa~wa2wa812nap!, ~2.15!

where we restrict 0,«a<1/„2a21~N11!… for later convenience. We make a change of variables
such that

p̃a5pa1
1

2a21~N11!
, ~2.16!

with

l[
Q

2
1

1

N11
,

«̃a[2«a1
1

2a21~N11!
, 0<«̃a,

1

2a21~N11!
, ~2.17!

which leads to
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E
2«a

Q2(b51
a21pb1«adpa→E

«̃a

2l2(b51
a21p̃ b2 «̃adp̃a. ~2.18!

Equation~2.15! then becomes

^wuw8&5
1

~2p!N (
n152`

`

••• (
nN52`

` E
«1

2l2«1
dp1E

«2

2l2p12«2
dp2•••E

«N21

2l2(a51
N22pa2«N21dpN21

3E
«N

2l2(a51
N21pa2«NdpNei(a51

N
@pa21/~2a21~N11!!#~wa2wa812nap!, ~2.19!

where the tildes have been omitted.
We adopt a Hamiltonian as

Ĥ[ (
a51

N11

caaa
†aa , ~2.20!

where we have assumed that allcs are different from each other and independent of time. The
matrix element of the Hamiltonian is

^wuĤuw8&5H (
a51

N

~ca2cN11!
1

i

]

]wa 1cN11QJ ^wuw8&

5
1

~2p!N (
n152`

`

••• (
nN52`

` E
«1

2l2«1
dp1•••E

«N

2l2(a51
N21pa2«N

3dpNei(a51
N

@pa21/~2a21~N11!!#~wa2wa812nap!F (
a51

N

maS pa2
1

2a21~N11!D 1cN11QG ,
~2.21!

wherema[ca2cN11.
From now on we put«̃a50 for simplicity. @See~2.17! for the range of«̃a .#
The Feynman kernel is defined by

K~wF ,wI ;T![^wFue2 iĤ TuwI&5 lim
M→`

^wFu~12 iDtĤ !MuwI&, Dt[T/M , ~2.22!

or explicitly

5991K. Fujii and K. Funahashi: Multi-periodic coherent states, the WKB exactness

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



K~wF ,wI ;T!5 lim
M→`

E
0

2p

)
i51

M21

dwi)
j51

M

^wj u~12 iDtĤ !uwj21&U
w05wI

wM5wF

5 lim
M→`

E
0

2p

)
i51

M21

dwi)
j51

M F 1

~2p!N (
nj
1
52`

`

••• (
nj
N

52`

` E
0

2l

dpj
1•••

3E
0

2l2(a51
N21pj

a

dpj
Nei(a51

N
@pa21/~2a21~N11!!#~Dw j

a
12nj

ap!F12 iDt

3H (
a51

N

maS pja2
1

2a21~N11!D 1cN11QJ G GU
w05w I

wM5wF

5 lim
M→`

E
0

2p

)
i51

M21

dwi)
j51

M H 1

~2p!N (
nj
1
52`

`

••• (
nj
N

52`

` E
0

2l

dpj
1•••E

0

2l2(a51
N21pj

a

dpj
NJ

3expF i(k51

M H (
a51

N S pka2
1

2a21~N11!D ~Dwk
a12nk

ap!

2DtH (
a51

N

maS pka2
1

2a21~N11!D 1cN11QJ J GU
w05w I

wM5wF

, ~2.23!

where the resolution of unity~2.12! has been inserted in the first equality andDwk
a[wk

a2wk21
a

has been put andO„(Dt)2… terms, which finally vanish inM→` limit, have been omitted in the
last equality. We introduce new variables such that

nk
a85(

l51

k

nl
a ,

~2.24!

wk
a85wk

a12nk
a8p,

to give

Dwk
a12nk

ap5Dwk
a8 ,

~2.25!

(
ni

a852`

` E
2ni

a8p

2~ni
a811!p

dw i
a85E

2`

`

dw i
a8 .

The kernel is then rewritten
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K~wF ,wI ;T!5 lim
M→`

E
2`

`

)
i51

M21

dw i (
nM
1

52`

`

••• (
nM
N

52`

`

)
j51

M

3H E
0

2l dpj
1

2p
•••E

0

2l2(a51
N21pj

a dpj
N

2p J expF i(
k51

M H (
a51

N S pka2
1

2a21~N11!DDwk
a

2DtH (
a51

N

maS pka2
1

2a21~N11!D 1cN11QJ J GU
w
0
a5w

I
a

wM
a

5wF
a

12nM
a p

5e2 iQcN11T1 i(a51
N

@1/~2a21~N11!!#maT (
n152`

`

••• (
nN52`

`

3e2 i(a51
N

@1/~2a21~N11!!#~wF
a

2w I
a

12nap! lim
M→`

E
2`

`

)
i51

M21

dwi)
j51

M

3H E
0

2l dpj
1

2p
•••E

0

2l2(a51
N21pj

a dpj
N

2p J expF i(
k51

M

(
a51

N

pk
aFk

aGU
w
0
a5w

I
a

wM
a

5wF
a

12nap

, ~2.26!

where primes have been omitted andnM
a has been written asna andFk

a[Dwk
a2Dtma in the last

equality.
Further, we make a change of variables such that

p185p12l,

p285p22
l2p18

2
,

A

pa85pa2
l2(b51

a212b21pb8

2a21 ,

A

pN85pN2
l2(b51

N212b21pb8

2N21 , ~2.27!

which leads to

E
0

2l2(b51
a21pb

dpa→E
2~l2(b51

a212b21pb8!/2

~l2(b51
a212b21pb8!/2

dpa8, ~2.28!

where we use the notations
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(
b5a

b

f ~b!50

)
b5a

b

f ~b!516 for b,a ~2.29!

for simplicity. We then obtain the kernel

K~wF ,wI ;T!5e2 iQcN11T1 i(a51
N 1/~2a21~N11!!maT (

n152`

`

••• (
nN52`

`

3e2 i(a51
N 1/~2a21~N11!!~wF

a
2w I

a
12nap!

3 lim
M→`

E
2`

`

)
i51

M21

dwi)
j51

M H E
2l

l dpj
1

2p E
2~l2pj

1
!/2

~l2pj
1
!/2 dpj

2

2p
•••

3E
2~l2(b51

N212b21pj
b

!/2N21

~l2(b51
N212b21pj

b
!/2N21 dpj

N

2p J
3expF i(

k51

M

(
a51

N S pka1
l2(b51

a212b21pk
b

2a21 DFk
aGU

w
0
a5w

I
a

wM
a

5wF
a

12nap

, ~2.30!

where we have again omitted primes.
To compare with theu-expression of the Nielsen–Rohrlich formula~1.4!, we make a change

of variables such that

pk
a5lS )

b51

a21

sin2
uk

b

2 D cosuk
a , a51,...,N, ~2.31!

with the Jacobian

]~p!

]~u!
5~21!NlN)

a51

N H S sin2 uk
a

2 D N2a

sin uk
aJ , ~2.32!

to obtain

K~wF ,wI ;T!5e2 iQcN11T1 i(a51
N

@1/~2a21~N11!!#maT (
n152`

`

••• (
nN52`

`

3e2 i(a51
N

@1/~2a21~N51!!#~wF
a

2w I
a

12nap!

3 lim
M→`

E
2`

`

)
i51

M21

dwi)
j51

M H lNE
0

pS sin2 u j
1

2 D N21

3sin u j
1
du j

1

2p
•••E

0

p

sin2
u j
N21

2
sin u j

N21
du j

N21

2p E
0

p

sin u j
N
du j

N

2p J
3expF i(

k51

M

(
a51

N

2lS )
b51

a21

sin2
uk

b

2 D cos2 uk
a

2
Fk

aGU
w
0
a5w

I
a

wM
a

5wF
a

12nap

. ~2.33!
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The trace formula is defined by

Z[E
0

2p

dw^wue2 iĤ Tuw&5E
0

2p

dwK~w,w;T!, ~2.34!

whose explicit form is

Z5e2 iQcN11T1 i @1/~N11!#(a51
N 22a11maT (

n152`

`

••• (
nN52`

`

e2 i @1/~N11!#(a51
N 22a12nap

3 lim
M→`

)
a51

N H E
2nap

2~na11!p
dwM

a J E
2`

`

)
i51

M21

dwi)
j51

M H lNE
0

pS sin2 u j
1

2 D N21

3sin u j
1
du j

1

2p
•••E

0

p

sin2
u j
N21

2
sin u j

N21
du j

N21

2p E
0

p

sin u j
N
du j

N

2p J
3expF2il (

k51

M

(
a51

N S )
b51

a21

sin2
uk

b

2 D cos2 uk
a

2
Fk

aGU
w
0
a5w

M
a 22nap

. ~2.35!

This is the counterpart of theu-expression of the Nielsen–Rohrlich formula. Actually, in theN51
case, by puttingQ52J andc152c25h/2, ~2.35! becomes

Z5 (
n52`

`

ei2npJ lim
M→`

E
2np

2~n11!p dwM

2p E
2`

`

)
i51

M21
dw i

2p )
j51

M

3H lE
0

p

sin u jdu j J expF il(
k51

M

cosuk~Dwk2hDt !G , ~2.36!

which is just the Nielsen–Rohrlich formula~1.4!.

III. EXACT CALCULATION

To claim the WKB exactness, we need the exact calculation to be compared with the result of
the WKB approximation. We have already obtained the exact result in another expression~the
generalized coherent state!.11 However, we make an exact calculation in this expression to be
self-contained.

By changing variables such that

pk
a5S )

b51

a21

sin2
uk

b

2 D cos2 uk
a

2
, ~3.1!

with the Jacobian

]~p!

]~u!
5~21!N22N)

a51

N H S sin2 uk
a

2 D N2a

sin uk
aJ , ~3.2!

the trace formula~2.35! becomes
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Z5e2 iQcN11T1 i @1/~N11!#(a51
N 22a11maT (

n152`

`

••• (
nN52`

`

e2 i @1/~N11!#(a51
N 22a11maT

3 lim
M→`

)
i51

M H ~2l!NE
0

1

dpi
1•••E

0

12(a51
N21pi

a

dpi
NJ

3 )
a51

N H E
2nap

2~na11!p dwM
a

2p E
2`

`

)
j51

M21 dw j
a

2p J )
a51

N

e2il(k51
M pk

aFk
a
. ~3.3!

Rewriting the exponent to

(
k51

M

pk
aFk

a5 (
k51

M21

~pk
a2pk21

a !wk
a1~pM

a 2p1
a!wM

a 1p1
a2nap2Dtma(

k51

M

pk
a , ~3.4!

and performing thewi-integrals (i51,...,N21) as thed-functions, we obtain

Z5e2 iQcN11T1 i @1/~N11!#(a51
N 22a11maT (

n152`

`

••• (
nN52`

`

e2 i @1/~N11!#(a51
N 22a112nap

3 lim
M→`

)
i51

M H ~2l!NE
0

1

dpi
1•••E

0

12(a51
N21pi

a

dpi
NJ

3 )
a51

N F E
2nap

2~na11!p dwM
a

2p
e2il$~pM

a
2p1

a
!wM

a
1p1

a2nap2Dtma(k51
M pk

a% )
j51

M21 H 1

2l
d~pj

a2pj11
a !J G

3e2 iQcN11T1 i @1/~N11!#(a51
N 22a11maT (

n152`

`

••• (
nN52`

`

e2 i @1/~N11!#(a51
N 22a112nap~2l!N

3E
0

1

dpM
1 •••E

0

12(a51
N21pM

a

dpM
N e2il(a51

N
~2nap2maT!pM

a
. ~3.5!

By applying the integral relation~1.7! with I50, L51, u52l, andFa52nap2maT, ~3.5! be-
comes

Z5e2 iQcN11T1 i @1/~N11!#(a51
N 22a11maT (

n152`

`

••• (
nN52`

`

e2 i @1/~N11!#(a51
N 22a112nap

3F (
a51

N
ei2l~2nap2maT!

i ~2nap2maT!Pb51
bÞa

N
i $2~na2nb!p2~ma2mb!T%

1
~21!N

Pa51
N i ~2nap2maT!G .

~3.6!

First we calculate each term of thea-sum. We set
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Za5e2 iQcN11T1 i @1/~N11!#(b51
N 22b11mbT (

n152`

`

••• (
nN52`

`

e2 i @1/~N11!#(b51
N 22b112nbp

3
e2il~2nap2maT!

i ~2nap2maT! )
b51
bÞa

N
1

i $2~na2nb!p2~ma2mb!T%

5e2 iQcaTe2 i @1/~N11!#22N11maT (
na52`

`
ei @1/~N11!#22N112nap

i ~2nap2maT!

3 )
b51
bÞa

N Fei @1/~N11!#22b11m̃bT (
ñb52`

`
ei @1/~N11!#22b112 ñ bp

i ~2ñ bp1m̃bT! G , ~3.7!

whereñ b5na2nb and m̃b[cb2ca5mb2ma ~bÞa!. We apply the formula

(
n52`

`
e2np i«

2np1w
5
ei ~1/22«!w

2 sinw/2
, 0,«,1, ~3.8!

with

«5
1

N11
22N11, w52maT for a,

~3.9!

«5
1

N11
22b11, w5m̃bT for bÞa,

to find

Za5e2 iQcaT
1

12eimaT )
b51
bÞa

N
1

12e2 i m̃bT
5

e2 iQcaT

Pb51
bÞa

N11
~12e2 i m̃bT!

, ~3.10!

wherem̃N11[cN112ca52ma . Next the calculation of the last term in~3.6! is

ZN11[e2 iQcN11T1 i @1/~N11!#(a51
N 22a11maT

3 (
n152`

`

••• (
nN52`

`

e2 i @1/~N11!#(a51
N 22a112nap

~21!N

Pa51
N i ~2nap2maT!

5e2 iQcN11T)
a51

N Fei @1/~N11!#22a11maT (
ña52`

`
ei @1/~N11!#22a112 ñap

i ~2ñ ap1maT! G5
e2 iQcN11T

Pa51
N ~12e2 imaT!

,

~3.11!

where we have putñ a52na in the second equality and applied~3.8! in the last equality. Thus

Z5 (
a51

N11

Za5 (
a51

N11
e2 iQcaT

Pb51
bÞa

N11
$12e2 i ~cb2ca!T%

. ~3.12!
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This is the exact result of the trace formula and just the same as that of the generalized coherent
state. We here note that~3.12! can be written in the determinant form:

For detailed calculation, see Appendix B.

IV. RELATIONSHIP TO THE GENERALIZED COHERENT STATE

In this section we establish a relationship with~2.35! to the trace formula in terms of the
generalized coherent state by an explicit calculation.

By definition, the trace formula in terms of the multi-periodic coherent state is

Z5 lim
M→`

E
0

2p

)
i51

M

dwi)
k51

M

^wku~12 iDtĤ !uwk21&U
wM5w0

. ~4.1!

Inserting the completeness

1Q5 (
imi5Q

um1,...,mN11&^m1,...,mN11u, ~4.2!

and noting

^wum1,...,mN11&5
1

~2p!N/2
ei(a51

N mawa
,

~4.3!

Ĥum1,...,mN11&5S (
a51

N

mam
a1cN11QD um1,...,mN11&,

and putting

u i
a52w i

a12p, ~4.4!

we rewrite~4.1! as

Z5 lim
M→`

)
i51

M F (
imi i5Q

E
0

2p dui
~2p!N

e2 i(a51
N mi

aDu i
aH 12 iDtS (

a51

N

mami
a1cN11QD J GU

wM5w0

,

~4.5!
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where

E
0

2p

dui[E
0

2p

)
a51

N

du i
a ,

~4.6!

Du i
a[u i

a2u i21
a .

If we write ~4.5! as

Z5 lim
M→`

)
i51

M F (
imi i5Q

E
0

2p dui
~2p!N

e2 i(a51
N

~mi
a

2mi11
a

!u i
aH 12 iDtS (

a51

N

mami
a

1cN11QD J GU
wM5w0

, ~4.7!

we findmi
a5mi11

a from theu-integrals~d-functions!. By inserting the identity11

~N1Q!!

l! E
0

`

)
a51

N

dua
~u1! l

1
•••~uN! l

N

~11u11•••uN!N1Q11 51,

~4.8!

l ![ l 1!...l N11!,

into ~4.5!, the trace formula becomes

Z5 lim
M→`

)
i51

M F (
imi i5Q

~N1Q!!

Q! E
0

2p dui
~2p!N

E
0

` Pa51
N dui

a

~11ui
11•••1ui

N!N11

3
„~ui

1!1/2e2 iu i
1
…

mi
1
•••„~ui

N!1/2e2 iu i
N
…

mi
N

~11ui
11•••1ui

N!Q/2

3
„~ui21

1 !1/2eiu i21
1
…

mi
1
•••„~ui21

N !1/2eiu i21
N
…

mi
N

~11ui21
1 1•••1ui21

N !Q/2
Q!

m! H 12 iDtS (
a51

N

mami
a1cN11QD J GU

uM5u0

,

~4.9!

wheremi
a5mi11

a andu0
a5uM

a have been used. Then putting

~ui
a ,u i

a!→j i
a ; j i

a5Auiaeiu i
a
, ~4.10!

we obtain
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Z5 lim
M→`

)
i51

M F (
imi i5Q

E dm~ji ,ji
†!

3AQ!

m!

~j i
1* !mi

1
•••~j i

N* !mi
N

~11ji
†ji !

Q/2 AQ!

m!

~j i21
1 !mi

1
•••~j i21

N !mi
N

~11ji21
† j i21!

Q/2

3H 12 iDtS (
a51

N

mami
a1cN11QD J GU

jM5j0

5 lim
M→`

)
i51

M F (
imi i5Q

E dm~ji ,ji
†!^ji u~12 iDtĤ !um1,...,mN11&^m1,...,mN11uji21&GU

jM5j0

5 lim
M→`

)
i51

M

dm~ji ,ji
†!)

j51

M

^jj u~12 iDtĤ !ujj21&U
jM5j0

, ~4.11!

which is nothing but the trace formula in terms of the generalized coherent state.11

V. THE WKB APPROXIMATION

In the Nielsen–Rohrlich formula, the WKB approximation is applicable to theu-expression
instead of thep-expression. In this section we perform the WKB approximation to the
u-expression of the trace formula in terms of the multi-periodic coherent state. The WKB approxi-
mation in this case is the largeQ~l! expansion.

Writing ~2.35! as

Z5 (
n152`

`

••• (
nN52`

`

lim
M→`

)
a51

N H E
2nap

2~na11!p
dwM

a J E
2`

`

)
i51

M21

dwi )
j51

M

3H lNE
0

pS sin2 u j
1

2 D N21

sin u j
1
du j

1

2p
•••E

0

pS sin2 u j
N21

2 D
3sin u j

N21
du j

N21

2p E
0

p

sin u j
N
du j

N

2p J eiS~na!
~5.1!

with the action

S~na![2QcN11T1
1

N11 (
a51

N

22a11maT2
1

N11 (
a51

N

22a12nap

12l(
k51

M

(
a51

N S )
b51

a21

sin2
uk

b

2 D cos2 uk
a

2
Fk

a , ~5.2!

we find the equations of motion;

S )
b51

a21

sin2
uk

b

2 D cos2 uk
a

2
2S )

b51

a21

sin2
uk11

b

2 D cos2 uk11
a

2
50, ~5.3a!
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S )
b51

a21

sin2
uk

b

2 D sin uk
aF2Fk

a1 (
g5a11

N S )
d5a11

g21

sin2
uk

d

2 D cos2 uk
g

2
Fk

gG50. ~5.3b!

Now we solve the first equation~s!, ~5.3a!. In thea51 case the equation is

cos2
uk
1

2
5cos2

uk11
1

2
, ~5.4!

and its solution is

uk
15uk11

1 5u15const. ~5.5!

In thea52 case the equation is

sin2
u1

2 S cos2 uk
2

2
2cos2

uk11
2

2 D 50, ~5.6!

and its solutions are

~i! u150 @in this case the remaining equations of~5.3a! hold with arbitraryua for a>2#,
~ii ! u15C1Þ0, uk

25uk11
2 5u25const.

By a similar consideration, we obtain the solutions

~u1,u2,...,uN!5~0,* ,* ,...,* ,* !,

5~C1,0,* ,...,* ,* !,

5~C1 ,C2,0,...,* ,* !,

A

5~C1 ,C2 ,C3 ,...,CN21,0!, ~5.7!

whereCa5constÞ0 ~1<a<N21!, and* denotes an arbitrary number. Next we solve~5.3b!. The
solution (C1 ,C2 ,...,CI21,0,* ,...,* ) of ~5.7! satisfies the equations fora>I becauseu k

I 50. In the
a5I21 case the equation is

sin CI21~2Fk
I211Fk

I !50. ~5.8!

Because2Fk
I211Fk

I 52(Dwk
I212m I21Dt)1(Dwk

I 2m IDt)50 is not compatible with the
boundary condition for any givenT, the solution is

CI215p. ~5.9!

Therefore we obtain

C15C25•••5CI215p. ~5.10!

Considering about allIs, finally we obtain the solutions of~5.3!:
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~uk
1,uk

2,...,uk
N!5~0,* ,* ,...,* ,* !,

5~p,0,* ,...,* ,* !,

5~p,p,0,...,* ,* !,

A

5~p,p,p,...,p,0!,

5~p,p,p,...,p,p!, ~5.11!

with ws being arbitrary for alla andk.
First we consider the WKB approximation around (uk

1 ,...,uk
N)5~p,p,...,p!. Putting

uk
a5p2

xk
a

Al
, a51,...,N, ~5.12!

we write the trace formula as

Z5e2 iQcN11T1 i @1/~N11!#(a51
N 22a11maT (

n152`

`

••• (
nN52`

`

e2 i @1/~N11!#(a51
N 22a12nap

3 lim
M→`

)
a51

N H E
2nap

2~na11!p
dwM

a J E
2`

`

)
i51

M21

dwi)
j51

M H lNE
0

`S cos2 xj
1

2Al
D N21

3sin
xj
1

Al

dxj
1

2pAl
•••E

0

`

cos2
xj
N21

2Al
sin

xj
N21

Al

dxj
N21

2pAl
E
0

`

sin
xj
N

Al

dxj
N

2pAl
J

3expF2il (
k51

M

(
a51

N S )
b51

a21

cos2
xk

b

2Al
D S sin2 xk

a

2Al
D Fk

aG . ~5.13!

The leading order term~O„~1/l!0…! becomes

ZN11[e2 iQcN11T1 i @1/~N11!#(a51
N 22a11maT (

n152`

`

••• (
nN52`

`

e2 i @1/~N11!#(a51
N 22a12nap

3 lim
M→`

)
a51

N F E
2nap

2~na11!p dwM
a

2p E
2`

`

)
i51

M21 dw i
a

2p E
0

`

)
j51

M

xj
adxj

a

3expH i

2 (
k51

M

~xk
a!2~Fk

a1 idM !J G , ~5.14!

wheredM has been introduced, which is given for eachM and finally put as zero, to ensure the
convergence of thex-integrals. By the form of~5.14!, eachxj

a-integral can be performed inde-
pendently to give
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ZN115e2 iQcN11T1 i @1/~N11!#(a51
N 22a11maT (

n152`

`

••• (
nN52`

`

e2 i @1/~N11!#(a51
N 22a12nap

3 lim
M→`

)
a51

N F E
2nap

2~na11!p dwM
a

2p E
2`

`

)
i51

M21 dw i
a

2p )
j51

M
1

i ~maDt2Dw j
a2 idM !G . ~5.15!

Noting that

E
2`

` dw i
a

2p i

1

maDt2w j11
a 1w j

a2 idM

1

maDt2w j
a1w j21

a 2 idM
5

1

ma2Dt2w j11
a 1w j21

a 22idM
,

~5.16!

we perform thew-integrals to obtain

ZN115e2 iQcN11T1 i @1/~N11!#(a51
N 22a11maT)

a51

N F i (
na52`

`
ei @1/~N11!#22a12nap

2nap2maT G
5e2 iQcN11T)

a51

N Fei @1/~N11!#22a11maT (
ña52`

`
ei2 ñ

ap@1/~N11!#22a11

i ~2ñap1maT! G , ~5.17!

where we have putdM50 andñ a52na in the second equality. Application of the formula~3.8!,
noting

0,
1

N11
22a11,1, ~5.18!

gives the final form

ZN115e2 iQcN11T)
a51

N F ei @1/~N11!#22a11maT
ei ~1/2222a11/~N11!!maT

2i sin
maT

2
G

5
e2 iQcN11T

Pa51
N ~12e2 imaT!

5
e2 iQcN11T

Pa51
N $12e2 i ~ca2cN11!T%

. ~5.19!

Next we perform the WKB approximation around

~uk
1,...,uk

N!5~p
1

,p
2

,..., p
I21

,0
I

, *
I11

,...,*
N

!, ~5.20!

for I51,...,N @(uk
1 ,...,uk

N)5~p,p,...,p,0! is a special case of~5.20!#. We put

uk
a5p2

xk
a

Al
, a51,...,I21, uk

I 5
xk
I

Al
, ~5.21!

and leaveuk
a(a5I11,...,N) unchanged because they are arbitrary numbers which have no ex-

pansion points. The leading order term of the trace formula then becomes
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ZI5e2 iQcN11T1 i @1/~N11!#(a51
N 22a11maT (

n152`

`

••• (
nN52`

`

e2 i @1/~N11!#(a51
N 22a112nap

3 lim
M→`

)
a51

N H E
2nap

2~na11!p
dwM

a J E
2`

`

)
i51

M21

dwi

3)
j51

M H E
0

`

xj
1
dxj

1

2p
•••E

0

`

xj
I21

dxj
I21

2p E
0

`

222~N2I !

3~xj
I !2~N2I !11

dxj
I

2p E
0

pS sin2 u j
I11

2 D N2I21

sin u j
I11

du j
I11

2p
•••E

0

p

sin u j
N
du j

N

2p J
3e2il~2nIp2m IT! expF i2 (

k51

M

(
a51

I21

~xk
a!2~Fk

a2Fk
I !2

i

2 (
k51

M

~xk
I !2Fk

I

1
i

2 (
k51

M

~xk
I !2 (

a5I11

N S )
b5I11

a21

sin2
uk

b

2 D cos2 uk
a

2
Fk

aG
5e2 iQcITẐIe

2 i @1/~N11!#22I11m IT1 i @1/~N11!#(a5I11
N 22a11maT

3 (
nI52`

`

••• (
nN52`

`

ei @1/~N11!#22I112nIp2@1/~N11!#(a5I11
N 22a112nap

3 lim
M→`

)
a5I

N H E
2nap

2~na11!p dwM
a

2p E )
i51

M21 dw i
a

2p J
3)

j51

M H 22~N2I !E
0

`

~xj
I !2~N2I !11dxj

Ie2~ i /2!~xj
I
!2F j

IE
0

pS sin2 u j
I11

2 D N2I21

3sin u j
I11du j

I11•••E
0

p

sin u j
Ndu j

N expF i2 ~xj
I !2 (

a5I11

N S )
b5I11

a21

sin2
u j

b

2 D cos2 u j
a

2
F j

aG J ,
~5.22!

where

ẐI[ei @1/~N11!#(a51
I21 22a11m̃aT (

n152`

`

••• (
nI2152`

`

ei @1/~N11!#(a51
I21 22a112~nI2na!p

3 lim
M→`

)
a51

I21 H E
2nap

2~na11!p dwM
a

2p E
2`

`

)
i51

M21
dwa

2p E
0

`

)
j51

M

xj
adxj

a

3expF i2 (
k51

M

~xk
a!2~Fk

a2Fk
I !G J , ~5.23!

with m̃a[ma2m I . We can calculateẐI by the way similar to the (uk
1 ,...,uk

N)5~p,...,p! case by
substitutingN→I21 andFk

a→Fk
a2Fk

I to obtain
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ẐI5ei @1/~N11!#(a51
N2122a11m̃aT (

n152`

`

••• (
nI2152`

`

ei @1/~N11!#(a51
I21 22a112~nI2na!p

3 )
a51

I21 F 1

2 i $2~na2nI !p2~ma2m I !T%G
5 )

a51

I21 Fei @1/~N11!#22a11m̃aT (
ña52`

`
ei @1/~N11!#22a112 ñap

i ~2ña1m̃aT! G5 )
a51

I21
1

12e2 i m̃aT
, ~5.24!

whereña5nI2na. For the remaining part of~5.22!, changing variables such that

pk
a5S )

b5I11

a21

sin2
uk

b

2 D cos2 uk
a

2
, a5I11,...,N, ~5.25!

with the Jacobian

]~p!

]~u!
5~21!N2I22N1I )

a5I11

N H S sin2 uk
a

2 D N2a

sin uk
aJ , ~5.26!

gives the form of the leading order term

ZI5e2 iQcITẐIe
2 i @1/~N11!#22I11m IT1 i @1/~N11!#(a5I11

N 22a11maT

3 (
nI52`

`

••• (
nN52`

`

ei @1/~N11!#22I112nIp2 i @1/~N11!#(a5I11
N 22a112nap

3 lim
M→`

)
a51

N H E
2nap

2~na11!p dwM
a

2p E
2`

`

)
i51

M21 dw i
a

2p J
3)

j51

M H E
0

`

~xj
I !2~N2I !11dxj

Ie2~ i /2!~xj
I
!2F j

IE
0

1

dpj
I11E

0

12pj
I11

dpj
I12•••

3E
0

12(a5I11
N21 pj

a

dpj
N expF i2 ~xj

I !2 (
a5I11

N

pj
aF j

aG J . ~5.27!

By putting uj5
1
2(xj

I )2 and applying the integral relation~1.7! with L5I11, u5uj , Fa5Fj
a,

u-integrals becomes
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where the regularization parameterd has been introduced for theuj -integrals to converge in the
third equality and the relation~1.6! has been applied in the last equality. Thus~5.27! becomes
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where thew-integrals have been performed by noting~5.16!. Putting

ñ a5nI2na, m̃a[ca2cI5ma2m I , a5I11,...,N,
~5.30!

m̃N11[cN112cI52m I ,

we obtain
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where we have applied the formula~3.8! in the second equality and put the explicit form ofẐI ,
~5.24!, in the last equality. Thus the total contribution of the WKB approximation becomes
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which is the same with the exact calculation~3.12!. Therefore we can conclude thatthe WKB
exactness holds in the multi-periodic coherent state.

VI. DISCUSSION

In this paper we have constructed the trace formula in terms of the multi-periodic coherent
state as an extension of the Nielsen–Rohrlich formula for spin. We have made an exact calculation
of the trace formula and performed the WKB approximation to show the WKB exactness. We
have also clarified a connection between the trace formula and that of the generalized coherent
state.

The result obtained in this paper is perfectly parallel with the generalized coherent state.11

Similar argument in terms of another coherent state may be possible. However, the WKB exact-
ness will not hold in arbitrary coherent states. Now we have the problem thatwhat kind of
coherent states make the system WKB exact.

The extension to the Grassmann manifold fromCPN have been made.17 The corresponding
extension from the multi-periodic coherent state will be also possible.

The extension to supersymmetricCP1(CPN) model is also attractive. There is an expectation
that by the fermion contribution the result of the continuum path integral coincides with the
discrete one.

The extension to field theories is more important. There are some attempts in this field.18–20

However, they still seem to be insufficient in the mathematical point of view.
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APPENDIX A: SOME USEFUL RELATIONS

1. The Vandermonde’s determinant

We define
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HereDk is known as the Vandermonde’s determinant andDk~a! is its cofactor apart from sign
factor ~21!a2k. We then find the relations~Laplace expansion!
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Substituting~A4! into the first relation in~A2!, we then find

6008 K. Fujii and K. Funahashi: Multi-periodic coherent states, the WKB exactness

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



(
a5k

n
Pk

aaP b5k
bÞa

n
~aa2ab!

5~21!n2k, ~A5!

and, picking out thea5k term,

1

akPb5k11
n ~ak2ab!

52 (
a5k11

n
1

aaP b5k
bÞa

n
~aa2ab!

1
~21!n2k

Pk
. ~A6!

2. Some integral

We claim
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for L5N,N21,...,I11. ~A7!

We prove this relation by mathematical induction. In theL5N case we can examine~A7! by an
explicit calculation. Now we assume that~A7! holds inL. We then calculate in theL21 case:
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Equation ~A8! indicates that~A7! in the L21 case holds if it holds in theL case. Thus we
conclude that~A7! holds forL5N,N21,...,I11.

APPENDIX B: THE DETERMINANT FORM OF THE EXACT RESULT

Utilizing the relation in Appendix A, we rewrite the exact result of the trace formula in the
determinant form.

By assigning

k51, n5N11, aa5e2 icaT, ~B1!

~A3! becomes
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By means of~B2!, we rewrite~3.12! to
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This is the determinant form~3.13!.
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A third order Monge-Ampe`re type equation of associativity that Dubrovin has
obtained in 2-d topological field theory is formulated in terms of a variational
principle subject to second class constraints. Using Dirac’s theory of constraints
this degenerate Lagrangian system is cast into Hamiltonian form and the Hamil-
tonian operator is obtained from the Dirac bracket. There is a new type of Kac-
Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not
a W-algebra. ©1996 American Institute of Physics.@S0022-2488~96!01811-7#

I. INTRODUCTION

Witten has introduced model-independent recursion relations which can be regarded as the
qualitative definition of the topological phase of two dimensional gravity.1 The validity of these
relations is based on purely geometrical considerations such as intersection theory and makes no
reference to the details of the physical model. The equations of associativity for the Frobenius
algebra satisfied by then-point function are third order Monge-Ampe`re equations. In this paper we
shall consider the Hamiltonian structure of

uttt5uxttuxxx2utxx
2 ~1!

that Dubrovin2 has obtained as an equation of associativity in 2-d topological field theory. Our
approach will closely follow the discussion of the multi-Hamiltonian structure of the Monge-
Ampère equation,3 starting with a field theory formulation of Dubrovin’s equation~1! itself.

We shall show that Eq.~1! can be derived from a variational principle with a degenerate
Lagrangian and using Dirac’s theory of constraints4 cast it into Hamiltonian form. The resulting
Dirac bracket yields the Hamiltonian operator. The Kac-Moody algebra associated with this
Hamiltonian operator is not aW-algebra.

The Hamiltonian structure of Eq.~1! has also been discussed by Mokhov and Ferapontov5

who based their considerations on a system of equations of hydrodynamic type.6 They found that
Eq. ~1! is equivalent to a non-diagonizable 3-component Hamiltonian system of hydrodynamic
type and obtained a first order Hamiltonian operator of Dubrovin-Novikov type. The Hamiltonian
operator that results from our approach is different from that of Mokhov and Ferapontov.

II. SYSTEM OF EVOLUTION EQUATIONS

Dubrovin’s equation~1! is third order in time and in order to cast it into Hamiltonian form we
need to express it as a triplet of first order nonlinear evolution equations. For this purpose we
introduce auxiliary variables

p5ux , q5ut , r5utt , ~2!

which results in

0022-2488/96/37(12)/6012/6/$10.00
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pt 5qx ,

qt 5r ,

r t 5pxxr x2qxx
2

~3!

and it is worth noting that this split of Eq.~1! into the system~3! is not unique. Now the vector
field

X5qx
]

]p
1r

]

]q
1~pxxr x2qxx

2!
]

]r
~4!

defines the flow. In the discussion of the Hamiltonian structure of this system we shall use
ui ,i51,2,3, for the variablesp,q,r , respectively.

III. DIRAC BRACKET

It can be verified directly that the Lagrangian density which yields the first order equations of
motion ~3! is given by

L5prt2
1
2qxqt2pxpxxqt2pxqxxpt2qrx2

1
2qx

2pxx ~5!

and we note that it is linear in the velocities. Thus the canonical momenta

pp 52pxqxx ,

pq 52pxpxx2
1
2qx ,

p r 5p

~6!

cannot be inverted for the velocities and we have a degenerate Lagrangian system. They satisfy the
canonical Poisson bracket relations

$pk~x!,ui~y!%5dk
i d~x2y! ~7!

with all others vanishing. The passage to a Hamiltonian formulation of this system requires the use
of Dirac’s theory of constraints4 since the Lagrangian~5! is degenerate.

Following Dirac we introduce the primary constraints from Eqs.~6!

f1 5pp1pxqxx ,

f2 5pq1pxpxx1
1
2qx ,

f3 5p r2p

~8!

and calculating the Poisson brackets of the constraints

$f1~x!,f1~y!% 5qxxdx~x2y!2qyydy~y2x!,

$f1~x!,f2~y!% 5pydxx~y2x!1pxdyy~x2y!2pxxdy~x2y!

$f1~x!,f3~y!% 5d~x2y!,

$f2~x!,f2~y!% 5 1
2 dx~x2y!2 1

2 dy~y2x!,

$f2~x!,f3~y!% 50,

$f3~x!,f3~y!% 50

~9!

we find that the constraints~8! are second class as they do not vanish modulo the constraints.
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The total Hamiltonian of Dirac is given by

HT5E S 12 qx2pxx1qrx1cif i Ddx, ~10!

where summation overi51,2,3 is implied andci are Lagrange multipliers. The condition that the
constraints are maintained in time

$f i~x!,HT%50 ~11!

gives rise to no further constraints. Instead, using Eqs.~9!, we find that the Lagrange multipliers
are determined from Eq.~11!

c15qx , c25r , c35pxxr x2qxx
2

and finally from Eq.~10! we have

HT5E H qxpp1rpq1~pxxr x2qxx
2!p r2

1

2
rqx2pqxx

21prxpxxJ dx ~12!

for the total Hamiltonian. Given any smooth function of the canonical variablesA, all the
equations of motion are satisfied in the form of Hamilton’s equations

At5$A~x!,HT% ~13!

with this total Hamiltonian.
In order to construct the Dirac bracket we need the inverseJik of the matrix of Poisson

brackets of the constraints. The definition of the inverse is simply

E $f i~x!,fk~z!%Jk j~z,y!dz5d i
jd~x2y!, ~14!

which results in a set of differential equations forJik. Starting with the Poisson bracket relations
~9! we find that Eq.~14! can be solved readily to yield

J11~x,y! 50,

J12~x,y! 50,

J13~x,y! 5d~x2y!,

J22~x,y! 52u~x2y!,

~15!

J23~x,y!5pxxd~x2y!,

J33~x,y!5~pxx
2 22qxx!dx~x2y!1~pxxpxxx2qxxx!d~x2y!

for the inverse of~9!. From this result the Dirac bracket can be constructed readily.

IV. HAMILTONIAN OPERATOR

The transition from the Dirac bracket to the Hamiltonian operator is given by

$ui~x!,uk~y!%D5Jik~x,y![Jik~x!d~x2y! ~16!

and from Eqs.~16! and~15! it follows that the Hamiltonian operator corresponding to the degen-
erate Lagrangian~5! is
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J5S 0 0 21

0 Dx
21 2pxx

1 pxx Dxqxx1qxxDx2pxxDxpxx
D , ~17!

whereDx
21 the inverse ofDx . We refer to Ref. 7 for the definition and properties ofDx

21 in
particular,

Dx
21f5

1

2 S E
2`

x

2E
x

` D f ~j!dj ~18!

and the integrals are taken in the principal value sense. We should note that the Hamiltonian
operator~17! is not a truly nonlocal operator. In the variablesp,q,r for which there is a local
expression for the Lagrangian~5! there is a nonlocal piece in the Hamiltonian operator, but this
operator will become a local operator if in place ofp,q,r we use variables that contain higher
x-derivatives ofu.

Finally, in Dirac’s theory second class constraints hold as strong equations and therefore one
can eliminate the momenta from Eqs.~6! to obtain the total Hamiltonian density

HD5 1
2qx

2pxx1rqx ~19!

of Dirac. It can be directly verified that this quantity is conserved for the flow~4! and this is the
Hamiltonian function appropriate to the operator~17!. That is, the equations of motion~3! are cast
into the form

ut
i5X~ui !5JikdkHD ~20!

of Hamilton’s equations, wheredk denotes the variational derivative with respect touk andHD is
the integral of the densityHD .

The proof of the Jacobi identities for~17! follows from the fact that it is simply the Hamil-
tonian operator corresponding to the Dirac bracket according to Eq.~16! and there is a general
proof of the Jacobi identities for Dirac brackets.4

There are two additional conserved densities for Eqs.~3!,

C 5r2qxpxx ,

P 5 1
2qx

21rpx1
1
2 px

2qxx ,
~21!

which consist of the Casimir and momentum, respectively. InsertingP in place ofHD in Eq. ~20!
we end up with the trivial flow.

V. SYMPLECTIC STRUCTURE

The symplectic structure of the equations of motion~3! is obtained by integrating the
2-form density8

v5 1
2du

i`Ki j du
j ~22!

over the spatial variable, whereK is the ‘‘inverse’’ of J. This is just the Poisson bracket of the
constraints~9!, or we may invert~17! to obtain

K5S qxxDx1Dxqxx 2pxxDx 1

2Dxpxx Dx 0

21 0 0
D ~23!
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and we find the symplectic 2-form

v5dp`dr1qxxdp`dpx2pxxdp`dqx1
1

2
dq`dqx , ~24!

which can be directly verified to be a closed 2-form. By invoking the Poincare´ lemma, in a local
neighborhood we can write

v5da, a5~qxpxx2r !dp2 1
2qxdq, ~25!

where the coefficient ofdp is essentially the Casimir of~17!. The closure of the symplectic 2-form
~24! is equivalent to the satisfaction of the Jacobi identities by the Hamiltonian operator~17!.

VI. KAC-MOODY ALGEBRA

Hamiltonian operators associated with integrable nonlinear evolution equations give rise to
Kac-Moody~KM ! algebras.9 There is an explicit algorithm for the construction of the KM algebra
from the Hamiltonian operator which is essentially based on Fourier analysis. Thus using

p~x!5
1

2pE2`

` i

n2
P ne

inxdn, q~x!5
1

2pE2`

` 1

n2
Qne

inxdn,

r ~x!5
1

2pE2`

`

Rne
inxdn,

we find

@Pm ,P n#50,

@Pm ,Qn#50,

@Pm ,Rn#5m2dn,2m ,

@Qm ,Qn#5m3dn,2m ,

@Qm ,Rn#52m2Pm1n ,

@Rm ,Rn#5~m2n!Qm1n1Sk52`
` kPm2kP k1n ,

~26!

which is not a W-algebra, but rather of a new type. We note that no normal ordering is needed in
the last one of Eqs.~26! because all theP n commute.

VII. CONCLUSION

We have presented a Hamiltonian formulation of Dubrovin’s equation of associativity in 2-d
topological field theory. A different Hamiltonian structure for this equation was obtained by
Mokhov and Ferapontov earlier. In a subsequent paper11 we shall show that these two Hamiltonian
structures can be combined to yield the bi-Hamiltonian structure of Dubrovin’s equation, which by
the theorem of Magri10 will provide a proof of its complete integrability.
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The causality structure of two-dimensional manifolds with degenerate metrics is
analyzed in terms of global solutions of the massless wave equation. Certain novel
features emerge. Despite the absence of a traditional Lorentzian Cauchy surface on
manifolds with a Euclidean domain, it is possible to uniquely determine a global
solution~if it exists!, satisfying well-defined matching conditions at the degeneracy
curve, from Cauchy data on certain spacelike curves in the Lorentzian region. In
general, however, no global solution satisfying such matching conditions will be
consistent with this data. Attention is drawn to a number of obstructions that arise
prohibiting the construction of a bounded operator connecting asymptotic single
particle states. The implications of these results for the existence of a unitary
quantum field theory are discussed. ©1996 American Institute of Physics.
@S0022-2488~96!01311-4#

I. INTRODUCTION

If S is a spacelike~acausal! domain in a space–timeM , then one defines its domain of
dependenceD(S) as the set of pointsp such that all nonterminating timelike curves fromp
intersectS.1 Furthermore, one says that an acausal hypersurfaceS is a Cauchy hypersurface if
D(S)5M . The existence of a Cauchy hypersurface is equivalent toM being globally hyperbolic.

Kundt first2 discussed the nonexistence of certain topologically nontrivial space–times assum-
ing that every geodesic is complete. Geroch1 exploited the notion of global hyperbolicity to reach
a similar conclusion. There has been recent interest in the behavior of both classical and quantum
fields on background manifolds that admit metrics with both Euclidean3 and variable
signatures1,2,4–16as well as in space–times that are not globally hyperbolic.17

For information that propagates according to the wave equation for a scalar field, a specifi-
cation of the field and its normal derivative on any spacelike surfaceS is sufficient to determine
a unique solution to the equation on the domain of dependence ofS. A manifold with a degenerate
metric is not globally hyperbolic and it is therefore of interest to investigate the influence of this
degeneracy on the propagation of massless scalar fields satisfying

d!dc50, ~1!

where! is the Hodge map associated with an ambient metric tensor fieldg.

a!Electronic mail address: gratus@ccr.jussieu.fr
b!Electronic mail address: r.tucker@lancaster.ac.uk
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In this article we address this question in the context of a metric that partitions a two-
dimensional manifold into three disjoint sets: a Lorentzian regionL, a Euclidean regionE, and a
one-dimensional subsetS where the metric is degenerate.

In a region whereg has Euclidean signature~1! is the ~elliptic! Laplace equation. The tradi-
tional data for this equation is the specification ofc on the boundary of any Euclidean domain
since this will fix a solution uniquely in such a region. However, we show below that a specifi-
cation ofc and its normal derivative on any arc of the boundary is also sufficient to uniquely
determine the interior solution should it exist. This result proves of relevance when we discuss the
propagation of hyperbolic data from a Lorentzian to a Euclidean domain.

In a region whereg has Lorentzian signature~1! is the~hyperbolic! masslesswave equation,
and it is possible to contemplate data on disjoint spacelike curves~Fig. 1!.

Since information travels along null geodesics we redefine the domain of dependence. Thus if
C is a spacelike~acausal! domain in a Lorentzian regionL,M , then itsdomain of null depen-
dence D0(C) is the set of pointsp such that all nonterminating null curves fromp intersectC. For
C,L andS8,S we defineD0(CøS8) to be all the pointspPL where both null geodesics that
intersect atp either intersectC or terminate onS8, where they are not tangent.

From Fig. 1 we see that ifC is not connected, thenD0(C) may contain regions disjoint from
C.

Consider now a spacelike arcC,L on which standard Cauchy data for~1! is prescribed~Fig.
2!. Furthermore, suppose that the domain of null dependence ofC intersectsS nontrivially, i.e.,
the intersection is one-dimensional. Then we show below that if a global solution exists and agrees
with the data onC, then it is unique inE. Such a solution provides Cauchy data onS which
together with that onC enables one to construct the solution on the domain of null dependence
D0(CøS). In general no such global solution exists, as will be illustrated in example 1 below.

If the intersectionD0(C)ùS is trivial, then the theorem below is not applicable. In this case
more than one global solution may exist compatible with the Cauchy data onC. Example 2 will
illustrate this situation.

In Sec. V we review the standard prescription that is adopted to construct a quantum field
theory on a fixed globally hyperbolic manifold. With the aid of explicit examples, we draw
attention to the obstructions that arise when one attempts to implement this prescription on a
two-dimensional manifold with a degenerate metric. We offer reasons why we believe that a

FIG. 1. Domain of null dependence ofC, D0(C),LøS.
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bounded unitary scattering matrix in the presence of nondynamical signature change may not
exist.

II. CONSTRUCTION OF COORDINATE SYSTEMS

Given a two-dimensional manifold (L,gL) with a ~nondegenerate! Lorentzian metricgL, a
null coordinate system~h1 ,h2! is one in which the metric may be written

gL5VL~h1 ,h2!~dh1 ^dh21dh2 ^dh1!, ~2!

whereVL is a real function. Similarly for a two-dimensional manifold (E,gE) with a ~nondegen-
erate! Euclidean metricgE, a complex isothermal coordinate system(z,z̄) is one in which the
metric may be written

gE5VE~z,z̄!~dz^dz̄1dz^dz̄!, ~3!

whereVE is a real positive function. It is known that one can construct a null coordinate system
about any point inpPL and that one can construct a complex isothermal coordinate system about
any pointpPE.

In this section we give conditions for the construction of null and complex isothermal coor-
dinate systems for a two-dimensional manifoldM5LøSøE with a signature changing metricg.

We assume thatS is ~locally! parametrized by aCv monotonic functionS:I°S, with
sPI,R. ~The symbolS will be used for both the map and its image.! Given pPS, we sayS is
null at p if

FIG. 2. D0(CøS)øE.
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gS S!

]

]s
, S!

]

]s D U
p

50. ~4!

If S is null at p, then null geodesics inLøS are tangent toS at p.
For pPS such thatS is not null atp, Lemma 1 below shows that there exists a coordinate

system aboutp in L which can be extended toS, and Lemma 2 below shows that there exists a
complex isothermal coordinate system aboutp that extends toS.

Lemma 2 is a modification of the standard proof for the existence of isothermal coordinates
~Ref. 18, Vol. IV, pp. 455–460!. However, to simplify matters we restrict our attention to the case
whereg is analytic and can be written inabsolute timeform9 about a pointpPS; that is there exist
coordinates (t,x) aboutp such that the metric can be written

g5tdt^dt1h~ t,x!2dx^dx, ~5!

whereh is a real positiveCv function. In this coordinate system the curveS is given by t50.
ThengE is given by the restriction

gE5gu t.0 . ~6!

From Ref. 9~theorem 1! we know that sufficient conditions for writingg in absolute time form
aboutpPS are

~i! S is not null atp,
~ii ! with respect to any coordinate system, det(gab) has a nonzero differential atp, and
~iii ! $gab% is C

v in a neighborhood ofp.

With respect to both the null and complex isothermal coordinate system we then derive the
general solution of~1!, specifying both its value andnormal derivativeonS. This data is used to
match the solutions acrossS.

Lemma 1: Extension of Null Coordinate System: Given pPS such thatS is not null at p, there
exists a neighborhood of p, UL,LøS and a C0 function

FL:UL°$~h1 ,h2!PR2uh2<h1% ~7!

such that the restriction

FLuL :ULùL°$~h1 ,h2!PR2uh2,h1% ~8!

is a C` diffeomorphism and a null coordinate system. Also

FLuS :ULùS°$~h1 ,h2!PR2uh25h1%, ~9!

where

h1+S~s!5h2+S~s!5s. ~10!

Proof: Every pointxPL nearp lies on the intersection of two null geodesics. We can choose
UL such that for allxPULùL, both the null geodesics that intersectx also intersectS nearp
where they are not tangent. Thus for eachx this gives two points,q1 ,q2PS ~See Fig. 3!. Let
h1(x) be the larger of$S21(q1),S

21(q2)% and h2(x) the smaller. This construction gives a
well-definedC` mapFL, which is a diffeomorphism in the set described. Furthermore, since
h65constant are null geodesics,]/]h6 are null, so the metric is given by~2!. j

With respect to a null coordinate system the Lorentzian Hodge maps are given by
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!15VLdh1`dh2 , ~11!

!dh152dh1 , ~12!

!dh25dh2 , ~13!

so the wave equation~1! for cL:UL→C is

]2cL

]h1]h2
dh1`dh250, ~14!

and its solution in this region is

cL5c1
L ~h1!1c2

L ~h2!, ~15!

wherec6
L :UL→C. We define the value of thecL onS and the normal derivativeN c S

L of cL on
S by

cS
L :S°C, cS

L ~x!5 lim
y→x,yPL

cL~y!, ~16!

N cS
L :S°C, N cS

L ~x!5 i ]/]sS S!S lim
y→x,yPL

!dcLuyD D . ~17!

With respect to the coordinate systems~h1 ,h2! given in Lemma 1, these are given by

cS
L ~x!5c1

L
„h1~x!…1c2

L
„h2~x!…, ~18!

N cS
L ~x!5 i ]/]sS S! lim

y→x,yPL
!d~c1

L ~h1!1c2
L ~h2!!uyD

5 i ]/]sS S! lim
y→x,yPL

~c1
L8!dh11c2

L8!dh2!uyD
5 i ]/]sS S! lim

y→x,yPL
~2c1

L8dh11c2
L8dh2!uyD

5 i ]/]s„S
!~2c1

L8dh11c2
L8dh2!ux…

52c1
L8

]h1+S

]s
1c2

L8
]h2+S

]s

52c1
L8„h1~x!…1c2

L8„h2~x!…, ~19!

FIG. 3. Intersection of the null geodesics fromx with S at q1 andq2.
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since]h6+S/]s51. Thus the normal derivative exists so long asS is not null.
Lemma 2: Extension of Complex Isothermal Coordinate System: Given pPS such that g is

analytic and can be written in absolute time form (5) about a point pPS, then there exists a
neighborhood of p, UE,EøS and a C0 function

FE:UE°$zPCuIm~z!>0% ~20!

such that the restriction

FEuE :UEùE°$zPCuIm~z!.0% ~21!

is a Cv diffeomorphism, and a complex isothermal coordinate. Also

FEuS :UEùS°R. ~22!

Proof: Let g be written as in~5!, so thatp is given byt50, x5x0 , andg
E is given by~6!. Let

v5hdx1 iAtdt ~23!

so that

gE5v ^ v̄1v̄ ^ v. ~24!

We seek a nonvanishing integrating factorl(t,x), and a complex coordinatez(t,x) such that

vl5dz. ~25!

Consider the extension ofv to R13C given by

v5h~ t,j!dj1 iAtdt, ~26!

wheretPR, t.0, andjPC, and whereh(t,j) is the analytic extension ofh(t,x) with respect to
its second argument. Let

X5
2 iAt
h

]

]j
1

]

]t
, ~27!

a vector field onR13C, which is an annihilator ofv, i.e.,v(X)50. The solution curves ofX are
the set of curvest°„t,j(t)…, wherej(t) are solutions to the differential equation

dx

dt
52 i

At
h~x,t !

. ~28!

We note that the component ofX in the t direction is 1, and the component ofX in the imaginary
j direction is

2
At Re~h!

uhu2
, ~29!

which, neart50, j5x0, is bounded above byAt times some factor. Therefore, nearp5(0,x0), all
solution curves of~28! that intersect the half-plane$t50, Im~j!.0% also intersect the plane
$Im~j!50, t.0% and visa versa~see Fig. 4!. Thus we have the map

FE:UE°$zPCuIm~z!>0%, FE:~ t,x!°z, ~30!
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where the solution curve connects the point„t5t,Re~j!5x,Im~j!50…P$Im~j!50,t.0% to the point
~t50,j5z!P$t50,Im~j!.0%. This map satisfies~21!, and ~22!. Sincez now labels each solution
curve, and is thus a constant along it,X(z)[dz(X)50. In general

dz5lv1m1v̄1m2dt, ~31!

but contracting with]/]j̄ implies thatm150 sincez andv are analytic. Contracting withX gives
m250 so ~25! holds.

Substitutingdz into ~24! gives ~3! with VE51/ll̄. j

The Euclidean Hodge maps are given with respect to the (z,z̄) coordinate system by

!15V2dz̀ dz̄, ~32!

!dz52 idz, ~33!

!dz̄5 idz̄, ~34!

so Laplace’s equation forcE:U→C is

]2cE

]z] z̄
dz̀ dz̄50 ~35!

and its solution in this region is

cE5c1
E ~z!1c2

E ~z!, ~36!

wherec6
E :U→C. Since]c6

E /] z̄50 these are analytic functions. We definec S
E andN c S

E by
replacing the symbolL with E in ~16! and ~17!. These are given by

cS
E~p!5c1

E ~p!1c2
E ~p!, ~37!

N cS
E~p!52 ic1

E8
]z

]s
1 ic2

E8
] z̄

]s
. ~38!

We have

FIG. 4. The solution lines ofX intersecting with the half-plane$Im~j!50, t.0% and the half-plane$t50, Im~j!.0% where
they are parallel to the field]/]t.
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]z

]s
5
dx

ds
PR2$0%, ~39!

hence

N cS
E~p!5 i

dx

ds
~2c1

E81c2
E8!. ~40!

So the normal derivative exists about the pointpPS so long asS is not null.

III. UNIQUENESS LEMMA

Lemma 3: Let(EøS,g) be a closed pathwise connected manifold with boundaryS5]E, with
a Riemannian metric g which is degenerate onS and analytic in a neighborhood ofS. Let there
be only isolated points onS about which g cannot be written in absolute time form. Given a
nontrivial curve C:I°S where I is some interval inR parametrized by s and two functions
uE,vE:E°C that satisfy Laplace’s equation d!dc50 on the interior of E, then uS

EuC5vS
EuC and

N uS
EuC5N vS

EuC if and only if uE5vE.
In these equations uS

E(x), N uS
E(x) are defined by replacingc by the symbol u in the Euclid-

ean version of~16! and ~17!.
Proof: Let (UE,CE) be a complex isothermal chart ofE about a pointpPC(I ) given by

Lemma 2 above. For the solutionwE5uE2vE, it follows thatwS
EuC50 andN wS

EuC50. Thus
from ~37! and ~40! we have

w6
E ~z!50 ;zPCE+C~ I !. ~41!

Hencew6
E are analytic functions on the domainCE(UEùE),C where Im„CE(UEùE)….0. They

are continuous functions on the domainCE(UE),C where Im„CE(UEùS)…50. One can perform
a Schwartz reflection19 about Im(z)50 to produce an analytic function on a domain with a
nontrivial subset ofCE~S! in its interior. SinceCE(C) is not a distinct collection of points

w6
E ~z!50 ;zPCE~UE!. ~42!

For any other chart (Ũ,C̃) whereUùŨÞB, since

w6
E ~z!50 ;zPC̃~ŨùU !, ~43!

then

w6
E ~z!50 ;zPC̃~Ũ !. ~44!

Thusw6
E 50, or uE5vE on E. j

This is a uniqueness proof, not an existence proof. Given two functionsf 1 , f 2 :C(I )°C there
will in general be no solutionu:E°C to Laplace’s equation such thatuuC5 f 1 and i C!]/]s!u

5 f 2 for any neighborhood ofC(I ).
Example 1:Let CE(UE)5$zPCuIm(z),0% andCE(C)5$zPCuIm(z)50%. Let

cS
E~x!5H e~21/x2!, x.0,

0, x<0,
~45!

N cS
E~x!50 ;xPR,
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wherexPCE(C). According to Lemma 3, the data onx,0 implies thatc(z)50 ;zPCE(UE),
while the data onx.0 implies thatc(z)5exp~21/x2! ;zPCE(UE). Thus there is no solution to
Laplace’s equation onCE(UE) consistent with this boundary data.

This does not contradict the Cauchy–Kowalewski theorem20,21on the existence of solutions to
PDE’s with analytic Cauchy data since the data~45! is not analytic.

IV. UNIQUENESS THEOREM

In order to match Euclidean solutions to Lorentzian solutions, we must adopt some boundary
conditions along the degeneracy curveS.

The class of boundary conditions adopted here relate boundary data in alinear andpointwise
invertible manner. Thus forJ:S°GL2~C!

S cS
L ~x!

N cS
L ~x! D 5J~x!S cS

E~x!

N cS
E~x! D . ~46!

The ‘‘natural’’ boundary conditions given by continuity ofc and its normal derivative across
S correspond to

J~x!51. ~47!

We note in passing that the theorem below is applicable even whenc is restricted such that
N cS

E(x)5N cS
L (x)50.

Theorem: Let (M ,g) be a two-dimensional manifold M with a metric g that is degenerate
along a curveS, partitioning M into a Lorentzian domain L and a connected Euclidean domain
E. Let g be analytic in a neighborhood ofS, and let there only be isolated points onS where g
cannot be written in absolute time form. Let C,L be an acausal curve, parametrized by s, such
that D0(C)ùS contains an arc. Given two solutions of (1) u,v:M°C satisfying any boundary
condition in the class above, then uuC5vuC and (C!!du)(]/]s)5(C!!dv)(]/]s) if and only if
uuD0(CøS)øE 5 vuD0(CøS)øE , i.e., u andv agree on the entire shaded area indicated in Fig. 2.

Proof: Sinceu and v have the same Cauchy data onC, then if w5u2v it follows that
wuD0(C)

5 0. Hencew has zero Cauchy data on the Lorentzian side ofD0(C)ùS, i.e.,

wS
L ~x!50 and N wS

L ~x!50 ;xPD0~C!ùS. ~48!

In these equationswS
L (x),N wS

L (x), wS
E(x), andN wS

E(x) are defined by replacingc byw in ~16!
and~17!. Since the boundary conditions are linear and pointwise invertible, we have zero Cauchy
data forw on the Euclidean side ofD0(C)ùS, i.e.,

wS
E~x!50 and N wS

E~x!50 ;xPD0~C!ùS. ~49!

HencewuE50 from Lemma 3. This now implies zero Cauchy data forw on the Euclidean side of
the whole ofS, i.e.,

wS
E~x!50 and N wS

E~x!50 ;xPS. ~50!

Thus these boundary conditions give zero Cauchy data forw on the Lorentzian side of thewhole
of S. Since the Cauchy data forw on C is zero as well, it follows thatwuD0(CøS)øE 5 0. j

Again we note that this is a uniqueness theorem. In general no solution to~1! onM will exist
satisfying ~46! with Cauchy data on someC satisfying the conditions of this theorem. The re-
quirement thatD0(C)ùS is nontrivial is necessary. If the domain of null dependence ofC
contains a single point in common with the Euclidean domainE, it is not difficult to construct a
situation in which there exists more than one solution onE compatible with the Cauchy data.
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Example 2:LetM5R2 andg52 9
4tdt^dt1dx^dx. We wish to find solutions that have zero

Cauchy data onC5$(21,x),21<x<1%. The null geodesics~denoted by dotted lines in Fig. 5!
are given byx6t ~3/2!5const. Clearly one solution that also satisfies the natural boundary condi-
tions ~47! is c50 onM . However, one readily verifies that another solution is

cuL~x,t !5H 0, x1t3/2.0,x2t3/2,0 ~L1 in Fig. 5!,

~12 i !Ax2t3/2, x2t3/2.0,t.0 ~L2 in Fig. 5!,

~12 i !A2x2t3/2, x1t3/2.0,t.0 ~L3 in Fig. 5!,
~51!

cuE~x,t !5~Ax1 i t 3/2!1 i ~Ax1 i t 3/2!, ~52!

whereA :$zPC:Im(z)<0%°$zPC:Re(z)>0,Im(z)<0%.
In a two-dimensional universe with a known degenerate metric one might imagine one could

use the theorem above to predict the behavior of the scalar field beyond causally connected
regions. However, realistic Cauchy data that is obtained from physical measurements will contain
errors. Since it is possible to find global solutions that lie arbitrarily close to such data in the
domain of the Cauchy curve but are arbitrarily disparate elsewhere, one must conclude that the
propagation of such errors cannot be controlled.

Example 3:Referring to Fig. 5, enlargeC to Ĉ5$(t51,x):uxu,2%. Assume the ‘‘experimen-
tal’’ data given onĈ prescribes that a function and its normal derivative are zero to an accuracy
e. If e is zero, then the theorem above implies that the only global solution is identically zero. For
e.0, given any continuous functionf :R°C such thatf (x)50, ;uxu<3, then from the Boltzano–
Wiesstrass theorem there exists a polynomialP :R°C such thatuP (x)2 f (x) u,e/2, ;x<5. The
functionP ~x1 i t 3/2! solves Laplace’s equation~1! in the Euclidean domain anduP (x) u,e/2 on the
interval $(t50,x):uxu,3%. However, this function extends to a global solution of~1! onR2 and is
consistent with the ‘‘experimental’’ Cauchy data onĈ within the prescribed error. This is similar
to Hadamard’s example22 demonstrating that certain initial value problems are notwell posedfor
Laplace’s equation.

V. IMPLICATIONS FOR QUANTIZATION

The standard method23–25for constructing a quantum field theory in a curved space–time is to
consider a globally hyperbolic manifoldM possessing Cauchy surfacesCin andCout in ~asymp-
totically! flat regions upon which one sets up Hilbert spacesH(Cin) % H(Cin) andH(Cout)
% H(Cout) of solutions to local field equations.

FIG. 5. Example whereD0(C)ùS is trivial.
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The Klein–Gordon Hermitian bilinear form is defined as

^u,v&C5
1

2p i EC ū!dv2v!dū, ~53!

where u,v are Cauchy data on a Cauchy surfaceC for solutions to the scalar wave~Klein–
Gordon! equation. ForC in a flat region of space–time, the~maximal! subspace of positive
frequencies,H(C), is defined by some timelike vector field which is Killing in this region, such
that the restriction of̂ ,&C to H(C) is positive definite. The restriction of^,&C to its conjugate
H(C) 5 $ūuu P H(C)% is negative definite.We have

^u,v&C5^u1 ,v1&C1^u2,v2&C ~54!

whereu 5 u1 1 u2, v 5 v1 1 v2, andu6 ,v6PH(C). The Hilbert spaceH(C) % H(C) is de-
fined with respect to the ‘‘true’’ inner product

Š^u,v&‹C5^u1 ,v1&C2^u2,v2&C . ~55!

For any solutionu:M°C there is Cauchy data associated withuin P H(Cin) % H(Cin) for u,
and Cauchy data associated withuoutP H(Cout) % H(Cout). The corresponding quantum system is
said to beunitary if ^uin,v in&Cin 5 ^uout,vout&Cout. This is guaranteed for a globally hyperbolic
manifold since the currentū!du2u!dū is conserved. The linear mapA:H(C in)
% H(C in)°H(C out) % H(C out) defined byuin°uout5Auin may be represented as

A5S a b

b̄ ā D ~56!

and defines the Bogolubov transformations:

a:H~Cin!°H~Cout!, ~57!

b:H~Cin!°H~Cout!. ~58!

From these one may construct the Scattering matrix in a Fock space basis of many particle
states in the quantum theory. The expectation value of the particle number density with respect to
the image of a Fock space vacuum state under this Scattering matrix can be shown to be( i j ub i j u

2.
For a finite theoryb must be Hilbert–Schmidt, i.e.,( i j ub i j u

2,` ~Ref. 23, p. 140!. This implies
thatA must be bounded.

It is of interest to see to what extent the formalism above breaks down in the context of a
quantum field theory of massless scalar particles in a background two-dimensional space–time
with a degenerate metric. We approach this by considering a simple example in which we can
readily calculate the Bogolubov coefficients. LetM be a cylinder with coordinates$~t,u!u2`,t
,`,0<u,2p%, together with the axially symmetric metric

g5gtt~t!dt ^dt1guu~t!du ^du, ~59!

whereguu~t!.0 for all t. HereM has a Euclidean regionE ~wheregtt.0! sandwiched between
two Lorentzian regions labelledL in andLout ~wheregtt,0!. Let there be a flat regionLflat

in ,L in,
i.e., where gtt521, guu51, containing the Cauchy surfaceCin,Lflat

in . Similarly let
Cout,Lflat

out,Lout. LetSin be the degeneracy ringt5tin that partitionsE from L in. Similarly suppose
Sout is the degeneracy ringt5tout.tin that partitionsE from Lout. See Ref. 15 for explicit details
of such a construction.
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A transformation to complex coordinates, such that the metric may be written as~3!, is given
by

z5C~t,u!5eiu expS E
t in

t S gtt~t8!

guu~t8! D 1/2 dt8D where t in<t<tout, 0<u,2p. ~60!

ThusC(E) is an annulus about the origin with radii 1 andej where

j5E
t in

toutS gtt~t8!

guu~t8! D
1/2

dt8. ~61!

A convenient basis of nonzero mode solutions to~1! in the Lorentzian flat domainLflat
in is

$ek
in5u2pku21/2e2 i ~ ukut1ku!,ek

in5u2pku21/2ei ~ ukut1ku!%kPZ,kÞ0 , ~62!

where~t,u! lie in Lflat
in . This basis is in 1-to-1 correspondence with the set of Cauchy data onCin

and hence provides a basis of one-particle in-states forH(Cin) % H(Cin), with $ek
in% giving a basis

for H~Cin!. A basis of one-particle out-states is likewise defined from$ek
out,ek

out% where~t,u! lie
in Lflat

out.
The Bogolubov coefficients can easily be calculated from the matching conditions~47!:

akk5cosh~kj! ak j50, jÞk, ~63!

bkk5 i sinh~kj!, bk j50, jÞk. ~64!

It is obvious thatb is not Hilbert–Schmidt. Furthermore, it is easy to verify that the linear
mapA:H(Cin) % H(Cin)°H(Cout) % H(Cout) is not even bounded. This follows since one can
construct a solutionu onM which has a pole onSout, e.g.,

u~t,u!5
1

C~t,u!2C~tout,0!
. ~65!

Now iuiniCin , ` but iuoutiCout 5 `, which could not happen ifA were bounded.~iA(uin)iCout
5i uouti <i AiiuiniCin.! However on the subspace consisting of finite sums of basis elements
above, the mappingA has a unitary restriction. Furthermore, it can be shown that ifu:M°C is
bounded, anduin P H(Cin) % H(Cin) is associated Cauchy data, then^uin,uin&Cin
5^Auin,Auin&Cout.

In order to constructA from initial Cauchy datauin P H(Cin) % H(Cin), one or more of the
following obstructions may arise when attempting to calculate the corresponding elementuout

PH(Cout)%H(Cout):
~1! There is no compatible solution in any Euclidean neighborhood ofSin. An illustration of

this has been given in example 1.
~2! Although a solution in a neighborhood ofSin exists, this solution has a ‘‘natural bound-

ary’’ which prevents it propagating toSout. For example, consider the analytic functionf :D°C,

f ~z!5 (
n50

` S zRD ~n! !

, ~66!

whereD,C is the open disk of radiusR. This function is infinite for allz5Rep/q, p,qPZ, and is
therefore said to have a natural boundary on]D. It cannot be analytically continued beyond]D. If
1,R,ej, thenC~Sin!,D andC~Sout!úD, hence the state inH(Cin) % H(Cin) corresponding to
f cannot be propagated toSout.
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~3! The state propagates toSout but contains a singularity onSout. This may give an infinite
norm for the state atCout.

~4! An analytic continuation of the state onSin to Sout exists with singularities inE. Such
singularities can give rise to nontrivial de Rham periods and contribute to the breakdown of
unitarity. In Ref. 15 it is suggested that a resolution to this problem is to excise those domains
where such solutions are singular by attaching extra tubes to the manifold. This correlates the
space of allowable Cauchy data to the global topology of the manifold. One can then restore
unitarity for this particular initial state by labelling some of the tubes as ‘‘in’’ and the others as
‘‘out.’’ This resolution works for any particular state but cannot be applied to the entire space of
states without removing the entire Euclidean domain.

VI. CONCLUSIONS

One of the most striking results of the theorem above is that a space–time with a Euclidean
domain does not necessarily require a traditional Cauchy surface in order for one to be able to
predict a global solution of the~scalar! wave equation. Cauchy data on any acausal curve may be
sufficient. To effect such a prediction it is only necessary that~i! the domain of null dependence
of the acausal curve has a nontrivial intersection with the Euclidean domain,~ii ! the solution in the
two domains is connected by ‘‘linear pointwise-invertible’’ junction conditions, and~iii ! the
boundary of the Euclidean domain is a Cauchy curve for the whole Lorentzian domain. If the
degenerate metric possesses a spacelike Killing isometry in the Lorentzian domain, then~iii ! is
automatic.

For example, a two-dimensional cosmology may be modelled with a metric that is induced by
appropriately immersing a paraboloid in Minkowski three-space. If the Euclidean domain corre-
sponds to a parabolic cap, then the ring of signature change is a Cauchy curve for the prediction
of solutions to the wave equation for the whole paraboloid. However, every acausal segment in the
Lorentzian region provides a family of~disconnected! domains of null determination. If one such
domain has a nontrivial intersection with the ring of signature change, then any global solution
satisfying the junction conditions above can be calculated from just the Cauchy data on the
original segment. However, in general, given arbitrary Cauchy data on such a segment, there may
be no such global solution.

Although our results have relied fundamentally on the conformal structure of the scalar wave
equation and the dimensionality of the background manifold, we speculate that many of these
features will persist in theories that lack conformal symmetry, such as the massive Klein–Gordon
equation in three or more dimensions. The extension of our methods would exploit the general
theory of elliptic partial differential equations.20–22,27

The traditional construction of a local quantum field theory on a space–time relies on a
number of features that are conspicuously absent on manifolds with a degenerate metric. Most
notably it proves difficult to construct a space of asymptotic quantum states that can be connected
by a unitary Scattering matrix.

Although it is not difficult to find subspaces of bounded Lorentzian solutions, such solutions
may become singular when continued to a Euclidean region via a broad class of matching condi-
tions. Thus a well-behaved Lorentzian solution can propagate into the future without attenuation
and pass smoothly into a Euclidean domain where it may rapidly explode. For example, for any
0,r,1 consider the sum of two packets

u~t,u!5
1

12rei ~u1 t̂ ! 1
1

12rei ~u2 t̂ ! , ~67!

where
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t̂5E
t

t inS 2gtt~t8!

guu~t8! D 1/2 dt8 ~68!

for ~t,u!PL in, and

u~t,u!5
1

12z
1

z̄

z̄2r 2
~69!

for ~t,u!PE wherez5C~t,u! is given by~60!. This is illustrated in Fig. 6, withr50.4, for the
cylindrical manifoldM above. Fort,tin, the bounded Lorentzian wave packets counterrotate
around the cylinder unattenuated, until they reach the signature ring attin50. This Lorentzian
solution is then matched to the Euclidean one using the junction condition~47!, but with the
additional constraint that the normal derivatives on either side of the degeneracy curve vanish. The
solution clearly becomes an exploding peak as it diffuses into the Euclidean region, becoming
singular before escaping to the Lorentzian domain.

We have also explicitly demonstrated several other obstructions than can arise when trying to
construct unitary operators in a basis of asymptotic states. Although we cannot prove that no such
construction is possible, the results above lead us to strongly suspect that without a radical
departure from traditional methods a local unitary quantum field theory on a background with a
fixed topology and degenerate metric does not exist. This conclusion does not necessarily rule out
classical geometries with signature change. A more comprehensive analysis would consider a
coupled field and geometry system with dynamic topology. Such a quantum geometry would then
allow classical histories describing a manifold with a topology consistent with the corresponding
bounded global field configuration. In the weak-field semi-classical limit such coupled states
might select a self-consistent classical background geometry with a degenerate metric upon which
one could construct an approximate quantum matter field description.

FIG. 6. Evolution witht of the modulus of a pair of counterrotating Lorentzian wavepacketsu across a metric degeneracy
at t50. The angular coordinate for the cylindrical manifold is denoted by 0<u,2p.
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We formulate scattering in one dimension due to the coupled Schro¨dinger equation
in terms of theSmatrix, the unitarity of which leads to constraints on the scattering
amplitudes. Levinson’s theorem is seen to have the formh(0)5p(nb1

1
2n2 1

2N),
whereh(0) is the phase of theS matrix at zero energy,nb the number of bound
states with nonzero binding energy,n the number of half-bound states, andN the
number of coupled equations. In view of the effects due to the half-bound states,
the threshold behaviour of the scattering amplitudes is investigated in general, and
is also illustrated by means of particular potential models. ©1996 American
Institute of Physics.@S0022-2488~96!03112-X#

I. INTRODUCTION

The quantum mechanics of one-dimensional scattering describes many actual physical phe-
nomena to a good approximation.~For example, see Ref. 1 for a review of tunneling times.!
One-dimensional models are furthermore often employed to gain deeper insight into the approxi-
mations used in order to make the more complex three-dimensional systems tractable. It is there-
fore not surprising that there have been many articles, also in this journal, dealing with various
aspects of such scattering. In particular a number of papers have appeared in recent years on the
threshold behaviour of one-dimensional scattering and Levinson’s theorem.2–7 These studies have
been limited to systems without coupling.

In this paper we wish to investigate scattering described by a system of coupled differential
equations with a particular interest in developing a formulation for Levinson’s theorem and in
gaining insight into the threshold properties of the scattering amplitudes. This work can be seen as
a special case of multichannel scattering for which the threshold energies are equal. In subsequent
work, we intend to generalize to the case of differing threshold energies. Although in previous
work on one-dimensional scattering one has at times employed a ‘‘partial wave’’ analysis7,8 or a
parity-eigenstate representation,2,6 we have chosen to use the traditional, more ‘‘physical,’’ ap-
proach involving states with incident waves coming from a single direction.

In Sec. II we express the scattering properties in terms of theSmatrix, the unitarity of which
leads to specifiable constraints on the scattering amplitudes. For the proof of the generalized
Levinson’s theorem we make use of the complete set of orthonormal states of the Hamiltonian;
this is an alternative to the approach involving the analyticity of the scattering amplitudes. The
proof of Levinson’s theorem depends on the threshold properties of the scattering amplitudes.
These properties are of interest in their own right, especially in connection with scattering time
delay and advance,6 and therefore we discuss the zero-energy behaviour of the amplitudes at some
length.

The factorization of theS matrix is generalized to the coupled system in Sec. III. We also
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indicate that there is a class of finitely periodic matrix potentials for which the scattering ampli-
tudes can be found in a way analogous to the case with no coupling.

In Sec. IV we discuss a number of specific potential models to elucidate and amplify general
results. We conclude with a brief discussion of our results in Sec. V.

II. S-MATRIX FORMULATION

The one-dimensional scattering problem has been studied in terms of theS matrix by a
number of authors.~See, for example, Refs. 7, 9–12.! We extend the formalism to include a
matrix potential function. The Schro¨dinger equation for a stationary state of such a system is

2
d2C

dx2
1V~x!C5k2C, ~2.1!

whereV(x) is a real, symmetricN3N matrix,k2 the energy of the system, andC(k,x) the wave
function, which is anN-dimensional column vector. For large values ofuxu the potential matrix
V(x) approaches zero sufficiently fast, so that in the asymptotic regionC(k,x) represents a
free-particle wave function. To ensure this we will takeV(x)50 for uxu.R, R being the range of
the potential.~The boldface0 and1 refer to the zero and identityN3N matrices, respectively.!
Furthermore, we assume thatuVi j (x)u is integrable fori , j51, . . . ,N.

The physical scattering solutions of Eq.~2.1! at a given energyk2 can be written as the
columns ofN3N matricesc(k,x) and c̃(k,x) which are uniquely determined by the boundary
conditions,

c~k,x!;H 1eikx1r~k!e2 ikx, x→2`

t~k!eikx, x→`
~2.2!

and

c̃~k,x!;H t̃~k!e2 ikx, x→2`

1e2 ikx1 r̃~k!eikx, x→`.
~2.3!

We will refer toc and c̃ as the solution matrices. Note that the columns ofc contain the wave
functions with an incident wave from the left, whereas the columns ofc̃ include those with an
incident wave from the right. TheN3N matricesr,r̃,t,c̃ are generalizations of the usual reflec-
tion and transmission amplitudes.13,14The set ofN-dimensional column vectors of matricesc and
c̃ represent solutions of Eq.~2.1!. The linear independency of these solutions can be shown by
considering the 2N32N matrix,

W~c,c̃ !5S c c̃

c8 c̃8
D , ~2.4!

in which the prime indicates the derivative with respect tox. In Appendix A we show that the
detW(c,c̃) is a constant, which is nonzero if and only if the solutions are linearly independent.
Its value, determined from the asymptotic forms ofc and c̃, is

detW~c,c̃ !5det~t~k!!~22ik !N. ~2.5!

Thus when bothk and dett(k) are nonzero, the columns ofc andc̃ give 2N linearly independent
solutions.
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In order to define theS matrix, we consider the general solution matrix in the asymptotic
region,

F~k,x!;HAeikx1B8e2 ikx, x→2`

A8eikx1Be2 ikx, x→`,
~2.6!

whereA,A8,B,B8 areN3N matrices. Since the unprimed matrices are associated with incoming
waves and the primed matrices with outgoing waves, theSmatrix can be defined as the matrix that
transforms the coefficients of the incoming waves into those of the outgoing waves,7,15 so that

SA8

B8
D 5SSABD 5SSaa Sab

Sba Sbb
D SABD . ~2.7!

Clearly, S is a 2N32N matrix. We can write it in terms of the transmission and reflection
amplitudes by making use of the special cases for which (A,B)5(1,0) and (A,B)5(0,1). The
result is

S5SSaa Sab

Sba Sbb
D 5S t r̃

r t̃ D . ~2.8!

TheSmatrix contains 4N2 complex elements or 8N2 real parameters. As we will see below there
are a number of relations between the transmission and reflection amplitudes, which will reduce
the number of independent real parameters.

A. Relation between reflection and transmission amplitudes

Constraints on the transmission and reflection amplitudes follow from the Schro¨dinger equa-
tion ~2.1!. Consider two solution matricesc1(k,x) andc2(k,x), then

c295~k22V!c2 and c2
†95c2

†~k22V!, ~2.9!

so that

c2
†9c15c2

†~k22V!c1 . ~2.10!

The Schro¨dinger equation, Eq.~2.1!, for c1 premultiplied byc2
† yields

c2
†c195c2

†~k22V!c1 . ~2.11!

Subtracting Eqs.~2.10! and ~2.11!, we obtain

c2
†9c12c2

†c195
d

dx
@c2

†8c12c2
†c18#50, ~2.12!

which leads to

c2
†8c12c2

†c185 constant matrix. ~2.13!

If we now insert the asymptotic forms ofc or c̃ for c1 or c2 into Eq. ~2.13! and equate the
expression at2` to that at1`, we obtain the following relations:

t†t1r†r5 t̃ †t̃1 r̃ †r̃51, ~2.14!

r†t̃1t†r̃5 t̃ †r1 r̃ †t50. ~2.15!
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Equations~2.14! and ~2.15! are equivalent to the statement thatS†S5I , whereI is the 2N32N
identity matrix.

Further relations are found by using the time-reversal symmetry of the system. SinceV(x) is
real, the complex conjugate solution matricesc* and c̃* are also solutions of the Schro¨dinger
equation. By complex conjugating Eq.~2.6!, we see that the roles of the incoming and outgoing
asymptotic waves are reversed, and indeed Eq.~2.7! is valid whenA→B8* , B→A8* , A8→B* ,
andB8→A* . Thus Eq.~2.7! may be written as

SB*A* D 5SSB8*

A8* D . ~2.16!

Multiplying on the left byS† and usingS†S5I , we find that

SB8*

A8* D 5S†SB*A* D , ~2.17!

which leads to

SA8

B8
D 5S 0 1

1 0DSTS 0 1

1 0D SABD , ~2.18!

whereST is the transpose ofS. Thus

S5S 0 1

1 0DSTS 0 1

1 0D , ~2.19!

from which it follows that

t̃5tT, r5rT, and r̃5 r̃ T. ~2.20!

Inserting these expressions into Eqs.~2.14! and ~2.15!, we obtain

t̃ t̃ †1rr†5tt†1 r̃ r̃ †51, ~2.21!

tr†1 r̃ t̃ †5rt†1 t̃ r̃ †50. ~2.22!

These equations yield the other half of the unitarity condition of theSmatrix, so that

S†S5SS†5I . ~2.23!

For a parity-invariant potential function, i.e.,V(2x)5V(x), there are further constraints on the
transmission and reflection amplitudes. In that case the amplitudes are symmetric matrices and the
two types of amplitudes are the same, i.e.,

r5 r̃5rT5 r̃ T, and t5 t̃5 t̃ T5tT. ~2.24!

There is also a useful relation between the scattering amplitudes atk and at2k, which is
easily obtained by generalizing the result for uncoupled potentials.7 Since c* (2k,x) and
c̃* (2k,x) are solution matrices of the Schro¨dinger equation with the same boundary conditions
asc(k,x) and c̃(k,x) respectively, we find that

t* ~2k!5t~k!, r* ~2k!5r~k!, t̃* ~2k!5 t̃~k!, r̃* ~2k!5 r̃~k!. ~2.25!
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From these relations it follows immediately that the reflection and transmission amplitudes at
threshold~i.e., k50) are real.

B. Levinson’s theorem

Levinson’s theorem in its most common formulation for a spherically symmetric potential
gives a relationship of the scattering phase shifts at zero and infinite energy. The theorem has also
been studied for one-dimensional systems without coupling.2,5 We generalize the theorem to the
matrix-potential case. Levinson’s theorem is a consequence of the orthogonality and completeness
relation of the eigenstates of the total Hamiltonian.

The scattering states of the Schro¨dinger equation~2.1! defined by Eqs.~2.2! and ~2.3! along
with the bound states can be used to form a complete orthonormal set of eigenstates. Suppose that
there arenb bound states whose orthonormal wave functions are denoted by the column vectors
cEj

(x) with Ej (,0) referring to the bound state energy. In case of degenerate bound states, we
label the state vectors with subscriptEj , but allow the possibility of different subscriptsj for the
same energy in order to include all independent bound-state vectors. For example, one could have
Ej5Ei wherei Þ j whenEi is a degenerate energy eigenvalue. The orthonormality relations are

1

2pE2`

`

dxc j
†~k,x!c i~k8,x!5

1

2pE2`

`

dxc̃ j
†~k,x!c̃ i~k8,x!5d i jd~k82k!, ~2.26!

1

A2p
E

2`

`

dxc j
†~k,x!cEi

~x!5
1

A2p
E

2`

`

dxc̃ j
†~k,x!cEi

~x!50, ~2.27!

1

2pE2`

`

dxc̃ j
†~k,x!c i~k8,x!50 and E

2`

`

dxcEj
† ~x!cEi

~x!5d i j , ~2.28!

wherec i andc̃ i are thei th columns of thec andc̃ matrices, respectively. Thus the completeness
relation is

(
j51

nb

cEj
~x!cEj

† ~x8!1(
i51

N
1

2pE0
`

dkc i~k,x!c i
†~k,x8!

1(
i51

N
1

2pE0
`

dkc̃ i~k,x!c̃ i
†~k,x8!51d~x2x8!. ~2.29!

The completeness relation may be written in a more compact form in terms of the matrices
themselves rather than the column vectors, i.e.,

(
j51

nb

cEj
~x!cEj

† ~x8!1
1

2pE0
`

dk@c~k,x!c†~k,x8!1c̃~k,x!c̃†~k,x8!#51d~x2x8!. ~2.30!

For the free-particle case whenV(x)50, there are no bound states and the completeness relation
is

1

2pE0
`

dk@c0~k,x!c0†~k,x8!1c̃0~k,x!c̃0†~k,x8!#51d~x2x8!. ~2.31!

We now subtract Eq.~2.31! from Eq.~2.30!, setx85x, and integrate overx from 2R toR. The
resulting equation may be written as
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E
0

`

dkE
2R

R

dx@c~k,x!c†~k,x!1c̃~k,x!c̃†~k,x!2c0~k,x!c0†~k,x!2c̃0~k,x!c̃0†~k,x!#

522pE
2R

R

dx(
j51

nb

cEj
~x!cEj

† ~x!. ~2.32!

The trace of Eq.~2.32! in the limit asR approaches infinity gives

22pnb5 lim
R→`

E
0

`

dkE
2R

R

dx Tr@c~k,x!c†~k,x!1c̃~k,x!c̃†~k,x!

2c0~k,x!c0†~k,x!2c̃0~k,x!c̃0†~k,x!#. ~2.33!

To perform the integration overx in the right side of Eq.~2.33!, we use the identity

Tr@cc†#5
1

2k

]

]x HTrF]c

]k

]c†

]x
2

]2c

]x]k
c†G J , ~2.34!

which may be obtained by taking the derivative with respect tok of the Schro¨dinger equation
~2.1!. Since in the limitR exceeds the range of the potential, we can insert the asymptotic forms
of the wave functions in Eq.~2.33! to obtain

22pnb5 lim
R→`

E
0

`dk

2k
TrF22ikS ]t

]k
t†1

]r

]k
r†1

]t̃

]k
t̃ †1

]r̃

]k
r̃ †D

2 i ~r1 r̃ !e2ikR1 i ~r†1 r̃ †!e22ikRG . ~2.35!

Following Newton and Jost16 we define the phase as

h~k!5
1

2i
ln detS~k!, ~2.36!

where we requireh(k) to be continuous fork P (0,̀ ). Since theSmatrix is unitary, we may write
S5U†SDU, where U is a real orthogonal matrix andSD is the diagonal matrix
SD5 diag(eid1, . . . ,eid2N) where thed j ’s are real phases.17 Let us write thereforeS5eiD where
D5U†DDU for DD5 diag(d1 , . . . ,d2N). Then

2ih~k!5 ln detS~k!5 ln detSD~k!5(
j51

2N

id j~k!5 Tr@ iDD~k!# ~2.37!

and

2i
]h

]k
5 TrF] iDD

]k G5 TrFSD† ]SD
]k G5 TrFS† ]S

]kG5 TrF]t

]k
t†1

]r

]k
r†1

]t̃

]k
t̃ †1

]r̃

]k
r̃ †G .

~2.38!

Thus Eq.~2.35! may be written as

h~0!2h~`!5pnb2 lim
R→`

X~R!, ~2.39!

where
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X~R!5
1

2E0
`dk

2k
Tr@ i ~r~k!1 r̃~k!!e2ikR2 i ~r†~k!1 r̃ †~k!!e22ikR# ~2.40!

5
i

4E2`

` dk

k
Tr@r~k!1 r̃~k!#e2ikR. ~2.41!

In the next section we show thatr(k);O(1/k) for large uku, so that the integration in Eq.~2.41!
converges for largeuku. We now take the limit asR approaches̀ , using the relation

lim
R→`

e2ikR

k
5 ipd~k!, ~2.42!

whered(k) is the Dirac delta function. In that limitX(R) goes to2(p/4) Tr@r(0)1 r̃(0)#, so
that the statement of Levinson’s theorem now is

h~0!5pnb1
p

4
Tr@r~0!1 r̃~0!#, ~2.43!

where we have seth(`) equal to zero. In the next section we also show that

Tr@r~0!1 r̃~0!#522~N2n!, ~2.44!

wheren is the number of ‘‘half-bound states.’’10,11,18Thus in its final form Levinson’s theorem
states,

h~0!5p~nb1
1
2n2 1

2N!. ~2.45!

This expression of the theorem is consistent with that for the uncoupled case given in Ref. 11.

C. Threshold behaviour of r and t

The threshold behaviour of reflection and transmission amplitudes and coefficients has been
discussed recently in several articles.2,4,6,7In order to study the behaviour of ther andt matrices
at k50, we introduce a different set of solutions of the Schro¨dinger equation, since according to
Eq. ~2.5! the columns ofc and c̃ fail to be linearly independent atk50. Let f(k,x) and
x(k,x) be solution matrices of Eq.~2.1! which satisfy the boundary conditions,

f~k,2R!5x8~k,2R!51

f8~k,2R!5x~k,2R!50,
~2.46!

whereR is the range of the potential as defined at the beginning of Sec. II. By evaluating
detW(f,x) at x52R and using the results of Appendix A, we readily show that for allx and
k the detW(f,x)51, where the matrixW is defined as in Eq.~2.4!. Thus unlike the column
vectors ofc and c̃, the column vectors off andx are linearly independent at zero energy.

In order to obtain the scattering amplitudes, we expandc in terms off andx so that

c~k,x!5f~k,x!B~k!1x~k,x!C~k!, ~2.47!

whereB(k) andC(k) are matrices of expansion coefficients. Evaluatingc andc8 at 6R using
Eqs.~2.2! and~2.47!, we obtain four equations involvingB(k),C(k),r(k) andt(k). By eliminat-
ing three of these we find thatr can expressed in terms off andx and their derivatives evaluated
at R. Thus
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r~k!5$k2x~k,R!1 ik@x8~k,R!1f~k,R!#2f8~k,R!%21

3$k2x~k,R!1 ik@x8~k,R!2f~k,R!#1f8~k,R!%e22ikR. ~2.48!

Similarly by expandingc̃ in terms off andx we obtain

r̃~k!5$k2x~k,R!2 ik@x8~k,R!2f~k,R!#1f8~k,R!%

3$k2x~k,R!1 ik@x8~k,R!1f~k,R!#2f8~k,R!%21e22ikR, ~2.49!

t̃~k!52ik$k2x~k,R!1 ik@x8~k,R!1f~k,R!#2f8~k,R!%21e22ikR, ~2.50!

and, sincet(k)5 t̃ T(k),

t~k!52ik$k2xT~k,R!1 ik@x8T~k,R!1fT~k,R!#2f8T~k,R!%21e22ikR. ~2.51!

Thus all four scattering amplitudes, and consequently theSmatrix, are determined byf andx and
their derivatives evaluated atR. In Appendix B it is shown thatf(k,x) and x(k,x) are entire
functions of complexk for all x P @2R,R# so that the analytic properties of the scattering ampli-
tudes can be determined using these wave functions. By inserting the expressions for the large real
k behaviour of the wave functions, Eqs.~B16! and ~B17!, into the expressions for the scattering
amplitudes, we obtain

t~k!;11O~1/k! and r~k!;01O~1/k! for k→`, ~2.52!

and similar expressions fort̃ and r̃.
If det@f8(0,R)# Þ 0, the reflection and transmission amplitudes at zero energy are

r~0!5 r̃~0!521 and t~0!5 t̃~0!50. ~2.53!

The case for which det@f8(0,R)#50 needs special attention. In order to understand the signifi-
cance of this condition, we look at the bound states of the system. In the Schro¨dinger equation
~2.1! for bound states, we denote the bound-state energy asa252k2 with a.0. The bound-state
wave functions can be expressed as column vectors of a matrixcb(a,x) with the asymptotic
boundary conditions,

cb~a,x!;H eaxQ, x<2R

e2axT, x>R
~2.54!

where Q and T are matrices of constants. The number of independent bound states at a given
energy will depend on the rank of the matrixcb , and consequently cannot exceedN. Proceeding
as we did for the scattering states, we expand the bound-state wave functions in terms of the
functionsfb(a,x) and xb(a,x) which are solution matrices of the Schro¨dinger equation with
energy2a2 and satisfy the boundary conditions

fb~a,2R!5xb8~a,2R!51, xb~a,2R!5fb8~a,2R!50. ~2.55!

Thus

cb~a,x!5fb~a,x!b~a!1xb~a,x!g~a!, ~2.56!

whereb andg are matrices of expansion coefficients. AtR and2R we match the asymptotic
form of the wave function, Eq.~2.54!, and its derivative to the expanded form, Eq.~2.56!, and its
derivative. EliminatingT,Q and g from the four equations so obtained, we are left with the
equation
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$a2xb~a,R!1a@xb8~a,R!1fb~a,R!#1fb8~a,R!%b~a!50. ~2.57!

Since one of the four matching equations isQ5b(a)eaR, there will be bound states only if the
matrix b(a) contains nonzero entries. Such a nontrivial matrix exists only when

det$a2xb~a,R!1a@xb8~a,R!1fb~a,R!#1fb8~a,R!%50. ~2.58!

This is the bound-state eigenvalue equation for energy2a2. In contrast to the case with no
coupling, the bound-state eigenenergies can be degenerate.

Let us consider the eigenstates whena50. These will occur only if det@fb8(0,R)#50. In
general the solutions represented by the columns vectors ofcb(0,x) are bounded but not square
integrable; hence they are referred to as half-bound states.19 The restriction on the potential
function that it vanishes foruxu>R, precludes the possibility of having normalizable state func-
tions at zero energy. For this to be the case a linear combination of the columns ofcb would yield
C(0,x)50 for uxu>R. Such a boundary condition would lead to the trivial solution of Eq.~2.1!.
Normalizable zero-energy bound states can exist for potentials which are less restrictive than those
of this paper.18

Sincef(0,x) andfb(0,x) are solutions of the same system of differential equations and both
have the same boundary conditions,fb(0,x)5f(0,x). Thus the condition that

det@f8~0,R!#50 ~2.59!

is equivalent to the condition for the existence of half-bound states.
Consider the matrix eigenvalue equation,

f8~0,R!b̃5lb̃, ~2.60!

whereb̃ is a column vector andl is its eigenvalue. There will be a nontrivial solution only if

det@f8~0,R!2l1#50. ~2.61!

Suppose the eigenvalues obtained arel1 ,•••,lN . At least one of these must be zero if there is a
half-bound state. Actually there may ben(<N) zero eigenvalues. We can order these in the
following way: 0,. . . ,0,ln11 , . . . ,lN . Thesen zero eigenvalues will haven linearly independent
eigenvectors associated with them, which representn distinct half-bound states.

We now return to the discussion of reflection and transmission amplitudes. The inverse oft̃ of
Eq. ~2.50! can be written as

2ik t̃ 21~k!5$k2x~k,R!1 ik@x8~k,R!1f~k,R!#2f8~k,R!%e2ikR. ~2.62!

If this equation is combined with Eq.~2.49!, we obtain

2ik r̃~k!t̃ 21~k!5$k2x~k,R!2 ik@x8~k,R!2f~k,R!#1f8~k,R!%. ~2.63!

The factor in the curly brackets of Eq.~2.62! is precisely that in the determinant of Eq.~2.58!
~with k5 ia), i.e., it is the factor which determines the bound states of the system. In Appendix B
we show that matricesf andx are elementwise entire functions ofk. From Eq.~2.62! and the fact
that t̃ T5t we see that 2ikt21(k) and (2ik)N det t21(k) are also entire functions ofk. According
to Eqs.~2.58! and~2.62! det t21(k) has a zero atk5 ia when2a2 is the energy of a bound state.
Thus dett(k) has poles~possibly multiple! on the positive imaginary axis of the complexk plane.
In the absence of a half-bound state, dett21(k) has anNth order pole atk50 and dett has an
Nth order zero atk50. Since there can be no more thanN half-bound states dett(k) andt(k) are
analytic in a neighborhood ofk50.
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In the following we consider realk. Taking the limits ask goes to zero of Eqs.~2.62! and
~2.63! we obtain

lim
k→0

2ik t̃ 21~k!52f8~0,R! and lim
k→0

2ik r̃~k!t̃ 21~k!5f8~0,R!. ~2.64!

Similarly using Eq.~2.51! and the transpose of Eq.~2.48!, we get

lim
k→0

2ikt21~k!52f8T~0,R! and lim
k→0

2ikr~k!t21~k!5f8T~0,R!. ~2.65!

We introduce unitary matricesU(k) andV(k) which diagonalizet ~Ref. 20!, so that

tD~k!5U†~k!t~k!V~k! and 2iktD
215V†~k!2ikt21~k!U~k!. ~2.66!

In the limit as k approaches zeroU(0) and V(0) also diagonalizef8T(0,R), i.e.,
fD8

T(0,R)5V†(0)f8T(0,R)U(0), sothat

lim
k→0

2iktD
21~k!52fD8

T~0,R!. ~2.67!

We define the matrix

r ~k![V†~k!r~k!V~k!, ~2.68!

so that

lim
k→0

2ikr ~k!tD
21~k!5fD8

T~0,R!. ~2.69!

Combining Eqs.~2.67! and ~2.69! gives

r ~0!fD8
T~0,R!52fD8

T~0,R!. ~2.70!

The matricesf8T(0,R) andfD8
T(0,R) have the same rank~Ref. 20!. ThusfD8

T(0,R) will have the
same number of nonzero diagonal elements as there are nonzero eigenvalues off8T(0,R) or
f8(0,R). Writing fD8

T(0,R)5 diag(0,•••,0,sn11 ,•••,sN) and using Eq.~2.70! we see that the
matrix r (0) must have the form

r ~0!5SR11 0

R21 21D , ~2.71!

where the matricesR11, R21, 0 and 1 have dimensionsn3n, (N2n)3n, n3(N2n) and
(N2n)3(N2n), respectively.

To study the behaviour oftD(k) neark50, we consider the Hermitian positive semi-definite
matrixT(k)5t†(k)t(k), whose real nonnegative eigenvalues we denote byt1

2(k), . . . ,tN
2 (k). The

singular values of t(k) are defined as the nonnegative square root of these, i.e.,
t1(k), . . . ,tN(k), and they form the diagonal elements oftD(k) in Eq. ~2.66!, so that
tD(k)5 diag(t1(k), . . . ,tN(k)). ~Ref. 20! Sincet(k) is analytic in the neighborhood ofk50, so
is T(k). For small realk.0, we invoke a theorem of Rellich21 which states that the eigenvalues
of T(k) are convergent power series ofk. Furthermore, using Eq.~2.25!, we note that
T(k)5TT(2k) and the eigenvalues ofT(k) andT(2k) are the same. Thus taking the eigenvalues
in the same order, we find thatt i

2(2k)5t i
2(k). Hence thet i

2(k)’s are power series ofk2 and the
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t i(k)’s are power series ofk. Thus we may write tD(k)5 diag(t11t11k1•••, . . . ,tN
1tN1k1•••) and tD

21(k)5 diag((t11t11k1•••)21, . . . ,(tN1tN1k1•••)21), where the t i ’s
and t i j ’s are constants. In order that

lim
k→0

2iktD
21~k!5 lim

k→0
diag~2ik~ t11t11k1••• !21, . . . ,2ik~ tN1tN1k1••• !21! ~2.72!

5 diag~0, . . . ,0,2sn11 , . . . ,2sN!, ~2.73!

the quantitiest1 , . . . ,tn Þ 0 and tn115•••5tN50. The matrixtD(0) therefore has the form
tD(0)5 diag(t1 , . . . ,tn,0, . . . ,0)where the firstn diagonal elements are nonzero.

Recall thattT5 t̃ and therefore (tT)215 t̃ 21, and thatr̃5 r̃ T. The second part of Eq.~2.64!
becomes

lim
k→0

2ikt21~k!r̃~k!5f8T~0,R!. ~2.74!

The sameU andV can be used to obtain

lim
k→0

2iktD
21~k! r̃ ~k!5fD8

T~0,R!, ~2.75!

where

r̃ ~k!5U†~k!r̃~k!U~k!. ~2.76!

As before the structure ofr̃ (0) may be determined, and it is

r̃ ~0!5S R̃11 R̃12

0 21
D . ~2.77!

In order to simplify Eq.~2.43! we write

Tr@r~0!1 r̃~0!#5 Tr@r ~0!1 r̃ ~0!#

522~N2n!1 Tr@R11
n3n1R̃11

n3n#, ~2.78!

where the superscripts refer to the dimensions of the matrices. All that remains is to evaluate the
last term of the right side of this equation. At zero energy the scattering amplitudes are real. Using
this fact along with the relations thatt̃5tT andr5rT in Eq. ~2.15!, we obtain

t~0!r~0!1 r̃~0!t~0!50. ~2.79!

By applying the diagonalization transformation oft, we find that

tD~0!r ~0!1 r̃ ~0!tD~0!50. ~2.80!

In matrix form this equation may be written

S A1 0

0 0D SR11 0

R21 21D 1S R̃11 R̃12

0 21
D S A1 0

0 0D 50, ~2.81!

whereA15 diag(t1 ,•••,tn) and the block matrices have the appropriate dimensions. From Eq.
~2.81! it follows that
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A1R111R̃11A150n3n. ~2.82!

Consequently, the second term in the right side of Eq.~2.78! is zero, and we have the simple
relation

Tr@r~0!1 r̃~0!#522~N2n! ~2.83!

In light of the discussion of theN51 normal and anomalous threshold behaviour,4,7 our result
seems surprising since the right side of Eq.~2.83! is an integer, whereas the anomalous threshold
effect for parity-noninvariant potentials gives values forr(0) which lie between 0 and 1. How-
ever, if one considers the sum ofr(0) and r̃(0) in the uncoupled case, one obtains an even
integer. For a parity-invariant potential, i.e.,V(2x)5V(x), r andr̃ are equal and the zero-energy
value ofr will always be an integer.

III. SEGMENTED POTENTIALS AND FACTORIZATION OF THE S MATRIX

For the Schro¨dinger equation without coupling it is well known that the reflection and trans-
mission amplitudes satisfy a factorization formula. That is, if the potential is subdivided into a
number of sections, then the total transmission and reflection amplitudes for the system can be
expressed in terms of the amplitudes for each of the truncated pieces of the potential. The recent
proof of Aktosun22 may be generalized immediately to the case ofN coupled equations.

Following Aktosun, then, we subdivide the real line intoJ pieces. The boundaries of the
segments are denoted byxi , i50,...,J, with 2R5x0,x1,...,xJ21,xJ5R. The potential may
then be written as a sum of truncated potentials as follows:

V~x!5 (
j50

J21

Vj~x!, ~3.1!

where

Vj~x!5HV~x!, xj,x,xj11

0, otherwise.
~3.2!

The single indices on the truncated potentials should not be confused with the implicit double
indices which label the various elements of the potential matrix.

For a givenj , then, let us define the matrix

L j~k!5S t j
21~k! 2t j

21~k!r̃ j~k!

r j~k!t j
21~k! ~ t̃ j

†~k!!21 D , ~3.3!

wheret j (k), t̃ j (k), r j (k), r̃ j (k) represent the various amplitude matrices for the truncated po-
tentials with the usual boundary conditions. The amplitudes for the original potential are similarly
arranged into a matrix,

L~k!5S t21~k! 2t21~k!r̃~k!

r~k!t21~k! ~ t̃†~k!!21 D , ~3.4!

and the factorization formula is then simply given by

L~k!5)
j50

J21

L j~k!, ~3.5!
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where the factors on the right side of the equation are ordered so that factors with lower subscripts
occur to the left of the ones with higher subscripts. The proof of Eq.~3.5! is completely analogous
to that advanced by Aktosun in theN51 case and so we shall not review it here. The only added
complication is the fact that the various amplitude matrices do not generally commute, but this has
been properly accounted for in the definitions of theL matrices. The utility of Eq.~3.5! will
become apparent below when we use it to derive the amplitudes for scattering from two different
delta-function matrix potentials in terms of the amplitudes for scattering from each of them
separately.

This approach effectively factorizes theS matrix in the sense that if theS matrix of the j th
potential segment, i.e.,

Sj~k!5S t j~k! r̃ j~k!

r j~k! t̃ j~k!
D , ~3.6!

is known, then the scattering amplitudes of the potential segment are determined, and from them
L j (k). Using Eq.~3.5! we can obtainL(k) for the whole potential, and this allows us to solve for
the scattering amplitudes and theSmatrix of the whole potential.

Another generalization of the uncoupled to the coupled problem involves the finitely periodic
potentials, recently discussed by a number of authors.3,23–25In the derivation of the factorization
formula, Eq.~3.5!, we have to be careful in the ordering of the products such asrt21. This
non-commutativity of the amplitude matrices would typically prevent us from generalizing the
closed-form solutions of the finitely periodic potentials. There are however classes of potentials
for which the various amplitude matrices do commute with each other and for which the results for
no couplingcanbe generalized.

An example of such a class of potentials consists of those potentials which can be expressed
as

V~x!5U diag@v1~x!,v2~x!, . . . ,vN~x!#UT, ~3.7!

whereU is a constant~real! orthogonal matrix. Note that the potentials of Eq.~3.7! include as a
subclass those of the formV(x)5v(x)M , wherev(x) is a real-valued function ofx andM is a
constant symmetric matrix. Such potentials have been used previously in various applications~see,
for example, Ref. 26!. It is easy to prove that when the potential is diagonalizable by a constant
orthogonal matrix, then all of the amplitude matrices~as well as their inverses and hermitian
conjugates! commute with each other.

If we use potentials of this type to construct finitely periodic potentials with nonoverlapping
subpotentials, the analysis of Rozmanet al.23,24 follows in the same way for the matrix potential
problem and the expressions for the amplitude matrices are straight forward generalizations of
their results.

IV. POTENTIAL MODELS

Below we consider some potential models which lend themselves to solutions in closed form.
These models help to elucidate some of the results obtained in the previous sections.

A. Constant potential matrix

An example of a potential for which solutions can be obtained in closed form is the square-
well or square-barrier potential matrix for which

V~x!5HV0 for a<x<b where a>2R and b<R

0 otherwise,
~4.1!
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whereV0 is a real symmetricN3N matrix. The Schro¨dinger equation~2.1! is equivalent to a
first-order differential equation of the matrix functionW(x)5W(f,x) of Eq. ~A2!, i.e.,

W8~x!5F~x!W~x!, ~4.2!

where

F~x!5S 0 1

V~x!2k2 0D , ~4.3!

with the boundary conditionW(2R)5I . As we saw earlier the functionW(x) provides the
advantage of giving solutions that are linearly independent atk50. In addition, Eq.~4.2! gives us
an initial value problem, rather than the two-point boundary condition problem of the original
Schrödinger equation. Solving for the scattering amplitudes numerically is simpler for the initial
value problem. An alternative to this approach is the variable amplitude formulation which also
casts the problem into a system of first order differential equations with an initial value
condition.13,14 In principle, Eq. ~4.2! can be used to solve the Schro¨dinger equation for any
arbitrary potential matrix.

For the constant potential matrix the differential equation Eq.~4.2! can be integrated starting
at x52R over the three regions (2R,a),(a,b) and (b,R) in turn.27 The result is

W~R!5S cosk~R2b! k21sink~R2b!

2k sink~R2b! cosk~R2b!
D S coshK~b2a! K21sinhK~b2a!

KsinhK~b2a! coshK~b2a!
D

3S cosk~a1R! k21sink~a1R!

2k sink~a1R! cosk~a1R!
D , ~4.4!

whereK25V02k2. To simplify matters, but still to allow us to study a model with a potential
function without definite parity, we seta52R, so that we obtain explicit forms for the wave
functions atx5R.

f~k,R!5cosk~R2b!coshK~R1b!1k21sink~R2b!K sinhK~R1b!,

f8~k,R!52k sink~R2b!coshK~R1b!1cosk~R2b!K sinhK~R1b!,
~4.5!

x~k,R!5cosk~R2b!K21sinhK~R1b!1k21sink~R2b!coshK~R1b!,

x8~k,R!52k sink~R2b!K21sinhK~R1b!1cosk~R2b!coshK~R1b!.

These expressions can be inserted in the equations forr, r̃, t, t̃, Eqs.~2.48! to ~2.51!, to obtain the
scattering amplitudes.

Note thatK25V02k2 is a real symmetric matrix and may therefore be diagonalized by an
orthogonal transformationU, givingKD

2 5UK2UT. The diagonal matrixKD has the square root of
the diagonal elements ofKD

2 along its diagonal. ThusK5UTKDU, which is a symmetric matrix.
Consequently,f,f8,x,x8 are symmetric matrices, which leads tot5 t̃. Furthermore, since each
of the wave-function matrices or their derivatives atR is a power series~or polynomial! of the
matrix K, the wave-function matrices commute. It is not difficult to show that in the case of
b5R, i.e., when the potential function has even parity,r(k)5 r̃(k).

The threshold behaviour of the transition amplitudes for a potential lacking specific parity can
be studied explicitly with this model. Since Levinson’s theorem involves the trace of the ampli-
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tudes at zero energy, we need to consider the diagonalized forms of the amplitudes only. We
diagonalize each of the wave-function matrices of Eq.~4.5! using the same orthogonal matrix
U for each, and we denote the diagonal matrices at zero energy as

fD~0,R!5 diag~p1 , . . . ,pN!,fD8 ~0,R!5 diag~l1 , . . . ,lN!,
~4.6!

xD~0,R!5 diag~x1 , . . . ,xN!,xD8 ~0,R!5 diag~x18 , . . . ,xN8 !.

When there is no half-bound state, we obtain, by inserting these expressions into Eqs.~2.48! and
~2.51!,

r~0!5rD~0!521 and t~0!5tD~0!50. ~4.7!

When there are n half-bound states and detf8(0,R)50, we write fD8 (0,R)
5 diag(0,. . . ,0,ln11 , . . . ,lN). Using Eq.~2.13! we find that

f†8~k,x!x~k,x!2f†~k,x!x8~k,x!521. ~4.8!

In general the matricesf andx are real and for the constant potential matrix they are symmetric
as well. Thus

f8~0,R!x~0,R!2f~0,R!x8~0,R!5fD8~0,R!xD~0,R!2fD~0,R!xD8~0,R!521. ~4.9!

From this relation it follows thatxi851/pi for i51, . . . ,n, and furthermore,

rD~0!5 diagS 12p1
2

11p1
2 , . . . ,

12pn
2

11pn
2 ,21, . . . ,21D , ~4.10!

r̃D~0!5 diagS 2
12p1

2

11p1
2 , . . . ,2

12pn
2

11pn
2 ,21, . . . ,21D , ~4.11!

tD~0!5 t̃D~0!5 diagS 2p1
11p1

2 , . . . ,
2pn
11pn

2 ,0, . . . ,0D . ~4.12!

Clearly the relation~2.83! is satisfied by Eqs.~4.10! and~4.11!. For the parity-invariant potential
obtained by settingb5R in Eq. ~4.5! , f(0,R)5x8(0,R). Hencepi5xi8 for i51, . . . ,N, and it
follows thatpi

251. Such a potential therefore yields transition amplitudes of the form

rD~0!5 r̃D~0!5 diag~0, . . . ,0,21, . . . ,21! and tD~0!5 diag~61, . . . ,61,0, . . . ,0!.
~4.13!

When thei th diagonal element offD(0,x) is an even~odd! function, then thei th diagonal element
of tD(0) will have a plus~minus! sign with the one. The converse is not necessarily true.

Consider the special case ofN51. For the parity-invariant potential with a half-bound state,
one hasr(0)50 andt(0)561. The plus sign corresponds tof(0,x) being an even solution and
the negative sign to it being an odd solution. When there is no half-bound state, then
r(0)521 andt(0)50. In the case of a potential without definite parity,r(0)5 r̃(0)521 and
t(0)5 t̃(0)50 when the potential does not support a half-bound state. When there is a half-bound
state,t(0) andt̃(0) are not equal to zero, nor are ther ’s equal to21. However, the sum of the
r ’s is an integer, i.e.,r(0)1 r̃(0)50. These results, which are clearly valid for the square-well
potential, are actually valid for anyN51 potential function.
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B. Models involving delta-function potentials

We now consider two examples involving delta functions for which results can be obtained in
closed form. The results exhibit qualitative features which are also found in much more compli-
cated examples. First we examine the case of a single delta-function matrix potential positioned at
the origin. Then we will use the factorization formula derived earlier to look at the case for which
there are two delta-function matrices symmetrically positioned on both sides of the origin.

1. Delta function at the origin

We write the Schro¨dinger equation for this case as

S 2
d2

dx2
1d~x!l Dc5k2c, ~4.14!

wherel is anN3N symmetric matrix, andc can be taken to be either a column vector solution
or a solution matrix. The former approach will be used when we consider bound states and the
latter when we examine scattering solutions.

First consider the scattering solutions. Since the potential has even parity, we immediately
have the result thatr̃5r and t̃5t. Thus we need only consider the solution with the incident
wave from the left,

c~k,x!5H 1eikx1re2 ikx, x<0

teikx, x>0.
~4.15!

Here we see the utility of working directly with a matrix of column eigenvectors~as opposed to
working with individual column vectors!; r andt may be solved for directly in terms of matrix
operations. The scattering amplitudes are

r~k!5~2ik2l!21l, ~4.16!

t~k!511r~k!52ik~2ik2l!21. ~4.17!

Of particular interest to us, due to its connection with the version of Levinson’s theorem given in
Eq. ~2.43!, is the quantity Tr@r(0)1 r̃(0)#. If l21 exists, then r(0)521 and
Tr@r(0)1 r̃(0)#52 Tr@r(0)#522N, as expected. Ifl is not invertible, however, we must be a
bit more careful.

In order to determine the significance of the noninvertibility ofl, consider the bound-state
solutions of Eq.~4.14!. Settinga252k2 and insisting thata>0, we find that the column eigen-
vector for the bound state is

Cb~a,x!5HAeax, x<0

Ae2ax, x>0,
~4.18!

whereA is a normalized column matrix. By integrating Eq.~4.14! over an infinitesimal interval
including the origin, we obtain an expression between the derivatives ofCb(a,x) on both sides of
the origin, which leads to the relation

~2a1l!A50. ~4.19!

In order to avoid the trivial solution, we demand that

det~2a1l!50. ~4.20!
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The nonnegative values ofa which solve the above equation define the bound-state energies.
Clearly there is at least one half-bound state if detl50.

Returning to the scattering problem, we find that the easiest way to proceed is to first diago-
nalize the matrixl. Sincel is real and symmetric, the diagonalization can be accomplished by
using an orthogonal matrixU, so that

lD5UlU21, ~4.21!

wherelD is diagonal andUT5U21. If we now define

cD[UcU21, ~4.22!

we see that Eq.~4.14! may be rewritten as

S 2
d2

dx2
1d~x!lDDcD5k2cD . ~4.23!

The orthogonal transformation similarly transforms the boundary conditions, Eq.~4.15!, to

cD~k,x!5H 1eikx1rD~k!e2 ikx, x<0

tD~k!eikx, x>0.
~4.24!

We see here another advantage of working directly with square matrices. If we had been working
with column-vector wave functions, the transformed wave functions would have been given by
UC, so that the normalization of the incoming wave would in general have been changed.
Working withN3N wave-function matrices gives the above result that the form of the boundary
conditions is unchanged under the transformation. In fact the transformed wave function is itself
a diagonal matrix, and we essentially haveN decoupled copies of the problem with no coupling,
with ~possibly! different potential strengths.@Note that this same trick can be employed any time
the potential is of the formV(x)5v(x)M , whereM is a real symmetric matrix. Diagonalizing
M givesN decoupled systems with potentialsVi(x)5miv(x), i51,...,N, where themi are the
eigenvalues of the matrixM .#

Suppose now that detl50. Then it follows thatl has at least one zero eigenvalue. Let us
again suppose that there are in factn zero eigenvalues, so that

lD5diag~0,...,0,ln11 ,...,lN!, ~4.25!

where thel i , i5n11,...,N, are the remaining~nonzero! eigenvalues. Then the diagonalized
reflection and transmission amplitude matrices are given by

rD~k!5diagS 0,...,0, ln11

2ik2ln11
,...,

lN

2ik2lN
D ~4.26!

and

tD~k!5diagS 1,...,1, 2ik

2ik2ln11
,...,

2ik

2ik2lN
D , ~4.27!

so that

Tr@r~0!1 r̃~0!#52Tr@rD~0!#522~N2n!. ~4.28!
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Thus we see in this example how the trace ofr(0)1 r̃(0) keeps track of the number of half-bound
states in the system. In fact it is easy to verify that Levinson’s theorem holds for the coupled
system, since it holds separately for each decoupled equation of the diagonalized problem.~The
proof follows on noting that the determinant of theSmatrix is unchanged under the transformation
which diagonalizesr andt.!

It is instructive to consider the relation

2iktD
21~k!5 diag~2ik, . . . ,2ik,2ik2ln11 , . . . ,2ik2lN!, ~4.29!

which follows from Eq. ~4.27!. It demonstrates for this model that in the limit ask→0 the
expression Eq.~2.65! is real, as expected.

2. Potential with two delta functions

We now turn to a slightly more complicated example, in which there are two delta-function
matrix potentials, one atx5a and the other atx52a. The N51 version of this model was
studied by Senn.4 The Schro¨dinger equation for this case is given by

S 2
d2

dx2
1d~x1a!l1d~x2a!l̃Dc5k2c, ~4.30!

with boundary conditions

c~k,x!5H 1eikx1r~k!e2 ikx, x<2a

t~k!eikx, x>a,
~4.31!

for the wave incident from the left and

c̃~k,x!5H t̃~k!e2 ikx, x<2a

1e2 ikx1 r̃~k!eikx, x>a,
~4.32!

for the wave incident from the right. Rather than solve the Schro¨dinger equation again, we may
now simply substitute the results of the previous section into the factorization formula, Eq.~3.5!.
~Some care must be taken with the reflection amplitude matrices, for they acquire a phase when
the potential is translated. The transmission amplitude matrices are, however, unchanged.! An
evaluation of the resulting expressions yields

r~k!5~le24ika1~2ik1l!~2ik2l̃!21l̃!G21~k,a;l,l̃!l21, ~4.33!

t~k!524k2e22ika~2ik2l̃!21G21~k,a;l,l̃!l21, ~4.34!

r̃~k!5~2ik2l̃!21G21~k,a;l,l̃!~~2ik2l!l21l̃e24ika12ik1l̃!, ~4.35!

t̃~k!5tT~k!, ~4.36!

where

G~k,a;l,l̃!5~2ik2l!l21e22ika2~2ik2l̃!21l̃e2ika. ~4.37!

Let us assume for the moment that bothl21 andl̃21 exist so that the above expressions are well
defined.~For k.0, it is actually sufficient that only one or the other exists—it is possible to
rewrite the expressions so that they contain onlyl̃21 and notl21.! Performing a Taylor expan-
sion of r and r̃ for small k, we find that in the typical caser(0)5 r̃(0)521, so that
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Tr@r(0)1 r̃(0)#522N, as expected. The atypical case is defined by the condition
det(l211l̃2112a)50, which, as we shall see, is also the condition for a half-bound state.

Let us then work out the bound-state condition. This may be done in a manner similar to that
for the single delta-function case to obtain

detG~ ia,a;l,l̃!50. ~4.38!

Solutions of Eq.~4.38! with a.0 correspond to bound states. Asa→0, Eq. ~4.38! yields the
half-bound-state condition,

det~l211l̃2112a!50. ~4.39!

Alternatively, if we employ the wave functionsf andx of Sec. II C. for the model potential and
use Eq.~2.58! as the condition for the bound state, we obtain the equation

det~@~l12a!~l̃12a!2ll̃e24aa#/2a!50, ~4.40!

which in the limit asa approaches zero reduces to

det~l1l̃12all̃!50. ~4.41!

This equation is preferred over Eq.~4.39! since it is not artificially singular when one of the
inverse matrices does not exist.

Let us now consider an explicit example withN52. Since one of the two matricesl or l̃ may
always be diagonalized by an orthogonal transformation, we will letl be diagonal right from the
start. An example which gives a half-bound state fora51 is one for which

l5S 2 1
2 0

0 21
D , l̃5S 26 22

22 21D . ~4.42!

Figure 1 shows a parametric plot ofr11(k) as a function ofk in the complex plane for the cases
a50.95,a51.00, anda51.05. In the two typical cases (a50.95,1.05),r11(0)521, while for
the atypical case (a51), r11(0)50.777••• . This is then the analog of Senn’s ‘‘threshold
anomaly’’ for the generalized matrix version of his model.4 Examination of the other diagonal
reflection amplitudes yields the expected result that Tr@r(0)1 r̃(0)# is equal to24 in the typical
case and22 in the case where one half-bound state exists.

The behaviour ofr11(k) as a function ofk may strike the reader as being somewhat peculiar:
for sufficiently largek ask increases,r11(k) traces out a never-ending counter-clockwise spiral
towards the origin. A plot of the argument ofr11(0) for the three cases would show that the phase
shifts are not bounded—they keep on increasing to infinity. This peculiar feature does not exist
when there is no coupling~the phase shifts are bounded due to Levinson’s theorem!, but is a rather
generic feature ofN.1 models. The important thing to bear in mind whenN.1 is that the phase
shift which obeys Levinson’s theorem is defined as being proportional to the logarithm of the
determinant of theS matrix. This phase shift can in general be a nontrivial function of the
‘‘physical’’ phase shifts associated with the scattering amplitudes.

Figure 2 shows a plot of

f ~a,a;l,l̃!5det~@~l12a!~l̃12a!2ll̃e24aa#/2a!, ~4.43!

as a function ofa for a'1. The inset in this figure shows an expanded view of the function near
the origin for the three casesa50.95,1.00, and 1.05. In addition to the two regular bound states

6051K. A. Kiers and W. van Dijk: Coupled Schrödinger equation and Levinson’s theorem

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



that all three cases possess~neara50.5164 anda53.3508), thea51.05 case has an extra bound
state neara50.0259, and thea51.00 case has a new bound state just emerging ata50.

Finally, Fig. 3 shows a plot of the ‘‘Levinson’s theorem’’ phase shift as a function ofk for the
three cases. Clearly this phase shift is well-behaved and is bounded. As the potential ‘‘strength’’
is adjusted so that the system goes through a half-bound state the phase shift atk50 jumps by
p in two increments ofp/2.

V. DISCUSSION

In this section we make a few observations. The problem of one-dimensional coupled-
equation scattering using a representation of wave functions which have incoming waves from the
left or the right is readily solvable. Despite the advantages of a ‘‘partial wave’’ representation7,8 or
a parity-eigenstate representation2,6 for parity-invariant potential functions, our analysis~which is
valid for any potential! is quite manageable.

The use of wave function matrices~see Refs. 16 and 28 for three-dimensional scattering and
also Refs. 13 and 14 for one-dimensional scattering! rather than column-vector wave functions,
leads to simplified notation for a number of relations, e.g., the closure relation, Eq.~2.30!. One
also finds that performing a unitary transformation on the scattering wave function matrix does not

FIG. 1. Plot of the Im(r11(k)) vs the Re(r11(k)) for k50 to k55 for double delta-function matrix potential. For the
a51.05 case the curve reverses the direction of travel around the origin whenk.1.1.
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alter the normalization of the incoming waves, whereas it does for column wave functions. The
introduction of the real matrix wave function solutionsf andx has two distinct advantages. In the
first place the Schro¨dinger equation for the scattering problem can be reduced to a system of
first-order differential equations with one-point boundary conditions, Eq.~4.2!. The scattering
amplitudes~and theS matrix! are algebraic expressions of these functions evaluated atR. Fur-
thermore, unlike the solution matricesc and c̃, matricesf and x have linearly independent
columns at threshold and consequently are convenient for investigating threshold behaviour.

Our starting point with the wave functionsc and c̃, which gives the definition of the reflec-
tion amplitudesr andr̃, yields a generalized and simplified understanding of threshold behaviour.
Whereas previous work4,7 indicates that for parity-noninvariant potentials the reflection amplitude
at threshold can have noninteger values, unlike that for parity-invariant potentials, we find that
Tr@r(k)1 r̃(k)# at threshold is always an integer@see Eq.~2.83!#. The results of de Bianchi,2

however, already imply such a relation, as well as noninteger reflection amplitudes at threshold,
for some parity-noninvariant potentials with no coupling.

Finally, the phases of the reflection and transmission amplitudes of the coupled system are not
simple functions ofk, as is the case for uncoupled scattering, for which these phases satisfy the
appropriate form of Levinson’s theorem. The phaseh of the S matrix, which appears in
Levinson’s theorem, is in general a nontrivial function of the phases of the scattering amplitudes.

FIG. 2. The determinant function for the double delta-function potential graphed as a function ofa.
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Furthermore, the functionh(k) is bounded, unlike the phases of the scattering amplitudes which
are not necessarily bounded.
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APPENDIX A: SOME PROPERTIES OF SOLUTIONS OF THE SCHRÖ DINGER EQUATION

In this Appendix we determine the condition for linear independence of the solutions of the
Schrödinger equation. Consider the matrix Schro¨dinger equation

2
d2c

dx2
1V~x!c5k2c, ~A1!

wherec is theN3N solution matrix whose columns are solutions to Eq.~2.1!. Suppose we have
two such solution matrices,f and f̃ . We define a 2N32N matrix functional

FIG. 3. The phase of theSmatrix ~divided byp) of the double delta-function potential as a function ofk. Fork larger than
shown on the graph the three curves remain close to one another and approach zero ask→`.
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W~ f , f̃ !5S f f̃

f 8 f̃ 8
D , ~A2!

in which the prime indicates the derivative with respect tox. Since f and f̃ satisfy Eq.~A1! the
matrixW is a solution of the matrix equation,

W85FW, ~A3!

where

F5S 0 1

V2k2 0D . ~A4!

Lemma 1:(detW)850 for all x P (2`,`).
Proof: Let us write f and f̃ in terms of theirN-component row vectors:

f5S f 1

f 2

A

f N

D and f̃5S f̃ 1

f̃ 2

A

f̃ N

D . ~A5!

We then obtain~Ref. 27!

~detW!85det1
f 18 f̃ 18

f 2 f̃ 2

A A

f N f̃ N

f 18 f̃ 18

f 28 f̃ 28

A A

f N8 f̃ N8

2 1•••1det1
f 1 f̃ 1

f 2 f̃ 2

A A

f N8 f̃ N8

f 18 f̃ 18

f 28 f̃ 28

A A

f N8 f̃ N8

2 1det1
f 1 f̃ 1

f 2 f̃ 2

A A

f N f̃ N

f 19 f̃ 19

f 28 f̃ 28

A A

f N8 f̃ N8

2 1•••1det1
f 1 f̃ 1

f 2 f̃ 2

A A

f N f̃ N

f 18 f̃ 18

f 28 f̃ 28

A A

f N9 f̃ N9

2 .

~A6!

The firstN determinants in the sum on the right are zero because they have two equivalent rows.
In order to show that the remaining terms are also zero, we write the Schro¨dinger equation, Eq.
~A1!, as

c9~x!5M ~x!c~x!, ~A7!

whereM (x) is anN3N matrix. Furthermore we writeM (x) in terms of row vectors

M ~x!5S m1~x!

m2~x!

A

mN~x!

D . ~A8!

Then the matrix in thei th second-derivative term of Eq.~A6! may be written as
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1
f 1 f̃ 1

A A

f N f̃ N

f 18 f̃ 18

A A

f i9 f̃ i9

A A

f N8 f̃ N

2 51
1 0

mi~x!

1

�

1

0

1

�

1

2 ~W!. ~A9!

The determinant of the matrix on the right side of Eq.~A9! is zero, and consequently the
(detW)850. The detW is a constant function ofx.

Lemma 2: The solutions contained in the columns of f and f˜ are linearly independent if and
only ifdetWÞ 0 for allx P (2`,`).

Proof: First suppose that detW Þ 0. We consider a linear combination of solutions which is
equal to the trivial solution,

fh1 f̃ h̃5o for all x, ~A10!

whereh and h̃ areN-component column vectors of constants ando is theN-component zero
column vector. A similar relation holds for the derivatives off and f̃ , so that

Wc5o, ~A11!

where

c5S h
h̃
D , ~A12!

andc ando are now 2N-component column vectors. If detW Þ 0 for somex, which according to
the previous result means it is nonzero for allx, c5o and the column solutions contained inf and
f̃ are linearly independent.

Suppose now that detW50. If detW50 for somex5x0, then the system of linear equations
W(x0)c5o has a nontrivial solutionc. We form a column solution of the system of differential
equations, Eq.~A3!, w(x)5W(x)c which vanishes atx0. This is the trivial solution of Eq.~A3!;
w~x! 5 o for all x. It follows that the column solutions contained inf and f̃ are linearly dependent.

APPENDIX B: ANALYTIC PROPERTIES OF THE SOLUTION MATRICES f AND x

We consider solution matricesf(k,x) and x(k,x) of Eq. ~A1! with boundary conditions
f(k,2R)5x8(k,2R)51 andf8(k,2R)5x(k,2R)50, whereR is the range of the potential.
According to a theorem of Poincare´ an ordinary differential equation containing an entire function
of some parameter has solutions which are entire functions of the parameter provided these
solutions have boundary conditions which are independent of the parameter. We will show that
f and x are entire functions ofk, following a similar derivation for partial-wave solutions in
three-dimensional scattering.28,29
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It is straightforward to verify that the matrix functionsf and x with the given boundary
conditions are solutions of integral equations of the Volterra type,

f~k,x!51 cosk~x1R!1E
2R

x

dx8
sink~x2x8!

k
V~x8!f~k,x8! ~B1!

x~k,x!51
sink~x1R!

k
1E

2R

x

dx8
sink~x2x8!

k
V~x8!x~k,x8!. ~B2!

In order to show that each element of the solution matrices is an entire function ofk, we rewrite
Eq. ~B1! in the form

f~k,x!51 cosk~x1R!1E
2R

x

dx8E
0

x2x8
dt cosktV~x8!f~k,x8!. ~B3!

We solve Eq.~B3! by successive approximations of the form

f~k,x!5(
s50

`

f~s!~k,x!, ~B4!

where

f~s!~k,x!5E
2R

x

dx8E
0

x2x8
dt cosktV~x8!f~s21!~k,x8!, s>1

and

f~0!~k,x!51 cosk~x1R!. ~B5!

Thus

uf i j
~s!~k,x!u<E

2R

x

dx8E
0

x2x8
dtucosktu(

l
uVil ~x8!uuf l j

~s21!~k,x8!u, s>1 ~B6!

and

uf i j
~0!~k,x!u5d i j ucosk~x1R!u. ~B7!

DenotingIk for the imaginary part ofk and using the relationucosktu< coshIkt for t real, we
obtain upon iteration

uf i j
~s!~k,x!u<(

i 8 j 8
uf i 8 j 8

~s!
~k,x!u

<S sinh~2IkR!

Ik D s cosh~2IkR!E
2R

x

dx1E
2R

x1
dx2•••E

2R

xs21
dxs

3 (
i 8, j 8,l1 , . . . ,l s

uVi 8 l1~x1!uuVl1l2
~x2!u•••uVlsj 8~xs!u. ~B8!

Since the integrand is a symmetric function under the interchange of any pair (xi ,xj ),

6057K. A. Kiers and W. van Dijk: Coupled Schrödinger equation and Levinson’s theorem

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



uf i j
~s!~k,x!u<S sinh~2IkR!

Ik D s cosh~2IkR!
1

s!

3 (
i 8, j 8,l1 , . . . ,l s

E
2R

x

dx1uVi 8 l1~x1!u•••E2R

x

dxsuVlsj 8~xs!u. ~B9!

Let

M05max
i , j

E
2R

R

dx8uVi j ~x8!u,`. ~B10!

Then

uf i j
~s!~k,x!u<S sinh~2IkR!

Ik D s cosh~2IkR!
Ns12

s!
M0

s . ~B11!

Thus the series(sf i j
(s) converges absolutely and uniformly forx P @2R,R# and for every region

in the complexk plane. To determine the existence of (]f/]k) (k,x), we differentiate Eq.~B3!
with respect tok,

]f

]k
~k,x!52~x1R!1sin k~x1R!2E

R

x

dx8E
0

x2x8
dt t sin ktV~x8!f~k,x8!

1E
R

x

dx8E
0

x2x8
dt coskt V~x8!

]f

]k
~k,x8!. ~B12!

When Eq.~B4! is differentiated with respect tok it yields

]f

]k
~k,x!5(

s50

`
]f~s!

]k
~k,x!, ~B13!

where now we have

]f~s!

]k
~k,x!5E

R

x

dx8E
0

x2x8
dt coskt V~x8!

]f~s21!

]k
~k,x8! ~B14!

with

]f~0!

]k
~k,x!52~x1R!1sink~x1R!2E

R

x

dx8E
0

x2x8
dt t sinkt V~x8!f~k,x8!. ~B15!

It is not difficult to show that

U ]f i j
~0!

]k
~k,x!U

is bounded, and the convergence of series~B13! follows in the same manner as that off(k,x).
Sincef(k,x) and its derivative with respect tok exist for all k, f(k,x) is an entire function of
k. Similarly x(k,x) can be shown to be an entire function ofk.

For realk the behaviour off(k,x) andx(k,x) ask becomes very large can be determined by
iterating Eqs.~B1! and ~B2!. Thus
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f~k,x! ;
k→`

1 cosk~x1R!1
1
kE2R

x

dx8sink~x2x8!V~x8!cosk~x81R!1O~1/k2!

~B16!

and

x~k,x! ;
k→`

1
sink~x1R!

k
1

1
k2E2R

x

dx8sink~x2x8!V~x8!sink~x81R!1O~1/k3!. ~B17!
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Special-relativistic harmonic oscillator modeled
by Klein–Gordon theory in anti-de Sitter space
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It is shown that the one-particle sector of the Klein–Gordon theory in the universal
covering space of the anti-de Sitter space~CAdS! can be interpreted, in a natural
way, as a special-relativistic oscillator in Minkowski space. The quantum wave
functions have a significantly different behavior with respect to the nonrelativistic
ones. The energy spectrum coincides, up to the ground state energy, with that of the
nonrelativistic oscillator. The requirement of having the adequate nonrelativistic
limit for the special-relativistic oscillator theory turns out to be equivalent to the
imposition of the Dirichlet-type boundary condition at spatial infinity on CAdS
Klein–Gordon functions. ©1996 American Institute of Physics.
@S0022-2488~96!00112-0#

I. INTRODUCTION

The nonrelativistic oscillator is one of the simplest and most useful system in physics. How-
ever, despite its simplicity, there is not a well-established relativistic generalization in the litera-
ture. The first proposal for a special-relativistic harmonic oscillator was given by Yukawa,1 fol-
lowed by the work of Feynmanet al.2 and further developed in Ref. 3. These works are all based
on the naive covariant generalizationxmxm of the nonrelativistic potential thus leading to quantum
timelike excitations, the interpretation of which presents some difficulties. On the other hand, Itoˆ
et al.4 ~see also Refs. 5 and 6! introduced a Dirac equation which is linear in both coordinates and
momenta. In the nonrelativistic limit, the equation satisfied by the large components is that of
ordinary oscillator with a spin-orbit coupling term.

Recently a new proposal for the special-relativistic harmonic oscillator was outlined in Ref. 7
~see also Ref. 8!. It is based in the natural generalization of the symmetry algebra of quantum
operators of a relativistic free system~i.e., the Poincare´ algebra!

@Ê, x̂#52 i
\

m
p̂, @Ê, p̂#50, @ x̂, p̂#5 i\S 11

1

mc2
ÊD , ~1!

and that of a nonrelativistic harmonic oscillator~i.e., the Lie algebra of the Newton group!

@Ê, x̂#52 i
\

m
p̂, @Ê, p̂#5 imv2\ x̂, @ x̂, p̂#5 i\. ~2!

Here Ê, p̂, and x̂ are the energy~with the rest-mass energy subtracted!, momentum, and boost
operators in the center of momentum frame. The proposed symmetry for the~111! special-
relativistic oscillator was defined in terms of the unique Lie algebra which allows it to be con-
tracted to the above algebras

a!Electronic mail address: dnavarro@lie.uv.es
b!Electronic mail address: jnavarro@lie.uv.es
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@Ê, x̂#52 i
\

m
p̂, @Ê, p̂#5 imv2\ x̂, @ x̂, p̂#5 i\S 11

1

mc2
ÊD . ~3!

This Lie algebra corresponds to that of the SO~1,2! group. Related approaches can be seen in Ref.
9.

The aim of this paper is to further elaborate on this proposal. In Sec. II we shall interpret it
geometrically showing that a static~111! anti-de Sitter metric can be used to simulate a one-
dimensional special-relativistic oscillator. More precisely, we shall show that the one-particle
sector of the Klein–Gordon field theory on the universal covering space of the anti-de Sitter space
~CAdS!, with the positive frequencies defined with respect to the global timelike Killing vector,
can be interpreted in terms of a special-relativistic oscillator in Minkowski space. The results
obtained in this way can be seen as complementary to those found by group theoretical
methods10–12 for the one-dimensional oscillator.7,13 The main goal of this paper is to extend to
three spatial dimensions the proposal~3! for a ~111! special-relativistic oscillator. This will be
done in Sec. III by making use of the geometrical interpretation developed in Sec. II. Obviously,
the proper space–time of the special-relativistic oscillator theory is Minkowski space~CAdS is
just an auxiliary concept! and this should be taken into account in the interpretation of the
corresponding wavefunctions. We will show that a specific boundary condition, usually required
as a way to recover a well-defined Cauchy problem14 in AdS, is now needed to recover the
quantum mechanics of the nonrelativistic harmonic oscillator. Moreover, the adequate physical
interpretation of the special-relativistic oscillator wave functions involves some sort of Newton–
Wigner type transformation of the associated Klein–Gordon functions. In Sec. IV we shall state
our conclusions.

II. ANTI-DE SITTER SPACE AND THE ONE-DIMENSIONAL SPECIAL-RELATIVISTIC
OSCILLATOR

The basic ingredient in the proposal of Ref. 7 for a special-relativistic oscillator is the SO~1,2!
group symmetry. The Lie algebra commutators of this group can be thought of as the natural
generalization of those of the relativistic free particle and the nonrelativistic oscillator. Due to
anti-de Sitter~AdS! space is a homogeneous space of the SO~1,2! group. It is therefore natural to
regard the harmonic oscillator interaction in~111! Minkowski space as equivalent to a free
system in AdS space~more precisely, in its universal covering space, which has the topology of
R2!.15 However, this definition for a special-relativistic oscillator is incomplete. Owing to general
covariance we must specify which particular CAdS metric properly simulates the relativistic
oscillator interaction in Minkowski space. To solve this ambiguity we can resort to the nonrela-
tivistic limit. To adjust the nonrelativistic limit we have to chooseg00 as

g00511
v2

c2
x2. ~4!

Assuming now a static form for the metric, the requirement of having a CAdS geometry deter-
mines the remaining component of the metric:

ds25S 11
v2

c2
x2D c2dt22 1

11~v2/c2!x2
dx2. ~5!

The timelike geodesic trajectories of motion can be obtained from the Lagrangian

L52mcA12
1

11~v2/c2!x2
v2

c2
1

v2

c2
x2, ~6!
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wherem is the ~reduced! mass of the system. Moreover, it is easy to see that the timelike
geodesics in the metric~5! are periodic and with a period 2p/v independent of the amplitude. The
underlying SO~1,2! symmetry is realized by Poisson brackets between the three constants of
motion

C~a!5mgmn f ~a!
m dxn

dt
, ~7!

where f (a)
m , a51,2,3, are the Killing vectors of~5!.

f 1
m5~1,0!, ~8!

f 2
m5S ~v/c! x

A11~v2/c2! x2
cosvt,A11

v2

c2
x2 sin vt D , ~9!

f 3
m5S 2

~v/c!x

A11~v2/c2!x2
sin vt,A11

v2

c2
x2 cosvt D . ~10!

The Killing vectors realize the algebra~3!. Here f 1
m , f 2

m , and f 3
m lead to the energy, boost, and

momentum generators, respectively. It is also interesting to note that the periodic character of the
trajectories of motion of the oscillator can be traced back to the existence of closed timelike lines
in AdS space.

From ~6! it is straightforward to compute the Hamiltonian of the model

H25m2c41p2c21m2v2c2x212v2x2p21
v4

c2
x4p2. ~11!

Physically we can think of this Hamiltonian as the one describing the dynamics of a~special-
relativistic! harmonic oscillator system in the center of the momentum frame. The AdS symmetry
is the responsiblility of the nonlinear terms in~11!. We must remark that~11! differs essentially
from the naive definition16

~H2 1
2mv2x2!25m2c41p2c2. ~12!

In contrast with~12!, our model~11! will lead to square-integrable quantum wavefunctions. With
the standard substitutionsH→ i\]/]t, p→2 i\]/]x, x→x @we have used the same notation for
the ‘‘position’’ operator and the ‘‘boost’’ operatorx̂ of ~3!# and introducing the parametersa and
b to account for the normal ordering ambiguities of the classical function~11!:

x4p2→2\2S x4 d2

dx2
14x3

d

dx
1ax2D , ~13!

x2p2→2\2S x2 d2

dx2
12x

d

dx
1b D . ~14!

The quantum counterpart of~11! yields to
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H 1

c2
]2

]t2
2S 11

v2

c2
x2D 2 ]2

]x2
24

v2

c2
xS 11

v2

c2
x2D ]

]x

1F Smc

\ D 222b
v2

c2 G S 11
v2

c2
x2D2~a22b!

v4

c4
x2J C~x,t !50. ~15!

This equation turns out be the Klein–Gordon equation in AdS space17

S h1
m2c2

\2 1jRDf50, ~16!

whereh is the D’Alembertian operator for the AdS metric~5!, R522v2/c2 is the scalar curva-
ture, andj is a numerical factor. The equivalence is obtained through the transformation

C5
1

A11~v2/c2!x2
f, ~17!

and requires a restriction on the parametersa andb: a5j11
2 andb52j12.

It is worthwhile to remark that the transformation~17! can be understood in terms of the
Klein–Gordon scalar product in curved space~see, for instance Ref. 17!

^f1uf2&5 i E
S
dsmAggmn~f1]Jnf2* !, ~18!

whereS is the initial value hypersurface. For the line element~5! and choosingS as t50, ~18!
becomes

^f1uf2&52 i E dx

11~v2/c2!x2
~f1]J0f2* !. ~19!

For stationary states the scalar product~19! is proportional to the standardL2~R,dx! scalar product
of Schrödinger-type wavefunctions

^C1uC2&5E dxC1*C2 . ~20!

In general a sort of Newton–Wigner-type transformation is required to convert~19! into ~20!.
From now on we shall be mainly concerned with the Klein–Gordon equation although the physi-
cal wavefunctions are the Schro¨dinger-type wavefunctions verifying the equation~15!.

The D’Alembertian operator for the AdS metric~5! is

h5
1

11~v2/c2!x2
1

c2
]2

]t2
22

v2

c2
x

]

]x
2S 11

v2

c2
x2D ]2

]x2
. ~21!

To solve the Klein–Gordon equation we shall first look for positive frequency states. To find the
spatial dependence of the wavefunctions we shall further propose the ansatz

f~x,t !5e2 ilvtS 11
v2

c2
x2D 2l/2

fl~x!, ~22!

where l is an arbitrary positive parameter. The wavefunction~22! verifies the Klein–Gordon
equation~16! if the functionfl(x) satisfies the following differential equation;
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H S 11
v2

c2
x2D d2

dx2
22

v2

c2
~l21!x

d

dx
1

v2

c2
„l~l21!2N212j…J fl~x!50, ~23!

whereN5mc2/\v. In terms of the variablew52(v2/c2)x2, ~23! is a standard hypergeometric
equation

H ~12w!w
d2

dw2 1S 122S 322l DwD d

dw
2
1

4
„l~l21!2N212j)J fl~w!50. ~24!

The vanishing of the Klein–Gordon functions at infinity restricts the allowed values of thel
parameter. We obtain

l5 1
21n1g, ~25!

wheren50,1,2,..., and

g56 1
2A114N228j. ~26!

So mathematically we obtain two distinct set of states according to the positive and negative sign
of g. However, in order to obtain the nonrelativistic limit of the eigenenergies we must choose the
positive sign. Therefore the energy spectrum of the~111! relativistic oscillator is given by

En5S 121n1
1

2
A114

m2c4

\2v228j D \v. ~27!

In the limit c→` the spectrum behaves as

En→En
NR1mc2, ~28!

whereEn
NR5( 121n)\v are the standard eigenenergies of the~111! nonrelativistic oscillator. The

equation~27! makes clear the physical meaning of thej parameter. It is related with the zero-point
energy of the relativistic oscillator. The consistence of theory is related to the unitarity of the
representation of the AdS algebra~3! which only requires the positivity of the energy~27! ~see
later on in this section!. Therefore the range ofj is naturally restricted as
114(m2c4/\2v2!28j . 0.

Introducing the variablez52 i c
vx and for the discrete values~25!, the equation~23! turns out

to be the equation of Gegenbauer polynomials18

H ~12z2!
d2

dz2
2„122~n1g!…z

d

dz
2n~n12g!J fn

l~z!50. ~29!

Therefore the Klein–Gordon energy-eigenstates are

fn
g~x,t !5Nn

ge2 i ~E/\!tS 11
v2

c2
x2D 2l/2

Cn
2~n1g!S 2 i

v

c
xD , ~30!

whereNn
g are appropriate normalization constants

~Nn
g!225Ap

c

v

4n

n!

~2g!!

~2g1n!! F ~g1n!!

~g!! G2 1

g1n1 1
2

G~g11!

G~g1 1
2!
. ~31!

Let us now consider the interpretation of the solutions of the wave equations~15! and/or~16!.
It is well known that the Klein–Gordon wavefunctions—with the scalar product~18!—cannot be
interpreted as probability density amplitudes. The definition of ‘‘position’’ observable is problem-
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atical, even for the free relativistic particle.19 One has to introduce a new field—representing the
same abstract state—with respect to which the scalar product takes theL2-form ~see, for instance,
Refs. 20 and 21!.

A positive-frequency solution of the Klein–Gordon equation@with the energy spectrum~27!#
is given by

f~x,t !5 (
n50

`
1

A2En /\
c̃nfn

g~x!e2 iEnt/\, ~32!

wherec̃n are complex numbers. The inner product on these states is

ifi25 (
n50

`

uc̃nu2. ~33!

Given the state$c̃n%P l 2, one can define the Newton–Wigner field20

fNW~x,t !5 (
n50

`

c̃nfn
g~x!e2 iEnt/\, ~34!

with respect to which the scalar product turns out to be

ifNWi25E
2`

1`

ufNW~x,t !u2r~x!dx, ~35!

where r(x)5„11(v2/c2)x2…21. Since our special-relativistic oscillator lies in flat Minkowski
space,ufNWu2 cannot be properly interpreted as a probability density in position space and a further
transformation is required. Defining now the ‘‘Schro¨dinger’’-type wavefunction

C~x,t !5 (
n50

`
c̃n

A11~v2/c2!x2
fn

g~x!e2 iEnt/\5
1

A11~v2/c2!x2
fNW~x,t !, ~36!

the inner product takes now the adequate form~20!

iCi25E
2`

1`

uC~x,t !u2dx ~37!

to properly interpretuC(x,t) u2 as the probability density for observations ofx at timet. Therefore,
both the Newton–Wigner and Schro¨dinger-type states are~generalized! eigenfunctions of the
position operatorx̂ ~x̂fNW5xfNW!. In analogy with the analysis of Ref. 19 we can push down this
action on the solution space. In our case this leads to a complicated expression in terms of the
enveloping algebra of the AdS Lie algebra.

The normalized energy-eigenstates represented by Schro¨dinger wave functions are

Cn
g~x,t !5Nn

ge2 i ~E/\!tS 11
v2

c2
x2D 2~l11!/2

Cn
2~n1g!S 2 i

v

c
xD , ~38!

with the orthonormality relations
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^Cn
guCm

g &5Nn
gNm

g E
2`

` dx

11~v2/c2!x2 S 11
v2

c2
x2D 2~112g1n1m!/2

•Cn
2~n1g!S 2 i

v

c
xDCm

2~m1g!S 2 i
v

c
xD5dnm . ~39!

We must stress that the Hermite polynomialsHn~z!, wherez 5 Amv/\ x, are naturally recovered
in the nonrelativistic limit

lim
c→`

i nn!

Nn/2 Cn
2~n1g!S 2 i

z

AND 5Hn~z!. ~40!

We also have

lim
c→`

Nn

~n! !2
~Nn

g!25Amv

\p

1

n!2n
, ~41!

where the rhs of~41! has the normalization constants of the Hermite polynomials. Therefore, the
lhs of ~40!, without the limit, can be seen as a relativistic generalization of the Hermite polyno-
mials. In fact, it is not difficult to check that they are proportional to the so-called relativistic
Hermite polynomials of Refs. 7, 13, and 22.

We would like to remark at this point that, although the expression~38! allows us to show the
proper nonrelativistic limit of the relativistic wave functions, the formula~39! is not the standard
orthogonality relation for the Gegenbauer polynomials. However, introducing a new variabley
5 @(v/c)x#/A11(v2/c2)x2 P @ 2 1, 1#, and using the following relation between Gegenbauer
polynomials,

Cn
2~n1g!S 2 i

v

c
xD 5 i n2n

~2g!! ~g1n!!

~g!! ~2g1n!! S 11
v2

c2
x2D n/2Cn

g11/2S ~v/c!x

A11~v2/c2!x2
D , ~42!

the expression~39! can be converted into the standard orthogonality relation18

^Cn
guCm

g &5Nn
gNm

g c

v
2~n1m!S ~2g!!

~g!! D 2 ~g1n!! ~g1m!!

~2g1n!! ~2g1m!!

•E
21

1

dy~12y2!gCn
g11/2~y!Cm

g11/2~y!5dnm . ~43!

This result can be used to characterize immediately the HilbertH space of the theory. The
completeness theorem~see, for instance Ref. 23! for the orthogonal polynomials of compact
support in the space of square-integrable functions implies that the set of wavefunctionsCn

g

provides an orthonormal basis for the Hilbert spaceH[L2([21,1],(c/v)[1/(12y2)3/2]dy)
'L2~R,dx!.

To finish this section we shall consider the construction of the quantum physical operators.
One is tempted to propose the Killing vectors

Ĉ~a!5 i\ f ~a!
m ]

]xm , ~44!
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acting on Newton–Wigner functionsfNW ~they are solutions of the invariant Klein–Gordon
equation!, as the quantum operators associated to the classical observables~7!. The operatorsĈ(a)
do not leave invariant the measuredm5dx/[11(v2/c2)x2]5r(x)dx of the scalar product~35!

^f1NW
uf2NW

&5E dmf1NW
* f2NW

. ~45!

Therefore, the representationg→U(g) defined by

U~g!fNW~x,t !5fNW„g
21~x,t !…, ~46!

whereg(x,t) is the finite group action in the space–time, is not unitary. Nevertheless, the repre-
sentation defined by

U~g!fNW~x,t !5S dmg

dm D 1/2fNW„g
21~x,t !…, ~47!

wheredmg/dm is the Radon–Nikodim derivative ofmg with respect tom, is unitary. A straight-
forward calculation leads to the following expression;

U~g!fNW~x,t !5A11x82

11x2
fNW„g

21~x,t !…, ~48!

where (x8,t8)[g(x,t). This corrects the expression of the operators~44! and then the proper
quantum operators acting onfNW(x,t) read as

Ĉ15 i\
]

]x0
, ~49!

Ĉ25 i\
~v/c!x

A11~v2/c2!x2
cosvt

]

]x0
1 i\A11

v2

c2
x2 sin vt

]

]x

1 i\ ~v/c! x

A11~v2/c2!x2
sin vt

]

]fNW
, ~50!

Ĉ35 i\
2~v/c!x

A11~v2/c2!x2
sin vt

]

]x0
1 i\A11

v2

c2
x2 cosvt

]

]x

1 i\
~v/c!x

A11~v2/c2!x2
cosvt

]

]fNW
. ~51!

Finally, the transformation~36! allows us to obtain the action of the quantum operators on the
physical~relativistic oscillator! wavefunctionsC.

In conclusion, the Schro¨dinger wavefunctions~38! provide an orthonormal basis of the carrier
space for unitary, lowest-weight representations of the symmetry algebra so~1,2!. Moreover, the
lowest-weight representation of the so~1,2! algebra are characterized by a unique parameter,24

E0/\v51
21g in our case, and, therefore, our Hilbert space construction is unique, up to unitary

equivalence, if we assume the existence of a ground state~i.e., a lowest weight state!. Finally we
want to comment on the issue of the zero-point energy. For the~111! relativistic oscillator we
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haveE0/\v.1
2. This means that not all the lowest-weight representations~E0/\vP@0,1`#! can be

realized physically. The natural barrierE0/\v51
2 corresponds to the so-called Mock

representation.24

III. THE THREE-DIMENSIONAL SPECIAL-RELATIVISTIC OSCILLATOR

In this section we shall extend our study of the one-dimensional special-relativistic oscillator
to the three-dimensional case. To this end we shall first find out the appropriate form of the~113!
metric. Imposing the nonrelativistic limit and assuming the static form for the metric and the
spherical symmetry of the~113! AdS space we can write

ds25S 11
v2

c2
r 2D c2dt22F~r !dr22G~r !~du21sin2 udw2!, ~52!

where 0<u <p and 0<w <2p are the usual spherical coordinates. Moreover, to recover the
one-dimensional oscillator when the angular coordinates are frozen we have to choose the function
F(r ) as follows:

F~r !5
1

11~v2/c2!r 2
. ~53!

Imposing now the anti-de Sitter geometry we find that the appropriate line element should read as

ds25S 11
v2

c2
r 2D c2dt22 dr2

11~v2/c2!r 2
2r 2~du21sin2 udw2!. ~54!

The geodesics of~54! can be derived from the Lagrangian

L52mcA11
v2

c2
r 22

v2

c2
1

v2

c4
~x–v!2

11~v2/c2!r 2
, ~55!

and, according with our scheme, we can view the above Lagrangian as defining a three-
dimensional special-relativistic oscillator in Minkowski space. The SO~3,2! symmetry~i.e., the
generalisation of the three-dimensional Poincare´ and Newton algebras!,

@Ê, x̂i #52 i
\

m
p̂i , @Ê, p̂i #5 imv2\ x̂i , @ x̂i , p̂ j #5 i\S 11

1

mc2
ÊD d i j ~56!

~we have omitted the rotation generators!, can be realized now by the Killing vectors of~54!.
The next step now is to compute the Hamiltonian. We obtain

H25S 11
v2

c2
r 2D „m2c41p2c21v2~x–p!2…. ~57!

As in the one-dimensional oscillator it is not difficult to test that the wave equation associated with
the Hamiltonian~57! can be transformed, with a particular normal-ordering prescription, into a
Klein–Gordon equation. Introducing the parametersa, b, h, and % for the operator ordering
ambiguities of the classical function~57!,

xi
4pi

2→2\2S xi4 ]2

]xi
2 14xi

3 ]

]xi
1axi

2D , ~58!
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xi
2pi

2→2\2S xi2 ]2

]xi
2 12xi

]

]xi
1BD , ~59!

xi
3pi→2 i\S xi3 ]

]xi
1hxi

2D , ~60!

xipi→2 i\S xi ]

]xi
1% D , ~61!

the Schro¨dinger equation leads to the Klein–Gordon equation in AdS space with metric~54!
(R5212v2/c2). The Schro¨dinger and Newton–Wigner-type wavefunctions are related by

C5
1

A11~v2/c2!r 2
fNW . ~62!

The normal ordering parameters are then fixed as

a5
11

2
18j, b5

1

2
12j, h5

3

2
, %5

1

2
. ~63!

So, there is only one free parameter left, which is essentially the curvature factorj.
Now we want to solve the corresponding Klein–Gordon equation. The D’Alembertian opera-

tor is given by

h5
1

11~v2/c2!r 2
1

c2
]2

]t2
22

v2

c2
r

]

]r
2S 11

v2

c2
r 2D 1

r 2
]

]r S r 2 ]

]r D1
L2

r 2
, ~64!

whereL2 is the orbital angular momentum operator

L252
1

sin u

]

]u S sin u
]

]u D2
1

sin2 u

]2

]w2 . ~65!

Separation of variables and an ansatz analogous to that of~22! leads to the following set of
positive frequency modes:

f~x,t !5e2 ilvtYm
l ~u,w!S 11

v2

c2
r 2D 2l/2

r lf l
l~r !, ~66!

whereYm
l ~u,w! are the spherical harmonics and the functionsf l

l(r ) are required to verify the
equation

H S 11
v2

c2
r 2D d2

dr2
22

v2

c2
r ~l2 l22!

d

dr
12

l11

r

d

dr

1
v2

c2
„l~l22l23!1 l ~ l13!2N2112j…J f l

l~r !50. ~67!

In terms of the variabler52(v2/c2)r 2, the above equation turns out to be a hypergeometric
differential equation
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H ~12r!r
d2

dr2
1S l1 3

2
2S l1 5

2
2l D r D d

dr
2
1

4
„l~l22l23!1 l ~ l13!2N2112j…J f l

l~r!50.

~68!

The ordinary regularity condition at the origin and the square integrability of the functions yield to
the following energy spectrum~l5E/\v!:

En5S 3212n1 l1
1

2
A914

m2c4

\2v2248j D \v, ~69!

wheren,l50,1,2,3,... . We have chosen the positive sign of the square root of~69! (g 5 1 1
2

3 A914N2248j) to fit the nonrelativistic approximation

En ——→
c→`

En
NR1mc2, ~70!

whereEn
NR5( 3212n1 l )\v is the ordinary energy spectrum of three-dimensional nonrelativistic

oscillator. The range ofj is now restricted as 914N2248j . 0.
We must mention at this point that the choice of the positive sign of the square root of~69!

parallels the Dirichlet-type boundary conditions imposed on the solution of the Klein–Gordon
equation on the Einstein static universe in 113 dimensions associated with AdS space14 ~see also
Ref. 25 for the 112 case!. The negative sign corresponds to the Newmann boundary condition.
Both boundary conditions allow us to solve the problem of the lack of global hyperbolicity in the
standard AdS theory. However, in our relativistic oscillator interpretation the Dirichlet-type
boundary condition emerges as the natural one to properly recover the quantum nonrelativistic
oscillator.

For the values~69! the regular hypergeometric functions solving~68! are

fnl
l~r !52F1S 2n,n1 l1

3

2
2l,l1

3

2
;2

v2

c2
r 2D . ~71!

Rewriting the dimensionless parameter (v2/c2)r 2 as (mv/\N)r 2, it is easy to check that, in the
limit c→`, the functions~71! become the confluent hypergeometric ones appearing in the non-
relativistic wavefunctions

lim
c→`

2F1S 2n,n1 l1
3

2
2l,l1

3

2
;2

mv

\

r 2

N D51F1S 2n,l1
3

2
;
mv

\
r 2D . ~72!

Taking into account the relation of Jacobi polynomials with the hypergeometric functions18

2F1~2n,n1a1b11,a11;z!5
n!

~a11!n
Pn

~a,b!~122z!, ~73!

we obtain the following set of wavefunctions

Cnlm
g ~x,t !5Cnl

g e2t~E/\!tYm
l ~u,w!S 11

v2

c2
r 2D 2~l11!/2

r lPn
@ l11/2,2l#S 112

v2

c2
r 2D . ~74!

whereCnl
g are appropriate normalization constants

~Cnl
g !225

1

2~v/c!2l13~2l13!

G~g1n11!G~n1 l1 3
2!

n!G~2n1 l1 3
21g! G~n1 l1 3

21g!
, ~75!
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with respect to the scalar product

^Cnls
g uCml8s8

g &5Cnl
g Cml8

g E
21

1 E
0

2pE
0

`

d~cosu!dw
r 2dr

11~v2/c2!r 2

•S 11
v2

c2
r 2D 2~312g1n1~m!12l12l 8!/2

r ~ l1 l 8!Ys
l ~u,w!Ys8

l 8 ~u,w!

•Pn
@ l11/2,2l#S 112

v2

c2
r 2DPm

@ l 811/2,2l#S 112
v2

c2
r 2D . ~76!

Observe that the polynomialsPn
[ l11/2,2l] have the appropriatec→` limit

lim
c→`

Pn
@ l11/2,2l#S 112

mv

\

r 2

N D5Ln
~ l11/2!Smv

\
r 2D , ~77!

where Ln
( l11/2) are the generalized Laguerre polynomials. To illustrate our special-relativistic

generalization of them we give the first few polynomials

P0
@ l11/2,2~ l13/21g!#S 112

z2

N D51, ~78!

P1
@ l11/2,2~ l15/21g!#S 112

z2

N D5S l1 3

2D22
g

N
z2, ~79!

P2
@ l11/2,2~ l17/21g!#S 112

z2

N D5
1

2 S l1 3

2D S l1 5

2D2
1

2

g~ l1 5
2!

N
z21

1

8

g~g11!

N2 z4. ~80!

Although the relation~73! leads to a set of polynomials with the appropriate nonrelativistic
limit, the scalar product~76! is not the standard orthogonality relation of the Jacobi polynomials.
However, introducing an alternative relation between the hypergeometric functions and the Jacobi
polynomials

2F1S 2n,2n2a,b11;
x11

x21D5
n!

~b11!n S 2

x21D
n

Pn
~a,b!~x!, ~81!

we can rewrite the wavefunctions as

Cnlm
g ~x,t !5Cnl

g e2 i ~E/\!tYm
l ~u,w!•S 11

v2

c2
r 2D 2~l11!/21n

r lPn
@g,l11/2#S 211~v2/c2!r 2

11~v2/c2!r 2 D .
~82!

In terms of the new variablex5[211(v2/c2)r 2]/[11(v2/c2)r 2]P@21,1#, the scalar product
~76! turns out to be

^Cnls
g uCml8s8

g &5Cnl
g Cml8

g 22~g1 l15/2!S v

c D 2~2l13!

d l l 8dss8

•E
21

1

dx~12x!g~11x! l11/2Pn
@g,l11/2#~x!Pm

@g,l11/2#~x!. ~83!
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As in the ~111! case, we observe again that the inner product~83! reproduces the standard
orthogonality relation for Jacobi polynomials. The completeness theorem for orthogonal polyno-
mials implies that statesCnlm

g constitutes an orthonormal basis for the Hilbert space
L2„R3,r 2drdwd~cosu!…. Finally we would like to remark that the irreducible representations of the
~113! AdS algebra are determined up to equivalence by two parameters:26 the lowest eigenvalue
of the Hamiltonian and the spin of the particle. Since we are dealing with a spinless particle our
construction is uniquely characterized by the ground state energy.

IV. CONCLUSIONS AND FINAL COMMENTS

In this paper we have provided a physical interpretation of the one-particle sector of the
Klein–Gordon theory in terms of a special-relativistic oscillator in Minkowski space. The system
is exactly solvable and leads to radial energy eigenfunctions composed of a weight-function

S 11
v2

c2
r 2D 2~3/212n111~1/2!A914~m2c4/\2v2!248j11!/2

, ~84!

reducing to the Gaussian onee2(1/2)(mv/\)r2 in the limit c→`, and a polynomial

r lPn
@ l11/2,2l#S 112

v2

c2
r 2D , ~85!

going to its nonrelativistic counterpart.
We observe from the expression~84! that the probability density for the relativistic oscillator

is less confined in the classical region than the corresponding one of the nonrelativistic oscillator.
It penetrates more appreciably in the classically forbidden region. This can be understood in terms
of the behavior of the null geodesics in AdS. They go to infinity in a finite lapse of the coordinate
time t used in the metrics~5! and~54!. So, that, in the limitN50, the geodesics are not confined
in a finite region of space and this fact is partially reflected by the asymptotic behavior of the wave
functions. Despite this, the spacing of the energy levels is identical to the nonrelativistic one.
However, for the ground state energy we have

E05\v~ 3
21

1
2A914N2248j!, ~86!

representing some sort of mixing between the nonrelativistic zero-point energy3
2\v and the

relativistic rest mass energy. The mixing is just parametrized by the curvature factorj.
It is remarkable that the lack of global hyperbolicity of AdS space is physically incorporated

by choosing those solutions with the adequate nonrelativistic limit. This way of truncating the
space of solutions, which is natural in our special-relativistic oscillator theory, turns out to be
equivalent to the imposition of the Dirichlet-type boundary condition at infinity.

Another point which merits some comment is the question of how to extend our approach to
spinning particles. When dealing with spin12 particles one could construct the corresponding wave
equation by means of Dirac equation in the AdS background, i.e.,

~ igm~]m2Gm!2mc/\!C50, ~87!

wheregm5ea
mga are the Dirac matrices in AdS space~ea

m are the vierbeins! andGm is the spin
connection. Using the identity

Rmnsrgmgngsgr522R, ~88!

whereRmnsr is the Riemann curvature tensor, it is not difficult to see that the Dirac equation~87!
implies a Klein–Gordon equation withj51

4:
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S h1Smc

\ D 21 1

4
RDC50. ~89!

The term 1
4 R plays the role of the standard spin-dependent term (q/2)Fmnsmn which appears

when coupling the Dirac field with an electromagnetic potential. Note that this term is now
diagonal in the spin components and then the energy spectrum should be similar to that of the
spinless oscillator.

ACKNOWLEDGMENTS

J. Navarro-Salas would like to thank V. Aldaya and J. Guerrero for valuable discussions.

1H. Yukawa, Phys. Rev.91, 416 ~1953!.
2R. P. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev. D3, 2706~1971!.
3Y. S. Kim and M. E. Noz, Am. J. Phys.46, 480 ~1978!; Theory and Applications of the Poincare´ Group ~Reidel,
Dordrecht, 1986!; Y. S. Kim and E. P. Wigner, Phys. Rev. A38, 1159~1988!.
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Prepotential of N52 SU(2) Yang–Mills gauge theory
coupled with a massive matter multiplet
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We discuss theN52 SU~2! Yang–Mills theory coupled with a massive matter in
the weak coupling. In particular, we obtain the instanton expansion of its prepo-
tential. Instanton contributions in the mass-less limit are completely reproduced.
We study also the double scaling limit of this massive theory and find that the
prepotential with instanton corrections in the double scaling limit coincides with
that ofN52 SU~2! Yang–Mills theory without matter. ©1996 American Institute
of Physics.@S0022-2488~96!04511-2#

I. INTRODUCTION

As is well-known, low energy properties ofN52 supersymmetric Yang–Mills gauge theory
are dominated by a holomorphic function~prepotential! and were recently studied by Seiberg and
Witten.1,2 In particular, they showed that the quantum moduli space was described by a kind of
special geometry3 and identified the quantum moduli space ofN52 SU~2! Yang–Mills theory
without matter with the moduli space of a certain elliptic curve. Though they did not explicitly
calculate the prepotential with instanton corrections, they qualitatively discussed the monopole
and dyon masses, the metric on the quantum moduli space and a version of Olive–Montonen
electric-magnetic duality and found that the strongly coupled vacuum turned out to be a weakly
coupled theory of monopoles.

After the discovery of Seiberg and Witten,1,2 generalizations for other gauge group theories
coupled with or without several matters4–9 have been discussed. The instanton expansion of the
prepotential for pure SU~2! and SU~3! theories6 and SU~2! theory with mass-less matters10 have
been found, but prepotentials of the massive SU~2! thories have not been established quantitatively
so far. For this reason, we can not say that the non-perturbative aspects of quantum moduli space
have been understood in detail even for the case ofN52 SU~2! Yang–Mills theory when massive
Nf matters

11 are introduced. In fact, instanton calculations for massive theory do not seem to be
discussed in the literature. Thus we will study the quantum moduli spaces ofN52 SU~2! Yang–
Mills gauge theories coupled with massive matters in this and subsequent papers.12 In particular,
we will study the quantum moduli space ofN52 SU~2! Yang–Mills theory coupled with a
massive matter at weak coupling in this paper.

The paper organizes as follows. In the next section, we derive the Picard–Fuchs equation for
massiveNf51 N52 SU~2! Yang–Mills theory and discuss the property of its solutions. It is
noteworthy that the order of the differential equation is three in contrast with that of the mass-less
theory whose order of the Picard–Fuchs equation is two. We also obtain the monodromy matrix
near the weak coupling limit. In Sec. III, we derive the prepotential and its instanton expansion.
The result coincides with the previous result10 if the matter is mass-less. Considerations on double
scaling limit of theNf51 massive theory are done in Sec. IV. We will see that we can reproduce
the instanton expansion of theNf50 theory. Section V is a summary.

II. THE PICARD–FUCHS EQUATION

Quantum moduli space ofNf51, N52 SU~2! Yang–Mills theory can be described by a kind
of hyperelliptic curve

0022-2488/96/37(12)/6074/12/$10.00
6074 J. Math. Phys. 37 (12), December 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



y25~x22u!22L1
3~x1m!, ~2.1!

and the meromorphic 1-form13 which is given by

l15
&xdx

4p iy F x22u

2~x1m!
22xG , ~2.2!

wherex, yPC, u is the gauge invariant parameter,L1 is the dynamical mass scale of this theory
andm is the bare mass of the hypermultiplet.9 Formulation by an elliptic curve can also be found.2

This curve has four branching points. In particular, near the weak coupling limit~u5`!, they
will be

x152Au2
iL1

3/2

2u1/4
1
iL1

3/2m

4u3/4
1...,

x252Au1
iL1

3/2

2u1/4
2
iL1

3/2m

4u3/4
1...,

~2.3!

x35Au2
L1
3/2

2u1/4
2

L1
3/2m

4u3/4
1...,

x45Au1
L1
3/2

2u1/4
1

L1
3/2m

4u3/4
1... .

Since we can take the cuts to run fromx1 to x2 andx3 to x4, we may identify this curve as a genus
one Riemann surface, as shown in Fig. 1. We then identifya-cycle as a loop going around the cut
from x4 to x3 counterclockwise andb-cycle from x3 to x2. As is obvious from the figure, the
intersection of these cycles isaùb51.

Now we can define periodsa(u),aD(u) of l1 by

a~u!5 R
a
l1 , ~2.4!

aD~u!5 R
b
l1 . ~2.5!

a(u) is identified with the scalar component of theN51 chiral multiplet andaD(u) is its dual. We
are interested in their evaluation, but it is not so easy to accomplish it exactly. So we take a
method of the Picard–Fuchs equation. It is given by

FIG. 1. The hyperelliptic curve as a genus 1 Riemann surface.
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d3P1

du3
1
3D1~m!1D18~m!~4m223u!

D1~m!~4m223u!

d2P1

du2

2
8@4~2m223u!~4m223u!13~3L1

3m24u2!#

D1~m!~4m223u!

dP1

du
50, ~2.6!

where

D1~m!527L1
61256L1

3m32288L1
3mu2256m2u21256u3, ~2.7!

andP15*g l1, g is a suitable 1-cycle andD18 5 dD1 /du. Note thatD1(m) is the discriminant of
the curve~2.1!. It is easy to find that~2.6! has no symmetry over theu-plane and the mass plays
a role to break the symmetry. Equation~2.6! has obviously regular singular points which are
solutions toD1(m)50 and 4m223u50. These singular points correspond to mass-less states.
Since we are going to treat only weak coupling limit in this paper, we do not discuss the behaviour
of the moduli space near these singular points, but they should be discussed elsewhere. We have
checked that~2.6! can also be obtained as a result of the double scaling limit of the Picard–Fuchs
equation of the massiveNf52 theory.12

In the case of mass-less limit~m→0!, this third order differential equation reduces to the
second one,

d3P1

du3
2

D1~0!2D18~0!u

D1~0!u

d2P1

du2
1

64u

D1~0!

dP1

du
50, ~2.8!

i.e.,

~27L1
61256u3!

d2P1

du2
164uP150, ~2.9!

where we set the integration constant as 0 because it can be shown directly. This equation has
already been obtained and solved.10

The mechanism of this reduction is explained as follows. When the matter is massive,l1 will
acquire an extra simple pole corresponding tox52m in contrast with the mass-less case. At first
sight, even ifm50, l1 seems to have a pole atx50, but the locus of the pole can be canceled out
between denominator and numerator ofl1. Accordingly, in general, the number of poles of
massive meromorphic 1-form is equal to that of the mass-less meromorphic 1-form plus 1. Since
the differentiation reduces the order14 by 1, the reduction will require one step more whenl1 is
massive. Therefore the order of the differential equation which the periods ofl1 should satisfy
will increase one more than that of mass-lessl1, i.e., the order will be three and this observation
is consistent with~2.6! and ~2.9!.

In order to get the solutions to~2.6! nearu5`, we takez51/u. After this change of variable,
we use Frobenius’s method. Then we find that its indicial equation has three roots, i.e., 0,21/2,
21/2 ~double roots!. The solutionr0(z) corresponding to the index 0 is in fact trivial, i.e., it is a
constant,

r0~z!5e. ~2.10!

However, this constante may depend onL1 orm and will be determined below. Geometrically,e
corresponds to the residue contribution of the pole of the meromorphic 1-form. Of course,e must
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vanish in the mass-less limit because the mass-less theory does not have such a pole. Thuse is a
function of the mass. On the other hand, there are two independent solutions corresponding to the
index21/2. One of them is

r1~z!5z21/2(
i50

`

aiz
i , ~2.11!

where the first several expansion coefficientsai are given in appendix A. We find thatan can be
represented by a polynomial ofL1

3imj with 2n53i1 j , where i and j are some non-negative
integers. The other solution behaves logarithmically. It is

r2~z!5r1~z!ln z1z21/2(
i51

`

biz
i , ~2.12!

where the first several coefficientsbi are given in appendix B. Note thatbn can also be represented
by a polynomial ofL1

3imj with 2n53i1 j . But this time, non-negative integersi and j must move
over all combinations.

Since we would like to geta(u) andaD(u), let us consider whether we can express them as
linear combinations ofr0, r1 andr2. First, in order to see an asymptotic behaviour ofa(u) near
u5`, we must calculate the lower order expansion of the integral~2.4!. This is done in appendix
C. Making a comparisonr1 andr0 with ~C4!, we can see that

a~u!5nr0~z!1
r1~z!

&

, ~2.13!

where we identified

r0~z!52
&

4
m. ~2.14!

It is easy to find thata(u) can be expressed by a hypergeometric function in the mass-less limit.10

aD(u) can be written as a linear combination ofr0, r1 andr2 by comparison it with~C7!,

aD~u!5Ar2~z!1Br1~z!1n8r0~z!, ~2.15!

where

A52
i3&

4p
, B5

i&

4p
c, ~2.16!

andc52618 ln 22ip26 lnL1.
From these explicit expressions for the periods, we can easily find that the monodromy matrix

nearu5` acts to the three objectst(aD ,a,e) as

S aDa
e
D→S 21 3 2n823n

0 21 2n

0 0 1
D S aDa

e
D . ~2.17!
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Note that the monodromy matrix is now quantized by the winding numbern andn8. Since these
winding numbers are arbitrary, we may say that there are ‘‘many’’ monodromy matrices near
u5`. This observation will be valid even near the regular singular points.

III. PREPOTENTIAL

Let us try to construct the prepotentialF 1 which is a solution to the following differential
equation

aD~u!5
dF 1

da
, ~3.1!

but we use a new variableã5a2ne for convenience. For that purpose, first, we must expressu
as a series ofã. We can easily get it from~2.13!, i.e.,

u52ã 21
L1
3m

16ã 22
3L1

6

2048ã 4 1
5L1

6m2

4096ã 62
7L1

9m

65536ã 8 1
1

ã 10 S 153L1
12

67108864
1
9L1

9m3

131072D
2

715L1
12m2

67108864ã 121
1

ã 14 S 1131L1
15m

2147483648
1
1469L1

12m4

268435456D 2
1

ã 16 S 1155L1
18

137438953472

1
2625L1

15m3

2147483648D 2
1

ã 18 S 667879L1
18m2

1099511627776
1
148819L1

15m5

17179869184D 1... . ~3.2!

Inserting~3.2! into ~2.15! and integrating it overã, we can obtain the prepotential

F 15
i ã 2

p F34 lnS ã

L1
D 21 3

4 S 211
c

3
1 ln 2D 2

&p

4i ã
n8m2

m2

4ã 2 ln ã1(
i52

`

F i
1ã 22i G ,

~3.3!

where the first several coefficientsF i
1 are recorded in appendix D. Note thatF n

1 is expressed
again by a polynomial ofL1

3imj with 2n53i1 j . We can find that our result~3.3! is consistent
with the mass-lessNf51 theory10 whenm50. It is interesting to note that~3.3! has a curious term
proportional to~ln ã !/ã 2 in the brackets. However, we can find that15

F s
15S ã2

m

&

D 2 lnS ã2
m

&

D 1S ã1
m

&

D 2 lnS ã1
m

&

D
52ã 2 ln ã1m2 ln ã1

3

2
m22

m4

24ã 22
m4

240ã 42••• . ~3.4!

Thus we may rewrite~3.3! as

F 15
i ã 2

p F34 lnS ã

L1
D 21 3

4 S 211
c

3
1 ln 2D 2

&p

4i ã
n8m2

1

4ã 2 F s
11

1

2
ln ã1

3m2

8ã 2

1(
i52

`

F̃ i
1ã 22i G , ~3.5!

whereF̃ i
1 is theL1 dependent part ofF i

1.
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IV. DOUBLE SCALING LIMIT

In this section, we examine the double scaling limit of the massiveNf51 theory discussed in
previous sections.

To begin with, let us discuss the Picard–Fuchs equation. Since theNf51 curve turns to the
Nf50 curve in the double scaling limit~m→`, L1→0,mL1

35L0
4 fixed, whereL0 is a dynamical

parameter of theNf50 theory!, in other words,N52 SU~2! Yang–Mills theory is considered as
a low energy theory of the massiveNf51 theory,2 we may expect that~2.6! reduces to the
Picard–Fuchs equation of theNf50 theory. In fact, we find that~2.6! in the double scaling limit
is given by

d3P1

du3
1
3•256m2~L0

42u2!22•256m2u•4m2

256m2~L0
42u2!•4m2

d2P1

du2
2

32•8m4

256m2~L0
42u2!•4m2

dP1

du
50,

~4.1!

i.e.,

d2P1

du2
2

1

4~L0
42u2!

P15constant. ~4.2!

Equation~4.2! shows the globalZ2 symmetry over theu-plane. At first sight, this can be seen as
the Picard–Fuchs equation ofN52 SU~2! Yang–Mills theory without matter.6,16 However, we
can not say thatP1 also reduces to that ofNf50 Picard–Fuchs equation because there is no reason
why the relation

P1~u,m,L1! ——→
double scaling limit

P0~u,L0! ~4.3!

should hold, whereP0 is a representative of theNf50 period integral. So we can not insist that the
integration constant on the right hand side of~4.2! must be 0.

More precisely speaking, the meromorphic 1-forml1 in the double scaling limit will behave
as

l1→
&xdx

4p i ỹ Fx22u

2m S 12
x

m
1

x2

m22••• D22xG
5
&x~x22u!dx

8p imỹ S 12
x

m
1

x2

m22••• D2
&x2dx

2p i ỹ
, ~4.4!

whereỹ 25(x22u)22L0
4 is the curve for theNf50 theory. The first term in the last expression

is an ‘‘extra’’ 1-form which depends on the massm while the second is nothing other than the
meromorphic 1-form of theNf50 theory. Therefore, naively speaking, the solutions to~2.6!
consist of the contributions originating from this extra 1-form andl0, in the double scaling limit.
In fact, ~2.10! and~2.12! diverge to infinity in the double scaling limit as is easy to find. Accord-
ingly, when we discuss the low energy version ofNf51 theory, we must carefully treat~4.3!.
Thoughr0, r1 andr2 are indeed solutions to~2.6! for finite L1 andm, nothing gives an assurance
that they constitute fundamental solutions even for infinitely largeL1 or m. Recall that we have
obtained the solutions to~2.6!, assuming thatL1 andm are finite. Consequently, there must be a
gap betweenP1 in the double scaling limit andP0. This gap will appear as divergence due to the
large mass.

Next, let us directly examine the above observations, focusing on the periodsa(u) andaD(u).
As for the residue part of the periods, i.e.,r0, it moves to infinity due tom→`. However, the
heavy quark with large mass can be integrated out,2 so we can eliminate the residue dependence
of the periods. We can see that among the expansion coefficientsan(n.1) of a(u), only the
coefficients of even degree survive in the double scaling limit and those of the odd degrees vanish.
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Accordingly, we may then say thata(u) converges to a solution to~4.2!. In other words,a(u) is
not affected by the contributions from the extra 1-form. This fact suggests thata(u) has a nice
property which is valid under the double scaling. It is easy to check that the perioda(u) in the
double scaling limit can be again expressed as a hypergeometric function. In order to see the
behaviour ofaD(u), on the other hand, we must rewrite it as a series ofa(u) and then take the
double scaling limit. We can easily see that the expansion coefficientsbn’s diverge to infinity in
the double scaling limit. This means that the contributions foraD(u) from the extra 1-form are
non-trivial. Since it is hard to see the difference with the period overb-cycle of theNf50 theory
in this situation, we should first arrangeaD(u) with some ‘‘good’’ variable. For that purpose, we
takea(u) as the good variable. From~3.2!, aD(u) will be expanded as

aD~u!5n8e1&a@B2A ln 222A ln a#1
A

&

Fm2

3a
1

m

72a3
~23L1

312m3!

1
1

46080a5
~45L1

61256m6!1
m2

86016a7
~2105L1

61128m6!1••• G , ~4.5!

where e, A and B are given in~2.14! and ~2.16!. Note that each coefficient ofa22i11( i.0)
consists of a finite part and a ‘‘divergent’’ part and the latter is always proportional tom2l , lPN.
However, since the heavy quark with large mass must be integrated out2 as has been mentioned
above, it would be enough to consider the finite parts. The divergence due to the large mass can
be eliminated in that sense. Accordingly, if we extract only finite contributions we can arrive at a
correct answer to get the periodsaD(u) of theNf50 theory. The reader may ask how to deal with
the constantsA andB in ~4.5! under the double scaling. These constants should be replaced with
those of theNf50 theory. This is because the initial conditions for the Picard–Fuchs equation of
theNf51 theory are different from those of theNf50 theory. In this way,P1 reduces toP0 and
under this situation the integration constant in~4.2! will be 0. Then~4.2! is nothing other than the
Picard–Fuchs equation of theNf50 theory. Of course, this time we must changeP1 toP0 in ~4.2!.

Let us examine the double scaling limit of the prepotential. From the above discussions, we
can drop the large mass dependence of the prepotential. Then, the procedure to do it consists of
two steps. The first one is to take the double scaling limit of the first six terms in the brackets in
~3.5!. The second one is to consider the double scaling limit of the instanton expansion coeffi-
cients.

In order to accomplish the first step, we use a trick. Recall that we can add or subtract infinity
related to the mass because of the reason described before. Thus,

3

4
lnS a

L1
D 21 3

4
C5

3

4
lnS a

L1
D 21 3

4
C1 lnF S amD 1/2•eD/223C/4G

5 lnS a

L0
D 21 D

2
, ~4.6!

where17 C5211ln 21c/3, D52616 ln 2 and ã is now replaced witha. Note that this trick
essentially corresponds to the replacement of the ‘‘initial’’ conditions described above. Since the
remaining two terms can be integrated out, we have dropped them here.

For the expansion coefficientsF̃ i
1, we can easily find that they will then be

F̃ 2
1→2

L0
4

64
, F̃ 3

1→0, F̃ 4
1→2

5L0
8

32768
, F̃ 5

1→0,

~4.7!

F̃ 6
1→2

3L0
12

524288
, F̃ 7

1→0, F̃ 8
1→2

1469L0
16

4294967296
, F̃ 9

1→0.

Then we can get the following ‘‘renormalized’’ prepotentialF̂ 1 in the double scaling limit:
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F̂ 15
ia2

p F lnS a

L0
D 21 D

2
2

L0
4

26•a4
2

5L0
8

29•a6
2

3L0
12

219•a8
2
1469L0

16

232•a10
2•••G . ~4.8!

This agrees with the result ofNf50 pure Yang–Mills theory.6

V. SUMMARY

We have studied the moduli space ofN52 SU~2! Yang–Mills theory coupled with a matter
multiplet at weak coupling. In particular, we have determined its prepotential and monodromy
matrix. For general values ofL1 andm, we have established that the two periods of the mero-
morphic 1-form can be written as

a~u!52
&

4
nm1

1

2
A2u F11(

i52

`

ai~L1
3,m!u2 i G ,

~5.1!

aD~u!52
&

4
n8m1

3i

2p
ã~u!lnS u

L1
2D 1Au(

i50

`

aDi
~L1

3,m!u2 i ,

whereai(L1
3 ,m) andaDi

(L1
3,m) are homogeneous polynomials of order 2i , instead of the for-

mulas noted before.2,10And we have proposed the exact expression for the prepotential as in~3.5!.
The coefficients of instanton expansion in the mass-less limit completely recovered. On the other
hand, we have succeeded in constructing theNf50 theory as a low energy theory of the massive
Nf51 and have found that we can recover the instanton expansion of the prepotential of theNf50
theory.

Finally, we give some comments. Since the massiveNf51 theory can be considered as a low
energy theory of the massiveNf52 theory,2 all our results will be expected to be reproduced from
it. In addition to this, it will be interesting to reconstruct our results in the languages of integrable
systems such as Whitham hierarchy and so on.16,18 The discussions in this paper should be
compared with those approaches, but such considerations unfortunately are not proceeded at
present.
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APPENDIX A: EXPANSION COEFFICIENTS (1)

The first several coefficients ofr1 are

a051, a150, a252
L1
3m

16
,

a35
3L1

6

1024
, a452

15L1
6m2

1024
, a55

35L1
9m

16384
, ~A1!

a652
105L1

9

4194304
~3L1

31256m3!, a75
3465L1

12m2

2097152
,

a852
3003L1

12m

67108864
~3L1

3180m3!, a95
15015L1

15

4294967296
~L1

31384m3!.
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APPENDIX B: EXPANSION COEFFICIENTS (2)

The first several coefficients ofr2 are

b15
1

3
m2, b25

m

72
~3L1

314m3!,

b35
1

23040
~245L1

61480L1
3m31512m6!,

b45
m2

21504
~221L1

61224L1
3m31256m6!,

b55
m

276480
~2120L1

911575L1
6m311920L1

3m612048m9!,
~B1!

b65
1

415236096
~9801L1

122937728L1
9m311419264L1

6m612162688L1
3m912097152m12!,

b75
m2

5725224960
~323505L1

12113453440L1
9m3115375360L1

6m6

123855104L1
3m9120971520m12!,

b85
m

3019898880
~45837L1

1525636520L1
12m314392960L1

9m6

17028736L1
6m9110485760L1

3m1218388608m15!,

b95
1

13799729922048
~29689337L1

1813483611712L1
15m3116467010560L1

12m6

116728391680L1
9m9129198647296L1

6m12141070624768L1
3m15130064771072m18!.

APPENDIX C: LOWER ORDER EXPANSION OF THE PERIODS

In this appendix, we show that the lower order expansion of the period integral~2.4! in detail
as an example. However, we must treat~2.4! carefully because thisa-cycle is defined to be a usual
homology basis. Recall that the meromorphic 1-form was constructed under the assumption such
that the asymptotic behaviour ofa(u) at u5` was to bea(u) ; Au/2 even if the theory was
massive.9 Therefore even if we evaluate the period~2.4! by direct calculation, we can not obtain
the correct contribution from the pole.2 When the cycle may cross the pole, then the integration
must pick up the residue of the pole. However, since thea-cycle in~2.4!, as we have stated above,
avoids the pole, we must study the case such that the cycle deforms froma to a8, which encloses
the pole and the two branching pointsx3 andx4 as shown in Fig. 2. As is easily seen from this
figure, the direction ofa8 is the same as that ofd, which encloses only the pole. However, taking
into account an effect for topological deformation, we can find that thea-cycle can be identified
with the loopa9 in the figure. Namely, if thea-cycle should move on another covering of this
x-plane and back onto the original one, it will enclosex1 andx2, i.e., another cut. But this time,
the directions ofa anda9 will be different. Therefore whena9 crosses the pole, the direction of
a- which is a deformation ofa9 and that ofd will be different. This fact causes the sign of the
residue to change. The reader may ask that the sign of the integral over thea9 should be reflected.
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Of course it is right. But since we usually use the convention such that the overall sign ofa(u)
without the residue contribution, for example, to be1, e.g.,a(u) ; 1Au/2 in N52 SU(2)
Yang-Mills theory, we should change the sign of the residue instead of that of the integral in order
to preserve the convention.

From these discussions, the true expression for the massive perioda(u) should be defined by

a~u!: R
ã
l15 R

a
l11 R

d
l1

5 R
a
l112p in•Res~l1!uat x52m , ~C1!

where ã is a certain member of the family ofa-cycle which may include the pole and the cut
inside the loop,d is a small loop around the pole andn50,61. If ã avoids the pole, thenã5a and
n50. If ã encloses the pole and the directions ofã andd coincide,n511. If the directions are
different while ã encloses the pole, thenn521. To clarify, we should further comment on the
numbern. We have treated only the case such thatã winds once around the pole, but we may also
allow the case such that it winds several times around the pole. In this time,n can be interpreted
as winding number and will benPZ.

Now, let us evaluate~C1!. First, note that

R
a
l152E

x4

x3
l1 . ~C2!

On the right hand side, the factor 2 is required because the integral overa-cycle contains an
integral fromx4 to x3 and fromx3 to x4 on the other side of the cut. In order to calculate~C2!, we
introduce a new variablet such asx 5 Aut. Then~C2! will be

R
a
l15

2&

4p i
E
x4 /Au

x3 /Au utdt

Au2~ t221!22L1
3~Aut1m!

F u~ t221!

2~Aut1m!
22AutG

5
i

4p
A2uE

x4 /Au

x3 /Au ~3Aut314mt21Aut!
Aut1m

F 1

t221
1

L1
3m

2u2~ t221!3
1

3L1
6t2

8u3~ t221!5
1•••Gdt

5
1

2
A2uS 12

L1
3m

16u2
1••• D . ~C3!

Taking the contribution from the pole into account, we can arrive at

FIG. 2. Deformations ofa-cycle on thex-plane.
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a~u!52
&

4
nm1

1

2
A2uS 12

L1
3m

16u2
1••• D . ~C4!

On the other hand, the integration overb-cycle is not well-defined, as well. This can be seen
by evaluating its lower order expansion.~2.5! will be

R
b
l15

i

4p
A2uS 3 ln u18 ln 22 ip2626 ln L11

imp

Au
1••• D . ~C5!

At first sight, this integration seems to beaD(u) with the contribution from the pole. In fact, this
observation is not wrong. However,~C5! does not contain the possibilities such that theb-cycle
does not enclose the pole, for example. In other words, the topological deformation ofb-cycle as
in the case ofa-cycle is ~partially! ignored. Since the pole merely contributes as only a constant
term, ~C5! will be well-defined as the period over theb-cycle avoiding the pole, if the constant
term is extracted. Therefore the true definition ofaD(u) will be

aD~u!:5 R
b̃

l1

5 R
b
l11 R

d
l1

5 R
b
l112p in8•Res~l1!uat x52m , ~C6!

whereb̃ is a certain member ofb-cycle which may enclose the pole and the cut,b in ~C6! means
now a loop avoiding the pole andn850,61. If the loop b̃ winds around the pole several times,
thenn8PZ. In this way we can arrive at

aD~u!52
&

4
n8m1

i

4p
A2u~3 ln u18 ln 22 ip2626 ln L11••• !. ~C7!

APPENDIX D: EXPANSION COEFFICIENTS (3)

The first several coefficients of the prepotential~3.3! are listed below:

F 2
152

1

64
L1
3m1

m4

96
, F 3

15
3L1

6

16384
1

m6

960
,

F 4
152

5L1
6m2

32768
1

m8

5376
, F 5

15
7L1

9m

786432
1

m10

23040
,

~D1!

F 6
152

153L1
12

1073741824
2
3L1

9m3

524288
1

m12

84480
,

F 7
15

715L1
12m2

1073741824
1

m14

279552
,

F 8
152

1131L1
15m

42949672960
2

1469L1
12m4

4294967296
1

m16

860160
,

F 9
15

385L1
18

1099511627776
1

525L1
15m3

8589934592
1

m18

2506752
.

The relation betweenF i
1 and F̃ i

1 is

F̃ i
1:5F i

12~ term proportional tom2i !. ~D2!

6084 Yűji Ohta: Prepotential of SU(2) Yang–Mills with a matter multiplet

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



1N. Seiberg and E. Witten, Nucl. Phys. B426, 19 ~1994!.
2N. Seiberg and E. Witten, Nucl. Phys. B431, 484 ~1994!.
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Symmetry and history quantum theory: An analog
of Wigner’s theorem
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The basic ingredients of the ‘‘consistent histories’’ approach to quantum theory are
a spaceUP of ‘‘history propositions’’ and a spaceD of ‘‘decoherence function-
als.’’ In this article we consider such history quantum theories in the case where
UP is given by the set of projectorsP ~V ! on some Hilbert spaceV . We define
the notion of a ‘‘physical symmetry of a history quantum theory’’~PSHQT! and
specify such objects exhaustively with the aid of an analog of Wigner’s theorem. In
order to prove this theorem we investigate the structure ofD , define the notion of
an ‘‘elementary decoherence functional,’’ and show that each decoherence func-
tional can be expanded as a certain combination of these functionals. We call two
history quantum theories that are related by a PSHQT ‘‘physically equivalent’’ and
show explicitly, in the case of history quantum mechanics, how this notion is
compatible with one that has appeared previously. ©1996 American Institute of
Physics.@S0022-2488~96!00212-5#

I. INTRODUCTION

In this paper we discuss the mathematical aspects of a notion of ‘‘symmetry’’ in a history
quantum theory, such as the decoherent histories approach to quantum theory initiated by
Griffiths,1 Omnès,2 and Gell-Mann and Hartle.3 Given the major importance symmetries play in
almost every physical theory, one would like to know what the counterpart of this concept is in
theories who place the emphasis on ‘‘histories’’ and ‘‘decoherence functionals’’ rather than propo-
sitions and states at a fixed time point~as is done in standard quantum theory!. This involves the
problem of giving a meaning to the notion of two history theories being equivalent, when consis-
tent sets can be called equivalent, etc.4

These matters are not settled yet, but I will show that, in case we adopt a particular notion of
‘‘symmetry,’’ it is possible to assign a well-defined meaning to such concepts. In order to under-
stand where these ideas fit into the structure of such history quantum theories, we have to rewrite
the decoherent histories approach in a way that describes the ingredients of such a theory in a
more transparent way.

The clarification of the structural content of history quantum theories~HQT! is due to C. J.
Isham,5 who extracted the basic features of these theories in the form of a set of axioms which
determine the mathematical content of the framework of such theories. The aim is to place history
quantum theories—as an entirely new approach to the problem of defining and constructing
quantum theories—on an equally firm mathematical base as other, already existing approaches to
quantum theories. The explanation of why the axioms take the particular form chosen is a very
deep one and is partly motivated by problems arising in the area of quantum gravity, in particular
the so-called ‘‘problem of time;’’ it uses ideas of ‘‘quasi-temporal’’ logic and much more. These
matters have been discussed at some length by Isham,5 Isham and Linden,6 and Schreckenberg,7

and the reader is referred to those sources for a deeper appreciation of ‘‘history quantum theo-
ries.’’

a!Electronic-mail address: stschr@ic.ac.uk

0022-2488/96/37(12)/6086/20/$10.00
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In this paper I will adopt a working, practical approach. I will mainly restrict myself to the
case of the history version of finite-dimensional quantum mechanics. This will prove to be an ideal
model to illustrate the concept of ‘‘symmetry’’ introduced in this article.

Our discussion will be based on an investigation of how the mathematical structure of history
quantum theories suggests a notion of ‘‘physical symmetries of history quantum theories.’’ It is
striking—and indeed very satisfying—that the concept developed here is compatible with a defi-
nition and a result presented by Gell-Mann and Hartle in Ref. 4, even though this was not the
original goal of the enterprise. This speaks on the one hand for the physical insight and arguments
which led Gell-Mann and Hartle to the notion of ‘physical equivalence’, and, on the other hand, it
shows the strength of the mathematical formalism developed by Isham5 in order to capture the
main ideas of the decoherent histories program in a precise manner. Because of this relation
among the results, the physical arguments presented in Ref. 4 can, to some extent, be regarded as
physicalarguments in favor of the notion developed here and, vice versa, the arguments presented
here as a precisemathematicalstatement about such objects, which possess avery transparent
description.

We will begin with an introduction to the formalism introduced in Ref. 5, recall the classifi-
cation theorem for decoherence functionals proven in Ref. 8, and remind the reader of the content
of Wigner’s theorem, which will be central to our investigation. In Sec. II we reformulate the
standard requirements for ‘‘physical symmetries’’ given by Wigner in a way that is more suited to
our problem in that it avoids some of the interpretative difficulties that arise when one is trying to
induce a notion of symmetry in history quantum theories from symmetries defined at a single time
point. We proceed by defining ‘‘physical symmetries of a history quantum theory’’~PSHQT! and
show that a particular subset of PSHQT can be induced by unitary or antiunitary operatorsÛ on
V , which I call ‘‘homogeneous symmetries.’’ We show that these symmetries possess a charac-
terizationà la Wigner. We investigate the structure of the spaceD in some detail to show in Sec.
III that, in fact, PSHQT are in one-to-one correspondence with homogeneous symmetries and can
thus be characterized by an analog of Wigner’s theorem. We call two history quantum theories
which are related by a physical symmetry of a history quantum theoryphysically equivalent. This
expression first appeared in Ref. 4 and we show explicitly, for history quantum mechanics, how
the notion of ‘‘physical equivalence’’—as introduced in Ref. 4—is naturally induced by a subset
of the set of PSHQT. In the closing section IV we mention some ways one could try to proceed in
order to find a satisfactoryphysicalinterpretation of the symmetries considered in this article.

A. Decoherent histories and history quantum theory

1. The algebraic structure for HQT

In the decoherent histories approach the two main ingredients are the so-called ‘‘histories,’’
namely sequences of Schro¨dinger picture projection operatorsa: 5 (a t1

,a t2
,...,a tn

), with
t1,t2,•••,tn , defined on the single time Hilbert spaceH, and ‘‘decoherence functionals,’’
namely a complex-valued functionald of pairs of histories. For normal quantum mechanics the
latter is given by

d~H,r!~a,b!:5trH ~C̃a
†r t0C̃b!, ~I.1!

where the ‘‘class’’ operatorC̃a ~Ref. 3! is defined to be

C̃a :5a t1
~ t1!a t2

~ t2!•••a tn
~ tn! ~I.2!

with $a t i
(t i): 5 e( i /\)H(t i2t0)a t i

e2( i /\)H(t i2t0)% being the associated Heisenberg picture operators.
For the ease of exposition, all historiesa will be defined onn arbitrary, but fixed, time points.
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This functionald~a,b! is an extension of the formulad~a,a! in standard quantum mechanics
for the joint probability of finding all the propertiesa: 5 (a t1

,a t2
,...,a tn

) with t1,t2,•••,tn in
a time-ordered sequence of measurements. The aim is to determine with the aid of certain ‘‘con-
sistency conditions’’ ond~a,b! such histories, on whichd~a,a! defines a probability distribution.

The expression for the decoherence functional is rather messy: it is difficult to isolate the
contribution of the historiesa and b to the evaluation. Whereas before they were defined as
sequences of Schro¨dinger operators, they enter now as a product of Heisenberg operators. Hence
the evolution operator should belong intrinsically to the decoherence functional as does the density
matric r.

The separation that I have in mind of the contribution tod(H,r)~a,b! of ~i! the histories, and
~ii ! a part which encodes all the properties of the decoherence functional, is best illustrated by an
analogous expression in standard quantum mechanics. Namely, the probabilityp(xP[a, b]) of
finding that the eigenvaluex of an observableX lies in the interval [a,b],a,bPR, given the state
r of the system, is evaluated as

p~xP@a,b#,r!5trH ~P@a,b#
X r!. ~I.3!

One can immediately refer to the density operator to describe the contribution of the state and to
the projection operatorP[a,b]

X —as the mathematical representation of the question asked—to de-
scribe the contribution of the corresponding observable to the valuep(xP[a,b],r). This is, of
course, due to Gleason’s theorem which establishes a one-to-one correspondence between states
and density operators.

The appropriate rewriting of the expression ford(H,r)~a,b!, which is described in detail in
Ref. 8, relies on the mathematical identity

trH ~A1A2 ...Am!5tr^H m~A1^ ••• ^AmS!, ~I.4!

which allows us to express the trace of a product ofm operators$Am% by means of the trace of a
single operatorA1^ ••• ^Am on them-fold tensor product spaceV m :5^H m and a universal
operatorS.

Forgetting for a moment ther in ~I,1!, d(H,r)~a,b! is given by the product of 2n Heisenberg
operators. Using formula~I.4! we deduce that histories enter the decoherence functional in the
following way:

ã5a t1
~ t1! ^ a t2

~ t2! ^ ••• ^ a tn
~ tn!. ~I.5!

Heisenberg operators are just Schro¨dinger operators multiplied on the left and right by the evo-
lution operatorsU(t i ,t0) and its inverse. Expression~I.4! shows that this dependence can be
thrown onto the universal operatorS, allowing us to represent histories by Schro¨dinger-picture
operators

a5a t1
^ a t2

^ ••• ^ a tn
PP~V n!, ~I.6!

which contribute to the value ford(H,r)~a,b! through

d~H,r!~a,b!5trV n^V n
~a ^ bX~H,r!!, ~I.7!

for some operatorX(H,r) defined onV n^V n . The time-ordered strings of projection operators
(a t1

,a t2
,...,a tn

) are now represented by a homogeneous projection operatora t1
^ a t2

^ ••• ^ a tn
on then-fold tensor product spaceV n 5 ^ i51

n
H t i

and one can easily see that this association is
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one-to-one. This motivates the definition of a spaceUP of ‘‘history propositions’’ ~also called
‘‘universal propositions’’ or ‘‘propositions about the universe’’!, which is given by the set ofall
projection operatorsaPP ~V n! on then-fold tensor product space.

By these means we have achieved the aim of separating the contribution of the histories to the
valued(H,r)~a,b! in that the operatorX(H,r) encodes now all of the dynamical information and the
initial conditions of the system under investigation.

One can also convince oneself that the decoherence functional~I.7! satisfies the following
properties:

+Hermiticity:d~a,b!5d~b,a!* ;a,bPP ~V n!,

+Positivity:d~a,a!>0 ;aPP ~V n!,
~I.8!

+Additivity: d~a % b,g!5d~a,g!1d~b,g!,

+Normalization:d~1,1!51,

which are the usual requirements for decoherence functionals in the consistent histories approach
when expressed in this formalism. The operation ‘‘%’’ is given by the addition of two orthogonal
projectors, i.e., history propositions, inP ~V n!.

This example seems to suggest that it might be worth trying to define ahistory quantum
theoryas a theory which has two main ingredients: A space of history propositionsUP which, in
this paper, will be the space of propositionsP ~V ! onto a Hilbert spaceV ; and a decoherence
functional dPD , whereD denotes the space of all decoherence functionals, that is, all those
functionals defined onP ~V !3P ~V ! which possess the properties~I.8! mentioned above. ThusV
does not necessarily have to be of the tensor-product formV n , anddPD will in general not be
of the form d(H,r) . In this formalism,consistent sets of history propositions with respect to a
dPD correspond to certain partitions of the unit operator onV into mutually orthogonal projec-
tors $a i% i51

m<dim V such that

d~a i ,a j !5d i j d~a i ,a i ! ; i , jP$1,2,...,m%. ~I.9!

The properties~I.8! of dPD ensure that the valuesd(a i ,a i) determine a probability distribution
on the Boolean algebra generated by the$a i% i51

m<dim V .

2. The classification theorem

We want to base our investigations of symmetries on the expression~I.7! of the decoherence
functional. However, in order to do so, we must first be sure that it is not only a lucky coincidence
that we are able to cast thisparticular decoherence functional for the history version of quantum
mechanics in the above form. The formalism for decoherent histories is not simply restricted to
models with unitary evolution, inclusions of final density matrices, and the like. Therefore, in
order to formulate a notion of symmetry that is valid for all these cases, we have to find out
whether every decoherence functional, i.e., every functional satisfying the properties~I.8! listed
above, can be written in the form~I.7!. The clear cut answer to this is given by the following
theorem~see Ref. 8!, which is valid for any theory in which the history propositions are given by
projectors on a finite-dimensional Hilbert spaceV .

Theorem:8 If dim V .2, decoherence functionalsd are in one-to-one correspondence with
operatorsX5X11 iX2 on V ^V according to the rule

d~a,b!5trV ^V ~a ^ bX! ~I.10!

with the restriction that
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~a!X†5MXM with M ~ uv& ^ uw&):5uw& ^ uv&, ;uv&,uw&PV , ~I.11!

~b!trV ^V ~a ^ aX1!>0, ~I.12!

~c!trV ^V ~X1!51. ~I.13!

The restrictions on the operatorX on V ^V reflect the requirements~I.8!. We denote byXD

the set of all such operatorsX. This theorem which has been extended to arbitrary von Neumann
algebras without factor of type II in Ref. 9, is the cornerstone of the forthcoming investigation. It
allows us to shift the investigation of the properties of decoherence functionalsdPD , whereD
denotes the space of all decoherence functionals, to an analysis of the properties of the associated
operatorXdPXD , which, as we emphasize once again, carries all of the ‘‘dynamical’’ content as
well as the ‘‘initial conditions’’ of the model under investigation.

It is important to understand the origin of these requirements. Condition~I.11! reflects the
Hermiticity requirement. The action ofM on a^b is given byM (a ^ b)M5~b^a!. Equation
~I.11! follows then from the condition

d~a,b!5trV ^V ~a ^ bX!5trV ^V ~b ^ aX†!5d~b,a!* .

Condition~I.12! stems from the fact that, sinceX†5MXM is equivalent to the pair of conditions

X15MX1M , X252MX2M , ~I.14!

it follows that

trV ^V ~a ^ aX2!52trV ^V ~a ^ aMX2M !52trV ^V „M ~a ^ a!MX2…52trV ^V ~a ^ aX2!,
~I.15!

and so trV ^V (a ^ aX2) 5 0 is implied already by the Hermiticity requirement~I.11!.
It will be advantageous later to think ofd~a,b! as the value of the complex-valued functional

tr:P ~V ! ^P ~V !3XD→C
~I.16!

~a ^ b;Xd!°trV ^V ~a ^ bXd!.

B. Wigner’s theorem

In order to understand fully the importance of Wigner’s result it is crucial to distinguish
between the notion of asymmetryand that of aphysical symmetry.

Definition:On a complex Hilbert spaceH a symmetryis a unitary or antiunitary operatorU.
Thus it leaves invariant the modulus of the inner product of any pair of two vectorsuv&,uw&PH,
that is

u^v,w&u25u^Uv,Uw&u2, ;uv&,uw&PH. ~I.17!

This definition is only a mathematical one; it has,a priori, no motivation by physical arguments.
Note also that it doesnot impose any further defining properties onU, such as commutativity with
the Hamiltonian operator. Such requirements only enter at a much later stage, motivated by
analogs of the assumption in classical mechanics, that a particular physical system evolves along
the flowlines of a specific, Hamiltonian, vector field.

On the other hand, a physical system at afixed moment of timeis described in quantum
mechanics by a statesPS : P ~H!→R, that is, a normalized@s~1!51#, positive-valued functional
which is additive on disjoint projectors. The states are, via Gleason’s theorem, in one-to-one
correspondence with density operatorsr onH according to the rule

6090 S. Schreckenberg: Symmetry and history quantum theory

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



s~a,r!5trH ~ar!, ;aPP ~H!, ~I.18!

wherer is defined by the properties

r5r†, r>0, trH~r!51. ~I.19!

The set of all density operators is often denoted byW S .
Thephysicalassumption is now that all that matters are the relations among the states, which

can be entirely described by means of their overlaps, that is the transition amplitudes trH ~r1r2!.
In the finite-dimensional case the self-adjointness ofr implies that for every density operator

there exists an orthonormal basis$uci&% such that

r5( r iPuC i &
, ( r i51, r i>0. ~I.20!

Density operators of the formPuC i &
: 5u C i&^C i u P W S p are calledpure. Every density operator

possesses an expansion in terms of pure density operators, also representing ‘‘rays’’ ofH; instead
of W S p we also use sometimes the notationR~H!. Therefore, the invariance requirement on the
transition amplitude between two arbitrary statesr1 andr2 can be reduced to the requirement that

trH~PuC1&PuC2&!5trH~PuC1&
j PuC2&

j
!, ~I.21!

for arbitrary one-dimensional pure density operatorsPuC1& and PuC2& and an affine mapj:
W S p→W S p, that is amap satisfyingj(( iciPuC i &) 5 ( icij(PuC i &) [ ( iciPuC i &

j ,ci P C.
Definition:A physical symmetryis an affine bijectionj:W S p→W S p; PuC&°PuC&

j , such that
the transition amplitude between pure density operators remains invariant, i.e., that

trH~PuC1&PuC2&!5trH~PuC1&
j PuC2&

j !, ;uC1&,uC2&PH. ~I.22!

Theorem:10 ~Wigner! Every symmetry induces a physical symmetry and, conversely, every one-
to-one mapj:W S p→W S p preserving orthogonality between rays is a physical symmetry and can
be implemented by a unitary or antiunitary operatorU onH.

II. SYMMETRY AND HISTORY QUANTUM THEORY

The notion of symmetry discussed in the last section arose from discussing quantum mechan-
ics at a single, fixed time pointtPR with a corresponding Hilbert spaceH. At a single time point
physics is described in terms of the pair~S ,L!, whereS is the set of states andL is the lattice
of projection operators onH. In order to define physical symmetries in quantum mechanics—in
the sense specified by Wigner—only the knowledge of one part of this pair was required, namely
the knowledge of the properties of the set of statesS , via the map

tr:W S p3W S p→R

~PuC1& :PuC2&!°trH ~PuC1&PuC2&!. ~II.1!

The properties of the lattice of propositionsL5P ~H! did not enter in full.
In order to arrive at a notion of symmetry for HQTs, recall that in a history quantum theory

the pair ~UP ,D! can be seen as a formal analogue of the pair~L,S !. Comparing the two
expressions

trH ~r1r2! and trV ^V ~a ^ bXd! ~II.2!
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reveals immediately the mathematical difference between them. In contrast to the quantum me-
chanical case at a single time point, in HQTs the map

tr:P ~V ! ^P ~V !3XD→C

~a ^ b!3Xd°trV ^V ~a ^ bXd! ~II.3!

intertwines the properties ofUP 5P ~V ! andXD . This is not surprising, since the classification
theorem is more to be regarded as an analog of Gleason’s theorem, which in a similar manner
intertwines properties ofL andS .

The invariance requirement for the expression trH~r1r2! has a direct physical meaning. In
HQTs the formal analog of a density operatorr is an operatorXdPXD so that the first guess for
symmetries might be to look for transformations which leave ‘‘transition amplitudes between
differentXd’’ invariant. However, such a requirement would be hard to interpret since HQTs deal
with ‘‘history propositions’’ as entities in their own right. The theory is completely specified by
choosinga particular decoherence functional, which is kept fixed throughout. Since the notion of
‘‘time’’ in a specific history quantum theory is determined by the choice of the structure of the
space of history propositions—for example, the nature of ‘‘time’’ as a parametertPR in quantum
mechanics is mirrored in the definition ofP (V n) 5 P ( ^ i51

n
H t i

)—and decoherence functionals
associate numbers with these pairs of history propositionsas an entity, a change of the decoher-
ence functional must not occur.

How can we nonetheless use, at least at the mathematical level, the existing notion of a
physical symmetry and later on Wigner’s theorem, to define a corresponding notion for HQTs that
does not suffer from the difficulty mentioned above? The main idea is to characterize the notion of
aphysical symmetryin a form which exploits the pairing~I.18! between density operatorsrPW S

and propositionsaPP ~H! given by Gleason’s theorem.

A. Alternative specification of physical symmetries

We start by neglecting entirely the considerations from which the expression

trH~PuC&PuF&! ~II.4!

originally arose. Pure density operators belong trivially to the space of projection operatorsP ~H!
and therefore, instead of thinking of the map~II.1! as a pairing between states, one can think of it
as a map

tr:$R~H!,P ~H!%3W S p→R

PuC&3PuF&°trH~PuC&PuF&! ~II.5!

that establishes a pairing between a subset of the space of propositions and the set of pure states.
Therefore, we see immediately that Wigner’s result can be read as follows: Wigner’s theorem
determines all bijections

j:R~H!3W S p→R~H!3W S p

~PuF& ,PuC&!°~PuF&
j ,PuC&

j ! ~II.6!

that leave invariant the pairing

trH~PuC&PuF&!5trH~PuC&
j PuF&

j !. ~II.7!
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Now, when seen from this perspective, it is natural to ask whether or not Wigner’s theorem
specifies completely all affine one-to-one maps

V:P ~H!3W S→P ~H!3W S

~a,r!°~aV,rV! ~II.8!

such that the pairing between propositions and density operators is left invariant for allaPP ~H!
and allrPW S , i.e.,

trH~ar!5trH~aVrV!. ~II.9!

The map is required to be affine since the spaceW S is a convex space. Convex combinations of
elements ofW S are again density operators.

Note that the question posed is not trivial: The space of projectorsP ~H! is a disjoint union
of compact Grassmann manifolds and therefore allows for a much wider class of transformation
than just unitary or antiunitary operatorsU onH. The three conditions these maps have to satisfy
are

*V:P ~H!→P ~H!, ~II.10!

*V:W S→W S , ~II.11!

* trH~ar!5trH~aVrV!. ~II.12!

If we consider transformations onP ~H!, the interesting transformations are given by transform-
ing projectors of different dimensions to each other. So consider, for example, the transformation

G:P ~H!→P ~H!

a°G@a#, ~II.13!

whereby a particular one-dimensional projectorPuF& is mapped into anm-dimensional one,
G[PuF&], m.1. Such a transformation might be bijective onP~H! and even obey requirement
~II.12!.

Now, regardingPuF& as a puredensity operator, we see immediately that the trace of its image
underG is trH(G[PuF&])5m. Therefore, such a map does not comply with the requirement
~II.11!. Thus, only maps which map rays into rays are allowed and, therefore, all maps obeying the
conditions~II.8! and ~II.9! are determined by Wigner’s theorem.

This reformulation of ‘‘physical symmetries’’ in terms of the intersection of different sets of
transformations fulfilling~II.10!, ~II.11!, or ~II.12!, respectively, possesses the advantage of never
having to consider ‘‘transition amplitudes between states at a fixed moment of time.’’ Physical
symmetries just preserve the intertwining between~L,S ! via Gleason’s theorem by transforming
L andS by the same transformationinto itself.

This fact justifies trying to define symmetries of a history quantum theory by exact analogs of
the requirements~II.10!–~II.12!, i.e., by replacing

$P ~H!;W S ;trH~ar!%↔$P ~V ! ^P ~V !;XD;trV ^V ~a ^ bXd!%. ~II.14!

This notion of a ‘‘symmetry of a history quantum theory’’ does not suffer from the interpretative
difficulty mentioned above.

Through this choice, we will build in an invariance requirement for the valuesd~a,b! of the
decoherence functional from the very start. Some physical arguments for such a choice can be
found in Refs. 4, 11, and 12. I will discuss its relevance at various stages in this paper.
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B. Definition and proposition

Definition: A physical symmetry of a history quantum theory~PSHQT! is any affine one-to-
one map

Q :P ~V ! ^P ~V !3XD→P ~V ! ^P ~V !3XD

~@a ^ b#,Xd!°~@a ^ b#Q,Xd
Q! ~II.15!

that preserves the value of the pairing between history propositions and operators associated with
decoherence functionals, i.e.,

trV ^V ~a ^ bXd!5trV ^V ~@a ^ b#QXd
Q!. ~II.16!

We state once again the three requirements such a map has to fulfill:

*Q :P ~V ! ^P ~V !→P ~V ! ^P ~V !, ~II.17!

*Q :XD→XD, ~II.18!

* trV ^V ~a ^ bXd!5trV ^V ~@a ^ b#QXd
Q!. ~II.19!

Each condition separately determines a set of transformations, but only the intersection of these
sets may be called a PSHQT. The wordphysicalis chosen since this definition parallels the one for
physical symmetries given by Wigner. Again, the history propositionsaPP ~V ! and the decoher-
ence functionals, represented byXdPXD , are transformedtogetherby the same transformation.
We call two history quantum theories that are related by a physical symmetry of a history quantum
theoryphysically equivalent. Furthermore, as will be shown later, this definition encompasses the
notion of ‘‘physical equivalence,’’ first introduced and justified through physical arguments by
Gell-Mann and Hartle in Ref. 4. It is easy to see that the following Lemma holds.

Lemma:The relation among two history quantum theories (hqt1 ,hqt2) of beingphysically
equivalent, denoted byhqt1;hqt2 , is an equivalence relation. Thus it is~i! reflexive:
hqt1;hqt1 , ~ii ! symmetric:hqt1;hqt2⇒hqt2;hqt1 , and ~iii ! transitive: (hqt1;hqt2) and
(hqt2;hqt3)⇒(hqt1;hqt3).

There is an obvious class of transformations onV ^V that fulfills all three conditions~II.17!–
~II.18! stated above:

Definition:A homogeneous symmetryon V ^V is a unitary operatorÛ^ Û whereÛ may be
a unitary or antiunitary operator onV .

Lemma:Every homogeneous symmetry induces a PSHQT, i.e.,$HS%,$PSHQT%.
Proof: A homogeneous symmetry induces the maps

a ^ b°Û^ Û@a ^ b#Û†
^ Û†,

~II.20!
Xd°Û^ ÛXdÛ

†
^ Û†,

so that for alla^bPP ~V !^P ~V ! and allXdPXD it holds that

d~a,b!5trV ^V @~ÛaÛ†
^ ÛbÛ†!~Û^ ÛXdÛ

†
^ Û†!#. ~II.21!

One can easily check thatÛ^ ÛXdÛ
†

^ Û† fulfills the defining properties for an operator
Xd8PXD given by the classification theorem. h

Homogeneous symmetries possess a different characterization, which can easily be derived
from Wigner’s theorem for quantum mechanics. Recall the definition of the mapM used in the
classification theorem for decoherence functionals:
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M :V ^V →V ^V

uu& ^ uv&°uv& ^ uu&, ~II.22!

for all uu&,uv&PV ^V . As a result, its action on projection operators of the forma^b is given by

M ~a ^ b!M5~b ^ a!, ;a ^ bPP~V ! ^P~V !. ~II.23!

In particular, this holds true fora,bPR~V !, i.e., projection operators belonging to the space
R~V ! of rays ofV .

Let t5t1^t2 denote a map

t :R~V ! ^R~V !→R~V ! ^R~V !

PuC& ^PuF&°@PuC& ^PuF&#
t:5PuC&

t1 ^PuF&
t2 , ~II.24!

wheret1 andt2 denote transformations on the space of pure density operators. A mapt is said to
commute with M if (M +t)[PuC& ^PuF&]5(t+M )[PuC& ^PuF&] for all elements
PuC& ^PuF&PR~V !^R~V !, written symbolically as@t,M #50.

Definition: A homogeneous symmetry of a history quantum theory~HSHQT! is a one-to-one
map t:R~V !^R~V !→R~V !^R~V ! that preserves the transition amplitude between two ele-
ments, i.e.,

trV ^V ~@PuC1& ^PuF1&#@PuC2& ^PuF2&# !5trV ^V ~@PuC1& ^PuF1&#
t@PuC2& ^PuF2&#

t!,

and commutes with the mapM , that is@t,M #50.
Proposition:Every homogeneous symmetry induces a HSHQT and, conversely, every one-

to-one mapt: R~V !^R~V !→R~V !^R~V ! that preserves orthogonality between the rays and
commutes withM is a HSHQT and can be implemented by a unitary or antiunitary operatorÛ^ Û
on V ^V . Symbolically,

$HSHQT%>$HS%.

Proof:The transition amplitude between two elements@PuC1& ^ PuF1&#,@PuC2& ^ PuF2&# P R(V )
^ R(V ) is given by

trV ^V ~@PuC1& ^PuF1&#@PuC2& ^PuF2&# !5trV ~PuC1&PuC2&!trV ~PuF1&PuF2&!. ~II.25!

Therefore, by Wigner’s theorem, all transformations preserving orthogonality and the transition
amplitude can be implemented by operatorsÛ^ V̂, whereÛ andV̂ are either unitary or antiunitary
operators onV . Requiring these transformations to commute withM concludes the proof. h

Remark: It is important to understand why only transformations of the formÛ^ Û are
admitted, and not, for example, operators of the form

(
i
ci Û i ^ Û i , (

i
ci51, ciPR. ~II.26!

The reason is that, starting fromd~a,b!, only those transformationsT̃:a ^ b°T̃(a ^ b)T̃† on
V ^V are allowed for which

T̃~a ^ b!T̃†5a8^ b8. ~II.27!

It is possible for these transformations only to write them asd(a,b)°d8(a8,b8).
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We have therefore established the following relation among the three sets of transformations:

$HSHQT%>$HS%,$PSHQT%. ~II.28!

We argued that PSHQTs determined by conditions~II.17!–~II.19! is an appropriate notion for
symmetries of history quantum theories. What we want to show now is that all PSHQTs are given
by homogeneous symmetries of the formÛ^ Û. In view of ~II.28! it remains to be shown that
$HS%.$PSHQT%.

C. The structure of D

In order to show that all PSHQTs can be characterized by means of rays inR~V !^R~V !, we
have to discuss in more detail the structure of the space of decoherence functionals. Comparison
with the case in standard quantum mechanics shows that what we now have to look for is a notion
of ‘‘elementary decoherence functionals,’’ out of which all other decoherence functionals can be
built by a certain superposition. The requirement~II.19! for PSHQT,

trV ^V ~a ^ bXd!5trV ^V ~@a ^ b#QXd
Q!,

can then be reduced to a requirement that has to hold only for all elementary decoherence func-
tionals. We start our investigation with the following observation:

Lemma:For any finite set$d( i )% i51
n , d( i )PD , it holds thatd:5( i r id

( i )PD ,r iPR, provided
that

r iPR ; iP$1,2,...,n%,

(
i
r id

~ i !~a,a!>0 ;aPUP , ~II.29!

(
i
r i51.

These conditions reflect the requirements ford of Hermiticity, positivity, and normalization. We
call such superpositions of decoherence functionals aweak convex combinationof decoherence
functionals. All convex combinations are weak convex combinations, but the converse is not true.
For a convex combination it is required thatr i>0; the second condition in~II.29! does not imply
r i>0. It seems natural to look for so-called ‘‘pure decoherence functionals’’ which can not be
written as weak convex combination of other decoherence functionals. An argument first given by
N. Linden13 shows thatany decoherence functional can be written as the sum of two other
decoherence functionals. Thus there can be no pure decoherence functionals. Nonetheless, in this
context we are only interested in a convenient expansion of an arbitrary decoherence functional by
what I will call elementary decoherence functionals. This will suffice to prove an analog of
Wigner’s theorem in the next section. I will show explicitly how these elementary decoherence
functionals reflect Linden’s argument. The same notions applymutatis mutandisfor the associated
operatorsXdPXD .

By the classification theorem8 we know that for every decoherence functionaldPD its asso-
ciated operatorXd can be written as a sum of two self-adjoint operatorsXd5X11 iX2 subject to
the conditions

X15MX1M ; X252MX2M ; trV ^V ~a ^ aX1!>0; trV ^V ~X1!51. ~II.30!

We seek an expansion for the real partX1 and the imaginary partX2 of Xd as a weak convex
combination of decoherence functionalsde that can not be written as a weak convex combination.
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Proposition:For eachX5X11 iX2PXD there exist two orthonormal bases~ONB! $uei&% and
$ubi&% on V such thatX can be written as

X5(
i , j

l i j X1
~ i j !1 i(

l ,m
k lmX2

@ lm# , ~II.31!

where

X1
~ i j !5 1

2~Puei &
^Puej &

1Puej &
^Puei &

!;

~II.32!

l i j5l j i , (
i , j

l i j51, (
i , j

aiil i j aj j>0, l i jPR,

and

X2
@ lm#5 1

2~Publ &
^Pubm&2Pubm& ^Publ &

!;

k lm52kml , k lmPR. ~II.33!

Remark:The positivity requirement trV ^V (a ^ aX1) > 0 gives rise to the condition
( i , j aiil i j aj j>0 for an arbitrary projectora5( i j ai j uei&^ej u on V when expanded in the basis
$uei&^ej u%.

Proof: The proof is a constructive one; it follows the proof of the classification theorem in
Ref. 8.

For eachaPP ~V ! define a functionda~b!:P ~V !→C whereda(b):5d(a,b). Let Rda and
Tda denote the real and imaginary parts ofda , so that

da~b!5Rda~b!1 iTda~b! ~II.34!

with Rda~b!PR andTda~b!PR. We will develop the argument only for the real partRda~b!. The
biadditivity condition on thedPD requires thatRda~b1%b2!5Rda~b1!1Rda~b2! for any or-
thogonal pair of projectorsb1 andb2. Sinced is assumed to be bounded, the same holds true for
its real partRda . For anyrPR, the quantity

k r~b!:5r dim~b!5r tr~b! ~II.35!

is a real additive function ofb, and hence so areRda1k r for any rPR.
In Ref. 8 it was shown that there exists for eachaPP ~V ! two real numbersr a ,maPR such

that there exists a density operatorra
R on V for which it holds that

Rda~b!5trV XS 1

ma
ra

R2r aDbC5trV ~Ya
Rb!, ~II.36!

whereYa
R : 5 (1/ma)ra

R 2 r a . Sincera
R is a density operator, there exists an orthonormal basis

$uei&% i51
dim V and positive numberswa

i PR such thatra
R 5 ( i wa

i Puei &
and therefore

Ya
R5(

i
Swa

i

ma
2r aDPuei &

. ~II.37!

The additivity conditiond(a1% a2 ,b)5d(a1 ,b)1d(a2 ,b) implies that

trV ~Ya1% a2
R b!5trV ~Ya1

R b!1trV ~Ya2
R b!, ~II.38!
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which, since it is true for allbPP ~V ! ~and hence for all operators onV !, implies that the
operator-valued mapa°Ya

R is itself additive in the sense that

Ya1% a2
R 5Ya1

R 1Ya2
R ~II.39!

for all disjoint pairs of projectorsa1 anda2 on the Hilbert spaceV .
Let $uci&% i51

dim V be an orthonormal basis ofV ; let $^ci u% i51
dim V denote its dual basis. Let

$Bi j :5uci&^cj u; i , j51,2,...,N% be a vector-space basis for the operators onV , so that the opera-
torsYa

R can be expanded asYa
R 5 ( i , j51yi j

R(a)Bi j . Then relation~II.39! shows that the complex
expansion coefficientsyi j

R(a), i , j51,2,...,dimV , must satisfy the additivity condition:

yi j
R~a1% a2!5yi j

R~a1!1yi j
R~a2!. ~II.40!

SinceYa
R is a bounded operator, its expansion coefficient functionsa°yi j

R(a);a P P (V )
are bounded as well. It was shown8 that there exists an operatorsL i j

R on V such that

yi j ~a!5trV ~aL i j
R!, ~II.41!

and therefore

Ya5 (
i , j51

N

trV ~aL i j
R!Bi j . ~II.42!

In particular,

Rd~a,b!5trV H(
i , j

„trV ~aL i j
R!…Bi jbJ 5(

i , j
trV ~aL i j

R!trV ~Bi jb!. ~II.43!

We define an operatorXR on V ^V by

XR:5(
i j

L i j
R

^Bi j , ~II.44!

for which it holds thatRd(a,b) 5 trV ^V (a ^ bXR).
From now on we choose the particular set of$uei&% of eigenvectors of the operatorra

R as an
orthonormal basis forV , i.e.,Bi j5uei&^ej u. As an operator onV ,L i j

R possesses an expansion

L i j
R5(

k,l
lkl
i j Bkl , ~II.45!

so that

XR5 (
i , j ,k,l

lkl
i j Bkl^Bi j . ~II.46!

However, from Eq.~II.37! we see that, by using the basis$uei&%, this sum reduces to

XR5(
i ,k,l

lkl
i i Bkl^bii , ~II.47!

since only theBii 5 Puei &
appear in the expansion ofYa

R .
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Remember now thatXR stands for the real partX1 of Xd , the operator associated with a
decoherence functionaldPD . As such it has to fulfill that

XR5MXRM , ~II.48!

whereM was defined through the actionM (A^B)M5(B^A) for arbitrary operatorsA andB on
V . This requirement is strong enough to reduce~II.47! to

XR5(
i ,k

lkk
ii Bkk^Bii . ~II.49!

SinceBii 5u ei&^ei u 5 Puei &
, we see that the real partXR[X1 of the operatorXd associated with

a decoherence functionaldPD can be written as

X1[XR5(
i , j

l i j Pue1& ^Puej &
, ~II.50!

wherel i j :5l j j
i i . It is easy to see that these coefficients must obey

l i j5l j i , (
i , j

l i j51, (
i , j

aiil i j aj j>0, ~II.51!

which follow from the requirements of Hermiticity, normalization, and positivity. TheaiiPR are
expansion coefficients of an arbitrary projectora5( i j ai j uei&^ej u on V when expanded in the
basis$uei&^ej u%.

Note that the operatorsPuei &
^ Puej &

are not themselves operators associated with decoherence
functionals. They do not obey theX†5MXM requirement. By defining

X1
~ i j ! :5 1

2~Puei &
^Puej &

1Puej &
^Puei &

!, ~II.52!

we see thatX1
( i j ) is an operator that can be associated with a decoherence functional. This con-

cludes the proof of the proposition for the real part.
By the same procedure we obtain the expansion~II.33! for the imaginary partX2 of Xd in

terms of projectorsPubi &
for a different orthonormal basis$ubi&%. This concludes the proof. h

Note that the imaginary partX2 in itself is not an operator that can be associated with adPD .
Thus, we have shown the following Corollary.

Corollary: There exists a one-to-one correspondence between elementary decoherence func-
tionalsdePD and operatorsXde P XD which are given by the following expression:

Xde
~ i j !@ lm#

5X1
~ i j !1 ik lmX2

@ lm# , k lmPR, ~II.53!

where the operatorsX1
( i j ) andX2

[ lm] are defined as above. Note that there is no sum over repeated
indices.

We have thus shown that every decoherence functional can be written as a weak convex
combination of elementary decoherence functionals. I now want to show why theseXde must not
be called ‘‘pure decoherence functionals.’’

We show that every elementary decoherence functional can be written as the sum of two
decoherence functionals as follows. Due to the fact that the imaginary partX28 of an operator
X8PXD associated with arbitrary decoherence functionald8PD can be added to the operator
Xde associated with an elementary decoherence functionaldePXD to produce a new decoherence
functional, one can calculate that
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Xde5
1
2~Xde1 iX28!1 1

2~Xde2 iX28!. ~II.54!

Both terms (Xde 1 iX28) and (Xde 2 iX28) in this expression are proper decoherence functionals,
even thoughiX28 in itself is not a decoherence functional. Thus, elementary decoherence function-
als are not pure, but they still account for the simplest expansion of an arbitrary decoherence
functional and this is all that is needed for the proof of the analog of Wigner’s theorem.

We have now all the tools at hand to prove the following theorem.

III. AN ANALOG OF WIGNER’S THEOREM

Recall that, up to this point, we know about the following relation between the sets of
‘‘homogeneous symmetries of a history quantum theory, ‘‘homogeneous symmetries,’’ and
‘‘physical symmetries of a history quantum theory:’’

$HSHQT%>$HS%,$PSHQT%. ~III.1!

We are now going to show that the sets$HS% and $PSHQT% are identical.

A. The theorem

Theorem: There exists a one-to-one correspondence between homogeneous symmetries and
physical symmetries of history quantum theories. Thus each PSHQT is given by an operator
Û^ Û and induces a HSHQT; conversely, every one-to-one mapt: R~V !^R~V !
→R~V !^R~V ! that preserves orthogonality between the rays and commutes withM can be
implemented by a unitary operatorÛ^ Û on V ^V , whereÛ may be unitary or antiunitary.

Proof: We will first look for one-to-one maps which leave invariant the pairing between
history propositions and decoherence functionals and map the set of rays into itself,and then
restrict those transformations to homogeneous symmetries via the condition that they must map
XD into itself.

We first consider the invariance requirement for the values ofd~a,b!. This has to hold true for
all decoherence functionals. In particular, for the functionalsX1

( i j ) the relevant number is

2 trV ^V ~a ^ bX1
~ i j !!5trV ~aPuei &

!trV ~aPuej &
!1trV ~aPuej &

!trV ~bPuei &
!, ~III.2!

for some ONB$uei&% of V .
Recall that the requirement of the invariance of the imaginary part of a decoherence functional

leads us to consider

2 trV ^V ~a ^ bX2
@ i j #!5trV ~aPubi &

!trV ~bPubj &
!2trV ~aPubj &

!trV ~bPubi &
!, ~III.3!

for some ONB$ubi&% of V .
Therefore, considering those decoherence functionalsXd for which ubi&5uei& for all

iP$1,2,...,dimV %, andl i j5k i j for all i , jP$1,2,...,dimV %, we see that the invariance requirement
amounts to requiring that

trV ~aPuei &
!trV ~bPuej &

! ~III.4!

should remain invariant under the appropriate transformations. At first we take the case when
a^bPR~V !^R~V !. By Wigner’s theorem, the transformations leaving~III.4! invariant
are given by operatorsÛ^ V̂ wherebyÛ and V̂ are unitary or antiunitary operators onV . Even
though these transformations leave the value ofd~a,b! invariant, they do not comply with the
condition of mapping the setXD into itself.
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To see this, recall that an elementXdPXD is required to satisfy the conditionXd
† 5 MXdM ,

which is equivalent toX1
( i j )5MX1

( i j )M andX2
[ i j ]52MX2

[ i j ]M . Consider the following particular
decoherence functionalX1

( i i ) under such a mapping:

XD{Puei &
^Puei &

°Puei &
Û

^Puei &
V̂ . ~III.5!

Since

M @Puei &
Û

^Puei &
V̂ #MÞPuei &

Û
^Puei &

V̂ , ~III.6!

we see that its image under the mapÛ^ V̂ does not belong toXD . To comply with this require-
ment we need to require that [Û^ V̂,M ]50, i.e., consider only those operators of the formÛ^ Û.

What is now left to show is that there can be no other transformations obeying conditions
~II.17!–~II.19!, even if we allow for arbitrary transformationsG5(G0 ,G0):

G:P ~V ! ^P ~V !→P ~V ! ^P ~V !

a ^ b°aG0^ bG0. ~III.7!

The argument is much the same as in the standard quantum mechanical case: consider a
transformationG5(G0 ,G0) that maps a one-dimensional projectoraPP ~V ! into aG0 P P (V ),
anm-dimensional one,m.1. Therefore,

a ^ a°aG0^ aG0.

It is easy to see that there exists adPD such thatXd5a^a ~see also Ref. 14!. However, since
trV ^V (a

G0 ^ aG0) 5 m2, there exists no decoherence functionaldG0 P D for whichaG0 ^ aG0 is
the associated operatorXdG0 . This concludes the proof. h

B. Discussion

The result of the theorem shows that every PSHQT can be induced by a unitary or antiunitary
operatorÛ on V as follows:

UP : a°ã:5ÛaÛ†,
~III.8!

D :Xd°Xd̃ :5X̃d[Û^ ÛXdÛ
†

^ Û†.

As a consequence of this transformation, the invariance

d~a,b!5d̃~ ã,b̃ ! ~III.9!

for all dPD and alla,bPP~V ! follows by the property of the trace.
By looking at the definition for a PSHQT from which this theorem arose, it seems rather

unnecessary to proceed via the use of elementary decoherence functionals. We could have started
immediately by looking for all transformations obeying condition~II.17!; then, restrict to those
which mapXD into itself. However, since it was not known to which extentXD can accommo-
date more general transformationsG onP ~V !, it seems a sensible way to follow this hybrid path.
In particular, we circumvented the problem of specifying all transformations that mapXD into
itself.

A central requirement in the proof of the theorem was the invariance of the valued~a,b!PC
for all pairsa,bPP ~V !. A closer inspection reveals that the existence ofcomplex-valued func-
tionals makes it possible to reduce the invariance requirement to the form~III.4!. However, it is
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neither necessary to considercomplex-valued functionals nor to require invariance forall pairs
~a,b!. We can investigate the possibility of softening the invariance requirement to hold only for
the ‘‘diagonal’’ values ofdPD , i.e.,d~a,a!. Then we are led to the condition that

trV ^V ~a ^ aX1
~ i j !!5trV ~aPuei &

!trV ~aPuej &
! ~III.10!

has to remain invariant. In this case we see that we will end up with the same transformations
Û^ Û on V ^V as requiringd~a,b! to remain invariant forall pairs~a,b!. This is due to the fact
that restricting to projectors of the forma^a can be formulated with the aid of the same operator
M which is used to formulate the defining propertyX†5MXM for decoherence functionals.
Therefore, the requirement on the diagonal part only is strong enough to enforce it onto the value
of d on any pair~a,b!.

The particular feature of physical symmetries of history quantum theories is their property of
being implemented by a unitary or antiunitary operatorÛ on V . As a consequence, each partition
of the unit operator inV into mutually orthogonal projectors, that is a set of projectors$ai%, such
that

$a i% i51
m<dim V , % i51

m a i51, ~III.11!

is mapped into another partition of unity. In particular, the cardinality of this set is preserved.
Now, much emphasis in the decoherent histories approach is placed on finding consistent sets of
history propositions with respect to a particular decoherence functionaldPD . In the formalism
used here, consistent sets are naturally associated with particular partitions of unity,14 namely
those for which it holds that

d~a i ,a j !5d i j d~a i ,a i ! ; i , jP$1,2,...,m%. ~III.12!

We see therefore that a PSHQT will always map consistent sets into sets of thesamecardi-
nality. There has been some discussion11,12 whether or not one should allow for transformations
between consistent sets of different cardinality. We see that, at least in this context, this possibility
is excluded if one agrees on the definition of PSHQT presented in this article.

C. Physical symmetries of history quantum mechanics

The main aim of this section is to show that the notion of ‘‘physical equivalence,’’ introduced
in Ref. 4, is—when expressed in this formalism—a particular example of a physical symmetry of
history quantum mechanics. It also serves the purpose of providing the explicit form of the
decoherence functional for this theory.

Remember that, for standard quantum mechanics when looked at from the perspective of the
history program, the space of history propositionsaPUP is given by projectorsa P P (V n)
5 P ( ^ i51

n
H t i

). The particular decoherence functional is associated with an operator

X~H,r t0
,r t f

!5
1

trH„r t0r t f~ t f !…
X̃~H,r t0

,r t f
! ~III.13!

on V n^V n , where I also have inserted a final density operator at timet f . When evaluated on
homogeneous projectorsah 5 a t1

^ a t2
^ ••• ^ a tn

, the value ofd(H,r t0,r t f )
(ah ,bh) is given by
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d~H,r t0
,r t f

!~ah ,bh!5
1

trH„r t0r t f~ t f !…
trV ^V ~ah^ bhX̃~H,r t0

,r t f
!!

5
1

trH„r t0r t f~ t f !…
trH„C̃ah

† r t0C̃bh
r t f~ t f !…, ~III.14!

which coincides with the form of the decoherence functional usually employed in the histories
approach. However, note once again thatd(H,r t0,r t f )

(a,b) is definedfor all a,bPP ~V !. By fol-

lowing the procedure outlined in Ref. 8, one shows that the operatorX̃(H,r t0
,r t f

) is given by

X̃~H,r t0
,r t f

!5@U~ t1 ,t0!
†r t0U~ t1 ,t0! ^U~ t2 ,t1!

†
^ ••• ^U~ tn ,tn21!

†#

^ @U~ t2 ,t1! ^U~ t3 ,t2! ^ ••• ^U~ tn ,tn21! ^U~ t f ,tn!r t fU~ t f ,tn!
†#

3~R~n! ^1t1^1t2^ ••• ^1tn!S~2n!~R~n! ^1t1^1t2^ ••• ^1tn!. ~III.15!

The last three lines involve universal operatorsR(n) andS(2n) that arise by rewriting products of
operators in terms of tensor-products.8 Thus they are system independent. This operator is defined
on V n^V n and encodes the initial and final density operators as well as the dynamical evolution
in the form of the evolution operatorU(t i ,t i21). This is the purest description of the content of the
decoherence functional one can write down. It has a very transparent form.

Recall4 that ‘‘two triples ($Ca%,H,r) and ($C̃a%,H̃,r̃) are called ‘physically equivalent’ if
there are fields and conjugate momenta (F(x),p(x)) and (F̃(x),p̃(x)), respectively, in which the
triples’ histories, Hamiltonian, and initial condition take the same form.’’ As an example, the
explicit transformation„a t i

(t i)°Va t i
(t i)V

†,H°VHV†,r°VrV†
… for a fixed unitary operatorV

onH was shown to lead to physically equivalent triples.
Remark:In order not to use the same symbol twice, I used the notationV instead ofU as in

Ref. 4 for the unitary operator; in the context of history quantum mechanicsU(t i ,t i21) already
denotes the evolution operator.

First, notice that a transformation of the Heisenberg projection operators

a t i
~ t i !°Va t i

~ t i !V
† ; iP$1,2,...,n% ~III.16!

is identical to the transformation

a t i
~ t i !°VU~ t i ,t0!V

†@Va t i
V†#VU~ t i ,t0!V

†, ; iP$1,2,...,n% ~III.17!

that is a pair of transformations

a t i
°Va t i

V† ; iP$1,2,...,n%; H°VHV†, ~III.18!

where thea t i
denote the Schro¨dinger projection operators. This is important since in the formal-

ism used here only a stringah 5 a t1
^ a t2

^ ••• ^ a tn
of Schrödinger projection operatorscorre-

sponds to a homogeneous history propositionahPUP5P ~V n!. Now, defining the unitary opera-
tor ÛV :5V^V^ ••• ^V, n times, remembering thatr°VrV† and that the decoherence
functional is given by Eq.~III.15!, we see that the effect of this transformations onX̃(H,r t0

,r t f
) is

given byX̃(H,r t0
,r t f

)°(ÛV ^ ÛV)X̃(H,r t0
,r t f

)(ÛV
†

^ ÛV
†). Thus, this transformation between physi-

cally equivalent triples can be described as follows:
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The transformation of the history propositionsahPP ~V n! as well as the operator
X(H,r t0

,r t f
) by a unitaryÛVPB~V n! clearly leaves invariant the values ofd(ah ,bh) since

d~ah ,bh!5trV ^V @~ÛVahÛV
†

^ ÛVbhÛV
† !~ÛV^ ÛVX~H,r t0

,r t f
!ÛV

†
^ ÛV

† !#, ~III.19!

which is the definition of physical symmetry of a history quantum theory for whichUP5P~V n!.
Note that, in general, not all unitary operatorsÛ on V n need to be of the formÛV for a unitary
operatorV on the single-time Hilbert spaceH.

IV. SUMMARY AND OUTLOOK

In this article we proposed a notion of a ‘‘homogeneous symmetry’’~HS! and of a ‘‘physical
symmetry of a history quantum theory’’~PSHQT!. We proved an analog of Wigner’s theorem
which states that there exists a one-to-one correspondence between both HS and PSHQT. It has
been shown that each PSHQT can be induced by a unitary or antiunitary operatorÛ onV . History
quantum theories that are related by a PSHQT are called ‘‘physically equivalent’’ and we showed
explicitly in the case of history quantum mechanics how this notion encompasses the notion of
physical equivalence introduced by Gell-Mann and Hartle in Ref. 4 in case one is dealing with a
finite-dimensional, single-time Hilbert spaceH t at a finite number of time points (t1 ,t2 ,...,tn).
An extension to infinite-dimensionalH t as well as to a continuous range of time points is clearly
desirable since such spaces occur naturally in the context ofcontinuous histories.15,16

In this article we also investigated the structure of the space of decoherence functionals; in
particular, we defined the notion of an ‘‘elementary decoherence functional’’ in terms of which
every decoherence functional can be expanded. We showed that these decoherence functionals are
not pure, an observation that agrees with a result by Linden13 that there exist no pure decoherence
functionals. These elementary decoherence functionals were employed in order to perform some
proofs but haveneverbeen assigned any status other than a technical one. In particular, we never
calculated ‘‘transition amplitudes between decoherence functionals,’’ something that entirely con-
tradicts the spirit of history quantum theories. Do these elementary decoherence functionals pos-
sess any physical interpretation?

While the definition of symmetry presented here has very convenient properties, it does not
treat consistent sets of history propositions in any way preferred to other elementsaPP ~V !.
However, since these are the sets one ultimately wants to determine, it is reasonable to ask for a
notion of symmetry which mirrors their importance. Reflecting a moment about the structure of
consistent sets, one notices that this amounts to asking for an approach which places its emphasis
on Boolean subalgebras of the spaceP ~V !. Via the use of the consistency conditions on the
values of the decoherence functional, some of these Boolean algebras, namely the ones associated
with consistent sets, are selected. Within each of these algebras classical reasoning without run-
ning into logical paradoxes is possible, whereas reasoning about elements belonging to different
consistent sets leads, in general, to inconsistencies in the use of the valuesd~a,a! of the decoher-
ence functional as probabilities. The theory of ‘‘Boolean manifolds,’’17 which seem to be the
most appropriate objects to describe history quantum theories,7,18 allows one to describe the
structure ofP ~V ! in these terms and therefore, one is led to the problem of defining a transfor-
mation theory on Boolean manifolds. This is a task for future research.

By proving a classification theorem for decoherence functionals—an analog of Gleason’s
theorem in the context of history quantum theories—and the analog of Wigner’s theorem pre-
sented here, we have laid the mathematical foundations for an approach to quantum theory from
the point of view of the history program.

In history quantum theories the decoherence functional can be thought of as providing the
‘‘dynamical’’ content of the theory. In standard quantum mechanics, when investigated from the
point of view of the history program, this is manifest in that the space of history propositionsUP
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is given by Schro¨dinger picture projection operators and thus represents the ‘‘kinematical’’—as
opposed to ‘‘dynamical’’—ingredient of the theory. In contrast, the decoherence functional
~III.15! contains the evolution operator and the initial and final density operators and thus provides
the ‘‘dynamical’’ specification of the model under investigation. In a companion paper19 we will
use the analog of Wigner’s theorem presented in this article to define and to investigate the
properties of ‘‘symmetries of decoherence functionals.’’
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We explicitly construct the adjoint operator of coboundary operator and obtain the
Hodge decomposition theorem and the Poincare´ duality for the Lie algebra coho-
mology of the infinite-dimensional gauge transformation group. We show that the
adjoint of the coboundary operator can be identified with the BRST adjoint gen-
eratorQ† for the Lie algebra cohomology induced by BRST generatorQ. We also
point out an interesting duality relation—Poincare´ duality—with respect to gauge
anomalies and Wess–Zumino–Witten topological terms. We consider the consis-
tent embedding of the BRST adjoint generatorQ† into the relativistic phase space
and identify the noncovariant symmetry recently discovered in QED with the
BRST adjoint No¨ther chargeQ†. © 1996 American Institute of Physics.
@S0022-2488~96!04411-8#

I. INTRODUCTION

The theory of gauge fields is based on symmetry principles and the hypothesis of locality of
fields. The principle of local gauge invariance determines all the forms of the interactions and
allows the geometrical description of the interactions.1 However the quantization of gauge fields
leads to difficulties due to the constraints arising from the gauge symmetry. These difficulties of
the quantization of constrained systems can be circumvented by the extension of phase space
including the anticommuting ghost variables.2 In this approach, the original gauge symmetry is
transformed into the so-called BRST symmetry in the extended phase space.3,4 The BRST sym-
metry will determine all the forms of the interactions and the algebraic and topological properties
of the fields in the quantum theory.5

The question that comes naturally to mind is how we recover the original gauge invariant
space consisting of only physical degrees of freedom from the extended phase space with
ghosts4–6 and what is the physical spectrum with the group invariant structure. In order to study
the algebraic and topological structures of gauge theories, we follow the point of view of Ref. 7
about the ghost fields and the BRST transformation. That is, we identify the ghost field with the
Cartan–Maurer form on an infinite-dimensional Lie groupG`—the group of gauge
transformation—and the BRST generatorQ with the coboundary operators on its Lie algebraG .
Through these identifications, we have the natural framework to construct the Lie algebra coho-
mology induced by the BRST generatorQ. This Lie algebra cohomology will be related to the
group invariants of the configuration space of gauge fields and matter fields.

The organization of this paper is as follows. In Sec. II, we construct the cochain complex on
G with values in aG -module.8–10With the pairing between Lie algebraG and its dual spaceG * ,
we define a chain as an element of the dual space to the cochain and a dual operations

*
of s. We

define a positive-definite inner product and construct an adjoint operators† of s using the Hodge
duality operation. We obtain the Hodge decomposition theorem, Poincare´ duality, and Künneth
formula analogous to the de Rham cohomology.11

In Sec. III, we show that the adjoint of the coboundary operator can be identified with the
BRST adjoint generatorQ† for the Lie algebra cohomology induced by BRST generatorQ and

a!Current address: Department of Physics, Sogang University, Seoul 121-742, Korea.
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each cohomology class on a polynomial space is characterized by the gauge invariant polynomials
with a particular group invariant structure imposed on the cochain~or chain! space. We discuss the
physical implications of the Lie algebra cohomology in the contexts of gauge anomaly and the
effective action with the symmetry groupG spontaneously broken to a subgroupH. The Lie
algebra cohomology allows us algebraic and topological characterization of them and provides an
interesting duality relation—Poincare´ duality—between them. In Sec. IV, we apply this cohomol-
ogy to QED and QCD. In order to consider the consistent embedding of the BRST adjoint
generatorQ† into the relativistic phase space, we introduce the nonminimal sector of BRST
generator.4 Through this procedure, we find the BRST-like No¨ther chargeQ† corresponding to the
adjoint of the BRST generatorQ, which generates a new kind of noncovariant symmetry in QED
in Refs. 12 and 13. Section V contains discussion and some comments.

II. LIE ALGEBRA COHOMOLOGY

Let P be a principal bundle with a structure groupG ~a compact Lie group with the invariant
inner product defined on its Lie algebrag! over a differentiable manifoldM ~flat Minkowski space
or Euclidean spaceRn!. The gauge transformation groupG`—an automorphism ofP—and its Lie
algebraG can be identified with the set ofC`-functions onM taking values in the structure group
G and its Lie algebrag, respectively. One defines the dual spacesg* of g and G * of G as
follows:10

^x,X&5 (
a51

dimG

Xaxa , for XPg~G !, xPg* ~G * !. ~2.1!

The space–time dependence of the elements ofG` , G , andG * will be suppressed unless oth-
erwise explicitly indicated and anL2-norm will be assumed in the inner product~2.1! betweenG
andG * .14 Using the pairing between Lie algebrag ~G ! and its dual spaceg* ~G * !, the coadjoint
action ofG ~G`! on g* ~G * ! is defined by

^X,Adg* x&5^Adg21X,x& for gPG~G`!, xPg* ~G * !. ~2.2!

Consider ap-cochainwp, an element ofCp~G ;R!, whereCp is an antisymmetricp-linear map
onG with values in a leftG -moduleR with the ring structure.8–11The space of cochains onG is
the direct sum of the spaces ofp-cochains:

C*5 % p50
dimGCp. ~2.3!

We introduce onC* the operatorsi (q)(x) ande~q* !(x) on a pointxPM defined as follows:

i ~q!:Cp→Cp21, ;qPG

by

~ i ~q!~x!wp!~q1 ,...,qp21!~y!5wp~q,q1 ,...,qp21!~y!d~x2y!, wpPCp; ~2.4!

and

e~q* !:Cp→Cp11, ;q*PG *

by
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~e~q* !~x!wp!~q1 ,...,qp11!~y!5 (
l51

p11

~21! l11^q* ~x!,q l~y!&wp~q1 ,...,q̂ l ,...,qp11!~y!,

~2.5!

where ˆ indicates omission. Denote by$ua%, a51,...,N[dimG, a basis ofG and by$u *a% the
basis ofG * such that

^u* a~x!,ub~y!&5db
ad~x2y!. ~2.6!

Then straightforward calculations using the definitions~2.4! and ~2.5! lead to the following
relations:10

$ i ~ua!,i ~ub!%[ i ~ua!+ i ~ub!1 i ~ub!+ i ~ua!50,

$e~u* a!,e~u* b!%50,

$e~u* a!,i ~ub!%5^u* a,ub&15db
a1, ~2.7!

where + denotes the map composition. Then, for example, thep-cochainwpPCp can be con-
structed using the operatore~u * ! as follows:

~2.8!

It must be kept in mind that the operations in Eqs.~2.4!–~2.8! must be understood as defined on
a pointxPM and we have omitted delta-function onM in Eq. ~2.7!. This shorthand notation will
be used throughout this paper if it raises no confusion.

Let s:Cp→Cp11 be the coboundary operator, i.e.,s250 ~Refs. 7–10! defined onC* ~G ;R! by

~swp!~u1 ,...,up11!~x!5 (
l51

p11

~21! l11u l•w
p~u1 ,...,û l ,...,up11!~x!

1(
l,n

~21! l1nwp~@u l ,un#,u1 ,...,û l ,...,ûn ,...,up11!~x!, ~2.9!

where a dot means the linear transformation ofR defined by an element ofG . The coboundary
operators can then be expressed in terms ofe~u * ! and i ~u! as follows:

s5 (
a51

N E
M

ua•e~u* a!2 (
a,b

N E E
M
i ~@ua ,ub# !+e~u* a!+e~u* b!, ~2.10!

where the integrations are defined overM .
Now we define a chain complexC as the dual space of the cochain complexC* using the

duality ~2.1!,9,11 namely,

^,&:Cp3Cp→R

by
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~wp,vp!°^wp,vp&5E
vp
wp, wpPCp and vpPCp , ~2.11!

where we set̂wp,vq&50 if pÞq, andC* andC are augmented compleces, that is,Cp5Cp50
for p,0.8,11The duality~2.11! allows us to define an operators

*
:Cp~G * ;R!→Cp21~G * ;R! dual

to s:

^swp21,vp&5^wp21,s* vp&, wp21PCp21 and vpPCp . ~2.12!

Obviously, Eq.~2.12! shows uss250 impliess
*
2 5 0. Thus we will identifys

*
with the boundary

operator acting on the chains$vp%. Of course, the above procedures defining the chain complex is
completely analogous to the ordinary homology theory.8,9,11

Let us introduce the Hodge star duality operation whose action on the cochain space is defined
as follows:

* :Cp→CN2p ~2.13!

by

~*wp!~uap11
,...,uaN!5(

1

p!
wp~ub1,...,ubp!e

b1 ...bp
ap11 ...aN

. ~2.14!

As the de Rham cohomology, we want to define the adjoint operators† of s ~Refs. 9 and 15! under
the new nondegenerate inner product defined by

~w1 ,w2!5E
uN

w1`*w2 ~2.15!

with theN-chainuN satisfyings
*
uN50. Then

~sw1 ,w2!5~w1 ,s
†w2!, ~2.16!

ands†:Cp→Cp21 is given by

s†5~21!N•p1N11* +s+* . ~2.17!

For convenience, we have taken the Cartan–Killing metricgab of the semi-simple Lie subalgebra
as positive definite:

gab52 1
2 cad

l cbl
d 5dab ,

where [ua(x),ub(y)]5cab
l u l(x)d(x2y). The operators† is nilpotent sinces†2}* s

2
*50. Using

the definitions in Eqs.~2.17!, ~2.9!, and~2.14!, one can determine the action ofs† on ap-cochain
wp:

~s†wp!~u1 ,...,up21!~x!52(
l5p

N

u l•w
p~u l ,u1 ,...,up21!~x!

2 (
l51

p21

(
a,b

~21! l11cab
l wp~ua ,ub ,u1 ,...,û l ,...,up21!~x!.

~2.18!

Similarly, the adjoint operators† can be expressed in terms ofe~u * ! and i ~u! as follows
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s†52 (
a51

N E
M

ua• i ~ua!1 (
a,b,c

N E
M
cab
c e~u* c!+ i ~ua!+ i ~ub!. ~2.19!

Let us define an operatord[s+s†1s†+s corresponding to the Laplacian, which clearly takes
p-cochains back intop-cochains as

d:Cp→Cp.

The straightforward calculation using Eq.~2.7! and the Jacobi identity forcab
c leads to the follow-

ing expression for the Laplaciand:

d52E
M
S ( ua•ua1( cab

c ua•e~u* c!+ i ~ub!1
1

2 ( cab
c cae

d e~u* c!+ i ~ub!•e~u* d!+ i ~ue! D .
~2.20!

Considering the formal resemblance to the de Rham cohomology, it will be sufficient to state,
without proof, only the important results which are necessary for later applications. For math-
ematical details of homology and cohomology theory, see Refs. 8, 9, and 11.

We define thep-th cohomology group of the Lie algebraG by the equivalence class of the
p-cochainsCp~G ;R!, that is, the kernel ofs modulo its image:

Hp~G ;R![Kerps/Imps, p50,...,N. ~2.21!

Then the nondegenerating inner product~2.11! provides a natural pairing betweenp-th cohomol-
ogy groupHp~G ;R! andp-th homology groupHp~G * ;R!,

Hp~G ;R! ^Hp~G * ;R!→R,

so that the inner product (2.11) establishes the duality of the vector spaces Hp~G ;R! and
Hp~G * ;R!, the de Rham theorem.11

The following result is the direct consequence of the positive definiteness of the inner product
~2.15!:
The ‘‘harmonic’’ p-cochain wpPHarm~G ;R!, i.e., dwp50 is satisfied if and only if it is exact,
i.e., swp50 and co-exact, i.e., s†wp50.

The adjointness of the operators and s† under the nondegenerate inner product~2.15! and
their nilpotency leads to the so-called Hodge decomposition theorem in the cochain space in a
unique way:9,15

Any p-cochain wp can be uniquely decomposed as a sum of exact, co-exact, and harmonic forms,
i.e.,

wp5d H
p

%swp21
%s†wp11, p50,...,N, ~2.22!

whered H
p is a harmonicp-cochain. The Hodge decomposition theorem~2.22! implies the isomor-

phism between the p-th cohomology space Hp~G ;R! and the p-th harmonic spaceHarmp~G ;R!.
The Hodge star operator* mapsCp→CN2p and commute with the Laplaciand. Thus *

induces an isomorphism

Harmp~G ;R!'HarmN2p~G ;R!.

Consequently,HN2p~G ;R! and Hp~G ;R! are isomorphic as vector spaces,

HN2p~G ;R!'Hp~G ;R!. ~2.23!
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This is just the Poincare´ duality.11

If the Lie algebraG is a direct sum of semi-simple Lie algebras and/or Abelianu~1! algebras,
that is,G5G 1%G 2 and thus each of these algebrasG a is an ideal ofG , then a totalp-cochainC

p

will be a sum of a tensor product of cochains corresponding to each Lie algebraG a ,

Cp5 % q1r5pC1
q

^C2
r ,

andwpPCp will be given by

wp5 (
q50

p

w1
q3w2

p2q , w1
qPC1

q , w2
p2qPC2

p2q .

The mapwpPCp on G is defined by

wp~u1 ,...,uq ;j1 ,...,jp2q!5w1
q~u1 ,...,uq!w2

p2q~j1 ,...,jp2q!, u iPG 1 , j iPG 2 .

ThenHp~G ;R! can be decomposed into a sum of a product of eachHq~G 1;R! andHp2q~G 2;R!:

Hp~G ;R!5 % q50
p @Hq~G 1 ;R! ^Hp2q~G 2 ;R!#. ~2.24!

This is known as the Ku¨nneth formula for a product space~in our case, a product group
G1^G2!.

11,15

III. GROUP STRUCTURE OF GAUGE THEORIES

In this section we will show that the group invariant structures of the gauge theory can be
described by the Lie algebra cohomology induced by the BRST generatorQ in the algebra of
invariant polynomials onG with the generalized Poisson bracket,4 taking the complete correspon-
dence with the results of Sec. II. It will provide the algebraic and the topological characterization
with respect to group invariant structures in the gauge theory and exhibit a very remarkable
connection between the BRST symmetry and the differential and algebraic geometry.

Consider any physical system with gauge transformation groupG` and its compact Lie
algebraG with N generatorsGa , a51,...,N, satisfying the following Lie algebra:

@Ga~x!,Gb~y!#5g fab
c Gc~x!d~x2y!, a,b,c51,...,N. ~3.1!

Corresponding to each generator, we introduce a ghostha(x) and an antighostra(x) which satisfy
the following Poisson bracket relations:

$ha,hb%5$ra ,rb%50, $ha,rb%5db
a . ~3.2!

Then we can construct the nilpotent BRST generator4

Q5E
M
Gah

a2
1

2
gE

M
f ab
c rch

ahb, ~3.3!

and its nilpotency

Q250 ~3.4!

follows from the Lie algebra~3.1! together with the Jacobi identity.
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If one identifies the operatorse(u* a)(x) andi (ua)(x) in Sec. II with the ghosth
a(x) and the

antighostra(x), respectively,
10 the expression~2.10! about the coboundary operators exactly

agrees with the BRST generatorQ, where structure constantscab
l 5g fab

l andGa is any represen-
tation for ua . Rewrite the BRST generator as

Q5E
M
S Jaha2

1

2
tah

aD , ~3.5!

whereJa5Ga1ta . ta5grmf al
mh l satisfies the same algebra asGa and commutes with it. Then

BRST s-transformation law with respect to a fieldF (x) is defined as follows,

sF ~x!5@Q,F ~x!%, ~3.6!

where the symbol@,% is the generalized Poisson bracket. Thus thes-transformations with respect to
the ghost fieldh andr by Q are

sha52 1
2 g fbc

a hbhc, sra5Ja . ~3.7!

According to Ref. 7, we identify the ghost fieldh(x) with a left-invariant Cartan–Maurer
form on the groupG` . With this interpretation of the ghost fieldh(x), the first equation in Eq.
~3.7! is just the Cartan–Maurer equation with respect to ‘‘exterior derivative’’s for formsh(x) on
G` . It is also obvious that the adjoint operators

† of s introduced in Sec. II can be constructed in
terms ofh andr. We define the corresponding generator byQ† and it is given by

Q†52E
M
SGara2

1

2
g fc

abhcrarbD52E
M
S Jara2 1

2
taraD . ~3.8!

One can easily check this generator is also nilpotent, i.e.,Q†250 as stated in Sec. II.
The generatorQ† first appeared in Ref. 16 to find the gauge invariant interactions in string

theory and then in Ref. 17 to construct the BRST complex and the cohomology of compact Lie
algebra. The Lie algebra cohomology in this paper is quite different from the BRST cohomology
constructed in Ref. 18, so we use the nomenclature, Lie algebra cohomology, in order to avoid
confusion with the BRST cohomology since these two cohomologies have been often confused in
the literature. In fact, the cohomology of Ref. 17 corresponds to the Lie algebra cohomology in
this paper as long as the space–time dependences of the Lie groupG` and the Lie algebraG are
fixed. However, it is necessary to consider the infinite-dimensional Lie group and Lie algebra in
order that the BRST generator may be viewed as the coboundary operator for the Lie algebra
cohomology.7

The s†-transformation with respect to a fieldF (x) is defined by

s†F ~x!5@Q†,F ~x!%. ~3.9!

Then thes†-transformations with respect to the ghost fieldsh andr are

s†ha52Ja, s†ra5
1
2 g fa

bcrbrc . ~3.10!

The above equations show that one can identify the antighostra with the Cartan–Maurer form
with respect to the ‘‘exterior derivative’’s† as well.

SinceQ andQ† are nilpotent, it follows thatQ andQ† invariant byG` , i.e.,

@Q,Ja#50, @Q†,Ja#50. ~3.11!
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One finds thatQ and Q† satisfy the supersymmetrylike algebra that closes into a Laplacian
generatorD,

$Q,Q†%52D, @D,Q#50, @D,Q†#50, ~3.12!

where the LaplacianD can be computed in terms of the Casimir generators16

D5
1

2 E
M

~JaJa1GaGa!. ~3.13!

The operatord: Cp→Cp in Sec. II corresponds to this generator and it has exactly the same
expression asD if it is rewritten in terms of Casimir operators.

Following the same scheme as those in Refs. 19 and 20, we construct the cochains onG

spanned by the polynomialv (p)5Trhp, whereh5haTa andTa is a generator ofg. That is, a
p-dimensional cochainCp~G ;R! corresponding to Eq.~2.8! is spanned by elements of the space of
wp 5 ` rv (pr )

• f(Spr 5 p), wheref is an element ofR, i.e.,G -module of symmetric polynomials
onG without ~anti-!ghosts. Thenv(p)50 if p is even andv(p) is a ‘‘closed‘‘ p-form - ap-cocycle,
i.e., sv (p)50 by Eq. ~3.7!. Notice, for semi-simple groupsG, v~1!50.15 Let us reexpress the
p-cochainwp as the following form:

wp5(
1

p!
ha1ha2•••hap

•fa1a2•••ap
~p! . ~3.14!

Note that the results such as Hodge decomposition theorem, Poincare´ duality, and Künneth
formula in Sec. II will be reproduced here in the same manner as well. In Sec. II, we stated the
isomorphism between thep-th cohomology spaceHp~G ;R! and thep-th harmonic polynomial
spaceHarmp~G ;R!. Therefore, the BRST invariant polynomial space can be summarized as the
harmonicpolynomial spacedwp50, whose solutions are represented by

@Ga ,w
p#50, ~3.15!

and

@ta ,w
p#5@grmf al

mh l ,wp#50. ~3.16!

The second condition reads, in components,

f a@a1
m fa2•••ap]m

~p! 50, ~3.17!

where the square bracket denotes complete antisymmetrization over the enclosed indices.17 The
first condition~3.15! imposes theG-invariance—G-singlet—on the polynomial~G -module! and
the second one imposes very important constraints about the group invariant structures. For the
p50 andp5N, the conditions~3.15! and ~3.16! are always satisfied trivially as long as they are
associated with theG-invariant polynomials, which leads to the conclusion that the zeroth and the
N-th cohomology spaces require only the space ofG-singlet. For semi-simple groupsG, there are
no solutions satisfying the condition~3.16! for p51,2,4 since there is no cohomology basis
` rv (pr )

to be closed and forp5N21, N22, N24 by Poincare´ duality ~2.23!, so that their
cohomologiesHp~G ;R! vanish. Note that the gauge group SU~2! is cohomologically trivial so that
the group invariant structure in the SU~2! gauge theory is similar to electrodynamics. In this
respect, we would like to refer to the interesting analysis21 which arrives at the same conclusion
under the different approach. If oneU~1! factor is present~for example, SU~2!3U(1),U~2!, etc.!,

6113H. S. Yang and B.-H. Lee: Lie algebra cohomology and gauge theories

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



thenH1~G ;R! is non-trivial sincev~1! is nonzero.
15,19ForG5SU(N), N>3, there exist nontrivial

cohomologiesH3~G ;R! and H5~G ;R! whenever the symmetric polynomialsf~3! and f~5! are
proportional to the structure constants as follows, respectively:

fabc
~3! 5 f abc•f, fabcde

~5! 5damnfmbcf nde•f, ~3.18!

wheredabc51/2TrTa$Tb ,Tc% andf is anyG-singlet. These follow directly from the expansion
~3.14!7,22 or Eq. ~3.17! with the Jacobi identity.

It is worth mentioning, forG5SU~3!, the nontrivial cohomologiesH3~G ;R! andH5~G ;R! are
related with each other by Poincare´ duality ~2.23!. The solution of the descent equations corre-
sponding to the Wess–Zumino consistency conditions in gauge theories23 shows that the polyno-
mials v~3! and v~5! corresponding to the third and the fifth cohomologies~3.18! respectively
generate the two dimensional and the four dimensional gauge anomaly7,19 ~see also recent
analysis24 by Sorella, where the cohomology basisv~3! andv~5! have a fundamental importance on
solving the descent equations!. Thus, from the results of these literatures, we can conclude that
two and four dimensionalSU~3! anomalies are related to each other by the Poincare´ duality; in
other words, the gauge anomaly in two dimensional QCD implies the existence of the anomaly in
four dimensional QCD as long asd-cohomology is trivial.7,19,20This observation is also applied to
the problem yielding the generalG-invariant effective action25 with the symmetry groupG spon-
taneously broken to the subgroupH since theG-invariant effective actions for homogeneous
spacesG/H can be understood as the Lie algebra cohomology problem of the manifoldG/H. For
example, in the case for SU~3!3SU~3! spontaneously broken to the subgroup SU~3!, the two
dimensional Poincare´-dual of the Wess–Zumino–Witten term in four dimensional theory is the
Goldstone–Wilczek topological current.26

IV. COHOMOLOGY IN QED AND QCD

In this section, we want to see whether it is possible to find a corresponding adjoint generator
Q† of the nilpotent No¨ther chargeQ in relativistic theories and what the role of the adjointQ† in
the Lagrangian formulation is. That is, the solution we want to find out is how to embed the
adjointQ† of Q into the relativistic phase space. In order to construct the relativistic phase space,
it is then necessary to incorporate the Lagrange multipliers and their conjugate momenta and the
associated ghost pairs into the phase space.4,27 In that case we will have the two kinds of first-class
constraints composed of Gauss constraints and gauge-fixing constraints in the extended phase
space. Thus the consistent embedding of the BRST adjoint generatorQ† into the relativistic phase
space means that theQ† is the adjoint generator with respect to the total Lie algebraG composed
of a direct sum of two idealsG 1 and G 2 corresponding to the Gauss and the gauge-fixing
constraint algebras, respectively, and it can be realized as a No¨ther charge in configuration space.

First, consider the BRST~and anti-BRST! invariant effective QED Lagrangian.~Our BRST
treatments are parallel with those of Baulieu’s paper.5!

Leff52 1
4 FmnF

mn1c̄~ igmDm2m!c2 1
2 s̄s~Am

21a c̄c!

52
1

4
FmnF

mn1c̄~ igmDm2m!c1Am]mb1
a

2
b22]mc̄]mc, ~4.1!

whereDm5]m1 ieAm is the covariant derivative with the metricgmn5~1,21,21,21!. The explicit
BRST transformations are

sAm5]mc, sc50,

sc̄5b, sb50,
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sc52 iecc. ~4.2!

We introduced an auxiliary fieldb to achieve off-shell nilpotency of the BRST~and the anti-
BRST! transformation. Then the nilpotent No¨ther charge generated by the BRST symmetry reads
as

Q5E d3x$~] iF
io2J0!c1bċ%, ~4.3!

whereJ0 is a charge density defined by

J05ec̄g0c. ~4.4!

The constraint functionsGi consist of two commuting groups,Gi5(F,b), i51,2, where
F5] iF

io2J0 is a Gauss law constraint in the theory andb is the momentum canonically conju-
gate to the Lagrange multiplierA0 so that it generates a gauge transformation,dA0. Thus adding
the nonminimal sector in the BRST generator, the Lie algebraG is composed of a direct sum of
two Abelian idealsG 1 andG 2 corresponding to theu~1! generatorsF andb, respectively. In a
similar fashion, let the ghost fields split as follows:

h i5~c,p c̄5 ċ!, r i5~pc52 ċ̄,c̄!. ~4.5!

Then the BRST chargeQ with respect to the total Lie algebraG can be written as a linear
combination of eachu~1! subalgebra sectors

Q5E d3xGia i jh
j , ~4.6!

where

a i j5S 1 0

0 1D .
Since the constraints in the relativistic phase space for Abelian gauge theories impartially

generateu~1! Lie algebras and the Ku¨nneth formula~2.24! showsH~G ;R! is the product of each
H~G 1;R! andH~G 2;R!, we expect that the adjointQ† corresponding to the total Lie algebraG
similarly should be a linear combination of each subalgebra sector. Therefore, according to Eq.
~3.8!, one can guess the form of the generatorQ† must be the following:Q†52*d3xGib i jr

j .
Note that we have a degree of freedom to the extent of multiplicative factor in defining the BRST
generatorQ or its adjoint generatorQ† for a given Lie algebraG as long as it does not affect the
nilpotency ofQ or Q†. Using this degree of freedom either in the Lie algebraG 2 or in theG 1
sector in defining the adjoint generatorQ†, we take the following choices for the matrixbi j which
will allow the well-defined canonical mass dimension forQ†:

b i j5S 1 0

0 2¹2D orS 2¹22 0

0 1D . ~4.7!

These choices make the BRST adjointQ† the symmetry generator of the Lagrangian~4.1! and so
complete the consistent embedding ofQ† into the relativistic phase space.

Alternatively, in the case of the Abelian gauge theory, we can also obtain the BRST adjoint
generatorQ† through an appropriate redefinition about the constraint functionsGi and the ghost
fields ~4.5! as follows:
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Gi5~F,A2¹2b!, h i5S c, 1

A2¹2
ċD , r i5~2 ċ̄,A2¹2c̄!,

Gi5S 1

A2¹2
F,bD , h i5~A2¹2c,ċ!, r i5S 2

1

A2¹2
ċ̄,c̄D , ~4.8!

andb i j5a i j since the redefinition does not affect their algebra.
Then the adjoint generatorQ† can take the local expression in Ref. 13 or the nonlocal one in

Ref. 12. The explicit form of the BRST adjoint generatorQ† for the local type is

Q†5E d3x$~] iF
io2J0! ċ̄1b¹2c̄ %. ~4.9!

Thus the explicit transformations defined by~3.9! are that

s†A052¹2c̄, s†A152]0] i c̄,

s†c5~] iF
io2J0!, s†c̄50,

s†c5 ieċ̄c, s†b50. ~4.10!

In Ref. 13, it has been shown that this noncovariant transformation is a symmetry of the Lagrang-
ian ~4.1! and there also exists the same kind of symmetry in the Landau–Ginzburg and the
Chern–Simons theories and the No¨ther chargeQ† imposes strong constraint on state space. As
discussed in Ref. 13, the symmetry generated byQ† is realized in quite a different way compared
to the BRST symmetry: while the gauge-fixing term in the effective QED Lagrangian~4.1!, i.e.,
Am]mb1(a/2)b2→2(1/2a)(]mA

m)2, remains invariant under the transformation~4.10!, the
variation from the ghost term is canceled up to the total derivative by the variation from the
original gauge-invariant classical Lagrangian which remains invariant under the BRST transfor-
mation ~4.2!. These differences in the way of realizing the symmetries imply that the BRST
adjoint symmetry can give the different superselection sector from the BRST symmetry28 ~as it is
also seen from the Hodge decomposition theorem~2.22! which is a canonical decomposition into
a direct sum of linearly independent subspaces! unlike the recent comment.29

If we use, instead, the matrix

b i j5S 1

2¹2 0

0 1
D

in Eq. ~4.9!, we will obtain the nonlocal symmetry in Ref. 12. Of course, in this case, we must
impose the good boundary conditions on fields. But there is no reason to introduce the nonlocality
and it seems unnatural since the generatorQ† must be the adjoint of the generatorQ of the local
gauge transformation.

In non-Abelian gauge theory, the BRST chargeQ incorporated with a compactifiable gauge
fixing ~e.g., the covariant or the Coulomb gauge! can generate a well-defined gauge transformation
only on the interior of a bounded region, whose boundary is so-called the Gribov horizon, because
of the existence of the Gribov copies.30 The adjoint generator in the configuration space can be
understood as the generator of transformation consistent with the gauge fixing condition.12,13Thus,
in the configuration space, there may not exist the globally well-defined expression of the adjoint
generatorQ† of non-Abelian gauge theory compatible with the gauge fixing condition unlike QED
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on account of the topological obstructions such as the Gribov ambiguity. But it does not imply that
there can not exist the local expression ofQ†, because the difficulty posed by the Gribov ambi-
guity can be avoided31 by finding a local cross section on a finite local covering and using the
Faddeev–Popov trick locally. Nevertheless, it seems a nontrivial problem to find the solution for
the consistent embedding into the relativistic phase space for the non-Abelian gauge theory such
as QCD. This problem remains for a future work. We want to focus our attention on the construc-
tion of su~3! Lie algebra cohomology in QCD.

Consider the BRST~and anti-BRST! invariant effective QCD Lagrangian:

Leff52 1
4 Fmn

a Famn1C̄~ igmDm2M !C2 1
2 s̄s~Am

aAam1aC̄aCa!

52
1

4
Fmn
2 1C̄~ igmDm2M !C1Am]mB1

a

2
B21

a

2
gB@C,C̄#

2]mC̄D
mC1

a

2
g2@C̄,C#2, ~4.11!

where quark fieldsC are taken to transform according to the fundamentalSU~3! representation,
the Yang–Mills vector potentialAm , a pair of anticommuting ghostsC,C̄ and the auxiliary field
B take values in the adjoint representation of a SU~3! Lie group. The QCD Lagrangian~4.11! is
invariant with respect to the following BRST transformations:5

sAm5DmC, sC52
g

2
@C,C#,

sC̄5B, sB50,

sC52gCC. ~4.12!

Dm defines the covariant derivatives ofSU~3! Yang–Mills symmetry group. The corresponding
conserved nilpotent BRST generator is given by

Q5E d3xH ~DiF
io2J01g@ Ċ̄,C# !aCa1Ba~D0C!a2

1

2
g@ Ċ̄,C#aCaJ , ~4.13!

whereJ0
a is a matter color charge density defind by

J0
a52 igC̄g0T

aC. ~4.14!

The constraint functionsGA are composed of two commuting groups,GA5(Fa,Ba), where
Fa5(DiF

io2J0)
a is the original Gauss-law constraints in the theory generatingsu~3! Lie alge-

bra:

@Fa ,Fb#5g fab
c Fc , ~4.15!

andBa is the momenta canonically conjugate to the Lagrange multiplierA0
a and generatesu~1! Lie

algebras. In the similar fashion as QED, one can split the ghosts as follows:

hA5~Ca,P
C̄

a
5~D0C!a!, rA5~PC

a52 Ċ̄a,C̄a!. ~4.16!
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Note thatsP
C̄

a
5 0, so that we can identify the ghostP

C̄

a
with the Cartan–Maurer form onU~1!

group. Of course, the BRST generatorQ in Eq. ~4.13! is exactly the same form of Eq.~3.3!. Let
us rewrite the BRST generatorQ as the form of Eq.~3.5!,

Q5E d3xH JaCa1BaP C̄

a
2
1

2
taC

aJ , ~4.17!

where the generatorJa and the generator of the ghost representationta ~Ref. 16! are given by

Ja5~DiF
io2J01g@ Ċ̄,C# !a5Fa1ta, t a5g@ Ċ̄,C#a. ~4.18!

The generatorsJa andta satisfy the samesu~3! algebra:

@Ja ,Jb#5g f ab
c Jc , @ta ,tb#5g fab

c tc . ~4.19!

The nontriviality of the principal fiber bundle does not admit a global section which would
provide a global gauge fixing. The nonexistence of a global section of the bundle entails that it is
not possible to continuously fix the gauge globally. Then the Gribov ambiguity is a consequence
of the fact that there exists a topological obstruction to the existence of a global gauge fixing
condition.31 This means that a global gauge fixing must contain discontinuities coming from the
global geometry of the gauge theory. Thus the BRST charge~4.13! or ~4.17! will also contain
these discontinuities as long as it is not restricted to a fundamental modular region because it is
involved with the global gauge fixing.

Since the two groups of the constraint functionsGA5(Fa,Ba) commute with each other, the
total Lie algebraG including the nonminimal sectorsBa is composed of thesu~3! non-Abelian
ideal and the eightu~1! Abelian ideals:

G5 %su~3! % a51
8 u~1!a . ~4.20!

In order to construct only the cohomology of the colorsu~3! Lie algebra for the reasons explained
above, we drop the Abelian sectors from the BRST generatorQ through the direct restriction on
the cochain space~3.14!, in other words, considering onlysu~3! subcochain complex. Note that
this restriction to a subalgebra sector of the cochain space is always possible in terms of the
Künneth formula~2.24!. The BRST adjointQ† defined on the cochainC* (su(3);R) is equal to

Q†52E d3xH JaPC
a2

1

2
taPC

a J . ~4.21!

Then the LaplacianD of thesu~3! subalgebra sector can be represented in terms of the generators
Ja and the original constraintsFa ,

D5 1
2 d

3x$JaJa1FaFa%, ~4.22!

which is equal to the expression given by Eq.~3.13! for su~3! cohomology. Thus the harmonic
polynomials of thesu~3! algebra sector must satisfy the following conditions,

@Fa,wp#5@~DiF
io2J0!

a,wp#50, a51,...,8, ~4.23!

and

@ta,wp#5@g fbc
a Ċ̄bCc,wp#50, a51,...,8. ~4.24!

6118 H. S. Yang and B.-H. Lee: Lie algebra cohomology and gauge theories

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



From the arguments in Sec. III, we see that the solutions of Eqs.~4.23! and ~4.24! exist trivially
for p50 andp58 as long as they are given by the gauge invariant polynomials because they are
singlets under the adjoint representation of the su~3! Lie algebra. But the cohomologies
Hp(su(3);R) for p51, 2, 4, 6, and 7 vanish. Forp53 and 5, there always exist non-trivial
cohomologiesH3(su(3);R) andH5(su(3);R) whose structures are given by Eq.~3.18! and they
are related to each other by the Poincare´ duality ~2.23!. Since the Lie algebra cohomology proves
the nontrivial property of group invariant structures, the nonvanishing Lie algebra cohomologies
Hp(su(3);R) can be related to the gauge invariants inSU~3! gauge theory. It remains to investi-
gate the deep relation between the gauge invariant configuration of gauge and matter fields in the
space–time and the Lie algebra cohomology.

V. DISCUSSION

We have constructed the Lie algebra cohomology of the group of gauge transformation and
obtained the Hodge decomposition theorem and the Poincare´ duality. As long as a Lie algebra has
a nondegenerate Cartan–Killing metric so that the underlying manifold is orientable, we can
always define a unique~up to a multiplicative factor! adjoint of the coboundary operator under a
nondegenerate inner product using a Hodge duality. However, for Lie algebras such as the Vira-
soro algebra for which no Cartan–Killing metric exists, the adjoint can not be unique. Indeed, for
the Virasoro algebra, the adjoint of BRST generator defined by Niemi32 is different from ours and
that in Ref. 16.

We also considered the consistent extension of the Lie algebra cohomology into the relativ-
istic phase space in order to obtain the Lagrangian formulation. In order to do that, we extended
the Lie algebra by including the nonminimal sector of BRST generator and defined the adjoint
generator with respect to the total Lie algebras corresponding to the constraint algebras in the
extended phase space. We have pointed out that the generatorQ† constructed through this proce-
dure corresponds to the adjoint of the BRST generatorQ generating local gauge transformation
and generates the noncovariant local or nonlocal symmetry in QED in Refs. 12 and 13 and there
is no reason to introduce the nonlocality necessarily.

We have remarked that, in non-Abelian gauge theory, there may not exist the globally well-
defined expression of the adjoint generator compatible with the gauge fixing condition due to the
Gribov ambiguity being a topological obstruction coming from the global geometry of the gauge
theory. But, as explained in Sec. IV, the adjointQ† in the non-Abelian gauge theory can exist
locally ~or perturbatively!, so that it can generate new symmetry at least locally~or perturbatively!.
Then it will be interesting to study the role of the symmetry generated by the generatorQ† and the
Ward identity of this symmetry in the local~or perturbative! sense and we think they are the
important topics to need further study, including the relation between the Lie algebra cohomology
and the global geometry of the gauge theory.

Note that the Lie algebra cohomology constructed here is quite different from the BRST
cohomology in Refs. 6, 18, and 33. In the two cohomologies, the role of ghost fields is quite
different and each inner product to obtain Hodge theory is defined by the definitely different
schemes. It can be shown34 that there is no paired singlet in the BRST cohomology so that higher
cohomologies with nonzero ghost number vanish as long as the asymptotic completeness is as-
sumed. Therefore the ghost number characterizing cohomology classes in this paper has different
meaning from the ghost number of state space. The distinction between the BRST cohomology
and the Lie algebra cohomology will be further clarified.34

In QCD, there are nontrivial cohomologiesHp(su(3);R) for p50, 8 andp53, 5 and they are,
respectively, related to each other by the Poincare´ duality. Since the Lie algebra cohomology
proves the nontrivial property of group invariant structures, the nonvanishing Lie algebra co-
homologiesHp(su(3);R) may be deeply related to the colorless combination ofSU~3! color
charges which satisfy the su~3! Lie algebra. Then it will be very interesting to investigate the
relation between the color confinement and the su~3! cohomology.
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Based on the idea of quantum groups and para-Grassmannian variables, we present
a generalization of supersymmetric classical mechanics with a deformation param-
eter q5exp(2p i /k) dealing with the k53 case. The coordinates of the
q-superspace are a commuting parametert and a para-Grassmannian variableu,
whereu350. The generator and covariant derivative are obtained, as well as the
action for some possible superfields. ©1996 American Institute of Physics.
@S0022-2488~96!00812-2#

I. INTRODUCTION

In the last few years, quasi triangular Hopf algebras or quantum groups1–3 have attracted alot
of attention from physicists. One of the most interesting features is that such structures can be
related to underlying symmetries on spaces where the coordinates are noncommutative.4

It has been shown that the creation and annihilation operators of theq-deformed harmonic
oscillator,5

aa†2qa†a5q2N, ~1!

possess a classical limit where these operators can be understood as coordinates obeying6

uk50, ~2!

wherek is an integer, and theq-factor of the deformation is a prime root of unity,qk51. In
general, the properties of these coordinates are generalizations of the associated with Grassman-
nian variables. Promoting these coordinates to functions of a~nondeformed! parametert, it was
shown that it is possible to write down an action for such fields that, when added to the action of
a commuting field, has a symmetry resembling supersymmetry,7 and it has also been how to
functional integrate on a heterotic quantum field theory.8 The aim of this article is to show a way
to understand the transformations on such fields and the action invariances, as resulting from a
superspace formulation of a classical mechanical model where its coordinates are the para-
Grassmann variables~a q-superspace! and noncommuting fields.

In the next section we briefly review para-Grassmann variables and also how we construct
coordinates and actions from them. Section III is devoted to the construction of theq-superspace,
transformations between its coordinates, and the induced transformations on theq-superfields
defined on it. Invariant quadratic actions are constructed in Sec IV, in particular for a free particle
and the harmonic oscillator. We leave some final comments to the last section.

a!Electronic mail address: colatto@ictp.trieste.it
b!Electronic mail address: zeluiz@cbpfsu1.cat.cbpf.br
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II. PARA-GRASSMANNIAN VARIABLES AND THEIR RELATION TO QUERMIONIC
COORDINATES

We start this section by introducing a para-Grassmannian variableu and its derivative,
]/]u[]u obeying

9

uk50, ]u
k50, ~3!

for a positive integerk.
If we demand that the action of]u on u n is proportional tou n21, it turns out that it becomes

necessary to deform the Leibnitz rule to be

]u~ab!5~]u a!b1g~a!~]u b!, ~4!

where a and b are arbitrary polynomials inu, and g(a) is an automorphism of the algebra
satisfying

g~aa1bb!5ag~a!1bg~b!, g~ab!5g~a!g~b!, ~5!

wherea andb arec-numbers.
Choosinga5u in ~4!, we see that]u and u must obey aq-deformed commutation~q-

commutation! relation

@]u ,u#q[]uu2qu]u51, ~6!

implying for u the automorphism

g~u!5qu. ~7!

This derivative, however, is not unique. Indeed, we could change the power 1 in Eq.~6! by
any other integer, thus for each value ofk one can definek21 different derivatives. For the
specific casek53, one may also define another derivativedu ~Ref. 10! thatq-commutes withu as

@du ,u#q2[duu2q2udu51, ~8!

and its Leibnitz rule differs from Eq.~4! by changingg(a) to g„g(a)…. These two derivatives have
the followingq-commutation relation

]udu2qdu]u51.

As in the Grassmannian case, it is not possible to define the integral overu as the inverse of
the derivative. However, if we impose translation invariance and homogenity for the integral, it
must be of the form

E du unadn,k21 . ~9!

It is interesting to notice that, fork52 andq521, Eq.~1! becomes the usual anticommutator,
consistent with Eqs.~3! and ~6!, which are the conditions for Grassmannian variables. Taking
k→`, Eq. ~1! becomes the usual commutator. The meaning of this limit in Eq.~3! is that, if we
Taylor expand a function of these variables, it will become a series@obviously, if u k50, k finite,
a Taylor expansion will be a polynomial of degree~k21!# being

f5a01ua11u2a21•••1uk21ak21 , ~10!
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where we can promote the functions of a~commuting! parametert.
Let us recall that in the Grassmannian case we have two different coordinates: one that

behaves likeu ~a fermionic coordinate!, and another that behaves likeu0, a bosonic~commuting!
coordinate. In the para-Grassmannian case, we will havek different types of coordinates, each one
corresponding to a power ofu, and againu0 being a commuting one. We callc( i )(t) the
q-fermionic generalization of the coordinates or, simply, the quermionic coordinates, and its label
( i ) indicates the sector to which it belongs.

In a recent work,7 it was emphasized that two quermions of different sectors obey the
q-commutation relation

c~ i !c~ j !5q~ i , j !c
~ j !c~ i !, ~11!

where the parametersq( i , j ) are simply powers ofq, qk51.
The particular casek53 was taken, and an action which extends the supersymmetric point

particle through the use of these generalized fields was constructed. This generalized particle was
described by the coordinates„x(t),c (1)(t),c (2)(t)…, in the same way as a supersymmetric point
particle is described by the coordinates„x(t),c(t)…. The shown action involving the quermions
was given by

S5E dtS 12 ẋ22qC~s!2ċ~2!c~1!D , ~12!

with the mass equal to one. The second term in~12! resembles the classical fermionic equation of
motion. The cocycle-type factorC(s)2 was required because the product of two objects of different
sectors,A(r )B(s), must behave like an object of the sector (r1s) mod 3. In that work, it empha-
sized the necessity of the factor Cq-superfield, paying the price of writing a suitable ‘‘algebra’’ of
this factors. For instance, the cocycle-type factorC(s) that could be seen as a sector-counter had a
relation

C~s!A~ i !5qiA~ i !C~s!, ~13!

and adding the choice@c~1!,c~2!#q50, which takes all the fields as real, the second term in the
action equation~12! was left real and a zeroth sector representative.

Another interesting feature to recall was the transformation~the variations of a field, from now
on, will be written asD to one not to be confused with the derivatived!

Dx5qC~s!e~1!c~2!, Dc~1!5q2C~s!2e~1!ẋ, Dc~2!56qe~1!c~1!, ~14!

on the action~12! reaching

DS56E dt
d

dt
~e~1!c~1!2!, ~15!

where [e (1),c (1)] q5[c (2),e (1)] q50 was used. Such a transformation is similar to a supersymmet-
ric one: the parametere~1! is a noncommuting one, the action transforms as a total derivative, and
one of the fields,c~1!, transforms as a total derivative, which can be taken as indicating thatc~1! is
the highest term in au-expansion of some superfield. One could also write transformations among
the fields with a parameter belonging to the sector two. However, it can be shown that this
transformation is not a symmetry of the action~12!.7
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III. THE q-SUPERSPACE AND q-SUPERFIELDS

We begin to construct aq-superspace formulation that will recover the structure concerning
the quermionic coordinates presented in the last section. As previously stated, we will consider in
detail only thek53 case, which represents the nilpotency and produces an interesting expression
11q1q250. It emphasizes that theq andq2 cases have no crucial difference. Some of the ideas
discussed here and in the next section have been discussed also in Refs. 11 and 12 and more
recently in Ref. 13~this interesting work appeared when we had just finished this paper!.

Theq-superspace coordinates are~t;u!, wheret is a c-number to be identified with time and
u is a para-Grassmannian variable obeyingu350, and both are taken as real parameters.

Let us now introduce transformations between these coordinates that are translations on the
q-superspace. We write them as

u85u1«, t85t1qCu2«, ~16!

where« is an infinitesimal constant in the same sector asu andC can assume the values 1,2,3.
Clearly, the exponent 3 will give us a trivial factor restricting then our set of possible choices. The
translation inq-superspace fixes the mass dimensions ofu and« to be2 1

3. Although the transla-
tion term in t does not commute with the infinitesimal parameter«, it still belongs to the same
sector ast. @Remember that we met this issue when we wrote down the action for the quermionic
components, Eq.~12!, and we introduced the cocycle-like factorC(s) to correct the statistics.# We
will say that two terms are homogeneous if both belong to the same sector. Defining the
q-commutator to be

@A,B#q[AB2qBA, ~17!

we choose

@u,«#q2C50. ~18!

It is after determining theseq-commutation relations that we set theq factors in~16! to preserve
the reality condition for the coordinates. We could chooseqC instead ofq2C in ~18! ~i.e., take
@«,u#q2C 5 0!. With this choice we necessarily have to changeq↔q2 in Eq. ~16!.

After introducing theq-superspace~t,u!, our next step is to write down a function of these
variables. As in the supersymmetric case, let us expand this function in a Taylor series onu. This
expansion is a polynomial of degree 2@for the generic caseuk50, the polynomial goes up to the
order ~k21!#,

X~ t;u!5x~ t !1qB2uc~2!~ t !1q2B1u2c~1!~ t !. ~19!

The coordinatex(t) is a commuting function, thec( i )(t) are theq-supersymmetric partners of the
coordinatex(t), and their dimensions are [c ( j )]52 j /3. We take their quommutators to be

@c~1!,c~2!#qA50, @«,c~ j !#qDj50, @u,c~ j !#qBj50, ~20!

where the last expression guarantees thatX is real and the others complete a deformed algebra.
The infinitesimal coordinate transformations~16! induce a variation on theq-superfield

X(t,u) of the form

X~ t8,u8!2X~ t,u!5DX5«QX. ~21!

We can get the realization of theq-supersymmetric generator transformation,Q, by Taylor ex-
panding the lhs of this equation. Choosing the factors to keep the reality condition we have
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X~u8,t8!2X~u,t !5«
]X

]u
1q2C«u2

]X

]t
. ~22!

With this expansion, and using Eq.~16!, Q becomes

Q5q2Cu2
]

]t
1

]

]u
. ~23!

We notice that the generator is in theu 2 sector, and its canonical dimension is [Q]51
3. A straight-

forward calculation shows thatQ352] t . This means that theq-supersymmetric transformations
are the cubic roots of time translations.

Explicitly computing the rhs of~21!, we obtain theX variation as

DX5qB2«c~2!2q2B1121Cu«c~1!1q2Cu2« x̂. ~24!

Bearing in mind the reality condition we find fromDX andX itself some relations among theq
exponents. Finally we reach

2C52B25B1 , D25D111. ~25!

The above relations do not fix completely theq-commutators among the variables@see~20!# we
are considering, since we still have at our disposal three free coefficients. We may choose the
variables 2C5D251 andA52, thus fixing all the other ones~remember that for thek53 nilpo-
tency we have only two relevant choices for the exponents!. With such a choice, theq-superspace
translation becomes

u85u1«, t85t1q2u2«, ~26!

while theq-su becomes

X~ t !5x1q2uc~2!1q2u2c~1!. ~27!

Theq-SUSY generator,

Q5qu2] t1]u , ~28!

yields the transformation

DX5q«u2ẋ1q2«c~2!2q«uc~1!, ~29!

or in components

Dx5q2«c~2!, Dc~1!5« ẋ, Dc~2!5q«c~1!. ~30!

Moreover, they have theq-commutators

«u5q2u«, uc~ j !5qjc~ j !u, «c~ j !5qjc~ j !«, ~31!

which let on the same structure as the one present in Sec. II. This structure allows us to take the
q-commutation relation between the two quermionic coordinates, which read

c~1!c~2!5q2c~2!c~1!. ~32!

Having written down theq-superspace transformations and the variations on theq-superfield,
let us now construct aq-covariant derivative,D, that is, a differential operator that obeys
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@D,Q#q50, ~33!

D~DX!5D~DX!. ~34!

We could try for D the same structure that appears in theq-SUSY generator, i.e., to take
D5qau2] t1aqb]u , ~a,b51,2,3; aPC!. However, it turns out not to be possible to find an
operator with this structure andq-commuting withQ. The only operator that obeys~34! is Q
itself, but it obviously does not obey~33!.

To construct the coordinates of level 3 permit us to introduce two differential operators,]u and
du . Using the second one it is possible to show that the operator

D5u2] t1qdu ~35!

satisfies the conditions~33! and ~34!.
As in the supersymmetric case, the component fields can be defined by projecting the super-

field on different sectors, using the covariant derivatives onu50:

Xuu505x, DXuu505c~2!, D2Xuu5052c~1!. ~36!

From now on, we will neglect the subscriptu50.
We also notice some relations between different powers ofD andQ that will become useful

later:

D.u5q2Q.u, D2.u5qQ2.u, D3.u52] t .u. ~37!

Besides the above-defined bosonic superfield, we can also construct sectors one and two
superfields. Theiru expansion can be taken to be

L~1!5l~1!1uA1qu2l~2! ~38!

and

J~2!~ t !5j~2!1quj~1!1u2F, ~39!

where the superscripts indicate the sectors to which the fields belongs, andA andF are bosonic
fields.

The dimension of theq-superfieldJ~2! is taken to be23, its bosonic componentF being
dimensionless and, as we will see later, behaving as an auxiliary field. We cannot, however, take
the dimension of theq-superfieldL~1! to be 1

3, since this would imply a negative dimension for the
component fieldl~2!. Thus take its dimension to be43. This, however, will produce different
equations of motion for its quermionic components, as we will see in the next section.

We assume that the fieldsj( j ) have the same behavior asc( j ) with respect to the
q-commutations relations with each other, withu and withe.

IV. EXAMPLES OF SUPERACTIONS

In this section, we are going to make a general discussion about simply quadratic actions that
are functions of theq-superfields introduced in the previous section and give some examples of
them.

The action for a generic superfieldF must be of the form

S5E dtduP ~F,Ḟ,DF,D2F!, ~40!
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whereP is a polynomial inF and its derivatives.P must behave likeu2, belonging to the sector
two ~since*du5]u

2 , andS is scalar!, and since the measure has mass dimension21
3 andS is

dimensionless, its dimension must be13.
By comparing the expression for the covariant derivative and theu-integration, we notice the

rule

E du5q2D2u. ~41!

Let us now perform a transformation on the action

DS5E dt du DP ~F,Ḟ,DF,D2F!, ~42!

since the Jacobian is one, which can be seen by thet independence of theu translation. SinceP
is a superfield, its variation is of the form of Eq.~21!. Using this and Eq.~41!, we arrive at the
conclusion

DS52q«E dt a tP . ~43!

and the transformations Eq.~16! generates symmetries of the action.
Let us now write an action of theq-superfieldsX, L~1!, andJ~2! defined in Sec. III, and

compute their equations of motion. We begin with the bosonic superfieldX. Its quadratic action is

SX52
m

2 E dt du q2~D2X!~D2X!, ~44!

wherem is a commuting mass parameter. By explicit computation of itsu integral, or by use of
Eq. ~41!, this action can be written down in components as

SX5mE dtS 12 ẋ222qċ~2!c~1!D , ~45!

where the difference with the Sec. I action is due to the different initial superactions in these cases.
Although the variational calculus of the quermionic coordinates presents several difficulties to

overcome~for instance, how to do the variation with respect to a quermion!, it is clear that the
equation of motion arising from the above Lagrangian is, up to multiplicative factorsDẊ50,
giving in componentsẍ5ċ ( j )50 ~j51,2!. Computing itsq-supersymmetric variation, we obtain

DSX5q«E dt
]c~1!2

]t
. ~46!

We notice that the action given by Eq.~44!, its variation Eq.~46!, and the variation of the
component fields Eq.~30! are, up to factors, equal to Eqs.~12!, ~15!, and ~14!, respectively,
recalling that the presence of such cocycle-type factors was because theq-commutation homoge-
neity assumption had been used. Thus we see that theq-superfieldX describes the dynamics of a
free particle partners.

The quadratic action for theq-superfieldL~1! is

SL52
m

2 E dtdu~L̇~1!!2. ~47!
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By convenience the mass parameter was taken to be the same as in theX action. In components,
the action turns out to be

SL5
m

2 E dt~Ȧ212ql̇~2!l̇~1!! ~48!

It is interesting to notice that the equation of motion forL~1!, obtained from its action,L̈~1!50,
gives in componentÄ5l̈~i!50. Thus thisq-superfield also represents a free particle, but its
quermionic partners obey an equation of motion that is of second order in the time derivative,
whereas in the case ofq-superfieldX it is of first order. Theq-supersymmetric variation of theSL

is

DSL5«E dt
]~L̇~1!!2

]t
. ~49!

We now consider the quadratic action for theq-superfieldJ~2!. It is

SJ5mE dt du~DJ~2!!2. ~50!

In component fields, the action reads

SJ5mE dt@2qj̇ ~2!j~1!1F2#. ~51!

The equation of motion forJ~2! is D2J~2!50, giving F5 j̇ ( j )50, meaning, as it was anticipated,
that the bosonic coordinateF is an auxiliary one. The variation ofSJ is

DSJ52«E dt
aj~1!2

]t
. ~52!

The superfieldsX andJ~2! can have a quadratic action with a mixed term

SXJ5mvE dtduq2XJ~2!,l ~53!

wherev has a mass21 dimension. In components we write this action as

SXJ5mvE dt~Fx1q2c~1!j~2!1qc~2!j~1!!. ~54!

Summing up the actions~44!, ~50!, and~54!, SHO5SX1SJ1SXJ , and its bosonic part is

SHO5E dtmS 12 ẋ21
1

2
F21vFxD . ~55!

Computing the equation of motion of the auxiliary fieldF and reintroducing it in the action, it
becomes

Sx5E dtF12 mẋ22
1

2
mvxG , ~56!

which is the action for the harmonic oscillator.
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V. CONCLUSIONS

In this article, we presented a generalization of some supersymmetric classical mechanical
models where the superspace has a noncommuting coordinate nilpotent of order 3, and the com-
mutation relations among the several objects of the model are deformed by powers of a parameter
q. Translations on theq-superspace induce transformations on the fields, and the operational
realization of the supersymmetric generator is obtained by a suitable Taylor expansion. The
covariant derivative was also introduced, in which we used a second kind of partial para-
Grassmannian derivative. In spite of the supersymmetric structure similarity, we are facing a
slightly different situation. In fact, because of the presence of two derivatives, such as the forward
and the backward one, it resembles a lattice approach. In a recent work,13 the authors showed the
roles played by the covariant derivativeD and the symmetry generatorQ, present in this work, are
the left and right action ofG3 group.

After introducing superfields belonging to different sectors, we were able to construct qua-
dratic actions for each one. These actions are, up to total derivatives, invariant under the
q-supersymmetric transformations. Using a naive approach, it is possible to extract from these
actions the equations of motion since there is no, up to now, well-defined differential calculus on
these quermionic coordinates. We intend to discuss this subject in a forthcoming publication. We
also showed that imposing the ‘‘on-shell’’ constraint to the auxiliary fields, it is possible to get the
harmonic oscillator as a bosonic sector of a simple suitable linear combination of the actions.

It should also be interesting to study this formulation from a field theoretical point of view, in
particular in the~211!-dimensional case. We might also try to understand if such fields are
representations of someq-deformed algebra, either aq-Poincare´ or aq-Clifford one.
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The problem of a scalar wave propagation from the point impulsive source in the
layer of a nonstationary multidimensional medium is considered. The boundary
problem for the wave equation is reformulated in the problem with the initial
condition using the invariant imbedding method. The integral-differential inverse
procedures of the various orders were obtained from the imbedding equations using
the singularities method. The order of inverse procedure is defined by the degree of
a polynomial in the analytical representation of the medium characteristic near the
layer boundary. It was shown that the coefficients of the polynomial are calculated
with the help of the differential characteristics of the point impulsive source in the
inhomogeneous medium. The cause and character of the multidimensional inverse
problem overdefiniteness are considered. The application of the proposed procedure
for a statistical problem is discussed. ©1996 American Institute of Physics.
@S0022-2488~96!04311-3#

I. INTRODUCTION

For the study of direct and inverse wave problems in the regular and random media, the
imbedding method1,2 has been developed which allows simultaneously the creation of the strict
inverse procedures3–5and the employment of the effective statistical approaches using the Markov
process approximation.1,2,6 This is different from the integral equation method7,8 and the deferen-
tial method,9,10 both of which have some difficulties pertaining to the application in statistical
theory.1,2

The nature of most of the media examined in optics, acoustics, plasma physics, and radio
science is described by mathematical models with spatial and time inhomogeneous refractive
index. The inverse procedure obtained by the imbedding method was considered for multidimen-
sional stationary11,12and one-dimensional nonstationary13 media. The subject of the present paper
is to extend the previous results on common case for the promotion of the inverse problem
research in remote sensing based on the statistical approach,14 which is a strict alternative to the
line radiation transfer theory, which uses the usual transfer equation15 and does not account for the
statistical effects.16,17

In the present paper, the mathematical model accepted in statistical theory1,2 is employed. The
boundary-value wave problem for this model is reformulated in the problem with the initial
condition and the imbedding equation is written. The inverse procedure is obtained from the
imbedding equation by a singularities method.5,18

The main step of the inverse procedure is the ‘‘layer stripping’’ process,11,12 which can be
realized in the different versions. In conclusion, the extension of the obtained procedure on
statistical problems and the derivation way of the evolution equations for the statistical character-
istics of backscattering are discussed.

II. THE STATEMENT OF THE PROBLEM

The scalar wave propagation in the layer of inhomogeneous nonstationary medium that oc-
cupies the part of the spaceL0<x<L will be considered. The wave is created by the point
impulsive source on the boundary of the layerx5L and is described by the equation15

0022-2488/96/37(12)/6130/9/$10.00
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F]2„11«~x,r,t !…

]t2
2c2D GG~x,r,t;L,r0 ,t0!5d~x2L !d~r2r0!d~ t2t0!, ~1!

where«~x,r,t! is the continuous and smooth characteristic of the scattering medium in the layer
L0<x<<L, r andr0 are the vectors in the plane of constantx, c is the signal velocity in the
homogeneous medium outside of the layer, where«50, D is Laplacian, and the Diracd-functions
are in the right part of this equation.

It will be assumed that21,«~x,r,t!,m and all first partial derivatives of«~x,r,t! are
bounded. However, when some variants of the inverse procedure will be discussed in Sec. VII, the
existence and bound of higher derivatives will be supposed.

Equation~1! is used in the different areas of physics, for example, in optics, acoustics, radio
science, etc., where the wave propagation is considered in the medium with a transient impedance
or refractive index. The wave equation is taken here in a simpler form to show an approach, which
may be extended to the waves of a more complex nature.

The solution of the mixed~initial and boundary values! problem for Eq.~1! will be analyzed.
There are the discontinuities of«~x,r,t! on two planesx5L0 andx5L, which divide the space
into three areas. It will be supposed thatG and ]G/]x are continuous on the boundaries of the
layer and there are only the going away waves outside of the layer. These six boundary values for
three space areas are enough to solve the above-mentioned problem, if they are completed by the
initial conditions:G50 for t,t0. In Sec. IV, this mixed problem will be represented in the
convenient form for obtaining the imbedding equations in Sec. V. First, the wave operator in~1!
will be written through the Neumann operator12 in Sec. III.

We shall proceed from the existence of a solution of the above-formulated problem for the Eq.
~1!,15 which is a Green’s function describing the field of the point impulsive source. This solution
is the generalized function,19 which will be considered on the planex5L. The evolution equations
of the solution, whenL is a variable parameter, will be found in Sec. V. The behavior of singu-
larities and the regular part of the solution will be considered in Sec. VI with the intention of
creating the inverse procedure in Sec. VII.

III. THE CASE OF THE HOMOGENEOUS SPACE

The factorization of the wave operator~1! in the free space will be needed below. In the
homogeneous space,~see for example Ref. 15! the solution of~1! is

g~x2L,r2r0 ,t2t0!5
u~ t2t0!

4pc2~ t2t0!
d@c~ t2t0!2A~x2L !21~r2r0!

2#

[
u~ t2t0!

2pc
d@c2~ t2t0!

22~x2L !22~r2r0!
2#, ~2a!

whereu~t2t0! is the Heaviside function. Let us write the equation for~2!. If e50 everywhere, Eq.
~1! may be presented in the form

F ]

]x
1M̂ ~r,t !GF ]

]x
2M̂ ~r,t !Gg~x2L,r2r0 ,t2t0!52d~x2L !d~r2r0!d~ t2t0!/c

2, ~2b!

where the introduced operator is defined as2

M̂2~r,t !5
]2

c2]t2
2Dr , Dr5]2/]y21]2/]z2.
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In the regionsx.L andx,L the functiong satisfies the first-order equations@]/]x6M̂ ~r,t!#g
50, which describe the free going away waves. The signs correspond to the directions of the
waves. The solutions of these equations we can write as2

g~x2L,r2r0 ,t2t0!5exp@2ux2LuM̂ ~r,t !#g0~r2r0 ,t2t0!, ~3!

whereg0~r2r0,t2t0!5g~0,r2r0,t2t0!. Differentiating~3! twice with respect tox we shall find

@]2/]x22M̂2~r,t !#g~x2L,r2r0 ,t2t0!522d~x2L !M̂ ~r,t !g0~r2r0 ,t2t0!. ~4!

Then we see that it follows from the comparison of~2b! with ~4!

M̂ ~r,t !g0~r2r0 ,t2t0!5~1/2c2!d~r2r0!d~ t2t0!. ~5!

We shall present the operatorM̂ ~r,t! in the integral form by the identity

M̂ ~r,t ! f ~r,t !5E dr1dt1M̂ ~r,t !d~r2r1!d~ t2t1! f ~r1 ,t1!. ~6!

Hence we defined the kernel of the operator as

M ~r2r1 ,t2t1!5M̂ ~r,t !d~r2r1!d~ t2t1!. ~7!

Acting by M̂ ~r,t! on ~5! we can obtain also for the kernel of the operator

M ~r2r1 ,t2t1!52c2M̂2~r,t !g0~r2r1 ,t2t1!. ~8!

Differentiating in the right part of~8!, we yield the explicit form of the kernel2

M ~r2r1 ,t2t1!52
2

~ t2t1!

]

]t
g0~r2r1 ,t2t1!. ~9a!

Substituting second expression~2a! in ~9a! and differentiating it here, using the formulas,

d8~ t2t1!52d~ t2t1!/~ t2t1! and E dr1d@c2~ t2t1!
22~r2r1!

2#u t→t1
5p,

which may be derived by the standard technique of the generalized functions,15,19 it can be shown
that

M̂ ~r,t ! f ~r,t !5
1

c

]

]t
f ~r,t !2

2c

p E dr1dt1u~ t2t1!d8@c2~ t2t1!
22~r2r1!

2# f ~r1 ,t1!,

~9b!

whered8 is the derivative of thed-function and, in the agreement with its definition,15 is the spatial
derivative of f ~r1,t1! normal to the nonstationary circlec2(t2t0)

22~r2r0!
250. The example

~9b! of two members decomposition of the kernel~9a! will be used in Sec. VI.
By the action of inverse operatorM̂21~r,t! on ~5!, the kernel of the inverse operator is

obtained:

M21~r2r1 ,t2t1!5M̂21~r,t !d~r2r1!d~ t2t1!52c2g0~r2r1 ,t2t1!. ~9c!
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Substituting the first expression of~2a! in ~9c!, we come exactly to the result~2.3! of Ref. 12.
It is clear that theM̂21~r,t! is the Neumann operator in free space, hence theM̂ ~r,t! is its
inversion.

IV. THE BOUNDARY CONDITIONS

Following the method1,2 we shall write the noted above~in Sec. II! boundary conditions in the
convenient form for obtaining the imbedding equations. The solution of~1! is
G~x,r,t;L,r0,t0!5exp@2(x2L)M̂ ~r,t!#G~L,r,t;L,r0,t0! for x.L and G~x,r,t;L,r0,t0!
5exp@(x2L)M̂ ~r,t!#G~L0,r,t;L,r0,t0! for x,L0. Differentiating these expressions with respect
to x and accounting for the jump]/]xG~x,r,t;L,r0,t0!ux5L20

x5L1052(1/c2)d~r2r0!d~t2t0! and the
continuity ofG and]/]xG, we obtain the relations in the layer on the inside of the boundaries.
After this evolution, we have the problem in the layer instead of~1!.

F ]2

]x2
2M̂2~r,t !GG~x,r,t;L,r0 ,t0!5

1

c2
]2

]t2
«~x,r,t !G~x,r,t;L,r0 ,t0!,

F ]

]x
1M̂ ~r,t !GG~x,r,t;L,r0 ,t0!ux5L205~1/c2!d~r2r0!d~ t2t0!, ~10!

F ]

]x
2M̂ ~r,t !GG~x,r,t;L,r0 ,t0!ux5L01050.

The imbedding method allows us to reformulate this boundary problem to the problem with
the initial conditions. Following Refs. 1 and 2, we shall obtain the imbedding equations, which
will be used for the investigation of the inverse problem below.

V. IMBEDDING EQUATIONS

Having in mind thatL is a variable parameter in a correspondence with the essence of the
imbedding method,1,2 we differentiate~10! with respect toL. The equation and the second bound-
ary condition give directly the necessary result. The first boundary condition yields

F ]

]x
1M̂ ~r,t !GF ]

]x
1

]

]LGG~x,r,t;L,r0 ,t0!ux5L50. ~11!

Two components in~11! @]/]x1M̂ ~r,t!#G~x,r,t;L,r0,t0!ux5L are found by using Eq.~10! and
the operation ofM̂ ~r,t! on the first boundary condition~10!. Its obtained instead of~10!.

F ]2

]x2
2M̂2~r,t !G ]

]L
G~x,r,t;L,r0 ,t0!5

1

c2
]2

]t2
«~x,r,t !

]

]L
G~x,r,t;L,r0 ,t0!,

F ]

]x
1M̂ ~r,t !G ]

]L
G~x,r,t;L,r0 ,t0!ux5L52

1

c2
M̂ ~r,t !d~r2r0!d~ t2t0!

2
1

c2
]2

]t2
«~L,r,t !GL~r,t;r0 ,t0!,

~12!

F ]

]x
2M̂ ~r,t !G ]

]L
G~x,r,t;L,r0 ,t0!ux5L0

50,

whereGL~r,t;r0,t0!5G~L,r,t;L,r0,t0!.
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We see from the comparison of~10! with ~12! that the solution of~10! is a Green’s function
for the problem~12!. It means that]G/]L is expressed throughG by the integral relationship,
which yields with respect to~6! and ~7! the expression

F ]

]L
1M̂ ~r0 ,t0!GG~x,r,t;L,r0 ,t0!

52E dr1dt1G~x,r,t;L,r1 ,t1!
]2

]t1
2 «~L,r1 ,t1!GL~r1 ,t1 ;r0 ,t0!. ~13!

M̂ ~r0,t0! is defined above in~7!–~9!; it operates onr0,t0. We have to exchange in~7! r→r1,
r1→r0 ~and the same fort!. The expression~13! may be considered as the equation for
G~x,r,t;L,r0,t0!, if it be completed by the initial condition

G~x,r,t;L,r0 ,t0!uL5x5Gx~r,t;r0 ,t0!. ~14!

We need the equation forGL~r,t;r0,t0! and write

]GL~r,t;r0 ,t0!

]L
5S ]

]x
1

]

]L DG~x,r,t;L,r0 ,t0!ux5L .

Here the first component is found using the first boundary condition~10!; the second is calculated
by the using of~13!. A result is obtained as

F ]

]L
1M̂ ~r,t !1M̂ ~r0 ,t0!GGL~r,t;r0 ,t0!

5
1

c2
d~r2r0!d~ t2t0!2E dr1dt1GL~r,t;r1 ,t1!

]2

]t1
2 «~L,r1 ,t1!GL~r1 ,t1 ;r0 ,t0!

~15!

with theobvious initial conditionGL(r,t;r0 ,t0)uL5L0
5 g0(r 2 r0 ,t 2 t0).

How it will be shown that the valueGL~r,t;r0,t0! plays the main role in the inverse problem.
This is a field on the planex5L from the point impulsive source on same plane, which may be
measured in the remote sensing. The differenceGL~r,t;r0,t0!2g0~r2r0,t2t0! is a backscattering
field from the layer of the inhomogeneous medium. Below we shall consider the solution of Eq.
~1! only on the planex5L and Eq.~15! will be used only.

VI. THE METHOD OF THE SINGULARITIES

The important element of the differential approach for inverse problems is the method of the
singularities.5,18,20In order to make its generalization for the multidimensional problem, we shall
perform the solution of~15! as

GL~r,t;r0 ,t0!5u~ t2t0!HL~r,t;r0 ,t0!, ~16!

whereu~t2t0! is the Heaviside function.
The substitution of~16! in ~15! and the application of~9b! give the expression with two kinds

of singularitiesu~t2t0! andd~t2t0!. Comparing the coefficients before these singularities to zero,
we obtain two equations:

]

]L
HL~r,t;r0 ,t0!1

1

c

]

]t
HL~r,t;r0 ,t0!2

1

c

]

]t0
HL~r,t;r0 ,t0!
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2
2c

p E
t0

t

dt1E r1HL~r,t;r1 ,t1!d8@c2~ t12t0!
22~r12r0!

2#

2
2c

p E
t0

t

dt1E r1d8@c2~ t2t1!
22~r2r1!

2#HL~r1 ,t1 ;r0 ,t0!

5hL~r0 ,t0!«~L,r0 ,t0!
]

]t0
HL~r,t;r0 ,t0!

2hL~r,t !
]

]t
@«~L,r,t !HL~r,t;r0 ,t0!#

1E
t0

t

dt1E dr1
]

]t1
@HL~r,t;r1 ,t1!#

]

]t1
«~L,r1 ,t1!HL~r1 ,t1 ;r0 ,t0!, ~17a!

c2«~L,r0 ,t0!hL
2~r0 ,t0!12c•hL~r0 ,t0!2150. ~17b!

The valuehL~r0, t0! in ~17b! is determined by the relationship

HL~r,t;r0 ,t0!u t→t0
5hL~r0 ,t0!d~r2r0!, ~18!

which is the distribution of the source field in the initial momentt0. The amplitudehL~r0,t0! of
this distribution is defined, in the agreement with~17b!, by the characteristic of the medium
«~L,r0,t0! in the point of the source,

hL~r0 ,t0!5
„A11«~L,r0 ,t0!21…

c«~L,r0 ,t0!
. ~19!

Note, a sign before the square root in~19! is chosen so that for the homogeneous medium

HL~r,t;r0 ,t0!u t→t0
5g0~r2r0 ,t2t0!u t→t0

5~1/2c!d~r2r0!.

The d8 in ~17a! is the derivative of thed-function. In the agreement with its definition,15 the
expressions under the integrals in the left part of~17a! are the spatial derivative ofHL~r,t;r0,t0!
normal to the nonstationary circlesc2(t12t0)

22~r12r0!
250 or c2(t2t1)

22~r2r1!
250 in the

planex5L. These terms describe the transverse propagation of the wave and are written in~17a!
formally as the longitudinal terms, which simplifies the analysis of the multidimensional problem.

Equation~17a! allows us to obtain the relation between the partial derivative of«~L,r0,t0!
with respect toL and the partial derivatives ofHL~r,t;r0,t0! with respect tot and t0 for t5t0.
Putting in ~17a! t5t0, we have

]hL~r0 ,t0!

]L
1
AL~r0 ,t0!

c
2
BL~r0 ,t0!

c
5hL~r0 ,t0!«~L,r0 ,t0!@BL~r0 ,t0!2AL~r0 ,t0!#

2
@hL~r0 ,t0!#

2]«~L,r0 ,t0!

]t0
. ~20!

The values A and B introduced here are the characteristics of the point source on the boundary of
the inhomogeneuos medium in initial moment. They are defined by the expressions

]HL~r,t;r0 ,t0!

]t U
t→t0

5AL~r0 ,t0!d~r2r0!,

~21!
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]HL~r,t;r0 ,t0!

]t0
U
t→t0

5BL~r0 ,t0!d~r2r0!.

Using ~17b!, ~19!, and~20!, we can obtain

]«~L,r0 ,t0!

]L
5

2„12chL~r0 ,t0!…
2@AL~r0 ,t0! 22]hL~r0 ,t0!/]t02BL~r0 ,t0!#

@chL~r0 ,t0!#
4 . ~22!

Hence the derivative of«~L,r0,t0! with respect toL is defined by the time derivatives of the field
on the boundary of the medium in initial moment.

Differentiating ~17a! with respect tot and t0, putting t5t0, and combining the obtained
expressions, we can find]2«~L,r0,t0!/]L

2, which will be defined by second time derivatives of the
field on the boundary in initial moment.

The procedure of the differentiation may be repeated over and over again and the higher
derivatives of« with respect toL can be found. In principle, from the time behavior of the field on
the planex5L in initial moment, allL derivatives of« can be calculated and the Taylor series of
« can be completed, which allows us to reconstruct the behavior of« to the left from the plane
x5L. It can be considered like the inverse procedure, but the nonlinearity of Eq.~17a! creates the
difficulties in calculation of very high derivatives. The more effective way will be discussed in
next section.

Note the some features of the wave propagation. On the planex5L, the value ofHL~r,t;r0,t0!
is singular on the front of the wave. Behind the front, the wave can have also the singularities,
when the reflection of the wavefront from the medium or from the planex5L0 comes to the
surfacex5L. This moment and greater time were not considered above. To do it, the solution of
~15!, instead of~16!, would have to be presented in the form

GL~r,t;r0 ,t0!5u~ t2t0!HL~r,t;r0 ,t0!1u~ t2t08!H̃L~r,t;r08 ,t08!, ~23!

wherer08 and t08 are the point on the planex5L and the moment of the reflection appearance.
Substituting~23! in ~15! and separating the singularities as above, we can obtain the equation for
H̃L(r,t;r08 ,t08), which is not closed, because the valueH presents there.~We have to defineH and
H̃ jointly.! The separation of the singularities was considered in detail for the one-dimensional
case in Ref. 20.

When the second wavefront reflection appears on the planex5L, the third term has to be
included in~23! and the third equation has to be obtained, etc. This approach allows us to separate
and to observe individually the moves of all singularities, which will promote the development of
the algorithms and numerical methods.

With the purpose of simplifying the examination of an inverse procedure, the case when the
reflections of the wavefront are absent will be considered below.

VII. INVERSE PROBLEM

The inverse procedure for the multidimensional nonstationary medium may be obtained by the
use of the evolution equations~17a! and ~17b!. These equations allow us to apply the ‘‘layer
stripping’’ process for the valueHL~r,t; r0,t0!, which is used so successfully in other simpler
cases.11–13The main step in the ‘‘layer stripping’’ process is to employ Eq.~17a! to obtain a value
of HL2dL~r, t;r0,t0! on a surfacex5L2dL(dL.0) for a finite time interval, from knowledge of
this valueHL~r,t;r0,t0! on an adjacent surfacex5L, where two surface are an infinitesimal
distance apart.

The fieldHL~r,t;r0,t0! on the planex5L of the point source on the same plane for finite time
interval may be measured. TheHL~r,t;r0,t0! is observed on the bounded region inR6, which is
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chosen in an agreement with the condition where«~x,r,t! have to be reconstructed. The feature of
the inverse problem with the nonstationary medium is a necessity to repeat the experiments with
the medium many times and to make the measurements in every case for the differentt0, which is
the initial moment of the source action. For example, the time periodical media are comfortable to
examine. Ther0 is another free variable parameter in an experiment. When the scattering data
HL~r,t;r0,t0! are obtained, the step of inverse procedure is carried out.

Putting t→t0 in HL~r,t;r0,t0! and using~17b!, we find«~L,r0,t0! on the planex5L. Substi-
tuting HL~r,t;r0,t0! and «~L,r0,t0! in Eq. ~17a! and determining]HL/]L, the value of
HL2dL~r,t;r0,t0! is obtained so HL2dL5HL2(]HL/]L)•dL. The operation t→t0 in
HL2dL~r,t;r0,t0! takes«~L2dL,r0,t0! on the surfacex5L2dL.

This step may be repeated many times and«~x,r,t! can be reconstructed to the left fromx5L.
The procedure stops in two cases. We arrive at the planex5L0 or the definition region of
HL2n3dL~r,t;r0,t0! is tightened to the point inR

6 wheren is the number of a procedure step and
n3dL is the transference distance of the right layer boundary. The structure of Eq.~17a! is such
that a definition region ofHL2n3dL~r,t;r0,t0! is decreased on every procedure step. If the distance
n3dL of an inversion is not enough, we have to make the observation region ofHL~r,t;r0,t0! in
the measurements more broad.

Above we had in view the line ‘‘layer stripping’’ process for the valueHL~r,t;r0,t0! so that
HL2dL5HL2(]HL/]L)•dL and the value«~L,r,t! was constant indL infinitesimal layer. We
discussed the scheme of first order. There is an opportunity to create the higher order procedure.
The value«~L,r,t! may be presented in thedL-layer by ak-polynomial inL, whose coefficient
calculations are considered in the previous section. Substituting this polynomial in Eq.~17a!,
solving it in thedL-layer, and gettingHL2dL~r,t;r0,t0! from HL~r,t;r0,t0!, we realize thek-order
‘‘layer stripping’’ process and accordingly the same inverse procedure. The address to a high-
order procedure will promote the improvement of the stability and convergence of inversion. In
principle, the questions of stability and convergence of the procedure may be considered as in the
well-researched one-dimensional case,3,4 and the complete analysis of the procedure features will
be carried out in the future, when an algorithm will be created and the numerical experiments will
be realized.

TheHL~r,t;r0,t0! in R6 is used for the reconstruction of the«~x,r,t! in R4. We see a over-
definiteness that is the attribute and characteristic property of the multidimensional inverse
problem,21 which comes from the structure of Eq.~17a! and is explained physically by the trans-
verse propagation, in the direction across to thex-axis.

VIII. CONCLUSION

The same application of the obtained results will be discussed here. Equation~17a! is a
differential equation of a first order with respect toL. This allows us to apply the approximation
of the Markov process1,2 for the analysis of the statistical inverse problem.6 Hence, the proposed
above inverse procedure may be used directly in the statistical transfer theory1,2 for a determina-
tion of a multidimensional random medium characteristics. The apparatus of a Markov process
approximation developed in Refs. 16 and 17 for a derivation of an evolution equation for the
backscattering statistical characteristics may be applied to~17a! and the generalization of the
present procedure for statistical inverse problem may be obtained.
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A temperature and mass dependence of the linear
Boltzmann collision operator from group theory
point of view

Vladimir Saveliev
Institute of Ionosphere, Almaty, 480068, Kazakhstan
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The Lie group of the transformations affecting the parameters of the linear Boltz-
mann collision operator such as temperature of background gas and ratio of masses
of colliding particles and molecules is discovered. The group also describes the
conservation laws for collisions and main symmetries of the collision operator.
New algebraic properties of the collision operator are derived. Transformations
acting on the variables and parameters and leaving the linear Boltzmann kinetic
equation invariant are found. For the constant collision frequency the integral rep-
resentation of solutions for nonuniform case in terms of the distribution function of
particles drifting in a gas with zero temperature is deduced. The new exact relax-
ation solutions are obtained too. ©1996 American Institute of Physics.
@S0022-2488~96!04211-9#

I. INTRODUCTION

Last year’s steady interest remains in studying groups of symmetry of the mathematical
physics equations. It is so especially in the case where the transformations taken into consideration
affect the parameters of an equation as well as its variables, that is, the basis of the renormgroup
ideology.1 Here, we will study the linear kinetic equation that in particular describes nonuniform
spatial drift of charged particles through a gas in the electromagnetic field. It is useful, first, to
consider~from the group theory point of view! the character of dependence on parameters of the
collision integral as the most complicated term of this equation. Also, such a consideration is
interesting, because it results in quite remarkable mathematical constructions, and permits us to
understand deeper properties of the collision operator. The evolution due to collisions of the
distribution function of particles having massm1 ~for example, ions! with particles of massm2
~molecules!, distributed on speed according to the distribution functionC~u!, is defined by the
operator of collisions2 Î :

S ] f

]t D
C

5 Î ~C! f , ~1!

where

@ Î f #~v !5E n~v!x~m,v!@ f ~v8!C~u8!2 f ~v !C~u!#dVv8du, ~2!

v5v2u is relative velocity,m5~v•v8!/v2 is the cosine of scattering angle:dVv8 is the element of
solid angle nearv8, n5Nvs andx5~1/s!ds/dV are the frequency of collisions and probability of
scattering into solid angle;v,v8; u,u8 are velocities of ions and molecules before and after a
collision; v, u, v8 andv8, u8, v are connected with the idempotent transformation:

0022-2488/96/37(12)/6139/13/$10.00
6139J. Math. Phys. 37 (12), December 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



v85
mv1u1v8

11m
, v5

mv81u81v

11m
,

u85
mv1u2mv8

11m
, u5

mv81u82mv
11m

, ~3!

v5v2u, v85v82u8,

wherem5m1/m2 .
We will consider only elastic collisions. Because of this we will have

v5v8. ~4!

Many properties of the collision operator can be found more easily for the conjugate operator and
then they can be transferred on the collision operator. If the scalar product is defined as

~w, f !5E w~v ! f ~v !dv, ~5!

then the conjugate operator determined by the condition

~w, Î f !5~ I&̃w, f !, ~6!

obviously ~dvdudVv85dv8du8dVv!, will have the form

@ Î̃w#~v !5E n~v!x~v,m!@w~v8!2w~v !#C~u!dVv8du. ~7!

II. TEMPERATURE DEPENDENCE OF THE COLLISION OPERATOR

Let us introduce special notationĴ for the collision operator for collisions with scattering
centers that are at rest before a collision, i.e., whenC~u!5d~u!:

Ĵ5 Î „d~u!…. ~8!

The collision operatorÎ can be expressed through the operatorĴ with the help of a simple
transformation3,4 F: Ĵ→ Î . This transformation has a clear physical meaning consisting in that the
process of scattering on moving center can be considered in the system of reference where this
center is at rest. Indeed, the action of the collision operator can be reduced to the next operations.
The scattering centers should be separated on groups according to the velocity, and one should get
over to the system where scattering centers of a chosen group are at rest, act by the collision
operatorĴ, return to the initial system, and integrate over all groups, i.e.,

Î5F~ Ĵ!5E duC~u!e2u“Ĵeu“, ~9!

whereeu“ is the operator of translation on the vectoru in the velocity space,

eu“ f ~v !5 f ~v1u!, where “5
]

]v
. ~10!
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The transformationF has an interesting algebraic property. The successive action of the transfor-
mationsFC1

andFC2
, induced by the distribution functionsC1~u! andC2~u!, is the transforma-

tion induced by convolution of the input distribution functions:

FC1
^FC2

5FC2
^FC1

5FC12
,

~11!

C125C1+C25C2+C15E C1~u2u8!C2~u8!du8.

In practicality, in the important case when a distribution of scattering centers~molecules! is the
Maxwellian distribution with temperatureT,

C~u!5CT~u!5S m2

2pkTD
3/2

e2m2u
2/2kT, ~12!

the family of the transformationsFT , 0<T,`, is an Abelian semigroup:

FT5051, FT1
^FT2

5FT2
^FT1

5FT11T2
. ~13!

Property~13! follows from a closure of the family of the Maxwellian distributions,CT~u!, 0<T
,`, relatively to the convolution:

E du8CT1
~u2u8!CT2

~u8!5CT11T2
~u!. ~14!

Differentiating transformationFT ~9! with respect to temperatureT at zero, bearing in mind the
property of Maxwellians,

]

]T
CT~v !5

k

2m2
¹2CT~v !, ~15!

we will have an expression for the generatorq of the temperature transformations’ semigroup. An
action of the generatorq on the operatorÎ is expressed through the double commutator
(â* b̂[[ â,b̂][âb̂2b̂â):

q~ Î !5
k

2m2
“*“* Î[

k

2m2
†“,@“, Î #‡5

k

2m2
~¹2Î22“ Î“1 Î¹2!. ~16!

According to expression~16!, the collision operator satisfies the differential equation:

]

]T
Î5

k

2m2
“*“* Î[

k

2m2
†“,@“, Î #‡. ~17!

We will denote by the operator belonging to some algebraK marked from the right side with the
sign * ~i.d. â* , â#K! the linear mapâ* : K→â*K of the algebraK into itself:

â* b̂[âb̂2b̂â, â,b̂#K. ~18!

Later we will need the next simple properties of such maps:
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@ â* ,b̂* #5@ â,b̂#* , @ â* ,b̂#5@ â,b̂* #5@ â,b̂#,
~19!

âb̂*1b̂â*5â* b̂*1~ b̂â!* .

Taking into account definitions~18!, we can express the collision operator in terms of the collision
operator of the scattering on molecules at rest before the collision with the help of the transfor-
mationFT :

Î5e~kT/2m2!¹* ¹* Ĵ. ~20!

III. MASS DEPENDENCE OF THE COLLISION OPERATOR

It can be seen from Eq.~3! that the derivative of the velocity after collision with respect to the
variable ln~11m! is equal to a difference of the velocities before and after the collision:

j5 ln~11m!,
]v8

]j
5v2v8. ~21!

So,

]

]j
Î
˜
5~v Î

˜
2 Î
˜
v !“5~v* Î

˜
!“5~“v*2“* v* ! Î

˜
. ~22!

Conjugating expression~22! and using the usual properties of conjugation,

~ âb̂!˜5 b̃̂ã̂ and “̃52“, ṽ5v, ~23!

one gets a formula for differentiation of the collision operatorÎ on j:

]

]j
Î5“v* Î . ~24!

Thus, the semigroup of the transformations,ej“v* , `.j>0, describes the mass dependence of the
collision operator and together with the transformationFT allows the expression of the operatorÎ
in terms of the operatorx& that describes a process of scattering on the infinitely heavy~m50!
centers being at rest. The operatorx& is the simplest collision operator. So, we have

Î5e~kT/2m2!“* “*1 ln~11m!“v* x& , ~25!

@ x̂ f #~v !5E n~v!x~m,v!@ f ~v8!2 f ~v !#dVv8 , here v825v25v2, x̂̃5x̂. ~26!

One can notice that the generators of the temperature and mass transformations commutate:

@“*“* ,“v* #50. ~27!

Due to ~17!, ~23!, and~22!, the conjugate collision operator can be represented in the form

Î̃5e~kT/m2!“* “*1 ln~11m!~“v*2“* v* x& . ~28!

6142 Vladimir Saveliev: Temperature and mass dependence and group theory

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



IV. ENERGY CONSERVATION LAW

The energy conservation law for scattering on an infinitely heavy center being at rest is
reduced to the fact that the squares of velocities before and after collision remain equal, or in other
words,

v2* x̂50, ~29!

and the operatorx̂ is a stationary object with respect to the group of transformations defined by
generatorv2* :

eav2* x̂5x̂. ~30!

One more property of symmetry is added in the case of the constant collision frequency~n5const,
the so-called Maxwell’s particles! frequently used in the kinetic theory:

¹2* x̂50, when n5const, x~m,v!5x~m!. ~31!

V. LIE ALGEBRA AND GROUP

To create from the set of generators“*“* , “v* , v2* , “2
* the basis of Lie algebra, one needs

to add to it three more elements:“*v* , v*v* ~v“!* . This seven-dimensional Lie algebra is
determined by commutative relations that look most simple in the bases:

P15
1

A8
¹*¹* , P25

1

2
¹* v* , P35

1

A8
v* v* ,

Q15
1

A8
¹2* , Q25

1

2
~v¹!* , Q35

1

A8
v2* , ~32!

S5M2Q22P2 ,

where

M5¹v* ,

and can be represented in the form

@Pi ,Pk#50,

@Qi ,Pk#5eiklblmPm , @Qi ,Qk#5eiklblmQm , ~33!

@S,Pk#5Pk , @S,Qk#50,

whereeikl is the antisymmetric Levi-Civita tensor andblm is an antidyogonal matrix

b5S 0 0 1

0 21 0

1 0 0
D , b̃5b, b251. ~34!

Explicit values of commutators~32! are given in Table I. For convenience we give commutative
relations for the generator of mass transformationsM separately:

6143Vladimir Saveliev: Temperature and mass dependence and group theory

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



@M ,P1#50, @M ,P2#5P2 , @M ,P3#52P3 ,
~35!

@M ,Q1#52Q12P1 , @M ,Q2#50, @M ,Q3#5Q31P3 .

As it follows from Table I,AP, AQ, APQ, andAPS ~whereAP is the Lie algebra with bases
elementsPi , APS is the Lie algebra with bases elementsPi , S, and so on! are subalgebras of Lie
algebraAPQS~32!. MoreoverAPQ andAPSare ideals, andAP is commutative ideal. Matrices
Tik of adjoint representation

5 of the subgroupGQ, defined by the expression

G21~q!QiG~q!5Tik~q!Qk , G~q!5eq1Q1eq2Q2eq3Q3, ~36!

can be obtained with the help of the formula

eABe2A5B1
1

1!
@A,B#1

1

2!
†A,@A,B#‡1••• . ~37!

These matrixes have the form

T~q!5U eq2 q3e
q2

q3
2

2
eq2

2q1e
q2 12q1q3e

q2 q3S 12
q1q3
2

eq2D
q1
2

2
eq2 2q1S 12

q1q3
2

eq2D S 12
q1q3
2

eq2D 2e2q2

U . ~38!

One can see from~33! that the generatorsPi are being transformed according to the same repre-
sentation:

G21~q!PiG~q!5Tik~q!Pk . ~39!

Matrices of the conjugated representationT̄ik(q),

G~q!QkG
21~q!5QiT̄ik~q!, G~q!PkG

21~q!5PiT̄ik~q!, ~40!

TABLE I. Values of the commutators [Aa ,Ab].

AaÅ b P1 P2 P3 Q1 Q2 Q3 S

P15
1

A8
¹*¹* 0 0 0 0 P1 P2 2P1

P25
1
2 ¹* v* 0 0 0 2P1 0 P3 2P2

P35
1

A8
v* v* 0 0 0 2P2 2P3 0 2P3

Q15
1

A8
¹2* 0 P1 P2 0 Q1 Q2 0

Q25
1
2 (v¹)* 2P1 0 P3 2Q1 0 Q3 0

Q35
1

A8
v2* 2P2 2P3 0 2Q2 2Q3 0 0

S5¹v*2
1
2 (v¹)*2

1
2 ¹* v* P1 P2 P3 0 0 0 0

6144 Vladimir Saveliev: Temperature and mass dependence and group theory

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



accordingly have the form

T̄~q!5T̃21~q!5U S 12
q1q3
2

eq2D 2e2q2 q1S 12
q1q3
2

eq2D q1
2

2
eq2

2q3S 12
q1q3
2

eq2D 12q1q3e
q2 q1e

q2

q3
2

2
eq2 2q3e

q2 eq2

U . ~41!

Parameters of the product of two elements from subgroupGQ,

G~q!G~q8!5G~q9!, G~q8!,G~q9!,G~q!5eq1Q1eq2Q2eq3Q3PGQ, ~42!

are defined by formulas

q195q11
q18

12q3q18/2
e2q2, q295~q21q28!lnS 12

q3q18

2 D 2, q395q381
q3

12q3q18/2
e2q28;

~43!

parameters of the inverse element have the form

G21~q!5G~q8!,
~44!

q185
q1e

q2

~q1q2/2!eq221
, q2852q2 lnS q1q22

eq221D 2, q385
q3e

q2

~q1q2/2!eq221
.

The connection with parameters of the exponential parametrization for a group element fromGQ
is given by formula

eq1Q1eq2Q2eq3Q35eq18Q11q28Q21q38Q3,
~45!

q185
q1q2

12e2q2
, q285

q1q2q3
2~12e2q2!

1q2 , q385
q2q3

12e2q2
.

The summands of the elementS are a basis of the subalgebra:

@Q2 ,M #5@Q2 ,P2#50, @M ,P2#5P2 . ~46!

The multiplication formula,

eq2Q2ejMep2P2eq28Q2ej8Mep28P25eq29Q2ej9Mep29P2,
~47!

p295p281p2e
2j8, j95j1j8, q295q21q28 ,

and the correspondence formula,

ep2P2ejM5ep28P21j8M,

j85j, p285
jp2

exp~j!21
, p25

exp~j8!21

j8
p28 , ~48!
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follow from ~46!. That yields useful relations:

esS5e2sQ2e„12exp~s!…P2esM5e„12exp~s!…P2esMe2sQ2,
~49!

eln~11m!~M22P2!5e22mP2eln~11m!M.

For the entire groupGPQS, the formula of two elements’ product reads

G~p,q,s!5epiPieq1Q1eq2Q2eq3Q3esS5epiPiesSeq1Q1eq2Q2eq3Q3PGPQS,

G~p,q,s!G~p8,q8,s8!5G~p9,q9,s9!,

pi95pi1esT̄ik~q!pk8 , ~50!

q195q11
q18e

2q2

12q3q18/2
, q295q21q281 lnS 12

q3q18

2 D 2, q395q381
q3e

2q28

12q3q18/2
,

s95s1s8.

The representation conjugated with adjoint one of the group is given by the formulas

G~p,q,s!PkG
21~p,q,s!5Pie

sT̄ik~q!,

GQkG
215QiT̄ik1P1~p1T̄2k2p2T̄1k!1P2~p1T̄3k2p3T̄1k!1P3~p2T̄3k2p3T̄2k!, ~51!

GSG2152Pipi1S.

VI. SOME CONSEQUENCES

We will call as extended collision operator the following operator:

Î g~p,q,s!5epiPiesSeq1Q1eq2Q2eq3Q3x̂, ~52!

which one can obtain acting by a transformation from the groupGPQS ~50! on the simplest
collision operatorx̂ for collisions with infinitely heavy centers being at rest.

As follows from ~28! and~49! and also from property~30! and formulas~54!, ~55!, and~37!,
the conjugated operator is connected with the collision operator by the relation

Ĩ̂5e22mP2Î5e&~m1 /kT!Q3Î . ~53!

Taking into account~25!, ~49!, and the first part of~53!, one can express the collision operatorÎ

and the conjugated collision operatorĨ̂ in terms of the extended operatorÎ g with accordingly
chosen parameters:

Î5 Î g~p,q,s!,
~54!

p15&
kT

m2
, p25m, p350; q150, q25 ln~11m!, q350; s5 ln~11m!;

Î̃5 Î g~p,q,s!, ~55!
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p15&
kT

m2
, p252m, p350; q150, q25 ln~11m!, q350; s5 ln~11m!.

Energy conservation law~29! yields the identity for the extended collision operator:

G~p,q,s!Q3G
21~p,q,s! Î g~p,q,s!50. ~56!

An explicit form of ~56! can be obtained with the help of~51! and ~41!:

H q122 Q11q1Q21Q31q1S p12p2
q1
2 DP11S p12p3

q1
2

2 DP21~p22p3q1!P3J Î g~p,q,s!50.

~57!

In the case of the constant collision frequency, we add two more identities due to~31!, ~29!, and
~33!:

G~p,q,s!Q1G
21~p,q,s! Î g~p,q,s!50, G~p,q,s!Q2G

21~p,q,s! Î g~p,q,s!50,

when n5const, x~m,v !5x~m!.
~58!

We can get the explicit form of them using~51! and ~41! accordingly:

H S 12
q1q3
2

eq2D 2e2q2Q12q3S 12
q1q3
2

eq2DQ21
q3
2

2
eq2Q31F2p1q3S 12

q1q3
2

eq2D
2p2S 12

q1q3
2

eq2D 2e2q2GP11Fp1 q322 eq22p3S 12
q1q3
2

eq2D 2e2q2GP2

1Fp2 q322 eq21p3q3S 12
q1q3
2

eq2D GP3J Î g~p,q,s!50,

when n5const, x~m,v !5x~m!;
~59!

H q1S 12
q1q3
2

eq2DQ11~12q1q3e
q2!Q22q3e

q2Q31Fp1~12q1q3e
q2!

2p2q1S 12
q1q3
2

eq2D GP12Fp1q3eq21p3q1S 12
q1q3
2

eq2D GP2

2@p2q3e
q21p3~12q1q3e

q2!#P3J Î g~p,q,s!50;

when n5const, x~m,v !5x~m!.
~60!

Identities~57!, ~59!, and~60! with the parameters given by~54! for the operatorÎ are reduced
to the form

S v2*1
2kT

m2
“* v*1mv* v* D Î50; ~61!

~¹2*2m¹*¹* ! Î50, when n5const, x~m,v!5x~m!; ~62!
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S ~v“ !*1
kT

m2
“*“* D Î50, when n5const, x~m,v!5x~m!. ~63!

The temperature transformation that gets the collision operatorÎ can be represented by the simili-
tude

Î5Ge@~11m!/m#~&kT/m2!Q1G21Ge@2~11m!/m#~&kT/m2!Q1x̂5e~kT/2m1!¹2* Ĵ8

5e~kT/2m1!¹2
Ĵ8e2~kT/2m1!¹2

, ~64!

where

Ĵ85eln~11m!Mx̂8,

x̂85e2~11m!~kT/2m1!¹2
x̂e~11m!~kT/2m1!¹2

.

In the case the collision frequency does not depend on the velocity, we havex̂85x̂ due to
property~31! and consequentlyĴ85 Ĵ. Therefore, for that case the collision operatorÎ is expressed
in terms of the collision operatorĴ for collisions with molecules at rest with the help of the simple
similitude:

Î5e~kT/2m1!¹2* Ĵ5e~kT/2m1!¹2
Ĵe2~kT/2m1!¹2

, when n5const, x~v,m!5x~m!, ~65!

which is based on the Gauss transformation:6

e~kT/2m1!¹2
f ~v !5S m1

2pkTD
3/2E dv8e2m1~v2v8!2/2kTf ~v8!. ~66!

VII. TRANSFORMATIONS FROM THE RENORMGROUP OF THE BOLTZMANN LINEAR
KINETIC EQUATION

We use the termrenormgrouphere to underline that the group transformations affect not only
the variablesv, r8, t, but the problem’s parametersT, m, w, too. Thus, we use the renormgroup
ideology.1

Let us consider nonuniform drift of charged particles through the gas of heated molecules in
the electric and magnetic fields.7 The distribution function of charged particlesf ~v,r,t! satisfies
the Boltzmann kinetic equation with the extended operator parametersp, q, s taken from~54!:

] f

]t
1v“ r f1~w1v3V!“ f5 Î g~p,q,s! f , ~67!

wherew5eE/m, V5eB/mc, “r5]/]r, “5]/]v.
The operator of the left part of Eq.~67!,

L̂5
]

]t
1v¹ r1~w1v3V!“,

is transformed by generators from theAQ algebra as follows:
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Q1L̂5
1

A8
@¹2,L̂#5

1

&

““ r ,

Q2L̂5 1
2 @v“,L̂#5 1

2 ~v“ r2w“ !, ~68!

Q3L̂5
1

A8
@v2,L̂#52

1

&

wv.

It is easy to see that the action of the operators affecting the problem’s parameterw and spatial
variabler leads to the same results:

1

&

~“ r¹w!* L̂5
1

&

@“ r“w ,L̂#5
1

&

““ r ,

2 1
2 ~r“ r1w“w!* L̂52 1

2 @~r“ r1w“w!,L̂#5 1
2 ~v“ r2w“ !, ~69!

1

&

~wr!* L̂5
1

&

@wr,L̂#52
1

&

wv.

Therefore, the difference of the operators from~68! and ~69! gives us the set of generators
commutating with operatorL̂. The group constructed on their base keeps the operatorL̂ invariant,

e~ q̄1 /A8! ~¹222“r“w!* L̂5e~ q̄1 /A8!~¹222“r“w!L̂e2~ q̄1 /A8!~¹222“r“w!5L̂,

e~ q̄2/2! ~v“1r“r1w“w!* L̂5e~ q̄2/2! ~v“1r“r1w“w!L̂e2~ q̄2/2!~v“1r“r1w“w!5L̂, ~70!

e~ q̄3 /A8!~v222wr!* L̂5e~ q̄3 /A8!~v222wr!L̂e2~ q̄3 /A8!~v222wr!5L̂.

The extended collision operatorÎ g(p,q,s) is transformed under theGQ group, because operators
~69! do not affect the velocity and commutate withÎ g(p,q,s):

e~ q̄1 /A8!~¹222“r“w!* Î g~p,q,s!5eq̄1Q1Î g~p,q,s!5 Î g~p8,q8,s8!,

e~ q̄2/2!~v“1r“r1w“w!* Î g~p,q,s!5eq̄2Q2Î g~p,q,s!5 Î g~p8,q8,s8!, ~71!

e~ q̄3 /A8!~v222wr!* Î g~p,q,s!5eq̄3Q3Î g~p,q,s!5 Î g~p8,q8,s8!.

Therefore, the kinetic equation~67! is invariant regarding the transformations with parametersq̄1,
q̄2, andq̄3 due to properties~70!, ~71!, ~42!, and~43!. The transformations have the form

pi85 T̄ ik~ q̄ !pk, s85s,

q185 q̄11
q1e

2 q̄2

12 q̄3q1/2
, q285 q̄21q21 lnS 12

q̄3q1
2 D 2, q385q31

q̄3e
2q2

12 q̄3q1/2
,

~72!
f 8~v,r,t;w,p8,q8,s8!5e~ q̄1 /A8!~¹222“r“w!e~ q̄2/2!~v“1r“r1w“w!e~ q̄3 /A8!~v222wr! f ~v,r,t;w,p,q,s,!.

We will give three simple examples of using the transformation~72!.
Example 1:If we change the parametersp, q, ands in problem~67! and take them from~55!,

we will have Î g(p,q,s) 5 Î̃ . For these parameters a constantN0 becomes the solution of Eq.~67!
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due to the property of the conjugated collision operator,Ĩ̂ N0 5 0. Transformation~72! with pa-

rametersq̄352&m1/kT and q̄15q̄250 transforms@see~53!# Ĩ̂ into Î so that, with the help of
this transformation, we can get the classic Maxwell–Boltzmann solution for problem~67!:

f5N0e
2~m1/2kT!~v222wr!. ~73!

Example 2:The extended collision operator with parametersp, q, ands given by formula~54!
at T50 is the collision operatorĴ for collisions with molecules being at rest before collision. In
the case of the constant collision frequency, transformation~72! with parametersq̄15&kT/m1
and q̄25q̄350 transforms the operatorĴ into Î due to property~65!. Therefore, transformation
~72! with those parameters makes it possible to express the distribution function of charged
particles drifting in a heated gas~TÞ0! in terms of the distribution function of charged particles
drifting in a cold gas~T50!:

f ~v,r,t;w,T!5e~kT/2m1!~¹222“r“w! f ~v,r,t;w, T50!, when n5const, x~m,v!5x~m!.
~74!

Using the property of the Fourier transformation,

F̂“ r F̂
215 ik, @ F̂ f #~k!5

1

~2p!3/2
E dre2 ikr f ~r!, ~75!

and formulas~66!, ~10!, we get the integral representation of transformation~74!:

f ~v,r,t;w,T!5S m1

2pkTD
3/2E dv8dr8dk

~2p!3
e2m1~v2v8!2/2kT1 ik~r2r8!

3 f S v8,r8,t;w2 i
kT

m1
k, T50D when n5const, x~m,v!5x~m!. ~76!

Formula ~76! gives a generalization of the Wannier8 theorem of convolution on the spatial not
uniform case with presence of the magnetic field.

Example 3:Whenn5const, andx~m,v!5x~m!, a class of the exact solutions of the equation

] f

]t
1v“ r f1~w1v3V!“ f5 Î f , ~77!

describing spatial and velocity relaxation of the plasma charged component in the electric and
magnetic fields has the form

f ~v,r,t !5e2~m1/2kT!~v222wr!e2~kT/2m1!~¹222“r“w!et@ Ĵ
˜

2v“r2~w1v3V!“#pn~v,r!, ~78!

wherepn~v,r! is an arbitrary polynomial of the ordern of the velocity and radius vector compo-
nents, and the function

w~v,r,t !5et@ Ĵ
˜

2v“r2~w1v3V!“#pn~v,r! ~79!

is a solution of the equation

]w

]t
1v“ rw1~w1v3V!“w5 J̃̂w. ~80!
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In fact, the linear vector space of polynomials of the order not greater thann is invariant with
respect to the operator

Ĥ5 J̃̂2v“ r2~w1v3V!“,

and therefore the operator is represented by the matrix in that space. Thus the exponential in~78!
and~79! is a function in terms of the matrix and its action on a polynomial is defined by the usual
rules.9 A simple example of a solution~nonpositive! from class~78! is the solution~n51!

f5e2~m1/2kT!~v222wr !H c01c1@~l1V3 !r1v2wt#1c21S v2
w

l2 iV De~l2 iV!t

1c22S v2
w

l1 iV De~l1 iV!t1c2IIS v2
w

l DeltJ , ~81!

wherec0 is an arbitrary constant,c1 is an arbitrary vector constant,c21, c22, c2II are the cyclic
components of an arbitrary vector constant those can be effectively used10 for description the
ionospheric magnetoactive plasma dynamic,

c2652
V3~V36 iV!

2V2 c2 , c2II5
V3V31V2

V2 c2 ,

wherel5l1
0 is the eigenvalue4,11 of the conjugated collision operator,J̃̂v 5 l1

0v.
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We derive rigorous bounds on the length scale of determining local averages~vol-
ume elements! for the 3-D Navier-Stokes Equations. These length scale estimates
are related to Kolmogorov’s notion of a dissipation length scale in turbulent flows.
© 1996 American Institute of Physics.@S0022-2488~96!00711-6#

I. INTRODUCTION

We consider the Navier-Stokes Equations~NSE!

H ]

]t
u2nDu1~u•¹!u1“p5 f

“•u50

,

in the cubeV 5 @0,L#3. The above equations are subject to either periodic or Dirichlet boundary

conditions. Let us divideV into N3 small sub-cubes,$Qj% j51
N3 , each with side of length

l 5LN21. Let us denote by

w̄j5
1

uQj u
E
Qj

w~x!dx, for j51,2,...,N3,

the average of the functionw in the small cubeQj , and we set

h̄~w!5S (
j51

N3

uw̄j u2D 1/2.
Following Ref. 1 ~see also Ref. 2! we say that the set of sub-cubes$Qj% j51

N3 is a set of
determining volume elements if for any two solutionsu(t),v(t) of the NSE,
h̄((u(t)2v(t)))→0, t→`, implies iu(t)2v(t)i→0 as t→`, in some reasonable normi•i .
This concept was inspired by the notions of determining modes and determining nodes which were
introduced by Foias and Prodi in Ref. 3 and by Foias and Temam in Ref. 4, respectively. These
ideas were developed in an attempt to identify and study the finite number of degrees of freedom
in turbulent flows. Rigorousglobal estimates on the number of determining modes, determining
nodes and determining volume elements were established in Refs. 5, 6, and 2, respectively. An

a!E-mail address: const@math.uchicago.edu
b!Current address: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, E-mail address:
doering@umich.edu

c!E-mail address: etiti@math.uci.edu
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improvement of these global estimates was recently reported in Ref. 7. Moreover, a unified
treatment of these concepts and more general ones, such as determining finite elements, has been
recently developed in Refs. 8 and 9.

The above mentioned estimates are global in the sense that they are independent of the
individual solution. In this paper, however, we give an upper bound on the minimal number of
determining volume elements,N3, or equivalently a lower bound on the size of determining finite
volume elements~cubes!, l , in terms of the viscosity, and a modified mean rate of dissipation.
The latter is a function of the individual solution. It is noteworthy that estimates for the number of
determining volume elements that we provide here are the same as those established in Ref. 10 for
the number of determining modes. This study is complementary to other rigorous work identifying
small length scales in solutions of the NSE.10–14

II. PRELIMINARIES

We denote byLp(D) the usual Lebesgue spaces in the domainD, and byHk(D) the usual
L2 Sobolev spaces of indexk in the domainD. Hereafterci , for i51,2,...,will denote positive
dimensionless universal constants.

First let us prove the following version of the Poincare´ inequality.
Lemma 2.1: For every wP H1(Qj ) we have

iwiL2~Qj !
2 <2uw̄j u2l 31c1l

2i“wiL2~Qj !
2 , ~1!

iwiL2~V!
2 <2~ h̄~w!!2l 31c1l

2i“wiL2~V!
2 . ~2!

Proof: By the Poincare´ inequality we have

iw2w̄j iL2~Qj !
<c1l i“wiL2~Qj !

,

wherec1 is a universal constant independent ofw andQj . From the above we get

iwiL2~Qj !
<uQj u1/2uw̄j u1c1l i“wiL2~Qj ! ,

which establishes~1!. To prove~2! we sum the~1! over j51,...,N3.
Let us recall the following Lemma from Ref. 5~see also Ref. 2!.
Lemma 2.2: Leta be a locally integrable real valued function on(0,̀ ) satisfying, for some

0,T,`, the following conditions:

lim inf
t↘`

1

TEt
t1T

a~t!dt5g.0,

lim sup
t→`

1

TEt
t1T

a2~t!dt5G,`,

wherea25max$2a,0%. Further, let b be a real valued locally integrable function defined on
(0,̀ ) such that

lim
t→`

1

TEt
t1T

b1~t!dt50,

where b15max$b,0%. Suppose thatj is an absolutely continuous non-negative function on
(0,̀ ) such that
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d

dt
j1aj<b, a.e. on ~0,̀ !.

Thenj(t)→0 as t→`.

III. MAIN RESULTS

We now state our main result:
Theorem 3.1:Let u be any solution of the NSE. Suppose that the length of the side of Qj , for

j51,...,N3, is small enough so that

l 22>
4c1
n

inf
T.0

S lim sup
t→`

1

TEt
t1T

i¹u~s!iL`~V!dsD . ~3!

Then for any solutionv of the NSE for whichh̄((u(t)2v(t)))→0, as t→`, we have
iu(t)2v(t)iL2(V)→0, as t→`.

Proof: Let us setw5u2v. Then,w satisfies

]w

]t
2nDw1~u•“ !w1~w•“ !u2~w•“ !w1“~pu2pv!50,

where pu and pv are the pressure fields corresponding to the solutionsu and v respectively.
Multiply the above equation byw and integrate overV to obtain

1

2

d

dt
iwiL2~V!

2
2nE

V
Dw~x!•w~x!dx1E

V
~~w~x!•“ !u~x!!•w~x!dx1E

V
~~u~x!•“ !w~x!!

•w~x!dx2E
V

~~w~x!•“ !w~x!!•w~x!dx50.

Notice that*V“(pu(x)2pv(x))•w(x)dx50 because“•w50 andwu]V50 ~or periodic!. Inte-
grate by parts the above equations and use again the facts that¹•u5¹•w50 and thatwu]V50
~or periodic! to get

1

2

d

dt
iwiL2~V!

2
1ni“wiL2~V!

2
52E

V
@~w~x!•“ !u~x!#•w~x!dx. ~4!

Now, we estimate the right hand side

U E
V

~~w~x!•“ !u~x!!•w~x!dxU<i“uiL`~V!iwiL2~V!
2 .

Hence equation~4! becomes:

1

2

d

dt
iwiL2~V!

2
1ni“wiL2~V!

2 <iwiL2~V!
2 i“uiL`~V! ,

and from~2! we have

1

2

d

dt
iwiL2~V!

2
1S n

c1l
2 2i“uiL`~V!D iwiL2~V!

2 <
2nl

c1
~ h̄~w!!2.

Let T*.0 be chosen such that
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inf
T.0

S lim sup
t→`

1

TEt
t1TI“u~s!I L`~V!dsD< lim sup

t→`

1

T*
E
t

t1T
* i“u~s!iL`~V!ds<

n

2c1l
2 .

Now, we apply Lemma 2.2 witha(t)5n/c1l
22i“u(t)iL`(V) , b(t)5 (2nl /c1) (h̄(w))

2 and
T5T* to conclude the Theorem.

Let u be any solution of the NSE. Following the conventional theory of turbulence we set

e5
n

L3
^i“uiL2~V!

2 &,

the mean rate of energy dissipation, where^•& denotes some kind of ensemble average~usually
taken to be time average!. Following Kolmogorov15 we identify a small length scale in the flow to
be

l K;S n3

e D 1/4.
By analogy let us define a modified mean rate of energy dissipation,

e`5n inf
T.0

S lim sup
t→`

1

TEt
t1T

i¹u~s!iL`~V!
2 dsD ,

and a modified small length scale:

l K,`5
1

A4c1
S n3

e`
D 1/4.

As a corollary of the above Theorem we have:
Corollary 3.2: If the side of each of the cubes Qj , for j51,...,N3, is small enough, in

particular if l <l K,` , then the cubes are determining volume elements.
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Explicit solutions of supersymmetric KP hierarchies:
Supersolitons and solitinos
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Wide classes of explicit solutions of the Manin-Radul and Jacobian supersymmetric
KP hierarchies are constructed by using line bundles over complex supercurves
based on the Riemann sphere. Their construction extends several ideas of the stan-
dard KP theory, such as wave functions,]̄-equations andt-functions. Thus, super-
symmetric generalizations ofN-soliton solutions, including a new purely odd
‘‘solitino’’ solution, as well as rational solutions, are found and characterized.
© 1996 American Institute of Physics.@S0022-2488~96!02112-3#

I. INTRODUCTION

The most appealing aspects of the theory of the KP hierarchy have a rich geometrical content
and it is likely that this fact is at the heart of the relevance of integrable systems in modern
theoretical physics.1,2 For example, a common feature of the explicit methods of solutions is that
they frequently involve geometric objects such as Grassmannians, algebraic curves, Abelian func-
tions, and holomorphic line bundles.3–9 This also happens to be true in the context of supersym-
metric KP ~SKP! hierarchies10,11 and it is expected that some of these integrable systems are to
find applications in string theory and quantum gravity.12–14The aim of this article is to show how
line bundles over complex supercurves can be used to provide efficient methods of solution for the
SKP hierarchies formulated by Manin and Radul~MRKP!15 and Mulase and Rabin~JKP!.10,11

Both hierarchies have attracted much attention because of their important mathematical content.
Apart from sharing many of the standard integrability properties, among their reductions they have
a supersymmetric generalization of the KdV hierarchy with a rich Hamiltonian structure15–17and
they are relevant from the point of view of superconformal algebra.18–20A basic goal of our study
is to generalize some of the standard methods of solution arising in the KP theory and to charac-
terize the classes of solutions they determine. In particular we want to investigate solutions of
soliton type and their relationship with the standard KP solitons. To this end we extend some
strategies of the Grassmannian approach for constructing several types of solutions and apply
them to the SKP hierarchies.

This work is based on the concept of super-wave function for a system of Sato equations of
supersymmetric type. As it is known from our experience with the KP hierarchy, the notion of
wave function is what allows us to derive methods of solution based on the resolution of analytic
problems. Despite the seemingly great diversity of these methods, they exhibit a common ingre-
dient: the presence of holomorphic line bundles6–8 whose sections turn to be the wave functions.
Actually, the wave functions are special types of sections satisfying certain conditions as functions
of the spectral parameter. These conditions are formulated in several forms depending on the
particular approach which is being adopted. For example, they may be expressed by means of a
]̄-equation21,22or by selecting a subspace of an infinite-dimensional Grassmanian.7 In this article
we characterize the super-wave functions as certain sections of deformations of holomorphic line
bundles over complex supercurves based on the Riemann sphere together with the corresponding
points in the super-Grassmannian. Finally we also offer a]̄-equation description of them. Then we
compute several families of solutions including supersymmetricN-soliton solutions possessing an
interesting composite odd structure, and a genuine supersymmetric family of solutions without a
bosonic counterpart, unrelated to any class of solution of the standard KP theory, that we call
solitino solutions. They exhibit a remarkable nonlinear superposition principle and a Fourier-like
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dependence on the bosonic variables. It is worth mentioning that the solutions found in the present
work can also be determined, although in a less straigthforward way, through the bilinear formal-
ism proposed in Ref. 23.

The first part of Section II is concerned with a brief review of SKP hierarchies in terms of
pseudodifferential operators, including the formulation of Sato equations. The notion of super-
wave function is analyzed in the second part of this section. In particular, we describe in detail the
derivation of the corresponding expressions for the vacuum super-wave functions. The character-
ization of super-wave functions as sections of~super! holomorphic line bundles over complex
supermanifolds is described in the first part of Section III, and finally in Section IV we relate the
above constructions to the supergroup and bilinear formalism.

II. SUPER KP HIERARCHIES

A. Sato equations for super KP hierarchies

The MRKP and JKP hierarchies can be described in a unified way with the help of an algebra
E of super-pseudodifferential operators:24

X5 (
n<N

an~x,u,t,t!Dn, NPN, ~1!

where the coefficientsan are elements of a supercommutative algebra

S 5C@@x,t## ^ L~u,t! ^A.

Here,x is an even variable,u is an odd variable,t5$tn%n51
` andt5$tn%n51

` are infinite sets of
even and odd variables, respectively, andA denotes a given complex Grassmann algebra of finite
or infinite dimension. The superdifferential operatorD is defined as the derivation onS given by

D5
]

]u
1u

]

]x
,

satisfying the identity

D25][
]

]x
.

We will denote byX5X11X2 the decomposition of elementsX P E into positive (n>0) and
negative (n,0) powersDn of D.

Both algebrasS andE have naturalZ2-graduations

S 5S 0%S 1 , E5E0%E1 .

An operator~1! is said to have parityp if and only if (;n<N) the coefficientsan have parity
n1p mod 2. We may also introduce body mapse on S andE ~Ref. 24! and, in particular, the
body of an operator~1! is given by

e~X!5 (
n even

e~an!D
n.

Notice thate(X) is not the even part ofX.
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The Sato equations for the SKP hierarchies can be written as
]K

]tn
52~K] nK21!2K,

~2!
DK

Dtn
52~KAnK

21!2K, n>1,

for an evenK P E of the form

K511 (
n51

`

wn~x,u,t,t!D2n. ~3!

Notice thatp(w2n)50 andp(w2n11)51 so thatp(K)50.
For the MRKP hierarchy the superderivationsD/Dtn and the operatorsAn in ~2! are

D

Dtn
5

]

]tn
2 (

m>1
tm

]

]tn1m21
, An5D2n21.

while for the JKP version

D

Dtn
5

]

]tn
, An5~D2uD2!D2n225

]

]u
D2n22.

These hierarchies generalize the standard KP hierarchy in the sense that, as one easily shows, the
bodye(K) of a solutionK of ~2! satisfies the Sato equations for the KP hierarchy in the variables
tn .

By identifying the coefficients of the powers ofD in the system~2! one finds infinite systems
of superdifferential equations involving the superfunctions$wn%. Simpler equations can be ob-
tained by imposing a reduction condition of the type15

]K

]t r
50, ~4!

for somer>2. Indeed, if one introduces the operator

L5KDK215D1 (
n51

`

unD
2n11, ~5!

the constraint~4! is equivalent to

~L2r !25~KD2rK21!250,

and it turns out that the operator

L5L2r

satisfies the Lax equations

]L

]tn
5@~L n/r !1 ,L #. ~6!
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The coefficients of the expansion of (L n/r)1 in powers ofD are differential polynomials in the
coefficients ofL ~Ref. 15!, so that~6! leads to a system of superdifferential equations for the
coefficients ofL which constitutes a supersymmetric generalization of ther th KdV hierarchy.

For example if we asssume~4! for r52, then the operatorL5L4 is of the form

L5D41v1D1v0 ,

wherev0 andv1 can be expressed in terms of the coefficients ofK as

v0522@]w21~]w1!w1#, v1522]w1 . ~7!

Furthermore, it is easy to find

~L 3/2!15D61
3

2
v1D

31
3

2
v0D

21
3

4
]v1D1

3

4
]v0 ,

so that the equation corresponding to~6! for n53 reads (t5t3)
]v0
]t

5
1

4
@]~]2v013v1Dv013v0

2!#,

~8!
]v1
]t

5
1

4
@]~]2v113v1Dv116v0v1!#,

which is the supersymmetric Korteweg-de Vries~SKdV! equation of Manin-Radul.15

B. Super-wave functions for super KP hierarchies

The notion of super-wave function for a SKP hierarchy requires the introduction of a spectral
parameter (z,a), wherez denotes a complex variable anda is a new Grassmann variable. The
superparameter (z,a) represents local supercoordinates on a complex supercurveC ~see for
instance, Ref. 25, and references therein for the notions of supergeometry used in the following!
with structure sheafO and not being necessarily a super-Riemann surface~SRS!. Let p be a point
in the body ofC andD a disk containingp. We shall denote byO * the restriction of sheaf of
superfunctionsO to D2$p%.

Definition 1:11–20,24A vacuum super-wave function is a superfunction f0 P O * ^S that sat-
isfies

]f0
]tn

5] nf0,

~9!
Df 0
Dtn

5Anf 0 , n>1.

Hence, a super-wave functionf 0 depends on the variables (z,a;x,u,t,t), and is a solution of the
linear system~9!. We can find solutions of~9! using the ansazt,

f 05Vezx1au, ~10!

with V a super-pseudodifferential operator inE and satisfying the initial conditionVu t50,t5051.
Then,V must verify

]V

]tn
5]n•V,
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DV

Dtn
5An•V, n>1.

It is easy to see that for the MRKP hierarchy

V5expF (
n51

`

tn]
nG•F11 (

n51

`

tnD
2n21G

and

f 05expFzx1au1 (
n51

`

zntn1~a2zu! (
n51

`

zn21tnG .
Respectively for the JKP hierarchy

V5expF (
n51

`

tn]
n1 (

n51

`

tn
]

]u
D2n22G

and

f 05expFzx1au1 (
n51

`

zntn1a (
n51

`

zn21tnG .
Henceforth we will write both expressions of the vacuum super-wave functionf 0 as

f 05expFzx1 (
n51

`

zn~ tn1utn!1~a2l!S u1 (
n51

`

zn21tnD G , ~11!

wherel5l(z,u,t) denotes a function which for the MRKP hierarchy is

l~z,u,t!5zu2 (
n51

`

zntn , ~12!

and for the JKP hierarchy is given by

l~z,u,t!5zu. ~13!

For brevity’s sake, we will often omit the arguments of the superfunctions which are irrelevant or
clear from the context.

It should be noticed that

Df 05~l2a! f 0 , D2f 05z f0 , ~14!

so that the action of inverse powers ofD on f 0 may be defined as

D21f 05D•D22f 05~l2a!z21f 0 . ~15!

It is now evident that we can ‘‘dress’’ the vacuum super-wave function to obtain solutions of
Sato’s equations~2! introducing the notion of a super-wave function.

Let H(V) denote the set of complex valued holomorphic functions ofz on a certain region
V of the complex plane, andOV5H(V)^ L(a) the superalgebra of superfunctions of the trivial
(1u1)-superspace overV.
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Definition 2: LetV andOV as before. A super-wave function for a SKP hierarchy is an even
element f5 f (z,a;x,u;t,t) of the algebra

OV ^C@@x,t## ^ L~u,t! ^A,

which satisfies the properties:
~P1! f is a solution of an infinite system of equations:

]f

]tn
5Pnf,

~16!
Df

Dtn
5Qnf , n>1,

with Pn ,Qn P E being superdifferential operators

~Pn!25~Qn!250.

~P2! f can be decomposed as a product:

f5 f 8• f 0 , ~17!

where f8 admits a Laurent expansion on r,uzu,r 8 of the form:

f 8511 (
n51

`

w2nz
2n1~a2l! (

n51

`

w2n21z
2n, ~18!

with wn P S for all n>1.
Then a super-wave functionf is obtained by dressing the vacuum super-wave functionf 0

using an operatorK satisfying Sato’s equations.
Theorem 1: Let f be a super-wave function for an SKP hierarchy and f0 the vacuum super-

wave function (11), then there is an operator K such that

f5Kf 0 . ~19!

and K verifies Sato’s equations (2). Conversely, any solution of Sato’s equations (2) provides a
super-wave function f for a SKP hierarchy by means of Eq. (19).

Proof: To prove this fact, we observe that as a consequence of properties~14! and ~15! of
f 0, the operatorK in ~19! has the required form~3! with the coefficientswn being the same as
those of the expansion~18! of f 8. On the other hand~16!, ~19! and ~9! imply

]K

]tn
f 01K]nf 05PnK f 0 ,

so that we deduce

]K

]tn
K215Pn2K]nK21.

But this equation obviously leads to

Pn5~K]nK21!1

and
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]K

]tn
52~K]nK21!2K.

In the same way one shows thatK satisfies the Sato equations for the flows associated with the
variablestn . Thus, we have obtained in this way a one-to-one correspondence between solutions
K of Sato’s equation and super-wave functionsf 0.

Conversely, iff5Kf 0, then because of~2!, and~9!, f verifies~16! with Pn5(K]nK21)1 and
Qn5(KAnK

21)1 . Moreover, because of the expansion~3! of the operatorK follows the expan-
sion ~18! of the transition superfunctionf 8.

It is worth noticing that, as it should be expected, the body of a super-wave function for a SKP
hierarchy constitutes a wave function for the standard KP hierarchy.

III. LINE BUNDLES AND EXPLICIT SOLUTIONS OF THE SKP HIERARCHIES

A. Super-wave functions as sections of line bundles

Contrary to the situation in the bosonic case, the description of the SKP flows must be done
not on line bundles over a supercurve but on line bundles over a family of supercurves param-
etrized byu, t. To be precise, we are going to consider a familyM(u, t) of compact complex
supermanifolds of dimension (1,1)parametrizedby the set of global Grassmann variables
(u,t). We will describe this structure in detail. LetU5(U;z,a) andU85(U8;z8,a8) be two
charts, where the pair$U,U8% is a covering of the Riemann sphere, for instance,

U5$zPCuuzu,r %, U805$zPCuuzu.r 8%, 0,r 8,r ,

with the two systems of coordinates being related through the equations

z85
1

z
, a85a2l~z,u,t!. ~20!

Here l(z,u,t) is the function defined in~12! and ~13! and the transformationa°a8 will be
called a super-Schiffer transformation. Notice that these supermanifolds are of extended type in
the sense of Rogers26 because superfunctions onM(u,t) depend not only on the local coordinates
(z,a) of the supermanifold but also on the global variables (u,t). In general, the equation~20! for
the super-Schiffer transformationa°a8 does not extend holomorphically throughoutU8, generi-
cally it has a pole of order 1 at̀ , and the supermanifold structures defined by the transition
superfunctions~20! are not equivalent to the trivial super-Riemann sphere.

Thus we can think on the supermanifold structures defined by the (u,t!-dependent transition
functions~20! as tracing a path on the moduli space of complex supercurves. See Ref. 27 for the
description of universal deformations on the supermoduli space of supercurves. We could consider
further deformations of our complex supercurves but we will simplify the description of super-
wave functions by considering only the supercurves parametrized byu andt by means of~20!.

We shall consider then the familyL(x,t) of holomorphic line bundles overM(u,t) with
transition function given by the vacuum super-wave functionf 0 of a SKP hierarchy. Our purpose
now will be to characterize holomorphic sections of these bundles. Such sections will be deter-
mined by pairs

~U,f!, ~U8,f8!,

defined on the patchesU andU8, and wheref andf8 are even superfunctions

fPM ~U ! ^ L~a! ^C@@x,t## ^ L~u,t! ^A,

f8PM ~U8! ^ L~a8! ^C@@x,t## ^ L~u,t! ^A,
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verifying the overlapping condition,

f5f8• f 0 , ;zPUùU8. ~21!

Here,M (U) andM (U8) denote the sets of complex valued meromorphic functions ofz onU and
U8, respectively.

Comparing our last equation~21! with the factorization property for a super-wave function
~17!, we immediately see that wide classes of super-wave functions for the SKP hierarchies can be
obtained from special sections ofL(x,t). We will search for the conditions defining subsets

W ,M ~U ! ^ L~a! ^C@@x,t## ^ L~u,t! ^A, ~22!

whose elements will be super-wave functions.
Definition 3: A subspaceW of the the superalgebra M(U)^ L(a)^C@@x,t## ^ L(u,t)^A

will be called an asympotic super-module if it verifies:
~C1! W is a left-module over the algebra of superdifferential operators generated by D and

$ (]/]tn) , (]/]tn) %n>1 with coefficients inS .
~C2! There is only one even section of the line superbundleL(x,t! given by the local expres-

sions,

~U, f !, ~U8, f 8!, ~23!

such that fPW and f8 is holomorphic on U8 with f8u$z5`%51.
In Section III we will construct explicitly several examples of asymptotic super-modules for

complex supercurves with body manifold the Riemann sphere. For more general complex super-
curvesM with body manifold an arbitrary compact Riemann surfaceS, the previous character-
ization works similarly. To construct the subspacesW we should choose first a line bundleL
overM such that dimH0(M,L)5dim H1(M,L)50. Then, fixing a pointp P S and a local
trivialization in a neighborhood of it, we define the new bundleL^Lp possessing the required
properties. Notice that the cohomological requirements onL implies that degE50 whereE is the
underlying complex line bundle over the Riemann surface. For the Riemann sphere case, this
implies that degL521 and the complex supercurve is not a SRS.

We can prove now the following theorem characterizing super-wave functions using asymp-
totic super-modules.

Theorem 2:Given an asymptotic super-moduleW , the superfunction

f5 f 8• f 0 , zPUùU8,

defined by the unique section associated to it is a super-wave function for the associated SKP
hierarchy.

Proof: To see this, observe that from~C2! in Def. 3 we deduce

f 8511 (
n51

`

w2n~z8!n1a8•(
n51

`

w2n21~z8!n511 (
n51

`

w2nz
2n1~a2l! (

n51

`

w2n21z
2n.

Thereforef satisfies the condition~P2! for super-wave functions. On the other hand, by using~14!
we get that forzP UùU8

D2nf2w1D
2n21f5@zn1O~zn21!#f0,

~24!
D2n11f1w1D

2nf5@2~a2l!zn1O~zn21!# f 0 .
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As a consequence, we may determine superdifferential operatorsPn ,Qn P E such that
]f

]tn
2Pnf5OS1zD•f0,

~25!
Df

Dtn
2Qnf5OS 1zD • f 0 , n>1.

Then, it is easy to see that~C2! implies that both] f /]tn2Pnf andDf /Dtn2Qnf ,n>1, vanish,
and thereforef satisfies the condition~P1! for super-wave functions.

Solutions to a reduced hierarchy~4! can be obtained by imposing onW the additional
condition

zr•W ,W . ~26!

Indeed, in that case the super-wave functionf associated withW satisfies

] f

]t r
5zr• f ,

so thatf 8 andK are independent ont r .

B. Solitons and solitinos

We will now construct several examples of asymptotic super-modules and the corresponding
super-wave functions.

Let us consider the subset of superfunctionsf which are analytic for allz P U, with the
possible exception of simple poles contained in a fixed subset$qi% i51

N , and such that the corre-
sponding residues satisfy

Res~f,qi !5~ci1av i !•f~pi ,a!, i51,...,N, ~27!

where$ci% i51
N P A0I and $v i% i51

N P A1I are given, and$pi% i51
N is a fixed subset of points ofU

different from $qi% i51
N . This subspace will be denoted byW (q,p;c,v), whereq5(q1 ,...,qN),

etc.
Theorem 3: The subspaceW (q,p;c,v) is an asymptotic super-module and its elements are

super-wave functions for a SKP hierarchy.
Proof: In order to prove thatW (q,p;c,v) verifies the required conditions~C1! and ~C2! of

Def. 3, let us note that the corresponding superfunctionf must be of the form

f5F11(
i51

N
ai1~a2l!b i

z2qi
G• f 0 , ~28!

where the unknown coefficientsai andb i are even and odd elements ofS , respectively. Thus
computing the residues,~27! implies

ai1~a2l~qi !!b i5~bi1ag i !F11(
j51

N
aj1~a2l~pi !!b j

pi2qj
G , ~29!

for all i51,...,N, wherebi ,g i P S are given by

bi5e~pi !cie~qi !
21, g i5e~pi !Fv i1ci (

n>1
~pi

n212qi
n21!tnGe~qi !

21,
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and withe(z) denoting the superfunction

e~z!5expFzx1 (
n>1

zn~ tn1utn!2l~z!S u1 (
n>1

zn21tnD G .
From ~29! the following linear system for the coefficientsai andb i follows

(
j

Fdij2 bi
pi2qj

G•aj2(
j

Fdijl~qi!2
bil~pi!

pi2qj
G•bj5bi ,

~30!

2(
j

g i

pi2qj
•aj1(

j
Fd i j1 g il~pi !2bi

pi2qj
G•b j5g i .

This is a uniquely solvable system since the body of the matrix of coefficients is the invertible
numerical matrix,

S d i j2
e~bi !

pi2qj
0

0 d i j2
e~bi !

pi2qj

D . ~31!

Therefore we conclude that~28! is a super-wave function.
Theorem 1 allows the identification of the coefficients of the expansion of the super-wave

function with the coefficients of the expansion of the operatorK solving Sato’s equations~2!.
Observe then forf given by eq.~28!, the first two coefficients of the expansion of the associated
solutionK of Sato equations are

w15(
i51

N

b i , w25(
i51

N

ai . ~32!

We consider the following two different cases for the system~30!.

1. Supersoliton solutions: e(c i )50,; iÞ1, . . . ,N

From ~30! it is easy to see that the body off is the wave function associated with the
N-soliton solution of the KP hierarchy. Therefore the solution of the SKP hierarchy provided by
f is a supersymmetric generalization of the standard multisoliton solutions. For example, it is
rather simple to derive the explicit solution forN51. In this case, the constraints~27! reduce to

Res~f,q!5~c1av!f~p,a!.

Then one finds

f5F11
a1~a2l!b

z2q G• f 0 ,
with

a5
~q2p!b

q2p1b
1

l~p!b1~q2p!l~q!

~q2p1b!3
~q2p!2g,

~33!

b5
~p2q!2

~q2p1b!2
g.
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If we takep52q, then it follows thatz2•W ,W , so thatf becomes a super-wave function for
the supersymmetric KdV hierarchy. In particular, it provides a solution of the SKdV equation~8!.
To simplify the expression of this solution we settn50, ;nÞ3, andtn50, ;n>1. Thus, from
~7!, ~32! and ~33!, we find

v052Sq21uv
q3

c Dsech2@q~x2x01q2t !#23uv
q3

c
sech4@q~x2x01q2t !#,

~34!

v15v
2q2

c
sinh@q~x2x01q2t !#sech3@q~x2x01q2t !#,

where

x05
1

q
logS c

2qD .
The expression ofv0 may be described as a supersymmetric dressing of the standard soliton

of the KdV equation. Writingv05h0(x,t)1h1(x,t)uv andv15h2(x,t)v, in Fig. 1 we show the
composite structure ofh1, theuv component of the superfunctionv0.

On the other hand, it is worth noticing that the odd superfunctionv1 is proportional to a
function h2 of (x,t) which represents also a composite structure~see Fig. 2! which propagates
without deformation along thex axis.

2. Solitino solutions: c i50,; i51,...,N

In this case~29! and ~30! reduces to
ai5l~qi!•bi ,

~35!

g i5(
j51

N Fd i j1g i

l~pi !2l~qj !

pi2qj
Gb j .

This system can be solved in terms of the nilpotent matrix

D i j5
l~pi !2l~qj !

pi2qj
g i . ~36!

Indeed, asDNg50 the solution of~35! is

FIG. 1. Composite structure of a single supersoliton, (h1(x,t),q51,x051).
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b5 (
n50

N21

Dng, ~37!

whereb5(b1 ,...,bN) andg5(g1 ,...,gN). It must be observed that the body off vanishes, so
that this class of solutions is not related to any class of the standard KP theory. We will refer to
these solutions assolitinosolutions. The single solitino solution corresponds toN51 and takes the
form

f5F11
a1~a2l!b

z2q G• f 0 ,
w15b5v exp r , w25a5l~q!v exp r ,

where

exp r5e~p!e~q!215expF ~p2q!x1 (
n>1

~pn2qn!~ tn1utn!2~l~p!2l~q!!u

2 (
n>1

~l~p!pn212l~q!qn21!tnG . ~38!

If we takepi52qi , ; i51,...,N, thenz2•W ,W and we obtain a solution of~8!. It adopts a
convenient way by setting, as we did before,tn50,;nÞ3 andtn50,;n>1. Thus the matrix~36!
reduces to

D i j5uv i exp@22qi~x1qi
2t !#

and

g i5v i exp@2qi~x1qi
2t !#,

FIG. 2. Odd component of a supersoliton (h2(x,t),q51,x051).
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and we find the following multisolitino solution of the SKdV equation~8!:

v054u(
i
qi
2v i exp@22qi~x1qi

2t !#14(
i , j

qiv iv j exp@22qi~x1qi
2t !22qj~x1qj

2t !#,

~39!

v154(
i
qiv i exp@22qi~x1qi

2t !#. ~40!

In particular the single solitino solution takes the form

v054q2uv exp@22q~x1q2t !#, v154qv exp@22q~x1q2t !#.

It is not a localized solution as a function ofx. In fact, for imaginaryq it is a plane wave.
The multisolitino solution~39! represents a superposition of solitinos which is of a nonlinear

character, as it is shown by the presence of quadratic terms in the expression forv0. See Fig. 3 for
a representation of a component of the even part of a bisolitino solution.

C. Rational solutions

A solution K of the SKP hierarchy~2! is said to be rational if the coefficientswn of its
expansion~3! are rational functions of the even coordinates (x,t). Solutions of this kind can be
derived by means of asymptotic super-modules similar to those used for solitons and solitinos by
imposing instead of the conditions~27! constraints of the type

S a
]

]a

]ni

]zni
1ci

]mi

]zmi Df~pi ,a!50.

For example, let us takeW to be the set of superfunctionsf analytic onU with the possible
exception of a simple pole at a given pointq Þ 0, and such that

a
]

]a

]f

]z
~0,a!1f~0,a!50. ~41!

FIG. 3. An even component of a bisolitino solution.
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It is straightforward to get

f5F11
a1~a2l!b

z2q G• f 0 , ~42!

with

a5q, b52
q~u1t1!

11q~x1t111!
.

As z2•W ,W this construction leads to a solution of~8! which turns out to be given by

v050, v152
2q2~u1t1!

@11q~x1t111!#2
.

Another simple example is obtained by replacing~41! by

]f

]z
~0,a!50, ~43!

then the superfunctionsa andb in ~42! take the form

a5qS 12
1

s
1
r t2
s3 D , b5

q2t2
s2

,

where for the MRKP hierarchy

s5q~x1t11t1u!11, r5q2~u2t1!,

and for the JKP hierarchy

s5q~x1t1!11, r5q2u.

The conditionz2•W ,W keeps on being satisfied and the corresponding solution of~8! is

v052
2q2

s2
1
6q2r t2
s4

, v15
4q3t2
s3

.

We notice that this solution is a supersymmetric dressing of the elementary rational solution

v5
22q2

~qx11!2

of the KdV equation.

IV. SUPERGROUP THEORETICAL DESCRIPTION

It is well known the use of]̄-equations to obtain wave functions for the KP hierarchy.21,22

This theory was extended to the supersymmetric situation in Ref. 23.
We shall consider solutions of the]̄-equation,

]

] z̄
f ~z,a;x,u;t,t!5E d2z8da8a~z8,a8;z,a! f ~z8,a8;x,u;t,t!, ~44!
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with a(z8,a8;z,a) a given distribution of odd parity. We shall denote byF the space of solutions
of Eq. ~44! having an asymptotic expansion,z→`, of the form

F5S (
n52`

N

unz
n1~a2l! (

n52`

M

vnz
nD f 0 ,

with coefficientsun ,vn in S .
By using the properties~9! of the vacuum super-wave functionf 0 and the isospectrality of the

]̄-equation~44! ~the kernela of the equation~44! does not depend onx,t), it is immediate that
F is a left module for the algebra of superdifferential operatorsE . Then, if a unique even solution
f of Eq. ~44! with the asymptotic expansion Eq.~18! exists, then by Thm. 2, it will be a super-
wave equation for a SKP hierarchy.

It was shown in Ref. 23 that solutions of the]̄-equation are related with thet-function of the
SKP hierarchy generated from the action of the element

g5exp
1

pE d2z8da8d2zdaB~z8,a8!a~z8,a8;z,a!C~z,a! ~45!

of the supergroupGL(`u`) on the vacuum. The quantum fieldsB, C form a superghost system
with commutation and anticommutation relations given by

@B~z,a!,B~z8,a8!#5$C~z,a!,C~z8,a8!%50; @B~z,a!,C~z8,a8!#5~a2a8!d̂g~z2z8!,

and d̂g(z) denotes the delta function with support on the circleg acting on test functions as

E d2zd̂g~z!f~z!5 R
g
zf~z!.

One of the advantages of thet-function formalism for integrable systems is that it allows us
to classify the solutions in terms of orbits of symmetry groups. For the SKP hierarchies considered
in this paper at-function description is already available which exhibits their invariance under the
supergroupGL(`u`).23 We can thus conclude form the above discussion that thet-function of
the SKP hierarchy generated from the action of~45! on the vacuum is associated with the super-
wave function which satisfies the corresponding]̄ equation.

As for the solutions analyzed in this paper, it is easy to derive the]̄-equation verified by their
associated super-wave functions. For example, the solutions that arise from the constraints~27!
and ~41! give rise to the kernels

a~z8,a8;z,a!5p(
i51

N

~a82a!~ci1a8v i !d~z2qi !d~z82pi ! ~46!

and

a~z8,a8;z,a!5
d~z2q!

2p i Fp~a82a!d̂g1
~z8!1S a82a

z8
2

a

~z8!2D d̂g2
~z8!G , ~47!

respectively. Hered(z2q) is the usual delta function on the plane andd̂g i
(z), i51,2, denotes the

delta functions with support on the circlesg i (uzu5r i), with r 1.uqu.r 2. Consequently, we have
provided two additional different characterizations for our solutions of the SKP hierarchies. First,
from Eq. ~45! every solution is associated with an element ofGL(`u`). Second, Eq.~44! shows
that the kernela supplies the spectral description of the solutions.
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The relationship between Lax and bi-Hamiltonian formulations of dynamical sys-
tems on finite- or infinite-dimensional phase spaces is investigated. The Lax–
Nijenhuis equation is introduced and it is shown that every operator that satisfies
that equation satisfies the Lenard recursion relations, while the converse holds for
an operator with a simple spectrum. Explicit higher-order Hamiltonian structures
for the Toda system, a second Hamiltonian structure of the Euler equation for a
rigid body inn-dimensional space, and the quadratic Adler–Gelfand–Dickey struc-
ture for the KdV hierarchy are derived using the Lax–Nijenhuis equation. ©1996
American Institute of Physics.@S0022-2488~96!03411-1#

I. INTRODUCTION

We present an explanation of a long-standing problem: What is the relationship between the
Lax formulation of an integrable system and the existence of a bi-Hamiltonian structure?

When considering differential equations in Lax form1 on a finite- or infinite-dimensional
phase-space manifold, according to the problem at hand, one introduces either a matrix of a given
size, or a differential operator of a given degree, or, more generally, a pseudo-differential operator
whose coefficients are functions of the phase-space coordinates. In other words, the ‘‘Lax opera-
tor’’ is an A-valued map on phase space, whereA is an associative algebra that has to be
determined in each problem.

We study the case where the phase-space manifold admits a pair of compatible Poisson
structures, i.e., has a bi-Hamiltonian structure.2–4 ~See also Refs. 5–7, and Ref. 8 for a complete
exposition and further references.! The term ‘‘Poisson structure’’ is most frequently used for
finite-dimensional manifolds such as the phase space of dynamical systems defined by evolution
ordinary differential equations, while the term ‘‘Hamiltonian structure’’ is commonly used in the
case of infinite-dimensional manifolds, e.g., manifolds of functions, such as the phase spaces of
systems described by evolution partial differential equations. When two Poisson structures satis-
fying a compatibility condition are present, the term ‘‘bi-Hamiltonian structure’’ will be applied.
We shall mainly consider the finite-dimensional case, but the extension to the infinite-dimensional
situation is straightforward, in the setting of the formal calculus of variations in the sense of
Gelfand, Dickey, and Dorfman.~See Refs. 9, 10, and 8.!

As the defining property of a matrix-valued Lax operator,L, in the presence of a bi-
Hamiltonian structure (P,Q) we take the so-called Lenard recursion relations,

QS d tr
Lk

k D5PS d tr
Lk11

k11D . ~1.1!

WhenL has distinct eigenvalues,li , these relations imply that

a!Electronic mail address: yks@math.polytechnique.fr
b!Electronic mail address: magri@vmimat.mat.unimi.it
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Q~dl i !5l iP~dl i !,

and in all cases they imply the pairwise involutivity of the eigenvalues ofL with respect to both
Poisson brackets. Moreover, the traces of powers ofL, and hence the eigenvalues ofL, are
conserved along the flow of each evolution equation in Lax form,L̇5[L,B].

The recursion relations for differential equations in Lax form first appeared in the context of
evolution partial differential equations, and they are actually due to Lax.1 @It is surprising that it
has become customary to call them the Lenard recursion relations, probably because, in his paper
of 1976, Lax11 refers to Lenard’s contribution to the derivation of the infinite family of higher-
order Korteweg–de Vries~KdV! equations as reported in the 1974 article by Gardner, Greene,
Kruskal, and Miura.12 Actually, Gardneret al.derived this ‘‘infinite family of equations that leave
the eigenvalues of the Schro˝dinger equation invariant in time’’ and they also give ‘‘an alternate
derivation of this family due to Lenard,’’ and both derivations reveal the recursion operator
explicitly but do not relate it to any Hamiltonian property. In that same paper, Lax ascribes the
involutivity property of the conserved quantities to Gardner~Ref. 13!, where it is not explicit at
all! Actually the factorization of the recursion operator as the composition of a Poisson and a
symplectic operator is in Lax,11 Magri,2 Gelfand and Dorfman,3 and Fokas and Fuchssteiner.14#

In this paper, we show that, under suitable conditions on its spectrum, a Lax operator on a
bi-Hamiltonian manifold satisfies a universal equation which we call the Lax–Nijenhuis equation
because the vanishing of the Nijenhuis torsion of the recursion operator of a bi-Hamiltonian
structure appears as a particular case of this property. Conversely, ifL satisfies the Lax–Nijenhuis
equation, thenL is a Lax operator. We then study the converse problem of determining compatible
Hamiltonian structures from Lax–Nijenhuis equations. We treat the Toda system~see Refs. 15–
20!, the rigid body, the KdV hierarchy~see Refs. 21, 22, and 16!, and, more generally, Lax
equations that are Hamiltonian with respect to a Poisson bracket defined by anR-matrix ~see Ref.
23!.

In Sec. II we recall the definition of Hamiltonian and bi-Hamiltonian structures and we prove
that functions that satisfy recursion relations~1.1!, whereP andQ are compatible Poisson struc-
tures, are pairwise in involution with respect to either Hamiltonian structure. Nijenhuis operators
appear in the theory of bi-Hamiltonian structures (P,Q) when one considers the~1,1!-tensor
N5QP21, where the first Poisson structure is assumed to be invertible, i.e., symplectic.~See
Refs. 24–27!. We analyze the properties of Nijenhuis operators and we observe that the vanishing
of the Nijenhuis torsion28 of a ~1,1!-tensor implies the fundamental equation~2.5! that is the
prototype of the Lax–Nijenhuis equation that we introduce in~3.6!.

Section III contains the main results concerning the relationship between Lax and bi-
Hamiltonian formulations of dynamical systems. It is natural to require that the traces of powers
of the Lax operator satisfy the Lenard recursion relations~Definition 3.1!. It then follows that,
under the assumption of the simplicity of its spectrum, such a Lax operator satisfies the Lax–
Nijenhuis equation~3.6!. Conversely, we show in Proposition 3.5 that, if an operator satisfies the
Lax–Nijenhuis equation, it satisfies the Lenard recursion relations, and therefore the traces of its
powers are in involution. In addition, we prove that this property remains valid for negative and
fractional powers, when they are defined.

The hereditary properties of Nijenhuis operators and of Lax operators compatible with a
bi-Hamiltonian structure are derived in Sec. IV. We show that the Lax formulation exists for all
vector fields,

Xk5Qak5Pak11 ,

whereak is a sequence of differential one-forms satisfying the Lenard recursion relations, pro-
vided thatX0 admits a Lax formulation. When allaks are closed, theXks constitute a bi-
Hamiltonian hierarchy, i.e., a sequence of commuting bi-Hamiltonian vector fields, and we state a
further commutation property in Proposition 4.3.
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The fifth and last section is devoted to examples. For the nonperiodic Toda system, we
explicitly determine a sequence of skewsymmetric higher-order bivectors satisfying Lax–
Nijenhuis equations. The first three elements of this sequence coincide with the known linear,
quadratic, and cubic Poisson structures. We treat the case of the Euler equations for the
n-dimensional rigid body rotating about a fixed point, and some generalizations of it. We then
study the Lax–Nijenhuis equation for the KdV equation, and, more generally, for the first equation
in thenth KdV hierarchy, where the Lax operator takes values in a manifold ofnth-order differ-
ential operators in the graded, associative algebra of formal pseudodifferential operators, and we
obtain the second Adler–Gelfand–Dickey Hamiltonian structure from the first one. Finally, this
construction is further generalized to determine the quadratic bracket associated with the linear
Poisson bracket defined by anR-matrix, i.e., a solution of the modified classical Yang–Baxter
equation.

For background and many results on integrable systems, we refer to Refs. 29 and 30. See Ref.
31 for a discussion closely connected with ours, but undertaken from a different point of view.

II. LENARD RECURSION RELATIONS ON A BI-HAMILTONIAN MANIFOLD

In this section, we recall some well-known results on Lenard recursion relations which we
shall need for the study of Lax operators in Sec. III. First we introduce the concept of a bi-
Hamiltonian manifold.

A Poisson manifold~also called a Hamiltonian manifold! is a manifold equipped with a
Poisson bracket. We recall that a Poisson bracket can be defined in terms of a field of bivectors~a
bivector for short! called the Poisson bivector. IfP is a bivector on a manifoldM , we identifyP
with the linear bundle map,

P:T*M→TM,

defined bŷ b,Pa&5P(a,b), for a,bPT*M . We setXf5Pd f, for any functionfPC`(M ), and
we callXf the Hamiltonian vector field with Hamiltonianf . We also define the Poisson bracket,

$ f ,g%P5Xf•g,

for f andgPC`(M ). Recall that a bivectorP onM is a Poisson bivector if and only if one of the
following equivalent conditions is satisfied:

~1! [P,P]50, where@ , # is the Schouten bracket,
~2! the Poisson bracket$ , %P satisfies the Jacobi identity,
~3! @Xf ,Xg# 5 X$ f ,g%P

, for f ,gPC`(M ).

These conditions are equivalent because, by the definition of the Schouten and Poisson brackets,

2 1
2 @P,P#~d f ,dg,dh!5$ f ,$g,h%P%P1$g,$h, f %P%P1$h,$ f ,g%P%P

5~@Pd f,Pdg#2Pd~P~d f ,dg!!!.h

5~@Xf ,Xg#2X$ f ,g%P
!.h,

for f ,g,hPC`(M ).
Definition 2.1: A bi-Hamiltonian manifold(M ,P,Q) is a manifold M equipped with Poisson

structures, P and Q, which are compatible, i.e., such that any linear combination of P and Q is
a Poisson structure. A (locally) bi-Hamiltonian vector field on(M ,P,Q) is a vector field leaving
P and Q invariant.

Thus, on a bi-Hamiltonian manifold there exists a pencil of Poisson structures,Pl5Q2lP,
for lPRø$`%. A sufficient condition for a vector fieldX to be ~locally! bi-Hamiltonian is that
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there exist closed differential one-formsa andb such thatX5Pb5Qa. In particular, if there
exist functionsf andg such thatX5P(dg)5Q(d f), thenX is bi-Hamiltonian.

Lemma 2.2: Let P and Q be Poisson structures on M. Then P and Q are compatible if and
only if one of the following equivalent conditions is satisfied:

~i! [P, Q]50,
~ii ! 	~ˆf ,$g,h%P‰Q1ˆf ,$g,h%Q‰P!50,where	 denotes the sum over the circular permutations

of f ,g,h,
~iii ! @Xf , Yg#1@Yf , Xg#5X$ f ,g%Q

1Y$ f ,g%P
,

for f ,gPC`(M ), where Xf5Pd f and Yf5Qdf.
Proof: In fact, each of these conditions is the polarization of the corresponding condition for

a single Poisson structure, and each is obtained by bilinearity from the corresponding conditions
for P,Q andP1Q. j

For a Hamiltonian system on a symplectic manifold—the phase space—to be completely
integrable in the sense of Liouville and Arnold,32 there must exist a number of independent
conserved quantities, equal to half the dimension of the symplectic manifold, which are pairwise
in involution. Here we consider the case where the phase space is a bi-Hamiltonian manifold, and
we show that when a sequence of functions defined on it satisfies the Lenard recursion relations,
these functions are pairwise in involution. We shall denote the positive integers byN* .

Proposition 2.3: Let P and Q be Poisson structures on a manifold, M , and let( f k),kPN* , be
a sequence of complex-valued functions on M that satisfy the Lenard recursion relation,

Q~d fk!5P~d fk11!, ~2.1!

for kPN* . Then the functions, f k , are pairwise in involution with respect to both Poisson brack-
ets.

Proof: Let m be a non-negative integer, and let (Cm) be the property that, for allk>1,
P(d fk ,d fk1m)50 andQ(d fk ,d fk1m)50. Clearly~C0! holds. Now for anyk>1,m>0,

P~d fk ,d fk1m11!52^d fk ,P~d fk1m11!&52^d fk ,Q~d fk1m!&,

and

Q~d fk ,d fk1m11!5^d fk1m11 ,Q~d fk!&5^d fk1m11 ,P~d fk11!&.

Thus it is clear that (Cm11) holds if (Cm) holds. Therefore (Cm) is proved for all non-negative
integers,m. ThusP(d fk ,d fl)5Q(d fk ,d fl)50 for anyk,lPN* . j

We remark that this proof uses only~2.1! and the skewsymmetry ofP andQ. However, the
assumption thatP andQ are compatible Poisson structures is essential in order to guarantee the
existence of functions,f k , fulfilling the Lenard recursion relations~2.1!. The question of the
existence of such functions in the case of an arbitrary bi-Hamiltonian structure is a difficult
problem which is beyond the scope of the present paper. Here, we shall demonstrate their exist-
ence in a special case, that of a bi-Hamiltonian manifold, (M ,P,Q), whereP is an invertible
Poisson structure, i.e., a symplectic structure. The field of~1,1!-tensors,

N5QP21, ~2.2!

is called therecursion operatoror theNijenhuis operatorof the bi-Hamiltonian structure. The first
name is justified by the fact thatN maps symmetries of a bi-Hamiltonian system into symmetries
of the same system~see Sec. IV!, while the second name is justified by the well-known result
proved in Lemma 2.5 below. Nijenhuis operators provide the basic examples of the Lax–
Nijenhuis operators to be defined in Sec. III B.
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We recall that the Nijenhuis torsion of a field of~1,1!-tensorsN on a manifoldM is the
vector-valued two-formT(N) onM defined by

T~N!~X, Y!5@NX, NY#2N~@NX, Y#1@X, NY# !1N2@X, Y#, ~2.3!

for all vector fieldsX,Y onM .
Definition 2.4: A field of~1,1!-tensors with vanishing Nijenhuis torsion is called a Nijenhuis

tensor or Nijenhuis operator.
Lemma 2.5: If(P,Q) is a bi-Hamiltonian structure on M, and Q5NP, where N is a~1,1!-

tensor on M, then the Nijenhuis torsion, T(N), of N vanishes on the image of P. In particular, if
(P,Q) is a bi-Hamiltonian structure, with P invertible, then the recursion operator, N5QP21, is
a Nijenhuis operator.

Proof: Assume thatQ5NP. It is enough to show thatT(N) vanishes on any pair of vectors
(Pd f,Pdg) where f ,gPC`(M ). In fact, using the notations of Lemma 2.2,

T~N!~Pd f,Pdg!5@NPd f, NPdg#2N~@NPd f, Pdg#1@Pd f, NPdg# !1N2@Pd f, Pdg#

5@Yf , Yg#2N~@Yf , Xg#1@Xf , Yg# !1N2@Xf , Xg#.

Using the results of Lemma 2.2, we obtain

T~N!~Pd f,Pdg!5Y$ f ,g%Q
2N~X$ f ,g%Q

1Y$ f ,g%P
!1N2X$ f ,g%P

,

which vanishes sinceNXh5Yh , for hPC`(M ). j

The condition thatT(N)50 is equivalent to the condition that

LNXN2NLXN50, ~2.4!

for all vector fieldsX onM , whereLX denotes the Lie derivative with respect toX. In fact,

T~N!~X,Y!5LNX~NY!2NLNXY2N„LX~NY!2N~LXY!…5~LNXN!Y2N~LXN!Y.

Therefore the following proposition holds.
Proposition 2.6: Let N be a Nijenhuis tensor on a manifold M. Then

LNXN2LXSN2

2 D5FN, 12 LXNG , ~2.5!

for all vector fields, X, on M.
Proof: Relation~2.5! follows from the preceding expression ofT(N) and the assumption that

T(N)50. j

For the Nijenhuis operator,N5QP21, of a bi-Hamiltonian structure, (P,Q), whereP is
invertible, Eq.~2.5! becomes

LQa N2LPaSN2

2 D5@N, N̂~a!# ~2.6!

for all differential formsa onM , whereN̂(a) 5 1
2LPaN. This property is the prototype of that of

Lax operators on bi-Hamiltonian manifolds.
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III. LAX OPERATORS

We first describe the development of the notion of Lax operator from the simplest case to that
of Lax operators on Hamiltonian and bi-Hamiltonian phase spaces. We then motivate our defini-
tion of Lax–Nijenhuis operators.

A. Lax operators on Hamiltonian and bi-Hamiltonian phase spaces

A dynamical system,dx/dt5X(x), on a manifoldM is said to admit a Lax formulation if
there exist square matricesL andB, by no means unique, whose coefficients depend onx, such
that the given dynamical system is equivalent to

dL

dt
5@L, B#, ~3.1!

where [L, B]5LB2BL is the usual commutator. Usually,L is called the Lax operator or the Lax
matrix. In fact, bothL andB are maps from the manifoldM ~the space of dependent variables! to
the associative algebra of square matrices of a given size. The existence of a Lax formulation for
a given dynamical system is important because it implies the existence of a sequence of conserved
quantities,

Jk5
1

k
tr Lk, ~3.2!

for kPN* , where tr denotes the trace of a matrix.~These conserved quantities need not be
functionally independent.! In fact,

dJk
dt

5 tr Lk21
dL

dt
5tr Lk21@L, B#5tr~LkB2Lk21BL!50.

If, moreover, the Lax mappingL is defined on a phase space with a Hamiltonian structure, i.e., on
a Poisson manifold, then it is natural to require that the traces of powers ofL, which are conserved
quantities, be pairwise in involution. In this case, this requirement becomes part of the definition
of a Lax operator.

Let us now consider the case where the phase space is a bi-Hamiltonian manifold (M ,P,Q).
We have seen in Sec. II that, on a bi-Hamiltonian manifold, recursion relations~2.1! for functions
f k imply the pairwise involutivity of these functions. It is natural to require that a Lax operatorL
defined on a bi-Hamiltonian phase space (M ,P,Q) be such that quantitiesJk defined by~3.2!,
proportional to the traces of powers ofL, satisfy the so-called Lenard recursion relations

Q~dJk!5P~dJk11!, ~3.3!

for kPN* . So, we are led to introduce the following definition of Lax operators on a bi-
Hamiltonian phase space (M ,P,Q).

Recall that a trace on an associative algebraA over the field of real or complex numbers is a
linear form, tr, onA, such that

tr L1L25tr L2L1 , ~3.4!

for all L1 andL2 in A.
Definition 3.1: Let(M ,P,Q) be a bi-Hamiltonian manifold. A Lax operator compatible with

(P,Q) is an A-valued function L on M, where A is an associative algebra with unit and trace,
such that the functions, Jk5(1/k)tr Lk, kPN* , satisfy the Lenard recursion relations (3.3).
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Under this definition, by Proposition 2.3, the traces of the powers of a Lax mapping compat-
ible with (P,Q) are pairwise in involution with respect to bothP andQ.

B. Lax–Nijenhuis operators

To understand what relatesL to P andQ, we shall consider the simplest case whereL is a
matrix, but we shall first review some facts about the geometry of associative algebras.

Let A be an associative algebra with a trace. We assume that the symmetric bilinear form on
A, (L1 ,L2)5tr L1L2 , defines an isomorphism ofA with its dual A* and, by means of this
isomorphism, we identifyA* with A. We equipA with the Lie algebra structure defined by the
associative product,

@L1 , L2#5L1L22L2L1 .

Since trL1L2L35tr L3L1L2 , the symmetric bilinear form~ , ! is invariant, i.e.,

~L1 ,@L2 , L3# !5~@L1 , L2#,L3!,

Thus the coadjoint action of the Lie algebraA onA* is identified with the adjoint action ofA on
itself, and the tangent space atL in A to the coadjoint orbit ofL is $[L,B] uBPA%. ~See also VIII.4
of Ref. 33 for the role of coadjoint orbits in the theory of Lax operators.!

Proposition 3.2: Let A be the algebra of square n3n matrices, where n is a positive integer.
Let L be an A-valued Lax operator compatible with the bi-Hamiltonian structure(P,Q). We
assume that L is semi-simple. Then, at each point where the eigenvalues of L are distinct, and for
each differential one-forma on M, there exists a matrix L˜~a! such that

LQa L2LLPa L5@L, L̃~a!#. ~3.5!

Proof: Let a be any differential one-form onM . Then, by the definition of a Lax operator,L,
compatible with (P,Q), and the skewsymmetry ofP andQ, for all one-formsa and for allkPN* ,

1

k
tr LQa L

k5
1

k11
tr LPa L

k11,

and therefore we obtain

tr Lk21~LQa L2LLPa L !50.

This condition expresses the fact that for allk, the vector field with valueLQa L2LLPa L at L
leaves trLk invariant, which implies that it leaves all eigenvalues ofL invariant. This condition is
clearly satisfied ifLQa L2LLPa L is tangent to the coadjoint orbit ofL, and the converse holds
if L is semi-simple with distinct eigenvalues. Thus, under the assumptions of the proposition on
the spectrum ofL, for eacha there exists a matrix,L̃~a!, such that Eq.~3.5! is satisfied. j

We shall now allowL to be a section of an associative algebra bundle with trace,A, overM .
By this we mean a vector bundle overM such that each fiberAx of A, for x in M , is an
associative algebra with unit and trace, depending smoothly onx. Obviously anA-valued function
L onM corresponds to the case whereA is the trivial vector bundle,A5M3A. However, we
formulate our definition in this more general situation in order to include the case of the Nijenhuis
operators that was considered in Sec. II. At each pointx in M , End(TxM ) is an associative algebra
with trace, to which we can apply the preceding remarks. Equation~3.5! means that for each
differential forma on M , and for eachx in M , the vertical vector,„LQa L2L~LPa L!…(x), is
tangent to the coadjoint orbit ofL(x) in Ax . It is easy to show that this is equivalent to the fact
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that the vertical vector,„LQa L2LPa(L
2/2)…(x), is tangent to this orbit. We assume thatM has

a bi-Hamiltonian structure, (P,Q). Motivated by the discussion in the previous subsections, we
define the following.

Definition 3.3: A section L of an associative algebra bundleA with trace over a bi-
Hamiltonian manifold(M ,P,Q) is a Lax–Nijenhuis operator if, for all differential formsa on M,
LQaL2LPa(L

2/2) is tangent to the coadjoint orbit of L(x) in the fiberAx ofA, for each x in
M .

Identifying a section ofT*A overL with a section ofTA overL and using the identification
of the dual of the vertical space atx, „V(Ax)…* 5 Ax* , with the vertical spaceV~Ax!5Ax , we
obtain immediately the following.

Proposition 3.4: A section L:M→A is a Lax–Nijenhuis operator if there exists a lifting of L
into a section Lˆ :T*M→T*A such that

LQa L2LPaS L22 D5@L, L̂~a!#, ~3.6!

for each sectiona of T*M .
Equation~3.6! is called theLax–Nijenhuis equation.
Examples.By ~2.6!, the recursion operator of a bi-Hamiltonian manifold (M ,P,Q) with P

invertible is a Lax–Nijenhuis operator.
Proposition 3.2 shows that any matrix-valued Lax operator with a simple spectrum compatible

with (P,Q) is a Lax–Nijenhuis operator.

C. Properties of Lax–Nijenhuis operators

We shall now prove that the traces of powers of any matrix-valued Lax–Nijenhuis operator on
a bi-Hamiltonian manifold, (M ,P,Q), satisfy the Lenard recursion relations~3.3!, and that the
operator is therefore, by Definition 3.1, a Lax operator compatible with (P,Q).

Proposition 3.5: Let L be a matrix-valued Lax–Nijenhuis operator on a bi-Hamiltonian mani-
fold (M ,P,Q). Then the functions Jk5(1/k)tr Lk, kPN* , satisfy the Lenard recursion relations
(3.3), and L is a Lax operator compatible with(P,Q). Moreover, if L is invertible, relation (3.3)
holds when k is a negative integer, and, if L admits a fractional power, L1/r , relation (3.3) also
holds when k is an integral multiple of1/r .

Proof: Relation~3.6! implies that, for anykPN* ,

Lk21LQa L2Lk21LPaS L22 D5@L, Lk21L̂~a!#,

for anya. Taking traces of both sides implies that

LQaS 1k tr LkD5LPaS 1

k11
tr Lk11D ,

or, with the notation of~3.2!,

^Qa,dJk&5^Pa,dJk11&.

Since this relation holds for any differential forma, we obtain relation~3.3! by the skewsymmetry
of P andQ. It follows from Definition 3.1 thatL is a Lax operator compatible with (P,Q).

We now show that relation~3.3! holds for negative and fractional powers of Lax–Nijenhuis
operators, when they are defined. Whena is a fixed differential form, we introduce the convenient
notations
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LPa L5
dL

dt1
, LQa L5

dL

dt2
, L̂~a!5B.

Using the following elementary formulas, valid forL, BPA andkPN* ,

@Lk, B#5 (
j50

k21

@L, L jBLk212 j #5 (
j50

k21

L j@L, B#Lk212 j ~3.7!

and

dLk

dt
5 (

j50

k21

L j
dL

dt
Lk212 j , ~3.8!

we obtain from~3.6!, by induction onk,

dLk

dt2
2
1

2 S L dLk

dt1
1
dLk

dt1
L D5@Lk, B#, ~3.9!

for k a positive integer. Let us prove that, ifL is invertible, ~3.9! is also valid fork a negative
integer. In fact, fork521,

dL21

dt2
2
1

2 S L dL21

dt1
1
dL21

dt1
L D52L21

dL

dt2
L211

1

2 S dLdt1 L211L21
dL

dt1
D

52
1

2
L21S L dL

dt1
1
dL

dt1
L DL211

1

2 S dLdt1 L211L21
dL

dt1
D2L21@L, B#L21

52BL211L21B5@L21, B#,

and, more generally, formula~3.9! for k,21 is proved by recursion.
We now assume thatL admits a fractional powerD, namelyDr5L, for some positive integer

r . Then using~3.7! and ~3.8!, we obtain

05
dDr

dt2
2
1

2 SDr
dDr

dt1
1
dDr

dt1
Dr D2@Dr , B#

5(
j51

r XDr2 j
dD

dt2
Dj212

1

2 SDrDr2 j
dD

dt1
Dj211Dr2 j

dD

dt1
Dj21Dr D2Dr2 j@D,B#Dj21C,

thus

(
j51

r

Dr2 jXdD
dt2

2
1

2 S L dD

dt1
1
dD

dt1
L D2@D, B#CDj2150. ~3.10!

Still more generally, ifDr5L, andh is a positive integer, we can prove

(
j51

r

Dr2 jXdDh

dt2
2
1

2 S L dDh

dt1
1
dDh

dt1
L D2@Dh, B#CDj2150. ~3.11!
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In fact, we first write~3.10!, left-multiply by Dh212 i , then right-multiply byDi , and sum from
i50 to h21. In the resulting equality, we use~3.7! and ~3.8! to obtain~3.11!. Taking traces in
~3.11! and using

1

b
tr Da

dDb

dt
5

1

a1b
tr
dDa1b

dt
,

we obtain

1

r1h21
tr
dDr1h21

dt2
5

1

2r1h21
tr
dD2r1h21

dt1
. ~3.12!

Setting (r1h21)/r5k, we obtain relation~3.3! for any k that is an integral multiple of 1/r .
Combining the previous results, we see that this formula also holds for negative rational numbers,
when such powers ofL are defined. j

IV. BI-HAMILTONIAN HIERARCHIES AND LAX FORMULATION

We have emphasized the striking analogies between the properties of a Lax operator compat-
ible with a bi-Hamiltonian structure and those of a Nijenhuis operator. In this section, we shall
continue by considering the ‘‘hereditary properties’’ of both types of operators.

The simplest hereditary property of a Nijenhuis operator,N, is that it maps symmetries ofN
into symmetries ofN. In fact, if a vector fieldX is a symmetry ofN, i.e., is such that

LXN50,

then, by relation~2.4!, and as a consequence of the vanishing of the torsion ofN,

LNXN50.

Thus, ifX is a symmetry ofN, so areNX and, more generally,NkX, for kPN. The property has
been ‘‘inherited’’ by the iterated vector fieldsNX,N2X,... .

We now consider a sequence of differential one-forms,ak , kPN, on a bi-Hamiltonian mani-
fold, (M ,P,Q), that satisfy the recursion relations,

Qak5Pak11 . ~4.1!

Let us consider the sequence of vector fields,

Xk5Qak5Pak11 . ~4.2!

If P is invertible, then, by Lemma 2.5,N5QP21 is a Nijenhuis operator and it satisfies

Xk115NXk . ~4.3!

If we now assume that the vector fieldX0 is a symmetry of the Nijenhuis operatorN, then so is
Xk , for eachkPN, by the hereditary property ofN, recalled above.

Let us now examine the corresponding property for Lax–Nijenhuis operators. LetL be a
matrix-valued Lax–Nijenhuis operator on a bi-Hamiltonian manifold (M ,P,Q), in the sense of
Definition 3.3, and letak andXk be forms and vectors as above. We assume that the vector field
X0 is such that there exists a matrix-valued mappingA0 onM satisfying

dL

dt0
5@L, A0#, where

dL

dt0
5LX0

L. ~4.4!
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We shall prove by recursion that, for any vector fieldXk in the associated sequence, there exists a
matrix-valued mappingAk onM satisfying

dL

dtk
5@L, Ak#, where

dL

dtk
5LXk

L. ~4.5!

In fact, let us assume~4.5! for 0,1,...,k21. Then, from~3.6!, we obtain

LXk
L5LQak

L5LPak

L2

2
L1@L, L̂~ak!#

5 1
2~LLXk21

L1~LXk21
L !L !1@L, L̂~ak!#

5@L, 1
2~LAk211Ak21L !1L̂~ak!#.

SettingAk5
1
2(LAk211Ak21L)1L̂(ak), we obtain~4.5! for k.

Remark:SettingL̂(ak)5Ck , kPN, an explicit expression forAk , kPN* , is

Ak5
1

2k (
h50

k S khDLhA0L
k2h1 (

h50

k21

(
p50

h
1

2h S hpDLpCk2hL
h2p.

In fact, this formula is valid fork51 and is proved by recursion.
The following proposition summarizes this discussion.
Proposition 4.1: Letak , kPN, be a sequence of differential one-forms on the bi-Hamiltonian

manifold(M ,P,Q), with ak satisfying recursion relations (4.1) and let Xk5Qak5Pak115d/dtk
be the corresponding sequence of vector fields. If the vector field X05d/dt0 admits a Lax formu-
lation,

dL

dt0
5@L, A0#,

where L is a matrix-valued Lax–Nijenhuis operator, then for each kPN, there exists a matrix-
valued mapping Ak on M satisfying~4.5!.

In particular, we shall consider the case when there exists a sequence of closed differential
one-formsak satisfying recursion relations~4.1!. WhenP is invertible, we setN5QP21, and we
denote the transpose ofN by tN. Then~4.1! is written

ak115~ tN!~ak! or ak5~ tN!ka0 ,

and ~4.3! is written

Xk5Nk~X0!.

Proposition 4.2: Let(M ,P,Q) be a bi-Hamiltonian manifold with P invertible. Assume that
the differential one-formsa0 anda1 are closed. Then allak’s are closed and the vector fields Xk ,
kPN, are (locally) bi-Hamiltonian vector fields which commute in pairs.

Proof: Using the fact thatN has vanishing Nijenhuis torsion~Lemma 2.5!, we find that

dak~X,Y!5dak21~NX,Y!1dak21~X,NY!2dak22~NX,NY!,

for k>2 and for all vector fieldsX,Y onM . Thus all theak’s are closed.
Therefore each vector fieldXk is ~locally! bi-Hamiltonian.
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LXk
P50, LXk

Q50,

and hence eachXk is a symmetry ofN,

LXk
N50.

~This fact also follows fromLX0
N 5 0 and the hereditary property ofN.!

Thus

@Xk , Xl #5LXk
~NlX0!5~LXk

Nl !X01NlLXk
X0

52NlLX0
~NkX0!

52Nl~LX0
Nk!~X0!2Nl1kLX0

X050. j

Remark:If X is any~locally! bi-Hamiltonian vector field, thenLXN50. It follows that ifY is
a symmetry ofX, so isNY. This justifies the term ‘‘recursion operator’’ for the Nijenhuis operator
N of a bi-Hamiltonian structure (P,Q), with P invertible.

Remark:Let k and l be non-negative integers. For any Nijenhuis operatorN and vector field
X, it follows from ~2.4! by recursion that

LNX~N
l !5NLX~Nl !

and that

LNkX~Nl !5NkLX~Nl !.

For k5 l , we recover the well-known fact that any positive power of a Nijenhuis operator is a
Nijenhuis operator, and that negative and fractional powers of a Nijenhuis operator, when they are
defined, are also Nijenhuis operators.

A sequence of commuting bi-Hamiltonian vector fields is called abi-Hamiltonian hierarchy.
WhenXk , kPN, is a bi-Hamiltonian hierarchy, we obtain further properties for the sequence of
Lax equations~4.5!. In fact, writing thatLXj

LXk
L 2 LXk

LXj
L 5 0 for all j , kPN, we obtain

05LXj
@L, Ak#2LXk

@L, Aj #

5F ]L

]t j
, AkG1FL, ]Ak

]t j
G2F ]L

]tk
, Aj G2FL, ]Aj

]tk
G

5†@L, Aj #, Ak‡2†@L, Ak#, Aj‡1FL, ]Ak

]t j
2

]Aj

]tk
G

5FL, @Aj , Ak#1
]Ak

]t j
2

]Aj

]tk
G ,

by the Jacobi identity. Thus the operator, which can be called the curvature of the connection
defined byAk ,

@Aj , Ak#1
]Ak

]t j
2

]Aj

]tk

commutes withL. Summarizing, we obtain the following.
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Proposition 4.3: When Xk is a bi-Hamiltonian hierarchy with Lax formulation (4.5), the
curvature of the connection with components Ak commutes with the Lax operator L.

V. EXAMPLES

In this section, we give four examples showing how the Lax–Nijenhuis equation can be used
to compute higher-order Hamiltonian structures associated with a Hamiltonian system admitting a
Lax formulation. We write the Lax–Nijenhuis equation~3.6! in the form

LQa L5 1
2„LLPa L1~LPa L !L…1@L, L̂~a!#, ~5.1!

and we use the information onL and the arbitrariness ofa to split this equation into two parts: the
first determines the unknown mapL̂, up to some still arbitrary constants, the second part deter-
minesLQa L and thenQ. The condition of skewsymmetry onQ then determines the constants.
The discussion is quite similar to a problem with constraints coming from the restrictions imposed
on L, where the role of the Lagrange multipliers is played by the mappingL̂.

A. The Toda system

We shall consider the Toda system and its well-known Lax formulation. LetM5R2n11 with
coordinatesxI5(aj ,bl), j51,...,n, l51,...,n11, I51,...,2n11. We consider the Poisson bivec-
tor P0 defined by

$aj ,bj%52aj , j51,2,...,n
~5.2!

$aj ,bj11%5aj , j51,2,...,n,

all other Poisson brackets being equal to 0. Thus the Poisson bivectorP0 has matrix

~P0
IJ!51

a1 2a1

a2 2a2 0

0 � �

0 � �

an 2an

2a1

a1 2a2 0

a2 �

� � 0

0 � 2an

an

2 .

WhenH 5 ( j51
n aj

2 1 1/2( l51
n11 bl

2, the Hamiltonian vector fieldX5P0dH is the Toda vector field.
In fact, the evolution equationdx/dt5X(x) is the system

daj
dt

5$aj ,H%, j51,2,...,n,

dbl
dt

5$bl ,H%, l51,2,...,n11,

and, settinga05an1150, this system becomes
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daj
dt

5aj~bj112bj !, j51,2,...,n,

~5.3!
dbl
dt

52~al
22al21

2 !, l51,2,...,n11,

which are the equations of the Toda system in Flaschka coordinates.15 A Lax formulation for the
Toda system is

dL

dt
5@L, A#,

where

L5S b1 a1

a1 b2 a2 0

a2 b3 a3

a3 � �

� � �

0 � bn an

an bn11

D , A5S 0 a1

a1 0 a2 0

a2 0 a3

a3 � �

� � �

0 � 0 an

an 0

D . ~5.4!

Now let P and Q be Poisson structures such that~5.1! is satisfied forL symmetric and
tridiagonal, as above. We assume thatP is known, and we considerQ to be an unknown,
higher-order, Poisson structure. We shall assume thatL̂~a! depends linearly ona, and we shall
denote the matrixL̂(dxI) of ordern11 by CI . Then~5.1! becomes

LS PIJ
]L

]xJ
12CI D1S PIJ

]L

]xJ
22CI DL52QIJ

]L

]xJ
, ~5.5!

where the summation overJ51,2,...,2n11 is understood.
We shall assume thatCI is a skewsymmetric tridiagonal matrix, for eachI51,...,2n11,

CI5S 0 cI1

2cI1 0 cI2 0

2cI2 0 cI3

2cI3 � �

� � �

0 � 0 cIn

2cIn 0

D , ~5.6!

wherec1
I ,...,cn

I are to be determined. This choice is the simplest possible and it guarantees that
[L, CI ] is a symmetric penta-diagonal matrix. Any other choice ofCI would yield a matrix
[L, CI ] with more entries, and so with more constraints to be imposed.

For eachI51,...,2n11, PIJ(]L/]xJ) is the symmetric tridiagonal matrix
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S PI ,n11 PI1 0

PI1 PI ,n12 PI2

PI2
� �

� PI ,2n PIn

0 PIn PI ,2n11

D ,

and therefore (PIJ(]L/]xJ)22CI)L is the transpose ofL(PIJ(]L/]xJ)12CI). Thus condition
~5.5! implies that, for fixedI , matrixCI is such that the symmetric part ofL(PIJ(]L/]xJ)12CI)
is tridiagonal. Writing this condition explicitly, one obtains

(
k51

n21

„ak~P
J,k1112cJ,k11!1ak11~P

Jk22cJk!…50.

Solving this system forcJk in terms ofPJk yields the existence of multiplierslk
J, k51,2,...,n,

such that

2cJk5PJk12lk
Jak .

We assume thatPJk is divisible byak . This assumption is satisfied forP5P0 defined by~5.2!.
Settingl1

J5lJ, we obtain

2cJk5PJk12akS lJ2(
j52

k
PJ j

aj
D .

~By convention, here and below the last sum vanishes ifk,2.!
From relations~5.5!, we then obtain the coefficients of the higher-order Poisson structureQ,

QJk5 1
2ak~P

J,n1k1PJ,n1k11!1 1
2bk~P

Jk12cJk!1 1
2bk11~P

Jk22cJk!,

QJ,n1 l5al~P
Jl22cJl!1al21~P

J,l2112cJ,l21!1blP
J,n1 l .

We now replace thecJks by their values in terms of the parameterslJ, and we impose the
conditions that the diagonal terms ofQ vanish. These 2n11 conditions imply

2~bk112bk!S lk2 (
j52

k21
Pkj

aj
D 5Pk,n1k1Pk,n1k11,

a1
2ln1150,

~al
22al21

2 !S ln1 l2(
j52

l21
Pn1 l , j

aj
D 5al21P

n1 l ,l211alP
n1 l ,l ,

for l52,...,n11.
Thus, we have obtained

QJk5
1

2
ak~P

J,n1k1PJ,n1k11!1bkP
Jk1ak~bk2bk11!S lJ2 (

j52

k21
PJj

aj
D ,
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QJ,n1 l52~al21P
J,l211alP

Jl!1blP
J,n1 l12~al21

2 2al
2!S lJ2(

j52

l21
PJj

aj
D ,

where thelJs are given above in terms ofak , bl , andP
IJ.

Let us assume that allaks are nonvanishing and let us introduce the matrixM of order 2n11,
depending ona1 ,...,an ,b1 ,...,bn11, such that M applied to the column with entries
A1 ,...,An ,B1 ,...,Bn11, is the column with entries

Āk5
1

2
ak~Bk1Bk11!1bkAk1ak~bk112bk!(

j52

k
Aj

aj
,

B̄15b1B1 , B̄25b2B212~a1A11a2A2!, ~5.7!

B̄l5blBl12~al21Al211alAl !12~al
22al21

2 !(
j52

l21
Aj

aj
,

for l53,...,n11.
We see that

Q5MP1X^ l,

whereX is the Toda vector field with components

a1~b22b1!,a2~b32b2!,...,an~bn112bn!,2a1
2,2~a2

22a1
2!,...,22an

2,

andl is the vector with componentsl1,...,ln,ln11,...,l2n11. We observe that, althoughQ is
skewsymmetric, this expression does not constitute a decomposition ofQ into a sum of
skewsymmetric two-tensors.

Thus the Lax–Nijenhuis equation yields an explicit determination of the bivectorQ in terms
of P. For P5P0 , we see that the corresponding vectorl5l~0! is the row-matrix with entries

l~0!
J 52 1

2dn12
J . ~5.8!

It is easy to check that

P15MP01X^ l~0!

coincides with the second Poisson structure of the Toda system.17,19,20For example, ifn53, the
matrixMP0 is equal to
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1
b1 0 0

a1
2

a1
2

0 0

0 b3 0 0
a2
2

a2
2

0

0 U b4 0 0
a3
2

a3
2

0 0 0 b1 0 0 0

2a1 2a2 0 0 b2 0 0

0 2
a3
2

a2
2a3 0 0 b3 0

0 22
a3
2

a2
0 0 0 0 b4

2 S a1 2a1 0 0

0 0 a2 2a2 0

0 0 a3 2a3

2a1 0 0

a1 2a2 0

0 a2 2a3 0

0 0 a3

D ,

whereU5(a3/a2)(b42b3), and

X^ l~0!5S a1~b22b1!
a2~b32b2!
a3~b42b3!

2a1
2

2~a2
22a1

2!

2~a3
22a2

2!

22a3
2

D ^
t~0 0 0 0 2 1

2 0 0!,

so that

P15MP01X^ l~0!51
0 2 1

2a1a2 0 a1b1 2a1b2 0 0

1
2a1a2 0 2 1

2a2a3 0 a2b2 2a2b3 0

0 1
2a2a3 0 0 0 a3b3 2a3b4

2a1b1 0 0 0 22a1
2 0 0

a1b2 2a2b2 0 2a1
2 0 22a2

2 0

0 a2b3 2a3b3 0 2a2
2 0 22a3

2

0 0 a3b4 0 0 2a3
2 0

2 .
Repeating the process, we have to compute the bivector

P25MP11X^ l~1! ,

wherel~1! is the vector corresponding toP1. We can show that

l~1!5Ml~0! .

For example, ifn53,

l~1!5~2 1
4a1 ,2

1
4a2,0,0,2

1
2b2,0,0!

andP2 is the skewsymmetric matrix
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P25MP11X^ l~1!

5S 0 2a1a2b2 0 a1b1
21a1

3 2a1b2
22a1

3 2a1a2
2 0

0 2a2a3b3 a1
2a2 a2b2

21a2
3 2a2b3

22a2
3 2a2a3

2

0 0 a2
2a3 a3b31a3

2 2a3b4
22a3

2

0 22a1
2~b11b2! 0 0

0 22a2
2~b21b3! 0

0 22a3
2~b31b4!

0

D .

In this case,P2 coincides with the opposite of the third Poisson structure of the Toda system
described in Refs. 17 and 20.

Thus ifM is the matrix of order 2n11 defined by~5.7!, the bivectorsPi obtained from the
Lax–Nijenhuis equation satisfy

Pi115MPi1X^ l~ i ! ,

whereX is the Toda vector field andl( i ) is the vector corresponding toPi .
In particular, it follows that each coefficientPi

Jk of the bivectorPi is divisible byak , so the
iteration can be carried out.

Let us show that in fact the skewsymmetry ofPi andPi11 implies that

l~ i11!5Ml~ i ! .

Thus we consider

Pi5MPi211X^ l~ i21! ,

Pi115MPi1X^ l~ i ! .

SincePi11 is assumed to be skewsymmetric,l( i ) must satisfy

Pi
tM2MPi5X^ l~ i !1l~ i ! ^X.

Moreover, from the skewsymmetry ofPi , we obtain

Pi5MPi211X^ l~ i21!5Pi21
tM2l~ i21! ^X,

where

Pi
tM2MPi5X^Ml~ i21!1Ml~ i21! ^X.

We thus obtainl ( i )5Ml ( i21). The following proposition summarizes this discussion.
Proposition 5.1: Let M be the matrix of order2n11 defined by (5.7). The bivectors obtained

from the Lax–Nijenhuis equation satisfy

Pi115MPi1X^Mil~0! ,

wherel~0! is the vector given by (5.8).

B. The n -dimensional rigid body

The Euler equations for then-dimensional rigid body rotating about a fixed point can be
written
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Ṁ5@M , V#,

whereM is the angular momentum, a time-dependent element of the Lie algebra so(n), and

M5JV1VJ.

Here J is a diagonal matrix with positive entriesJ1 ,J2 ,...,Jn defined in terms of the principal
moments of inertia, andV is the angular velocity. These equations admit a Lax formulation, with
a spectral parameter,

L̇5@L, B#,

whereL5M /l1J2 andB5V1lJ.
Moreover, it is well known~see, e.g., Refs. 10 and 34! that these equations can be written in

Hamiltonian form, with respect to the linear Poisson structure of so(n) induced by the identifica-
tion of the Lie algebra so(n) with its dual by means of the trace of the product of matrices.
Making use of this identification, this Poisson structureP is defined byPM :so(n)→so(n), for
eachM in so(n), where

PM5adM .

If K(M )51
2 tr(MV), then the gradient ofK @the differential ofK identified with a matrix in so(n)#

is the constant matrixV, and therefore the Euler equations can be written as the Hamiltonian
equation

Ṁ5P~dK!.

Let us use the Lax–Nijenhuis equation in order to find a possible form of a second Hamil-
tonian structure that will make this equation a bi-Hamiltonian system. SettingL̇5dL/dt1 , it
follows from the definitions and from the Euler equation that

d~L2!

dt1
5
1

l
~L@M , V#1@M , V#L !,

and therefore, by a simple computation,

1

2

d~L2!

dt1
5

1

2l
@L, MV1VM #1

1

l
~MVL2LVM !.

By the definition ofL, MVL2LVM5MVJ22J2VM . This suggests that we should set

dM

dt2
5MVJ22J2VM .

We observe that ifM andV are skewsymmetric, so isdM/dt2 . In fact,Q defined by

QM~V!5MVJ22J2VM,

for M ,VPso(n), is the second, compatible Poisson structure on so(n) that was recently found by
Morosi and Pizzocchero.34 This second Poisson structureQ is actually a deformation of the first,
linear one,P, under the linear mapM→JMJ. The Euler equation can be written

Ṁ5Q~dH!,
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whereH(M )521
2 tr(J

21MJ21V), since the gradient ofH is 2J21VJ21.
We now show how to extend this procedure to the determination of Poisson structures com-

patible with the linear Poisson structures on the sum of several copies of a simple Lie algebra,
considered in Refs. 30 and 35. Let us consider, for instance, the Hamiltonian system

dM0

dt1
5@M0 , V1#,

dM1

dt1
5@M0 , V0#1@M1 , V1#,

whereV0 andV1 are the components of the gradient of a Hamiltonian functionK. We introduce
the Lax matrix depending on the spectral parameterl,

L5
M0

l2 1
M1

l
1A.

Computing the derivative of the square of this matrix, we find that

1

2

d~L2!

dt1
5FL, ~M0V11V1M0!

2l2 1
~M0V01V0M0!1~M1V11V1M1!

2l G
1

1

l2 ~M0V0M12M1V0M01M0V1A2AV1M0!

1
1

l
~M0V0A2AV0M01M1V1A2AV1M1!.

Therefore the Lax–Nijenhuis equation suggests that we should set

dM0

dt2
5~M0V0M12M1V0M0!1~M0V1A2AV1M0!,

dM1

dt2
5~M0V0A2AV0M0!1~M1V1A2AV1M1!.

A computation shows that this is actually a Poisson structure on the direct sum of two copies
of so(n). It is clearly compatible with the first, because it can be obtained by deformingA into
A1lI .

C. The KdV equation

We now enter the field of nonlinear partial differential equations by considering the
Korteweg–de Vries~KdV! equation

du

dt
5uxxx26uux .

We use the notations of the formal calculus of variations.9,10,8As is well known, the KdV equation
is Hamiltonian since it can be written in the form

]u

]t
5]

dH

du
,

where
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H~u!52E S 12 ux
21u3Ddx,

and ]5d/dx is the Gardner Hamiltonian structure.13 It admits a Lax representation,du/dt
5[L, B], with

L5]22u, B54]323~u]1]u!.

We now want to use the Lax–Nijenhuis equation~5.1!, whereP5], to find the second Hamil-
tonian structure of the KdV equation. SinceL is a second-order differential operator, we assume
that L̂~a! is a first-order differential operator,

L̂~a!5l1m],

wherel andm depend linearly on the one-forma. A simple computation yields

1
2LPa~L2!52ax]

22axx]1~uax2
1
2axxx!,

@L, L̂~a!#52mx]
21~2lx1mxx!]1~lxx1mux!.

By inserting these formulas into the Lax–Nijenhuis equation and by equating the coefficients of
]2, ], and]0, we get

~2m2a!x50,

~2l1mx2ax!x50,

2LQa~u!5uax2
1
2axxx1lxx1mux .

The first two equations yield the solutionm51
2a, l51

4ax , while the third one yields the second
Hamiltonian structure of the KdV equation,

Qu~a!5 1
4axxx2uax2

1
2uxa.

The recursion operator is the nonlocal operator,Ru5
1
4]

22u2 1
2ux]

21.

D. The second Adler–Gelfand–Dickey bracket

We now generalize the previous example to the first equation of thenth KdV hierarchy. The
unknowns are functionsu0 ,u1 ,...,un21 on the circle, whose time evolution is being studied. It
admits a Lax formulation,

dL

dt
5@L,B#,

where

L5]n1un21]
n211•••1u0 ,

andB is a suitable differential operator of ordern11. HereL takes values in a manifoldLn of
invertible elements in the algebraAn of formal pseudodifferential operators of order<n on the
circle.36 This equation is Hamiltonian with respect to the Poisson structureP onLn which, in the
operator formalism, is defined by
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PL~a!5@a,L#1 , ~5.9!

wherea is the pseudodifferential operator,

a5]21a01]22a11•••1]2nan21 ,

which is considered as a one-form onLn . The value of a on any tangent vector
U5Un21]

n211•••1U1]1U0 is, by definition,

^a,U&5E res]21~a+U !5E ~a0U01•••1an21Un21!dx.

In Eq. ~5.9! the symbol@L,a#1 means that we consider the differential part of the pseudodiffer-
ential operator obtained by computing the commutator of the operatorsL and a by the usual
~formal! rules of the algebra of pseudodifferential operators. See, e.g., Refs. 36 and 37.

The Lax–Nijenhuis equation~5.1! then takes the form

LQa~L !5 1
2~L@a,L#11@a,L#1L !1@L,L̂~a!#.

SinceL is a monic differential operator of ordern and

LQa~L !5LQa~u0!1LQa~u1!]1•••1LQa~un21!]
n21,

we can solve this equation by looking for operators

L̂~a!5l01l1]1•••1ln21]
n21.

~The reasons for this choice and that made in the case of the Toda system are similar.! Then we
observe that the Lax–Nijenhuis equation can also be written in the form

LQa~L !5@a,L#1L1@L,M ~a!# ~5.10!

if we set

M ~a!5L̂~a!1 1
2@a,L#1 .

To split Eq. ~5.10! in two parts, one determiningM ~a! and the other determiningLQa(L), we
observe that the constraints onL imply that

„LQa~L !L21
…150.

Then we get

„LQa~L !•L21
…15„@a, L#11@L, M ~a!L21#…150,

„LQa~L !•L21
…25„@a,L#11@L,M ~a!L21#…2

or

@L,„M ~a!2aL…L21#150, ~5.11!

LQa~L !5@L,M ~a!L21#2•L. ~5.12!

Now [L,(aL)2L
21]150, since
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„L~aL !2L
212~aL !2…15„L~aL !2L

21
…150.

In fact, we know that for any strictly pseudodifferential operatorX, such thatX150,

~LXL21!150.

The constraint equation~5.11! can therefore be written in the form

@L,„M ~a!2~aL !1…L
21#150,

and the simplest solution of~5.11! is thus

M ~a!5~aL !1 .

If we now insert this solution into Eq.~5.12!, we get

LQa~L !5@L,~aL !1L
21#2•L,

or

QL~a!5„L~aL !1L
21
…2L5L~aL !1L

21L2„L~aL !1L
21
…1L

5L~aL !12„LaLL212L~aL !2L
21
…1L

5L~aL !12~La!1L.

This is the second Adler–Gelfand–Dickey bracket.21,16,10,37

E. The R-matrix bracket

It is well known that the Poisson structure~5.9! on Ln is a particular case of the Poisson
structureP defined by

PL~a!5R~@L,a#!2@L,Ra# ~5.13!

associated with any skewsymmetricR-matrix satisfying the modified classical Yang–Baxter equa-
tion,

@RX,RY#2R~@RX,Y#1@X,RY# !52@X,Y#.

Indeed to obtain~5.9! from ~5.13! it is enough to choose as anR-matrix on the algebra of formal
pseudodifferential operators half the difference,

R5 1
2~p12p2!,

between the projectionsp1 andp2 onto the positive and negative parts into which the algebra of
formal pseudodifferential operators naturally splits. In fact

R~@L,a#!2@L,Ra#5 1
2@L,a#12 1

2@L,a#21 1
2@L,a#5@L,a#1 .

Therefore, it is natural to try to generalize the previous example by solving the Lax–Nijenhuis
equation corresponding to

LPa~L !5R~@L,a#!2@L,R~a!#.

To this end we remark that
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LPa~L2!5LR~@L,a#!1R~@L,a#!L2@L,LR~a!1R~a!L#

so that the Lax–Nijenhuis condition takes the form

LQa~L !5 1
2„LR~@L,a#!1R~@L,a#!L…1@L,L̂~a!2 1

2„LR~a!1R~a…L !#.

In this case we have no obvious supplementary conditions onL to be used to determineL̂~a!.
However, to do this we can use the skewsymmetry ofQ ~as in the Toda example!. The idea is to
split the linear operator

ML~a!5LR~@L,a#!1R~@L,a#!L

into its symmetric and skewsymmetric parts. Since

tML~a!5@L,R~aL1La!#,

we can write

LQa~L !5 1
2„ML~a!2 tML~a!…1@L,L̂~a!1 1

2~R~aL1La!…2LR~a!2R~a!L#.

Now we can choose

L̂~a!5 1
2„LR~a!1R~a!L…2 1

2R~aL1La!

so as to annihilate the commutator and to getLQa(L)5
1
2„ML(a)2

tML(a)…, a manifestly
skewsymmetric mapping. The explicit result that we finally get is

LQa~L !5 1
2„LR~@L,a#!1R~@L,a#!L2@L,R~aL1La!#…,

and thus

QL~a!5R~La!L2LR~aL !.

This is the well known form23 of the second~quadratic! Poisson bivector associated with the
R-bracket~5.13!.

VI. CONCLUSION

These examples may help to explain the role of the Lax–Nijenhuis equation and its limits.
This equation does not define the second~‘‘quadratic’’! Poisson bracket,Q, associated with a Lax
operator, but it provides a systematic way of deriving this bracket. The previous examples show
that, in many cases, the form ofL and the form of the first, given Poisson tensor suggest natural
choices for the form ofL̂~a! which makeQ uniquely defined. This is the value of the method. Its
limits are that it does not provide a proof of the fact that we indeed obtain a second Poisson tensor
compatible with the given one.

In Ref. 38, there appears a Lax formulation for the evolution of the recursion operator of the
KdV hierarchy, whose geometric interpretation along the lines of the present exposition remains to
be clarified.
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l’Université de Montréal, 1986!, pp. 185–216.

8I. Ya. Dorfman,Dirac Structures and Integrability of Nonlinear Evolution Equations~Wiley, New York, 1993!.
9I. M. Gelfand and L. A. Dickey, ‘‘Asymptotic behaviour of the resolvent of Sturm–Liouville equations and the algebra
of the Korteweg–de Vries equation,’’ Russ. Math. Surv.30, 77–113~1975!; ‘‘A Lie algebra structure in the formal
variational calculus,’’ Funct. Anal. Appl.10, 16–22~1976!.

10L. A. Dickey, Soliton Equations and Hamiltonian Systems~World Scientific, Singapore, 1991!.
11P. D. Lax, ‘‘Almost periodic solutions of the KdV equation,’’ SIAM Rev.18, 351–375~1976!.
12C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, ‘‘Korteweg–de Vries equation and generalizations. VI.
Methods for exact solution,’’ Comm. Pure Appl. Math.27, 97–133~1974!.

13C. S. Gardner, ‘‘Korteweg–de Vries equation and generalizations. IV. The Korteweg–de Vries equation as a Hamil-
tonian system,’’ J. Math. Phys.12, 1548–1551~1971!.

14A. S. Fokas and B. Fuchssteiner, ‘‘On the structure of symplectic operators and hereditary symmetries,’’ Lett. Nuovo
Cimento28, 299–303~1980!.

15H. Flaschka, ‘‘The Toda lattice. I. Existence of integrals,’’ Phys. Rev. B9, 1924–1925~1974!.
16M. Adler, ‘‘On a trace functional for formal pseudo-differential operators and the symplectic structure of the
Korteweg–de Vries type equations,’’ Invent. Math.50, 403–432~1979!.

17B. Kupershmidt,Discrete Lax Equations and Differential Difference Calculus, Astérisque 123 ~Soc. Math. France,
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We develop a method, based on Darboux’s and Liouville’s works, to find first
integrals and/or invariant manifolds for a physically relevant class of dynamical
systems, without making any assumption on these elements’ forms. We apply it to
three dynamical systems: Lotka–Volterra, Lorenz and Rikitake. ©1996 Ameri-
can Institute of Physics.@S0022-2488~96!03511-6#

I. HISTORICAL OVERVIEW

In Refs. 1 and 2, Roger Liouville and A. Tresse developed a method for deciding whether two
differential equations of the form

d2y

dx2
1a1~x,y!S dydxD

3

13 a2~x,y!S dydxD
2

13 a3~x,y!
dy

dx
1a4~x,y!50, ~1!

where theai are arbitrary functions of the real or complex variablesx andy, are geometrically
equivalent, i.e., can be transformed into each other by the most general dependent and independent
variable change

x85w~x,y!, y85c~x,y!. ~2!

This method was based on the construction of a ‘‘relative invariant’’ function calledn5 of the
ai and of their derivatives, such that in any transformation~2! it becomesn585J(x,y)25n5 where
J(x,y) is the Jacobian of the transformation. In the general case, two equations such that their
n5 are non-zero and proportional to each other are indeed equivalent. Ifn550 for both, however,
one cannot conclude at first, and other invariants, involving higher derivatives of theai , must be
calculated in order to decide. As an application, Liouville proposed the effective reduction of
Equation~1! into its simplest canonical form, which in most cases leads to an explicit integration.

Here we will adopt another point of view. We have derived from these theories a method for
finding out first integrals for a wide and physically important class of dynamical systems without
having to make any ansatz on their functional form. In the rest of this section, we shall recall some
mathematical results of Darboux,3 Liouville and Tresse. Then we explain our method in Section II,
and apply it in Section III to three well-known dynamical systems. Finally, Section IV discusses
our results summarised in Table I.

A. Essentials of Liouville theory

Consider a differential equation like~1!. Liouville1 defined the following functions — which
are seen as functions of (x,y), forgetting the supposed relation between those variables:

a!Electronic mail address: labrun@spec.saclay.cea.fr
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L25
]

]x S ]a1
]x

23 a1a3D1
]

]y S ]a3
]y

22
]a2
]x

1a1a4D
23 a2S ]a3

]y
22

]a2
]x

1a1a4D1a1S ]a4
]y

13 a2a4D , ~3!

L15
]

]y S ]a4
]y

13 a2a4D2
]

]x S 2 ]a3
]y

2
]a2
]x

1a1a4D
23 a3S 2 ]a3

]y
2

]a2
]x

1a1a4D2a4S ]a1
]x

23 a1a3D , ~4!

n55L2S L1 ]L2
]x

2L2
]L1
]x D1L1S L2 ]L1

]y
2L1

]L2
]y D2a1L1

313 a2L1
2L223 a3L1L2

21a4L2
3. ~5!

The equationn550 means that

L1dx1L2dy50 ~6!

defines a particular solution of Equation~1!. We shall call~6! a subequationof Equation~1!, i.e.,
~1! is a differential consequence of~6!. Notice that in the caseL2[0 the solution isnot L1[0 —
which would mean an unexpected lowering of this equation’s differential order — butdx50, an
absurdity asx is seen as the independent variable. Similarly ifL1[0, the solution isdy50, a
solution possibly present in Equation~1! but not very interesting.

TABLE I. Results obtained by our method.

DS n5 Denominator Parameters Information obtained

(0,2,c) DE: (y;x)
(1/(2b),b,1) DE: (bx2z;y)
(1,b,2/b) DE: (x2cy;z)
(1/4,2,25) DE: (16y222 xz28 yz1z2;2 x)

Lotka (y,z):~17! y2abz (21/5,1/2,4) DE: (100y2225xy140yz14 z2;x)
(a,b,c) (1,2,22) DE: (y22xz2yz;2 x1z)

(21/2,1/2,1) DE: (22 xy12 yz1z2;x1y)
(1,1,1) none

(21/2,0,1) none
(0,2/3,1) DE: (3z22 x;y)

other cyclic permutation of the above results

(212s,s,%) none
(x,y):~22! x2y (2/3,1/3,%) none

(216/5,21/5,27/5) none
Lorenz (x,z):~24! bz2x2 (2 s,s,%) FI: (x222 sz) e2 s t

(b,s,%) (212s,s,%) none
(z,y):~26! bz(%2z)2y2 (1,s,0) FI: (z21y2) e2 t

(212s,s,%) none

Rikitake (x,y):~28! m( y22x2) (a,0,m) FI: ( y22x2) e2mt

(a,b,m) 12 bxy (a,b,0) none
other . . . nothing more
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Now suppose neitherL1 nor L2 vanish identically and definea52L2 /L1 . Then

n55L1
3S a

]a

]y
1

]a

]x
1a1a

313 a2a
213 a3a1a4D ~7!

and Equation~6! can be rewrittendy/dx5a(x,y). Conversely suppose there is a first-order
subequation to Equation~1!, namely dy/dx5A(x,y). Then A is a solution to the first-order
non-linear PDE

A
]A

]y
1

]A

]x
1a1A

313 a2A
213 a3A1a450 ~8!

we shall discuss later. Liouville theory is a finite effort tool for finding particular solutions to
Equation~8!.

B. Darboux polynomials and first integrals for polynomial dynamical systems

Consider an autonomous polynomial dynamical system

ẋi5Vi~x!, i51,...,n. ~9!

We say that a polynomialf (x1 , . . . ,xn) is aDarboux polynomial
3 of ~9! if there exists a polyno-

mial ‘‘eigenvalue’’ p such that

d f

dt
[(

i51

n

Vi

] f

]xi
5p f .

In other words, there is an algebraic variety, defined byf (x1 , . . . ,xn)50, which is invariant by
the flow ofV. In this respect, this notion is a neighbour of the notion of subequation we have seen.

Darboux polynomials are tools for finding out,4,5 but also proving the non-existence~cf. Ref.
6 for an example! of first integrals to polynomial dynamical systems. We shall not enter into the
details. Let us just notice that a polynomial first integral is simply a Darboux polynomial with
eigenvalue 0, and that a Darboux polynomialf with constant eigenvaluea gives rise to the
time-dependent first integralf e2at. More rational and algebraic first integrals can be built with
the ‘‘basic blocks’’ of Darboux polynomials,4,5 and, conversely, a theorem of Bruns7 says there
cannot be an algebraic first integral of~9! unless there is a rational one, which in turn implies the
existence of Darboux polynomials.

In brief, the problems of existence of first integrals and Darboux polynomials for a polynomial
dynamical system are very tightly linked. Notice also that all these objects, like ordinary eigen-
vectors and -values of linear endomorphisms, naturally live inC.

II. PRINCIPLE OF THE METHOD

We shall draw our interest to autonomous three-dimensional polynomial dynamical systems
which are offirst degreein one of their three variables, e.g.,z. Their general form is thus

ẋ5Vx
0~x,y!1zVx

1~x,y!, ẏ5Vy
0~x,y!1zVy

1~x,y!,

ż5Vz
0~x,y!1zVz

1~x,y!, ~10!

which we may abbreviate asẊ5V(X). Dynamical systems of this kind are frequently met in
physics: well-known examples are the Lorenz model, or the various three-wave interaction prob-
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lems ~Rabinovich, etc.!. Very often they are indeed of first degree inall their variables. We can
use this feature for harvesting more information — an example is given in the paragraph about the
Lorenz model.

We assume to have found out and studied all solutions withx5 cst. Assumingx nonconstant,
we shall transform the system~10! into a non-autonomous second-order differential equation
linking y andx which will turn out to be of type~1!.

Now we settle in a region of space whereẋ Þ 0 and takex as the independent variable,
parametrising the integral curves of~10!. The relation

~Vx
0~x,y!1zVx

1~x,y!!
dy

dx
5Vy

0~x,y!1zVy
1~x,y! ~11!

is satisfied along all integral curves. Hence, writingp5dy/dx,

z~Vx
1p2Vy

1!5Vy
02pVx

0. ~12!

These equations define the mappingsf:(x,y,z)°(x,y,p) andf* :(x,y,p)°(x,y,z), which are
homographic and hence:

~1! They are one-to-one wherever they are defined and their determinantC(x,y)5Vx
0Vy

12Vy
0Vx

1 is
non-zero; as it involves only the variablesx andy the surfaceS5$C(x,y)50% can be seen
either as a submanifold in the (x,y,z) space or in the (x,y,p) space.

~2! The surfaces S15$Vx
0(x,y)1zVx

1(x,y)50% in the (x,y,z) space and
S25$Vx

1(x,y)p2Vy
1(x,y)50% in the (x,y,p) space are singular. Any point onS1\S is sent to

p5`: this happens whenẋ50, and the tangent to the integral curve is orthogonal to the
x-axis, i.e., ‘‘vertical’’ in (x,y) representation (dy/dx5`). Similarly any point onS2\S is
sent toz5`.

~3! On S, f andf* are ‘‘constant along fibres,’’ i.e., two points ofS having differentz ~or
p) are sent to the same image, having the same (x,y) as the original point, hence lying on
S. Thus it is always possible to get it as the image of a point onS\S1 and calculating it that
way shows thatf(S)5SùS2; and similarlyf* (S)5SùS1 .

Since we are concerned with a differential problem, we have to study what the vector field
V(X) becomes under the action of the tangent mapTXf. And, indeed, pointsX on S differing
only in thez coordinate have the same image byf, but differentV(X) such that the corresponding
TXf(V(X)) also generally differ. As all these vectors are attached to the common image of the
pointsX, this can cause a loss of information, leading, as we shall see, to important practical
difficulties.

Similarly, we find that

~Vx
0~x,y!1zVx

1~x,y!!
dz

dx
5Vz

0~x,y!1zVz
1~x,y!.

We calculatedz/dx by differentiating~12! with respect tox, putting the result into the previous
formula, and then replacingz itself with its value in function ofp given by Equation~12!. This
leads to a differential equation inp which, in Cauchy form, reads

dp

dx
5
N~x,y,p!

C~x,y!2
, ~13!

whereN is polynomial in (x,y,p) and of degree three inp. Interpretingp as dy/dx, we see
Equation~13! as a differential equation of Liouville type like~1!. There are two essential facts in
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these computations. One is that the denominator of~13! is exactly the square of the determinant
C(x,y) of f, so Equation~13! will not set any further problem as long as its construction is valid.
The other one is that Equations~10! are of degree one inz: it ensures not only the good behaviour
of the z↔p correspondence but also the Liouville form of the differential equation~13!.

We intend to apply Liouville theory to Equation~13! in order to obtain subequations for it.
Now, we must take care of their possible relationships with the forbidden surfaces. If a subequa-
tion defines a curve in the (x,y,p) space which is not contained inS or S2 , there is no problem:
it will be pulled back into the (x,y,z) space by thef* map, which coincides then with the
reciprocal off.

But in the computation of Equation~13!, we have used thez5f* (x,y,p) map, and then
suppressed the denominatorVx

1p2Vy
1 . Thus, the singular manifold atS2 has disappeared in~13!.

But consider a curve plotted onS2 ~i.e., Vx
1p2Vy

1[0) which is, moreover, ajet ~i.e.,
p[dy/dx). Then, identically

dy

dx
5A~x,y!5

Vy
1~x,y!

Vx
1~x,y!

.

We can check that thisA is always a solution to Equation~8!, whatever the vector fieldV may be.
Henceany jet plotted on S2 is a subequation of Equation (13). However, this jet cannot yield an
invariant manifold in the (x,y,z) space unless it is made of images byf of points in this space.
Now, it is easy to show that the only points onS2 that can be written asf(x,y,z) are those on
SùS2; therefore, as we have seen, they are images of points also lying onS.

Yet we know that the pullback of the vector fieldV is not necessarily well-behaved onS.
Thus, the system~10! and the differential equation~13! can behave quite differently onS.

If we find as Equation~6! the equation of a jet onS2 , we have to check independently
whetherS is an invariant manifold forV or not. In dynamical systems containing parameters, this
can be rephrased as:find at what condition on the system’s parameters the equation denominator
C(x,y) is a Darboux polynomial for the system (10).

III. RESULTS FOR SEVERAL DYNAMICAL SYSTEMS

We have applied the method exposed in Section II to three different dynamical systems of
type ~10! depending on real parameters: Lotka–Volterra, Lorenz, Rikitake. We shall discuss the
results obtained in the rest of this section.

A. The ( a,b ,c ) Lotka–Volterra system

This remarkably symmetric system

ẋ5x~cy1z!, ẏ5y~az1x!, ż5z~bx1y!, ~14!

appeared first as a model for three-species competition, yet has been found later in plasma physics.
A considerable amount of research has been done on it, using many techniques.6,8–10Here we shall
follow the process exposed in Section II.

Since Equations~14! are invariant by simultaneous circular permutations of (x,y,z) and
(a,b,c), it is equivalent to perform the method with any couple of variables. Once this is done,
more results can be obtained by the above symmetry. There is also a symmetry in taking
x5x8/b,y5z8/c,z5y8/a anda51/c8,b51/b8,c51/a8, which will appear in the distribution of
the n550 cases.

So, we takez as the independent variable and eliminatex, and find

L15
~b21!~11abc!Qabc

1 ~y,z!

z~y2abz!4
~15!
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and

L25
~b21!~11abc!Qabc

2 ~y,z!

z~y2abz!4
~16!

and

n55
~b21!3~11abc!3Pabc~y,z!

z2y2~y2abz!10
, ~17!

wherePabc ,Qabc
1 ,Qabc

2 are polynomials whose coefficients depend on (a,b,c) and which we do
not write down for the sake of brevity. The cases 11abc50 andb51 are known: the first one is
the full integrability of the system, with, in particular, the first integralabx1y2az; in the second
one we have the Darboux polynomialy2az whose eigenvalue isx. We remark this Darboux
polynomial is exactly the denominator. Notice also that in those two cases,L1 and L2 vanish
together withn5 so that Equation~6! is an identity and cannot be used for finding out Darboux
polynomials.

Now the cases where all coefficients ofPabc are zero are listed below in Table I. We notice
the presence of the symmetrya51/c8,b51/b8,c51/a8 in this list; one case (a51,b51,c51) is
self-symmetric. We shall handle in some detail one of these ‘‘exotic’’ cases, viz.
(a51/4,b52,c525). The subequation~6! reads

y~23 z2116zy232y2!14 z
dy

dz
~z227 zy116y2!50. ~18!

Reverting to the original variables (x,y,z) changes this equation in

y~z22 y!~16y222 xz28 yz1z2!50. ~19!

The expressionz22 y is proportional to the equation denominator; its presence here is an artefact
due, as we have seen, to a former suppression of denominator. It should not be taken in account
since it corresponds tob51. On the other hand, the other two factors are Darboux polynomials,
since their derivatives with respect to the system~14! are ẏ5y(z/41x) and

d

dt
~16y222 xz28 yz1z2!52 x~16y222 xz28 yz1z2!.

This illustrates the validity of the method in the general case. The results for all cases are sum-
marised in Table I. We get no information for the self-symmetric case since it is a specialisation
of b51, so our method cannot be applied.

B. The Lorenz model

Another well-known and intensively studied11–15dynamical system, the Lorenz model

ẋ5s~y2x!, ẏ5%x2y2xz, ż5xy2bz, ~20!

originally thought of as a simple model for atmospheric turbulence, was the first example of a
low-dimensional chaotic deterministic dynamical system.11 All known first integrals have been
obtained or reobtained by Kus´,13 using the non-decisive procedure of Carleman embedding. Here
we shall recover some of themmethodicallyby the means of Liouville theory.

Since there is no symmetry among variables here, we can proceed three times to the calcula-
tion of the L1,2 and n5 functions, eliminating each time one of the three variables. Indeed, the
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Liouville equation like~13! contains no more information than the dynamical system like~10!
does, but it has more singularities; yet, as we have seen, these singularities often contain useful
matter about the dynamical system’s invariant manifold structure.

Eliminatingz and choosingx as the independent variable yieldsC(x,y)5sx(y2x). Neither
x50 nor y2x50 can be interesting invariant manifolds, since both implyẋ50, sox5 cst and
y5 cst. This, in turn, also implies thatz is constant, and the manifold reduces to a fixed point.

The functionsL2 andn5 are ~cf. Ref. 16!

L25
11b1s

s~y2x!3
~21!

and

n55
~11b1s!Pbs%~x,y!

s5x2~y2x!10
. ~22!

In the obvious case 11b1s50, we also haveL250. Thus, as explained in Section I, our choice
of variables was a bad one. Looking for other cases, we only get three points in the (b,s,%) space,
viz. (b50,s521), (b52/3,s51/3) and (b5216/5,s521/5,%527/5). They are specialisa-
tions either of known cases13 or of the 11b1s50 case. In those cases, we get subequations that
do not give rise to Darboux polynomials, i.e., equations that represent jets plotted on the surface
S2 .

Now, if we eliminatey and choosex as the independent variable, we get as equation denomi-
natorC(x,z)5bz2x2. Its derivative with respect to the system~20! is

d

dt
~bz2x2!5~b22 s!xy2~b2z22 sx2!

522 s~bz2x2!1~b22 s!~xy2bz!. ~23!

The remainder is of degree one inx. ThusC is a Darboux polynomial iffb52 s; then the
eigenvalue is22 s, so I5(x222 sz) e2 st is a first integral.12

We have calculatedn5 and found

n55
~b22 s!~11b1s!Pbs%

s5~bz2x2!10
, ~24!

Pbs% being such that its coefficients never simultaneously vanish. In the caseb52 s, Equation
~6! yieldsx2sdz/dx50. This is the equation of a jet onS2 , and since we are in the good case,
we findS as the invariant surface.

When 11b1s50, Equation~6! still yields x2sdz/dx50. But in this case,S is not invari-
ant and we do not have a Darboux polynomial.

Finally, we have takenz as the independent variable and eliminatedx. We find
C(y,z)5b%z2bz22y2 and

dC

dt
5xy~~b22!%12 ~12b!z!12 y212 b2z22b2%z

522 ~b%z2bz22y2!1R~x,y,z!, ~25!
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the remainderR being of first degree iny; henceC is a Darboux polynomial iffb51 and
%50. Then,dC/dt522C and we get that way the first integralI5(z21y2) e2 t.12

As for n5 , it is equal to

n55
~11b1s!yPbs%~y,z!

~b%z2bz22y2!10
, ~26!

where Pbs%(y,z)[0 iff b51 and %50. Let us handle first the latter case. In that case,
L152szy/(z21y2)2 and L252sy2/(z21y2)2, so Equation~6! simplifies aszdz1ydy50.
This is the equation of a jet onS2 , and we getS as invariant manifold.

Now, in the case 11b1s50, there is another simplification in Equation~6!, namely
yL1[(z2%)L2 and hence (z2%)dz1ydy50. But this is the jet onS2 , so we get no information
in this case.

C. The Rikitake dynamo

This dynamical system8

ẋ52mx1y~z1b!, ẏ52my1x~z2b!, ż5a2xy, ~27!

models the variation of the earth’s magnetic field with time.
Let us takex as the privileged variable and eliminatez. The denominator in Equation~13! is

C(x,y)5m(y22x2)12 bxy, and

n55
b2m2Pabm~x,y!

~m~y22x2!12 bxy!10
, ~28!

where the coefficients ofPabm cannot vanish together unlessb50 or m50.
The derivative ofC(x,y) with respect to the system~27! is

dC

dt
5~y22x2!~2 b222m2!22 bxy12 bz~x1y!. ~29!

AssumeC is a Darboux polynomial of eigenvalueP(x,y,z)5A(x,y)1zB(x,y). Then the iden-
tification of thez terms in Equation~29! givesBC52 b(x1y). SinceC is of second degree, this
is impossible unlessb50.

When b50, Equation~29! readsdC/dt522mC, so C is a Darboux polynomial of this
system, which gives the first integral (y22x2) e2mt. On the other hand,

L15
4 x2y

m2~x22y2!2
, L25

24 xy2

m2~x22y2!2
,

hence Equation~6! becomes2xdx1ydy50. This is a jet onS2 , but we are in the ‘‘good’’ case,
and we recover the Darboux polynomialy22x2.

If now m50, then

L15
2a~3 x412 x2y213 y4!

4 b2x3y4
, L25

a~3 x412 x2y213 y4!

4 b2x4y3
,

so the subequation is once more2xdx1ydy50, the jet onS2 . Hence we do not obtain any
Darboux polynomial unlessb50.
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We have also performed the computations with the other two couples of variables. They have
not given more information than the previous ones.

IV. CONCLUSION

We have obtained,by a methodic procedure, numerous cases of Darboux polynomials for the
Lotka–Volterra system. This ‘‘Darboux polynomial searcher’’ can be seen as an input to algo-
rithms which need Darboux polynomials, such as the Prelle–Singer procedure. Up to now, that
procedure began with a systematic search, which obliged to set ana priori limit on the polyno-
mial’s degree in all its variables.4 Some new results5 allow the refinement of the search by
restricting the choice of the possible highest-degree homogeneous components of the tentative
Darboux polynomials, while speeding it up when the system’s coefficients are rational numbers.
Yet they are valid for dynamical systems of dimension 2, and until now have no counterpart in
dimension 3.

Our method has also reobtained some known first integrals for the Lorenz and Rikitake
systems, though all cases have not been found, and despite the ‘‘divergence enigma’’ we now
explain.

In both Lorenz and Rikitake systems, the divergence is a constant, respectively212b2s
and22m. In both cases, its vanishing triggers the vanishing ofn5 , but also the reduction of
Equation~6! to a singularity from which no information can be extracted. However, the Rikitake
dynamo possesses whenm50 a time-dependent first integralI5x22y214 bz24 abt; this kind
of first integral cannot be detected by our method, since it does not arise from a Darboux poly-
nomial, but from a polynomialf (x,y,z) such thatd f /dt5 cst. Such a first integral may exist only
for dynamical systems having a constant term, so there is no chance to find any for the Lorenz
model. But there may be a first integral of some special kind — indeed, numerical experiments
exhibit a regular behaviour when 11b1s50.

Table I summarises the results obtained by our method. Abbreviations are: DS for ‘‘dynamical
system,’’ FI for ‘‘first integral,’’ and DE for ‘‘Darboux element,’’ i.e., a couple of polynomials
( f ,p) such thatd f /dt5p f .
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The Kadomtsev–Petviashvili equation as a source
of integrable model equations

Attilio Maccari
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00015 Monterotondo Rome, Italy
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A new integrable and nonlinear partial differential equation~PDE! in 211 dimen-
sions is obtained, by an asymptotically exact reduction method based on Fourier
expansion and spatiotemporal rescaling, from the Kadomtsev–Petviashvili equa-
tion. The integrability property is explicitly demonstrated, by exhibiting the corre-
sponding Lax pair, that is obtained by applying the reduction technique to the Lax
pair of the Kadomtsev–Petviashvili equation. This model equation is likely to be of
applicative relevance, because it may be considered a consistent approximation of
a large class of nonlinear evolution PDEs. ©1996 American Institute of Physics.
@S0022-2488~96!03109-X#

I. INTRODUCTION

In the last years, various authors have studied the wave modulation induced by weak nonlin-
ear effects, for a large class of nonlinear evolution equations in 111 and 211 dimensions, with a
dispersive linear part. The most interesting result is that only a very limited number of model
equations are necessary. These model equations are usually of applicative relevance~in plasma
physics, nonlinear optics, hydrodynamics!, because they are obtained by means of a reduction
method from a large class of nonlinear evolution equations, under opportune approximations.1–6

It is clear from this method that the property of integrability is inherited through this limit
technique and then our model equations are integrable, being sufficient that only an integrable
equation is present in the large class from which they have been obtained. This method can be also
applied to the weakly nonlinear ordinary differential equations.7

The first step of the reduction method~in 211 dimensions! is to use a moving frame of
reference via the transformation

j5ep1~x2V1t !, h5ep2~y2V2t !, t5eqt, ~1.1!

wherep1 ,p2.0, q.0, andV15V1(K1 ,K2), V25V2(K1 ,K2) are the components of the group
velocity V~K ![„V1(K1 ,K2),V2(K1 ,K2)… of the linearized equation, i.e. of the equation obtained
after neglecting all the nonlinear terms ande is the expansion parameter, supposed to be suffi-
ciently small. The linear evolution is most appropriately described in terms of Fourier modes,
which have a constant amplitude and a well-defined group velocity~the speed with which a wave
packet peaked at that Fourier mode would move in ordinary space!. To identify the nonlinear
effects, we consider a specific Fourier mode and the frame of reference~1.1!, which moves with
the corresponding group velocity. We study the modulation, in terms of the variables defined
above, of the amplitude of the Fourier mode, due to nonlinear effects. The modulation~that would
remain constant in the absence of nonlinear effects! is best described in terms of the rescaled
variablesj,h,t, that account for the need to look on larger space and time scales, to obtain a not
negligible contribution from the nonlinear term.

In a precedent paper, this method has been applied to the Boussinesq equation and a new
integrable nonlinear evolution PDE in 111 dimensions has been derived.8 This line of research is
now applied in 211 dimensions and the variable change~1.1! can be used, in case with a different

0022-2488/96/37(12)/6207/6/$10.00
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rescaling in the spatial variables (p1Þp2!: if p1.p2 , the spatial scale forX is greater than the
scale forY, andvice versaif p1,p2 . In particular, we consider the Kadomtsev–Petviashvili~KP!
equation9 ~integrable by means of the spectral transform10!:

Uxt~x,y,t !1Uxxxx~x,y;t !1sUyy~x,y,t !23„U2~x,y,t !…xx50, ~1.2!

whereU5U(x,y,t) is real,s561, and the subscripts denote differentiation. In the second sec-
tion, we demonstrate that the modulation is governed by a model equation of nonlinear Schro-
dinger type, ifp15p2 :

iCt~j,h,t!1L1C~j,h,t!1C~j,h,t!F~j,h,t!50, ~1.3a!

L2F~j,h,t!52L1~ uC~j,h,t!u2!, ~1.3b!

with C5C~j,h,t! complex,F5F~j,h,t! real, and the linear differential operatorsL1 andL2 given
by

L15
1

4
~12sl2!

]2

]j2
1sl

]

]j

]

]h
2s

]2

]h2 , ~1.3c!

L252
1

4
~11sl2!

]2

]j2
1sl

]

]j

]

]h
2s

]2

]h2 , ~1.3d!

with l5K2/)K1
2. The equation~1.3! belongs to a class first studied by Shulman.11 If p1Þp2 , a

new model equation can be derived,

iCt~j,h,t!1Cjj~j,h,t!1C~j,h,t!F~j,h,t!50, ~1.4a!

Ft~j,h,t!1Fh~j,h,t!1~ uC~j,h,t!u2!j50, ~1.4b!

with C5C~j,h,t! complex andF5F~j,h,t! real. Taking into account the above-mentioned rea-
sons, it is expected that the equation~1.4! is of applicative relevance. If we takej5h, we recover
the integrable equation in 111 dimensions obtained in a precedent paper.8

In the third section, the Lax pair relative to Eqs.~1.4! is deduced from the Lax pair of the KP
equation. Note that if we eliminateFh~j,h,t! in the last equation~1.4b! by means of a trivial
change of variables, at the same time a termCh~j,h,t! appears in the first equation~1.4a!.

Finally, in the last section the most important results are recapitulated and some possible
extensions and generalizations indicated.

II. MODEL NONLINEAR PDEs OBTAINED FROM THE KADOMTSEV–PETVIASHVILI
EQUATION

The linear dispersive part of the Kadomtsev–Petviashvili equation~1.2! is simply described in
terms of Fourier modes, with a group velocityV~K !5„V1(K1 ,K2),V2(K1 ,K2!…,

V1~K1 ,K2!523K1
22s

K2
2

K1
2 ,V2~K1 ,K2!5

2sK2
K1

. ~2.1!

We introduce a formal asymptotic Fourier expansion,

U~x,y,t !5 (
n52`

n51`

egncn~j,h,t;e!exp$ in~K1x1K2y2vt !%, ~2.2!
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with gn5unu, g0511r a real number to be determined later on, andc2n(j,h,t;e)
5 cn* (j,h,t;e), becauseU(x,y,t) is real. It is assumed that the limit ofcn~j,h,t;e!’s, for e→0,
exists and is finite.

The final goal is to obtain the evolution equation for the modulation amplitude
c1~j,h,t;e→0!5C~j,h,t! and to understand how it is modified by choosing different wave num-
bers. In particular, an interesting result shall be derived, if the special condition 3K1

42K2
250 is

verified.
The standard procedure is to consider the different equations obtained from the coefficients of

the Fourier modes. To simplify the treatment, it is more convenient to separate the contributions
from the linear and nonlinear parts:egn@Dncn#5e2Fn , whereDn is a linear differential operator
acting oncn~j,h,t! andFn is the contribution of the nonlinear part. The operatorDn is

Dn5u~2 inv1eq]t2V1~K1 ,K2!e
p1]j2V2~K1 ,K2!e

p2]h!

3~ep1]j1 inK1!1~ inK11ep1]j!
41s~ inK21ep2]h!2. ~2.3!

It is easily seen that the firstFn has the following explicit form:

F056~ uC~j,h,tu2!jje
2p11o~e2p112,e2p112r !, ~2.4a!

F25212K1
2C2~j,h,t!1o~ep1!, ~2.4b!

F1526K1
2F~j,h,t!C~j,h,t!e r26K1

2c2~j,h,t!C* ~j,h,t!e1O~ep11r ,ep111!, ~2.4c!

whereF~j,h,t!5c0~j,h,t!. After takingq52, p15p251, r51 for the proper balance of terms, we
obtain forn50,

V1~K1 ,K2!Fjj~j,h,t!1V2~K1 ,K2!Fjh~j,h,t!

2sFhh~j,h,t!16~ uC~j,h,t!u2!jj50, ~2.5a!

and forn51,

iK 1Ct~j,h,t!2~6K11V1~K1 ,K2!!Cjj~j,h,t!

2V2~K1 ,K2!Cjh~j,h,t!1sChh~j,h,t!16~K1
2F~j,h,t!C~j,h,t!

2uC~j,h,t!u2C~j,h,t!!50. ~2.5b!

After a trivial rescaling we arrive at the model equation~1.3!. Note that forK25l50, we
reproduce the Davey–Stewartson equation,12 whose integrability is well known.13 However, even
if lÞ0, by means of a trivial transformation in the spatial variables, thel can be eliminated,
reducing thereby~1.3! to the Davey–Stewartson equation.

If p2.p1 , a different result is obtained forn50,

F~j,h,t!5
6K1

2

3K1
42K2

2 uC~j,h,t!u2, ~2.6a!

with g0511r52, and forn51,

iCt~j,h,t!1A~K1 ,K2!Cjj~j,h,t!16K1~F~j,h,t!

3C~j,h,t!1c2~j,h,t!C* ~j,h,t!!50, ~2.6b!
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with 2p15q52. The standard unidimensional nonlinear Schro¨dinger equation is obtained,

iCt~j,h,t!1A~K1 ,K2!Cjj~j,h,t!1B~K1 ,K2!uC~j,h,t!u2C~j,h,t!50, ~2.7a!

with

A~K1 ,K2!52
~3K1

41K2
2!

K1
3 , B~K1 ,K2!5

6~3K1
41K2

2!

~3K1
52K2

2K1!
. ~2.7b!

If the relation 3K1
45K2

2 is verified, thenB(K1 ,K2) diverges and another derivation is neces-
sary. Forn50 a new equation arises:

Ft~j,h,t!12K1)Fh~j,h,t!26~ uC~j,h,t!u2!j50, ~2.8a!

with p25q, r511p12p2 .
Takingn51, a new model nonlinear PDE is obtained:

iCt~j,h,t!26K1Cjj~j,h,t!16K1C~j,h,t!F~j,h,t!50, ~2.8b!

with r1152p1, i.e., p15
2
3, p25

4
3, r51

3, q54
3.

After a trivial rescaling, we arrive at the nonlinear model equation~1.4!. It is expected that it
is integrable, taking into account that it has been obtained from an equation integrable by the
spectral transform.

III. THE LAX PAIR FOR THE MODEL NONLINEAR PDE

The reduction method can be applied to the Lax pair of the Kadomtsev–Petviashvili equation,
in order to demonstrate the integrability of~1.3! and ~1.4! by the spectral transform. The Lax
operators are

L5
i

)

]

]y
1

]2

]x2
2U~x,y,t !, Lw~x,y,t !50, ~3.1!

A54
]3

]y3
26U~x,y,t !

]

]x
23Ux~x,y,t !1 i)W~x,y,t !, ~3.2!

with Wx(x,y,t)5Uy(x,y,t) and

w t~x,y,t !1Aw~x,y,t !50. ~3.3!

We introduce an asymptotic Fourier expansion,

w~x,y,t !5 (
n52`

n51`

eg̃nwn~j,h,t;e!expF i n2 z1 i ~l1x1l2y1l3t !G , ~3.4!

wheren is odd,z5K1x1K2y2vt, g̃n12511g̃n for n.0, g̃n225g̃n11 for n,0, wn~j,h,t;e!’s
are functions that parametrically depend one and remain finite ife→0, andl1,l2,l3 are real
constants to be determined later on. Inserting now the expression fors(x,y,t) in ~3.1!, the coef-
ficients of the Fourier modes generate a series of relations; each relation must be valid for a given
order of approximation ine. In particular, for the fundamental harmonicsw6(x,y,t)5w61(x,y,t),
considering termsO~e0! in ~3.1! and ~3.3!, the constantsl1,l2,l3 can be fixed:
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l152
K1

2
, l252

)

2
K1
2, l3522K1

3. ~3.5!

The new spectral problem is obtained by means of the successive ordere for the equation
~3.1!, after choosingg̃215g̃11

1
3 for the proper balance of terms,

iw1,h~j,h,t!2w1,jj~j,h,t!2F~j,h,t!w1~j,h,t!1C~j,h,t!w2~j,h,t!50, ~3.6a!

iw2,j~j,h,t!2 1
2C* ~j,h,t!w1~j,h,t!50. ~3.6b!

If the other equation~3.3! is considered, the spectral problem can be again obtained. The
temporal evolution can be revealed, taking into account the next order of approximation of~3.3!,
but in doing so new quantities, the correctionsw̃6~j,h,t! of ordere to the fundamental harmonics
w6~j,h,t!, appear. These unknown quantities can be eliminated in~3.3! taking advantage of the
relation obtained from~3.1!, considering terms of ordere2. This elimination is possible only
because Eqs.~3.1! and ~3.3! are identical at the first order. The Lax pair of~1.4! is then

L5 iD 1

]

]h
1 iD 2

]

]j
1D3

]2

]j2
2C̃~j,h,t!, Lŵ~j,h,t!50, ~3.7a!

with

D15S 1 0

0 0D , D25S 0 0

0 1D , D35S 21 0

0 0D , ~3.7b!

C̃~j,h,t!5S F~j,h,t! 2C~j,h,t!

1
2 C* ~j,h,t! 0 D , uŵ~j,h,t!5S w1

w2
D , ~3.7c!

and

A52 iD 1F~j,h,t!2 iD 1

]2

]j2
2Ĉ~j,h,t!

]

]j
1Ĉj~j,h,t!, ~3.7d!

with

ŵt~j,h,t!1Aŵ~j,h,t!50, ~3.7e!

Ĉ~j,h,t!5S 0 0

1
2 C* ~j,h,t! 0D . ~3.7f!

A similar calculation permits us to obtain the well-known Lax pair of the Davey–Stewartson
equation~1.3!.

IV. CONCLUSION

The results obtained in this paper identify a research line devoted to discovery nonlinear
evolution PDEs, which are integrable and of applicative relevance. In particular, a new integrable
nonlinear evolution PDE has been derived from the Kadomtsev–Petviashvili equation, by means
of a reduction method based on Fourier decomposition and space–time rescalings@see ~1.4!#.
Moreover, the integrability property is explicitly demonstrated, because the Lax pair has been
deduced, by applying the reduction method to the Lax pair of the original equation. Possible
extensions and generalizations are now indicated:~i! study of the characteristics of the solutions of
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~1.3!; ~ii ! research of universal and integrable nonlinear PDEs in 211 and 311 dimensions
obtained by the reduction method;~iii ! approximate solution of a physically relevant nonlinear
equation through the study of the correspondent integrable model equation.
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Wronskian solutions of the constrained Kadomtsev–
Petviashvili hierarchy

Walter Oevela) and Walter Strampp
Fachbereich 17-Mathematik/Informatik, Universita¨t-GH Kassel, Holla¨ndische Str. 36,
34109 Kassel, Germany
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The integrable Kadomtsev–Petviashvili~KP! hierarchy is compatible with gener-
alized k-constraints of the type (Lk)25( i qi]x

21r i . A large class of solutions—
among them solitons—can be represented by Wronskian determinants of functions
satisfying a set of linear equations. In this paper we shall obtain additional condi-
tions for these functions imposed by the constraints. ©1996 American Institute of
Physics.@S0022-2488~96!04111-4#

I. THE CONSTRAINED KP HIERARCHY

The dynamics of the KP hierarchy is defined by the Lax equations

Ltn5@L,~Ln!2#, ~I.1!

with the micro-differential operatorL5]x1u2]x
211u3]x

221... . The dressing operator
W511w1]x

211w2]x
221..., related to the Lax operator byL5W]xW

21, satisfies Sato’s equa-
tions

Wtn
52~W]x

nW21!2W. ~I.2!

The essence of Sato’s theory1–5 is the fact that solutions of Sato’s equations can be expressed by
a single functiont, which has to satisfy a hierarchy ofbilinear equations. It is well-known6–11 that
the KP dynamics~I.1! is compatible with generalizedk-constraints of the form

~Lk!25(
i51

M

qi]x
21r i ~I.3!

with suitable functionsqi and r i . We note that such Lax operators are characterized by the
existence of anM -th order differential operator

A5]x
M1aM21]x

M211•••1a0

such thatALk is a differential operator. The factorA needs to annihilate the functionsqi , i.e.,
A(q1)5•••5A(qN)50. Since an operator may be reconstructed from its kernel,A is uniquely
determined if the Wronskian determinantW (q1 ,...,qN) does not vanish. Similarly, there exists

B5]x
M1bM21]x

M211•••1b0

such thatLkB is a differential operator. The functionsr i span the kernel of the adjointB* . The
constraint~1.3! reduces the KP dynamics to the hierarchy

~Lk! tn5@Lk,~Ln!2#, ~qi ! tn5~Ln!1~qi !, ~r i ! tn52~L* n!1~r i !

a!Permanent address: FB 17-Mathematik, University of Paderborn, 33095 Paderborn, Germany.
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of 111-dimensional integrable equations. ForM51 the first three constraints yield the the AKNS
hierarchy ~k51!, the Yajima–Oikawa hierarchy~k52! and a coupled Boussinesq type~k53!
hierarchy.6–11

II. WRONSKIAN SOLUTIONS

In the following we consider linearly independent functionsf 1 ,...,f N satisfying the infinite set
of linear equations

] f i
]tn

5 f i
~n![

]nf i
]xn

. ~II.1!

Their Wronskian determinant

W ~ f 1 ,...,f N!5U f 1~0! ••• f 1
~N21!

A � A

f N
~0! ••• f N

~N21!
U

is a t-function of the KP hierarchy.4 This implies that theN-th order differential operator
W5]x

N1w1]x
N211•••1wN given by

W5
1

W ~ f 1 ,...,f N! U f 1~0! f 1
~1! ••• f 1

~N!

A A � A

f N
~0! f N

~1! ••• f N
~N!

1 ]x ••• ]x
N

U ~II.2!

provides a dressing operator satisfying~1.2!. @The finite micro-differential operator
W]x

2N511w1]x
211•••1wN]x

2N also satisfies~I.2! and is the dressing operator of Sato’s theory.#
In this formal determinant an expansion with respect to the last row is understood, in which all
subdeterminants are collected on the left of the differential symbols. With this representation it is
clear that the action ofW on an arbitrary functiong is given by

W~g!5
W ~ f 1 ,...,f N ,g!

W ~ f 1 ,...,f N!
. ~II.3!

In particular,W( f 1)5•••5W( f N)50, so that formula~II.2! provides the reconstruction of a
normalized ordinary differential operator from its kernel.

We shall study the effect of thek-constraint on the entries of the Wronskiant-function. We
will make use of the following technical lemma:

Lemma: The micro-differential inverse of the dressing operator~II.2! is given by

W215(
i51

N

f i]x
21gi

with

gi5~21!N2 i
W ~ f 1 ,...,f i21 , f i11 ,...,f N!

W ~ f 1 ,...,f N!
. ~II.4!

Proof: The functionsgi are the solutions of the linear system
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S f 1
~0! ••• ••• f N

~0!

A � � A

A � � A

f 1
~N21! ••• ••• f N

~N21!

D S g1AA
gN
D 5S 0A0

1
D .

From these equations and using the algebraic rule

f ]x
215]x

21f1]x
22f ~1!1]x

23f ~2!1...,

for the symbol]x
21 one finds

SW(
i51

N

f i]x
21gi D

1

5SW(
k50

`

]x
2k21(

i51

N

f i
~k!gi D

1

5SW]x
2NS 11 (

k5N

`

]x
N2k21(

i51

N

f i
~k!gi D D

1

51.

On the other hand,

SW(
i51

N

f i]x
21gi D

2

5(
i51

N

~W~ f i !!]x
21gi50,

whenceW( i f i]x
21gi51. Q.E.D.

The following theorem provides a simple criterion for the Wronskian entriesf 1 ,...,f N leading
to k-constrained KP flows:

Theorem: The KP solution L5W]xW
21 generated by the Wronskiant-function

W ( f 1 ,...,f N)Þ0 satisfies the k-constraint (I.3) with some suitable functions q1 ,...,qM and
r 1 ,...,r M if and only if

W ~ f 1 ,...,f N , f i1
~k! ,...,f iM11

~k! !50 ~II.5!

for all ~M11!-tupel of indices1<i 1,•••, i M11<N, which is equivalent to

W SW ~ f 1 ,...,f N , f i1
~k!!

W ~ f 1 ,...,f N!
,...,

W ~ f 1 ,...,f N , f iM11

~k! !

W ~ f 1 ,...,f N!
D 50 ~II.6!

for all such indices.
Proof: The equivalence between~II.5! and ~II.6! is provided by the Wronskian identity

W SW ~ f 1 ,...,f N ,h1!

W ~ f 1 ,...,f N!
,...,

W ~ f 1 ,...,f N ,hM11!

W ~ f 1 ,...,f N! D5
W ~ f 1 ,...,f N ,h1 ,...,hM11!

W ~ f 1 ,...,f N!
, ~II.7!

which holds for arbitrary functionsf 1 ,...,f N andh1 ,...,hM11. It is proven in the appendix.
Using the previous lemma one finds

~Lk!25~W]x
kW21!25(

i51

N

~W~ f i
~k!!!]x

21gi ~II.8!

with gi defined by ~II.4!. Hence, the constraint~I.3! with M5N is always satisfied for KP
solutions generated byN3N-Wronskians. It is claimed that the conditions~II.5!/~II.6! reduce the
sum fromN to M terms.
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First, we show that~II.6! follows from ~I.3!. As already remarked in Section I, forL satisfying
~I.3! there exists anM -th order differential operatorA such thatALk is a differential operator.
Application toW( f i)50 yields

05ALk~W~ f i !!5AW]x
k~ f i !5A~W~ f i

~k!!!.

Formula~II.3! leads to

W~ f i
~k!!5

W ~ f 1 ,...,f N , f i
~k!!

W ~ f 1 ,...,f N!
Pkernel ~A!.

Since the kernel ofA has dimensionM , at mostM of these functions can be linearly independent,
whence~II.6! obtains. Conversely, if~II.6! holds, then at mostM of the functionsW( f i

(k)) are
linearly independent. Consequently, they can be expressed byM functionsq1 ,...,qM :

W ~ f 1 ,...,f N , f i
~k!!

W ~ f 1 ,...,f N!
5(

i51

M

ci j qj , i51,...,N,

with some constantsci j and ~II.8! reduces to

~Lk!5(
i51

N S (
j51

M

ci j qj D ]x
21gi5(

j51

M

qj]x
21S (

i51

N

ci j gi D . ~II.9!

Q.E.D.

III. EXAMPLE

We consider 232-Wronskianst5W ( f 1 , f 2) with

f 15exp~c11l1x1l1
2y1l1

3t !1exp~d1mx1m2y1m3t !,

f 25exp~c21l2x1l2
2y1l2

3t !1exp~c31l3x1l3
2y1l3

3t !

with arbitrary constantsci ,l i ,d,m. These functions satisfy the linear equations~II.1! with
t15x,t25y and t35t, whenceu(x,y,t)5ln~t!xx satisfies the KP equation

4utx5~uxxx112uux!x13uyy . ~III.1!

Using the theorem in the last section we will derive conditions on the parameters such that the
k-constraint~I.3! with M51 is satisfied. The criterion~II.5! yields a single equation

05W ~ f 1 , f 2 , f 1
~k! , f 2

~k!!5~mk2l1
k!~l2

k

2l3
k!V~l1 ,l2 ,l3 ,m!ec11c21c31de~l11l21l31m!xe~l1

2
1l2

2
1l3

2
1m2!ye~l1

3
1l2

3
1l3

3
1m3!t

with the Vandermonde determinant

V~l1 ,l2 ,l3 ,m!5U1 l1 l1
2 l1

3

1 l2 l2
2 l2

3

1 l3 l3
2 l3

3

1 m m2 m3

U .
It may be satisfied by the choicem5l2. Puttingd5c2, the t-function yields
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t5~l22l1!e
h11h21~l32l2!e

h21h31~l32l1!e
h11h3,

where

h i5ci1l ix1l i
2y1l i

3t, i51,2,3.

The constraint (Lk)25q]x
21r is satisfied with

q:5~l3
k2l2

k!
W ~ f 1 , f 2 , f 1

~k!!

W ~ f 1 , f 2!
5~l1

k2l2
k!
W ~ f 1 , f 2 , f 2

~k!!

W ~ f 1 , f 2!

5
~l12l2!~l22l3!~l32l1!~l1

k2l2
k!~l3

k2l2
k!

~l22l1!e
2h31~l32l1!e

2h21~l32l2!e
2h1

,

and, according to~II.9!/~II.4!,

r :5S f 2
~l2

k2l3
k!

1
f 1

~l1
k2l2

k! D 1

W ~ f 1 , f 2!

5
e2h12h22h3

~l1
k2l2

k!~l3
k2l2

k!

~l3
k2l2

k!eh11~l3
k2l1

k!eh21~l2
k2l1

k!eh3

~l32l2!e
2h11~l32l1!e

2h21~l22l1!e
2h3

.

These functions are regular forl1,l2,l3 and, for fixedy and t, bounded inx, if l1,0, l250,
l3.0. The KP solutionu5ln~t!xx consists of three solitary waves located in (x,y,t)-space along
the planesh1'h2, h2'h3 andh1'h3, respectively. In particular, choosingl15, l250, l352l,
c15c, c250, c352c one finds

q5
~21!kl2~k11!

11e2l2y cosh~c1lx1l3t !

and

r55 2
1

lk11

e2l2y1cosh~c1lx1l3t !

el2y1cosh~c1lx1l3t !
for odd k,

2
1

lk11

sinh~c1lx1l3t !

el2y1cosh~c1lx1l3t !
for even k.

For k51 one hasL5]x1q]x
21r , whenceq,r satisfy the first flows of the AKNS hierarchy

qy5qxx12q2r , r y52r xx22qr2

and

qt5qxxx16qrqx , r t5r xxx16qrr x ,

respectively. A solution of the KP equation~III.1! is given byu5qr. Plots ofu and q in the
(x,y)-plane at timet50 are given in Figures 1 and 2 forl1521, l250, l351, c15c25c350.

IV. CONCLUDING REMARKS

We have found necessary and sufficient conditions reducing a Wronskian solution of the
general KP hierarchy to solutions of thek-constrained hierarchy. We have relied on properties of
differential operators resulting fromfinite dressing operators. Of course, the same goal could have
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been achieved by formulating additional equations for generalt-functions which then might be
specialized tot-functions of Wronskian type. The constraints for generalt-functions, however, are
technically more involved. For special cases some results exist: the simplest additional condition
on thet-function in the casesk51 and 2, respectively, is a trilinear form12,13 and a quattrolinear
form,13,14respectively. For Wronskiant-functions these general conditions reduce to the results of
the theorem in Sec. II.

FIG. 1. u(x,y,t) for t 5 0.

FIG. 2. q(x,y,t) for t 5 0.
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APPENDIX: PROOF OF THE WRONSKIAN IDENTITY (II.7)

With some given family of functionsf n11
[n] , f n12

[n] ,..., one considers ‘‘iterated Darboux transfor-
mations’’ defined by the recursion

f i
@k11# :5

W ~ f k11
@k# , f i

@k#!

f k11
@k# , i ,k5n,n11,... .

Crum’s classical result15 is that afterK such recursive steps the resulting functions have the
Wronskian representation

f i
@n1K#5

W ~ f n11
@n# ,...,f n1k

@n# , f i
@n#!

W ~ f n11
@n# ,...,f n1K

@n# !
. ~A.1!

Comparing the results for (n,K)5(0,N1m) and (n,K)5(N,m) one finds fori5N1m11:

f N1m11
@N1m# 5

W ~ f 1
@0# ,...,f N1m11

@0# !

W ~ f 1
@0# ,...,f N1m

@0# !
5
W ~ f N11

@N# ,...,f N1m11
@N# !

W ~ f N11
@N# ,...,f N1m

@N# !
. ~A.2!

Denoting f i
[0]5 f i for i51,...,N and f N1 i

[0] 5hi for i51,...,m11 one has

f N1 i
@N# 5

W ~ f 1 ,...,f N ,hi !

W ~ f 1 ,...,f N!
, i51,...,m11

from ~A.1! with n50, K5N and ~A.2! yields

f N1m11
@N1m# 5

W ~ f 1 ,...,f N ,h1 ,...,hm11!

W ~ f 1 ,...,f N ,h1 ,...,hm!
5

W SW ~ f 1 ,...,f N ,h1!

W ~ f 1 ,...,f N!
,...,

W ~ f 1 ,...,f N ,hm11!

W ~ f 1 ,...,f N! D
W SW ~ f 1 ,...,f N ,h1!

W ~ f 1 ,...,f N!
,...,

W ~ f 1 ,...,f N ,hm!

W ~ f 1 ,...,f N! D .

Multiplication of these identities withm50,...,M yields ~II.7!. Q.E.D.
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Higher-order Melnikov theory for adiabatic systems
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In this paper, we study adiabatic Hamiltonian systems including those subject to
small-amplitude forcing and damping. It is known that simple zeroes of the adia-
batic Poincare–Arnold–Melnikov function imply the existence of primary intersec-
tion points of the stable and unstable manifolds of hyperbolic orbits. Here, we
present anNth-order Melnikov function whose simple zeroes correspond toNth-
order transverse intersection points and hence toN-pulse homoclinic orbits. Using
this function, it can be shown thatN-pulse homoclinic orbits arise in a plethora of
adiabatic models, including systems with slowly varying potentials. The theory is
illustrated on a damped Hamiltonian system with a slowly varying cubic potential.
In addition, theNth-order adiabatic Melnikov function is useful for showing the
existence of multi-pulse resonant periodic orbits in the special class of slow, time-
periodic systems. ©1996 American Institute of Physics.
@S0022-2488~96!02412-7#

I. INTRODUCTION

Adiabatic invariance theory in mechanics has a long and rich history; see, e.g., Ref. 1. Adia-
batic invariance theory was developed for slowly varying@O ~«!# Hamiltonian systems, and it
applies to all orbits in regions where the ratio of the small parameter« to the instantaneous orbit
frequency is small. The terms in the series for the adiabatic invariant become disordered and the
expansion ceases to be valid, however, near slowly-varying separatrices where the instantaneous
orbital frequency approaches zero.

The dynamics of special and general orbits in these separatrix-swept regions has been the
object of much recent study, for applications and development of the theory~see, e.g., Refs. 1–10
and also the references in Ref. 11!. In time-periodic adiabatic systems, the existence of many
resonant hyperbolic periodic orbits in these regions has been established via topological
shooting,7,8 and via matched asymptotic expansions,4,12 among others. Moreover, for general
adiabatic systems with general, not necessarily periodic, hyperbolic orbits in these regions, adia-
batic separatrix crossing theory gives the change in a general orbit’s adiabatic invariant and the
canonically conjugate phase variable after it crosses an instantaneous separatrix. See Refs. 1, 5,
and 6 for the full development and references to earlier works; see also Ref. 13.

For time periodic systems, chaos has been discovered in these regions.3 The existence of the
periodic orbits and bounded nonperiodic orbits in a Smale–Birkhoff horseshoe, as well as a
kneading theory, have been established in two examples via topological shooting.7,8Moreover, the
presence of Smale–Birkhoff homoclinic chaos can also be shown using the adiabatic Melnikov
function.2,4,14,15 Further studies of the chaotic structure in these separatrix-swept regions—
including lobe area, homoclinic tangle geometry, island size, and the genericity of these results—
are presented in Refs. 9, 16, and 17. The main tools used in these later works include an adiabatic
separatrix crossing map16 and an action theoretic derivation of the adiabatic Melnikov function.9,17

See also Ref. 18.
Many of the physical problems modeled by slowly varying systems are not purely Hamil-

tonian, however, and are instead subject to small amplitude forcing and damping. For example, the
slowly varying system arising in the model of resonant sloshing7,12 is only Hamiltonian when
viscosity is neglected. The presence of viscosity results in small amplitude dissipation in the
governing equations.12 Dissipation also plays an important role in capture-into-resonance, particle

0022-2488/96/37(12)/6220/30/$10.00
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dynamics in modulated waves, transport in charged particle beams, and other physical systems.
While one expects many of the homoclinic and periodic orbits to survive when forcing and

damping are added, there exists a general need to detect precisely which ones do, and where they
lie in phase space and for what range of forcing and damping they exist. The Hamiltonian methods
used in Refs. 9, 16, and 17 are not applicable when dissipation is included. In contrast, the
adiabatic Melnikov function still applies, and hence the existence of persistent homoclinic orbits
can still be demonstrated. Also, numerical evidence is presented in Ref. 12 showing that the
resonant periodic orbits in the sloshing model can be continued into the nonzero dissipation
regime, and it is thought that the topological shooting method can be extended, as well, as
indicated in Ref. 7.

Many questions, however, remain open. How can one detect multiple pulse homoclinic orbits?
For what parameter values do they occur? Near which parameter values do homoclinic tangencies
occur? For special time-periodic systems, what is the geometry of the single-pulse and multi-pulse
periodic orbits near these homoclinic orbits?, just to name a few.

In this paper, we develop a method to answer some of these questions. In particular, we
establish a higher-order adiabatic Melnikov theory for slowly modulated Hamiltonian systems,
which may also be subject to forcing and damping:

q̇5
]H

]p
~q,p,z!1«m f 1~q,p,z!, ṗ52

]H

]q
~q,p,z!1«m f 2~q,p,z!, ż5«, ~1.1!

where 0,«!1, m.0, the HamiltonianH is four times continuously differentiable with a slowly
varying parameterz, and f 1 , f 2 areC

3. When«50, ~1.1! is a one-parameter family of ‘‘frozen’’
or unperturbed systems. Under the assumption that for eachz in a finite interval this system
possesses an orbit that is homoclinic~or heteroclinic! to a saddle fixed point~s!, we construct a
function of« andz that we call theNth-order adiabatic Melnikov function. Our main result shows
that simple zeroes of this function imply the existence of transverseNth-order homoclinic inter-
sections of stable and unstable manifolds of~1.1! corresponding toN-pulse homoclinic orbits for
the full system~1.1!, provided« is sufficiently small. First-order intersection points are points at
which the finite segments of the local manifolds between the fixed point and the intersection point
have only the intersection point in common, and these first-order intersections correspond to
one-pulse homoclinic orbits. Secondary intersection points are points at which a segment of one
manifold between two adjacent~as measured by arclength! first intersection points intersects the
other local manifold, and they correspond to two-pulse homoclinic orbits, and so forth for all finite
N.

Of course, in the special case ofH being periodic inz, the existence of one principal inter-
section point automatically implies the existence of infinitely many of them, as Poincare showed.
However, this new higher-order function is needed to establish the existence of higher-order
intersection points for generalH.

Also, in the special case ofH being periodic inz, the existence and local uniqueness of
periodic orbits of all periods automatically follows from the Smale–Birkhoff Homoclinic Theorem
~see, e.g., Ref. 19!. The precise geometric location of these periodic orbits can be determined
using the Lambda Lemma~for scalarz! or by geometric singular perturbation theory~in the case
of scalarz, and also for vector valuedz! in conjunction with theNth-order Melnikov function~see
Ref. 10 for applications!. These periodic orbits make one or more fast excursions away from a
hyperbolic periodic solution. In this way, theNth-order adiabatic Melnikov function enables one
to generalize the results of Refs. 7, 8, and 12 for special conservative cases of slowly varying
sinusoidal and cubic potentials to the entire class of systems~1.1!, even to those with dissipation.
During their fast excursions, the multi-pulse resonant periodic orbits stay close to the multi-pulse
homoclinic orbits studied here. Thus, precise asymptotic information about the location of many
N-pulse periodic orbits can also be gained with theNth-order adiabatic Melnikov function.
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In the global bifurcations at which segments of stable and unstable manifolds are tangent to
each other, pairs of stable and unstable periodic orbits are created. Tangencies of these manifolds
occur when theNth-order adiabatic Melnikov function has higher-order zeroes. Hence, theNth-
order adiabatic Melnikov function can also be used to detect homoclinic tangencies and the
associated creation of resonant periodic orbits.

The theory developed here is illustrated on an example of a Hamiltonian system, including
dissipation, with a cubic potential whose slow variation inz is periodic. We identify and classify
all the higher-order intersection points—and their corresponding multi-pulse homoclinic orbits—
obtained by the intersection of a segment of the unstable manifold and a segment of the stable
manifold. We find several different types of multi-pulse homoclinic orbits, including those that
make their fast excursions in rapid succession and those that spend a longer amount of time in
between excursions.

In the special case whenm50 in ~1.1! and whenH is periodic inz, the general theoretical
method developed here is similar to the adiabatic separatrix-crossing map used in Ref. 16. In their
vertex–intervertex map, the energy and time variables for an orbit are updated using the slow rate
of change of the action and the period, respectively, evaluated at the appropriate vertices. By
comparison, in our work, the energy change is measured by the adiabatic Melnikov function, and
the period is essential for measuring the time between vertices, and hence for calculating the slow
time at which to evaluate the Melnikov function. The methods yield the same result since the
adiabatic Melnikov function is equal to the rate of pulsation of the critical~instantaneous separa-
trix! action, as shown in Refs. 9 and 17. Thus, the set of zeroes ofMA corresponds to the setLe

in Ref. 16, and the exact location of higher-order intersection points may be determined either by
applying the separatrix-crossing map as demonstrated in Sec. 3.5 of Ref. 16 or by computing the
appropriate higher-order adiabatic Melnikov function.

Finally, we remark that our work was inspired in part by the recently developed20 higher-order
Melnikov theory for planar Hamiltonian systems subject to general, small-amplitude, time-
periodic perturbations:

ẋ5
]H

]y
~x,y!1dg1~x,y,t !, ẏ52

]H

]y
~x,y!1dg2~x,y,t !,

where 0,d!1. Our proof strategy borrows heavily from Ref. 20. For these systems, the secondary
Melnikov function20 depends on theO ~1! phaset0 , and the existence of secondary intersection
points is established by the zeroes of the function. In contrast, our second-order andNth-order
(N.2) adiabatic Melnikov functions which depend on slowly varyingO ~«! phases. Also, we
work directly on~1.1!, whereas the Whisker map is used in Ref. 20.

The theory of multi-pulse homoclinic orbits has also been developed recently in a number of
other contexts. Forn degree of freedom Hamiltonian systems subject to small amplitude pertur-
bations, dubbed as system I in Ref. 19, the work in Refs. 21 and 22 has shown the existence of
different types of multi-pulse orbits. For the same types of systems, Ref. 23 develops a higher-
order Melnikov theory. In each of these works, the central variable is a rapidly—~O ~1!!—varying
phase. The energy function of Ref. 21, the Melnikov functions used in Ref. 22, and the higher-
order Melnikov function of Ref. 23 are functions of the appropriateO ~1! variable, in contrast to
our higher-order Melnikov function which is a function of a slowly varying parameter. In addition,
the techniques of proof are fundamentally different.

Finally, homoclinic explosions~and implosions! in which infinitely many multi-pulse ho-
moclinic orbits are created~disappear! have recently been discovered24 in a slowly varying Hamil-
tonian system. This system is related to the Ginzburg–Landau equation and may be written in the
form of ~1.1! by replacing the third component of the vector field by a particular function of the
form «F(q,p,z) and then analyzing the bifurcations that occur along the persistent slow manifold.
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The paper is organized as follows. We state the two structural assumptions on~1.1! in Sec. II.
In Sec. III, we present a heuristic derivation of theNth-order Melnikov function for the~1.1! with
m50. This heuristic derivation is extended to~1.1! with mÞ0 in Sec. VIII. We state the main
theorem for~1.1! with m50 and its corollary for~1.1! with mÞ0 in Sec. IV. We present an
example in Sec. V. Section VI contains local estimates that are necessary for the proof of the
Theorem. Finally, the theorem and corollary are proven in Secs. VII and VIII, respectively.

II. STRUCTURAL ASSUMPTION

We begin by making the following assumption on~1.1! when«50:
Assumption 1: For each fixed z in a finite interval, the instantaneous or frozen system

q̇5
]H

]p
~q,p,z!, ṗ52

]H

]q
~q,p,z!, ż50, ~2.1!

has a saddle fixed point at„qe(z),pe(z)… that satisfies the condition H„qe(z),pe(z),z…50. For
each z, this saddle is connected to itself by a homoclinic orbitGz. The graph ofGz varies smoothly
with z, andGz is parametrized by the solutionq0

z(t)[„q0
z(t),p0

z(t),z…. Finally, the interior of the
region bounded by„qe(z),pe(z)…øGz is filled with a continuous family of periodic orbits, qa

z , for
aP(21,0), each with energy hz

a,0 and period Pz
a5P(hz

a). Moreover, Pz
a is differentiable in ha(z),

and dPz
a/dhz

a,0.
For definiteness and without loss of generality, we takeGz to be as shown in Fig. 1. Letn(z)

denote the unit normal vector toGz at the pointq0
z(0) in theq–p plane. Inq–p–z space, the

union of the saddle equilibria overz forms a one-dimensional normally hyperbolic manifoldg0
that must be either compact~e.g., H is periodic in z! or with boundary and that has two-
dimensional stable and unstable manifoldsWs(g0) andW

u(g0), respectively. We remark that
when e50, one branch of each of these manifolds coincide in a homoclinic manifold, which is
simply the union of the homoclinic orbitsGz over all z. The results of Sec. IV are readily
generalized to the case in which~2.1! possesses heteroclinic orbits, and hence they are applicable
to all of the examples cited in the Introduction.

FIG. 1. The geometry of the unperturbed system.
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III. HEURISTIC DERIVATION OF THE NTH-ORDER MELNIKOV FUNCTION

Consider the system~1.1! with m50:

q̇5
]H

]p
~q,p,z!, ṗ52

]H

]q
~q,p,z!, ż5«. ~3.1!

Fenichel theory,25 states that for« sufficiently small,g0 persists as a slow manifoldg« along with
its two-dimensional local stable and unstable manifolds,Wloc

s (g«) andWloc
u (g«), respectively. The

global counterparts of these perturbed manifolds no longer coincide in general, and instead they
can transversely intersect one another. We now present a heuristic derivation of theNth-order
Melnikov function used to detect theNth-order transverse intersections ofWs(g«) andW

u(g«) in
which theN-pulse orbits homoclinic tog« lie for N52,3,... . This derivation will be extended to
themÞ0 case in Sec. VIII.

Let qu(t;z0 ,«)5„xu(t),yu(t),z… be a solution on the unstable manifoldWu(g«) that crosses
the normaln(z) for the first time withz5z05«t0 , and hits the negativex axis nearg« at t 5 t1*
with energyH1,0. See Fig. 2 for a sketch. This solution exists when« is sufficiently small. Using
the chain rule, we compute

H1[E
2`

t1* dH

dt
„qu~ t;z0 ,«!…dt5«E

2`

t1* ]H

]z
„qu~ t;z0 ,«!…dt. ~3.2!

At a time z02Dz, for some fixed Dz, qu(t;z0 ,«) is exponentially close tog« ; i.e.,
uqu(t;z0 ,«) u5O (e

2c/«), for some c.0. So for all z,z02Dz, we know that
u]H/]z„qu(t;z0 ,«)…u 5 O (e2c1 /«), with c1.0. For zP[z02Dz, z0], we Taylor expand
]H/]z„qu(t;z0 ,«)… aboutq 5 q0

z0(t) and make an error ofO ~«!. This expansion holds for all
zP[z02Dz, z01Dz]. Hence,~3.2! becomes

H15«E
2`

t1* F]H]z „q0
z0~ t !…1O ~«!Gdt.

We introduce the following definitions to keep the length of formulas under control. Let
h1(z0)[ *2`

` (]H/]z)„q0
z0(t)…dt, and letRs(z0 ,t1* )[ 2«* t

1*
`

]H/]z„q0
z0(t)…dt1 O («2). In termsof

these new symbols, the above formula forH1 becomes

H15«h1~z0!1Rs~z0 ,t1* !. ~3.3!

We remark thath1(z0) is precisely the~one-pulse! adiabatic Melnikov functionMA(z0).
2,4,14,15

We will classify systems of the form~1.1! that satisfy our assumption as systems of type I or
of type II. Systems of type I satisfy the extra condition

]H

]z
5a~z!L~q,p,z!, where E

2`

`

„q0
z~ t !…dt.0 for all z.

Thus, for systems of type I the adiabatic Melnikov function is written as
MA(z)5a(z)*2`

`
„q0

z(t); u…dt, where form sufficiently small, this last integral is positive and
L̂„q0

z(t);0… [ L„q0
z(t)…. We call systems of type II those that do not satisfy it.

We have chosen the form given in~3.3! to expressH1, since we will show in Sec. VII A that
the remainders are of higher order. In fact, for type I systemsRs(z0,t1* )5O («2) as «→0 for
systems of type II,Rs(z0,t1* )5O («2ln(1/«)) as«→0. This completes the first part of the heuristic
derivation.
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Now, since we assumedH1,0, we know thatqu(t;z0 ,«) is not a primary homoclinic solu-
tion. As we follow this solution beyondt1* , it will make a second fast excursion away fromg« ,
crossingn(z) now at somez5z15«t1 , and then it will come back to the neighborhood ofg« ,
again for« sufficiently small. Moreover, in this neighborhood this solution either hits thex axis or
the y axis at t 5 t2* with energyH2 , or it is forward asymptotic tog« ~whenH250 and t2* is
infinite!. An exact computation yields

H25H11E
t1*

t2* dH

dt
„qu~ t;z0 ,«!…dt.

FIG. 2. Projections onto thex–y plane of the perturbed solutionqu(t;z0 ,«) on the unstable manifoldWu(g«). ~a! The
projection is up to timet5t1* . The dotted curve represents the unperturbed homoclinic orbitq0

z0 at z5z0 . ~b! When
H2.0, qu(t2* ;z0 ,«) is on the positivey axis. The dotted curve corresponds to the unperturbed homoclinicq0

z1. ~c! When
H250, we have thatt2* is infinite. The dotted curve represents the unperturbed periodic orbitqh1

z0 at z5z0 , with energy

«h1 .

6225C. Soto-Treviño and T. J. Kaper: Higher-order Melnikov theory for adiabatic systems

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



In order to arrive at a suitable approximation ofH2 , we proceed as we did with the first
excursion and write the second fast excursion as an expansion about the instantaneous separatrix
at z5z1 :

H25H11«E
2`

` ]H

]z
„q0

z1~ t !…dt2«E
2`

t1* ]H

]z
„q0

z1~ t !…dt2«E
t2*

` ]H

]z
„q0

z1~ t !…dt1O ~«2!.

Therefore, using the remainder notation introduced above, we rewrite this formula as

H25«„h1~z0!1h1~z1!…1Rs~z0 ,t1* !1Rs~z1 ,t2* !1Ru~z1 ,t1* !, ~3.4!

whereRu(z1 ,t1* )[ 2«*
2`

t1* (]H/]z)„q0
z1(t)…dt1O («2).

Finally, we use an asymptotic relation betweenz0 andz1 . Sincez12z0 is the amount of slow
time between consecutive crossings ofqu(t;z0 ,«) with n(z), we expect that the periodP(H1) of
the unperturbed periodic orbit of the frozen system~2.1! with z5z0 , with energyH1 5 hz0

a , where

a is determined byH1 , provides a good approximation of the amount of time the solution
qu(t;z0 ,«) spends in the oscillatory regime. In fact, using~3.3!, the leading order asymptotic
behavior as«→0 will be shown in Sec. VII B to be

z1;z01«P„«h1~z0!…. ~3.5!

Therefore, the above results motivate us to study the function

h2~z0 ,«![h1~z0!1h1~z01«P„h1~z0!…!, ~3.6!

whose zeroes will be shown to correspond to secondary homoclinic orbits. ForN-pulse ho-
moclinic orbits, the value of the functionH afterN excursions is given exactly as

HN5HN211E
tN21*

tN* dH

dt
„q0

u~ t;z0 ,«!…dt

5HN211«h1~zN21!1Rs~zN21 ,tN* !1Ru~zN21 ,tN21* !. ~3.7!

Hence, we need the inductively defined function

hN~z0 ,«![hN21~z0 ,«!1h1S z01« (
j51

N21

P~«hj !D , ~3.8!

whereh1[h1(z0) andhj[hj (z0 ,«) for j52,...,N21.
This completes the heuristic derivation. As remarked above,h1(z0)5MA(z0). We will also

useM1,A(z0) to denoteMA(z0). Therefore, the functionsh1 ,...,hN lead us to define the second
order andNth-order forN>2 adiabatic Melnikov functions inductively as

M2,A~z0 ,«!5M1,A~z0!1M1,A„z01«P~«h1!…,
~3.9!

MN,A~z0 ,«!5MN21,A~z0 ,«!1M1,AS z01« (
j51

N21

P~«hj !D .
The theorem form50 and the corollary formÞ0 formulated in the next section show that
«MN,A(z0 ,«) is a good approximation toHN for N52,..., and that simple zeroes ofMN,A(z0 ,«)
imply simple zeroes ofHN , and hence transverseNth-order intersections for systems~1.1!.
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Remark 1:There is an alternative derivation ofHN which we briefly present for theN52
case. Letqu(t;z0 ,«) be as above, andq

s(t;z1 ,«) be a solution on the stable manifoldW
s(g«) that

in backward time crosses the normaln(z1) for the first time atz5z1 , and hits the negativex axis
in the neighborhood ofg« at t 5 t1* . The difference in the value ofH for these two orbits at the
time t 5 t1* , when both of them are on thex axis ~see Fig. 3!, is also a measure of the distance
betweenWu(g«) andW

s(g«). This difference is given by

DH5E
2`

t1* dH

dt
„qu~ t;z0 ,«!…dt2 È t1* dH

dt
„qs~ t;z1 ,«!…dt.

After approximatingqu(t;z0 ,«) with q0
z0 the solution on the instantaneous separatrix, and

qs(t;z1 ,«) with q0
z1, we obtain

DH5E
2`

` dH

dt
„q0

z0~ t !…dt1E
2`

` dH

dt
„q0

z1~ t !…dt1Rs~z0 ,t1* !1Ru~z1 ,t1* !

5«„h1~z0!1h1~z1!…1Rs~z0 ,t1* !1Ru~z1 ,t1* !. ~3.10!

So DH is H2 up to a remainder term and soH2 can be interpreted as the signed distance
betweenWu(g«) andW

s(g«) in the neighborhood ofg« . For generalN>2, HN can similarly be
interpreted as the signed distance between these two manifolds. WhenN is even, this distance is
measured along thex axis in the neighborhood ofg« , while for oddN, the distance is measured
along some normaln(z).

Remark 2:In some cases, the symmetries of the Hamiltonian allow us to improve the error in
~3.10!, and therefore in~3.4!. If H(q,p,z) is invariant under the change of coordinatesp→2p,
then the remainder termsRs(z0 ,t1* ) andRu(z1 ,t1* ) cancel each other out, and~3.10! becomes
DH5«„h1(z0)1h1(z1)…1O ~«2!.

IV. STATEMENT OF THE MAIN RESULT

Theorem 1: Let (3.1) satisfy Assumption 1. Let MN,A(z,«) denote the Nth-order adiabatic
Melnikov function for (3.1), where N is a fixed positive integer. If (z0,«0) is such that

~1! MN,A(z0 ,«0)50,
~2! M1,A(z0),2k,0 and Mj ,A(z0 ,«0),2k,0 for j52,...,N21, and
~3! dMN,A/dz(z0 ,«0).n.0,

then there exists a constant«̂5 «̂(k,n,a,b) where0,b,a, 1
2, such that for every«,«̂ in an

O («0
11a) size neighborhood of«0 , and for some zP[z02Dz,z01Dz] with Dz5O («0

b), W«
u(g«)

and W«
s(g«) intersect transversely in an N-pulse homoclinic orbit. Furthermore, the remainder

terms in calculatingMN areO ~«2! for type I systems and ofO ~«2 ln~1/«!! for type II systems.
When the expansion ofh1(z0 1 «( j51

N21P(« j j )) in « aboutz0 is considered in expression~3.9!,
the first and second terms of this asymptotic expansion are significant for systems of type I, while
for type II systems, the second term in this expansion is of the same order as the remainder.

Remark 3:If the system~2.1! possesses multiple homoclinic orbits, the theory can be applied
to each one separately, and further homoclinic orbits might be possible in which near-separatrix
excursions occur near different homoclinic loops. Also, the theory can be immediately extended to
the case of one or more heteroclinic orbits, with the relevant integrals being evaluated along the
appropriate heteroclinic, as opposed to homoclinic, orbits. Finally, the second condition of the
theorem can be relaxed by just requiring thatM1,A(z0) andM j ,A(z0 ,«0) for j52,...,N21 are
bounded away from zero. In systems where the topography is correct, such as a slowly varying
Duffing equation, this extension enables the detection of a wider class of homoclinic solutions. In
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some geometries, such as the slowly varying cubic, however, this extension is not relevant, since
orbits withM j ,A.0 for somej never return to the neighborhood ofg« . In fact, in the example
below, they escape from the slowly varying potential well.

Corollary 1: For the full damped and forced system (1.1) withmÞ0 satisfying Assumption 1,
with MN,A(z,«) denoting its corresponding adiabatic Melnikov function, and for values(z0 ,«0)
that satisfy conditions (1), (2), and (3) of Theorem 1, the results of Theorem 1 hold.

Theorem 1 is proven in Secs. VI and VII, and the Corollary is proven in Sec. VIII.

V. AN EXAMPLE

In this section, we will deal with the case in which the Hamiltonian is periodic inz:

q̇5p, ṗ5q22F~z!2«mp, ż5«, ~5.1!

whereF(z)[11c1cos(z), c.0, andm.0 is the dissipation parameter.7,12 Its Hamiltonian has a
slowly varying cubic potential:H(p,q;z)5p2/22q3/31qF(z)2 2

3F(z)
3/2. System~5.1! is of type

I and clearly satisfies our assumption: the«50 or frozen system has a saddle at„q52F(z)1/2,
p50… for eachzP[0,2p) so thatg0 is compact and boundaryless. Each saddle is connected to
itself by a homoclinic orbitGz. Gz is parametrized byt as follows:

~F1/2~z!~123 sech2„F1/4~z!t/A2…!,3A2F3/4~z!sech2„F1/4~z!t/A2…tanh„F1/4~z!t/A2…!.

This expression for the instantaneous separatrix facilitates a direct computation of the adiabatic
Melnikov function:

M1,A~z0 ;m!5E
2`

` ]H

]z
„q0

z0~ t !…dt56A2F1/4~z0!S sin~z0!2
4

5
mF~z0! D .

Figure 4~a! shows plots ofM1,A(z0 ;m) as a function ofz0 , for some values ofm. Each of its
simple zeroes implies~via the implicit function theorem! a transverse intersection ofWu(g«) and
Ws(g«). In the rest of the figures and the subsequent discussion, we setm50 to simplify the
numerical computations. We comment on them.0 case in the remarks, as well as on the more
general case in which the Hamiltonian is not periodic inz.

The zeroes ofM1,A(z0 ;0)[M1,A(z0) of the formẑ052kp, wherek is any integer~for which
M1,A8 ( ẑ0) . 0!, correspond to a homoclinic orbit of~5.1! with a fast excursion near a maximum
instantaneous separatrix. Each zero of the formẑ05(2k11)p @for whichM1,A8 ( ẑ0) , 0# corre-
sponds to a homoclinic orbit with a fast excursion near a minimum instantaneous separatrix.

FIG. 3. Illustration of Remark 1 showing projections onto thex–y plane of the solutionsqu(t;z0 ,«) onW
u(g«) ~solid

curve! andqs(t;z1 ,«) onW
s(g«) ~dashed curve!. At time t 5 t1* both solutions are on thex axis. Depending on the sign of

H„qu(t1* ;z0 ,«),z1* … 2 H„qs(t1* ;z0 ,«),z1* … we have~a! H2,0 and~b! H2.0.
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Figure 5 displays the intersection ofWu(g«) andW
s(g«) with the Poincare´ section atz50,

Pz50, for some values of« as« decreases. In what follows, we denoteWu(g«)ùPz50 byW
u, and

Ws(g«)ùPz50 byW
s. We label the primary intersection points ofWu andWs by P1 ; P1m

p , P1m
2p,

whereP1 belongs to the homoclinic orbit with an excursion close to the maximum instantaneous
separatrix atz50. The orbits throughP1m

p and P1m
2p are the principal homoclinic orbits with

excursions at the minimum instantaneous separatrices atz5p andz52p, respectively.
We proceed to find the intersection points that belong to theN-pulse homoclinic orbits de-

scribed in Theorem 1. Beginning withN52, the secondary adiabatic Melnikov function is:

M2,A~z0 ,«!5M1,A~z0!1M1,A~z01«P„«h1~z0!…!. ~5.2!

We look for zeroes of~5.2! that satisfy conditions 2 and 3 of Theorem 1. From Fig. 4~a!, we see
thatz0 must belong to the interval~2p/2,0!. To find these zeroes, we look first at the expression
«P„«h1(z0)… in the argument of the second term of~5.2!. Figure 4~b! shows plots of
«h1(z0)5«M1,A(z0) as« decreases, and Fig. 4~c! displays the behavior ofP„«h1(z0)…, where for
eachz0 , P„«h1(z0)… denotes the period of the periodic orbit of the frozen system~system~5.1!
with «50! with z5z0 , with energy«h1(z0). Thus,P„«h1(z0)… can be obtained via complete
elliptic integrals of the first kind. For« small,P„«h1(z0)…5O ~ln„1/«h1(z0)…!; hence the graph in
Fig. 4~c! diverges atz050. However, as«→0, «P„«h1(z0)…→0, at least forh1(z0) not exponen-
tially small. Thus, for« small, the graph ofM1,A(z01«P„«h1(z0)…! is the graph ofM1,A(z0)
slightly translated~nonuniformly! to the left. Finally, as Fig. 4~d! shows, the zeroz0,2 of
M2,A(z0 ,«) is obtained by the intersection of the graph ofM1,A(z01«P„«h1(z0)…! and that of
2M1,A(z0 ,«).

We now use our estimate of«P„«h1(z0)… to obtain an estimate on the size ofz0,2. We expand
M1,A(z01«P„«h1(z0)…! about z0 : M1,A(z0 1 «P„«h1(z0)…)5M1,A(z0)1M1,A8 (z0)O (« ln 1/«)
1O («2 ln2 1/«). Equation~5.2! becomes

FIG. 4. Analysis of the example in Sec. V.~a! Plots of M 1,A(z0 ;m) for different values ofm. ~b! Plots of
«M1,A(z0 ;0)5«M1,A(z0) for different values of«: «51 ~solid curve!, «50.5 ~long dashed curve!, «50.2 ~short and long
dashed curve!, and «50.05 ~short dashed curve!. ~c! Behavior of P„«h1(z0)…5P„«M1,A(z0 ;0)…. ~d! Intersection of
M1,A(z01«P„«h1(z0)…! ~solid curve! with 2M 1,A(z0) ~long dashed curve!. M 1,A(z0) ~dotted curve! is also shown for
z0P(2p/2,0].
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M2,A~z0 ,«!52M1,A~z0!1M1,A8 ~z0!O S « ln
1

« D1O S «2 ln2
1

« D ,
where we are interested in the caseM1,A8 (z0).0. Note that M1,A8 (z0)5O (1). Then,
M2,A(z0 ,«)50 implies

052M1,A~z0,2!1M1,A8 ~z0,2!O S « ln
1

« D1O S «2 ln2
1

« D .
The first two terms on the right cancel each other out whenM1,A(z0,2) is itselfO ~« ln 1/«!, which
in turn makesz0,2 of O ~« ln 1/«!. In fact, z0,2 is O ~« ln 1/«! to the left of the zeroz50 of M1,A.
From Theorem 1, we conclude thatWu(g«) andW

s(g«) intersect in a two-pulse homoclinic orbit
that makes two excursions near the maximum separatrix. The first excursion reaches its minimum
in q at z5z0,25O ~« ln 1/«! to the left of z50. It is not difficult to see that the second fast
excursion reaches its minimum inq at z5z1,25O ~« ln 1/«! to the right ofz50, since we can

FIG. 5. Poincare´ sections atz50 of the intersections ofWu ~solid! andWs ~dashed! for system~5.1! with m50 for
decreasing values of«. Intersection points are labelled asPi , Ei , andAi

u,d. ThePi intersection points correspond to the
i -pulse homoclinic orbits whose existence is established via Theorem 1. These pictures were obtained by numerical
simulations based on the algorithm also used in Ref. 17. We used a symplectic integration method, and the code was
developed by Steven P. Weibel. The values of« in each of the panels are~a! «51, ~b! «50.9, ~c! «50.8, ~d! «50.68,~e!
«50.6, ~f! «50.54, ~g! «50.5, ~h! «50.45, ~i! «50.4, ~j! «50.35, ~k! «50.325, and~l! «50.3.
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always writeM2,A(z1 ,«)5M1,A(z12«P„«h1(z1)…!1M1,A(z1 ,«), where z1 corresponds to the
second time the solutionqu(t;z0 ,«) reaches a normaln(z). In Fig. 5, this two-pulse homoclinic
orbit corresponds to the intersection point labelled asP2 .

Remark 4:When the Hamiltonian is odd about its zero, as in this example withm50 in ~5.1!,
the pointsz0,2 andz1,2 are equidistant fromz50, a zero ofM1,A. Using ~3.4!, and expandingz0
andz1 aboutz50,wegetM2,A 5 2h1(0)1 h18(0)z0 1 h18(0)z1 1 h19(0)z0

2 1 h19(0)z1
2 1 O (z0

3;z1
3).

Sinceh1(0) 5 h19(0) 5 0, thenM2,A50 impliesz052z1 , at least up toO ~«2! terms. See Remark
2. However, when the Hamiltonian is not odd about its zero as in the case ofm.0 in ~5.1!,
h9(0)Þ0, and then the equalityz052z1 holds up toO ~«2 ln2 1/«! terms.

We proceed now to consider the tertiary Melnikov function:

M3,A~z0 ,«!5M2,A~z0 ,«!1M1,A~z01«P„«h1~z0!…1«P„«h2~z0!…!. ~5.3!

Again, asymptotically as«→0, «P„«h1(z0)…1«P„«h2(z0)…5O ~« ln 1/«!, so ~5.3! can be
written as follows:

M3,A~z0 ,«!53M1,A~z0 ,«!12M1,A8 ~z0!O S « ln
1

« D1O S «2 ln2
1

« D ,
which yields that the zeroz0,3 of this function isO ~« ln 1/«! to the left ofz0,2, for « sufficiently
small. The intersection point corresponding to this three-pulse homoclinic orbit is labelled asP3 in
Fig. 5.

Proceeding in the same manner, for any finiteN, and for« sufficiently small, we find that

MN,A~z0 ,«!5NM1,A~z0 ,«!1~N21!M1,A8 ~z0!O S « ln
1

« D1O S «2 ln2
1

« D .
Hence, ourN-pulse homoclinic orbits makeN excursions close to the maximum instantaneous
separatrix, and its successive minima inq areO ~« ln 1/«! apart. These orbits correspond to the
intersection points labeled asP2 , P3 , P4 , P5 ,... in Fig. 5.

In what follows we discuss the intersection points labeledEi andAi in Fig. 5. Consider first
Figs. 5~a! and 5~b!. Let S[P1 , P1m

2p] be the segment ofWs between the two primary intersection
points~pips! P1 andP1m

2p. After one period, all points in this segment ofWs will be mapped to the
neighborhood ofg« , and will remain there forever after. Similarly, letU[P1m

p , P1] be the segment
ofWu between the pipsP1m

p andP1 . All previous images of this segment under the Poincare´ map
stay in the neighborhood ofg« .

Now, consider the pointE2PS[P1 , P1m
2p]. All of its forward images under the Poincare´ map

will stay in the neighborhood ofg« , getting closer and closer to it. Also, sinceE2PU[P1m
p , P1],

all of its preimages were in the neighborhood ofg« . HereE2 is on theq axis, inside a boxB in
the neighborhood ofg« . See Sec. VI for the definition ofB. In Sec. VI, we write a normal form
@see Eq.~6.1!# for Eqs.~5.1! in B. Using this normal form, we conclude that the orbit throughE2
should leave the boxB, and therefore it should make another excursion away fromg« to finally
asymptote tog« . We do a similar analysis for the backward orbit throughE2 . Thus,E2 corre-
sponds to a two-pulse homoclinic orbit. As«→0, the distance betweenE2 andP1m

2p gets expo-
nentially small, as measured onU[P1 , P1m

2p].
The same reasoning applies toP2 : its image after one period is in the neighborhood ofg« , and

remains there ever after. All of its preimages are in the neighborhood ofg« . Note also, as
measured in arclength alongU[P1 , P1m

2p], thatP1 is closer toP2 thanE2 , soP2 must correspond
to the two-pulse homoclinic whose existence is guaranteed by the zero ofM2,A(z0 ,«). The main
difference betweenP2 andE2 is the time their orbits spend in between their fast excursions away
from g« . As «→0, the orbit throughP2 takes anO ~« ln 1/«! amount ofz-time during this excur-
sion, while the one throughE2 spends anO ~1! amount ofz-time, since it gets exponentially close
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to g« the second time it reaches theq axis. See Figs. 5~b! and 5~c!. Also, since it is exponentially
close toP1m

2p alongU[P1 , P1m
2p], and exponentially close toP1m

p alongS[P1m
p , P1], we expect

this two-pulse homoclinic orbit to make its fast excursions exponentially close to the primary
homoclinic orbits at the minimum separatrices occuring atz52p andz5p. See Fig. 6.

Each of the points labelled byA2
d and A2

u ~the letterA is chosen to refer to asymmetric!
corresponds also to a two-pulse homoclinic orbit. These orbits are born when, as« decreases, the
angle formed by the segment ofWu and that ofWs at their intersection atP2 changes sign, that is,
whenWu andWs are tangent atP2 . See Fig. 5~b!. Once born, as«→0, these points get exponen-
tially close toP1 @see the cases 5~d! and 5~e!#. Thus, their corresponding homoclinic orbits make
one excursion at a maximum separatrix and one at a minimum one.A2

d first makes an excursion
exponentially close to the one-pulse homoclinic orbit with a fast excursion atz52p, and another
one exponentially close to the one-pulse homoclinic that makes a fast excursion atz50.A2

u makes
first an excursion exponentially close to the maximum principal homoclinic orbit~at z50! and
then one exponentially close to the minimum one~at z5p!. See Fig. 6.

Remark 5: In principle, the tangency in whichA2
u and A2

d are born can be detected by
computing higher derivatives ofH2(z0 ,«). WhenH2(z0* ,«* ) 5 0, there are three different ways
for Wu andWs to intersect atP2 , as is shown in Fig. 7. Using the interpretation ofH2(z0 ,«) as
a signed distance betweenWu andWs ~see Remark 1 in Sec. III!, one can distinguish among these
three possibilities by looking at the sign of]H2/]z0 . Thus, the tangency at whichA2

u andA2
d are

born occurs at the value of« that satisfies

H2~z0* ,«* !50,
]H2

]z0
~z0* ,«* !50, and

]2H2

]«]z0
~z0* ,«* !,0.

However, we cannot compute this«* , since our results for approximatingH2 with «h2 are valid
asymptotically as«→0, and for« sufficiently small it is always the case that]h2/]z0.0. For
example, from Fig. 5~b!, we can see that the value for~5.1! is «*'0.9.

We now continue with the description of Fig. 5. As« decreases, one notices that more and
more intersection points appear. In Fig. 5~d!, two tertiary intersection points have been born:P3
andE3 . P3 corresponds to the three-pulse homoclinic orbit obtained from the zero ofM3,A(z0 ,«).
The intersection pointE3 gets exponentially close toP1 as«→0, which means that its correspond-
ing homoclinic orbit spendsO ~1! amount ofz-time in between its fast excursions; these excur-
sions occur atz52p, z50, andz5p, each of which is exponentially close to the corresponding
one-pulse homoclinic. In Fig. 5~g!, A3

u andA3
d have appeared. They were born in the tangency of

the segments ofWu andWs at P3 . See case 5~f!. We point out that this is the same type of
tangency that gave birth toA2

u andA2
d. As «→0, A3

u andA3
d get exponentially close toP2 , and the

corresponding three-pulse homoclinic orbits look like those shown in Fig. 6.
As « continues to decrease, we see thatP4 andE4 appear, followed byA4

u andA4
d. ThenP5

andE5 are born, and so on. Figure 8 summarizes the location of some of these intersection points
with respect to theq axis.

All the intersection points labeled asPi correspond to thei -pulse homoclinic orbits that are
detected by the zeroes ofMi ,A(z0 ,«), as explained at the beginning of this section. As«→0, the
homoclinic orbits corresponding toEi intersection points make fast excursions that are exponen-
tially close to the minimum instantaneous separatrixz52p, then to the homoclinic orbit corre-
sponding toPi22, and finally to the minimum instantaneous separatrix atz5p. The ones corre-
sponding to theAi

u,d intersection points make an excursion exponentially close to the homoclinic
orbit of Pi21, and to one of the minimum instantaneous separatrices~see Fig. 6!. All the Ai

u,d

intersection points are born whenWu andWs are tangent atPi . As mentioned in Remark 5, these
tangencies can be detected, in principle, via the higher derivatives ofHi .

Although the existence of all thePi , Ei , and Ai
u,d intersection points in thez periodic

Hamiltonian case follows automatically from the existence of primary intersection points, a de-
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tailed characterization of the corresponding homoclinic orbits is given by the above results. As we
have shown, Theorem 1 can be used to obtain asymptotics of the homoclinic orbits corresponding
to thePi . Moreover, the existence and local uniqueness of the orbits corresponding to theEi and
Ai
u,d intersection points is rigorously shown using the techniques developed in Refs. 10 and 22.

This method has the advantage that, in addition to providing a more detailed description of the
location in phase space of these multi-pulse homoclinic orbits, it also can be used in the dissipative
case, in the nonperiodic Hamiltonian case, and in other higher-dimensional22 and non-Hamiltonian
systems.26,27 We now briefly describe the use of this method in the case of the two-pulse ho-
moclinic orbit corresponding toE2 for our example. The main idea is to construct it as the
transverse intersection of two invariant manifolds. One of these manifolds,M« , is chosen so that
all initial conditions on it leave the neighborhood ofg« exponentially close toW

u(g«) in an open
interval ofz values containingz5p. SinceM« is exponentially close toW

u(g«) on exit and since

FIG. 6. Diagram of the behavior of the multi-pulse homoclinic orbits corresponding to the different intersection points
described in Fig. 5 for« sufficiently small. Slow timez increases from left to right. The top three curves represent the
principal homoclinic orbits, whose existence is established by the zeroes of the one-pulse adiabatic Melnikov function. The
curves labelled asPi for i>2 represent homoclinic orbits withi fast excursions close to the maximum instantaneous
separatrix. The curves labelled asEi for i>2 correspond to homoclinic orbits that make a fast excursion exponentially
close to the principal homoclinic orbit with a fast excursion atz52p, then makei22 fast excursions exponentially close
to the fast excursions of the homoclinic orbit corresponding toPi22, and finally they make another fast excursion
exponentially close to the fast excursion of the principal homoclinic orbit that makes its fast excursion close to the
minimum instantaneous separatrix atz5p.
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Wu(g«) andW
s(g«) intersect transversely in the principal homoclinic orbit close to the minimum

instantaneous separatrix with a fast excursion atz5p, thenM« andW
s(g«) will intersect trans-

versely, yielding the orbit corresponding toE2 for positivez. A similar construction gives the orbit
segment for negativez. Note, however that the extra symmetry in the Hamiltonian yields the same
result ~and also the symmetry of the homoclinic orbit throughE2!.

Remark 6:Once it has been established that a system of the form~3.1!, whose Hamiltonian is
periodic inz, possesses~for « sufficiently small! anN-pulse homoclinic orbit that corresponds to
the PN intersection point, we can show that there is a periodic orbit close to it. The method of
proof is that of Ref. 10, where we construct the periodic orbit as the transverse intersection of two
invariant manifolds, sayM« andN « . M« is obtained by flowing an appropriate set of ‘‘initial
conditions’’ forward in time, and the other invariant manifold,N « , by flowing a set of ‘‘final
conditions’’ backward in time. These sets of initial and final conditions are chosen so that when
M« andN « leave the neighborhoodB of g« , they do so exponentially close toWu(g«) and
Ws(g«), respectively.@This result requires the use of a technical tool, ELESE,28 that allows the
tracking of invariant manifolds while orbits on them spendO ~1/«! amounts of time near a slow
manifold.# Furthermore,M« andN « areC

1-exponentially close toWu(g«) andW
s(g«) in the

regions whereWu(g«) andW
s(g«) intersect transversely in anN-pulse homoclinic orbit. Thus,

automatically, our invariant manifolds also intersect transversely, and their intersection is expo-
nentially close to theN-pulse homoclinic orbit during its fast excursions away fromg« . Finally, if
the sets of initial and final conditions are chosen properly, the resulting orbit is periodic.

Remark 7:The identification of the intersection points ofWu andWs that we have carried out
for the system~5.1! with m50 suggests that the periodic orbits obtained in Remark 6 may be
related to~and may even be the same as! the periodic orbits that were found via topological
shooting in Ref. 7, and via matched asymptotic expansions in Ref. 12. The asymptotics of the
periodic orbits obtained in Remark 6 satisfy the properties of the spikes of the periodic orbits in
Ref. 7. In Ref. 7 the periodic orbits were labelled as (i , j ), for i50,1,2,3..., andj50,1; i denotes
the number of fast excursions the orbit makes in the neighborhood of the maximum instantaneous

FIG. 7. Intersections ofWu andWs at P2 . Case~a! corresponds to]H2/]z0,0, case~b! to ]H2/]z050, and case~c! to
]H2/]z0.0.

FIG. 8. A schematic representation of the location of the intersection points~up to i56! ofWu andWs of system~5.1! with
m50 with respect to theq axis.
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separatrix, andj corresponds to either zero or one excursions close to the instantaneous minimum
separatrix. Borrowing the same (i , j ) labelling, our (i ,0) periodic orbits are close to thei -pulse
homoclinic orbits whose existence we show via the zero ofMi ,A(z0 ,«) and correspond to the
intersection pointPi , and the (i ,1) periodic orbits are close to thei -pulse homoclinic orbits
associated to theAi21

u intersection point. We point out that, for« sufficiently small, the homoclinic
orbits corresponding to thePi intersection points which makei fast excursions, occur only close
to the maximum instantaneous separatrix, not to the minimum one. This suggests that the periodic
orbits found by the method of Remark 6 may not have more than one excursion near the minimum
instantaneous separatrix, as is the case for those found in Ref. 7 and 12.

VI. LOCAL ESTIMATES

In this section, we present a local analysis of~3.1! nearg« when 0,«!1 and nearg0 when
«50. In particular, we study the Fenichel normal forms for both systems. The first one gives the
local behavior of Eqs.~3.1! in a neighborhoodB̂ of g« . The second one is for Eqs.~3.1! with «50
and z5z0 fixed; i.e., for the unperturbed case. Then, using these normal forms, we compute in
Lemma 1 the time thatqh1

z0 , the unperturbed periodic solution withz5z0 and energy«h1 , spends

insideB̂. In Lemma 2, we perform a similar computation for the perturbed trajectoryqu(t;z0 ,«)
onWu(g«) that has energyH1 at time t 5 t1* . To homogenize notation, we call this solution
qH1

u .

We begin by deriving the Fenichel normal form for Eqs.~3.1! in a neighborhoodB̂ of g« . The
instantaneous eigenvalues for the linearization about the saddle„qe(z),pe(z)… are6S(z), where
S(z)[[Hqp

2 2HppHqq]
1/2
„qe(z),pe(z),z…. Hence, using the instantaneous eigenvectors as new co-

ordinate axes, we define the variables

j[2S 121
Hqp

2S~z! D x2
Hpp

2S~z!
y,

h[2S 122
Hqp

2S~z! D x1
Hpp

2S~z!
y,

where all partial derivatives are evaluated at„qe(z),pe(z),z…. The inverse coordinate change is
then given by:

x[2j2h,

y[2SS~z!2Hqp

Hpp
D j1SS~z!1Hqp

Hpp
Dh.

In terms of these new coordinates, Eqs.~3.1! can be written as

j̇5S~z!j1g̃1~j,h,z;«!, ḣ52S~z!h1g̃2~j,h,z;«!, ż5«,

in the neighborhood ofg« , whereg̃i , i51,2, areCr functions representing terms that are nonlinear
in j andh, as well as linear terms inj andh that areO ~«!. This form of the equations is almost
good enough. We need only one more coordinate change to bring the system into its most useful
form.

Fenichel theory25 ~see also Ref. 29! asserts the existence ofCr smooth functionsws(h,z;«)
andwu(j,z;«), for any r.0, defined forj andh in B̂ such that the sets

$j5ws~h,z;«!% and $h5wu~j,z;«!%
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are the invariant manifoldsWloc
s (g«) andWloc

u (g«), respectively. Moreover, these functions satisfy
the propertiesws(0,z;«)50, (]ws/]h)(0,z;«)50, wu(0,z;«)50, and (]wu/]j)(0,z;«)50.
Hence, defining final variables as

a[j2ws~h,z;«! and b[h2wu~j,z;«!,

the local manifolds are straightened out and given by the sets$a50% and$b50%. Therefore, since
these sets are invariant, Eqs.~3.1! can be written in the neighborhood ofg« as

ȧ5S~z!a1g1~a,b,z;«!a,

ḃ52S~z!b1g2~a,b,z;«!b, ~6.1!

ż5«.

This completes the derivation for the perturbed normal form inB̂. For D.0 small, let
B5$(a,b,z):uau<D,ubu<D% be a neighborhood ofg« for which the normal form~6.1! is valid.
From this point on, we replaceB̂ with B.

For the system~3.1!, with «50 andz5z0 we follow the same procedure as above to obtain
nice local coordinates. First, we perform a linear coordinate change in the neighborhood of the
saddle fixed point, which turns its eigenvectors into the coordinate axes. To avoid confusion with
the «.0 case, these coordinates will have the superscript ‘‘o’’. Thus ~2.1! becomes

j̇o5S~z0!j
o1g1

o~ho,jo;z0!,
~6.2!

ḣo5S~z0!h
o1g2

o~ho,jo;z0!.

Then we make another change of coordinates that will make the stable and unstable manifolds of
the saddle fixed point become the new coordinate axes:

ȧo5S~z0!a
o1G1~a

o,bo;z0!a
o,

~6.3!
ḃo52S~z0!b

o1G2~a
o,bo;z0!b

o.

This Fenichel normal form holds inside a neighborhood of the form
B o5$(ao,bo,z0):ua

ou<D1 ,ub
ou<D1%, where we takeD1 such thatB,B o.

In the two following lemmas, we estimate the time for both the perturbedqH1

u and unperturbed

qh1
z0 trajectories insideB, where both~6.1! and~6.3! are valid. These results will be used in Sec.

VII for the proof of Theorem 1. The reader may skip their proofs on an initial reading.
For clarity of notation, the times for the unperturbed system will also have a superscript ‘‘o’’.

We split the time the unperturbed periodic orbitqh1
z0 spends inB in two intervals: first, from the

entrance to the box att in
o , to thex axis att1

o* , and second, from thex axis to the exit ofB at
tout
o . Let (ain

o ,bin
o ) be the (ao,bo) coordinates at entry att in

o and (ao* ,bo* ) the coordinates upon

reaching thex axis att1
o* . Given the way theao andbo coordinate axes were set up the trajectory

has positiveao and bo coordinates throughout the flight insideB ~see Fig. 9!. By choice of
construction,bin

o 5 D 1 O («) andaout
o 5 D 1 O («). We now introduce similar notation for the per-

turbed trajectoryqH1

u . Let t in and tout be the entry and exit times ofqH1

u to and from the boxB,

so thatb(t in!5D anda(tout!5D. Here t1* is the time at which this trajectory reaches thex axis,
with local coordinates (a* ,b* ). The time of flight ofqH1

u in B will be also divided in two

intervals, the first one beingt1* 2 t in and the second onetout2 t1* .
Lemma 1: The amount of (fast) time tout

o 2 t in
o the periodic orbitqh1

z0 spends in the boxB is
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21

S~z0!
F lnS 1

2V~z0!
A u«h1u

a3~z0!
D 1 lnS 1

2U~z0!
A u«h1u

a3~z0!
D G1

2

S~z0!
ln D1O ~D,«1/3!,

where

V~z0![
S~z0!

S~z0!2Hqp„qe~z0!,pe~z0!…
and U~z0![

S~z0!

S~z0!1Hqp„qe~z0!,pe~z0!…
.

Proof: We will use the second equation of~6.3! to estimate the first part of the flightt1
o*

2 t in
o since we have control of thebo coordinate on entry. The first equation in~6.3! will be used

for the second intervaltout
o 2 t1

o* .
The timet1

o* 2 t in
o for the orbitqh1

z0 to travel from (ain
o ,bin

o ) to (ao* ,bo* ) is

E
t in
o

t1
o*
dt5E

bin
o

bo* dbo

2S~z0!b
o1G2~a

o,bo;z0!b
o . ~6.4!

The singular part of the integrand is21/S(z0)b
o, so we add it and subtract it in the integrand

above, to obtain

t1
o*2t in

o5E
bin
o

bo* dbo

2S~z0!b
o 1E

bin
o

bo* G2db
o

2S~z0!b
o~12G2!

, ~6.5!

where G2[G2(a
o,bo; z0) /S(z0)5 k1 (z0) a

o1k2 (z0) b
o1k3 (z0) a

o21k4 (z0) a
obo1k5 (z0) b

o2

1O (ao3,ao2,bo,aobo2,bo3). By directly computing the first integral in~6.5!, and by using the
expansion ofḠ2 together with the binomial expansion of 1/(12Ḡ2) in the second integral,~6.5!
implies to leading order:

FIG. 9. Schematic representation of the perturbedqH1

u and unperturbedqh1
z0 trajectories inside the boxB.
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t1
o*2t in

o5
21

S~z0!
ln bo*1

1

S~z0!
ln bin

o1
21

S~z0!
I o, ~6.6!

where I o[ k1(z0) I 1
o1k2 (z0) I 2

o1„k1
2(z0)1k3 (z0)… I 3

o1„2k1(z0) k2 (z0)1k4 (z0)… I 4
o1„k2

2 (z0)

1k5(z0)…I 5
o. HereI 1

o[*b
in
o
bo*

(ao/bo)dbo, I 2
o [ *b

in
o
bo*

dbo, I 3
o [ *b

in
o
bo*

ao2/bodbo, I 4
o[*b

in
o
bo*

aodbo and

I 5
o[*b

in
o
bo*

bodbo. In ~6.6!, higher-order terms involving integrands ofO ~3! have been neglected.

Now we relatebo* to xo*[x(t1
o* ), thex-coordinate ofqh1

z0 when it reaches thex axis. From

the changes of coordinates that led us to~6.2!, and sincey(t1
o* )50, we havejo*52xo* /

2U(z0), ho*52xo* /2V(z0). The latter expressions give, to leading order,ao*52xo* /2U(z0)
and bo*52xo* /2V(z0). Next, we relatexo* to the ‘‘energy’’ «h1 that the orbit has at time

t1
o* , using an expansion of the frozen Hamiltonian and recalling thaty(t1

o* )50, we obtainH1

52a3(z0)(x
o* )21O (3), where a3(z0).0. Thus, xo*52Au«h1u/a3(z0)(11O (A«)), which

yields

ao*5
1

2U~z0!
A u«h1u

a3~z0!
„11O ~A«!…,

~6.7!

bo*5
1

2V~z0!
A u«h1u

a3~z0!
„11O ~A«!….

Replacingbo* in the first logarithmic term of~6.6! with ~6.7!, andbin
o with D1O ~«! in the second

logarithmic term,~6.6! becomes

t1
o*2t in

o5
21

S~z0!
lnS 1

2V~z0!
A u«h1u

a3~z0!
D 1

1

S~z0!
ln D2

1

S~z0!
I o1O ~A«!. ~6.8!

Thus, we have almost obtained the desired result for the first part of the trajectory. It remains
to be shown thatI o is O ~D,«1/3!. We now estimateI i

o for i51,2,...,5.
I 2
o and I 5

o can be directly integrated:I 2
o5bo*2bin

o , I 55
1
2(b

o* 22bin
o2). Next, sinceao is at

most O (ao* ) and bo is at least O (bo* ), I 3
o and I 4

o can be immediately estimated:I 3
o

5O (ao* ubo*2bin
o u), and I 4

o5O (ao* ubo*2bin
o u). And, sincebin

o5D1O («), bo*5O (A«), and
ao*5O (A«), we obtain

I 2
o5O ~D,A«!, I 3

o5O ~A«!, I 4
o5O ~A«!, and I 5

o5O ~D2,A«!. ~6.9!

To estimateI 1
o, we divide the interval of integration in two parts. The first part, frombin

o to some
bint
o ~an intermediate value ofbo to be specified later!, and the second part frombint

o to bo* . Thus

I 1
o5E

bin
o

bint
o ao

bo
dbo1E

bint
o

bo* ao

bo
dbo.

In the first integral, we takeao5O (A«), and in the second one we use thatao/bo is at most
ao* /bo* , which isO ~1!. Thus

I 1
o5O ~A«u ln bint

o 2 ln bin
o u!1O ~ ubo*2bint

o u!.

So, choosingbint
o 5O («a) for 0,a,1

2 the last term of the above expression isO(«a). Without loss
of generality, we leta51

3. Hence
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I 1
o5O ~A« ln «21,«1/3!.

Combined with~6.9! this last estimate allows us to write

t1
o*2t in

o5
21

S~z0!
lnS 1

2V~z0!
A u«h1u

a3~z0!
D 1

1

S~z0!
ln D1O ~D,«1/3!. ~6.10!

Thus, the desired difference is obtained for the first part of the flight insideB. To estimate the
time it takes for the second part of the flight inside, we start with the first equation of~6.3! and get

E
t1
o*
tout
o

dt5E
ao*
aout
o dao

S~z0!a
o1G1~a

o,bo;z0!a
o .

Then, we perform similar computations as above to obtain

tout
o 2t1

o*5
21

S~z0!
lnS 1

2U~z0!
A u«h1u

a3~z0!
D 1

1

S~z0!
ln D1O ~D,«1/3!. ~6.11!

Hence after adding~6.10! and ~6.11!, we arrive at the result claimed in Lemma 1.
Lemma 2: The (fast) time it takes for the solutionqH1

u on the unstable manifold to travel inside

B is given by

21

S~z0!
F lnS 1

2V~z0!
A uH1u

a3~z0!
D 1 lnS 1

2U~z0!
A uH1u

a3~z0!
D G1

2

S~z0!
ln D1O ~D,uH1u1/3!.

~6.12!

Remark 8:It will be seen in Sec. VII thatuH1u5O ~«!, thusO ~D! is the dominant error. Also,
we do not explicitly write out higher-order terms that are bounded byO (A« lnuH1u21).

Proof: Although the estimates are slightly more involved than for the unperturbed case, the
calculation proceeds in the same fashion. Assume« is small enough so thatqH1

u (t1* ) is inB. Using

Fenichel theory, we can explicitly state what the relationships between the nonlinear terms in the
perturbed and unperturbed normal forms~6.1! and~6.3! are. We know thatg« andg0 areC

r O ~«!
close. Also,Wloc

s (g«) andWloc
s (g0) areC

r O ~«! close, and so areWloc
u (g«) andWloc

u (g0). Fur-
thermore, the functions whose graphs are the perturbed stable and unstable manifolds arer times
differentiable inz. See Ref. 25, or the exposition in Ref. 29. Taking these facts into consideration,
one can see that fori51,2,

gi~a,b,z;«!5Gi~a,b;z0!1
]gi
]z

~a,b,z0 ;0!~z2z0!1O „«,~z2z0!
2
…. ~6.13!

We now start by expandingS(z) aboutz0 and using~6.13! in the second equation of~6.1!:

ḃ52S~z0!b1@G2~a,b;z0!1m~a,b;z0!~z2z0!1O „«,~z2z0!
2
…#b, ~6.14!

wherem(a,b;z0)[2Sz(z0)/2S(z0)1(]g2/]z)(a,b,z0 ;0). Then, we recall thatb*[b(t1* ), so

E
t in

t1* dt5E
D

b* db

2S~z0!b1@G21m~z2z0!1O „«,~z2z0!
2
…#b

,

whereG2 andm denoteG2(a,b;z0) andm(a,b;z0), respectively. We now add and subtract the
singular part in the integrand to obtain
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t1*2t in5E
D

b* 2db

S~z0!b
1E

D

b* Fdb

2S~z0!b~12F !
, ~6.15!

whereF[G21m̄(z2z0)1O „«,(z2z0)
2
…, G2[G2 /S(z0), and m̄[m/S(z0). Direct evaluation

of the first integral gives

E
D

b* 2db

S~z0!b
5

21

S~z0!
ln b*1

1

S~z0!
ln D.

To writeb* in terms of the energy ofqH1

u , we first write it in terms of itsx coordinatex* and then
write this x* in terms ofH1 . Going back to the coordinate transformations described before
Lemma 1, and recalling thatyu(t1* )50, we have

j*5
21

2U~z!
x* and h*5

21

2V~z!
x* .

In addition, using the properties ofws andwu, we know that

a*[a~ t1* !5j*1O ~h* 2! and b*[b~ t1* !5h*1O ~j* 2!.

Hence, to leading order

x*522V~z!b* or x*522U~z!a* . ~6.16!

We then use the Taylor expansions ofV(z) andU(z) aroundz0 ,

V~z!5V~z0!1«V8~z0!~ t1*2t0!1O ~«2!

5V~z0!1«V8~z0!~ t1*2t in!1«V8~z0!~ t in2t0!1O ~«2!5V~z0!@11O „«~ t1*2t in!…#,

U~z!5U~z0!@11O „«~ t1*2t in!…#,

and substitute this in~6.16! to get

a*5
2x*

2U~z0!
~11O „«~ t1*2t in!…! and b*5

2x*

2V~z0!
~11O „«~ t1*2t in!…!. ~6.17!

Now we proceed to estimatex* in terms of the energyH1 of the orbit we are studying when
xu(t1* )5x* . By definition, we haveH15H(x* ,0,z01«r 1* ), where t1*5z0 /«1r 1* . In a neigh-
borhood ofg« ,

H152a3~z!x* 21a4~z!x* 31O ~4!. ~6.18!

Solving ~6.18! for x* yields

x*52uH1u1/2F 1

Aa3~z0!
2
1

2

a38~z0!

a3
3/2~z0!

«r 1*1O ~«2!G S 11
1

2

a4~z!

a3~z!
x*1O „~x* !2…D .

Hence,

x*5
2uH1u1/2

Aa3~z0!
@11O „«~ t1*2t in!,uH1u1/2…#. ~6.19!
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Using ~6.17! and ~6.19! in the integral for the singular part, we get

E
D

b* 2db

S~z0!b
5

21

S~z0!
lnS 1

2V~z0!
A uH1u

a3~z0!
D 1

1

S~z0!
ln D1O ~«~ t1*2t in!,AuH1u!. ~6.20!

Next, we estimate the second integral in~6.15!. First, we decompose it:

E
D

b* Fdb

2S~z0!b~12F !
5

21

S~z0!
~ I g1Im!.

Here,

I g[k1~z0!I 11k2~z0!I 21„k1
2~z0!1k3~z0!…I 3

1„2k1~z0!k2~z0!1k4~z0!…I 41„k2
2~z0!1k3~z0!…I 5 ,

where

I 1[E
D

b* a

b
db, I 2[E

D

b*
db, I 3[E

D

b* a2

b
db, I 4[E

D

b*
a db, I 5[E

D

b*
b db,

and

Im[E
D

b* 1

b
@m̄„z2z0!12~k1~z0!a1k2~z0!b…m̄~z2z0!

1O „~z2z0!
2,a2~z2z0!,ab~z2z0!,b

2~z2z0!,a~z2z0!
2,b~z2z0!

2,«…#db.

We note here that the integrands ofI i have the same form as those ofI i
o for i51,...,5.

We can directly integrateI 2 and I 5 :

I 25b*2D, I 55
1
2~b*

22D2!.

Since a is at most O (a* ) and b is at least O (b* ), we get I 35O (a* ub*2Du) and
I 45O (a* ub*2Du). Now, using~6.19! in ~6.17!, we obtain

a*5O ~AuH1u,AuH1u«~ t1*2t in!!,
~6.21!

b*5O ~AuH1u,AuH1u«~ t1*2t in!!,

which yields

I 25O ~D!, I 35O ~AuH1u!, I 45O ~AuH1u!, and I 55O ~D2!.

To estimateI 1 , we break the interval of integration in two:

I 15E
D

bint a

b
db1E

bint

b* a

b
db

wherebint5O (uH1u
1/3). This is similar to what we did for estimatingI 1 in the unperturbed case

and yieldsI 15O (AuH1u lnuH1u21,uH1u1/3) and hence

I g5O ~D,uH1u1/3!.
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Next, we estimateIm :

Im;M«~ t1*2t in!u ln b*2 ln Du12M«~ t1*2t in!„k2~z0!ub*2Du1k1~z0!uH1u1/3…, ~6.22!

whereM5maxm, and sinceb*5O (AuH1u),

Im5O „« lnuH1u21~ t1*2t in!….

Putting the estimates forI g and Im together we arrive at the estimate for the first part of the
flight insideB:

t1*2t in5
21

S~z0!
lnS 1

2V~z0!
A uH1u

a3~z0!
D 1

1

S~z0!
ln D1O ~D,uH1u1/3!. ~6.23!

Similarly, using the second equation of~6.3! and the fact thataout5aout
o 1O («), the second

part of the flight inB is

tout2t1*5
21

S~z0!
lnS 1

2U~z0!
A uH1u

a3~z0!
D 1

1

S~z0!
ln D1O ~D,uH1u1/3!. ~6.24!

Finally adding~6.23! and ~6.24!, Lemma 2 is proved.
Remark 9:The technicality of splitting the trajectory at some intermediateb value was also

used in adiabatic separatrix crossing theories~see Ref. 5, for example!. It reflects the singular
perturbation nature of the problem, with the trajectory frombin to bint being part of the inner
solution extended into the overlap domain, and the trajectory frombint to b* being part of the
outer solution similarly extended.

VII. PROOF OF THEOREM 1

We will divide the proof of Theorem 1 in five steps. The first step consists of showing
Ru(z0,t1* )5O («2) as«→0 for type I systems, andRu(z0,t1* )5O («2ln(1/«)) as«→0 for type II
systems. Thus, the valueH1 of the functionH that the solutionqu(t;z0 ,«) has upon reaching the
x axis at t5t1* is «h1(z0) to leading order. We remark that this same proof shows that the
remainders~3.7! involved in theN-pulse homoclinic orbits are alsoO ~«2! for type I systems, while
for type II systems they areO ~«2 ln 1/«!. In step 2, we show thatz12z0;«P„«h1(z0)… as«→0.
Next, in step 3, we show thatH2 is given to leading order by«h2(z0 ,«)5«M2,A(z0 ,«). Then, we
show in step 4 that simple zeroes ofh2 @i.e., of the secondary Melnikov functionM2,A(z0 ,«)#
correspond to simple zeroes ofH2 . Thus step 4 shows how to obtain the existence of double pulse
homoclinic orbits. Finally, we extend the double pulse result to a criterion for the existence of
N-pulse homoclinic orbits involving theNth-order Melnikov functionMN,A(z0 ,«) in step 5. All
the estimates in steps 3 through 5 have been carried out for type II systems, since their remainder
terms are larger than those for type I systems. The estimates for type I systems are identical, with
the estimates of the remainders improved as in Step 1.

A. Step 1

In this subsection we show that for systems of type I,Rs(z0,t1* !5O («2,«uH1u3/2 lnuH1u) and
for type II systems,Rs(z0 ,t1* ) 5 O (uH1u« ln 1/«,«2) where we also obtainH15u~«! so the re-
mainders are as claimed above. We start by recalling

2«E
t1*

` ]H

]z
„q0

z0~ t !…dt52E
t1*

` dH

dt
„q0

z0~ t !…dt5H„q0
z0~ t1* !,z1* …,

wherez1*5«t1* . We expand this last expression in thez variable aboutz0 :
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H„x0
z0~ t1* !,y0

z0~ t1* !,z1* …5
]H

]z
„x0

z0~ t1* !,y0
z0~ t1* !,z0…~z02z1* !1O „~z02z1* !2…. ~7.1!

Here we have usedH(x0
z0,y0

z0,z0)50, since we are evaluatingH on an instantaneous separatrix.

We first estimateq0
z0(t1* )[„x0

z0(t1* ),y0
z0(t1* ),z0…, and then evaluate the partial derivative ofH

using]H/]z5O (x2,xy,y2) in the neighborhood ofg« . Moreover,z02z1*5O (« lnuH1u) by ~6.23!
in Lemma 2. Putting these estimates together yields the desired result.

The linear approximation of thex coordinate of the instantaneous separatrixq0
z0 is x0

z0(t)
;Ce2S(z0)(t2t in), for larget. Hence, fort5t1* ,

x0
z0~ t1* !;Ce2S~z0!~ t1*2t in!.

Replacingt1*2t in by the right-hand side of~6.23!, we obtain

x0
z0~ t1* !;CS 1

2V~z0!D
A uH1u

a3~z0!
D exp„O ~D,uH1u1/3,«~ lnuH1u21!2,AuH1u lnuH1u21!…,

which upon expansion yields

x0
z0~ t1* !;C„11O ~D!…S 1

2V~z0!D
A uH1u

a3~z0!
D 1O ~ uH1u5/6!.

Similarly, we obtainy0
z0(t1* )5O (AuH1u). Putting these estimates ofx0

z0(t1* ) andy0
z0(t1* ) into

the expansion for]H/]z yields ]H/]z„x0
z0(t1* ),y0

z0(t1* ),z0…5O (uH1u) for type II systems. Thus,
~7.1! becomes

H~q0
z0~ t1* !,z1* !5O ~«uH1u lnuH1u!.

For type I systems we can improve the estimate of the remainder. Since thez0 we are
interested in areO ~« lnuH1u! to the zero ofMA(z), by ~3.4! we have thata(z0!5O ~« lnuH1u!,
which together with the Taylor expansion ofH in (x,y) about (x,y)5~0,0! yields (]H/]z)
(x0

z0(t1* ), y0
z0(t1* ),z0)5O (uH1u« lnuH1u). Therefore~7.1! becomes ofO ~«2,«2uH1u ln

2uH1u! and we
have the desired result.

In conclusion, we now have

H15«h11O ~«2!,

H15«h11O S «2 ln
1

« D ~7.2!

for type I and type II systems, respectively.

B. Step 2

In this second step, we compare the~slow! time, z12z0 , that qH1

u spends in the oscillating

regime with the period~in slow time!, «P(«h1), of qh1
z0 . The difference will be shown to be

O ~«4/3!. The proof holds for both type I and type II systems.
To accomplish this, we recall Lemmas 1 and 2 in which the time each of these trajectories

spends insideB is computed. The difference in these slow times is calculated asO ~«4/3! in
Corollary 2. Then, we show that the difference in the slow times of flight of these two trajectories
outside ofB is O ~«3/2!. Hence, the total difference isO ~«4/3!.
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Corollary 2: Inside the boxB, the (fast) times of passage ofqh1
z0 andqH1

u differ byO (u«h1u
1/3),

so that the slow times differ byO ~«4/3!.
Proof:We rewrite~6.23!, the first part of the time of flight ofqH1

u insideB, using~7.2!:

t1*2t in52
1

S~z0!
lnS 1

2V~z0!
A u«h1u

a3~z0!
D 1

1

S~z0!
ln D2

1

S~z0!
~ I g1Im!1O ~A«!, ~7.3!

where, recall,I g5k2(z0)I 21„k2
2(z0)1k5(z0)…I 51O (u«h1u

1/3), I 25b*2D, I 55
1
2(b*

22D2), and
Im5O „«~lnu«h1u

21!2….
We compare this expression with~6.8!, which corresponds to the time that the unperturbed

periodic orbitqh1
z0 takes in its first part of the flight insideB :

t1
o*2t in

o52
1

S~z0!
lnS 1

2V~z0!
A u«h1u

a3~z0!
D 1

1

S~z0!
ln D2

1

S~z0!
I o1O ~A«!

where I o5k2(z0)I 2
o1„k2

2(z0)1k5(z0)…I 5
o1O ~«1/3!, I 2

o5(bo*2bin
o ) and I 5

o5 1
2(b

o* 22bin
o2).

Thus, substitutingbin
o5D1O (A«) and bo*5b* (11O (A«)! in I 2

o and I 5
o, we get

I 25I 2
o1O ~A«! and I 55I 5

o1O ~A«!.

Hence, we can now compare the two time intervals:

t1*2t in5t1
o*2t in

o1O ~«1/3!.

A similar result is obtained when we compare the second half of the flights insideB. This
completes the proof of the corollary.

We now complete Step 2. By choice of construction, we know that the trajectories we are
tracking satisfybin

o5bin1O («)5D1O («) on entry toB, and aout
o 5aout1O («)5D1O («)

upon exiting. On the other hand, given thatao* is O (A«) and that the periodic orbitqh1
z0 takes an

O ~lnu«h1u
21! amount of time in its first part of the flight inB, we must haveain

o!A« by ~6.3!.
Similarly, for the perturbed trajectoryqH1

u : a* is O (A«) and the first part of the flight inB takes

anO ~lnuH1u
21! amount of time. Hence, we must also haveain!A« by ~3.1!. Now, sinceg0 and

g« are C rO ~«! close, and so are their local stable manifolds~given respectively by the sets
$ao50% and$a50%! and the unstable ones~given by the sets$bo50% and$b50%!, it follows that
ain
o and ain are at leastO (A«) close. Thus,ain

o5ain1O (A«). A similar argument shows that
bout
o 5bout1O (A«).
To compute the time difference outsideB, we start by using the result from the previous

discussion forqH1

u and qh1
z0 at the exit ofB. Upon exitingB, the orbits areO ~«1/2! close.

Gronwall-type estimates guarantee that they will remainO ~«1/2! close whenqh1
z0 reaches a maxi-

mum of the norm of itsq coordinate at timet1
o, since it spends anO ~1! amount of time outsideB.

This means that at this moment,qH1

u will be O ~«1/2! close to theq axis. Now, it will takeqH1

u an

O ~«1/2! amount of time to reach the normaln(z) at t15z1/«, since the vector field isO ~1! there.
Thus in this part of the flight outsideB, the difference in the respective times of flight isO ~«1/2!.

Hence,t12t1*5t1
o2t1

o*1O («1/2). For the other part of the flight outsideB, the difference is also
O ~«1/2!. Combining this time difference for the times spent outsideB with the estimate in Cor-
ollary 2 for the difference while inB, we have shown that

«P„«h1~z0!…5z12z01O ~ u«h1u4/3!. ~7.4!
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C. Step 3

We now proceed to compute the estimate ofH2 . Recall that we are carrying out the estimates
in this and all further steps explicitly for type II systems. Those for type I systems are identical
with the improved estimate of the remainder as given in Step 1. So far, for the orbitqu(t;z0 ,«),
we have

H25H11E
t1*

t2* dH

dt
dt5«h1~z0!1«h1~z1!1O S u«h1u« ln

1

«
,u«h2u« ln

1

«
,«2D ,

where the result of Step 1 has been used in all of the remainder terms in~3.4!. The leading error
terms areO ~«2 ln 1/«!, sinceh1 andh2 areO ~1!.

We now substitute the relationship~7.4! betweenz1 andz0 computed in Step 2 for«h1(z1) in
the above equation:

H25«[MA~z0!1MA~~z01«P„«h1~z0!…1O ~«4/3!!#1O S «2 ln
1

« D .
Finally, we recall that h2(z0 ,«)[MA(z0)1MA(z01«P„«h1(z0)…!, so that for
z0P$z:MA(z)<k,0%, we take the Taylor expansion ofH2 and conclude

H2~z0 ,«!5«h2~z0 ,«!1O S «2 ln
1

« D . ~7.5!

D. Step 4

We now show that the existence of a simple zero ofh2 at ~z5z0 , «5«0! guarantees thatH2
has a simple zero for some (z,«) near (z0 ,«0). Our method follows closely the strategy used in
Ref. 20, since the implicit function theorem cannot be used becauseN52,3,..., pulse homoclinic
orbits do not exist when«50.

Let 0,b,a,1
2, Dz5K«0

b, whereK.0, andD«5J«0
11a, whereJPR. We will prove that

H2(z02Dz,«01D«) andH2(z01Dz,«01D«) are of different signs.
We begin by considering the Taylor expansion ofH2 about (z0 ,«0):

H2~z01Dz,«01D«!5H2~z0 ,«0!1
]H2

]z
~z0 ,«0!K«0

b1
1

2

]2H2

]z2
~z0 ,«0!K

2«0
2b

1
]2H2

]z]«
~z0 ,«0!KJ«0

11a1b1
]H2

]«
~z0 ,«0!J«0

11a

1O ~«0
3b ,«0

2~11a! ,«11a12b!.

Then we use the asymptotic formula~7.5! derived in Step 3 to replaceH2 with h2 :

H2~z01Dz,«01D«!5K
]h2
]z

~z0 ,«0!«0
11b1K2

1

2

]2h2
]z2

«0
112b1KJ

]2~«h2!

]z]«
~z0 ,«0!«0

11a1b

1J
]~«h2!

]«
~z0 ,«0!«0

11a1O S «0
2 ln

1

«0
,«0

3b11D , ~7.6!

where we have used the fact thath2(z0 ,«0)50. Next, we make the following estimates. First,
P„«h1(z0)…5O ~lnu«h1u

1/2!5O ~ln 1/«!; and, second,](«h2)/]«5«]h2/]«1h2 , where
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]h2
]«

5MA8 ~z0!F« dP

d«
1P„«h1~z0!…G5MA8 ~z0!FO ~1!1O S ln 1

« D G5O S ln 1

« D ,
and we have used the fact thatdP/d« also has an asymptotic expansion as«→0, namelydP/d«
5O ~1/«!.

Finally, note thatK(]h2/]z)(z0 ,«0)«0
11b is the dominant term, since the two terms with

partial derivatives in« in ~7.6! areO „«0
21a1b ln~1/«0!… andO „«0

21a ln~1/«0!…, respectively. Thus,
we write

H2~z01Dz,«01D«!5K
]h2
]z

~z0 ,«0!«0
11b1O S «0

112b ,«0
2 ln

1

«0
D , ~7.7!

and similarly

H2~z02Dz,«01D«!52K
]h2
]z

~z0 ,«0!«0
11b1O S «0

112b ,«0
2 ln

1

«0
D . ~7.8!

Since by hypothesis (]h2/]z)(z0 ,«0)Þ0, we see from the two expressions above thatH2 has a
simple zero whenz0P[z02Dz,z01Dz], for every« in an interval of sizeO ~«0

11a! about«0.

E. Step 5

In this final step, we prove inductively that

HN~z0 ,«!5«hN1O S «2 ln
1

« D ~7.9!

by making use of the results in Steps 1–3 at each step of the induction process. The proof that
simple zeroes ofhN imply simple zeroes ofHN is identical to the one presented forN52 in Step
4, and we omit it.

AssumeHj (z0 ,«)5«hj1O ~«2 ln 1/«! holds for j51,...,N21. From~3.7! we have

HN5HN211«h1~zN21!1O S «2uhN21u ln
1

«
,«2uhNu ln

1

«
,«2D ,

where the last term was obtained by combining the remainder terms in~3.7! and using the result
from Step 1.

We consider the second term

«h1~zN21!5«h1„zN221«P~«hN21!…1O ~«7/3!,

where we have used the result from Step 2; i.e.,

zN215zN221«P~«hN21!1O ~ u«hN21u4/3!.

Proceeding inductively, we see that

«h1~zN21!5«h1S z01« (
j51

N21

P~«hj !D 1O ~«7/3!.

Finally, using the above expression and our induction hypothesis
HN215«hN21(z0 ,«)1O ~«2 ln 1/«! in the expression forHN , we obtain
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HN5«hN211«h1S z01« (
j51

N21

P~«hj !D 1O S «2 ln
1

« D .
Recalling the definition forhN , we finally obtain

HN~z0 ,«!5«hN1O S «2 ln
1

« D ,
which completes the proof of the Theorem.

VIII. EXTENSION TO (1.1) WITH m>0

Up until now, we have dealt with slowly varying Hamiltonian systems without any damping
or forcing. The above proof of Theorem 1 can now readily be extended to systems of the form
~1.1! with mÞ0 and satisfying Assumption 1, to show that Corollary 1 holds.

We will begin by showing that anNth-order adiabatic Melnikov function can be derived in a
manner that totally parallels the heuristic derivation for the slowly varying Hamiltonian case in
Sec. III. The main difference is that we no longer can talk about the ‘‘energy’’ of the system.
However, we will exploit the fact that for everyz fixed, the level curves of the functionH provide
us with a system of reference curves that help us set up nice coordinates alongn(z).

We specifically deriveM2,A(z0 ,«,m), since the generalization toMN,A(z0 ,«,m) is evident.
Again, let qu(t;z0 ,«,m) be a solution onWu(g«) that crosses the normaln(z) at a time
z5z05«t0 and reaches the negativex axis in the neighborhood ofg« at a timet1* . At that point,
it will cross some level curve ofH, with valueH15H„qu(t1* ;z0 ,«,m),«t1* …, that can be computed
as

H15E
2`

t1* dH

dt
„qu~ t;z0 ,«,m!…dt

5«E
2`

t1* ]H

]z
„qu~ t;z0 ,«,m!…dt1«mE

2`

t1* ~ f 2„q
u~ t;z0 ,«,m!…q̇u~ t;z0 ,«,m!

2 f 1„q
u~ t;z0 ,«,m!…ṗu~ t;z0 ,«,m!!dt,

which reduces to~3.2! whenm50.
As we did in Sec. III, we then approximatequ(t;z0 ,«,m) with the unperturbed separatrix at

z5z0 , so ~3.3! now becomes

H15«MA~z0 ,m!1Rs~z0 ,m,t1* !

where

MA~z0 ,m![E
2`

t1* ]H

]z
„qu~ t;z0 ,«,m!…dt1mE

2`

t1* ~ f 2„q
u~ t;z0 ,«,m!…q̇u~ t;z0 ,«,m!

2 f 1„q
u~ t;z0 ,«,m!…ṗu~ t;z0 ,«,m!!dt,

and the remainder term is

Rs~z0 ,m,t1* !52«E
t1*

` dH

dt
„q0

z0~ t !…dt1O ~«2!5H„q0
z0~ t1* !…1O ~«2!.

From here, just as in the undamped case,
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H25E
2`

t2* dH

dt
„qu~ t;z0 ,«,m!…dt

5«MA~z0 ,m!1«MA~z1 ,m!

1Rs~z0 ,m,t1* !1Rs~z1 ,m,t2* !1Ru~z1 ,m,t1* !, ~8.1!

wherez1 is the second~slow! time of crossing the normaln(z).
Now, the very same arguments we used in them50 case to estimate the time spent in the

rotating regime@and, in fact, the same proof presented in Step 2 with the obvious changes in the
expressions of the Fenichel normal forms~6.1! and ~6.3!# yield

z1;z01«P„«MA~z0 ,m!….

Combining these last two expressions, we arrive at the secondary adiabatic Melnikov function

M2,A~z0 ,«,m![MA~z0 ,m!1MA~z01«P„«MA~z0 ,m!…,m!.

Finally, we point out that the proof that all the remainders in~8.1! are of higher order, namely,
O ~«2! for type I systems, and for type II systems they areO ~«2 ln 1/«!, is identical to that for the
m50 case. The proofs of all the five steps are identical as well.
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It is well-known that the Einstein-Rosen solutions to the 311- dimensional vacuum
Einstein’s equations are in one to one correspondence with solutions of 211-
dimensional general relativity coupled to axi-symmetric, zero rest mass scalar
fields. We first re-examine the quantization of this midi-superspace paying special
attention to the asymptotically flat boundary conditions and to certain functional
analytic subtleties associated with regularization. We then use the resulting quan-
tum theory to analyze several conceptual and technical issues of quantum gravity.
© 1996 American Institute of Physics.@S0022-2488~96!02312-2#

I. INTRODUCTION

Many of the central problems of quantum gravity can be traced back to two main difficulties:
~i! the absence of a background space-time metric and~ii ! the presence of an infinite number of
degrees of freedom.

Let us begin with the first set of issues. The absence of a background geometry implies that
the theory has to be diffeomorphism invariant and this feature makes it difficult to construct
observables and formulate precisely questions of direct physical interest. It also gives rise to the
celebrated ‘‘problem of time’’: if there is no background metric, what are we to make of the notion
of ‘‘time evolution’’? Indeed, if the diffeomorphisms are to be regarded as gauge, at first sight,
dynamics also appears as a part of gauge. Can one disentangle dynamics from gauge unambigu-
ously? These questions are of course not new.~For a detailed discussion, see, e.g. Ref. 1.! To gain
insight into these issues, a number of mini-superspace models have been discussed in the literature
~see, e.g., Ref. 2!. In Bianchi models, for example, one restricts attention only to spatially homo-
geneous solutions of Einstein’s equations and, in the quantum theory, addresses the issue of time
via ‘‘de-parametrization.’’ Perhaps a more striking model is presented by 211-dimensional
vacuum general relativity which, like the 311 theory, is fully diffeomorphism invariant. Quanti-
zation of this model3,4 has shed light on the notion of observables, role of discrete symmetries, etc.
These models have also given us considerable insights into the technical problems that arise due
to the underlying diffeomorphism invariance. For example, since we have no Poincare´ group to
help us, the problem of finding the correct inner-product on the space of quantum states requires
a new strategy. The 211 model has provided a method which, moreover, is free of ambiguities
that arise, e.g., in the de-parametrization procedure.

However, these models do not come to grips with the second main difficulty mentioned
above: the presence of an infinite number of degrees of freedom. To face this difficulty, we need
to consider genuine field theories which do not require a background space-time metric. An
obvious strategy would be to again consider symmetry reductions which, however, are mild
enough to leave behindlocal degrees of freedom. To locate convenient choices, let us briefly
return to the 211-dimensional vacuum general relativity. This theory can be obtained by a sym-
metry reduction of 311-dimensional general relativity with respect to a single space-like Killing
field which is hyper-surface orthogonal and whose norm isconstant. Therefore, as a next step, it
is natural to drop the severe condition on the norm. The symmetry reduced system now has an
infinite number of degrees of freedom. In fact it is now equivalent to 211-dimensional general
relativity coupled to a zero rest mass scalar field~which is given by the logarithm of the norm of
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the Killing field!.5,6 Unfortunately, this midi-superspace is a bit too complicated in that the issue
of global existence of such solutions is still largely unexplored in the classical theory. However, if
we require that there be another hyper-surface orthogonal Killing field in the 311 theory which
commutes with the first one, the situation simplifies dramatically. For now one can in effect
‘‘decouple’’ gravity and the scalar field. More precisely, the equation satisfied by the scalar field
on the curved 211-dimensional space-time is equivalent to the wave equation on a fictitiousflat
211-dimensional space-time. Therefore, one can first solve the second equation without any
reference to the physical metric and then use the solution to obtain the physical metric by simple
integration. Classically, one now has complete control on the issue of global existence.

Such space-times were considered by Einstein and Rosen in the thirties for the case when the
first Killing field is a translation in the ‘‘z-direction’’ and the second is a ‘‘x-y rotation.’’ Thus,
they represent cylindrical gravitational waves~with only one polarization because of the hyper-
surface orthogonality requirement.! Their quantization was considered in a remarkable paper by
Kuchař7 already in 1971. The problem was considered again from a 211-dimensional perspective
by Allen8 in 1987 ~without, however, realizing that this is precisely a symmetry reduced version
of Ref. 7.! In the present paper, we shall return to this midi-superspace. Our purpose is two-fold:
~i! to supplement the analyses by Kucharˇ and Allen with a careful treatment of boundary condi-
tions in the classical theory and of certain functional analytic issues in the quantum theory and~ii !
to use the resulting quantum theory to analyze several conceptual and technical problems of
quantum gravity. Since the model itself is simple enough to be exactly soluble, it provides a
concrete arena to examine these vexing issues and to see how they can be resolved in practice.

Specifically, following Refs. 7 and 8, we will use a canonical approach. Since in this approach
onebeginswith a 211 decomposition of space-time,a priori it is not clear if quantizedspace-time
geometries can emerge in the final theory. Indeed, one often hears the criticism that, since it is tied
to space-like surfaces, the canonical approach may be inadequate to handle ‘‘space-time issues’’
such as ‘‘fluctuations of the light cone.’’ Here, we have a complete quantum theory. It is therefore
natural to ask: are there operators on the final Hilbert space corresponding to space-time geom-
etries? If so, is there adequate structure to analyze how the light cones fluctuate? More generally,
can we tie the canonically quantized theory to the quantum description that emerges from cova-
riant approaches? Can we computeS-matrices? In the classical theory, there is a positive energy
theorem.6,9 Does it continue to hold in the quantum theory? Is the true ground state ‘‘peaked
around’’ Minkowski space-time? Or, does the ground state contain wild quantum fluctuations with
Planck energy density as suggested by Wheeler?10 If so, the true ground state would not have
much resemblance to Minkowski space, except perhaps on a suitable coarse-graining. Another
question which plays an important role in semi-classical considerations is: Are there ‘‘coherent
states’’ which are peaked at classical solutions?

There is a non-perturbative approach to full quantum gravity which is based on connections
and triads~see, e.g., Ref. 4!. A basic assumption in that approach is that the ‘‘Wilson-loop
operators,’’ which correspond to traces of holonomies of a connection around space-like loops,
should be well-defined.A priori it is not clear if this assumption is a reasonable one since in the
definition of these operators, one appears to smear a quantum field along aone-dimensional object
~rather than three or four!. It is natural to ask for the status of this assumption in a completely
solved model. Are these Wilson loop operators well-defined on the explicitly known quantum
Hilbert space?

Of course, the fact that such questions are answered in one way in a specific solution to this
model does not imply that they would not be answered in another way in another solution and,
more importantly, in full 311-dimensional quantum gravity. Nonetheless, the ability to answer
them in detail in an explicit solution can contribute substantially to our overall intuition for
quantum gravity. Our analysis is primarily motivated by such considerations. We will find that
most of these questions can be answered in detail but that the analysis involves several rather
subtle points.

6251A. Ashtekar and M. Pierri: Probing quantum gravity

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The plan of the paper is as follows. In section II, we consider the classical Hamiltonian
formulation and isolate the true degrees of freedom by a gauge fixing procedure. Because we are
in an asymptotically flat situation, by treating the boundary conditions carefully, we can distin-
guish gauge from dynamics. In particular, the true degrees of freedom are naturally subject to
non-trivial dynamics~without the need of any ‘‘deparametrization.’’! In section III, we calculate
the classical Wilson loop functions and express them in terms of the true degrees of freedom.
Quantization is taken up in section IV. As in Refs. 7 and 8 the Hilbert space of states is a Fock
space for scalar fields in 211 dimensions. Subtleties arise, however, because the geometrical
observables, such as the space-time metric and the Wilson loops, are expressed as integrals of
quadratic functionals of these elementary excitations. Thus, in a rough terminology, geometric
excitations arise as non-local ‘‘collective modes’’ of the primary mathematical entity, the quantum
scalar field. Finally, questions raised earlier in this section are analyzed within this solution.
Section V summarizes the main results and points out directions for further work.

II. HAMILTONIAN FORMULATION

A. The midi-superspace

Let us begin with a precise specification of our midi-superspace. For definiteness, we will
work in the 211-dimensional formulation. Thus, we will consider asymptotically flat, axi-
symmetric solutions of 211-dimensional general relativity coupled to zero rest mass scalar-fields
~where the rotational Killing field is hyper-surface orthogonal!. The underlying manifoldM will
be topologicallyR3 and the space-time metric will have signature –,1,1. For simplicity, we will
assume that all fields under consideration areC`.

Denote bysa the rotational Killing field. Hyper-surface orthogonality ofsa implies that the
space-time metricgab has the form

gab5hab1R2¹as¹bs, ~1!

whereR is the norm of the Killing field ands is the ‘‘angular coordinate’’;¹as5R22gabs
b. The

field hab so defined is a metric of signature –,1 on the two-manifolds orthogonal tosa. Let us
introduce a space-like foliation of this two-manifold by linest5const and a dynamical vector field
ta5Nna1Nrr̂ a, wherena is the unit, time-like normal to the foliation andr̂ a the unit~outgoing!
vector field within each slice. The pairN,Nr constitutes the lapse and the shift. If we now
introduce a radial coordinater on any one leaf such thatr50 at the axis~i.e., whereR50) and
r tends to infinity at spatial infinity, the two-metrichab can be written as

hab5~2N21~Nr !2!¹at¹bt12Nr¹ (at¹b)r1eg¹ar¹br , ~2!

whereN,Nr andg are functions ofr and t. It is because of axi-symmetry that the three-metric
gab has only four independent components and they are functions only of two variables.

Thus, our midi-superspace consists of five functions (N,Nr ,g,R,c) on the space-time mani-
fold M wherec is the zero rest mass scalar field~which is also Lie-dragged by the rotational
Killing field !. The five fields are subject to the following field equations:

Gab5Tab and gab¹a¹bc50 , ~3!

whereGab is the Einstein tensor ofgab which is determined by the fields (N,N
r ,g,R) via ~2! and

Tab is the stress-energy tensor of the scalar fieldc:

Tab5¹ac¹bc2
1

2
~gcd¹cc¹dc!gab . ~4!
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~Here, we have used a normalization that arises naturally in the reduction from the 311 theory to
the 211. From the 211 perspective, it is natural to regardf:5c/A8pG as the physical Klein-
Gordon field, whereG is Newton’s constant.!

Asymptotic flatness and regularity at the axis imply certain boundary conditions on our dy-
namical fields. We first note thatgab reduces to a Minkowskian metric when
N51, Nr50, g50, R5r andc50. The general asymptotic flatness conditions can be written
as

N511N1~r,t!, Nr5No
r ~t!1N1

r ~r,t!,
~5!

g~r ,t !5g`~ t !1g1~r ,t !, R~r ,t !5r ~11R1~r ,t !!,

where, on anyt5const surface,N1 ,N1
r ,g1 ,R1 and the scalar fieldsc are of asymptotic order

O(1/r ). ~We will say that a functionf (r ) is of asymptotic order 1/r if r f (r ),r 2f 8(r ) and
r 3f 9(r ) admits limits asr tends to infinity, where a prime denotes a derivative with respect to
r .! While the conditions imposed onN,Nr ,R andc are the obvious ones, the condition on the field
g seems surprising at first. For, even at infinity,g is not required to approach its Minkowskian
value, 0. The reason is that the asymptotic value ofg contains the information about mass: If
g`50, the spatial metric has a deficit angle at infinity which measures the ADM mass.6,9 Thus,
there is a striking contrast with asymptotic flatness in 311 dimensions; the space-time metrics in
our midi-superspace donot approach a fixed Minkowskian metric at infinity. Note finally that
these boundary conditions are somewhat simpler than those used in Ref. 9 where general 211-
dimensional space-times were considered. Here, we can exploit the fact that we are now working
in a highly restrictive context of cylindrical waves.

Finally, regularity at the axis is ensured by requiring thatNr ,g andR vanish there for allt.
~Recall also that by assumption,N,Nr ,g,R2 and c are C` everywhere and, in particular, at
r50.!

B. Phase space

Let us begin with the three-dimensional action with appropriate boundary terms:

S~g,c!:5
1

16pGEM8
d3xAg@R2gab¹ac¹bc#1

1

8pG R
] M8

d2x@KAh2KoAho#, ~6!

whereM 8 is an open set inM ; ]M 8, its boundary inM ; R, the scalar curvature ofg; K and
h, the trace of the extrinsic curvature of, and the determinant of the intrinsic metric on]M 8
induced bygab ; andKo andho are the corresponding fields induced by the Minkowski metric
g̊ab ~obtained by settingN51, Nr50, g50, R5r andc50).

To pass to the Hamiltonian formulation, one performs a 211-decomposition. Let us substitute
in ~6! the form of the metric given by Eqs.~1! and ~2!. Then, the action reduces to the standard
form:

S5
1

8GE dt~dr~pgġ1pRṘ1pcċ!2H@N,Nr # ! ~7!

The HamiltonianH is given by

H@N,Nr #5
1

8GE dr~NC1NrCr !1
1

4G
~12e2g`/2!, ~8!

whereC andCr are functions of the canonical variables,

C5e2g /2~2R92g8R82pgpR!1
1

2
Re2g/2S pc

2

R2 1c82D ,
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Cr5e2g~22p8g1g8pg1R8pR!1e2gpcc8, ~9!

andg` is the value ofg at r5`. ~Here primes denote derivatives with respect tor .!
As expected, the lapse and shift functionsN,Nr appear as Lagrange multipliers; they are not

dynamical variables. Thus, the phase-spaceG consists of three canonically conjugate pairs,
(g,pg ;R,pR ;c,pc), on a two-manifoldS which is topologicallyR2. The boundary conditions on
the configuration variables (g,R,c) have already been discussed. The conditions on the momenta
can be deduced from their definitions in terms of these fields and their time derivatives. At infinity,
pg andpR fall off asO(1/r

2) while pc falls off asO(1/r ). ~Note that these conditions imply that
action *drpgdg,*drpRdR and *drpcdc of the momenta on the tangent vectorsdg,dR,dc to
our configuration space are all finite, so that we have a well-defined~weakly non-degenerate!
symplectic structure.! There are two first class constraints,C50 andCr50, obtained by varying
the action with respect to the Lagrange multipliersN andNr . The Hamiltonian is given byH. ~It
is because of the underlying axi-symmetry that we have only one diffeomorphism constraint,
Cr .)

Let us begin by analyzing the canonical transformations generated by constraints. For this, we
have to first smear the constraints and obtain well-defined functions on the phase space, say,
C@Ng#:5*drNgC andC@Ng

r #5*drNg
r Cr . Using the boundary conditions on the phase space

variables, it is straightforward to verify that these functions are well-definedanddifferentiable on
the phase space ifNg vanishes on the axis and is of asymptotic orderO(1/r ) andNg

r admits a limit
at infinity. ~From now on, the subscriptg on smearing fields will indicate that they satisfy these
boundary conditions.! Since the constraints are of first class, and since we are in the asymptoti-
cally flat context, the canonical transformations generated by these constraints can be regarded as
‘‘gauge’’ in an appropriate sense. As one might expect,C@Ng# generates ‘‘bubble time evolu-
tions’’ via lapses which go to zero at infinity whileC@Ng

r # generates spatial diffeomorphisms
which are bounded at infinity. The situation with the Hamiltonian constraint is the same as the one
we normally encounter in the 311-dimensional theory. For the diffeomorphism constraint, on the
other hand, the situation is quite different since the diffeomorphisms generated byNg

r r̂ a are not
necessarily asymptotically identity. This is, however, the standard situation in 211 dimensions
~see e.g., Refs. 6 and 9!: In 211 dimensions, there are no asymptotic Killing fields corresponding
to spatial translations and the ADM two-momentum vanishes.

To obtain genuine time translations, we have to allow lapses which tend to 1 at infinity and on
the axis. When this is done, the constraint functionC@N# continues to exist everywhere on the
phase space. However, due to the presence of the first two terms involving derivatives ofg and
R in the expression ofC, the functionC@N# fails to be differentiable. To make it differentiable,
one has to add a surface term. As one might expect, this is precisely the surface term in the
expression~8! of the Hamiltonian. Thus, the function which generates the canonical transforma-
tion corresponding to~asymptotically unit! time translation is precisely the HamiltonianH@N#
~obtained by settingNr50 in Eq. ~8!!. On physical states, i.e., when the constraints are satisfied,
the numerical value of the Hamiltonian is given by the surface term in~8!:

E5
1

4G
~12e2 ~1/2! g`!, ~10!

As usual, in the space-time picture, the evolution generated by the Hamiltonian on the phase space
corresponds to motions along the vector fieldta.

Let us summarize the discussion of this sub-section. Because we are in the asymptotically flat
context, there is a clean separation between gauge and dynamics. As usual, when it comes to
physical interpretation, the ‘‘gauge transformations’’ of general relativity have a somewhat dif-
ferent status from that in Yang-Mills theory. It is not that the diffeomorphisms generated by
C@Ng# andC@Ng

r # are ‘‘unphysical.’’ Rather, they are ‘‘redundant’’ when it comes to extracting
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the physical content of the theory. As we will see below, we can gauge fix these constraints and
extract the true degrees of freedom. The Hamiltonian generates ‘‘time evolution’’ among these
gauge fixed points. Knowing this evolution, we can reconstruct the entire solution; motions gen-
erated by constraints are not needed and are in this sense ‘‘redundant.’’

C. Gauge fixing

Since the canonical transformations generated byC@Ng# andC@Ng
r # are to be regarded as

gauge, as in Yang-Mills theory, to gauge fix the system we need to extract one point from each
orbit of the corresponding Hamiltonian vector fields. This is achieved by imposing gauge fixing
conditions which, together with the constraints, constitute a second class system. As in Ref. 7, we
will choose these conditions to make the space-time geometry transparent. Let us demand

R~r !5r and pg~r !50. ~11!

The first condition is motivated by the fact that, in any solution to the field equations~satisfying
our boundary conditions!, the gradient¹aR of the norm of the Killing field]/]s is space-like
everywhere onM .11 Since furthermoreR;r at the axis and at infinity, it is natural to useR itself
as the radial coordinate. After this condition is imposed,R will no longer be a dynamical variable.
The second gauge fixing condition will removeg from our list of dynamical variables. Thus, if
these conditions are admissible, the true degrees of freedom will all reside in the fieldc, in
accordance with our general expectation that in 211 dimensions, all the local degrees of freedom
are carried by matter fields.

To see if our gauge fixing conditions are admissible, let us compute their Poisson brackets
with the constraints. We have

$R~r!2r, Cr@Ng
r # %5Ng

re2gR8,

$pg , C@Ng#%5FNg

2 S 2pgpR1
pc
2

2R
1
R

2
c82D 2Ng8R8Ge2 g/2, ~12!

where, as before,Ng
r andNg are pure gauge lapses and shifts. IfNg

r Þ 0 andNg Þ 0, the right sides
of ~12! do not vanish at any point on the intersection of the surfaces defined by constraints and
gauge fixing conditions~11!. Hence, as needed, the gauge fixed surface intersects the gauge orbits
transversely.

The question now is whether we can choose lapse and shift such that the dynamical evolution
generated by the HamiltonianH@N,Nr # preserves the gauge conditions. More precisely, since the
HamiltonianH@N,Nr # weakly commutes with the constraintsC@Ng#,C@Ng

r #, we know that the
dynamical evolution it generates maps entire gauge orbits to entire gauge orbits. The question is if
we can selectN,Nr such that the image under evolution of any gauge fixed point on the constraint
surface is another gauge fixed point. General considerations from symplectic geometry imply that
if such a pair exists, it is unique. We will now establish the existence. Let us begin with the
Poisson brackets between the gauge conditions and the Hamiltonian:

$R~r!2r, H@N,Nr# % ' Nre2g,

$pg~r !, H@N,Nr #% ' F N4r ~pc
21r 2c82!2N8Ge2 g/2,

where' stands for equality modulo constraints and gauge conditions. We seekN andNr which
satisfy our boundary conditions~namely,N511O(1/r ) andNr5No

r 1O(1/r ) at infinity! and for
which the right hand sides of~13! vanish ~modulo constraints and gauge conditions!. The only
solutions are
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N~r !5exp2
1

4Er
`

dr1r 1S ~pc!2

r 1
2 1~c8!2D and Nr~r !50. ~14!

Finally, let us extract the true degrees of freedom of the theory. In order to accomplish this, we
need to eliminate redundant variables by solving the set of second class constraints~9! and use
gauge conditions~11!. By settingR5r andpg50 in ~9!, we can trivially solve forg andpR in
terms ofc andpc ~using the Hamiltonian and the diffeomorphism constraints respectively!. The
result is

g~R!5
1

2E0
R

dR1R1S pc
2

R1
2 1c82D , ~15!

pR52pcc8. ~16!

Substituting~15! in ~14!, we can also express the lapseN in terms ofg. Thus, as expected, the true
degrees of freedom reside just in the matter variables. Indeed, the space-time metric is now
completely determined byc andpc :

gab5eg~R,t !~2e2g`¹at¹bt1¹aR¹bR!1R2¹as¹bs, ~17!

where, from now on,g will only serve as an abbreviation for the right side of~15!.

D. Reduced phase space

It is obvious from the above discussion that the reduced phase spaceḠ can be coordinatized
by the pair (c(R),pc(R)). The~non-degenerate! symplectic structure on the reduced phase space
Ḡ is the pull-back of the symplectic structure onG. Thus,

$c~R1!,pc~R2!%5d~R1 ,R2! ~18!

on Ḡ. Next, let us write the reduced action by substituting~11!, ~15! and ~16! in ~6!,

S@c,pc#5
1

8GE dtF E dR~pcċ!22~12e2 ~1/2! g`!G , ~19!

where, as before,g`5g(r5`). By varying the action~19! with respect toc and pc we then
obtain equations of motion:

ċ5e2 ~1/2! g`
pc

R
and ṗc5e2 ~1/2! g`~Rc8!8. ~20!

Due to the presence of exp(2 g`/2) factors, these equations are highly non-linear. However, using
~20! it is straightforward to check thatg`(t) is a constant of motion. Hence, given anyone
solution, we can define a new time coordinateT on M via a constant rescaling:T:5(exp2 1

2

g`)t. Then, the fieldc satisfies the followinglinear second-order equation of motion:

2
]2c

]T2
1

]2c

]R2 1
1

R

]c

]R
50. ~21!

This isexactlythe Klein-Gordon equation for a scalar field propagating on a Minkowskian back-
groundgab

o , given by
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gab
o 52¹aT¹bT1¹aR¹bR1R2¹as¹bs. ~22!

Thus, a remarkable simplification has occurred. We can just solve for a free scalar fieldc in
Minkowski space (M ,gab

o ), definea functiong through~15!, and construct a curved metricgab
through~17!. Then the pair (gab ,c) satisfies the non-linear Einstein–Klein–Gordon equations.

This decoupling is not surprising from the space-time perspective. Indeed, it has been ex-
ploited repeatedly in the literature. However, it is illuminating to see how the decoupling comes
about from a phase space perspective especially since the dynamics of the true degrees of freedom
is driven only by the boundary term Hamiltonian which, furthermore, seems quite complicated at
first sight. Note also that, while from a space-time perspective the passage betweent and T
involves only a constant rescaling, since the constant varies from solution to solution, from a
phase space perspective it is a rather complicated ‘‘q-number’’ transformation. Thus, in quantum
theory, if one variable in the pair (t,T) is taken as a ‘‘time-parameter,’’ the other will be a genuine
operator. It is therefore instructive to contrast the two notions of time. By construction,t can be
identified with the affine parameter along the Hamiltonian vector field defined by~8! on the phase
space. Given any dynamical trajectory, we obtain a space-time metricgab and t can then be
thought of as a time coordinate onM with the property that]/]t generates aunit time translation
at infinity. The parameterT, on the other hand, does not have a direct and simple physical
interpretation in our phase space framework. Its most direct interpretation comes from the fiducial
Minkowskian metricgab

o onM . Even at infinity, the norm of the vector field]/]T varies from one
physical metricgab to another. For the decoupling procedure, on the other hand, it is natural to fix,
once and for all, the Minkowskian metricgab

o on M and regardgab simply as a ‘‘derived’’
quantity. ThenT does have a natural interpretation of time. Finally, note that this somewhat
peculiar situation arose because, in 211 dimensions, the physical metricsgab do not approach a
fixed Minkowskian metric even at infinity~or alternatively, because in 311 dimensions, cylindri-
cal waves fail to be asymptotically flat in the conventional sense.!

We will conclude this section with a remark. To begin with, one can ignore the broad physical
problem of interest and focus just on a free scalar field satisfying the wave equation on the
Minkowskian background (M ,gab

o ). The phase space for this system is the same as our reduced
phase space and the Hamiltonian is given byg` . However,g` doesnot have a direct physical
interpretation in terms of the original coupled system; the physical energy of our system is given
by ~10!.

III. HOLONOMY

As explained in the introduction, there is a non-perturbative approach4 to quantum general
relativity in 311 dimensions which is based on the assumption that traces of holonomies of a
certain connection are well-defined operators in the quantum theory. We would like to investigate
the status of this assumption in the context of our midi-superspace. Therefore, in this section, we
will make a short detour to compute the holonomy in question in the classical theory. Readers who
are not familiar with this approach to quantum gravity may skip this section without loss of
continuity.

In the first-order~Palatini! formalism for 211 general relativity the fundamental variables are
triadsea

I and connection one-forms which take values in the Lie-algebra ofSU(1,1).4,12 Let us
denote theSO(2,1) connection by3Aa

I and its pull-back to the two-dimensional sliceS by Aa
I ,

where I ,J,•••50,1,2 are internal indices with respect to a basist I in the Lie algebra of
SU(1,1). The internal indices are raised and lowered with a Minkowski metrich IJ with signature
(2,1,1).

A. SO(2,1) connection

To obtain the internal connection for the space-time metric~17!, we need to fix the internal
~i.e.,SU(1,1)) gauge. This is accomplished by fixing the triadsea

I . Our choice will be
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ea
I t I5A2e~1/2! ~g~R,t !2g`!~¹at !t01A2e~1/2! g~R,t !~¹aR!t11A2R~¹as!t2 . ~23!

It is straightforward to check that the space-time metric~17! is recovered viagab5h IJea
I eb

J with
the conventionh IJ52Tr(t ItJ).

The triad determines the~Christoffel symbols and the! internal connection3Aa
I uniquely. Its

pull-back to the spatial sliceS turns out to be

Aa5Aa
I t I5

ġ

2
e~1/2! g`~¹aR!t21e2 ~1/2! g~¹as!t0 . ~24!

Note, however, that sinceR,s fail to be smooth atR50 our connection also fails to be smooth
there. However, our boundary conditions do ensure that all physical fields are smooth at the origin.
Thus, this singularity is merely a reflection of a bad choice of gauge~which has in effect intro-
duced a ‘‘source’’ at the origin!. We can remedy this situation by a gauge transformation. The
general form of gauge transformations is

A8a5gAag
212~]ag!g21 with g5et IL

I ~R,s!. ~25!

By choosing the transformation parameters to beL05e2 (1/2) g(0)s andL15L250, we obtain a
smooth connection as desired:

A8a5A8a
I t I5

ġ

2
e~1/2! g`¹aR@cosst22sin st1#1@e2 ~1/2! g21#¹ast0 . ~26!

B. Holonomy computation

The holonomy ofAa8
I along a looph is given by a path ordered exponential of the integral of

Aa8
I alongh:

Uh@A#:5P expS R
h
AadS

a D . ~27!

For quantum considerations, it turns out that the most interesting loops are the integral curves of
the rotational Killing vectors a. Note that, along these curves, only the second term in the
expression~26! of the connection contributes. Since the internal vector in this term is constant, this
part of the connection is effectively Abelian. Recall that in the case of an Abelian connection the
path ordered exponential reduces to an ordinary exponential. Hence, ifh is chosen to be the
integral curve of the Killing field with radiusr o , the holonomy can be easily evaluated. We have

Uh@A8#5cos@p~12e2 ~1/2! g~r o!!#22t0 sin@p~12e2 ~1/2!g~r o!!#, ~28!

where we have used the fundamental representation ofSU(1,1). For our purposes, it will suffice
to consider these particular loops.

Of special interest to the quantization program under consideration are the functionsTh
0@A# of

connections defined by the trace of the holonomy. Taking the trace of~28! yields

Th
0@A8#52 cos@p~12e2 ~1/2! g~r o!!#. ~29!

Note, incidentally, that ifh is chosen to be the loop at infinity,Th
0@A# reduces to a simple function

of the total energy of the coupled system. For the reduced system,g(r o) represents precisely the
energy ofc in a box of radiusr o ~wherec is regarded as a scalar field propagating on the
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Minkowskian background.! The question of whether theTh
0 can be promoted to a well-defined

operator will therefore reduce to the question of whether the operator corresponding to the energy
of a scalar field in a box can be satisfactorily regulated.

IV. QUANTUM THEORY

A. Quantization

The reduced phase space of section II D serves as the natural point of departure for quanti-
zation. Since the constraints have been solved, the algebraA of observables is easy to construct.
The obvious complete set of classical observables is given by the smeared fields and momenta,
c( f ):5*dr f (r )c(r ) andpc(g):5*drg(r )pc(r ), wheref ,g belong to the Schwartz spaceS of
smooth test functions with rapid decay at infinity. Thus, the quantum algebraA is generated by
operatorsĉ( f ) and p̂c(g), subject to the canonical commutation relations:

@ĉ~ f !,ĉ~g!#50, @ p̂c~ f !,p̂c~g!#50, @ĉ~ f !,p̂c~g!#5 i E dr f gÎ. ~30!

Our task is to find a representation ofA which, furthermore, carries a well-defined Hamiltonian
operatorĤ, the quantum analog of (1/4G) (12exp(2 g`/2)).

For technical simplicity, we will regardĉ and p̂c as operator-valued distributions in two
~space! dimensions and incorporate rotational symmetry by restricting the states to be axi-
symmetric at the very end. Our experience from low dimensional, interacting scalar quantum field
theories now suggests that we use as our Hilbert spaceH5L2(S 8,dm) whereS 8 is the space of
all tempered distributions onR2, andm a suitable measure thereon.~For details, see, e.g., Ref. 13!.
Sinceg` is the Hamiltonian of the free scalar field in Minkowski space, to make the quantum
Hamiltonian operator well-defined, it is natural to use form the standard Gaussian measure for a
free, massless scalar field with covariance1

2n2 1/2, wheren is the Laplacian onR2 with respect
to the flat metric

qab
o 5¹aR¹bR1r 2¹au¹bu.

Thus,m is defined by

E
S 8

dmei*d
2x f~xW !c̃ ~xW !5e2 ~1/2! *d2x f~xW !n2 1/2f ~xW !, ~31!

wherec̃ P S 8. ~Heuristically, ‘‘dm5@exp2 1
2*d2x(cn1/2c)]Dc.’’ ! The action of the basic op-

erators is then given by

ĉ~ f !•C~c!5S E d2x fc DC~c! and p̂c~g!•C~c!52 i E d2xFg d

dc
1
1

2
cn1/2gGC~c!

~32!

whereC belongs to the dense sub-space of cylindrical functions inH. The operatorsĉ( f ) and
p̂c( f ) admit self-adjoint extensions toH. We will see below that the Hamiltonian is also repre-
sented by a self-adjoint operator and that, like its classical counterpart, it is positive.

This choice of representation is also suggested by the mathematical equivalence between our
physical system and a free massless scalar field on Minkowski space defined bygab

o ~see Eq.~21!!.
Thus, although our viewpoint is somewhat different, our final choice of representation is the same
as that of Refs. 7 and 8.

In a more familiar terminology, our representation can be obtained by introducing an operator-
valued distributionĉ(xW ,T) in the fictitious Minkowskian background (M ,gab

o ):
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ĉ~xW ,T!5
1

2pE d2k

A2vk

@Â~kW !ei ~k
W
•xW2vkT!1Â†~kW !e2 i ~kW•xW2vkT!#, ~33!

wherevk5AkW•kW , andÂ(kW ) and Â†(kW ) are the standard creation and annihilation operators. The
Hilbert spaceH can be generated by repeated actions of creation operators on the vacuum. There
is a well-defined self-adjoint operatorL̂s onH which represents the total angular momentum
along the Killing field]/]s. The physical Hilbert spaceHP is the eigenspace ofL̂s with zero
eigenvalue. Since zero is a discrete eigenvalue,HP is a sub-space ofH.

The physical Hilbert space can also be obtained more directly by using, instead of~33!, an
operator valued distribution in which the zero angular momentum constraint has already been
incorporated, namely,

ĉ~R,T!5E
0

`

dk@ f k
1~R,T!Â~k!1 f k

2~R,T!Â†~k!#. ~34!

Here f k
1(R,T)5@ f k

2(R,T)#*5 (1/A2) J0(kR)e2 ivkT, where, from now on,Jn(kR) will denote
the n-th order Bessel function of the first kind. Note thatf k

1(R) are solutions of the equation of
motion~21! and provide an orthonormal basis for the one-particle Hilbert space with respect to the
Klein-Gordon inner-product.~Our normalization is such that the creation and annihilation opera-
tors satisfy the commutation relations@Â(k),Â†(k8)#5d(k,k8).! The physical Hilbert space
HP can be generated by repeatedly acting on the vacuum by the creation operatorsÂ†(k). In what
follows, we will use both the two-dimensional as well as the one-dimensional descriptions given
by ~33! and ~34!.

We will conclude this sub-section with three remarks.
~1! Since the physical Hilbert space has a Fock structure, it is tempting to refer to the quanta

created byÂ†(k) as ~scalar! ‘‘particles’’ and we will often do so. Note, however, that from the
point of view of the coupled Einstein-Klein-Gordon system we began with, this description is
gauge dependent. The system has one local degree of freedom and we chose to put it in the scalar
field. Another gauge choice could put it in the gravitational field and the interpretation of quantum
states would then be different. However, the interpretationis unambiguous at null infinity, i.e., for
asymptotic states, because one does not need to fix gauge there~see below!.

~2! We now have the full Hilbert space of states. So, it is natural to examine if one can
generate a picture of space-time, as opposed to just spatial, quantum geometry in spite of our use
of the canonical approach. As one might expect from our gauge-fixing procedure, the answer is in
the affirmative. In the fixed chart (T,R,s) onM , the metric operator can be~heuristically! written
as

‘‘ ĝab5:eĝ~R,T!:~2¹aT¹bT1¹aR¹bR!1R2¹as¹bs, ’ ’ ~35!

where, as usual, the double-dots indicate normal ordering.~The reason behind the qualification
‘‘heuristic’’ and the quotes will become clear in section IV C.!

We can now ask if there are well-defined semi-classical states peaked at classical solutions.
The answer is again in the affirmative. Consider, in the Fock space, a coherent stateuCc& which
is peaked at a classical solutionc(R,T) of ~21!. In the configuration representation, these are
Gaussians for which the uncertainty in the field operator and its momentum are ‘‘shared equally,’’
the product of the two uncertainties being minimumfor all times T. On these states, the expecta-
tion value of the metric operator~35! is well-definedand is given just by

^CcuĝabuCc&5eg[c,pc]~2¹aT¹bT1¹aR¹bR!1R2¹as¹bs, ~36!
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whereg@c,pc# is the right side of~16!, evaluated on the initial data of the classical solutionc.
Thus, every coherent states in our physical Hilbert spaceHo remains peaked at a classical scalar
field c anda metricgab , satisfying the coupled Einstein-Klein-Gordon equation. While the result
is technically rather simple, conceptually it is somewhat surprising. For the coupled system sat-
isfies highly non-linear equations and the wave packets do not disperse in spite of these non-
linearities.

~3! It is well-known that there exist an infinite number of unitarily inequivalent representa-
tions of the algebraA. Our additional requirements are that the Hamiltonian operator be well-
defined and that the physical states be invariant under the rotational symmetry corresponding to
]/]s. Unfortunately, these requirements by themselves are not strong enough to select a repre-
sentation uniquely. To single out the Fock representation in Minkowskian quantum field theories,
one needs additional conditions that refer to the action of the Poincare´ group. In our case, the
Minkowski space-time (M ,gab

o ) is only a fictitious background and its Poincare´ group has no
physical significance in the full, coupled system.

Nonetheless, itis possible to single out our representation by two methods. The first involves
the imposition of reality conditions as indicated in Ref. 4: The measurem onS 8 is singled out by
the condition that the operatorsĉ( f ) and p̂c(g) of ~32! be self-adjoint. The second method
invokes the S-matrix theory. It turns out that the Einstein-Rosen waves are all asymptotically flat
at null infinity in 211 dimensions.14 Furthermore, the classicalS-matrix is well-defined: the data
on past null infinity determines the solution uniquely which in turn determines the data on future
null infinity. Hence, it is natural to use the asymptotic quantization scheme15 to quantize the
coupled systemat past and future null infinity. It turns out that our Fock representation is naturally
isomorphic to the simplest representation obtained by asymptotic quantization~either at pastor
future null infinity!. Details will appear elsewhere.

B. Hamiltonian and time

Recall that, after reduction, the classical Hamiltonian is given byH5 (1/4G) @12exp2( 12
g`)]. Sinceg` is the Hamiltonian of a free scalar field in Minkowski space, the normal-ordered
operator :ĝ` : admits the standard self-adjoint extension which, for simplicity, we will denote also
by :ĝ` :. Then, the standard spectral theorems ensure that

Ĥ :5
1

4G
~12e2 ~1/2! :ĝ` :![

1

4G
~12e2*kdkÂ†~k!Â~k!! ~37!

is a well-defined, self-adjoint operator. Since :ĝ` : is a non-negative, unbounded operator and
sincef (l)5(12e2 l/2) takes values in@0,1# for l P @0,̀ #, it follows that the spectrum ofH is
given by@0, 1/4G#. If we consider states inHP with higher and higher frequency, the expectation
value of ĝ` , i.e., the energy in the field from the mathematical, Minkowskian perspective, in-
creases unboundedly. However, the expectation value of thephysicalHamiltonian Ĥ remains
bounded and tends to the limit 1/4G. Thus, the situation is completely analogous to that in the
classical theory.6

Let us now examine the ground state. Sinceu0& is the unique ground state of :ĝ` : onHP , it
follows immediately that it is also the unique ground state ofĤ. Since u0& is, in particular, a
coherent state, it is peaked at a classical solution to the coupled system. As one might expect, the
solution is:c50 andgab5gab

o Thus, the quantum ground state is peaked on Minkowski space-
time. The ground state geometry is thus quite tame; there is no evidence of wild fluctuations at the
Planck scale.

What is the situation with general coherent states? Given a coherent state
uCc&:5exp@*dkc(k)Â†(k)#•u0&, peaked at a classical solutionc, we have
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Fexp2 1

2
:ĝ` : G•Cc5FexpE dkekc~k!Â†~k!G•u0&5:Cc8, ~38!

wherec8(k)5ekc(k). Thus, the image is again a coherent state but its peak is shifted. Therefore,
the expectation value of the Hamiltonian in a coherent stateCc is given by

^Cc ,Ĥ•Cc&

^Cc ,Cc&
5

1

4G F12exp
1

\E dk~e2\k21!uc~k!u2G , ~39!

where, to bring out the quantum effects, we have restored the factors of\. ~Recall also that, from
the perspective of the 211-dimensional theory, the scalar field has to be rescaled by factors
involving AG. The net effect is to replace\ in ~39! by \G which has the physical dimension of
length.! In contrast, the classical energy~10! of the solution to the Einstein-Klein-Gordon equation
determined byc is E(c)5(1/4G) @12exp2*dkkuc(k)u2#. If we expand out exp2\k in ~39!, the
leading term yields the classical answer. In general, the classical energy is a good approximation
to the expectation value of the quantum Hamiltonian ifc(k) is concentrated on low frequencies.
Quantum corrections~of order (G\) and higher! become more and more significant if the support
of c(k) is shifted to higher and higher frequencies.

Next, let us consider the issue of time. Recall that, in the classical theory, the Hamiltonian
evolution is tied to timet, the affine parameter along the Hamiltonian vector field in the phase
space. Each dynamical trajectory gives rise to a space-time andt can then be interpreted as a time
coordinate inthat space-time,]/]t being an unit asymptotic time translation. From the decoupling
viewpoint, on the other hand, it is the variableT that arises naturally; it represents time in the fixed
Minkowskian background. What is the situation in the quantum theory? Now, our measurem on
S 8 which dictates the Hilbert structure is rooted in the flat two-geometry induced bygab

o or,
alternatively, in the positive and negative frequency decomposition with respect to the
Minkowskian timeT. Indeed, since the field equation~20! in terms of t is non-linear, positive
frequency decomposition with respect tot is not meaningfula priori. Thus, whilet andT are on
equal footing in the classical theory, our choice of representation breaks this symmetry in the
quantum theory.

We can mimic the situation in the classical theory and introduce a dynamical parameterl,
analogous to the classicalt, associated with the Hamiltonian:

i\
]C

]l
5Ĥ•C. ~40!

However, unlike in the classical theory, now a solution to the dynamical equation doesnot define
a hyperbolic space-time and hence we can not interpretl as a time parameter in the familiar sense,
i.e., in space-time terms. However, a key simplification occurs if we restrict ourselves to coherent
statesCc . Since each of these states is peaked at a classical space-time, we can ask if, given any
one of these states, we can interpretl as a time parameter in the corresponding classical space-
time. The answer is in the affirmative. In factl can be identified with the time coordinatet of that
space-time! Thus, as one might have hoped, the familiar notion of time re-emerges in the semi-
classical regime. In the full quantum theory, however, the dynamical parameter defined by the
Hamiltonian does not have a simple space-time interpretation.

We will conclude this discussion with a remark. There is an obvious alternative form for the
Hamiltonian: We can further normal-orderĤ and define a new HamiltonianĤ85:Ĥ:. One can
verify that Ĥ8 is densely defined and admits a self-adjoint extension. It also annihilatesu0&.
Furthermore, the expectation values ofĤ8 on a coherent stateuCc& equals the classical energy of
c. It thus appears to be an attractive alternative. However, its spectrum is theentire real line! This
comes about because the overall normal ordering ensures that, while acting onn-particle states,
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only the firstn11 terms in the expansion of the exponential inĤ8 have non-vanishing contribu-
tions. Thus, for example, on one-particle states,Ĥ8 has the same action as18 :ĝ` :, which is
unbounded above. Similarly, on two particle states, it is unbounded below. Given that the classi-
cally allowed energy values lie in the interval@0, 1/4G#, we can not takeĤ8 as the physically
admissible quantum analog of the classical Hamiltonian.

C. Metric operator

Since we are dealing with a system with an infinite number of degrees of freedom, operators
corresponding to physical observables have to be regulated. For the Hamiltonian, this was
achieved via normal ordering. In this section, we will focus on the metric operator.

A formal expression for the metric operator was already given in~35!, where regularization
again consisted of normal ordering. Consider the sub-space ofHP which is spanned by finite
linear combinations of coherent states. It is easy to show that the sub-space is dense and that the
matrix elements of the metric operatorĝab are well-defined on it. Thus, the formal expression~35!
does lead to a well-definedquadratic form; in a field theory terminology,ĝab exists in the LSZ
sense. However, this doesnot imply that ĝab is well-definedas an operatoron this sub-space.
Note that this isnot a peculiarity of quantum field theory; one encounters such situations already
in non-relativistic quantum mechanics. Consider, for example, a one-dimensional harmonic oscil-
lator. The operator exp(aa†a†) has finite matrix elements on the basisun& for all complex numbers
a. However, ifuau.1, the normieaa†a†un&i diverges for anyun&, whence the operator fails to be
defined on the sub-space spanned by these basis vectors.

It turns out that the situation with the metric operator is quite analogous~which is the reason
behind the quotes in~35!!. To see this, let us begin with the first non-trivial term in the expansion
of ĝRR or ĝTT . Setting for simplicityT50 in ~34!, we have

:ĝ~R!:5
1

2E dk1E dk2@2F1~R,k1 ,k2!~Â
†~k1!Â~k2!!

1F2~R,k1 ,k2!~Â~k1!Â~k2!1Â†~k1!Â
†~k2!!#, ~41!

where

F6~R,k1 ,k2!56k1k2E
0

R

rdr ~J0~k1r !J0~k2r !6J1~k1r !J1~k2r !!. ~42!

For any fixedR, one can regard the coefficientF2(R,k1 ,k2) of Â
†(k1)Â

†(k2) as a ‘‘potential
two-particle state’’ in the Fock space. However, a direct calculation shows that its norm is ultra-
violet divergent. This immediately implies that the normi :ĝ(R):u0&i also diverges, whence the
operator fails to be well-defined on the vacuum state. Further calculations show that the same
result holds for any coherent state.

What is the origin of this divergence? Recall that :ĝ(R,T):, obtained by promoting~15! to an
operator, has the same functional form as the restriction of the Hamiltonian of a scalar field to a
box of sizeR. That is,

:ĝ~R!:5
1

2E0
`

dru~R2r !:S p̂c
2

r
1r ~ ĉ8!2D :, ~43!

whereu(R2r ) denotes the Heaviside step-function, which equals 1 ifr,R and 0 otherwise.
Normal ordering softens the singularity that arises from the fact that fields are being multiplied at
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the same point. However, this turns out to be insufficient because of two simultaneous pathologies:
the operator contains products of derivatives of the fieldĉ(R,T) and these are integrated on a
region withsharpboundary.

Now, a natural strategy to obtain a well-defined metric operator in such circumstance is to
soften the sharp boundary of the box. This can be achieved by replacing the Heaviside function
u(R2r ) in ~43! with a smooth functionf R(r ) which equals 1 forr<R2e, then it smoothly
decreases to zero and equals zero forr>R1e, wheree is a small parameter. An example of such
a regulator is

f R~r !55
1, if r<R2e,

expS 2
4e2

@r2~R1e!#2
11D , if R2e<r<R1e,

0, if r>R1e.

Now, in Minkowskian field theories, while one can begin with such a regulator, after suitable
renormalization, one has to take the regulator away to ensure Poincare´ invariance. In the present
case, however, we need only respect the rotational symmetry and hence there is noa priori need
to take the limite→0. Indeed, the Planck length is now a natural candidate fore.

Let us therefore fix a regulatorf R and consider the smeared version of~41!:

:ĝ~ f R ,T!:5
1

2E dk1E dk2@2F1~ f R ,k1 ,k2!~Â
†~k1!Â~k2!e

i ~k12k2!T!1F2~ f R ,k1 ,k2!

3~Â~k1!Â~k2!e
2 i ~k11k2!T1Â†~k1!Â

†~k2!e
i ~k11k2!T!#, ~44!

where

F6~ f R ,k1 ,k2!56k1k2E
0

`

dr f R~r !r ~J0~k1r !J0~k2r !6J1~k1r !J1~k2r !!. ~45!

The rest of this section is devoted to showing that this operator is well-defined so long as the
smearing functionf R belongs to the Schwartz spaceS .

The proof is technically simpler if we adopt the two-dimensional version of the Fock space
introduced before~see~33!!. For, we can then mimic the proofs of analogous statements from Ref.
16. Now, we can take as our smearing fields, elementsf R(xW ) of the Schwartz space onR

2. ~Thus,
the results will in fact be slightly more general than what is need;f R(r ) above is a special case of
f R(xW ).!

Let us then write the smeared version of the operator~43! expressed in terms of the creation
and annihilation operators given by~33!. We have

:ĝ~ f R ,T!:5
1

8pE d2k1E d2k2@2G1~ f R ,kW1 ,kW2!Â
†~kW1!Â~kW2!e

i ~vk1
2vk2

!T2G2~ f R ,kW1 ,kW2!

3~Â~kW1!Â~kW2!e
2 i ~vk1

1vk2
!T1Â†~kW1!Â

†~kW2!e
i ~vk1

1vk2
!T!#, ~46!

where

G6~ f R ,kW1 ,kW2!56S vk1
vk2

1kW1•kW2

Avk1
vk2

D f ~kW17kW2!, ~47!
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and f (kW16kW2) is the Fourier transform of the smearing function,

f ~kW16kW2!5
1

2pE d2x fR~xW !ei ~k
W
16kW2!•xW. ~48!

Let us begin by showing that the action of the operator~46! is well-defined on the vacuum state.
SinceÂ(kW ) annihilates the vacuum state, we have

i :ĝ~ f R!:u0&i25E d2k1E d2k2uG2~ f R ,kW1 ,kW2!u2. ~49!

It follows immediately from~47! that this integral has no infra-red divergences. Therefore, from
now on, let us concentrate only on the ultra-violet behavior of the integrand. The factor in the
round brackets is ultra-violet divergent. The multiplicative factorf provides a damping, but only
for large uk1W1k2W u. However, using simple algebra one can boundG2( f R ,kW1 ,kW2) of Eq ~47! by

uG2~ f R ,kW1 ,kW2!u<
ukW11kW2u2u f ~kW11kW2!

Avk1
vk2

. ~50!

Now, because the smearing functionf R(xW ) belongs to the Schwartz space, its Fourier transform
f (kW11kW2) falls faster than any polynomial inuk1W1k2W u. This in turn implies thatG2( f R ,kW1 ,kW2) is
square integrable. Note that the smearing function plays a crucial role in this argument. Had we
replaced f R(xW ) by the Heaviside functionu the corresponding Fourier transformed function
f (kW11kW2) would behave as 1/ukW11kW2u which would not be sufficient to ensure square-integrability
of G2( f R ,kW1 ,kW2) ~see~50!!. Finally, as a side remark, note that the procedure followed above to
prove thatG2( f R ,kW1 ,kW2) is square integrable does not go through forG1 because of the minus
sign in the argument of the functionf (kW12kW2) ~see~47!!.

Next, one can show that the action of this operator is in fact well-defined on a generic
n-particle state on the Fock space,

uCn&5E d2k1•••d
2kng

~n!~kW1 ,•••,kWn!Â
†~kW1!•••Â

†~kWn!u0&, ~51!

where g(n)(kW1 ,•••,kWn)5^kW1 ,•••,kWnuCn&, and *d2kug(n)(•••,kW ,•••)u2,`. Now the terms in-
volving annihilation operators will also contribute. The final result is thati :ĝ( f R):uCn&i is finite
provided thatuCn& is a state such that*d2kukW u2ug(n)(•••,kW ,•••)u2,`. ~This restriction comes
from the ‘‘particle number preserving term’’ in~46!.! Since finite linear combinations of these
states form a dense subset of the Hilbert space, we have now established that the operator
:ĝ( f R): is densely defined onHP .

By inspection, it is also symmetric on this space. We will now show that it admits a self-
adjoint extension toHP . For this, by a theorem due to Von-Neumann,17 it is sufficient to exhibit
onHP an anti-linear operatorĈ with Ĉ251 which leaves the domain of :ĝ( f R): invariant and
commutes with it. We can takeĈ to be the complex-conjugation operator onHP5L2(S 8,dm). It
is straightforward to show thatĈ commutes with ĉ(xW ,T) whence ĈÂ(kW )5Â(2kW )Ĉ and
ĈÂ†(kW )5Â†(2kW )Ĉ. Finally, sinceG6( f R ,kW1 ,kW2) is real and equalsG6( f R ,2kW1 ,2kW2), it fol-
lows thatĈ satisfies the conditions of Von-Neumann’s theorem. Again, for notational simplicity,
we will denote the self-adjoint extension also by :ĝ( f R):.
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We can now return to the metric. Since :ĝ( f R): is a self-adjoint operator onHP , it follows
that exp:ĝ(fR): is also self-adjoint. Thus, we can now give meaning to the formal expression~35!
and define a regulated operator for the full space-timemetric:

ĝab~ f !5e:ĝ:~ f R ,T!~2¹aT¹bT1¹aR¹bR!1R2¹as¹bs, ~52!

within canonical quantization. In the classical theory, the existence theorems ensure that a space-
time metric can be recovered from the canonical framework. There is, however, no such general
result in the quantum theory. Our success can be traced back to the use of a well-suited gauge
fixing procedure.~Whether a different choice of gauge will give equivalent results is far from
being clear.!

At first, it is somewhat confusing that while we do not need a smearing function to obtain a
well-defined quadratic form, we need one to obtain a well-defined operator. Note, however, that
the situation is rather similar even in the classical theory! The metric component expg(R) is a
well-defined functional on~a dense sub-space of! the reduced phase space. However, precisely
because of the sharpness of the boundary, this functionalfails to give rise to a well-defined
Hamiltonian vector field. To obtain a Hamiltonian vector field, one again needs to soften the
boundaries using a smearing function. The fact that the unsmeared functional is well-defined is
analogous to the fact that, in the quantum theory, the quadratic form is well-defined without
smearing. The smeared quantum operator is the analog of the smeared classical observable with a
well-defined Hamiltonian vector field. From this perspective, in fact it would have been surprising
if a self-adjoint metric operator had existed without smearing; it would then have defined a
one-parameter group of motions on the Hilbert space which would have no classical counterpart.

D. Quantum geometry

We will now briefly investigate three consequences of the results obtained in the last three
sub-sections. The discussion will be rather general and we will only indicate the directions along
which more detailed work could be done.

The first concerns the issue of vacuum fluctuations of geometry. To compute these, we need
a well-defined operator; quadratic forms do not suffice. Let us therefore consider the regulated
metric operator~52!. Since it is completely determined by :ĝ( f R ,T):, let us focus on this latter
operator. The vacuum expectation value of this operator is zero. However, because of the vacuum
fluctuations, there is a non-zero probability of finding other values as well. A qualitative measure
of these probabilities is given by the uncertainty

@d:ĝ~ f R ,T!:#2:5^0u~ :ĝ~ f R ,T!: !2u0&2^0u:ĝ~ f R ,T!:u0&25E dk1dk2uF2~ f R ,k1 ,k2!u2.

~53!

The right side is a measure of the fluctuation of the metric coefficients around the mean. An
immediate consequence of the above result is the existence of the fluctuations of the light cone. To
see this, consider a vectorka in the tangent space of a point (T,R,s) which is null with respect to
gab
o . Now, due to the vacuum fluctuations of the metric operator, the value of the norm ofka is
uncertain and, since the fluctuation can have either sign, there is in general a non-zero probability
for ka to be space-like or time-like. The exception occurs if the vectorka is radial, i.e., orthogonal
to ]/]s. Then, because of the specific form~52! of the metric operator,ka continues to be null.
~Similar considerations obviously apply to time-like and space-like vectors.! This simple example
illustrates that, contrary to an oft-expressed view, the canonical frameworkis capable of address-
ing space-time issues such as the fluctuations of the causal structure.

The second feature we wish to discuss concerns the commutator of the metric operators at the
same value ofT. Again, in this calculation, quadratic forms do not suffice and we must use the
regulated operator~52!. A straightforward calculation yields
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@ :ĝ~ f R!:,:ĝ~gR8!:#5
i

2E d2x~ f ~xW !¹ag~xW !2g~xW !¹af ~xW !!3:~ p̂c~xW !¹aĉ~xW !1¹aĉ~xW ! p̂c~xW !!:.

~54!

Thus, the commutator doesnot vanish; the non-vanishing contribution comes from the smeared
boundary at the smaller ofR and R8. At first the result seems surprising sinceĝ( f R) and
ĝ(gR8) dictate the ‘‘value’’ of the metric operator at pointsR and R8 which can be widely
separated~and have the same value ofT). However, the result does not contradict any physical
principle. For, although the basic field operatorsĉ and p̂c associated with such points do com-
mute, the metric operator is anon-local functional of these.

Indeed, the result has a classical analog. As we pointed out at the end of the last sub-section,
the unsmeared metricgab does not define a Hamiltonian vector field on the reduced phase space.
Hence, to evaluate Poisson brackets, we are forced to use the smeared metric. Then, it is easy to
verify that the Poisson brackets between the functionalsg( f R) and g(gR8) fail to vanish even
whenR andR8 are widely separated. In fact these Poisson brackets just mirror the commutators
given above.

The last point we wish to discuss concerns the holonomies computed in section III. We found
that the expression of the holonomy involves the exponential of the integral of the connection
along a loop onS. Now, as we indicated in the Introduction, there is a canonical quantization
program which is based on the assumption that the quantum analogs of these holonomies are
well-defined operators. The present model provides a good testing ground for the validity of this
assumption.

To see that the issue is non-trivial, let us first recall the situation in the well-understood
Maxwell theory, say in 211 dimensions. There, the connection is generally promoted to an
operator-valued distribution and the holonomies~of real connections! fail to be well-defined in the
standard Fock representation. For in a 211-dimensional theory, the operator-valued connection
has to be smeared with two-dimensional test fields while loops have only one-dimensional sup-
port. In the present case, we are also using a Fock representation. A natural question therefore
arises: Is the situation then analogous to the Maxwell theory? If so, the basic assumption men-
tioned above would fail to hold in our solution.

Now, because of axi-symmetry, smearing along a path in the radial direction in effect corre-
sponds to a two-dimensional smearing. Hence, the acid test is provided by loopsR5const where
one can not take advantage of axi-symmetry. Can the classical expression~29! of the trace of the
holonomy along such a loop,h, be promoted to a well-defined, regulated operator? Following the
procedure we used in section IV C, we find that the answer is in the affirmative. The quantum
operator is given by

T̂h
052 cos@p~12e2 ~1/2! :ĝ~ f R!:!#. ~55!

The standard spectral theorems ensure that the operator on the right is well-defined, self-adjoint
and has spectrum bounded between21 and11. Thus, the situation is very different from that in
the Maxwell case. Indeed, in the present case, it is the scalar field that is subject to Fock quanti-
zation. The connection, like the metric, is anon-localfunctional of the elementary scalar field; its
expression involves two-dimensional integrals of the basic fields. It is because of this that the trace
of the holonomy can be promoted to a well-defined operator onHP . As in the case of the metric,
if we were interested only in quadratic forms, there would be no need to use any smearing fields;
they are needed only if one wishes to obtain genuine operators.

V. DISCUSSION

The mathematical structure of the classical Einstein-Rosen waves has been well-known for a
long time. In light of those results, it is not at all surprising that the true degrees of freedom can
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be coded in a scalar field satisfying the wave equation with respect to a fictitious Minkowski space
and quantization of this field in itself is trivial. Thus, the underlying structure of our final theory
is the expected one. The main purpose of the analysis was, rather, to apply the standard canonical
quantization method, which is applicable in the more general context, to arrive at this final picture
systematically. That is, since the model is technically sufficiently simple to be exactly soluble, we
used it to better understand the standard quantization techniques and to probe conceptual and
technical issues of quantum general relativity.

Indeed, the analysis shed light on a number of these. At the classical level, we saw that one
can effectively exploit asymptotic flatness to disentangle gauge from dynamics. Gauge conditions
can be imposed to handle constraints and to extract the true degrees of freedom. In the final
picture, we are still left with a non-trivial Hamiltonian. Consequently, the issue of deparametri-
zation never enters our analysis. Similarly, we did not find it necessary to introduce ‘‘clock
degrees of freedom’’18 at infinity to extract dynamics. In the quantum theory, we saw that there
exist semi-classical states which are peaked at classical solutions of the coupled Einstein-scalar
field system. The positive energy theorem goes over to the quantum theory and the quantum
Hamiltonian has the same upper bound as the classical one. The solution also confirms the general
expectation about the issue of time in quantum theory in the asymptotically flat context. The
parametert arises as the affine parameter along the Hamiltonian vector field on the classical phase
space and has the space-time interpretation of time in the three-metric defined by any dynamical
trajectory in the phase space.~This is also the situation in full general relativity.! In the quantum
theory, an analogous parameter enters the Schro¨dinger equation~40!. However, since general
quantum states do not correspond to classical space-times, this parameter does not have the
standard interpretation of time. This interpretation emerges only in the semi-classical regime: in
any coherent state, the parameter can be identified with the classicalt. Finally, we saw that the
regulated metric and holonomy operators can be constructed by a careful smearing procedure
which smoothens the sharp boundaries that enter the definition of their classical analogs. The
associated functional analysis subtleties are non-trivial even from the mathematical perspective of
a free field in Minkowski space.

In the technical discussion, we made a liberal use of the fictitious Minkowskian background
gab
o and the associated time parameterT. However, this was done primarily for pedagogical
reasons, i.e., to bring out the relation between the final quantum theory and the expected one. We
could have arrived at our Hilbert space of states directly from the reduced phase space either by
making use of the ‘‘reality condition’’ strategy4 or by making an appeal to null infinity and the
S-matrix theory, without having to explicitly introducegab

o .
How do these results compare with those available in the literature? Our analysis is closely

related to that of Refs. 7 and 8. In the classical theory, the main difference lies in our systematic
handling of the asymptotically flat boundary conditions. In particular, in our treatment, the true
Hamiltonian arose directly from the boundary term in the action. This point could not have been
realized in the early analyses because the relation between 311- and 211-dimensional theories
was not well-known and, more importantly, because a clear understanding of asymptotic flatness
in 211 dimensions has emerged only recently.~Indeed, given what was known in the early
seventies, the treatment of Ref. 7 seems to be surprisingly ahead of its time!! In the quantum
theory, the difference lies in the treatment of certain functional analytical subtleties. That it is
necessary to regularize the metric operator was realized in Ref. 8. However, the suggestion there
that the softening of the sharp boundaries can be brought about by a simple ultra-violet cut off in
the momentum space is incorrect; one needs suitable smearing fieldsin space-time. Thus, our
regularization differs from that in Ref. 8. Finally, our isolation of true degrees of freedom was
carried out in 211 dimensions. When translated to a 311-dimensional perspective, our result is
equivalent to the definition of true observables given in Ref. 19.

Since the model has been solved exactly within the standard canonical framework, it opens
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doors for further analysis in a number of directions. We will conclude by mentioning a few of
these.

First, we can now explore quantum field theory on aquantumgeometry. Part of the motiva-
tion here is similar to that of quantum field theory in curved space-times; one wishes to investigate
the effects of a non-trivial background geometry on quantum fields. Furthermore, this analysis can
also shed light on the nature of quantum geometry itself. For instance, we may choose as our
background a coherent state. The geometry influences the dynamical evolution of the quantum
field because the metric appears in the expression of the Hamiltonian of the test field. Now, in the
quantum theory, we have two alternatives. First, we can consider just the quadratic form that is
determined by the~normal-ordered, unsmeared! metric ~35! and substitute its value in a coherent
state in the expression of the Hamiltonian. Since this value is just the classical metric, this would
lead us just to the standard quantum field theory in curved space-times. To probe the effects of the
quantumnature of geometry, we would have to look beyond just the expectation values. This can
not be handled by a quadratic form alone; we need a genuine operator. Thus, the second, and much
more interesting, possibility is to use the smeared metric operator in the expression of the Hamil-
tonian of the test field. Then, one would see the effects of the quantum geometry on the evolution
of the matter, even in the case when the geometry is assumed to be in the vacuum state~initially !.
This analysis would be interesting because much of the standard apparatus of quantum field theory
in curved space-times uses the fixed causal structure of the classcial geometry which is now
absent. Using the canonical framework, one would be able to do quantum theory of test fields even
when the causal structure is subject to quantum fluctuations of its own.

Recall that, in the regularization of the metric operator, we needed a smearing functionf R .
There is, however, no ‘‘canonical’’ choice; while we know what the qualitative behavior off R
should be, there is considerable freedom in its detailed form. Thus, we do not have a ‘‘canonical’’
regularized metric operator. All choices provide the required ultra-violet cut-offs but the precise
damping depends on the specific form off R . The differences will show up, for example, in the
evolution of test fields. It would be interesting to investigate these differences and see if one can
restrict the choice of the smearing functions through thought experiments. If one can not, there
would a genuine quantization ambiguity. The situation would be similar to that in non-relativistic
quantum mechanics where, in general, the factor ordering ambiguities can not be resolved purely
on theoretical grounds.

We saw that the regularized operators corresponding to the traces of holonomies of connec-
tions are well-defined on the quantum Hilbert space. Now, in the approach to quantum gravity
based on these holonomies,4 a striking picture of quantum geometry has emerged in which geo-
metrical operators such as areas and volumes have adiscretespectrum. It is therefore natural to
ask if the same is true in the present case. The question is now manageable, thanks to the
regularized metric operators. Since the basic operator :ĝ: is the regularized version of the restric-
tion of the Hamiltonian in a box, it is quite likely that its spectrum is discrete. If so, the lengths in
the radial directions and areas will be quantized. This would be a striking result coming from a
Fock-like representation.

Another direction for further investigation is provided by the Gowdy models. Since these are
spatially compact and have initial curvature singularities, new issues arise. These will be discussed
in the sequel to this paper. While both these problems deal only with the ‘‘one polarization’’
case—the two Killing fields are hyper-surface orthogonal in the 311-dimensional picture—one
can also investigate the two polarization case.11 In the case when the translational Killing field is
time-like, this case was analyzed in detail by Korotkin and Nicolai20 recently. Their quantization
is mathematically complete but somewhat unconventional in the sense that the relation between
their Hamiltonian description and the standard Poisson-brackets of classical general relativity is
unclear. It would be interesting to compare the results obtained here with the reduction of their
model to the one polarization case. More recently, an infinite number of conserved quantities have
been constructed in the classical theory with two polarizations.21 Using these, one may be able to
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extract the true degrees of freedom in this more general case and quantize the model along the
lines of this paper.

Finally, the present model itself offers an attractive setting to explore the idea of ‘‘fuzzing’’ of
space-time points using techniques involving null infinity.22 As mentioned in section IV A, the
211-dimensional space-times considered here are asymptotically flat at null infinity.14 Further-
more, since the form of the metric is sufficiently simple, it should be possible to integrate the null
geodesics and express the ‘‘light cone cuts of null infinity’’ explicitly in terms of the initial data
for the scalar field at null infinity. These cuts label space-time points. The asymptotic quantization
of the scalar field,15 which is equivalent to the quantization presented here, would then lead to
fuzzy points. So far, in this approach, detailed calculations have been carried out only in the
linearized approximation.22 The underlying simplicity of cylindrical waves provides an interesting
arena where these results can be extended beyond the linear context.
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We compute the loop variables for a class of space–times with topological defects.
In particular we compute these quantities for multiple moving cosmic strings and
two plane topological defects crossed by a cosmic string, showing that these quan-
tities are elements of the homogeneous Lorentz group. We also compute the loop
variables for a multi-chiral cone and we show that in the context of Einstein theory
the loop variables are elements of the inhomogeneous Lorentz group, but in the
context of Einstein-Cartan theory they are elements of the homogeneous Lorentz
group. © 1996 American Institute of Physics.@S0022-2488~96!00411-2#

I. INTRODUCTION

In the loop space formalism for gauge theories1 the fields depend on paths rather than on
space–time points, and a gauge field is described by associating with each path in space–time an
element of the corresponding gauge group. The fundamental quantity that arises from this path-
dependent approach, the non-integrable phase factor2 ~or loop variable! represents the electromag-
netic field or a general gauge field more adequately than the field strength or the integral of the
vector potential.2 In the electromagnetic case, for example, as observed by Wu and Yang,2 in a
situation where global aspects are taken into consideration the field strength underdescribes the
theory and the integral of the vector potential for every loop overdescribes it. The exact descrip-
tion is given by the factor exp((ie/\c)rcAmdx

m).
The extension of the loop formalism to the theory of gravity was first considered by

Mandelstam3 who established several equations involving the loop variables, and also by Voronov
and Makeenko.4 Recently, Bolliniet al.5 computed the loop variables for the gravitational field
corresponding to the Kerr metric.

The loop variables in the theory of gravity are matrices representing parallel transport along
contours in a space–time with a given affine connection. They are connected with the holonomy
transformations which contain important topological information. These mathematical objects
contain information, for example, about how vectors change when parallel transported around a
closed curve. The computation of these quantities is definitely interesting, although perhaps its
main significance is for a fairly narrow area of physics.

Suppose that we have a vectorva at a pointP in a space–time and a closed curveC which
begins and ends atP. Then, one can produce a vectorv̄a at P which, in general, will be different
from va, by parallel transportingva aroundC. In this case, we associate with the pointP and the
curveC a linear mapUb

a such that for any vectorva at P, the vectorv̄a at P results from parallel
transportingva aroundC and is given byv̄a5Ub

avb. The linear mapUb
a is called holonomy

transformation associated with the pointP and the curveC. If we choose a tetrad frame and a

a!Electronic mail: cendifi58@brufpb.bitnet
b!Electronic mail: letelier@ime.unicamp.br
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parameterlP@0,1# for the curveC such thatC(0)5C(1)5P, then in parallel transporting a
vectorva from C~l! to C(l1dl), the vector components change bydva5Mb

a[x(l)]vb, where
Mb

a is a linear map which depends on the tetrad, the affine connection of the space–time and the
value ofl. Then, it follows that the holonomy transformationUb

a is given by the ordered matrix
product of theN linear maps,

Ub
a5 lim

N→`
)
i51

N H dab1
1

N
Mb

a@x~l!#l5 i /NJ . ~1.1!

One often writes the expression in Eq.~1.1! as

U~C!5P expS E
C
M D , ~1.2!

whereP means ordered product along a curveC. Equation~1.2! should be understood as an
abbreviation of the right hand side of Eq.~1.1!. Note that ifMb

a is independent ofl, then it follows
from Eq. ~1.1! thatUb

a is given byUb
a5~expM !b

a .
In this paper we shall use the notation

UBA~C!5P expS E
A

B

Gm~x~l!!
dxm

dl
dl D , ~1.3!

whereGm is the tetradic connection andA,B are the initial and final points, respectively, of the
path. Then, associated with every pathC from a pointA to pointB, we have a loop variable given
by Eq. ~1.3! which is a function of the pathC as a geometrical object.

The purpose of this paper is to compute loop variables and holonomy transformations for
some conical space–times and show how these quantities depend on the parameters defining the
topological defects. In particular, we compute the loop variables in a space–time with a topologi-
cal defect corresponding to the multiple parallel chiral strings in the context of Einstein6 and
Einstein-Cartan theories,7 and the multiple moving crossed cosmic strings.8 Finally, we consider
the topological defects corresponding to two domain walls crossed by a cosmic string9 and two
plane topological defects crossed by a cosmic string9 also.

II. LOOP VARIABLES IN THE SPACE-TIME OF MULTIPLE MOVING CROSSED COSMIC
STRINGS

Recently, Letelier and Gal’tsov8 found an exact solution of the Einstein equations describing
an arbitrary number of non-parallel straight infinitely long cosmic strings moving with different
constant velocities. The metric corresponding to this configuration of strings is given by

ds252e24V~dx1F1dt1G1dz!
22e24V~dy1F2dt1G2dz!2dz21dt2, ~2.1!

where V52( i51
N m i ln r i , with r i5uz2a i u and z5x1 iy , a j5vx jt1mxjz1x0 j

1 i (vy jt1myjz1y0 j ). The functionsF1(G1) andF2(G2) are the real and imaginary parts of two
analytic functions on the variablez; also these functions depend ont andz through the combina-
tionsai . The explicit form of these functions will not play a major role in our analysis, and they
can be found in Ref. 8.

Our interest in computing loop variables for this space–time is to show how we can construct
the parallel transport operators using the tetrad formalism, a subject which is definitely interesting.
To do this let us introduce a set of four vectorse(a)

m ~a51,2,3,4 is a tetradic index! which are
orthonormal at each point with respect to the metric with Minkowski signature, that is,
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gmne(a)
m e(b)

n 5hab5diag~21,21,21,11!. We assume that thee(a)
m ’s are matrix invertible, that is,

that there exists an inverse frameem
(a) given byem

(a)e(a)
n 5dm

n andem
(a)e(b)

m 5db
a.

Now define the 1-formsua as

u15e22V~dx1F1dt1G1dz!,

u25e22V~dy1F2dt1G2dz!, ~2.2!

u35dz, u45dt.

Then, in the coordinate system~x15x, x25y, x35z, x45t!, the tetrad frame defined by
ua5em

(a)dxm is given by

e1
~1!5e22V, e3

~1!5e22VG1 , e4
~1!5e22VF1 , e2

~2!5e22V,
~2.3!

e3
~2!5e22VG2 , e4

~2!5e22VF2 , e3
~3!51, e4

~4!51.

Using Cartan’s structure equationsdua1vb
a`ub50, for arbitrary functionsV, F1, G1, F2 andG2

we get the following expressions for the tetradic connection:

Gm3
1 dxm52e22Vx1dx2 1

2 e
22V~x212F1x1!dt2e22VG1x1dz52Gm1

3 dxm,

Gm1
2 dxm522

]V

]y
dx22

]V

]x
dy1

1

2 S j114F2

]V

]x
24F1

]V

]y Ddt1S 2G2

]V

]x
22G1

]V

]y
1j2Ddz

52Gm2
1 dxm,

Gm3
2 dxm5e22Vx1dy1e22VG2x1)dz52Gm2

3 dxm,
~2.4!

Gm4
3 dxm5

1

2
e24Vh1~dy1F2dt1G2dz!1

1

2
e24Vx2~dx1F1dt1G1dz!5Gm3

4 dxm,

Gm1
4 dxm5e22Vx4dx1e22VF1x3dt1

1

2
e22V~x212G2x3!dz5Gm4

1 dxm,

Gm2
4 dxm5e22VF2h2dt1e22Vh2dy1

1

2
e22V~2G2h21h1!dz5Gm4

2 dxm,

where
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h152
]G2

]t
1

]G2

]x
F11

]G2

]y
F22

]F2

]x
G12

]F2

]y
G21

]F2

]z
,

h252
]V

]t
22

]V

]x
F122

]V

]y
F21

]F2

]y
,

x152
]V

]x
G112

]V

]y
G222

]V

]z
2

]G1

]x
,

~2.5!

x252
]G1

]t
1

]G1

]x
F11

]G1

]y
F22

]F1

]x
G12

]F1

]y
G21

]F1

]z
,

x352
]V

]t
22

]V

]x
F122

]V

]y
F21

]F1

]x
,

j15
]F1

]y
1

]F2

]x
, j25

]G1

]y
2

]F2

]x
.

In obtaining Eq.~2.5!, we have used the property of analycity of the functionF(x1 iy)5F11 iF 2
and similarly ofG5G11 iG2 .

Using the tetradic connections given by Eq.~2.4! we can compute the loop variables. In our
case we are interested in computing the loop variables for segments in thet, x, y andz directions.
For a translation in timeGmdx

m5G tdt with Gt being

G t5S 0 B C A

B 0 2F 2D

C F 0 E

A D 2E 0

D 52 iFJ122 iDJ132 iEJ232 iBJ412 iCJ422 iAJ43, ~2.6!

where the boost parametersA, B, C are given by

A5 1
2 e

24V~h1F21x2F1!, B5e22Vx3F1 , C5e22Vh2F2 , ~2.7!

and the rotation parametersD, E, F are

D52
1

2
e22V~x212F1x1!, E5e22Vx1F2 ,

~2.8!

F52
1

2 S j114F2

]V

]x
24F1

]V

]y D .
In Eq. ~2.6!, J23, J13 andJ12 are, respectively, generators of rotations about thex, y andz axis

in the three-dimensional space, andJ41, J42 andJ43 are, respectively, the generators of boosts in
theOx, Oy andOz directions.

Then, for a segment in the time direction, the loop variable is a combination of boosts in all
directions and rotations around the three axis in space.

Using Eq.~2.6! we get, for a time translation betweent1 andt2, the following expression for
the loop variable:

Ut2t1
~C!5expF E

t1

t2
~2 iFJ122 iDJ132 iEJ232 iBJ412 iCJ422 iAJ43!dtG . ~2.9!
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Now, let us consider a segment in thez-direction. In this case we haveGm3dx
m5Gzdz, where

Gz5S 0 B8 C8 A8

B8 0 2F8 2D8

C8 F8 0 E8

A8 D8 2E8 0

D 52 iF 8J122 iD 8J132 iE8J232 iB8J412 iC8J422 iA8J43,

~2.10!

where

A85 1
2 e

24V~h1G21x2G1!, B85 1
2 e

22V~x212x3G1!,

C85 1
2 e

22V~2x3G21h1!, D852e22Vx1G1 , ~2.11!

E85e22Vx1G2 , F8522SG2

]V

]x
2G1

]V

]y D .
As in the previous case, the loop variable along thez-direction is a combination of boosts and
rotations. For a segment that goes fromz1 to z2, the loop variable is given by

Uz2z1
~C!5expF E

z1

z2
~2 iF 8J122 iD 8J132 iE8J232 iB8J412 iC8J422 iA8J43!dzG . ~2.12!

Similarly, if we consider segments in thex- andy-directions, at fixedt andz, we get that

Ux2x1
~C!5expF E

x1

x2S 22i
]V

]y
J122 iD̄ J132 iĀJ432 iB̄J41D dxG ~2.13!

and

Uy2y1
~C!5expF E

y1

y2S 22i
]V

]x
J122 iĒJ232 iĀ8J432 iC̄J42D dyG , ~2.14!

where

Ā5 1
2 e

24Vx2 , B̄5e22Vx3 , C̄5e22Vh2 ,

~2.15!
Ā85 1

2 e
24Vh1 , D̄5e22Vx1 , Ē5 1

2 e
24Vx1 .

Using previous results, we can write a general expression forU(C). In the general case,U(C)
reads as

U~C!5P expS 2
i

2 E
C
Gm
abJabdx

mD , ~2.16!

whereJab are the generators of the Lorentz groupSO~3,1! andGm
ab are the appropriate tetradic

connections. In general,Jab generate the representation of the Lorentz group which acts on the
transported quantity~a vector or a spinor!. In the spinor case, instead of the groupSO~3,1!, we
have a covering group of this one. Therefore, when we have fermions, the loop variables are
elements of the covering group of the Lorentz group.
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III. LOOP VARIABLES IN A MULTIPLE CHIRAL CONICAL SPACE–TIME

In a recent paper Gal’tsov and Letelier6 showed that the chiral conical space–time arises
naturally from the spinning particle solution of~211!-dimensional gravity by an appropriate
boost. This chiral conical space–time provides the gravitational counterpart for the infinitely thin
straight chiral strings in the same way that an ordinary conical space–time is associated with the
usual string.10 The metric associated to the chiral conical space–time6 ~spinning string with cos-
mic dislocation! is given by

ds252 r̄ 8m~dr21r 2dw2!2~dz14Jzdw!21~dt14Jtdw!2, ~3.1!

whereJt represents the string angular momentum, 2Jz/p is the analogous of the Burgers-vector of
dislocation andm is the linear mass density of the string. The anglew takes the values 0<w<2p,
and the other variables:2`,t,`, 0,r,`, and2`,z,`. If we consider a Cartesian system of
coordinatesx5r cosw, y5r sinw, we can write Eq.~3.1! as

ds252e24V~dx21dy2!2S dz14Jz
xdy2ydx

r 2 D 21S dt24Jt
xdy2ydx

r 2 D 2, ~3.2!

with V52m ln r .
The generalization of the chiral cone to a multiple chiral cone can6 be obtained by introducing

the parametersm i , Ji
t , Ji

z, i51,2,...,N, defining each chiral string located at the pointsrW5rW i of
the planez50. The resulting metric has the form of Eq.~3.2! with the following interchanges:

Jt
xdy2ydx

r 2
→(

i51

N

Ji
t ~x2xi !dy2~y2yi !dx

urW2rW i u2
,

Jz
xdy2ydx

r 2
→(

i51

N

Ji
z ~x2xi !dy2~y2yi !dx

urW2rW i u2
, ~3.3!

V52m ln r→V5(
i51

N

m i ln@r 222rr i cos~w2w i !1r i
2#.

As a consequence of Eq.~3.3!, the space–time generated byN multiple chiral cosmic string can
be written as6

ds252e24V~dx21dy2!2Fdz2(
i51

N

Bi~Wi
1dy2Wi

2dx!G21Fdt2(
i51

N

Ai~Wi
1dy2Wi

2dx!G2,
~3.4!

where

Ai54Ji
t , Bi54Ji

z , Wi
15

x2xi
urW2rW i u2

, Wi
25

y2yi
urW2rW i u2

. ~3.5!

In the previous case, static one, the loop variable was calculated directly from the metric. For
the present case, stationary one, it is possible to do the same, but with a slight redefinition of the
loop variables. This can be done because this solution of the Einstein equation can be patched
together from flat coordinates patches but connected by some additional matching condition in
order to take into account the time helical structure and the shift in thez-direction. First of all let
us recover a previous result concerning the holonomy in the static case,11 specifically in the space
of a multiple cosmic string.12 In this case one calculates the holonomy transformation correspond-
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ing to circles in thexy-plane directly from the metric. Then, when we parallel transport a vector
around multiple cosmic strings at rest atrW5rW i along a circle, this vector acquires a phase given
by11 U(C)5exp[28p i (( j51

N m j )J12], where J12 is the generator of rotations in thexy-plane,
around thez-axis. Therefore, when we go around the multiple cosmic string from the point (xW ,t)
to (xW8,t8), the column vectors (xW ,t) and (xW8,t8) are related by

S x8y8
z8
t8
D 5S cos~8pm̃! sin~8pm̃! 0 0

2sin~8pm̃! cos~8pm̃! 0 0

0 0 1 0

0 0 0 1

D S xyz
t
D , ~3.6!

where we have set

m̃5(
j51

N

m j . ~3.7!

Since the space-time outside the multiple cosmic string is locally flat, we can describe the
analytic solution purely in terms of space–time patches with Minkowski metric, but connected by
some matching conditions which are given by Eq.~3.6!, that relates points (xW ,t) and (xW8,t8) along
the edges.

As in the multiple cosmic string case, the space-time of the multiple chiral cosmic string is
locally flat, and consequently we can describe it in terms of space–time patches with Minkowski
metric, but connected by some conditions which are the same as in the static multiple string case,
except those concerning thet andz coordinates. These conditions are expressed by relating points
(xW ,t) and (xW8,t8) as follows:

x85cos~8pm̃!x1sin~8pm̃!y, y852sin~8pm̃!x1cos~8pm̃!y,

~3.8!

z85z18pS r

urW2rW i u2
D 2Jiz , t85t18pS r

urW2rW i u2
D 2Jit ,

where we are considering as paths circles in thexy-plane.
The transformations given by Eq.~3.8! can be cast in the form of a homogeneous matrix

multiplication as follows: letMA
B be a five dimensional matrix, withA andB running from 1 to 5.

We take M n
m equal to the rotation matrix given by,11 U(C)5exp~28p i m̃J12!,

M5
458p(r /urW2rW i u

2)2Ji
t andM5

558p(r /urW2rW i u
2)2Ji

z, so that
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S x8y8
z8
t8
1

D 5S cos~8pm̃! sin~8pm̃! 0 0 0

2sin~8pm̃! cos~8pm̃! 0 0 0

0 0 1 0 8pS r

urW2rW i u2
D 2Jiz

0 0 0 1 8pS r

urW2rW i u2
D 2Jiz

0 0 0 0 1

D S xyzt
1

D
5expF28pS r

urW2rWku2
D 2JkzM3GexpF28pS r

urW2rWku2
D 2Jkt M4Gexp~28pm̃J12!S xyzt

1

D ,
~3.9!

whereM3 andM4 are the following matrices:

M35S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 i

0 0 0 0 0

0 0 0 0 0

D , M45S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 i

0 0 0 0 0

D . ~3.10!

Equation ~3.9! is the exact expression for the holonomy for circles in the space-time. By
definingyA5(ym,1) we can cast the conditions~3.8! asy8A5MB

AyB which tells us that the points
(xW ,t) and (xW8,t8) along the edges are related by the phase given by Eq.~3.9! that depends on the
parametersmj , Jj

t andJj
z.

The existence of locally flat coordinates in this space-time permits us to consider Eq.~3.9! as
a ‘‘parallel transport’’ matrix. Then we can say that when we carry a vector along a circle in this
space-time it acquires a phase that depends onmj , Jj

t andJj
z which prevents it from being equal to

the unit matrix. This effect is exclusively due to the non-trivial topology of the space-time under
consideration. This is a gravitational analogue11,13of the Aharanov-Bohm effect,14 but in this case,
purely at the classical level.

We can also compute the holonomy transformations for circles in the multiple chiral conical
space-time in the context of the Einstein-Cartan theory. In this case the connection 1-forms
appropriately chosen give us7

Gm2
1 dxm52~]xVdy2]yVdx!52Gm1

2 dxm, ~3.11!

which can be written in cylindrical coordinates~x15r , x25w, x35z, x45t! as

Gm2
1 dxm52

2

r

]V

]w
dr2S 122r

]V

]r Ddw52Gm1
2 dxm. ~3.12!

Now, consider the same previous circle, at constant time. In this caseU2p,0(C) is given by

U2p,0~C!5expS E
0

2p

Gwdw D 5expF28p i S (
j51

N

m j D J12G , ~3.13!
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where

Gw5 i F124(
j51

N

m j

R~R2r i cos~w2w i !!

~R222Rri cos~w2w i !1r i
2!

GJ12, ~3.14!

R being the radius of the circle. Into Eq.~3.12! we have dropped out the factor exp~22p iJ12!
which is equal to the 434 identity matrix. Note that in this case the holonomy transformation has
a simple expression and it belongs to the homogeneous Lorentz group. In this context it does not
carry information concerning angular momentum and torsion and coincides with a previous
result11 concerning the multiple cosmic string solution.12 Then, the concept of holonomy can be
used to detect different connections that come out from Einstein and Einstein-Cartan theories. The
holonomy for a single chiral string has been studied recently in Ref. 15.

From Eq.~3.13!, we conclude that the phase factor acquired by a vector when parallel trans-
ported in the space-time corresponding to a multiple chiral cosmic string is affected by chiral
strings inside the curves along which the vector is parallel transported. Then, from the global point
of view the space-time surroundingn strings (n<N) can be seen to correspond to a chiral cone
with deficiency angleSj51

n m j . The chiral strings withn>N do not contribute to the phase.
It is interesting to call attention to the fact that in the context of Einstein theory, the resulting

holonomy transformation is an element of the inhomogeneous Lorentz group. The appearance of
the group ISO~3,1! as a holonomy group is fascinating and can suggest important parallel with the
better understood~211! dimensional case, in which gravity is equivalent to anISO~2,1! Chern-
Simons gauge theory,16 in which case the triade(a)

m is a gauge field. As far as we know there is no
corresponding result in~311! dimensional gravity, in general. Our result, evidently, is valid for
the special case under consideration.

IV. LOOP VARIABLES IN OTHER CONICAL SPACE–TIMES

The purpose of this section is to complete a previous work17 in which we computed the loop
variables for some curves in space–times with a topological defect. We considered a single
domain wall crossed by multiple cosmic strings. Other simple examples of conical space–times
include two domain walls crossed by a cosmic string of linear mass densitym and two planes
topological defects plus a cosmic string. A variety of conical space–time of different topologies
can be found in Ref. 9.

Now let us consider two domain walls parallels to thexy-plane that intersect thez-axis at6h
and crossed by a single cosmic string. The metric corresponding to the space-time generated by
this configuration is

ds25e24psuh22z2u@2e4pstr24m~dr21r2dw2!24z2dz21dt2#, ~4.1!

wheres is the matter density of the wall andm is the linear mass density of the cosmic string.
Proceeding in the same way of the previous cases let us define the appropriate 1-formsua that

give the usual flat space–time limits50, m50 as

u15e22psuh22z2u12pst~r22m coswdr2r22m11 sin wdw!,

u25e22psuh22z2u12pst~r22m sin wdr1r22m11 coswdw!,
~4.2!

u352ze22psuh22z2udz, u45e22psuh22z2udt.

In a coordinate system~x15r, x25w, x35z, x45t!, the tetrad vectors are given by
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e1
~1!5r22me22psuh22z2u12pst cosw, e2

~1!52r22m11e22psuh22z2u12pst sin w,

e1
~2!5r22me22psuh22z2u12pst sin w, e2

~2!5r22m11e22psuh22z2u12pst cosw, ~4.3!

e3
~3!52ze22psuh22z2u, e4

~4!5e22psuh22z2u.

Using these results we can compute the tetradic connections which are

Gm2
1 dxm5~124m!dw52Gm1

2 dxm,

Gm3
1 dxm52ps

uh22z2u
h22z2

e2pstr24mdw52Gm1
3 dxm,

Gm3
2 dxm52ps

uh22z2u
h22z2

e2pstr24m11dw52Gm2
3 dxm,

~4.4!
Gm1
4 dxm52pse2pstr24mdw5Gm4

1 dxm,

Gm2
4 dxm52pse2pstr24m11dw5Gm4

2 dxm,

Gm3
4 dxm52ps

uh22z2u
h22z2

dt5Gm4
3 dxm.

Let us consider the pathC as a circle centered on thez axis with radiusR lying on a plane
parallel to thexy-plane at a fixed time. In this case we have thatGmdx

m5Gwdw where

Gm5 i ~124m!J1222p ise2pstr24m11S J241 uh22z2u
h22z2

J23D . ~4.5!

From Eq.~4.5! we get

U2p,0~C!5expF28p imJ1224p2ise2pstr24m11S J241 uh22z2u
h22z2

J23D G . ~4.6!

Equation~4.6! is the exact expression for the holonomy transformation for a circle with center at
the cosmic string and that is parallel to the domain walls.

The holonomy transformation associated to the circleC that corresponds to the domain walls
only ~m50! and to the cosmic string only~s50! are given, respectively, by

U2p,0~C!5expF24p2ise2pstrS J242 uh22z2u
h22z2

J23D G ~4.7!

and

U2p,0~C!5exp~28p imJ12!. ~4.8!

From these results we see that the holonomy transformations detect the topological defects in all
cases. In particular, for the domain walls plus a cosmic string, the value ofU2p,0(C) depends on
the radius of the circle. Note thatU2p,0(C) distinguishes the regionsz,2h, 2h,z,h andz.h
in the cases of two domain walls crossed by a cosmic string and two domain walls only.
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In the case of two planes topological defects crossed by a cosmic string with an equation of
statep52gs~g,1!, the metric is given by

ds252r28meH~dr21r2dw2!1eF~24z2dz21dt2!, ~4.9!

where

eH5~ t2uh22z2u!1/2~12g!,
~4.10!

eF5
1

8ps~12g!

1

t2uh22z2u F t2uh22z2u
t1uh22z2uG

1/4~g21!

.

The holonomy transformation for the same circleC described above is given by

U2p,0~C!5expF28p imJ122
p ie~H2F !/2

4~12g!~ t2uh22z2u!
r24m11S J242 uh22z2u

h22z2
J23D . ~4.11!

To get Eq.~4.11!, we have used the following relations between the tetradic connections:

Gm2
1 dxm5~124m!dy52Gm1

2 dxm,

Gm3
1 dxm5

e2F/2

2z

]

]z
~eH/2!r24mdr52Gm1

3 dxm,

Gm3
2 dxm5

e2F/2

2z

]

]z
~eH/2!r24m11dw52Gm2

3 dxm,

~4.12!

Gm1
4 dxm5e2F/2

]

]t
~eH/2!r24mdr5Gm4

1 dxm,

Gm2
4 dxm5e2F/2

]

]t
~eH/2!r24m11dw5Gm4

2 dxm,

Gm3
4 dxm5

e2F/2

2z

]

]z
~eF/2!dt12ze2F/2

]

]t
~eF/2!dz5Gm4

3 dxm.

As in the previous case corresponding to two domain walls plus a string, the presence of the
topological defect is coded in the holonomy transformation, which distinguishes the different
regionsz,2h, 2h,z,h andz.h. Also in this case, the holonomy transformation is an element
of the Lorentz group.

V. CONCLUDING REMARKS

We have shown by explicit computation from the metric corresponding to a multiple parallel
chiral cosmic string that the loop variables are combinations of rotations around the three axis and
boosts with appropriate parameters that depend on the characteristics of each chiral string defined
by mi , Ji

t andJi
z. The holonomy transformation, in this space–time, are elements of the inhomo-

geneous Lorentz group. It assumes a simple form in the context of the Einstein-Cartan theory
which recover an expression for the case of multiple cosmic strings. The loop variables associated
with the multiple moving crossed cosmic strings are also combinations of rotations and boosts in
the directions of the three spatial axis. They are elements of the homogeneous Lorentz group.
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In the two domain walls and two planes topological defects plus the cosmic string, the
holonomy transformation distinguishes the presence of strings and membranes and depends on
whether the loop encircles the strings and in which side of the planes topological defects are
located. Again, they are elements ofSO~3,1!.

Our approach provides a unified way to obtain the phase factor acquired by a vector or a
spinor when parallel transported in these gravitational fields, showing up the dependence of the
phase factors with the parameters associated with the defects.
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Asymptotic behavior of a class of inhomogeneous scalar
field cosmologies
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The asymptotic behavior of a class of inhomogeneous scalar field cosmologies with
a Liouville type of potential is studied. We define a set of new variables for which
the phase space of the system of Einstein equations is bounded. This allows us to
perform a complete analysis of the evolution of these cosmologies. We also discuss
the extension of the cosmic no-hair theorem. ©1996 American Institute of Phys-
ics. @S0022-2488~96!03311-7#

I. INTRODUCTION

Since the proposal by Misner1 of the ‘‘chaotic cosmology program,’’ the idea that the Uni-
verse emerged from a highly irregular state and that the inhomogeneities and the anisotropies were
washed away giving place to a highly symmetric universe, has been one of the most attractive
ideas in cosmology. In spite of the theorem proved by Collins and Hawking2 which states that only
a subclass of measure zero of the space of homogeneous solutions approach isotropy and the
alternative approaches that postulated, according to the second law of thermodynamics,3 that the
universe began in a highly regular state, Misner’s idea has come back due to the success of the
inflationary scenarios.

The cosmic ‘‘no-hair’’ theorems of Wald4 for homogeneous models and of Jensen and
Stein-Schabes5 for inhomogeneous space–times pointed out how the introduction of a cosmologi-
cal constant, which can be considered as induced by a scalar field~inflaton!, allows the models to
isotropize approaching the de Sitter solution. This situation, however, may dramatically change if
one takes into account the dynamical behavior of the scalar field. Heusler,6 for example, extending
the theorem of Collins and Hawking to the case of convex and positive potentials of the scalar
field possessing a local minimum, has shown that only the homogeneous Bianchi models which
admit a FRW solution as a particular case approach isotropy. Kitada and Maeda7 and Ibáñezet al.8

have shown that when one assumes a Liouville type of potential for the scalar field~exponential
potential!, the Wald theorem for homogeneous solutions still applies if the exponential potential is
quite flat.

Although Jensen and Stein-Schabes5 extended the Wald theorem to inhomogeneous solutions,
little is known about the effect of the dynamics of the scalar field on the asymptotic behavior of
the models. The first attempts to incorporate the effect of the dynamical evolution of the scalar
field was made by Goldwirth and Piran9 using numerical studies of inhomogeneous models and,
later on, by Calzetta and Sakellariadou10 by studying the evolution of a family of inhomogeneous
Cauchy data. The first inhomogeneous scalar field exact solutions with exponential potential of the
Einstein field equations were obtained by Feinstein and Iba´ñez11 and it was shown there that the
scalar field does not guarantee by itself that the model inflates or isotropizes. Although there are
some exact inhomogeneous solutions obtained up to now, we are lacking a result similar to
Heusler’s. In particular, for the exponential potential, it would be interesting to study the condi-
tions on the scalar field leading to inflation and isotropization.

The asymptotic behavior of homogeneous but anisotropic solutions for a perfect fluid has been
widely studied. By using the kinematical quantities of the fluid as variables, the field equations can
be written as an autonomous system of ordinary differential equations.12 One of the most distinc-
tive features is that the equilibrium points of these systems are self-similar solutions. This analysis
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has recently been extended to the case when the matter source is a scalar field with exponential
potential.13 Since the scalar field is homogeneous, one can globally associate with it a perfect fluid,
and then, by using the kinematical variables of the fluid, the Einstein field equations decouple and
the phase space of the system becomes bounded.

The main difficulty in analyzing the asymptotic behavior of inhomogeneous solutions is
related to the fact that the field equations involve partial derivatives. The study of such systems
was initiated in Ref. 14, where a particular family of self-similar solutions with perfect fluid, for
which the Einstein equations reduced to an autonomous system, was studied. Since the source of
the metric was a perfect fluid, the kinematical quantities could be used again to analyze the
asymptotic behavior of the system, as in the homogeneous case.

In dealing with an inhomogeneous scalar field one can not apply the analysis developed in
Ref. 14 due to the fact that one can not globally interpret the scalar field as a perfect fluid.
Therefore in order to investigate whether the inhomogeneous scalar field cosmologies undergo an
inflationary epoch leading to the homogenization and the isotropization of the space–time, one
does have to look for a different way to tackle this problem.

In this paper we initiate the study of the asymptotic behavior of the scalar field cosmologies
by considering, as a first step, a two-parameter family ofG2 self-similar solutions. The fact that
the scalar field is not equivalent to a perfect fluid prevents the use of the kinematical quantities to
describe the evolution of the solutions. Despite the lack of a preferred timelike congruence in the
space–time, we manage to find a set of new variables in terms of which the phase space of the
system becomes bounded. This allows us to perform a complete analysis of the asymptotic be-
havior of these space–times. In addition, the way to introduce the set of new variables is a
promising method for dealing with more general solutions.

The plan of the paper is as follows: in Sec. II we present the metric and introduce the new
variables. Section III is devoted to the analysis of the phase space and in Sec. IV we discuss the
results.

II. THE METRIC AND THE COMPACTIFIED PHASE SPACE

We will consider solutions with one-dimensional inhomogeneity. These metrics are described
by the generalized Einstein–Rosen space–times which admit an Abelian group of isometriesG2.
If the two Killing vectors are hypersurface orthogonal, the line element can be written as

ds25eF~2dt21dz2!1G~ehdx21e2hdy2!, ~1!

where the metric functions depend ont andz and the Killing vectors are]x and]y .
The matter source for the metric is that of a minimally coupled scalar field with potential, for

which the stress-energy tensor is given by

Tab5f̄ ,af̄ ,b2gab„
1
2 f̄ ,cf̄

,c1V~f̄ !… ~2!

~Latin indices run from 0–3!, with the Liouville type of the potential

V~f̄ !5Lekf̄, L>0. ~3!

It is well known15 that as long as the gradient of the scalar field remains timelike,~2! can be
rewritten as a perfect fluid stress-energy tensor.

To simplify the equations we will concentrate in this paper on the class of solutions for which
the element of transitivity surfaceG is homogeneous,

G5G~ t !, ~4!

which is suitable for a description of cosmological models.

6284 J. Ibáñez and I. Olasagasti: Asymptotic behavior of inhomogeneous cosmologies

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



It was shown in Ref. 16 that if one assumes separability of the metric and separability, in the
additive sense, of the scalar field one obtains, from the field equations, that the dependence of
these functions on the variablez is linear;

h~ t,z!5p~ t !1az, F~ t,z!5 f ~ t !1cz, f̄~ t,z!5f~ t !1bz, ~5!

wherea, b, andc are arbitrary constants which drive the inhomogeneity. This linear behavior for
the inhomogeneity has been recently considered, in a different context, by Vilenkin.17 The general
solution for this class of metrics and the study of a few particular examples were given in Ref. 11.

Before going to the field equations, it is worth mentioning that the metric~1!–~5! admits a
homothetic vector field given by

H5
2

c

]

]z
1S 12

a

cD x ]

]x
1S 11

a

cD y ]

]y
. ~6!

It was conjectured in Ref. 14 that the self-similar solutions could be the attractors of theG2
cosmologies and in this sense the metric~1!–~5! would play an important role in the study of the
asymptotic behavior of the inhomogeneous solutions. The metric~1!–~5! is similar to the metric
studied by Hewittet al.14 @it is obtained interchangingt by z in ~5!#. Both metrics, however, differ
in the character of the orbits of the similarity group and in the type of the source. In our case the
orbits of ~6! are spacelike given byt5constant and the scalar field is inhomogeneous and, there-
fore, it is not equivalent, in general, to a perfect fluid.

The Einstein equations and the Klein–Gordon equation for the scalar field with the ansatz~5!
are given by

G̈

G
22V~f̄ !eF50, ~7!

p̈1
Ġ

G
ṗ50, ~8!

aṗ2c
Ġ

G
12bḟ50, ~9!

G̈

G
2
1

2 S ĠGD 22 ḟ
Ġ

G
1
1

2
ṗ21ḟ21

1

2
a21b250, ~10!

f̈2
1

2 S ĠGD 21 1

2
ṗ21ḟ22

1

2
a22b250, ~11!

f̈1
Ġ

G
ḟ1kV~f̄ !eF50. ~12!

For a massless scalar field,V50, the former system of equations turns out to be easily
integrable, giving the following solution;

p~ t !5A ln t, f~ t !5B ln t, G~ t !5t,
~13!

f ~ t !5~ 1
2A

21B22 1
2!ln t1 1

2~
1
2a

21b2!t2,

whereA andB are constants subject to the condition
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aA2c12bB50. ~14!

WhenVÞ0, from ~7! or ~12!, and due to the exponential form of the potential,

c52kb. ~15!

In this case if the constantb50, then, from~9!, eitherṗ50 and the metric is Bianchi type VI0, or
a50 and the metric is Bianchi type I. Let us note that whatever valueV takes, whena5b50 the
metric is Bianchi type I.

In order to look for a suitable set of new variables to compactify the phase space, we write the
generalized Friedman equation which is obtained from~7! and ~10!:

2
1

2 S ĠGD 22 ḟ
Ġ

G
1
1

2
ṗ21ḟ21

1

2
a21b212V~f!ef50. ~16!

This equation suggests the introduction of the following set of variables

b5
ṗ

Ġ/G1 ḟ
, C5&

ḟ

Ġ/G1 ḟ
,

~17!

F5
ḟ

Ġ/G1 ḟ
, G5

2AVef

Ġ/G1 ḟ
.

In terms of these new variables,~16! is written as

12b22C22F22G25
~a212b2!

~Ġ/G1 ḟ !2
>0. ~18!

Therefore the space of solutions described by the variables~17! is bounded to the inside of the
four-sphere~18!. Let us note that, from~16!, Ġ/G1 ḟ has to be different from zero, unlessL be
negative.

In dealing with perfect fluid models new variables were defined as the kinematical quantities
of the fluid divided by an appropriate power of the rate of expansionu. This assures good behavior
of these variables near the initial singularity. Let us note that our new variables~17! are divided by
the quantityĠ/G1 ḟ , which is not related to the expansion of any timelike congruence. Never-
theless, from the general behavior near the initial singularity found by Belinskiiet al.18 and from
the work of Isenberg and Moncrief19 we can assume that the metric~1!–~5!, near the initial
singularity behaves, for each value of the coordinatez, like a Kasner model. Therefore, whent→0

G;t, f;p;f; ln t, ~19!

and the variables~17! remain bounded whent tends to zero.
From ~18! we see that the points on the surface of the four-sphere represent either homoge-

neous Bianchi type I solutions~when constantsa andb are zero! or the initial singularity of the
models.

By using ~17!, ~9! is written as

ab1b&C2c~12F!50. ~20!

Except for the trivial case whena5b50, this equation gives a constraint for the constantsa and
b. Alternatively, if a and b are fixed, one can look at this equation as giving a plane, the
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intersection of which with the sphere~18! describes the phase space. In the study of the equilib-
rium points in the next section,a andb will be arbitrary, chosen constrained by~20!.

Using the variables~17!, ~7! becomes

G̈

G
5
1

2 S G

12F
D 2S ĠGD 2. ~21!

This equation decouples from the rest of the field equations if we introduce a new time coordinate

dt

dt
5
Ġ

G
1 ḟ5

1

12F

Ġ

G
. ~22!

Near the initial singularity

dt

dt
;
1

t
⇒t→2`, ~23!

thust varies from2` to 1`. In terms of this new time the field equations are written as

b852b~12b22C22F2!, ~24!

C852C~12b22C22F2!2
k

2&
G2, ~25!

F85~12F!~12b22C22F2!2 1
2 G2, ~26!

G852GS 2b22C22F21
1

2
F2

k

2&
C D , ~27!

where8 means derivative with respect to the new timet. Differentiating~20! with respect tot one
can easily see that the constraint equation~20! holds for all values oft, as long as the initial
conditions verify the equation~20!. Therefore~24!–~27! along with the constraint equation~20!
describe the evolution of the metric~1!–~5!.

III. THE EQUILIBRIUM POINTS AND THE INVARIANT SETS

In this section we shall study the qualitative behavior of the trajectories of the system~24!–
~27!. Let us first note that the system admits the discrete symmetryG→2G, and, therefore, without
loss of generality the study of the equilibrium points will be restricted toG>0.

A. Equilibrium points

The equilibrium points of an autonomous system play an important role in describing the
qualitative behavior of its solutions. The local stability of the equilibrium points are given by the
eigenvalues of the linearized differential equations. The equilibrium points of the system~24!–
~27! can be found explicitly and we now give them and their character:

~ I! H b50 C52
k&

21k2
F5

k2

21k2
G5

2&

21k2 J .
This point is outside the sphere whenk2,2 and it is on the surface of the sphere whenk252.

The constraint equation~20! is trivially satisfied for all values of the constantsa and b. The
corresponding metric and the scalar field whenk2.2 are

6287J. Ibáñez and I. Olasagasti: Asymptotic behavior of inhomogeneous cosmologies

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ds25Cek
2At/22kbz~2dt21dz2!1eAt~eazdx21e2azdy2!,

~28!

f52
k

2
At1bz,

where

C5
A2

L
, A5A2~a212b2!

k222
. ~29!

This metric was obtained in Ref. 11 and is of Bianchi type VI. The eigenvalues of the
linearized system are

22

k212
,

22

k212
,

211A522k2

k212
,

212A522k2

k212
. ~30!

Whenk2,5
2, the equilibrium point is a stable node and whenk2.5/2 it is a stable focus.

~ II ! H b50 C52
k

2&
F5

1

2
G5

A62k2

2&
J .

This equilibrium point is on the surface of the sphere. It disappears whenk2.6 and coincides
with the former equilibrium point whenk252. Substituting the former values of the variables of
the equilibrium point into~17! one easily gets that the solution corresponds to a homogeneous
Bianchi type I solution (a5b50). The line element and the scalar field are

ds25Ctm~2dt21dz2!1tm~dy21dz2!, m5
4

k222
, f52

2k

k222
ln t, ~31!

where

C5
2~62k2!

L~k222!2
, ~32!

and the metric represents the FRW universe with massless minimally coupled scalar field as a
source. The eigenvalues of the linearized system are

2 1
8~62k2!, 2 1

4~22k2!, 2 1
8~62k2!, 2 1

8~62k2!. ~33!

Whenk2,2 this equilibrium point is a stable node, but when 2,k2,6 it is a saddle point.
It is important to note that the constraint equation~20! is satisfied not only becausea andb

vanish but becauseb50 and&C1k~12F!50. If we look into the evolution in time of a par-
ticular solution witha andb different from zero, and withk2,2, b, C, andF will take values
such that the constraint equation will be always satisfied and ast→` the solution will approach
this equilibrium point becoming, therefore, homogeneous and isotropic.

~ III ! $b21C21F251, G50%.

This ring of equilibrium points belongs to the surface of the sphere and represents, therefore,
Bianchi type I solutions with a minimally coupled massless scalar field. By choosing a particular
point on the surface, i.e.,b5a1, C5a2, andF5a3 with a1

21a2
21a3

251, the eigenvalues of the
linearized system are
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1

2 S 22a31
k

&

a2D , 2~12a3!, 0, 0. ~34!

Hence, any of these points are unstable, except whenF51 ~a351!, which corresponds to the
Minkowski space–time.

B. Invariant sets

Besides the equilibrium points, the existence of invariant sets help to describe the qualitative
behavior of the solutions of an autonomous system. In our case, there are three invariant sets, two
of them describing massless and exponential potential scalar field solutions, respectively, while the
third gives the Bianchi type I solutions.

The points withG50 ~massless scalar field space–times! compose an invariant set of the
dynamical system~24!–~27! whose solutions are given by~13! and ~14!. The dynamics of the
points of this subspace can be easily studied: whenG50, the dynamical system reduces to

b852b~12b22C22F2!,

C852C~12b22C22F2!, ~35!

F85~12F!~12b22C22F2!,

with straight lines as solutions:

F5
F021

b0
b11, C5

C0

b0
b. ~36!

These lines start on the surface of the sphereb21C21F251 and intersect at the pointb5C50,
F51. Thus the solutions evolve from the Kasner initial singularity to the Minkowski space–time.

The second invariant set is given by the points withG.0 ~and by symmetryG,0!, with
equilibrium points being the points I and II described above.

Finally, the third invariant set is given by the points on the surface of the sphere
~b 21C21F21G251!. In this case the dynamical system is reduced to

b852b~12b22C22F2!,

C852S C1
k

2&
D ~12b22C22F2!, ~37!

F85~ 1
22F!~12b22C22F2!.

The solutions of this system are again straight lines:

F5S F02
1

2D b

b0
11, C5S C01

k

2&
D b

b0
2

k

2&
, ~38!

and the equilibrium points of the system~37! are the points II and III.
The behavior of the system~24!–~27! can be visualized in Fig. 1 where the phase space for

b50 andG>0 is depicted for different values of the constantk. The positions of the equilibrium
point I as a function ofk are represented by the dashed line. All the solutions start on the circle
F21C251, G50. WhenG50 ~massless scalar field!, for all the cases, the solutions tend to the
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point F51, C50. Whenk2,2, the point I is outside the sphere and the solutions tend to the
equilibrium point II. When 2,k2,6, point I is inside the sphere and the solutions evolve either to
the point I~those that go inside the sphere! or to the point II~those that lie on the boundary of the
sphere!. Whenk2.6, the only attracting point is point I~inside the sphere!. The trajectories on the

FIG. 1. Phase space whenb50 andG>0, and for different values of the constantk. The equilibrium point I is represented
by a square and the equilibrium point II by a circle. The dashed line describes the position of the point I for different values
of k. Faded lines represent the trajectories of the solutions lying on the surface of the sphere which is an invariant set. The
planeG50 is an invariant set describing the massless scalar field solutions.
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surface start and finish on the circleF21C251, G50, in such a way that their projections on the
planeG50 are a straight line directed to the pointC52~k/2&! F51

2 which is outside the surface.
The behavior described above remains the same whenb is different from zero.

IV. CONCLUSIONS

We have studied in this paper the asymptotic behavior of a particular class of inhomogeneous
solutions with a minimally coupled scalar field with an exponential potential. The metric belongs
to the class ofG2 cosmologies.

We have succeeded in defining a set of new variables for which the entire phase space is
bounded by a four-sphere. From the analysis of the dynamical system obtained for this metric, we
deduce the following:

~i! As in the homogeneous case,13 the dynamical behavior of the metric depends on the
parameterk which is related to the mass of the scalar field. The parametersa andb which
drive the inhomogeneity do not play a significant role in this behavior.

~ii ! Whenk2,2, the only equilibrium point is that given by the FRW universe. The trajectories
evolve from the surface of the four-sphere, representing the Kasner regime near the initial
singularity, towards the isotropic equilibrium point II. Whenk2.2, there are two equilib-
rium points: one is the homogeneous Bianchi type VI~point I! and the second is the FRW
solution which is a saddle point and, therefore, unstable against small changes of the initial
conditions. This means that the cosmic no-hair theorem holds in this case providedk2,2.

The behavior described above is almost identical to that of homogeneous models,13 indicating
that the introduction of the inhomogeneity through the constantsa andb does not affect remark-
ably the dynamical system. It is likely that the presence of a more ‘‘strong’’ inhomogeneity,
assuming another dependence on the spatial coordinate, may change the behavior of the solutions
and the conditions to isotropize. We consider, therefore, that it is important to extend this analysis
to a more general class of inhomogeneous scalar field solutions.

As to the inflation of the models, for inhomogeneous solutions there is no natural way to see
whether the models inflate. The hypersurfacesf̄5constant do not define a globally timelike
observer and, therefore, one should use a weaker way to specify the inflationary behavior. It has
been suggested,20 for example, to look at the fulfillment of the strong energy condition, the
breaking of which is a necessary condition for a model to inflate. The energy density and the
pressure of the scalar field are given by

r52 1
2 f̄ ,af̄

,a1V, p52 1
2f̄ ,af̄

,a2V. ~39!

In terms of the new variables, the breaking of the energy condition is written as

3p1r5e2FS ĠG1 ḟ D 2FC22
1

2
G22

2b2

~Ġ/G1 ḟ !2G,0. ~40!

For the equilibrium points I and II the expressionC221
2G

2 turns out to be

2~k222!

~21k2!2
and

3~k222!

16
, ~41!

respectively. That means that ifk2,2, both points describe space–times inflating, but ifk2.2, the
energy condition could be broken only by the solution represented by the point I depending on the
value ofb. This behavior is similar again to that of the homogeneous models.8
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We calculate the total gravitational energy and the gravitational energy density of
the de Sitter space using the definition of localized gravitational energy that natu-
rally arises in the framework of the teleparallel equivalent of general relativity. We
find that the gravitational energy can only be defined within the cosmological
horizon and is largely concentrated in regions far from the center of spherical
symmetry, i.e., in the vicinity of the maximal spacelike radial coordinateR
5 A3/L. The smaller the cosmological constant, the farther the concentration of
energy. This result complies with the phenomenological features of the de Sitter
solution, namely, the existence of a radial acceleration directed away from the
center of symmetry experienced by a test particle in the de Sitter space. Einstein
already contemplated the de Sitter solution as a world with a surface distribution of
matter, a picture which is in agreement with the present analysis. ©1996 Ameri-
can Institute of Physics.@S0022-2488~96!01012-2#

I. INTRODUCTION

The difficulty in defining gravitational energy density within the framework of the Hilbert–
Einstein Lagrangian formulation has led to the belief that the gravitational energy cannot be
localized. It is widely assumed that an expression for the localized energy density of the gravita-
tional field does not exist. However, it is well known that the total energy of a given asymptoti-
cally flat space–time can be calculated by means of pseudotensor methods, which make use of
coordinate-dependent expressions. A different approach to the construction of an energy expres-
sion for the gravitational field is based on the idea of quasilocal energy. The quasilocal definition
of energy, momentum, and angular momentum associates these quantities to an arbitrary spacelike
two-surfaceS in an arbitrary space–time manifold. The inexistence of an unequivocal definition of
gravitational energy still remains an actual problem, important in its own right. Furthermore, such
definition may play a major role in the thermodynamics of self-gravitating systems. This problem
has been recently addressed in Ref. 1, where a comprehensive bibliography on quasi-local energy
is presented. Although all attempts so far have led to interesting mathematical developments, they
did not allow the achievement of a definite solution, either because of conceptual or mathematical
difficulties.

Recently the problem of localization of energy in general relativity has been reconsidered in
the framework of the teleparallel equivalent of general relativity~TEGR!.2 The Lagrangian for-
mulation of the TEGR is established by means of the tetrad fieldeam and the spin affine connec-
tion vmab , which are taken to be completely independent field variables, even at the level of field
equations. This formulation has been investigated in the past in the context of Poincare´ gauge
theories.3,4 However, as we will explain ahead, this is not an alternative theory of gravity. This is
just analternative formulationof general relativity, in which the curvature tensor constructed out
of vmab vanishes, but the torsion tensor is nonvanishing. The physical content of the theory is
dictated by Einstein’s equations. As we will show, in this alternative geometrical formulation the
gravitational energy density can be naturally defined.

a!Electronic mail address: wadih@guarany.cpd.unb.br

0022-2488/96/37(12)/6293/9/$10.00
6293J. Math. Phys. 37 (12), December 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



The expression for the localized energy density of the gravitational field has arisen in the
context of the Hamiltonian formulation of the TEGR.5 It has been demonstrated that under a
suitable gauge fixing ofvmab , already at the Lagrangian level, the Hamiltonian formulation of the
TEGR is well defined.5 The resulting constraints are first class constraints. In fact, the Hamiltonian
formulation looks very similar to the usual Arnowitt–Deser–Misner~ADM ! formulation.6 How-
ever, there are crucial differences. The integral form of the Hamiltonian constraint equationC50
in the TEGR can be written in the formC5H2EADM50, when we restrict considerations to
asymptotically flat space–times.2 The quantity«(x) which appears in the expression ofC and
which under intergration yieldsEADM is recognized as the gravitational energy density. We have
applied the expression of«(x) to the calculation of the energy inside a surface of constant radius,
both for the Schwarzschild2 and for the Kerr metric,7 and the results are remarkably the same as
those obtained by means of the quasilocal energy definition proposed by Brown and York.1

Moreover, the calculational scheme is rather simple, as we will see shortly, and is exempt of some
complications inherent to the latter. Therefore, for asymptotically flat space–times, the gravita-
tional energy density has a definite and unambiguous expression within the framework of the
TEGR.

We recall that the gravitational energy can also be calculated by means of the surface term
that appears in the expression of the gravitational Hamiltonian.8,9 However, such surface term
yields only thetotal gravitational energy, as the integration has to be necessarily carried out over
the whole three-dimensional spacelike hypersurface, in which case the lapse functionN(x) goes
over into its asymptotic valueN→1 at spatial infinity.

The action integrals for space–times with different topologies require surface terms that are
specific to each topology. Thus the corresponding Hamiltonian also acquires a surface term that is
determined by the topological boundary conditions.10 However, the Hamiltonian constraint for a
space–time foliated by spacelike hypersurfaces always has the same basic structure, irrespective
of boundary conditions@additional terms such as the cosmological constant may appear in the
Hamiltonian constraint, as we will see ahead in Eq.~10!#.

Therefore the question immediately arises as to whether the Hamiltonian constraint equation
in the TEGR can always be written asC5H2E50, in which case«(x) would be the gravita-
tional energy density for any curved space–time.

One of the simplest deviations from asymptotically flat geometries are space–times with
conical defects. We have applied our expression of gravitational energy density to the calculation
of the energy per unit length of defects of topological nature, which include disclinations, i.e.,
cosmic strings, and dislocations.11 The result is quite encouraging. We arrive at precisely the same
well-known expression for the energy per unit length of a cosmic string~not even multiplicative
factors have to be adjusted!. Moreover, the total energy of a dislocation is zero, a result which is
in close analogy with the statements of the theory of elasticity, which asserts that disclinations and
dislocations are defects which require high energy and low energy, respectively.

In this paper we consider the de Sitter space, which is topologically of the typeS33R. We
restrict the considerations to the static region within the cosmological horizon~i.e., the region for
which2g00.0! and calculate both the total energy and the distribution of energy along the radial
direction. Again the result is rather remarkable. We will show that the cosmological constant
induces a distribution of gravitational energy in such a way that the energy is largely concentrated
in the peripheral region, i.e., in the vicinity of the maximal spacelike radial coordinateR
5 A3/L. As we will show in Sec. III, this picture is in total agreement with the phenomenological
features of the de Sitter solution, and is as well in agreement with Einstein’s belief, according to
which the de Sitter’s solution represents a space–time with a surface distribution of matter.12 This
fact strongly supports the validity of our expression for the gravitational energy density and also
represents a clear indication that the Hamiltonian constraint equation in the TEGR can be unam-
biguously interpreted as an energy equation of the typeH2E50.

Notation:The space–time indicesm,n,..., and local Lorentz indicesa, b,..., run from 0–3. In
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the 311 decomposition, Latin indices from the middle of the alphabet indicate space indices
according tom50,i , a5(0),(i ). The tetrad fieldeam and the spin connectionvmab yield the usual
definitions of the torsion and curvature tensors:Ra

bmn 5 ]mvn
a
b 1 vm

a
cvn

c
b 2 •••,Tamn 5 ]me

a
n

1 vm
a
be

b
n 2 •••. The flat space–time metric is fixed byh~0!~0!521.

II. THE LAGRANGIAN AND HAMILTONIAN FORMULATIONS OF THE TEGR

In the TEGR the tetrad fieldeam and the spin connectionvmab are independent field variables,
not related by any of the field equations. The spin connection is enforced to satisfy the condition
of zero curvature. The Lagrangian density in empty space–time is given by2,5

L~e,v,l!52ke~ 1
4T

abcTabc1
1
2T

abcTbac2TaTa!1elabmnRabmn~v!, ~1!

wherek51/16pG, G is the gravitational constant,e5det(eam!, labmn are Lagrange multipliers,
andTa is the trace of the torsion tensor defined byTa5 Tbba.

The equivalence of the TEGR with Einstein’s general relativity is guaranteed by the identity

eR~e,v!5eR~e!1e~ 1
4T

abcTabc1
1
2T

abcTacb2TaTa!22]m~eTm!, ~2!

which is obtained by just substituting the arbitrary spin connectionvmab5
0vmab(e)1Kmab in the

scalar curvature tensorR(e,v) on the left-hand side of~2!; 0vmab(e) is the Levi–Civita connec-
tion andKmab5

1
2ea

leb
n~Tlmn1Tnlm2Tmnl! is the contorsion tensor. The vanishing ofRa

bmn~v!,
which is one of the field equations derived from~1!, implies the equivalence of the scalar curva-
tureR(e), constructed out ofeam only, and the quadratic combination of the torsion tensor. It also
ensures that the field equation arising from the variation ofL with respect toeam is strictly
equivalent to Einstein’s equations in tetrad form. LetdL/deam50 denote the field equation sat-
isfied byeam . It can be shown by explicit calculations that

dL

deam 5
1

2 HRam~e!2
1

2
eamR~e!J

~we refer the reader to Ref. 5 for additional details!.
Forasymptoticaly flatspace–times the total divergence in~2! doesnot contribute to the action

integral. Therefore the latter does not require additional surface terms, as it is already invariant
under coordinate transformations that preserve the asymptotic structure of the field quantities.9 It
is well known that for compact geometries a surface term has to be included in the action, in order
to make the variations of the field variables well defined. This surface term is constructed out of
the trace of the extrinsic curvature on the boundary. However, we will no longer worry about
surface terms in the Lagrangian or in the Hamiltonian, as we will be interested only in the
constraint structure of the theory.

The Hamiltonian formulation of the TEGR can be successfully implemented if we fix the
gaugev0ab50 from the outset, since in this case the constraints constitute afirst classset.5 The
conditionv0ab50 is achieved by breaking the local Lorentz symmetry of~1!. We still make use
of the residual time-independent gauge symmetry to fix the usual time gauge condition
e(k)

05e(0)i50. Because ofv0ab50, H does not depend onPkab, the momentum canonically
conjugated tovkab . Therefore arbitrary variations ofL5pq̇2H with respect toPkab yields
v̇kab50. Thus in view ofv0ab50, vkab drops out from our considerations. The above gauge
fixing can be understood as the fixation of aglobal reference frame.

Under the above gauge fixing, the canonical action integral obtained from~1! becomes5

ATL5E d4x$P~ j !kė~ j !k2H%, ~3!
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H5NC1NiCi1SmnP
mn. ~4!

In expression~4! above we are omitting surface terms. HereN andNi are the lapse and shift
functions andPmn5e( j )

mP ( j )n andSmn52Snm are Lagrange multipliers. The constraints are
defined by

C5] j~2keT
j !2keSki jTki j2

1

4ke S P i jP j i2
1

2
P2D , ~5!

Ck52e~ j !k] iP
~ j !i2P~ j !iT~ j !ik , ~6!

with e5det(e( j )k), T
i5gike( j ) lT( j ) lk , andT( j ) lk5] le( j )k2]ke( j ) l . We remark that~3! and ~4! are

invariant underglobalSO~3! and general coordinate transformations.@In Eqs.~1! and~2!, e is the
determinant of thespace–time tetrad field; from Eq.~3! on, e stands for the determinant of the
triads restricted to the three-dimensional spacelike hypersurface.#

If we assume the asymptotic behaviore( j )k'h jk1
1
2hjk(1/r ) for r→`, which is appropriate

for an asymptotically flat space–time, then in view of the relation

1

8pG E d3x] j~eT
j !5

1

16pG E
S
dSk~] ihik2]khii ![EADM , ~7!

where the surface integral is evaluated forr→`, we note that the integral form of the Hamiltonian
constraintC50 may be rewritten as

E d3xH keSki jTki j1
1

4ke S P i jP j i2
1

2
P2D J 5EADM . ~8!

The integration is over the whole three-dimensional space. Given that] j (eT
j ) is a scalar density,

from ~7! and~8! we define the gravitational energy density enclosed by a volumeV of the space
as2

Eg5
1

8pG E
V
d3x] j~eT

j !. ~9!

It must be noted that this expression is also invariant under global SO~3! transformations.
One is immediately led to ask whether the Hamiltonian constraint for topologically different

space–times can also be written as Eq.~8!. In the next section we will consider the de Sitter space.
Before addressing the latter, let us recall here some applications ofEg . We have calculated the
gravitational energy inside a surface of constant radiusr 0 both for the Schwarzschild

2 and for the
Kerr solution,7 using Boyer and Lindquist coordinates.13,14 These quantities have also been cal-
culated by means of Brown and York’s procedure, in Refs. 1 and 15, respectively. The expressions
found by using~9! are in total agreement with those obtained via the method of Ref. 1. Moreover,
Eg can be calculated for any volume in the three-dimensional spacelike hypersurface, at least
through numerical integration, whereas the evaluation of the energy in Ref. 15 can only be carried
out in the limit of slow rotation of the black hole~the application of Brown and York’s procedure
to the Kerr solution with arbitrary parameters meets some technical difficulties, as discussed in
Ref. 15!.

Definition ~9! has also been applied to a class of conical space–time defects, in which discli-
nations~cosmic strings! and dislocations are considered altogether. For the space–time of a single
cosmic string, i.e., for a pure disclination, we obtain precisely the well-known value of energy per
unit length of the string.11 Furthermore, thetotal gravitational energy for a pure dislocation
vanishes. This is a very interesting result, because we know from the theory of elasticity that
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disclinations are defects that require a large amount of energy to be formed, whereas dislocations
require low energy~see sections 6.3.2 and 6.5 of Ref. 16 for a discussion as to why the energy
demanded for the formation of a disclination in a crystal is very high!. Therefore the above
calculations of energy are in close agreement with the statements of the theory of elasticity@in this
respect we recall that attempts were made a long time ago which envisaged the space–time as a
continuum with microstructure~see Ref. 4, section 1.2!#.

III. GRAVITATIONAL ENERGY IN THE dE SITTER SPACE

We will consider now the theory defined by the Lagrangian density~1! supplemented by a
term containing the cosmological constantL. Thus we add to~1! the quantity 24eL, where4e
5 Ne is the determinant of thespace–time tetrad fieldeam . This additional term will contribute to
the action integral~3! only as an extra term of the Hamiltonian constraint. The new Hamiltonian
constraint reads

C5] j~2keT
j !2keSki jTki j2

1

4ke S P i jP j i2
1

2
P2D22eL. ~10!

The most general spherically symmetric solution of the field equations with a positive cosmologi-
cal constant is the Schwarzschild–de Sitter solution~throughout this section we will makeG51!:

ds252S 12
2m

r
2

r 2

R2Ddt21S 12
2m

r
2

r 2

R2D 21

dr21r 2 du21r 2 sin2 udf2. ~11!

This metric represents the gravitational field of a particle of massm located at the origin of a
globally hyperbolic space–time. The vacuum solution, obtained by settingm50 in ~11!, is the de
Sitter solution. HereR is the maximal spacelike radial coordinate for the~vacuum! de Sitter space
and is given byR5 A3/L.

Strictly speaking, de Sitter space–time corresponds to a four-dimensional surface in a flat
five-dimensional space with metric~2,1,1,1,1! described by

2z0
21z1

21z2
21z3

21z3
21z4

25
3

L
, L.0.

The coordinates (t,r ,u,f) in ~11! cover only half of the space defined by the relation above.
However we will be interested just in~11!, as it suffices for our purposes. Moreover, we will
restrict the considerations to the physical region between the Schwarzschild~black hole! and the
cosmological horizons.

Expression~9! allows us to calculate the gravitational energy for any volume in space. We
wish to obtain the energy contained within a surface of constant radiusr 0 . For this purpose we
will calculateeT15eTr for a space–time whose spacelike section is described by the line element

dl25a2dr21r 2du21r 2 sin2 udf2, ~12!

wherea is a function of the coordinater . The triads that correspond to~12! are given by

e~k!i5S a sin u cosf r cosu cosf 2r sin u sin f

a sin u sin f r cosu sin f r sin u cosf

a cosu 2r sin u 0
D . ~13!

Here (k) is the line index andi is the column index.
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The determinante of ~13! readse5ar 2 sinu. After a lengthy but otherwise straightforward
calculation of

eT15eg1 jgime~k!
mT~k!i j ,

we arrive at

eT152r sin uS 12
1

a D . ~14!

Therefore for the Schwarzschild–de Sitter solution we have

eT152r sin uS 12A12
2m

r
2

r 2

R2D . ~15!

The energy contained within a surface of constant radiusr 0 is thus given by

Eg5
1

8p E
S
dudfeT15r 0S 12A12

2m

r 0
2

r 0
2

R2D , ~16!

whereS is a surface of constant radiusr 0 .
Let us evaluate expression~16! for the range of values ofr 0 such that

2m

r 0
!1,

r 0
2

R2 !1,

in which case we assume the cosmological constant to be very small. Expanding~16! and neglect-
ing all powers of both 2m/r 0 and r 0

2/R2 we arrive at

Eg5r 01m[EdS1m. ~17!

HereEdS is the value of energy we would obtain in the absence of the massm, and therefore it
represents the background~vacuum! energy. Upon subtraction of this term we obtain the standard
ADM value of energy for a particle of massm. Of course in~17! we expectr 0 to be much larger
thanm.

The total gravitational energy contained within the cosmological horizon can be easily calcu-
lated, but for this purpose one has to find the roots of the equation 122m/r2r 2/R250. The result
is not illuminating. IfR@m, we find thatEg

total 5 rmax, wherermax is slightly smaller thanR and is
a solution of the equation above. In what follows we will rather consider the vacuum de Sitter
solution only, since in this case the analysis of the energy density is most easily carried out, and
the main features are not altered by the introduction of a massm at r50.

Before proceeding we mention that the present analysis is different from that carried out by
Abbott and Deser.17 These authors provide an expression for the energy of the gravitational field
aboutthe de Sitter background, i.e., they calculate the energy of a field configuration that deviates
from the de Sitter metric and which vanish at infinity. In contrast, by means of expression~9! we
can compute the energy of the whole gravitational field configuration, including the background.

The total gravitational energyEdS contained in the physical region of the vacuum de Sitter
space is obtained from~16! by makingm50 andr 05R:

EdS5R5A3

L
. ~18!
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The total volume of the compact spacelike section equals 2p2R3. Therefore the average energy
density is given by

EdS

2p2R3 5
L

6p2 . ~19!

Let us obtain now the distribution of gravitational energy in the de Sitter space. In view of the
spherical symmetry we will be interested in calculating the density of energy per unit radial
distance«(r ), which is obtained by integrating (1/8p)] r(eT

1) in u andf. Thus«(r ) yields the
gravitational energy contained between the spherical shells of radiir and r1dr. Considering
m50 in ~15! we obtain upon integration in the angular variables and differentiation inr :

«~r !511
2b221

A12b2
. ~20!

where we have setb25r 2/R2. The function«(r ) has the following properties. In the range
0<b<1, «(r ) vanishes only forr50. Moreover forb51 it diverges:«~b51!→`. It is straight-
forward to check that this is a monotonically increasing function, largely concentrated in the
vicinity of b51: «~b50.1!50.015;«~b50.5!50.423;«~b50.9!52, 422. The total energy con-
tained inside the surfaces of radii 0.1R, 0.5R, and 0.9R are given byEg55.0131024R, Eg50,
067R, andEg50.51R, respectively.

Therefore almost half of the gravitational energy is located betweenb50.9 andb51. This
result is in total agreement with the phenomenological features of the de Sitter solution, and can
be verified in the following way. Theg00 component of~11! can be written as

g005112f,

wheref is given by

f52
m

r
2
1

6
Lr 2.

Here f is the potential in classical mechanics which would induce motion of a test particle
approximately along the geodesics of~11!. Therefore even in the absence of a massm a test
particle would be subject to a radial acceleration

a5 1
3Lr ,

directed away fromr50.
The acceleration increases with the distancer , indicating that the gravitational field is more

intense at points far from the origin. Therefore whenm50 the gravitational field given by~11!
acts on physical bodies as if there were a radially symmetric distribution of matter about the
origin, beyond the cosmological horizon, just asm represents the mass of a black hole, concen-
trated inside the black hole horizon.

This is precisely the picture we obtain from~20!. By applying~9! to the de Sitter solution we
find that the cosmological constant induces a spherically symmetric distribution of gravitational
energy, concentrated in regions distant from the origin, due to the gravitational field that acts on a
test particle placed in the vacuum de Sitter space. Such a field can be thought of as due to some
matter distribution.

One may think of~11! as representing the gravitational field of a spherical cavity inside some
spherically symmetric distribution of matter~this idea is discussed, for instance, in Ref. 18!. In this
respect we recall that Einstein already conjectured that the de Sitter solution would correspond to
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a world with a surface distribution of matter.12 Such conjecture has found a natural explanation
within the present geometrical framework, and shows that~9! yields a consistent expression for
the gravitational energy in the de Sitter space.

We will briefly discuss how our procedure applies to the anti-de Sitter solution. The latter is
obtained by making the replacementr 2/R2→2r 2/R2 in ~11!. The anti-de Sitter space is a non-
compact manifold with constant negative curvature. The energy contained within a surface of
constant radiusr 0 can be easily calculated and reads

Eg5r 0S 12A11
r 0
2

R2D , ~21!

where we have ignored the mass termm. Herer 0 ranges from 0 tò . Therefore asr 0→`, we find
thatEg→2`. This is an expected result, since the anti-de Sitter space is noncompact. The density
of energy per unit radial distance«(r ) in this case is given by

«~r !512

11
2r 2

R2

A11
r 2

R2

. ~22!

We find that«(r )50 only for r50. This point is also the only global maximum for«(r ); for
r→` we clearly see that«(r )→2`. Thus«(r ) is a nonpositive monotonically decreasing func-
tion.

IV. DISCUSSION

The definition of gravitational energy is a long-standing problem in the theory of general
relativity. Numerous attempts have been made in the past for a solution. This problem still attracts
considerable attention in the literature, and remains an important issue to be settled. Essentially all
of these previous attempts are in one or another way unsatisfactory. In particular it is widely
claimed that the gravitational energy cannot be localized. We do not share this opinion. The
mathematical structure of the TEGR shows that not only do we have a consistent and unambigu-
ous definition of gravitational energy for asymptotically flat space–times, naturally built in the
Hamiltonian formulation, but also that the gravitational energy is localized. The gravitational
energy in the framework of the TEGR is given by expression~9!. This expression has been
successfully applied to a number of space–times, as we mentioned in Sec. II, whose gravitational
energy is already known. A justification for the extension of this definition to more general
space–times is not straightforward. In the case of asymptotically flat space–times, the Hamil-
tonian constraint equation can be written asC5H2EADM50. We assume that this form of the
constraint is a general feature of the theory, namely, that we can write the Hamiltonian constraint
asC5H2E for an arbitrary space–time, since the constraint structure in general relativity is fixed
and does not depend on any particular topology.

In the above we considered the de Sitter solution and concluded that the cosmological con-
stant induces a distribution of gravitational energy largely concentrated in the vicinity of the
maximal spacelike radial distanceR. This result is in total agreement with the fact that a test
particle in the de Sitter space is subject to a radial acceleration directed away from the center of
symmetry. Therefore the outcome of our analysis complies with the phenomenological behavior of
a test particle in the de Sitter space. To our knowledge this is the first time that such analysis has
been provided.
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By inspecting Eq.~18! we see that if we makeL→0 the total energyEg diverges. The
vanishing ofL in ~11! amounts to a change from a compact to a noncompact topology. Therefore
such a change is not smooth, as it requires an infinite amount of energy. This fact seems to indicate
that, at the classical level, topology changing processes are forbidden.
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Gravitational energy of rotating black holes
J. W. Maluf,a) E. F. Martins, and A. Kneip
Departamento de Fı´sica, Universidade de Brası´lia, C.P. 04385,
70.919-970 Brası´lia, DF, Brazil

In the teleparallel equivalent of general relativity the energy density of asymptoti-
cally flat gravitational fields can be naturally defined as a scalar density restricted to
a three-dimensional spacelike hypersurfaceS. Integration over the wholeS yields
the standard ADM energy. Here we obtain the formal expression of the localized
energy for a Kerr black hole. The expression of the energy inside a surface of
constant radius can be explicitly calculated in the limit of smalla, the specific
angular momentum. Such expression turns out to be exactly the same as the one
obtained by means of the method proposed recently by Brown and York@Phys.
Rev. D47, 1407~1993!#. We also calculate the energy contained within the outer
horizon of the black hole, foranyvalue ofa. The result is practically indistinguish-
able fromE52Mir , whereMir is the irreducible mass of the black hole. ©1996
American Institute of Physics.@S0022-2488~96!02912-X#

I. INTRODUCTION

Although it is widely believed that Einstein’s equations describe the dynamics of the gravi-
tational field, it has not been possible so far to arrive at a definite expression for the gravitational
energy in the context of Einstein’s general relativity. Attempts based on the Hilbert–Einstein
action integral fail to yield an expression for the gravitational energydensity.1,2 The total gravi-
tational energy is normally obtained from surface terms in the action or in the Hamiltonian,3,4 or
from pseudotensor methods which make use of coordinate dependent expressions.

Recently an expression for quasilocal energy has been proposed by Brown and York.5 Such
expression is derived directly from the action functionalAcl . The latter is identified as Hamilton’s
principal function and, in similarity with the classical Hamilton–Jacobi equation, which expresses
the energy of a classical solution as minus the time rate of the change of the action, the quasilocal
gravitational energy is identified as minus the proper time rate of change of the Hilbert-Einstein
action~with surface terms included!. Expressions for the quasilocal energy have been obtained for
the Schwarzschild solution5 and for the Kerr solution.6

Einstein’s equations can also be obtained from the teleparallel equivalent of general relativity
~TEGR!. The Lagrangian formulation of the TEGR is established by means of the tetrad fieldeam

and the spin affine connectionvmab , which are taken to be completely independent field variables,
even at the level of field equations. This formulation has been investigated in the past in the
context of Poincare´ gauge theories.7,8 However, as we will explain ahead, this is not an alternative
theory of gravity. This is just analternative formulationof general relativity, in which the curva-
ture tensor constructed out ofvmab vanishes, but the torsion tensor is nonvanishing. The physical
content of the theory is dictated by Einsten’s equations. In this alternative geometrical formulation
the gravitational energy density can be naturally defined.

The expression for the gravitational energy density arises in the framework of the Hamiltonian
formulation of the TEGR.9 It has been demonstrated that under a suitable gauge fixing ofvmab ,
already at the Lagrangian level, the Hamiltonian formulation of the TEGR is well defined. The
resulting constraints are first class constraints.9 The Hamiltonian formulation turns out to be very
much similar to the usual ADM formulation.3 However, there are crucial differences. The integral
form of the Hamiltonian constraint equationC50 in the TEGR can be written in the form

a!Electronic mail address: wadih@guarany.cpd.unb.br
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C5H2EADM50, when we restrict considerations to asymptotically flat space–times.10 The quan-
tity «(x), which appears in the expression ofC and which under integration yieldsEADM , is
recognized as the gravitational energy density.

We have calculated the energy inside a sphere of radiusr 0 in a Schwarzschild space–time by
means of«(x).10 The expression turns out to be exactly the same as the one obtained by means of
the procedure of Ref. 5@expression~6.14! of Ref. 5#. In this paper we consider the Kerr black
hole. We obtain the formal expression for the energy contained in any space volume in terms of
nontrivial integrals. In the limit of slow rotation~small specific angular momentum! the energy
contained within a surface of constant radiusr 0 can be calculated. Again the result obtained here
is exactly the same as that obtained by Martinez6 who adopted Brown and York’s procedure. The
advantage of our procedure rests on the fact that the localized energy associated with a Kerr
space–time can be calculated in the general case, without recourse to particular limits, at least by
means of numerical integration, whereas in Brown and York’s procedure one has to calculate the
subtraction term«0 and for this purpose it is necessary to embed an arbitrary two-dimensional
boundary surface of the Kerr spaceS in the appropriate reference space~E3, say!, which is not
always possible.6

We have also calculated the energy contained within the outer horizon of the black hole. Such
a quantity has been obtained by Martinez6 in the limit of small a, and readsE52Mir @plus
corrections of orderO(a4/Mir

4 )#, whereMir is the irreducible mass of the black hole. The concept
of irreducible mass was introduced by Christodoulou.11 He showed that the mass of a rotating
black hole cannot be decreased to values belowMir by means of Penrose’s process of extraction
of energy. One would thus considerE52Mir to be the energy that cannot escape from the black
hole. Here we obtain the expression of the energy contained within the horizon foranyvalue ofa.
The result is striking. The numerical values of this expression are practically coincident with 2Mir

in the whole range 0<a<m, although the expression is algebraically different from 2Mir .
In Sec. II we present the mathematical preliminaries of the TEGR, its Hamiltonian formula-

tion, and the expression of the energy for an arbitrary asymptotically flat space–time. The estab-
lishment of a reference space–time, whose gravitational energy is zero, is performed in Sec. III. In
Sec. IV we carry out the construction of triads for a three-dimensional spacelike hypersurface of
the Kerr type, obtain the general expression of the energy contained in a volumeV of space, and
provide the exact expression of the latter in the limit of slow rotation. Comments and conclusions
are presented in Sec. V.

Notation: space–time indicesm,n,..., and local Lorentz indicesa,b,..., run from 0–3. In the
311 decomposition Latin indices from the middle of the alphabet indicate space indices according
to m50,i , a5(0),(i ). The tetrad fieldeam and the spin connectionvmab yield the usual defini-
tions of the torsion and curvature tensors:Ra

bmn5]mvn
a
b1vm

a
c vn

c
b2...,

Tamn5]me
a

n1vm
a
be

b
n2•••. The flat space–time metric is fixed byh~0!~0!521.

II. THE TEGR IN HAMILTONIAN FORM

In the TEGR the tetrad fieldeam and the spin connectionvmab are completely independent
field variables. The latter is enforced to satisfy the condition of zero curvature. The Lagrangian
density in empty space–time is given by

L~e,v,l!52ke~ 1
4T

abcTabc1
1
2T

abcTbac2TaTa!1elabmnRabmn~v!, ~1!

wherek51/16pG, G is the gravitational constant,e5det(eam), labmn are Lagrange multipliers,
andTa is the trace of the torsion tensor defined byTa5Tbba .

The equivalence of the TEGR with Einstein’s general relativity is based on the identity

eR~e,v!5eR~e!1e~ 1
4T

abcTabc1TabcTbac2TaTa!22]m~eTm!, ~2!
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which is obtained by just substituting the arbitrary spin connectionvmab5
ovmab(e)1Kmab in the

scalar curvature tensorR(e,v) on the left-hand side;ovmab(e) is the Levi-Civita connection and
Kmab5

1
2ea

leb
n(Tlmn1Tnlm2Tmnl) is the contorsion tensor. The vanishing ofRa

bmn(v), which
is one of the field equations derived from~1!, implies the equivalence of the scalar curvatureR(e),
constructed out ofeam only, and the quadratic combination of the torsion tensor. It also ensures
that the field equation arising from the variation ofL with respect toeam is strictly equivalent to
Einstein’s equations in tetrad form. LetdL/deam50 denote the field equations satisfied byeam. It
can be shown by explicit calculations that

dL

deam 5
1

2 HRam~e!2
1

2
eamR~e!J ~3!

~we refer the reader to Ref. 9 for additional details!.
It is important to notice that for asymptotically flat space–times the total divergence in~2!

doesnot contribute to the action integral. This term is a scalar density that falls off as 1/r 3 when
r→`. In this limit we should consider variations ingmn or in eam that preserve the asymptotic
structure of the flat space–time metric; the allowed coordinate transformations must be of the
Poincare´ type. The variation of]m(eT

m) at infinity under such variations ofeam vanishes. More-
over all surface integrals arising from partial integration in the variation of the action integral
vanish as well. Therefore the action does not require additional surface terms, as it is invariant
under transformations that preserve the asymptotic structure of the field quantities. This property
fixes the action integral, together with the requirement that the variation of the latter must yield
Einstein’s equations~the Hilbert–Einstein Lagrangian requires the addition of a surface term for
the variation of the action to be well defined; a clear discussion of this point is given in Ref. 12!.
In what follows we will be interested in asymptotically flat space–times.

The Hamiltonian formulation of the TEGR can be successfully implemented if we fix the
gaugev0ab50 from the outset, since in this case the constraints~to be shown below! constitute a
first classset.9 The conditionv0ab50 is achieved by breaking the local Lorentz symmetry of~1!.
We still make use of the residual time-independent gauge symmetry to fix the usual time gauge
condition e(k)

05e(0)i50. Because ofv0ab50, H does not depend onPkab, the momentum
canonically conjugated tovkab . Therefore arbitrary variations ofL5pq̇2H with respect toPkab

yields v̇kab50. Thus in view ofv0ab50, vkab drops out from our considerations. The above
gauge fixing can be understood as the fixation of aglobal reference frame.

Under the above gauge fixing the canonical action integral obtained from~1! becomes9

ATL5E d4x$P~ j !kė~ j !k2H%, ~4!

H5NC1NiCi1SmnP
mn1

1

8pG
]k~NeT

k!1]k~P jkNj !. ~5!

HereN andNi are the lapse and shift functions, andSmn52Snm are Lagrange multipliers.
The constraints are defined by

C5] j~2keT
j !2keSki jTki j2

1

4ke S P i jP j i2
1

2
P2D , ~6!

Ck52e~ j !k ] iP
~ j !i2P~ j !iT~ j !ik , ~7!

with e5det(e( j )k) andT
i5gike( j ) lT( j ) lk , whereT( j ) lk5] le( j )k2]ke( j ) l . We remark that~4! and

~5! are invariant under global SO~3! and general coordinate transformations.
We assume the asymptotic behaviore( j )k'h jk1

1
2hjk(1/r ) for r→`. In view of the relation
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1

8pG E d3x ] j~eT
j !5

1

16pG E
S
dSk~] ihik2]khii !5EADM , ~8!

where the surface integral is evaluated forr→`, the integral form of the Hamiltonian constraint
C50 may be rewritten as

E d3xH keSki jTki j1
1

4ke S P i jP j i2
1

2
P2D J 5EADM . ~9!

The integration is over the whole three-dimensional space. Given that] j (eT
j ) is a scalar density,

from ~7! and~8! we define the gravitational energy density enclosed by a volumeV of the space
as

Eg5
1

8pG E
V
d3x ] j~eT

j !. ~10!

It must be noted thatEg depends only on the triadse(k) i restricted to a three-dimensional spacelike
hypersurface; the inverse quantitiese(k) i can be written in terms ofe(k) i . From the identity~3! we
observe that the dynamics of the triads does not depend onvmab . ThereforeEg given above does
not depend on the fixation of any gauge forvmab .

III. THE REFERENCE SPACE–TIME

One of the motivations for considering the TEGR was the possibility of establishing a kind of
background structure, a space–time on which the gravitational field would be defined, just like the
other ordinary fields are defined on Minkowski space–time. This property would follow from the
vanishing ofRabmn(v), but eventually is not achieved. Rather than obtaining such a background
structure, we arrive at areference space–time, which can be understood as follows. Consider a
space with coordinatesqa such thatds25hab dq

a dqb. We can make a coordinate transformation
dqa5eam(x)dx

m and rewrite the infinitesimal element asds25habe
a

m(x)e
b

n(x)dx
m dxn

5gmn dx
m dxn. This transformation can beholonomicor anholonomic.

Since we are concerned with the Hamiltonian formulation, we will restrict the considerations
to spatial coordinates only. In this case the transformation is given bydq( i )5e( i ) j dx

j . As a simple
example, consider

xj5~r ,u,f!, q~ i !5~r sin u sin f,r sin u cosf,r cosu!.

The infinitesimalsdq( i ) anddxj are related by

e~ i !
j~x!5

]q~ i !

]xj
5S sin u cosf r cosu cosf 2r sin u sin f

sin u sin f r cosu sin f r sin u cosf

cosu 2r sin u 0
D ,

where (i ) is the line index andj the column index. Since the relationdq( i )5e( i ) j dx
j can be

integrated over the whole three-dimensional space, the transformationq( i )→xi does correspond to
a single-valued global transformation and therefore it is called holonomic. Both sets of coordi-
nates,$q( i )% and$xj%, describe the three-dimensional Euclidean space.

However, in the general case this relation cannot be globally integrated, sincee( i ) j may not be
written as the gradient of a function, i.e., in generale( i ) j is not of the type]q( i )/]xj . If the
quantitiese( i ) j are such that] je

( i )
k2]ke

( i )
jÞ0, then the transformation is called anholonomic.

For the triads above the torsion tensorT( i ) jk5] je( i )k2]ke( i ) j vanishes identically. A crucial
result is thatT( i ) jk vanishes if and only if$e

( i )
j% are gradient vectors.

13 The Levi-Civita connection
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ovm( i )( j ) 5 2 1
2e

(k)
m(V ( i )( j )(k) 2 V ( j )( i )(k) 2 V (k)( i )( j )), V ( i )( j )(k)5e( i )m(e( j )

n ]ne(k)
m

2e(k)
n ]ne( j )

m), constructed out of triads which are gradient vectors, vanishes identically, and so
does the curvature tensorR( i )( j )mn(

ov). Thus the triadse( i ) j5] jq
( i ) are necessarily equivalent to

the triads of the flat Euclidean space~the metricgi j5] iq
(m) ] jq

(n) h (m)(n) can be interpreted as a
coordinate transformation of the constant flat metric!.

In the framework of the Hamiltonian formulation of the TEGR the gravitational field corre-
sponds to a configuration for whichT( i ) jkÞ0. Thereforeeverygravitational field isanholonomi-
cally related to the three-dimensional Euclidean space, which is to be taken as the reference space.
Since the torsion tensor vanishes for the latter, as we have seen, the total gravitational energy of
the reference space is zero~the gravitational energy density vanishes as well!.

IV. ENERGY OF THE KERR GEOMETRY

The Kerr solution14 describes the field of a rotating black hole. In terms of Boyer and
Lindquist coordinates15 (t,r ,u,f) it is described by the metric

ds252
D

r2
@dt2a sin2 u df#21

sin2 u

r2
@~r 21a2!df2a dt#21

r2

D
dr21r2 du2,

D[r 222mr1a2, ~11!

r2[r 21a2 cos2 u;

a is the specific angular momentum defined bya5J/m. The components of the metric restricted
to the three-dimensional spacelike hypersurface are given byg115r2/D, g225r2, and
g335(S2/r2)sin2 u, whereS is defined by

S25~r 21a2!22Da2 sin2 u.

We define the triadse(k) i as

e~k!i5S r

AD
sin u cosf r cosu cosf 2

S

r
sin u sin f

r

AD
sin u sin f r cosu sin f

S

r
sin u cosf

r

AD
cosu 2r sin u 0

D , ~12!

(k) is the line index andi is the column index. The one forme(k) is defined by

e~k!5e~k!
r dr1e~k!

u du1e~k!
f df;

from what follows

e~k!e~k!5
r2

D
dr21r2 du21

S2

r2
sin2 u df2.

We also obtaine 5 det(e(k)i) 5 (rS/AD)sinu. Therefore the triads given by~12! describe the com-
ponents of the Kerr solution restricted to the three-dimensional spacelike hypersurface.

One readily notices that there is another set of triads that yields the Kerr solution, namely, the
set which is diagonal and whose entries are given by the square roots ofgii . This set is not
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appropriate for our purposes, and the reason can be understood even in the simple clase of flat
space–time. In the limit when botha andm go to zero,~12! describes flat space: the curvature
tensorand the torsion tensor vanish in this case, as we have seen in Sec. III. However, for the
diagonal set of triads~again requiringa→0 andm→0!,

e~r !5dr, e~u!5rdu, e~f!5r sin u df,

some components of the torsion tensor do not vanish,T(2)1251, T(3)135sinu, andEg calculated
out of the diagonal set above diverges when integrated over the whole space. Therefore the use of
~12! is mandatory in the present context, as it is the only possible choice@modulo global SO~3!
rotations#.

The components of the torsion tensor can be calculated in a straightforward way from~12!.
Only T(3)13 andT(3)23 are vanishing. The others are given by

T~1!125cosu cosfS rr 1
a2

rAD
sin2 u2

r

AD
D ,

T~1!135sin u sin fH 2
1

rS
@2r ~r 21a2!2a2 sin2 u~r2m!#1

rS

r3
1

r

AD
J ,

T~1!235cosu sin fH r2
S

r
1a2 sin2 uS D

rS
2

S

r3D J ,
T~2!125cosu sin fS rr 1

a2

rAD
sin2 u2

r

AD
D ,

T~2!1352sin u cosfH 2
1

rS
@2r ~r 21a2!2a2 sin2 u~r2m!#1

rS

r3
1

r

AD
J ,

T~2!2352cosu cosfH r2
S

r
1a2 sin2 uS D

rS
2

S

r3D J ,
T~3!125sin uF2

r

r
1

r

AD
1

a2

rAD
cos2 uG .

In order to evaluate~9! we need to obtainTi . After a long calculation we arrive at

T15
AD

r2
1

AD

S
2

D

r2S2 @2r ~r 21a2!2a2 sin2 u~r2m!#,

T25sin u cosu
a2

r4
1

1

rS

cosu

sin u Fr2
S

r
1a2 sin2 uS D

rS
2

S

r3D G ,
T350.

The gravitational energy density inside a volumeV of a three-dimensional spacelike hyper-
surface of the Kerr solution can now be easily calculated~in what follows we will makeG51!. It
is given by
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Eg5
1

8p E
V
dr du dfH ]

]r
Fsin uFr1

S

r
2

AD

rS
~2r ~r 21a2!2a2 sin2 u~r2m!!G G

1
]

]u F Sa2

ADr3
sin2 u cosu1

cosu

AD
Xr2

S

r
1a2 sin2 uS D

rS
2

S

r3D CG J . ~13!

Next we specializeEg to the case when the volumeV is contained within a surface with
constant radiusr5r o assumingr o>r1 , wherer1 5 m1 Am22a2 is the outer horizon of the black
hole. The integrations inf and r are trivial. Also, because we integrateu between 0 andp, the
second line of the expression above vanishes. We then obtain

Eg5
1

4 E
0

p

du sin uH r1
S

r
2

AD

rS
„2r ~r 21a2!2a2 sin2 u~r2m!…J

r5r o

. ~14!

We have not managed to evaluate exactly the integral above. However, in the limit of slow
rotation, namely, whena/r o!1, all integrals have a simple structure and we can obtain the
approximate expression ofEg . It reads

Eg5r oS 12A12
2m

ro
1
a2

r o
2 D 1

a2

6r o
F21

2m

ro
1S 11

2m

ro
DA12

2m

ro
1
a2

r o
2G . ~15!

This is exactly the expression found by Martinez6 for the energy inside the surface of constant
radiusr o in a spacelike hypersurface of a Kerr black hole, in the limit of small specific angular
momentum. As in Ref. 6, we have not expanded the square root which appears in~15! in powers
in a2/r o

2.
We remark that the expansion ofr1S/r in the integrand of~14! yields 2«0, whereas the

remaining term corresponds exactly to«, expressions~3.17! and ~3.1!, respectively, of Ref. 6. It
does not seem to be possible, however, to split] i(eT

i) into two terms such that their integrals
arise in the form«2«0.

As a very interesting application of~14!, let us calculate the energy contained within the outer
horizon, i.e., we will calculate~14! when the surface of constant radius is defined byr o5r1 . This
surface is characterized byD50. The integral can be calculated exactly forany value ofa. The
latter is parametrized in terms of the black hole massm according to

a5km, 0<k<1.

After a number of integrations we arrive at

Eg5mFA2p4 1
6p2k2

4k
lnSA2p1k

p D G , ~16!

wherep is defined by

p511A12k2.

This is the amount of energy expected not to escape from the black hole by any process in which
the black hole interacts with external particles. It is then important to compare~16! with E52Mir .

We recall that a rotating black hole can have its mass decreased by means of Penrose’s
process of extraction of energy.16 The idea is the following. We consider a particle that is emitted
towards the black hole and penetrates into the ergosphere. Suppose we arrange the particle to
break up into two fragments, in such a way that one of the fragments has total negative energy.
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This is possible in principle, since the energy need not be positive in the ergosphere. By conser-
vation of energy, the fragment with positive energy has an energy greater than that of the incident
particle. Thus energy will be extracted from the black hole if the positive energy particle escapes
to infinity, while the black hole absorbs the negative energy one. As a consequence, the mass of
the black hole is decreased. We expect, however, that not the whole energy of the black hole can
be extracted in this manner. The existence of the horizon certainly prevents one from exhausting
the total energy. Christodoulou11 has given an argument to determine how much energy can be
extracted from the black hole by Penrose’s process. He concluded that at the end of this process
~when the ergosphere disappears and the black hole becomes static! the final~irreducible! mass of
the black hole is given by

Mir5
1
2
Ar1

2 1a2.

Martinez6 has calculated the energy inside the horizon of the Kerr black hole in the limit of small
a. He arrived atE52Mir [11O(a4/Mir

4 )]. A similar result~in the same approximation! has been
obtained by Zaslavskii17 in the analysis of a generic axially symmetric space–time. The question
immediately arises as to whether this relationship holds forany value ofa. This is, in fact, the
conjecture made in Ref. 6.

Since expressions~14! and ~16! are valid forany value ofa in the appropriate range, it is
worth comparing~16! with 2Mir . In our parametrization we have

E52Mir5mA2p. ~17!

FIG. 1. E/m againstk. The upper curve represents the energy expression~16!, the lower one~17!.
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The expression above certainly looks different from~16!. However, in the range 0<a<m
expressions~16! and~17! as functions ofk are strikingly indistinguishable, as we can see in Fig.
1. In the latter we have plottedE/m againstk. The upper curve represents~16!, the lower one~17!.
We see that for small values of the parameterk the two curves are essentially coincident. A tiny
deviation occurs for values ofk near 1. Inspite of this deviation, this is a remarkable result in favor
of ~14!.

Unfortunately we have not been able to explain such small deviation between~16! and ~17!
for values ofk near 1, although we expect such explanation to be of fundamental importance. It
might be related to some physical property of the Kerr black hole which we do not understand yet.

V. COMMENTS

The gravitational energyEg defined by~14! can be evaluated for an arbitrary value ofa by
means of numerical integration. This is the major advantage of our procedure as compared to that
of Brown and York.5 By means of the latter one cannot construct expressions like~13! and~14!,
which may be useful in the study of astrophysical problems, since in a general situation Brown
and York’s procedure requires the embedding of an arbitrary two-dimensional boundary surface of
the Kerr space in the reference spaceE3, a construction which is not possible in general6 ~the
evaluation of«0 in Ref. 6 is only possible in the limita/r 0!1!. Therefore the present approach is
more general than that of Ref. 6. Finally we remark that we expect expression~10! to be useful in
the study of the thermodynamics of self-gravitating systems, where the gravitational energy plays
the role of the thermodynamical internal energy that is conjugate to the inverse temperature. We
hope to come to this issue in the future.
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Subalgebras with converging star products in deformation
quantization: An algebraic construction for CPn
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Based on a closed formula for a star product of Wick type onCPn, which has been
discovered in an earlier article of the authors, we explicitly construct a subalgebra
of the formal star algebra~with coefficients contained in the uniformly dense sub-
space of representative functions with respect to the canonical action of the unitary
group! that consists ofconvergingpower series in the formal parameter, thereby
giving an elementary algebraic proof of a convergence result already obtained by
Cahen, Gutt, and Rawnsley. In this subalgebra the formal parameter can be substi-
tuted by a real numbera: the resulting associative algebras are infinite dimensional,
except for the casea51/K, K a positive integer, where they turn out to be isomor-
phic to the finite-dimensional algebra of linear operators in theKth energy eigen-
space of an isotropic harmonic oscillator withn11 degrees of freedom. Other
examples like the 2n torus and the Poincare´ disk are discussed. ©1996 American
Institute of Physics.@S0022-2488~96!04112-6#

I. INTRODUCTION

The concept of deformation quantization as defined by Bayenet al. in 1978 ~cf. Ref. 1!
consists in a formal local deformation of the commutative algebra~a so-called star product! of all
smooth complex-valued functions on a symplectic manifold, such that the first-order commutator
equals the Poisson bracket and pointwise complex conjugation remains an antilinear involution.
The existence of star products on every symplectic manifold was proved by DeWilde and Lecomte
in 1983 ~cf. Ref. 2! and independently by Fedosov in 1985.3,4 A third existence proof was given
by Omori, Maeda, and Yoshioka.5

One of the problems with these star products is the fact that the formal series involved is
shown to never converge on the space ofall complex-valued smooth functions~see, e.g., Ref. 6!,
i.e. for every complex number there are two functions whose star product diverges when the
formal parameter is substituted for that number.

This paper is a continuation of our work7 in which we gave a closed formula for a star product
of the Wick type on complex projective space by a version of quantum phase space reduction. Star
products on complex projective space have already been constructed by Omori, Maeda, and
Yoshioka8 and by Moreno9 in a less explicit way.CPn can also be regarded as a coadjoint orbit of
the unitary groupU(n11) ~see the work of Arnal, Ludwig, and Masmoudi for the existence of
covariant star products on more general coadjoint orbits in Ref. 10 and references therein!.

The aim of the present paper is twofold: first, we use our formula to explicitly compute the
star product for a uniformly dense subalgebra of representative functions for theU(n11) action
on complex projective space. Second, we would like to use the exampleCPn in order to illustrate
the followingalgebraicprocedure to deal with the above convergence problem.

~i! Find a complex subalgebraU of the* algebra of all formal power series inn with smooth

a!Electronic mail: mbor@phyq1.physik.uni-freiburg.de
b!Electronic mail: brischle@phyq1.physik.uni-freiburg.de
c!Electronic mail: cemm@phyq1.physik.uni-freiburg.de
d!Electronic mail: waldman@phyq1.physik.uni-freiburg.de

0022-2488/96/37(12)/6311/13/$10.00
6311J. Math. Phys. 37 (12), December 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



coefficients, such that~1! all elements ofU are power series with infinite radius of convergence
in n, and ~2! their coefficients may be chosen in a ‘‘sufficiently large’’~e.g., uniformly dense!
subspace of the space of all smooth complex-valued functions.

~ii ! Verify whether the subspaceI a of U defined by

I a :5$F~n!PUuF~a!50%, ~1!

is a star ideal ofU.
~iii ! Identify the quotientU/I a with the associative algebra of quantum observables related to

the ‘‘\ value’’ a and try to find a representation of this quotient in some Hilbert space.
From the physical point of view it is often required that the subalgebraU contains certain

‘‘important observables,’’ which are in some cases related to the presence of additional symme-
tries of the classical phase space. For a general symplectic manifold the viability of the above
procedure~in particular the existence of a sufficiently large subalgebraU! is—to our best
knowledge—an open problem in the theory of deformation quantization.

Nevertheless, in several examples having a large symmetry group~e.g., the Moyal product on
the 2-torus or the Wick product onCn11! the above program may be carried out. For such
manifolds the space of representative functions of the symmetry group plays a prominent role for
the construction ofU: in a remarkable article of Cahen, Gutt, and Rawnsley11 the convergence of
a star product for these functions has been proved for all compact Hermitian spaces~in particular,
for CPn! by analytic methods of complex differential geometry. They start from the finite-
dimensional operator algebras of geometric quantization in tensor powers of a very ample regular
prequantum line bundle over a compact Ka¨hler manifold and use coherent states~see Refs. 12 and
13! to first construct star products for the Berezin–Rawnsley symbols~Refs. 12 and 13! for each
tensor power separately. In a second step an asymptotic expansion of these star products in the
inverse tensor power is shown to define a local star product on the manifold where the formal
parameter appears as a sort of interpolation of the inverse tensor powers.

The approach of this paper is in some sense reverse to the program of Cahen, Gutt, and
Rawnsley~cf. Refs. 14, 11, 15, and 16! and only makes use of elementary algebraic methods: We
start from the explicit star product onCPn ~see Ref. 7! and defineU as a certain proper subspace
of the space of all polynomials in the formal parameter with coefficients in the uniformly dense
subspace of representative functions for the unitary groupU(n11). Since all occurring star
products can explicitly be computed the analysis of the idealsI a and the quotient algebrasU/I a

becomes relatively simple. The main result is that for inverse integer values of the formal param-
etern the quotient algebras turn out to be finite-dimensional full complex matrix algebras, whereas
all noninteger quotients are of infinite dimension and define converging star products on the space
of representative functions for these values, as has been stated in Ref. 11.

From the physical point of view one can regard the finite-dimensional quantum algebras as the
set of all quantum observables restricted to the eigenspace of integral energy of a harmonic
oscillator ofn11 degrees of freedom~where the ground state energy is zero for the Wick quan-
tization rule!.

The advantage of the above algebraic program of prescribing a real value to the formal
parameter of deformation quantization is that one may hope to transfer it to physical situations
with an infinite number of degrees of freedom, i.e. field theories, where the powerful analytical
methods in the theory of finite-dimensional manifolds are no longer well defined.

The paper is organized as follows: after briefly reviewing the concepts and formulas of our
last paper,7 in Sec. II we compute the star product of two Berezin–Rawnsley symbols in Sec. III
and discuss the unitary symmetry action on the star product. Section IV is then devoted to defining
the algebraU, to compute the idealsI a and the quotient algebrasU/I a . In Sec. V we briefly
consider other phase spaces already dealt with in the literature for which the above program
works: the complex vector spaceCn11 with the Wick product, the 2n-torusT2n with the Moyal
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product, and the Poincare´ disk. For this last example we can recover the formula of the star
product for the corresponding Berezin–Rawnsley symbols given by Cahen, Gutt, and Rawnsley in
Ref. 15.

Notation: Throughout this paper we use the Einstein summation convention, i.e. summation
over repeated indices is automatic. Moreover, the symbolF(z) for a complex-valued functionF
of a complex vectorz doesnot necessarily imply thatF is holomorphic.

II. REVIEW OF STAR PRODUCTS ON COMPLEX PROJECTIVE SPACE

In this section we shall give a short review of earlier work7 in which we derived an explicit
formula for a star product of the Wick type on the complex projective spaceCPn.

Let p:Cn11\$0%→CPn be the canonical projection of a complex vectorz onto the complex ray
through it. Letx:5 z̄izi . The usual Wick product onCn11\$0% of two complex-valued functions
F,GPC`~Cn11\$0%! is given as the following formal power series in the parameterl:

F*G5(
r50

`
l r

r !

] rF

]zi1•••]zi r
] rG

] z̄i1•••] z̄i r
. ~2!

We have called a functionFPC`~Cn11\$0%! homogeneousiff it is invariant under the natural
action of the groupC\$0%. These functions are precisely given by pullbacks of functions
fPC`~CPn!, F5 f +p5p* f . We have called a functionRPC`~Cn11\$0%! radial iff it is a function
of x, i.e. iff there is a smooth functionr:R1→C such thatR5r+x. We have defined a formal
differential operatorS:C`~Cn11\$0%!†@l#‡→C`~Cn11\$0%!†@l#‡ depending only onx and ]x :
5 (1/2x)(zi]zi 1 z̄i] z̄ i) whose standard symbolŜ(x,a):5(Sea)(x)e

2ax ~ea denoting the expo-
nential functionx°eax for aPR! is given by@setting the seriesD in Ref. 7, Eq.~9! equal to 1#:

Ŝ~x,a!5expS xl~ log~11la!2la! D . ~3!

Sand its inverseS21 act trivially on homogeneous functions, i.e.SF5F5S21F, but do in general
transform radial functions into radial ones, in particular~for a non-negative integerr ! @Ref. 7, Eq.
~14!#

Sx5x, Sxr5xr)
k50

r S 12k
l

x D , Sx2r5x2r)
k50

r S 11k
l

x D
21

. ~4!

We have usedS as an equivalence transformation for a modified Wick product of two functions
F,GPC`~Cn11\$0%!:

F *;G:5S~S21F*S21G!. ~5!

For two radial functionsR1, R2 and a homogeneous functionF on Cn11\$0% this new star product
is just pointwise multiplication@Ref. 7, Eq.~12!#:

R1 *
;R25R1R25R2 *

;R1 , R1 *
;F5R1F5F *;R1 , ~6!

whereas for two smooth homogeneous functionsF,G we obtain

~F *;G!~z!5(
r50

`
1

r ! S l

x D
r

)
k51

r S 11k
l

x D
21

xr
] rF

]zi1•••]zi r
~z!

] rG

] z̄i1•••] z̄i r
~z!. ~7!
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The main result of Ref. 7 was the fact that this formula can directly be projected toCPn by phase
space reduction via theU~1!-momentum mapJ:Cn11\$0%→R:z°2x/2 of the canonicalU~1!
action onCn11\$0%: for a negative real numberm and aU~1! invariant functionF in C`~Cn11\$0%!
we writeFm for the unique function inC`~CPn! obtained by first restrictingF to the odd sphere
J21~m! and then projecting it toCPn ~Ref. 17, Sec. 4.3!. Then the formula,

Fm*
mGm :5~F *̃ G!m , ~8!

was shown to define a star product onCPn. The explicit form of*
m is obtained by replacingl/x

by l/~22m! in ~7! and noting that the bidifferential operatorM̃ r( f ,g)„p(z)…:
5 xr@] rp* f (z)/]zi1•••]zi r#@] rp* g(z)/] z̄i1•••] z̄i r# is well defined onf ,gPC`~CPn!. For sim-
plicity we shall work with the redefined formal parametern:5l/~22m! in what follows.

Lemma 1: The standard symbol of S21 is described by the formula

S21̂~x,a!5e~x/l!~eal212al!5e* axe2ax, ~9!

where the last term involves the star exponential1 of the function x with respect to the usual Wick
product (2).

Proof: SinceSeb5e~1/l!log~11bl! we obviously geteb5S21e~1/l!log~11bl!, which proves the
first equation after the substitutiona:5~1/l!log~11bl!. Second, note that

e* ax5S21Se* aS21x5S21e*
;

ax5
~6!

S21eax5S21̂~x,a!eax,

which proves the second equality. h

Remark:Note that the functionH:51/2x equals the usual Hamiltonian function of an isotro-
pic harmonic oscillator inn11 degrees of freedom. The above star exponential ofx for a52i t /2\
andl52\ then corresponds to the quantum mechanical time development operator for this sys-
tem.

III. A STAR PRODUCT FOR REPRESENTATIVE FUNCTIONS ON COMPLEX PROJECTIVE
SPACE

Let p:Cn11→C:z°P(z) be a polynomial function~in the 2n12 variablesz0,...,zn,z̄ 0,...,z̄ n!.
We shall callp homogeneous of degree(k,k) for a non-negative integerk iff p(lz)5(ll̄!kp(z)
for all lPC\$0%. We denote byEk the following subspace ofC`~CPn!:

Ek:5H f U there is a homogeneous polynomialpk of degree ~k,k! s.t. ~p*f!~z!

5
1

xk
pk~z!J . ~10!

Lemma 2:
(i) For each integer k>:Ek,Ek11.
(ii) E :5øk50

` Ek is a filtered subalgebra of C`~CPn! with respect to the pointwise multipli-
cation. It is closed under complex conjugation.

(iii) E separates points and is therefore a dense subalgebra of C`~CPn! with respect to the
uniform topology.

Proof: ~i! Clearlypk/x
k5xpk/x

k11Pp*Ek11. ~ii ! This is obvious.~iii ! Consider the complex
raysp(z(1))Þp(z(2)) for z(1),z(2)PCn11\0. This is true iffz(1),z(2) are linearly independent iff
there is ayPCn11, such that̂ y,z(1)&51 and^y,z(2)&50, where^y,z& denotes the standard ses-
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quilinear form ^y,z&5 ȳkzk. ThenfPE1 defined byf„p(z)…:5u^y,z&u2/x separatesp~z~1!! and
p~z~2!!. The density ofE follows from the Stone–Weierstrass Theorem. h

Consider the standard action of the unitary groupU(n11) on Cn1\$0%: (g,z)°gz5:Fg(z)
and its induced action onCPn: „g,p(z)…°p(gz)5:Cg„p(z)…. A smooth complex-valued func-
tion f on CPn is calledrepresentativewith respect to theU(n11) action iff

C-span$ f +CgugPU~n11!% is finite dimensional. ~11!

We now get a characterization ofE that should be fairly standard~see Ref. 11, Sec. 3, Lemma 1!.
Lemma 3: The algebraE is equal to the set of all representative functions onCPn.
Proof: Sincex and the finite-dimensional space of all homogeneous polynomials of degree

(k,k) are invariant underU(n11), it follows thatE consists of representative functions. In order
to prove the reversed inclusion we can use a more general argument:CPn is a homogeneous space
G/H for the compact Lie groupG5U(n11) with compact isotropy subgroupH5U(1)3U(n).
Now the space of all representative functionsf onG/H @defined as in~11! with U(n11) replaced
by any compact Lie groupG# is clearly in one-to-one correspondence with the space of its
pullback toG under the natural projectionG→G/H: this in turn is given by the space of allH
right invariant representative functions onG with respect to left multiplication. Both this space
and the pullback ofE to G areG modules and are therefore closed in the space of all represen-
tative functions onG with respect to the uniform topology onG @see, e.g., Ref. 18, p. 126, Prop.
~1.4! ~iii !#. Since the pullback obviously is a continuous closed linear map with respect to the
uniform topologies andE is dense in the space of all representative functions onG/H; thanks to
the previous Lemma it follows thatE is equal to that space. h

Yet another equivalent description ofE is obtained in terms of theBerezin–Rawnsley symbols
known from geometric quantization~Refs. 12–14!: for a fixed non-negative integerk take the
vector spaceH (k) of complex-valued holomorphic polynomialsc on Cn11, which are homoge-
neous of degreek, i.e.c(lz)5lkc(z) for all complex numbersl. The dimension of this space is
clearly N:5(k

n1k) and we shall henceforth identifyH(k) with CN by means of the base
(zi1•••zi k). Consider the spaceB~H (k)! of complex linear endomorphisms ofH (k). Any
APB~H (k)! can be viewed as a complexN3N matrix Ai1••• i k , j 1••• j k

, where each of the indices
i 1 ,...,i k , j 1 ,...,j k ranges over 0,1,...,n and the matrix elements are symmetric with respect to all
permutations among thei 1 ,...,i k and among thej 1 ,...,j k . To eachAPB~H(k)! one can associate
the polynomial function,

s̃~A!:Cn11→C:z° z̄i1••• z̄i kzj 1•••zj kAi1••• i k , j 1••• j k
. ~12!

Clearly, s̃(A) is homogeneous of degree (k,k), and by counting dimensions it can be seen that
every homogeneous polynomial function of degree (k,k) is of that form. TheBerezin–Rawnsley
symbols(A) associated to Ais then defined by

s~A!:CPn→C:p~z!°
s̃~A!~z!

xk
. ~13!

Then the following corollary is clear.
Corollary 1: For each nonnegative integer k the spaceEk is spanned by all the Berezin–

Rawnsley symbolss(A) associated to APB~H (k)!.
Both onCn11\$0% andCPn there are momentum maps~see Ref. 17 for general definitions! for

theU(n11) action, which can be expressed in terms of Berezin–Rawnsley symbols contained in
E1.

Lemma 4: Letu~n11! denote the space of complex anti-Hermitean(n11)3(n11) matrices,
i.e. the Lie algebra of the unitary group U(n11). Then the following occurs.

(i) The following map:
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P̃:Cn11\$0%→u~n11!* :z°„A°s̃~A!… ~14!

is a momentum map for the U(n11) action onCn11\$0%.
(ii) The following map:

P:5 P̃m :CP
n→u~n11!* :p~z!°~A°22ms~A!„p~z!…5s̃~A!m„p~z!…! ~15!

is a momentum map for the U(n11) action onCPn.
Recall that the indexm refers to the U~1!-phase space reduction ofCn11\$0% by the U~1!

momentum map J(z)52x/2.
Proof: ~i! The Hamiltonian vector field ofP(A) is given by Xs̃(A)(z) 5 (2/i )(Ai j z

j]zi
1 Āi j z̄

j] z̄ i), sinceAi j52Āj i , which obviously equals the infinitesimal generatorACn11\$0% of the
U(n11) action. TheAd* equivariance of this map is obvious.

~ii ! Recall the projectionpm :J
21~m!→CPn to the reduced phase space~compare Ref. 17, Sec.

4.3!. SinceFg+pm5pm+Cg it is clear thatTpmACn11\$0% 5 ACPnpm , whereACPn is the infinitesi-
mal generator of theU(n11) action onCPn. Using the identityACPnpm(z) 5 Xs̃(A)m

p(z) we get
by phase-space reduction

TzpmXs̃~A!m
~z!5TzpmACn11\$0%~z!5Xs̃~A!m

„p~z!….

TheAd* equivariance of this map follows at once from theAd* equivariance ofP̃. h

We shall now compute star products for elements ofE : Setn:5l/~22m!, n~0!:51, n~1!:51 and

n~k!:5~12n!•••„12~k21!n…. ~16!

Theorem 1: For fPEk , gPE l we get

~p* f ! *̃ ~p* g!~z!5 (
r50

min~k,l !
l r

r !

S~xk1 l2r !

~Sxk!~Sxl !

1

xk1 l2r

] r~xkp* f !

]zi1•••]zi r
~z!

] r~xlp* g!

] z̄i1•••] z̄i r
~z! ~17!

and

f * mg5 (
r50

min~k,l !
n r

r !

n~k1 l2r !

n~k!n~ l ! Mr
~k,l !~ f ,g!, ~18!

with the following bidifferential operator on C`~CPn!:

p*Mr
~k,l !~ f ,g!:5

1

xk1 l2r

] r~xkp* f !

]zi1•••]zi r
] r~xlp* g!

] z̄i1•••] z̄i r
. ~19!

Proof: The usual Wick product~2! of the twopolynomials f̃k :5xkp* f , g̃l :5xlp* g is given
by

f̃ k* g̃l5 (
r50

min~k,l !
l r

r !

] r f̃ k
]zi1•••]zi r

] r g̃l
] z̄i1•••] z̄i r

. ~20!

Using definition~5! and the formulas~6! and ~4!, we find

~Sxk!~Sxl !~p* f ! *̃ ~p* g!5„S~xkp* f !…*̃ „S~xlp* g!…5S„~xkp* f !* ~xlp* g!…

5SS (
r50

min~k,l !
l r

r !

] r f̃ k
]zi1•••]zi r

] r g̃l
] z̄i1•••] z̄i r D
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5 (
r50

min~k,l !
l r

r !
SS xk1 l2r

1

xk1 l2r

] r f̃ k
]zi1•••]zi r

] r g̃l
] z̄i1•••] z̄i r D

5 (
r50

min~k,l !
l r

r !
S~xk1 l2r !

1

xk1 l2r

] r f̃ k
]zi1•••]zi r

] r g̃l
] z̄i1•••] z̄i r

,

which proves the first equation. The second equation immediately follows by the reduction for-
mula ~8!. h

Remark:Thanks to the straightforward recursion formulasMr
(k11,l ) 5 Mr

(k,l ) 1 r „l 2 (r 2 1)…
Mr21

(k,l ) andMr
(k,l11) 5 Mr

(k,l ) 1 r „k2 (r 2 1)…Mr21
(k,l ) it can easily be checked that the right-hand side

of ~17! is well defined, i.e., if, e.g.,f is regarded as an element ofEk1a for a positive integera.
Corollary 2: For A,BPB~H ~1!! we have

s~A!k* ms~B! l5 (
r50

min~k,l !
n r

r !

k! l !

~k2r !! ~ l2r !!

n~k1 l2r !

n~k!n~ l ! s~AB!rs~A!k2rs~B! l2r . ~21!

Proof: This is easily seen by settingf5s(A)k andg5s(B) l and using Theorem 1. h

We shall now show that the momentum mapP for the U~n11! action onCPn is even a
quantum momentum map. More precisely we see the following.
Lemma 5: P is a quantum momentum mapping onCPn for the U(n11) action, i.e. for every
smooth functionf:CPn→C the following equation holds:

P~A!* mf2f* mP~A!5
il

2
$P~A!,f%m , ~22!

i.e. the star product*
m is strongly U(n11) invariant.

Proof: First we prove the equationp*s(A) *̃ f 2 f *̃ p*s(A) 5 ( il/2)$p*s(A), f % for
f5p*f. Then Eq.~22! follows Eq. ~8!. We have the strong invariance of the Wick product,

s̃~A!* f2 f * s̃~A!5
il

2
$s̃~A!, f %.

With the equivalence transformationS we find

S21
„Ss̃~A! *̃ Sf2Sf*̃ Ss̃~A!…5

il

2
$s̃~A!, f %,

and withp*s(A)5xs̃(A) andSf5 f this leads to

Sx„p*s~A! *̃ f2 f *̃ p*s~A!…5
il

2
S„$xp*s~A!, f %….

The Poisson bracket$xp*s(A), f %5x$p*s(A), f % is again homogeneous. Hence the right-hand
side of the last equation is simplyx$p*s(A), f %. With Sx5x the proof is complete. h

Remark:The casek5 l51 in Corollary, Eq.~2! shows that the functionss(A) and s(B)
commute with respect to*

m iff the operatorsA and B commute. LetA1 ,...,An be a linearly
independent set of commuting traceless Hermitian matrices. It follows in particular that the func-
tionss(A1),...,s(An) are functionally independent and in involution, i.e., the Poisson bracket of
s(Ai) with s(Aj ) vanishes for alli , j . In other words they form acompletely integrable systemin
the sense of Liouville onCPn. Note that this system is nontrivial in the sense that there is no
global chart of action-angle variables, i.e.CPn is not symplectomorphic to someTr3R2n2r for a
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non-negative integerr<n. The above Corollary now implies that these functions also commute
with respect to the star product and can be viewed as aquantum integrable systemon CPn.

IV. CONSTRUCTION OF THE SUBALGEBRA U, THE IDEALS I a , AND THE QUOTIENTS
U/I a

If we take two functionsfkPEk andclPE l and multiply them with then polynomialn(k) and
n( l ), respectively, then formula~18! shows that their*

m product contains only polynomials in the
parameter n. Moreover, that particular combination is restored, i.e. the functions
Mt

(k,l )(fk ,c l)PEk1 l2t appear only in combination withn
(k1 l2t).This motivates the definition of

the following subspaces ofC`~CPn!†@n#‡:

U0 :5E0 andUk :5n~k!Ek1nn~k21!Ek211•••1nk21n~1!E11nkE0 , ;kPN, ~23!

where eachUk is a~not necessarily direct! sum of subspaces ofC`~CPn!†@n#‡. We denote byE@n#
thepolynomialsin n with coefficients inE . The following theorem describes the structure ofU.

Theorem 2:
(i) For each integer k:Uk,Uk11. DefineU:5øk

`Uk . ThenU is a properC@n# submodule of
E@n#.

(ii) U is a filtered subalgebra of C`~CPn!†@n#‡ with respect to*
m, i.e.

Uk*
mUl,Uk1 l .

Proof: ~i! Let FPUk . F is of the formF5(r50
k n rn (k2r )fk2r with fk2rPEk2r . The filtra-

tion of E impliesfk2rPEk2r11 son rn (k2r11)fk2rPUk11. The elementn
r11n (k2r )fk2r is also

contained inUk11. By Eq. ~16! we getn(k2r11)5„12(k2r )n…n(k2r ). Hence

n rn~k2r !fk2r5n rn~k2r11!fk2r1~k2r !n r11n~k2r !fk2rPUk11 ,

which proves the inclusionUk,Uk11. It is clear from the definition~23! thatnUk,Uk11,E@n#
whence U is C@n# submodule of E@n#. Note that for fixed yPCn11\$0% the function
p(z)°u^y,z&u4/x2PE2 is not contained inU. ~ii ! By Theorem 1 the star product for arbitrary
Fk5( r50

k nk2rn (r )f rPUk andC l5(s50
l n l2sn (s)csPUl with frPE r andcsPEs is given by

Fk*
mC l5(

r50

k

(
s50

l

(
t50

min~r ,s!
1

t!
nk2r1 l2s1tn~r1s2t !Mt

~r ,s!~f r ,cs!,

hence each summand is an element ofUk1 l . This proves the second part. h

We should now like to substitute the formal parametern for a fixed nonzero real numbera. In
the subalgebraU this is well defined becauseU only contains polynomials inn. The kernel of the
substitution homomorphism,

I a :5$F~n!PUuF~a!50%, ~24!

will turn out to be a*
m ideal.

Lemma 6:I a is a *
m ideal and the general form of an elementFPI aùUk is the following:

(i) for aP$1,1/2,1/3,...%,

F~n!5~n2a!uk21~n!, with uk21~n!PUk21 ; ~25!

(ii) for a51/K with KPN\$0% for k<K,

F~n!5S n2
1

K Duk21~n!, ~26!
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and for k.K,

F~n!5n~k!fk1•••1nk2K21n~k2K11!fk2K111S n2
1

K Duk21~n!, ~27!

with some uk21~n!PUk21 andfrPE r .
Proof: It is clear thatI a is a*

m ideal if Eq.~25!, resp.~26!, and~27! are valid because of the
form of n(k) in Eq. ~16! and Eq.~18! for the *

m product. So we only have to prove Eq.~25! and
Eqs.~26! and ~27!.

Case (i).a¹$1,1/2,1/3,...% We prove ~25! by induction onk. With U15nE01E1 we get
F~n!5c1ns(A) for somecPC ands(A)PE1. F~a!50 impliesA52(c/a)1, where1 is the
unit matrix. So we haveF~n!5c~12n/a!. This proves the casek51.

Consider now the induction stepk21→k. SinceUk5n (k)Ek1nUk21 we write forFPUk

F~n!5n~k!fk1nuk21~n!, with fkPEk and uk21~n!PUk21 .

Then F~a!50 implies fk52[a/a (k)]uk21~a!PEk21 because a(k)Þ0. Writing
n(k)5„12~k21!n…n(k21) we get

F~n!5n~k21!fk1n„2~k21!n~k21!fk1uk21~n!…5:n~k21!fk1nuk218 ~n!,

with uk218 (n) P Uk21. In F(n) 5 (n 2 a)uk218 (n) 1 n (k21)fk 1 auk218 (n) the first term
vanishes atn5a, so we have

n~k21!fk1auk218 ~n!un5a50.

But n (k21)fk 1 auk218 (n) is an element inUk21 so we can apply the induction and conclude

F~n!5~n2a!uk218 ~n!1~n2a!uk29 ~n!,

with someuk229 (n) P Uk22. This proves the first part.
Case (ii).Let a51/K with KPN\$0% andF~n!PUk . We have to consider the two casesk<K

andk.K separately:
~a! For k<K we have (1/K)(k)Þ0, and we can apply the same arguments as in the first part;

henceF~n!5(n21/K)uk21~n! with uk21~n!PUk21.
~b! Fork.K we have forr>1n (K1r )un51/K50 according to the definition~16! of n(k). Hence,

in everyF~n!PUk ,

F~n!5n~k!fk1•••1nk2K21n~K11!fK111nk2KuK~n!,

the first terms are automatically elements ofI 1/K andF~1/K!50 impliesuK(1/K)50. But this is
an element ofUK and we can apply case~a!. HenceuK(n) 5 (n 2 1/K)uK218 (n), which proves the
second part. h

The quotient algebrasU/I a can now easily be described.
Theorem 3: The quotient algebraAa :5U/I a is isomorphic to one of the following alge-

bras.
~i ! For a not equal to one of the rational numbers 1,1/2,1/3,..., the algebraAa is isomorphic

to the vector space of representative functionsE equipped with the multiplication*a defined by
~fPEk , gPE l ; k,lPN!:

f * ag:5 (
r50

min~k,l !
a r

r !

a~k1 l2r !

a~k!a~ l ! Mr
~k,l !~ f ,g!, ~28!
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where the real numbera(k) is defined by the formula (16) and Mr
(k,l )( f ,g) is given in (19).

~ii ! Let a be equal to1/K with K a positive integer. ThenAa is isomorphic to the finite-
dimensional complex algebra of linear endomorphisms ofCN with N:5(K

n1K). The isomorphism
is given by the map

A°
n~K !

~1/K !~K ! s~A! modI 1/K , ~29!

wheres(A) is the Berezin-Rawnsley symbol of the complex N3N-matrix A [see (13)]. The matrix
product (AB) i1••• i K , j 1••• j K

is given by Ai1••• i K ,a1•••aK
Ba1•••aK , j 1••• j K

.
Proof: ~i! According to the preceding Lemma the idealI a is equal to ~n2a!U, which

amounts to simply substitutingn5a in ~18! which is obviously well defined.
~ii ! According to the second part of the preceding Lemma we getUk/I 1/K5UK/I 1/K for

k>K. For UK we may substitute n for 1/K since (1/K)(k)Þ0 for k<K. Hence
dimA1/K5dim EK5(K

n1K)2. Moreover,

n~K !

~1/K !~K ! s~A!* m
n~K !

~1/K !~K ! s~B! modI 1/K

5(
r50

K
n r

r !

n~2K2r !

~1/K !~K !~1/K !~K ! Mr
~K,K !

„s~A!,s~B!… modI 1/K

5
~1/K !K

K!

n~K !

~1/K !~K !~1/K !~K ! MK
~K,K !

„s~A!,s~B!… modI 1/K

5
n~K !

~1/K !~K ! s~AB! modI 1/K ,

since a simple calculation shows that

p* ~MK
~K,K !

„s~A!,s~B!…!~z!5K!K!
s̃~AB!~z!

xK
.

This proves the Theorem. h

Remarks:Note that for eachAPu~n11! the Berezin–Rawnsley symbols(A) is contained in
EK and thus uniquely corresponds to a linear operator inB~H(K)!, which is mapped via the linear
map ~29! to A1/K. By Lemma 5 it follows that this defines arepresentationof u~n11! in CN,
which is irreducible: in fact, by Lemma 5 we know that the momentum mapP(A) star commutes
with some function iff it Poisson commutes with that function, which is only possible iff that
function is constant since the unitary group acts transitively onCPn. Since the Poisson bracket
with P(A) obviously preserves eachEk , it follows that this reasoning carries over to the quotient
by I 1/K.

From the physical point of view the second part of the preceding Theorem can be viewed as
follows: The classical phase space reduction ofCn11\$0% to CPn was motivated by theU~1! action
on Cn11\$0%, which is just the flow of the classical isotropic~n11!-dimensional harmonic oscil-
lator with HamiltonianH51/2x ~the frequency and mass are normalized to 1!. Passing from
Cn11\$0% to CPn for a fixed valuemPR2 of the momentum mappingJ521/2x means classically
that the harmonic oscillator is considered at a fixed energyE52m. This is also true in the
quantum mechanical case, but now the energy is quantized. Only for the discrete values 1/K, K a
positive integer, of the formal parametern5l/~22m! one obtainsfinite-dimensionalalgebras of
observablesU/I 1/K as one would physically expect for thecompact phase spaceCP

n because the
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phase volume is finite and each state ‘‘occupies a phase cell of volume not smaller than\n,’’
which results in a finite-dimensional Hilbert space for the quantum mechanical states. Withl52\
the quantized energy is given by

EK5\K

@where the usual ground state energy 1/2\~n11! is absent because of the Wick ordering#. Note
that in this interpretation the formal parameterl52\ is not quantized but the energyE52m is.
The dimensions of the operator algebras for a fixedKPN correspond to the well-known degen-
eracy of theKth energy eigenvalue of the isotropic harmonic oszillator@see, e.g., Ref. 19, Eq.
~XII.64!#.

V. OTHER EXAMPLES

In this section we briefly sketch how the program mentioned in the Introduction applies to the
deformation quantization of other phase spaces that have been dealt with in the literature.

~1! Consider complexn11 spaceCn11 as a symplectic manifold in the usual manner, i.e. with
symplectic formv5i /2( i50

n dzi`dz̄i . The Wick product~2! then defines a star product on this
space. It is natural to consider the action ofCn11 on itself by translations. Suppose that the smooth
complex-valued functionF onCn11 is representative with respect to this group action, i.e. there is
a finite numberL of linearly independent smooth complex-valued functionsF1 ,...,FL on Cn11

such thatF(z1v)5(a51
L ba(v)Fa(z) with smooth complex-valued coefficientsba . The same

equation holds for eachFa thus giving rise to a coefficient matrixbab(v). SinceC
n11 is Abelian,

bab(v) commutes with eachbab(w) whence all these matrices can simultaneously be transformed
to the Jordan normal form. It can easily be seen that the generalized eigenvectors ofbab(v) are of
the formp(z)ebiz

i1ci z̄
i
, wherep is a complex-valued polynomial function of (z,z̄) andbi ,cj are

complex numbers. Conversely, it is easy to see that each linear combination of the functions of
this form is indeed representative. Since this space of functions is a subalgebra of the algebra of
all smooth complex-valued functions onCn11 ~with respect to pointwise multiplication!, which
clearly is closed under complex conjugation, contains a unit element, and separates points it is
dense inC`~Cn11! with respect to the uniform topology on compacta thanks to the Stone–
Weierstrass Theorem. Note that the space of polynomials is a dense properCn11 submodule of
representative functions that would be impossible for compact Lie groups~compare the proof of
Lemma 3!.

Writing e(a,b) for the exponential functionz°eaiz
i1bi z̄

i
parameterized by two complex vec-

torsa,bPCn11, we easily obtain the following formula:

e~a1r,b1s!* e~a81r8,b81s8!5el~ai1r i !~bi81s i8!e~a1r,b1s!e~a81r8,b81s8! , ~30!

wherea, a8, b, b8, r, r8, s, s8PCn11. After differentiating this formula a finite number of times
with respect to the components ofr, r8, s, s8 at r5r85s5s850 ~which generates polynomial
prefactors!, we see that the Wick product of two representative functions is again representative
and entirely analytic in the formal parameterl. Therefore the algebraU can be chosen to be the
subalgebra ofC`~Cn11!†@l#‡ which consists of polynomials inl with coefficients in the space of
representative functions. Substitutingl for a real numbera then is straightforward.

~2! Consider now the 2n-torusT2n:5S13•••3S1 ~2n factors!. Let ~w1,...,w2n!5:w, 0<wi,1,
denote the standard angle coordinates onT2n and take any nondegenerate complex 2n32n matrix
~Li j !. The Moyal product may then be defined by for two smooth, complex-valued functionsf ,g
on T2n as follows:

f * g:5(
r50

`
~l/2p i!r

r !
L i1 j 1•••L i r j r

] r f

]w i1•••w i r

] rg

]w j 1•••w j r
. ~31!
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It is known that this formula defines an associative deformation for the pointwise multiplication in
C`(T2n) ~see, e.g., Ref. 1!. The space of representative functions for the torus action on itself is
spanned by the Fourier modesTk(w): 5 e2p ikiw

i
, kPZ2n: indeed, it is clear that the complex span

of the Fourier modes consists of representative functions. Since it is a subalgebra ofC`(T2n) that
is closed under complex conjugation and contains a unit element, and separates points, it is a dense
T2n submodule of the space of all representative functions~by the Stone–Weierstrass Theorem!
that has to be equal to that space sinceT2n is compact@compare again the proof of Lemma~3!#. The
Moyal product of two Fourier modes is then simply computed by

Tk*Tk85e2p ilL i j ki kj8TkTk8 , ~32!

which again is an entire function in the formal parameterl, whence the choice ofU and the
substitution of the formal parameter is completely analogous to the previous example.

Suppose now that the matrix~Li j ! is integral and the greatest common divisor of the matrix
elements is equal to 1. Choosingl51/K, K a positive integer, it is easily seen from the above
formula ~32! that the subspaceT 1/K spanned by all elements of the formTk2Tk1Kk8 with
k,k8PZ2n is a * ideal in the* algebra of representative functions. It can be shown~see Ref. 20!
that the quotient algebra is a simple complex algebra of dimensionK2n, which is related to the
geometric quantization on the 2n torus in the theta bundle and its tensor powers.

~3! Let D:5$vPCuuvu2,1% be the Poincare´ disk in the complex plane. As we have indicated in
the last section of Ref. 7, we can use the projective representation ofD: in C2\$0%. Consider the
open subset defined by the inequality 0,y:5uz0u22uz1u2 ~the functiony was defined with an
erroneous sign in Ref. 7!. The image of this open set under the projectionp is an open set ofCP1

that is holomorphically diffeomorphic toD via p(z)°v:5z1/z0. In their article,15 Cahen, Gutt,
and Rawnsley have considered the following functionsf p,q(v) ~p,qPN! on D:

f p,q~v !:5vpS v̄
12uvu2D

q

. ~33!

Their pullback toC2\$0% is simply given by (p* f p,q)(z)5(z1/z0)p(z0z̄1)q/yq. In Ref. 7 we have
defined a star product onD by essentially replacingx by y and the operatorsMr by

M̌ r~G,H !:5yrgi1 j 1•••gi r j r
] rG

]zi1•••]zi r
] rG

] z̄j 1•••] z̄j r
, ~34!

with gi j :5diag~1,21!. Observing that Eqs.~17! and ~18! remain valid for arbitrary smooth
complex-valued functions when the upper bound of the sum is` and that these formulas pass to
the noncompact case with the above replacements and adapting the sign and ordering conventions
of Ref. 15, we obtain the following star product:

~ f p,q* f r ,s!„p~z!…5 (
m50

`
~2n!m

m!

~2n!~q1s2m!

~2n!~q!~2n!~s! y
m2q2sgi1 j 1•••gimjm

] r~yqp* f p,q!
] z̄i1•••] z̄im

~z!

3
] r~ysp* f r ,s!
]zj 1•••]zjm

~z!

5 (
m50

`
~2n!m

m!

~2n!~q1s2m!

~2n!~q!~2n!~s! y
m2q2s~21!m

3
]m„~z1/z0!p~z0z̄1!q…

]~ z̄1!m
~z!

]m„~z1/z0!r~z0z̄1!s…

]~z1!m
~z!
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5 (
m50

min~q,r !
nm

m!

~2n!~q1s2m!

~2n!~q!~2n!~s!

q!

~q2m!!

r !

~r2m!!
f p1r2m,q1s2m„p~z!…,

which reproduces the result of Ref. 15. In Ref. 16 star products were computed on more general
bounded symmetric domains.
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We study relations between the deformed cotangent bundle~T*B!q for the Borel
subgroupB of a given simple Lie groupG, the quantum Lie algebraJ q associated
with the corresponding quantum groupGq and the matrices generating Clebsch–
Gordan coefficients forJ q . We reveal the connection of these objects to quantum
analog of the model spaceM andq-tensor operators. ©1996 American Institute
of Physics.@S0022-2488~96!00612-3#

I. INTRODUCTION

Among different representations of a given compact Lie groupG the model spaceM plays a
distinguished role. By definition,1 the model space is a direct sum of all irreducible representations
H j with multiplicity one

M5(
j

%H j ~1.1!

realized in some universal way. A most popular form ofM is a space of holomorphic functions
on the Borel subgroupB of complexified form of the groupG. In this construction the Borel
subgroup is considered as an affine space.

A study of model spaces provides a natural language for investigation of physical models. For
example, the popular model of two-dimensional quantum gravity, introduced by Polyakov,2 may
be interpreted in terms of the model space of Virasoro algebra.3 A finite-dimensional quantum
group with deformation parameter, depending on the central charge, naturally appears in this
context.

In the present paper, which was written with an intent to find new applications of model space
in modern mathematical physics, we discuss aq-analog of the model space related toq-deformed
Lie groupGq . For this purpose we introduce and examine several ‘‘coordinatizations’’ of the
quantum space~T*B!q . As a by-product we obtain some generating matrices for the set of
Clebsch–Gordan coefficients~CGC!. To our knowledge this result is new even for the nonde-
formed case.

Throughout the paper we systematically and intentionally make use of theR-matrix formal-
ism, which we believe is the most convenient and powerful tool to get explicit results in the
domain of quantum groups.

To avoid the known difficulties with compact forms of quantum groups we adopt here a
convention to work with complexified objects~groups, algebras! and their finite-dimensional

a!Electronic mail address: bytsko@omega.physik.fu-berlin.de, bytsko@pdmi.ras.ru
b!Electronic mail address: faddeev@pdmi.ras.ru
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representations on a formal algebraic level. We also do not discuss subtleties arising in the case of
q being a root of unity.

Most of formulas given in this paper inR-matrix form have universal validity. However, the
concrete results are illustrated on the simplest exampleGq5SLq~2!. The generalization to other
groups needs more technical details such as an explicit structure ofR-matrices and related objects.

Mentioned above, ‘‘coordinatizations’’ of~T*B!q arise from two possible decompositions of
the matrix L ~in usual notationsL5L1L2

21, it comprises all generators of the corresponding
quantum Lie algebra!:

L5UDU21 and L5ABA21,

whereD is a diagonal unimodular matrix,U is a deformation of unitary matrix, andA andB are
unimodular upper and lower triangular matrices. As we shall clarify below, the matricesA andB
admit a natural interpretation as the coordinates in the base and in the fiber of~T*B!q , whereas
entries of the matrixU will be shown to provide basic shifts on the model spaceM and generate
q-analogs of Clebsch–Gordan coefficients for the quantum groupGq . The explicit connection
betweenU and (A,B) will be demonstrated on the example of SLq~2!.

It should be mentioned that an object like the matrixU appeared first in Refs. 4 and 5~later
it was used also in Ref. 6!, where it was interpreted as a ‘‘chiral’’ component of the quantum
grouplike elementg. In the present paper we give another interpretation and application of the
matrix U in the context of a model space.

Let us briefly describe the contents of the present paper. In Sec. II the definition of the
cotangent bundle for a quantum group is reminded. Next we introduce an object of especial
interest for us—the algebraU generated by the entries of the matrixU which diagonalizes the
coordinate in a fiber of (T*G)q . We derive explicit relations for this algebra in the case of
G5SL~2!.

In Sec. III we consider a nondeformed limit~q51! of the algebraU and construct an explicit
representation. For the case ofG5SL~2! we show that the matrixU0 generates Clebsch–Gordan
coefficients~CGC! for the corresponding nondeformed Lie algebra. The Borel subgroupB and
the spaceT*B naturally appear here. Finally, we discuss a connection of our results with the
Wigner–Eckart theorem.

In Sec. IV we construct representations of the algebraU ~for qÞ1! for the case of SL~2! in
two different ways. The first one uses the language ofq-oscillators. The second is based on
explicit realization of~T*B!q and hence involves a notion of quantum model space. Here we
show that the matrixU is a ‘‘generating matrix’’ for CGC for deformed Lie algebra. We also give
some comments on the generalized version of the Wigner–Eckart theorem.

II. (T*G)q AND RELATED OBJECTS

There exist three symplectic manifolds~from the physical point of view they are phase spaces!
naturally related to a given Lie groupG and its Lie algebraJ :

~1! T*G—the cotangent bundle for the groupG;
~2! T*B—the cotangent bundle for the Borel subgroupB;
~3! O—an orbit of the coadjoint action ofG onJ* .

For instance, in the case ofG5SL~2! ~which will be our main example! these spaces are six-,
four-, and two-dimensional, correspondingly.

The method of geometric quantization7 provides a representation theory for~1!, ~2!, ~3!.
Turning from classical to quantum groups, one can try to construct a representation theory for the
deformed analogs of these manifolds. In the present paper we shall deal with deformations of the
spaces~1! and ~2!.
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A. Description of ( T*G)q

Let Gq be a deformation of the Lie groupG andJ q be a deformation of the corresponding
Lie algebraJ . The deformed cotangent bundle (T*G)q is a noncommutative manifold, i.e.,
according to the ideology developed by A. Connes,8 its coordinates are~noncommuting! genera-
tors of some associative algebra. A point on this manifold is parametrized by the pair (g,L), where
gPGq is a coordinate in the base of the bundle, andL is a coordinate in a fiber.

The structure of (T*G)q is defined via commutation relations between the coordinates in the
base and in a fiber. An appropriateR-matrix form of these relations was proposed in Ref. 5:

R6g
1

g
2

5g
2

g
1

R6 , ~2.1!

R2g
1

L
2

5L
2

R1g
1

, ~2.2!

L
1

R2
21L

2

R25R1
21L

2

R1L
1

. ~2.3!

Here and below we use the formalism developed in Ref. 9, i.e., objects likeg andL are considered
as matrices~say,LPJ q^V, whereV stands for auxiliary space!. We use the standard notations

for tensor products:L
1

5L^ IPJ q^V^V, etc.
Let us take the parameterq, which appears in the theory of quantum groups, in the following

form:

q5eg\, ~2.4!

where\ is the Planck constant~the parameter of quantization! andg is the deformation parameter.
In physical applications it is most natural to suppose thatg is either pure real~q belongs to the real
axis! or pure imaginary~q belongs to the unit circle at the complex plane!.

The second form ofq is typical for the WZW theory.4,6,10For uqu51 we suppose also thatq
is not a root of unity. It should be mentioned that for both variants of choice ofg in ~2.4! the
definition ofq-number

@x#[
qx2q2x

q2q21 ~2.5!

is invariant with respect to complex conjugation ofq, i.e., @x# 5 @ x̄#. This property becomes
important if one discusses involutions of deformed Lie algebras.

Definition 1: The algebraL is an associative algebra generated by entries of the matrix L
which obeys relation (2.3).

An important fact—the connection of algebraL with the corresponding quantum Lie algebra
J q was established in Ref. 11 in the following form:

Proposition 1: Let matrices L1 and L2 obey the following exchange relations:

R6L1

1

L1

2

5L1

2

L1

1

R6 , R6L2

1

L2

2

5L2

2

L2

1

R6 , R1L1

1

L2

2

5L2

2

L1

1

R1 . ~2.6!

Then the matrix L5L1L2
21 satisfies the relation (2.3).

This statement implies that the algebraL is isomorphic~up to some technical details which
we do not discuss here! to corresponding quantum Lie algebraUq~J ! @which is defined by~2.6!,
see, e.g., Ref. 9#.

Consider now the relations~2.1!–~2.3! for g andL being 232 matrices,
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g5S g1 g2

g3 g4
D , L5S A B

C DD ~2.7!

and theR-matrices taken in the form

R15q21/2S q 0 0 0

0 1 v 0

0 0 1 0

0 0 0 q

D , v[q2q21; R25PR1
21P ~2.8!

~P denotes the permutation operator:Pg
1

P 5 g
2

, etc.!. In this case~2.1!–~2.3! define the cotangent
bundle for the quantum groupGq5GLq~2!; each ofR-matrix equations~2.1! and~2.3! is equiva-
lent to six independent relations:

qg1g25g2g1 , qg1g35g3g1 , qg2g45g4g2 , qg3g45g4g3 ,
~2.9!

g2g35g3g2 , g1g42q21g4g152vg2g3 ;

and

@A,B#52q21vBD, @A,C#5q21vDC, @A,D#50,
~2.10!

CD5q2DC, BD5q22DB, @B,C#5q21vD~D2A!.

The equation~2.2! gives the following relations:

g1A5qAg11vBg3 , g1B5Bg1 ,

g2A5qAg21vBg4 , g2B5Bg2 ,

g3A5q21Ag31vg1C, g3B5Bg31vg1D,

g4A5q21Ag41vg2C, g4B5Bg41vg2D,
~2.11!

g1C5Cg11q21vDg3 , g1D5q21Dg1 ,

g2C5Cg21q21vDg4 , g2D5q21Dg2 ,

g3C5Cg3 , g3D5qDg3 ,

g4C5Cg4 , g4D5qDg4 .

Next, let us recall the well-known statement~see, e.g., Ref. 9!:
Proposition 2: The algebra generated by the entries of the matrix g obeying (2.9) possesses

the central element (‘‘deformed determinant’’)

detq g5g1g42q21g2g3 . ~2.12!

Similarly, for the algebraL in the case of GLq~2! one can check the following.
Proposition 3: The algebra with generators A,B,C,D obeying (2.10) possesses two central

elements:
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K15qA1q21D, K25q21AD2qBC. ~2.13!

Finally, using the commutation relations~2.11!, one can check the following.
Proposition 4: The operatorsdetq g and K2 commute with all entries of the matrices g and L.
This implies that, fixing values of detq g andK2, one gets a certain subalgebra of the algebra

defined by~2.9!–~2.11!.
Definition 2: Relations (2.9)–(2.11) fordetq g51 and K25constdefine the cotangent bundle

for the quantum group Gq5SLq~2!.
Let us underline that the above definitions and statements can be easily generalized, say to the

case of SLq(N).
In our case the algebraL is isomorphic to the quantum Lie algebraJ q5Uq„sl~2!… ~intro-

duced first in Ref. 12! which is defined by the relations

@ l1 ,l2#5
q2l32q22l3

q2q21 [@2l 3#, ql3l65q61l6q
l3, ~2.14!

and the matricesL6 can be chosen as follows:

L15S ql3 vq1/2l2

0 q2 l3 D , L25S q2 l3 0

2vq21/2l1 ql3D . ~2.15!

Note that the matrixL in the Proposition 1 is defined only up to a scaling factor. Thus, forL1

andL2 given in ~2.15!, we may chooseL as follows:

L5q2L1L2
215S qC2q22l3 q5/2v l2q

2 l3

q21/2v l1q
2 l3 q2q22l3 D . ~2.16!

HereC stands for the Casimir operator of Uq„sl~2!…:

C5v2l2l11q2l3111q2~2l311!5q2 ĵ111q2~2 ĵ11!, ~2.17!

where ĵ is the operator of spin.
According to Proposition 1, the matrix~2.16! satisfies~2.3!. Therefore, it provides a~funda-

mental! representation of the algebraL for Uq„sl~2!…. In this representation the central elements
~2.13! are given by

K15q2C, K25q3, ~2.18!

Note that the scaling factorq2 introduced in~2.16! has changed the values ofK1 andK2. The
choice of such a normalization in~2.16! will be explained later.

B. Connection with quantum 6 j -symbols

Let us remember the theorem which describes an important property of the algebraL for
Uq„sl~2!… ~this statement first appeared in Ref. 5!.

Theorem 1: Let D[D(p) be the unimodular diagonal matrix

D5S qp/\ q2p/\D , ~2.19!

and let 232 matrix U satisfy the following exchange relations:
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D
1

U
2

5U
2

D
1

s, D
2

U
1

5U
1

D
2

s, s5diag~q21,q,q,q21!, ~2.20!

R1U
1

U
2

5U
2

U
1

R1~p!, R2U
1

U
2

5U
2

U
1

R2~p!, ~2.21!

where R6 are the standard R-matrices (2.8) and

R1~p!5PR2
21~p!P5q21/2S q

A@p/\11#@p/\21#

@p/\#

qp/\

@p/\#

2
q2p/\

@p/\#

A@p/\11#@p/\21#

@p/\#

q

D ,

~2.22!

(here [x] denotes a‘‘ q-number’’ (2.5)). Then matrix L constructed by means of the similarity
transformation

L5UDU21, ~2.23!

satisfies the relation (2.3) and therefore its entries generate an algebraL isomorphic toUq„sl~2!….
The proof is given in Appendix A. It makes use of the identity

R2~p!5~D
1

!21R1~p!sD
1

. ~2.24!

Remark:A consequence of~2.20! is the commutativity ofL andD

L
1

D
2

5D
2

L
1

, ~2.25!

which implies thatp commutes with all elements ofL. Later we shall interpretp as the operator
of spin.

Remark:Properly generalizing objects which enter Theorem 1, one can extend this theorem to
the case of any quantum semisimple Lie algebra.13 In particular, the matrixD for Uq„sl(N)… is
found to be:D(p) 5 const• qH^p, wherep consists of the operators corresponding to components
of the weight vector~i.e., on each irreducible representation they are multiples of unity! andH
consists of the generatorsHi of the Cartan subalgebra. An explicit form ofR(p) for Uq„sl(N)…
was obtained in Ref. 14.

Remark:The matrixR(p) obeys the deformed Yang–Baxter equation,5,14–16which can be
written, for example, as follows:

Q
1

R1

23

~p!~Q
1

!21R1

13

~p!Q
3

R1

12

~p!~Q
3

!215R1

12

~p!Q
2

R1

13

~p!~Q
2

!21R1

23

~p!, ~2.26!

where forJ q5Uq„sl~2!… the matrixQ 5 (e
i j

e2 i j) contains an extra variablej, conjugated withp:

@p, j#52 i\, qp/\ei j5qei jqp/\. ~2.27!
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This variablej belongs to the algebraU but does not enter matrixL. An explicit expression for
j will be given below. The general form ofQ for Uq„sl(N)… can be easily found:13 Q 5 eiH^ j,
where componentsji are operators conjugated topi :[pj , jk]52 i\d jk .

The matrixR(p) was discussed in physical literature in different contexts. In particular, it
plays significant role in studies of quantum Liouville15,16and WZW4–6 models; its relation to the
Calogero–Moser model was recently discussed in Ref. 17. But for us the more important fact is a
connection ofR(p) with the quantum 6j -symbols: the entries of~2.22! calculated on irreducible
representations coincide~up to some normalization! with the values of some 6j -symbols for
Uq„sl~2!… ~exact formulas are given in Ref. 20, generalizations are discussed in Ref. 13!. This
connection allows us to assume that objects like the matrixU should be interpreted in terms of
Clebsch–Gordan coefficients~CGC!. Below we demonstrate thatU is indeed a ‘‘generating ma-
trix’’ for CGC and clarify its relation to~T*B!q .

C. Algebra U

Definition 3: The algebraU is an associative algebra generated by entries of matrix

U5SU1 U2

U3 U4
D

and the operator p such that relations (2.19)–(2.22) hold.
Remark:For simplicity we restricted our consideration to the case ofU associated with

Uq„sl~2!…. Let us stress that the case ofU associated with Uq„sl(N)… can be studied similarly but
it will involve more technical details. On the other hand, it might be rather cumbrous to obtain
exact formulas forU associated with Uq~J ! in the case ofJ being generic semisimple Lie
algebra.

Let us give an explicit form of the defining relations~2.21!:

U1U35q21U3U1 , U2U45q21U4U2 , ~2.28!

U1U25U2U1A@p/\21#

@p/\11#
, U3U45U4U3A@p/\21#

@p/\11#
, ~2.29!

U1U45U4U1

A@p/\11#@p/\21#

@p/\#
2U3U2

qp/\

@p/\#
, ~2.30!

U3U25U2U3

A@p/\11#@p/\21#

@p/\#
2U1U4

q2p/\

@p/\#
. ~2.31!

The rest of the relations contained in~2.21! are not independent and can be deduced from~2.28!–
~2.31!.

Additionally, from ~2.20! one gets

qp/\U15q21U1q
p/\, qp/\U25qU2q

p/\,
~2.32!

qp/\U35q21U3q
p/\, qp/\U45qU4p

p/\.

Thus, relations~2.28!–~2.32! describe the algebraU. Using them, one may verify the follow-
ing statement:

Proposition 5: A central element ofU is given by the ‘‘deformed’’ determinant of the matrix
U:
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Det U[U1U4A@p/\11#

@p/\#
2U2U3A@p/\21#

@p/\#
5qU4U1A@p/\21#

@p/\#
2qU3U2A@p/\11#

@p/\#
.

~2.33!

For a fixed value of DetU, the algebraU contains only four independent generators. In
classical limit~\50! they become the coordinates on four-dimensional phase space.

For further discussion it is convenient to introduce new variables instead ofUi :

Û i5UiA@p/\#. ~2.34!

The coordinates$p,Û i% form a new set of generators of the algebraU. The commutation
relations~2.28!–~2.32! rewritten in terms of the new generators acquire a simpler form:

Û1Û35q21Û3Û1 , Û2Û45q21Û4Û2 , Û1Û25Û2Û1 , Û3Û45Û4Û3 ~2.35!

Û1Û45Û4Û1

@p/\11#

@p/\#
2Û3Û2

qp/\

@p/\#
, ~2.36!

Û3Û25Û2Û3

@p/\11#

@p/\#
2Û1Û4

q2p/\

@p/\#
, ~2.37!

qp/\Û15q21Û1q
p/\, qp/\Û25qÛ2q

p/\,
~2.38!

qp/\Û35q21Û3q
p/\, qp/\Û45qÛ4q

p/\.

The central element~2.33! in new variables looks as follows:

Det U[~Û1Û42Û2Û3!
1

@p/\#
5~Û4Û12Û3Û2!

q

@p/\#
. ~2.39!

The explicit form of the matrix inverse toÛ, which we shall need later, is

Û215
1

Det U S Û4 2qÛ2

2Û3 qÛ1
D 1

@p/\#
. ~2.40!

Finally, from ~2.34! we conclude that the expression~2.23! for the matrixL looks similar in
terms of new matrixÛ:

L5UDU215ÛDÛ21. ~2.41!

III. NONDEFORMED CASE

A. Representation of algebra U0

First, we consider the limitg→0, \Þ0 ~note thatq-numbers turn into ordinary numbers!, i.e.,
here we deal with a well understood situation—the representation theory of SL~2!. An investiga-
tion of this simple nondeformed case will make further results more transparent.

Let us denote the corresponding limit algebra asU0. The definingR-matrix relations~2.21!
now degenerate to

U0

1

U0

2

5U0

2

U0

1

R6
0 ~p!, ~3.1!
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where

R1
0 ~p!5R2

0 ~p!5S 1

A~p/\11!~p/\21!

~p/\!

\

p

2
\

p

A~p/\11!~p/\21!

~p/\!

1

D . ~3.2!

The analogs of relations~2.35!–~2.38! for U0 are ~from now on we omit the index 0 for the
generators ofU0!

pÛ15Û1~p2\!, pÛ25Û2~p1\!, pÛ35Û3~p2\!, pÛ45Û4~p1\!, ~3.3!

@Û1 ,Û2#5@Û1 ,Û3#5@Û2 ,Û4#5@Û3 ,Û4#50, ~3.4!

@Û1 ,Û4#5Det U0 , @Û3 ,Û2#52Det U0 , ~3.5!

where DetU0 stands for a limit version of~2.39!:

Det U05~Û1Û42Û2Û3!
\

p
5~Û4Û12Û3Û2!

\

p
. ~3.6!

Proposition 6: A possible solution for (3.3)–(3.6) is

Û15]1 , Û25z2 , Û352]2 , Û45z1 ; ~3.7!

p5\~z1]11z2]211!, ~3.8!

where we denote] i[]/]zi .
Remark:The representation given by~3.7! and~3.8! is not unique. In particular, the rescaling

Û i→ciÛ i ~whereci are numerical constants such thatc1c45c2c3! is allowable.
Proposition 6 together with the connection formula~2.34! allows us to write out the explicit

form of the matrixU0:

U05S ]1 z2

2]2 z1
DA\

p
. ~3.9!

Note that this matrix is ‘‘unimodular,’’ i.e., DetU05(]1z11z2]2)\/p51.
To describe the obtained representation of the algebraU0 completely one has to define a

space where operators~3.7!–~3.9! act. It is natural to think that this space isD(z1 ,z2)—a space of
holomorphic functions of two complex variables.

Let us recall thatD(z1 ,z2) is a space spanned on the vectors

u j ,m&5
z1
j1mz2

j2m

A~ j1m!! ~ j2m!!
, j50, 1

2, 1,
3
2,... , m52 j ,...,j , ~3.10!

and equipped with the scalar product

^ f ,g&5
1

~2p i !2 E f ~z1 ,z2!g~z1 ,z2!e
2z1 z̄12z2 z̄2dz1dz̄1dz2dz̄2 . ~3.11!
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The system~3.10! is orthonormal with respect to the scalar product~3.11!, that is ^ j ,mu j 8,m8&
5 d j j 8dmm8 . For the given scalar product a rule of conjugation of operators looks as follows:

~zi !*5] i , ~] i !*5zi . ~3.12!

The question concerning unitarity of the matrixU0 is discussed in Appendix B.

B. Connection with T*B

The generators of sl~2! can be realized onD(z1 ,z2) as differential operators:

l15z1]2 , l25z2]1 , l 35
1
2~z1]12z2]2!. ~3.13!

Using these expressions we can compare the representation of the algebraL ~or, more precisely,
its limit versionL0! given by Theorem 1 with the representation given by Proposition 1.

Indeed, in the limitg→0 the initial formula~2.23! acquires the form

L5I1gL01O~g2!, L05U0S p 2pDU0
21. ~3.14!

Substituting here the explicit expressions forp, U0, ~3.8! and~3.9! and using the representa-
tion ~3.13! for generators of sl~2!, one derives the following limit form of theL-operator:

L05\S 21z1]12z2]2 2z2]1

2z1]2 22z1]11z2]2
D 52\S 11 l 3 l2

l1 12 l 3
D . ~3.15!

Notice that~3.15! exactly coincides with~2.16! taken in the limitg→0. This explains why we had
to introduce the factorq2 in ~2.16!.

The next observation concerning the limit of theL-operator reads as follows.
Proposition 7: The matrix L0 in the representation (3.15) admits the decomposition

L05A0B0A0
21, ~3.16!

where

A05S z121/2 2z1
21/2z2

0 z1
1/2 D , B05\S p/\11/2 0

2]2 2~p/\21/2!D ~3.17!

and p is defined as in (3.8).
This statement can be verified directly.

Let us comment on the meaning of this proposition. First, note thatA0 is a realization of a
grouplike element of the Borel subgroup of SL~2!. Moreover, this explicit form ofA0 is straightly
connected with the construction of the model spaceM developed by Gelfandet al.1 Indeed, the
spaceD(z1 ,z2) being a realization of the model space for SL~2! @compare~1.1! and ~3.10!# is
spanned on monomials with arguments which are combinations of the entries ofA0. On the other
hand,B0 is of opposite~with respect toA0! triangularity and its entries are operators acting on a
given realization of the model space. Therefore,B0 can be regarded as an element of the space
dual to the corresponding Borel subalgebra.

Thus,A0 andB0 are coordinates in the base and in a fiber of the cotangent bundleT*B. At
this stage the appearance ofT*B ‘‘inside’’ the algebraL looks somewhat mysterious, but we
shall clarify it later.

6333A. G. Bytsko and L. D. Faddeev: (T*B)q , q-model space and CGC generating matrix

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



C. Clebsch–Gordan coefficients

Let us consider an action of the generators of the algebraU0 defined in~3.8! and~3.9! on the
spaceD(z1 ,z2) ~which is a realization of the model space!. The action of these operators on the
basic vectors~3.10! is given by

pu j ,m&5~2 j11!\u j ,m&, ~3.18!

U1u j ,m&5S j1m

2 j11D
1/2

u j2
1

2
,m2

1

2
&, U2u j ,m&5S j2m11

2 j11 D 1/2u j1 1

2
,m2

1

2
&,

~3.19!

U3u j ,m&52S j2m

2 j11D
1/2

u j2
1

2
,m1

1

2
&, U4u j ,m&5S j1m11

2 j11 D 1/2u j1 1

2
,m1

1

2
&.

Formula~3.18! allows us to identify the operatorp asp52 ĵ11, where ĵ is the operator of
spin. Hence, invariant subspaces ofp on the model space are those with fixed value of spinj .

Formulas~3.19! show thatUi are generators of the basic shifts on the model space~as
illustrated on Fig. 1!. This observation is very important. As we shall see later, the same picture
holds forqÞ1.

Now comparing the matrix elements^ j 9,m9uUi u j ,m& following from ~3.19! with values of the
Clebsch–Gordon coefficients~CGC! for decomposition of the tensor product of irreducible rep-
resentationsVj ^V1/2 for sl~2! which are given by the Van-der-Waerden formula

H jm 1
2

m8

j 9
m9J 5dm9,m1m8A~ j1 1

22 j 9!! ~ j1 j 92 1
2!! ~ j 91 1

22 j !!

~ j1 j 91 3
2!!

3(
r>0

~21!rA~ j1m!! ~ j2m!! ~ j 91m9!! ~ j 92m9!! ~2 j 911!

r ! ~ j1 1
22 j 92r !! ~ j2m2r !! ~ 1

21m82r !! ~ j 92 1
21m1r !! ~ j 92 j2m81r !!

, ~3.20!

we establish the following correspondence:

FIG. 1. Action of the operatorsUi on the model space.
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^ j 9,m9uU1u j ,m&5d j 9, j21/2H j
m

1
2

2 1
2

j 9
m9J , ^ j 9,m9uU2u j ,m&5d j 9, j11/2H j

m

1
2

2 1
2

j 9
m9J ,

~3.21!

^ j 9,m9uU3u j ,m&5d j 9, j21/2H j
m

1
2

1
2

j 9
m9J , ^ j 9,m9uU4u j ,m&5d j 9, j11/2H j

m

1
2

1
2

j 9
m9J .

Thus, we proved the following statement:
Proposition 8: The generators Ui of the algebraU0 are operators of the basic shifts on the

model space forsl~2! and they generate the Clebsch–Gordan coefficients corresponding to de-
composition of the product Vj ^V1/2 of the irreps ofsl(2).

This statement allows us to call the matrixU0 a ‘‘generating matrix’’~by analogy with the
notion of a generating function! for CGC.

Remark:Usually, introducing a generating object~well-known examples are the generating
functions for different sets of polynomials, e.g., for the Legendre polynomials!, one makes prop-
erties of the objects under consideration more evident. We think that the notion of generating
matrix will be useful for calculations involving CGC of classical and quantum algebras.

D. Wigner–Eckart theorem

One should underline a connection of the results obtained above~Proposition 8! and the
well-known mathematical construction—Wigner–Eckart theorem,18 which has important applica-
tions in quantum mechanics.

Let us remember that the Wigner–Eckart theorem gives CGC for classical Lie algebraJ as
matrix elements of some set of operators. These operators are calledtensor operators. They map
the corresponding model spaceM onto itself and have special transformation properties under
adjoint action of the algebra. In the case ofJ5sl~2! the Wigner–Eckart theorem reads as follows.

Theorem 2:Let l1 , l2 and l3 be the generators ofsl~2! and let Tm
j ,m52 j ,...,j , be a system

of operators acting onM and obeying the commutation relations

@ l 3 ,Tm
j #5mTm

j , @ l6 , Tm
j #5A~ j7m!~ j6m11!Tm61

j , ~3.22!

where j( j11) is an eigenvalue of the Casimir operator forsl~2!. Then the matrix elements of Tm
j

onM are proportional to Clebsch–Gordan coefficients:

^ j 9m9uTm
j u j 8m8&5Cj9 j8

j H j 8m8
j
m

j 9
m9J ,

where the coefficients Cj 9 j 8
j do not depend on m, m8, m9.

Proposition 8 says that any tensor operators of spinj51/2 ~that is, $T1/2
1/2,T21/2

1/2 %,
Tm
1/2 :Vj°Vj ^V1/25Vj11/2%Vj21/2! may be constructed via the operatorsUi ~in fact, it is evident

from Fig. 1!. Indeed, comparing the commutation relations obtained directly from~3.9! and~3.13!

@ l1 ,U1#5U3 , @ l1 ,U2#5U4 , @ l1 ,U3#50, @ l1 ,U4#50,

@ l2 ,U1#50, @ l2 ,U2#50, @ l2 ,U3#5U1 , @ l2 ,U4#5U2 , ~3.23!

@ l 3 ,U1#52 1
2U1 , @ l 3 ,U2#52 1

2U2 , @ l 3 ,U3#5 1
2U3 , @ l 3 ,U4#5 1

2U4

with Theorem 2, we get the following.
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Proposition 9: The generators Ui of the algebraU0 form a basis for tensor operators of spin
1/2, that is components T1/2

1/2 and T21/2
1/2 of any tensor operator of spin 1/2 can be realized as linear

combinations of Ui :

T21/2
1/2 5m~p!U11n~p!U2 , T1/2

1/25m~p!U31n~p!U4 , ~3.24!

wherem(p) and n(p) are functions only of p52 ĵ11.

IV. DEFORMED CASE

Now we want to extend the results obtained in the previous section to the case ofqÞ1. In
particular, we are going to examine the representations of the algebraU ~see Definition 3 above!
and to show that the corresponding matrixU generates Clebsch–Gordan coefficients for the
deformed Lie algebra. For these purposes we shall exploit a natural connection ofU with
~T*B!q .

A. The q -oscillators approach

There exist different ways to obtain desirable representations of the algebraU. First we
describe a more direct but less instructive method, which is similar to that used in the nonde-
formed case.

By analogy with the nondeformed case studied above, one can assume that the entries of the
matrixU might be realized as operators~deformations of those obtained in Proposition 6! acting
on the space of two complex variables. Indeed, using the definition~2.33! of the central element
of U and taking into account the identity forq-numbers

@a#qb1@b#q2a5@a1b#, ~4.1!

we can rewrite~2.35!–~2.37! in the following way:

Û1Û35q21Û3Û1 , Û2Û45q21Û4Û2 , Û1Û25Û2Û1 , Û3Û45Û4Û3 , ~4.2!

Û1Û42q21Û4Û15q21 Det U qp/\, Û3Û22qÛ2Û352Det U q2p/\. ~4.3!

The relations~4.3! are well known in the theory ofq-oscillators~q-bosons!.19 Recall that
q-analogs of creation, annihilation, and number operators form a deformed Heisenberg algebra
defined by the commutation relations

aa12qa1a5N21, Na5q21aN, Na15qa1N, ~4.4!

and they can be realized in terms of multiplication and difference operators:

a15z, a5z21@z]z#, N5qz]z. ~4.5!

Using two pairs of generators of the deformed Heisenberg algebra, one can construct the
generators of Uq„sl~2!…: l15a1

1a2 , l25a2
1a1 , andq

l3 5 N1
1/2N2

21/2. Applying here the represen-
tation ~4.5! one gets

l15z1z2
21@z2]2#, l25z2z1

21@z1]1#, ql35q1/2~z1]12z2]2!. ~4.6!

The Casimir operator~2.17! of Uq„sl~2!… in this realization is given by

C5qN1N21q21N1
21N2

21. ~4.7!

6336 A. G. Bytsko and L. D. Faddeev: (T*B)q , q-model space and CGC generating matrix

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Now, comparing,~4.2! and~4.3! with ~4.4!, it is easy to conclude that the pairs (Û1 ,Û4) and
(Û2 ,Û3) are similar to two pairs ofq-boson operators.

Taking into account the Weyl-like form of relations~4.2! and having already found explicit
expressions~3.7! and ~3.8! for the generators of algebraU0, one gets an answer forD andÛ in
terms ofq-oscillators. More precisely, a straightforward calculation allows us to verify the fol-
lowing statement:

Proposition 10: Equations (4.2) and (4.3) have the family of solutions:

qp/\5qN1N2 , Û5S a0a1N1
aN2

2b b0a2
1N1

bN2
2a

2g0a2N1
2~11b!N2

a d0a1
1N1

2aN2
11bD , ~4.8!

wherea0d05qb0g0.
Let us note that this form ofÛ is consistent with the condition~2.32!.
Taking into account the connection formula~2.34! and applying to the generatorsai , ai

1, and
Ni the representation~4.5!, one obtains from~4.8! a family of representations of the algebraU. To
select some of them, we have to impose an additional condition.

As mentioned above@see ~3.14! and ~3.15!#, in the nondeformed case substitution of the
generating matrixU0 in the formula~2.23! gives the matrixL0 which exactly coincides with the
limit version of the matrix~2.16!. It is natural to suppose that the generating matrixU correspond-
ing to deformed algebra produces in the same way the matrix~2.16! itself. Bearing in mind the
property~2.41!, we obtain the following.

Proposition 11: The condition Uˆ DÛ215L, where L is the matrix (2.16), D is given by

D5S pp/\ q2p/\D 5S qN1N2

q21N1
21N2

21D , ~4.9!

and Û is given by~4.8!, imposes the following restrictions:

a1b1 1
250, a05qg0 , b05d0 . ~4.10!

Substitution of~4.10! into ~4.8! completes description ofÛ in terms ofq-oscillators.

B. Connection with ( T*B)q

Now we are going to develop another approach to constructing representations ofU. It is
more universal since it is based on the connection~which takes place for arbitrary quantum Lie
algebra! of the algebraL ~see Definition 1! with ~T*B!q and on the interpretation of the de-
formed Borel subgroupBq as a quantum model space.

To clarify the announced connection we start with the following theorem~this is a version of
the theorem given in Ref. 10 forL-operators with nonultralocal relations!.

Theorem 3: Let the matrices AandB obey the relations of type (2.1),

R6A
1

A
2

5A
2

A
1

R6 , R6B
1

B
2

5B
2

B
1

R6 , ~4.11!

and the additional exchange relation

A
1

B
2

5B
2

A
1

R1 , A
2

B
1

R25B
1

A
2

. ~4.12!

Then the L-operator constructed by means of similarity transformation

L5ABA21 ~4.13!
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satisfies the relation (2.3).
Remark:Since~4.11! defines a quantum group structure,A21 in ~4.13! should be understood

as an antipode ofA.
Proof of Theorem 3 is straightforward:

L
1

R2
21L

2

R25A
1

B
1

~A!
1

21R2
21A

2

B
2

~A!
2

21R25A
1

B
1

A
2

R2
21~A!

1
21B

2

~A!
2

21R2

5A
1

A
2

B
1

B
2

R1
21~A!

1
21~A!

2
21R25R1

21A
2

A
1

B
2

B
1

R2~A!
2

21~A!
1

21

5R1
21A

2

B
2

A
1

R1~A!
2

21B
1

~A!
1

215R1
21A

2

B
2

~A!
2

21R1A
1

B
1

~A!
1

215R1
21L

2

R1L
1

.

Thus, for a given quantum groupGq , the algebraL is embedded into the algebra generated
by entries ofA and B obeying ~4.11! and ~4.12!. To argue that~4.11! and ~4.12! describe a
q-analog ofT*B, let us notice that the nonsymmetric~with respect toR-matrices! form of the
relations~4.12! imposes some restriction on the structure of the matricesA andB. Say, ifR1 is an
upper triangular matrix, thenA andB must be upper and lower triangular, respectively. Therefore,
one may think ofA andB as coordinates in the deformed Borel subgroupBq and in the dual
quantum space, respectively. In other words, the matricesA andB are coordinate and momentum
on the deformed phase space~T*B!q , respectively. Thus~4.11! and~4.12! may be regarded as a
definition of ~T*B!q ~for additional comments see Ref. 10!.

We should underline here that, although the matricesA andB look similar on the quantum
level, they transform into different objects whenq→1. Indeed, in the limitq→1 one has
L→I1g\L0 and the corresponding limit forms ofA andB are

A→A0 , B→I1g\B0 , ~4.14!

whereA0 is a grouplike element, whereasB0 is rather an element of algebra@see~3.17! as an
example ofA0 andB0 for sl~2!#.

Comparing the statements of Theorems 1 and 3 and taking into account the equality~2.41!, we
get the formula

L5ABA215ÛDÛ21, ~4.15!

which points out a possibility to construct the matrixÛ obeying~2.35!–~2.38! via the generators
of ~T*B!q . This connection is very important; below we consider it for SLq~2! in all details.

Now let us turn to the example of SLq~2!. ForR6 defined as in~2.8! one can choose

A5S a c

0 a21D , B5S b 0

d b21D . ~4.16!

Explicit relations for the generators of~T*B!q following from ~4.11! and ~4.12! are

ac5q21ca, bc5q1/2cb, ab5q1/2ba; ~4.17!

bd5q21db, ad5q1/2da, cd5q21/2dc1q21/2vb21a. ~4.18!

Performing the following decomposition,

d5d01d15d01q1/2c21b21a, ~4.19!

we transform~4.18! to homogeneous form:
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bd05q21d0b, ad05q1/2d0a, cd05q21/2d0c. ~4.20!

Thus, ~4.17! and ~4.20! describe four variables obeying Weyl-like commutation relations.
Using the jargon of conformal field theory, we shall call these formulas ‘‘free field representa-
tion’’ and the generatorsa, b, c, andd0 ‘‘free field’’ variables.

Remark:The last of equations~4.18! is nothing but a commutation relation entering the
definition of deformed Heisenberg algebra. Indeed, comparing~4.17! and ~4.18! with ~4.4!, one
can establish the following correspondence~r stands for arbitrary numerical constant!:

c;Nra1, d;2vN21/22ra, b21a;qrN23/2.

Thus, the transformation~4.19! can be interpreted as ‘‘bosonization’’ ofq-oscillators.
Now, substituting~4.16! in ~4.13!, we get

L5q1/2S a c

0 a21D S b 0

d b21D S a21 2qc

0 a D
5S q~b1b21!1a21cd0 2q2ac~b1qa21cd0!

~ac!21~b211q21a21cd0! 2q2a21cd0
D . ~4.21!

This matrix provides a ‘‘free field’’ realization of the algebraL for Uq„sl~2!…. Note that the
additional scaling factorq1/2 was introduced in~4.21! to ensure a coincidence of the Casimir
operators calculated by formulas~2.13! for the matrix~4.21!:

K15q2~b1b21!, K25q3 ~4.22!

with those for the matrix~2.16!. In fact, we redefined the matrixB in ~4.16! as

B̃5q1/2B. ~4.23!

Comparing the Casimir operatorK1 given by ~4.22! with one given by~2.18!, we identify the
operatorb with the power of the operator of spinĵ :

b5q2 ĵ11. ~4.24!

It follows from ~4.22! that matrixL contains only three independent variables@it is easy to see
from the explicit form~4.21! that these areb, ac, anda21cd0#. Moreover, direct calculation using
~4.17! and ~4.20! shows that all elements of the matrixL commute with operatorb. That agrees
with the property~2.25!.

Now exploiting the connection described by formula~4.15!, one can obtain an exact expres-
sion for Û.

Theorem 4: The algebraU[$Û,p% with defining relations (2.35)–(2.38) has the following
realization in terms of generators a, b, c, andd0:

b5qp/\, Û5S 1

v
a~b1a21cd0!e

2 i j/2 cei j/2

1

v
c21~b211q21a21cd0!e

2 i j/2 a21ei j/2
D , ~4.25!

wherev[q2q21, d0 is defined in (4.19), and

6339A. G. Bytsko and L. D. Faddeev: (T*B)q , q-model space and CGC generating matrix

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



ei j5a21bgc21d0
21 ~4.26!

with g being an arbitrary constant.
This theorem gives a ‘‘free field’’ representation of the algebraU. Let us remark that the

remaining freedom in~4.26! corresponds only to canonical transformations~since j and p are
conjugate variables!.

The formulated theorem will be proved in several steps. First, we introduce a lower-triangular
matrix which diagonalizes the matrixB̃:

V5S v1 0

v3 v2
D , B̃5VB̃0V

21, B̃05S q1/2b 0

0 q1/2b21D[q1/2B0 . ~4.27!

Proposition 12: A possible solution for the matrix V is

v15v1~b!, v25v2~b!, v35dv1~b! f ~b!, ~4.28!

wherev1(b) andv2(b) are arbitrary functions of b and f(b)5(b2qb21)21.
Thus, matrixL given by ~4.21! admits a decomposition of the form

L5Û0B̃0Û0
21, Û05AV. ~4.29!

However, this diagonalization is not unique. Using an arbitrary power of the diagonal matrix
Q, which depends on the variable conjugate tob,

Q5S ei j e2 i jD , bei j5qei jb, ~4.30!

we obtain a family of diagonalizing matrices:

L5Ûd B̃d Ûd
21, Ûd5AVQd, B̃d5Q2dB̃0Q

d5qdB̃05qd11/2B0 . ~4.31!

An explicit form of the diagonalizing matrix is

Ûd5AVQd5S ~av11cdv1f !eidj cv2e
2 idj

a21dv1f e
idj a21v2e

2 idj
D . ~4.32!

Here we should describe a new objectei j which appeared in the matrixÛ. We assume that the
following Weyl-like relations hold:

aei j5qaei ja, bei j5qei jb, cei j5qbei jc, d0e
i j5qgei jd0 . ~4.33!

Proposition 13: The set of equations (4.33) is equivalent to

ei j5ab1~g21!/2bgc~g21!/22ad0
21. ~4.34!

Now we have to remember that the matrixU ~andÛ as well! described in Theorem 1 has to
satisfy the relation~2.20! or, equivalently, the relation

B
1

0Û
2

d5Û
2

d B
1

0s, ~4.35!

wheres andB0 were introduced in~2.20! and~4.27!, respectively. A straightforward calculation
using ~4.17! and ~4.18! leads to the following.
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Proposition 14: The matrix Uˆ d given by (4.32) satisfies the relation (4.35) only ford521/2.
It is worth mentioning that such a choice ofd exactly compensates the renormalization of

the matrixB in ~4.23!, i.e., B̃21/25B0 .
Bearing in mind the formula~4.19!, one can rewrite~4.32! for d521/2 as follows,

Û[Û21/25S a~b1a21cd0!we
2 i j/2 cvei j/2

c21~b211q21a21cd0!we
2 i j/2 a21vei j/2

D , ~4.36!

wherew[ f (b)v1(b) andv[v2(b).
Finally, a direct check shows~see Appendix C! that the matrix~4.36! obeys Eqs.~2.35!–

~2.38! if the functionsw andv are constant@we chose them as follows:v(b)51,w(b)51/v# and
the coefficients in~4.33! and~4.34! satisfy the conditionsb52a andg5a2b2152a21. Thus,
Theorem 4 is proven.

Let us end the discussion of relation of~T*B!q to algebrasL andU with one more state-
ment:

Theorem 5: The algebra generated by coordinates on~T*B!q is isomorphic to the algebra
generated by entries of the matrix LandQ.

Proof: Indeed, formulas~4.21! and~4.26! provide explicit expressions for entries ofL andQ
via the generatorsa, b, c, andd0 @up to unessential canonical transformation in~4.26!#. Con-
versely, suppose matrixL and the elementei j are given. Then, as it follows from~4.21!, one can
construct from entries ofL the combinationsb, ac, anda21cd0 . Together with~4.26! this allows
us to recover the ‘‘coordinates’’a, b, c, andd0.

Although we considered this theorem only for the case of SLq~2!, there is, evidence that it
holds for the generic case. For example, in the case ofGq5SLq(N) a point on the quantum bundle
~T*B!q is parametrized byN3N matricesA andB. As above, the matrixL5ABA21 satisfies
~2.3! and therefore its entries generate the corresponding algebraL. However, the dimension of
~T*B!q exceeds the dimension ofL: dim~T*B!q2dimL5(N21N22)2(N221)5N21. It is
very probable that the remaining~N21! generators are exactly those that enter the diagonal
unimodularN3N matrixQ.

C. Explicit representation

Now we face the problem of constructing an explicit representation for the generatorsa, b, c,
andd0. A Weyl-like form of the commutation relations~4.17! and~4.20! points out the possibility
of getting a realization for these generators in terms of two pairs of canonical variables. This also
means@due to the interpretation of~4.19! as ‘‘bosonization’’ ofq-oscillators# that the generators
a, b, c, andd admit a realization viaq-oscillators. Evidently, such a representation is not unique.

It is natural to realizea, b, c, and d0 as operators acting on theq-analog of the space
D(z1 ,z2). We shall denote this space asDq(z1 ,z2). The spaceDq(z1 ,z2) is spanned on the basic
vectors of form~remember that [x] stands forq-numbers!

u j ,m&5
z1
j1mz2

j2m

A@ j1m#! @ j2m#!
, j50, 1

2, 1,
3
2,..., m52 j ,..,j . ~4.37!

One can define onDq(z1 ,z2) such a scalar product that the system~4.37! is orthonormal, that is
^ j ,mu j 8,m8&5d j j 8dmm8.

Remark:This scalar product is a deformation of~3.11!. Its explicit form makes use of the
q-exponent and the Jackson integral. See Ref. 19 for details.

In all formulas concerning the spaceDq(z1 ,z2) we suppose thatq is chosen as described in
Sec. II~i.e., it belongs either to the real axis or to the unit circle at the complex plane!. In this case
an analog of the rule of conjugation~3.12! is
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~zi !*5zi
21@zi] i #, ~zi] i !*5zi] i . ~4.38!

The formulas~4.24! and~4.25! imply that the generatorb is a power of the operator of spin.
Hence, on the spaceDq(z1 ,z2) it is given by

b5qz1]11z2]2115qN1N2 . ~4.39!

Next, let us remember that we already know the limit versions of the generatorsa, b, c, and
d @see Proposition 7; one should take into account the rescaling~4.23!#. Their appropriate defor-
mations for genericq are described by

Proposition 15: The set of operators (with arbitrary constantsli , ni!

a5ql0z1
21/2 N1

l1, c5qn0 z1
21/2z2 N1

l122N2
n2,

~4.40!
b5qN1N2 , d52ql02n01n2 z2

21~N22N2
21!N1N2

2n2

satisfies (4.17) and (4.18) and gives in the limitg→0 the generators found in (3.17).
Although due to Theorem 4 this proposition gives a family of representations forU, we again

should impose an additional condition using the matrix~2.16! as a standard~justification for this
trick was given above!.

Proposition 16: Matrix L given by (4.21) coincides with the matrix (2.16) taken in the rep-
resentation (4.6) provided that

b5qN1N2 , ac5q21/2z1
21z2N1

21/2N2
21/2, a21cd052N1

21N2 . ~4.41!

Comparing the statements of Propositions 15 and 16, we derive

a5ql0z1
21/2N1

3/4, b5qN1N2 , c5qn0z1
21/2z2N1

25/4N2
21/2,

~4.42!
d052ql02n021/2z2

21N1N2
3/2, ql01n05q21/8.

Substituting~4.42! into ~4.26! @and remember that~4.26! is defined only up to a coefficient#, we
get

ei j5q2ez1N1
g21/2N2

g21, ~4.43!

whereg and e are arbitrary. Finally, substituting~4.42! and ~4.43! into ~4.36!, we obtain~one
should remember thatU and Û are defined only up to arbitrary scaling factor!

Û5S 1

v
a0z1

21N1
12g/2N2

3/22g/2~N12N1
21! b0z2N1

g/223/2N2
g/221

2
1

v
q21a0z2

21N1
1/22g/2N2

12g/2~N22N2
21! b0z1N1

g/221N2
g/221/2D . ~4.44!

It is easy to check that the family of matrices~4.44! exactly coincides with what was obtained
in q-oscillator approach~see Propositions 10 and 11!.

D. Quantum Clebsch–Gordan coefficients

Using the connection formula~2.34! we get from~4.44! a family of matricesU which provide
possible representations of the algebraU. It is natural to study an action of the entries of these
matrices on the spaceDq(z1 ,z2) described above. On the basic vectors~4.37! these operators act
as follows:
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U1u j ,m&5C1q
~1/2!~ j2m11!A @ j1m#

@2 j11#
u j2 1

2,m2 1
2&,

U2u j ,m&5C2q
2~1/2!~ j1m!A@ j2m11#

@2 j11
u j1 1

2,m2 1
2&,

~4.45!

U3u j ,m&52C3q
2~1/2!~ j1m11!A @ j2m#

@2 j11#
u j2 1

2,m1 1
2&,

U4u j ,m&5C4q
~1/2!~ j2m!A@ j1m11#

@2 j11#
u j1 1

2,m1 1
2&,

where the coefficientsCi do not depend onm.
Note that, similar to the classical case, the operatorsUi correspond to the basic shifts on the

model space. Comparing the matrix elements^ j 8,m8uUi u j ,m& following from ~4.45! to values of
CGC for Uq„sl~2!… given byq-analog of the Van-der-Waerden formula,20,21which for the decom-
position ofVj ^V1/2 looks like following,

H jm 1
2

m8

j 9
m9J

q

5dm9,m1m8S @ j1 1
22 j 9#! @ j1 j 92 1

2#! @ j 91 1
22 j #!

@ j1 j 91 3
2#!

D 1/2

q~1/2!~ j11/22 j 9!~ j1 j 913/2!1 jm82~1/2!m

3(
r>0

~21!rq2r ~ j1 j 913/2!~ @ j1m#! @ j2m#! @ j 91m9#! @ j 92m9#! @2 j 911# !1/2

@r #! @ j1 1
22 j 92r #! @ j2m2r #! @ 1

21m82r #! @ j 92 1
21m1r #! @ j 92 j2m81r #!

,

~4.46!

we establish the following correspondence:

^ j 9,m9uU1u j ,m&5d j 9, j21/2 a0 q
~12g/2! j21/2 H j

m

1
2

2 1
2

j 9
m9J

q

,

^ j 9,m9uU2u j ,m&5d j 9, j11/2 b0 q
~g/221! j H j

m

1
2

2 1
2

j 9
m9J

q

,

^ j 9,m9uU3u j ,m&5d j 9, j21/2 a0 q
~12g/2! j21/2 H j

m

1
2

1
2

j 9
m9J

q

,

^ j 9,m9uU4u j ,m&5d j 9, j11/2 b0 q
~g/221! j H j

m

1
2

1
2

j 9
m9J

q

.

Thus we derive an analog of Proposition 8:
Proposition 17: The generators Ui of the algebraU are operators of the basic shifts on the

model space forUq„sl~2!… and they generate the q-Clebsch–Gordan coefficients corresponding to
decomposition of the product Vj ^V1/2 of irreps ofUq„sl~2!….

Remark:Puttinga05q1/2, b051, andg52 in ~4.44!, we get the following generating matrix:
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U5S z1
21@z1]1#q

~1/2!~z2]211! z2q
2~1/2!z1]1

2z2
21@z2]2#q

2~1/2!~z1]111! z1q
~1/2!z2]2

D 1

A@p/\#
, Det U5q1/2, ~4.47!

which may be called ‘‘exact’’ as it satisfies~4.45! with Ci51. The question about unitarity of the
matrix ~4.47! is discussed in Appendix B.

E. Generalized Wigner–Eckart theorem

As we demonstrated in the previous section, entries of the matrixU0 are tensor operators of
spin 1/2 forJ5sl~2!, hence they provide a realization of the Wigner–Eckart theorem. Let us now
consider the matrixU from this point of view.

The theory of tensor operators for quantum algebras was discussed by many authors~see, e.g.,
Ref. 22!. In particular, the generalized Wigner–Eckart theorem@in the case ofJ q5Uq„sl~2!…#
reads as follows.

Theorem 6: Let l1 , l2 , and l3 be the generators of Uq„sl~2!… and let Tm
j , m52 j ,..,j , be a

system of operators acting on the deformed model spaceM and obeying the commutation rela-
tions

@ l 3, Tm
j #5mTm

j , l6Tm
j ql32ql371Tm

j l65A@ j7m#@ j6m11#Tm61
j . ~4.48!

Then the matrix elements of Tm
j onM are proportional to q-Clebsch–Gordan coefficients:

^ j 9m9uTm
j u j 8m8&5Cj 9 j 8

j H j 8m8
j
m

j 9
m9J

q

,

where the coefficients Cj 9 j 8
j do not depend on m, m8, and m9.

Proposition 17 implies thatUi may be regarded asq-tensor operators. Indeed, using~4.44!
and ~4.6!, one can check thatUi satisfy ~4.48! @one obtains forUi deformations of relations
~3.23!#. Similarly to the classical case we have the following.

Proposition 18: The generators Ui of the algebraU form a basis for q-tensor operators of
spin 1/2, that is components T1/2

1/2 and T21/2
1/2 of any q-tensor operator of spin 1/2 can be realized as

linear combinations of Ui :

T21/2
1/2 5m~p!U11n~p!U2 , T1/2

1/25m~p!U31n~p!U4 , ~4.49!

wherem(p) and n(p) are functions only of p.
Remark:Unlike the classical case, solution~4.44! gives a family of matricesU. However, the

corresponding matrix elements^ j 9m9uUi u j 8m8& differ only by factors which do not depend onm8
andm9. Thus, any representative of the obtained family of matricesU may be used in Proposition
18.

Let us end the description of the algebraU from the point of view of theory ofq-tensor
operators with the following statement:

Proposition 19: The matrices U and L defined in Theorem 1 obey the relation

R2U
1

L
2

5L
2

R1U
1

. ~4.50!

The proof is straightforward:
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R2U
1

L
2

5R2U
1

U
2

D
2

~U !
2

215U
2

U
1

R2D
2

~U !
2

215U
2

U
1

D
2

sR1~U !
2

21

5U
2

D
2

U
1

R1~U !
2

215U
2

D
2

~U !
2

21R1U
1

5L
2

R1U
1

;

it makes use of the relations~2.20! and ~2.21! and the property~2.24!.
A remarkable fact is that~4.50! may be used for definition ofq-tensor operators instead of

~4.48!. Indeed, in the limitg→0 it turns into

@U0

1

, L0
2

#5LU0

1

, L5S 1/2 21/2 1

1 21/2

1/2

D . ~4.51!

Using the explicit form ofL0 given in ~3.14!, one can easily check that this matrix relation is
equivalent to~3.23!. More onR-matrix description ofq-tensor operators is given in Ref. 23.

V. CONCLUSION

In this paper we have constructed theq-analog of the phase spaceT*B and clarified its role
in description of the model representation of the corresponding quantum groupGq . We unraveled
a connection between the algebras generated by entries of matrix (A,B), (U,D), and (L,Q). The
general formulas were concretized by the example ofG5SL~2!.

An extension of the described scheme to the case of arbitrary groupG will definitely improve
understanding of the role played by the matrixR(p) which so far has been discussed in the
literature much less than standard matrixR.

The results of this paper can be generalized in several directions even for the case of SL~2!.
The first is a consideration of the matrixU with an auxiliary space corresponding to the higher
spin representation. It must lead to an exact form of the generating matrix for all CGC. The work
in this direction is in progress now. The second point to be discussed is the case ofq being a root
of unity. The structure ofR(p) allows us to hope that reduction on so-called ‘‘good’’ represen-
tations will be quite natural in our formalism. However, this case is to be examined more care-
fully.
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APPENDIX A: PROOF OF THEOREM 1

Using ~2.20! and~2.21! together with the identity~2.24! and taking into account that matrices

D
1

, D
2

, ands mutually commute, we check
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L
1

R2
21L

2

R25U
1

D
1

~U !
1

21R2
21U

2

D
2

~U !
2

21R2

5U
1

D
1

U
2

R2
21~p!~U !

1
21D

2

~U !
2

21R2

5U
1

U
2

D
1

sR2
21~p!D

2

s~U !
1

21~U !
2

21R2

5R1
21U

2

U
1

R1~p!D
1

sR2
21~p!D

2

sR2~p!~U !
2

21~U !
1

21

5R1
21U

2

U
1

D
2

sD
1

R2~p!~U !
2

21~U !
1

21

5R1
21U

2

D
2

U
1

R1~p!sD
1

~U !
2

21~U !
1

21

5R1
21U

2

D
2

U
1

R1~p!~U !
2

21D
1

~U !
1

21

5R1
21U

2

D
2

~U !
2

21R1U
1

D
1

~U !
1

215R1
21L

2

R1L
1

.

APPENDIX B: ON CONJUGATION OF U0 AND U

First we consider the matrixU0. Using the rules of conjugation~3.12! ~and taking into
account thatp*5p!, one can check that the matrix conjugated toU0 does not coincide withU0

21;
that is, the matrixU0 itself is not unitary. However, it turns out that the transposed matrix@one
should remember that in general (UT)21Þ(U21)T for matrices with noncommuting entries#

U0
T5S ]1 2]2

z2 z1
DA\

p

satisfies the unitarity condition:

~U0
T!*5A\

p S z1 ]2

2z2 ]1
D 5~U0

T!21.

In the deformed case~recall thatq can be either real oruqu51! the matrixU includes the
operatorN which conjugates in different ways for the different choices ofq. Let us consider the
matrixU given by~4.47!. The conjugated matrix can be constructed according to the rules~4.38!.
Using the formula~4.1!, one can check that the unitarity condition (UT)*UT5UT(UT)*5I ~i.e.,
the same as in the nondeformed case! for the transposed matrix holds only for realq. For uqu51,
see Ref. 13.

APPENDIX C: PROOF OF THEOREM 4

Here we complete the proof of Theorem 4, i.e., we have to prove that matrix~4.36! satisfies
~2.35!–~2.37! if the following conditions,

a1b50, g1b2a1150, v~b!51, w~b!51/v, ~C1!

are fulfilled.
First, using relations~4.17!, ~4.20!, and~4.33! and conditions~C1!, we check
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Û1Û25a~b1a21cd0!e
2 i jcei j5q21/21b/2ca~b1qa21cd0!e

i je2 i j

5qa/21b/2cei ja~b1q~g1b2a11!/2a21cd0!e
2 i j5Û2Û1 ,

Û1Û35a~b1a21cd0!e
2 i jc21~b211q21a21cd0!e

2 i j

5q1/22b/2c21a~b1q21a21cd0!e
2 i j~b211q21a21cd0!e

2 i j

5q2b/2c21a~b211q21a21cd0!~b1q21a21cd0!e
2 i je2 i j

5q21/22b/2c21~b211q21a21cd0!a~b1q21a21cd0!e
2 i je2 i j

5q212a/22b/2c21~b211q21a21cd0!ae
2 i j~b1a21cd0!e

2 i j

5q21Û3Û1 .

The rest of relations~2.35! can be proved similarly.
Next, note that relation~2.36! can be rewritten as follows:

Û1Û4~b2b21!2Û4Û1~qb2q21b21!52vÛ3Û2b. ~C2!

To prove this quality we transform its lhs and rhs as follows

Û1Û4~b2b21!2Û4Û1~qb2q21b21!

5a~b1a21cd0!e
2 i ja21ei j~b2b21!2a21ei ja~b1a21cd0!e

2 i j~qb2q21b21!

5q2a/2~q1/2b1q21/2a21cd0!~b2b21!2q2a/2~q21/2b1q1/2a21cd0!~qb2q21b21!

52q2a/2v~q1/2a21cd0b1q21/2!;

Û3Û2b5c21~b211q21a21cd0!e
2 i jcei jb

5qb/2~q21/2b211q1/2a21cd0!b5qb/2~q21/21q1/2a21cd0b!.

Thus, the equality~C2! is fulfilled if conditions~C1! are valid. The relation~2.37! can be proved
in the same way.
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Relations between the Casimir operators of sl(1 z2)
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The superalgebras sl~1u2! and osp~2u2! are isomorphic. Their Casimir operators
have been published in the form of a quadratic~K2! and a cubic~K3! operator for
sl~1u2! and a quadratic~I 2! and a quartic~I 4! operator for osp~2u2!. In this note we
derive the algebraic relations between both sets of Casimir operators. ©1996
American Institute of Physics.@S0022-2488~96!02511-X#

I. INTRODUCTION

The special linear superalgebra sl~1u2! and the orthosymplectic superalgebra osp~2u2! are
isomorphic.1 The independent Casimir operators of both superalgebras have been published in the
literature in the following form:

~i! a quadratic~K2! and a cubic~K3! operator for sl~1u2!,2 and
~ii ! a quadratic~I 2! and a quartic~I 4! operator for osp~2u2!.3

Because of the isomorphy between both superalgebras, there must exist algebraic relations be-
tween both sets (I 2 ,I 4) and (K2 ,K3). The aim of this letter is to exhibit these relations.

In 1977, Scheunert, Nahm, and Rittenberg4 introduced the concept of grade star representation
for superalgebras. Also, they defined two types of representations:

~i! the typical representations, such that the even and the odd parts of the representation space
have the same dimension, and

~ii ! the atypical representations, such that the even and the odd parts of the representation
space do not have the same dimension.

Only typical representations can be characterized by the eigenvalues of the Casimir operators,
since these vanish for the atypical representations.

II. CASIMIR OPERATORS OF sl(1 z2) SUPERALGEBRA

Considering the bosonic subalgebra gl~1!%sl~2!, Scheunert, Nahm, and Rittenberg2 showed
that the irreducible representations of sl~1u2! are characterized by two numbers (b,q), bPR,
2qPN, and by the parityl that takes the value 0 or 1. These representations are typical ifubuÞq
and atypical ifubu5q. Then, using apositive definitescalar product in the representation space,
Scheunertet al. derived the star and the grade star representations of sl~1u2!. They found two
classesS 6 of star representations for6b.q, and one class of grade star representations forq
5 1

2 and ubu,1
2. They concluded that considering grade star representations of sl~1u2! is almost

useless.
In a recent article,5 these results have been extended by consideration of the embedding of

osp~1u2! in sl~1u2!, and making use of anonpositive definitescalar product which generalizes that
defined by Minnaert and Mozrzymas for osp~1u2!.6 For typical representations, there are three
classes of grade star representations

G 6, for 6b.q and G 0, for ubu,q.

0022-2488/96/37(12)/6349/4/$10.00
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The classesG 6 are equivalent toS 6 for star representations whileG 0 generalizes the grade star
representation class defined in Ref. 2 for positive definite scalar product.

The two independent Casimir operatorsK2 andK3 of the sl~1u2! superalgebra are built in the
following way.7 Let Xm be the generators of sl~1u2!. One defines metric forms

gmn5Tr~gXmXn!, gmnr5Tr~gXmXnXr!, ~1!

whereg is a diagonal matrix with eigenvalues11 ~resp.21! in the even~resp. odd! subspace.
Then, the Casimir operators are simply defined by

K25gmnX
mXn, K35gmnrX

mXnXr, ~2!

whereXm5gmnXn .
Explicitly, with the notations of Ref. 2, the sl~1u2! generators$Q, B,Va ,Wa% ~a561

2! satisfy
the ~anti!commutation relations

@Qi ,Qj #5 i« i jkQk , @B,Va#5 1
2Va , @B,Wa#52 1

2Wa ,

@Q,B#50, @Q,Va#5 1
2Vb~t!b

a , @Q,Wa#5 1
2Wb~t!b

a , ~3!

$Va ,Vb%5$Wa ,Wb%50, $Va ,Wb%5~Ct!ab•Q1CabB,

where t are the usual Pauli matrices andC5 i t2 is the charge conjugation matrix. Then, the
expressions of the Casimir operatorsK2 andK3 of sl~1u2! are

K25Q22B21 1
2~VCW1WCV!, ~4!

K35BK21
1
4B~VCW1WCV!1 1

6~VQ•tCW2WQ•tCV!1 1
12~VtCW2WtCV!•Q. ~5!

Note that, as pointed out by V. Rittenberg,8 there is a misprint in the original article: the coeffi-
cient of the second term inK3 is indeed

1
4 instead of

1
2. This misprint was reproduced in Refs. 1 and

5.
In the grade star (b,q)-representation of sl~1u2!, the eigenvaluesk2 and k3 of the Casimir

operatorsK2 andK3 take the values

k25q22b2 and k35b~q22b2!. ~6!

III. CASIMIR OPERATORS OF osp(2 z2) SUPERALGEBRA

The osp~2u2! superalgebra can be described in a compact form by a super-antisymmetric
tensorT5$Tab% ~a,b51,2,6 1

2!, i.e.,

Tba52~21!abTab ,

with the short notations (21)ab5(21)n(a)n(b) and (21)a1b5(21)n(a)1n(b), where the Grass-
man degreen (a)50 for a51,2 andn (a)51 for a561

2. The supercommutator of two tensor
components is defined as

@Tab ,Tcd#s5TabTcd2~21!~a1b!~c1d!TcdTab .

Then, theT tensor components verify the following supercommutation relation that characterizes
the osp~2u2! super algebra
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@Tab ,Tcd#s5
1

i
$gbcTad2~21!cdgbdTac2~21!abgacTbd1~21!ab1cdgadTbc%,

where the metric tensorgab is defined asgab5(d i j ,2Cab). The contravariant tensorgab, such
that gabg

bc5gcbgba5da
c, writes gab5(d i j ,Cab)5gba5(21)abgba. Because theT tensor is

super-antisymmetric, its trace vanishes: Tr(T)[gabTab50. The contracted products are tensors
~nPN* !

~T2!ab5Tacg
cdTdb , ~Tn!ab5Tacg

cd~Tn21!db ,

and their traces are invariant,@Tr(Tn), Tab] s50.
The osp~2u2! superalgebra possesses two independent Casimir operators. Because of the iden-

tity Tr(T3)5 i Tr~T2!, these Casimir operators can be chosen as

I 252 1
2 ~T2! and I 45

1
2 ~T4!. ~7!

Note that an equivalent description of this superalgebra is given in Ref. 3.
Up to an equivalence, the finite-dimensional irreducible representations of the osp~2u2! su-

peralgebra can be characterized by two integer or half-integer non-negative numbers (p,q) and by
a parityl taking the value 0 or 1. For such representations, the eigenvaluesi 2 andi 4 of the Casimir
operatorsI 2 and I 4 are

i 25p224q2, ~8!

i 45~p224q2!~p214q211!. ~9!

IV. RELATIONS BETWEEN CASIMIR OPERATORS

The isomorphism of the two superalgebras sl~1u2! and osp~2u2! can be expressed by the
following relations between the eight generators of sl~1u2!, cf. Eq. ~3!, and the components of the
tensorTab :

B5
1

2
T12, Q5

i

4
~tC!abTab , ~10!

Va5
1

2i
~T1a1 iT2a!, Wa5

1

2i
~T1a2 iT2a!. ~11!

Then, it is easy to see that the parametersp and b satisfy the relationp52b and that both
quadratic operatorsI 2 andK2 are proportional:

I 2524K2 , ~12!

An algebraic relation between the other Casimir operatorsI 4 andK3 can be derived by elimination
of the parametersp(p52b) andq between the expressions~6! and~9! of the eigenvaluesk3 and
i 4 in a (p,q)-representation. The result is a relation that involves also the eigenvaluek2 of the
quadratic operator

k2i 4132k3
2116k2

314k2
250. ~13!

General theorems in the theory of algebra representations imply that such relations between
eigenvalues can be extended to relations between Casimir operators themselves. Therefore, the
Casimir operators must satisfy the following algebraic relation:
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K2I 4132K3
2116K2

314K2
250, ~14!

which is of sixth degree in the generators. Indeed, this relation can be verified directly on the
operators, using the definitions~4!, ~5!, and ~7! of Casimir operators and the relations~10! and
~11! between both sets of generators.
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Wavelet frames and admissibility in higher dimensions
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This paper is concerned with the relations between discrete and continuous wavelet
transforms onk-dimensional Euclidean space. We start with the construction of
continuous wavelet transforms with the help of square-integrable representations of
certain semidirect products, thereby generalizing results of Bernier and Taylor. We
then turn to frames of L2(Rk) and to the question, when the functions occurring in
a given frame are admissible for a given continuous wavelet transform. For certain
frames we give a characterization which generalizes a result of Daubechies to
higher dimensions. ©1996 American Institute of Physics.
@S0022-2488~96!01712-4#

I. INTRODUCTION

The usual approach to the construction of multivariate wavelets uses the notions of multireso-
lution analysis and frames. In this context, a wavelet is a functionf in L2(Rk), such that certain
translates and dilates off constitute a frame of the space L2(Rk) ~possibly along with translates
and dilates of other functions!. A different approach, introduced to wavelet theory by Grossmann,
Morlet and Paul,1 uses the theory of square-integrable representations of nonunimodular groups,
as it was developed independently by Duflo and Moore2 and Carey.3 Murenzi4 as well as Bernier
and Taylor5 followed this approach to construct higher-dimensional analogues of the one-
dimensional continuous wavelet transform. They considered the semidirect product ofRk with
certain matrix groups~which served as dilations! and constructed natural representations of these
groups on L2(Rk), which under suitable conditions turned out to be square-integrable. The general
theory then supplies a continuous wavelet transform on L2(Rk). Now, in the group-theoretical
setting, a wavelet is understood to be an admissible element in the sense that the positive-definite
function associated to it is square-integrable.

Hence, depending on whether one generalizes the discrete or the continuous wavelet transform
to higher dimensions, one arrives at different concepts, and the relations between these concepts
are not clear. In the one-dimensional case, it has been shown by Daubechies,6 that both notions are
equivalent. In the higher-dimensional case, while there has been work done concerning discreti-
zation of the continuous wavelet transforms associated to square-integrable representations5,7,8 to
our knowledge there has been no attempt to reverse the process, i.e. consider the question of
admissibility of the functions constituting a frame. This is mainly due to the greater practical use
of frames for implementation, whereas the continuous wavelet transform rather serves as a vehicle
for the construction of frames. Moreover, in higher dimensions the number of groups in question
increases~and, at the same time, the number of different notions of admissibility!, making it hard
to decide which is the natural choice. However, such notions as multiresolution analysis should
have some interpretation in terms of group representations, and the question of admissibility of the
functions spanning the multiresolution analysis suggests itself as a means of judging the relation-
ship between a given continuous and discrete wavelet transform.

In section II we establish some notation and preliminary results. In particular we introduce the
class of semidirect products and their quasiregular representations on L2(Rk), which we are going
to use for the construction of continuous wavelet transforms.

a!Electronic mail: fuehr@mathematik.tu-muenchen.de
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In sections III and IV we decide which of these quasiregular representations actually yield
continuous wavelet transforms, section III being devoted to irreducibility and section IV to square-
integrability.

Section V gives an admissibility criterion for the continuous wavelet transform which is
analogous to the well-known integral criterion for univariate wavelets.

Section VI gives two short examples.
In section VII we turn to frames and to the question of admissibility of the functions consti-

tuting a given frame. For certain frames we give a characterization which generalizes a result from
Ref. 6 to higher dimensions.

II. PRELIMINARIES AND NOTATION

As a natural generalization of the one-dimensional affine group and the wavelet-transform
associated to it, D. Bernier and K. Taylor suggest the following construction:5 Given the
k-dimensional vector groupRk and a closed subgroupH of GL(k,R), letG denote the semidirect
productRk

’H. ThenG acts onRk by translations~corresponding to the elements of the vector
group! and dilations~corresponding to elements ofH), which gives rise to a natural unitary
representationp of G on L2(Rk), defined as follows: For a given pair (x,h) P G and
f P L2(Rk), letp(x,h) f be the function defined almost everywhere by

p~x,h! f ~y!5udet~h!u21/2f ~h21~y2x!!.

We study this setup with a view to constructing continuous wavelet transforms, which means that
we are interested in the case wherep is square-integrable or at least has square-integrable sub-
representations. For the groupH:5R1

•SO(k), Murenzi showed that indeed we obtain a square-
integrable representation. The authors of Ref. 5 considered a whole family of groupsH which
yield square-integrable representations. However their results do not cover Murenzi’s group~at
least not fork.2), which suggested that there was room for generalizations.

Hence, in the first half of our paper, we examine the situation sketched above with focus on
the following questions:

~i! When doesp have square-integrable subrepresentations?
~ii ! Which are the admissible functions? Is there an admissibility criterion similar to that of the

one-dimensional affine case?

It will be seen that, if the action ofH on the dual spaceRk̂ satisfies a certain regularity
condition, these questions can be answered in a quite satisfactory way. On the other hand, if the
regularity condition fails, things seem to become all the more difficult.

Let us now fix some notation and collect the basic facts used in this paper.l denotes the
standard Lebesgue measure onRk ~or Rk̂). We will denote the left Haar measure on a locally
compact groupG by mG and its modular function byDG . In our case of the semidirect product
G5Rk

’H, we have Haar measure

dmG~x,h!5udet~h!u21dl~x!dmH~h!,

and the modular function onG is given by

DG~x,h!5DH~h!udet~h!u21.

We usè to denote both Plancherel and Fourier transform, the exact meaning being clear from the
context.~ denotes the inverse Plancherel transform. By a representation we mean a strongly
continuous unitary group representation.
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It is useful to calculate the action ofp on the Plancherel transform side. Proposition 1 from
Ref. 5 provides the following formula, for all (x,h) P G and allf P L2(Rk):

~p~x,h! f !`~g!5udet~h!u1/2e2p igx f̂ ~gh!, for almost all gPRk̂. ~1!

III. IRREDUCIBLE SUBREPRESENTATIONS OF THE QUASIREGULAR
REPRESENTATION

This section is devoted to finding all irreducible subrepresentations ofp, which can be done
quite systematically: We give a characterization of the invariant subspaces which is transparent
enough to identify the irreducible subspaces.

As was already observed in Ref. 5, the key to invariant subspaces lies in the dual action of
H on Rk̂. If one identifiesRk̂ as row vectors and defines the duality betweenRk and Rk̂ by
^x,j&5e2p i jx, then the dual action ofH is just matrix multiplication on the right. It will be seen
that a very promising class of subspaces is contained in the following definition:

Definition 1: Let U,Rk̂ be measurable. We letHU be the closed subspace of L2(Rk) con-
sisting of allf P L2(Rk), whose Plancherel transformsf̂ satisfy f̂ (j)50 for almost allj outside of
U.

The spaceHU is sometimes called thegeneralized Hardy space belonging to U. The follow-
ing theorem shows that generalized Hardy spaces are suitable candidates for invariant subspaces:

Theorem 2: Let U,Rk̂ be invariant under the action of H. Then the Hardy spaceHU is
G-invariant. On the other hand: For every G-invariant subspaceH there is an H-invariant
subset U of Rk̂ such thatH5HU .

Proof:We start by observing that everyG-invariant subspaceH is in particular translation-
invariant, and by general Fourier theory9 this entailsH5HU for some measurableU,Rk̂.
However, since changingU by any set of measure zero does not affectHU , U cannot be
expected to beH-invariant.

The first step towards finding an equivalent invariant set is the observation that, sinceHU is
translation-invariant,HU is G-invariant if it isH-invariant. By Eq.~1! from above we know that
for everyf P L2(Rk) and almost everyg P Rk̂,

~p~0, h! f !`~g!5udet~h!u1/2f̂ ~gh!.

As an immediate consequence: IfU is H-invariant, then so isHU ~with respect to a different
action of course!, which settles the first part of our theorem.

Now suppose thatHU isH-invariant. We then claim thatU is invariant up to sets of measure
zero, i.e. for allh P H we havel(UnUh)50, wheren denotes the symmetric difference.

For the proof, assume the contrary. Then there exist a setA,U having positive finite measure
andh P H such thatAh21ùU5B. Let f P L2(Rk) be the function having Plancherel transform
xA . Then, by Eq.~1!,

~p~0, h! f !`~j!5udet~h!u1/2xA~jh!5udet~h!u1/2xAh21~j!,

hence, sinceAh21 does not have measure zero,p(0, h) f¹HU .
Since Lebesgue measure onRk̂ is quasi-invariant under matrix multiplication~and hence

under the action ofH), H acts on the Boolean algebra of equivalence classes of measurable sets
modulo sets of measure zero. The equivalence class ofU is then invariant under the action on the
Boolean algebra, and hence the following theorem by Mackey provides a setV which is equiva-
lent toU andH-invariant, henceH5HU5HV as desired.
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The missing part of our proof is provided by the following theorem, which is Theorem 3 of
Ref. 10. The finiteness of the measure required in the theorem is no real obstacle~replacel by an
equivalent finite measurem).

Theorem 3 „Mackey…: Let S be a standard Borel G-space, where G is separable and locally
compact. Letm be a finite quasi-invariant measure defined on the Borel subsets of S. Let E be a
Borel set in S such that the corresponding Boolean-algebra element is invariant under G. Then E
differs by a null set from a Borel set which is invariant under G.

From now on letU be anH-invariant subset ofRk̂, and letpU be the restriction ofp to
HU . We can now easily classify the irreducible subrepresentations:

Corollary 4: Let U,Rk be measurable and H-invariant. ThenpU is irreducible iff the action
of H on U is ergodic.

Proof: By Theorem 2, any decomposition ofHU into nontrivial invariant subspaces corre-
sponds to a decomposition ofU into H-invariant subsets of positive measure and vice versa.

We now take a closer look at the dual action. The first thing to note is that,H being
s-compact, every orbit is measurable. We are particularly interested in the case where the
H-orbits inRk̂ arecountably separated; i.e. there exists a countable family (Un)nPN of measurable
H-invariant sets separating the orbits. This is the above-mentioned regularity condition. One
well-known consequence of this condition is that in this case ergodicity is essentially the same as
transitivity ~compare Ref. 11, 6.36!:

Proposition 5: Let G be a locally compact group acting ergodically on the locally compact
space X with regular Borel measurem. If the orbits of G are countably separated, then there is
an orbit O such thatm(X\O !50.

The following corollary summarizes the results of our search for irreducible subrepresenta-
tions:

Corollary 6: Let H be a closed subgroup of GL(k,R!, and let G andp be constructed as

above. Thenp has an irreducible subrepresentation iff H acts ergodically on a subset U,Rk̂ of
positive measure.

If the orbits are countably separated, thenp has an irreducible subrepresentation iff there
exists an H-orbit of positive measure.

IV. SQUARE-INTEGRABILITY OF pU

Now suppose we are given anH-invariant subsetU of positive measure on whichH acts
ergodically. Our next aim is to determine whenpU is square-integrable. Recall that this means that
for some nontrivialf ,g P HU , the matrix coefficient

Vf ,g :G{~x,h!°^ f ,p~x,h!g&,

is a square-integrable function onG. By the results of Duflo and Moore,2 the square-integrability
of Vf ,g for some nontrivialf implies square-integrability ofVf ,g for every f . g is then called
admissibleand the mapping

L2~Rk!{ f°Vf ,gPL2~G!

is a multiple of an isometry, the so-calledcontinuous wavelet-transform associated to the wavelet
g.

For the remainder of the paper, we restrict our attention to the case of countably separated
orbits. This simplifies matters in two ways: On the one hand, as was seen above, we can assume
U to be an orbit. In addition, according to the following well-known theorem by Glimm,12 nice
measure-theoretic behavior~i.e., countable separatedness! of the action is related to nice topologi-
cal behavior. The latter will also be useful in our further discussion.
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Theorem 7 „Glimm …: Let G be a locally compact second countable group, acting on a
locally compact space X. Then the following are equivalent:

~i! The G-orbits are countably separated.
~ii ! For every xPX the natural mapping G/Gx→Gx, where Gx,G is the stability subgroup of

x, is a homeomorphism.
~iii ! Every G-orbit is locally closed in X; or, equivalently, is locally compact in the relative

topology.

The following simple observation is a first step towards calculating the L2-norm ofVf ,g :
Lemma 8: ForgPU let pg :H→U, h°gh. Then, for any twog,dPU and any positive

measurable function g on U we have the following equality:

E
H

~g+pg!~h!dmH~h!5E
H

~g+pd!~h!dmH~h!.

Proof: SinceU is an orbit, there existsk P H such thatg5dk. Then we have

E
H

~g+pg!~h!dmH~h!5E
H
g~gh!dmH~h!5E

H
g~dkh!dmH~h!

5E
H
g~dh!dmH~h!5E

H
~g+pd!~h!dmH~h!.

Now we are able to give a formula for the L2-norm ofVf ,g :
Lemma 9: Let f,gPHU . Then, for anyg0 P U,

iVf ,giL2~G!5i f iL2~Rk!i ĝ+pg0
iL2~H ! .

Hence, g is admissible iff gˆ + pg0
P L2(H).

Proof: The following calculation is essentially the same as in Ref. 5. We include it for the
sake of completeness:

iVf ,giL2~G!
2

5E
Gu ^ f ,p~x,h!g&u 2dmG~x,h!5E

Gu ^ f̂ ,~p~x,h!g!`&u 2dmG~x,h!

5E
G
U E

Rk̂
f̂ ~g!Udet~h!U1/2e22p igxĝ̄~gh!dl~g!U2dmG~x,h!

5E
H
E
Rk
U E

Rk̂
f̂ ~g!e22p igxĝ̄~gh!dl~g!U2dl~x!dmH~h!

5E
H
E
RkuF ~fh!~x!u 2dl~x!dmH~h!, ~2!

where fh(g)5 f̂ (g) ĝ̄(gh), which is in L1(Rk̂), and F denotes the Fourier transform on
L1(Rk̂). After an application of Plancherel’s formula,~2! becomes
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E
H
E
Rk̂

ufh~g!u2dl~g!dmH~h!5E
H
E
Rk̂

u f̂ ~g!u2uĝ~gh!u2dl~g!dmH~h!

5E
Rk̂

u f̂ ~g!u2S E
H
Uĝ~gh!U2dmH~h! D dl~g!

5E
Rk

u f ~x!u2dl~x!E
H

uĝ~g0h!u2dmH~h!,

the last equation being due to Lemma 8. This proves the statement except for one technicality: By
referring toĝ + pg0

as an element of L2(G) we have implicitly assumed that changingĝ on a null
set results in changingĝ + pg0

on a null set. This assumption holds because by Glimm’s theorem we
can identifyU andH/Hg , and then Ref. 11, Theorem 2.64 yields that preimages of null sets are
again null sets.

Theorem 10: pU is square-integrable iff the stabilizers associated to the orbit U are
compact.

Proof:By the previous lemma,g P HU is admissible iffĝ + pg P L2(H), for some~and hence
every! g P U. Now, if the stabilizerHg of someg P U is compact andĝ is the characteristic
function of some compact set with positive measure, then so isĝ + pg . In particularg is admissible.

On the other hand, supposeg P HU is admissible and letg P U. uĝu2 can be approximated
from below by simple functions, hence there is a measurable subsetA,U having positive, finite
measure and such thatxA<cuĝu2, for some positive constantc. Sinceĝ + pg is square-integrable,
mH(pg

21(A)),`. Moreover, by Ref. 11, Theorem 2.64,mH(pg
21(A)).0. We have

Hgpg
21(A)5pg

21(A), hence, by the following lemma,Hg is compact.
The following can be viewed as a generalization of the well-known fact that a group having

finite Haar measure is compact,13 and indeed its proof consists of a slight modification of the proof
to that result. We include it for the sake of completeness.

Lemma 11: Let H be a locally compact group, H0,H a closed noncompact subgroup. Then,
for any measurable subset A of H satisfying either AH05A or H0A5A, we havemH(A)
P$0,̀ %.

Proof: Suppose thatAH05A, andmH(A)Þ0. By regularity ofm there is a compact subset
C,A having positive measure. Pick anyx0 P H0 and recursively

xn11PH0\S S ø
i51

n

C21Cxi D øS ø
i51

n

xiC
21CD D .

xn11 exists since H0 is not compact. Then, formÞn, we have CxnùCxm50” and
Cxn

21ùCxm
2150”. Now supposemH(A) is finite. Because ofønCxn,CH0,AH0,A we have

`.mH~A!> (
n51

`

mH~Cxn!5mH~C! (
n51

`

DH~xn!
21,

implying thatDH(xn)
21→0, asn tends to`. On the other hand, using the same argument for

Cxn
21 , we get

`.mH~C! (
n51

`

DH~xn!,

but the latter tends to infinity. HencemH(A)5`.
The proof for the caseH0A5A uses the same idea, the argument being simplified by left

invariance ofmH .
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Remark 12:At this point let us roughly sketch the case whereH acts ergodically but not
transitively on a setU of positive measure. Then, for everyg P HU , the map

U{g °E
H

uĝ~gh!u2dmH~h!

is measurable andH-invariant, hence, by ergodicity, it is constant almost everywhere. By the same
calculation as in the proof of Lemma 9 we see thatg is admissible if the constant is finite. We can
apply this criterion to show that for the construction of square-integrable representations discrete
groups of dilations are useless:

Let H,GL(R,k) be a discrete subgroup acting ergodically on some invariant subsetU of
Rk̂. ~For instance, take SL(2,Z), which acts ergodically onR2̂.14! We will show thatpU is not
square-integrable. Clearly it suffices to show that for every measurable subsetA,U having finite
positive measure the function (xA)

~ is not admissible. By the admissibility criterion from above,
this amounts to showing that the setgHùA is infinite for almost everyg P U. To see this, choose
a sequence (An)nPN of pairwise disjoint subsets ofA satisfyingl(An).0. Then, for any fixed
n, the setBn :5$g P U:gHùAn Þ 0”% isH-invariant and containsAn , hence, by ergodicity, it is a
conull set. Then the intersectionB of all Bn is a conull set, and for everyg P B the setgHùA is
infinite, theAn being disjoint.

Arguing as in the proof of Theorem 10, we see that also in the case ofH acting ergodically but
not transitively onU, the stabilizer of almost everyg P U must be compact. But as the example of
SL(2,Z) shows, the compactness is no longer sufficient: It is easily seen that the stabilizer ofg

P R2̂ is trivial whenever the coordinates ofg have irrational quotient, i.e. the stabilizer is trivial
a.e.

Summarizing the results of our search for square-integrable representations, we could say that
the task lies in finding a groupH ‘‘having just the right size:’’ It should be ‘‘big enough’’ to yield
orbits of positive measure and ‘‘small enough’’ to have compact stabilizers.

V. THE ADMISSIBILITY CONDITION FOR pU

Our next aim is to find a more concrete admissibility criterion than the one given in the last
section. In particular, we would like to be able to replace integration onH by integration onU, as
has been done previously.4,5 It will be seen that, due to the compactness of the stabilizers, this is
indeed possible in much the same way as in the paper of Bernier and Taylor.5 Also, the formal
dimension operator associated topU as in Ref. 2 can easily be calculated.

Theorem 13:Fix gPU. Define a functionC on U by

C~gh!:5DH~h!udet~h!u21.

ThenC is a well-defined continuous function on U and for every gP HU :

g is admissible⇔E
U

uĝ~j!u2C~j!dl~j!,`.

Proof: For a measurable subsetA,U, let m̃(A):5mH(pg
21(A)). This defines a regular Borel

measurem̃ on U, as is readily seen using the compactness of the stabilizers. Moreover,m̃ is
strongly quasi-invariant under the action ofH. To be more precise, if the translatem̃h of m̃ is
defined bym̃h(A):5m̃(Ah21), the Radon–Nikodym-derivative is given by

dm̃h

dm̃
~g!5DH~h!.
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On the other hand, the measurel on U is strongly quasi-invariant with Radon–Nikodym-
derivative

dlh

dl
~g!5udet~h!u.

Note that, the operation being on the right, in both cases the translation of the measure byh
consists of multiplication of the argument byh21. By Theorem 2.59 from Ref. 11,l arises from
a so-calledrho-function on H, i.e. there is a functionrl on H such that

E
U
f ~j!dl~j!5E

H
f ~gh21!rl~h!dmH~h!,

for every positive measurable functionf onU. Here we have once again used the fact thatU and
H/Hg are homeomorphic. Analogously, letrm̃ be ther-function belonging tom̃. By Theorem
2.56 from Ref. 11, we can calculate ther-functions from the Radon–Nikodym-derivatives, ob-
taining the equations:

rm̃~h!5rm̃~1!DH~h!,

rl~h!5rl~1!udet~h!u.

The Radon–Nikodym-derivative ofm̃ with respect tol can then be calculated as the quotient of
the r-functions:

dm̃

dl
~gh!5

rm̃~h!

rl~h!
5c0C~gh!,

with c05 rm̃(1)/rl(1). In particular:C is well-defined and continuous, since ther-functions are
continuous. Finally, we have forg P HU

E
H

u~ ĝ+pg!~h!u2dmH~h!

5E
U

uĝ~j!u2dm̃~j!

5E
U

uĝ~j!u2
dm̃

dl
~j!dl~j!5E

U
uĝ~j!u2c0C~j!dl~j!,

which, along with Lemma 9, proves the admissibility criterion.
Remark 14:Just as in the cases considered in Ref. 5,C allows a concrete interpretation of the

~usually unbounded! formal dimension operatorK associated topU as in Ref. 2: IfT denotes the
densely defined operator on L2(U) obtained by pointwise multiplication with (c0C)21 (c0 as
defined in the proof!, thenK5P21TP , whereP is the Plancherel transform.

VI. EXAMPLES

In this section we apply our results to two groups which we will need for further discussion.
Example 15 [Bernier/Taylor]:Let H,GL(k,R) be the group consisting of diagonal matrices.

ThenH acts freely on the orbitU5$(j1 ,j2 ,...,jn):)j iÞ0%5(1,1,...,1)H, whose complement
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has measure zero. Hencep is a square-integrable representation on L2(Rk). H is unimodular, and
for any j P U, the group elementh mapping (1,1,...,1) toj has determinantj1j2•••jn . Hence
the admissibility criterion is given by:

g is admissible⇔E
U

uĝ~j!u2

uj1j2 . . . jnu
dl~j!,`.

Example 16 [Murenzi]:Let H:5R1
•SO(k). ThenRk̂\$0% and $0% are the only two orbits,

hencep is irreducible. Moreover, the stabilizer of (1,0,...,0) is isomorphic toSO(k-1), hence
compact, whence we conclude thatp is square-integrable. AgainH is unimodular. For a given
j P Rk̂\$0%, an elementh P H mapping (1,0,...,0) to j is obtained by rotating (1,0,...,0) to
j/uju and then multiplying byuju. Hence,udet(h)u5ujuk, which leads to the following admissibil-
ity criterion:

g is admissible⇔E
U

uĝ~j!u2

ujuk
dl~j!,`.

VII. WAVELET FRAMES AND ADMISSIBILITY

We now turn to frames and the question, whether for a given square-integrable representation
pU as constructed above, the functions involved are admissible. In this paper we will only con-
sider frames of a certain kind, as they arise from multiresolution analysis. To be more precise, we
study frames obtained in the following way:

Definition 17: Letc1 ,...,cN P HU , a0.0 be such that a0 P H ~identifying a0 with a0• id).
We say that(c1 ,...,cN ;a0 ;Z

k) determines a frame ofHU if the set

$pU~a0
mn,a0

m!c i :mPZ,nPZk, 1< i<N%

constitutes a frame ofHU .
The condition that the dilationa0 be inH is natural, since we want to interpret the dilation as

an element of the groupG. The following example shows that this condition alone does not
guarantee that the functions constituting the frame are admissible:

Example 18:Let f be a continuous scaling function of a dyadic multiresolution which is not
a wavelet, i.e. not admissible with respect to the affine group. In fact, any scaling function with
compact support and nonzero integral would do~for instance one of Daubechies’s scaling func-
tions!, by 1.1.5 of Ref. 15. Letc be any wavelet belonging tof. Then taking the tensor products
yields a dyadic multiresolution of L2(R2), which means that (c ^ f,f ^ c,c ^ c;2;Z2) deter-
mines a frame in L2(R2) ~see Ref. 15, 2.2.16!. LetH,GL(2,R) be the two-dimensional diagonal
group. Then 2 is an element ofH, hence it makes sense to consider the question of admissibility
w.r.t. the quasiregular representation. In order to apply the admissibility criterion from Example
15, we calculate

E
R2̂

u~c ^ f! ˆ ~j!u2

uj1j2u
dl~j1 ,j2!5E

R2̂

uĉ~j1!f̂~j2!u2

uj1j2u
dl~j1 ,j2!

5E
R̂

uĉ~j!u2

uju
dl~j!E

R̂

uf̂~j!u2

uju
dl~j!.

Sincef is not admissible, the latter integral diverges, hencec ^ f, as well asf ^ c, is not
admissible.
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From now on letH0 denote the subgroup ofH generated bya0. Sincea0 is in the center of
H, H0 is a normal subgroup. We normalize the Haar measuremH/H0

such that Weil’s formula
holds ~see Ref. 11, 2.65!, i.e. for all positive measurablef we have

E
H
f ~x!dmH~x!5E

H/H0
(
nPZ

f ~xa0
m!dmH/H0

~xH0!.

The remainder of this paper will be devoted to proving the next theorem, which links the
L2-norms of certain matrix coefficients with the measuremH/H0

and thus leads to a compactness
condition onH/H0. It is the analogue of Daubechies’s result for univariate wavelets,6 and the
proof is modelled after the proof of that statement.

Theorem 19:Suppose that(c1 ,...,cN ;a0 ;Z
k) determines a frame ofHU , with a0 P H. Then

all c i are admissible iffmH/H0
is finite, i.e. iff H /H0 is compact.

To be more precise: Iff P HU is normed and admissible, and0,A,B,` are lower and
upper frame bounds (respectively), the following inequalities hold:

AmH/H0
~H/H0!<(

i51

n

iVf,c i
iL2~G!
2 <BmH/H0

~H/H0!.

Remark 20:Sincea0 is in the kernel ofDH , the compactness criterion of Theorem 19 implies
thatH is unimodular.

Remark 21:Applying Theorem 19 to the tensor wavelets of example 18 and Murenzi’s group
H:5R1

•SO(k), we see that sinceH/H0 is compact, the tensor wavelets are admissible w.r.t. the
quasiregular representation ofRk

’H. ~HereH0 denotes the subgroup generated by 2.! In fact any
frame arising from a dyadic multiresolution analysis consists of admissible vectors.

On the other hand, since the quotient of the diagonal group byH0 is noncompact, we see that
every wavelet frame obtained from a dyadic multiresolution contains at least one function which
is not admissible w.r.t. the quasiregular representation associated to the diagonal group.

The proof of the theorem uses a family of auxiliary functionstl onG. We start by construct-
ing suitable functions onRk.

Lemma 22: Let fP Cc
`(R), and let fk :R

k→R be the k-fold tensor product of f. Suppose that
f is positive and hasL1-norm1.Then, for every mP N0 , there exists a constant cm,k such that for
every positive real number a and every yP Rk, we have

Ua2k2 (
nPZk

f k~y1an!U<amcm,k .

Proof:We will only need thec0,k later on, but the stronger result has an easier inductive proof.
We start withk51. We can treat the casesa>1 anda,1 separately and note that the statement
is obvious for a>1. For a given 0,a,1 and yPR pick NPN such that
supp(f ),@y2aN,y1aN#. In particular, forl P N, we havef (2l12)(y6aN)50, hence, by Euler–
MacLaurin’s formula:16

(
n52`

`

f ~y1an!5 (
n52N

N

f ~y1an!5a21E
y2aN

y1aN

f ~ t !dl~ t !1a2l11
B2l12

~2l12!!
f ~2l12!~x!

5a211a2l11
B2l12

~2l12!!
f ~2l12!~x!,

for somex P supp(f ), with Bn being thenth Bernoulli number. Hence,
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Ua212 (
n52`

`

f ~y1an!U<a2l11
uB2l12u

~2l12!!
supxPsupp~ f !u f ~2l12!~x!u,

which proves the statement for all oddm. Sincea,1, the statement for the evenm follows
immediately.

Now suppose thecm,k are given fork>1 and allm P N0. Again we can restrict our attention
to the casea,1. Lettingỹ5(y2 ,...,yk11) P Rk, we calculate:

Ua2k212 (
nPZk11

f k11~an1y!U5Ua21a2k2S (
nPZ

f ~an1y1!D S (
lPZk

f k~al1 ỹ!D U
<Ua212 (

nPZ
f ~an1y1!Ua2k

1Ua2k2 (
lPZk

f k~al1 ỹ!UU(
nPZ

f ~an1y1!U.
Applying the induction hypothesis, we see that the first term is less or equal toamcm1k,1 and the
second term is less or equal toam11cm11,k(a

211c0,1). Hence, sincea,1, the sum can be
estimated byam(cm11,k1c0,11cm1k,1).

From now on fixf and f k as in Lemma 22. LetC,H be a measurable fundamental domain
for the subgroupH0, i.e. CH05H and Cùa0

mC50”, for all 0ÞmPZ.17 Define, for l.0, a
function tl onG by

tl~x,h!:5xC~h! f k~lDG~x,h!1/kx!.

The next two lemmas collect the properties oftl needed for the proof.
Lemma 23: tl is a positive measurable function with

E
G
tl~x,h!dmG~x,h!5l2kmH~C!.

Proof: Straightforward computation, observing thatmH(C) 5 mH(C
21) by Weil’s formula,

bothC andC21 being fundamental domains.
Lemma 24:For every (x,h) P G, we have

Ul2kDG~x,h!212 (
mPZ

(
nPZk

tl~~a0
mn,a0

m!•~x,h!!U<c0,k .

Proof: The proof consists of rather straightforward calculations:

(
mPZ

(
nPZk

tl~~a0
mn,a0

m!•~x,h!!5 (
mPZ

(
nPZk

tl~~a0
m~n1x!,a0

mh!!

5 (
mPZ

(
nPZk

xC~a0
mh! f k~lDG~a0

m~n1x!,a0
mh!1/ka0

m~n1x!!

5 (
mPZ

(
nPZk

xC~a0
mh! f k~lDH~a0

mh!1/kudet~a0
mh!u21/ka0

m~n1x!!
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5 (
mPZ

(
nPZk

xC~a0
mh! f k~lDH~h!1/kudet~h!u21/k~n1x!!

5S (
mPZ

xC~a0
mh!D S (

nPZk
f k~lDH~h!1/kudet~h!u21/k~n1x!!D

5S (
mPZ

xC~a0
mh!D S (

nPZk
f k~lDG~x,h!1/k~n1x!!D .

By choice ofC, the first factor equals one, and using Lemma 22, we can estimate the second factor
by

U (
nPZk

f k~lDG~x,h!1/k~n1x!!2l2kDG~x,h!21U<c0,k .

Proof of Theorem 19:We only prove the inequalities, starting with the second one. Let
A,B be the frame bounds and letf be a normed admissible vector. By Weil’s formula, we have
mH(C)5mH/H0

(H/H0), hence, by Lemma 23,

l2kBmH/H0
~H/H0!5E

G
Btl~x,h!dmG~x,h!5E

G
tl~x,h!BipU~x,h!fi2dmG~x,h!.

SinceB is an upper bound of the frame, we can estimate the last integral by

E
G
tl~x,h!BipU~x,h!fi2dmG~x,h!>E

G
tl~x,h! (

i ,m,n
u^pU~x,h!f,pU~a0

mn,a0
m!c i&u2dmG~x,h!

5 (
i ,m,n

E
G
tl~x,h!u^pU~~a0

mn,a0
m!21

•~x,h!!f,

3c i&u2dmG~x,h!

5 (
i ,m,n

E
G
tl~~a0

mn,a0
m!•~x,h!!u^pU~x,h!f,c i&u2dmG~x,h!

5(
i
E
G
(
m,n

tl~~a0
mn,a0

m!•~x,h!!

3u^pU~x,h!f,c i&u2dmG~x,h!.

Note that all functions involved are positive, hence Fubini’s Theorem is applicable. Now we can
apply Lemma 24:

(
i
E
G
(
m,n

tl~~a0
mn,a0

m!•~x,h!!u^pU~x,h!f,c i&u2dmG~x,h!

>(
i
E
G

~l2kDG~x,h!212c0,k!u^pU~x,h!f,c i&u2dmG~x,h!
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5(
i

S 2c0,kIVc i ,f
I
L2~G!

2

1l2kE
G

DG~x,h!21u^pU~x,h!f,c i&u2dmG~x,h! D
5(

i
S 2c0,kIVc i ,f

I
L2~G!

2

1l2kE
G

u^pU~~x,h!21!f,c i&u2dmG~x,h! D
5(

i
~2c0,kiVc i ,f

iL2~G!
2

1l2kiVf,c i
iL2~G!
2

!.

We have thus derived the inequality

BmH/H0
~H/H0!>(

i
iVf,c i

iL2~G!
2

2lkc0,k(
i

iVc i ,f
iL2~G!
2 .

Sincef is admissible,( i iVc i ,f
iL2(G)
2 is finite. Hence, lettingl tend to zero, we obtain the desired

inequality.
The first inequality is obtained in quite the same fashion: Using the lower inequality of the

frame property, we arrive at

AmH/H0
~H/H0!<(

i
iVf,c i

iL2~G!
2

1lkc0,k(
i

iVc i ,f
iL2~G!
2 ,

and lettingl tend to zero gives the desired result.

VIII. CONCLUDING REMARKS

The usual procedure to construct discrete wavelet transforms from square-integrable
representations5,7,8consists of finding a certain discrete subset of the underlying group and certain
admissible functionsc1 ,...,cn . The discrete wavelet transform of an elementf is then obtained
by sampling the continuous wavelet transformsVf ,c i

on the discrete subset. The difficulty lies in
choosing the sampling set and the admissible functions such that, by letting the subset of the group
act on the admissible functions, we obtain a frame. Theorem 19 considers this situation in reverse
perspective: Here a sampling set

$~a0
mn,a0

m!:mPZ,nPZk,1< i<N%

and a set of functionsc1 ,...,cn yielding a frame~under the action of the sampling set! are given,
and the question of admissibility is decided by looking at the relationship between the sampling
set and the whole group. It would be desirable to find ways to incorporate both approaches into
one result relating sampling sets, frames and admissibility.

A more concrete generalization of Theorem 19 would consist of considering other lattices
thanZk and~finite sets of! nonscalar dilationsa0. While taking a different lattice causes no serious
problems, the use of a nonscalar dilation has graver consequences: In the first place, the choice of
the auxiliary functionstl requires more care. Moreover, sincea0 need not be central any more,
H/^a0& might not even carry an invariant measure, hence we cannot expect to obtain a compact-
ness~or at least finite measure! condition onH/^a0&.

While this paper is concerned only with wavelet transforms arising from representations
which are square-integrable in the strict sense, there are generalizations which yield similar trans-
forms for a wider class of representations.18,19The notion used here is that of square-integrability
on homogeneous spaces. It may be expected that this approach allows the construction of wavelet
transforms under somewhat weaker requirements than the compactness condition of Theorem 10.
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An algebra arising from 2-state chiral Potts model
and Sklyanin algebra
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We construct aC-algebraC associated with anR-matrix of the 2-state chiral Potts
model. This algebra will be shown to coincide with the Sklyanin algebra at an
8-torsion point and, in the self-dual case, withUq(sl2) at the fourth root of unity.
© 1996 American Institute of Physics.@S0022-2488~96!02212-8#

I. INTRODUCTION

In this paper we will construct an algebra associated with anR-matrix of the 2-state chiral
Potts model by so-called RLL formalism~Theorem 1!, and reveal that our algebraC coincides
with the Sklyanin algebraAh ~Ref. 1! whenh is an 8-torsion point on an elliptic curve. Moreover,
we will show that the quantum groupUq(sl2) when q

451 is derived from our algebra in the
self-dual case.

Our R-matrix here is defined according to the discussion of Gaudin.2 It is described by the
quadratic formula of the Boltzmann weights of the 2-state chiral Potts model so that it is different
from those in Refs. 3 or 4.

Let us recall the definition of the Sklyanin algebraAh : Let sa ~a50,...,3! be the Pauli
matrices. In Ref. 1, Sklyanin defined the well-known Sklyanin algebraAh as aC-algebra gener-
ated by$S0 ,S1 ,S2 ,S3% with the fundamental relation

R~u2v !L1~u!L2~v !5L2~v !L1~u!R~u2v ! ~u,vPC!. ~1!

HereR(u) is Baxter’s ellipticR-matrix which has the form

R~u!5s0^ s01 (
a51

3

wa~u!sa ^ sa ~2!

and theL-operatorL(u) is defined by

L~u!5s0S01 (
a51

3

wa~u!saSaPEnd~C2! ^Ah , ~3!

where the coefficientswa(u) are expressed by the elliptic theta functions~cf. Ref. 5!. Then it is
seen that~1! is equivalent to the following commutation relations:

@S0 ,Sa#25A21Jbg@Sb ,Sg#1 , @Sa ,Sb#25A21@S0 ,Sg#1 . ~4!

Here ~a,b,g! are cyclic permutations of~1,2,3!, andJab are the structure constants described by

J125k82
sn2

cn2dn2
~h,k!,

~5!

J235k2
sn2cn2

dn2
~h,k!, J3152

sn2dn2

cn2
~h,k!.

0022-2488/96/37(12)/6367/8/$10.00
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Lettingh5K/2 ~i.e.,h is an 8-torsion point!, we will show thatAK/2 coincides with our quantum
algebraC . Furthermore, we will show that our algebraC in the self-dual case givesUq(sl2) at the
fourth root of unity.

This paper is organized as follows: In Sec. II we summarize the results of Au-Yang and Perk,6

and introduce anR-matrix by combining two Boltzmann weights of theN-state chiral Potts model
~cf. Ref. 2!. In Sec. III we construct a quantum algebraC which comes from the 2-state chiral
Potts model~Theorem 1!, and give the proof by using the addition theorems for the theta func-
tions. Further, the link between the Sklyanin algebra and our algebraC will be clarified. In Sec.
IV we give another proof of Theorem 1 by using the star-triangle relation that holds among the
Boltzmann weights. Moreover, our quantum algebraC in the self-dual case will be shown to
coincide withUq(sl2) whenq 5 A21. Finally, in Sec. V we mention the significance of extending
our result to theN-state, i.e., the higher-genus case.

II. N-STATE CHIRAL POTTS MODEL

In Ref. 6, Au-Yang and Perk introduced the Boltzmann weightsWpq(n) andW̄pq(n) of the
N-state chiral Potts model through

Wpq~n!

Wpq~0!
5)

j51

n S dpbq2apcqv
j

bpdq2cpaqv
j D ,

~6!
W̄pq~n!

W̄pq~0!
5)

j51

n S vapdq2dpaqv
j

cpbq2bpcqv
j D ,

wherev:5e2pA21/N. The parameters (ap ,bp ,cp ,dp) and (aq ,bq ,cq ,dq) denote points on an
algebraic curve

aN1k8bN5kdN, k8aN1bN5kcN, ~k21k8251!, ~7!

which has the genusg5N2(N22)11. Then these Boltzmann weights satisfy the periodic con-
dition

Wpq~n1N!5Wpq~n!, W̄pq~n1N!5W̄pq~n!

and the star–triangle relation~STR!

(
l51

N

W̄qr~ j2 l !Wpr~ i2 l !W̄pq~ l2k!5RpqrWpq~ i2 j !W̄pr~ j2k!Wqr~ i2k!. ~8!

Here the statesi , j , andk belong toZN , andRpqr is a constant that is independent of these states.
Furthermore, the constantRpqr has the following form~Matveev and Smirnov7!:

Rpqr
N 5

f pq
N f qr

N

f pr
N ,

~9!

f pq :5F )
m51

N S (
k51

N

vmkW̄pq~k!D Y )
m51

N

Wpq~m!G1/N.
Next we introduce anR-matrix associated with theN-state chiral Potts model: Following the

discussion of Gaudin in the self-dual case,2 we put a matrixR(p,q)PEnd~V^2! ~V:5CN! by
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R~p,q!:5 (
i , j ,k,lPZN

Ri j
kl~p,q!Eik^Ejl ,

~10!
Ri j
kl~p,q!:5W̄pq~ j2k!Wpq~ i1 j !d i1 j ,k1 l .

It is easily proved thatR(p,q) satisfies the Yang–Baxter equation~YBE!

R12~p,q!R13~p,r !R23~q,r !5R23~q,r !R13~p,r !R12~p,q! on V^3. ~11!

Now we rewrite~10! in a more convenient form. IntroducingX andYPEnd(V) through

X:5S 1 v

�

vN21

D , Y:5S 0 1

� �

0 1

1 0

D ,
we see that

R~p,q!5
1

N (
a,a8,b,b8PZN

$v~a1b!~a82b8!Ŵpq~b!W̄pq~b8!~X2a22bY2a8^XaYa8!%, ~12!

whereŴpq is the Fourier transform

Ŵpq~m!5
1

N (
kPZN

vmkWpq~k!.

III. QUANTUM ALGEBRA ARISING FROM 2-STATE CHIRAL POTTS MODEL

In analogy with the construction of the Sklyanin algebra,1 let us define theL-operatorL(p,q)
for our R-matrix ~12! by

L~p,q!:5
1

N (
a,a8,b,b8PZN

$v~a1b!~a82b8!Ŵpq~b!W̄pq~b8!X2a22bY2a8Saa8%, ~13!

where$Saa8%0<a,a8<N21 are temporarily unknown quantities. Then we impose on theL-operator
~13! a relation

R~p,q!L1~p,r !L2~q,r !5L2~q,r !L1~p,r !R~p,q! for all p,q, and r , ~14!

whereL15L^ I andL25I ^L.
We will consider only the 2-state case in the following. In this case the genus of the curve~7!

is equal to 1, namely, the curve is elliptic. The parameters (ap ,bp ,cp ,dp) can be expressed by
Jacobi’s theta functions6

~ap ,bp ,cp ,dp!5~2H~p!,H1~p!,U1~p!,U~p!!. ~15!

We obtain the following theorem.
Theorem 1: In the case of N52, (14) is equivalent to the following commutation relations for

the variables$S00,S01,S10,S11%:
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@S00,S01#25@S10,S11#1 ,
@S00,S10#252@S01,S11#1 ,

@S00,S11#25
12k8

11k8
@S01,S10#1 ,

@S00,S01#15@S10,S11#2 ,
@S00,S10#152@S01,S11#2 ,
@S00,S11#152@S01,S10#2 .

~16!

Proof: Here we will derive the third formula in~16! below. In the 2-state case~12! and~13!
have the following forms:

R~p,q!5S W̄pq~0!Wpq~0! W̄pq~1!Wpq~0!

W̄pq~1!Wpq~1! W̄pq~0!Wpq~1!

W̄pq~0!Wpq~1! W̄pq~1!Wpq~1!

W̄pq~1!Wpq~0! W̄pq~0!Wpq~0!

D , ~17!

L~p,q!5
1

2 S W̄pq~0!Wpq~0!~S001S10!

1W̄pq~1!Wpq~1!~S002S10!

W̄pq~0!Wpq~1!~S011S11!

1W̄pq~1!Wpq~0!~S012S11!

W̄pq~0!Wpq~1!~S012S11!

1W̄pq~1!Wpq~0!~S011S11!

W̄pq~0!Wpq~0!~S002S10!

1W̄pq~1!Wpq~1!~S001S10!

D . ~18!

Here the Boltzmann weights are expressed by

Wpq~1!

Wpq~0!
5
dpbq1apcq

bpdq1cpaq
,

W̄pq~1!

W̄pq~0!
5

2apdq1dpaq

cpbq1bpcq
, ~19!

where

a21k8b25kd2, k8a21b25kc2, ~k21k8251!. ~20!

Substituting ~17! and ~18! in ~14!, we see that there exists the following relation between
[S00,S11]2 and [S01,S10]1 :

Apqr@S00,S11#21Bpqr@S01,S10#150, ~21!

where

Apqr :5~2W̄pq~0!Wpq~1!1W̄pq~1!Wpq~0!!

3~W̄pr~0!Wpr~0!1W̄pr~1!Wpr~1!!~2W̄qr~0!Wqr~1!1W̄qr~1!Wqr~0!!

1~W̄pq~0!Wpq~0!1W̄pq~1!Wpq~1!!

3~2W̄pr~0!Wpr~1!1W̄pr~1!Wpr~0!!~W̄qr~0!Wqr~0!1W̄qr~1!Wqr~1!!,

Bpqr :5~W̄pq~0!Wpq~1!1W̄pq~1!Wpq~0!!

3~W̄pr~0!Wpr~0!2W̄pr~1!Wpr~1!!~W̄qr~0!Wqr~1!1W̄qr~1!Wqr~0!!

2~W̄pq~0!Wpq~0!2W̄pq~1!Wpq~1!!

3~W̄pr~0!Wpr~1!1W̄pr~1!Wpr~0!!~W̄qr~0!Wqr~0!2W̄qr~1!Wqr~1!!.

~22!

Using the parametrizations~15! and the identity

U~u!H~v !1H~u!U~v !5

2HS u1v
2 DUS u1v

2 DH1S u2v
2 DU1S u2v

2 D
H1~0!U1~0!

in Ref. 8, we obtain the following lemma.
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Lemma 1: We can rewrite (19) in the form

Wpq~1!

Wpq~0!
52

HS p2q

2
2
K

2
D US p2q

2
2
K

2
D

H1S p2q

2
2
K

2
D U1S p2q

2
2
K

2
D ,

W̄pq~1!

W̄pq~0!
5

HS p2q

2
D US p2q

2
D

H1S p2q

2
D U1S p2q

2
D ,

~23!

where K is the complete elliptic integral of the first kind.
Substituting~23! in ~22! and using the identity

H~u!U~u!H1~v !U1~v !2H~v !U~v !H1~u!U1~u!5H~u2v !U~u1v !H1~0!U1~0!

in Ref. 8, we have

Bpqr

Apqr
5H HSK2 D

USK2 D J
4

S~u,v !

T~u,v !
. ~24!

Here

S~u,v !:5US u2
K

2 DU1S u1v2
K

2 DUS v2
K

2 DU1SK2 D
2U1S u2

K

2 DUS u1v2
K

2 DU1S v2
K

2 DUSK2 D ,
T~u,v !:5HS u2

K

2 DH1S u1v2
K

2 DHS v2
K

2 DH1SK2 D
1H1S u2

K

2 DHS u1v2
K

2 DH1S v2
K

2 DHSK2 D ,
andu:5p2q, v:5q2r . In ~24!, making use of the addition theorem for the theta functions

q00~x!q00~y!q01~u!q01~v !2q01~x!q01~y!q00~u!q00~v !

1q10~x!q10~y!q11~u!q11~v !2q11~x!q11~y!q10~u!q10~v !

522q11S x1y1u1v
2 Dq11S x1y2u2v

2 Dq10S x2y1u2v
2 Dq10S x2y2u1v

2 D
in Ref. 9 and the identities

H~u!

U~u!
5k1/2 sn~u!, snSK2 D5~11k8!21/2,
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we conclude that~21! is equivalent to

@S00,S11#25
12k8

11k8
@S01,S10#1 .

Other relations can be proved in a similar way.
Definition 1: The quantum algebraC is defined to be aC-algebra on the generators

$S00,S01,S10,S11% subject to the relations (16).
We observe that our quantum algebraC is a special case of the Sklyanin algebraAh~4!.

Actually, substitutingh5K/2 in the structure constantsJab that are given by~5!, we have

~J12,J23,J31!5S 1, 12k8

11k8
,21D .

Therefore, we obtain the following proposition.
Proposition 1: The quantum algebraC coincides with the Sklyanin algebraAh whenh is an

8-torsion point~h5K/2! by replacing(S00,A21S11,S01,S10) by (S0 ,S1 ,S2 ,S3).
Remark 1: We observe the meaning of the 8-torsion point from the viewpoint of the R-matrix.

Making use of Lemma 1, we obtain the following relation between our R-matrix (17) and that of
the 8-vertex model:

2

HSK2 DUSK2 DH1~0!U1~0!

R22state chiral Potts5P21R8-vertex at the 8-torsion pointP,

P:5S 1 1

1

21

D .
Further it is also known that the 8-vertex model at the 8-torsion point corresponds to the double
Ising model.8

IV. ANOTHER DERIVATION OF THE QUANTUM ALGEBRA

We will prove Theorem 1 in another way, which is to use the star–triangle relation~8!. Let us
recall the relations~21! and ~22! as mentioned in Sec. III. We can read~22! as

Apqr5 (
i , j50

1 H ~21! i1 jWpq~ j !W̄pr~ i1 j21!Wqr~ i !(
k50

1

W̄pq~ i1k!Wpr~k!W̄qr~ j2k!J
1 (

i , j50

1 HWpq~ j11!W̄pr~ i1 j !Wqr~ i11!(
k50

1

~21!kW̄pq~ i1k!Wpr~k!W̄qr~ j2k!J ,
Bpqr5 (

i , j50

1 H ~21! i1 j21Wpq~ j !W̄pr~ i1 j21!Wqr~ i !(
k50

1

W̄pq~ i1k!Wpr~k!W̄qr~ j2k!J
1 (

i , j50

1 HWpq~ j11!W̄pr~ i1 j !Wqr~ i11!(
k50

1

~21!kW̄pq~ i1k!Wpr~k!W̄qr~ j2k!J .
~25!
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Deforming ~25! by using the STR in this case

W̄pq~0!Wpr~0!W̄qr~0!1W̄pq~1!Wpr~1!W̄qr~1!5RpqrWpq~0!W̄pr~0!Wqr~0!,

W̄pq~1!Wpr~0!W̄qr~0!1W̄pq~0!Wpr~1!W̄qr~1!5RpqrWpq~0!W̄pr~1!Wqr~1!,

W̄pq~0!Wpr~0!W̄qr~1!1W̄pq~1!Wpr~1!W̄qr~0!5RpqrWpq~1!W̄pr~1!Wqr~0!,

W̄pq~1!Wpr~0!W̄qr~1!1W̄pq~0!Wpr~1!W̄qr~0!5RpqrWpq~1!W̄pr~0!Wqr~1!,

we have

Apqr5
1

Rpqr
$Rpqr

2 ~Wpq~0!22Wpq~1!2!~W̄pr~1!W̄pr~0!!~Wqr~0!22Wqr~1!2!

14~W̄pq~1!W̄pq~0!!~Wpr~0!22Wpr~1!2!~W̄qr~1!W̄qr~0!!%,
~26!

Bpqr5
21

Rpqr
$Rpqr

2 ~Wpq~0!22Wpq~1!2!~W̄pr~1!W̄pr~0!!~Wqr~0!22Wqr~1!2!

24~W̄pq~1!W̄pq~0!!~Wpr~0!22Wpr~1!2!~W̄qr~1!W̄qr~0!!%.

Here the constantRpqr ~9! has the form

Rpqr
2 5

~W̄pq~0!22W̄pq~1!2!~Wpr~1!Wpr~0!!~W̄qr~0!22W̄qr~1!2!

~Wpq~1!Wpq~0!!~W̄pr~0!22W̄pr~1!2!~Wqr~1!Wqr~0!!
. ~27!

Substituting~27! and~19! in ~26!, we can expressApqr andBpqr as polynomials of the parameters
(a,b,c,d). Actually, letting

Upq :5$~cpbq1bpcq!
22~2apdq1dpaq!

2%$~bpdq1cpaq!
22~dpbq1apcq!

2%,
~28!

Vpq :5~cpbq1bpcq!~2apdq1dpaq!~bpdq1cpaq!~dpbq1apcq!,

we obtain

Bpqr

Apqr
52

UpqVprUqr24VpqUprVqr

UpqVprUqr14VpqUprVqr
.

Moreover, using relations~20! in ~28!, we have

Vpq5
k8

4
Upq .

Therefore, we conclude that relation~21! is equivalent to

@S00,S11#25
12k8

11k8
@S01,S10#1 .

The proofs of other relations are likewise.
Finally, we observe that our quantum algebraC in the self-dual case coincides with the

quantum groupUq(sl2) at the fourth root of unity. The self-dual case means that the Boltzmann
weights satisfy the relationWC pq(n)5Wpq(n), which is realized by the limit
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k8→1, c5d→1.

In this case the third formula of the defining relations~16! is modified to

@S00,S11#250. ~29!

Next let

E6 :5
1

&

~S016S10!, S6 :5
1

&

~S006S11!.

From ~29! it is assured thatS1 andS2 are commutative. In order to make clear the link between
Uq(sl2) and our algebraC , we need to impose a further assumption that (S1S2)

251 in the
following. Let q:5A21, andz1 ,z2 be normalizing factors that satisfy the relationz1z2 5 q
2 q21 5 2A21. Then we definee, f , andt by

z1e:5E1 , z2f :5E2 , t:5S1
2 .

We obtain from~16! and ~29! that $e, f ,t61% satisfy the fundamental relations ofUq(sl2)

tt21515t21t, tet215q2e, t f t215q22f , @e, f #25
t2t21

q2q21 .

V. DISCUSSION

We proved our main theorem in two ways: One is to make use of the addition theorems for the
theta functions since the Boltzmann weights are associated with the elliptic curve, the other is to
use the STR. The latter is applicable to theN-state, i.e., the higher-genus case. In this paper we
observe the 2-state case and clarify the natural link between the Sklyanin algebra and our result
~Proposition 1, Remark 1!. It is important to generalize our algebraC to theN-state case by the
latter method because there is a possibility that a quantum algebra attached to algebraic curves of
genus.1 is constructed. For the first step to achieve this program, we are now studying the 3-state
case~genus 10!.
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Cohomology and connections on fiber bundles
and applications to field theories
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Fachbereich Mathematik, TH Darmstadt, Germany
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Given any connection on a fiber bundleB(M ,F,G), we discuss the question which
closed differential forms on the fiberF can be extended to closed forms on the
whole bundleB in a canonical way such that the horizontal parts of the extended
forms are given in terms of the gauge fields. Such questions arise for many models
in theoretical physics such as the skyrmion bundle and related theories with non-
Abelian groupsG. We introduce the notion of aG-transgressive form as a suffi-
cient condition for the form to be extendable to any bundle which comes along with
a given left actionL:G3F→F. Using Lie algebra cohomology we prove that if
the structure groupG of the bundle is semisimple, then every closedn-form,
n<2, on the fiber which is invariant underL is G-transgressive and thus defines a
unique de Rham cohomology class on any bundle which comes along withL.
© 1996 American Institute of Physics.@S0022-2488~96!02011-7#

I. MOTIVATION

In theoretical physics the following general problem quite often occurs: suppose a field theory
is defined for some manifoldF, i.e., we have matter fields described by differentiable maps
f :M→F from space-timeM to the manifoldF. ~Examples are wide-spread, let us only mention
case of Dirac spinors, whereF5C4, or the Skyrme model and related theories, whereF5SUn , cf.
Skyrme,1 Witten,2 and Zahed and Brown.3! For computations one has integrals like the action
integral, where the Lagrangian is combined with the volume form of space-time, but also integrals
over closed differential formsf on F ~i.e., df50), which are integrated over space-time by
means of the pullbacksf !.

Next suppose, we also have a symmetry groupG and we gauge our field theory with respect
to this Lie group. From the mathematicians point of view, one has to construct a fiber bundleB
with base manifoldM , ~global! projectionp:B→M , ~standard! fiber F and structure groupG,
that acts onF via an effective left actionL:G3F→F, cf. Steenrod4 or Kobayashi and Numizu.5

For a coverU5$Ua%aPA of the base manifoldM , we have a bundle atlas$(Ua ,ca)%aPA with
local trivializationsca :p

21(Ua)→Ua3F, local projectionspa5prF + ca ontoF and local in-
jectionsi a,x5(pa,x)

21 of F onto the fiber overx P M , wherepa,x :5paup21(x) :p
21(x)→F. For

everyf P F andg P G defineL f :G→F andLg :F→F by L f(g)5Lg( f )5L(g, f ). Then on every
overlap regionUab5UaùUb the change of bundle charts is given by transition functions
gab :Uab5UaùUb→G, such thatpa,x + (pb,x)

215pa,x + i b,x5Lgab(x)
for all xP Uab .

The bundleB(M ,F,G) is associated to a principal bundleP(M ,G), where the structure group
acts on itself by left multiplication. We will use the same symbolsp, ca , pa , etc., for the
bundlesP andB. On the principle bundle we also have a free right actionR:P3G→P and a
connectionG defined by a connection 1-formvG and its exterior covariant derivative, the curva-
ture 2-formVG. Let e denote the neutral element ofG andsa,e :Ua→p21(Ua)5PuUa

denote

the local sections given bysa,e(x):5ca
21(x,e). ~Recall that a sections obeysp + s5 idM .) Then

the gauge potentials Aa and the gauge fields Fa of the field theory are the local forms on the sets
Ua defined by Aa5sa,e

! vG, resp., Fa5sa,e
! VG.

Now the problem is as follows: since the matter fields now appear as global sections
f :M→B, it is necessary to ‘‘generalize’’ the given closed differential formsf P A(F) to the
bundle case~such that the pullbacksf !f are well-defined!: one needs a closed formc P A(B)

0022-2488/96/37(12)/6375/20/$10.00
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such thatc reproducesf when restricted to the fibers:f5 i a,x
! c for all a P A and allx P Ua .

Recall that the de Rham cohomology of a manifold denotes the vector space of the closed
forms modulo the exact forms on the manifold, i.e., it denotes the kernel of the exterior derivative
d:A(M )→A(M ),Ap21(M )→Ap(M ) modulo its image. Sinced is a differential operator
(dsd50), all exact forms are closed and thus the vector space of the closed modulo the exact
p-forms is well-defined. This quotient space is called thep-th de Rham cohomology group
Hp(M ) and the~total! cohomology ofM means the direct sumH* (M ):5 % p50

` Hp(M ).
We may reformulate the problem in terms of the de Rham cohomology: Given a cohomology

class@f# P H* (F) we ask whether@f# generates a cohomology class in@c# P H* (B), such that
@f#5@ i a,x

! #@c#. Moreover, we also need a representativec for this generated cohomology class.
The problem of computing the cohomology of a fiber bundle fromH* (M ) andH* (F) is a

delicate mathematical problem. For a trivial bundle, i.e., a direct productM3F, we have the
Künneth formula

H* ~M3F !>H* ~M ! ^H* ~F !.

This formula is based on the fact that we have two global projections prM and prF . Using their
pullbacks we may extend any form onM andF to the bundle. Sinced commutes with pullbacks,
this also holds for the cohomology classes. For a nontrivial bundle we only have one global
projection p, which indeed allows us to lift any form onM and any cohomology class in
H* (M ) onto the bundle.~Nevertheless, the induced homomorphism@p* #:H* (M )→H* (B)
needs not be injective nor surjective.! Yet there is no such mean for forms onF and thus the
situation becomes much more complicated as in the trivial case and leads to the theory of spectral
sequences, cf. Bott and Tu.6 Spectral sequences computeH* (B) from H* (M ) andH* (F). They
also answer the question which closed forms on the fiber can be extended to closed forms on the
bundle and thus generate a unique cohomology class inH* (B) in the manner above. We call these
forms 0-transgressive. Not all closed forms onF are 0-transgressive. In general it will depend on
the structure of the bundle whether a given form is 0-transgressive: obviously for trivial bundles
all closed forms onF are 0-transgressive.

If a form f P A(F) is 0-transgressive, spectral sequences also provide a formula forc ~Ref.
6, Prop. 9.5!. Nevertheless this ‘‘Collating formula’’ involves a partition of unity subordinate to
the given coverU of M . For any such partition the formula gives a different formc within the
generated cohomology class.~Note that, a priori,c is not unique but defined only up to an exact
form onB, whose restriction to the fibers is zero.!

From the physicists point of view, this situation is quite unsatisfactory since a partition of
unity does not bear any physical meaning and there is no reason why one partition — and the
corresponding formc — should be better than another. In fact one would like to obtain a
representativec for the generated cohomology class that can be associated with the physics in
question, that is the gauge potentials and the gauge fields of the field theory.

This takes us back to connections on fiber bundles. Recall that a connection on a fiber bundle
defines global horizontal and vertical projections of vector fields such that theC`(B)-module
D1(B) of the vector fields onB splits:D1(B)5hD1(B) % vD1(B). Once a connection on a
principal bundle is defined viavG, resp., the gauge potentials Aa, it also defines connections on
all associated fiber bundles, cf. Section III.

In addition,G defines lifts of vector fields on the base onto horizontal fields on the bundle and
projections of forms on the bundle. These lifts and projections now can be used to extend forms
on the fiber to the bundle. In fact, for every differential formf P A(F) that is invariant under the
given left actionL ~i.e., Lg

!f5f for all g P G), there exists exactly one vertical form on the
bundle, sayfv P A(B), such thatfvup21(x)5f. From the physicists point of view, this seems to
be a satisfactory generalization, but unfortunately we are not done with that, since the diagram in
Figure 1 doesnot commute.
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Thus although we start with a closed formf, the generated vertical formfv needs not be
closed. In general, we are not able to find a vertical representative for this cohomology class
generated by a 0-transgressive form, but we need to admit horizontal terms. Thus the question will
be whether we can find such a representative where these horizontal terms are ‘‘naturally’’ given
by the connectionG, in fact, by the gauge fields. In that case, we call the resulting form adapted
to G. Those forms are candidates for the desired generalizations of closed forms in field theories.

II. BASIC DEFINITIONS

Let M denote any manifold andV,W finite dimensional vector spaces. Every vector field
X P D1(M ) differentiably associates with everyx P M an elementX x in the tangent space
Tx(M ). Now Dp(M ,V), resp.,Ap(M ,V), denote theC`(M )-modules ofp-linear, resp., alter-
natingp-linear, mapsfp :D

1(M )3•••3D1(M )→C`(M ,V). They associate with everyx P M
an elementfx5(fp)x in Hom(^

pTx(M ),V), resp., in Altp(Tx(M ),V), where Altp(W,V) means
the vector space of all alternatingp-linear maps fromWp to V. The alternations
Ap :Dp(M ,V)→Dp(M ,V) are the canonical projections ofDp(M ,V) ontoAp(M ,V). The exte-
rior product ~or wedge product! of forms will be denoted bỳ : for fp P Ap(M ) and f r

PAr(M ) wehavefp` f r :5Ap1r(fp^ f r) PAp1r(M ).
Also if a bilinear mappingw:V3V→V is given,` extends to an exterior product̀ w of

V-valued differential forms. Forf5f̂ ^v P A(M )^V>A(M ,V) andc5ĉ ^w P A(M )^V,
the exterior product is given by

f`wc:5~f̂`ĉ ! ^ w~v,w!. ~1!

Everything in the sequel will also work for infinite dimensional vector spacesV, if we
considerA(M )^V instead ofA(M ,V). Yet for our purposes, we will restrict ourselves to finite
dimensionalV and identifyA(M )^V andA(M ,V).

As mentioned above, we are heading for differential forms whose horizontal parts are given in
terms of the gauge fields. Let us denote theC`(B)-module of horizontal forms onB by
A(B)h and the vertical counterpart byA(B)v. ~Note that onlyA1(B) splits intoA1(B)h
% A1(B)v, whereasA0(B)h5A0(B)v5A0(B)5C`(B) and forp>2 Ap(B) contains also
‘‘mixed’’ forms, i.e., exterior products of horizontal and vertical forms.! Normally one would try
to split a form into a sumf5( iPIf i , where thef i are given byf i5f i

1 ` f i
2 with f i

1

PA(B)handf i
2PA(B)v.

Yet in our case such a splitting is impossible, since the gauge fields and the gauge potentials
are Lie algebra valued differential forms: Aa P A1(Ua ,g) and F

a P A2(Ua ,g), whereg denotes
the Lie algebra of the structure groupG. In contrast,f P A(F) — and thus alsoc P A(B) —
will be real or complex valued. Thus we need a generalization of the wedge product that combines
g-valued forms with (g^ •••^ g)* -valued forms in order to produce real or complex valued
forms. This is the task of the following definition.

Definition II.1: For x r
s P Ar(M ,Hom(^ sg,V)) andfp P Ap(M ,g), p,r ,s21 P N0 , let

dr1spPD r1sp(M ,V)with

FIG. 1. Exterior derivative and vertical projection do not commute.
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dr1sp~X
1, . . . ,X r1sp!~x!:5@xx~X x

1 , . . . ,X x
r !#s@fx~X x

r11 , . . . ,X x
r1p!

^ •••^ fx~X x
r1~s21!p11 , . . . ,X x

r1sp!]

for all x P M and definex r
s•fp :5Ar1sp(dr1sp) P Ar1sp(M ,V) andx r

0•fp :5x r
0 .

Roughly speaking, the bullet operator means the following: for anyx P M and X i

P D1(M ), xx(X x
1 , . . . ,X x

r ) defines an element in Hom(̂sg,V). Thus we needs vectors ing as
input for this map. But again for anyx P M andY i P D1(M ), fx(Y x

1 , . . . ,Y x
p) defines such a

vector in g. Altogether the combination ofx and s factors f defines an elementdr1sp
sq

P D r1sp(M ,V). Using the alternationAr1sp , we finally obtain a form inAr1sp(M ,V).
Note that this construction works with any finite dimensional vector spaceW instead ofg, and

even with differential formsfp
q P Ap(M ,Hom(^ qX,W)), whereX is another finite dimensional

vector space. In the latter case the construction produces a differential formx r
s•fp

q

P Ar1sp(M ,Hom(^ sqX,V)). Yet we only need • in the way defined above, especially for
V5R,C andx r

s P Ar(M ,Syms(g,V)), where Syms(g,V) denotes the vector space of symmetric
s-linear maps from gs to V, i.e., the image of the canonical symmetrization
Sym:Hom(̂ sg,V)→Hom(^ sg,V).

For vectorsEj P g, j51, . . . ,s, let E1^ •••^Es : Hom(^
sg,V)→V denote the canonical

~evaluation!morphism. For any formx r
s P Ar(M ,Hom(^ sg,V)) definex r

E1 , . . . ,Es P Ar(M ,V) to

be the push-out ofx r
s under this morphism:x r

E1 , . . . ,Es:5(E1^ •••^Es)!x r
s i.e., for allx P M and

X i PD1(M ), i51, . . . ,r ,

~x r
E1 , . . . ,Es!x~X x

1 , . . . ,X x
r !:5~E1^ •••^Es!+ ~x r

s!x~X x
1 , . . . ,X x

r !

5@~x r
s!x~X x

1 , . . . ,X x
r !#~E1^ •••^Es!. ~2!

With this convention we obtain the following lemma:
Lemma II.2: Let p,r ,s21 P N0 . If fp5( i51

m f i
^Ei withf i P Ap(M ) and Ei P g, then

x r
s•fp5 (

i1 , . . . ,i s51

m

x
r

Ei1
, . . . ,Eis`f i1`•••`f i s.

Proof: Takex P M andX i P D1(M ). Then fordr1sp in Definition II we obtain

~dr1sp!x~X x
1 , . . . ,X x

r1sp!:

5@xx~X x
1 , . . . ,X x

r !#~fx~X x
r11 , . . . ,X x

r1p!

^ •••^ fx~X x
r1~s21!p11 , . . . ,X x

r1sp!!

5 (
i1 , . . . ,i s51

m

@xx~X x
1 , . . . ,X x

r !#S ~Ei1
^ •••^Eis

!

•)
j51

s

fx
i j~X x

r1~ j21!p11 , . . . ,X x
r1 jp!D

5 (
i1 , . . . ,i s51

m

@~x
r

Ei1
, . . . ,Eis!x~X x

1 , . . . ,X x
r !#

•)
j51

s

fx
i j~X x

r1~ j21!p11 , . . . ,X x
r1 jp!.
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Thus ifSr1sp denotes the group of permutations ofr1sp elements and (21)r means the signum
of r P Sr1sp , we get

~x r
s•fp!x~X x

1 , . . . ,X x
r1sp!:5@Ar1sp~dr1sp!#x~X x

1 , . . . ,X x
r1sp!

5 (
rPSr1sp

~21!r

~r1sp!! (
i1 , . . . ,i s51

m

@~x
r

Ei1
, . . . ,Eis!x~X x

r~1! , . . . ,X x
r~r !!#

•)
j51

s

fx
i j~X x

r~r1~ j21!p11! , . . . ,X x
r~r1 jp !!

5 (
i1 , . . . ,i s51

m

@Ar1sp~x
r

Ei1
, . . . ,Eis^ f i1^ •••^ f i s!#x~X x

1 , . . . ,X x
r1sp!

5S (
i1 , . . . ,i s51

m

x
r

Ei1
, . . . ,Eis`f i1`•••`f i sD

x

~X x
1 , . . . ,X x

r1sp!,

where the last identity follows immediately from the definition of the exterior product` . h

Lemma II.2 proves that ifp is even, then only the symmetric part ofx r
s counts:

x r
s•fp5(Sym!x r

s)•fp . Thus we may concentrate onx r
s P Ar(M ,Syms(g,V)), in order to con-

struct formsx r
s•F with the 2-forms Fa.

Let Ad!:G3Hom(^ sg,V)→Hom(^ sg,V) denote the right representation induced by the
adjoint action: forK P Hom(^ sg,V), g P G andEi P g, it is defined by

~Ad~g!!K !~E1 , . . . ,Es!:5K~Ad~g!E1 , . . . ,Ad~g!Es!.

A differential form xn
sPAn(F,Hom(^

sg,V)) is called (G-!equivariant if Lg
!xn

s

5 (Ad(g21)!)!xn
s . ~For s50 this obviously means thatxn

0 is invariant underL.! On the other
hand a differential formf P A(F,g) is called (G-!equivariant if Lg

!f5Ad(g)!f, e.g.,vG

P A1(P,g) and VG P A2(P,g) are equivariant, sinceRg
!vG5Ad(g21)!vG, resp.,

Rg
!VG5Ad(g21)!VG. We denote the sets of these equivariant differential forms by

A(F,Hom(^ sg,V))equiv, resp., A(F,g)equiv. They are modules of the exterior algebra
A(P) inv of invariant differential forms.

Lemma II.3: Ifxn
s P An(F,Hom(^

sg,V))equivandfp P Ap(F,g)equiv, thenxn
s•fp is invari-

ant.
For our purposes we also need further operators on differential forms that transform

V-valued forms into Alti(g,V)-valued forms. Recall that for any Lie group actionL:G3F→F,
everyX P g canonically induces a vector fieldLX P D1(F) by (LX) f :5(dLf)e(X), where
(dLf)e :Te(G)→Tf (F) denotes the differential of the mapL

f . The operator2L:g→D1(F) is a
Lie algebra homomorphism, in fact we have

@LX ,LY#5L [Y,X]52L [X,Y] for all X,YPg, ~3!

~Lg!!LX5LAd~g!X for all gPG,XPg. ~4!

Analogously for the right actionR on a principal bundle,R:g→D1(P) is a Lie algebra homo-
morphism, and theRX are the so-called fundamental vector fields onP. Now we may define:

Definition II.4: Let L be a Lie group action of G on F andvn P An(F,V). We define
differential forms Ld

i vn P An2 i(F,Alt i(g,V)), i50, . . . ,n, for all X j P D1(F), Ek P g and f
P F by
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@~Ld
i vn!~X

1, . . . ,X n2 i !~ f !#~E1 , . . . ,Ei !:5
n!

~n2 i !!
vn~L

1, . . . ,L i ,X 1, . . . ,X n2 i !~ f !PV,

where L i :5LEi
. For i.n we put Ld

i vn50. In the case i51 we also define forxn
s

PAn(F,Hom(^
sg,V))

Ld
~xn

s :5Sym!~Ldxn
s!PAn21~F,Syms11~g,V!!.

~Obviously Sym!(Ld
i xn

s)50 for i.1.! Now if ıX :An(M ,V)→An21(M ,V) denotes the
interior product with respect toX P D1(M ), which is given by

~ ıXvn!~Y
1, . . . ,Y n21!:5nvn~X ,Y1, . . . ,Y n21!,

then we have the following relation with regard to our convention~2!:

~Ld
i vn!n2 i

E1 , . . . ,Ei5~ ıL i+ •••+ ıL1!vn .

The following lemma is quite immediate by~4!:
Lemma II.5: For all i<n, the operator Ld

i :An(F,V)→An2 i(F,Alt i(g,V)) is
C`(F)-linear. Forvn P An(F,V) andxn

s P An(F,Hom(^
sg,V))equivwe have

Ld
0 vn5vn , ~Ld

n vn!~ f !5n! @~L f !!vn#e for all fPF, ~5!

Lg
!~Ld

i vn!5~Ad~g21!!!!@Ld
i ~Lg

!vn!#, thus ~6!

Lg
!~Ld

i xn
s!5~Ad~g21!!!!~Ld

i xn
s! and Lg

!~Ld
~xn

s!5~Ad~g21!!!!~Ld
~xn

s!. ~7!

Equation~7! yields thatLd
i vn andLd

~vn areG-equivariant ifvn is invariant underL.

III. EXTENDING FORMS TO THE BUNDLE

If P is a principal bundle with free right Lie group actionR, andL is a left effective Lie group
action ofG on a manifoldF, then the associated fiber bundle with fiberF that comes along with
L is the quotient manifoldB(M ,F,G)5P3GF of the direct productP3F under the free right
action R̃:(P3F)3G→P3F, which is defined by

R̃g~p, f !:5~Rg~p!,Lg21~ f !! for all pPP, fPF.

In fact,P3F is a principal bundle overB with projectionp̃ and fiberG. Every connectionG on
a principal bundle, given by a connection 1-formvG, canonically induces a connectionG̃ on

(P3F)(B,G) by ṽ G̃5prP
!vG. In turn, G̃ defines horizontal lifts of vector fields

L̃:D1(B)→h̃D1(P3F) inv . L̃ is a C`(B)-module isomorphism with inverse morphismdp̃. If
hnat andvnat denote the natural projections of vector fields on the direct productP3F, then we
also have projectionsh, v onD1(B)

h5dp̃hnatL̃, v5dp̃vnatL̃,

so

D 1~B!5hD 1~B! %vD 1~B!.
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This is the induced connection on the associated bundleB, as mentioned above. LetX i

P D 1(B), then for anyvn P An(B,V), n.0, the horizontal and vertical projectionsvnh
P An(B,V)h, resp.,vnv P An(B,V)v, are given by

vnh~X 1, . . . ,X n!:5vn~hX
1, . . . ,hX n!,

vnv~X 1, . . . ,X n!:5vn~vX
1, . . . ,vX n!.

Obviously these projections commute with •, i.e.,

~xn
s•fp!h5xn

sh•fph, ~xn
s•fp!v5xn

sv•fpv.

Recall that, by definition,vG is a vertical form. The exterior covariant derivative of forms on
P is defined bydGf:5(df)h. ThusVG5dGvG5(dvG)h is a horizontal form.

If f is a differential form onF, then prF
!f is a form onP3F, and ifY i are vector fields on

B, then (prF
!f)( . . . ,L̃Y i , . . . ) is afunction onP3F. Now if f is invariant underL, one can

prove that this function is invariant underR̃ and thus defines a map onB. But this defines a form
on B. In fact, we have the following proposition:7

Proposition III.1:f P A(F,V) defines a vertical V-valued formfv on B(M ,F,G) iff f is
invariant under all Lg

! For such af and allY i P D 1(B) then there exists fP C`(B,V) with

~prF
!f!~ . . . ,L̃Y i , . . . !5 fsp̃.

If ha andva denote the local projections of fields and forms induced byG, then this generated
form fv locally is given by

fvup21~Ua!5~pa
!f!va. ~8!

Proposition III.1 is a special case of the following theorem:
Theorem III.2: If xn

s P An(F,Hom(^
sg,V))equiv and f P Ap(P,g)equiv, p P N0 , then

(prF
!xn

s)•(prP
!f) P An1sp(P3F,V) defines a V-valued form on B: for all vector fieldsY i

P D 1(B) then there exists fP C`(B,V) such that

@~prF
!xn

s!•~prP
!f!#~ . . . ,L̃Y i , . . . !

5@~prF
!xn

s!•~prP
!fh!#~ . . . ,L̃Y i , . . . !5 fsp̃.

(prF
!x) defines the vertical and(prP

!f) defines the horizontal part of the form.
The proof of Theorem III.2 relies on Lemma II.3: under the assumed conditions one shows

that (prF
!xn

s) and (prP
!f) are equivariant with respect toR̃, and thus (prF

!xn
s)•(prP

!f) is invariant
by Lemma II.3.

Natural candidates forf P Ap(P,g)equiv arevG andVG. Nevertheless, sincevG is vertical,
Theorem III.2 yields that the generated form onB is zero. ForVG, the generated form is locally
given by

@~pa
!xn

s!va#•~p!Fa!PAn12s~p21~Ua!,V!.

For that reason, we will denote this generated form by (xn
sv)•F or simplyxv•F.

Finally we need to compute the exterior derivative of these generated differential forms. We
thus cite the following theorem from Ref. 8:
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Theorem III.3: Let G be a connection on a principal fiber bundle P(M ,G) and let
B(M ,F,G) be an associated bundle, V any vector space,xn

s P An(F)^Hom(^ sg,V) be
G-equivariant andfn P An(F)^V be invariant under G. Then

d~xn
sv•F!5@~dxn

s!v#n11
s •F1@~Ldxn

s!v#n21
s11•F,

5@~dxn
s!v#n11

s •F1@~Ld
~xn

s!v#n21
s11•F,

d~fnv !5~dfn!v1@~Ldfn!v#n21
1 •F.

Note that the second identity follows from the already mentioned fact that, in combination
with F, only the symmetric part of (Ldxn

s)v counts, cf. Lemma II.2. The last identity is a simple
corollary to the first one, since fors50,G-equivariance means invariance, Hom(^

0g,V)5V, and
x r
0•F5x r

0 by definition.
Theorem III.3 proves that the diagram in Section I does not commute in general. Only for

0-formsf, i.e., functionsf P C`(F,V), we know thatLdf50.

IV. G-ADAPTED AND G-TRANSGRESSIVE DIFFERENTIAL FORMS

Now we are prepared for the notion ofG-adapted differential forms on a bundle:
Definition IV.1: LetG be a connection on P(M ,G) and B5P3GF. A differential formfA

P A(B,V) is calledG-adapted ifx i P An( i )(F,Hom(^
s( i )g,V))equivare given such that

fA5(
i

x iv•F.

It is this splitting into a sum ofx iv•F that we have in mind when we say that a form can be
presented in such a way that all horizontal terms are given by the gauge fields Fa.

We will be concerned with the question whether we can find such aG-adapted representative
for a cohomology class inH* (B) that is generated by a 0-transgressive invariant formf
P A(F). For the physical applications in mind, this concentration on invariant forms is no real
restriction. Recall from the general theory of fiber bundles that, for every bundle over a paracom-
pact manifoldM with a connected structure groupG, this Lie groupG is reducible to its maximal
compact connected subgroupK, i.e.,G may bea priori chosen to be compact. For example, if we
are dealing with electromagnetic interactions, we haveG5U1; if we are dealing with electroweak
interactions within the Glashow, Salam and Weinberg theory, thenG5SU23U1; and for strong
interactions covered by quantum chromodynamics~QCD!, G5SU3. In general, for Yang-Mills
theories we haveG5Un3Un or a subgroupH,G.

For any compact Lie group we have the normalized Haar measurem, and we can project any
form f P A(F,V) onto an invariant formf inv defined by

f inv :5E
G
Lg

!fdm~g!. ~9!

~Analogous projections onto equivariant forms also exist.! On the other hand, ifG is connected,
then all mapsLg are homotopic to the identity mapLe5 idF , which yields that@Lg

!#5 idH* (F) .
Thus, if we denote the cohomology of the invariant closed forms onF modulo the invariant exact
forms byH inv* (F), we have the following proposition:

Proposition IV.2: If G is a compact connected Lie group acting on F, then
H* (F)>H inv* (F), and the isomorphims are induced by the above projection onto invariant forms,
resp., the injection i:A(F) inv→A(F).
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A(F,V) inv contains an important subset, whose elements we will callG-transgressive forms.
Let @r #:5maxzPZ$z<r % for all r P R. Then their definition is as follows:

Definition IV.3: Let L:G3F→F be a left Lie group action. An invariant closed differential
form fn P An(F,V) inv will be called G-transgressive if equivariant differential formsx i

P An22i(F,Symi(g,V))equiv exist for 0< i<@n/2# with

x05fn ,2Ld
~x i5dx i11 for all 0< i<@n/2#21 and Ld

~x [n/2]50. ~10!

Denote the set of all G-transgressive forms on F byA(F,V)G2trans.
Note IV.4: The reader who is familiar with equivariant cohomology will recognize that

G-transgressive forms define equivariant cohomology classes for the givenG-manifold F, cf.
Atiyah and Bott9 or Mathai and Quillen10 and Section VIII.

Recall the definition of the exterior product of vector valued differential forms from~1!. For
Kr P Symr(g,R) andKs P Syms(g,R) we have the symmetric productKr ~ Ks :5Sym(Kr ^Ks).
For any bilinearw:V3V→V this extends to a bilinear mapping on the~infinite dimensional!
vector space Sym(g,V):5 % s50

` Syms(g,V) analogously to~1!, which we also denote by~ . This
in turn defines the exterior product̀ ~ . With respect tò ~ , the setA(F)^Sym(g,V) is an
exterior algebra with subalgebraA(F)equiv̂ Sym(g,V).

Lemma IV.5: d and Ld
~ are skew-derivations of degree1, resp. 21, of the algebras

A(P)^Sym(g,V) and A(P)equiv̂ Sym(g,V). For all an P An(P)^Sym(g,V) and v
PA(P)^Sym(g,V),

d~an`~v!5~dan!`~v1~21!nan`~~dv!,

Ld
~~an`~v!5~Ld

~an!`~v1~21!nan`~~Ld
~v!.

Lemma IV.5 is the main ingredient in the proof of the following proposition:
Proposition IV.6:A(F,V)G2trans is a R-subalgebra ofA(F,V), whenever a bilinear map

w:V3V→V and thus a wedge product̀ w is defined. Iffm and cn are G-transgressive and
x i P Am22i(F,Symi(g,V))equiv, resp.j

i P An22 j (F,Symj (g,V))equiv, are the differential forms
given by (10! for fm , resp.cn , then

zk:5 (
i1 j5k

x i`~j jPAm1n22k~F,Symk~g,V!!equiv

for 0<k<@m/2#1@n/2# (andz [(m1n)/2]:50 if m and n are odd) are the corresponding forms for
fm`~cn .

Proof: ObviouslyA(F,V)G2trans is aR-subspace ofA(F,V). Hence we only have to check
if the zk, for 0<k<@(m1n)/2#, obey the identities ~10! for fm`~cn5fm`wcn

P Am1n(F,V) inv . Obviouslyfm` ~cn is closed andz
05x0 ` ~j05fm` ~cn . By definition of

` ~ , the differential formszk are elements ofAm1n22k(F,Symk(g,V)) and

Lg
!zk5 (

i1 j5k
Lg

!x i`~Lg
!j j5 (

i1 j5k
~Ad~g21!!!!x i`~~Ad~g21!!!!j j5~Ad~g21!!!!zk,

whence allzk areG-equivariant. Next for 0<k<@m/2#1@n/2#21, we obtain from Lemma IV.5,
usingdx05dj050,
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dzk115 (
i1 j5k11

d~x i`~j j !

5 (
i1 j5k11

@dx i`~j j1~21!m22ix i`~dj j #

5dx0`~jk111 (
i1 j5k

@dx i11`~j j1~21!mx i`~dj j11#

1~21!mxk11`~dj0

52 (
i1 j5k

@Ld
~x i`~j j1~21!mx i`~Ld

~j j #

52 (
i1 j5k

Ld
~~x i`~j j !52Ld

~zk.

Analogously, sinceLd
~x [m/2]5Ld

~j [n/2]50,

Ld
~z [m/2]1[n/2]5 (

i1 j5[m/2]1[n/2]
Ld

~~x i`~j j !

5Ld
~x [m/2]`~j [n/2]1~21!mx [m/2]`~Ld

~j [n/2]50.

But @m/2#1@n/2#5@(m1n)/2#, except if m and n are both odd, where
@m/2#1@n/2#5@(m1n)/2#21. In that case, we have just shown that2Ld

~z [(m1n)/2]2150,
whence we may choosez [(m1n)/2]:50. This completes the proof thatfm`~cn is
G-transgressive. h

Now we are ready for the following theorem:
Theorem IV.7: Let G be a connection on a principal bundle P(M ,G) and B5P3GF an

associated bundle with left Lie group action L:G3F→F. Let V denote any vector space. If the
form fnPAn(F,V) inv is G-transgressive and the equivariant formsxn22i

i

P An22i(F,Symi(g,V))equivare given by (10!, then

fn
A :5 (

i50

[n/2]

~xn22i
i v !•FPAn~B,V!

is closed andG-adapted. Its restriction to the fibers isfn , i.e., for anya P A and allx P Ua , we
havei a,x

! fn
A5fn .

Proof: fn
A is obviously adapted toG. Furthermore Theorem III.3 yields

dfn
A5 (

i50

[n/2]

~dxn22i
i !v•F1~Ld

~xn22i
i !v•F

5~dfn!v1 (
i50

[n/2]21

~dxn22i22
i11 1Ld

~xn22i
i !v•F1~Ld

~xn22[n/2]
[n/2] !v•F50,

since fn is G-transgressive. Finally, sincei a,x
! p!Fa50 for all xPUa , we obtain

i a,x
! fn

A5 i a,x
! (x0v)5 i a,x

! (fnv). But naturallyi a,x
! (fnv)5fn . h

Note that the property of beingG-transgressive only depends onL and F. Thus
G-transgressive forms define de Rham cohomology classes on all fiber bundles whereL is the
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action of the structure groupG on the fiberF. In particular, this condition is independent of the
baseM and of the question whether the bundle is trivial or not. Indeed we have the following:

Corollary IV.8: Let L:G3F→F be a left Lie group action. If a formfn P An(F) is
G-transgressive, it is0-transgressive for any bundle B(M ,F,G) that comes along with L. Thus
fn defines a unique cohomology class@fn

A# P Hn(B) with @ i a,x
! #@fn

A#5@fn# P Hn(F), indepen-
dently of the paracompact base M and the transition functions gab .

Proof: By the existence theorem for connections, every principal bundleP(M ,G) over a
paracompact manifoldM admits a connectionG ~Ref. 5, p. 67!. Thusfn

A is well-defined and
Theorem IV applies. h

Corollary IV.9: If G and G8 are two connections on P(M ,G) and fPA(F) is

G-transgressive, then there existsc P A(B) such that the formsfA andfA8 obey:

fA2fA85dc with d~ i a,x
! c!50.

Let us derive the analogue to Theorem IV.7 for 1-dimensional Abelian Lie groupsG like the
electromagnetic structure groupGem>U1>S1. According to the following lemma, we may refor-
mulate the notion ofG-transgressive forms in that case:

Lemma IV.10: If G is Abelian withg5ER, thenfnPA(F,V) inv is G-transgressive iffx i

P An22i(F,V) inv exist for0< i<@n/2# such that withn i :5ıLE
x i the following equations hold:

x05fn ,2n i5dx i11 for all 0< i<@n/2#21 andn [n/2]50. ~11!

Also sinceg>R, we can replace • by the exterior product and as a corollary to Theorem IV.7
and Lemma II.2 we obtain the following.

Theorem IV.11: Let G be a connection on a principal bundle P(M ,G), where G is Abelian
with g5ER, and let B5P3GF be any associated bundle with left Lie group action
L:G3F→F. If fn P An(F,V) inv is G-transgressive andxn22i

i P An22i(F,V) inv are given by
(11!, then withF̃:5 1/Ep!FP A2(B),

is closed andG-adapted. Its restriction to the fibers isfn , i.e., for any xP Ua , i a,x
! fn

A5fn .
Finally, in order to evaluate Theorem IV.11, we note that for any formfPA(F,V), the

vertical projections~8! are given by

fvup21~Ua!5~pa
!f!va5pa

!f1Ãa`pa
!~ ıLE

f! ~12!

with Ãa:5 1/Ep!Aa.7 Hence, since (ıLE
)250, we have (ıLE

f)vup21(Ua)
5pa

!(ıLE
f).

V. SKYRMION BUNDLE AND RELATED YANG–MILLS THEORIES

These results are quite important for the skyrmion bundle in theoretical nuclear physics which
treats interactions of mesons and baryons — described within the~ungauged! Skyrme model1,3—

6385Christian Gross: Cohomology and connections on fiber bundles and applications

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



with electromagnetic fields.11–13 In order to show this, we need some basic results from current
algebra. Denote the left and right invariant 1-forms on a Lie groupH<Gln(C) by QL

P A1
L(H,h), resp.,QRP A1

R(H,h), i.e.,

Qh
L~h•X!5Qh

R~X•h!5X for all hPH,XPh,

whereh•X andX•h are elements ofTh(H). In the literature, these forms are also called invariant
‘‘currents’’ and we find the notationsh21dh andL for QL, resp.,dhh21 andR for QR. If `
denotes the exterior product of matrix-valued forms with respect to matrix multiplication, then for
allkP N,

and

are well-defined left, resp., right, invariantk-forms onH, and so are

lk
M :5Tr@M•~QL!k#PAk

L~H,C!

and

rk
M :5Tr@M•~QR!k#PAk

R~H,C!,

for any matrixM P Cn3n. Especially forM51, we obtain the bi-invariant

vk :5lk
15rk

1PAk~H,C! inv ,

and one easily checks thatv2k50. Now the Maurer–Cartan identities yield the following.
Lemma V.1: d(QL)2k2152(QL)2k and d(QR)2k215(QR)2k. As a consequence for any ma-

trix M P Cn3n, we have dl2k21
M 52l2k

M , dr2k21
M 5r2k

M hence dv2k2150 and dl2k
M 5dr2k

M 50.
In addition, recall that the cohomology of SUn and Un is generated as an algebra byv3 ,

v5 , . . . , v2n21 for SUn , resp., byv1 , v3 , . . . , v2n21 for Un , cf. Greub, Halperin, and
Vanstone.14

In the ungauged Skyrme model, the meson fields occur as mapsU:M→SUn , whereM
denotes space–time andn denotes the number of flavors inQCD. The configurationU[1 rep-
resents the vacuum. Baryons appear as topological soliton solutions, as ‘‘skyrmions,’’ of these
fields. The number of baryons represented by a given mesonic field configuration is computed by
an integration ofU!v3 over the space manifold~which is compactified at infinity, where the fields
are required to tend to the vacuum value1). Forn>3, the action integral splits into two parts, the
nonamomalous action and the Wess–Zumino term. The latter is an integral over the differential
form v5 .

2
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In order to treat interactions with electromagnetic fields~especially those of magnetic
monopoles,11,12! one constructs a fiber bundleB(M ,SUn ,Gem), cf. Section I. If e denotes the
electric unit charge, then the left action ofGem5 1/e•S1 on SUn is given by the inner automor-
phisms

L~g,U !:5e2 iegQUe1 iegQ ~13!

for g P Gem andU P SUn . Q is then3n-matrix containing the quark charges in units ofe: for
n52,3,

Q5S 2

3
0

0 2
1

3

D , resp.,Q5S 2

3
0 0

0 2
1

3
0

0 0 2
1

3

D .

We putfa:5pa
!f for anyf P A(F,V). Under a change of bundle charts we then have

Ua~x!5L~gab ,U
b!~x!5e2 iegab~x!QUb~x!e1 iegab~x!Q,

and for the canonical vector fieldLE P D1(SUn) induced byE5 1/e P g, we obtain

LE~U !52 i @Q,U# for all UPSUn . ~14!

Now ~12! yields

~dUa!v5dUa2 ieAa@Q,Ua#.

For the invariant formsrk
Q , lk

Q andv2k11, we obtain the following lemma:13

Lemma V.2: For the action given in (13!,

ıLE
v2k1152~2k11!i ~r2k

Q 2l2k
Q !,

ıLE
~r2k

Q 2l2k
Q !50,

ıLE
~r2k11

Q 1l2k11
Q !522i(

j51

k

Tr@QU~QL!2 j21Q~QL!2k22 j11U21#

2 i(
j50

k

Tr@Q~QR!2 jQ~QR!2k22 j2Q~QL!2 jQ~QL!2k22 j #.

In order to define a baryon number and an anomalous action for the skyrmion bundle, we have
to extend the formsv3 andv5 to the bundle. Several approaches ‘‘by trial and error’’ have been
made to ‘‘generalize’’v3 and v5 , cf. Callan and Witten,11 Kaymakcalanet al.,15 or Pak and
Rossi.16 In terms of the language we are using, we would like to obtain differential formsv3

A and
v5
A that are adapted to the Maxwell connection given by the electromagnetic fields. Thus we will

examine whetherv3 andv5 areGem-transgressive.
This is indeed the case. According to Lemma IV.10 we have to findxn22i

i P An(SUn ,C) and
nn22i21
i 5ıLE

xn22i
i that obey~11! for f5v3 , resp.,f5v5 . From Lemma V.2 we conclude that

for f5v2k11 , we have n2k
0 52(2k11)i (r2k

Q 2l2k
Q ). Now Lemma V.1 yields that
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r2k
Q 2l2k

Q 5d(r2k21
Q 1l2k21

Q ), sox2n21
1 5(2k11)i (r2k21

Q 1l2k21
Q ). Forv3 we are already done,

since x1
1 is global and vertical due to Lemma V.2:n0

150. For x3
1, again Lemma V.2 yields

n2
25210i 2Tr@Q2((QR)22(QL)2)1QdU21 ` QdU#. One easily verifies that

x1
2510i 2~r1

Q2
1l1

Q2
!15i 2Tr~QdUQU212QUQdU21!1ri 2dTr~QU21QU!,rPR,

is an admissible choice and thatn0
250, thusx1

2 is global and vertical. For physical reasons~parity
invariance15!, we putr50. We thus obtain from Theorem IV.11:13 the following.

Theorem V.3: v3 andv5 are Gem-transgressive and generate de Rham cohomology groups
isomorphic toR for any skyrmion bundle. Representatives for the generated cohomology groups,
that are adapted to the Maxwell connection, are

v3
A5v3v1 ieF`x1

1v

5@v3
a23ieAa`~r2

Q2l2
Q!#13ieF`~r1

Q1l1
Q!,

v5
A5v5v1 ieF`x3

1v1~ ie!2F`F`x1
2v

5@v5
a25ieAa`~r4

Q2l4
Q!#15ieF`$~r3

Q1l3
Q!a

22ieAa`Tr@Q2~~QR!22~QL!2!1QdU21`QdU#a%15~ ie!2F`F`@2~r1
Q2

1l1
Q2

!a

1Tr~QdUQU212QUQdU21!a#.

In fact, one can prove that all differential formsv2k21 areGem-transgressive.
17

In comparison to the literature cited, our formalism has led to quite compact notations for
v3
A andv5

A . This advantage becomes even more obvious when generalizations to other gauge
groups, especially non-Abelian gauge groups, are considered, e.g., instead ofG>S1 and
F5SUn take a Yang–Mills theory whereG5Un

L3Un
R andF5Un with L (gL ,gR)(U)5gLUgR

21. As

a generalization of~14! we have for all (XL ,XR) P un
L

% un
R

L~XL ,XR!~U !5XLU2UXR for all UPSUn . ~15!

Now the gauge fields take their values in un
L

% un
R , i.e., Aa5(AL

a ,AR
a) and Fa5(FL

a ,FR
a)

P A(Ua ,un
L

% un
R) define the connectionG on P(M ,G). In this case, omitting the superscripts

a, we obtaindUv5dU1ALU2UAR , hence

QLv5QL1U21ALU2AR ,

QRv5QR1AL2UARU
21,

v1v5v11Tr~AL2AR!.

Moreover, we haveLdv15Tr(pL2pR) with the projectionspL/R:g5un
L

% un
R→un

L/R. Thus for
any LIE subgroupH,G, the closed invariant formv1 is H-transgressive iff Tr(XL2XR)50 for
all (XL ,XR) P h, e.g., we could choose a subgroup of the diagonalDn5Un

L3Un
L in G such that

gL5gR for all (gL ,gR) P Dn . ~Note that this is the case for the skyrmion bundle.! Or we could
chooseH5SUn

L3SUn
R , resp., a subgroup ofH. In Section VII we will prove that in the latter case,

v1 is necessarilyH-transgressive because SUn
L3SUn

R is semisimple forn.2, cf. Theorem VII.4.
For v3 we obtainLdv353Tr@(QR)2pL2(QL)2pR#, thus

x1
1 :523Tr~QRpL1QLpR!PA1~Un ,Hom~g,C!!
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obeys dx1
152Ldv3 due to Lemma V.1. Omitting the symmetrization~, we compute

Ld
~x1

153Tr(pRpR2pLpL), i.e.,

~Ld
~x1

1!~~XL ,XR!,~YL ,YR!!53Tr~XRYR2XLYL!Þ0.

Thus v3 is not G-transgressive. In fact, take anyx̃1
1PA1(Un ,Hom(g,C))equiv with

dx̃1
152Ldv3 . Then j1

1 :5 x̃1
12x1

1PA1(Un ,Hom(g,C))equiv with dj1
150. SinceH1(SUn)50,

we find j0
1 P C`(Un ,Hom(g,C)) with dj0

15j1
1. In fact, we may choosej0

1 equivariant, because
SUn is compact, analogously to~9!. But then for allX,Y P g,

Ld
~j1

1~X,Y!5~ ıLX
dj0

1!~Y!1~ ıLY
dj0

1!~X!

5LX~j0
1!~Y!1LY~j0

1!~X!

5j0
1~@Y,X# !1j0

1~@X,Y# !50.

Thus (Ld
~ x̃1

1)5(Ld
~x1

1) Þ 0. Sincev3 is notG-transgressive, the generatedG-adapted form

v3
A5v3v1x1

1v•FPA3~B~M ,Un ,G!,C!

is not closed in general:dv3
A5(Ld

~x1
1)v•F5(Ld

~x1
1)•F. Yet if we again restrictL to a subgroup

H,G with generatorsXs5(XL
s ,XR

s), s P I , such that Tr(XL
sXL

t )5Tr(XR
sXR

t ) for all s,t P I , then
Ld

~x1
150 andv3 is H-transgressive. Note that this condition holds for any subgroup of the

diagonalDn and thus for the skyrmion bundle.
Finally, some cumbersome calculations show that the voluminous expressions for the Wess-

Zumino term in Ref. 15,~4.18!, resp., Ref. 2,~24!, are equal to the integral over theG-adapted
differential form

v5
A5v5v1x3

1v•F1x1
2v•FPA5~B~M ,Un ,G!,C!,

where the formsx522l
l P A522l(Un ,Syml(g,C))equiv are given by

x3
1 :525Tr@~QR!3pL1~QL!3pR#,

x1
2 :510Tr@~QR!pLpL1~QL!pRpR#15Tr~dUpRU21pL2d~U21!pLUpR!.

Analogously to the skyrmion case, one may add a term

r @dTr~pLUpRU21!v#•F5rdTr~FLUFRU
21!,rPC,

or exclude it by parity invariance.15 Also in this case, the differential formv5 is not
G-transgressive: we obtainLd

~x1
2510Tr(pLpLpL2pRpRpR), thus againv5 is H-transgressive

for any subgroupH<D. More generally,v5 is H-transgressive if and only if the generators of
H obey Tr(XL

sXL
tXL

y )5Tr(XR
sXR

tXR
y ) for all s,t,yPI , specifically, only if Tr@(XL

s)3#
5 Tr@(XR

s)3# for all s P I , which is the usual condition for cancellation of anomalies on the quark
level.2

Nevertheless note thatdv5
A5(Ld

~x1
2)•F consists of a 6-form on the base. Thus as long as we

stick to space–timeM — or even a five-dimensional extension — this form vanishes andv5
A is in

fact closed. The same holds forv3
A : although it might not be closed on space–timeM , v3

A is
closed, of course, when restricted to three-dimensional space.
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VI. LIE ALGEBRA COHOMOLOGY

Back to the general case, we want to derive which closed invariantn-formsfn on the fiber
F areG-transgressive in the cases wheren50, 1 or 2. To this purpose we need some basic results
on Lie algebra cohomology.

Supposeg is aK-Lie algebra~for K5R,C) and l :g→gl(V) is a ~left! representation ofg on
a ~possibly infinte dimensional! K-vector spaceV. Then Alt(g,V)5 % p50

` Alt p(g,V) becomes a
differential complexCl with the following differential operatordl5(dp

l :Cl
p→Cl

p11)pPN0
: for c

P Cl
p :5Alt p(g,V) andXi P g,

dp
l c~X1 , . . . ,Xp11!:5 (

i51

p11

~21! i11l ~Xi !~c~ . . . ,Xî , . . . !!1(
i51

p

(
j5 i11

p11

~21! ic~ . . . ,Xî , . . . ,Xj21 ,@Xi ,Xj #,Xj11 , . . . !

~wherê indicates that the term is omitted!.
Our definition of dl differs slightly from the definitions in Ref. 14, resp., in Hilgert and

Neeb,18 where analogously to the definition of the exertior derivatived, the second term reads

1(
i51

p

(
j5 i11

p11

~21! i1 j c~@Xi ,Xj #,X1 , . . . ,Xî , . . . ,Xĵ , . . . !.

Obviously both definitions coincide onCl . Nevertheless with our definition not only Alt(g,V)
becomes a differential complex, but also Hom(T (g),V) becomes a complexC̄l with subcomplex
Cl . @T (g) denotes the tensor algebra ofg.# Indeed we can prove — analogously to the proof for
d250 — thatdp11

l + dp
l 50 onC̄l for any representationl :g→gl(V) of g. Now the cohomology of

this complex,Hl
p(g,V):5Hd

p(Cl) is called thepth ~Chevalley! cohomology space ofg with values
in V with regard to l . We put Hl

p(g):5Hl
p(g,K). Analogously, H̄ l

p(g,V):5Hd
p(C̄l) and

H̄ l
p(g):5H̄ l

p(g,K).
Lemma VI.1: Let o:g→gl(V) denote the trivial representation ofg. Then

~1! Ho
0(g,V)5H̄o

0(g,V)5V.
~2! Ho

1(g,V)5H̄o
1(g,V)5$c P Hom(g,V)uc(@g,g#)5$0%<V%5@g,g#', thusd1

o is injective and
Ho
1(g,V)5$0% for all Lie algebrasg with g5@g,g#, e.g.,semisimple Lie algebras.

~3! If a is Abelian, then Ho
p(a,V)5Alt p(a,V) and H̄o

p(a,V)5Hom(^ pa,V).

Moreover, if V is finite dimensional, then Whitehead’s lemmas yield that
Hl
1(g,V)5Hl

2(g,V)50 for any representationl :g→gl(V) of a semisimple Lie algebrag.
Recall that a double complexC* ,* :5 % p,qPN0

Cp,q is a doubly graded differential complex
with two commuting differential operators, a horizontal operatord:Cp,q→Cp11,q and a vertical
operatord:Cp,q→Cp,q11. Every double complex is associated with a singly graded complex
C* by summing along the antidiagonal lines, i.e.,Cn is given byCn5 % p1q5nC

p,q. The ~total!
cohomology of such a double complex is then defined to be the cohomology of the associated
singly graded complex with regard to the differential operatorD5d1(21)pd onCp,q. Note that
indeedD:Cn→Cn11. The alternating sign guaranties thatD + D50.6

Given a Lie group actionL:G3F→F, we want to combine the invariant cohomology on
F with the Lie algebra cohomology ofg. To this purpose, we form the double complex

C* ,* :5A~F ! ^Hom~T ~g!,V!

5 % p,qPN0
Aq~F,Hom~ ^

pg,V!!.
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(21)pd(q) :C
p,q→Cp,q11 is the vertical operator, and for the horizontal operator we have

d:52d(q)
l :Cp,q→Cp11,q. For the representationl :g→gl(A(F,V)) several choices are possible.

e. g., one can take the trivial representationo. Thendo andd obviously commute.
Instead we choosel defined byl (X):52LLX

, whereLX :A(F,V)→A(F,V) denotes the
Lie derivative of forms with respect to a vector fieldX P D1(F). Recall thatLX is given by
LX5dsıX1ıXsd. Since Lie differentiation and exterior differentiation commute,d and d
commute on the double complex and define an operatorD.

With regard to these operators we obtain~Ref. 8, Lemma 3.4! the following.
Lemma VI.2: For allvn P An(F,V) and all i<n11,

Ld
i dvn2~21! idLd

i vn5d i21Ld
i21vn .

A* ,* :5A(F)^Alt( g,V) is a subcomplex ofC* ,* and Ainv*
,* :5A(F) inv^Alt( g,V) and

Aequiv* ,* :5A(F)equiv̂ Alt( g,V) are subcomplexes ofA* ,* , on which the horizontal operators are
given byd52do, resp.,d51do.

Recall that a chain mapf :A→B between two differential complexesA andB is a homomor-
phism that commutes with the differential operators ofA andB: f + DA5DB + f , e.g., all pullbacks
f !:A(M ,V)→A(N,V) are chain maps.

Definition VI.3: For any Lie group action L:G3F→F, the homomorphism
L :A(F,V)→A(F)^Alt( g,V) is defined byLvn :5( i50

n Ld
i vn for all vnPAn(F,V).

The homomorphism Ld* :A(F,V)→Alt( g,V) is given by Ld* v:5(n50
` Ld

n vn for all
v5(n50

` vn withvn P An(F,V).
Let p0 :A(F)^Alt( g,V)→A(P,V) denote the canonical projection. Sincep0 + D5d + p0 ,

p0 is a chain map. Obviouslyp0 + L5 idA(F,V) , thus if L is a chain map, we obtain@p0#
+ @L #5 idH* (P,V) and@L # is injective. Indeed we find the following.

Proposition VI.4:
~1! L is a chain map and induces an injective homomorphism

@L #:H* ~F,V!→HD* ~A~F ! ^Alt ~g,V!!.

~2! Ld
* is a chain map and thus induces a homomorphism

@Ld
* #:H* ~F,V!→Hl* ~g,V!.

Proof:
~1! By Lemma VI.2 we have

D~Lv!5(
i50

n

D~Ld
i vn!5(

i50

n

@d iLd
i vn1~21! idLd

i vn#

5(
i50

n

@Ld
i11dvn1~21! idLd

i11vn1~21! idLd
i vn#

5(
i50

n

~Ld
i11dvn!1~21!ndLd

n11vn1dvn

5L ~dvn!

sinceLd
n11vn50.

~2! follows from Lemma VI.2 if we puti5n11. h

Finally we find the following result with regard to our purposes:
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Theorem VI.5: If the Lie algebrag is semisimple and the formvPA2(F,V) inv is closed,
then there exists a uniquex P A0(F,Alt1(g,V))equiv, such that

dx52Ldv and dx5Ld
2 v.

Proof: By Lemma VI.2,dLd
2 v50 holds. SinceHo

2(g,V)50 by Whitehead’s second lemma,
we findx P A0(F,Alt1(g,V))equivwith dx5Ld

2 v. Lemma VI.1 yields thatd1 is injective, sox is
unique. On the other hand we know fromDLv5Ldv50 that2dLdv5dLd

2 v5ddx5ddx.
Thusdx1Ldv P kerd1 . But d1 is injective. h

VII. G-TRANSGRESSIVE N-FORMS FOR N<2

Now we are prepared to compute which closed invariantn-formsfn , n<2, on the fiber are
G-transgressive.

df050 means thatf0 P C`(F) is locally constant. ObviouslyLd
~f050. So every closed

G-invariantf0 P C`(F) is G-transgressive. Sincef0 is invariant, it is global and vertical. Thus
(f0

A)a5pa
!f0 and @ i a,x

! #@f0
A#5@f0#. This proves the following.

Lemma VII.1: Every closed G-invariantf0 P C`(F) is G-transgressive and thus for anya
P A and xP Ua , @ i a,x

! #:H0(B(M ,F,G))→H inv
0 (F) is surjective.

@Note that this also impliesH inv
0 (F)<H0(F), if we putB:5$x%3F, but this is nothing new.#

Forn51 andf1 P A(F) inv , Lemma VI.2 yields thatdf150 impliesd1
oLdf150, i.e., for all

f P F, @Ldf1( f )# P @g,g#' by Lemma VI.1. Thus for a semisimple Lie algebrag, Ldf150. As a
consequence for any bundleB(M ,F,G) that comes along withL, $pa

!f1%aPA defines a global
vertical form onB. We have proved the following.

Lemma VII.2: If L is a Lie group action of a semisimple Lie group G on F, then every closed
invariant 1-form f1 P A1(F) inv is G-transgressive and defines a unique cohomology class
@f1v#5@$pa

!f1%aPA# P H1(B) for any bundle B(M ,F,G) that comes along with L. Thus for any
x P Ua , @ i a,x

! #:H1(B(M ,F,G))→H inv
1 (F) is surjective.

To show that the condition ‘‘G semisimple’’ is necessary, takeG5S1>R/Z acting on itself
by left multiplication, thus g5R. For every Lie group, the~left! canonical 1-formQL

P A1(G,g), defined byQg
L(X g):5dlg21(X g), is ~left! invariant by definition. SinceS1 is

Abelian, dQL50 in this case. QL is the volume form on S1 and generates
H inv
1 (S1)>H1(S1)>R, cf. Proposition IV.2. Yet (LdQL)(X)5QL(LX)5X for all X P R. Thus

LdQL5 idR andQL is not S1-transgressive.
In fact, take the principal bundlesPm(S

2,S1), m P Z, that classify all fiber bundles overS2

with structure groupS1 according to the Classification theorem~Ref. 4, p. 99!. Form50 we have
the trivial bundleS23S1 and form51 we obtain the Hopf fibering of the 3-sphere,p:S3→S2. For
the de Rham cohomologyH* (Pm) one obtains from the spectral sequence forPm with m Þ 0:

H0~Pm!>R, H1~Pm!50, H2~Pm!50, H3~Pm!>R.

So no @ i a,x
! #:H1(Pm)→H inv

1 (G) is surjective. Moreover, we always haveQLv5vG, even for
m50. SincedvG5dGvG5VG, our canonical construction does not produce closed forms on
Pm , in general.

Finally we consider the casen52 for semisimple Lie groups. Using Theorem VI.5 we obtain
that every closed invariant 2-form onF is G-transgressive. Thus we have the following.

Corollary VII.3: If L is a Lie group action of a semisimple Lie group G on F, then every
closed invariant2-formf2 P A2(F) inv is G-transgressive and defines a unique cohomology class
@f2

A#PH2(B) for any bundle B(M ,F,G) that comes along with L. If x0
1

P C`(F)equiv̂ Hom(g,R) is the unique map with dx0
152Ldf2 and dx0

15Ld
2 f2 according to

Theorem VI.5,thenf2
A is given by
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f2
A5f2v1~x0

1v !•FPA2~B!.

Thus for any xP Ua , @ i a,x
! #:H2(B(M ,F,G))→H inv

2 (F) is surjective.
In view of Proposition IV.2 we thus have proved the following.
Theorem VII.4: If L is a Lie group action of a semisimple Lie group G on F, then every

closed invariantfn P An(F) inv , n<2, is G-transgressive and defines a unique cohomology class
@fn

A# P Hn(B) for any bundle B(M ,F,G) that comes along with L. For any xPUa ,
@ i a,x

! #:Hn(B(M ,F,G))→H inv
n (F) is surjective.

If in addition, G is compact and connected, then Hinv
n (F)>Hn(F). Thus for every bundle

B(M ,F,G), Hn(B) contains a subgroup isomorphic to Hn(F) for n<2.
Theorem VII.4 applies to QCD, whereG>SU3 and to Yang–Mills theories with

G,SUn3SUn .
This theorem is sharp in the sense that it does not hold forn53, e.g., takeG5S3>SU2 acting

on itself by left multiplication. Then the volume form onS3 is closed and invariant and generates
H3(S3)>R. If this form wereG-transgressive, then for all principal bundlesP(M ,S3), the coho-
mology groupH3(P) would contain a subgroup isomorphic toR, independently ofM and the
transition functionsgab . Yet we know thatS7 is a principal bundle overS4 with fiber S3, and
H3(S7)50. Thus the volume form onS3 cannot beG-transgressive.

VIII. FINAL REMARKS

According to Corollary IV.8, everyG-transgressive form is 0-transgressive for all bundles
with fiber and left actionL. The reverse is also true for compact connected Lie groups. This can
be proved, e.g., in terms of universal bundles, the Weil algebra and the equivariant cohomology of
theG-manifold F.9,10 In fact,G-transgressive forms are exactly those forms onF that generate
equivariant cohomology classes~but not every equivariant cohomology class is generated by a
form onF). Now there is a natural isomorphism between this equivariant cohomology and the de
Rham cohomology of the universal bundle for the given left actionL, which yields that equiva-
riant cohomology classes define de Rham cohomology classes on all bundles that come withL.

We have not used these notions here for several reasons: First of all, we did not want to
restrict ourselvesa priori to compact connected Lie groups, where equivariant cohomology is
usually settled. Second, we were not interested in the whole cohomology of the bundles~resp., the
whole equivariant cohomology!, but only in those cohomology classes that have their origin in
forms onF. And last, for the applications in theoretical physics, we were interested in explicit
formulas for the generated differential forms and not in a more abstract notion like the Weil
algebra.

For non-compact Lie groups the reverse of Corollary IV.8 is false, e.g., takeG5R and define
L:R3Rk→Rk by L(r ,vW )5vW 1rzW with zW P Rk. Then all formsfn with constant coefficients are
closed and invariant. Because every bundle with structure groupR ~even more general, with
G>Rm) is trivial, every fn defines a closed form prRk

! fn on the bundle. Butfn is not

G-transgressive, in general, e.g., forf1 P A1(R
k) defined byf1(vW )(xW ):5^vW ,zW& for all xW P Rk and

vW P TxW(R
k), whereLdf1(xW )5 idR Þ 0. Thusf1 is notG-transgressive.
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An Itzykson–Zuber-like integral and diffusion for complex
ordinary and supermatrices

Thomas Guhra) and Tilo Wettigb)
Max Planck Institut fu¨r Kernphysik, Postfach 103980, 69029 Heidelberg, Germany

~Received 21 May 1996; accepted for publication 26 August 1996!

We compute an analogue of the Itzykson–Zuber integral for the case of arbitrary
complex matrices. The calculation is done for both ordinary and supermatrices by
transferring the Itzykson–Zuber diffusion equation method to the space of arbitrary
complex matrices. The integral is of interest for applications in quantum chromo-
dynamics and the theory of two-dimensional quantum gravity. ©1996 American
Institute of Physics.@S0022-2488~96!03412-3#

I. INTRODUCTION

In 1980, Itzykson and Zuber1 presented their result on a certain integral over the unitary group
which had great impact in several areas of mathematical physics. LetU be a matrix parameteriz-
ing the unitary groupU(N) with the invariant Haar measuredm(U). Moreover, consider two
diagonal matricesx andy with entriesxn andyn , respectively, wheren51,...,N. The Itzykson–
Zuber integral can then be written in the form

E dm~U !exp~ i tr U21xUy!5
det@exp~ ixnym!#n,m51,...,N

DN~x!DN~y!
, ~1.1!

where the function

DN~x!5 )
n,m

~xn2xm! ~1.2!

is the Vandermonde determinant of orderN. Although it was later realized that this formula is a
special case of a more general result due to Harish–Chandra,2 it prompted many investigations in
various fields. In 1983, Mehta and Pandey3,4 used this formula to work out, in the framework of
random matrix theory, the spectral correlations of a generic quantum chaotic system which un-
dergoes a transition from conserved to broken time-reversal invariance. There are also numerous
applications in field theory, particularly in the theory of two-dimensional quantum gravity; a
review can be found in Ref. 5.

Recently, Shatashvili6 showed that the integral~1.1! itself and all correlations in the Itzykson–
Zuber model can be evaluated using the Gelfand–Tzetlin coordinates for an explicit calculation.
Remarkably, Itzykson and Zuber had not derived their result by an explicit calculation but related
the integral~1.1! to a diffusion process. They showed that it can be viewed as the kernel of a
diffusion equation in the curved space of the eigenvalues of Hermitian matrices. Since the space
of Hermitian matrices is Cartesian and, therefore, easy to treat, the result~1.1! can be found by
comparison with the curved space without actually calculating it explicitly. The crucial point is the
separability of the Laplacian operator in the curved space of the eigenvalues. This diffusion
equation technique turned out to be a very powerful tool.

Some years ago, it was realized by one of the present authors7 that the Itzykson–Zuber
diffusion can be directly transferred to supermathematics. After the pioneering mathematical
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achievements of Berezin,8 supermathematics was brought into the theory of matrix models by
Efetov9 and Verbaarschot, Weidenmu¨ller, and Zirnbauer.10 In Ref. 7 it was shown that there is,
completely analogously to the case of ordinary matrices, a diffusion equation in the space of the
eigenvalues of Hermitian supermatrices whose kernel is the supersymmetric generalization of the
Itzykson–Zuber integral~1.1!. Thus the integral can be worked out generalizing the methods of
Ref. 1. Again, the crucial point is the separability of the Laplacian in the curved space of the
eigenvalues.7 The result has been used to evaluate, in the framework of random matrix theory, the
effect of symmetry breaking on the spectral correlations of a chaotic time-reversal non-invariant
system.11 Recently, it was shown that the supersymmetric generalization of the Itzykson–Zuber
diffusion has not only a mathematical, but also a physical meaning: In random matrix theory, it
describes the transition from arbitrary to chaotic fluctuations.12 These results could be used to
work out the crossover from Poisson regularity to chaos in a time-reversal non-invariant system.

Let u be a supermatrix, parameterizing the unitary supergroupU(k1/k2), with invariant Haar–
Berezin measuredm(u), and let s and r be diagonal matrices, both having the form
s5diag(s1 ,is2) with sj5diag(s1 j ,...,skj j ), j51,2. Then, in its most general form, the supersym-
metric Itzykson–Zuber integral7 can be written as13,14

E dm~u!exp~ i trg usu21r !5
det@exp~ isp1r p81!#p,p851,...,k1

det@exp~ isq2r q82!#q,q851,...,k2

Bk1k2
~s!Bk1k2

~r !
,

~1.3!

where the symbol trg stands for the supertrace, often also denoted by str. The supersymmetric
generalization of the Vandermonde determinant is given by

Bk1k2
~s!5

Dk1
~s1!Dk2

~ is2!

Pp,q~sp12 isq2!
. ~1.4!

It is worth mentioning thatBk1k2
(s) reduces to a determinant7 via Cauchy’s lemma in the case

k15k2 such thatBk1k1
(s) 5 det@1/(sp1 2 isq2)#p,q51,...,k1

. Furthermore, by settingk15N and
k250, one easily sees that formula~1.3! includes formula~1.1! as desired. However, fork1 andk2
both non-zero, there is an important caveat: In superanalysis, a change of variables can induce a
certain class of singularities. Here, this implies that, if further integration over, say, thes-variables
in Eq. ~1.3! is required, we have to deal with new types of boundary contributions which have no
analogue in ordinary analysis. The general theory of this effect, which is sometimes overlooked in
the literature, was given by Rothstein.15 In Refs. 7 and 16 it was shown how to treat these
contributions in the case of the supersymmetric Itzykson–Zuber integral. Regarding integrations
over the supersymmetric Itzykson–Zuber integral, yet another comment is in order: In applications
in statistical mechanics,3,4,7,11,12the integrand, containing formulae~1.1! or ~1.3!, possesses some
invariances under permutations. This allows one to replace the numerator of the right hand sides
of these equations by exp~i tr xy! or exp~i trg sr!, respectively, which makes the calculations more
transparent. We emphasize this trivial point since it has stirred some confusion lately.

It is the purpose of this work to transfer all the results which have been reviewed so far from
Hermitian to arbitrary complex matrices. We will do this for the case of ordinary and superma-
trices. We will derive closed formulae for the analogues of the ordinary and the supersymmetric
Itzykson–Zuber integral in the space of complex matrices. To the best of our knowledge, those
have not been worked out yet. Our results are of considerable interest in the theory of matrix
models. Several models in two-dimensional quantum gravity involve complex instead of Hermit-
ian matrices.17,18 Recently, the so-called chiral Gaussian ensembles,19 also based on complex
matrices, have been introduced and proved to be very useful in studying certain aspects of quan-
tum chromodynamics~QCD!.20–23 In particular, the integral we compute will be crucial for a
further analysis of the spectral correlations of the Dirac operator of QCD in the framework of
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random-matrix models at finite temperatures, in the presence of mass terms, or at finite chemical
potential. Via the Banks–Casher formula,24 such analysis is also important for the study of ques-
tions related to the chiral phase transition of QCD.

To derive our results, we transfer the diffusion equation technique to complex ordinary and
supermatrices. Again, the crucial point turns out to be the separability in the curved space of, in
this case, radial coordinates. We have no doubt that the explicit formula could also be evaluated
using other techniques. Especially, Gelfand–Tzetlin coordinates could be used as in Ref. 6 for
ordinary Hermitian matrices. Recently, Gelfand–Tzetlin coordinates were derived for Hermitian
supermatrices14 such that this method could also be used for complex supermatrices. Moreover,
regarding the case of ordinary matrices, we do not exclude the possibility that our results might be
derivable directly from Harish–Chandra’s formula.2 To the best of our knowledge, Harish–
Chandra’s result has not been transferred to superanalysis yet. Nevertheless, here we will focus on
the diffusion equation technique. So far, this technique was, for Hermitian matrices, viewed as a
purely mathematical tool. However, as mentioned before, the diffusion in superspace describes the
transition from arbitrary to chaotic fluctuations in random matrix theory12 and, therefore, also has
a direct physical meaning. We strongly believe that similar features are likely to exist in the case
of the diffusion in the space of complex matrices which we will discuss in the present work.

The paper is organized as follows. In Sec. II, we state our results and derive them by con-
structing an eigenvalue equation. In Sec. III, we discuss the diffusion and questions related to it.
We summarize and discuss our results in Sec. IV. Three appendices are provided for the derivation
of intermediate results used in the text. In a fourth appendix, we discuss some boundary contri-
butions which occur in the case of Hermitian supermatrices.

II. DERIVATION OF THE INTEGRAL BY CONSTRUCTING AN EIGENVALUE EQUATION

In Sec. II A, we state the integral for both cases, for ordinary and supermatrices. The deriva-
tion is performed for ordinary and supermatrices in Secs. II B and II C, respectively.

A. Statement of the integral

LetX be an arbitrary, square, complex ordinary matrix of dimensionN. It is well known25 that
it can be written in the so-called pseudo-diagonal form

X5UxV̄ with x5diag~x1 ,...,xN!, ~2.1!

where theN variablesxn are real and non-negative. Note that these are not eigenvalues, they will
be referred to as radial coordinates. While the matrixU explores the full parameter space of the
unitary groupU(N), the matrixV̄ is, in order to remove a double counting of phases, restricted to
a subspace defined as the quotient of the unitary group and the Cartan subgroup, hence we have
UPU(N) and V̄PU(N)/UN~1!.

We now multiplyX by a diagonal matrixy of the same form asx and consider the expression
i Re trUxV̄y. The integral we wish to compute is the angular average over both unitary matrices
of the exponential of this trace,

F~x,y!5E dm~U !E dm~V̄!exp~ i Re trUxV̄y!, ~2.2!

with dm(U) and dm(V̄) being the corresponding invariant Haar measures. We show that this
integral is given by

F~x,y!5
~2p!N

2

N!

det@J0~xnym!#n,m51,...,N

DN~x2!DN~y2!
, ~2.3!
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whereJ0(z) is the ordinary Bessel function of zeroth order. The Vandermonde determinant was
defined in Eq.~1.2!.

Remarkably and fully analogously to the case of Hermitian matrices, this result can straight-
forwardly be generalized to supermatrices. An arbitrary complex supermatrixs of dimension
k11k2 can be written as

s5usv̄ with s5diag~s1 ,is2! ~2.4!

andsj 5 diag(s1j ,...,skj j) for j51,2. Again, while the matrixu explores the full parameter space of
the unitary supergroup, the matrixv̄ has to be restricted to a subspace in order to remove phases,
we thus haveuPU(k1/k2) andv̄ P U(k1 /k2)/U

k11k2(1).
Analogously to the case of ordinary matrices, we multiply the matrixs by a diagonal matrix

r of the same form ass and consider the expressioni Re trgusv̄r . The generalization of the
integral in the ordinary case is given by replacing the trace by the supertrace and the invariant
measures by the corresponding ones in superspace,dm(u) anddm( v̄), respectively. We show that
the double average

w~s,r !5E dm~u!E dm~ v̄ !exp~ i Re trgusv̄r ! ~2.5!

is given by

w~s,r !5
~2p!~k12k2!2

22k1k2k1!k2!

det@J0~sp1r p81!#p,p851,...,k1
det@J0~sq2r q82!#q,q851,...,k2

Bk1k2
~s2!Bk1k2

~r 2!
~2.6!

where the generalized Vandermonde determinant was defined in Eq.~1.4!.
Obviously, formula~2.6! includes formula~2.3! as can be seen by puttingk15N andk250.

Hence, in principle, it is sufficient to perform the derivation solely in superspace. However, we
decided not to do so. We prove both results separately, first, in order to give those readers with
little interest in supermathematics the opportunity to understand the ordinary case without being
burdened by undesired information and, second, in order to help those readers with little experi-
ence in supermathematics to approach this area starting from more familiar grounds.

Note that our discussion is related to the harmonic analysis in the corresponding matrix
spaces. The functionsF(x,y) andw(s,r ) can be viewed as the lowest order Bessel functions in
these spaces.

B. Derivation for ordinary matrices

BesidesX, we introduce a second arbitrary complex matrixY of dimensionN whose pseudo-
diagonalization readsY5U8yV̄8 with y defined in Sec. II A. We haveU8PU(N) and
V̄8PU(N)/UN~1!. We observe that the ‘‘plane wave’’

W~X,Y!5exp~ i Re trXY†! ~2.7!

in this matrix space obeys the ‘‘wave equation’’

DW~X,Y!52~ trYY†!W~X,Y!. ~2.8!

where the Laplacian is defined as

D5(
n,m

S ]2

]~ReXnm!2
1

]2

]~ Im Xnm!2D . ~2.9!
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Due to the invariance of the Haar measures we can express the function~2.2! as the angular
average of the matrix plane wave,

F~x,y!5E dm~U8!E dm~V̄8!W~X,Y!. ~2.10!

The crucial observation is now, just as in the case of Hermitian matrices, thatF(x,y) satisfies the
wave equation~2.8!. This can be seen by averaging both sides of~2.8! over the matricesU8 and
V̄8 using trYY†5tr y2. Consequently, sinceF(x,y) depends only on the radial coordinates, we
can replace the LaplacianD by its radial partDx . To construct it we have to transform the
Cartesian volume element

d@X#5)
n,m

d ReXnmd Im Xnm ~2.11!

to radial and angular coordinates,

d@X#5J~x!d@x#dm~U !dm~V̄!,

d@x#5 )
n51

N

dxn , J~x!5DN
2 ~x2!)

n51

N

xn , ~2.12!

where the JacobianJ(x) was worked out in Ref. 25. It is then easily shown that the radial part of
the Laplace operator reads

Dx5 (
n51

N
1

J~x!

]

]xn
J~x!

]

]xn
, ~2.13!

and we thus arrive at the eigenvalue equation

DxF~x,y!52~ tr y2!F~x,y! ~2.14!

in the curved space of the radial coordinates.
The key to the solution of the above equation is the separability of the radial Laplacian. For

an arbitrary functionL(x) we have the identity

Dx

L~x!

DN~x2!
5

1

DN~x2!
Dx8L~x!. ~2.15!

where the reduced part of the radial Laplacian is

Dx85 (
n51

N S ]2

]xn
2 1

1

xn

]

]xn
D . ~2.16!

The proof of this fact is given in Appendix A. Hence, the ansatz

F~x,y!5
C~x,y!

DN~x2!DN~y2!
~2.17!

in which, for symmetry reasons,x and y are treated on the same footing, reduces the radial
equation~2.14! to the much simpler form
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Dx8C~x,y!52~ tr y2!C~x,y!. ~2.18!

This equation is again separable by a product ansatz forC(x,y) which yieldsN Bessel differential
equations of zeroth order for each of theN functions. Hence, each of them can be written as a
linear combination of the Bessel and Weber functionsJ0 and N0, respectively. Note that the
indices of the eigenvaluesyn

2 of theseN Bessel differential equations can be permuted arbitrarily
implying that the most general solution is a linear combination of all these permuted products.
However, the integral representation~2.2! imposes certain boundary conditions on the solution of
the differential equation~2.18!. Since the integral has a finite value for allx and y we have to
exclude the Weber function from the solution. Additionally, we have to take into account that the
integral is invariant under permutations of the indices. SinceDN(x

2), the Vandermonde determi-
nant, is really a determinant, the functionC(x,y) has to have the same properties under permu-
tations of the indices. Incorporating these boundary conditions we find

C~x,y!5
~2p!N

2

N!
det@J0~xnym!#n,m51,...,N , ~2.19!

which yields immediately the result~2.3!. Of course, the normalization constant is arbitrary. We
will show later why our choice is useful.

C. Derivation for supermatrices

All steps are completely analogous to the ordinary case. In order to make the notation more
transparent, we write the supermatrixs in the boson-fermion block form7,10

s5Fs11 s12

s21 is22G , ~2.20!

wheresj l is a kj3kl complex matrix whose entries are commuting ifj5 l and anticommuting if
jÞ l . The factori in front of s22 is, as usual, introduced to ensure convergence.9,10Again, besides
s, we introduce a second arbitrary complex supermatrixr of the same form whose pseudo-
diagonalization readsr5u8r v̄8 with r defined in Sec. II A and withu8PU(k1/k2) and v̄8
P U(k1 /k2)/U

k11k2(1). There is also a ‘‘plane wave’’

w~s,r!5exp~ i Re trgsr†! ~2.21!

in this matrix space. Note that the expression Re trgsr† has, for explicit calculations, to be
interpreted as half the sum of trgsr† and its complex conjugate since we will not introduce the
real and the imaginary part of Grassmann variables. The plane wave satisfies the ‘‘wave equation’’

Dw~s,r!52~ trg rr†!w~s,r!, ~2.22!

where the Laplacian is defined as

D5(
j51

2

(
p,q

S ]2

]~Respq
j j !2

1
]2

]~ Im spq
j j !2D 14(

jÞ l
(
p,q

]2

]spq
jl spq

jl *
. ~2.23!

The invariance of the Haar measures allows us to express the function~2.5! as the angular average
of the matrix plane wave,

w~s,r !5E dm~u8!E dm~ v̄8!w~s,r!. ~2.24!

6400 T. Guhr and T. Wettig: An Itzykson–Zuber-like integral and diffusion

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



As in the ordinary case, we integrate both sides of the wave equation over the matricesu8 andv̄8
using trgrr†5trg r 2 and observe thatw(s,r ) satisfies the wave equation~2.22!. Again, since
w(s,r ) depends only on the radial coordinates, we can replace the LaplacianD by its radial part
Ds . The transformation of the Cartesian volume element

d@s#5)
j51

2

)
p,q

d~Respq
j j !d~ Im spq

j j !)
jÞ l

)
p,q
dspq

jl * dspq
jl ~2.25!

to radial and angular coordinates reads

d@s#5J~s!d@s#dm~u!dm~ v̄ !,
~2.26!

d@s#5)
j51

2

)
p51

kj

dsp j , J~s!5B
k1k2

2 ~s2!)
j51

2

)
p51

kj

sp j ,

where the Jacobian or BerezinianJ(s) is computed in Appendix B. The radial part of the Laplace
operator takes the form

Ds5(
j51

2

(
p51

kj 1

J~s!

]

]sp j
J~s!

]

]sp j
, ~2.27!

details are given in Appendix B. Hence, we have to solve the equation

Dsw~s,r !52~ trg r 2!w~s,r ! ~2.28!

in the curved space of the radial coordinates.
In the case of ordinary matrices, the key for the solution was the separability of the radial

Laplacian. It is essential that this feature is also present in the case of supermatrices. This closely
parallels the situation for Hermitian matrices.7 For an arbitrary functionl(s) we find

Ds

l~s!

Bk1k2
~s2!

5
1

Bk1k2
~s2!

Ds8l~s!, ~2.29!

where the reduced part of the Laplacian reads

Ds85(
j51

2

(
p51

kj S ]2

]sp j
2 1

1

sp j

]

]sp j
D . ~2.30!

The derivation is given in Appendix C. Thus the ansatz

w~s,r !5
c~s,r !

Bk1k2
~s2!Bk1k2

~r 2!
~2.31!

yields the reduced equation

Ds8c~s,r !52~ trg r 2!c~s,r ! ~2.32!

which, again, is separable by a product ansatz forc(s,r ). We obtaink11k2 Bessel differential
equations of zeroth order. The boundary conditions imposed by the integral representation~2.5!
are very similar to the ones in the ordinary case. First, we have to construct the solution using the
Bessel functionJ0 and to reject the Weber functionN0. Second, we have to take into account the
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invariance under permutations. Here, however, we see from the Jacobian that this invariance exists
only within the boson-boson or fermion-fermion block, respectively. Since these boundary con-
ditions imply that the solution is given by

c~s,r !5
~2p!~k12k2!2

22k1k2k1!k2!
det@J0~sp1r p81!#p,p851,...,k1

det@J0~sq2r q82!#q,q851,...,k2
, ~2.33!

we arrive at the final result~2.6!. Again, the normalization constant is arbitrary, we will comment
on our choice later.

III. DIFFUSION EQUATION AND FOURIER TRANSFORM

We now discuss a diffusion equation which is closely related to the plane waves and the
eigenvalue equations we constructed in the previous section. Our goal is to show that the concept
of diffusion equations which is so useful in the case of Hermitian matrices can be transferred
straightforwardly to arbitrary complex matrices. However, since these considerations are more of
conceptual interest and do not require so many explicit calculations, we study only the case of
supermatrices. The case of ordinary matrices is always recovered by settingk15N andk250. In
Sec. III A, we introduce the concepts in Cartesian space. We go over to the curved space of the
radial coordinates in Sec. III B. In Sec. III C, we discuss some questions related to boundary
terms.

A. Cartesian space

We introduce a time coordinatet and consider the diffusion equation

1

2
DF~s,t !5

]

]t
F~s,t ! ~3.1!

for a given initial conditionF0~s! such that

lim
t→0

F~s,t !5F0~s!. ~3.2!

The kernel of this diffusion satisfies the equations

1

2
DG~s,t !5

]

]t
G~s,t ! and lim

t→0
G~s,t !5d~s!, ~3.3!

where thed-function is given by

d~s!5)
j51

2

)
p,q

d~Respq
j j !d~ Im spq

j j !)
jÞ l

)
p,q

d~spq
jl
* !d~spq

jl !. ~3.4!

The d-function of an anticommuting variableb is defined byd(b) 5 A2pb.7,10 Similar to the
discussion in Refs. 1 and 16, the kernel is the Gaussian

G~s,t !5
22k1k2

~2pt !~k12k2!2
expS 2

1

2t
trg ss†D . ~3.5!

and the solution of the diffusion process can be written as the convolution

F~s,t !5E G~s2s8,t !F0~s8!d@s8#. ~3.6!
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Moreover, this solution is also expressible as

F~s,t !5expS t2 D DF0~s! ~3.7!

which has to be viewed as a formal power series.
We will now show how the diffusion can be related to the plane waves of the previous section

and to the theory of Fourier transforms. To this end, we remark that thed-function ~3.4! can be
expanded in the plane waves~2.21!,

d~s!5
24k1k2

~2p!2~k12k2!2 E w~s,r!d@r#, ~3.8!

which allows us to introduce the Fourier transformP̃~r! of a functionP~s! and its inverse by

P̃~r!5
22k1k2

~2p!~k12k2!2 E P~s!w* ~s,r!d@s# and P~s!5
22k1k2

~2p!~k12k2!2 E P̃~r!w~s,r!d@r#.

~3.9!

The Fourier transform can be used to derive the explicit form~3.5! of the diffusion kernel defined
in Eq. ~3.3!, this works as follows. The diffusion kernel can, according to Eq.~3.7!, be expressed
in the form

G~s,t !5expS t2 D D d~s! ~3.10!

in which we insert the expansion~3.8!,

G~s,t !5
24k1k2

~2p!2~k12k2!2 E expS t2 D Dw~s,r!d@r#. ~3.11!

We write the exponential as a power series and, by virtue of the eigenvalue equation~2.22!,
perform all derivatives. The resummation of the series gives the diffusion kernel as the Fourier
transform of a Gaussian

G~s,t !5
24k1k2

~2p!2~k12k2!2 E expS 2
t

2
trg rr†Dw~s,r!d@r#, ~3.12!

which is in agreement with Eq.~3.5!.

B. Curved space of the radial coordinates

We now assume that the initial condition depends only on the radial coordinates, i.e.,
F0(s)5F0(s). Thus it is useful to use the coordinates~2.4! in the integral representation~3.6! of
the solution of the diffusion equation~3.1!. This has some important consequences. The invariance
of the Haar measures implies that this solution is also a function of the radial coordinates only,
hence we haveF(s,t)5F(s,t). Consequently, the diffusion takes place in the curved space of the
radial coordinates alone,

1
2 DsF~s,t !5

]

]t
F~s,t ! and lim

t→0
F~s,t !5F0~s!, ~3.13!
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whereDs is the radial part of the Laplacian defined in Eq.~2.27!. Moreover, we may conclude
from the integral representation~3.6! that the kernel of the diffusion~3.13! is given by

G~s,s8,t !5E dm~u!E dm~ v̄ !G~usv̄2s8,t !. ~3.14!

There are two ways of evaluating this double average. First, since the kernelG(s,t) is Gaussian,
a direct comparison of Eq.~3.5! with Eq. ~2.5! shows that

G~s,s8,t !5
22k1k2

~2pt !~k12k2!2
expS 2

1

2t
trg~s21s82! Dw~2 is/t,s8!, ~3.15!

which means that this double average can be expressed in terms of the one we have calculated in
the previous section. Hence, with the help of the result~2.6! and after a reordering of factors, we
can write the diffusion kernel in the curved space in the form

G~s,s8,t !5
1

k1!k2!

det@g~sp1 ,sp81
8 ,t !#p,p851,...,k1

det@g~sq2 ,sq82
8 ,t !#q,q851,...,k2

Bk1k2
~s2!Bk1k2

~s82!
, ~3.16!

in which the entries of the determinants are given by the function

g~sp j ,sq j8 ,t !5
1

t
expS 2

sp j
2 1sq j82

2t D I 0S sp jsq j8

t D ~3.17!

for all values ofj51,2 andp,q51,....,kj . The functionI 0(z) is the modified Bessel function of
zeroth order.

Alternatively, if the result~2.6! was unknown, formula~3.16! could be derived by a procedure
similar to the one in Sec. II C. The separability of the radial partDs leads to a reduced diffusion
equation involving the reduced operatorDs8 defined in~2.30!. This equation can be solved by a
product ansatz leading to the diffusion equation

1

2 S ]2

]sp j
2 1

1

sp j

]

]sp j
Dg~sp j ,sq j8 ,t !5

]

]t
g~sp j ,sq j8 ,t !, ~3.18!

where the differential operator is just the radial part of the Laplacian in a two-dimensional space.
In order to construct the solution, we express it as the formal series

g~sp j ,sq j8 ,t !5expS t2 S ]2

]sp j
2 1

1

sp j

]

]sp j
D D d~sp j2sq j8 !

Asp jsq j8
~3.19!

acting on the proper radiald-function in this two-dimensional space. Inserting Hankel’s expansion
@Ref. 26, 14•4.~1!# of this d-function,

d~sp j2sq j8 !

Asp jsq j8
5E

0

`

J0~sp jz!J0~sq j8 z!z dz, ~3.20!

we can perform all derivatives and resum the series. We arrive at

g~sp j ,sq j8 ,t !5E
0

`

expS 2
t

2
z2D J0~sp jz!J0~sq j8 z!z dz, ~3.21!
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which is precisely Weber’s representation@Ref. 26, 13•31.~1!# of the function~3.17!. It is easy to
see in a direct calculation that this function is indeed the kernel of the diffusion equation~3.18!.
According to an elementary result@Ref. 26, 13•3.~1!# of the theory of Bessel functions,
g(sp j ,sq j8 ,t) is properly normalized,

E
0

`

g~sp j ,sq j8 ,t !sp j dsp j51, ~3.22!

where we have used the radial partsp j dsp j of the measure in the two-dimensional space. Fur-
thermore, sinceI 0(z) behaves like exp(z)/A2pz for large values of the argument, the function
g(sp j ,r q j ,t) approaches thed-function

lim
t→0

g~sp j ,sq j8 ,t !5
d~sp j2sq j8 !

Asp jsq j8
~3.23!

for vanishing timet.
The limit relation~3.23! implies that the kernel~3.16! satisfies the correct limit relation in the

curved space of all radial coordinates, we write this in the form

lim
t→0

G~s,s8,t !5E dm~u!E dm~ v̄ !d~usv̄2s8!

5
1

k1!k2!

det@d~sp12sp81
8 !#p,p851,...,k1

det@d~sq22sq82
8 !#q,q851,...,k2

AJ~s!J~s8!
~3.24!

where the BerezinianJ(s) is defined in Eq.~2.26!. Using this result, it is easily checked that the
constant 1/k1!k2! ensures the correct normalization. This, in turn, motivates our choice of the
normalization constants in Eqs.~2.19! and ~2.33!.

C. Questions related to boundary contributions

The functionG(s,s8,t) given in Eq.~3.16! is, as we have shown, the kernel of the diffusion
equation~3.13! in the curved space of the radial coordinates. Thus the solution of the integral
~3.14! as it stands is indeed given by formula~3.16!. However, there is a very subtle point about
kernels of this type which has an important impact on applications. Although we will present some
applications of our results to physical problems in a forthcoming publication, we already give a
short, more intuitive, discussion of this subtlety here. We do so to acquaint the reader who is not
yet familiar with supersymmetry with this point which is sometimes overlooked in the literature.

In Cartesian space, the normalization of the Gaussian diffusion kernel~3.5! implies that the
equation

E G~s2s8,t !d@s8#51 ~3.25!

holds for all values oft and for all matricess. Thus after performing the angular integration, one
would naively assume that the radial integral

h~s,t !5E G~s,s8,t !J~s8!d@s8# ~3.26!

also yields unity for all values oft and for all diagonal matricess. In the ordinary case, i.e., for
k15N andk250, it can be checked by a straightforward, direct calculation that we indeed have
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h(s,t)51. However, in the case of supermatrices this is, for non-trivial reasons, no longer true.
The singularities of the BerezinianJ(s) compensate the vanishing of some angular Grassmann
integrals such that a finite, non-zero result remains. This effect leads to certain contributions to the
integral which are often called Efetov–Wegner–Parisi–Sourlas terms in the more physics-oriented
literature. There are various methods to construct those contributions in the applications of
supersymmetry.7,9–11,27From a strictly mathematical point of view, these terms arise as boundary
contributions due to the fact that the integrals are ill-defined for non-compact supermanifolds. A
full-fledged theory can be found in Ref. 15. It is instructive to think of these boundary contribu-
tions as being necessary to restore the translational invariance of the integrals in Cartesian space,
as obvious in Eq.~3.25!, which is broken in Eq.~3.26! if h(s,t) differs from unity.28 To illustrate
this, we calculate the functionh(s,t) for the simplest non-trivial case, namelyk15k251. We
have

h~s,t !5~s11
2 1s12

2 !E
0

`E
0

`

ds118 ds128
s118 s128

s118
21s128

2 g~s11,s118 ,t !g~s12,s128 ,t !. ~3.27!

By expressing the denominator of the Berezinian as the integral

1

s118
21s128

2 5E
0

`

exp~2~s118
21s128

2!z!dz, ~3.28!

we can evaluate the double integral~3.27! by standard methods@Ref. 26, 13•3 ~1!#. We arrive at

h~s,t !512expS 2
s11
2 1s12

2

2t D ~3.29!

which equals unity only in the limitt→0. Note that the exponential is, apart from a numerical
factor, nothing else but the Cartesian kernel ats850 which is justG(s,t)5G(s,t). This is, of
course, no accidental coincidence.

The casek15k2 , wherek1 is arbitrary, is physically the most interesting one. Due to the
determinant structure of the functionBk1k1

(s82), the evaluation of the functionh(s,t) reduces to
the double integral~3.27! already computed, and we arrive at

h~s,t !5
1

Bk1k1
~s2!

detF 1

sp1
2 1sq2

2 1S 2expS 2
sp1
2 1sq2

2

2t D D G
p,q51,...,k1

. ~3.30!

As evident from the definition~3.26!, this function is a solution of diffusion equation~3.13!, we
have

1

2
Dsh~s,t !5

]

]t
h~s,t !. ~3.31!

However, it is not a kernel of the diffusion process in the usual sense since it obeys different limit
relations,

lim
t→0

h~s,t !usÞ051 and lim
t→`

h~s,t !50, ~3.32!

which reflect the existence of the new boundary contributions. The functionh(s,t) can be viewed
as the envelope solution corresponding to the kernelG(s,s8,t). The functionBk1k1

(s2)G(s,s8,t)

possesses a product structure in the kernelsg(sp1 ,sq28 ,t). Due to the integration, this property has
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vanished inBk1k1
(s2)h(s,t), which factorizes only in functions of the combinationssp1

2 1sq2
2 .

Along the lines given in Refs. 7, 10, and 28, one can show that the diffusion kernel in the curved
space of the radial coordinates has to be replaced by

G~s,s8,t !→~12h~s,t !!
d~s8!

J~s8!
1G~s,s8,t ! ~3.33!

if further integration over the primed variabless8 is required. This replacement cures the problem
of the boundary contributions fork15k2 in the physically most interesting cases. Hence, for a
well-behaved initial conditionF0(s), the solutionF(s,t) of the diffusion equation in the curved
space of the radial coordinates reads

F~s,t !5~12h~s,t !!F0~0!1E G~s,s8,t !F0~s8!J~s8!d@s8#. ~3.34!

We emphasize that this result is really a solution of the diffusion process~3.13!, including its
initial condition. Note that there are very peculiar cases in which further boundary contributions
can arise. Those, however, have to be constructed using the full theory which is given in Ref. 15.

In Appendix D, we reconsider the boundary contributions to the supersymmetric Itzykson–
Zuber integral for Hermitian supermatrices as derived in Ref. 7.

IV. SUMMARY AND DISCUSSION

We have calculated an analogue of the Itzykson–Zuber integral in the space of arbitrary
complex matrices. We arrived at explicit formulae for the case of ordinary and supermatrices,
where the latter includes the former. We performed our calculation by transferring the diffusion
equation technique of Itzykson and Zuber for Hermitian matrices, which works in ordinary1 and in
superspace,7,13 to complex matrices. For the actual derivation, we used an eigenvalue equation for
the plane waves in these matrix spaces which is closely related to this diffusion. Similar to the
Hermitian case, the integral in question turns out to be the kernel of the diffusion in the curved
spaces of the radial coordinates. The explicit results can be computed due to a separability of the
Laplacian in these radial spaces. We discussed certain types of boundary contributions to the full
solution of the diffusion equation which can arise in superspace.

We have no doubts that our explicit results can also be derived by other methods. In particu-
lar, the use of Gelfand–Tzetlin coordinates for the unitary group in ordinary6 and superspace14

ought to be mentioned here since it allows a recursive evaluation of correlation functions in the
corresponding matrix models. Most importantly, as far as the case of ordinary matrices is con-
cerned, it does not seem unlikely that the explicit formula for the integral we presented here can
be derived directly from the Harish–Chandra integral. At first sight, one would not think so since
the Harish–Chandra integral is an average over one unitary matrix whereas our result is a double
average over two unitary matrices. This can be seen from the fact that our explicit formula
contains Bessel functions where the Itzykson–Zuber integrals contain exponentials, i.e., plane
waves. The Bessel function of zeroth order is just the angular average over a plane wave in a
two-dimensional space. This might indicate that the angular average over two unitary matrices is
essential and cannot be replaced by an average over one unitary matrix. Nevertheless, we do not
exclude the possibility that a clever reordering of the trace in the matrix plane waves which
combines these two unitary matrices can be done in such a way that the essential part of the
calculation reduces to an application of the Harish–Chandra formula. These considerations, how-
ever, do not apply to the case of supermatrices, for which, to the best of our knowledge, Harish–
Chandra’s result has not been transferred yet.

For the reasons discussed above, we do not want to present our explicit formulae for the
integrals as our most important findings. Rather, we consider the Itzykson–Zuber-like diffusion
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which we constructed here as our most interesting result. We strongly believe that this diffusion is
more than a mathematical tool to calculate integrals. In the case of Hermitian supermatrices, it was
shown12 that the Itzykson–Zuber diffusion models the transition from arbitrary to chaotic fluctua-
tions of all orders in a very general way. We are convinced that the diffusion in the space of
complex matrices also has a physical meaning of similar significance.
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APPENDIX A: SEPARABILITY IN ORDINARY SPACE

We use a more convenient form ofDx .

Dx5 (
n51

N S ]2

]xn
2 1

] ln J~x!

]xn

]

]xn
D . ~A1!

The derivatives in Eq.~2.15! are evaluated in a straightforward manner, and we arrive at the
intermediate result

Dx

L~x!

DN~x2!
5

1

DN~x2! (
n51

N S ]2

]xn
2 1

1

xn

]

]xn
24DnDL~x!, ~A2!

whereDn5Sn1xn
2(Sn

22Tn) with

Sn5 (
m51
mÞn

N
1

xn
22xm

2 and Tn5 (
m51
mÞn

N
1

~xn
22xm

2 !2
. ~A3!

We now show that(n51
N Dn50. The fact that

(
n51

N

Sn5 (
mÞn

1

xn
22xm

2 50 ~A4!

is easily seen by renaming summation indices. The remaining term is

R5 (
n51

N

xn
2~Sn

22Tn!5 (
V~n,m,m8!

xn
2

~xn
22xm

2 !~xn
22xm8

2
!
, ~A5!

where the symbolV(n,m,m8) denotes summation over three indicesn,m,m8 which are pairwise
different. We now renamen↔m andn↔m8 to obtain

2R5 (
V~n,m,m8!

F xm
2

~xm
2 2xn

2!~xm
2 2xm8

2
!

1
xm8
2

~xm8
2

2xm
2 !~xm8

2
2xn

2!
G52R, ~A6!

from whichR50 follows immediately. This completes the proof.
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APPENDIX B: DERIVATION OF THE BEREZINIAN AND THE RADIAL PART OF THE
LAPLACIAN

We wish to compute the Berezinian of the transformations5usv̄, defined in Eq.~2.4!. We
first construct

ds5u~u† du s1ds1s dv̄ v̄†!v̄. ~B1!

Writing u† du5du8 anddv̄ v̄†5dv̄8, and noting thats†5s, we obtain the invariant length ele-
ment

trg ds ds†5trg~du8 s1ds1s dv̄8!~s du8†1ds1dv̄8† s! ~B2!

from which the Berezinian can be read off. Sincedu8 and dv̄8 are also in the algebra we are
entitled to drop the primes. This gives

trg ds ds†5trg ds21trg s ds~du1du†1dv̄1dv̄†!1trg~du s1s dv̄ !~s du†1dv̄† s!.
~B3!

where we have made use of the fact thats and ds are diagonal. Sincedu and dv̄ are anti-
Hermitian, the second term in the above expression yields zero. The vanishing of this term also
shows that the Laplace operator separates into two sums over radial and angular coordinates,
respectively, a fact which has been used in Sec. II C. The first term in Eq.~B3! contributes a factor
of 1 to the Berezinian so that we are left with the third term only. Using boson-fermion block
notation, we write

du5F duC1 duA

2duA
†

duC2G . ~B4!

A note about the number of degrees of freedom:duCj is an anti-Hermitian matrix withkj
2 com-

muting degrees of freedom whereasduA and duA
†
each havek1k2 anticommuting degrees of

freedom. Similar notation is used fordv̄, the main difference being that the diagonal elements of
dv̄Cj are zero. It is convenient to separate the diagonal elements ofduCj and to define

du s1s dv̄5h1v5Fh11 0

0 h22G1Fv11 v12

v21 v22G . ~B5!

whereh11 5 diag(du11
C1 s11,...,duk1k1

C1 sk11), h22 5 diag(du11
C2 is12,...,duk2k2

C2 isk22), the diagonal

elements ofv11 andv22 are zero, and

vpp8
11

5du
pp8

C1 sp811sp1 dv̄pp8
C1 ~pÞp8!,

vqq8
22

5du
qq8

C2 isq821 isq2 dv̄qq8
C2 ~qÞq8!,

vpq
125dupq

A isq21sp1 dv̄pq
A ,

vqp
2152duqp

A† sp12 isq2 dv̄qp
A† .

~B6!

We now consider

trg~h1v!~h†1v†!5trg~hh†1vv†!5trg hh†1tr v11v11†2tr v22v22†

2tr~v12v12†1v21v21†!. ~B7!
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where in the first equality we have employed the fact thath is diagonal and that the diagonal
elements ofv are zero by definition. Each independent variable appears in one and only one of the
four terms in the above expression so that their contribution to the Berezinian is multiplicative.
The contribution from the first term can be read off immediately, we obtain

trg hh†→)
j51

2

)
p51

kj

sp j . ~B8!

We now write trv11v11† 5 (p,p8(uvpp8
11 u2 1 uvp8p

11 u2). Each term in the sum contains only inde-
pendent variables which do not appear in any other term so that the contribution of these terms to
the Berezinian is multiplicative again. Using Eq.~B6! and the anti-Hermiticity ofduC1 and
dv̄C1 we obtain for the contribution to the Berezinian

tr v11v11†→ )
p,p8

k1

~sp1
2 2sp81

2
!25Dk1

2 ~s1
2!. ~B9!

In complete analogy,

2tr v22v22†→ )
q,q8

k2

~sq2
2 2sq82

2
!25Dk2

2 ~ss
2!. ~B10!

Similar arguments are made for the remaining term in Eq.~B7!. Sincev12 andv21 couple com-
muting and anticommuting variables, their contribution to the Berezinian appears in the denomi-
nator. Specifically, we obtain

2tr~v12v12†1v21v21†!→S )
p51

k1

)
q51

k2

~sp1
2 1sq2

2 !D 22

. ~B11!

Collecting terms, we finally obtain the Berezinian~2.26!.
Since Eq.~B3! implies that the metric tensor in the subspace of the radial coordinates is just

the unit matrix, the radial part of the Laplacian has the form~2.27!.

APPENDIX C: SEPARABILITY IN SUPERSPACE

Again, we writeDs in a more convenient form,

Ds5(
j51

2

(
p51

kj S ]2

]sp j
2 1

] ln J~s!

]sp j

]

]sp j
D . ~C1!

We now evaluate the derivatives in Eq.~2.29! in analogy to the case of ordinary matrices. The
calculation is somewhat more involved but still reasonably straightforward so that we only men-
tion the intermediate result

Ds

l~s!

Bk1k2
~s2!

5
1

Bk1k2
~s2! (

j51

2

(
p51

kj S ]2

]sp j
2 1

1

sp j

]

]sp j
24Dpj Dl~s!, ~C2!

whereDpj5sp j1sp j
2 (Spj

2 2Tpj). Here,Spj5S̃p j2S̄p j andTpj5T̃p j2T̄p j with

S̃p j5 (
q51
qÞp

kj 1

sp j
2 2sq j

2 , S̄p j5 (
q51

kx~ j ! 1

sp j
2 1sqx~ j !

2 , ~C3!
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T̃p j5 (
q51
qÞp

kj 1

~sp j
2 2sq j

2 !2
, T̄p j5 (

q51

kx~ j ! 1

~sp j
2 1sqx~ j !

2 !2
. ~C4!

In the above, we have introduced the convention

x~ j !5 H1 if j52
2 if j51. ~C5!

We now show that( j51
2 (p51

kj Dp j 5 0. According to the definition, we have

Dpj5S̃p j1sp j
2 ~S̃p j

2 2T̃p j!2S̄p j1sp j
2 ~S̄p j

2 22S̃p jS̄p j1T̄p j!. ~C6!

For eachj , the sum overp of the first two terms is zero in analogy to the case of ordinary matrices
which was discussed in Appendix A. We are thus left with the remaining two terms which we
denote by2 Dpj8 . Summing overp and j , some algebra leads to

(
j51

2

(
p51

kj

Dp j8 5 (
p51

k1

(
q51

k2 1

sp1
2 1sq2

2 S (
p851
p8Þp

k1 sq2
2 ~sp1

2 1sp81
2

!12sp1
2 sp81

2

~sp1
2 2sp81

2
!~sp81

2
1sq2

2 !

1 (
q851
q8Þq

k2 sp1
2 ~sq2

2 1sq82
2

!12sq2
2 sq82

2

~sq2
2 2sq82

2
!~sp1

2 1sq82
2

! D . ~C7!

Renamingp↔p8 andq↔q8 in the first and second term, respectively, shows that each of the two
sums yields zero individually. This completes the proof.

APPENDIX D: ON BOUNDARY CONTRIBUTIONS IN THE CASE OF HERMITIAN
SUPERMATRICES

The purpose of this Appendix is to clarify the role of some boundary contributions to the
supersymmetric Itzykson–Zuber integral which arise in the case of Hermitian supermatrices. This
discussion is not directly related to the main content of the present paper.

After we had computed the result~3.30! for the functionh(s,t), P.-B. Gossiaux pointed out to
us that the structure of these contributions in the case of Hermitian supermatrices ought to be very
similar. Indeed, this is true. A careful reexamination of the considerations following Eq.~B33! in
Appendix B of Ref. 7 leads to additional terms very similar to the ones in Eq.~3.30!. To clarify
this, we calculate the function

h~s,t !5
1

Bk~s!
det@h̃~sp1 ,isq2 ,t !#p,q51,...,k ~D1!

in the case of Hermitian supermatrices fork15k25k. Here, the entries of the determinant are
given by

h̃~sp1 ,isq2 ,t !5
1

2pt E
2`

1`E
2`

1` dr1 dr2
r 12 ir 2

expS 2
1

2t
~~sp12r 1!

21~sp22r 2!
2! D . ~D2!

We introduce polar coordinatesr 11 ir 25k exp(iq) andsp11 isq25m exp(ic) and find
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h̃~sp1 ,isq2 ,t !5
1

2pt E0
`

dk expS 2
1

2t
~k21m2! D E

0

2p

dq exp~ iq!expS km

t
cos~q2c! D .

~D3!

The angular integration yields the modified Bessel functionI 1(km/t) @Ref. 26, 3•71.~9! and
6•22.~4!#. The radial integration can then be performed using standard methods@Ref. 26,
13•3.~2!#. Collecting everything, we arrive at

h~s,t !5
1

Bk~s!
detF 1

sp12 isq2
S 12expS 2

sp1
2 1sq2

2

2t D D G
p,q51,...,k

. ~D4!

As in the case of complex matrices, this function satisfies the diffusion equation

1

2
Dsh~s,t !5

]

]t
h~s,t !, ~D5!

where the radial partDs of the Laplacian is defined in Eq.~B19! of Ref. 7. The main results of Ref.
7 do not change due to these additional contributions.

NOTE ADDED IN PROOF

After submission of the manuscript, we learned that our results Eq.~2.3! and Eq.~2.6! were
also obtained independently by Jackson, S¸ener, and Verbaarschot@A. D. Jackson, M. K. S¸ener,
and J. J. M. Verbaarschot~preprint hep-th/9605183!# who also generalized Eq.~2.3! to rectangular
ordinary matrices.

Furthermore, we were informed by G. Olshanski that the integral for complex rectangular
ordinary matrices had already appeared in a short note in Russian by F. A. Berezin and F. I.
Karpelevich@F. A. Berezin and F. I. Karpelevich, Doklady Akad. Nauk SSSR118, 9–12~1958!#.
We thank G. Olshanski for sending us this paper and V. Kagalovsky for help with the translation.
Our main result Eq.~2.6!, however, has not been derived before to the best of our knowledge.

In the meantime, we have also generalized our result Eq.~2.6! to rectangular supermatrices.
Let s be a complex supermatrix whose boson-boson and fermion-fermion blocks have dimension
k1 3 k18 andk2 3 k28 , respectively. Such a matrix can only be pseudodiagonalized ass5usv̄ if the
condition (k18 2 k1)(k28 2 k2) > 0 is satisfied. For definiteness, let us assume thatk18 > k1 andk28
> k2 and defined 5 k18 2 k1 2 (k28 2 k2), d15d, d252d. The Berezinian analogous to~2.26! is
then given by

J~s!5Bk1k2
2 ~s2!)

j51

2

)
p51

kj

sp j
112dj . ~I!

The reduced part of the Laplacian analogous to~2.30! becomes

Ds85(
j51

2

(
p51

kj S ]2

]sp j
2 1

112dj
sp j

]

]sp j
D . ~II !

The integral analogous to~2.6! yields

w~s,r !5
~2p!~k12k2!~k182k28!

2k1k281k18k2k1!k2!

det@Jd1~sp1r p81!#p,p851,...,k1
det@Jd2~sq2r q82!#q,q851,...,k2

Bk1k2
~s2!Bk1k2

~r 2!P j51
2 Pp51

kj ~sp jr p j!
dj

. ~III !

6412 T. Guhr and T. Wettig: An Itzykson–Zuber-like integral and diffusion

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



It should be emphasized that the appearance of additional singularities in the Berezinian~I! gives
rise to further contributions to the Efetov–Wegner termh(s,t).
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In this paper we characterize the possible symmetry groups of wave equations and
certain evolutionary generalizations, in a single time variable and one or more
spatial variables. Furthermore, we describe a complete classification of two-
dimensional wave equationsutt5F[u] and potential evolutionary equations
uxt5F[u] having a point or contact symmetry group. The results rely on Lie’s
classification of planar transformation groups and their relative differential invari-
ants. © 1996 American Institute of Physics.@S0022-2488~96!03211-2#

I. INTRODUCTION

One of the most basic constructions of modern physics is the formulation of field equations
~or variational principles! admitting a known symmetry group. It has been known since the days
of Sophus Lie that this can be readily done, in the regular case, by assembling suitable combina-
tions of differential invariants of the transformation group. Although Lie’s general theorem would
appear to completely resolve the issue of classifying differential equations admitting prescribed
symmetry groups, a more subtle question has recently been of importance, and cannot be quite so
immediately answered. The problem is to classify invariant differential equations of a specified
form admitting a prescribed symmetry group. For example, the classification of geometric diffu-
sion equations admitting symmetry groups of visual significance is a problem of importance in
computer vision and image processing. In Refs. 1 and 2, a complete classification for subgroups of
the projective group was determined. More generally, one can ask for a complete list of invariant
evolution equations admitting a prescribed symmetry group, and the latter problem was com-
pletely solved in Ref. 3, using the theory of relative invariants. It was found that any transforma-
tion group in the field and spatial variables~but fixing the time variable! always admits an infinite
collection of invariant evolution equations; see Theorem 4.11 below and also the work of
Sokolov.4 The reason why this problem is not an immediate consequence of the classification of
differential invariants for the transformation group in question is that it may not be so evident
which combinations of differential invariants,if any, can be used to produce the equation having
the specified form. In the case of evolution equations, the fact that the time variable introduces an
additional coordinate into the picture implies that one needs to compute a new basis of fundamen-
tal differential invariants, even when the purely spatial derivative invariants are known.

In this paper, we shall consider the classification of wave equations in both one and several
space variables, and a single time variable admitting a prescribed finite-dimensional symmetry
group. This problem is of interest in computer vision and other applications, first since one might
desire to use hyperbolic, rather than parabolic, processing on an image. A second reason arises in
image enhancement, in which one uses a hyperbolic regularization to effect a backwards~and
hence ill-posed! parabolic equation~cf. Ref. 5!. ~See also Ref. 6 for equations of Euler–Poisson–
Darboux type.! Since the image smoothing was done in a group-invariant manner, one might
reasonably ask for similarly invariant hyperbolic enhancers. Surprisingly, the above-mentioned

a!Electronic mail address: rhh@eucmax.sim.ucm.es
b!Electronic mail address: olver@ima.umn.edu

0022-2488/96/37(12)/6414/25/$10.00
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result for evolution equations is no longer valid—notevery spatial transformation group admits an
invariant hyperbolic wave equation. We determine a complete set of conditions that a transforma-
tion group admit an invariant evolutionary or wave equation. Further, using the differential in-
variants for the groups, completely characterize all possible invariant equations admitted by a
symmetry group of the prescribed type. In the planar case~one independent spatial variable and
one dependent variable!, we then use Lie’s complete classification of groups of point and contact
transformations in the plane to find a complete list of invariant wave equations.

We shall assume that the reader is familiar with the basic theory of symmetry groups of
differential equations, as presented in Refs. 7 and 8. We shall make extensive use of the theory of
differential invariants, as presented in the latter book, as well as in Refs. 9 and 10. Since we are
relying on Lie’s classification of finite-dimensional transformation groups acting on a two-
dimensional complex manifold cf.~Refs. 8 and 11!; we shall assume that the variables are, in
general, complex valued. In the case of point transformation groups, the extension of these results
to real differential equations is not difficult. Unfortunately, there is, as far as we know, no com-
plete classification of real groups of contact transformations acting in two dimensions. The present
paper can be viewed as a start towards the classification of differential invariants for surfaces
under transformation groups in three-dimensional space, where the group acts completely trivially
on the time coordinate. In Ref. 12 Lie describes a partial classification of three-dimensional
transformation groups, and claims that he has completed it but these results never appeared in
print. An important task awaiting completion is the complete classification of the differential
invariants of Lie’s three-dimensional transformation groups.

II. JET SPACES AND PROLONGATIONS

Before proceeding to a detailed discussion of our results, we need to first review the theory of
differential invariants and, more generally, relative differential invariants. Since all our consider-
ations are local, we will not lose any generality by working in Euclidean space. We will consider
the total spaceE.X3U, where, in the cases considered in this paper,U.R has coordinateu, the
scalar-dependent variable, whereasX.Rp, has coordinatesx5(x1,...,xp), representing the spatial
independent variables. Thenth jet space JnE thus has coordinates (x,u(n)), whereu(n) stands for
all partial derivatives

uK5
]ku

~]x1!k1•••~]xp!kp
, where

K5~k1 ,...,kp!,
k5#K5k11•••1kp<n. ~2.1!

We will use the basic multi-indicesei , i50,...,p, which has a single 1 in thei th position and
zeros elsewhere. Thusui 5 uei 5 ]u/]xi . Moreover, we writeL#K if all entries ofL are less than
or equal to those ofK, so 0<l j<kj , j50,...,p. Similarly, we writeL,K if L#K, but LÞK.
Note that the differenceK2L is a well-defined multi-index if and only ifL#K. Finally, we write
(L
K) for the standard multinomial coefficient, which is nonzero providedL#K. A function
F(x,u(n)) depending on independent and dependent variables and their derivatives is known as a
differential function, andn5ord F is its order, which means thatF really does depend onnth-
order derivatives ofu.

We shall consider both point transformation groups, which are local transformation groups
G5G~0! acting on the spaceE5X3U, and contact transformation groups, which, by Ba¨cklund’s
Theorem,13,8 are at most first order, and thus realized as a local transformation groupG~1! on the
first jet space J1E preserving the contact ideal generated by the contact formu5du2( i51

p uidx
i .

In both cases, the group induces a corresponding transformation groupG(n) on thenth jet space
JnE, called thenth prolongation ofG, which can be uniquely characterized as thenth-order
contact transformation group projecting back to the original group action.

We letg denote the Lie algebra ofG. Consider an infinitesimal generator of the group action
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v~0!5(
i51

p

j i
]

]xi
1w

]

]u
, ~2.2!

corresponding to the Lie algebra elementvPg. In the case of point transformations, the coeffi-
cients ji and w of v~0! depend onx and u. The group is fiber preserving~or projectable7! if
j i5j i(x) only depend on the independent variables. Finally, the group consists ofaffine bundle
mapsif it consists of transformations (x,u)°„F(x),A(x)u1B(x)… which are fiber preserving and
affine in the dependent variableu at each point; the infinitesimal generators havew5a(x)u
1b(x). For instance, most linear partial differential equations have affine bundle symmetry
groups. The infinitesimal generators of a contact transformation group have the same form~2.2!,
but the coefficientsji andw are allowed to depend on the first-order derivatives ofu provided they
satisfy thecontact conditions

]w

]uk
5(

i51

p

ui
]j i

]uk
, k51,...,p. ~2.3!

In all cases, thecharacteristicof the vector field~2.2! is defined to be the first-order differential
function

Q~x,u~1!!5w2(
i51

p

j iui . ~2.4!

The vector field can be recovered from its characteristic by solving~2.4! for w and using

j i~x,u~1!!52
]Q~x,u~1!!

]ui
, ~2.5!

which is a consequence of the contact conditions~2.3!, to construct the coefficientsji . The
corresponding infinitesimal generator

v~n!5(
i51

p

j i
]

]xi
1 (

#K<n
wK

]

]uK
~2.6!

of G(n) defines thenth prolongation ofv, whose coefficients are given by the standard prolonga-
tion formula

wK5DKQ1(
i51

p

j iuKi . ~2.7!

HereDK is the total derivative corresponding to the multi-indexK, and we use the notationuKi
5uK1ei

5DiuK .
For later reference, we require some elementary formulas for higher-order total derivatives of

certain types of differential functions. Both results are easy to prove by induction using Leibniz’
rule.

Lemma 2.1: Supposew(x,u) is a zeroth-order differential function. Then its first and second-
order total derivatives have the form

Diw5
]w

]u
ui1

]w

]xi
,
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DiD jw5
]w

]u
ui j1

]2w

]u2
uiuj1

]2w

]u]xi
uj1

]2w

]u]xj
ui1

]2w

]xi]xj
. ~2.8!

Furthermore, for any multi-index K with k5#K>3,

DKw5wuuK1(
i51

p

ki~Diwu!uK2ei
1F~x,u~k22!!, ~2.9!

where F is a differential function depending on at most~k22!nd-order derivatives of u
Lemma 2.2: Suppose Q(x,u(1)) is a first-order differential function. Then its first- and second-

order total derivatives have the form

DiQ5(
l51

p
]Q

]ul
uil1

]Q

]u
ui1

]Q

]xi
,

~2.10!

DiD jQ5(
l51

p
]Q

]ul
ui j l 1 (

l ,m51

p
]2Q

]ul]um
uil ujm1

]Q

]u
ui j

1(
l51

p S ]2Q

]ul]u
~ujuil1uiujl !1

]2Q

]ul]x
i ujl1

]2Q

]ul]x
j uil D1R~x,u~1!!,

where R is a first-order differential function. Furthermore, for any multi-index K with k5#K>3,

DKQ5(
l51

p
]Q

]ul
uKl1QuuK1 (

i ,l51

p

kiDi S ]Q

]ul
DuK2ei1el

1R~x,u~k21!!, ~2.11!

where R is a differential function depending on at most~k21!st-order derivatives of u.
Note that in both sets of formulas, the multi-indices of orders 1 and 2 do not fit into the

general higher-order pattern.

III. RELATIVE DIFFERENTIAL INVARIANTS

Throughout this section, we letG be a transformation group~either point or contact! acting
via prolongation on the jet spaces JnE over a bundleE5X3U. Recall that an~absolute! differ-
ential invariant is an invariant differential function for a prolonged group action. A differential
operator is said to beG-invariant if it maps differential invariants to higher-order differential
invariants, and thus, by iteration, produces hierarchies of differential invariants of arbitrarily large
order. A general theorem guarantees the existence of sufficiently many such differential operators
so as to completely generate all the higher-order independent differential invariants of the group
by successively differentiating lower-order differential invariants. Thus, a complete description of
all the differential invariants is provided by a collection of low-order ‘‘fundamental’’ differential
invariants along with the requisite invariant differential operators.

Theorem 3.1:Suppose that G is a group of point or contact transformations. Then there exist
p5dimX invariant differential operatorsD1,...,Dp , and a system of fundamental differential
invariants J1 ,...,Jm , such that, locally, every differential invariant can be written as a function of
the iterated derivativesD j 1

...D j k
Jn .

A relative differential invariant is, roughly speaking, a differential function which is invariant,
up to a factor, under the prolonged group action. The theory of relative differential invariants is a
particular case of the general theory of relative invariants of transformation group actions, in
which the group acts by prolongation on a suitable jet space~cf. Ref. 8!. See Ref. 14 for a detailed
development and recent results describing general classification of relative invariants.
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Definition 3.2: A differential multiplier of order nis a linear mapv°Hv(x,u
(n)) that maps

each Lie algebra elementvPg to a differential functionHv(x,u
(n)), and satisfies thecocycle

condition

v~n!
„Hw~x,u~n!!…2w~n!

„Hv~x,u
~n!!…5H @v,w#~x,u

~n!!. ~3.1!

The cocycle condition~3.1! implies that the associated infinitesimal generators of the differ-
ential multiplier representation

Dv5v~n!2Hv~x,u
~n!! ~3.2!

form a Lie algebra of first-order differential operators on JnE having the same commutation
relations as the Lie algebrag. In this paper, we only need consider scalar multipliers, although
extensions to matrix-valued multipliers are straightforward.14,8

Definition 3.3:A differential functionR(x,u(n)) is called arelative differential invariantfor
the differential multiplierHv if it satisfies

Dv~R!5v~n!~R!2Hv•R50, for all vPg. ~3.3!

Thus ordinary~or absolute! differential invariants are relative differential invariants for the
trivial differential multiplier Hv[0. Note that ifR is a relative differential invariant for the
multiplier Hv andS is a relative differential invariant for the multiplierKv , then the productR•S
is a relative differential invariant for the sumHv1Kv . If R0 is one particular relative differential
invariant of weightHv , then every other such relative differential invariant has the formR5IR0,
whereI is an arbitrary absolute differential invariant.

Relative differential invariants can be used to construct invariant differential equations. The
following result is standard; see Ref. 14 for a proof and Ref. 15 for additional applications.

Theorem 3.4:A regular partial differential equationD(x,u(n))50 admits G as a symmetry
group if and only ifD is a relative differential invariant for some differential multiplier of G.

Proposition 3.5: Suppose R(x,u(n)) is a relative differential invariant of weight Hv . Then the
partial differential equation R(x,u(n))5S(x,u(n)) admits G as a symmetry group if and only if
S(x,u(n)) is also a relative differential invariant of weight Hv .

The existence of relative differential invariants of sufficiently high order is a consequence of
general results in Refs. 8 and 10; see also Ref. 14 for generalizations. Recall that a group is said
to acteffectively freelyon the manifoldM if the quotient groupG/G0 of G by its global isotropy
subgroupG05$gPGug•x5x for all xPM % acts freely.

Theorem 3.6:Let Hv(x,u
(n)) be an nth-order differential multiplier. If G(n) acts effectively

freely on (an open subset of )JnE, then there exists a nontrivial relative invariant of weight Hv .
The next theorem is originally due to Ovsiannikov;10 see also Ref. 8.
Theorem 3.7:If G is a local transformation group on E, then, for n sufficiently large, G acts

effectively freely on the open subset ofJnE where its orbits have maximal dimension.
Combining Theorems 3.6 and 3.7, we conclude that any transformation group admits a non-

trivial relative differential invariant, provided we allow it to have a sufficiently high order.
Theorem 3.8:Any differential multiplier Hv(x,u

(n)) of a transformation group G admits a
nonzero relative invariant R0(x,u

(m))Ó0. Moreover, every other relative invariant of weight Hv
has the form R5I •R0, where I is an arbitrary absolute differential invariant of G.

Example 3.9:The total divergence multiplierDv is defined as the total divergence of the
independent variable coefficients of the infinitesimal generator~2.2!, so that

Dv5Div j5(
i51

p

Dij
i . ~3.4!
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The total divergence multiplier arises in the study of invariant variational problems. The standard
infinitesimal invariance criterion7 that G be a strict variational symmetry group~i.e., without
divergence terms! of a variational problem* L(x,u(n))dx is

v~n!~L !1L Div j50. ~3.5!

However,~3.5! is just the condition that the LagrangianL(x,u(n)) is a relative differential invari-

ant for the negative total divergence multiplierD̃v52Div j. For example, ifX5R2, then the usual
surface area integral,

S @u#5E A11ux
21uy

2dx`dy, ~3.6!

clearly admits the Euclidean groupG5E~3!, consisting of translations and rotations in the three-
dimensional space coordinatized by (x,y,u), as a symmetry group. This means thatS
5 A11ux

21uy
2 is a relative differential invariant forDv52Dxj2Dyh, corresponding to the in-

finitesimal generatorv~0!5j]x1h]y1w]u .
Example 3.10:A second important differential multiplier is thecharacteristic multiplier

Kv5Qu , ~3.7!

whereQ(x,u(1)) is the characteristic of the vector field~2.2! given in~2.4!. The importance of this
differential multiplier lies in its connection with the Euler–Lagrange equations for invariant varia-
tional problems. See Refs. 8 and 3 for the proof of the following result.

Theorem 3.11:Let G be a transformation group. Suppose that*L(x,u(n))dx is a G-invariant
variational problem, so that L is a relative differential invariant for the total divergence multi-
plier. Then its Euler–Lagrange expressionE(L) is a relative differential invariant of weight
2Qu2Div j.

If one chooses theG-invariant volume element*Ldx as the invariant variational problem,
then the Euler–Lagrange equation forms theG-invariant minimal hypersurface equation inE. For
example, ifG5E~3! is the Euclidean group inR3, then the Euler–Lagrange equation for the
surface area integral~3.6! is the standard~Euclidean-invariant! three-dimensional minimal surface
equation

05E~S!52Dx~Sux!2Dy~Suy!5
2~11uy

2!uxx12uxuyuxy2~11ux
2!uyy

~11ux
21uy

2!3/2
.

The right-hand side of this equation is a relative invariant of weight2Qu2Dxj2Dyh.
Using the multiplicative property of relative invariants, we readily establish the following

useful result.
Corollary 3.12: Every relative invariant for the characteristic multiplier Kv5Qu has the form

F5
L

E~L !
I , ~3.8!

where I is an arbitrary differential invariant of G, and*L(x,u(n))dx is a G-invariant variational
problem having nontrivial Euler–Lagrange expressionE(L)Ó0.

IV. INVARIANCE CONDITIONS

Our primary purpose is determining symmetry groups of evolutionary-type equations, and so
we shall extend the preceding considerations to include an additional independent variable, the
‘‘time’’ t. Now, the total space isÊ.R3E.Z3U, whereU.R has coordinateu, whereas
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Z.R3Rp has coordinatest5x0, representing time, andx5(x1,...,xp), representing the spatial
independent variables. Thenth jet space JnÊ thus has coordinates16 (x,u[n] ), whereu[n] stands for
all partial derivatives

uK5
]ku

~]t !k0~]x1!k1•••~]xp!kp
, where

K5~k0 ,k1 ,...,kp!,
k5#K5k01k11•••1kp<n. ~4.1!

In this framework, annth-orderevolution equationis a partial differential equation of the
form

ut5F@u#, ~4.2!

whereF:JnE→R is a smooth differential function, depending on spatial derivatives ofu up to
ordern. More generally, we consider higher-orderevolutionary-type equations

uK5F@u#, ~4.3!

whereK5L1e0 is a multi-index that contains at least one time derivative in it, sok0>1, andF
is again a spatial differential function. Particular cases include thewave equation

utt5F@u#, ~4.4!

whereK52e05(2,0,...,0), and thepotential evolution equation

]2u

]t]xi
5uit5F@u#, ~4.5!

whereK5e01ei . Note that differentiating the evolution equation~4.2! with respect toxi , or
replacingu by its i th potential functionu°ui , will convert ~4.2! into an equation of the form
~4.5!. In each of these examples, one could, of course, go further and allowF to also depend on
some lower-order temporal derivatives ofu; for example, one might allow the right-hand side of
the wave equation~4.4! to depend onut . However, for most of our results, we will restrict
attention to purely spatial right-hand sides; extensions will be briefly discussed in Sec. VI.

We are interested in classifying thespatialsymmetry groups of such evolutionary-type equa-
tions. The restriction to spatial implies that the time variablet is not affected by the group
transformations, and so we consider a connected Lie groupG of either point or contact transfor-
mations, which acts on the spaceE5X3U of spatial coordinates, and hence determines the
corresponding spatially prolonged actionsG(n) on the jet space JnE. In addition, one can include
the timet as an additional variable not affected by the group transformations, and thus induce a
temporal prolongationG[n] acting on the extended jet space JnÊ. In the point transformation case,
this is found by prolonging the extended action (t,x,u)°„t,g•(x,u)… on Ê.R3E; in the case of
contact transformations, we extend the action to J1Ê.R23J1E, so that thet variable is not
affected, while the action on the time derivative coordinateut is determined by the chain rule:

ū t̄ 5S ]F

]u
2(

i51

p

ūi
]J i

]u D ut , where
t̄5t, x̄i5J i~x,u~1!!,

ū5F~x,u~1!!, ūi5C i~x,u
~1!!.

~4.6!

In this manner, a contact transformation on J1E extends in a natural way to a contact transforma-
tion on J1Ê.

Given a Lie algebra elementvPg, the corresponding infinitesimal generatorv~0! is a spatial
vector field, as in~2.2!, whose extended action onÊ5R3E has the same form,v@0#5v~0!, since the
time variable is not changed. Letv[n] denote thenth prolongation ofv to JnÊ. Note that, according
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to the prolongation formula, the coefficients of temporal and mixed derivatives inv[n] are not
necessarily trivial even thought is unaffected by the group transformations; for instance, using
~2.5!, the coefficient of]ut is

w t5DtQ1(
i51

p

j iuit5Quut . ~4.7!

Thusv@1#(ut)5Quut , and we discover thatut is a relative differential invariant for the character-
istic multiplier Qu . Proposition 3.5 thus implies that the evolution equation~4.2! admitsG as a
symmetry group if and only if the right-hand sideF[u] is also a relative differential invariant of
weight Qu . Combining this observation with the characterization of such relative differential
invariants in Corollary 3.12 produces the main result of Ref. 3.

Theorem 4.1:An evolution equation ut5F[u] admits the connected spatial transformation
group G as a symmetry group if and only if F is a relative invariant of weight Qu , and hence of
the form (3.8).

In particular, every spatial transformation group admits an invariant evolution equation! The
most effective method for analyzing the symmetry groups of differential equations is by use of
infinitesimal generators. Our starting point is the standard infinitesimal invariance criterion for
differential equations.

Theorem 4.2: An evolutionary-type equation uK5F admits a connected transformation
group G as a symmetry group if and only if

v@n#~uK2F !50 whenever uK5F. ~4.8!

We proceed to analyze this criterion for spatial transformation groups. The prolongation
formula ~2.6!, coupled with~2.7! and ~2.4!, implies that we can replace~4.8! by

DKQ1(
i51

p

j iuKi5v~n!~F ! whenever uK5F. ~4.9!

Recall thatk5#K is the order ofK, which contains at least onet derivative. Note first that the
left-hand side of~4.9! does not contain any terms involving derivatives of orderk11 since the
termsjiuKi cancel the corresponding terms obtained by differentiating the characteristic.@This still
holds for contact transformations due to the contact conditions~2.5!.#

We begin by assuming thatK has orderk5#K>3, postponing the analysis of the second-
order cases, namely the wave equation~4.4! and potential evolution equations~4.5!, until later.
However, unless specifically stated otherwise, the intervening theorems also apply to second-order
equations, albeit with slightly different proofs. For #K>3, according~2.11!, the only terms on the
left-hand side of~4.9! which involve derivatives of orderk are

QuuK2(
i51

p

(
j50

p

kj~Djj
i !uK2ej1ei

, ~4.10!

where we have used~2.5! to identify the derivatives of the characteristic with respect to the
derivative variablesui . On solutions to~4.3! we can replaceuK by F, and hence the terms
involving uK in ~4.10! only depend on spatial derivatives ofu. On the other hand, because the
coefficientsw andji do not depend ont, all other terms on the left-hand side of~4.9! will involve
at least one temporal derivative ofu, which cannot be replaced by a spatial derivative. Therefore,
the infinitesimal invariance condition~4.9! splits into three components. The first part contains
only spatial derivatives ofu, and is obtained by equating the terms involvinguK in ~4.10! to the
right-hand side of~4.9!, leading to our first key result.
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Theorem 4.3: If the evolutionary-type equation uK5F[u] admits a spatial symmetry group
G, then the right-hand side satisfies

v~n!~F !5SQu2(
i51

p

kiDij
i DF, for all vPg. ~4.11!

Thus, Eq. ~4.11! says that the right-hand sideF of an invariant differential equation of
evolutionary type forms a relative differential invariant for the differential multiplier

Hv
K~x,u~2!!5Qu2(

i51

p

kiDij
i . ~4.12!

In particular, the order oft differentiation on the left-hand side of the equation does not affect the
type of relative invariant that the right-hand side assumes.

Corollary 4.4: If a purely temporal evolutionary-type equation,

]nu

]tn
5F@u#, ~4.13!

admits G as a symmetry group, then F is relative invariant of weight Qu , and hence of the form
(3.8).

Thus if ~4.13! admitsG, then so does the evolution equation~4.2! with the same right-hand
side. The converse, though, isnot true since there are additional invariance conditions that~4.13!
must satisfy that are not required for the invariance of the simple evolution equation~4.2!. The
additional terms on the left-hand side of the infinitesimal condition~4.9! will end up providing
fairly severe restrictions on the types of transformation groups which have, say, invariant wave
equations.

Corollary 4.5: If an equation of the form (4.13) admits a symmetry group G, then the corre-
sponding evolution equation ut5F is also G-invariant. The converse holds provided G fulfills the
symmetry conditions in Theorem 4.11 below.

The second set of invariance conditions arise from the otherkth-order terms in~4.10!, which
are equated to 0. We find

Djj
i50, whenever kj.0, j50,...,p, jÞ i . ~4.14!

In particular,k0>1 by assumption, and hence~4.14! impliesDtj
i50, i51,...,p. This automati-

cally requires thatj i5j i(x) depends only on the spatial variables, and hence the symmetry group
is fiber preserving.

Proposition 4.6: If G is a symmetry group of an evolutionary-type equation (4.3) with left-
hand side of order#K>3, then G is necessarily a fiber-preserving transformation group.

Q~x,u~1!!5w~x,u!2(
i51

p

j i~x!ui . ~4.15!

Given a multi-indexK5(k0 ,k1 ,...,kp), let us divide the spatial variables into two sets: the
principal spatial variables, which are those appearing in the derivativeuK , and theparametric
spatial variables, which are all the rest. Thusxj , 1<j<p, is principal if kj.0, and parametric if
kj50. In particular, for the purely temporal evolutionary-type equation~4.13!, all spatial variables
are parametric. For notational convenience, let us number the spatial variables so that the firsts,
namelyx1,...,xs, are principal, while the remainderxs11,...,xp are parametric.

6422 R. H. Heredero and P. J. Olver: Classification of invariant wave equations

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



Proposition 4.7: Suppose G is a symmetry group of an evolutionary-type equation uK5F[u]
in which #K>3. Let vPg determine an infinitesimal generator (2.2). Then the coefficients
js11,...,jp corresponding to the parametric spatial variables xs11,...,xp depend only on para-
metric variables:

j i5j i~xs11,...,xp!, i5s11,...,p, ~4.16!

while the coefficients corresponding to the principal spatial variables x1,...,xs have the form

j i5j i~xi ,xs11,...,xp!, i51,...,s. ~4.17!

Proposition 4.7 allows us to properly justify the statement in Theorem 4.3. In fact, ifG is an
arbitrary spatial transformation group, then the function~4.12! is, in fact, not an infinitesimal
multiplier. However, the additional conditions contained in Proposition 4.7 are precisely those
needed to make~4.12! satisfy the infinitesimal multiplier conditions~3.1!. Indeed, we can readily
produce a basic relative invariant that is associated with~4.12!.

Proposition 4.8: Let us split the independent variables into parametric and principal vari-
ables in accordance with the multi-index K. Suppose G is a spatial transformation group satis-
fying the conditions in Proposition 4.7. Suppose that

v5(
i51

p

Ai~x,u
~n!!dxi ~4.18!

is a G-invariant one-form. Then, for each principal variable xi , the coefficient Ai satisfies
17

v~n!~Ai !1~Dij
i !Ai50, ~4.19!

and hence defines a relative invariant of weight2Dij
i .

Proof: The infinitesimal invariance conditions for a horizontal one-form~4.18! on Jn ~up to
contact forms—see Ref. 8! are

05v~n!~v!5(
i51

p

$v~n!~Ai !dx
i1AiDj i%, ~4.20!

where

Dj i5(
j51

p

D jj
idxj ~4.21!

is the total~or horizontal! differential ofj i . On the other hand, according to the conditions~4.14!,
for any principal variablexi , only the term whenj5 i contributes to the coefficient ofdxi .
Therefore, the coefficient ofdxi in ~4.20! is precisely the left-hand side of~4.19!. Q.E.D.

Theorem 4.9: If the evolutionary-type equation uK5F[u] admits a spatial symmetry group
G, then its right-hand side is necessarily of the form

F5
AKL

E~L !
I . ~4.22!

Here I is an arbitrary absolute differential invariant, *L(x,u(n))dx is a G-invariant variational
problem with Euler–Lagrange expressionE(L)Ó0, andv5A1dx

11•••1Apdx
p is a G-invariant

one-form, such that the product
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AK5)
i51

s

~Ai !
kiÓ0.

It is worth reemphasizing at this point that not every spatial transformation group admits an
invariant evolutionary-type equation of a prescribed form. For equations in more than two spatial
variables, Proposition 4.7 provides some restrictions on the types of symmetry groups allowed.
Further restrictions are obtained by analyzing the lower-order terms in the infinitesimal invariance
conditions~4.9!.

We have already analyzed the terms depending onkth-order derivatives. All remaining terms
in ~4.8! must vanish since they involve lower-order temporal derivatives ofu. We number the
spatial variables so thatx1,...,xs are the principal variables, andxs11,...,xp are the parametric
variables. We now use Leibniz’ rule and~2.9! to find that the terms involving derivatives of order
k21 are

(
i50

p

ki~Diwu!uK2ei
2(

j51

p S kj2 D ~Dj
2j j !uK2ej

50. ~4.23!

In particular, settingi50 in the first summation shows thatDtwu50, and hence

w~x,u!5h~x!u1s~x!. ~4.24!

This implies that the group consists of affine bundle maps.
Proposition 4.10: A connected symmetry group of an evolutionary-type equation which is not

an evolution equation or a potential evolution equation consists of affine bundle maps.
~The case of a wave equation will be demonstrated later.! The additional terms in~4.23! imply

that

]h

]xi
5
ki21

2

]2j i

~]xi !2
, kiÞ0. ~4.25!

In the ordinary case, the group is fiber preserving, and so hence, in terms of the principal variables,

h~x!5(
i51

s
ki21

2

]j i

]xi
1z~xs11,...,xp!. ~4.26!

Furthermore, ifki>2, then the~k22!nd-order derivativeuK22ei
in ~4.9! has coefficient

S ki2 DDi
2h5S ki3 DDi

3j i , or Di
2h5

ki22

3
Di
3j i , ki>2. ~4.27!

However, differentiating~4.25! and subtracting, we find

Di
3j i50, whenever ki>2. ~4.28!

Therefore

j i5a i~xi !21b ixi1g i , ki>2, ~4.29!

wherea i , b i , andg i are functions of the parametric variablesxs11,...,xp only. This implies all
the lower-order derivative terms are also zero; indeed the only term left unaccounted for is
DKs50; but this is automatic sinces only depends on spatial coordinates andK contains at least
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one time derivative. We have completed our analysis of the infinitesimal symmetry conditions
~4.8! for #K>3, and therefore characterized the possible symmetry groups for higher-order
evolutionary-type equations.

The analysis in the second-order cases proceeds similarly. The wave equation case~4.4! is
completely analogous, using~2.8! and ~2.10! instead of the higher-order counterparts, and left to
the reader. On the other hand, if the equation is a potential evolution equation,~4.5! ~with i51 for
consistency in notation!, then the conditions arising from second-order derivatives in~4.9! require

]2Q

]ul]um
5

]2Q

]ul]x
1 50 whenever l ,mÞ1,

whereas

]2Q

]u]uj
5

]2Q

]u2
5

]2Q

]u]x1
50 for all j51,...,p.

These imply that the characteristic must have the special form

Q~x,u~1!!5u~x,u1!1z~x2,...,xp!u2(
i52

p

j i~x2,...,xp!ui . ~4.30!

Therefore, potential evolution equations can admit contact symmetry groups, but only of a very
special type, with infinitesimal generators of the form

2
]u

]u1

]

]x1
1(

i52

p

j i~x2,...,xp!
]

]xi
1Fz~x2,...,xp!u1u~x,u1!1u1

]u

]u1
G ]

]u
. ~4.31!

We have thus completed our analysis of the infinitesimal symmetry conditions~4.8!, and have
thus proved the following general result governing the possible symmetry groups of evolutionary-
type equations.

Theorem 4.11: Let G be a connected spatial transformation group, and suppose that
uK5F[u], k0.0, is an evolutionary-type equation admitting G as a symmetry group. Assume that
x1,...,xs are the principal variables, and xs11,...,xp are the parametric variables.

~i! If the equation is an evolution equation, ut5F, then there are no conditions on G.
~ii ! If the equation is a potential evolution equation, uxt5F, where x5x1, then G can be a

contact transformation group whose generators have the form (4.31).
~iii ! In all other cases, the group is necessarily a group of affine bundle maps, whose infinitesi-

mal generators have coefficients of the form (4.16), (4.17), (4.24), and (4.26). Moreover, if
the left-hand side contains a principal derivative having order 2 or more, i.e., ki>2, then
the corresponding coefficient has the form (4.29).

In all cases, a group G of the prescribed form does admit a nontrivial invariant evolutionary-
type equation uK5F0 with F0Ó0 a relative invariant of weight (4.12) as given in (4.22). More-
over, the most general G-invariant equation of this form is uK5IF 0 , where I is an arbitrary
absolute differential invariant of G.

Proof: The only part left to demonstrate is the existence of a suitably invariant evolution
equation. This follows from the general existence result for relative invariants given in Theorem
3.8. Q.E.D.

Remark:The equationuK50 is invariant under any transformation group that meets the
invariance conditions in Theorem 4.11.
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Remark:If the right-hand side of an evolutionary-type equation is nontrivial,FÓ0, thenuK/F
is an ~absolute! differential invariant of the groupG acting on JnÊ.

A useful observation is that in every case, the symmetry group admits an invariant foliation,
namely that provided by the vertical fibration$x5c% of eitherE or, in the contact case, J1E, and
hence, by definition, must form an imprimitive group of transformations onE. Indeed, Proposition
4.7 implies that the group is ‘‘multiply imprimitive’’ since any collection of independent variables
that includes all the parametric variables also defines an invariant foliation.

Proposition 4.12: Any connected symmetry group of an evolutionary-type equation uK5F[u]
which isnot an evolution equation is necessarily an imprimitive transformation group.

This result is of great value in simplifying the classification procedure, since it allows us to
immediately eliminate many geometrically important transformation groups~which tend to act
primitively! from consideration.

An alternative mechanism for generating invariant evolutionary-type equations whose left-
hand sides have higher-order spatial derivatives is by differentiating lower-order equations of
evolutionary type. The preceding remark shows how this may be used to provide alternative
absolute temporal differential invariants.

Theorem 4.13:If the evolutionary-type equation uK5F[u] admits a spatial symmetry group
G, then any spatial derivative uK1L5DLF, where l050, also admits G as a symmetry group
provided G satisfies the restrictions for the differentiated evolutionary-type equation prescribed in
Theorem 4.11.

Proof: This is a direct consequence of the standard commutation formula

v~n11!
•Di5Di•v

~n!2(
j51

p

~Dij
j !Dj , ~4.32!

between prolonged vector fields and total derivatives~cf. Ref. 7!. SupposeL5ei , so thatx
i is now

a principal variable forK1L5K1ei , whether or not it was one forK. Assume first thatG
satisfies the conditions of Proposition 4.7, withK replaced byK1L5K1ei . Thus, ifF satisfies
~4.11!, then~4.8! implies

v~n11!DiF5Div
~n!~F !2~Dij

i !DiF5DiF SQu2(
j51

p

kjD jj
j DFG2~Dij

i !DiF

5SQu2(
j51

p

l jD jj
j DDiF1@Dif2kiDi

2j i #F. ~4.33!

Now ~4.25!, which, according to our hypothesis, must hold withki replaced byl i5ki11, implies
that the coefficient ofF in the final term in~4.33! vanishes, and soDiF is a relative invariant of
the correct weight for the multi-indexL @cf. ~4.12!#. Q.E.D.

An interesting question is how to connect this approach with that in Theorem 4.9.

V. CLASSIFICATION IN ONE SPACE DIMENSION

The previous sections dealt with the general theory of invariant equations of evolutionary type
in multidimensional space. We now restrict our attention to evolutionary-type equations in one
space dimension, so thatp51 and there is a single spatial variable,x. The advantage here is that
the spatial transformation groups act on a two-dimensional spaceE.R2, or, in the complex case
E.C2, and hence we can use Lie’s classification of transformation groups acting on two-
dimensional manifolds—see the Tables below, which are based on Ref. 11, as simplified in Ref. 8.
Our goal now is to classifyall the invariant equations in a single spatial variable for each of the
finite-dimensional transformation groups in the plane.~We leave aside the classification of equa-
tions admitting infinite-dimensional pseudo-groups, since, by a linearization theorem of Bluman
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and Kumei,18,8most of these differential equations can be linearized.! For simplicity, we restrict to
the complex case here, although extensions to the five additional real forms19,8 are readily done
utilizing the same methods.

Thus we consider an evolutionary-type equation

umn5
]m1nu

]xm]tn
5F@u#, ~5.1!

wheren>1, andF depends onx, u, and the spatial derivativesuk5Dx
ku of u. The symmetry

generators are vector fields of the form

v~0!5j~x,u,ux!]x1s~x,u,ux!]u , ~5.2!

where the dependence on the derivativeux5u1 allows us to also admit contact transformation
groups. LetN5max$m1n,ordF% denote the order of the partial differential equation~5.1!. Let us
begin by restating our basic Theorem 4.11 in the scalar spatial case.

Theorem 5.1:Let G be a connected spatial transformation group acting on E5X3U.R2

which is a symmetry group of an evolutionary-type equation (5.1).
~i! m50, n51: If the equation is an evolution equation, ut5F, then there are no conditions

on G.
~ii ! m50, n>2: If the equation is purely evolutionary, i.e., of the form]nu/]tn5F, then the

infinitesimal generators of G have the form

v~0!5j~x!]x1@h~x!u1 f ~x!#]u , ~5.3!

wherej,h,f are functions of x.
~iii ! m51, n51: If the equation is a potential evolution equation, uxt5F, then G can be a

contact transformation group whose infinitesimal generators have the form

v~0!5j~x,ux!]x1@ku1u~x,ux!#]u , ~5.4!

where k is a constant.
~iv! m51, n>2: If the equation is the potential form of a higher-order purely evolution

equation, uxn5F with n>2, then the infinitesimal generators of G have the form

v~0!5j~x!]x1@ku1 f ~x!#]u , ~5.5!

where k is a constant andj and f are functions of x.
~v! m>2: In all other cases, the infinitesimal generators have the form

v~0!5@a2x
21a1x1a0#]x1@~m21!a2u1b0#]u , ~5.6!

where a0, a1, a2, andb0 are constants (and thus the symmetry group is at most four-dimensional).
We also generalize Theorem 4.9 to the scalar case. Now theG-invariant one-form can be

taken to be the same as theG-invariant Lagrangianv5Ldx.
Theorem 5.2.In one spatial variable, if an evolutionary-type equation (5.1) admits a spatial

transformation group G, then its right-hand side satisfies

v~N!~F !5~Qu2mDxj!F, ~5.7!

and hence is a relative differential invariant of the form

F5
Lm11

E~L !
I . ~5.8!
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Here I is an arbitrary differential invariant of G, andv5L(x,u(n))dx is a G-invariant one-form
having nontrivial Euler–Lagrange expressionE(L)Ó0.

Lie’s local classification of nonsingular transformation groups20 that act on a two-dimensional
complex manifold appears in Tables I and II. Table I provides a complete list of canonical forms
for the infinitesimal generators of all possible finite-dimensional transformation groups in the
plane. In this case, two transformation groups are equivalent if they can be mapped to each other
by a point transformation. Cases 1.1–1.11 list the transitive imprimitive groups; Cases 2.1–2.3 list
the primitive transformation groups; and Cases 3.1–3.3 list the intransitive cases. As for contact
transformation groups, there are three additional cases not equivalent to point transformation
groups, given in Table II. Any other finite-dimensional contact transformation group is equivalent,
now via a contact transformation, to one of these three or one of the previously listed point

TABLE I. Lie algebras of point transformations inC2.

Generators Dim Structure

1.1 ]x ,x]x2u]u ,x
2]x22xu]u 3 sl~2!

1.2 ]x ,x]x2u]u ,x
2]x2(2xu11)]u 3 sl~2!

1.3 ]x ,x]x ,u]u ,x
2]x2xu]u 4 gl~2!

1.4 ]x ,x]x ,x
2]x ,]u ,u]u ,u

2]u 6 sl~2!%sl~2!
1.5 ]x ,h1(x)]u ,...,hk(x)]u k11 C›Ck

1.6 ]x ,u]u ,h1(x)]u ,...,hk(x)]u k12 C2›Ck

1.7 ]x ,]u ,x]x1au]u ,x]u ,...,x
k21]u k12 a~1!›Ck

1.8 ]x ,]u ,x]u ,...,x
k21]u ,x]x1(ku1xk)]u k12 C›~C›Ck!

1.9 ]x ,]u ,x]x ,u]u ,x]u ,x
2]u ,...,x

k21]u k13 „a~1!%C…›Ck

1.10 ]x ,]u,2x]x1(k21)u]u ,x
2]x1(k21)xu]u ,

x]u ,x
2]u ,...,x

k21]u

k13 sl~2!›Ck

1.11 ]x ,]u ,x]x ,u]u ,x
2]x1(k21)xu]u ,x]u ,

x2]u ,...,x
k21]u

k14 gl~2!›Ck

2.1 ]x ,]u ,x]x2u]u ,u]x ,x]u 5 sa~2!
2.2 ]x ,]u ,x]x ,u]x ,x]u ,u]u 6 a~2!
2.3 ]x ,]u ,x]x ,u]x ,x]u ,u]u ,x

2]x1xu]u ,xu]x1u2]u 8 sl~3!
3.1 z1(x)]u ,...,zk(x)]u k Ck

3.2 z1(x)]u ,...,zk(x)]u ,u]u k11 C›Ck

3.3 ]x ,x]x ,x
2]x 3 sl~2!

In Cases 1.5 and 1.6, the functionsh1(x),...,hk(x) satisfy akth-order constant coefficient homogeneous linear ordinary
differential equationD [u]50. In Cases 3.1 and 3.2, the functionsz1(x),...,zk(x) are arbitrary. In Cases 1.5–1.11 we
requirek>1.
Note:We usea(n) to denote the Lie algebra of the affine group ofCn, andsa(n) for the Lie algebra of the special affine
group consisting of volume-preserving affine transformations.

TABLE II. Lie algebras of contact transformations inC2.

Generators

4.1 ]x ,x]x ,]u ,x]u ,x
2]u,2ux]x1ux

2]u
4.2 ]x ,x]x ,u]u ,]u ,x]u ,x

2]u,2ux]x1ux
2]u

4.3 ]x ,x]x ,]u ,x]u ,x
2]u ,u]u ,(22x)x]x,2ux]x1ux

2]u ,xux
2]u22(u2xux)]x,

2x(2u2xux)]x1(2u2xux)(2u1xux)]u

It is convenient to separate some special cases of the families of algebras given in Tables I and II. Thus 1.7a, 1.7b and 1.7c
denote family 1.7 withaÞk, a50, anda5k, respectively. Any starred designation 1.5* –1.11* means the respective
family of algebras with the parameterk set to 1. Analogously, 1.11** is 1.11 withk52.
In the following tables we give the fundamental differential invariants and invariant derivatives of the algebras of Tables
I and II. First the action on the jet space of variables (x,u) is considered, denoted as ‘‘2-D.’’ The last two columns refer
to the action on the jet space of (t,x,u). When no invariant derivative with a component inDt is given in the third column,
Dt is meant to be the second invariant derivative.
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transformation groups.@Some of the point transformation canonical forms are equivalent under a
contact transformation—one example is the two transitive actions of SL~2! given in 1.1 and 1.2.#

We proceed to classify the possible evolutionary-type equations that admit a finite-
dimensional symmetry groups. We leave aside evolution equations, since any transformation
group admits an invariant evolution equation. Thus, according to Proposition 4.12 we can imme-
diately restrict our attention to the imprimitive groups. The first step of the classification is to
check if the representative Lie algebra of a class fulfills the invariance conditions. If this is so,
then, according to Theorem 5.2, knowledge of the fundamental absolute invariants, a relative
invariantR5L/E(L), and a nontrivial LagrangianL of the group allows us to generate all invari-
ant equations~5.1!. In Tables III and IV we give all the fundamental absolute invariants and
invariant derivatives of the algebras acting overE ~two-dimensional action! andÊ. The Lagrang-
ian L is the reciprocal of the coefficient ofDx in the invariant two-dimensional derivative. In
Table V we give the simplest invariant evolution equations, its right-hand side serving as the
needed relative invariantR @not necessarily equal toL/E(L)#, together with the corresponding
invariant wave and potential evolution equations.

TABLE III. Differential invariants.

2-D invariant
derivative

2-D fundamental
invariant~s!

Invariant
derivatives

Fundamental
invariants

1.1 u21Dx
uxx
u3

2
3

2

ux
2

u4
u21Dx

ut
u
,
uxx
u3

2
3

2

ux
2

u4

1.2
Dx

Aux2u2
uxx26uux14u3

~ux2u2!3/2
ut

21Dx
ut

Aux2u2

1.3 uQ2
21/2Dx Q2

23/2S3 u21utDx u21ut ,Q2
23/2S3

1.4
uxDx

AQ3

U5

Q3
3

ut
ux

Dx

utt
ut

2
uxt
ux

,
ut
2Q3

ux
4

1.5 Dx D [u] Dx ut ,D [u]

1.6 Dx Dx log~D [u] ! Dx
uxt
ut
,
utt
ut
,
D@u#

ut

1.7a uk
1/(a2k)Dx uk

1/(a2k)21uk11 ut
1/aDx

uxt
ut
121/a ,

utt
ut
,

uk
ut
12k/a

1.7b uk
21/kDx uk

21/k21uk11 uxt
21Dx ut

uxxt
uxt
2 ,

uk
uxt
k

1.7c
Dx

uk11
uk ,

uk12

uk11
2 ut

1/kDx

uxt
ut
121/k ,

utt
ut
,uk

1.8 euk /k!Dx euk /k!uk11 ut
1/kDx

uxt
ut
121/k ,

utt
ut
,

ut
euk~k21!!

1.9
ukDx

uk11

ukuk12

uk11
2

ut
uxt

Dx

utt
ut
,
utuxxt
uxt
2 ,

ut
k21uk
uxt
k

1.10 uk
22/(k11)Dx uk

2224/(k11)Qk12 ut
2/(k21)Dx ut

21utt ,ut
k11uk

k21

1.10* ux
21Dx ux

24Q3 ux
21Dx ut ,ut

21utt ,ux
24Q3

1.11
uk

AQk12

Dx
Qk12

23/2Sk13
ut
2

Y3
Dx

utt
ut
,
Z̃k3
Y3
2 ,
ut
2k21uk
Y3
k

1.11* ux

AQ3

Dx
Q3

23/2S4
ut
ux
Dx

uxt
ut
,
utt
ut
,
ut
2Q3

ux
4

1.11** uxx

AQ4

Dx
Q4

23/2S5 A ut
uxx

Dx

utt
ut
,

W3

Autuxx3
,
uxxt
uxx
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Regardless of the existence of invariant equations for the representative algebra, the possibil-
ity remains that a change of variables could yield a point or contact-equivalent algebra satisfying
the invariance conditions, and hence admitting invariant equations in the new coordinates. Alter-
natively, we can think that the representative algebra admits an invariant equation which is not of
the prescribed form~4.2!, but that can be converted into one by an appropriate equivalence
transformation, which leaves its invariance untouched.

The second step is to find the required changes of variables, and the corresponding additional
invariant equations. We begin with the case of point transformations, which, by Theorem 5.1,
covers all but the potential evolution equations. Consider a change of variables

x̄5x~x,u!, ū5c~x,u!. ~5.9!

TABLE IV. Differential invariants.

2-D invariant
derivative

2-D fundamental
invariants

Invariant
derivatives

Fundamental
invariants

2.1 uxx
21/3Dx

R4
uxx
8/3 H Dx

uxx
1/3 ,

uxt
utt

Dx2Dt

uxx
ut
3 ,

U2

ut
4 ,

V3

ux
5

2.2
uxx

AR4

Dx

S5
R4
3/2 5

AU2Dx

uxx
,

uxt
utt

Dx2Dt

U2

utuxx
,

V3

ut
1/2uxx

3/2 ,
X3

uxx
2

2.3
uxx
S5
1/3 Dx

V7

S5
8/3 5A

ut
ux

Dx ,

S uxt
2uxx

1
utuxxx
6uxx

2 DDx2Dt

L3
utuxx

3 ,
M 3

ut
3/2uxx

9/2 ,
N3

ut
2uxx

6

3.1 Dx x,D [u] Dx x,ut ,D [u]

3.2a Dx x,Dx log~D [u] ! Dx x,
D@u#

ut

3.2b Dx x,Dx log~D [u] ! Dx x,
uxt
ut
,
utt
ut
,
D@u#

ut

3.3 Dx x,
Q3

ux
2 Dx x,

ut
ux
,
Q3

ux
2

4.1
Dx

uxxx
1/3

R̃5

uxxx
8/3 H Dx

uxt
,

utt
uxt

Dx2Dt

ut ,
uxxx
uxt
3 ,

A3

uxt
3 ,

B3

uxt
3 ,

C3

uxt
3

4.2
uxxx

AR̃5

Dx
R̃5

23/2S̃6 H ut
uxt

Dx ,

utt
uxt

Dx2Dt

ut
2uxxx
uxt
3 ,

utA3
uxt
3 ,

B3
uxt
3 ,

C3

utuxt
3

4.3
uxxx
T7

25.2 Z9Dx T7
25/2Z9 5S

ut
uxxx

D21/3

Dx ,

Z̃33Dx

2ut
3uxxx

2Dt

D3

ut
8/3uxxx

4/3 ,
E3

ut
4uxxx

2 ,
F4

ut
2uxxx

2
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If the transformed group admits an invariant equation, it must be generated by vector fields of the
form

v̄5 j̄~ x̄!] x̄1@k~ x̄!ū1 f ~ x̄!#] ū5 j̄~x!] x̄1@k~x!c1 f ~x!#] ū ,

with the appropriate form ofk depending on the type of the invariant equation considered. This
means that

v~x!5 j̄~x!,
~5.10!

v~c!5jcx1wcu5k~x!c1 f ~x!,

and thus the level sets of the functionx form an invariant foliation. In terms of the intermediate
variables

~ x̃,ũ!5 H ~x,u!, if xxÞ0,
~x,x!, if xx50,

TABLE IV. ~Continued.!

In the previous tables, given functionsh1(x),...,hk(x), we letD be akth-order linear ordinary differential operator
whose kernel is spanned byh1(x),...,hk(x), and letW(x) denote their Wronskian determinant. Furthermore,

Qk12 5(k11)ukuk122(k12)uk11
2 ,

R453u2u425u3
2,

R̃553u3u525u4
2,

Sk135(k11)2uk
2uk1323(k11)(k13)ukuk11uk1212(k12)(k13)uk11

3 ,

S̃659u3
2u6245u3u4u5140u4

3,

U55u1
2[Q3Dx

2Q32
5
4(DxQ3)

2]1u1u2Q3DxQ32(2u1u32u2
2)Q3

2,

V75u2
2[S5Dx

2S52
7
6(DxS5)

2]1u2u3S5DxS52
1
2(9u2u427u3

2)S5
2,

Z95u3
2[T7Dx

2T72
9
8(DxT7)

2]1u3u4T7DxT72
4
5(7u3u525u4

2)T7
2,

T7510u3
3u7270u3

2u4u6249u3
2u5

21280u3u4
2u52175u4

4,

U25uxxutt2uxt
2 ,

V35utuxxx23uxtuxx ,

W35utuxxx13uxtuxx ,

X35uxxuxxt2uxtuxxx ,

Y35utuxtt2uxtutt ,

Z̃k35(k21)ut
3uxxt2(k22)ut

2uxt
2 ,

L3512utuxx
2 uxxt29uxx

2 uxt
2 26utuxxuxtuxxx2ut

2uxxx
2 ,

M3554utuxx
4 uxtt218ut

2uxx
2 uxxxuxxt254utuxx

3 uxtuxxt127uxx
3 uxt

3 254uxx
4 uxtutt127utuxx

2 uxt
2 uxxx19ut

2uxxuxtuxxx
2 1ut

3uxxx
3 ,

N35288utuxx
6 uttt2144ut

2uxx
4 uxxxuxtt2432utuxx

5 uxtuxtt124ut
3uxx

2 uxxx
2 uxxt1144ut

2uxx
3 uxtuxxxuxxt1216utuxx

4 uxt
2 uxxt

281uxx
4 uxt

4 1432uxx
5 uxt

2 utt2432uxx
6 utt

22108utuxx
3 uxt

3 uxxx1144utuxx
4 uxtuttuxxx254ut

2uxx
2 uxt

2 uxxx
2

212ut
3uxxuxtuxxx

3 2ut
4uxxx

4 ,

A35uxtuxxt2uttuxxx ,

B35uxt
2 uxtt22uxtuttuxxt1utt

2uxxx ,

C35uxt
3 uttt23uxt

2 uttuxtt13uxtutt
2uxxt2utt

3uxxx ,

D354ut
2uxxxuxtt24ut

2uxxt
2 14utuxt

2 uxxt24utuxtuttuxxx2uxt
4 ,

E354ut
3uxxx

2 uttt212ut
3uxxxuxxtuxtt16ut

2uxt
2 uxxxuxtt18ut

3uxxt
3 212ut

2uxt
2 uxxt

2 112ut
2uxtuttuxxxuxxt16utuxt

4 uxxt
26ut

2utt
2uxxx

2 26utuxt
3 uttuxxx2uxt

6 ,

F452ut
2uxxxuxxxt22ut

2uxxtuxxxx1utuxt
2 uxxxx24utuxtuxxxuxxt1ututtuxxx

2 12uxt
3 uxxx .
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we have

ṽ5 j̃~ x̃!] x̃ 1w̃~ x̃,ū!] ū .

Differentiating ~5.10! with respect toū we obtain

j̃c x̄ ū1w̃ ũc ũ 1w̃c ũ ũ 5kc ũ ,

that is to say,

ṽ~c ū !2~k2w̃ ū !c ū50.

Therefore the functionf ū must be a relative invariantof weightk 2 w̃ ū . Explicitly in the original
variables we have

TABLE V. Evolution, uxt andutt-invariant equations

ut5F utt5F uxt5F

1.1 u u •••
1.2 Aux2u2 Aux2u2 •••
1.3 u u •••

1.4
ux
2

AQ3

••• •••

1.5 1 1 1
1.6 D [u] D [u] D [u]
1.7ab uk

a/(a2k) uk
a/(a2k) uk

(a21)/(a2k)

1.7c uk11
2k uk11

2k uk11
2k11

1.8 euk /(k21)! euk /(k21)! e(k21)uk /k!

1.9
uk
k11

uk11
k

uk
k11

uk11
k

uk
k

uk11
k21

1.10 uk
2(k21)/(k11) ••• •••

1.10* 1 1 ux

1.11
uk
k11

Qk12
k/2 ••• •••

1.11*
ux
2

Q3
1/2

ux
2

Q3
1/2 ux

2.1 uxx
1/3 ••• •••

2.2
R4
uxx
7/3 ••• •••

2.3
uxx
3

S5
2/3 ••• •••

3.1 1 1 1
3.2 D [u] D [u] D [u]
3.3 ux ux ux
4.1 1 1 uxxx

21/3

4.2
uxxx
4

R̃5
3/2

uxxx
4

R̃5
3/2

uxxx
3

R̃5

4.3
uxxx
4

T7
3/4 ••• •••
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~ w̃ ū ,c ū !5H S wu2
xu

xx
wx ,cu2

xu

xx
cxD , if xxÞ0,

~wx ,cx!, if xx50.

Contact transformations can be treated analogously. Consider a contact transformation

x̄5x~x,u,ux!, ū5c~x,u,ux!, xDxc5cDxx.

The transformed group is now generated by vector fields of the form

v̄5 j̄~ x̄,ū x̄ !] x̄1@k~ x̄,ū x̄ !ū1 f ~ x̄,ū x̄ !#] ū x̄
5 j̄~x,ū x̄ !] x̄1FkS x,

Dxc

Dxx
Dc1 f S x,

Dxc

Dxx
D G] ū .

Beginning with an invariant foliation by linesx(x,u,ux)5l, andh(x,u,ux)5m of the space J1E,
we conclude that the function

C5C~x,u,ux!52
~xuhux

2xux
hu!cx2~xuhx2xxhu!cux

xxhux
2xux

hx
1cu

must be a relative invariant:

v~C!2S k1
~xuhux

2xux
hu!wx2~xuhx2xxhu!wux

xxhux
2xux

hx
2wuD C50.

In Table VI we give the invariant foliations of the actions of the considered groups, needed for
determining changes of variables discussed above. Given an invariant foliationx(x,u) there exists
always a class of ‘‘affine transformations’’

x̄5x, ū5c~x!u1d~x!

that respects the form and symmetries of a family of invariant equations. We have found that there
exists only one class of algebras having two inequivalent representatives with invariant equations,
related by anon-affine transformation. It is class 1.1, and the additional representative is studied
in Table VII.

TABLE VI. Invariant foliations.

Algebra Invariant foliation

1.1,1.2,1.3,1.5,1.6,1.7,1.8,1.9,1.10,1.11,3.1,3.2 x5l
1.4,1.9* ,1.10* ,1.11* ,3.2* ,3.3 x5l, u5m

1.5* ,1.6* ,1.7bc* ax1bu5l
3.1* u2 f (x)5l
4.1,4.2 x5l, ux5m

TABLE VII. Additional algebra with invariant equations.

Change Algebra
Invariant
derivative

2-D fundamental
invariant

Fundamental
invariants ut5F uxt5F

1.1 c5u21 ]x ,x]x2]u ,
x2]x22x]u

Dx

eu
2uxx2ux

2

e2u
ut ,

2uxx2ux
2

e2u
2uxx2ux

2

e2u
2uxx2ux

2

eu
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VI. GENERALIZATIONS

So far we have restricted our attention to evolutionary-type equations in which the right-hand
side is purely a function of the spatial variables and spatial derivatives of the dependent variable.
In this section, we relax this condition by permitting the right-hand side to also depend on time
derivatives ofu. Here the computations become more complicated because there is not an imme-
diate separation in the infinitesimal symmetry criteria into purely spatial and temporal parts.

According to Theorem 3.4, a general scalar differential equation

R~x,u~n!!50 ~6.1!

is invariant under a group of transformations if and only ifR forms a relative differential invariant
of the group, and so satisfies~3.3! for some differential multiplierHv . However, if we solve the
differential equation~6.1! for one of the derivatives,

uK5F@u#, F:JnÊ→R, ~6.2!

then the two componentsuK andF may or may not form individual relative differential invariants.
~If they do, then Proposition 3.5 implies that they must have the same weight.! As we have seen,
this splitting of the equation into relative invariants does occur if~6.2! is of evolutionary type,
meaning thatK has at least one time derivative, andF depends on purely spatial derivatives.
However, in more general situations,F is an ‘‘inhomogeneous relative differential invariant,’’ and
the existence is more problematic~cf. Ref. 14!. This has an advantage and a disadvantage. The
disadvantage of studying equations with an isolated variable is then the inhomogeneity of the
associated relative invariant. The advantage is that the weights are precisely determined, allowing
a more systematic approach. The following result, which is analogous to Theorem 4.3 for an
evolutionary-type equation, characterizes the right-hand side of the general equation~6.2! as an
inhomogeneous relative differential invariant.

Proposition 6.1: If the general equation uK5F[u] admits a spatial symmetry group G, then
the right-hand side satisfies

v@n#~F !5SQu2(
i51

p

kiDij
i DF1FDKQ2SQu2(

i51

p

kiDij
i D uKG , ~6.3!

for all infinitesimal generatorsvPg.
Our first result characterizes those equations that impose an affine symmetry condition on its

symmetry group.
Proposition 6.2: Consider a differential equation

uK5F~ t,x,u,ut ,u1 ,...,up ,...,uL ,...!, ~6.4!

with the right-hand side depending on variables uL with temporal derivatives of lower order than
the one on the left-hand side. That is to say, if K5(k0 ,k1 ,...,kp) and L5( l 0 ,l 1 ,...,l p), then
l 0,k0 for all variables uL in F. If K is not a purely temporal multi-index, KÞk0e0 , then any
connected spatial symmetry group of equation (6.4) is composed of affine bundle maps.

Proof: Apply Theorem 4.2, and expand the infinitesimal symmetry condition~4.8! to obtain

DKQ1(
i51

p

j iuKi5v@n#~F !, ~6.5!

in analogy to~4.9!. Consider terms on the left-hand side of maximal and submaximal ordersk and
k21, but with maximal temporal orderk0. The right-hand side of~6.5! does not contain temporal
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derivatives of orderk0, and then equating to zero the corresponding coefficients we obtain con-
ditions ~4.14! andDjQu50, wherej runs over principal spatial variables. Q.E.D.

In the case of an equation~6.4!, the right-hand side of~6.5! contains terms depending on
temporal derivatives@compare with~4.9!#. This means that now the expression on the left can
contain them also, and that the term onuK will not be the only one different from zero, i.e.,GÞ0
and instead of Theorem 4.3, Proposition 6.1 must be used.

Theorem 6.3:Let G be a connected spatial symmetry group of an equation of type

]m1nu

]xm]tn
5F~x,u~N!,ut!5F~x,u,ux ,ut ,uxx ,uxt ,...,ukl ,...!, l,n. ~6.6!

i.e., with right-hand sides that can depend on temporal derivatives of order l,n.
~i! If the equation is purely evolutionary, i.e., of the form]nu/]tn5F, then there are no

restrictions on G.
~ii ! If the equation is the potential form]n11u/]x]tn of a purely evolutionary equation, then

G can be a contact transformation group whose infinitesimal generators have the form

v~0!5j~x,ux!]x1„ku1 f ~x,ux!…]u , ~6.7!

where k is a constant.
~iii ! All the remaining equations, with m>2, have the same type of symmetry groups as the

corresponding evolutionary-type equations (5.1).
We can also generalize Theorem 4.9 and Theorem 5.2 to this case.~The existence of suitable

inhomogeneous relative invariants is, however, not immediate.!
Theorem 6.4: In one spatial variable, if an equation (6.4) admits a spatial transformation

group G, then its right-hand side satisfies

v~N!~F !2~Qu2mDxj!F5H, ~6.8!

where the form of H follows from (6.3). Thus F is an inhomogeneous relative differential invariant
of the form

F5
Lm11

E~L !
I1F0 , ~6.9!

where I is an absolute differential invariant of G depending on temporal derivatives of u of order
less than n, v5L(x,u(n))dx is a G-invariant one-form having nontrivial Euler–Lagrange expres-
sionE(L)Ó0, and F0 is a particular inhomogeneous differential invariant of the same weight as
F.

As our final examples, let us apply the previous ideas to general wave equations of type~6.4!
and to potential evolution equations with an additional dependence onut on the right-hand side.

Example 6.5:In this example we discuss invariant wave equations of type~6.4!:

utt5F~x,u,ut ,ux ,uxt ,...,um21 ,um21,t!, ~6.10!

i.e., those whose right-hand sides are allowed to depend on spatial derivatives ofu and on
first-order time derivatives. According to Theorem 6.3, the symmetry groupG can be any group
of transformations—imprimitive, primitive, and contact. MoreoverF must be an inhomogeneous
relative invariant~6.9! satisfying

v~N!~F !2QuF5utDtQu2uxtDtj. ~6.11!
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In Table VIII we give the simplest homogeneous part ofF, corresponding to some relative
invariantR5L2I /E(L), and the simplest inhomogeneous partF0.

Example 6.6:In this example we discuss invariant potential evolution equations

uxt5F~x,u,ut ,ux ,uxx ,...,um! ~6.12!

whose right-hand sides are allowed to depend on spatial derivatives ofu and the time derivative
ut . Note that potential evolution equations do not belong to the class~6.4!, and can be invariant,
in principle, under any kind of transformation group. We find that the right-hand sideF must be
an inhomogeneous relative invariant~6.9! satisfying

v~N!~F !2~Qu2Dxj!F5utDxQu . ~6.13!

TABLE VIII. Invariant equations of the formuxt5F[x,ut].

R F0

1.1 u2
uxut
u

1.2 u22ux 2uut

1.3 Aut
u
Q2

uxut
u

1.4 ux
utU4

uxQ3

1.5 1 0

1.6 ut 0

1.7 ut
(a21)/a 0

1.7b uk
1/k 0

1.8 ut
(k21)/k 0

1.9 (ut
k21uk)

1/k 0

1.10 ut
(k23)/(k21)

2
k21

k11

uk11ut
uk

1.10* ux 0

1.11 ut
(k21)/kuk

1/k
2
k21

k11

uk11ut
uk

2.1 uxx
2/3 0

2.2 Autuxx 0

2.3 Autuxx
uxS5

1/3

32/3uxx
1

uxV6

uxxS5

3.1 ut 0

3.2 ut 0

3.3 ut
utuxx
ux

4.1 uxxx
1/3 0

4.2 (ut
2uxxx)

1/3 0

4.3 (ut
2uxxx)

1/3
uxT7

1/4

uxxx
1

uxZ8
2uxxxT7
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In Table IX we give the simplest homogeneous partR and the simplest inhomogeneous partF0 of
the right-hand sideF.
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In this work we examine the basis functions for those classical and quantum me-
chanical systems in two dimensions which admit separation of variables in at least
two coordinate systems. We do this for the corresponding systems defined in Eu-
clidean space and on the two-dimensional sphere. We present all of these cases
from a unified point of view. In particular, all of the special functions that arise via
variable separation have their essential features expressed in terms of their zeros.
The principal new results are the details of the polynomial bases for each of the
nonsubgroup bases, not just the subgroup Cartesian and polar coordinate cases, and
the details of the structure of the quadratic algebras. We also study the polynomial
eigenfunctions in elliptic coordinates of then-dimensional isotropic quantum os-
cillator. © 1996 American Institute of Physics.@S0022-2488~96!03212-4#

I. INTRODUCTION

It has long been known that there are potentials for which a given Hamiltonian system in
classical mechanics admits a solution via separation of variables in more than one coordinate
system.1 The methodical search for such potentials was initiated by Smorodinsky and Winternitz
et al. in two and three dimensions,2–4 and there has been a considerable amount of work for
various examples.5–9 A subset of such systems is calledmaximal in dimensionN if there exist
2N21 functionally independent integrals of motion. In some papers, such systems are called
superintegrable.10,11 In this work we examine the basis functions for those classical and quantum
mechanical systems in two dimensions which admit separation of variables in at least two coor-
dinate systems. We do this for the corresponding systems defined in Euclidean space and on the
two-dimensional sphere. In a subsequent work we shall study systems defined in two-dimensional
hyperbolic spaces and in complex two-dimensional spaces.

For each of the superintegrable systems we observe that, for the discrete spectrum of the
quantum mechanical Hamiltonian, one can consider this operator as acting on a space of
polynomials.12 Each eigenvalue is multiply degenerate. However, each separable coordinate sys-
tem gives rise to an orthonormal basis of polynomial eigenfunctions in this space and breaks the
degeneracy. These bases are characterized as simultaneous eigenfunctions of second-order sym-
metry operators for the Hamiltonian.13 We show that under commutation these symmetry opera-
tors close to form a quadratic algebra.14 The superintegral systems are of two types: the ‘‘normal
type’’ in which the original Hamiltonian is diagonalized, and the ‘‘conformal type’’ in which the
Hamiltonian is modified by multiplying the eigenvalue equation by a function and considering the
energy as fixed. The modified equation is then interpreted as the eigenvalue equation for a Hamil-
tonian on a conformal Euclidean space with a ‘‘charge’’ as the eigenvalue. We present all of these
cases from a unified point of view. In particular, all of the special functions that arise via variable
separation have their essential features expressed in terms of their zeros. The principal new results

0022-2488/96/37(12)/6439/29/$10.00
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are the details of the polynomial bases for each of the nonsubgroup bases, not just the subgroup
Cartesian and polar coordinate cases, and the details of the structure of the quadratic algebras.~For
those coordinate systems which correspond to subgroup type coordinates, the finite solutions have
already been found. The contribution of this article is to indicate how the remaining finite solu-
tions can be obtained. This invariably involves the use of a Niven-type ansatz for the finite
solutions; every quantity of interest can be computed in terms of the zeros of the corresponding
polynomial solutions.! For the sake of completeness we list all the finite solutions that are pos-
sible. We analyze each of the potentials systematically.

In Secs. II and III we consider the superintegrable systems in Euclidean two-space and on the
two-dimensional sphere, respectively. In Sec. IV we examine the polynomial eigenfunctions in
elliptic coordinates of then-dimensional isotropic quantum oscillator.

II. TWO-DIMENSIONAL EUCLIDEAN SPACE

As is well known1,13 there are exactly four coordinate systems on the Euclidean plane in
which the free particle Schro¨dinger equation separates: Cartesian, polar, parabolic, and elliptic.
We describe these coordinate systems. Letx andy be theCartesian coordinates. Polar coordi-
natesare defined by

x5r cosu, r.0,
~1!

y5r sin u, 0<u,2p.

Parabolic coordinates. We can define two mutually perpendicular parabolic systems:

x5 1
2~j22h2!, y5jh, jPR,h.0, ~2!

and

x5 j̄ h̄, y5 1
2~ j̄22h̄2!, j̄PR,h̄.0. ~3!

The connection (j,h)°( j̄,h̄) is a rotation of anglep/4 in the ~j,h! space. The transformation
(x,y)°(j,h) actually is the two-dimensional realization of the Levi-Civita transformation15

which has the form

x5j22h2, y52jh, jPR,h.0. ~4!

Elliptic coordinates in algebraic form are defined by (e1,u1,e2,u2)

x25
~u12e1!~u22e1!

e22e1
, y25

~u12e2!~u22e2!

e12e2
. ~5!

Replacingx°x 1 Ae22e1 yields a coordinate system which is calledelliptic II coordinates:16

x5A~u12e1!~u22e1!

e22e1
1Ae22e1, y5A~u12e2!~u22e2!

e12e2
. ~6!

It is interesting that the two elliptic coordinates are connected by the Levi-Civita transformation.
Indeed, if we use parabolic coordinates~j,h! in Eq. ~4! as Cartesian coordinates in Eq.~5!, we
have

x5A~ ū12ē1!~ ū22ē1!

ē22ē1
1Aē22ē1, y5A~ ū12ē2!~ ū22ē2!

ē12ē2
, ~7!
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where

ūi5ui
22u1~e11e2!, ē152 1

4~e11e2!
2, ē252e1e2 . ~8!

As shown in Refs. 2–4 there are four classes of potentials for which multiple separation
occurs in Euclidean space~see Table I!.

We treat the cases in order. In each case the Schro¨dinger equation is (\5m51)

2 1
2DC1Vi~x,y!C5EC, i51,...,4. ~9!

~i! The potential in the first case is

V1~x,y!5
1

2
v2~x21y2!1

1

2 S k122 1
4

x2
1
k2
22 1

4

y2
D . ~10!

The corresponding Schro¨dinger equation is (k1 ,k2.0)

F ]2

]x2
1

]2

]y2
GC1F2E2v2~x21y2!2

k1
22 1

4

x2
2
k2
22 1

4

y2
GC50.

See Refs. 2, 3, and 16–18 for an earlier treatment. This equation separates in three different
separable coordinate systems: Cartesian, polar, and elliptical coordinates.

If we rewrite the Schro¨dinger equation by putting

C5e2v~x21y2!/2x1/26k1y1/26k2F~x,y!, ~11!

then the equation forF(x,y) is QF522EF or

TABLE I. The two-dimensional superintegrable potentials.

PotentialV(x,y)
Coordinate
system

V15
1

2
v2~x21y2!1

1

2 Sk1221
4

x2
1
k2
22

1
4

y2
D Cartesian polar elliptic

V25
1

2
v2~4x21y2!1k1x1

1

2

k2
22

1
4

y2

Cartesian parabolic

V352
a

Ax21y2
1
1

4

1

Ax21y2

3S k1
22

1
4

Ax21y21x
1

k2
22

1
4

Ax21y22x
D

Polar elliptic II parabolic

V452
a

Ax21y2
1
1

4

1

Ax21y2

3~b1AAx21y21x1b2AAx21y22x!

Mutually parabolic
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F ]2

]x2
1

]2

]y2
1S 162k1

x
22vxD ]

]x
1S 162k2

y2
22vyD ]

]y
22v~26k16k2!GF522EF.

~12!

Clearly the operatorQ maps polynomials~in x2,y2! into polynomials, without increasing the
order. Since the original Hamiltonian is self-adjoint with respect to the measuredx dy in the
plane, the operatorQ acting on polynomials inx2 and y2 is self-adjoint with respect to the
measure

dr~x,y!5e2v~x21y2!x162k1y162k2 dx dy

in the quadrantx.0, y.0. We assume that the positive sign at theki has to be taken ifki.
1
2 and

both the positive and the negative sign must be taken if 0,ki,
1
2, so that the polynomials have

finite norm.16

To find the eigenfunctions in the case of Cartesian coordinates we look for separable solutions
F(x,y)5X(x)Y(y). Then the separation equation inx becomes

F ]2

]x2
1S 22v1

162k1
x2 D x ]

]x
2~162k1!v GX52l1X. ~13!

If we look for solutions of the form

X~x!5 )
m51

q

~x22um!,

the um must satisfy

vu l 516k112(
jÞl

u l
u l 2u j

and

l152v~2q6k11
1
2!,

whereq is a non-negative integer. The solutions areX(x) 5 Lq
k1(vx2) whereLn

a(z) is a Laguerre
polynomial.

Thus the corresponding set of orthonormal eigenfunctions which are normalized in quadrant
x.0, y.0 by

E
0

`

dxE
0

`

dyCn
18n28
* ~x,y!Cn1n2

~x,y!5
1

4
dn

18n1
dn

28n2
~14!

is

C~x,y![Cn1 ,n2

~k1 ,k2!
~x,y!5A vn1!n2!

G~n16k111!G~n26k211!
~Avx!1/26k1~Avy!1/26k2

3e2~v/2!~x21y2!Ln1
6k1~vx2!Ln2

6k2~vy2!, ~15!

whereEn5v(2n6k16k212) andn5n11n2 is the principal quantum number.
The corresponding classical operator is
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L15px
22S v2x21

k1
22 1

4

x2
D .

These eigenfunctions satisfy

L̂1C5S ]2

]x2
2v2x22

k1
22 1

4

x2
D C52l1C. ~16!

In polar coordinatesthe Schro¨dinger equation is

S ]2

]r 2
1
1

r

]

]r
1

1

r 2
]2

]u2
DC1F2E2v2r 2C2

1

r 2
S k122 1

4

cos2 u
1
k2
22 1

4

sin2 u
D GC50.

If we write C5R(r )T(u), then the separation equation forT(u) is

d2

du2
T~u!2S k122 1

4

cos2 u
1
k2
22 1

4

sin2 u
DT~u!5lT~u!.

If we now put

T~u!5~cosu!1/26k1~sin u!1/26k2P~z!,

wherez5cos 2u, this separation equation becomes

H ~12z2!
]2

]z2
2@~26k16k2!z1~6k17k2!#

]

]z
2
1

4
@l1~16k16k2!

2#J P~z!50.

If we try solutions of the formP(z)5Pm51
q (z2um), we find that the zeros of the polynomial

P(z) satisfy

2(
mÞ l

1

u l 2um
5

16k2
~12u l !

2
16k1

~11u l !
, ~17!

wherel52(2q6k16k211)2. These are just the equations satisfied by the zeros of the Jacobi
polynomials. In fact the solutions of this eigenvalue equation have the form

T~u!5~cosu!1/26k1~sin u!1/26k2Pq
~6k1 ,6k2!

~cos 2u!.

The classical constant of the motion is

L25~xpy2ypx!
22Fk122 1

4

x2
1
k2
22 1

4

y2
G ~x21y2!

and the corresponding eigenvalue equation satisfied by the eigenfunctionsC is

L̂2C5F S x ]

]y
2y

]

]x
D 21S 1

42k1
2

x2
1

1
42k2

2

y2
D ~x21y2!GC5lC. ~18!

The orthonormal@as in Eq.~14!# eigenfunctions in these coordinates are
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C~r ,u![Cnr ,q
~6k1 ,6k2!

~r ,u!5Fq
~6k1 ,6k2!

~u!A 2vn!

G~n12q6k16k211!

3e2vr2/2~Avr !~2q6k16k211!Ln
2q6k16k211

~vr 2!, ~19!

where

Fq
~6k1 ,6k2!

~u!5A~2q6k16k211!q!G~q6k16k211!

2G~q6k211!G~q6k111!

3~cosu!1/26k1~sin u!1/26k2Pq
~6k1 ,6k2!

~cos 2u! ~20!

andE5v(2n6k16k212), with n5nr1q. Using ~11! we can easily split off the polynomial
portion of ~20! from the multiplier.

In elliptical coordinateswe adopt a similar approach. Using the identity

x2

u2e1
1

y2

u2e2
2152

~u12u!~u22u!

~u2e1!~u2e2!
, ~21!

we look for solutions~11! of the form19

F~x,y!5 )
m51

q S x2

um2e1
1

y2

um2e2
21D .

The um must satisfy

16k1
um2e1

1
16k2

um2e2
1 (

jÞm

2

~um2u j !
2v50, ~22!

whereE5v(2q6k16k212). If we write the Schro¨dinger equation for this potential in elliptical
coordinates we obtain

4~u12e1!~u12e2!

u12u2
F ]2C

]u1
2 1

1

2
S 1

u12e1
1

1

u12e2
D ]C

]u1
G

1
4~u22e1!~u22e2!

u22u1
F ]2C

]u2
2 1

1

2
S 1

u22e1
1

1

u22e2
D ]C

]u2
G

1F2E2v2~u11u22e12e2!1
~ 1
42k1

2!~e22e1!

~u12e1!~u22e1!
1

~ 1
42k2

2!~e12e2!

~u12e2!~u22e2!
GC50.

This equation admits separable solutionsC5U1(u1)U2(u2) and separation equations

H 4~ui2e1!~ui2e2!F ]2

]ui
2 1

1

2 S 1

ui2e1
1

1

ui2e2
D ]

]ui
G2v2@ui

22~e11e2!ui #

1
~k1

22 1
4!~e12e2!

~u12e1!
1

~k2
22 1

4!~e22e1!

~u12e2!
12Eui1lJUi~ui !50, i51,2.

The additional operator describing this coordinate system is
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L̂3C5
4u2~u12e1!~u12e2!

u12u2
F ]2C

]u1
2 1

1

2
S 1

u12e1
1

1

u12e2
D ]C

]u1
G

1
4u1~u22e1!~u22e2!

u22u1
F ]2C

]u2
2 1

1

2
S 1

u22e1
1

1

u22e2
D ]C

]u2
G

1F2u1u2v
21

~k1
22 1

4!~e12e2!

~u12e1!~u22e1!
1

~k2
22 1

4!~e12e2!

~u12e2!~u22e2!
GC

5F S x ]

]y
2y

]

]x
D 21e2

]2

]x2
1e1

]2

]y2
2v2~e2x

21e1y
21e1e2!

1

1
42k1

2

x2
~x21y21e2!1

1
42k2

2

y2
~x21y21e1!GC5lC, ~23!

where

l52~16k16k2!
222e2v~16k1!22e1v~16k2!2v2e1e224(

m51

q Fe2 16k1
um2e1

1e1
16k2

um2e2
G .

The corresponding classical operator is

L35~xpy2ypx!
21e2px

21e1py
22v2~e2x

21e1y
21e1e2!

1
~ 1
42k1

2!

x2
~x21y21e2!1

~ 1
42k2

2!

y2
~x21y21e1!. ~24!

If we now use the redefined operators

M15L1 , M25L22
1
21k1

21k2
2, M35L32

1
21k1

21k2
2,

and

H5px
21py

22v2~x21y2!1

1
42k1

2

x2
1

1
42k2

2

y2
,

we observe the following relations:

M125$M1 ,M2%54~xpy2ypx!~pxpy2v2xy!1

1
42k2

2

y2
xpx2

1
42k1

2

x2
ypy , ~25!

$M12,M1%58~M1
22M1H !216v2M2 , ~26!

$M12,M2%58M2~H22M1!24~124k2
2!M214~124k1

2!~H2M1!, ~27!

M12
2 516M1M2~H2M1!116v2L2

224~124k2
2!M1

224~124k2
2!~H2M1!

2

14v2~124k1
2!~124k2

2!.
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We have not includedM3 in these calculations as it is linearly dependent onH, M1 andM2 via
the relationM35M21(e22e1)M11e1H. The constants of the motionM1 , M2 andH generate a
quadratic algebra.

~ii ! The potential is now

V2~x,y!5
1

2
v2~4x21y2!1

k2
22 1

4

2y2
. ~28!

For k150 this potential is also known as a Holt potential.20 The Schro¨dinger equation fork150
has the form

S ]2

]x2
1

]2

]y2
DC2Fv2~4x21y2!1

k2
22 1

4

y2
GC522EC.

There are two coordinate systems of relevance here: Cartesian coordinatesx,y and parabolic
coordinatesj,h. If we express solutions of the Schro¨dinger equations in the form

C5e2vx22vy2/2y1/26k2F~x,y!, ~29!

then the functionF(x,y) satisfies the equationRF522EF or

F ]2

]x2
1

]2

]y2
1

~162k2!

y

]

]y
22vS 2x ]

]x
1y

]

]yD22v~26k2!GF~x,y!522EF. ~30!

It follows that the operatorRmaps polynomials~in x,y2! into polynomials, without increasing the
order. Since the original Hamiltonian is self-adjoint with respect to the measuredx dy in the
plane, the operatorR, acting on polynomials inx,y2 is self-adjoint with respect to the measure

dr~x,y!5e2v~x21y2!y162k2 dx dy

in the upper half-planey.0. We assume that the positive sign at thek2 has to be taken ifk2.
1
2 and both the positive and the negative sign must be taken if 0,k2,

1
2, so that the polynomials

have finite norm.16

Equation~30! admits a separable solution of the formF5X(x)Y(y) where the functionX(x)
satisfies the separation equation

F ]2

]x2
24vx

]

]x
22v2l GX50.

If we try solutions of the formX5Pm51
q (x2um), the relations among theum are

4vu l 5 (
mÞl

1

u l 2um
~31!

and the eigenvalues arel522(2q11)v with solutionsX 5 Hq(A2vx). The solutions for the
functionY(y) correspond exactly to those given for the potentialV1 viz

Y~y!5Ln
6k2~y2!.
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The orthonormal eigenfunctions are

C~x,y!5A2v~1/2!~16k2!A n!

G~n6k211!
y1/26k2e21/2vy2Ln

6k2~vy2!

3S 2v

p D 1/4 1

A2qq!
e2vx2Hq~A2vx!. ~32!

The energyE takes the valuesE5v[2(q1n11)6k2].
In the case ofparabolic coordinateswe note that

y2

l2 12x2l25
~j22l2!~h21l2!

l2 .

If we try a solution of~30! in the form

F~x,y!5 )
l 51

q S y2l l
2 12x2l l

2 D , ~33!

it follows that thell must satisfy

1

l l
2 1 (

mÞl

4

l l
22lm

2 22vl l
250

andE5v(2q126k2). The Schro¨dinger equation written in terms of parabolic coordinates is

1

j21h2 S ]2C

]j2
1

]2C

]h2 D 1F2E2v2~j42j2h21h4!1

1
42k2

2

j2h2 GC50. ~34!

If we look for separable solutions of the formC5X1(j)X2(h), the separation equations are

F ]2

]m2 1S 2v2m61

1
42k2

2

m2 12Em21l D GXj50,

wherem5j if j51 andm5h if j52. The operator whose eigenvalue isl is

L̂2C5
1

j21h2 F j2
]2C

]h22h2
]2C

]j2
G1Fv2j2h21

1
42k2

2

j2h2 G ~j22h2!C

52x
]2C

]y2
22y

]2C

]x]y
2

]C

]x
1F2v2xy21

1
42k2

2

y2
xGC. ~35!

The eigenvalues are

l52~k211!)
j51

q

l j
2S (

m51

q

lm
22D .

If we define the classical operators associated with this separable system as

H5px
21py

22v2~4x21y2!1

1
42k2

2

y2
,
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L15px
224v2x2, L252py~xpy2ypx!12v2xy21

1
42k2

2

y2
x,

then the defining relations of the quadratic algebra are

L125$L1 ,L2%54Fpxpy21v2y2px12
1
42k2

2

y2
px24v2xypyG ,

L12
2 516~H2L1!

2L1116v2L2
2116v2~124k2

2!, $L1 ,L12%5216v2L2 , ~36!

$L2 ,L12%516L1~H2L1!28~H2L1!
228v2~124k2

2!.

~iii ! The potential is now

V35
2a

Ax21y2
1

1

4Ax21y2
F k1

22 1
4

Ax21y21x
1

k2
22 1

4

Ax21y22x
G . ~37!

The Schro¨dinger equation separates variables in polar coordinates, parabolic coordinates, and
modified elliptic coordinates. If we look for solutions of the Schro¨dinger equation of the form

C5e2~1/2!A22E~j21h2!j1/26k1h1/26k2F~j,h!, ~38!

wherej andh areparabolic coordinates, we find that the equation forF~j,h! is SF524aF or

F]2F]j2
1

]2F

]h2 1
~162k1!

j

]F

]j
1

~162k2!

h

]F

]h

12A22ES j
]F

]j
1h

]F

]h D22A22E~26k16k2!GF524aF. ~39!

For fixedE we can consider this as an eigenvalue equation forSwith eigenvalue24a. Moreover,
Smaps polynomials~in j2, h2, or, what is the same thing, inr 5 Ax21y2, x! into polynomials,
without increasing the order. Since the original Hamiltonian is self-adjoint with respect to the
measuredx dy in the plane, the operatorS, acting on polynomials inj2 andh2, is self-adjoint with
respect to the measure

dr~x,y!5e2A22E~j21h2!j162k1h162k2~j21h2!dj dh.

We assume that the positive sign at theki has to be taken ifki.
1
2 and both the positive and the

negative sign must be taken if 0,ki,
1
2, so that the polynomials have finite norm.16 For polyno-

mial eigenfunctions we must have the quantisation condition

2a5A22E@2~q11!6k16k2# ~40!

for integerq.
In polar coordinateswith potentialV3 the Schro¨dinger equation has the form

F ]2

]r 2
1
1

r

]

]r
1

1

r 2
]2

]u2
GC1F2E1

2a

r
1

1

2r 2
S 1

42k1
2

11cosu
1

1
42k2

2

12cosu
D GC50.

If we write solutionsC in the form
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C5R~r !S~u!,

the u separation equation is

d2

du2
S~u!1

1

16 F 124k1
2

cos2~u/2!
1

124k2
2

sin2~u/2!
GS~u!52l2S~u!, ~41!

which has solutions

S~u!5S sin u

2D
1/26k2S cosu

2D
1/26k1

Pm
~6k1 ,6k2!

~cosu!,

wherel5m1 1
2(16k16k2). The separation equation forR(r ) is

F ]2

]r 2
1
1

r

]

]r
2

l2

r 2
1
2a

r
12EGR~r !50, ~42!

which has the solution

Rnl~r !5e2A22Er~2A22Er !lLn
l~2A22Er !,

where

E5
22a2

@2~m1n11!6k16k2#
2 .

The orthonormal basis of eigenfunctions is

C5A an!

G~2n12l11!~2n12l11!
Rnl~r !Fn

~6k2 ,6k1!S u

2D . ~43!

The operator whose eigenvalue ism2 is, in Cartesian coordinates,

L1C5F S x ]

]y
2y

]

]xD 22 1

2
Ax21y2 S k1

22 1
4

Ax21y21x
1

k2
22 1

4

Ax21y22x
D GC. ~44!

In parabolic coordinatesSchrödinger’s equation has the form

HC5
1

j21h2 F ]2C

]j2
1

]2C

]h2 G1F4a1S 1
42k1

2

j2
1

1
42k2

2

h2 D GC522EC.

The separation equations are

]2

]m2 Xj1S 1
42kj

2

m2 12Em21l j DXj50 ~45!
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with l11l254a. The orthonormal bound state eigenfunctions of Schro¨dinger’s equation in these
coordinates are

C5X1~j!X2~h!

5A a

@2~n11n2!6k16k212#3
A n1!n2!

G~n16k111!G~n26k211!
e2~1/2!A22E~j21h2!

3~A22Ej!1/26k1~A22Eh!1/26k2Ln1
6k1~A22Ej2!Ln2

6k2~A22Eh2!, ~46!

wherel j 5 2A22E(2nj 6 kj 1 1), j51,2,and

E52
2a2

@2~n11n2!6k16k212#2
.

If we choosel152a1l andl252a2l, then the symmetry operator with eigenvaluel is

L2C52x
]2C

]y2
22y

]2C

]x]y
2

]C

]x
1F2S k122 1

4D Ax21y22x

Ax21y2~Ax21y21x!

1S k222 1

4D Ax21y21x

Ax21y2~Ax21y22x!
1

4a

Ax21y2
GC

5
1

j21h2 F j2
]2C

]h22h2
]2C

]j2 G1F S 142k1
2D h2

j2~j21h2!

1S k222 1

4D j2

h2~j21h2!
12a

j22h2

j21h2GC.

For the case ofelliptical coordinateswe proceed as follows. The normal elliptical coordinates
will not separate variables. However, if we compare~12! and ~39! we are motivated to choose
coordinates such that

j25
~u12e1!~u22e1!

e12e2
, h25

~u12e2!~u22e2!

e22e1
. ~47!

If we then try a solution of~39! in the form

F~j,h!5 )
m51

q F j2

um2e1
1

h2

um2e2
21G , ~48!

we see that theum must satisfy

16k1
um2e1

1
16k2

um2e2
1 (

jÞm

2

um2u j
2A22E50,

and the quantization condition~40!. In this choice of coordinates the Schro¨dinger equation has the
form
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4~u12e1!~u12e2!

u12u2
F ]2F

]u1
2 1

1

2
S 1

u12e1
1

1

u12e2
D ]F

]u1
G

1
4~u22e1!~u22e2!

u22u1
F ]2F

]u2
2 1

1

2
S 1

u22e1
1

1

u22e2
D ]F

]u2
G

1F2E~u11u22e12e2!1
~ 1
42k1

2!~e22e1!

~u12e1!~u22e1!
1

~ 1
42k2

2!~e12e2!

~u12e2!~u22e2!
14aGF50.

This equation admits separable solutionsF5U1(u1)U2(u2) and separation equations

H 4~ui2e1!~ui2e2!S ]2

]ui
2 1

1

2 F 1

ui2e1
1

1

ui2e2
G ]

]ui
D 12E@ui

22~e11e2!ui #

1
~k1

22 1
4!~e12e2!

u12e1
1

~k2
22 1

4!~e22e1!

u12e2
14aui1lJUi~ui !50, i51,2. ~49!

The additional operator describing this coordinate system is

L̂3F5
4

~u12u2!~u11u22e12e2!
H u2~u12e1!~u12e2!S ]2F

]u1
2 1

1

2 F 1

u12e1
1

1

u12e2
G ]F

]u1
D

2u1~u22e1!~u22e2!S ]2F

]u2
2 1

1

2 F 1

u22e1
1

1

u22e2
G ]F

]u2
D J

1
k1
22 1

4

~u12e1!~u22e1!
H u11u22e12e22

@~u12e2!~u22e2!1e1e2#

~u11u22e12e2!
J F

1
k2
22 1

4

~u12e2!~u22e2!
H u11u22e12e22

@~u12e1!~u22e1!1e1e2#

~u11u22e12e2!
J F

1
4au1u2

u11u22e12e2
F. ~50!

In Cartesian coordinates the solutions have the form

C5e2A22E~x21y2!~Ax21y21x!~1/4!~162k1!~Ax21y22x!~1/4!~162k2!

3 )
m51

q SAx21y21x

um2e1
1

Ax21y22x

um2e2
21D . ~51!

Acting on the functionsC the operatorL3 has the form
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L3C5F S j
]

]h
2h

]

]j D 21e2
]2

]j2
1e1

]2

]h22~e2j
21e1h

21e1e2!H

1S 142k1
2D ~j21h21e2!

j2
1S 142k2

2D ~j21h21e2!

h2 GC

5F24S x ]

]y
2y

]

]xD 22~e12e2!S 2x ]2

]y2
22y

]2

]x]y
2

]

]xD 2e1e2H

2
2a

Ax21y2
@e1~Ax21y22x!1e2~Ax21y21x!#2S 142k1

2D
3

~e12e2!~Ax21y22x!

2Ax21y2~Ax21y21x!
2S 142k2

2D ~e12e2!~Ax21y21x!

2Ax21y2~Ax21y22x!

1S 142k1
2D Ax21y22x

Ax21y21x
1S 142k2

2D Ax21y21x

Ax21y22x
1
1

2
2k1

22k2
2GC, ~52!

where in Cartesian coordinates

HC5
]2C

]x2
1

]2C

]y2
1F 2a

Ax21y2
1

1

4Ax21y2
F k1

22 1
4

Ax21y21x
1

k2
22 1

4

Ax21y22x
G GC.

The eigenvalues of the operatorL3 are

l52~16k16k2!
222A22E@e2~16k1!22e1~16k2!#

12Ee1e224(
m51

q Fe2 k111

um2e1
1e1

k211

um2e2
G . ~53!

The corresponding quadratic algebra can be generated by the classical constants

L15~jph2hpj!
21~j21h2!F 1

42k1
2

j2
1

1
42k2

2

h2 G ,
L25

1

j21h2 Fj2ph
22h2pj

22
h2

j2 S 142k1
2D2

j2

h2 S 142k2
2D12a~j22h2!G ,

L35~jph2hpj!
21e2pj

21e1ph
22~e2j

21e1h
2!H

1S 142k1
2D ~j21h21e2!

j2
1S 142k2

2D ~j21h21e2!

h2 ,

H5
1

j21h2 Fpj
21ph

214a1S 1
42k1

2

j2
1

1
42k2

2

h2 D G .
Here,L1 , L2 , andL3 are functionally dependent via the relation
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L3
25L1

212~e12e2!L1L21~e12e2!
2L2

222@~k11k2!12~e11e2!a#L1

2@4a2~e1
22e2

2!12~e12e2!~k11k2!#L22„k11k212a~e11e2!…
2. ~54!

The only additional quantity that we need is

L125$L1 ,L2%5
1

j21h2 F4~jph2hpj!
2~jpj2hph!216jh~jph2hpj!

1F S 4 j3

h2 18j D S 142k2
2D14

h2

j S 142k1
2D Gpj

2F S 4 h3

j2
18h D S 142k1

2D14
j2

h S 142k2
2D GphG.

The nontrivial independent commutation relations are

$L12,L1%5216L1L2132a~k1
22k2

2!, $L12,L2%5216HL118L2
2. ~55!

We should also observe the relations

$L1 ,L3%5~e12e2!$L1 ,L2%, $L1 ,L2%5$L3 ,L2%,
~56!

$L12,L3%516~e12e2!HL128~e12e2!L2
2216L1L2

216~e12e2!H232a„a~e12e2!1~k1
22k2

2!….

~iv! The fourth potential is

V45
2a

Ax21y2
1
B1

4

AAx21y21x

Ax21y2
1
B2

4

AAx21y22x

Ax21y2
. ~57!

The corresponding Schro¨dinger equation separates in two versions of parabolic coordinates.
In regular parabolic coordinates~2! the Schro¨dinger equation has the form

1

j21h2 F]2C]j2
1

]2C

]h2 1~4a2B1j2B2h!C G522EC. ~58!

If we write the solutionsC in the formX(j)Y(h), the separation equations are

]2X

]j2
1~2a2l2B1j12Ej2!X50,

]2Y

]h2 1~2a1l2B2h12Eh2!Y50.

The solutions of these equations are

X~j!5e~1/2A22E!@22Ej21B1j#HnXA22ES j2
B1

4ED C ~59!

and

Y~h!5e~1/2A22E!@22Eh21B2h#HmXA22ES h2
B2

4ED C, ~60!

where
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2a2l2
B1
2

8E
52~n11!A22E, 2a1l2

B2
2

8E
52~m11!A22E.

From this we see that the energy eigenstates are solutions of

4a2
1

8E
~B1

21B2
2!52~m1n12!A22E. ~61!

Moreover, it follows from~59! and ~60! that

C~j,h!5e~1/2A22E!@22E~j21h2!1B1j1B2h#F~j,h!,

whereF is a polynomial inj andh. If ~58! is written as a differential equation forF, it can be
interpreted as an eigenvalue equation, with eigenvalue24a, for anE-dependent operator acting
on a space of polynomials. The operator whose eigenvalue isl is

L1C5
1

j21h2 H h2
]2C

]j2
2j2

]2C

]h2 1@2B1jh21B2hj212~h22j2!a#CJ
522x

]2C

]y2
12y

]2C

]x]y
1

]C

]x
1FB1

2
AAx21y21xS 12

x

Ax21y2
D

1
B2

2
AAx21y22xS 11

x

Ax21y2
D 2

2xa

Ax21y2
GC. ~62!

The second coordinate system is avariant of parabolic coordinates~3! in terms of which the
Schrödinger equation has the form

1

m21n2 H ]2C

]m2 1
]2C

]n2
1F4a2

B1

A2
~m1n!2

B2

A2
~m2n!GCJ 522EC.

The separation equations forC5X(m)Y(n) are

]2X

]m2 1S 2a2l2
1

A2
~B11B2!m12Em2DX50,

]2Y

]n2
1S 2a1l2

1

A2
~B12B2!n12En2DY50.

The operator whose eigenvalue isl is

L2C5
1

m21n2 Fn2
]2C

]m22m2
]2C

]n2
2

mn2

A2
~B11B2!C1

nm2

A2
~B12B2!C12~n22m2!aCG

522y
]2C

]x2
12x

]2C

]x]y
1

]C

]y
1F2

1

2A2
~B11B2!AAx21y21xS 12

x

Ax21y2
D

1
1

2A2
~B12B2!AAx21y22xS 11

x

Ax21y2
D 2

2xa

Ax21y2
GC. ~63!
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The space of polynomials inj,h coincides with the space of polynomials inn,m. The classical
operators associated with this separable system are, using thej,h coordinates,

L15
1

j21h2 @h2pj
22j2ph

22B1jh21B2hj212~h22j2!a#,

L25
1

j21h2 F ~jpj2hph!~jph2hpj!24jha1
1

2
~j22h2!~hB12jB2!G ,

H5
1

j21h2 @pj
21ph

21~4a2B1j2B2h!#,

together with

L125$L1 ,L2%5
1

j21h2 @2~jph2hpj!~pj
21ph

2 !18a~jph2hpj!

1„~h22j2!ph12jhpj…B11„~h22j2!pj12jhph…B2#.

The defining relations of the quadratic algebra are

L12
2 54L1

2H14L2
2H216a2H1~B2

22B1
2!L122B1B2L222a2~B1

21B2
2!,

~64!
$L12,L1%524L1

2H1B1B2 , $L12,L2%54L1H2 1
2~B1

22B2
2!.

There are, of course, quantum analogs for all the quadratic algebras that occur for each
potential. These operator algebras can be obtained via the replacement of the Poisson bracket by
the commutator bracket.@Indeed the relations~64! for the classical version of the algebras remain
unchanged under this replacement.# One can ask the question what are the consequences of such
an algebra on the eigenfunction spaces of the operatorsL1 andL2? Let the eigenspace correspond-
ing to a fixed bound state energyE be of dimensionN. This eigenspace can be spanned by
eigenfunctions of bothL1 and L2 . Let the corresponding eigenvectors befm andcm , respec-
tively, satisfying

L1fm5lmfm , L2cn5rncn ,

where ln52a2B1
2/8E2(2n11)A22E and rm52a2(B11B2)

2/16E2(2m11)A22E. Us-
ing the quantum version of the defining relations of the quadratic algebra, what can we deduce? If
we use the second of the relations~64! acting oncn and writeL1cn5(t51

N Cntct we deduce that

@~rn2rt!
218E#Cnt52@ 1

2~B1
22B2

2!116aE#dnt .

This relation implies thatCnn52[ 12(B1
22B2

2)116aE]/8E and CpqÞ0 if up2qu<1 and zero
otherwise. Here we have used the relation (rn2rt)

218E50 for un2tu51. If we apply the
second relation to the functioncn we obtain the relation

(
t51

N

CntCts~2rt2rn2rs!5~8Ern1B1B2116aE!dns .

If we assume that the basis functionscn are orthonormal and observe that the operatorL1 is
self-adjoint, then we can assumeCn11,n 5 Cn,n11* . The only nontrivial consequence of this rela-
tion is whenn5s. The result is
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4A22E~ uCn,n11u22uCn21,nu2!58Ern1B1B2116aE.

If we act on the functionsfm , we generate similar relations. In fact, if we write
L2fm5(t51

N Dmtft , the corresponding results are

Dnn52~B1B2116aE!/8E

andDpqÞ0 if up2qu<1 and is zero otherwise. Furthermore,

4A22E~ uDn,n11u22uDn21,nu2!528lsE2 1
2~B1

22B2
2!216aE.

From these relations we can, in principle, calculate the matricesCpq andDpq . Once these are
known, relations are also implied for the matrices relating the two bases. If we denote
^fm ,cq&5Amq , then these matrices must satisfy

Ctr5 (
m51

N

lmAmr* Amt , Dtr5 (
m51

N

rmAmrAmt* .

Thus, from the consequences of the quadratic algebra we can, in principle, calculate the overlap
functionsArs . The only ambiguity is in the choice of the phases of the wavefunctions.

III. THE TWO-DIMENSIONAL SPHERE

In the case of the two-dimensional sphere there are two potentials that are separable in more
than one coordinate system, and these each separate in two systems. To work with the two-
dimensional sphere it is convenient to use projective coordinates:si , i51,2,3,s1

21s2
21s3

251.
~i! The first superintegrable potential on the sphere is

V15
1

2 S k122 1
4

s1
2 1

k2
22 1

4

s2
2 1

k3
22 1

4

s3
2 D . ~65!

In terms ofspherical coordinates

s15sin u cosw, s25sin u sin w, s35cosu, ~66!

the corresponding Schro¨dinger equation has the form

F S s1 ]

]s2
2s2

]

]s1
D 21S s1 ]

]s3
2s3

]

]s1
D 21S s3 ]

]s2
2s2

]

]s3
D 2GC

2Fk122 1
4

s1
2 1

k2
22 1

4

s2
2 1

k3
22 1

4

s3
2 GC522EC, ~67!

or, in terms ofu andw,

1

sin u

]

]u
S sin u

]C

]u
D 1

1

sin2 u

]2C

]w2 1
1

sin2 u
S 1

42k1
2

cos2 w
1

1
42k2

2

sin2 w
DC1

1
42k3

2

cos2 u
C522EC.

This equation admits separable solutions of the formC5T(u)F(w) such that
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]2F

]w2 1S 1
42k1

2

cos2 w
1

1
42k2

2

sin2 w
DF52lF,

1

sin u

]

]u S sin u
]T

]u D1
1

sin2 u
lT1

1
42k3

2

cos2 u
T522ET.

These equations have the solutions

F5~sin w!k211/2~cosw!k111/2Pn
~k2 ,k1!

~cos 2w!,

wherel5(2n111k11k2)
2 andn is an integer, and

T~u!5~cosu!k311/2~sin u!2n1k11k211Pm
~2n1k11k211,k3!

~cos 2u!,

whereE5 1
2[2(m1n11)1(k11k21k3)]

22 1
8. The orthonormal basis eigenfunctions are

C5~sin u!21Fn
~k2 ,k1!

~w!F~2n1k11k2 ,k3!~u!. ~68!

The operator which characterizes this solution and separation is

L1C5F S s1 ]

]s2
2s2

]

]s1
D 21S 142k1

2D s1
21s2

2

s1
2 1S 142k2

2D s1
21s2

2

s2
2 GC5lC. ~69!

Note that after the multiplier (sinw)k211/2(cosw)k111/2(cosu)k311/2(sinu)k11k211 5 Pl 51
3 s

l

kl 11/2 is
split off, the eigenfunctions are polynomials in the variabless2

2 and s2
3. See Refs. 21–24 for a

complete discussion of the polynomial setting for this eigenvalue equation.
For the second coordinate system we chooseLamécoordinatesgiven by

si
25

~u12ei !~u22ei !

~ei2ej !~ei2ek!
, i , j ,k51,2,3, andi , j ,k pairwise distinct.

The Schro¨dinger equation written in terms of these coordinates is

4

~u12u2!
F~u12e1!~u12e2!~u12e3!F]2C

]u1
2 1

1

2 S 1

u12e1
1

1

u12e2
1

1

u12e3
D ]C

]u1
G

2~u22e1!~u22e2!~u22e3!F]2C

]u2
2 2

1

2 S 1

u22e1
1

1

u22e2
1

1

u22e3
D ]C

]u2
G G

1F S k122 1

4D ~e12e2!~e12e3!

~u12e1!~u22e1!
1S k222 1

4D ~e22e1!~e22e3!

~u12e2!~u22e2!

1S k322 1

4D ~e32e2!~e32e1!

~u12e3!~u22e3!
GC52EC. ~70!

The separation equations are
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~r2e1!~r2e2!~r2e3!F ]2

]r2
1
1

2 S 1

r2e1
1

1

r2e2
1

1

r2e3
D ]C

]r G2F S k122 1

4D ~e12e2!~e12e3!

r2e1

1S k222 1

4D ~e22e1!~e22e3!

r2e2
1S k322 1

4D ~e32e2!~e32e1!

r2e3
12Er1mGC50, ~71!

wherer5u1 , u2 . The operator whose eigenvalue ism is

L2C5
24

~u12u2!
Fu2F~u12e1!~u12e2!~u12e3!F]2C

]u1
2 1

1

2 S 1

u12e1
1

1

u12e2
1

1

u12e3
D ]C

]u1
G G

2u1F~u22e1!~u22e2!~u22e3!F]2C

]u2
2 2

1

2 S 1

u22e1
1

1

u22e2
1

1

u22e3
D ]C

]u2
G GG

1F S k122 1

4D ~e12e2!~e12e3!

~u12e1!~u22e1!
~u11u22e1!1S k222 1

4D ~e22e1!~e22e3!

~u12e2!~u22e2!

3~u11u22e2!1S k322 1

4D ~e32e2!~e32e1!

~u12e3!~u22e3!
~u11u22e3!GC. ~72!

Expressed in terms of coordinates on the sphere this has the form

L25e3S s1 ]

]s2
2s2

]

]s1
D 21e2S s1 ]

]s3
2s3

]

]s1
D 21e1S s3 ]

]s2
2s2

]

]s3
D 21S 142k1

2D Fe2s221e3s3
2

s1
2

1e12e22e3G1S 142k2
2D Fe1s121e3s3

2

s2
2 1e22e12e3G1S 142k3

2D Fe2s221e1s1
2

s3
2 1e32e22e1G .

~73!

The eigenfunctionsC can readily be calculated from the Schro¨dinger equation~67!. In order to
find the bound state solutions we try a solution of the form

C5S )
l 51

3

s
l

kl 11/2D )
j51

q S s1
2

u j2e1
1

s2
2

u j2e2
1

s3
2

u j2e3
D ~74!

~Ref. 19! and observe that

s1
2

u j2e1
1

s2
2

u j2e2
1

s3
2

u j2e3
5

P l 51
2 ~ul 2u j !

Pm51
3 ~u j2em!

.

For solutions, the zerosup must satisfy the equations

k111

um2e1
1

k211

um2e2
1

k311

um2e3
1 (

jÞm

2

um2u j
50, ~75!

and the eigenvaluesE andm in this case are

E5 1
2~2q121k11k21k3!

22 1
8,
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m522@k1~e21e3!1k2~e11e3!1k3~e21e1!1e3k1k21e2k1k31e1k2k3#

2
3

2
~e11e21e3!24e2e3~k111! (

m51

q
1

~um2e1!
24e1e3~k211!

3 (
m51

q
1

~um2e2!
24e2e1~k311! (

m51

q
1

~um2e3!
.

If we take the constants of the motion to be

H5M12
2 1M13

2 1M23
2 1

k1
22 1

4

s1
2 ~s2

21s3
2!1

k2
22 1

4

s2
2 ~s1

21s3
2!1

k3
22 1

4

s3
2 ~s2

21s1
2!,

L15M12
2 1S k122 1

4D s2
2

s1
2 1S k222 1

4D s1
2

s2
2 ,

L25e3M12
2 1e2M13

2 1e1M32
2 1

k1
22 1

4

s1
2 ~e3s2

21e2s3
2!1

k2
22 1

4

s2
2 ~e3s1

21e1s3
2!1

k3
22 1

4

s3
2 ~e1s2

21e2s1
2!,

the corresponding defining relations are

L125$L1 ,L2%54~e12e2!FM12M13M322S k122 1

4D s3s2
s1
2 M23

2~k2
22 1

4!
s3s1
s2
2 M312S k322 1

4D s1s2
s3
2 M12G ,

L12
2 5216L1„e2H1~e32e2!L12L2…„e1H1~e32e1!L12L2…

216S k322 1

4D ~e12e2!
2L1

2

216S k122 1

4D „e2H1~e32e2!L12L2…
2

216S k222 1

4D „e1H1~e32e1!L12L2…
22

4

3 )
l 51

3 S kl22
1

4D ~e12e2!
2,

~76!

$L12,L1%52~8L1116!S k222 1

4D „e1H1~e32e1!L12L2…

2~8L1116!S k122 1

4D „e2H1~e32e2!L12L2…,
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$L12,L2%528„e2H1~e32e2!L12L2…„e1H1~e32e1!L12L2…28~e22e3!L1„e1H1~e3

2e1!L12L2…28~e12e3!L1„e2H1~e32e2!L12L2…

116XS k122 1

4D ~e32e2!1S k222 1

4D ~e32e1!CL2216XS k122 1

4D ~e32e2!
21S k222 1

4D
3~e32e1!

21S k322 1

4D ~e12e2!
2CL1116e1~e12e3!S k222 1

4D116e2~e22e3!H.

~ii ! The second potential on the sphere is

V25
2as3

2As121s2
2

1
1

4As121s2
2 F k1

22 1
4

As121s2
21s1

1
k2
22 1

4

As121s2
22s1

G . ~77!

In polar coordinatesthe Schro¨dinger equation has the form

1

sin u

]

]u
S sin u

]C

]u
D 1

1

sin2 u

]2C

]w2 1
a cosu

sin u
C

1
1

2 sin2 u
S 1

42k1
2

11cosw
1

1
42k2

2

12cosw
DC

522EC.

This equation can be solved by a separation of variables via the substitutionC5T(u)F(w), and
the separation equations are

]2F

]w2 1
1

2
S 1

42k1
2

11cosw
1

1
42k2

2

12cosw
DF52l2F,

1

sin u

]

]u S sin u
]T

]u D1
a cosu

sin u
T2

l2

sin2 u
T522ET.

The solutions of the first equation areFm
(k1 ,k2)(w/2) @see~20!#, wherel25 1

4(2m1k11k211)2.
The solution of theu separation equation is given by

Snm~u!5
1

G~2m121k11k2!
AS 11

a2

„n1m111
1
2~k11k2!…

4D G„n12~m11!1k11k2…G„is1m111
1
2~k11k2!…

m!G„is1m1
1
2~k11k2!…

3~2 sin u!m111~1/2!~k11k2!eiu~ is2n!
2F1~2n,is1m111

1
2~k11k2!;2m121k11k2 ;12e2iu!, ~78!

wheres5a/„n1m111 1
2(k11k2)…, and the orthonormal eigenfunctions are

C5Snm~u!Fm
~k1 ,k2!S w

2 D .
The operator which characterizes the separable solutions in this coordinate system is
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L1C5F S s1 ]

]s2
2s2

]

]s1
D 21S 142k1

2D As121s2
2

2~As121s2
21s1!

1S 142k2
2D As121s2

2

2~As121s2
22s1!

GC

52l2C.

For the second coordinate system we must choose avariant of the standard elliptical coor-
dinates. A suitable choice is

s15cos f x11sin f x3 , s25x2 , s352sin f x11cos f x3 ,

where

xi
25

~y12ei !~y22ei !

~ei2ej !~ei2ek!
, i , j ,k51,2,3 andi , j ,k pairwise distinct, sinf5Ae22e1

e32e1
.

To see how this works it is convenient to define the new variablesE1 , E2 , Z1 , andZ2 according
to

e15e21
1

4
~E11E2!2, e35e21

1

4
~E12E2!2,

yj5e21
1

4
~E1

2 1E2
2 !1

1

4
E1E2S Zj1

1

Zj
D .

In terms of these variables Schro¨dinger’s equation has the form

2
4Z1Z2

~Z12Z2!~Z1Z221!
F~Z11V1!~Z11V2!Z1F]2C

]Z1
2 1

1

2 S 1

Z11V1
1

1

Z11V2
1

1

Z1
D ]C

]Z1
G

2~Z21V1!~Z21V2!Z2F]2C

]Z2
2 1

1

2 S 1

Z21V1
1

1

Z21V2
1

1

Z2
D ]C

]Z2
G G

1F2ia~Z1Z211!

~Z1Z221!
1S k122 1

4D ~12V2
2 !Z1Z2

~Z1Z221!~Z21V1!~Z11V1!

1S k222 1

4D ~12V1
2 !Z1Z2

~Z1Z221!~Z21V2!~Z11V2!GC522EC, ~79!

whereV15E1/E2 andV25E2/E1 , soV1V251. The separation equations are

4~Zj1V1!~Zj1V2!ZjF ]2C

]Zj
2 1

1

2
S 1

Zj1V1
1

1

Zj1V2
1

1

Zj
D ]C

]Zj
G

1F2~2 ia1E!Zj12~ ia1E!
1

Zj
1

~k1
22 1

4!~V2
2 21!

Zj1V2
1

~k2
22 1

4!~V1
2 21!

Zj1V1
1mGC50.

In terms of the variablesZj the operator which describes the separation is
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L2C5
4

~Z12Z2!~Z1Z221!
F2~Z211!Z1~Z11V1!~Z11V2!

3F]2C

]Z1
2 1

1

2 S 1

Z11V1
1

1

Z11V2
1

1

Z1
D ]C

]Z1
G

1~Z111!Z2~Z21V1!~Z21V2!F]2C

]Z2
2 1

1

2 S 1

Z21V1
1

1

Z21V2
1

1

Z2
D ]C

]Z2
G G

1F ~12V2
2 !„Z1Z2~Z11Z2!1V2~Z1Z221!…

~Z1Z221!~Z11V2!~Z21V2! S k122 1

4D
1

~12V1
2 !„Z1Z2~Z11Z2!1V1~Z1Z221!…

~Z1Z221!~Z11V1!~Z21V1! S k222 1

4D 1
4ia~Z11Z2!

Z1Z221 GC. ~80!

Indeed if we consider the elliptical coordinates

U3
25Z1Z2 , U1

25
~Z11V2!~Z21V2!

V2
2 21

, U2
25

~Z11V1!~Z21V1!

V1
2 21

, ~81!

then puttingk35A1
412(E2 ia) and Ẽ5 ia1E and multiplying the Schro¨dinger equation by

(1/Z1Z221) we see that the resulting equation has the form

HC5
]2C

]U1
2 1

]2C

]U2
2 1

]2C

]U3
22S U1

]

]U1
1U2

]

]U2
1U3

]

]U3
D 2C

2S U1

]C

]U1
1U2

]C

]U2
1U3

]C

]U3
D 1F 1

42k1
2

U1
2 1

1
42k2

2

U2
2 1

1
42k3

2

U3
2 GC12ẼC50. ~82!

We recognize this as Eq.~67! that we obtained in the case of the potentialV1 . Thus the solutions
are of the form

C5S )
l 51

3

U
l

kl 11/2D )
j51

q S U1
2

u j2e1
1

U2
2

u j2e2
1

U3
2

u j2e3
D . ~83!

The zerosup satisfy the equations

k111

um1V2
1

k211

um1V1
1

A1
412~E2 ia!11

um
1 (

jÞm

2

um2u j
50, ~84!

and the eigenvaluesE andm are determined by
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E5
1

2 S 2q121k11k21A1

4
12~E2 ia! D 22 1

8
,

~85!

m52FV2S k21A1

4
12~E2 ia!D 1V1S k11A1

4
12~E2 ia!D G

12@V1k11V2k2#A1

4
12~E2 ia!1

3

2
~V11V2!1A1

4
12~E2 ia!

3F4V1~k111! (
m51

q
1

~um1V2!
14V2~k211! (

m51

q
1

~um1V1!G
24V1V2SA1

4
12~E2 ia!11D (

m51

q
1

um
.

The classical constants of the motion associated with this potential are

H52
4Z1Z2

~Z12Z2!~Z1Z221!
@~Z11V1!~Z11V2!Z1PZ1

2 2~Z21V1!~Z21V2!Z2PZ2
2 #

1F2ia~Z1Z211!

~Z1Z221!
1S k122 1

4D ~12V2
2 !Z1Z2

~Z1Z221!~Z21V1!~Z11V1!

1S k222 1

4D ~12V1
2 !Z1Z2

~Z1Z221!~Z21V2!~Z11V2!
G ,

L25
4

~Z12Z2!~Z1Z221!
@2~Z211!Z1~Z11V1!~Z11V2!PZ1

2

1~Z111!Z2~Z21V1!~Z21V2!PZ2
2 #

1
~12V2

2 !„Z1Z2~Z11Z2!1V2~Z1Z221!…

~Z1Z221!~Z11V2!~Z21V2! S k122 1

4D
1

~12V1
2 !„Z1Z2~Z11Z2!1V1~Z1Z221!…

~Z1Z221!~Z11V1!~Z21V1! S k222 1

4D 1
4ia~Z11Z2!

Z1Z221

5~V11V2!~M12
2 2M13

2 2M23
2 !22i ~V22V1!M12M131FV1~s32 is1!1V2~s31 is1!

As121s2
2 Ga

1

k1
22

1

4

2~As121s2
21s1!

FV1~s32 is1!1V2~s31 is1!

As121s2
2~As121s2

22s3!
1V2~As121s2

21 is3!G
1

k2
22

1

4

2~As121s2
22s1!

FV1~s32 is1!1V2~s31 is1!

As121s2
2~As121s2

22s3!
1V1~As121s2

21 is3!G ,
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L152
~Z11V1!~Z11V2!~Z21V1!~Z21V2!

~Z12Z2!
2 ~Z1PZ1

2Z2PZ2
!2

1
1

4 S k222 1

4D ~V1
2 21!~Z1Z221!

~Z11V1!~Z21V1!
1
1

4 S k122 1

4D ~V2
2 21!~Z1Z221!

~Z11V2!~Z21V2!

5M12
2 2

1

2 F As121s2
2

As121s2
21s1

S k122 1

4D 1
As121s2

2

As121s2
22s1

S k222 1

4D G .
The corresponding defining relations for the quadratic algebra are

L12
2 5264L1

224~V11V2!2H2L1164HL2
2116~V11V2!L3L2

224L1L2
228~V11V2!L1L2H

1~V12V2!24„V2~4k1
221!2V1~4k2

221!…L1
224„V2~12k2

223k1
2!

2V1~12k1
223k2

2!…HL114~k1
22k2

2!L1L224ia~k1
22k2

2!L218ia„V2~k2
22k1

222ia!

1V1~k1
22k2

212ia!…L12~k1
22k2

2!„V2~k2
22k1

214ia!1V1~k1
22k2

214ia!…H

12ia~V12V2!~~k1
22k2

2!212ia„2~k1
21k2

2!21…!,

$L12,L1%58~V11V2!L1
224L1L224~V11V2!L1H12~k1

22k2
2!L1

22ia~k1
22k2

2!~V12V2!, ~86!

$L12,L2%522~V11V2!2H2296L1
222L2

2116L2L124~V11V2!L2H22L1H~V12V2!

3@V1~k1
213k2

221!2V2~k2
213k1

221!#H24„V1~124k2
2!2V1~124k2

2!…L1

14ia„~k1
22k2

2!~V12V2!12ia~V12V2!….

IV. THE n-DIMENSIONAL ISOTROPIC OSCILLATOR

It is well known that the quantum isotropic harmonic oscillator can be solved by the method
of separation of variables in a number of coordinate systems, including Cartesian coordinates and
elliptical coordinates~see, e.g., Refs. 25 and 26!. We present a new derivation of the eigenfunc-
tions associated withelliptic coordinates. We will adopt the convention of defining this equation
by

HC5@2 1
2D1 1

2v
2~x1

21•••1xn
2!#C5EC, ~87!

whereD 5 ]x1
2 1 ••• 1 ]xn

2 . Elliptical coordinates in Euclideann space are defined by

xj
25

P l 51
n ~ul 2ej !

PkÞ j~ek2ej !
~88!

for e1,u1,e2,•••,en,un . To obtain polynomial solutions of this equation in these coordi-
nates we note the identity

(
k51

n xk
2

u2ek
2152

Ph51
n ~u2uh!

P l 51
n ~u2el !

.

If we rewrite Eq.~87! in terms ofF whereC5exp[21/2v2r 2]F and r is the radial coordinate,
we obtain the eigenvalue equation
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FD22vS (
m51

n

xm ]xmD 2nvGF522EF. ~89!

Note that the operator on the left-hand side maps polynomials in the variablesxj to polynomials,
without increasing the order. For this equation we look for solutions of the form

F5 )
l 51

q

x
l

a l z~x1 ,...,xn!,

whereal 50 or 1. The equation forz is then

FD1 (
m51

n S 2am

xm
]xm22vxm]xmD Gz5S 22E1nv12v (

l 51

n

a l D z.

We now look for solutions of the form

z5 )
m51

q F (
k51

n xk
2

um2ek
21G . ~90!

Substituting this ansatz into the equation forz we obtain the requirements

(
k51

n
112ak

u l 2ek
1 (

jÞl

4

u l 2u j
522v, E5vS 2m1

n

2
1 (

p51

n

apD . ~91!

The operators which describe the separation constants are

L j5 (
kÞl

Sj21
kl Mkl

2 1 (
l Þ j

Sj
l Ql l , j51,...,n21,

whereMkl 5 xk]xl 2 xl ]xk, and

Qik5]xi]xk2v2xixk , Sj
kl5

1

j ! (
i1 ,...,i j

ei1•••ei j ,

wherei m Þ i m8 , i mÞk, l for mÞm8 andm,m851••• j , and

Sj
k5Sj

k@e1 ,...,en#5
1

j ! (
i1 ,...,i j

ei1•••ei j , i 1 ,...,i j pairwise distinct,

wherei m Þ i m8 , i mÞk for mÞm8 andm, m851••• j . In coordinate form these operators are

L j5 (
k51

n Sj
k@u1 ,...,un#

P l Þk~ul 2uk!
~4AP l 51

n ~uk2el !]ukAP l 51
n ~uk2el !]uk2v2P l 51

n ~uk2el !!.

~92!

They have the eigenvalues

(
l

Sj
l Fv~2a l 11!2 (

m51

q
2~a l 11!

um2el
G . ~93!

These operators form a closed algebra under the commutation relations
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@Mkl , Mi j #5Ml jdki1Mkid l j2Mkjd l i2Mlidk j ,

@Qik , Qjl #5v2@Mi jd lk1Mild jk1Mkjd l i1Mkld j i #,

@Qik , M jl #5Qi jdkl1Qkjd i l1Qildk j1Qkld i j .

The eigenfunctions can be normalized by using their representation in terms of Cartesian
coordinates. For the assumed form of the eigenfunctions given above the normN is readily
calculated to be

N25 (
p50

n

(
si1

si2
,...,si p

(
i1 ,...,i pÞ

~21!qv2~n/21(h51
n ah!

3
P j51

p @~2v!2Ai jG~a i j
1si j1

1
2!#Pk5p11

n G~a i k
1 1

2!

P r51
p P

l r

si r~u i r l r2ei r !
, ~94!

where0< si j < 2q, 0< ( j51
p si j < 2q, 0<p<n.Eachof thesi j are integers,u i r l r P $u1 ,...,um% and

u i r l r Þ u j wl w
if i rÞ j w , and if i r is fixed then at most twou i r l r can be equal. From these results we

have the satisfactory situation that both the eigenvalues and the normalizations can be computed in
terms of the zerosu1 ,...,um .

As an example of the simplest normalized eigenfunction we give the following:

C5Av

p F 3

4v2 S 1

~u2e1!
2 1

1

~u2e2!
2D1

1

2v2~u2e1!~u2e2!
11G21/2

3e2~x21y2!/2F x2

u2e1
1

y2

u2e2
21G .

For this eigenfunction the varableu is a solution of

1

~u2e1!
1

1

~u2e2!
50,

i.e., u5(e11e2)/2. If we substitute this into the above equations we obtain

C5Av

p F S 2

v~e12e2!
D 211G21/2

e2v~x21y2!/2F2~x22y2!

~e22e1!
21G .

The orthonormalized eigenfunctions calculated in this way form a complete set.
In this paper we have established that once the zeros of a given set of special eigenfunctions,

which are essentially polynomials, are known, then all the other properties such as normalization
and eigenvalues can be determined from them in terms of algebraic expressions.
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Decomposing tensor products of irreducible representations of compact groups al-
most always involves multiplicity, wherein some irreducible representations occur
more than once in the direct sum decomposition. We show that the multiplicity can
always be specified by polynomial group invariants. The setting is a Bargmann–
Segal–Fock space inn3N complex variables, wheren is the number of labels
needed to specify the tensor product andN is the dimension of the fundamental
representation of the compact group. Both the tensor product and direct sum bases
are realized as polynomials in this space, and it is shown how Clebsch–Gordan and
Racah coefficients can be computed by suitably differentiating these polynomials.
The example of SU(N) is discussed in detail, and it is shown that the multiplicity
can be computed as the solution of certain diophantine equations arising from
powers of group invariants, namely minors of determinants. ©1996 American
Institute of Physics.@S0022-2488~96!02711-9#

I. INTRODUCTION

Clebsch–Gordan and Racah coefficients for SU~2! are well known, and closed form expres-
sions for them are available, as well as programs for explicitly evaluating any desired coefficients.
For other compact groups much less is known about these coefficients. Some procedures and
partial results for SU~3! have been published,1–3 but beyond this almost nothing is known. In this
paper we will present techniques for calculating Clebsch–Gordan and Racah coefficients for
arbitrary tensor products of the compact groups, using Bargmann space techniques developed in
earlier papers.4

The general problem can be stated as follows. Given a compactG, whose irreducible repre-
sentations are all assumed known, choose a basisul,j& in the irreducible representation spaceVl.
Form thep-fold tensor productl1^l2^•••^lp and calculate the number of times the irreducible
representationl occurs in the tensor product. There are a number of ways for computing this
multiplicity, but most of them are rather long and tedious. We will show a relatively simple way
for computing this multiplicity, as solutions of diophantine equations arising from group invari-
ants. In any event we assume the multiplicity is known. Next choose a~possibly new! basis inVl,
say ul,z&; then the Clebsch–Gordan coefficients are the overlap between the tensor product basis
and the direct sum basis in the tensor product decomposition, namely^l1j1•••lpjpulzh&. Simi-
larly, the Racah coefficients are the overlap between direct sum bases with different multiplicity
labels: ^lzh8ulzh&. Here h and h8 are multiplicity labels, that is, labels that distinguish the
equivalent representations. For SU~2! the Clebsch–Gordan and Racah coefficients are reasonably
well known for p53,4,5, whenh refers to a stepwise coupling set of labels, generated by inter-
mediate angular momenta, in which case the Racah coefficients are called 6J, 9J, 12J, etc.
symbols.

If l15l25•••5lp , a new symmetry occurs, a permutation symmetry that can be used to help
label the multiplicity. Moreover, it is often desirable to have coefficients that have definite per-

0022-2488/96/37(12)/6468/18/$10.00
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mutation symmetry; we will show that such permutation symmetry arises naturally using the
techniques presented in this paper.

Our procedure for computing Clebsch–Gordan and Racah coefficients is as follows: we real-
ize all irreducible representations ofG on Bargmann space; in particular, the statesul,j& are
realized as polynomialsf ul,j&(Z) of a multicomponent complex variableZ. The tensor product
states can then also be realized as polynomialsul1 ,j1 ,...,lp ,jp&→ f ul1 ,j1 ,...,lp ,jp&(Z). The prob-
lem is how to realize the stateul,z,h& as a polynomial. If this were known, using the differentiation
inner product@see Eq.~2.1!# in Bargmann space, the Clebsch–Gordan coefficients would be

^l1 ,j1 ,...,lp ,jpul,z,h&5 f ulzh8&
* ~D ! f ulzh&~Z!uZ50

and the Racah coefficients

^l,z,h8ul,z,h&5 f ulh8&
* ~D ! f ulzh&~Z!uZ50 .

The Racah coefficients are actually basis independent, so that the basis elementz can be
conveniently chosen as the highest weight. Though the Clebsch–Gordan coefficients are not basis
independent, it often suffices to compute these coefficients for the highest weight and then get the
other coefficients using raising and lowering operators from the Lie algebra ofG. However, the
techniques discussed in the next sections allow one to calculate Clebsch–Gordan coefficients
directly in any basis of interest.

Our strategy for realizingul,z,h& as a polynomial is as follows: instead of computing the
number of timesl occurs in the tensor productl1^•••^lp we look at what is equivalent, namely
the number of times the identity representation occurs in the augmented tensor product
l1^•••^lp^lA, wherelA is the contragradient representation ofl. For completeness we show in
Sec. II that these multiplicities are the same; that is,

#~l,l1^ ••• ^ lp!5#~1,l1^ ••• ^ lp^ lA!,

where # means ‘‘number of times.’’ Shifting the problem to a study of the multiplicity of the
identity representation means that the full power of invariant theory can be brought to bear on
computingf ulzh&(Z).

Assume that a set of functionally independent invariantsI h(Z,W) in the augmented tensor
product space is known@i.e., I h(Zg,Wg)5I h(Z,W) for all gPG#. Then as will be shown in Sec.
II, the polynomialf ulAzA&

* (Dw)I h(Z,W)W50 transforms underG as the polynomialf ulzh&(Z) and, if
properly normalized, can be used to calculate the Clebsch–Gordan and Racah coefficients ofG.

The goal of this paper is to prove these theorems~Sec. II! and then apply them toG5SU(N)
~Sec. III!, where use is made of the fact that all SU(N) invariants are minors of determinants. The
invariantsI h(Z,W) are then products of minors of determinants with certain transformation prop-
erties.

Finally in Sec. IV we give a number of examples to demonstrate the power and generality of
our methods. These examples show that although we cannot calculate closed form expressions for
Clebsch–Gordan and Racah coefficients, we have reduced the computation of these coefficients to
solving linear diophantine equations and differentiating certain polynomials. With the availability
of symbolic manipulation computer programs, this is almost equivalent to having closed form
expressions.
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II. GENERAL THEORY

Let Cn3N denote the vector space of alln3N complex matrices. IfZ5(Zi j ) is an element of
Cn3N, let Z* denote its complex conjugate and writeZi j 5 Xi j 1 A21Yi j ; 1< i<n, 1< j<N. If
dXi j ~resp.dYi j ! denotes Lebesque measure onR, we letdZ denote the Lebesque product measure
on RnN. Define a Gaussian measuredm on Cn3N by

dm~Z!5p2nN exp@2tr~ZZ†!#dZ,

where tr denotes the trace of a matrix andZ† is the transpose ofZ* .
A function f :Cn3N→C is holomorphic square integrableif it is holomorphic on the entire

domainCn3N, and if

E
Cn3N

u f ~Z!u2dm~Z!,`.

Clearly the holomorphic square-integrable functions form a Hilbert space, theBargmann–Segal–
Fock space, with respect to the inner product

^ f 1u f 2&5E
Cn3N

f 1* ~Z! f 2~Z!dm~Z!.

Let F [F ~Cn3N! denote this Hilbert space. From Ref. 4 this inner product also can be defined by
the following formula:

^ f 1u f 2&5 f 1* ~D ! f 2~Z!uZ50 , ~2.1!

wheref (D) is the differential operator obtained by formally replacingZi j by the partial derivative
]/]Zi j ~1< i<n, 1< j<N!. It follows that the representationR of U(N) of F defined by
[R(g) f ](Z)5 f (Zg), gPU(N), is unitary.

Let G be a closed subgroup of SU(N) @the important cases are the classical groups
G5SU(N), SO(N), or Sp(N), N even for the latter#. Then by the Borel–Weil theorem an irre-
ducible representationRl of G of signaturel can be realized on a space of polynomial functions
Vl that can be embedded inF whereG acts by right translation onVl. SinceG is a closed
subgroup of SU(N), the contragradient~or in this case complex conjugate! of the representation
Rl can also be realized on a subspace of polynomial functionsVl* of F @for example, if
G5SU~3!, l5~4,1,0! thenl*5~4,3,0!#.

A polynomial functionfPF is said to beG-invariant ifR(g) f5 f for all gPG. The follow-
ing theorem relates the multiplicity of an irreducible representationRl in thep-fold tensor product
Vl1 ^ ••• ^ Vlp,F with theG-invariant polynomial functions inF .

Theorem 2.1:Let G be a closed subgroup ofSU(N) and let (Rl,Vl) denote an irreducible
representation of G with signaturel. Then the multiplicity of the irreducible representation Rl in
the tensor product Vl1 ^ ••• ^ Vlp,F is equal to the dimension of the G-invariant subspace in
Vl1^ ••• ^Vlp^Vl*,F .

Proof: To prove the theorem we use the following well-known fact which we prove for the
sake of completeness.

Lemma 2.2: Let G be a compact group and letri , i51,2,be irreducible unitary representa-
tions of G on the Hilbert spaces Hi , i51,2, respectively. Then the identity representation of G
occurs inr1 ^ r2* uG (with multiplicity exactly 1) if and only ifr1 is equivalent tor2.

Proof of the lemma:If r is a representation ofG, let xr denote the character ofr. Let I denote
the identity representation ofG. For all gPG it is well known thatx I(g)51 andxr1^ r

2*
(g,g)
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5 xr1
(g)xr

2*
(g). If @r^r* uG :I # denotes the multiplicity of the identity representation inr1

^ r2* uG , then the Schur orthogonality relations for compact groups imply that

@r1^ r2* uG :I #5E
G

xr1^ r
2*
~g,g!x I* ~g!dg,

wheredg denotes the normalized Haar measure ofG. However, as remarked above, we have

E
G

xr1^ r
2*
~g,g!x I* ~g!dg5E

G
xr1

~g!xr
2*
~g!dg,

which, again by the Schur orthogonality relations, is equal to

dr1 ,r2
5 H1 if r1'r2 ,

0 if r1'” r2 .

This achieves the proof of the lemma.
From the lemma it follows immediately by iteration that the multiplicity ofRl in Vl1 ^ •••

^ Vlp is equal to the multiplicity of the identity representationI in Vl1 ^ ••• ^ Vlp ^ Vl* . Since
Vl1 ^ ••• ^ Vlp ^ Vl* consists of polynomial functions inF andG acts onVl1 ^ ••• ^ Vlp ^ Vl*

by right translation, it follows that the identity representation occurs inVl1 ^ ••• ^ Vlp ^ Vl* if and
only if thereexist polynomial functionsf P Vl1 ^ ••• ^ Vlp ^ Vl* such thatRl(g) f5R(g) f5 f for
all gPG, i.e., f is G-invariant. Each of these polynomial functionsf spans a one-dimensional
subspace ofVl1 ^ ••• ^ Vlp ^ Vl* . This implies immediately that the dimension of theG-invariant
subspace ofVl1 ^ ••• ^ Vlp ^ Vl* is equal to themultiplicity ofRl inVl1 ^ ••• ^ Vlp.

The next theorem will give us a very simple way to compute Clebsch–Gordan coefficients for
the tensor productVl1 ^ ••• ^ Vlp. The proof of the theorem relies heavily on the properties of the
‘‘differentiation’’ inner product~2.1! of F . Thus we start by establishing some properties of this
inner product. ForfPF , the polynomial differential operator with constant coefficientsf (D) also
acts onF in the obvious fashion. IfyPGL~N,C!, then it can be shown~cf. Ref. 5a! that

R~y! f ~D !R~y21!5„R~yA! f …~D !, ~2.2!

whereyA5(y21) t; in particular, ifyPU(N), thenyA5y* , the complex-conjugate ofy. For fPF
we define the linear functionalF( f ) on F by

@F f #~h!5^ f uh&5 f * ~D !h~Z!uZ50 , hPF .

ThenF is aconjugate-linear isomorphism~or anti-isomorphism! of F onto its dualF * . If R is a
representation of a closed subgroupG of SU(N) which is defined by right translation on a
subspaceV of F , then we can define the contragradientRA ~or in this case the complex-conjugate
R* ! by the equation

@RA~g!F~ f !#~h!:5@F~ f !#„R~g21!h…5^ f uR~g21!h&5^R~g! f uh&5@F„R~g! f …#~h!

for all gPG andh, fPF .
It follows that

6471W. H. Klink and T. Ton-That: Multiplicity, invariants, and tensor products

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



@RA~g1g2!F~ f !#~h!5@F„R~g1g2! f …#~h!5@F„R~g1!~R~g2! f …!#~h!

5@RA~g1!F„R~g2! f …#~h!

5@RA~g1!R
A~g2!F f #~h!,

for all g1 ,g2PG and f ,hPF . ThusF is a conjugate-linear isomorphism~or anti-isomorphism!
intertwining operator. In particular if (Rl,Vl) is an irreducible representation ofG, then
„RlA

,F(Vl)… is also an irreducible unitary representation ofG. SinceG is a subgroup of SU(N)
theG-module„RlA

,F(Vl)… can be unitarily mapped onto (Rl* ,Vl* ), aG-submodule ofF . @In
the Appendix this map is carried out explicitly for the caseG5SU(N).# ThusVl i(Vl* ) can be
realized as a subspace of holomorphic square-integrable functions onCr i3N(Cs3N) which trans-
form covariantly with respectto Bi(Bs), 1< i<p, i.e., f (biZi)5l i(bi) f (Zi), Zi P Cr i3N, and
which may satisfy some additional properties@for example, whenG5SO(N) or Sp(N),
Vl i(Vl* ) must also beG-harmonic polynomials~see Refs. 5a and 5b!#. ForZi P Cr i3N, 1< i<p,
write

Z5~Z1 ,...,Zp![F Z1A
Zp

G ,
and forWPCs3N write (Z,W)[[W

Z ]. Let dm(Z), dm(W), and dm(Z,W) denote the Gaussian
measures onCr3N(r5( i51

p r i), C
s3N, andC(r1s)3N, respectively. LetI [ I (Vl1 ^ ••• ^ Vlp

^ Vl* ) denote the space ofG-invariants inVl1 ^ ••• ^ Vlp ^ Vl* as in Theorem2.1. Thenwehave
the following:

Theorem 2.3:Let $ f j i

l i%j i
be a basis of state vectors in Vl i, 1< i<p. Let $f z

l%z be a basis of

state vectors in Vl and let$ f j*
l* % be its anti-isomorphic image in Vl* . Let $I h%h be a basis of state

vectors inI . Let

f̃ z
l,h~Z!5 f z*

* l* ~D !I h~Z,W!uW50[E
Cs3N

f z*
l* ~W!I h~Z,W!dm~W!. ~2.3!

Then$ f̃ z
l,h%z is an isomorphic image of$f z

l%z in V
l1 ^ ••• ^ Vlp indexed by the multiplicity label

h and we have the following relation of Clebsch–Gordan coefficients,

^ f j1

l1f j2

l2••• f jp

lpf z*
l* uI h&5^ f j1

l1••• f jp

lpu f̃ z
l,h&. ~2.4!

Proof: Let A: f(Vl)→Vl* denote the linear isomorphism intertwiningf~Vl! andVl* . Then

f z*
l* 5 AF( f z

l). Using the inner product~2.1! or its equivalent integral inner product, we have

f̃ z
l,h~Z!5 f z*

* l* ~D !I h~Z,W!uW505E
Cs3N

f z*
l* ~W!I h~Z,W!dm~W!.

Note that in Eq.~2.3! f̃ z
l,h(Z) is the inner product̂ f z*

l* ,I h&, whereI h is considered as a function
of the variable W. Clearly f̃ z

l,h(Z) is a polynomial function in Z and if
b5(b1 ,...,bp)PB13•••3Bp , then

f̃ z
l,h~Z!5 f z

l,h~b1Z1 ,...,bpZp!5E
Cs3N

f z*
l* ~W!I h~b1Z1 ,...,bpZp ,W!dm~W!.
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SinceI h is an element ofVl1 ^ ••• ^ Vlp ^ Vl* , it follows immediately that

I h~b1Z1 ,...,bpZp ,W!5l1~b1!,...,lp~bp!I h~Z1 ,...,Zp ,W!.

Hence

f̃ z
l,h~bZ!5l1~b1!,...,lp~bp! f̃ z

l,h~Z!.

Moreover, ifI h(Z,W) is required to satisfy any additional property in order for it to belong to
Vl1 ^ ••• ^ Vlp ^ Vl* , then it follows thatf̃ z

l,h must satisfy a similar property in order for it to
belong toVl1 ^ ••• ^ Vlp @for example, ifI h(Z,W) must be aG-harmonic polynomial, then by
interchanging differentiation and integration, that is, differentiating under the integral sign, one
can easily show thatf̃ z

l,h(Z) is G-harmonic polynomial in the variableZ#. In conclusion,f̃ z
l,h

belong toVl1 ^ ••• ^ Vlp. Then

by Eq.~2.2! and the fact thatI h isG-invariant. NowR(g* ) f z*
* l* 5 „R(g) f z*

l*
…* , and

R~g! f z*
l*5R~g!AF~ f z

l!5AF~R~g! f j
m!.

However,R(g) f z
l 5 (j8Dj8j

m (g) f j8
m , whereDz8z

m are theD-functions ofRl. So

R~g! f z*
l*5(

z8
Dz8z
* l

~g!Af~ f z8
l

!,

where in the last equality we use the fact thatF is a conjugate-linear isomorphism. It follows that

„R~g! f z*
l*
…*5(

z8
Dz8z

l
~g! f z* 8

l*

and

R~g! f̃ z
l5(

z8
Dz8z

l
~g!„f z* 8

l* ~D !I h)5(
z8

Dz8z
l

~g! f̃ z8
l .

This last equality shows that$ f̃ z
l% transforms underR in the same manner as$f z

l%.
Now

^ f j1

l1••• f jp

lpf z*
l* uI h&5 f j1

* l1~D !••• f
jp
* lp* ~D ! f z*

* l* ~D !I h~Z,W!u~Z,W!5~0,0!

5 f j1
* l1~D !••• f jp

* lp~D ! f̃ z
l,h~Z!uZ505^ f j1

l1••• f jp

lpu f̃ z
l,h&

which is Eq.~2.4!.
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Remark 2.4:~i! In Eq. ~2.3! the invariant polynomialI h(Z,W) can be viewed as a kernel
function and the indexh can be used as the multiplicity label of the representationl in the tensor
productl1^•••^lp .

~ii ! We could also use the integration inner product to give another proof of Theorem 2.3.
Indeed, forgPG we have from Eq.~2.3!

R~g! f̃ z
l,h~Z!5 f̃ z

l,h~Zg!5E
Cs3N

f z*
l* ~W!I h~Zg,W!dm~W!.

However,I h(Zg,W)5I h(Zgg
21,Wg21)5I h(Z,Wg21) sinceI h is G-invariant. In making the

change of variableW85Wg21 and using the fact that the measuredm(W) is G-invariant, we
obtain

R~g! f̃ z
l,h~Z!5E

Cs3N
f z*

l* ~W8g!I h~Z,W8!dm~W8!.

Now

f z*
l* ~Wg!5@R~g!AF~ f z

l!#~W!5@AFR~g! f z
l#~W!5FAF(

z8
Dz8z

l
~g! f z8

l G ~W!

5(
z8

Dz8z
l

~g!@AF f z8
l

~W!#

5(
z8

Dz8z
l

~g! f z* 8
l* ~W!.

Therefore,

R~g! f̃ z
l,h~Z!5E

Cs3NS (
z8

Dz8z
l

~g! f z* 8
l* D ~W8!I h~Z,W8!dm~W8!

5(
z8

Dz8z
l

~g!E
Cs3N

f z* 8
l* ~W8!I h~Z,W8!dm~W8!

5(
z8

Dz8z
l

~g! f̃ z8
l,h

~Z!.

Also,

^ f j1

l1••• f jp

lpf z*
l* uI h&5E

C~r1s!3N
f j1

l1~Z1!••• f jp

lp~Zp! f z*
l* ~W! f ~Z,W!dm~Z,m!,

which by Fubini’s theorem is equal to

E
Cr3N

dm~Z! f j1

l1~Z1!••• f jp

lp~Zp!S E
Cs3N

dm~W! f z*
l* ~W!I h~Z,W! D

5E
Cr3N

f j1

l1~Z1!••• f jp

lp~Zp! f̃ z
l,h~Z!dm~Z!

5^ f j1

l1••• f jp

lpu f̃ z
l,h&.
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III. APPLICATION TO SU( N)

We have shown that the problem of finding the multiplicity of an irreducible unitary repre-
sentationRl in the tensor productVl1 ^ ••• ^ Vlp of p irreducible unitary representations of a
closed subgroup of SU(N) is equivalent to that of finding the dimension of theG-invariant
subspace inVl1 ^ ••• ^ Vlp ^ Vl* ~Theorem 2.1!. Also, the Clebsch–Gordan coefficients ofRl in

Rl1 ^ ••• ^ Rlp are essentially inner products of state vectorsf z1

l1••• f zp

lpf j*
l* with basis vectors of

G-invariants inVl1 ^ ••• ^ Vlp ^ Vl* ~Theorem 2.3!. It is therefore crucial to find explicit bases
for the spaceI [ I l1 ,...,lp ,l* ofG-invariant polynomial functions inVl1 ^ ••• ^ Vlp ^ Vl* . This
also will give a resolution of the multiplicity problem, i.e., the problem of labelling different
isomorphic copies of an irreducible representationRl which occurs inRl1 ^ ••• ^ Rlp. However,
the theory of polynomial invariants of the classical groups is well known~see Ref. 6, for example!,
and for many other reductive groups this problem has been thoroughly investigated~see Ref. 7, for
example!. We start in this paper with the simplest but nevertheless very important case when
G5SU(N). For this the ‘‘first main theorem’’ of invariants of SL~N,C! @and hence of SU(N)# can
be stated as~see Ref. 7, Ch. II!:

Theorem 3.1: Let P(Ck3N), k>N, be the subspace ofF ~Cn3N!, n>k, of all polynomial
functions onCk3N. Then the algebra of allSL~N,C!-invariant polynomials inP~Ck3N! is generated
by the polynomials

D1,2...N
i1 ...i N~Z!, ZPCk3N,

where ( i 1 ,...,i N) is an N-shuffle, i.e., a strictly increasing sequence of integers in the segment
@1, k#, andD12...N

i1 ...i N(Z) is the determinant of the N3N matrix formed by the rows i1 ,...,i N and the
columns1,...,N of Z.

Next we consider tensor products ofp irreducible SU(N)-modulesVl i with V(l* ). Each
signatureli andl* can be labelled by a highest weight of the form (m1

i ,...,mN21
i ,0) where the

integersm1
i ,...,mN21

i satisfy the dominant conditionm1
i >m2

i >•••>mN21
i >0. We discard those

mj
i which are equal to zero and form thek-tuple of positive integers

(m1
1,...,mr1

1 ,m1
2,...,mr2

,...,m1
p ,...,mrp

p ,M1 ,...,Ms), where

is the highest weight ofl* andm1
i >m2

i >mr
i .0 for i51,...,p. Let Bi denote the subgroup of

GL~r i ,C! consisting of all lower triangular matrices,i51,...,p, and letBs denote the lower
triangular subgroup of GL~s,C!. Then the groupB13B23...3Bp3Bs can be identified with the
group of allk3k lower triangular block matricesb of the form

Then we have the following:
Theorem 3.2: Let P~Ck3N!, k>N, be the subspace ofF ~Cn3N!, n>k, of all polynomial

functions onCk3N. Then the tensor product Vl1 ^ ••• ^ Vlp ^ Vl* of irreducible unitary SU(N)-
modules can be realized as the subspace ofP~Ck3N! of all polynomial functions f which satisfy the
covariant condition
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f ~bZ!5S )
i51,...,p

l i~bi ! Dl* ~bs! f ~Z!, ~3.2!

where ZPCk3N, b is given by Eq. (3.1), andl i(bi) 5 (bi)11
m1
i

•••(bi) r i r i
mi

ri ,l* (bs)

5 (bs)11
M1•••(bs)ss

Ms.TheSU(N)-invariant polynomials inVl1 ^ ... ^ Vlp ^ Vl* are linear combina-
tions of polynomials of the form

„D12...N
12...N~Z!…l 1...N•••„D1...N

i1 ...i N~Z!…l i1 ...i N•••„D1,...,N
k2N11,...,k~Z!…l k2N11,...,k, ~3.3!

with

l 12...N1•••1l 1i2 ...i N
1•••l 1,...,k5m1

1,

l 12...N1•••1l 12...i N
1•••l 2,...,k5m2

1,

~3.4!
A

l 1...k1•••1l i1 ...i N21,k
1•••1l k2N11,...,k5Ms ,

where in Eq. (3.3) a minorD1...N
i1 ...i N(Z) appears if and only if it satisfies

D1...N
i1 ...i N~bZ!5b i1i1

•••b i NiN
D1...N
i1 ...i N~Z!, ~3.5!

and where in Eq. (3.4) the li1 ...i N are non-negative integers and the shuffles( i 1 ...i N) are lexico-

graphically ordered. Moreover, the number of linearly independent solutions of Eq. (3.3) which
satisfy the constraints (3.5) and the system of linear diophantine equations (3.4) is the multiplicity
of l in the Clebsch–Gordan series ofl1^...^lp .

Proof:The fact that the tensor productVl1 ^ ••• ^ Vlp ^ Vl* of irreducible SU(N)-modules
can be realized as the subspace of all polynomial functions inP ~Ck3N! which satisfy the covariant
condition~3.2! is a consequence of the Borel–Weil theorem and a detailed proof can be found in
Ref. 4a. It remains to show that the SU(N)-invariant polynomials inVl1 ^ ••• ^ Vlp ^ Vl* are
spanned by polynomials of the form~3.3! which satisfy the constraints~3.4! and ~3.5!. From
Theorem 3.1 it follows that the polynomials of the form~3.3! will span the subspace of SU(N)-
invariants inVl1 ^ ••• ^ Vlp ^ Vl* if and only if they also satisfy the covariant condition~3.2!.
Thus it remains to show that a polynomial of the form~3.3! satisfies the covariant condition~3.2!
if and only if it satisfies the constraints~3.4! and ~3.5!. Since in a polynomial of the form~3.3!,
where only the minorsD1...N

i1 ...i N which satisfy~3.5! occur, the constraints~3.4! imply the condition
~3.2!, it is clear that the condition is sufficient. To show that the condition is necessary we first
observe that it is easy to verify that

D1...N
i1 ...i N~yZ!5 (

j 1,•••, j N
D j 1 ...j N

i1 ...i N ~y!D1...N
j 1 ...j N~Z! ~3.6!

for all yPCk3k andZPCk3N, and where in Eq.~3.6! the summation ranges over allN-shuffles
( j 1 ,...,j N). Next, let f be an element of the form~3.3! and consider a typical factor
(D1...N

i1 ...i N) l1 ...l N of f . The condition thatf must satisfy Eq.~3.2! together with the equality~3.6!

with y5b, a matrix of form~3.1!, forceD j 1 ...j N

i1 ...i N (b) 5 0 if the shuffle (j 1 ,...,j N) is different from

( i 1 ,...,i N). Thus Eq.~3.6! becomes
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D1...N
i1 ...i N~bZ!5D i1 ...i N

i1 ...i N~b!D1...N
i1 ...i N~Z!. ~3.7!

However, in Eq.~3.7! b is an invertible lower triangular matrix, therefore,

D i1 ...i N

i1 ...i N~b!5b i1i1
•••b i NiN

.

It follows immediately that in order thatf satisfies Eq.~3.2!, it is necessary that the minors
D1...N
i1 ...i N appearing inf must satisfy Eq.~3.5! and the exponentsl i1 ...i N must satisfy the constraints

~3.4!.
Remark 3.3: For any concrete example it is very easy to determine which minors

D1...N
i1 ...i N(Z) satisfy condition~3.5!. This reduces the problem of finding the subspace of SU(N)-

invariant polynomials inVl1 ^ ••• ^ Vlp ^ Vl* to that of solving the system of linear diophantine
equations~3.4!, which is a well-studied problem in integer programming~e.g., the Branch bound
method!. In general, the polynomials given by Eq.~3.3! which satisfy the constraints~3.4! are not
necessarily linearly independent, as we shall see in an example in the next section. However, the
problem of finding a basis for a spanning set of polynomial functions is also well studied in
computer programming.

IV. EXAMPLES

To illustrate our procedures we consider below several examples.
Example 1:This is the same example given in Refs. 4b and 4c. It will serve to prove the

power and the simplicity of our present method versus the more elaborate one in the former.
Consider the tensor productV~2,0,0!

^V~2,0,0!
^V~1,0,0! of SU~3! which has the following Clebsch–

Gordan series,

~2,0! ^ ~2,0! ^ ~1,0!5~5,0!12~4,1!1~3,2!1~2,0!1~1,1!, ~4.1!

where in Eq.~4.1! only two integers are needed to label an irreducible representation of SU~3!.
The representation with signature~4,1! occurs with multiplicity two and its contragradient repre-
sentation has signature~4,3!. So in accordance with Theorem 3.2 we consider the polynomial
spaceP ~C533!. The minorsD123

i1i2i3(Z) which satisfy the condition~3.5! for zPC533 and

b5F b11

b22

b33

b44 0

b54 b55

G
are

D123
123, D123

124, D123
134, D123

145, D123
234, D123

245, and D123
345.

So the diophantine linear equation~3.4! for this case is

l 1231l 1241l 1341l 14552,

l 1231l 1241l 2341l 24552,

l 1231l 1341l 2341l 34551,
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l 1241l 1341l 1451l 2341l 2451l 34554,

l 1451l 2451l 34553,

which, using a Maple V program, gives the solutions

l 1235l 1345l 23450, l 1245l 1455l 2455l 34551,

l 1235l 1245l 1345l 34550, l 14552, l 2345l 24551,

and

l 1235l 1245l 2345l 34550, l 1345l 14551, l 24552.

It follows that the polynomials

D123
124~Z!D123

145~Z!D123
245~Z!D123

345~Z!, „D123
145~Z!…2D123

234~Z!D123
245~Z!, and D123

134~Z!D123
145~Z!„D123

245~Z!…2,

which are easily verified to be linearly dependent@in fact, D123
124(Z)D123

145(Z)
D123
245(Z)3D123

345(Z)1„D123
145(Z)…2D123

234(Z)D123
245(Z)5D123

134(Z)D123
145(Z)„D123

245(Z)…2#, span the two-
dimensional subspace of all SU~3!-invariants in the tensor product

V~2,0,0!
^V~2,0,0!

^V~1,0,0!
^V~4,3,0!.

In Eq. ~4.1! the other irreducible representation which occurs with multiplicity two is~3,2!. Its
contragradient representation has signature~3,1!. So proceeding as above, we obtain the polyno-
mials

f 1~Z!5„D123
124~Z!…2D123

345~Z!, f 2~Z!5D123
124~Z!D123

134~Z!D123
245~Z!,

and

f 3~Z!5D123
124~Z!D123

145~Z!D123
234~Z!

which span the subspace of all SU~3!-invariants in the tensor product.

V~2,0,0!
^V~2,0,0!

^V~1,0,0!
^V~3,1,0!.

Using a Maple V program, we easily verify thef 1, f 2, andf 3 span a two-dimensional vector space
with f 11 f 32 f 250.

Example 2:Threefold tensor products of SU~2! andS3 permutation symmetry.
We consider in this example the threefold SU~2! tensor productj ^ j ^ j , which, since all the

irreducible representations are the same, generates anS3 permutation symmetry. The decomposi-
tion into irreducible representations is

j ^ j ^ j53 j % ~3 j21! % ~3 j22! % ••• ,

Symmetry type5S M S,M ...,

Multiplicity51 2 3... .

The Clebsch–Gordan coefficients are not particularly difficult to compute forJ53 j21,3j22;
here we simply wish to show how the polynomial invariants carry a representation ofS3. Accord-
ing to the general formalism set up in Secs. II and III, we have the augmented Bargmann–Segal–
Fock spaceP ~C432! of all polynomial functionsf which satisfy the covariant condition
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f ~dZ!5d1
2 jd2

2 jd3
2 jd4

2Jf ~Z!, for all d5F d1 d2

d3

d4

G and ZPC432, ~4.2!

with invariants of the form„D12
12(Z)…l 12„D12

13(Z)…l 13•••„D12
34(Z)…l 34. The non-negative integersl i j

must be chosen to satisfy Eq.~4.2!. That means the equations

l 121l 131l 1452 j , l 121l 231l 2452 j ,
~4.3!

l 131l 231l 3452 j , l 141l 241l 3452J

must be satisfied. ForJ53 j21 the solutions are

f 1~Z!5„D12
14~Z!…2 j„D12

24~Z!…2 j21
„D12

34~Z!…2 j21
„D12

23~Z!…,

f 2~Z!5„D12
14~Z!…2 j21

„D12
24~Z!…2 j„D12

34~Z!…2 j21
„D12

13~Z!…, ~4.4!

f 3~Z!5„D12
14~Z!…2 j21

„D12
24~Z!…2 j21

„D12
34~Z!…2 j„D12

12~Z!….

However, the multiplicity forJ53 j21 is 2, not 3, so we see that thef i must be linearly depen-
dent. To extract the permutation symmetry, we note that

~Ls f !~Z!5 f ~s21Z!, sPS3 , ~4.5!

defines the action of the permutation groupS3 on the subspace of invariants. Applied tof i gives

L ~12!~3! f 15 f 2 , L ~12!~3! f 25 f 1 , L ~12!~3! f 352 f 2 ,
~4.6!

L ~123! f 152 f 2 , L ~132! f 252 f 3 , L ~132! f 35 f 1 ,

which means thef i carry a mixed and antisymmetric representation ofS3. From this it follows that
the antisymmetric linear combination,f A , must give the linear dependence:

f A :5 f 12 f 21 f 350. ~4.7!

The mixed representation can be chosen such that theS2 subgroup carries a symmetric and
antisymmetric representation. Then

f65 f 16 f 25~D12
14!2 j21~D12

24!2 j21~D12
34!2 j21@D12

14D12
236D12

24D12
13# ~4.8!

gives the two mixed representation states needed to calculate the Clebsch–Gordan coefficients

^ j ,m1 ; j ,m2 ; j ,m3uJ53 j21,M ;6&.

Similarly for J53 j22, with threefold degeneracy, the solutions to Eq.~4.3! are

f 1 :5~D12
14!2 j22~D12

24!2 j21~D12
34!2 j21D12

12D12
13,

f 2 :5~D12
14!2 j21~D12

24!2 j21~D12
34!2 j21D12

12D12
23, ~4.9!

f 3 :5~D12
14!2 j21~D12

24!2 j21~D12
34!2 j22D12

13D12
23,
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and since the multiplicity forJ53 j22 is 3, thesef i must all be linearly independent. To get the
permutation type, we again use Eq.~4.5! to get

L ~12!~3! f 152 f 2 , L ~12!~3! f 252 f 1 , L ~12!~3! f 352 f 3 ,
~4.10!

L ~132! f 152 f 2 , L ~132! f 252 f 3 , L ~132! f 35 f 1 ,

from which it follows that the symmetry types areS ~symmetric! andM ~mixed! with

f S5 f 12 f 21 f 3 , f M ,65 f 17 f 2 . ~4.11!

We conclude this example with a computation of the polynomial invariants where the
Clebsch–Gordan coefficients are not so easy to compute by conventional means, namely the
lowest weights in the tensor product decomposition. Consider first the case wherej is an integer;
the lowest weight isJ50 with multiplicity 1. Using Eq.~4.3! with J50 gives

f A5~D12
12!2 j~D12

13!2 j~D12
23!2 j ~4.12!

and is always antisymmetric as can be checked by computingL (12)(3)f A52 f A . The coefficients
are given directly by

i f Ai21

A~ j1m1!! ~ j2m1!! ~ j1m2!! ~ j2m2!! ~ j1m3!! ~ j2m3!!

3
] j1m1

]z11
j1m1

] j2m

]z12
j2m1

] j1m2

]z21
j1m2

] j2m2

]z22
j2m2

] j1m3

]z31
j1m3

] j2m3

]z32
j2m3

f A~Z!uZ50

5^ j ,m1 ; j 1m2 ; j ,m3uJ50&. ~4.13!

For j a half-odd integer the lowest weight isJ5 1
2 with multiplicity 2. Using Eq.~4.3! gives three

polynomials, namely,

f 1 :5~D12
12! j21/2~D12

13! j21/2~D12
23! j11/2D12

14,

f 2 :5~D12
12! j21/2~D12

13! j11/2~D12
23! j21/2D12

24, ~4.14!

f 3 :5~D12
12! j11/2~D12

13! j21/2~D12
23! j21/2D12

34,

with permutation structure

L ~12!~3! f 15~21! j21/2f 2 , L ~12!~3! f 25~21! j21/2f 1 , L ~12!~3! f 35~21! j11/2f 3 ,
~4.15!

L ~132! f 15~21!2 j f 2 , L ~132! f 25~21!2 j f 1 , L ~132! f 35 f 1 ,

which gives a mixed representation and symmetric or antisymmetric depending on whether
~21!j11/2 is one or minus one. However, for any half-odd integerj , the linear dependence is given
by

f5 f 12 f 21 f 350 ~4.16!

andL (12)(3)( f 16 f 2)56(21) j21/2( f 16 f 2) gives the two mixed representation polynomials.
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V. CONCLUSION

Calculating Clebsch–Gordan and Racah coefficients for tensor products of irreducible repre-
sentations of compact groups almost always involves multiplicity. We have shown how the mul-
tiplicity problem can be restated in terms of group invariants, polynomials inn3N complex
variables that are invariant under the right action of the group. Our setting is the Bargmann–
Segal–Fock spaceF ~Cn3N!, defined in Sec. II, wheren refers to the number of labels needed to
specify the tensor product andN is the dimension of the fundamental representation of the group.

We have shown in previous papers that all of the irreducible representations of the compact
groups can be realized as polynomials in an appropriate Bargmann–Segal–Fock space; these we
write as f ulzh&(Z), wherel is the irreducible representation label andj is a basis label in the
irreducible representation space. Ap-fold tensor product state is then a product of these polyno-
mials, written asf ul1j1 ...lpjp&(Z) P F (Cn3N), where the irreducible representation labelsl1,...,lp
provide a total ofn ~nonzero! labels.

What is needed to compute Clebsch–Gordan and Racah coefficients are polynomial realiza-
tions of the direct sum basis elements, writtenf ulzh&(Z)PF ~Cn3N!. Herez is a ~possibly new! set
of basis labels in thel irreducible representation space andh are multiplicity labels. The poly-
nomials f ulzh&(Z) are obtained by augmenting the tensor productl1^•••^lp to l1^•••^lp^lA,
wherelA is the representation contragradient tol, and looking for a set of functionally indepen-
dent polynomial group invariantsI h(Z,W) in the augmented Bargmann–Segal–Fock space. As
shown in Sec. II the number of such functionally independent polynomial invariants is just the
multiplicity—the number of times the augmented tensor product contains the identity representa-
tion. In Sec. II we then showed that the polynomialf ulzh&(Z) is, up to a normalization constant,
the polynomialf ulAzA&

* (Dw)I h(Z,W)uW50.
There are many different ways of choosing a set of functionally independent group invariants

to label the multiplicity. As shown through the example of SU(N) in Sec. III, these sets arise as
products of fundamental group invariants satisfying certain transformation properties@see Eq.
~3.2!#. As such they can be orthogonalized and used to label the multiplicity. However, it is
desirable to have a more systematic procedure in which the invariants are manipulated to become
eigenvectors of operators. The natural choice here are operators from the centralizer of the outer
product groupG3•••3G with respect toG itself. That is, the operators are chosen from that set
of operators in the universal enveloping algebra of the Lie algebra ofG3•••3G that commute
with G. These operators can be specified more precisely by passing to the duals ofG3•••3G and
G on F ~Cn3N!. We plan to address the issue of operators from the centralizer being used to
diagonalize invariant polynomials in a future paper. In any event, it is clear that the conventional
Racah coefficients for SU~2!, called 6J,9J,... symbols, are all defined via centralizer elements; in
this case these operators correspond to various choices of intermediate angular momentum opera-
tors.

The use of polynomial invariants allows for great flexibility in computing Clebsch–Gordan
and Racah coefficients. It is possible to use any basis for both the tensor product and direct sum
states. The price paid is that no attempt is made to find closed form expressions for the coeffi-
cients. Rather the goal is to specify procedures to a computer to obtain coefficients of physical
interest. This is to be contrasted with other methods, such as that of Vilenkin and Klimyk~Ref. 2!
or Prakash and Sharatchandra~Ref. 3!, where basis choices are made at the outset@for SU(N) the
Gelfand–Zetlin basis# and a specific choice for multiplicity is made~Vilenkin and Klimyk use the
Biedenharn–Louck tensor operators!. The goal is to find closed form expressions; the complexity
of these coefficients, even for SU~3!, suggests that while it would be nice to have such expres-
sions, for physical applications much less is needed.

For example, often the irreducible representations generating the tensor product are the same;
such is the case for various quark models, wherep refers to the number of bound state quarks and
the tensor product is thep-fold product of the fundamental representation of SU~6!, with N56
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coming from the product of SU~2!spin and SU~3!flavor. Whenp53 one gets the standard picture of
a baryon-one object~such as a proton! as a bound state of three quarks. However, there has been
interest in five quark bound states, where one quark is a heavy anticharm quark, bound to four
lighter quarks; thenp54.

In this situation it is desirable to label~direct sum! states by their permutation symmetry~in
order to respect Pauli statistics!. For p54 the relevant group isS4, the permutation group on four
letters. However, this is equivalent to demanding that the invariant polynomialsI h(Z,W) trans-
form as irreducible representations underS4. In Sec. IV we have worked out several examples of
invariant polynomials with definite permutation symmetry for the simpler SU~2! group to show
how the multiplicity arising from threefold tensor products can be labeled by irreducible repre-
sentations ofS3.

There remains the problem of using the known fundamental invariant polynomials of sub-
groups of SU(N) to calculate the invariantsI h(Z,W) for tensor products of subgroups such as
SO(N) and Sp(N). This we intend to take up in a subsequent publication. Here again it should be
possible to use computers to obtain invariant polynomials, and by differentiating these polynomi-
als in the right way, compute Clebsch–Gordan and Racah coefficients for arbitrary tensor products
of any compact group.

APPENDIX: HOLOMORPHIC REPRESENTATIONS OF GL( N,C)

In this Appendix we will review some facts on holomorphic representations of GL~N,C! and
show explicitly how raising and lowering operators of an irreducible GL~N,C!-module are mapped
onto lowering and raising operators, respectively, of the corresponding contragradient module.
Also we shall see how the highest weight vector is mapped onto the lowest weight vector in this
correspondence. This theory allows us to realize explicitly the contragradient SU(N)-module
Vl* , and have the tensor productVl1 ^ ••• ^ Vlp ^ Vl* , as a subspace of the Bargmann–Segal–
Fock spaceF ~Cn3N! discussed in Secs. II–IV.

For gPGL~N,C! we set

D l ~g!5U g11 ... g1l

A

gl 1 ... gl l
U ,

the l th minor of g, 1<l <N. Theng is calledregular if Dl (g)Þ0 for all l . Let DN , UN
2, and

UN
1 denote the diagonal, lower triangular unipotent, and upper triangular unipotent subgroups of

GL~N,C!, respectively. Then every regular elementgPG can be uniquely represented in the form
g5duv, wheredPDN , uPUN

2, andvPUN
1 ~see, e.g., Ref. 8, Chap. VI!. Let T be a representa-

tion of GL~N,C! in a finite-dimensional complex vector spaceV. Then a nonzero vectorfPV is
called aweight vectorof weighta of the representationT with respect toDN if T(d) f5a(d) f , for
all dPDN , wherea is holomorphic character ofDN . A nonzero vectorfmaxPV is called ahighest
weight vectorwith highest weighta of the representationT if, in addition to being a weight vector,
fmax also satisfies

T~v ! fmax5 fmax, for all vPUN
1 .

Similarly, a nonzero vectorfminPV is called alowest weight vectorof lowest weightb if

T~d! fmin5b~d! fmin , and T~u! fmin5 fmin for all dPDN ,uPUN
2 .

Now let Vl denote an irreducible holomorphic representation of GL~N,C! with signaturel. Then
Vl can be explicitly realized on a space of holomorphic functions onCN3N. The signaturel[l(m)
is a holomorphic character ofDN defined by
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l~d!5d1
m1•••dN

mN, d5~d1 ,...,dN!PDN ,

where themis are integers which satisfy the dominant conditionm1>m2>•••>mN . Then the
spaceVl consists of all holomorphic functionsf on CN3N which satisfy the covariant condition

f ~duZ!5l~d! f ~Z!, for all dPDN ,uPUN
2 ,

andZPCN3N. The representationRl is defined onVl by the formula

@Rl~g! f #~Z!5 f ~Zg!, for all gPGL~N,C!.

Then it can be shown~see, e.g., Ref. 3, Chap. VI! thatVl admits a ‘‘unique’’~i.e., up to a nonzero
scalar multiple! highest weight vectorfmax of weightl (m)5(m1 ,...,mN), and a ‘‘unique’’ lowest
weight vectorfmin of weight (mN ,mN21,...,m1). In fact, fmax can be defined as

fmax~Z!5D1
m12m2~Z!D2

m22m3~Z!•••DN
mN~Z!,

and it is straightforward to verify thatfmax(dZ) 5 d1
m1•••dN

mNfmax(Z), and fmax(Zv)5 fmax, for all
dPDN andvPUN

1. Let

s5F 1

�

1
G

be theN3N matrix with 1’s on the reverse diagonal and 0 elsewhere, and definefmin5Rl(s) fmax.
Then

Zs5F Z1N Z1,N21 ...Z12 Z11

A A A A

ZNN ZN,N21 ...ZN2 ZN1
G ,

D l ~Zs!5U Z1N ... Z1,N2 i11

A A

Zl ,N Zl ,N2 i11

U5~21!sgn~s!U Z1,N2 i11 ... Z1N

A

Zl ,N2 i11 ... Zl ,N
U ,

where sgn~s! is the sign of the permutation

s5SN2l 11 N2l 12 ... N

N N21 N2l 11D ,
and

fmin~Z!5„D1~Zs!…
m12m2•••„DN~Zs!…mN.

It follows that

@Rl~d! fmin#~Z!5@Rl~d!„Rl~s! fmax…#~Z!5 fmax~Zds!5 fmax„Zs~sds!…5d1
mN•••dN

m1fmax~Zs!

5d1
mN•••dN

m1fmin~Z!

sinces5s21 andsds5(dN ,...,d1). Also,
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@Rl~u! fmin~Z!5@Rl~u!„Rl~s! fmax…#~Z!5 fmax~Zus!5 fmax„Zs~sus!…, uPU2.

However, it is easy to verify that susPU1 so that

fmax„Zs~sus!…5 fmax~Zs!5 fmin~Z!.

The differential representation ofRl is given by the infinitesimal generators

Ri j
l 5 (

s51,...,N
Zis

]

]Zjs
, 1< i , j<N.

The differential operatorsRi j
l with i, j ~resp.i. j ! are calledraising ~resp. lowering! operators. It

follows immediately that, in terms of raising and lowering operators, a highest vectorfmax ~resp.
lowest weight vectorfmin! is characterized by the condition

Ri j
l fmax50, ; i, j ~resp. Ri j

l fmin50,; i. j !.

Let ~Rl!A denote the contragradient representation ofRl on ~Vl!* , the dual ofV. Then ~Rl!A is
defined by the equation

@~Rl!A~g! f * #~h!5 f * ~Rl~g21!h!, for all gPGL~N,C!, f *P~Vl!* , and hPVl.

Let F: Vl→(Vl)* denote the conjugate-linear isomorphism introduced in Sec. II. Then it is easy
to show, using Eq.~2.2!, thatF intertwinesRl and ~Rl!A. We have the following:

Theorem A1: Let (Rl,Vl) be an irreducible holomorphic representation ofGL~N,C! and let
„(Rl)A,(Vl)* … be the contragradientGL~N,C!-module. Under the mapF: Vl→(Vl)* defined
above, the raising operators of Rl are mapped onto the lowering operators of~Rl!A and vice
versa. Moreover, the highest weight vector of Rl is mapped onto the lowest weight vector of~Rl!A,
and vice versa.

Proof: LetB5$ f i% be a basis forV
l and letB* 5 $ f i* % be its dual basis defined by

f i* ~ f j !5d i j , ; i i j .

Then (Rl)A(g) f i* 5 (k(D
l)ki

A (g) f k* , where (Dl)ki
A (g) are the matrix coefficients of (Rl)A(g)

relative toB* . Therefore,

@~Rl!A~g! f i* #~ f j !5(
k

~Dl!ki
A ~g! f k* ~ f j !5~Dl! j i

A ~g!.

On the other hand, by definition

@~Rl!Nr~g!~ f i * !#~ f i !:5 f i* „~R
l!~g21! f j…5 f i* S (

k
Dk j

l ~g21! f kD 5(
k
Dk j

l ~g21! f i* ~ f k!

5Di j
l ~g21!.

Thus we have the following equations:

~Dl! i j
A ~g!5Dji

l ~g21! ; i , j , or @~Rl!A~g!#B*5@Rl~g21!#B
t . ~A1!

From the matrix form of Eq.~A1! it follows that the infinitesimal operators ofRl and~Rl!A are in
a one-to-one correspondence:
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~Rl! i j
A↔2Rji

l , 1< i , j<N. ~A2!

From Eq.~A2! it follows that raising operators ofRl correspond to lowering operators of~Rl!A,
and vice versa.

If fmax is a highest weight vector ofRl, then by definition

Rii
l fmax5mi fmax ; i51,...,N,

~A3!
Ri j

l fmax50 ;< i, j<N.

Using the fact thatF: Vl→(Vl)* is a conjugate-linear intertwining operator and Eq.~A2! we
see that

~Rl! i i
A F~ fmax!5F~2Rii

l fmax!52miF~ fmax! ; i51,...,N,
~A4!

~Rl! i j
A F~ fmax!5F~2Ri j

l fmax!5F~0! for all 1< i, j<N.

Equation ~A4! shows that F~fmax! is the lowest weight vector of ~Rl!A @where
lA52(mN ,...,2m1)# with weight (2m1 ,...,2mN). Similarly, one can show thatF~fmin! is the
highest weight vector of~Rl!A with weight (2mN ,...,2m1). h
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On the essential spectrum of transport operators
on L1-spaces
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Département de Mathe´matiques, Universite´ de Corse, Quartier Grossetti B.P. 52,
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In a recent article by the first author@J. Math. Phys.35, 6199–6212~1994!# the
essential spectrum of transport operator was analyzed inLp-spaces forpP~1,1`!.
The purpose of the present work is to extend this analysis to the case ofL1-spaces.
After establishing preliminary results we define the notion of the weak spectrum
which we characterize by means of Fredholm operators. We show, in particular,
that in L1-spaces the weak spectrum is nothing else but the essential spectrum.
Using the same techniques as in the above-mentioned work, we prove the stability
of the essential spectrum of a one-dimensional transport operator with general
boundary conditions where an abstract boundary operator relates the incoming and
the outgoing fluxes. Sufficient conditions are given in terms of boundary and col-
lision operators, assuring the stability of the essential spectrum. We show also that
our results remain valid for neutron transport operators in arbitrary dimension.
© 1996 American Institute of Physics.@S0022-2488~96!02811-3#

I. INTRODUCTION

In this article we are concerned with the essential spectrum of the following integrodifferential
operator

AHc~x,j!52j
]c

]x
~x,j!s~j!c~x,j!1E

21

1

k~j,j8!c~x,j8!dj85THc1Kc ~1.1!

with general boundary conditions wherexP[2a, a] for a parameter 0,a,` and jP@21, 1#.
This operator describes the transport of particles~neutrons, photons, molecules of gas, etc.! in a
plane parallel domain with a width of 2a mean free paths. The functionc~x,j! represents the
number~or probability! density of gas particles having the positionx and the direction cosine of
propagationj. The functions~.! andk~.,.! are called, respectively, the collision frequency and the
scattering kernel. The boundary conditions are modeled by

c uG2
5H~c uG1

!, ~1.2!

whereG2 ~resp.G1! is the incoming~resp. outgoing! part of the phase space boundary,c uG2
~resp.

c uG1
! is the restriction ofc to G2 ~resp.G1!, andH is a linear bounded operator from a suitable

function space onG2 to a similar one onG1 . The known classical boundary conditions~vacuum
boundary, specular reflections, periodic, diffuse reflections, generalized and mixed type boundary
conditions1–5! are special examples of our general framework. Our general assumptions are

H s~ .!PL`~21,1!,

H is a bounded boundary operator,

KPL„L1@~2a,a!3~21,1!#…,

0022-2488/96/37(12)/6486/9/$10.00
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whereK is the partially integral operator with kernelk~j,j8!.
In Ref. 6, the essential spectrum of the operator~1.1! supplemented with the boundary con-

ditions ~1.2! was investigated onLp-spaces forpP~1,1`!. In particular, it has been proved that if
K is regular~see Definition 4.1!, thensess(TH1K)5sess(TH) regardless of the boundary operator
H @sess~.! denotes the essential spectrum#. Further, sufficient conditions on the boundary operator
H under whichsess(TH)5sess~T0! were given whereT0 is the well-known streaming operator in
neutron transport theory~H50! whose spectrum was analyzed in detail in Ref. 6.

Note that even though the spectral theory of transport operators is a classical theme in trans-
port theory, generally, the analysis focuses on the point spectrum of these operators~see, for
instance, any of Refs. 7–13!. In fact, the knowledge of the~peripheral! point spectrum permits us
to obtain a simple description of the time asymptotic behavior~t→`! of the solution of the
associated Cauchy problem~cf. Ref. 7, 12, 14, or 15!.

The purpose of the present work is to investigate the essential spectrum of a one-dimensional
transport operator with general boundary conditions and to extend the results obtained in Ref. 6 to
L1-spaces. The idea may be summarized as follows:

Let ~V,S,m! be an arbitrary positive measure space. After some abstract preliminary results,
we define the notion of the weak spectrum@which we denote bysw~.!# onL1~V,dm! and we prove
that if B and C are closed densely defined linear operators onL1(V,dm) and if for some
lPr(B)ùr(C), the operator (l2B)212(l2C)21 is a weakly compact, thensw(B)5sw(C).
Second, we show the equality~in the sense of the inclusion! of the setssess~.! and sw~.! on
L1(V,dm). Finally, using these remarks, the same strategy as in Ref. 6 leads to the desired results
on L1[(2a,a)3(21,1),dxdj].

The plan of this article is as follows. In Sec. II, some preliminary abstract results concerning
Fredholm operators needed in the sequel are given. Section III is devoted to the analysis of the
weak spectrum onL1-spaces. The main results of this section are Theorems 3.1 and 3.2. In Sec. IV
we take advantage of the results of the previous sections to prove the stability of the essential
spectrum of a one-dimensional transport operator with general boundary conditions. Sufficient
conditions in terms ofH andK assuring the stability of the essential spectrum are given. We close
this section by discussing the essential spectrum of a transport operator with vacuum boundary
conditions in arbitrary dimension.

II. PRELIMINARY RESULTS

Let Z be a Banach space. A closed densely defined linear operatorA with domainD(A) is
said to be Fredholm ifR(A) is closed and botha(A)5dim[N(A)] andb(A)5codim[R(A)] are
finite whereR(A) andN(A) are, respectively, the range and the null space ofA. The set of
Fredholm operators onZ is denoted byF(Z) while the numberi (A)5a(A)2b(A) is called the
index ofA. We denote byFA the set

FA :5$lPC such thatl2A is a Fredholm operator onZ%.

We define the essential spectrum ofA by

sess~A!5 ù
CPK ~Z!

s~A1C!,

whereK (Z) stands for the ideal of all compact operators onZ.
Similarly, we define the weak spectrum ofA by

sw~A!5 ù
FPF ~Z!

s~A1F !,

whereF (Z) denotes the set of all weakly compact operators onZ.
Let P (Z) denote the set
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P ~Z!5$FPL~Z! such that there existsrPN* satisfying FrPK ~Z!%.

We first prove the following auxiliary lemma:
Lemma 2.1: Let F be an arbitrary element ofP (Z) and set A5I2F. Then
~i! dim[N(A)],`,
~ii ! R(A) is closed,
~iii ! codim[R(A)],`. L
Proof: ~i! Since FPP (Z), there existsrPN* such thatFrPK (Z). Let xPN(A), then

Frx5x, i.e., xPN(I2Fr) and thereforeN(A),N(I2Fr). On the other hand, the identityI
restricted to the kernel of (I2Fr) is equal toFr and consequently compact. HenceN(I2Fr) is
finite dimensional and therefore dim[N(A)],`.

~ii ! SinceA commutes withI , Newton’s binomial formula gives

Fr5~ I2A!r5I1 (
k51

r

~21!kCr
kAk. ~2.1!

Let E be a closed complement forN(A), so thatZ5N(A)%E. Thus, we obtain two linear
continuous mapsAuE :E→Z andF uE :E→Z, the restrictions ofA andF to E. It is clear that the
kernel ofAuE is $0%. In order to conclude, it suffices to show thatAuE(E)5A(E)5A(Z) is closed.
For this it suffices to show that the map (AuE)

21:A(E)→E is continuous. By linearity, it even
suffices to prove that (AuE)

21 is continuous at 0. Suppose that this is not the case. Then we can
find a sequence$xn% in E such thatAxn→0, but$xn% does not converge to 0. Selecting a suitable
subsequence we can assume without loss of generality thatixni>h.0 for all n. Then 1/ixni<1/h
for all n and consequentlyA(xn/ixni) also converges to 0. Furthermore,xn/ixni has norm 1, and
hence some subsequence ofFr(xn/ixni) converges. It follows from~2.1! that xn/ixni has a
converging subsequence to an elementz in E verifying izi51 andFr(z)5z. On the other hand,
Fr5F2FA2F2A2•••2Fr21A and so we getFr(z)5F(z). Hence, we infer thatF(z)2z50,
which implies thatzPN(A). This contradicts the fact thatEùN(A)5$0% ~becauseizi51! and
completes the proof of~ii !.

~iii ! If A(Z) does not have finite codimension, we can find a sequence of closed subspaces

A~Z!5M0,M1,M2,•••,Mn,•••

such that eachMn is closed and of codimension 1 inMn11 just by adding one-dimensional spaces
to A(Z) inductively. By Riesz’s lemma~Ref. 16, Lemma 3, p. 578! we can find in eachMn an
elementxn such thatixni51 andixn2yi>12« for all y in Mn21 with 0,«,1. Then, by using
~2.1! together with the fact thatZ.R(A).R(A2).•••.R(An).••• , for all k,n we get

iFrxn2Frxki5I xn2(
i51

r

~21! iCr
i Aixn2xk1(

i51

r

~21! iCr
i AixkI

5I xn2xk2(
i51

r

~21! iCr
i Ai~xn2xk!I>12e

becausexk1( i51
r (21)iCr

i Ai(xn2xk)PMn21. This proves that the sequence (Frxn)n cannot have
a convergent subsequence, and contradicts the compactness ofFr . Q.E.D.

Theorem 2.1:Assume that the hypothesis of Lemma 2.1 holds. Then A5I2F is a Fredholm
operator and i(A)50. L

Proof: The first part of the theorem follows from Lemma 2.1. In order to complete the proof
it suffices to show that dim[N(A)]5dim@R(A)'#. To do this, note first that the operator dualA8 of
A is given by A85I 82F8. The use of Schauder’s theorem and Lemma 2.1~i! gives
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dim[N(A8)],`. Accordingly, by using the relationR(A)'5N(A8), we need only to prove
dim[N(A)]5dim[N(A8)]. Now the rest of the proof may be sketched in a similar way to that in
Ref. 17, pp. 94–100. It suffices to replaceiFzn2Fzmi by iFrzn2Frzmi and to use the relation
Fr5F2FA2F2A2•••2Fr2A. The details are therefore omitted.

Q.E.D.
Remark 2.1:Note that forr51, Theorem 2.1 is nothing but the classical Riesz’s theorem for

compact operators~see, for instance, Ref. 17, Theorem 3.2, p. 94!. L
We close this section with the following result which we need in the sequel.
Theorem 2.2: Let A be a closed densely defined operator on Z. Suppose that there exist

A1 ,A2PL(Z), F1 ,F2PP (Z) such that A1A5I2F1 on D(A) and AA25I2F2 on Z. Then
APF(Z). L

Proof: In view of the fact thatN(A),N(A1A), we havea(A)<a(I2F1). On the other hand,
R(A).R(AA2)5R(I2F2) and thereforeR(A)',R(I2F2)

'. Accordingly, we haveb(A)
< a(I 8 2 F28). Now Theorem 2.1 together with Schauder’s theorem givesa(A),` andb(A),`.
In order to complete the proof it suffices to show thatR(A) is closed. This last assertion follows
from Ref. 17, Lemma 2.2, p. 111. Q.E.D.

Theorem 2.2 generalizes Theorem 1.2, p. 163, in Ref. 17.

III. THE IDENTITY OF sw(.) AND sess(.) ON L1-SPACES

In this section we are concerned with the study of the essential spectrum onL1-spaces. In
particular, we prove the equality~in the sense of the inclusion! of the setssw(A) andsess(A),
whereA is a closed densely defined linear operator. The analysis is essentially based on the results
obtained in the previous section.

Let ~V,S,m! be an arbitrary positive measure space. Throughout this sectionX1 denotes the
spaceL1(V,dm).

Theorem 3.1:Let A be a closed densely defined linear operator on X1. Then we have

sw~A!5sess~A!.
. 

Proof: FromK ~X1!,F ~X1! we infer thatsw(A),sess(A). In order to conclude, it suffices to
show thatsess(A),sw(A). To this end, suppose thatl¹sw(A). Then there existsFPF ~X1! such
that lPr(A1F). This implies thatlPF(A1F) and i (l2A2F)50. SinceFPF ~X1! we have
(l2A2F)21FPF ~X1!. Hence by Ref. 16, Corollary 13, p. 510, we get
[(l2A2F)21F] 2PK ~X1!. Now by representing l2A as l2A5(l2A2F)
[ I1(l2A2F)21F] and by using Ref. 17, Theorem 1.3, p. 163, together with Theorem 2.1, we
obtainlPFA and i (l2A)50. Now Ref. 18, Theorem 4.5, p. 15, gives the wanted inclusion and
achieves the proof. Q.E.D.

By Theorem 3.1 and Ref. 6, Lemma 4.1, we have the following:
Corollary 3.1: Let A be a closed densely defined linear operator on X1. Then

~i! sC(A),sw(A),
~ii ! sR(A),sw(A),

where sC(A) [resp. sR(A)] denotes the continuous spectrum (resp. the residual spectrum)
of A. L

The following result provides a characterization of the weak spectrum onL1-spaces.
Corollary 3.2: Let A be a closed densely defined linear operator on X1. Then

l¹sw~A! i f and only i f lPFA and i ~l2A!50.
L
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Proof: This corollary immediately follows from Theorem 3.1 and Ref. 18, Theorem 4.5, p.
15. Q.E.D.

We end this section with the following result which provides a practical criterion for the
stability of the weak spectrum onL1-spaces.

Theorem 3.2: Let A, B be closed densely defined operators on X1. If for some
lPr(A)ùr(B) the operator(l2A)212(l2B)21 is weakly compact on X1, then

sw~A!5sw~B!.
L

Proof: Without loss of generality, supposel50. ThusA215B211F whereF is a weakly
compact operator onX1. Let m P FA21. Then by Ref. 17, Theorem 2.1, p. 110, there exist
A1 ,A2PL~X1! and K1 ,K2PK ~X1! such that (m2A21)A15I2K1 and A2(m2A21)5I2K2 .
This implies

~m2B21!A15I2K11FA15I2F1 ,

A2~m2B21!5I2K21A2F5I2F2 ,

whereF15K12FA1 andF25K22A2F are weakly compact. It follows from Theorem 2.2 that
m P FB21, i.e.,FA21,FB21. Similarly, by writingB215A212F, we obtainFB21,FA21 and
consequentlyFA21 5 FB21. On the other hand, the weak compactness ofF1 andF2, Ref. 16,
Corollary 13, p. 510, and Theorem 2.1 givei (m2A21)5 i (m2B21) for all m P FA21. Hence, by
using Ref. 18, Lemma 4.6, p. 16, we obtainFA5FB and i (t2A)5 i (t2B) for all tPFA . The
result is now a consequence of Corollary 3.2. Q.E.D.

IV. APPLICATION TO TRANSPORT EQUATIONS

The aim of this section is the analysis of the essential spectrum of one-dimensional transport
operators with abstract boundary conditions onL1-spaces. Our analysis uses the results of Secs. II
and III and follows closely Ref. 6.

Let

X5L1@~2a,a!3~21,1!;dxdj#, a.0,

and

Xo:5L1@$2a%3~21,0!;ujudj#3L1@$a%3~0,1!;ujudj#:5X1
o3X2

o

equipped with the norm

ico;Xoi5ic1
o ;X1

oi1ic2
o ;X2

oi5E
21

0

uc~2a,j!uujudj1E
0

1

uc~a,j!uujudj,

and

Xi :5L1@$2a%3~0,1!;ujudj#3L1@$a%3~21,0!;ujudj#:5X1
i 3X2

i

equipped with the norm

ic i ;Xi i5ic1
i ;X1

i i1ic2
i ;X2

i i5E
0

1

uc~2a,j!uujudj1E
21

0

uc~a,j!uujudj.

We define the partial Sobolev spaceW by
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W5H cPX such thatj
]c

]x
PXJ .

It is well known that any functioncPW has traces on$2a% and $a% in Xo and Xi ~see, for
instance, Ref. 19 or 20!. They are denoted, respectively, byco andci , and represent the outgoing
and the incoming fluxes~‘‘ o’’ for outgoing and ‘‘i ’’ for incoming!.

Let H be the following boundary operator:

5
H:Xo→Xi ,

u→Hu,

Hu:5SH11 H12

H21 H22
D S u1u2D ,

whereH11PL(X1
o ,X1

i ), H12PL(X2
o ,X1

i ), H21PL(X1
o ,X2

i ), andH22PL(X2
o ,X2

i ).
We define the streaming operatorTH by

H TH :D~TH!,X→X,

c→THc~x,j!52j
]c

]x
2s~j!c~x,j!,

D~TH!5$cPW such thatHco5c i%.

Let

l0 :5H 2l* , if iHi<1,

2l*1
1

2a
Log~ iHi !, if iHi.1,

where

l*52 lim inf
uju→0

s~j!.

For Rel.l0, lPr(TH) and the resolvent ofTH are given by

~l2TH!215 (
n>0

BlH~MlH !nGl1Cl ,

whereBl , Cl ,Gl , andMl are linear bounded operators. For the details, see Ref. 21. Note thatCl

is nothing but~l2T0!
21, so we have

~l2TH!212~l2T0!
215Ql ,

whereQl5(n>0BlH(MlH)
nGl .

Theorem 4.1:Let H be a bounded boundary operator. If H is weakly compact, then

sess~TH!5sess~T0!.
L

Proof: The weak compactness ofH implies that ofQl onX. In view of Theorem 3.2, we have
sw(TH)5sw(T0). Now, the result follows from Theorem 3.1. Q.E.D.
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Remark 4.1:It should be noted that Theorem 4.1 shows not only that the result of Ref. 6,
Theorem 4.1, remains valid forp51 but also the hypothesis on the boundary operatorH may be
weakened. L

Remark 4.2:Let H̃ be the boundary operator defined by

5
H̃:X0→Xi ,

u→H̃u,

H̃u5SH11 0

H21 0D S u1u2D ,
where

H H11:X1
0→X1

i ,

u~2a,j!→u~2a,j!,

andH21 is an arbitrary operator ofL(X1
o ,X2

i ). In spite of the fact thatH̃ is not compact, it has
shown in Ref. 6, Proposition 4.1, thatsess(TH̃) 5 sess(T0). SinceH11 andH22 are not weakly
compact, the operatorH̃ is not weakly compact either. So, by a similar reasoning to that in the
proof of Ref. 6, Proposition 4.1, we getsess(TH̃) 5 sess(T0). This shows that the result of Theorem
4.1 is not optimal. L

Next we consider the transport operatorAH :5TH1K, whereK is a bounded partially integral
operator onX defined by

H K:X→X,

c→E
21

1

k~j,j8!c~x,j8!dj8.

The scattering kernelk:~21,1!3~21,1!→R is assumed to be measurable.
Definition 4.1: A bounded operator K, defined as above, is said to be regular if its restriction

to L1([21,1],dj) is compact. L
Remark 4.3:Note that the fact thatK is regular does not imply the compactness ofK on X .

To see this, suppose thatk~j,j8!5f (j)g(j8) where fPL1([21, 1],dj), gPL`([21, 1],dj).
ThusK is regular because it is of rank one onL1([21, 1],dj) but it is not compact onX because
its spectrums(K) 5 $ f (j),21<j<1% is not necessary discrete. L

Let lPr~TH! be such thatr s[(l2TH)
21K],1 @r s~.! denotes the spectral radius#. Then

lPr(AH) and

~l2AH!212~l2TH!215 (
n>1

@~l2TH!21K#n~l2TH!21. ~4.1!

By using Eq.~4.1!, Theorems 3.1 and 3.2, and Ref. 21, Theorem 2.1, we have the following.
Theorem 4.2:Let H be a bounded boundary operator. Assume that the collision operator K

is regular on X. Then

sess~AH!5sess~TH!. L

Theorems 4.1 and 4.2 and Ref. 6, Theorem 3.1, imply the following:
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Corollary 4.1: Let H be a bounded boudary operator. If K is regular on X and H is weakly
compact, then

sess~AH!5$lPC such that Rel<2l* %. L

Remark 4.4:Theorems 4.2 and 4.3 and Corollary 4.1 generalize the results of Ref. 6 to the
casep51 and give positive answers to the problems indicated therein. L

We close this section by discussing briefly the essential spectrum of the multidimensional
neutron transport equation. To this purpose, consider the neutron transport operator

A0c~x,v !52v
]c

]x
~x,v !2s~v !c~x,v !1E

V
k~v,v8!c~x,v8!dv85T0c1Kc,

whereT0 is the streaming operator andK denotes the integral part ofA0 ~the collision operator!,
(x,v)PD3V, where the configuration spaceD is an open and bounded subset ofRN, N>1. The
velocity spaceV is an arbitrary open subset ofRN. The unbounded operatorA0 ~i.e., H50! is
studied in the Banach spaceL1(D3V). Its domain is

D~A0!5D~T0!5H cPL1~D3V!such thatv
]c

]x
PL1~D3V!, c uG2

50J ,
whereG25$(x,v)P]D3V such thatv is ingoing atxP]D%.

It is well known that

s~T0!5$lPC such that Rel<2l* %

~see, for instance, Ref. 22, Corollary 12.11, p. 272!. More precisely we have

sess~T0!5sC~T0!5$lPC such that Rel<2l* %

~see Ref. 6, p. 6211!.
The existence of the eigenvalues ofT01K in the half-plane$lPC/Rel.2l* % is related to

the compactness of some iterate of~l2T0!
21 K ~see Ref. 22, Chap. 12!. Unfortunately, this does

not prevent the appearance of holes, included in the resolvent set ofA0, in the region$lPC such
that Rel<2l* %. However, ifK is compact onL1(V), then ~l2T0!

21 K is weakly compact on
L1(D3V) ~see Ref. 15, Lemma 2.1! and consequently we have the following result.

Theorem 4.3:Suppose that K is compact on L1(V,dv). Then

sess~A0!5$lPC such that Rel<2l* %.
L

Proof: Let l be such that Rel.s(A0) ~the spectral bound ofA0!. Then we may write

~l2A0!
212~l2T0!

215 (
n>1

@~l2T0!
21K#n~l2T0!

21.

The hypothesis onK together with Ref. 15, Lemma 2.1, implies the weak compactness of

(
n>1

@~l2T0!
21K#n~l2T0!

21.

Now the result follows from Theorems 3.1 and 3.2. Q.E.D.
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We show that the action of the special conformal transformations of the usual
~undeformed! conformal group is theq→1 scaling limit of the braided adjoint
action orR-commutator ofq-Minkowski space on itself. We also describe the
q-deformed conformal algebra inR-matrix form and its quasi-* structure. ©1996
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I. INTRODUCTION

It is a standard geometrical fact that the action of the momentum generators of the Poincare´
algebra in physics is determined by the additive group structure of space–time, by differentiation
as an infinitesimal addition. In this note we provide a novel geometrical picture of the special
conformal transformationsci similarly in terms of the structure of space–time itself. Namely, we
show that they act as theq→1 limit of the braided adjoint action by which any braided group acts
upon itself. In the case ofq-deformed space–time,1 this is theR-commutator

ci•~xi1•••xin!5
xi1•••xinxi2xa1xj 1•••xj nR

j 1
i1
a1
a2
Rj 2

i2
a2
a3

•••Rj n
i n
an
i

q2q21 ,

where thexi are the noncommuting space–time-coordinates with braid statistics controlled by the
appropriate Yang–Baxter matrixRi

j
k
l . We take the limitq→1. The formula also works forqÞ1

and extends theq-Poincare´ action in Ref. 2 to an action of theq-deformed conformal algebra.
We believe that this result is interesting as an application ofq-deformation techniques to

classical geometry: the picture which it provides is rather simpler than the usual picture of theci
in terms of conjugation under conformal inversion of space-time translation, but is only possible
whenqÞ1. One may work with theci in ourqÞ1 setting and afterwards setq51. The result adds
weight to the idea thatq-deformed geometry is conceptually simpler and more regular than
classical geometry, with certain notions unified in ways that are singular whenq51.

In a previous paper3 we showed that the braided adjoint action with respect to themultipli-
cativebraided group structure4 of q-Minkowski space~as Hermitian 232 matrices being multi-
plied! corresponds in aq→1 scaling limit to the internal symmetry Lie algebrasu(2)3u(1). Our
result now is for theadditivebraided group structure due to Meyer.5 It appears that both adjoint
actions have important scaling limits asq→1.

We note that while a lot of effort has been expended inq-deforming geometrical structures, in
particular in the author’s ‘‘braided groups approach’’1,4,6 ~which included specific proposals7 in a
general and systematicR-matrix form!, this program has been stuck in recent years due to the
following ‘‘dilaton problem:’’ when one tries toq-deform theq-Poincare´ group one finds quite
generally2 that, for the types of deformations of interest, one must include a scale generator as
well. The purely Poincare´ sector in this family does not close as a Hopf algebra. A related problem
is that even after this extension, it does not seem possible to obtain a Hopf* -algebra~i.e., to define

a!Royal Society University Research Fellow and Fellow of Pembroke College, Cambridge.
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complex conjugation of the generators! in any conventional sense. Moreover, the extended
q-Poincare´ Hopf algebra is not in general quasitriangular, i.e., not a strict quantum group in the
sense of Drinfeld.8

Here we solve these three problems as follows. First, we propose to embrace the dilaton
generator andq-deform the entire conformal algebra. This algebra is isomorphic to the standard
Drinfeld–Jimbo deformationUq„so~4,2!… or a cocycle twisting of it, but obtained now as an
example of a newR-matrix construction. We use the categorical double-bosonization theory
developed recently in Ref. 9. From a physical point of view, this focus on the conformal algebra
limits our theories at first to massless ones. This is not, however, an unreasonable starting point,
especially if we are interested in fundamental theories where observed particles are essentially
massless compared to the Planck mass scale. Second, we show that the natural* -structure on the
q-conformal algebra for realq makes it into aquasi-* Hopf algebra in the sense recently intro-
duced in Ref. 10 for the Poincare´ case. There is also a quasitriangular structure. This work
provides a first step towards the development of aq-twistor theory based on the properties of
q-Minkowski space and theq-conformal algebra.

For quantum groups and braided groups, we adopt the conventions and notation in Refs. 11
and 12. Briefly, a quantum groupH has a coproductD:H→H^H which is a homomorphism to
the usual tensor product. By contrast, a braided groupB has a mapDI :B→B Î B which is a
homomorphism to a braided or noncommuting tensor product. This concept and many examples
have been introduced by the author.4 In physical terms, the elements ofB enjoy braid statistics.
When discussing quasitriangular structures, we will require formal power series in a deformation
parameter in the usual way. All other constructions are algebraic.

Although we emphasize the construction in Proposition 2.1 below as aq-conformal algebra,
we can also chooseR from other standard families such assun . Then the construction takes us up
one in the family, i.e., it allows the construction of quantum groups by induction.9 Or we can
choose nonstandardR and obtain altogether new quantum groups. Also, it has been pointed out to
us that there are some superficial similarities between some of the relations in Proposition 2.1 and
some of the relations independently proposed for a Hopf algebra construction in Ref. 13. The two
constructions are, however, not at all the same.

II. q -CONFORMAL ALGEBRA

In this preliminary section we define a quasitriangular Hopf algebra which we call the con-
formal algebra associated to regularR-matrix data. WhenR is the son R-matrix, one obtains
Uq(son12). The construction is a specific example of a left-module version of a recent abstract
construction in Ref. 9. This is explained further in the Appendix; here we describe only the
resulting algebra. In fact, the construction of the dilaton-extendedq-Poincare´ algebra inR-matrix
form has already been obtained~by the author! in Refs. 2 and 10. We use exactly the results and
conventions developed for this, extending it now by the special conformal transformations.

Thus, letR,R8PMn^Mn be invertible matrices obeying the conditions in Ref. 2 for the
construction of a linear~momentum! braided groupV~R8,R! and its associated extended
q-Poincare´ algebra, which we denoteP~R8,R!. The momentum sector has generatorspi and
relations and braid statistics2

p1p25R8p2p1 , p18p25Rp2p18 , ~1!

while p8 denotes the generators of the second copy. We use a standard compact notation where
suffices denote tensor contraction positions. The braided coproductDp5p^111^p[p1p8 is
called abraided coaddition. The braided antipode isSIp52p. The rotation sector has matrix
generatorsl6 i

j and the usual relations14

l1
6l2

6R5Rl2
6l1

6 , l1
1l2

2R5Rl2
2l1

1 . ~2!
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We also requireother relations beyond these quadratic ones, such that thel6 with matrix coprod-
uct Dl65l6^l6 define a quasitriangular Hopf algebra under which~1! and ~5! remain covariant.
For theson R-matrix thel

6 generateUq(son) in the FRT form.14 Our construction is not limited
to this case, however. The dilatation sector is an additional generator§ with coproductD§5§^§.
Theq-Poincare´ algebra is generated by these subalgebras, with the cross relations2

l1
1p25l21R21

21p2l1
1 , l1

2p25lRp2l1
2 , §p5l21p§, @ l6, §#50, ~3!

wherel is thequantum group normalization constant2 appearing in the fundamental representa-
tion r~l1!5lR, r~l2!5l21R21

21 of the rotation sector. The braided coproduct and antipode of thep
generators do not appear directly in the extendedq-Poincare´ algebra~which is an ordinary Hopf
algebra!, but in the bosonized form

Dp5p^11§ l2 ^p, Sp52~Sl2!§21p. ~4!

To this construction, we add now the special conformal transformations as the linear braided
groupV ˘ (R8,R)op with generatorsci and relations and braid statistics

c2c15c1c2R8, c28c15c1c28R. ~5!

There is a linear braided coproductDI c5c1c8.
Proposition 2.1: The extended q-Poincaréalgebra (1)–(4) has a further extension by genera-

tors ci obeying

c2c15c1c2R8, l1
1c25lc2l1

1R21, l1
2c25l21c2l1

2R21,

§c5lc§, @p, c#5
l1§212 l2§

q2q21 , Dc5c^ l1§211 l^c, Sc52c§Sl1,

where it is assumed thatR depends on a parameter q such thatR21R5id1O(q2q21). We call
this the q-conformal algebra C~R8,R! associated to our R-matrix data.

Proof: An abstract derivation is in the Appendix, but a direct proof is also possible. Indeed, it
is clear thatc, l6, and§ generate a ‘‘conjugate’’ Hopf algebra to the extendedq-Poincare´ one:
their relations are analogous under a symmetry. Hence it suffices to verify that the coproduct is
compatible with the cross relations. Thus,

@Dpi , Dcj #5@pi , ca# ^ l1a
j§

211§ l2 i
a^ @pa, cj #1§ l2 i

acb^pal1b
j§

212cb§ l
2 i

a^ l1b
j§

21pa

5@pi , ca# ^ l1a
j§

211§ l2 i
a^ @pa, cj #1§cdl

2 i
cR

21c
a
d
b^pal1b

j§
21

2cb§ l
2 i

a^ l1b
j§

21pa

5
l1 i

a§
21

^ l1a
j§

212 l2 i
a§ ^ l2a

j§

q2q21

5D
l1 i

j§
212 l2 i

j§

q2q21 5D@pi , cj #

as required. We used the statedc,l2 andp,l1 relations for the second and third equalities, as well
as the@p, c# relations for the latter.

Note that theq2q21 factor ensures that our algebra has a reasonable limit asq→1 but is not
needed for the Hopf algebra structure itself~any factor will do for this!. h

In a setting whereq5et/2, there is typically a quasitriangular structureRL for the Lorentz/
rotation sector as a formal power series int. In this setting, we have the following.
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Proposition 2.2: The q-conformal Hopf algebra above is quasitriangular, with

R5RLl
2j ^ j exp~cup!21, ~6!

whereRL is the q-Lorentz quantum group quasitriangular structure, §5lj and exp(cup) P V ˇ
^ V is thebraided exponentialor canonical element associated with the braided group duality
pairing between V and V ˇ as linear braided groups.

Proof: This follows from the general construction9 underlying the above proposition; see the
Appendix. To verify it directly, one may use the bicharacter property of the braided exponentials
under the braided coproduct,15 with the corresponding properties with respect to the bosonized
coproduct. h

The braided exponential exp~cup! here is ap-eigenfunction or plane wave in the copy of
q-space–time generated by theci ~and likewise a plane wave in the copy generated bypi!.

III. QUASI * -STRUCTURE ON THE CONFORMAL GENERATORS

So far, we have considered the complexified picture. We now consider* -structures on our
algebras. The specification of the*-structure in the momentum sector determines which linear
combinations are ‘real’ in the sense of being invariant under* . This determines which represen-
tations are unitary~such elements should be Hermitian! and also determines, when there is a
quantum metric, whether it is of Euclidean, Minkowski, or another type according to the form of
its restriction to such elements. The*-structures for the extendedq-Poincare´ group have already
been-analyzed in Ref. 10, and we extend this now to theq-conformal case. We recall from Ref. 10
that one needs the notion of a quasi-* Hopf algebraH. This is a Hopf algebra overC which is a
*-algebra, and an invertible elementS PH^H such that

~* ^ * !+D+*5S 21~t +D !S , ~D ^ id!S 5S 13 S 23, ~ id^ D!S 5S 13 S 12, S * ^ *5S 21,
~7!

wheret denotes transposition. One can show thatS obeys the quantum Yang–Baxter equations or
QYBE ~but we do not denote it here byR, to avoid confusion with the quasitriangular structure
also present!. To have such a structure in ourR-matrix setting we suppose that theR-matrix in the
preceding section is of one of the two real types in Ref. 16. We also suppose a quantum metrich
compatible withR ~see Ref. 1! and of corresponding reality type:

Ri
j
k
l5H Rl

k
j
i Real Type I,

R j̄
l̄
ī
k̄ Real Type II,

h i j5 H h j i Real Type I,
h j̄ ī Real Type II, ~8!

wherehi j is the transposed inverse ofhi j andi is an involution on the indices assumed in the type
II case. We assumel*5l as well. These reality conditions hold for the standard choices ofR,
when their parameterq is real.

The extendedq-Poincare´ algebra has the quasi-* -structure
10

pi*5H h iap
a Real Type I,

p ī Real Type II,
l6 i

j*5H h ibl
7b

ah
ja Real Type I,

l7 ī
j̄ Real Type II,

§*5§21, S 5RLl
2j ^ j, ~9!

whereRLl
2j^j is the dilaton-extendedq-Lorentz quasitriangular structure and§5lj. Note that

the real type II case used in Ref. 10 was chosen such that on the Lorentz generators in function-

algebra form it appears ast i j* 5 t ī j̄ , which corresponds tol
6 i

j* 5 S2l7 ī
j̄ . We can equivalently

put theS2 automorphism on the function algebra side ast i j* 5 S2t ī j̄ , as we prefer now.
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Proposition 3.1: The quasi-* structure (9) extends to one on the q-conformal algebra in
Proposition 2.1, with

ci*5 H cah ia, Real Type I,
c ī , Real Type II.

Moreover,

~* ^ * !+D+*5exp~cup!21~D !exp~cup!

holds for the coproduct on any element of the q-conformal algebra.
Proof: The proof of compatibility of this* with the c,l6 relations is similar to that forp,l6.

Explicitly, in the type I case,

~lcbl
1 i

aR
b
k
a
j !*5lRj

a
k
bh

bdh icl
2c

eh
aecd5lRj

a
k
bh

bdh ich
ael21cgl

2c
fR

21 f
e
g
d

5cah
kah icl

2c
dh

jd5~ l1 i
j ck!* ,

using invariance ofR under conjugation byh ^h. In addition, we have

@pi , cj #*5@cj* , p
i* #5@cah

ja,pbh ib#52h jah ibS l1b
a§

212 l2b
a§

q2q21 D5S l1 i
j§

212 l2 i
j§

q2q21 D * ,
as required. Hence we have a*-algebra in this case. In the type II case, the calculation is

~lcbl
1 i

aR
b
k
a
j !*5l l2 ī

āc b̄R
ā
j̄
b̄
k̄5c k̄ l

2 ī
j̄ 5~ l1 i

j ck!* ,

@pi , cj #*5@c j̄ , p
ī #52S l1 ī

j̄ §
212 l2 ī

j̄ §

q2q21 D 5S l1 i
j§

212 l2 i
j§

q2q21 D * .
In either case, the sub-Hopf algebra generated by§,c,l6 forms a quasi-* Hopf algebra with the
same cocycleS 5RLl

2j^j, by analogous arguments to the proof for the extendedq-Poincare´
algebra in Ref. 10. Combining~7! with Proposition 2.2 gives the form of~*^* !+D+* stated. h

Although theq-conformal algebra with the above*-operation is not a Hopf* -algebra in the
usual sense, we see thatD fails to be a*-algebra map only up to conjugation by the plane wave
exp~cup!. More precisely, to every quasi-* Hopf algebra the conjugate coproductD̄5~*^* !+D+*
also provides a quasi-* Hopf algebra structure, in general different fromD. In our case, this comes
out as

D̄c5c^ l2§11^c ~10!

for either the real type I or type II* -structures above~similarly for D̄p in Ref. 10!; Proposition 3.1
tells us that thisD̄ and the coproductD in Proposition 2.1 are conjugate by exp~cup!.

IV. SPINORIAL FORMULATION

An important class of examples of our dataR8,R is provided by a ‘‘spinorial’’ construction
starting from a smaller Yang–Baxter matrixRPMs^Ms , wheren5s2. We require this to be
q-Hecke in the sense (PR2q)(PR1q21)50, whereP is the permutation matrix. The extended
q-Poincare´ algebra in this setting has been given in Ref. 10, while the momentum sector or
q-space–time itself is from Refs. 4, 5, and 17 and reviewed in Ref. 1 or 11, Ch. 10. We include
now theq-conformal algebra in this spinorial approach. In fact, the construction has two versions
which are strictly ‘‘gauge equivalent’’ in a certain algebraic sense. These are the ‘‘Euclidean’’ and
‘‘Minkowski’’ gauges of the same construction, introduced in Ref. 17 and 4 and 5, respectively.
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The Euclidean gauge construction is17

R8 i j
k
l5R21l0

k0
j 0
i0
Ri1

j 1
k1
l1
, Ri

j
k
l5Rj 0

i0
l0
k0
Ri1

j 1
k1
l1

~11!

and is equivalent forR the standardsu2 R-matrix to taking forR the standardso4 R-matrix. Of
course, the construction is more general and can be used just as well to define nonstandard
space–times by taking other nonstandardR. We write i5 i 0i 1 , j5 j 0 j 1 , etc., as multi-indices.

We also writepi 5 pi1i0. Then the relations~1! in the momentum sector~which will also be the
relations ofq-space–time! become17

R21p1p25p2p1R. ~12!

More nontrivially, we replace the vectorialq-Lorentz algebra generated byl6 i
j by a spinorial

version generated by two sets of generatorsl6 i0
j 0
andm6 i1

j 1
obeying relations like~2! with

respect toR. ForR thesu2 R-matrix, the momentum and space–time sectors are isomorphic to the
quantum matricesM̄q~2!, and the Lorentz/rotation sector isUq(su2)^Uq(su2). The natural
* -structure in this gauge is the unitary type one which corresponds toSUq~2! as aq-deformed
three-sphere inMq~2!. The dilation sector is generated by§ as before, commuting withl6,m6. The
cross-relations between these various sectors and the coproducts are obtained in Ref. 10. In the
present~slightly different! conventions they come out as

p1l2
15l21/2R21l2

1p1 , p1l2
25l1/2R21l2

1p1 , p1m2
15l1/2Rm2

1p1 , p1m2
25l21/2R21

21m2
2p1 ,

§p5l21p§, Dp5p^11§S21
„Sm2~ !l2…^p, e~p!50, ~13!

where the space is for the matrix indices ofp to be inserted.
To this spinorial extendedq-Poincare´ algebra, we add the special conformal transformations

ci 5 ci0i1. Note that the assignment is transposed relative to the assignment forpi .
Proposition 4.1: In the Euclidean gauge, the spinorial extended q-Poincaréalgebra inRef.

10 has a further extension by a matrix of generatorsc obeying

Rc1c25c2c1R21, l1
1c25l21/2c2l1

1R21, l1
2c25l1/2c2l1

2R21,

m1
1c25l1/2c2m1

1R, m1
2c25l21/2c2m1

2R21
21, §c5lc§,

@pi1i0, c
j 0
j 1

#5
§21~S21l1 j 0

i0
!m1 i1

j 1
2§~S21l2 j 0

i0
!m2 i1

j 1

q2q21 ,

Dc5c^ §21~S21l1!~ !m111^c, e~c!50,

and forming a quasitriangular Hopf algebra. This is the spinorial q-conformal algebra in the
Euclidean gauge.

Proof: The c, l6, m6, § relations are obtained along the same lines as in Ref. 10 via double-
bosonization. They are consistent with Proposition 2.1 using~11! and the ansatzl6 i

j

5 (S21l6 j 0
i0
)m6 i1

j 1
. Thec, p relations and the coproduct follow at once from this form ofl6 i

j .
We note that if we use the~slightly different! identificationh iap

a 5 pi0i1 used in Ref. 10, and the
expressionh i j 5 e i0 j 0e i1 j 1 in terms of the spinor metric associated toR, then the [p

i ,cj ] relations
come out as

@pi0i1,c
j 0
j 1

#5
§21l1 i0

a0
ea0 j 0ea1i1m

1a1
j 1

2§ l2 i0
a0

ea0 j 0ea1i1m
2a1

j 1

q2q21 . ~14!
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The spinor metric also converts the*-structure in Sec. III into a matrix form. h

The Minkowski gauge for the same construction is4,5

R8 i j
k
l5R21d

k0
j 0
aR

k1
b
a
i0
Ri1

c
b
l1
R̃c

j 1
l0
d , Ri

j
k
l5Rj 0

a
d
k0
Rk1

b
a
i0
Ri1

c
b
l1
R̃c

j 1
l0
d . ~15!

The momentum or space–time sector in this case has the braided matrix relations4

R21p1Rp25p2R21p1R, ~16!

whereh iap
a 5 pi0i1, and yields the braided matricesBMq~2! for the standardsu2 R-matrix. The

natural space–time*-structure in this case is a Hermitian one, justifying the name for this gauge.
@The unit sphere here is actually isomorphic toUq(su2) as a*-algebra whenqÞ1.# The Lorentz
sector in this standard case isUq(su2)pUq(su2) ~with a more complicated coproduct than in the
Euclidean gauge!.

The Euclidean gauge forq-space–time was introduced in Ref. 17 precisely as gauge equiva-
lent to the Minkowski gauge~which was found first!. At the Lorentz algebra level the gauges are
related by twisting by a quantum cocycle~see Ref. 2, Sec. 4, in a dual form!. This was extended
to the level of the extendedq-Poincare´ algebra in Ref. 10, using the same cocycle viewed in the
bigger algebra. The cocycle isx5R23

21 whereR is the quasitriangular structure ofUq(su2) in the
standard example.

Proposition 4.2: The same quantum cocyclex viewed in the spinorial form of the q-conformal
algebra twists its structure from the Euclidean to the Minkowski gauge.

Proof: This is true for the sub-Hopf algebra generated byc,l6,§ by analogous arguments to
those for the extendedq-Poincare´ algebra. Since the coproduct is entirely defined by its restriction
to either of these two sub-Hopf algebras, we conclude the same twisting result for the entire
q-conformal algebra. h

In view of this, we will not give the structure in detail in the Minkowski gauge: the structure
of the spinorial form of the extendedq-Poincare´ algebra is given in Ref. 10. To this, we add the
special conformal transformations in the formR̄21c1R̄c25c2R̄21c1R̄, where ci 5 ci1i0 and
R̄i

j
k
l5Rl

k
j
i . The cross relations withl6 are similar to those betweenp and l6 in Ref. 10.

V. CONFORMAL TRANSFORMATIONS OF SPACE–TIME

So far, we have called our quasitriangular Hopf algebraC~R8,R! theq-conformal one because
of its structural form, which is analogous to that of the conformal Lie algebra. We are now ready
to justify the terminology in geometrical terms, i.e., by its action onq-space–time. For the latter,
we take the linear braided groupV ˇ (R8,R) with generatorsxi and relations and braid statistics

x1x25x2x1R8, x18x25x2x18R. ~17!

There is a linear coproductDI x5x1x8 and a*-structure

xi*5 H xah ia, Real Type I,
x ī , Real Type II,

which we take of the same form as forc in Sec. III.
From the theory of braided groups, it is known2 that the extendedq-Poincare´ algebra acts

covariantly onq-space–time byq-rotations~via the fundamental representation defined byR! and
braided-differentiation for the momentum sector2,10

l1
1xx25x2lR21, l1

2xx25x2l
21R21, pixxj52d i j , §xxi5lxi . ~18!

To this, we add the following.
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Proposition 5.1: The q-conformal algebra in Proposition 2.1 acts covariantly on q-space–
time by (18) and

c2xx15
x1x22x2x1R

q2q21 .

Proof: This follows from general theory in Ref. 9; the required action ofc is derived in the
Appendix. The direct proof that thec, l6, § relations are represented is similar to that forp, l6, §.
For the p, c relations we can check it easily at lowest order, as (q2q21)[pi ,cj ]xxk
5pix~xkxj2xbxaR

a
k
b
j !1cjxd i

k52d i
kxj2xaR

21i
j
a
k1d i

bxaR
a
k
b
j1xcR

21i
a
c
bR

a
k
b
j5(§21l1 i

j

2§ l2 i
j )xxk , where the outer two terms cancelled. We used the action ofpi on productsxjxk via

the braided-Leibniz rule withR21
21.10 One can proceed similarly for the higher order case, using the

action ofci on products obtained below. h

Note that both the action ofpi andci extend to products via a braided-Leibniz rule because
they originate as braided module algebra structures~this is equivalent to the statement that the
actions form a module-algebra structure with respect to the Hopf algebra coproducts.! In the case
of pi , the action on a general monomial comes out in terms of the braided-integer matrices with
respect toR21

21 ~see Ref. 10!. For theci we have:
Lemma 5.2: The action of ci on a general product is

cnxx1x2•••xn215x1x2•••xnS 12~PR!12~PR!23•••~PR!n21n

q2q21 D ,
where P is the permutation matrix.

Proof: We first compute the braided-Leibniz rule forci . As explained in the Appendix, its
natural form is as a right-handed~braided! derivationcix5d i acting from the right. Then

~ab!d i5a~bd i !1aC~b^ d i !,

where the braiding is the braiding for the covector braided groupV ˇ (R8,R), i.e., defined byR.
Hence

~x1•••xn21!dn5x1•••xnS 12~PR!n21n

q2q21 D1~x1•••xn22!dn21xn~PR!n21n .

The result then follows by induction. h

Another way to describe the action is in terms of the algebra structure of the corresponding
semidirect product of space–time crossed by theq-conformal group. The cross relations between
the extendedq-Poincare´ algebra and space–time is10

l1
1x25x2lR21l1

1 , l1
2x25x2l

21R21l1
2 , x2R

21p12p1x25 id, §x5lx§. ~19!

The x,p relations are the ‘‘braided Heisenberg algebra’’ in the present conventions. To this we
now add the following.

Proposition 5.3: The q-conformal group acting as above andx acting by left multiplication on
q-space–time form a representation of the algebra V ˇ(R8,R)’C(R8,R) with the additionalc,x
cross relations

Fc11 x1l1
1§21

q2q21 ,x2G50.

Proof:We make a left-handed semidirect product using the coproduct in Proposition 2.1, the
action ofci above, and the already-known cross-relations~19!. Thus
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cixj5~ci ~1!xxj !ci ~2!5~caxxj !l
1a

i§
211xjci5

xjxa2xdxcR
c
j
d
a

q2q21 l1a
i§

211xjci

5
xjxal

1a
i§

212xal
1a

i§
21xj

q2q21 1xjci ,

as stated. Because the action in Proposition 5.1 is covariant~q-space–time forms a module algebra
under it!, we know from the general theory of Hopf algebra cross products that these relations
define an associative algebra structure on the tensor product vector space, and that the action on
q-space–time extends to it withxi acting by left-multiplication. h

We can also use the spinorial form of theq-conformal algebra. The action of the spinorial
form of the extendedq-Poincare´ algebra is given in Ref. 10. To this, we add the following.

Proposition 5.4: The spinorial form of the q-conformal algebra in the Euclidean gauge acts
as in Ref. 10 and

c2xx152x1x2PR.

Proof: We use the form ofR in ~11! in Proposition 5.1 andR5R21
211(q2q21)P from the

q-Hecke assumption in Sec. IV. Thus

~q2q21!cjxxi5xixj2xbxaR
a
i
b
j5xi0i1x

j 0
j 1

2xb0b1x
a0
a1
R21i0

a0
j 0
b0
Ra1

i1
b1
j 1

2~q2q!21xb0b1x
a0
a1

db0
i0 da0

j 0Ra1
i1
b1
j 1
.

The first two terms then give zero due to the form ofR8 in ~11! and the relations for thexi . h

We are now in position to compute this action for our standardq-space–time.1 The classical
formula cjxxi5

1
2h i jx–x2xixj would be

S a b

g d D xS a b

c dD 5S 2a2 2ba 2ac 2bc

2ab 2b2 2ad 2bd

2ca 2da 2c2 2dc

2cb 2db 2cd 2d2
D , ~20!

where

c5S a b

g d D , x5S a b

c dD , and h5S 0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

D
is the metric on complexified space–time in these spinor coordinates~different linear combina-
tions are considered real space–time coordinates in the Minkowski and Euclidean cases!.

Example 5.5: For the standard q-space–time in the Euclidean gauge, we have

S a b

g d D xS a b

c dD 5S 2a2 2q2ab 2ca 2bc

2ba 2b2 2da 2db

2ac 2ad2~q2q21!bc 2c2 2qdc

2bc 2bd 2dc 2d2
D .
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This is a q-deformation of the usual action of the special conformal transformations on space–
time.

Proof: This is computed easily from Proposition 5.4 with

R5S q 0 0 0

0 1 q2q21 0

0 0 1 0

0 0 0 q

D ,
which is the standardsu2 R-matrix in theq-Hecke normalization. The relations between the
noncommutative spinor space–time coordinates in this case are given explicitly in Ref. 17. The
quantum group normalization of the correspondingR is l5q21. h

This justifies our proposal forC~R8,R! asq-conformal group. Note that the metric does not
play any direct role in our definition of theq-conformal group and its action on spacetime, i.e., our
approach is a novel one even whenq51. It is remarkable therefore that it coincides for our
standard example with the action~20! defined through a metric. The connection is quite general,
however.

Lemma 5.6: Ifh is a quantum metric such thatx–x5xaxbh
ba is central, then it is preserved

by the q-conformal group up to scaling, in the sense

cix~x•x!m5S 12l22m

q2q21 D xi~x–x!m, i.e., cix f ~x–x!5S 12l22

q2q21D xix–x~]l22f !~x–x!.

Proof: We compute (q2q21)cix(xaxbh
ba)5xaxbxih

ba2xcxdxeR
d
a
c
fR

e
b
f
ih

ba

5xaxbxih
ba2xcxdxeR

d
a
c
fh

ebl22R21a
b
f
i5x–xxi2l22xix–x, using the covariance properties of

the quantum metric. Under a further condition on the quantum metric~true in the main examples,
see Ref. 1! one knows thatx–x is also central. This gives the result form51. From the covariance
properties of the quantum metric, we likewise compute the braidingx8 • x8xi 5 xa8xb8xih

ba

5 xa8xdxc8R
c
b
d
ih

ba 5 xa8xdxc8l
22R21a

b
d
ih

cb 5 xfxe8xc8R
e
a
f
dl

22R21a
b
d
ih

cb 5 l22xix8 • x8, i.e.,
C~x–x^xi!5l22xi ^x–x. The q-Leibniz rule for the action of ci then implies
cix~x–x!m5~x–x!m21xi„~12l22!/~q2q21!…x–x1„cix~x–x!m21

…x–xl22, which provides the gen-
eral result by induction. We alternatively write this in terms of al22-deformed derivative defined
in a usual way. h

Thus, ourq-conformal group and its action do nota priori involve a metric, but when there is
one, it is preserved in some sense. Instead, the structures and formulas which we normally asso-
ciate with preservation up to scale of a metric are obtained from the braided adjoint action. For
example, we see that the standardq-Gaussiangh in the setting of Lemma 5.6, which is a
l22-exponential ofx–x, is preserved in the sense

cixgh52q21S 12l22

12q24D xi~x–x!gh ,

in addition to its usual properties under the extendedq-Poincare´ algebra.
Finally, when a quasi-* Hopf algebra acts covariantly on a*-algebra, its conjugate quasi-*

Hopf algebra acts with a conjugate action.10 In the case of the extendedq-Poincare´ algebra it was
shown that the action of16,§ on q-space–time is self-conjugate, while the conjugate action of the
p generators is by braided-differentiation withR21

21 replaced byR.
Proposition 5.7: The conjugate action of the q-conformal algebra on q-space–time is

c2x̄x15
x1x22x2x1R21

21

q2q21 .
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Moreover, cixS~ !5S„cix̄~ !…, whereS is the braided antipode or parity operator on q-space–
time.

Proof: The abstract treatment for the conjugate action of the special conformal generators is in
the Appendix, from which one may compute the explicit form stated. In ourR-matrix setting, a
direct proof is as follows, using the*-structures in Sec. III for either the real type I or type II cases.
In the type I case,

cix̄xj5~Scah
iaxxbh

jb!*52~h iacd§Sl
1d

axxbh
jb!*52~h iacdxxeR

21e
b
d
ah

jb!*

5S S 2xexd1xfxgR
g
e
f
d

q2q21 Dh iaR21e
b
d
ah

jbD *5
xjxi2xaxbR

21a
i
b
j

q2q21

using the usual covariance properties of the quantum metric. In the type II case,

cix̄xj5~Scī xx j̄ !*52~ca§Sl
1a

ī xx j̄ !*52~caxxbR
21b

j̄
a
ī !*

5S S 2xbxa1xdxcR
c
b
d
a

q2q21 DR21b
j̄
a
ī D *

which likewise computes to the stated formula.
For the result that the action and conjugate action are intertwined byS, we have on the

generators S~c2x̄x1!5(q2q21)21S(x1x22x2x1R21
21!5~q2q21!21

„~2x2!~2x1!R2~2x1!~x2!…
5c2x~2x1! using the braided-antimultiplicativity of the braided antipodeS~x!52x. h

The same applies to the action on products ofq-space–time generators: we useR21
21 in place

of R in Lemma 5.2. Thus theq-conformal group exhibits the same novel phenomenon demon-
strated for the extendedq-Poincare´ algebra in Ref. 10 whereby*-conjugation is implemented in
braided geometry by reversal of braid crossings. The equivalence of the action and conjugate
action via the braided-parity operator also applies to all orders of products ofq-space–time
generators. This is the sense within braided geometry in which the operatorsci are ‘‘anti-
Hermitian.’’ This also holds for the momentumpi generators as the main result in Ref. 10.

The present work suggests the possibility of a systematic theory of massless spinning particles
based on invariance under theq-conformal group. This will be attempted elsewhere. Classically,
it requires the construction of fields with conformal weights defined as sections of certain vector
bundles over compactified spacetime. In theq-deformed case one needs therefore nontrivial quan-
tum homogeneous spaces and their associated bundles, for example along the lines in Ref. 18.

APPENDIX: ABSTRACT RESULTS

Most of the formulas for theq-conformal group in the text above have been given at the level
of R-matrices and matrix relations. In principle, one also has to check a large number of nonqua-
dratic relations, in particular associated with thel6 generators~they are not independent!. These
are needed to form a~quasitriangular! Hopf algebra in the Lorentz sector. Fortunately, such details
are ensured by the abstract braided group and quantum group constructions underlying the
R-matrix formulas. This is given for the extendedq-Poincare´ algebra in Ref. 10 and we extend
this now for theq-conformal case. The basis for the latter is a recent construction9 which associ-
ates to a braided groupB in the category ofH-modules~H is a quasitriangular Hopf algebra!, a
new quasitriangular Hopf algebra built fromB,H,B* , called thedouble-bosonizationof B. Here
we state without proof the relevant left-module version of the double-bosonization formulas~dif-
ferent right-module conventions are used in Ref. 9, for the purposes there!. Then we study
*-structures in this abstract setting, which is the new result of this Appendix.
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Familiarity with abstract quantum group11 and braided group12 techniques is assumed. In
particular,Dh5h(1)^h(2) denotes the coproduct ofhPH andDI b 5 b(1) ^ b(2) the braided coprod-
uct of bPB. Also,R5R~1!

^R~2! denotes the quasitriangular structure ofH, andv5R~1!SR~2!.
Let B be a braided group with invertible braided antipode in the braided category of left

H-modules, dual to another braided groupC. So B5C!. ~In the infinite-dimensional case, we
suppose a duality pairing ev:B^C→k of braided groups.! The double-bosonizationof B is the
Hopf algebraU(B) containingB,Cop, H as subalgebras and the cross relations, coproduct and
antipode~cf. Ref. 9!

hb5~h~1!xb!h~2! , hc5~h~2!xc!h~1! ,

b~1!R
~2!c~1!ev~R

~1!xb~2! ,c~2!!5ev~b~1! ,R
~2!xc~1!!c~2!R

~1!b~2! ,

~21!
Db5b~1!R

~2!
^R~1!xb~2! , Dc5R~2!xc~1! ^c~2!R

~1!,

Sb5~uR~1!xSIb!SR~2!, Sc5R2~1!SI 21~v21R2~2!xc!,

wherex denotes the action ofH wherebyB,C live in the braided category ofH-modules. The
pairing is assumed covariant, so ev~hxb,c!5ev„b,(Sh)xc…. The unit and counit are the trivial
tensor product ones andH has its usual coproduct and antipode~it is a sub-Hopf algebra!. Similar
proofs to those in Ref. 9 show that this defines a Hopf algebra. The bosonizationB’• H appears
as a sub-Hopf algebra and a certain ‘‘conjugate bosonization’’ generated byCop, H also appears
as a sub-Hopf algebra.

When the pairing is nondegenerate, we have as a formal power series a canonical element
exp5ea ^ f a for the pairing, where$ea% is a basis ofC and$f a% is a dual basis. Its inverse in the
algebraCop

^B is exp215(SIea ^ f a) from the pairing axioms. In this case the double-bosonization
is quasitriangular with

RU~B!5R exp21, ~22!

where we viewR and exp inU(B)^U(B).
This describes the left-handed version of the formulas in Ref. 9. It underlies the formulas in

Sec. II: we takeH generated byl6, § andB generated byp. We takeC generated byc which are
dual to thep in the usual way except scaled so that ev(pi ,cj )5(q2q21)21d i j . We then use the
same methods as in Refs. 2 and 10 for the calculation of the extendedq-Poincare´ algebra as
B’• H. Similarly for the conjugate bosonization generated byH, Cop. The remaining cross rela-
tions are [pi ,cj ]5ev(pi ,ca)^t

a
jg,R

~2!&R~1!2R~2!^Stiag
21,R~1!&ev(pa,cj ) from ~21! and the lin-

ear form of the braided coproducts onB,C. It is convenient to compute the action ofR here on
C as evaluation against the coaction of the matrix quantum group dual toH, with generatorst,g.
We derive the formula in Proposition 2.1 in this way. The same method gives the spinorial
formulas in Sec. IV.

Also given in Ref. 9 is a fundamental representation ofU(B). In our conventions it appears on
C, making it into a leftU(B)-module algebra as follows: first,B acts onC by the braided left
coregular representation studied in Ref. 10, Sec. 2. Together with the given actionx of H onC,
we have~Ref. 10, Cor. 2.2! a covariant action ofB’• H onC ~it defines the action of the extended
q-Poincare´ algebra on space–time!. Second,C acts on itself by the right braided-adjoint action.
This is given by the diagrams in Ref. 3 reflected in a mirror followed by reversal of braid
crossings. We view this as a left action ofCop on itself ~cf. Ref. 19!. These actions fit together to
give an action ofU(B) covariantly onC ~i.e., respecting its product!. Explicitly,

bxx5ev~SI 21b,x~1!op!x~2!op, cxx5~R~2!xSI c~1!!~R
~1!xx!c~2! ~23!
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when acting onxPC. Herex(1)op ^ x(2)op 5 R2(1)xx(2) ^ R2(2)xx(1) is the opposite braided
coproduct ofC. This action underlies the formulas in Sec. V. The action ofpiPB is by braided
differentiation as studied in Ref. 10. The action ofciPC is computed as

cixxj5~R~2!xSI ci !xa^R
~1!,tajg&1xjci5xjci2~§21Sl2a

jxci !xa5
xjxi2xaxbR

b
j
a
i

q2q21 ,

where xiPC are the usual~not scaled! generators dual topi @so ci5(q2q21)xi#, and
Sxi52xi . This derives the action used in Sec. V.

Next we move on to new abstract considerations beyond.9 We suppose thatB,C are*-braided
groups in the usual sense,16 H is a real-quasitriangular Hopf* -algebra, and its action onB is
unitary in the Hopf algebraic sense. Thus

~hxb!*5~Sh!*xb* , ~hxc!!5~S~h* !!xc!. ~24!

As explained in Ref. 10, the second formula is dictated by the first one and braided group duality.
We use. to define the*-structure onCop as the same antilinear map.

Proposition A.1: In this setting, the double bosonization U(B) is a quasi-* Hopf algebra with
cocycleR viewed in U(B)^U(B). Moreover,

~* ^ * !+D+*5exp21~D !exp

in U(B).
Proof : It is proven in Ref. 10 that, in this setting,B’• H becomes a quasi-* Hopf algebra with

cocycleR. By a similar calculation, we find that the conjugate bosonization generated byCop, H
is also a quasi-* Hopf algebra with the same cocycleR. We verify that these*-structures are
compatible with the cross-relations in~21!. Applying * to both sides:

~b~1!R
~2!c~1!!* ev~R

~1!xb~2! ,c~2!!5c~1!*R
~2!* b~1!* ev„~R

~1!xb~2!!* ,c~2!* …

5c* ~2!R
~1!b* ~2!ev~S

21R~2!xb* ~1! ,c* ~1!!

5c* ~2!R
~1!b* ~2!ev~b* ~1! ,R

~2!xc* ~1!!

5ev~R~1!xb* ~2! ,c* ~2!!b* ~1!R
~2!c* ~1!

5ev~b* ~2! ,SR
~1!xc* ~2!!b* ~1!R

~2!c* ~1!

5ev~b~1!* ,~R
~2!xc~1!!* !b~2!*R

~1!* c~2!*

5ev~b~1! ,R
~2!xc~1!!~c~2!R

~1!b~2!!*

usingev(b^c) 5 ev(b* ,c* ), reality ofR in the senseR* ^*5R21, our assumption~24!, invari-
ance of ev, and the cross-relations in~21! applied tob* , c* . This checks consistency of the
relations under* and implies that we have a*-algebra structure onU(B). Since its two sub-Hopf
algebras mentioned above are quasi-* Hopf algebras with cocycleR, it becomes a quasi-* Hopf
algebra as well, with the same cocycle.

SinceU(B) is also~in the nondegenerately paired case! quasitriangular via~22!, we deduce
that ~*^* !+D+*5R21~t +D !R5R21RU(B)~D !RU(B)

21 R5exp21~D !exp, as stated. h

We see from this proposition that the plane wave exp controls the extent that the double
bosonization fails to be a Hopf* -algebra in the usual sense. This, in turn, expresses the sense in
which the tensor product of unitaries fails to be unitary: they are unitary only up to a cocycle
isomorphism expressed by the action of exp.
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From the theory of quasi-* Hopf algebras in Ref. 10, Lemma 4.7, it is known that if a quasi-*
Hopf algebraH acts covariantly on a*-algebraC by x, then the conjugate quasi-* Hopf algebra

@with coproductD̄5~*^* !+D+* # acts covariantly onC by a conjugate actionx̄ defined by

hx̄x5„S~h* !xx* …* ~25!

for all hPH andxPC.
Theorem A.2: The conjugate of the action of U(B) as a quasi-* Hopf algebra acting on C is

hx̄x5hxx and bx̄x 5 ev(b,x(1))x(2) as inRef. 10,and

cx̄x5~R2~1!xSI 21c~1!op!~R
2~2!xx!c~2!op.

Moreover, ~ !xSI x5SI „~ !x̄x…, i.e., the action and conjugate action of U(B) are intertwined by the
braided antipode of C.

Proof: The conjugate actions ofhPH andbPB are covered in the conjunction of Ref. 10,
Cor. 2.4 and Prop. 4.8. To this we add now the conjugate of the action ofcPC. We compute

cx̄x5~S~c* !xx* !*5~R2~1!x„~v21R2~2!xSI 21c* !xx* …!*

5S~R2~1!* !x„~v21R2~2!xSI 21c* !xx* …*

5S~R2~1!* !x~„R~2!xSI ~v21R2~2!xSI 21c* !~1!…~R
~1!xx* !~v21R2~2!xSI 21c* !~2!!*

5S~R2~1!* !x~~v21R2~2!xSI 21c* !* ~1!„S~R~1!* !xx…

3„S~R~2!* …xSI ~v21R2~2!xSI 21c* !* ~2!!!

5R2~2!x~~u21R2~1!xSI 21c!~1!~R
~2!xx!„R~1!xSI ~u21R2~1!xSI 21c!~2!…!

5R2
2~2!R1

2~2!x„~u21R1
~2!R2

~1!R1
2~1!R2~1!xSI 21c~2!!~R

~2!xx!

3~R~1!u21R1
~1!R2

~2!R2
2~1!R2~2!xc~1!!…,

where we use the antipode ofU(B) from ~21! and repeatedly use~24!. For the fifth equality we
use the axiomc(1)* ^ c(2)* 5 c* (2) ^ c* (1) for * -braided groups. We then use the reality
property ofR, which also implies thatv21*5v21. HereSv215u215R~2!S2R~1!. For the last
equality we use covariance ofDI under the action ofH @along with standard facts about quasitri-
angular Hopf algebras to computeDu21 and ~D^id!R21#, and the braided anticomultiplicativity
DS21c 5 R2(1)xSI 21c(2) ^ R2(2)xSI 21c(1) from Ref. 12. Numerical suffices onR,R21 are
used to distinguish the various copies. The remaining steps are a tedious but straightforward
computation: we use the QYBE forR to cancel some of theR factors. Then we compute the
action ofR1

2~2!R2
2~2! on products using covariance, converting coproducts onR21 into more

copies ofR21. Using u~ !u215S2 andR2~2!u21R2~1!51, we can then cancel most of theR,
R21 factors to obtain the result stated. Herec(1)op ^ c(2)op denotes the braided opposite coproduct
of C as usual.

Next, we show that the action and conjugate action are intertwined by the braided antipodeSI
of the copy ofC in which we are acting. For the action ofhPH this is covariance of the braided
antipode. ForbPB this is Ref. 10, Cor. 2.4. To this we now add
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SI ~cx̄x!5~R~2!xSI c~2!op!~R
~1!xSI „~R2~1!xSI 21c~1!op!~R

2~2!xx!…!

5~R1
~2!R2

~2!xSI c~2!op!~R1
~1!xSI x!~R2

~1!xc~1!op!

5~R~2!xSI c~1!!~R
~1!xSI x!c~2!5cxSI x

using braided-antimultiplicativity ofSI twice. This part of the proof can also be done diagram-
matically. h

This therefore extends the abstract unitarity and quasi-* considerations for bosonizations and
the extendedq-Poincare´ algebra in Ref. 10 to double-bosonizations and theq-conformal algebra.
It is used in Secs. III and V.
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In this paper we continue with the program to explore the topography of the space
of W-type algebras. In the present case, the starting point is the work of Khesin,
Lyubashenko, and Roger on the algebra ofq-deformed pseudodifferential symbols
and their associated integrable hierarchies. The analysis goes on by studying the
associated Hamiltonian structures for which compact expressions are found. The
fundamental Poisson brackets yieldq-deformations ofWKP and relatedW-type
algebras which, in specific cases, coincide with the ones constructed by Frenkel and
Reshetikhin. The construction underlies a continuous correspondence between the
Hamiltonian structures of the Toda lattice and the KP hierarchies. ©1996 Ameri-
can Institute of Physics.@S0022-2488~96!04011-X#

I. INTRODUCTION

The literature concerning the so-calledW algebras increases as the belief that thew stands for
‘‘wild.’’ In fact they are wild objects in that they still resist all efforts to achieve a clear and
unified understanding of their physical meaning or at least of their geometrical origin. On the other
hand, the fascination about them stems from the way they underlie so manya priori disconnected
physical and mathematical constructions: two-dimensional conformal field theory,1 soliton
systems,2 vertex-operator and Kac–Moody algebras,3 classical and quantum fluids,4,5 2-D quan-
tum gravity,6 generalized particle systems,7 and many others.

On the way to taming theW algebras different proposals have been pursued. On one hand, in
the last years some effort has been posed in setting up a classification program. It has been realized
that a natural arena to handle this program is the phase space of integrable soliton systems, where
very many of the knownW algebras arise either as Poisson bracket algebras, or as symmetries of
the evolution equations. On the other hand, searching for an interpretation ofW algebras in
physical terms, some simplifications have been produced, yielding somewhat simpler objects
which still preserve many of the distinguishing features ofW algebras. Among them, the presence
of the Virasoro subalgebra plays a central role. Thus for example the ‘‘dispersionless’’ or ‘‘clas-
sical’’ limit, in which the operator] is smoothly replaced by a commuting symbolj ~Ref. 8!, has
shed some light about the geometry of classicalW-morphisms in relation to ‘‘area preserving
diffeomorphisms’’9 and Hamiltonian mechanics10 ~see also Ref. 11 for other interesting propos-
als!.

Another interesting simplification should occur if we replaced the derivative] by the
q-derivative]q . The q-derivative is in fact a difference operator, i.e., letF denote the ring of
complex-valued polynomials inz andz21 ~C@z, z21#! andqPC:

]qf ~z![
f ~qz!2 f ~z!

z~q21!
,

where] is recovered in the limq→1]q5]. Using ]q instead of] provides a sort of short distance
cutoff. For this reason it has been widely investigated in connection with the problem of regulating
quantum field theories.12 In the last years, a few works have been concerned with the issue of the

0022-2488/96/37(12)/6510/20/$10.00
6510 J. Math. Phys. 37 (12), December 1996 © 1996 American Institute of Physics

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



q-deformed Virasoro andW algebras; in Refs. 13 and 14 we have listed the references we are
aware of, where structures deserving such a name have been constructed. The generic approach in
them exploits heavily the use of theq-affine algebras,q-vertex operators, and aq-deformed
version of the Miura transformation. The connection of these algebras with integrable systems
remained unclear, until the recent work of E. Frenkel.15 In this paper it is claimed that the
q-deformedW algebras constructed in Ref. 14 provide bi-Hamiltonian structures for a particular
set of differential—q-difference integrable systems, which naturally deserve the name of
q-deformed KdV hierarchies.

Our original motivation was to pursue the line of research developed in Ref. 16. In this work
the central object of study was the Lie algebra of so-calledq-pseudodifferential symbols]q , its
extensions and contractions, as well as the associated Lax systems. Actually, theq-deformed
n-KdV integrable hierarchies defined there turn out to be the same as those in Ref. 15, albeit in a
different basis. With respect to this work, ours is somewhat complementary in that we asked
ourselves: first, what are the most general hierarchies that one could write in terms of Lax
operators involvingq-pseudodifferential symbols and, second, what are their Hamiltonian
structures.2 To perform the analysis, the unified framework described in Ref. 17 proved to be
instrumental. As an output, a large class ofq-deformations of classicalW algebras are found,
including those ofWKP, GDn , or the centrally extendedW11`. In specific cases we find agree-
ment with the results of Ref. 15. We also comment on some obstruction found when trying to
define aq-deformation ofWn .

This paper is organized as follows: for completeness, Secs. II and III are devoted to the
introductory material. In the former, some basic notions about the algebra ofq-pseudodifferential
operators are included; the latter gives an overview of ther -matrix approach to integrable systems.
In both sections we have followed closely the clear expositions of Refs. 16 and 17, respectively.

Section IV is a straightforward application of the machinery of Sec. III. The analysis is
performed in a twisted basisT, which we refer to as the ‘‘Toda lattice’’ basis. In particular, three
tri-Hamiltonian hierarchies of nonlinear differential-difference equations are found. The Poisson
brackets are explicitly computed and agree in special cases with those found in Ref. 15. One of the
advantages of the present formalism is the possibility of carrying out a transparent treatment of
reductions. Some of them are investigated at the end of this section.

Section V is a reelaboration of the previous findings in the basis]q introduced in Sec. I, and
namedq-KP basis after its direct relationship with the standard KP basis. The nonlinear infinite-
dimensional algebra which we obtain and compute is connected with theWKP

(n) algebra18 in the
limit q→1; thereafter, we name it theq-WKP

(n) algebra. Reductions are treated at the end. Of utmost
importance are the reductions ofq-KP to q-KdV. We comment about the possibility of obtaining
severalq-deformations of the Virasoro algebra within the present formalism.

Finally, in Sec. VI we bring the logarithm of theq-differential symbol log]q into the game.
We do this by formally continuing the ordern of the Lax operator to real values and taking
afterwards a suitable limitn→0. The resulting algebra can be considered as aq-deformation of the
centerfulW11` algebra.

II. THE ALGEBRA OF q-PSEUDODIFFERENTIAL OPERATORS

It will be useful to define the ‘‘shift’’ t f (z)5 f (qz), tb f (z)5 f (qbz), bPC. So, ]q is a
q-derivative in the following sense:

]q~ f g!5]q~ f !g1t~ f !]q~g!, ~2.1!

which can be proven by explicit computation. The actions oft and ]q are not commutative but
ratherq-commutative, i.e.,]q„t( f )…5qt(]qf )

Definition 2.2: An algebraCDOq of q-pseudodifferential operators is a vector space of
formal series
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CDOq5HA~x,]q!5(
2`

n

ui~z!]q
i UuiPFJ ~2.3!

with respect to]q . The multiplication law incDOq is defined by the following rule:F is a
subalgebra ofcDOq and there are commutation relations (uPF):

]qu5~]qu!1t~u!]q ,
~2.4!

]q
21u5 (

k>0
~21!kq2k~k11!/2

„t2k21~]q
ku!…]q

2k21.

Each term of the product of two Laurent series in]q is found by applying these rules a finite
number of times. The formula~2.4! is built so that]q

21]qu5]q]q
21u5u. Forq51 these formulas

recover the ‘‘classical’’ definition of multiplication law in the algebra of pseudodifferential op-
eratorscDO.

The commutation rule for]q
n ~with any integern! andu(z) join these formulas in one

]q
nu5 (

k>0
FnkG

q

„tn2k~]q
ku!…]q

n2k , ~2.5!

where we use the following notation forq-numbers andq-binomials.

~n!q5
qn21

q21
,

Fmk G
q

5
~m!q~m21!q•••~m2k11!q

~1!q~2!q•••~k!q
.

Theq-analog of the Leibnitz rule of multiplication of twoq-pseudodifferential operatorsA(x,]q)
andB(x,]q) can be written as the following operation on their symbols,

A~x,]q!B~x,]q!5 (
k>0

1

~k!q!
S dk

d]q
k AD * ~]q

kB!, ~2.6!

where for any complex value ofa

dk

d]q
k ~ f ]q

a!5~a!q~a21!q•••~a2k11!qf ]q
a2k

and the* multiplication of symbols obeys the following commutation rule for the generators:

f * ]q5 f ]q , ]q* f5t~ f !]q , ]q
21
* f5t21~ f !]q

21. ~2.7!

This follows by a straightforward verification of the formula~2.6! for the product]q
nu(z), which

gives the same answer as~2.5!.
Define the Lie algebraG q as the setCDOq of all q-pseudodifferential symbols equipped with

the commutator bracket [A, B]5AB2BA.
With this setup in mind, it is straightforward to construct aq-deformed analog of the KP

hierarchy. The phase space for this dynamical system is the set$Lq5]q1u1(z)
1u2(z)]q

211u3(z)]q
221•••%, and the equations of motion adopt the familiar Lax form
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dLq
dtm

5@Lq ,~Lq
m!1#5@~Lq

m!2 ,Lq#. ~2.8!

Notice that unlike in the differential case, the potentialu1(z) has a nontrivial evolution. This is
due to the fact that now the highest degree of the commutator of twoq-pseudodifferential opera-
tors is the sum of their respective highest degrees, this being a consequence of the nonconmuta-
tivity of the multiplication of symbols as shown in~2.7!.

III. R-MATRIX APPROACH TO INTEGRABLE SYSTEMS

We recall here the rudiments ofr -matrix and refer the interested reader to the literature.19 In
this section we shall follow closely the clear introduction given in Ref. 17. A classicalr -matrix on
a Lie algebrag is a linear mapR: g→g such that the modified bracket

@a, b#R5@R~a!, b#1@a, R~b!#

is a Lie bracket, thus providing a second Lie algebra structure ong. As was shown in Ref. 19, a
sufficient condition for a linear mapR to be anr -matrix is given by the so-calledmodified
Yang–Baxterequation@m-YB~a! for short#.

@R~a!, R~b!#2R~@a, b#R!52a@a, b#, ~3.1!

wherea is any real number. Now let us assume that ing there is an ad-invariant~under the natural
Lie bracket@,# in g! inner product̂ ,&: g3g→C under whichg can be identified with its dualg* .
Immediately we know of a natural Poisson structure that lives onC`~g* !, namely the Lie–Poisson
bracket arising from the modified Lie bracket@,#R :

$ f 1 , f 2%1~L ![^L,@Rd f1 , d f2#1@d f1 , Rd f2#&, ~3.2!

evaluated at a pointLPg5g* . This Poisson bracket, termedlinear after its dependence onL, is
the first of a series of other ‘‘potential’’ Poisson brackets:

$ f 1 , f 2%2[^L,@R~Ld f11d f1L !, d f2#1@d f1 , R~Ld f21d f2L !#&, ~3.3!

$ f 1 , f 2%3[^L,@R~Ld f1L !, d f2#1@d f1 , R~Ld f2L !#&. ~3.4!

Using ad-invariance of the inner product, and the definition of the adjointr -matrix as
^R(a),b&5^a,R* (b)&, we may encode the above ‘‘potential’’ Poisson brackets in terms of the
associated Poisson mapJ, defined by

$ f 1 , f 2%s~L !5^JL
~s!~d f1!,d f2&, s51,2,3, ~3.5!

as follows

JL
~1!~d f !5@L, R~d f !#1R* ~@L, d f# !,

JL
~2!~d f !5@L, R~Ld f1d fL!#1LR* ~@L, d f# !1R* ~@L, d f# !L, ~3.6!

JL
~3!~d f !5@L, R~Ld fL!#1LR* ~@L, d f# !L.

Now the crucial question: for whatR will the above maps define Hamiltonian maps? The findings
of Refs. 17 and 20 specify the following.

~a! JL
(1) is Hamiltonian for anyr -matrixR on g.
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~b! JL
(2) is Hamiltonian ifR and its skew-symmetric combination12~R2R* ! both satisfy the
m-YB~a! equation~3.1!.

~c! JL
(3) is Hamiltonian ifR is an r -matrix which satisfies m-YB~a! equation.

The three maps are related with one another by simple deformations

JL1e1
~2! 5JL

~2!12eJL
~1! ,

JL1e1
~3! 5JL

~3!1eJL
~2!1e2JL

~1! ,

where 1 is the generator of the center ing. This, by the way, shows the compatibility of the three
‘‘would be’’ Poisson structures.

The construction of integrable systems that are Hamiltonian with respect to the above brackets
refers to the existence of a~possibly maximal! set of conserved functions in involution. Here, an
important piece in the game is played by the set of Casimir~invariant! functions, i.e., those
functionsCPC`~g* ! satisfyingadL* „C(L)… 5 0 or, equivalently,

adL~dC~L !!5@L, dC~L !#50.

If one has a chance to characterize the Casimir functions~in short, the centralizer ofLPg!, then
a short look at the form ofJ(s) in ~3.6! reveals the following.

~i! The associated Hamiltonian flows adopt the Lax form

dL

dt
5JL

~1!~dC!5@L, R~dC!#,

dL

dt
5JL

~2!~dC!5@L, R~2LdC!#,

dL

dt
5JL

~3!~dC!5@L, R~L2dC!#.

~ii ! The Casimir functions are in involution. For example, whens51

$C1 ,C2%15^@L, R~dC1!#,dC2&52^@L, dC2#,R~dC1!&50.

A particular ~partial! solution is given by the traces of powers ofL:

Cp~L ![
1

k
Tr~Lp!, dCp~L !5L ~k21!, p51,2,... .

For this particular set of functions, the Lax equations are tri-Hamiltonian

dL

dtp
[@L, R~Lp!#5JL

~1!~dCp11!5JL
~2!~dCp!5JL

~3!~dCp21!.

In some cases~n-KdV!, p may be a fraction of the order ofL.
The classification of solutions to~3.1! has been achieved partially. A class of them fall into the

following characterization: ifg5g1 %g2 is a decomposition into Lie subalgebras, denoting by
P1 (P2) the projection ofg1 ~resp.g2! alongg2 ~resp.g1!, thenR51

2(P12P2) satisfies the
modified Yang–Baxter equation~3.1! with a51

4 since [a, b]R is easily calculated to be
[a1 , b1]2[a2 , b2] in obvious notation.
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We may give the particular form of~3.6! whenever adapted to the present situation~hereafter
we shall obviate the dependence ofJL

(s) on L, and write simplyJ(s)!:

J~1!~d f !5@L, P1d f#2P2* @L, d f#52@L, P2d f#1P1* @L, d f#,

J~2!~d f !5@L, P1~Ld f1d f L!#2L~P2* @L, d f# !2~P2* @L, d f# !L

52@L, P2~Ld f1d f L!#1L~P1* @L, d f# !1~P1* @L, d f# !L, ~3.7!

J~3!~d f !5@L, P1~Ld f L!#2L~P2* @L, d f# !L52@L, P2~Ld f L!#1L~P1* @L, d f# !L.

Moreover, ifg1 andg2 are isotropic, then clearlyR is skew-adjoint with respect to the inner
product^R(a),b&5^a,R* (b)&, i.e.,R*52R. In this caseP6* 5 P7 and the three structures in
~3.6! reduce to the following form (X[d f ):

JL
~1!~z!5@L, X1#22@L, X2#1 ,

JL
~2!~z!5L~XL!12~LX!1L52L~XL!21~LX!2L, ~3.8!

JL
~3!~z!5@L, ~LXL!1#22L@L,X#1L.

IV. THE ‘‘TODA LATTICE’’ BASIS

Let us return to theq-deformation of the KP hierarchy that we showed in the introduction
~2.8!. Define, forqÞ1,

T5z~q21!]q11,
~4.1!

T215
1

z~q21!]q11
5(

i51

`

2
~2q! i

~q21! i
z2 i]q

2 i .

Any element ofCDOq of the form ~2.3! admits a similar expression in this ‘‘twisted’’ basis

A5(
2`

n

ai~z!]q
i 5(

2`

n

t i~z!Ti . ~4.2!

Hence we will be describing the same algebraG q in this basis. The relevant composition law is
the following, which can be proven by elementary manipulations: For anyfPF,

T f5t~ f !T, ~4.3!

in particular Tz5qzT. We will use the notation (T f ) to mean thatT acts only on f , i.e.,
(T f )[T fT215t( f ).

The algebraic approach to integrability relies heavily on the existence of an ad-invariant
symmetric bilinear form. As a step in this direction, a linear functional*:fPC is defined satisfying
*t( f )5* f for all fPF. In agreement with this requirement, we further specify that*zn5dn,0. A
particular realization of this definition is given by the usual Riemann integration overS1 of the
Fourier basis functionszn5einu, where the action oft is seen as a shift of~2i log q! in u. Also
d(z)5(kPZ z

k.
Now, letA5( iaiT

iPCDOq . We define the residue resT :CDOq→ f by

resTS (
i
aiT

i D 5a0
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and the trace Tr:CDOq→C by

Tr A5E resT A

Lemma 4.4: The bilinear form̂,&:G q3G qC, given by

^A,B&5Tr AB5E resT AB, ~4.5!

defines an ad-invariant bilinear symmetric inner product inG q

Proof: By direct computation and use of the defining ‘‘shift’’ invariance of* we find

Tr AB5E resT aiT
ibjT

j5E ait
i~b2 i !5E b2 it

2 i~ai !

5E resT bjt
j~ai !T

j115E resT bjT
jaiT

i5Tr BA.

j

We would like to stress that this bilinear product is the same~up to factors ofq! as the one defined
in Ref. 16, as we shall show in Sec. V. The previous lemma is fully equivalent to theorem 3.3 in
that reference. With respect to this inner product, the adjoint oft is t*5t21, i.e.,
(T* f )5(T21f ).

Let us investigate the possible splittings of the formG q5G 1%G 2, whereG 1 andG 2 are Lie
subalgebras. In view of the generic~graded! commutation relations

@ t iT
i , t jT

j #5„t it
i~ t j !2t jt

j~ t i !…T
i1 j ,

we find only three possibilities as follows:

~1! ~s521!: G q5G >0%G <21

G >0[H (
i>0

t i~z!Ti J ; G <21[H (
i<21

t i~z!Ti J ;
~2! ~s511!: G q5G >1%G <0 :

G >1[H (
j>1

t j~z!Tj J ; G <0[H (
j<0

t j~z!Tj J ;
~3! ~s50!: G q5G 01 %G 02

G 01[H (
k>0

tk~z!Tk, t0PzC@z#J ;
G 02[H (

k>0
tk~z!Tk, t0Pz21C@z21#J .

Remark 4.6:As mentioned in Ref. 16, the interest of the last case comes from the fact that,
relative to the inner product defined in~4.5!, it is the only one whereG 06 are isotropic. Hence
(G ,G 01,G 02) is a Manin triple and (G ,G 02) a Lie double.
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A. The fundamental Poisson brackets

In order to define the phase space where our dynamics will take place, let

L5 (
i5m

n

ti~z!Ti , ~4.7!

wheren,mPZ andn.m. We regard any of these difference operators as ‘‘points’’ on a manifold
MT

(n,m). The dynamics is governed by differential—q-difference equations derived from the usual
Lax system

dL

dtp
5@L, ~Lp!1#5@~Lp!2 , L#, ~4.8!

which is manifestly consistent forL of the form given in~4.7!. Here6 refers to any one of the
s50, 61 splittings defined above.

In the case ofs521 with (n,m)5~1,2`!, this system is none other than the simplest version
of the Toda lattice hierarchy involving one set of time parameters.21,22 Indeed, in these works the
Toda lattice hierarchy is formulated in terms of a Lax operator of the form

L5e]1 (
n50

`

un11e
2n],

which involves the difference operatore] acting asen]ui(x)5ui(x1n)en]. The isomorphism
between both formulations is made patent after identifyingui(x) with t i(z5qxz) wherezPC is
any fixed complex number.

Remark that only form50 and the splittings521, or n50 ands511, equations~4.8! are
empty since in this case the commutator vanishes identically. The nontrivial flows may come then
from fractional powers ofL.15,16 For example, letn5N andm50. Then

dL

dtp
5@L, ~Lp/N!1#5@~Lp/N!2 , L#

are nontrivial differential difference equations as long asp is not a multiple ofN. An analogous
way to characterize these flows is to consider an operator of the formLPMT

1,2` of the form
L5t0T1t11t2T

211..., constrained to satisfyL2
N50.

OnMT
(n,m) the ~linear! functionals of interest have the formf X(L)5Tr LX with

X5 (
j5m

n

T2 j xj~z!.

Clearly f X adopts the form of a Euclidean scalar productf X5*( i5m
n tixi . Defining the gradient

d:F→G q by

^d f ,dL&[
d

de
f X~L1edL !U

e50

,

it turns out thatd fX(L)5X.
We are interested in the fundamental Poisson brackets among the fieldst i(z). Since the

Poisson mapsJ(s)(d fX) are linear ind fX5X, we may expand
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J~s!~X!5 (
i5m

n

(
j5m

n

~Jji
~s!xi !~z!Tj , ~4.9!

whereJi j
(s) is some function ofq-difference operatorsT. Plugging this back in~3.5! we obtain

$ f X , f Y%5E ~Ji j xj !yi5E xi~Jji* yj !52E xi~Ji j y j !,

where the last equation follows from the antisymmetry$ f X , f Y%52$ f Y , f X%, which implies that
Jji* 5 2Ji j . Finally, comparing this expression with

$ f X , f Y%r5E xi~z!E $ui~z!,uj~w!%syj~w!

shows that

$ui~z!,uj~w!%s52„Ji j
~s!~z!d~z/w!…, ~4.10!

whered(z/w) 5 ( jPZ(z/w)
j , and the operatorsJi j act atz.

It is time to analyze in detail the potential Poisson structures onMT
(n,m). We will do this by

taking into consideration, case by case, the three possible splittings ofG q : s50,61. Notice that
for all cases, the linear and cubic brackets in~3.2! and ~3.4! define Poisson brackets, sinceR5
1
2(P12P2), with P6 in each case the relevant projection operators, yields automatically an
r -matrix obeying the m-YB~14! equation~3.1!. Therefore, further analysis is only required for the
quadratic bracket.

1. (s521): G q5G >0%G <21

This splitting is, among the three, the most analogous to the one of the standard KP hierarchy.
Notice, however, the important difference: now the subalgebraG >0 is not isotropic, and in con-
sequence ther -matrix is not anti-self-adjoint. Thus, whether the ‘‘antisymmetric’’ combination
1
2~R2R* ! satisfies the m-YB~14! equation as well must be checked independently. In more con-
crete terms, let

R5 1
2~P>02P<21!.

In view of the definition of the inner product~4.5!, R*51
2(P<02P>1), and therefore

1
2~R2R* !5 1

2~P>12P<21!. ~4.11!

It follows from an easy calculation that this linear map satisfies~3.1! with a51
4 as well. Hence all

three brackets in~3.2! and ~3.4! are Poisson brackets. Using the general formula~3.7! we may
particularize to the present case and get (X[d f )

J~1!~X!5@L, X>0#<02@L, X<21#>1 , ~4.12!

J~2!~X!52L~XL!>022~LX!>0L1L resT~@L, X# !1resT~@L, X# !L

522L~XL!<2112~LX!<21L1L resT~@L, X# !1resT~@L, X# !L, ~4.13!

J~3!~X!5@L, ~LXL!>0#2L@L, X#>1L. ~4.14!
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A word about consistency is needed. Concerning thefirst structure~4.12!, in order thatJ(1)(X)
describes a deformation ofL we must demand thatn>0 and 1>m ~in fact, for the particular case
of MT

(n.0,0) expression~4.12! appeared in Ref. 15!. This may be seen from~4.12! written in the
following form:

J~1!~X!5@L<0 , X>0#<02@L>2 , X<21#>1 .

The first term on the right-hand side bounds the lowest order ofJ(1)(X) to be higher or equal to
the lowest order ofL. The second one bounds the highest order of the map to be strictly lower than
the highest order ofL. The constraints inn andm come from the projectors outside the commu-
tators.

It is remarkable that for thesecond structure J~2! there is not such a restriction andJ(X)
parametrizes a deformation ofL for any (n,m).

The case of the cubic orthird structureis more extreme. From~4.14! is evident thatMT
(n,m)

is not an invariant subspace under the action ofJ~3!, unless (n,m)5~`,0!, ~0,2`!, or ~`,2`!. For
this reason we do not consider this algebra to be of much interest and we will not write down its
explicit form. Hereafter we shall restrict our attention to the two other structures.

In terms of the fundamental Poisson brackets we obtain forJ~1! the following difference
operatorsJi j

(1):

Ji j
~1!5t i1 jT

i2T2 j t i1 j , ~4.15!

if either i , j>1 with n> i1 j or, up to a sign, when 0>i , j with i1 j>m. In all other casesJi j
(1)50.

For the sake of comparison with similar results in the literature,13–15 we may write down the
Poisson brackets explicitly:

$t i~z!,t j~w!%152t i1 j~z!dS qizw D1t i1 j~w!dS z

qjwD . ~4.16!

with the same set of restrictions upon the indicesi , j . This expression exhibits the splitting of the
linear Poisson bracket algebra in two graded subalgebras spanned by either positive or nonpositive
values ofi , j .

For Ji j
(2) an analogous computation yields

Ji j
~2!52 (

k5max~m,i1 j2n!

min~n,i !

~ tkT
k2 j t i1 j2k2t i1 j2kT

i2ktk!1t i~11Ti !~12T2 j !t j

or, again

$t i~z!,t j~w!%~2!52 (
k5max~m,i1 j2n!

min~n,i ! S t i1 j2k~z!tk~w!dS qi2kz

w D2tk~z!t i1 j2k~w!dS z

qj2kwD D
2t i~z!t j~w!(

lPZ
S zwD l~11qi !~12q2 j !

2. (s511): G q5G >1%G <0

This situation is symmetric with respect to the one above. Notice that at the level of the
algebra, this splitting transforms into the previous one upon the substitutionT→T21. Therefore,
the formulas obtained from~4.12!–~4.14! can be adapted to the present case by a simple replace-
mentq→q21 andm↔n.
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3. (s50):G q5G 01 % G 02

This is the standard case of a Lie bialgebra. The three maps in~3.8! automatically define
Poisson brackets. The fundamental ones are a slight modification of the ones above, and involve
an additional operatorp6 , which projects any elementfPF into its Taylor and Laurent parts,
respectively, i.e.,p1z

m5zm iff m>1 and zero otherwise, and vice versa. Herep1 and p2 are
mutually adjoint with respect to the inner product defined with* and commute withT.

As before, the linear structure is a direct sum of two subalgebras, spanned by the fields
t0

1[p1t0 and $t i , i51,...,n% on one side, andt0
2[p2t0 and $t i , i521,22,...,m% on the other.

Therefore, as long asi , j>1 butn> i1 j ,

Ji j
~1!52~ t i1 jT

i2T2 j t i1 j !. ~4.17!

The same expression with opposite sign holds if21>i , j with i1 j>m. Finally,

J0 j
~1!5U~ j21!p1~T2 j21!t j2U~2 j21!p2~T2 j21!t j ~4.18!

andJi0
(1) 5 2J0i

(1)* . In all other casesJi j50. In formula~4.18! U stands for the usual step function
U(x)51 iff x>0 and 0 otherwise. The quadratic brackets are computed along the same lines:

Ji j
~2!52 (

k5max~m,i1 j2n!

min~n,i !

~ tkT
k2 j t i1 j2k2t i1 j2kT

i2ktk!12t i~12Ti2 j !p2t j .

B. Some reductions

Let us focus on thes521 splitting ~the cases511 follows a symmetric pattern!. Remark

that as far as the Lax equations are concerned, the fieldtn is not dynamical. LetM̃T
(n,m) represent

the submanifold ofMT
(n,m) defined by the constrainttn51 ~or any constant!. FromJ~1! in ~4.12!

we observe that, as long asn>1, the highest positive order ofJ~1! is n21 and therefore the
Hamiltonian map is automatically tangent to the constraint submanifold. Whenm50 this is also
the case for a similar constraint on the lowest fieldt05constant; indeed~4.12! shows that in this
case the contribution ofJ(1)(X) to order zero is [L0 , X0]50. In a few words, both constraints are
first class, and the Poisson brackets are defined by simple restriction of~4.16!.

For J~2!, things are more involved. Notice in fact from the expression~4.13! that the highest
order ofJ(2)(X) is n, i.e., the same as that ofL. Therefore, in order to define Poisson brackets on

M̃T
(n,m) we would follow the standard prescription for second class constraints due to Dirac.

However, instead of plugging here the formula of the Dirac brackets, we will pause briefly to

describe how they appear in our context. Given the projection map, such asMT
(n,m)→M̃T

(n,m) that
setstn→1, at each pointL, the induced projection of vectors on the tangent subspace is unique.
This is not so for one-forms. To see this notice that if we want to compute Poisson brackets of

functionsf ,g onM̃T
(n,m) via ~4.13!, we first need to extend them toMT

(n,m). This extension, being
nonunique, renders the componentxn5d f /dtn in the gradient

d f~L !5 (
k5m

n

T2kxk

undefined. Therefore some additional structure is required in order to specify the cotangent sub-
space. Since we haveJ~2! at hand, a map from one-forms to vectors, we may fix this ambiguity by

demanding that the associated Hamiltonian vector fields be tangent toM̃T
(n,m). In other words, we

fix xn by the requirement thatJ2„d f(L)… should have no term of ordern. This form of computing
the algebra is fully equivalent to the Dirac bracket prescription as we show next.23 The demand
that J(z) should stay tangent to the constraint manifold implies ford f(L) that
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(
j5m

n

Jn jxj50

and this may be solved forxn52( j5m
n21 Jnn

21Jn jxj . Plugging this back into~4.9! we have

J~z!5 (
i , j5m

n21

~ J̃i j xj !T
i ,

where

J̃i j5Ji j2JinJnn
21Jn j , i , j51,...,n21, ~4.19!

are the corresponding Dirac brackets on the constraint surface. For the explicitly reduced brackets
we find a nonlocal expression as follows:

J̃i j
~2!52 (

k5max~m,i1 j2n!

min~n,i !

~ tkT
k2 j t i1 j2k2t i1 j2kT

i2ktk!12t i
~12Ti2n!~12T2 j !

~12T2n!
t j . ~4.20!

Indeed, the interest in the reductiontn51 stemmed from the fact that the Lax flows~4.8! stabilize
this constraint. Likewise, ifm50 the Lax equation fort0 is trivial, hence we may want to set it
also to a constant. However, in contrast to the previous case, the contribution ofJ(2)(X) to order
zero is 2L0(XL)022(LX)0L012L0[L, X] 050; in other words, for allj , J0 j

(2) vanishes and there-
fore this constraint is first class and does not lead to any modification of the algebra. If we put
m50, ~4.20! is equivalent to formula~3.6! in Ref. 15.

V. THE q-KP BASIS

We recall that our main purpose is to construct aq-deformation of the algebraWKP. For this
reason it will be interesting to reformulate the findings of the previous section in terms of the basis
]q , i.e.,

]q5
1

z~q21!
~T21!. ~5.1!

Written in this basis, the limitq→1 should yield directlyWKP
(n) in Ref. 18. We recall here the

relevant formulas for the change of basis:

T5z~q21!]q11,
~5.2!

T215
1

z~q21!]q11
[2(

i51

`
~2q! i

~q21! i
z2 i]q

2 i

These imply in particular that the phase spaceMT
(n,m) will be coordinatized now by

q-pseudodifferential operatorsL of the form

L5 (
j52`

n

uj~z!]q
j , ~5.3!

(m1n) being still the number of degrees of freedom. Yet the manifold of allq-pseudodifferential
operators of the form~5.3!, which we will denote byM]q

(n) , is much bigger thanMT
(n,m). Rather,

we have that the set of all these spaces$MT
(n,m), m51,2,3,...% is dense inM]q

(n) .
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Notice that~5.2! involves a specific choice of the expansion point, namely around]q5`.
Other choices may lead to differentW-algebras. In theq-KP basis we may gradeG q by the
scaling dimension: ifz has degree21, ]q will have 11 and we may makeL homogeneous of a
certain degree,n, by further assignment of degreej to uj . This gives us a chance to look for a
q-deformation of the Virasoro algebra in the subalgebra spanned by the counterpart of the energy
momentum tensor~the field u2 in the context of the classicalWKP algebra!, which will be a
particularx-dependent combination of various fields in the Toda basis~where the grading was a
different one!.

In order to study the Hamiltonian structures we have to redefine the residue and trace func-
tionals in the new basis. The point is the following; let

L~T!>05(
i50

n

t iT
i5(

i50

n

ui]q
i 5L~]q!>0 ,

where in each case the projection is performed with respect to the relevant basis. Making use of
~5.1! we may writet0 in terms ofui :

t0~ui !5~21!m
um

zm~q21!m
1~21!m21

um21

zm21~q21!m21 1•••2
u1

z~q21!
1u0 . ~5.4!

If L(T)[t iT
i , t05resT L(T). How can we manage to extractt0(ui) out of L(]q) as given by the

right-hand side of~5.4!? Notice that we may take advantage of the fact that the projections~in the
respective basis! ~ !>0 and ~ !<21 commute with the change of basisT↔]q , hence

„L~T!…05„L~T!T21
…215„L~T!>0T

21
…215

z~q21!

q
„L~]q!>0T

21~]q!…21 .

In the last expressionT21(]q) stands for the second relation in~5.2!. Thus

t0~ui !5
z~q21!

q
res]q„L~]q!T

21
…,

where we have introduced the symbol res]q
ai]q

i [ a21. Concerning the ad-invariant symmetric
bilinear product, we find the same expression that was considered in Ref. 16~modulo a constant
factor!

^A,B&5^B,A&5E resT AB5
q21

q E z res]q ABT
21. ~5.5!

In this basis the natural integral functional is*21[*z which, in spite of not being scale invariant
*21t( f )5q21*21f satisfies the desirable property that*21(]qf )50. With respect to the above
inner product, the adjoints oft and]q are easy to compute, yielding

t*5
1

q
t21; ]q*52]q* t21. ~5.6!

For later use we shall introduce the following compact notation:

V~A![
z~q21!

q
res]q~A!.

Next, we must characterize the three possible splittings ofG q~s50,61! in the ]q basis:
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The untwisted basis is naturally adapted to the cases521,

G >0~T!5G >0~]q!, G <21~T!5G <21~]q!.

Heres511 looks a little bit more contrived:

G <1~T!5G̃ >0~]q![H L5(
j50

m

uj]q
j ures]q~LT

21!50J ,
G <0~T!5G <0~]q!5H L5 (

j52`

0

uj]q
j J .

Last, the characterization ofs50 in the untwisted basis makes this splitting very unnatural:

G 01~]q![H L5(
j50

m

uj]q
j uz res]q~LT

21!PzC@z#J ,
G 02~]q![H L5 (

j52`

0

uj]q
j uu0Pz21C@z21#J .

We want to consider again the Poisson maps~3.7!. Now in order to compute the analog of
~4.12!–~4.14! we have to say what the relevant projection operators are. From the form of the
scalar product~5.5! it is clear that

P>0L5L>0 , P>0* L5~LT21!<21T,
~5.7!

P<21L5L<21 , P<21* L5~LT21!>0T.

We may simplify these expressions, remembering that the projections~ !>0 and~ !<21 commute
with the change of basisT↔]q . So forL5t iT

i5uj]q
j ,

P>0* L5„L~]q!T
21~]q!…<21T5„L~T!T21

…<21T5„L~T!…<0

5„L~T!…<211t05„L~]q!…<211V~L !,

where we made use of~5.2!. Similarly

P<21* L5„L~]q!T
21
…>0T5„L~T!T21

…>0T5L~T!>1T
21T

5L~T!>02t05L~]q!>02V~L !.

With these results the antisymmetric part of ther -matrix is

1
2~R2R* !5 1

2~P>02P<212V!5R2 1
2V. ~5.8!

It is not evident that this expression also satisfies the m-YB~ 14! equation. However, an explicit
computation shows that the only nonvanishing contribution to~3.1! has the formV([a>0, b>0]),
which vanishes. An easy way to convince oneself of this fact is that when written in theT basis
this is resT[a(T)>0, b(T)<0]50.

With all this information, it is now an easy exercise to find the explicit expressions for~3.7!
as adapted to the present case. Let againX[d f :

J~1!~X!5@L, X>0#<212@L, X<21#>01V~@L, X# !, ~5.9!
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J~2!~X!52L~XL!>022~LX!>0L1LV~@L, X# !1V~@L, X# !L

522L~XL!<2112~LX!<21L1LV~@L,X# !1V~@L,X# !L, ~5.10!

J~3!~X!5@L, ~LXL!>0#2L@L, X#>0L1LV~@L, X# !L. ~5.11!

Notice that as compared with the analogous expressions for theWKP algebra,
18 the ones above

present additional terms which vanish in the limitq→1. However, these terms are not active
wheneverf is a Casimir function, and hence, in particular for the Lax–Hamiltonian flows.

In order to compute the algebra of fundamental Poisson brackets we have to describe the
manifold and the class of functionals for whichJ( i ), i51,2,3, describe tangent maps. We will work
onM]q

(n) whose points are parametrized as

L ~n!5(
i50

`

ui]
n2 i ~nPZ!. ~5.12!

Accordingly, in order to define linear functionals of the formf X5*21uixi as f X
5 *21 res]q LXT

21, our gradient one-forms will beq-pseudodifferential operators of the form

X[d fX5(
j50

`

]q
j2n21Txj .

After a straightforward computation, we list the full set of fundamental brackets forJ~1! as fol-
lows: first we have that for allj : J00

(1)5J0 j
(1)5Jj0

(1)50. If i , j>n11,

Ji j
~1!5 (

k50

i1 j2n21 F i2n21
k G

q

qk~k11!/2S qn2 i21~q21!ui1 j2n2k~2]q!
kx1

1

q
ui1 j2n2k21~2]q!

kD
3Tn2 i2 (

k50

i1 j2n F j2n
k G

q

~q21!

q
Tj2n2k]q

kui1 j2n2kx

2 (
k50

i1 j2n21 F j2n21
k G

q

1

q
Tj2n2k21]q

kui1 j2n2k21 . ~5.13!

If, however, 1<i , j<n21, the same expression~5.13! is valid with the opposite sign.
Finally, when j5n,

Jin
~1!5H (

k50

i2n21 S F i2n21
k G

q

qk~k11!/21n2 i21~q21!ui2k~2]q!
kxTn2 i D 2

1

q
~q21!xuiJ

3U„i2~n11!…1H 2 (
k50

i21 F i2n21
k G

q

qk~k11!/2S qn2 i21~q21!ui2k~2]q!
kx

1
1

q
ui2k21~2]q!

kD 1
~q21!

q
xui1 (

k50

i21 F21
k G

q

1

q
T2k21]q

kui2k21J
3U~n2 i !1

x~q21!

q S un2 (
k50

n F21
k G

q

T2k]q
kun2kD d i ,n . ~5.14!

The rest of the brackets can be computed making use of the identityJi j 5 2Jji* and~5.6!.
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Concerning reductions, as long asn>1, the highest order ofJ(1)(X) is n21 and thereafter its
action is tangent to the submanifold defined byu05constant. Again this reduction is therefore first
class. Two other consistent reductions ofL are of the form L5L>0 with
J(1)(X)52[L>0, X<21]>01V([L>0, X<21]) or L5L<0, in which case
J(1)(X)5[L<0, X>21]<211V([L<0, X>21]). The relevant explicit form of the Poisson brack-
ets can be obtained in each case from~5.9! after suitably setting to zero the corresponding fields
ui and its dualsxi .

Written in this basis, the formula~5.13! exhibits a nested sequence of subalgebrasN51,2,...,
spanned by$un1N1k , k50,1,2,...%. In the continuum limitq→1 these contract to the nested set
truncations of the centerlessW11` algebra known asW2N1` .

18

For J~2! we have in turn

Ji j
~2!52(

k50

i21

(
l50

k F l2k21
l G

q

q~ l21!~k11!uj1k2 l]q
l T2kui2k21

22(
k50

i21

(
l50

j1k

(
m50

i2k21 F j2n21
l G

q
F n2m
i2k2m21G

q

3q~ l21!~ l2 j1n11!1~ i1 l2k2m22!~ i2k2n21!um]q
i1 l2k2m21Tj1k2 i2 l11uj1k2 l

12(
k50

i

(
l50

k F l2k21
l G

q

q~ l21!~k11!~q21!xuj1k2 l]q
l T2kui2k

22(
k50

i

(
l50

j1k

(
m50

i2k F j2n21
l G

q
F n2m
i2k2mG

q

q~ l21!~ l2 j1n11!1~ i1 l2k2m21!~ i2k2n!

3~q21!xum]q
i1 l2k2mTj1k2 i2 luj1k2 l2~12q21!xuiuj

1 (
k50

i

(
l50

j F j2n21
l G

q
Fn2k
i2k G

q

q~ l21!~ l2 j1n11!1~ i1 l2k21!~ i2n!~q21!xuk]q
i1 l2kTj2 i2 luj2 l

1 (
k50

i21

(
l50

j F j2n21
l G

q
F n2k
i2k21G

q

q~ l21!~ l2 j1n11!1~ i1 l2k21!~ i2n21!~qn2 i1121!

3uk]q
i1 l2k21Tj2 i2 l11uj2 l1 (

k50

i Fn2k
i2k G

q

q~ i2k!~ i2n!~12q21!uk]q
i2kTn2 ixuj

2 (
k50

j F j2n21
k G

q

q~k21!~k2 j1n11!~q21!xui]q
kTj2k2nuj2k . ~5.15!

This expression reduces in the limitq→1 to the one of theWKP algebra. Contrary toJ
(1),J(2)(X)

does not stabilize the fieldu0; i.e., from~5.10! we see that the highest order ofJ(2)(X) is the same
as that ofL. Therefore the constraintu051 is second class. The same discussion that was devel-
oped in theT basis holds heremutatis mutandi. We will refrain from giving the explicit form of
the reduced Poisson brackets, whose computation follows again the standard Dirac’s recipe.

A. Reductions. Where is q2Wn?

Let us consider here the very important reductions ofq-KP to q-KdV. The expressions in
~5.9! and ~5.10! are perfectly consistent when applied to purelyq-differential operators
L5u0]q

n1u1]q
n211•••1un . The related algebras are simply obtained by restricting the subindi-

ces of the fields appearing in~5.13!–~5.15! to take values in the rangei , jP[0, n], and neglecting
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all other fields. In a strict sense, these algebras should be considered as deformations ofGDn , the
second Gelfand–Dickey bracket over the phase space of Lax operators of the form
L5]n1u1]

n211•••1un . Hence we will name themq2GDn algebras.
An important point arises here: as compared withGDn , q2GDn contain an additional

generatoru0. In the limit q→1 this field decouples because limq→1 J0 j50, ; j and we may set
u051. One could argue that in order to construct a trueq-deformation ofGDn which involves
exactly n generators we should first reduceu050 via Dirac brackets. However, the projection
involved in the reductionis not a continuousstep and nothing guarantees that the resulting algebra
will still recover the desired limit whenq→1.

Let us give an example of this phenomenon by considering the simplest Lax operator
L5u0]q1u1 . The Poisson brackets foru0 andu1 generateq2GD1 , whose brackets are given by

J00
~2!5

q21

2q
u0~T2T21!zu0 ,

J01
~2!5

1

2q
u0~T2T21!u0 ,

~5.16!

J10
~2!5

1

2q
u0~qT2q21T21!u0 ,

J11
~2!5

1

2zq~q21!
u0~T2T21!u0 ,

which in the limitq→1 reproduce the free boson algebraGD1 afteru0 is set to 1, i.e.,J11
~2!→], and

J0i
(2)→0. However, if we insisted in reducingu051 before taking the limit, the Dirac formula gives
us a vanishing answer forJ̃11

~2! :

J̃11
~2!5J11

~2!2J10
~2!~J00

~2!!21J01
~2!

5u0
1

2q~q21! S 1z ~T2T21!2~qT2q21T21!
1

zDu050. ~5.17!

One cannot cure this result by multiplying the starting brackets by global factors of~q21!,
because the Dirac bracket is homogeneous under such rescalings. This vanishing result is also
independent of anyq-dependent redefinition of the fieldu0.

We expect that a similar discussion applies to the classicalWn algebras although we do not
have a general proof. These algebras arise as Hamiltonian reductions ofGDn where the generator
u1 is set to 0. The first generator,u2, closes a linear subalgebra which is none other than the
ubiquitous Virasoro algebra. It is in this sense thatWn algebras are sometimes defined as~non-
linear! extensions of the Virasoro algebra. A continuousq-deformation ofWn in n21 fields
u2 ,...,un would present the same problems that we have exposed above in the case ofGDn . The
naive procedure, of starting fromq2GDn and reducingu051 andu150, may spoil the continu-
ous correspondence withWn in the limit q→1. We feel this is an important point that deserves
further attention.

VI. ANALYTIC CONTINUATION

Notice that the expression for the algebraq 2 WKP
(n) as given in~5.15! admits analytic continu-

ation to complex values ofn5aPC. This happens in contrast to the first structure, given in~5.13!
and ~5.14!, wheren appears explicitly in the limits of summatories. The best way to understand
this is by implementing the analytic continuation right from the beginning. Actually the whole
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formalism is susceptible of such a continuation along the lines advocated in Refs. 18 and 24.
Henceq2WKP

~a! describes atwo-parameterfamily of nonlinearW`-type algebras.
There is an important technical question concerning the triviality of such deformation param-

eters, i.e., whether the algebras for different pairs~q,a! and~q8,a8! are isomorphic or not. At least
in the continuum caseq51 we know positively thata represents a nontrivial deformation
parameter.25

The second issue we intend to address in this concern is the possibility of connecting the
linear and quadratic structures by a suitable contraction of the parametera. In Ref. 18 the limit
a→0 was shown to yield an extension of the linear algebraW11` by means of the Khesin–
Kravchenko cocycle.26 This fact was also understood in Refs. 24 and 27 from a Poisson–Lie
group theoretical point of view.

In more concrete terms, let us introduce a second parameterb and defineL (a,b) P M]q

(a) such

that

L ~a,b!5b]q
a1(

j50

`

uj~z!]q
a21[b]q

a1L ~a!. ~6.1!

Correspondingly, the one-formsX will look as

X5(
j50

`

]q
j2a21Txj .

We will be interested in the following ‘‘scaling’’ limit in whicha tends to 0 andb to ` in such
a way thatab5c, a finite constant. It will be convenient to normalizeJ~2! in the following form:

JL~a,b!
~2!

~z!5
1

b
$L ~a,b!~XL~a,b!!>02~L ~a,b!X!>0L

~a,b!

1 1
2 L

~a,b!V~@L ~a,b!, X# !1 1
2 V~@L ~a,b!, X# !L ~a,b!%.

Plugging~6.1! in this expression we may first gather all the terms quadratic inb]q
a:

b„]q
a~X]q

a!>02~]q
aX!>0]q

a1 1
2]q

a~V@]q
a , X# !1 1

2V~@]q
a , X# !]q

a
….

Expanding]q
a511a log ]q1O~a2! the surviving terms in the desired limit yield

c@ log ]q , X>0#2c@ log ]q , X#>01cV~@ log ]q , X# !5c@ log ]q , X>0#<211cV~@ log ]q , X# !.

In the linear terms theb dependence cancels out and we obtain

@L ~0!, X>0#2@L ~0!, X#>01V~@L ~a!, X# !5@L ~0!, X>0#<211V~@L ~0!,tX# !.

In summary, the limiting Hamiltonian structure yields

J11`;q~X!5@c log ]q1L ~0!, X>0#<211V~@c log ]q1L ~0!, X# !. ~6.2!

Consistency ofJ(X) as a tangent map demands thatL be of the form

L5 log ]q1u01(
i51

`

ui]
2 i .

The expression log]q has to be understood as an outer automorphism of the Lie algebra of
q-pseudodifferential symbols. Its action can be defined and computed as a limit:
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@ log ]q , f ]q
p#5 lim

a→0

1

a
~]q

a f ]q
p]q

2a2 f ]q
p!

5 log q f8]q
p2 (

k>1

log q

~q21!
F21
k G

q

qkt2k~]q
k f !]q

p2k .

The notation in~6.2! intends to make explicit that this algebra is aq-deformation of the centrally
extendedW11` algebra. We will not write down explicitly the Poisson brackets here. They agree
with the ones given in~5.13! and~5.14! with n50 except for the central terms, which are the only
ones that require corrections proportional to logq.

VII. CONCLUSIONS AND OUTLOOK

The picture of an atlas ofW algebras is slowly emerging. In this landscape,W` algebras
provide natural landmarks and, among them, the algebraWKP is a cornerstone. In Ref. 28 this
algebra was shown to be related with a large amount of the known classicalW-type algebras by
continuous deformation or truncation. The main result of the present paper is that many of the
points in that atlas admit yet another deformation, parametrized byq. Of particular importance are
q2WKP

~a! , q2GDn , andq2W11`.
It has been amusing to observe how many structures that worked fine for the algebra of

pseudodifferential operators are robust enough to resist their implementation in the algebra of
q-deformed pseudodifferential operators, as well. It certainly points out that perhaps other well-
known results could be exported. To be more precise, we think about issues like the dressing
transformation, the embedding of the Lie algebra of differential operators intoWn ~Ref. 29!, or the
Kupershmidt–Wilson–Yu theorem.30 In fact, concerning this last important theorem, a straight-
forward implementation of the proof given in Ref. 31 for a quadratic structure of the form~3.3!
works fine in the case of an isotropic splitting. This requirement is only fulfilled in the present
work for the splitting s50 and hence there is aq-deformed version of the Kupershmidt–
Wilson–Yu theorem in this case. Fors561 we have not been able to establish a similar result. In
this respect we should mention that a proposal for aq-deformed Miura transformation has ap-
peared in Ref. 14. Its connection to some peculiar way to factorize the Lax operator has been
addressed in Ref. 15.

We should emphasize the existence of three consistent splittings~s50,61! for the algebra
CDOq . They all yield integrable Hamiltonian systems and thereafterW-type algebras. In Refs.
32 and 33 the m-KdV hierarchy was investigated in the scalar Lax formalism. It was recognized
that this system is related to a nonstandard splitting of the algebra of ordinaryCDO. Indeed
L5L>k1L,k yields consistent subalgebras fork50, 1, and 2. It would be interesting to find out
whether a possibleq-deformation of these nonstandard splittings could be related to the cases
s50 ands511 in this paper.

The connection of the KP hierarchy with the Toda lattice hierarchy is a subject of recent
interest which has received the attention of different groups.22,34,35We believe that our approach
is substantially different from these and closer, at least in spirit, to the lattice deformation of Ref.
36. We expect that the powerful techniques that have been used in this paper can be implemented
also in the context of the Calogero–Sutherland model, especially in the formulation that makes use
of the exchange operators.37
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A calculus for SU(3) leading to an algebraic formula
for the Clebsch–Gordan coefficients

J. S. Prakasha) and H. S. Sharatchandra
The Institute of Mathematical Sciences, Madras-600 113, India

~Received 10 December 1993; accepted for publication 5 June 1996!

We develop a simple computational tool for SU~3! analogous to Bargmann’s cal-
culus for SU~2!. Crucial new inputs are~i! explicit representation of the Gelfand–
Zetlin basis in terms of polynomials in four variables and positive or negative
integral powers of a fifth variable,~ii ! an auxiliary Gaussian measure with respect
to which the Gelfand–Zetlin states are orthogonal but not normalized,~iii ! simple
generating functions for generating all basis states and also all invariants. As an
illustration of our techniques, an algebraic formula for the Clebsch–Gordan coef-
ficients is obtained for the first time. This involves only Gaussian integrations. Thus
SU~3! is made as accessible for computations as SU~2! is. © 1996 American
Institute of Physics.@S0022-2488~96!04309-5#

I. INTRODUCTION

Compact Lie groups have been extensively studied from different viewpoints.1–12 In spite of
this, there are gaps in our understanding which are keenly felt in specific applications. This has
mostly to do with the absence of a viable scheme of general computations. For example, there is
no algebraic formula for the Clebsch–Gordan coefficients of even the SU~3! group, despite ex-
tensive work by a generation of mathematical physicists. This is in contrast to the SU~2! group,
where it seems that everything can be computed in more than one way. Somehow, every technique
that works for SU~2! does not appear to have a simple generalization for other groups.

In this paper we develop techniques which provide a simple computation tool for SU~3!. Our
aim is to highlight the flexibility available for computations of various objects of interest in
representation theory. In particular we obtain a closed formula for the Clebsch–Gordan coeffi-
cients of SU~3!. With a couple of new inputs it might be possible to use our techniques for other
groups also. We have borrowed ideas heavily from many earlier workers. We have made some
conceptual and technical advances which together have enabled us to provide a simple tool.

We now give a summary of the earlier works, with specific reference to SU~3!. An excellent
summary of the situation up to 1971 is contained in the Appendix of the review by Smorodonskii
and Shelepin.13 Our summary is by no means complete and accurate.

In the SU~2!13,14 case there are broadly three computational tools:~a! an infinitesimal ap-
proach;~b! a polynomial basis and generating invariants; and~c! use of the relationship with the
symmetric group. Within each approach there have been many different ways13,14 of deriving
formulas for the Clebsch–Gordan coefficients. Almost every one of these variations has been tried
for SU~3!, but each has led to obstacles.

A major obstacle encountered in any approach is the outer multiplicity problem. In the de-
composition into irreducible representations~IRs! of a Kronecker product of two IRs of SU(n),
n.3, a given IR may appear more than once. These repeating IRs cannot be distinguished by the
matrix-elements of the generators. We need to understand how the repeating IRs may be distin-
guished, labeled in a convenient and canonical way, and handled. Extensive efforts have been put
into this problem. At least in the SU~3! case, the problem has been essentially resolved by many
authors using diverse techniques and often without the knowledge of previous works. New Ca-
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simirs ~‘‘Chiral Casimirs’’! which distinguish between repeating IRs have been constructed.15–17

Biedenharn and his collaborators have obtained a ‘‘canonical resolution’’ of the multiplicity
problem.18,19 An explicit formula for multiplicity has been obtained by Coleman20 by analyzing
the Littlewood–Richardson rule; by Jasselette21,22 and Resnikoff23 by applying the theory of
invariants; and by O’Reilly24 by a detailed and careful analysis of the Kronecker product. Anish-
etty et al.25 recently reinterpreted these results to give the most explicit formula, analogous to the
triangle rule for the addition of angular momenta in SU~2!. The advantage of this formula is that
the IRs in the Kronecker product are labeled byfree integers which are subject only to additive
constraints by the two IRs one started with. This therefore provides a ‘‘natural labeling’’ of the
repeating IRs. Gadiyar and Sharatchandra26 have recently solved the multiplicity problem for
SU(n) for any n. This is done by obtaining an explicit algebraic solution of the Littlewood–
Richardson rule in terms of free integers.

In the infinitesimal approach to SU~2!, the Clebsch–Gordan coefficients are computed as
follows. A recursion relation is obtained by considering the action of the Lie algebra on the direct
product space. This does not work as it does for SU~3! and other groups. The Lie algebra does not
provide a large enough number of recursion relations to be able to compute all Clebsch–Gordan
coefficients. The reason is the multiplicity problem. Biedenharn and collaborators27,28 have em-
phasized the need to define a basic set of irreducible tensor operators. The set they construct
provides a ‘‘canonical resolution’’ of the multiplicity problem. For a review see Refs. 19, 29, and
30. Their ‘‘pattern calculus’’ provides a framework for computing the Clebsch–Gordan coeffi-
cients. There has been extensive formal work in this direction. It has led to significant concepts
such as a global algebraic formulation of SU~3! tensor operator structure27 and the denominator
functions28 which have wider ramifications.31–35 In addition, this approach has been very useful
for practical algorithms36–38 and symbolic manipulation programs.39 However the approach has
not ~yet!! led to an algebraic formula for the Clebsch–Gordan coefficients of SU~3!.

The starting point of the second approach is the construction of a convenientmodel space, i.e.,
a concrete realization of~say, on a function space! the basis of every irreducible unitary repre-
sentation of the group. In the case of SU~2!, the simplest realization of the basis is as polynomials
in two complex variables. This was known to Weyl8 and was used by van der Waerden,40

Cartan,41 and Kramers.42,43It is related to the spinor representation of SO~3!. Schwinger’s44 boson
calculus is also related to this. This approach reached the peak in the work of Bargmann54,42where
all computations in SU~2! are reduced to evaluation of Gaussian integrals. The computation of
Clebsch–Gordan coefficients amounts to the construction of invariant polynomials. We will refer
to this package of tools as the Bargmann calculus. We give a constructive analysis of this calculus
in Sec. II. Though there are other model spaces for SU~2!, e.g., the spherical harmonics, none
provide as simple a computational tool.

There has been extensive work to generalize this second approach to other groups. Many
model spaces have been constructed. Realization using polynomials15,45,2,21,23,46,47 boson
calculus33,48,34 harmonic functions, i.e., functions on coset spaces.55,49,50 Gelfand and
collaborators45 have obtained a differential equation which yields the measure with respect to
which the Gelfand–Zetlin basis states are orthonormal. Jasselette,21,22Resnikoff,23 and Karasev46

have constructed invariant polynomials from which the Clebsch–Gordan coefficients may be
obtained in principle. Resnikoff23 made progress in using a Gaussian measure to extract the
Clebsch–Gordan coefficients.

In spite of all this work, the situation is not comparable to the SU~2! case. Some of the
coefficients23,22,46 in the formula for the Clebsch–Gordan coefficients cannot be explicitly com-
puted. The stumbling blocks in this approach which make it so much harder to handle SU~3! are
the following. The realization of the basis functions in terms of polynomials is much more
complicated. In fact all earlier realizations15,47 are analogous to the harmonic polynomials~i.e.,
those which are annihilated by the Laplacian operators! obtained from the defining representation
of SO~3! rather than to the monomials obtained from the spinor representation. Explicit construc-
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tion of such basis vectors15,48 and working with them is not easy. Moreover the measure with
respect to which the basis is orthonormal is not known in a closed form.45 Even were it known
explicitly, the hope of computing with it appears remote. Invariant polynomials in the space of
three IRs can be easily built.21,23,46However the invariant polynomial consistent with the three
given IRs is not unique in general. The coefficients have to be fixed by demanding that they be
expandable in terms of the constrained polynomials representing the basis vectors. Even this does
not fix the invariant polynomial completely. This is a consequence of the multiplicity problem and
requires a choice of basis to be made in the space of repeating IRs. After all this, there is no easy
way of extracting the Clebsch–Gordan coeffients.15,21–23,46

In this paper we show how these stumbling blocks may all be overcome. We develop a
calculus which is almost as simple as Bargmann’s calculus. All computations are effectively
reduced to Gaussian integrations.

The first simplification we have achieved is in the explicit realization51 of the Gelfand–Zetlin
basis vectors, free of constraints. We realized this in Sec. III. Our realization uses polynomials in
four complex variables and positive or negative integral powers of a fifth variable. It is related to
the functions on the conewW •zW50 wherezW andwW each are triplets of complex variables.2,47 We
choose a specific parametrization of the cone~i.e., eliminatingw3! and explicitly construct a
Gelfand–Zetlin basis for the functions on the space. With our parametrization, we are using all
polynomials and not just a subset as in earlier works.

Our realization is not as simple as the monomial basis for SU~2!. However, in Sec. IV we use
a generating function which generates all the~unnormalized! basis functions of every IR. This
generating function is as simple as the ‘‘principal vectors’’ of Bargmann’s calculus.52,53

At this stage of our formulation the normalizations of our basis vectors are not known. The
normalization is to be determined by requiring that the representation matrix for each IR be
unitary. It is always a headache to compute the normalization.15,48 The great advantage of Barg-
mann’s calculus is the Gaussian measure which permits explicit and easy computations. It is
fortuitous that in the SU~2! case the measure with respect to which the Gelfand–Zetlin states are
orthonormal is so simple. In order to retain this computability, we construct an auxiliary Gaussian
measure with respect to which the Gelfand–Zetlin basis vectors are orthogonal but are not auto-
matically normalized~Sec. V!. In fact we use this measure to compute the normalization itself by
requiring that the representation matrix in each IR be unitary~Sec. VI!. This way we are killing
two birds with one stone: To start with, the normalization and the measure are both unknown. A
simple auxiliary measure is constructed and used to compute the normalization itself. The basis we
use also leads to a simplification in the form of invariants in the direct product space of three IRs
~Sec. VIII!. This is a consequence of using the conewW •zW50. The invariant polynomial corre-
sponding to a choice of a repeating IR is now uniquely known and there are no unknown coeffi-
cients to be fixed separately~Sec. VIII!. Therefore the Clebsch–Gordan coefficients~Sec. VII! can
be obtained by simply expanding this polynomial in the basis vectors of each IR. We are assured
that such an expansion exists because our basis spans all polynomials in contrast to the constrained
polynomials of the earlier works.

In the SU~2! case, the Clebsch–Gordan coefficients are simply obtained by reading off the
coefficients of the right monomial in the invariant polynomial. But our basis is more complicated.
In order to obtain the coefficients in the expansion, we again use our auxiliary measure. We
introduce a generating function for the invariant polynomials themselves~Sec. IX!. This way all
Clebsch–Gordan coefficients are being computed in one shot. Moreover, it is easier to do these
computations than with each invariant polynomial individually. The Gaussian measure is used to
find the inner product of the generating function for the basis vectors of the three IRs with the
generating function for the invariant polynomials~Sec. X!. There are terms in the exponent which
areapparentlycubic in this integration—a consequence of the ‘‘multiplicity problem.’’ Remark-
ably however, because of the specific measure we have chosen, the integrals can all be explicitly
computed.
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II. AN ANALYSIS OF BARGMANN’S TECHNIQUE FOR SU(2)

Bargmann54 used an axiomatic approach in his analysis. This presumes many results known
from other methods. In this section we give a constructive analysis of Bargmann’s techniques for
SU~2!. This will set the stage for our techniques for SU~3!, making it clear as to where new ideas
are required. SU~2! is the group of simple unitary 232 matrices. Its action onC 2, the two-
dimensional complex Euclidean space, is given by

S z1z2D→US z1z2D ~1!

whereUPSU~2!. The doublet of complex numbers (z1 ,z2) transforms as the irreducible repre-
sentation~IR! 2 of SU~2!. In particular,z1 represents the spin ‘‘up’’ state andz2, the spin ‘‘down’’
state. States of an arbitrarily high spin can be obtained from a large enough collection of spin 1/2
particles. In particular, states of spinJ can be obtained from a system of 2J number of identical
spin 1/2 particles, i.e., from 2J copies ofC 2. ~The 2J boxes in the row of the Young table
represent spinJ!. This corresponds to a realization of the IRs in the space of polynomials inz1 and
z2: the monomial

z1
mz2

n ~2!

describes, up to a normalization, the basis states

uJM&, 2J5m1n, 2M5m2n. ~3!

We notice that asm andn range independently over all non-negative integers, every basis
stateuJM& of every IR is realized uniquely. This means the following.

Consider the spaceF 2 whose elements are, roughly speaking, polynomials inz1 andz2. In
this space, every IR is realized, and moreover each IR is realized once only. Thus it is a model
space~see Sec. I for the definition!. In addition, the standard basis states@Eq. ~3!# are simply
realized as monomials. Thus this space is very convenient for calculations. There are further
surprises to follow. The action of the group on any state is obtained in this model by transforming
z1 and z2 in Eq. ~2! as given by Eq.~1!. To express this action on an arbitrary state, it is very
convenient to work with the generating function,

Z~a,b!5exp~az11bz2!. ~4!

Simply by extracting the coefficient ofambn, an unnormalized basis state@Eq. ~3!# can be
extracted. This way, we are handling all states of all IRs in one shot. Moreover, the action of the
group on the generating function is very simple:

U:Z~a,b!→Z~~a,b!U!. ~5!

The normalizations of the basis states~within an IR! are obtained by demanding the unitarity of
the representation matrices on the space. It is sufficient to use group elements close to the identity
for this purpose. An SU~2! matrix close to identity may be represented as follows:

U.11 i ~e3s31e1s11e2s2!, ~6!

where

s35S 1 0

0 21D ; s15S 0 1

0 0D ; s25S 0 0

1 0D ~7!
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~note that we are not using conventional normalization for the generators!.
For unitarity,U†U51, we require

e1* 5e2 , e3*5e3 ~8!

$detU51 is satisfied because the matrices@Eq. ~7!# are traceless%. Using Eq.~6! in Eq. ~5!, we get
the following representation for the generators on our model space,

p05a
]

]a
2b

]

]b
; p25a

]

]b
; p15b

]

]a
, ~9!

where the generators correspond tos3, s1 , ands2 , respectively. The notation we are using is
motivated by the isospin triplet of pions. The requirement of unitarity of the representation matrix
translates into the following condition on the generators:

~p0!*5p0, ~p1!*5p2, ~10!

where the asterisk stands for the adjoint. We write formally,

Z~a,b!5(
m,n

ambnum,n), ~11!

where

um,n)5
z1
mz2

n

m!n!
~12!

represent unnormalized basis states. The normalized basis

uJ,M &[um,n&5N21/2~m,n!umn), 2J5m1n 2M5m2n ~13!

are to be obtained by requiring,

^m8n8uT* umn&5^mnuTum8n8&* ~14!

for every generatorT. Let

Tumn)5 (
m8n8

T~mn;m8n8!um8n8). ~15!

This action can be easily computed using the generating function@Eq. ~4!# and the representation
@Eq. ~9!# of the generators. In terms of normalized states this means,

N1/2~m,n!Tumn&5 (
m8n8

T~mn;m8n8!N1/2~m8,n8!um8n8&. ~16!

Using orthonormality,

^m8n8umn&5dm8mdn8n , ~17!

we get

^m8n8uTumn&5T~mn;m8n8!
N1/2~m8,n8!

N1/2~m,n!
. ~18!
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DefineT* (mn;m8n8) for the generatorT* , analogously to Eq.~15!. Condition~14! gives

U N~m,n!

N~m8n8!
U5 T~mn;m8n8!

T* ~m8n8;mn!
. ~19!

This way, the relative normalizations of basis states within an IR may be computed. For the
present case,

p0( ambnumn)5( ~m2n!ambnumn),

p2( ambnumn)5( am11bn21numn), ~20!

p1( ambnumn)5( am21bn11mumn).

Comparing like powers ofa andb, we get,

p0~mn;mn!5m2n,

p2~mn;m21,n11!5~n11!, ~21!

p1~mn;m11,n21!5~m11!.

Other matrix elements are zero.p0 in Eq. ~19! does not lead to any constraints on the normaliza-
tions. This is because it is diagonal in the chosen basis. However, using Eq.~19! for p6, we get,

U N~m,n!

N~m21,n11!
U5 n11

m
. ~22!

We choose the solution,

N~m,n!5
1

m!n!
. ~23!

The solution is determined only up to~i! any function of the summ1n52J and~ii ! an arbitrary
phase factor:~i! means that the relative normalization of states in different IRs is not fixed by our
criterion. This is to be expected because unitarity of the representation matrix constrains relative
normalizations of the basis states only within each IR. For any phase, unitarity is assured, and
corresponds to a choice of the phases of the basis states.

Our orthonormalized basis states are represented by

umn&5
z1
mz2

m

Am!An!
. ~24!

It would be easy to guess the measure with respect to which this basis is orthonormal. Define
the inner product:

~ f ,g!5E d2z1
p

d2z2
p

exp~2 z̄1z12 z̄2z2! f ~z1 ,z2!g~z1 ,z2! ~25!
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for functions inF 2. The states@Eq. ~24!# are orthonormal with respect to this measure. Note that
the measure is invariant under the action of the group Eq.~1!. We are led to a simple, Gaussian
measure. As a consequence, it is easy to obtain a general formula for the Clebsch–Gordan coef-
ficients. We now review this method.

Consider the direct product of two IRs,J1 andJ2. This representation of the group is reducible
in general. Consider its decomposition into various irreducible components:

u~J1J2!J3M3&5 (
M1 ,M2

CM1M2M3

J1J2J3 uJ1M1&uJ2M2&. ~26!

The coefficients in the expansion are the Clebsch–Gordan coefficients. It is more convenient and
symmetric to write this as follows. Given two IRs,J1 andJ2, it is possible to form a nontrivial
combination invariant under the group, only ifJ15J2 and in this case,

( ~21!~J2M !uJ,M &uJ,2M &5 invariant. ~27!

As a consequence Eq.~26! may be reinterpreted as follows. Given three IRs,J1, J2 andJ3, try and
form a ~nontrivial! invariant combination

(
M1 ,M2 ,M3

S J1 J2 J3

M1 M2 M3
D uJ1M1&uJ2M2&uJ3M3&. ~28!

The coefficients are the 32j symbols.
Now represent the three IRs by homogeneous polynomials of degrees 2J1,2J2,2J3 in variables

(z1
1 ,z2

1), (z1
2 ,z2

2), and (z1
3 ,z2

3), respectively. Then Eq.~28! corresponds to forming an invariant
combination out of such polynomials. It is easy to do this. Invariant theory implies that any
invariant polynomial in the six variables is a polynomial in the three independent invariants,

~z1
1z2

22z2
1z1

2!, ~z1
2z2

32z2
2z1

3!, ~z1
3z2

12z2
3z1

1!. ~29!

In order to satisfy our homogeneity requirements, we need non-negative integersN1, N2 andN3 in

~z1
1z2

22z2
1z1

2!N3~z1
2z2

32z2
2z1

3!N1~z1
3z2

12z2
3z1

1!N2 ~30!

such that

2J15N21N3 , 2J25N31N1 , 2J35N11N2 . ~31!

For givenJ1, J2 andJ3, the only solution is

N15J21J32J1 ,

N25J31J12J2 , ~32!

N35J11J22J3

if the right-hand sides are all non-negative. Thus ifJ1, J2, andJ3 satisfy the triangle condition,
there is a unique invariant. Otherwise there is no nontrivial invariant. Thus the 32j symbols are
obtained~up to an overall normalization depending only on the total spinsJ1, J2, and J3! by
simply extracting in Eq.~30! the coefficients of the monomials@Eq. ~24!# in the three sets of
variables.
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To obtain a formula for the 32j symbols, we have to apply the binomial theorem, and extract
the relevant powers of the monomials. We get~up to a normalization!,

(
pa ,qa

)
a51

3
~21!qa

pa!qa!
~33!

where the sum is over all nonnegative integerspa ,qa satisfying the following matrix equation:

S N1 N2 N3

m1 m2 m3

n1 n2 n3
D 5S q11p1 q21p2 q31p3

q21p3 q31p1 q11p2

q31p2 q11p3 q21p1
D . ~34!

III. A MODEL SPACE FOR SU(3)

Our first task is to construct a convenient model space for SU~3! ~model space has been
defined in Sec. I!. It is not possible to get a model space as simple as the one for SU~2!. But, we
have constructed47 a model space which is simple enough for obtaining general formulas. We
provide anab initio review of this construction in this section.

In the case of SU~2! all IRs could be constructed from the defining representation 2I . This is no
longer true for other semisimple groups. Consider a triplet (z1 ,z1 ,z3) of complex numbers trans-
forming as the defining representation 3I of SU~3!. By considering polynomials in these complex
variables we can only build totally symmetric tensors of SU~3!. Such IRs are represented by
Young’s table with just our row. A general Young’s table has two rows, some columns having two
boxes and the rest having one box. In order to build a general IR, observe that an IR with one
column of two rows corresponds to the3* of SU~3!. Therefore a general IR can be built using a
direct product of3* s and 3Is. Further, the tensors corresponding to the Young’s table are sym-
metric in indices along each row. This means that it suffices to consider direct products which are
totally symmetric in the3* s and in the 3Is. Therefore, we may build a general IR in the space of
polynomials in two triplets of complex numbers (z1 ,z2 ,z3) and (w1 ,w2 ,w3) transforming as 3I
and 3I* of SU~3!, respectively.~All this is a heuristic explanation of a result proven in Refs. 1 and
2!.

IRs of SU~3! are conveniently labeled by two arbitrary non-negative integers (M ,N) which
stand for the number of columns with one box and two boxes, respectively. Such an IR can be
realized using polynomials of degreeM in the z’s andN in thew’s, i.e., polynomials built from
the monomials,

z1
m1z2

m2z3
m3w1

n1w2
n2w3

n3 ~35!

with

m11m21m35M , n11n21n35N. ~36!

However, this space contains some other IRs (M 8,N8) with M 8,M andN8,N. The reason is
that it is possible to form an SU~3! invariantwW •zW. This is again a major difference from the SU~2!
case. A simple way to remove the unwanted IRs is to impose the constraint,

wW •zW50, ~37!

where

wW •zW5w1z11w2z21w3z3 ~38!
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~i.e., we are constraining our variables to a cone inC6!. The IR(M ,N) is now uniquely realized in
the subspace with constraints@Eq. ~36!#.

We are forced to contend with the constraint@Eq. ~37!# in order to get a model space. We
obtain an explicit and simple enough basis by simply eliminatingw3 ~say!, in favor of the other
five variables

w352
1

z3
~w1z11w2z2!. ~39!

Thus our space is spanned by the monomials~allowing for negative powers ofz3!,

z1
m1z2

m2wz
n1w2

n2~w1z11w2z2!
n3z3

m32n3. ~40!

In order to get an explicit realization of the Gelfand–Zetlin basis in this space, we proceed as
follows. Note that (z1 ,z2) transforms as a 2I and (w1 ,w2) as a 2I* ~which is equivalent to 2I! under
the isospin SU~2! subgroup of SU~3!. The combination (w1z11w2z2) in Eq. ~3.6! is an SU~2!
singlet built of these two doublets. This suggests that it is useful to use the coupled basis for the
isospin group. This is done as follows. The monomialsz1

m1z2
m2 andw1

n1w2
n2 with

m11m252I 8, n11n252I 9 ~41!

span the IRs of~iso!spin I 8 and I 9, respectively. Therefore the direct product of these two spaces
is a direct sum of spaces with isospinI 81I 9,I 81I 921,...,uI 82I 9u, each isospin appearing just
once. This decomposition can be performed explicitly by the following trick: Introduce an~exter-
nal! doublet (p,q) transforming as a 2I* of SU~2!. Then the following combination is invariant
under SU~2!:

~pz11qz2!
R~pw22qw1!

S~w1z11w2z2!
T. ~42!

Now,

pPqQ

AP!AQ!
;UI5 P1Q

2
, I 35

2P1Q

2 L ~43!

under SU~2! transformations. On using Eq.~1! this means that the coefficient of the monomial
pPqQ corresponds to the state,

u~ I 8I 9!I I 3& ~44!

of the coupled basis, where

R1S5P1Q52I , S1T5n11n252I 9,
~45!

T1R5m11m252I 8, P2Q52I 3 .

This way, we are able to explicitly construct basis vectors of the coupled basis. By allowing for all
non-negative integer values ofP, Q, R, S, andT subject to the constraints of Eq.~45! we are
simply making a change of basis from the basis@Eq. ~41!#. We make this change of basis in the
space spanned by~Eq. 40! ~further constrained by Eq.~41!. We get an equivalent basis~as
coefficients ofpPqQ! in,

~pz11qz2!
R~pw22qw1!

S~w1z11w2z2!
T1n3z3

m32n3. ~46!
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In terms of the new parameters we have

R1T1m35M , S1T1n35N. ~47!

We now notice that distinct values ofm3, n3, andT such thatT1n3 andT1m3 have the same
values correspond to the same basis vector on the conewW •zW50. This is the way that the repeating
IRs in C6 spanned by (wW ,zW) get identified on the five-~complex! dimensional conewW •zW50.
Redefine

T1m35U, T1n35V, ~48!

whereU andV are non-negative integers. In terms of these variables, Eq.~47! is

R1U5M , S1V5N. ~49!

Also, from Eq.~44!

P1Q5R1S. ~50!

We started with freely ranging non-negative integersmi andni , subject only to the constraints
of Eq. ~36!. This translates to free non-negative integersP, Q, R, S, U, andV subject to the
constraints of Eqs.~49! and ~50!.

We have finally arrived at the following explicit and convenient realization of the~unnormal-
ized! Gelfand–Zetlin basis of an arbitrary IR of SU~3!: Extract the coefficients of various mono-
mials pPqQ in

~pz11qz2!
R~pw22qw1!

Sz3
Uw3

V , ~51!

wherew3 is given by Eq.~39!. We will denote the space spanned by these basis vectors by
S (M ,N).

In the quark model, the basis within each IR is labeled by the quantum numbersI ~total
isospin!, I 3 ~the third component of isospin!, andY ~the hypercharge! ~or equivalently strange-
ness!. These are related to our labels (PQRSUV) as follows:

2I5P1Q5R1S, 2I 35P2Q,

Y5 1
3~M2N!1V2U[ 2

3~N2M !2~S2R!. ~52!

Our labels are better because allowed quantum numbers within each IR (M ,N) can be read off
easily:R takes all values from 0 toM . S takes all values from 0 toN. For a givenR andS, Q
takes all values from 0 toR1S.

IV. THE GENERATING FUNCTION

Our representation@Eq. ~51!# of the basis vectors of the IRs of SU~3! is not as simple as the
monomial basis of Bargmann for SU~3!. We need to use specific polynomials. In spite of this it
has enough features of the Bargmann’s basis as to be useful for general calculations. We demon-
strate this in the following sections.

The first important feature of our basis is the following. By allowing for all possible non-
negative integral values for our labels (PQRSUV) subject to the constraint@Eq. ~50!#, the basis
for every IR is realized and moreover realized once only. Further there are homogeneity restric-
tions on thezW andwW variables. Even though we are forced to use polynomials instead of the
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monomials for the basis, the polynomials needed can be obtained as the coefficients of a monomial
pPqQ. As a consequence of all this a simple generating function can be used to easily and uniquely
generate all unnormalized basis states.

g~p,q,r ,s,u,v !5exp~r ~pz11qz2!1s~pw22qw1!1uz31vw3!. ~53!

The coefficient of themonomial,

pPqQrRsSuUvV, ~54!

generates theunnormalizedGelfand–Zetlin basis denoted byuP,Q,R,S,U,V). Thus,

g5 (
P,Q,R,S,U,V

pPqQrRsSuUvVuPQRSUV). ~55!

Note that the constraint@Eq. ~50!#, P1Q5R1S, is automatically satisfied in the Taylor expan-
sion of Eq.~53!. We refer to the variablesp, q, r , s, u, andv as the sources and collectively
denote them byj . Similarly, we refer to the labelsP,Q,R,S,U, andV as the quantum numbers
and collectively denote them byE. By using the generating function@Eq. ~53!# we have come
even closer to the Bargmann’s techniques for SU~2!.

In order to calculate the normalizations of our unnormalized basis vectors, we have to first
obtain ~as in Sec. II! the representation of the generators as differential operators onG . An
infinitesimal SU~3! matrix may be parametrized as follows:

U;11 i „e~p0!p01e~h!h1e~p1!p11e~p2!p2

1e~K1!K11e~K2!K21e~K0!K01e~K0!K0
…, ~56!

where the~unnormalized! generators are

p05S 1 0 0

0 21 0

0 0 0
D ; h5S 1 0 0

0 1 0

0 0 22
D ; p25S 0 1 0

0 0 0

0 0 0
D ,

p15S 0 0 0

1 0 0

0 0 0
D ; K25S 0 0 1

0 0 0

0 0 0
D ; K15S 0 0 0

0 0 0

1 0 0
D , ~57!

K05S 0 0 0

0 0 1

0 0 0
D ; K05S 0 0 0

0 0 0

0 1 0
D .

For unitarity, we have

e~p0!*5e~p0!; e~h!*5e~h!;
~58!

e~p1!*5e~p2!; e~K1!*5e~K2!; e~K0!*5e~K̄0!.

Under an SU~3! transformation,
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S z1z2
z3
D→US z1z2

z3
D ,

~w1 w2 w3!→~w1 w2 w3!U
1, ~59!

whereUPSU~3!. This transformation is true even whenw3 is eliminated in favor of the other
variables since the constraint@Eq. ~37!# is itself invariant under SU~3!. In order to obtain the
transformation ofg, it is convenient to write the exponent in Eq.~53! as follows:

~r p r q u!•S z1z2
z3
D 1~w1 w2 w3!•S sqsp

v
D , ~60!

where

r p5rp, r q5rq, sp5sp, sq52sq. ~61!

It is convenient to regardr p , r q , sp , andsq as independent variables and not related by Eq.~61!.
Only at the end of the calculations we may set the values@Eq. ~61!# and generate the required basis
vectors. We will refer to this operation as ‘‘going on shell.’’ Thus we define thegeneralized
generating function:

G ~r p ,r q ,u,sq ,sp ,v !5expS ~r p r q u!S z1z2
z3
D 1~w1 w2 w3!•S sqsp

v
D D . ~62!

Its transformation is

G ~r p ,r q ,u,sq ,sp ,v !→G S ~r p r q u!U,U†S sqsp
v
D D . ~63!

Substitute Eq.~56! and collect the coefficients ofe~p1!, etc., after using Eq.~58!.
We get the following representation of the generators:

p̂05r p
]

]r p
2r q

]

]r q
2sq

]

]sq
1sp

]

]sp
,

p̂25r p
]

]r q
2sp

]

]sq
, p̂15r q

]

]r p
2sq

]

]sp
,

K̂25r p
]

]u
2v

]

]sq
, K̂15u

]

]r p
2sq

]

]v
, ~64!

K̂05r q
]

]u
2v

]

]sp
, K̂05u

]

]r q
2sp

]

]v
,

ĥ5r p
]

]r p
1r q

]

]r q
22u

]

]u
2sp

]

]sp
2sq

]

]sq
12v

]

]v
.

For p̂0, p̂6, andĥ we may use Eq.~61! and get the following expressions:
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p̂05p
]

]p
2q

]

]q
, p̂25p

]

]q
,

~65!

p̂15q
]

]p
, ĥ5r

]

]r
2s

]

]s
22u

]

]u
12v

]

]v
.

However, in order to represent the other generators as differential operators, we need to regardr p ,
r q , sp andsq as independent variables. As a result we face the following problem. It is not easy
to calculate the matrix elements,

~P8Q8R8S8U8V8uTuPQRSUV! ~66!

of these generators, which are needed to evaluate the normalizations~see Sec. II!. Consider for
example the action ofK̂2 on g:

K̂2g5~rpz32vw1!g. ~67!

We need to reexpress the effect ofz3 or w1 multiplying a basis state@Eq. ~51!# as a linear
combination of such states. But this is not easy.

This is another stumbling block compared to the situation in SU~2!. We devise the technique
to overcome this problem in Sec. V.

V. AN AUXILIARY GAUSSIAN MEASURE

An important reason for the efficiency of Bargmann’s techniques for SU~2! is the Gaussian
measure, using calculations which can be performed explicitly and easily. It is obtained as the
measure with respect to which the Gelfand–Zetlin vectors form an orthonormal set and the
representation matrices are unitary. We have discussed this in Sec. II.

We have a model space using five complex variables (z1 ,z2 ,z3 ,w1 ,w2). The measure in this
space with respect to which properly normalized basis vectors form an orthonormal set exists, in
principle. Gelfandet al.45 have obtained this measure as the solution of a differential equation in
a related context. Unfortunately, this measure does not have the simplicity of the Gaussian mea-
sure for SU~2!. It appears that using it as a calculational tool to obtain general formulas is quite
remote. This is yet another stumbling block in extending the Bargmann techniques to SU~3!.

We evade this problem in the following way. We construct an auxiliary measure which is
amenable to computations by relaxing the condition that it gives correctnormalizationsof the
Gelfand–Zetlin states. We only require that the basis states do form anorthogonalset with respect
to the measure. This is in fact sufficient for calculations of formulas. The correct normalization of
the basis states~which gives a unitary representation! is itself computed using the same measure.

Our condition on the measure may be expressed in terms of the generating function as
follows. Define the inner product,

~g8,g!5E dm exp~r 8~p8z11q8z2!1s8~p8w22q8w1!1u8z31v8w3!

3exp~r ~pz11qz2!1s~pw22qw1!1~uz31vw3! ~68!

between generating functions for different sets of arguments.~The over line in the first exponential
means complex conjugation of the expression under it.! The integration is over the variables
(z1 ,z2 ,z3 ,w1 ,w2), w3 being expressed in terms of these other variables. We want this inner
product to be of the following type:

~g8,g!5F~ p̄8p,q̄8q, r̄ 8r ,s̄ 8s,ū 8u,v̄ 8v !, ~69!
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where the functionF has a Taylor expansion in its arguments about the origin with every coef-
ficient positive definite. Such a form implies that the inner product is zero whenever the powers of
the variables (p,q,r ,s,u,v) do not match the powers of the corresponding variables
(p8,q8,r 8,s8,u8,v8), i.e., Gelfand–Zetlin basis vectors are mutually orthogonal. Moreover the
square of the norm given by the corresponding coefficient in the Taylor expansion is positive
definite.

Our measure is closely related to Bargmann’s. We have two doublets (z1 ,z2) and (w1 ,w2) of
SU~2! and the coupled basis built using them. We know that coupled basis is obtained by a unitary
transformation of the direct product basis. This means that Bargmann’s measure for these two
doublets ensures orthogonality of our SU~3! basis vectors in so far as the (z1 ,z2 ,w1 ,w2) variables
are concerned. To be explicit we consider,

F5E d2z1
p

d2z2
p

d2w1

p

d2w2

p
exp~2 z̄1z12 z̄2z22w̄1w12w̄2w2!

3expS r 8~p8z11q8z2!1s8~p8w22q8w1!2
v8

z3
~z1w11z2w2!1u8z3D

3expS r ~pz11qz2!1s~pw22qw1!2
v
z3

~z1w11z2w2!1uz3D . ~70!

This can be evaluated easily. Write the exponent as

2~ z̄1 w1!S 1 S v8

z3
D

v
z3

1
D S z1

w̄1

D 2~ z̄2 w2!S 1 S v8

z3
D

v
z3

1
D S z2

w̄2

D 1„rp2~s8q8!…S z1

w̄1

D
1~ z̄1 w1!S r 8p8

2sqD1„rq ~s8p8!…S z2w̄2
D1~ z̄2 w2!S ~r 8q8!

sp D1~u8z3!1uz3 . ~71!

Use the formula,

)
i51

n E d2zi
p

exp~2 z̄ TXz1ATz1 z̄ TB̄!5~detX!21 exp~ATX21B̄! ~72!

which is valid whenever the Hermitian part ofX is positive definite. Herez is the column vector
of the complex variables (z1 ,z2 ,...,zn). We get,

F5S 12
v̄8v
uz3u2

D 22

expF S ~12 v̄8v/uz3u2!21X~rp,2 s̄8q̄8!S 1 2 v̄8/ z̄3

2v/z3 1 D S r̄ 8p̄8
2sqD

1~rq8,s̄8p̄8!S 1 2 v̄8/ z̄3

2v/x3 1 D S r̄ 8q̄8
sp D C1ū8z̄31uz3G . ~73!

Thus,
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F5S 12
v̄8v
uz3u2

D 22

expS ~ r̄ 8r1 s̄ 8s!~ p̄8p1q̄8q!

~12 v̄8v/uz3u2!
1ū8z̄31uz3D . ~74!

Note that this has the features@Eq. ~69!# we required for the inner product, so far as the variables
p, q, r , s, andv are concerned. This was to be expected, because the coupled basis constructed out
of two doublets (z1 z2) and (w1 w2) is an orthogonal set with respect to Bargmann’s measure.

We have to now propose a workable measure for integration over thez3 variable. Note that
uz3u

2 appears in the denominators in Eq.~74!. This suggests that it is best to set

z35e iu ~75!

so thatuz3u
251. This means that our realization of the basis vectors is in terms of four complex

variablesz1 ,z2 ,w1 ,w2 , and a phase variableeiu. Setting the constraint@Eq: ~75!# is no problem,
because we have used only the variablez3 and notz̄3 in our basis vectors.~See the Appendix for
a more detailed discussion.! Our requirement on the measure for theu variable is that~i! it is
simple and~ii ! we get a function of only the combinationū8u. From Eq.~74! we see that it is
sufficient to average overu. Thus the measure we use is

~g8,g!5E
2p

1p d0

2p E d2z1
p

d2z2
p

d2w1

p

d2w2

p
ḡ8g. ~76!

The inner product between two generating functions is

~g8,g!5~12 v̄8v !22S (
n50

`
~ ū8u!n

~n! !2 D exp@~12 v̄8v !21~ p̄8p1q̄8q!~ r̄ 8r1 s̄ 8s!#. ~77!

Notice that the coefficients of the Taylor expansion are all positive definite. This is a satisfactory
inner product which we may use do to computations explicitly.

For our calculations, we need the inner product between any two generalized generating
functions@Eq. ~62!#. In place of Eq.~74!, we get

~G 8,G !5E du

2p
~12 v̄8v !22 expF ~12 v̄8v !21~r p s̄q8!S 1 2 v̄8eiu

2ve2 iu 1 D S r̄ p8sq D
1S ~r q s̄ p8!S 1 2 v̄8e1 iu

2ve2 iu 1 D S r̄ q8sp D 1ū8e2 iu1ueiu. ~78!

Therefore,

~G 8,G !5~12 v̄8v !22 exp@~12 v̄8v !21~ r̄ p8r p1 r̄ q8r q1 s̄ p8sp1 s̄ q8sq!#

3F (
n50

`
1

~n! !2 S ū82v
~ r̄ p8s̄ q81 r̄ q8s̄ p8!

~12 v̄8v ! D nS u2 v̄8
~r psq1r qsp!

~12 v̄8v ! D nG . ~79!

VI. CALCULATION OF THE NORMALIZATIONS

We now compute the normalization of our representation@Eq. ~51!# of the ~unnormalized!
basis vectors. As discussed in Sec. II, this is obtained from the requirement that the representation
matrix be unitary in each IR. Our technique differs from the one discussed in Sec. II in one crucial
respect.

Let uE! denote any unnormalized basis vector defined by the expansion@Eq. ~55!#. E stands
for the set of quantum numbers used in the basis. For any generatorT let
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TuE)5(
E8

T~E,E8!uE8). ~80!

We want to computeN(E) defined by

uE)5N1/2~E!uE&, ~81!

whereuE& denotes any Gelfand–Zetlin normalized basis vector:

^E8uE&5dE8E . ~82!

The representation matrix is unitary when the basis vectorsuE& are used.N(E) is obtained by the
requirement,

^E8uTuE&5^EuT* uE8&* ~83!

for every generatorT and for any normalized basis vectorsuE& and uE8&. We have from Eq.~80!
and Eq.~81!,

N1/2~E!TuE&5(
E8

T~E,E8!N1/2~E8!uE8& ~84!

so that,

^E8uTuE&5T~E,E8!
N1/2~E8!

N1/2~E!
. ~85!

Therefore, Eq.~83! gives

U N~E!

N~E8!
U5 T~E,E8!

~T~E8,E!!*
. ~86!

This means we need to evaluateT(E,E8), defined in Eq.~80!. For this we use our ‘‘auxiliary’’
inner product given by Eq.~76!. We denote this inner product between two vectorsu1! and u2! by

~2i1! ~87!

to distinguish it from the ‘‘true’’ inner product given by Eq.~82!. The Gelfand–Zetlin normalized
basis vectorsuE& do form an orthogonal set but have a different norm with respect to the auxiliary
inner product. Therefore,

~E8iE!5dE8EM ~E!, ~88!

whereM (E) is different fromN(E) in general. Using Eq.~88! in Eq. ~80! we get

~E8i~TuE!!5T~E,E8!M ~E8!. ~89!

Therefore Eq.~86! gives

U N~E!

N~E8!
U5 ~E8iTuE!

~EiT* uE8!*
M ~E!

M ~E8!
. ~90!

Thus we can fix the normalization using an ‘‘auxiliary’’ inner product which allows explicit
computation, even though it is not the ‘‘true’’ inner product.
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M (P,Q,R,S,U,V) can be read off as the coefficient of the monomial:

~ p̄8p!P~ q̄8q!Q~ r̄ 8r !R~ s̄ 8s!S~ ū8u!U~ v̄8v !V

in Eq. ~77!.
We have

~g8,g!5S (
2I50

`
~ p̄8p1q̄8q!2I~ r̄ 8r1 s̄ 8s!2I

~2I !! ~12 v̄8v !2I12 D S (
V50

`
~ ū8u!U

~U! !2 D . ~91!

Using

~x1y!n5 (
m50

n

nCmx
myn2m ~92!

and

1

~12x!m11 5 (
n50

`

~n1m!Cnx
n ~93!

we get

M ~P,Q,R,S,U,V!5
~V12I11!!

P!Q!R!S! ~U! !2V! ~2I11!
. ~94!

We have used 2I5P1Q5R1S.
We now apply the formula of Eq.~90! for each of our generators@Eq. ~64!#. The generators

p̂0 and ĥ are diagonal in the chosen basis and therefore do not lead to any constraints on the
relative normalizations of the basis vectors. Considerp̂2 as given by Eq.~65!. We get

~g8,p̂2g!5p
]

]q
~g8,g!5pq̄8

~ r̄ 8r1 s̄ 8s!

~12 v̄8v !
~g8,g! ~95!

on using Eq.~77!. Extracting like powers of the monomials from both sides of Eq.~92!, we get

~P,Q11,R,S,U,V!ip̂2uP11,Q,R,S,U,V)5M3~P,Q,R,S,U,V! ~96!

as the only nonzero auxiliary matrix element ofp̂2. This is expected becausep̂2 only lowers the
I 3 value by 1@see~Eq. ~52!#. M3(P,Q,R,S,U,V) is listed in Table I. Similarly we get

~P11,Q,R,S,U,Vip̂1uP,Q11,R,S,U,V!5M3~P,Q,R,S,U,V!. ~97!

Thus, in the present case,

~P,Q11,R,S,U,Vip̂2uP11,Q,R,S,U,V!5~P11,Q,R,S,U,Vip̂1uP,Q11,R,S,U,V!
~98!

sinceM3(P,Q,R,S,U,V) is real. Therefore the auxiliary normalization, also gives the Gelfand–
Zetlin normalizations, is in this case:

UN~P11,Q,R,S,U,V!

N~P,Q11,R,S,U,V!
U5 M ~P11,Q,R,S,U,V!

M ~P,Q11,R,S,U,V!
. ~99!
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The reason for this matching is that for the SU~2! subgroup we are using just the Bargmann
measure. Using Table I we get,

UN~P11,Q,R,S,U,V!

N~P,Q11,R,S,U,V!
U5 Q11

P11
, ~100!

exactly as in the SU~2! case~Sec. II!. Thus the relative normalizations of basis vectors within an
isospin multiplet are determined and are the same as in the SU~2! case:

N~P,Q,R,S,U,V!;
1

P!Q!
. ~101!

The dependence on the total isospinP1Q5R1S as also on quantum numbers,R, S, U, andV
are not determined at this stage.

We now compute the relative normalizations implied byK̂6. To calculate,~g8,K̂2g! we use
the generalized partition function:

~g8,K̂2g!5S r p ]

]u
2v

]

]sq
D ~G 8,G !u, ~102!

where the vertical line at the end of this equation means that after applying a differential operator
on ~G 8,G !, we need to set the values@Eq. ~61!# for the sources. For instance,

~r psq1r qsp!u50; ~ r̄ p8s̄q81 r̄ q8s̄p8!u50. ~103!

TABLE I. Normalization constants.

M(P,Q,R,S,U,V) exp@~12v̄ 8v!21~p̄ 8p1q̄ 8q!~r̄ 8r1s̄8s!#

~12v̄ 8v!2 (
n

~ū 8u!n

~n!!2
~2I111V!!

P!Q!R!S!U!V!

1

U!~2I11!

M1(P,Q,R,S,U,V) exp@~12v̄ 8v!21~p̄ 8p1q̄ 8q!~r̄ 8r1s̄8s!#

~12v̄ 8v!3 (
n

~ū 8u!n

~n!!2
~2I121V!!

P!Q!R!S!U!V!

1

U!~2I11!~2I12!

M2(P,Q,R,S,U,V) exp@~12v̄ 8v!21~p̄ 8p1q̄ 8q!~r̄ 8r1s̄8s!#

~12v̄ 8v!4 (
n

~ū 8u!n

~n!!2
~2I131V!!

P!Q!R!S!U!V!

1

U!~2I11!~2I12!~2I13!

M3(P,Q,R,S,U,V) exp@~12v̄ 8v!21~p̄ 8p1q̄ 8q!~r̄ 8r1s̄8s!#

~12v̄ 8v!3

Not needed

3~r̄ 8r1s̄8s!(
n

~ū 8u!n

~n!!2

M4(P,Q,R,S,U,V) exp@~12v̄ 8v!21~p̄ 8p1q̄ 8q!~r̄ 8r1s̄8s!#

~12v̄ 8v!4
~2I121V!!

P!Q!R!S!U!V!

2I

U!~2I11!~2I12!

3~p̄ 8p1q̄ 8q!~r̄ 8r1s̄8s!(
n

~ū 8u!n

~n!!2

M5(P,Q,R,S,U,V) exp@~12v̄ 8v!21~p̄ 8p1q̄ 8q!~r̄ 8r1s̄8s!#

~12v̄ 8v!2 (
n

~ū 8u!n

~n11!!n!

~2I111V!!

P!Q!R!S!U!V!

1

~U11!!~2I11!

M6(P,Q,R,S,U,V) exp@~12v̄ 8v!21~p̄ 8p1q̄ 8q!~r̄ 8r1s̄8s!#

~12v̄ 8v!3 (
n

~ū 8u!n

~n11!!n!

~2I121V!!

P!Q!R!S!U!V!

1

~U11!!~2I11!~2I12!
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We get

~g8,K̂2g!5
1

~12 v̄ 8v !2
exp@~12 v̄ 8v !21~ p̄ 8p1q̄ 8q!~ r̄ 8r1 s̄ 8s!#

3F rp(
n50

`
ū 8n11un

~n11!!n!
1

v s̄ 8q̄ 8

~12 v̄ 8v ! (
n50

`
ū 8nun

~n! !2
1

vv̄ 8rp

~12 v̄ 8v ! (
n50

`
ū 8n11un

~n11!!n! G .
~104!

Matching coefficients of like powers we get~Table I!

~P,Q,R,S,U11,ViK̂2uP11,Q,R11,S,U,V!

5M5~P,Q,R,S,U,V!1M6~P,Q,R,S,U,V21!, ~105!

~P,Q11,R,S11,U,ViK̂2uP,Q,R,S,U,V11!5M4~P,Q,R,S,U,V!. ~106!

These nonzero matrix elements are as expected forI51
2, I 3521

2, Y511 quantum numbers forK̂2.
Similarly,

~P11,Q,R11,S,U,V!iK̂1uP,Q,R,S,U11,V)5M4~P,Q,R,S,U,V!, ~107!

~P,Q,R,S,U,V11iK̂1uP,Q11,R,S11,U,V!

5M6~P,Q,R,S,U21,V!12M4~P,Q,R,S,U,V!1M4~P,Q,R,S,U,V!. ~108!

Using Eq.~91! we get the following constraints on relative normalizations from Eqs.~103!–~106!:

UN~P11,Q,R11,S,U,V!

N~P,Q,R,S,U11,V!
U5~V12I12!

~U11!

~P11!~R11!

~2I11!

~2I12!
, ~109!

UN~P,Q11,R,S11,U,V!

N~P,Q,R,S,U,V11!
U5~U12I12!

~V11!

~Q11!~S11!

~2I11!

~2I12!
. ~110!

A solution for Eqs.~107! and ~108! is

N~P,Q,R,S,U,V!5
~U12I11!! ~V12I11!!

P!Q!R!S!U!V! ~2I11!
. ~111!

We now consider the nonuniqueness in this solution. The quantum numbers,Q, S, V, P1U,
andR1U do not change between the numerator and the denominator of Eq.~109!. Therefore
dependence ofN(P,Q,R,S,U,V) on these quantum numbers are not fixed by Eq.~109!. However,
Eq. ~110! serves to fix the dependence onQ,S,V. Therefore the only ambiguity is in dependence
of the combinationsP1U and R1U. We may hope that this ambiguity is removed by the
constraints coming from the remaining generatorsK̂0 andKC 0. The nonzero matrix elements of
these generators in the unnormalized basis are:

~P,Q,R,S,U11,ViK̂0uP,Q11,R11,S,U,V!

5M5~P,Q,R,S,U,V!1M6~P,Q,R,S,U,V21!, ~112!

~P11,Q,R,S11,U,ViK̂0uP,Q,R,S,U,V11!52M1~P,Q,R,S,U,V!, ~113!
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~P,Q11,R11,S,U,ViKC 0uP,Q,R,S,U11,V!5M1~P,Q,R,S,U,V!, ~114!

~P,Q,R,S,U,V11!iKC 0uP11,Q,R,S11,U,V)

52M6~P,Q,R,S,U21,V!22M1~P,Q,R,S,U,V!2M4~P,Q,R,S,U,V!. ~115!

This gives the constraints,

UN~P,Q11,R11,S,U,V!

N~P,Q,R,S,U11,V!
U5~V12I12!

~U11!

~Q11!~R11!

~2I11!

~2I12!
, ~116!

UN~P11,Q,R,S11,U,V!

N~P,Q,R,S,U,V11!
U5~U12I12!

~V11!

~P11!~S11!

~2I11!

~2I12!
. ~117!

As expected, these constraints fix the dependence onP1U andR1U. Thus the normalization
factor of our unnormalized basis states is uniquely fixed by Eq.~111!. It is worth noting that the
matrix elements Eqs.~106!, ~108!, and~114! are all equal and differ only in sign from Eq.~113!.
Similarly, Eqs.~105! and~112! are equal, whereas Eq.~108! only differs in sign from Eq.~115!.
As a consequence, there is a certain symmetry in the constraints@Eqs. ~109!, ~110!, ~116!, and
~117! of the normalizations.~See Table I.! These relations between matrix elements with respect
to auxiliary inner product between unnormalized basis states is a consequence of our choices of
the inner product and basis states. They do not seem to have any group theoretic reason. Anyway
we are only interested in matrix elements between normalized states.

VII. THE 3-G SYMBOLS

In this section, we mostly review well-known material1,2,15,48,23in order to fix our notations
and for logical continuity. In addition we emphasize the relation between the multiplicity in the
Clebsch–Gordan series and the distinct invariants that can be constructed out of three IRs. Con-
sider a compact group G. We denote the basis of states of unitary irreducible representations by

Ula L , ~118!

wherel labels the IRs anda labels the basis for the IRs. For SU~3!, for instance, we may use the
ordered pair (M ,N) for l and (I ,I 3 ,Y) for a. Consider the direct product of two IRs,l andl 8.
This can be completely reduced to the IRs of the group. In general, the same IRl9 may appear
more than once in the decomposition. Therefore we need extra labels for the IRs of the decom-
position. We denote these additional labels collectively byk. ~We discuss this in detail25,26 for
SU~3! in Sec. VIII!. Thus we may write

Ul9
a9L k5 (

a,a 8
Ula L Ul 8

a 8L K ll 8
aa 8Ul9

a9L k, ~119!

whereua9
l9&k are the basis vectors of the repeating IRl9 and where the repetitions are labeled byk.

The coefficients in this expansion,

K ll 8
aa 8Ul9

a9L k, ~120!
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are the Wigner–Clebsch–Gordan coefficients ofG. Equation~119! provides a unitary transfor-
mation from the basis of the IRs of the decomposition to the direct product basis. Inverse trans-
formation may be written as

Ula L Ul 8
a 8L 5 (

a9,k
Ul9
a9L k kK l9

a9Ull 8
aa 8L . ~121!

We get

(
l9,k,a9

K ll 8
aa 8Ul9

a9L k kK l9
a9Ull 8

bb 8L 5dabda 8b 8 , ~122!

(
a,a 8

kK l9
a9Ull 8

aa 8L K ll 8
aa 8Ul-

a-L k 8
5dkk 8dl9l-da9a- . ~123!

Let D(g)l denote the unitary representation matrix of an elementgPG in the IRl. Thus under
the group action,

g:Ula L→(
b

Dab
l ~g!Ulb L . ~124!

The matricesD̄l(g) whose elements are complex conjugates ofDl(g),

„D̄~g!…ab5„Dl~g!…ab* , ~125!

also provide an irreducible representation of the group called the representationl̄ conjugate tol.
For SU~3!, the IR (N,M ) is the conjugate of (M ,N). Define basis states

Ula L
c

~126!

transforming like

g:Ula L
c

→(
b

~D~g!ab
l !* Ulb L

c

. ~127!

This means

g:(
a

Ula L Ula L
c

→(
a

S (
b

~D~g!!ab
l Ulb L D S (

g
~D~g!ag

l !* Ulg L
c
D

5(
b,g

~Dl†~g!D~g!l!gbUlb L Ulg L
c

5(
a

Ula L Ula L
c

~128!

sinceD(g) is unitary. Therefore

1

Adl
(
a

Ula L Ula L
c

~129!
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~wheredl is the dimension of the IRl! ~i! is invariant under the group;~ii ! is the unique invariant
vector in the direct product space ofl and l̄ ~since there is one, and only one singlet in the

decomposition of the direct product ofl and l̄.!; ~iii ! it has unit norm. Nowua9
l9&k in Eq. ~119!

transforms like the IRl9 for everyk. Therefore,

1

Adl
(
a9

Ul9
a9L kUl9

a9L
c

~130!

is an invariant with unit norm for everyk. Use this in Eq.~119!. We get, in the direct product of
three IRs,l, l 8 andl9,

1

Adl9
(

a,a 8,a9
K ll 8

aa 8Ul9
a9L kUla L Ul 8

a 8L Ul9
a9L

c

~131!

~i! is, for eachk, an invariant of unit norm,~ii ! are linearly independent vectors in the direct

product space for variousk’s. ~This is becauseua9
l9&k in Eq. ~119! are linearly independent for

variousk.! ~iii ! are the only invariant vectors in the direct product space ofl, l 8 andl9. This is

because Eq.~129! are the only invariant vectors formed fromua9
l9&k. We will rewrite Eq.~131! in

the following way. Define the 3–Gsymbols,

F ll 8l9
aa 8a9G

k

5
1

Adl9
K ll 8

aa 8Ul9
a9L

c

k

. ~132!

Noting that

S Ula L
c
D
c

5Ula L , ~133!

we see that,

(
a,a 8,a9

F ll 8l9
aa 8a9G

k
Ula L Ul 8

a 8L Ul9
a9L ~134!

give all linearly independent invariant vectors in the direct product space of three IRsl, l 8, and
l9. This gives the generalization of the definition@Eq. ~28!# of 3 j symbols. Thus the number of
linearly independent invariant vectors and hence the 3–G symbols, are given by the outer multi-
plicity of l9 in the direct product ofl andl 8. For SU~2! there is just one.

We now consider the normalization of the 3–G symbols. The basis vectors of all three IRs in
Eq. ~119! are orthonormal. Therefore we get

(
aa 8

K ll 8
aa 8Ul9

a9L kK ll 8
aa 8Ul-

a-L k 8
5dkk 8dl9l-da9a- . ~135!

For 3–G symbols, this gives@see Eq.~132!#

(
aa 8

F ll 8l9
aa 8a9G

k
F ll 8l-
aa 8a-G

k 8

*
5

1

dl9
dkk 8dl9l-da9a- . ~136!
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VIII. INVARIANTS IN THE SPACE S( M1N1)^S(M2N2)^S(M3N3)

The next step in obtaining a formula for the Clebsch–Gordan coefficients is to construct the
invariants@Eq. ~134!# using our realization of the basis vectors. This corresponds to Eq.~30! in the
case of SU~2!. However, the computation for SU~3! is more complicated for the following rea-
sons.

~1! The variables (z1 ,z2 ,u,w1 ,w2) that we use do not transform linearly under SU~3! in contrast
to the variables (z1 ,z2) of the SU~2! case~see the Appendix!.

~2! We can form more than one invariant in contrast to the SU~2! case.

To analyze the situation we first ignore the constraintwW •zW50. Consider three vector spaces,
P (M1,N1), P (M2N2), andP (M3N3) built of polynomials in variables (zW1,wW 1), (zW2,wW 2), and
(zW3,wW 3), respectively.P (Ma,Na), a51, 2, or 3 is the space of polynomials homogeneous of
degreeM in (z1 ,z2 ,z3) and of degreeN in (w1 ,w2 ,w3), respectively. Invariant theory can be
applied15,21,23to this situation. The result is that any invariant can be constructed out of the basic
invariants,

zW1•wW 1, zW1•wW 2, zW1•wW 3,

zW2•wW 1, zW2•wW 2, zW2•wW 3,

zW3•wW 1, zW3•wW 2, zW3•wW 3, ~137!

zW1•zW23zW3, wW 1
•wW 23wW 3. ~138!

Further, these invariants are not all independent, because

~zW1•zW23zW3!~wW 1•wW
23wW 3!

5Uz11 z2
1 z3

1

z1
2 z2

2 z3
2

z1
3 z2

3 z3
3
U3Uw1

1 w1
2 w1

3

w2
1 w2

2 w2
3

w3
1 w3

2 w3
3
U5UzW1•wW 1 zW1•wW 2 zW1•wW 3

zW2•wW 1 zW2•wW 2 zW2•wW 3

zW3•wW 1 zW3•wW 2 zW3•wW 3
U . ~139!

Thus we may remove eitherzW1•zW23zW3 or wW 1
•wW 23wW 3 from the list of basic invariants Eq.~137!

and~138!. Any invariant is a function of the remaining ten invariants. To decide which of the two
invariants@Eq. ~139!# is to be kept, note that we are interested in polynomials in the three sets of
six variables. Therefore, we permit only positive integral powers ofeither zW1•zW23zW3 or
wW 1
•wW 23wW 3 in addition to those of Eq.~137!. This gives all independent invariant polynomials.

We will not be repeating polynomials which are identical on using Eq.~139!. This is because if we
were to replacezW1•zW23zW2 in a polynomial bywW 1

•wW 23wW 3 using Eq.~139!, the latter would be
appearing in the denominator. Therefore it would not coincide with any linear combination of the
other polynomials we have considered.

Thus a general invariant polynomial is a linear combination of the following invariants:

P ~N~1,1!,N~1,2!,N~1,3!,N~2,1!,N~2,2!,N~2,3!,N~3,1!,N~3,2!,N~3,3!,L !

5~z1•w1!N~1,1!~z1•w2!N~1,2!~z1•z3!N~1,3!~z2•z1!N~2,1!~z2•w2!N~2,2!~z2•w3!N~2,3!

3~zW3•wW 1!N~3,1!~zW3•wW 2!N~3,2!~zW3•wW 3!N~3,3!~~zW1•zW23zW3!L or ~wW 1
•wW 23wW 3!2L!.

~140!
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We have adopted the following notation. IfL is a positive~likewise negative! integer, the invariant
has the term (z1•z23z3)L @likewise (w1

•w23w3)2L#. This way, both possibilities are labeled by
a single integerL taking both positive and negative values. The other labels,N(a,b),a,b51, 2, or
3 freely range over all non-negative integers.

The invariants in the spaceP (M1,N1)^P (M2,N2)^P (M3,N3) have to be built from a linear
combination of those invariants@Eq. ~140!# for which

(
b51

3

N~a,b!1Le~L !5Ma,

~141!

(
b51

3

N~b,a!1uLue~2L !5Na, a51,2,3.

Here,

e~L !51, L>0,
~142!

e~L !521, L,0.

For three given IRs, this gives six equations for ten unknownsN(a,b) andL. Therefore, there are
many independent invariants, in general.

In order to obtain the 3-SU~3! symbols~Sec. VII! we have to expand these invariants in terms
of a realization of the SU~3! basis vectors as polynomials inzWa andwW a. The analogous procedure
for SU~2!, discussed in Sec. II, is very simple because we have a simple monomial basis. All that
is needed there is to collect coefficients in the Taylor’s expansion. However in the SU~3! case the
basis is more complicated. In the realization using six complex variables used in earlier
works,15,21–23the basis spans only a subspace of the space of all polynomials. As a result, one is
not even assured that a general invariant satisfying Eq.~139! can be expanded in the basis vectors.
That it be so expandable imposes restrictions on the coefficients of the linear combinations of the
basic invariants@Eq. ~140!#. In fact each of the three IRs imposes one restriction on the linear
combination. This effectively reduces the number of independent linear combinations that may be
chosen. Any freedom that is left corresponds to the repeating IRs in the decomposition. We may
hope that requiring the invariant polynomial to be an eigenstate of the chiral Casimir15,23,17

uniquely determines the invariant polynomial corresponding to each of the repeating IRs in the
decomposition.

In this way the 3-SU~3! symbols can be extracted—in principle. However, extracting an
explicit formula for the symbols this way has not been possible. The closest has been a formula
with some undetermined coefficients.23 We are able to overcome all these hurdles here for the
following reasons.~i! our basis is simpler,~ii ! the relevant invariants are completely determined,
~iii ! we use our auxiliary measure to calculate the expansion coefficients, and~iv! we use a
generating function for the basis states and also for the invariants. This way calculations for all IRs
are being done in one shot. Moreover, all calculations effectively reduce to Gaussian integrations.

We now describe why the relevant invariants are completely determined in our basis.
We are using the five-~complex!-dimensional subspacewW •zW50 in our basis. This constraint is

invariant under SU~3!. Therefore, invariants in the larger six-dimensional space are also invariants
when restricted to our subspace. However all invariants with nonzeroN~1,1!, N~2,2!, andN~3,3!
vanish identically because in our basis

wW a
•zWa50, a51,2,3. ~143!

Thus the basic invariants are only

I ~N~1,2!,N~2,3!,N~3,1!,N~2,1!,N~3,2!,N~1,3!,L !
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5~zW1•wW 2!N~1,2!~zW2•wW 3!N~2,3!~zW3•wW 1!N~3,1!~zW2•wW 1!N~2,1!~zW3•wW 2!N~3,2!~zW1•wW 3!N~1,3!

3@~zW1•zW23zW3!L or ~wW 1
•wW 23wW 3!2uLu#. ~144!

We now simply have

N~1,2!1N~1,3!1Le~L !5M1, N~2,3!1N~2,1!1Le~L !5M2,

N~3,1!1N~3,2!1Le~L !5M3, N~2,1!1N~3,1!1uLue~2L !5N1, ~45!

N~3,2!1N~1,2!1uLue~2L !5N2, N~1,3!1N~2,3!1uLue~2L !5N3.

Thus we are led to the same equations for multiplicity as obtained in Ref. 25 from other
considerations.

Note that Eq.~142! implies

3L5 (
a51

3

~Ma2Na!. ~146!

ThusL is completely determined by the three IRs chosen and is not an independent parameter. It
counts the number of invariants formed using det~U!51 condition. It may be called the ‘‘chirality
number’’ of the invariant.

As a result, when we consider three given IRsl1, l2, andl3, we have just six non-negative
integersN(a,b), aÞb, constrained by five linearly independent equations@Eq. ~145!#. Therefore,
there can be more than one solution for the setN(a,b). This corresponds to the multiplicity
problem in the decomposition of the Kronecker product.

It is possible, in principle, that there are more invariants in our subspace which do not have an
invariant extension into the larger space ofzWa andwW a variables. We now argue that there are no
further invariants constructed out of our basis vectors from three IRs. In Sec. III, we obtained our
basis vectors from basis vectors in the space ofzW andwW variables by retaining those which are
distinct in our subspace. Now a basis forall invariants in the larger space are catalogued by Eq.
~140!. Therefore, by simply imposing the constraints@Eq. ~142!# and retaining nontrivial and
distinct invariants, we get all invariants for our case.

In earlier approaches one was not assured that an arbitrary linear combination of the basic
invariants@Eq. ~140!# could be expanded in the basis vectors of the three IRs. We do not have such
a problem now. This is because our basis vectors form all polynomials in four variablesz1, z2, w1,
andw2 and all ~positive or negative integral! powers ofz3. Thus, even the basic invariants.@Eq.
~140!# with constraints@Eq. ~142!# can be expanded in our basis. This means the following. We
may simply regard each of basic invariants@Eq. ~140!# as the~unnormalized! linearly independent
invariant vectors in the direct product space of three IRs. For a given basic invariant@Eq. ~140!#,
the three IRs of which it is composed are given by Eq.~144!#.

Thus the 32SU~3! symbols are naturally labeled by the set of integers,

~1! N~1,2!, N~2,3!, N~3,1!, N~2,1!, N~3,2!, N~1,3!, L.
~2! Pa,Qa,Ra,Sa,Ua,Va, a51,2,3.

In place of~2! we may use the quark-model labels,
~3! Ma,Na,I a,I 3

a ,Ya, a51,2,3.

These labels are related by the constraints. These constraints may be displayed as follows:
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F N~1,2! N~1,3! N~2,3! N~2,1! N~3,1! N~3,2!

N2 M 1 N3 M 2 N1 M 3 N2

U1,R1 V3,S3 U2,R2 V1,S1 U3,R3 V2,S2

P1 P3 P2 Q1 Q3 Q2

G
L

.

~147!

This is the analog of the 32j symbol of SU~2! prescribed as an array of nine integers,@Eq. ~34!#.
As in that case, this array is highly redundant. This notation is nevertheless useful, because the
allowed values can be easily read off. For convenience, we will adopt the following notation for
the 32SU~3! symbols:

FN~1,2! N~2,3! N~3,1! L N~1,3! N~3,2! N~2,1!

M1N1 M2N2 M3N3

I 8I 38Y 8 I 2I 3
2Y2 I 3I 3

3Y3
G . ~148!

IX. A GENERATING FUNCTION FOR THE INVARIANTS

Though our basis has simplified many aspects, it is still not simple enough to allow the
expansion coefficients to be read off from the invariants@Eq. ~145!#. In order to compute these
coefficients we will use our auxiliary inner product. We will also use generating functions@Eq.
~53!# for the basis states and also a generating function for the invariants. This simplifies the
computations drastically. Moreover we are doing computations for all IRs in one shot.

Define the generating function for the invariants,

I 6~ j 12, j 23, j 31, j 21, j 32, j 13, j6!

5exp~ j 12zW
1
•wW 21 j 23zW

2
•wW 31 j 31zW

3
•wW 11 j 21zW

2
•wW 11 j 32zW

3
•wW 21 j 13zW

1
•wW 3

1~ j1zW
1
•zW23zW3 or j2wW

1
•wW 23wW 3!. ~149!

By a Taylor expansion in the sourcesj we generate all basic invariants@Eq. ~145!#. Note that
we useeither j1 or j2 because we do not need bothz1•z23z3 andw1

•w23w3 together.
The exponent in Eq.~149! is linear in each of the variables separately. This is an important

feature which allows explicit computations.
We may write

I 65 (
N~1,2!...,uLu

j 12
N~1,2! j 23

N~2,3! j 31
N~3,1! j 21

N~2,1! j 32
N~3,2! j 13

N~1,3!~ j6! uLu

3uN~1,2!,N~2,3!,N~3,1!,N~2,1!,N~3,2!,N~1,3!,6uLu). ~150!

The kets on the right-hand side of Eq.~150! are the unnormalized invariant vectors@Eq. ~134!# in
the direct product of three IRs. For the corresponding normalized invariant vectors, we have
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uN~1,2!,N~2,3!,N~3,1!,N~2,1!,N~3,2!,N~1,3!,6uLu&

[n21/2~N~1,2!,N~2,3!,N~3,1!,N~2,1!,N~3,2!,N~1,3!,6uLu!

3uN~1,2!...,6uLu)

5 (
$Pa,Qa,Ra,Sa,Ua,Va%

FN~1,2! N~2,3! N~3,1! L N~1,3! N~3,2! N~2,1!

M1N1 M2N2 M3N3

I 1I 3
1Y1 I 2I 3

2Y2 I 3I 3
3Y3

G
3uP1,Q1,R1,S1,U1,V1&uP2,Q2,R2,S2,U2,V2&uP3,Q3,R3,S3,U3,V3&,

~151!

wheren is the normalization factor. We have used our labeling@Eq. ~55!# for the basis vectors.
The variables on the right-hand side of Eq.~151! are related by Eqs.~49!, ~50!, and~52! for each
a51,2,3.

Consider the auxiliary inner product ofI 6 with g1g2g3 which is the product of the partition
functions for basis vectors of the three IRs. Using Eq.~55! and noting from Eqs.~81! and ~88!

~P,Q,R,S,U,ViP 8,Q 8,R 8,S8,U 8,V 8&

5N21/2~P,Q,R,S,U,V!M ~P,Q,R,S,U,V!dPP 8dQQ 8dRR8dSS8dUU 8dVV 8 , ~152!

we get

E
6

[~g1g2g3,I 6!

5( )
a51

3

~ p̄a
Pa

q̄a
Qa

r̄ a
Ra

s̄a
Sa

ūa
Ua

v̄a
Va

N21/2~Pa,Qa,Ra,Sa,Ua,Va!

3M ~Pa,Qa,Ra,Sa,Ua,Va!! j 12
N~1,2! j 23

N~2,3! j 31
N~3,1! j 21

N~2,1! j 32
N~3,2! j 13

N~1,3!

3~ j6! uLun11/2~N~1,2!,N~2,3!,N~3,1!,N~2,1!,N~3,2!,N~1,3!,6L !

3FN~1,2! N~2,3! N~3,1! L N~1,3! N~3,2! N~2,1!

M1N1 M2N2 M3N3

I 1I 3
1Y1 I 2I 3

2Y2 I 3I 3
3Y3

G . ~153!

Thus the 32SU~3! symbols can be computed by calculating~g1g2g3, I 6! with respect to the
auxiliary inner product. The normalizationn in Eq. ~153! has to be evaluated separately, using Eq.
~136!.

X. EVALUATION OF *1

We now evaluated*1 . We have,

E
6

5E dm1E dm2E dm3 g1g2g3I 6 . ~154!

Here,
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E dma5E
0

2p dua

2p E d2z1
a

p E d2z2
a

p E d2w1
a

p E d2w2
a

p
exp~2 z̄1

az1
a2 z̄2

az2
a2w̄1

aw1
a2w̄2

aw2
a!,

~155!

ḡa5exp~r p
az1

a1r q
az2

a1sq
aw1

a1sp
aw2

a1uaeiu
a
2vae2 iua~z1

aw1
a1z2

aw2
a!!, a51,2,3. ~156!

In Eq. ~156!, it is sufficient to use the ‘‘mass shell’’ values@Eq. ~61!# for the sources. Further,
in I 6 @see Eq.~149!#, we have

zW1•wW 25z1
1w1

21z2
1w2

22exp~ iu12 iu2!~z1
2w1

21z2
2w2

2!, etc. ~157!

Also,

zW1•zW23zW35eiu
1
~z1

2z2
32z1

3z2
2!1~cyclic!. ~158!

Note that all exponents in*1 are bilinear inz1,2
a andw1,2

a variables. Therefore these integra-
tions can be explicitly done. The only term that could have caused problems iszW1•zW23z3 @Eq.
~158!#, which is related to the multiplicity problem and is apparently cubic. However, sincez3

a

5 eiu
a
, a51,2,3, this term is also bilinear. On the other hand,wW 1

•wW 23wW 3 appearing in*2 is not
bilinear after elimination ofw3

a. We will handle this problem in Sec. XII.
The form of*1 suggests the following operations. First, dependence onua, a51,2,3, can be

completely transferred to the sources. Make a change of variables,

z1
a→eiu

a
z1
a ;

z̄1
a→e2 iuaz̄1

a ;

w1
a→e2 iuaw1

a ;

w̄1
a→e2 iuaw̄1

a ;

z2
a→eiu

a
z2
a ,

z̄2
a→e2 iuaz̄2

a ,

w2
a→e2 iuaw2

a ,

w̄2
a→e2 iuaw̄2

a

~159!

and the measure@Eq. ~155!#, remains unchanged. On the other hand,

ga→exp~~r p
aeiu

a
!z1

a1~r q
aeiu

a
!z2

a1~sq
ae2 iu a

!w1
a1~sp

ae2 iu a
!w2

a

1~uaciu
a
!2~vae2 iu a

!~z1
aw1

a1z2
aw2

a!!. ~160!

Also,

j 12zW
1
•wW 2→ j 12e

iu12 iu2~z1
1w1

21z2
1w2

22z1
2w1

22z2
2w2

2! ~161!

with similar changes forj 23zW
2
•wW 3, j 21zW

2
•wW 1, etc. Lastly,

j1zW
1
•zW23zW3→ j1e

iu11 iu21 iu3~~z1
2z2

32z1
3z2

2!1~cyclic!!. ~162!

This change of variables makes integration overu a, a51,2,3 very easy. Indeed, these inte-
grations only implement one additive conservation law for each of the three IRs, since

E
0

2p du

2p
einu5dn,0 . ~163!

The three kinds of charges for various sources as can be read off from Eq.~160!–~162! are
displayed in Table II. In effect, each of (z1

a ,z2
a ,z3

a) is given Qa charge11 and each of
(w1

a ,w2
a ,w3

a) hasQa521.
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The sources have the corresponding compensating charges. As a consequence, it is not nec-
essary to explicitly dou a integrations. We may simply ignore the dependencies onu a. After
integration overza andwa variables, we only keep polynomial in sources each term of which is
neutral with respect toQ1, Q2 andQ3 charges.

From Table II and our definitions of quantum numbers, powers of the sources in the polyno-
mials have to satisfy

(
bÞa

N~a,b!1L2 (
bÞa

N~b,a!5Ra1Ua2Sa2Va, a51,2,3. ~164!

From Eqs.~49! and~145!, we notice that both sides of Eq.~164!, areMa2Na. ~see Table II.! Thus
theu integration is only implementing equality ofMa2Na as calculated using the invariants@Eq.
~145!# and the states@Eq. ~49!#. However, we know thatM andN evaluated in these two ways
should each be separately equal. This stronger equality should be a consequence of integration
over thez andw variables.

We now consider the integrations over thez andw variables. It is convenient to employ the
following matrix notation:

Z15S z11z12
z1
3
D , Z̄15S z̄ 11z̄ 12

z̄ 1
3
D , R̄p5S r̄ p1r̄ p2

r̄ p
3
D ~165!

with similar notations forZ2 ,Z̄2 ,W1 ,W̄1 ,W2 ,W̄2 ,R̄q ,S̄p ,S̄q . Further, define,

V̄5S v̄ 1 0 0

0 v̄ 2 0

0 0 v̄ 3
D , ~166!

J5S 1 j 311 j 21 2 j 12 2 j 13

2 j 21 1 j 121 j 32 2 j 23

2 j 31 2 j 32 1 j 231 j 13
D , ~167!

A5S 0 1 21

21 0 1

1 21 0
D . ~168!

In terms of these objects the integral we need is

TABLE II. p̄a, q̄a, a51,2,3 do not carry any of these charges.

Q1511 s̄ 1 v̄ 1 j 12 j 13 j1

Q1521 r̄ 1 ū 1 j 21 j 31
Q2511 s̄ 2 v̄ 2 j 23 j 21 j1

Q2521 r̄ 2 ū 2 j 32 j 12
Q3511 s̄ 3 v̄ 3 j 31 j 32 j1

Q3521 r̄ 3 ū 3 j 13 j 23
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E d2Z1d
2Z2

p3p3

d2W1d
2W2

p3p3 expS2Z̄ 1
TZ12Z̄ 2

TZ 22W̄ 1
TW12W̄ 2

TW 21Z̄ 1
TR̄p1Z̄ 2

TR̄q

1W̄ 1
TS̄q1W̄ 2

TS̄p2Z̄ 1
TV̄W̄12Z̄ 2

TV̄W̄22Z 1
TJW12Z 2

TJW21 j1Z1
TAZ21 (

a51

3

ūaD ,
~169!

where

E d2Z1
p3 5E d2z1

1

p E d2z1
2

p E d2z1
3

p
, ~170!

etc. We now use Eq.~72! in the following order. Integrate overW1 andW2. We get,

E d2Z1d
2Z2

p3p3 expS2Z̄ 1
TZ12Z̄ 2

TZ21Z̄ 1
TR̄p1Z̄ 2

TR̄q1Z1
TJV̄Z̄11Z2

TJV̄Z̄2

2Z1
TJS̄q2Z2

TJS̄p1 j1Z1
TAZ21 (

a51

3

ūaD . ~171!

Now integrating overZ2, we get

E d2Z1
p3 det~12V̄JT!21 expS 2Z̄ 1

T~12V̄JT!Z 11Z̄ 1
TR̄p2S̄q

TJTZ1

2S̄p
TJT~12V̄JT!21R̄q1 j1Z 1

TA~12V̄JT!21R̄q1 (
a51

a

ūaD . ~172!

Final integration overZ1 gives

det~12V̄JT!22 expS 2S̄q
TJT~12V̄JT!21R̄p2S̄p

TJT~12V̄JT!21R̄q

1 j1R̄ q
T~12V̄JT!T

21
AT~12V̄JT!21R̄p1 (

a51

a

ūaD . ~173!

We rewrite this as

expS 2R̄ p
TBJS̄q2R̄ q

TBJS̄p1 j1R̄ p
TBABTR̄q12tr~ ln B!1 (

a51

a

ū aD , ~174!

where

B5~12JV̄!215 (
n50

`
~JV̄!n

n!
. ~175!

XI. ALGEBRAIC FORMULA FOR 3-SU(3) COEFFICIENTS WHEN L>0

To get 3-SU~3! symbols for a given set of three IRs, we have to expand Eq.~174! in powers
of the various sources. On mass shell we have
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2R̄ p
TBJS̄q2R̄ q

TBJS̄p5„r̄ 1~BJ!12s̄
22 r̄ 2~BJ!21s̄

1
…~ p̄ 1q̄ 22q̄ 1p̄ 2!1cyclic. ~176!

Notice that we always have combinations such as (p̄1q̄22q̄1p̄2) which are invariant under the
~isospin! SU~2! transformations of the sources. This is to be expected because our measure is
manifestly invariant under this subgroup. Note also that the diagonal terms of the matrix (BJ) do
not appear on the right-hand side~this is because of the negative sign ins̄q

a52 s̄aq̄a, a51,2,3,
etc.! This is again required by SU~2! invariance. With such diagonal terms we would get terms
like p̄aq̄a which are not SU~2! invariant. We also have

R̄p
TBABTR̄q5 r̄ 1r̄ 2~ p̄1q̄ 22q̄ 1p̄ 2!~BABT!121cyclic. ~177!

Again we get SU~2! invariant combinations. The reason now is the antisymmetry of the matrixA
and hence ofBABT.

Explicitly inverting the 333 matrix ~12JV̄!, we obtain quite simple expressions for the
relevant matrix elements:

~BJ!125iBi~2 j 121 j 12~ j 231 j 13!v̄
31 j 13v̄

3 j 32!,
~178!

~BJ!215iBi~2 j 211 j 21~ j 231 j 13!v̄
31 j 23v̄

3 j 31!

and corresponding cyclic expressions. Here,

iB21i5det~12JV̄!512~~ j 311 j 21!v̄
11cyclic!1~~ j 31j 121 j 31j 321 j 21j 32!v̄

1v̄21cyclic!.
~179!

Also notice that,

Ai j5e i jkck , ~180!

where

c̄5~ck!5~1,1,1!. ~181!

Therefore,

~BABT! i l5Bi j e jkmcmBlk5iBie i lncm~B21!mn . ~182!

Now,

cm~B21!mn5 (
m51

3

~12JV̄!mn51 for each n. ~183!

Thus,

~BABT!125~BABT!235~BABT!315iBi . ~184!

Now we have an explicit expression for*1 :

E
1

;iBi2 exp@ iBiˆ„ū11 j1 r̄
1r̄ 22 r̄ 1 j 12s̄

21 r̄ 2 j 21s̄
11 r̄ 1 j 12s̄

2~ j 231 j 13!v̄
3

2 r̄ 2 j 21s̄
1~ j 231 j 13!v̄

31 r̄ 1 j 13v̄
3 j 32s̄

22 r̄ 2 j 23v̄
3 j 31s̄

1
…~ p̄ 1q̄ 22 p̄ 2q̄ 1!1~cyclic!%],

~185!
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where; means that we are supposed to keep only terms consistent with the conservation laws
@Eq. ~164!#.

This form implies another conservation law. Note thatj 21 and j 31 always appear with thes̄
1

or v̄1. Therefore,

N~2,1!1N~3,1!5S11V1, ~186!

which we expect because both sides equalN1. We have similar equations forN2 andN3 also.
Taken with Eq.~164!, which are a consequence ofua, a51,2,3 integrations, we get separate
conservations ofMa andNa a51,2,3 as computed from the states and from the invariants.

We now change the right-hand side of Eq.~185! to a form which automatically gives the
conservation law:

N~1,2!1N~1,3!1L5R11U1 ~187!

and corresponding cyclic expressions. For this we remove exp((a51
3 ūa) and insertū 1,ū 2,ū 3

factors suitably in the other terms of the exponent and iniBi :

E
1
→iB̃i2 exp@ iB̃i$„~ j1 r̄

1r̄ 2ū 32 r̄ 1 j 12s̄
21 r̄ 2 j 21s̄

11 r̄ 1 j 12s̄
2!~ ū 2 j 23v̄

31ū 1 j 13v̄
3!

2 r̄ 2 j 21s̄
1~ ū 2 j 23v̄

31ū 1 j 13v̄
3!1 r̄ 1 j 13v̄

3ū 3 j 32s̄
2

2 r̄ 2 j 23v̄
3ū 3 j 31s̄

1
…~ p̄ 1q̄ 22 p̄ 2q̄ 1! 1~cyclic!%, ~188!

where

iB̃i512„ū 3 j 31v̄
11ū 2 j 21v̄

11~cyclic!…1~ ū 3 j 31v̄
1ū 1 j 12v̄

2

1ū 3 j 31v̄
1ū 3 j 32v̄

21ū 2 j 21v̄
1ū 3 j 32v̄

21~cyclic!!. ~189!

Now j 12 and j 13 always appears withr̄
1 or ū1 except in the termsr̄ 1r̄ 2ū31~cyclic!. The effect of

these last terms is to provide monomials where the powersRa1Ua, a51,2,3 are equal. The net
effect is to imply Eq.~187! and corresponding cyclic expressions whereL is given by the sum of
the powers ofr̄ 1r̄ 2ū3, r̄ 2r̄ 3ū1 and r̄ 3r̄ 1ū2. Thus the right-hand side of Eq.~188! automatically
takes care of conservations laws, Eqs.~186! and ~187! and corresponding cyclic expressions. It
also gives*1 exactly except for the additional factor

1

U1!U2!U 3!
~190!

~coming from exp(ū11ū21ū3)! to be associated with (ū a)U
a
, a51,2,3.

We have to now expand the right-hand side of Eq.~188! in powers of the various monomials
in the exponent and determinant. This is exactly analogous to the SU~2! case@Eq. ~33!#. As in that
case, we have to collect all the terms contributing to the monomial. For this we have first to adopt
a notation for the powers of the monomials. This is presented in Table III.

We have deliberately adopted this notation for the powers because, the arguments in the
symbols uniquely characterize the term being considered. Thus for examplel ~123! is associated
with ( j1)( p̄

1r̄ 1)(q̄2r̄ 2)(ū3). We have such variables associated with every permutation of~123!
arising from the termj1 r̄

1r̄ 2ū3( p̄1q̄22 p̄2q̄1)1cyclic in the exponent in Eq.~188!. In Table IV,
we catalogue all allowed arguments in our variables of Table III. The advantage of our notation is
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that we can easily trace the terms that involve a given sourcej 12, p̄
1, etc. Thus for example, we

can write the conservation laws in a compact form as below. By collecting the powers of each
source, we get

Pa5( „l ~a22 !1k~a222 !1m~a22222 !1n~a22222 !…;

Qa5( „l ~2a2 !1k~2a22 !1m~2a2222 !1n~2a2222 !…;

Ra5( „l ~a22 !1 l ~2a2 !1k~22a2 !1m~22a222 !1n~22a222 !…;

Sa5( „k~222a!1m~222a22 !1n~222a22 !…;

TABLE III. Definition of the variablesl~•••!, ... , g~•••!.

Monomial j1p̄
1q̄ 2r̄ 1r̄ 2ū 3 p̄ 2q̄ 1r̄ 1r̄ 2ū 3 p̄ 1q̄ 2r̄ 1 j 12s̄

2 p̄ 2q̄ 1r̄ 1 j 12s̄
2

Order used in labelp̄ 1q̄ 2ū 3 p̄ 2q̄ 1ū 3 p̄ 1q̄ 2r̄ 1s̄ 2 p̄ 2q̄ 1r̄ 1s̄ 2

Power l ~123! l ~213! k~1212! k~2112!

p̄ 1q̄ 2r̄ 2 j 21s̄
1 p̄ 1q̄ 2r̄ 1 j 12s̄

2ū 2 j 23v̄
3 p̄ 1q̄ 2r̄ 1 j 12s̄

2ū 1 j 13v̄
3 p̄ 1q̄ 2r̄ 1 j 13v̄

3ū 3 j 32s̄
2

p̄ 1q̄ 2r̄ 2s̄ 1 p̄ 1q̄ 2r̄ 1s̄ 2ū 2v̄ 3 p̄ 1q̄ 2r̄ 1s̄ 2ū 1v̄ 3 p̄ 1q̄ 2r̄ 1s̄ 2ū 3v̄ 3

k~1221! m~121223! m~121213! n~12123!

ū 3 j 31v̄
1 ū 2 j 21v̄

1 ū 3 j 31v̄
1ū 1 j 12v̄

2 ū 2 j 21v̄
1ū 1 j 32v̄

2 ū 3 j 31v̄
1ū 3 j 32v̄

2

ū 3v̄ 1 ū 2v̄ 1 ū 3v̄ 1ū 1v̄ 2 ū 3v̄ 2ū 2v̄ 1 ū 3ū 3v̄ 2v̄ 1

e~31! e~21! f ~3112! f ~3221! g~321!

TABLE IV. Permitted arguments ofl~•••!, ... , g~•••!.

a,b,g•••51, 2, or 3

l ~abg! ~abg! is a permutation of~123!

k~abgd! ~ab! is same or transpose of~gd!

m~abgdef! ~gdf! is a permutation of~123!;
~ab! is same or transpose of~gd!;
f is eitherg or d.

n~abgde! ~gde! is a permutation of~123!;
~ab! is same or transpose of~gd!.

e~ab!: aÞb.

f ~abgd! b5g and ~abd! is a permutation
of ~123!:

g~abg! ~abg! only even permutation of~123!
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Ua5( „l ~22a!1m~2222a2 !1n~2222a2 !)1e~a2 !

1 f ~a222 !1 f ~22a2 !12g~abg!…;

Va5( ~m~22222a!1n~22222a!!1e~2a!1 f ~2a22 !

1 f ~222a!1g~2a2 !1g~22a!);

L5( l ~222 !;

N~a,b!5( „k~22ab!1m~22ab22 !)1m~2222ab!1n~22ab22 !

1n~222ab!1e~ab!1 f ~ab22 !1 f ~22ab!1g~ab2 !1g~a2b!);

~191!

Here we have used the following notation:( stands for summation over all allowed arguments in
the blank spaces.

Note that Eqs.~190! and ~191! express the non-negative integers,Pa,...,Va, N~a,b!, andL,
a, b51,2, or 3 in terms of yet other non-negative integers of Table III. It is easy to see that the
constraintPa1Qa5Ra1Sa for the labels of each IRa51,2, or 3 is satisfied. Also the constraints
@Eqs.~186! and ~187!# are satisfied as is seen from the positions of the labels and Table III.

We may read off various conservation laws in the 3-SU~3! symbols from Eq.~191!:

(
a51

3

Pa5 (
a51

3

Qa. ~192!

This is valid because we are summing over all positions ofa in the labels. This is simply a
statement of the conservation ofI 3.

Similarly,

(
a51

3

Ua5 (
a51

3

Va1L. ~193!

This implies conservation of hypercharge as seen by rewriting it as

(
a51

3 S 13 ~Ma2Na!1Va2UaD50. ~194!

When we expand the exponent in powers of each monomial, we collect a factor

iB̃i11h ~195!

in Eq. ~188!. Here

211h5( ~ l ~ !1k~ !1m~ !1n~ !!. ~196!
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Alternately, note that the number ofiB̃i factors is the sum of the number ofsa variables~a
51,2,3! and the power ofj1 , i.e.,

211h5L1S11S21S3. ~197!

We may now apply the formula

S 12 (
k51

K

xkD 212h

5 (
n1 ,n250

`
~h1(nk!!

h!Pk~nk! !
)
k51

K

xk
nk ~198!

to calculate coefficients of various monomials in Eq.~195! where iB̃i is as in Eq.~188!. This
gives the coefficient of the monomials in the expansion of the RHS of Eq.~188! to be

11(„l ~ !1k~ !1m~ !1n~ !1e~ !1 f ~ !1g~ !…!

„11(~ l ~ !1k~ !1m~ !1n~ !!!P~ l ~ !!! ~k~ !!! ~m~ !!! ~n~ !!! ~e~ !!! ~ f ~ !!! ~g~ !…!

3exp@ ip(s~k~ !1n~ !!1(Am~ !1(~ f ~ !1g~ !!#. ~199!

Here( andP are over all possible arguments of the variables indicated.(S ~respectively(A!
correspond to summations over only those arguments~abgd•••! such thatab is same as~respec-
tively transposes of! gd.

In order to get the coefficient of the monomial in*1 , we have to multiply Eq.~199! by the
factor Eq.~190!. We may now extract the 3-SU~3! symbol from Eq.~153!, by supplying factors of
N1/2 andM21 as required. We get the 3-SU~3! symbol forL>0,

FN~1,2! N~2,3! N~3,1! L N~1,3! N~3,2! N~2,1!

M1N1 M2N2 M3N3

I 1I 3
1Y1 I 2I 3

2Y2 I 3I 3
3Y3

G
5n21/2~N~1,2!,N~2,3!,N~3,1!,N~2,1!,N~3,2!,N~1,3!,L !

3F )
a51

3
Pa!Qa!Ra!Sa!Ua!Va! ~Ua12I a11!! ~2I a11!

~Va12I a11!! G1/2
3 (

e, f ,g,k,l ,m,n

~11(~e~ !1 f ~ !1g~ !1k~ !1 l ~ !1m~ !1n~ !!!

~11(~k~ !1 l ~ !1m~ !1n~ !!!P~ l ~ !!...n~ !!!

3exp@ ip(S~k~ !1n~ !!1SAm~ !1(~ f ~ !1g~ !!#. ~200!

This is the exact analog of Eq.~33! of SU~2!. The Clebsch–Gordan coefficients are presented as
a sum over non-negative integers which satisfy conditions Eq.~191!. ~See Tables III and IV.!

XII. DISCUSSION

In our calculations for SU~3! we have ignored the questions involving the choice of phases
until now. We will now make a careful analysis. With our definition@Eq. ~55!# of the unnormal-
ized basis vectors, note that the 3I* is represented by (2w1 ,w2 ,w3) up to a normalization con-
stant. Our computations of the relative normalization, Eqs.~109! and~110! fix only the magnitude
of the normalizations. The phases may be chosen arbitrarily as discussed in Sec. II for the SU~2!
case. Under a change of phases,

uE&→exp~ iuE!uE&, ~201!
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the representation matrix changes as

„D~g!)EE 8→eiuE~D~g!…EE 8e
2 iuE 8 ~202!

and remains unitary.
However one may want to make a choice of phases to rid the formulas of phases and relative

signs if possible. For instance, we may choose the phase to have 3I* be represented by
1/&(w1 ,w2 ,w3).

Fortunately our basis vectors@Eqs. ~53!–~55!# have real coefficients even though they are
represented by polynomials in complex variables. Similarly, our invariants@Eq. ~140!# have real
coefficients. Thus we are assured that the 3-SU~3! symbols are real as is checked in Eq.~200!.

We now address the ambiguity in the phase of the Clebsch–Gordan coefficients. In the
definition of Eq.~119!, various coupled basis vectorsul9a9.k, are required to transform as an
IR~l9!. This fixes phases of all 3-SU~3! symbols except for an overall phase for eachl9 andk.

In previous sections we calculated 3-SU~3! symbols only for theL>0 case. With our choice
of regardingw3 as a dependent variable, the relevant integrations could be explicitly computed in
this case. We now show the 3-SU~3! symbols can be obtained forL,0 also.

In constructing the basis vectors, we could have as well chosen to eliminatez3 instead ofw3.
We could have done all computations with this basis. In this case, the integrations for 3-SU~3!
symbols can be done explicitly forL,0 instead ofL.0.

This is related to the invariance of the 3-SU~3! symbols under conjugation of the IRs in-
volved. ~It is possible that the invariance is only up to an additional phase factor as may happen
if the phases of the basis states are not chosen carefully.! In our formalism this invariance may be
seen as follows. Consider an expansion of an invariant@Eq. ~140!# with L>0 as a linear combi-
nation of the basis vectors of Eqs.~53!–~55!. Now consider an interchangezW↔wW in this expan-
sion. The effect on the invariant is to change it to another invariant with

N~a,b!→N~b,a!,L→2L. ~203!

This means

Ma↔Na, a51,2,3. ~204!

The effect ofzW↔wW on the generating functions@Eq. ~53!# is equivalent to the following
changes:

pa→2qa, qa→pa, r a→sa, sa→2r a, ua→va, va→ua. ~205!

Thus the effect on the unnormalized basis states@Eq. ~55!# is

uPQRSUV)→~21!Q1RuQPSRVU). ~206!

In the usual notation,

Ma↔Na, I a→I a, I 3
a→2I 3

a , Ya→2Ya ~207!

and in addition an additional phase factor~21!Q1R is picked up.
In Eq. ~188!, note that the isospin dependence is always contained in the SU~2! invariant

combination of sources, (p̄1q̄22 p̄2q̄1), etc. As a consequence, it is possible to extract isoscalar
factors also.3 However, we will not pursue this here. Equation~188! can be used, in principle, to
extract Regge symmetries62 of SU~3! Clebsch–Gordan coefficients. We do not attempt this here.

6565J. S. Prakash and H. S. Sharatchandra: A calculus for SU(3)

J. Math. Phys., Vol. 37, No. 12, December 1996

¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬



XIII. SUMMARY OF RESULTS

For easy accessibility we summarize our results in a self-contained way here.
(i) Labels for the basic vectors. Normalized basis vectors are denoted byuM ,N;

P,Q,R,S,U,V&. All labels are non-negative integers. All IRs are uniquely labeled by (M ,N). For
a given IR (M ,N), labels (P,Q,R,S,U,V) take all non-negative integral values subject to the
constraints:

R1U5M , S1V5N, P1Q5R1S.

The allowed values can be read off easily:R takes all values from 0 toM , andS from 0 toN. For
a givenR andS, Q takes all values from 0 toR1S.

(ii) Explicit realization of the basis states. Consider the coefficient of the monomial

pPqQrRsSuUvV

in

exp~r ~pz11qz2!1s~pw22qw1!1uz31vw3!.

Divide it by the normalization,

F ~U12I11!! ~V12I11!!

P!Q!R!S!U!V! ~2I11!
G 1/2.

This then provides an explicit realization of the normalized basis stateuPQRSUV&.
(iii) Generating function for the invariants. All Clebsch–Gordan coefficients can be extracted

from the following generating function of the invariants:

I 6~ j 12, j 23, j 31, j 21, j 32, j 13, j6!5exp„j 12zW
1
•wW 21 j 23zW

2
•wW 31 j 31zW

3
•wW 11 j 21zW

2
•wW 11 j 32zW

3
•wW 2

1 j 13zW
1
•wW 31~ j1zW

1
•zW23zW 3 or j2wW

1
•wW 23wW 3!….

(iv) Multiplicity labels for the Clebsch–Gordan series. For three given IRs,
(M 8,N 8),(M 9,N9),(M-,N-), construct all solutions of

N~1,2!1N~1,3!1Le~L !5M1, N~2,3!1N~2,1!1Le~L !5M2,

N~3,1!1N~3,2!1Le~L !5M 3, N~2,1!1N~3,1!1uLue~2L !5N1,

N~3,2!1N~1,2!1uLue~2L !5N2, N~1,3!1N~2,3!1uLue~2L !5N3,

3L5 (
a51

3

~Ma2Na!,

where N(a,b), aÞb are non-negative integers. They provide unambiguous labels for the
Clebsch–Gordan series as follows.

For given two IRs (M ,N) and (M 8,N 8), construct all (M 9,N9) for whichN(a,b), aÞb have
non-negative integer solutions. Then the reversed pair (N9,M 9) gives all IRs in the Clebsch–
Gordan series. Multiplicity of solutions for one (M 9,N9) provides the multiplicity of repeating
IRs. ThereforeN(a,b) unambiguously provide the multiplicity labels.

(v) 32SU(3) symbol.The 32G symbols are related to the Clebsch–Gordan coefficients as in
Eq. ~132!, and have more explicit symmetry than the latter. The 32SU~3! symbol is represented
by,
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F N~1,2! N~1,3! N~2,3! N~2,1! N~3,1! N~3,2!

N2 M 1 N3 M 2 N1 M 3 N2

U1,R1 V3,S3 U2,R2 V1,S1 U3,R3 V2,S2

P1 P3 P2 Q1 Q3 Q2

G
L

.

Here the top row specifies the multiplicity labels: the second and third rows specify the usual
complete set of labels for the basis states of the three IRs.

(vi) Generating function for the 32SU(3) symbol for L.0. Extract coefficient of the mono-
mial

j 12
N~1,2! j 21

N~2,1! j 13
N~1,3! j 31

N~3,1! j 23
N~2,3! j 32

N~3,2! j1
L )

a51

3

p̄ aPa
q̄ aQa

r̄ aRa
s̄aSa

ū aUa
v̄ aVa

in

E
1
→iB̃i2 exp@ iB̃i~~ j1 r̄

1r̄ 2ū 32 r̄ 1 j 12s̄
21 r̄ 2 j 21s̄

11 r̄ 1 j 12s̄
2~ ū 2 j 23v̄

31ū 1 j 13v̄
3!

2 r̄ 2 j 21s̄
1~ ū 2 j 23v̄

31ū 1 j 13v̄
3!1 r̄ 1 j 13v̄

3ū 3 j 32s̄
22 r̄ 2 j 23v̄

3ū 3 j 31s̄
1!

3~ p̄1q̄ 22 p̄ 2q̄ 1!1~cyclic!#

Multiply by the factor

)
a51

3 FPa!Qa!Ra!Ra!Sa!Ua!Va! ~Ua12I a11!! ~2I a11!

~Va12I a11!! G1/2.
This gives the 32SU~3! symbol up to an overall normalization depending only on IRs involved.

(vii) Formula for 32SU(3) symbol for L.0. We have obtained an explicit analog of the
Bargmann’s formula for the 32j symbol of SU~2!, @Eq. ~33!#. This formula for 32SU~3! symbols
~for L.0! is presented in Eq.~187!. The notation used for the summation variables is defined in
Tables III and IV as explained in detail in Sec. XI.

(viii) Generating function and formula for 32SU(3) symbol for L,0 case. These can be
obtained from those forL.0 by making the changes indicated in Eqs.~203!–~207!.

APPENDIX: GROUP ACTION ON THE VARIABLES

In Sec. V, we setuz3u51 in constructing the auxiliary measure. Thus the IRs are realized in the
space of polynomials inz1, z2, w1, w2 ande

iu. We clarify here the manner in which the group acts
on these variables.

The action of the group onzW andwW is given by,

U:zi→Ui j zi[zi8 , wi5Ui j*wj[wi8 . ~A1!

We have imposed the constraint,wW •zW50 and regarded (z1 ,z2 ,z3 ,w1 ,w2) as independent
variables. The action of the group on these variables is,

U:~z1 ,z2 ,z3 ,w1 ,w2!→~z18 ,z28 ,z38 ,w18 ,w28!, ~A2!

where the primed variables are defined in Eq.~A1!.
Now let us takeuz3u51 i.e.,z35eiu. However, under the action@Eq. ~A!#, z3Þ0 in general:

z385uz38uexp~ iu 8!. ~A3!
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Now define,
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z18

uz38u
, z295

z28
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uz38u
. ~A4!

Then action of the group is defined by,

U:~z1 ,z2 ,w1 ,w2 ,u!→~z19 ,z29 ,w19 ,w29 ,u 8!. ~A5!

This action is nonlinear as seen from Eqs.~A1! and~A4!. In spite of this it serves our purpose
as a calculating tool. This realization is intimately related to the optimal boson calculus for
SU~3!.51

Also the action is ambiguous wheneverz38 5 0, becauseu 8 is then undefined. However, this
does not pose a problem for us, because we use a generic situation in our calculations.z38 5 0 is a
set of measure zero in our space of variables, (z1 ,z2 ,z3 ,w1 ,w2).
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Complete orbit–orbit branching rules are found for the classical algebra–maximal
reductive subalgebra pairsAm1n11.Am%An%u(1), Bm11.Bm%u(1),
Cm11.Am%u(1),Dm11.Dm%u(1), andDm11.Am%u(1). © 1996 American
Institute of Physics.@S0022-2488~96!02812-5#

I. INTRODUCTION

In a recent paper,1 to be referred to asI , we found orbit–orbit branching rules for the classical
algebra–subalgebra pairsCm1n.Cm%Cn , Bm1n.Dm%Bn , Dm1n.Dm%Dn . Our motivation
here is similar, and we refer toI for an account of it.

We now consider the algebra–subalgebra pairsAm1n11.Am%An%u(1), Bm11.Bm%u(1),
Cm11.Am%u(1), Dm11.Dm%u(1), Dm11.Am%u(1), in which the subalgebra contains the
factor u~1!; this completes the cases in which the algebra is classical and the subalgebra is
maximal and equal rank@we regardu~1! as contributing 1 to the subalgebra rank#. As for the cases
considered inI , explicit representation–representation branching rules for the present algebra–
subalgebra pairs are not known for general values ofm,n. Weyl sectors of algebra and subalgebra
line up, i.e., each subalgebra sector contains only complete algebra sectors.

In recent publications2,3 it is shown that for the cases under consideration~equal rank algebra–
subalgebra pairs, with Weyl sectors lining up! the integrity basis~elementary Weyl orbits!, in
terms of which the subalgebra Weyl orbits~or, simply, orbits! contained in all algebra orbits may
be expressed as stretched products~all orbit labels additive, i.e., each algebra and subalgebra label
of the product orbit is equal to the sum of the corresponding labels of the factor orbits! consists
entirely of the subalgebra orbits contained in the fundamental orbits of the algebra. We label an
orbit by the components of its highest weight in a fundamental weights basis; a fundamental orbit
is one which has a fundamental weight as its highest weight~one label is unity, the rest zero!.

We use orthonormal vectorsei for the most part as our basis in weight space rather than the
more commonly used fundamental weights—it is easier then to recognize to which algebra orbit a
subalgebra orbit belongs.

Theu~1! label,u, is centered so that its sum over all states of an algebra orbit vanishes, and
its scale is such that the spacing between adjacent values in the same algebra orbit is unity. Unlike
other orbit labelsu can take negative and fractional values.

For each algebra–subalgebra pair we define au~1! fundamental weightvu . It is orthogonal to
the other subalgebra fundamental weights~and roots! and points in theu~1! direction. The pres-
ence ofuvu in the weight of a state indicates that itsu~1! label isu.

The branching rules given inI for Bm1n.Dm%Bn andDm1n.Dm%Dn are inapplicable for
m51, whenDm becomesu~1!; that is whyBm11.Bm%u(1) andDm11.Dm%u(1) are treated
here.

II. THE ALGEBRA–SUBALGEBRA PAIR Am1n11'Am %An %u (1)

As basis vectors in weight space we use thel11 (l5m1n11) orthonormal vectorsei ,
i51,...,l11. The Weyl group is generated by the interchangesei↔ej .

The simple roots ofAl area i5ei2ei11, i51,...,l . The fundamental weightsvi are expressed
in terms of the simple roots by the reciprocal of the Cartan matrix

0022-2488/96/37(12)/6570/12/$10.00
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v i5 (
h51

l

~C21! ihah , ~ i51,...,l !; ~1!

in terms of the orthonormal basis we find

v i5~ l11!21F ~ l2 i11! (
h51

i

eh2 i (
h5 i11

l11

ehG . ~2!

ai andvi are all orthogonal to(h51
l11 eh and hence lie in anl5m1n11 dimensional weight space.

For any weight of the fundamental orbit [i ] according to Eq.~2! the number ofeh with
coefficient (l2 i11)/(l11) is i and the number with coefficient2i /( l11) is l2 i11.

The simple roots ofAl , Am , andAn are shown in Fig. 1. In terms of the simple roots ofAl the
simple rootsa j8 of Am andak9 of An area j8 5 a j , j51,...,m andak9 5 am1k11, k51,...,n. The
fundamental weightsv j8 of Am andvk9 of An are

v j85~m11!21F ~m2 j11! (
h51

j

eh2 j (
h5 j11

m11

ehG , j51,...,m,

~3!

vk95~n11!21F ~n2k11! (
h5m12

m1k11

eh2k (
h5m1k12

l11

ehG , k51,...,n.

The fundamentalu~1! weight is

vu5~m11!21 (
h51

m11

eh2~n11!21 (
h5m12

l11

eh . ~4!

The algebra weight @l1,l2,...,ll# becomes, in the subalgebra basis,
[l1 ,l2 ,...,lm ;lm12,lm13,...,l l ;u], where

u5~ l11!21F ~n11! (
i51

m11

il i1~m11!(
j51

n

~n2 j11!lm1 j11G . ~5!

The elementaryAm%An%u(1) orbits are those contained in the fundamentalAl orbits [i ]. A
representative one, [j ;k], in [ i ] has as the weight of its highest statev j8 1 vk9 1 uvu , where

k5 i2 j , ~6!

u5~ l11!21@ j ~n11!2k~m11!#. ~7!

Thus

FIG. 1. The Dynkin–Coxeter diagram forAm1n11.Am%An%u(1). Thenumbers below the diagram label the simple
roots ofAl5Am1n11. The firstm above label those ofAm and the lastn above label those ofAn . The direction unlabeled
above corresponds to that ofu~1!, orthogonal to the otherl215m1n simple roots ofAl .
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@ i #. (
j5max~0,i2n21!

min~m11,i !

@ j ; i2 j #. ~8!

When j50 orm11 the point orbit ofAm is understood; similarly for theAn orbit whenk50 or
n11. It may be checked that the weightsv j8 1 vk9 1 uvu havei e’s with coefficient (l2 i11)/(l
11) andl2 i11 with coefficient2i /( l11) and therefore belong to theAl orbit [ i ]; moreover the
weights of [j ;k] exhaust those of [i ].

It remains to find the compatibility rules between pairs of elementary orbits. Consider the
stretched product [j ;k] •[ j 8;k8]; it implies the orbit [j , j 8;k,k8] of Am%An%u(1) where theAm

orbit [ j , j 8] is that with labelslh8 5 dh j 1 dh j8 and similarly for the orbit [k,k8] of An . The pair
[ j ;k],[ j 8;k8] is compatible if and only if their stretched product belongs to the orbit [i ,i 8] of Al ,
wherei5 j1k andi 85 j 81k8. We may supposei 8. i ~two elementary orbits in the sameAl orbit
are known to be incompatible!. We may also supposej 8. j ~otherwise interchange the roles ofAm

andAn!. Now a weight of theAl orbit [ i ,i 8] has i e’s with coefficient (2l2 i2 i 812)/(l11),
i 82 i with coefficient (l2 i2 i 811)/(l11) andl2 i 811 with coefficient2( i1 i 8)/( l11).

TheAmorbit [ j , j 8] has weightv j8 1 v j 8
8 1 @( j 1 j 8)( l 2 m) 2 (k1 k8)(m1 1)#@( l 1 1)(m

1 1)#21(h51
m11eh ; we have included the part of theu~1! weight component for whichh<m11.

There are j e’s with coefficient (2l2 i2 i 812)/(l11), j 82 j with coefficient
( l2 i2 i 811)/(l11) andm112 j 8 with coefficient2( i1 i 8)/( l11). Comparing this with the
number ofe’s in theAl orbit with each coefficient we conclude that in theAn part of the weight
there are k e’s with coefficient (2l2 i2 i 812)/(l11), k82k with coefficient
( l2 i2 i 811)/(l11) and n2k811 with coefficient2( i1 i 8)/( l11). This is possible only if
k8>k. So [j ;k] and [j 8;k8] are compatible if and only ifj 8> j and k8>k ~recall i 8. i !. The
compatibility condition is shown diagrammatically in Fig. 2. Two elementary orbits are incom-
patible if one lies above and to the right of the other.

So the orbit–orbit branching rules are complete. To get theAm%An%u(1) orbit content of the
Al orbit @l1,l2,...,ll#, choose a series of boxes [j i ;ki ], one from each diagonal rowi5 j i1ki for
which liÞ0, such that each is compatible with the last precedingi ~and therefore with all preced-
ing i !. Each such series contributes one subalgebra orbit@l18 ,...,lm8 ;l19 ,...,ln9# with lh8
5 ( il idh j i, lh9 5 ( il idhki ~the stretched product of the chosen mutually compatible orbits!; the
u~1! labels are also additive. The same strategy can be used to get the subalgebra orbit content of
an arbitrary algebra orbit for the algebra–subalgebra pairs considered in the next four sections; we
will not repeat it for them.

III. THE ALGEBRA–SUBALGEBRA PAIR Bm11'Bm %u (1)

In this and the next three sections~III–VI !, to save space, we state our results without detailed
proofs; the proofs are very similar to those given in Sec. II forAm1n11.Am%An%u(1). The
roots ofBl ( l5m11) are6ei , i51,...,l and6ei68ej , i51,...,l21 andj5 i11,...,l whereei ,
i51,...,l are orthonormal vectors; the prime above is to indicate that the6 signs are independent.
The Weyl group is generated by sign reversalsei→2ei and interchangesei↔ej .

The simple roots ofBl area i5ei2ei11, i51,...,l21 anda l5el . The fundamental weights
are given by

v i5 (
h51

i

eh , i51,...,l21, v l5
1

2 (
h51

l

eh . ~9!

In any weight of the fundamental orbit [i ], i51,...,l21, the number ofeh with coefficient61 is
i , the number with coefficient 0 isl2 i ; in the fundamental orbit [l ], all l eh have coefficient
61

2.
The simple roots ofBl andBm are shown in Fig. 3. The simple roots ofBm area i8 5 a i11.
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The fundamental weights ofBm are

v i85 (
h52

i11

eh , i51,...,m21,

vm8 5
1

2 (
h52

l

eh . ~10!

The fundamentalu~1! weight is

FIG. 2. The elementaryAm1n11.Am%An%u(1) W orbits. The elementary orbit [j ;k] belongs to the (j1k)th funda-
mental orbit ofAm1n11. Two elementary orbits are compatible only if one lies below and/or to the right of the other.

FIG. 3. The Dynkin–Coxeter diagram forBm11.Bm%u(1). Thenumbers below the diagram label the simple roots of
Bl5Bm11. Those above label those ofBm . The direction unlabeled above corresponds to that ofu~1!, orthogonal to the
simple roots and fundamental weights ofBm .
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vu5e1 . ~11!

The algebra weight@l1,l2,...,ll# becomes, in the subalgebra basis,@l2,l3,...,l l ;u# with

u5 (
h51

l21

lh1
1

2
l l . ~12!

The elementaryBm%u(1) orbits are those contained in the fundamentalBl orbits [i ]. The first
m orbits contain 3 elementary orbits each and thel th contains 2

@ i #.@ i :1# % @ i :2# % @ i :3#, i51,...,m,
~13!

@ l #.@ l :2# % @ l :3#,

where

@ i :1#5@ i ;0#, i51,...,m21, @m:1#5@2m;0#,

@ i :2#5@ i21;1#, i51,...,m,
~14!

@ i :3#5@ i21;21#, i51,...,m,

@ l :2#5@m; 12#, @ l :3#5@m;2 1
2#,

FIG. 4. The elementary subalgebra orbits forBm11.Bm%u(1). Those in thei th column belong to thei th fundamental
orbit of Bl5Bm11. One in the first row is compatible with all those to its right, in any row. One in the second or third row
is compatible with one to its right only if they are in the same row.

FIG. 5. The Dynkin–Coxeter diagram forCm11.Am%u(1). Thenumbers below the diagram label the simple roots of
Cl5Cm11. Those above label those ofAm . The direction unlabeled above corresponds to that ofu~1!, orthogonal to the
simple roots and fundamental weights ofAm .
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The numbersi , i21, m mean the correspondingBm fundamental orbits; 2m means theBm orbit
whosemth label is 2, the others 0;i21 means the point orbit wheni51. The symbol on the right
of the semicolon is theu~1! label of the orbit.

Two elementary orbits [j :k] and [j 8;k8], with j 8. j , are compatible ifk51, or if k andk8 are
equal; if kÞ1 andk8Þk they are incompatible; see Fig. 4.

IV. THE ALGEBRA–SUBALGEBRA PAIR Cm11'Am %u (1)

The roots ofCl ( l5m11) are6ei , 1< i< l and6ei68ej , 1< i, j< l , whereei , ej are
orthonormal weight space vectors. Weyl reflections are generated by sign reversalsei→2ei and

FIG. 6. The elementaryCm11.Am%u(1) orbits [j ,k]. The orbit [j ,k] belongs to thei th5( j1k)th fundamental orbit of
Cl5Cm11. Two elementary orbits are incompatible if and only if one lies to the right and above the other.

FIG. 7. The Dynkin–Coxeter diagram forDm11.Dm%u(1). Thenumbers below the diagram label the simple roots ofDl

( l5m11). Those above label those ofDm . The direction unlabeled above corresponds to that ofu~1!, orthogonal to the
simple roots and fundamental weights ofDm .
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interchangesei↔ej . The simple roots area i5ei2ei11, i51,...,l21 anda l52el ~for simplicity
we have multiplied them and the fundamental weights below by&!. In terms of the orthonormal
basis the fundamental weights are

v i5 (
h51

i

eh , i51,...,l . ~15!

Any weight of the fundamental orbit [i ], with highest weightvi , hasi e’s with coefficient61,
l2 i with coefficient 0.

The simple roots ofCl andAm are shown in Fig. 5. Those ofAm area i8 5 a i , i51,...,m. The
fundamental weightsv j8 of Am are

v j85 l21F ~ l2 j ! (
h51

j

eh2 j (
h5 j11

l

ehG . ~16!

The fundamentalu~1! weight is

vu52l21(
h51

l

eh . ~17!

The algebra weight@l1,...,ll# becomes, in the subalgebra basis,@l1,...,l l21;u# with

u5
1

2 (
i51

l

il i . ~18!

The elementaryAm%u(1) orbits are the ones contained in the fundamentalCl orbits [i ]. A
representative one, [j ;k], in [ i ] has as the weight of its highest statev j1v l2k1uvu , where

k5 i2 j , ~19!

u5 1
2~ j2k!. ~20!

Thus

@ i #.(
j50

i

@ j ,i2 j #, i51,...,l . ~21!

The elementary orbit [j ,k], wherek5 i2 j , hasAm orbit labels

lh5dh j1dh,l2k , ~22!

wheredh j or dh,l2k is taken as zero whenj or k, respectively, is 0 orl . Theu label of the orbit
[ j ,k], suppressed in Eq.~21!, is given by Eq.~20!. Wheni5 l , j and l2k are equal and nonzero
Am orbit labels are all 2.

It can be shown that two elementary orbits [j ,k] and [j 8,k8] ~we may suppose
i 85 j 81k8. i5 j1k! are compatible if and only ifj 8> j andk8>k ~only one of the> signs can
be5!. The elementary orbits and their compatibility rules are shown graphically in Fig. 6.
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V. THE ALGEBRA–SUBALGEBRA PAIR Dm11'Dm %u (1)

The roots ofDl ( l5m11) are6ei68ej , 1<i, j< l whereei ,ej are orthonormal weight
space vectors. The Weyl group is generated by two sign reversals at a timeei→2ei , ej→2ej
and interchangesei↔ej .

The simple roots area i5ei2ei11, i51,...,l21, a l5el211el . The fundamental weights are

v i5 (
h51

i

eh , i51,...,l22,

v l215
1

2F (h51

l21

eh2el G , v l5
1

2F (h51

l21

eh1el G . ~23!

Thus a weight of the orbit [i ], i< l22, hasi eh with coefficient61, the rest with coefficient 0;
one of@l21# has an odd number with coefficient2 1

2, the rest with coefficient
1
2; one of [l ] has an

even number with coefficient21
2, the rest with coefficient12.

The simple roots ofDl andDm are shown in Fig. 7. The simple roots ofDm area i8 5 a i11,
i51,...,m. The fundamental weights ofDm are

FIG. 8. The elementary subalgebra orbits forBm11.Bm%u(1). Those in thei th column belong to thei th fundamentalBl

orbit, l5m11. One in the first row is compatible with all those to its right, in any row. Each in rows 2 and 3 is compatible
with those to its right in the same row, and both in themth column are compatible with both in the~m11!th column.

FIG. 9. The Dynkin–Coxeter diagram forDm11.Am%u(1). Thenumbers below the nodes label the simple roots ofDl

( l5m11). Those above label those ofAm . The direction unlabeled above corresponds to that ofu~1!, orthogonal to the
roots and fundamental weights ofAm .
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v i85 (
h52

i11

eh , i51,...,m22,

~24!

vm218 5
1

2 F (
h52

l21

eh2el G , vm8 5
1

2 (
h52

l

eh .

The fundamentalu~1! weight is

vu5e1 . ~25!

A Dl weight @l1,...,ll#, in aDm%u(1) basis, becomes@l2,l3,...,ll ;u# with

u5(
i51

l22

l i1
1

2
~l l211l l !. ~26!

The elementaryDm%u(1) orbits are those contained in the fundamentalDl orbits [i ]. The
first l22 orbits contain 3 elementary orbits each; the~l21!th andl th each contains 2

@ i #.@ i :1# % @ i :2# % @ i :3#, i51,...,l22,
~27!

@ l21#.@ l21:2# % @ l21:3#, @ l #.@ l :2# % @ l :3#,

where

FIG. 10. The elementaryDm11.Am%u(1) orbits for l5m11 even. Two orbits are compatible only if one is to the right
of and/or below the other, or, in case one of them is in the diagonal rowl21, if either of its squares is to right of and/or
below the other or to the left of and/or above the other.
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@ i :1#5@ i ;0#, i51,...,l23,

@ l22:1#5@m21,m;0# ~ the last twoDm labels are 1, the rest 0!

@ i :2#5@ i21;1#, i51,...,l22,

@ i :3#5@ i21;21#, i51,...,l22,
~28!

@ l21:2#5@m21; 12#, @ l21:3#5@m;2 1
2#,

@ l :2#5@m; 12#, @ l :3#5@m21;2 1
2#.

The numbersi ,i21,m,m21 mean the correspondingDm fundamental orbits, i.e., the correspond-
ing Dm orbit label is 1. The number to the right of the semicolon is theu~1! label.

Two elementary orbits [j :k] and [j 8:k8], with j 8. j , are compatible ifk51 or if k andk8 are
equal or if j5m and j 85m11; otherwise they are incompatible; see Fig. 8.

VI. THE ALGEBRA–SUBALGEBRA PAIR Dm11'Am %u (1)

The roots and fundamental weights ofDl ( l5m11) are of course the same as those given in
the first paragraph of Sec. V.

FIG. 11. The elementaryDm11.Am%u(1) orbits forl5m11 odd. The compatibility condition for two orbits is the same
as that in the caption of Fig. 10.
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The simple roots ofDl andAm are shown in Fig. 9. The simple roots ofAm area i8 5 a i ,
i5 l ,...,m. The fundamental weights ofAm are

v i85~m11!21F ~m2 i11! (
h51

i

eh2 i (
h5 i11

m11

ehG . ~29!

The fundamentalu~1! weightvu is

vu5
2

l (
h51

l

eh . ~30!

TheDl weight @l1,...,ll# becomes, in theAm%u(1) basis,@l1,...,l l21;u#, with

u5
1

2 (
i51

l22

il i1
l22

4
l l211

l

4
l l . ~31!

The elementaryAm%u(1) orbits are those contained in the fundamentalDl orbits [i ]. We find

@ i #.(
j50

i

@ j ,i2 j #, i51,...l22, ~32!

@ i #. (
j50

@~1/2! i #

@ i22 j ,2j #, i5 l21,l . ~33!

In Eq. ~32! the elementary orbit [j ,k], with k5 i2 j , is that with labels

lh5dh j1dh,l2k , ~34!

i.e., the nonzero~unit! labels are thej th and (l2k)th; if j ~or k! is 0 or l the corresponding
Kroneckerd in Eq. ~34! is 0. Theu label of the orbit [j ,k], suppressed in Eq.~32!, is

u5 1
2~ j2k!. ~35!

In Eq. ~33! @ 12i # means the integer part of12i , i.e.,
1
2i or

1
2~i21! according to whetheri is even or

odd. The elementary orbit [i22 j ,2j ] is that with labels

lh5dh,i22 j , ~36!

i.e., there is one nonzero~unit! label, the (i22 j )th; if i22 j is 0 or l the Kroneckerd in Eq. ~36!
is 0 and we have the point or zero orbit ofAm . Theu-label of [i22 j ,2j ] is

u5 1
2i2 j2 1

4l . ~37!

The elementary orbits and their compatibility rules are shown graphically in Figs. 10 and 11,
for l even and odd, respectively.

For the~l21!th fundamental orbit we associate with the elementary orbit [m22 j ,2j ] also the
labels [m22 j21,2j11] ~except whenm22 j50!, so it is represented by two boxes in Figs. 10
and 11. Two elementary orbits [j ,k],[ j 8,k8] are incompatible ifj 8. j andk8,k or if j 8, j and
k8.k. In casej1k5m or j 81k85m these inequalities must hold for both versions of [j ,k] or
[ j 8,k8]; see the caption of Fig. 10.
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VII. CONCLUSIONS

This work concludes the computation of branching rules for Weyl orbits of classical Lie
algebras and their maximal reductive regular subalgebras. Work on a similar problem for Kac–
Moody algebras is in progress.
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Comments on a recent paper by S. Adler on projective
group representations in quaternionic Hilbert spaces

Gérard G. Emch
Department of Mathematics, University of Florida, Gainesville, Florida 32611

~Received 24 June 1996; accepted for publication 12 August 1996!

A version of Schur’s lemma is proven that elucidates some issues raised by that
paper. ©1996 American Institute of Physics.@S0022-2488~96!03712-7#

I. PRELIMINARIES: PROJECTIVE REPRESENTATIONS OF INDIVIDUAL SYMMETRIES

In a paper1 recently published in this journal, Adler mentions divergences between his ap-
proach and that taken by the present author2 in connection with a then new proof3,4 for Wigner’s
theorem~also see notes No. 5–7 for Bargmann’s review5 on the several proofs that appeared at the
time!. It seems worth pointing out that these divergences are not due, as Adler states, to a
‘‘failure’’ that ‘‘can lead to erroneous conclusions,’’ but rather to subtle shifts in the assumptions.

Let us first recall that in Refs. 2 and 3 asymmetryof an irreducible quaternionic quantum
system is defined as an isomorphismm of the canonically relatively orthocomplemented lattice
P ~HH! of all projectors of a Hilbert spaceHH on the fieldH of the real quaternions. To make
things as unambiguous as is compatible with conciseness, we only mention here that the scalar
product inHH is a positive definite sesquilinear form, linear in its first factor: (qf,c)5q(f,c)
and ~f,c!5~c,f!* , ;qPH; f,cPHH ; and thatm is an isomorphism ofP ~HH! exactly when it
is a bijective map, such that

P,Q⇒mP,mQ; ~mP!'5m~P'!, ;P,QPP ~HH!. ~1.1!

The interpretation of this formulation has its roots in the work of Birkhoff and von Neumann:6 the
elements ofP are to be interpreted as the ‘‘propositions’’~or ‘‘questions’’ or ‘‘yes–no’’ experi-
ments! on the physical system considered. Hence~1.1! is the pragmatic requirement thatif Q is
true whenever P is true, i.e. if P implies Q, thenmP impliesmQ; and the negation(mP)' of mP
is the image throughm of the negation P' of P.

As a consequence3 of the first fundamental theorem of projective geometry,7 every suchm is
implemented by a bijective semilinear map ofHH into itself:

m~P!5S21PS, ;PPP ~HH!, ~1.2!

with

S~f1c!5Sf1Sc and S~qf!5qS
21qqSSf,;qPH; f,cPHH . ~1.3!

Clearly, then, one can assume without loss of generality that there exists a bijective,linearmap of
HH onto itself, namelyS0[qsS, which implements the same symmetry:

S0
21PS05m~P!5S21PS, ;PPP ~HH!. ~1.4!

Proposition 1 (A Quaternionic Schur’s lemma): The bijective semilinear map S ofHH which
implements a symmetrym of P ~HH! is unique up to a multiplicative constantv; i.e., if Sk(k51,2)
are two bijective semilinear maps such that

S1
21PS15S2

21PS2 ,;PPP ~HH!; ~1.5!

0022-2488/96/37(12)/6582/4/$10.00
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then

S15vS2 , for some non-zero vPH. ~1.6!

As the proof of this result bears directly on the main issue of this paper, it is given with some
details here.

Proof: Let S[S1S2
21 and letS0[qsS be the corresponding bijective,linear map @cf. ~1.4!#.

We have then

PS05S0P, ;PPP ~HH!. ~1.7!

For everycPHH with ici51, let Pc denote the projector

Pc :fPHH→~f,c!cPHH . ~1.8!

From ~1.7! we have in particular for allf andc on the unit sphere ofHH :

PcS0f5S0Pcf, ~1.9!

which reads as~recall thatS0 is linear!

~S0f,c!c5~f,c!S0c, ~1.10!

and thus in particular, forf5c:

S0f5v0~f!f, ;fPHH with ifi51. ~1.11!

The essence of Proposition 1 is to assert that any explicit dependence ofv on f would not be
compatible with the definition~1.1! of a symmetry. Indeed, we first notice that, whenever
~f,c!Þ0, ~1.9! reads as

S0c5v0~c!c, with v0~c!5~f,c!21v0~f!~f,c!. ~1.12!

Upon using the above argument again forx5~if1ci!21 ~f1c! wheneverf andc are linearly
independent and not orthogonal, we have

v0~x!f1v0~x!c5~ if1ci !S0x5v0~f!f1v0~c!c, ~1.13!

i.e., upon using linear independence off andc,

v0~f!5v0~c!. ~1.14!

Forf,c as above, andqPH with iqi51, the previous argument, now withf85qf, used instead
of f, gives

v0~qf!5v0~c!, ~1.15!

i.e., together with~1.12! and ~1.14!,

qv0~f!q*5v0~f!, ;qPH with iqi51. ~1.16!

This implies thatv0~f! is real.
Finally, when~f,c!50 let z5~1/&!~f1c! to get similarly

v0~f!5v0~z! and v0~z!5v0~c!, ~1.17!
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so that~1.14! holds again in this case. Hence, there is anv0 real, andindependentof f, such that

S0f5v0f, ;fPHH with ifi51. ~1.18!

Sincev0 is real, we have

S0f5v0f, ;fPHH , i.e., S05v0I . ~1.19!

Returning now to the first line of the proof, we see that~1.19! proves the proposition, namely

S15vS2 , with v5qS
21v0 . ~1.20!

Remark:Without loss of generality, we can assume2–4 that the transformationsS implement-
ing any symmetrym are not only semilinear but counitary, i.e.,

~Sf,Sc!5qS~f,c!qS
21, ;f,cPHH . ~1.21!

We can therefore require, without loss of generality, that the quaternionv in the conclusion~1.6!
is of norm 1.

II. THE ISSUE: PROJECTIVE REPRESENTATIONS OF SYMMETRY GROUPS

Having predicated our analysis~as Adler apparently did his! on the idea that the natural
language in which to express the primary concepts of the theory of symmetries isprojective
geometry, we defined2 a projective representationm of a groupG as agroup homomorphism,

m:gPG°m~g!PAut$P ~HH!%, ~2.1!

where Aut $P ~HH!% is the group of all bijective maps ofP ~HH! onto itself, satisfying~1.1!.
Since the theory of group representations on vector spaces is still~and certainly was in the 1930s!
better developed than the corresponding theory for projective spaces, the interest of Wigner’s
theorem is to help reduce the study of the latter to that of the former. Specifically, we defined a
lifting of a projective representationm as a map

S:gPG°S~g!PAut$HH!%, with S~g!21PS~g!5mP, ;PPP „HH)…, ~2.2!

where Aut$HH!% denotes the group of all bijective semilinear maps ofHH onto itself. Note that,
while the mapS implementsm, this is not sufficient to ensure that the mapS is itself a group
homomorphism. Nevertheless, since for any pairg1, g2 of elements ofG, S(g1)S(g2) and
S(g1g2) implement the same symmetry, we have

@S~g1!S~g2!#
21P@S~g1!S~g2!#5@S~g1g2!#

21P@S~g1g2!#, ;PPP ~HH!. ~2.3!

Proposition 1 thus implies that there exists a nonzero quaternionv(g1 ,g2) ~which one can
actually take to be of norm 1; see the remark at the end of Sec. I!, such that

S~g1!S~g2!5v~g1 ,g2!S~g1g2!. ~2.4!

Adler collapses these two definitions@projective representation, i.e.~2.1!; and lifting i.e.~2.2!# into
one, namely that

@S~g1!S~g2!#f5v~f;g1 ,g2!)@S~g1g2!#f, ~2.5!

holds ‘‘for one particular complete set of states.’’
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III. DISCUSSION

Adler emphasizes that one should allow for an actual dependence ofv onf in ~2.5!; also see
his book;8 especially its Sec. 4.6~his Ref. 4! that he cites to support his version, formula~2!, of the
above~2.5!. Adler points out correctly that this requires restricting~2.5! to hold only on a par-
ticular set of vectors rather than on the whole unit sphere ofHH ; indeed the latter would imply
that one of the transformationsS(g1), S(g2), or S(g1g2) would not be semilinear, thus violating
Wigner’s theorem.

This is to say that the definitions~2.1–2.2! and ~2.5! ~with an explicit dependence onf! are
not compatible unconditionally; specifically, condition~2.5! holds only if condition~2.3! is vio-
lated in such a way that one cannot go past~1.11! in the proof of Proposition 1~see Sec. I!; hence,
the weakening of condition~2.3! must be such as to exclude, in that proof, the consideration of
pairs c, f of ~unit! vectors inHH that are not orthogonal. This then requires~i! that in ~2.3!
P ~HH! be replaced by the atomic maximal Boolean orthocomplemented sublatticeP 0 of P ~HH!
corresponding to a complete orthonormal basis$cn% in HH ; and ~ii ! that the modified condition
~2.3! holds only on pure states onP 0; i.e., thatc andf run over the members of$cn%.

For consistency reasons, one may then wish to pursue Adler’s more general definition, in-
volving only ‘‘one particular complete set of states,’’ into the actual premises of the theory,
namely the axiomatic~i.e., physical! definition of a symmetry. One would then have to take into
account the fact that the first fundamental theorem of projective geometry does not hold in such a
weakened environment, invalidating thereby the usual arguments~Refs. 3–5, i.e., Adler’s Refs.
Nos. 1–3! that are intimately linked to the derivation and axiomatic implications of Wigner’s
representation of individual symmetries by semilinear transformations of the underlying Hilbert
space.

Thus, we thought that what ultimately amounts to a subtle shift in assumptions—rather than to
some erroneous deductions from accepted basic premises—deserved to be pinpointed, as it clari-
fies the genuine scope of the new horizons opened by Adler’s generalization.
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Response to the Comment by G. Emch on projective
group representations in quaternionic Hilbert space

Stephen L. Adler
Institute for Advanced Study, Princeton, New Jersey 08540

~Received 8 July 1996; accepted for publication 12 August 1996!

We discuss the differing definitions of complex and quaternionic projective group
representations employed by us and by Emch. The definition of Emch~termed here
a strong projective representation! is too restrictive to accommodate quaternionic
Hilbert space embeddings of complex projective representations. Our definition
~termed here a weak projective representation! encompasses such embeddings, and
leads to a detailed theory of quaternionic, as well as complex, projective group
representations. ©1996 American Institute of Physics.@S0022-2488~96!03812-1#

I. PRELIMINARIES NOT INVOLVING GROUP STRUCTURE

Before turning to a discussion of what is an appropriate definition of a quaternionic projective
group representation, we first address several issues that do not involve the notion of agroupof
symmetries. We follow throughout the Dirac notation used in our recent book,1 in which linear
operators in Hilbert space act on ket states from the left and on bra states from the right, as in
O u f & and^ f uO , while quaternionic scalars in Hilbert space act on ket states from the right and on
bra states from the left, as inu f &v andv^ f u.

We begin by recalling the statement~see Sec. 2.3 of Ref. 1! of the quaternionic extension of
Wigner’s theorem, which gives the Hilbert space representation of an individual symmetry in
quantum mechanics. Physical states in quaternionic quantum mechanics are in one-to-one corre-
spondence with unit rays of the formuf&5$u f &v%, with u f & a unit normalized Hilbert space vector
andv a quaternionic phase of unit magnitude. A symmetry operationS is a mapping of the unit
rays uf& onto imagesuf8&, which preserves all transition probabilities,

S uf&5uf8&, u^f8ug8&u5u^fug&u. ~1!

Wigner’s theorem, as extended to quaternionic Hilbert space, asserts that by an appropriate
S -dependent choice of ray representatives for the states, the mappingS can always be repre-
sented~in Hilbert spaces of dimension greater than 2! by a unitary transformationUS on the state
vectors, so that

u f 8&5US u f &. ~2!

Conversely, any unitary transformation of the form of Eq.~2! clearly implies the preservation of
transition probabilities, as in Eq.~1!. When only one symmetry transformation is involved, the
issue of projective representations does not enter, since Wigner’s theorem asserts that this trans-
formation can be given a unitary representation on appropriate ray representative states in Hilbert
space. The issue of projective representations arises only when we are dealing with two~or more!
symmetry transformations, in which case the ray representative choices which reduce the first
symmetry transformation to unitary form may not be compatible with the ray representative
choices which reduce a second symmetry transformation to unitary form. Thus we disagree with
Emch’s statement, in the semifinal paragraph of his Comment, that Wigner’s theorem~which he
notes is a form of the first fundamental theorem of projective geometry! may be dependent on the
definition adopted for quaternionic projective group representations.
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In the first section of his Comment, Emch proves a Proposition stating that if an operatorO

commutes with all of the projectorsu f &^ f u of a quaternionic Hilbert space of dimension 2 or
greater, thenO must be a real multiple of the unit operator 1 in Hilbert space. WhenO is further
restricted to be a unitary operator~as obtained from a symmetry transformation via the Wigner
theorem!, the real multiple is further restricted to be61. Since we will refer to this result in the
next section, let us give an alternative proof, based on the spectral representation of a general
unitary operatorU in quaternionic Hilbert space,

U5(
l

uul &eiu l ^ul u, 0<u l <p, ~3!

in which the sum overl spans a complete set of orthonormal eigenstates ofU. Let us focus on a
two state subspace spanned byuu1& and uu2&, and construct the projectorP5uF&^Fu, with

uF&5uu1&1uu2&v, v̄52v, v5va1 jvb , vavbÞ0, ~4!

where va,b are symplectic components lying in the complex subalgebra of the quaternions
spanned by 1 andi . Then the projectorP is given by

P5uu1&^u1u1uu2&^u2u1uu2&v^u1u2uu1&v^u2u, ~5a!

and the part ofU lying in the uu1,2& subspace is

U1,25uu1&eiu1^u1u1uu2&eiu2^u2u. ~5b!

The commutator ofU andP is then given by

@U,P#5@U1,2,P#5uu2&~eiu2v2veiu1!^u1u2uu1&~eiu1v2veiu2!^u2u, ~6!

which vanishes only ifeiu15eiu2 ~from equating to zero the coefficient ofva) ande
iu15e2 iu2

~from equating to zero the coefficient ofvb). Since 0<u1,2<p, this requires eitheru15u250 or
u15u25p. Repeating the argument for each dimension 2 subspace in turn, we learn that
U561. Note that in a complex Hilbert space, the analogous argument shows only that
eiu15eiu2, from which we conclude~again by repeating the argument for each dimension 2
subspace in turn! thatU5eiu, which commutes with all projectors because any complex number
is a c-number in complex Hilbert space.

Clearly, the argument just given involves only elementary properties of the projectors in
Hilbert space, and makes no reference to the notion of a group of symmetries. The same is true of
the proposition given in Sec. I of Emch’s Comment. Since Schur’s lemma ordinarily describes the
restrictions on an operator that commutes with the representation matrices of an irreducible group
representation, and since the projectors in Hilbert space do not form a group~they are not invert-
ible and the product of two different projectors is not a projector!, it is a misnomer to describe
Emch’s Proposition, or the corollary given here, as a ‘‘quaternionic Schur’s lemma.’’ In addition
to disagreeing with Emch’s terminology, we also disagree with his statement, in the second
paragraph of Sec. III of his Comment, that the analysis leading to his Proposition is dependent on
the definition adopted for quaternionic projective group representations; in fact, the notion of a
group of symmetries does not enter into either his analysis, or the corollary for unitary matrices
proved here.

II. HOW SHOULD ONE DEFINE QUATERNIONIC PROJECTIVE GROUP
REPRESENTATIONS?

Let us now address the central question of how one should generalize to quaternionic Hilbert
space the notion of a projective group representation. We begin by reviewing how projective
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group representations arise in complex Hilbert space. LetG be a symmetry group composed of
abstract elementsa with group multiplicationab. By Wigner’s theorem, each group element is
represented, after ana-dependent choice of ray representatives, by a unitary operatorUa acting on
the states of Hilbert space. In the simplest case, in which theUa are said to form a vector
representation, theU ’s obey a multiplication law isomorphic to that of the corresponding abstract
group elements,

UaUb5Uab . ~7!

However, when the complex rephasings of the states used in Wigner’s theorem are taken into
account, there exists the more general possibility that for any stateu f &, the statesUaUbu f & and
Uabu f & are not equal, but rather differ from one another by a change of ray representative, i.e.,

UaUbu f &5Uabu f &eif~a,b; f !. ~8!

Corresponding to Eq.~8!, there are two possible definitions of a projective representation in
complex Hilbert space

Definition (1): In aweakprojective representation, the multiplication law of theU ’s obeys Eq.
~8! on one complete set of states$u f &%. This suffices, by superposition, to determine the multipli-
cation law of theU ’s on all states.

Definiton (2): In a strongprojective representation, the multiplication law of theU ’s obeys
Eq. ~8! on all states in Hilbert space. In this case, we can easily prove that the phasesf(a,b; f ) are
independent of the state labelf . To see this, let us defineVab5Uab

21UaUb ; then Eq.~8! implies
that

Vabu f &5u f &eif~a,b; f !, ~9!

which immediately implies thatVab commutes with the projectoru f &^ f u, for all statesu f & in
Hilbert space. But invoking the complex Hilbert space specialization of the result of the preceding
section, we learn thatVab must be ac-number,Vab5eif(a,b). This is the customary definition of
a projective representation in complex Hilbert space, and is well known to have nontrivial real-
izations.

Let us now turn to the question of how to define projective representations in quaternionic
Hilbert space. Emch choses as his generalization the strong definition given above, which by the
reasoning following Eq.~9!, and the quaternionic result of Sec. I, implies thatVab5(21)na,b, with
na,b an integer that can depend in general ona andb. In other words,the only strong quaternionic
projective representations are real projective representations.

The problem with adopting the strong definition, however, is that it excludes from consider-
ation as a quaternionic projective representation the embedding into quaternionic Hilbert space of
a nontrivial complex projective representation realized on a complex Hilbert space. Thus poten-
tially interesting structure is lost. To avoid this problem, Ref. 1 adopts as the quaternionic gener-
alization of the notion of a projective representation the weak definition given above, which in
quaternionic Hilbert space states that

UaUbu f &5Uabu f &va,b , uva,bu51 ~10!

for one particular complete set of states$u f &%. As discussed in Ref. 1, Eq.~10! can also be
rewritten in the operator form

UaUb5UabV~a,b!, ~11a!

with
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V~a,b!5(
f

u f &v~a,b; f !^ f u. ~11b!

Since the operatorV depends on the particular complete set of states on which the projective
phases are given, a more complete notation~not employed in Ref. 1! would in fact be
V(a,b;$u f &%). Using the result of an analysis2 of the associativity condition for weak quaternionic
projective representations, Tao and Millard3 have recently given a beautiful complete structural
classification theorem for weak quaternionic projective representations. The complex specializa-
tion of their Corollary 2, incidentally, states that in a complex Hilbert space, the weak definition
of a projective representation implies the strong one.

Can the weak definition of a quaternionic projective representation be weakened even further,
by using adifferentcomplete set of states$u f &% to specify the projective phases for each pair of
group elementsa andb?4 In this case, the operatorV takes the formV(a,b;$u f &%a,b). However,
since any unitary operator is diagonalizable on some complete set of states, this further weakening
allows an arbitrary specification ofV for eacha,b, and any relationship of the unitary represen-
tation to the underlying group structure is lost.

III. DISCUSSION

We conclude that the difference between our analysis and that of Emch is traceable to what I
have here termed the difference between astrongand aweakdefinition of projective representa-
tion. The strong definition is the customary one in complex Hilbert space, but it excludes poten-
tially interesting structure when applied to quaternionic Hilbert space. Since the weak definition
leads to a detailed theory1–3 of projective group representations in quaternionic Hilbert space, and
since it implies3 the strong definition in complex Hilbert space, the weak definition is in fact the
more appropriate one in both complex and quaternionic Hilbert spaces.
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~1! Superscripts onq: throughout the paper, the first superscript onq is its space–time index while
the second one, wherever it occurs, is its exponent.
For example, on p. 1714, Eq.~1.1! should readf[(q

1
)
2

1 (q
2
)
2

1 p1
2

1 p2
2

2 R2 5 0 and the expo-
nent in Eq.~3.5! is2@(q1)2 1 (q2)2#/2.
Other places where such double-superscripts should be resolved are:
p. 1717, Eq.~3.4! and
p. 1718, Eq.~3.11!.
~2! In the second line on p. 1715,~u8,q8! should read~u8,w8!.
~3! ~Weil’s! ‘‘integrability’’ ~condition! should read~Weil’s! ‘‘integrality’’ ~condition! in the
following:
p. 1716, last but two lines,
p. 1718, 7th line after Eq.~3.11!,
p. 1719, Sec. IV, 5th line and
p. 1721, line preceding Eq.~A15!.
~4! In the Appendix, subscripts on¹:
Eq.~A7! should readf̂ 5 2 i\¹Xf

1 f and
Eq.~A8! should read¹Xms

5 0.
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